MARCH•1953

PRIEE 75 CENTS

JUNCTION TRANSISTORS in Production

Beginning in this issue "TRANSISTORS: Theory and Application"

for Stock Hermeitically Selled Componenms

For over fifteen years UTC has been the largest supplier of transformer components for military applications, to customer specifications. Listed below are a number of types, to latest military specifications, which are now catalogued as UTC stock items.

rCOF CASE

Length $125 / 64$ Width $61 / 64$ Height 1 13/32 Mounting 1 1/8 Screws-...............4-40 FIL. Cutout7/8 Dia. Unit Weight1.5 0 .

RC-50 CASE
Length 1 5/8 Width $15 / 8$ Height $25 / 16$ Mounting $15 / 16$ Screws \#6-32 Cutout $11 / 2 \mathrm{Dia}$. Unit Weight 802.

SM CASE
Length 11/16 Width1/2 Height29/32 Screw4-40 FIL. Unit Weight 802.

The impedance ratings are listed in standard manner. Obviously, a transformer with a 15,000 ohm primary imped. ance can operate from a tube representing a source impedance of 7700 ohms, etc. In addition, transformers can be used for applications differing considerably from those shown, keeping in mind that impedance ratio is constont. lower source impedance will improve response and level ratings. . . higher source impedance will reduce frequency range and level rating.

COMPACT AUDIO UNITS...RC-5O CASE

Type No.	Application	MIL Type	Pri. Imp. Ohms	Sec. Imp. Ohms	$\begin{gathered} \text { DC in } \quad \text { Response } \\ \text { Pri., MA } \pm 2 \mathrm{db} \text {. (Cyc.) } \end{gathered}$	Max. level dbm	List Price
H-20	Single plate to 2 grids, can also be used for P.P. plates	TF1A15YY	15,000 split	$80,000 \mathrm{split}$	0 30-20,000	+12	\$20.00
H-21	Single plate to P.P. grids, DC in Prí.	TF 1A15YY	15,000	80,000 split	$8 \quad 100-20,000$	+23	23.00
H-22	Single plate to multiple line	TF1A13YY	15,000	$\begin{gathered} 50 / 200 \\ 125 / 500 \text { ** } \end{gathered}$	8 50-20,000	+23	21.00
H-23	P.P. plates to multiple line	TF 1A13YY	30,000 split	$\begin{gathered} 50 / 200 \\ 125 / 500^{* *} \\ \hline \end{gathered}$	$\begin{array}{ll} 8 & 30-20,000 \\ \mathrm{BAL} . \end{array}$	$+19$	20.00
H-24	Reactor	TF1A20YY	$\begin{aligned} & 450 \text { Hys. }-0 \\ & 65 \text { Hys } .-10 \end{aligned}$	50 Hys. 5 Ma . C, 1500 ohms.	$\text { DC, } 6000 \text { ohms . . . }$		15.00

SUBMINIATURE AUDIO UNITS...SM CASE

$\begin{aligned} & \text { Type } \\ & \text { No. } \end{aligned}$	Application	MIL Type	Pri. Imp. Ohms	Sec. Imp. Ohms	$\underset{\text { Pri., MA }}{\text { DC }}$	$\begin{gathered} \text { Response } \\ \pm \mathbf{2 d b} .(\text { (Cyc. }) \end{gathered}$	Max. leve dbm	List Price
H-30	Input to grld	TF1A10YY	50***	62,500	0	150-10,000	+13	\$13.00
H-31	Single plate to single grid,	TF1A15YY	10,000	90,000	0	300-10,000	+13	13.00
H-32	Single plate to line	TF1A13YY	10,000****	200	3	300-10,000	+13	13.00
H-33	Single plate to low impedance	TF1A13YY	30,000	50	1	300.10,000	+15	13.00
H-34	Single plate to low impedance	TFIA13YY	100,000	60	. 5	300-10,000	$+6$	13.00
H-35	Reactor	TFIA2OYY	100 Henr	50 Henries	Ma. DC,	4,400 ohms.		11.00

* 200 ohm termination can be used for 150 ohms or 250 ohms, 500 ohm termination can be used for 600 ohms.
** 200 ohm termination can be used for 150 ohms or 250 ohms, $125 / 500$ ohm termination can be used for $150 / 600$ ohms. *** can be used with higher source impedances, with corresponding reduction in frequency range. With 200 ohm source, secondary impedance becomes 250,000 ohms... loaded response is -4 db . at 300 cycles.
****can be used for 500 ohm load . . 25,000 ohm primary impedance .., 1.5 Ma . DC.

MINIATURE AUDIO UNITS...RCOF CASE

$\begin{aligned} & \text { Type } \\ & \text { No. } \end{aligned}$	Application	MIL Type	Pri. Imp. Ohms	$\begin{aligned} & \text { Sec. Imp. } \\ & \text { Ohms. } \end{aligned}$	$\underset{\text { Pri., MA }}{\text { DC in }}$	$\begin{gathered} \text { Response } \\ \pm 2 \mathrm{db} .(C y c .) \end{gathered}$	Max. level dbm	List Price
H-1	Mike, pickup, line to grid	TF1A10YY	50,200 CT, 500 CT*	50,000	0	50-10,000	+ 5	\$16.50
H.2	Mike to grid	TF1A11YY	82	135,000	50	250-8,000	+21	16.00
H-3	Single plate to single grid	TF1A15YY	15,000	60,000	0	50-10,000	+ 6	13.50
H. 4	Single plate to single grid, DC in Pri.	TF1A15YY	15,000	60,000	4	200-10,000	+14	13.50
H-5	Single plate to P.P. grids	TF1A15YY	15,000	95,000 CT	0	50-10,000	$+5$	15.50
H-6	Single plate to P.P. grids, DC in Pri.	TF 1A15YY	15,000	95,000 split	1	200-10,000	+11	16.00
H-7	Single or P.P. plates to line	TF1A13YY	20,000 CT	150/600	4	200-10,000	+21	16.50
H-8	Mixing and matching	TF1A16YY	150/600	600 CT	0	50-10,000	+8	15.50
H-9	82/41:1 input to grid	TF1A10YY	150/600	1 meg .	0	200-3,000 (4db.)	+10	16.50
H-10	10:1 single plate to single grid	TF1A15YY	10,000	1 meg .	0	200-3,000 (4db.)	$+10$	15.00
H-11	Reactor	TF1A2OYY	300 Henries-a D	, 50 Henries-3	Ma. DC	, 6,000 Ohms.		12.00

FIGURES OF THE MONTH 4
Includes Electronics Output Index, a business barometer for management
INDUSTRY REPORT5
TRANSISTORS: THEORY AND APPLICATION, by Abraham Coblenz and Harry Owens 98
First of a series of articles on transistors explains basic fundamentals
First of a series of articles on transistors explains basic fundamentals
FREE-WHEELING THYRATRONS CUT AUTOPILOT WEIGHT, by Charles G. Yates
FREE-WHEELING THYRATRONS CUT AUTOPILOT WEIGHT, by Charles G. Yates 103 103
Full-cycle thyratron motor control has quick response, light weight, durabilityANALYSIS OF UHF TUNER DESIGN, by Arnald Newton106
112
Gives first detailed description of devices shown to trade recently by RCA
Gives first detailed description of devices shown to trade recently by RCA
PHOTOELECTRIC WIDTH GAGE FOR HOT-STRIP STEEL MILLS, by E. S. Sampson
114
114
Accurately measures width of white-hot moving strip of steel from position 15 feet away
BUTTERFLY CURVE TRACER FOR MAGNETIC MATERIALS, by George M. Ettinger 119
Curves and hysteresis loops quickly traced on crt for direct viewing or photo record
CONSTANT-CURRENT AUDIO POWER AMPLIFIERS, by Howard T. Sterling and Alan Sobel 122 Automatic bias control counteracts effects of tube aging or replacement
SINGLE-GUN STORAGE TUBE WRITES, READS AND ERASES, by R. C. Hergenrother and A. S. Luftman
126
126 Improved memory tube retains charge one week
PERFORMANCE OF HIGH-OUTPUT MAGNETIC TAPE, by L. B. Lueck and W. W. Wetzel
131
131
Gives $6-\mathrm{db}$ greater signal output, permitting redesign of equipment for better performance
A HELICAL BEAM FOR CITIZEN'S RADIO, by Edward F. Harris 134
Fiberglas cylinder contains helical antenna integrally molded into it, is strong, high gain, weatherproof
PULSE GENERATOR HAS WIDE CONTROL RANGE, by W. W. SchroederFrequency, width and amolitude of two kinds of pulses are controlled in instrument designed for physiological research
HOW TO USE MECHANICAL I-F FILTERS, by M. L. Doelz and J. C. Hathaway
Compoct interstage units give good selectivity in communications work 138136
RECORDING PHOTOMETER PROVIDES LOG RESPONSE, by W. S. Plymale, Jr 143 Single scale covers six log cycles without range switching
TELEVISION RECEIVER AGC SYSTEMS, by Edward S. White Advantages and limitations of various gain control circuits 146
ARITHMETIC PROCESSES FOR DIGITAL COMPUTERS, by J. H. Felker 150 Review of binary arithmetic and other basic computer operations
TRANSISTOR EQUATIONS (Reference Sheet), by F. R. Stansel 150
Give gain and impedance characteristics in terms of transistor parameters

W. W. MacDONALD, Editor: VIN ZELUFF, Managing Editor; John Markus, A. A. McKenzie, James Fahnestock, Associate Editors; William P. O'Brien, John M. Carroll, William G. Arnold, William E. Pettit, David A. Findlay, Assistant Editors; Ann Mastropolo, Marilyn Wood, Mary J Johnson, Editorial Assistants; Gladys T. Montgomery, Washington Editor; Harry Phillips, Art Director; Eleanor Luke, Art Assistant

KEITH HENNEY, Editorial Director

H. W. MATEER, Publisher; WALLACE B. BLOOD, Manager; R. S. Quint, Buyers' Guide Manager; N. F. Cullinan, Promotian \& Research Assistant; H. E. Hilty, Classified Manager; D. H. Miller, James Girdwood, New York; Wm. S. Hodgkinson, New England; Warren W. Shew, Philadelphia; C. D. Wardner, Chicago; J. L. Phillips, Cleveland; T. H. Carmody, R. C. Alcorn, San Francisco; Carl W. Dysinger, Las Angeles; Ralph C. Maultsby, Atlanta
ELECTRONICS
Mehber AISC and Al:,

I'ublisher monthly with an additional issue in June ly MeGrarr-Hill Publishing Company, Inc., James H. MeGraw (1860-1948), Founder. Publication Office, 99-129 Broadway, Alban
Executive, Editorial and Advertising Offces: McGraw-Hill Building, 330 W. 42 St., Now York 36, N. Y. Curtis W. McGraw, President: Willard Chevalier Exeputice Vice-President and Editorial Director: Nelson Rond, Vice-Prer; Jonn J. Cooke, Secretary: Paul Montgomery, Senior Vice-President, Iublication Dtejsion; Raluh B Snith Sutscriptions: Address correspondence to Electronics-Subscription Servirector of Advertising: J. E. Blackburn, Jr., Vice-President and Director of Circulation
month for change of address. Subscriptions are solicited only from persons engaged in theory, research, design, Nroduction 330 W . 42 nd St., New York 36 , N. Y. Allow one control components, parts and end products. Position and company connection must be indicated on subscription orders.

Single coples $75 ¢$ for United States and possessions, and Canada. $\$ 1.50$ mor be indicated on subscribtion orders.
United States and nossessions, $\$ 6.00$ a year; $\$ 9.00$ for two jears. Canada, $\$ 10.00$ a a year: $\$ 16.00$ for two years. Other western hemisphere coide $\$ 2.00$. Subscription rates for two sears. All other countries $\$ 20.00$ a year: $\$ 30.00$ for two years. Fantered as seconcl ciass matter Ausuit 29, 1936, at the Post Office at Albany, N $\$$ Mar. 3, 1879. Printed in U.S.A. Copyright 1953 by McGraw-Hill Publishing Co., Inc.- All Mights Reserved. PRANCH OFFICES: 520 North Mibhigan Avenue, Chicago of

Theresa a difference in Marion "regular"

 Design

ITS magnetic system

Of the various elements that make up an electrical instrument, perhaps the most important is its magnetic system. The strength, uniformity and stability of the magnetic field determine the degree of accuracy and reliability of the instrument. Here is how Marion design provides a magnetic structure of great strength, uniformity and stability, and at the same time keeps weight and cost at a minimum :

MAGNET

All Marion magnets are large, well-aged, precisely ground Alnico II or Alnico V, carefully checked for magnetic uniformity and maximum stable energy.
In addition to being the largest producer of Ruggedized electrical indicating instruments, Marion has served industry for many years with a line of unsealed instruments for commercial applications. These instruments (Marion "Regulars") have been refined through the years and today serve the "blue chips" of industry in the most critical operatrons.
The design of these instruments has stayed abreast of new materials and the latest in manufacturing methods. At the same time they have retained the basic simplicity of Marion functional design. This, combined with an efficient, cost-conscious manafracturing organization, affords finer instruments at lower cost.
Marion "Regulars" are selected by the world's most discriminating manufacturers of the finest electronic and electrical equipment as a basic major component of their finest products.

Marion Electrical Instrument Company
401 Canal Street, Manchester, N. H., U. S. A.

Where every detail matters

t the high speeds encountered with turbo-jet engines, unsuspected blade resonances can cause serious damage. For this reason exhaustive vibration tests must be made, and the source of each vibration located. Leading British Aircraft manufacturers rely on the MuirheadPametrada Wave Analyser it gives them see frequency and amplitude of car vibration conponent quickly and accufately; amplitude measurements 10\% moreover, be made substantially independent of speed fly Mations. Location of the source of vibration then becomes simply a matter of comelating the measured frequency with known engine data.

SEE THE WAVE ANALYSER

AT BOOTH 4-804

RADIO ENGINEERING SHOW

GRAND CENTRAL PALACE NEW YORK

MARCH 23rd-26th, 1953

Fitratio. 1 Analysis with the MUIRHEAD-PAMETRADA IWAYE ANALYSER at Armstrong Siddeley works, Coventry

FIGURES OF THE MONTH

electronics—MARCH • 1953

MORE engineers and exhibits than ever before will be ot

IRE Show, A Preview Of Progress

This year's convention promises to set new high in attendance, exhibits and technical interest

Year after year the national convention of the Institute of RadioEngineers has grown in size and scope. It has become a leading national event for the electronics industry commercially as well as technically. Despite future location problems, its continued success in all phases seems assured.

- Progress-As shown in the charts, the show has more than doubled in size in the last five years. This year's meeting promises to break all previous records for attendance and number of exhibits. Over 30,000 engineers and scientists from all parts of the world are expected to attend. More than 400 exhibits by companies in every facet of the industry will be displayed, representing a value in equipment alone of over $\$ 10$ million.
Keeping pace with the growth in
attendance and exhibits, the technical scope of the convention has also broadened steadily. This year a total of 220 papers will be presented during the 43 sessions and 9 symposia of the show. In 1948 about 140 papers were presented in 27 sessions.

Highlight of the technical program this year will be an all-day seminar on "Acoustics for the Radio Engineer" and 9 symposia organized by professional groups of IRE. The complete technical program for the convention appears in this issue of Electronics, beginning on page 454.

- Business-The growth of the show has also meant increased business for participating manufacturers. The fact that companies have continued to return year after year, along with new participants, vouches for its commercial value.

Although the amount of actual orders obtained by exhibitors as a direct result of the show cannot be accurately determined, some
smaller electronic manufacturers have indicated that as much as 50 percent of their total annual order volume resulted from show participation. Even without orders, manufacturers have found the convention to be of substantial institutional value and of valuable aid in locating available engineering talent.

- Future-Next year's IRE show will be held at the Kingsbridge Armory in the Bronx, N. Y. if the Bureau of Internal Revenue goes through with plans to take over Grand Central Palace for office space. It is considered likely that the Bronx may also be the show site for 1955 although Atlantic City is being considered for that year if the Bronx location proves inadequate.

In 1956 it is expected that the mammoth Columbus Circle Coliseum in New York City will be completed and available for use. If present rate of growth continues, the 1956 IRE national convention will probably need the space.

TV Broadcast Industry Forecasts Own Growth

Month by month totals for postfreeze stations on the air in 1953 are predicted

Accompanying bar chart showing the probable growth of post-freeze tv stations on the air by the end of 1953 rests squarely upon the shoulders of the broadcasters themselves. In it, some 119 post-freeze grantees indicate their hoped-for starting dates (45 others refused to put themselves on the spot). Added to the year-end total are 13

already making use of their new post-freeze grants.

- Red Faces? - An additional 25 on the air at year's end would be a source more for rejoicing than em-
barrassment. Reddest faces so far are those of the uhf transmitter manufacturers, whose production lines have not quite caught up with press departments' output.

Synthetic Mica Used Commercially

Crystals 'grown' in electric furnaces still too small for capacitors, but have other uses

Although military research funds have not yet paid off in freeing U. S. from dependence on India for natural mica splittings, commercial byproducts of the research are emerging. This means that huge electric furnaces for growing mica crystals artificially may soon be in operation without government support.

- The Mica Business--Over 8,000,000 pounds of mica splittings are imported annually, with roughly 90 percent coming from India and the rest from Brazil, at an average price of $\$ 1$ a pound. The largest sheets, needed for mosaics of tv camera tubes, are worth up to $\$ 500$ a pound.

Circle and punch mica, used chiefly for vacuum-tube spacers, runs about 18 cents a pound for the $2,500,000$ pounds needed annually by the tube industry. This grade is available from U. S. mica
mines and can also be made synthetically, though at about twice the price.

Though some 60,000 tons of scrap and ground mica are used annually, availability is excellent at the going rate of 3 cents a pound. For electric furnaces operating at 30 cents a pound, synthetic production of this grade is economical only as a byproduct of sheet-growing.

About three-fourths of the imported splittings go into built-up or reconstituted mica worth around $\$ 2$ a pound. Here synthetic mica offers the best possibilities.
\rightarrow Reconstituted Mica-Use of smaller mica pieces and elimination of hand splitting are the chief advantages of a relatively new process of reforming mica into large, continuous sheets. The mica is disintegrated by beating it for a minute or two in a blender half-full of distilled water, and the sheet is formed by pouring the mica suspension over a suction filter. After drying, the tiny pieces cohere to give a mat with some strength and elasticity, though less than that of
natural mica; the cohesion is believed due to electrostatic charges. The reconstituted mica flakes can be permanently bonded together by hot-pressing near the melting point of the mica.

With synthetic mica flakes, a lower-melting-point synthetic boron mica can be mixed in and heated just above its fusion temperature to give a mica-bonded mica sheet. There are excellent possibilities here of developing an automatic continuous process for manufacturing a high-temperature-resistant mica sheet of controlled thickness for capacitor use.

Community Television Continues To Expand

DESPITE post-freeze station building, the future seems bright for community antenna operators. Systems total 149 today as against 96 half a vear ago; 26 new systems are plannet.

An estimated 70,000 to 85,000 homes receive their television entertainment via cable, with the viewers coughing up three-billion dollars annually in service charges. Manufacturers can thank community tv for helping sell $\$ 17,500,000$ worth of sets in otherwise inaccessible communities. Antenna operators have collected $\$ 8,750,000$ in hook-up fees.

Pennsylvania is still the center of community television, with 53 systems. West Virginia has 23, while California, a comparative latecomer, has 18 systems.

- Multiple Owners-Reportedly

 only half the antenna operators are making a profit from their enterprises but this is attributed largely to slipshod business methods. The multiple-system owner, often backed by big-money interests, has made his appearance on the scene. A California operator has a chain of five systems while a Pennsylvanian is running three.Very ambitious is Jerrold Electronics, backed by J. H. Whitney and Ca, large New York investment house. Jerrold is aiming at 6,000 subscribers in Williamsport, Pa.,
(Continued on page 8)

and a second system is under construction in Fairmont, W. Va. The Jerrold-Whitney group has three additional systems in the planning stage. Jerrold also runs systems in Walton, N. Y., Harlan, Ky. and Ventura, N. J.
-Subscription TV-Community antennas and pay-as-you-go television apparently were made for each other. With FCC approval the sticking point for subscription tv via the air waves, community antenna operators are free to distribute quality programs of local origin over an unused channel of their wire system and charge by the program.

Telemeter has a coin-box system operating in Palm Springs, Calif. The system uses Jerrold 7-channel equipment. Telemeter is so thrilled over the marriage of the cable and coin box that they have now gone in for manufacturing components for community-tv systems themselves. Since turnabout is both fair and profitable play, Jerrold is experimenting with a subscription television system.
-Boosters and Satellites-An alternative means for bringing television to mountain-ringed communities is the booster or satellite plan. A booster picks up a tv signal and reradiates it on the same channel with vertical polarization. Satellites reradiate the signal on a different frequency. One of each of these systems is now operating experimentally.

Community tv manufacturers announce that they are ready to join in booster operation, pointing out that satellite operation requires additional channel assignments,

- Local UHF--Local uhf stations have already proved a boon to some community-tv operators. Take the case of Shinshinny, Pa.: Interest in community tv rose in this moun-tain-ringed community only after nearby Wilkes-Barre began work on its uhf outlet. Community-tv manufacturers state that special crystal-controlled uhf-to-vhf converters designed for unattended operation will be available when system operators require uhf reception.

Paramount-ABC Merger Approved

Split decision paves way for the biggest transaction in broadcasting history

Approval by the Federal Communications Commission of the merger of United Paramount Theaters, Inc. and the American Broadcasting Company will have widespread effects on the U.S. broadcasting business. It not only permits the formation of a new broadcasting network but directly affects the operations of four other companies in the broadcasting and tv manufacturing field. The full effects of
the merger may not be apparent for some time, however.

- New Network-The new network that will result from the merger will be known as AB-PT, Inc. and will have assets of about $\$ 150$ million behind it. Its formation involves a $\$ 25$ million stock transaction, the biggest in the history of broadcasting.

The new corporation will control five tv stations, six $a-m$ stations and six f-m stations, in addition to 707 theaters throughout the country. It now also has 81 tv stations and 353 radio stations as affiliates.

OPERATOR in freight-yard control tower (left) engages remote car-retarder when speed meter (right) warns that coupling speed is unsafe os

Radar Eases Freight-Car Jolts

Unmanned freight cars roll safely down grade into classification yards

RADAR speed meters, familiar hazard to highway speeders, help insure safe automatic freight handling in railroad classification yards.

Cars are pushed over a rise of ground by a switch engine and decoupled, rolling by gravity into classification tracks where trains are made up. The speed meter clocks
the rolling cars, warning the operator in the yard's control tower if their speed is too high for safe coupling. The operator then manipulates remote electronic controls that slow the car by engaging retarders, long clamps faced with hard rubber that squeeze wheel flanges against the track.

Equipment-Operating on 2,455 mc in one of the industrial-medicalscientific bands, the speed meter works on the Doppler (frequency-
(Continued on page 10)

THE MOST EFFECTIVE CAPACITORS FOR R-F NOISE SUPPRESSION

...are the NEW SPRAGUE THRU-PASS capacitors

THRU-PASS CAPACITORS are a new Sprague development for use in radio interference reduction in communication and radar equipment.

- Thru-Pass Capacitors not only reduce to a negligible value the effect of external connection inductance to a capacitor but they also have a minimum length of internal path for radio interference currents. Their performance is closer to that of a theoretically ideal capacitor than that of any other paper capacitor!
- Electrically, Thru-Pass Capacitors are three-terminal feed-thru devices which are connected in a circuit in a manner similar to a low pass filter; the tab or lead terminals are connected in series with the circuit being filtered while the case is grounded.
- The threaded-neck mounting on Type 102P and 103P Subminiature Thru-Pass Capacitors is designed to give a firm metallic contact with the mounting surface over a closed path encircling the feed-thru conductor and to eliminate unwanted contact resistance so that the theoretical effectiveness of these new units is realized in practice. The milled flats on the threads help ensure vibration-proof mounting since the capacitors cannot rotate if mounted in a flatted opening instead of the usual circular hole.
- Type 102P and 103P Capacitors are all hermetically encased. Glass-to-metal solder-seal terminals are
employed in order to assure positive protection against severe atmospheric conditions.
- Both cypes are impregnated with Vitamin Q, Sprague's exclusive inert synthetic impregnant, in order to provide maximum insulation resistance and minimum capacitance change with temperature. Type 102 P units are processed for $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ operation while Type 103P units have their top operating temperature extended to $+125^{\circ} \mathrm{C}$.
- Engineering Bulletin 215 gives full details and standard ratings. Write on your business letterhead for your copy to Sprague Electric Co., 35 Marshall St., North Adams, Massachusetts.

TYPES 102F AND $103 P 5$ AMPERE THRU-PASS CAPACITORS SHOWING CHOICE OF LEAD OR TAB TERMINALS

WORLD'S LARGEST CAPACITOR MANUFACTURER

EXPORT DIVISION: CABLE SPREXDIV, NORTH ADAMS, MASS.
"thru.pass" and vitamin "Q" are sprague trademarks.
See us at the I.R.E. Show-Booths 1-410 \& 1-412
change) rather than the pulse principle. The transmitter consists of a single 2C40 'lighthouse' triode operating as a fixed-frequency cavity oscillator. Output is nominally 4.5 watts $\mathrm{c}-\mathrm{w}$, delivered to two halfwave dipoles fed in phase.

Equipment costs approximately $\$ 1,000$ when used in conjunction with a graphical recorder.

- Use-Radar speed checking is used by the Southern Railway System in the John Servier Yard, Knoxville, Tenn. and in Ernest Norris Yard, Birmingham, Ala. Another user is the New York, New Haven and Hartford Railroad.

Speed checking by Doppler radar is used extensively on highways. Two well-known users are the Connecticut and Maryland State Police, with installations on the Merritt Parkway and Washington-Baltimore Boulevard.

Radioactive Tracers Check Germanium

Minute traces of foreign elements are measurable for research in transistors

One of the most exacting processes involved in the manufacture of transistors is the control of the amount of impurities in the semiconductors used. The usual technique is to refine the material well beyond the required value and then to add appropriate and controlled amounts of the desired impurities.

Production is limited by difficulty of determining when the super-pure state has been reached. A method for achieving this type of measurement to one part in one hundred million has been developed at Sylvania by George Morrison of the Radiochemical Laboratory at Bayside, New York.

- Method-A sample whose purity is to be determined is sent to Brookhaven National Laboratories, where it is placed in a reactor and thereby subjected to radiation. The sample becomes hot by a measurable
amount proportional, among other things, to the percentage of impurities present. It is thus possible to calculate the degree of impurity with extreme accuracy.
The technique has proved successful in preparing germanium samples with arsenic impurities. Other vehicles and impurities may be studied in the same manner.

Safety-of-Life-at-Sea Radio Equipment Ready

NEW aids to save lives were provided for under the International Convention on Safety of Life at Sea, London, 1948. With the final ratification (Electronics, p 10, Mar. 1952) of this Convention, four years later, FCC quickly set up specifications for fulfilling the electronic requirements. In less than two months American manufacturers came up with prototypes.

- The Equipment-The provision that newly certified ships beginning Nov. 19, 1952 must carry certain main or auxiliary radiotelegraph equipment may mean a bit of extra change for a good many small and big manufacturers. Lifeboat portable radiotelegraph equipment, on the other hand, is so radically new as to require complete redesign and may be attempted by only a handful of those in the field. FCC will await type approval of commercial equipment before specifying a compliance date.

Among the features required of the new lifeboat radio design are ability to send or receive on two distress-frequency bands-492 to 508 kc and 8,240 to $8,800 \mathrm{kc}$. Transmissions are modulated with an 800 -cycle tone and the receiver can be adjusted for tone or continuouswave signals.

- Autoalarm and SOS-A hand generator supplies all power and an automatic keying device must be provided to send the international autoalarm signal (12 dashes in one minute) followed by SOS on 500 kc . When switched to the $8,364-\mathrm{kc}$ position, the automatic keyer must send

RCA version of an automatic trans-mitter-receiver unit required in lifeboats of American-flag ships

SOS and a 30 -sec dash for direction finding by rescue craft. Other requirements include a collapsible aluminum-rod antenna and ground wire with sinker.

Electronic Plants Are Safer Now

Injury frequency dropped as the industry made progress in safety

DESPITE higher production and employment, work injuries in radio-tv, tube and communications equipment plants have declined significantly since 1949, reflecting the increasing efforts of manufacturers to make their factories safer places in which to work.

The number of injuries per mil-lion-employee-hours worked declined to 4.3 in the first six months of 1952 (latest reported period) compared to a high of 5.3 in 1950 when there were almost 50,000 less employees. With about 12 million employee-work-hours clocked in the industry every week, this decline has meant an average of 12 less injuries every week.

- Trend-As is shown in the chart, the decline in disabling work injuries, which are any injuries occurring in the course of employ-
(Continued on page 14)

announcing the Centralalo

"EYPRESS"

These up-to-the-minute Centralab

You can count on prompt delivery from Centralab's wide variety

Quick delivery plus these features make the Model 2 Express the control for YOU

- resistance range: $1 / 2$ megohm and 1 megohm $\pm 30 \%$
- taper: Audio, Centralab C2
- wattage rating: $1 / 2$ watt
- voltage rating: Tested to withstand 1000 volts rms
- marking: Control stamped with Centralab part number, resistanceand taper; shaft stamped with shaft number (Except Number 1)
- bushing: $1 / 4$ " long from mounting surface. $3 / 8^{\prime \prime}-32$ NEF thd.
- switch: Single-pole, single-throw, rated 5 amps at 125 volts a-c. UNDERWRITERS APPROVED.
- how to order: Specify Centralab Express radiohm, maximum resistance desired (either $1 / 2$ or 1 meg .) shaft length desired by number and/or length FMS Specify quantity.

Available in $1 / 2$ and 1 megohm values...meet 75% of requirements for switch-type controls

HERE'S big news! Centralab's newest - the Model 2 Express Control - is just what manufacturers needing controls on extremely short notice have always wanted. Unique time-saving feature simplifies shaft assembly requirements - control shafts fit all standard RTMA split-knurled and certain springtype push-on knobs.

Shafts and controls are carried in stock at our plants. When your order is received, desired shafts are staked directly to controls. Complete assembly arrives in your plant in just a few days. To help you plan...Centralab will even tell you approximate delivery time in hours from the date your order is received.
The new Express is available in two values: $1 / 2$ and 1 megohm, audio taper (C2) with SPST a-c line switch. These two values mect 75% of the requirements for switch-type controls. Talk about versatility! Flat shafts are stocked separately in 14 lengths ranging from $7 / 8^{\prime \prime}$ mounting surface to $21 / 2^{\prime \prime} \mathrm{fms}$ in increments of $1 / 8^{\prime \prime}$.
Think what this range plus quick delivery can do to solve your immediate production requirements! Quickest way to get started is to check Bulletin $42-163$ in coupon.

Controls keep you ahead on AM-FM-TV

of standard and custom controls to meet commercial and government requirements

New Model 2 Express plus these Centralab "reliables" - Models 1 and 2 Radiohms (plain or switch type, plain or dual concentric shafts) and newly announced Compentrol - meet today's demand for smaller size . . . extra quality.

Centralab Model 2 Radiohm Control - Left, single urit plain type, untapped; right, twin unit plain type, untapped. Both with single shafts.

Centralab Model 2 Radiohm Control - control shown is a single unit switch type, tapped. Control has single shaft. Smail size adds extra versatility.

Centralab Model 2 Radiohm Control-this control is a twin unit switch type, untapped. It has a single shaft. Check 42-85 for data on these model 2's.

Centralàb Model 2 Radiohm. Left, twin unit plain type, front section tapped; Right, twin unit switch type, rear-section tapped. Concentric shafts.

NEW Compentrol

-a volume control with the built-in printed electronic circuit.
Gives high fidelity bass and treble tone response at low volume level. Furnished in $1 / 2$ and 1 meg plain or switch types. No insertion loss no additional amplification required. For complete data check No. 42-182 in coupon.

Centralab's Model 1
-miniature variable resistors - world's smallest volume control.
no bigger than a dime available in Standard or Hi_{i} torque types-with or without on-off switch. Also with slotfront or rear-for screw-driver adjustment. Hi-torque units hold settings under conditions of vibration or shock. Ideal for hearing aids. Check No. 42-158 on coupon.

MILITARY TYPES . . . If you use types RV2A or RV2B, Model 2 variable resistors on your next military order there's no prior contract approval or waivers required. They meet JAN-R-94, characteristic U requirements.

By return mail... we'll be happy to send you complete information -foper curves, physical dimensions, engineering specifications on all controls illustrated. Manufacturers samples on request. Use handy coupon.

See Us af the I.R.E. Show. Booths No. 2-403-404.

Centralab
 A Division of Globe-Union Inc.

 Milwaukee 1, WisconsinIn Canada, 635 Queen Street East, Toronto, Ontario

CENTRALAB Div. Globe-Union Inc: 914 East Keefe Avenue, Milwaukee I, Wisconsin	
\square No. 42-85; \square 42-158; \square 42-182; \square 42-163. Please send the bulletins I've checked. \square I'd also like a copy of Centralab's latest stockcatalog No. 28, including more than 470 new items designed for the catalog No. ${ }^{28}$, including mothanging electronic field.	
Company	
Address..	
City....	- .-. State

ment which makes the injured worker unable to perform his regular duties, has not been a steady decline in the last four years.

With the outbreak of the Korean War in 1950, the injury rate rose to its highest point during the period. One main factor contributing to the rise that year was the relatively sudden demand for production increases brought about by defense needs and tv scare buying. Employment and overtime hours rose suddenly and accidents climbed as work fatigue increased.

- Progress-Electronic manufacturers see many reasons for the downward trend in the injury frequency rate. Labor unions as well as manufacturers emphasized the safety factor and safety engineering became a regular part of the production plans of many firms.

Other overall factors such as mechanization, better lighting and better facilities have contributed to the decline. Electronic manufacturers have found that such safety progress pays off not only in higher employee morale but in higher production and lower insurance rates.

- Future-Electronic manufacturers are continuing to improve plant safety conditions and are far ahead of many other industries in this respect.

Recently the television-radio division of Westinghouse established an all-time safety record for the entire electrical equipment industry when $15,040,000$ employee-workinghours went by without a lost-time accident. With safety engineering and modern construction increasing in the industry, more new safety records may well be in the making.

Radio-TV Firms Add Other Lines

Diversification trend accelerates as manufacturers continue to broaden their activities

DIVERSIFICATION is not new to many raido-tv manufacturers. Companies in the field manufacture products ranging from sporting goods to bathroom fixtures. But in recent months the trend to other lines has accelerated and important set manufacturers have entered other product fields.

Stabilization is one of the reasons for these moves and indications are that the trend will continue at an even faster pace in the future.

- New Fields-RCA is the most recent of the major companies to move into new lines. It began with air conditioners last year and then moved into the electric range field. Now it is rumored that the company will market washing machines under its diversification plans.

Admiral has also recently entered more heavily into appliances. The firm has announced plans to manufacture and sell a line of air conditioners and home freezers in 1953. It has been in the refrigerator and range business for some years and has also made a line of dehumidifiers. With the new product additions, the company expects to double the sales of its home appliance division this year.
-Why?-Probably the basic reason why radio-tv companies have entered new fields was best stated by one manufacturer who bluntly answered-"To make more money." Other reasons for the trend seem to lie in the radio-tv business itself. Its tremendous growth since the war has given radio-tv companies the capital to make acquisitions. In addition, its close association with other products through common wholesalers and dealers, especially in appliance lines, has made the moves easier.

The seasonal nature of the radiotv business has also been responsible for diversification. Manu-
facturers have found that one of the best ways to combat the drop in radio-ty sales in the summer and stabilize their sales is to have another line of products to sell that are in season. Home appliances have met this need successfully and this is the field most radio-tv companies have entered.

Another very significant reason for the diversification trend was recently stated by R. D. Siragusa, president of Admiral "In marketing generally, and in the marketing of consumer durables particularly, brand names are becoming more and more important. To establish a brand among the top sellers requires increasingly large outlays for demand creation in the form of advertising and promotion. This also automatically means that successful companies will tend to have a family of related products so that the advertising and promotion investment made for the brand will be spread over more units."

Radiation Instrument Industry Grows

Radiation instrument industry, virtually non-existent in 1946, had an annual business of $\$ 20$ million in 1952 and employed more than 2,400 persons, according to a survey by the U.S. Atomic Energy Commission. Seven companies account for about 50 percent of the industry's activity.

Growth of the new industry has paralleled development of the nation's atomic energy program since early 1947, when the AEC adopted a policy of encouraging its operating contractors to procure radiation instruments from commercial manufacturers.

- Market-The survey shows an expanding market for radiation instruments outside of the AEC program as well as within it. Military agencies of the government now provide about 50 percent of the
(Continued on page 16)

SHOCK M VBRATION

NE WGS

The new Type 7630 and Type 7640 ALL-METL Barrymounts have been specifically designed to eliminate loss of efficiency due to damper packing. Previous wire-mesh unit vibration isolators exhibited a definite loss of damping efficiency after a period in actual service, because the wire-mesh damper tended to pack. These new unit Barrymounts have eliminated this difficulty, because the loadbearing spring returns the damper to its normal position on every cycle.

- Very light weight - helps you reduce the weight of mounted equipment.
- Hex top - simplifies your installation problems.
- High isolation efficiency - meets latest government specifications (JAN-C-172A, etc.) - gives your equipment maximum protection.
- Ruggedized - to meet the shock-test requirements of military specifications.
- Operates over a wide range of temperatures - ideal for guided-missile or jet installations.
Compare these unit isolators with any others - by making your own tests, or on the basis of full details contained in Barry Product Bulletin 531. Your free copy will be mailed on request.

See these new isolators in action, and discuss their applications with us, at the New York I.R.E. Show.
total market, the AEC and its principal contractors provide about 30 percent and the remainder is accounted for by private industry, universities, hospitals and research institutes, civil defense, export and uranium-ore prospecting.

More than 50 patents in the field are owned by the U.S. and held by the AEC. A total of 51 non-exclusive, royalty-free licenses have been granted on these patents.

US Drops Suit Against Set Makers

Convened last January, a New York City grand jury failed to turn up evidence of "the use of force, strong-arm tactics or activities of a similar punitive nature" by the radio-ty industry. As a result, James P. McGranery, now ex-Attorney General, dropped the Government's criminal anti-trust suit which involved many major radio and tv manufacturers.

McGranery stated it was now the Government's opinion that a civil anti-trust suit would get "whatever restraints may exist in the industry", and that's where the matter rests at the moment.

Industrial TV Monitors Production

Electronic watchdog keeps an eye on products ranging from oysters to sugar cane

Closed-circuit television systems for industrial applications involve a number of compact, specialized units permitting centralized control or for watching processes too dangerous for visual observation. Uses range from watching boiler-water level gages and smoke stacks in power plants, to underwater inspection of dock pilings and wharves.

Remington-Rand and RCA color systems are being used in medical schools to permit a large number of students to look over a surgeon's shoulder while he operates.

A stereoscopic tv system developed by DuMont is being used at Argonne National Laboratory to observe work with radioactive materials. Another three-dimensional system, made by the Fenjohn Photo \& Equipment Co., is being used by the Maryland Fisheries Commission to study oyster beds.

A system of mirrors installed in a

Waialua, Hawaii sugar plantation was an ingenious idea for continuously checking the progress of sugar cane along the conveyors. However, it didn't work because of vibration, dirt and spray.

- Electronics to the Rescue-The need for close control of volume and speed was so great that this plantation, as well as another at Ewa, are installing closed-circuit television systems at a cost of $\$ 7,500$ apiece. Cameras can be so mounted and protected from dirt and spray that they will give a picture of the cane moving mechanically from cleaning plant to grinding machinery. A coaxial cable system will relay this information from the cameras to a tv receiver at the control center.
- Equipment Requirements-Since most industrial television equipment is operated by unskilled personnel, adjustments and controls must be kept at a minimum. For the same reason a minimum of
(Continued on page 18)

Closed-Circuit TV Brings Meter Readings to Last-Row Students

Schools are potential market for industrial television systems. In this physics lecture hall at Cornell University, Professor Guy E. Grantham is holding a light-meter in front of the RCA camera. Resulting image of meter scale fills entire screens of two 21 -inch television receivers watched by students. Camera can also be aimed into microscopes and cloud chambers to show phenomena that would otherwise be visible to only one person at a time

Admiltance Meters \& Coarial Elements \& Decade Capacitors Decade Inductors \& Decade Resistors \& Distortion Meters Frequency Meters Frequency Standards \& Geiper Counters Impedance Bridges \& Modulation Meters \& Oscillators Variacs मे Lighl Melers \& Megohmmeters \& Motor Controls Noise Melers \& Null Detectors \& Precision Capacilors
maintenance should be required.
A portable unit made by the Diamond Power Specialty Co., with camera, power supply and receiver, weighs less than 150 pounds. Camera units are being made that measure less than 8 by 4 by 4 inches. A mount for this camera made by the General Precision Laboratory permits remote viewing with control of camera angle, focus and lens opening from the viewing point.

THERE are 9 million $f-\mathrm{m}$ sets in use and

F-M Radio Catches Its Second Wind

Despite a decline in production there is still plenty of life in the field

Production of frequency-modulation radio sets has decreased in the past two years but dollar volume is still significant and the field represents a thriving business for some manufacturers. In some areas where tv's popularity gave f-m a temporary setback there are signs that it is catching its second wind.

- Trend-As shown in the chart, there is a total of 9 million $\mathrm{f}-\mathrm{m}$ sets in use in the U.S. In 1950, the banner year for f-m, over- 2.2 million units were produced. In 1952, total output stood at 500,000 .

Table models were by far the largest sellers during 1952, accord-
ing to leading producers. Units with f-m only have virtually disappeared from the market and the number of tv sets with f-m included has also declined markedly. In 1950 over 750,000 tv sets with f-m were produced. In 1952, the number had dropped to about 88,000 .

Still, f-m dollar volume was sizeable in 1952 despite lower production. With an estimated average retail price for $\mathrm{f}-\mathrm{m} / \mathrm{a}-\mathrm{m}$ units of about $\$ 65$, last year's output meant a dollar volume of over $\$ 32$ million and represented more than 26 percent of the total dollar volume of home radio sales in 1952.

- Companies-Big reason why some radio manufacturers are do-
ing more $\mathrm{f}-\mathrm{m}$ business is that there are fewer manufacturers concentrating on the market and sharing in the dollar volume. In 1949 about 50 companies were producing $\mathrm{f}-\mathrm{m} / \mathrm{a}-\mathrm{m}$ table models, the volume seller in the field, while last year there were less than 25 of the radio manufacturers making the combination units.

Zenith, a major producer in the field, reports that its f-m sales have been the biggest in history. They have brought out a greater variety of $\mathrm{f}-\mathrm{m}$ models for 1953. It is reported that General Electric also plans to go more heavily into the field this year. In addition, f-m station activity, despite some setbacks, has increased.

Company Patent Policies Surveyed

Abstract

Assignment agreements are universally used, but differ greatly in details

A detailed study of patent practices in 48 major corporations, 11 of which are active in the electronics field, was made recently by the National Industrial Conference Board. Forty-three of these firms require some or all of their employees to sign patent-releasing agreements as a condition of employment and two of the remainder have unwritten understandings.

- Who Signs-Research and engineering employees are almost universally required to sign patent agreements, since they are the most likely to make patentable inventions of interest to the company. In 19 companies, executives and supervisors must also sign up. Ten companies require all their employees to sign.
- Duration of Agreement-With 33 firms, the agreement expires at the termination of employment. Obligations which are part of the agreement generally continue, however. This insures availability of the former employee to execute
necessary papers and perform other actions involved in securing patents for inventions made during his employment.

With 10 firms, the assignments bind the employees completely for 6 months to 2 years after termination of employment. This is based on the premise that subsequent inventions could have been conceived or developed during employment.

- Pay for Patents-Although engineers are often hired specifically to invent, nominal extra compensation is often made for successful patents, chiefly as a means of boosting morale by giving formal recognition of achievement. Seventeen firms give a fixed amount per invention; one pays $\$ 150$, six pay $\$ 100$, six pay $\$ 50$ and four pay $\$ 1$ (the latter more in the nature of a legal consideration). Eleven companies give salary increases to prolific inventors. A few share royalties with the inventor when licenses are issued under the patent.

Special cash awards for the best invention of the year, for the best in 5 years, or for every 50 inventions, are made by some
(Continued on page 20)

The man who ases instruments likes Sorensen AC Line Regulators because of regulation accuracy, clean waveform, insensitivity to frequency fluctuation, load range.

The man who maintains instruments likes Sorensen AC Line Regulators because of circuit simplicity, conservatively rated tubes (only 3 in all), built-in ability to deliver
trouble-free performance for months on end.

The man who pays for instruments likes Sorensen AC Line Regulators because of reasonable price and the fact that there are no extras for in. stallation and special wiring.
The man who designs instruments likes Sorensen AC Line Regulators because they are ideal for incorporation as reliable components.
electrical specifications

Models available (numbers indicate VA capacities)	Input	95-130 VAC, $1 \phi, 50-60 \sim 190-260$ VAC in "-2S" models
	Output	115 VAC $\pm 5 \%$; 230 VAC in " 2 S" models
150 S250 S500 S1000 S$(-2 \mathrm{~S}$ also also $)$	Regulation accuracy	$\pm 0.1 \%$ against line or load
	Distortion	2\% - 3\% maximum
$\begin{aligned} & 2000 \mathrm{~S} \\ & 3000 \mathrm{~S}(-2 \mathrm{~S} \text { also }) \\ & 5000 \mathrm{~S}(-2 \mathrm{~S} \text { also }) \\ & 10000 \mathrm{~S}(-2 \mathrm{~S} \text { also }) \\ & 15000-2 \mathrm{~S} \end{aligned}$	P. F. range	Down to 0.7
	Load range	0 to full load
	Miscellaneous	Models 150S, $250 \mathrm{~S}, 500 \mathrm{~S}, 1000 \mathrm{~S}, 5000 \mathrm{~S}, 10000 \mathrm{~S}$, and $15000-2 \mathrm{~S}$ are self-contained. Cabinets available for others.
1001	Regulation a $\pm 5 \%$, other	racy 0.01%, load range $0 \cdot 1000 \mathrm{VA}$, output 115 VAC racteristics similar to those given above.

* ISOTRONIC=Regulation and control of voltage, current, power, and frequency by electronic means.
firms; these are usually $\$ 500$ or less, but can go up to $\$ 5,000$.
- Releasing Rights-Only 8 companies do not release rights to unwanted inventions. On the other hand, 2 actually help the employee to obtain his own patent when they don't want it. Some assionment agreements contain an automatic release clause so all rights revert to the employee if the patent is not prosecuted by the company within a specified time interval after complete disclosure, such as 9 months.

Financial Roundup

Profit reports, security offerings and sales, and mergers were made or planned by many companies in the electronics industry during the past month.

Profits of six companies in the field indicate that 1952 business was good:

Company	1952	Net lrotit	1951
AT\&T	$\$ 319,750,000$	$\$ 279,256,365$	
Avco	$11,028,927$	$10,089,214$	
Bendix Aviation	$15,295,159$	$11,818,600$	
Emerson Radio	$2,262,555$	$3,592,397$	
Magnavox*	$1,546,024$	587,795	
W. L. Maxson	526,494	524,012	
$* 6$ months report			

*6. L. Maxsonths report
-Security Transactions--Sylvania Electric filed two registrations with the SEC covering 550,000 shares of its $\$ 7.50$ common stock and $\$ 20$ million of sinking fund debentures due in 1978. Net proceeds of the stock sale are expected to total over $\$ 19$ million. About $\$ 15$ million of these proceeds will be used for bank reduction. The proceeds of the debenture sale will be used for capital expenditures. The company plans further plant and equipment additions and improvements with an estimated total cost of over $\$ 16$ million.

Video, Inc. offered 69,725 shares of 5 percent cumulative convertible preferred stock at par "as speculation". Proceeds are to be used for general corporate purposes including debt payment, purchase of equipment and working capital. The company operates a community antenna system in Pennsylvania.

RCA has sold another $\$ 25$ million of 3 -percent promissory notes due May 1, 1977, to New York Life In-
surance Co. and another investor. This borrowing brings to $\$ 30$ million the total taken down under a $\$ 50$ million agreement set up in 1952. The company will borrow the rest before July 1, 1953. The proceeds will be used for working capital and for general corporate purposes, including financing of its defense business.

Sangamo Electric Co. has sold $\$ 3,750,000$ of 37 percent promissory notes due Jan. 1, 1968 to New York Life Insurance Co. The company has also borrowed $\$ 5.5$ million from 4 banks. All but 510,000 will be used to pay off bank loans and other debt. This balance will be added to working capital.

- Mergers-Emerson Radio has abandoned its merger plans with Webster-Chicago because of difficulties that arose within the stock structure of the Webster-Chicago Company.

Defense Sparks College Research

Eighty percent of electronics research in colleges and universities is for national defense, with more than half the effort concentrated in eight schools. Unused research facilities amount to about onethird total capacity. A survey by the Engineering College Research Council reveals 425 faculty members in 150 schools eager to do such research if given resources.

- Statistics-Encompassing 20,000 qualified faculty members in 513 schools, the survey showed 12,700 now active in research of all kinds. Electronics represents 6.3 percent of all college research and 10.2 percent of college defense research. Faculty qualified for electronics research numbers 1,032 , with 625 now active.

Sponsors Cut Employee Turnover

Before, half the new tv-produc-tion-line workers quit within 3 months; now 90 percent stay on

To make new employees feel at home during the critical starting period, Olympic Radio \& Television uses 'sponsors' chosen for their ability to get along with people. Each department has one or more

Sponsor, at left, shows newly-hired employee how to punch time clock, tokes him to cloak room and other facilities
sponsors, identified by distinctive blue buttons.

- How Sponsors Serve-When an employee is hired by the personnel department, a sponsor is called in to meet the new arrival. The two then take an informal orientation tour through the plant on the way to the assigned department. There the sponsor introduces the newcomer to the foreman, shop steward, supervisor and fellow employees. He then explains and shows employee facilities for rest periods, lunch, coffee, purchase of company products at discounts, smoking, and anything else about which questions are asked. This usually takes only a few hours of the sponsor's day. Contacts thereafter are generally during rest and lunch periods, when the sponsor asks how things are going and encourages questions.

After 15 days of work the new employee has an informal meeting with a top official in the plant, and
(Continued on page 22)

National Sales Offices: 624 South Michigan Avenue, Chicago, Illinois - HArrison 7-6050

Blue-buttoned sponsor Anthony Marano is inspector in machine shop Foremen and supervisors are never used as sponsors
is encouraged to come to the front office for advice whenever he wishes. The official is usually Benno Bordiga, director of manufacturing, who initiated the sponsor system.

- Company Benefits-Whereas 200 people were formerly hired to get 100 permanently, now only 110 need be hired. Reducing new-employee turnover in this way during the critical first three months boosts the number of fully-skilled produc-tion-line workers in the plant and thereby boosts output. Along with this comes a real saving in plant overhead, because each lost worker represents an average loss of one week's salary invested in training.

Air Force Global Radio Network Takes Form

WORLDWIDE communications network for ground-to-air and ground-to-ground contact with any Air Force base in the world took another step forward when Westinghouse announced the delivery of $\$ 3,375,000$ worth of radio transmitters for the project.

The transmitters have a frequency range of 2,000 kilocycles to 30,000 kilocycles. They are equipped to handle telegraph code signals of 500 words a minute, voice communication, and radiotelegraphy by key or teletype.

White Mountain TV Station Proposed

In the 30's, the late John Shepard III built a fabulous structure atop Mount Washington, New Hampshire to house an f-m broadcast station that spread Yankee Network programs from Massachusetts to the province of Quebec. Selfcontained, with enough food, diesel fuel and supplies to last from September until May, the unit boasted a water well nearly 1,200 feet deep.

- Worst Weather-Characterized as having "the worst weather in the world", the 6,288 -foot mountain has recorded peak gusts in excess of 200 miles an hour and temperatures near 50 below. The antenna, mounted on a 50 -foot pole supported by a heavy fabricated base, comprised heavy, copper-plated truckspring assemblies. These were necessary because of the tons of ice that frequently accumulated.

Although FCC rule changes killed off the f-m venture, the buildings and tower remain. Recently a hardy group proposed to spend nearly a half million dollars to establish a television station in this inhospitable atmosphere. First year operating costs are estimated at $\$ 400,000$, but revenue is expected to be $\$ 450,000$.

- The Venturesome-Principals are: president, Horace Hildreth,

Unusual TV DX

Typical fringe-area test pattern snapped atop Mt. Washington, N. H. (6,288 feet) shows that the new Montreal, Canada station puts in a good signal 150 miles away. However, program reception on the famous peak is complicated by interference (shown as venetian-blind pattern here) from New York City station 285 miles away!
former governor of Maine and station owner; John Guider, Maine and New Hampshire broadcast operator; Tyrone Corp. of Pittsburgh, Pa.; Kennebec Broadcasting Co. of Waterville, Me.; Granite State Network with several a-m and f-m stations in New Hampshire.

How soon the new station can begin serving the many little communities of northern New England that haven't even decent a-m reception isn't yet known. FCC must first hold hearings because the facilities requested (Channel 8) are assigned to Lewiston, Me., where there are two other applicants.

Remotes Extend Airways VHF Range

Transmitters and receivers at Scranton and Philadelphia extend N. Y. control to 175 miles

Reliable voice communications on regular CAA vhf frequencies have been extended from New York terminals by means of two remote relay stations along the heavilytraveled Chicago and Washington routes. Located at Scranton and Philadelphia, Pennsylvania, these stations increase the effective range of control to 175 miles as compared to 50 miles formerly possible with equipment installed at Douglaston (Long Island), New York.

A combination of factors made the addition of the new facilities necessary. Speed and frequency of flights have increased substantially in the past four years. LaGuardia and Idlewild traffic was further increased by the closing of Newark Airport in 1952. This step-up of activity has greatly increased the demand on communications equipment, especially when aircraft arrive under instrument flight conditions.

- Equipment-Each of the new installations consists of remotecontrolled 50 -watt transmitters operating on a dozen standard (Continued on page 24)

The Cleveland Container Company originates and is now producing for the electronic and electrical industries

A few of many ADVANTAGES:
TORKRITE'S re-cycling ability is unmatched.
After a maximum diameter core has been re-cycled in a given form a reasonable number of times, a minimum diameter core can be inserted and measured at $1^{\prime \prime}$ oz. approximately.
TORKRITE has no hole nor perforations through the tabe wall. This eliminates possibility of cement leakage locking the cores.
TORKRITE allows use of lower torque as it is completely independent of stripping pressure.
With TORKRITE torque does not increase after winding, as the heavier wall will not tend to collapse and bind the core.
Available in lengths $3 / 4^{\prime \prime}$ to $31 / 8^{\prime \prime}$ to fit a $1 / 4-28$ core.

See our Exhibit \#2-309 at the Radio Engineering Show in New York City, March 23-26.
channels in the vicinity of 120 megacycles. Both the transmitters and associated receivers may be operated remotely from New York.

Similar relay extensions have been installed at Seattle and Chicago, and it is probable that as air traffic at other busy terminals increases more will be added to the list. With the Philadelphia station, it is now possible for a plane to pass from Washington control to New York control without losing vhf contact.

TV Tubes for Rent

Klystrons for uhf tv transmission will be leased to stations on an hours-of-use basis

Now in production, General Electric's high power klystrons for uhf tv transmission will not, at least initially, be for sale. Instead, they will be leased to station operators, who will pay per hour of usage.
The fee provides the operator with three tubes, two in operation and a spare. When a tube gets old and weary it is replaced by a new one at no cost to the station.

Equipment manufacturers will pay GE for the right to build station equipment using the new klystrons.

First of the GE klystrons is a tube having a maximum output power rating of 15 kw .

Electronic 'Watcher' Heightens Train Safety

Installed on Erie track, pickup coil identifies train, flashes signal to dispatcher's office

Weatherproof coils between Erie RR's tracks at Waterboro, N. Y., are activated by approaching trains; coils carried under the trains cause a dip in the wayside oscillator output, the dip being at the frequency
a particular train's coil is tuned to.
The dip causes a coded signal to be sent by carrier transmission, superimposed on existing lines, to the Salamanca dispatcher's office, 22 miles away, where a buzzer signals the operator. A light identifying the train flashes on, and the train's passage and time is recorded automatically.

- Improved System-A similar system has also been installed permitting the dispatcher at Salamanca to set the block signals at Waterboro, and indications of the signal position are flashed back to the office. The entire arrangement is built along 'fail-safe' principles.

The electronic gear is housed in an unattended concrete shed at the track's side, and included is an automatic emergency battery power supply.

- Anti-collision-The track equipped with the new control system carries no passenger trains; freight traffic only is continuously and automatically monitored.

Erie looks ahead to the days when crashes are no more, when electronic devices signal trains, stop trains, even announce train arrival on the station's PA system.

Where Navy Needs Electronics Engineers

Testifying to the increasingly important role of electronics in modern warfare, and to the critical shortage of engineering talent, the Office of Naval Research has announced vacancies for electronics engineers, scientists and physicists specializing in electronics at 39 Navy technical activities.

The jobs range in pay from $\$ 3,410$ to $\$ 9,600$. A minimum of four years of college or equivalent experience is required for the lowest paying jobs while, on the other end of the scale, an additional four years of progressive professional experience is required.

- Work-Tasks are highly diversified. Engineers are required for design, development, installation and maintenance. The projects
range from acoustic measurements to microwave research, embracing such fields as torpedoes, guided missiles, radar, ship and aircraft armament and many others.

The table below lists activities where jobs exist. Applicants should send a completed form 57, "Application for Federal Employment," to the commanding officer of the activity in which they are interested.

ACTIVITY

Portsmouth Naval Shipyard
Portsmouth, New Hampshire
U.S. Navy Underwater Sound Lab., Fort Trumbull, New London, Connecticut
U.S. Naval Underwater Ordnance Station, Newport, Rhode Island
U. S. Navy Central Torpedo Office

Newport, Rhode Island
New York Naval Shipyard
Brooklyn 1, New York
Special Devices Center
Sands Point, Port Washington: Long Island, New York
U.S. Naval Air Station

Lakehurst, New Jersey
Philadelphia Naval Shipyard, Naval Ease.
Philadelphia 12, Pennsylvania
U. S. Naval Air Development Center,

Johnsville, Pennsylvania
Naval Air Material Center
Naval Air Material Center,
Philadelphia 12, Pennsylvania
David Taylor Model Basin,
Washington 7, D. C.
Norfolk Naval Shipyard,
Portsmouth, Virginia
U. S. Naval Air Test Center,

Patuxent River, Maryland
U.S. Naval Aviation Ordnance Test Station, Chincoteague, Virginia
U. S. Naval Gun Factory.

Washington 25, D. C.
U.S. Naval Mine Depot

Yorktown, Virginia
U.S. Naval Ordnance Experimental Unit c/o The National Bureau of Standards Washington 25, D. C
U. S. Naval Ordnance Laboratory,

White Oak, Silver Spring, Maryland
U.S. Naval Proving Ground

Dahlgren, Virginia
Naval Research Laboratory
Washington 25, D. C.
Bureau of Aeronautics
Washington 25, D. C.
Bureau of Ships
Washington 25, D. C.
Department Civilian Personnel Div. Room 0015 A , Navy Department, Washington 25, D. C.
Office of Naval Research, Room 1070 T-3 Building, Washington $25, \mathrm{D}$. C.
Charleston Naval Shipyard, Naval Base Charleston, South Carolina
U. S. Navy Underwater Sound Reference Laboratory, P. O. Rox 3629 , Orlando. Florida
U. S. Naval Ordnance Plant, Indianapolis, Indiana
U. S. Naval Ordnance Plant

Forest Park, Illinois
Industrial Manager, USN, 8ND; Supervisor of Shiphuilding, USN, and Naval Inspector of Ordnance. New Orleans. Louisiana, Building 263 , U.S. Naval Station
U. S. Naval Ammunition Denot,

Bangor, Washington
U. S. Naval Torpedo Station
U.S. Naval Torpedo

Mare Island Naval Shipyard, Vallejo, California
(Continued on page 26)

HERMETICALLY SEALED PRECISION WIRE WOUND RESISTORS

When the utmost in permanence and stability are required, these resistors have proven successful. Exposure to extremes in temperature cycling, aircraft altitudes and salt water immersion leave these rugged resistors unaffected.
Resistance Products Company has been able to achieve quality performance in mass production. HPC has the "know-how"-the special equipment and high degree of constant supervision that are needed.
RPC Type S Hermetically Sealed Resistors are wound on highest grade steatite forms. Winding forms are solder sealed into steatite jackets. Each resistor is vacuum tested to insure hermetic seal. Long leakage path between terminals provides top performance under most adverse climatic conditions.

Abstract

Axial wire leads permit wiring directly into circuitsand the smaller size and lighter weight make these resistors self supporting. Specially tested low temperature coefficient alloys are used. Standard resistance tolerance 1%. Tolerance of $1 / 2 \%$ and $1 / 4 \%$ available.

Write for complete information and engineering data.

Type	Dimensions		Jan-R-93	Power Rating			Resistance	
	Len.	Diam.		Jan.	Co	ml .	Min. ohm"	Max. meg"
SCB	9/16	11/32	-	-	watts	1/4	2.0	0.15
SCF	13/16	11/32	RB51A		watts	1/2	1.0	0.40
SED	13/16	15/32	RB51A	$1 / 4$	watts	1/2	0.5	1.0

RESISTANCE PRODUCTS CO.

714 RACE ST.
PRECISION WIRE WOUND
--

HARRISBURG, PENNSYLVANIA
high voltage

Office of Naval Research Branch
Office 1030 E. Green Street,
Pasadena 1, California
Pearl Harbor Naval Shipyard, Navy No 128. Fleet Post Office, San Francisco, California
U. S. Naval Air Missile Test Center U. S. Naval Air Station, Point Mugu, California
U. S. Naval Air Station

Alameda, California
U.S. Naval Magazine

Port Chicago, California
U. S. Naval Ordnance Test Station Inyokern, China Lake, California
U. S. Navy Electronics Laboratory San Diego 52, California

Military Radio-Radar Shipments Abroad Rise

INCREASING importance of radio and radar equipment in the defense plans of foreign nations is indicated by the larger shipments of these items under the U.S, foreign military aid program. Previously a relatively slow-moving item in the program, radio and radar equipment shipments increased sharply during 1952 and reached a record rate last October when 4,347 items were sent out, representing almost 15 percent of all such items that have been shipped during the four years of the program.

The cumulative total of radio and radar items that have been shipped under the plan stood at 27,648 in October. For security reasons the U.S. does not give the dollar value of such shipments or their destination and reports the quantities by number of items only.

Business Briefs

- Evidence of the beneficial effects of $t v$ on sports attendance: An estimated new high of $\$ 1.7$ billion will probably be taken in by the sports industry in 1952, according to the RTMA Sports Committee.
- Beer level checker that inspects 900 containers per minute with an accuracy of 30 drops of beer, or plus or minus $1 / 64$ inch, is a tiny crystal of cadmium sulfide acting on signals from an 80,000 volt GE x-ray tube.
- Seven tv experimental relay stations linking Tokyo with Osaka, a distance of about 300 miles, are

MEETINGS

March 9-12: NEMA, Edgewater Beach Hotel, Chicago, Ill. March 19: AIEE, Lecture on "High Energy Accelerators", Engineering Societies Bldg., New York, N. Y.
March 19-20: National Collegiate Industry-Government Conference on Instrumentation, Michigan State College, East Lansing, Mich.
March 23-25:' Sixth Annual Conference for Protective Relay Engineers, A \& M College of Texas, College Station, Texas.
March 23-26: IRE National Convention, Waldorf-Astoria Hotel and Grand Central Palace, New York, N. Y.
APRIL 18: Seventh Annual Spring Technical Lonference, Cincinnati IRE, Cincinnati, Ohio.
APRIL 23-24: International Symposium on Non-Linear Circuit Anlaysis sponsored by Brooklyn Polytechnic Institute, IRE, Office of Naval Research, Air Research and Signal Corps, Engineering Societies Bldg. Auditorium, New York, N. Y.

April 23, 30, May 7, 14 : Lecture Series on the general theory of semiconductors by H. K. Henisch of the University of Reading, England, Brooklyn Polytechnic Institute, Brooklyn, N. Y.
APRIL 27-30: Spring Meeting of USA National Committee of URSI-IRE professional Group on Antennas and Propagation, National Bureau Of Standards, Washington, D. C.
April 27-May 8: British Industries Fair, Birmingham \& London, England.

April 28-May 1: Seventh Annual NARTB Broadcast Engineering Conference, Burdette Hall, Philharmonic Auditorium, Los Angeles.
APRIL 29-MAY 1: 1953 IREAIEE Electronic Components Symposium, Shakespeare Club, Pasadena, Calif.
May 11-13: IRE National Conference on Airborne Electronics, Dayton, Ohio.
May 18-21: 1953 Electronic Parts Show, Conrad Hilton Hotel, Chicago, Ill.
MAY 18-23: Third International Congress On Electroheat, Paris, France.
MAY 24-29: NAED, 45th Annual Convention, Conrad Hilton Hotel, Chicago, IIl.
May 24-28: Scientific Apparatus Makers Association Annual Meeting. The Greenbrier, White Sulphur Springs, W. Va.
June 15-19: Exposition of Basic Materials for Industry, Grand Central Palance, New York, N. Y.

June 16-24: International Elec-tro-acoustics Congress, The Netherlands.
June 20-Oct. 11: German Communication and Transport Exhibition, Munich, Germany.
Aug. 19-21: IRE Western Electronic Show \& Convention, Municipal Auditorium, San Francisco, Calif.
Aug. 29-Sept. 6: West German Radio and Television Exhibition, Duesseldorf, Germany.
Sept. 1-3: International Sight and Sound Exposition, Palmer House, Chicago, Ill.
Sept. 21-25: Eighth National Instrument Exhibit, Sherman Hotel, Chicago, Ill.
reported to be in operation. NHK Tokyo Television (JOAK-TV) using Japanese-made equipment is making test broadcasts, according to reports.
-"Photon", an electronic device that sets up type on a photographic film by means of a light that flickers at rate of a million times a second, is now in operation at the Graphic Research Foundation in Cambridge, Mass. (Electronics, Dec. 1949, p 158). The resulting film can be used directly or indirectly for engraving plates for printing.

- Republic of Colombia plans to organize all communications services under a semiofficial administra-
tion. The government also plans to set up omnidirectional radio installations.
- Norwegian government recommends that experimental tv transmission be started by the Norwegian State Broadcasting Co. and continued for two years. After that the question of regular tv services will again be submitted to Parliament.
- Radio and television interference in the Miami area has been reduced by a truck-mounted washing unit of the Florida Power \& Light Co. that removes salt deposits and industrial sediment from transmission line insulators.

BALLANTNE SENSTIVE WVERTR

...for the precise measurement of small DC potentials

- Built-in Calibrator
- High Sensitivity
- High Input Resistance - Polarity Sensing

See the display of BALLANTINE VOLTMETERS and ACCESSORIES Booth No. 1-112 at I. R. E. Show

MODEL 300

The Ballantine Model 700 Sensitive inverter adapts FOR THE ACCURATE MEASUREMENT OF SMALL DC POTENTIALS a ny AC voltage measuring device which is sensitive to 60 cycle voltages in the range 100 microvolts to 10 volts and which has an input impedance of 50,000 ohms or more. It may be used also as an ultra-sensitive transducer in servo-mechanisms and in telemetering systems.

The built-in calibrator eliminates the major errors of the $A C$ voltmeter used with the inverter.

When used ahead of multimeters or diode voltmeters, levels as low as 1 millivolt DC can be measured with not less than 10 megohms loading.

For maximum DC sensitivity and stability the BALLANTINE SENSITIVE ELECTRONIC VOLTMETERS, Models 300 (as illustrated). 302B, 310A, and 314, are recommended for use with the inverter, in which case DC levels as low as 10 microvolts may be measured.

```
MODEL 700 INVERTER SPECIFICATIONS
```

input voltage range.
$10 \mu \mathrm{y}$ - 100v (Sansitive to 罗)
VOLTAGE RATIOS (DC INPUT TO AC RMS OUTPUT).
ACCURACY OF CALIBRATOR....
INPUT RESISTANCE DC SOURCE
10 meg min for 1:100; 50 meg for $10: 1$

max ac output level.
max distortion in output.
\qquad
\qquad

Before you specify that

CHECK THE WIDE RANGE OF

Phelis donge offers the most diversified line of standardized magnet wire in the industry-over 400 different types with thousands of practical applications. Time after time, electrical manufacturers have solved "special" magnet wire problems, with great savings in time, effort and expense, merely by consulting Phelps Dodge. This approach has
Formvar with a Nylon Sheath

Fontfor Lasting Quality

PHEIPS DODEE COPPEE PROOUCTS CORPORATION

"Special" Magnet Wire PhEIPS DODGE "STMNDARDS"

workec for many different products, including television and radio coils, motors, aircraft generators, relay coils, distribution transformers, hearing aids and many others.

Any time magal uire is your problem, consul: Phelps Dodge for the quictiest, casiest answer!

Low-Build Formvar Class Wire

Improved space factor for circraft generators and starters

- from Mine to Market!

INCA MANUFACTURING DIVISION

FORT WAYNE. INDIANA

MEPCO'S NEW SEALED Precision

Qualification tests prove new resistors immune to immersion and high humidity

Over 2 years of laboratory development and testing were required to achieve a sealed resistor design up to Mepco's standard of quality No sacrifice of our standard time-proven features have been made in order to perfect this sealed resistor.

SPECIFICATIONS: Mects all requirements of MIL-R-93A and JAN-R-93.
SEALING: Completely encapsulated and bondcd.

OPERATING TEMPERATURE. $-65^{\circ} \mathrm{C}$. to $+125^{\circ} \mathrm{C}$.

WINDINGS. Reversed and balanced PI-windings for low inductance, with use of only the finest "certified" resistance alloys
EXCLUSIVE INTERNAL FEATURES. Internal section's cross-over wire insulated from winding by 2000 v . insulation (patented). Special metal molded connecting leature, which bonds end of winding and terminal in a non-corrosive and mechanically secure manner - no solder or flux used.
TERMINALS: Rigid hot solder coated brass terminals for casier and more secure soldering.

ME, ©O, INE.

Resistors STOP Humidity Failures

TYPE	NOMINAL WAIIAGE RATING	RESISTANCE		No. SECIIONS	SUPERSEDES JAN-R-93 IYPE
		MIN	MAX.		
$\begin{aligned} & \text { RB15 } \\ & (M 15) \end{aligned}$	$\begin{aligned} & .25 \\ & .50 \end{aligned}$	0.1 ohm 0.1 ohm	$\begin{aligned} & .185 \mathrm{meg} . \\ & .6 \mathrm{meg} . \end{aligned}$	2	RB10
$\begin{aligned} & \text { RB16 } \\ & (M 16) \end{aligned}$	$\begin{array}{r} .35 \\ 1.00 \end{array}$	0.1 ohm 0.1 ohm	$\begin{array}{cc} .3 & \mathrm{meg} \\ 1.5 & \mathrm{meg} \end{array}$	2	RBII
$\begin{aligned} & \text { RB17 } \\ & (\mathrm{M} 17) \end{aligned}$	$\begin{array}{r} .50 \\ 1.00 \end{array}$	0.1 ohm 0.1 ohm	$\begin{array}{rr}.3 & \mathrm{meg} . \\ 2.0 & \mathrm{meg} .\end{array}$	4	RBI 2
RB1 8 (M18)	$\begin{array}{r} .50 \\ 1.00 \end{array}$	0.1 ohm 0.1 ohm	$\begin{array}{cc}.75 & \mathrm{meg} . \\ 4.0 \quad \mathrm{meg} .\end{array}$	4	RB13
$\begin{aligned} & \text { RB } 19 \\ & \text { (M19) } \end{aligned}$	$\begin{aligned} & 1.00 \\ & 2.00 \end{aligned}$	0.1 ohm 0.1 ohm	$\begin{array}{rl} 4.0 & \mathrm{meg} . \\ 15.0 & \mathrm{meg} . \end{array}$	8	RB14
$\begin{aligned} & \text { RB5 } 2 \\ & (M 52) \end{aligned}$	$\begin{aligned} & .25 \\ & .50 \end{aligned}$	0.1 ohm 0.1 ohm	$\begin{array}{cc} .1 & \mathrm{meg} \\ .5 & \mathrm{meg} \end{array}$	2	RB5 1

MIL - R - 93A
WATTAGE \& RESISTANCE TOLERANCE

TOLERANCE SYMBOL	RESISIANCE tOLERANCE	PERCENT OF NOMINAL WATTAGE
B	0.10%	50%
C	0.25 \%	50%
D	0.50%	75%
F	1.00%	100%
MIL - R - 93A TEMPERATURE COEFFICIENT (REFERRED TO $25^{\circ} \mathrm{C}$)		
SYMBOL	EXPRESSED in percent per degree c.	
	NEGATIVE, MAX.	POSITIVE, MAX.
E	0.0022	0.0022
J	0.0040	0.0155
K	0.0050	0.0255

SPECIAL REQUIREMENTS

Variations of the above ratings, tolerances, temperature coefficient, etc., can be supplied to special order.

MORRISTOWN,

\%."R RADOMES MICRO-WAVE WINDOWS reflectors And lenses

Increased facilities for design, development, manufacture, and testing of radomes, micro-wave windows, reflectors and lenses for TV and micro-wave relays, and for associated products are now available at United States Plywood Corporation's laboratories and plant at Palmer, Massachusetts. First molder of such structures, United States Plywood Corporation is today one of the largest manufacturers of these products.

PRODUCT RANGE

United States Plywood produces radomes for all commonly used frequencies, and has done development work on structures for frequencies up to $35,000 \mathrm{mc}$. Range of sizes goes from cylindrical radomes 1 inch in diameter to units 26 feet in diameter. Over 150 types of radomes have been produced in our plant.
Structures are custom molded or laminated for land, sea, and air use, in both flat laminates and compound curved surfaces.

Micro-wave windows and a variety of special structures for reflectors and lenses are also produced in quantity.

SCOPE OF SERVICES

United States Plywood is equipped to assist in both electrical and mechanical design of structures, development of production designs, and manufacture of either prototype or production models.
A staff of thoroughly trained specialists is available for consultation on your problems.

We are prepared to assume your problem from the beginning, or to act merely as manufacturers working from your designs, if that is your requirement. Our large manufacturing facilities provide for economical quantity production.

EXPERIENCE

As the first molder in this field, we have worked with various branches of the government, and with many major manufacturers in the electronics and aviation fields.

United States Plywood entered this field because of its extensive work in low-pressure laminating, and broad knowledge of both materials and production techniques.

INQUIRIES

Inquiries as to our facilities, or on specific projects, should be directed to Electrical Structures Department, United States Plywood Corporation, Section P-3, 55 West 44th Street, New York, N. Y. Your personal call is invited if you are in New York.

GOING TO THE I.R.E. SHOW?

Sorry we were unable to get exhibit space this year - but you're welcome at our showroom and offices-55 W. 44th St., New York.

ELECTRICAL STRUCTURES DEPARTMENT

WELDWOOD BUILDING, 55 WEST 44 TH STREET, NEW YORK, N. Y.

From on original drawing made for OHMITE.

(()) $\frac{1}{1}$ (B) ATMSI in Rheostats
 Dependability . . long, trouble-free life . . and smoothness of operation . . . these are qualities you can count on in OHMITE rheostats.
 That's why they're preferred by industry over all other makes. For top performance, make it a point to specify OHMITE rheostats.

 Be Right with OMMITE

Miniature Components hy

MINIATURE EARPHONE

The Fortiphone Earphone is a tiny rugged electro-magnetic instrument of high efficiency and extreme reliability.
The air gap setting is controlled to 0.00025 inches and the output of each unit is measured throughout the frequency band in order to maintain consistent performance and good response. Each instrument is subjected to a prolonged test at overload conditions and is then re-checked.

The unit takes a standard earmold, the nipple being carefully designed to ensure no acoustic leakage. A standard miniature round pin plug fits firmly into the earpiece with a positive detent action. The contact springs are of unique double spring design to ensure good contact, to avoid fatigue, and to minimise plug wear.

Alternative types of fféquency response are available.

Type MME/G (A)	...		Impedance at 1000 cps			Normal op. conditions			Overload conditions	
			120		\ldots			...		olts
MME/G (B)	\cdots		50	" 2	"	...	1.0	"
MME/G (C)	\ldots	...	30	"	\ldots	. 17	" 85	,
MME/G (D)	\cdots	\ldots	600	"	\ldots	. 67	,	\ldots	3.3	,
MME/G (E)	\cdots	\ldots	1000	\because 9	"	...	4.5	"
MME/G (F)	\ldots	\ldots	1000	\cdots	\ldots	. 9	"	\ldots	6.7	"

Overall dimensions
Diameter: 0.82 in . or 2.08 cm . Width (excl. nipple): 0.38 in . or 0.97 cm Width (incl. nipple): 0.47 in . or 1.20 cm . Weight: 0.3 oz. or 8.5 grams

Frequency in cycles per second.

SUB-MINIATURE TRANSFORMER

Overall dimensions: $0.660 \times 0.484 \times 0.460 \mathrm{in}$. or $1.675 \times 1.228 \times 1.170 \mathrm{~cm}$. Weight: 0.204 oz or 5.78 grams.

The Fortiphone Transformer T. 4 is a miniature output transformer of outstanding performance and wide frequency range. The windings are terminated at solder tags molded into the robust phenolic bobbin, thus economising in winding space and increasing efficiency.
Before being laminated each winding is checked to ensure no short-circuited turns. Each transformer is individually tested for efficiency throughout the frequency range. A large number of ratios is available.

Very Speedy Delivery!

Fortiphone Itd,England

If

MINIATURE VOLUME

CONTROL WITH SWITCH

Rigid inspection technique and craftsmanship of manufacture combine to make the Fortiphone Fingertip Controls, Type VC.7, extremely reliable and uniform in performance.
An internal single pole switch of less than 0.05 ohms contact resistance is incorporated. The insulation of this switch is greater than 100 megohms at 100 volts.
The action of the control is smooth and pleasant and the switch has a loud " click " operation. The control is able to withstand savage handling, the end stop torque being greater than 30 ounce inches. Noise level is below 270 microvolts when 1 volt is applied, and the control rotated at 2 turns per second.
The resistance rotation law is logarithmic. Power dissipation is 0.1 watt, when uniformly loaded. The instrument is able to withstand more than 20,000 operations without deterioration.

Overall dimensions: 0.780 in . or 1.99 cm . diameter $\times 0.537 \mathrm{in}$. or 1.365 cm .
Knob width: 0.190 in . or 0.482 cm . Weight: 0.126 oz . or 3.575 grams.

TWIN VOLUME CONTROL \& SWITCH

A tiny attractive matched pair of fingertip instruments are available.
The volume control, Type VC.I, is similar in performance to the Type VC.7, except that no internal switch is incorporated.

The switch, Type SW.I, has four positions and a pleasant and positive "click" action.
The contacts are individually sprung and their contact resistance is low The centre spindle is isolated, making the unit suitable for high-frequency operation.

Also available are Disc Earpieces; Flexible Connectors; Earmolds; Headbands; Hearing Aid Amplifier Units; Microphones; Mîniature Electronic Units for special equipment; Plugs; Resistors; Sockets; Stethosets; Telephone Pick-up Coils.

Overall dimensions:
0.805 in . or 2.04 cm . diameter
$\times 0.525 \mathrm{in}$. or 1.335 cm.
Knob width: 0.240 in . or 0.610 cm.
Overall dimensions:
0.805 in . or 2.04 cm . diameter
$\times 0.525 \mathrm{in}$. or 1.335 cm.
Knob width: 0.240 in . or 0.610 cm.
Overall dimensions:
0.805 in . or 2.04 cm . diameter
$\times 0.525 \mathrm{in}$. or 1.335 cm.
Knob width: 0.240 in . or 0.610 cm.
Overall dimensions:
0.805 in . or 2.04 cm . diameter
$\times 0.525 \mathrm{in}$. or 1.335 cm.
Knob width: 0.240 in . or 0.610 cm.

Cable or write for prices, further details, and samples Please state probable quantities required

FORTIPHONE LIMITED

FORTIPHONE HOUSE
247 REGENT STREET, WI LONDON, ENGLAND

Established 1925
Cables: Sonomax, Wesdo, London

Highly Competitive Prices!

VITROHM

are your

Ward Leonard manufactures its own ceramic cores, Vitrohm enamel and terminals. Even the resistance wire is drawn to our own specifications. Every operation required to build a Vitrohm resistor is carefully and constantly checked and controlled by our Standards Department. That's why Vitrohm resistors assure you complete uniformity, accuracy and reliability, even under the most adverse service conditions.
Ward Leonard has the largest selection of stock

Vitrohm stock resistors range from 5 to 200 watts with resistance values from 1 to 250,000 ohms. Made-to-order Vitrohm's are available from 5 to 550 watts with values from 0.04 to $1,750,000$ ohms.

AXIOHM

Used in electronic equipment requiring miniature power resistors.

NON-INDUCTIVE
For low inductance and distributed capacitance in high frequency circuits.

PLAGOHM

Used in compact, high frequency electronic equipment.

ADJUSTOHM

Gives circuit adjustability for̉ voltage dividing or regulating purposes.

STRIPOHM

For compact aviation, communication and navigation equipment.
FIXED VITROHM
Used for voltage dropping and current limiting.

RESISTORS

best buy

resistor types and sizes ever offered by any manufacturer. Also available to meet customer's exact specification is a complete stock of components ready for immediate assembly into made-to-order resistors. Our controlled component manufacture and inspection, plus a wider selection of types, make Ward Leonard your best buy in resistors.

For full information on Vitrohm resistors, write for Catalog No. 15 to Ward Leonard Electric Co., 31 South Street, Mount Vernon, N. Y.

made-to-order resistors
(these plus all the stock resistor types)

Ribflex

Used in circuits where high wattage must be dissipated in small space.

FERRULE TERMINAL

For rapid interchangeability of resistance values or resistor replacement.

SCREW BASE

With an Edison screw base for mounting to provide rapid means of changing resistance.

BRACKET TERMINAL

Has leads silver brazed to brackets for easy interchange or renewal of unit.

Special form resistors to meet unusual requirements

See you at the I.R.E. Show in Booth 3-113

MAKE HEADLINE NEWS

 I.R.E. SHOW!

82.Channe/ Tuner Triodes

Trio of G-E tuner tubes for TV receivers, with a combined $v-h-f, u-h-f$ frequency range that makes single-dial 82-channel tuning practical and economical.

Even an ordinary reading glass can produce an image of sorts. That happens when the sun"s rays are focused on a piece of paper as shown. All the rays passing through the lens concentrate at approximately one point where they form a small inverted picture or image of the sun.

By means of a lens, rays from any object at a distance can be made to concentrate inside a telescope in the same way. They form a tiny inverted picture of ihe object. If a screen like the ground glass of a camera were placed there and viewed through a magnifying glass, the
actual picture of the distant object could be seen clearly. The lens that brings the tiny picture into a telescope is called the objective, and the small but powerful microscope that brings it out of the telescope into the eye is called the eyepiece.

Cross lines so fine as to be almost invisible can be placed inside the instrument at exacily the place where the miniature picture is formed. Then the eyepiece will greatly magnify not only the picture but the cross lines as well so that both are seen together. Basically, that is the principle of the tele-
scopes used in K\&E PARAGON surveying instruments and K\&E optical tooling equipment. These contain additional refinements, such as a movable internal lens for focusing and extra lenses in the eyepiece that invert the picture a second time, so that the eye sees it right side up.

Naturally, the above description is extremely elementary. In fine telescopes, such as those made by K\&E, every optical part must be made with surpassing accuracy so that the rays of light are not scattered. It is for this reason that K\&E designs, grinds and polishes its lenses with an accuracy measured in millionths of an inch. The result is superior definition with unusual contrast and brightness. Minute detail can be clearly distinguished, and cross lines appear jet black.

These are the exacting standards to which $\mathrm{K} \& E$ builds instruments for engineers, surveyors and builders, as well as optical tooling equipment. The latter makes possible the application of surveying methods to manufacturing and construction problems involving high-precision positioning and alignment. Already these techniques have revolutionized tooling in the aircraft industry and are being adopted in other fields. Ask your K\&E Distributor or Branch for details on what these superlative instruments can do for you.

Measuring scales are in constant use on every drawing board. For high quality and accuracy, use K\&E PARAGON engine divided scales. They are made of the highest grade boxwood with scale faces of white plastic, permanently cemented The graduations are filled with dense black pigment for high visibility against the white background.

There is a K\&E graph sheet for almos every purpose. In a selection of 300 forms you can find graph sheets for plotting scientiflc data, forms for sketching and drawing, both mechanical and architecfural, or for surveying and mapping. Also, business and financial forms of all types. All are on high quality drawing paper and on the finest fracing paper.

A general-purpose DuAL-beam to fit your needs technically and

Cathode-ray Tube - Type 5SP - Dual-beam Cathode-ray Tube. Accelerating potential, 3000 volts.
Y-Deflection Sensitivity - 0.028 peak-to-peak (0.01 rms) volts/inch from D-C to $300 \mathrm{KC}(50 \%$ down at 300 KC); A.C coupling, 10% down at 5 c.p.s.
X-Deflection Sensitivity - 0.3 peak-to-peak (0.1 rms) volts/inch from D.C to 300 KC (down 50% at 300 KC); A.C coupling down 10% at 5 c.p.s.; common, D.C to 200 KC (down 50% at 200 KC).
Linear Time Base-Recurrent and driven sweeps variable in frequency from 2 to 30,000 c.p.s. Front panel connections provided for lower frequency by adding external capacitance.
Intensity Modulation - Input impedance 0.2 megohm, paralleled by $80 \mu \mu$ f. Negative sig. nal of 15 volts peak blanks beam at normal intensity settings.
Beam Control Switch - On front panel to turn beams on or off independently or simultaneously. Calibrator - Regulated potentials of 50 millivolts and 1 volt peak-to-peak squarewave at power line frequency available at front panel binding posts.
Power Source $-115 / 230$ volts $-50-400$ c. p.s. -225 watts.
Dimensions - Height $153 / 4$ ", width $121 / 2^{\prime \prime}$, depth $227 / 8^{\prime \prime}$, weight 75 lbs.
Instrument Division
\$83500
Write for complete technical details:
1500 Main Avenue, Clifton, N, J.

'dag' Exterior Wall Coating is a dispersion of extremely fine graphite in lacquer.
It is easily applied spraying, and dries for handling in 2 to 3 minutes. Maximum adhesion is obtained by drying at room temperature for 24 hours... with the sane result from infra-red at $100^{\circ} \mathrm{C}$. for $1 / 2$ hour.
The coating obtained is as smooth as the glass itself and as black as coal. Its adhesion is so good that scratching it is alppost an impossibility. Water won't loosen it either

Acheson Colloids can also supply appropriate dispersions for coating interiors of tubes.
You can have more detailed data by asking for Bulletin No. 433-5C.
Dispersions of molybdenum disulfide are available in various carriers. We are also equipped to do custom dispersing of solids in ϵ wide variety of vehicles.
try resin-bonded dry graphite films

PRECISION LABORATORY INSTRUMENTS

MICROWAVE RECEIVERS

$1000-10,750 \mathrm{mc}$

Four microwave receivers of high sensitivity, wide tuning range and selectivity. Image reiection is greater than 60 db . Gcin stability better than $\pm 2 \mathrm{db}$, permits application as 0 field intensity meter.

NEW

Model LSA

10 MC to $21,000 \mathrm{MC}$

The Model LSA is the result of years of research and de. velopment. It provides a simple and direct means of rapid and accurate measurement and spectral display of an if signal.

- Frequency aceuracy 1 percent.
- No Klystron modes to set.
- Broadband atfenuators supplied from 1 to 12 KMC
- Frequency marker for measuring differences $0-25 \mathrm{MC}$.
- Only four tuning units required to covar entire range.

WIDE BAND VIDEO AMPLIFIER
Model VT 10 CPS to 20 MC
Designed for use as an oscilloscope deflection amplifier for the measurement and viewing of pulses of short duration and rise time.

CORP.

100 METROPOLITAN AVENUE, BROOKLYN $11, N . Y$.

PORTABLE TELEVISION WAVE FORM MONITOR

Model TO-1

Designed for precise wave form analysis and amplitude measurement of video signal in television circuits. Also ideal as a plications, because of its wide frequency puications, because of its wide trequency response, high sensitivity, excellent syncircuits and unusually large symmetrical horizontal expansion.

STUDIO PICTURE MONITOR

Model M-105

A high fidelity picture monitor of large size, sufficient for ease of observation under studio conditions. It is a high itm. pedance device and may be connected affecting the ferminal impedance of the line Monochrome and or codance of black and white reception is provided.

Precision-Built...for dependable performance

Whatever your requirements for top quality wire-wound components, you can count on I-T-E products. Power resistors, precision resistors, deflection yokes-all are specially designed and precision-built to meet the
exacting standards demanded for critical electronic applications. Close quality control and modern production methods give you assurance of quality components in any quantity you need.

I-T-E POWER RESISTORS

Non-hygroscopic ceramic foundations are in accordance with JAN specifications.

Purest resistance wires are uniformly wound to prevent shorted turns and excessive hot spots. All connections silver-soldered.
Vitreous enamel coating lorganic if required) provides a glazed moisturerepellent surface with fast heat-dissipation qualities.
Advanced production methods assure high stability, long life.

Standard Tolerance: $\pm 10 \% . \pm 5 \%$ and less made to order.

I-T-E PRECISION RESISTORS

High-quality wire alloys are usedfree from internal stresses and strains.
Automatic precision winding assures even tension-eliminates hot spots.
Hermetic or vacuum-impregnated sealing protects against destructive effects of salts, moisture, and atmospheric conditions.
Accelerated aging process prior to calibration assures accuracy.
Critical quality control eliminates all resistors which do not come up to high
I-T-E standards.

TYPE A:
lightweight, hermetically sealed-for precision operation up to $125^{\circ} \mathrm{C}$. Surpass JAN R-93 A, Characteristic A, and MIL R-93 A specifications.
TYPE B:
vacuum-impregnated, moisture-resistant. For JAN R-93, Characteristic B, specifications.
Ratings from 0.01 ohm10 megohms, 0.1255 watts.

Standard Tolerance:

$\pm 1 \%$. Available in specified tolerances down to $\pm 0.05 \%$.

I-T-E DEFLECTION YOKES

Wire size and quality constantly checked. Coils impregnated in special moisture-resistant thermo-plastic-properly cured to assure
firm coil with minimum losses. Yokes can be obtained complete with wire leads, resistors, and capacitors to your specifications.

WHATABOUT THE Wattage Rating of PRECISION WIREWOUNDresistors?

The wattage rating of precision wire wound resistors is often expressed in two forms-the manufacturer's commercial catalog rating, and the JAN-R-93 or MIL-R-93A rating. Exceptions are the many resistors smaller than JAN and MIL dimensions not rated under JAN or MLL specifications.
the basis for wattage ratings: Production resistors are wound with resistance wire insulated with either or both enamel and a silk or nvton covering which deteriorates rapidly above $105^{\circ} \mathrm{C}$.

JAN and MLL wattage ratings are based on an ambient temperature of $85^{\circ} \mathrm{C}$. The wattage rating is limited to the power dissipation which will cause not more than a $20^{\circ} \mathrm{C}$ temperature rise. This results in a temperature of not more than $105^{\circ} \mathrm{C}$ at the hottest point ("hot-spot") on the winding.

Shallcross commercial ratings are based on an ambient of $25^{\circ} \mathrm{C}$. Wattage rating is limited to the power dissipation which will cause not more than a $20^{\circ}-40^{\circ} \mathrm{C}$ rise. Although higher, these ratings are based on hot-spot temperatures of only $45^{\circ}-65^{\circ} \mathrm{C}$.

VOLTAGE DERATING AND RESISTANCE: Above about 50 per cent of the cataloged maximum resist ance, the Shalleross commercial wattage rating must be derated by the maximum voltage tabulated in the catalog. Lower thermal efficiency of the small diameter wire used for higher resistance values causes a higher temperature rise for the same dissipation, and the potential gradient in the winding must be
held to a safe proportion of the breakdown voltage.
Computation using JAN-MIL wattage ratings, maximum resistances, and voltage limitations, reveals that voltage derating is seldom necessary up to 99% or more of JAN-MIL maximum resistance values.
tolerance derating: JAN, MlL, and Shallcross commercial wattage ratings are hased on resistors with 1% tolerance. For closer tolerances, the following MLL derating system is a good one to use: Resistor Tolerance-\% Per Cent of Nominal Wattage

1	100
0.5	75
0.25	50
0.1	50

SPECIAL HIGH WATTAGE RESISTORS: Shalleross also offers non-inductive, precision wirewound resistors rated 5 to 10 times higher than the usual commerial wattage ratings. These " G " type resistors are wound with glass-insulated. low T.C. wire, silicone varnished. They are rated on a $1.50^{\circ} \mathrm{C}$ emperature rise ahove an ambient of $25^{\circ} \mathrm{C}$. Their hot-spot temperature is $175^{\circ} \mathrm{C}$.

Shalleross also supplies "S" type resistors wound with silicone-enameled low T.C. wire. Better insulation permits these resistors to operate at higher than normal hot-spot temperatures. Exact ratings are still being established, but they can be expected to approach those of "C" resistors while permitting higher maximum resistance values.

Further details on Wattage Ratings and other resistor characteristics are available in Shallcross Bulletin R-3C.
SHALLCROSS MANUFACTURING COMPANY - 522 PUSEY AVENUE, COLLINGDALE, PA.
See us at the I.R.E. Show - Booths 2-210 \& 2-21I.

The third of a series to promote a better understanding of the performance characteristics of precision wirewound resistors.

CEN-TRI-CORE

 energized ROSIN-FILLED SOLDERCEN-TRI-CORE
PLASTIC
ROSIN-FILLED
SOLDER

For those applications where a conventional rosin flux is required. For telephone and other critical soldering operations.

Ideal where plated and/or oxidized parts must be soldered. Designed for use where faster fluxing is desirable.

CEN-TRI-CORE's exclusive design guarantees rosin throughout the complete length of the wire. Eliminates rejects commonly encountered in the use of ordinary rosin core solders. CEN-TRI-CORE is faster fluxing: thinner walls between solder and rosin assure faster penetration of heat to the flux - requires less heat and guarantees maximum fluxing action of the rosin.

Guaranteed non-corrosive for radio, television, electronic and other electrical applications. No other solder works faster or easier... It provides greater fluxing uniformity and stronger smoother joints.

No activating chlorides or other chemical agents tending to produce acid condiagents tending to produce acid condi-
tions, toxic or sticky vapors, or latent corrosion.

Visit us at Booth 512-3rd floor, I.R.E. Radio Engineering Show

NA 130 PD 130 CHI CAGO ILL 26 930A ANTARA CHEM CALS DIVN, GE YORK WY=
fINIAL SHIPMENT ENTIRELY SAT

WE CAIRIIES
PRESIDENT RADIO CORES $1 N C=$

GQ 4'S
Q VALUE

GA \& F CARBONYL IRON POWDERS

"We will take full advantage of GO4s
 higher permeability

GQ4 is an almost pure iron powder consisting of spherical particles which are readily compressible, resulting in high permeability. In this respect, it exceeds all other Carbonyl Iron Powders by a considerable margin. The particles possess an efficient insulating coat. The powder was designed to replace HP, mixtures of HP and L, and, in some instances, L itself. Its properties are such that it should yield simultaneously, higher \mathbf{Q} value, higher strength and often, higher permeability, than mixtures of HP and L.

We urge you to ask your core maker, your coil winder, your industrial designer, how G A \& F Carbonyl Iron Powders can increase the efficiency and performance of the equipment or product you make, while reducing both the cost and the weight. We also invite inquiries from those whose requirements call for still greater variations than are offered by any of our existing types.

This wholly new 32 -page book offers you the most comprehensive treatment yet given to the characteristics and applications of G A \& F Carbonyl Iron Powders. 80% of the story is told with photomicrographs, diagrams, performance charts and tables. For your copy --without obligation-kindly address Department 42 .

TMHESE were the words used by Marvin 1 C. Stone of Falls Church, Virginia, in his description of this fountain pen patent granted him June 27, 1882, and later upheld in an infringement suit in 1898 in the Circuit Court of New York.

Marvin C. Stone was the founder of the Stone Paper Tube Company, manufacturers today of both collapsible and rigid non-collapsible tules, and he was the greatuncle of our president.

Thus it can be seen that more than 70 years ago, Stone's inventiveness and knowledge of the use of tules was demonstrated qualities which have made Stone one of the largest manufacturers of small diameter paper tubes in the United States.

During these intervening years, Stone has become a specialist in the manufacture
of spiral wound insulating tubing, sleeves, and bobbins. Diameters as small as $3 / 64^{\prime \prime}$ ID can be furnished in products of various wall thicknesses and lengths and in many materials including hi-dielectric kraft, fish paper, and plastic films.
Hundreds of America's leading manufacturers in many industries have found that Stone's long experience makes possible the delivery of custom-made quality products to close tolerances at low cost with unsurpassed service.
Whatever your problem-large or small - we welcome the opportunity to serve you. Sales representatives are located in principal cities.

```
STONE PAPER TUBE CO.
    INCORPORATED
Washing+on l7, D.C.
```


Here is Plug-in Unit Construction

Everything you need to mount, house, fasten, connect, monitor your equipment.

1st start with ALDEN MINIATURE TERMINALS

 48 B8 $\begin{aligned} & \text { Here's a beautiful } \\ & \text { new litte Terminal } \\ & \text { that really puts sol- } \\ & \text { dering on a produc- }\end{aligned}$ dering on a production basis; taking a
minimum of space and material. Ratchet holds leads firmly for soldering, no wrap-around or pliering necessary. Unique punch press configuration gives rapid heat transfer, taking less time and solder. Designed for Govt. Miniaturization contracts. Staked in Alden Prepunched Terminal Cards, allow patterns for any circuit.

$$
\begin{aligned}
& \text { No pliers-No twisting } \\
& \text { Wires-Buss bars easily accessible } \\
& \text { Snip off loops desired to by-pass. } \\
& \text { JUMPER } \\
& \text { STRIP }
\end{aligned}
$$

Stake under Terminals for common circuits. Loops match prepunched holes in Terminal Cards. Snip off loops desired to by-pass.

T•
 Tiny Sensing Elements specifi trouble instantly in any unit.

OBTAINCOMPLETE
Get one point of check of all incoming and outgoing leads thru ALDEN BACK CONNECTORS
Here are tiny components to isolate trouble instantly by providing visual tell-tales for each unit.

"PAN-i-LITE" MIN. INDICATOR LIGHT

 So compact you can use it in places never before possible Glows like a red-hot poker. Push-mounts in $.348^{\prime \prime}$ drill hole. Bulbs replace from front. Tiny spares are unbreakable, easily kept available, taped in recess of equipment. Alden \#86L, ruby, sapphire, pearl, emerald.
MINIATURE TEST POINT JACK

Here are tiny insulated Test Point Jacks that make possible checking critical plate or circuit voltages from the front of your equipment panel-without pulling out equipment or digging into the chassis. Takes a minimum of space, has low capacitance to ground, long life beryllium copper contacts. Available in black, red, blue, green, tan and brown phenolic conforming to MIL-P 14 B - CGF; also nylon in black, red, orange, blue, yellow, white, green. Alden \#110BCS.

ALDEN "FUSE-LITE"

Fuse Blows - Lite Glows.

Signals immediately blown fuse. Lite visible from any angle. To replace fuse simply unscrew the $1-\mathrm{pc}$. Lite-lens unit. Mounts easily by standard production techniques, in absolute minimum of space. 110 V Alden $\# 440-4 \mathrm{FH}$. $28 \mathrm{~V} \# 440-6 \mathrm{FH}$.
Free Samples Sent Upon Request

Organize circuitry in compact vertical planes. Use both sides of Prepunched Card to stake in Alden Miniature Terminals to your circuitry layout. Vertical minals to your circuitry layout. Vertical
position gives ready accessibility; there position gives ready accessibility; there
is no "underneath" in Alden design.

Alden Cardmounting Tube Sockets, readymade in variety made in variety of sizes, complete with studs and eyelets for easy mounting on Prepunched Cards.

Free

SINGLE CHECK POINT

Here for the first time is a slide-in connector that brings all incoming and outgoing leads to a central check point in orderly rows, every lead equally accessible and color coded.
Avoid conventional Generous
rats nest wiring

STRAIGHT-THROUGH CIRCUITRY Wiring is kept in orderly planes, avoiding rat's nest of conventional back plate wiring. Connections between Terminal Mounting Cards are through Back Connectors so that all circuitry is controlled at this central point. Incompatible voltages safely isolated and separated.

EASY INSERTION AND REMOVAL Mating tolerances pcrmit easy insertion and removal without demanding critical alignment tolerances. Assure proper contact, with safety shielding of dangerous voltages. Leads can be attached above, below or out of the back for most direct and efficient interconnects.

Ready-made Alden Back Connectors meet all conceivable needs, for slide-in chassis replaceable in 30 seconds with spare.

Attach Miniature Terminals, Alden Card-mounting Tube Sockets and Mounting Brackets, which mount in the prepunched holes.

Alden Card-mounting Tube Sockets for miniature 7, miniature 9 and octal tubes, are complete with studs and eyelets for easy mounting on Prepunched Cards.

VISIT OUR COMPLETE DISPLAY AT THE I.R.E. SHOW

READY-MADE for your Electronic Equipment

All designed - all tooled - production immediately available - no procurement problems. Apply ALDEN Standards wholly or in part.

ALDEN ALDEN
 PLUG-IN PACKAGES

Using standard Alden Plug-in Packaging Components you can mount a tremendous variety of circuits on chassis or in racks. Standard Plug-in Bases, Housings, Bails for packaging.

Min. 7 \& 9-pin BASES avail. able, also 11. pin \& 20 -pin. B AILS \& HOUSINGS or LIDS to match.

Alden " 20 " Rack Mounting Socket with extended ears that mount side by side and in multiple rows on U-Channels that accommodate 50 Alden 20 " Plug-in Units illustrated, in $101 / 2 \times$
$19^{\prime \prime}$ rack mounting panel.

SLIDE-IN BACK CONNECTORS
See description See description
on opposite page.

ALDEN BASIC CHASSIS

44 Fit Prepunched Cards carrying completed circuitry into Standard Alden Basic Chassis Body.

Prepunched to your specs. Easy accessibility at sides,

Cl

SERV-A-UNIT LOCK pulls in or ejects chassis.

HOUSE PLUG-IN UNITS IN ALDEN BASIC UNI-RACKS

FOUR SIZES OF CHASSIS MOUNT IN ANY COMBJNATION IN ALDEN UNI-RACKS

STACKED

Mounting all equipment in Alden Uni-Racks provides a uniform system easy to handle and ship. Can be installed and interconnected as fast as unloaded.

interconnects between Uni-

 racks or other major cir cuitry divisions. Quick, sure, coded means of isolating and restoring (with spare) inter-division circuits.
SENDFORFREE "ALDEN. HANDBOOK"

Your design and production men have always wanted these advantages:

1. Experimental circuitry can be set up with production components, cutting down debugging time.
2. Allows technicians, rather than engineer, to debug, by taking out unit.
3. Given the circuitry, nothing further to design-make up from standard Alden components.
4. Optimum circuit layout using standard terminal card.
5. Absolute minimum requirements of labor, materials, space.
6. The various sub-assemblies can be built concurrently on separate assembly lines.
7. No tooling costs-no delays-no procurement headaches.
8. Fewer prints-smaller parts inventory.
9. Can subcontract assemblies.

Your customers and sales force will welcome these advantages:

The big objection to electronic equipment-from the user's point of view-is that if it goes out of order he feels helpless. But you have a perfect answer when your equipment is made to Alden Standards of Plug-in Unit Construction because they assure DEPENDABLE OPERATION, as follows-
30-SECOND REPLACEMENT OF INOPERATIVE UNITS by plugging in avail. able coded spares.
TROUBLE INSTANTLY INDICATED AND LOCATED by monitoring elements assigned to each functional unit.
TECHNICAL PERSONNEL NOT REQUIRED to maintain in operation, due to obvious color coding and fool-proof non-interchangeability of mating components. TOOLESS MAINTENANCE made possible by patented Alden fasteners and plugin locking and ejecting devices.
AIRMAIL SERVICE-
Compact functional units practical to send airmail to factory for needed overhaul. UNI-RACK FIELD HANDLING UNIT-groups functional units into stacking cabinets not exceeding one- or two-man handling capacity-go easily through windows, doors.
CONNECT AS FAST AS UNLOADED, by coded non-interchangeable unit cables plugged in between Uni-racks.

SEND FOR FREE 226-PAGE HANDBOOK

This 226-page Handbook describes fully the Alden System of Plug-in Unit Construction and the hundreds of components ready-made and completely tooled to meet your every requirement. It's a gold-mine for those designing electronic control equipment that is practical in manufacture; dependable in operation.

REQUEST YOUR COPY TODAY - SENT FREE!

for
 INSULATING WATER SYSTEMS for cooling High-Power Electron Tubes

For insulating the water system for water-cooled tubes, use of Lapp porcelain obviates troubles arising from water contamination and conductivity, sludging, and electrolytic attack of fittings.

Lapp porcelain, in pipe, coils and fittings is a completely vitrified, non-porous ceramic, non-deteriorating and chemically inert. It assures permanent cleanness and high resistance of - cooling water, eliminates need for frequent inspection, changing of water or failure of the water system, provides positive cooling for long tube life.

LAPPPORCELA|NP|PE Inside pipe diameters of $3 / 4,1,11 / 4,1 \frac{1}{2}, 2$ and $3^{\prime \prime}$.
 Available in straight pipe up to $60^{\prime \prime}$ lengths, 90° and 180° elbows, and fittings. All connections are swivel-type. Stand off insulators attach directly to bolts which hold pipe sections together. Metal fittings are bronze, polished heavy chrome plated.

LAPP

PORCELAIN WATER COILS

Twin hole coils with inside pipe diameters $1 / 4,3 / 4,1^{\prime \prime}$. Single hole coils with inside pipe diameters $3 / 8,11 / 4,11 / 2^{\prime \prime}$. Provide for flow of cooling water from 2 to 90 gal. per min. Coils provided with cast aluminum mounting bases, fittings, and three-foot sections of lead pipe for attachment to coil terminals.

Write for complete description and specifications. Radio Specialties Division, Lapp Insulator Co., Inc., Le Roy, N. Y.

wHAT IS MBRNPICIC DOING ABOUT

PLFNTYZ HERMETIC is now actively engaged in the development of hermetic seals for both point contact and junction transistors. These are being designed for plug applications, feed-through connections, fuse-type mounts, etc. Typical of other HERMETIC innovations, they will be noted for accuracy, sub-sub-miniarure designs and a variety of shapes and flanges to fit every form of housing. In addition, it will be possible to use these new hermetic seals for both single and double mount. WhIIE for information and assistance concerning your own transistor problems. Please submit sketches indicating mounts, limiting dimensions, number and size of contacts and any other applicable specifications.
HERMETIC's 32 -page catalog is also available with a wealth of data on hermetic seals. Your copy is free!

HFRMEIC SEAL PRODUGIS CO.

33 South Sixth St., Newark 7, New Jersey

FIRST AND FOREMOST IN MINIATURIZATION

PROVEN LEADEREHP in Precision Communication Equipment!

NORTHERN RADIO

DUAL DIVERSITY RECEIVERS

-the choice of COMMERCE and the ARMED FORCES

Today, with transportation taking to the jet and far-flung armies moving on directives from half the world away, the need for predision communication equipment is indispensable. New highs ir- stepped-up speed, fidelity and dependability are demanded. Eecause Northern Radio specializes in the design and construction of Frequency Shift equipment of the types listed below, hundreds of Northern Radio equipments continge to meet this shallenge.

For example, the Dual Diversity Receivers of the type pictured above under construction, although designed and built by Northern Radio for commercial use, have been specified as is by the Armed Forces.

This is proven communications leadership - and only constant research and precision manufacture can produce it. Write for complete information.
freduency shift keyers
MASTER OSCILLATORS
DIVERSITY RECEIVERS
FRERUENCY SHIFT CONVERTERS
MULTI-CHANNEL TONE SYSTEMS
TOHE KEYERS
DEMODULATORS
RADIO MULTIPLEX SYSTEMS MONITORS
TONE FILTERS
LINE AMPLIFIERS

Impregnate Your Windings with this

sew, high bonding stremgth varnish...IRVINGTON NO. 140

Lab tests prove it-field studies confirm it! The bonding strength of Irvington No. 140 -even at Class " B " temperatures-far exceeds that of any other varnish developed or tested by Irvington.

Irvington No. 140 prevents coil or wire movements even on units operating at extremely high speeds or under severe vibration. In addition, it has high resistance to heat, oil and chemicals; excellent elec-

Look to

IRVINGTON

for Insulation Leadership insulating varnishes VARNISHED CAMBRIC VARNISHED PAPER VARNISHED FIBERGLAS JNSULATING TUBING CLASS "H" INSULATION

Use Irvington No. 140 on high-speed tool armatures, automotive armatures, Diesel electric traction motors and generators, high-speed motors and generators. Fill out the coupon for further facts.

Send this convenient coupon now Irwington VARNISH \& INSULATOR

Irvington 11, New Jersey
Plants: Irvington. N. J.; Monrovia, Calif.; Hamilton, Ontario, Canada

[^0]EL. $3 / 53$

Gentlemen :
Please send me Technical Data Sheet on Irvington Insulating Varnish No. 140.
Name. \qquad Title \qquad
Company.
Street \qquad
City. \qquad Zone \qquad State

How to fly a guided missile in your laboratory

Practically any electrical, mechanical or physical phenomenon - even the full flight of a guided missile - can be precisely re-created in the laboratory from Ampex magnetic tape recordings.

Ampex retains and plays back data in the same electrical form in which it is received, making its playback in effect equivalent to a rerun of the original test. But it has these added advantages: Data can be repeated at any time or place, can either be scanned or studied in whole or part, can be speeded up or slowed down, can be fed to automatic reduction systems. Furthermore, desired portions of the data can be reduced to oscillograph traces, pen recordings or any other form that could have been made at the time of the original test.

Besides the convenience and versatility of the data itself, Ampex Magnetic Recorders and the tape they use have these desirable physical qualities:

- Ampex Tape Recorders, being rugged, compacł and porfable, are usable where other equipment would not be feasible;
- Tape requires no processing, hence is immediately available for playback;
- Tape stores an enormous quantity of information af low cost and in minimum bulk.
- Ampex Tape Recorders cover extremely wide frequency renge: Madel 306 - 0 to 5000 cycles $/ \mathrm{sec}$. Madel 307 - 100 to 100,000 cycles $/ \mathrm{sec}$. Model 303 - Pulse width modulation Many other models are also available

CM-15 El Menco Capacitors range from 2 to 420 mmf. at 500 vDCw . . . measure only $9 / 32^{\prime \prime} \times 1 / 2^{\prime \prime}$ x $3 / 16^{\prime \prime} \ldots$ but they're

PRETESTED at 1000V!

WRITE FOR FREE SAMPLES AND CATALOG ON YOUR FIRM'S LETTERHEAD

MOLDED MICA

ALL fixed mica El Menco Capacitors are factory-tested at double their working voltage. So, you can be sure they'll stand up. They also meet all significant JAN-C-81 specifications. This means that you can specify them with confidence for all military or civilian electronic applications.

Our Type CM-15 silvered mica capacitors reach 525 mmf . at 300 vDCw. Our other types - silvered and regular - provide capacities up to $10,000 \mathrm{mmf}$. Want samples for testing? The Electro Motive Manufacturing Co., Inc., Willimantic, Conn.

information to Arco Electronics, Inc., 103 Lafayette St., New York, N. Y, - Sole Agent for Jobbers and Distributors in U. S. and Canada.
 Jobbers and distributors are requested to write for
 Cl-Menico
 MICA TRIMMER

Foreign and Electronic Manufacturers Get Information Direct from our Export Dept. at Willimantic, Conn.
THE ELECTRO MOTIVE MFG. CO.,INC.
WILLIMANTIC, ${ }^{\text { }}$ CONNECTICUT

[^1]
PROSPERITY IN THE USA: How Wealthy Are We?

Again, how prosperous are the people of the United States?
This is the third of a series of messages devoted to this crucially important and muchdebated question. The first two messages dealt with what has been happening to our national income, both in terms of its growth and how it is divided among individuals.
This third message deals with what has been happening to the resources - factories, farms, mines, and equipment of all kinds - out of which income is created. It deals with what economists call our wealth.
It is possible for a nation to enjoy apparent prosperity for a time by rapidly exhausting its resources. But to sustain prosperity over the long pull a nation must see that its wealth is not dissipated. Hence what is happening to our wealth now is a harbinger of what is going to happen to our prosperity later on.

How Wealth is Measured

It is often asserted that the most vital element in a nation's wealth is its people. There is a lot in this idea. For example, the full value of a country's hospital and surgical equipment depends on its physicians and their skill in handling the equipment.
However, no one has ever devised a satisfactory way to put a value on human beings.

So people are omitted from calculations of national wealth. So, too, is military equipment. It is regarded as basically destructive and hence not a real addition to wealth. Otherwise, the wealth of a nation is calculated in terms of the dollar value of its physical resources.
The following chart shows the wealth of the U.S.A. at various intervals during the past 50 years. For the period through 1948 the figures come from a pioneering study by Raymond Goldsmith of the National Bureau of Economic Research, which is widely regarded as the foremost organization in its field. The figures since 1948 are estimated. To remove the effect of price changes, all of the wealth figures are calculated in 1929 prices.

From this chart one fact stands out clearly. It is that since 1929 our national wealth has not been increasing as steadily as it did during
earlier periods. Indeed, in 1946 our total national wealth was actually less than it was in 1929. Only in the last six years have we been able to make any consistent additions.
Even these gains are less impressive when the growth in our population is taken into account, as illustrated by the following chart.

This chart makes it clear that when the nation's wealth is divided by the population, we are slightly worse off per person today than we were in 1929. This is the case in spite of the large additions to our national wealth since 1946.

Depression and war are the two principal reasons we have made no progress in increasing our wealth per person since the 1920s. The depression brought mass unemployment and greatly reduced production which ruled out any increase in wealth. During World War II and again during the post-Korean mobilization program, U.S. production has reached new peaks. But a considerable portion of this record breaking output has been in the form of military equipment, which is not included in an accounting of national wealth. Consequently, we have been unable to regain the level of wealth per person which we had in 1929.

A Brake of Prosperity

What does this failure to raise our wealth per person mean? It means that we have fewer
resources with which to create income for each individual. It means that we have made no progress in the crucial task of assuring future increases in prosperity.

As the second editorial in this series demonstrated, we have gone so far in equalizing individual incomes that "the possibilities of increasing the income of the rest of the people by 'soaking the rich' have largely disappeared." From now on the only promising way to increase our individual incomes is to increase our national earning power.

During the past four years it has taken about $\$ 3.60$ of national wealth to yield $\$ 1$ of income after taxes. This is a low figure for the wealth needed. Prior to World War II there were long periods when it took at least $\$ 5$ of national wealth to produce $\$ 1$ of national income. The experts in this field are by no means certain that it will not again take $\$ 5$ rather than $\$ 3.60$ of wealth to increase income by $\$ 1$.

But let us assume that $\$ 3.60$ of wealth will suffice to provide $\$ 1$ of income in the years ahead. If by 1960 - seven years from now the income of the average American is to be increased from about $\$ 1490$, where it stands at present, to $\$ 2000$, we must add $\$ 310$ billion to the national wealth. This is nearly three times as much as we have added to our wealth since the end of World War II, seven years ago.

Because we have made large additions to our productive equipment in recent years, fears are frequently expressed that we shall soon be plagued by an excess of such equipment. But the facts about our national wealth do not support this conclusion. They indicate that we still have ahead of us a tremendous job of increasing our resources if the American standard of living is again to resume the steady climb which was interrupted by depression and war.

PROBLEM:

To obtain uniformity of performance between two thermostat elements used in thermal type demand meters

SOLUTION:

General Plate provided the solution with identically matched TRUFLEX ${ }^{\circledR}$ Thermostat Metal Coils

 meters were faced with the problem of obtaining two thermostat elements for each meter that had identical performance characteristics.

When these coils were made individually each one had to be tested 100% and then paired together with the coil that had, as near as possible, the same operating characteristics for use in each meter. This meant costly testing procedures, rejects and often unsatisfactory performance.
The problem was presented to General Plate, whose engineers quickly found the solution. Matched coils were made from adjacent sections of a single Truflex thermostat metal strip as illustrated. Since the coils were made from identical material, they were automatically paired with the same uniform operating characteristics.

You, too, can save by using Truflex Thermostat Metals. Here's why When you buy General Plate Truflex Thermostat Metal you can be sure that not only the first lot meets specifications but every succeeding order is a twin... has identical characteristics to the original lot . . . whether it be days, months or years apart.
Advanced General Plate production methods insure positive consistency in tolerances, grain structures, expansion, hardness, etc. It assures maximum uniformity of materials which reduces costly rejects and guarantees highest quality performances.

General Plate products include . . . precious metals clad to base metals, base metals clad to base metais, silver solders, composite contacts, buttons and rivets, Truflex ${ }^{(1)}$ thermostat metals, Alcuplate ${ }^{\circledR}$, platinum fabrication and refining, \#720 manganese age-hardenable-alloy. Write for Catalog PR700. It gives information on these and other General Plate products.

Have You a Composite Metal Problem? General Plate can solve it for you

METALS \& CONTROLS CORPORATION GENERAL PLATE DIVISION

33 forest street, attleboro, mass.

"ZERO" PHASE SHIFT
 COMPUTER REFERENCE VOLTAGE TRANSFORMERS
 LESS THAN 0.1 MILLIRADIAN PHASE SHIFT $\pm .02 \%$ ACCURACY OF VOLTAGE RATIOS

Samples of this type transformer were tested by the BUREAU OF STANDARDS and found to meet our guaranteed accuracy.

A radical new approach to the design and manufacture of precision transformers, makes it possible to have minimum errors.

These transformers are not stock items but manufactured to your requirements.

Write for data sheet so that we can offer a preliminary design, price estimate and delivery.

MIL-T-27 TRANSFORMERS

TOROIDAL TRANSFORMERS INSTRUMENT TRANSFORMERS PULSE TRANSFORMERS

VIDEO TRANSFORMERS
INPUT-INTERSTAGE-OUTPUT POWER TRANSFORMERS

POWER LDES MEASUREMENT-Losses as lew as 15 micra watts in the renge of 20 c to 200 kC an be meosure: and anchazed one possible irsprovemet ts effected.

PULSE 1 RENSFORMER DESIGN-The cut and try neth ods commonly ased in the design puse transformers has been largely sapjiaited ty the us of special equipmen:-

	JAN TYPES - ALL VALUES MEASURED AT $25^{\circ} \mathrm{C}$.					
	CODE NO.	Min. Forward Current at 1 Volt (MA)	Max. Reverse Current (Micro-Amperes)	*Average Rectified Current (MA Max.)	\dagger Minimum Reverse Volts	Max. Cont. Reverse Operating Volts
	1N69	5.0 Rectification	$\begin{array}{r} 50 @-10 \vee \\ 850 @-50 V \end{array}$ iency: 35% minim	$\begin{gathered} 40 \\ \text { in } 100 \mathrm{MC} \end{gathered}$	75 circuit.	60
CLAMPING CIRCUIT	1N70	3.0	$\begin{array}{r} 25 @-10 V \\ 300 @-50 v \end{array}$	30	125	100
	1N81	3.0	10 @-10v	30	50	40

* Average half wave rectified current at 60 CPS and $25^{\circ} \mathrm{C}$. Consult us for ratings at other conditions.
\dagger For zero dynamic resistance.

Radio Receptor Germanium Diodes may hold the answer to many of your problems. Our engineers will be glad to study your requirements and submit their recommendations. Many other types, both standard and special, are available . . . Write us!

Seletron and Germanium Division
\title{ RADIO RECEPTOR COMPANY, INC. }
SALES DEPT: 251 West 19th Street, New York 11, N. Y. - FACTORY: 84 North 9th Street, Brooklyn 11. N. Y.

> "The pictures move ... are a dombination of light and shadow, of form and substance that catch and hold the eye."

A GPL extra in engineering accounts for much of this. Camera and operator may be moving on a boom in a 3 -dimensional pattern. Yet the operator has only to concentrate on aim, while the director at the Camera Control Unit adjusts the iris for light and shadow.

> "The cameras seem to roam af will on that show with a fluidity and grace almost never found in the movies."

That fluidity is engineered into GPL cameras. Dual focus knobs, push-button lens change with auto-

NEW STATION OPERATORS:

Without obligation, GPL engineers will be glad to study your entire studio needs for cameras, projectors, film chains and video recorders.

General Precision Laboratory
I N C O R P ORATED PLEASANTVILLE NEW YORK

Cable address: Prelab
TV Camera Chains - TV Film Chains - TV Field and Studio Equipment - Theatre TV Equipment

DON'T FORGET---MARCH 23-26!
Bring your mofor, fan and blower questions to the IRE SHOW. Booth \#4315 has the answers.

but

this is your "trademark"

Wour customers see the outside of your product a lot more than they see its inner mechanisms. Does it have the appearance of a precision instrument? Does it look the part?

In other words, do you get the same perfection in your cabinets that your engineers build inside? Smooth flawless welded seams? Perfectly fitted doors and panels...exactly the finish you specify...and, above all, absolute uniformity between all cabinets?

Karp customers do-and they know that this painstaking sheet metal fabrication doesn't mean high prices.

They know that our vast assortment of available dies
eliminates the need for much costly tooling. They know that our plant-ihe length of three city blocks-with its modern facilities, offers custom production at prices that are surprisingly low.

You'll find, as others have, that we can produce to exacting tolerances precisely the type of cabinet you require.

In large quantity or small. Steel or aluminum. Any type of welding. Painstaking hand finishing. Prompt shipment.

Visit our plant and see these things for yourself if you wish. We welcome your visit. Write for our bulletin.

KARP METAL PRODUCTS CO., INC. 215 63rd ST., BROOKLYN 20, N. Y.

MOST COMPLETE FACILITIES FOR LARGE AND SMALL RUNS OF ENGINEERED SHEET METAL FABRICATION

COMPLETE

CIVILIAN LINE

Exceptionally good delivery cycle on civilian orders due to tremendous mass production facilities.

TYPE GC-45, 15/16" diametor variable composition rasistor. Wattoge rating، 1/2 wott for resistances through 10,000 ohms, $1 / 3$ woth for resistances over 10,000 ohms through 100,000 ohms, $1 / 4$ watt with 500 valts maximum ocross end terminals for resistances over 100,000 ohms. Avallable with or without illustrated affoched switch and in concentric shaft fandem construction C2-45 as shown obovio.

TYPE GC-35, $11 / \mathrm{s}^{\prime \prime}$ diameter variable composition resistor. Waftege ralinga $3 / 4$ wall for resisfonces through 10,000 ohms, $2 / 3$ watt for resistonces over 10,000 ohms through 25,000 ohms, $1 / 2$ wotf with 500 volts maximum ocross end terminals for resistances over 25,000 ohms. Available with or without illustrated aftoched switch and in concentric shaft tondem construction $\mathrm{C} 2-35$ as shown above.

HEW HIGH QUALITY MIMIATURIZED "DIME.SIZE" CIVILIAM CONTROLPorformence folly Equals larger Typos
TYPE 70, 3/400 diamefor variable composition resistor. Wattage rating: .3 wall for resisfances throug' 10,000 ohms, 2 wotl with 350 volts maximum across and terminals for resistances over $10,00 \mathrm{C}$ ahms. Also available in concentric shofi fandom construcfion C 5-70 as shown above.

COMPLETE MILITARY LINE

Immediate delivery from stock on 189 types including JAN-R-94 and JAN-R-19
types of variable resistors.

NEW 38-PACE ILLUSTRATED CATALOG-
Describes Electital and Mechanical characteristich, Special Feolures and Construcliens of a complete line e variob tesistors for miltary and civilian use. Includes dimonsithal deawings of each resiste: Writo sodoy fer your copy.

TYPE 45, (JAN-R -94, Typa ZV2) 1/4 walt, 15/18' diametervarioble compoition resiblor. Also ovailoble with other spesial militer: features not covered by JAM.R. 94 including concentric shaft lasdem construction. Aroched ewitch can be supplied.

TYPE 35, (JAM-E-94, Type RV3) 1/2 watf, 11/8" diametes varioble composition ressfor. Also availabe with गther special militery features not covered by IA V-R- 94 is cluding concentre shoff tandem construction. Altached switch can be supplied.

TYPE 252, (JA -R-19, TypaRA20) 2 wall. 117 1.64" dicmeter variable wirewound reisistor. Also ovailable with other special militery feafures not covered by -AN-R-19 including cancentre shaft tandem construction. Altached =witch can be suppllied.

TYPE 25, (JAh-害-19, TYP RA30) (Mayalso be as odes Type Ra25) 4 walf, $117132^{\prime \prime}$ diemeler variable wirewound resisfor Also availctle with other special military fectures not covered by IAN-R-19 meluding concentic shaft tendem construction. Altached switch can be supplied.

TYPE 95, (JAM-R-\$4, Typo RVA) 2 watt $70^{\circ} \mathrm{C}, 11 / 8^{\prime \prime}$ diameler variable composition resistor. Also available with other special milltary foctures not covered by JAN-R. 94 including concentric shaff fondem eonstruction. Attached switch can be supplied.

See the complete CTS military and civilian lines of variable resistors of the

IRE SHOW

Grond Centrol Paloce, New York City MARCH 23-26, 1953
BOOTH 4-608

UKPRECEDENTED PERFORMANCE CHARACTERISTICS

Specially dosigned for military communicattons squipment subject to extreme temperalure and humidity renges. $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$...cridity to saturation.

Bomac - :FSGUIBFANG MINTDOIMG available for all wave guide sizes

Low Q Broad Band Maich Low Insertion Loss
Temperature Range $-55^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ $30 \mathrm{lb} . /$ sq. In. Pressure Differential For Choke Mounting or Soldering Directly to Guide Write for Prossorizing Window Doto Sheets

FOR EXTREME STABILITY.. Bliley CRYSTALS PLUS Bliley TEMPERATURE STABILIZERS

Crystal frequency stability is a finite factor determined by ambient temperature variation. Bliley Temperature Stabilizers, used with Bliley Crystals, are thermostatically controlled ovens engineered to deliver extreme stability regardless of ambient temperature changes.

TYPAS TC911-TC92-TC93

Designed specifically for use with Bliley Crystal units. Standard models are supplied, for crystal types, as indicated:
Crystal Group A Types FM6, BH81ג, MC7, AR4, AR5 Crystal Group B Types BH8, MC75, MS46

Exceptional temperature stability is provided by two separate heaters, individually regulated by separate thermostats. Ambient temperature variations are first minimized by outer stage (booster) heater with final regulation by inner stage (control) heater.

BLILEY ELECTRIC COMPANY

UNION STATION BUILDING, ERIE, PENNSYLVANIA

RMC

Modern Engineering Requires This "HEAVY DUTY" CERAMIC CAPACITOR

The heavier ceramic dielectric element made by an entirely new process provides the necessary safety factor required for line to ground applications or any application where a steady high voltage condition may occur. Designed to withstand constant 1000 V.A.C. service.
It is wise to specify RMC "HEAVY DUTY" by-pass DISCAPS throughout the entire chassis because they cost no more than ordinary lighter constructed units.
Specify them too, for your own peace of mind, with the knowledge that they can "take it." And if you want proof - request samples.

A New Development from the RMC Technical Ceramic Laboratories

RADIO MATERIALS CORPORATION GENERAL OFFICE: 3325 N. California Ave., Chicago 18, III.

How to Get Microwave Components You Can Trust

 frequency discrimination tests.Microwave components are not costly in relation to the whole job. But they can make or break the performance of a sizable investment once they are installed. It is, therefore, imperative to see that your microwave components are built and checked precisely to your drawings or specifis cations by a manufacturer who has the knowledge, experiz ence, and facilities to meet these reguirements.

When you specify Titeflex Waveguides and components you can be confident of top craftsmanship in manufacture. You can be sure Titeflex will meet your specs or drawings before shipment. Only testing facilities as complete as Titeflex maintains could give you this assurance.

Titeflex inspection often saves you the time and cost of duplicate inspection. It is the final step in the production of custom-engineered, precisionmanufactured microwave components.

Titeflex engineering and production facilities are available to help you solve your Microwave problems from original design to final production.

Have you this catalog of Titeflex microwave components? Use coupon in sending for your free copy.

Philco Xb Band Rigid Components receiving swept-

Milling the rubber-like compound which is subsequently molded over Titeflex flexible waveguides to protect them.

igmition harmess

RIGID AND FLEXIBLE

FIITERS
(IIteficx)

TITEFLEX, INC. 524 Frelinghuysen Ave. Nowark 5, N.J.
Please send me without cost information about the products checked at the left. NAME \qquad title FIRM \qquad
ADDRESS
CITY
 MAII
COUPON
TOOAY

Operator instalis space-saving G-E Selenium Rectifiers on monitor sequence count-controller.

G-E Selenium Rectifiers Cut Costs and Save Space

"We greally simplified a serious space problem, increased current capacily by 30 per cent, and even saved money as well, by our use of General Electric Solenium Rectifiers in our product," reports Production Insirument Company, Chicago, Illinois, large manufacturers of electrical counters.

G-E SPECIALISTS HELPED. These benefits resulted from an improved installation plan designed by G-E Rectifier Specialists, working with Production Instrument Company, and using compact, G-E Selenium Recifiers. A change to several small unit stacks replacing one large assembly made installation easier and faster, and more economical.

LONG LIFE. Low forward resistance means low forward voltage drop in

G-E Selenium Rectifiers, and combined with their high reverse resistance, assures low heat loss with resulting slow aging and long life.
COMPACT and lightweight, G-E Selcnium Rectifiers save space for other components, and provide uninterrupted and long-lasting performance. They make a major contribution to your products' quality and consumer acceptance.
FOR MORE INFORMATION, consult your nearest G-E Apparatus Sales Office or write for the Selenium Rectifier Application Manual GET-2350). Ans you can test G-E Selenium Rectifier quality for yourself, with CEA$5524 A$, Testing Directions for Selenium Rectifiers. Address Section 4:6726, General Electric Company, Schenectady 5 , N. Y.

EXPANDING PRODUCTION
 in Toroids at Filters

At every management meeting in Burnell \& Company there is an unseén but highly respected visitor. He is the spectre of all our customers and his opinions carry weight. Recestly he suggested that in addition to our other expansion measures that we must find a way to improve deliveries for emergency and special sample orders. Our solution is certainly not original but no less effective.
Burnell \& Company's new sample department has been able to produce audio filters from proverbial 'scratch' to the customer's waiting hands in as little as ten days!
Frankly, this cannot always be accomplished but our average has been ranging between three to four weeks for emergency samples and four to six weeks for regular prototypes instead of the former twelve weeks of the presample department days.
Adding this to our new winding department and our new testing and finishing departments the sum total has been a still better product at

ELECTRONIC COUNTER

...a small precision instrument that makes more kinds of measurements faster and more easily than any comparable device ever offered!

REVOLUTIONARY FEATURES SAVE TIME, MONEY SPEED RESEARCH AND MANUFACTURING

Measures . 00001 to 100,000 events per second
Measures time 10 microseconds to 27.8 hours
Accurate within 1 part in 100,000
Ideal for remote measurements, monitoring
Lowest cost completely versatile counter
No extra-cost modification required Easily used by anyone, no training needed Reads direct in cps, kc, seconds, milliseconds
Decimal point automatically indicated Displays results instantly, accurately Work-bench size; weighs just 45 pounds Unlimited uses in research, production -hp- dependability - quality construction quality components

In an ever-increasing variety or manufacturing and research measurements, electronic counters provide greater speed, higher accuracy and broader usefulness than previously available measuring equipment.

The new -hp-522B is a versatile low-priced counter offering you frequency, period and time interval measurement over a broad range. The instrument is completely contained in a small, bench-size unit, and no extra-cost modification is required to perform all functions. Results are displayed instantly and automatically in direct-reading form. Unskilled personnel can use the equipment immediately-no training or technical background is needed.

WIDE RANGE

Frequency range is .00001 cps to 100 kc , and the counter may be read direct from 10 cps to 100 kc . Counting is available over periods of $1 / 1000,1 / 100,1 / 10,1$ and 10 seconds, or multiples of 10 seconds. Time of display can be varied at will, counts are automatically reset, and action is repetitive. For period measurement, the unknown controls the opening and closing of the gate while the instrument's decade counters record the number of cycles of an internal standard frequency. Depending on the frequency selected, the instrument reads direct in seconds and milliseconds. By this means, frequencies down to .00001 cps may be measured.
Time intervals are measured by a similar procedure except that the gate time is controlled by a "start" and "stop" signal generated by the device under measurement or by transducers. Time intervals ranging from 10 microseconds to 100,000 seconds (27.8 hours) can be measured; and again results are

Complefe Coveroge HEWLETT-PACKARD

High Quality! Low Cost!

displayed on the panel (in seconds and milliseconds). The count may be started or stopped from common or independent sources by using either positive or negative "going" waves. The level of trigger voltage is continuously adjustable for each channel from -100 to +100 volts.

GENERAL DESCRIPTION

Model 522B consists of five decade counters, a wide range time base, and gating and auxiliary circuits applying counters and time base to the broadest possible variety of measurements. The unknown is applied to the counters through a gate circuit. This circuit remains open for a prècise interval controlled by an oven-housed quartz crystal. Stability of this crystal is at least $5 / 1,000,000$ per week, and may be standardized against WWV.

-hp-522A ELECTRONIC COUNTER

For applications where wide-range frequency and period measurements are desired, $-h p-522 \mathrm{~A}$ is offered. Frequency counting facilities of this instrument are identical with $-h p-522 \mathrm{~B}$, except that gate time for frequency measurement is 1 second or any multiple of 1 second, and the standard frequency counted for period measurement is 100 kc . The automatic illuminated decimal point is omitted. -hp- 522A does not include time interval measuring circuits. $\$ 775.00$ f. o. b. factory.

BRIEF SPECIFICATIONS—MODEL 522B

FREQUENCY MEASUREMENT:

Range: 10 cps to 100 kc .
Accuracy: ± 1 count \pm stability ($5 / 1,000,000$ per week).
Registration: 5 places. Output pulse available to actuate trigger circuit for mechanical register to increase count capacity.
Input Requirements: 2 volts peak minimum.
Input Impedance: Approx. 1 megohm, $50 \mu \mu \mathrm{fd}$ shunt.
Gate Time: . $001, .01, .1,1,10$ seconds. Extendable to multiples of 1 or 10 seconds by manual control
Display Time: Variable 1 to 10 seconds in steps of gate time selected. Display can be held indefinitely.

PERIOD MEASUREMENT:

Range: 00001 cps to 10 kc .
Accuracy: $\pm .03 \% \pm$ stability (for measurement over 0 10 cycle period).
Gate Time: 1 or 10 cycles of unknown. Extendable to any number of cycles by manual control. (For frequencies under 50 to 60 cps).
Standard Freq. Counted: 1, 10, $100 \mathrm{cps} ; 1,10,100 \mathrm{kc}$; or external.

TIME INTERVAL MEASUREMENT:

Range: $10 \mu \mathrm{sec}$ to 100,000 seconds (27.8) hrs.
Accuracy: $\pm 1 /$ std. freq. counted \pm stability.
Input Requirements: 2 volts peak minimum.
Input Impedance: Approx. 250,000 ohms, $50 \mu \mu \mathrm{fd}$ shunt.
Start and Stop: Independent or common channels.
Trigger Slope: Pos. or neg. on start and/or stop channels.
Trigger Amplitude: Continuously adiustable on both channels from -100 to +100 volts.
Standard Freq. Counted: $1,10,100 \mathrm{eps} ; 1,10,100 \mathrm{kc}$ or external.
Price: $\$ 900.00$ f. o. b. factory.

IS YOUR MEASURING PROBLEM HERE? FREQUENCY

Production quantities
Nuclear radiations
Power line frequencies to high accuracy
R. P. S. and R. P. M.

Weight, pressure, temperature and acceleration-at remote points
Very low frequencies
Frequency stability
Oscillator calibration
Pulse repetition rates
TIME INTERVAL
Elasped time between impulses
Pulse lengths
Camera shutter speed
Projectile velocity
Relay operating times
Precise event timing
Interval stability
Frequency ratios
Phase delay
The broad applicability of $-h p$ - electronic counters makes them of greatest usefulness in any laboratory or factory. In many cases, one counter will make all your important measurements itself, and give you accuracy unavailable with other equipment. In other applications, standard transducers may be required. See your - $h p$ - sales representative for help in applying Model 522B to your measurement problem.

ARE YOU READING THE -hp- JOURNAL?

The -hp-Journal, now in its fourth year, is sent to you regularly as another HewlettPackard service. It contains latest news about electronic developments, technique and instruments. Fully illustrated.
WRITE -hp- FOR YOUR FREE SUBSCRIPTION
(use your Company letterhead, please)

[^2]

TYPE VC-1257
Hydrogen filled, zero bias thyratron with hydrogen generator for generation of pulse power up to 40 megawatts.

Hydrogen Thyratrons

ELECTRICAL DATA*				
Type	VC. 1258	5949/1907	5948/1754	VC. 1257
Maximum Peak Forward Anode Potential	$\begin{aligned} & 1000 \\ & \text { volts } \end{aligned}$	$\begin{gathered} 25000 \\ \text { volts } \end{gathered}$	$\begin{gathered} 25000 \\ \text { volts } \end{gathered}$	38000 volts
Maximum Peak Anode Current	$\begin{gathered} 20 \\ \text { amps } \end{gathered}$	$\begin{aligned} & 500 \\ & \text { amps } \end{aligned}$	$\begin{aligned} & 1000 \\ & \text { amps } \end{aligned}$	2000 amps
Maximum Average Anode Current	$\begin{aligned} & 0.05 \\ & \text { amps } \end{aligned}$	$\begin{aligned} & 0.50 \\ & \text { amps } \end{aligned}$	$\begin{gathered} 1.0 \\ \text { amps } \end{gathered}$	$\begin{aligned} & 2.0 \\ & \text { amps } \end{aligned}$
Maximum Heating Factor (epy \times prr \times ib)	1.0×10^{8}	6.25×10^{9}	9.0×10^{9}	\rightarrow
Nominal Filament Power	$\begin{aligned} & 12.6 \\ & \text { watts } \end{aligned}$	95 watis	190 walts	$\begin{gathered} 230 \\ \text { watts } \end{gathered}$
Hydrogen Reservoir	No	Yes	Yes	Yes

More detailed information an electrical and mechanical
doto will be supplied on request.

- A NEW CONCEPT OF HYDROGEN THYRATRON DESIGN! The tubes illustrated represent a departure from conventional hydrogen thyratron designs and are a result of several years of concentrated development work. They are primarily employed in the generation of peak voltages with durations in the order of microseconds.
dolo will be supplied on request.

TYPE VC-1258 Zero bias miniature hydrogen thyratron for the generation of peak pulse power up to 10 KW .

TYPE 5948/1754 Hydrogen filled. zero bias thyratron with hydrogen reservoir for generation of peak pulse power up to 12.5 megawatts.

TYPE 5949/1907
Hydrogen filled, zero bias thyratron with hydrogen reservoir for generation of 6 peak puise power up to 6.25 megawatts.

- for Pulse Voltage Generation

Custom-built Electronic Equipment

- CHATHAM speciclizes in the development, design, and construction of custombuilt electronic equipment to exactly meet customers' requirements. Our capable staff of engineers will furnish prompt estimates or, it desired, will cal. to discuss your problem personally. Call or write today.

Pulse life test equipment built by CHATHAM checks receiver type tubes under pulse conditions.

20 Megawatt Hydrogen Thyratron Test Equipment built by CHATHAM to customers' specifications.

Chatham Vacuum Switches

© IYPE 1 S22 (illus. trated) is a mechanically actuated. single-pole, doublethrow. glass vacuum switch. This and other types can be supplied.

PEG1F1GATHONS

> HOLD OFF VOLTAGE: Internal- 10,000 volts rms; External* (at 27,000 feet altitude)10,000 volts rms: External ($a t \mathbf{t} 40,000$ feet altitude) $-7,500$ volts rms. INTERRUPTING RATING, RESISTIVE LOAD: 1.000 operations life of $10,000 \mathrm{v}$, ac, rms10 omp, oc, rms; $1,000,000$ operations life at $10,000 \mathrm{v}$, ac, pms -2 amp , ac, rms ; $500,000,000$ operations life of $10,000 \mathrm{v}$, ac, rms-0.1 amp. ac, rms
> NET WEIGHT (approx.) 2 ozsv MAXIMUM WIDTH (overall)- 41 ins. MAXIMUM LENGTH (overall) $35 / 8$ ins. MAXIMUM THICK. (overall)_ 19 ins. - ot 50% humidity

high voltage vacuum fuses

Can be supplied by Chatham to exact customers' specifications if ordered in adequate quantity. Call or write for full particulars and quotes.

CHATHAM ELECTRONICS CORP
475 WASHINGTON STREET. NEWARK 2, NEW JERSEY BOOTн \#4-512!
STREET NEWARK2, NEW JERSEY

ENGINEERED FOR RUGGED ASSIGNMENTS!

Provides absolute protection for
generators and connected loads -

$$
\begin{aligned}
& \text { Visit B00THS } \\
& 95-96 \\
& \text { EXHIBIT HALL } \\
& \text { AAAE AVIATIOM } \\
& \text { EXHIBIT } \\
& \text { Congress of Civil } \\
& \text { Aviation } \\
& \text { Conferences } \\
& \text { KANSAS CITY, } \\
& \text { M0. } \\
& \text { March } 23 \text { to } 26 \text {, } \\
& 1953
\end{aligned}
$$

This relay is designed for use on power systems of two or more 208/120 volt, 4 wi-e, three phase, alternators operating in parallel. Its function is to protect the sustem by removing an alternator in the event of a drive failure, a shutdown of the drive without priar disconnection of the alternator, a balanced three phase fault within the alternator or a high resistance three phase fault between the relay and alternator. The relay operates if reverse power in any phase ex ceeds 1500 watts. It has an inverse time characteristic. At 2000 watts the relay operates in 0.4 seconds.

Completely environment-proofed to meet critical requirements -

Designed for critical aviation applications, all components except the current transformers are mounted on a single shock-mounted chassis with all items including wiring 100% potted for complete immunity to environmental conditions or changes. Rugged cable connectors permit quick, easy replacement of the entire unit or current transformers. This equipment is readily adaptable to power systems of other voltages and frequencies.

Call or Write for New Illustrated Brochure on Gavco's Standard Aviation Components-Inquiries on other than standard equipment will receive prompt attention.

the

This assembly prozides controllsd heater: to-cathode positioning; eliminctes heater shoris resulting from rupture of the heater coating, as shown below.

Exclusive mounting makes the heater an integral part in the Teletron gun.
In the Du Mont Feletron, the heater "feet" are welded to stainless steel lugs which accurately position the heater on a ceramic disc. The result is a firmly welded, vertically aligned assembly which is inserted in the control grid cup ard automatically positions the heater within the cathode. This eliminates c-itical, uncontrolled hand positioning of the heater. Positive centering prevents chafing of the delicate heater coating and avoids heater-to-cathode shorts.

Less open-heater failures
Stronger connections obtained by welding the tungsten heater "feet" to the stainless steel lugs rather than directly to the nickel stem leads, greatly reduce open heater failures.

Greater heater efficiency
When the control grid is assembled, the cistance between the top of the heater helix and the outer ridge of the ceramic disc controls the dapth to which the helix is seated inside the cathode. Optimum-depth seating is thus predetermined, insuring maximum heater efficiency.

Du Mont quality control of heater design and assembly builds longer, fuller, troublefree life into every Teletron.

JOY AXIVANE* Fans offer you advantages in electronic equipment cooling which have been thoroughly proved in service. The higher pressure-output of these vaneaxial blowers generally permits more compact arrangement of the equipment. Additional advantages are: light weight, high strength, high shock and vibration resistance, and high efficiency in low or high pressure service.

For minimum weight, JOY electronic cooling fans are made of aluminum, magnesium, or combinations of these metals. They are designed to meet all present Air Force and Naval electronic specifications, and are available in fan sizes from $2^{\prime \prime}$ I.D. up. Totally-enclosed or explosion-proof motors can be furnished where required. - If you have a problem in heat dissipation from electronic units, no matter what the service conditions may be, let us place at your disposal JOY'S experience as the world's largest manufacturers of vaneaxial-type fans.

Over 100 Years

JOY MANUPAGHURING COMPANY

GENERAL OFFICES: HENRY W. OLIVER BUILDING • PITTSBURCH 22, PA. IN CANADA: JOY MANUFACTURING COMPANY (CANADA) LIMITED, GALT, ONTARIO
model 440-A
from 0.01 cps to 100 kc

THE MODEL 440-A PUSH-BUTTON OSCILLATOR is designed for applications requiring very low distortion or extremely good frequency stability and resetability. It provides both sine waves and square waves at any frequency between 0.01 cps and 100 kc .

For fine control of frequency, three banks of ten push-button switches are provided. An addilional vernier control varies the frequency continuously by an amount equal to the increment between adjacent butlons of the third switch bank.
Hum and distortion are attenuated when the setting of the calibrated logarithmic output level control is reduced and are thus maintained at a constant low percentage of the desired oulput signal.
This exceptional instrument is ideally suited for bridge measurements, tuned filter alignment, rapid spot frequency checks, and distortion measurements.

specifications

FREQUENCY RANGE: 0.01 cps to 100 kc continuously variable. FREQUENCY ACCURACY: Calibration $\pm 1 \%$ from 1 cps to $10 \mathrm{kc}, \pm 3 \%$ over the entire frequency range.
SINE WAVE OUTPUT:
Voltage: 30 volts peak to peak maximum, adjustable continuously.
Power: Maximum
Amplifude: Varies less than $\pm 0.25 \mathrm{db}$ over the frequency range from 0.1 cps to 10 kc , less than $\pm 1 \mathrm{db}$ over the entire frequency range.
Distorfion: Less than 0.1% from 1 cps to 10 kc , less than 1% over the entire frequency range.
Hum: Less than 0.1% at any output level setting.
SQUARE WAVE OUTPUT: 10 volts peak to peak.
INPUT POWER: $105-125$ volts, $50-60 \mathrm{cps}, 120$ watts.
price $\mathbf{\$ 4 5 0}_{\text {net f.o.b. Camlridge, Mass. }}$

krohn-hite

instrument company

580 Massachusetts Ave., Dept. E, Cambridge 39, Mass., U.S.A.

Miniaturize your product with Tantalytic capacitors

On low-voltage d-c applications, where your equipment miniaturization calls for both small size and superior performance, General Electric Tantalytic capacitors offer a host of advantages. These foil-type, tantalumelectrode, electrolytic capacitors have greater capacitance per unit volume and far longer shelf life than aluminum-electrolytic types. Long operating life, too, is provided by their inherently inert characteristics, and the use of non-corrosive, chemically neutral electrolyte. And leakage current is low-less than 10 microamps per microfarad.

Built to withstand severe shock, these lightweight units operate over a wide temperature range (-55 C to +85 C and higher). Hermetic sealing protects them against leakage and contamination. Available in polar and non-polar construction, in ratings from 175 muf at 5 volts d-c to 12 muf at 150 volts d-c. For complete description of the line, plus application information, check Bulletins GEC-808 and GER-451 in the coupon on the next page.

Now-greater flexibility in voltage stabilizers

Fluctuating voltage is serious on sensitive electronic equipment designed for best performance at a specified voltage. Now, to help you get rid of voltage ups and downs, G.E. offers a new 15 - to 5000 -va line of automatic voltage stabilizers that gives you greater design flexibility at no increase in price, plus weight reduction in larger sizes. New output ratings of $1000,2000,3000$, and 5000 volt-amperes with 115 and 230 volts on both input and output-permit operation in any combination of these input and output voltages.

Fluctuations between 95 and 130 volts, or 190 and 260 volts, are corrected to a stable 115 or 230 volts within ± 1 percent-and in less than two cycles. Single-core construction permits input circuit to be completely isolated from output circuit. Installation is easy : connect one set of terminals for supply and another set for the load. With no moving parts, maintenance is virtually eliminated. See Bulletin GEA5754 for complete description.
 *Trada-mark of Gonoral Eloctric Compung.

Prices reduced as much as $\mathbf{3 5 \%}$ on light, flexible delay line

Increased use of delay line in special circuits for electronic equipment now enables General Electric to massproduce it, at savings to you of up to 35 percent. Originally developed to provide delay with minimum distortion in radar equipment, G-E delay line now has many commercial uses such as color television and electronic calculators.
Bulk line is available in lengths of 100 feet or less to be cut as desired. Time delay is approximately $1 / 2$ nicrosecond per foot for 1100 -ohm line, $1 / 4$ micro second per foot for 400 -ohm line. Line is light in weight, $1 / 4$-inch in diameter, and easily bent into a 4 -inch diameter coil. Operates between -50 C and 100 C . Bulletin GEC-459.

Size 00 relays cut inventcries

Many of your control-circuit needs can be met with compact G-E size 00 contactors and relays-available in any combination of normally open and normally closed contacts from 2 to 8 poles. Since contact tips are easily changed from NO to NC without extra parts, your "specials" inventory is cut. Easily accessible terminals take up to 3 wires, speed connections. For complete details, see your General Electric apparatus sales representative.

Reliable d-c to a-c amplification
Designed mainly for 400 -cycle excitation, the General Electric second-harmonic converter is a magnetic-amplifier type unit that converts low-level d-c error signals (such as thermocouple output) to 800 -cycle a-c output. Static operation and hermetic sealing make it reliable under extreme conditions of acceleration, temperature, and pressure -important in aircraft applications. Length is $3 \frac{1}{16}$ in., tube diameter $11 / 4 \mathrm{in}$., weight, 0.2 lb . See Bulletin GEC-832.

Now-sealed-relay line expanded
G-E hermetically sealed relays for 28 volt circuits are now available in these forms: DPDT, 3PDT, 4PDT, 6PNOwith coil ratings up to 10,000 ohms. Certain other configurations available on request. All have extra-high tip pressures, yet don't exceed Air Force-Navy size and weight specs. They withstand all outside atmospheric conditions, 50 g operational shocks, and instantaneous voltage surges up to 1500 volts. Bulletin GEA-5729.

From a modest beginning five years ago, Communication Accessories Company has grown to the largest exclusive toroid coil winding producer in the U.S. today. Why? We like to think that this growth is due to the thorough, careful handling we apply to each coil... and because of the particular skill of our people. Whatever the reason, we'll continue - doing the best we know how - thankful for the trust that important companies have placed in us.
write for this catalog \longrightarrow

COMMUNICATION ACCESSORIES Company

- HICKMAN MILLS, MISSOURI

ERIE CERAMICONS
 © Moet Eveny Donand for Reliability, Pofommane, Economy

ERIE TUBULAR CERAMICONS*

Temperature Compensating Molded Insulated Ceramicons $0.5 \mathrm{MMF}-550 \mathrm{MMF}$
Temperature Compensating Dipped Insulated Ceramicons 0.5 MMF- 1,800 MMF

Temperature Compensating Non-Insulated Ceramicons 0.5 MMF-1,800 MMF

ERIE CERAMICON TRIMMERS

1.5-7 MMF

5-25 MMF 65-95 MMF
150-190 MMF

Style TS2A
1.5-7 MMF 5-20 MMF

3-12 MMF 4-30 MMF
3-13 MMF 7-45 MMF

vernmer

\qquad

Style 535 0.7-3.0 MMF

ERIE FEED-THRU CERAMICONS

ERIE DISC CERAMICONS

Temperature Compensating, By-Passing, and High Voltage

Up to . 01 MFD

Style
812

ERIE PRINTED CIRCUITS

ERIE STAND-OFF CERAMICONS

5 MMF-5,000 MMF
ERIE HIGH VOLTAGE CERAMICONS

ERIE BUTTON*'MICA CAPACITORS.

The Oscilloscope that portrays the Pulse by

Investigations of complex waves take great strides forward when either a Waterman SAR or LAB PULSESCOPE is employed. Their compactness, portability and precision have established a new high in pulse measurement instruments for all electronic work. Each PULSESCOPE has internally generated markers which are synchronized with the sweep with the basic difference that the sweep in the LAB PULSESCOPE initiates the markers while in the SAR PULSESCOPE it is the crystal controlled markers which initiate the sweep. Power supply requirements of 50 to 1000 c.p.s. at 115 Volts permits operation almost anywhere.

The SAR PULSESCOPE, model S-4-A, is characterized by a pulse rise time of 0.035 microseconds thru a video amplifier with a sensitivity of 0.5 Volts p to $p / i n c h$. A vertical delay of 0.55 microseconds is optional. A and S sweeps covering a continuous range from 1.2 to 12,000 microseconds are augmented by R sweeps, which in turn are variable from 2.4 to 24 microseconds. A directly calibrated dial permits R sweep delay readings from 3 to 10,000 microseconds.

The LAB PULSESCOPE, model S-5-A, has equivalent rise time of 0.035 microseconds, a fixed 0.55 microseconds vertical delay and 0.1 Volts p to $p /$ inch sensitivity, so arranged as to assure portrayal of leading edges on displayed signals. A precision calibrated voltage is provided as well as an optional sweep expansion of 10 to 1. A built-in trigger generator voltage is available for synchronizing any associated test equipment.

WATERMAN RAYONIC ${ }_{\circledR}$ CATHODE RAY TUBE DEVELOPMENTS
Since the introduction of the Waterman RAYONIC 3MP1 for miniaturized oscilloscopes, scientists in our laboratories have diligently searched for more perfect answers to present day cathode ray tube problems. Such research led to the introduction of the revolutionary new 3 SP and 3 XP type cathode ray tübes. These tubes were designed with multi-trace oscilloscopy in mind. Every avenue of practical design was explored to produce tubes with bright, sharp traces and high deflection sensitivity at medium anode potentials.

TUBE	PHYSICAL DATA			TYPICAL VOLTAGES				DEFLECTION FACTOR V/IN.		MAX. VOLTS		
	Face	Length	Base	Anode \# 3	Anode \# 2	Anode \# 1	Grid \# 1	D1 io D2	D3 to D4	Anode \# 3	Anode \# 2	
3JP	3 inch Round	10 inches	Medium Diheptal 12 Pin	3000	1500	300 to 515	-22.5 $10-67.5$	127 to 173	94 to 128	4000	2000	
				4000	2000	400 to 690	-30 to-90	170 to 230	125 to 170			
3 MP	3 inch Round	8 inches	Small Duodecal 12 Pin		1000	200 to 350	0 to-68	14010190	130 to 180	2500		
					2000	400 to 700	0 to - 126	280 to 380	260 to 360			
3SP	$\begin{array}{r} 11 / 2 \times 3 \\ \text { inches } \end{array}$	9.12 inches	Small Duodecal 12 Pin		1000	165 to 310	-28.5 to -67.5	73 to 99	52 to 70	2750		
					2000	330 to 620	-58 to -135	146 to 198	104 to 140			
3XP	$\begin{aligned} & 11 / 2 \times 3 \\ & \text { inches } \end{aligned}$	8.88 inches	Loctal		2000	40010690	-22.5 to -67.5	681092	25 to 35		2750	

Visit Our Booth 1-414, IRE SHOW, MARCH 23rd to 26th

POCKETSCOPE
 The Pocket Oscilloscope by

WIDE
TWIN

light... compact ... accurate... portable

The HIGH, WIDE and TWIN POCKETSCOPES have become the "triple threat" of the oscilloscope industry. Their small size, light weight and incredible performance, has skyrocketed this team of truly portable instruments into unparalleled prominence. Each oscilloscope features DC coupled amplifiers in both its vertical and horizontal channels. The HIGH GAIN, S-14-A POCKETSCOPE, has a vertical sensitivity of 10 millivolts rms/inch, and a frequency response within -2 db from DC to 200 KC , while the WIDE BAND S-14-B POCKETSCOPE is characterized by frequency response within -2 db from DC to 700 KC and a sensitivity of 50 millivolts $\mathrm{rms} /$ inch.

The TWIN POCKETSCOPE is essentially two HIGH GAIN POCKETSCOPES with individual cathode ray tubes, amplifiers, controls, but a common sweep generator. All these are endowed with many identical characteristics. Their sweep generators can be operated as triggered or repetitive over a frequency range from 0.5 cycles to 50 KC , with synchronization polarity optional. Return traces are blanked and provisions are made for modulating the intensity in each cathode ray tube.
Laboratory quality has not been sacrificed in order to accomplish portability and ruggedness. Investigate the many advantages of Waterman POCKETSCOPES.

The INDUSTRIAL POCKETSCOPE, model S.11-A, has become America's most popular DC coupled oscilloscope because of its small size, light weight, and unique flexibility. This compact instrument has identical vertical and horizontal amplifiers which permit the observation of low frequency repetitive phenomena, while simultaneously eliminating undesirable trace bounce. Each amplifier sensitivity is 0.1 Volt $\mathrm{mms} / \mathrm{inch}$. The frequency responses are likewise identical, within -2 db from DC to 200 KC .
Discover for yourself the amazing utility of this tiny work-horse of industrial electronics.

POCKETSCOPE

S-12-8

S-11-A WATERNAL PRODUCTS CO, IIC.

Write for your
complinentary subscription of ""POCKETSCOOP"

PHILADELPHIA 25, PENNA., U.S.A.
CABLE ADDRESS, POKETSCOPE, PHILA.

Why the Mallory
 UHF Tuner Should be Part of Your New TV Plans

The Mallory UHF Tuner can be the complete answer to your UllF tuning problems... whether you build converters, all-channel receivers, or both. It consists of three sections of variable inductance. It covers the range between 470 and 890 megacycles with approximately 2 mf of shunt capacity. Selectivity is excellent over the entire band.

No matter how you decide to handle the problem of UHF reception, it will pay you to investigate the various possibilities offered by the Mallory UHF 'Tuner. One of the following combinations is the answer to gour requirements...

FOR CONVERTERS...

- Mallory UHF Tuning element for manufaclurers building their own converters.
- Mallory UHF Converter chassis . . ready to mount in your cabinet.
- Complete Mallory UHF Converter with your brand label.

FOR RECEIVERS

UHF Tuners, for use in combination with VIIF tumers, are available in 3 different designs . . each in 3 diflerent stages of assemhly: (1) To convert UHF signals to 82 megacycles on channels 5 or 6 .
(2) 'To convert UHF signals to 130 megacycles. (3) For operation into a 4I megacycle IF amplifier.

- Mallory UHF tuning element.
- Mallory RF assemblies. This inchules the tuner, oscillator, tube, crystal and associated circuitry.
- Mallory RF assemblies with an IF amplifier operating at conversion frequency,

Get in touch with us regarding the Mallory UHF Tuner. We will be glad to work with you . . . see how these various possibilities can be fitted into your plans for UHF television. Write today.

Television Tuners, Special Switches, Controls and Resistors

cross
 TALK

- RADIATION . . . Television receiver design engineers have embarked upon a program intended to reduce radiation which interferes with other sets and occasionally with other services.

The program will cost manufacturers a few pennies but should be supported on several counts. Radiation reduces the service available to the industry's own customers, and can be severe at ultra high frequencies. Voluntary reduction of radiation would avoid any possibility of direct or indirect dictation by the Federal Communications Commission. And if more uniform use of a standard intermediate frequency is involved in the program the industry will have valid grounds upon which to suggest that this frequency should be cleared.

- MANPOWER . . . Engineering manpower is still critically short. Part of this shortage is due to the fact that many men are engaged in the design of military electronic equipment while many others are supporting the economy by turning out a more or less normal number of commercial items. The twoway strain is unique in the history of the country.

Industrial growth is today closely linked to technological advances. Even if there were no need to devote so much engineer-
ing effort to strictly military projects it is unlikely that the number of graduates turned out by accredited schools would prove adequate in the decade ahead. That's why a grassroots campaign has been started to interest young men in engineering at the firstyear highschool level; proficiency in math at very least is necessary if these roung men are to meet college entrance requirements.

- WELDING . . . Tube elements have been welded for vears, and now we hear that several electronic equipment manufacturers are considering welded wiring.

Among the possible advantages of welded wiring are virtual elimination of joint resistance, comparative freedom from broken-connection troubles and conservation of materials. Among the possible disadvantages are the necessity for bringing the work to the welder, comparative inflexibility of the tool with respect to work shapes and sizes and the necessity for cutting out failed components in the field. The latter is no great handicap in plug-in subassemblies intended to be expendable, where welded wiring may find its first commercial application.

- TRANSISTORS . . . In line with its usual tendency to put new eggs in the basket intended for the big-
gest customer, the electronics industry has put its first commercial transistors largely into communications devices.

As the art progresses it may be that there will be a shift in emphasis toward industrial and other non-communications devices because, among other reasons, noise is less of a factor in such applications. Here then is one possible point of cleavage in the market for tubes and transistors, and one that may leave each a pretty big basket more or less its own.

While we are on the subject of transistors we are reminded that a friend of ours, bothered by $p n p$ and $n p n$ terminology, calls the first Penelope and the second Neptune. He points out, further, that Neptune is often represented by a trident (three terminals) and that under Penelope the dictionary quotes "every night unraveled what she had woven by day"... an experience not entirely unlike that some engineers are having with transistor circuitry.

- TAGGED . . . On election day a young lady borrowed from the actuarial department of an insurance company operated a calculating machine called "Monrobot" in a network studio. Her first name happened to be Marilyn, so now she is frequently called Marilyn Monrobot.

TRANSISTORS

Abstract

Basic concepts of electron flow in semiconductors are explained, need for revised thinking to understand transistor action is outlined, and concept of hole introduced. Principle of current amplification in point-contact transistor is described

By ABRAHAM COBLENZ and HARRY L. OWENS

Signal Corps Engineering Laboratories
Fort Monmouth, New Jersey

THe accompanying photograph shows a number of experimental transistors of the pointcontact and junction types. These units occupy about one thousandth of the volume, represent on hundredth of the weight, and require about one tenth the power of the average type of radio receiving tube, yet they will perform many of the functions of vacuum tubes.

Transistors are capable of being used in circuits to provide amplification, oscillation, pulse generation, pulse counting, pulse storage, gating, and pulse delay, coincidence gates, and so on. They are more rugged than vacuum tubes in general and their life has been said to be about three times the normal life of a vacuum tube; the expected life has been extrapolated to 70,000 hours.

The transistor was invented in 1948 and at that time the total investment of private and government funds in transistor work, as such,
was limited to perhaps five-figure numbers. Increasing confidence in the potential utility of the transistor has resulted in both acceleration and expansion of the transistor development activity. The very large investments in transistors by tube manufacturers indicates that the long-term outlook for this new circuit element is sound and inviting.

The youthfulness of the field and the extraordinary promise it holds forth to capable technicians in the field of electronics and electricity render it extremely fruitful for the development of new and ingenious circuit and system applications.

In this virgin and unexplored field the need for electronic engineers and technicians specially trained in the transistor art is urgent and continually increasing. This series of articles should serve to initiate technical people with varied backgrounds in electronics into this fascinating subject.

A FRESH START

This article is the first in a series on transistors which will be published in ELECTRONICS to enable engineers, technicians, amateurs and students to understand clearly the operation of these important circuit components.
The articles have been specially designed to provide theoretical, practical and working knowledge of the properties and applications of transistors, especially for those readers who do not have an extensive background in advanced mathematics and physics. Many readers will find these lessons valuable preparation for more advanced study of transistor electronics

Transistor theory represents a radical departure from vacuumtube theory. The reader must be prepared to give careful thought to certain concepts of physics which are not difficult but are noticeably different from the principles with which he has become acquainted in his study of vacuum-tube theory and electronics. A scientific openmindedness and a willingness to accept ideas that may appear to contravene long-established or longaccepted concepts will be found not only desirable but almost essential.

Preliminary Fundamentals

The flow of electrons accounts for both alternating and direct current. The theoretical explanation can be found in virtually all text books on a-c and d-c theory, electronics, and electrical phenomena in general.

A close scrutiny of the supporting evidence, however, reveals that electron flow is simply a convenient theory used to explain the phenomenon known as electric current. No one has ever crept into a conductor or electrolyte and witnessed the actual flow of electrons.

The theoretical explanation is the result of indirect experimental evidence and, while this experimental evidence is sound and will withstand very critical examination, the conclusions based upon it must be viewed as an inference or a hypothesis and not as a law of nature.

The fact that electron flow, as an

Theory and Application

explanation for electric current, is only a theory is strikingly demonstrated by experimental observations that cannot be explained by the use of electron theory alone. Just such a case exists in the field of semiconductors-materials that exhibit conducting properties in a range between insulators and conductors. A particularly important phenomenon in transitor action is observed that does not lend itself to a direct explanation by means of electron theory alone.

Semiconductor Conduction

Consider the arrangement shown in Fig. 1. A small block of a semiconductor material such as germani um or silicon is placed in electrical contact with a conducting metal which is then grounded, as shown at B of the figure. On the top of the semiconductor block, spaced a few thousandths of an inch apart. are two cat whiskers such as were common in connection with the catwhisker galena crystals used as detectors in the early days of radio.

The cat whisker marked C is negative with respect to the semiconductor block by virtue of the battery E_{c} with its negative terminal connected to the cat whisker. A milliammeter is shown in series with this connection and the current indicated will be designated as I_{c}. The circuit indicated may be considered as a crystal diode biased in the reverse or high-resistance direction. If the applied voltage E is approximately 10 volts, I_{c} may perhaps be of the order of 1 ma . (The figures used here are not intended to be significant; only orders of magnitude are important.)

Analyzing the observed data from the standpoint of electron theory one would say simply that electrons flow from the cat whisker to the base through the semiconductor material under the influence of the applied potential E_{c}, and it is the flow of these electrons which gives the meter indication I_{c}. The dashed
lines from C to B in the figure show the approximate flow or stream lines of electrons within the semiconductor block.

At the cat whisker marked E the polarity of the applied potential E_{e} is opposite to that at C; the positive terminal of the battery is connected to the cat whisker. A milliammeter in series with this circuit, if switch S_{1} were closed, would then indicate the current in the $E-B$ circuit, and since the diode on the E side is connected in the forward or low-resistance direction, a very small
potential at E_{e} when the switch is closed, say of the order of 0.5 volt, will cause a current flow of the order of perhaps 1 ma .

If the reader will, for a moment, imagine the C circuit open and S_{1} closed then, as before, I_{e} indicates the current flowing in the $E-B$ circuit due to electron flow from B to E. Again, as before, dashed lines indicate the stream lines of electrons in the $E-B$ circuit within the semiconductor material.

Now consider the $C-B$ circuit closed as shown and S_{1} open. As

Collection of typical junction and point contact transistors

FIG. 1-Study of current flow in external circuit shown yields paradoxical phenomena that cannot be explained on basis of electron flow alone. A new concept, that of holes, must be adopted to understand transistor action

FIG. 2 -Smeared drawing of atom shows orbital electrons surrounding nucleus. Net charge of such an atom is zero

FIG. 3-Removal of one electron from neutral atom results in net positive charge due to hole (missing electron) in vicinity of nucleus
mentioned above, under the specified conditions, I_{c} will be about 1 ma.

When S_{1} is closed an extraordinary phenomenon, loosely described as transitor action, is observed-the current in the C - B circuit increases markedly and may, in a typical case, reach 2 or 3 ma . Typical transistors yield current amplifications of this magnitude but exceptional units have produced current gains as great as one hundred. In any case, a significant and highly important current amplification is observed.

It is instructive, following the remarks made at the beginning of this article, to attempt to explain the observed data by means of electron theory alone.

This is no simple undertaking. If the reader will carefully trace polarities around the circuit he will observe that the E terminal is actually positive with respect to the C terminal. One might then expect that electron flow within the semiconductor block would be from C to E, making less electrons available to contribute to the conduction process from C to B and therefore one might, at a first glance, expect I_{0} to decrease.

If fewer electrons were available for the conduction process the current would be smaller and the observed increase in I_{c} is certainly perplexing. Extraordinary and unconventional variations would be required in electron theory to ex-
plain how the two divergent streams of electrons in the material can cause an interaction which will lead to the current amplification observed, particularly in view of the electric field which tends to draw electrons from the $C-B$ stream.

It is virtually impossible to explain the phenomenon delineated by means of the electron theory alone and certain reinforcing or auxiliary concepts must be introduced to complement electron theory to explain properly this transistor action. The phenomena observed in semiconductors that lead to effects such as the one described do not require a modification of electron theory, but they imperatively demand an important additional concept.

Added Concept

In practice, a body of facts and experimental data accumulate and thereafter a hypothesis may be proposed which seeks to explain all the data. This is the normal progress of the scientific method.

Electron theory explains a host of phenomena already well known but does not preclude the possibility that a modification of electron theory will not only equally well explain the great number of experiments in $\mathrm{a}-\mathrm{c}$ and $\mathrm{d}-\mathrm{c}$ circuits but will, in addition, explain transistor action in a semiconductor. We must next examine the external evidence upon which we base our knowledge of the direction of flow of current
and the nature of the current carriers.

Electron Flow

Our knowledge of the direction of electric current flow is most frequently based on the direction of the magnetic field associated with electric current. The left-hand rule for electron flow states that if the left hand grasps a conductor so that the fingers point in the direction of the lines of flux, then the thumb will point in the direction of electron flow. From this rule it may be shown that if the electrons in a wire flow in a loop clockwise, in the plane of the paper the reader now sees, the north pole would be above the paper toward the reader and the south pole under the paper.

About 1889 a well known physicist, H. A. Rowland, performed a simple but extremely important experiment. In equally-spaced sectors of an ebonite disk were placed negative charges obtained by the timehonored method of rubbing cat's fur against a glass rod. The sectors were separated by raised portions so that each sector contained its own set of charges. This ebonite disk was then rotated at high speed and it was observed that a magnetic field was present identical to what would have been expected if a flow of electrons had occurred in a loop of wire in the same direction of rotation. If the plane of the disk were parallel to the plane of the paper then the north pole for clock-
wise rotation of the disk would be above the paper exactly as in the case discussed above.

When these negative charges were removed and replaced by positive charges and the ebonite disk then rotated counterclockuise the same direction of magnetic field was observed, north toward the reader if the disk is again considered parallel to the plane of the paper.

The significance of this experiment must not be overlooked. Our ideas about the direction of electric current are usually based on the direction of the resultant magnetic field. We assume that electric current is flowing from left to right because we can explain the resulting magnetic field on the grounds that negatively-charged electrons are flowing from left to right. The phenomenon we are observing, namely, the magnetic field, could also be caused by positive charges moving from right to left.

Rowland's classical experiment indicates that the external or phenomenological manifestations are the same. When we say electric current we never, unless by special training, think of the motion of positive charges, and in this way we subconsciously exclude the possibility that the carriers may be positive. Once we consider this possibility then our habit of associating electric current with the flow of electrons leads to this anomalous situation about the direction of flow.

In the transistor explanations that are to follow, it is essential that the reader bear in mind the possibility that electric current may be due to the flow of positive charges as well as to negative charges. The possibility that these two processes may be simultaneously active in an electronic semiconductor material is fundamental to the theory of transistor action.

Holes

Modern theory of the structure of matter pictures the atom as containing a core or nucleus with electrons outside of the nucleus, rotating about it. This subject will be covered fully in a subsequent article of this series. It may be said here, that the present picture of what the electrons look like as
they rotate about the nucleus is given by Fig. 2. The electrons are pictured as a sort of smeared out or hazy region about the nucleus as the figure shows. For purposes of this introductory discussion, let us grant that the cloud about the nucleus is due to electrons.

Hole Formation

If we were to remove one electron by some means, a net positive charge will be left since the atom with its normal complement of electrons is electrically neutral or has a net zero charge. By removing an electron from the picture presented in Fig. 2, we have created in the atom a sort of rarified area where an electron is not particularly likely to be found. This area looks like a hole, as illustrated in Fig. 3. A positive charge is associated with the hole.

The picture presented is not an entirely accurate description of a hole, and a more satisfactory definition of a hole will be given later. The rather crude picture is intended only for the purpose of introducing this new concept which Is essential in the analysis of transistor action. (Having established that electric current can be carried by positive charges, and considering a net positive charge as a hole, it follows that electric current can be carried by holes.) The physicist uses the word hole in transistor theory a trifle differently from its usage in normal everyday conversation.

Because this concept of holes is so essential to the study of transistors, a few more ideas regarding
its nature may be in order. The concept of a hole came into existence in the study of the physics of solids because it was found to be a convenient physical-mathematical abstraction for specifying the behavior of atomic structures in the solid. By endowing the hole with a definite mass, a definite positive charge, a definite velocity and an associated energy-in short, by treating it as a true particle, very convenient mathematical relations are obtained and much useful and practical information about specific materials, particularly the semiconductors, can also be obtained.

It can be shown that holes are acted upon by electric and magnetic fields in exactly the way one would expect a particle with the mass of an electron and a positive charge to react under equal conditions. A particularly important aspect of hole behavior is its attraction by a point of negative potential. The reader will find it convenient in all future thinking about holes to consider them equivalent to positively charged electrons, that is, particles with mass equal to the mass of the electron and charge equal to that of the electron but of opposite sign. The more accurate definition of a hole to be given later will not conflict with this simple picture.

Hole Effect

Having introduced these preliminary concepts,-let us return to the laboratory-observed phenomenon discussed in connection with Fig. 1. In Fig. 4 is shown essentially the same arrangement electrically, as

THE FRONT COVER

PROGRESS in transistor production methods is illustrated in this month's cover. Junction transistors produced in Raytheon's Newton, Massachusetts plant are subjected to 12 hour aging periods prior to shipment. The CK 721 transistors being inserted in the aging racks have an average power gain of 38 db when used in a grounded-emitter circuit with a collector voltage of 1.5 volts, collector current of 500 ua and a base current of $6 \mu \mathrm{a}$.

FIG. 4-Drawing shows simplified essentials of transistor action (when S_{1} is closed) for point contact transistor. Plus signs indicate positively-charged holes that migrate from emitter toward collector
in Fig. 1. Let us try now to see how the introduction of the concept of holes can lead to a plausible explanation for the phenomenon of current amplification.

Current Amplification

As electrons leave the germanium block at point E due to battery E_{e}, holes are created in the material in consonance with the elementary principles just discussed, wherein electrons removed by any means from their atomic location give rise to holes as shown in Fig. 3. Under the influence of the electric field (note that point C is negative with respect to point E) the holes drift toward the C side of the circuit.

We have already seen that ordinarily the current I_{c} is small because the number of electrons available for conduction is inadequate to support a larger flow.

If the reader will recall his experience with the behavior of a negative space charge from vacuumtube theory, he will realize that the presence of a positive space charge due to holes between C and B can create a strong attracting region for electrons in this space. Electrons from neighboring sites are thus attracted into the $C-B$ region and add to the available electrons for conduction.

The result is a circuit which possesses lower resistance due to the abundance of electrons. The evidence that the circuit has lower resistance is that current I_{c} will increase when S_{1} is closed.

This is a rather crude explanation of what happens and later a more accurate and sophisticated explanation will be presented. The
introduction of the additional concept of holes assists in the explanation of transistor action involving current amplification. Before introduction of the concept of holes no satisfactory explanation for transistor action was apparent.

It must not be inferred, merely because this is an elementary explanation, that the hypothesis presented here regarding the motion of holes is merely a guess. There is a good and sound body of evidence to support this hypothesis and a particularly interesting experiment along these lines will be described.

In transistor pariance, the cat whisker at point C is known as a collector and the cat whisker at point E is known as the emitter.

Assume that the physical position of the emitter is fixed and that the spacing between emitter and collector is varied by moving the collector whisker. It has been mentioned in the description of a hole that it can be acted upon by a magnetic field. In addition, holes do not actually flow from the emitter to the collector in perfectly straight lines. The motion of the holes toward the collector is due to the force of the electric field plus an ordinary diffusion action; the electrons traverse curved paths from emitter to collector, possibly approximating arcs of circles.

Hole Characteristics

If a magnetic field of proper direction is applied across the slab, the diffusion of the holes into the slab is restricted and the current of holes can be made to flow more nearly in a straight line. As the holes move from emitter to collector
many of them collide with an electron associated with an atom, recombine and disappear. This recombination is always going on and is one of the important phenomena in transistor action. For this first article it is sufficient to point out that unlike the electron, the hole has a finite life. Typical values of average hole lifetime for singlecrystal germanium lie in the range from a few microseconds to several thousand microseconds. The velocity of a hole is also a fixed quantity. The velocity of the hole multiplied by its lifetime will determine the distance the hole will travel before recombination.

Since a straight line is the shortest distance between two points it is clear that holes that follow a straight line from emitter to collector will more nearly complete the trip before disappearing due to recombination than those that travel in a curved path. The magnetic field, by forcing the holes into the upper portion of the block, compels them to follow paths which are more nearly straight lines.
Experimentally it is observed that transistor action is obtainable at the collector in the presence of a magnetic field when the collector is physically spaced further away from the emitter than without the magnetic field. This experimental fact tends to strengthen the belief that positive particles of some kind flow from emitter to collector in the case of the arrangement shown in Fig. 1.

Summarizing the major points of this first article the reader is urged to retain the following essential points:
(1) Transistor action in units of the type illustrated in Fig. 1 is characterized by current amplification.
(2) It is necessary to introduce the concept of holes to explain transistor action.
(3) For practical purposes a hole may be considered to be a positivelycharged particle with a positive mass.
(4) In the study of transistors the reader must be prepared to consider and master new concepts which may be radically different from many of the scientific principles he has studied previously.

Typical autopilot for fast jet plane has aileron, elevalor, and rud. der motor controls

Control weighs $2^{1 / 4} \mathrm{lbs}$, compared to 6 lbs or more for previous model. Built on plug-in chassis, unit reduces servicing problems

Free-Wheeling Thyratrons Cut Autopilot Weight

Thyratron motor controls operate through full cycle, but need no heavy transformers. In spite of long cables, signals provide fast, accurate positioning response of control surfaces. Full control is gained with 0.1 -volt in-phase signal

Automatic pilots fly planes on set courses by positioning the control surfaces in accordance with gyro instructions and signals from instruments measuring the control surface positions. These signals position the surfaces through electric motors, the motor controls telling the motors which way to turn and how fast, as the instruments instruct.

The motor control's task, then, is to supply power to the electric motors which move the control surfaces of the airplane. It must also control the amount and direction of the power according to the deviation of the airplane from the de-

By CHARLES G. YATES
Aeronautics and Ordnance Div. General Electric Co. Sohenectady, N. Y.

sired direction of flight and altitude. Since there are three motor controls per autopilot-rudder, aileron, and elevator-their weight is an important consideration.

Operationally, the motor control must suit these requirements: It must have sufficient power output to drive the airplane controls, normally about 10 watts. The motor and motor control must be able to move the control surface rapidly. In servomechanism terms, the motor
and motor control must respond accurately to 2.5 cps to give stable operation on the latest model jet fighters. Finally, the motor control must operate satisfactorily through a wide band of variation in the temperature, supply frequency and voltage ranges.

The Basic Circuit

The main power amplification in the motor control is supplied by thyratrons, operating from a 400 cps power supply and driving a split-field series motor. To avoid using a transformer, the thyratrons operate half wave directly from the a-c line. The characteristics of
the split-field motor permit a simplified method of control (Fig. 1). For each direction of rotation, the corresponding thyratron is fired, controlling the current through the armature and half the motor field.

To more than double the current through the motor, so-called "freewheeling" thyratrons are added to the circuit (Fig. 2). These thyratrons fire automatically at the proper time, requiring no complication of the control circuit. The circuit is shown in Fig. 2 (top). As the plate of the upper thyratron is made positive by the a-c supply, the tube conducts and current flows through the motor. The IR drop
in the grid circuit. For ease of explanation, consider the firing tube circuit first without the capacitor across the load resistor. The resulting waveform is shown as a dotted line in the diagram. Since the power supply voltage is a sine wave, the output voltage waveform is also approximately a sine wave. Diode action of the firing tube permits conduction during one half cycle only. It is possible to vary the peak of the resultant voltage by control of the firing tube grid (either by d-c or a-c voltage).
When the capacitor is added, the saw-tooth waveform shown in the solid line is produced. The ampli-
except that power for the tube comes from an excitation transformer connected to the tube plate, rather than coming directly from the a-c line. This allows the cathode side of the load resistor to remain at a-c ground potential with respect to the next stage.

A little more gain was necessary than was available in the discriminator tube, so the input transformer was added to get a three-toone step up. As all these circuits are double ended, the input transformer also serves as a phase inverter for input to both discriminator tubes.

The operation of the discrim-

FIG. I-Basic control operates thyra. trons half wave direct from a-c line using split-field series motor for simplified control

FIG. 2 -Adding "free-wheeling" thyratrons doubles the current through the motor, gives full-cycle output, for autopilot controls

FIG. 3-RC network in grid circuit generates saw-tooth wave whose amplitude can be varied to control firing time of thyratron
voltage polarities across the armature and field of the motor are shown. The free-wheeling thyratron does not fire because of the negative potential on its plate. When polarity reverses (Fig. 2, bottom), the main thyratron cuts off. The collapsing magnetic field in the motor winding tends to act like a generator to keep the current flowing. The polarity across the motor and therefore across the freewheeling tube reverses, causing this tube to fire and conduction to continue in the same direction as before. Therefore, current flows in the motor in the same direction throughout a full cycle, just as in a full-wave thyratron circuit but without a transformer or complicated control circuit.

Controlling The Output

To control the firing of the thyratrons, a special circuit (Fig. 3) generates a saw-tooth waveform
tude of this saw-tooth may be varied by changing the input voltage to the firing tube grid. If the amplitude of the saw-tooth waveform can be controlled up and down, then the point of intersection of the sawtooth and the thyratron critical grid voltage may be moved back and forth and the conduction of the thyratron controlled smoothly from no conduction to full conduction-
If there were sufficient gain from this input point to the motor, the autopilot signal could be brought directly to this firing tube grid. However, additional gain is needed so another tube must be added to the circuit.
A discriminator is necessary to detect the polarity and amplitude of the alternating voltage. Both discrimination and gain can be obtained with a single tube, as shown in Fig. 4. Operation of the discriminator is similar to that of the firing tube previously explained,
inator is as follows: The signal input to the tube grid is a-c. Then with a-c on both the grid and the plate, the tube essentially conducts only when both grid and plate are positive on the same half cycle. If both are positive, then a rectified current flows through the load resistor. In the firing tube only the saw tooth or a-c portion of this wave was used. Actually, the wave also contains a large d-c component which is important in the control of the next tube, the firing tube. (The amplitude of both the $d-c$ and a-c portions depend on the amount of capacitance across the load resistance.)

Therefore, if the input is out of phase with the excitation to the discriminator tube, the tube will never supply control to the firing tube regardless of the amplitude of the input voltage. If the input is in phase, the discriminator will supply a d-c control voltage and the
amplitude of this voltage may be adjusted by amplitude control of the input voltage.

Quadrature Voltage

The circuit connected to the input transformer in Fig. 4 is called a quadrature eliminator. Quadrature voltage is objectionable in most high-performance motor controls and especially in this one, since it decreases the overall gain of the control to the point where performance is unsatisfactory. Quadrature voltage occurs in the autopilot signal circuit since a number of selsyn signals are added in series. It is further generated by various noise

FIG. 4-Discriminator circuit gives added gain and eliminates most of out-of-phase or quadrature component of signal voltage
and stray capacitance effects of the long signal leads from remote autopilot components. In practice, some of the electrical cables are more than 100 ft long.

The quadrature circuit for this control consists of a transformer, a resistor, and a capacitor in series with the output transformer and the cathode of the tube. The quadrature rejector cuts down the sampling or detection time of the discriminator to a very small range, when the in-phase or useful signal voltage is at its peak. This is also the interval of minimum quadrature voltage during the a-c cycle. Effectively, the resistor and capacitor are a grid-leak for biasing the tube. The excitation transformer injects 13 volts into the grid circuit.

When the power is first turned on, even with zero signal, the tube grid momentarily draws current until the grid-leak is charged to approximately peak voltage. The average
d-c grid potential is then negative with respect to the cathode potential. The normal in-phase signal voltage adds to or subtracts from the transformer voltage, thereby controlling the discriminator tube.

Due to the peaking of the large 13 -v excitation wave, the signal has control over the discriminator tube for only about 20 degrees of the 360-degree cycle. The quadrature voltage is always going through zero during the 20 -degree sensitivity range of the discriminator (dotted wave in Fig. 4). Actually, the
critical grid line, the bias source is added to raise the entire firing tube output, permitting intersection.

The final wiring diagram is shown in Fig. 5. The unit consists of a small chassis which can be plugged in or removed from the autopilot in a few seconds. The housing of the controlled motor also contains a tachometer for aiding in the stabilization of the motor as an autopilot component.

The chassis weighs $2 \frac{1}{4} \mathrm{lb}$, while previous motor controls weigh 6 lb or more. Since each autopilot con-

FIG. 5-Complete motor control circuit is double-ended, with complete discrimnator and firing circuit for each direction of rotation. Added d-c bias source increases gain in the firing stage
in-phase and quadrature voltages are not broken up but are present as a resultant wave, but the circuit operation is the same.

The Final Circuit

The motor control is doubleended; for each direction of rotation there is a complete discriminator and firing circuit. However, one side of one circuit is common to one side of the other circuit (Fig. 5). Note there is a d-c bias source added between the firing stage and the main thyratrons, to achieve increased gain in the firing stage. The gain is increased by holding the discharge portion of the saw-tooth wave closer to a horizontal line (Fig. 3). Since the leveling of this discharge wave would preclude completely the intersection with the
tains three of these controls, the weight advantage amounts to 11 lb or more. This makes it possible to cut the weight of present autopilots to almost half that of their predecessors.

Along with weight reduction, it has been necessary to improve the response of the motor and motor control so that the autopilot response will be far ahead of the jet fighter motions. This thyratron control is capable of $50-\mathrm{cps}$ response. The motors available limit the overall response but they have been improved to follow accurately the variations of a 7 -cps signal.

As far as quadrature elimination is concerned, the motor control will remove 3 v of quadrature noise and will give full control for 0.1 v of in-phase signal.

FIG. 1 -Sliding (A), open-end, quarterwave (B), variable-capacitor tuning (C)

FIG. 2-Slotted concentric cylinders give wide-angle tuning

FIG. 3-Single-channel converter de signed for minimum noise figure

Analysis of

 UHF Tuner DesignCONSIDERATION of the fact that the combined vhf and uhf frequency span covers approximately four octaves, with added complications due to transit-time effects and the distributed nature of tuning elements, may help develop the proper perspective in relation to the overall tuner-design problem.

Techniques effective in dealing with problems peculiar to the individual bands are frequently mutually exclusive. Transmission lines, for instance, prove rather awkward at vhf while lumped constants at uhf are almost ruled out. This alone should cast some doubt on the feasibility of a successful design of a combined vhf-uhf tuner using common tubes and tuning elements. Much time elapsed before a vhf tuner having approximately uniform performance characteristics over the two vhf bands was evolved. To extend the range to 900 mc is a challenging task indeed.

If it were possible to accomplish this, one might ask whether such a course would necessarily be desirable. On the positive side of the
ledger is the feature of greater compactness, simplified mechanical design and possibly a measure of elegance as an engineering solution. But to accomplish this, continuous tuning would almost certainly have to be employed (even though some detent mechanism may be included) and sliding contacts, notoriously noisy, are a forgone conclusion.

The switch type vhf tuner has been widely accepted as more reliable and convenient. It may not be prudent to compromise these qualities because of the inclusion of uhf.

Tuning Devices

From the point of view of tuning range, the use of a sliding short would appear most attractive. There is one serious drawback, contact noise. A modification which overcomes this problem to a large extent consists of replacing the sliding metal-to-metal contact with a sufficiently large capacitance formed by inserting a dielectric between the sliding sleeve and the conductor (Fig. 1A).

An open quarter-wave line can
also serve as an effective short. Broad-band characteristics can be secured by making the surge impedance of the line section very low relative to the surge impedance of the tuned line. A range of $2: 1$ can be readily attained by adjusting the line-length to a quarter-wave at the center frequency of the band.

Since the grounded-end is movable, capacitive rather than inductive coupling is indicated if one seeks to avoid the use of a movable coupling loop. Fig. 1B shows a single-tuned transmission line employing this method of tuning.

Teflon as a dielectric spacer suggests itself in circuits in Fig. 1A and 1B. It has excellent wearing properties, low friction and low dielectric losses.

The circuit shown in Fig. 1C relies on capacitive tuning. This method is quite simple and convenient. However, the Q is generally degraded by the insertion of capacitance.

Simultaneous tuning of the inductance and capacitance of the tuned circuit will result in greater

FIG. 4-Broad-band preselector, with balanced crystal output

FIG. 5-Transmission line-tuned oscillator covers full uhf band

FIG. 6-Capacitance-tuned oscillator has limited range

With no strict rules of design procedure, judgment and discrimination must be used in selecting circuits and components to meet specific requirements economically. The fundamental aspects of uhf reception have been treated, but detailed design problems remain

By ARNOLD NEWTON

Consultant
Forest IITls. New York
range. Butterfly and semi-butterfly circuits fall into this category of tuners.

Two slotted concentric cylinders (Fig. 2) offer perhaps the simplest form of a wide-range tuning mechanism. The circuit is inherently unbalanced and some form of link coupling is frequently necessary.

The use of a single and a relatively low intermediate frequency in the uhf region places stringent requirements on the preselector design. A narrow-band, multipletuned preselector is subject to losses due to finite unloaded Q's. These losses are a function of conductor dimensions. Thus size and material cost enter the picture. In addition, as the number of tuned circuits is increased, the tracking problem becomes more difficult.

Based on the premise that in their fundamental nature the vhf and uhf bands are sufficiently distinct to warrant different techniques, a double superheterodyne system which would include a uhf converter working into the vhf
tuner is considered, for the present at least, the most practical approach. Wide variations are possible within the framework of this basic scheme.

Mixer Circuits

Currently available germanium and silicon uhf mixer crystals are similar in their essential characteristics, except that the conversion loss is lower for silicon crystals, resulting in a noise-figure improvement of 2 to 3 db .

Some uhf mixer tubes have also become available but they require higher levels of oscillator injection, calling for higher selectivity to maintain oscillator radiation at a reasonable level. In addition the noise figure of the mixer tube is generally higher. Such tubes are most useful in circuits using r-f amplification.

A simple crystal mixer is part of the circuit shown in Fig. 3. Within the normal range of crystal current due to oscillator injection ($0.3-1 \mathrm{ma}$) the variation of minimum noise figure is slight. The r-f and i-f im-
pedances vary considerably and the required input and i-f circuit adjustments vary correspondingly. It is essential therefore to maintain the injection level fixed over the band.

In most oscillators the output level falls off gradually at higher frequencies. A simple R-C equalizing network, consisting of a small coupling capacitor and a small resistor across which the output voltage is developed, is often satisfactory. In some instances the effectiveness of this scheme is reduced due to the loading effect of the mixer circuit.

Some improvement can be obtained by shunting the resistor with a circuit designed to tune out the incidental reactances at the proper frequency, usually above the maximum oscillator frequency.

The same considerations apply to balanced converters (Fig. 4) which at the expense of an additional crystal offer certain unique advantages. Being inherently balanced the circuit is more suitable for use with the standard $300-\mathrm{ohm}$ balanced
line at the input and the vhf tuner connected to the output of the balanced i-f. The amount by which oscillator radiation is reduced depends on how closely the crystals are matched with regard to their impedances and particularly their shunt capacitances and forward resistances. With a properly matched pair, the improvement can be substantial.

The balanced mixer also serves to suppress oscillator noise. The noise contributed by the oscillator is a function of its tank-circuit Q and the intermediate frequency, being higher for low circuit Q and low i-f. This factor is seldom significant at uhf and much effort to eliminate it is not warranted as a rule.

Oscillator Circuits

The choice of tubes for fundamental operation is relatively restricted. As a practical tube the 6 AF 4 is finding wide acceptance.

Because of its simplicity, the Colpitts circuit is almost universally used. Cathode and filament chokes serve to raise the r-f circuit above ground. The effect of ground impedances on oscillator operation and radiation is thus minimized.

The required tuning range to cover the full uhf band can be realized by using a variable-length transmission line as the tuning element (Fig. 5).

Capacitive tuning as employed in the circuit in Fig. 6 has a somewhat limited range and usually calls for band-switching.

Because of the relatively low oscillator power required to operate the crystal mixers, the use of second-harmonic injection is quite feasible. A circuit tuned to the oscillator second harmonic and ganged with the oscillator tuning device can serve to extract the second-harmonic component and suppress the fundamental.

Crystal diodes have been used successfully to generate harmonics. Many oscillators, particularly class-C oscillators, have a significant harmonic content which can be made available without recourse to harmonic generators. The pushpull oscillator is particularly suitable for this application. At the neutral points of the circuit, cath-

FIG. 7-Half-frequency oscillator injects second harmonic through high-pass filter
ode and center tap of the plate load, the fundamental is suppressed to a degree depending on the balance of the circuit.
The fundamental suppression by virtue of balance is seldom adequate and additional selectivity must be relied upon. The use of a high-pass filter in place of the tuneable resonant circuit would result in greater simplicity and economy and it would, above all, eliminate the tracking problem. With double conversion, however, the tuning range is in excess of 2 to 1 , making it impossible to devise an effective filter unless band-switching is employed.

Using a single i-f system of 41 to 47 mc , a relatively sharp cut-off must occur within a band of approximately 50 mc . It is possible to accomplish this using a multisection high-pass filter. Sufficient harmonic content must be available to compensate for the filter insertion loss within its pass band.

Figure 7 shows an oscillator circuit operating at half frequency, supplying second-harmonic injection through an intervening highpass filter.

Interference Sources

Generally, a fair degree of selectivity is essential to provide immunity against interfering signals. The two most potent sources of interference are signals within the i-f and image bands.

Selectivity against interfering signals outside the uhf band can be readily secured through the use of fixed-tuned rejection filters. Specifically, as regards i-f rejection and
the rejection of vhf signals, a highpass filter can be quite effective.

The degree of image selectivity required at uhf should be reexamined as to possible sources of interference and their relative strengths. Much depends on the permissible channel spacing within a given service area. It is expected that local channel assignments will preclude the possibility of image interference in receivers employing standard intermediate frequencies.

Oscillator radiation is another potential source of interference. The input circuit selectivity determines both the susceptibility to extraneous oscillator interference and the transmission of oscillator power to the antenna. In this case also, local channel assignments calculated to meet such conditions will be effective except in instances of off-channel tuning.

The rejection offered by a multi-ple-tuned high-Q preselector is proportional to

$$
\left[\frac{2\left|f_{r}-f_{s}\right|}{\Delta f}\right]^{n}
$$

where f, and f, are the frequencies of the r-f and the spurious signals respectively, Δf is the preselector bandwidth and n is the number of tuned circuits. In case of the image signal $\left|f_{r}-f_{s}\right|=2 f_{i}, f_{1}$ being the intermediate frequency.

Although higher intermediate frequencies relieve the preselector requirements, the i-f noise figure suffers. On the other extreme, the choice of a very low i-f may also lead to a degradation of the overall noise figure as a result of preselector insertion loss. Increased selectivity will be sought either by raising the loaded Q, by increasing the number of tuned circuits, or both. In any case losses are likely to occur with tuning elements of practical size.

Improper i-f choice can also give rise to spurious beats at certain characteristic frequencies. A particularly objectionable condition prevails when the signal frequency is translated to the i-f by virtue of second harmonic as well as fundamental conversion. The following relation expresses this condition: $2 f_{0}-f_{1}=f_{0}+f_{1}$ or $2\left(f_{s}-f_{i}\right)$ $-f_{i}=f_{s}$, resulting in $f_{i}=f_{0} / 3$. Intermediate frequencies above 160
mc should, for this reason, be avoided.

Noise Figure

The required degree of selectivity may be problematical at present, but there is general agreement about the importance of noise figure. The overall noise figure is a function of the i-f noise figure, the crystal noise temperature where crystals are used, conversion loss and preselector loss.

The following is a list of symbols to be used:
F-noise figure
$F_{\text {min }}$-minimum F under optimum input circuit conditions
F_{m}-noise figure under conditions of match
F_{B}-noise figure for a specified bandwidth and input capacitance
B-input circuit bandwidth (singletuned)
$B_{a}-B$ under optimum noise figure
R_{v}-Generator resistance as seen at the grid of the i-f amplifier
$R_{o o}$-optimum value of R_{g} resulting in $F_{\text {min }}$
$R_{e q}$-equivalent noise resistance as referred to the input
R_{t}-input resistance due to transit
T time
T-effective temperature of R_{t}
T_{0}-room temperature -290 K
t-crystal noise temperature
r, -crystai conversion loss
q_{m}-tube transconductance
C -input circuit capacitance
j_{i}-i-f center frequency
a -input transforner turns ratio
u_{0}-optimum turns ratio
For a tirode $R_{\text {eq }}$ is a function of g_{m}.
$R_{e, l}=\frac{2.5}{g_{m}}, R_{t}$ varies inversely as f_{i}^{2} and $u_{t}=\frac{K}{f_{1}^{2}}$

The characteristics plotted in Fig. 8 and Fig. 9 were computed tor a typical low-noise input stage (6AK5) having the following constants: $g_{n t}=6.5 \times 10^{-3}$ mhos, $C=$ 10^{-11} farads (total, including crystal and stray) and $K=8 \times 10^{10}$. Assuming small enough transit angles to minimize coherence effects between grid and plate noise.

$$
\frac{T}{T_{o}} \approx 5 .
$$

I-F Noise Figures

The i-f noise figure depends critically on tube characteristics, in particular the $g_{m} k$ product, as well as on the input circuit design. Triodes are superior by virture of their low $R_{\text {eg }}$, and cascode circuits are gener-
ally favored in this application.
For a grounded-cathode stage, conditions for minimum noise figures are obtained when the generator resistance as seen at the grid satisfies the following relation

$$
\begin{equation*}
R_{v} \approx \sqrt{R_{\epsilon q} R_{t} \frac{T_{o}}{T}}=\frac{1}{f_{i}} \sqrt{\frac{K}{2 g_{m}}} \tag{1}
\end{equation*}
$$

This results in a noise figure

$$
\begin{equation*}
F_{\min }=1+2 \sqrt{\frac{T}{T_{o}} \quad \frac{R_{r_{q}}}{R_{t}}}=1+\frac{7 f_{i}}{\sqrt{g_{m} k}} \tag{2}
\end{equation*}
$$

The maximum input-circuit bandwidth under optimum conditions is in addition a function of C

FIG. 8-Noise figure F versus frequency

FIG. 9-Turns ratio. bandwidth and oplimum $R_{g_{0}}$ versus i-f frequency

$$
\begin{equation*}
=\frac{f_{i}}{2 \pi C^{\prime}} \sqrt{\frac{\sqrt{2 g_{m}}}{\mathrm{~K}}}\left(1+\frac{f_{i}}{\sqrt{2 g_{m} K}}\right) \tag{3}
\end{equation*}
$$

The bandwidth B_{o} is that of a single-tuned circuit. Double-tuning will increase the bandwidth by a factor of approximately 1.4 , and should therefore be used at low intermediate frequencies where B_{0} is not much in excess of 12 mc , the width of two channels.

The linear relationship of $\boldsymbol{F}_{m \times n}$ versus f_{1} is shown in Fig. 8A. The considerably higher noise figures under conditions of match are plotted in Fig. 8B.

$$
\begin{equation*}
F_{m}=6+\frac{10}{g_{m} R_{t}}=6+\frac{10 f_{i}^{2}}{g_{m} K} \tag{4}
\end{equation*}
$$

The noise figure obtained when the turns watio is adjusted to yield a bandwidth of 12 mc is shown in Fig. 8C. Between 40 and 100 mc the increase in noise-figure over $F_{m i n}$ is very slight. This is due to the fact that B_{0} is approximately 12 me in this region. This portion of the vhf spectrum would appear therefore to be quite suitable.

Above $100 \mathrm{mc}, F_{B}$ rises sharply and reaches the value of approximately 20 at 260 mc . The relevant expression is

$$
\begin{align*}
F_{B}= & 1+\frac{\frac{T}{T_{o}} f_{i}^{2}}{2 \pi B K C-f_{i}^{2}} \\
& +\frac{2.5}{g_{m} k}\left(2 \pi B K C-f_{i}^{2}\right) \\
& \left(1+\frac{j_{i}^{2}}{2 \pi B K C-f_{i}^{2}}\right)^{2}
\end{align*}
$$

When it is desired to use a high i-f and restrict the bandwidth below B_{0}, circuit capacitance should be added instead of changing a 。 Optimum turns ratio a_{o} as well as B_{\circ} and $R_{v o}$ are plotted in Fig. 9

$$
\begin{equation*}
a_{o}=\frac{\sqrt[4]{2 g_{m} K}}{\sqrt{f_{i}}} \tag{6}
\end{equation*}
$$

Noise Temperature

The term noise temperature is somewhat misleading. It refers to a factor by which the temperature of the crystal i-f resistance (assumed at room temperature 290 K) must be multipled to pro-
duce an equal amount of noise power as that produced by the crystal at its i-f output terminals.

The available output noise power of the crystal is $t \times k T B$. By definition, the noise figure is the quotient $\frac{N_{o}}{G N}$, where N_{o} is the available output noise power of the network, G the gain of the network and N the available thermal agitation noise power $k T B$. The crystal noise figure designated by F_{1} is therefore $\frac{t}{G}$. The overall noise figure is

$$
F=F_{1}+\frac{F_{2}-1}{G}=\frac{t+F_{i}-1}{G}
$$

or $F=L_{c}\left(t+F_{i}-1\right)$ where $L_{c}=1 / G$ is
the conversion loss and F_{i} is the i-f noise figure.

The crystal noise temperature is a function of oscillator injection. It is very high at low frequencies but levels off to a constant value at approximately 10 mc . The noise temperature bears a straight-line relationship to oscillator injection, starting with unity at zero rectified current. The conversion loss reaches a minimum at a certain level of oscillator injection and F assumes a minimum slightly below this value.

Conversion Loss

Conversion loss is the greatest factor contributing to the overall noise figure. It is lowest with fundamental conversion. Harmonic conversion should be avoided as it results in increased loss and consequently a higher noise figure. This does not mean the oscillator must be operated at the injection frequency. The use of harmonics of the oscillator frequency is quite acceptable, provided the fundamental and the undesirable lower harmonics are adequately suppressed before injection.

Although conversion loss is for the most part a characteristic property of the crystal, it is also influenced by the associated circuits. The image response of the preselector, for instance, affects the noise figure to a degree depending on the inherent crystal loss. In the case of an ideal mixer, the loss due to image response can be as high as 3 db when conditions of match pre-
vail at the image frequency.
With no conversion loss and conditions of input circuit match at the image frequency, the image frequency power will be equal to the i-f power. Since this power emanates from the signal source, only half of the signal power is converted into useful i-f power and a $3-\mathrm{db}$ conversion loss is incurred.

This effect, which would be of importance with highly efficient mixers, can be minimized by making the preselector present either very high or, as is usually the case, a very low image impedance. In practice, no special precautions are warranted in view of the relatively high conversion loss. The effect of this loss is first to attenuate the i-f power considerably below the r-f level and then further attenuate the image beat at the preselector. The circuit impedance interaction between r-f and $i-f$ is also decreased in relation to the conversion loss.

It should not be concluded that loss is a desirable characteristic, but as the losses are decreased the optimum conditions are subject to more critical adjustments.

Typical conversion loss figures for uhf silicon crystals range between 8 and 12. The noise temperature corresponding to optimum oscillator injection (minimum noise figure) is approximately 1.5 .

Preselector Loss

The preselector losses contribute to the noise figure in a very direct way. Since the output noise level is not changed by the insertion of the preselector but the loss is increased by a factor $L_{\text {: }}$ (the preselector loss), the overall noise-figure is increased by the same factor.

The preselector loss is related to the operating Q and the unloaded $Q=Q_{0}$ by $:$

$$
L_{s}=\frac{1}{\left(1-\frac{Q}{Q_{0}}\right)^{2 n}}
$$

n being the number of tuned circuits and $Q=\frac{f_{r}}{F}$ The resultant overall noise figure is

$$
F=\frac{L_{c}\left(t+F_{i}-1\right)}{\left(1-\frac{Q}{Q_{o}}\right)^{2 n}}
$$

Under conditions of optimum F^{\prime},

$$
F=\frac{L_{c}\left(t+\frac{7 f_{i}}{\sqrt{\ell_{m} k}}\right)}{\left(1-\frac{F_{r}}{Q_{o} \Delta F}\right)^{2 n}}
$$

The noise figure is seen to be a function of the ratio of the loaded to unloaded Q. For a given size of tuning elements the preselector losses and consequently the noisefigure will decrease with increasing r-f bandwidth.

I-F Amplifiers

Most modern vhf tuners employ a cascode r-f amplifier stage and little

FIG. 10-Cascode i-f amplifier is most suitable for single-ended converters
can be gained in noise-figure improvement by adding a preamplifier. It is only necessary to transform the impedance level of the input circuit for optimum noise figure.

Preamplification at the i-f is indicated if the converter is a selfcontained unit intended to be used in conjunction with a variety of vhf tuners. The cascode circuit shown in Fig. 10 is most suitable for use with single-ended converters. The simple cross-neutralized push-pull amplifier shown in Fig. 11 can yield equally good results at low vhf frequencies. As a result of the relatively wide bandwidth and low amplification, stability is readily achieved.

Three Converters

Basic converter systems include the single-channel strip type, the broad-band and the tuned narrowband converters.

The crystal mixer is part of every circuit considered. Amplifier and mixer tube circuits are not treated because of the early stage of tube and applicable circuit development.

The fixed-tuned strip lends itself to an economical and very satisfactory design. It is most adaptable to turret-type tuners where several switch positions can be reserved for uhf use.

In general, it comprises a nar-row-band preselector and a crystal mixer working into the vhf r-f stage which in the uhf position serves as an i-f stage. Since high selectivity can be attained, a single i-f in the 41 to $47-\mathrm{mc}$ band would

FIG. 11 -Push-pull i-f amplifier is crossneutralized, good at low vhi frequencies
verter is shown in Fig. 3. The i-f transformer is part of the strip and is designed to yield minimum noise figure.

Broad-Band Converter

In the broad-band converter all or a large number of channels can be transmitted simultaneously through the input circuit, which may be several hundred megacycles wide. Channel selection is accomplished merely by tuning the oscillator.

As already indicated, to a degree the losses are reduced by increasing the bandwidth. This is unlike the conditions at vhf where the required bandwidth and the circuit

FIG. 12-Narrow-band capacitancetuned transmission-line converter
capacitance determine the stage gain, the figure of merit being fixed. At uhf, loading is the limiting factor and in absence of any added capacitance wide bandwidth is inherently obtained.

Selectivity is sacrificed, but as was pointed out, its importance is somewhat problematical. The use of a trap tuned to the image frequency and ganged to the oscillator tuning device can insure good image selectivity in spite of the broad-band feature. The tracking of such a circuit is noncritical as the transmission characteristics of the desired signal are not affected by slight mistuning. The bandwidth of the crystal viewed as a lumped circuit having 1 uuf of capacitance and an input resistance of 300 ohms is approximately 500 mc.

Since it is somewhat difficult to secure the desired oscillator tuning
range in one band, a division into two or more bands is generally favored. By reducing the bandwidth of the input circuit correspondingly, selectivity can be improved.

The circuit of a broad-band converter is shown in Fig. 4. Two crystals are used in a balanced circuit, resulting in a reduction of oscillator radiation. The noise contributed by the oscillator is also reduced but this is not usually a significant factor. In addition the use of a balanced transmission line is facilitated.

The balanced output circuit shown in Fig. 4 might feed a single cross-neutralized push-pull i-f amplifier. Such a circuit affords a favorable noise figure, assuming of course an optimum design of the input circuit. The balanced output circuit is also desirable when the converter is used in conjunction with a vhf tuner having a balanced input.

Narrow-Band Converter

In the narrow-band converter, conservative selectivity requirements are aimed for. Using a single i-f system (41 to 47 mc) and assuming an asymmetrical i-f response, the oscillator must operate above the signal frequency. The highest required oscillator frequency is thus raised.

A single-tuned circuit in the preselector usually suffices where double conversion with a reasonably high first i-f is used. The circuit in Fig. 11 employs a capacitancetuned transmission line which is ganged with the oscillator tuning mechanism.

The circuits discussed cover uhftuner designs which seem promising. Much exploratory work is being done on which it is premature to report.

Bibliography

[^3]
Experiments Illustrate

Group photo shows many of transistorized items described in text. Left to right in rear are, portable radio, tv receiver, auto radio. ukulele and public address amplifier. Front row shows roving microphone, toy organ, decade scaler, complementary symmetry audio amplifier, portable \mathfrak{i}-m receiver and paging receiver

I^{I}T IS difficult to attach an order of importance to the various pieces of transistorized equipment shown by RCA at their Princeton, New Jersey, laboratories recently. Each has its own aspects of importance, though in some cases these are more obvious than in others.

Complementary Symmetry

The concept of complementary symmetry promises to be the basis of one of the more important applications of transistors. Using this technique, it is possible to split a signal into two out-of-phase signals for push-pull amplification without the use of transformers. The principle is illustrated in Fig. 1 A .

The bases of two junction transistors, one pnp and one npn, are fed in parallel. Due to the opposite signs of the transfer characteristics of these two types of transistors, the output signals will be 180 degrees out of phase-one having been shifted 180 degrees, the other
going straight through.
A practical application of this principle is illustrated in Fig. 1B. A pair of transistors in comple-mentary-symmetry arrangement is used as a phase-splitting preamplifier stage. The out-of-phase signals thus produced are connected directly to the base-input comple-mentary-symmetry stage following. In this stage the split-phase signals receive further amplification and are recombined into a single-ended signal that is applied directly to the 16 -ohm voice coil of a loudspeaker. The entire output signal is connected back to the input stage as a form of degeneration. This connection provides fairly high gain with low distortion.

The circuit shown in Fig. 1B preceded by a single-transistor preamplifier is capable of producing a half watt of audio from a conventional phonograph pickup.

All-Transistor Television Set

A thirty-six transistor television set was built as an experiment. Its

WHAT'S INSIDE

This article is in answer to the many requests received for more information on the transistor devices shown of the RCA Princeton Laboratories recently, and mentioned in ELECTRONICS ("John Q. Meets the Transistor" p 5, Jan. 1953.)

The information presented was obtained in personal interviews with the engineers and scientists at Princeton who figured in the developments discussed. Some of these developments will be described in more complete detail in future issues of ELECTRONICS

By
JAMES D. FAHNESTOCK
Associate Editor, Electrontes

stage lineup is as follows: A pointcontact local oscillator is fixed-tuned on the low side of the station carrier (channel 4). Two crystal diodes convert the local oscillator output and received signal to 8 mc for amplification in the six-stage point-contact transistor interme-diate-frequency amplifier. Bandwidth is two mc. Two diodes are used in the second detector-the output of one feeds the video amplifier and the other feeds the inter-carrier-sound i-f amplifier.

The video amplifier is comprised of two stages, the first using an experimental junction transistor and the video output a point-contact unit. A point-contact sync detector and sync separator (junction) furnish sweep signals for the vertical deflection circuits. These consist of a point-contact vertical oscillator, a junction driver and a pair of junction output transistors driven in push-pull without transformers by means of complementary symmetry.
Two experimental junction transistors comprise a horizontal afc circuit that controls a point-contact horizontal oscillator and a two-junction-type horizontal amplifier of conventional design. These are followed by a push-pull junction amplifier that drives the horizontal coils of the yoke and a pair of pulse-amplifying junction types the output of which is rectified by a selenium diode for the picture tube second anode voltage.

The sound channel consists of a 4-stage point-contact type i-f amplifier at 4.5 mc , followed by a twodiode ratio detector, a junction low-level audio stage and a pair of output junctions in complementary symmetry.

The set provides good pictures within 5 miles of WNBT using a

Transistor Applications

Small in size, but tremendous in impact, the transistor has already assumed an important place in the electronics industry. That potential applications are virtually unlimited is illustrated clearly by experimental devices described here
built-in loop and 15 miles from the station with a simple rabbit-ear antenna.

Automobile Radio

A natural application of the transistor is to automobile radios and other mobile and portable equipment. To see what could be done with existing automobile power sources (6 -volt batteries) a program was launched to build an all-transistor broadcast receiver.

The goal was met with 11 transistors and one crystal diode. A loudspeaker of the type normally used in automobile radio sets is transformer driven through an output transformer by a pair of pushpull junction transistors operating in class B with essentially zero bias. This output stage is transformer driven by a single junction transistor operating class A which in turn is preceded by two cascaded lowlevel junction preamplifiers.

Junction transistors are used in the local oscillator, mixer, second detector and 3 -stage 455 -kc i-f amplifier. The diode serves as the ave detector.

Receiver sensitivity is around 50 μv and total current drawn from the 6 -volt electrical system by the radio averages 300 ma and is dependent on magnitude of output, since the final stage is operated class B. Audio output of the class-B circuit is almost a watt, with frequency response comparable to that provided by commercial tube receivers.

Flea-Power Transmitters

The high-efficiency characteristics of the transistor make it useful in hearing aids ("Transistors Replace Hearing Aid Tubes," Electronics, p 5, Feb. 1953) and
other small light-weight devices. A pill-box size transmitter with output in the broadcast band capable of being modulated by a phonograph pickup was shown by RCA engineers. The pill box transmits modulated signals to a near-by receiver that recovers the audio signal and reproduces it in the loudspeaker. Power consumption is about 100 microwatts and self-contained battery life is 3,000 hours.

Another transmitter, intended for public address work, is about the size and weight of a fountain pen and pencil, and contains two transistors, an r-f oscillator and a modulator, and uses a 22.5 -volt battery. Good noise-free signals may be heard in a conventional broadcast receiver from a distance of 30 feet or so.

In all these miniature devices, ferrite core coils are used to obtain maximum radiation from the smallest possible space.

A by-product of a program to

FIG. 1-Circuits illustrate complemen-tary-symmetry principle
develop transistor oscillators is a toy organ that operates through any broadcast receiver. An experimental junction transistor is used in a 540 -ke oscillator which is caused to block at different audio rates by a keyboard that switches different values of capacitance in the emitter circuit. The oscillator runs continuously to maintain control over receiver ave when notes are not being played. Two 1.35 volt cells power the 8 -note organ for about 5,000 hours.

Portable Radios

Portable personal radio sets may be an early commercial application of transistors. A set using nine junction transistors has been demonstrated that has a $300-\mu v$ sensitivity and operates over 100 hours on a small 6 -volt battery. The circuit is similar to that of the auto radio, except that single-ended output is used since it provides sufficient power for normal portable use.

Three junction transistors are used in a vest-pocket receiver for hospital paging systems operating on a frequency in the neighborhood of 100 kc and using a long wire stretched around a building as a radiator. The entire receiver, using an r-f stage, a detector and a stage of audio to drive a hearing-aid earpiece, operates for 500 hours on a single miniature 1.35 -volt mercury cell.

It should be emphasized that without exception the above mentioned devices were designed and built to see what could be done. None are recommended as finished commercialized pieces of equipment, though they do point up the possibility of such application some day in the future.

Abstract

Optical image of each edge of white-hot moving strip is scanned by system of phototubes and motor-driven slotted disks from relatively cool position 15 feet above bed of mill. Control circuit transforms outputs of the two phototubes to a single signal that indicates deviations in width to accuracy of $\pm \frac{1}{8}$ inch, independent of lateral or vertical motion

Ey E. S. SAMPSON
General Engineering Laboratory General Electric Co.. Schenectady, N. Y,

ALThough the x-ray gage for measuring steel thickness has become a common device in the modern steel mill, measurement of width of hot strip is still being made by manually-operated calipers. These at best provide only an approximate and occasional indication of the actual width. Moreover, measurement of width is usually made only at one point along a strip length and this does not necessarily represent the true width along the whole length of the piece. Due to the jagged edges found in many lengths of hot steel, it is also difficult to obtain much information about average width from individual measurements.
The severe heat in the area of measurement creates a second disadvantage in the present technique. Measurement in this manner is an extremely uncomfortable task for the caliper operator. A third disadvantage is that the strip must be stopped before a measurement can be made.

The photoelectric width gage described here was developed to meet the foregoing specialized needs of the steel industry. The gage measures, indicates, and can provide a record of strip width within the range of 10 to 96 inches with an accuracy of better than $\pm \frac{1}{8}$ inch. No contact between the strip and
gage is required. The width indication is independent of reasonable lateral and vertical motion of the strip as it bounces rapidly along a rolling mill table. The light radiated from the hot strip edges is used to obtain signals for measuring width.

The detector, located 15 feet above the hot strip, is largely unaffected by extreme ambient conditions such as temperature, moisture, fumes and dirt of the mill near the strip itself.

General Description

The main functional units of the width gage are the detector, the electronic control cabinet, the operator's control cabinet and the indicators, as shown in Fig. 1.

The detector generates two electrical signals which contain information for accurately measuring the width of the strip.

The electronic control cabinet contains the majority of electronic components which transform the two signals from the detector into a single signal for indicating width deviation.

The operator's control cabinet contains the width-indicating devices and the controls for operating the gage. The width-indicating devices consist of a visual mechanical counter which is set by the operator
to the desired width of the strip to be rolled, and a deviation indicator which shows any deviation from the width desired.

Figure 2 shows that the gage operates by scanning an optical image of each edge of the strip to be measured. The position of the two scanning units located inside the detector is adjusted by a motordriven screw, which is controlled from the operator's control cabinet and which places the two scanning units directly above the nominal position of the edges of the strip.
The lens at the bottom of each scanning unit focuses the image of the edge of the strip onto a scanning disk behind which is placed a phototube. The optical image for each edge of steel is converted into an electrical signal by the phototube. The rotating slotted disk provides means for repeatedly scanning across the image of the edge of the strip at right angles to the direction of strip travel. Each unit scans approximately 10 inches, nominally 5 inches off the edge of the strip and 5 inches on the strip. The scanning field is thus wide enough to allow for a certain amount of sidewise motion of the strip as well as for normal changes in width.

The scanning action causes each phototube to generate a rectangular

for Hot-Strip Steel Mills

First installation of noncontacting width gage, in Irvin Works of U. S. Steel Co. Detector head is in housing suspended over bed of mill at left, with phototubes inside reacting to edges of hot strip as it flies back and forih underneath. The strip thus serves as light source for the system. Operator's controls and width deviation indicator are on side of mill, near operator at right center

FIG. l-Arrangement of main units of width gage

FIG. 2-Block diagram of entire sysiem, showing how lenses project images of edges of strip through scanning disks onto cathodes of phototubes
wave shape of voltage vs time in which the percentage pulse width is directly proportional to the position of the edge. The two sets of signals, one from each edge of the strip, are then differentiated to produce spikes at the leading and trailing edge of each square pulse signal. These signals are then amplified in the scanning units to avoid electrical interference and are transmitted to the amplifiers in the electronic control cabinet. Here the signals are again amplified.

Utilization of Pulses

By means of a special bistable multivibrator circuit, rectangular pulses are generated from the sharp positive and negative pulses. These rectangular pulses can vary in width but not in amplitude. The two sets of constant-amplitude pulses are then applied to the pulse width analyzer circuit where they are added, and the sum is averaged to obtain a d-c voltage depending only upon the width of the pulses. By means of a bridge circuit this d-c voltage is used to operate the deviation meters and recorder.

A selsyn generator, geared to the lead screw which positions the scanning units, generates an electrical signal which provides an indication at the operator's control cabinet of the spacing of the scanning units. The electrical signal from the selsyn generator is applied to a corresponding selsyn motor geared to a counter which then indicates this distance to a precision of better than $1 / 64$ inch.

A calibrating mechanism is provided to insure that the optical and electronic parts of the width gage are functioning properly. This mechanism provides an overall calibration of the deviation measuring circuit. One such calibrating mechanism is located in each scanning unit.

To calibrate, the operator closes a switch located on the operator's control cabinet which causes a shutter to block the light from the hot steel and also turns on an incandescent lamp. The lamp illuminates a frosted window one edge of which is imaged onto the phototube in such a way as to generate a 50 -percent pulse signal from each scanning unit. Such a pulse signal

FIG. 3-Operation of scanning disk
exactly duplicates the normal operating signal for zero deviation of the strip from the width for which the gage is set. A zero set control, also located on the operator's control cabinet, is then adjusted by the operator to correct for any drifts and to give a zero indication on the deviation meters.

Sidewise motion of the strip will increase the pulse width from one scanning unit and decrease that from the other unit. The average of the two remains constant, and hence there is no change in deviation indication. A reasonable amount of up and down motion of the strip results in only a very small change in the sum of the individual pulse widths because the separate scanning units are located directly above the respective edges of the strip.

Design Consideration

From the practical standpoint, the width gage is designed to provide ease of operation, rapid and continuous indication of width, and ease in maintenance and service. Tubes especially designed for long life and industrial-type components are used wherever possible. Heavygage steel is used in the fabrication of the cabinets and housing units to provide a maximum of strength and durability.

The electronic circuitry and adjustment is simple and insensitive to changes in power supply variations. The measuring circuits consist of two amplifier channels, each of which contains only four amplifier tubes, and a filter and bridge circuit which employs only one amplifier tube. Large changes in tube characteristics and large changes in signal amplitude can occur without changing the width indication. Simplicity and perman-
ence in design in this manner are extremely important in industry, where there is usually a limited time available for maintenance work on electronic equipment and where frequently highly skilled electronic personnel are not always readily available.

Electronic Circuits

Figure 3 shows diagrammatically the arrangement of the components of the image scanner for one of the scanning units. As a slit in the scanning disk moves rapidly across the aperture, the phototube, located behind the aperture, conducts a current proportional at every instant to the amount of light in that part of the image exposed by the slit at that particular instant. A large current flows during the time the slit uncovers the bright image of the steel strip, and a very small current flows for the remainder of the scan. The waveform of the signal generated in this fashion is shown. This process continues repeatedly so that a $30-\mathrm{cps}$ rectan-gular-wave signal is generated in each scanning unit.

In Fig. 4, tube V_{1} is the gas phototube which generates the signal voltage when the image of the strip is scanned, while V_{2} and the first half of V_{3} amplify the signal. The second half of V_{3} acts as a cathode follower type impedancematching device to transmit the signal over the cable with low losses. The two preamplifier chassis are identical in construction and operation.

The signal from the preamplifier is amplified again in the first half of V_{4}. The signal from R_{1} is used to drive the multivibrator and the automatic gain control circuits.

The second half of V_{4} amplifies the age signal. This signal from the second half of V_{1} is applied to a peak rectifier to produce a negative d-c voltage proportional to the peak of the signal pulses. The output of the rectifier circuit is filtered by the network comprising C_{1}, R_{z} and C_{2}. The resultant d-c voltage is returned to the preamplifier circuit in the detector and applied to the grid of V_{2} to provide age which acts to maintain a relatively constant signal amplitude to the multivibrator circuit regardless of the temperature of the steel strip.

Normally for a steel temperature change from $2,050 \mathrm{~F}$ to $1,350 \mathrm{~F}$ the signal generated in phototube V_{1} would change 200 to 1 in amplitude. The age circuit reduces this 200 -to- 1 range to a 3 -to- 1 range. The transconductance of V_{2} is reduced 20 to 1 to provide most of the gain control required. The remainder of the gain control is accomplished by reducing the sensitivity of the phototube 3.5 to 1 by reducing the d-c voltage applied to it.

The cathode electrode of the phototube is returned to the screen grid of V_{2}. When the agc voltage becomes more negative, the screen voltage rises, thus reducing the net $d-c$ voltage on the phototube and hence its sensitivity.

A bistable multivibrator V_{5} furnishes a rectangular signal which can vary in width but not in amplitude. One stable condition of the multivibrator exists when the first half of V_{5} is not conducting current, while the second half of the tube is conducting current. The other stable condition exists when the conducting current is reversed from the second half to the first half of the tube. As the signal pulses arrive at the grid of the first half of V_{5}, the positive pulses switch this half to a conducting state while switching the second half to a nonconducting state. As the alternate positive and negative pulses are applied to the multivibrator circuit, the output of the multivibrator becomes a rectangular constant-amplitude signal that
varies in width depending upon the spacing between the positive and negative pulses.

Special precautions were taken to insure that the square-wave rectangular pulses from the multivibrator circuit are constant in amplitude irrespective of pulse width or changes in characteristics of V_{5}. The peak positive voltage of the rectangular pulse occurs when the second half of V_{5} is not conducting current. The peak positive voltage is therefore fixed by the resistor divider circuit in the plate circuit.

The peak negative voltage of the rectangular pulse occurs when the second half of V_{5} is conducting current. However, the lowest peak voltage that can occur at this plate is determined by the low-impedance resistor divider network made up of R_{3}, R_{4} and R_{5} and rectifier $C R_{1}$. The voltage determined by this network is always greater than the voltage that would normally be determined by the saturation current of the tube. The peak-to-peak amplitude of the rectangular pulse is therefore determined essentially by two resistor divider networks and not by $V_{\text {s. }}$

As the plate potential fluctuates between the two fixed d-c levels as described above, the average voltage at the plate becomes a d-c voltage proportional to the pulse width and hence to the width deviation. By means of the voltage divider circuit consisting of R_{12}, R_{13} and R_{14} these two average $\mathrm{d}-\mathrm{c}$ signals
from the multivibrators are added and applied to the indicator circuit. Components $R_{5}, R_{7}, C_{3}, C_{4}$, R_{8}, C_{5} and C_{8} comprise a $30-\mathrm{cps}$ band-rejection bridged-T filter circuit for reducing the amplitude of the a-c components of the signals so that the voltage applied to V_{0} is essentially a d-c voltage proportional to width.
Tube V_{0} is a power amplifier of the cathode follower type and is used to drive the deviation indicators and the recorder.

The zero-set rheostat, fixed resistor R_{0} and V_{τ} comprise a voltage divider network used to balance out the fixed potentials in the indicator circuit which are not related to pulse width. The deviation indicators and the recorder are connected between a point on this voltage divider and the cathode output terminal of V_{8}.

Rheostat R_{10} is the sensitivity control for the deviation indicators and R_{11} is the sensitivity control for the recorder. These controls are adjusted at the factory for correct indications of width deviation and require no further adjustment.

The arrangement used in the bridge circuit offers a high degree of stability. It is relatively insensitive to changes in the $d-c$ power supply voltage and to changes in the transconductance of V_{s}.

Detector Unit

The detector unit incorporates the optical and mechanical devices and the electrical circuits used in

FIG. 4-Circuit arrangement for combining outputs of the two phototubes to actuate width deviation indicators and a standard photoelectric recorder

Scanning unit for width gage. Phototube is in housing at top, with scanning disk visible through opening below. Image-forming lens is at bottom
positioning the scanning units and in generating the width and the width deviation signals.

The optical devices for each scanning unit consist of one $f / 3.5$ lens for imaging the strip edge onto the scanning disk, one f/2 lens for imaging a simulated steel edge onto the scanning disk during calibration, an aperture and a rotating slotted disk for systematically controlling the light received by the phototube, and a solenoid-operated shutter for preventing the light radiated from the strip edge from falling on the phototube during calibration.
Since the desired width of strip to be rolled may vary over wide ranges each day, it is necessary that the two scanning units which are positioned over each edge be easily moved from one desired spacing to another. A right-hand screw and a left-hand screw coupled together and driven by a motor are used for this positioning. An Oilite nut which couples the individual scanning units to their respective screws moves the scanning units smoothly to the desired setting when the rolling mill operator actu-

Phototube chassis, as seen when removed from operating position above seanning disk. Arrow points to phototube, mounted above slot in chassis
ates the drive motor switch located on the operator's control cabinet.

The mechanical design of the seanning units provides accurate alignment of the optical parts with respect to one another. Serious width measurement errors can resadt if exact alignment is not maintained.

The detector is mounted 180 inches above the steel strip level. If the maximum tolerable error due to the optical system alone in one scanning unit is to be held to $1 / 64$ inch, the resulting angular tolerance on alignment is the angle whose tangent is $1 \div(64 \times 180)$, or 1 part in 11,500 . In order to meet this tolerance, each scanning unit is rigidly mounted on a bearing which slides along a stainless steel beam in each half of the detector head housing. The two support bearings are 10 inches long, thus assuring intimate alignment with the beam.

Electronic Control Cabinet

The electronic control cabinet contains all the circuits which are not required to be located near the gaging area, including the regu-
lated d-c power supply, power transformers, circuit breakers and motor relay switches. The cabinet is especially designed to be dust and moisture tight and to provide easy access to the components. All input cables are brought to the terminal strip in the rear of the cabinet. The electronic circuits are mounted on a hinged panel which may be swung outward to give ready access to all the components from one position.

Indicators

The edges of the strip to be measured are scanned 30 times per second by the scanning slits, each of which include light from a region 3 inches long in the direction of the length of the steel strip. The spacing between the successive scanned portions of the strip to be measured therefore depends directly on strip speed. For example, if the strip is moving at 10 feet per second, the successively sampled portions would be spaced $10 / 30$ ths of a foot or 4 inches apart. Since the length of each portion is 3 inches, such a strip speed would yield practically continuous coverage of the steel strip.

The response time of the deviation indicator is about 0.8 second, so that its indication at any time represents a width deviation averaged over 24 successive scanning operations. In the example chosen above, for a strip speed of 10 feet per second, the width deviation indication will be averaged over a length of 8 feet.

If it is desired to measure changes in width occurring over shorter intervals of length than that obtained with the deviation indicator, then a deviation recorder may be used. The recorder specified for this use has a very short time constant, in the order of 0.2 second. For a strip speed of 10 feet per second, the recorder will faithfully indicate width changes occurring over a 2 -foot length. However, since the above time constant refers to the time for the pointer to reach virtually its final value, some indication of changes in width will be shown for even shorter distances along the strip being measured as it flies back and forth on the bed of the mill.

Butterfly Curve Tracer For Magnetic Materials

Curves of a-c permeability versus d-c magnetizing force are displayed on a cathode-ray tube. The instrument meets needs for rapid and accurate means of determining properties of magnetic materials in expanding use of saturable reactors

By GEORGE M, ETTINGER
Standard Electronic Hesearch Corp. New York, N. Y.

TTHE EFFECT of d-c magnetization on a magnetic core material is best expressed by the butterfly curve of which a typical example, due to Elmen ${ }^{1}$, is shown in Fig. 1. The double-humped nature of the curve, which gives it its name, is due to the magnetization remaining when the magnetizing force is reduced to zero.

Elmen's curve was obtained with small alternating flux density, at a frequency of 200 cps . To specify completely the properties of a magnetic material, data at higher values of flux density and at several frequencies are required.

Basic Design

Figure 2 is a block diagram of the instrument. The specimen carries a primary and a secondary winding. A source of variable frequency f_{1} and variable amplitude a-c is connected to the primary circuit in series with a source of very low frequency a-c f_{z} and a series

FIG. 1-Butterily curves of one magnetic sample show typical peaks due to residual magnetism

Controls for magnetizing circuit of butterfly tracer are on right of front panel, scope controls on left
resistance R. A d-c amplifier of small bandwidth, connected across R, yields an output proportional to the instantaneous amplitude of the bias current at the low frequency f_{2} only. This output is applied to the horizontal deflection plates of a cathode-ray tube.

The emf developed across the secondary winding provides input to

FIG. 2-Basic circuit of tracer requires low and high frequency $a-c$ source, plus d-c bias
an electronic integrator, whose output is proportional and in phase with the alternating flux density in the sample. The bandwidth of the integrator is small enough to attenuate completely components of flux density varying at frequency f_{2}. For magnetizing a-c of constant amplitude, the output of the integrator is proportional to flux density and therefore the a-c permeability of the magnetic sample. The output of the integrator amplifier is applied to the vertical deflection plates of the crt.

The pattern obtained on the crt has the form shown in Fig. 3. The envelope of this pattern, the required butterfly curve, gives the relation between a-c permeability and d-c magnetizing force, for the condition of constant magnetizing a-c.

By turning a single switch, the
butterfly curve tracer may be converted into a conventional hysteresis loop tracer. The hysteresis loop in Fig. 3 was so obtained.

Figure 4 shows butterfly curves and superposed hysteresis loops obtained for a 79-Permalloy sample, at 200 cps and at five currents corresponding to peak magnetizing forces in the range from 0.09 to 1.35 oersteds. Figure 4 also gives information on a-c permeability and the rate of change of a-c permeability with dec magnetizing force. For the test conditions under which the curve in Fig. 3 was obtained, this last quantity was approximately 27,000 gausses per oersted squared for $H_{\mathrm{d}, \mathrm{e}}=0$ to 0.3 . This agrees well with the 27,500 figure obtained by Elmen for a similar sample by an a-c bridge method.

Circuit Details

Current at the higher frequency f_{1} is supplied to the primary of the magnetic sample from a transformer, a $200-\mu \mathrm{f}$ capacitor, a lowpass filter, and a $50-\mathrm{ohm}$ resistance (Fig. 5). Bias current is obtained

FIG. 3-Trace obtained on crt has butterfly curve as envelope. Also shows superposed hysteresis loop
by half-wave rectification of the $50-$ cps line supply, the ripple removed by a filter of which the $200-\mu \mathrm{f}$ capacitor is an element. The d-c is varied from positive to negative values at a very low frequency (about 0.2 cps) by driving the potentiometer P_{1} back and forth with an automatically reversing motor.

This portion of the circuit is shown separately in Fig. 6. The potentiometer is connected across two rectifiers, W_{1} and W_{2}, arranged back-to-back. When the potentiom-

FIG. 4-Curves photographed from crt at various values of currents giving peak magnetizing force
eter slider is in position A, W_{1} is short-circuited and W_{2} gives almost complete half-wave rectification. With the slider in mid-position B, the resistances across the rectifiers are equal and no d-c flows.

Adjusting potentiometer P_{2}, varies the effect of the sweep potentiometer P_{1} on the rectifiers. Maximum variation is obtained with P_{2} set at zero, minimum variation with P_{2} at maximum.

Varying P_{3} (Fig. 5) gives fine control of the amplitude of magnetizing a-c. This variation has almost no effect on the direct or lowfrequency bias current, since the d-c resistance of the choke L_{2} is much lower than the minimum resistance of P_{3}. Various capacitors or a short circuit can be connected across the filter circuit. In another switch position, the choke L_{2} is is shunted by a capacitor to form a parallel circuit resonant at 50 cps . This further attenuates hum from the variable d-c supply when the magnetizing current is at any frequency other than 50 cps .

The voltage across the 50 -ohm resistance (Fig. 5) provides input to the horizontal deflection amplifier. If the test frequency need not be variable, a common tapped transformer may be substituted for the two separate transformers shown.

Amplifiers

As explained before, the horizontal deflection amplifier (Fig. 7) must be made responsive only to the very low frequency f_{2}, as in order to trace butterfly curves. The amplifier is direct coupled, consisting of two voltage amplifier stages and a push-pull phase inverter output stage. Miniature pentodes, Brimar (England) type 8D3, similar to the 6AK5, are used throughout.

An RC filter is connected between the two voltage amplifiers. When the switch S_{1} is closed, the filter reduces the $50-\mathrm{cps}$ gain of the amplifier to almost zero, while the gain for $d-c$ or the low frequency bias current is not affected. With S_{1} open, the bandwidth of the amplifier extends well beyond the test

FIG. 5-Motor-driven potentiometer P_{1} provides low-frequency a-c. Sweep width is controlled by P_{2}

FIG. 6-Back-to-back rectifiers and mo-tor-driven arm vary voltage at low froquency from plus to minus
frequency f_{z} so that normal hysteresis loops are traced whose shape depends on the setting of the sweep potentiometer P_{1} in the magnetizing circuit.

The vertical deflection amplifier (Fig. 8) incorporates an electronic integrator. It is designed to have negligible response at the low frequency f_{2}, which represents bias current variations. It is also designed to have substantially 90 -degree phase shift (6 db per octave drop) over the range 50 cps to 10 kc. Direct couplings reduce lowfrequency phase shifts other than those due to the integrator.

The circuit, of 8D3's or 6AK5's, comprises a cathode follower, voltage amplifier V_{2} subjected to negative feedback by the 150,000 -ohm resistor, a Miller integrator and cathode follower, and a push-pull output stage similar to that in the horizontal amplifier.

Regeneration, effective at frequencies above 50 cps only, is obtained by a 1 -meg resistance connected between the grid of V_{2} and a $0.01-\mu \mathrm{f}$ blocking capacitor. This regeneration has been shown to improve the accuracy of integration ${ }^{5}$. The 180 K resistance between plate of V_{1} and screen of \dot{V}_{2}, bypassed by $2 \mu \mathrm{f}$, gives degeneration at very low frequencies, so that amplifier drift over long periods is reduced.

Power Supplies

Regulated positive and negative supplies are provided from a separate unit of conventional design. The high voltage supply for the crt, however, comprises a special r-f oscillator (Fig. 9) powered from the $50-\mathrm{cps}$ supply line and employing self-rectification, so that no d-c supply is required. The oscillator tube, a 6 V 6 , acts as its own half-wave power rectifier. Negative voltage may be continuously varied from -2.5 kv to -4 kv by adjustment of the oscillator gridleak resistance.

Credit

This apparatus was developed at Standard Telecommunication Laboratories Ltd., London, England. Thanks are due to J. K. Webb and T. R. Scott for much helpful advice.

FIG. 7-Horizontal deflection amplifier responds only to low-frequency $f_{2 r}$ is directcoupled. Miniature pentodes are used (Brimar 8D3 or 6AK5)

FIG. 8-Vertical deflection amplifier includes an electronic integrator, responds to variable frequency f_{1}. Uses same tubes as horizontal amplifier

FIG. 9-Cathode ray tube circuit includes special r-f oscillator (6V6) which supplies continuously variable -2.5 to -4.0 kv high voltage

References

(1) G. W. Elmen, Bell System Tech. J., 5, p $113,1936$.
(2) H. T. Wilhelm, Bell Lab Record, 14, No. $4,1935$.
(3) R. L. Sanford, Am. Soc. Test. Materials, A34-44, 1, p $679,1944$.
(4) G. M. Ettinger, "The Dynamic Testing of Magnetic Materials Under Con-
ditions of DC and AC Bids," Master's Thesis, Univ. of London, 1950 .
(5) I. A. Greenwood, V. V. Holdam, D. MacRae, "Electronic Instruments," MIT Rad, Lab Series, 21, p 80, McGraw-
Hill, New York, 1948.
(6) G. M. Fttinger, Jour. of App. Phys. 21, p 936, 1950 ; O. I. Butler, Jour. I E E, London, Pt II, 94, p 27, 1947 i H. W. W. Lamson, Proc. IRE, 36, p 266. 1948; J. H.

Constant-Current

Audio Power Amplifiers

Abstract

Design procedure and complete circuit of new audio amplifier in which constant-current operation permits use of a form of automatic bias control to counteract effects of tube aging or tube replacment, giving reliability along with high fidelity

THE TRIODE class-A push-pull amplifier is still one of the fundamental types of low-frequency power amplifiers, despite the fact that many other types of power amplifiers are available to the designer.

Getting the most from this amplifier involves more than the simple consideration of power output per dollar of tube cost. In addition to power capability and efficiency, distortion, noise, reliability and maintenance problems should all be taken into account, since all these are vital aspects of the performance of the completed amplifier. This paper discusses two types of class-A triode power amplifiers and analyzes their performance with regard to all these factors.

Optimum and Constant-Current Amplifiers

There are two fundamental types of class-A triode push-pull operation, one employing high peak currents and low load impedances for optimum operation, and the other employing lower peak currents and much higher load impedances. This distinction does not seem to have been made previously; for lack of better terminology, the two modes of operation are here called optimum operation and constant-current operation.

In optimum operation the plate-to-plate load obeys the familiar relationship $R_{L}=4 r_{p}$. Optimum operation will provide the greatest output that can be obtained with

FIG. 1-Typical characteristics of triodeconnected 807's, with load lines for both types of operation shown for comparison
given tubes and supply voltages, provided the operating conditions do not change with signal. In practice, there is usually a sharp increase in d-c plate current at maximum signal, so that extremely good power-supply regulation is required to maintain operating voltages truly constant. Since power-supply regulation is not usually this good, the conditions for optimum operation are seldom fully realized.

On the other hand, constant-current operation is characterized by little or no change in d-c plate current as the signal goes from zero to maximum. This condition may be obtained by proper proportioning of load resistance and supply voltage. With constant-current operation the variation in power-supply loading will be negligible, and the operating point will remain substantially constant no matter how poor the regulation of the supply may be.

Figure 1 shows the plate characteristics for triode-connected 807's,
to illustrate these points, Load lines are shown for both optimum ($2,500 \mathrm{ohms}$) and constant-current (12,000 ohms) conditions. The solid line indicates class- A_{1} operation, with signal swing up to the gridcurrent point in each case. Class- A_{2} operation is indicated by the continuation of the load lines up to the +15 -volt grid line. This additional swing represents an increase of 3 db -a factor of two in power.

For optimum operation the peak current is some five times the quiescent current and the d-c plate current at maximum signal will be almost twice that for no signal. (The quiescent point is designated by Q and the peak plate current points by I for class A_{2} in Fig. 1.) For constant-current operation the peak current is much less, and the total change in d-c plate current can be held to well under 10 percent.

Comparison of Output

The power output and plate efficiencies for the operating conditions of Fig. 1 are shown in Table I. There is a loss in power of about 40 percent when going from optimum to constant-current operation. The figures for optimum operation can only be fully realized in a system incorporating fixed bias and an electronically-regulated plate supply.

The conventional choke-input power supply may have an effective internal resistance of several hundred ohms. With the increase of plate current with signal which

By HOWARD T, STERLING
Waveforms, President New York, N. Y.

and

ALAN SOBEL

Project Electronic Engineer Freed Radio Corp., New York, N. Y.

Example of audio amplifier using con-stant-current operation of output stage

is typical of optimum operation, the resulting drop in supply voltage would cut these output power figures by 20 percent hence the difference between optimum and con-stant-current efficiencies is only about 25 percent in practice.

For class-A: operation the efficiency figures for the two modes of operation are not only relatively high (about 63 percent), but remarkably similar.

The principal disadvantages of constant-current operation, as opposed to optimum, are the lower output available from given tubes and, for class- A_{1} operation, the lower efficiency. One of the principal advantages is the fact that power-supply regulation becomes much less of a problem, since the change in plate current from nosignal to full-signal conditions can be well under 10 percent. A higherimpedance, less-expensive power supply can thus be used.

Table I-Comparative Output and Efficiency Values

Conditions and Load Resistance		$\begin{aligned} & \text { Power } \\ & \text { Output } \\ & \text { in } \\ & \text { Watts } \end{aligned}$	$\begin{aligned} & \text { Percent } \\ & \text { Effl- } \\ & \text { ciency } \end{aligned}$
Optimum-2,500ohms, push-pull	A_{1}	14.5	39
	A_{2}	30	65
Constant-current 12,000 ohms push-pull	A_{1}	8.5	30
	A.2	18	62

Since the d-c plate current changes so little, it is possible to introduce d-c degeneration into the system to minimize variations in tube operating conditions. Cathode bias is unfeasible for true optimum operation; tube-handbook operating conditions for cathode bias usually show higher plate-to-plate load impedances so as to limit the peak plate current and hence the change in d-c plate current with signal. These figures usually do not go as far as constant-current operation.

If cathode bias is to be used, it is most effective if individual cathode resistors are used for each tube. If this is not done, the operating conditions of one tube are affected by the operating conditions of the other.

Automatic Balancing

With individually bypassed cathode resistors, bias of each tube is a function of its plate current alone, and is not affected by the other output tubes. By making the amount of this d-c inverse feedback great enough, the effect of a change in perveance or transconductance is significantly reduced. The larger the proportion of the total platecircuit resistance in the cathode, the more degeneration, and hence the smaller the changes in operating conditions with change in tube characteristics.

The result of this is to make the provision of special plate-current balancing arrangements and periodic checks of plate current quite
unnecessary. As an example, in the amplifier described here, using $1,000-\mathrm{ohm}$ cathode resistors for each power tube, a departure from normal current is reduced by about 80 percent. In a tube where plate current would otherwise be high or low by 20 ma , this form of automatic bias control will reduce the error to 4 ma , or a total unbalance of about 4 percent. For tubes more nearly normal this error will be reduced still further.

Efficiency and Reliability

Class-A operation is the least efficient of all power-amplifier types, and constant-eurrent operation is somewhat less efficient than optimum operation. However, plate-circuit efficiency is, for almost all applications, one of the least important factors in determining an amplifier's utility.

In a typical audio amplifier, the output power represents from onefifth to one-half of the power drawn from the line. The rest of the input power goes to heat filaments and supply power to the driver and preamplifier stages which are part of any audio amplifier system. Unless line power is very expensive, it can make little difference whether a 50 watt amplifier requires 175 watts or 135 watts of line power. Furthermore, where line power is expensive, amplifier reliability is also usually at a premium, and the greater reliability of constant-current class-A operation, due to the lower plate-current demand, may

FIG. 2-Complete circuit of amplifier and its power supply. For unbalanced input either grid may be grounded, as indicated for one grid by dashed line. Amperite timedelay relay keeps high voltage off input capacitor of filter until tubes are drawing current
more than outweigh the greater efficiency of a class-B output stage.

Most engineers will agree that in the present state of the art all good amplifiers sound alike. In fact, amplifier design has progressed to the point where presence, the muchdesired feeling of realism in the performance of a music reproduction system, is mostly a function of the transducers employed. The contribution of the amplifier to the overall distortion of the system can be made essentially negligible.

In effect, absence-the lack of audible indication of the presence of the amplifier-may well be taken as the definition of a good amplifier. The amplifier contribution to system noise and distortion should be so much less than that of any other component that it can be ignored. Once this point has been reached, further improvement will not result in more pleasing sound, however
impressive it may be as an engineering achievement.

Another aspect of absence is reliability. Performance of the sort we require should be achievable with a minimum of maintenancea criterion which is desirable for laboratory work but mandatory for field use. Absence, then, should imply not only the elimination of artificiality or audible distortion in the reproduced program, but absence of maintenance worries as well.

Specific Amplifier Design

The amplifier circuit presented here was designed with the foregoing criteria firmly in mind. Performance is fully abreast of the present state of the art, but no compromise has been made with longterm reliability. In addition, sufficient flexibility has been built in to accommodate most types of program sources and it will perform
well under a reasonable variety of load impedances.

Figure 2 shows the basic circuit of the amplifier. Push-pull parallel 5881's are used, with the screens connected for ultra-linear operation. The General Radio type 942-A toroidal output transformer provides a suitable winding configuration for the required impedance relationships. Operation is substantially constant-current, with individual 1,000 -ohm resistors in each cathode for d-c degeneration.

Since the output stage is to operate well into the grid-current region, the source of driving voltage must offer a very low resistance. In addition, the usual grid-current problems must be considered.

Grid-Current Considerations

There are three principal types of grid current which must be considered in a power amplifier. The first
is conduction current, which occurs when the grid is driven positive with respect to the cathode. The second is emission current, either directly from the grid because of high grid temperature, or as secondary emission due to bombardment by electrons from the cathode (and promoted by the deposit of cathode material on the grid as the tube ages). The third is gas current, resulting from positive ions in the tube.

Gas current and emission current may result from improper operation, tube defects or tube aging. These currents are of such a nature as to develop a positive voltage across any resistance appearing in the grid circuit. Such a voltage will reduce the effective bias on the tube, causing higher plate current which in turn causes higher grid current. The vicious circle thus established will generally bring the career of the tube to an abrupt and untimely end. The obvious cure, or at least palliative, for this trouble is to keep the d-c resistance in the grid circuit at an absolute minimum.

Cathode followers as drivers, di-rect-coupled to the output-tube grids, fill this requirement, and at the same time provide a low-impedance source of the current required to drive the output grids positive without peak clipping. The d-c resistance in the grid circuit is very low, being essentially the reciprocal of the cathode-follower transconductance. Further, there is no series coupling capacitor to charge up during peaks and then block the output stage while it discharges through a large grid-return resistor.

Design of the cathode followers is conventional, except in the choice of high-perveance tubes and low operating voltages. These drivers are called upon to deliver a peak current of the order of 40 ma . (As an example, in Fig. 1 the gridcurrent characteristics for con-stant-current operation of 807 's are shown. The peak grid current of 20 ma at +15 volts represents an equivalent shunt resistance of about 750 ohms.) When the output-tube grid goes positive, the path of driver plate-current flow is from the +150 -volt line through the cathode
follower, and thence through the grid-cathode path of the power tube to ground. The high peak value of this current flow calls for fairly good regulation of the +150 -volt line.

The cathode impedance of the drivers must be low, particularly when the 5881's draw grid current. The 12B4's used in this amplifier may be operated at reasonable quiescent current in such a way that the transconductance rises sharply at the point where it is needed.

The peak current capability of the 12 B 4 is about 100 ma , more than twice the 40 ma required. The driver impedance is lowered still further and distortion in the voltage amplifiers minimized by feedback taken to the 12AX7 cathodes.

Voltage Amplifiers

The remainder of the amplifier is more conventional. The last voltage amplifier stage, uses 6AK6's, triode-connected. These tubes, which have recently been added to the Armed Services Preferred List, are excellent for many audio applications. Hum, noise and microphonics are low, and they are linear both as triodes and as pentodes. In this application they are used as low-mu triodes; they are more linear than any of the miniature dual triodes, and draw only half the heater current (150 ma per tube) of the others.

The input stage for the basic amplifier is a 12AX7. Balanced feedback is taken from the voice coil through the cathode-bias resistors to the cathodes, and feedback is also brought from the driver cathodes. Additional feedback is brought from the plates of the output tubes to reduce the amplifier impedance seen by the transformer, and further to reduce the low-frequency distortion. While some phasing is used in these feedback paths, use of feedback over a balanced system eliminates the problems of differential phase shifts encountered when the phase inverter is included in the feedback loop.

About 30 db of feedback is used over the power amplifier, in addition to some 10 db from the drivers. This provides a damping factor of over 100 . The amplifier is stable with feedback for any load imped-
ance, resistive, reactive or opencircuit.

An amplifier which is stable with considerable feedback when connected to a resistive load may oscillate uncontrollably when the load is open-circuited, since under opencircuit conditions the transformer stray reactances may play a rather surprising role. Similarly, the phase shifts which occur when the amplifier is connected to an inductive load, like a loudspeaker, may be such as to produce oscillation. It is therefore a wise precaution to check a completed amplifier by operating it into an open circuit.

The input voltage required to drive the basic amplifier to 50 watts will be of the order of 30 volts grid-to-grid. This is easily supplied by a phase inverter using cascaded long-tailed pairs, with feedback from the output plates to the input cathodes. The net gain of this arrangement is such as to give a sensitivity of about one volt at the amplifier input, although this can be adjusted by changing the feedback in the phase inverter. Either grid may be grounded if the input signal is unbalanced, or both may be used if balanced operation is required. An octal socket is provided in the input circuit so that this may be done without the necessity of wiring changes in the amplifier. Alternatively, a plug-in preamplifier, an input transformer or some other network may be plugged into this socket.

This type of phase inverter represents a definite improvement in reliability over the direct-coupled cathodyne arrangement in general use today. In the direct-coupled configuration the operating points are interdependent, and with tube aging the phase inverter grid may be carried positive, resulting in serious distortion. With the balanced system shown here, wide variations in individual tube characteristics will actually have very little effect.

Bibliography

D. Hafler and H. I. Keroes, An UltraLinear Amplifier, Audio Eng. p 15, Nov 1951.
H. T. Sterling, Tube Applications in Amplifier Design, Radio and Tel. News, Eng. Ed., p 14 A, May 1951.
Note: Acknowledgement is made to Ray Prohaska for his definition of audio aniplifier presence.

Improved-design recording tube gives long storage time despite repeated playbacks. Electron lens between anode and first screen avoids performance limitations of earlier-model tube

Single-Gun Storage Tube

Improved recording tubes retain charge up to one week; 27,000 read-outs cause only slight blemish on pattern. Applications may include study of fast transients, improved ppi radar display, frequency conversion, computer storage and trans-Atlantic tv via high-fidelity telephone circuits

FIG. 1-Limitations placed upon earlier-model tube (A) are avoided by electron lens used in improved model

WHERE INFORMATION must be recorded at the rate of one microsecond per bit or faster, mechanical storage methods become impractical and are replaced by electronic devices. The advantage of electron-beam storage devices comes from the rapidity with which a cathode-ray beam can be deflected across a storage target. This storage target is an insulating surface on which a charge may be deposited without affecting adjacent or nearby surfaces. To store coherent information on this surface, either the electron beam is modulated or the characteristics of the storage target varied so that, as the beam is deflected across the target, a meaningful charge pattern will be formed. A storage tube also

This article is based on a paper delivered at the 1952 National Electronics Conference. The conference paper will appear
in the $N E C$ Proceedings.

Recording tube finds application both in television and radar. Photograph of monitor tube (left) shows read-out of a stored television picture. Radar ppi display (right) was written continuously for ten minutes. Trails show paths of aircraft

Writes, Reads and Erases

By R. C. HERGENROTHER and A. S. LUFTMAN
Raytheon Manufacturing Company
Waltham, Mass.

incorporates means for reading-out or retransmitting information contained in the charge pattern.

Examples of such storage tubes are the Graphicon ${ }^{1}$, Radechron ${ }^{2}$, Haeff Memory Tube ${ }^{3}$, and Recording Tube'. These differ basically as to the number of voltage levels that can be stored, magnitude of output, rate at which operations can be performed and number of information elements or bits that can be stored.

Storage devices introduce several new degrees of freedom into a communications system. By their use, a retransmitted signal can be made to differ from the original one in time scale; that is, all frequencies in the signal may be increased or decreased from the original by a given ratio. Also, the time sequence of information can be changed by reading out the recording device in a mode different from that used for writing the information in.

The storage tube shown in the
photograph has been designed to store information accurately for a period in excess of ten minutes and to provide many playbacks without loss of recorded information. It has also been designed to store as many elements or bits as possible and to provide a continuous dynamic recording range.

To obtain repeated playbacks and dynamic range, reading is effected by an electron beam that does not come in direct contact with the stored charge. The beam becomes amplitude modulated by passing through the fine-mesh screen containing the charge pattern. This permits the tube to maintain half tones and to be read an almost unlimited number of times without disturbing stored signals.

To obtain high resolution it was necessary to use a small wellfocused electron beam for writing and reading. A fine-mesh screen having a half dozen or more openings within the area of the electron
spot and a high transmission coefficient also was required.

To obtain high writing and erasing speeds current density in the focused electron spot had to be high. Various compromises, such as between spot size and current density, determined the final design of the tube.

Tube Performance

The recording tube is especially useful for storing transients and allowing them to be studied for long periods. Recorded waveforms may range in speed from servomechanism response curves requiring seconds or minutes to complete a cycle to one-me r-f oscillations.

Writing speed of the tube is sufficient to permit storage of one frame of a television broadcast or tube voltages may be adjusted to permit cumulative writing for many frames. The photograph at the left shows a television picture stored for five frames and read out
continuously during photographing. The picture has tonal quality and detail comparable to the received television picture. Some definition is often lost during a multiframe exposure because of motion of the camera or picture elements.

Trans-Atlantic TV

Since reading speed does not influence the tube, pictures may be stored at any rate up to 0.12 microseconds per storage element and read out with either faster or slower sweep. This permits the tube to be used for frequency conversion. For example, a stored signal containing frequencies up to three mc. if read out at $1 / 200$ writing speed, will have a maximum frequency component of $15-\mathrm{kc}$. The $15-\mathrm{kc}$ signal can then be transmitted over high-fidelity telephone circuits and stored on a second recording tube at the receiver. This signal can be read olit at two hundred times writing speed and reconverted to the original three-me signal.

Frequency conversion by timescale exparision has been suggested for trans-Atlantic television using high-fidelity telephone circuits. Received pictures will be stills changing at the rate of one every 10 seconds, but presumably this will not be objectionable to audiences if the pictures are played continuously for the 10 -second period with a steady accompanying commentary.

Radar Applications

The tube has several applications in connection with radar ppi displays. A ppi display stored for a complete revolution of the antenna will be seen as a picture with uniform brightness, in contrast to the usual display that fades behind the beam trace. If desired, the stored display may be read continuously for a long period of time.

If several complete rotations are stored, moving targets will produce a trace the length of which is proportional to their relative speed. The photograph at the right shows the result of writing a 25 -milerange ppi signal into the storage tube for 10 minutes. The stored signal was read with raster scan and photographed. Paths of aircraft flying in and out of Boston Inter-

Monitor output shows effect of continuous reading. Test pattern (left) is shown after 1,800 read-outs. Same pattern (right) shows bright spot near center after 27,000 consecutive read-outs
national Airport are clearly indicated.

Retarding Field

An earlier model storage tube is shown in Fig. 1A. This is a magnetically-focused and deflected cathode-ray tube with triode gun designed to give a small focused spot. The electrodes at the front of the tube are the collector-reflector and storage screen. The large potential difference between anode shield and storage screen causes a

FIG. 2-Refractive effects of deceleration field limit anode voltage and deflection angle in earlier-model tube

FIG. 3-Electron beam action during writing (\AA) and reading
retarding field. This retarding field is a uniform electric field produced between parallel planes comprising the first screen and storage screen.

The use of a uniform electric field for retarding the beam from anode voltage to storage screen voltage resulted in several design and operational limitations. When, because of scanning deflection, the electron beam enters the retarding field at an angle, the component of beam velocity in the direction of the electric field is less than total beam velocity. This limits maximum useable deflection angle for a given ratio of storage-screen voltage to anode voltage. Figure 2 shows how electron trajectories are affected by the angle of incidence and how the beam is reflected at too high an incidence angle.

Deceleration Lens

Refractive effects produced by the uniform deceleration field are avoided if the deflected electron beam strikes perpendicular to the first screen. This requires an electron lens between the anode and first screen. If the focal point of this lens is located at the center of deflection of the electron beam and the storage screen located in the corresponding principal plane, the electron beam will strike the first screen perpendicularly for all deflection angles. Such an electron lens is used in the present recording tube shown in Fig. 1B. The required electric field for this lens is produced by lowering the first-screen potential to 300 volts. This electron lens removes previous restrictions on anode voltage and deflection angle and permits operation of the electron gun at anode volt-

FIG. 4-Recording tube electrode potentials for reading, writing and erasing
ages of three or four kv with improved electron-gun performance.

Writing and Reading

Information is written onto the storage material as shown in Fig. 3A. A signal-modulated electron beam is sent through the storage screen and reflected by negative voltage on the collector-reflector onto the reverse or coated side of the screen. Since, during the writing operation, storage-screen potential is greater than the critical potential of the storage surface, the secondary emission ratio is greater than unity and a positive electric charge is built up dependent upon the current density of the electron beam and its speed of motion across the screen. Since the charge formed is proportional to beam current density, it is possible to vary the quantity of charge from point to point on the scan by modulating this current. The electrode potentials for writing, erasing and reading are diagrammed in Fig. 4.

To read out stored information, storage screen voltage is dropped to such a level as to make uncharged areas of the screen have a negative voltage sufficient to cut off an electron beam aimed at
them. The storage screen is then scanned with a constant-current electron beam. The percentage of beam current passing through an area is proportional to the charge in that area. As shown in Fig. 3B, the collector-reflector now has a positive potential to attract electrons passing through the screen. The signal output is developed across the load resistor in series with the collector. When the read and write scans are in register on the storage surface, the beam reaching the collector will be modulated with a signal proportional to that previously written onto the screen.

FIG. 5-Recording-tube output measuring resolving power showing vertical trace of storage tube (A) and a four-toone expansion of part of the trace

The number of elements that can be stored in a storage tube is stated in terms of the tube's resolving power. This can be measured by writing a tv resolving-power chart into the tube and reading the stored image on a monitor. Resolution can then be judged from the monitor picture.

Measuring Resolution

A more accurate method is to write a single-field constant-intensity raster into the tube using a uniform sawtooth horizontal sweep and an exponential vertical sweep. The resultant stored raster will have horizontal lines compressed at one edge and spread apart at the other. If the tube is read out using a single-line vertical sweep and the output signal displayed on a synchronized oscilloscope, resolving power can accurately be determined by measuring the minimum spacing between adjacent lines showing 50 percent modulation. Recording tube resolution measured in this way gives 200 lines across the screen diameter for 50 percent modulation. This is 400 total lines of alternate white and black as measured on a tv resolving-power chart. Figure 5 illustrates this measurement.

Half-Tone Shades

The number of half-tone shades that can be distinguished in the output of a storage tube can be determined by using a one-field write of a television raster with a linearly decreasing beam current as the spot scans from the top to the bottom of the screen. The tube is then read out using a single-line vertical trace and the output signal viewed on a synchronized oscilloscope as was done in the resolution test. Oscillograms of the output traces obtained are shown in Fig. 6.

Writing and Erasing Speed

No accurate method of measuring writing speed has been developed. However, since a single frame of a television picture can be written to 100 percent modulation with 400 -line resolution, maximum writing speed is in excess of 0.12 microsecond per storage element or 48 microseconds per line.

Accurate erasing-speed measurements have not been made. Tests
indicate that the time for total erasure is in the order of 1.5 mi croseconds per storage element.

Repeat Readings

The tube will retain a stored picture for a period of up to one week with no noticeable deterioration if the tube is turned off during the waiting period.

Repeated readings at the television rate of 30 frames per second were taken on a stored resolution chart. The photograph at the left was taken 1,800 readings after the chart was stored. The unit was then left reading continuously for 15 minutes (27,000 readings). The photograph at the right shows the only change is the formation of a light spot near the number 45 . The loss of signal through reading can only be produced by positive ions that are attracted to the negativelycharged storage surface. The erasing effect of positive ions is proportional to reading-beam current and residual gas pressure in the tube. It can be reduced by improving tube vacuum.

Noise

If noise is defined as any undesired signal, there are two different types of noise that originate in the tube. One type is random noise that comprises both shot noise originating in the electron beam and partition noise caused by the beam passing through the screens. Since the beam current is about 10 microamperes for both reading and writing beams, the theoretical signal-to-noise ratio for this type of noise is very high (of the order of 10^{5}) and this noise is not detectable in the output signal.

The other type of noise is fixedpattern noise, produced by defects

FIG. 6-Recording tube output measuring half-tone shades. White level is shown at (A), black level at (C); (B) is a sawtooth signal ranging from black to white
in the storage screen. These defects include plugged holes and enlarged holes occuring in the original mesh used for making the storage screens. These defects are few in number and small and can be eliminated by improving the metalscreen manufacturing technique. The electron spot covers about eight normal screen holes so the mesh of the screen itself is not resolved and produces no additional fixed-pattern noise.

Integration

Use of storage devices to integrate repetitive signals mixed with random noise and thus improve signal-to-noise ratio has been studied by several investigators. ${ }^{\text {s }}$ An ideal storage device would improve the signal-to-noise ratio by a factor equal to the square root of the number of signal repetitions. This improvement results from the random character of the noise as opposed to the fixed character of

Integration of repeated signals mixed with random noise. Pattern written for one frame (left) is much improved after 20 frames despite one-to-one signal-to-noise ratio
the desired signal. In the recording tube, any signal will build up charge on the storage element but, with repeated integrations, the random characteristics of noise will result in only small differential variations in noise signal across the storage surface. The repetitive signal, on the other hand, will additively build up variations across the storage surface. In reading out the signal from the recording tube, background charge produced by noise can be suppressed by adjusting storage-screen potential so that only residual differential variations in integrated noise appear.

The effect of integration was tested using as a signal a standard television resolving-power chart with superposed random noise frequencies up to 500 kc at approximately unity signal-to-noise ratio. The photograph at the left shows the recording tube output when one frame of this signal was stored. The same figure was then written into the recording tube for 20 successive frames. The photograph at the right shows the noise integration effects that had been predicted.

The recording storage tube is a reliable, compact tube adapted to production. It is presently in pilot production and is being studied for use in commercial and military applications. Design modifications to reduce tube size or to make it a two-gun tube capable of simultaneous reading and writing are feasible if needed. Further development to increase erasing speed is also being considered.

Acknowledgments

The authors wish to express their gratitude to John Buckbee who developed the circuits for the various tests and to William Whynot, assistant project engineer.

References

(1) L. Pensak, The Graphechon-A Picture Storage Tube, RCA Rev, 10, p 59 , March 1949.
(2) A. S. Jensen, J. P. Smith, M. H. Mesner and L. E. Flory, Barrier-Grid Tube and Its Operation, RCA Rev, 9, p 112, March 1948.
(3) A. V. Haeff, A Memory Tube, ElecTRONICS, 20, p 80, Sept. 1947.
(4) R. C. Hergenrother and B. C. Gardner. The Recording Storage Tube, Proc. IRE, 38, No. 7, July 1950.
(5) J. V. Harrington and T. F. Rogers, Signal-to-noise Improvement Through Integration in a Storage Tube, Proc. IRE, 38, No. 10, Oct. 1950

Performance of HighOutput Magnetic Tape

Newest recording tape gives 6 -db greater signal output than standard American tapes, without an increase in noise level. Alternatively, recording equipment designers may use extra gain to boost signal-to-noise level, reduce tape speed or reduce tape track width

By L. B. LUECK and W. W. WETZEL
Minmesota Mining and Manufacturing Co. St. Paul, Minnesota

RECENT advances in the formulation of magnetic materials have produced a marked increase in magnetic remanence of the oxide used for magnetic recording tape. This results in a gain of approximately 6 db in signal output over that of standard American tapes. The gain is achieved with no increase in noise level, thereby giving a definite improvement in signal-to-noise ratio.

Hysteresis Curves

A comparison of the hysteresis curves of the new tape with that of two older tapes shows marked differences in their characteristics, particularly in the remanence values. Figure 1 shows secondquadrant plots of $\mathrm{B}-\mathrm{H}$ as a function of H for the early German type L
tape, standard American tape as represented by "Scotch" Brand No. 111 magnetic recording tape, and the new recording tape known as "Scotch" Brand No. 120 high-output tape. The data for these plots were obtained on a 60 -cps hysteresis loop tester operated at a peak field of 1,500 oersteds, which carries the tapes well into saturation.

The remanence value B_{r} may be read from the curves at the point $H=0$. The intrinsic coercivity H_{i} is read from the plots as the value of H at the point where $B-H=0$.

The true coercivity H_{c}, which represents the value of the field H where $B=0$, is the more significant term since $H_{\text {tc }}$ is a function of the remanence of the magnetic naterial; H_{0} may be read from the H axis at a point where a line of unit slope intersects the hysteresis
curve. These values are given in Fig. 1 for each of the three curves.
An increase in H_{c} from 50 to 220 oersteds is accompanied, as may be expected, by an increase in remanence from 100 to 500 gausses when the German and standard American tapes are compared. The increase from 500 to 1,100 gausses, although accompanied by a slight increase in the value of H_{o} between the standard high-output American tapes, does not entirely account for the factor of 2.2 increase in B. This increase is associated with a fundamental change in the nature of the magnetic material employed.

The output of a tape, at recorded wavelengths which are long compared with the thickness of the magnetic coating, is a function of the a-c bias field, the gap width used in the recording heads and the

FIG. 3-Frequency response curves, recorded at constant current
remanence of the tape. Other factors remaining equal, the tape with the highest remanence value may be expected to have the highest output. At wavelengths which approach the coating thickness of a tape the remanence and coercivity influence the output, other factors remaining fixed. It has generally been assumed that higher-coercivity material forms tape with the better relative high-frequency response.

On the basis of the B_{r} and H_{0} values given in Fig. 1, both the lowfrequency output and the relative high-frequency response should improve as remanence is increased.

Bias Requirements

If a tape is recorded with a lowfrequency signal of fixed input and the output is studied as a function of the a-c bias current, an optimum value of bias may be selected for the maximum low-f requency ouput. The optimum bias for greatest highfrequency output is somewhat lower than the above value but machine manufacturers do not universally select a compromise current between these two settings. At progressively higher bias currents than the optimum for low frequencies the high-frequency output declines at a more rapid rate than that for the lows. However, at the higher bias values a gain in uniformity of output is obtained. Some manufacturers prefer the uniformity feature and choose to operate at high bias currents.

Figure 2 shows curves of lowfrequency output as a function of bias for the three tape constructions under consideration. While No. 111 and No. 120 tapes peak at nearly the same bias current, type L requires a considerably higher current to reach its maximum.

Figure 3 illustrates the output obtained from the three tapes as a function of frequency under unequalized record and playback conditions. For comparison purposes the record conditions are chosen to be those of optimum bias as selected from the curves of Fig. 4. Constantcurrent recording is used, with the current fixed at that required to give 1 -percent 3 rd harmonic distortion at 400 cps . The playback was measured using flat amplifiers. The
tape speed during the measurements was 7.5 inches per second.

The impregnated type L tape at the lower frequencies has an output about 8 db lower than No. 111, which in turn is about 6 db below that of No. 120. At the higher frequencies, type L output falls off rapidly while the other two tapes maintain essentially constant level differences of 6 db .
The bias currents for type L, No. 111 and No. 120 tapes were chosen as $10.5,8.5$ and 7.6 units on an arbitrary scale. While a somewhat better ratio of high- to low-frequency output may be obtained by a reduction of bias for the type L tape, this will be had partially at the expense of low-frequency output, as may be seen in Fig. 2. The flatter frequency response of the American when compared with the old German tapes may be attributed to the marked increase in coercivity of the latter over type L tapes. The small differences in either H_{c} or $H_{i c}$ for the two American tapes are apparently insignificant in their influence on the frequency response.

Distortion

As magnetic tapes approach saturation during the recording process, they also approach higher distortion values. In a suitably adjusted recorder which contains neither d-c components of magnetization nor equivalent even-harmonic distortion in the bias field, only odd harmonic components are found in the signal output and the third-harmonic distortion component predominates. For simplicity, the third harmonic may be taken as a good first approximation to the total harmonic distortion.

Figure 4 shows output vs third harmonic distortion at 400 cps for the three tapes. These results were taken at the bias values and tape speed used to obtain the curves of Fig. 3. Within the accuracy of the determination the curves maintain essentially equal output level differences over the distortion range. This shows that each tape approaches saturation with approximately equal grace as far as distortion is concerned.

While exhaustive tests have not been made on layer-to-layer trans-

FIG. 4-Harmonic distortion, showing similarity of curve shapes
fer of signal for the high-output tape, there appears to be no essential difference between the signal-to-print level in the two modern constructions. The time and temperature effects on transfer appear identical, as do the absolute level of both the erased noise and the modulation noise. Signal transfer is apparent more frequently in the new construction than it was in the case of present standard tapes. This is to be expected from the increased recorded flux associated with a given distortion.

The memory effect is a descriptive name for the partial recovery of level in an erased recording when it is subjected to a bias field. All oxides have this memory of prior states of magnetization to varying degrees. Black oxides are the worst offenders in this respect. The degree of memory associated with a properly formulated magnetic material is so small that it can be detected only through the use of filters which pass the frequency used in the test and suppress the major portion of the masking noise spectrum. The new high-output tape has no detectable memory effect under normal conditions.

The new tape does not show a measurable change in erase current requirements as a function of the time a signal has remained recorded. This increase with time in the difficulty of erase has been reported only in the case of certain forms of $\mathrm{Fe}_{3} \mathrm{O}_{4}$.

General Considerations

High-output tape cannot be expected to exhibit its inherent 6 -db

FIG. 5-Sensitivity plots, showing increased output of new type
higher output on any recording machine without machine alterations. While a portion of the increase may be attributed to a higher recording sensitivity (where sensitivity is expressed as the ratio of output to input), a second portion is due to the fact that the input may be increased somewhat without attaining higher distortion.

Figure 5 shows curves of input vs output for the two modern tapes as determined on a professional type recorder. The bias values were chosen as optimum for each tape. It can be seen that a difference of approximately 4 db in output results at any given value of input.
Figure 6, which shows curves of input plotted as a function of distortion, illustrates the fact that to develop the same degree of distortion in the signal output, No. 120 tape requires a somewhat higher input than No. 111.

Figures 2, 5 and 6 illustrate the necessity for choosing the proper bias and recording levels in order that a given piece of equipment develop the full benefits of highoutput tape.

Manufacturing Problems

The coercivity of iron oxides and hence the signal output may be enhanced by including minor percentages of impurities in the oxide crystals, introducing physical strains in the crystal lattice, and choosing a crystal habit which exhibits a desirable degree of shape anisotropy. All three means are deliberately employed in the manufacture of oxides commonly used on

FIG. 6-Distortion curves, showing that new tape will take higher input
magnetic tapes made in this country.

In addition to the increase in output which may be associated with increased remanence of American oxides, the frequency response is enhanced, since the ability of a tape to retain magnetization for very short wavelengths generally improves with an increase in coercivity.

Backing Film

Excellent cellulose acetate film is available in this country and has been used as the supporting backing for the majority of tapes. This permits the use of a magnetic coating containing a high percentage of oxide, to form a magnetically active layer which in itself has a relatively low tensile strength. It is common practice to formulate the coating dispersion with the oxide concentration of from two to four parts of oxide to one part of a resinous binder. This additional oxide loading, taken together with the improved remanence of the oxide, accounts for the increase in signal output of present American over the early German tapes.

Type L tape was made from a calendered film and suffered from the inherent difficulty of caliper variation associated with this process. The best commercial practice in calendering produces films with a thickness tolerance of ± 10 percent. This represents a variation in signal output of $\pm 1 \mathrm{db}$, if the film is made from a magnetic dispersion. This caliper difficulty is reflected in type L tapes where variations of $\pm 1.5 \mathrm{db}$ from
roll to roll were found. Within a roll the output variations were smaller, amounting to $\pm \frac{1}{2} \mathrm{db}$.

Coating techniques developed in this country are consistently producing tapes which vary less than $\pm \frac{1}{} \mathrm{db}$ within a roll and which are uniform from roll to roll to within $\pm \frac{1}{2} \mathrm{db}$. This means the coating thickness is maintained to less than ± 0.0000125 inch within a roll. The better uniformity represents a third improvement of American over early German tapes.

Tape Speed

The German Magnetophone recorder, using type L tape, had a flat response to 10 kc at a tape speed of 30 inches per second. The minimum recorded wavelength was, therefore, 0.003 inch. Through careful design of machines and by the use of the improved American tapes it is now possible to obtain professional type recordings with a flat response out to 15 kc at a tape speed of only 7.5 inches per second. This requires the tape to maintain wavelengths as short as 0.0005 inch. The economy involved in the lower speed is obvious. It is doubtful if magnetic recording of sound would have achieved a fraction of its present popularity if the 30 -inch-per-second velocity had not been reduced. As an example, satisfactory amateur recordings may now be made at a tape speed of $1 \frac{7}{8}$ inches per second.

Conclusions

The availability of a tape having an increase in output of approximately 6 db without deterioration in other characteristics should allow additional latitude to designers of magnetic recording equipment. Alternative ways in which the additional output may be employed are: To increase signal-to-noise level in recording equipment; to use narrower recording heads and recorded tape tracks to obtain output comparable with old tapes at a saving of tape area; to reduce tape speed through the use of greater pre-equalization of high frequencies and a lower record level without sacrifice of band width or output level; to design equipment having fewer electronic components.

A Helical Beam for

Mounted on relay tower, helical beam can be easily oriented by swivel brackets (shown in rear view on right). Coaxial foed finds natural termination in the helix itself

AHELICAL beam antenna capable of meeting the most rigid commercial requirements in the $450-\mathrm{mc}$ range has been made possible by recent advances in the field of fiberglass moldings. The helical beam, with its circular polarization, possesses added advantages of economy and strength, as well as high gain and bandwidth.

The corner reflector, a simple design, affords 8 to 10 db gain. The yagi has a slightly greater gain but suffers in bandwidth so that ice and snow may reduce its efficiency more than 50 percent. Parabolic antennas have high initial cost and require expensive highstrength towers. The helical beam antenna, now that production has been made practical, has none of these disadvantages.

Construction

A 16×16-in. solid aluminum plate (Fig. 1) is used for the ground plate. Molded integrally into a fiberglass radome-type cylindrical housing, the helix consists of a length of $\frac{3}{8}-\mathrm{in}$. copper braid. The radome is molded with a base flange which bolts directly to the ground plate.

A type N coaxial connector mounted at the center of the ground plate acts to terminate the cable and feed the helix. Since the

By EDWARD F. HARRIS

Chief Engineer
Mark Products Co. Chicago, Ill.
radome is sealed and closed on its far end and the flange affords a seal to the aluminum ground plate, the entire configuration is weatherproof. Swivel brackets mounted on the back of the aluminum plate allow for mounting to a tower leg and for orienting the helical beam.

Calculations of the stresses involved under conditions of $100-\mathrm{mph}$
wind velocity and $\frac{1}{2}-\mathrm{in}$. radial ice show that wind loading of the order of 40 pounds is experienced on the radome and the maximum stress on the base fibers of the housing at the flange is about 250 psi. Since the material is capable of stresses of the order of 30,000 psi, the safety factor is considerable.

Performance

Operation was checked in a helix-to-helix overall system, using iden-

FIG. 1-Six-turn 14-degree pitch helix of $3 / 8$-inch copper braid is molded integrally into cylinder. Base flange of radome bolts to aluminum ground plate

Citizen's Radio

With high gain and circular polarization, the helical beam antenna offers good bandwidth and pattern properties, plus good stress and ice loading safety. Radome is sealed and weatherproof. Helix designed at 450 mc stays unidirectional from 390 mc to 600 mc
tical receiving and transmitting helices. Figure 2 shows the measured radiation pattern of the receiving helix under these conditions of circular polarized transmission. Note the extremely smooth pattern and the total lack of any spurious lobes. Since all reflected radiations are of the opposite sense, the receiving helix does not respond to them and the pattern measured is more nearly the free space wave.

The helix configuration is essentially broad band, a property which makes for non-critical operation. To investigate the pattern bandwidth a helix-to-helix circuit was set up and patterns taken from 350 mc through 750 mc . Figure 3 shows the patterns as measured on an automatic polar recorder. Although the design frequency is 450 mc , the pattern stays unidirectional from 390 through 600 mc . Operation remains excellent well below 400 mc , so that this unit will find
application in government services around 410 mc as well as at other frequencies throughout its range.

It is desirable to design for such a pattern as is obtained at 600 mc ;

FIG. 2-Circular polarization of transmission as measured in a nelix-to-helix overall system
however if this were scaled to 450 me the unit would become too bulky for good commercial design. Now that a mechanically suitable design is available its properties could very well be extended to application in the $890-960 \mathrm{mc}$ region also.

Multiple Helices

Large increases in gain may be had by using several helices arrayed on a common ground plane. Four such elements mounted in a square will provide a nominal increase of 6 db over the single radiator and the assembly does not become unwieldy. A 4-helix array at both ends of the circuit will increase system gain on a repeater unit by 12 db , and still retain all the advantages of circular polarization. Four of the standard helical beam units described may be combined with the necessary ground-plane kit for such service and the feed remains straightforward and broad band.

FIG. 3-Pattern for helix designed at 450 mc stays unidirectional from 390 to 600 mc . Half power beam width at 390 mc is 53 degrees, at 600 mc is 38 degrees, representing a very high-gain mode of operation

Pulse Generator Has

Front panel of the instrument showing the various controls for repetition rate, pulse width and amplitude

AT THE REQUEST of the Zoological Department of the University of Cape Town, a stimulus generator was designed and constructed for physiological research. The apparatus produces rectangular pulses with a pulse repetition rate variable from one to $1,000 \mathrm{cps}$. The desired frequency can be set by turning of coarse and fine frequency dials.

Pulse width is variable from one to 100 milliseconds. Variation can again be obtained by setting two dials, the dial settings being additive.

Pulse amplitude is variable from zero to 20 volts. One dial is provided for volts and two dials for millivolts. The two millivolt dials are also additive, when the volt dial is on zero. When the volt dial is used, the millivolt dials are inoperative.

By setting the continuous-double switch, Fig. 1, to Continuous, a continuous series of pulses may be obtained. On DOUBLE, only two pulses are produced when setting the pulse switch to release. The circuit can be made ready for the next set of double pulses by setting this switch to RESET.

Operation of the instrument may be described by referring to the schematic diagram in Fig. 1. It consists essentially of a squarewave generator supplying pulses to an output circuit, via a gating circuit and three multivibrators (V_{5}, V_{7} and V_{8}). On continuous pulses, the gate is open and all pulses pass
on to the output of the device.
On double pulses, V_{5} is triggered by a negative signal obtained by differentiation (C_{1} and R_{2}) of the first pulse following the operation of the release switch. Tube V_{5} opens the gate immediately via the buffer stage and the next pulse from the generator passes along the direct line through the gate to the output stage. The output pulse is also applied to V_{7}. Tubes V_{7} and V_{8} constitute a scale-of-two and switch circuit which close the gate via the buffer stage after exactly two pulses have passed to the output.

Gas triode V_{1} together with its associated components produces a variable-frequency saw-tooth waveform. This signal is applied to the pulse-length modulator V_{2}. A rectangular waveform is obtained at V_{2} which can be varied in width by the capacitance range of C_{2}, actually consisting of 19 separate capacitors. The positive square pulses are then shaped by $V_{3 \Delta}$ and applied to a cathode follower V_{sB}. At the cathode of V_{sB}, square waves of approximately 30 volts peak-to-peak amplitude are developed.

Continuous Pulses

Pulses produced by the generator are applied to the gate and multivibrator V_{5} simultaneously. However, V_{5}, V_{τ} and V_{8} remain inoperative due to the high grid leak resistor (100 K) with the pulse switch open (RESET). With switch S_{1} set to CONTINUOUS, the suppressor grid of
gate tube V_{10} is at ground potential. This tube conducts and the pulses will pass on to the first half of V_{12}. The pulses are then inverted and applied to the output cathode follower, second half of V_{12}. Amplitude of the output signal is adjustable by means of preset potentiometer R_{3}. The attenuators give the required amplitude for the output signal.

With S_{1} open, the gate tube is at cut-off, as its suppressor is at -95 volts because of the current through V_{8}. With S_{2} at Release, V_{5}, V_{7} and V_{s} are all in operation. The first pulse after operating the release switch will now trigger V_{5}, applying a negative potential to the first grid of V_{8}. The decrease of anode current of V_{0} makes the suppressor of V_{10} more positive and the tube again conducts and the gate is open.

The next pulse from the generator now passes through the gate to the output. This output signal is also applied to V_{T}. The V_{7} stage, which constitutes a scale-of-two circuit, operates switch V_{8} after exactly two pulses have passed on to the output. The switching multivibrator V_{s} applies a positive signal to right-hand grid of V_{0}, which causes this tube to conduct and to close the gate V_{10} by increasing its suppressor voltage again to about -95 volts.

A neon indicator V_{13} gives a visual indication of the pulses, particularly at the lower pulse repetition rates.

Accuracy of the output attenu-

Wide Control Range

Rectangular-shaped pulses, either continuous or in pairs, are provided at repetition rates from one to $1,000 \mathrm{cps}$. Pulse width is variable from one to 100 milliseconds and amplitude is variable from 0 to 20 volts
ator is better than five percent. The pulse-width and frequency settings are only approximate, but as the unit is intended for use in con= junction with an oscilloscope and photographic equipment, external time marks will allow exact determination of pulse width and frequency.

The instrument described is an
attempt at the construction of a relatively inexpensive but versatile stimulus generator which incorporates most of the necessary requirements for use in an electrophysiological laboratory. The number of tubes is relatively small and the operation of the instrument is comparatively simple. The instrument was developed in the Elec-
tronics Section of the South African National Physical Laboratory.

The author wishes to acknowledge the aid of D. J. Holshausen and J. H. J. Filter of the Electrical Standards Section.

This paper is published by permission of the South African Council for Scientific and Industrial Research.

FIG. 1-Schematic diagram of the rectangular-pulse stimulus generator

How To Use Mechanical I-F Filters

By M. L. DOELZ
and J. C. hathaway
Collins Radio Company
Burbank, California

Mechanical filter takes less room than most $455-\mathrm{kc}$ L-C filters and gives superior shape factor to i-f response characteristic

THE MECHANICAL FILTER was developed to fill the need for a compact and permanently-tuned bandpass filter at intermediate frequencies. The selectivity characteristic is achieved by means of overcoupled mechanical resonators driven by magnetostriction. Frequency response is characterized by a nearly flat top and steep skirts on both sides of the pass band, as shown by Fig. 1.

Figure 2 shows the functional elements of the mechanical filter. A signal current is fed to the input coil at one end causing the nickel driving wire, in the center of the coil, to expand and contract due to the magnetostrictive effect. The resulting longitudinal vibration drives the first resonant disk. Me-
chanical vibrations are coupled through the six disks by means of three wires acting as springs. At the output end of the filter, the longitudinal motion of the nickel end wire is transformed into an electrical current by the inverse magnetostrictive effect.

The construction details of a complete filter assembly are shown in the photograph. The six center disks comprise a mechanical bandpass network, while those at each end are untuned and function only as rigid supports. Each supporting disk is soldered to a brass tube, which serves as a mounting and shield for the driving coil. Wire leads from the coils are soldered to hermetically sealed feed-through terminals in the base plate, and
small mica capacitors are connected across these coils to provide low-Q resonant circuits at each end of the filter.

The complete assembly is mounted and sealed in a brass case 1
 inches long. In application, the filter is connected directly to the plate and grid circuits of tubes.

Characteristics

Magnetostrictively-driven mechanical filters have several advantages over their electrical equivalents. In the region from 100 to 500 kc , the mechanical elements used are extremely small and it is possible to construct filters having better selectivity characteristics than the best of conventional i-f

Rugged fix-tuned interstage coupling units provide steep-skirt selectivity for intermediatefrequency amplifiers used in communications receivers, and in ssb transmitters for eliminating undesired sideband from low-frequency dsb signal

systems in less than the space required by a single i-f transformer.

Since mechanical elements with Q's of 2,000 and over are easily obtainable, it is possible to construct filters of extremely narrow bandwidth with characteristics following the theory for lossless elements. This allows filter designs which are unattainable with electrical elements because of their relatively high losses.

A third advantage, that is not immediately apparent, lies in the permanence of the tuning adjustments. Once the various mechanical elements have been constructed, the filter frequency characteristics are permanent and no subsequent trimming is required or is possible. While this makes the initial design difficult in many ways, it removes the usual difficulties with malfunctioning of equipment due to improper trimmer adjustment, coil aging, humidity and other detuning effects. The latter may eventually become the most important characteristic since it has the effect of reducing servicing complexity of already overly complex electronic equipment.

Filter Elements

The mechanical filter bandpass system is composed of metal disks and wires. The disks function as high-Q resonators, while the wires provide coupling between disks and function as magnetostrictive transducers at the terminations of the filter.

Two normal vibration modes of a single disk are illustrated in the photographs. The mode with two rings has been selected for most of the filter work, while the other is a

Lycopodium powder shows desired mode used in mechanizal filter

Spurious mode appears close in frequency to desired mode

FIG. 1-Frequency response of three different mechanical filter designs described in text
spurious mode appearing relatively close in frequency to the desired mode.

The patterns shown were obtained by burnishing the surface of a disk and sprinkling it with lycopodium powder. The disk is driven with a nickel wire excited by magnetostriction. The resulting vibration caused particles to collect at the nodes; thus the pattern showing two rings indicates that the disk in vibrating with two nodal rings and with both the center and the outside edge moving at high velocity. Similarly, the other pattern shows a mode involving one nodal ring and crossed nodal lines.

An analysis of the vibration of a circular plate shows that an infinite set of different vibration modes exists. These are in general not harmonically related but frequently two will appear rather close together in frequency ${ }^{1}$. The major problems in the design of this type of resonator are first, the selection of a desirable mode of vibration, that is, one well separated from all others, and second, the selection of a thickness-to-diameter ratio such that spurious modes are still further removed. Analysis of thin plates shows that the frequency of the two-ring mode varies inversely as the square of the diameter and directly as the thickness. It has been found experimentally that this relation holds approximately for the relatively thick disk used.

In the mechanical filter assembly, the disk resonator functions as an essentially lossless element. The material selected for disks is a nickel-iron alloy with high Q and zero thermoelastic coefficient. The high Q of a disk is illustrated by the

FIG. 2-Components of six-disk mechanical filter

FIG. 3-Single disk resonance curve is down 3 db at 44 cycles
resonance curve of Fig. 3. This curve has a center frequency of 455.2 kc and a half-power bandwidth of 44 cycles. The value of Q calculated from the fractional bandwidth is 10,400 .

Mechanical coupling in the filter is provided by three nickel wires welded to the peripheries of disk resonators. These wires function as springs connected between disks. Nickel was selected for use in coupling elements since it gives the desired degree of coupling with a convenient wire size and is easily welded to the disks. The relatively low Q of nickel is not a serious detriment since losses in the coupling elements have a small effect compared with losses in disk resonators.

Commercially pure nickel wire has been found to be an excellent transducer material for use at the filter terminations. It has an inherent Q of the order of 50 , controllable by heat treatment and magnetization. Many steel alloys have magnetostrictive properties,

FIG. 4-Single disk filter and electrical analogue

FIG. 5-Six-disk filter and electrical analogue
but in general they have rather high effective Q's. This makes them undesirable as transducers since added frictional losses are required for proper matching of the filter. Transmission losses using nickel transducers depend on the nature of the driving coils. These coils may be constructed for resonant electrical impedances that vary from a few hundred ohms to 50,000 ohms or higher. The higher impedance coils result in somewhat greater transmission losses because of the lower concentration of flux in the driving wires. Optimum magnetic biasing fields exist for the transducers, but are quite broad. The location of the optimum can be obtained by differentiation of published curves on the relative length versus field strength for nickel.

Analysis and Design

In analyzing the mechanical filter, it has been found convenient to use an electrical analogue for the mechanical vibrating system. The

FIG. 6-Calculated frequency response of electrical analogue compared with measured frequency response of a mechanical filter

FIG. 7-Mechanical filter overload characteristic at 455 kc
electrical circuit is obtained by using the mechanical-electrical analogy, where velocity is equivalent to current and force is equivalent to voltage. Also, damping is equivalent to resistance, mass to inductance, and stiffness to elastance. In the following paragraphs some considerations involved in filter analysis and design are discussed for a single-disk filter and for a multidisk filter.

A single-disk mechanical filter and its electrical analogue are shown in Fig. 4. The driving wires at each end of the filter are tuned to antiresonance and correspond to two parallel tuned circuits in the electrical analogue. The disk resonator is equivalent to a series resonant circuit joining the two parallel resonant circuits. Energy loss and transfers in the end elements are represented by resistances in the parallel circuits. The Q of these parallel circuits is sufficiently low so that, in the frequency range of the filter, they may be represented by the resistors R_{t}. If
the output current of the electrical analogue is measured with a constant current source applied to the input, a single resonant peak is obtained.
The fractional bandwidth of the peak is determined by the ratio of the terminating impedance to the series resonant impedance. Similarly in the mechanical filter ($\Delta f / f_{0}=2 R_{t} / \omega_{0} L_{s}$), bandwidth is determined by the ratio of the impedance of the terminating wires to the disk impedance. Here, mechanical impedance is defined as the ratio of force to velocity.

The bandwidth of single-disk filters can be adjusted by varying the radial position of the transducer wires on the disk. Observation of the vibration pattern indicates that high velocities exist at the center of the disk with a zero velocity region occurring at the first nodal ring. Therefore, the bandwidth of a single-disk filter using specified disks and end wires will be a maximum with the wire attached at the center and will decrease towards zero as the wire is moved out towards the first nodal ring.

A second method of adjusting bandwidth is to vary the cross-sectional area of the end wires. The vibration equations of this wire or rod are analogous to those for an electrical transmission line with velocity taking the place of current and force that of voltage. The equations indicate that the characteristic impedance varies directly as the cross-sectional area of the rod and, therefore, that the antiresonant impedance of a length of line some odd multiple of $\frac{1}{4}$ wavelength varies directly as the area.

Figure 5 shows a six-disk filter and its electrical analogue. As in the case of the single-disk filter, end wires are equivalent to parallel resonant circuits, and disks to series resonant elements. One new element has been added in the form of bottom capacitance coupling. These capacitors are the electrical analogues for coupling wires less than $\frac{1}{8}$ wavelength long, welded in place between successive disks. The portion of the wires between disks represents the mechanical equivalent of a short transmission line, or a capacitance. In designing filters with two or more
disks, the cross-sectional areas of both driving wires and coupling wires are adjusted to control bandwidth.

The calculated frequency response of the electrical circuit is compared with the measured response of a mechanical filter in Fig. 6. The curves correspond very closely except near the edges of the pass band, where the measured response is less than the calculated value due to losses in resonators and coupling elements.

Performance

The performance characteristics of a six-disk mechanical filter are summarized in Table 1. This filter
coils, with a resulting transmission loss of 15 db or less. This loss can be offset easily by one stage of amplification.

The overload input voltage level, listed in the table, is the value of input voltage at which the filter saturates. The effect of saturation is illustrated in Fig. 7. This curve shows the filter output voltage measured as a function of input voltage at 455 kc . The curve is nearly linear from 0 to 10 volts, while the knee occurs at approximately 15 volts. To determine the effect of overload on frequency response, the output voltage was measured as a function of frequency with input voltages ranging

FIG. 8-Spurious response of mechanical filter. Different modes are indicated in circles
has been designed to have a $6-\mathrm{db}$ bandwidth of 3.10 kc with a center frequency of 455 kc . The peak-tovalley ratio in the pass band is less than 3 db . The shape factor of the filter response is defined as the ratio of bandwidth measured 60 db below the highest peak to bandwidth at $6-\mathrm{db}$ attenuation. The present filter has a shape factor of less than 2.25 to 1. Improvements approaching a 2 to 1 shape factor should be obtainable by further refinement of the design. The low value of shape factor achieved with mechanical filters permits unusually high rejection of adjacent channel signals in communications receivers.

Transmission loss measured on present filters is less than 26 db . Design improvements on future models will permit tighter coupling between filter driving wires and
from 0.5 to 300 volts rms. No change was observed in the response at these levels. These measurements indicate that the mechanical filter will be suitable for use in receiver i-f strips and similar low-level applications.

Spurious Responses

The spurious responses occurring in the frequency range of a filter are plotted in Fig. 8. The major peaks are a result of disk vibration modes other than the two-ring mode discussed above. Normal vibration patterns are illustrated on the top of the graph at their respective frequencies. The rings and diameters indicate positions of nulls in the vibration pattern. A provision has been made in this filter design to reduce the spurious amplitudes by drilling a hole in the center of each
end disk. This has the effect of reducing the frequencies of the three spurious modes shown in Fig. 8, with a consequent decrease of about 20 db in the amplitude of undesired filter responses. Also, the hole drilled in each end disk reduces the mechanical disk impedance to about half the original value, thereby providing half-section terminations for the filter and decreasing the peak-to-valley ratio in the pass band.

The delay characteristic of a mechanical filter is shown in Fig. 9, together with amplitude response. The time delay varies from $\frac{1}{2}$ millisecond to 1 millisecond in the pass band. Two large peaks occur near the edges of the band and a small peak near the center. The dissymetry of the characteristic is caused by a slight mistuning of filter elements.

Service Tests

Tests have been made to determine the filter operating characteristics under a variety of service conditions. Since no trimming adjustments are required, the case is hermetically sealed, and no difficulty is expected due to high humidity. The effects of temperature variation are illustrated in Fig. 10. The major change is an increase in peak-to-valley ratio at temperature extremes, as a result of the detuning of filter end wires. The ratio approaches a maximum of 6 db at -30 C and 80 C . The frequency of peaks on the response curve shifted a negligible amount.

To determine the effects of vibration, a filter was subjected to the vibration test in the Army-Navy Specification, AN-E-19. During the test, a $455-\mathrm{kc}$ carrier was fed through the filter to a low frequency receiver. This permitted the detection of any modulation resulting from vibration. No mechanical resonances were observed and no modulation was detected in the range from 10 cps to 55 cps . Response curves measured before and after each test indicated that the filter had suffered no damage.

The service tests described above indicate that mechanical filters will be satisfactory for most commercial applications. It is expected that they will satisfy military require-

FIG. 9-Amplitude response and delay time of a six-disk mechanical filter

Table I-

Performance Characteristics of Six-Disk Mechanical I-F Filter

Operating Frequency	455 kc
Bandwidth at 6 db	$3.10 \mathrm{kc} \pm 0.25 \mathrm{kc}$
Peak-to-Valley Ratio	Less than 3 db
Shape Factor (6 db to 60 db)	Less than 2.25
Transmission Loss	Less than 26 db
Overload Input Voltage Level	15 volts
Operating Temperature Range	-30 C to 80 C
Vibration-Satisfies t Army-Navy Specific	e Requirements of tion AN-E-19
Case Size	$1^{\prime \prime} \times \frac{\frac{15}{16}}{2 \frac{13^{\prime \prime}}{16}} \times$
Input and Output Impedance	6,500 ohms

FIG. 10-Curves show temperature de. pendence of mechanical filters
ments when provided with suitable temperature compensation.

Experimental filters with bandwidths ranging from 800 cycles to 8 kc have been construced at 455 kc and it has been found that, as expected, essentially scaled reproductions of the curves of Fig. 1 are obtained regardless of bandwith when the same number of resonant elements are used. The parameters limiting the bandwidth range for the present design are the practical limits on the size of coupling and driving wires on the narrow end of the scale and the limits on achievable bandwidths of terminating wires in the wide-band direction.

It is believed that a reasonable range of center frequencies lies between 100 kc and 1 mc . The limitation on the lower end lies largely in the size of the elements and on the high end in the precision required for very small elements.

Applications

Filters of various bandwidths have been installed on an experimental basis in the i-f systems of several communication receivers by replacing the first i-f transformer following the mixer by the filter and substituting broad-band circuits for the subsequent i-f transformers.

The $3.10-\mathrm{kc}$ bandwidth filter was found to be useful for ssb reception of a-m signals, allowing a choice of sidebands and consequent reduction of interference. From the curve of Fig. 1, it is observed that, with the carrier placed at 453.5 kc , signals at 453.0 will be rejected by 20 db . At 452.5 they are down 35 db , thus allowing fairly complete rejection of the unwanted sideband.

A second application lies in the field of ssb generation. Assuming a lower limit of 400 cycles in the modulating spectrum, carrier suppression would be 17 db and the lowest frequency component of the other sideband down 29 db , with the higher frequency components suppressed still further. These figures are for a single unit and two cascaded units would provide appreciable improvement.

Reference

(1) Mary D. Waller, Vibration of Free Plates, Proc. Roy. Soc., 211, p 265.

Recording Photometer

Provides Log Response

Abstract

Instrument provides continuous measurement from 10^{-3} to 10^{3} microlamberts. Intensity recordings are made on recording milliammeter. Two-tube circuit corrects high-intensity

response without range switching. Phototube is protected from injury

LIGHT measurements over a wide Irange of intensities require an instrument that can be varied to suit the particular level at which the measurement is to be made. Phototube photometers that use a manually-operated switch present a disadvantage if many positions are needed to cover the required range.

Feedback circuits have been employed in photometers using multiplier phototubes. ${ }^{1}$ However, certain design features have limited their use in direct measurements in wide-range problems such as time versus brightness measurements on phosphorescent materials, monitoring light sources and experiments wherein an extreme brightness range is encountered.

For many purposes it is desirable to have a true logarithmic response over an intensity range of 10^{-6} to 1 or greater. However, scale compression can reach a point where accurate readings are difficult and instrument stability is affected by forcing the dynode voltage of the multiplier phototubes to values for which the tubes were never designed.

The photometer to be described has a true logarithmic scale covering six cycles, which is adequate for most work from very low to medium light intensities. By addition of neutral filters, the photometer may be used from medium to very high intensities without appreciable fatigue of the multiplier phototube. The additional convenience of re-

By W. S. PLYMALE, JR.

Photometry Branch, Optics Division Naval Research Laboratory Washington, D. C.
cording fluctuations on a strip-chart recorder makes the instrument valuable in either experimental or control work. For example, much time can be saved in decay measurements of phosphors having relatively long glow periods.

Photometer Circuit

A schematic diagram of the complete circuit is given in Fig. 1. The dynode supply is a voltage doubler
using an ordinary power transformer with resistors inserted in the 816 filament leads so that both spare windings may be used. A full-wave power supply furnishes voltage for the bucking and compensating circuits. A voltage divider across the filter output consists of an OA3 and OD3 that also serve as voltage regulators.

The 807 control tube for the dynode voltage regulator has its grid coupled to the output of the type 1P21 or 1P22 multiplier phototube. Total dynode voltage for an average phototube may vary from 175 to nearly 1,100 volts under operating conditions. An OA3 in the

Complete photometer showing phototube pickup, control panel and recording milliammeter

FIG. I-Schematic diagram shows complete photometer circuit
cathode circuit of the 807 is held in operation through R_{1} from the positive terminal of the full-wave power supply. This tube fixes the anode voltage on the multiplier phototube at slightly less than 75 volts when only dark current is flowing through load resistor R_{2}. As the phototube anode current increases, there is a reduction of several volts from this value but anode characteristics of the 1P21 and 1P22 tubes show that operation somewhat below 75 volts is permissible.

Circuit Design

The network containing the stripchart recorder is presented in rudi-

Top view of control chassis
mentary form in Fig. 2, where $E_{\theta}=$ voltage across dynodes, $E_{b}=$ bucking potential, $E_{p}=$ compensating potential, $R_{1}=$ dynode input resistance, R_{2} and R_{3} are dropping resistors.

For full deflection of the recorder: $E_{c}=150$ volts (approximately), $E_{p}=75$ volts, $I=1 \mathrm{ma}$ and $I R=1.4$ volts.

For no deflection (null balance) : $E_{0}=820$ volts (approximately), $E_{p}=75$ volts, $I=0$ and $I R=0$.

With a value of $83,000 \mathrm{ohms}$ assigned to R_{3} and an arbitrary value of 4.4 volts given to E_{b}, it was found possible to effect a solution whereby $R_{1}=330,000$ ohms and $R_{2}=1,220$ ohms.

From these values a tentative circuit was set up and minor adjustments made until reasonably good meter performance was noted as the dynode voltage was varied from about 150 to approximately 1,000 volts. The final circuit is shown in Fig. 3 where the voltage E_{b} is supplied by an $I R$ drop from the OD3 with suitable divider resistors. For additional control and final balancing, several small rheostats were added to the basic circuit. These are shown in Fig. 1.

With the feedback circuit connected to the circuit of Fig. 3, the voltage curve from darkness to direct measurement of a screen brightness of 0.5 microlambert, (Fig. 4) was found essentially linear for phototubes having high saturation characteristics. This gave linearity for a range somewhat less than 1,000 to 1 and it was found necessary to add a correcting circuit to compensate for nonlinearity at low dynode voltages.

Two 6AG7's were inserted in the circuit in such a way that they would automatically become operative as the dynode voltage became less negative. By proper adjustment of grid potentiometers P_{1} and

FIG. 2-Rudimentary null-balance circuit
P_{s}, any two points along the curve could be chosen and the instrument corrected at these points. In Fig. 5 is shown the basic circuit for such a corrector tube. As each tube conducts a certain amount of cathode current is introduced in the circuit causing an increase in positive voltage E_{b}. The magnitude of current in each tube is controlled by rheostats P_{5} and P_{6} shown in Fig. 1.

Adjustment and Operation

The problem of getting a light source of sufficiently wide range is the most difficult part of calibration. A long optical bench with a set of neutral filters may be used and two or three small lamps with fixed levels of brightness can be of value in checking the calibration. The instrument can ordinarily be operated to low intensities and dark-current fluctuations in the multiplier phototube may be observed on the recorder chart.

Zero-trace adjustments are made with the phototube shutter closed. Potentiometers P_{1} and P_{z} are turned fully counterclockwise; all other controls are set near midpoint; and switch S_{1} is open. Rheostats P_{3} and P_{7} control the balancing circuits; P_{γ} is adjusted so that the recorder trace can easily be set to zero by P_{3}. If this is impossible, the multiplier phototube has an exceptionally high dark current and may not be satisfactory.

It is best to run a tentative calibration on the instrument before adjusting shunt rheostat P_{8} or cutting in the 6AG7 corrector tubes. When a brightness vs deflection curve is plotted on semilog paper, the plot will be essentially straight over nearly three cycles with a curvature at about half scale. In this region, P_{8} is effective and the

FIG. 3-Null-balance circuit using cal. culated values
deflection may be adjusted to some desired value. This is illustrater as point A on the graph of Fig. 6.

If the instrument is allowed to go without correction to higher brightness values, the line in Fig. 6 will tend to curve upwards from point A. When S_{1} is closed and P_{1} in the grid circuit of the first 6AG7 adjusted, the curve can be pulled into a straight line up to a point B on the graph. This may require resetting cathode rheostat P_{n} to produce proper deflection on the recorder

FIG. 4-Dynode voltage-light intensity characteristic for phototube

FIG. 5-Basic correcting circuit for high. intensity response
but an appreciable change in deflection should be noticed while adjusting either P_{1} or P_{5}. Potentiometer P_{1} is used chiefly to vary the point of cut-in for the 6AG7 while P_{5} controls the magnitude of correcting current added to the network.

When higher brightness values are reached, the upper portion of the curve can be straightened by

FIG. 6-Photometer calibration curve showing correction points. Broken curve holds when filter is used
setting P_{z} and P_{6} controlling the second 6AG7. The effects of both corrector tubes may be varied somewhat by P_{4}, which is introduced to compensate for variation in current characteristics of multiplier phototubes.

Sensitivity and Stability

Tests show that the photometer holds calibration remarkably well and the performance of the whole circuit is limited only by the stability of the phototube. Noise effects in a multiplier tube, ordinarily very noticeable in linear photometers, are not as pronounced in a feedback circuit. Most effects noticed are due to phototube fatigue and the fact that normal dark current changes slightly after the tube is subjected to appreciable light. Fatigue effects tend, however, to be minimized by the fact that total dynode voltage is automatically reduced when the phototube is exposed to light.

When used with a strip-chart recorder, response of the instrument is limited to 0.5 sec . Nevertheless, with suitable designing and use of a synchroscope, it should be possible to record light flashes of only a few microseconds duration.

Reference

(1) M. H. Sweet, Logarithmic Photometer, Electronics, p 105, Nov. 1946.

Television Receiver

By EDWARD S. WHITE
Assistant Chief Engineer Advanced Development Lab. Brocolumbia Inc.

THE choice of the agc system installed in a tv receiver is often a compromise between cost and the importance of particular operational features. It does not necessarily follow that the more economical design is less desirable from a functional point of view. In some instances, the average age system, which involves the least cost, might be preferred over some more expensive circuits. To determine an optimum design a thorough understanding of the agc mechanism is essential.

Average AGC System

The simplest and most inexpensive agc circuit is shown in Fig. 1A with the video detector peaking network included for completeness. The value of R_{1}, the detector load resistor, is usually about 4,000 ohms. Instantaneous voltages, e_{A} and e_{3}, for both a white picture and a black picture are shown in Fig. 1 B on a horizontal line basis.

The age voltage will be a function of picture content as well as of signal strength. Furthermore, even with the blackest picture content, average agc voltage will be less than the sync peak voltage, limiting the capability of this circuit to produce substantial amounts of negative voltage. This means that the receiver will be more susceptible to overloading in very strong signal areas, particularly if white picture material is being transmitted.

Since the developed age voltage will vary also according to the transmitted scene light background, the proper gamma of the picture may not be reproduced.

The noise immunity of this agc system is excellent. Practically all impulse noise disturbances result in

FIG. 1-Average agc circuit (A) and pre-war peak agc circuit (C) with graphs of instantaneous voltages
sharp spikes which may attain considerable peak amplitudes but are relatively widely spaced and sporadic when observed at the video detector output. The interposition of the integrating network, R_{2} and C_{2}, between this point and the agc voltage output results in an averaging out of the noise, minimizing the effects of the high, intermittent noise peaks.

Values selected for R_{z} and C_{ε} are of considerable importance. The $R_{2}-C_{2}$ time constant should be of the order of 0.1 sec . This large constant is necessary because the vertical blanking and sync pulses introduce a 60 cps component which if not filtered out adequately results in more instantaneous age voltage during the vertical sync time. The effect of this would be to depress the vertical sync pulse making it more difficult for the sync circuits and other sections of the receiver to operate properly.
The necessary employment of a large $R_{r}-C_{2}$ time constant results in a slow acting system with age voltage unable to follow rapid fluctuations of input signal levels. This is most dramatically observed in the airplane flutter effect. A faster acting agc system would also tend to correct partially for low-frequency distortions appearing in the signal at the video detector.

To insure further impulse noise immunity the possible situation where a noise peak might cause grid
current to flow in one or more of the age controlled tubes should be considered. In this case it is highly desirable that the agc source impedance have minimum resistance and maximum capacitance for a given time constant. Although slightly costlier, an R_{3} of 100,000 ohms and a C_{2} of $1, f$ is to be preferred over the frequently used 1 megohm and $0.1-\mu \mathrm{f}$ values.

The design considerations for R_{2} and C_{3} are not unique to the average agc system but are equally applicable to all agc systems where vertical pulses in the transmitted television signal may contribute $60-\mathrm{cps}$ components to the agc output.

In weak signal areas where overload is no problem and where noise immunity is vital, an average agc system involving only two additional components may outperform costlier systems.

Peak AGC System

A pre-war peak agc circuit is shown in Fig. 1C, with graph of instantaneous voltages, e_{A} and e_{B} in 1D. In this circuit R_{2} was 27,000 ohms and C_{2} was $0.05 \mu \mathrm{f}$, giving a time constant of about 20 horizontal lines. An additional RC low pass filter, not shown in the circuit, of much faster time constant value served as additional isolation in order to prevent remanent i-f energy from getting back into the i-f amplifier tubes. Loading across the secondary of the final i-f ampli-

AGC Systems

Abstract

Operating characteristics of seven gain control circuits currently being used in tv receivers. Design factors important in obtaining the most efficient circuit together with noise immunity and protection against overload are described on the basis of field and production experience

fier double tuned circuit introduced by the agc circuit is $R_{2} / 2 \times$ diode efficiency.

Although the $R_{2}-C_{2}$ time constant is long enough to peak-detect at the horizontal sync repetition rate, it is not long enough to prevent relative depression of the vertical sync pulse'. Furthermore, large amplitude impulse noise pulses may charge C_{z} to negative values approaching the peaks of the noise pulses. This undesirable voltage will hang on until discharged through the $R_{i v}-C_{2}$ loop, tending to cut off receiver operation during this interval. The use of a larger $R_{v}-C_{z}$ time constant will result in worse noise performance but improved vertical sync reproduction.

A practical approach to this dilemma has resulted in the compromise peak age circuit shown in Fig. 2 which has found wide acceptance in current television receivers. The $R_{1}-C_{1}$ time constant is somewhat longer than one horizontal line, common values being 680,000 ohms and 120 m.f. Design considerations discussed in the average age circuit apply to R_{z} and C_{3}. In the circuit shown a shunt type age diode is employed making for a neater design with a single tuned final i-f amplifier load. In this case, the loading introduced by the age circuit across the tuned circuit is $R_{1} / 3 \times$ diode efficiency.

Since a fast $R_{1}-C_{1}$ time constant is employed, this is not a truly peak age system, there being some decay of negative voltage from C_{1} through $R_{-}-C_{1}$ between horizontal syne pulses. There is, however, a significant improvement in noise immunity over the peak age system since the undesirable voltages built up across C_{1} by high noise peaks decay rapidly.

This double time constant principle has been used with great success to improve noise immunity in the imput of sync separator circuits. Field tests have shown that the compromise age circuit is still well behind the simple average agc system in noise immunity where high noise pulse and weak signal conditions are encountered.

AGC Amplification System

In this system, an agc voltage is obtained by rectification of either the picture carrier or the video modulation with its d-c component intact. This voltage is fed to a d-c amplifier and then applied to the age controlled tubes giving extremely flat output versus input signal characteristics.

The major design difficulty is in selection of d-c amplifier supply voltages. Since the output voltage of the amplifier must be referenced with respect to ground it is common to return its cathode to a negative supply voltage and its resistive plate load either to ground or to a slightly negative or positive potential. The choice of suitable supply and bias values to insure about -0.5 volt output for quiescent operation (zero input signal) and increasingly negative output for increasing signal input levels depends upon the ingenuity of the designer. Several different conditions of oper-

FIG. 2-Diagram of widely used com. promise peak age circuit
ation have been successfully used in the past.

As with most d-c amplifiers, proper and reliable operation is critical with respect to changes of supply and bias voltages and must be considered carefully in the design. Regeneration within the closed agc loop must be watched due to the increased system gain and additional phase shifts. Also, there is a trend in current receiver design practice away from the use of negative supply voltages.

A special type of agc amplification referred to as keyed age has been adopted by a number of companies. This circuit, shown in Fig. 3 A , has a flat output versus input characteristic, is highly noise immune for both the agc and video output, is not critical with respect to supply voltages, does not require a negative voltage solurce, and supplies a fast acting age voltage.
The 300 to 350 -volt peak platekeying pulse may be either series fed as shown, or shunt fed. Since a pentode is used as the keyed agc tube considerable amplification is obtained and proper operation is not critically dependent on the keying pulse amplitude. Common values of R_{2} and C_{2} are 100,000 ohms and $0.5 \mu \mathrm{f}$. $R_{8}-C_{8}$ form an additional filter to prevent a residual amount of horizontal frequency energy from getting back into the agc bus. This time constant must be made as high as possible, consistent with obtaining sufficient filtering action, to prevent the additional phase shift at low frequencies from causing overall agc regeneration.

The circuit may be analyzed by considering the dynamic transfer characteristics of tubes V_{1} and V_{2}, shown in Fig. 3B. As a simplifica-
tion in the analysis, a very high g_{m} from cutofl on is assumed for V. and $e_{s c}^{\prime}$ is of such value to result in a 5 -v grid to cathode cutoff characteristic of V_{2}. In this case $e_{s c}$ is considered to be 125 volts.

With no signal applied to the grid of V_{l}, about 6 ma quiescent i_{p} current flows through its 5,000 -ohm plate load, resulting in -30 v applied between V_{g} grid and cathode. Since V_{2} is cut off with or without the keying pulse, no i_{p}^{\prime} current flows, and no agc voltage is developed. No i_{p} current will flow until $e_{\text {, }}$ becomes instantaneously negative enough to reduce i_{p} to 1 ma coincident with the plate keying pulse. As soon as i_{p}^{\prime} starts to flow it will produce enough agc voltage due to the high g_{m} of V_{2} to prevent the incoming signal at e_{g} from reducing i_{μ} any further.

If i_{p} were reduced below 1 ma coincident with the plate keying pulse, excess age voltage would be developed reducing e_{g}, and resulting in increased i_{p}. If i_{p} were increased
above 1 ma during the keying pulse interval, the age tube would be cut off and the age voltage would decrease, increasing e_{g} and decreasing i_{p}. Thus, the horizontal sync tips are held at the 1-ma i_{p} point of V_{1} as indicated by X in Fig. 3B.

It is simple to obtain quantitative and qualitative results with varying parameters. Consider the following:
(A) Lowering the V_{1} screen voltage.

The dynamic transfer characteristic for $e_{s c}=100$ volts is shown in Fig. 3B. Since the 1-ma i_{y} criterion has not been changed, the horizontal sync tips are held at Y. Signal to noise ratio and sync compression at the video amplifier output are practically unchanged. The video detector output level is reduced as is the video amplifier output level.
(B) Reducing the 5,000 -ohm V_{1} plate load (or tapping down to $\frac{1}{2}$ of the 5,000 -ohm load for age feed). Since 5 volts across $2,500 \mathrm{ohms}$, or i_{p} equal to 2 ma , becomes the snyc

FIG. 3-Keyed agc system (A) and analysis of circuit operation (B)
peak equilibrium position, the peaks are held at Z, resulting in reduced sync compression and worse signal to noise ratio at the output of V_{1}. There is also some reduction in video detector and video amplifier output levels.
(C) Raising V_{2} screen voltage.

Assuming V_{2} cutoff now occurs at +130 v , a 10 -v drop across the 5,000 ohms, or an i_{p} of 2 ma determines the equilibrium position. The results are therefore similar in all respects to case B above.
(D) Adding a resistor (270,000 ohms) from V_{2} grid to ground.

Approximately 0.5 ma of current now flows through the 5,000 -ohm V_{1} plate load resistor in the same direction as i_{p} due to the bleeding resistor. When V_{1} draws an additional 0.5 ma of i_{p}, the equilibrium point is reached. Therefore the horizontal sync peaks are held closer to cutoff and sync peaks are compressed. If the resistor were connected from V_{2} grid to a source more positive than 140 volts, additional current would flow through the 5,000 -load opposite in direction to i_{p}. Then V_{1} must draw more i_{p} to counteract this opposing current in addition to supplying a 1 ma i_{p}. The sync peaks would therefore be held further away from cutoff with less resulting sync compression.
(E) Varying R_{2}, the i-f amplifier tube gains, or the number of stages to which age is applied, effectively changes the speed of response of the system with only second order effects on the other operating conditions discussed.

An interesting application used in the CBS-Columbia Model 1000 series may be visualized readily on the basis of this analysis. In the long-distance switch position, one of the functions of the switch is to raise the V_{2} cathode voltage, resulting in decreased V_{2} screen to cathode voltage. The sync peaks are therefore held closer to cutoff with significant improvement in the signal to noise ratio at the output of V_{1}. Also, the agc voltage is delayed since a stronger input signal is now necessary to reduce i_{p} to its lower equilibrium value before the agc threshold is reached. Both the improved noise immunity and lowered tuner noise factor provide for more

FIG. 4-Variation of peak age circuit (A). Instantaneous voltage values are shown in graph (B)
satisfactory operation in weak signal areas.

Although additional design difficulties are presented by the use of a triode V_{2} instead of a pentode, its use is promising in low-cost receivers where half a double-triode tube might be employed.

AGC System Variations

In the peak age circuit shown in Fig. 4A, V_{1} has a voltage gain of $10, R_{1} \ll R_{3}$, and $R_{4}=9 R_{3}$. As shown in Fig. 4B, the linear addition of the average voltage e_{A} plus the divided-down peak to average voltage at the V_{2} grid results in a truly peak agc voltage at e_{B} independent of picture modulation. Due to phase shifts, component tolerances and other factors, there will not be a perfect cancellation of picture modulation content at \boldsymbol{e}_{B}, which would have occurred under the ideal conditions shown and so a low pass $R_{2}-C_{2}$ filter is inserted before the age voltage take-off.

Since both sources of voltage are relatively noise immune, their additive resultant likewise will possess a high degree of noise immunity. To insure against the possibility of age regeneration, the value of R_{3} must not be larger than necessary.

The circuit shown in Fig. 5A is a variation of the compromise peak agc system. Since the agc diode cathode and R_{1} are returned to the video detector load instead of to
ground, an effective voltage doubler action is obtained. This comes about because the agc diode conducts only during the horizontal sync pulse interval when its cathode has a negative sync peak voltage applied. The sync peaks of the i-f waveform find themselves clamped at the diode plate to a negative voltage equal to the sync peak voltage at the video detector instead of to ground. The $R_{2}-C_{2}$ filter bypasses the picture modulation components.

Since more than sufficient agc source voltage is made available by double action, the $R_{1}-C_{1}$ time constant may be made considerably smaller than one line- 1 megohm and $27 \mu \mu$ f for example. The noise immunity is markedly improved,

FIG. 5-Two variations of the compromise peak age system
and the potential age voltage source is still greater than the compromise peak or the peak agc systems.

Another variation of the compromise peak agc circuit is drawn in Fig. 5B. A narrow band i-f amplification stage to reject the higher frequency noise components feeds an age diode which has an $R_{1}-C_{1}$ time constant considerably less than one horizontal line. Due to the additional i-f amplification of the sync pulses, the relative reduction in recovered age voltage is not significant, while the noise immunity is markedly improved.

The use of a back panel age control is also demonstrated in the circuit. In weak signal areas a positive delay voltage is applied to the age diode cathode to prevent substantial agc voltage from being developed. In stronger signal areas
this positive delay voltage is reduced manually.

Two operational features which would be desirable in all agc systems are the maintenance of low bias voltages on the r-f amplifier tube for weak signal inputs and the application of high bias voltages on the right tube for very strong signal inputs. The first characteristic results in the best noise figure for the tuner at the time when it is most needed. The second characteristic prevents overload in the receiver with the attendant washing out of flesh tones on the kinescope.

Although overload occurring in the last i-f amplifier tube is not to be neglected, the primary cause of overload difficulty arises at the first i-f amplifier tube grid. Since the conversion gain of the mixer stage is constant and unaffected by the large age bias developed by a very strong signal input, a relatively large i-f signal arrives at the first amplifier tube grid operating near its cutoff point, resulting in compressed whites and elongated sync at its output. The correction for this is to apply greater age bias to the r-f amplifier grid than to the first i-f amplifier grid.

A simple circuit for achieving the

FIG. 6-Cross-over network for reducing age bias on i-f amplifier
two features is shown in Fig. 6. A potentially strong age source is necessary since the i-f age is permanently divided down. The resistors may be proportioned over exceedingly wide limits to obtain the desired r-f age delay and crossover characteristics.

References

(1) "Television D-C Components," RCA Industry Service Lab. LB-745.

Arithmetic Processes

```
(OP, A1, A2, A3, A4)
OP = OPERATION TO BE PERFORMED
AI}= ADDRESSES OF NUMBERS TO
A2 BE OPERATED ON
A3 = ADDRESS AT WHICH RESULT
    IS TO BE STORED
A4 = ADDRESS AT WHICH CODE
    GROUP FOR NEXT STEP WILL
    BE FOUND
```

FIG. 1-Four-address code

```
on}\mp@subsup{n}{n}{}\mp@subsup{x}{}{n}+\mp@subsup{o}{n-1}{}\mp@subsup{x}{}{n-1}\cdots+\mp@subsup{a}{1}{}\mp@subsup{x}{}{1}+\mp@subsup{o}{0}{}\mp@subsup{x}{}{0}+\mp@subsup{a}{-1}{}\mp@subsup{x}{}{-1}+\mp@subsup{a}{-2}{2}\mp@subsup{x}{}{-2}
WRITE IN POSITIONAL NOTATION
AS:
OnOn-1---0,OO
EXAMPLE: RADIX 10
\pi=3.1415
\mp@subsup{o}{2}{}=\mp@subsup{a}{1}{}=0}\quad\mp@subsup{o}{0}{}=3\quad\mp@subsup{a}{-1}{}=1\quad\mp@subsup{a}{-2}{}=4
```

FIG. 2-Number as a polynomial
$\left.\begin{array}{ccccccc|}\hline 7^{3} & 7^{2} & 7^{1} & 7^{0} & 7^{-1} & 7^{-2} \\ 343 & 49 & 7 & 0^{1} & \\ \text { ONE THOUSAND IN SEPTENARY CODE } \\ 2 & 6 & 2 & 6\end{array}\right]$

FIG. 3-Example of radix seven

0	0	0	1	0	1	$=$	5
0	0	0	1	1	0	$=$	6
0	0	0	1	1	1	$=$	7
0	0	1	0	0	0	$=$	8
1	0	0	1	0	1	=	37
1	0	0	1	1	0	=	38
1	0	0	1	1	1	=	39
1	0	1	0	0		$=$	40

FIG. 4-Examples of binary numbers

MODERN, automatically-sequenced electronic computers ${ }^{1}$ have a large memory organ which can be thought of as consisting of a very large bank of pigeonholes. Each pigeonhole has a unique address which permits the machine to locate any information in the memory. The machine also has a control unit and an arithmetic unit that can perform the ordinary arithmetic operations.

In action the control unit consults a specified pigeonhole in the memory and, in effect, pulls out a slip of paper which has an instruction written on it. The machine then executes that instruction and advances to another pigeonhole and executes the instruction contained therein. An intermediate step may be to consult some other pigeonhole and extract a number to be manipulated during the execution of the instruction.

Programming

The arrangement and writing of these instructions is called programming the machine. One programming scheme that has been used is based on the four-address code shown in Fig. 1. When the control unit extracts an instruction from the memory, it finds written in the instruction a representation of the operation to be performed. It may also find two addresses for numbers in the memory which are
to be processed by the operation. A third address will specify the pigeonhole into which the result of the operation is to be stored, while a fourth address specifies the pigeonhole which contains the code group for the next step.

Number Representation

A basic feature of our mathematical education is that we often learn things before we understand them. This is especially true of the manner in which we learn to write numbers. It is only after studying algebra that we become aware that in writing a number we are actually writing a polynomial. In decimal notation a number is represented as a polynomial in which the argument is 10. Figure 2 illustrates this principle. In writing a number as a polynomial, we leave out the radix, the value associated with each place in the number, and write only the coefficients of the powers of the radix. It is customary to indicate the point between the coefficients of the 0 and the -1 power of the radix by a radix point. Thus when we write 3.1415 , what we really mean is $3 \times 10^{\circ}+$ $1 \times 10^{-1}+4 \times 10^{-2}$ and so forth. It is fundamental that numbers exist independently of the way in which we choose to represent them.

Figure 3 shows the number 1,000 represented in the septenary code for which the radix is 7 . This

for Digital Computers

Abstract

Special codes and arithmetical processes enable digital computers to perform rapidly many heretofore laborious mathematical tasks. Review of these processes serves as introduction to newcomers to field and review for veteran computer engineers

figure also illustrates the way in which counting takes place. Regardless of the radix, the count is always increased by one from the original count in the following manner. The coefficients are examined in turn starting with the coefficient of the zero'th power of the radix. The first coefficient that is not the highest order coefficient of the set of coefficients is replaced by the next higher one. All coefficients of lower powers of the radix are replaced by zeros. This is illustrated in Fig. 3 by transition from the septenary 2,666 to 3,000 .

In the ordinary desk calculator the radix used is 10 . A ten-tooth gear on a shaft makes a convenient way of representing decimal numbers. When the shaft is turned so that the fifth tooth is at a reference mark, the shaft position can, for example, be used to represent the number 5. Unfortunately, there is no very attractive electronic analog for a ten-tooth gear. In electronic computers we deal with devices that are most reliable when we ask them only either to pass current or not pass current. Such two-state devices are used most efficiently in binary numbering schemes. In the binary system the radix is 2 and the only possible coefficients are 1's and 0 's. We can imagine a row of vacuum tubes in which some of the tubes are conducting and some are not. We can let a conducting tube

FIG. 5-Addition of binary numbers

FIG. 6-Three-terminal binary adder

$$
\begin{aligned}
& \text { IN A } 4 \text {-DIGIT DECIMAL CALCULATOR } \\
& \text { REPRESENT - }|\times| \text { AS } 10,000-x \\
& -187=10,000-187= \\
& 500-187=500+9,813=10,813 \\
& 9,813=10 \text { 's COMPLEMENT OF } 187= \\
& 9 \text { 's COMPLEMENT }+13 \\
& \text { IN BINARY SYSTEM CHANGE O'S TO } \\
& \text { ONE'S AND VICE VERSA, THEN ADD } \\
& \text { ONE }
\end{aligned}
$$

FIG. 7-Negative numbers in a digital computer
represent a 1 and a nonconducting tube represent a 0 . The row of tubes then can represent a complete number. Figure 4 illustrates the binary equivalent of several decimal numbers. As a matter of interest, note that 40 , which is 5×8, is represented by binary 5 followed by 3 zeros.

In devices that have only two states it is still possible to construct the electronic equivalent of a tentooth gear. Picture ten vacuum tubes in a row. If the third one in the row is conducting and all others are cut off, we can imagine the row as representing the decimal number 3 , while if the seventh vacuum tube were conducting, the row would represent the number 7 . This is analogous to representing the number 3 by holding up the third finger on a hand. Using both hands it is possible to represent numbers up to ten in this manner. The inefficiency of this method is brought out by the following: If we let each finger represent a coefficient of a power of 2 and adopt the convention that a raised finger represents a coefficient of 1 , while a lowered finger represents a coefficient of 0 , we can count up to the decimal number 31 on one hand and up to 1,023 on both.

Binary System

This illustrates why many electronic computers compute in straight binary code, since numbers

FIG. 8-Examples of binary arithmetic with negative numbers

MULTIPLICATION	EXAMPLE	
TABLE	101	5
0×0	110	6
$0 \times 1=0$	1000	
$1 \times 0=0$	$\frac{101}{11110}$	30
$1 \times 1=1$		

FIG. 9-Binary multiplication

$$
\begin{aligned}
& -8 \times 7=-56
\end{aligned}
$$

$$
\begin{aligned}
& \text { CHECK: } \\
& +56=111000 \\
& \text { PRODUCT }=1 \begin{array}{ll:l}
1000 & 000 \\
\hline 000000
\end{array}
\end{aligned}
$$

FIG. 10-Multiplication of negative numbers

FIG. 11-Binary division
can be represented with a minimum of apparatus.

In machines where very lengthy computations are to be performed before an output is to be presented, the cost, in time consumed, of converting the decimal numbers from the outside world into binary numbers for computation is justified by the saving in equipment resulting from binary representation. In machines used for computations in which the ratio of the number of internal computations to the num-
ber of decimal to binary conversions is not extremely large, the conversion from decimal to binary notation may result in a waste of time which is not acceptable. For such applications, two-state electronic devices can be used to code individual decimal digits. Before describing how this is done, a description will be given of the manner in which binary arithmetic is performed.

Binary Arithmetic

Because there are only two possible coefficients in binary arithmetic, operations are simplified enormously. Figure 5 shows examples of binary addition. Note that when two 1's are added, the sum digit is 0 and the carry is a 1 . The mechanization of binary adders is quite simple and a common type of adder has an addend, an augend, and a carry terminal. At each step the addend, augend and carry from the previous step are examined and outputs are developed in accordance with the table shown in Fig. 6. This is typical of the operations that go on in computers. Signals on input leads are examined and outputs are produced according to what the examination reveals.

Negative Numbers

A general purpose computer must be able to represent negative numbers as well as positive numbers. Suppose that we are designing a decimal calculator to handle numbers up to 999 . If we were willing to use a fourth digit place to indicate the algebraic sign of numbers, we could employ the scheme shown in Fig. 7, where $-X$ is represented as the remainder when X is subtracted from 10,000 . A 9 in the fourth digit place is used to indicate that a number is negative, whereas a zero means that a number is positive. The number -187 is represented, for example, by 9,813.

Suppose -187 were to be added to 500 . As the figure shows, a sum of 10,313 would be obtained. Since the calculator has only four digit places, the 1 would fall off onto the floor and the correct sum of 0313 would be obtained; the 0 indicates that the number is positive. The result of subtracting X from 10,000
is referred to as the 10 's complement of X. The 10 's complement can be obtained very simply by subtracting each digit from 9 , which gives the 9 's complement, and then adding 1 to the result.

In binary computers, negative numbers are often represented by their 2's complement. The 2's complement can be formed simply by changing all the 1 's to 0 's and vice versa and then adding 1 . The formation of -8 from +8 is illustrated in Fig. 8, and an example of addition involving a negative number is given. In the example, the result is -3 , the negative sign being indicated by a 1 in the most significant digit place. The fact that this is a true representation of -3 can be checked by adding +3 to it, which gives zero.

Binary Multiplication

The binary multiplication table is ridiculously simple, since the product of two digits is always zero unless both of them are ones, in which case the product is one. The multiplication of two numbers follows the conventional algorithim shown in Fig. 9. Each digit of the multiplier is examined in turn, and if the digit is a one the multiplicand is added, while if the digit is a zero, the multiplicand is not added. As successive digits are examined, the point at which the multiplicand is added is moved to the left.

The correct algebraic product of negative numbers can be obtained automatically without any special attention to sign as illustrated in Fig. 10, where -8 is multiplied by +7 . Note that though the seventh digit place represents the algebraic sign, multiplication by the seventh digit is no different than by any of

FIG. 12-Simplified binary division

FIG. 13-Example of decimal-to-binary conversion
the others. It should be noted that only seven digits of the product have been accumulated and the reader can check for himself that digits beyond those would be meaningless. This method of negative number manipulation could be followed with any radix.

Division has sometimes been obtained in high-speed computers by first obtaining the reciprocal of the divisor and then multiplying it by the dividend. The reciprocal can be obtained by a reiterative process, which requires only multiplication, addition, and subtraction. Starting with a suitable guess X_{0}, the recurrence formula

$$
\begin{equation*}
X_{k}=X_{k-1}\left(2-N X_{k-1}\right) \tag{1}
\end{equation*}
$$

tends to the reciprocal of N as successive approximations are obtained. Suppose, for example, that a machine is called upon to divide some number by 3 . The machine might multiply the number by $\frac{1}{3}$ instead and obtain the polynomial representation (Fig. 2) of $\frac{1}{3}$ by repeated use of Eq. 1. For an initial guess of 0.5, Eq. 1 would give

$$
\begin{gathered}
X_{0}=0.5, X_{1}=0.25, X_{2}=0.3125, \\
X_{8}=0.33203125, \text { etc. }
\end{gathered}
$$

Binary division is so simple, however, that many binary computers carry out division directly, rather than by the obtaining of reciprocals. Figure 11 shows an example of binary division, and it is apparent that binary division can be carried out with pencil and paper in the same manner as decimal division. However, it is awkward for a machine to make trial divisions, since the only way it can tell whether a number can be subtracted from another with a positive result is to examine the result
after the subtraction has been made. If the result is negative, as indicated by a one for the most significant digit, the machine would then have to add the number back in and shift before subtracting again.

A virtue of binary division is that this trial subtraction can be avoided. This is because, as Fig. 12 shows, if a number X has been subtracted from a number R and the result is found to be negative, indicating that $X / 2$ should have been subtracted rather than X, the computer can obtain the correct result without retracing its steps merely by adding $X / 2$.

Thus, in binary division one examines the result of each subtraction. If the result is negative, a zero is written in the quotient. If the result is positive, a one is written in the quotient. After a positive remainder the divisor is shifted in the next step and subtracted, whereas after a negative remainder the divisor is shifted and added. This automatically gives the correct result as illustrated in Fig. 12.

Binary Conversion

Since the world external to the computer seldom deals in binary numbers, binary computers must frequently convert decimal numbers into binary numbers. This can be done entirely with binary operations. Figure 13 shows an example of such a conversion.

A binary computer also must convert binary results to decimal numbers, and this can be done by successive divisions by the binary representation of the number ten. Division by ten is carried out until a remainder is obtained which is less than ten. The first such remainder is written as the least significant digit of the decimal number. The quotient obtained is then divided by ten until a remainder is obtained that is less than ten, and this remainder is taken as the next digit in the decimal number. This process is repeated until a quotient less than ten results. An example is worked out in Fig. 14.

The above discussion of binary arithmetic is not exhaustive and more detail can be found in an article by R. F. Shawa ${ }^{\text {a }}$.

Because of the time required to
make binary-to-decimal and deci-mal-to-binary conversions, computers are often built which perform their arithmetic with decimal numbers. A number of coding systems can be used in which each decimal digit is coded as a separate binary number. This makes arithmetic complicated, since when adding two digits, a number greater than ten will often be obtained. Nine plus three, for example, can be added to give twelve, but the machine must then convert the binary number twelve into the binary representa-

FIG. 14-Example of binary-lo-decimal conversion

FIG. 15-Excess-three code

FIG. 16-Excess-three arithmetic
tion of two and add one into the next column.

Excess-Three Code

Using the excess-three code, the correct carry can be obtained quite simply. In this system the decimal digits are each represented by the binary number which is greater by three, as shown in Fig. 15. The binary sum of two such digits is excessively large by six. To convert the sum to excess-three representation it is necessary to subtract three. However, when carry is necessary the fact that six is the same as sixteen minus ten results in the fifth binary digit constituting the correct carry. In the addition of two excess-three numbers, the fifth binary digit is examined, as in Fig. 16. If this digit is a one, the next decimal digit is increased by one, and three is added to the binary digits of the sum, giving the correct excess-three representation. If, on the other hand, the fifth binary digit is a zero, three must be subtracted to obtain the correct ex-cess-three representation of the sum digit. It is possible, using this scheme, to code ordinary binary arithmetic elements to perform decimal arithmetic.

Biquinary Code

Another manner of representing decimal numbers is based on the biquinary code. The biquinary code, Fig. 17, may be recognized by the reader as the code used in that ancient calculating machine, the abacus. In this code each decimal digit is represented by, let us say, seven relays. These relays may be divided into a group of two and a group of five. Figure 17 illustrates that for a digit to be represented by the relay pattern, one relay of each group, and only one, must be closed. This code is inefficient or redundant in that it takes seven devices to represent a decimal number, whereas the ex-cess-three code, for example, requires only four devices. As will be shown later, this redundancy can be put to excellent use in making a machine detect its own errors.

Besides the excess-three code and the biquinary code, other coding arrangements for decimal digits are possible. In a decimal multi-

COMPUTERS AND ELECTRONICS

Electronic digital computers are today in evidence in virtually every phase of industry. The marriage of electronics and high-speed computation has been responsible for tremendous advances in both fields.

It is conceivable that even greater progress could result from a more widespread understanding, omong electronics engineers, of computer processes. To that end, this article is published in ELECTRONICS as an introduction to some and as a review to those already familiar with the computer language of words and numbers
plier, the multiplication table must be stored. Coding arrangements are possible that simplify this multiplication table by increasing the redundancy in the digit representation. This is a matter of considerable interest to professionals in the field of coding.

Error Correction

In the early days of electronic computer evolution there was more emphasis on getting machines assembled than there was on making them work without error. Today, however, machines are expected to execute many millions of consecutive operations without failure. This requirement has led to the development of error-detecting codes which make it possible for a machine to recognize when it has made an error. Error-correcting codes which make possible the automatic correction as well as detection of an error have also been developed. These codes involve the incorporation of redundancy in the number representation. This use of redundancy parallels the use that is made in ordinary transactions. When, for example, a check is written, the value is both spelled out and written as a figure. Thus, if the writing is illegible or subject to misinterpretation, the bank teller can usually determine by examining both representations what the writer had in mind when he wrote the check.

The more complex machines become the more they approach human frailty of the sort that is responsible for our redundant method of writing checks. Accordingly, computer designers are interested in codes for numbers, which when a mistake has been made will enable
the computer to say "This code group doesn't represent a number and I'd better stop and call the boss," or even more preferably, "This code group doesn't represent a true number and it is clear that what it should be is so and so."

Error Detection

The biquinary code has been described as a redundant code and its importance lies in the fact that the redundancy offers a simple basis for error detection. In this code, as pointed out previously with respect to Fig. 17, one and only one of the symbols in the group of two and group of five must be a one. If a single error has been made in the code group, it will be evidenced either by a one appearing where it shouldn't or failing to appear at all. Suppose that a closed relay symbolizes a digit being a one. Seven relays would be used to represent the code for a decimal digit. If, after each representation of a new decimal digit, the machine examines the group-of-two and group-of-five relays and determines that one and only one relay in each group is closed, then it knows that the digit representation is correct. The only time that this could fail to reveal an error is when two failures have simultaneously occurred. If a machine were supposed to represent the number 6 (see Fig. 17) and by mistake represented the number 7, it would have been necessary for the relay in the one column to have failed to close and the relay in the 2 column to conduct of its own accord. If the probability of one out of five relays failing is very small, the probability of two failing simultaneously may be negligible.

The biquinary code has been em-

FIG. 17-Biquinary code

FIG. 18-Even parity check
ployed in several relay computers ${ }^{3}$, and these machines have set a record for error-free operation.

Checking Digit

The conventional binary code can be made redundant by inclusion of a checking digit with each number. In Fig. 18, the checking digit is added in a manner that makes the number of 1's in the number even. Thus the checking digit for the binary number 16 is a 1 , whereas the checking digit for the binary number 17 is a zero, because there are already an even number of 1's in the binary number 17 . If a single digit in the number 15 for example, were produced incorrectly, then the code group would contain an odd number of 1 's and the machine could thereby recognize the result as an error. Note that the error could be recognized even if it occurred in the checking digit.

It is also possible to use an odd parity check in which the checking digit is added to make the total number of 1's an odd number. This is a more sensible check because a very common type of machine failure is to make all digits zeros. This error would be caught in an odd parity check even though the errol is produced by failure in more than one digit place. Neither of these

FIG. 19-Geometry model of a number (A), of even parity check (B) and selfcorrecting code (C)
two checking schemes would detect double errors in general, since a double error might leave the number of 1's or zeros unchanged.

Error Theory

A general theory of error detecting and correcting codes has been developed by R. W. Hamming.* To avoid the pictorial difficulties of spaces with more than three dimensions, consider numbers with only three digits. Each of the eight possible three-digit binary numbers can be imagined as a unique vertex of the cube shown in Fig. 19A. In this representation each binary digit is a coordinate. The model can be generalized to the extent that each of the possible n-digit numbers lies at the vertex of an n-dimensional cube.

Figure 19B shows a model for an even parity check. Note that the binary numbers $0,1,2$ and 3 appear at vertices of the cube. If we were to proceed along the edges of the cube from a vertex representing a numioer to any other vertex that represents a number, it would be necessary to go through a vertex which does not represent a number. If in representing the binary number 3 , for example, a mistake were made in one of the digit places, that single mistake in a coordinate would throw the number to a vertex which it has been agreed does not represent a number. A single mistake will always result in such a position and can, therefore, be recognized.

Error Correction

A model of a self-correcting code is shown in Fig. 19C. In this model,
the origin of the graph represents the number zero, whereas the code group 111 which represents the seventh vertex represents the binary number 1. Suppose now that a mistake is made in developing the code group for one. If instead of producing the code group 111, the code 101 were produced, the machine would stop at the fifth vertex (assuming that the vertices are numbered as in Figure 19A). It would recognize that this vertex does not represent a number. It could further recognize that the closest vertex which does represent a number is the seventh vertex and could move to that position, thereby producing the correct code group 111. To produce a model of a selfcorrecting code for numbers with more digit places, it would be necessary to conceive an n-dimensional cube. The vertices of this cube would be assigned to definite numbers with two forbidden vertices between every pair of vertices that represent numbers. It would then be possible for the machine to recognize when it has made a single mistake and tell at which vertex it should be (the closest one). The idea can be extended to show the possibility of a coding system which would automatically correct for more than one error in a code group.

References

(1) "TIiph-Speed Computing Devices," McGraw Hill Book Co., Inc., New York 1950.
(2) R.F. Shaw, Arithmetic Operations in a Binary Computer, Fev. Soi. Instr. 1) 6.87 , A115. 1450 .
($:$ ' E G. Andrews, The Bell Computer Model VI, Whectrical fngineering, 1751 Sep. 194!!
(1) R.W. Hamming. Error Detecting and Brror Correcting Codes, B.S.T.J. Yol. 29, p 147 , Apr. 1950

Transistor Equations

Circuit gain and impedance characteristics are given in terms of transistor parameters for grounded base, grounded emitter and grounded collector configurations. Simplifying approximations are given where appropriate

By F. R, STANSEL
Bell Telephone Laboratories
Murray Hill, New Jersey

THE ACCOMPANYING tabulation summarizes some of the important circuit equations useful to engineers in the application of transistors.

All equations are given in terms of the transistor parameters: collector resistance r_{c}, base resistance r_{b}, emitter resistance r, and current amplification constant α. These quantities are all described in
references listed in the bibliography. The quantity r_{c} is almost always much larger than r_{0} and $r_{\text {e }}$ and often is even much larger than the load resistance. This makes possible approximations that greatly simplify the complicated exact equations. To evaluate these approximations in this tabulation, the exact expression is always given first followed, where appropriate, by a
simpler approximation equation.
The other quantities listed are self-explanatory.

Bibliography

J. A. Becker and J. N. Shive, The Transistor, A New Semi-Conductor Amplifier, Electrical Engineering, 68, p 215, March, 1949.
Transistor Characteristics, ELecTRONICS, 22, p 132, Jan. 1949 .
R. M. Ryder and R. J. Kircher, Some Circuit Aspects of the Transistor, $B S T J, 28$, p 367, Jul. 1949.
R. L. Wallace and W. J. PietenpolSome Circuit Properties and Applications of NPN Transistors, Proc. IRE, 39, p 753, Jul. 1951. Also BSTJ, 30, p 530, Jul. 1951.

	GROUNDED BASE	GROUNDED EMITTER	GROUNDED COLLECTOR
$\frac{e_{2}}{e_{1}}$	$\begin{aligned} & =\frac{\propto R_{L}}{r_{e}+r_{b}(1-\propto)+\frac{\left(r_{e}+r_{b}\right) R_{L}}{\left(r_{C}+r_{b}\right)}} \\ & \text { \|F } F R_{L}\left\langle<r_{c}\right. \\ & \cong \frac{\propto R_{L}}{r_{e}+r_{b}(1-\propto)} \end{aligned}$	$\begin{aligned} & =\frac{-R_{L}\left[\propto-\frac{r_{e}+r_{b}}{r_{c}+r_{b}}\right]}{r_{e}+r_{b}(1-\propto)+\frac{\left(r_{e}+r_{b}\right) R_{L}}{\left(r_{c}+r_{b}\right)}} \\ & \text { \|F } R_{L} r\left(r_{c}, r_{e}+r_{b}\left(\left\langler_{c}\right.\right.\right. \\ & \cong \frac{-\propto R_{L}}{r_{e}+r_{b}(1-\alpha C)} \end{aligned}$	$\begin{aligned} & =\frac{r_{c}}{r_{c}+r_{b}}\left[\frac{1}{\frac{R_{L}+r_{e}}{R_{L}}+\frac{r_{b}(1-\propto C)}{R_{L}}}\right] \\ & \text { (F } r_{e} \ll R_{L}, r_{b}(1-\propto) \ll R_{L}, r_{b} \ll r_{c} \\ & \cong \text { UNITY } \end{aligned}$
$\frac{\mathrm{e}_{2}}{\mathrm{e}_{9}}$	$\begin{aligned} & =\frac{\propto R_{L}}{\left[r_{e}+r_{b}+R_{G}\right]\left[1+\frac{R_{L}}{\zeta_{\mathrm{E}}+r_{b}}\right]-\propto r_{\mathrm{D}}} \\ & \text { IF } R_{\mathrm{L}} \ll r_{\mathrm{G}} \\ & \cong \frac{\propto R_{L}}{r_{e}+R_{G}+r_{b}(1-\propto)} \end{aligned}$	$\begin{aligned} & =\frac{-R_{L}\left[\alpha-\frac{r_{e}+r_{b}}{r_{C}+r_{b}}\right]}{\left[r_{e}+r_{b}\right]\left[1+\frac{R_{L}}{r_{c}+r_{b}}\right]+R_{G}\left[1+\frac{R_{L}+r_{e}}{r_{\mathrm{C}}+r_{b}}\right]-\propto\left(r_{b}+R_{G}\right)} \\ & \text { IF } R_{L}+r_{e} 《\left(r_{c}, r_{e}+r_{b}\left\langle<r_{c}\right.\right. \\ & \cong \frac{-\propto R_{L}}{r_{e}+(1-\propto)\left(r_{b}+R_{G}\right)} \end{aligned}$	$\begin{aligned} & =\frac{1}{\left[1+\frac{r_{e}}{R_{L}}\right]\left[1+\frac{r_{b}+R_{G}}{r_{c}}\right]+\left[\frac{r_{b}+R_{G}}{R_{L}}\right][1-\propto]\left[1+\frac{r_{b}}{r_{c}}\right]} \\ & 1 F r_{e} \ll R_{L}, r_{b}+R_{G} \ll r_{c}, r_{b} \ll r_{c} \\ & \cong \frac{1}{1+\left[\frac{r_{b}+R_{G}}{R_{L}}\right][1-\propto]} \end{aligned}$
$\frac{i_{2}}{i_{1}}$	$=\frac{\propto}{1+\frac{R_{L}}{r_{c}+r_{b}}}$	$\begin{aligned} & =\frac{-\left[\propto-\frac{r_{e}+r_{b}}{r_{\mathrm{c}}+r_{b}}\right]}{[1-\alpha]+\frac{R_{L}+r_{\mathrm{e}}}{r_{\mathrm{C}}+r_{b}}} \\ & \text { IF } r_{e} \text { 《 } r_{\mathrm{c}}, r_{\mathrm{e}} \ll R_{\mathrm{L}}, r_{\mathrm{b}} \ll r_{\mathrm{c}} \\ & \cong \frac{-\propto}{(1-\alpha)+\frac{R_{\mathrm{L}}}{r_{\mathrm{c}}}} \end{aligned}$	$\begin{aligned} & =\frac{1}{[1-\propto]\left[\frac{r_{c}+r_{b}}{r_{c}}\right]+\frac{R_{L}+r_{e}}{r_{C}}} \\ & \text { IF } r_{b}\left(1 r_{C}, r_{e} r\left(R_{L}\right.\right. \\ & \cong \frac{1}{(1-\propto)+\frac{R_{L}}{r_{c}}} \end{aligned}$ (Continued on p 158)

coNSUK CIIC:

METAL PLASTIC ASSEMBLIES

To produce the intricate assemblies of metal and plastic so essential in gear of all kinds, facilities include a combination of metal stamping and plastic production. A highly trained staff is available for any military or commercial requirement.

The list below comprises the products of both Cinch and Howard B. Jones Division. They are indicative of their wide scope and also indicate the myriad of variations and redesigning that are possible with this background of production experience.

SOCKETS: Tube (Receiver, Transmitter and Special): Battery, all types. C-R Tube . Crystal Electrolytic Glass Type; 4 to 7 prong laminated - Infra-red Ray Tube . High Altitude Airborne Types Noval-Oztol (Malded bakelite, steatite, teflon, Kel-F and laminated) Noval-oztol Moided bakelite, steatite Sollats to Specs. Sub-Miniature: Hearing Aid Types. TV; IloV Circuit Breakaway Vibrator Pencil Tube Transistor - Diode

ANTENNA JACKS
banana plns and jacks bARRIER TERMINAL STRIPS FANNING STRIPS BATTERY PLUGS \& SOCKETS BINDING POSTS
DIODE SOCKET
CONNECTORS, MULTI CONTACT FUSE STRIPS. BLOCKS \& BOARDS GRID CAPS
GRID CAP SHIELDS
hermerically sealed tube SOCKETS

METAL STAMPINGS MICRO-CONNECTORS MOUNTING DEVICES PHONO TIP JACKS PRINTED CIRCUIT, CONNECTORS SHIELDS, TUBE-MINIATURE \& NOVAL \& BASES SOLDERING LUGS-200 VARIATIONS strap nuts
TRANSISTOR SOCKET TUBE HOLDERS-SPRING TYPE VIBRATOR PLUGS AND SOCKETS TERMINAL ASSEMBLIES: Blocks, boards in laminated and molded, as sembled with lugs, pins, serew perminals, contacts, clips, turret lugs and other hardware to specifications.

at the IRE-NATIONAL CONVENTION: BOOTH No. 505 \& 506

Transistor Equations (continued from p 156)

		GROUNDED BASE	GROUNDED EMITTER	grounded collector	
	$\mathrm{R}_{\text {IN }}$	$\begin{aligned} & =r_{e}+r_{b}\left[r-\frac{\propto}{1+\frac{R_{L}}{r_{c}+r_{b}}}\right] \\ & I F R_{L} \\| r_{c} \\ & \cong r_{e}+r_{b}(1-\infty) \end{aligned}$	$\begin{aligned} & =r_{b}+r_{e}\left[\frac{\frac{r_{c}+R_{L}}{r_{c}+r_{b}}}{\frac{R_{L}+r_{e}}{r_{c}+r_{b}}+(1-\infty)}\right] \\ & \cong r_{b} \ll r_{c}=r_{e}<R_{L}+\left[\begin{array}{r} 1+\frac{R_{L}}{r_{c}} \\ 1-\alpha+\frac{R_{L}}{r_{c}} \end{array}\right] \end{aligned}$ IF IN AODITION $R_{L} \ll r_{c}$ $\cong r_{b}+\frac{r_{e}}{1-\alpha}$		
	${ }^{2}$ out	$\begin{aligned} & =\left(r_{c}+r_{b}\right)\left[\frac{r_{e}+r_{b}(1-\alpha)+R_{G}}{r_{e}+r_{b}+R_{G}}\right] \\ & 1 F r_{b} /\left(r_{c}\right. \\ & \cong r_{c}\left[\frac{r_{e}+r_{b}(1-\alpha)+R_{6}}{r_{e}+r_{b}+R_{G}}\right] \end{aligned}$	$\begin{aligned} & =\left[\frac{\left[1+\frac{r_{b}+R_{G}}{r_{c}}\right]\left[r_{e}+(1-\infty) r_{b}\right]+R_{G}(1-\infty)}{r_{e}+r_{b}+R_{G}}\right] \\ & \text { IF } r_{b}+R_{G} \ll r_{c} \\ & \cong r_{c}\left[\frac{r_{e}+(1-\infty)\left(r_{b}+R_{G}\right)}{r_{e}+r_{b}+R_{G}}\right] \end{aligned}$	$\begin{aligned} & =r_{e}+\frac{(1-\alpha)\left(r_{c}+r_{b}\right)}{1+\frac{r_{c}}{R_{G}+r_{b}}} \\ & \underbrace{r_{r_{b} \ll} r_{c} \text { THIS IS EQUIVALENT TO }}_{\text {IF }} \end{aligned}$	
		$\begin{aligned} & =\frac{4 R_{L} R_{G} \alpha^{2}}{\left\{\left[\frac{R_{L}}{r_{C}+r_{b}}\right]\left[r_{e}+r_{b}+R_{G}\right]+\left[r_{e}+R_{G}+r_{b}(i-\alpha)\right]\right\}^{2}} \\ & \text { IF } R_{L}<\left(r_{G}\right. \\ & \cong \frac{4 R_{L} R_{G} \alpha^{2}}{\left[r_{e}+R_{G}+r_{b}(1-\alpha)\right]^{2}} \end{aligned}$	$\begin{aligned} & =\frac{4 R_{G} R_{L}\left[\alpha-\frac{r_{e}+r_{b}}{r_{c}+r_{b}}\right]^{2}}{\left\{\left[r_{e}+r_{b}\right]\left[1+\frac{R_{L}}{r_{c}+r_{b}}\right]+R_{G}\left[1+\frac{R_{L}+r_{e}}{r_{c}+r_{b}}\right]-\alpha\left[r_{b}+R_{G}\right]\right\}^{2}} \\ & \text { IF } R_{L}+r_{e}\left(1 r_{c}, r_{e}+r_{b}<r_{c}\right. \\ & \cong \frac{4 R_{G} R_{L} \alpha^{2}}{\left[r_{e}+(1-\alpha)\left(r_{b}+R_{G}\right)\right]^{2}} \end{aligned}$	$\begin{aligned} & =\frac{4 R_{G}}{\left.R_{L}\left\{\left[1+\frac{r_{G}}{R_{L}}\right]\left[1+\frac{r_{b}+R_{G}}{r_{c}}\right]+[1-\alpha]\right]\left[\frac{r_{b}+R_{G}}{R_{L}}\right]\left[1+\frac{r_{b}}{r_{c}}\right]\right\}^{2}} \\ & 1 F r_{e} \ll R_{L}, r_{b}+R_{G}\left(<r_{G}\right. \\ & \cong \frac{4 R_{G}}{R_{L}\left[1+\left(\frac{r_{b}+R_{G}}{R_{L}}\right)(1-x)\right]^{2}} \end{aligned}$	
		$\begin{aligned} & =\left[1+\frac{R_{G}}{R_{L}}\right]^{2} \frac{\alpha^{2} R_{L}{ }^{2}}{\left\{\left[T_{e}+r_{b}+R_{G}\right]\left[1+\frac{R_{L}}{r_{C}+r_{b}}\right]-\alpha r_{b}\right\}^{2}} \\ & \text { IF } R_{L} \ll r_{C} \\ & \cong\left[1+\frac{R_{G}}{R_{L}}\right]^{2} \frac{\alpha^{2} R_{L}{ }^{2}}{\left[r_{e}+R_{G}+r_{b}(1-\alpha)\right]^{2}} \end{aligned}$		$\begin{aligned} & =\frac{\left[1+\frac{R_{G}}{R_{L}}\right]^{2}}{\left\{\left[1+\frac{r_{e}}{R_{L}}\right]\left[1+\frac{r_{b}+R_{G}}{r_{G}}\right]+\left[\frac{\left[b_{b}+R_{G}\right.}{R_{L}}\right][1-\propto]\left[1+\frac{r_{b}}{r_{G}}\right]\right\}^{2}} \\ & \text { IF } r_{e} 《 R_{L}, r_{b}+R_{G} 《 r_{G} \\ & \cong \frac{\left[R_{L}+R_{G}\right]^{2}}{\left[R_{L}+(1-\propto)\left(r_{b}+R_{G}\right]^{2}\right.} \end{aligned}$	
		$\begin{aligned} & =\frac{\alpha^{2}\left(r_{c}+r_{b}\right)}{\left(r_{e}+r_{b}\right)} \times \frac{1}{\left(1+\beta_{b}\right)^{2}} \\ & \beta_{b}=\sqrt{\frac{r_{e}+(1-\alpha) r_{b}}{r_{e}+r_{b}}} \\ & \text { IF } r_{b}\left\langle\left(r_{c}\right.\right. \\ & =\frac{\alpha^{2} r_{c}}{\left(r_{e}+r_{b}\right)\left(1+\beta_{b}\right)^{2}} \end{aligned}$	$\begin{gathered} \frac{\left[\frac{r_{e}+r_{b}}{r_{c}+r_{b}}-\propto\right]^{2}}{\left[\frac{r_{e}+r_{b}}{r_{c}+r_{b}}\right]\left[\frac{r_{e}}{r_{c}+r_{b}}+(1-\alpha)\right]\left[1+\beta_{e}\right]^{2}} \\ \beta_{e}=\sqrt{\frac{\left[r_{c}+r_{b}\right]\left[r_{e}+(1-\alpha) r_{b}\right]}{\left.\left[e_{e}+r_{b}\right]\left[r_{e}+(1-\alpha) r_{c}+r_{b}\right)\right]}} \end{gathered}$ IF $r_{e}+r_{b} \ll r_{c}, r_{b} \ll r_{c}$ $\begin{aligned} & \cong \frac{r_{c}}{r_{e}+r_{b}} \times \frac{\alpha^{2}}{1-\alpha} \times \frac{1}{\left(1+\beta_{e}\right)^{2}} \\ & \quad B_{e}{ }^{2}=\sqrt{\frac{r_{c}\left[r_{e}+(1-\alpha) r_{b}\right]}{\left[r_{e}+r_{b}\right]\left[r_{e}+(1-\alpha) r_{c}\right]}} \end{aligned}$		
	$\mathrm{R}_{6 \mathrm{M}}$	$=\left(r_{e}+r_{b}\right) \beta_{b}$	$=\left(r_{e}+r_{b}\right) B_{e}$	$\begin{aligned} & =\left(r_{c}+r_{b}\right) \beta_{c} \\ & 1 F r_{b}<r_{c} \\ & \cong r_{c} \beta_{c} \end{aligned}$	
	$\mathrm{R}_{\text {LM }}$	$\begin{aligned} & =\left(r_{c}+r_{b}\right) \beta_{b} \\ & \text { If } r_{b} \ll r_{c} \\ & \cong r_{c} \beta_{b} \end{aligned}$	$\begin{aligned} & =\left[r_{e}+(1-\alpha)\left(r_{c}+r_{b}\right)\right] \mathrm{B}_{\mathrm{c}} \\ & \text { If } r_{r}\left(r r_{c}\right. \\ & \cong\left[r_{e} \cdot(1-\alpha) r_{c}\right] \mathrm{B} . \end{aligned}$	$\begin{aligned} & =\left[r_{e}+(1-\alpha)\left(r_{c}+r_{b}\right)\right] B_{c} \\ & \text { If } r_{b}\left(r_{c}\right. \\ & \cong\left[r_{c}+(1-\propto) r_{c}\right] B_{c} \end{aligned}$	

Millions of Cycles of Contact Life...

At One-Third the Cost

Nearly a thousand of these contacts will fit in a thimble, yet the accuracy of a gasoline gange depends on their uniform performance over a life measured in millions of cyctes.

The instrument is designed so that the varying width of the contact gap controls the gange. As a result, the contact gap is extremely critical. Once the gange is calibrated, the contacts must retain their shape precisely. They have to resist the peening effect of high frequency operation. They must withstand the pitting and erosion of ahmost continuous areing and still maintain low contact resistance with light pressure.
For this hind of an application, platimam and platimum alloys would seem to be the logical choice. There is just one drawback... the
cost. This is where Mallory's experience in contact engineering was able to save the manufacturer two-thirds of his previons cost.
Through metallurgical techniques, Mallory creates new materials by combining the desirable characteristics of several metals. One of these materials is Elkonium 17, a silver-nickelcatmium alloy which had the required characteristics . . at a fraction of the cost.
Other Mallory contact materials will meet the requirements of virtually any electrical contact application. Whether your problem involves simple button or rivet contacts-or a complex assembly-take advantage of the experience onr engineers have accumulated in the development of over 5000 different types of contacts and contact assemblies. Call us today.. . lower your production costs tomorrow.

Expect more...

Get more from MALLOR

Electrical Contacts and Contact Assemblies

MALIORY

SERVING INDUSTRY WITH THESE PRODUCTS:

Electromechanical - Resistors - Switches - Television Tuners - Vibrators Electrochemical - Capacitors - Rectifiers - Mercury Dry Batteries Metallurgical - Contacts•Special Metals and Ceramics•Welding Materials

ELECTRONS AT WORK

Including INDUSTRIALCONTROL

Edited by ALEXANDER A. McKENZIE

Electroluminescent Screens 160	Spatial Harmonic T-W Tube.......... 206
Voltage Regulator Tubes............. . 162	Fringe Area TV Booster Transmitter. . . 218
Pertinent Patents 164	Transmission of Microwaves Through
Rhombic Relay Antennas........ 186	Plexiglas Windows 226
Twenty-Five Cent Oscillator. 194	Measuring Magnetic Tape Recorder Flutter 230
Survey of Wavequides and Lines.... . 198	Single-Frequency Audio Filter 254

Storage of Magnetic Recording Tape... 270

OTHER DEPARTMENTS

featured in this issue:

Page

Production Techniques . 274

New Products 344

Plants and People...... 428

New Books 472

Backtalk
492

Electroluminescent Screens

Direct transformation of electrical energy into light through electroluminescence is becoming increasingly important in the lighting field, but even more important uses may lie ahead in the field of electronics.

Electroluminescence is the property of certain materials that causes them to emit light when placed in a fluctuating electric field. It may be produced by a device comprising a film of phosphor dispersed in the dielectric between two conducting plates. Such a luminous capacitor is shown in Fig. 1. One plate is of electrically-conducting glass while the other is formed by coating the dielectric with vaporized aluminum. Another type of luminous capacitor consists of a pair of enameled copper wires

FIG. 1-Electroluminescent screen resembles ordinary capacitor
in close contact wound side-by-side on a glass tube. Phosphor suspended in oil is brushed over the wires and luminescence produced by an alternating potential of about 200 volts.

Present applications include illuminated clock faces, instrument dials, dashboard and cockpit lights.

FIG. 2-Relative light output versus voltage at constant frequency

These lamps are characterized by instantaneous operation and smooth dimming to extinction through control of applied alternating potential.

Intensity of emitted light depends upon thickness, resistivity and dielectric constant of the phosphor and the frequency and magnitude of the applied potential. Figure 2 shows the variation in light output

FIG. 3-Relative light output versus frequency at constant voltage
with voltage for a $60-\mathrm{cps}$ alternating potential. Figure 3 shows the relation between light output and frequency; the potential was held constant at 100 volts. A given amount of light is emitted each time the luminous capacitor is charged to a given voltage. The more times per second this occurs, the greater will be the amount of light emitted.

The luminous capacitor is being investigated as a possible substitute for cathode-ray tubes.

Although no perceptible color change occurs as a luminous capacitor is dimmed, a definite color change has been observed with variable frequency operation. A lamp that luminesced yellow-green at 60 cps can be made to glow pale-blue-green at $3,000 \mathrm{cps}$. This

18 years of improvements are combined in this NEW Q Meter

NEW FEATURES

- Lo Q Scale permits Q readings down to a value of 10.
- $\triangle Q$ Scale reads the difference in Q of two circuits or components up to a walue of 125 .
- Thermocouple for indicating current inserted into measuring circuit redesigned for high burnout point well above operaling current.
- Oscillator maximum output level adjusted to minimize possibility of thermocouple failure.
- Voltage insertion resistor decreased to 0.02 ohms to minimize effect on measuring circuit. New type low reactance metalized coaxial resistor used.
- All indications on large meters with parallax correction and accuracy of $\pm 1 \%$ full scale.
- Range switch controls mask and arrow which indicate correct scale on frequeney dial.
- Oscillator rigidly supparted by casting whieh supports turret ball bearings and circuit using long life subminiature triode.

Visit our booths \#2-521 and \#2-522 at the I.R.E. Show

The Q Meter Type $260-\mathrm{A}$ replaces our Type 160-A, one of Boonton Radio's Q Meters which has been standard equipment in laboratories and on production lines for eighteen years. Many improvements have been made during this time, but several of our ideas for a better instrument were too extensive to put into a model already in production. These ideas were carefully tested for use in a new model. The \mathbf{Q} Meter Type 260-A includes all past improvements and the extensive changes that we have accumulated.

SPECIFICATIONS:

FREQUENCY COVERAGE: 50 KC to 50 MC Continuously variable in eight ranges. FREQUENCY ACCURACY: Approximately $\pm 1 \%$. RANGE OF Q MEASUREMENTS: 10 to 625.
RANGE OF DIFFERENCE Q MEASUREMENTS: 0 1o 125.
INTERNAL RESONATING CAPACITANCE RANGE:
Main Tuning Dial: 30 to 450 mmf (direct reading) calibrated in 1.0 mmf increments from 30 to 100 mmf : 5.0 mmf increments from 100 to 450 mmf .
Vernier: $-\mathbf{3 . 0}$ to +3.0 mmf (direct reading) calibrated in 0.17 mmf increments.

ACCURACY OF RESONATING CAPACITOR:

Main Tuning Dial: Approximately $\pm 1 \%$ or 1.0 mmf , whichewer is the greater. Vernier: $\pm 0.1 \mathrm{mmf}$.
POWER SUPPLY: 90-130 volits-60 cps (internally regulated).
POWER CONSUMPTION: 65 Watts.
Model available for other Power Supply voltages and frequencies.
Type 103-A Accessory Inductors Available for entire frequency range. PRICE: $\$ 725.00$ F. O. B. FACTORY orporation
property has suggested several additional uses for the luminous capacitor.-J.M.c.

Bibliography

E. C. Payne, E. L. Hager and C. IV. Jerome, Electroluminescence, Illuminating Eng. p 688 , Nov. 1950 .
W. C. Gungle, Electroluminescence W. C. Gungle, Electroluminescence- Tlectrical and Optical Properties, Sylvania Teohnologist, p 54, July 1952.
S. Roberts, Field Strength and Temperature Studies of Electroluminescent Powders in Dielectric Media, Jour Optical Soc of Amer. $\mathrm{p} 850, \mathrm{Nov} .1952$

Voltage Regulator Tubes

By Walter R. Jones
Fanel on Electron Tubes
Research and Development Foard
vew York, $\mathrm{N} . Y$
Use of voltage regulator tubes in military equipment is increasing. As the many uses for these tubes increase, difficulties encountered in their applications will likewise increase. Certain fundamental characteristics of a voltage-regulator tube must be considered if reliability and satisfactory performance are to be obtained.

Voltage regulator tubes are usually recommended for use under various conditions of current drain from 5 milliamperes to 30 or 40 milliamperes as shown in Table I.
Essentially, voltage-regulator tubes of the glow-discharge variety contain a cathode, usually cylindrical in shape, of relatively large area, and a relatively small anode. Upon the cathode is deposited a thin film of some material that serves as an activator. The electrodes are sealed in a bulb containing an inert gas-argon, helium, neon, krypton or a mixture of gases at pressures that may be as low as a few millimeters to more than a centimeter of mercury, depending upon the operating conditions under which regulation is desired. Figure 1 indicates the basic structure of

FIG. 1-Voltage-regulator tube structure
a glow-type regulator tube.
Table I shows that the minimum plate current for these tubes is 5 milliamperes while the maximum varies from 30 to 40 milliamperes depending upon the tube type. Frequently a voltage regulator tube is employed as a reference tube where the drain is less than 5 milliamperes. Erratic performance is obtained under these conditions owing to the fact that only a small amount of the cathode surface is covered by the glow.

In applications of this sort the use of a voltage-reference tube is required if reliable operation is to be obtained. In instances where a reference tube is not employed, the current drain must be increased to at least 5 milliamperes if satisfactory operation is to be obtained with a voltage-regulator tube.

The second part of Table I shows the characteristics of two voltagereference tubes that are currently available.

It is a characteristic of glowregulator tubes that the current density remains constant so that the cross-sectional area over which current flows varies instead. Thus when the current is small, the glow does not cover the whole of the cathode surface but concentrates on a part of it. As the current is increased, the area of the cathode

FIG. 2-Parameters for proper operation explained in text
covered by the glow increases linearly with the total current.

Under many conditions of operation if the voltage-regulator tube is observed it will be noticed that the active glow area within the tube shifts considerably. This shifting that occurs within the tube accounts for small variations in the regulated voltage developed across the tube itself. This effect is sometimes referred to as jitters.

During the long-time life of the tube the voltage regulation may change and the regulated voltage will increase. This results from partial cleaning up of the activator during life.

If the regulator tube is subjected to very high starting currents, the regulated voltage may require as long as 20 to 30 minutes to drop to its normal operating voltage. The regulation is affected by

Table I-Voltage Regulator and Reference Tubes

Tube type	Minimum current in ma	Maximam current in ma	Maximum breakdown D-C volts	$\begin{aligned} & \text { D-C } \\ & \text { operating } \\ & \text { volts } \end{aligned}$	Minimum breakdown in darkness D-C volts**
OA2*	5	30	185	150	225
O43*	5	40	105	75	160
VR75			10.	6	160
OB2*	5	30	133	108	210
OB3	5	30	130	90	175
OC3.	5	40	133	105	210
VR105					
VR150	5	40	185	150	225
5614*	5	25	130	95	***
5787.	5	30	141	100	***
6073.	5	30	185	150	***
6071.	5	30	133	108	***
Voltage Reference Tubes					
5651*.	1.5	3.5	115	37	160
5:83.	1.5	3.5	125	87	***

[^4]

Miniature Precision Bearings

are the extrat quality products manufactured by the originators and pioneer developers of ball bearings in miniature precision sizes. More than three thousand discriminating customers are currently being supplied with MPB components for applications involving high fidelity performance.

These fine quality MPB ball bearings are manufactured under exclusive and exacting production procedures as conceived and developed by MPB designers and engincers. Many designs and sizes of miniature ball bearings initially developed at MPB are now internationally standardized. Over a million MPB ball bearings have been installed in devices operating under unusual conditions . . . extreme temperature range . . . shock . . . continuous high load capacity . . . limited space in project miniaturization.

MPB ball bearings are fully ground, lapped, and/or honed to ABEC 5 tolerances or better. They are torque tested, ultrasonicly cleaned, supplied in specific tolerances and classified within the tolerances for prompt assembly and maximum service. MPB ball bearings are normally supplied in 10 series,
 from $1 / 10^{\prime \prime}$ to $5 / 16^{\prime \prime}$ o.d., of high carbon chrome bearing steel. Some are supplied in stainless and beryllium copper, and all are assembled with best quality balls. The most extensive engincering knowledge in miniature bearing applications is available to you. Write for Catalog and survey sheet E3

Continued expansion, necessary in order to supply a sleadily increasing demand for extra quality bearings, will soon enable us to participate in your future plaming.

Miniature precision Bearings

Incorporated $M P$ Keene, New Hampshire

changes in current within the operating range. Thus, if a tube that has been operating for a long time at low current is suddenly changed to higher current the regulated voltage value may be somewhat different from the value obtained after a long period of time at the higher current value. If a voltageregulator tube is not used for awhile the regulated voltage will likewise require considerable time before it. becomes stabilized.

The minimum d-c voltage required for breakdown of various voltage regulator tubes is shown in Table I. Voltages somewhat in excess of the values shown must be available to be certain that the tube will completely ionize so the proper d-c regulated voltages will be obtained. These values are also shown in Table I.

Ionization of these tubes is accomplished from three sources: photoelectric effects on the cathode from external light sources, radioactive effects from radiation and finally the field owing to voltage applied between the cathode and anode of the tube. The sum of these effects establishes the value of minimum breakdown voltage shown in Table I. If now the tube is operated under conditions of total darkness, then more voltage, perhaps as much as 50 or 60 volts, will be required for breakdown since the contribution from photoelectric radiation has been removed. Likewise, if the tube is mounted where radioactive radiation is completely removed, the breakdown voltage will also be increased.
It is important to determine whether the published ratings cover operation in the dark or in lighted areas. The conditions are specified on the rating sheets and these values will not be realized in service unless the operating conditions duplicate those under which the production tests are conducted.

Often it is desirable to shunt the voltage-regulator tube with a capacitor. It is necessary to keep the value of capacitance at or below $0.1 \mu \mathrm{f}$. If this value is exceeded instability and oscillations may occur.
In this discussion it has been assumed that the proper circuit design has already been completed.

If the voltage regulator tube is to operate within its rated conditions there are three conditions that must be satisfied. These limiting conditions are given in Table I for several types of voltage regulator tubes.

Referring to Fig. 2 these conditions are:
(1) The voltage V_{r} supplied to the tube before firing is equal to or exceeds the minimum breakdown voltage specified in Table I. Thus the d-c supply voltage V, must equal V_{T} plus the voltage drop
across R when the only current flowing is that due to the load R_{L}.
(2) The current I_{T} flowing through the tube after breakdown is held above the minimum permissible value shown in Table I.
(3) The current I_{T} flowing through the tube after breakdown will not exceed the maximum value shown in Table I even if the load current should be reduced nearly to zero.

Bibliography

R. C. Miles, How to Design VR Tube Circuits, Electronics, p 135, Oct. 52.

PERTINENT PATENTS

For some time microwave spectroscopy has been reported from laboratories in the electronics and chemical industries as a means for analyzing the composition of gases and fluids. One use of this method has been detection of moisture in oil lines by a sweep frequency application of microwave energy to the oil line. The range of frequencies at which the line is swept includes the molecular absorption frequency of water.

An interesting patent in this field is number 2,602,835 granted to W. D. Hershberger and assigned to Radio Corporation of America. The invention covers the method and apparatus for microwave spectroscopy in the analysis of organic and inorganic gases.

Figure 1 shows the general arrangement of apparatus in Hershberger's technique. Microwave f-m energy is applied to a waveguide into which is inserted a gas cell. The gas cell may be continuous with a gas line, or a separate chamber, but in every case, it has microwave transparent seals into the waveguide. Microwave energy is detected after passing through the cell, Simultaneously the same microwave energy is applied to a standard of frequency through a directional coupler.
The frequency standard may be a resonant chamber operating at the molecular absorption frequency of the gas under analysis, or a standard gas chamber under con-

FIG. 1-Microwave spectroscopy apparatus provides comparison between gas chamber resonance and standard resonance
trolled conditions of temperature and pressure having the desired microwave molecular resonant frequency. Means are provided for controlling the modulation and center frequency of the microwave generator and for accurate comparison between the test gaschamber resonance and the standard resonance. Indicators for the comparison are provided.

Computers

Computers employing electron tubes and circuits of all types are the subjects of increasing numbers of patents being issued currently. The inventions range from the comparatively simple but complicated looking circuit awarded patent number $2,603,415$, issued to Daniel Silverman, J. D. Eisler and J. H. Huth, assignors to the Stanolind

Unique Insulator Designed for Service at Altitudes of 50，000 Feet ．．．

Specs list temperature conditions from minus 117° to $212^{\circ} \mathrm{F}$

This heary duty antennate insulator， designed for use in the minimum high frequence range．can safely handle voltages up to 10,000 at current flows of 8 amps．

Fluoro Plasties Ine．of Phila－ delphia，l＇a．，compression molded $11 / 2$ pounds of Kel－ F^{*} about a metallic insert to produce the insulator which measumen s inches in diameter and 6 inches in height． The dimensional stability of Kel－F polymers assures an hermetic seal between plastic and metal even under the extreme conditions of service．

Fluoro Plastice is equiped for both compression and transfer molding on a production basis．．． is currently turnimg out a diverse seroup of product－including valve seats．＂0＂rings，insulators．．．rang－ ing in oize from a few grams of Kelfe to（i peomots and up to 10 inchee in dianeter or height．

Mpfor to Mreport E $10: 3$

FLUORO
CHLORO
CARBON
PLASTIC

FLUORO
CHLORO
CARBON
PLASTIC

New Hook－up Wire with Extruded KEL－F＊ Insulation Solves Heat and Damage Problems

Thisumere coated with KEL－F＊， is ideally suited for the totally－en－ closed or hot wiring joh，where it solves the dual problem of heat and damage that has faced design－ crs for vears．First．even in the most（ramped asembly jobs，a （arelese slip）of a tool or soldering iron won＇t damage Kel－F－you can＇t－plit it with a hammer under normal conditions；it melts at about $410^{\circ} \mathrm{F}$ ．secort，the insulation re－ tains it full physical and dielectric properties at temperatures to $300^{\circ} \mathrm{F}$ ．No loakage ．．．no shorts．
surprenant Jlig．Co．of Boston， Masc．Was one of the first extruders to recognize these Kel－F qualities， and the company developed its own technicues for extruding an erenly halanced coating of the plastic on wire of all types．Early stranded single conductors have been fol－ lowed by lwisted paired wires indi－ vidually insulated with kel－F and encased with a jarket of kel－F．．． then individually insulated wire－ or a twisted pair－surrounded hy
braided metallic shielding and cor－ ered with a plastic jacket．Surpren－ ant has also developed a wide range of color－coded wire－ 13 colorsinall． All surprenant wire coated with Kel－F polymers is marketed under the compathy＇s trade name $"$＂urflene＂
White resistance 10 heat and damage，and excellent insulatimg qualities are most important in the usual application，wiring installa－ tions for service in sub－zero or humid，tropic locations，or expe－ sure to corrosive chemicals or vapors can utilize the mmamal chemical inertness and + to 500 degree effective utility range of Kel－F to insure troublo－free per－ formance．

Hefor to Report Ek／OI
（SEE REVERSE SIDE）

Early Application Demonstrates Major Advantages of KEL-F* in Design of Electrical Parts

The UHF socket pictured demonstrates a specific type of application for which Kel-F* polymers are especially suited. However, it also serves excellently to illustrate the unique combination of properties that has caused designers to specify Kel-F for many other electrical and electronic applications.
The two upper pictures illustrate the accuracy of the parts obtained by ordinary injection molding of Kel-F. Neither the molded socket base (top), nor the cover piece (middle) had to be "finished" in any way prior to assembly. Grommet holes, slots for contact clips, the slits through which connection terminals extend, and even supports and spacers . . all were formed in a single injection molding operation for each piece... to such close tolerances that the contact clips on this particular socket provided the most positive electrical contact ever attained
resulted in a 2,000 RMS voltage rating.

Pressure Assembly Techniques can be used

New KEL-F Plant Slated for Early Operation Operation

> The new $1,000,000$ pound plant for the production of Kel-f polymers is scheduled to go into full-scale operation within the next montlo. It is lelieved that the radicallyincreased production from these new facilities will completely relieve the light supply situation which hals existed locause of the widespread use of Kel-F for defense projects...enabling industry to proceed into commercial production with the many projected applications of this wnique fluorochloro-carbon material.
\qquad

Molders of the Month

Leading molders and extruders specialize in fabrication of materials and parts made of Kel-F. . each month this column will spollight sereral of these companies with
their primripal servires and produrts

Chicago Die Mold Division

U. S. RUBBER COMPANY

Chicago, III.
Compression and
Injection Molding
Volve Diaphragms

Plax Corporation

Hartford, Conn.
Extruded Rod and Tubing
Molded Rod and Tubing
Molded Sheets (to $1 / 8{ }^{\prime \prime}$ thick)
Injection Molding
Military Components

Resistoflex Corporation

Belleville, N. J.
Exfruded Rod and Tubing compression Molded Sheets and Discs

Revere Corp. of America

Wallingford, Conn.
Coated Wire and Cable
United States Gasket Company
Camden, N. J.
Compression Molding
Gaskets and Packing
Extruded Rod and Tubing
Injection Molding

The Visking Corporation

Terre Haute, Ind.

Extruded Thin Film
Extruded Lay-flot Tubing

For complete information regarding any item

 mentioned in DESIGN AND PRODUCTION NEWS, ask for detailed APPLICATION REPORTS, write

Official U.S. Navy Pboto

Pillge...

The range of these big guans exceeds anything else afloat. In a like manner, Edo echo-sounding equipment now being installed on ships of the U.S. Navy gives far greater range and accuracy than other types of sonar previously used. This superior performance promises important advances in both ocean navigation and naval tactics.

For instance, the Edo Model 185 deep sounder continuously measures and records any known ocean depths giving the navigator a new means of plotting his course by ocean bottom contours. Other Edo sonar devices search out and detect distant vessels with a range and accuracy never before believed possible.

Such successful results come only from a research and engineering staff endowed with imagination, ingenuity and the ability to apply the latest developments in the whole field of electronics to any specific problem - a characteristic Edo trait for over a quarter of a century.

A SYMBOL KNOWN AND RESPECTED FOR OVER A QUARTER OF A CENTURY

Twenty-seven years of experience are behind the leadership which Edo enjoys in the field of sonar development, research and manufacture. Members of the Edo engineering staff have pioneered many of the developments which make the use of echo-ranging underwater detection equipment an increasingly important function not only in anti-submarine warfare but also in the safe and efficient operation of modern ships.

The exceptional performance of Edo equipment brings to the famous flying fish emblem increasing recognition as the symbol of superior equipment.

Oil and Gas Co., Tulsa, Okla., to the complex device incorporated in the Tristimulus Integrator invented by S. A. Loukomsky and E. I. Stearns, and awarded patent number 2,603,123, assigned to American Cyanamid Company, of New York.

In the "Electrical Computer" illustrated in Fig. 2 electrical resistance circuits in several meshes are employed to compute the economic factors of a distribution system. A series of adjustable impedances Z are so arranged that

FIG. 2-Meters in mesh circuits indicate oil supplied to distribution points in this business-type computer
current flowing through each of them is proportional to the relative amount of goods (oil in this instance) that is to be supplied to use points from each distribution point. There is a variable impedance Z_{z} representing each use point and arranged so the current flowing through each impedance represents consumption of the goods at each associated use point.

A third set of impedances Z_{T}, is generally adjustable in nature and connects supply points to use points. They are called transportation units. If a use point is supplied by more than one source point, the corresponding number of transportation units will interconnect the appropriate points. Subsidiary distribution points corresponding to the jobber or wholesaler are appropriately connected, or if the producer is to distribute direct to consumer, a transportation unit connects between them. With the system connected to an appropriate set of connection devices such as

March, 1953 - ELECTRONICS

बMPHENOD

pushbuttons, an oil company with several interconnecting pipe lines to its distribution centers and consumption areas may calculate by analogy the load requirements of its distribution system. Meters M will show each consumption or distribution point's requirements.

The tristimulus integrator is designed to compute the tristimulus values of colored samples. It is a physiological fact that the effect of light of any color can be specified by three numbers that are the relative amounts of each of the primaries to be mixed in order to produce a match. The apparatus incorporates a flickering beam spectrophotometer, as a driver for a pulse generator and a weighting system, output pulses of which are applied to a decade counter.

It has not been practical to use digital computers, according to the inventor, for integration of the tristimulus functions by the selected ordinate method because the maxima of tristimulus functions are so close together. Apparatus capable of producing electrical pulses proportional to reflectance or transmission of a number of closely spaced selected ordinates is not mechanically practical.

In the present invention the selected ordinates are divided into groups of varying spaces. The center unit of the selected group is then used by giving it a suitable weighting factor, in this case, in the simplest terms, based on the powers of two, as $2,4,8,16$, etc. The system is then in condition to be handled by binary electronic computers.

The wavelength drive of a re-

FIG. 3-Color matching is facilitated by tristimulus integrator that provides an accuracy of 1 part in 5,000

The majority of Amohenol elec
tronic componehts - and thére are now over 9,000 in the standard line -

were developed first to fulfill a

 specific application problem arising in the industry. When you consult with Amphenol Engineers in solving your electronic and power application needs, you will be working with one of the most specialized engineering staffs and testing laboratories in the electronic world.

visit AMPHENOL booths 1-101 and 1-102

 I.R.E. CONVENTION MARCH 23-26, 1953 GRAND CENTRAL PALACE NEW YORK
Need Precision
 CALL HELIPOT, When you need top quality post rypes and ranges of first in precision potentiones are various these pagot now stocks for

 shown on mes and multioturn-ck protorypes immedial quanti-Helipots-both sing You can have inial deliveries on close schedule. immediate delivery. fock items, initial dalance on close schements for Prelarge will be made promp will be gition wecifications. ries prompt arten individual specine you the same nex our trained percision Pots to your Helipot's objective is to give your own company. Our your needs. efficiency as a department facilisies are ready for special designs in sonnel and unequalled units shown hers. ... whether for standard unlar applications. . epesentative listed below.
table of stock values

Catalog	Total Resistance (0hms)	Wire Turns	Temperature Coefficient
100-AJZ	100	3,000	. 00071
500-A3Z	500	2,500	. 00002
1,000-AIZ	1,000	3,400	. 00002
5,000-AJZ	5,000	4,250	. 00013
10,000-AJZ	10,000	4,000	. 00013
20,000-A.AZ	20,000	5,350	. 00013
30,000-AIZ	30,000	5,450	. 00002
50,000-AIZ	50,000	6,550	. 00002

$6)^{6}$ 2

MODEL B HELIPOTS

 A large diameter ($3-5 / 16^{\prime \prime}$) 15-turn Helipot with 139" slide wire length providing the highest resolution (01% to 003%) and . 01% to $.003 \%$) and adjustment accuracy available today in a standard mass-production unit. Rugged, dependable, low in cost.15.turns . . Power rating 10 watts . . . Coil length 139". . Linearity tolerance $\pm 0.5 \%$ (Std.).*

52

MODEL A HELIPOTS The most widely adaptable of all multiturn Helipots. A 10 -turn unit of convenient, compact size offering resolution accuracies 12 to 14 times that of conventional singleturn units of same diameter. 10 -turn range permits direct decimal readings. 10 -turns ... Power ratng 5 watts . Coil tolerances +0.5 inearity tolerances: $\pm 0.5 \%$ (Std. all values $),(\pm 0.1 \% ~ 5 K$
and
$+0.25 \%$ 5 KK). *up, $\pm 0.25 \%$ below

$\begin{array}{cc}\text { Catalog } & \begin{array}{c}\text { Total } \\ \text { Resistance } \\ \text { No. }\end{array} \\ \text { (0hms) }\end{array}$

Catalog No.	Total Resistance $(0 h m s)$	Wire Turns	Temperature Coefficient
$25-A Z$	25	3,000	.00071
$50-A Z$	50	3,200	.00071
$100-A Z$	100	3,800	.00071
$200 \cdot A Z$	200	4,750	.00071
$500 \cdot A Z$	500	4,000	.00002
$1,000 \cdot A Z$	1,000	5,000	.00002
$2,000-A Z$	2,000	6,500	.00002
$5,000-A Z$	5,000	7,200	.00013
$10,000-A Z$	10,000	9,000	.00013
$20,000-A Z$	20,000	10,000	.00013
$30,000-A Z$	30,000	11,500	.00013
$50,000-A Z$	50,000	12,500	.00013
$100,000 \cdot A Z$	10,000	15,000	.00013
$200,000-A Z$	200,000	15,500	.00013
$300,000-A Z$	300,000	16,000	.00013

TABLE OF STOCK VALUES

Cataliog	Total Resistance (0hms)	Wire Turns	Temperature Coefficient
$1,000-\mathrm{BZ}$	1,000	10,900	.00002
$5,000-\mathrm{BZ}$	5,000	19,600	.00002
$10,000-\mathrm{BZ}$	10,000	17,700	.00013
$25,000-\mathrm{BZ}$	25,000	21,800	.00013
$50,000-\mathrm{BZ}$	50,000	25,400	.00013
$100,000-\mathrm{BZ}$	100,000	34,100	.00013
Please note that 1000 volts	is highest that may be		
opplied across coil regardless of resistance value.			

MODEL T HELIPOTS

A single-turn, continuousrotation servo-mounting unit of minimum weight (0.56 oz.) requiring very small cubic space and operating with negligible torque. Shaft rotates on precision ball bearings unit built throughout to highest possible precision. 1-turn ... Power rating $1 / 2$ watt ... Coil length $2^{\prime \prime}$ + Linearity tolerance $\pm 0.5 \%$ (Std.) . . Starting torque .015 in. oz. (Running torque is negligible
*ON SPECIAL ORDER motentiON the above available
of are avers
ometers of meters are Shaft Ex-
omith Rear Sxtra Spot
with widnions. Taps at anged
Welded
Wan Welded
location...Gangectal location ies...spects.
Assemp. Coefficien
Templutions,
Resolutails!
Design detalts on above units subject to change without notice. Certiaco drawings avallable on reguest
Engineering Sales Representatives are located near you to assure personal aftention. Telerype connecls our Now York, Boston, Chicago and Los Angeles offices for rapid information on orders and deliveries. And our Mountainside, Now Jorsoy plant, now under construction, will soon be in production to further assist you.

Catalog	Total Resistalce (Ohms)	Wire Turns	Temperature Coefficient
$1,000-\mathrm{TZ}$	1,000	705	various
$2,000-\mathrm{TZ}$	2,000	750	various
$5,000-\mathrm{TZ}$	5,000	800	various
$10,000-\mathrm{TZ}$	10,000	1,650	various
$20,000-\mathrm{TZ}$	20,000	1,500	.00002
$25,000-\mathrm{TZ}$	25,000	1,500	.00002
$30,000-\mathrm{TZ}$	30,000	1,400	.00002
$50,000-\mathrm{TZ}$	50,000	1,400	.00002
$100,000-\mathrm{TZ}$	100,000	1,500	.00002

MODEL C HELIPOTS

Identical in general design to Model A except has only 3 helical turns of resistance winding and proproportionately shorter length. Ideal for high-accuracy applications with restricted behind-panel depths.
3-turns . . . Power rating 3 watts . .. Coil length 13 $1 / 2^{\prime \prime}$ ". . . Linearity tolerance $\pm 0.5 \%$ (Std.). Behind-Panel Length 1-9/64".*
table of stock values

Catalog	Total Rosistance (Ohms)	Wire Turns	Temp rature Coef.cient
$10-\mathrm{CZ}$	10	1,000	.00071
$50-\mathrm{CZ}$	50	1,390	.00071
$100-\mathrm{CZ}$	100	1,100	.00002
$500-\mathrm{CZ}$	500	1,850	.00002
$1,000-\mathrm{CZ}$	1,000	1,360	.00313
$5,000-\mathrm{CZ}$	5,000	2,500	.00013
$10,000-\mathrm{CZ}$	10,000	3,100	.00013
$20,000-\mathrm{CZ}$	20,000	3,000	.00013
$30,000-\mathrm{CZ}$	30,000	4,400	.00013
$50,000-\mathrm{CZ}$	50,000	4,250	.00013

MODEL \& HELIPOTS First production potentiometer equipped with ballbearing shaft supports as standard and 3 -way servotype mounting. Ganged assemblies can be independently phased after installation without external clamps or brackets.
1-turn. . . Power rating 5 -turn... Power rating 5 watts... Coil Mength
$51 / 2^{\prime} \ldots \ldots 360^{\circ}$ Cont. Mech. Rotation... Linearity tolerance $\pm 0.5 \%$... Starting torque $1.0 \pm .25$ oz. in.*
table of stock values

Total Catalog No.	Thistance Resistance (Ohms)	Wire Turns	Temperature Coefficient
$100-\mathrm{JZ}$	100	630	.00002
$1,000-\mathrm{JZ}$	1,000	875	.00017
$5,000-\mathrm{JZ}$	5,000	1,300	.00017
$10,000-\mathrm{JZ}$	10,000	1,475	.00017
$20,000-\mathrm{JZ}$	20,000	1,900	.00017
$30,000-\mathrm{JZ}$	30,000	1,975	.00017
$50,000-\mathrm{JZ}$	50,000	2,260	.00002

MODEL G HELIPOTS
A small, extra rugged single-turn pot developed initially for aircraft servo mechanisms. Its compact size, high accuracy long life, hak it ack for long instrumentation and servomechanism applications.
1-turn .. . Power rating
2 watts... Coil length $31 / 4^{\prime \prime}$. . . 360° Cont. Mech. Rotation... Linearity tol-
Please note that 400 volts is highest that may be applied across cuil regardless of resistance value. erance $\pm 0.5 \%$ (std.)...
Wgt. $202 . .$. Dia. Wg t.
$5 / 16^{\prime \prime} .{ }^{*}$.
table of stock values

Catalog	Total Resistance (Ohms)	Wire Turns	Temperature Coefficient
$10-\mathrm{GZ}$	10	300	.00071
$100-\mathrm{GZ}$	100	400	.00002
$500-\mathrm{GZ}$	500	500	.00013
$1,000-\mathrm{GZ}$	1,000	650	.00013
$5,000-\mathrm{GZ}$	5,000	750	.00013
$10,000-\mathrm{GZ}$	10,000	950	.00013
$20,000-\mathrm{GZ}$	20,000	1,200	.00013

MODEL F HELIPOTS AJ- ja. single-turn highprecision potentiometer with continuous mechan dead spot between electrical ends. Versatile in application. Ideal where continuous rotation simplifies 1-turn... Power rating 5 watts... Coil length $9^{1 / 4^{\prime \prime}}$. . . Linearity tolerance $\pm 0.5 \%$.*

TABLE OF STOCK VALUES

Catalog No.	$\underset{\substack{\text { Total } \\ \text { Resistance } \\ \text { (Ohms) }}}{ }$	Wire Turns	Temperature Coefficient
100-FZ	100	800	. 00002
500-FZ	500	1,300	. 00002
1,000-FZ	1,000	1,200	. 00013
5,000-FZ	5,000	2,000	. 00013
10,000-FZ	10,000	2,500	. 00013
20,000-FZ	20,000	2,700	. 00013
50,000-FZ	50,000	4,000	. 00013
100,000-FZ	100,000	5,000	. 00002

applied across coil regardless of resistance value

NOT CARRIED IN STOCK

 ? available on order
MODELS AN and CN tentionically precise, highly lipor sions as Mods same general poservormountings and C, except havand are buit to bs, ball-bearing shaft sible. Have approxighest precision pos in linearity accuramately $2: 1$ advantasing A and C Helipots over correspond arity tolerances as (Model AN lindin values of 5 K an close as $\pm .025 \%$ AN (10-turns) resistanceve.)
 250,000 ohms . CN Write for full (3-turns) 30 to tolerances, special features, etc. linearity 0

MODELS D and E HELIPOTS
Horge diameter (3-5/16") wors windings for extremely long resis range tions coupled highest possible restance erances. Model D has 25 turs, 9000° of rotation, is $4-9 / 64^{\prime \prime}$ coil length anges from 100 , and is availabi beModel E has 40 to 750,000 ohms. $4,400^{\circ}$ of rotation, $373^{\circ \prime} \mathrm{coil}$ le behind panet rotion, is $6-1 / 64$ " dength, $1,000,000$ chms. resistances 200 deep Write for full olerances, special features, on limearity

MODEL RA Precision DUODIALS
A beautiful, precision-built, multi-turn dial of compact dimensions ($1-13 / 16^{\prime \prime}$ dia.) for all types of quality multi-turn installations. Features unique "jump" mechanism that keeps secondary dial stationary until primary dial has completed a full turn -then secondary dial "jumps" to new position. A vibration-proof lock holds dial settings whenever desired.
Black nylon knobs, satin aluminum dials, quality "feel" and appearance throughout. Available in 10 -turn design for use with 3 and 10 -turn Helipots and in RAJ version for use with small AI Helipots. Write for full details.

MODEL W DUODIALS

A large diameter ($43 \mathrm{~h}^{\prime \prime}$) multi-turn dial ideal for primary control applications. The inner dial shows the exact position of the slider on any multi-turn Helipot while the outer dial shows the particular turn on which the slider is moving. Thus with 10 -turn units, readings can be made directly in decimal equivalents of total resistance winding. Since primary dial is direct-connected to shaft, backlash is eliminated.
Avainable in 10:1, 15:1, 25:1, and 40:1 Ratios for use with various Helipot models as well as with other multi-turn equipment.

Write for full details.

OTHER UNIQUE HELIPOT PRODUCTS

r-b-m 22300 series

Hermetically Sealed Relays

The R-B-M 22300 hermetically sealed telephone type relay is the electrical and mechanical equivalent of AN 3304-1, except for smaller size and mounting dimensions.

An improved armature design, plus high temperature molded nylon coil bobbin, provides greatly improved magnetic efficiency and enables $R-B-M$ to reduce the overall size of the relay. The R-B-M 22300 design still retains palladium cross-bar contacts identical to those used in the larger size.

Maximum contacts-6 Form A and 4 Form $\mathrm{C}-3$ ampere 28 Volts. D. C. coil construction only. Maximum coil resistance 5000 ohms. Minimum power .75 watts. Also available in AN 3304 can for dynamotor or low capacitance application.

Optional Mounting Arrangements

R-B-M DIVISION ESSEX WIRE CORP. Logansport, Indiana

cording flickering beam spectrophotometer is arranged to gate a pulse generating system into the circuit at wavelengths of light corresponding to the selected ordinates, and to cut in the electronic gates to the counter circuits so the pulse generator applies pulses to the counter directly for ordinates of maximum weight, and to flip-flop circuits that precede the counter for lesser weights. For weights of, $1,2,4,8,16$, and 32 there will be a total of five flip-flop circuits.

Ordinates bearing the weight 32 , will open the gate circuit directly connecting the pulse generator to the counter. For an ordinate weighted 16 the last flip-flop before the counter is interposed between the pulse generator and the counter, and weights of 1 will open the first flip-flop circuit and so on. The number of pulses generated at each ordinate is proportional to the reflectance or transmission as measured by the spectrophotometer for that particular wavelength.
While a separate integrator could be set up for each primary wavelength the tristimulus integrator can be economically provided with switches to obtain as many tristimulus values as desired. An accuracy of 1 part in 5,000 is claimed for the system of this invention which is equal to or better than the accuracy of the human eye, for all practical purposes.
The system of the tristimulus integrator is illustrated in Fig. 3. It has been simplified considerably in block form.

Multiplex Telegraph

A recent patent for a "Multiplex Telegraph System Utilizing Electronic Distributors" was awarded to T. A. Hansen. The patent number $2,609,451$ is assigned to Teletype Corp. of Chicago, Ill. It is the inventor's object to provide a multiplex telegraph system capable of higher speeds and an increased number of channels with great stability. The system provides means for ascertaining when specific channels are open, and for varying the speed at which transmission is carried in any channel. The distributors are all electronic as are all test and control facilities and the entire

PERMIT SUPERIOR PERFORMANCE

IN MANY ELECTRONIC PRODUCTS

The superior performance of Moloney HiperCore Electronic Cores is immediately discernable when incorporated in various electronic products. This is the result of rigid quality control during manufacture.

To begin with...every mill shipment of cold-rolled, oriented grain, high permeability steel for HiperCore Cores must pass rigid Epstein Tests. Then, during manufacture...care and precision in the winding on Moloney's patented winding mandrels... absolute control of tension. . . exact overall dimensions. Care... in annealing to relieve stresses by maintaining accurate temperature and atmospheric control. Care... in cutting, to obtain a minimum gap followed by an etching process to insure interlaminar insulation.
Production, in quantity, is available to you if you need superior performance, smaller size, less weight in your electronic cores.

Write today for Bulletin SR-205 containing specifications, performance data and prices on over 300 standard sizes. Over 1000 sizes available for special applications.

MOLONEYELECTRICCO.

[^5]
Brass Plumbing Integral Part of Magnetron Tube

During World War II the magic word RADAR denoted a new and powerful secret weapon which proved instrumental in our ultimate victory. Today many advanced types of radars are being designed for both military and civilian use. Some military radars are fire control systems used to aim and fire different types of weapons. Others are search radars which detect enemy ships, planes, etc., in time to alert our defenses. Civilian radar is used by commercial ships and planes as a navigation aid to combat poor visibility.

Although these equipments all differ in their construction and application, they have one thing in common, a high frequency oscillator and output tu'se called a magnetron.

Military Magnetron

Illustrated is the RK2J56 Magnetron used in fire control radar equipment. This tube uses a special brass wave guide assembly to couple its output to the antenna system. All parts conducting high frequency waves such as the rectangular and circular sections are made from Red Brass tubing (approximately 85% copper and 15% zinc) because of its high resistance to corrosion and ability to take a good plate. A smooth mirror-like internal surface is necessary in order to properly reflect the high-frequency waves.

After the tubing is silver soldered in place, the internal surfaces are broached to remove any excess solder and to prepare them for either silver or bright alloy plating. The mounting bracket and flange are blanked from high brass (approximately 66% copper, balance zinc). The stock used for the flange must be extra flat to insure an airtight connection with the wave guide as the whole system is pressurized.

One end of the rectangular section is closed with a brass plug made in two sections. The bottom or inside surface is drawn from Red Brass sheet stock. The top or outer surface is blanked from high brass strip and the two sections are soldered together. A threaded mounting hole is located on top of the plug.

Civilian Magnetron

Magnetrons are also found in other types of high frequency equipment besides radar. The illustrated QK174 is a continuous-wave frequency-modulated magnetron used in television relay equipment. The plate support assembly consists of a high brass mounting plate $1 / 8^{\prime \prime}$ thick with four $3 / 1 ;$;" mounting holes at the corners and a $11 / 4$ " hole in the center. A tubular section $31 / 4^{\prime \prime} \times 1 \frac{1}{4}$ " made from free machining brass is inserted through the center hole in the mounting plate and

RK2J56 WAVE GUIDE ASSEMBLY

1. Complete wave guide assembly
2. Tubular sections
3. Rectangular section
4. Mounting bracket 5. Plug
f. Flang
5. Flange

RK2 J56 Magnetron and Wave Guide Assembly, Courtesy Raytheon Manufacturing Co., Waltham, Mass.

QKI74 PLATE SUPPORT ASSEMBLY 1. Complete plate 3. Tubular section support assembly 4. Mounting plate 2. Output coupler

QK 174 Magnetron and Plate Support Assembly Courtesy Raytheon Manufacturing Co., Waltham, Mass.
silver soldered in place. The assembly is bright-alloy plated for greater protection from corrosion and then connected to the magnetron by means of three mounting screws inserted through one end of the tubular section. An octal tube socket is fitted on the other end of the tubular section enabling the magnetron to be plugged into the circuit. The whole unit is held in place by four screws which fasten the mounting plate securely to the transmitter chassis.

A brass coupler $17 / 8^{\prime \prime}$ long made from $11 / 4^{\prime \prime}$ free machining brass rod stock serves to couple the output of the magnetron to the wave guide system.

In high frequency applications a number of qualities such à machinability, conductivity, resistance to corrosion, and ability to solder and plate well, must be considered when choosing a copper-base alloy. Bridgeport Brass will be glad to help you determine the alloy best suited to meet your exacting requirements. (9419)

diversified experience in avionics

Contracts with U. S. and foreign governments for electronic work are nothing new at Air Associates! For many years, our Electronic Division has been developing and manufacturing LF, VHF and UHF communication and navigation systems, landing systems, firing error indicator systems, echo ranging systems (including sonar) and special miniaturized electronic devices. Our wide experience and expanded facilities for airborne, marine and ground electronics equipment are available to help solve your design and production problems. Your inquiry to Teterboro will receive prompt attention.

INCORPORATED
teterboro, new jersey

MINIATURE EXTERNAL CONNECTORS

(in metal shell enclosures)

Maximum profection, Minimum weight, Minimum space

Recent designs of elec-

 tronic equipment in aircraft and guided missiles have required progressive miniaturization of electronic components. These external connectors are typical of several special designs we have supplied to meet miniature requirements.

M485 Receptacle

M48P Plug

M48-48 \#20 A.W.G. CONTACTS
Extra-sturdy construction makes this connector ideal for rugged, heavy duty operations. Designed according to AN standards, the M48 Connector fits all AN size 28 shells.

These Connectors also employ standard Winchester Electronics" FEATURES:

MONOBLOC* CONSTRUCTION

Eliminates unnecessary creepage paths, moisture and dust pockets and provides stronger molded parts

MOLDED MELAMINE BODIES

(In accordance with MIL P-14a) Mineral filled, are fungus-proof and provide mechanical strength as well as high arc and dielectric resistance.

PRECISION

 MACHINED CONTACTSPins from brass bar stock (QQ-B611) and sockets from spring temper phosphor bronze bar (QQ-B746a) They are gold plated over silver for consistent low contact resistance, reduction of corrosion and ease of soldering.

POLARIZATION

Positive engagement is effected by an integral key and mating groovo in the shells.

WINCHESTER ELECTRONIGS
 INCORPORATED
 GLENBROOK, CONN., U.S.A.

This miniature connector ($1^{\prime \prime} \times 1 / /{ }^{\prime \prime}$ lgth.), in an aluminum die cast shell, is sealed with neoprene gaskets around the inserts and around each contact for pressure-tight construction. Air leakage is less than 1 cubic inch per hour at 30 PSI pressure differential. The reversed arrangement (illustrated) provides pin contacts in the panel mounted receptacle, socket contacts in the cable mounted plug. In the standard arrangement (not shown) the cable mounted plug contains the pin contacts. The metal shell has an olive drab iridite finish.

SERIES "B"- 12, 14 or 24 \#20 A.W.G. CONTACTS The cadmium plated aluminum die cast shells are available in $7 / 8^{\prime \prime}$ and 1-7/32" dia. with bayonet locking for quick engage and disengage. Shells have synthetic rubber gaskets. Flanges permit mounting of receptacle in panel or housing and special gland construction provides cable entry in plug.

*Trade Mark

Patents Pending

Our Sales Department invites your inquiries. Wire or write for cafalog of other types or advise us of your special requirements.

WEST COAST BRANCH:
1729 Wilshíre Boulevard, Santa Monica, California

FIG. 4-Multiplex telegraph system is capable of higher speeds and greater stability
system is stabilized by precision quartz-crystal oscillators. It is possible to control the facilities to allow transmission from two, three or four signal sources to divide equally over any available number. of channels in use. Twenty-three sheets of circuit diagrams are required to set forth the multiplex telegraph system. A block diagram of the system is shown in Fig. 4.

Magnetic Tape Performance

A system of testing the performance characteristics of magnetic tape used in sound recording is the subject of patent $2,610,230$ granted to D. E. Weigand of the Armour Research Foundation, Illinois Institute of Technology, Chicago, III. The patent is assigned to the latter Foundation, and describes an "Integrator and Hysteresis Loop Tracer". Employing the pickup shown in Fig. 5 a magnetic tape sample is passed through the device wherein it is energized and deenergized by a 60 -cycle field. Pickup loops in the device compare the energizing field with the flux density and magnetomotive force de-

* Copyrigmied yraoe mank of c.o imprequates

Nobody knows oil capacifors like C-D. It's generally acknowledged that "nobody can duplicate C-D's Dykanol capacitor." You can count on the ruggedness and durability that have made C-D capacitors famous for 42 years and that is all too rare these days. Catalog No. 400 will show you how broad the line is. Write for it to: Dept. K33, Cornell-Dubilier Electric Corp., South Plainfield, N. J.

CORNELI-DUBILIER

world's largest manufacturers of capacitors

CAPACITORS

vibrators

converters

Noce

 Varglas Silicone has been made more flexible.Sharp turns and 90° bends cause no cracking or peeling - no loss of dielectric strength.
As pioneers in the manufacture of silicone sleeving and tubing, we know this is the greatest improvement made during the past ten years. Unexcelled where high temperatures must be withstood for several hours - not just for 15 minutes. You need not sacrifice abrasion resistance and toughness to get flexibility. The new Varglas Silicone sleeving and tubing will pass cold bend tests at 35° to 40° LOWER temperature than formerly.

The only Class H insulation with all these features:

Efficient from $500^{\circ} \mathrm{F}$. to $-85^{\circ} \mathrm{F}$.

Makers of
Electrical Insulating
Tubing and Sleeving

Saunples of Varglas Silicone products as well as samples of our complete line of tubing and sleeving are available in a convenient sample folder. Just drop us a line telling us your problem and its peculiarities.

VARFLEX Sales Co., Ine.
 308 N. Jay St., Rome, N. Y.

Photographic comparison of the new G-E Drawn-oval capacitors (in color) and the conventional units they replace, showing savings in size.

New General Electric Capacitor is Smaller, 10 to 20\% Lower in Price

These fixed paper-dielectric hermetically-sealed capacitors offer:

- Reduced costs - 10 to 20%
- Savings in size and weight
- Double-rolled seams
- Drawn-steel cases
- Savings in crifical materials

If you're using fixed paper-dielectric capacitors with case styles CP53 and CP70 in ratings from 1 to 10 muf, 600 to 1500 volts d-c or 330 to 660 volts a-c-these Drawn-oval units offer you improved reliability in addition to an opportunity for reducing the size, weight and cost of the electrical equipment you manufacture.

In the new Drawn-oval capacitors, we get minimum seam length by using drawn-steel cases, attaching the capacitor covers with a doublerolled seam of proven reliability. This construction results in a lighter, yet stronger capacitor. Actual savings in size and weight vary with case style and rating but they can amount to as much as 30%.

This new construction has enabled us to increase output while eliminating some critical materials. The resulting savings are passed on to you in the form of shorter shipments and lower prices. Prices average 10 to 20% lower than standard capacitors, again depending upon case style and, of course, quantity ordered.

For more information on the new G-E Drawn-oval capacitors, their ratings, dimensions and prices, see your local G-E apparatus sales representative or write for Bulletin GEA-5777. Address Section 407-311, General Electric Company, Schenectady 5, N. Y.

GENERAL

 electric

FIG. 5-Pickup device used with a magnetic tape sample when testing performance characteristics
veloped in the tape through an integrating circuit as shown in Fig. 6 to produce instantaneously a hysteresis loop display on a cath-ode-ray indicator. The novelty and particular advantage of the $B-H$ curve tracer is embodied in the employment of fundamental magnetic and electric properties referred to the permeability of air in a fairly simple equipment that does not require the use of calibrating samples or the like.

Recently issued patents in the field of microwave antennas and waveguides tend towards directive means for these antennas, which essentially require no movement of the antenna structures. A patent issued to C.B.H. Feldman of Bell Telephone Laboratories, 2,594,409 describes several slot antenna arrays containing motive phase-shifting devices within the fixed antenna structure. In the illustration of Fig. 7, an example of this technique is shown. The motive member rotating within the waveguide-feed structure of a linear slotted antenna array shifts the phase relationship of the wavefronts applied to the slot to result in a variation in the direction of the radiated beam over a predetermined range. Apart from the movement of the elements

FIG. 6-Integrator circuits used with cathode-ray tube produce B - H display for magnetic tape

[^6]Dalohm precision deposited carbon resistors offer the best in accuracy, stability. dependable performance and economy. Available in $1 / 2$ watt, 1 watt and 2 watt sizes.
Carefully crafted in every respect. Dal ohm resistors are true power in miniature -provide the answer to those space problems.

DOW CORNING SILICONE DIFFUSION PUMP FLUIDS

No. 702 and 703 are ...

SUPREMELY STABLE

25 Treatment which would completely decompose organic oils has little, if any, effect on Dow Corning 702 or 703. For example, these silicone fluids pump down just as quickly as ever to their original ultimate vacuum after many hundreds of test cycles in which air is admitted to the diffusion pump immediately after the heaters are switched off.

VERSATILE

These silicone fluids can be used in most diffusion pumps beccuse they are inert to glass and the metals most commonly used in constructing pumps. They are also safe to use in valveless pumping systems, even in the continuously cycling automatic pumping sets used in the commercial evacuation of cathode ray and vacuum tubes.

MOST ECONOMICAL

2 The fluid charge remains effective almost indefinitely; only actual losses from the pump have to be replaced. Maintenance costs are reduced to a minimum because there is no fouling of the pump or system by decomposition products.

AND EFFICIENT

Pumping speed and limiting back pressure performance of diffusion pumps charged with Dow Corning 702 or 703 are essentially the same as they are with organic oils. Ultimate vacuum obtainable with Dow Corning 703 is of the same order as that obtainable with the best organic oils. Dow Corning 702 is used in many commercial systems because it is less expensive to use where the lowest pressures are not required.

For more technical information please address Dept. BD-3.

DOW CORNING

CORPORATION
Midland - Michigan Want more information? Use post card on last page. March, 1953 - ELECTRONICS

TYPE 904 NOISE GENERATOR a direct reading noise source permits measurements of noise factors up to 20 db for r-f cmplifiers and receivers operating in the range from 10 to $1000 \mathrm{mc} / \mathrm{s}$. A $\mathrm{Tr}-1$ coaxial diode with a mominal input impedance of 50 ohms is used. VSWR is approximately 1.25 . housed in handsome steel cabinet.

The PRD line of RF Test Equipment is the most complete line available today covering the entire frequency range from .01 to 40 kilomegacycles per second. Every unit in the Fine is rigorously engineered and meticulously manufactured to the highest standards attainable. The excellence of PRD equipment, in quality, dependability and accuracy is well attested by use in the leading laboratories. throughout the world, For consultation on the application of standard or special PRD equipment to your problems call or write our skilled staff of engineers today, without obligation.

> THE NEW EXPANDED PRD LINE OF RF TEST EQUIPMENT INCLUDES Frequency Measuring Devices, Signal Sources and Receivers, Attenuators and Terminations, Transmission Line Components, Impedance Measurement and Transformation Units, Bolometers, Detection and Power Measurement Equipment.

General features of II 8930 test jack: Silverplated, heat-treated beryllium copper contact is made in one piece with large terminal end for easy scldering. Terminal end is tindipped. Brass, nickel-plated shell and nut.

Metal shell insures firm, dependable mounting. Phosphor bronze lock washer is nickel-plated. Nylon insulator available in different colors: White, black, red, green, brown, orange, blue.

ALSO AVAlLABLE

119052. Same as 118930 but with special milled end with elongated hake for wining.

118984. Feed through type, similar to 118930 but with one-piece brass terminal stud, tinplated.

Your dollar buys more "instrument" ... in our Model

Volt-Ohm-Mil-Ammeter
by R. L.Triplett president

Because we build every major part of our instruments the quality is carefully controlled. For example, we know we have more torque driving our pointers because we designed and built the complete instrument. We know we have sustained dependence in the shalts and switch contacts of our test equipment for the same reason. Cycle tests for switches exceed several times the rigid requirements of the armed forces.

There is another important value to you. Because we make our own components we eliminate the profit another manufacturer would make in selling them to us. And this "profit" is passed on to you

Consider these features of Model 630 V.O.M., for example-

One Hand Operation-One switch with large recessed knob has a single position setting for each reading. Leaves one hand free. Eliminates switching errors, trouble, saves time.

Ranges-AC-DC Volts: 3-12-60-300-1200-6000 (AC, 5000 Ohms/Volt; DC, 20,000 Ohms/Volt). 60 MicroAmps. 1.2, 12, \& 120 Mil Amps. DB scales at 1.73 V on 500 Ohm line, $0-66$ DB output.

Highest Ohm Reading-To 100 Meg. in steps of 1000-10.000100,000 Ohms- 100 Megohms.

Yes, with us it's a matter of personal pride to make "Triplett" stand for better construction and more service for your test equipment dollar.

triplett electrical instrument co. Bluffton, Ohio Tappur $630 \mathrm{xa.n}$. andy $\$ 3950$

For sercice, accuracy, highest dependability, buy new!

Cylindrical toggleswitch is a real space saver

T1000 Designed for MLL- 5.6745 uses
This stardy litte T1000 Hetherington loggle switah reduces size and weight approximately $\mathbf{2 5 \%}$ by comparison with rectangular switehes. Features include exceptionally positivecam-roller snapaction; cffective contact wipe; maximnm protection against contact wear or arcing damage and strong lever operating action. Only $2 \frac{9}{32}$ " long x $3 / 4^{\prime \prime}$ diancter. Weighs 1 ounce.

Write for Rulletin S.I.

Compactsess, light weightand maximmm dur. ability characterize these wnique lletheringon switches. Widely used for aircraft seat light control, the Series J100 "pushpush" switch ulilizes a sturdy cam-roller design operated by a posilive escapementtype push-button action and is readily adaptable to many uses. The Series 121000 switch is a rotary action unit with indicator knob. Both types operate on cither 28 v.d.c. or 115 v.a.c. 60 eveles current. Rated 20 amperes resistive.

Write for Bulletin S.1.

HETHERINGTON, INC., Sharon Hill, Pa. West Coast Division: 8568 W . Washington Blvd., Culver City, Calif.

FIG. 7-Nonmechanical antenna director uses motor-driven phase shifter within a fixed antenna structure
within the antenna structure, the antenna is stationary with respect to the variation in beam direction. The patent shows many variations in structure, which include this technique.

The telephone system that is the subject of patent 2,609,455 issued to A. E. Bachelet assigned to the Bell Telephone Laboratories, is a thing that can be anticipated as a probable development in the use of cathode-ray beams for various applications, ranging from informa-tion-storage devices to the present invention. The use of a cathode-ray beam is disclosed in this invention to switch the connection between subscribers in a telephone system. The advantage of rapidity and the effective absence of inertia leads to consideration of the possibility of multiple-transmission multiplexing of two-way circuits with the switching accomplished by the application of circuits like those used in the deflection of the cathode-ray beam in tv cameras, receivers and in crt oscillographs.

A diagram of the circuit is shown in Fig. 8. A telephone subscriber's station is connected to the collector

FIG. 8-Cathode-ray beam-switching tube is used as an inertialess switchboard for telephone subscribers

... says Resistance Products Company, of Harrisburg, Pennsylvania

Thhis company produces precision wire-wound resistors of utmost stability for electronic equipment used by the Armed Forces and for makers and users of test instruments, meters, and scientific apparatus of various types. The vital accuracy of much important equipment, therefore, is very dependent upon the quality of the resistors coming off the production lines of Resistance Products Company.

In view of this, Driver-Harris is particularly gratified to have Resistance Products state: "Reflecting our experience with Driver-Harris alloys is our large use of Karma wire. Currently, we are employing Karma for numerous critical applications where utmost stability, together with high resistivity and low temperature coefficient of resistance,
is requisite. Consistently excellent results are being obtained. We have, in fact, used Karma with outstanding success ever since its introduction several years ago. It is our belief the development of this alloy constitutes a major forward step."

Karma* is ready to serve you, too; as are worldfamous Nichrome* and Nichrome V, and over 80 other alloys developed by Driver-Harris for the electrical and electronic industries. We feel confident that, like Resistance Products Company, you'll realize exceptional advantages by putting one or more D-H alloys to work for you. Let us have your specifications. We'll gladly make recommendations based on your specific needs and have our engineering department help you obtain best results.

> KARMA ${ }^{*}$ and world-famous Nichrome*
> are manufactured only by

Driver-Harris Company

HARRISON, NEW JERSEY

BRANCHES: Chicago, Detroit, Cleveland, Los Angeles, San Francisco

This new booklet tells...

How 2uintemai and
 Quinorgo help

Pyrolysis
Shows you the way to:

JOHNS MANVILLE PURIFIED ASBESTOS
HIGHLY PUIONS
ELECTRICAL INSULATIONS

This 32-page booklet is crammed with information to help you build better apparatus at lower cost. It covers the properties and advantages of Quinterra and Quinorgo in full detail with test data. Its clear construction drawings, plus case studies of leading apparatus manufacturers, show how to apply these insulations for maximum benefit. It also describes the never-before-advertised Quinterrabord, Quinorgobord and the new J-M laminates. To obtain this insulation handbook, call your local J-M sales office or fill out the coupon on the opposite page.

HOW Quinterra REDUCES COSTS OF LARGE AND

electrical insulations

 manufacturers reduce costs
Quinterra-the pyrolysis-resistant dielectric that helps cut electrical apparatus costs.

More and more manufacturers are using Quinterra to make apparatus smaller, safer and at lower cost. It permits equipment to operate at higher temperatures because it remains a dielectric despite heat and time . . . the bulk of its dielectric strength is in the purified asbestos base sheet. Its mechanical strengths, thinness and flexi-
bility enable economical application. Its uniformity of caliper and texture allow dimensions to be predicted accurately and thereby speeds assemhly. Moreover, Quinterra resists corrosion and humidity and is practically immune to fungus growth. Supplied in treated (Types 3,5 and 6) and untreated (Type 1) forms.

Quinorgo-the moderate priced, high temperature insulation for use alone or in "composites"

Many manufacturers find that Quin. orgo is ideal for their purposes. Designed for operating temperatures up to 130 C , it combines high dielectric and mechanical strengths. High in absorptive capacity, it can readily be treated and combined with other
dielectrics. Though a highly purified asbestos product, it does not have quite so high a pyrolysis resistance as Quinterra because a small percentage of organic binder is used in the base sheet. Quinorgo is furnished only in untreated form.

Send for your

 free copy nowJ-M's new 32 -page booklet, "Pyrolysis Protection Pays Well," is offered without obligation to electrical equipment designers, engineers and manufacturers.

Johns-Manville, Box 60, New York 16, N. Y.
In Canada, 199 Bay St., Toronto 1, Ontario
Please send me without charge copy of booklot EL-40A
"Pyrolysis Protection Pays Well"

Name
Title \qquad
Company

Strect

\qquad
City \& Zone \qquad State \qquad

A great aid to your miniaturization program
MOUNT IN 15/32" HOLE ALL LENS COLORS

Easy lamp replacement with any midget flanged base lamp types

Complete blackout or semi-blackout dimmer types

THESE ASSEMBLIES LOGICALLY REPLACE LAMPS NO. 319, 320, and 321

PLASTIC PLATE (EDGE) LIGHT ASSEMBLIES

AIR FORCE and BUREAU of AERONAUTICS MIL-L-7806
 DRAWING MS-25010

DIALCO No. TT-51 (Red filter-black top) .. . or, No. TT-51A, complete with No. 327 Lamp

ALSO MADE

 with other filter colors and with light-emitting top (for indication)

ALL OF The ASSEMBLIES ILLUSTRATED ACCOMMODATE LAMPS NOS. 327, 328, 330, and 331.
ANY ASSEMBLY AVAILABLE COMPLETE WITH LAMP SAMPLES ON REQUEST - NO CHARGE

Foremost Manufacturer of Pilot Lights DIALIGHT CORPORATION
60 Stewart avenue, brooklyn 37, N. y.
HYACINTH 7.7600
anode of a device resembling the cathode-ray tube and called a beam switching tube. When the beam strikes the appropriate portion of a target anode of the switching tube to which the subscriber is connected, a two-way circuit is established between two subscribers. The gain of the channel may be adjusted by controlling the beam intensity, just as the brightness of the spot on a crt is controlled. The control grid of the beam-switching tube is coupled to one of the target anode connections and acts as a regenerative feedback circuit.

Rhombic Relay Antennas

By Richard C. Webs
Denver Research Instit inte
University of Deiver University of Denver Denver, Colo.

The superior gain and directional properties of rhombic antennas as well as their broad-band characteristics so desirable for television have been known for many years. However, use of the rhombic has been restricted mainly to commercial point-to-point communication service because of its large size ${ }^{1,2,3}$. The gain as well as the sharpness of the directivity pattern increases with the length of wire used in each leg of the antenna as compared to the wavelength of the signals to be received or transmitted. Fortunately at the short television wavelengths a rhombic antenna only 80 feet on a leg , as indicated in Fig. 1, is $4 \frac{1}{2}$ wavelengths long per leg at channel 2 and proportionately greater at the higher channels. This size is sufficient to secure from 7 to 10 times as much voltage from the rhombic as would be obtained from a simple dipole antenna in the same location. In addition, the unidirectional characteristic of the rhombic renders it less sensitive to noise and interference.

In an installation on a mountain top above a home in the Big Thompson Canyon, Colorado, one rhombic antenna unit, which has a line of sight path to the television transmitter, is used for receiving. A second unit connected to the first by a short length of 600 -ohm transmission line reradiates the received energy down into the shadowy canyon. This is not accomplished with-

contributes to an improved product-

in the Kyle Automatic Oil Circuit Recloser

This practical use of Phenolite by the Kyle Products Plant of the Line Material Company is typical of its countless applications in the electrical field. Phenolite, about one-half the weight of alumnum, is the perfect insulating material for high and low voltage applications. It possesses an unusual combination of properties. Phenolite has great mechanical strength and high resistance to moisture; ready machinability; is unaffected by solvents and oils.

It can be easily punched, sawed and sheared. The toughness and high impact strength of cloth base Phenolite sheet make it suitable for gears; it is one of the strongest materials per unit weight known.

Available in various grades and colors; and in sheets, rods, tubes and special shapes. Write for detailed literature and engineering information -

for a few pounds of copper... or a truckload ... Call Chase

Need just a few lengths of seamless brass tube? We'll be glad to hand them to you "over the counter." Or if your job calls for large quantities of brass or copper sheet, rod, wire or tube, we can speed it on its way to you. That's the kind of service you can get
by calling your nearest Chase warehouse.
We can supply you, subject to government controls, with hundreds of items for production, maintenance or repair. That's why it pays to "try Chase first" for anything in brass or copper.

Albany \dagger	Cleveland	Kansas City, Mo.	New Yerk	San Francisco
Atlanta	Dailas	Los Angeles	Philadelphia	Seattr
Baitimers	Denver \dagger	Milwaukse	Pitsbargh	Waterbury
Boston	Detrait	Minnagpolis	Providenca	
Chicago	Housten \dagger	Newark	Rochestar \dagger	(†sales
Cincinnat	Indianapolis	Naw Drieans	St. Louis	office only

'DIAMOND H' RELAYS

pack more

 performance
into less space

Rating for rating, "Diamond H" Series R hermetically sealed, miniature aircraft type 4PDT relays are smallest (1.6 cubic inches), lightest (3.76 ounces), have widest temperature range (-65° to $+200^{\circ} \mathrm{C}$.), greatest operating shock resistance (to 50 "G" and higher) and excel all others in their field in ability to break high currents and high voltages.

Ideal for high frequency switching, their inter-electrode capacitance is less than 5 micro-microfarads contacts to case, less than $21 / 2 \mathrm{mmf}$ between contacts, even with plug-in type relay and socket. Vibration range is from 0 to 500 cycles per second and upward at 15 " G " without chatter. Coil resistances up to 50,000 ohms are available, with contact loading through 10 A . resistive for 100,000 cycles (30 A . resistive for 100 cycles) at 30 V., D.C., or 115 V., A.C. Sensitivity approaches 100 milliwatts at 30 " G " operational shock resistance. They meet all requirements of USAF Spec. MIL-K-5757 . . . and far surpass many. Various standard mounting arrangements available.
"Diamond H" engineers are prepared to work with you to develop variations for guided missiles, jet aircraft, fire control, radar, communications, geophysical and computer apparatus ... any application where peak performance is vital under critical conditions.

Illustrated Bulletin R-150 gives detailed performance data under varying conditions. Write for a copy today.

THE HART MANUFACTURING COMPANY

202 Bartholomew Avenue, Hartford, Connecticut
the hart manufacturing company, 202 Bortholomew Ave., Hortford, Conn.
Pleasc send me Bulletin $R-150$ with detalled perjormance datn on Series R Relays

NAME

TITLE
COMPANY

ADDRESS

CITY

out losses. However, by virtue of the strong signal picked up in the receiving unit, sufficient energy can be thrown into the canyon to enable satisfactory operation of television sets. Previous signal levels had been immeasurably low.

Values given in Fig. 1 appear to be about optimum for the vhf television channels although the lower group (2 to 6) is undoubtedly favored somewhat. Increasing the angle ϕ to as much as 70 deg by stretching out the length along the

FIG. 1-Two rhombic antennas connected by transmission line relay television signals to a third rhombic at the receiver. System must be kept grounded even during construction on clear days owing to static charges. Earth around driven ground should be moistened with brine
major axis to 150 ft tends to favor the higher-frequency group (channels 7 to 13). The directivity pattern of each rhombic unit is extremely sharp (± 2 deg.) To obtain maximum signal strength the major axis of both units of the relay pair must be aligned very accurately with the transmitter and receiver locations. A portable receiver or field strength meter with a direc-tion-finding antenna on it is recommended for establishing the axis of the receiving unit. Since the receiver location should be visible from the site of the transmitting unit ordinary surveying methods can be used to direct it.

At a distance of 1 mile from the transmitting unit of the system the ± 2-deg transmitted beam is only 120 yards wide; hence, houses located far outside this range will not enjoy the full benefit of the reradiated signal. In the installa-

Diligent research by the industry's electronics engineers have brought forth wonderful improvements in today's television receivers ... and antenna designs that insure better performance. Now, Reynolds-pioneer producer of antenna tubingoffers a vastly superior aluminum antenna tubing to help you produce a superior antenna! The new Reynolds Aluminum Antenna Tubing is precision roll-formed...tailor-made for TV antenna manufacturers. It is extra-sturdy, lightweight, and its gleaming, corrosion-resistant finish invites sales.
Reynolds Antenna Tubing 31-a maximum strength tubing; and Reynolds Antenna Tubing 41 -designed with ample strength for most demands. Available in either butt seam or lock seam tubing, Reynolds Aluminum Antenna Tubing is offered in a complete range of sizes and in lengths to meet your specifications. For additional information and sample sections, call your nearest Reynolds Sales Office listed under "Aluminum" in the classified telephone directory.

REYNOLDS ALUMINUM FABRICATINGSERVICE

4-POLE TYPE PB RELAY

TYPE PB-9

TYPE PB-12

COMPACTIO AMPERERELAY

Developed primarily for the aircraft industry*, where size and weight must be kept to a minimum, this compact power relay is suitable for hundreds of industrial applications. Available in two, three and four pole, double throw contact ar-
rangements, for A.C. and D.C., the Allied Type PB withstands 50G shock and 10 G vibration (up to 55 cps) without any false operation of the contacts, due to the semi-balanced armature and extremely compact design.
*The Allied Type PB Relay has the following AN approvals: AN 3306; AN 3307; AN 3308; AN 3310; AN 3312

Here are the Facts and Figures

Contact Ratings: 10 amperes non-inductive 29 V.D.C. or 115 V. rms 60 or 400 cycles. Nominal Coil Pawer: 2.5 watts for D.C. operation, 6.0 Volt-Amperes for A.C., 60 cycle operation.* Maximum Coil Power: Input at $25^{\circ} \mathrm{C}$ for $85^{\circ} \mathrm{C}$ Temperature Rise: 5.5 watts for D.C. operation and 10.0 Volt-Amperes for A.C. operation. Ambient Temperature Range: $-55^{\circ} \mathrm{C}$ to $+71.5^{\circ} \mathrm{C}$.*

- The Allied Type PD relay, similar to the Allied Type PB except for smaller contacts, has a contact rating of 3 amperes. Nominal coil data for D.C. operation is 1.5 watts and 3.6 volt-amperes for A.C., 60 cps . *Input power for 2 and 3 pole types may be reduced if sensitivity or temperature rise are factors. Special coils are available for higher ambient temperatures.

Contact your Allied Control Representative or write us for full details.

AVAILABLE HERMETICALLY SEALED

DIMENSIONS AND WEIGHTS FOR A.POLERELAYS

AN PLUG

SOLDER TERMINALS

SCREW TYPE
 P B, Sealed, Solder Terminals- $29 / 6^{\prime \prime} \times 1494^{\prime \prime} \times 141 / 4^{\prime \prime}-7.5 \mathrm{oz}$. PB, Sealed, Screw Type $-3^{\prime \prime} \times 25 / 8^{\prime \prime}$ $\times 35 / 2^{\prime \prime}{ }^{* *}-13 \mathrm{oz}$. PD, Sealed, Solder Terminals and Plug-In-27/6" $\times 19 / 2^{\prime \prime} \times 113 / 2^{\prime \prime}-6.5 \mathrm{oz}$. ** Includes mounfing ears and terminals.


```
2 EAST END AVENUE, NEW YORK 21, N. Y.
```


PHYSICISTS

 AND ENGINEERS
ATTENDING THE

$>$ I.R.E.
CONVENTION
NEW YORK CITY
MARCH $23-26$.
Inquiries are invited regarding openings
on our Staff
radar laboratories
guided missile laboratories
advanced electronic laboratories

- electron tube laboratories
- Field engineering department

For the convenience of those attending the I.R.E. meetings and Radio Enginecring Show, mentivers of the Lahoratory Staff will be available for interviews at the
Convention holel. For appoinment relephone Hughes Netu York office, LAckimpanna 4-9350.

HUGHES

RESEARCH AND

DEVELOPMENT LABORATORIES
Scientific and
Engineering Staff
CULVER CITY, LOS ANGELES
COUNTY, CALIFORNIA
Assurance is required that relocation of the applicant will not cause disruption
of an urgent military project.
tion described a third rhombic unit identical to each of the relay pair is used at the receiving point, its transmission line simply being brought in to terminate at the receiver.

Thus the transmitting unit on the hill and the rhombic at the receivign point near the house serve to bridge the distance between the television set and the master receiving antenna atop the mountain without the use of a long transmission line that is both expensive and hazardous from the viewpoint of lightning. Simple high-gain housetop antennas can be used within the beam of the transmitting unit on the hill. The third rhombic is recommended where optimum performance is required as for a community installation.

The height of the antennas above ground need not be greater than 15 to 30 feet and although it is desirable to keep the plane of the wires nearly horizontal the system does not appear to be particularly sensitive to tilts of a few degrees. The directivity pattern of a rhombic antenna in the vertical direction maximizes 5 to 10 degrees above the plane of the wires, hence, it is desirable to lower the end of the receiving unit in the direction of the tv station 5 to 10 degrees below the line-of-sight path. Likewise, the plane of the transmitting unit should be tilted a similar amount below the line of sight path to the receiving point.

Bibliography

E. A. Bruce, A. C. Beck and L. IR Lowry, Horizontal Rhombic Antennas Proc IR $2,23.1935$.
D. Foster. Radiation from Rhombic Antennas, Proc IRE, 25, 1937.
J. Minter, Rhombic Antennas for Television, Electronic Industries, Oct. 1946.

Twenty-Five Cent Oscillator

By James Fahnestock
Associate Editor
Ability of transistors to operate from extremely small power sources can be demonstrated vividly by the accompanying circuit. It comprises a single-transistor feedback oscillator that provides a tone at earphone volume when powered by a quarter coin and a piece of saliva-

This Cabinet

Is Only One Of Many
That We Manufacture

Transmitter and Radar Cabinets, Chassis, Panels, and many special component parts such as are required by laboratories and manufacturers.

Manufacturers of sheet metal products since 1925 . Will design your product for you, manufacture the model and prepare it for production.

All Metals and Gauges Fabricated.

Equipped to spray paint, bake and finish your product. Our equipment is complete. Can perform all the necessary operations required in the fabrication of any sheet metal product.

Boyle Metalcraft Corporation

150 Sullivan St. Brooklyn 31, N. Y.
Sheet Metal Craftsmen
TRiangle 5-3603

ON EXHIBIT, BOOTH 4-814

gRand central palace

HUGHES

GERMANIUM DIODES

MOISTURE-PROOF
Each hermetically sealed Hughes Diode is humidity cycled in saturated water vapor from $+90^{\circ} \mathrm{C}$. to $-78^{\circ} \mathrm{C}$., and then oscilloscope-tested for humidity penetration.

DEPENDABLE

Each Hughes Diode is subjected to JAN shock tests and then inspected under vibration for the familiar electrical in-stabilities-hysteresis, drift. and flutter. Each diode is aged and then reinspected for stability of electrical characteristics.

THERMALLY STABLE
The Hughes Diode is designed to reduce differential expansion which would cause instability of electrical characteristics with fluctuations in temperature. Each diode is temperature cycled and then tested to assure that the operating temperature range is limited only by inherent characteristics of germanium itself.
sueminiaturized
The Hughes Diode is designed for maximum space economy. maximum space economy

ELECTRICAL SPECIFICATIONS AT $25^{\circ} \mathrm{C}$.

Because of expanded production capacity, Hughes Diodes are now available for commercial sale, Moderate quantities can be delivered from stock Hughes Diodes are classified in accordance with RTMA specifications, and also are supplied to special castomer specifications, including high temperature electrical requirements.

Address inquiries to:
department
HUGHES
Aircraft Company, Culver City, California

$\}$.

咱(Cll!

COMPLETE

miniature FREQUENCY STANDARD

A compact, complete, hermetically sealed frequency standard, pre-

ACTUAL SIZE
 senting these features:-
l. JAN-ized construction throughout.
2. SPACE-SAVING, $1 \frac{1}{2} 2^{\prime \prime}$ dia. $\times 41 / 2^{\prime \prime}$ high.
3. WEIGHT, approximately 10 ounces.
4. AVAILABLE in 400 and 500 cycles.
5. ACCURACY-. 002% (15° to $35^{\circ} \mathrm{C}$).
6. SHOCK-MOUNTED on Silicone rubber.
7. POWER REQUIRED, 6 V . at 300 ma . 70 to 200 V . at l to 5 ma .

WRITE FOR DESCRIPTIVE LITERATURE, SPECIFYING "TYPE 2007"

Also, manufacturers of frequency standards, multifrequency standards, chart-recording chronographs, firing-cycle timers, the Watch-Master Watch Rate Recorder and other high-precision frequency and timing instruments, controlled by our tuning.fork oscillators.

American Time Products, Inc. 580 Fifth Avenue

An assembly with 14 concentric, hard silver rings electro deposited into machined plastic blank. Dovetail locks rings in place. Machined blank insures accuracy. Diameter approx. 11", thickness approx. 5/16".

- An assembly with 30 rings of various widths to accommodate various current requirements. Unit is approx. 4.5/16" long, designed for flange mounting
- Cylinder fype assem bly approx. $33 / 4$ " long with 24 hard silver rings. $15 /{ }^{\prime \prime}$ O.D. with wall thickness less than $1 / 4$ ".
*PATENTS PENDING
- Cylindrical csse-bly with 25 rings. Triee wide risgs ac:ormo. date large cont.nct area brushes for high curent capacity. Leng-h $14^{\prime \prime}$, O.D. approx. $5 \% / 3$

ELECTRO TEC is now tooled up, with new expanded facilities for production of large Slip Ring Assemblies to exact customer specification. Sizes range up to $24^{\prime \prime}$ in diameter, either cylindrical or disc type.
The exclusive ELECTRO TEC PROCESS*-the electro-deposition of hard silver rings into an accurately machined plastic blank-consistently yields a high degree of dimensional accuracy, excellent concentricity, and a jewel-like ring finish. This process also eliminates expensive tooling and mold charges, frequently lowers costs to 30% of other methods of manufacture. The silver rings are uniformly hard for long life-75-90 Brinell.
ELECTRO TEC one-piece construction precludes dimensional variation due to accumulated errors. The plastic base is fully cured before rings are plated into it, thus preventing separation of base material from the rings.
ELECTRO TEC LARGE SLIP RING Assemblies are widely used in Radar Equipment, Fire Control Systems, Test Tables and many other critical applications. Light weight combined with rugged durability recommends their use in airborne applications.
Every user knows the ELECTRO TEC reputation for quality and superiority in miniature and sub-miniature slip ring assemblies.

Our Engineering Departmer: is available for consultation on any of your slip ring problems without obligation.

ELECTRO TEC CORPORATION
 SOUTH HACKENSACK NEW JERSEY

Model A1 220 vibrator power supply is designed to deliver 15 watts, 150 volts DC, 100 ma at 1% peak ripple, and 70% efficiency. Very small size and weight are possible because of the high frequency (450 cycle) vibrator. Vibrator and power supply are hermetically sealed. Vibrator is replaceable, using Dzus snap fasteners for easy removal. Supply obtainable for 6, 12 or 26.5 VDC input, maximum output of 20 watts and 300 volts on special order. Will operate with a 20% input voltage variation, under severe vibration and shock, may be exposed to high altitude without damage.

Write for bulletin A1 220.

FIG. 1-Attenuation loss of cylindrical copper waveguide having inside diameter of $1^{1 / 2}$ inches (Barlow)
there is not only a big demand for independent communication channels between such centers, but also for the transmission and distribution of electric power."
"The tubular waveguide suitably designed can quite readily make provision simultaneously for both needs. Furthermore, when the conductor is properly supported it is capable also of guiding a cylindrical surface wave along its outside surface, thus, if necessary, providing a triple service. In such a case we should have microwave channels both inside and outside the tube, while the power-frequency currents flow along the tube itself."
"Our efforts have been concerned more particularly with the problem of the waveguide. We are not quite ready yet to describe the technical details of our work. We are examining the performance of our microwave channel at a wavelength in the region of 8 millimeters."

Barlow's original suggestion proposed a frequency of $40,000 \mathrm{mc}$, the same order of magnitude as the area of current strenuous activity at Bell Telephone Laboratories. Despite the difficulty of generating power at frequencies this high, there is good reason for the choice. As shown by the graph, Fig. 1, the attenuation losses fall off very rapidly in this particular type of waveguide propagation as the frequency is increased. Because the waveguide is likely to contain a slight amount of dry air, the region between 23,000 and $25,000 \mathrm{mc}$ must be avoided since these are the frequencies of absorption by water vapor. Frequencies around 60,000 mc are likewise forbidden because of

Small size and big performance have won wide acclcim for the C747 MIDGET chopper in the short time since production was released. Available with SPDT contacts, a 6.3 volt drive for 400 cycle operction, usually a 380 to 420 cycle frequency range. Phase angle measured from a driving sine wave to midpoint of contact dwell is a nominal 65°, with a dwell of approximately 135°. Units operate successfully over a very wide temperature range, are fully hermetically sealed and may be exposed to high altitudes, humidity, vibration and shock without damage.

Write for bulletin C747.

FIRST and ONIY 460 w.

 type-approved for operation in the Class-A, "Citizen's Band"

18 to 20 Full Watts. Motorola makes it an outstanding success.

Pole mounting cabinet

Motorola has received notice* from F.C.C. that its "Research" Line $460 \mathrm{M} . \mathrm{C}$. equipment has passed the exacting test's for licensing in the Class-A "Citizen's Band". It is the first and only 460 MC . equipment to be so approved.

Automatic Frequency Control

This new Motorola A.F.C. technique is fortified with extraordinary system stability. Fixed barriers prevent channel jumping. The A.F.C. crystal controlled oscillator provides a full 10 to 1 correction ratio and keeps the receiver tuned on the nose to the distant transmitted carrier.

The new U.H.F. tuned circuits and research design cavities for grounded grid amplifier operation provide phenomenal circuit stability, spurious rejection and extraordinary efficiency.

Transmitter

The Motorola 460 MC. system with 9 tuned circuits provides 18 to 20 Watts with efficiencies of more than 65% !

Silver Plated Sealed Tuned Cavities

By use of silver plated line sections, high standards of selectivity protect the receiver from high power U.H.F., TV intermodulation.

By the leaders in quality-engineered FM 2-way Radio Communications

Write Dept. 2-86-E for full details today.

Du Pont "Alathon"* insulates' TV tube carrying 20,000 volts

Rings and sleeves extruded by Anchor Plastics Co., Inc. New York, N. Y.

Ring and sleeve of "Alathon" retain dielectric properties . . . pass humidity tests... lower shipping costs

When television-set manufacturers started using metal picture tubes, they were faced with the problem of insulating the outer portion of the tubes that carry up to 20,000 volts. A material was needed that could withstand the voltage, while resisting humidity that would ruin its insulating value.

The solution was this ring and sleeve extruded of Du Pont "Alathon" polythene resin. Of all the materials tested, only "Alathon" retains its electrical properties in service. "Alathon" has excellent dielectric strength, low dielectric constant (2.3), and low power factor (0.0005). Because of its very low moisture-absorption rate (0.01% by A.S.T.M. test), "Alathon" easily passed exacting humidity tests.

Du Pont "Alathon" offers other important advantages. Its flexibility simplifies installation. Shipping costs are reduced because "Alathon" absorbs shock . . . makes possible packing of sets as units . . . eliminates shipping the delicate tubes separately. And reassembly time and labor at outlets are eliminated. Many TV manufacturers now use these rings and sleeves.

Du Pont"Alathon"'is widely used for such insulating applications as TV lead-in wire, high-voltage TV lead wire, and police and fire-alarm cable. We will gladly suggest suppliers who can meet your specific needs for electrical or other uses of "Alathon." For further information, write:
E. I. du Pont de Nemours \& Co. (Inc.)

Polychemicals Department, District Offices:
350 Fifth Avenue, New York 1, New York
7 S. Dearborn St., Chicago 3, Illinois
845 E. 60th St., Los Angeles 1, California

FIG. 2-The experimental surface-wave transmission line used by Grace and Lane in England
absorption by oxygen.
Reference to the cylindrical surface wave includes the work of Georg Goubau and others, principally for the Signal Corps. Since 1950, experiments with this socalled G-string have extended its range of practicable operation to two miles. While details of this work are expected to be published soon, it is known that this particular installation employs a single copper line three quarters of an inch in diameter covered with polyethylene. Used in the vhf region, it has a bandwidth of 200 mc .

Grace and Lane in England have recently published loss figures for a similar transmission line with an enameled surface. Maximum horn losses (the ends of the lines are matched into coaxial lines by hornshaped outer conductors as indicated in Fig. 2) for radio frequencies between 3,000 and 9,000 me are about 2 db coupled with a line loss varying from 0.07 to 0.26 db per meter and increasing with frequency.

Miller and Beck of Bell Telephone Laboratories will describe their work with circular waveguides in a forthcoming issue of Proc. IRE. as summarized below.

To reduce theoretical heat losses of hollow metallic waveguides to 0.25 db per 100 feet at frequencies above $2,000 \mathrm{mc}$, it is necessary to use the guide as a multimode medium. Above $10,000 \mathrm{mc}$ the circular electric mode in round metallic tubing becomes more attractive than the dominant mode because it provides a medium with the $0.25-\mathrm{db}$ -per-100-foot loss in a smaller space.

Using the circular electric wave, theoretical heat losses of 2 db per mile are associated with tubing diameter of 2 to 6 inches and carrier frequencies between 50,000 and $5,500 \mathrm{mc}$ respectively. Increased transmission bandwidth, reduced

FIG. 3-Round guide diameter vs frequency for loss of 2 db per mile
delay distortion and reduced waveguide size are factors favoring use of the highest practical frequency of operation. The number of freely propagating modes lies in the range 175 to 20 for the 2 to 6 in . diameter region, as shown in Fig. 3 taken from the paper.

Experimental work has been carried out at $9,000 \mathrm{mc}$ on a waveguide having theoretical loss of 2 db per mile for the TE_{01} wave. Transmission losses on the order of 3 db per mile over distances as great as 40 miles, with tolerable signal distortion of a 0.1 microsecond pulse, have been observed on a well-constructed line. Mode filtering and pure-mode generation has been accomplished.

Experimental work, described in still another Bell Labs paper, demonstrates the feasibility of transmitting the TE_{01} wave around bends. The circular wave can be transmitted around bends either by altering the form of the wave in the bend region (as in Fig. 4) or by altering the waveguide itself.

Still another technique under development at Bell Labs is the laminated transmission line. Here, skin-effect losses are reduced by properly laminating the conductors and adjusting the velocity of transmission of the waves by means of a suitable dielectric. Such a con-

FIG. 4-Representation of the kinds of elements that are necessary in a nor-mal-mode bend

Federated Metals' new RTS 200 rosin core solder has proved in production operations to be 5 ways better than ordirary rosin solders:

30\% GREATER SPREAD-by test the spread of RTS 200 is 30% greater than that of conventional rosin core solders.
4. TIMES FASTER OXIDE PENETRATION-oxide films and corrosion products on the parts you are soldering need not slow down operations. RTS 200 pierces these retarding aysents 4 times faster than ordinary solders.
NON-CORROSIVE-despite the exceptional activity of the RTS 200 flux at soldering temperatures. there is no harmful corrosive residue when tested under the high humidity conditions of military specification MLL-S-6872.

NON-TOXIC - the chemicals used in RTS 200 flux are com-
monly used in industry and have no toxicity factor whatsoever.
STABLE FLUX-experience of over one year with the type flux used in RTS 200 shows that it is just as active after standing as when used immediately. If you store RTS 200 for extended periods, you need not worry about its stability, as you do with ordinary solders.
Try this new, industry-tested active solder today. Available in a variety of wire sizes, compositions and quantities. For information see your distributor or write any one of Federated's 13 plants or 22 sales offices across the nation. There is one near you.

Tedoraien Mwatal. Divivion
AMERICAN SMELTING AND REFINING COMPANY 120 broadway. NEW YORK 5, N. Y In'Zanada: Federated Metals Canade, Lid., Toronio, Montreal

Aluminum and Ma'gnesium, Babbitts, Brässes and Bronzes, Anodes, Die Casting Metals, Lead and Lead Products, "Solders, Iype Metals

Texas Instruments'

POINT CONTACT

now available!

Texas Instruments makes available to industry Type 100 and 101 point contact transistors. Type 100 is designed for use in switching circuits. Type 101 is a high-efficiency, low-drain transistor for low frequency (below 1 mc) application. It is designed to operate at low voltage and power levels with a good, large signal performance. Both have the usual high temperature limitations of germanium semi-conductor devices. Uniform characteristics are assured. Writc for bulletin with complete information.

\star

ACTUAL SIZE

TYPICAL COLLECTOR CHARACTERISTICS

\star Point contact transistors Type 100 and 101 ready for immediate delivery. \star Junction transistors will be available in developmental quantities in May. \star Be sure to watch for announcement concerning new semi-conductors later this year.

8 Basic Features
 OFEVERY HAYDON TIMING MOTOR PROVIDE

PRECISION TIMING•JOB ENGINEERED

FOR

DEPENDABILITY

Slow rotor speed means o minimum of reduction gearing, long life, quiet operation.

TOTAL ENCLOSURE
ALL HAYDON motors are totally enclosed, a basic feature of sound design.

OPERATION IN ANY POSITION
Means freedam from worry about mounting position, no limitations on your original design and field operation.

standard interchangeable design
A wide range of speeds in only 2 motor series, interchangeable in mounting, drive shafts and all dimensions except depth, permits use of the same basic motors for a variety of requirements.

HAYDON motors are the smallest available of their types.

CONTROLLED LUBRICATION

Two lubrication systems permit the selection of lubricant best suited to each component. All circulation controlled by capillary action.

SIMPLE SECURE ASSEMBLY
The entire face of the motor can be rigidly supported against the mounting surface. Motor leads are standard for quick, inexpensive wiring.

CHOICE OF MANY SPEEDS
Many standard speeds available from 60 rpm to 1 revalution per week.

Lode to HAYDON

FOR TIMING MOTORS - TIMING DEVICES
TIMING ENGINEERING SERVICES
HEADQUARTERS FOR timing

2427 Elm St., Torrington, Conn. Subsidiary General Time Corp.
ductor takes the form of a soliddielectric coaxial cable.-A.A.McK.

Bibliography

H. M, Barlow, The Exploitation of Micro-Waves for Trunk Waveguide MultiChannel Communications, 1947 Radio Convention, BIRE, May 1947.
S. E. Miller and A. C. Beck, Low-Loss Waveguide Transmission, Proc. IRE, 41, 348, Mar. 1953.
S. E. Miller, Notes on Methods of Transmitting the Circular Electric Wave Around
Gends, Proc. $I R E$, p 1104, Sept. 1952.
G. Goubau, Surface Waves and their Appication to Transmission Lines, J. Ap-
G. Goubau, Single Conductor Surface Wave Transmission Line, Proc. IRE, 39, p $619,1951$.
A. C. Grace and J. A. Lane, SurfaceWave Transmission Lines, Wireless Engineer, p 230, Sept. 1952.
C. E. Sharp and G. Goubau, A UHF Surface Wave Transmission Line, Proc. IRE, p 107, Jan. 1953.

Spatial Harmonic T-W Tube

Traveling-wave tubes operate satisfactorily as wide-band amplifiers for microwaves and are beginning to find use particularly in the region of 4 kilomegacycles, corresponding to a wavelength of 7.5 cm .

Increased experimentation in the region of 50 kmc has brought an extension of the traveling-wave technique resulting in a tube of the general type capable of operation at 48 kmc , a wavelength of 6.25 mm.

Because the helix, which characterizes the traveling-wave tube, becomes increasingly delicate as frequency is raised, it has been entirely eliminated from the design of this experimental tube.

As explained by Sidney Millman in the Nov. 1952 issue of the Bell Laboratories Record, to obtain amplification in a traveling-wave amplifier, a stream of electrons and the electromagnetic wave to be amplified must travel together down the tube at approximately the same speeds. Since the electromagnetic wave travels at a speed approaching that of light, and since electrons cannot be given such speeds except under the influence of extremely high voltages, some method must be devised for slowing down the wave to speeds that electrons will attain under the influence of practicable voltages. In most travelingwave tubes that have been described, this slowing down was achieved by making the wave travel along a closely wound helix. Despite the

ONLY THE LFE 401 OSCILLOSCOPE

Offers all these Important Features

HIGH SENSITIVITY AND WIDE FREQUENCY RESPONSE

 OF Y-AXIS AMPLIFIERThe vertical amplifier of the 401 provides uniform frequency response and high sensitivity from D.C. Coupled with a sensitivity of 15 Mv. $/ \mathrm{cm}$ peak to peak at both $D-C$ and A-C is a response characteristic which is 3 db . down at 10 Mc . and 12 db . at 20 Mc . Alignment of the amplifier is for best transient response, resulting in no overshoot for pulses of short duration and fast rise time. An example of the wide band response of the amplifier is shown in the accompanying photographs.

37.5 Mr., 0.2μ sec wicth, $1 \mu \sec$ sweef. full scale

$75 \mathrm{Mv}, 0.2 \mu \mathrm{sec}$ width, lusec sweep fult scole

Y-Axis
Deflection Sens. $-15 \mathrm{Mv} . / \mathrm{cm}, \mathrm{p}-\mathrm{p}$ Frequency Response-DC to 10 Mc Tronsient Response - Rise Time ($10 \%-90 \%$) $0.035 \mu \mathrm{sec}$
Signal Delay- $0.25 \mu \mathrm{sec}$
Input line terminations - 52, 72 or 93 ohms, or no termination Inpui Imp. - Direct - 1 megohm, $30 \mu \mu \mathrm{f}$
Probe- 10 megohms, $10 \mu \mu \mathrm{f}$

X-Axis
Sweep Range $-0.01 \mathrm{sec} / \mathrm{cm}$ to 0.1 $\mu \mathrm{sec} / \mathrm{cm}$
Delay Sweep Range -5-5000 $\mu \mathrm{sec}$ in three adjustable ranges.
Triggers - Internal or External, + and - , trigger generator, or 60 cycles, undelayed or delayed triggers may be used.
Built-in trigger generator with repetition rate from $500-5000 \mathrm{cps}$.

General

Low Capacily probe
Functionally colored control knobs
Folding stand for better viewing
Adjustable scale lighting
Facilities for mounting cameras
PRICE: $\$ 895.00$

LABORATORY for ELECTRONICS, INC.

75 PITTS STREET - BOSTON 14, MASS.
precision electronic equipment - oscilloscopes - magnetometers - computers - microwave oscillators - mercury delay lines

Rough Treatment for a crystal ...

BOILED Bimen

3

That Kind of testing is iust one of the reasons why

 SHOCYED
 > Thermal-shocked from -60° to $+95^{\circ} \mathrm{C}$ in 70 seconds

\section*{Thermal-shocked

from -60° to $+95^{\circ} \mathrm{C}$
in 70 seconds

Thermal-shocked from -60° to $+95^{\circ} \mathrm{C}$ in 70 seconds Thermal-shocked from -60° to $+95^{\circ} \mathrm{C}$ in 70 seconds

 Thermal-shockedfrom -60° to $+95^{\circ} \mathrm{C}$
in 70 seconds}
*TYPE ML-1A-RANGE:

$2.0-15.0 \mathrm{mc}$

Supplied per Mil type CR-1A when specified.
*TYPE ML-4-RANGE:

$$
1.0-10.0 \mathrm{mc}
$$

Supplied per Mil type CR-5; CR-6; CR-8; CR-10 when specified.
*TYPE ML-6-RANGE:

$$
1.4-75.0 \mathrm{mc}
$$

Supplied per Mil type CR-18; CR-19; CR-23; CR-27; CR-28; CR-32; CR-33; CR-35; CR-36 when specified.

Yes, we get tough with our Midland crystals. You expect best performance, and we make sure you get it when you use Midland crystals for all your frequency control needs. The final test pictured above is just one of many quality checks we make at every step of Midland processing.
Midland Quality Control starts with the raw quartz. Using optical viewing equipment of high accuracy, we select only the "cream of the crystal crop." Then, as the crystal proceeds through the various steps of cutting, slicing, lapping, etching, plating, and sealing, it is checked repeatedly to turn up any defect that might develop.
Stability, accuracy, high output, long life - name anything about a crystal that makes it a better performer for you, and we guarantee you'll get it in fullest measure with Midland.

WHATEVER YOUR CRYSTAL NEEDCONVENTIONAL OR SPECIALIZED...
When It Has To Be EXACTLY RIGHT... Contact

MANUFACTURING CO., INC.
3155 Fiberglas Road - Kansas City, Kansas

See Us at the Radio Engineering Show, Booth 4-613 Components Ave.

A copy of "Speed Nut Savings Stories", an interesting booklet of typical Tinnerman savings to industry, is yours on request. Write: Tinnerman Pronucts, Inc., Box 6688, Dept. 12, Cleveland I, Ohio. In Canada: Dominion Fasteners Lta, , Hamilton, Ontario, In Great Britain: Simmonds Aerocessories, Ltd., Treforest, Wales. In France Aerocessoires Simmonds, S. A. 7 rue Henri Barbusse, Levallois (Seipe).

National makes a complete line of quality R.F. chokes to meet every electronic need. In addition, National's engineering staff and production facilities are capable of winding chokes to any set of specifications for commercial or military applications. Close tolerances guaranteed. Write for complete information or send specifications.
fact that its velocity along the wire is high, its axial velocity along the tube is reduced by the ratio of distance along the wire to distance down the tube.

In the new tube the magnetic wave is not slowed down in this way. Instead, the electron stream is made to react with what is termed a spatial harmonic of the original wave.

The new tube is shown in cross section in Fig. 1. Electrons emitted from the cathode at the left pass down the center of a channel in a copper block to a collector at the

FIG. 1-Cross section of tube used as spatial harmonic traveling-wave amplifier at $50,000 \mathrm{mc}$
right. They are caused to travel with a minimum of transverse motion by a magnetic field, as in other traveling-wave amplifiers.

The electromagnetic wave enters and leaves the tube through waveguides at the beginning and end of the channel as indicated. Down the center of the channel is a metal block with three axial slots indicated in section $A-A$. The main stream of electrons travels down these slots and close to each side of the projecting block.

Transverse resonator slots, 100 of them in all, cutting through the central block at right angles to the axial slots, constitute the radiofrequency circuit guiding the electromagnetic wave.

Amplification is accomplished by the reaction of the electrons and the axial component of the electric field of the traveling wave. Near the surface of a conductor, however, the axial component of the electric field disappears. It is, therefore, only while the electrons and the electromagnetic wave are crossing the transverse slots that the prin-

pyranid

 subrainicture "GLASSEAL" GAPACITORSFor the most demandirg applications, where top-quality anc minimum-size considerations are the most vital factors, Pyramid "Glasseal" capacitors are the popular choice.

Power Factor vs. Temperature Curve

This attractive new catalog PG-3, incorporating complete engineering data, s'yles, sizes, and capacitance and voltage ranges is now available.
\% Capacitance Change vs. Temperature

These graphs show typical performance characteristics of the Pyramid "Glasseal X" type, which is designed for $125^{\circ} \mathrm{C}$. operation. Full information on all "Glasseal" capacitors is provided in new catalog PG-3.

For your free copy, please address letterhesd request to Department Tl

continuous operation at exceptional femperafure ranges

up from $+210^{\circ} \mathrm{C}\left(+410^{\circ} \mathrm{F}\right)$ to $-90^{\circ} \mathrm{C}\left(-130^{\circ} \mathrm{F}\right)$ and below

terion HOOK-UP WIRE

EXTRUDED TEFLON (Tetrafluoroethylene) hook-up wire is organically capable of sustained operation from $+210^{\circ} \mathrm{C}$ to $-90^{\circ} \mathrm{C}$ with no appreciable decomposition. This wide range of operating efficiency continually opens new applications for EXTRUDED TEFLON - especially where constant stability under exceptional temperature conditions is required for long periods. EXTRUDED TEFLON $+210^{\circ} \mathrm{C}$ to $-90^{\circ} \mathrm{C}$ is non-inflammable .. is resistant to most chemicals . . . has no known solvent.

Because of low electrical losses, EXTRUDED TEFLON is adaptable for high frequency use. It has very high volume and surface resistivity. EXTRUDED TEFLON is available in thin wall and specified hook-up wire sizes, with shield or jacket, also as coaxial cable.

NOW AVAILABLE in 10 colors-black, brown, red, orange, yellow, green, blue, violet, gray, white. Samples available.

Engineered Wire and Cable for the Electronic and Aircraft Industries

WHEN you need a

 quick answer to
WHO MAKES IT...

Just look it up in the electronics BUYERS' GUIDE

There are...

23,367 ANSWERS

to

1,445 PROBLEMS

covering every...

COMPONENT EQUIPMENT

 and MATERIALused in every phase of electronics

GET IN THE HABIT OF LOOKING IT UP IN
the

electronics BUYERS' GUIDE

A McGRAW-HILL PUBLICATION 330 West 42nd Street NEW YORK 36, N. Y.

?

FEATURES TO HELP YOU DESIGN YOUR NEW CLOCK-RADIO

1TWO KNOBS do the work formerly dane by three. The new Telechron Timer, model C-78, means unmatched simplicity in clock-radio operation. One knob for alarm . . . the other for radio.

FREEDOM OF STYLING. Two-knob control and separate alarm hand mean greater freedom for your styling people. Telechron Timers are available with round or square face ... any color dial, hands or bezel.

SIGNAL ALARM. It's a must for heavy sleepers.
And it's a sales-boosting extra talking point for your clock-radio. In the clock-radio field only Telechron Timers have the signal alarm.

RADIO ALARM "ON" SWITCH Contacts rated at 15 A. at 115 v . a-c. Adequate to carry the load of a variety of electrical appliances through an auxiliary outlet on your clock-radio.

DEPENDABLE SLEEP SWITCH. Simple design-friction geared to clock movement-insures accuracy, dependability, and sturdy endurance even with rough handling.

Sales-Boosting Extra Benefit You are free to display the Telechron trade-mark and the Telechron Seal of Accuracy on your clock-radio. Ask for full information. Telechron Department, General Electric Company, 43 Homer Ave., Ashland, Massachusetts.

Dependable HECO CAPACITORS sized

Resin Impregnated Sub-miniature Metallized Paper Capacitors.

- High insulation resistance
- Excellent capacity retrace
- Rectangular - Saves space
- Variety of sizes and values

Dissipation factor less than 1% at $25^{\circ} \mathrm{C} 1000$ cycles. Operation range $-40^{\circ} \mathrm{C}$ to 100 C Capacirange temperature coefficient plus . 07% pe ${ }^{2}+$ HE -
Write or phone, TODAY
HQPKINS Ingineering 0 . FACTORY: 2082 Lincoln Ave., Altadena, Calif. SYcamore 8-1185 Offices in WASHINGTON. D. C. DETROIT

to meet military
specifications
Delay 11 to 2 usec.
Tol. $\pm .05$ usec. Zol 1200 ohms $\pm 15 \%$ Delay lines are hermetically sealed and are of non-nutrient

RICHARD D. BREW and CO., INC. 106 CONCORD AVE., BELMONT 78, MASS.
Want more information? Use post card on last page.
cipal reaction between them occurs.
If electrons are traveling at the same speed as the wave, and at some particular slot the wave were at such a phase that the electrons exerted an amplifying effect on it, then at the next slot the phase relations would be the same and amplification would occur there also. This would continue for the rest of the way along the path of the slots.

Consider that at some slot near the beginning of the path the wave at a transverse slot is at a phase such as to permit amplification by a group of electrons passing that slot. Suppose, however, that the electron stream is moving so much slower than the wave that by the time the same group of electrons reaches the next transverse slot, the wave has traveled one whole wavelength farther than in the example cited.

The wave and electrons at this second slot will then also be in the proper phase for amplification, but this time the electrons react on the next following cycle of the wave.

A group of electrons marked E_{1}, shown in Fig. 2, is interacting at a transverse slot with a particular phase of cycle A of the wave. When this group of electrons has reached the next slot, the wave has advanced sufficiently to bring the corresponding phase of cycle B to the next slot, and again amplification takes place. At each successive slot, the electrons react favorably with the wave, but with a later part of it.

Since the same action is taking place with all the electrons, the total amplifying effect is essentially the same as though the electrons were traveling at the same speed as the wave. Actually, they are traveling slower in the ratio of $d /(d+\lambda)$, where d is the distance between

FIG. 2-Electron group E_{1} interacts with successive peaks of electromagnetic wave in phase

BENDIXPACIFIC HELPS america FIGHT

 THE SEAS...

In addition to its extensive electronics developments in radar, radio control, telemetering and missile guidance, BendixPacific is a major source for highly restricted airborne and underwater sonar.
Can we help you with the practical solu= tion to your specialized electronic problem? Your inquiry is invited.

Pociffe Difítion
Bendix Aviotion corporotion
NOATN Notrvooe: catif.

ATTENTION ENGINEERS ...

Bendix-Pacific has a few openings for thoroughly qualified engineers in sonar, radar, servomechanisms and telemetering. For those seeking a challenging future under ideal Southern California living conditions, Bendix-Pacific offers worthwhile opportunity. Your inquiry will be considered in strict confidence.
Want more information? Use post card on last page.
March, 1953 - ELECTRONICS

- Send for our descriptive booklets on this equipment, giving complete details.
CROSBY LABORATORIES, Inc. robenns lane
hicksvilie, n. r.

Acesementes

$t 0$

Yokes

you'll find the correct answer to who makes everything in the entire field of electronics including... components equipment and materials in the...

electronics BUYERS' GUIDE

Get in the habit of looking it up in...

the electronics BUYERS' GUIDE

"The Book that has all the answers"

> A McGRAW-HILL PUBLICATION
> 330 West 42 nd Street
> NEW YORK 36, N. Y.

VITROTEX
 soft as
 silk

Vitrotex* magnet wire is soft and pliable-can be wound more easily and more compactly... has great resistance to "figureeighting."

An original Anaconda developinent, Vitrotex magnet wire is covered with a flexible fibrous glass insulation. In addition to its properties as an insulator, glass carries off heat and resists moisture, acids, oils and corrosion.

Vitrotex is a class B insulation-use it to gain the advantages of 130 C "hottest spot" operations. miniaturization-now, with Vitrotex, you get smaller devices for same output, with a satisfactory life. Anaconda has a complete line of magnet wiresnylon, cotton and glass-covered, and enameled-noted for their exceptional uniformity. Write - or even better - call on your nearest Anaconda Sales Office. Anaconda Wire and Cable Company, 25 Broadway, New York 4, New York. *uce. u. s. laat. 52454 (hev.)

the right magnet wire for the job

AnacondA

CLASS B Vitrotex • CLASS h Silotex* . CLASS A Enamel Formvar Nyform Nylon

> MIL(1) tenders its heartiest congratulations to The Institute of Radio Engineers on the occasion of its Twenty-First Annual Show. We expect to see many new things there.

For "something new" in'scopes, see above.
centers of adjacent slots and λ is the wavelength of the traveling wave in this particular structure.
Such a method requires an electron speed corresponding to only 1,200 volts. The resultant structure is rugged and only about two inches long. Bandwidth of a representative amplifier is $1,500 \mathrm{mc}$ and estimated power is around 25 milliwatts. Gain is over 20 db .

Fringe-Area TV
 Booster Transmitter

Experiments recently authorized by the Federal Communications Commission provide enhanced television signals to areas distant from the main transmitter or shadowed by high terrain between it and the receiving locations.
Station WSM-TV in Nashville, Tenn. has established a low-power relay transmitter at Lawrenceburg that picks up horizontally polarized signals and retransmits them with vertical polarization. The combination of non-standard polarization and low power is expected to prevent cochannel interference beyond the area resulting from normal operation of the main transmitter.
The system proposed by J. H. DeWitt, Jr. to FCC comprises a high-gain receiving antenna and a relatively low-gain transmitting antenna placed back-to-back and connected together through a lowpower radio-frequency amplifier system that has an overall gain of approximately 100 decibels. Actual equipment is still undergoing field modifications. Using vertical polarization for booster transmission minimizes feedback problems in booster station construction and allows the receiving and transmitting antenna to be placed relatively close together, in this case, 500 feet apart.
For covering most small cities, the transmitting antenna should have a single-lobe radiation like a cardioid pattern. Such a pattern is easily achieved by placing a vertical dipole in front of a large mesh screen. Using such an antenna, a maximum effective radiated power of 10 to 20 watts at an elevation of approximately 100 feet above average terrain should provide adequate signal for reliable service in

It keeps a Separate

 Count of each shifts production!

4101010

 shill E
20.010

NEW, IMPROVED COATING!
"'Scotch" Brand High-Output Magnetic Tape is coated with a revolutionary new magnetic material that offers unparalleled sensitivity.

UNEQUALLED OUTPUT LEVEL!

Actually produces 8 db and up to 12 db more output than any conventional magnetic tape with no increase in harmonic distortion.

SPECIAL NEW COLOR!

This new tape is colored a distinctive grey-green for easy recognition.
"Scotch" Brand No. 120A High-Output Magnetic Tape gives the recording engineer a new and potent tool for the production of truly high fidelity recordings. The 8 db minimum added output of High-Output Magnetic Tape increases significantly the available signal to noise ratio, making possible for the first time low background noise recordings of orchestral works having wide dynamic range. Besides offering unparalleled output at all audio frequencies (see graphs), this new tape retains all the physical and magnetic properties that have made "Scotch" Brand No. 111A the recognized standard of the recording industry: high tensile strength, freedom from elongation, stable anchorage, low noise level, excellent uniformity, ease of eraseability.

Freedom from squealing, cupping and curling is assured thanks to exclusive "Dry Lubrication" feature. High-Output tape is guaranteed 100% splice-free (up to 2400 -foot reels)

output or harmonic distortion!

The frequency response characteristics of both No. 120 A and No. 111A tapes are virtually identical at 15 ips tape speed. These curves were made with each tape set at optimum bias and an input level 15 db below 1% 3rd harmonic distortion.

This graph shows the 8 db increase in output of High-Output Magnetic Tape No. 120A over No. 111A at any given distortion level. When compared with other brands of magnetic tape, the difference in output is as much as $12 d b$!

400 tells the full story of the tremendous technical possibilities of High-Output Magnetic Tape. Address Dept. EL-33, Minnesota Mining \& Mfg. Co., St. Paul 6, Minn., and a copy will be sent promptly.

Available now on: 120-AP 1200-foot Professional Reel 120-A 2400-foot on NARTB hub or reel

New UHF SWEEP GENERATOR for UHF TV Production Testing

The Type 1211 UHF Sweep Generator has been specifically designed to rapidly and accurately align UHF Television heads. converters and complete receivers. Pulse type crystal markers appear every 36 MC throughout the UHF spectrum to afford instant frequency identification. An electrostatic piston attenuator gives continuously variable output level control over approximately 80 db from a maximum output of 1 volt. The power supply is electronically regulated to assure constant output under all line voltage conditions.

SPECIFICATIONS

FREQUENCY COVERAGE: 450 to 900 MC. Dial calibrated in 36 MC steps. BANDWIDTH: Constant bandwidth of 50 MC over entire spectrum. Can be adjusted to narrower bandwidths with internal controls. MARKERS: Pulse type, crystal controlled, accurate to 0.02%, spaced 36 MC throughout the 450 to 900 MC spectrum. OUTPUT: At least 1
volt across a 75 ohm load. ATTENU. ATOR: Electrostatically coupled piston type, range approximately 80 db. AUXILIARY OUTPUT SIGNALS: 1. Automatically phased saw-tooth sweep for X axis of scope. 2. Marker pulses either plus or minus polarity, continuously variable in amplitude.

PRICE $\$ 950.00$ F.O.B. PLANT

THERE'S A TIC SWEEP GENERATOR FOR EVERY TV TEST REQUIREMENT

Type 1210 VHF Sweep Generator: Covers the 12 VHF Channels and provides keyed sound and video markers for each channel. Maximum output 0.5 volt across 75 ohm load. Price: $\$ 785.00$. (A 13th channel having markers at 41.25-45.75 MC or 125.25-129.75 MC available at a slight additional cost.)

Type 1500B IF Sweep Generator: Designed for accurate alignment of TV sound and video IF amplifiers. Unit incorporates factory-set two band oscillator with maximum sweep ratio of 1.45 to 1 . Maximum of 5 crystal markers can be provided for each band. Price: $\$ 275.00$ less crystals. Crystals $\$ 15.00$ each.

Prices F.O.B. FACTORY

most small towns and cities. Such urban districts normally measure two or three miles across.

Booster Equipment

The receiving antenna is a billboard array made up of nine horizontal half-wave dipoles arranged in three rows of three each in front of a mesh screen. Binominal grading is employed to reduce side-lobe response thereby minimizing interference from other stations on the WSM-TV channel 4 , as well as the reception of signals fed back from the booster transmitting station.

The receiver preamplifier is similar to the basic Wallman radio-frequency amplifier. The input circuit consists of a neutralized cascode arrangement employing a triode connected 6AK5 tube and a 6 J 4 tube. Following the cascode circuit are three stagger-tuned stages employing 6AK5 tubes. The amplifier has a maximum gain in excess of 60 db over a 6 megacycle band at channel 4 frequencies. Automatic gain control is employed to hold the output at a relatively constant level.

The booster transmitter is essentially a low-power linear radio-frequency amplifier designed for unattended operation. It is connected to the receiver preamplifier through a 500 -foot length of coaxial cable and is located at the transmitting antenna. The booster transmitter has a gain of approximately 40 decibels. Three 2E26 amplifier tubes operating Class A drive a final stage of two 2B26 tubes that operate Class B. Normal average composite carrier output when black picture is transmitted is approximately 5.5 watts, of which 2.5 watts is aural carrier output and 3 watts is average visual carrier power. Therefore the transmitting amplifier will normally deliver 5 watts peak visual carrier power and 2.5 watts aural carrier power.

Automatic power level control is achieved in the transmitter by monitoring the radio-frequency voltage level across the output transmission line. A balanced crystal voltmeter circuit measures peak transmissionline voltage and through an associated direct-current amplifier and a regulator tube controls the bias on

These parts help give

Weston instruments their accuracy...

they're checked on Kodak Contour Projectors

There is such a great variety of Weston instruments to measure all sorts of variables in all sorts of ranges that production on most individual items is small.

This creates a parts inspection problem. Precision requirements in many cases are so stringent that any measurable deviation from specifications is too big. Setting up toolroom instruments takes too long for the small volume of work being checked at any one time. Mechanical gages are even less economical at the low volume levels, and they just did not give the required accuracy on such jobs as checking the shoulder angles, concentricities, and specifications of the double-acting valve body shown above. (It goes in a recording thermometer and Weston makes it in many different sizes.)

Now Weston has converted to Kodak Contour Projectors. An inspector merely picks up the specification sheet covering a given part, gets the chart
gage indicated there, puts it on the screen of the projector, and proceeds to sample according to specifications. Often, as with the valve body, gage blocks are used to step off the traverse of the projector work table. The inspector notes whether a shadow image coincides with a chart line after the table has carried it by the specified distance.

Possibly your inspection problems are volume and speed rather than the flexibility that Weston wants. In that case you will want to know abous the Kodak Contour Projector, Model 3, which is designed for use with special staging fixtures instead of a moving work table. There is a field engineer in your area who can show you which model best fits your problem. To get in touch with him, just drop a note to Eastman Kodak Company, Industrial Optical Sales Division, Rochester 4, N. Y.

the KODAK CONTOUR PROJECTOR

TRADE-NAAKK

ASURING INSTRUMENTS

 by New London

FM Signal Generator 100B

20 to 110 mc (single range)
FM Signal Generatar 100B uses a navel circuit with a variable permeabilify modulator and a single tube in the r-f, instead of the usual three or four. There is no beating and no multiplication, eliminating spurious frequencies. Output is from 0.02 microval's to 0.1 volts.

FM Signal Generator I-208-D
1.9 to 4.5 mc and 19 to 45 mc

With a marker every 2 kc on the low band and every 20 kc on the high, the I-208-D has 1300 calibration paints. This requires 25 feet of film-each individually calibrated. Accuracy is kept within 0.03%. Output voltage is from 0.2 microvolts to better than 0.6 volts.

Signal Generator and Power Meter TS-155C/UP $2700-3400 \mathrm{mc}$ (S Band)
As a signal generatar, the TS-155C/UP, with an output (50 ohms impedance) of -20 to -100 dbm , is widely used for testing radar receivers and transmitters. It can be pulse modulated internatly or from an external trigger source
As a power meter, the TS-155 measures power from +20 to +100 dbm lor up to 200 milliwatts)
leakage is law-less than 95 dbm .
Panoramic Adapter BC-1031
250 kc to 470 kc
The Panaramic Adapter BC-1031 operates on an input trequency of 450 kc to 470 kc with a maximum sweep width of 200 kc .
Used extensively for rapid visual spectrum scanning, it also enables the operator to determine whether transmission is by $\mathrm{cw}, \mathrm{am}, \mathrm{fm}$, or pulse modulated signals.
The BC-1031 is also used for deviation measurements of FM waves by the methods of dropouts

Square Wave Generator 150A
 50 cycles to 1 mc

Square wave generator 150A provides waves at five spot frequencies from 50 cycles to 1 mc with a maximum rise time of 0.05 microseconds. Confinuous frequency variation can be obtained by using an external frequency control capacitor. A pulse for, oscilloscope syncronization is available.
Output is controllable trom $0-20$ volts peak to peak and is constant at all frequency settings.

Problem: The Advance Electric and Relay Co. of Burbank, California....was called upon by the military to produce a hermetically sealed relay to very tight size and weight specifications. This called for eliminating traditional internal bracing.

Abstract

Solution: A Fusite glass-to-steel plug-in type hermetic terminal played a large part in the design of the Advance "Tiny Mite" Relay. Working in close cooperation, Fusite adapted its standard octal plug-in terminal to a projection welded bracket on which the entire relay mechanism was hung. Thus the terminal became a structural part as well as a seal. Because of their extreme rugged construction, Fusite terminals are often being called on to do more than conduct electricity in and out of sealed units.

Moral: When you have a problem in hermetic sealing, let the Fusite engineers in on it early in the game. Chances are we can save you time and money in the design of your electrical product.

Visit the Fusite Display at Radio Engineering Show N. Y. C. March 23-26. Booth 3-109.

WRITE for catalog or tell us your needs for actual samples. Dept. A-I.

the grids of the final amplifier, thereby holding peak transmissionline voltage constant. Such a power output regulator can be used since the transmitter operates into a matched transmission line. The power output of the booster remains constant despite normal linevoltage fluctuations and despite small signal level fluctuations that are not removed by the automatic-gain-control circuit of the receiver preamplifier.

A squelch relay control operates to remove screen voltage from the final driver tube and thereby interrupt booster carrier output when the main television station is off the air or when the received signal at the booster site is excessively noisy.

Since the entire booster system operates as a linear amplifier there is no need for frequency control or frequency measurements at the booster transmitter. Obviously, booster station output frequencies will depend directly on the output of the main television station that is amplified by the booster.

The transmitting antenna is a vertical folded dipole antenna operating a quarter wavelength in front of a mesh screen approximately one wavelength square.

Transmission of Microwaves Through Plexiglas Windows

Use of Plexiglas housings to protect antennas and other tv and radar equipment from the effects of wind and weather has made necessary investigation of the transmission efficiency and distortion caused by the material.

In the relay station housing shown in the photograph, sheets of Plexiglas one-eighth of an inch thick were used. For rigidity the sections were corrogated in a deep V-rib shape. The V's are spaced eight inches apart and are three inches deep, giving high rigidity.

Tests made so far indicate that the main factors in obtaining satisfactory transmission efficiency are: thickness should not be greater than one-tenth the wavelength of the microwave transmitted, the dielectric constant should be less

- Robert M. Feemster, Chairman of Exec. Comm,, Dow-Jones ©́ Co., Inc.

"You can't sit on the news!"

In 1940, The Wall Street Journal circulation was 29,000 . Today it's 255,000 -and still climbing!
"Like any news," said Chairman Robert M. Feemster, "news of business is worthless unless it's fresh!

We set out to make The Wall Street Journal the truly national business daily -one that would reach executive desks all over the country on the same morning. We first decentralized our printing plants-publishing in New York, San Francisco, Chicago and Dallas. But we still couldn't deliver fresh news from
these points without the fastest, most reliable shipping scrvice.
"That's why we called in Air Express.
"Now, 6500 pounds of Wall Strect Journals go Air Express daily. Only hours later they're in a score of other major cities. And on practically every shipment, Air Express rates are the lowest in the freld.
"We knew we could build circulation. We know we had the news and features vital to American business. Our problem is to deliver the papers! Air Express helps solve it! If you're build-
ing circulation or sales, look into Air Express rates and benefits.

Division of Railuay Express Agency

WHEN you need a

 quick answer toWHO MAKES IT...

Just look it up in the electronics BUYERS' GUIDE

There are...

23,367 ANSWERS
 to

1,445 PROBLEMS
covering every...
COMPONENT
EQUIPMENT
and MATERIAL
used in every phase of electronics

GET IN THE HABIT OF

 LOOKING IT UP IN the
electronics BUYERS' GUIDE

A MCGRAW-HILL PUBLICATION 330 West 42nd Street NEW YORK 36, N. Y.

\title{

SLANT
 your
 requirements to INSTRUMENT CORP.

\section*{OF AMERICA

OF AMERICA
 for miniature

 INIC ND COUNHI P

 INIC ND COUNHI P
 sall firg ind dumidilan

This Instrument Corporation of America plant contains the most molern and complete facilities aralable anywhere in the world for the exclusive prodaction of Miniature Slip-Ring and Commutator Assemblies to precision standards. It is now in full scale production to meet your requirements in the fastest possible time at the lowest possible cost.
all types of CONSTRUCTION NOW aVailable including molded or fabricated types

Assmblies of these types can be supplied at low cost. Quality is the highest in the industr!. Dimensional accuracy and other characteristics are excellent and these units are highly recommended for instruments such as sunchros.

ONe pIECE ELECTRO-PLATED
 TYPES FOR EXTREME ACCURACY

Wherever extreme dimensional precision, accurate concentricity and high dielectric qualities are required, the electro-deposition method is recommended. . . the production of which is licensed under an exclusive arrangement with the Electro Tec Cornoration.

Television relay station in Philadelphic, Pa. using plastic windows to protect parabolic reflector from weather. Windows permit visual pointing of reflector at broadcast point

Table I-Microwave transmission through polymethyl methacrylate

Frequency	Dielectric	Loss
in Mc	Constant	Tangent
1	2.76	0.0140
10	2.71	0.0100
300	2.66	0.0062
3000	2.60	0.00 .57
10,000	2.59	0.0067

than four, the loss tangent should not exceed 0.015 and the angle of incidence should be less than 60 deg.

Measuring Magnetic Tape Recorder Flutter

By Harold N. Morris Chief, Data Recording Section Technioal Systems Laboratory Air Force Missile Test Center Patrick A ir Force Base, Florida

Data storage requirements for instrumentation recorders are severe, especially in the field of guided missiles. Magnetic tape recorders in general use today at scientific centers are precision machines carefully designed and well constructed. However, they are not perfect data storage mechanisms, and the data obtained upon playback has errors introduced by the machine.

These errors can be classified as two general types. First are the low-frequency errors caused by tape stretch, tape slippage at the capstan and nonlinear tape speed

See our exhibit at Booth 4-213 (Fourth Floor), IRE Radio Engineering Show, Grand Central Palace, New York, March 23-26

Aircraft Transformer Corporation, Long Branch, N. J. - Long Branch 6.6250 - Manufacturers of Inductive Equipment

Take a fresh look at the

 industrial laminate picture

When you choose NEVAMAR you are assured of obtaining the right laminate for any particular application. NEVAMAR is produced by one of the nation's foremost makers of decorative laminates with the engineering "know how" and plant facilities to manufacture a superior industrial grade laminate. It is made in many grades to meet varying requirements and meets or exceeds NEMA standards. Write for samples, or call on us for any information you may need.
 ODENTON, MARYLAND - NEW YORK. EMPIRE STATE BUILDING • LOS ANGELES: 5025 HAMPTON STREET

Advertisers:

How about the NUCLEAR field?

There are a good many advertisers using ELECTRONICS who should also be advertising in NUCLEONICS.

Particularly in instrumentation and laboratory equipment, there is a cross-over of use in the electronic and in the nuclear field.

But, there is very little crossover in the subscriber lists of the two publications-a matter of a few percentage points.

It is quite possible that you are doing an effective presentation of your products and abilities in this excellent issue, but are missing such presentation before one of the fastest growing fields in the country's history - the field of atomic energy.

The sales representatives of ELECTRONICS are also the sales representatives of NUCLEONICS. They have much evidence pointing to the opportunities in this great NEW field. Ask them to show you what your potentials can be.

NUCLEONICS

ABC
ABP
A McGraw-Hill Publication 330 West 42nd St. New York 36, N. Y.

For new broadcast application bulletin, write Dept. E-1041

MAGNETIC RECORDERS

AMPEX ELECTRIC CORPORATION 934 CHARTER STREET • REDWOOD CITY, CALIF.

. . . used extensively by the electronics industry . . .
A list of our customers in the Electronics Industry includes many leading manufacturers-Philco, RCA, Federal Tel. \& Tel., Collins Radio, Magnecord, Hazeltine Labs, Presto Tape Recording Co., and many more.

Yes, EMC and CYCLOHM fractional h. p. motors are used by leading companies for hundreds of applications. If you have an application for fractional h. p. motors, check with us on your requirements.
Write today for our catalog or better yet, ask to see a Howard representative.

HOWARD INDUSTRIES, INC, RACINE, WIS. DIVISIONS: WHEELECTRIC MOTOR CORP.

Universal and Direct Current 1/1000 to $1 / 2$ h.p.

Shaded Pole 1/2000 to 1/15 h.p.
Induction types $1 / 1400$ to $1 / 4 \mathrm{~h} . \mathrm{p}$.

caused by capstan idler, flywheel or drive pulleys. These are referred to as d-c errors or wow. Second are high-frequency errors called flutter and caused by a wide variety of phenomena such as unsupported vibrating sections of the tape near the magnetic heads, poling of the capstan drive motor, and bouncing and friction of the tape as it slides over the heads. By far the most difficult error to correct is the flutter, and therefore a measure of the worth of a recorder for instrumentation work is the amount of flutter it introduces.

There are several techniques for measuring flutter, including some instruments that actually give a direct meter indication. Available instruments of this type, however, will not function to the accuracy required for an instrumentation recorder.

The method generally employed to measure flutter by the manufacturers of instrumentation magnetic tape recorders is as follows: A c-w signal of constant amplitude is recorded on the tape at normal operating levels and then played back through a wideband discriminator. The output of the discriminator is fed to the x-axis amplifiers of an oscilloscope with a fast writing speed. A shutterless camera is placed before the scope and provides a y-axis sweep by the

Test setup for evaluating short sample method of measuring flutter introduced by magnetic tape recorders used in guided missile instrumentation. Discrim. inator is on panel below tape recorder. Dual-beam oscilloscope and recording camera are at left

difiused jukction rectirier	4 dalan	4JALA	¢лаиа	41224
reak inverse voltage (velis)	100	200	300	400
reí formand curremt (am s)	0.47	0.31	0.25	1.57
d.C. ofitut curnent (mat	150	100	75	500
o.c. surce (uanewt (amps)	25	25	25	25
FULL LOAD Yoltace, gROP (volis peak)	$0.5 v$	0.5v	0.5v	$0.7 v$
forwino resistance at FULL LOAO (ohms)	1.1	1.5	1.9	0.5
COMTINUOUS REVERSE workinc. voltage (volts d.C.)	30	65	100	185
frequicncy or oremation (ks)	50	50	50	50
storice temperature (${ }^{\circ} \mathrm{O}$)	85	85	85	85
-Typical absolute maximum ratings. For other combinations refer tafig. 1.				

hermetically sealed against deteriorating elements. Glass-to-metal seals throughout.
miniature size to facilitate use in all electronic equipments, yet heat losses are dissipated efficiently.
REDESIGNED to meet all military humidity tests and shock and vibration requirements.
HIGH OUTPUT VOLTAGE and improved back current characteristics.

NEWS FROM OUR ADVANCED DEVELOPMENT LABORATORIES

Developmental germanium rectifiers for the KW range have been made so efficient that the copper lead connections must be larger in cross sectional area than the diffused junction itself.

$\rightarrow \rightarrow$ 为

Send for complete G-E Diffused Junction Rectifier Information: General Elecrric Company, Secfíon 433, Elecpronics Park, Syracuse, New York.

GENERAL (3) ELECTRIC

\& B Bolometer Amplifiers can be used wherever accurate, repeatable metering or recording or originally designed to outputs is required. They were orig field strengths of facilitate the measurement of RF ns, but in no sense are antenna systems and RF netw fact, they can be used they limited to this field of the radiation spectrum and effectively in any region of the chemistry, biology, nuin several fields of sciencopy, to name a few.

Features of Model 100 Bolometer Ampliffer

TUNABLE FREQUENCY RANGE - 400 1o 5000 eycles (± 3 \% calibration occuracy). VARIABLE BANDWIDTH - ($1 / 2$ voltage) 6, 12, 22, 50, 100 and 300 eyel es.
VOLTAGE RATIO EXPANDER - eighth power expander for the accurate meas urement of extremely small variations.
AUTOMATIC NORMALIZATION - out. put voltage holds within $\pm 1 / 4 \mathrm{db}$ for input changes of $\pm 5 \mathrm{db}$ to both signal and changes of ± 5 do to both signal and moniror channels
SELF - CONTAINED METERING - Remor able (up to 20 feet) voltmeter, logarithmic scale with 100 db decade.
RECORDER OUTPUT - . 01 to 100 volts at .01 watt maximum (undecaded). Designed - operote strip-char recorders for an enno pattern and standing wave ratio determinations.

MODEL 60 BOLOMETER AMPLIFIER

This model was designed to meet a demand for on inexpensive, yet highly accurate instrument not requiring the special features of the Model 100, Write far Bulletion L-60.

Pickard and Burns is a research, consulting, design and development organization with extensive laboratories and custom manufacturing facilities. It specializes in radio and microwave communications, radar and electronics. If you have problems in any of these categories, we shall be pleased to discuss them with you in complete confidence and without obligation.

DOUBLE BARREL

 AdvertisingAdvertising men agree-to do a complete advertising job you need the double effect of both Display Adverstising and Direct Mail.

Display Advertising keepe your name before the public and build preatige.

Direct Mail supplements your Display Advertising. It pin-points your message right to the executive you want to reach-the person who buys or influences the purchases.

More and more companies are constantly increasing their use of Direct Mail because it does a job that no other form of advertising will do.

McGraw-Hill has a special Direct Mail Service that permits the use of McGraw-Hill lists for mailings. Our names give complete coverage in all the industries served by McGrawHill publications-gives your message the undivided personal attention of the top-notch executives in the industrial firms. They put you in direct touch with the men who make policy decisions..

In view of present day difficulties in maintaining your own mailing lists, our efficient personalized service is particularly important in securing the comprehensive market coverage you need and want.

Ask for more detailed information today. You'll be surprised at the low over-all cost and the tested effectiveness of these hand-picked selections.

$$
\begin{aligned}
& \text { MCGRAW-HIIL } \\
& \text { PUBLISHING CO., INC. } \\
& \begin{array}{l}
\text { 330 West } \\
\text { NEW Y2nd Street }
\end{array}
\end{aligned}
$$

WHEN A SINGLE SCOPE WON'T DO YOUR JOB!

Try to compare four different but related phenomena . . . at the same instant ... under the same conditions... with single channel oscilloscopes ... and you run into trouble. Nine times out of ten, you'll miss those high speed signals.
There are several 416 oscilloscopes that lick the problem by displaying four phenomena on the face of a single 5 " tube. Since their development they have opened new fields in electronic and medical research, strain and vibration analysis, seismography and ballistics.
Each of their four channels has independent controls for intensity, focus, and positioning of the X and Y axes. All input signals can be observed on a common time base or on separate time bases if desired. Wide band, high gain, DC or AC amplifiers are provided on both the vertical and horizontal axes.

Details about the four-channel models available as well as others with $2,5,6,8$, or even 10 channels are covered in our catalog. Write for your copy today.

During The IRE Show - See Us At Booth 2-519

1200 E. MERMAID LANE, PHILADELPHIA 18, PA.
movement of the film behind the camera lenses.

This arrangement, then, gives a graphic record of actual flutter produced by the recorder. If the recorded signal frequency remains constant upon playback, the film trace appears as a straight line. If the frequency deviates from the original, then the discriminator produces a varying voltage and the film trace forms a picture of these variations as shown in Fig. 1. By simple calibration, these variations can be translated into terms of frequency and the flutter calculated as a percent of the recorded frequency.

The response of the discriminator is a limiting factor in the accuracy of such a measurement since it must pass all modulating frequencies up to an arbitrary limit with a flat response so that each component may be considered in its true proportions. The generally accepted limit for this modulation frequency is $4,000 \mathrm{cps}$; that is, all flutter frequencies up to $4,000 \mathrm{cps}$ will be considered at full value, and those above will be attenuated in accordance with the pass band of the discriminator.

Since the most damaging components of flutter are the peaks, this phenomenon is usually referred to in terms of average peak-to-peak flutter. It is this value that must be determined from the graphic film record. This brings

FIG. 1-Continuous moving film recording of output of recorded c-w signal shows flutter, but over 9,000 feet of film is required for 15 minutes of tape.

Trace at right is timing signal

More pumps to pick from!

If the radio frequency component you need cannot be made by conventional methods or is difficult and costly to manufacture, the possibilities are it can be LECTROFORMED.

Write Dept. EL-3
for "Lectroforming Applications and
Procedure"

LECTROFORMING can produce parts of intricate design, accurate interior dimensions and with high interior surface finish up to 5 micro-inch. Various metals may be used (such as silver, gold, copper, nickel and/or iron) to meet specific requirements for conductivity, strength and corrosion resistance.

LECTROFORMING achieves dimensional stability impossible by any other method.

LECTROFORMING is the manufacturing of an article by the electrode position of metal on a form of predetermined size, shape and finish. We welcome the opportunity to discuss your problem, no matter how difficult it may seem.

Visit our Booth 3-525 at IRE Show

Solve radio problems more quickly, easily, accurately

RADIO ENGINEERING handBook

\longrightarrow Keith Henney Editor-in-Chief
Consulting Editor of Electronics
Fourth Edition, 1197 pages, 6×9, 1038 illustrations, $\$ 12.00$
HERE is a handy volume embracing a great deal Hof constantly needed teference material coverconcise, dependable, arranged in easy-to-get-at form
What the Standard Handbook, Marks' Handbook, and others are in their respective fields, Henney's Handbook is in the radio field.
IN scope, this book ranges from fundamentals to discussion of newest circuits, amplifiers, power supply systems, sbort-wave systems, etc. Frequency modulation, developments in television and air craft radio, and other applications are covered

Here's the help you get

- 1197 pages of carefully selected accurate datacharts, tables, circuits, diagrams, formulas.
- 23 sections covering all the most needed subjects for engineers and radio technicians, from fundamentals to specialized applications.
- Every section prepared by one or more specialists, to assure you dependable, expert answers to your problems in design and practice.
- More than 1000 illustrations give a clear picMore than 1000 illustrations give a clear pic-
ture of the many different circuits, parts, and ture of the many different circuits, parts, and
characteristics that the radio engineer works
with.
- Fourth Edition gives a wealth of material on modern developments in every field and aspect of radio engineering-from inductance, power supply systems, and electron tubes, to receiv ing systems, and code reception

- HAVE THIS HELP RICHT NOW

Just send the coupon now-pay on easy terms only after you examine the book

[^7]
in transmission line

for HF•VHF•UHF

Why Federal Cables are SUPERIOR

- CONDUCTORS-meet highest ASTM standards
- DIELECTRICS - of stabilized polyethylene
- BRAIDS-meet highest ASTM standards
- JACKETS-of latest developments in vinyl and polyethylene

Every Federal Cable Fully Tested for:

- Capacitance
- Attenuation
- Continuity
- High Voltage

including the Federal-developed low-temperature, non-contaminating thermoplastic jacket

DESIGNED FOR: H-F communications, television, industrial electronics, radio and TV lead-ins, aviation, test equipment, radar, pulse and experimental equipment

Quality of product is the secret of dependable cable performance and quality is what you get in every inch of Federal RG type coaxials... from jacket to conductor!
Only the finest materials-quality-controlled throughout the entire manufacturing process - are used in Federal cables. Every possible test is made to insure constant efficiency of physical and electrical properties under the most rugged conditions encountered by general and military applications.
Whatever your transmission line requirement-specify Federal RG types. For full information, write Dept. D-413.

COMPLETE COAXIAL CABLE ASSEMBLIES also are available from Federal to meet your requirements. This service offers the same "Precision Production" that made "Federal" the outstanding name in coaxial cables.

Manufacturer of America's most complete line of solid diefectric cables

Folyrul

In Canada: Federal Electric Manufacturing Company, Ltd., Montreal, P. Q. Export Distributors: International Standard Eleciric Corp., 67 Broad St., N. Y.

The Isopole antenna, omnidirectional, rugged, inexpensive Type N input.

The Yagi antenna, two models with gains of 9.5 db and 12 db horizontal or vertical polarization.

The Corner Reflector antenna,

 8 db forward gain, broadband, horizontal or vertical polarization.ap the problem of alalysis of the film record to arrive at a reasonable and repeatable measurement.

One technique is to make a film record of the entire spool of tape and then analyze all the film to obtain peak-to-peak flutter. When using this technique it is also recommended that flutter spikes of less than 0.001 second, and more than a certain value in amplitude, be disregarded. To perform this analysis, one must have sufficient resolution of the film to be able to read to 0.001 second of time. This would require at least 0.01 inch of film for a manual readup system or 0.001 inch of film in case some optical system, such as Recordak were available. Some new recorders hold as much as 5,000 feet of magnetic tape, and even at the high speed of 60 inches a second, it would require 15 minutes to complete the playing of one reel. This means that the oscilloscope recording camera must also record for 15 minutes and run at a speed of 10 inches per second, to achieve the required resolution. The results would then be spread out over 9,000 feet of film and a tremendous amount of labor would be involved in reducing the data to a percentage figure.

Other possible methods for obtaining this answer would be to analyze only the front portion of the recorded tape or only the last few minutes or possibly the worst section as viewed on the scope or again perhaps only the best section.

None of the previous methods presents a good solution to the problem. There is one method that does allow a reasonable answer to be obtained and yet does not involve as much work as the first technique explained. This is one of random sampling of the flutter throughout the tape. Since flutter itself is a purely random function, the laws of probability can be applied and enough samples taken to arrive at an answer with the required accuracy and within a certain probability.

Mathematically the problem reduces to one of compromise between the number of samples taken and the desired accuracy

- Amperite Regulators are designed to keep the current in a circuit automatically regulated at a definite value (for example, 0.5 amp).
- For currents of 60 ma . to 5 amps . Operates on A.C., D.C., or Pulsating Current.
- Hermetically sealed, light, compact, and most inexpensive.

Maximum Wattage Dissipation: T61/2L-5W. T9—10W.
Amperite Regulators are the simplest, most effective method for obtaining aufomatic regulation of current or voltage. Hermetically sealed, they are not affected by changes in altitude, ambient temperature (-55° to $+90^{\circ} \mathrm{C}$), or humidity. Rugged; no moving parts; changed as easily as a radio tube.
Write for 4-page Technical Bulletin No. AB-51 In Canada: Atlas Radio Corp., Ltd., 560 King St., W., Toronto 28

electronics BUYERS' GUIDE

Get in the kabit of laoking it upin...

the electronics BUYERS' GUIDE

"The Book that has all the answers"
A McGRAW-HILL PUBLICATION 330 West 42nd Street NEW YORK 36, N. Y.

Keep TABS on

PERFORMANCE

with-

Tested and Approved Beyond Specification

CTEOTE:
 plasticord-plasticote Whisedrils

Chester ENGINEERED plastic insulation, laboratory and field tested to more than meet specifications provides both easier working qualities and longer service life. These rugged plastic coatings offer maximum immunity to abrasion, weather, oil and most chemicals. Smooth and pliable, they pull through channels and conduit
easily and offer excellent appearance in open wiring. Chester single or multiconductor wires and cables are available for electrical, electronic, TV, radio, telephone and many other industries. Call or write for illustrated bulletins, today!

JAN.C. 76
WIPES'
SRIR, SRHY, SRRF, WI

$105^{\circ} \mathrm{C}, 90^{\circ} \mathrm{C}, 80^{\circ} \mathrm{C}$ UL APPROYED; $120^{\circ} C^{\circ}$

FLEXIBLE CORD

COMMUMCATION WIRES \& CABLES TO SPECIFECATIONS
vISIT US AT THE I.R.E. SHOW BOOTH 4-704 FOURTH = LOOR

Changing temperatures, vibrations, and accelerations affect the operation of all instruments. In spite of these variables, our products produce the right answers because they are properly designed.

- AIRCRAFT INSTRUMENTS AND CONTROLS
$<$ OPTICAL PARTS AND DEVICES
- miniature ac motors
< RADIO COMMUNICATIONS AND NAVIGATION EQUIPMENT

Current production is largely destined for our defense forces; but our research facilities, our skills and talents, are available to scientists seeking solutions to instrumentation and control problems.

elmenust, new york - alendale, califormia - subsidiany of Standard coil prooucts co., inc.
and probability obtained. As the total number of samples being considered increases, the accuracy of the result increases and the probability of the result being within this accuracy also increases.

This mathematical analysis has been checked in the Technical Systems Laboratory of the Air Force Missile Test Center and results agree with theory. The test setup for this work was similar to that outlined previously for the continuous check except that several bursts of record were taken, spaced approximately evenly throughout the tape. Portions of these bursts, termed long samples, were then broken down into short samples as indicated in Fig. 2. These short samples ran concurrently within the long sample. The purpose of this procedure was to aid in eliminating the d-c or wow errors from the measurement.

Short sample lengths were chosen at 0.04 second of record. The length of this sample determines, within limits, the magnitude of the final answer. It is important that a universal short sample length be established so that comparison can be made between all test results. This value of 0.04 second actually means that any flutter with a half period exceeding 0.04 second (12.5 cps) will not add its full weight to the result.

Referring to Fig. 3, it can be seen that since the measurement is taken from peak to peak, the maximum deflection possible begins to drop off as the frequency of the flutter goes below 25 cycles. As the frequency goes below 12.5 cycles, the flutter can no longer contribute its maximum regard-

FIG. 2-Short samples provide sufficient accuracy in making flutter measurements on instrumentation tape recorders

Tung-Sol's modern manufacturing techniques and advanced quality control methods assure you of a product that is second to none. Tung-Sol makes tubes-no sets-no equip-ment-just tubes. We do not comprete with our customers. Tung-Sol design, development and application engineers work closely together for the sole purpose of producing a better tube so that you can make a better product. Engineering assistance is strictly confidential. Tung-Sol service by competent field sales repre-
sentatives is nationwide. A Tung-Sol delivery promise is a promise. Closest cooperation is maintained to keep deliveries up to your production schedule requirements.

Booth No. 4-715. Radio Engineering Show,
Grand Central Palace, New Yøprk, March 23-26.

TUNG-SOL ELECTRIC INC.

 Newark 4, N. J.Sales Offices: Atlanta, Chicago, Culver City (Los Angeles), Dallas, Denvér, Detroit, Newark

TUNG-SOL MAKES: ALL-GLASS SEALED BEAM LAMPS - MINIATURE LAMPS - SIGNAL FLASHERS picture tubes - radio - iv and special purpose electron tubes

cuBIC'S 3 SIDED COVERAGE

PROVIDES YOU WITH THE

WORLD'S FINEST PRECISION

CUBIC MICROWAVE ENGINEERS - specialists in the field since the inception of Radar in World War II -start with electronic problems and ideas, and convert them into the most accurate precision-built electronic instruments and equipment! We welcome inquiries - not only in connection with our rapidly developing list of products-as represented below-but on ideas, problems, or design of mitrowave assemblies of your own specification you may

MICROWAVE
 CALORIMETRIC WATTMETER

- MICROWAVE \&

RADAR COMPONENTS RADAR COMPONENTS - ELECTRONIC INSTRUMENTS \& TEST EQUIPMENT

portable . . . for lab and field use . . . to measure absolute microwave power. Frequency Range: 2600 MC 10 26500 MC
Max. VSWR: 1.1
Max. Peak Power: 600 KW

COAXIAL CALORIMETRIC WATTMETER

Frequency Range: 200 MC fo 3000 MC-Max. VSWR: 1.5 over range - Max. Peak Power: $15 / 8^{\prime \prime}$ Coaxial rating

MICROWAVE (X-BAND) PULSE MEASURING WATTMETER

for measuring peak power of microwave pulses from signal generators orradar systems.

ELECTRONIC DIRECTREADING PHASE METER

Frequency Range: 20 to 50,000 cycles $0-360$ degrees

Shown at left are a few of our standard microwave components available as catalog items. Special purpose wave guide assemblies designed to customer's specs can also be produced.

裡的

P O.R P O REAT. - N SCOTT \& CANON STS.
 - N CALIFORNIA

Devoled Exclusively to Electronics \& Electronic Equipment

WHEN you need a

quick answer to

WHO MAKES IT...

Just look it up in

 the electronics BUYERS' GUIDEThere are...

23,367 ANSWERS

to
1,445 PROBLEMS
covering every...
COMPONENT
EQUIPMENT and MATERIAL
used in every phase of electronics

GET IN THE HABIT OF LOOKING IT UP IN the

electronics BUYERS' GUIDE

A McGRAW-HILL PUBLICATION 330 West 42nd Street NEW YORK 36, N. Y.

Visit our booth No. 4-203 at the I.R.E. show in New York City, March 23-26
automatic production that gives quality control

Alnico magnets have been getting smaller and lighter, thanks to production techniques in use at Crucible. Automatic machinery cuts the possibility of human error to a minimum, so rejections are low. This helps to maintain stable price levels in the face of rising material and labor costs. At the same time, Crucible's rigid inspection standards and attention to quality have developed a magnet with the highest gap flux per unit weight of any on the market.

Today, Crucible can offer lighter, magnetically stronger Alnico magnets because of these automatic production techniques developed over the sixteen years that we have been producing the Alnico alloys. And behind our familiarity with permanent magnets lies more than 52 years' experience with specialty steelmaking. Let us advise you on your magnet problem.

[^8]

Braced, cushioned, shielded... protected... an electric mixer in this
Huski-Duty shipping bo: means lower freight cost, minimized damage claims, and excellent dealer relations.

To get all three in your next shipping boxsend for "How To Pack It." Sandusky, Ohio.

FIG. 3-With 0.04 second samples, any flutter less than 12.5 cps will have little effect on the measurement, thus eliminating wow errors
less of the phase relationship within the short sample.

For the purpose of this evaluation, many more samples and readups were made than will be necessary for actual practice. A total of 1,650 short samples was analyzed and the peak flutter determined for each sample. The weighted average was calculated and plotted for all samples running consecutively from the first to the last of the film record. This was repeated with the analysis starting from the last of the film and progressing to the beginning. The third series of calculations and plots was made by choosing the data (that is, the individual samples) at random. After a total of 1,650 samples the curves approach a constant value in all three cases. This value is assumed to be the true average. After 500 samples, the maximum deviation from this true average was 2.35 percent, and after 1,000 samples it was 1.09 percent. If theoretical calculations are made, based on the mathematical analysis of a random function then after 500 samples the result is 2.85 percent maximum error for 95 percent of the time. The maximum error on the laboratory curves was 2.35 percent, which falls under the 2.85 percent predicted.

These tests, while they are certainly not conclusive, indicate that flutter can be measured to better than 3 percent accuracy with 500 readings through a reel of tape. These 500 readings can be made up of 50 long samples, which in turn can be obtained from approximately 10 record bursts while the tape is running. It was found that 10 record bursts can be

- in design, construction, and performance.
- in sensitivity, linearity, and balance.
- in all the minute details that make an outstanding instrument.

For complete details write for Bulletin K

DOELCAM CORPORATION
 $1 \angle 00$ Soldiers Field Road, Boston 35, Mass.
 Instruments for Measurement and Control

GYROSCOPIC INSTRUMENTATION • SYNCHROS • SERVOMECHANISMS • MICROSYNS • ELECTRONIC INVERTERS

Whatever your requirements in sheet, plate and alloy fabrication, Kirk \& Blum can produce for you . . economically and quickly.

Complete facilities to $\frac{1^{\prime \prime}}{2}$ capacity for square and rotary shearing, braking, forming, rolling, punching, riveting, welding, grinding, drilling, and finishing sheets and light plates and structuals. For complete details, write for literature on fabrication facilities and experience or send prints to:

The KIRK \& BLUM MANUFACTURING CO. 3211 Forrer Street
Cincinnati 9, Ohio

the annua!

electronics

BUYERS' GUIUE
is the electronic engineer's

BREADBOARD WHO'S WHO

for
quick, accurate answers to any questions about

COMPONENTS

 EQUIPMENT MATERIALSused in electronics

Get in the habit of looking it up in...

the
 electronics BUYERS' GUIDE

"The Book that has all the answers"
a mcGraw-hill publication 330 West 42nd Street NEW YORK 36, N. Y.
 and carefully cured at high temperatures. The resulting tubes (round, square, rectangular or formed to special shapes) are stiff, sturdy, resistant to crush, with good tensile strength.

This unique product has good dielectric strength with low dielectric loss properties. Moisture resistance and dimensional stability is easily controlled in the manufacturing process. The wide variety of sizes, shapes, forms; the strength; low cost; ease of fabrication; speed of delivery; all combine to make C-D-F Spiral Tubing worthy of your investigation.

SIZES

The round tubing ranges from $3 / 32$ to $8^{\prime \prime}$ ID, with wall thicknesses from .0075 to $1 / 4^{\prime \prime}$. The minimum ID of square and rectangular tubing is $3 / 8^{\prime \prime}$, with $2 \frac{1}{/^{\prime \prime}}$ the maximum ID. Wall thicknesses range from 010 to $3 / 32^{\prime \prime}$.

Standard lengths are from 2 to 4^{\prime}, with special sizes and grades, plain or impregnated, open for your discussion with our C-D-F sales and engineering staff.

FABRICATION

Spiral Tubing is readily sawed, punched, drilled, tapped, riveted, stamped, painted, depending on the grade; it is suitable for automatic machine operations, but not recommended for conventional machine threading. Waxing or varnish impregnation to improve moisture resistance is usually done on the finished coils by the user.

PRIMARY APPLICATIONS

COIL FORMS OF ANY SIZE OR SHAPE
for tuned or untuned RF, IF, oscillator, and other coils used in radio, television, electronic circuits for solenoids, relays, circuit breakers
for transformers
for permeability tuners
INSULATORS
for selenium rectifiers
for electric motors
relays
BUSHINGS OR SPACERS
armature shaft spacers
for mechanical support
SHIPPING PROTECTORS AND FOR SPECIALIZED PACKAGING BOBBIN TUBES
BODIES FOR PAINT ROLL APPLICATORS
AS A COMBINATION MATERIAL
with other C-D.F high strength plastics or electrical
insulating materials

GRADE SELECTION

C-D-F has mass production facilities for both the manufacture and fabrication of eighteen distinct grades of Spiral Tubing. For example, there's a special punching grade, fine for punching rectangular or square holes near the end of the tube. A relatively soft tube is supplied for difficult stapling or riveting. C-D-F makes high strength automotive electrical bushings from a very hard tubing with high axial compressive strength. Combinations of kraft, chipboard, Diamond "fish paper" Insulation, and other materials are available.

FORMS: ROUND - FORMED • FORMED AND NOTCHED • SQUARE AND RECTANGULAR

THE NAME TO REMEMBER

FOR SPIRAL TUBING

NEWARK 16, DELAWARE

Remember, C-D-F has production know-how, years of experience in electrical insulation. See your C-D-F sales engineer. Write now for new 1953 spiral fubing folder, a workbook showing grades, applications, properties.

STRUTHERS -DUNN

Standard relays and timers

 match 4 out of 5 requirements

STRUTHERS-DUNN, INC., 150 N. 13th St., Philadelphia 7, PA.
BALTIMORE - BOSTON• BUFFALO - CHARLOTTE - CHICAGO - CINCINNATI CLEVELAND • DALLAS • DETROIT • KANSAS CITY • LOS ANGELES MINNEAPOLIS • MONTREAL • NEW ORLEANS • NEW YORK• PITTSBURGH ST. LOUIS • SAN FRANCISCO • SEATTLE • SYRACUSE • TORONTO
made conveniently from the standard $100-\mathrm{ft}$ film capacity of most oscilloscope cameras.

It must be kept in mind that this measurement for a value of flutter is influenced by the pass band of the discriminator, the length of the short sample and the frequency of the recorded tone no valid comparison can be made between flutter measurements unless these variables are held constant. At best, the technique described still entails a fair amount of work and some expensive laboratory equipment. With this in mind, the Air Force Missile Test Center is continuing work to develop an electronic technique for a more direct measurement of the phenomenon called flutter.

The author wishes to acknowledge the contributions of O , E . Hull and T. S. George towards the information contained in this paper.

Single-Frequency Audio Filter

By T. M. Dauphinee
Division of Physics. National Research Comucil Otawa, Camarla

An Audio Filter that gives up to $50-\mathrm{db}$ attenuation for a single frequency may be made quite simply from easily obtained components. The basic circuits of several such filters are shown in Fig. 1 and 2.

In the circuit of Fig. 1 the incoming signal is impressed across the series combination of parallel resonant circuit and a large value variable resistor. The parallel resonant section is composed of a suitable capacitor C and the primary winding of an audio transformer T with large step-up ratio. One side of the transformer secondary is connected to one terminal of the applied signal. The output of the filter is taken between the other side of the secondary and the other input terminal.

If the frequency of the input signal matches the resonant frequency of the tuned circuit the signal appearing across the secondary winding of the transformer will differ in phase from the input signal by 180 deg assuming the proper secondary terminals have been se-

mintchenmranal

It takes Class " H " insulation to withstand the relentless severity of extreme operating conditions ... physical, chemical, dielectric, very high or very low temperatures ... to remove the danger of breakdown under overload . . . to minimize fire hazards . . . to permit the design of longer life electrical components and equipment of minimum weight and size, without sacrifice of rated output.

You can depend upon MITCHELL-RAND for a full line of Class " H " insulation to meet every extremely severe electrical insulation requirement.

MITCHELL-RAND ELECTRICAL INSULATION HEADQUARTERS • MITCHELL-RAND ELECTRICAL INSULATION HEADQUARTERS

SILICONE VARNISHED FIBERGLAS CLOTHS, tapes, tUBINGS, Slevings
\& SIlICONe Saturated OR COATED ASbestos sheets

* SILICONE COATED NOVABESTOS SHEETS
* SIlicone rubber coated fiberglas sheets

SILICONE GLASS MICA
X Sllastic rubber coated fiberglas tape
t teflon coated fiberglas sheets

By the use of 18 Lenkurt precision-wound wedding-ring toroids, the two bandpass filters shown at right were redesigned into a single hermetically-sealed plug-in unit, as shown at left. Volume was reduced from 179 cu in. to 36 cu in., a factor of 5 to 1. But, at the same time, performance was actually improved!
Whenever your military or commercial designs call for maximum filter or toroidalcoil reliability under adverse service conditions, and where exacting electrical performance must be maintained, bring your problems to Lenkurt. The Lenkurt engineering group has a rich background of experience from which to offer valuable suggestions in the matter of setting practical specifications to attain the utmost from materials, components and techniques.

LENKURT ELECTRIC SALES CO.
SAN CARLOS 1 CALIFORNIA

FIG. 1-Single-frequency audio filter giving up to 50 -db attenuation
lected, while the amplitude will be at a maximum. By a proper adjustment of resistance R_{v}, the magnitudes of the input and secondary voltages may then be made exactly equal and under these circumstances the net output signal is zero. Any change of input frequency away from resonance shifts the phase of the secondary voltage and a zero signal is no longer possible.
A very slight deviation from exact phase opposition results in appreciable output signal and the effect is enhanced by rapid phase shift near resonance.
The circuits of Fig. 2 show alternative methods of obtaining a similar kind of filtering action. These circuits have slightly different characteristics but operate quite satisfactorily.
In the case of low-Q circuits the maximum amplitude of the secondary voltage does not occur exactly where the phase shift is 180 deg . However, the rate of change of phase angle at this frequency is still relatively large and the only effect is a broadening of the attenuation peak, without limiting the ultimate attenuation that can be obtained.
Filters of this type have some very useful characteristics. The components are few in number, cheap, and easily obtained. Simple iron cores are sufficient for input signal levels below a few tenths of a volt and the cheaper audio transformers frequently work better than expensive ones. Very large relative attenuations can be obtained for the filter frequency, 40 db relative attenuation over less than one octave on either side being readily obtained.

Attenuations up to 70 db have been achieved, but under these circumstances extremely sharp tuning is required and the overall

Here's a completely new rotary exhaust machine

for higher speeds, higher vacuums

We're sorry, but we think it's only fair to tell possible new customers our Standing Room Only sign must be changed to Sold Right Out!

The design and production facilities of our microwave department are now taken over by the increasing requirements of our present customers. Because of our responsibility to them, this situation may continue quite a while.

We are sorry to say this because we enjoy making new friends. But we feel that we should tell those who might be interested in our engineering and manufacturing facilities, that for some time we may not be able to serve them.

Any change in the situation will be announced in this publication.

L. H. TERPENING COMPANY

 DESIGN • RESEARCH • PRODUCTIONMicrowave Transmission Lines and Associated Components
;16 West 61s; 5i. - New York 23, N. Y. Circle 6-4760

23,367 Answers

 to1,445 Problems
covering every...
COMPONENT EQUIPMENT and MATERIAL
used in every phase of electronics

GET IN THE HABIT OF LOOKING IT UP IN
the

electronics BUYERS' GUIDE

A McGRAW-HILL PUBLICATION 330 West 42nd Street NEW YORK 36, N. Y.

Do you have any of these problems?

1. Looking for thin, flexible insulating material that will not break down under extremely high temperalures? ISOMICA* Flexible Plate, Class B and Class H, built-up from continuous mica sheets, gives superior electrical and thermal insulation for coil wrappings and similar applications.

2. Need accurately punched mica stampings for filament, grid and plate supports? MICO produces mica stampings to extremely fine tolerances. Whenever you need precision-fabricated mica of the highest quality, call on MICO. We have 60 years of experience in this field.

3. Need a material with special mechanical, thermal and insulating properties? LAMICOID® - a laminated plastic made with various fillers-gives you the properties you need for antenna parts, coil forms, tube sockets, switch gear and relay parts, panels, motor and transformer parts, and dozens of other uses.

4. Looking for precision-made fabricated parts? Let us solve your problems with parts fabricated from LAMICOID®-a thermosetting plastic-strong as metal, lighter than wood. We are fully equipped with the latest machinery and can provide you with the best possible service.

Whatever electrical insulation material you need-Class A to Class H - MCO makes it best. We manufacture it, cut it to size, or fabricate it 10 your specification. Send us your blueprints or problems today.
*Trade-mark

[^9]
HOW TO
 SQUEEZE PENNIES

OUT OF
 UPSET SPECIALS COSTS

Specially designed upset products are solving thousands of problems. Dozens of design pointers on them are yours for the asking. Send us your sketches, prints, finished products for suggestions.

stability is usually not sufficient for long periods unless the temperature is controlled. Input impedance is high, as much as half a megohm in the intermediate audio range. Response is nearly flat outside the attenuation region, the curve approaching a fixed value at frequencies far from resonance rather than tending to infinity or zero as in many conventional filters.

Limitations

The filters have some disadvantages arising mainly from the limitations of transformer design. The filter frequency changes at high signal levels because of changes in incremental permeability of the core material with increasing signal. This effect can be eliminated by use of powdered iron cores, but at some sacrifice of input impedance and availability.

The filter frequency is also slightly temperature sensitive, a change in frequency of about 0.1 percent per deg C with ordinary transformers. High impedance loads (for example, a tube grid) are desirable on the output, so it is not easy to place filters in series, and the frequency range of the transformers may be slightly restricted by the fact that they are operating into unmatched loads. In most cases the body of the transformer is above ground, and at high

FIG. 2-Two alfernate audio filters using a parallel-resonant circuit (A) and a tuned transformer (B) to attenuate a single frequency

MECHANICAL FEATURES

1. Single-ended construction gives maximum mechanical stability.
2. Rugged triangular basing design resists shock and vibration.
3. Dual-purpose connections permit use of thexible leads or stiff plug-in base pins.
4. Direct soldering of germanium wafer to base support guarantees positive contact,

Direct soldering
avoids flaking.
5. Glass-filled plastic case and high-temperature impregnating wax assure moistureresistant, trouble-free operation.

BASING AND SOCKET

Already a major producer of germanium diodes, CBS-Hytron now offers you prompt delivery of transistors: Point-contact CBS-Hytron PT-2A (for amplifying) and PT-2S (for switching). Both have stable characteristics and are guaranteed moistureresistant. Note flexible leads welded to base pins. You may solder flexible leads into circuit. Or snip them to use stiff base pins in CBS-Hytron type T-2 socket.

Triangular arrangement of base pins is stronger . . . avoids bent pins. Easy-to-remember basing layout simulates basing symbol

Note similarity of pin layout to that of transistor symbol. CBS-Hytron type T-2 transistor socket features groove to guide pins into socket. Also anti-burn-out design to insure that base connection of transistor will always be made first.
 immediate delivery.

If you think Jivaro Indians were experts at shrinking things . . (human heads, that is) . . . look what STANCOR engineers have done with transistor transformers! Recently they designed and are now producing the smallest transformer ever built!

How big is this new transformer? Well, it's just $1 / 4^{\prime \prime} \times 3 / 8^{\prime \prime} \times 3 / 8^{\prime \prime}$ and it weighs only 0.07 ounce. Designed especially for transistor applications, this unit is no larger than the transistor it powers.

It is one of a series of transistor transformers, being built by Stancor, for development and commercial applications. If you are planning to use transistors, take advantage of Stancor's knowledge of engineering and manufacturing of ultra-miniature transformers.

STANCOR TRANSISTOR TRANSFORMERS
These stock transistor transformers are available through your Stancor distributor:

TYPE	APPLICATION	PRI. IMP.	SEC. IMP.
UM-110	nterstage	20,000	1,000
UM-111	Output or motching	1,000	60
UM-112	High imp. mic. to amitter	200,000	1,000

Other transistor transformers, built to your special requirements, are available for original equipment production only. Write for Bulletin 462 .

STANCOR TINYTRANS Miniature, cased audio transformers Here are four new cataloged high fidelity transformers for use where space is at a premium. These units have a frequency response of $\pm 1 \mathrm{db}, 30-20,000 \mathrm{cps}$. They are impregnated and sealed in a $7 / 8^{\prime \prime}$ square, drawn aluminum can, with $1 / 8^{\prime \prime}$ terminals mounted on a phenolic terminal board. Total height is $11 / 4^{\prime \prime}$.

TYPE	APPLICATION	PRI. IMP.	SEC. IMP.
TT-11	Mic, pickup or line to single grid.	$50,200 / 250$, $500 / 600$	50,000
$\mathrm{TT}-12$	Mic, pickup or line to push-pull grids.	$50,200 / 250$, $500 / 600$	50,000
$\mathrm{TT}-13$	Dyndmic mic., to single grid.	$7.5 / 30$	50,000
$\mathrm{TT}-14$	Single plote to single grid.	15,000	60,000

Ask your Stancor Distributor for Bulletin 463 on Stancor Tinytrans, or write us for your free copy

STANDARD TRANSFORMER CORPORATION
3578 ELSTON AVENUE - CHICAGO I 8, ILLINOIS EXPORT SALES: Roburn Agencies, Inc., 39 Warren Street, New York 7, N. Y.

Why you can expect plus performance from standard RCA receiving fubes...in every field

Over the years RCA has fostered the use of advance design and qualitycontrol techniques in tube manufacture. Since World War II, RCA has stepped up its continuing program for quality improvement. As a result, the standard RCA receiving tubes of today often provide the superior performance and reliability usually expected from specialty-designed types of other manufacturers.

In addition to this built-in performance security, standard RCA receiving tubes cover a wide range of types, are inexpensive, and are readily avail-
able both to the equipment designer and the ultimate user.

RCA Application Engineers are ready to consult with you on the adaption of standard RCA receiving tubes to your equipment designs. For further information write RCA, Commercial Engineering Section 42 CR, Harrison, N. J. . . or contact the nearest RCA Field Office: (East) Humboldt 5-3900, 415 S. 5th St., Harrison, N. J. (Midwest) Whitehall 4-2900, 589 E. Illinois St., Chicago, Ill. (West) Madison 9-3671, 420 S. San Pedro St., Los Angeles, Calif.

RADIO CORPORATIOM OF AMERICA

10 reasons why standard RCA receiving tubes offer built-in Performance Security

\& The cathode base metal and the carbonate coatings are individually matched for each tube type to provide superior performance. Both are continuously RCA-engineered for maximum quality control.
iz The specially processed carbonized nickel-coated anodes developed and used by RCA provide 97% of the radiating effectiveness of a true black body as compared with the 68% figure for the older-style carbonized nickel-plated anodes. This increased effectiveness means better life for RCA tubes because the anodes operate at lower temperatures.
iz Lead-glass envelopes at a cost differential of about 10 to 1 compared to lime-glass envelopes are used by RCA for certain capped types which operate at very high voltages. Such use results in much better life performance.
is Gold-plated grids are used in certain RCA tube types for better control of critical tube characteristics.
\&z The RCA-developed " A " frame con-struction-used in 6 of the popular metal types-gives rigidity to the tube elements and provides increased resistance to vibration, thus reducing microphonics and stabilizing tube characteristics.
\& Strict mica tolerances, tighter than usual in the industry, provide improved stability and freedom from microphonics.
is Certain RCA tubes incorporate cathode clips and inverted-pinched cathodes to provide improved ability to withstand vibration; as a result there is greater freedom from microphonics. RCA types for battery operation use a filament damper bar to minimize microphonics.
z RCA not only uses the highest quality mica but also utilizes a higher percentage of sprayed micas than industry in general. These precautions provide greater freedom from leakage noise and other internal leakage effects.
W. Double-helical coil heaters are used in many types to provide more reliable performance and to insure greater freedom from hum.
Each RCA receiving tube has been designed to minimize the number of welds. With such designs there are fewer points at which possible failure can develop. As an additional precaution, RCA welding is done on accurately timed unit welders to insure that each weld has maximum strength and uniformity.

MAKES THESE PRODUCTS A Specialty

THE WHEELER INSULATED WIRE COMPANY, INC. Division of The Sperry Corp. - 1101 east aurora st., Waterbury 20, conn.

frequencies the shell may have to be connected to an appropriate point on the circuit and insulated from the chassis.

Some performance curves and data are given in Fig. 3. In many ways these filters have better characteristics than T, π or twin- T filters ${ }^{1,2}$, particularly at low frequencies. Better performance could be expected from the use of powder cores.

Since the transformers used are imperfect ones, no attempt has been made to develop a detailed theory of the filter. Some expressions applicable to ideal transformers when the load resistance is effectively infinite are given as a guide in choice of components.

FIG. 3-Attenuation curves obtained with filters using various values of circuit components

The filter frequency $f_{o}=\frac{\omega_{0}}{2 \pi}$ is given by
or

$$
\omega_{o} L+\frac{R^{2}}{\omega_{o} L}=\frac{1}{\omega_{o} C}
$$

$$
\omega_{o} L\left(1+\frac{1}{Q_{o}^{2}}\right)=\frac{1}{\omega_{o} C}
$$

where R is the transformer primary resistance
and $Q_{0}=\frac{\omega_{0} L}{R}$

$$
\begin{aligned}
R_{v} & =\frac{t-1}{R \omega_{o}{ }^{2} C^{2}\left(1+\frac{1}{Q_{o}}\right)} \\
& \approx \frac{Q_{0}{ }^{2}}{R}(t-1) \text { for large } Q
\end{aligned}
$$

where t is the turns ratio of the

for measuring low level potentials-

the narrow span Electronik recorder

CHARACTERISTICS

Ranges-Recorders: 0-100, 0-200, $0-500$ microvolts, $0-1 \mathrm{mv}$. Indicators: 0-500 microvolts $0-1.1 \mathrm{mv}$.
Stability (after warmup)-1 microvolt or less for all ranges.
Accuracy of Adjustment - $1 / 6 \%$ of span.
Dead Zane- 0.1 microvolt or 0.006% of span, whichever is greater.
Pen Speeds-24 or 12 seconds full scale travel.
Input Impedance- $\mathbf{3 0 0 0}$ ohms.
Input Signal Range - (to recorder) approx. 0.05 microvolt to 1 mv .

EXTREMELY low level dec potentials can be measured accurately . . . recorded to high resolution . . . and automatically controlled, by the self-contained narrow span ElectroniK potentiometer.

Ideal for radiation measurements, differential temperatures and a host of other laboratory applications, the instrument responds to signal changes as small as 0.1 microvolt. It spreads spans as low as 100 microvolts across the full width of its 11 -inch chart.

Internal design practically eliminates thermal emf's and stray ac pickup. Available models include the strip chart recorder (illustrated), Precision Indicator, and circular chart pneumatic controller. The instrument incorporates the Brown 40X high gain amplifier, mounted right inside the recorder's case.
This high -gain amplifier is also supplied as a separate unit for use in null detection, servo circuits, or other work where its extreme sensitivity and high stability prove valuable.
Minneapolis-Honeywell Regulator Co., Industrial Division, 4428 Wayne Ave., Philadelphia 44, Pa.

- REFERENCE DATA: Write for Data Sheet No. 10.0-8 on the Narrow Span Electronic Recorder ... Data Sheet No. 10.20.4 on the 40X Amplifier ... and tor Bulletin 15.14, "Instruments Accelerate Research."

Honeywell
BROWN INSTRUMENTS

For RF interference suppression

Many Superior and Exclusive Features!

1. HIGHER ATTENUATION min. 100db from . 15 to 10,000 MC
2. POSITIVE CONTACT BETWEEN ALL SEAMS
3. DOOR CONTACT STRIPS HEAVILY SILVER PLATED
4. AIR INLET FOR CHOICE OF VENTILATION
5. IMPROVED HANDLES FOR LEAK-PROOF DOORS
6. BUFFER PANELS FOR PROTECTION OF OUTSIDE SCREENS
7. PANELS UNDER CONSTANT PRESSURE WITH EXCLUSIVE BOLTING SYSTEM
8. COPPER FILTER PANEL SUPPLIED WITH LINE FILTER
9. ALL PANEL SECTIONS INTERCHANGEABLE

SHIELDING ROOMS

SHITXDING, INC.
RIVERSIDE PARK, N. J.
Phone: Riverside, N. J. 4-1202

Desiqnea and built by AMERICA'S MOST EXPERENCED SHELIDNG ROOM ENGINEERS
Backed by years of experience in hundreds of major installations. MULTI-CELL ${ }^{\circledR}$ Screen Rooms meet Jan-1-225, 16E4 (Ships), MIL-I-16910 and all other specifications for electrical and electronic equipment performance in research, develop. ment and production.
Let us show you how to SAVE MONEY AND TIME-
Not only is our service exception. ally fast but our price will cut your expenses. We construct every type and size of enclosure: Solid or screen. Double shield, multiple cell. Double shield, isolated cell. Single shield. No obligation for engineering consultation

Write for
Bullefin
No. 10

YOU CHANGE YOUR ADDRESS

Be sure to notify us at once, so future copies of ELECTRONICS will be delivered promptly.

Also make certain you have advised your local Post Master of your new address so other important mail doesn't go astray.

Both the Post Office and we will thank you for your thoughtfulness. Mail the information below to: Subscription Dept., ELECTRONICS, 330 W. 42nd St., New York 36, N. Y.

330 W. 42nd St.
New York 36, N. Y.

SILECTRON C-CORES...BIG or LITTLE

 ...any quantity and any size
Wound form

 precision rolled oriented silicon Phasis sickensteel strip as thin
as $00025^{\prime \prime}$

For users operating on government schedules, Arnold is now produceing C-Cores wound from $1 / 4,1 / 2,1,2,4$ and 12 -mil Silectron strip. The ultra-thin oriented silicon steel strip is rolled to exacting polerandes in our own plant on precision cold-reducing equipment of the most modern type. Winding of cores, processing of butt joints, etc. are carefully controlled, assuring the lowest possible core losses, and freedom from short-circuiting of the laminations.

We can offer prompt delivery in production quantities -and size is no object, from a fraction of an ounce to C-Cores of 200 pounds or more. Rigid standard tests-and special electrical tests where required-give you assurance of the highest quality in all gauges. Your inquiries are invited.

The Arnold Engineering Company subsidiary of allegheny lidium steel corporation General Office \& Plant Marengo, Illinois DISTRICT SALES OFFICES
 New York: Empire State Bldg. Los Angeles: 3450 Wilshire Blvd.

Many units, such as timers, transmitters, vending mechanisms, and similar devices require the adoption of small open gear trains for intermittent duty.
Beaver Gear Works is equipped to make these trains to any degree of accuracy required. Beaver Gear engineers, knowing what is expected, and qualified to assist in details of fine-pitch gear applications, can advise you as to what will work best under various conditions and car specify the correct
7, wirnd design.
THE Finest
IN GEARS
 - $-10,-50,-100,0-150$ volts at 5 ma

MODEL

- Forward current to 500 ma at 1.0 volt

DT-100

- Controls interlocked for routine tests
- Reversed or shorted diode indication
- Test fixture allows quick connections
- Provision for accessory diode heater

MANUFACTURERS OF ELECTRONIC INSTRUMENTS AND PRODUCTION TEST EQUIPMENT
transformer
$\operatorname{Gain}=\left|\frac{E_{o}}{E_{i}}\right|=\frac{\omega^{2} L C}{R}\left(\omega L+\frac{R^{2}}{\omega L}-\frac{1}{\omega C}\right)$

$$
\omega^{2} L C \approx 1 \text { near resonance }
$$

The variation of gain (G) with frequency near the frequency $f_{\text {。 }}$
is

$$
\frac{d G}{d f}=\frac{4 \pi L}{R}
$$

The phase shift near resonance is approximately 90 deg and the sign reverses on passing through the minimum.
The effect of variation of resistance R_{v} at resonance is given
by $\quad \frac{d G}{d R_{v}}=\frac{1}{R_{v}}\left(\frac{t-1}{t}\right)$
For 40 db attenuation R_{v} must be adjusted to 1 percent.

References

(1) F. F. Terman, Radio Engineers Handbook, Section 3, MeGraw-Hill, 1943. (2) W. N. Tuttle, proc. IRE 28, p 23 , 1940.

Storage of Magnetic Recording Tape

Recommendations by the Minnesota Mining and Manufacturing Co. concerning the storage of magnetic recording tape includes the following points:

Tape should not be stored unboxed because of danger of physical damage and dust contamination.

Tape reels should be loosely wound and stored on edge. Stacking should be avoided because plastic reels may be distorted and tape edges damaged.
Ideal relative humidity conditions for tape storage are between 40 and 60 percent. If humidity variation is large the tape should be kept in sealed containers. Use of desiccants or humidifying agents is not recommended because of difficulty in controlling results.

Avoid exposing tape to temperature extremes. If tape is subjected to extreme temperatures allow it to return to room temperature before using.

Occasional use of tape improves storage characteristics as use on a machine relieves strains and adhesions.

Excessive tension should be avoided in rewinding tape as it may become stretched or permanently distorted if wound too tightly.

PAN = , (®) See you at THE STRUCTURAL PLASTIC

(For Years a Standard for Radio and TV)

Offers You FULL RANGE of Finest Quality Laminates
 This range of Industrial Laminates, with phenolic, melamine and silicone resins, includes insulation for radio,

 TV and other electronic purposes. Available in sheets, rods, tubes, molded specialties and fabricated parts.
 Silicone Fiberglas Insulation

High Insulation Resistance Laminate

Paper Base Tubing

Standard grades to government and industry specifications

SHEET STOCK		
PANELYTE GRADE	NEMA GRADE	GOVERNMENT SPEC.
750	X	$\ldots .$. (PBMM
550	XX	MIL-P-3115B (PBG)
520	XXX	MIL-P-3115B (PBE)
770	$\mathrm{P}(\mathrm{XP})$	\ldots
772	PC	\cdots
774	XXP
776	XXXP	MIL.P-3115B (PBE-P)
900	C	MIL.P-15035B (FBM)
910	CE	MIL-P-15035B (FBG)
940	L	MIL-P-15035B (FBI)
950	LE	MIL-P-15035B (FBE)
580	A	$\ldots . .$. (PBH)
980	AA	\ldots (FBH)
115	G8	.
120	G1, G2
130	G7	MIL-P.997B (GSG)
135	G6	-
140	G5	MIL-P-15037B (GMG)
170	G3
190	$\ldots \ldots$	MIL-P-15047B (NPG)
780	$\ldots . .$.	MIL-P-3115B (PBE-P)
9101	Navy Spec. 33B4
920	MIL-P-15035B (FBM)

ALL ROD AND TUBE TO SPECIFICATION MIL-P-79B.
PANELYTE can be of service anywhere you have use for Industrial Laminates. Would you like a free sample of Panelyte? Or a Iree copy of the Panelyte Industrial Catalog? Or a visit from a Panelyte engineer? Or all three? No obligation, of course. Jast let us know by sending in the coupon below, now.

OTHER
 PANELYTE PRODUCTS

1 DECORATIVE, for table-tops, all horizontall work surfaces. wall-covering. elc. in sizes
wp to $4^{\prime} \times 10^{\prime}$.
2 MOLDED LAMINATED PARTS - refrigerator inner - door panels, brakipr strips. sprcialty modded items, breaker frames.
3 INJECTION MOLDINGS 32. 48. 60. 200 oz. capacity. Television masks. refrigerator parts. industrial items. fir.

4 REINFORCED PLASTICS
ghects, molded speciallies.

PANEYYTSO DIVISION

ST. REGIS PAPER COMPANY
230 PARK AVENUE - NEW YORK 17, NEW YORK Offices in Principal Cities

PANELYTE DIVISION

ST. REGIS PAPER COMPANY
230 Park Avenue, New York 17, New York
\square I'lease send me sample of Grade__ Panelyte.
\square Please send Panelyte Industrial Catalog.
\square Please have a Panelyte engineer contact me.
Name
Firm Name
Address
City _._._Zone___ Sfate

 from Accelerometers

 $t 0$

HERMETICALLY SEALED TO MIL-T-27 SPECIFICATIONS

NYT offers a wide variety of transformer types to meet military and civilian specifications, designed and manufactured by specialists in transformer development.
Latest NYT service for customers is a complete test laboratory equipped and approved for on-the-spot MIL-T-27 testing and faster approvals.

NEW YORK TRANSFORMER GO., INC. AlPHA, NEW JERSEY

Get in the kabit of loaking it up in...

the electronics BUYERS' GUIDE

"The Book that has all the answers"

[^10]

"W" SERIIES

R.F. COMMECTORS

BY

Kines

Shown are a few of the " N " Series R.F. Connectors made by Kings. These low voltage connectors are of constant impedance and come in both weather-proof and non-weatherproof types.
Electronics engineers look to Kings for Connectors. A valued recognition which has been earned by many years of specialized work in this field. When you call on Kings you get the benefit of years of engineering, research and production experience and know-how.

You are invited to write for quotations and delivery dates on all standard and special connectors.

Production Techniques

Edited by JOHN MARKUS

Subassembly Soldering Jigs 294	
Tweezer-Type Soldering Tool	
Material-Moving Techniques 316	
I-F Transformer Jiq	
Sandpaper Holder	
Solder Pot Protector	224
Vacuum Metallizing Process	
Wire-Stripping Pliers	
Optical Thermometer for Induction Heating	
Measuring Small R-F Chol	
TV Alignment Techniques	
Torque of Adju	

Tweezer-Type Soldering Tool 314
Material-Moving Techniques 316
I-F Transformer Jig 320
Sandpaper Holder 322
Vacuum Motallizing Process 324
Wire-Stripping Pliers 328
Optical Thermometer for Induction
..... 330
TV Alignment Techniques 340
Checking Torque of Adjusting Screws. . 342

OTHER DEPARTMENTS
featured in this issue:

Page
Electrons At Work..... 160
New Products 344
Plants and People..... 428
New Books 472
Backtalk
.492

Cement-Applying Shortcuts Boost Speaker Production

A CEMENT applicator operating much like a washing-machine wringer applies cement uniformly to one side of the loudspeaker cone gasket in about a second in the Cincinnati plant of Crosley Division, Avco Mfg. Corp. The cementapplying roll turns in a pan of Arabol adhesive 34 A .

Drive power for the roll is taken from the moving-conveyor belt on the loudspeaker assembly line, by means of a flat pulley that is mounted on the shaft of the roll and is in contact with the belt. The gasket rings are preheated in batches under an infrared lamp to make them pliable before they are put through the applicator, because
previous inpregnation with varnish makes them too stiff for the cementing operation.

An entirely different type of fixture is equally fast and efficient in applying thermosetting cement to the speaker basket prior to assembly of the voice coil-cone unit. The cement is applied in two operations, using one fixture for the spider cement and the other for the cement going into position for the outer rim of the diaphragm. Each fixture has cleats for positioning the speaker frame face-down over the cement pot. Each has a cementapplying ring that normally sets down in the pot. When the speaker frame is in position, the operator

Wringer-type cement applicator driven by friction from assembly-line belt,
designed by Crosley for applying cement to speaker gaskets

Operator demonstrates use of fixture for applying ring of red thermosetting cement to speaker frame for anchoring spider. When she releases lever in right hand, the ring and its strap iron side supports will drop down into the pot to pick up cement for the next speaker
moves a lever that brings the ring up out of the pot into contact with the speaker frame, thus applying cement to the required frame area.

When both rings of cement have been applied, the voice coil-cone assembly is placed in position. The cement is set afterward in an oven through which the conveyor runs.

Cement is quickly applied to a speaker dust cover with a castellated metal tube. This tube is in-

Applying household cement to television transformer with oiler
serted in the cement dispenser, dabbed on a sheet of paper on the bench to remove surplus cement, then twisted lightly over the dust cap to apply cement neatly around its circumference.

When spots of cement are to be applied quickly, such as for cementing sponge rubber pieces to a television transformer assembly, the model 965D Plews oiler proved highly satisfactory as an applicator. A variety of cements can be used, including household cement.

Lubricant for Powdered Iron Cores

Insertion of powdered iron cores in i-f traps and similar components is speeded up in DuMont's plants by using talcum powder as a lubricant. The cores are dusted with the talcum before insertion in the forms. An air gun with a screwdriver bit is then used to turn them in at high speed to approximately the final position.

Printed Resistor
 Production Tricks

Four methods of increasing the overall yield of printed resistors are are suggested in National Bureau of Standards Report NAer 00686, "Printed Circuits".
(1) Inks should be formulated and the screens or other printing means designed in such a way that when the resistor goes off tolerance, it is always low in value. The resistance value can then be raised as needed by abrasive means to make an entire assembly come within tolerances.
(2) Where the nature of the composition of the resistor and its cure permits, more resistance ink
may be added by hand to reduce the value of the resistor.
(3) Circuitry may be designed so that, for example, only a ratio between the values of two resistors is important. Here variations in the resistance ink or in processing techniques would make both resistors high or both low but in most
cases h
ance lim.
(4) Cil neered that $\frac{\stackrel{\rightharpoonup}{6}}{6}$ two out of ea per stage need ${ }^{2}$ ances. This in_{4} yield of complet: tions.

Modules for Engineers Give Privacy Without

Combining a modular arrangement of desks with four-foot-high barriers has minimized unnecessary distractions in one electronic engineering section at Convair's San Diego plant while still allowing for easy conference among engineers working on a single large electronic project. The arrangement gave a space saving of about 10 percent over that required for desks without barriers.

Each 7×10 foot module for two desks, a löck-equipp. cabinet for classified drawing a visitor's chair. The desks are tioned at opposite walls and staggered so that each occupant h the full between-desk area as push back space for his chair.

The barriers have a one-foot space off the floor to give better circulation of air. This also permits running telephone and power lines

Staggered arrangement of desks within a module. Shared telephone, on shelf between desks, can also be used by engineers on other side of barrier

Portion of Electronics and Missile section, showing modular arrangement of desks for engineers. Filing cabinets contain classified data, hence must have OPEN signs when unlocked

"We had a high voltage-high power RF capacitor problem...

"My problem was to find a 1000 mmf . capacitor rated $25,000 \mathrm{~V}$ at 12 amperes from 500 to 1700 kilo. cycles. It had to cost less than a mica capacitor, occupy less chassis space and less total volumewithout loss of efficiency or reliability.

'I consulted 'CP' and told them what I needed...

"Using design factors similar to ' CPs ' standard Plasticon Glassmike (plastic film, glass tube) capacitors rated up to 3500 V , a 1000 mmf .25 KV Glassmike was constructed. Tests under full power showed a Q of 3000 at 1 megacycle. The temperature rise was $15^{\circ} \mathrm{C}$ at 12 amps . at 500 Kc . This Plasticon Glassmike, LSG 102-25, was substituted for a mica capacitor in a Commercial Broadcast Transmitter. Its cost was approximately 40% of the cost of the mica capacitor. The base dimension of the mica capacitor was $5^{\prime \prime} \times 6 \frac{1}{2} 2^{\prime \prime}$; the height, $53 / 4{ }^{\prime \prime}$. The LSG $102-25$ is $13 / 8^{\prime \prime}$ OD $\times 8^{\prime \prime}$ long.
"A year and a half later, our LSG102-25's are still in operation."

Your engineering problem will receive the immediate attention of our design and specification engineers.
" $\mathbf{C P}$ " is now filling orders for high voltage, high power LSGs in the following ranges: $5,000 \mathrm{~V}, 7,000 \mathrm{~V}, 10$,$000 \mathrm{~V}, 14,000 \mathrm{~V}, 17,000 \mathrm{~V}, 20,000 \mathrm{~V}$, and $30,000 \mathrm{~V}$. Sizes range from ${ }^{19 / 32}$ " to $1 \% / 8$ " OD and from 1 " to 8 " in length. "CPs" Plasticon Glassmike LSGs are more compact, easier to mount,

VECO Analysis Cells utilize VECO THERMISTORS. Analyzing and reference elements are Sealed in Glass-unaffected by corrosive gasses or liquids.
Available with any type of reference gas sealed in, if desired . . . new high-pressure seal withstands 1,000 psi . . . flow pipes easily connected
VECO Analysis Cells provide new efficiency for instrumentation gas analysis - combustion study - for chemical research, hospital and college laboratories, food storage protection - cells designed and manufactured to your specific requirements.

Visit Victory at the IRE, Show March 23-26, Grand Central Palace, New York Victory engineering corporation

A request on business stationery will bring the VECO DATA BOOK

Thermistors

 Analysis Cells Combustion Analyzers VaristorsSpringfield Road, Union, New Jersey
Telephone: UNionville 2-7150

Arrangement of aisles between modules
along the bottom of the barrier through ordinary messenger loops, facilitating janitor cleaning work. The four-foot height is sufficient to block the view of an engineer while he is bent over his desk, but is low enough so that he can see into ajoining cubicals if he straightens up in his chair. He can thus easily determine whether an engineer a few modules away is available for a quick conference or coffee. Although men vary in height, all are about the same eye level when seated.

The modular arrangement was devised by V. E. Thomson, a supervisor in the Guided Missile Division. Cost of the system of barriers was $\$ 5,400$ installed, or about $\$ 35$ per person for the 154 engineers accommodated. No special construction or remodeling was necessary.

Capacitance Bridge for Subminiature Tubes

Accurate measurement of interelectrode capacitance of subminiature tubes is expedited through use of a special Sylvania-designed capacitance test adapter, Holes for the eight long, flexible leads of tubes such as the type 5896 duo-diode are sufficiently large to permit easy insertion. The outside of the adapter is then turned to the left, to push contact pins inward in such a way that they make good contact with the leads without appreciably in-

A reject rate of three to seven motors a day was cutting the profits of a motor manufacturer. The varnished tubing insulation on the motor leads cracked when tapped into position. Taken off
 the assembly ine - devarnished, reinsulated, reassembled and revarnished - each motor reject meant a $\$ 50$ loss.

Then the manufacturer changed to BH " 649 " . . . a braided, Fiberglas, vinyl coated electrical insulation. It cost approximately , 1 c for each 2 -inch length of BH "649" - and stopped the reject troubles!
More and more manufacturers are turning to BH Fiberglas Tubing and Sleev-
ing for electrical insulation. It pays off by preventing insulation breakdowns, avoiding costly rejects. Its permanent flexibility prolongs product life.

Whether you're concerned with excessive current loads, vibration, extremes in temperatures, flexibility, fungus resistance, or what . . . let us help you. Send facts on your requirements, voltages and temperatures encountered. We'll make our recommendations and send you production testing samples.

> Address Dept. E-3

Bentley, Harris Manufacturing Co. Conshohocken, Pa.

*BH Non-Fraying Fiberglas Sleerings are made by an exclusive Bentley, Harris process (U. S. Pat. No. 2393530). "Fiberglas" is Reg. TM of Owens Corning Fiberglas Cord.

A COATING FOR EVERY APPLICATION

A partial list of INSL-X product groupings is given below: literature and samples gladly furnished on request.

FUNGICIDAL COATINGS that prevent moisture infiltration and effectively inhibit organic attack. All of the coatings are easy to apply, non corrosive, biologically effective, and non toxic to humans. INSL-X fungicidal coatings meet rigid Government specifications.
ARC RESISTING COATINGS that in addition to arc resistance, possess very high dielectric strength, water resistance, and the ability to withstand high intermittent temperature up to $400^{\circ} \mathrm{F}$. or prolonged temperature up to $300^{\circ} \mathrm{F}$.
COIL COATINGS that are rapid drying, have high dielectric strength and are chemically neutral to fine wire. They are thermally stable, and suitable for long lived applications. Outstanding anti-corona properties are highly desirable for TELEVISION INSULATION.
TOOL INSULATION. A tough, high dielectric acid resisting, waterproofing compound designed for the insulating of tools. It may be reinforced and built up to practically any dielectric and mechanical strength by the use of glass, asbestos or fabric sleeving or tape. This method provides a foundation capable of withstanding severe impact and abrasion.
INSULATING VARNISHES. A series of air drying and baking materials designed for various applications.

INSL-X AGENTS

NEW YORK
B. B. Taylor 241 sunrise Highway Rockville Centre, N. $\}$.

Robert P. Kennedy
182 Mayflower Drive
Rochester 18, N. Y.
E. H. Allen

124 Chenango 5 t.
Binghamłon, New York
OKLAHOMA
C. B. Anderson

712 Capital Bldg
Tulsa 3, Oklahoma

CONNECTICUT
R. E. Powell Box 797
pennsylvania
Chas. A. Englert Chas. A. Englert
1516 Grandin Ave. Pittsburgh 16, Penn.

MICHIGAN

H. C. Sweet Co.

12083 Woodbine Ave. Detroit 28, Mich.

ILLINOIS
R. A. Stemm

21 East Van Buren St.
Chicago, III.

OHIO John O. Olsen Co. 1456 Waterbury Rd. Cleveland 7, Ohio

MASSACHUSETTS Holliday-Hathaway Sales Co. 238 Main Street Cambridge 42, Mass.

TEXAS

H. W. Zuch P. O. Box 119 Austin, Texas

> J. E. Rogers 102 Thomas Bldg Dallas 1, Texas
the annual
electronics BUYERS' GUIIDE
is the electronic engineer's

BREADBOARD WHO'S WHO

for
quick, accurate answers to any questions about

COMPONENTS

 EQUIPMENT MATERIALSused in electronics
Get in the habit of laoking it up in...

the
 electronics
 BUYERS' GUIDE

"The Book that has all the answers"
a mgGraw-hill publication 330 West 42nd Street NEW YORK 36, N. Y.

New X-Band

Test Equipment

ADDITIONAL INSTRUMENTS

ADDED TO MICROLINE*

Model 219C Waveguide Thermistor Mount
This instrument is used in conjunction with accessory equipment to measure and monitor microwave power at average power levels as low as 10 microwatts. It is particularly useful in the measurement of pulsed power. This thermistor mount is recommended for use with the Microline Model 123B Wattmeter Bridge.
Frequency Range $\quad 8.5-9.6 \mathrm{kmc}$. Maximum VSWR Operating Resistance Maximum Power

Kating
1.5

135 ohms

Waveguide Size

10 mw .
RG-52/U (1" x $\left.1 / 2^{\prime \prime}\right)$

Model 495 Adiustable Termination

This instrument is specially adapted for use in precise microwave measurements where the quality of excellent impedance matching over a broad band is essential. The design of Model 495 provides for independent control of phase and amplitude of the reflection coefficient of the load. It is particularly useful in applications requiring a termination of minimum power reflection, a movable termination where the reflection from the termination can cause error in measurements, or as a means of matching low standing wave ratios to obtain the smallest possible reflections.

OTHER X-BAND MICROLINE INSTRUMENTS

- MODEL

157A, 486A
377
173, 174, 183 152A, 134A 1:34
170, 171
350a

- $234,235,236$
- 126,273

145

- 379
- 165A, 166A
- 406
- 150,246
- 146,178

INSTRUMENT
Adapter
Adjustable Short
Attenuator Barretter Mount Waveguide Bends Detecting Section Directional Coupler Frequency Meter Impedance Meter Mixer
Waveguide Tee
Magic Tee
Termination
Transformer

Frequency Range	$8.1-12.4 \mathrm{kmc}$.
VSWR Range	$1.005-1.15$
Phase Variation	360°
Waveguide Size	RG-52/U(1" x $\left.1 / 2{ }^{\prime \prime}\right)$
Power Rating	5 w.

$8.1-12.4 \mathrm{kmc}$.
360°
RG-52/U(I" x $1 / 2$ ") 5 w .
Our nearest district office will be glad to supply complete information upon request.

Tube is plugged into holes in center of adapter on top of bridge, and metal shield is pushed over tube as shown, for sampling inspection check of interelectrode capacitance. Chart behind adapter gives approximate values and bridge connections
creasing the capacitance between leads. The adapter also maintains complete shielding of each lead from all other leads.

In one typical measurement, pins $2,3,4,6$ and 7 are grounded and the Sylvania type 125 capacitance bridge is connected to pins 1 and 5 by means of coaxial cable. A typical reading for this setup is $0.012 \mu \mu \mathrm{f}$.

Ageing Rack for
 Bathtub Capacitors

RUBBER tubing provides spring pressure against the bottoms of metal-encased paper capacitors for forcing their terminals against foil-

Method of loading ageing rack

OUR NEWEST TYPE...

This 60 cycle single phase blower was custom built to exacting Navy specifications. It is driven by a self-cooled motor for high ambient temperature operation, and is especially impregnated for humid atmosphere. This compact model is designed for such applications as cooling transmitting tubes, cabinets, chassis, amplifier assemblies, and a wide variety of electronic controls.

YOUR REQUIREMENTS

If you need synchronous type or induction type, motors, MC
 makes them.
LIGHTER - MORE EFFICIENT - COOLER for LONGER LIFE under extreme temperatures.
RANGE: $1 / 1000 \mathrm{hp}$. to $1 / 10 \mathrm{hp} .60$ cycle, 400 cycle variable frequency

SEND US YOUR PROBLEM

We are leading specialists in the design and production of actuators, gear motors and torque motors for application in automatic devices, electranic controls, radar equipment, timing devices, fire controls, sine wave alternators, aircraft cameras, etc.
from

A

 ccelerometers
to

you'll find the correct answer to who makes everything in the entire field of electronics including... components equipment and materials in the...

electronics BUYERS' GUIDE

Get in the habit of laoking it up in...

the electronics
 BUYERS' GUIDE

"The Book that has all the answers"
-
A McGRAW-HILL PUBLICATION
330 West 42nd Street
NEW YORK 36, N. Y.

New Hpressil core

 cuts air-borne transformer size and weightTransformer weight reduced 25%, size cut 20% in a single unit of air-borne electronic equipment. This is the mark set by a new lightweight Hipersil ${ }^{\circledR}$ Core designed by Westinghouse for the Navy Bureau of Aeronautics.

Adaptable to commercial as well as military use, the new core makes possible more powerful equipment within the size and weight limitations of previous models. A special silicon steel, rolled to a new 4 -mil thinness, with grain structure super-oriented by a refinement of the Hipersil process, achieves the size and weight reductions.

Hipersil Cores cut size and weight in all types of electrical and electronic transformers. They combine bighest permeability with lowest losses in a wide
range of sizes (1 through 5 and 12 mils). Two-piece assembly simplifies transformer manufacturing, cuts fabricating costs. Greater flux-carrying capacity, increased mechanical strength help to make them the best core on the market. For specific information on how to apply Hipersil Cores to your product, write Westinghouse Electric Corporation, P. O. Box 868, Pittsburgh 30, Pennsylvania.
J.70632

POLYPENGO TEFLON*

available for economical fabrication

Extruded .187" dia. to $2.0^{\prime \prime}$ dia.
Tolerance $+.002^{\prime \prime}-.000^{\prime \prime}$ up to $l^{\prime \prime}$ dia.
Molded $2.25^{\prime \prime}$ dia. to $4.0^{\prime \prime}$ dia.
Beading $.030^{\prime \prime}$ to $.187^{\prime \prime}$ dia.

Extruded $.50^{\prime \prime}$ to 2.0" O.D. $3 / 16^{\prime \prime}$ to $1.0^{\prime \prime}$ I.D. min. wall $1 / 8^{\prime \prime}$
Molded $11 / 4^{\prime \prime}$ to $8^{\prime \prime}$ O.D. at $1 / 4^{\prime \prime}$ intervals Wall thickness $3 / 8^{\prime \prime}-23 / 4^{\prime \prime}$

Strip thickness .002" to $060^{\prime \prime}$
Slab thickness $1 / 8^{\prime \prime}$ to $11 / 2^{\prime \prime}$
Special extruded shapes to customer specifications

Outstanding properties of TEFLON

wide service tempeanture RANCE	$-100^{\circ} \mathrm{F}$ to $+500^{\circ} \mathrm{F}$
chemically inert	Resists all known acids, alkalies and commercial solvents over the service temperature range.
ZERO WATER ABSORPTION	Water will not wet the surface.
tow power FActor	$.05 \%$ p.f. constant over entire frequency spectrum.
stable dielectric constant	2.0 unchanged over entire spectrum.
toverniss at Low temperature	Izod impact strength $-70^{\circ} \mathrm{F} 2 \mathrm{ft}$. lbs./in.

also available to your specifications
MACHINED PARTS • MOLDED PARTS

Write for technical data and prices on Polypenco Teflon and Nylon
The POLYMER CORPORATION of Pennsylvania • Reading, Penna.
Canadian Representative: C-H Engineering Company, Montreal, Toronto, Canada
covered wood rods that serve as electrodes for a simple but effective ageing rack devised by production engineers at Pyramid Electric Co. Loosening four wing nuts permits raising the electrode bars so the units can be inserted one by one. When the rack is fully loaded, the nuts are tightened to get good contact pressure, and clip connections are made to projecting foil on each electrode for applying the desired ageing voltage.

Construction of Magnetic Sheet-Steel Separator

Special permanent magnets for assembly into a separator that will make top sheets of steel lift themselves are now available from Carboloy, Department of General Electric Co., Detroit. The separator prevents the feeding of doubles to a punch press, speeds feeding of the press by making the top sheet readily available, and minimizes cutting of fingers while grabbing a sheet.
A powerful U-shaped magnet positioned as in Fig. 1 is in contact with the edges of the stack of

Construction details and suggested methods of using special Alnico permanent magnets as sheet-steel separators

I $\ddagger 1$ Instruments \& Transfarmers Cect QUALTTY• DEPENDABLITY• ACCURACY

High Fidelity Transformers

Slug Tuned Components

Sub-miniatare Mermetically sealed Toroidal Indnctors

EASY TO READ
Direct reading on a $4^{\prime \prime}$ scale.
Protected against overload.

Hermetically Sealed Components to meet MIL-T-27 Specs

Commercial Componẹts

* RAPID \& SAFE TO USE

Test voltage removed from terminals and capacitive components discharged to ground in all positions of multiplier switch.

SPECIFICATIONS

Range: 1 megohm to $2,000,000$ megohms in six overlapping ranges selected by a multiplier switch. Voltages on Unknown: The voltage applied to the unknown terminals is 500 volts $\mathrm{d}-\mathrm{c}$ and is independent (less than 1%) of the value of the unknown.
Stability: Line voltage variations from 105-125 volts will cause less than 2% variation in the meter reading.
i. Power Supply: 105-125 volts A.C.

50-60 cycles 30 watts.
Dimensions: $91 / 2 \times 101 / 2 \times 8$ inches.
Net Weight: 18 pounds.

Freedseal Treatment ANE-19 Specs

Miniature Inductors

Pulse Modulators

"Nice looking hair you're pulling out," said the G. M. of Station XYZ, "but when do we get lighting clearance on the new tower?"
"See that!" groaned the engi-
neer. "That's a whoozit. It takes 5 whoozits to light our towerabout $\$ 4$ worth of metal. But there just aren't any whoozits right now. No whoozits, no lights."

kit. Just give 'em the tower specs.
"Then let's do it the easy way," counselled the G.M. "Get in touch with our nearest Hughey \& Phillips distributor and order a complete, packaged tower lighting

They'll ship pronto and include every item to light our towerdown to the last nut, bolt, and whoozit. And you'll save wear and tear on your hair."

The G. M. is right-but he told only half the story. Through years of experience in buying, designing, testing and packaging, Hughey \& Phillips have gained world leadership in the field of tower lighting. And because of this specialized "know-how" H \& P tower lighting kits cost less to buy, less to install, less to maintain. Drop us a line for the name of your nearest $\mathrm{H} \& \mathrm{P}$ distributor.

ScinfleX assures YOU PEAR PROTECTION

AGAINST CPRCUIT FARLURE

When operating conditions demand an elecrrical connector that will stand up under the most rugged requirements, always choose Bendix Scinflex Electrical Connectors. The insert material, an exclusive Bendix development, is one of our contributions to the electrical connector industry. The dielectric strength remains well above requirements within the temperature range of $-67^{\circ} \mathrm{F}$ to $+275^{\circ}$ F. It makes possible a design increasing resistance to flashover and creepage. It withstands maximum conditions of current and voltage without breakdown. But that is only part of the story. It's also the reason why they are vibration-proof and moisture-proof. So, naturally, it pays to specify Bendix Scinflex Connectors and get this extra protection. Our sales department will be glad to furnish complete information on request.

- Moisture-Proof - Radio Quiel - Single Piece Inserts -Vibration-Proof - Light Weight - High Insulation Resistamce - High Resistance to Fuels and Oils - Fungus Resistant Easy Assembly and Disassembly - Fewer Parts than any other Connector * No additional solder required.

SCINTILLA MAGNETO DIVISION of SIDNEY, NEW YORK

[^11]FACTORY BRANCH OFFICES: 118 E. Providencia Ave., Burbank, Calif, Stephenson Bldg., 6560 Cass Ave., Detroit 2, Michigan - Brouwer Bldg., 176 W. Wlsconsin Avenue, Milwaukee, Wisconsin - 582 Market Streel, San Francisco 4, California

FMAM SIGNAL GENERATOR TF 995

A crystal standardized generator either frequency or amplitude modulated. Frequency range: 13.5 to 216 megacycles. Output range 0.1 microvolts to 100 millivolts. Internal or external modulation gives f.m. deviations to 600 kilocycles and a.m. depths to 50 per cent.

UNIVERSAL GRIDGE TF 868

Measures inductance and capacitance at I,000 cycles, resistance at d.c.; direct reading I microhenry to 100 henries, I micro-microfarad to 100 microfarads, and 0.1 ohms to 10 megohms. Q range O.I to $1.000, \tan \delta 0.001$ to 10.

FM DEVIATION METER TF 934

With crystal-standardized deviation ranges of 5, 25 and 75 kilocycles, alternative high- and low-level buffered inlets, visual checking for optimum tuning and level, together with a separately buffered audio outlet, this ruggedized deviation meter is ideal for carriers in the range 2.5 to 200 megacycles.

STANDARD SIGNAL GENERATOR TF 867

For precision receiver measurements: Covers on an expanded full-vision scale I 5 kilocycles (or less) to 30 megacycles, crystal standardized, with an output continuously variable from 4 volts to 0.4 microvolts. Up to 100 per cent. a.m., with unmeasurablef.m., monitored by dual rectification.

We shall be pleased to see you at the
I.R.E. Convention BOOTH 1-520

MARCONI instruments

 VACUUM TUBE VOLTMETERS. FREQUENCY STANDARDS - OUTPUT METERSWAVE METERS. WAVE ANALYSERS - Q METERS. BEAT FREQUENCY OSCILLATORS

23-25 BEAVER STREET•NEWYORK 4
CANADA: CANADIAN MARCONI CO., MARCONI BUILDING, 2442 TRENTON AVENUE, MONTREAL ENGLAND: Head Office: MARCONI INSTRUMENTS LIMITED, ST. ALBANS, HERTFORDSHIRE Managing Agents in Export:
Marconi's Wireless Telegraph Company Limited, Marconi House, Strand. London, W.C. 2
sheets. The magnetic lines of force going through each sheet from one magnet pole to the other are equivalent to magnetic poles in the sheets themselves. With the magnet orientation employed, the S poles will all be in one vertical line in the sheets opposite the N pole of the magnet, and the N poles in the sheets will likewise line up vertically opposite the S pole of the magnet. Since like poles repel, the sheets literally lift themselves from the stack.

A single separator magnet is satisfactory for sheets up to 15 inches wide and 0.014 inch thick. The separator should be positioned in the center of one side of the stock, flush with the sheets. For sheets wider than 15 inches, two or more separators are needed. Optimum number and spacing can be determined by trial, but spacing should not be less than two inches.

The separator magnet mounts directly onto a $\frac{1}{4}$-inch pipe that can be one foot long. A clamp permits sliding this magnet up or down on a vertical pipe support that can be screwed into a magnetic base. With the magnetic base, a steel table must be used for the sheets of steel. The magnetic base is powerful enough to hold the assembly yet can easily be slid up against the edge of the stack after adding a new supply of sheets.

Screw-Holding Tweezers Made from Hacksaw Blade

A discarded hacksaw blade can be converted into a pair of tweezers in 10 minutes by making two cuts as shown in the diagram, then bolting or riveting the ends of the blade together. Grinding may be used in place of cutting if desired. This

Method of making homemade tweezers for speeding electrical maintenance work. The points can be filed and bent to suit the needs of any job

SAFE AGAINST HIGH HUMIDITY IN TROPICAL CLIMATES!

How to tell Quality in TEFLON

You'll have all these properties with FLUOROFLEX-T®

- "Teflon" powder is converted into Fluoroflex-T rod, sheet and tube under rigid control, on specially designed equipment, to develop optimum inertness and stability in this material. Fluoroflex-T assures the ideal, low loss insulation for uhf and microwave applications . . . components which are impervious to virtually every known chemical . . . and serviceability through temperatures from $-90^{\circ} \mathrm{F}$ to $+500^{\circ} \mathrm{F}$.
Produced in uniform diameters, Fluoroflex-T rods feed properly in automatic screw machines without the costly time and material waste of centerless grinding. Tubes are concentric - permitting easier boring and reaming. Parts are free from internal strain, cracks, or porosity.
For maximum quality in Teflon, be sure to specify Fluoroflex-T.
*DuPont trade mark for its tetrafluoroethylene resin.
(2) Resistoflex trade mark for products from fuorocarbon resins.
"Fluoroflex" means the best in Fluorocarbons

RESISTOFLEX
 CORPORATION

RESISTOFLEX CORPORATION, Belleville 9, N. J.
SEND NEW BULLETIN conlaining technical data and information on Fluoroflex-T.

NAME TITLE \qquad
COMPANY. \qquad
ADDRESS

Accelerometers

to

Y_{m}

you'll find the correct answer to who makes everything in the entire field of electronics
including... components
equipment
and materials
in the ...
electronics BUYERS' GUIDE

Get in the habit of loaking it up ine...

the electronics BUYERS' GUIDE

"The Book that has all the answers"
a mcGraw-hill publication
330 West 42nd Street
NEW YORK 36, N. Y.

Here's how to get exactly the coils you need

You can get C.T.C. slug tuned coils, single layer or pie type windings to your exact specifications - military or personal - with expert workmanship and correct in every detail as to materials and methods.
C.T.C. coil forms are made of quality paper base phenolic or grade L- 5 silicone impregnated ceramic. Mounting bushings are cadmium plated brass; ring type terminals are silver plated brass protected by water dip lacquer. Terminal retaining collars of silicone fibreglas which permit 2 to 4 terminals, are available on forms designated Type \mathbf{C} above. Wound units

COIL FORM SPECIFICATIONS

$\left.\begin{array}{lllll}\text { Coil } & \text { Material } & \begin{array}{c}\text { Mounting } \\ \text { Stuve } \\ \text { Threac } \\ \text { Size }\end{array} & \begin{array}{c}\text { Form } \\ \text { O.D. }\end{array} & \begin{array}{c}\text { Mounted } \\ \text { O.A. }\end{array} \\ \text { Height }\end{array}\right]$

[^12]can be coated with resin varnish, wax or lacquer. All units are furnished' with slugs and mounting hardware.

A table of frequencies and permeabilities relating to the slugs used in the coils shown above is contained in C.T.C. catalog 400. Send for your copy, and ask for prices and specifications on the coils you need. Be sure to send complete specifications for specially wound coils.

All C.T.C. materials, methods and processes meet a pplicable government specifications. Cambridge Thermionic Corporation, 437 Concord Avenue, Cambridge 38, Mass. West coast manufacturers contact E. V. Roberts, 5068 West Washington Blvd., Los Angeles, and 988 Market Street, San Francisco, California.

CERAMIC COIL FORM KIT. Helps you spark ideas in designing electronic equipment or developing prototypes and pilot models. Contains 3 each of the following 5 C.T.C. ceramic coil form types: LST, LS5, LS6, LS7, LS8. Colorcoded chart simplifies slug-identification and gives approximote frequency ranges and specifications. Fibreglas collars and metallic rings are furnished with kit for all ceramic coil forms except LS8 which is furnished only with clip terminals.

CAMBRIDGETHERMIONIC CORPORATION

custom or standatd. . the guargnteed components
See our listing in Electronics Buyers' Guide
See us at Booth 2.218 IRE Sbow

Jig for holding phono-type plugs while soldering leads to outer skirts of plugs for use as speaker cables. Plugs were previously soldered to the center conductor at a dip soldering operation

Cubovatory Model

THE HICKOK ELECTRICAL INSTRUMENT COMPANY
 Cleveland 8, Ohio

DOUBLE BARREL Advertising

Advertaing men agree-to do a complete advertising job you need the double effect of both Display Advertiving and Direct Mail.

Display Advertising keeps your name before the public and builds prestige.

Direct Mail supplements your Display Advertising. It pin-points yous message right to the executive you want to reach-the person who buys or influences the purchases.

More and more companies are conatantly increasing their use of Direct Mail because it does a job that no other form of advertising will do.

McGraw-Hill has a special Direce Mail Service that permits the use of McGraw-Hill lists for mailings. Our names give complete coverage in all the industries served by McGrawHill publications-gives your message the undivided personal attention of the top-notch executives in the industrial firms. They put you in direct touch with the men who make policy decisions.

In view of present day difficulties in maintaining your own mailing lists, our efficient personalized service is particularly important in securing the comprehensive market coverage you need and want.

Ask for more detailed information today. You'll be surprised at the low over-all cost and the tested effectivo nesa of these hand-picked selections

Depp. A

McGRAW-HIIL PUBLISHING CO., INC.
 330 West 42 nd Strect NEW YORK 18, N. Y.

serving industry since 1928
18240 Harwood Avenue, Homewood, Illinois
(Suburb of Chicago)

Parmak Electric Fencers are guaranteed to perform exactly as represented. This empha. sizes the need for "GTC" Transformers which will meet the most rigid requirements.

If your application is unusual or standard, we suggest you consider "GTC" - proven transformers where maximum performance is essential.

We welcome your inquiries.

GENERAL TRANSFORMER COMPANY

of the MASS PRODUCED VEE-D-X All Channel 2-83 VHF-UHF ANTENNA

Application of "Photocircuits Printed Circuits" extend to...

MICRO-WAVE PLUMBING, RADIO and TV CHASSIS, I.F. STRIPS, ANTENNA FILTERS, TERMINAL BOARDS, WIPING SWITCHES, FLUSH COMMUTATORS etc.

This new antenna emptoys liGilt "Photocircuits Primed Circuits channel separators to enable all-channcl reception of TV signals with ${ }^{3}$ single antenna and as single rransmission line oin is ercal hoon to iv sales in this period of changeover to used inamperembled comploment coils cost only if ornd

YOU TOO can simplify and save with "Photocircuits Printed circuits." Lower wiring cos/s, reduced assembly time, circuit reproducibility, improzed reliability and miniaturization will make your product better and more profitable. Let our engineering facilities and experience belp solve your design and application problems.

VISIT US at the I.R.E. SHOW Booth 4-102

For our new ENGINEERING BROCHURE write PHOTOCIRCUITS ${ }^{2}$ opocation

Step-by-step information on all types of commercial recelvers how to install, service and repair them. Shows how to do most testing with just three pieces of equipment: vacuumube voltmeter, oscilloscope, and alignment generator. Dozens of trouble-shooting charts buisuggestions about going into a servicing Magdalena By Carter V. Rabinoff, Dean; and Magdalena Wolbrecht, Vice-Pres, Amer. TV
Lab of Calif. $660 \mathrm{pp}, 6 \times 9,375$ illus., $\$ 7.50$.

NEW REVISED
 EDITION

Covers basic electrical fundamentals, using explanations and illustrations taken from the communication fleld-iundamentals applying o telegraphy, telephony, and radio, including ations up to date... uses definitions and terminology that agree with the latest IRE and AIEE standards. By Arthur L. Albert, Prof, of Comm. Eng., Oregon State Coll. Second Edltlon, 530 pp., $6 \times 9,363$ illus., $\$ 7.00$.

JUST PUBUSHED

ELECTROMAGNETICS

A well-balanced coverage of romagnetic field the basic principles of electhe branches that apply in electronics, power, radration, and propagation. Stresses the fiold point of view; also points out its close interrelation with circuit theory. Introduces advanced aspects op electric and magnetic
fields gradually. By John D. Kraus, Prof. of Elec. Eng.0 Ohio State U. 593 pp., 6×9, 382 illus., $\$ 9.00$

JUST
 PUBLISHED

SERVOMECHANISM ANALYSIS

Presents the essentials of the mathematical as a necessary preliminary to design. Details mathematical methods: transient analysis, polar transfer function, logarithmic transfer function analysis, etc. Discusses Relay ServoGeorge J. Thaler the Root Locus Method. By George J. Thaler, Asst. Prof. of Elec. Eng. Brown, Sen. Proj. Eng. A. C. Spark Pluert G. Gen. Motors Corp. 440 pp., $6 \mathrm{x} 9,305$ illus., $\$ 7.50$

SEE THESE BOOKS 10 DAYS FREE

MGGRAW-HILL BOOK CO
 330 W. 42nd St., N.Y.C. 36, N. Y

Send me book(s) checked below for 10 days' examination on approval. In 10 days I will remit for return unwanted book(s) postpaid. (We pay for delivery if you remit with this coupon; same return privilege.)

- Rabinoff

吕 Albert-Elec. Fund of Comm-- $\$ 7.00$ \square Thaler \& IRrown-Servomechanism Analysis-
(Print)
Naine.
Address
City...
Company
Position
This offer annlies to U. S. only
Want more information? Use post card on last page. ELECTRONICS - March, 1953

Fixlure for holding three-potentiometer strips. Soldering iron is plugged into overhead outlet, and rests in horizontal holder at back of bench when not in use. Solder reel holder is screwed to bottom of bench
operator places the stripped end of the wire in the desired position on the plug sleeve, loops the wire under the nail, then brings it up into a slot and over the top of the fixture. The wire stays in position through its own springiness, leaving the hands of the operator free for high-speed soldering after all the wires have been placed in position.

A wood U channel supported at a 30-degree angle toward the operator is used for holding potentiometer strips during subassembly wiring at Emerson's television receiver plant. Metal pegs hold the end strips in position. Additional pegs are provided for some of the other strips, even though not actually needed. Wires used in this operation are precut and stripped on an Artos machine. Short wires are kept in an ordinary one-pound breadpan. Longer wires are stored in cardboard tubes of different lengths, resting in holes in a plywood frame set on the back of the bench. The holes are positioned so that the tubes slant toward the operator, bringing the wires within easy reach.

A more elaborate holding jig for miniature tube sockets, widely used throughout Emerson's plant, permits simultaneous rotation of nine

TWO SPEEDS • SINGLE CONTROL

FREE OF BACKLASH

Accuracy of scale reading 100%
Coarse searching speed plus fine setting control.

Single control knob displaced axially to select the speed ratio.
Spring-loaded gears with automatic take-up of any wear or play between primary and secondary drives.

- Poin ers geared directly o centre spindle.

Security in operation: fricti n clutch obviates overdriving.

TYPENo.	$\begin{gathered} \text { NUMBER } \\ \text { OF DIAL } \\ \text { MARKINGS } \end{gathered}$	EFFECTIVE SCALE LENGTH	SPEED RATIOS	
			Coarse	fine
52	1.000	3.3 teet	1:8	1:120
63	1.000	3.3 feet	1:8	1:120
57	2.000	6.6 dece	1:15	1: 200
56	2.000	6.6 lect	1:15	1:200
53	2000	6.6 feer	1:15	1:200

We are specially organized to handle direct enquiries and orders from U.S.A.
Billed in dollars. Settlement by your check.
CABLE OR AIRMAIL TO-DAY
TRANSRADIO LTD
CONTRACTORS TO H.M. GOVERNMENT 138 A CROMMWELL ROAD, LONDON, S.W.T., ENGLAMD CABLES - TRANSRAD, LONDON

fortONGER
 batay 1 IFE

keep the floating voltage constant with PECO Automatic Battery Chargers

The PECO Battery Chargers accurately float the control battery of any power station or substation which has a reasonably constant switchboard load; furnishes power to the load and maintains a fully charged battery, ready for any emergency.

To provide extreme accuracy of electronic control and the exceptional reliability demanded by this type of service, Power Equipment engineers designed this PEC-626 Automatic Battery Charger by starting with the rugged components of a manual charger, then added a magnetic system for coarse voltage control and a simplified electronic system for fine voltage control.

As an illustration of the accuracy of the PECO charger, this example can be
used: the DC output is sufficient to maintain 60 lead acid battery cells at 129 volts; if will also furnish power to switchboard loads within the rating of the charger, and at all times the output voltage is automatically regulated to within ± 0.5 percent, for AC line voltage fluctuations of ± 5 volts on a 230 volt circuit.

Exceptional reliability is shown by the fact that if the electronic control section should be disconnected, the magnetic control section will still automatically hold the output voltage to within ± 3 percent of nominal voltage. Write for complete specifications today.

this fellow is trained in your business. His main duty is to travel the country - and world - penetrating the plants, laboratories and man. agement councils ...reporting back to you every significant innovation in technology, selling tactics, management strategy. He functions as your all-seeing, all-hearing, all-rcporting business communications system.
the man we mean is a composite of the editorial staff of this magazine. For, obviously, no one individual could ever accomplish such a vast business news job. It's the result of many qualified men of diversified and specialized talents.
and, THERE'S ANOTHER SIDE TO THIS "COMPOSITE man," another complete news service which complements the editorial section of this magazine - the advertising pages. lt's been said that in a business publication the editorial pages tell "how they do it" - "they" being all the industry's front line of innovators and improv. ers-and the advertising pages tell "with what." Each issue unfolds an industrial exposition be. fore you - giving a ready panorama of up.to. date tools, materials, equipment.
such a "man" is on yotr payboll. Be sure to "listen" regularly and carefully to the practical business information he gathers.

Mcigaw.-HIL PubllCations

New Waldes Truarc GRIP Ring requires no groove， holds fast by friction，can be used over and over again

The Waldes Truarc Grip Ring is a new，low cost fastener that provides a positioning shoulder secure against mod－ erate thrusts or vibration．Installed on a straight un－ grooved shaft，the Truarc Grip Ring can be assembled and disassembled in either direction with Truarc pliers．

The Grip Ring can be installed tightly against a machine part in order to take up end－play．The basic Truarc design principle assuring complete circularity around periphery of the shaft and the ring＇s unusually large radial width combine to exert considerable frictional hold against axial displacement．The ring can be used again and again．
Find out what Waldes Truarc Retaining Rings can do for you．Send us your drawings．Waldes Truarc engineers will give your problems individual attention without obligation．

Ring \＃ 5555	5555－12	55：5－131／2	5555－18	5555－25	5555－31	5555－37
$\begin{array}{lc} & \text { Fract. } \\ \text { 邑 } & \text { Equiv. } \\ \mathbf{w} & \mathbf{S} \end{array}$	1／8＂	－	3／15	$1 / 4{ }^{\prime \prime}$	5／16＂	$3 / 3^{\prime \prime}$
\sum_{4} Dee． 0 Equiv． \mathbf{S}	.125	． 136	． 187	． 250	． 312	． 375
监 TOL．	$\pm .002$	$\pm .002$	$\pm .002$	$\pm .002$	$\pm .003$	$\pm .003$
号 T	． 025	． 025	． 035	． 035	． 042	． 042
¢	$\pm .0015$	$\pm .0015$	$\pm .002$	$\pm .002$	$\pm .002$	$\pm .002$
Length A	． 268	． 285	． 364	． 437	． 553	． 626
$\begin{gathered} \text { Lug } \\ \text { B } \end{gathered}$	． 078	． 078	． 097	． 097	． 141	． 141
Hole P	． 042	． 042	． 042	． 042	． 078	． 078
Min． Ring 6 Clear	． 33	． 34	． 44	． 50	． 67	． 73
Approx． Ultim．Thrust Load（Lbs）	20	20	25	35	50	60

WALDES KOHINOOR，INC．，LONG ISLAND CITY 1．NEW YORK waldes truarg retaining bings and pliers are protected or ome on more of the following

Waldes Kohinoor，Inc．，
47－16 Austel Place，L．I．C．I，N．Y．
Please send me sample Grip－Rings （please specify shaft size
\square Please send me the complete Waldes Truarc catalog．
（PLEASE PRINT）
Name
Title

Company

Business Address
1 City \qquad Zone \qquad State \qquad

Frequency Range - 1750 to 2110 mc
Feed - Pyramidal harn with flberglas radame, nanpressurized
Reflector Diameter - 6 feet
Gain - 28 db (over $1 / 2$ wave dipole), side lobe level - better
than 23 db
Half Power Angle - H plane 6°, E plane - 5.7°
$V S W R-1.2$ (1750.1990 mc); $1.25(1990.2110 \mathrm{mc})$

Crasstalk - decoupling greater
than 78 db
Polarization - horizontal or vertical

Write for Bulletin E-1.
WORKSHOP ASSOCIATES DIVISION

THE GABRIEL COMPANY
Endicotl Street, Norwood, Mass.

THE

NEW WORKSHOP
 Offset Feed
 Microwave Antenna
 1750 to 2110 mc

This new WORKSHOP microwave antenna incorporates two revolutionary features which result in outstanding performance.

OFFSET FEED. Conventional center fed antennas employ a symmetrical paraboloid of revolution as a reflector. The Workshop design, however, uses a parabolic reflector with the vertex 9 inches above the rim. The feed is placed at the focal point of the paraboloid but is aimed to provide peak intensity of illumination at the optimum angle above the vertex. This location removes the horn feed from the radiated field of greatest intensity and results in better overall performance: - higher gain, lower side lobes, improved system impedance match and maximum decoupling.

Radiation is practically identical in both horizontal and vertical planes, polarity can be changed by rotating the feed 90°.
LAMINATED FIBERGLAS REFLECTOR. The 6 -foot offset feed reflector is made of fiberglas laminations with a polyester resin. The total laminate is composed of a surface layer of fiberglas and a layer of fine wire mesh screening backed by four layers of fiberglas. The result is a strong, low cost reflector, accurate to $\pm 1 / 8$ inch. No painting is necessary, but if color is desired it may be added to the resin to produce a permanent finish.

Jig for holding and rotating nine subminiature sockets simultaneously
sockets. The operator can bring a given terminal on all sockets to the optimum position for connecting and soldering a lead or part. Rotation is achieved through use of gears inside the metal housing of the jig, meshing together so that all turn when the control knob on the shaft of the center socket is turned.

One of each pair of socket support pins is spring-loaded to hold the socket during assembly work. To load the fixture, the operator places one socket mounting hole on the fixed pin, then moves the springloaded pin inward until the other socket hole is over it. Unloading is done simply by grasping the assembled wires and pulling off the sockets. The two-pin holder for each socket can be removed by loosening a single screw, and other holding devices can be placed on the geared-together shafts for assembly work on other types of parts. The entire fixture may be

Two-position iig for assembling jack strip of distribution amplifier for field television camera

Draw the wire-wound control curve you need: Clarostat winds the "card" to match it. Specify tollerances: Clarostat mects
them. Order any quantity: Clarostat delivers piece after picce, always uniform, always dependable, always economical.
All because Clarostat-designed and built winding machines, manned by skilled winding specialists, handle any kind and size of wire on any kind and shape support. Intricate control curves are met with tapered or notched supporting strips, by variable spacing of turns, by different wire sizes. From $0.032^{\prime \prime}$ down to $0.0009^{\prime \prime}$ dia. and finer, Clarostat winds to your precise requirements.

SHARP PERMANENT MARKING

For legible permanent marking of metal components use (11) engraved lettering tools. Precision engraved dies and inserts for indenting or embossing identification on your parts will

1. Improve appearance.
2. Advertise throughout life of part.
3. Facilitate reordering.
'W'rite for free catalog on Production Marking Equipment.

GEO. T. SCHMIDT, Inc.

MARKING MACHINES - MARKING TOOLS
1804 Belle Plaine Ave., Chicago 13, III.

COMPLETE MACHINE FACILITIES TO PRODUCE

- Hand Stamps
- Engraved Inserts for Dies
- Shank Style Stamping Dies
- Embossing Dies
- Code Stamps
- Numbering Heads
- Marking Machines
- Nameplate Marking Equipment

PRELIMINARY

Announcement SANBORN "150" SERIES OSCILLOGRAPH RECORDING SYSTEMS

THE MOST VERSATLLE OSCILLOGRAPH RECORDERS ON THE MARKET

When the new Sanborn "150" Series is seen for the first time, all will agree that Sanborn engineers are really outdoing themselves in their design for versatility.

This increased versatility is being made possible by:
(1) the availability of a greater variety of newly designed interchangeable Sanborn amplifiers and preamplifiers which together encompass such a variety of uses that the recording possibilities of Sanborn Systems will include almost every phenomenon whose frequency spectrum covers the range from 0 to 100 cycles per second, and
(2) by an original design idea which makes such interchangeability more practical. Built into each System will be a separate DC driver amplifier and power supply for each of the System's channels, with provision for "plug in" connection to the driver amplifier (as shown in the diagram at right) of the user's choice of a preamplifier and control panel to complete the desired network for each channel.

IN ADDITION, the " 150 " series will include these Sanborn improvements:

- Increased frequency response
- Improved regulated power supply
- Individual stylus temperature confrol for each channel
- Improved, single control, paper speed selector. Nine speeds - . 25 to $100 \mathrm{~mm} / \mathrm{sec}$
- Greater convenience and more orea for immediate study of recorded events, and for notations on record
- Amplifier panels and Recorder panel all in one vertical plane on the 4-channel model. Complete system takes less floor space.

AC-DC PREAMPLIFIER

will produce 1 cm deflection for a $\mathrm{mv} A C$ signal, and a 1 mm deflection or al $1 \mathrm{mv} D C$ signal. Also provides for alibrated DC zero suppression (20X full scale). Balanced or single ended inputs.

CARRIER PREAMPLIFIER

permits a choice of three interchangeble oscillators - 400, 1000 and 2500 cycles. Each omplifier equipped with calibrated zero suppression network (20x full scale). Overall sensitivity 80 microvolts/cm deflection, or 40 microinches $/ \mathrm{inch} / \mathrm{cm}$, one octive arm gage factor of 2). With commercial transducers, sensitivity usually sufficient for $20 X$ full scale with moximum lood on the transducer.

SERYO MONITOR PREAM-
PLIFIER - AC phase discriminating, with overall sensitivity of $10 \mathrm{mv} / \mathrm{Icm}$ delection. Provides DC outputs proporianal to error signals from 60 to 10,000 cycles per second.

LOG-AUDIO PREAMPLIFIER

provides a 50 db dynamic range wtih resulting chart calibrated $1 \mathrm{db} / \mathrm{mm}$. (At maximum sensitivity, bottom of hart equals 0.3 mv input, and top of chart 100 mv). 50 db (5 db steps) input audio atlenuator. Input provision for either $D C$ or audio signals. Audio range 20 cps to 20 kc . DC input range from 0.6 to 200 volts.

DC CONVERTER (Chopper Amp.) for low level $D C$ recording such as thermocouple output. Sensitivity $1 \mathrm{mv} /$ cm deflection.

COUPLING PREAMPLIFIER
will take balanced or single ended is puts providing $50 \mathrm{mv} / \mathrm{cm}$ sensitivity.

Sanborn Company

INDUSTRIAL DIVISION
Cambridge 39, Massachusetts

 in current electronic trend

Now, through the use of tantalum, new high standards of electrolytic capacitor performance arc available. The tantalum oxide film is the most stable dielectric, chemically and electrically, yet discovered. As a result, Tantalum Capacitors offer advantages not found in any other electrolytic type-long life, space saving, wide temperature range, excellent frequency characteristics, no shelf aging.

Tantalum Capacitors are made by Fansteel and other leading capacitor manufacturers. Ask for current information bulletins on Fansteel Tantalum Capacitors.

FANSTEEL METALLURGICAL CORPORATION

NORTH CHICAGO, ILIINOIS, U.S.A. Tantalum Capacitors... Dependable Since 1930

Jig for slide switches used in three-way portable radios
set at another angle by loosening wing lock nuts on the end support brackets.

Permanent mounting of ten Amphenol sülver-plated coax jacks on their mounting strip is done with the aid of a jig in RCA's Camden plant. Two pivoted wood tabs slide over the mounting feet to hold the strip upright in the foreground position while mounting each jack with four nuts and bolts. The strip is then turned over and set into rubber-covered holes at the rear of the jig for wiring work. The $\frac{1}{8}$-inch thick rubber pad protects the silver plating and threads on the jacks.

Metal pins serve for holding slide switches on an Emerson jig, designed for processing seven

Iig for television receiver slide switches. Solder spool holder has notched frame that slips over angle iron running across rear of bench

At the Show, see-

LION FASTENERS

LOCKS TIGHT WITH A QUARTER TURN

Always at correct tension

Lion Fasteners are right for buttoning parts that must be removed repeatedly for inspection, maintenance, or other reasons.

Vibration and shock can't loosen a Lion Fastener. Even an inexperienced service man can't replace it wrong. A quarter turn opens it. Another quarter turn locks it. The tension is designed into it.

Lion Fastener Spring Assembly is quickly spot welded or riveted in place. The stud cannot be lost. It is grommeted tight to the sheet. They will button sheets .040 plus or .020 minus over or under standard rating. The misalignment is as much as .156. The onepiece forged stud is tested to 1425 lbs . Write today for demonstration kit and application data.

TYPICAL APPLICATIONS: INSPECTION PLATES • COWLING ELECTRICAL PANELS • CABINETS • DUCTWORK

Free DEMONSTRATION KIT contains sample Lion Fasteners to help you visualize their adaptability to your product. Write on your company letterhead. No obligation.

FASTENERS, INC.
500 MAIN ST., HONEOYE FALLS, N. Y.

Parts shown processed by H. Eiraun Tool \& Instrument Co., Hawthorne, NJ.

THEY'RE MADE OF

BERYLCO BERYLLIUM COPPER

If the IFF radar device used by aircraft should give the wrong signal, our own planes would be in danger of being shot down by antiaircraft and fighter interceptors. Small but vital beryllium copper parts prevent any such catastrophe.

To insure the correct signal, each finger in the circular part must have uniform tension and must line up perfectly. That's one reason why beryllium copper was chosen for this application. The required accuracy can be achieved only by fixture heat treating, and Berylco is the only
material that can stand such severe forming and still retain its desirable spring properties.
Of course there are other reasons why this versatile alloy is used here. Hs resistance to fatigue, corrosion and relaxation; its electrical conductivity; its indifference to temperature varia-tions-all are important.
The ability of Berylco to offer the designer more than one desirable property has materially increased its application-for peacetime products as well as those used in defense. If you would like to include Berylco
in your plans for the future, we invite you to share the knowledge of the world's largest producer of beryllium copper. Call or write any of the offices listed below for help or sample material.

THE MOST COMPLETE LISTING of available beryllium copper forms is contained in the Berylco Product Directory, just published. Send for your free copy today.

TOMORROW'S PRODUCTS ARE
PLANNED TODAY - WITH
BERYLCO BERYLLIUM COPFER

[^13]Representatives in principal world-trade centers

3 wars waz LIDS and DOORS

RF TIGHT

Thermatron built by Radio Receptor Co., Inc.

0
Machine mating surfaces to closest tolerances.
Costly and difficult! And the close fit is often destroyed by warping, corrosion and normal use.

Install numerous latches, screws, bolts or other fastenings. Also costly! And makes maintenance more difficult, more time-consuming.

USE METEX ELECTRONIC WEATHERStripping.

The simple, sure, economical way!
Made of resilient, compressible knitted metal wire mesh, METEX strips and gaskets "close" these openings just as a weatherstrip "closes" windows and doors.
Because they are metallic, METEX strips and gaskets are conductive. Because they are knitted, they are flexible and resilient. They will conform to surface irregularities with no loss in shielding efficiency. Close manufacturing control assures uniformity in the resiliency and dimensions best adapted to specific applications.
METEX electronic strips and gaskets are easy to install. They are not expensive-in fact, they may well save more than their cost by eliminating the need for many operations formerly thought necessary.

It will pay you to investigate the production and performance advantages of METEX Electronic Weatherstripping. A bulletin giving detailed information is yours for the asking -just write on your company letterhead.

Recessed jig for trimmer subassembly work
switches at a time. Grooves are cut into the wood strip to accommodate the slide buttons.

Another type of jig for holding slide switches, used by DuMont, is made entirely of metal. This clamps over the front edge of the workbench, and has a shaft that permits adjustment to any desired angle. The switch plates are pushed into spring steel clips to load the jig for applying and soldering cable leads to the terminals.

Irregalar-shaped cutouts in a metal-faced plywood jig hold ten ceramic trimmer capacitors during subassembly work for DuMont tele-

This chessis support jig rotates on an angle-ent pedestal. Spinning the jig changes the angle as required for optimum wark with the pencil-type soldering iron

Size and weight in filters are no longer a problem. With Astron Subminiature RF Interference Suppression Filters, you can provide for exceptionally effective noise attenuation from 14 kc to 1000 mc in full compliance with government specifications. You retain, or even improve, the desirable characteristics of low impedance, and low voltage drop, with minimum heating. Astron-the manufacturer who pioneered high temperature and high altitude filters-has achieved outstanding performance in these subminiature filters through the use of metallized paper capacitor sections, specially wound inductances, and other new components and techniques.
Many of the techniques Astron has developed for the subminiaturization of its metallized paper capacitors and filters are also employed to reduce the size and weight of Astron's conventional paper and foil designs. Write us today, outlining your filter requirements. Our filter engineering staff will forward recommendations promptly.

Catolog AC-3, with complete information on Astron capacitors and filfers, is available on request.
Visit Astron at the IRE Show, Booth 4-707, Grand Central Palace
Export Disision: Racke Internalianal Corp., 13 E. 40 th St., N.Y.C. In Canada: Charles W. Pointon, 1926 Gerrard St. East, Toronto

where LESS is MORE

 international instruments
"II and $1 / 2^{\prime \prime}$

SUB-MINIATURE

 AND MINIATURE
ELECTRICAL METERS

FOR AIRCRAFT, GUIDED MISSILES, ELECTRONIC and ATOMIC DEVELOPMENTS, COMMUNICATIONS and INDUSTRY Wherever less weight and smaller size are vital, these sub-miniature and miniature meters allow more savings. They not only provide accuracy and dependability equal to that of larger models, but, in addition, the inherently strong construction withstands shock and vibration far better than conven. tional sized instruments. A D'Arsonval type move. ment of excellent design, precision workmanship and materials of selected quality permit miniaturization while retaining high performance standards. Meters, testing devices and allied equipment are available for a wide variety of requirements and can be adapted for use wherever it is desired to measure quantities electrically. Instruments are engineered for unusual applications by our staff of skilled technicians. Efficient production insures good delivery and low cost on both regular and special jobs. If smaller size and lighter weight can help solve your instrument problems, fill in and mail the at. tached coupon today

international instruments
 INCORPORATED

P. O. BOX 2954, NEW HAVEN 15, CONN. LIAISON ENGINEERS in Principal cities
Please send me engineering data sheets covering the International line of instru. ments.

NAME

POSITION
CO. NAME
ADDRESS
CITY
\qquad STATE

Cectucty vibartion and

 STRESS ANALYSIS SYSTEM

The Century Vibration and Stress Analysis System provides all of the necessary equipment to amplify and record vibration and stress-strain phenomena over a frequency range from 0 to 2000 cps .
Two modes of measurements are used in covering this system: (a) a corrier amplifier system to measure phenomena in the range of 0.500 cps , utilizing externally excited pick-ups as the sensing element; and (b) a linear-integrating amplifier system covering the range of 3-2000 cps, utilizing self-generating pick-ups, or d.c. excited strain gages employed dynamically. Both of these modes utilize either the Century Model 408 or 409 Oscillograph.

Write for Bulletins.

Centary geophysical gorporation TULSA, OXLAMOMA

4447 Na. Bodine 3406 W . Washingtion clvd. 238 Lofayote St . 309 Arowder St . EXPOKT OFFICE

Philodelphic 40, Pa. Lot Angolas 18, Calif. Daytan 2, Ohia Dallas, Toxas 149 droadway, N. Y. City

Bendix Aviation Corporation

concentrates development, sales and production of special-purpose electron tubes, inverters and AC generators with its dynamotors and small motors
at its

Red Bank Division

T.Lo provide its customers with an unequalled source for special-purpose electron tubes, inverters and AC generators, Bendix Aviation Corporation has placed its entire development, sales and manufacture of these products with its Red Bank Division at Eatontown, N. J. Here in a modern new plant of over 113,000 square feet have been concentrated the most highly skilled personnel and the latest available machinery to produce the highest cuality electron tubes, inverters and AC generators possible. At the same time, a full-scale program is being carried on continuously at Red Bank to develop these products for even g-eater efficiency and versatility. In addition to its new products . . . taken over from the EclipsePioneer Division, Teterboro, N. J. . . . the Bendix Red Bank Division will continue producing its established line of dynamotors and small DC motors. If you require precision items of these types, it will pay you to take advantage of the unique experience and facilities offered to you by Bendix Red Hank.

Export Sales: Bendix International Eivision, 71 Fifth Arsmue, New Yorx, 11, N. Y.

?? ? NEED TUBES FOR SPECIAL APPLICATIONS

Victoreen is prepared to assist you by engineering and manufacturing tubes for your particular application.
Expanded production facilities plus a competent fube engineering staff permit us to accept orders for new tube types now.

ABOUT VICTOREEN
Oldest Manufacturer of radiation measuring instruments. Over ten years experience in development and engineering of electronic tubes, specializing
in subminiature types.

SEND SPECIFICATIONS TODAY

Use this check list (\downarrow) as a guide in submitting your inquiry. This will assist our tube engineers in studying your application.

vision receivers. The work done here includes fastening standoff insulators to the trimmers. The metal plate permits more precise holding action than could be obtained with drilled holes in wood alone.

An angle-mounted locating jig aids in assembly of small parts inside a tiny subassembly chassis for the PRC-6 transceiver at Utility Electronics. A completed sample chassis is permanently mounted at the rear of the jig as a sample to guide the operator.

Tweezer-Type Soldering Tool

Resistance-soldering of small parts in subminiature equipment is accomplished faster, more neatly and with improved joint quality through use of a tweezer-type soldering unit that is equally suitable for production-line and laboratory use. The Hotip unit made by Contact, Inc., Cambridge, Mass.,

Use of tweezers for soldering a small joint in an experimental hearing-aid unit in an MIT laboratory. Tool rack fastened to front edge of bench keeps most-used tools within reach and encourages putting each one away when work with it is finished. Loop of wire inserted in edge of bench is support for clip leads

"Designed for Application"

Delay Lines and Vetworks

The James Millen Mfg. Co., Inc. has been producing continuous delay lines and lump constant delay networks since the origination of the demand for these components in pulse formation and other circuits requiring time delay. The most modern of these is the distributed constant delay line designed to comply with the most stringent electrical and mechanical requirements for military, commercial and laboratory equipment.

Millen distributed constant line is availabie as bulk line for laboratory use and in either flexible or metallic hermetically sealed units adjusted to exact time delay for use in production equipment. Lump constant delay networks may be preferred for some specialized applications and can be furnished in open or hermetically sealed construction. The above illustrates several typical lines of both types. Our engineers are available to assist you in your delay line problems.

JAMES MILLEN
 MFG. CO., INC.
 asd nactory

MALDEN, MASSACHUSETTS, U.S.A.

consists of soldering tweezers with an insulated handle and a control box for use with either a foot or knee switch. Power input is 115 v a-c, and output is up to 15 amperes at 4 volts. A rotary selector switch on the control box provides a choice of five temperatures, from low heat for soldering fine wires such as No. 52 AWG up to high heat for soldering the equivalent of two No. 14 wires.

The tweezers themselves weigh only $2 \frac{1}{2}$ ounces, which minimizes fatigue in production use. The separate switch permits using the tweezers to position parts and hold wires together before and after soldering, with heating current being applied only when actually wanted. The resulting pin-point localization of soldering temperature tends to eliminate rosin joints, minimizes insulation shrink-back or burning and reduces fire hazards and possibility of burns.

Material-Moving-Techniques

With electronics plants operating at full capacity practically everywhere today, efficient utilization of space for storing incoming raw materials has a direct bearing on plant output. Under these conditions, new material-moving equipment pays for itself quickly.
In Sylvania's Buffalo plant, changeover from conventional wood crates to folding steel crates doubled the storage capacity of each square

New method of storing auto radio stamp. ings. Collapsed crate is on floor in foreground

Leesona No. 107 Coil Winder Offers Many Advantages

1. Automatic Delivery Shelf does it! New snelf feeds the paper inserts to the coils, ezerting uniform tension on the paper as it is fed into the coil. This means tighter finished coil. Staggers overlaps to insure perfectly round or square coils. Delivery shelf automatically lengthens each insert
as the coil diameter increases. This makes certain that the coils produced are within the maximum allowable outside diameter. 2. Automatic Electronic Speed Control. Slow, cushioned start . . gradual speed build-up ... constant high running speed for uniform wire tension and coil density.

Automatic

features

SPEED UP COIL WINOING

Assure accuracy

 and low cost3. Automatic Stop Motion - stops the machine whenever a spool runs out or a wire break occurs.
4. Automatic Counter stops the machine when the required number of turns have been reached.

Send for Bulletin 107 - get the details on this fully automatic Leesona ${ }^{\circledR}$ No. 107. It will show you how to get the exact electrical characteristics you want in either paper or acetate insulated coils, at the highest production rate, and lowest cost.

UNIVERSAL WINDING COMPANY

P. O. Box 1605, Providence 1, R. I.

Chicago office and Demonstration Room, 9 So. Clinton St., Chicago 6, III.
For winding coils in quantity accurately... automatically use Universal Winding Machines

SAFBTY FOR A

The S. S. Unifed States - last word in Superliners - incorporates every known seagoing safety device. Among its electronic safet y features is the Announcing System Amplifier, designed and built by Electronic Engineering Company, Inc., of Norfolk, Va . The power transformer specified and used in this super-dependable amplifier is by chicago. Where dependability is an absolute dependability is an absol
requirement, you'll find requirement, you'll find toughest transformers.

dIVISION OF ESSEX WIRE CORPORATION
3501 ADDISON STREET, CHIGAGO 18, ILL.

PRODUCTION TECHNIQUES
(continued)

Two-way radio on lift truck
foot of floor space for punch-press parts awaiting assembly into auto radios. The design of the new Palletainer crates (made by Union Steel Products Co., Albion, Mich.) permits four-high stacking, whereas wood crates could be safely stacked only two-high. When not needed, the new crates can be collapsed for compact out-of-the-waystorage. A walk-along fork truck is used for stacking and unstacking the loaded crates.

While not used in Sylvania's. Buffalo plant, dispatching and utilization of lift and fork trucks. may be expedited by use of new GE industrial two-way radio operating directly from the truck storage battery. Installation is simplified by having all operating con-

Use of conveyor pan for wrap-around aufo radio housings

"Check your air, Sir?"

To keep voices traveling strongly through telephone cables, you have to keep watcr out. This calls for speed in locating and repairing cable sheath leaks - a hard job where cable networks fork and branch to serve every ncighborhood and strect.

At Bell Telephone Laboratories, at team of mechanical and electrical engineers devised a way to fill a complex cable system with dry air under continuous pressurc. Pressure readings at selected points detect cracks or holes, however small. Repaiman can reach the spot before scrvice is impaired.

It's another example of how Bell Laboratories works out ways to keep your telephone service reliable-and to kcep down the cost to you.

He's checking the air pressure in a branch cable, one of scores serving a town. The readings along the cable are plotted as a graph to find low-pressure points which indicate a break in the protecting sheath.

Master meters keep watch over the various cable networks which leave a telephone office in all directions to serve a community. Air enters the system at 7 pounds pressure, but may drop to 2 pounds in outermost sections-still enough to keep dampness out.
bell telephone laboratories

trols on the front of the radio cabinet, with control knobs large enough to permit adjustment even with gloves on. Use of radio reduces aisle traffic in plants, as trucks do not need to travel empty to dispatching centers for new orders.

Replacement of hooks with pans on an overhead chain conveyor permits handling of four auto radio housing units per conveyor section in place of one. Other pans carry a still larger number of top and bottom cover units for the auto radio, so that one feed conveyor serves the entire assembly line. Large lettered labels Scotch-taped to the pans indicate the required loading of each to maintain the correct ratio of the three parts; thus, WA identifies the pan for wraparound housing, TC is for top covers and BC is for bottom covers. This technique is used in Sylvania's Buffalo plant.

I-F Transformer Jig

Spring contacts mounted just behind vertical guide bars provide a quick means of connecting to five stud-type terminals of a television i-f transformer for sampling in-

Setup used in DuMont's incoming inspection department to check i-f transformers. Jig gives free access to adjusting screws at both ends of the transformer

There are hundreds of jobs open to engineers today! but lew opportunities like these

Westinghouse is in nuclear power to stay. We believe in the development of atomic energy as man's next great source of power. If you want to get in on a new era in industry, we want to talk to you.

Atomic power opportunities are waiting for electronic engineers with 4 to 10 years of this kind of experience...

ELECTRONIC COMPUTERS, employing pulse amplifying wide range linear amplifying and rate circuits.

NULL BALANCE DEVICES, employing both vacuum tube and magnetic amplifiers, SERVOMECHANISMS, PLANT CONTROL SYSTEMS.

LIAISON with customers, contractors, designers of component equipment.

SUPERVISION of drafting work.

REMEMBER! We are primarily interested in good experienced application and development engineers-lack of previous reactor development experience is no handicap in this type of work.

HOW TO APPLY! What Westinghouse wants to know is: Where and when you obtained your degree . . . how you did in school . . . where you have worked at your profession . . . what kind of work you have done.

In other words, right now we're more interested in your ability to fill current openings and to develop in the Westinghouse Atomic Power Division than we are in your vital statistics. Write your letter of application accordingly.

You will be in communication with men who are experienced in keeping secrets. All negotiations will be discreet, and your reply will be kept strictly confidential.

Address your application letter to: Manager, Industrial Relatlons Department, Westinghouse Electrlc Corporatlon, P. O. Box 1468, Plttsburgh 30, Pennsylvanla.

What do you want?

MONEY? Good jobs are open here now-waiting for good men who want to make a permanent connection.

A Permanent job? Many of the engineers who joined Westinghouse 20 and 25 years ago are still with Westinghouse-and in key positions -and engineers who join us now will have the opportunity to make this work their lifetime careers. When many other industries may be going through slack times, atomic energy will still be in a stage of expansion.
SUBURBAN LIVING? It's here-within easy driving distance of your work. Within a few minutes of shopping centers . . . schools . . . metropolitan centers.
J08 EXTRAS? Westinghouse offers: Low cost life, sickness and accident insurance with hospital and surgical benefits. A modern pension plan. Westinghouse stock at favorable prices. Westinghouse appliances for your home at discount.
your kind of associates? Every fourth person in the Division is an engineer or scientist. More than half the top Westinghouse executives are engineers.

FASCINATING WORK? What other branch of science offers such exciting challenges? So many opportunities for discovery? So many chances to benefit mankind? So many opportunities for original work?
GROWTH OPPORTUNITIES? Never again in your lifetime will you be able to get into such a sure-to-expand industry so early in its development.

you can be SURE. if its Westinghouse

Ruggedly Designed for Dependable, Heavy-Duty Operation

When operating conditions demand a solenoid switch that will stand up under the most rugged requirements, always choose Tech Laboratories Solenoid Switches. These multi-pole units are built to "take it" and are designed and produced to meet your individual requirements.

According to your specifications you can get:

\author{

- Remote push-button operation,
 with or without manual reset.
 - Single or dual direction operation.
 - Single, or up to 8 decks.
 - Single pole to 4 poles per deck.
 - Two contacts up to several hundred contacts per deck.
 - Shorting or non-shorting.
 - Ceramic or phenolic insulation.
 - Load capacities up to 10 Amp.- 120 Volts AC Idepending on number of contactsl.
 (1) Long, trouble-free service life.
}

Information on these and our additional line of motor operated switches is yours for the asking . . Write today for complete catalog.
spection tests of electrical characteristics. Another spring clip holds the unit in position when it is pushed against the contacts, leaving both hands of the operator free for adjusting controls and recording test data.

Sandpaper Holder

In THE cabinet refinishing department at Olympic Radio \& Television Inc., four small finishing nails driven into a piece of asbestos board serve as a convenient holder for pieces of No. 8 sandpaper. Up to a dozen sheets at a time are pushed down over the heads of the nails when the supply needs replenishing. An individual sheet can then be easily lifted off as required for rubbing down a repaired area on a cabinet.

The sandpaper is used directly on its holder for cleaning heated spatulas before using them to apply stick shellac. The blade is rubbed over the top sheet of sandpaper on the pad.

Each spatula in this plant is made by half-round file, then fitting on an oval-shaped wood handle. The oval handle helps the operator to hold the working surface of the blade exactly flat against the work.

When not in use, the spatulas are kept hot by pushing the blades into a 140 -watt electric oven made for the purpose by H. Behlen \& Bros., Inc., New York. Water is kept alongside for cooling the blades slightly when they become over-

Cleaning spatula on pad of No. 8 finishing paper before using it to burn in stick shellac

The OPAD-GREEN General Purpose Power Supplies are designed to furnish an adjustable source of unfiltered direct current from single phase 50 or 60 cycle A.C. power lines. A unique feature is their stepless control of the D.C. output voltage which permits them to serve as power sources for a wide variety of electrical equipment and electro-chemical processes. For additional information vevite io Builletin No. 147

71-2 WARREN STREET, NEW YORK 7, N. Y.

Micro Bearings Measure Up . . . in this Cageable Vertical Gyro

This Minneapolis-Monevwell instrument for the stabilization and control systems of aircraft, guided missiles and radar scanners, provides pitch and roll signals as a vertical reference.

Used in the precise caging mechanism which locks the gyro spindle in a predetermined attitude, Micro Ball Bearings measure up to every requirement for savings in friction, weight and space. Low friction is of particular significance, since the mechanism operates on only 12 watts (6 watts standby). The high durability of Micro bearings also assures long trouble-free operation, minimizing the problem of combat area servicing.

In any design that calls for economies in friction, space and weight, you can count on Micro Ball Bearings. They are fully processed to a true micro-finish for smooth, quiet operation and maximum wearing qualities.

Micronsamball beanines

NEW HAMPSHIRE BALL BEARINGS, INC. 5 Main Street, Peterborough, N. H.

CHECK THESE MICRO ADVANTAGES

- Precision Tolerances

Fully processed to o true micro-finish. Tolerances ore ABEC. 5 and higher.

- More Sizes and Types

Available in 135 sizes and types down to $.04^{\prime \prime}$ bore, $1 / 8 "$ O.D. Materials include chrome, stainless steel and beryllium copper. Special items and materials considered.

- Engineering Assistance

Top staff of design engineers available to help customers at any time.

- Availability

Small-quantity orders for items in production are shipped either from stock or as the next run comes through. Large quontities are scheduled for earliest possible delivery prevailing at time of order.

heated because of insufficient use. Benzine in a glass jar alongside is used for wetting sandpaper for sanding down the shellac after burning it into a dent or crack on a cabinet.

Solder Pot Protector

To prevent solder pots from being tipped over accidentally while being used for tinning stripped ends of stranded wire, each pot is protected with a U-shaped base and guard in the wire-cutting department of

Aluminum guard prevents solder pot from being knocked over and at same time serves as convenient hand rest for controlling immersion of wires in solder

Olympic's plant. The base of the holder is heavy sheet asbestos. The guard is riveted together from sheet aluminum and nailed to a U-shaped wood base fastened on top of the asbestos sheet.

Vacuum Metallizing Process

In plating or metallizing metals and plastics by high-vacuum evaporation, articles to be coated are placed upon suitable jigs and introduced into the chamber which consists of a bell jar, or in large industrial units, a steel tank. A small amount of the coating metal is placed on filaments arranged in the chamber.

The chamber is evacuated to the required degree of vacuum, and lowvoltage current is fed to the filaments. These become incandescent and heat the coating metal to a point where it boils and vaporizes;

FUN|GTIION$=F=\mathbb{F} I T T E D$

Aerovox offers the widest choice of function-fitted* impregnants. Examples:
For minimum size and average operating conditions, there are several wax impregnating compounds.
For minimum weight and size yet providing maximum reliability, there is Hyvol D.
For marked stability and reliability over wide temperature ranges, there is Hyvol M.
For utmost dependability under severe operating conditions, there is Aerolene.
For extreme stability, plastic film dielectrics are available.
For heavy-duty AC operation, there is synthetic Hyvol F.
Tell us what that capacitor is expected to do.
We'll select the impregnant best fitted to that function.

*
Aerovox engineers are allways ready to study your circuitry, assaciated components and operational requirements, if you wish. This can mean marked savings in component costs, along with the best choice of capacitors. Let us tell you about it.

AEROVOX CORPORATION
NEW BEDFORD, MASS.

H.O Division
OLEAN. N. Y.

WILKOR onision
 CLEVELAND, OHIO

[^14]

GUARANTEED

to produce a minimum attenuation of 100 db from 0.15 to 1000 mc . and to closely approach this attenuation at 10,000 megacycles.

PRE-BUILT, ready to install. Easy to enlarge or to relocate.

CELL TYPE or single shielded rooms for any requirement.

USED by top-ranking military and civilian equipment producers and laboratories throughout the world.

[^15]the metal vapor thus generated condenses on the articles in the chamber, producing a bright coating of microscopic thickness. When the coating is applied to only one surface of an article, it may be held stationary in the chamber. When a number of surfaces must be coated or where irregularly shaped pieces must be completely covered, rotary jigs are employed.

In at least 95 percent of applications, the coating metal is aluminum, although silver, gold, copper, zinc, chromium, cobalt, nickel, selenium, and in fact, practically any metal and many metallic compounds, as well as alloys, can be deposited in the same manner. Aluminum is distinguished by its low cost, availability, resistance to tarnish, high reflectance and ease of evaporation. One pound of aluminum will cover 25,000 square feet of surface. The thickness of the film is usually four millionths of an inch, although for special purposes it is possible to produce deposits ranging from half a microinch to forty microinches. In the case of plastics or other nonmetallic base materials where greater thickness is required, the vacuum evaporation method provides an ideal electrically conducting base for subsequent buildup by conventional electroplating.

The surface and hence the brilliance of the metal coating is governed by the smoothness of the surface to be coated. It is sometimes desirable to precoat the plastic articles, particularly where enhanced brilliance is desired. The costly buffing operation necessary to achieve brilliant electroplated finishes on metals may be totally eliminated by substituting an easily applied precoat.

Depending upon the type of service, it may be necessary to overcoat the aluminum coating to protect it from abrasion and strongly corrosive atmospheres. Both dip and spray methods are successfully employed in the application of organic topcoats and undercoats.

Overcoating offers the advantage that considerable variation in color is possible while retaining the metallic luster. For example, an amber-tinted topcoat will simulate a gold, copper or brass finish. The

PROBLEM: To locate vibration and measure it

SOLUTION: This sensitive, velocity-type MB Vibration Pickup

To lick vibration you've got to locate it first. That's a job for which the MB Vibration Pickup was developed. It has the sensitivity needed to detect the faintest vibration - the stamina to withstand the strongest.

When fastened to the product, component or structure under test, this pickup faithfully converts vibratory motion into elecrical output. Its signal can be seen and studied on the oscilloscope; or measured by meter such as the direct-reading MB Vibration Meter; or fed to vibration analyzer.

The pickup is usable from 5 to 2000 cps in horizontal or vertical operation. Magnetic damping assures calibration stability. Lightweight moving coil and low-friction pivot-

Illustrated here is the MB Type 122 Vibration Pickup developed for jet engine testing. it withstands $500^{\circ} \mathrm{F}$.
ing account for the pickup's wide range of serviceability.

Today, this unusual instrument is being found indispensable for accurate vibration detection. It's one more reason why MB is known as headquarters for the answers to vibration problems-including those in shake testing, measurements, vibration isolation and shock mounting. Full details on pickups in Bulletin No. 12+-5. Write us.

Double duty vibration exciter

Specification MIL-E-5272 and other vibration testing specifications can be met with the Model C-1 Shaker. It develops 50 pounds of force. An electromagnetic shaker, it features easy, continuous control of force and frequency. It also serves as a calibrator for vibration pickups.
The technique of calibration has been thoroughly presented in MB's booklet entitled "The Calibration of Vibration Pickups to 2000 cps." Send for Book let C-11-5.

THE STORY OF A HEW SCIENCE

Can it help you improve your products?

PRESS OR SQUEEZE piezo-electric materials, and they generate electricity. Conversely, charge them electrically and they change in dimension.
The use of such materials, in conjunction with electronic circuits, has created a virtually new science . . . Piezotronics. Modern Piezotronic systems enable manufacturers of dictating equipment and hearing aids to streamline their products. They help the Navy detect submarines, and inspectors detect flaws in materials. They provide a "memory" for computing machines, and a power source for users of ultrasonics.
Brush, the world's leading producer of man-made piezo-electric materials, has prepared this informative 24-page booklet describing Piezotronics, its many functions, and its broad application. Mail this coupon now for your copy of "Piezotronics". . . it may spark the product-development idea you have been looking for.

BRUSH ELECTRONICS
INDUSTRIAL AND RESEARCH INSTRUMENTS PIEZOELECTRIC MATERIALS - ACGUSTIC DEVICES MAGNETIC RECGRDING EQUIPMENT ULTRASONIC EQUIPMENT

COMPANY

formerly
The Brish DeveIopment Co. Brush Electronics Company
is an operating unit of
Clezite Corporation.

in instruments where reliability is imperative

where other materials fail

To assure maximum service life and accuracy, engineers at Lear, Incorporated, planned to protect their new vertical gyro-mechanism from corrosion by housing it in a completely inert and dehydrated atmosphere.

Sealing the housing, however, proved to be more easily said than done. Despite the most elaborate precautions, solder and flux fumes often penetrated the joint and contaminated the delicate mechanism. Once sealed, it was impossible to reopen the case without loss of the expensive cover and harness.
To both of these problems a simple and ingenious solution was found. A thin O-ring of Silastic molded to fit snugly under the cover flange is used to exclude the
corrosive fumes generated in soldering a metal strip over the entire joint. The Dow Corning silicone rubber O-ring is not damaged by soldering temperatures. And, the gyro-mechanism is just as accessible for repairs as the contents of a hermetically sealed can of coffee. Lear also uses a large ring washer of Silastic at each end of the housing to serve as resilient, shock-absorbing cushions for the apparatus at stratospheric temperatures.
And that's just one of hundreds of examples of how Silastic is used to improve the performance of products ranging from cable to traction motors, from domestic steam irons to aircraft.

CONDENSED SPECIFICATIONS

 Sinusoidal TypeRL-IIC RL-14MS
Total Resistance (ohms)
$16,000 \pm 10 \% \quad 35,400 \pm 1 \%$ Approx. \% Resistance within brush circle 85
$\begin{array}{ll}\text { Angle of Rotation } \\ 360^{\circ} \\ & 99 \pm \\ 360^{\circ}\end{array}$
Torque (Approximate)
$3 / 4$ oz.-in.
2 oz.-in.

Wire oz.-in.	20 oz-in.
80 Ni-20 Cr	$80 \mathrm{Ni}-20 \mathrm{C}$

Resolution
$0.4^{\circ}$$\quad 0.2^{\circ}$
Angular Accuracy
0.2
± 0.5
$\begin{aligned} & \text { Amplitude Aceuracy } \\ & \pm 0.8 \% \pm 0.6 \%\end{aligned}$ $\pm 0.8 \%$
Maximum Volts across winding $\begin{array}{ll}\text { Maximum } \\ 150 & 350\end{array}$ Maximum Speed 60 RPM 60 RPM Expected Life 350,000 cycles 200,000 cycles $\begin{gathered}\text { Diameter } \\ 25 / 8^{\prime \prime}\end{gathered} 43 / 8^{\prime \prime}$ length $125 / 32^{\prime \prime} 411 / 32^{\circ}$ Shaft Size \& Length $1 / 4^{\prime \prime} \cdot 11 / 4^{\prime \prime}$ Weight "1/4" 1 $4.75 \mathrm{oz}, \quad 1.8 \mathrm{lb}$

THE GAMEWELL COMPANY
Newton Upper Falls 64, Massachusetts

PRECISION POTENTIOMETERS

Manufacturers of precision electrical equipment since 1855

Long-nose pliers as modified for wire stripping
ing of the loosened insulation. The wire was too short to permit use of ordinary wire strippers after threading the unstripped wire through the grommet.

The problem was solved by developing a special stripping tool made from long-nose pliers. Stripping jaws were fastened onto the ends of the plier jaws with machine screws, and a hole was drilled and tapped through one jaw for a spacer screw that could be adjusted for cutting insulation on various sizes of wire without damaging the wire.

In the final technique used, the wire was stripped at one end, and this was soldered to its tube socket terminal under the chassis. The unstripped end of the wire was then pushed up through the grommet and held near the chassis with a pair of ordinary long-nose pliers. The stripping tool was now clamped over the end of the wire to cut the insulation, and pulled upward to strip off the insulation. The tool permits stripping as close as a quarter inch from the chassis.

Optical Thermometer for Induction Heating

A NEW heat detector permits full control of induction heating directly from work temperature even though the available target area is extremely small and the time cycle for heating is only a few seconds. A high-sensitivity thermopile provides high speed of response to all radiation from infrared to ultraviolet and focuses all wavelengths

51 ST YEAR OF CERAMIC LEADERSHIP AMERICAN LAVA CORPORATION

CHATTANOOGA 5, TENNESSEE

[^16]

SPECIFICATIONS

MODEL NUMBER
..BF 94 DDL-2
CAPACITY.. 250 CFM at . 5 " Static Pressure NAFM 330 CFM at $.0^{\prime \prime}$ Static Pressure
MOTOR (Self Cooling-Completely Enclosed) $1 / 8$ H.P., Capacitor Induction, 120 Volts, Single Phase, AC, 60 Cycles, 3200 RPM, Clockwise or Counter Clockwise.
MOUNTING \qquad Rigid Base
OVERALL
DIMENSIONS $727 / 32^{\prime \prime} \times 83 / 8^{\prime \prime} \times 101 / 8^{\prime \prime}$

Solving special problems

is routine at EAD
If your problem involves rotating electrical equipment, bring it to EAD. Our completely staffed organization will modify one of our standard units or design and produce a special unit to meet your most exacting requirements.

EASTERN AIR DEVICES,INC.
585 DEAN STREET, BROOKLYN 17, NEW YORK

Experimental setup of optical thermometer, here cimed between turns of work coil to measure heat of test sample inside
at the same point. Radiation outside the sharply defined target area does not reach the thermopile.

A double-mirror optical system permits sighting through a very small opening to spot the target area, which may even be as small as a pinhole. This means that the instrument can be aimed between the turns of the work coil for successful pickup of heat from the glowing part inside. The minimum object diameter is 0.1 inch at a 4 inch object distance and response time is 0.6 second to 99 percent of change. Ambient temperature may be as high as 350 F .
The detector, made by Leeds and Northrup Co. and designated as type 8891-C Rayotube, may be used either with a recorder or controller. Measuring ranges start from 800 F ,

Closeup view of detector and work coil of induction heating unit

for Real Uniformity, specify Sy/PMPOL: Ceramag. ferrite cohes!

Most ferrite core users have learned by costly ex perience, that it's one thing to obtain satisfactory samples-but quite a nother thing to have these sample cores reproduced in production quantities. But not at Stackpole!

Stackfole Ceramag ferrite cores are outstandingly uniform in every physical and elec-rical respect. The produztion unit is exactly like the sample. Each production unit is exactly like the cther.

In short, Stackpole has perfected control of the complicated problems involved in handl.ng ferrite materials. The result spells cores of outstanding uniformity in their electrical characteristics, highly accurate physical rolerances and with the ability to withstand excepticnally high temperatures without permeab.lity change for many specific uses.

Write for Stackpole

 Ceramag BulletinWrite for Stackpole
Ceramag Bulletin
FIXED ANO VARIABLE
RESISTORS—LINE \&
SUIDE SWITCHES
CERAMAG ${ }^{\otimes}$ ferrite CORES
IRON CORES
(Side-moldec, sleeve, cup, choke coil,
threaded and conventional types)
MOLDED COIL FORMS-
"GIMMICK" CAPACITORS, otc.

New equipment designed and sealed in nitrogen, due to high ambient temperatures imposed by miniafurization, poses a real temperafure problem for permeability funing cores as well as for I-F transformer and R-F cares. This is solved handily by Stackpole Ceramag cores thanks to the fact that they stand higher temperatures and show less drift than high-permeabilify iron cores.

Ceramag cores assure high permeability with ow losses in the supersonic-frequencyrange.

Jsed as center cores in powdered iron pot cores operating of less than 1 megacycle, Ceramag increases L by approximately 100% and increases Q on the order of 50%.

Secause Ceramag is more eosily safurated than conventional core materials, it is ideally suited for pulse generation, magnetic ampliFying and incremental permeability funing.

Wecent experience indicates that the unique characteristics of Stackpole Ceramag help materially in minimizing "rash" and interference when the cores are used in the filter systems of electrical equipment and tools. Inquiries are invited

There are many reasons why Industry specifies ADVANCE RELAYS: They meet or surpass Military and Civilian requirements - many types have AN approval-many are hermetically sealed -all are lightweight --small-rugged-compact - and all are precision-built for efficient, troublefree, long life pertormance.

If you have relay problems involving contact loads, coil resistances, close differential, timing features, input sources, critical environment or any particular requirements involving unusual or accurate circuit behavior, ADVANCE can supply the relay.

A complete line of relays for radar, radio, electronic and electrical equipment applications.

Write for new, descriptive

Catalog containing

 detailed information about ADVANCE Relays and facilities.
corresponding to $\frac{1}{4}$ millivolt, and can go up to 2600 F or higher depending on the recorder and controller ranges selected.

With this new aid to induction heating, reproducible results are possible regardless of variations in power input or other variables. Because final temperature is accurately measured, depth of hardness can be readily adjusted by varying power input. Initial setup is also expedited.

Measuring Small R-F Chokes

By T. L. Snowdon

Engineering Department Jetfers Electronics Division Speer Carbon Co., DuBois, Pa.

The measurement of small values of inductance has always been a problem, especially with regard to correlation. The nomenclature used to describe the inductance has varied, depending on the measurement method used. Such measurements are of increasing importance with the very small inductances used in uhf equipment.

During efforts to establish a standard line of small r-f choke

Testing small choke coils by using calibrated terminals on top of Q meter

Instruments

that complement the high quality

of fine electronic equipment

Available in all the typés, sizes, and ranges for all electronic and electrical built-in requirenents . . . including approved ruggedized panel instruments. Complete literature on request . . . WESTON Electrical Instrument Corporation, 615 Frelinghuysen Avenue, Newark 5, New Jersey.

Weston mane instruments

Simplify and speed the purchasing of all your electronic supplies and equipment. Send your orders to us af ALLIED—tre reliable one-supply-source for all your electronic needs. Depend on us for the world's largest stocks of special-purpose electron fubes, test instruments, audio equiprrent, electronic parts (transformers, capacitors, centrols, etc.) and accessories-everything for industrial and communications application, for research, development, maintenance and production. We make immediate sh pment from complete quality lines that are always in stock. Send today for your FREE copy of the 1953 ALLIED Catalog - the complete, up-fo-date guide to the world's largest stocks of Electronic Supplies for Industrial and Braadicast use.

coils ranging from 0.15 to 120 microhenrys, it was realized that some simple, easily-reproduced in-ductance-measuring method should be used so that anyone with ordinary equipment could be assured of close correlation.

For values where the inductance is large, so that the instrument calibration is fine enough to be a very small part of the tolerance, the common 1,000 -cycle inductance bridge (such as General Radio No. 667) may be conveniently used. These readings are easily reproduced and correlation is good. For coils of less than 10 microhenrys, however, the smallest inductance increment on such a bridge is too great a percentage of the total to be useful. It has been a common practice to use for such coils the Boonton Q meter and prepare the specification in terms of capacitance limits. Here it is difficult to name the coil inductance in coil terms; instead, each coil drawing specifies a different capacitance or frequency test.
The instrument chosen for pro-duction-line measurement of these small inductances is the Q meter because of its already widespread usage and flexibility. The Boonton $160 \mathrm{~A} Q$ meter is now equipped with a capacitance dial calibrated in microhenrys, and by proper choice of frequency, this dial can be read directly; however, the choice of connection method will radically alter the reading so that some standard holder is required. When this is done the inductance of the holder must be considered, as well as the internal inductance of the meter, due to its connections to the terminals. The inductance $B-C$ shown in Fig. 1 is the internal plug jig inductance.

By establishing a standardized

FIG. 1-Output circuit of Q meter

Speed assembly, inspection, testing and servicing

Save space, solve miniaturization problems, eliminate wiring errors and breaks

Save labor costs, eliminate many tooling, fabrication, and assembly operations; reduce inventories of materials and components
 nates-for many leading electronic manufacturers, large and small.

Tell us your current or future requirements and we will be glad to furnish samples and quotations on a strictly confidential basis. Our technical skill and modern production facilities are at your disposal.

Ask for Bulletin 26.

ETCHED PRODUCTS CORPORATION 3901 Queens Boulevard - Long Island City 1, N. Y.

ETCHED CIRCUITS • DIALS • NAME PLATES • PANELS • SCALES ESCUTCHEONS • BEZELS AND OTHER DECORATIVE METAL TRIM

FIG. 2-Construction of special terminal clips and brass calibrating bar
terminal which is easily operated, and properly accounting for the stray inductance thus added, it should be possible to make accurate, reproducible measurements of coils on the order of tenths of a microhenry. This was done by re-working a pair of "Rapid Test Clips" and equipping them with stops as in Fig. 2 so that the coil location will always be constant.

To evaluate the clip and meter internal inductance, a heavy lowinductance shorting bar was made up and its inductance calculated. Then by a measurement of the inductance of the entire combination, Q meter, clips and shorting bar, the clip and meter inductance can be defined. With this calibration, as it were, of the individual Q meter and clip combination, the dial reading of the Q meter becomes rather accurate for any inductance value. For one such combination, the correction to be considered is 0.028 microhenry. The subtraction of this amount from any reading made with the same combination will give an inductance figure which represents the coil alone. Of course, where this amount is small com-

Calibrating bar in place on Q meter
 of our success is reflected in the fact that the electronic field refers to the transformation of spectrum content into visual spectographic displays as the "Panoramic Method."

Panoramic leads the industry in producing instruments unexcelled for laboratory, research and production applications requiring high speed spectrum or waveform analysis. Whatever your problem, a Panoramic Analyzer solves it quickly, accurately. Specialized models covering audio to microwave frequencies simplify analysis of waveform distortions, sounds, vibrations, spurious oscillations or modulation, response characteristics of filters or transmission lines, characteristics of AM, FM or pulsed signals, or monitoring many frequency channels simultaneously

The new products described here, together with the complete lineup of standard Pano ramic equipment will be demonstrated at the I.R.E. Show.

Booth \#2-123

Models AP-1
\& LP-1-Panoramic Sonic Analyzers, Model SB-7 Panoramic Ultrasonic Analyzer, Pana-lyzors-Models SB-3 \& SB-8a, PanadaptorsModels SA-3 \& SA-80,
Model G-2-Sonic
Response Indicator.

ULTRASONIC RESPONSE INDICATOR-MODEL G-3

Used as an adjunct to the Model 5B-7 Panoramic Ultrasonic Analyzer, the G-3 permits visual inspection of amplitude versus frequency characteristics of networks and devices between 2 KC and 300 KC. Direct readings of frequency and amplitude. Indicates fundamental response only

SIGNAL SWITCHER—SW-1
Designed to apply alternately test and standard signals to Panoramic Sonic Analyzers. Enables frequency compari sons to within a fraction of a cycle Used with the G-2 Sonic Response Indicator, it facilitates rapid comparisons of the frequency responses of ampli fiers, filters, transmission lines, amp fiers, filters, transmission lines, etc

pared to the tolerance of the unit: under test, no consideration need be given. For a 0.10 microhenry coil, disregarding it can cause serious error.

This method is not as precise as might be desired for some laboratory work due to the tolerances on Q meter frequency and calibration and the distributed capacitance of the coil. It is possible to improve the precision by use of frequency standards and closer dial calibration. However, it does suffice for the majority of common ± 10 percent to $\pm \mathbf{2 0}$ percent small coils, and makes possible the convenient specifications and actual naming of the inductance in microhenrys, instead of indirectly in terms of capacitance or frequency.

TV Alignment Techniques

A LONG spring suspended from the ceiling supports the isolation transformer above the test bench in the television receiver alignment section of Olympic's plant. Input to the transformer is by coaxial cable from a sweeping oscillator, and output goes to a short length of twin-lead having a clothespintype connector that snaps over the lugs of the antenna terminals on the chassis. When not in use, the transformer moves up far enough to be out of the way when bringing

Operating tape-covered attenuator switches. Spring-supported isolation transformer, above forearm, is fed by output of sweeping oscillator

AT NORTH AMERICAN AVIATION

An airplane's rate of descent used to be painstakingly computed from photographs which took several days to evaluate. Then North American's electro-mechanical engineers developed Trodi (above) for the Navy for carrier suitability tests.

Trodi is an electro-optical Touchdown Rate of Descent Indicator that watches the airplane descend, measures its rate, and electronically readies its information so it's available the minute the pilot lands. Trodi's electronic brain saves untold time, men and money for the Navy.

Trodt is just one ingenious example of the challenging electronic and electro-mechanical work being pioneered at North American by some of the
nation's best scientific minds, using the most advanced facilities.

If you like theory, you may find an erciting and secure future at North American in the field of operations analysis, advanced dynamics, kinematics, noise, error or information theory, systems engineering, statistical quality control or servo analysis.

If research and development are your specialty, you'll find attractive opportunities in radar and communications systems, analogue and digital computers, automatic guidance systems or optics.

Write today, including a summary of your education and experience, to:

NORTHI AMERICAN AVIATION. INC.

Engineering Personnel, Missile and Control Equipment Department

NORTH AMERICAN HAS BUILT MORE AIRPLANES THAN ANY OTHER COMPANY IN THE WORLD

Visting IRE ?

for something really new, see these...

- high-speed magnetic tape handler
- high-speed "teledeltos" digital recorder
- plug-in decades, shift registers, frequency dividers
- four all-new frequency-time counters
- multiple sequence pre-determined counters
- photo-electric detectors
- high resolution 8 -mc chronograph

let's talk about your application!

Let Potter experts analyze and simplify your work in any phase of counting, timing. frequency measurement, data handling or control. In a very few minutes of your time, we can show you how a standard, low-cost, time-saving Potter Instrument can be applied in your work program. Why not consult us?

staying home?

Write for our catalog covering operating principles and typical applications. There is a Potter Instrument ideally suited to your needs. ADDRESS DEPT. 3.C

a new chassis on the bench.
To speed up the setting of attenuator switches on the Kay Electric Co. Marka-Sweep instrument when adjusting sound r-f transformers, television tester Simon Cohen has wound adhesive tape around the group of five toggle switches. With this, he can move the entire bank of five switches in one movement yet still move individual switches at either end of the group as desired.

Checking Torque of Adjusting Screws

The torque in ounces needed to turn each adjusting screw of an i-f transformer in both directions is measured with a simple balance setup in DuMont's incoming inspection department. The balance arm is a notched metal strip on which sliding weights can be hung. The arm is pivoted on ball bearings at its center and a screwdriver bit is clamped onto the front end of the shaft.

In use, a transformer is held up to the screwdriver bit so that an adjusting screw engages with the bit, and the transformer is turned. With one weight close to the pivot, the transformer is held so that the other arm is up on the air, and its weight is moved out until it is just far enough to turn the screw of the ferrite core. Next, this weight is moved in to the center and the other weight is moved out step by step to check the torque needed to loosen the screw in the other direction.

Bringing an i-f transformer up to the screwdriver bit on the shaft of the balance arm for checking furning torque

LOW POWER FACTOR

By the use of specially selected and processed plastic films for the dielectric and painstaking and meticulous craftsmanship in their fabrication, P-C Capacitors are available with extremely low power factors.

Capacitance stability and low dielectric absorption, coupled with high resistance and low temperature coefficient characteristics result in units of almost pure capacitance.

As a consequence, power factor is available as low as $.01 \%$ to $.02 \%$ in the audio range. Comparable Q values may be had up to 100 kc .

If your capacitor requirements call for low power factor, specify P-C Capacitors.

> Your inquiries are invied.

GET THIS Free CATALOG

This catalog of plastic film capacitors is yours FREE if requested on your company letterhead.

Plastic Caracitors, Inc.

PLASTIC FILM CAPACITORS - HIGH VOLTAGE POWER PACKS • PULSE FORMING NETWORKS 2511 WEST MOFFAT STREET - CHICAGO 47, ILLINOIS

NEW PRODUCTS

Edited by WILLIAM P. O'BRIEN

Control, Testing and Measuring Equipment Described and Illustrated . . . Recent Tubes and Components Are Covered . . . Forty-Three Trade Bulletins Reviewed

Ultrasonic Delay Lines

Andersen Laboratories, Inc., West Hartford, Conn., has developed a series of fused quartz ultrasonic delay lines for radar and electronic computer applications. These solid delay lines are available in bandwidths of 12 mc or greater and feature an extremely low ratio of spurious to desired signals. This can be held as low as - 50 db for special requirements. Insertion losses are also kept to a minimum, 34 to 50 d being characteristic depending on the terminating impedance necessary.

Subminiature Relay

Neomatic, Inc., 9010 Bellanca Ave., Los Angeles 45, Calif., in announcing its new dpdt relay, calls attention to its small size by this comparison shot with both standard and king-sized cigarettes. It is obtainable in the range from 50 to 1,000 cycles, operating on an input
of 115 v . Two models are offered: Model 10220, with a contact rating of 1 ampere, noninductive; and model 10320 , with a contact rating of 4 amperes, noninductive. All units are hermetically sealed with dry air or inert gas to withstand severe environmental conditions and insure long life. Optimum operation is in the temperature range from -55 C to $\pm 85 \mathrm{C}$. Weight is 1.51 oz ; diameter, 1.0 in .; and length, 1.71 in . It connects with 9 -hook or 9 -pin header. The a-c relay is especially suited to aircraft applications but may be used for remote control mechanisms in almost all military or industrial applications.

Printed Circuit

Circuitron, Inc., 400 Ninth St., Hoboken, N. J. The Circuitron is a new type of printed circuit using a radically different method of bonding the pattern to the insulating base. The conductive pattern can be run from one side of the base material to the other by plating through holes, maintaining circuit continuity without the need for eyelets or other hardware. This permits crossovers, greater design flexibility, and easy adaptation to single-dip soldering. Copper, silver and other metals in any specified thickness can be used for the con-

OTHER DEPARTMENTS
featured for this issue:

Page
Electrons At Work...... 160
Production Techniques . 274
Plants and People...... 428
New Books 472
Backtalk 492
ductive circuit. The pattern can be overplated with nickel, silver, rhodium or gold. The conductive pattern can be applied to such base materials as phenolics, melamines, silicones, polystyrene, polyesters and Teflon. Circuitrons can be cus-tom-engineered and produced in quantity for a wide variety of electrical and electronic applications.

Miniature C-R Tube

Beam Instruments Corp., 350 Fifth Ave., New York, N. Y. The Cossor type 1CP1 is a miniature cathode-ray tube with a lock-in (B8G) base. The focusing of the beam is automatic and only one anode potential is required. For simple display purposes the grid bias is most easily developed by inserting a resistance of about 10,000 ohms in the cathode line of the tube ; thus the excitation of the tube is exceedingly simple. Also, the

Make your U HF circuils as simple as VHF designs...

 Use these two New Sylvania Tubes in tuners and converters

Equipment Manufacturers! Simplify design of combination VHF-UHF tuners, UHF converters for TV! Two new Sylvania-developed tubes permit adaptation of conventional amplifier-mixer-local oscillator circuit to the new frequency bands-completely eliminate complicated switching arrangements or stage duplication. Leading Tuner Manufacturers have adopted these types for current tuner production.

- Short Bulb T-5 $1 / 27$-pin miniature construction
- Requires no special socketry
- Designed for use at frequencies up to 1000 mc
- Double plate and grid leads
- Uniformity at high frequency means lower cost and better availability
THE SYLVANIA 6T4 is designed for use as a local oscillator at frequencies up to 1000 mc . Used as the companion tube to the 6AN4, it makes possible the design of extremely simple combination tuners and UHF converters.
THE SYIVANIA GAN4 can be used both as an rf amplifier and as a mixer. Its performance in the VHF band is equal to or better than previously existing types of tubes, and in UHF tuners it gives comparable performance to VHF tuners.

The 6AN4 is designed for both high g_{m} and high mu. Under representative operating conditions as a Class A amplifier, the transconductance is 10,000 micromhos and the amplification factor is 70 .

When used as a mixer, the 6AN4 offers the advantages of a conversion gain and of relatively low oscillator drive requirements.

Complete technical information on operating characteristics, including performance curves, is included in the manual, "Syluania's UHF Story." A copy is yours for the asking. Write to: Sylvania Electric Products Inc., Dept. 3R-1003, 1740 Broadway, New York 19, N. Y.

Representative block diagram of combination VHF-UHF tuner using the new Sylvania 6AN4 as rf amplifier and mixer, and the $6 T 4$ as local oscillator.

COMPARATIVE PERFORMANCE OF THE GAN4 AT VHF AND UHF

CONDITIONS	vOLTAGE GAIN	nOISE FIGURE
Single tube in Channel 13 booster	VHF $\left\{\begin{array}{c}5 \\ \hline \begin{array}{l}\text { Two tubes in cascode } \\ \text { in Channel } 13 \text { booster }\end{array} \\ \begin{array}{l}\text { Single tube in open half-wave } \\ \text { tuned omplifier at } 450 \text { me. }\end{array} \\ \begin{array}{l}\text { Single tube in open half-wove } \\ \text { tuned amplifier at } 900 \text { me. }\end{array}\end{array}\right.$	UHF $\left\{\begin{array}{c}12 \mathrm{db} \\ 10 \mathrm{db}\end{array}\right.$

Curve shows representative relationships between conversion gain and input VSWR of the 6AN4 when used in mixer service, plotted against oscillator injection voltage.
heater cathode insulation is such that up to 250 v may be applied between them and this simplifies the derivation of the heater voltage. This tube is intended to be incorporated for monitoring purposes in a wide variety of electronic equipment to permit the observation of waveforms in various stages of complex circuits.

Harmonic Generator

Computing Devices of Canada Ltd., 338 Queen St., Ottawa, Canada. Type C020 harmonic generator is a new instrument designed to produce electronically a sine waveform with a frequency of 400 cps and the 2nd, 3rd, 4th, 5th and 7th harmonics of this frequency. The phase of each harmonic voltage is independently adjustable over a range of 360 deg with respect to the fundamental. This generator is designed as a piece of demonstration equipment to be used in conjunction with a cathode-ray oscilloscope for the production and analysis of complex waveforms.

Pulse Forming Network

PCA Electronics, Inc., 6368 DeLongpre Ave., Hollywood 28, Calif. The PFN 7030 B pulse forming network, presently being used on
radar, missile and computer applications, measures only ${ }^{5} 5 \mathrm{in}$. in diameter and $1 \mathrm{~T}_{8} \mathrm{in}$. in length. Its small size plus two convenient $1 \frac{1}{4}-\mathrm{in}$. No. 22 solid copper-tinned leads make mounting easier, especially when used in miniaturized circuits. It has an impedance of $1,050 \mathrm{ohms}$ and forms a $0.15-\mu$ sec pulse when used in a suitable circuit. They are also available with pulse widths from 0.02 to 20 ..sec. They will operate satisfactorily in ambient temperatures that vary from - -65 to +105 C .

Full-Wave Rectifier Tube

National Electronics, Inc., Geneva, IIl., has announced a new high-current full-wave rectifier. This tube, designated as the NL606, carries 6.4 amperes $d-c$ and 25.6 amperes peak rating. It was designed especially for industrial power rectifier applications requiring higher voltages up to 900 v peak inverse or 250 v d-c. The NL-606 is gas and mercury filled for quickstarting, long-life, and high peak inverse within wide temperature limits. Other ratings are: filament voltage, 25 v ; filament current, 17 amperes; and peak inverse voltage, 900 v.

General Purpose Speakers

James B. Lansing Sound, Inc., Los Angeles, Calif., is now producing the D-130-15 in., D-131-12 in. and $\mathrm{D}-208-8 \mathrm{in}$. general purpose speakers. Power output for D-130 is 25 w ; for D-131, 20 w ; and for D-208-12 w. Impedance for the D-208 is 8 ohms ; and for the D-130
and D-131, 16 ohms. Voice coil diameter is 2 in . for the D-208 and 4 in. for the D-130 and D-131. A new principle of magnetic structure design has been incorporated in the units. It utilizes a special pure iron high-intensity casting structure, producing a greater usable flux density.

Seusitivity Tester

Service Instruments Co., 422 South Dearborn St., Chicago 5, Ill. The SensiMeter is a tester that accurately measures the sensitivity of any ts receiver in microvolts. Its scale is divided into very sensitive receiver, medium sensitivity and insensitive receiver, to enable the serviceman to quickly determine the condition of the receiver. Checking receivers from antenna terminals to picture tube, it is an excellent method of determining the cause of bad pictures in fringe areas.

UHF Antenna

Rytel Electronics Mfg. Co., 9820 Irwin Ave., Inglewood, Calif., has

${ }_{t r}$ RIGHT COMBINATION for $^{\text {ren }}$ maximum performance at minimum cost

NO SPLICES. As always, plastic-base Audiotape in 1200 and 2500 ft reels is guaranteed splice-free.

NO FRICTION SQUEAL. Perfected anti-fric. tion process eliminates annoying tape squeal-prevents "tackiness" even under extreme temperature and humidity conditions.

MINIMUM DISTORTION. Audiotape's oxide coating is especially formulated to give maximum undistorted output. Comparative tests show its marked superiority in this respect.

MAXIMUM UNIFORMITY. All $7^{\prime \prime}$ and $10^{\prime \prime}$ reels of plastic-base Audiotape are guaranteed to have an output uniformity within $\pm 1 / 4 \mathrm{db}$ - and a reel-toreel variation of less than $\pm 1 / 2 \mathrm{db}$. And there's an actual output curve in every 5 -reel package to prove it!

PRECISION TIMING. Improved reel design with $23 / 4^{\prime \prime}$ hub reduces timing errors by eliminating the tension and speed changes formerly encountered at the beginning and end of the winding cycle. Ratio of OD to hub diameter is the same as the standard NAB 2500 ft reel.

CONSTANT PITCH is another advantage of the new reel design resulting from the more uniform tape speed throughout the winding cycle.

SLOWER ROTATIONAL SPEED, due to larger hub diameter, minimizes vibration and avoids possible damage to tape on fast forward and rewind.

REDUCED HEAD WEAR can also be expected, because the maximum tape tension is materially decreased.

This new 1200 ft plastic reel with $23 / 4^{\prime \prime}$ diameter hub is now being supplied on all orders for $7^{\prime \prime}$ reels unless otherwise specified... at no increase in price. Remember - with Audiotape, there's only one quality - the finest obtainable! Audiotape is available in all standard size reels from 150 to 5,000 feet.

444 Madison Ave., New York 22, N. Y.
Export Dept. 13 East 40th St., New York 16, N.Y., Cables "ARLAB"
audiodises audiotape audiofilm audiopoints

Pulses are here to stay. In a few short years the pulse-forming network has replaced the grid-leak, the artichoke has superseded the slowpoke choke. Waveforms are no longer sinusoidal, they're spinusoidal \qquad (Ever been bit by radar? Very sharp pips in that there.)

The high-sounding term "Pulse Techniques" calls to mind a keen, up-to-the-minute, young engineer pawing at the threshold of tomorrow, but one of the oldest families in this business is the Pulse family. One of the early American graphic artists, a Mr. S. Finlay Breed Morse, amused himself by arranging a communication system based on a Pulse Code, the transmission of which was electrical and the reception magnetic. This was in the 1840's.

In communication, pulses are still very popular. An estimated 10^{63} of them are made and shipped annually. Many of them -2 get worn quite round風 by distributed constants, some are split and distorted and others are lost altogether.

There is, of course, in any pulse communication system, an attempt to restore or reform tired pulses. Moderately bad ones can be squared up by passage through a relay. By twisting knobs, either on the relay or on its bias supply, it is even possible to restore original width to a tired pulse. The trouble is, relays having cured amorphia, often give pulses schizophrenia, palsy, and Heaven knows what else.t

Considering how advanced the electronic side of the Pulse art is, and how good loud-speakers (and scopes) are, it's a wonder that the dirty telegraph relay hasn't been improved in 30 years. Of course, the English and the Germans
have some excellent models, but they probably only work on English and German pulses

Aside from self-destruction, there are three basic weaknesses in the usual telegraph relays which have largely limited the transmission rate and usefulness. First, the transfer time is stolen from the pulse, for which the 5% or 10% usually allowed is a nuisance.t Then there is bouncet, which hurts the relay contacts and robs more pulse time. Finally, there is a mechanical oscillation of the armature-contact system after make. + This has a very definite frequency which, in a common telegraph relay, is about 150 c.p.s. This persists so long that it introduces lead or lag at the leading edge of the following pulse, depending on the elapsed time between.

Obviously, in a long circuit, all the faults are cumulative if the relays all have similar characteristics. One very common American telegraph relay avoids reverberation at the expense of high frequency bounce and slow transfer, which minimizes the mischief, but it is an expensive monster. The foreign types, by intelligent design, have eliminated bounce and raised the reverberation frequency to about 1000 c.p.s., at the expense of contact capacity and life.

We have a prototype in development now which takes the reverberation frequency over 2000 c.p.s., doesn't bounce at all, and transfers $.005^{\prime \prime}$ in .3 millisecond. This allows 75% efficiency at 400 c.p.s. pulse rate or 1000 words a minute. The contacts have limited life, but the ease of replacement and adjustment may well justify its use in the pulse-market.
+4 basic feature of Sigma Type 77 OZ telegraph relay
announced the Double-O uht antenna. Circular construction means greater directivity along a horizontal plane, a 1 -db gain over single dipole, a low pickup response in vertical directions and effective reduction of ghosts, because noise, multipath and other signals which arrive at an angle other than perpendicular to the plane of the circle cancel out at the terminals. With the two circle antennas fed 90 deg out of phase, an additional gain of 3.8 db for each circle of antenna is obtained. This, plus the $1-\mathrm{db}$ gain over the single dipole for each circle, yields an overall gain in the forward direction of 5.8 db . Since the dielectric of the Double-O is air (no fragile or expensive insulators), and since the unit is supported at a current node (ground potential), there can be no mechanical or electrical breakdown.

Vectorlyzer

Advance Electronics Co., P. O. Box 394, Passaic, N. J. Type 202 Vectorlyzer is based on a new fundamental circuit that permits unusual speed and accuracy for measuring vector relations of alternating voltages. It may be used to measure vector sum or difference of two voltages, phase angle between two voltages, imaginary and real components of an unknown voltage in terms of reference voltage. Frequency range is 8 cps to 2 mc through panel binding post, 20 kc to 500 mc through probe. Input impedance at the probe is $2.5 \mu \mathrm{uf}$ shunted by 100,000 ohms; at the panel binding post, $14 \mu \mu \mathrm{f}$ shunted by 1.0 megohm. Voltage range through post is $0.06,0.6,660$, or 600 v full scale; through probe, 0.6 , 6 or 60 v full scale. Accuracy of the instrument is ± 2 percent

X-BAND RADAR KLYSTRONS

Nou in full production...

guaranteed specifications - quantity prices - assured delivery

Rugged local oscillator for mobile radar. Highly non-microphonic. Shaft tuner; no chatter or backlash; excellent for motortuned systems. Reflex, 8.5-10.0 kmc, replacing Varian V-50.

For radar, beacon or low-power transmitter operation under severe mechanical punishment. Lock-nut tuner holds the tube on frequency even under shocks of several hundred g. Reflex, 8.5-10.0 kmc, replacing Varian V-51.

For high altitude or high humidity applications. Silicone-rubber-potted base and re-
V. 290 flector connections instead of conventional base and reflector cap. Electrically identical with V-260 and V-280.

Reflex tube for test and measurement work at x-band. Integral tuner covers the full frequency range, 8.2-12.4 kmc. Typical power output is 150 mw over the band, 500 mw at center frequency.

[^17]

TRADE MARK

Detailed data sheets available Write Varian Associates, Code AAAX, 990 Varian Street, San Carlos, California

maintenance and replacement are simplified with Fairchild

plug-in potentiometers

These plug-in type ganged porentiometers are another excellent example of Fairchild's service in meeting the special requirements of customers. The problem was to provide ganged precision potentiometers that would simplify maintenance of airborne fire control equipment through quick and easy replacement. A series of packaged plug-in units like that shown was the answer.

An entire gang can be replaced in a few minutes because only the end mounting plates are fastened down. There are no wires to disconnect or solder. Test points are provided on the top of each potentiometer so it can be checked quickly.

Maximum rigidity of the gang is assured by mounting the individual units on a single shaft. These plug-in potentiometers have the same mechanical and electrical tolerances and performance characteristics that have made the Model 746 unit the first choice for many critical applications.

Use the coupon below to get full information.

SEE THESE PLUG•IN UNITS AND OTHER INTERESTING DEVELOPMENTS IN PRE. CISION POTENTIOMETERS AT THE I. R. E. SHOW-BOOTH NOS. 2-405 AND 2.406

through panel binding post, and $\pm 1 \mathrm{db}$ through probe.

Base Station Antemnas

Mark Products Co., 3547 Montrose Ave., Chicago 18, Ill., has available a line of omnidirectional vertically polarized high-gain base station antennas for the communications services in the 150 and $450-\mathrm{mc}$ regions. Based upon a new colinear stacking and feed design that permits high gain and excellent bandwidth performance at low cost, the units are available as standard production items for the 148 to $174-\mathrm{mc}$ and 450 to $470-\mathrm{mc}$ bands. Both three element and seven-element arrays are in production providing a 4 db and 7.2 db gain over a halfwavelength dipole. They are designed to withstand $100-\mathrm{mph}$ wind relocity with $\frac{1}{2}-\mathrm{in}$. radial ice load.

Amplifier Unit

Yfllow Springs Instrument Co., INC., P. O. Box 106, Yellow Springs,

Ohio. Model 201-A six-channel amplifier unit is a portable, (69 lb complete with power supply), selfcontained system used primarily for the accurate measurement of such physical phenomena as strain, pressure, acceleration, vibratory displacement and velocity. It consists of six individually excited, threestage, single-channel amplifiers, with output metering and overload indicating circuits and with linear and integrated amplification employed to provide for the use of a wide variety of pickup devices; a separate electronically regulated power supply providing both a-c and d-c power to all channels; a shock mounted cabinet with power plugs for inserting the single channel amplifier units and the necessary power and test cable assemblies. Recording of the amplifier output is usually accomplished by a recording oscillograph, a tape recording device or similar recording instruments.

Infrared Meter

General Electric Co., Schenectady 5, N. Y., has developed a new infrared meter designed to measure radiant-energy intensities up to 10 watts psi. Designated as type DW69 , the meter is especially suited for determining in a matter of seconds the intensity of high range, radiant energy sources and for studies of infrared radiation effects concerning absorption and transmission properties of materials. The pocketsized instrument's operation is simplified because no separate thermopile or other accessory equipment is needed. Accuracy is ± 5

Sensational Advancements In Science \& Industry

 Created the Need for the New Stabelex "D" CAPACITORS INDUSTRIAL CONDENSER CORPORATION Stabelex "D" Capacitor Catalog may prove to be the most important new single piece of literature for you this year!Curve \#1110, shown at right, is of particular interest and illustrates the long self time constant of Stabelex "D". The time constant of the 10 MFD capacitor illustrated on this curve is 200 days, or 4800 hours. This curve represents measurements on capacitors allowed to stand at normal room conditions of temperature and humidity. This, therefore, represents the time constant of these capacitors under normal conditions of operation.
Performance curves illustrating various characteristics of the Stabelex "D" Capacitor will appear in this magazine each month.

OUTSTANDING FEATURES

INSULATION RESISTANCE AT 20° C. AFTER THIREE MINUTES CHARGE- 900,000 megohm microfarads
INSULATION RESISTANCE AT $75^{\circ} \mathrm{C}$ - $-78,000$ megohm microíarads
INSULATION RESISTANCE AT- $75^{\circ} \mathrm{C}$.-In excess of 5 million megohm microfarads
CHANGE IN CAPACITANCE FROM 25° C. TO $-80^{\circ} \mathrm{C} ;+0.76 \%$
SELF TIME CONSTANT OF 10 MFD CAPACI-
TOR-4800 hours
Q AT 50 KILOCYCLES- 10,000
POWER FACTOR AT $1 \mathrm{KC}-0.00025$

SEND FOR CATALOG 1117 TODAY

After a long period of research, Industrial Condenser Corporation now offers to industry for the first time the first of their family of Stabelex capacitors, stabelex "D", which has been produced for special applications for some time.
Complete information performance curves, characteristics, and suggested applications of the various types now available will be found in this catalog.

INDUSTRIAL CONDENSER CORPORATION

damped control motor

SERVOMECHANISMS, Ins. Type I7ID2-8 is a balanced 2-phase, 26 -volt, 5500-RPM, 400 -cycle damped induction motor employing a drag cup and an axially adjustable magnet to achieve velocity damping. This design provides for variable and smoothlinear velocity damping and lower operating temperature. The desired degree of viscous damping is achieved by opercting setscrew odiustment.

The non-damped induction control motor 1712-8 of 8,0J0 RPM is also ovail able.

OTHER INSTRUMENT MOTORS

..... Hysteresis Synchronous design, Type $17 \mathrm{HI}-8$ for 26 volts ond Type 19 H for 115 volts in speeds of $8,000,12,000$, and 24,000 RPM ore available for various opplicotions. Special windings ond e>ternal shaft configurotion con be provided on request.
percent of full-scale value over a response range of 300 to 3,500 millimicrons $(3,000$ to 35,000 angstroms).

Miniature Vacuum Capacitors
Jennings Radio Mrg. Co., 970 McLaughlin Ave., San Jose 8, Calif. A full line of miniature vacuum capacitors is now available in both fixed and variable types. These new low-voltage units, rated at 3 kv and 5 kv , are characterized by small physical size, negligible power factor and extremely wide capacitance ranges. For example, one variable unit has a capacitance range of 5.5 pu.f to 1,000 y.uf.
 250 w. . . and is only 4 in . long. The fixed JCSL series and the variable UCSL series are both available in capacitances ranging up to 2,000 p.ef.

Telephone Type Relays

Potter \& Brumfield, Princeton, Ind. Newly developed MJ series miniature telephone type relays, available open or hermetically sealed, have been announced. The

Mechanically

 Right...
$\sqrt{\text { ICKERS RECIFIIERS }}$

Are Better For Your Product

Precision hydraulic equipment aligns and compresses cells into "stacks". Sperial steel studs keep stacks tight and true.

Dimensions are exact, mountings accurately aligned, for easy assembly in your product. Terminals-for bolting or soldering-are precisely positioned for your connections. Tínned termincls speed soldering. Color code eliminates wiring errors. Protective finishes, plating of exposed metal parts, guard electrical quality, prolong service life. Shock and vibration tests-to military specificationsprove the mechanical durability of Vickers Selenium Rectifiers.
more reasons why VICKERS makes a better rectifier:

- 255 tests and inspections guard quality from start to finish
- Automatic electro forming "prestresses" cells
- Precision-matched cells prevent over-loading-overheating

Write for Bulletin 3000. Vickers engineering service is available witheut obligation.

ICKERS ELECTRIC DIVISION

A UNIT OF THE SPERRY CORPORATION 1801 LOCUST STREET - SAINT LOUIS, MISSOURI
new construction features longer, more flexible contact arms resulting in a lower spring load rate. This combination permits wider contact gap, more orertravel, improvement in sensitivity, faster action and longer life. The M.J series is available with a maximum of 4 Form C contacts for either d-c or 60 cycle a-c operation. Coils are furnished up to a maximum resistance of $22,-$ 000 ohms. Insulation resistance is better than 1,000 megohms and breakdown is tested at 500 v rms . The open relay measures 1 in. wide, 1 読 in. long, by 1_{16}^{3} in. high.

UHF-VHF Antenna

The Brach Mfg. Corp., Division of General Bronze Corp., 200 Central Ave., Newark, N. J., announces the No. 481 Dual -V antenna designed for both uhf and vhf areas. The construction features perfect balance at the mast point for minimum strain and maximum life. Elements are made of high-strength aluminum with resilient plastic insulators to prevent breakage from wind gusts. The antenna has a gain of approximately 8 db at uhf and a directional pattern at uhf which is like that of a 6 -element conical at vhf. On vhf the pattern is nondirectional and the efficiency averages about that of a dipole.

Stereophonic Recorder

Ampex Electric Corp., 934 Charter St., Redwood City, Calif., has in-
is your problem, remember...from

Peanuts to Power

From the tiny peanut tube in hearing aids to the Iremendous power producer in transmitting equipment . . . in almost every tube . . electronics manufacturers turn to Nickel to improve performance.

In cathodes, side rods, lead wires, grids, sleeves, comecting straps...in virtually every part ...il's Nickel's special qualities that make that part do its special job...and do it better.

10 Reasons Why Nickel Improves Tube Life

- Excellent forming quality. Simplifies production of precision parts.
- Strong, spot-welded joints practically free of oxidation.
- Strength to maintain precision despite handling in mounting parts.
- Rustproof in handling and storage. Corrosion resisting to solvents in cleaning.
- Lower gas content. Faster evacualion because gas can be removed at higher temperatures.
- Greater strength at high evacuation temperatures without crystal change, means less change in dimensions and tube constants.
- Better electron emission from coated nickel cathodes.
- Better carbon coating adherence with less embrittlement of strip.
- Conducts heat better at elevated temperatures.
- Good damping characteristicsminimizingmicrophonic effects.

Al. of which means an electronic tube made with Nickel Alloy romponents can perform better, whatever its application.

Perhaps there's a Nickel or a Nickel Alloy that will help improve your product's performance. There's a concise booklet available-"Inco Nickel Alloys for Electronic Uses" - which may answer your questions. Send to Bruce Winter for your copy today. Also, if you have a special metal selection problem, just write giving full details.

The International Nickel Company, Inc., 67 Wall Street, New York 5, N. Y.

Inco Nickel Alloys

MONEL ${ }^{\circledR}$ - "R"® MONEL • (" ${ }^{(®)}$ MONEL • "KR" ${ }^{(®)}$ MONEL " $\mathrm{S}^{\prime *}$ (®) MONEL • NICKEL • LOW CARBON NICKEL • DURANICKEL ${ }^{\circledR}$ INCONEL® - INCONEL "X" ${ }^{(®)}$, INCOLOY® ${ }^{\circledR}$ NIMONICS®

No matter how marginal the weather, planes land safely on fields equipped with TVOR. This new let-down facility keeps your airport operating through rain, low ceilings and restrictions to visibility-extends its usefulness by 40%. TVOR provides all the security of VOR-at less than one-fourth the cost.
TVOR was developed to meet the needs of small and medium-sized airports. Its single installation provides a terminal omnidirectional radio range that can be installed in an inexpensive shelter directly on the airport.
Any plane with standard VOR instrumentation can make positive approaches to a TVOR equipped field. On course indication is steady. Over the station cone is definite. Fifty watts of antenna power provides ample coverage for omnirange navigation. TVOR is built by the Maryland Electronic Manufacturing Corporation, producers of similar installations for the CAA.
The cost of a complete TVOR installation is less than a quarter that of VOR. Yet the components are of the same high quality and the system is given the same rugged tests!
Corporation, municipal and private airfields can't afford to be without the safety and convenience of this all-weather let-down facility. Installations are ready for 90 day delivery. Write or call today for further information. Or flight test and inspect the equipment at the College Park Airfield.

Ches)

TVOR changes faipm weather to all weather airline service.

TVOR guides corporation aircraft safely to their home flelds, in spife of low ceilings.

TV, \mathcal{R}^{-1} works with standsrd instrumentafion. Private planes "home" on their own airfleld
troduced a stereophonic recorder having the same performance characteristics as the model 403 magnetic tape audio recorder. The new model, known as the 403-2, employs a dual track head assembly that records or plays back two separate channels simultaneously. Thus, material recorded by two properly placed microphones may be played back through two similarly spaced loudspeakers to give sound a directional effect. This third dimension of sound provides a realism comparable to the visual realism obtained from stereoscopic photography. The two-speed machine is supplied as a three-case portable or for rack mounting. Performance characteristics include $7 \frac{1}{2}$ and 15 in. per second tape speeds ; solenoid control of all pushbuttons, permitting full remote control; built-in preamplifiers for microphone and bridging low level lines; frequency response to 15,000 cycles at $7 \frac{1}{2}$-in. tape speed and signal-to-noise ratio over 55 db as defined by NARTB standards.

Beam Power Tube

Radio Corp. of America, Harrison, N. J. The 12V6-GT is a beam power tube of the heater-cathode type intended primarily for use in thenut put ampliier of automobile radio rocoivers operating from a $12-\mathrm{v}$ stora ge battery. A single 12V6-GT oper"ated with a plate and screen volt: age of 250 v can deliver a maximurr 1 -signal power outrat of 4.5 w with 1 a driving voltage of only about 12 v . These features together with tr ie relatively low plate-current d rain make the tube especially suit-

ELECTRONICENGINEERS

Designed with your needs in mind ... a professional portable recorder
and amplifier in a single case. Easier to handle, lightweight, ruggedly
constructed to take the most difficult remotes, the Voyager insures perfect recording in field or engineering laboratory.

Professional Quality-Frequency response up to $\pm 2 \mathrm{db}$ from 50 to 15,000 cycles per sec. at 15 in . per sec. tape
able for use in the output stage of automobile receivers.

Two-Way Radio Packset

Industrial Radio Corp., 428 N. Parkside Ave., Chicago 44, Ill., has introduced a portable two-way radio packset for industrial, police, fire, utility and conservation department applications. The Pak-Fone, consisting of a powerful 8-tube transmitter and a sensitive 15 -tube receiver, is completely self powered. It conforms with FCC licensing regulations and is designed to provide dependable two-way radio-telephone communication between other portable stations, mobile or fixed stations. Optional power supplies permit the unit to be used also as a mobile station with a 6 -v automobile battery as the power source or as a fixed station using 115 v a-c for power. The Pak-Fone is designed to operate in either the 25 to $50-\mathrm{mc}$ or the 152 to $174-\mathrm{mc}$ bands.

Miniature Thermostat

Fenwal Inc., Ashland, Mass. A tiny thermoswitch, available in both
speed. The amplifier has bridging input and one low impedance mike input with 600 ohm balanced output. Switch for 2 -speed equalization ($71 / 2^{\prime \prime}$ and $15^{\prime \prime}$) and headphone monitor jack on front.
For demonstration see your Classified Telepione Directory under "Recorder," or write Magnecord, Inc.

New! The first automatic continuous recorder . . . up to 4 channels on a standard $1 / 4$ inch tape. For commercial and industrial monitoring of communications. Precision engineered and JANized
for CAA. Magnecorders also available for one and 2 channel moniforing.

Write for complete details

Fllagnecond in.

Dept.E-3 - 225 W. Ohio Streat - Chicago 10, lllinois rectangular and cylindrical models, has been designed for precise temperature control and overheat detection in instruments and precision mechanisms where minimum volume and weight are important. Depending on the thermal and electrical characteristics of the particular system, temperature control to within 1 deg F is readily attainable, since the inherent thermostat sensitivity is actually less than 1 deg. F. Fither model may be set at any temperature in the range from 0 deg to 200 deg F by turning an adjusting screw. A high resistance to vibration permits the miniature units to maintain accurate control under vibration conditions of 5 g 's

The famous Magnecorders -
Standard of Broadcastors

Quality anowsaut messroms

FOR CRITICAL ELECTRONIC REQUIREMENTS

ANY RESISTANCEROTATION CURVE

Prior to molding, the composition of the resistor ring may be varied to produce any resistance-rotation curve. After molding, the resistance is permanently fixed. There are no soldered connections. Shaft, faceplate, and other ferrous parts are stainless steel.

If your electronic circuits require a noiseless, adjustable resistor with long life and permanent characteristics ... if you need a rheostat or potentiometer which is unaffected by heat, cold, moisture, or hard use . . . the Allen-Bradley Type J Bradleyometer is the logical answer.

It is not a film or paint type resistor. The molded resistor does not become noisy with age. The carbon contact brush actually improves with use. Type J Bradleyometers are available in single, dual, and triple unit assemblies.
Allen-Bradley Co., 110 W. Greenfield Ave., Milwaukee 4, Wis.
A $\cdot B$
ALLEN-BRADLEY FIXED \& ADJUSTABLE RADI'O RESISTORS Sold oxdurively to mentatatreses

NEW PRODUCTS

(continued)
at 50 to 500 cps . Both models are rated at 2.5 amperes at 115 v a-c or 2 amperes at 28 v d-c.

VTVOM

Allied Radio Corp., 833 W. Jackson Blvd., Chicago 7, Ill., announces a new, Knight vtvom kit. Designed for maximum versatility, the unit has 6 ranges for measuring a-c peak-to-peak volts. It also includes 6 ma ranges and 5 capacitance ranges-29 ranges in all. Frequency response is as high as 2.5 mc, adequate for servicing tv circuits as well as audio units. Complete instructions include schematic pictorial diagrams for easy assembly and wiring. The unit reads up to $1,000 \mathrm{v} \mathrm{d-c}$ and $2,800 \mathrm{v}$ a-c ; to 1,000 megohms and 5,000 u.f. Stability is assured by use of one zero setting for all d-c ranges. Special probes are available for extending the d-c range to $30,000 \mathrm{v}$ and for extending the a-c range to read r-f to 200 mc .

Miniature Delay Line

Advance Electronics Co., P. O. Box 394, Passaic, N. J. Type 507 was developed to meet the increas-

For almost four decades, BUSS has specialized in the production of fuses that are unexcelled for dependability and quality. Today, this experience and forward-looking BUSS research combine to give you the most complete line of fuses for modern needs.

Your added assurance of BUSS dependability is the rigid testing every fuse must undergo. Sensitive electronic testing devices check BUSS fuses for proper construction, correct calibration and accurate physical demensions.

Turn To BUSS Engineers With Your

 Fuse Problems.They will be glad to assist you in selecting the fuse to do the job best ... and if possible a fuse that will be available from local wholesaler's stocks.

If your protection problem is still in the engineering state, tell us current, voltage, load characteristics etc.

BUSSMANN Mfg. CO., Division McGrau Electrit Company University at Jefferson, St. Louis 7, Missouri

ing need of miniature delay line capable of providing continuously variable time delay from zero to several hundreds of millimicroseconds. By means of a novel mathematical method the amount of equalization was made exactly equal to its correct optimum value. The miniature continuously variable delay line is essentially a condensed r-f cable with one conductor changed into a long thin coil and the other conductor spaced closely to the first, thus producing a large amount of time delay yet maintaining low attenuation at high frequencies. Time delay is continuously variable from 0 to 0.8 usec. Characteristic impedance is 390 ohms nominal. Attenuation in db per 100 millimicroseconds delay is essentially zero below $3 \mathrm{mc}, 0.5$ at 8 $\mathrm{mc}, 1$ at 15 mc . Size of the unit is 1 in . deep, 4 in . long and 4 in . high.

Flame Failure Safeguard

Combustion Control Corp., 720 Beacon St., Boston 15, Mass. The Firetron scanner type 48PT1 provides flame failure protection for gas, oil, pulverized coal or combination fuel burner installations. It is used in conjunction with control type 26SJ5 for the protection of manually ignited burners and with programming control type 26RJ8 for the protection of automatically fired installations. The eye of the scanner is the Firetron, a photoconductive cell highly responsive to infrared. With its associated electronic circuits it distinguishes between the infrared of a flame and that of other sources of infrared. The tiny cell, hardly bigger than a pencil eraser, is plugged into the scanner unit that consists of a mounting for the cell and a length of cable for electrical connections. The single scanner views both the pilot and main flames and replaces

exhibited in the rolling direction; and Tran-Cor T-O-S, in 4 mil thickness only, a super-oriented grade.

the catalog tells the story

If you are interested in the advantages of reduced core losses and smaller core dimensions at frequencies of 400 to 200,000 cycles, write for the 32 -page booklet, "Armco Thin Electrical Steels." It has complete information and graplical data on the 6 Armco Thin Electrical Steels.

ARMCO STEEL CORPORATION

1683 Curtis St., Middletown, Ohio - Export The Armco International Corparation

Really rugged ... but unusually easy to handle . . . Carol Charging Cable is designed to carry heavy currents for rectifiers, battery chargers, large motors and other equipment needing portable power cable.
Soft copper wires are rope lay stranded for extra flexibility. They are either tinned, or bare and served, then enclosed in high dielectric, long-wearing rubber compound. For most severe service, the jacket is made of Carol Neoprene . . a specially compounded material which resists acids, alkalis, sunlight, corona, oil and grease; withstands extremes of weather and temperatures.
Carol Charging Cable is supplied in sizes from No. 4/0 to 10 AWG, with either rubber or neoprene jacket.

Write or call today for full information on our complete line of cable for electronic applications.

Want more information? Use post card on last page.

NEW PRODUCTS
(continued)
both flame rod and photocell flame detectors.

Tantalum Capacitors

Fansteel Metallurgical Corp., 2200 Sheridan Rd., North Chicago, Ill., has available a line of electrolytic capacitors that employ porous tantalum anodes. They range from 1.5 to $30 \mu \mathrm{f}$ with working voltages up to 125 vd d.c. The normal temperature range at rated working voltage is from -55 to +85 C. Excluding connection leads, the capacitors occupy less than $1 / 10$ of a cubic inch. They are intended for applications where unusually stable characteristics are required and space is at a premium.

Switching Key

Federal Telephone and Radio CorP., Clifton, N. J., has announced a new miniature anticapacitance switching key that weighs only $2 \frac{1}{6}$ oz and combines compactness with increased reliability and long life, Designed to meet military requirements, the new key is ideal for use in airborne and other types of equipment where compactness and light weight are prime factors. The unit consists of four sets of transfer contacts on each side. The key is nonlocking in both directions. It is mounted on an aluminum frame

STANDARD SIGNAL GENERATOR Frequency range: 2 me.to MODEL 400 rec Oufput 0.1 niciovalt 100.1 voll.

SQUARE WAVE GENERATOR
5 to 100,000 cycles. Recom- MODEL mend $\exists \mathrm{d}$ for $A M, F M$ and televisior testing

71

mEGACYCLE METER

Want more information? Use post card an last page. March, 1953 - ELECTRONICS

The Eisenhower Inaugural Medal

is made of Lasting Bronze

We are proud to announce that one of our customers is executing the official 1953 Presidential Inaugural Medal. The striking of over 10,000 replicas by the Medallic Art Company of New York City marks the return of this commission to private enterprise after many years of government manufacture. Walker Hancock, well-known American sculptor, prepared the original model from which the medal
for Gencral Eisenhower and the replicas were reproduced.

This memorable medal may be obtained for $\$ 3.00$ from the Inaugural Committee, 1420 Pennsylvania Avenue N. W., Washington 25, D. C.

A special alloy of bronze, carefully prepared to exacting specifications, is being supplied for this medal from our mill here in Bristol.

The Bristol Brass Corporation
 makers of Brass since 1850 in Bristol, Conn.

Offices or warehouses in
Boston, Chicago, Cleveland, Dayton, Detroit, Los Angeles, Milwaukee, New York, Philadelphia, Pittsburgh, Providence, Rochester

TताIID

sub-Miniature Pulse Transformers
Designed for simplifying and miniaturizing short-puise circuits, these new Triad subminiature transformers meet the continuing demand for higher performance in smaller packages. In many cases they meet existing circuit requirements-sav. ing engineering time. In every case they save space and weight. Prices on types shown here on request. For special de. signs, submit outline of contemplated circuit.
type \#20284 Two or three winding types. Size: $40^{\prime \prime}$ Dia. X. $56^{\prime \prime}$ L- - Positive Hermetic SealingAmbients up to $135^{\circ} \mathrm{C}$-Pulse widths 5 to. 65 microseconds -Rise time . 05 microseconds-Duty cycle .05 maximum,

type \#20285

 Two, three or four *winding types. Sizes $.50^{\prime \prime}$ Dila. $\times .68^{\prime \prime} \mathrm{L}$ LPositive Hermetic Sealing-Ambients up to 135° - Pulsewidth .35 to 1.2 microseconds-Rise time . 06 microsetends minimum - Duty cycle .05 maximum.
type $=20086$ for severe mechanical problems, this Hermetic Sealed, Mintature 3 -winding pulse transtormer is designed for underchassis mounting. using a single $8 / 32$ mounting stud and a Triad Multiple Terminal. same electrically as type $=20284$.

Class H For severe heat problems, these Sub-Miniature Pulse transformers are constructed entirely of inorganic material and impregnated with Silicone varnish for duties in ambients up to 200° Centigrate. Same electrically
as type $=20285$.

For information on other Triad

 transformers, write for Catalog TR-526

Want more information? Use post card on last page.
with four screws and can be easily removed from the key frame for inspection and adjustment. Other features include a molded spring nest and a special restoring spring heat-treated for maximum life and endurance.

Insulation

Irvington Varnish and Insulator Co., 6 Argyle Terrace, Irvington 11, N. J. Irv-O-Bestos, a new class B insulation consisting of Mylar polyester film bonded to Quinterra asbestos papers in duplex and triplex combinations, has been announced. This new type of insulation not only has high tensile and tear strength, but exceptional dielectric strength as well. For example, the $0.003-\mathrm{in}$. duplex construction has a dielectric strength of $1,900 \mathrm{vpm}$ with $\frac{1}{4}$-in. electrodes, and $1,500 \mathrm{vpm}$ with 2 -in. electrodes. Suggested applications for this high dielectric strength material might be as motor and dry-type transformer insulation, magnet wire insulation, coil and relay insulation, sheet insulation, or as primary cable insulation.

Split-Sleeve Tagging

Duramark, Inc., 2 Secatoag Ave., Port Washington, N. Y., has available a line of split-sleeve laminated tags made of vinylite. Only a light pressure on the tag is required for application to wire, cable or tube. A unique method of packing the tags permits direct, quick loading of a number of tags on an applicator and a fast continuous tagging operation. Because of a protective laminated overlay the tags are impervious to abrasion, corrosion, erasure, water, oil, acids and gases. Application is simple. The marker

Are Your Laboratories Overloaded?

A PRACTICAL SOLUTION TO THE PROBLEM OF TECHNICAL MANPOWER SHORTAGE

Are you interested in the possibility of getting some of your testing analysis and trouble shooting work done without hiring additional technical help?

Our solution is very direct. No doubt many of your trained engineers and chemists are tied down by routine but essential testing and analytical tasks. You can release these men for more demanding, more responsible duties by entrusting our laboratories with your routine testing and analytical schedules.

Why is this possible? Because Testing is our Business. Your assignments to us will be handled by men who live and think testing. They will receive the care and attention that only a specialized laboratory can give. That means speed, accuracy, and real economy.

We would like to get together and discuss your manpower problems and possibly point the way to a solution.

UNITED STATES TESTING COMPANY, Inc.

ESTABLISHED 1880

1550 Park Avenue, Hoboken, N. J. PHILADELPHIA • BOSTON • PROVIDENCE CHICAGO - NEW YORK - LOS ANGELES MEMPHIS • DENVER • DALLAS
Menber of Americen cormel of Conamrial Lidentinias

[^18]
VOLITEE REEULITIED POWER SUPFIIES

For Industrial and Research Use

THE KEPCO MODEL 1520 FEATURES A REGULATED HIGH VOLTAGE POWER SUPPLY WITH EXCELLENT REGULATION, LOW RIPPLE CONTENT AND LOW OUTPUT IMPEDANCE.

SPECIFICATIONS

OUTPUT VOLTAGE DC: 0.1500 vol's continuously variable.

OUTPUT CURRENT DC: $0-200$ milliamperes continuous duty.

REGULATION: In the range $30-1500$ volts the output voltage variation is less than $1 / 2 \%$ for both line fluctuation from $105-125$ volts and load variation from minimum to maximum current.

RIPPLE VOLTAGE: Less than 20 millivolts.
FUSE PROTECTION: Input and output fuses on front panel. Time delay relay is included to protect rectifier tubes.

POWER REQUIREMENTS: $105-125$ volts, $50-60 \mathrm{cy}$ cles.

KEPCO LABORATORIES

131-38 SANFORD AVENUE • FLUSHING 55, NEW TORK

Complete catalogue available upon request . . . urite dept. A

When you have an electronic wiring problem it pays to go to a specialist，such as Rome Cable． Wires and cables made by Rome，first，are designed by engineers with training and ex－ perience in electronic applica－ tions．Further，Rome Cable has the manufacturing knowledge and facilities to produce un－ usual constructions．．．with qual－ ity controlled step by step．By standardizing on Rome wires and cables you assure depend－ able performance for your prod－ uct and add obvious quality ．．． with a component engineered to your requirement．

Rome manufactures a wide range of hook－up wires，inter－ communication cables，co－axial cables，electronic computer ca－
bles，R．F．transmission line，tele－ vision camera cables as well as other special constructions．

Commercial type hook－up wires Rome offers commercial type hook－up wires with three standard insulations．
Rome Hi－temp－a rubber insulation with ex－ ceptionally high resistance to heat and moisture．Underwriters＇approved for $75^{\circ} \mathrm{C}$ ． Rome Synthinol－a polyvinyl chloride ther－ moplastic compound，highly resistant to acids，oils，alkalies，moisture and flame． Underwriters＇approved for $80^{\circ} \mathrm{C}$ ．
Rome Synthinol 901－offers all the advan－ tages of Synthinol plus higher resistance to heat deformation，shrinkage and cracking． also improved solderability．Underwiters＇ approved for $105^{\circ} \mathrm{C}$ ．

Military hook－up wires

Rome manufactures military type SRIR， SRHV and WL，complying with Army－Navy Joint Specification JAN－C－76，as well as ship－ board types SRI and SRIB conforming to Specification MIL－C－915．Insulated with Rome Synthinol，these wires are made in a com－ plete range of specification sizes．

ーーーーーーーIT COSTS LESS TO BUY THE BESTーーーーーーー

NEW PRODUCTS
is slipped over an applicator tool and slid into position．Once in position the tag grips tightly and remains permanently．Applicator tools are available for every size tag．A four－page descriptive bulle－ tin is available．

Voltage－Regulated

Power Supplies
Kepco Laboratories，Inc．，131－38 Sanford Ave．，Flushing 55，N．Y． Model 700 power supply features one regulated d－c voltage supply with excellent regulation，low ripple content and low output impedance． The high voltage supply is continu－ ously variable from 0 to 350 v and delivers from 0 to 750 ma ．In the 30 to $350-\mathrm{v}$ range the output voltage variation is less than 0.5 percent for both line fluctuations from 105 to 125 v and load variation from minimum to maximum current．The ripple voltage is less than 10 mv peak to peak．Cabinet height is 223^{3} in．，width $21_{4}^{3} \mathrm{in}$ ．and depth $15^{\frac{1}{4}} \mathrm{in}$ ．

Power Relay

General Aviation Corp．， 540 E． 80th St．，New York 21，N．Y．，has

FOR RAPID and ACCURATE VISUAL MEASUREMENTS?

	Frequency Range	Tuning	Maximum Sweep Width	Markers	Output (Open Circuit)	Price* f.o.b. factory
Mega-Sweep	$50 \mathrm{kc}-1000 \mathrm{mc}$	Continuous	30 mc	None	0.1 volt	\$395.00
Calibrated Mega-Sweep	50 kc .950 mc	Continuous	30 mc	None	0.1 volt	425.00
111-A Calibrated Mega-Sweep	$\begin{array}{r} 10 \mathrm{mc} \cdot 950 \mathrm{mc} \\ 450 \mathrm{mc}-900 \mathrm{mc} \end{array}$	Continuous	40 me	None	0.3 volt. 70 ohms 0.6 volt, 300 ohms	575.00
Sana-Sweep	5 kc - 200 kc	Continuous	20 kc	Up to six erystal positions	1.0 volt	525.00
Kilo-Sweep	$50 \mathrm{kc}-2 \mathrm{mc}$	Continuous	100 kc	Up to six srystal positions	1.0 volt	525.00
Model Video Marka-Sweep	$50 \mathrm{kc} \cdot 20 \mathrm{mc}$	Three Ranges $50 \mathrm{kc}-5 \mathrm{mc}$ 50 kc - 10 mc $50 \mathrm{kc}-20 \mathrm{mc}$	Complete Range	Up to six crystal positions	0.6 volt	495.00
Model IF Marka-Sweep	20 mc .50 mc	Four Ranges	500 kc (Narrow) 15 mc (Wide)	Up to nine crystal positions	0.5 volt	295.00
Model RF-P Marka-Sweep	All 12 channels, VHF TV Range	Switchable	15 mc	Pix and Sound crystal positions	0.5 volt, 70 ohms 1.0 volt, 300 ohms	795.00
Rada-Sweep	$30 \& 60 \mathrm{mc}$ centers; Others, special	Switchable	3 ms (Narrow) 20 mc (Wide)	Up to nine crystal positions	0.5 volt	395.00
No. 1214 Centilator	1245 mc .1460 mc	Continuous	5 mc	None	134 mw	595.00
No. 3439 Centilator	$3400 \mathrm{mc} \cdot 3960 \mathrm{mc}$	Continuous	40 mc	None	106 mw	495.00
No. 4249 Centilator	$4240 \mathrm{mc}-4910 \mathrm{mc}$	Continuous	35 mc	None	115 mw	450.00
No. 6274 Centilator	$6250 \mathrm{mc} \cdot 7425 \mathrm{mc}$	Continuous	50 mc	None	110 mw	450.00
No. 8596 Centilator	8500 mc - 9660 mc	Continuous	60 mc	None	30 mw	395.00

* In some cases small extra chorge for crystal substitutions or additions

SEE OUR NEW INSTRUMENTS
BOOTH 1-401 NY IRE SHOW

REQUEST NEW
1952-1953 CATALOG
FOR FULL DETAILS

KAY ELECTRIC COMPANY

14 Maple Avenue

Phone CAldwell 6.4000
Pine Brook, New Jersey

GYRO LOOKING FOR NEW WORLDS TO CONQUER

We're mighty happy with the performance of our Cageable Vertical Gyro as an autopilot component in fighters and guided missiles and in radar stabilization systems.

But wefeel that this gyro-which can be caged in under ten seconds, uncaged in only three seconds - has a lot of undeveloped possibilities.

Some of them we know. But you may have problems and applications of which we are not aware.

So if you get any ideas after you've looked over the specs below, drop us a line.

And remember, here at Honeywell we're specialists in gyros, have become one of the leaders in the field. Our gyro "family" - which includes other vertical, rate and the extremely sensitive Hermetic Integrating Gyros - is now available to manufacturers who require precision performance.

If you'd like to know more about any of the products in our gyro line, we'd be pleased to send details. The address is Honeywell Aero Division, Dept. 401 (E), Minneapolis 13, Minnesota.

Cageable Vertical Gyro JG 7044A Specifications

Power Requirements: Gyro motor: 115 volts, $400 \mathrm{cps} \pm 10 \%$, single-phase. Erection motors: 30 volts, 400 cps single-phase. Caging circuit: 28 volts dc.
Power Load: Gyro motor: 50 watts max (starting); 20 watts max. (running).

Erection motors: 5 watts (cach). Caging operation: 12 watts (operating); 6 watts (standby).
Gyro Speed: $22,000 \mathrm{rpm}$. (minimum). Angular Momentum: 4.75×10^{6} $\mathrm{gm}-\mathrm{cm}^{2} / \mathrm{sec}$.
Roll Axis Freedom: 360°.
Pitch Axis Freedom: $\pm 85^{\circ}$
Caging Time: 10 seconds. (max.). Gyro Run-down Time: 8 min . (min.). Erection Rate: 2° to 6° per minute (factory adjustment).
Drift Rate: 30° per hour (maximum) Accuracy: 0.15° of crue vertical in each axis.
Resolution: $1 / 13^{\circ}$ each axis.
Environment: Designed to meet AAF Spec. 27500 D . Weight: 5 lbs .

Honeỹwèll
 H

PRECISE INSTRUMENT DETECTS LEAKS AS SMALL AS $1 / 100$ OUNCE A YEAR, USES G-E VOLTAGE STABILIZER.

For Precision Performance Use G-E Voltage Stabilizers

Accurate to within $\pm 1 \%$ in standard models, G-E Automatic Voltage Stabilizers correct voltage fluctuations between 95 and 130 , or 190 and 260 volts, delivering a stable 115 or 230 volts to your product.

AUTOMATIC OPERATION: Compact standard models are now made in sizes 15 to 5000 va. Special designs are available for specific applications, and others can be engineered for your purpose. Operation on all G-E Voltage Stabilizers is completely automatic. Whatever your varying voltage problem, G-E experience will provide the answer.

SIMPLE INSTALLATION: G-E Automatic Voltage Stabilizers have only two sets of terminals to connect - one for supply, one for load.

NO MAINTENANCE: Since there are no moving parts or electronic components, there is virtually no need for replacement parts, adjustments, or any other maintenance. General Electric Co., Schenectady 5, N. Y.

GENERAL
 ELECTRIC

MORE HELPFUL INFORMATION

The "why" and "how" of stabili. zation, including specific details on operating characteristics, uses, and application information, is explained in a new bulletin number GEA-5754. To get your free copy of this practical, helpful manual on voltage stabilization, fill in and mail the coupon below.

General Electric Company
 Section A411-108

Schenectady 5, New York

Please send me, without charge, Manual GEA-5754 on Automatic Voltage Stabilization.
For immediate project \qquad For reference only
NAME \qquad ritle

COMPANY

ADDRESS \qquad CITY \qquad STATE

Product or type of product for which stabilizers are to be used, if not confidential:

FREE!
Now 195 HUDSON CATALOG
your helping hand for Everything in Electronic Equip ment. Over 196 pages of the latest in Radio, TV and Industrial Electronics. High Fidelity and PA Sound Equip. ment PLUS JAN type Electronic Components with latest JAN Cross-Reference Guide. Send for your copy ... KEEP IT HANDY for ordering . . . It's Quick, Convenient Time and Money Saving! ONE Order, ONE Dependable Source - ONE Call for ALL!

Yavire dwivid...

When you attend the IRE SHOW, you're invited to visit our uptown salearoom, odjoining Radio City : : s only 41/2 blocks from Crand Contral Palacel Make yourself af home. See our Vast Facilities . . . Tremendous Stocks . Gigantic Salesrooms! . . . Meot the meń who serve America's foremost users of electronic equipiment. Open until 9 P.M. during show time, March 23-26.

48 WEST 48th ST. • 212 FUITON ST.
New York 36, N. Y.
Clicle 6-4060
stantially flat from 100 to $4,000 \mathrm{cps}$. Output is -50 db . Temperature range is from -40 to +185 F

High-Ratio Capacitor

The Johanson MFg. Corp., Boonton, N. J., has developed a new concentric high ratio capacitor with a maximum capacitance of $35 \mu \mu \mathrm{f}$ and a minimum of $1 \mu \mu \mathrm{f}$. Because of the ratio of capacitance it has many applications in electronic equipment where capacitive adjustments need to be made over a wide range with great accuracy. It is being used in 10 -channel transceivers with very good results. Because of its construction of silver-plated brass and Pyrex glass, it has excellent performance characteristics at the higher frequencies. It is a high Q capacitor at and above 200 mc .

Connector Compound

Burndy Engineering Co. Inc., Norwalk, Conn. For easy on-thejob application of Penetrox A, this oxide-penetrating, corrosion-inhibiting compound for all electrical connections involving aluminum now comes in a sturdy 5 -oz tube. Each tube is individually packaged in a strong cardboard carton to prevent crushing or leakage, with full directions printed on both tube and carton. The protruding spout facilitates application of the compound neatly and quickly in all in-

Preview of a New Precision Analog Computer for Solving Problems in Dynamics...

Amplifier Group Type 16-31B 24 contact-stabilized d-e amplifiers.

Multiplier Group Tvpe 16-31A 20 multiplying channels.

Resolver Group Type 16-31D 4 resolving channels, 6 amplifier channeis.

Servo Group Type 16 $31 G 2$ resolving channels. 4 multiplying channels.

True, you'll find many analog computer systems on the market. Hawever, we have spent a great deal of time developing a system which we feel does a more effective, mare efficient job with the highest degree of accuracy. Here are the reasons:
New 20-channel servo-mechanical multiplier in which several channels may be used as incrementa! function generators.
New centralized control from operating cansole for greater flexibility.
New aútomatic select and set keyboard-operated attenuator system for ease af operation.

New controlled environment to insure maximum aceuracy at all times.
New grounded metal problem board eliminates errors due to leakages between terminals.

For more information on this system, write for our Components Book. Address inquiries to:

Sangamo HUMIDITITE* Mica Capacitors

When you use Sangamo HUMIDITITE molded Mica Capacitors, you gain all the advantages of an amazing moisture seal that offers previously unheard-of moisture resistance characteristics for compression molded plastic-encased mica capacitor components.

*what is HUMIDITITE?

Humiditite is a remarkable new plastic molding compound, developed by Sangamo, that gives Sangamo Mica Capacitors moisture resistance properties far superior to any others on the market.
here's the proof . . . The standard moisture resistance test described in MIL-C-5A (proposed) Specification requires mica capacitors to offer at least 100 megohms of insulation resistance after ten 24 hour cycles in a humidity chamber at 90% to 95% relative humidity. The best competitive micas barely meet this requirement . . . but Sangamo HUMIDITITE Micas, under the same conditions, all tested in excess of 50,000 megohms! Continued tests, over and above requirements, with the same HUMIDITITE Micas, proved them capable of withstanding from 21 to 52 cycles (from the smallest sizes to the largest) before failure.
Humiditite is just another example of the advanced engineering that enables Sangamo to meet the existing and future needs of the electronic industry. For additional information about HUMIDITITE, write for Engineering Bulletin No. TS-111.
stallations. The compound is also available in pint, quart and gallon cans.

Rapid Scanning System

Tigerman Engineering Co., 4332 No. Western Ave., Chicago 18, Ill., has announced a new rapid scanning system known as the Telescan. This Metrotype system of numerical recording and telemetering makes printed records of process data directly from the primary information. Readings are presented in numerical form tabulated for convenient use and on a single page for easy handling and storage. It reads voltage, current, power, temperature, flow or anything else that can be translated to an electrical indication with a suitable transducer. Telescan also sets up an alarm for any abnormal condition.

Wide-Band Microwave Window

Microwave Associates Inc., 22 Cummington St., Boston 15, Mass. The glass-metal window illustrated

From miniature to giant.... insuline METAL GOODS for every requirement!

INSULINE manufactures one of the most diversified lines of metal goods . . . built-up in the past 32 years by supplying every type needed by manufacturers, servicemen, engineers and hams. Huge stocks are maintained from the smallest cabinet to massive transmitter racks . . . for immediate shipment.

If your requirements are special, IN SULINE can produce anything in metal . . . steel, aluminum, brass, copper, etc. . . . to your specifications. Our facilities are adequate to manufacture your complete job from beginning to end . . . in fast time. Send prints and specifications for estimate.

Guide to Illustrations

1. Chassis Base.
2. Utility Cabinet with built in chassis.
3. Slip Cover Aluminam Box.
4. Multi-Use Cabinet.
5. Sloping Panel Cabinet.
6. "W'atchmaster" Precision Timer (American Timir).
7. Portable Amplifier Case.
8. Portable Transmitter Cabinet.
9. Transmitter Rack.
 7

Write Dept. EL-3 for latest catalog.

Over 2000 ifems, including metal goods, tools, hardware, components, felevision and accessories.

Here, in a versatile instrument of advanced design, are all the things you need for complete oscillographic recording. The Hathaway Type S-8 Oscillograph, which has long been the standard of oscillographic recording, has been improved to meet the rapidly expanding demands of modern research. Whether your measurement problems are simple or complex, the NEW Type S-8 Oscillograph has the inherent capabilities necessary to measure vibration, pressure, acceleration, and strain with new ease and accuracy.

The newest features include:

QUICK-CHANGE TRANSMISSION fully enclosed with gears running in oil to provide instantaneous selection of 16 record speeds over the range of 120:1
CHART TRAVEL INDICATOR provides continuous indication of chart motion. Operator knows instantly by flashing lamp if anything should happen to interfere with chart motion FULL-RESILIENT MOUNTING FOR MOTOR AND TRANSMISSION isolates all possible vibration and makes possible the use of modern super-sensitive galvanometers
NEW GALVANOMETER STAGE accommodates all Hathaway galvanometer for recording milliamperes, microamperes, or watts
NEW RECORD-LENGTH CONTROL AND NUMBERING SYSTEM designed for long, trouble-free service under all kinds of ambient conditions
All the other valuable features are retained, such as PRECISION TUNING-FORK-CONTROLLED TIMING SYSTEM produces either $1 / 10$-second or $1 / 100$-second time lines across sheet
WIDE RANGE OF GALVANOMETER TYPES AND CHARACTERISTICS provide for almost any recording requirements. Natural frequencies to $10,000 \mathrm{cps}$. Sensitivities to $50,000 \mathrm{~mm}$ per ma, single and polyphase watts
DAYLIGHT LOADING AND UNLOADING RECORDS TO 200 FT . IN LENGTH, width to 10 inches
SIMULTANEOUS VIEWING AND RECORDING
AUTOMATIC BRILLIANCY CONTROL

12 TO 92 ELEMENTS

Whatever your needs may be, investigate the NEW Type S-8 Oscillograph and its 170 types of galvanometers - the most versatile equipment in existence for general-purpose applications.

WRITE FOR BULLETIN 2BT-K FOR DETAILS
covers a bandwidth of 40 percent in the frequency range of 8,200 to $12,500 \mathrm{mc}$ at a vswr less than 1.25 . The vswr frequency characteristic behaves like a single resonant circuit with a minimum value of 1.03 in the neighborhood of $9,800 \mathrm{mc}$. The doubly loaded Q of the unit is approximately 0.25 . The window blank consists of three parallel slots stamped in a thin blank of Kovar $0.600 \mathrm{in} . \times 1.100 \mathrm{in}$. o.d. to which is sealed a rectangular blank of lowloss glass. The windows are copper and silver plated and may be soft soldered into a UG-39/U flat flange. It is necessary to mill out the flange to accommodate the window dimension and to break the inside edges of the waveguide at the flange connection to avoid cracking the glass in the seal. The windows may be used in pressurizing applications and will withstand pressures up to 30 lb psi absolute.

Restorer

Chemical Electronics Corp., Irvington, N. Y., has announced an improved combination solvent, lubricator, restorer and silencer for all electrical and electronic controls and contacts. The new solution has proved to be entirely safe even for critical uhf circuits. It does not affect inductance, capacitance or resistance, and is wholly nonreactive to heat, cold, oil or corrosives. It is a special hydrocarbon colloidal suspension of a highly refined vegetable gum. Its hypercapillary action forces it into the ordinarily inaccessible places where it cleans instantly and forms a durable non-

We crew to help you

< BIG, NEW 2.PLANT SIZE \rightarrow
 50% more seamless nickel cathode capacity

Of this we are sure: you made us what we are today. You demanded so many of our seamless nickel cathodes that we had to add capacity. We did.

We built another plant-this time at Wapakoneta, Ohio-increasing our seamless nickel cathode output by 50%.
Other familiar characteristics of Superior service remain-the desire to help you with your problems, the experience of skilled tube-fabricators, and quality-controlled manufacture. Take advantage of Superior service and capacity now.
*Main Superior Tube plant at Norristown, Pa.
**NEW Superior Tube plant at Wapakoneta, Ohio

SEAMLESS NICKEL CATHODES				
Representative size and shape specifications in current production				
Type	Bead	O.D.	Wall Thickness	Length
ROUND	None	.015"	.002 ${ }^{\prime \prime}$	25.4 mm
ROUND	None	.121"	.0035"	8.0 mm
ROUND	Single	. $045^{\prime \prime}$.002',	27 mm
ROUND	Double	.025"	.002'"	28.5 mm
OVAL	Double	.025' ${ }^{\prime \prime}$. $048^{\prime \prime}$.003 ${ }^{\prime \prime}$	12 mm
OVAL	Single	. $0455^{\prime \prime} \times 1449^{\prime \prime}$.002'"	31 mm
OVAL	Single	.025' ${ }^{\prime \prime}$ x.048''	.003 ${ }^{\prime \prime}$	12 mm
ELLIPTICAL	Double	.025 ${ }^{\prime \prime} \times .048^{\prime \prime}$.003"	11 mm
RECTANGLE	Single	.030' \times x.0975''	$.002^{\prime \prime}$	11 mm
RECTANGLE	Double	.040' $\times .132^{\prime \prime}$.004'	33.4 mm

Many other types of nickel cathodes-made in Lockseam \dagger from nickel strip, disc cathodes-and a wide variety of anodes, grid cups and other tubular fabricated parts are available from Superior. For information and Free Bulletin address Superior Tube Company, Electronics Division, 2500 Germantown Avenue, Norristown, Pa.

Alt analyses . $010^{\prime \prime}$ to 5/8" O.D.
Certain analyses (.035 5^{2} Max. Certain analyses (.035
wall) up to $13 / \mathbf{g}^{\prime} 0 . D$.

Seamless Nickel Cathode-
Round, flanged one end.
$.115^{\prime \prime}$ O.D. $x .105^{\prime \prime}$ I.D.
I $^{\prime \prime}$. long.

Lockseam \dagger Nickel Cathode Plate, $.170^{\prime}$ O.D. x . 005 ," wall.

Weldrown 305 Stainless Steel Anode Rolled ond Bent 10° wall $\times 1.050^{\prime \prime}$ long

Type BNC UG-88/U

QUALITY • QUANTITY • QUICKLY

ALWAYS SPECIFY

 DAGE
RADIO FREQUENCY CONNECTORS

To be sure your RF connectors are right, spccify DAGE.
Dage RF connectors are expertly designed, carefully made. Each part and each completed connector is thoroughly checked, carefully shippedfurther assurance that your order placed with Dage receives the atten-
tion it deserves. Dage offers versatility to your demands for superior RF connectors; any standard or special connector can be quickly produced at Dage.

When you write your next specification, remember Dage-makers of the finest Radio Frequency Connectors.

Complete design and manufacturing facilities enable skilled craftsmen to quickly produce all types of coaxial connectors. Write for Catalog No. 101

DAGE ELECTRIC COMPANY, INC., 67 NORTH SECOND STREET, BEECH GROVE, IND.
greasy, nonsticky hard-bonded lubricating surface.

Ceramic Microphone

Electro-Voice, Inc., Buchanan, Mich. The model 715 Century microphone has a moisture-proof ceramic generating element and unusually high output (-55 db). Dependable and long-lasting service in extremely hot, humid climates is assured. The microphone is essentially nondirectional, becoming directive at higher frequencies. It is a-c/d-c insulated, features high impedance, has a 5 -ft cable, measures 3 in . $\times 2 \frac{3}{1} \frac{3}{\mathrm{i}} \mathrm{in} . \times 1 \mathrm{in}$., and weighs 6 oz .

Circuit Analyzer

Lee Electronic Labs, Inc., 233 Dudley St., Roxbury 19, Mass. Model E-C dynamic Serviset is a complete portable test lab in itself. It is designed for field or bench servicing of radio, tv, radar and communications equipment. Among its many uses are: r-f and a-f signal tracer, r-f and a-f signal injector, a-c and d-c voltage indicator, d-c polarity indicator, low ohms continuity and short indicator, high ohms continuity and leakage checker. Accessories, besides phone, extension cord, insulated extension tip, tv high-voltage adapter and test lead, include a complete instruction

EVENLY

wind 0

SMALL TOROIDAL COILS
 AT HIGH SPEEDS
 WITH MINIMUM WIRE BREAKAGE

1-1/8"O.D. $\times 3 / 4^{\prime \prime}$ I.D.
Wire-44 AWG
Winding Speed-800 rpm

The MICAFIL Model RW-0 Toroidal Coil

 Winder automatically winds toroidal coils continuously around 360° and sector coils from 30° to 270°. To produce smooth, even layers of wire, the winder is adjusted easily to wind any wire size between 26 and 44 AWG and to obtain the proper pitch. Winding direction can be changed and feeds can be adjusted while machine is in operation.
$1-1 / 8^{\prime \prime} 0 . D . \times 3 / 4^{\prime \prime}$ I.D.
Wire-38 AWG
Winding Speed-1000 rpm

CAPACITY
Coil Sizes
Minimum finished I.D. 1/4"
Maximum finished O.D. $2^{\prime \prime}$
Minimum finished O.D. $1 / 2^{\prime \prime}$
Wire Sizes 26 to 44 AWG
Winding Speed-
according to wire size. . up to 1000 rpm Shuttle Capacity-
according to wire size . . . 60 to 800 feet
MICAFIL Toroidal Coil Winders are made in three larger sizes for winding coils up to $8^{\prime \prime}$ O.D. and with 10 AWG Wire.

SPIRALING DEVICE - Device winds spirals for shuttle loads-in advance . . . Newly developed to permit continuous operation of Coil Winder ... Winds to predetermined lengths.
SHUTTLES - Made in four different ring diameters to accommodate range of spiraled wire sizes . . . Larger wire capacities ... More than one coil can be wound with single loading . . . Changed within 30 seconds . . . Loaded in less than a minute.
ACCURATE TURNS COUNTER - Preset for required number of turns ... Automatically stops winder when turn count is reached.

WHILE IN NEW YORK

See this RW-O and other Micafil Coil Winders. COSA is in the CHRYSLER BLDG. -4 blocks from the IRE SHOW. Telephone: ORegon 9-3560.

IN DETROIT AREA contact DETROIT-COSA CORPORATION, 16923 James Couzens Highway, Detroit 35 , Mich. IN CANADA contact COSA CORPORATION OF CANADA, LTD. 40 Front Street, West, Toronto 1, Ontario

Here's a laminate with high insulation resistance

It offers outstanding characteristics! G-E 11541
has high insulation resistance and retains maximum stability under humid conditions. It can be readily hot punched and fabricated without losing its basic properties, and will provide long service under difficult conditions.

It's brand new! This versatile G-E Textolite industrial laminate has just been placed on the market-after intensive development and testing by G-E engincers. Now you can develop even better performance characteristics in the equipment you manufacture-by using G-E 11541 Industrial Laminate.

It's amazingly versatile! G-E 11541 is a paper-base phenolic laminate available in a variety of sizes and thicknesses. It has excellent electrical properties, which make it suitable for a wide variety of applications.
For full details and samples, get in touch with your nearest fabricator or assembly manufacturer, today. Or write: General Electric, Section 327-1 B, Chemical Division, Pittsfield, Massachusetts.
*Rec. U.S. Pat. Off

GENERAL ELECTRIC

SENSITIVE MINIATURE RELAYS

PERFECTLY COUNTER-BALANCED
Contact arrangements up to and including DP DT 3 Amp at 28 volts D.C., or 100 Milliamperes at 150 volts D.C. resistive load.

Hermetically Sealed.

Required coil power as low as 20 milliwatts.

Coil resistance up to 15,000 ohms.
Weight, maximum 3.5 oz .

DUE TO ITS PERFECTLY COUNTER-BALANCED FEATURES THIS RELAY WILL WITHSTAND HIGH ACCELERATION, VIBRATION, SHOCK AND TUMBLING

Mass Production Requirements Invited
Detailed information on request.

Phaostron Company - 151 Pasadena Ave. - South Pasadena. Calif.
 STANDARD PACKAGED PUSH-PULL MAGNETIC AMPLIFIERS by (M)

MAGNETICAMPLIFIERS These high gain, high performance Magnetic Amplifiers are especially suitable to drive two phase induction servo motors requiring from 0.1 watt to 20 watts per phase on either 400 cps or 60 cps powerlines. The output power is either in phase or 180 out of phase with the powerline depending on the D.C. input signal polarity.

TUBELESS SERVO AMPLIFIERS
with built-in adjustable SERVO LOOP STABILIZATION. Packaged, completely self-contained, magnetic servo amplifiers for position servo systems where either A.C. or D.C. error signals are available. Designed for instrument type and power type servo systems to work with synchro control transformers or potentiometers and two phase

Facilities Know-How to Engineer Design and Manufacture MAGNETIC SERVO AMPLIFIERS, VARIABLE SPEED DRIVES, MAGNETIC VOITAGE, CURRENT FREQUENCY REGULATORS Where the sfondord units do not meet your requirements our engineering focililies are ovailable to work with you on overall system design.

MAGNETIG
 AMPLIFIERS • ING
 An Affliate of Generol Ceromics $\&$ Steotite Corp.
 632 TINTON AVE:, NEW YORK 55, N. Y. Telephone: CYPRESS 2-6610

On display at I.R.E. Show-Booth 4-206

ACCURATELY CALIBRATED ...in both TIME and AMPLITUDE

With the TEKTRONIX Type 315-D you read time intervals and amplitudes directly from the screen. In the actual-size photograph above the time base setting is $20 \mu \mathrm{sec} /$ division, showing the time interval between the small pips to be $10 \mu \mathrm{sec}$; between the large pips, $50 \mu \mathrm{sec}$. Vertical sensitivity is set at $0.5 \mathrm{v} /$ division, showing the amplitude of the smail pips to be 1 volt, and the amplitude of the large pips to be 2.5 volts.

Twenty-four calibrated time bases: 0.1 $0.2,0.5,1,2,5,10,20,50,100,200,500$ microseconds/division, 1, 2,5,10,20,50,100, 200, 500 milliseconds/division, $1,2,5$ seconds/division. Calibration accuracy 3% or better except at 0.1,0.2,0.5 $\mu_{5 \mathrm{sec} / \text { div and } 1,2 \text {, }}$ $5 \mathrm{sec} /$ div where accuracy is within 5%. Un calibrated time base continuously variable from approximately $0.1 \mu \mathrm{sec} / \mathrm{div}$ to $10 \mathrm{sec} / \mathrm{div}$.

Twelve calibrated vertical sensitivity positions: $0.01,0.02,0.05,0.1,0.2,0.5,1,2,5$, $10,20,50$ volts/division. When set on any one position by means of a front panel screwdriver control all other positions will fall within 3% of this accuracy. Choice of ac or de coupling except in the 3 most sensitive positions. Sensitivity continuously variable but uncalibrated from approximately $0: 01 \mathrm{v} /$ div to $100 \mathrm{v} /$ div.

OTHER CHARACTERISTICS OF THE TYPE 315-D

Vertical Bandwidth — dc to 5 mc
Risefime - $0.07 \mu \mathrm{sec}$
Voltage Calibrator - square wave, approx. 1 kc
Attenuator Probe - $10 x$, small, insulated
$3^{\prime \prime}$ CRT - high-definition, flat-faced

Graticule - edge lighted, $1 / 4^{\prime \prime}$ divisions
$5 \times$ Magnifier - expands time base to right and left of center
Direct Coupled Unblanking
Trigger Amplifude Discriminator Size- $123 / 8^{\prime \prime}$ high, $85 / 8^{\prime \prime}$ wide, $18 \frac{1}{4} 4^{\prime \prime}$ deep Weig'it - only 36 lbs.

Type 315-D - for use on 50-60 cycle line only - $\$ 770$ Type 315-D - for use on 50 to 800 cycle power line - $\$ 785$ PRICES F.O.B. PORILAND, OREGON

Call or write your TEKTRONIX Field Engineer for a ciemonsfration of the Type 315-D See and try the Type 315-D and other TEKTRONIX instruments at the March I.R.E. show.

TEKTRONIX, Inc.

P. O. Box 831 B, Portland 7, Oregon • Cable: TEKTRONIX
meter from the a-c power line without the use of batteries.

H.V Selenium Rectifiers

International Rectifier Corp., 1521 E. Grand Ave., El Segundo, Calif. Two high-voltage selenium rectifiers, types V-75HF and V100 HF , have been developed for use in tv equipment in which long life and reliability are of prime importance. The units are designed with ferrule terminals for insertion into standard 30 -ampere fuse clips. Diameter of the rectifiers is $\frac{9}{16}$ in. Type V-75HF is 3 in long; and the V-100HF, $4{ }^{5}{ }^{5} \mathrm{in}$ in. long. Both are designed to deliver 5 ma into a capacitive load at a d-c output voltage of 1,500 and $2,000 \mathrm{v}$ respectively.

Controlled Atmosphere
 Furnace

Stewart Engineering Co., Box 145, Soquel, Calif. The model 3 controlled atmosphere furnace was developed for hydrogen firing and brazing operations in the laboratory where its fast heating and fast cooling cycle are advantageous in sav-

These books cover circuit phenomena, tube theory, networks, measurements, and other fields of practical design and applications. They are books of recognized position in the llterature of the fleld-books you will refer to and be referred to often. If you are a practical designer, researcher, or engineer in any fleld based on radio, you need these books for the help they give in hundreds of problems
5 volumes, 4213 pages, 2949 illustrations
Eastman's FUNDAMENTAIS OF VACUUM TUBES, 3rd edition
Terman's RADIO ENGINEERING, 3rd edition
Everitt's COMMUNICATION ENGI. NEERING, 2nd edition
Hund's HIGH FREQUENCY MEASURE. MENTS, 2nd edition
Henney's RADIO ENGINEERING HAND. BOOK, 4th edition

SPECIAL LOW PRICE - EASY TERMS

 Special price under this offer less than cost of books bought separately. In addition, you ments beginning with $\$ 7.50$ in 10 days after recelpt of books, and $\$ 6.00$ monthly thereafter. Already these books are recognized as standard works that you are bound to require sooner or later. Take advantage of these convenient erms to add them to your library nowFOR 10 DAYS' EXAMINATION SEND THIS

ELECTRICAL and ELECTRONIC ENGINEERS

With Several Years' Experience or Advanced Degrees for Permanent Positions with
Endicott, N. Y. $\$$ Poughkeepsie, N. Y.

Excellent Opportunities in the Fields of: Audio Amplifier Design - Servo Amplifier Design - Servo and Computer Theory - ReceiverTransmitter Design • Small Transformer Design - Regulated Power Supply Design • Circuit Design • Test Equipment Design - Logical Design• Pulse Techniques - Programming • Electrostatic Storage Magnetic Recording - Component Development - Environmental Testing • Production Engineering

Good salaries, unusual opportunities for professional development, exceptional employee benefits, excellent working and living conditions, moving expenses paid.

Write, giving full details, including experience and education to: Mr. W. M. Hoyt, Coordinator of Engineering Recruitment, International Business Machines, Dept. 686 (4), 590 Madison Avenue, New York 22, N. Y.

GET THE BENEFIT OF A SPECIALIST IN THE CLECYRONUSS FIELD FOR PRECISION MOLDED PLASTIC PARTS

CUSTOM MOLDING FOR ALL INDUSTRIAL APPLICATIONS

Tip Jacks
Tube Sockets
Coil Forms
Hermetically. Sealed Terminals Nylon Slip-ring Assemblies Instrument Cases Radio Parts Etc.

Specializing in Injection Molding and Small Insert Work in Compression and Transfer Molding

A complete service to help you design and produce your plastics requirements in all materials including KEL-F, Nylon, etc. Over 30 Injection molding machines at your service.

BRILHART Plastics

MINEOLA, L. I., N. Y. Phone GArden City 7-0425-6-7

on industry's doorstep to expedite your needs for quality tubular and split rivets, rivet-setting machines and special cold-headed fasteners. Write for an important new brochure, "THE MILFORD METHOD", describing Milford's latest contribution to industrial progress ... a complete service integrating fastener research, design and engineering with manufacturers' production.

THE NEW PACIFIC DIVISION

715 S. Palm Ave. Alhambra, Calif.

the name to rivet in your memory for fasteners

ing time. An Inconel tube is used as the furnace muffle and is heated to a high temperature in a short period of time by passing current from a low-voltage high-current transformer directly through the muffle, which serves as the heating element. The heating time, unloaded, from room temperature to $1,000 \mathrm{C}$ is about 5 minutes. A high volume, quiet operating blower is built into the unit, and allows cooling in about the same period of time. Temperature is regulated by a thermocouple and Simplytrol pyrometer. One of its many uses is for deoxidizing and cleaning certain metals such as nickel and Kovar for use in vacuum tubes. Most of the occluded or absorbed gases are replaced by hydrogen, which is easily removed during evacuation. When used with a dry nitrogen atmosphere it is useful for the annealing of glass joined to metal or annealing of complete vacuum tubes before evacuation.

General-Purpose Power Supplies

Opad-Green Co., 71 Warren St., New York 7, N. Y., has available general-purpose power supplies that are designed to furnish an adjustable source of unfiltered d-c from single phase 50 or 60 -cycle a-c power lines. A unique feature is their stepless control of the d-c output voltage that permits them to serve as power sources for a wide variety of electrical equipment and electrochemical processes. The secondary of a two-winding step-down transformer, whose primary is fed by a variable autotransformer, supplies power to a full-wave selenium rectifier. The step-down transformer is provided with taps to

PRECISION•FIXED WIREWOUND

 resistorsForty-two types in all, from $1 / 4$ Watt to 10 Watts. Three wire alloys. Accuracies to 025%. Resistance range from . 1 Ohm to 15 megohms. All receive aging treatment for assured stability. A variety of impregnation treatments and installation mountings to meet your requirements. Shown actual size (left) are the new 412 HE and 413 HE types designed for direct replacement of carbon composition resistors where space is at a premium.

Write for Complete Catalog
N. Y. Stock:

Audio \& Video Products Corp. 730 Fifth Ave. PLaza 7.3091

CIITHA EMCIDEERING COMPANY
1510 WEST VERDUGO.AVENUE, BURGANK, CALIFORNIA

Export Agents: Frazar \& Hansen, L?d. * 301 Clay St • San Fransisco, Calif., U.S.A

We have had considerable experience in designing and building transformers to MIL-T-27 specifications. Our testing equipment includes facilities to test over a temperature range from minus $50^{\circ} \mathrm{C}$ to plus $85^{\circ} \mathrm{C}$. In addition, Corona test equipment, hot, cold, salt water bath equipment, and vacuum equipment to conduct impregnation tests and assimulate high altitude conditions are available.

ACME ELECTRIC CORPORATION 313 WATER ST.

A. E. C. GENERATOR
insulated by BIGGEST Moldings

The Atomic Energy Commission chose MYKROY above all other materials as insulator for its generator. The $4-\mathrm{ft}$. diameter of the rings was only one of many reasons.

(

CHECK THESE features

- can be machined or molded to closest tolerances
- lightweight-with the mechanical strength of cast-iron
- high dielectric and flashover properties
- won't warp; keeps its shape
- Jow-loss factor at sub-zero or $1000^{\circ} \mathrm{F}$.
- bonds with most metals

Surely, MYKROY, the perfect glass bonded mica, can solve your insulating problems. Supplied in sheets and rods . . . machined or molded to specifications. We'll be glad to quote on your requirements. Write today for MYKROY Brochure \#203. Made exclusively by

How HONEYWELL

Mercury Switches solved a

sensitive pressure control problem

THESE illustrations show how a HONEYWELL Mercury Switch was used to provide direct control and high capacity for substantial electrical loads from a light energy pressure system without the use of intermediate relays.

By use of a bellows to establish a rocking motion to actuate a HONEYWELL Mercury Switch, the available motion was multiplied to move the switch through a greater angle than was available directly.

There are over 90 designs of HONEYWELL Mercury Switches from which to select the exact switch characteristics to meet your specific problems. You are invited to contact the nearest MICRO branch for help in selecting the exact switch to meet your needs.

A DIVISION OF
MINNEAPOLIS-HONEYWELL REGULATOR COMPANY
compensate for line voltage variations and rectifier aging. Pancl controls include a power switch, a-c line fuse, voltage control knob, two 3-iil., 2-percent-accurate D'Arsonval meters and two binding posts for d-c load connections. A 6 -ft line cord is furnished for a-c imput.

High-Fidelity Amplifier

Precision Electronics, 9101 King Ave., Franklin Park, Ill. Model $100 \mathrm{~B}^{\prime} \mathrm{A}$ is designed as a basic amplifier for the average high-fidelity home system. Features include fullrange reproduction with low distortion. Power output is $10 \mathrm{w}, 20 \mathrm{w}$ peak. Distortion at 10 w is 1.0 percent harmonic, and 2.0 percent intermodulation. Frequency response at $3 \mathrm{w} \pm 0.5 \mathrm{db}$ is 20 to $50,000 \mathrm{cps}$. Frequency response at $10 \mathrm{w}, \pm 1.0 \mathrm{db}$ is 30 to $20,000 \mathrm{cps}$.

Magnetic Heads

The Brush Development Co, 3405 Perkins Ave., Cleveland 14, Ohio, announces two new magnetic heads. One is a record-reproduce head, BK-1090; the other, its erase head companion, is a BK-1110. The BK1090 is intended for dual track recording and distinguishes itself by very high resolution and uniformity. The most outstanding feature

Subsidiary of AMERICAN MACHINE \& FOUNDRY CO. New York

GRMRATH OUTDOOR SPEAKERS

All bronze housings, complete with mounting brackets $15^{\prime \prime}$ horn diameter, double re-entrant type. Frequency response from 400 to over 6000 cycles. Thoroughly weatherproof. Powered with Alnico-V-Plus driver unit, U. S. Coast Guard approved made by specialists in the manufacture of Marine equipment and Controls, Emergency Loudspeaker Systems, Public Address Systems, Music Broadcast Systems and Docking and Navigating Systems.

C. C. GALBRAITH \& SON ELECTRIC CORP.

450 Ave. of the Americas New York ll, N. Y.

JUST OFF THE PRESS!

This catalog of Sterling RELAYS will be of help to you in planning your re-

The manufacture of your

ferrites

You'll be well repaid by getting the facts on a special group of Pure Ferric Oxides, developed by Williams especially for use in the manufacture of ferrites.
Williams Ferric Oxides analyze better than $99 \% \mathrm{Fe}_{2} \mathrm{O}_{3}$. They contain a minimum of impurities. They are available in a broad range of particle sizes and shapes. Among them, we're certain you'll find one that's "just right" for your requirements. The proper application of Ferric Oxides to the manufacture of Ferrites is our specialty.
Tell us your requirements... we'll gladly send samples for test. Chances are good that our Ferric Oxide "Know How" can save you considerable time and money. Address Dept. 25, C. K. Williams \& Co., Easton, Pa.

WILIAMS

C. K. WILLIAMS \& CO.

Easton, Pa. - East St. Lovis, III. Emeryville, Cal.

[^19]
Versatility PLUS

MULTIPLE POWER SUPPLIES "600"

FEATURING: -

- Two regulated DC supplies completely isolated from the chassis and from each other. They may be connected in series or parallel to increase the range.
- Two fixed, regulated bias voltages.
- Low voltage DC supply suitable for the operation of relays, small motors, etc.
- Inputs to regulating circuits available at rear of unit for applications requiring super-regulation.
- Center-fapped filament supply.
- Outputs available at connector on rear of unit.

> SEVERAL MODELS AVAILABLE WRITE FOR BULLETIN PS-200

We design and manufacture to AN-E-19 and MIL-E-4158 specifications. Your inquiries are invited.
"Our research, development and manufacturing facilities are ready to assist you in any of the following fields". .

PULSE CIRCUITRY
transmitters and receivers
CATHODE RAY tUBE displays
INDUSTRIAL CONTROL AND AUTOMATIC TEST EQUIPMENT
Company brochure available on letterhead request WRITE, WIRE OR PHONE

> Bristol Engineering Corp. ELECTRONICS DIVISION

> PHONE BRISTOL 6769
> LINCOIN AVENUE \& POND STREET
> BRISTOL I, PENNA.
of the BK-1110 is its low power consumption of less than $\frac{1}{2}$ voltampere. These units are cast into a block of specially selected synthetic resin which makes them extremely uniform, moisture proof, nonmicrophonic, and allows operation throughout a wide temperature range. The low-loss core structure is made from thin molybdenum permalloy laminations carefully annealed and cemented together permitting the use of high bias and erase frequencies. These components are enclosed in a mu-metal shield to provide optimum shielding from extraneous magnetic fields.

TV Tube Tester

Anko Mfg. Co., Inc., 7311 W. Burleigh St., Milwaukee 10, Wisc. Teletest is a new dynamic performance tv tube tester that reduces tube testing time. Application is intended primarily for the tv service trade but it will also lend itself to positive faster tube testing in tube and set manufacturing plants. Further use is predicted among tv broadcast station technicians engaged in daily studio maintenance routine operations. Many of the time consuming switching and selecting operations, together with the usual tube selector charts, have been eliminated. Only one meter with a single scale positively indicates good or bad tube condition. Picture tubes can be tested through a single adapter cord and plug while in the receiver chassis.

Level Control

Greylor Co., 605 W. Washington Blvd., Chicago 6, Ill., has developed

DANDUX

CANVAS and leather PRODUCTS

DESIGNED TO SPECIFICATIONS

bG BAGS, CW BAGS, CLIP BAGS, TOOL ROLLS, BAGS \& CASES for ordnance, radio, electronic and radar equipment.
C. R. DANIELS, INC. DANIELS, MD.

40 MC TO 225 MC TV AMPLIFIERS

SPECIFICATIONS

- BANDWIDTH
$40 \mathrm{MC}-225 \mathrm{MC}$
- IMPEDANCE

180, 52 and 72 ohm unbalanced, 300 ohm balanced

- GAIN
- OUTPUT VOLTAGE

6 volts peak maximum

- RESPONSE
$\pm 2 \mathrm{db}$ over bandwidth
- POWER SUPPLY

117V, 60 cps, 55 watts band chain amplifier type booster capable of amplifying all 13 television channels simultaneously. Because of its stability and reliability - a tube failure means only a slight loss of gain, not amplifier failure - the Model 212TV Amplifier can be safely left unattended for long periods of time. Its low noise level, high output, and low impedance make the Model 212TV Chain Amplifier ideal for television distribution systems in hotels, apartment houses, sales rooms, television stations, cities and towns.

Write today for further information
SKL SPENCER-KENNEDY LABORATORIES, INC. 186 MASSACHUSETTS AVE., CAMBRIDGE 39, MASS.

High-quality, Low-cost TOROIDAI COILS

Universal-developed coil-winding machines produce a better toroidal coil, custom-built to your blueprint specifications, at considerably lower unit cost! Wound on any type cores (any I.D. to $3 / 8^{\prime \prime}$), in any size wire, Universal toroidal coils are perfectly uniform and fully insulated. Send your blueprint specifications today, and let us quote the lower cost of better Universal toroidal coils on your next order.

Address:

Toroidal Coil Division

Universal Manufacturing Company, Inc.
40.4 Hillside Avenue

Hillside, N. J.

Resonant circuits with Q 's in the range of millions are one of the many practical applications of low-temperature techniques and phenomena being studied by laboratories equipped with our Collins Helium Cryostat. With this reliable equipment for the production of liquid helium, phenomena known to accur in the neighborhood of Absolute Zero are now being exploited for useful purposes.

Various industrial low-temperature laboratories are studying the very low energy effects, masked by thermal noise at normal temperatures, for their application to communications and control processes. Other potential uses of low-temperature phenomena include the development of sensitive bolometers, perfect conductors, magnetic shields, and insulators which will hold a charge for unusually long periods.
Your industry, equipped for low-temperature research, can expand the growing list of practical uses for these lowtemperature effects.
For further information on the Collins Helium Cryostat and other patential applications of low-temperature research write for Bulletin Ell-3

a new electronic level control for nonconductive materials langing from condensed gases to semisolids. It has proved extremely valuable for precise level control, particularly in the high temperature and high pressure ranges where exacting level controls are desired. The Ktrol is a compact unit with plug-in, sealed housing containing all components. The plug-in unit can be replaced in a matter of seconds. Exchangeable sealed component units are available for insertion in control without disturbing or removing equipment from tank or vat. It is so designed that the electronic circuit will maintain level control from $\pm \frac{1}{16}$ in, and up, Custom-built noncorrosire probes are available for the material to be controlled and the kind and size of tank or container to be used. It is available in an oil-filled housing making it acceptable for explosionproof installation.

Streamlined Chassis

Electric Regulator Corp., Norwalk, Conn., has designed a new, streamlined steel chassis for mounting the Regohm and associated resistor elements. The Regohm mentioned is an electric circuit controller that has found wide application in the precise control of voltage current, speed and servos. The chassis, built in accordance with military specifications, has overall dimensions of $5 \mathrm{in} . \times 6 \mathrm{in} . \times$ 3 in in and weighs about 2 lb complete with plug-in Regohm controller. Its sturdy construction, including built-in vibration mounts, permits efficient operation under

from
 Accelerometers

to
you'll find the
correct answer to
who makes
everytining in the
entire field

of electronics including...components | equipment |
| ---: |
| and |
| materials |

in the...

electronics BUYERS' GUIDE

Get in the habit of laaking it up in...

the electronics BUYERS' GUIDE

"The Book that has all the answers"
a megraw-hill publication
330 West 42nd Street
NEW YORK 36, N. Y.

The inevitable process of "separating the men from the boys" is still going on in the comparatively new electronics industry. Yet Volkert has already established itself as the leading independent supplier of stamped components for miniature tube sockets, and other precision stampings.

Volkert was the first to produce shield bases for sockets on a progressive die in a one-press setup. Through Volkert's creative die engineering, a cost-saving method was initiated to stamp the tiny contacts two at a time. And now Volkert turns out over

For design...tooling...production and nssembly of precision stampings
one hundred million contacts every year.

Add to these achievements Volkert's modern production facilities, its ability to work with all types of specialty metals, and its emphasis on precision plus automaticity-and you have the reasons why Volkert is your best source for all precision stampings at low cost.
Volkert's outstanding facilities for design engineering, tooling, production, assembly and inspec-tion-all combined under a single roof-are described in a 16-page booklet, "3-Way Facilities for Precision Stampings." Write for your copy.

John Volkert Metal Stampings, Inc.
222.34 96th Avenue Queens Village 8,
L. I., N. Y.

SUB-MINIATURE WIDE-RANGE

for aircraft service

1 1) filterette No. 1561-A

Effective protection from radio interference throughout the 150 kilocycle to 400 megacycle range is afforded communications circuits, signal circuits, and low-current power circuits by the sub-miniature interference filter shown above.

- Small size . . only $1-1 / 8 \times 1 \times 11 / 16$ inch
- Light weight . . . only one ounce

FEATURES Handles 3 amperes at 125 volts, 0.400 c.p.s

- Hermetically sealed in bathtub case, with glass-insulated solder-sealed terminals
- Better than 40 db attenuation throughout 0.150-400 mc. range

Other miniature and subminiature filters can be furnished to meet the performance requirements of your particular applications. Ask us for filter engineering assistance with any problem.
over a wide environmental range, has been developed for use in computers and computing systems. The system is composed of a resolver, a high-gain amplifier and a summing network box. The network box suitably combines its inputs for introduction into the high-gain amplifier; the amplifier feeds the resolver, either the basic resolver or the vector solver type; and the outputs of the resolver are the desired functions. The system, designed originally for the armed services, operates accurately at temperatures from -60 to +160 F ; moreover, it is standardized thereby allowing interchangeability without upsetting the system of which it is a part. Flexibility is provided through a choice of network boxes and amplifiers; in this way, many different type problems may be solved by minor equipment substitutions. Brochure R1-11-524 M , now available, gives typical ratings and technical data.

Oscillograph Trace Reader

Benson-Lehner Corp., 2340 Sawtelle Blvd., Los Angeles 64, Calif, The Oscar Model C oscillograph trace reader is designed to expedite the analysis of continuous trace records, 35 mm to 12 in . in width, presented either on film or paper. In one operation it applies nonlinear calibrations, scales, zero corrections, logs and squares, as well as interpolating time. It produces instantaneous records in the form of tabulations, plots, or punched cards as required. Accuracy of the amplitude measuring system is in the order of ± 0.1 percent of full scale movement. Only one person is required to operate the equipment and produces approximately 20 points of final data per minute

RESIN-IMPREENATED RESIN-FILLED

for $125^{\circ} \mathrm{C}$ service - without derating

10BE Dunaroo caractios

Higher working temperatures at no increase in size are now possible, with Tobe Durators. Features of these capacitors are:

- $125^{\circ} \mathrm{C}$ ratings in same space as $85^{\circ} \mathrm{C}$
- $150^{\circ} \mathrm{C}$ operation for 20 hours without derating
- Welded terminals with silicon insulators
- Hermetically sealed metal cases in bathtub, deep-drawn, and lock-squeeze-seam styles
- Capacitance drift below $71 / 2 \%$ from $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Power factor below 1.5% from $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Suitable as coupling capacitors at minimum voltage

Write for data sheet listing available ratings and sizes.

TOBE DEVTSCHMANN
CORPORATION
NORWOOD, MASSACHUSETTS
temperatures! atmospheres!
For ACCURACY pressures!
TEST WITM EEMWCy
... for Tenney Test Chambers are precision-engineered for maximum efficiency and can be designed to simulate the complete range of temperature, atmospheric or pressure conditions found anywhere on earth-or above it to altitudes of $120,000 \mathrm{ft}$. plus! They attain sub-zero temperatures quickly, maintain them efficiently and provide full instrumentation for accurate evaluation of complete test data.

TENNEYZPHERE ALTITUDE CHAMBERS

Designed to withstand atmospheric pressure and to simulate global conditions of pressures, temperatures and humidities. Altitudes from sea level to approx. $80,000 \mathrm{ft}$. Temperature range from plus $200^{\circ} \mathrm{F}$ to minus $100^{\circ} \mathrm{F}$. Also simulates desired (20% to 95%) relative humidity.

TENNEY SERVO UNIT

Portable air conditioning unit which may easily be attached to various types of laboratory enclosures-impact machines; tension machines; torsion testers; cold boxes and similar equipment. Through its use, articles undergoing testing, aging or weathering can be subjected to wide variations of humidity, heat and cold. Photo shows servo attached to companion chamber.

TENNEY TEMPERATURE AND HUMIDITY CHAMBER

Designed for positive control of temperature, humidity and air circulation. Permits the accurate checking of physical quality, fragility, tension and other factors. Also built to incorporate extreme low temperatures, to $-100^{\circ} \mathrm{F}$.

> TENNEY SUB-ARCTIC INDUSTRIAL CABINETS

Designed for low-temperature testing of metals, radics, instruments, plastics, liquids, chemicals and pharmaceuticals. Temperature ranges of $-40^{\circ} \mathrm{F},-60^{\circ} \mathrm{F},-95^{\circ} \mathrm{F}$ and $-150^{\circ} \mathrm{F}$ are standard for each size.

For further information on these and other
Tenney test equipment, write to Tenney Engincering, Inc., Dept. A, 26 Avenue B, Newark 5, New Jersey.

Environmental Test Equipment
with no additional equipment required.

Subminiature Filters

Astron Corp., 255 Grant Ave., E. Newark, N. J., is currently effecting reductions of from 40 to 50 percent in the size of r - f interference filters through the use of metallized paper capacitor elements and inductances made with special windings on high permeability core materials. Standard or specially designed r-f interference filters are available in single or multiple-filter sections for suppressing conducted and radiated noise on one or more power lines and for noise attenuation from 14 ke to $1,000 \mathrm{me}$. The units conform to all existing government specifications.

Ferrite Recording Heads

Ferroxcube Corp. of America, 35 Marshall St., North Adams, Mass. Increasing use of nonmetallic ferromagnetic cores for recording heads in various types of magnetic recorders has resulted from the introduction of a new material-type 1-90-1-developed especially for this purpose. The new material is very homogeneous and more nearly

REPU:BLC watches the little things

that mean BIGGER PRODUCIION FOR YOU

Take the matter of quickly identifying coils of Republic Aluminum Foid. Republic coils are clearly marked with the customer's code, the gage and the packaging date. Because the marking is on the edge of the coil, close to the core, a partially used coil is as quickly and readily identified as a new one.

As an added service, Republic is always glad to furnish their customers with an inspection chart covering each order. This chart tells at a glance the detailed yield factors of any given order. It is a pistarial representation of what can be anticipated in production.

But the most significant characteristic of Republic capacitor foil is its consistently good quality. Accurate gage, clean, straight edges and individual boxing mean more production, less down time, and fewer rejects.

Republic capacitor foil is available in widths of $1 / 4^{\prime \prime}$ and wider, and in gages from $.00017^{\prime \prime}$ to .005".

REPUBLIC FOIL \& METAL MILLS INCORPORATED

DANBURY
CONNECTICUT
209 W. Jackson Blvd., Chicago 6, III.
666 Mission St., San Fancisco 5, Calif. 1100 Murphy Avc., S. W., Atlanta, Ga.

Branch Sales Offices:

It only takes a single S.S.White flexible shaft to provide an efficient, smooth operating control linkage between any two parts, regardless of curves, obstacles or distance. Compare this to the systems of belts and pulleys-universal joints-or solid shafts and bearings that might otherwise have to be used-systems that call for extra care in alignment, machining, and assembly time. The advantages are obvious and most important in electronic equipment design. With S.S.White flexible shafts you need fewer parts, can simplify assembly, and improve product performance at far less cost.
S. S. White remote control flexible shafts come in a large selection of sizes and characteristics to meet almost any control requirement. Let S.S.White engineers assist you in working out details. There's no obligation.

Write for the Flexible Shaft Handbook. Tbis 256-page bandbook bas full details on flexible sbaft selection and application. Copy sent free if requested on your business letterbead.

[^20]free from voids and cracks than most commercially available ferrites. Technical information on the new material is available in bulletin FC-5103 upon letterhead request.

VHF/UHF Capacitor

Hammarlund Mfg. Co., Inc., 460 W. 34th St., New York 1, N. Y., has introduced a vhf-uhf variable capacitor specifically designed for use in tuned circuits that operate at frequencies from 50 mc to 500 mc. This 'VU' capacitor incorporates a unique design that places two capacitor sections in series and eliminates the need for contacts to the rotor. The rotor is completely isolated by the use of pyrex-glass ball bearings. As a result of this construction, contact and bearing noise is completely eliminated.

Casting Resins and

Potting Compounds
Carl H. Biggs Co., 11616 W. Pico Blvd., Los Angeles 24, Calif., has announced a new line of casting resins and potting compounds to meet today's needs of military and civilian users. When used for cast-
resin embedments of circuits and components, Helix potting compounds provide hermetic sealing protection against moisture, fungus and fumes, and offer rugged protection against shock and vibration with considerable elimination of mounting hardware and consequent reduction of labor time and costs since bare point-to-point wiring may be used. These resins have a shrinkage of less than 1 percent, with excellent adherence to metal leads and other elements. Corrosive effects are nil. Supplied in liquid form, Helix resins are poured cold and will cure at room temperature. They are 100 percent resin solids compounds that give an nonporous casting with a temperature range from -100 F to +400 F with very slight changes in their electrical or physical properties. Moisture absorption is less than 0.01 percent and excellent humidity chamber tests have been recorded.

Subminiature Pulse Transformers

The Jacobs Instrument Co., 4718 Bethesda Ave., Bethesda 14, Md., has developed a new line of potted pulse transformers. They are cylindrical in shape, the cylinder being y^{5} in. in diameter and $\frac{1}{3}$ in. high. They weigh $1 / 100$ oz each when potted in a thermoplastic capsule. A novel mounting means, comprising a pin passing axially through the transformer, is provided. This pin may be used to fasten the transformer to a mounting panel. A standard transformer with a 1 to 1 turns ratio is offered, and in addition transformers with special windings can be supplied on special order. These subminiature transformers should be very valuable in

for - Cutting hard and brittle materials like glass and germanium.

- Controlled removal of surface coatings on printed circuits and deposited carbon resistors.
- Drilling holes in thin sections.
- Cutting small holes, cavities and slits.
- Light etching and finishing operations.

The S.S.White "Airbrasive" Unit produces a cutting action by means of a high-velocity stream of abrasive particles which are directed at the work through an $.018^{\prime \prime}$ diameter nozzle. The cutting action is cool and eliminates the vibration and pressure ordinarily associated with other cutting methods. Furthermore, the accuracy of the cut is not affected by surface irregularities of the work or by wear, as might be the case with a standard cutting tool. The Unit is ideal for laboratory work and can be readily adapted to any production set-up.

Write for Bulletin 5212. It gives full details about the S.S.White Industrial "Airbrasive" Unit, including specifications, prices and operating and performance data.

NEW YORK 16, N.

[^21]TUBE COST DATA you've always wanted!

Most comprehensive and accurate purchas ing and cost-analysis tool in fube history! Product of over 2 years' research. Covers every tube type and crystal manufactured in U.S.-from tiniest crystal to largest transmitting tube -including..
Amperex - Bomac - Chatham - Cetron Du Mont - Eimac - Federal - General Electric Hytron - Industro - Lewis \& Kaufman Machlett - National National Union North American Philips - Philco - Raytheon RCA - Sperry - Sylvania - Taylor - TungSol - United - Western Electric - Westinghouse Tells list prices and your current costs for over 4,000 tube types! Kept up-to-date by State Labs' famous Weekly Market Guides mailed free to all owners of the Tube Buyers' Guide. In looseleaf form, alphabetically and numerically indexed for quick, easy reference.

PRAISED BY INDUSTRY LEADERS

Says W, L. Uqubart,
President, WV. L. Urquhart, Inc. one of Ameri. ca's leading electronic tube exporters.
''Without doubt your new 1953 U.S. Electronic Tube Buyers. Guide contains the most extensive tube cost information ever to hit the tube markets of this country. It's invaluable to me - I wouldn't be

for Your copy-USE the COUPON!

Note: This Tube Buyers' Guide is necessarily restricted to Purchasing Agents, ManufacDistributors, Exporters, Povernment Agencies, Distributors, Exporters, Please fill out the

STATE LABS, INC. Dept. :
37 East 28 th St., New York 16, N. Y.
Send me your FREE 1953 U.S. Electronic
Tube Buyers' Guide.
\| NaME
TITLE
COMPANY NAME
ADDRESS
CITY \qquad
NATURE OF COMPANY BUSINESS
State Labs, Inc., 37 E. 28 St., N.Y.C
MUrray Hill 3-9802

accelerating the trend toward smaller size and increased reliability in modern electronic equipment.

Master Oscillators

Wunderlich Radio Co., 2 Fifth Ave., New York 11, N. Y., has announced a series of high stability master oscillators for use in the laboratory or as a frequency source for radio transmitters and receivers. There are three models covering the following ranges: 200 to $600 \mathrm{kc}, 500$ to $1,640 \mathrm{kc}$ and 1 to 16 mc. A stability of 5 parts per million is attainable and a resettability of the same order is featured, thus making it unnecessary to reference the frequency against a master standard. Power output of 2 to 5 w across a 75 -ohm load is provided, which permits full excitation of most radio transmitters. The oscillators are mounted on standard width relay rack panels and are supplied with a cabinet for table top mounting. Primary power source is $115 \mathrm{v}, 50$ to 60 cycles.

Mechanical Filter

Collins Radio Co., Cedar Rapids, Iowa. The mechanical filter illustrated is a magnetostrictively

Measurement of Uimpedance
 Unductance

 CapacitanceResistance
Dissipation Factor (D)
Storage Coefficient (Q)
Plot Impedance Functions

310A ZiAnqle Niteter

The type 310A Z-Angle Meter measures impedance directly in polar coordinates as an impedance magnitude in ohms and phase angle in degrees: Z / θ Impedance Range: 5 to 100,000 ohms, covered by a single dial and a four position range switch.
Accuracy: $\pm 1 \%$
Frequency Range: 30 cycles to 20 kc . for impedances below 5000 ohms, measurements can be made up to 40 kc . For frequencies from 100 kc . to 2 mc , write for specifications for the type 311 A.RF Z-Angle Meter.
Phase Angle Range: 0° to 90° Direct reading on panel meter. Meter is also Calibrated in D and Q.
Phase Angle Accuracy: Within 2° of meter indication.
Internal Oscillator: 60 cycles and 400 cycles. Terminals are provided for an external, variable frequency signal generator for measurements at other frequencies.

In the field, the laboratory, the production test floor or the class room, the extreme accuracy and the simplicity of operation has proved the type 310A Z-Angle Meter to be a superb and reliable instrument.

Write now for more detailed information

ENGINEERING REPRESENTATIVES

 Cleveland, Ohio - PRospect 1-6171 Hollywood, Cal. HOllywood 9-6305 Waltham, Mass. - WAltham 5-6900 Dallas. Texas - DIxon 9918 Boonton, N. J.- Boonton 8-3097 \quad Roseland, New Jersey Caldwell $6-454$ Dayton, Ohio - Michigan-8721 Wyncote, Pa, - Ofontz 8805

Silver Spring, Md. - Sligo 7-550

Iechnology Instriment Corp.

If it's made of SHEET METAL TRANSFORMER METAL PRODUCTS

FAST, DEPENDABLE SERVICE TO MEET HIGHEST STANDARDS

COMPLETE

SHEET METAL FACILITIES

* DESIGN * DEVELOPMENT
* PRODUCTION

Typical products we engneer and build to specifica. ions include . .

- transformer cans
- Chassis
- housings
- CABINETS
- ELECTRONIC ENCLOSURES
- BRACKETS
- RACKS
- METAL SPECIALTIES

Our work is of the kind you will be proud to use ... Specialists in:

- metal cutting
- forming
- bending
- Piercing
- embossing
- DRAWING
- WELDING

Spot * Are * Heliarc

- PAINTING \& baking

Write or telephone us today .. TMP engineers will be glad to supply quotations without obligation!

[^22]
$A_{\text {cE }}$ Cols

 Everywhere!Yes, throughout the world, with our Armed Forces . . . From Coast to Coast, in Commercial Equipment . . . ACE Coils and Chokes are faithfully performing their designated functions. We stress "All Level Quality Control", "Advanced Engineering Techniques", and "Timeby Deliveries". Coil \mathcal{E} Electronics Co. 912 MIDDLESEX AVE • Met-6-3580 • METUCHEN, N. J.
 are essential

the first name in steatite

Leading electronic manufacturers depend
 on the original, prewar quality of all ISOLANTITE products because it saves them time-money-production headaches.
It will pay you to secure quotations from Isolantite.

a few "ISO" PRODUCTS

Bushings, Stand-of and
Antenna Insulators
Beads, Washers
Supports, Coil Forms,
Standard and Special Designs of all types of Pressed, Extruded or Machined Steatite Components.

driven unit for intermediate frequency application and is composed of three sections: the input transducer, the resonant section and the output transducer. Input and output sections are identical and function to convert the electrical signal to a mechanical form and vice versa. In the resonant section, disks composed of special alloy metal have a very sharp resonance and excellent frequency stability. By means of magnetostrictive action, mechanical vibrations are converted into a varying magnetic field. A coil intercepts this field and supplies the output voltage. The entire unit is housed in a hermetically sealed case smaller in size than a normal intermediate transformer. The unusual selectivity of this filter and its miniature size make it readily applicable to both military and commercial transmitter and receiver designs.

Oil-Filled Accelerometer Unit

F. M. Giannini \& Co., Inc., Pasadena 1, Calif., announces the 24133 accelerometer designed to fit in an oil-filled case. It utilizes a potentiometer resistance with a large output, requiring no amplifying unit in most cases. Instrument ranges may be obtained up to 30 G while standard resistance ranges are 2,000 or 5,000 ohms. The potentiometer element safely carries current up to 15 ma . The unit has good resolution with 0.25 percent minimum offered on the standard instrument. The 24133 is a 1.0 -percent instrument in performance. It is designed to operate in temperatures between -54 C and +71 C . Damping is 0.5 ± 0.075 of critical for a 7.5 G instrument as a typical case. It is designed for applications

PRECISION POTENTIOMETERS of optimum accuracy meeting your space requirements

Type RVP3 tapped hole and precision pilot mounting

Technology Instrument Corporation potentiometers are designed for application in computing devices, instrumentation, electronic control and servo mechanisms - wherever extreme electrical and mechanical precision is an essential requirement.

As a result of years of custom manufacturing a complete line of standard sizes is available ranging from 7 inches in diameter to the sub-miniature $7 / 8^{\prime \prime}$ in diameter.

Custom design both mechanical and electrical is a featured TIC service. Precision non-linear pots may be designed to meet customer's requirements from either empirical data or implicit functions. Taps and special winding angles anywhere up to 360° continuous winding can be incorporated into both linear and non-linear precision potentiometers. Greatly expanded facilities plus mass production techniques meet customer volume needs yet maintain precision tolerances in both linear and non-linear potentiometers.

Technolocr Thsirtmen Corp.

533 Main Street, Acton, Massachusetts, Phone Acton 3-7711

NOW ... smallest

practical sizes

GADE
 MINIATURE

Insulated standoff Terminels

Molded Melamine Insulation in accordance with latest revisians of Mil-P-14 Specification

- SUBMINIATURE

- MINIATURE

FEED-THRU
(HARDWARE
INCLUDED)

Terminal and Mounting Insert styles shown are available in all body sizes $\left(3 / 8^{\prime \prime}, 17 / 32^{\prime \prime}, 19 / 32^{\prime \prime}\right)$
OTHER TYPES AVAILABLE For specific details, write

MANUFACTURING CO.

588 Eddy Street, Providence 3, R. I. representatives in Principal Cities

For SPECIFIED PERFORMANCE Specify JELLIFF RESISTANCE WIRE

COMPLETE CONTROL OF MANUFACTURE . . .
A WIDE RANGE OF EXPERIENCE . . .
A WIDE RANGE OF ALLOYS . . .
make JELLIFF the ideal source of
Resistance Wire to assure your Product's

Performance According to Specs.

Precision resistors-rheostats-relays-thermocouples-ohmmeters —bridges—high-temperature furnaces can all benefit from the PLUS-PERFORMANCE of JELLIFF RESISTANCE WIRE

Detailed Enquiries Welcomed. Address Dept. 17.

in computing, telemetering and aircraft missile control.

Balun

General Radio Co., 275 Massachusetts Ave., Cambridge 39, Mass. Accurate measurements of balanced impedances in the frequency range from 50 to $1,000 \mathrm{mc}$ can be made with the help of the type 874 -UB balun. The balun, a tunable semiartificial half-wave line, acts as a transformer and makes it possible to connect a balance impedance to an unbalanced coaxial system such as is used on highfrequency measuring instruments. The balun has two important advantages over a conventional trans-former-it can be tuned over a wide frequency range and has very low losses. The unbalanced end of the balun is a type 874 coax connector, and thus it can be used directly with any of the company's measuring equipment. New adaptors are available to connect to any of the other commonly used connector systems.

Literature

Electronic Level Control. Fielden Instrument Division, RobertshawFulton Controls Co., 2920 North 4th St., Philadelphia 33, Pa. Brochure No. F-101 deals with the Tektor level control. This 8 -page, 2 -color publication describes the product, outlines applications, stresses its outstanding features (such as no moving parts or diaphragms to get out of order), and lists the various types of electrodes available. Ordering information is included.

Power Tetrode. Lewis and Kaufman, Ltd., 50 El Rancho Ave., Los Gatos, Calif. A new technical data

MISSION: To eliminate the needless waste of manpower, machines, and technical skill in the modification of servo components.

In applying servo systems to their operations, many engineers are restricted by "stock" components. They either sacrifice efficiency by building systems around the components available, or waste manpower, machines, and skill in modifying units to make them useable.

It is the mission of the Transicoil Corporation to provide precision components for each particular servo application . . ready for immediate application . . . with all the accuracy and efficiency for which they are designed.
reference: Technical catalog "Precision Components" available upon request.

Miniature
Control Motors

Motor and Gear
Train Assemblies

Motor, Generator, and Combinations

Amplifiers

ELECTRONIC GLASS WORKING EQUIPMENT for RADIO, TELEVISION TUBES, INCANDESCENT LAMPS, GLLASS LLTHES for TELEVISION TUBES
We make Transformers, Spot and Wire Butt Welders, Wire Cutting Machines and 500 other ifems indispensable in your production. Eisler Engineers are constantly developing New Equipment. I you prefer your own designs, let us build them for you. Write to Charles Eisler who has served The Industry over 32 years.

Machines for small Radio Tubes of all kinds:

High Temperature Hydrogen Electric Furnaces

Hydrogen atmosphere heating chamber, hydrogen drying tower, water cooled unloading chamber, heat control with air cooled transformer with 11 position top switch. Automatic temperature control (optional) standard furnaces from 1" bore $1800^{\circ} \mathrm{C}$. to $8^{\prime \prime}$ bore $1100^{\circ} \mathrm{C}$. Molybdenum wound heating units, loading ond unloading chambers equipped with safety doors. Supplied with hydrogen flow gauges. Made to order in many sizes.

EISLER ENGINEERING CO., Inc.
751 So. 13th St. Newark 3, N. J.

VISIT BOOTH 3-409 IRE SHOW, GRAND CENTRAL PALACE

PREMAX

Mobile Mountings

To Meet Every Need For Civil Defense, Utility or Amateur Use

Premax presents a wide variety of lowcost yet sturdy Mountings for mobile and marine use. There are types to meet practically every situation, including a new spring mount and spring adapter which will take every shock. Write for Bulletin and prices.

PRHMAX PRODUCHS
DIVISION CHISHOLM-RYDER CO., INC.

5301 HIGHLAND AVE., NIAGARA FALLS, N.Y.

$70 r$ EECTRTCAL
 mithliss \& MISCH HaN JONES
 SERIES 2400 PLUGS \& SOCKETS

- Improved Socket Contacts-4 individual flexing surfaces. Positive contact over practically their entire length.
- Cadmium plated Plug and Socket, Contacts mounted in recessed pockets, greatly increasing leakage distance, INCREASING VOLTAGE RATING.
- Interchangeable with 400 Series.

Send for complete Catalog No. 18. Plugs, Sockets, Terminal Strips.

sheet on the Los Gatos brand 4D21 power tetrode illustrates the tube, gives dimensional data, general electrical characteristics and constant current curves for 350 screen volts. Maximum ratings and typical operation figures are provided for: Class- AB_{1} audio-frequency power amplifier and modulator, class $-\mathrm{AB}_{2}$ audio-frequency power amplifier and modulator, class-C r-f power amplifier and oscillator (unmodulated) and class-C r-f high level modulator-amplifier.

Test Chambers. MinneapolisHoneywell Regulator Co., Wayne and Windrim Aves., Philadelphia 44, Pa. Instrumentation data sheet 11.0-7, "Test Chamber by Bowser," presents basic instrumentation data on all types of test chambers including those for relative humidity, low temperature, altitude, flight similitude and environmental tests. Also included in the literature are engineering data and general specifications for the company's standard reach-in and walk-in test chambers.

Infrared Photo Resistance. J. W. Bootz, 1009 Prinsengracht, Amsterdam, Holland, has available a leaflet illustrating and describing the Eletro-Cell, a lead-sulfide infrared photo resistance of great sensitivity. The unit discussed, featuring specially small construction, can be used for infrared measuring and directional apparatus as well as for many other scientific and technical purposes.

Teflon Products. Raybestos-Manhattan, Inc., Manheim, Pa., has issued a new, attractive 8 -page bulletin featuring the company's Teflon products. Included in the line described are gaskets, rings in irregular shapes, sheets, tubes, rods, tape, braided and plastic packings, packings for stuffing boxes and valve stems, and Vee-Flex packing rings. The products covered are ideal for use against acids, solvents and alkalies, because no known industrial acids or caustic will attack Teflon.

Portable Power Megaphone. Austin-Lee Inc., 1624 Eye St., N.W., Washington 6, D. C., has avail-

There is a Birtcher Clamp... or one can be designed ...for every tube you use or intend to use.

Regardless of the type tube or plug-in component your operation requires... and regardless of the vibration and impact to which it will be subjected...a Birtcher Tube Clamp will hold it securely and rigidly in place.

Catalog and samples sent by return mail.

The BIRTCHER CORPORATION 4371 Valley Blvd. Los Angeles 32, Calif. Please send catalog and samples by return mail.
Company E-3-3
Attention of:
Address
City ___ State

Schweber electronics
122 Herricks Road, Mineola, New York Telephone: GArden City 7-6521
you'll find the correct answer to who makes everything in the entire field of electronics
including...components
equipment
and
materials
in the...

electronics BUYERS' GUIDE

Get in the habit of laoking it up in...

the electronics
 BUYERS' GUIDE

"The Book that has all the answers"

A McGRAW-HILL PUBLICATION 330 West 42nd Street NEW YORK 36, N. Y.
able a 4-page bulletin describing the Little Bull portable, self-contained power megaphone that operates on a magnetic amplifier without any electronic amplifier or vacuum tubes. The unit discussed features instant trigger action, has a range that is effective up to $\frac{1}{4}$ mile, and weighs $5 \frac{1}{2} \mathrm{lb}$ complete. Some of the many possible uses of the megaphone are listed.

Electronic Track Scales. Cox and Stevens Aircraft Corp., P.O. Box 30, Mineola, N. Y. Electronic track scales for motion and stationary weighing of freight cars are described and illustrated in this new catalog. Data are given on accuracies, installation, operation and maintenance.

Bobbin Winder \& Dereeling Tension. Geo. Stevens Mfg. Co., Inc., Chicago, IIl. A new catalog sheet illustrates and describes the model 119-A bobbin winder and model T-102 dereeling tension for extremely fine wire. Among the features of model 119-A described are types of windings, coil sizes, wire sizes-tension equipment, economy box-type cam, gears, winding speeds, setup time, motor equipment, automatic stop, automatic counter, mounting and other features. Model T-102 tension's descriptive features include wire sizes handled, size of spools, description of operation and other features.

Mass Spectrometer. Consolidated Engineering Corp., 300 North Sierra Madre Villa, Pasadena 15, Calif. Bulletin CEC-1800 B discusses mass spectrometry and its uses for control analyses, complex mixture analyses, exploratory analyses, purity determinations and research investigations. It describes and illustrates the model 21-103A analytical mass spectrometer, an integrated assembly of precision units. Performance characteristics, specifications and information on accessories are included.

Miniature Metal-Cased Capacitors. Aerovox Corp., New Bedford, Mass., has published a bulletin announcing a wide choice of foil-paper capacitors housed in compact tubular metal cases with vitreous-

EPN Simplifies Your Instrumentation

 with this Expandable Consolette Recorder
Start with a 2 Channel System

Add units, as you need them, to make a 4, 6 or 8 Channel System.
The Consolette gives you rack mounted dimensions with option of Direct Coupled, Condenser Coupled or Carrier Amplifiers; a wide variety of chart speeds and galvanometer types; full writing desk for review of intelligence; and an efficient, modern and beautifully designed instrument.

Precision drilling made easy!

Sensitive "Feel"
Sensitive Speed Control: Foot-operated, leaves both hands free

High Precision: Selected Chuck and Bearings. Spindle true within $.0002^{\prime \prime}$. Table square $.0005^{\prime \prime}$ in $5^{\prime \prime}$ circle. Permanent accuracy, castings annealed and ground.

$$
\text { (171) } \frac{\begin{array}{l}
\text { WRITE: Bulletin E2 } \\
\text { mhicro-mechonics } \\
\text { Phillips \& Hiss Co., Inc. } \\
\text { Hollywood 38, California }
\end{array}}{\text { Ho N. Madden Place }}
$$

Thereisan Oigininal $=3 \mathcal{F}$
 . . . for every spot where dependable accurate indication is a must.
 EASY TO READ-

CATALOG or INFORMATION ON REQUEST

B E E ELECTRICAL INSTRUMENT CO., INC. PENACOOK, N. H .

ceramic terminal end seals to meet high-temperature and miniaturized space requirements of present-day electronic equipment. Depending on the impregnant used, the capacitors described operate in temperature ranges from -40 to +85 C , and from -55 to +125 C . The bulletin contains standard listings, specifications, drawings, how-to-order and other pertinent data. It includes several variations from the plain grounded-to-case design, such as an insulated-from-case unit, the plastic insulating sleeve, the threaded terminal and the tangential mounting bracket.

Motors and Timers. Amglo Corp., 2037 W. Division St., Chicago 22, III., has available a mailing piece on its reed-controlled d-c motors and timers that feature self-starting, constant speed and light weight. Included are technical specifications and two pages of performance curves.

Certified Alloys. Cannon-Muskegon Corp., 2875 Lincoln St., Muskegon, Mich. A brochure describing a new service whereby precision casting foundries can quickly and for the first time obtain stainless, super stainless and alloyed tool steels specifically developed for remelting purposes is now available. The publication illustrates a new model plant, designed and built specifically for producing master heats of alloys in shot and ingot form. Shown are laboratories, melting equipment of latest design and other equipment to produce and guarantee quality alloys.

Nut Clip Fastener. Prestole Corp., Toledo, Ohio. Catalog sheet 751-A contains complete engineering and application data on the company's new heavy duty nut clip fastener that features (1) assembly ease of a nut clip unit; (2) security and holding power of a multiple thread fastener; a spring steel lead tongue that provides (3) ease in clipping fastener onto panel edge and acts as (4) a lock washer when assembly is in a fixed position.

Cold Drawn Steel Tubing. Pacific Tube Co., 5710 Smithway St., Los Angeles 22, Calif. Steel tubing and

THE HIGH-PRECISION LINEAR POTENTIOMETER

MICROPOT
BORG MICROPOT TEN-TURN POTENTIOMETER: Built to fit the specifications of control system engineers and designers . . . constructed with Micro accuracy for precise voltage adjustments . . . featuring an assembly scientifically designed, machined, assembled and automatically machine tested for linearity of $\pm 0.1 \%$ and 0.05%, zerobased. MICROPOTS ARE AVAILABLE IN 1.15 to 3 OHM and 30 to $250,000 \mathrm{OHM}$ RANGES FOR IMMEDIATE SHIPMENT.

BORG MICRODIAL: Two concentrically mounted dials: one for counting increments of each turn and the other for counting turns delivered completely assembled with dials synchronized. Outstanding features include smooth, uniform action . .. no backlash between incremental dial and potentiometer contact . . . less wear, only one moving part aside from the two dials . . . contact position indicated to an indexed accuracy of 1 part in 1,000.

SEE US AT BOOTH 2-517 AT THE I.R.E. SHOW, NEW YORK

A precision ten-furn indicating dial assembly. Has screw locking device on operating knab.

Same as 746. A but has knurled locking screw mounted externally to operating knob.

BORG EQUIPMENT DIVISION THE GEORGE W.BORG CORPORATION
 Janasville • Wisconsin

These new books

will be at your Radio Engineering Show. Be

sure to see them.

Flux Linkages \& Electromagnetic Induction

by L. V. Bewley. An outstanding contribution to basic electrical knowledge, this book presents the rcasons for the difficulties commonly encountered simple, straightforward methods of analyzing and solving these problems. $\$ 3.50$

Direct Current Machines for Control Systems
 by A Tustin. Explains in practical engineerin

 terms the basic principles common to the various types of electronic control mechanisms, the comparative characteristics of the major rypes bemp, consider in the selection and use of these mech. anisms for a particular purpose. $\$ 10.00$
Hearing Aids

by Nattbew Mandl. Here for the first time is a clear, simple explanation of the major types of for the user and their service problems. Written both as a guide to the hard-of-hearing in the selection and use of a hearing aid and as a basic manual for the serviceman. this book will be a valuable sales aid to manufacturers and dealers as well as an excellent training text for their service personncl. $\$ 3.50$

Qualitative Analysis and Analytical Chemical Separations
by P. W. West, M. M. Vick, and
A. L. LeRosen (Febr. 24th) The principles and laboratory techniques, includ ing new, non-sulfide procedures.
Physical Chemistry 3rd Ed.
New, up-to date edition of a leading text, noted for its thorough, rigorous treatment of the sub
$\$ 6.00$

Analytic Mechanics

by V. M. Faires \& S. D. Chambers
New 3 by edition of the authors' well known "Mechanics of Engincering." Calculus by J. F. Randolph $\$ 5.00$

Elementary Differential Equations by E. D. Rainuille

Laboratory Manual of Materials Testing Full, up-to-date information on © Poths Full, up-to-date information on equipment and
tecliniques. techniques.
$\$ 4.00$
These and many other important new books will be at Brentano's book (501-2) at there, or write us for further there, or write us for further
information.
The Tlacmillan Comfiany
60 FIFTH AVENUE, NEW YORK 11, N.Y

See This NEW Switchcraft "Littel-Plug and Many Other New Products at Booth No. 3-114,
 IRE Show - March 23-26
 Write for catalog

SNTOA Canadian Representctive: Atlas Radio Cerp. Ltd., 550 King St., W, Toronto 2B, Conada.
Phone: Waverly 4761 . Phone: Waverly 4761.

* The name "Switchcraft'" is a registered trade maik and is the property of Switcheraft, Inc.

AVAILABLEATALLLEADINGRADIOPARTS JOBBERSO

ELECTRONIC COMPONENTS

Manufacturers of Electronic components of the highest quality now serving some of the leading manufacturers in the country. For more complete information, send for our catalog.

NATBNAL FELTRENIBS BERFERATAN
35 ¢T. CASIMIR AVENUE, YONKERS, N. Y. TEL, YONKERS E-6400
cold finished rods and bars are described in bulletin No. 10. The six-page folder gives standard manufacturing tolerances on outside diameter, inside diameter, wall thickness and commercial lengths for various sizes of tubing; also, size ranges for standard production of cold drawn carbon steel and alloy steel tubing, electric resistance welded steel tubing, stainless welded and drawn tubing, cold finished bars and precision shafting. A table lists average physical properties of various tubing analyses regularly produced. Included in the folder are illustrations of plant facilities, useful information for users of tubing and information on mill practices.

Insulation Handbook. Mycalex Corp. of America, Clifton Blvd., Clifton, N. J. A 24 -page engineers' handbook and catalog contains important data on the ideal insulation for all frequencies. Included are the product's outstanding properties, a listing of the company's new developments, a table showing a comparison of glassbonded mica with other insulating materials, and an illustrated description of different grades of Mycalex. The catalog also contains information on a line of switches, commutator plates and tube sockets.

High-Vacuum Apparatus. Central Scientific Co., 1700 Irving Park Road, Chicago 13, Ill. An interesting and informative 56 -page booklet on high-vacuum apparatus, recently revised to include new type vacuum connectors and couplings, has just been published. It contains detailed information on planning the highvacuum system together with many valuable tables and charts. Also included in bulletin 10 E is a complete description of the various types of high-vacuum apparatus and accessories.

Power Measurement Transducers. Minneapolis-Honeywell Regulator Co., Wayne and Windrim Aves., Philadelphia 44, Pa. Bulletin 15-16 contains technical data on the application of power measurement transducers to process control. Application data on all subjects such as salt operation, pulverizing, clay

THE SP-600-JX Communications Receiver USES ROTARY TURRET FOR MAXIMUM SENSITIVITY!

A rotary turret, uniquely incorporated into the "Super-Pro 600-JX," makes possible the placement of the coil assemblies of the two RF Amplifier stages, Mixer stage and First Heterodyne Oscillator stage directly adjacent to their respective sections of the four-gang tuning capacitor and the individual tubes.
Coil assemblies are mounted on the turret. Turning the band selector switch to any one of the six frequency bands places the required coils immediately in their correct positions. This arrangement increases receiver stability, provides uniform maximum performance from band to band, and simplifies servicing.
Every part of the "SP-600-JX" is designed to the highest standards of receiver design. The rotary turret is one example of the fine engineering in this magnificent 20 -tube receiver.

The "SP-600-JX", the only professional communications receiver available that provides up to six crystal controlled frequencies, has a range of 540 kc . to 54 mc . It is now being used by the U. S. Army, Navy, and Air Force, other governmental agencies, airlines, the press, maritime, and commercial services, for both single channel and diversity reception. Write today for further deicils.

Visit our booth 4-214 at the I.R.E. Shout

2 MUSTS

For Low-Cost Servicing of Mobile Radio Systems

Lampkin equipment gives you the lowest cost per channel, whether you supervise a large multiple - frequency system, or whether you service numerous. smaller installation! Lampkin equipment measures center frequency and modulation deviation, to FCC specifications!

The Type 205 FM Modulation Meter For Multiple Mobile Frequencies.

The Type 205 FM Modulation Meter meas ures peak frequency swing due to voice modulation of FM transmitters, as required by the FCC. Indicates $0-25 \mathrm{KC}$. deviation. Instantly tunable to any frequency from 25 MC. to 200 MC. Simple to use. Direct reading. No charts. No tables. $\$ 240.00$.

For Any Number of Frequencies, AM or FM. The Type 105-B Micrometer Frequency Meter

The Type 105-B Micrometer Frequency Meter measures center frequency deviation on any number of transmitters, AM or FM, from 0.1 MC . to 175 MC . The accuracy, determined by over 500 field tests, is conservatively guaranteed better than 0.0025%, surpassing FCC requirements. Readily checked against WWV. $\$ 22.00$

Return coupon TODAY for complete liferature.
LAMPRIN LABORATORIES, INC.
Instruments Div., Bradenton, Florida

Please send me complete technical literafure and delivery information on the following mpkin-designed instruments:

- Type 205 FM Modulation Meter

G Type 105-B Micrometer Frequency Meter
\qquad

Aldress
City
Zone.

Here at Coto-Coil...

the Impregnating Department applies the final protective

Finished coil impreg noted with varnish coating coating to precision-made Coto Coils. Each coil is pre-heated immersed in varnish and drained . . sometimes 3 or 4 times. The varnish finish, baked in these modern ovens, not only provides a hard, durable outer surface but completely fills all voids within the coil, resulting in a solid, pocket-free mass. Such modern production facilities, plus 35 years of experience, combine to make Coto Coils the first choice for engineered coils. Coto-Coil Company, 65 Pavilion Avenue, Providence 5, R, I.

Coto ${ }^{20}{ }^{201 s s_{0}}$ Coils
 KOND

DX Announces

 a NEW 90° YOKE for $27^{\prime \prime}$ TUBES

If's Engineered for TOP PERFORMANCE ... in Production NOW!

This new DX 90° Deflection Yoke has everything a television receiver manufacturer wants . . . a sharp full-screen focus, a mininum of pincushioning, the ultimate in compactness and a price that's downright attractive. Because this yoke has been brilliantly designed for mass production on DX's specialized equipment, it warrants immediate consideration in your $27^{\prime \prime}$ receiver plans. Write us today.

DEFLECTION YOKES . . . TOROID COILS . . . CRYSTALS I. F. TRANSFORMERS . . . R. F. COILS . . , DISCRIMINATORS SPEAKERS . . . TV TUNERS . . . ION TRAPS . . . TRANSFORMERS

DX RADIO PRODUCTS CO.
 GENERAL OFFICEIS: 2300 W. ARMITAGE AVE., CHICAGO 47, ILL.

mixing, sodium production and measurement and control of a-c power plus the measurement and control of d-c power are covered. Engineering descriptions of applications of thermal converters, solenoid-plunger ammeter, torquemeter, vacuum thermocouple, rectifying current system, precision shunt, saturable reactor and magnetic amplifier are given. Also included in the 12-page booklet are diagrams, tables of characteristics and mathematical formulas.

Radio Equipment. Marconi's Wireless Telegraph Co. Ltd., Chelmsford, Essex, England. The 1953 catalog of radio equipment is a 432 -page hardcovered book giving an overall picture of the extensive range of the company's products. It is divided into seven sections: aeronautical, broadcasting, communications, maritime navigational aids, crystals and electronic tubes, and miscellaneous. The last-named section covers antenna equipment, sound reproduction equipment and test and measuring instruments. By the aid of a comprehensive index at the end, the reader may immediately turn to the pages covering those items in which he is particularly interested. Also, each of the seven sections mentioned has its own contents page that indicates the broad classification of equipments within that section.

Information on Magnets. Eriez Mfg. Co., 1945 Grove Drive, Erie, Pa. A new chart, "What Makes A Magnet?", describes the natural forces causing magnetism and how they are harnessed to create a useful tool for industry and the home. The chart, made up of diagrams and drawings with explanatory captions, describes the potential magnetic forces found in a ferromagnetic atom. How these natural forces are organized by the application of an external magnetic field is also shown.

Test Chambers. International Radiant Corp., 40 Matinecock Ave., Port Washington, N. Y., has issued a 4-page bulletin giving an illustrated technical description of the following testing equipment: A

little terminal . . .

BIG performance

No extrusion needed for mounting this terminal!

NOW, an entirely Neus miniature hermetic terminal - Lundey series 199, which offers: the superior properties of TEFLON and silicone rubber; effective spring loading.

This terminal is assembled with simple tooling in a drilled or punched hole. As an extra service, Lundey Associates will supply the terminals installed in your covers, if desired.

These important features will help solve YOUR terminal problems -

- Teflon external member
- silicone or neoprene core
- minimum mounting - $15 / 64^{\prime \prime}$ on centers
- voltage rating - 500V RMS operating
- current rating -8 amps .
- three electrode styles:
eyelet with hollow conductor
single turret with solid conductor
double turret with solid conductor
- production-proved
- meets MIL-T-27 specifications

Send for your samples and Bulletin \#E199

LUNREEGATES

694 MAIN STREET WALTHAM 34 , MASSACHUSETTS

MINIATURE SLIP RING ASSEMBLIES

Commutators and other Electro-Mechanical Components PRECISION MADE TO YOUR OWN SPECIFICATIONS

Our Swiss methods and techniques are geared to meet exacting requirements. We invite your inquiries.

COLLECTRON CORPORATION 216 EAST 45th STREET - NEW YORK 17, N. Y. MUrray Hill 2-8473

PRIMARY BATTERIES for your Specialized Needs

dRY types

78 Standard Industrial, Laboratory and Government Types.
 BATTERIES Our engineers will design and create to your requirements. Send us your specifications.

Precision-built, low-cost, battery-operated available for delivery now.

Send for FREE Catalogs

RESERVE TYPES
Water activated "One Shot" Batteries.

SPECIALT BALTET GQMPANY A Subsidiary of the CAYOXLO Roy-O-Voc Company
MADISON 10, WISCONSIN

WHEN

you need a quick answer to

WHO MAKES IT...

Just look it up in the electronics BUYERS' GUIDE

There are...

23,367 Answers

to

1,445 Problems

covering every...

COMPONENT EQUIPMENT

and MATERIAL

used in every phase of electronics

GET IN THE HABIT OF LOOKING IT UP IN the electronics BUYERS' GUIDE
a mcGraw-hill publication 330 West 42nd Street NEW YORK 36, N. Y.
plastic Bell Jar portable altitude chamber, a shock testing bath, an explosion chamber, a walk-in room, low and high temperature chests, an altitude chamber and calibration equipment.

House Organ. John Volkert Metal Stampings, Inc., 222-34 96th Ave., Queens Village 8, L. I., N. Y. A new quarterly publication featuring precision metal stamping case histories was recently issued. The first issue of the highly-illustrated publication, called "The Volkert View," contains a story on how precision stampings shoot the picture onto the tv screen. Another highlight is a round-up story on the recent plant expansion program that has brought about a 20 -percent increase in capacity for this leading supplier of precision stampings and assemblies. Those interested in having their names added to the mailing list should write to the company.

Recorders and Indicators. Minne-apolis-Honeywell Regulator Co., Wayne and Windrim Aves., Philadelphia 44, Pa. Catalog 1520 covers a broad line of ElectroniK recorders and indicators. Illustrations, general specifications, various models and ordering information are given for strip chart recorders, circular chart recorders and precision indicators. Measuring circuits and scale ranges are included.

Geiger and Scintillation Probe Monitor. Measurement Engineering Ltd., Arnprior, Ontario, Canada. A single catalog sheet covers the model AEP 19035 Geiger and scintillation probe monitor, a portable mains operated instrument capable of measuring low values of alpha, beta and gamma radiation with a probe at distances up to 100 ft. Electrical and mechanical features, uses, circuit design and operation are given.

Plastic Insulated Wires. Sequoia Process Corp., 881 Douglas Ave., Redwood City, Calif., presents a compilation of technical information to aid users of plastic insulated wires in determining wire requirements. The purpose of the catalog is to provide data on the various
 weight. Low operating temperature. Operates in any position. High contact rating. Gas filled. Low heater current. Durability and long life.

VOLTAGE . . .
$6.3,26.5,115$ volts (A.C. or D.C. or as required.
AMBIENT TEMPERATURE RANGE... $-60^{\circ} \mathrm{C}$. to $+80^{\circ} \mathrm{C}$.
ENVELOPE . . Miniature (7 and 9 pin), or octal (8 pin) metal.
TIME DELAY PERIODS ... Preset from 5 seconds up.
VACUUM... Evacuated, inert gas filled. HEIGHT ... $13 / 4^{\prime \prime}$ maximum seated.

EUREKA PRESENTS POSTTIVE $\frac{-}{2}$

The ELIMINATION OF CHATTERING is accomplished with the incorporation of "POSITIVE SNAP ACTION"' in the EUREKA "SNAPPER". .. LEADING ELECTRONIC MANUFACTURERS have acknowledged the new EUREKA "SNAPPER" as a major advancement in this field, and have already accepted this relay as a standard component of their latest equipment.

Inquiries are invited . . . send for our "Bulletin Number Snapper".
EUREKA TELENISION AND TUBE CORPORATMON Manufacturers of Cathode-Ray Tubes and Electronic Products 69 FIFTH AVENUE, HAWTHORNE, N. J. HAWTHORNE 7-5800

These retainers are used to secure Vacuum Tubes and to resist side motion of Vacuum Tubes used in radio equipment which is subject to shock and vibrations. These retainers meet the requirement of all JAN specifications. The insulated portion is made of a melamine base Fibre Glass Phenol which provides 300 volts insulation to ground and withstands a temperature of 350 F . The insulated plate can readily be fastened or released by hand.
Available for envelope types T7, T8, MT8, T9, T12, ST12, T12ZDI, ST14, S14, ST16, T51/2, T61/2, MT-IC. ST19, T14, ST128CT-9.

Manufacturers of Electronic Components
dependable instruments

FOR AIRCRAFT
LABORATORY AND INDUSTRIAL APPLICATIONS

The A-500 Portable Recorder is being widely used in many diversified fields as it is designed for applications where space is at a premium. Although extremely compact, 63/4" $\times 97 / 8^{\prime \prime} \times 123 / 4^{\prime \prime}$, and lightweight, 33 lbs , the Heiland A- 500 retains the versatility and embodies many of the features usually found only in much larger instruments. The features of the A.500 include four quick change paper speeds; precision time lines: trace identification; direct monitoring of galvanometer light spots. Paper width, $4^{\prime \prime}-100^{\prime}$ long. Available for either 12 volt or 24 volt D.C. operation.

Write today for catalog of Heiland oscillograph recorders, galvanometers and associate equipment.

HEILAND RESEARCH CORP.

130 E. FIFTH AVE. © DENVER, COLORADO
characteristics of each component. used in plastic insulated wire so that the best combination for each specific use can be determined. In addition, a brief listing is included of the properties of the more common wires manufactured.

Timing Relays. Allen-Bradley Co., Milwaukee, Wisc., is offering a 16 page bulletin featuring its complete line of timing relays. Fluid dashpot, pneumatic and electronic timers are fully described. It also contains complete operation and engineering data. Applications are clearly stated. Timers are shown in a wide variety of standard enclosures. A selector chart is provided along with suggestions in choosing a timing relay for a particular application.

Master TV Systems. BlonderTongue Laboratories, Inc., 526 North Ave., Westfield, N. J., has issued a new installation manual giving complete technical data on all types of master tv systems. It describes the characteristics and functions of each of the company's units and accessories. Picture diagrams offer convincing evidence of the great flexibility and ease of installation of low-cost master tv systems. There is complete information regarding the layout of a master system, including the type of transmission line to use, location and installation of the various units, and elimination of ghosts and other interference.

Products Catalog. JAN Hardware Mfg. Co., 25-30 163rd St., Flushing, N. Y. A new four-page catalog introduces the company's line of electronic hardware. Included are illustrations, description and use, chief features and specifications for an insulated coupling assembly, a panel bearing and shaft assembly, a shaft lock, an offset extension shaft coupler, a jack cover and a bushing extender.

Parabolic Reflectors. Workshop Associates Division, The Gabriel Co., Endicott St., Norwood, Mass., has prepared a catalog sheet listing over 100 different parabolic reflectors. Describing stock reflectors, the sheet covers a wide

Over 30 variations of this MICRO door interlock switch

 designed to meet specific needs!

SINCE the first MICRO door interlock switch was designed several years ago to meet the specific requirements of one of the world's largest manufacturers of electronic equipment, MICRO engineers have developed over 30 variations to meet the exacting needs of other makers of electronic equipment.
Shown here are four typical variations of the MICRO door interlock switch developed for the automatic protection of personnel working with high voltage cahinets.
These switches will (1) automatically cut off current when cabinet door is opened; (2) permit a manual reclosing of the circuit when necessary while the donr is open and (3) restore protection automatically when door is reclosed.
Other variations than those shown here include the use of a hermetically sealed switch as the switching element, doublepole, double-throw switches and others. MICRO engineers will he glad to give you complete information on these and other variations of MICRO door interlock switches. Call or write your nearest MICRO branch office.

A DIVISION OF
MINNEAPOLIS•HONEYWELL REGULATOR COMPANY H

sub-miniature AND moisture-proof
 IN-RES-CO S-15 \& S-30 WIRE WOUND RESISTORS

THE ECONOMICAL SOLUTION where moisture proof resistive elements of comparatively small size are required for commercial applications. Type $\mathrm{S}-15$ is $3 / 8^{\prime \prime}$ long by $1 / 4^{\prime \prime}$ diameter; type $\mathrm{S}-30$ measures $3 / 4^{\prime \prime}$ by $1 / 4^{\prime \prime}$ diameter Both types are moisture proof and capable of high performance over long periods of continuous ser vice. IN-RES-CO Resistors for every ordnance or civilian requirement are available at a cost that solves circuit design problems both performance wise and cost-wise Check up now, on the complete line of IN.RES-CO quality wire wound resistors.

TYPE S-15
$1 / 4$ " DIA. $\times 3 / 8{ }^{\prime \prime}$ LG

TYPE S-30
$1 / 4^{\prime \prime}$ DIA. x 3/4" LG.

assortment of dishes available for experimental and design work. A major item is a 48 -in. stamped reflector at very low cost. Complete mechanical dimensions and specifications are given for all models.

Pulse Generator. Rutherford Electronics Co., 3707 South Robertson Blvd., Culver City, Calif., has available a six-page, two-color brochure on the model B-2 pulse generator. The instrument described and fully illustrated is a general purpose unit having high repetition rates, fast rise times and narrow pulse widths. Chief features and complete technical specifications are included.

Soldering Information. Wasserlein Mfg. Co., Inc., 126 W. Cass St., Joliet, Ill., has announced bulletin No. 105-D, entitled "The New Way to Solder." This illustrated brochure explains resistance soldering and outlines its many uses for production and maintenance in industry. The publication also contains concise operating instructions for using the Wassco Glo-Melt resistance soldering unit and its many labor-saving accessories.

Miniaturized Tubulars. CornellDubilier Electric Corp., South Plainfield, N. J. Bulletin NB-147 deals with the Demicon miniaturized tubular metal-cased paper capacitors. All 12 types of the capacitor series described will comply with applicable parts of specifications JAN-C-25 and MILC25A. The bulletin includes illustrations, technical characteristics and dimensional diagrams.

Multichannel Sampling Switches. Applied Science Corp. of Princeton P. O. Box 44, Princeton, N. J. A recent four-page brochure gives a representative cross section of highspeed multichannel rotary sampling switches. Switch plates with as many as 240 contacts and switch assemblies with 1,500 contacts are covered. The switches described and illustrated are being used for industrial and airborne telemetering, drift compensation a d-c amplifiers displaying parameters such as input-output char-

Your "Regulated High Voltage"

Problems can be Economically

 solved... NOW! ANTON

You will see Anton V-R Tubes in
operation at Booth 4-108... IRE Show

JAN APPROVED

AEL has profuced and supplied over 100,000 JAN $5962 /$ BS-101 Corona Discharge Voltage Regulator Tubes (equivalent to 401 shown here) to the U. S. Navy Signal Corps and prime contractors like Admiral, Westinghouse, KellyKoett and Hoffman. Because of the experience gained by the mass manufacture of these tubes, AEL is able - now - to furnish Corona Discharge V-R Tubes, both fixed and variable, to suit a wide range of voltage and current applications.

Corona Discharge V-R Tubes New Freedom for Circuit Designers

SALIENT
 FEATURES

- Stabilized Voltages from 300 to 4000 Volts
- Currents up to 2 milliamperes
- Low Dynamic Resistance
- No hot cathodes
- Unlimited Life
- Weight-less than an ounce
- Size--smaller than a pen

TYPICAL

- Cathode Ray Oscilloscopes
- Airborne Radar Power Supplics
- TV receivers and monitors
- Voltage Rcference Tubes

APPLICATIONS

- Meter Safeguards
- X-ray Equipment
- Electron Microscopes

CATALOG-free upon request on your letter-head. Please send us the specifications of your individual requirements. Write care of Dept. E.

ANTON ELEGTRONIG LABORATORIES, ING.
1226 Flushing Avenue, Brooklyn 37, N. Y.

 Regulated Power Supply assure reliability. Ripple including noise and jitter less than $1 / 3$ millivolt. Impedance - $1 / 20$ ohm or less throughout load range. 15 microfarad oil condenser directly across output for impulse stability.
Stabilized high-performance balanced-input amplifier. All transformers and inductors are hermetic and have grain oriented cores.
Operates from $50-60$ cycle, 115 volt line.
Suitable either on bench or rack. MODEL TWO FOB Factory $\$ 868$.
Eastgap Company
285 C Columbus Ave., Boston 16, Mass.
 and altitude. Write for details on Altitude SM Temperature Test equipment.

acter of electrical components for multichannel voltage comparison, for sampling many thermocouples with a single alarm, for generating pulse trains and many other uses.

Klystron Power Supplies. Furst Electronics, 3322 W. Lawrence Ave., Chicago 25, Ill. A four-page folder presents the models 910 and 2310 electronically regulated klystron power supplies for precise microwave measurements. It gives illustrated descriptions of the units along with chief features and complete technical specifications. The units described feature high stability, good regulation and low ripple.

Direct-Writing Recording Systems. Sanborn Co., 38 Osborn St., Cambridge 39, Mass. A new 6-page bulletin explains the scope of application of the company's equipment for the recording of a wide variety of electrical and mechanical phenomena. The bulletin includes a chart of various phenomena that can be recorded with these direct-writing recorders together with transducer data and examples and comments. It also features complete performance data and specifications.

L-F Transformers and Reactors. Magg Transformer Co., 419 Bedford Ave., Brooklyn, N. Y. A recent company bulletin announces a new line of hermetically-sealed low-frequency transformers and reactors. The components described are characterized by their high performance, light weight, excellent shielding and close electrical tolerances.

Optical Gaging. Eastman Kodak Co., 343 State St., Rochester 4, N. Y. A new 12-page booklet describes advanced methods of optical gaging to cut inspection and tool-room costs. The booklet illustrates the uses of special fixtures and charts to inspect to close tolerances, large parts, complex shapes, and blind holes and recesses using contour projection. Profusely illustrated, it shows how optical gaging may be adapted to a wide variety of parts for faster, more economical checking. Specifica-

You can win $\$ 100$ Anton Electronic Laboratories' Radioactivity Industrial Applications Contest

4 Awards Totaling \$250.00

1st prize $\ldots \ldots \ldots \ldots$	$\$ 100.00$
2nd prize $\ldots \ldots \ldots \ldots$	$\mathbf{7 5 . 0 0}$
3rd prize $\ldots \ldots \ldots \ldots$	$\mathbf{5 0 . 0 0}$
4th prize $\ldots \ldots \ldots \ldots$	25.00

CONTEST RULES

1. Each entry must state a specific and existing industrial problem.
2. The solution of this problem must be arrived at by the use of a radioactive source and any instrument or circuit, which utilizes for detection a Geiger Counter Tube, an Integrator Tube or any similar device.
3. Simple, clear, illustrative sketches plus adequate descriptions will be acceptable.
4. It is not necessary for you to be an expert in the nuclear field. If through your knowledge of industrial problems you are able to describe a solution based on the use of a radioactive source and a detection device - you may submit your entry in a non-technical form. Your entry must include your name, home address and occupation.
5. The judges' decision in all cases will be based on practicality of the suggested applications. In the event of a tie duplicate awards will be made.
6. All entries must be postmarked no later than midnight June 15 , 1953. Winners will be notified on or before July 15, 1953.
7. No entry will be returned and all entries will become the property of the Anton Electronic Laboratorics, Inc. Brooklyn, New York. The decision of the judges will be final. No employee, previous employee, of the Anton Electronic Laboratories, Inc. or relative of either shall be eligible to enter this contest. 8. Judges will be named by Anton Electronic Laboratorics, Inc.
8. All entries must be addressed:

CONTEST

Anton Electronic Laboratories, Inc.
1226 Flushing Avenue
Brooklyn 37, New York

TYPICAL APPLICATIONS IN USE-NOW

- logging of oil-wells - flow detection

ANTON ELEGTHONIC LABURATORIES, ING.

1226 Flushing Avenue, Brooklyn 37, N. Y.

- Prove to yourself that wire does not need bulky insulation to stand extreme temperatures, or give you insulating values above 1000 megohms per 1000 ft .
- SEND fOr a SAMPLE of Turbo Miniaturization Wire. Test it on any electronic application where the continuous operating voltage does not exceed 600 volts R.M.S. See how its thin extruded vinyl primary insulation and thinner extruded nylon jacket resist boiling water, oils, fuels, hydraulic fluids, fungus, abrasion, etc.
- turbo miniaturization wire comes in awg SIZES FROM 30 TO 12 GAUGE ... in stañdard or flexible wiring . . . in solid colors, or candy-striped colors with 1, 2 or 3 tracer combinations, to fit your circuit coding needs.
- BULLETIN A-4662 gives you more information about TURBO insulation. Ask for it when requesting your samples of TURBO Miniaturiza tion Wire. Write Dept. E-3.

North and Valley Streets, Willimantic, Connecticut - Phone 3-1661
tions and features of both models 2 A and 3 contour projectors are described and illustrated.

Adjustable-Speed Drive. General Electric Co., Schenectady 5, N. Y. Thy-mo-trol (thyratron motor control) drive, what it consists of and how it operates are described in two new four-page bulletins. A simplified drive for $\frac{3}{4}$ to 3 -hp applications is discussed in bulletin GEA-5829. Photos and diagrams are used to explain the system that is designed for use on testing equipment, conveyors and many other applications. A precision-controlled drive for to $10-\mathrm{hp}$ applications is described in bulletin GEA-5827. The packaged adjust-able-speed drive described is intended for application on machine tools, reeling and processing equipment, textile machines and other uses.

Fasteners. Simmons Fastener Corp., North Broadway, Albany 1, N. Y. Catalog 1252 covers a complete expanded line of fasteners that are suited for widely divergent applications. The 36 page, highly-illustrated booklet introduces the company's new Dual-Lock, a high-load, positivelocking structural fastener. The new catalog, which features an illustrated table of contents, contains dimensional drawings, engineering data, installation details and instructions for ordering. Numerous applications of each fastener type are pictured and described.

Motor Catalog. Gleason-Avery, Inc., 45 Aurelius Ave., Auburn, N. Y., has available a new catalog of products and services. The catalog includes specifications and illustrations of all the company's synchronous and nonsynchronous instrument motors, series 500 gear reduction motors and temperature controls, complete with rating charts and mounting dimensions. Also included to aid manufacturers is a list of possible applications of the motors.

Variable Resistors. Chicago Telephone Supply Corp., Elkhart, Ind. A complete civilian line and a com-

Io:

THE PROJECT ENGINEER

Does your project require, or will future projects require?

PLASTIC LIGHTING PLATES

Mil-P-7788 (AN-P-89)
Have you ever designed one?
Are you familiar with the technical problems involved?
Do you realize that your complete equipment is judged by the operating layout and lighting of the control box?
Do you know that our approved laboratory and facilities can help you?

IRE BOOTH 708 FOURTH FLOOR BODNAR INDUSTRIES, INC.

New Rochelle, N. Y.

Since 1946, M-W LABORATORIES has electroplated precious metal for suppliers to the U. S. Army, U. S. Navy, Atomic Energy Commission and to leading manufacturers in the electronics industry.

M-W LABORATORIES, featuring their Mayhill Plating Process, are equipped to plate these precious metals: gold, silver, rhodium, palladium, albaloy and indium.

Controlled thickness, smoothness, color, hardness and adhesion of plating is assured through constant testing by our own chemists and engineers, in our chemical and metallographic laboratory.

Contact us for a no-cost-to-you consultation on your plating problems.

M-W Laboratories, Inc. 1824 N. Milwaukee Ave. Chicago 47, Illinois
plete military line of variable resistors are pictured and described in data sheet No. 164. Attached switches for the civilian line are illustrated as well as a variety of concentric shaft tandem constructions with panel and rear sections operating separately from concentric shafts. Also shown is the new miniaturized type 70 civilian control designed for use in new radio and tv sets. Military resistors covered include JAN-R-19 and JAN-R-94 types and special composition controls specifically designed for military communications equipment subject to extreme temperature and humidity ranges.

Small Precision Metal Parts. The Torrington Co., 500 Field St., Torrington, Conn., has available a catalog listing the small precision metal parts now being made by the company. Some of the many parts described and illustrated are special pins and pivots; screw driver blades; all types of rotary swaged rods, wires and tubing in practically all kinds of metals; mandrels for grinding wheels, abrasive points and polishing wheels; perforating punches in straight carbon or alloy steels; and tapered or pointed wires and rods.

Hermetically-Sealed Resistors. Shallcross Mfg. Co., Collingdale, Pa. Bulletin L-27 with supplement 1 covers a complete line of precision wirewound resistors that meet every requirement of specification JAN-R-93, characteristic A. The resistors described are hermetically sealed in ceramic for extremely stable performance under wide temperature variations and high humidity-even total salt water immersion.

Radio Kits. Stockman Electronics Research Co., 543 Lexington St., Waltham, Mass., has a series of circuit diagrams, parts, kits and circuit display boards for school laboratories and lecture rooms. The items covered are vtvm's, signal generators, amplifiers and other test instruments, transceivers and new type radio receivers. A formula booklet reviewing circuit theory completes the series.

High Sensitivity . . Logarithmic AC VOLTMETER 50 MICRO VOLTS TO 500 VOLTS

SELF-CONTAINED all ac operated unit An extremely sensitive amplifier type instrument that serves simultaneously as a voltmeter and high gain amplifier.

- Accuracy $\pm 2 \%$ from 15 cycles to 30 kc
- Inpat impedance 1 meg ohm plus 15 uuf. shunt capacity.
- Amplifier Gain 23000

Also MODEL 45
WIDE BAND
VOLTMETER
.0005 to 500 Volts!
5 Cycles 1600 kc

MODEL 47 VOLTMETER

Output indicator for microphones of all types
Low level phonograph pickups

- Acceleration and other vibration measuring
- Sickups.

Instrument Electronics Corp.

- Gain and अrequency measurements for all types of audio equipment.
- Demsitometric measurements in photography and film production
- Light flux measurements in conjunction with photo cells

90 MAIN STREET PORT WASHINGTON, N. Y.

The Nem 1953 EDIIION of the WELCH CHART OF THE ATOMS

6

With 1952 International Chemical Society Atomic Weights

Extensively Revised to Include - Comprehensive Tabulation of Isotopes

- The Latest Data on All 98 Elements
- The Most Recent Information About the Transuranic Elements Including Berkelium and Californium

[^23]

SILICONE BATHTUB BUSHING itor, oil in TYPE capacmetically impregnated, berat turice rated, and tested meet all specifications.

.5 MFD. 200 V.D.C. NPE $\because 202$

GLASS SEALED TUBULAR TYPE capacitor, oil impregnated, bermetically sealed to meet all spect fications.

WRITE US FOR FURTHER INFORMATION.

Chicago

 CONDENSER Corporation3255 WEST ARMITAGE AVE. CHICAGO 47, ILLINOIS

PLANTS AND PEOPLE

Edited by WILLIAM G. ARNOLD

Pye And General Precision Sign Research Agreement

An agreement has been signed by Pye Limited of Cambridge, England, and General Precision Laboratory, Inc., New York, providing for an expanded program of joint research and development in the field of industrial and broadcast television cameras and studio equipment. The two companies have been associated for 3 years under an agreement which provided for the development of the items of studio equipment currently marketed by GPL.

Pye will manufacture cameras and associated studio items in England and General Precision will do the same in the U.S. for independent sale through their respective marketing organizations. The combined engineering knowledge of the two firms, reflecting world-wide operations, will be pooled.

In addition to the television broadcast cameras of the image orthicon and photocon types, a new miniature camera has been announced, chiefly for use in industrial and military applications. This is based on a new type of camera tube developed by Pye engineers, the details of which have not yet been announced.

The unit together with the PyeGPL remote pan and tilt pedestal (Electronics, Sept. 1952, p. 22) will permit remote viewing with complete control of focus, iris, lens and turret.

The Pye-GPL agreement mainly covers television cameras but it is reported that the two firms are also working closely on theater television and are planning a similar co-operation in other industrial fields.

Raytheon To Build Picture Tube Plant

[^24]OTHER DEPARTMENTS
featured for this issue:
Page
Electrons At Work 160
Production Techniques. . 274
New Products............ 344
New Books.............. 472
Backtalk 492

IRE Appoints Officers
 And Directors For 1953

THE BOARD of directors of the Institute of Radio Engineers, at its annual meeting in New York City, appointed 6 officers and directors for the year 1953. Haraden Pratt, telecommunications advisor to former President Truman, was reappointed secretary of the Institute, a post he has held since 1943.
W. R. G. Baker, vice-president of the General Electric Co., was appointed treasurer for the third successive year.

Alfred N. Goldsmith, consulting engineer, was appointed editor, an office he has held since the IRE was founded in 1912.

Appointed as directors for 1953 were Ralph D. Bennett, technical director of the U.S. Naval Ordnance Laboratory; William R. Hewlett, vice-president of Hewlett Packard Co. and Arthur V. Loughren, vice-president in charge of research at Hazeltine Electronics Corp.

General Instrument Elects Cohen President

Monte Cohen, veteran of 37 years in the radio-electronics field, has been elected president of General Instruments Corp., it was announced by Abraham Blumenkrantz, chairman of the board and chief executive officer.

Mr. Cohen has been executive vice-president of the company since 1951, and president of the F. W. Sickles Division of General Instru-

horizons unlimited

 freedom of expression. Only with a young, imaginative, "of course it can be done" attitude are the great advances of this modern era accomplished.Ketay
has earned its place among the leaders in precision instrumentation on the record of its virile development and production staffs.
Throughout its cumulative years of accomplishment, Ketay has confined its efforts to the development, engineering, and production of new types of electro-mechanical and electronic equipment.
Today, industrial and government orders almost fill the Ketay plants on both coasts. Currently in production is the miniaturized highly precise Ketay Resolver-a type which opens new horizons in automatic control operations. Ketay developments are geared to performance above and beyond present military standards-which, in turn, were set by earlier Ketay product capabilities.

Tomorrow, and for many tomorrows to come, Ketay is dedicated to a relentless search for new ways to solve the electronic problems of American Industry.

ment since that year. He started his career in radio in 1916 with the old Marconi Company. He has helped design and manufacture numerous electronic, radio and television components which are widely used today in military and civilian products.

Black Receives Research Corp. Annual Award

Harold S. Black
Harold S. Black, transmission engineer at the Bell Telephone Laboratories, received the Research Corporation Annual Award for Contribution to Science. This is the foundation's 17 th annual award.

Mr. Black, who joined the laboratories in 1921, was chosen as the 1952 recipient of the award in recognition of his invention and development of the negative feedback principle and for his general record of contribution in the field of communications. The negative feedback amplifier has been widely utilized wherever freedom from distortion and a high degree of perfection is required.

A native of Leominster, Mass., Mr. Black received a B.S. degree in electrical engineering from Worcester Polytechnic Institute. In 1940 he was honored by the NAM as a modern pioneer, in recognition of distinguished achievement in the field of science and invention. He also holds the John Price Wetherill medal of the Franklin Institute for his technical contribution to the efficiency of modern long distance telephony.

New Officers Elected By WCEMA For 1953

Norman H. Moore, chief engineer of Litton Industries, San Carlos, Calif., became the 1953 president of the West Coast Electronics Manufacturer's Association as a result of his election to the post of chairman of the San Francisco council. Moore, who served as vicechairman of the Northern California group in 1952, has long been active in WCEMA activities, having served in various other capacities during the past years.

Vice-president of the association for the new year is Ed Grigsby, sales manager of the western division of Altec-Lansing Corp., Beverly Hills. Grigsby was elected chairman of the Southern California council for 1953, succeeding Leon B. Ungar.

Secretary is Don Larson, advertising director of Hoffman Radio Corp., Los Angeles. Treasurer for 1953, representing the Northern California council, is H. Myrl Stearns, vice-president and general manager of Varian Associates, San Carlos.

New WCEMA 1953 directors elected include: Hugh P. Moore, president of Acme Electronics, Inc.; Paul H. Tartak, president of Tartak-Stolle Electronics, Inc.; E. P. Gertsch, president of Gertsch Products, Inc.; Noel E. Porter, production manager for HewlettPackard Co.; William Heflin, Lenkurt Electric Co.; Winfield Wagener, Eitel-McCullough, Inc.; and M. J. Murdock, general manager of Tektronix, Inc. This brings the directors to 14 members, including the immediate past president, Leon B. Ungar, Los Angeles, who automatically joins the board. The organization sponsors the annual Western Electronic Show and Convention. This year it will be held in the San Francisco civic auditorium August 19-21.

Motorola Elects Officers

Election of two new officers of Motorola, Inc. was announced by Paul V. Galvin, president. Walter Scott, formerly works manager, became vice-president in charge of
manufacturing, consumer product division. John Silver, general manager of the communications and electronics division, was named vice-president in charge of operations, communications and electronics division.

Mr. Scott has been with the electronics firm since 1946. For five years prior to that he was assistant to the production head of the J. I. Case Company.

John Silver
Mr. Silver came to Motorola in 1944 and was appointed general manager of the communications and electronics division in 1949. Prior affiliations included 12 years in engineering with Crosley Radio Corp., and several years as chief production engineer for Collins Radio.

Teal Joins Texas Firm As Research Head

Gordon K. Teal, well-recognized for his work in the semiconductor field, has joined Texas Instruments Inc. of Dallas as assistant vicepresident and director of the materials and components research department of the engineering division.

He has been prominently associated with several recent advances in electronics. He and his former associates at Bell Telephone Labs are credited with the introduction of single-crystal germanium and silicon into the transistor field. He is also co-developer of the $n-p-n$ junction transistor and of the borocarbon resistor. He had been with

AT YOUR SERVICE WITH OUR TWO FACTORYS TO HELP YOU WITH YOUR SHEET METAL FABRICATION REQUIREMENTS.

PRODUCHVG FOR THE FINEST!

- R.C. A.
- WESTERN ELECTRIC
- GENERAL ELECTRIC
- STROMBERG-CARLSON
- mOLDED INSULATION CO.
- ADMIRAL
- thOMAS EDISON INC.

Thousands of varied Production Dies and Tools available at no extra charge-to speed production and reduce your costs. We specialize in "Whistler Die Setups" for economic and speedy production.

Our modern Conveyorized Finishing Dept. includesPickling - Degreasing - Bonderizing and Baked Enamel Painting of all types: thus assuring you of a fine quality product.
We can assure you of excellent workmanship and prompt deliveries. Send us your blueprints and specifications. We shall quote you immediately.

S. WALTER Co., Inc.
 PRECISION SHEET METAL PRODUCTS

1400 ATLANTIC AVENUE
BROOKLYN 16, N. Y.

DESCRIPTION-The Berkeley Preset Counter is an electronic decade with provisions for producing an output signal or pulse at any desired preset count within the unit's capacity. Any physical, electrical, mechanical or optical events that can be converted into changing voltages can be counted, at rates from 1 to 40,000 counts per second. Total count is displayed in direct-reading digital form. Presetting is accomplished by depressing pushbuttons corresponding to the desired digit in each column. Model 730 Preset Decimal Counting Units are used. These are completely interchangeable plug-in units designed for simplicity of maintenance and replacement.

APPLICATIONS - Flexibility and simplicity of operation make the Berkeley Preset Counter suitable for both production line and laboratory use. It has practical applications wherever signalling or control, based on occurrence of a predetermined number of events or increments of time is desired. Output signals from the unit can be used to actuate virtually any type of process control device, or to provide aural or visual signals.

SPECIFICATIONS	Model				
	422	423	424	425	426
MAX. COUNT CAPACITY	100	1000	10,000	100,000	1,000,000
INPUT SENSITIVITY (MIN.)	± 1 v. to ground, peak; at least 2μ sec. wide				
OUTPUT	Choice of pos. pulse and relay closure, or pos. pulse. SPST relay closure approx. $1 / 30$ sec; pulse output is +125 v with $3 \mu \mathrm{sec}$. rise time and $15 \mu \mathrm{sec}$, duration.				
PANEL DIMENSIONS OVERALL DIMEREIONS POWER REQUIREMENTS	$\begin{aligned} & 15^{3 / 6^{\prime \prime}} \times 834^{\prime \prime \prime} \\ & 16^{\prime \prime} 8^{\prime \prime} \times 10^{1 / 4^{\prime \prime} \times 13^{\prime \prime}} \\ & 117 \mathrm{v.} \pm 10 \% @ 90 \mathrm{w} . \end{aligned}$		$\begin{aligned} & 19^{\prime \prime} \times 83 / 4^{\prime \prime} \\ & 20^{3 / 4^{\prime \prime}} \times 101 / 2^{\prime \prime} \times 15^{\prime \prime} \\ & 117 \mathrm{v} . \pm 10 \% @ 180 \mathrm{w} . \end{aligned}$		
PRICE (F.O.B. FACTORY)	\$375	\$450	\$595	\$695	\$795

[^25]

[^26]

Gordon K. Teal

Bell Labs since 1930 and has been responsible for about 45 patents in his field.

Railroads Select New Communications Officers

C. O. Ellis, general superintendent of communications of the Chicago, Rock Island and Pacific Railway, has been selected as chairman of the communications section of the Association of American Railroads for the two-year term ending December 31, 1954.
R. A. Hendrie, general superintendent of communications of the Missouri Pacific Railroad has been selected as vice-chairman of the section for the same term.

RCA Honors Engineers

Among the 20 employees of RCA Victor who received the company's top citation, the RCA Victor Award of Merit, were M. John Heffernan, field engineer, John D. Callaghan, senior engineer and Clarence A. Gunther, assistant chief engineer.

Mr. Heffernan was honored for unusual ingenuity and initiative which resulted in the development of an antenna-detector device that makes possible vastly improved airweather station communications for the U.S. Air Force. It eliminates the need for long and expensive antenna arrays, and the necessity for heary investment by the government in purchase of land, antenna towers and other associated equipment.

Mr. Callaghan received the award for his role in the development of

 CROSSBAR SWITCHES

Major Characteristics of 2×10 Switch

- Strap wiring eliminated
- Switches up to ten M. C.
- Low Crosstalk level
- $1 / 2$ millisecond operating and release time
- Palladium twin contacts
- Low operating power
- Small size

For additional characteristics write for Specification Sheet.
For Applications in: TELEVISION, COMPUTERS, RADIO, TELEGRAPHY, TELEMETERING
Also Available in 10×10 Design Write us obout your switching problems Bunningham
15 Canal Street
Rochester 8, N. Y.
Phone: Baker 7240

*TRade mark pat. pend all sizes
1/8"dia. $1011 / 4^{\prime \prime}$ dio

Made of TOUGH, DURABLE
ETHYL CELLULOSE PLASTIC
— FLEXIBLE, EASY TO INSTALL
Write for Sample and Full
Information, including Strength
Tests and Prices
WACKESSER CO. Ance
5267 N. Avondale Ave.

Fastenings represent a vital part of any electronic equipment. And yet, fastenings represent an extremely small part of the cost. That's why so many electronic manufacturers demand the best fastenings pro-curable-Harper.

Over 7,000 different Harper Fastenings are available from stock-bolts, nuts, screws, washers, lock washers, rivets - of brass, naval bronze, silicon bronze, Monel, stainless steel and aluminum.

Harper offers electronic manufacturers these advantages: One source of supply, one order to write, one account to keep, one bill to pay. There is a Harper distributor near you with stocks to fill your order. Harper engineers and metallurgists will gladly assist you in the solution of any fastening problem you may face.

THE H. M. HARPER COMPANY 8244 Lehigh Avenue, Morton Grove, Ill.
Mail the coupon below for complete catalog of Harper Everlasting
Fastenings. There is a Harper distributor near you with stocks to fill
 your requirements. EVERLASTING FASTENINGS

The H. M. Hatper Company

8244 Lehigh Avenue
Morton Grove, Illinois
Please scnd the complete catalog of Harper Everlasting
Fastenings. Fastenings.

Name...
Position.. . .
\qquad
\qquad
City....................................... Stute............... . .
antennas, transmission lines and other equipment that helped make possible the introduction of uhf tv service to the public.

Mr. Gunther was cited for invaluable counsel on the selection of government projects best suited to the company's facilities and type of production. His analysis of electronic equipment while visiting Korea enabled him to make recommendations of the greatest importance to the armed forces.

Ford Instrument Promotes McKenney to Chief Engineer

Henry F. McKenney has been appointed chief engineer of the Ford Instrument Company, division of the Sperry Corp., Raymond F. Jahn, president of the company announced. He will be responsible to William H. Newell, vice-president for engineering.

Henry F. McKenney
Mr. McKenney, a graduate of the University of Cincinnati, came to Ford Instrument eleven years ago as a test engineer. He entered the design engineering department shortly thereafter, specialized in airborne equipment, and has been assistant chief engineer for the past two years.

He holds four patents with eight more pending on magnetic amplifiers, servo-mechanisms and electronic equipment.

Cotton Returns To Philco

Richard W. Cotton, on leave from Philco since June 16, has resigned as director of NPA Electronics Di-

Adverisers:

How about the NUCLEAR field?

There are a good many advertisers using ELECTRONICS. who should also be advertising in NUCLEONICS.

Particularly in instrumentation and laboratory equipment, there is a cross-over of use in the electronic and in the nuclear field.

But, there is very little crossover in the subscriber lists of the two publications-a matter of a few percentage points.

It is quite possible that you are doing an effective presentation of your products and abilities in this excellent issue, but are missing such presentation before one of the fastest growing fields in the country's history-the field of atomic energy.

The sales representatives of ELECTRONICS are also the sales representatives of NLCLEONICS. They have much evidence pointing to the opportunities in this great NEW field. Ask them to show you what your potentials can be.

NUCLEONICS

A McGraw-Hill Publication 330 West 42nd St. New York 36, N. Y.

If THE WIRING FAILS

SO DOES YOUR PRODUCT'S REPUTATION

FOR DEPENDABLE PRODUCT WIRING USE

 HILEETRIL M/RING SYSTEMSYear after year - for over ten years - UNILECTRIC
has produced millions of wiring systems, for more than 150 leading manufacturers of electric and electronic products. From controls to complex armed forces equipment, these wiring systems have consistently met the most exacting requirements and provided substantial savings to each customer.
To assure utmost dependability plus cost saving engineering, assistance, low cost production and "on-schedule delivery" investigate UNILECTRIC today.

6 finezzac Whemes Sestivs
 Manufaclured by
 UNITED MANUFACTURING \& SERVICE COMPANY 409 south bih street - milwaukee 4, wisconsin

 cise, 1% reproducibility could be destroyed through variation of the temperature with input resistance or contact potential of the vibrating reed.
EDISON THERMOSTATS feature stability measured in years, control within $\pm 0.1^{\circ} \mathrm{F}$ and capacity to 115 volts, 8 amperes d.c. or 1000 watts. EDison temperature control engineers will be glad to work with you on the solution of your ambient protection problems. Just call or write to:

INCORPORATED

[^27] AT THE I,R.E. Show, Grand Central Palace, March 23-26, he sure to visit the Edison booth-No. 4-714.
vision to return to his position as assistant to the president of Philco, William Balderston. He has agreed to remain as head of the electronics board on a part time basis until the new director takes over. Deputy Director Donald S. Parris will become director of the Electronics Division.

Ryder Named President Of '53 NEC

J. D. Ryder, head of the electrical engineering department, University of Illinois, has been named president of the 1953 National Electronics Conference Inc. C. E. Barthel, Jr., Illinois Institute of Technology, was named chairman of the board.

The ninth annual conference will be held September 28, 29 and 30 , 1953 at the Hotel Sherman in Chicago.

Other officers are: executive vicepresident, R. M. Soria of American Phenolic Corp.; executive secretary, Karl Kramer of Jensen Radio Co.; secretary, J. M. Cage of Purdue University ; treasurer, G. E. Fostor of Metrotype Corp.

The conference is sponsored by the AIEE, IRE, Illinois Institute of Technology, Northwestern University and the University of Illinois, with participation by Purdue University and the University of Wisconsin.

Wright Advanced To V-P at Capehart-Farnsworth

The promotion of Anthony Wright to vice-president in charge of the commercial products division of the Capehart-Farnsworth Corp. was recently announced by Fred D. Wilson, president.

Mr. Wright, who joined Capehart early in 1950 as chief engineer, became vice-president in charge of engineering for the consumer products division in February of that year. A pioneer in the radio and television industry, Mr. Wright was chief engineer for the Magnavox Corp. immediately prior to joining Capehart. From 1929 to 1947 he was with the RCA Victor Division of $R C A$ and was responsible for many of the advances in radio, phonograph, and television engineering at RCA. As chief engineer

Briverytom

- DESIGNED
- ENGINEERED
- manufactured for PRECISION PERFORMANCE
- Designed for use on AC lines where successful servicing of electronic or electrical equipment depends upon the regular servicing of such equipment based on actual operating (or idle) time. Unit has a range of 9999.9 hours and resets automatically at 10,000 hours. Can be supplied for either 120 or 240 volts. 60 cycle operation and has operating temperatures of -55 to $+55^{\circ} \mathrm{C}$.

Running Time Meter is available 3" square or $31 / 2^{\prime \prime}$ round Bakelite case or $31 / 2^{\prime \prime}$ round hermetically sealed case.

HERMETICALLY SEALED RUNNING TIME METER

- 9999.9 hour range
- 10,000 hour automatic reset
- -55 to $+55^{\circ} \mathrm{C}$. operating temperature.

Write Dept. F-33 for further details

BURLINGTON INSTRUMENT COMPANY

 DEPT. F-33 BURLINGTON, IOWA

Now ... do away with wasteful "cut-and-try" methods Read VACUUM TUBE OSCILLATORS

By Willifam A. EDSON
Director of Electrical Engineering
Georgia Institute of Technology
HERE is the volume engineers and designers have been waiting for . . . the very first comprehensive work on oscillator design and operation.

It covers the many factors affecting the behavior of oscillators, shows you how to predict this behavior and how to design circuits to meet your specific needs.

You would have to scour through hundreds of books, journals and bulletins to get all this valuable information. Instead, Edson has done the research for you, giving you in one handy source all the facts you need on electronics, circuit theory and dy namics for the clearest possible picture of oscillator operation. Each chapter is self-sufficient, making the book a convenient handbook.

A pre-publication reviewer said:
an important contribution to the field of vacuum tube circuits. It gives a very comprehensive presentation of the subject of practical oscillators. The material is largely descriptive but does contain some mathematical analysis where it can be handled without difficulty. The general level of the material is such that it could be easily handled by an average engineer in the field. . . Edson's book is very complete and has many of the characteristics of a handbook on oscillators.
$1953 \quad 268$ illus. 476 pages
$\$ 7.50$
Write for a copy on 10-day approval

JOHN WILEY \& SONS, INC. 440 Fourth Ave., New York 16, N. Y.

Transformer

 Engineering
design and development - SAMPLES DELIVERED Quickly - QUALITY FROM "KNOW HOW"

Expanded facilities available for immediate delivery of your production requirements

TRANSFORMERS ENGINEERED AND MANUFACTURED
by TRESCO

Open Frame

Specialized Transformer Assemblies Potted and Cased

Send information on quotes or have us send a representative to call on you.

3826 Terrace St., Phila., Pa.
Phone IVyridge 3-1383
for the home instrument department, television section, he was responsible for the development of RCA's first postwar television receivers; he was also in charge of the development of airborne television equipment. While vice-president in charge of engineering at Capehart he has designed many highly successful television chassis, including the CX- 37 now in production.

In addition to his work in radio and television engineering, Mr. Wright has spent much time in the radio retailing field. A native of England, he was educated at Oxford University.

PCA Moves Into New Plant

PCA Electronics, Inc., manufacturers of miniature pulse transformers and delay lines used in computers, guided missiles and radar equipment, recently moved into a new building in Santa Monica, Calif.

New PCA Plan:
The new building has more than 5 times the floor area of the previous plant, increasing production facilities and providing room for the expanding research and development departments of the company.

Sylvania In Canada
 Elects New Officers

The election of four new topranking officers of Sylvania Electric (Canada) Ltd., wholly owned manufacturing subsidiary of Sylvania Electric Products Inc., was announced by the Canadian corporation's board of directors.

Ralph E. Niedringhaus, a member of the Sylvania staff in the United States since 1938, becomes president of the Canadian subsidiary under the new organization. Other officers elected by the directors are: W. Benton Harrison, treasurer; William B. O'Keefe, vicepresident in charge of manufactur-

NEW PRODUCT DEVELOPMENT SHOWS

 LAVOIE HAS EYES ON FUTURE
NEW AUTOMATIC HYDRO-TUNER NEEDS NO PRE-SETTING

Here, at last, is an electronically controlled hydraulic power transmission system for tuning stages of electronic equipment that needs no mechanical pre-setting.
This system has many advantages: It tunes on the signal rather than on a pre-set mechanical point. This eliminates the possibility of errors due to wear, chassis distortion, shock and temperature changes . . . Means less maintenance problems, longer life for equipment.

Dependable tuning of high Q circuits is made possible because of the extreme accuracy of the tuner.
Rigid locking of moving parts after tuning eliminates the chance of detuning due to shock, vibration, etc.

Greater flexibility-The basic system may be applied to many types of tuning or positioning problems, because of the simplicity of the operating principles.

We invite you to write for more information on the Hydro-Tuner and how it can be applied to your particular problems. Write Lavoie Laboratories, Morganville, N. J.

VHF OMNIRANGE NOW PACKAGED IN SINGLE UNIT

Now . . A VHF Omnirange which is packaged in a single unit, eliminating the purchase of components section by section from different manufacturers.
VHF Omnirange has been accepted by international agreement as the most desirable, dependable, and economical system for short range navigation.
Instead of permitting only four courses as is the case with the conventional Aural "A-N" system, VHF Om-

Make possible a theoretically infinite number of courses;
Allow for tangential approaches in addition to conventional head-on approaches;
Enable the pilot to determinc his position quickly by "fixes" on two Omni stations;

Allow the pilot to maintain any angle of approach, either in azimuth or clevation, by pre-setting the aircraft receiver.

The transmitter has a nominal range of 100 miles at normal flying altitudes, and the system operates in the VHF range, on an assigned band of 112 to 118 Megacycles. For further information, contact Lavoie Laboratories, Morganville, N. J.

239-B OSCILLOSOPE SHOWS ADVANCED DESIGN

For those who require a rugged, precision instrument for the study of pulse phenomena, here is a new, revised oscilloscope. Its new features make it one of the most outstanding instruments in its field. Look at these features:

1. New scale design allows insertion of special scales as aid in interpretation of curved patterns.
2. Frequency range from 5 to 15 Megacycles.
3. Improved rise time of .035 microseconds.

4. New Input impedance without probe - 1 Megohm. With Probe- 10 Meg ohms.
5. Continuous trigger rate permits selection of any rate from 10 cycles to 10 Kilocycles. For further information, write Lavoie Laboratories, Morganville, New Jersey.

NEW SUB-MINIATURE 30\% SMALLER Without Sacrificing Pin Diameter

Here's the way to solve your sub-miniature connector problems without geffing the usual complaints from Production because of special substandard wiring requirements, misalignment due to bent or broken contacts, and damaged moldings.

. 040 DIAMETER CONTACT PINS

Although the unit itself is a full 30% smaller than our Series 20 miniature Connectors, the Continental Sub-Miniature Rectangular Series SM-20 Connectors feature the same husky .040 diameter contact pins - precision machined phosphor fronze and assembled in a unique floating arrangement to insure self-alignment of each individual contact for reduced engagement and disengagement force. POSITIVE POLARIZATION is achieved with the use of a reversed guide pin and guide socket.

NO SPECIAL WIRING NECESSARY

This new SM-20 Series, the only sub-miniaturized connector that will stand up under a continuous 5 amp. operation, requires no special wiring. Unlike other sub-miniatures, SM-20's use \#20 AWG wire, thus avoiding the necessity for soldering substandard wires.

24 HOUR DELIVERY ON A VARIETY OF STOCK CONNECTORS
SM-20's presently can be supplied within 24 hours with either 11 or 20 contacts, and a choice of molding compounds...choice of mineral filled flame-resistant, high strength Melamine insulation, Plaskon glass reinforced alkyd type 440A, or Diallyl Phthalate type 1-501. All these stock SM-20 models have been designed to withstand the same adverse field conditions under which the popular miniature Continental Series 20 has been tested and approved by leading manufacturers.

CUSTOM MODELS AVAILABLE

Our engineering staff will be pleased to discuss your particular sub-miniature application problems. Sub-miniature connectors other than our stock designs delivered within 6 weeks. Please write for Bulletin S-M to DeJur Amsco Corporation, Dept. E-1, 45-01 No. Blvd., Long Island City 1, N. Y.

VISIT US AT BOOTH 4-125, I.R.E. SHOW

Continental Connectors

DeJUR AMSCO CORPORATION
tong ISAAND cIty 1, NEW YORK
 MIDGET TELEPHONE TYPE RE
LAYS SERIES (80)-OPEN TYPE LAYS SERIES
FOR SURFACE MOUNTING, OR space saver... IN HERMETICALLY This vibration and
CON This vibration and
shock-proof Midget Type Relay is the answer to numerous applications where unfailing operation is necessary. In fact, it is built to meet rigid Army and Navy specifications. This "rugged little space saver" is a compact, multiple contact relay which has been developed over years of specialized engineering in the field by Signal Engineering and Mfg. Co., manufacturers of a comprehensive line of relays and signals of various designs and sizes.

Engineering Representatives in Principal Cities.

ELECTRONICS SALES AND APPLICATION ENGINEERS

High-Frequency Heating, Microwave Communication, V.H.F. Communication, Power-Line Carrier and Military Communication and Radar Equipment

[^28]

Kenyon spEcial Transformers Have Many Applications

Kenyon oil-filled hermetically sealed transformers have particular application to pulse and high voltage plate transformers and to charging reactors.

They are specially valuable for reactors and plate transformers operating on 400 cycle or higher frequency primary supply voltage.

Because of their internal characteristics oil-filled transformers present different problems from conventional types. Cases must be correctly designed, terminals properly constructed and sealing methods highly efficient to eliminate oil leakage. Kenyon has successfully solved these problems.

The result is a unit with high quality insulation, small in size yet possessing excellent life and exceptional dependability.

Because of substantial savings in size and simplicity of insulation, use of Kenyon Oil-Filled Transformers frequently results in lower final cost.

Booth No. 1-615, I.R.E. Show

No matter what your transformer requirements may be confact Kenyon first. Our engineers will endeavor to show you how you can increase efficiency at low cost by choosing a transformer from the complete Kenyon line.

KENYON TRANBFORMER CO., linc.
 840 Barry Street, New York 59, N. Y.

ture to the present plant. It will contain approximately $20,000 \mathrm{sq} \mathrm{ft}$ of floor space. This additional space will be used to make more rectifiers for the radio and television industries and to take care of increased government requirements. When this building is completed the production output can be doubled.

Guided Missiles And Atomic Energy Appointments Made

Walter G. Whitman, chairman of the Research and Development Board of the Department of Defense, announced two appointments on the RDB Committees on Guided Missiles and on Atomic Energy.
James C. Starks, who is on leave from the Sandia Corp., has been named executive director of the Atomic Energy Committee of RDB.

Allen E. Puckett, head of the aerodynamics section of the Hughes Aircraft Company, has been appointed to the Committee on Guided Missiles.

Beacon Plans To Open Plants In Australia

Beacon Corp. of Chicago is planning to open factories in Sydney and Adelaide, Australia, to manufacture television receivers and antennas. The firm is negotiating with the Australian Federal Government for permission to do so. If permission is granted, a subsidiary company with some Australian participation would be created. A standard tv receiver would cost $\$ 225$ and smaller ones about $\$ 160$ in the country.

At least 4 Australian manufacturers of wireless equipment have also advanced plans for the local production of tv sets and equipment.

Consolidated Engineering Names Nunan V.P

J. Kneeland Nunan has been elected vice-president in charge of sales of Consolidated Engineering Corp. and executive vice-president of CEC Instruments, Inc., a whollyowned subsidiary. Phillip S. Fogg, president of Consolidated, made the announcement.

The Pasadena firm's recent purchase of the vacuum equipment department of Eastman Kodak Co.'s

ELECTRONICALLY REGULATED

LABORATORY power supplies

4
lambda electronics $C O R$
CORONA NEW YORK

ELECTRONICALLY REGULATED

LABORATORY POWER SUPPLIES

ELECTRONICALLY REGUIATED

LABORATORY

 power supplies

\triangleLAMBDA ELECTRONICS
 ELECTRONICALLY REGULATED LABORATORY POWER SUPPLIES

ELECTRONICALI,Y REGULATED LABORATORY POWER SUPPLIES

LAMBDA ELECTHONICS

ELECTRONICALLY REGULATED

LABORATORY POWER SUPPLIES

NO OITAl:R SOURCE CAN MATCH

 RAYTHEONIS Complete Facilities for Desioping and Producing

Over 10 Years' Experience in Designing and Building Toroid-L Units

TOROID-L-COILS

Designed from the problem up, or wound to specified C, L and Q values. Precision wound on temperature stabilized, powdered permalloy cores, high permeability solid materials or stamped "O" cores. Âble to wind \#20 to \#42 wires on "wedding ring" cores to small ultimate I.D. Facilities for all types of winding, including square coils wound from strip materials for improved geometry.

TRANSFORMERS

Multiple wound and tapped . . cased or uncased . . . for all commercial and military applications.

FHTER METMORKS

Complete networks for audio or ultra-sonic work.

LITZ-WOUND TOROIDS

One of the very few sources equipped for litzendraht coil windings.

LUMPED PARAMETER DELAY LINES

MAGNETIC AMPLIFIER COILS

For complete servomechanism and other magnetic amplifiers.

saYTHEOM

Excellenceinelechionics other raytheon PRODUCTS INCLUDE: MARINERS PATHFINDER* radar; Submarine Signal FATH. OMETERS*; Marine radio telephones; WELDPOWER* welders; Voltage stabilizers (reg. ulators): Transformers; RectiChargeR* battery chargers; tors; Sonic oscillators for laborors; Sonic oscillators for labocontrol knobs; Electronic calcu. lators and computers; Telelators
vision receivers;
rempurs,
relevision receivers; Radio, tele-
vision, subminiature and special Purpose tubes; MICRO. THERM ${ }^{*}$ diathermy and ocher electronic equipment.

Reg: U.S \rightarrow Pat. Off.

Raytheon welcomes inquiries from manufacturers and design engineers for specific information. Immediate attention given to all problems submitted. Complete facilities for engineering design and production of models as well as large volume production.

RAYTHEON
 MANUFACTURING COMPANY EQUIPMENT SALES DIVISION
 DEPT. 6270-A, WALTHAM 54, MASSACHUSETTS

dISTRICT OFFICES: BDSTON, NEW YORK, CLEVELAND, CHICAGO, NEW orleans, les angeles (wilmington). San francisco, seattle international division: 19 rector striet, new york city

Distillation Products Industries is expected to boost its annual sales volume, currently running between $\$ 8$ million and $\$ 8.5$ million, to approximately $\$ 15$ million by the end of 1953 . An immediate responsibility of Nunan's will be to coordinate and administer this sales expansion.

New Company To Make UHF Equipment

Granco Products, Inc., a new company in the electronics field, has been organized to design, manufacture and distribute uhf converters and uhf measuring instruments. Production will begin at a 10,000 sq ft plant in Long Island City, N. Y. The new company was formed to meet the increasing demand for uhf converters.

Henry Fogel, formerly manager

Henry Fogel
of commercial products division of the Radio Receptor Co., Inc., has been appointed president of the new firm. As manager at Radio Receptor he directed the development and production of uhf tuners and industrial tv devices.

RTMA Makes Staff Changes

Two promotions and a staff addition at RTMA headquarters were announced recently by executive vice-president James D. Secrest.

Peter H. Cousins, who has been information director of RTMA for several years, has been appointed special assistant to Mr. Secrest and staff assistant to the technical

```
* Justa Few of The *
* Many Items We Carry
```



```
100TH . . $7.95*
DC9 CRYSTALS
M
quency Met
            Transmitting Crystals
                    in CR1 Holders
    4970 Kc
5570 Kc Each *
Sockets for above Crystals.... 19% &
Call or write us for your requirements. *
        Prompt delivery assured.
*
*MICHAEL STAHL Inc.**
* 215 Fulton St.
* New York 7 New York *
* Tel. WOrth 4-2882 *
```


- A precision device for the generation of accurate ond voriable ime intervals from .00001 1010 seconds.
Also ovoioble
Model A-2-. 8 to $100,000 \mu$ s.
Write for complete data: Our bulletins E.A.4 and E-A. 2

Autherford

ELECTRONICS CO.

FOR MARKING...

PLASTIC •METAL GLASS - PAPER RUBBER•CERAMIC CARDBOARD
in such products as Resistors, capacitors, valves, tubes, labels, sleeves, spark plugs, cartons, etc., etc.
THESE PRODUCTS AND MANY OTHERS OF ALMOST ANY MATERIAL AND SHAPE CAN BE IMPRINTED ON THE

REJAFIX

MARKING MACHINE

Why not send us samples of your products? They will be test-printed and refurned to you for your examination!

- REJAFIX HAND-OPERATED MODELS FOR SMALL RUNS. FULLY AUTOMATIC MODELS FOR MASS PRODUCTION.

EST. 1922
DOPDEB SG SONG INC. 300 FOURTH AVENUE

VISIT BOOTH 3-508 IRE SHOW, GRAND CENTRAL PALACE

Antosyn* STMUGHOS ECLIPSE-PIONEER

For more than 18 years, Eclipse-Pioneer has been a leader in the development and production of high precision synchros for use in automatic control circuits of aircraft, marine and other industrial applications. Today, thanks to this long experience and specialization, Eclipse-Pioneer has available a complete line of standard ($1.431^{\prime \prime}$ dia. X $1.631^{\prime \prime} \mathrm{Ig}$.) and Pygmy ($0.937^{\prime \prime}$ dia. $\mathrm{X} 1.278^{\prime \prime} \mathrm{Ig}$.) Autosyn synchros of unmatched precision. Furthermore, current production quantities and techniques have reduced cost to a new low. For either present or future requirements, it will pay you to investigate Eclipse-Pioneer high precision at the new low cost.
*reg. trade mark bendix aviation corporation
AVERAGE ELECTRICAL CHARACTERISTICS-AY-200 SERIES**

	Type Number	Input Voltage Nominal Ercitallon	Input Curront Millilamperas	Input Power Watts	Inpest Impedance Ohms	stater Output Voltages Line to Line	Retar Resplatince $(0 \mathrm{C})$ 0 hms	Stater Resiantance (0c) 0 hms	Marimum Error Sprend Mindtes
Transmitters	AY201-1	$26 \mathrm{~V}, 400 \sim 1 \mathrm{ph}$.	225	1.25	$25+1115$	11.8	9.5	3.5	15
	AY201-4	26V. $400 \sim .1$ ph.	100	0.45	$45+\mathrm{j} 225$	11.8	16.0	6.7	20
Receivers	AY201-2	$26 \mathrm{~V}, 400 \sim .1 \mathrm{ph}$.	100	0.45	$45+1225$	11.8	16.0	6.7	45
Control Transformers	AY201.3	From Trans. Autosyn	Dependent Upon Circuit Dasign				42.0	10.8	15
	AY201-5	from Trans. Autosyn	Dependent Upon Circuit Design				250.0	63.0	15
Resolvers	AY221-3	$26 \mathrm{~V}, 400 \sim .1 \mathrm{dh}$.	60	0.35	$108+\mathrm{j} 425$	11.8	53.0	12.5	20
	AY241-5	1V. 30~, 1 ph.	3.7	-	$240+j 130$	0.34	239.0	180.0	40
Differentials	AY231-3	From Trans. Autosyn	Dependent Upon Circuit Design				14.0	10.8	20
		**Also includes	High Frequency AY-500	Resolvers 0 (PY	s designed for (GMY) S	use up to 100 K RIES	$C(A Y 251 \cdot 24)$		
Transmitters	AY503-4	26V, 400~, 1 ph.	235	2.2	$45+1100$	11.8	25.0	10.5	24
Receivers	AY503-2	26V, 400~, 1 ph.	235	2.2	$45+j 100$	11.8	23.0	10.5	90
Control Trans. formers	AY503.3	From Trans. Autosyn	Dependent Upon Circuit Design				170.0	45.0	24
	AY503-5	From Trans. Autosyn	Dependent Upon Circuit Dasign				550.0	188.0	30
Resolvers	AY523-3	26V, 400~, 1 ph.	45	0.5	$290+\mathrm{j} 490$	11.8	210.0	42.0	30
	AY543-5	26V, 400~, 1 ph.	9	0.1	$900+\mathrm{i} 2200$	11.8	560.0	165.0	30
Differentials	AY533.3	from Trans. Autosyn	Dependent Upon Circuit Design				45.0	93.0	30

For detailed information, write to Dept. C.

ECLIPSE-PIONEER DIVISION of TETERBORO, NEW JERSEY

 Export Sales: Bendix Internatianal Division, 72 Fifth Avenue, New York 11, N. Y.

PLANTS AND PEOPLE
products division.
Tyler Nourse, who served as assistant information director under Mr . Cousins, has been promoted to the position of editorial director in charge of RTMA publications.

Herbert F. Hodge, Jr., formerly in government information service, has joined RTMA headquarters staff as an editorial assistant to Mr . Nourse.

The staff reorganization was effected following the resignation of R. M. Haarlander, who has served as staff assistant to the technical products division for the past five years. Mr. Haarlander resigned to take a position in private industry.

Carpenter Forms Summit
 Engineering Co.

Douglas H. Carpenter, president, announced the establishment of Summit Engineering Co., Hartford, Conn., for the manufacture of television antennas and electronic equipment.

Douglas H. Carpenter
Mr. Carpenter holds many basic patents in antenna design and electronics circuitry. His business experience includes 5 years as chief engineer of the McMurdo Silver Co. and several years in a similar capacity with the LaPointe-Plascomold Corp.

ERCO Apoints Greene V-P And General Manager

Board of directors of the Engineering and Research Corp. announced the appointment of William L . Greene as vice-president of enginneering, and general manager.

As chief engineer, Mr. Greene assumed the leadership in organiz-

Means Greater Efficiency in These Waveguide, High Power Terminations, and Attenuators

"Eilex", a new ceramic lossy material, is now available in waveguide, high power terminations and attenuators from Electro-Impulse Laboratory.

This new material is extremely durable, provides a strong adhesive bond to waveguide walls, withstands temperatures up to $2000^{\circ} \mathrm{F}$, and handles the thermal shock efficiently.

Eilex is stable up ta $2000^{\circ} \mathrm{F}$ (doesn't emit steam or water, charac teristic of dummy loads using a Portland cement and graphite mixture for the lossy material.)

The waveguide loads use walls that are poor conductors, which means
a more efficient removal of the heat generated in the load, and less tendency toward pulsepower breakdown (arcing) as may oceur in designs which use filling material in the waveguide.

New construction shortens path between inner surface of lossy guide to heat conducting material.

Hot spots have been eliminated.
Attenuators are accurately calibrated and may be used as a termination and power measuring device in conjunction with a thermister bridge.

For details, write Department "E".

4. Type	Freq Range KMC	Waveguide in inches	Nominal* Average Power Dissipation	Maximum V.W.S.R.	Size in inches	Weight	Flange
			DUMMY LOADS				
HPTK100	18-26.50	$1 / 2 \times 1 / 4$	60 W.	1.15	8 long	2 lbs.	UG425/U
OA22/U	8.2-12.4	1.2×1	175 W .	1.15	$11 \times 2.5 \times 2.5$	3 lbs.	UG39/U
HPTXS250	8.2-12.4	$1 / 2 \times 1$	250 W.	1.15	$11 \times 3.5 \times 3.5$	$31 / 4 \mathrm{lbs}$.	UG39/U
HPTXSI50	8.2-12.4	$1 / 2 \times 1$	150 W	1.15	$11 \times 2.5 \times 2.5$	3 lbs .	UG39/U
HPTXS 75	8.2-12.4	$1 / 2 \times 1$	75 W.	1.15	11 long	$21 / 2 \mathrm{lbs}$.	UG39/U
DA21/U	7.10	$11 / 4 \times 5 / 8$	280 W .	1.15	$11.5 \times 3.5 \times 3.5$	6 lbs.	UG51/U
HPTXL250	7.10	$11 / 4 \times 5 / 8$	250 W .	1.15	$12 \times 3.5 \times 3.5$	$31 / 4$ lbs.	UG51/U
HPTXL200	7.10	$11 / 4 \times 5 / 8$	200 W.	1.15	$11.25 \times 2.75 \times 2.75$	2 lbs .4 oz.	UG138/U
HPTXL100	7.10	$11 / 4 \times 5 / 8$	100 W .	1.15	10 long	2 lbs.	UG51/U
HPTXL500	7.10	$11 / 4 \times 5 / 8$	450 W.	1.15	$11.25 \times 4.5 \times 4.5$	$51 / 4 \mathrm{lbs}$.	UG51/U
HPTX600	5.85-8.20	$11 / 2 \times 1 / 4$	600 W .	1.15	14 long	8 lbs.	UG344/U
HPTX800	3.95-5.85	2.00×1.00	800 W .	1.15	14 long	12 lbs .	UGI49A/U
TS 338	2.4-3.7	1.5×3	700 W .	1.1	$24 \times 5.4 \times 5.4$	13 lbs .	UG438/U
HPTSI500	2.60-3.95	3.00×1.50	1500 w .	1.15	25 long	13 lbs .	UG438/U
HPTLI500	1.70-2.60	4.46×2.31	1500 W.	1.15	15 long	20 lbs.	UG435/U
HPTL2000	1.12-1.70	6.66×3.41	2000 W.	1.15	32 long	24 lbs.	UG417/U
			ATTE	ATORS			
HPAXS	8.2-12.4	1.2×1.00	250 W.	1.15	Attenuation 2-60 decibels (fixed)		UG39/U
HPAXL	7.00-10	$11 / 4 \times 5 / 8$	450 W.	1.15	Attenuation 2-60 Heribels (fixed)		UG5I/U

Without the use of water or forced air cooling.

. . . provides a wide choice of operating frequen-

 cies in a single, compact unit.. . . eliminates the unnecessary bulk and extra cost of equipment which covers large areas in bands you never use.
SPECIFIC BAND COVERAGE to fulfill your particular requirements is readily available with separate. imerchangeable R. F. Heads.
INTERCHANGEABLE R. F. HEADS are easily installed and renoved from the Vectron chassis. Separate heads are supplied in convenient. protective storage cases. S-band and X-band Heads from stock; others available for early delivery.
For Microwave Radar and Communications Equipment The Vectron Sazo spectrum Analyzer presents visually the frequency dis. tribution spectrum of the power output of pulsed or CIV microwave oscillators and can be used as a sensitive RF detector for chechs and measurements in the design, production and maintenance of microwave radar and communications equipment and components.

F E A T U R E S

Large, clear 5" oscilloscope pattern
Stondard bezel to accept camero, hood or filter
Minimum number of controls . . . maximum operating convenience
Double conversion ossures 1. F. alignment stobility
Built in regulated supply for Klystron oscillators
Eosy access for maintenance or adiustment

SPECIFICATIONS

Overall Gain - 130 decibels.
Sensifivity-Approx. -60 dbm for 1 usec. pulse width.
If Bandwidth - Choice of 50 kc , recommended for CW and 0.2 to 2 usec. pulse widths, or 20 kc . bondwidth to 5 usec.
Sweep Frequency -10 to 30 cps standard - orailable to 2 cps and with long persistence tube.
Power Requirements - 105 to 125 volts. 60 cycles.

Vectron's development program includes additional R. F. Heads to cover microwave frequencies newly opened for military and civilian use. For information on these additional R. F. Heads and for complete engineering and operating data, send for Bulletin SA20. Write today and be sure to specify the operating frequencies you need.
IECTRON also offers custom disign and production facilities for druelopment and contract manufacture of serio-mechanisms, communication networks and filters, gyro-mechanisms, electronic systems, electio-mechanical equipment and instrumentation. Write us today and specify your requirements.

VECTRON, inc.

404 MAIN STREET, WALTHAM 54, MASS.
ing and equipping the company for its entry into the electronic flight simulator field. Following the successful completion of the first Flightronic simulators, Mr. Greene was appointed vice-president of engineering. He began his career with ERCO more than fifteen years ago as an aeronautical engineer.

Norde Joins Hammarlund As Chief Receiver Engineer

Leslie Norde has joined the Hammarlund Manufacturing Co., Inc. as chief receiver engineer after nearly 5 years at the Northern Radio Corp. where he was senior project engineer, it has been announced by S. H. Van Wambeck, chief engineer of Hammarlund.

Lesle Nord
In his new position Norde is supervisor and technical consultant for the design of Hammarlund commercial and amateur radio receivers. At Northern Radio he supervised the designing of space diversity receivers and carrier shift radio teletype transmitting equipment.

Mallory Forms Electronic Equipment Department

To meet increasing demand for electronic products by both the consumer and the military, P. R. Mallory \& Co. Inc., Indianapolis has created a new electronic equipment department to manufacture special assemblies, including complete electronic systems.

Named as manager of the new department is Joseph C. Rah, for-

S.S.White RESIST Of particular interest to all who need resistors with inherent low noise level and good stability in all climates

STANDARD RANGE 1000 OHMS TO 9 MEGOHMS

Used extensively in commercial equipment including radio, telephone, telegraph, sound pictures, television, etc. Also in a variety of U. S. Navy equipment.

HIGH VALUE RANGE 10 to $10,000,000$ MEGOHMS

This unusual range of high value resistors was developed to meet the needs of scientific and industrial control, measuring and taborotory equipment-and of high voltage applications.
 andustrinal pivision
\qquad Dept. R, 10 East 40th St. NEW YORK 16, N. Y.
Western District Office - Times Building, Long Beach, California

ELECTRIC INSTRUMENT \& CONTROL HEADQUARTERS YES, OFF-THESHELF SERVICE

CONSULT US ABOUT YOUR REQUIREMENTS

Electro-Tech maintains one of the largest and most complete stocks in the country of electrical meters, instruments and industrial control equipment-representing over 250 top lines.

Yes, our warehouse is bulging with standard stocks of

Counters	Solenoids	Taggle Switches
Panel Meters	Tachometers	Shunts (Electrical)
Transformers	Thermometers	Meggers
Switchboard Mefers	Thermostats	Solenoid Valves
Micro Switches	Rectifiers	Pyrometers
Photo Electric Equipment	Rheostats	Multimeters
Relays	Timers	Oscllloscopes

and Laboratory Standard Instruments

In addition, we manufacture and stock Special Tost Equipment - Electric Heating Units - Current Transformers Pyrometers - Thermocouples - Rectifiers.

Our laboratory is available for repair work, rescaling, recalibration and special calibration of your electrical and industrial instruments. Often months are saved by rescaling and calibrating stock instruments to your specifications.

ELECTRO-TECH EQUIPment co.

55 LISPENARD ST., NEW YORK 13, N.iY.

IF YOU USE MICROWAVES .

This self-contained, compact, versatile WAVEMETER TEST SET* can help you

Now, with one easy-to-carry instrument, you can determine the frequency of both pulsed and c-w microwave systems . . . you can make accurate measurements by both transmission and reaction methods. Because the new Wavemeter Test Set needs no external power source, it is ideal for field workequally good for laboratory work! Its applicable range is from 2400 to 3400 megacycles. A low cost instrument-now in production, and used by U. S. Signal Corps as \#TS-117/GP.
Write us today for bulletin giving complete technical data on the Wavemeter Test Set!
*Licensed under Sperry Patents

ELECTRONICS DIVISION

Americon Encoustic Tiling Co., Inc.
904 Kenilworth Ave., Lansdale, Pa.
Gentlemen:
Please send your Technical Data Bulletin on the Wavemeter Test Set. No obligation, of course.
Name . Title.

Address.
City. Zone State .

ELECTRONICS DIVISION AMERICAN ENCAUSTIG TILING COMPANY 904 Kenilworth Ave.
 Lansdale, Pa.

PLANTS AND PEOPLE
merly manager of the firm's switch division. Mr. Rah has been with the Mallory firm for 16 years, serving in engineering capacities throughout the company.

Dyson of Erie Resistor Honored By England

A. A. Dyson, managing director of Erie Resistor Ltd, has been included in Queen Elizabeth's New Years Honors List to receive the Order of British Empire, which is presented to civilians of the British Empire that have performed outstanding service to the Empire.

Mr. Dyson has been active during and since World War II on many British Government electronics planning and production boards.

Electronic Company Formed By Universal Match Corp.

A NEW electronic company, Unitronics, Inc., has been formed by Universal Match Corp. to replace Precision Engraving Company, also a subsidiary company.
Phillip Gilbert, director of graphic art research and development, and Theodore Hommel, chief electronic engineer, have been named vice-presidents of Unitronics. Mr. Hommel will be the company's general manager and Mr. Gilber will be in charge of engineering and production.

The new company is manufacturing electronic light-integrating instruments and plans to introduce a new line of industrial electronic equipment later this year.

O'Neill Heads New Plant

William O'Neill Jr. has been appointed plant manager of the new $\$ 2$ million battery factory of Sonotone Corp, at Cold Spring, N. Y.

Hickok Opens Plants

Official opening of a new assembly plant of the Hickok Electric Instrument Co. in Cleveland recently took place. The $\$ 200,000$, one-floor modern factory houses assembly operations for electronic

LEAK-TIGHT
 HERMETIC SEALING

with the

ten-port manifold and leak detector

The equipment pictured above is a complete unit for evacuating, leak-testing, and back-filling hermetically sealed components such as relays, switches, amplifiers, electronic tubes, gyros and aircraft instruments.
The manifold simultaneously evacuates ten components; first with a rough pump, then a high vacuum diffusion pump. The vacuum process is monitored by self-contained gauges. If any leakage exists it is immediately located by the Veeco Leak Detector, proven to have the highest, constant sensitivity. After leak checking, components are filled with a suitable gas through separate filling lines.

Veeco Solenoid Vacuum Valves control pumping and filling operations. The valves are energized by switches on the front panel. The standard manifold has both local and master control, giving greatest flexibility. Each port can be operated by its own switch, or any number of ports can be controlled at one time with a master switch.
Both smaller and larger manifolds are available, built to your special requirements, if necessary.

Write for bulletin EM-3.

VACUUM-ELECTRONIC ENGINEERING CO.
 86 Denton Avenue, New Hyde Park, Long Island, N. Y.

Now for the First Time... Continuously Variable Straight-sided Selectivity*

The McLAUGHLIN type MCL-50 SIGNALSPLITTER is the first and only selectivity converter deliberately designed to provide exact jam-free-bandwidths for every CW/SPEECH receiving conditions. It is compact, requiring only $31 / 2$ inches of rack-panel space . . . Simple connection to I-F in receiver . . . Has self-contained power supply and audio amplifier . . . Output is $18 \mathrm{dbm} / 600$ ohms.

Price $\$ 1200$

[^29]
test equipment. Designing, engineering and meter manufacturing continue in an older building.

Gray Research Names Smith

Newland F. Smith, formerly director of general engineering for the Mutual Broadcasting System and WOR, has been appointed assistant general manager for Gray Research and Development Co., Inc.

Harrison Named Wilcox V.P

Arthur E. Harrison, formerly chief engineer of Air Associates electronics division, is now vicepresident and chief engineer of Wilcox Electric Co., Kansas City, Mo.

Maxson Assigns Personnel

The W. L. Maxson Corp. announced several personnel assignments. S. Merrill Skeist has been elected vice-president and is now in charge of the Contracts Division.

Other appointments with the Contracts Division are: J. W. Bjorkman, executive assistant to the vice-president and manager of the planning department; J. L. Comer, staff assistant to the vicepresident and manager of the administrative department; W. P. McNally, manager of the Air Force contracts department; J. J. Ryan, manager of the Navy contracts department; A. J. Colton, manager of the Army contracts department.

OTHER NEWS

Hazeltine Gets Navy's
 "Basic" Agreement

NAVY's first basic contract agreement has been signed with Hazeltine Electronics Corp. This is an experiment that the Navy is trying out with a few large contractors to speed up the work with company negotiators and attorneys.

It is a master-type agreement in which the Navy and a contractor agree to general provisions to be included in all future contracts. It is not a contract but it allows all applicable general conditions in future contracts to be included

ANALYSIS OF ALTERNATING CURRENT CIRCUITS Just Published

Here's a modern introduction to a - c circuits comDletely devoted to the steady state in lumped linear
networks. Notations for potential differences follow newly recommended practices, and the two dimensional quantities used in network analysis likewise are in accord with the latest trends. The appendix
gives you a comprehensive coverage of d-c circuits gives you a comprehensive coverage of d-c circuits.
By Wilbur \mathbf{R}. LePage, Professor of Eloctrical Engi. neering. Syracuse University. 444 pp., 520 illus., neerin
$\$ 6.50$

Covers measurement fundamentals in many fields beyond conventional radio, including television, radar, and other pulsed systems, microwave tech: niques, and techniques of value to engineers in
other areas who use electronics in their instrumentation. Treats circuit constants and lumped circuits; wave-form, phase, and time interval measurements; receiver and antenna measurements; generators of special waveforms; attenuators and signal generators, etc. By F. E. Terman, Dean, School of Engi-
neering, and \mathcal{M}. Pettit, Associate Professor of Electrical Engineering, Stanford University. Second Edition, 683 pp., 450 illus., $\$ 10.00$

PRINCIPLES OF RADAR

Third Edition

 Just PublishedDeals with the fundamental concepts and techniques of pulse radar. I'resents the engineeriug principles of the pulse circuits and the high-frequency devices common to nearly all radar systems. system components: discusses pulse circuits and their application to radar modulators, indicators, and receivers. Covers radio-frequency aspects of radar, including basic concepts vertaining to transantennas, and the techniques of their use in radar Bystems. By the Massachusetts Institute of Technology Radar School Staff. Revised ty J. F. Reintjes, MIT and Godirey T. Coate, formerly
MIT. Third Edition, $887 \mathrm{pm}, 565$ illus., $\$ 7.75$

HANDBOOK OF INDUSTRIAL ELECTRONIC CIRCUITS

SEE BOOKS TEN DAYS FREE!

[^30]

Precision Resistors

The New Series "H" Hycor Precision wire-wound resistors have been developed to meet the increasingly stringent requirements of the elect onics industry. The resistors are permanently sealed in a high stability plaslic compound which virtually immunizes them against the effects of HIGH HUMIDITY, MECHANICAL SHOCK and AMBIENT TEMPERATURES UP TO $135^{\circ} \mathrm{C}$. They will conform to JAN R-93 or MIL R93A specifications. Hyc:or Series "H" Precision Vire-wound resistors have a temperature coefficient of 25 parts per million perldegree C. and are available in resistances from 0.1 ohm to 6 megohms.

11423 VANOWEN ST., NORTH HOLLYWOOD, CALIFORNIA

HMCO
 Company. Urec

Manufacturers of Precision Resistors, Toroid Inductors and Electric Wave Filters REPRESENTATIVES:
lack Beebe, 5707 W. Lake Street Chicago, Illinois
For further information
Jack Beebe, 5707 W. Lake Street, Micago, Marvin E. Nulsen, 5376 E. Washington St., Indianapolis 19, Indiana Burlingame Associates, 103 Lafayette Street, New York City Hycor representative or write for Bulletin H

Here's the COMPLETE answer toMiveris ASEEMBLIES COHPONENTS

merely by reference to the clauses contained in the basic agreement. The only matters left for negotiation will be quantities, prices, specifications and delivery dates.

The general conditions agreed upon fall into two categories. They are mandatory provisions required by the armed services procurement regulation executive orders and other applicable statutes which are used in specific procurements.

Since it will be necessary to send copies of each basic agreement to every Navy purchasing office, inspection office and other interested governmental agencies, it is not considered economical to sign basic agreements with companies making only a few contracts each year.

The Air Force has used basic agreements successfully under its centralized purchasing office at Wright-Patterson Air Force Base.

Tentative Program Set For '53 IRE National Convention

An estimated 30,000 radio engineers and scientists will convene on March 23-26 at the Waldorf-Astoria Hotel and Grand Central Palace in New York City for the 1953 IRE National Convention. The program of 220 technical papers and 400 engineering exhibits will be keynoted by the theme "Radio-Electronics, A Preview of Progress." The 43 -session technical program will be highlighted by an all-day seminar on "Acoustics for the Radio Engineer" and nine symposia organized by Professional Groups of IRE. The complete tentative program follows:

MONDAY, MARCH 23, 1953-2:30 P.M.
Session 1: Antennas I-General
The Measurement of Highly Directive Antenna Patterns and Over-All Sensitivity of a Receiving System by Solar and Cosmic Voise by Jules Aarons of Air Force Cambridge Research Center, Cambridge, Mass. Radiation Patterns for Aperture Antennas With Noll-Linear Phase Distributions by Charles C. Allen of General Electric Co. Schenectady, N. Y
Corrurs Affecting Radiation Patterns of Corrugated Surface Antennas by M. Ehr lich and L. Newkirk of Hughes Aircraft Co. Cuiver City, Calif.
tenna Simmonatern Measurements by Alan H ington. D of
Wide-Freque and erequency-Range Tuned Circuits Williantennas by A. G. Kandoian and cations Sichak of Federal Telecommuni-

Session 2: Televis
Theory of Synchronization Applied to NTSC Television by Donald Richman of Color Synchronization
highly adaptable electronic differential analyzing equipment
REAC ${ }^{\text {® }}$
(REEVES ELECTRONIC ANALOG COMPUTER)

SIMULATOR • COMPUTER • TESTER

THE REAC FAMILY of electronic and clectromechanical units continus to grow in number and capability. The Electronic Function Cemerator and the Electronic Multiplier were recently introduced for real time applications requiring high speed response, where merhanical methods with their inherent frequency limitations were unsatisfactory.
NOW A NEW SIX CHANNEL RECORDER is available featuring, convenient table top recording, interchangeable electric or ink styli and simplified paper loading. Low drift amplifiers, alsence of paper weave, and good power requtation combine to make this unit highly accurate.

A ONE CABINET InSTALLATION will soon be in production. The Reeves Electronic Analog Computer C-202 Mod O will contain, in addition to the computing components, four servos and the required power supplies.

PRECISION RESOLVERS

For 60,400 or 1000 cycle operation; network or winding compensated for high precision trigonometric applications and winding compensaled for additional sweep circuit usage. The winding compensated resolvers type $\mathrm{R}-602$ are capable of operation within a frequency range of 10 to $40,000 \mathrm{cps}$.

A bew miniature resolver in a Navord size 15 case featuring very high input imprdance $(17,500$ ohms when tuned at 400 eps) and a farge dynamic range of operation. The unit can withstand betier than 50 C shock or vibration and operates perfectly above alitudes of 50,000 feed. Type $\mathrm{K}-151$ is winding compensaled

STANDARD AND MINIATURE BREADBOARD INSTRUMENTATION PARTS

STANDARD
INSTRUMENTATION PARTS
Repves Instrment Corporation manufartures a complete line of precision bread. hoard parts in standard sizes for reonomical construction of experimental sercos and computers including precision pears, component hangers, slotted mounting plates, ete. A shaft diameter of $1 / /^{\prime \prime}$ is used.

MINIATURE STANDARD INSTRUMENTATION PARTS

Facilities are completed for the manufar. enre of a new line of miniatime standard lireadboard instrumentation parts drsigned on the hasis of a $1 / s^{\prime \prime}$ shaft size. for applications where small size and light weight are important facturs war ranting the use of miniature parts.

The Reeves Instrument Corporation is now manufacturing miniature rate and integrating gyros, two inches in diameter, and weighing slightly more than one pound.

Our answer to the High Cost of ANALOG COMPUTERS

 The ANSER

 The ANSER}

Model 300A

ANalog Simulator and computER

Teaturing

SIMPLICITY: Plug in pre-matched components, patch the "blocks" together, and compute.
FLEXIBILITY: Start small, expand as required. High speed - "one shot" or repetitive computations. Wide variety of plug-in networks (some include vacuum tubes), simple or complex, linear or non-linear

ACCURACY:

High gain wide band amplifiers.
Pre-matched components, $\pm 0.25 \%$.
Coefficients set by use of precision potentiometer and meter - no loading corrections.
and really LOW COST
BASIC COMPUTER
\$1,980
Average set of plug-in computing components is approximately.. $\$ 500$

RECORD DATA AT ITS SOURCE

Portable MAGNETIC TAPE DATA RECORDER

Designed for Aircraft, Mobile, and Other Field Uses; 6, 12, or 24 v. DC Power Supply, Remote Control.

SMALL SIZE $11^{\prime \prime} \times 11^{1 / 2^{\prime \prime}} \times 201 / 2^{\prime \prime} \quad$ WEIGHT only 55 lbs . RECORDS UNDER SEVERE VIBRATION, ANY POSITION
Up to 13 data channels, plus timing signal.
Data channel frequency response - DC to 5 kc .
Linearity - 2% (with suitable playback equipment).
Playback equipment available - single or multi-channel-for laboratory use, 60 cps power.

Also special analysis equipment.
Write for detailed information
THE

4705 Queensbury Road
Riverdale 2, Maryland
Telephone: Appleton 7-1133

NEY

PRECIOUS METAL ALLOYS AND COMPLETE ASSEMBLIES

IMPROVE INSTRUMENT PERFORMANCE

Paliney*\#7, Ney-Oro G, Ney-Oto \# 28, and Ney \#90 Alloy are precious metal alloys developed in the laboratories of the J. M. Ney Company for the fabrication of contacts, brushes, wipers, slip rings, commutator segments, and similar components used in precision control and instrumentation. Each alloy has specific qualities which mean greater accuracy and prolonged instrument life, as well as resistance to most corrosive industrial atmospheres.
Parts fabricated from Ney's Precious Metal Alloys are now components of instru . ments used in navigation, recording, computing, and many other devices. Consult the Ney Engineering Department for assistance with your problems
*Reg. Trade Mark J. M. Ney Co
THE J. M. NEY COMPANY - 179 Elm Street, Hartford 1, Conn. Specialists in Precious Metal Metallurgy Since 1812

3 NY5 3

It's simple! It saves space! It saves money! Actuated by electrical impulses, the Kéllogg Magnetic Impulse Counter performs the counting and marking function

- The long life normal to relay of a chain of 10 to 20 relays or of a twomagnet ten-point stepping switch, in less space and with top reliability! It has a
- Occupies the space of only two felephone relays! space and wion rop reliabilith has
- Operates over the same wide range of pulse ratio of well-designed count. ing relays!
telephone dial are to be counted.

An Associafe of International
Telephane and Telegraph Corp

KELLOGG SWITCHBOARD AND SUPPLY COMPANY

KELLOGG SWITCHBOARD AND SUPPLY COMPANY 79 West Monroe St., Chicago 3, III. Dept. 26-C

Please send me complete information regarding the Kellogg Impulse Counter.

COMPANY
ADDRESS
citr

AGE or PREHEAT

up to 100

vacuum tubes

for 50 hour

reliability tests ...

You can quickly apply any nominal voltage and/or load to any tube element for practically all receiving and many transmitting types with the P.T.L. Aging Rack. Plate, filament, screen and grid voltages may be varied as desired.

Multiple banks of ten produc-tion-type sockets accommodate octal, small seven, noval nine or subminiature tubes. Each bank is individually controlled so that up to ten different tube types may be aged simultaneously.

Self contained filament and plate power is supplied together with adequate bias voltages. Overload protection is included in all circuits.

Fast, accurate, VISUAL indication of the null point for A-C bridges

With the P.T.L. Type 239 Bridge Null Indicator you can see by simultaneous and independent indications, the reactive and resistive unbalances of A.C bridges on a $3^{\prime \prime}$ cathode ray tube. After
a simple initial set-up, no further manual operation a simple initial set-up, no further manual operation is required.

The indicator amplifier has gain sufficient to give 1 inch deflection for 20 microvolts of input signal. At maximum sensitivity, the hum and noise level is less than 2 micro volts. Continuous tuning in 9 ranges adequately reduces harmonic errors from 20 cps to $20 \mathrm{Kc}$. . V.C. is incorporated to reduce overload distortion and speed production testing. The equipment is very useful in a laboratory as well as being essential for fast production testing of audio coils, condensers, etc.

WRITE FOR DATA

PENNSYLVANIA TESTING LABORATORY
Specializing in Research, Desigm, Development and manufacture of Electronic Production Testing Facilities.

Arrays of Flush Mounted Traveling Wave Antennas by J. N. Hines, V. H. Rumsey and T. E. Tice of The Ohio State UniTransient Build-t,
Transient Build-Up of the Antenna Pattern in End-Fed Linear Arrays by Nor than H. Enenstein of Hughes Aircraft Company, Culver city, Calli.
A New Microwave Reflector by K. S Kelleher of Naval Research Lab., Washington, D.
Crosstalk in Radio Relay Systems Caused by Foreground Reflections" by I. W Evans of Bell Telephone Labs.。 New York,
Low Side Lobes in Pencil-Beam Antennas by E. M. T. Jones of Stanford Research Institute, Stanford, Calif.

Session 8: Television II

Probability Distribution Measurements of Television Signals by W. F. Schreiber, Cruft Lab. of Harvard University. Cambridge, Mass.
Colorimetric Properties of Gamma-Cor rected Color Television Systems by D. C. Livingston of Sylvania Electric Products Inc., Bayside, N . Y .
Phase Measurements at Subcarrier Frequency in Color Television by A. P. Stern of General Electric Company, Syracuse N . Y .
A Precision Line Selector for Television Use by I. C. Abrahams and R. C. Thor of General Electric Company, Syracuse N. Y.

A Monitorlng System for NTSC Color Television Signals by C. E. Page of Hazel tine Corp., Little Neck, N. X.

Session 9: Circuits II-Symposium: Panel Discussion on Wideband Amplifiers
Conventional Amplifiers by W. Bradiey of Philco Corp., Philadelphia, Pa. Feedback Amplifiers by H. N. Beveridge of Raytheon Mfg. Co., Newton, Mass
Transistor Ampliflers by R. L. Wallace of Bell Telephone Labs.
Distributed Amplifiers by W. G. Tuller and E. H. Bradley of Melpar Electronics Alexandria, Va.
Traveling Wave Tube Ampliffers by L. Field of Stanford Univ., Stanford, Calif

Session 10: Electronic Computers II
Analog Computing with Magnetic Amplifiers Using Multi-Phase A-C Voltages by J. E. Richardson of Huges Aircraft Company, Culver City. Calif
Sonie Recent Developments in Logical 'Or-and-Or' Pyramids for Digital Computers hy C. Leondes of University of Pennsylvania. Philadelphia, Pa.
Magnetic Core Switches as Logical Elements in Computers by Eugene A. Sands of Magnetics Research Co., Chappaqua, N. Y.

Magnetic Shift Register Using One Core Per Bit hy R. D. Kodis. S. Ruhman and W. D. Woo of Raytheon Mfg. Co., Waltham, Mass.
Simple Computer for Automatically Plotting Correlation Functions by A. H Schooley of Naval Research Lab., Washington, D. C.

Session 11: Instrumentation II-Symposium: Transistor Measurements
Transistor Metrology by D. A. Alsberg of Bell Telephone Iabs., Murray Hill, N. J. Measurement of Transistor Parameters by CRO and Other Methods by W. E. Morrow Tr., MIT of Cambridge, Mass.
Transistor Static Characteristics Olytained he Pulse Techniques by D. R. Fewer of Bell Telephone Labs, Murray Hill. N. J. Aridges for Measuring Junction Transistor of RCA Labs., Princeton, N. J.
A Transistor: Apha Sweeper by H. G. Follingstad of Bell Telephone Labs., Murray Hill, N. T.
Rapid Tracing of Transistor Characteristics by Oscillographic Methods by V. Mathis of General Electric Co., Syra-
cuse, N .

Session 12: Significant Trends in Airborne Equipment
Some Systems Considerations in Flight Control Servonechanism Design by Robert J. Bibhero and Roland Grandgent of Republic Aviation Corp., New York, N. Y. Faired-In ADF Antennas by Louls E. Raburn of Electronics Research Inc., Evans-
Magnetic Amplifiers for Airborne Appli-

Compact . . . Dust-Proof TIME DELAY RELAYS

 solenoid actuated - pneumatically timedIntroduces time delays into a-c or d-c circuits. Easily adjusted to provide delays ranging from 0.1 second to five or more minutes.

The AGASTAT is small, light, and operates in any position. Dust-proof timing chamber assures long oper ating life with a minimum of maintenance.

Write for Bulletin.

Dept. A1-34,

AC'A

Division of Elastic Stop Nut Corporation of America 1027 Newark Avenue, Elizabeth 3, New Jersey

hiectiostinic

 DOLTMETER

This instrument permits voltage readings on $A C$ or DC circuits of very high resistance. The only current drawn is the very small leakage current and a very low capacitance currenton $A C$ circuits. Very useful for the many high volt-age-low current circuits employed in nuclear research. Available with fullscale voltages ranging between 300 and 3500 volts. Special laboratory instrument available with full scale reading of 150 volts. Full scale capacitance ranges from 8 mmfds for the 3500 volt model to 100 mmfds for the 150 volt instrument.Magnetic damping. $21 / 2^{\prime \prime}$ dial. Write for complete specifications.

|EERranil|

FERRANTIELECTRIC, INC. 30 Rockefeller Plaza - New York 20, N. Y. FERRANTI, LTD., Hollinwood, England FERRANTI ELECTRIC, LTD., Toronto, Canada

At the Hathaway Instrument Company, tiny galvamometer coils are wound with wire so fine that it is almost invisible to the unaided eye. Ingenious tooling and use of an $A O$ Stereoscopic Microscope assure fast, precise workmanship.

These unique AO Microscopes provide two complete optical systems (one for each eye) to enhance the perception of depth and to provide three-dimensional reality plus an exceptionally wide field of view. Unlike ordinary microscopes, objects and movements are not inverted. Instead they appear in their natural directions. Because AO Stereoscopic Microscopes are unequalled for fabrication, assembly, inspection of minute precision parts, they are widely used in electronics, metal working, food and many other industries.
Let AO Stereoscopic Mictoscopes help you achieve high precision at low cost. Mail coupon below.

American Optical

(D) Instrument division

You NEED

 Stereoscopic Microscopes

American Optical Company
 Dept. J 178
 Instrument Division
 Buffalo 15, New York
 Gentlemen:

Please send me further information on AO Stereoscopic Microscopes.
Signed

Organization

Address
City
Zone
State

manufactured to your design

electronic

 components... accurate to the most exacting tolerances- Design \& Engineering Assistance
- Machining
- Assembling
- Testing

Expcrienced in precision work with such alloys as beryllium copper, molybdenum, tantalum and Monel as well as Plexiglas and polystyrene. Approved for subcontractor defense work and cleared to handle classified matter.

Send for illustrated brochitire on complete facilities

SHE'D BE SUNK WITH NO MOVING PARTS!

BUT THE C. G. s. INCREDUCTOR* line of controllable inductors NEEDS NO MOVING PARTS THIS FEATURE, COMBINED WITH RUGGED, SHOCK RESISTANT, COMPACT AND LIGHT WEIGHT CONSTRUCTION PROVIDES THE IDEAL UNIT FOR ADVANCED CIRCUITRY.

SOME OF THE OUTSTANDING AND VALUABLE fEATURES OF THE INCREDUCTOR UNITS ARE:

- WIDE RANGE • REMOTE CONTROL•FAST RESPONSE • - HIGH SENSITIVITY • EXTREME FLEXIBILITY •

THE INCREDUCTOR UNIT IS A NATURAL FOR ADVANCED TECHNIQUE APPLICATIONS SUCH AS:

- High Speed Switching • F. M. Oscillators .
- Automatic Frequency Control Systems.
- Receiver Front Ends . Sweep Oscillators .
- Amplitude Controls . Variable Filters .

Write on your company letterhead for engineering data and technical bulletins covering standard types. We will be glad to give you our recommendations regarding your specific problems.

-Trate Mark

C. G. S. LABORATORIES, INC.

391 LUDLOW STREET, STAMFORD, CONN.

[^31]PLANTS AND PEOPLE

bile Communications

The Effects of Selectivity, Sensitivity and Linearity in Radio Circuits on Communications Reliability and Coverage by J. G. Schermerhorn of Rome Air Development Center, Rome, N. Y .
Single Sideband for Mobile Communications by A. Brown and R. H. Levine of Coles Signal Lab., Ft. Monmouth, N. J. Major Factors in Mobile Equipment DeSign with Emphasis on 460 MC Mobile Equipment Characteristics by John Byrne and A. A. Macdonald of Motorola, Inc. Chicago. Ill.
Field Experience with 450 MC Mobile Systems by P. H. Bellingham and J. Q. Montrese of Beli-Mont Communications Service Corp., Fnglewood, N. J.
TUESDAY, MARCH 24, 1953-8:30 P.M.
Session 19: (to be announced)
WEDNESDAY, MARCH 25, 1953-10:00 A.M.

Session 20: Electron Devices II-Electron Tubes

Gas Pressure Effects on Ionization Phenomena in High-Speed Hydrogen Thyratrons by William C. Dean of Odessa, Texas and G. W. Penney and J. B. Woodford, Jr . of Carnegie Institute of Technology, Low Noise, Hot Cathode, Gas Tubes by E. O. Johnson, W M Webster and J B Zirker of RCA Labs. Div., Princeton, N. J. New Dispenser Type Thermionic Cathode by R. Levi.
Nulti Output Beam Switching Tubes for Computers and General Purpose Use by Saul Kuchinsky of Burroughs Adding Machine Co., Philadelphia, Pa.
An Equivalence Principle in High Frequency Tubes by Robert Adler of Zenith liadio Corp., Chicago, Ill.
Session 21: Circuits IV-Active Net-works--Transitors

Transient Analysis of Junction Transitor Amplifiers by J. J. Suran and W. F. Chow of General Ehectric Co., Syracuse, N. Y. fier at Carrier Frilector Transitor Ampilsel of Bell T'elephone Labs., Murray Hill, N. J. Brical Pronerties of Transitorg and Their Application by G. C. Sziklai, RCA Labs. Div. of Princeton, N. J.
A Study of Transitor Circuits for Television by G. C. Sziklai, R. D. Lohman and G. B. Herzog of RCA Labs. Div., Princeton, N. J .
Conductance Curve Design of Relaxation Circuits by K. A. Pullen of Ballistic Research Labs., Aberdeen Proving Ground, Md.

Transitor Relaxation Oscillators by S. I. Kramer of Fairchild Guided Missiles Div. Wyandanch, N. Y.
Session 22: Noise and Modulation
Noise Problems of Theoretical and Practical Interest by Bernard Gold of Hughes Aircraft Co., Culver City, Calif,
A Note on Receivers for Use in Studies of Signal Statistics by R Delltsch and H. V. Hance of Hughes Aircraft Co., Culver City, Calif
Amplitude Modulation by Plate Modulation of CW Magnetrons by J. S. Donal, Jr., and K. K. N. Chang of RCA Labs. Div., Princeton, N. J.

Cominarison of Modulation Methods by R. M. Page of Naval Research Lab., Washington, D. C .
A Technique of Intermodulation Interference Determination by A. J. Beauchamp of Rome Air Developinent Center, Rome, N. ${ }^{\text {r }}$.

Session 23: Symposium: Television Broadcasting

The Design of Speech Input Consoles for Television by Robert H. Tanner of Northern Electric Co., Ltd., Belleville, Canada. Growth TV Broadcast Facilities for P. Krainer and Fidwin R Kramer of Kramer, Winner and kramer, New York N. Y. F . bv Frank G. Kear of Kear and Kennedy, Washincton, D. C., and John C. Preston of American Broadcasting Co., New York,
High Gain Amplifiers for High Power Television Transmitters by John Ruston of DuMiont Labs., Inc., Clifton. N. J. Optimum Utilization of the Radio Frequency Channel for Color TV by Ray D.
the annual

electronics

 BUYERS' GUIIDEis the electronic engineer's

BREADBOARD WHO'S WHO

for

quick, accurate answers to any questions about

COMPONENTS

EQUIPMENT MATERIALS
used in electronics
Get in the habit of looking it up in...

me electronics

BUYERS' GUIDE

"The Book that has all the answers"
a megraw-hill publication 330 West 42nd Street NEW YORK 36, N. Y.

U. G. CONNECTORS

Our Coaxial Cable Connectors Meet All Government Specifications

AlL ORDERS DELIVERED PROMPTIY \star

Manufacturers of Higbest Quality Connectors

ALIED INDUSTRIES, INC.

1023 S. 21st Street LOUISVILLE 10, KY. Phone Arlington 4640

Why You Should Depend on BENNETT For

\checkmark CABINETS
 \checkmark CHASSIS \checkmark CUSTOM SHEET METAL PARTS

4 Typical examples of the wide range of metal fabricated parts produced by Bennett.

MANY LEADING ELECTRONIC COMPANIES DO

Engineering, plant capacity, experienced "know how" and metal craftsmanship have made Bennett a prime source of supply for many leading electronic and electrical equipment manufacturers. Located in α suburb of Buffalo. the Benneft plant with complete facilities can deliver what you need when you want it. Send blueprints or sample parts today for prices and delivery.

the BENNETT manufacturing company

REPRESENTATIVES INQUIRIES
SOLICITED
 full size. Other designs available.

APPLIANCES AND APPARATUS

ELECTRONIC DEVICES AND AVIONIC EQUIPMENT INSTRUMENTS AND DEVICES

Stevens Type M^{*} thermostats are engineered for compactness . . . lightness . . close temperature control. Featuring quick make and break operation, fast snap of bimetal disc and series double-breaking contacts reduce arcing . . . assure positive On and Off.

Bimetal thermal element actuates a low-resistance bridging contact disc which carries current. Bimetal disc responds only to temperature of controlled device or air surrounding thermostat. prevents false cycling or life-shortening "jitters."

Foroperation in any ambient from $-75^{\circ} \mathrm{F}$ to nearly $600^{\circ} \mathrm{F}$, Stevens Type M thermostats are available with virtually any terminal or mounting arrangement in standard or hermetically sealed types.

Get faster response . . . closer temperature control. Specify Stevens Type M thermostats for your product-for better performance, longer life.

Kell and A. C. Schroeder of RCA Labs.,
Princeton. N. J.
Session 24: Quality Control Methods Applied to Electron Tube and Electronic Equipment Design

Use of Statistical Tolerances to Obtain Wider Limits on Tube Component DimenWider Limits on Tube Component Dimen-
sions by E. V. Space of RCA, Harrison, sions
N. J.
Tolerance Considerations in Electronic Tolerance Considerations in Electronic Product Design by Raymond C. Miles of Airborne Instruments Lab., Mineola, N. Y. Distribution Patterns for the Attributes and E. D. Karmiol of Duinont Labs East Paterson, N. J.
The Application of Statistics to Field Surveillance of Product Performance by R Herd of Aeronautical Radio, Inc., Washington. D. C.
Reliability of Electron Tubes in Military Applications by E. F. Jahr of Aeronautical Radio, Inc., Washington, D. C.
Dynamic $\mathrm{Emvironment}^{\mathrm{D}} \mathrm{Testing}$ by D. T. Geiser of Boeing Airplane Co., Wichita, Kansas.

Session 25: Seminar: Acousties for the Radio Engineer-I

Fundamental Theory by Leo L. Beranek of MIT, Cambridge, Mass.
Microphones by Harry F. Olson, RCA of Princeton, N. J.
Loudspeakers by Hugh S. Knowles of Industrial Research Products, Inc. Franklin Park, Ill.
WEDNESDAY, MARCH 25, 1953-2:30 P.M.

Session 26: Electron Devices III-Microwave Tubes

High Power Traveling Wave Tube Amplifiers by M. Ettenberg of Sperry Gyroscope Co., Great Neck, N. Y
Operation of the Traveling-Wave Tube in the Dispersive Region by L. A. Roberts and S. F. Kaisel of Electronics Research Lab., Stanford Univ., Stanford. Calif. A Traveling-Wave Electron Buncher by R. B. Neal of Stanford Univ., Stanford, Some
Structureserties of Periodically Loaded Wave Tube Operation by Marvin Chodorow and Ervin J. Nalos of Mierowave Lab., Stanford Univ., Stanford, Calif. Experiments on Millimeter Wave and Light Generation by H. Motz, W. Thon and R. N. Whitehurst of Stanford Univ., Stanford, Calif.

Session 27: Information Theory I-Recent Advances
Recent Advances in Information Theory by Louis DeRosa of Federal Telecommunication Labs.. Inc., Nutlev. N. J.
Radar Problenis and Information Theory by Harry Davis of Airmaterial Command, Redbank, N. J.
Analysis of Multiplexing and Signal Detection by Function Theory by Nathan Marchand of Marchand Electronic Labs., Greenwich. Conn.
Optimum Nonlinear Filters for the Extraction and Detection of Signals by L. A. Zadeh of Columbia University. New York, N. Y.

Detection of Information by Moments by J.itgers University, New Brunswick Nony of

Session 28: Communications Systems
Automatic-Tuning Communications Transmitter by M. C. Dettman of Federal Telecommunication Labs., Nutley, N. .
Doubline of Channel Capacity of Single Sidehand Systems by Clifford D. May of the Office of Chief Signal Officer, Washington, D. C.
Performance of Space and Frequency Diversity Receiving Systems by R. E. Lacy of Fort Monmouth, N. J., M. Acker of Fort Monmouth, N.J. and J. I. Glaser of Bell pefephone Labs.. New York, N. Y. Effect of Hits in Telephotography by P Mertz and K. W. Pfleger of Belt Telephone Labs. New York. N. Y.
Reliability of Military Electronic Equipment and Our Ability to Maintain it for ar by A. S. Brown of Stanford Research Institute, Stanford, California.

Session 29: Symposium: Television Broadcasting and UHF

A Fiexible TV Studio Intercommunication System by R. D. Chipp and R. F. Bigwood

for ELECTRONIC COMPONENTS

Precision engineered electronic components and connecting devices for all your needs.

- LAMINATED TUBE SOCKETS
- TERMINAL STRIPS
- WIRED ASSEMBLIES
- BAKELITE STAMPINGS
- TERMINAL BOARD ASSEMBLIES

Our extensive design and production facilities are available for developing your special requirements and applications. Representatives
in principal citios throughout U. S. A. Call or write for samplos and information. 0Regon 7-1881. (14*)

INDUSTRIAL HARDWARE Mfg. Co., Inc.
109 PRINCE STREET • NEW YORK 12, N. Y.

ELECTRON TUBE TECHNICIANS

We now : To qualify for one have several openings for
technicians to work in the fabrication and
processing of advanced type electron tube
research
models.
of these openings you should be experienced in experimental work for research and development in vacuum tubes, which includes the fields of mechanics, electronics, chenistry and high-vacuum techniques.

ADDRESS RESUME OF TRAINING AND EXPERIENCE TO

HUGHES

RESEARCH AND
DEVELOPMENT LABORATORIES

Techmical Personnel

CULVER CITY LOS ANGELES COUNTY, Department CALIFORNIA

Microware Assemblies, Radar Components, and Precision Instruments . . . manufactured to your Blueprints and Specifications,

> Radio Engineering Show MARCH 23-26
> Grand Central Palace New York City

N.R.K. MFG. $\mathbf{\&}$ ENGINEERING CO. 4601 WEST ADDISON STREET • CHICAGO 41, ILLINOIS

WARREN WIRE CO.
 POWNAL
 VERMONT

Producers of Nylon, Plain Enamel and Served Magnet Wire, Tinned and Bare Copper Wire.
*Du Pont trademark for Polytetrafluoroethylene Enamel

AFSCO AMPLIMETER MODEL M-10
 A PRECISION
 ELECTRONIC WIDE BAND
 VTVM and WIDE BAND
 AMPLIFIER

ACCURATE—SENSITIVE—STABLE—RUGGED

MEETS MIL REQUIREMENTS ON TEMPERATURE, HUMIDITY and STABILITY. Used by the Military Services.

SPECIFICATIONS

METER RANGES: Accurate readings from $\mathbf{5 0 0}$ microvolts to 500 volts rms in six overlapping decade ranges (or -65 to +57 VU).
INSTRUMENT ACCURACY: $\pm \mathbf{2 \%}$ at any scale point from 15 cycles to 250,000 cycles per second.
INPUT IMPEDANCE: 2 megohms in shunt with 15 mieromicrofarads.
DECIBEL METER SCALE RANGE: -5 to +17 db .
DECIBEL CONVERSION BASIS: . 001 watt reference level in 600 ohm line.
STABILITY: $\pm 1 \%$ over line variation from 105 to 125 volts AC.
UNDISTORTED AMPLIFIER OUTPUT: Up to 8 volts AC supplied from an internal impedence not greater than 2000 ohms.
AMPLIFIER GAIN: 1600
AMPLIFIER NOISE: Less than 50 MV with input terminals shorted.
RESPONSE OF INTERNAL AMPLIFIER: 15 to $250,000 \mathrm{cps}$ $\pm 2 \%$.
POWER REQUIREMENTS: $105-130$ volts AC, $50-400 \mathrm{cps}, 31$ watts.
DIMENSIONS: $57 / 8^{\prime \prime} \times 534^{\prime \prime} \times 11-5 / 16^{\prime \prime}$.
SHIPPING WEIGHT: Approximately 13 lbs .
PRICE: $\$ 200.00$ F. O. B. Plant, Brooklyn, New York.

FOR FURTHER INFORMATION WRITE

of DuMont Television Network, New York, CBS Y. Television's Hollywood TV City Video, Audio and Intercommunication Facilities by Richard O'Brien, Rober Monroe and Price Fish of Columbia Broad casting System. New York, N. Y.
An Experimental Study of Wave Propagation at $850-\mathrm{MC}$ by Jess Epstein and Donald W. Peterson of RCA Labs.. Princeton, N. J.
A Typical UHF Installation by W. H. Sayer, Jr. of DuMont Labs., Passaic, N. J High Power UHF Klystron Application by A. E. Rankin of General Electric Co., Schenectady, N.
High Power UHF Klystron Amplifier Design by N. P. Hiestand of Varian Assoclates, San Carlos, Calif
High Power UHF Television Broadcasting Systems by H. M. Crosby of General Electric Co., Syracuse, N. Y.

Session 30: Microwaves I-Symposium Manufacture of Microwave Equipment
How to Design Microwave Components for Ease of Assembly by F. Neukirch of N. R. K. Manufacturing \& Engineering Co., Chicago, Ill.
The Design of Microwave Components for Production by Henry J. Riblet of Microwave Development Labs., Waltham, Mass. Fabrication of Microwave Components Employing the Dip Brazing Process by William J. Rudolph of The Glenn L. Mar tin Co., Baltimore, Maryland.
Electroforming with Copper, Nickel and Other Metals by C. L. Duncan of Cham blee, Ga.
Manufacturing Microstrip Printed Circuit Components by H. F. Engelman (probable speaker) of Federal Telecommunication Labs., Nutley, N. J.

Session 31: Seminar: Acoustics for the Radio Engineer-II

Phonograph Reproducers by Benjamin B. Bauer of Shure Brothers, Inc., Chicago, Ill.
Tape Recording by Marvin Camras of Armour Research Foundation, Chicago,
Studio Acoustics by Hale J. Sabine of Celotex Co., Chicago, Ill.
THURSDAY, MARCH 26, 1953-10:00 A. M.

Session 32: Simposium: Nucleonics

Servomechanism for Remote Manipulation by Raymond C. Geortz of Argonne National Lab., Chicago, Ill.
The Applications of Secondary Emission Multiplier to Nuclear Particle Measurements by George Morton of RCA Labs. Div., Princeton, N. J.

Electronic Circuitry for Nuclear Reactors (speaker to be announced)
Billion-electron-volt Accelerators by Kenneth Green of Brookhaven National Lab. Upton, L. I., N. Y.
Instrumentation Developments in Fast Neutron Dosimetry by G. S. Hurst and R. H. Ritchie of Oak Ridge National Lab. Oak Ridge, Tenn,

Session 33: Information Theory II-Theoretical

Error Probabilities of Binary Data Transmission Systems in the Presence of Random Noise by S. H. Reiger of Air Force Cambridge Research Center, Cambridge, Mass.
Statistical Properties of the Output of Certain Frequency Sensitive Devices by G. R. Arthur of Sperry Gyroscope Co., Great Neck, N. Y.
Cross-Correlation Applied to Automatic Frequency Control by M. J. Stateman of Sylvania Flectric Products, Inc., Bayside, N. Y.
Approximate Probability Density Function of Tirst Level Crossing for Linearly Increasing Signal Plus Noise by G. Preston and R. Gardner of Philco Corp., Philadelphia, Pa.
A Design Criteria for the Optimum Demodulation of Generalized Modulated SigInstitute of Technology, Pasadena, Calif.

Session 34: Medical Electronics
Electric Photograph by K. S. Lion, MIT, Cambridge, Mass.
Concerning the Use of High Energy Particles and Quanta in the Determination of the Structure of Living Organisms by R. J. Moon of University of Chicago, Chicago, Ill.
Possible Medical and Industrial Application of Linear Electron Accelerators by
one week delivery

LAMINATED PHENOLIC

Fabricated to sferifications Ask for price list.

HERMES Plastics, Inc.

13-19 University PI. • N. Y. 3, N.Y.

More and more exacting engineers and designers are getting firsthand, proof of the rigid, round-the-clock performance standards built into every Milwaukee Transformer Co. product.
Stringent quality control methods combined with modern production facilities and skilled engineering are reasons why you can expect and get "Performance that Exceeds the Demand."

Custom-engineered components for MIL-T-27 government, and commercial requirements.
Quotations submitted upon request.

Write for your
Free
Copy of Brochure MTR-1

Hermetically Sealed Components That Perform Superbly, Lastingly In Airborne, Ground Applications.

SPECIALTY ENGINEERING . . DESIGN. development and production

MILWAUKEE TRANSFORMER CO.

5231 NORTH HOPKINS STREET MILWAUKEE9, WISCONSIN

HIGH TENSION DC SUPPLIES

- FINE REGULATION
- LOW RIPPLE - SAFETY

ALL NEUTRONIC Power Supplics are housed in standard 19 inch rack panel cabinets

| MODEL VOLTAGE CURRENT REGU. | |
| :---: | :---: | :---: | :---: |
| No. RANGE | RANGE LATION |

$\begin{aligned} & 21 \mathrm{M} \\ & 21 \mathrm{MR} \\ & 29 \mathrm{C} \end{aligned}$	$\begin{aligned} & 1-15 \mathrm{KV} \\ & 1-15 \mathrm{KV} \\ & 3-26 \mathrm{KV} \end{aligned}$	6 mo @ 10 KV $6 \mathrm{mo} . @ 10 \mathrm{KV}$ $2 \mathrm{ma} . ฏ 18 \mathrm{KV}$. 5%	MODEL No.	VOLTAGE RANGE	CURRENT RANGE	$\begin{aligned} & \text { REGU- } \\ & \text { LATION } \end{aligned}$
29CR	3-26 KV	2 ma @ 18 KV	. 5%				
92M	3-26 KV	3 ma @ 20 KV		24CR	5-50 KV	1 ma @ 35 KV	. 5%
29MR	3-26 KV	3 ma @ 20 KV	.5\%	24 M	5-55 KV	9 ms . © 30 KV	
$23 C$	5-40 KV	1.3 ma.@25 KV		24 MR	5-55 KV	2 ma . 3) 30 KV	. 5%
$23 C R$	5-40 KV	1.3 ma. (3) 25 KV	. 5%	33 S	1-30 KV	4.5 ma. Entire Range	
23 M	5-45 KV	1.5 ma . © 30 KV					
23 MR	$5-45 \mathrm{KV}$	1.5 ma . 3, 30 KV	. 5%	33HRR	$1-30 \mathrm{KV}$	5 ma . Entire Range	0.1\%
24 C	5-50 KV	1 me @ 35 KV			Reversible		

NEUTRONIC associates
CONTROL DEVICES
8356 VIETOR AVE., ELMHURST, L. I., N. Y.

production speeds with BUTTON STEM MACHINE for subminiature tubes

Leading manufacturers of subminiature tubes were frantically re-vamping their old machines to avoid production tie-ups in making glass buttons with lead wires. These machines did not meet the exacting requirements of sub-miniature tube production.

Shawn above is Kahle's new model 427 Bulton Stem Machine designed for $T 2$ T 3 and $\mathrm{T} 2 \times 3$ sub-miniature buttan stems. This is a 12 head machine, with upper and lower moulds on every lead; dualmotor drive - indexing and heod are driven by separate motors - indexing by barrel cam and rollers (hardened and ground,) totally enclosed in oil. This machine can be made available for any stems, - with any number of heads, with automatic feeds.

But this is the solution to only one of many problems which Kahle engineers have been asked to solve over the past 40 years. If you have any difficulty which can be overcome with customdesigned machinery,
write today and learnwithout obligationhow Kahle's experience can benefit you.

ENGINEERING COMPANY
1310 SEVENTH STREET NORTH BERGEN N.J.

ELECTRICAL INSULATION
 THAT WILL TAKE
 2000° F。 ros BRIEF PERIODS!

Aircraft fire detection apparatus needs that. Here is the Mycalex glass-bonded mica part that has it.

Mycalex 410 molded with teel ring inserts for thermo coupling device produced by homas A. Edison, Inc.

- For permanent endurance Mycalex can take $650^{\circ} \mathrm{F}$. continuously without heat distortion or any other injury.

Mycalex is superior for high voltage, high frequency components that must operate in small spaces.

For example, tube sockets like these - now used in over 60% of all television receiver tuners. - Manufactured and sold by Mycalex Tube Socket Corporation, Clifton, N. J.

If your insulation must take heat or get rid of theat, investigate Mycalex!

WRITE FOR ENGINEERING DATA BOOK

MYCALEX CORPORATION of AMERCA
Owners of "MYCALEX" Patents and Trade-Marks Executive Offices: 30 Rockefeller Piaza, New York 20, N.Y.
general offices and plant
114 CLIFTON BOULEVARD, CLIFTON, N. J.

WANTED-

Television Antennas—VHF and/or UHF—or Related Electronic Products for Manufacture and Distribution by a Large, Nationally Known Electronics Manufacturer with Complete National Distribution Facilities.
attractive royalty can be arranged What have you to offer? Write at once

ADDRESS: BOX 1247—MAGNOLIA PARK STATION BURBANK, CALIFORNIA

PERFECT."

That's What Production Engineers Say about DANO COILS

And, it's no accident, of course. The Dano rigid policy of attentive testing and inspecting every coil in all vital stages of production guarantee perfect performance. Send us samples or specifications with quantity requirements for our recommendotion. No obligation!

- Form Wound
- Paper Section - Acetate Bobbin
- Molded Coils
- Bakelite Bobbin
- Cotton Interweave
- Coils for High Temperature Application. Also, Transformers Made To Order

ELECTRICAL INSULATION

THAT CAN BE MADE TO THE SAME TOLERANCES AS STEEL

YES, we do mean any tolerances that can be produced in steel.
For example:

Two of these $14^{\prime \prime}$ Mycalex 400 discs revolve with only . 004" clearance. Dimensionally stable, too. Mycalex stays accurate.

Mycalex glass-bonded mica is found in HIGH PRECISION electrical components.

WRITE FOR ENGINEERING DATA BOOK

MYCALEX CORPORATION of AMERICA
Owners of "MYCALEX" Patents and Trade-Marks
Executive Offices: 30 Rochefeller Plara, New York 20, N.Y.
general offices and plant
114 CLIFTON BOULEVARD, CLIFTON, N.J. Want more information? Use post card on last page. ELECTRONICS - March, 1953
of Rome Air Development Center, Rome, Gener
General Problems of Engineering Management Facing the Electronics Industry Advisor to the President, Washington, Advisor to the President, Washington, Research and Development Problems of Engineering Management in the Electronics Industry by M. J. Kelly of Bell Production Aspects of Eny-ineering Managenient in the Electronics Industry by W. A. McDonald of Hazeltine Electronics Corp., Little Neck, N. Y. What the Military Services Expect from Engineering Management of the Electronics Industry by Donald L. Putt of Baltimore, Md .
Session 40: Information Theory IIICoding
A Necessary and Sufficient Condition for Unique Decomposition of Coded Messages by A. A. Sardinas and G. W. Patterson of Burroughs Adding Machine Co., Philadelphia, Pa.
A Systematic Survey of Coders and Decoders by B. Lippel of Fort Monmouth, N.J.

Method for Time or Frequency Commres-siort-Expansion of Speech by G. Fairof University of Illinois R . Po. Jaeger a New Codine Sr.stem, Urbana, Ill. Modulation by A. G. Fitzpatrick of Code roughs Adding Machine Co., Philadelphia, Pa.
Coincidence Detectors for Binary Pulses by Clarence Gates of California Institute of Technology, Pasadena, California.
Session 41: Broadcast and Television
Receivers-II Receivers-II
Factors Affecting the Design of VHFUHF Tuners by E. H. Boden of Sylvania Electric Products Inc., Emporium, Pa. Thepry of A.F.C. Synchronization by Wolf J. Gruen of General Electric Co., SyraStardardi.
Stardardization of Printed Circuit Materials for Mechanized Radio Assembly by W. Hannahs, J. Caffiaux and N. Stein nf Sylvania Electric Products, Bayside, A. Color T Y

A Color TV Receiver for the NTSC System by Kenneth Fi, Farr of Westinghouse Electric Corporation, Metuchen, N.J.
A Simple Pickup Camera Attachment for Television Receivers by V. K. Zworykin, Div., Princeton N. S. Pike of RCA Labs. Div., Frinceton, N.J.

Session 42: Microwaves III-Ferrites and Detectors

Space Charge Detector for Microwaves by A. B. Bronwell, John May, Charles Nitz, T. C. Wang, and Hilliard Wachowski of American Society for Engineering Education, Gvanston, 11.
Low Level Synchronous Mixing by M. E. Brodwin, C. M. Johnson of The Johns Hopkins University, Baltimore, Md. and W. M. Waters of Bendix Radio, Towson, Md_{G}
Guided Wave Propagation Through FerFites and Electron Gases in Magnetic Fields by L. Goldstein, M. Gilden, and J. Etier of University of Illinois, Urbana, III.

Cavities with Complex Media by A. D. Berk and Benjamin Lax of MIT, Cambridge, Mass.
Resonance in Cavities with Complex Media by Benjamin Lax and A. D. Berk of MIT, Cambridge, Mass.
Session 43: Remote Control Systems
The Organization of a Digital Real Time Simulator by H. J. Gray, Jr. of University of Pennsylvania, Philadelphia, Pa. Control System Engineering Applied to Suspension Systems by C. J. Martin, R. Jeska and E. B. Therkelsen of UniVersity of Michigan, Ypsilanti, Mich. Experimental Evaluatoin of Control Systems by Random-Signal Measurements by William W. Seifert of MIT, Cambridge, Mass.
Extension of Conventional Techniques to the Desion of Sampled-Data Systems by W. K. Linvill and R. W. Sittler of MIT, Cambridge, Mass.
Generalized Servomechanism Evaluation by W. P. Caywood and William Kaufman of Carnegie Institute of Technology, Pittsburgh, Pa
Method for Reducing the Forced Dynamic Error of Closed-Loop Systems by L. H King of MIT, Cambridge, Mass.

IS THERE ANYTHING WRONG we Mrcatex?

YES

It's inelastic

- But inserts won't shake loose. It has high density
- But permits reduction of overall size and weight.

It has no color appeal

- But has certain surface finish interest.

MYCALEX glass-bonded mica

is the only

CERAMOPLASTIC

The only material combining most of the best properties of ceramics and plastics, plus some of its own.

GET THE FULL, FRANK STORY

Write for engineering data book

MYCALEX CORPORATION of AMERICA

Owners of "MYCALEX" Pafents and Trade-Marks Executive Offices: 30 Racketeller Plaza, New York 20, N.Y.
general offices ano plant
114 CLIFTON BOULEVARD, CLIFTON, N. J. Want more information? Use post card on last page.

Type 130A1 PULSE TRANSFORMER for Low-Power applications

SUPERIOR ELECTRICAL CHARACTERISTICS-The ERA 130A1 pulse transformer provides appropriate impedance levels for operation in low-power circuits. Short rise time and small droop minimize critical circuit design problems.
VERSATILITY-ERA three-winding pulse transformers can be used in several different ways. For example, the Type 130A1 can be used as low-impedance 1:1, high impedance 1:1, conventional 2:1, 2:1 with two outputs or as 3:1.
CONVENIENT MOUNTING--Through-panel mounting utilizes same mounting hole pattern as a conventional nine-pin miniature tube socket. This compact transformer design permits mounting on a tube strip in approximately the same space required for a standard miniature tube.
INSULATING CASE-The plastic case permits mounting the transformer in close proximity to other components and terminals without danger of short-circuits caused by metal-cased or uncased transformers.

Immediate delivery on sample quantities

1902 West Minnehaha Avenue, Dept. E-9, St. Paul W4, Minnesota

DIGITAL COMPUTERS . . DATA-HANDUNG SYSTEMS . . MAGNETIC STORAGE SYSTEMS..

INSTRUMENTS . . ANALOG MAGNETIC RECORDING SYSTEMS . . COMPUTING SERVICE

Electrical Fundamentals of Communication

By A. E. Albert. 2nd Edition, Mc-Graw-Hill Book Co., Inc., New York, 1952, 531 pages, $\$ 7.00$.
PROFESSOR Albert's first edition of "Electrical Fundamentals of Communication" appeared in 1942 as a text designed for the individual interested in familiarizing himself with simplified laws of electrical communication. The book was designed for the student with only a limited background in physics and mathematics. The main topies discussed were d-c and a-c circuit constants, networks and measurements of electrical quantities, electron tubes and circuits, transmission of electromagnetic waves and electroacoustics.

The second edition is a replica of the first with minor changes in symbolisms and terminology. The format of the original edition has been retained. Each chapter terminates with a summary, review questions on the theory, and problems requiring numerical computations which involve a knowledge of simple algebra and trigonometry. These features are well integrated.

Inductors, capacitors, filters, rectifiers and oscillators are prematurely introduced for the sole purpose of acclimating the reader to a new language. Later on, attempts are made to clarify these terms with descriptions and illustrations which are adequate.

The quantitative aspects relate to the application of Kirchhoff's laws to simple circuits. The concept of a-c impedance is delved into as a complex quantity and effective measurable quantities, such as current, voltage and power, are defined. Examples illustrate the importance of phase angles and their influence on instantaneous variations of current and voltage in circuits containing combinations of resistance, inductance and capacitance. The importance of matching networks is considered for the realization of maximum power transfer from a source to a terminating load.

Electromagnetic waves are discussed very qualitatively. Attempts are made to describe the sig-

BE SAFE WITH

- Q-Max is widely accepted as the standard for $R-F$ circuit components because it is chemically engineered for this sole purpose.
- Q-Max provides a clear, Fractically loss-free covering, penetrates deeply, seals out moisture. imparts rigidity and promotes electrical stability
- Q-Max is easy to apply, dries quickly and adtieres to practically all materials. It is useful over a wide temperaiure range and serves as a mild flux on tinned surfaces.
- Q-Max is an ideaf impreznant for "high" Q coils. Coil "Q" remains searly constant from wet application to dry finish. ln 1.5 and 55 gallon containers.

 gears and gear trains are among the most important. Consult Bowmar when you need them.

SEND FOR DESCRIPTIVE LITERATURE, DEPT E-3

B? $1 /$ AB INSTRUMENT CORP.

SAITH MUNICIPAL AIRPORT FORT WAYNE, IND.

A-2455

Uniform high quality, fast delivery and low cost have made Fugle-Miller coils the choice of many leading manufacturers in the radio and electron cs industry. All types ade supplied including Universal, Bank Wound, Universal Progressive and solenoid coils. -AN specifications are our specialty. Call, wire or write toc ay for prompt quotations.

YOUR PRODUCTION RESERVE!

FOURGENERATIONSOFEXPERIENCE...
the annual
electronics BUYERS' GUDE
is the electronic engineer's

BREADBOARD WHO'S WHO

for
quick, accurate answers to any questions about

COMPONENTS

 EQUIPMENT MATERIALSused in electronics

Get in the habit of laoking it up in...
twe electronics

BUYERS' GUIDE

"The Book that has all the answers"
a mcgraw-hill publication 330 West 42nd Street NEW YORK 36, N. Y.

Because of its unique characteristics, Bead Chain is frequently employed by alert designers to make a simple, lowcost and highly efficient sprocket drive. Ideal for many products, it has been proved on business machines, television tuners, venetian blinds, etc. Slippage is absolutely prevented as each bead fits into an individual pocket.

Just check the qualities you want in a drive chain against the qualities offered by Bead Chain: It will not kink, bind, jam or shrink. It is completely flexible, strong, light, rustproof and long-wearing. Because every bead acts as a universal joint, changes in direction of pull are easily made.

SOLVES MANY DESIGN PROBLEMS

BEAD CHAIN - the chain you think of first as an electric light pull is truly "the Kinkless Chain of a Thousand Uses" serving many industries and solving a wide variety of design problems. It may pay you well to check your product for opportunities to reduce costs and add sales appeal with this unique chain.

Bead Chain is available in many metals and finishes, and in five sizes, from:
0000300000033000000 $3 / 32^{\prime \prime} \quad 18-\mathrm{lb}$. test to

The BEAD CHAIN ${ }^{\circledR}$ mig. co.
88 Mountain Grove St., Bridgeport 5, Conn. Manufacturers of: BEAD CHAIN - the kinkless chain of a thousand uses, for fishing tackle, noveliy, plumbing, electrical, iewelry and industrial products; MULTI-SWAGE - the most economical method of producing smail tubular metal parts for electronic and mechanical applications. Want more information? Use post card on last page.
ELECTRONICS - March, 1953
nificance of propagation along transmission lines and in the atmosphere. The phenomena of reflected waves as a function of terminating impedances are mentioned.

The book is elementary in its approach. The fullest intent is to present a panoramic view of the field aimed toward initiating the beginner into its folds. It creates an atmosphere which may either satisfy the reader or stimulate him toward higher plateaus of learning.

There are sixteen chapters in all. The material is well selected. The author has avoided the matter of how these fundamentals are applied in practice. The text is quite suitable for self-study. However, it is not intended to be a royal guide to learning since its scope is rather limited.-Anthony B. Giordano, Polytechnic Institute of Brooklyn.

Strain Gauges: Theory and Application

Published by N. V. Philifs, Eindhoven, Holland, 95 pages, $\$ 2.75,1952$.

Part of Philips Technical Library, this small book presents a great deal of information on strain gauges that is not usually found in books on industrial electronics and measurements.

The material has been divided into six sections written separately by five scientists of the Netherlands Industrial Organization for Applied Scientific Research, Section for Research of Stress and Vibration, Delft, and Philips Industries, Eindhoven, Holland.

A particularly interesting section is the one on how to make and apply strain gauges. Complete step-bystep instructions are included along with excellent photographs illustrating each step. This section might be useful to engineers faced with a problem that could not, for some reason, be solved by use of commercially available gauges.

A separate chapter is devoted entirely to the theoretical aspects of stresses. The usual bridge circuits are described with various schemes of compensating for errors. One chapter tells how resistance strain gauges may be used in instruments with suitable coupling devices to

Important

 savines
to YOLUNE users

 of small parts

If you need small tubular metal parts like these in large VOLUME, Bead Chain's MULTI-SWAGE Process can mean important savings to you.

Much Cheaper Than Solid Pins

Many prominent users of solid pins for electronic and mechanical purposes have cut costs by switching to MultiSwaged tubular pins . . . without sacrificing strength or accuracy.

Typical Applications-

As terminals, contacts, bearing pins, stop pins, male-female connections, etc., in a wide variety of products such as Business Machines, Ventilator Louvres, Toys, Radio and Television Apparatus, Terminal-boards, Electric Shavers, Phonograph Pickups, etc.
Send part (up to $1 / 4^{\prime \prime}$ dia. and to $11 / 2^{\prime \prime}$ length) and your specs for a quotation or write for DATA BULLETIN.

[^32]permit measurement of such phenomena as weight, pressure, thickness, vibration, rate of flow and so on.

One shortcoming of the book is its lack of good circuit information between the actual gauge circuit to the recording pen or oscilloscope. Only circuits of commercial Philips instruments are given, and these are without component parts values.

The book should provide an excellent background for any engineer who is confronted with a strain gauge problem.-J. F.

Storage Tubes

By M. Knoll and B. Kazan, Prince. ton University and RCA Laboratories, John Wiley and Sons, Inc., New York, N. Y., 1952, 143 pages, \$3.00.

THIS is the first book published on storage tubes. It is essentially descriptive and is designed to explain the fundamental operation of the many different types of electronic storage tubes and to provide this information in an easily accessible manner. The book should be useful to physicists, electronic engineers, and teachers interested in the general subject of storage and tele-vision-camera tubes.

In addition to describing the many tubes under development in this country, the book acquaints us with past developments in Germany through the wide experience of Professor Knoll who was a leader in this field in Germany and is continuing his work at RCA Laboratories and Princeton University.

A substantial portion of the text was initially prepared for the U.S. Army Signal Corps in the form of a report, and Parts I, II, III, and VIII of the book have appeared in a paper by the authors in RCA Review, Vol. XII, p. 702, December, 1951.

Part I of the book begins with a description of the equilibrium potentials acquired by an insulating surface under electron bombardment and the action of light. Part II defines terms used in connection with storage tubes. Part III of the book gives a descriptive outline of the different methods of writing and reading. This outline serves as

METALS AVAILABLE ... copper, silver and other metals can be used for conductive pattern. Available overcoatings include nickel and rhodium for high wear resistance . . . or solder to reduce oxidation and facilitate dip-soldering.
FLUSH SURFACE . . . conductive pattern can be made flush to insulating base \ldots an important advantage for switch applications.
ENGINEERING SERVICE ...our engineering staff is skilled in adapting many types of electronic equipment to printed circuits. We will be glad to assist in redesign of equipment to use the Circuitron.

CUSTOM DESIGNED PROTECTION for SUB-MINIATURE TUBES

${ }_{\text {тнн }}$ NEW STAVER SUB-MINI-SHIELD

Here is a combination Shield, Clip and Mount to meet your T3 Sub-Miniature Tube holding and shielding requirements.
Wrap-around shield (A) assures close tube to shield contact for maximum heat dissipation. Firm clamping action of phosphor bronze shield mount (B) secures tubes under the most severe conditions of vibration and shock. Easy-to-get-at rivet holes in base of mount facilitate casy riveting of mount to chassis.

DIGITAL COMPUTER ENGINEERS

ELECTRICAL ENGINEERS and PHYSICISTS

needed for circuit design and development. Engineers and Physicists with 1 to 4 years experience in pulse circuits, pulse handling techniques. and systems development. Openings also for recent graduates.

- Replies strictly confidential
- Interviews arranged at our expense

Division of Rerringtiont Thard
Leaders in the Development of Digital Computers
1902 W. Minnehaha, St. Paul 4, Minn. - "You Will Enjoy Living in Minnesota"

Conne again-

Electronic Men

Welcome to the Radio Engineering Show -

March 23-26, 1953 at New York City

19 IRE Professional Groups have prepared skillfully organized symposia and technical sessions on all phases of radio, TV, and electronies. These papers will keep you up-to-the-minute on the developments which are to come in the next dew years-for the IRE Convention Theme is:

Radio-Electronics
 "A Preview of Progress"

The colorful Annual Meeting on Monday at 10 (opening morning) will feature the 'Founders' Award". Social Events include the "Get Together Cocktail Party" Monstay, and the Annual Banquet Wednesday, all at the Waldorf Astoria Hotel.
405 Exhibitors are using 58,680 square feet- the entire four floors of Grand Central Palace, to give yon " "Preview of D'rogress" in the apparatus, components and instruments of Radio-Electronics. Registration: 1RE Members \$1.00, Non-Memhers $\$ 3.00$. Register at Grand Central Palace, 47th \& Lexington Avenue, or The Waldorf Astoria Hotel, 49th \& Lexington Avenue, New York City.

THE INSTITUTE OF
RADIO ENGINEERS

GRC cuts cost and time

 PLASTIC PARTS

Completely automatic... parts delivered
trimmed ready for use, in ready ation with G operspeedy, specialized pro speedy, specialized pro-
duction dYYLON A SPE

025 oz.-11/4" long

LOW MOLD COSTS

Write Today for Demonstration Samples

GRIES REPRODUCIR CORP.

100 Willow Ave., New York 54 - Phone: MO 5-7400

X-YAR is non-corrosive, non-creeping-leaves wire ready for soldering. Now in use by leading manufacturers of electrical products. Write for FREE SAMPLE for testing.
FIDELITY CHEMICAL PRODUCTS CORP.
472 Frelinghuysen Avenue, Newark 5, New Jersey
a complete account of the fundamental processes of writing and reading involved in present-day storage tubes. Parts IV through VII are concise descriptions of the different types of storage and tele-vision-camera tubes. The tubes are classified first as to application and then as to reading and writing processes. Part IV is assigned to signal converter tubes having electrical input and output. Part V is a description of direct-viewing storage tubes which have electrical input but visual output. An account of digital computer storage tubes is given in Part VI. An up-to-date description of modern televisioncamera tubes is included in Part VII.

Part VIII consists of a fairly complete bibliography with a short abstract of many of the papers. To the tube engineer this bibliography by itself is worth the price of the book.

It is the opinion of the reviewer that the diagrams and notation in Part I are unnecessarily complicated. For this reason it is suggested that the reader introduce himself to the book by first referring to the descriptions of the tubes that interest him before attempting to absorb the contents of Part I.

The book leaves one with a strong desire for more quantitative data such as performance comparisons, measurements of redistribution effects, and construction techniques. It is hoped that the authors will supply this information in later editions as progress is made in the storage tube field.-S. T. Smith, Hughes Aircraft Company

Airborne Radio Equipment Symposium

International Air Transport Association, International Aviation Building, Montreal 3, Canada; 252 pages plus appendices, $\$ 3.00,1952$.
THIS is an edited version of the verbatim transcript of part of the Fifth IATA International Conference held in Copenhagen in May 1952 and attended by experts of 23 member airlines and some 45 manufacturers of aircraft radio equipment, government agencies and research laboratories. Among the appendices are papers on aircraft

> Radio Telemetering Data Handling Vehicle Instrumentation High Speed Sampling

Research, Development, Design, and Production Services Involving Specialized Application of the
Principles of Electronics, Mechanics, and Optics

Your Inquiries Are Invited - Wire, Write or Phone

APPLIED SCIENCE CORPORATION OF PRINCETON

P. O. Box 44, Princeton, New Jersey - Plainsboro 3-4141 See Us at the Radio Engineering Show-Booth No. 4-806

PRECISION RESISTOR COMPANY

Specialists in the design and manufacture of quality wire wound resistors for a quarter of a century have again doubled their facilities to meet the growing demand for QUICK DELIVERY along with COMPETITIVE PRICES. TINY SUB-MINIATURES and (JAN) GOVERN-
MENT TYPES are included in their wide range of resistor applications.

PRECISION RESISTOR CO., INC.

332 BADGER AVE.

TELEPHONE BIGELOW 3-3809

On Display

At The I.R.E. Show
The Model 1440 OMNIPHASE GENERATOR

This unique instrument was developed primarily to make it possible to use two or three CML high power single phase variable frequency generators in combination as a source of variable frequency 2 or 3 phase power. In its own right, the Model 1440 has many uses in the development laboratory.

It covers a range of 17 cycles to 18,000 cycles in 5 ranges. Three output voltages are developed throughout the frequency range (10 volts across 5,000 ohms). The phase of all three voltages is continuously adjustable through 360 degrees by means of panel controls. This makes it possible to set up any desired relationship between the three phases.

See our printed circuit packages delay lines and other new items. If you can't be with us at the IRE show, write for our catalog.

> Communication MEASUREMENTS LABORATORY, INC.

350 Leland Ave. Plainfield, N. J.

D for HARMONIC TROUBLES

 Model 844 Low Pass Filter

- Suppression of low-order harmonics in transmitters operating below 400 mc is the prime function of Model 844 Low Pass Filter. 40 db or more attenuation of 2 nd to 5 th harmonics of transmitters operating between $\mathbf{2 2 5 . 4 0 0} \mathrm{mc}$ is afforded. Insertion loss and VSWR are very low thruout the pass band. Teflon insulation and rugged construction thruout assures reliability.

FREQUENCY RANGE - pass band 0.400 mc . Stop band 500.2000 me .
POWER RANGE - 150 watts maximum.
IMPEDANCE - 50 ohms. VSWR better than 1.35
thru pass band.

CONNECTORS - Type N. One male and one female. Filter is reversible with equal results. ATTENUATION - pass band -3db or less below 400 mc Stop band. 40 db or more 500 to 2000 mc .

PHYSICAL DIMENSIONS $-5^{1 / 8 " H} \times 5^{\prime \prime} \mathrm{W} \times 1^{\prime \prime}$. Weight -12 oz .

antenna problems, radar systems, instrument presentation and suppressed carrier single-sideband transmission.

It is a remarkable document since it gives the day by day discussion by men of all degrees of knowledge and interest in the very important problem of communication between aircraft and ground; it shows how far from ideal presentday apparatus is; how very difficult it is to get agreement among those involved; and how the problem will not ease but will get worse as the number of planes in the air and their speed increase. Not the least interesting aspect revealed by a reading of this report is the tremendous contrast between the old and the new concepts and instrumentation employed today-the necessity of using the old carbon microphone side by side with the elegant methods of getting a plane out of the air safely to ground (ILS, GCA.)

The extraordinary complexity of the communication-navigation-control problem of the modern airways system is made very clear in this report; and the reader must inevitably come to the conclusion that a new approach to the overall problem is necessary. Those now in the thick of the situation seem to be too close to it, have too much knowledge of the past, and of the prejudices and biases so inextricably interwoven with the realization that something must be done.

For when you get all through, the airplane, unlike any other vehicle, cannot stop and wait until the weather clears or until it gets definite instructions what to do. It must keep moving-and fast.-K.H.

Physical Foundations of Radiology

By Glasser, Quimby, Taylor, and Weatherwax. Paul B. Hoeber, Inc., Second Edition, 1952, 581 pages, $\$ 6.50$.
Here is the long awaited, revised, and expanded second edition of a basic and yet practical book on radiation physics, written primarily for the radiologist and the medical student by a team of authors outstanding for their teaching and re-

free!
 NEW AGF BURNER CATALOG

The first complete catalog of never before available technical data.

Gives hole sizes, flame patterns, gas consumption on various gases and complete information with illustrations of -

BURNERS BLOW PIPES GLASS FIRES MIXERS INSERTS BALL JOINTS MANIFOLDS CROSSFIRES MACHLET TIPS governors tunnels OXYGEN gas burners
Write for your copy today on your company letterbead.

130 SPRING St., ElIZABETH 4, N.J.

PRODUCTIMETER "SPEC/ALS"

Companion shutter counters used as dual direction indicators. One counter add. while the other subtracts. Shutter blanks out counter which is on negative side of 000 .

"Y" 2-figure Rotary Coun ter used in navigating instruments.

High-speed, non-reset " Y " type counter for building into radar instruments.

Special Model " γ " with window at rear designed for use in radar equipment.

These are a few of the "specials" developed by Durant for Radar and Electronic applications. When one of the many standard Productimeters is not the exact answer to a problem, Durant engineers modify, combine, or develop entirely new counters to meet the particular requirements of the job.

These days are busy ones for the electronics industry...days when you will especially appreciate

MU METAL SHIELDS
FOR MILITARY AND COMMERCIAL APPLICATIONS

Specializing in precision sheet metal fabrication, Multi-Metal produces components to exacting specifications.
Our engineering staff can help solve design and production problems. Your inquiries will receive prompt attention. VISIT US AT BOOTHS 4-314, 316 AT THE I.R.E. CONVENTION

Multi-Metal Co. , Rye cereme

BIRTBACH Electranic COMPONENTS

Cut production costs - speed operations, by specifying BIRNBACH - your reliable Source of Supply for all requirements in Radio, Television, and Electronic Components, Accessories, Wire and Cables. COMPLETE WAREHOUSE STOCKS

FOR PROMPT DELIVERY

Quality Products
for the Electronics Industries since 1923
search in medical physics. That the first edition-whose title and quartet of authors is a trade expression in the radiological fieldhas gone through eight printings since its appearance in 1944 is owing as much to the simplicity and clarity of the presentation as to the thoughtful inclusion of a broad background of material ranging from basic concepts of matter and radiation and their interaction to a wealth of pratical data for diagnostic and therapeutic use.

A primary purpose of the little volume- 5×8 inches-is to give the interested physician an authoritative though simplified understanding of the basic principles involved in the production, measurement, and use of all forms of ionizing radiation. In this objective it succeeds remarkably well, though the medical reader still will often need the help of his physicist associate to clarify the more difficult pages and fill in the occasionally scanty detail. The book fits in admirably as a text in radiation physics for residents in radiology and is an interesting guide even for the beginner in physics who plans to specialize in the medical field. It is well illustrated, some 70 illustrations having been added and many others made more descriptive. An adequate bibliography is found at the end of each chapter. The number of equations has been kept close to the minimum and illustrative computations are included with commendable frequency justified by years of working with the medical student.

Two new chapters on radioactive isotopes covering measurements and dosage considerations have been added as well as one on high energy accelerators and supervoltage generators. Of particular value is the improved and expanded presentation of radium dosage information, including new Quimby dosage tables for linear radium sources and a generous supply of Patterson and Parker charts for the quick determination of surface and volume dose in radium therapy. This presentation will now serve not only to teach the method of quantitative radium therapy, but is sufficient to meet the ordinary needs

THIS IS IT.... Measures or Generates ANY Frequency

From $20-640$ M. C.* WITHIN 10 PARTS PER MILLION

Direct Reading VHF Frequency Meter Model FM-3
Accuracy:
$\pm 0.001 \%$
Stability: $\pm 0.001 \%$ Resetability: . . . $\pm \mathbf{0 . 0 0 0 5}$ \%

* Under certain conditions can be used below 20 me and above 640 mc .
-GERTSCH PRODUCTS= INC.
11846 Mississippi Avenue P.O. Box 13856

Los Angeles 25, California
In Canada, Atlas Radio Corp. Ltd. Toronto.

ROANWELL CORPORATION

27 SIXTM AVENUE, BROOKIYN 17, NEW YORK

ALUMINUM FABRICATION

Complete Aluminum fabrication facilities include Heliarc welding and Sciaky spotwelding equipment.
Multi-Metal specializes in precision sheet metal fabrication to rigid specifications, in all metals including: Aluminum, Carbon Steel, Copper, MuMetal, Stainless Steel, etc.

Our engineering design stalff is at the service of our customers. VISIT US AT BOOTHS 4-314, 316 AT THE I.R.E. CONVENTION

Multi-Metal Co ${ }^{1350}$ Gerition Ave

designed to meet your specifications

The precision engineered booster dynamotor unit shown above is typical of the many specia solutions provided by EEPCO engineers for tough mily ary and industroy performs satisfactorily under the most extreme performs satisfactorily

Whether your power problem relotes to a highly developed radar unit or an industria highly developed radar unit or an industria velopment engincering facilities are available velopment engincering bous Because of our specialized experience in the design and manufacture of precision rotary electrical equipment, we can often save you both time and money in finding the most practical answer for you.

Moreover, once the design is established, you can count on EEPCO'S manufacturing skill to produce the equipment you need with unsurpassed, unvarying quality. What ever your power problem-simple or com plex-EEPCO engineers will welcome the op portunity to work with you.

ELECTRO ENGINEERING PRODUCTS CO.

609 WEST LAKE STREET, CHICAGO 10, ILLINOIS

[^33]of the practicing therapist. There likewise has been a real improvement in the chapter on X-ray dosage calculations; the depth dose tables in the appendix cover X-ray qualities from half-value-layer (HVL) of 1 mm A1 to 8 mm Cu . It is some slight regret that this range did not reach the quality produced by 2.0 mev X-ray sources, not only because such accelerators are coming into general use, but also because 2.0 mev X-rays are close in their physical and biological properties to the gamma rays from Radium and Cobalt 60.

Perhaps the most comprehensive revision has been done on the chapter on Protection in Radiology, which was rewritten to include the latest international agreements on protection. This chapter contains much practical data for the attainment of adequate personnel protection in the diagnostic research and therapeutic use of X-rays, radium, and isotopes.

While "Physical Foundations of Radiology" will not serve every need of the radiologist, it is bound to be one of his most useful refer-ences.-JOHN G. Trump, Highvoltage Research Laboratory, MIT

Statistical Quality Control

By Eugene L. Grant. and Edition, McGraw-Hid Book Co., Inc., New York, 1952, 557 pages, $\$ 6.50$.
This excellent volume is valuable to a far wider audience than the title indicates. Any engineer who has responsibility for development, design or production of any piece of equipment in which quality is of importance, (this covers 99.9 percent of everything manufactured) can benefit from a host of extremely important suggestions given throughout the book.

Professor Grant recognizes the human factors involved in quality control programs of all types. Though most of the book is devoted to the techniques and theory of statistical quality control, he does not hesitate to interject discussions relevant to the practical side of implementing the techniques, which, by the way, are not necessarily restricted to large-quantity productions, as the author points out in

Just right for your joh!

high-precision thermistors by BENDIX-FRIEZ

As temperature measuring elements and hiquid level sensors, these temperature responsive resistors are the best you can huy. In standard or special types. their high-precision manulacture makes them precisely right for your job when it comes to resistance values, size, temperature coefficient, mount. ings and quality. Ask us about applications.

STANDARD TYPES FOR IMMEDIATE DELIVERY

Size (inches)	$@+30^{\circ} \mathrm{C}$	$@ 0^{\circ} \mathrm{C}$	@ $-30^{\circ} \mathrm{C}$.
$.140 \times .75$	45.0 ohms	86 ohms	194 ohms
$.040 \times 1.5$	$12,250 \mathrm{ohms}$	$26,200 \mathrm{ohms}$	65,340 ohms
$.018 \times 1.5$	35,000 ohms	82,290 ohms	229,600 ohms

Write for details.
FRIEZ INSTRUMENT DIVISION of . . 1454 Taylor Avenue, BALTIMORE 4, MARYLAND Export Sales: Bendix International Division

72 Fifth Avenue, New York 11, N, Y.

Used in this typical application for sensing the temperature of hydraulic oil.

WIRE FORMING SPECIALISTS

Precision Parts to meet you Production and Engineering needFrom .002" dia. to $125^{\prime \prime}$ dia. Radi tube parts-Stampings-Drawins Modern facilities, high-productio equipment.

Metal Crystal Holder Parts
Send sketch or print for quotation
PIX MANUFACTURING CO., Ins
24-B Bedford St., Newark 3, N. J

WAVEGUIDES AND FREQUENCIES PRICE | RG 48/U | 2,600 to 3,950 megacycles | $\$ 385$. |
| :--- | :--- | :--- | :--- | RG 49/U 3.950 to 5,850 megacycles 285. (Including RG 50/U 5,850 to 8,200 megacycles $285 . \quad$ Power $\left.\begin{array}{|l|l|l|l|}\hline \text { RG } 51 / \mathrm{U} & 7,050 \text { to } 10.000 \text { megacycles } & 285 . \\ \hline \text { RG } 52 / \mathrm{U} & 8.200 \text { to } 12.400 \text { megacycles } & 285 .\end{array}\right]$ Supplies SPECIFICATIONS:

Random Noise Output:-15.8 db all guides $\pm 0.25 \mathrm{db}$ above thermal noise. Power Input:-30 Watts at 115 Volts, $50-60$ cycle. Output Couplings-Standard JAN.

drawn cases

hot tin dipped . . . fabricated termincl and vent holes . . . smooth, one-piece construction using cold rolled steel . . . draw depths up to $21 / 2^{\prime \prime}$. . . inside fit covers for easy hermetic sealing in all sizes . . . available as stock sizes and as special fabrications.

NOISE and FIELD INTENSITY METER ModeI NF-105
 (Commercial Equivalent of AN/URM-7)

ENGINEERINGDATA

- Frequency range 20 MC to 400 MC by means of two quick-change tuning heads. (Tuning head to 1000 MC under development.) At least one RF amplifier with tuned input is employed for each tuning range.
- Built-in impulse noise calibrator flat to 1000 MC (Output externally available).
- 41/2" logarithmic indicating meter reads carrier or true peak.
- Aural slideback operation.
- Input VSWR better than 1.2 to 1.
- Built-ir regulated "A" and "B" supply.
- Complete line of accessories available.

Visit our Booth Number 2-147 at the IRE Show.

Emprie Devics, ne.
 38-25 BELL BOULEVARD, BAYSIDE 61, N. Y.

MANUFACTURERS OF

FIELD INTENSITY METERS - DISTORTION ANALYZERS - IMPULSE GENERATORS • COAXIAL ATTENUATORS • CRYSTAL MIXERS
the first chapter.
The aim of quality control according to the author, is "better quality at lower cost." To this end the Shewhart control chart has been developed, and has proved itself of enormous value in effecting cost savings in all types of industrial applications. The book is essentially an elaboration of the problems and methods involved in the application of the Shewhart chart.

In the book are discussed the fallacies of such methods as 100 percent inspection where the fatigue factor of the inspector is not taken into account, or sampling procedures not based on the theory of probability. Thus, as a vivid example, Professor Grant shows that a sampling procedure calling for the inspection of five articles out of a lot of 50, with acceptance of the entire lot if no defectives are found and rejection of the entire lot if one or more defectives are found-a common-sense method--turns out to be not particularly sensible because, if on the average 4 percent are defective, a negligible improvement in quality is effected. If 4 percent were defective originally, 3.5 percent would still be defective after inspection. Yet, 18.5 percent of the submitted product is rejected to improve the outgoing quality from 4 percent defective to 3.6 percent defective.

The reviewer has been striving for years to train all engineering and test personnel to date and time all data, no matter how unimportant the data may seem. The reviewer is therefore particularly pleased to see on page 65 a special paragraph devoted to "importance of preserving the order of measurement." These and many other important hints in the book on how to take and record data for proper control of quality make the volume unusually valuable.

The most important changes from the first edition of this book are:
(1) The chapters dealing with acceptance sampling of attributes has been considerably expanded and rewritten. An objective of the rewriting was to improve the presentation of fundamental princi-

Star Performance with
 STAR AIDS＊＊＊

Precision Production Tools

\star Star＇s precision－fabricated 7－and 9－pin socket wiring plugs and pin straighteners－used and specified by lead ${ }^{*}$ ing miniature tube and electronic equipment manufacturers －conform to U．S．Navy and Air Force specifications．

STAR MINIATURE WIRING PLUGS

＊For accurate alignment of miniature socket contacts during wiring ．．．for pre－ venting contact－clogging by solder，lac quer，etc．Precision cast in one piece of non－corrosive ZAMAK－5 zinc alloy with stainless steel pins．

STAR MINIATURE PIN STRAIGHTENERS

＊Accurately spaced and counterbored to guide pins into proper alignment with out any strain on the glass button．Cast of non－corrosive rinc alloy，ZAMAK－5，with an insert of stainless steel．

To Insure Positive Contacts－STANDARDIZE ON STAR

Star Expansion Products Conpany IINCORPORATED 147 CEDAR STREET．NEW YORK 6．N．Y． Offices in Principal Cities

HERMETIC SEALS

－Vacuum Tight－Glass to Metal
－Standard Types from Stock
－Special Designs to Fit Your Product
－Write or Call for Full Information

Representatives：
PAUL D．AARON
J．R．GASTON CO．

MINIATURE 20 TIN HEADER

120 Liberty St．，New York 8，N．Y． 213 Locust St．，Harrisburg，Pa． or 618 N．Calvert St．，Baltimore，Md．

SCIENTIFIC ELECTRONIC LABS，INC． 866 Bergen St．

Bigelow 8－6553
Newark 8，N．J．

SCOPE DOLLY
Model 1

Convenient Height and Viewing Angle Adjustable to Hold Portable Scopes Ball Bearing Swivel Rubber Tired Casters Lightweight Aluminum Construction Recommended by Laboratories Wherever Used
\＄35．00 fob Louisvile，ky．
Formerly manufactured by UNIQUE DEVICES
Now manufactured and sold by
TECHNICAL SERVICE CORPORATION 3116 Michigan Drive Louisville 5，Kentucky

POTENTIOMETERS

precision

IN MINIATURE SIZE

Electro－Mec Laboratory specializes in potentiometers of extreme accuracy， low torque $⿻ 丷 木 ;$ ，and small size，engi－ neered for each individual application． Close coordination between engineering and manufacturing provides laboratory quality and performance in production quantities，one or a thousand．

The＂know－how＂and facilities are also available for the solution of non－standard potentiometer design problems．For more information please write or telephone the Engineering Department．HAnover 2－3155
＊Torque in the range of ． 003 to ． 100 oz．in．，Resolution to 1300 turns of wire per inch，Linearity to $.1 \%$ ．

Type 1395
＂G＂stability and Minimum Torque． High resolution and Linearity． Resisłances 20 to 200,000 ohms．

EIECTRO－MEC
 LABORATORY

19 MURRAY STREET NEW YORK 7，N．Y．

FOR EFFICIENT MAINTENANCE SPECIFY REMLER TM酉D EQUIPMENT SLIDES
Remler slide rails for rack or cabinet mounting permit complete withdrawal ar inspection of top and bottom of apparatus chassis. Positive . . self-lockirig. Full roller type . . . handles equipment up to 50 lbs. Stainless steel for

Try Remler for Service-Tested "Hard-to-Get" Components

military applications; cadmium plated cold rolled steel or bonderized cold rolled steel. Nickel plated brass rollers; roller studs in stainless or copper flashed cold rolled steel.

Remler Company Ltd. 2101 Bryant St. San Francisco IO, Callf.
 Standardization of Unit Makes This New Low Price Possible

Never before a value like this new 2.KW bench model "Bombarder" or high fre. quency induction heater...for saving time and money in surface hardening. brazing, solderiag onneoling ond many other heal trenting operations.

This compact induction heater saves space, performs with high efficiency Operates from 220-volt line. Complete with foot switch
and one heating coil made to customer's requirements. Send samples of work wanted. Specify time cycle required for your particular job. We will quote on proper size unil for your requirements. Immediate delivery.
Scientific Electric Electronic Heaters are made in the following ranges of power: $1-2-31 / 2-5-71 / 2-10-121 / 2-15-18-25$ $40-60-80-100-250 \mathrm{KW}$.

ples, so that newcomers to the field of quality control would appreciate the theory behind the systems.
(2) The chapter dealing with acceptance sampling by variables has been entirely rewritten.
(3) A treatment of the economic aspects of quality control decisions has been considerably expanded. (This is an extremely important aspect of all quality control, since management will often feel that quality control methods are unnecessary expenses. It is up to the engineer to prove that quality control techniques will result in lower costs, and better products in the end.)
(4) A large number of additional problems have been included, with a greater percentage of the problems having answers.
(5) Additional sampling tables have been included.

Since the basic contents of the second edition are similar in many respects to the first edition, it is not necessary to list a chapter-by-chapter breakdown here.

This reviewer wishes to emphasize again the excellent attitude of Professor Grant towards the human problem of quality control. Part 5 of the book, entitled "Making Statistical Quality Control Work," is a section that should be read by all people associated with production, whether they are engineers, technicians, or part of management. The fact that all industrial processes are subject to statistical variations and chance occurrences in the final product should be drummed home, as other wise vast amounts of money and time can be wasted.Victor Wouk, Beta Electric Corp., New York.

High Speed Photography

By George A. Jones. John Wiley \& Sons Inc., New York, 1952, 112 payes, $\$ 6.50$.
Useful to anyone interested in the history, equipment, techniques and applications of this fascinating avenue in photography. The eleven chapters plus appendices giving data on cameras, tubes, processing formulas, etc, cover the whole subject. Plentifully illustrated.

The history of the numerous

Advertisers:

How about

the NUCLEAR field?

There are a good many advertisers using ELECTRONICS who should also be advertising in NUCLEONICS.

Particularly in instrumentation and laboratory equipment, there is a cross-over of use in the eectronic and in the nuclear field.

But, there is very little crossover in the subscriber lists of the two publications - a matter of a few percentage points.

It is quite possible that you are doing an effective presentation of your products and abilities in this excellent issue, but are missing such presentation before one of the fastest growing fields in the country's history -the field of atomic energy.

The sales representatives of ELECTRONICS are also the sales representatives of NUCLEONICS. They have much evidence pointing to the opportunities in this great NEW field. Ask them to show you what your potentials can be.

NUCLEONICS

 ABCA McGraw-Hill Publication 330 West 42 nd St. New York 36, N. Y.

* SEE

$*$ SEE $* ~$
the NEW DEVELOPMENTS coil wending 1953 IRE SHOW MARCH 23-26 BOOTH 3-521

Coil Winding Equipment Ca. 109 AUDREY AVE., OYSTER BAY, NEW YORK

HOT WIRE

Do you have an electrical wiring problem involving high temperatres? We build just the wire for such jobs. Write us about your problem and let our engineers make a recommendation.
hEATING UNITS heating element RESISTANCE LINE CORD
THERMOCOUPLE WIRE
asbestos lead
\& FIXTURE WIRE
insulated RESISTANCE WIRE

FIBERGLAS INSULATED WIRE
WIRE TO ANY SPECIFICATIONS

Send your electronic control, communications or appliance wireing specifications for a recommended solution by our engineers. FOR A TRIAL ORDER OR A CARLOAD consult

[^34]

SEALED IN
e in one physical size
Currently available in one physical size $-3 / 4^{\prime \prime}$ diam. $x^{9} / 16^{11}$ deep, with
wire-made to your order within the following
range of specifications.
Pulse Width: 0.1 to 2.0 microseconds Maximum Pulse Repetition Rate: $\quad 2.0 \mathrm{mc}$. Operating Range
One or two secondaries may be provided, either inverting or non-inverting.

NOW YOU CAN SIMPLIFY AND MINIATURIZE YOUR
SHORT.PULSE CIRCUITS

See us at the IRE Show-Booth 4-107

SPECIALTY
 MASS PRODUCTION
 PRECISION FABRICATION OF SHEET METAL PRODUCTS TO YOUR OWN OR GOVERNMENT SPECIFICATIONS

COMPLETE facilities under one roof for quality mass production-including Heliare welding, baking and finishing. Whistler and Wiedermann equipment for short runs. Tool and die engineering and designing. Completely conveyerized finishing facilities.
Large assortment of stock and special dies for the radio, television and electronic field. Production and engineering under the direction of a competent executive who has had over 38 years experience in sheet metal fabrication backed up by a substantial organization and personnel with Know-How.

Chassis
 Enclosures
 Metal Cabinets
 Consoles

Panels-
Panels-Boxes
Water Tight Boxes
Spare Part Boxes to MIL-B-233A Joint Army Nary Specifications

Experi Design Consultation on your sheet metal requirements QUOTATIONS CHEERFULLY GIVEN UPON REQUEST

ART-LLOYD METAL PRODUCTS CORP.
2973 Cropsey Avenue
Telephone: CO ney Island 6-5100

Simpler. . .faster LOGARITHMIC CONVERSION

KAY-LAB Logatens are non-linear attenuating networks whose output is the logarithm of the input voltage. New models afford larger dynamic range, higher accuracy, and greater stability. These units are suitable for dynamic compression plotting logarithmic decay curves and many other applications. High accuracy units are also available for incorporation in logarithmic computer systems.

WRITE FOR
BULLETIN"R"
Visit KAY LAB's booth at the 1. R. E. Show

PRECISION ELECTRONIC INSTRUMENTS
kalbfell laboratories, inc.
1090 MORENA BLVD. P.O. BOX 1578
SAN DIEGO 10, CALIFORNIA

DOUBLE BARREL ADVERTISING

Advertising men agree-to do a complete Adverthing job you need the double effect of both Display Advertising and Direct Mail.

Display Advertising keeps your name before the public and builds prestige.

Direct Mail supplements your Display Advertising. It pin-points your message right to the executive you want to reach -the person who buys or influences the purchases.

In view of present day difficulties in maintaining your own mailing lists, our eficient personalized service is particularly mportant in securing the comprehensive market coverage you need and want.

Ask for more detailed information today. You'll be surprised at the low overin cost and the tested effectiveness of thee hand-picked selections.

MeGraw-Hill Publishing Co., Inc. 50 West 42 nd St., New York 36, M. Y.

SQUARE PULSE GENERATORS

for the

MILLIMICROSECOND to MICROSECOND RANGE

MODEL 100
SQUARE PULSE GENERATOR
Price: \$395. FOB New York FOR RACK MOUNTING

For nuclear pulse work, radar, TV, wide
band amplifiers and in the design, calibration and servicing of fast electronic systems:

FOR THE FIRST TIME-A square pulse generator with a rise time of one millimicrosecond (10^{-8} seconds) and a pulse width which can be varied from 2 millimicroseconds to several microseconds is commercially available. Both positive and negative pulses of a 100 volts maximum amplitude into low impedance cable, such as 50 ohms, are generated, the pulse amplitude can be varied from 100 volts to .006 volts in 1 decibel steps by means of selector switches on the front panel. One, two, or more pulse outputs, each, of which, can be individually attenuated and delayed are available in various models.

FOR FURTHER DETAILS, write for Bul-
letin "P-4", or contact our engineering division.

Electrical and Physical Instrument Corporation

Sales and Business Office 25 West 43rd Street New York 36, New York Telephone: Longacre 4-8510

Engineering Division
42-19 27th Street
Long Island City 1, New York Telephone: Stillwell 4-6389
*black, brown, red, orange, yellow, green, blue, violef (purple). grey (slate), white, ton, pink (flesh) llghi-greeno.jlight blue.

Built to meet rigid government requirements, Tensolon Hook-up Wires are available in sizes from AWG30 through 20 with stranded silver-plated copper conductors and the patented Tensulated Teflon ${ }^{(8)}$ covering which eliminates pin holes and other irregularities.
TEFLON KIT FOR LABORATORY REQUIREMENTS -
Twelve 100 ft . rolls of
AWG 22, in assorted colors in convenient compact contoiner $\$ 124^{00}$

TENSOLITE INSULATED WIRE CO., INC., TARRYTOWN, N. Y.

TOPS! AEROCOM'S DUAL AUTOMATIC PACKAGE-TYPE RADIO BEACON!

This aerophare, for unattended service, consists of two 100 watt (or 50 watt) transmitters with keyer, automatic transfer and antenna tuner

Frequency range $200-415 \mathrm{kcs}$., crystal controlled (self-excited oscillator coils a vailable). High-level plate modulation of final amplifier is used, giving 40% tone modulation in 100 watt transmitter and 60% in 50 watt model Microphone P.T switch interrupts tone, permitting voice operation
This unit can be operated in air temperature range $-35^{\circ} \mathrm{C}$ to $+45^{\circ} \mathrm{C}$ using 3B25 rectifiers; humidity up to 95%
The "stand-by" transmitter is selected when main transmitter suffers loss (or low level) of carrier power or modulation. Audible indication in monitoring receiver tells which transmitter is in operation.

UNIFORMITY• DEPENDABILITY•SERVICE •ECONOMY in SPECIAL FASTENERS Get all 4 with WESTFIELD METAL PRODUCTS

Write to Dept. A for NEW ILLUSTRATIVE

FOLDER

BACKTALK

Community TV

Dear Sirs:
I have read with interest your article in the December 1952 issue of Electronics entitled, "Community Antennas Bring TV to Fringe Areas" by John M. Carroll (p 106). While your article deals principally with community antenna and distribution systems I would like some additional information.

Geographically we are some 175 airline miles from the nearest tv station in Denver, Colorado. That rules out any use of a community antenna system. I have thought of possible use of a microwave relay system to bring the signal from a receiver located some 60 miles closer to the Denver tv stations. Then a distribution system would be used around our community to furnish service.

Are there any instances of this method at the present time? Is microwave equipment for this purpose available? Does the FCC approve microwave links for this purpose?

I would certainly appreciate an answer to these questions and any suggestions you might have. Kindly let me hear from you at your earliest convenience.

William G. Walter Radio Station KOLT scottsbluff, Nebraska (Editor's Note: J. E. Belknap \& Assoc. of Poplar Bluff, Mo. considered building a microwave relay to deliver sionals from KSD-TV, St. Louis and WMCT, Memphis to proposed community antenna systems in their area. Their proposal met opposition from several quarters and no permit has been granted in their case.)

W2'TY de W9KQX

Amateur Radio Station W2TY
c/o Wm. W. MacDonald
Editor, Electronics
330 West 42nd Street
New York 36, N. Y.
Dear Mr. MacDonald:
This letter is written by a ham reader of Electronics to a ham who happens to be Editor of the same magazine. Electronics is one of the four radio magazines I read regularly, and it occupies

TEEWI MON Mitumim

Meets Army, Navy and Civilian "specs"

This sensational new development has proved to be a boon to electronic equipment. The special synthetic resin coating on Heminway \& Bartlett's Nylon Lacing Cord and Flat Braided Tape resists the growth of mold and micro-organisms - factors most often responsible for the deterioration of linen and cotton lacing cords and tapes. They have high abrasion resistance and low moisture absorption. The finish has the desirable malleability of wax and is non-toxic to humans.

We'll be glad to send you full information and samples. Why not write us today.

VISIT OUR BOOTH No. 3-513
 AT THE I.R.E. SHOW

The Heminway \& Bartlett Mfg. Co., 500 Fifth Avenue, New York 36, Sales Offices: Chicago, Boston, St. Louis, Philadelphia, Cincinnati, San Francisco, Charlotte, N.C., Gloversville, N. Y.

Transition

electronic corporation announces its

for the first time

MEGOHMS AT 100 VOLTS INVERSE!

Plus - superior forward conductance.
These NEW diodes and standard grades are now available in production quantities.
Write to
TRANSITRON ELECTRONIC CORPORATION 403 Main Street, Melrose, Mass.

WRIGHT-HEPP Associates, Inc.
a new source of supply for electronics sheet metal specialties

TRANSFORMER CASES
MIL-T-27 AND NONSTANDARD

TERMINAL ASSEMBLIES
FABRICATED COVERS . . . BRACKETS

CENTRIFUGAL HOT TINNING

IN OUR OWN PLANT

SPECIAL SERVICE on SAMPLES

WRITE, WIRE OR PHONE YOUR SPECIFICATIONS

high precision and stability lies in proper selection of mica capocitors, made possible through our ability to provide ANY CAPACITY at ANY TOLERANCE with the highest characteristics within the ranges specifeed for molded mica capacitors.

All capacitors are ELMENCO and are manufactured in accordance with JAN-C-5 specifications. Known the world over for their reliability under all operating conditions, ELMENCO CAPACITORS are chosen by manufacturers requiring the highest quality components for their products.

Write for our free descriptive catalog and for information regarding your special product requirements.

ARLO

ELECTRONICS INC. 103 LAFAYETTE ST., N. Y. 13, N. Y.

BACKTALK
a tube, or any other component.
You would be very much gratified at the reception by the ham readers of Electronics of articles that cover items of direct interest. Examples are Villard's selective amplifier; Morgan's horn antenna; articles on vhf; the development work by Hollis on the citizen's band equipment. This sort of material is really appreciated. Incidentally, I would make a small bet that amateurs constitute your largest single field of readers, because so many of the specialists in other phases of electronics are at the same time hams.

Thanks to you and your staff for putting out a swell magazine, serving many fields in Electronics.
F. D. White, W9KQX

Springfield, Ill.

W9KQX de W2TY

Dear Mr. White:

It is nice to hear from you on two counts, first because we like very much the things you say about Electronics and, secondly, because it is always good fun to correspond with another amateur.

We certainly agree with you that it is a tough job to get receiver designers to pay any attention to anything except cost. As an editor, and also an amateur, I certainly intend to keep trying.

We have been plugging for more informative advertising for some time in our promotion piece, Electronic Markets, which goes to most advertising managers and agencies. I think this has borne some fruit.

Your last point, about amateurs reading Electronics, is very gratifying indeed. We realize that many of our readers are in the industry but take a busman's holiday via amateur radio. We don't often address them directly, but we certainly do like to publish things that interest them indirectly.
W. W. MacDonald, W2TY

Editor

Mobile Radio Sales

Dear Sirs:
I too have been interested in your discussions of the mobile radio service question as discussed in

PRECISION in MINIATURE! 520-A
Voltmeter

- 1 Millivolt Full Scale to 300 Volts
- 10 Cycles to 2 Megacycles
- Only $6^{\prime \prime}$ high
$\$ 180$
ALSO - MATCHING
510-B OSCILLATOR
- 18 Cycles to 1.2 Megacycles
- Distortion Less Than 0.2%
- Constant Output $\pm 0.5 \mathrm{db}$

S150
Literature on Request
w
aveforms, inc.
333 SIXTH AVE.
NEW YORK, N. Y.

Western is readr to serve you

Radio and electronics manufacturers in the West know from experience that Western Coil C_{0}. is completely reliable, its products completely dependable. Western has the facilities to serve you-in design, development and manufacturing. We invite your inquiries relative to your needs and problems.

Western COIL PRODUCTS CO.

2993 Middlefield Rd. Palo Alto, Calif.

What the eye does NOT see is the miracle of graphic arts engineering that is a part of every Meyercord Decal Nameplate. As the illustration-diagram indicates, the Meyercord Decal starts with a specially engineered adhesive and stacks color upon color, topping it all with a tough protective coating.

The Meyercord Decal Nameplate you apply to your product is the result of vast experience and never-ending engineering improvement. Just "any" decal won't do the job. Today's multiplicity of commercial surfaces and finishes demand exhaustive pre-testing to make very sure your Meyercord Decal Nameplate lasts the full life of the product.

there's more to a MEYERCORD Nameplate DECAL
 than meets the eye...

Meyercord Decals cut production costs when used as nameplates, trademarks, instructions, markers, wiring diagrams, safety warnings and other important applications. Write for full information on our complete technical and designing services. No obligation, of course.

DEPT. C-303, 5323 WEST LAKE STREET CHICAGO 45, ILLINOIS

PREMIER METAL PRODUCTS COMPANY - 3169 WEBSTER AVE., BRONX 67, N.Y.

VISIT OUR
BOOTH
No. 4-509
I. R. E. SHOW

Grand Central
Palace, N. Y. C.
Mar. 23-24
25-26
your various articles and Backtalk letters in Electronics. We have service contracts with several of the largest suppliers of this type of equipment but feel that one aspect of the problem has not been touched upon.

To the best of my knowledge not one of the five leading manufacturers will set up a service shop so that it can solicit and profit directly from the sale of equipment. Some have a minute percent available for "sales assistance" but by no means enough to actually go out and sell equipment.

In contrast I wonder how many television sales and service establishments would continue operation if they were confined entirely to service, especially in areas where the volume of business cannot support a one man full time service set up.

Seventy-five percent of our gross business is in the marine field where we cater to yachts and commercial vessels of all sizes. Were it not for the substantial discount available through marine suppliers, we would certainly look to other sources for an income.

The mobile manufacturers reason that they have their own salesmen but a recent potential order made known to four or five manufacturers brought forth not one reply.

I feel sure that until this outdated system of merchandising is changed, there will be little to attract competent technicians to this field.

You have my full permission to publish this letter completely or in part in the hopes that it might help to change the situation.

Edward P. York
Stonington, Connecticut

Canadian CRT's

Dear Sirs:
In your January 1953 issue on page 18, under the heading of "Television Sales Boom in Canada", you make the surprising statement that "cathode ray tubes . . . are not yet made in appreciable quantities in Canada". I feel that your reporter

PERMATAG PLASTIC WIRE MARKERSSNAP ON and GRIP TIGhtLY

PERMATAG wire and cable markers consist of a split sleeve which can be applied to a wire or cable by opening the split with the fingers or an applicator tool. After the marker has been applied to the wire or cable, it snaps on and grips tightly. For severe working conditions,
 the split sleeve can be welded into a solid sleeve by application of our special sealing liquid.
Made of Vinylite plastic with a clear overlay to protect the lettering. They are resistant to abrasion, water, oil, gasoline and alcohol and most acids, and are vermin proof and fungus proof as well. They are made in sizes from $.040^{\prime \prime}$ diameter up to $3^{\prime \prime}$ diameter. We specialize in markers for very small wires from $.040^{\prime \prime}$ O.D. to $.080^{\prime \prime}$ O.D. Flat markers and apparatus name plates are available in any size, shape or thickness, punched with any number of holes of any shape. A special high speed printing process is used to make "non repetitive" markers and name plates at very low cost. Markers are also available in color.

ACTIONCRAFT PRODUCTS in
 8 SAGAMORE HILL DRIVE
 PORT WASHINGTON, N. Y.

Tel. Port Wasbington 7-1077

YOUR PRODUCTS HERMETICALIY SEALED

\author{

- Meet Militory
 - Insure reliability
 - Unexcelled high altitude operation
}
- Provide permanent protection trom dust ond corrosive atmospheres
- Forever free from humidity effects

Our engineers will design suitable enclosures for your electronic parts. We assemble and seal your units in dry air or inert gas. All assemblies are evacualed and 100% leak fested by the Veeco Mass Spectrometer. Write for complete information.

WASHERS-ALL KINDS

WASHER SPECIALISTS for nearly half-a-century. Dies in stock will produce most sizes. Big runs made with automatic presses. An economical, accurate, and highly reliable source for washers, also all kinds of metal stampings. HAVE WHITEHEAD'S CATALOG ON FILE; write for it.
beveled CUP D-HOLE retainer LOCK SPACERS SPRING TENSION square hole star lock threst tongue

The input circuit is a type N sonnector (UG-58/U) ... The output is menitored by a IN21B crystal and microammeter circuit with adjustable sensitivity control for varying input power levels. The output of the crystal may be obtaimed from pin jacks provided on the panel of the instrument. A switch is provided to change the output from the microammeter to the pin jocks.

ACCURACY

Better than $.05 \%$ from $20^{\circ} \mathrm{F}$ to $120^{\circ} \mathrm{F}$

SENSITIVITY

Usable indication with 1 milliwatt input Adjustable for higher levels
INDICATOR 50 Microammeter

INPUT

50 Ohm Type N Connector
EXTERNAL DC OUTPUT
Pin Jacks
EXCURSION OF MICROMETER One-half inch
MICROMETER SCALE
at $1000 \mathrm{Mc}-1$ Division equals 290 KC at $1400 \mathrm{Mc}-1$ Division equals 350 KC at $2000 \mathrm{Mc}-1$ Division equals 450 KC at $2600 \mathrm{Mc}-1$ Division equals 555 KC
EXTERNAL SIZE $61 / 2 \times 93 / 4 \times 7^{\prime \prime}$
WEIGHT Four pounds

CAVITY UNITS AVAILABLE

Units consist of cavity body, micrometer control, crystal, suitable connectors and calibration chart. Write for specifications and prices.

frequency standards

P. 0. Box 504

Asbury Park, New Jersey

Choose The Right Size Screwdriver And Save The Point!

WHICH

Would YOU Pick

slipped a cog on this one, as we have been manufacturing this type of tube in Canada since 1941.

One is led to believe that there is, and will be, a substantial shortage of cathode-ray tubes in the United States, very likely throughout 1953. The situation is also tight in Canada, but I know of no set manufacturer in Canada who has been forced to cut back his production for lack of tubes, and can assure you that this information would get to my desk rather quickly.

In 1942, when cathode-ray tubes were in short supply in the United States, we shipped substantial quantities to you. In 1948 and 1949, when you were again short, we shipped substantial quantities to you.

Last year, and currently, we have been buying some cathode-ray tubes in the United States to supplement our production. This would not have been necessary had the member companies of R.T.M.A. made more realistic estimates. (Sound familiar?).

I can assure you that the number of tubes imported is not too great in relation to the number made. We expanded last August, again in November, and will again in May. Further, we have very substantial and approved plans which we are confident will insure a complete supply of "Made in Canada" tubes for the trade.

Yours for more and better electronics!
W. E. Davison

President
The Radio valve Company
Toronto, Canada

Feedback

Dear Sirs:
In studying the interesting article, "Effective Cathode Impedance," by W. Chater and N. Golden, on page 184 of the Dec. 1952 issue of Electronics, I think it will be found that to calculate $R_{e q}=\frac{R_{k} R_{m}}{R_{k}+R_{m}}$ and apply it as such to the feedback network will lead to extremely large errors in the feedback ratio calculations.

If the feedback voltage were the only voltage applied to this network

Insulation Tester

- Variable D.C. voltage to $16,000 \mathrm{~V}$.
- Current readings 0 to 50 microamperes and 0 to 200 microamperes over ful range of output voltage
- Cut-out relays disconnect high valtage at flash-over and gaseous tube meter protection.
- External high voltage disconnect terminals.
- Housed in $81 / 2 \times 13 \times 91 / 2$ inch hardwood veneer case with leather carrying handle.

A practical hi-pot and insulation testing device that will allow insulation testing at hi-voltage. Instrument weights 24 pounds and is readily portable. Jack-bar at side of case for output circuit also designed for electrode chamber for dielectric or moisture obsorption tests.

Manufactured by
TINKER \& RASOR
P. O. Box 281 San Gabriel, California

High-speed, quality production with custom-made precision. Wire formed to any shape for every need. IMMEDIATE CAPACITY FOR DEFENSE SUB-CONTRACTS straightening \& cutting
Perfect straight lengths to 12 ft .
.0015 to .125 diameter

WIRE FORMS

.0015 to .125 diameter
SMALL METAL STAMPINGS
.0025 to .035 thickness
.062 to 3 inches wide
specializing in Production of Parts for
Electronic, Cathode Ray Tubes \& Transistors Write for illustrated folder. Send Blueprints or Samples for Estimate.

ART WIRE ond STAMPING

C O M P A N Y 1 BOYDEN PLACE NEWARK 2, N.J.

For HEAVY DUTY HIGH VOLTAGE

34 KW 17,000 V.D.C.

AIR . . . OIL . . . ASKAREL

Plate Transformers. Filament Transformers. Filter Reactors. Modulation Transformers. Distribution Transformers. Pulse Transformers . Testing Transformers. Precipitation Transformers . General Purpose Transform ers. Hi-Voltage Transfomers.

WRITE FOR DETAILED INFORMATION

A NAME SYNONYMOUS WITH EXPERIENCE

 MAGNATRAN INCORPORATED TRANSFORMERS AND ELECTRICAL EQUIPMENT WALTER GARLICK, JR., PRESIDENJ 246 SCHUYLER AVE., KEARNY, NEW JERSEY
STABLE DC FOR ADVANCED EQUIPMENT

 reference purposes-at an impedance of less than .01 ohm! The Type 200 will give you one ampere at zero to 15 volts, with output variations less than one millivolt, under most conditions. Ripple is extremely low, and a stabilizing chopper eliminates drift. Designed for use with strain gages, galvanometers, recorders, in analog computers, datahandling equipment, wind-tunnel installations, and similar critical applications.

LABORATORIES
412 WOODWARD BLVD. PASADENA 10, CALIF.

the above would be true as presented in the original article. However, in addition there is a voltage generated on the cathode of the tube by the grid swing of that particular tube which is in phase with the feedback voltage.

If the feedback is around 20 db letting $R_{e q}=R_{\mathrm{k}}$ will lead to errors of only a few percent and as the feedback is increased this error gets smaller. A small amplifier using 2 sections of a $12 \mathrm{AX7}$ twin triode in cascade will demonstrate this fact very nicely. In this particular case the cathode resistors were 1,000 ohms and the feedback resistance a $100,000-\mathrm{ohm}$ resistor. The measured gain was 100 !

Donald W. Nelson
Seatlle. Washington

More on Nim

Dear Sirs:
This letter refers to an article appearing in the November 1952 issue of Electronics, "Digital Computer Plays Nim" by Herbert Koppel.
I have been interested in machines of this type for several years and know something of their history. The first Nim machine was invented jointly by E. U. Condon, G. L. Tawney and W. A. Derr and is described by U. S. Patent No. 2,215,544. Condon's machine was built by Westinghouse and displayed at the New York World's Fair. Redheffer describes a machine that directs the correct play of Nim in the American Math. Monthly, 55, p. 343. In 1949, at Washington University, I built a relay operated Nim machine to be displayed at an "Engineer's Day" exhibition.
The omission of any reference to Condon's or Redheffer's work was undoubtedly an unintentional oversight on the part of Mr. Koppel.
As to the method of winning at Nim, Mr. Koppel does not discuss the exceptional case where it is the machine's turn to play and the field appears

$$
\begin{gathered}
\mathrm{XX} \\
\mathrm{X} \\
\mathrm{X}
\end{gathered}
$$

or in a similar configuration. Here,
 Sole distributors in the U.S.A. for Mullard Overseas Ltd MEV I 3

The fastest, easiest method for engraving individual nameplates, dials and panels.

- Automatic depth regulator
- Engraves 15 sizes from One Master alphabet
- Equipped with self-centering device

MEW: GERMES, Ince 13-19 Universify Place, N.Y. 3, N.Y. In Canada: 359 St. James St., Montreal - Sales representatives in principal cities World's Largest Manvilacturer of Parfable Engroving Mochines

For alt owners of pantograph and routing machines... NEW HERMES CUTTER GRINDER The only belt-driven grinder at low cost.

- Smooth, vibration-free operation.
- Ball bearing grinding spindle.
- Tool head indexed for single lip and 2, 3, 4 -sided cutters.

NEW HERMES, Inc. 13.19 Univeaify Plice, $\mathrm{N} \mathrm{N}-3 . \mathrm{Nr}$

Specify GM Servo Motors

Another product of Jy TABPRATDTiIEN INC. 4336 NORTH KNOX AVENUE

SPECIFY QUALITY-BUILT

Magnetic Amplifiers

Powered by Quality-Controlled

\rightarrow Pederal 14

SELENIUM RECTIFIERS

Presently used in a wide range of successful applications for industry and the Armed Forces, such as:

- Voltage Control - Temperature Control
- Current Control
- Speed Control
- Position Control
- Photoelectric Control
- Counting
- Automatic Regulation

Federal Selenium Rectifiers, in partnership with the right magnetic components, provide Magnetic Amplifiers outstanding for:

Stability - Accuracy - Long Life
High Gain - Fast Response - Low-cost Operation Submit your magnetic amplifier requirements to Federal - write to Dept. E-913

In addition to magnetic amplifiers and complete magnetic amplifier systems, Federal also manufactures-
Toroidal Windings, Selenium Rectifiers, DC Power Supplies, Battery Chargers, Voltage Regulators, Speed Regulators and a complete line of Coaxial Cables and TV Lead-ins
Federal Telephone and Radio Cotporation

100 Kingsland Road
Clifton, N. J.

the machine's winning play is to leave an odd number of markers in a given column.

Another way of finding the correct play is to employ a radix four notation. First, we must introduce the concept of the "balanced set". A balanced set is defined as the set of numbers $1,2,3$ or as an even number of like integers. The application of this method is best illustrated by an example. Let us say the markers on the field are

	Row
XXXX	I
XXXXXX	II
XXXXXXX	III
XXXXXXXX	IV

We can then make a table

	I	II	III	IV
4°	0	2	3	0
4^{2}	1	1	1	2

showing the number of markers in each row in base 4 notation. Note that neither the 4° or the 4^{1} columns constitute balanced sets. In order to win, one must leave the field such that a balanced set exists in each column. A winning move would be removing 3 markers from Column IV leaving the field

	I	II	III	IV
4°	0	2	3	1
4^{1}	1	1	1	1

in which case both columns are balanced. I do not recall who first described this method.

Your readers may be interested in the generalized game of Nim described by E. H. Moore in 1910. In this game the play is not limited to one row at a time, but to an arbitrary number of rows agreed upon by the players at the outset. The general game is won by

1. Writing the number of markers in each row in binary notation.
2. Adding these columns decimally.
3. Examine each integer of the sum.
A winning position is obtained by adjusting the markers such that each integer of the sum is congruent to zero modulo $K+1$, where K is the limit to the number of rows one may operate on in a given move.

> Howard L. FUNK

Poughkeepsie, New York

Bobbin, spool, form, layer, interlecrved, interwoven types. Made of any material. any finish, for any application.

Send blue-prints and specifications for prompt quotation.

THE FIVE STAR COMPANY

West Main Street
Plantsville, Conn.

WALKIE-RECORDALL, s RECJRDER-PLAYBACK
Continuous, permanent. Indexed recording, up to hrs., only 3c hr. Instantaneous, permanent playback. Mrs. only sc hr. Instantaneous, perm sound up to 60 ft . Records conferences. lectures. dictation, 2-way phone \& sales talks, whitle walking, riding or fyying Records in closed briefcase
with hidden mike
Write for Detaited Literature MILES REPRODUCER CO., INC. 312 BROADWAY Dept E. 2 WEW YORK 3, N. Y.

For certification of Induction and Dielectric Heating Equipment In accordance with F.C.C. rulings NEW ROCHELLE TOOL CORP 320 Main St. New Rochelle, New York
'Mobile Unit'
Phone NE 2.555 Ouorations on request

Compare With Compasses at $\$ 5.00$ or More LARGE CENTER WHEEL $\$ 3.95$
"ALVIN" PRECISION MADE CIRCLES ALVIN" PRECISION MADE CIRCLES TO ${ }^{81 / 2}$ EXASED PARTS INCLUDED. 10 Day Money Back Guarantee
Send Check or Money Order and TED ENTLICH $50-1631$ AVE TED WOODSIDE 77. NEW YORK

COMING

in June, the Annual BUYERS' - GUIDE Issue of ELECTRONICS.

It is the only one of its kind - -the one in which design engineers and purchasing agents will find a complete, accurate and up-to-date list of the manufacturers of all types of electronic and allied products . . . components and complete equipment.

- Make sure that your adver-
- tising appears in it-for com-
- plete information contact your
- District Representative or - write
- CONTACTS
- ELECTRONICS
- 330 W 42nd St., NY 36, NY

EISLER MANUFACTURES COMPLETE EQUIPMENT WELDERS FOR SPOT \& WIRE BUTT RADIO, TV TUBE EQUIPMENT \& REPAIR UNITS INCANDESCENT, FLUORESCENT MFG EQUIPMENT NEON SIGN MAKERS EQUIPMENT, GLASS LATHES Wet Glass SLICING \& CUTTING MACHINES for Lab Use TRANSFORMERS, SPECIAL \& STANDARD TYPES EISLER ENGINEERING CO., INC.
751 So. 13th St.
Newark

ALLIED RESEARCH \& ENGINEERING ING. 1041 NORTH LAS PALMAS . HOLIYWOOD 38, CALIFORNIA

Have you problems in -

 Metal to Class Seals?NAME IT ... WE'LL MAKE IT! TERMJNALS HEADERS
END SEALS . . . SPECIAL ITEMS
QUALITY PRODUCTS CO.
387 Charles St., Providence, R. I.

SUBCONTRACTING

MILITARY and COMMERCIAL.
Powør supplies, controls, test equipment. sub-assemblies, cable and harness work.

PESCHEL ELECTRONICS, INC
I3 GARDEN ST. NEW ROCHELLE, N. Y.
NEw Rochelle 6-3342
Shorted Turn Indicator
MODEL 101 C BULLETIN 42

SUB-CONTRACTING
MILITARY and COMMERCIAL
receivers-test equipment transmitters-controls sub-assemblies
TELETRONICS LABORATORY, INC. Westbury, L. I., N. Y. Westbury 7-1028

We invite inquiries on

CROSBY LABORATORIES, INC.

Murray G. Crosby E Staff Radio - Electronic
Research Development \& Manufacturing Communications, FM \& TV Robbins Lane Hicksylle, N. Y.

EDGERTON, GERMESHAUSEN \& GRIER, INC.

Consulting Engineers
Research, Development and Manufacture of Electronic and Stroboscoplo Equipment
Speciallsta in High-Speed Photography 160 Breokline Avenue, Boston 15, Mass.

Eldico of New York, Inc.
Pioneers of Talevision Interference Elimination from
Transmitters, Induction Heaters, Diathermy and Transmitters, Induction Heaters, Diathermy and

Donald J. S. Merten \& Engineering Staff 44-31 Douglaston Pkwy Douglaston, N. Y. Bayside 9-8686

ERCO RADIO

 LABORATORIES, INC.Radio Communications Equipment
Engineertng - Design - Development - Production Phoneers in Frequency Shift Telegraph Garden City - Long Island - New York

HARRIS GALLAY

Consultant

microwave and
PULSE TECHNIQUES
Plymouth 9-4237 60 Perry St., Belleville 9, N. J.

GENERAL LABORATORY ASSOCIATES INC.
 Specialists in Glass to Metal Sealing Manufacturing and development facilities now avallable covering special yacuum and gas tube Development and Fatrication. We invite your inquiries.
 Norwich, N.
 Telephone Norwich 4-3264

HANSON-GORRILL-BRIAN INC.

Products \& Mfg. Development flectrical- electronic hydraulic - mechanical
One Continental Hill
Glen Core, N. Y. Glen Cove 4-1922

HIGHLAND ENGINEERING CO

William R. Spittal \& Staff
DESIGN, DEVELOPMENT AND MANUFACTURE
OF TRANSFORMERS, CHOKES. ETC.
ELECTRONIC, NDOSTRIAL \& ALLIED FIELDS
Main \& Urban, Westbury, L.I., N.Y.

R. W. HODGSON

RESEARCE \& DEVELOPMENT ENGINEERS ONICS. INSTRUIIENTAECTRONGS NUCLE ONICS. INSTRUMENTATION, SER
Office - 6600 Lexington, Ave. Hollywood 38 , Calf.
Au Mail to Box 874 . Shernan GLadstone 9680

Professional Services

R. W. HODGSON
PATENT AGENT SPECIALIZING
Registered to Practice Refore the U. S. \&
Offlee 6600 Lexington Ave., Hollywood Mail to Box 874, Sherman Oaks, Calif? Allf.
GLadstone 9680

HOGAN LABORATORIES, INC.

John V. L. Hogan, Pres.
Applied Research, Development, Engineerino
Est. 1929 . Electronics, Optics, Mechanisms, Fac-
sitnile
Communication, Digital Computers (Circle) simile Communication, Digital Computers (Circle),
Electro-sensitive recording medis, Instrumentation.
155 Perry Street, Now York 14. CHelsea 2-7855

THE KULJIAN CORPORATION
 Consultants - Engineers - Constructors Electronic Control Specialists
 Utility - Industrial - Chemical
 1200 N. Broad St., Phila. 21, Pa.

MEASUREMENTS CORPORATION

Research \& Manufacturing Engineers
Harry W. Houck John M. an Beures Jerry B. Minter Specialists in the Design and
Development of Electronic Test Instruments Boonton. N. J.

Eugene Mittelmann, E.E., Ph.D. Consulting Engineer \& Pbysicist
High Frequency Heating-Industrial Electronics ADDLied Physics and Mathematics
549 W. Washington Blyd. Chicago 6, 11. State 2-8021

NIAGARA ELECTRON LABORATORIES

CONSULTATION - DESIGN - CONSTRUCTION MFG. THE TILERMOCAP RELAY
Specializing in solution of problems of electronic and electro-phystcal instrumentation for the re search of analytical laboratory. Industrial plant
problems also incited problems also inited.
Andover, New York Cable Address: NIAtronlab

MAURICE I. PARISIER \& CO.

Communications Experts International Iingineering Consulting
radio broadcasting \& Congmunications Planning \& Installation Supervision
Communication Equipment for Armed Forces
1475 Broadway New York 36, N. Y. LOngacre 4-5434
Offices: Paris-1Buenos Alires-Sao Paolo-Hombay

PHYSICS RESEARCH LABORATORIES, INC.

Applied Mechanics, Thermodynamics, Heat Transfer, Optics, Magnetic and Electrical Devices, Elec cear Physics.
ont Hempstead Tumpike,

PICKARD AND BURNS, INC.

Consulting Electronic Engineers Analysis and Evaluation IResearch, Development and Design of Special Electronic Equipment
240 Highland Ave.,
Needham 94, Mass.

ALBERT PREISMAN

Consulting Engineer
Telertsion, Pulse Techniaues, Fidso
mplifiers, Phasing Networks,
Affliated with
MANAGEMENT-TRANING ASSOCIATES
3308-14th St., N. W. Washington 10, D. C.

JOSEPH RACKER COMPANY

Radar Consultants \& Editors Techntcal Manuals
Research and Development
140 Nassau Street. New Fork 38, N. Y.
Worth 4-1463
W. C. ROBINETTE CO.
motron deadbeat high gan servos Speed control of any Prime Mover $1 / 2 \%$ \% 001% average. Electric Transmissions $1 / 2$ to 50 HP plus
controls-Zero droop-No load to full load. controls-Zero droop-No load to full load. 802 Fair Oaks Are. South Pasadena. Calif. Py 11594

SKINNER, HARLAN AND IRELAND, INC.
Consulting Engineers
Specializing Ln Magnetic Materials and Thelr Application
Office and Laboratory Indianapolis 7, Indiana

THE TECHNICAL
 MATERIEL CORPORATION
 Communications Consultants

 Systems FingineeringGeneral Omices and Laboratory
121 Spencer Place, Mamaroneck, N. Y.

TELECHROME, INC.

Electronic Design Specialist
COLOR TELEVISION EQUIPMIENT
Filing Spot Scanners, Color Synthesizers, Keyers,
Ononitors.
Oscilloscopes and
Related Apparatus
J. B. Popkin-Clurman, Pres. ©h. Engr.

88 Merrick Rd.
Amityrille, L. L., N. Y.

WHEELER LABORATORIES, INC.
 Radio and Electronics
 Consulting-Research-Development R-F Circuits-Lines-Antennas
 Microwave Components-Test Equipment
 Great Neck, N. Y.
 Great Neck 2-7806

WIHTOL LABORATORIES

Consulting - Research - Development
Flectron tubes-Vacuum and gas tube
manufacturing techniques-Glass
techniques-Special purpose tubes
2333 Grey Evanston, III. Un. 4-7896

YARDNEY LABORATORIES, INC.

Research - Design - Development Electro-Chemical Generatora of Energ 105 Chambers Street WOrth 2-3534, 35, 30 New York 7, N. Y.

SEARCHLIGHT SECTION
 EMPLOYMENT:
 BUSiNESS:
 (Classified Advertising)

EXEC. DEV. ENGINEER
\$12,000-NO FEE
Supervise a development section for the country's most progressive manufacturer of electry's most pragressive manufactu
trical and electronic equipment. Contact Ray Edwards
O'SHEA EMPLOYMENT SYSTEM
64 E. Jackson, Chicago, III. Targest" WA

REPLIES (Box No.) Address to office nearest you
NHW YORK: 330 W. 42nd St. (86)
SHACAGO: 520 NCISCO: 68 Post St. (4)

POSITIONS VACANT

ASSISTANT CHIEF Engineer: Ohio company manufacturing electronic equipment has opening for electronic engineer approximately
$27-31$ years of age in capacity of administrative 27-31 years of age in capacity of administrative clude engineering office work, supervision of laboratory projects and occasional traveling. Must have at least 5 years professional experience in circult design and project supervision. Starting salary $\$ 7000$ per year. Allowance for moving expense. Replies held in confidence.

ELECTRONICS ENGINEER GS-7, $\$ 4205$ per annum- Duties: As an engineer in the In-
stallations Section, Instrument Branch, Power Plant Division, cooperates in the design of new instrumentation and modification of existing testing facilitles. Performs experiments on instruments and allied equipment to ascertain pate in the calibration and test operation of all instrumentation on an assigned project. Applicants should complete Standard Form $\# 57$, available at any post office. Forward applications to, or secure further information from Industrial Relations Officer, Industrial Relations Department, U. S. Naval Air Rocket Test
Station, Lake Denmark, Dover, New Jersey.

SELLING OPPORTUNITY OFFERED

WANTED DISTRIBUTORS low cost laboratory precision electronic coil winder entirely sel
contained. SW-6720, Electronics.

POSITIONS WANTED

EXPORT MANAGER, Electronic background or manage manufacturers export department. PW-6827, Electronics.

FOUNG EUROPEAN Engineer, wlde background of communications engineering, com-
mercial and military, speaks English fuently,
many years overseas, at present in Canada, many years overseas, at present in Canada, wishes to join progressive \mathbb{U}. S. firm, where his
often very unusual ideas are recognized. PWoften very unusual
6885 , Electronics.

SELLING OPPORTUNITIES WANTED

CANADIAN ENGINEERTNG Representative available. Electrical engineering graduate perience. Considerable iravel experience. RAperience. Conside
6872 , Electronics.
GOVERNMENT-INDUSTRIAL Business. Man ufacturers Representative selling USAF, Sig-
nal Corps, Navy and Industry (Phila, Washingnal Corps, Navy and Industry (Phila, Washing
ton. $N . Y$.) seeks additional lines and plants. RA-6821, Electronics.

RECTIFIE? [思\&HEER

will set up production line on any selenium or oxide cell and show you how to get started on a profitable basis.

PW-6680, Electronics,
68 Post St., San Francisco 4, Calif

P4 SYNCHROSCOPES
 Completely Reconditioned clegg laboratories, inc.
 142 S. Livingston Ave. Livingston, N. J.

TWO INSTRUMENT MINDED RESEARCH SCIENTISTS

Expansion of our long range program for insirument development provides permanent, challenging opportunity for two additions to our staff;

Ph.D. in E.E.,

 Electronics Background
Ph.D. in PHYSICS,

Background in temperature radiation and/ or spectroscopy.
While experience is highly desirable, it is by no means necessary. Far more important is interest in a career devoted to the origination of instruments which shall ence \& industry. Inventive ability and ingenuity should be well defined.
Please address preliminary correspondence to our Personnel Manager.

LEEDS \& NORTHRUP CO.
4901 Stenton Ave. Philadelphia, 44, Pa.

Hictranle enciners

We are looking for electronic engineers, with experience in the development of electronic digital computers, to work in the development of business machines. Plenty of opportunities for adyancement. Write, giving full details, including education and experience.
the national cash reaister co. South Main and "K" Streets Dayton 9, Ohio

BUILD IN WORLD ELECTRONICS CENTER

Metropolitan Oakland Area (MOA) home of the University of California and close to Stanford University, offers unmatched research or consultation tacilities and personnel source for manufleld. Besides its ideal location in shadow of two world-renowned research centers. MOA prorides many additional, exclusive profit advantages to ndustry: proximity to users in great electronics West market; sizeable sarings in shipping time and cost; major terminus for rail, truck, air, sea carriers; all-season production; temperate climate; G-R-O-W-T-H. For a free FACTBOOK and/or answers to specifle questions, write:
Alameda County

New Industries Committee Suite 601, 427-13th St. Oakland, Calif.

CANADIAN MANUFACTURING FACILITIES

Light Engineering and Electronics Plant in Canada with excellent facilities is pre pared to manufacture for U. S. Firms desiring to enter Canadian market but unable to export owing to Customs or other obstacles.

CW-6550, Electronics
330 W. 42 St., New York 36, N. Y.

Massachusetts Institute Of Technology's

Digital Computer Laboratory of the Department of Electrical Engineering HAS

STAFF OPENINGS

for research and development engineers and scientists for work on the development of highspeed elcctronic digital equipment. The program ranges from logical planning up through component and circuit research, construction, installation, and testing, to computer operation, and also work on necessary associated fermina problems of designing, packaging, production planning, scheduling, material procurement, and liaison. Experienced electronic engineers and a few mechanical designers are especially needed.
There are also staff openings for experienced people and recent graduates for work on use of high-speed digital computers to control requirements of the whole system, reduction of these requirements wo simple pattern or sequence of control instructions, and translation of the paftern into computer code. Position requires appreiath prior experience with digital computers is unnecessary, and training in computer principles will be provided.

Persons transferring from other fields to acquire experience in digital computers for engineering and military uses are encouraged to apply and may come on leave of absence from their permanent organizations. Position carries opportunity for ocademic study. Salary appropriate to candidate's experience and training.
Massachusetts Institute of Technology
Digital Computer Laboratory
211 Massachusetts Ave.
Cambridge 39, Mass.

ELECTRONIC ENGINEERS

FOR DESIGN \& DEVELOPMENT WORK IN RADAR

COMPUTERS
DIGITAL TECHNIQUES
with a young progressive company, send resumé of experionce and education, with salary requirements, 7

Electronic Engineering Company
\qquad Califarnia

YOUNG ENGINEERS WANTED

Recent graduates from engineering colleges in Aeronautical, Mechanical, or Electrical Engineering. After a training course at our factory we will locate men in Dallas, Texas, and Los Angeles, California. Prefer men 25 to 30 years of age.

If you are interested in making connections with a company which is geared to war or peace conditions and which has plans for a long-range program independent of Government defense appropriations, we can offer qualified men an excellent future.

330 W. 42 St., New York 36, N. Y.

Q

Opportunities for

ENGINEERS DESIGNERS
 SR. TECHNCIANS

in radio and electronic system development

KOLLSMAN INSTRUMENT CORP.

ENGINEERS

AND PHYSICISTS
BS - MS - Ph.D:

Responsible positions in mechanical, electrical or electronic engineering, physics or engineering physics for advanced development and design of special equipment and instruments. Prefer men with minimum of two years' experience in experimental research design and development of equipment, instruments, intricate mechanisms, electronic apparatus, optical equipment, servomechanisms, control devices and allied subjects. Positions are of immediate and permanent importance to our operations. Southwestern location in medium sized community. Excellent employee benefits. Reply by letter giving age, experience and other qualifications. All applications carefully considered and kept strictly confidential.

If you are seeking a position where ingenuity, personal initiative, and ability count most. investigate the various opportunities offered by Goodyear Aircraft We have openings for able experienced personnel in the following fields

```
~Electrical Systems
```

```
Circuit Analysis
```

Circuit Analysis
Analog Computers
Analog Computers
Servomechonisms
Servomechonisms
Test Equipment
Test Equipment
Applied Mathematics
Applied Mathematics
~}\mathrm{ Electronics

```
~}\mathrm{ Electronics
```

Aerodynamics
\checkmark Physics
\checkmark Flight Test
\checkmark Stress Analysis
Dynamics
Test Equipment Dynamics Estimation
Structures
Designing in All Fields

- Electrical Systems	\checkmark Aerodynamics	\checkmark Tool Design
\sim Circuit Analysis	\checkmark Physics	\checkmark Tool Planning
\checkmark Analog Computers	\checkmark Flight Test	\checkmark Tool Processi
\checkmark Servomechanisms	\checkmark Stress Analysis	\checkmark Industrial Engineering
\checkmark Test Equipment	\checkmark Dynamics	\checkmark Estimation
\checkmark Applied Mathematics	Microwave	\checkmark Time Study
\checkmark Electronics	\checkmark Structures	\checkmark Plant Engineering

Openings also exist for welding, civil, and mechanical engineers with experi ence in metals fabrication. Needed too are personnel with ability and exptri ence in technical editing. copywriting, illustration, and photography

Positions are available at several levels; inquiries are also invited from recent graduates. Liberal salaries are based on education, ability, and experi ence. Paid vacations and holidays, sick leave insurance, and retirement plans are added benefits

Goodyear Aircraft is centrally located in the Great Lakes region...in the heart of northeastern Ohio Akron, a community of 350,000 , is a clean and friendly home town to thonsands of Goodyear employees and their families who enjoy metropolitan living and fine cultural and educational advantages Excellent parks, golf courses, and inland lakes give active, year-round enjoy ment. The Aircraft diyision is a full-fledged member of the Goodyear family a name famous the world over
If YOU are interegted in a secure future, write and give full details to
Mr. C. G. Jones. Salary Personnel Department

We desire personnel of the highest caliber-experienced in the field of airborne automatic electro-mechanical control equipment.

ENGINEERS
 MECHANICAL DESIGN
 ELECTRONIC
 SERVO

DESIGNERS-LAYOUT MEN

ELECTRONIC
MECHANICAL
This work deals with the manufacture and development of highly complex equipment of the most advanced type in a new and expanding division of an established firm with 20 years of successful experience in the precision instrument field.

We cite a few of the good reasons why you might like to join our organization . . .

SALARY increases are based on merit and initiative-two weeks VACATION, HOSPITALIZATION BENEFITS, GM's own INSURANCE PLAN-POSITIONS ARE PERMANENT due to long range manufacturing and developing pro-grams-EXPENSES incident to interviews and moving all absorbed by company-HOUSING and LIVING CONDITIONS among the best and finest of any along Lake Michigan.

- We have a Junior Engineering Training Program of one year for inexperienced engineering graduates. Opportunity to bo-
come acquainted with all phases of industry.
- For the convenience and direct use of engineers in our Engineering Department. We have our own model shop where highest skilled mechanics are employed.
- Educational opportunities for advanced degrees available at U. of W., Marquette. Technical engineering offered at Milwaukee Vocational School.
.. . all inquiries answered-write or apply ... \star aC spark plug division

Genereal Motors Corpopation

STAFF ENGINEERS

Design and Development

Leading Chicago Electronics firm is seeking the services of qualified men to fill several staff openings in its Electronic Design and Development Division. Persons selected will be given intermediate and advanced level assignments in our Television, Radio and Government Equipment Laboratories.

Experience in monochrome receivers, deflection and high voltage circuits, radiation interference, NTSC color receivers, color generating equipment or UHF systems essential.

These are permanent positions and offer excellent opportunities for advancement. Company has well planned, long range program of design and development.
Please write Mr. Walter Wecker, Personnel Division, giving related experience and educational qualifications.-Or telephone SPaulding 2-0100.

Interviews arranged at your convenience.

Admiral Corporation

3800 W. Cortland St.

Chicago 47, Illinois

Armour Research Foundation
of

Illinois Institute of Technology

Has openings for outstanding engineers and scientists in the fields of:

Analog Computer Research
Digital Computer Research
Electronic Instrumentation
Magnetic Circuit Design
Radar and Radio Communication
Servomechanisms

Foundation projects are sponsored by industry and government; they are diversified and challenging and require the services of top level engineers and scientists.

Excellent working conditions and stimulating associates; opportunity for graduate study with special tuition privileges; salaries corresponding to level of candidates. Please write giving full details of background to:

ASSISTANT DIRECTOR FOR PERSONNEL
35 West 33rd Street
Chicago 16, Illinois

EIECTRONIC ENGINEER WANTED!

An established business organization engaged in development and manufacture of products for VHF and UHF Television Application, requires an individual qualified to work independently, to organize, and to supervise development projects.
This position is to be permanent and will offer the opportunity for unlimited advancement to a successful career. Offers stimulating and congenial surroundings in a newly acquired plant.

Attractive Salary
Write stating qualifications
Blonder-Tongue
laboratories
526-536 North Avenue Westfield, New Jersey

A OUESTION FOR ALLENGINEERS:

Where will you be 10 years from now?

Will your achievements be recognized? Will you be associated with distinguished scientists and engineers? Will your work provide a challenge for your talent and ability? Will your position and income be founded upon your real merit?
At RCA, you'll find plenty of "future insurance" . . . and right now is the time to investigate RCA opportunities. Because RCA is now looking for experienced Electronic, Computer, Electrical, Mechanical, and Communications Engineers . . . Physicists . . . Metallurgists . . . Physical Chemists . . Ceramists . . . Glass Technologists. Whichever your specialty, there's a chance of a lifetime for a
career with RCA-world leader in electronic development, first in radio, first in recorded music, first in television. RCA growth has remained steady through war and depression . . . you'll find positions open today in many commercial projects, as well as military lines.

WHY RCA IS A GOOD PLACE FOR YOU TO WORK

Facilities for creative engineering are topnotch. Working conditions and associates notch. Working condions and associates you advance in grade and income. Your family can enjoy pleasant country or subramily can enjoy pleasant country or sub urban living. Reur professional status and recognition. Comp professinal bents including life ac Company paid benefits-including life, ac cident and hospitalization insurance look crease your feeling of security. You look forward to retirement lhrough a progressive program. RCA has a modudy plan for advanced study at recognized universit ies.

Personal interviews arranged in your city.
Please send a complete resume of your education and experience to:
MR. ROBERT E. McQUISTON, Manager, Specialized Employment Division
Dept. 200-C Radio Corporation of America, 30 Rockefeller Plaza, New York 20, N.Y.

Positions Open In RESEARCH—DEVELOPMENT-DESIGN-APPLICATION

 in any of the following fields:RADAR-Circuitry - Antenna Design-ServoSys-tems-Information Display Systems-Gear Trains-Stable Elements-Intricate Mechanisms
COMPUTERS—Digital and Analog-Systems Planning - Storage Technique - Circuitry - Servo Mechanisms-Assembly Design-High Speed Intricate Mechanisms
COMMUNICATIONS - Microwave - Aviation -Mobile-Specialized Military Systems
MISSILE GUIDANCE-Systems Planning and Desigd - Radar and Fire Control-Servo Mechanismos -Vibration and Shock Problems
nAVIGATIONAL AIDS - Loran - Shoran - Altim-eters--Airborne Radar
TELEVISION DEVELOPMENT-Receivers-Transmitters and Studio Equipment
COMPONENT PARTS-Transformer-Coil-Relay -Capacitor-Switch-Motor-Resistor
ELECTRONIC TUBE DEVELOPMENT-Receiving -Transmitting-Cathode-Ray--Phototubes and Magnetrons
ELECTRONIC EQUIPMENT FIELD ENGINEERS Specialists for domestic and overseas assignment on military electronic communications and detection gear.

RADIO CORPORATION of AMERICA

E) mineers...
 (S)cientists...
 Mechanical Engineers - Electrical Engineers Servo Engineers - Aerodynamicists - Physicists
 Do You Know the MELPAR Story?

Fon complete information about the opportunities available for qualified engineers and scientists write to PERSONNEL DIRECTOR
Melpary Ince
The Research Laboratory of Westinghouse Air Brake Co. and its subsidiaries 452 Swann Avenue, Alexandria, Virginia or 10 Potter St., Cambridge, Mass.

ELECTRONICS ENGINEERS

Project - Design • Group - Field - Junior - Senior
AIRCRAFT ARMAMENTS' development engineering program in the fields of radar, fire control and associated equipment has provided more openings for men at all levels of experience.

If you are considering a change and are looking for a young, growing company with a continuing program of development work, we would appreciate receiving your resume and would welcome the opportunity of providing you with information about our company.
D. J. WISHART

Director of Personnel

GALTIMORE IS, Mロ.

BARNTED: DIPECTOR OF ENGINEEREING

An outstanding opportunity for an electronics engineer of executive caliber to head up the development program for a nationally known manufacturer in the electronics field. A smaller firm with two well-equipped plants and excellent laboratory facilities, particularly in the audio and electro-accustic fields, 70% of the company's business is civilian.
Starting salary $\$ 12,000$. with opportunity for increased earnings through bonus and advancement. Stock participation open. Appointee will be a member of small top management group.

QUALIFICATIONS: Must be a graduate engineer or physicist, preferably in communi cations field. Age: 30 to 50 . At least 8 years of engineering experience with some super visory activity. American citizenship and clearance for secret. Originality and creative thinking essential plus ability to plan, organize, direct, and coordinate the efforts of Crious project groups.
Carch in N.Y.C. Address reply INTERVIEW may be arranged during IRE meeting in March in N.K.C. Address reply stating personal ployment, and earnings record, patents and inventions, publications, interests, family All repr reated in strict confidence. Our own staff knows of this covertisement P-6894, Electronics, 520 N . Michigan Ave., Chicago 11, Ill.

STAVID
 ENGINEERING, INC.

has openings for GRADUATE ELECTRONIC and MECHANICAL ENGINEERS

Experience in Design and Development of Radar and Sonar necessary.
Broad knowledge of Search and Fire Control Systems; Servo Mechanisms, Special Weapons, Microwave, Antennas and Antenna Mounts, etc. Mechanical Engincer should also have experience in packaging of Electronic Equipment to Gov't specifications including design of complex cabinets, shock mounts and sway brace structures.

FIELD ENGINEERS

Qualified to instruct in the operation and supervise installation, maintenance and repair of Radar, Sonar and allied electronic equipments in the Field.

A chance to grow with a young and progressive company; salary and advancement commensurate with ability; liberal vacation, sick leave, 9 paid holidays, group life, sickness and accident insurance plans, and a worthwhile pension system.

Personnel Office, 200 W. Seventh St. Plainfield, N. J. - Tel. Pl. 6-4806

ENGINEERS ELECTRONICS TOP JOBS

We are a large established Company. Company which is spearheading a dynamic expansion program in the Electronic Tube field. Top quality men are needed to augment our present staff.

Development-Creative mechanical engineering talent required to visualize tomorow's products today, in product develop. ment, procedure, equipment. Should possess manufacturing, research or engineering background in this field. This opening presents a challenge to a qualified man whose abilities and knowledge presently are restricted.

Application-An inventive, ingenious engineer with a background in electronic circuits. One whose abilities (EE preferred) can meet the constant challenges of tube application. Personality and persuasiveness are desirable attributes.

Tube Production-A-1 man required for tailor-made position for experienced receiving tube plant manufacturing executive. Our expansion program is sole reason for considering applicant from another company.

All replies are strictly confidential. Our management is aware of these openings. Please submit resume.

P-6684, Electronics
330 W. 42nd St., New York 36, N. Y

Design, development engineers...

Like to further your career?

I
IF you've had some experience in design or development engineering, and would really like to develop and further your career, you owe it to yourself to look into the promising opportunities available at Honeywell.

There's a real opportunity for you to go places in the Honeywell organization in six areas where we now have openings:

- Servomechanisms - Vacuum fubes

> - Gyros - Electromechanics

- Relays - Aircraft Control Systems

Duties of the jobs. Take on complex design work requiring analysis and decision to bring into design form the requirements for a new or modified instrument, device or control system.
Requirements. B.S. or M.S. in Electrical, Mechanical or Aeronautical Engineering.
Atmosphere. A company that understands engineering-where one out of every ten employees is acrively engaged in engineering or research.
Openings. In Minneapolis, Philadelphia and Freeport, Illinois.
For details write H. D. Elverum, Personnel Depr. EL-3-41, Honeywell, Minneapolis 8, Minn. Ask for our book, "Emphasis on Research."

Hőněy̌viéll

ELECTRONIC ENGINEERS * PHYSICISTS

OUR STEADILY EXPANDING LABORATORY OPERATIONS ASSURE PERMANENT POSITIONS AND UNEXCELLED OPPORTUNITY FOR PROFESSIONAL GROWTH IN
RESEARCH \& DEVELOPMENT

GUIDED MISSILES

TELEVISION

ELECTRONIC NAVIGATION SOLID STATE PHYSICS VACUUM TUBES

RADAR

THE EMPLOYMENT DEPT.
ADDRESS InQuiries to CAPEHART FARNSWORTH CORP. fort wayne, IND.

THE
 JOHIS HOPKINS UNVERSITY

RESEARCH
 ENGINEERS—PHYSICISTS

This University Laboratory offers a variety of challenging problems at both senior and junior levels. A position here means:

- Faculty rank and privileges for Senior Staff
- Favorable arrangements for advanced study in the Hopkins Graduate Schools
- One month paid vacation
- An air-conditioned laboratory near the University Campus

The Radiation Laboratory of the Johns Hopkins University has positions in the fields of:

- Electronics Circuits and Pulse Techniques
- Microwaves and VHF

Address inquiries to:

RADIATION LABORATORY 1315 St. Paul Street Baltimore 2, Maryland

WANTED
 SALES MANAFER

Leading manufacturer of ceramic capacitors needs an aggressive top-flight sales manager. Our product is used by all of the larger electronic equipment manufacturers and is well established. This man must have excellent contacts in this field and must be able to obtain full co-operation from our sales representatives. This position will pay upwards of $\$ 25,000$ per year, but the man we want will be accustomed to a high income. If you think you can meet our requirements we would like to hear from you giving full details. Your reply will be confidential.

SW-6824, Electronics
520 N. Michigan Ave., Chicago 11, Ill.

ELECTRONIC ENGINEERS

ALL GRADES

Small electronic research and developmen! laboratory, located 8 miles outside of Washington, D. C., has several opening for junior and senior electronic engineers, Degree essential. Varied projects, includ. ing considerable Defense work. Liberal alaries dependent upon experience. Excellent personnel policies.

THE DAVIES LABORATORIES Incorporated
4705 Queensbury Road, Riverdale, Maryiand

SENIOR • JUNIOR ENGINEERS TECHNICIANS

TECHNICAL WRITERS
FOR PERMANENT POSITIONS
With a well established progressive organization engaged exclusively in the design and manufacture of specialized electronic equipment: both for defense and for an expanding commercial line. Projects are varied and include radar systems, computers, antenna systems, microwave equipments, airway navigation aids, transmitters and receivers.
Write full resume of education and employment record.
Located in suburban Washington, D. \mathbf{C}.

MARYLAND ELECTRONIC MANUFACTURING CORPORATION 5009 Calvert Road College Park 26, Md.

EIECTRICAL and ELECTRONIC Encineers

Excellent opportunities in the field of
AUDIO AIPIIFIFR DESIGN SERVO AIPPIIFIFR DESIGN COMPONENT DEVELOPMENT FQUPMUENT DESIGN Senior and Junior Engineers

Write, giving full details to:
Personnel Director, Dept. A,
GIBBS MANUFACTURIMG AND RESEARCH CORPORATION

Janesville, Wisconsin

> MACPDME We can offer outstanding opporfunity to a man with two or more years experience in transformer design and development. Position requires initiative and ingentuity. Excellent future. B.S. in E.E. or equivalent required. Frcc lite-accident and health insurance. Paid holidoys and vacation. Replies kept confidential. Contact f. J. KennedyPERMOFLUX CORPORATION 4900 W. Grand Ave. Chicogo 39, Illinois

A NEW Bendix Division! A NEW Electronic Product! NEW JOB OPPORTUNTIES

In our modern plant of York, Pennsylyania this new division of Bendix Avia. tion Corporation is producing a new electronic product. This division has a big future; and this is your opportunity to get in on the ground floor, with excellent possibilities for rapid advancement. We need the following:

- ELECTRONICS ENG. - MECHANICAL ENG. Also We have many openings for men ence in all phases of electronics.

YOU BENEFIT
With the Bendix York Diyision, you will benefit from high wages, paid vacations and holidays and ideal living conditions in a beautiful suburban area.

Write, Wire or Phone,

You gain MORE with W. L. MAXSON. Top solories. .i.greoter opportunities.... more responsibilities. Advance with W. L. Maxson.
BACKGROUND: Practical and research ex perience in advanced Electronic Circuits and Systems Engineering DESIGN \& ANAL YSIS, related to: instrumentation, Fire Control, ${ }^{\text {tions, }}$ Navigation, or tions, Navigation'tit in management and supervision desirable.
If your skills are now being fully utilized in being fully utilized in try please do not apply.

Kindly send resume and salary requirements to

ENGINEERS

FOR ATOMIC WEAPONS INSTALLATION

Mechanical Engineers, Electronics and Electrical Engineers, Physicists, Aerodynamicists, and Mathematicians. A variety of positions in research and development open for men with Bachelors or advanced degrees with or without applicable experience.

These are permanent positions with Sandia Corporation, a subsidiary of the Western Electric Company, which operates the Laboratory under contract with the Atomic Energy Commission. The Laboratory offers excellent working conditions and liberal employee benefits, including paid vacations, sickness benefits, group life insurance and a contributory retirement plan.

LOCATE IN THE

Albuquerque, center of a metropolitan area of 150,000, is located in the Rio Grande Valley, one mile above sea level. Albuquerque lies at the foot of the Sandia Mountains which rise to 11,000 feet. Cosmopolitan shopping centers, scenic beauty, historic interest, year 'round sports, and sunny, mild, dry climate make Albuquerque an ideal home. New residents experience little difficulty in obtaining adequate housing in the Albuquerque area.

THIS IS NOT A

CIVIL SERVICE APPOINTMENT

Make Application to the
PROFESSIONAL EMPLOYMENT DIVISION
 ALBUQUERQUE,N. M.

SXING IN THE FIELD OF YOUR CHOICE? Increasing rour professional value? F^{2},

The scope of electronic research and development at Cornell Aeronautical Laboratory allows qualified applicants a wide choice of opportunities. Alert administration and col. leagues insure maximum professional growth and utilization.

cORnEll AfRonfutical laborfiory, inc.
 B U F F A L O N E W Y O R K

UNUSUAL OPPORTUNITIES IN COLOR TELEVISION

Expansion of activity in Color Picture Tube Development has created requirements for research, production, and engineering personnel having a background in one or more of the following fields:

Production Supervision- all phases
Material Control
Screen Application silk screening \& conventional settling
Chemistry
Gun Design and Mounting
Tube Finishing
Metallurgy
Electronics
Glass and Glass-To-Metal Sealing large \& small Equipment Design

REPLIES HELD CONFIDENTIAL_-SEND REPLIES TO:
CHROMATIC TELEVISION LABORATORIES
INC.
WEST COAST DEVELOPMENT LABORATORY
703-37th AVE.
OAKLAND 1, CALIFORNIA

SALES EVGINEER

- ELECTRONIC COUNTERS
- AUTOMATIC CLERICAL SYSTEM
- data handling equipment
- dIGITAL CCMPUTERS
- PRECISION TIMING INSTRUMENTS - AUTOMATIC MACHINE CONTROL
- FLYING TYPEWRITER

Excellent opportunity for a man with electronic background, mechanical aptitude, and IMAGINATION.

Well-established and expanding company.

Please send resume of education and experience to Sales Manager.

POIITR IISTRIUEN COMPAII

 115 Cutter Mill Road, Great Neck, N. Y.
MICROWAVE ENGINEER

1.10 cm . Antenna Design

ANO
COMPUTER ENGINEER
Circuits and Sysfems
Unusucl problems on both commer. cial and detense equipment. Need originality, solid theorelical back. ground and five or more years of design experience.

Excellent opporiunity for tull devel. opment of the professional engineer. An unusual laboratory location in a tapidly growing. well established tirm encouraging a broad contribution and giving wide responsibilities.

VICTOR
Adding Machine Go.
3900 N. Rockwell Chicago 18

RCA VICTOR COMPANY, LTD.

(Canadian Affiliate of RADIO CORP. OF AMERICA)
has vacancies in its expanding research and engineering staff for:

Electronics Enciners mechanical enginers PHYSICISTS

in such fields as:

MILITARY RADIO AND RADAR Mccoowave communcarions antenna desicin TELEVISION TV AND RADIO COMPONENTS

If you are interested in the career opportunities of Canada's expanding economy, coupled with the advantages of associating with a leading member of a growing industry, you should investigate.

```
Write or apply
```

RCA VICTOR COMPANY, LTD.
1001 Lenoir Street, MONTREAL 30, QUE., CAN.

ENGINEERS PHYSICISTS

 take INventory of YOUR FUTURE WHAT MAKES A GOOD JOB?Check off the items in the following list that you look for in a good job.

1-Professional Recognition
2-Interesting work
3-Equitable salary
4-Recognition of Ability
5-Security
6-Good future prospects
7-Reward for ideas
8-Good working conditions
9-Liberal benefit program
10-Family protection
11 -Paid vacations and holidays
If you look for all of the above items and more, in a good job, it will be to your advantage to investigate the opportunities in Electronic Circuit Design and specialized vacuum tube research and development at

NATIONAL UNION RADIO CORP. ELECTRONIC RESEARCH DIVISION
P. O. Box $352 \quad$ Orange, New Jersey

WITH

SYLVANIA

Where Product Development

 Is The Key To Continuing GrowthProduct development has always played a major role in Sylvania's operations and is largely responsible for the company's growth to 40 plants throughout the nation. Similarly, Sylvania's Electronics Division is continuing its expansion program to accommodate increased development engineeering and manufacturing activities.

To engineers this means increasing opportunity with this 51 year old leader in the important field of electronics. At the Electronics plants in Woburn, Newton and Ipswich, Massachusetts you will enjoy the unique advantages of small plant operations in suburban areas minutes from the cultural and social activities of Boston. And - with Sylvania's assistance, you may continue your graduate studies at near-by worldfamous universities.

Positions available for engineers with the following backgrounds:
MICROWAVE - with graduate work or experience in microwave theory. Positions will involve applications, measurements, or design of electronic test equipment for semiconductor devices.
MECHANICAL - with experience in the following fields: 1 . Design of small parts, tools, and jigs and fixtures. 2. Design of automatic production equipment.

SOLID STATE PHYSICISTS - Ph.D. or equivalent in experi ence in physics with a specialty in solid states work preferred. Will study electrical and optical behavior of semi-conducting materials.
METALLURGISTS - advanced degree or experience required. Will work on metallurgical preparations of semi-enducting devices.
ELECTRONIC - with graduate work or experience in product or circuit design and developnent.

Send complefe resume fo:
Mr. Robert L. Koller
SYLVANIA. ELECTRIC
Electronics Division WOBURN, MASS.

CAREER OPPORTUNITIES ENGINEEHS and PHYSILISTS

Desiring the challenge of interesting, diversified, important projects Wishing to work with congenial associates and modern equipment and facilities Seeking permanence of affiliation with a leading company and steady advancement Will find these in a career here at GENERAL MOTORS.

Positions now are open in ADVANCED DEVELOPMENT and PRODUCT DESIGN, INDUSTRIAL ENGINEERING, TEST and TEST EQUIPMENT DEVELOPMENT.

COMMERCIAL AUTOMOBILE RADIO
MILITARY RADIO, RADAR AND ELECTRONIC EQUIPMENT ELECTRONIC COMPONENTS

TRANSISTORS AND TRANSISTOR AND VACUUM TUBE APPLICATIONS INTRICATE MECHANISMS such as tuners, telemetering, mechanical linkage, controls, etc.

ACOUSTICS-loud speakers, etc.
Inquiries invited from recent and prospective graduates as well as experienced mon with bachelors or advanced degrees in physics, electrical or mechanical engineering, chemistry, metallurgy.
Salary increases based on merit and initiative.
Vacations with pary, complete insurance and retirement programs.
Location is in a low living cost center.
Relocation expenses paid for those hired.

GENERAL MOTORS CORPORATION

 Kokomo, Indiana
DEPARTMENT HEAD

MISSLLE ELECTRONICS

Prominent well-established aircraft and missile manufacturer offers an outstanding opportunity to a person qualified to head an expanding electronics organization. Salary commensurate with responsibility. Must have at least ten years experience in airborne electronics, five of which should be in missile or radar design and development. Ad. vanced degree preferred. Position reports to chief engineer. Send detailed resume of background. Recent photo. graph optional.

P-6690, Electronics

520 N. Michigan Ave., Chicago 11, Ill.

WILCOX ELECTRIC COMPANY, INC.

KANSAS CITY, MISSOURI

ENGINEERS!

with Experience in

- HF and VHF systems
- Aeronautical Equipment
- Application of Advanced Circuir Technique
- Ability to combine associated engi-
neering skills in electronic systems also needed

PROJECT ENGINEERS (2)
who can accept responsibility for suc-
cessful completion of a system design
These positions are available in a company Which supplies equipment to the major air* ways of the world.

Write stating Education a
E. HARPISORssional history to:
. E. HARRISON, Director of Engineering
WILCOX
ELECTRIC COMPANY, INC.
1400 Chestnut Street
Kansas City 27, Missouri
TAKE ADVANTAGE OF THIS OPPORTUNITY NOW!
Address all inquiries to J. H. MaCann

SPERRY PRODUCTS we.

DANBURY
CONNECTICUT

ELECTRONIC ENGINEERS
 Mechanical Designers for Research and Engineering

To work in the design and development of new electronic equipment. Excellent working and living conditions, good salaries and exceptional employee beneflts. Write, giving full details including education and experience. Personal interviewn will be arranged.

THE NATIONAL CASH REGISTER COMPANY
Main \& K Sts., Dayton 9, Ohio

The New
Scientific Research Laboratory of the Ford Motor Company has openings for

ELECTRONIC ENGINEERS ELECTRICAL ENGINEERS PHYSICISTS

to research, design and develop electronic controls, instrumentation, and devices on a permanent, non-military program.
Positions available at various levels of engineering achievement.

FORD MOTOR COMPANY
Engineering Personnel Oakwood Boulevard West Dearborn, Michigan

ENGINEERS

 interested in COLOR'RTELEVIONI

Sylvania is leading the field in its development of an all-electronic compatible color television receiver. Your imagination and engineering tolent can be used in furthering this development, Here is your chance to get real professional recognition.
Sylvania, a sound, well established firm, is still expanding, still reaching out for new ideas. If you are interested in challenging assignments and definite opportunity for personal growth.

Investigate NOW!

All replies will be held in strict confidence. Send your personal resume' to

JOHN WELD
Supervisor of Employment Department B
Sylvania Electric Products, Inc.
Radio \& Television Division 254 Rano Street
Buffala 7,
New Yark

Engineers

Research \& Development Electronic Organs
Well rated company also has government prime contracts.
Reasonable rental housing available. Write giving full details--education and experience.

CENTRAL COMMERCIAL INDUSTRIES
1215 W. Washington Blyd. Chicago 7, III.

STANDARDS ENGINEER

Massachusetts Institute of Teehnology's Digital Computer Laboratory has a staff position open for an electrical engineer with 2 to 5 years experience in standards engineering. Work involves study, for use in high-speed digital computing equipment. Salary commensurate with candidate's experience and training. For further information write: DIGITAL COMPUTER LABORATORY, M.IT. 211 Mass. Avepue. Cambridue 39, Mass.

OUARII CRISTILS Ellineffrs

World's largest producer of crystals needs additional projects engineers. Applicants should hove a working knowledge of crystal manufacturing. Send complete resume-age, education, experience, salary expected.
Midland Manufacturing Company
3155 fiberglas Road, Kansas City 15, Kansas

ELECTRONIC SYSTEMS ENGINEERS

Experienced in:

Development and Design of Electronic Systems including experience in

B
SERVO DRIVES RADAR MICRO WAVE TECHNIQUES PRECISION TIME MEASUREMENTS COMPUTERS GYROS SYNCHROS UHF CIRCUITORY

MECHANICAL ENGINEERS

Experienced in:

Design and Development of Mechanical Systems including experience in

1
MACHINE DESIGN
STRESS ANALYSIS
MECHANISMS
CAM DESIGN
GEAR AND GEAR TRAINS

Daystrom offers unparalleled opportunities for rapid advancement, a post defense future, ideal working and living conditions in one of the world's most modern plonts, located in the heart of the winter and summer resort area of Northeastern Pennsylvania-in the Scranton-Wilkes-Barre area.

Write or Phone-INDUSTRIAL RELATIONS DEPARTMENT

DAYSTROM
 Instrument Division

OF DAYSTROM, Incorporated
ARCHBALD, PA.
Phone JERMYN 1100

SEARCHLIGHT SECTION

PULSE TRANSFORMERS

UTAH ${ }_{\substack{92678 \\ 9280}}^{\substack{962}}$ UTAH

AN/APN-9 (901756-501) AN/APN-9 (352.7250) Westinghouse 132.AW Westinghouse 139 DW 2 F Westinghouse $\begin{array}{r}934 \\ 935 \\ \hline 187 \mathrm{~F} \\ \hline\end{array}$ Westinghouse 232-AW2 Westinghouse 232- RW-2 AN/APN-4 Block Osc. Philco $352-7149$
Philco $352-7150$ Philco 352-7071 Philco 352-7178 Raytheon UX-7350
Raytheon UX-10066 W.E. D-161310 Westinghouse
Westinghouse $176 A W 2 F$
$\begin{array}{ll}\text { W.E. } & \text { D- } 163247 \\ \text { W.E. } & \text { D. } 163225\end{array}$
 W.E. KS-9563

SPRAGUE PULSE NETWORKS

 | ASB Yagi-Double stacked 6 element. | | |
| :--- | :--- | :--- | :--- |
| ASA | Yagi-D....... | 14.70 |

COAXIAL CONNECTORS

83-1AC $\$$ \begin{tabular}{|l}

83-1RT

83-1SP

$83-1 S P$

83-1T

$83-2 A P$

$83-22 A P$

$83-22 F$

83-22J

$\$.65$

Y

\hline .45

1.30

1.95

1.40

2.10

1.40
\end{tabular} $83-22$

$83-22$
$83-22$
$83-16$
$83-18$
$83-76$
$83-77$ 22R
22 SP
22 T
168
185
765
776 .68
.80
1.95
.12
.12
.24
.65

FULL LINE OF JAN APPROVED COAXIAL CONNECTORS IN STOCK
UHF-N-PULSE-BN-BNC

COAXIAL CABLE

OIL FILLED CONDENSERS

MFD	VDC	Price	MFD	VDC	Price
	400	\$ 5.55	. 1	1500	\$.69
5-5	400	1.65	. 5	1500	1.25
1	600	. 55	3	1500	2.50
2	600	. 69	4	1500	2.95
2	600 R 'd	. 69	.1-.5	2000	. 95
2-2	600 R'd	1.65	.25	2000	1.50
3	600	. 95	.3	2000	1.30
4	600	1.65	1	2000	1.95
4	600 R'd	1.65	3	2000	3.75
5	600	1.75	12	2000	8.95
6	600	1.85	1	2500	2.75
8	600 R 'd	1.85	1-1	2500	3.85
$8-8$	600	1.95	32	2500	15.80
4-4-4	600	2.50	. 5	3000	2.40
413	600	2.50	1	3000	3.40
10	600	3.25	2	3000	4.50
1	1000	. 65	. 03	4000	1.25
2	1000	. 90	3 z .2	4000	2.95
2	1000 R'd	95	2	4000	6.95
3.5-. 5	1000	1.85	. 1	5000	1.60
4	1000	1.95	. 2	5000	2.50
6	1000	2.50	1	5000	4.88
8	1000	3.25	2	5000	18.50
1	1200	. 85	5	5000	29.50
1-1-1	1200	1.85	.01-. 03	6000	1.65

TEST EQUIPMENT
Gen. Radio 475 B
Grequency Monitor....... $\$ 200.00$
Gen. Radio 681 A

: A. W. Barrer Labs. VM- Supply VM.
: TS. 10A/APN Delay Line Test Set.

- CWI-60AAG Ranbrator Calibrator for ASB, - CRV IHAAS ASC Radars Antenna for Transm 39.95 - $3^{\text {P to }} 400 \mathrm{MC}$ MC
1.138A Signal Generator- 10 cm .
BC-22I Frequency meter
Br
: BC-22I Frequency meter
y Mete-io CM
9.95
185.00

| - Weston Model I D.C. Milliameter $150 / 1500$ |
| :--- | :--- | :--- |

TYPE "J"' POTENTIOMETERS					
Rests.	Shaft	Resis.	Shaft	Resis.	Shaft
60	SS	5K	1/4'	50 K	3/8 ${ }^{\text {n }}$
60	9/16*	5K	3/8*	50 K	1/2*
100	SS	${ }^{510 K}$	$\stackrel{1 / 2 "}{ }$	100 K	SS
200	$\mathrm{SS}_{1 / 8}$	${ }_{10} 10 \mathrm{~K}$	$\mathrm{SS}_{3 / 8}$	${ }_{200 \mathrm{~K}}^{150 \mathrm{~K}}$	1/2**
500	SS	10 K	1/2"	250 K	SS
500	$5 / 16^{*}$	15 K	SS	250 K	3/4*
500	1/2"	15K	1/2*	250 K	3/8 ${ }^{\text {²}}$
500	5/8*	20 K	SS	500 K	SS
650	$1 / 2^{\prime \prime}$	25 K	SS	500 K	1/4*
1 K	SS	25 K	1/4*	500 K	7/16"
2 K	3/8*	30 K	$\mathrm{SS}^{1 / 8}$	1 Meg	SS
2500	SS	40 K	SS	2.5 Med	SS
5K	$\stackrel{\mathbf{S S}}{\mathbf{S}}$	50K	SS ${ }_{\text {/ }}$	5 Meg $\$ 1.25$	SS
DUAL "J" POTS.-\$2.95 ea.					
1001 SS	500		10 K SS	5 meg	SS
250, SS	1 K		1 meg SS	15/2	K $8 / 8$
TRIPLE "JJJ" POTS.- \$3.95 ed.					
$100 \mathrm{~K} / 1$	0K/100	2/8"	$20 \mathrm{~K} /$	50K/15K	$8 / 8{ }^{\prime \prime}$

2ϕ LOW INERTIA SERVO MOTORS Dieht FPE-25-11-75V 60 cy . . 11 Amp 4 Watts. KOLLSMAN-45 Volt 60 cyclo 4 watts 1500 RPM 50 PIONEER-- $10047-2$-A 26 voit 400 cycle with $40: 1$ reduction gear $\because \ldots, \ldots \ldots \ldots \ldots \ldots$. $\$ 10.50$ PIONEER-CK 13 ill volt 400
damping signal generator (autosyn)

RELAYS

Sioma type 4AH-2000 4 ma DC coil-SPOT con-tacts-hermetically sealed 5 pin plug-in base $\$ 3.30$
Stevens Arnold tyoe 171 Millisec relayStevens Arnold tyoe 171 Millisec relay- 900 ohm coil
SPST NO contacts... Cutler Hammer and Square D type B-7A contactor-
$24 \vee D C$ coif-SPST NO 200 Amp contacts. . $\$ 4.75$ Price Bros. type $161-\mathrm{M}-220 \mathrm{VAC}$ contactor-. $\$ 4.75$
 30 Amp contacts plus two auxiliary SPDT con-
 Sigma type 5 F-Coil 3500 ohnis-pulis in @ 2.5 MA out @. 5 MA-copper slug for slight time delay
Contacts-SPDT
2
 ${ }_{\text {Amp }}^{@}{ }^{12 \mathrm{MA} \text { out @ } 10 \mathrm{MA} \text {. Contacts-SPDT }}$ Leach type 1521 -Coil 115 VAC 60 cy-Contacts
SPST NO Double Break 15 Amp.-Mycalex Insul.
Cramer Model ic $2 \mathrm{H}+\cdots \operatorname{liov} 60$ cy................ $\$ 3.25$
timer-timer-two SPST 15A contacts (on I hr. off I hr.) Weston Model 813 i 200 onm moving coil; 50 micro.
amp. Contacts 35 milliamp................... $\$ 16.50$

SOUND POWERED TELEPHONES
U. S. NAVY TYPE M HEAD AND CHEST SETS ANY A.E. GL832BAE D-173
APE- $\$ 14.88$ EACH
TS.10 Type ANY TYPE- $\$ 14.88$ EACH

IMMEDIATE DELIVERY FROM STOCK GENERAL ELECTRIC ARMA CONTROL INSTRUMENT BENDIX FORD INSTRUMENT KETAY HENSCHEL

SEARCHLIGHT SECTION

A LEADING SUPP A. C. SYNCHRONOUS MOTORS

110 Vt. 60 Cycle
HAYDON TYPE 1600, $1 / 240$ RPM HAYDON TYPE 1600, $1 / 60$ RPM HAYDON TYPE 1600, 4/5 RPM HAYDON TYPE 1600, 1 RPM HAYDON TYPE 1600, $11 / 5$ RPM TELECHRON TYPE B3, 2 RPM TELECHRON TYPE BC, 60 RPM HOLTZER CABOT, TYPE RBC 2505, 2 RPM, 60 oz . 1 in . torque.

SERVO MOTORS

PIONEER TYPE CK $1,2 \phi 400 \mathrm{CYCLE}$
PIONEER TYPE 10047-2-A, $2 \phi, 400$ CYCLE, with 40:1 reduction gear.

D. C. MOTORS

BODINE NFHG-12, 27 VTS., governor controlled, constant speed 3600 RPM, $1 / 30$ H.P.

DELCO TYP 5068750, 27 VTS., 160 RPM, built in brake.
DUMORE, TYPE EIY2PB, 24 VTS., 5 AMP., . 05 H.P., 200 RPM.
GENERAL ELECTRIC, TYPE 5BAIOAJI8D, 27 VTS., 110 RPM, 1 oz. 1 ft. torque. GENERAL ELECTRIC, TYPE 5BAIOAJ37C, 27 VTS., 250 RPM, 8 or., 1 in. torque.
BARBER COLMAN ACTUATOR TYPE AYLC 5091 , 27 VTS., 7 amp ., 1 RPM, $500 \mathrm{in}$. lbs. torque.
WHITE ROGER ACTUATOR TYPE 6905, 12 VT., $1.3 \mathrm{amp} ., 11 / 2$ RPM, 75 in . lbs. torque.

AMPLIDYNE AND MOTOR

AMPLIDYNE, GEN, ELEC. 5AM31NJ18A input 27 vts., at 44 amp . output 60 vts . at 8.8 amp., 530 watts.

MOTOR GEN. ELEC. 5BA50LJ22, armature 60 vts . at 8.3 amp ., field 27 vts . at 2.9 amp. $1 / 2$ H.P., 4000 RPM.

PIONEER AUTOSYNS 400 CYCLE

TYPE AY1, AY5, AY14G, AY14D, AY20, AY27D, AY38D, AY54D.
PIONEER AUTOSYN POSITION.
INDICATORS \& TRANSMITTERS.
TYPE 5907-17, single, Ind. dial graduated 0 to $360^{\circ}, 26$ vts., 400 cycle.
TYPE 6007-39, dual Ind., dial graduated 0 to $360^{\circ}, 26$ rts., 400 cyele.
TYPE 4550-2-A, Transmitter, 2:1 gear ratlo 26 vts., 400 eycle.

INSTRUMENT
 ALL PRICES
 F. O. B. N. Y.

SYNCHROS

1 F SPECIAL REPEATER 115 vt. 400 eycle. 2JIF1 GENERATOR, 115 vt. 400 cycle. $2 \mathrm{JIF3}$ GENERATOR, 115 rt .400 cycle. 2JIG1 CONTROL TRANSFORMER 57.5 vt. 400 cycle.
2JIHI DIFFERENTIAL GEN. 57.5/57.5 vt. 400 cycle.
5G GENERATOR, 115 vt. 60 eycle.
5DG DIFFERENTIAL GEN. 90/90 vts. 60 cycle.
5HCT CONTROL TRAN. $90 / 55$ vts. 60 cycle. 5CT CONTROL TRAN. $90 / 55 \mathrm{vts} .60$ cycle. 5SDG DIFFERENTIAL GEN. $90 / 90$ vts. 400 cycle.

363 GREAT NECK ROAD; GREAT NECK. N. Y. Telephone GReat Neck 4-1147

C-1 AUTOPILOT INVERTER - Eicor and West inghouse. 24.28 valts d.c input, 45 va output @ 19 volts $a-c, 105$ cycles and 1.0 power factor Filter in base. $71 / 2^{\prime \prime} \times 53 / 4^{\prime \prime} \times 53 /^{\prime \prime}$. Wt. 9 lb \#SA. 177
$\$ 24.50$

SERVO OUTPUT TRANSFORMER - Sperry \#661824. Hermetically sealed saturable reactor

\#SA. 266
$\$ 6.75$

AIRESEARCH LINEAR ACTUATORS - 4 types available; AR.42, AR.46, AR.4017, and AR.63 115 volts, 400 cycle single phase. Compression and tension 25.50 lb . static 200 lbs . Approx. $4^{\prime \prime}$ travel. Wt. 1.5 lb . \#SA-326

ISF NAVY SYNCHRO - 115 volts 400 cycles. May be used on 26 volts 60 cycle for industrial purposes. $3.625^{\prime \prime} \times 2.25^{\prime \prime}$ diam. Large quantity available. Other Navy synchros in stock. Wt. 1.5 lib. \#SA. 29

GEARHEAD SHUNT MOTOR - John Oster Type B-9-1, 27.5 volts d-c@ 7 amp. Motor speed 5600 rpm . Gearhead has dual output shafts upon which cams actuate roller lever arms. Reduction ratios 930: 1 and 230: 1. $7 \frac{1}{2} 2^{\prime \prime} \times 23 / 4^{\prime \prime}$ diam. Wt. 2 lb . \#SA. 335
SA- 46 also available with 12 volt motor.

ROTARY OIL COOLER FLAP ACTUATOR Lear Model $156 . \mathrm{W} 24$ volts d.c@ 9.0 amp. Motor speed $10,000 \mathrm{rpm}$. Intermittent duty. Potentiometer follow-up and adiustable limit switches. $71 / 2^{\prime \prime} \times$ $31 / 2^{\prime \prime} \times 51 / 2^{\prime \prime}$. Wt. 4 lb . \#SA-343 …............ \$19.50

- radio CONTROLLED SERVO UNIT - Used in Glide Bomb, complete from receiver to actuators which move control surfaces. Contains the following maior components: 1. Receiving set \#AN/CRW-3 (BC-455) with DM.32A Dynamotor. Frequency range 6.0 to 9.1 mc 3. Barber Colman 14 volt d-c rotary actuator. 4. White Rogers rotary actuator, 5. 24 -volt d-c Gyro. ©. Heating unit rotary act
\#SA-387A
\#SA 387 A A SA-3878 As above but with BC-454 receiver. Frequency range 3 to 0 m
- C-1 (M-7) SERVO MOTOR UNIT - Manuf. Norder. Small size unit containing a $1 / 50 \mathrm{hp}$. 24 volt d-c motor which runs constantly @ 3000 rpm . Electric clutches and brakes engage motor to dif. ferential gear which turns a $1.15625^{\prime \prime}$ diam. cable drum © 44 rpm . and @ $13.3^{\prime \prime} \mathrm{lb}$.torque. This type of arrangement permits almost instant start, stop, and reverse of output drum. Wt. 8 lb .
\#SA. 372 S29.50

MANUFACTURERS'SPECIFICATIONS

HIGH PRECISION AUTOSYN - Pioneer Type AY-201-3-B transmitter or control transformer for controlled servo circuits. Same as AY-200.3 and AY-202-3 except for shaft detail. 26 volts 400 cycle single phase. Max. error 15 min . Eclipse. Pioneer specification sheet available on request. Wt. 5 oz. max. \#SA. 365 $\$ 27.50$

PHASE CHANGING TRANSFORMER - GE \#70G23. 115 volt single phase 400 cycle input, providing 3 phase 115 volt 400 cycle output @ .048 kva and .33 power factor. Size $21 / 4^{\prime \prime} \times 2^{5 / 8^{\prime \prime}}$
$\times 2^{\prime \prime}$. Wt. $1 / 2 \mathrm{lb}$. \#SA-364
\$3.75

DC ROTARY ACTUATOR - White Rogers \#6912X.4 Type 3. 24-volts d-c@ 4 amp. 50 in . lb. torque @ $1.5 \mathrm{rpm} .5^{\frac{1}{2} 2^{\prime \prime}} \times 4^{\prime \prime} \times 4 \frac{1}{2^{\prime \prime}}$. W . 3 lb. \#SA-385
$\$ 12.50$

DC ROTARY ACTUATOR - White Rogers \#6913-3 Type 3.24 volts d.c@ 65 amp .150 in . $\mathrm{lb} .+$ rque @ $2.5 \mathrm{rpm} .6^{1} 1^{\prime \prime} \times 4^{\prime \prime} 4 \frac{1}{2 \prime} 2^{\prime \prime}$. Wr. 4 lb . \#SA-391 \$19.50

ELECTRIC TURN AND BANK - Army Type C. 1. 24 volt d-c instrument size gyro in standard case $31 / 4^{\prime \prime}$ diam. $\times 6 \frac{3}{1 / 6^{\prime \prime}}$ long. May be modified for signal take-offs. Wt. 1 lb. \#SA-382 $\$ 24.50$

GEARHEAD DC SERIES REVERSIBLE MOTOR -
John Oster Type A-16B-26R. 26 volts d-c. Output shaft limited to two revolutions in either direction by cam operated G-E Switchettes. Pinion and worm gear used in gearhead. $41 / 2^{\prime \prime}$ long $\times 13 / 4^{\prime \prime}$ high $\times 3^{\prime \prime}$ wide. Shaft extends from top of gear. head $7 / 16^{\prime \prime}$ and is $1 / 4^{\prime \prime}$ diam. Wt. I lb. \#SA. 328 $\$ 9.50$

- AERIAL CAMERA MOUNT - Minneapolis-Honeywell \#A-158. 3-channel servo system with variable reluctance pendulous error sensing devices for deviation from vertical. Completely stabilized camera platform for roll and pitch with remote control of arimuth rotation. Packed in durable trunk type cases for semi-portable use. Supplied with all tubes, interfrom 24 volts $d-c$. Only one available. Wt. 109 lb . \#SA- $9 \ldots \ldots . .$. . $\$ 475$.
- CONVERSION TRANSMITTER - Eclipse-Pioneer \#PEX-29752. Consists of 2 major assemblies. One unit contains a complete magnetic amplifier assembiy and 115 volt 400 cycle inverter. Other unit consists of if synchro, servo motor with insegral rate generator, dial, plus gears and other components. Complete schematic available. \# \leqslant A-40B
$\$ 195$.
- MAGNEIIC AMPLIFIER ASSEMBLY - Removed from above Conversion Transmitter. Contains 12 SN7 electron tube, magnetic amplifier, plus other pransformers and components in shock-mounted case. \#SA-407 ... $\$ 39.50$

WRITE FOR LISTING Prices F.O.B. Hawthorne

Telephone: HAwthorne 7-3100

1086 GOFFLE ROAD
HAWTHORNE, NEW JERSEY
PRODUCTS CO.
ncorporated

HEAVY DUTY SWITCH

H\&H 4 P. D. D. T. Toggle Switch. 5 AMP. @ 250 Volt. 10 Amp.@ 125 Volt. Single $3 / 4^{\prime \prime}$ hole mount. Batl Handle
$\begin{gathered}\text { Stock } \\ 6203 \mathrm{~A}\end{gathered}$
$\underset{\substack{\text { Price } \\ \text { Each } \\ \$ 1.95}}{ }$

PULSE TRANSFORMER

For Navy I F F Responder, Jeff. Elec. No. 300362-I. Farnsworth No. 467-001-228. Navy No. N17-T 80105-2758. Available in large quantity.
Prices on request. PRICES BASED ON QUANTITY

D.C. GENERATORS

High voltage continuous duty fully enclosed D.C. Generator. Delivers 440 volts at 200 M .A. Motor driven by 3450 RPM motor (not fur. nlshed). Made to Navy Specs, for Collins Radio by Fractional Motors Co. Navy No. 2IJ220-C, Collins No. 231.0002.00. Brand New.
$\underset{\substack{\text { So. } \\ \text { Hock } \\ 6147 A}}{\substack{\text { price } \\ E x a c h}} \mathbf{\$ 1 5 . 0 0}$

SIGNAL CORPS \& NAVY TRANSFORMERS Over 200,000 transformers, chokes etc. For Signal Corps and Navy Equipment. Send us your requira. ments, or ask for our catalog listing by Signal Corps Numbers, DON'T DELAY!

G. E. heavy duty switch

Type SB-1. No. 6075 732-GI. 8 pole double throw. $1 / 4^{\prime \prime}$ contacts. $10 \mathrm{AMP}, 115 \mathrm{~V} 21 / 4^{\prime \prime} \times 3^{\prime \prime} \times 9^{\prime \prime}$ long. 3 hole panel mount. Moulded hakelite frame with heavy barriers between terminals.

ONAN GAS-DRIVEN GENERATOR 14 V-2500 WATT D.C. $\$ 225.00$
GAS DRIVEN LIGHT PLANT
125V 3 Phase 3 KVA 50-60 Cycle $\$ 395.00$
SWITCHBOARD BD74

Primary 115 Volt 60 Cyele 1600 Insulation Three 6.4 Volt Secondaries
6.3 Volts @ 4.9 Amps. 6.3 Volts $@ 4.5$ Amps.
6.3 Volts @ 1.1 Amps.

Stock No.
5254 A
Horizontal Half Shell Mounting. $21 / 4^{\prime \prime} \times$ $213 / 16^{\prime \prime}$ Mounting Centers, $213 / 16^{\prime \prime} \times$ $33 / 8^{\prime \prime}$ Core Size. $1 / 2^{\prime \prime}$ above Chassis. Soder Lug Terminals-All Terminals Marked.

JAN TUBES

OB3/VR90.	5.85	832A	\$8.50
OC3/VR105	. 85	836	3.00
3E29.	12.95	GL8002R	95.00
6 C 21.	12.95	9003.	1.00
204 A.	75.00	3BP1	5.95
368AS	7.00	5FP4	3.95
3718.	. 75	12GP7.	14.95

BASIC UNIT FOR RECEIVING SET
AN/CRW-2. Sig Corps No. 2Z.1508-2. Complete with 6 tubes and 28 volt dynamotor.

$$
\begin{array}{ll}
\text { Stock } & \text { Price } \$ \mathbf{E a c h} \$ 10.00 \\
\text { No. } 6249 \mathrm{~A} & \text { Eat }
\end{array}
$$

RADAR OSCILLATOR APR-5
Sig. Cr. Stk. No. 2C 2784. Used for tuning 1000 . 3100 Mg .

AN-109A ANTENNA
5. Whip with base in quantity. Per 100: \$95.00; $\$ 1.25$ EACH

POWER TRANSFORMER

Horizontal Double Half Shell Type. Pri.: 117 Voit-60 Cycle. Sec.: $265-0.265$ V.A.C. \& 40 Ma. Sec.: 6.3 V.A.C.@ 1.65 Amps. Mtg. Centers $21 / 2^{* \prime}$ $\times 2^{\prime \prime}$. H.V. Center Tap is grounded to core.

$$
\begin{array}{ll}
\text { Stock } & \text { Price } \$ 1.25 \\
\text { No. } 6183 & \text { Each }
\end{array}
$$

HIGH FIDELITY TRANSFORMER
P. P. 10,000 ohm to 250 ohm Line. Frequency Rosponse 30 to 20,000 C.P.S. plus or minus I DB. Grey Rectangular Case $3^{\prime \prime} \times 21 / 2^{\prime \prime} \times 35 / \mathbf{s}^{\prime \prime}$ high. Bottom Solder Lug Terminals, 4 Std Mtg. Bolts

$$
\begin{array}{cc}
\substack{\text { Stock } \\
\text { No. } 5792 \mathrm{~A}} & \begin{array}{c}
\text { Price } \\
\text { Each }
\end{array} \$ 3.50
\end{array}
$$

HIGH CURRENT FILAMENT TRANSFORMER
Primary 115 VAC 60 Cycle. Secondary 1.25 VAC at 100 Amp.

Stock
No. 5783 A
$\underset{\substack{\text { Price } \\ \text { Each }}}{\$ 5.00}$

. 01 MFD.-600 VOLT MICA CONDENSERS

Large quantitics available in both CM-35 and CM-40 case sizes. TOLERANCE

OLERANCE	PRICE PER
5%	1000
10%	$\$ 150.00$
20%	125.00
	100.00

SENSITIVE RELAYS

MIDGET TYPE RELAYS Automatic Electric Type R-45, 6500 ohm Coils, Stock No. Contacts M. A. Price Each ${ }^{1021529}{ }^{\text {b }}$ 102249 - 1 Norm, open-1 Norm, closed.

Same typs and style as above, but has 24 V.A.C. coil. Intermittent duty. Will operate S. ${ }^{6}$ S.V.D.C. Continuous duty. Contacts:

$$
\begin{array}{ll}
\text { Stock } & \text { Prich } \$ 1.25 \\
\text { No. } 102248 \& & \text { Each }
\end{array}
$$

RELAYS

LEACH TYPE 1204. D.P.S.T 1/4" Dian. Normally open contacts. Bakelite base D.C., 265 ohm Coil.

No. 6169 A

Prien
Each
1.95

ALLIED CONTROL TYPE BOX 60 D.P.D.T. $1 / /^{\prime \prime}$ Diam. Contacts. One Pole makes
before break. 9.6 V.D.C.. 40 ohm Coil.
Stock
No. 6170 A
Price
Each
$\$ 1.25$

STRUTHERS-DUNN. TYPE GIAXXIOO. S.P.S.T. Normally onen contacts rated at 20 amps @
24 V.D.C. 80 ohm, 24 V.D.C. Coil

Stock
No. 6171 A $\underset{\text { Erice } 754}{\text { Each }} \mathbf{4}$

TRANSMITTING MICAS

Stock		Test	Type	Price
	Cap.	Volts	No.	Each
5493A*	. 01	1000	1445	. 354
5494A	. 02	1000	144 T	. 40 d
5495A	. 006	1200	${ }^{\text {A2 }}$. 408
5496A	. 0001	1500	BE 15	.204
5498A	. 004	2500	4	.30
5499A	. 001	5000	F	$.60{ }^{\circ}$
5600 A	. 0036	5000	A2	51.00
${ }^{5601}{ }^{5} \mathbf{A}$. 150007	1000 V	XS	1.90
${ }_{5602 A}$. 00007	2500 V	3	. 90
5603A	. 000005	3000 V 5000 Y	15L	1.00
5605A	. 00008	5000 V	$\underset{\mathrm{F} 2 \mathrm{~L}}{ }$	1.00
5606A	. 000025	10,000		1.00
5607A**	00015	10.000	${ }^{\text {PL }}$ - 315	7.95
**Dupplied with Meter Bracket 7.95				
OTHER TYPES AND S				

OTHER TYPES AND SIZ
OTHER TYPES AND SIZES AVAILABLE

THORDARSON AUDIO PASS FILTERS

Fand pass 800 to 1200 cycles input 10000 o h m sOutput 25000 Ohms Level 10 DB

TERMS:
\Open Accounts to rated or
eference accounts. Others
左
I chandise subject to prior sale.
IORDER TODA

ALNICO FIELD MOTORS
(Approx. size overall)
Delco-Type 5069330: 27.5 volts; DC; 145 RPM
DELCO TYPE $\# 5069600: 27.5$ volts DC 250 RPM Motor Delco Type $=5069370$: 27 . PM Motor, Delco Type $\# 5069370: 27.5$ volt DC Alnico Field; 10,000 r.p.m.; dimension eter $0.125^{\prime \prime}$ " long; shat extension $4 / 2$, , $\$ 12.50$ PM Motor, Diehi Mfg. SS FDG-21; 27.5 volt, ${ }_{10}^{\text {DC Alnico Field; } 10,000 \text { r.p.m.; dimension }}$
 AC CONTROL MOTOR
Diehl Mifg. Co., FPE-25-7, 20 Volts, $2{ }^{2}$ ph 1600 RPM, 85 amps 2505: Volts 115 ; Cycles 60 ; RPM 60 ; Mfo HOLTZER CABOT ELECT. Approx. size

400 CYCLE MOTORS
PIONEER: TYPE CK5 2 Phase; 400 cycles EASTERN AIR DEVICES TYPE $\mathbf{\$ 3 5 9 A}: 115$ cycle. $1 \mathrm{~A} ; 7000$ r.p.m. Single phase 400 AIRESEABCH: $115 \mathrm{~V}, 40$ CPS; Single phase 6500 RPM; 1.4 amp; Torque 4.6 in.
 200 VAC; $1 \mathrm{amp} ; 3$ Dhase: 400 cycles, GASTERN AIR DEVICES, TYPE J31B: $115 \mathrm{~V}, 400-1200$ Cycle. Single Phase
 Phase, 400 Cycle, 2 H.P.; 11,000 RPM; 8 amps,
AREEARCH: AC Induction, 200.50 ea
Phase, 400 Cycle, 12 H.P., 6500 RPM: 1.5 Phase, 400 Cycle, .12 H.P., 6500 RPM. $1.001 .{ }^{2} 5.60$
amps.
Flectric Flectric Motor: PNT-1400-A1-IA Serial No. 207. 208 V., 400 cycles, 3 phase Kearfot
Co. Inc
Kit.50 ea SERVO MOTOR 10047-2-A; 2 Phase 400 Cycle; with 40-1 Reduction Gear $\$ 17.50$ eo. 17.50 ea
YNCHRON TELECHRON SYNCHRON OUS TMING MOTORE: 110
 orveratl
In lots of 10 or more In lots of 10 or more

SMALL DC MOTORS

DELLC0 \#5068750: constant speed: 27 VDC 160 RPM; bullt-in reduction gears and Jovernor OSTER: series. reversible motor; $1 / 50 \mathrm{th}$ H.P.: 10.000 RPM; $271 / 2$ VDC; 2 amps SPHRRY \#806069; approx. size $15 /{ }^{\prime \prime}$ " $\$ 7.50{ }^{31 / 2 \prime \prime}$ (Approx. slze... $4^{\prime \prime}$ long x $11 /{ }^{11}$ "dial.) DC: 5 amps. 8 oz. inches torque; 250 RPM shunt wound ; 4 leads; reversible $\$ 15.00$ 'an General Fectric. Mod. 5BA10FJ33; 12 oz inches torque, 12 V DC, 56 PPM , 1.02 amp General Electric-Type 5BA10A $\$ 152 \mathrm{C}$; ea
 GFNERAL ELECTRIC DC MOTOI $\$ 1.00$ Mod 5BA10AJ64. 160 r.p.m. ; $65 \mathrm{amp} ; 12 \mathrm{oz}$ - in torque: 27 V DCsi9.95 ea
 CFESTINGHOUSE
OVERE MN, adjustable from . 04 -. 1 amp. (1210991). Externa reset push button. Enclosed brated. NEW Low f'RICF

BLOWER

 Eastern Air Devices, $400-1200$ cycle; single phase; variable frequency; continuous hlower: approx. 22 cu BLOWER ASSEMBLY
115 Volt, 400 Cycle, Westinghouse Type FL. 17CFM, complete with capacitor.

SENSITIVE ALTIMETERS

Pioneer Sensitive altimeters $0-35,000$ ft. range calibrated in 100 's of feet. Barometric setting adjustment. No
hook-up recuired...\$12.95 ea.

INVERTERS

10563 LELAND ELECTRIC

```
Output; 115 YAC; &o0 cycle; 3-phase
amp......................
```

PE 218 LELAND ELECTRIC
Ontput: 115 VAC, Single Plase; PF 90 $380 / 500$ cycle 1000 RPM. Enput. Volts 27. 92 amps; 8000 RPM; Exc. Volts ${ }^{27.5 .}$

MG 153 HOLTZER-CABOT
Input: 24 V, DC, 52 amps; Output: 115 volts- 400 cycles, 3 -phase, 750 VA, and 26
Volt- 400 cycle, 250 VA. Voltage and fre-Volt- 400 cycle, 250 VA. Voltage and fre-
quency regulated PIONEER 12130-3-B
Output: $125.5 \mathrm{VAC} ; 1.15 \mathrm{amps}, 400$ cycle single phase, 141 VA. Input: $20-30$ VDC, 18-12 amps. Voltage and frequency regulated889.50 en Output: 115 VAC; 400 cyc; single phase; 45 amp . Input: 24 VDC $5 \mathrm{amp} . . . \$ 90.00$ ean.

10285 LELAND ELECTRIC
Output: 115 Volts AC, 750 V.A., 3 phase, 400 cycle, $.90 \quad \mathrm{PF}$, and ${ }^{26}$ voits, ${ }^{50}$ amps,
single phase, 400
cycle
40 PF. single phase, 400 cycle, 40 PF. Input: Voltage and Frequency regulated... $\$ 195.00$

10486 LELAND ELECTRIC
Output: 115 VAC; 400 Cycle; 3-phase; 175 Duty ….......................... $\$ 90.00$ ea.

TRANSFORMERS

SOLA

One KVA, 210-270 Volts, 240 Sec., 3-Phase \#30663
$\$ 175.00$

FILAMENT, Gen. Eiec. \#7455321: Primary $110 / 125$ Volts. Secondary 11 olts, 65 Amps , 975 KYA. Shipping wt. approx. 60 pounds. FILAMENT, AMERTRAN $=29048$: Primary 115 Volts, $50 / 60$ cycle. Secondary 5 volts,
 YARIABLE, AMERTRAN \#29144: 250 VA. $103-126$ commutator range, fixed windings,
115 volts, max. 2.17 anps........... $\$ 19.95$
plastic adhesive tape

Industrial-High Voltage Type Bauer \& Black No. 822 PolyKen Industrial Adhesive Tape. Measures ${ }^{3 / 2}{ }^{\prime \prime}$ wide- 7 yards
per roll. Rated 10,000 volts. Packed 8 rolls to the can $\$ 3.50 / \mathrm{can}$

Ten cans or more $\$ 3.00 / \mathrm{can}$

SCHWEIN REMOTE CONTROL DUAL GYRO
Free and rate gyro type DC constant speed gyros one operates horizontally. he othervertically. Vertical master gyro influences horizontal gyro position, which
ctuate a series of limiting in turn will actuate a series of limiting trical devices. Both gyros turn in excess of the $30,000 \mathrm{rpm}$. Size $8^{\prime \prime} \times 41 / 4^{\prime \prime} \times 41 / \mathrm{m}^{\prime \prime}$. Comes with metal cover.................. $\$ 22.50$ ea.

Immediate Delivery ALL EQUIPMENT FULLY GUARANTEED

All prices net FOB Pasadena, Calif.

PIONEER GYRO FLUX GATE AMPLIFIER Type 12076-1-A, complete with tubes ${ }^{2} 50$ ea

TACHOMETER INDICATOR

 SINGLESensitive Type, Kollsman Mark V; Range 0-3500RPM in $33 / 2$ revolutions of the Indicator and Generator Tuchometer Indicator and Botll $\$ 33.50$

G. E. GENERATORS

General Electric Type5ASB$31 . J J 3 ; 400$ cycles out at 115
volts: 7.2 amps; $8,000 \mathrm{rpm}$.: size $6^{\prime \prime}$ long x $6^{\prime \prime}$ dia. $\$ 9.50$ ea.

SINE-COSINE GENERATORS

Diehl Type FJE43-9 (Single Phase Rotor). Two stator windings 90° apart, provides two outputs equal to the sine and cosine of the angular rotor displacement. Input volt-
 Dieln Type FPE-43-1 same as FJE-4.9-9 except volts with 115 volts applied to rotor …................. $\$ 25.00$ ea. Arma Resolver Type 213014; equal in size to size 5 synchro; 55-60 cycle; single phase primary, 2 phase secondary.
GENERATORS
Eclipse-Pioneer: 716-3A (Nayy Model NEA 3A) OUTPUT: 115 VAC; 10.4 amps; 800 ycle; single phase; 28.6 VDC; 60 amps (© 400 rpm; spline drive; self exciting; wt B0\#AND NEW in original box.... $\$ 39.95$ ea.

SYNCHRONOUS

SELSYNS

110 volt, 60 cycle
 Mig. by Dieht and Bendix. Quantities Available.
 REPEATERS

SYNCHROS

IF Special Repeater ($115 \mathrm{~V}-400$ Cycle)
JIF 3 Generator ($115-400$ cyc.) $\$ 1.00$ ea. JIF 3 Generator (115-400cyc.).... 10.00 ea. Cyc .. -60 cyc.) . $\$ 60.00$ sG Genterator ($115 / 90$ volt- 60 cyc . $\$ 50.00$ ea. 5/DG Differential Generator ($90 / 90$ volts TRANSMITTER, BENDIX C-78248: 115 Yolt, 60 Cycle.00 en. Differential-C-78249; 115 Volt; 60 Cycle REPEATER, BENDIX C-78410; 115 Volt, REPEATER. AC synchronous j15. Vo ea. ycle C- 88863 115.00 ea.
 GG Synchro Generator ($115 / 90$ voll 60 60cle Synchro Diferential Generator $\begin{array}{r}60.00 \\ \hline 60 / 90\end{array}$ olt: 60 cycle) olts: 60 Cycle..........................50.00 D5J2 Selsyn Motor: $115-90$ Volts; $60{ }^{\mathrm{cyclog}}$ ${ }_{50}$ JDSHAL Selsyn Generator: 115-105 Volts 2JF1 GENERATOR: $115-57.5$ Volt; 400 2JIIIOMFFERENTIALGENERATOR: 57.5
 57.5 Volt 400 cycle............. $\$ 7.50$ ea

PIONEER AUTOSYNS

 86.05 $\$ 8.95$
 .$\$ 25.50$ $\$ 1.95 \mathrm{ea}$
 AY6026 Volt- 400 cyc............. $\$ 1.95$ ea.

 AY $20-26$ voit- 400 cyc................50 12.50.

PIONEER TORQUE UNITS
TYPE 12604-3-A: Contain CK5 Motor coupled to output shaft through $125: 1$ gear resyn. follow-up (AY43). Ratio of output siraft to follow-up Autosyn is $15: 1$. $\$ 70.00$ ea. TYPE 12602-1-A: Same as 12606-1-A except it has a $30: 1$ ratio between output ghaft TYPE 12602-1-A: Same as 12606-1A ea. cept it has base mounting type cover for cept it has base mounting type coyer for
motor and gear train.............. MICROPOSITIONER
Parber Colman AYLZ 2133-I Polarized D.C. Relay: Double Coil Differential sensitive, Alnico P. M. Polarized field. 24 V contacts synchronizing, control, etc. $\$ 12.50$ ea.

\section*{Reliance

GEAR ASSORTMENT

HAYDON TIMING MOTOR R.P.M., 115 V., 60 Cycle.

TIMING MOTOR
8 RPM 115 V 60 cye
E. Ingraham Co.

400 CYCLE INVERTERS
Leland Electric Co.
 $\begin{array}{cccccc} & 3 \text { AG FUSES } & & \\ \text { Amp. Per } 100 \text { Amp. Per } 100 & \text { Amp. Per } 100\end{array}$

				Am	er
1/8.	\$4.00	$\begin{aligned} & 3 / \\ & 1 . \end{aligned}$	4.00 3.00	8	\$3.00
3/8	4.00	4	3.00	10	3.00
1/2	4.00	5	3,00	15	3.00
	3 AG				

	BALL BEARINGS			
Mfd, No.	ID	OD	Thick	Price
MRC5028-1	$51 / 2$	$61 / 2$	1	\$3.75
MRC7026-1	5 5/64	$615 / 64$	$9 / 16$	3.50
MRC106M2	$117 / 64$	$27 / 16$	25/64	1.75
MRC106M1	$113 / 64$	$27 / 16$	25/64	1.60
Federal LSI1	$11 / 8$	$21 / 2$	5/8	1.75
Norma SilR	$11 / 8$	$21 / 8$	$5 / 8$	1.70
Federal AS41	$11 / 16$	$11 / 2$	9/32	1.50
Schatz	$3 / 4$	$13 / 4$	$9 / 16$	1.00
Norma 203S	$5 / 8$	$19 / 16$	7/16	. 90
ND5202-C13M	1/2	$13 / 8$	$13 / 8$	1.00
ND 3200	25/64	15/32	1 11/32	1.60
ND R6	3/8	7/8	7/32	. 40
MRC39R1	11/32	$11 / 32$. 45
MRC38R3	S/16	55/64	13/32	45

NEEDLE BEARINGS
TORRINGTON $1: 1081 / 2^{\prime \prime}$ wide $\quad 5 / 3^{\prime \prime} \quad 13^{\prime} 6^{\prime \prime} \ldots \ldots .30 c$
Brand New Meters-Guaranteed

SELENIUM RECTIFIERS

Full Wave 200 MA 115 V .
Half Wave 100 MA 115 V .

OUND POWER HANDSET brand new
Includes 5 ft t. cord,- Uses no batteries or external power source.
Sound Powered Chest setred
With 24 Ft . Cord Per Pair USED $\$ 17.60$

10 nimi to 820 mm
$.001 \mathrm{mml}^{\mathrm{m}}$ to .0016 .

SILVER MICAS								
mmi	mmi	mmi	minf	mmf	mmf	mid	mfd	mid
10	50	100	170	360	510	001	. 0024	0047
18	51	110	180	370	525	. 0011	. 0025	. 005
22	56	115	208	390	560	0013	. 0027	. 0051
23	60	120	225	400	570	. 0015	. 0028	. 0056
24	62	125	240	410	680	. 0016	. 003	. 006
25	66	130	250	430	700	. 0018	. 0033	. 0068
27	$\underline{68}$	135	255	470	800	. 0022	. 0039	. 0082
30	75	150	260	488	900	. 0023	. 004	
40	82	155	270	500				
Price Schedule								
10 mmf to 700 mfd . $10 ¢$								
. 0011 mfd to 002 mfd . 20.								

PULSE TRANSFORMERS
 KS8696, KS9800 KS9862, KS13161 D161310 GENERAL HLECTRIC-80-G-5
JEFFERSON ELECTRIC-C-12A-1318 $\begin{array}{ll}\text { DINION COIL-TR1048 } \\ \text { also 352-7250-2A; } & 352-7251-2 A ; ~ T R 1049 \\ \text { T-1229621-60 }\end{array}$

AN CONNECTORS
See Our Ad February, 1953 Electronics PHONE! WIRE! WRITE! YOUR NEEDS

\section*{Speciald

Speciald
 COAXIAL CABLE CONNECTORS yan

*Split Locking Bushing $\$ 1.2 \mathrm{~S}$ EACH

Ohms	Shaft	Ohms	Shaft	Ohms	Shaft
1000	S.S.	$30 \mathrm{~K}-10 \mathrm{~K}$	$3 / 8^{\prime \prime} \dagger$	1 Mreg.	$1 / 2^{* \prime}$
10 K	$5 / 10^{\prime \prime}$	$3 \mathrm{~K}-90 \mathrm{~K}$	$1 / 4^{\prime \prime}$	1 Meg.	S.S.
15 K	S.S.				

PRECISION RESISTORS-] WATT-454
MEGOHM 1 WATT $1 \%-\$ 1.50 ; 5 \%-60$ द
PRECISION RESISTORS- 2 WATT- 75
$\begin{array}{lrrrr}4,385 & 6,000 & 19,917 & 25,000 & 80.000 \\ 5,000 & 10,000 & 23.000 & 65,000 & 100.000\end{array}$

```
DIFFERENTIAL Used $4.95
```

DIFFERENTIAL Used \$4.95
15 V.60 Cycle New \$9.95
15 V.60 Cycle New \$9.95
lol
lol
converted to 3600 RPM Motor in 10 minutes. Con

```
    converted to 3600 RPM Motor in 10 minutes. Con
```



```
    ferentials shown above .......................35c pai
```

 ferentials shown above35c pai
 | | OIL FILLED CONDENSERS | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| MFD | V.D.C. | Price | MHD | V.D.C. | Price |
| 5.2 | 50 | \$0.35 | 25 | 3,000 | \$2.25 |
| 6 | 400 | . 85 | | 3,600 | 3.95 |
| 3×3 | 400 | 1.00 | 3 x . 2 | 4,000 | 2.50 |
| 4 | 500 | . 85 | 2 | 4,000 | 7.95 |
| 4-4 | 500 | 1.30 | 3 | 4,000 | 10.95 |
| 8 | 500 | 1.35 | 01 | 5,000 | 95 |
| 1 | 600 | . 45 | .01-.03 | 6,000 | 1.40 |
| $3^{5-.5}$ | 600 | . 40 | .03-.03 | 6,000 | 1.50 |
| 2 | 600 | . 80 | | 6,000 | 9.95 |
| 4 | 600 | 1.63 | .02-. 02 | 7,000 | 1.55 |
| 8 | 600 | 2.05 | . $02-.03$ | 7,000 | 1.60 |
| 10 | 600 | 2.95 | . 1 | 7,000 | 1.95 |
| 4×3 | 600 | 1.75 | . $1-1$ | 7,000 | 2.25 |
| $8-8$ | 600 | 1.79 | . 1 | 7.500 | 2.25 |
| 1 | 800 | . 60 | . $3-3$ | $\bigcirc 8000$ | 4.50 |
| 1 | 1,000 | 75 | . $075-075$ | 8.000 | 1.85 |
| 2 | 1,000 | . 95 | . 15 - - 15 | 8,000 | 2.95 19.95 |
| 3 | 1,000 | 1.70 | . 25 | 20.000 | 19.95 |
| 8 | 1,000 | 2.75 | | | |
| 8 | 1,000 | 3.25 1.45 | CA | | - |
| . 02 | 2,000 | . 65 | | | |
| , 1-. 1 | 2.000 | 1.30 | 1 | | |
| $3^{1-.5}$ | 2,000 2,000 | 1.65 3.75 | | | |
| 8 | 2,000 | 7.95 | | | |

```
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{OIL FILLED A.C. CONDENSERS} \\
\hline MFD & V.A.C. & Price & MFD & V.A.C. & Price \\
\hline 2 & 750 & \$0.69 & 15 & 440 & \$6.25 \\
\hline 8 & 660 & 7.50 & 4.4 & 375 & 2.15 \\
\hline 6 & 660 & 5.95 & 25 & 330 & 7.50 \\
\hline 5 & 660 & 5.45 & 20 & 330 & 6.75 \\
\hline 4 & 660 & 4.95 & 4 & 330 & 2.25 \\
\hline 3 & 660 & 4.45 & 3 & 330 & 1.45 \\
\hline 2.9 & 660 & 4.35 & 1.75 & 330 & . 85 \\
\hline 2 & 660 & 3.95 & 20 & 220 & 4.95 \\
\hline 1 & 660 & 2.95 & 7.5 & 220 & 2.00 \\
\hline \multicolumn{6}{|l|}{1N34 Crystal Diode} \\
\hline \multicolumn{6}{|l|}{Dynamotor DM 33A. . . . . . . . . . . . . . . . . . . . . \(\$ 3.75\) өa.} \\
\hline \multicolumn{6}{|l|}{Chokes: 30 Hy , 80MA @ ... \$1.29; 6HY, 80 MA @ ...79c} \\
\hline \multicolumn{6}{|l|}{Power Tap Switch-OPDIITE (\#312-5 Taps) nonshorting 25A 150 V . A.C.} \\
\hline \multicolumn{6}{|l|}{Timer-Industrial Timer Corp. 15 min . on 15 min . off continuous 115 V. A.C. Fully cased Plugs into octal socket} \\
\hline \multicolumn{6}{|l|}{BC 221 FREQUENCY METER. ................. \(\$ 80.00\)} \\
\hline \multicolumn{6}{|l|}{\[
\text { 2J1G1 SELSYNS } \$ 8.95
\]} \\
\hline \multicolumn{6}{|c|}{400 CYCLE BRAND NEW} \\
\hline
\end{tabular}

Minimum Orders \$3 All orders \(\mathbf{\ell} .0 . \mathrm{b}\). PHILA., PA.

\title{
RELLALNCE Merechacorzure co.
}

Arch St., Cor. Croskey Phila. 3, Pa. Telephone Rittenhouse 6-4927

\section*{NEW YORK' RADIO TUBE SECEXCHANGE}






\footnotetext{

Minimum Order \(\$ 25.00\)
}

\section*{MICROWAVE TEST EQUIPMENT TS148/UP SPECTRUM ANALYZER}

Field type \(X\) Band Spectrum Analyzer, Band 84309580 Megacycles.

Will check Frequency and Operation of yarious \(X\) Band equipment such as Radar Magnetrons, Klystrons, TR Boxes. It will also measure pulse width, \(c-w\) spectrum width and \(Q\) or resonant cavities. Will also check frequency of signal generators in the \(X\) band. Can also be used as frequency modulated Signal Generator etc. Available new complete with all accessories, in carrying case.

Also available of new production TS239A Synchroscope.

\title{
Other test equipment, used checked out, surplus.
}

TSK1/SE K Band Spectrum Analyzer
TS3A/AP Frequency and power meter \(S\) Band RF4A/AP Phantom Target \(S\) Band TS10/APN Altimeter Test Set TS12/AP VSWR Test Set for X Band TS13/AP X Band Signal Generator TS14/AP Signal Generator TS15/AP Flux Meter
TSI6/AP Altimeter Test Set
TS19/APQ 5 Calibrator
TS33/AP X Band Power and Frequency Meter TS/34AP Western El Synchroscope
TS34A/AP Western El. Synchroscope

T35/AP X Band Signal Generator
TS36/AP X Band Power Meter TS47/APR 40-400 MC Signal Generator TS69/AP Frequency Meter 400-1000 MC TS 100 Scope
TS102A/AP Range Calibrator
TS108 Power Load
TSllo/AP S Band Echo Box
TS125/AP X Band Power Meter TS126/AP Synchroscope
TS147 X Band Signal Generator
TS251 Range Calibrator APN9
TS270 S Band Echo Box

TSI74/AP Signal Generator TS175 Signal Generator TS226 Power Meter TS239A Synchroscope

\section*{SURPLUS EQUIPMENT}

APA10 Oscilloscope and panoramic receiver APA38 Panoramic Receiver APS 3 and APS 4 Radar APR5A Microwave Receiver APT2 Radar Jamming Transmitter APT5 Radar Jamming Transmitter
```

MINIMUM ORDER
25 Dollars

SPECIAL

Wide Band S Band Signal Generator 2700/3400MC using 2 K41 or PD 8365 Klystron, Internal Cavity Attenuator, Precision individually calibrated Frequency measuring Cavity. CW or Pulse Modulated, externally or internally.

Large quantities of quartz crystals mounted and unmounted.
Crystal Holders: FT243, FT171B others.
Quartz Crystal Comparators.
North American Philips Fluoroscopes Type 80.
Large quantity of Polystyrene beaded coaxial Cable.

Headquarters for
 MIEROWAVE TEST EQUIPMENT

- the widest assortment, the strongest depth and the most immediate availability of any scurce on test equipment.

Of special interest to American industry is the wide attention given inquiries for lest equipment now no longer available. Our greatly expended facilities, our library of original tech manuals and engineering notes, and our experienced personnel provide the medium for rapid delivery of recreated pieces ol test equipment. S-Band, X-3and, and K-Band equipments are offered in paczaged farms to interested laboratories. Some 20 pieces of equipment are now being manufactured in their entirety in our shops; the balonce of material listed below is generally refurbished and recertified equipment, absolutely checsed-out and sold with a money back guarantee.

TS-3.VAP	T5-51/APG-4	TS-147/UP				
TS88 ${ }^{\text {P }}$	TS.56/AP	TS-148/UP*	TS-968B/U TS-279	AN/APA-A AN/APA-10	$\begin{aligned} & \text { I-186 } \\ & \text { l-198A } \end{aligned}$	$\begin{aligned} & \text { BC-959-TU } \\ & \text { BC-1060 } \end{aligned}$
TS-10A, APN-1	T5-69/AP	TS-155*	TS-293	AN/APR-4	1-208/ ${ }^{\text {- }}$	BC-1203
TS-71/LAP	TS-65A/FM2-1	TS-159/TPX	TS-294/U	l-56 ${ }^{\text {a }}$	1-219	BC-1236/A
TS-1 ${ }^{*}$	T5-69A	TS-170/APM-5	TS.303	1-86A	1-292/A	BC-1236/A
TS-1\%	TS-90	TS-173/UR	TS-393	1-95/ A	1-292/A	BC-1277 ${ }^{\text {BC-1287/A }}$
TS-14	T5-92	TS-174/U	TS-359/AU	1.97A	-224A	$\begin{aligned} & \text { BC-1287/A } \\ & \text { SCR-592 } \end{aligned}$
TS-15 $/$ /AP	TS-96/TPS-1	TS-175/U	TS-377/U	1-100	1-245	AS-23/AP
TS -19 APN	TS-98/AP	TS-189/UP	TS-418	[-117	[E-1]	AS.48/AP
TS-18	T5-100/AP	TS-184/AP	TS.419	I-106A	IE-21/A	AS.48/AP
TS-2	TS-101	TS-197/CPM-4	TS-490B/U	1-122	E-21/A	AT-39/AP
TS-2-	TS-102	TS-203/AP	TS-421/U	1-223A	/F-19/C	AI-68/UP
TS-2m TSM-1	55-108	TS-204/AP	TS-460/AU	1.130 A	IS-185	ME-6/
TS-9\% TSM	TS-110	TS-205/AP	TS-465/U	l-135E	BC-921	OS-1/U
TS-32DTRC-1	TS-111/GP	TS-210/MPM	TS-480/U	1.139 A	BC-271	TSX-4SE
TS-31, AP	TS-117/GP	TS-290/TSM	TS-487	-1.140A	BC-376	TVS.ASE
TS-34AP	TS-118/AP	TS-233/TPN	TS-505/U		BC-438	TVN-rSE
TS-30, AP	15-125/AP*	TS-251/UP	TS-589/U	-147	BC-638 ${ }^{\text {B }}$ - ${ }^{\text {d }}$	
TS 30. TSM-1	TS-127/U	TS-250/AP陆	TS-615/U	l-168	BC-906/D	
TS 45.APN-3	TS-131/AP]	TS-257/AW?	TS.617/U	-168	BC.918B	
TS-4T, APR	TS-144/TRC-6	TS-266A; $A^{\text {? }}$	AN-5841	-1778	$\begin{aligned} & \text { BC-923/A } \\ & \text { BC. } 949 / \mathrm{A} \end{aligned}$	

BEFORE SELLING YOUR IDLE TEST EQUIPMENT... please get our offer WESTON LABORATORIES IMCORPORATED
 WESTON 93, MASS.
 Cable: WESLAB Tel: Boston: WE 5-4500

SEE OUR PREVIOUS ELECTRONICS ADS FOR LISTINGS OR WRITE FOR CIRCULARS

TELEPHONE TYPE RELAYS

These relays have been standardized so that These relays have been standardized so that be interchanged without affecting adiustments. A wide variety of applicable combinations are thus possible from a comparatively small number of relays.

Listed below are frames and coils from our stock. They may be purchased separately However, a complete relay consists of coil and frame. In ordering complete relays specify which coil with which frame, i.e.: Fl0l with Kll7.
Representative completed relays are also listed with voltage and current ratings. Values are indicative of sensitivity that may be expected from similar combinations.

07 COOK, $3-6 \mathrm{VDC}, 6$ make, $\frac{1}{6}$ break (5As. 3.95 CLARE, 6500 ohm, $8 \mathrm{maDC}, 3$ makes (3 A s)
 CLARE KIO1, 6500 ohm, SPDT, 2 ma DC.

FRAMES
Stock

Stock No.	Contacts	Price each	Stock No.	Contacts	Price each
F101	1A	1.25	F111	1B, 2A	1.75
F102	2A	1.50	F114	1B, 3A	2.00
F103	3A	1.75	F108	1B, 1A, 1C	2.00
F104	4A	200	F107	2B, 1A	1.75
F105	5A	2.25	F112	2B, 2A, 2C	3.00
F106	1A, 1B	1.50	F118	2B, 5A, 1C	3.25
F107	1A, 2 B	1.75	F113	5B, 2A	275
F108	1A, 1B, 1 C	2.00	F121	5B, 1C	275
F109	1A, 1C	1.75	F122	1 C	1.50
F110	1A, 2C	225	F123	2 C	2.00
F111	2A, 1B	1.75	F109	1C, 1A	1.75
F112	$2 \mathrm{~A}, 2 \mathrm{~B}, 2 \mathrm{C}$	3.00	F116	1C, 4A	2.50
F113	2A, 5 B	2.75	F117	1C, 5A	2.75
F114	3A, 1B	200	F121	1C, 5B	2.75
F115	3A, 2C	2.75	F110	2C, 1A	2.25
F116	4A, 1C	2.50	F115	$2 \mathrm{C}, 3 \mathrm{~A}$	275
F117	5A, 1C	275	F108	1C, 1A, 1B	200
F118	5A, 2B, 1C	3.25	F118	1C, 5A, 2B	3.25
F120	1 B	1.25	F112	$2 \mathrm{C}, 2 \mathrm{~A}, 2 \mathrm{~B}$	3.00
F106	1B, 1A	1.50			

FRAMES WITH MICROSWITCH
F125 1A, 1C (Microsw.) 1
$\mathbf{A}=$ Normally Open; $\mathbf{B}=$ Normally Closed $; \mathbf{C}=$ Double Throw.

Al 8258 BENDIX (Cook 102) 8-12 VDC, CoD per Slug, Slow Release, SPDT. 200 ohm. R5229AI AUTOMATIC 6VDC, 3PST n. 0.
(3As). 75 ohms, Slow Release, \#412........ R502IAI AUTOMATIC 1300 ohm, 20 maDC . SPST n.c. (1M), \#1413......................

2.49 2.50

KOVAR GLASS TO METAL SEALS HIGH-VOLTAGE FEED THRU क

最 3
Many types and sizes. Send us your blueprint or oribinal factory cost.
shmile kit
96 Seals (8 ea 12 types)
LAl: KIT
300 Seals (20 types)
500
15^{00}
postpaid
postpaid
in USA

H-F TIE POST

Low-loss Melamine Insula $4-40$ Thread). $\ldots .7 .50$ / $\$ 67.50 / \mathrm{M}$

FERRULE AND OTHER WIRE WOUND RESISTORS
at a fraction of MANUFACTURERS' ORIGINAL COST!

IMMEDIATE DELIVERY

From Our Wide Assortment from 0.2 to 15 Megohms

ENAMEL • GLASS FIXED - ADJUSTABLE

Nery and in Perfect Condition. Nearly all made to JAN Specifications.
Send us your requirements. We have 250,000 wire mound resistors in a large variety of sizes in stoch

SELENIUM RECTIFIERS

Full-Wage Bridge Types

GURRENT (Continuons)	18/14 Volts	$\begin{aligned} & 36 / 28 \\ & \text { Volts } \end{aligned}$	54/42 Volts	$130 / 100$ Volts
1 Amp.	\$1.25	\$220	\$3.60	\$8.95
2 Amps.	220	5.60	6.50	10.50
$2 U$ Amps.				13.00
4 Amps.	3.75	6.75	8.75	
5 Amps.	4.95	7.95	1295	27.00
6 Amps.	5.50	9.00	14.00	36.00
10 Amps.	6.75	1200	20.00	45.00
12 Amps.	8.50	16.00	25.50	5250
20 Amps.	13.25	24.00	36.00	90.00
24 Amps.	16.00	31.00	39.50	98.00
30 Amps.	18.50	36.00		
36 Amps.	25.50	45.00		

TERMS:-All Prices F.O.B. Our Plant. Rated Firms Net 10 Days. All others Remittance with Order. Orders Under $\$ 10$ Remittance With Order, Plus Approximate Shipping Charges (overage will be returned.)

A.C. SOLENOIDS

GUARDIAN No. 1: 24

GUARDTAN No. 4: 115 VAC, 133 ohms $1 /$ to $^{11 / 8^{\prime \prime}}$ stroke, 14 oz.-in. \#R 805.95
GUARDIAN No. 4: 115 VAC, Irtermittent Duty, 49 ohms $1 / 8 "$ to $11 / 3 "$ Stroke, 2 1b.ALLEN BRADLEY BULLETIN 860, 110 VAC, $1 / 8$ to $1^{\prime \prime}$ stroke, 2 lb-in pull; \#R942
WARD LEONARD N83 CONTACTOR; 110 VAC, Heavy Duty. $8 \mathrm{lb}-\mathrm{In}$ stroke; \#R233

UNIVERSAL $110 \boldsymbol{A C}$. ${ }^{\text {B-lb. }}$
 universal type 1109. 110 V AC, Intermittent duty, $12-\mathrm{-lb}$.

D. W. DAVIS MINIATURE
 D. W. DAVIS MINIATURE

LEACH 980 , lloy ac inter.

AMPERITE THERMOSTATIC

dELAY RELAY

Amperite Thermostatic Delay Relaysare actuated my a heater AC. can therefore be used on Being hermetically sealed Amperite Relays are not affected by altitude, moisture, or other atmospheric conditions. At the present time only SPST is avallable - normally open or normally closed
4.00 each Avallable in voltage ratings of

NET $2.5,5,6.3,12,26$ and 115 volts. 2.40 each as follows: $2,3,5,10,15,20,30$, $45,60,75,90$ and 12θ seconds. Most types from stock. When ordering specify: Voltage-Delay in Seconds-Open or

SEARCHLIGHT SECTION

COMMUNICATIONSEOUIPMENTCO.

MICA CAPACITORS					
MFO.	Price	MFD.	Prica	MFD.	Price:
:015	\$0.85	:0025	. 60	.0077	. 80
. 02	. 85	.0027	. 60	.0088	.80
.091	. 68	-000	. 60	. 00005	. 60
.0015	. 60	-005	.60	. 00085	. 60
${ }_{0}^{0} 022$. 60	${ }^{00656}$. 60		Many
. 0023	. 60	.0063	. 60		
CM-55-2500 V. TEST					
$\mathrm{MFO}_{\text {O }}$	Price	MFD.	Price	MFD.	Price
-000025	\$0.29	:0015	. 35	:075	1.79 1.79
-00003	. 29	- 0016	. 35	. 008	1.79
-00005	. 29	${ }^{\text {- }}$. 35	. 017	1.10
-0001	-29	-0023	-50	:02	1.10
. 000015	. 29	. 003	. 50	. 025	1.10
.000025	. 29	.096	1.79	. 027	1.10
:0003	-29	.005	1.79	. 03	1.10
. 0005	. 35	:0063	1.79	5000	
.00075	. 35	.0069	1.79	. 0015	
.0003	. 35	. 007	1.79	. 002	2.00

UNIVERSAL SUPPLY KIT

Dolivers $230 \mathrm{~V} @ 40 \mathrm{MA}$ DC. From $110 / 220 \mathrm{VAC} 60 \mathrm{CY}$.
Rit Consists of $1-\mathrm{PW}$ Transformer, $1.5 \mathrm{HY} @ 40 \mathrm{MA}$

INTERPHONE TRANSFORMER SET

12-14V SUPPLY KIT

Delivers 12.14VDC at 3.5A from 1115 V , 60 cy ., KIt contains i-Transformer
i-Seienium Rated $18.5 v, 4 A, ~ \$ 6.95$

24 VOLT TRANSFORMERS
For operating surplus gear, toy trains, gad
gets, etc. Operates from lisV 60 cy, plliee 24 vats, otc. Operates from $115 \mathrm{~V}, 60$ cy.: sup-
and cased,........ A Amp, horm. sealed Buy at Only $\$ 1.49$

RECTIFIER TRANSFORMERS

Pri: $115 \mathrm{~V}, 60 \mathrm{Cy}$. Sec: $28 \mathrm{~V} / 3.1 \mathrm{~A}, 26 \mathrm{~V} / 8.4 \mathrm{~A}$ Pri. 210/215/220/225/230/235/240V, 60 Cy., I Phase SBc: $11 / 10 / 7.5 / 5 \mathrm{VCT}$ @ 35A................... $\$ 19.50$

FLEXIBLE COUPLING SHAFTS

CIRCUIT BREAKERS

$\begin{array}{cc} 23 & \text { (ALL L } \\ 29 & \\ 39 & \\ 52 & \end{array}$	GTHS			175 205 241 348
SELENIUM RECTIFIERS-Full-Wave Bridge Types				
(contrinuous)	18/14		51/42	${ }_{\substack{130 / 200 \\ \text { volts } \\ \text { cit }}}$
1 Amp .	51.25	52.10	53.60	57.50
2 Amps .	2.20	3.60	6.50	10.50
$23 / 1 \mathrm{Amps}^{\text {d }}$	\ldots	13.00
4 Amps.	3.75	.	8.75	…
SAmps.	4.95	7.95	12.95	27.00
6 Amps.	5.50	9.00	14.00	33.00
10 Amps.	6.75	12.00	20.00	40.00
12 Ampss .	8.50	16.00	25.30	50.00
20 Amps.	13.25	24.00	36.00	90.00
24 Amps.	16.00	31.00	39.50	98.00
30 Amps.	18.50	36.00	\cdots	\ldots
36 Amps.	25.50	45.00		
POWER TRANSFORMERS				

Comb. Transiormers-115V $/ 50-60 \mathrm{cps}$ Input CTJ5-2-600VCT/.2A, $5 \mathrm{~V} / 6 \mathrm{~A}$

$$
\begin{array}{ll}
\text { FT-674 } & \text { 8.1VC Test. } \\
\text { FT- } 157 & 1 V / 16 A, 2.5 \mathrm{~V}
\end{array}
$$

Item	Special Plate Pri. Volts	Transformers- 60 cps Secondaries	Price
STP-613	230 V	$230 / .05 A_{2} 230 \mathrm{~V} / .05 \mathrm{~A}$	\$1.79
STP-409	$220 / 440 \mathrm{~V}$	$136 \mathrm{VCT} / 3.5 \mathrm{~A}$	5.69
STP-815	240/440, 3ph	1310V/.67A. 6KV Tes	27.50
STP-129	230 V	3850V/3.12KVA	42.59
STP-823	137 V	222VCT/.3A	2.35
STP-08B	50 V	2x750V/.001A	1.79
STP-622	210/220/230	$5000 \mathrm{~V} / 1 \mathrm{~A}$	59.75
STP-945	210/220/230	550-0-550V/.3A	5.95
	Special Comb. Transformers-60 cps	. Transformers-60 cps	Price
STC-16A	220 V	260V/-03A, $100 \mathrm{~V} / 1 \mathrm{~A}$,	
		$6.3 \mathrm{~V} / 4.2 \mathrm{~A}$	4.69
STC-609	220 V	220V/3A	6.95

 DYNAMOTORS

PHASE-SHIFTING HELMHOLTZ COILSO-360 DEGREESBLEORE RESISTOR.	

$\begin{array}{ll}\text { Stock } & \\ \text { CH-776 } & 1.28 \mathrm{H} / 130 \mathrm{MA} / 75 \text { Description }\end{array}$
$1.28 H / 135 \mathrm{MA} / 1200 \mathrm{~V}$ Test.
$10 \mathrm{H} / 15 \mathrm{MA}-850 \mathrm{ohms}$ DCR
$20 \mathrm{H} / 300 \mathrm{MA}$
$15 \mathrm{HY} / 15 \mathrm{MA}-400 \mathrm{ohms}$ DC
6H/80MA- 310 ohms DCR
$2 \times 5 \mathrm{~F} .5 \mathrm{H} / 400 \mathrm{MA}$

Dual 1.75-. 125 H Y 100 MA
1 HY .110 A.

10000 HY 0 MA.
2.2 HY 80 MA
2.2 HY 80 MA.
$2 \times 1.52 \mathrm{H}$ ®. 167 A

Mult. Choke ${ }^{\text {SECT}}$ 1. Swing 3-12H/.52-.05A
SECT. 2. Smootth 5H/.52A
SECT. 3 . Swing 3.25-18H/.138-014A

INTERPHONE AMPLIFIER
Easily converted to an Ideal Inter.
Communications set ser for
ofice,
home

MAIL ORDERS PROMPTLY FILLED. ALL PRICES F.O.B. NEW YORK CITY. SEND M.O. OR CHECK. ONLY SHIPPING SENT C.O.D.
RATED CONCERNS SEND P. O. ALL MDSE. SUBJECT TO PRIOR SALE, AND PRICES SUBJECT TO CHANGE WITHOUT NOTICE.
PARCELS IN EXCESS OF 20 POUNDS WILL BE SHIPPÉD VIA CHEAPEST TRUCK OR RAILEX.

COMMUNIC
 PULSE EOUIPMENT
 H/I-Volt Pulse Bulkhead. Feedthru. Fits UG-38 Connector- ${ }^{\text {as }}$ APQ-13 PULZE MODULATOR. Ipulse Wiath 5 to 1.1 Micro Sec. Red. rate 624 to 1348 PDs Pk. Pwr out 35 KW Energy rate 0.018 Joules.
 TPS. 3 PULSE MODULATOR. Pk. power 50 amp 24 KW (livo KW pk) ; pulse rate 200 IPIS. 1.5 microsec. puige line impedance 50 ohms. Circuit series charging version of DC Ihesonance type. Uses two $705-A^{-s}$ as rectiner tubes
 \qquad

PULSE TRANSFORMERS

G.E. स K2731 Redetition Rate: 635 PPS . Pri. Imd: 50 Olims, Sec. Imp: 450 Ohms, I'ulse Width: 1 28 KV PK. Peak output: $800 \mathrm{KW} \begin{gathered}\text { Bittar } 2.75 \\ 565.00\end{gathered}$ U-10198 Pri: $4-5 \mathrm{KV}, 97 \mathrm{~A}$ PK Sec: $18 \mathrm{KV}, 26 \mathrm{~A}$, PRR166173. Cy. Duration 1.3 usec.................... 2ג1C ... $\$ 12.50$ G.E.K.-2745
. $\$ 39.50$
G.E.K.-2744-A. 11.5 KV Migh poltage. 3.2 KV Low voltage (め2 200 KW oper. (2\%0 KW num.) 1 microsec.
or 1 microsec. @ 600 PI'S.................... $\$ 39.50$ W.E. Dig927I Hi Volt input pulse Transformer. . $\$ 27.50$ G.E. K2450A. Will receive $13 K \mathrm{~V} .4$ micro-second pulse Kin pric secondary delivers likV. Peak power out 100 G. E. K2748A. Pulse Input line to magnetron.... . $\$ 36.60$ Ray UX 7896-I Pulse Output Pri. 5v. sec. 4Iv.... $\$ 7.30$ Ray UX 8442—Pulse inversion-40v +40 v $\mathbf{\$ 7 . 5 0}$ RAY UX7361
PHILCO 352-7250, 352-7251, 352-7287
UTAH 9332, 9278. 934I.
RAYTHEON: UX8693, UX5986
W.E.: D-166310, D.16638, KS 9800, KS9948. \$5 ea

DELAY LINES

D. 168184 : 0.5 microsec. up to 2000 PPS 1800 ohm D.170499: 25/.50/.75 microsec. 8 KV 50 ohms D. $165997: 1 \frac{1}{4}$ microsec.

RCA 255686.502, 2.2μ sec. 1400 ohms.
.57 .50

PULSE NETWORKS

 50 ohms lmpedance 5 microsecond. $\$ 6.50$ 15A-1-400-50: 15 KV , A° CKT. 11 mi-
crosec. 400 P, 50 ohma tmp. $\$ 37.50$ sections. 0.84 sHlerosec, 810 Dual Unit: Unit I. ${ }^{3}{ }^{3}$ UnIt $\mathbf{2}, 8$ sections. 2.24 microsec. 405 Pי'S. 50 ohmis
imp. .. $\$ 6.50$
 7.5E3-3-200-6FT. 7.5 KV . ${ }^{2} \mathrm{E}^{*}$ Circult. 3 microsec. 200 \#755: 10 KV . $2.2 \mathrm{usec} ., 375 \mathrm{PPS} .50$ ohms Imd. . $\$ 27.50$ \#754: $10 \mathrm{KV} .085 u$ sec., 750 PPS. 50 ohms imp. $\$ 27.50$ KS8865 Charging Choke: $115-150 \mathrm{~F}$. $02 \mathrm{~A}, 32-40 \mathrm{~B}$. G.E. 25E5-1-350-50 P2T. "'E" CKT. 1 Microsec. Pulse

TEST EQUIPMENT

MAIL ORDERS PROMPTLY FILLED

MICROWAVE COMPONENTS

sband- $-3^{\prime \prime} \times 111 / 2^{\prime \prime}$ W. 6.10 CM. DIRECTIONAL COUPLER, Broadband. 20 db. Coup-
 REACTION WAVEMETER, Mfg. G.E. $3000-3700$
 APG 5 \& AJ'G 15. Receiver and Trans. Cavities
 BEACON LIGHTHOUSE cavity 10 cm . Mifg. Berrard MAGNETRON TO WAVEGUIDE Coupler with T21.
 hecvr. Th carity, conlpl. ${ }^{\text {Tecrr }}$ itmeup) w/Tubes
using 6 AK 5 (2040, 2 C 43 1R27
721 A TE BOX complete with tube and tuning plung-

 WAVEGUIDE TO $7 \mathrm{~m}^{\prime \prime}$ RIGID COAX DOORKNOB' adaptri choke flange. Silver plated broad hand $\$ 32.50$
ASI4A/AP-10 CM I'ick uD Dipole with "N" Cables
$\$ 4.50$ OAJ ECHO BOX. IOCM TUNABLE
HOMEDELL.TO-TYPE 'TN Male \qquad I. F A APPSTRIP 30 MC 120 d.b. gain, 2 nic POLYROD ANTENNA, ASBI/AVN-7 in Lucite ANTENHA. AT4AA/A1隹: Broadband Conical. 300 3300 AKCT, THe "NE Feerl
"E" or "H" PLANE BENDS, 90 Deg. less tlanges $\$ 7.50$

$7 / 8^{\prime \prime}$ RIGID BOAX_3/8" I. ©.
ROTAR $\begin{gathered}\text { JOINT, Stub-supported, UG 46/UG } 45 \text { fit- } \\ \text { ning }\end{gathered}$
 RG 44/L R1GID coAX. stub support, s ft. sections. Rith UCith/UO45 connectors RIGHTANGLE BEND, with flexible coax output pi SHORT RIGHTANGLE BEND. With pressurizing 1 RIGID COAX to flex conax connector
FLEXIBLE SECTION, I5 L. Male to female... \$4.25 \%/a" RIGID COAX. BULKHEAD FEED.THRU. \$14.00
X BAND— $1^{\prime \prime} \times 1 / 2^{\prime \prime}$ W.G, 3 CM.

 I" $\times 1 / 2^{\prime \prime}$ waveguide in 5^{\prime} lengths, UG
39 flange to Uvi40 cover..... $\$ 7.50$ Rotating Joints supplled either with or without $\$ 17.50$
 Butkead
Pressure Gauge Section 15 lb . gauge and
press nipule
Pressure Gauge, is lbs.
Waveguide Section
Waveguide Section $12^{\prime \prime}$ iong choke to cover is deg
 Waveguide Section $21 / 2 \mathrm{ft}$. long silver plated with choke flange
Rotary joint choke... Rotary joint choke to choke with
3 cm. UG 39 mitaredes. 90 degree eltows. "E or "H" plane $21 / 2 \mathrm{radius} \$$. 45 degree twist Beity Assembly, less tubes......... $\$ 375.00$

MICROWAVE RECEIVER, 3 CM.

SENSITVITYY 10.13 MICROWATT COMPLETE UNPUT CIRCUITS. 6.i. . STAGES GIVE APPROXIMATELYI20 DB GANN AT A BANDWIDTH OFI. 7

K BAND— $1 / 2^{\prime \prime} \times 1 / 4^{\prime \prime}$ W.G. 1.25CM. APS-34 Eotating joint. $\begin{aligned} & \text { Righ Plane, specify combination } \\ & \text { Right }\end{aligned}$ 45° Bend \mathbf{E} or derired. H Plane, choke to cover Mitered Elbow. cover to cover....
TR.ATR-Section. Choke to cover
$\$ 12.00$
.$\$ 12.00$
$\$ 4.00$ TR.ATR-Section. Choke to cover. $\begin{array}{r}\$ 12.00 \\ -\$ 4.00 \\ . ~ \\ \hline 4.00\end{array}$ Flexible Section 1" chok Adanter, Found to scuare cover.
Feedback to Jarabola Morn Feed back
dow MAIL ORDERS PROMPTLY FILLED ALL PRICES F.OB. NEW YORK CITY. SEND M.O. OR CHECK. ONLY SHIPPING SENT C.O.D. RATED CONCERNS SEND P O ALL MDSE SUBIECT TO PRIOR SALE, AND PRICES SUBJECT TO CHANGE

Qilyren
 Onlustries 99 MURRAY ST., NEW YORK 7, N. Y. WOrth 4-2490-1-2 48 Hour Delivery on AN PROMPT Service on UG

We carry a complete and diversified stock of "AN" connectors at all times and are in a position to make deliveries within 48 hours, thereby eliminating all unnecessary stoppages due to the lack of "AN" connectors.

Many manufacturers have come to depend upon our prompt deliveries of AN \& UG connectors from stock, without delay.

AN 3100 A/B

AN 3101 A/B
"AN" CONNECTORS "AN"

8SIP	16S-6P	28-18P	20-15P	22-12P	24-4P
8 SIS	16S-6S \]	18-18S	20-15S	22-125	24-4S
105-2P	16-7P	18-19P	20-16P	22-13P	24-5P
10S-2S	16-75	18-19S	20-16S	22-13S	24-55
10SL-3P	16S-8P	18-20P	20-17P	22-14P	24-6P
10SL-3S	165-85	18-20S	20-17S	22-14S	24-6S
10SL-4P	16-9P	18-21P	20-18P	22-15P	24-7P
10SL-4S	16-9S	18-21S	20-18S	22-15S	24-7S
10SL-656.	16-10P	18-22P	20-19P	22-16P	24-9P
10SL-656S	16-10S	18-22S	20-19S	22-16S	24-95
12S-1P	16-11P	18-23P	20-20P	22-17P	24-10P
12S-15	16-11S	18-235	20-20S	22-17S	24-10S
12S-2P	16-12P 3	18-24P	20-21P	22-18P	24-11P
12S-2S	16-125	18-24S	20-215	22-18S	24-115
125-3P	16-13P	18-25P	20-22P	22-19P	24-12P
12S-35	16-135	18-25S	20-22S	22-19S	24-12S
12S-4P	16S-14P	18-26P	20-23P	22-20P	24-14P
12S-4S	26S-14S	18-26S	20-235	22-20S	24-145
12-5P	16-15P	18-27P	20-24P	22-21P	24-15P
12-5S	16-15S	18-27S	20-24S	22-21S	24-15S
125-6P	16-16P	18-28P	20-25P	22-22P	24-16P
12S-6S	16-16S	18-28S	20-25S	22-22S	24-16S
14S-1P	16S-17P	18-29P	20-26P	22-23P	24-17P
14S-15	16S-17S	18-29S	20-26S	22-23S	24-175
14S-2P	18-1P	18-30P	20-27P	22-24P	24-18P
14S-2S	18-15	18-305	20-275	22-24S	24-185
14-3P	18-2P	18-31P	20-28S	22-25P	24-19P
14-3S	18-25	18-315	20-28P	22-25S	24-19S
14S-4P	18-3P	18-404P	20-29P	22-27P	24-20P
14S-4S	18-3S	18-404S	20-295	22-275	24-205
145-5P	18-4P	20-1P	20-30P	22-28P	24-21P
14S-5S	18-4S	20-1S	20-30S	22-28S	24-215
14S-6P	18-5P	20-2P	20-31P	22-29P	24-22P
14S-6S	18-55	20-2S	20-315	22-29S	24-225
14S-7P	18-6P	20-3P	20-32P	22-30P	24-23P
14S-7S	18-65	20-35	20-32S	22-30S	24-235
14S-9P	18-7P	20-4P	20-33P	22-31P	24-24P
14S-9S	18-75	20-45	20-33S	22-315	24-24S
14S-10P	18-8P	20-5P	22-1P	22-32P	24-25P
14S-10S	18-8S	$20-55$	22-15	22-32S	24-25S
14S-11P	18-9P	$20-68$	22-2P	22-33P	24-26P
14S-11S	18-9S	20-65	22-2S	22-335	24-26S
14S-12P	18-10P	20-7P	22-3P	22-34P	24-27P
14S-125	18-10S	20-75	22-35	22-34S	24-27S
14S-13P	18-11P	20-8P	22-4P	22-35P	24-28P
14S-13S	18-11S	20-85	22-4S	22-35S	24-285
14S-14P	18-12P	20-9P	22-5P	22-36P	24-684P
$145-145$	18-12S	$20-95$	22-55	22-36S	24-684S
16S-1P	18-13P	20-10P	22-6P	22-37P	24-691P
$165-15$	18-135	20-10S	22-65	22-375	24-6915
16-2P	18-14P	20-11P	22-8P	22-404P	24-710P
16-2S	18-14S	$20-115$ $20.12 P$	22-85	22-4045	24-710S
$165.3 P$ $165-35$	18-15P	$\mathrm{c}_{20-12 \mathrm{~S}}^{20-12}$	22-9P	24-1P	24-835P
$16 S-4 \mathrm{P}$	18-16P	$20-13 \mathrm{P}$	${ }^{22-109}$	24-2P	24-835S
165-4S	18-16S	20-13S	22-105	24-25	24-865S
16S-5P	18-17P	20-14P	22-11P	24-3P	28-1P
16S-5S	18-17S	20-14S	22-11S	24-35	28-15

"AN" CONNECTORS "AN"

24-4P	28-2P	28-840P	36-2P	40-5P
24-4S	28-2S	28-8405	36-2P	40-5P
24-5P	28-3P	28-852P	36-3P	40-6P
24-55	28-35	28.852 S	36-3S	40-6S
24-6P	28-4P	28-880P	36-4P	40-7P
24-65	28-4S	28-880S	-36-4S	40-75
24-7P	28-5P		36-5P	40-8P
24-75	28-5S	32-1P	36-5 S	40-85
24-9P	${ }_{28}^{28-68}$	32-1S	36-6P	$40-9 \mathrm{P}$
24-9S	28-65	32-2P	36-6S	40-9S
24-10P	28-7P	32-2S	36-7P	40-10P
24-105	28-75	32-3P	36-75	40-105
24-11P	28-8P	$32-35$ $32-4 \mathrm{P}$	36-8P	$40-11 P$
24-12P	${ }_{28-9 \mathrm{P}}$	32-4P	36-8S	40-115
24-12S	28.95	32-5P	$36-9 P$ $36-95$	$40-12 \mathrm{P}$
24-14P	28-10P	32-5S	36-10P	$40-125$ $40-13 P$
24-14S	28-10S	32-6P	30-10S	$40-135$
24-15P	28-11P	32-6S	32-11P	40-14P
24-15S	$28-115$	32-7P	36-11A	40-145
24-16P	28-12P	32-75	36-12P	$44-1 \mathrm{P}$
24-16S	28-12S	32-8P	36-12S	44-15
${ }_{24-175}$	28-13P	32 -85	36-13P	44-2P
24-18P	$28-13 \mathrm{~S}$ $\mathbf{2 8 - 1 4 P}$	32-9P $32-95$	36-13S	44-2S
24-185	28-14S	${ }_{32-10}$	36-14P $\mathbf{3 6 - 1 4 5}$	44-3P
24-19P	28-15P	32-10 S	36-15P	44-4P
24-19S $\mathbf{2 4 - 2 0 P}$	$28-15 S$ $28-16 P$	32-12P	$36-155$	44-4S
24-20S	28-165	32-12S	$36-16 P$ $\mathbf{3 6 - 1 6 5}$	44-5P
24-21P	28-17P	32-135	36-17P	44-6P
24-215	28-175	32-14P	36-175	44-6S
24-22P	28-18P	32-145	36-18P	48-1P
24-225	28-18S	32-15P	36-185	48-15
24-23P $24-235$	28-19P	32-15S	36-19P	48-2P
$24-235$ $24-24 P$	28-19S $20-20 P$	${ }^{32-16 P}$	36-19S	48-2S
24-24S	28-205	${ }_{32-17 P}^{32-16 P}$	36-20P $\mathbf{3 6 - 2 0 S}$	48-3P
24-25P	28-21P	32-175	36-21P	48-4P
24-25S	28-215	32-18P	36-21S	48-45
24-26P	28-22P	32-185	36-646P	48-5P
24-26S $\mathbf{2 4 - 2 7 P}$	28-22S	$32-19 P$ $32-195$	$36-646 S$ 36-697P	48-55
24-27S	28-410S	32-20P	36-697S	$3057-3$ $3057-4$
24-28P	28-684P	32-20S	36-795P	3057-6
$24-285$	28-684S	32-101P	36-795S	3057-8
24-684P	28-693P	32-101S	36-799P	3057-10
24-684S $24-691 P$	28-693S	32-102P	36-799S	3057-10-6
24-691P	${ }^{28-695 P}$	32-102S	36-853P	3057-12
24-710P	28-702P	($\begin{aligned} & 32-722 \mathrm{P} \\ & 32-722 \mathrm{~S}\end{aligned}$	${ }^{36-8535}$	3057-12-6
24-710S	28-702S	32-810P	40-15	3057-16
24-835P	28-745P	32-810S	40-2P	3057-20
24-835S	28-745S	32-811P	40-2S	3057-28
24-865P	28-766P	32-811S	40-3P	3057-32
${ }_{28-1 P}^{24-865 S}$	${ }^{28-7665}$		40-35	3057-40
${ }_{28}$	$28-833 \mathrm{P}$ 28.833 S	36-1P	$40-4 \mathrm{P}$ $40-4 \mathrm{~S}$	

Checked-Tested oud APPROVED

It has to be right! . . . when it's from Semler. Semler is one of the leading suppliers of precision test equipment to the aircraft industry. Semler is a recognized and approved source of supply for many foreign and U.S. Government agencies.

ASSOCIATED INDUSTRIES, INC.

PHOTOGRAPHIC

5730 Wilshire Bivd. Los Angeles 36, California

ELECTRONIC

6855 Tujunga Ave. North Hollywood,
California

AIRCRAFT

118-18 Ventura Blva North Hollywood, California

Recoraling Theodolite PHB=.3.3

(Spotting Set PH-32)

ORIGINAL APPLICATION

To analyze effectiveness of anti-aircrafi fire by accurate "three dimensional" determination of shell burst position with re. spect to the target.

PIRESENT APPLICATIONS

1. To determine accurale 'landing and take-off" measurements in aircraft flight test work. By placing these units at points from 1,000 to 3,000 feet normal to the cenler line of a runway, this "photographic recording theodolite provides an accurate film record of azimuth and elevation of the position of the airplane on both take off and landing. Since the distance of the theodolite from the runway is a known factor, all other distances can then be computed by the method of triangulation. 2. The "recording theodolite" also pro vides a rapid method for measuring in eleration and deceleration of cirplanes in acceleration and slop lests.
ow altitudes up to 8000 at relatively cation to a 20 " lens, the "recording theo dolite" may be used tor tracking missiles or target planes from 20,000 feet to 25,000 feet.
2. If modified to a $20^{\prime \prime}$ lens, the theodolite may be used for photographing airplane spin tests at these same high altides

DEGCIEIPTION

Each theodolite is a complete unit consisting of a built-in motion picture camera, camera magazine, sighting telescope lamps, controls, gearing and associated mechanisms neces sary for operation. Junction boxes, cords, timing interval devices, time interval multiplier, and time interval signal units are supplied with each theodolite.

Aircraft and Instrument Inverters

800-1 Inverter

Input:
Output:
245
V
$\mathrm{DC}-75 \mathrm{Amp}$
15 V AC 800 Cycle- 10.5 Amp.-
Single Phaso
12126-2A Instrument Inverter--Pioneer

$\$ 35.00$
12117-2A Instrument Inverter-Pioneer Input:
Output:
26 V
V DC-i Amp.
400 cycle-
V. Amp.Single Phase

12116-2A Instrument Inverter-Pioneer

 Input:Output:
115 V DC- -50
Amb.

12119-1-B Instrument Inverter-Pioneer Input: $12 V$ DC- 2 Amp.
Output: $26 V$ and v. Amp.rte Singlo Phase $\$ 27.50$
12117-5A Instrument Inverter--Pioneer

$\$ 27.50$

Eastman
 High Speed
 Cameras

Now being used for oscillograph re. cording, ballistic studies, slow-down and stop-motion studies: This remarkable instrument pre-selects determined speeds of from 1,000 to 3,000 frames per second on 16 mm . film. Standard equipment includes 63 mm . F2.0 Ektar lens. Auxiliary lenses and equipment are available.
Authorized dealers for Eastman, Bell \& Howell, Graflex, Zeiss and leading phofographic manufacturers.

Graflex "ID" Cameras

Now almost universally used for plant identification and security procedures, the versatile Graflex "ID" units provide photos suitable for pre-printed pass cards, metal badges With photo inserts, and plastic photo laminates. This Graflex Camera is equipped with an 84 mm F 4.5 lens, automatic release and film advance. removable magazines with a capacity of 100 feet of 35 mm fulm, and roll. Auxiliary identification stands, lights, enlargers and developing equipment are available.

PIIIDNE CALLELCT if you have any of the following: TS3, TS12, TS13, TS33, TS35, TS45, TS62, TS117, TS120, TS146, TS147, TS148, TS155, TS174, TS175, TS239, TS251, TS268, TS375: 1-100, I-182,
l-201; TSX4SÉ: AN/ARC3; 1-152C: APN9; BC788C Semler pags TOP BUCK for all electronic equipment.

PRECISION TEST EQUIPMENT

In Stock Now

TS3/AP	TS51/APG4
TSS10B/APN	TS56A/AP
TS12/AP	TS59/APN1
TS13/AP	TS61/AP
TS15/AP	TS62
TS16/APN	TS67/ARN5
TS19/APQ5	TS69
TS21/CRN5	TS78/U
TS23/APN	TS80/U
TS24/ARR2	TS89/AP
TS26/TSM	TS100/AP
TS27/TSM	TS101/AP
TS32/TRC1	TS102
TS33/AP	TS110/AP
TS34A/AP	TS111/CP
TS35/AP	TS117
TS36/AP	TS118/AP
TS45/APM3	TS125

Somler Photographic:Division COMPLETE LINE OF AERIAL CAMERAS, LABORATORY, 2 SPECIALIZED PHOTOGRAPHIC fer Aircrift Divicioni complere Ier Aircraff Division; COMPLETL IINE OF AIRCRAFT INSTRUMENTS \& ACCESSORIES.

- THE BEST IN ELECTRONIC SURPLUS -

BC-221 FREQUENCY METER
Precise Signal Generator and Heterodyne Meter, with crystal calibrator for check points every 1,000 KC. Range .125 to 20.0 MC. Complete with tubes, crystal, Excellent Condition units, BUT NON-MATCHING Manual for "Adjustments," and you can make the instrument and callbration book jibe. We could do it and charge you $\$ 95.00$ per unit, but we think you would prefer to do it yourself and save $\$ 30.00$. BC-221 Frey. Meter.
$\$ 65.00$

MISCELLANEOUS SPECIALS

GR Voltage Regulator \& Power Supply, Cat. \#3GVD14R5. output 750 V at 10 ma .
Katn Rotary Converter, 32 V DC to 110 V , 6 cucies AC, 250 Watts.
sCr-s83 Ximttg-Revg Eqpts. Complete
1N-127 Inautatolis.
YJ-1 Y.I-N IFF Equinments
IS-is K IIS.38 Headsets.
GF Low Pressure Switch, Cat. \#2927D100J GF Overload Relay CR-5882-C1G.
YE-8 Telephone Gen. Crank Handles
MIB Walkie-Talkie Spares.
DM-z8 Dynamotors.
DIV-3? Dynamotors.
DACR BOX-RC-629.
Microphone-Switeh SA-26/UU
Tinning Units. TU-56 \& 57
GE Tonization Gage Power Supply, Cat.
Remote Control Units RM-14.
Phantom Antenna A-62
GE Capacitor Transfolmer, Cat. \#69G210, GE Voltage Regulator Stabilizer. Cat.

Pr-94 Dynamotors
Cable Convial Coupler JR45 (14 inches)
Tuning Ifnits TU-5 to TU-9
AT-40/APR-4 Antennas.
Magnetron Mamets for 2.129.
Marnetron Maznets for ${ }^{2 . T}{ }^{29}$. 348). FT-349. MTS-38/APA-1.

BC-Ant \& 68: Transmitters.
PFF-218E Inverters.
FF-IA Aircraft and Engine Testers.
Antenna Mnst Sections,
I-292A gignal Generator.
BC-1936A Signal Generator (15 to 40 MC \&
Freonency Meter CRV-6002\%. 236 to 256 MC . TA-113/CPM-1 Synchroscone.
RC-163 Radio Peacon Finuipment
RM-5n Remote Antenna Drive.
TR - A A mina Equipment.
TB-14GV Congle Sulanizing Equipment.
sb-17GY consnle Switehboard
apply for above.
Janette Rntary Converters, 12 V DC to 110 AC, 225 Watts.

Immediate Delivery from Stock
Cable: Telemarine, N. Y.
Tel. ESplanade 2-4300

CONDENSERS

 MICRD A TDG. SWS. - RELAYS - "E.J" PDTS
OIL CONDENSER SPECIALS

$10 \mathrm{mfd} .-1500 \mathrm{~V}$. . . $\$ 6.25$		$4 \mathrm{mfd} .600 \mathrm{~V} \$ 1.15$
$8 \mathrm{mfd} . \mathrm{C} 00$ V $\$ 1.49$		Standard Brand TRS-604
$2^{\text {m }}$ dia. $\times 44 / 2^{m} \mathrm{H} . \mathrm{Bkt}$. ${ }^{\text {a }}$		$7 \mathrm{mfd} .-1000$ V \$2.49
$2 \mathrm{mfd} .-600$ V $\$.85$	t test. Meets commercial specs, for 600	$4-3 / 10^{\prime \prime}$ H $\times 3 \%{ }^{\prime \prime}$ W $\times 1 \%{ }^{\prime \prime}$ D
3 S.T. Bathtuh. Lots of 10010% disc.	Vor operation up to 40 degs "Cler or ideal	
Same Type with 2 terms......... $\$.70$	Por tilter or mower factor application. Repeat sales prove this rugzed high	. $25 \mathrm{mfd} .-20 \mathrm{KV} . . .$. \$19.95
. 25 mfl mandard Brand $600 \mathrm{M}-625 \times . .5 .53$	quality condenser to be of outstanding value. Caton of 24 . weight $\$ \mathbf{8 9}$. 1 mfd.-7500 V \$1.75
$4 \mathrm{mfd} .-1000 \mathrm{~V} \$ 1.75$	42 lis. Large	Standard Brand

mid	Volts	Price	Mfd	Volts	Price
.003-.00			1	20 KV	U.R.
. 01	10 KV	4.75	$\frac{1}{2}$	25 KV	82.00
. 012	25 KV	22.50	2	600 y TL	D.85
. 02	20 KV	17.90	2	1000 V	. 85
.025-.02			2	$1000 \mathrm{~V}^{\text {T }}$	1.29
	50 KV	55.00	2	1500 V	1.79
. 08	16 kV	15.95	${ }_{2}^{2}$	2000 V	2.80
. 05	SKy	2.98	2	2500 V	
. 08	12.5 K V	15.95	2	5000 V	11.95
. 1	1500 V	59	2	${ }^{6000 V}$	19.95
. 1	2600 V 2600	1.49	${ }_{2-2}^{2}$	12.5 KV 600 V	P.U.R. ${ }^{\text {P }}$ S
1	3000 V	1.85		600 V	59
1	7800 V	1.75	3	4000 V	P.U.R.
1	7500 V 10 KV	3.50 9.50	$\xrightarrow{3-3} 3$	100 V 400 V	1.35
1	10 KV	12.95	3.75	1000 V	1.59
1	12 KV	14.95		${ }^{600}{ }^{\text {y }}$	1.25
$1-1$	15 KV	16.95	4	${ }_{1500 \mathrm{~V}}^{1000}$	1.95 2.65
$\stackrel{.1-1}{16-15}$	${ }_{8}^{7600 Y}$	3.50 1.95	4	2000V	4.85
2	10 KV	10.95	4	3000 V 4000 V	P.U.9.8.
. 28	2000 V	1.35		somoy	P.U.R.
. 28	gnoy	2.05	4-4-4	600 V	2.40
. 25	Binoy	1.75	5	330 VAC	1.75
. 26	${ }_{20}^{18 \mathrm{KV}}$	15.95 19.95	${ }_{5}$	1500 V	
. 25	buk ${ }^{\text {d }}$	85.00	${ }^{6}$	330 VAC	1.75
3	2000 V	1.45	6	600 Y	1.85
4	10 KV	14.95	${ }^{6}$	1000 V	2.49 3
8	15110		8	${ }_{2000} \mathrm{Y}$	3.65 3.95
.	2500 V	2.20	7	60 y	1.45
8	3000 y	2.39	7	300 V	1.90
${ }_{5}^{5}$	4000 V	3.15	7	1000 V	2.45
. 6	Bray	. 69	8	600 V 1.	49-2.25
${ }_{5}$	25 KV	55.50	${ }^{8}$	660 VAC	3.50
1	400 V 500 V	- 45	${ }_{8}^{8}$	$1000{ }^{1500}$	3.25 4.65
1	1000 V	. 69		2000 V	7.25
1	1000 y	1.35	${ }^{8-8}$	B00V	1.75
1	2000 V	1.95	10	600 y	2.75 65
	3000 Y	3.50	10	1500 V	6.25
1	8000 V	5.25	10	6000 Y	U.R.
1	${ }^{6000 V}$	8.80	${ }_{18}^{18}$	1000	5.35
i	10 kV 16 KV	P.U.R.	17	25 V	. 69

TRANS. MICA CONDS.

mid	! Wrde	Price	Mid	Wude	Price
.000024	2800	. 19	. 0025	1200	. 42
. 00003	2000	. 75	. 003	8000 2500	5.95
.000047	2500	. 21	-0035	2500	. 65
.000005	${ }_{1210}^{250}$	-21	. 0043	2500	. 79
. 00000	3000	. 75	. 0045	800	. 24
. 0001	${ }^{600}$	-22	. 005	1200	${ }^{29}$
. 00001	${ }_{8}^{1200}$	-32	.006	1200	45
-0001	5000	1.95	. 01	600	. 40
. 000015		1.95	. 01	1200	. 69
. 00025	12100	. 35	. 01	K P	inted
00027	2500	. 35			
001	800	. 23	. 0125	6000	Quote
. 001	2600	. 48	. 02	600	27
01	8000	1.85			
0015	5000	2.25	02	1200	. 85
. 002	1200	50]	03	2000 600	1.25
. 0024	5000	2.35	. 033	800	.59

MONMOUTII RAIDIO LABORATORIES

DIESEL GEN.

$\{25$ KW 3 phase 60 cy . Hill \{diesel, G.E. gen. Complete with\} (control panel \& starting batter(ies. Ready for immediate operation. Guaranteed. P.U.R.

TRANSTAT -
 115V, 1 phase, 100 amps., Kra. \#29'145. Specially priced.

CHANNEL CONDS.

25 W. POWER RHEOS.

mfd	wudc	Prico	${ }_{\text {Mfd }}{ }_{\text {M }}$	${ }_{\substack{\text { Wrdec } \\ 1000 \mathrm{~V}}}$	${ }^{19}$
005	600	. 14	. 1	400 V	.17
${ }^{01}$		${ }_{15} 19$. 1	${ }_{6000} 6$	
. 0	2000	19	. 25	600 V	
			. 6		

BATHTUB CONDS.

AN/APR-4 LABORATORY RECEVERS

Complete with all five Tuning Units, covering the range 38 to $4,000 \mathrm{Mc}$: wideband discone and other antennas, wavetraps, mobile accessories, 100 page technical manual, etc. Versatile, accurate, compact-the aristocrat of lab receivers in this range. Write for data sheet and quotations.
We have a large variety of other hard-to-get equipment, including microwave, aircraft, communications, radar; and laboratory electronics of all kinds. Quality standards maintained Get our quotations!
We will buy any Electronic Material ot top prices. SCHOOLSunload your dusty surplus for cash or credit.
ENGINEERING ASSOCIATES

Somebody-Somewhere,
needs your idle equipment! Reach that buyer quickly and economically thru the

"SEARCHLIGHT
SECTION"
The meeting place o! Used Equipment Buyors and Sellers

COMPASS
 COMMUNICATIONS COMPANY

393 GREENWICH STREET NEW YORK 13, N. Y.

CABLE ADDRESS: COMPRADIO, N. Y. ALL PHONES: BEEKMAN 3-6509

TCS-Collins mfd. Navy radiotelephones for shipboard and mobile use, complete with all accessories for operation from $12,24,110,230$ volts d.c. and 110 or 220 volts a.c.
TDE-Navy or commercial marine transmitters, complete $110 \& 220$ volts d.c. and a.c.
TBK-Navy high frequency transmitter, 2-20 mes; 500 watts output. Supplied complete with m / g and starter for d.c. or a.c. operation.

TBM-same transmitter but with speech input equipment to give 350 watts phone. TBL-Navy all-wave transmitter; 350 watts output: CW and phone. Supplied complete with m / g and starter for d.c. or a.c. operation.
TAJ-Navy intermediate freq. transmitter, 175-550 kes; 500 watts output. Supplied complete with m / g and starter for a.c. or d.c. operation.
SCR-284-the famous mobile and ground station for field use.
SCR-528 SCR-628 SCR-828

WE MAINTAIN OUR OWN FULLY EQUIPPED TESTING LABORATORY TO TEST AND GUARANTEE ANYTHING WE SELL

MAG- 10 cm . portable link radar transmitter receivers, 6 -volt operation. TBN-200-3,000 kes, complete with $220 / 440$ volt, 3 ph. $50-60 \mathrm{c}$. power supply-conservatively rated at 1 kw . output.
SCR-510 and 610 in quantity.
RADAR BEACONS
AN/CPN-6 $\cdots \cdots \cdots \cdots \cdot \cdots \cdot{ }^{3} \mathrm{~cm}$. AN/CPN-8 10 cm. YJ and YG........ . for shipboard use AN/CPN-6 3 cm. AN/CPN-8 10 cm. AND SUPE SPECIAL PURPOSE AND TRANSMITTING TYPES

Tube\#	Selling Price										
O1A.	write	$2 J 33$	100.00	4C27	25.00	304 TH	9.75	813	9.00	1625	. 65
OC3	\$1.60	2J34	write	4C28	35.00	304TL.	9.75	829A	12.00	1626	. 75
OD3	1.50	2)36	100.00	4C35.	27.50	307A	5.00	832A	10.00	1629.	. 65
C1A	6.00	2J38.	. 49.50	4D32.	write	339A	35.00	833A	42.50	1636	3.00
C1B.	7.00	2J39	49.50	4E27.	17.50	371B	2.50	836.	4.75	1642.	3.50
C6A	write	2J42.	100.00	4J25.	. 175.00	388A	2.75	837	2.75	2050	2.00
C6F.	12.50	2J49.	100.00	4)26	175.00	446A	2.00	843.	write	8012	4.25
C6J	write	$2 J 50$. 75.00	4 28.	. 175.00	446B	3.75	849	50.00	8020	3.50
1 B22.	3.95	$2 J 61$	75.00	$4 〕 29$.	. 175.00	450 TH . .	45.00	851	45.00	8025.	7.00
1 B23.	10.00	2J62	75.00	4J30	write	450TL.	45.00	860	5.00	9001.	1.65
1B24.	write	2 K 22	write	4)31.	175.00	464A	9.50	861	write	9002	1.50
$1 \mathrm{B44}$.	write	2K25	35.00	4 33.	. 190.00	705A	3.25	865	. 40	9003	1.75
2B22.	4.95	2K26	150.00	$4 J 52$.	. 350.00	706AGY	45.00	872A	3.85	9004	1.75
2B26.	3.75	2 K 29.	35.00	5C22	write	707B.	12.50	874.	1.50	9005	1.90
2C40.	18.00	2K36.	write	5J23.	write	714 AY .	17.50	889R.	195.00	9006.	. 50
2C43.	25.00	2K41.	150.00	5J26.	350.00	715B...	17.50	891R.	250.00		
2D21.	1.70	2 K 45	100.00	5J29.	write	720.	write	892.	150.00	All tubes guaranteed. All prices are F.O.B.our warehouse, and are subiect to changewithout notice.	
2 E22.	3.75	2K54.	150.00	6C21	29.50	721A	3.75	892R.	250.00		
$2 J 21$.	17.50	2 K 55.	100.00	10%.	1.25	$723 \mathrm{~A} / \mathrm{B}$.	25.00	2×2/879	1.75		
2J22	17.50	$3 \mathrm{B24}$.	5.40	100TH	9.00	724B...	6.50	K1069P7	write		
2126	27.50	3B27.	10.00	204A.	60.00	725A	write	1614...	write	Also: IGNITRONS PLIOTRONS PHANOTRONS	
2J27	27.50	3B28	9.00	211.	1.00	730A	45.00	1616			
2J31.	27.50	3C31	5.75	250 TH	30.00	803..	7.00	1619	. 75		
2J32	65.00	3 E29.	15.00	250TL.	30.00	807.	1.65	1624	2.00		

K-RK-ARC-UG-PL-ANV
 CONNECTORS
 In Stock for Immediate Delivery Ronnector Rorporation-
 137 Hamilton St., New Haven 11, Conn. Phone: Spruce 7-2513
 Now York Phone: Exingion 2-6254

HIGH FREQUENCY EQUIPMENT

GE-Leland MG set. $5 \mathrm{HP}, 220 \mathrm{~V}, 3 \mathrm{ph} .60 \mathrm{cy}$. motor \& $24 / 32 V$ DC, 78 amp. generator, on comoxcited, 3550 RPM. $400-\mathrm{ey} ., 3$ - ph., $120 / 208 \mathrm{~V}$. 4-wire alternator. Alternator has excellent wave form. 400 -cy. alternator is electrically indevoltage regulator for above to regulate plus or Newton Bros. MG set. $21 / 2 \mathrm{KW}$, 1 -ph., 400 -cy.,
 60 cy., 5 HP motor. $\$ 500.00$
 $3-\mathrm{ph}$, , $60-\mathrm{cy}$, With variable speed sheave $\mathcal{\&}$
voltage Ballantine MG set. NEW. IKVA, I-ph., $400 \cdot \mathrm{cy}$. alternator, 115 J, self-excited; belt-driven by voltage regulator \& variable speedt sheave, $\$ 300.00$ Onan Electric Plant. BRAND NEW. Gasoline-
driven. AC output 120 V . 10 amps. 1200 W .800 driven. AC output $120 \mathrm{~V}, 10$ amps. $1200 \mathrm{~W}, 800$
cy. DC output $28 \mathrm{~V}, 18 \mathrm{amps}, 500 \mathrm{~W} . \ldots .5250 .00$
EDWARD WOLF COMPANY P. O. Box 82 Mlutils Mattapan 26, Mass. BLuehills 8-1254

For Sale For Sale METERS, INSTRUMENTS AND ACCESSORIES
For Commercial, Signal Corps, Navy and Aircraft Applications Panel, Switchboard and Lab. Types Voltmeters, Ammeters, Milliammeters, Multipliers, Current Transformers, Shunts, Thermocouples, etc. MANUFACTURED By WESTON, WESTINGHOUSE, GENERAL ELECTRIC, etc.
All items are surplus, new in original All items are fully gu
We specialize in meters guaranteed Let us know your requirements! $\frac{\text { Let us know your reguirements! }}{75000}$ OVER 75,000 METERS IN STOCK-FOR
IMMEDIATE SHIPMENT IMMEDIATE SHIPMENT
MARITIME $\$$ SWITCHBOARD Instruments 8 Accessories 336 Canal Street New York 13, N. Y. WOrth 4-8216 (7,8,)

Mailing Address: P. O. BOX 3878-E, N. HOLLYWOOD. CALIF
Office-Warehouse: 7460 VARNA AVE., N. HOLLYWOOD, CALIF.
POplar 5-1810 * STanley 7-6005 * Cable Address; ARROWSALEs

TEST EQUIPMENT

S BAND ANTENNA—Coax feed from type RG 44/U line, Disc reflector and fixed choke, for use with parabolic reflector. Completely weatherproofed, for use on pressurized system. Made of silver plated brass with all R.f. surfaces polished. New

PRICE \$20.00
S BAND ROTATING JOINT-Low speed rotating joint for use with type RG 44/U coaxial line. Tapped for pressure valve.

PRICE $\$ 20.00$
HICH POWER WAVEGUIDE TERMINATION-Manufacturer overproduced on Government contract. X Band, 7 to 10 kmc , type UG 138/U flat flange, VSWR less than 1.15 dissipation 150 watts in still air.

PRICE $\$ 50.00$
X BAND FREQUENCY POWER METER—Built to Navy specifications, measures frequency from 8.5 to 9.6 kmc , accurate to $\pm 4 \mathrm{mc}$; Power from .1 mw to 1 w average, external attenuator may extend this to 1 kw . Power measuring accuracy $\pm 1 \mathrm{db}$. Video outlet for connection to scope. Sealed against moisture. This instrument is battery powered, portable, and completely self contained.

PRICE $\$ 475.00$
X BAND THERMISTOR Mount 8500 to 9600 MC. VSWR less than 1.4, RG. 51 guide
$\$ 70.00$
X BAND VARIABLE ATTENUATOR Guillotine type, 0 to 30DB Attenuation. Dial direct reading within 1DB- $\$ 80.00$
VSWR AMPLIIIER tunable high gain linear amplifier, for measurement of standing wave ratios in conjunction with slotted lines. Crystal or Bolometer input- $\$ 300.00$ DELAY LINE, Z-1000 $\pm 10 \%$ band pass 0.2 MC., delay time 4 micro-seconds, type YE-4 B.

TUNING UNITS FOR APR-4 RECEIVER

These tuning units are incomplete, new, in operating condition but lack the front panel.

BUTTERFLY TUNERS

110-330 megacycles oscillator butterfis 80-300 megaeycles mixer butterfy $\$ 25.00$ ocket for 955 (used mixer butterfly with $400-800$ megacycles ascillator butterfly with 703 megacyeles oscillator butterfly X Band Spectrum Analyzer $8500-9600 \mathrm{MC}$. Calibrated frequency meter, tuned mixer. 4 i.f. stages. 3 Video stages over-all galn ${ }_{S}^{125}$ dand reg. Power Supply. $\underset{\text { megacycles-Similar to above. }}{\text { S }}$

HIGH POWER DUMMY LOADS
DC-2000 MO, 100 watts dissipation, VSWR ess than 1.1, no cooling necessary
\mathbf{X} Band, $1^{14^{\prime \prime}} \mathbf{x}$ E/" guide, choke or plain flange, dissipates 350 watts average power continuously in still air, VSWR less than 1.15 between 7 and 10 KFC, weight $51 / 4$ pounds.
X Band, $1^{\prime \prime}{ }^{\prime \prime} \times 1^{\prime \prime}$ guide, oloke, flange, dissipates 250 Watts average power continuously in stil air, $8.2 \times 12.4 \mathrm{KMC}$, weirht $31 / 4$ pounds. \mathbf{X} Band, $11 / 4{ }^{\prime \prime} \mathrm{X} 5 / \mathrm{m}^{\prime \prime}$ guide, plain flange, dissipates 200 watts average power continuously in still air, VSWR less than 1.15 between $7-10$ KMC, weight $31 / 4$ pounds: X Band, $11 / 4$ " x ./8" gulde. plain flange, dissipates 150 watts average power continounces. $11 /{ }^{\prime \prime} \mathrm{x}$ 3" S Band $11 / 2^{\prime \prime} \times{ }^{\prime \prime}$ yuide, dissipates 1000
watts average power in still air, VSWR watts average power in setween 2.5 to 3.7 KMC , choke flange, weight 13 pounds.

S Band Mixer, tunable by means of slider type N connector for the R.F. and loca oscillator input, U.H.F. connector for the I.F. output, variable oscillator iniec33 MC I.F. STRIP, VIDEO, and AUDIO AMPLIFIER and ' 110 Volt $60-2600$ cps POWER SUPPLY. Bandwith 10 mc new. part of SPR-2 Receiver. AMPLIFIER STRIP AM-SSA/SPR-2 contains I.F. amstretcher and audio amplifier and Rectifier Power Unit PP-155A/SPR-2 bandwidth 10 mc , center frequency 30 mc . sensitivity 50 microvolts for 10 milliwatts output. Power supply $80 / 115 \mathrm{~V}$ ac $50-$ 2600 cps 1.3 amps . Send for schematic Sikand Signal Generator Cavity With CutOff Attenuator, $2300-2950 \mathrm{mc}$., 2 C 40 tube, High Pass Filter F-29/SPR-2, cuts off at 1000 mc and below; used for receivers TS 89 Volte Divider for measurins TS-89 Voltage Divider for measuring high video pulses, ratios $1: 10$ and $1: 100$ trans-
mission flat within 2 db $150 \mathrm{c} . \mathrm{p} . \mathrm{s}$. to 5 mc . with cable for attaching to syndroscope
$\$ 30.00$
Variable Waveguide Below Cut-Off Atten justable, with crystal holder and 1 N27 end calibration Sandard Frequency Cavity, ad justable, with crystal holder and 1 N2 S Band Test Load TPS-55P/BT. ohms.............................. 12.00

[^35]RADIO Surplus Buys

following crystals available in FT 243 HOLDERS $1 / 2^{\prime \prime}$ PIN SPACING

	5035	7350
3590 4165	5127.5 5285	7450 7750
4280	5587	
4335	${ }^{5660}$	
4370	6073.3	
${ }_{4445}$	$\begin{array}{r}6075 \\ 6440 \\ \hline\end{array}$	
4540	6150	
4580	${ }^{6350}$	\$ 0^{00}
4635	$\begin{array}{r}6570 \\ \hline 685\end{array}$	
4710	6875	
4880 4980		
4995	7150	,

please enclose full amount with order QUANTITIES AVAILABLE
IIE FOR YOUR REQUIREMENT

C \& H SALES CO.

box 356.fe east pasadena sta. - pasadena 8, calif.

S BAND

converter-RF ond \& 2 stage 15 mc . A.F. Navy type CG. 46 ABW cavity autodyne mixer using 3150 megacycles (aporox. 9.5 to 11 Cm). Tuning by seif contained 115 v . 60 cy, reversible 1 rpm Bodine motor with limit switches. Comes set up
to cover range once in $51 / 2$ minutes. Complete with tubes \& motor less power supply, in case $11^{\prime \prime} x$ Cavities \& other parts of the CG-46ABW \& CG$55 A C Q$ units of Mark II Radar available
30.40 Mc Link xmtr 25 UFM of SCR.298. $\$ 59.50$

GUARANTEED SURPLUS—FAST SERVICE TIME DELAY RELAY 115 v 60cy adjustable f sec. RELAY 3PDT 24 vdc 250 ohm Clare Type K . $\$ 2.9$ RELAY 4 PDT 12 vic 70 ohm Mini tel type $\$ 1.95$ SELSYN-1F Special $115 / 90$ r $400 \mathrm{cy} . . . \mathrm{i}$
FIL XFRMR $6.3 @ 1.3 A$ (other sizes avail. CHOKE 411 70ma. 698 : 2 H 70 mg 110 ohm BLOWER MOTOR 400-1800cy I15v EAD JB1C $\$ 9.95$ BIRTCHER CLAMPS 926A, 926H, ${ }^{\text {826C, }}$. VARIABLE $3-15 \mathrm{~mm}$ PIa mmar. HF $11 /{ }^{\prime \prime}$ " shift. $\$.69$
ISOLATION XFORMER 35 watts prm
 SUBMINIATURE tube socket 5 pin. 100 for. $\$ 10.00$
SILVER TRMR ERIE TS2A
AN-3106-10S-2S, PL-68, 83-1H, JK-33a, JK-34
CONDENSERS:'BATHTUB. MICA, AIR, OIL. HV CER. J POTS, RELAYS, MIKES, 3AG\&MDL Puses, SWITCHES SPARES for:
MKC.1
MKI CM30. Ask for Gyer.

EMPIRE ELECTRONICS COMPANY
409 Avenue L Brooklyn 30, N. Y
CLoverdale 2-2411 BRyant 9-1220

to 74 Minutes IImRr
A hand wound electric TIMING SWITCH Pointer moves back to ZERO and shuts off
RADIO-TV-Electric Mixer-Photographic Devices-Time Delay etc. Furnished with Calibration Chart and Pointer $\$ 1.25$
Knob. Biggest bargain we ever had, $\mathbf{1 . 2 5}$

HAYDON SYNCHRONOUS TIMING MOTOR
110 v. 60 cycle 30 RPM.... $\$ 2.6$
110 т. 80 cycle 1/10 RPM. . \$2.35
110 ซ. 60 cscle 1 RPM. ... $\$ 2.85$
110 v. 60 cycle 2 RPM..... $\$ 2.00$ 220 ซ. 60 cycle 2 RPM..... \$1.65

ISOLATION TRANSFORMER
Step-UD
230 volts to 115 volts

Step-Down

115 volts to 230 volts

$\$ 2.85$ 115 volts to 57 volts

MARKTIME
HOUR SWITCH
fointer mores back to zero after time elapses. Ideal for shutting off radios and TV Limited supply at this spe-
cial PRICE.....$\$ 490$ Also avallable in 15 min ., 30 min., 1 hr . at $\$ 5.90$

REDMOND Powerful $5^{\prime \prime}$ Blower or Ventilator 115 volts AC 60 cycles 18 watts. For Kitchen - Laboratory.

 2 RPM..... \$2.90
 3 RPM..... 3.90
 3.6 RPM... 3.15
 1 RPM..... 3.95
 60 RPM. 4.30
 One of eac

 Mossman Lever Switch \$2.50 10 Amp. Heavy Duty tacts can easlly be reto suit your needs. Now momentary OFF CENTER but can be changed by user to stay either slde. Assorted Micro Switches, Acro Switches, $\$ 1.00$ MU-Switches D

Westinghouse Elapsed TMme Meters.............. $\$ 15.50$ ${ }_{\text {EST. }}^{\text {EST }}$
64 Dey St.
New York 7, N. Y.

CARRIER EQUIPMENT

Westarn Electric CF-IA 4-channel carrier telephone terminals.
EE:101-A 2-channel 1000/20 cycle carrier ringers. CFD-B 4-channel carrier pilot regulated telephone terminals complete with four channels 1000/20 cFyce ringing.
pilot regulated telephone re-C-42-A v. F. telegraph in from 2. to 12 -channel FMC I or 2 channels carrier telephone terminals, automatic requlation, duplex signaling each
channel. Carrier frequencies above 35 KC . Ideal for adding channels above type "C'". Complete engineering and installation services

RAILWAY COMMUNICATIONS, INC.
Raytown, Missouri
Telephone: FLeming 2121

DIRECTRON SELENIUM RECTIFIERS

Buy Direct
From M'facturer

Current (Continuous)	$\begin{aligned} & 18 / 14 \\ & \text { Volts } \end{aligned}$	$\begin{aligned} & 36 / 28 \\ & \text { Volts } \end{aligned}$	$\begin{aligned} & 54 / 42 \\ & \text { Volts } \end{aligned}$	$\begin{gathered} 130 / 100 \\ \text { Volts } \end{gathered}$
1 Amp.	\$1.35	\$2.15	\$3.70	\$7.50
2 Amps.	2.20	3.60	5.40	10.50
2 次 Amps.			6.00	13.00
4 Amps.	4.25	7.95	12.95	25.25
6 Amps.	4.75		13.50	33.00
10 Amps.	6.75	12.75	20.00	40.00
12 Amps.	8.50	16.25	25.50	45.00
20 Amps.	13.25	25.50	39.00 4.00	79.50
24 Amps.	16.25	32.50	45.00	90.00
30 Amps. 36 Amps.	20.00 25.00	38.50 48.50	

- New Selenium Rectifier Transformers PRI: ${ }_{9}^{115}{ }^{2}$ V., ${ }^{60}$ cycles in ${ }^{4} 4$ Amps. $\left.\begin{array}{l}\text { solts } \\ \text { volntinuous Ratings } \\ \text { Cond }\end{array}\right\} \begin{aligned} & 24 \text { Amps } \\ & 50 \text { Amps }\end{aligned}$
- New Solenium Rectifier Chokes

\qquad
$\begin{array}{r}\$ 7.95 \\ \$ 14.95 \\ \hline\end{array}$
. $\$ 29.9$
We can manufacture other Selenium Rectifiers, Sele
TRANSFORMER SPECIALS
- Sola Heavy-Duty Plate Transforme. $\$ 49.9$

PR1: $200.220,240$ rolts $-60 \mathrm{cy}, ~ 200 \mathrm{MA} .5^{\prime \prime} \times 6^{\prime \prime}$
$61 / 2^{\prime \prime}$-NEW-Wt. 10 lbs. \quad Sperial es $\$ 17.50$
THORDAIISON Boxed Filament XFML. (T-50F61)
i5V--2.5V.@ 3.5 A.

Western Electric Push-To-Talk

Handsets (Type F_{3})

BRAND NEW WITH SWITCH

 AND COILED CORDS$\$ 9.75$ IN CASE LOT OF

20 PIECES.
$\$ 9.50$

RADIO TELEPHONE SETS

Western Electric 4 Channel Ship-to-Shore Sets.
 supply for 12 -volt D. C. oderation. Original cost
$\$ 550$. our price.............................. $\$ 149.50$

SELENIUM POWER SUPPLY
e to $12 \mathrm{YDC} / 2 \mathrm{Amp}$. Vartable DC sudply, uncased and completely built-inpt. $1155 / 80 \mathrm{cy}$. Usable LAB supply. Alament D.C. plating, battery charging.
model railroad, Includes yoltage or speed control and center off reversing sw. Ideal for two "HO" locomo-

2 for $\$ 20.00$

FILTER CAPACITORS		
Capacley	w. Voltage	En.
500 MFD.	50 V .	. 98
500 MFD.	200 V .	2.50
1000 MFD	12 V .	. 50
3000 MFD.	20 V .	2.25
5000 MFD.	50 V .	3.75

- W.E. HERM. SLD. PWR XMFR PRI-l $15 \mathrm{~V} .-60$
 - Choke to match above XFMR. New. Mfd by

QUANTITY USERS OF GEN- 2 C 43
ERAL ELECTRIC JOBBER'S (COLORED) BOXED, CURRENT PRODUC TION IN PLIOFILM PACKAGE. QUANTITY PRICE
\$12.95
73012 KW . POWER TRIODE XFMR. (TAPPED AT llV.). 220 V. PRI-MARY-COMBINATION-ALL NEW.
$\$ 105.00$
JOBBERS . . LARGE QUANTITIES OF W.E. COMPONENTS, XFMRS, CAPACITORS, ETC. WRITE.

CBS - Hytron	Cathode-Ray	Pleture Tubes
First Quallity in factory-sealed cartons. Full Year Warranty Card on each tube. Rememberno seconds: no rebuilts. . Prices Include Fed. Tax.		
	16KP4 $\quad 28.75$	17HP4... 25.50
10BP4A 21.00	16RP4. 30.00	20CP4A. 38.50
12LP4A... 21.50	16TP4.... 30.00	21EP4A... 38.50
14CP4.... 24.00	17BP4A . 24.75	21FP4A. 36.00
16AP4.... 31.00	17CP4.... 25.25	

- AR-II-Complete Station for 20, 40, or 80 meter Superhet Revr-50 Watts CW w/built in 115 V .A.C Pwer $\$ 500$) An excellent buy for only........ $\$ 99.50$

Trimm. Model 100 'Featherweight" Feadsets \& Pand.

- Bley
- Bliley-Type SMC100-
New- 100 KC and 1.000 KC BAR........... $\$ 8.50$
- LM FREQUENCY METER-INT. MODUTAATION -Orig. Book. Excellent condition.

Top Dollar Poid for SURPLUS TUBES \& EQUIPMENT - Send List With Details

136 LIBERTY STREET * NEW YORK 6. N. Y.

WIRE-CABLE

CORDAGE

CO-122 3 conductor each \#22 AWG neoprene jacket 550 lengths
CO-127 single \#14 AWG braided and tinned copper braid shield

MULTI-CONDUCTOR
2 conductor AWG 127 conductor AWG 16 7 conductor AWG $14 \quad 19$ conductor AWG 16 14 conductor AWG 166 conductor AWG 20 11 conductor shielded 10 conductor AWG 16 AWG 20 AW conductor AWG 16
2 conductor AWG 18 2 conductor shielded AWG 10

DRIA AMOUR
DHFA-100 FRIA-4
SINGLE CONDUCTOR AWG 10
shielded cable with terminal lug each end 100^{\prime} and 150^{\prime} lengths

WIRE

AWG 18 copperweld
AWG 29 tinned copper
Resistance wire AWG 32
AWG 22 with nylon core plastic insulation
LINEAR WIRE WOUND POTENTIOMETERS

SPECIALS
80-86 Crystal in Holder $\$ 2.50$
Balloon with Hydrogen Generator \$2.50
300 Feet Aerial Wire $\$ 2.00$

MICROWAVE TEST EQUIPMENT 10 CM echo box CABV 14ABA-1 of OBU-3 frequency range $2890 \mathrm{MC}-3170 \mathrm{MCS}$. Direct reading micrometer head. Ring Type " N " input. Resonance indicator meter. With accessories, spares and 10 CM directional coupler. Brand New.

HI VOLTAGE FILTER CHOKES
. 4 HY 4.5 Amp DC 3 ohms 1230 RMS to HYound. New.
HY 3.2 Amp DC 3.5 ohm GE69G459. New.
1.7-3 HY 2 AMP DC 34,000 VDC GEY346A.

New.

NAVY ENTERING TYPE INSULATOR

Porcelain flanged bowl with brass rod, fittings and aluminum shield. Dimensions $43 / 8^{\prime \prime}$ high, 6-5/16" OD at base. Brand new $\$ 4.50$.

10 CM ROTATING ANTENNA

24" Parabola in turret 360° span at 12 RPM

TIME DELAY SWITCHES

1 Minute 115 VAC 60 cycle Enc. in Wate: proof Metal Case. New $\$ 5.25$
3 Micro Switches Contact at 40-41-42 Second Time Delay 110 VAC Motor New $\$ 4.50$ Thermo Switch 50° to 300° F 115 VAC @ 6.s 230VAC@5A
reaks Contact with increase in Tempera ture. New $\$ 1.35$ CONTACTORS
DPST 115 VAC 60 cycle 15 Amp De-Ion Line Starter Westinghouse $\$ 6.95$
RELAYS

12 VDC DPST Allied Control Box 32,.. $\$ 1.25$ 24 VDC DPDT Allied Control BID36.... $\$ 1.45$ 124 VDC 3PDT 8 Amp..................... $\$ 1.50$ 110 VAC DPST 1 Amp Contacts Struthers 115 VAC DPST Struthers Dunn CXA 299765 220 VDC DPDT Struthers Dunn CK $29122 . \$ 3.65$ 230 V 50 cycle DPDT G.E. 12HGA11A2., $\$ 4.00$
OIL FILLED CONDENSERS

Portable 0-25 Amps AC Weston \#433 Brand New $\$ 37.50$
Switch Board Panel 0-100 Amps DC Weston $\# 269$
$\$ 24.95$
with 100 Amp Shunt Brand New

EQUIPMENT

Walkie-Talkies 2.3-4.6 MC
MN-26Y Bendix Compass Receiver
BC-733 Glide Path Receiver
DAB 3-Direction Finder
RDF Receiver Equipment $200-500 \mathrm{KC}$ Fixed
Tuned

News is added:

Fixed or variable
Carbon or wirewound $1 / 8$ Watt up to 300 Watt
Precision of $1 / 4$ of 1% or 20%
Any makes-any types-any values
One piece or one million
Potentiometers, Rheostats, Attenuators
For development research or production
Guaranteed aged resistors. Ask for Particulars
by G. Grinn

LEGRI S COMPANY

Mr. Purchasing Engineer-
"COMPONENTS" invites you to dial BEekman 3-8717,
and check our wide variety of electronic parts we can deliver at once from stock. 7 FLOORS OF MERCHANDISE
Coman-spece and other specials, plus standard combonents of industrial, television and radio apparatus. Some end equipment, too, including telecenters, power supplies and dynamotors, etc. Compare our prices on these items:
1.154 PE-94 DYNAMOTOR POWER SUPPLIES. In: 28 V . D.C; out: $300 \mathrm{~V}_{\text {at }}$ at 260 ma., 14.5 V .
 8,000 TYPE 120KT RESISTORS, 120 watts, 10.000 31 RM 3 CONTROL UNITS Pat.......
 26 RM- 25 CONTROL UNITS. Part of SCR-561.GOO NFII NOISE FILTERS MI P B Ba. lory Rating up to 100 amperes; oil conden-
lers.
 imum order $\$ 50.00$
FACTORY EXCESS-STANDARD BRANDS Th T-V focus and deffection coils, tubes. wire, ets, etc, availeble in production quantitites.
 and disc types $\$ 20.00 \mathrm{M} / \mathrm{up}$ ELECTROLYTICS-Metal can and paper tubulars. Tens of thousands. Standard brands. Priced low. MICA and PAPER BYPASS CONDENSERS. Most capacities.
VARIABLE CONDENSERS-TRF and Superhet. TRIMMERS and PADDERS-"Mica compression". and "air variable" types. Large quantities. RESISTORS $-1 / 2-$ and $1 / 3-W$ uninsulated carbon., Most values ... SPECiAL, $\$ 5.00 \mathrm{M}$. Min.
sale, 1,000 .

- "CSC" 5-watt Audio Amplifiers, available in current production, meet generali-purpose available in - "CSC" low-roltage and heary-current. Selen. source of current for tupting and are an econcingmical
24 V. $\mathrm{D}-\mathrm{C}$ equipment 12 and Catalog sheets upon request on your letterhead.
WE MANUFACTURETO YOUR SAMPLE AND
COMPONENTS SUPPLY CO.
161 E Washington St.. N. Y. 6. N. Y

TELEPHONE EQUIPMENT \& PARTS

New TS9 handsets W/Flip switch in handle Reconditioned Like New TS9 handsets. $\$ 4.95$ Each, Now Receiver and Transmitter elements for TS9
handset, etc. C-161 repeat coils..................... 83.50 Each. Reconditioned EE8 telephones in stained leather
bags TS 10 sound power handset with rubber cord Now R.C.A. Transmitter \& receiver elements sound
power
 switchboards, etc. $\$ 5.50$ Each.
New cc 333 rulber cords........... $\$ 0.35$ Each. Upright desk telephones for oxtensions. Intercons.
 $\underset{\text { Now W.E. }}{\text { Eloments }}$ FI and HAI receiver \& transmitter Now W.E. FIW handsets W/rubber cord \& PL47
plug
\& Repeat coils $94 \mathrm{E}$. New Tape recorder EC 1016 - $\$ 150.00$ Each. Now ATR inverter 110 V.D.C. input output llov.
$\$ 50.00$ Each.
A.C. 60 Cycles W.E. Rectox Rectifiers $25-40$ cycles $\mathrm{KS} 53300-\mathrm{L3}$. G. E. Tungar Battery Chargers Cat \#221514 W.E. Rectifier KS 5536-01-Indut 105 -125V. A.C. BD 74 switchhoard magneto 6 lines. . $\$ 25.00$ Each. Dials . . . A.E., W.E., Federal $\$ 3.50$ Each. Jack Box JB 84........................ . $\$ 5.00$ Each Line Men safety belts................... $\$ 2.00$ Each. EE2C line units magneto, less cord.... $\$ 1.00$ Each. Jacks JK 47............................ $\$ 0.25$ Each. Switch Sw $150 \ldots \ldots \ldots \ldots \ldots$.................. 50 Each. New TSI
PL55 Plugs handsets with CD494 cord $\&$ PL68 \& Telephone Ringer Box w/induction coil, capacitor and bell.

EASTERN TELEPHONE COMPANY

DC SMALL MOTORS

 $28.5 \mathrm{VDC}-1 / 35 \mathrm{HP}-2200 \mathrm{RPM}$. Shaft Slize: $1-\frac{1}{2} \mathbf{N}^{\circ}$

ANTENNA EQUIPMENT MAST BASES—INSULATED:
MP-132 BASE-(As inustrated at left) $1^{\prime \prime}$
heary coil sorink $2^{\prime \prime}$ insulator.
overall $\begin{array}{ll}\text { heary coil spring. } & 2^{\prime \prime} \text { insulator. Overall } \\ \text { length: } & 11-1 / 2^{\prime \prime} \text {. Weight: } \\ 2-8 / 4 & \text { lbs. }\end{array}$ length: $11-1 /{ }^{\prime \prime}$. Weight: $2-8 / 4$ libs. MP-S-33 BASE-Insulated type with Requires $2^{\prime \prime}$ hole for mounting. Weight: θ lbs.

MAST SECTIONS For ABOVE BASES

 Tubular steel. copper coated, painted, in 3 ft. sec-tions. sorew-in type. MS-53 can be used to malie any length with MS-52-51-50-49 for taper. Any secLarger Diameter Sections: MS-55-54.. Each AN-104B Antenna-100-156 MC.-Copper $\$ 5.95$ AN-104B Antenna-100-156 MC.-Steel. AN-104B Antenna-100-156 MC.-Copper AN 117 . Whip Steel- 6 Ft. length... AN-109A Whip Steel, 5 Ft. W-Base. AT-37/APT Stud-113-115 Mc. 13.130 MC... AS-9j/ARQ-8 Spike with coaxial load in base AS-6I/ANR-5-Half-Wave Didole-335 MC.

AIRCRAFT CONTROL CABLE-3/32"-7 $\times 7$ Strand, Weatherproofed, Galvanized, Preformed.
920 lb. test. Ideal for Television Guying and many other uses. Prices: $4-1 / 2 \mathrm{c}$ per Ft.- 1000 Ft . or more at 4ϵ per Ft.

BLOWERS:

115 Volt 60 cscle 1 RLOWER
(pictured), approx. 100 CFM Dis. $244^{\prime \prime}$ intake: $2^{\prime \prime}$ outlet Quiet running Motor size:

surplus. Order O. $10939 ~ \$ 8.95$

DUAL BLOWER-Same as RN-520 above. except has blower assembly in each side of motor. except
Norder
No. 1 C 880 COMPACT TYPE- 108 CFM. motor built inside squirrel cage. $4-12^{\prime \prime}$ Intake: $3-3 / 8^{\prime \prime} \times 3^{\prime \prime}$ Dis. Complete
 FLANGE TYPE-140 CFM, 3-1/2" Intake: 2-1/2" Dis. Complete size: $8-1 / 2^{\prime \prime}$ W x $7-1 / 4{ }^{\prime \prime}$ HI x 6 - ${ }^{3 / 4}$ D. Order
 AERIAL WIRE-Phosphorous Bronze \#16 Stranded. 2001 b . test. Weatherproof. 150 ft . on TReel. RL-3 TELEPHONE WIRE-3 Cond. copper \& steel, $\$ 4.75$

RADIO FREQUENCY AMPLIFIERS:

RADIO FREQUENCY AMPLIFIER AM-14/APT 100 W . Used to increase output Transmitting Equip${ }_{2600}$ Cycle 600 W. \mathbf{W}............................. $\$ 59.50$ RADIO FREQUENCY AMPLIFIER AM-IB/APT 140 to 210 MC.; Power Output 110 W. © ${ }^{5}$. Amps. Used to amplify output Radar Trans. T-28/APT-1. Power Input 80 or 115 V . AC 400 to 2600 cycle
$600 \mathrm{~W} . ~$ 600
RADIO FREQUENCY AMPLIFIER AA1-33/ART Freq. Range 35 to 105 MC . Band width 3.5 ± 0.5

SELSYN

2JIG1 CONTROL TRANSFORMER WITH CAPS. 57.5 VOLT; 400 CYCLE. NEW; \$5.95 Ea.

SELENIUM RECTIFIER UNITS

HEAVY DUTY- 30 VOLT DC OUTPUT:
115/200 V. Three Phase 400 Cycle Indut
TYPE 143 w/Transformer \& VR 100 Amp.... $\$ 69.50$ TYPE 3FSI5 w/Trans., VR, \& Blower-200 $\$ 39.50$ TYPE-52A-11 Rectifler Only, Cased, 200 Amp. $\$ 39.50$ TYPE A-I Rectifier Only, Cased, 300 Amp... $\$ 49.50$

BATTERY CHARGING RESISTOR PANEL

115 VDC-6.67 ohms 30 Amps. Max. Switching High 30 A.; Lorw 15 A.- 12.2 Volt Cells: 25.8 High;

TRANSFORMERS—100V. 60 Cycle Pri.

MOTOR-GENERATOR:
Navy type CCL-211014, 115 VDC- $/ 4$ HP- 1750 Direct Drive

DYNAMOTORS:

DYNAMOTOR and BLOWER; 9 Volts DC input: output 450 . Volts 60 MA . 4500 RPM . At 6 Volts DC in-
put; output 260 Volts 65 MA . 3000 RPM . 54.95 Imput Output Stock No. Price $\begin{array}{llll}14 \text { V. DC } & 600 \text { V. } 300 \mathrm{MA} & \text { BD-36 } & 59.95 \\ 12 \text { V. DC } & 220 \text { V. } 70 \mathrm{MA} . & \text { DM-24 } & 6.95 \\ 12 \text { V. DC } & 220 \text { V. } 100 \mathrm{MA} . & \text { DM-18 } & 4.95\end{array}$ 12 or 24, V. DC
14 V. DC
14 V. DC
14 V. DC 12 or $24 . \mathrm{V}, \mathrm{DC}$
12 or 24 V . DC
ALSO-PE 30 MA . USA/0515 3.95 ALSO--PE-73; PE-86; DM-53; DM-33; 5055; DM-416:

AdDRESS DEPT E All Prices Are F.O.B.. Lima. Ohio - 25% Deposit on C.O. Orders

AIRCRAFT ELECHRONICS

ARC-1's, ART-13's, RTA IB's, BC348's
AND COMPONENT PARTS FOR ABOVE

WRITE OR CALL FOR BULLETIN
MERRICK ELECTRONICS
166-08 DOUGLAS AVE.
JAMAICA, N. Y.
RE 9-5960

We have one of the largest stocks of special purpose tubes in the United States for immediate shipment. We sell tubes only and consequently each order receives individual attention from tube specialists. We sell only new tubes, standard brands, either JAN or commercial specifications depending on stocks on hand.

MARITIME INTERNATIONAL COMPANY

11 STATE STREET
Phone: Digby 4-3192
NEW YORK 4, N. Y.
Cable Address: FOXCROFT

106-M IH. Indicator 600A UHF. Signal Generator 300A Harmonic Wave Analy B-41451 Shield SC \# P/OTS 34/APS
1-82-F Indicator. P/O SCR 269F
EE-65-F Test Set
188X Signal Generator
(Hickok)
A-27 Antenna Phantom P/O SCR-506
BC-1016 Recorder
BC-1255-A Delco Het. Monitor BC-906-D Frequency Meter CW-60-ABM Wavemeter EEE-55-E Test Sot Amplifier EE-65-E Test Set
atus Time Interval Appar

WANTED!

THE GREEN-EYED, SLAB-JAWED, BALD-HEADED, BOGGLE-FACED, "S HORTUS ELECTROCUSS" AND OTHER TIME-WASTING BUGS! HUNT 'EM DOWN WITH THESE BARGAIN-PRICED DEPENDABLE TEST INSTRUMENTS:

Details and Prices on Request.

Bigelow 2-6666
EE-99-T3 Telephone Repeater Equipment
Type 1 Officers' Intercept Kit Type 7 Oscilloscope
TVFM Electronic Sweep Gen-TS-16/AP
TS-16/APN Test Set Keyer Video Automatic Keyer US-253 G.E. Square Wav Generator
155 R.C.A. Scopes
620A G.R. Test Se
720 A G.R. Het. Freq. Meter
BC-221-J Frequency Moter
(Mercury)
E-400 Sweep Signal Generator (Precision)
1-56-E Test Set, Weston Model 714 TYpe 4 1-95-A Field Strength Meter 1-102-A Indicator
1-135-E Galvin Test Set
1-222A Signal Generator

Telegraph WUX, Newark, N. J.

- Always Right with Earl White

RFDCOM Engineering Co
8 LIVINGSTON ST.

GEAR HEAD MOTORS

WHITE-ROGER SERVO MO-
TORS. 24 VDC. Torque 150 in. -1bs. Reversible. Control box on top has limit switches,
relays, and selenium rectiflers relass, and selenium rectifters
(to block AC out of motor). Size $5 \times 5 \times 4^{\prime \prime}$. Can be supplied in Models 6904-5 RPM or $6904-31 / 2$
IRPM. Price each NEW $\$ 8.50$

DC MOTORS

ELCOR.-Part No. 82706. H.P. $4500 \mathrm{KPM}, 60 \mathrm{v}-8.3 \mathrm{a} \mathrm{arm}-$ ature, 24 - 2.3 a fleld, reversible,
$5 / 8^{\prime \prime}$
spline shaft $9 / 16^{\prime \prime}$ long. Comes with $3^{\prime \prime}$ long-spline adag. ter. Size $6 \times 41 / 2 \times 71 / 2$. Wt. 9 1bs. $\$ 7.45$
Price NEW
EMERSON ELECTRIC.-Tspe D44F0447-0417, Can be used
as motor or generator. 1 H.P. 5400 R PM. 12 rolts 100 H.P.
 Double-end

SYNCHO - DIFFERENTAL Bendix \#Cris249. 115N 60 cycle. Used as a diampener between two
C78248 simchos. Easply converted to 3600 RMP motor (instructions
Brand New in oryginal containers. \qquad

HEAVY DUTY TRANSFORMERS \# $1221 .-1.8$ KVA. Input 120

GENERAL ELECTRIC $\# 79 \mathrm{G907}$.
tent duty. Input. $100 / 110 / 120$ tent duty. Input: $100 / 110 / 12$,
volts 60 (vele. Output 0.8 (eight-cenths) volt at 2,500 amps. Can he used for
quick-heat applications, spot

WHOLESALE ONLY

AMPLIDYNES-General Electric \#5AM31NT9A. input 27 VDC-44 amps. Output 60 VDC- 8.8 amps. 530 Watts. Quantity 200 Brand $\begin{gathered}\text { NEW at } \\ \$ 475.00 \\ \text { per } \\ 100\end{gathered}$ VOLTAGE REGULATORS - Leece-Nehville Co. $\#$ S-20686. 12 VDC . Precision adjustment vibrator type. Brand NEW in original cartons. Quantity 450 at …...................................... 65.00 per 100.
RADIO NOISE FILTERS-General Electric. Cat, $1 \mathrm{C}-206,100 \mathrm{amps} .50$ VDC. Contain two 5 mu -fd
50 VDC oil capacitors and choke coil. Quantty 50 VDC oil capacitors and choke coil. Quantity
2000 Brand NEW original boxes at $\$ 500.00$ per 1000 .

PROMPT DELIVERIES ON ALL ORDERS Terms: Prices FOB St. Louis. Cosh or 25% with orders. Balance COD. Rated Concerns (D\&B) Net 10 days cash. Prices subject to
McNEAL ELECTRIC \& EQUIPMENT CO.
4736 Olive St.
St. Louis 8, Mo.

CHECK AND COMPARE OUR COMPLETE STOCKS
The following is just a partial list of the current electronic and aircraft equipment now in our warehouse. Write for complete information. Prompt replies to all inquiries.

RC-103 \& AN / ARN-5 ILS
New in original cartons. Complete.
Consists of ail accessories, plus AS-
Modified to flag alarm.
BC-611 \& BC-721 HANDIE TALKIES,
Plus SPARE PARTS, Quantity available.
JE-17 TEST SET
AN/ARN 7 COMPLETE
SCR-269 COMPLETE
TBS 4 \& 5, NEW, COMPLETE
AN/ARC-1 VHF EQUIPMENT
BC-348 RECEIVERS
BC-342 RECEIVERS
AN/ART-13 EQUIPMENT ATC XMTR T-47A/ART-13 XMTR T-47/ART-13 XMTR CU-24 ANT. LOAD CU-25 ANT. LOAD MT-283 MOUNT MT-284 MOUNT DY-11 \& 12 Dynam't'r $0-16$ LFO ATC DYNAM'T'R SA-22 ANT. LOAD C-87 CONTROL BOX

AN/APG-13A RADAR

Absolutely complete, brand new

EXPORT INQUIRIES INVITED We carry an unusualiy large stock of Airline
Equipnient, Test Equipment, Radar Sets. etc. Equipnlent, Test Equipment, Radar Sets, etc.
Write for our low prices and complete informaWrite for our low prices and complete informa-
tion. We furnish tion. We furnish imme
inquiries. Write today!

2033 West Venice Blyd.-Dept. E-21 Los Angeles 6, Calfornia
Phone: REpublic 3-1127

Excellent

"RW" Values!

write for praces

APR4 with tuning units
APS4 components
APS3 components
BC1306
PE237
BC433G
TS51
MG153
TN16, TN17, TN18,
AS38
BC639 with RA52 Rectifier TS184/APS13 BC611
SCR714 (BC1137)
Dynamotor DM28
(large quantity available)

TN19

BC1033	BC376	LP21LM
APS13	BC638	TS61
ARN7	RA42	TS92
SCR269F\&G	RTA1B	BC1277
SCR619	CRT3	BC1287
B00NTON SIG.	MP10	APR-4
GEN. I. 26 B	MN26Y	MN26C

GEN. I. 26 B
MN26Y
TS 100/AP

Write for our new 1953 catalog! TS159/TPX
COMBINATION SIGNAL GENERATOR AND FREQUENCY METER
Freq. range: $150-200$ MC., crystal calibrated. Has separate 30MC signal output, crystal cal: 3-stage, AF amplifier. Power measurements by built-in VTVM circuit $0-1$ MA. meter as 2 -range voltmeter. Builtin 400 cps . voltage regulated power supply. New ..
$\$ 69.95$

WOBULATOR

BUILD TV-FM-AM SWEEP GENERATOR You can build "Versatile Sweep Frequency Generator" with APN-I magnetic units.

RM 29 with the TS- 13 handset
$\$ 14.95$ ea.
2 for $\$ 27.50$
RL-42 Reversible Motor with antenna reel and clutch, used.

> TS10 TEST UNIT

Complete with attenuator, indicators and 350 ft . of coaxial cable, Originally cost $\$ 300.00$. . new condition . ONLY $\$ 14.95$
Plugs...large quantity available...write for prices !

166	171	MC277
167	172	ART13-U6U
169	170	UHU
		U10U

WANTED!

All TS, APR, APS, ARC, ARN, ART, SCR, R89 and BC equipment . . . write today!
Quote lowest prices in your first letter

Shipments FOB warehouse, 20% Deposit on orders. Minimum order $\$ 5.00$. Illinois residents, add regular sales tax to remittance.

Prices subject to change without notice.

R W ELECTRONIES
 Dept. EL, 1712-14 S. Michigan Ave. Chicago 16, III. PHONE: HArrison 7.9374

SAVE ON TUBES BRAND NEW TUBES GUARANTEED TU:ES

PRECISION RESISTORS

QUARTZ CRYSTALS

Made to a tolerance of $.03 \%$ and produced by Crystal Research Labs." Billey, etc. Avallable in the following frequencles:
 Frequency in

2300	5775	6400	6815	7775	8300
3105	6025	6425	6830	7800	8325
3825	6050	6450	6950	7825	8350
4280	6075	6475	6978.75	7850	8375
4300	6125	6525	7458.75	7875	8385
4375	6150	6550	7625	7900	8400
5300	6175	6575	7650	7925	8450
5500	6200	6625	7675	7950	8500
5633.333	6225	6650	7700	7975	8525
5655.555	6250	6673.3	7725	8000	8808.75
5700	6275	6700	7728.75	8025	8921.25
5722.2	6325	6725	7750	8050	9135
5725	6350	6750	7751.25	8225	9500
5750	6375	6775	7773.75	8275	10075

Frequency in K.

5020	5840	6300	6600	7780	8328
5030	5860	6325	6625	7790	8332
5040	5870	6330	6630	7800	8341
5050	5890	6340	6650	7830	8344
5080	5910	6350	6655	7850	8351
5090	5930	6370	6661	7870	8405
5100	5950	6400	6670	7875	8412
5120	5960	6401	6690	7880	8460
5170	5970	6403	6730	7900	8463
5180	6010	6410	6750	7910	8465
5200	6050	6418	6770	7925	8467
5210	6080	6420	6870	7930	8470
5220	6090	6421	6890	7940	8490
5230	6130	6425	6910	7950	8500
5250	6150	6430	6940	7975	8506
5270	6159	6431	714.0	7990	8512
5280	6175	6450	7270	8232	8524
5290	6181	6470	7560	8238	8546
5295	6195	6475	7600	8239	8547
5300	6200	6480	7625	8240	8560
5310	6203	6490	7650	8241	8561
5330	6210	6500	7675	8245	8567
5340	6215	6525	7700	8248	8630
5604.166	6220	6530	7725	8297	8640
5740	6225	6535	7740	8298	8643
5757	6250	6547	7750	8300	8645
5780	6270	6550	7760	8306	8648
5808	6275	6580	7770	8308	8650
5817.5	6290	6590	7775	8320	

BB1103 CRYSTAL HOLDERS. porcelain made for vacuum sealed metal
cased crystals simllar to Volpey type "VR6" PRIGE 19f EA
4 Greenwich Street

STOCK DELIVERY

NEW SUHPLLUS

Dynamotor-WInco \#602-Type \#5230F-SS \#124
 amperes. Output 1100 rolts D.C. at . 400 amperes.
3600 rpm. Continuous duty. Used with BC . 375 .
 Physleal slze $11^{\prime \prime}$ long x $51 /{ }^{*}$ " in diameter. Stock

Drafting Machine-manufactured by Star Watch 5748 . Special scales glve course, ground speed, and drift: when set for heading, alrspeed and drection of wind, wind velocity. Morable $18{ }^{4}$ arms. NewPerfect. Ideal drafting machine for table use with Speclal $\$ 22.50$ each.
peclai $\$ 22.50$ each
Dynamotor-Gen-E-Motor \#SP125-Model EN-22.2 amperes, output 150 volts at .040 amperes and 3. 0 volts st amperes. 10 foot heavy duty cable with battery clips. Spare parts box contains 2 plug-in electrolstics, 3 metal tubular condensers. 2 watt resistors. Stock $\#$ A-111. Price $\$ 17.50$ each.

Dynamotor-Pacifio Division of Bendix Aviation
 200 amperes. Continuous duty at 4800 rom.
Physical size $71 / 2^{\prime \prime}$ long x^{4} in diameter. stock

Dynamotor-Input 12 volts at 4 amperes. Output 12 volts at 3 amperes and 275 rolts at 110 amperes. duty. Phusical size $712^{\prime \prime}$ long $x^{\prime \prime}$ "

Dynamotor-Input 12 rolts at 2 amperes. Output 500 volts at . 050 amperes. Permanent magnet field.

Dynamotor-Winco Type 4156 -Input 13 volts D.C.
at 13 amperes,
Output 250 volts D.C. at .080 at 13 amperes. Output 250 volts D.C. at 0 . 0 .
amperes and 300
volts D.C. at .225 amperes. Physical sizes $81 / 2^{\prime \prime} \times 41 / 2^{\prime \prime}$ diameter. Stock 世 A-7.
Price $\$ 6.50$ each

Dynamotor-General Electric \#5DY82AB52-Tyne volts D.C at .080 anmeres. Physical size $412^{\prime \prime}$ lon

Attitude Gyro Indicator-Pioneer-Bendix (Post-war Part \#14601-1A-A1. FSSC \#88-I-1350. 26 volts,
3 phase, 400 cycles. These gyros are new, but were 3 phase. 400 cycles. These gyros are new, but were dismantled by Navy technicians for special modifcomplete and ready for reassembly. Stock
Price $\$ 34.50$ each.

Sweep Generator Cuyacitor-Magnavox Part \#XC 260046-G1. IRotating spllt stator capacitor. ${ }^{\text {W Crl }}$ indrical silver plated rotor concentric to silver plated stator on inside of bakelite housing. Hous-
ing diam. 15 ". Square end bells
 ball bearings. Capheity 5 to 10 mmf . Ideal for motor driren bigh frequency sweed
Stock $\#$ A- 95.

Polarity Sensitive Relay-Large D'Arsonval movement in a hermetic sealed can. 17 ohm coll. polarity. The noving contact moves to either one side or the other depending upon the applied
polarity. Can size $34{ }^{\prime \prime}$ long $x 2 \%$ diameter
 Price $\$ 4.95$ each.

Microwave Antenna-AS-2I7A APG-15B, 12 centlmeter dipole and 13 inch parabola housed in 16 stant speed motor. Parabola rotates in elliptical pattern for conle scan. Export packed-shipping wt 70 pounds. Stock $\# \Delta-55 \ldots . .$. Price $\$ 49.50$ each.

Write for catalogue or call
ARmory 4-8989

RADAR

 DESIGN, DEVELOPMENT, PRODUCTION AIRBORNE-SHIPBORNE and LAND BASED SYSTEMS
.

 FULLY EQUIPPED TEST FACILITIES AVAILABLE IN ALL UHF - VHF - SHF rangesSome TS equipment available for sale from our stock. Your inquiries are invited on any phase of our activities.

LERU दasoanaons, wc

black oak rioge road WAYNE, New Jersey Mailing Add RD4, Patterson, N. J. Tel. Terhune 5-2765-6

TBW-RBM EQUIP.

Semi-portable transmitting-Receiving Sta tion. 200 Kc to 20 Mc . 100 watts power out put. The equipment consists of the follow
2-Transmitters $\quad 1$-gas eng. generator 2-Receivers 2 -50' ant. masts \& acc. 1-Frequency meter 2-forage batteries 1-Rect. modulator 1-dynamolor supply 1-Rect. power unit 1-control unit

Details \& price on request

Wheatstone Bridge Model 5430-A 1-138.A "S" band 10 cm
$\$ 95.00$
AN/TPN-2 Beacon
APS-3 Radar
L\&N Hoops Conductivity Bridge. $\$ 150.00$
P.O.R.
L\&N Hoops Conductivity Bridge. * P. O.R. crystal, Var. Cond. and dust cover........ 19.50

TRANSFORMERS (115V. PRI.) \& CHOKES Tapped-8, 9, $10,11,12 \mathrm{~V} .8 \mathrm{Amps}$. cased.... $\$ 4.50$ 15 KV .100 Va . $\$ 19.00,12 \mathrm{KV} .25 \mathrm{Va}$. 1470 V. CT. I 2 Amp. case
6 Henry 500 Ma. cased

Type GF transmitter
Type RU Receiver
Type B. C. 430 Transmitter
Type B. C. 429 Receiver.
5000 MFD-50V. electrolytic cond.
Battery cable, if ft. Lg. with lugs
Co-ax, 2 wire RG $22 / \mathrm{U}$. 95 ohm. per
Twin line, 72 ohm $\mathrm{KW}, 7 / 21$ wire ft .
ubing-Surprenant red plastic for
\#20 wire. 1500 ft . spool

* Prices on request.

FOB Hempstead - 25% with COD orders
ALCERADIO EILCTRONICS CO.
385 JACKSON STREET HEMPSTEAD, N. Y.

NOW! CUT COSTS! INCREASE PROFITS!

 Save on POTS • TUBES • RESISTORS

Carbon Pokentiomelers TYPE JU-RATED AT 2 WATTS Shafts up to 2" long

1 to 5
1.10

6 to $11 \ldots1 .05$
12 to $241 .00$

Type EB—1/2 WATT
Type GB-1 WATT
Type HB-2 WATTS

Las C Ren Sto R.M.A 10 $22 m$ Mon Gua Imm De	alated istors. ndard Valu hms to egohm Y Bac rantee ediate ivery!	es. . k			
Type	watt.	Tol.	$100 \text { to }$	$500 \text { to }$	$\begin{aligned} & 1000 \\ & \text { and } \\ & \text { over } \end{aligned}$
Es	314	10\%	.08	. 075	. 078
CB	1	10\%	. 14	. 12	. 11.
H8	2	10\%	. 18	. 16	. ${ }^{\text {. }} \mathbf{0 8}$

RSERVING THE WORLD OF EIECTRONICS
TREMENDOUS STOCK LOWEST PRICES IMMEDIATE DELIVERY Write for
FREE color code sheet

MOTOR DRIVEN TIME DELAY
 Haydon motor actuares
contactr. 115.
veatern mlectric. 60 cs. Made for $\$ 4.99$ ea.

MOBILE DYNAMOTORS

 6 7olts input. 425 volts © $375 \mathrm{ma} . \quad \$ 27.75$ lbs Brand new, mader by Pioneer and EICOR:As mbore but 12 volt lnput.......
$\mathbf{2 4 . 4 5}$
G.E. RELAY CONTROL (Ideal for Model Controls, Etc.) Contains a sigma midget 8 out ohm. relay. (trips at less than 2 MAl high impedance choke. bl-
metai strip. neon piot and many usefil parts. The sensitive relay alone worth much more than

PANEL METERS	METER BUY
New Gov't Surplus	OF THE
2'0 METERS	YEAR!
0.10 MA AC....s2.99	

$3^{\prime \prime}$ METERS $0-200$ Micramps.. 56.99
 $0-1$ Milliamp. 0.5 Volt
$(1 \mathrm{MA})$ $0-10$ Volt DC 0 (1) MA) $0-15 \mathrm{Volt} \mathrm{DC}$
$0-50 \mathrm{MA}$) (1 MA) $0-1.5$ Volt AC $0-3$ Volt $A C$
$0-150$ Volt $A C$ $0-150 \mathrm{Volt} A C$
$0=1.5 \mathrm{KV}$ DC KV DC..... ${ }_{9.99}^{6.99}$
4" METERS
2" Simpson Meters Round bakelite case Brand new, original
cartons. DC $\$ 3.99$
$0-1$ MA ${ }_{0-1} \mathrm{MA}$.
$0-300$ Volts DC, 1000 Ohms/v
$(1 \mathrm{MA})$
$\$ 3.99$
(1 MA)

| DB | Meter |
| :--- | :--- | :--- |
| +20 | -10 |
| $\mathbf{1 0}$ | $\mathbf{t o}$ |
| 10.99 | |

ANY ${ }^{3}$
METERS
\$11.49
E MEGOHM 1% W.W. RESISTORS
Standard Brand List Approx. 9.50
Our Price - .99 ea. 10 for $\$ 8.99$
PEAK ELECTRONICS CO.
66 West Broadway, New York 7, N. Y. Phone WOrth 2-5439

REMOVAL SALE!

PRIOR TO OUR MOVING TO NEW QUARTERS WE ARE OFFERING OUR COMPLETE

CAPACITOR

 INVENTORY
at 65% 808\%

 off
LIST PRICES

(Limited Time Only)

- BATTHTUB TYPES • (CP-53 CP-54 CP-55)
- CHANNEL TYPES -(CP-61 CP-63 CP-65 CP-67 CP-69)
- RECTANGULARS • (CP-70)
- TUBULAR TYPES • (CP-25 to CP-29 CP-40 CP-41) NOTE:
At time of going to press ample stocks on hand but at these low prices we suggest your early inquiries.

FOR SALE! ENTIRE LOT ONLY!
$8280-P i e c e s ~ o f ~ W . E .-F T . ~ 241-A ~$
Crystal Holders with Crystals. Assorted
Sizes—All New. (Com- 25\& R2. plete List on Request)..

MANY OTHER GOOD BUYS.
(Send for Bulletin.)
A. MOGULL CO.

50 West Broadway N. Y. 7, N. Y. Phone: Worth 4-0865
the needs of industry GOVERNMENT - FOREIGN PURCHASING COMMISSIONS WITH
COMMUNICATIONS EQUIPMENT, RECEIVING and transmitting tubes, electric wire and Cable
AIRCRAFT ELECTRONICS-INSTRUMENTSHYDRAULICS
prompt attention given to all inquiries

Rated—Dun \& Bradstreet

Electronic Experiters

Dept. WW, 225 N. Wabash Avenue
Chicago 1, Illinois • ANdover 3-0841 Cable Address: "ELEXPEDITE" • 'TWXCG1510

SPECIAL

While they last JAN
2J39 RAYTHEON $\$ 8.95$ AR300A
\$3.95
ALL BRAND NEW
IN ORIGINAL CARTONS
AVAILABLE IN QUANTITY-WIRE OR WRITE FOR LOWEST QUANTITY PRICES
M \& B SALES CO COrtlandt 7-7242 137 Hudson Street New York 13, NY

WHOLESALE ONLY

ELECTRONIC COMPONENTS AIRCRAFT EQUIPMENT HYDRAULICS

RADIO \& ELECTRONIC SURPLUS

 13933-9 BRUSH STREETDetroit 3, Mich. TO 9-3403

FOR SALE

EQUIPMENT

1-SCR 522 (BC 624A-BC 625A). New in original crate with following accessories: Antenna AN 188, 3 control boxes BC 1312-13-14, 1 cord Cd 133 RG 8 U ,
2-coax. cable w/ all plugs......... $\$ 125.00$ - slime as above without accessories Signal slig scratched cabinet, $\$ 65.00$ each Signal generator l-138-A......... $\$ 165.00$
HAYDON SYNCHRO MOTORS 110 VAC
3.6 watt- $1 / 2$ RPM
. $\$ 2.75$
2.2 watt-1/120 RPM....................... 2.45 . $6 \mathrm{watt}-5$ to $5 \mathrm{~min} \# 5901$-adi. reset Cramer Tid. relay in 15 $\$ 7.50$
Cramer
4 min)
T.D. relay 115 v, , 60 cy. (3 or
o....................... $\$ 5.25$

AMPLIFIERS

G.E. Servo type 2CV1Cl 400 cy no tubes $\$ 14$ Bendix CM-50131 for Synchro radar equipment-in original crate.......\$26.25

METER

Westinghouse Voltmeter, NA-35, style BX-48450-1, 0.150 V.A.C., $3^{\prime \prime}$ round. . $\$ 7.95$

LEONARD GREENE
381 Tremont St. Boston, Mass.
HAncock 6-4794

> T-47A/ART-13 Aircraft Transmitters DY-12 Dynamotors, BC-639 Receivers SCR-694-C Portable Trans. \& Recvrs. BC-610.E Transmitters. (SCR-499) ARROW APPLIANCE COMPANY Box 19, Boston, 1, Mass TEL: RÍCHMOND 2-0916

HIGH VOLTAGE POWER SUPPLY

Many models available in ranges
from 2500 to 25,000 volts D.C.
with or without built-in meters.
Send for free catalogue Dept. E-3
PRECISE MEASUREMENTS CO.
942 KINGS HIGHWAY BROOKLYN 23, N. Y.

FOR SALE: RA-38 Rectifier Mfd. by American Transformer Co. Input supply from 115 V . 60 cy, sgle ph. Max. fitered output is 15000 V . c. at 0.5 amperes. Transtat regutator permits continuous variation of the d.e. output voltage from zero to max. 25 hrs on running time meter. Entire assembly is mounted on castors. Priced far below replacement cost at $\$ 350.00 \mathrm{~F} .0 . \mathrm{B}$. Oakland, Calif. Write to:
CHROMATIC TELEVISION LABORATORIES, INC. 703 - 37th Avenue, Oakland 1, California

New "SEARCHLGHT" Advertisements
received by March 2nd will appear in the April issue subject to limitations of space available.

Classified Adrertising Division
ELECTRONICS
330 West 42 nd St. New York 36, N. Y.

> All receiving and special purpose types. Real values that will save you 10 to 70% : Call or write today for special price list. State type $\&$ quantity for additional discount. METROPOLITAN SUPPLY CORP. 1133 Broadway, Now York 10, N, Y. CH 3 -1105

SPECIAL PURPOSE TUBES \qquad

All Tubes listed below are fully guaranteed and in stock for immediate shipment.

Type	Price	T	Pr	Type Price	Type Pr	Type	Price	Typ	Price	Typ	Price	$\begin{aligned} & \text { Type } \\ & \text { Oyp } \end{aligned}$	Price
OA2 Jan	50.90	1N31.	3.00	$2132 \ldots . . .38 .50$	3824W 7.90	$5 \mathrm{5C22}$.	48.95	FG104	28.90	CK5460X	2.25	$930 .$	1.09
OA3/VR-75.	. 99	1N32.	24.00	$2134{ }^{34.50}$	3825....... . 3.99	5021	22.50	FG105	18.95	CK547DX	2.25	${ }^{9314}$-RCA	5.25
$0 \mathrm{OB2}$ Jan	1.30	1N34	. 65	$2156145 .00$	3828....... 6.95	5R4GY RCA.	1.49	FG172	32.00	575A	14.90	1614-RCA	2.15
OC3/VR-90	. 98	1N35	1.59	2K22. 50.00	3C22........ 94.50	ST4	2.25	250-R	9.45	702A	3.00	1620	5.95
OD3/VR-150.	. 85	1N38-1	. 74	$2 \mathrm{2k23}4 .45 .00$	3C23........ 10.50	C6J	8.50	300-B	12.50	703A	5.90	1622	2.70
1821/471-A..	2.49	1N40	7.50	2K25....... 32.50		6AH6	1.19	307-A	3.95	705-A/8021	2.25	2050	1.49
1822.	3.75	1N41	9.50	2K25/723A/B	Highest Cash	6AK5	1.25	350-B	4.75	707-B	14.25	R-4340 Sylv	rite
1824	11.95	1N42	18.00	Sld. ctns. 24.95	Prices Paid for	6AK5W	3.00	355-A	13.95	715-B	8.50	5651	2.95
1827	12.90	1N45/400C	1.25	2K26....... . 159.00	Your Special	6AN5	3.95	393-	11.50	715-C	21.95	5654	2.75
1836	9.90	$1 \mathrm{~N}^{1} 6$. 59	2K28........ 31.95		6AR6	3.25	394-A	4.75	719-A	26.95	5656	6.75 4.95
1838	28.50	1 P 21	39.95	2K29........ 28.90	P Any Quantity	6AS6.	3.25	434-A	18.00	721A.	18.25	5670	4.95 1.35
1841	48.90	$1 \mathrm{P} 26 \mathrm{G} . \mathrm{E}$	79.50	$2 \mathrm{2K33}$ Sperry 290.00	Any Quantify 1 to 1000.	${ }_{6}^{6457 G}$	4.50 24.50	CK501DX	1.75	723AA.	18.75 3.50	JRP 5687	1.35 5.40
1 B 60	14.95 69.50	1R44/1294	23.79	2K34 Sperry 2225.00		6 F 4.	6.00	CK522AX	1.25	7248	3.50	CK5697	5.40 4.95
1D21/631P1. .	5.00	2C39A	30.00	2K39 Sperry.135.00	3C33........ 14.50	654	6.85	CK526AX	1.45	726B	49.50	CK5702	5.95
1 N 21.	1.20	2 C 40 J	14.95	2K41....... 149.50	3C45......... 11.95	6K4	4.90	CK528AX	1.62	726 C	59.25	CK5703	1.49
1 N 21 A	1.70	2 C 42	25.95	2K42 Sperry 142.50	3E29...... 14.50	6L6	2.19	CK531DX	1.95	804	12.95	CK5704	3.95
1 N21B	2.95	2 C 43	17.95	2K43 Sperry 139.00	3 K 22 Sperry 325.00	6L6G	1.25	CK532DX	1.95	807	1.60	5744	1.50
1N21C	18.90	2 C 51	6.15	$2 \mathrm{K44}$ Sperry.139.50	3 K 23 Sperry 375.00	6L6 GAY	2.25	CK533AX	1.25	814	3.50	5814	3.50 5.49
1 N 23.	1.30	2D21 RCA	1.35	2K45 Sperry 145.00	4-125-A . . 24.95	6SN7 WGT	2.70	CK536AX	1.10	815	2.90	5829.	1.49
1N23A	2.40	2 E 24 Jan	3.99	$2 \mathrm{L46}$ Sperry 349.50	4C28........ 24.00	6SU7GTY	2.50	CK537AX	3.25	829 B	12.95	CK5875.	
1 N 23 B	3.45	2E25/HY65.	4.95	2 K 47 Sperry 475.50	4C33...... 60.00	12 K 8 Y .	. 85	CK538DX	1.25	${ }_{8}^{832 A}$	9.50 35.95	8005-RCA	17.95 $\mathbf{5 2 . 5 0}$
	5.15 8.50	2E26	3.00 1.99	${ }_{2 K 48}^{2 K ~} 125.00$	${ }_{4}^{4 C 35} \ldots \ldots{ }^{26.50} 14.90$	12SJ7-M-Jan	3.62	CK542DX	1.15 1.20	833 845	35.95 5.75	${ }_{9002} 8014$	52.50
1N27.	2.50	2E43	1.35	3824........ . 5.20	4552........ 249.50	FG-32-5558	12.95	CK544DX	1.15	861.jan	22.75	9004	. 39

Above Listing is only partial. ALL TUBES ARE NEW, MOST WITH JAN MARKINGS AND IN ORIGINAL CARTONS TERMS: NET 15 days to rated firms. Write or Phone if your requirements are not listed. "All Prices subject to change without notice."

Portable Instruments

Molded Bakelite case $7^{\prime \prime} \times 41 / 2^{\prime \prime} \times 3^{\prime \prime}$
D.C. MICROAMMETERS
5..10.. 50 microamperes THERMOCOUPLE MILLIAMMETERS 1,5..5.. 10 milliamperes THERMOCOUPLE VOLTMETERS

$$
5 \text { to } 500 \text { volts }
$$

Available in multiple range
combinations
Precision Electrical Instrument Co.
146 Grand Street New York 13, N. Y.

FOR SALE!
39 UNITS BC957A RADAR INDICATOR
UNUSED

Manufactured for the U. S. Army Signal Corps by Western Electric. Units contain a $5^{\prime \prime}$ scope tube in addition to 33 various electronics tubes. Dimensions: $171 / 4 \times 35^{\prime \prime} \times 101 / 4^{\prime \prime}$ deep.

IDEAL FOR RADAR LAB USE!

Available for inspection
WRITE—WIRE-PHONE

COMMERCIAL SURPLUS SALES CO.

4101 Curtis Avenue, Baltimore 26, Maryland Telephone Curtis 3300

! ! WANTED!!

IN ORDER TO SUPPLY GOVERNMENT AND INDUSTRIAL REQUIREMENTS, WE ARE PAYING TOP DOLLAR FOR ALL TYPES OF RADIO AND ELECTRONIC SURPLUS. WE SPECIALIZE IN TEST EQUIPMENT AND COMPLETE RADIOS, SUCH AS:
APA, APN, APQ, APR, APS, APT, ARB, ARC, ARN, ART, ATC, BC, DY, I, IE, LM, MG, PE, PU, SCR, TCS, TN, TS, and many others.
WE ESPECLALIY NEED: APA10, APNQ, APR4, APS4, ARCI, ARC3, ARTI3, ATC, BC221, BC342, BC348, BC611, BC721, DY12 DY17, Il00, LM10 to LM18, MG149F, MG149H, PU14, RS/ARN7, RSA/ARN7, SCR718C, TCS, TN16, TN17, TN18, TN19, TNS4, TS3, TS13/AP, TS33, TS35, TS45, TS75, TS76, TS102, TS147/OP, TS148/OP, TS173, TS174, TS175, TS250, TS251, TS323, (1CT, 1F, 1G, 5CT, 5DG, 5F, 5G, 6DG, 6G 115V. 60 c.p.a. Selsyns), and all types of Hewlett Packard, General Radio Co., Measurements Corp., Boonton Radio, Ferris, Loeds \& Northrup, and other test equipment.
Please state accurto description, condiHon, and your lowent price. Explain modlfications, if any. We pay freight charges. PURCHASING AGENTS, ENGINEERS, EXPORTERS, INDUSTRIAL BUYERS, DEAIERS, AND INDIVIDUALS, Please send us your requirements.

WRITE FOR OUR

LATEST SURPLUS CATALOG
PHOTOCON SALES
417 N . Foothill Blyd. SYcamore 2-4131
Pasadena 8, California RYan 1-6751

WE BUY...

all kinds of
DOGS

SURPLUS MATERIAL
Aircraft \& Electronics

- Amplidynes
- Dynamotors
- Motor Generators
- Switches
- Wire
or What Have You?
ATLAS EQUIP. CO.
229 Southwest Blyd.
KANSAS CITY, MO.

WANTED

- AN/TRC-1 Equipments.
- T14 Transmitters.
- TS32 Test Oscillators.

Any condition or quantity
W-3858, Electronjes
330 W. 42nd St. New York 36, N. Y.

IN STOCK

FOR IMMEDIATE DELIVERY
 CAPACITORS

CP53-CP54-CP55
 CP61-CP63-CP65 CP67-CP69

Every "E" Characteristic
Item Listed In Jan-C-25 Also Every "F" Characteristic Where The Size Is Smaller Than " E "

ALSO
CP70 CAPACITORS
"E" Chorocteristic 600 and 1000 Volts " B " and " E " Terminals

O'DEL ELECTRONICS CORPORATION

293 WEST BROADWAY NEW YORK 13, N. Y.

WORTH 4-2176 WORTH 4-2177

!!! WANTED ! ! ! Special Radar Purpose

ATTENTION MANUFACTURERS, LAB's. SCHOOL'S, HAM'S!!: We will pay you immediate and highest cash prices for special purpose tubes and X'TAL Diodes in any quantity.

HERE IS A PARTIAL LIST
OF WHAT WE ARE LOOKING FOR:
"1B" series, including 1835 \& 1B63(A), IN25 \& 1N32. 1S21. ALL KLYSTRONS, INCLUDING: $2 \mathrm{~K} 33,35,41$ \& 47 . also 723A/B, $726-\mathrm{B}$ \& C , \& 3 K 30, 3' $22,4 \mathrm{C} 35,393-\mathrm{A}$. \& MANY OTHER THYRATRONS \& IGNITRONS. 6AS7-G, 6F4, 6J4, 804 \& 5691-2 \& 3. ALSO MANY MAGNE:TRÓNS.

For a prompt quotation write to MICROWAVE
425 Riverside Drive, New York City 25, N. Y. Dept. 6B-4
Or for immediate action Phone
Monument 2-1480 and ask for Miss Rainbow

WANTED

Radio transmitters, receivers, test equipment, tubes, parts, technical manuals, particularly: APR-4, 5, A PN-9, ART-13, DY' $12, ~ D Y-17, ~ B C-348, ~ B C-312, ~$
BC-342, BC-221, LM, SCR-694, BC-1306, PE-237, BC-342, BC-221, LM, SCR-694, BC-1306, PE-237,
$\mathrm{GN}-58$, BC-610-E, panoramic adaptors. Will trade. ALLTRONICS
Box 252
Boston 1, Mass.

Atte. Manf., Dealers, Exporters Dynamotors Offered Spring Sale

Orders accepted from 1- to 1,000 New low prices on all numbere. Specini prices for quantity bujers. Oyer 80,000 In stock
All

| | DM-91 | DY-10 |
| :--- | :--- | :--- |\quad SS8669

Quantities avallable in the above numbers. Other numbers and types available. Your nquires apprectated. samples at request
Prices on request.

Need T-17 Mikes 1 to 1000 any model
VETS, DIST. CO.
3613 N. WESTERN PKY
LOUISVILLE 12, KY. CY. B904

AN Connectors, complete stocks on hand. Blue pthalate, melamine or bokelite with cadmium plated or sand blast shells. Write for four page reduced price list.

Up to 80% discount!
Coaxial
Connectors, 23,064 pieces in stock in 167 different types.

Write for latest price list.
HAROLD H. POWELL \& CO. 2104 Market Street Philadelphio 3, Pa.

> WE BUY AND SELL GOVERNMENT SURPLUS
> electronic components, units, wire, etc. Your Inquiries Invited
> LAPIROW BROS.
> 1540 Hefiner 8 .
> Kirby $128{ }^{\text {Cimolanati 28, OMI }}$

WANTED

Western Electric gray-finished EQUIPMENT CABINETS For $19^{\prime \prime}$ panels. Heights of $2^{\prime} 6^{\prime \prime}, 3^{\prime \prime} 6^{\prime \prime}$, $7^{\prime \prime} 0^{\prime \prime}$ and 7' 6".

330 W. 42 St., New York $36, N$. Y.

Will buy "ALL"	
ART - 13 / type T-47A, $\$ 200.00$.	BC. 348 modiflad. 555.00. APN-9, $\$ 200.00$.
ART - 13 / type T.47, $\$ 150.00$.	ARC- 3 complete, $\$ 750.00$. R77 Receivars. $\$ 400.00$.
BC-348 unmodifled	BC312. $\$ 65.00$.
\$75.00.	ВС342, \$60.00.
Ship via Express C.O.D	suliject to inspection to EGAN
49 Washington Ave.	Little Ferry, N. J.

WANTED

BDIIO Telephons Switehboards, BD 100 Tetegraph		
Ringers. BE'72 Calinets, FM19 F'rames, SA43,		
REC30, KS5988,		
BD101 Tobt Boards, SB6. Switchhoards. Type		
W-6205, Electrontes 42 St. . New York 36.		

[^36]

HIGH FREQUENCY

50 K.V.A. $400 \approx$ MG SETS

We have been fortunate in acquiring a quantity of Kap up into motor generator sets wad are maus enabled to ofter these at a verys atractive
thrice. These sets consist of a 75 H. M. Motor price, These sets consist of a 75 H. P. Motor operative at $220 / 440$ Volts, 3 Phase, 60 Cycles,
$1750 \mathrm{R} . \mathrm{P} . \mathrm{M}$. which are coupled directy to a self expled alternator with output of 50 KVA. $120 / 208$ Voltts, 400 CPS 3 Phase. These motor-
generator sets are BRAND NEW and complete generator sets are BRAND NEW and complete
with compensator for notor starting and fleld with compensator for notor starting and field
rheostat for voltage output control ${ }^{\text {Voltage }}$ rheostat for vortage output control additarge to price as quoted. We will be pleased to supply complete specifications relative to frequency and voltage variation and harmonic content.

KATO 25 KVA MG SETS. Motor: 40 HP, 220/440 Volts. 3 Ph., 60 Cscles, 1750 RPM, direct-connected to alternator having output of 115 Volts. 1 Dh. 400
cycles, 25 KVA . Voltage Regulation can be supplled at \$100 additional to price as quoted. Brand new BOGUE THREE PHASE MG SETS, Consists o alternator with putput of $120 / 208 \mathrm{~V}$ - $3 \phi .400$ cyc.
 AMERICAN 400 CYCLE SETS. A preciston bult motor generator set ideal for laboratory test work Consists of 100 H.I. motor directly connected to
alternator with output of 5 KVA, $120 / 208$ Vits. three phase, 400 ciscles. Win electronic exctervariation $=1 \%$; Total harmonic cont. 1.2%; ${ }^{2} 850.00$ LOUIS ALLIS FREQUENCY CHANGER SETS. $2200 \mathrm{RPM} / 306 / 220$ Volts $35 / 35$ Amps. 2 ph . $500 / 136$ C.P.S. Brand new. PRICE.............. $\$ 1250.00$ We can supply these units for 400 cycle output and Write for further information.
BTH 400 CYCLE M.G SETS. Conssists of an alter
 at $220 / 440-3-60$. Excitation provided by dry disu rectifier. Complete with field rheostat. SPECIAL
PRICE
KATO MG SET. Motor: 12.5 HP . 220/440-3-60. Output: 7.5 KYA. 230 Volts, 1ϕ. 350 crc with
direct conn. exclter.
Brand New.
PRICE.
I BOGUE 7.5 KVA MOTOR GENERATOR SET. Motor: 10 HP , $220 / 440-3-60$ direct connected to
Belf-exc. alternator with output of $7.5 \mathrm{FVA} 120 / 298$ self-exc. alternator with output of $7.5 \mathrm{KVAA}, 120 / 208$
Volts. 3 ph .400 crcles. Wre connected. content 1.2% PRICE.
With GE
.$\$ 2150.00$
.$\$ 2250.00$
LELAND MG. SET. Consists of 5 HP Motor opera nator with output of $3 \mathrm{KVA}, 1201208 \mathrm{~V}$ exc alter cyc. PRICE …....................... $\$ 960.00$ GREAT LAKES 400 CYCLE UNIT. Output of 2 operative at $220 / 440-3.60$ Compract two bearing
unit. Rebuilt. PRICE............... 5320.00 AOO CYCLE COMBINATION 1 AND 3 PHASE
MOTOR GENERATOR. chronous $220 / 440 \mathrm{~V}$. Motor V belted of 20 HP two self Sx cited alternators. Generator I: Bogue 5 KVAA 120 Generator II: Onan $4 \mathrm{KVA}, 115$ Volts. single pi 400 CJS with voltage resulator. Motor and both alternators and two voltage egulators are monnted on relded channel iron base complete with motor
starting compensator. SPECLAL PRICE $\$ 3175.00$ CARSON MG SET. Motor: 220/440 Voits. ${ }_{60}$ cycles. $7.5 \mathrm{HT}, 1750$ Generator: Moriel 60 evcles., $5 \mathrm{HHP}{ }^{1750}$ Generator Model CPM
$28-2,120$ Volts. 1 Ph. 400 crcles, 41.6 A. 8 Pr 4 KW. Direct-Connected, Permanent-Magnet. LOUIS.ALLIS 3 UNIT MG SET. Consists of 5 to alternator with output of 115 volts. I ph.; 4 n cre. and with exciter unit all mounted on steel hase.
$1.8 \mathrm{~K} . V . A$. PRICE SPECIAL MG. SET. Motor: $2.5 \mathrm{HP}, 220 / 440-3-60$ Self-exc. Aiternator with output of 1.25 KVA.
V. single ph. 400 cyc. PRICE.
11 ${ }_{10}$ BRITISH MADE 400 CYCLE SETS. Consists of Alternator with outnut of 6 KVA, 115 V. $1 d$ $400 \sim$ Complete with GE voltage regulator. Brad GENERAL ELECTRIC HIGH FREQUENCY MG. Consists of motor and dual output generator
mounted on steel base. Motor operates at $220 / 440$ mounted on steel base. Mrotor operates at $220 / 440$ -
$3-60$ direct connecter to alternator with output of 3-60 direct connected to alternator with output of
115 V Vits, 1 Ph. 1050 CCeles. 1 KY A and 115 volts.
DC., 2 KW . With field rheostat. PRICE. $\$ 525.00$

NORMAND ELEC, CO. (BRITISH MFG.) MG UNTT. of cycty connected to H . 24 . alternator with output
PRICE $\$ 149.00$ LOUIS ALLIS MOTOR GENERATOR. Consists of $\mathrm{HP}_{\text {HP }}$ Motor $220 / 440$ Volts, 3 Ph. 60 Cycles, 3450

VARIABLE FREQUENCY POWER SUPPLY. Driven by 5 HP, $220 / 440$ Volt, ${ }^{3}$ Ph. ${ }^{60}$ Cy
US Synchrogear Varidrive motor. Special attachment permits remote pushbutton control of
speed from 1430 to $10,000 \mathrm{RPM}$. Direct-Connected Alternator is made by Onan and is rated at $1.5 \mathrm{KVA}, 115$ Volts, single phase, 88
PF . The Frequency may be varied from 400 cycles to 2400 cycles. may The varied from 400 tion is provided by a separate motor generator furnished with the below price.
NEW $\$ 2450.00$
US-ONAN VARIABLE FREQUENCY SUP.
Cycles. Output spoed is manually pariably
between 1600 and 8000 RPM . Direct connected
$\begin{aligned} & \text { alternator made by ONAN is rated at } 5 \mathrm{KVA} \text {, } \\ & 110 \text { Volts, } 45.5 \text { Amps, } 1 \text { PF, Frequency lange }\end{aligned}$
$\begin{aligned} & 110 \text { Volts, } 45.5 \text { AmDS, } 1 \text { PF. Frequency Range } \\ & \text { is between } 800 \text { and } 2400 \text { cycles. Excitation is }\end{aligned}$
provided by Tungar rectiffer mounted on same
$\begin{aligned} & \text { base. Price complete with rhoostat panel and } \\ & \text { magnetic motor line starter........ } \$ 3990.00\end{aligned}$

GM-GE 400 CYCLE SUPPLY. Motor: Delco, 5 leelted to alternator, GE, Model 5 A326A3 220 Yolts. 15.9 Amps. $3.5 \mathrm{kva} 2.8 \mathrm{kw}, 1$ ph. 160 NRPM . Direct-connected exciter. Voltage regulated. NFWW.
GE 120 GYCLE MOTOR.GENERATOR. Motor: 75 IIP, $220 / 440$ Volts. 3 phr, $60 \mathrm{cy}, 1750 \mathrm{RPM}$, direct120 cycles, 128 amps, Tyve ATD, Direct-Connected
exciter. PRICE $\$ 2995.00$
canadian high frequency unit. Operates with innut of 110 VDC will deliver 200 watts, with adjustable frequencles up to 10,000 cycles. Con-
trolled by knol) at one end of machine. trolled by knol) at one end of machine. . . $\$ 85.00$ CONTINENTALDC/AC SET MOtor: $1.5 \mathrm{HP}, 230$ 8 VIC. ${ }^{3440}$ RPM. Output: 120 VAC, 6.6 Rmps. 8 8 KVV. 800 cyc. 1 Dh., also output of 14 VDC. ${ }^{4}$ anms. Model CG2163. Compact 2 -bear. unts.

 Same set operative at $110 / 220$ V, $1 \phi, 60 \sim \$ 155.00$ ONAN 800 CYCLE MG UNIT. Employing 5 H.P. Hotor operative at $220 / 440$ volts, 368.60 Cy. V KVA, 115 Volts, single ph. 800 CPS , and secondary Rutnut of 500 Whatts 28.5 VDC 17.5 amperes. $\$ 375.00$
BENDIX POWER MG SET. Consists of G.E. 2 IIP Rep-Ind Motor, 115 volts, single phase, 60 csc. directly connected to bennix atternator with output it 120 volts. 700 cyc., 60 watts and
1.5 rolts, DC. 22 amp. Brand new. \quad Plice 5225.00 BURKE ALTERNATOR, $62.5 \mathrm{KYA}, 220$ Volts, 3

 anwiary. exciter MG set and fele rhenstat. Rall
hearings. Will deliver 400 evcles at 4000 RM. ebuilt. PRIC
DEAL FREQUENCY CHANGER SET. Motor perative at $220-3-60$ with direct connected induction tyle aternator PRICE output of 12.5 KVA , 18.20 GENERAL ELECTRIC 400 CYCLE UNITS. Operate at 26 VDC 100 Amn. Output: 115 VAC $1 \phi, 400$
CPS. 1500 V.A. With filter system built-in RICE $\$ 39.50$
 Amps. Output: 115 VAC. single phat 2500 V.A. 400 Price .. 39.00
WINGHARGER PU-16/AP INVERTER. TYPE
 PE 109 INVERTERS, Input 13.5VDC 29 A : Ontpyut HOLTEER-CABOT MG218. Compact 2 hearing inits for low current 400 cycle outgut. Operative at 115 VnC. 2.3 amp. Output: 110 Volts, 1.0 anip.

INDEX SEARCHLIGHT

March, 1953

This index is published as a convenience to the readers. Care is taken to make it accurate but ELECTRONICS assames no responsibility for errors or omissions.

EMPLOYMENT
Solling Opportunities Öffered
507
Peling Opportunities Offered Selling Opanted 507 Selling Opportunities Wanted 507
Empioyment Services 507
Colt ShVICes 507
Rebuilding …… 507
BUSINESS OOPPORTUNTITIES
Offered
EUIPMENT
(Used or Surplus New)
For Sale $520-558$
NANTED
Equipment
552

ADVERTISERS INDEX
Admiral Corporation 510
Aircraft Armaments Inc. 512
Algeradio Electronics Co. 550
Allied Electronics Sales 550
556
Alltronics 5
Armour Research Foundation of Institute
of Technology
510
550
Arrow Appliance Co. 5530
Atlas Equipment Co. 55
Barry Electronics Corp. 541
Bendix Aviation Corp,. York Div. 515
Rendix Radio Div. of Bendix Avia. Corp. 508
Pendix Radio Div. of Bendix Avia. Corp. 508
Blan ©.. 541
Brooks Inc., B. D. 556
C \& H Sales Co.
527, 540
Capehart Farnsworth Corp.
Chase Flectronics
Chase Electronics Supply Co. 549
Chromatic Television Laboratories Inc. 516, 550
Comet Electronic Sales.
Commercial Surplus Sales Co.
Communications Devices Co
Communications Devices Co. $\cdot \cdots \cdot{ }_{556}^{551}$
ommunications Equipment Co.532, 533
Components Supply Co. Co.................... ${ }_{543}^{538}$
Connector Corp. of America
Cornell-Aeronautical Laboratory Inc.
513
516
Davis Laboratories, The 514
Daystrom Inst. Co. Co......................... 519
Douglas Aircraft Co., Inc. 508
Eastern Telephone Co. 543
dlie Electronics Inc
Electro Devices Inc.
Electronic Engineering Co. of California
Electronic Engineering Co. of California .. 50
Electronic Expedaters Supply Co.
Electronic Surplus Brokerss.i2, 523
Electronicratt Inc.522, 523, 5
Empire Electronics Co......................... 54
Engineering Associates
540
537
Fair Radio Sales 543
Finnegan, H. ${ }_{\text {Ford Motor }}$ Co. 552
Freeland Products Co. 556
General Motors Corp., AC Spark PIug Div. 510
General Motors Corp., Delco Radio Div. .. 518
Gibbs Mannfacturing \& Research Corp. ... 514
Goodyear Aircraft Corp. 509
Greene, Leonard 550
Harjo Sales Co. 548
Hatry \& Young 539
Horlick Co., $\begin{aligned} & \text { Houde Supply Co. } 551 \\ & 554\end{aligned}$

(Continued on opposite page)

TO THE ADVERTISERS

March, 1953

SEARCHLIGHT SECTION
(Classified Advertising) H. E. Hilty, Mgr.

Johns Hopkins University, The 514

Kollsman Instrument Corp.
Lapirow Bros. 552
Lectronic Research Laboratories520, 521
Leeds \& Northrup Co. 507
Leeds \& Northrup Co.
Leru Laboratories Inc. 548

Maritime International Co. 544
Martine Switchboard Co. 544
539
Maryland Electronic Manufacturing Co. . 514
Massachusetts Institute of Technology 507, 5
McNeal Electric \& Equipment Co.
Melpar, Inc
Merrick Electronics
Metropolitan Oakland Ärea
Metropolitan Supply Co.
Microwave Equipment Supply Co.
Minneapolis Honeywell Regulator
Mogull Co., Inc., Alexander.
M \& B Sales Co.
National Cash Register Co.507, 518
Nibur Sales Corp.
O'Del Electronics Corp. O'Shea Ernployment System

Peak Electronics Co. Permoflux Corporation
Phillips Petroleum Co.
Photocon Sales
Potter Instrument Co
Powell, Harold H
Precision Electrical Instrument Corp.
Radcom Engineering Co
Radio Corp. of America
Radio Corp of America ©o.,
Radio \& Electronics Surplus
Radio \& Electronics Surplu
Radio Ham Shack Inc
Radio Surplus Corp.
Railway Communications Inc
Resisco Corp
Relay Sales
Reliance Merchandising Co.
Rose Products Co.
Sandia Corp.
Semler Associated Industries Inc Servo Tek Products Co., Inc.
Sperry Products Inc.
State Labs Inc
Stavid Engineering Inc.
Sylania Electric, Electronics Div
"TAB"
57, 558
Telemarine Communications Co. 536
550

Universal General Corp.
Vets Distributing Co., The
\& H Electronics Industries Inc
Wells Sales Inc
Western Engineering
Westom Laboratories Inc.
Wilgreen Industries
Wolf Company, Edward

RADAR-COMMUNICATIONS - TEST EQUIPMENT

AN/ARC-1-Transceiver 100-156 mcs APA-1 1- ['ulse Analyze ARC.4-VIIF Transcelver 140-150 MC ARN-5-Glide 1'ath Recelver..... ARR-2-Homing \& Receiving Equipmen BC-223-30-Watt Transmitter 2.510 VAC BC-348-Receiver- 1.5 to 18 MC 28 v DC BC- $375 \mathrm{E}-\mathrm{V}$ Vadio Transmitter BC-639-VHF Receiver $100-156 \mathrm{MC} \ldots$
BC-640-VHF BC-1206-Beacon Receiver $200-400 \mathrm{KC}$ RC-103-Airborne Locallzer lleceiver SCR-269-Nartio Compass SCR-274N-Comniand Equipmen SCR-291-Sem-I'ortable Direction Finder CRR-300- Pield Transmitter and Receiver SCR-536-Handi-TalkiePA SCR-555-Semi-Tortable Direction Finder SCR-718A-AM-C-High Altitude Altimete T. 50-hadio Telegraph Transmitter TS-3/AP-S-Band Power Frequency Meter TS-1/AAP-APN-1 Test Set. S-14/AP-X-Xand Signal Generator TS.15/AP-Flux Meter TS.16/AP-APN-1 Test Net TS.33/AP-X-liand Frequency Meter TS-34/AP-Syncroscope complete with acces. TS-36/AP-X-Band Peower Meter TS.59/APN-APN-1 Test Set TS.61/AP S-Band Echo Rox. TS.62/AP-X-Band Echo Rox $\quad \$ 140.00$ TS-98/AP-l'ulse Voltage Dtride TS. $102 / \mathrm{AP}$-Range Calibrator TS. $111 / \mathrm{AP}$-S-Rand Wavemeter TS.125/AP-S-13and Power Mete TS-170/ARN-5-1.L.S. Test Set TS.184/AP-Test Set TS-226/AP-300-1000 MC Power Meter TS-278/AP-APS-13 Test Set IE-19-SCR-522 Test Set
1E-36-SCR-522 Test Set BC-1277-S-Mand Simal TBN/3EV-Thermistor Brldse CW/60/ABM-S-Hand Frequency Meter APA-10-P'anoramic APA-10-ranoramic Adaptor $\$ 225.00$ APQ-5-Low Altturde Tracking \& Bomining Equip APR-1-Radar Search Recefver $40-3400 \mathrm{MC}$
APR-2-Radar Rearch Recplyer RE-1000 MS:

RECEIVING TUBES

WANTED! WANTED!
Veeded for Government Defense Projects-all types op military electronic gear with the preflx TS, TC
SCR, APR. APS. ete. Highest prices paid or wili
exchange for your needs. No offer too small or too larke.
$\$ 400.00$
$\$ 950.00$
. $\$ 950.00$

APR-4-Radar Search Receiver 38-4000 MC APR-5-Radar Search lieceiver 1000-3100 MC APS-2-S-13and Search Radar
APS-3-X-13and Search ladar APS-4-X-13and Search \& Homing Radar
APS-6-X- Band Search \& Gun Laving Radar APS-6-X-Band Search
APS-15A-X-13and lindind Bombing lladar
APT-4-IRadar Jamining Xinitter l65-780 MC APT-5-Radar Jamming Xmitter $350-1400 \mathrm{MC}$. $\$ 189.50$ SO-13-S-13and Marine ltadar. Lightweight
SO-10 CM Portable ladar $\$ 850.00$
TPS-3-L-Band Search Radar
UPN-1 \& 2-S-Band Portable Beacon Battery or RA-34-Power Supply for RC-375E........... $\$ 225.00$ RA-62-I'ower Supply for SCl -522 PE-103-Dynamotor 1'ower Supply GN-58-Hand Cranked Generator W/Legs \& Seat. SCR-578-Gibson Girl (Emergency Xmitter)
CRT-3-Victory Girl Dual Freq. Emergency Xmitter Sound l'owered Chest \& Headsets MI-2454-B: TYpe O. Mpg. RCA. AN/CRC.7-V.H.F. Handi-Taikies li 2 MC X PA|R: $\$ 200.00$ MN/26.Y-Compsss Rece Tubes. $\$ 18.95$ C-3-Napy Snooperscope in Carrying Case..... $\$ 400.00$
BC-1284-Lighthouse Tube Preamplifer
BC-996-Interphons Amplifier $\$ 6.75$
RL-42-Motor Antenna lieel 30 MC-I.F. StriDs Using 6 AK5 RD-7/APA-23-Recorder for APR AS-27/ARN-5-Antenna $\$ 3.50$
$\$ 16.50$
 RM-29-Remote Control
BC. 455 Recelver- $6-9$ MC BC-455-Receiver-6-9 MC $\$ 16.50$ BC-800-Transmltter/Recelver $\$ 34.50$
$\$ 19.50$
 FL-5-Filter, Less Cables
FL-5-Filter, Less Cables
3C-16-D GSAP-Gun Camera Computers with All Accessories; in Carrying Case
AT-2A/APN-2-Antenna

PANEL METERS

2" Square weston-SAngamo

 | 0.40 | Volts D.C... | 2.95 | 0.100 Ms | $10-900$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0.5 Amp. R.F... . | 2.95 | Bcale) 2.95 | | |

XMITTING TUBES

SEARCH RECEIIFR - ARI - 2
Frequency range 80 to 3000 Mes. Measures RF signals from 80 to $\mathbf{3 0 0 0}$ Mcs and pulse rates from 50 to 8000 escles. to locate sismals, or as a frequency meter, by YISUAL and AURAL indicators, prorided Originally designed and used by USN air craft. Ideally suited for military, laborators Fquipment consists of the following:
Antenna Detector-CMID-66AFH-Has variable lensth antennas, diode detector and silver plated tuning stub with calibrated scale. pulse anmplifter, a trigger circuit, a pulse rate counter circuit and audio ampliffer. Flsual signal indicator, rectiffer power supply whic is operative on 115 Volts AC 60 to 2400 eycles
current, frequency of 400 cycles with selection of four ALI CABLES AND FITTINGS, ACCESSORimmediate instaliation, dlus two Technical MPAREPARARTS Steel chest includes spares for components and two extra sets spare tubes All the above in original export packed casea.

Price each

Other selerted equipment for
Radio Communications in our stocks
TWX-N. Y. I-223 COMMUNICATION DEVICES CO. 2331 Twelfth Ave.

NYC 27, N. Y.

YOUR ONE SAFE SOURCE FOR NEW JAN TUBES

R1051.00	250 TH 20.00	5670	4.50
OD3/VR150 . 85	304TL . . . 6.75	5702	3.25
1829 .. 2.25	417A. 7.50	5726.	1.75
1N23B ... 2.50	507AX ... 1.25	7193	45
1N26. . . . 7.50	705A.. 1.65	8020	1.25
1N34..... . 65	715A..... . 5.00	9001	1.25
2C21....... . 50	715B 6.50	9002	95
2C26. 25	721A. 1.75	9003	1.35
2C40..... 6.75	721B..... . 10.00	9004	. 29
$2 \mathrm{C46}$.... . 25.00	726A..... . 12.50	9006.	. 29
2C51W.E. 5.25	807 1.25	CATHODE	
2J32..... 22.50	811 2.85	RAY***.	
$2 \mathrm{3} 34 \ldots 22.50$	812 2.75	2AP1	5.50
2K22. 35.00	814 2.50	3AP1	5.50
2K23 27.50	829B 11.50	3DP1	3.50
2X2. 50	832A 8.75	3GP1	3.75
3A4..... . . 79	845 5.50	5CP1	4.00
3A5...... 95	866A 1.45	5.JP1.	20.00
3C22GL. 75.00	872A 2.85	SLP1.	20.00
3C24/24G 1.75	87675	5NP1	4.00
$3 \mathrm{C} 31 / \mathrm{C1B}$. 3.25	931A..... 3.95	78P7.	5.75
5021.15 .00	95445	9GP7	9.75
6AS6W.E. 2.00	955. 45	Receiving	
6C21..... 18.75	957 60	Types	
$6 \mathrm{J4}$. 6.00	$9584 . . .$. . 69	$1 \mathrm{~T}^{1}$. 50
10Y. ... 45	1005 55	306	. 60
15 E 1.75	1007..... . 85	6AC7	. 75
35T Eimae 5.75	HY1269... 2.25	6AJ5.	. 95
HY40 ... 3.50	1613..... . 85	6AK5	. 75
100TH ... 6.75	1616 95	6AL5	.49
VU111.... 1.25	1619 25	${ }^{615}$	45
120A.... 7.50	1625 65	6L6G	. 95
121A..... . 2.95	1629 1.25	12SG7	. 60
F127A 17.50	1644 75	12517	. 50
211/VT4C. 1.25	2051 1.00	12SL7GT	. 65

Write for other types not listed above Minimum order $\$ 10.00$ F.O.B. N.Y.C Rated Firms send P. 0
allied electronic sales
74 Cortlandt Street, New York 7, N. Y. Phone BArclay 7-5839-5840

TUBE REBUILDING

Large Transmitting and Power types Economical - Guaranteed FREELAND PRODUCTS CO. 700 DRYADES ST., N. O., LA.

SHEET METAL MACHINERY

3
8
3
3
8
5

$$
\begin{aligned}
& \text { His } 0 \\
& \text { H }
\end{aligned}
$$

D104 Inpt 12 \& $24 \mathrm{put}^{250 \mathrm{~V} / 60 \mathrm{ma}} 14 \mathrm{Out-} 3.63$

 TELEVISION ANTENNAS

 \qquad

SPEED DRILLS 29 PIECE SET

AUDIO AMPLIFIERS READY TO GO

 READY TO GOModel 305 mP S Wat Ampl, Featuree Mike \&
Phono Inpts. W/Sop. Gaim Cntrls. Latent Coms

TUBE CLAMPS
 "TABS" TUBE SPECIALS
BROKENKEYS OR CRACMEDRASE

 FILTER CHOKES

400 CYCLE XFMRS

PRECISION
RESISTORS

0
0
0
0
0
0
1
1
1
1.
1
2

acuum Precision HiVolt Resistors

VARISTOR \& AUDIO COMPONENTS

 r Cod. Ratod $3 \mathrm{~V} / 1 \mathrm{Bm}$ Ma Revor, Reolot anoo

Dept. 3E 111 Liberty Street New York 6, N. Y., U. S. A.
PH. RECTOR 2.6245 Money Back Guarantes
Cost of Mdse. Only $\$ 5$
Min. Order FOB NYC. Min. Order FOB NYC.
Add
Sphr. Charges Add Sphr. Charges
25%
Oep. Tubes Gtd. via R-Exp. only. Prices Subleet to Change With.
out Notice.

a. $\mathbf{5 2 . 2 5 7} \mathbf{5}$ for $\mathbf{\$ 1 0 . 0 0}$

RELAY SPECIAL

INDEX TO ADVERTISERS

Abalon Precision Mfg. Corp408Ace Coil \& Electronics Co 102
Ace Engineering \& Mach 326
Acheson Colloids Co. 43
Ackerman Engravers 420
Acme Electric Corporation 387
Actioncraft Products 499
Advance Flectric \& Relay Co 334
Advance Electronics Co.
Equip*
ment Inc. 492
Aerovor Corporation 325
A'G'A Div of Elastic Stop Nut Cor- voration of Americ 459
Air Associates, Inc 173
Air Marine Motors, Ine 70
Cor Corp 231 231
Aipax Product Compa 98, 199 98, 199
Alden Products Company 45%
Allen-Bradley Co. 361
Allen Co., Inc., L. B 505
Allied Control Company, Inc 192, 193
Allied Industrieg Inc.463Allied Radio Corp. .
Allied Research \& Engineering, In 505
Allmetal Screw Products Co., Ine 425
Alplia Metals, Inc50
American Encaustie Tiling Co 450
American Gas Furnace Co. 481
American Gava Corbara
American Gava CorbaraAmerlcan Optical Company460
American Phenolic Corporation 66, 167
American Television \& Radia Co. 420
American Time Products, Ine 196
Amperite Co., Inc.244
Ampex Electrle Corp 62, 233
Anaconda Wire \& Cable Company 217 217
Andrew Corporation 242
Antara Chemicals, Div53
Anton Electronic Laboratories, Inc. 421, 423
Arco Electronics, Inc 479
Armco Steel Corporation 36
Arnold Engineering CoArt-Lloyd Metal Products CorpArt Wire \& Stamping Co
Astron CorporationAudio Pevices, Inc

Bristol Brass Corporation
Bristol Engineering Corl.
Brush Electronies Company
Rurlington Ingtrument Company
Burnell \& Company,
Bussmann Mfg. Co...
C. G. S. Laboratories, Luc 462 Cambriage Thermionic Curp Cannon Electric Company.
Cargo Packers, Inc.
Grter Motor Co..
Centralab, A Div. of Globe-Union. Inc. 11
Century Geophysical Corporation......... 312

Chase Brass \& Copper Co

Chatham Electronies Corp
Chester Cable Corp.
Chicago Condenser Corp
. 427
Chicago Telephone Supply Corp. J2, 73
Chicago Transformer, Div, of Essex Wire Corp
Cincl Manufacturing Corp
Cinema Engineering Company
Circuitron, Inc...
Clarostat Mfg. Co., Ine
Cleveland Container Co
Coil Winding Equipment Co. 489
Collectron Corporation .
Communication Accessories Co 92
Communication Measurements Labora-
tory, Inc. 4
Communication Products Company, Inc, 173
Condenser Products Company, Div. of
New Haven Clock \& Watch Co. Of
Consolidated Vacuum Corp. 259
Constantin \& Co., L. L. 255
Continental Connectors, DeJur Amsco
Corp. ..
Cornell-Dubilier Electric Corp
Cornell Electronics Corp
Cornish Wire Co., Inc
Cosa Corporation.
Coto-Coil Company
Crescent Company, Inc
Crosby Laboratories, Ine
Cross Co., H.
Cross Co., H.
Crucible Steel Company of America
Cubic Corporation.
Cunningham, Son \& Co., Inc., James
433

Ballantine Laboratories. Ine

Barker \& Williamson, luc.
Barry Corp., The.
Head Chain Mfg. Co.
Beaver Gear Works Inc
Beede Electrical Instrument Co., Inc
Bell Aircraft Corp.
Bell Telephone Laboratories
Bendix Aviation Corboration Eclipse-Pioneer Div.
Friez Instrument Div
Pacific Div.
313
463
Bentley, Harrls Manufacturing Co
Berkeley Scientific, Division of Beckman Instruments, Inc.
Beryllium Corporation
Bird Electronic Corp.
Birnbach Radio Co., Inc
Birtcher Corporation.
Biwax Corporation...

Bliley Electric Company
Bodnar Industrles, Inc.
Boonton Radio Corp. .
Borg Corporation, George W 161

Bomac Laboratories, Ine
Bowmar Instrument Corp 411

Boyle Metalcraft Corp. .
Brand \& Co., Inc., William
Brew \& Co., Inc., Rlchard D
Hridgeport Brass Company 194 424 214 172 385

Dage Electric Co., Inc
Dale l'roducts, Ine
Dano Electric Co. 470
Daniels Inc., C. R... 391
Danien Co., The . Third Cover
Davies Laboratories, Inc $4 \mathbf{5} \mathfrak{t}$
Decade Instrument Co.
4.3

Dedur Amsco Corp.
440, 441
Dialight Corporation. 186
Doelcam Corporation. 186

Dolin Metal Products, Ine 493
Dow Corning Corporation. 178, 329
Driver Co., Wilhur B..................... 64
Driver-Harris Company:
183
Dumont Laboratories, Inc... Allen ib...42, 8y duPont deNomours \& Co. (Inc.), E. L. . . 201
Durant Mfg. Company
481
DX Radio Iroducts Co

Eastern Air Devices, Inc. 33:
Eastgap Company . 492
Eastman Kodak Company, Industrial in Company The.
Edison Incorporated, Thomas \mathbf{A}
409

Fisler
Eitel-McCullough, Inc................... . . 75

for applications requiring low electrical noise, low and constant contact drop, high current density and mini-

Wide range of grades available for standard and special applications.
Brush holders and coin silver slip rings available for use with Silver Graphalloy Brushes.

Write us for Data Sheets and further information.

Graphite Metallizing corporation

1055 NEPPERHAN AVENUE - YONKERS, NEW YORK
Pleose send dota on Graphalioy BRUSHES and CONTACTS. Send doto on BUSHINGS.

NAME

COMPANY
street
CITY
Want more information? Use post card on last page.

Output wove forms of Servoscope displayed against internal linear sweep generator frequency $1 / 2$ cycle.

* is applicable to both AC carrier and DC servo systems.

* has a built-in low frequency sine wave generator for obtaining frequency response of DC servo systems
* has a built-in electronic sweep with no sweep potentiometer to wear out and require replacement.
* has a dynamic frequency control range of 200 to 1 .

MORE and MORE aircraft companies, universities, process control manufacturers, government laboratories and others are adding the Servoscope to their list of required laboratory equipment. If you are designing, developing or producing servomechanisms or process controls, the Servoscope will save many hours of design and engineering time.

The Servoscope is available in two standard models - 1100 A (. 1 to 20 cps.), 1100 B (. 15 to 30 cps.) Custom modifications quoted on request.

For bulletin giving complete specifications: write Dept. E-3

SERVO CORPORATION OF AMERICA
2020 Jericho Turnpike, New Hyde Park, N. Y.
Fieldstone 7-2810

Electrical \& Fhysical Instrament Corp. 491 Electrical Industriea Division Amperex Electronic Corp........................... 288
Flectro Development Company 449
Flectro Engineering Products Co.......... 483
Electro Impulse Laboratory 44
Electro-Mec Laboratory 48
Electro Motive Mfg. Co., Inc. 63
Electro Tec Corporation. 19
Electro-Tech Equipment Co................. 48
Electro-Technical Products, Div. Of Sur
Chemical Corp. 368
Electronic Associates, Inc................ 375
Electronic Mechanics, Inc............... . 385
Electronic Parts Manufacturing Co., Ine, 445
Electronic Transformer Company 298
Electronic Tube Corporation............. 238
Empire Devices. Inc. 486
Engineering Research Associates Inc.472, 477
Entlich, Ted................................... 505
Epeo Products, Inc. 481
Erie Resistor Corporation. 93
Etched Products Corp.................... . . . 338
Eureka Television \& Tube Corp.......... 41
Eveready Plating Co...................... 50 .

GM Laboratories, Inc 461, 503
G-V Controls, Inc . 994
Galbraitli \& Son Electric Corp., C. C. . . $\$ 89$
Gamewell Company........................ 330
Garde Manufacturing Co........... 404
Gaveo Corp. 86
General Ceramic \& Steatite Corp........ 355
General Electric Company
Apparatus Dept........80, 90, 91, 177, 373
Chemical Div. 382
Electronic Dept . 235
Tube Dept. 38,39
General Hermetic Sealing Corp. 499
General Precision Laboratory, Ine 00
General Radio Company 1 \%
General Transformer Co 206
Gertsch Products, Inc. 483
Goat Co., Inc., Fred . 383
Gombos Co., Inc., John 461
Graphite Metallizing Corp. 559
Green Instrument Co., Inc. 469
Gries Reproducer Corp 478
Gudebrod Bros. Silk Co., Inc. 400
Guthman \& Co., Inc., Edwin I................ 188

Hammarlund Manufacturing Co., Ine... 418
Harper Company, H. M 494
Harrison Radio Corp. 422
Hart Manufacturing Co.................. 100
Hathaway Instrument Co................. 378
Haydon Co., A. W 496
Haydon Manufacturing Co., Ine. 206
Haydu Brothers. 23%
Heath Company. 433
Heiland Research Corporation.......... 418
Heldor Manufacturing Corp... 77
Helipot Corporation, The 168, 169
Heminway \& Bartlett Mfg. Co........... 494
Hermes Plastics, Inc 464
Hermetic Seal Products Co............. 59
Hetherington, Inc. 182
Hewlett-Packard Company. 88, 83
Hexacon Electric Co........................ . 484
Hickok Electrical Instrument Co....... 895

Hiliburn FMectronic Products $\mathbb{\&}$ \&
Hinde \& Dauch. 250

Hopkins Fingineering Co.................. . . 214
Howard Indust ries, Inc. 234
Hudson Radio $\boldsymbol{8}$ Television Corp....... . 374
Hudeon Tool \& Dle Company, Ine....... 307
Hudson tire Co. 22
Haghes Research \& Development Iaho- 165 ratories 194, 195, 28
Hughey \& Phillips.
Hycor Company, Ine.
Hytron Radio \& Electronics Co

Induction Motors Cory.
Indmstrial Condenser Corb Industrial Hardware Mfg. Co., Inc Insl-X Company, Inc.
Institute of Kadio Engineers
Instrament Corp. of America
Instrument Electronics Corp
Instriment Lesistors Co.
Instrument Sperialties, Ine
Insuline Corp. of America. Internatienal Business Machines.
International Instruments, Ine.
International Nickel Company, Inc
Internatiowl Pump a Machine Works.
International Radiant Corp
International Rectifier Corp
Ippolito \& Co.. Inc., James.
rviugton Varnish \& Insulator Co.
Lsolantite Manufaeturing Corp...

James Fibrapowr Company
Jelliff Manufaeturing Corp., C. O 404
Jenninge Radlo Mfg. Co. 337
Johns-Manville 184, 185
Johnson Company, R. F.................. . 437
Jones Div., Howard B. Cinch Mfg. Co... 406
Joy Manufacturing Company

Kalile Engineerlag Company 469
Kalbfell Laboratorles, Inc. 491
Karp Metal Producte Co., Inc........... 71
Kartren 505
Kay intectric Company.................... 371
Keilogs Company, M. W............ 164A, 164B
Kellogg suitehboard \& Supply Co....... 457
Kenyon Transfer Co., Lnc............... . 442
Kepeo Laboratories, Ino 309
Kester selder Company................... . . 275
Ketay Manufacturing Corp. 429
Kenffel \& Esser Co...................... . 40 , 1
Keystone Products Company. 204
Kinge Haectronice Co., Inc.................. 273
Kinney Manufacturlag Co................ 239
Klrk Blum Mfg. Co..................... . . . 252
Knlghte Company, Janes................ 54
Kollmanan Instrumeut Corporation...... 246
Krohn-Hite Instrament Company...... 80
Kalka Fiectrle Mfg. Co., Inc. 473
Laborutories R. Derveaux 351
Laboratory for Eleotronics, Inc........ 207
Lambda Electronics Corporation. 443
Lampkin Laborateries, Inc. 414
Lapp Insulator Company, Inc. 58
Lavoie Laboratorles, Inc 489
Lawn Electronics Company 467
Lenkurt Electric Sales Co. 258
Lewis Engineering Co.. 489
Lewis Suring \& Mfg. Co

Answer to VHF, UHF and Microwave Requirements

9-PIN MINIATURE TUBE SOCKETS

crystal sockets

9-pin connictors

stand.off insulators

FEPD-THROUGH INSULATORS and termmats

TEFLON* INSULATED CHEMELEC COMPONENTS

- LOW LOSS FACTOR - Less than 0.0005 .
- STABLE DIELECTRIC CONSTANT-2.0 (60 cycles to 30,000 megacycles).
- HIGH SURFACE RESISTIVITY-3.5 x 10^{13} ohms. Won't carbonize under arcing or DC plate.
- WIDE SERVICE TEMPERATURE RANGE $-110^{\circ} \mathrm{F}$ to $+500^{\circ} \mathrm{F}$
- ZERO WATER ABSORPTION-ASTM Test.
- DURABLE - withstands thermal and mechanical shock and vibration in assembly and service.
- CHEMICALLY STABLE-Inert, nongassing, immune to corrosive atmospheres, fungi, oils, solvents.

Write for Catalogs: Miniature Tube Sockets; No. SO-428; 9-pin Connectors, No. CN409-M; Crystal Sockets, No. CS-441; Stand-off Insulators, No. TE-401; Feed-Through Insulators and Terminals, No. CF-400.

TERMINAL REGENERATIVE ELECTRONIC REPEATER

Electronically Reduces Bias Distortion to a Minimum Percentage Model TT-63 illustrated.

Designed to accept 60, 75 or 100 wpm Teleprinter signals with up to 45% mark or space bias and produce a corresponding signal with less than 5% distortion.

INPUT KEYING:

A. Tone -500 to 8000 cps level +10 to -20 dbm .
B. Neutral D.C. Input, 20 ma to 60 ma , 600 ohms.
C. Polar D.C. Input, $30 \mathrm{ma}, 1200$ ohms. Polar input circuits will not provide distortion if the polar inpul signals have sloping rise and decayed times.

OUTPUT:

Neutral output relay contacts, optional output can be set to follow steady input state, (Normal) or can be made to return always to mark on steady state inputs (Mark hold).

POWER:
Built in power supply, operates from 115 or 230 volt source, $50-60$ cycles, 85 watts.

DIMENSIONS:

Rack mounting panel $83 / 4 \times 19$ inches. Chassis extends $10 \frac{1}{2}$ inches behind panel. Weight - 26 lbs . Equipment is manufactured to conform with JAN Spec.

Other STELMA Products:

- Direct Reading Percentage, Bias Measuring Dis. tortion Meter (60.75-100 wpm).
- Diplex Receiving Keyer. Double the number of teleprinter messages on any circuit by Time Division.
- Frequency shift package unit PKG.R.3/RT combines diversity input, receiver, converter directly drives teleprinter.

We Are Communication Systems Specialists.

STELMA,
 389 Ludlow Street • Telephone 4-7561-2 • Stamford, Connecticut

7 DAYS PROGRAMMING OF... $-100^{\circ} \mathrm{F}$ to $+230^{\circ} \mathrm{F} \quad 20 \%$ to 95% R.H. 100,000 Ft.
 This machine was built for the U. S. Navy at Johnsville, Penna., to control and record

 a 7 day program of varying temperature, humidity and altitude conditions to very close tolerances. The first day's program involves temperature of $-85^{\circ} \mathrm{F}$., with alditude of $65,000 \mathrm{Ft}$., return to sea level with temperature of $+221^{\circ} \mathrm{F}$., and humidity of 95%, reduce temperature to $+77^{\circ} \mathrm{F}$., rise to $+122^{\circ} \mathrm{F}$., and reduce to $+77^{\circ} \mathrm{F}$. Then hold $+77^{\circ} \mathrm{F}$., and produce condensation in the chamber condensation in the chamber der of the 24 hour period der of the 24 hour period. The following six days are occupied with variations of the first day cycle, all automatically controlled. Many variations of programing are possible and it is also possible to operate with conventional non-program control.

Manufactu.ers of:
Low and High Temperature Chambers - Altitude, Humidity, Explosion and Walk-in Chambers with ViHumidity, Explosion
bration test focilities

Linde Air Products Co., A Div. of Union
Carbide ${ }^{\text {\& }}$ Carbon Corp................. 501
Lion Fasteners, lnc. 308
Littelfuse, Inc. 485
Littie, Inc., Arthur D 39*
Lundey Associates. 415
MB Manufacturing Co., Inc 327
Macmillan Company, The... 412
Magnatran Incorporated. 501
Magnecord Inc. 360
Magnetic Amplifiers, Inc 383
Mallory \& Co., Inc., P. R. 96, 159
Marconi Instrument, Ltd. 290
Marion Electrical Instrament Co. 8
Maryland Electronic Mfg. Corp... 358
MeGraw-Hill Book Co 240. 299, 385, 453
McLaughlin, J. L. A. 452
Measurements Corporation 366
Mepco, Inc. 30, 31
Metal Textlie Corp. 310
Metals \& Controls Corp., General Plate 66Div.
Mezercord Co. 497
Mica Insulator Company 261
weli Regulator of Minneapolis- Monevs
208Midiand Manufacturing Co., Inc........ 208
Miles Reproducer Co 505
Milford Rivet \& Machine Co.
Millen Mfg. Co., Inc., James. 3 B
Milo Radio \& Electronics Corp. 218
Milwaukee Transformer Co. 468
Miniature Precision Bearings Inc 163
Minneapolis-Honeyweli Regulator Co., 267
Industrial Div Aero Div.372
Minnesota Mining \& Mfg. Co....47, 220, 221
Iitchell-Rand Insuistion Co., Inc 25
Moloney Electric Company2
Motorola Communications \& Electronics 200
Mulrhead \& Co., Ltd. 3
Mullard Oversens, Ltd. 503
Multi-Metal Co....... $.482,483$
Murphy \& Miller, Inc. 422
M-W Laboratories, Inc 426
Mycalex Corporation of America. 470. 471
N. R. K. Mfg. \& Engineering Co......... 46
National Capacitor Company 457
National Company, Inc. 210
National Moldite Co. 340
National Plastic Products 232
National Tel-Tronics Corp 412
National Vulcanized Fibre Co. 187
Neo-Sil Corp. 410
Veutronic Associates. 469
New Hampshire Ball Bearings, Ine 324
New Hermes, Inc. 503
New London Instrument Co 224
New Rochelle Tool Corp.. 505
New York Transformer Co., Inc 272
Ney Company, J. M. 457
Norden Laboratories Corporation 320
Norsid Mfg. Co., Inc. 505
North American Aviation, Inc. 341
Northern Radio Company
484
Nothelfer Winding Laboratories
Ohmite Mfg. Co. 32A, 32B
Olympic Metal Products Co., Inc. 486
Opad-Green Company 323
Owen Laboratorles 502

Panoramic Radio Products, Inc. 339
Paramount Paper Tube Co............... 312
Pennsylvania Testing Laboratory 458
Penta Laboratories, Inc. 467
Permag Corp. 47 .
Pesohel Electronics, Inc..............470, 505
Phalo Plastics Corporation............... 496
Phaostron Company. 383
Phelps Dodge Copper Products Corp.,
Inca Manufacturing Division......28, 29
Phillips \& Hiss Co., Inc.................. . 410
Photocircuits Corporation................ 297
Pickard \& Burns, Inc..................... . . 236
Pix Manufacturing Co., Inc................ . 485
Plastic Capacitors, Ine 343
Polarad Electronics Corporation.....44, 45
Polymor Corporation of Pennsylvania... 286
Polytechnic Research \& Development
Company, Inc.....
179
Popper \& Sons, Inc....................... 445
Potter Instrument Company, Inc 342
Power Equipment Company 300
Precision Apparatus Co., Inc............ 564
Precision Paper Tube Co 418
Preclsion Reslster Co 479
Premax Products . 406
Premier Metal Products Co 498
Progressive Manafacturing Co........... 262
Pyramid Electric Company............. 211
Prroferric Co., Inc.......................... 359
ality Products Co

Radio Corporation of America . . Back Cover
Radio Materials Corporation
78
Radio Receptor Company, Inc........... 68
Rallway Express Agency, Air Express
Rauland Corporation
22 \%
Rauland Corporation....................... 51
Raytheon Manufacturing Company....33, 444
R-H-M Division, Essex Wire Corp....... . 170
Reeves Hoffman Corporation. 352
Reoves Instrument Corp.................. . 455
Remler Company Ltd 488
Representatives of Electronic Products
Manufacturers, Inc., The..............
Republic Foil \& Metal Mills, Inc......... 397
Resistance Products Co................... . 25
Resistoflex Corporation.................... 292
Rex Rheostat Co........................... . . 505
Reynolds Metals Company............... 191
Rhode Island Insulated Wire Co., Inc... 21
Roanwell Corporation. 483
Rome Cable Corporation. 370
Runzel Cord \& Wire Co................. . . 410
Rutherford Electronics Co................ . . 445
Sanborn Company......................... . . 305
Sangamo Electric Company.............
Schmidt, Inc., Geo. T$\begin{array}{r}376 \\ \\ \hline 04\end{array}$
Schweber Electronics. 408
Scientific Electric Div. of "S" Corrugated Quenched Gap Co........................ 4
Sclentifle Electronle Laboratories, Inc... 487
SclntliLa Magneto Div., Bendix AvlationCorporation289
Secon Metals Corporation. 494
Servo Corporation of America 860
Servomechanisms, Inc 354
Shallcross Manufacturing Co. $.48,49$
Shieldings, Ine. 268
Sigma Instrument Inc. 348
Signal Engineering \& Mfg. Co 441
Smuckler \& Co., Inc., A. F. 466
Sorensen \& Company, Inc.. 19
Specialty Battery Company. 416

* High Sensitivity, Extended Range, Push-Pull, Voltage Regulated Vertical Amplifier - 10 cycles to 1 MC Regulated Vertical Amplifier - 10 c
response. Input 2 megs. 22 mmfd.
* Frequency Compensated " V ' Input Step Attenuator.
* Vertical Phase-Reversing Switch.
* Extended Range, High Sensitivity, Push-Pull Horiontal Amplifier - 10 cycles to 1 MC response at full gain. Input $1 / 2 \mathrm{meg}$. and 20 mmfd .
* Linear Multi-Vibrator Sweep Circuit - 10 cycles to 30 KC plus line and external sweep
4.Way Synch. Selection - Internal Positive, Internal Negative, External and Line.
* "Z" Axis Modulation terminal for blanking, etc. \star Internal, Phasable, 60 cycle Beam Blanking
* Sweep Phasing Control. Wide-angle bridge circuit. \star Direct H and V Plate Connections; all 4 plates. Audio Monitoring Phone Jacks.
* High Intensity CR Patterns through use of adequate high voltage power supply with 2×2 rectifier.
- Tube Complement and Circuit - 6C4 "V" cathode follower, 6CB6 "V" amplifier. 6C4 "V" phase inverter. Push-Pull 6AU6's "V" CR driver. 7N7 " H " amplifier and phase inverter. Push. Pull $6 A U 6$ s CR driver. 7N7 sweep osciliator. tlfiers. VR-150 voltage regulator. 5CPI / A CR Tube.
* 7 Four-Way Lab. Type Input Terminals - Take banana plugs, phone tips, bare wire or spade lugs.
* Light Shield and Mask removable and rotatable.
* Extra Heavy-Duty Construction and components to assure 'Precision'" performance.
* Heavy Gauge, Anodized, No-Glare, Aluminum Panel.
* Fully Licensed under W.E. Co. patents.
* In lourred, black ripple, heary gauge steel case. Size $81 / 4^{\prime \prime} \mathrm{X} 141 / 2^{\prime \prime} \times{ }^{18} 8^{\prime \prime}$. Complete with mant shield, calibrating mask and instruction
See this "PRECISION" ${ }^{5}$ " Ossilloscope on display and available of leading radio equipment distributors.

Precision Apparatus Co., Inc. $\mathbf{9 2 - 7 1}$ HORACC MAROINE 8LJD. EtMHURSI ID, N.
 Export: 458 B'way, N.Y.C., U.S.A. Cables: MORHANEX

 Want more information? Use post card on last page.Sperry Gyroscope Co 81
Sprague Electric Company.9. 291
St. Regis Puper Company................. 271
Stackpole Carbon Co....................... 333
Stahl, Ino., Michael 445
Standard Cabinet Company.............. $\mathbf{4 7 4}$
Standard Piezo Co. 498
Standard Transformer Cory. 264
Star Expansion Products Co.............. 487
State Labs, Inc . 400
Staver Company, Inc.................... 477
Stelma, Inc................................... 56
Sterling Engineering Company. Inc. 389
Sterling Transformer Corp.............. 481
Stevens-Arnold Incorporated............. 493
Stevens Manufacturing Co., Inc......... . 464
Stoddart Aircraft Radio Co........... 95
Stone Paper Tube Company, Ine....... 55
Struthers-Dunn, Inc.
Sturtevant Co., P. A...................... . . 503
Sun Radio \& Electronics Co., Inc. 563
Superior EIectric Co....................... 65
Superior Tube Co
Suprenant Mfg. Co.......................... . . 218
Switcheraft, Inc........................... 412
Sylvania Electric Products, Inc........7. 345

Terh Laboratories, Inc. 322
Technical Service Corporation. 487
Technitrol Engineering Company......... 490
Technology Instrument Corp.........401, 403
Tektronix, Ino.............................. . . . 384
Tel-Instrument Co., Inc. $2 \underset{2}{ }$
Telechrome Incorporatcd.............. 48.
Telechron Dept. General Eloctric Co.... 213
Teletronics Laboratory, Ine. 270, 505
Telewave Laboratories, Inc. 467
Tenney Engineering, Ineorporated 396
Tensolite Insulated Wire Co.......... . . $\$ 91$
Terpening Company, L. II............... 260
Texas Instruments, Inc. 20 .
Tiomas \& Sons, Wililam................ 474
Thor Ceramles, Inc. 206
Tinker \& Rasor. 301
Tinnerman Products, Inc................. . 509
Titeflex, Inc................................. 79
Tobe Deutsclimann Corporation.394, 395
Trad Televisinn Corp..................... 282
Transformer Metal Products Corp...... 402
Transformers, lnc.......................... 67
Transicoll Corporation. 405
Iransitron EXectronic Corp. 495
Transradio, Ltd. 299
Tresco . 438
Triad Transformer Mfg. Co 368
Triplett Electrical Instrument Co...... 181
Tung-Sol Electric, Inc..................... 247

Uchite Co., The............................ 180
Union Carbide al Carbon Corp., Hinde Atr
United Catalog Publishers Inc.................. 479
United Condenser Corp. 425
United Manufacturing \& Bervice Com-
. 435
United States Gasket Company $\mathbf{5} 61$
United States Plywood Corp............. 32
United States Testing Company, Inc.... 368 United Tranuformer Co. Second Cover Universal Aviation Equipment, Inc. 459 Universal Mannfacturing Company, Ine. . 391 Univertal Winding Company 31%

Vacanm-Electronic EngineerIng Co..... 451
Varflex Sales Co., Inc. 176
Varian Associates........................... . . 349

Waldes Kohinoor, Inc 301
Wall Manufacturing Co 364
Walter Co., Inc., S. 431
Ward Leonard Electric Co 36, 37
Varren Wire Company 465
Waterman Products Co., Inc 94, 95
Vaveforms, Inc. 497
Veckesser Company 433
Weleh Scientifle Company, W. M 427
Cestern Coll Products Co4
Western Gold 2 Platinum Works 469
Westfleld Metal Products Co., Inc.. 492
estinghouse Flectric Corp ...285, 321, $4+1$Weston Electrical Instrument Corp...... 335
Wheeler Insulated Wire Co., Inc......... 266
White Dental Mfg. Co., S. S. . . 308, 390, 4
499
Wiley \& Sons Ine John . Wiley \& Sons. Ine., John 437
Villiams \& Co., C. K 389
Vineliester Flectronics, Inc 174pany42
Hright-IIepp Associates, Tne 35
Cevite. Incorporated. 500
Lophar Mills, Inc 433
PROFESSIONAL SERVICES 506

SEARCHLIGHT SECTION

(Clessified Advertising)
H. E. HILTY, Mgr

SEARCHLIGHT ADVERTISERS INDEX
554, 555

This index is published as a convenience to the readers. Every care is taken to make it accurate, but ELECTRONICS assumes no responsibility for errors or omissions.

Because DAMVEN makes the most complete, the most accurate line of ATHENUATORS in the world!

[^0]: Irvington Varnish \& Insulator Co. 11 Argyle Terrace, Irvington 11, N. J.

[^1]: EVANOHM* RESISTANCE CURVE, CHARACTERISTICS AND PROPERTIES

 1. Aralysis - Ni $\mathbf{7 4 . 7 5 \%}$, Cr $\mathbf{2 0 . 0 0 \%}$, Al 2.75%, Cu 2.50% 2. Excellent corrosion resistance. 3. Resistivity $\mathbf{- 8 0 0}$ ohms per circular mil foot (134 microhm $\mathbf{c m}$.) 4. Temperature coefficient of electrical resistance - Plus or minus .00002 ohms per ohm per degree centigrade between minus $50^{\circ} \mathrm{C}$. and plus $105^{\circ} \mathrm{C}$. 5. Thermal E.M.F. vs. Copper -.0025 mv . per degree between -50 and $105^{\circ} \mathrm{C}$. (max.) 6. Non-magnetic. 7o. High tensile strength in fine sizes $-150,000$ to 200,000 p.s.i. 8. It may be readily welded or brazed and soft soldered with special care. 9. Available in: (a) Bare wire sizes .0009 and larger. (b) Enameled, Formex, Cotton, Silk, Nylon and glass insulated wire in sizes .0015 to . 0113 .
[^2]: HEWLETT-PACKARD COMPANY
 2682A PAGE MILL ROAD • PALO ALTO, CALIFORNIA, U.S. A.
 SALES REPRESENTATIVES IN ALL PRINCIPAL AREAS
 Export: FRAZAR \& HANSEN, LTD., San Francisco - Los Angeles • New York

[^3]: Radio Research Labs, Harvard Univ.,
 "VHF" Techniques"-McGraw-Hill, New York, 1947.

 Valler and Wollman, "Vacuum Tuhe Amplifiers-Radiation Lal Vol 1 s McGraw-Hill, New York, 1948
 H. Wallman, A. B. Macnee and C. P. Gadsen, A Low-Noise Amplifier-Proc IRE, p 700, June, 1948.
 E. W. Herold, R. R. Bush and W. R. Ferris, Conversion Loss of Diode Mixers Having Image-Frequency Impedance Froc IRE, p 603, Sept 1945.

[^4]: * Armed Services Preferred List.
 ** This is the minimum value if tube is held in dark for 24 hours before testing and tested in total darkness.
 *** These values for the darkness test are currently being determined.

[^5]: Manufacturers of Pouer Transformers - Distribution Transformers - Load Ratio Control Transformers Step Voltage Regulators - Unit Substations

 ## SALES OFFICES IN ALL PRINCIPAI CITIES

 factories at st. louls, mo. and toronto; ont., Canada

[^6]: Want more information? Use post card on last page.

[^7]: McGraw- Hill Book Co., 330 W. $42 n d$ St., NYC 36 Send me Herney's RADIO ENGINEERING HANDBOOK for 10 dass" examination on approval. delivery, and $\$ 4.00$ a month until $\$ 1200$ has been paid. Otherwise I will return the book postpaid.

 Print
 Name
 Name
 City Statene.
 Company
 Tosition
 This offer applies to U. S. only

[^8]: Cruclble steel company of america, general sales offices, oliver building, pittsburgh 30, pa. STAINLESS• REX HIGHSPEED•TOOL•• ALLOY • MACHINERY • SPECIAL PURPOSE STEELS

[^9]: LAMICOID (3) (Laminated Plastic) - MICANITE (Built-up Mica) - EMPIRE (Varnished Fabrics and Paper) - FABRICATED MICA - ISOMICA*

[^10]: a mcGraw-hill publication
 330 West 42nd Street NEW YORK 36, N. Y.

[^11]: Export Sales: Bendix International Division, 72 Fith Avenue, New York 11, N. Y.

[^12]: NOTE: Types LSS, LS6, LS7, LS8 have slug locking spring. Type LST, arailable with slug locking spring as type LSTL. Type LS4 hes fixed lugs - all other: have adjustoble ring

[^13]: New York - Springtield, Mass. - Rochester, N.Y. Philadelphia - Cleveland - Daytor • Detroit - Chisago - Minneapolis • Seattle - San Francisco • Los Angeles

[^14]:

[^15]: ACE ENGINEERING and MACHINE CO., INC.
 3644 N. Lכwrence St. Philadelphia 40, Pa. Telephone: REgent 9-1019
 See us of the I.R.E, Show - Booths 3-204 \& 3-205

[^16]: OFFICES: METROPOLITAN AREA. 671 broad Si., Newark, N. J., Mitchell 2.8159 - SYracuse, N. Y. 330 Arlington Ave., Phone $76-5068$ - CLEVELAND: 5012 Euclid Ave., Room 2007 , Express 1 -6685 NEW ENGLAND: 1374 Mass. Ave., Cambridge, Mass., Kirkland 7.4498 - PHILADELPHIA: 1649 N . Broad St., Stevenson 4.2823 - ST. LOU1S: 112: Washlngtan Ave., Gorfield 4959

[^17]: See them in Booth 1-617, New York IRE Show

[^18]: Want more information? Use post card on last page.
 March, 1953 - ELECTRONICS

[^19]: P. S. wo also produce irN Magnetic Iron powders for the Electronic Core Industry, the Magnetic Tape Recording Industry and others. Write for complete technical information.

[^20]: Western District Office - Times Building, Long Beach, California

[^21]: Western District Office - Times Building, Long Beach, California

[^22]: TRANSFORMER METAL PRODUCTS CORPORATION
 343 West 26ih St., New York 1, N. Y. Telephone: Wisconsin 7-6472

[^23]: A comprehensive, 48-page, key booklet is furnished with each chart It contains brief discourse on the atom and the periodic aw, a bibliography, a detailed explanation of the chart data, numerous tables and graphs, and a large black and white repro duction of the chart.

[^24]: Plans for the erection of a new plant in Quincy, Mass., were recently announced by C. F. Adams. Jr.. president of Raytheon Manufacturing Co. When completed, the plant, shown in the architect's sketch, will provide $100,000 \mathrm{sq} \mathrm{ft}$ of space which will be devoted exclusively to the manufacture and warehousing of television picture tubes, especially the new large sizes such as the 24 -inch and 27 -inch rectangular tubes. The plant is expected to be in operation next summer. It will employ 350 workers.

[^25]: M3
 For complete information, please request Bulletin
 103

[^26]: "DIRECT READING DIGITAL PRESENTATION OF INFORMATION",

[^27]: Instrument Division - Dept. 54, West Orange, New Jersey

[^28]: The expanding Electronics Division of Westinghouse has a number of desire able sales and application engineering positions open for men well qualified in one or more of the above fields. These openings require technical graduates with good personalities and business sense, men who like to meet people and work with them on a broad range of equipment application problems rather than specializing in a narrow field of design. Previous technical sales experionce is desirable but not necessary.
 Permanent positions are available at Headquarters (Baltimore) as well as in various sales offices throughout the country. The latter positions generally require training at Headquarters for a period depending on previous experiene.

 All these positions offer top pay, commensurate with ability and experience, with excellent opportunity for advancement on merit. They carry the usual generous employs benefits offered by Westinghouse-low-cost group life and hospitalization insurance, an excellent retirement plan, graduate study opportunities and paid vacations. Relocation allowances will be made by the Company.
 Send resume of qualifications to:
 Manager, Industrial Relations, Dept. CK
 Westinghouse Electric Corporation
 41 Hopkins Place
 Baltimore 1, Md.

[^29]: *Patents Pending

[^30]: McGraw-Hill Book Co., 330 West 42 St., N.Y.C. 36 Send me book(s) checked below for 10 days examination on approval. In 10 days I will remit for book (s) I keep, plus a few cents for delivery. and return unwanted hook(s) postdaid. (We pay
 for dellvers if you remit with this coupon; same return privilege.)
 C Lerage-ANALYSIS OF A-C CIRCUITS. $\$ 6.50$ - Terman-ELECTRONIC MEASUREMENTS. 2 Ind Ed. Si0.00
 - Markus-HNDBK. OF IND. ELECTRONIC

 Name ..
 Address
 Citg Zone. State.
 Company
 Position this offer adplies to U. S. oniy. ...F.L.-3

[^31]: "Visit the dynamic display ot our I.R.E. Show Exhibit-Booth 2-125"

[^32]: the BEAD CHAIN mfg. co.
 8. Mountain Grove St., Bridgeport 5, Conn.

 Manufacturers of BEAD CHAIN - the kinkless chain of a thousand uses, for pull and retaining chains and other industrial uses; plumbing, electrical, jewelry, fishing tackle and novelty products

[^33]: - P-M DC MOTORS \& GENERATORS - CAPACITOR.TYPE MOTORS - UNIVERSAL MOTORS
 - DC MOTORS \& GENERATORS - SHADED POLE MOIOKS (2-6 Pole) © P-M AC GENERATORS

[^34]: THE LEWIS ENGINEERING CO.
 QUire Dinnisian. NAUGATUCK

 CONNECTICUT

[^35]: $148 \underset{\text { NEW YORK }}{\text { CHAMBRS }}$ ST., : UY AND $S E L$ RECTOR 2-1591
 We do bothl-Electronic Equipment and Parts of every description. No lot too large. top prices. Ask us to help you. rapid action always. ELECTRONIC SURPLUS BROKERS

[^36]: WANTED
 Federal type 10:B Voice-frequency Ringers Signal Corps type TA-3/FT.

 W-4814, Electronics
 330 W. 42 St., New York 36, N. Y.

