electronics

PA MCGRAW-HILL PUBLICATION .03

for MILITARY COMPONENTS

Precision
Production to Military Requirements

The manufarture of transformers and associated devices for military requirements has been one of the specialties of United Transformer for the past fifteen years. Thousands of military designs are in present production and a few examples are illustrated above.
In this photograph you will find transformers, reactors, filters, high Q coils, and magnetic amplifiers. Types illustrated include units to MLL-T-27, JAN.T-27, and ANE-19
If you have a tough problem in an Hermetic or Fosterized unit, UTC is your logical production source.

TESTING 40-MEGAWATT HYDROGEN THYRATRON_Designed for pulsing radar magnetrons, a VC 1257 hydrogen thyratron undergoes tests at Chatham Electronics, Newark, N. J. Stem contains hydrogen generator and hot filament arrangement to maintain gas pressure (see p 158)

Top-level news, trends and market interpretations
ELECTRONIC ADDRESSING AIDS PUBLISHERS, by John M. Carroil 98
High-speed printers rush publications to readers
CAVITY TUNER FOR UHF TELEVISION, by Henry Fogel and Seymour Napolin...................... 101
Plungers in dielectric sleeves tune cavities over wide range
NOISE IN TRANSISTOR AMPLIFIERS, by Edward Keonjian and Johannes S. Schaffner................... . . . 104
How to take transistor noise into consideration when designing amplifiers
FREQUENCY CHANGER FOR RESISTANCE WELDING, by M. E. Bivens............................. 108
Conversion of three-phase $60-\mathrm{cps}$ power to single phase improves power factor and reduces kys demand
INTERMITTENT-FEED COMPUTER TAPE READER, by B. G. Welby115

Photoelectric input for digital computers reads teleprinter 5 -hole tape at speeds up to 200 characters per second
ULTRASONIC RECORDER GAGES TORPEDO DEPTH, by C. E. Goodell.118

Ultrasonic beeps reflected at surface measure torpedo's running depth
OSCILLOSCOPE TRACER PLOTS TRANSISTOR CURVES, by J. Karshan, R. D. Lohman and G. B. Herzog. 122 Transistor elecirode and transfer characteristics displayed on cit face provide circuit design data
FREQUENCY DISCRIMINATOR FOR NARROW-BAND F-M, by E. C. Miller. 128
Modified Foster-Seeley circuit gives increased output
NEW DEVELOPMENTS IN TRAVELING-WAVE TUBES, by W. J. Dodds, R. W. Peter and S. F. Kaisel....... 130 Potential for improved devices is particularly important in microwave communications systems

PASSIVE REPEATER BENDS MICROWAVE BEAM, by Henry Magnuski and Theodore K. Koch............. 134 Signals automatically reflected from remote spot without power or signal wires
MULTIPLIER PHOTOTUBE SIGNAL CONVERTER, by Douglas A. Kohl138 Equipment gives wide-band conversion of intensity-modulated light to alternating voltage
GUNS HOT GENERATOR FOR TELEVISION STUDIOS, by J. L. Hathaway and R. E. Lafferty 140
Automatically reinforces weak shots or self-generates entire sound for revolver, machine-gun and cannon fire
GATED DECADE COUNTER REQUIRES NO FEEDBACK, by E. L. Kemp
improved counting circuit introduced in nuclear scalar used at Los Alomos
VACUUM-TUBE T-PAD LOGARITHMIC ATTENUATOR, by E. C. Miller......................... 148 Circuit used to provide high percentage of modulation in communications transmitter
GRAPHICAL SOLUTION OF SKY-WAVE PROBLEMS (Reference Sheet), by R. A. Helliwell................. 150 Chart simplifies antenno colculations and speeds design

CROSSTALK.........97 ELECTRONS AT WORK........ 154 PRODUCTION TECHNIQUES......... 222 NEW PRODUCTS......... 280 PLANTS AND PEOPLE........354 NEW BOOKS........ 382 BACKTALK....... 386 INDEX TO ADVERTISERS....... 449
W. W. MacDONALD, Editor; VIN ZELUFF, Managing Editor; John Markus, A. A. McKenzie, James Fahnestock, Associate Editors; William P. O'Brien, John M. Carroll, William G. Arnold, William E. Pettit, David A. Findlay, Assistant Editors; Ann Mastropolo, Marilyn Wood, Mary J. Johnson, Editorial Assistants; Gladys T. Montgomery, Washington Editor; Harry Phillips, Art Director; Eleanor Luke, Art Assistant

KEITH HENNEY, Editorial Director
H. W. MATEER, Publisher; WALLACE B. BLOOD, Manager; R. S. Quint, Buyers' Guide Manager; N. F. Cullinan, Promotion \& Research Assistant; H. E. Hilty, Classified Manager; D. H. Miller, James Girdwood, New York; Wm. S. Hodgkinson, New England; Warren W. Shew, Philadelphia; C. D. Wardner, Chicago; J. L. Phillips, Cleveland; T. H. Carmody, R. C. Alcorn, San Francisco; Carl W. Dysinger, Los Angeles; Ralph C. Maultsby, Atlanta

Published monthly with an additional issue in June by MeGrap-Hill Publishing Company, Inc., James H. McGraw (1860-1948), Founder. Publication Office, $99-129$
Executive Editorial and Advertising Offices: McGraw. Hill Building, 330 W. 42nd St., New York 36, N. Y. Curtis W. MeGraw. 1'resident; Willard Chevalier, Executive Vice-President; Joseph A. Gerardi. Vice-1'resident and Treasurer; John J. Cooke, Secretary; Paul Montgomery, Surtis Vice-President. Publication Division: Ralph B. Smith, Fice-President and Editorial Director; Nelson Bond, Vice-President and Divecto: of Advertisine; J. E. Blackimurn, Jr., Vice-President and Director of Circulation.

Subscriptions: Addess correspondence to Electronics-Subscription Service, 99-129 N. Broadway, Albany 1, N. Y., or 330 W . 42 nd St., New York 36 , N. Y. Allow one month for change of address. Subscriptions are solicited ondy from persons engatged in theory, research, design, production, maintenance and use of electronic and industrial som components, parts and end products. Position and company connection mustive indicated on subseription orders.
United States and possesslons, $\$ 6.00$ a y year; $\$ 9.00$ for two years. Caninda, $\$ 10.00$ a seirr : $\$ 16.00$ for two years. Other western hemisphers Guide $\$ 2.00$. Subscription rates Oor two years. All other countries $\$ 20.00$ a year; $\$ 30.00$ for two rears. Entered as scond class mater Aubust 29 , Other western hemisphere countries, $\$ 15.00$ a year; $\$ 25.00$

 Index.

in Coil Winding with this fast machine

This is the coil winder that does it fast and does it right.
It increases the operator output of spool-wound coils particularly those having a high number of wire turns. It is well suited for winding timing motor coils, telephone relays, small motor fields and other coils not requiring insulation between layers.

Wherever it has been put to work the result has been greater
operator and machine efficiency. The operator can supervise several heads simultaneously. Winding and handling time can be synchronized so that there is no unproductive waiting time.
details yours for the asking. You'll want to know more about the Universal No. 102 Coil Winder because everything you learn will lead to greater winding efficiency. Your copy of Bulletin $102-\mathrm{H}$ will go in the mail the day we get your request.

UNIVERSAL WINDING COMPANY

For winding coils in quantity accurately... automatically use Universal Winding Machines

THIS INTERESTING QUARTERLY WILL BE malled free to any part of the world

AUSTRALIA

Messrs. Watson Victor Limited, 9-13, Bligh Street, Sydney, N.S.W.

BELGIUM

Paul Groeninckx, 4-6, Avenue Hansen-Soulie, Brussels.

CANADA

The J. W. Ellis Industries, 42, Lombard Street, Toronto.

DENMARK

Ditz Schweitzer, Norre Voldgade, 48, Copenhagen, K.

FRANCE

Jacques Pérès Fils, 4, Avenue de l'Opéra, Paris 1.

HOLLAND

Geo. C. F. Kauderer, Muiden.

INDIA

Adair, Dutt \& Co. (India) Ltd., 5, Dalhousie Square, Calcutta.

ITALY
Ing. Silvio Garrone, Piazza Della Marina, 1. Rome.

NEW ZEALAND

Richardson, McCabe \& Co.Ltd., P.O. Box 792, Wellington.

NORWAY

J. L. Nerlien A/S, Nedre Slottsgt. 13, Oslo.

SOUTH AFRICA
Johnson \& Phillips South Africa (Pty.) Limited, P.O. Box 552, Germiston.

SWEDEN

Ingeniorsfirma Hugo Tillquist, Nybrokajen 7, Postbox 7026, Stockholm 7.

SWITZERLAND

Camille Bauer,
Dornacherstrasse 18,
Basel.
U.S.A.

Muirhead \& Co. Ltd., Elmers End, Beckenham, Kent, England.

TECHNIQUE IS ALSO PUBLISHED IN FRENCH. IF THIS EDITION IS REQUIRED, MARK YOUR COUPON "EDITION FRANÇAISE"

FILL IN THIS COUPON AND MAIL TO US OR OUR AGENTS (SEE LISt above)

Please mail me, free of charge,
the quarterly journal
of instrument engineering
"technique" published by
Muirhead \& Co., Limited.

NAME
POSITION
COMPANY
ADDRESS

MUIRHEAD \& Co. Ltd.
PRECISION ELECTRICAL INSTRUMENT MAKERS
BECKENHAM $\cdot \mathrm{KENT} \cdot$ ENGLAND

MUIRHEAD

electrical instruments

Telegrams and Cables: MUIRHEADS ELMERS-END

FIGURES OF THE MONTH

	Yeor Ago	Previous Month	Lotest Month
RECEIVER PRODUCTION			
(Source: RTMA)	Nov. '51	Oct. 52	Nov. '52
Television sets.	415,332	724,117	780,486-p
Home sets	477,734	314,459	389,853-p
Clock Radios		180,841	185,639-p
Portable sets.	64,111	113,552	153,503-p
Auto sets	206,069	163,494	195,200-p
RECEIVER SALES			
(Source: RTMA)		Oct. '52	Nov. '52
Television sets, units.	----	847,219	803,327
Radio sets (except auto)	----	580,077	486,800
RECEIVING TUBE SALES			
(Source: RTMA)	Nov. '51	Oct. '52	Nov. '52
Receiv. tubes, total units	32,710,369	41,880,318	36,942,664
Receiving tubes, new sets	20,405,712	29,132,068	25,898,849
Rec. tubes, replacement	8,539,275	8,791,404	8,568,037
Receiving tubes, gov't.	1,371,886	3,105,005	1,712,080
Receiving tubes, export	2,393,496	851,841	763,698
Picture tubes, to mfrs..	460,566	862,431	754,060

BROADCAST
STATIONS

(Source: FCC)	Dec. ${ }^{\prime} 51$	Nov. '52	Dec. '52
TV Stations on Air.....	108	116	129
TV Stns CPs-not on air	0	114	144
TV Stns-Applications	475	836	812
AM Stations on Air...	2,331	2,374	2,391
AM Stns CPs-not on air	77	139	133
AM Stns-Applications.	304	250	251
FM Stations on Air...	637	626	616
FM Stns CPs-not on air	13	14	14
FM Stns-Applications.	8	9	12

COMMUNICATION AUTHORIZATIONS

Nov. '51	Oct. '52	Nov. '52
31,415	33,630	34,187
33,700	37,914	38,166
9,969	11,772	11,956
11,233	15,090	15,347
5,362	5,346	5,427
99,292	116,102	117,069
674	1,788	1,803
28	80	87
452	519	503
835	1,032	1,020

	Yeor TV AUDIENCE		Previous Month
(Source: NBC Research Dept.)	Dec. '51	Nov. '52	Latest Month
Sets in Use-total......	$15,176,200$	$19,751,200$	$20,439,400$
Sets in Use-netw'k conn.	$14,363,700$	$19,720,900$	$20,408,500$
Sets in Use-New York.	$2,720,000$	$3,180,000$	$3,230,000$
Sets in Use-Los Angeles	$1,065,000$	$1,270,000$	$1,320,000$
Sets in Use-Chicago..	$1,060,000$	$1,290,000$	$1,325,000$

NETWORK BILLINGS
(Source: Pub. Info. Bureau)

AM/FM-ABC	$\ldots \ldots$	$\$ 3,220,760$
AM/FM-CBS	$\ldots \ldots$	$\$ 5,257,454$
AM/FM-MBS	$\ldots \ldots$	$\$ 1,583,291$
AM/FM-NBC	$\ldots \ldots$	$\$ 4,315,646$
TV-ABC $\ldots \ldots \ldots$	$\$ 1,911,243$	
TV-CBS $\ldots \ldots \ldots$	$\$ 4,605,506$	
TV-DuMont $\ldots \ldots \ldots$	$\$ 847,373$	
TV-NBC $\ldots . . . \ldots$	$\$ 6,535,907$	

Oct. '52	Nov. '52
$\$ 2,887,571$	$\$ 2,612,761$
$\$ 5,817,930$	$\$ 5,419,533$
$\$ 2,304,804$	$\$ 2,172,485$
$\$ 4,230,576$	$\$ 4,073,971$
$\$ 1,453,811$	$\$ 1,368,552$
$\$ 6,754,231$	$\$ 6,525,176$
$\$ 995,376$	$\$ 1,026,566$
$\$ 7,805,668$	$\$ 7,957,417$

EMPLOYMENT AND PAYROLLS

(Source: Bur. Labor Statistics)	Oct. '51	Sept. '52	$0 c t$. ' 52
Prod. workers, electronic	257,500	$297,100-r$	$307,100-\mathrm{p}$
Av. wkly. earnings, elect.	$\$ 63.87$	$\$ 66.90-r$	$\$ 67.80-\mathrm{p}$
Av. wkly. earnings, radio	$\$ 60.41$	$\$ 63.24-r$	$\$ 63.45-\mathrm{p}$
Av. weekly hours, elect.	41.5	41.5	$41.8-\mathrm{p}$
Av. weekly hours, radio	40.9	41.2	$41.2-\mathrm{p}$

STOCK PRICE AVERAGES

(Source: Standard and Poor's)	Dec. '51	Nov. '52	Dec. '52
Radio-TV \& Electronics	265.6	321.9	322.7
Radio Broadcasters	252.6	300.3	304.4
	Quarterly Figures		
	Year	Previous	Latest
EQUIPMENT ORDERS			
(Source: NEMA)	3 rd '51	2nd '52	3 rd '52
Dielectric Heating	\$210,000	\$510,000	\$320,000
Induction Heating	\$4,060,000	\$2,410,000	\$1,760,000
Welding Control.	\$1,280,000	\$1,480,000	\$1,810,000
Other Electronic Control	\$720,000	\$1,020,000	\$920,000

INDUSTRIAL TUBE	SALES			
(Source: NEMA)	3 rd $^{\prime} 51$	2nd		
Vacuum (non-receiving)	$\$ 8,420,000$	$\$ 12,110,000$	$\$ 10,580,000$	
Gas or vapor	$\$.$.	$\$ 2,620,000$	$\$ 3,150,000$	$\$ 2,950,000$
Phototubes	$\$ 270,000$	$\$ 480,000$	$\$ 570,000$	
Magnetrons and velocity				
modulation tubes ..	$\$ 3,740,000$	$\$ 9,830,000$	$\$ 8,500,000$	

electronics-FEBRUARY • 1953

TV Manufacturers Get Set For 1953

New models are introduced as companies forecast banner sales for this year

Christmas rush for tv sets was hardly over before the television receiver industry began introducing new to sets for 1953 and predicting top sales for the new year. Nearly every set manufacturer introduced new tv models during January. Many of them displayed complete new lines of as many as 30 sets. Radios were als, in the limelight as industry leaders predicted that nearly 8 million would be sold this year.

- One Line-Many tv receiver manufacturers endorse the idea of one line a year and carried 1952 sets into 1953. Manufacturers such as Admiral, DuMont and GE added only a few new models to
their 1952 receivers at January showings. Some manufacturers brought out complete new lines however. They feel that it will be some time before the industry as a whole is able to give the one-line-a-year policy a real try. They believe that too many new developments are still in the making, that these could not be held back even if sales were at a peak.
- New Sets-Actually, new merchandise introduced last month was not far different from 1952 receivers. Prices were pretty much in line with last year's. Some were a little higher and some lower. More 21 -inch and 27 -inch sets were displayed and fewer high-priced radio-tv-phonograph combinations were in the lines. Provisions for uhf were stressed and new uhf tuners and converters were introduced. Most major tv manufac-

History of television in United States is portrayed dramatically by these curves, showing how average list price of cheapest table model television receiver (with each picture tube size) varied during growing years of new industry. As prices tobogganed, smaller-size screens were dropped one by one
turers incorporated built-in uhfvhf antennas in their sets.

- Predictions-With 1953 merchandise ready to roll, leading manufacturers looked at the year ahead and came up with a highly optimistic picture. They saw from 75 to 200 new tv stations coming on the air in 1953, bringing ty entertainment to 5 million more families and tv sales of at least 1.5 million sets in these new markets alone.

Gains were also predicted for replacement and second-set sales. It was estimated that nearly half of the sets now in use have screens smaller than 16 inches in size and that more than 4 million sets are at least 3 years old. Total production of at least 6 million receivers was expected by most manufacturers. Many predicted that the tv industry would reach a going rate of $\$ 6$ billion in 1953.

Transistors Replace Hearing Aid Tubes

Users pay extra for units but save on a much lower annual battery cost

Announcements of transistorized hearing aids have been coming in thick and fast in the past few weeks. This comes as no surprise, because of the transistor's inherent high efficiency and ability to operate at low voltages.

First to show a working model was Sonotone, with a $3-\mathrm{oz}$. unit using two subsubminiature tubes and a junction-transistor output stage. Tubes are used in the input and driver stages because of their low noise characteristics. With
this design a B battery is still required, but B-battery drain has been cut more than 80 percent by the transistorized output circuit.

Other hearing aid manufacturers, some of whom are oldtimers in the business, and some of whom are new, are coming up with alltransistor amplifiers completely eliminating the need for a B battery. Maico has a three-transistor unit "on the market", and Acousticon has one ready to go. Most popular transistor appears to be Raytheon's CK718, which is similar to their mass-produced CK721.

- Market-A vivid picture of the potential market for hearing aids
was painted by Sonotone president Irving Schachtel, who said "Today in America, 15 million people have hearing deficiencies, and 3 to 5 million need some sort of hearing aid to get along in the social and business worlds. Of these, only one million are now using hearing aids."

Prices for transistorized hearing aids range anywhere from $\$ 75$ to $\$ 250$ and more. At the higher price this figures to be around $\$ 75$ an ounce.

This evaluation makes transistor hearing aids considerably more valuable than their equivalent weight in just about anything we can think of.

Combatting Shortages of Engineers

Trends include farming out routine engineering work, deferring retirements

To Ease the strain on their engineering staffs, 55 percent of the electronic manufacturing firms responding to a recent survey are farming out some of their work to engineering consulting firms; 31 percent of these companies use drafting contract firms, 26 percent use research organizations, 20 percent use retired engineers and 9.8 percent use non-citizen engineers.
-Consultants-The job-shop type of engineering consultant firm performs the complete engineering job of translating a manufacturer's idea or rough design into a finished package ready for the production line. In contrast, the service-type of consulting firm sells man-hours of engineers who work closely with the manufacturer's engineers. The chief drawbacks noted here are that premium rates are sometimes charged for scarce engineering talent, and the outside consultants "take too much of our own engineers' time".
\rightarrow Retired Engineers-Where retirements are being deferred to
keep engineers on the job longer, a less strenuous work schedule is usually provided. Engineers eligible for retirement may thus come in four days a week the first year, three days a week the next year, two days a week the next, and then on a limited one-day or severalhour schedule or purely on a consulting basis. Use of retired engineers depends greatly on the individual's ability, physical and mental condition.

Relaxation of hiring standards is helping, too. Of the firms reporting, 26 percent have relaxed age standards, 28 percent educational requirements, 39 percent requirements in experience and 19 percent have relaxed standards on physical condition.

- Part-Time Profs-To a lesser extent, college engineering professors and instructors are being used for part-time jobs and counseling work. This has the longterm advantage of providing the additional pay incentive needed to encourage graduates to enter teaching. For the academic year, the average salary for an instructor is only $\$ 3,151$ and for professors $\$ 5,980$. Starting salaries in the teaching professions average about $\$ 250$ a month, which

Survey of 176 industrial concerns by Northwestern University shows the steady rise in salaries for engineers just out of college. Of the companies, 69 thought salaries were too high, 97 thought they were in line, 10 didn't answer.
is well below that offered by private industry.

- Source of Figures-How to Improve The Utilization Of Engineering Manpower, a 56 -page report prepared by the National Society of Professional Engineers, 1121 15 th Street N. W., Washington 5, D. C. and available from the society at $\$ 2$ a copy.

Army And Navy Call For Increased Output

Army and Navy procurement officials are urging electronic contractors to step up production because fiscal year 1951 funds, made available in July, 1950, will expire June 30, 1953.

A large percentage of electronics equipment for Army and Navy is bought with so-called "one year appropriations" that allow one year to obligate the money and two years to spend it for items delivered.

Of the total funds available for electronics, only about one third has been spent to date. Air Force officials claim that this is a good record considering that the lead time has been approximately 24 months, is now about 20.

Deliveries of Air Force electronic equipment since Korea have multiplied about ten times, as compared to over-all military elec-
(Continued on page 8)

Here's how to get GOOD USABLE POWER AT UHF

Sylvania Rocket Tube Type 2C37 supplies 450 Mw at 3300 Mc .

Because of their high power throughout the UHF spectrum, Sylvania rocket tubes are especially recommended for service as pulsed oscillators, cw oscillators, rf amplifiers and frequency multipliers... this is one more reason why it will pay you to specify SYLVANIA.

Compare Sylvania Rocket Tube's Performance

ELECTRONIC DEVICES; RADIO TUBES; TELEVISION PICTURE TUBES; ELECTRONIC TEST EQUIPMENT; FLUORESCENT TUBES, FIXJURES, SIGN TUBING, WIRIMG DEVICES; LIGHT BULBS; PHOTOLAMPS; TELEVISION SETS

Sylvania Electric Products Inc.
Dept. 3E-1002, 1740 Broadway, N. Y. 19, N. Y.
Please send me latest data sheets concerning Sylvania Rocker Tubes
\qquad
\qquad

City \qquad 2one \qquad state \qquad
tronics which have multiplied approximately 8 times. No dip or stretch out is anticipated in electronic items for the next two years.

If contractors do not get payments from the U.S. before June 30 , there is likely to be considerable delay in getting settlements. Money not expended returns to treasury.

Bing's Mirror To Reflect in December

Device for magnetic tape recording of video signals is readied for production

Bing Crosby money has helped develop the machines used for all types of commercial sound recording work.

Not content with being able to hear himself sing, Crosby apparently wants to see himself act on television. The only mirror presently available is the kinerecording, in effect a special motion picture made from the images on a picture tube.

- Cutting Out Steps-Engineers have long dreamed of putting video signals on magnetic tape to be played back through the equivalent of a television receiver rather than a movie projector. The same tapes, played into a
television transmitter, would eliminate the camera and film projector for recorded shows.

Until recently, it has been possible to record frequencies only up to the limit of normal human hearing (around 15,000 cycles). This requires a tape speed of 15 inches a second. To record television signals with a frequency range up to about $4,000,000$ cycles, Crosby"s engineer John T. Mullin had to speed his tape up to 100 inches a second.
-Splitting the Picture? - Although technical information has been frozen for the next six or eight months, it is known that today's tape pictures are inferior to present tv programs but capable of improvement. Since the magnetic tape used is an inch wide (sound recorders use quarter-inch

Der Bingle, electronic gadgets (background), magnetic tape recorder and friend represent the essentials of a recorded video program. Tape cost is estimoted at $\$ 80$ a half hour as against $\$ 150$ for kinescope film
tape) engineers think the Crosby technique is to split up the picture frequencies and record strips of frequencies separately but simultaneously, combining them in the reproducing equipment. Half-inch tape will be used in the next prototype model.

Production models are promised in November or December at about $\$ 60,000$.

RTMA Picks Up Ball On TV Interference

Manufacturers set up task committees for receivers, transmitters and coordination

At a recent meeting in New York City, W. R. G. Baker, director of the engineering department of the Radio and Television Manufacturers Association, advised television receiver makers to clean house before FCC is tempted to step into control of their product through back-door legislation.

By far the bulk of discussion centered on problems of receiver interference, although machinery was also set up to deal with infrequent transmitter spurious signals.

- Who Hits Whom-Degradation of television service by radiation from other sets in the neighborhood is serious enough. When local oscillator signals leak out strong enough and far enough to distort VOR airport navigation (as has happened) FCC begins to have legal grounds for requesting that each receiver come under its jurisdiction.

Although RTMA has set up certain standards that should improve reception and limit radiation, these are presently more often honored in the breach than in the observance. Among them is a recommendation for an intermediate frequency of 41.25 mc (Electronics, p 22, Jan. 1953). But some manufacturers have had (Continued on page 10)

Printed circuits like those shown here offer important advantages in radio and TV pro-duction-fewer parts to purchase, inspect, handle, and stock; fewer soldering operations and quicker assembly with minimal wiring errors: faster and easier inspection; greater compactness; and lighter weight. And usually they cost less than the individual capacitors and resistors they replace!

BULPLATE Printed Circuits are a logical outgrowth of Sprague-Herlec BULPLATE Multiple Ceramic Capacitors, first to use the active dielectric as a supporting medium for printed wiring. The printed resistor ele-
ments of these plates have proved to be highly stable, another important Sprague contribution.

Thousands of BULPLATES are now in use in radio, television, and military electronics. Are you overlooking a winning bet for your production?

And remember-if you have a special problem on a network which must perform a certain circuit function, Sprague will design it for you.
Write today for Engineering Bulletin 650 to Sprague Electric Company, 35 Marshall Street, North Adams, Mass.

to ship out relatively expensive wave traps because of interference from land mobile two-way radio systems operating near this frequency.

- Committee Plans-Working in cooperation with the Joint Technical Advisory Committee (which includes the Institute of Radio Engineers) RTMA has appointed a committee on receivers charged with responsibility for limiting oscillator radiation and establishing target dates. Another group will perform a similar function in the transmitter field. A third committee will coordinate the work of the other task groups and keep them in touch with JTAC, IRE and FCC.

One practical stumbling block for both receiver and transmitter control is lack of inexpensive measurement equipment, particularly for the new uhf channels.

Small Fields Lighted By Pilots in Flight

Radio-controlled field lights are turned on by pilot as plane approaches airport

Pilots who are forced to make emergency landings in small airports at night do so at extreme risk because most small fields are unlighted and unattended during hours of darkness.

An electronic system for making these fields safe for night use is now being used at Kingman, Arizona in connection with operation of the Bonanza Airlines. A pilot may turn on the field lights by pressing the 'talk' button of his regular vhf transmitter three times at half-second intervals from as far as 100 miles from the field. Lights are turned off by five sim-ilarly-transmitted signals.

Bonanza's radio-controlled lighting system is being studied for possible application to other commercial runs, and suggestions have been handed the CAA that a special frequency be set aside for controlling field lights.

TURNTAELE output and disk sales increase as

Phonograph Field Makes New Gains

Volume climbed to 5 -year peak in 1952; further increases are expected this year

RECORD PLAYERS and records are continuing to grow as an important segment of the electronics industry. Although phonograph and record statistics vary with the source, all figures indicate a rising sales trend, as shown in the charts.

Indications are that production of phonographs and sales of phonograph records in 1952 reached the highest point since 1947. It is estimated that between 3 and 4 million phonographs were produced last year and that the dollar volume of records was between $\$ 157$ and $\$ 200$ million. Continued growth for both products is forecast for 1953.

- Phonographs-The total number of turntables in use in the U. S. has risen steadily since the war from an estimated 12 million in 1947 to about 26 million at the end of 1952 . Of nearly 22 million phonos in use at the end of 1951 , about 8 million were capable of playing $45-\mathrm{rpm}$ records and 7 mil lion could be used for $33 \frac{1}{3}$-rpm records.

Despite the increased production of phonographs, fewer of them are being sold in tv and radio receivers. Only 10 percent of all tv models now on the market are equipped with phonographs and even less have a phonojack. According to RTMA figures, the
percentage of tv sets produced with phonographs dropped from 14.1 percent in 1947 to 6.2 percent in 1951. Fewer radio sets incorporate phonographs. In 1950, 277,100 table-model radio-phonographs were produced as against 235,177 in 1951. Console radio-phonographs declined from 844,100 in 1950 to 463,713 in 1951. New lines just introduced are continuing the trend but sales of self-contained phonographs are evidently more than able to take up the slack.

- Records-Phonograph record sales have increased along with turntable output since 1947. With the exception of 1948 when a musicians' work stoppage occurred, dollar volume of records has climbed steadily even with disruptions caused by the introduction of new speeds. Final figures for 1952 are expected to show that more than 170 million U. S. records of all speeds and types were produced, representing over $\$ 160$ million in retail sales.

Breakdown of record sales in 1952 is expected to show a continuation of the sales trend toward the $45-\mathrm{rpm}$ and $33 \frac{1}{3}-\mathrm{rpm}$ record speeds. In 1949 the percentage of total sales accounted for by each speed was: $78 \mathrm{rpm}, 88$ percent; $33 \frac{1}{3} \mathrm{rpm}, 8$ percent; 45 rpm , 4 percent. In 1951 the percentages were: $78 \mathrm{rpm}, 66$ percent; 33졍 rpm, 16 percent; $45 \mathrm{rpm}, 18$ percent.

- Future-Phonograph manufacturers who were hindered by a
(Continued on page 14)

STEATITE

ZIRCONITE

CORDIERITE

titanate

What do these names mean to you?

These Centralab Engineered Ceramics solve electronic and industrial production problems . . . hold promise of wonders to come!

If your product requires you can make it better with

THERE'S a Centralab Ceramic material to match your individual requirements - electrically . . physically structurally. These materials are unique. We can extrude, mold or press them. What's more, Centralab Ceramics can be worked the same as metal-drilled, turned, ground or tapped. In addition, they can be metalized. Every Centralab Ceramic has some of the properties shown above, and they meet all

JAN-I-8 and JAN-I-10 specifications, without exception.
Centralab is the leader in ceramic development - making fine ceramics since 1928. Metalized ceramic material for close tolerance application was a CRL first. We have a complete staff of engineers, physicists and chemists ready to help you develop better product design through the use of Engineered Ceramics. Write for full technical details.

any of these properties, CRL Engineered Ceramics!

Here are examples of special Centralab Ceramics produced for structural, electrical and electronic use

Note the Standoffs illustrated, upper center. Made to government specifications, they are available commercially at a price lower than most standard units. Note the many types of specialty items.

Specialty items include forms for coils and various clectronic components, such as variometer rotor and stator bars, heater coils, etc. Commercial units are available in Grade L-5 and L-6 Steatite if required.

Many different ferrous and non-ferrous metals can be applied to ceramic bodies, combining the desirable propertics of the metal plus the dielectric strength and other unique properties of ceramics.

FULL Centralab design and production facilities are available to meet your exact need

Production operations - including miring, molding, drilling, tapping and stamping are mechanized. This assures uniform quality, fast operation, low costs.

There's a quality inspection for Centralab Ce ramics after each major operation. Modern methods are used to insure maintenance of unusually high "Average Quality Level."

A Division of Globe-Union Inc. - Milwaukee 1, Wis.
In Canada, 635 Queen Street East Toronto, Onicrio
CENTRALA 3, A Division of Globe-Union Inc.
914 East Keefe Avenue, Milwaukee 1, Wisconsin
Please send me full technical information on Centralab Engineered Ceramics.
Name
Address.
lack of motors in 1952 due to sparse steel supplies feel that, with additional steel allocations by NPA, this year will be one of their best. Action of CBS who will soon begin selling a higher priced hi-fi phonograph, and Emerson, who takes over Webster-Chicago, seems to substantiate this forecast. It is also reported that Zenith will bring out a new hi-fi phonograph this year.

Record manufacturers see new volume highs for 1953 and are preparing for them. Through RTAA (Record Industry Association of America) they plan to run a test sales campaign and market survey to determine the longrange effect on record sales of increased sales of phonographs. The results of the test and survey may lead to changes in phonograph record advertising and promotion.

Top Management Reviews Its Paychecks

Higher net sales helped to up executive salaries but taxes and living costs also rose

Compensation of principal executives in the radio and television industry increased substantially between 1949 and 1951, reflecting an even healthier increase in net sales for firms they represented. However, higher income taxes and rising costs tempered the effects of both, according to a study made by the National Industrial Conference Board of company reports to the Security and Exchange Commission.

- Set Manufacturers-The study shows that between 1949 and 1951 the net sales of 10 representative radio and television receiver manufacturers increased an average of 38 percent. In 1949 they ranged from $\$ 6.1$ million to $\$ 396$ million, while in 1951 the span was from $\$ 12$ million to $\$ 599$ million. For the same companies the total of ficers' payroll rose 24 percent during the period. Total executive
payrs!1 ranged between $\$ 57,000$ and $\$ 1.6$ million in 1949. In 1951 the range was between $\$ 93,000$ and $\$ 2.1$ million.

As a percentage of sales, top management salaries represented 0.5 percent of total net sales in 1949 and 0.6 percent in 1951. For individual set makers the percentage ranged from 0.4 percent to 1.4 percent in 1949 and from 0.3 percent to 1.2 percent in 1951.

- Parts Manufacturers Management salaries also rose substantially in radio and television parts companies, according to the SEC report study. Between 1949 and 1951 the net sales of 8 leading parts manufacturers increased over 100 percent and total officer salaries during the three-year period rose 35 percent. In 1949 the net sales of these firms ranged from $\$ 600,000$ to $\$ 15.5$ million, while in 1951 the span was from $\$ 1$ million to $\$ 33$ million. Total pay to parts company officials ranged from $\$ 54,000$ to $\$ 310,000$ in 1951. The bracket was $\$ 11,000$ to $\$ 70,000$ in 1949.
Total executive salaries for the parts companies surveyed represented as a percentage of net sales 1.5 percent in 1949 and 1.6 percent in 1951. For individual parts companies, the percentage ranged from 0.7 percent to 5 percent in 1949 and from 0.7 percent to 5.4 percent in 1951.
- Top Man-The highest-paid executive in each of the radio and television set manufacturing firms surveyed received a salary in 1949 ranging from $\$ 18,800$ to $\$ 200,000$. The top salary of $\$ 200,000$ didn't change in 1951 but the lowest salary reported increased to $\$ 25,000$. Although bonus reports were incomplete, figures available indicate that they also increased substantially. A bonus high of $\$ 120$,700 was reported in 1951. In 1949 the high was $\$ 49,300$.
Among the radio and to parts manufacturers surveyed the salary of the highest-paid executive in each of these firms ranged from $\$ 11,000$ to $\$ 70,000$ in 1949. In 1951 the spread was from $\$ 32,000$ to $\$ 79,300$. Executive bonus checks remained relatively stable.
- Costs-The average executive who earned $\$ 50,000$ in 1949 had a net after taxes of $\$ 33,000$. In 1951 his take-home-pay from the same amount was $\$ 31,100$. The cost of living as measured by the Consumer's Price Index also had its effect. It stood at 161.3 in 1949 but by 1951 had risen to 174.5 .

THE MAN says "three" and the proper light lights to show.

Robot Responds To Spoken Numbers

Digits from 1 through 0 are made into patterns, matched with memory standards

An experimental unit in Bell Labs responds to spoken numbers by lighting the proper light for each digit from 1 to 0 . The response is accurate when circuits are adjusted to the individual voice, if enunciation is clear. Signals could equally well perform other functions, such as operating dial mechanisms.
In this developmental stage the engineers are cautious, putting customer vocal dialing somewhere in the future. But they hope Aud-rey-the 'automatic digit recog-nizer-can be taught to respond to additional sounds, perhaps even say a few words on command.

- Audrey's Nerves-Circuits and relays used in modern dial systems were used in the unit's construction. The voice sounds are sorted into electrical categories which conform to sound wave patterns.
(Continued on page 16)

SHOCK м VIBRATION

N E W S

Builder Claims Smooth Performance and Quiet Operation thru the use of Barrymounts in Dehydrator

The 2 -way protection given by Barrymounts is applied in AUTO-DRYAIRE ${ }^{(1)}$ dehydrators as a design feature of these automatic pressurizing units for high-frequency transmission lines.

In this service, Type C- 2000 Barrymounts prevent transmission of aircompressor vibration to the supporting surface. They also cushion the mounted apparatus to protect active parts, piping, and controls within the dehydrator from external shock and vibration.

The maker of AUTO-DRYAIRE (3) Communication Products Company, Inc. of Marlboro. N. J., states: "We have used Barry Isolators for several years. The excellent service they have rendered in our equipment is the primary reason for their continued use."

Type 2000 Barrymount
Barry "cup" mounts are satisfying a wide variety of needs in industrial. mobile, and marine service. Ask our Field Engineering Department for help with YOUR vibration problems. FREE CATALOG 504-B tells about these and other vibration isolators.

Miniaturized

 Vibration Isolators Help Cut Space and Weight in Fuel-Gauge Power Unit
70% size reduction and 50% weight reduction - with no loss of periormance - is the effective miniaturization obtained in the new MinneapolisHoneywell aircraft-fuel-gauge power unit. Miniature, air-damped Barrymounts. Type 6465, helped M-H engineers in this achievement.
These vibration isolators, in which size and weight have been cut while operating characteristics have been maintained, will help you redesign for miniaturization.
Check these useful features of miniaturized Barrymounts.
Light weight - only $5 / 16$ ounce each. Small size - $1^{\prime \prime}$ diameter $11 / 32^{\prime \prime}$ loaded height.
Resonant frequency - 9 cps
Transmissibility at resonance - 3
Wide load range - 0.1-3 pounds
4 different styles available - for plate or stand-off mounting.
Write for data sheets 605 and 606 giving details of dimensions and load ratings.

FREE CATALOGS

- 523-A - Air-damped Barrymounts for aircraft service; also mounting bases and instrument mountings.
- 509.A - All-METL Barrymounts and mounting bases for unusual airborne applications.
- 504.B - Shock mounts and vibration isolators for marine, mobile, and industrial uses.
- 607 - How to cut maintenance costs by using Barrymounts with punch presses.

707 PLEASANT ST., WATERTOWN 72, MASSACHUSETTS

SALES REPRESENTATIVES IN

Athanta Chicago Clevelond Dollas Doyton Detroit Los Argeles Minneapolis New York Philadelphia Phoenix Rochester St. Louis San Francisco Seattle Toronto Woshington

These categories are matched, in a memory cell, against electron-ically-drawn standard reference patterns. When the electrical pattern of the spoken number matches the standard pattern, the proper light flashes.

Voice-operated devices have been used for years in transoceanic telephony, but until now none of them have had to distinguish between different words. The key to Audrey's success is the visible study of speech patterns done in Bell Labs on the sound spectograph and similar machines.

Electronics Surplus Is Still Big Business

Obsolete and overstocked supplies continue to pour out of warehouses

Far from petering out with dribbles of World War II equipment, the electronics surplus industry is growing, according to the Institute of Surplus Dealers, Inc

At the recent surplus show in New York, Eugene P. Connolly, the Institute's president, guesstimated a $\$ 25,000,000$ volume this year in surplus electronic gear. And Connolly thinks it will never end. Surplus, he says, is here to stay, a part of our economy and a pretty large part at that.

- Organization-The Institute has compiled a list of 2,200 dealers across the country, but there are many more not listed or disguised under other business operations.

A manufacturer looking for surplus supplies has two ways to go. He can watch the ads in publications and surplus dealers' circuiars, or he can write to the Institute (673 Broadway, New York City). He may find what he wants but, if he doesn't, that is no sure indication the surplus goods are not there. Surplus dealers by and large aren't electronics men; they don't know a 6 V 6 from a megawatt.

Television Expands Overseas

Sets abroad top 2.4 million, 21 countries have service; Latin America best US market

Television is making significant progress abroad. Stations are on the air in 21 foreign countries and regular service is scheduled for seven more by the end of the year. Sets in use total $2.4 \mathrm{mii}-$ lion, up 50 percent over 1951 figures. Ganging-up 10 or 15 people to a set is common and the viewing audience is estimated at $24,450,000$.

Latin American countries have shown great interest in television and this area is potentially an important market for American manufacturers. Picture standards are in general the same as in U. S. Elsewhere, Japan has adopted our standards and is planning a tv network that may include 30 stations or more. However, fourteen Japanese-electronic firms reportedly are gearing up for mass production of tv receivers. Japan looms as a competitor rather than customer in the world market.

- Cuba-Fourth in number of sets in use, Cuba has complete television coverage. Two competitive networks cover the island and 100,000 sets are in use. Havana has two stations, with a third planned for 1953. Ten additional stations are planned.
- Mexico-Mexico, with five stations on the air, has only 40,000 sets in use. One major problem is the 50 and 60 -cps power service in Mexico City. A heavy import duty on finished sets has been partially circumvented by shipping chassis to assembly plants in Mexico. Some manufacturers have considered making sets in Mexico for export elsewhere in Latin America to take advantage of the favorable tariffs between Mexico and other Latin American countries. Spain enjoys similar tariff advantages and this may be one reason why a large U. S. tv manufacturer will operate from there.

- Brazil-Beset with foreign exchange troubles, Brazil, nonetheless, is showing great interest in tv. An electronics industry has already taken root in the Sao Paulo area and television sets may soon be manufactured internally. Radio sets and components are now
(Continued from page 18)

being made. Manufacture of electron tubes including crt's is envisioned.

Brazil has 45,000 sets in use, three transmitters on the air, nine planned and four under construction. The city of Rio de Janiero may soon become operator of the hemisphere's first educational tv station. Brazilians are enthusiastic about television and projection receivers are frequently seen in public places, parks and even vacant lots.

Elsewhere-Argentina imported 9,293 tv sets during the first eight months of 1953 . No additional transmitters are contemplated. There is presently only one sta-
tion, in Buenos Aires.
Venezuela has a high standard of living and a large market is expected here despite different picture standards. Two stations in Caracas should be on the air by now. A third is scheduled for late 1953.

Television transmitter deals recently fell through in Uruguay and Colombia.
U. S. manufacturers of tv transmitting equipment have reported serious inquiries from El Salvador, Peru, Costa Rica, Republic of the Philippines, New Zealand and Union of South Africa. Inquiries of a more casual nature have been received from Honduras, Formosa, Indonesia, Malaya and Greece.

Average Laboratory Uses 254 Instruments

Survey by ELECTRONICS of 459 laboratories in 10 different classifications shows they contain 116,395 instruments. Identity of 36 types is shown above. Remaining types average less than one and include field-strength meters, spectrometers, sweep calibrators, colorimeters and radiation meters

Financial Roundup

Merger action by two major manufacturers, along with profit reports and security transactions of other companies in the field, highlight the current financial picture of the electronics industry.
Board of directors of WebsterChicago and Emerson Radio have recommended merger of the two companies. After approval by stockholders of both companies, Emerson will issue 337,500 shares of its capital stock for the 450,000 shares of Webster-Chicago now outstanding, which is in the ratio of $3 / 4$ share of Emerson for 1 share of Webster-Chicago. These shares will be in addition to the $1,935,187$ presently outstanding shares of capital stock of Emerson, which will remain unchanged. After the merger, Webster-Chicago will be operated as a division of Emerson.

- Profit Reports-The following companies issued net profit statements for the first 9 months:
 chased for cash the entire outstanding stock of Acme Electronics of Pasadena. It will be operated as a wholly-owned subsidiary.

Radioactive Products sold 52,176 shares of class A convertible stock at $\$ 1.25$ per share. The proceeds were added to the company's working capital to facilitate increased volume.

Kentucky Coal Deposit Ups Germanium Supply

Germanium for transistors and crystal diodes has been found in coal ash from an eastern Kentucky deposit. Although the new source may increase substantially the amount of germanium available,
(Continued on page 20)

SORFNSEN

REGULATES

AND CONTROLS

The NOBATRON* maintains stabilized DC voltage under changing line and/or load conditions.
A complete line of catalog models are available, with output voltages of $6,12,28,125$, and 200 VDC, from 5 to 350 amperes.

Sorensen Nobatrons eliminate battery and generator troubles. They combine high regulation accuracy with maximum dependability and minimum maintenance.

All models are attractively finished. Most can be furnished either for relay rack mounting or in cabinets for bench-top use. Most units are metered; all are adequately protected against overload by suitable fuses and breakers.

COMMON NOBATRON SPECIFICATIONS

Input voltage range	$95-130$ VAC, single $\phi, 50-60 \sim$ High-current units $208 / 115,3 \phi, 4$-wire, wye.
Output voltage range	Adjustable $\pm 10 \%$ with rated accuracy, -25% with lesser accuracy.
Regulation accuracy	$\pm 0.2 \%$ from $1 / 10$ to full load.
Ripple voltage	1% RMS. Time constant 0.2 seconds.

WIDER OUTPUT VOLTAGE RANGE MODELS

Nobatron-RANGERS* are designed to meet the demand for power supplies similar to the Nobatron but with wider output voltage ranges.

Nobatron-RANGERS are continuously adjustable over extended output ranges, yet provide regulation accuracies of $\pm 0.25 \%$ against line and/or load. Other specifications are identical to those of the standard Nobatrons.

Three models are available, the SR-30, SR100, SR-2. Capacities, respectively, are 3-30 VDC at 3-30 amperes, 3-135 VDC at $1-10$ amperes, and $100-300$ VDC at $1-10$ amperes.
finvestigate NOW the cost of a NOBATRON installation versus the overall sost of less satisfactory DC sources.

OTHER SORENSEN ISOTRONIC PRODUCTS INCLUDE:

B-NOBATRONS (high-voltage, low-current DC Supplies) frequency changers variable auto transformers
saturable core reactors ac line regulators

* Reg. U. S. Pat. Off, by Sorensen \& Co., Inc.
demand is expected to keep its price firm at $\$ 350$ a pound.

Germanium production has been running about 1,000 pounds annually; demand may reach 15,000
pounds when transistor production swings into high gear. Original source for the increasingly important material was smoke from zinc furnaces.

Automatic Pilot Speeds River Barges

At first glance, an automatic pilot for a tugboat seems about as useful as lace curtains at the windows of the pilot house. But when the seconds and minutes saved by its use add up to hours or even days less for a given trip the idea begins to make sense.

Sperry Gyro, which claims a preponderance of the hundred-odd radar installations on tugs plying the Mississippi-Ohio rivers system, has been working for at least two years on a gadget that will tie radar to the rudder. The final result is a control that can be hung on the outside of the radar console or in any other convenient small space. Linkage between the two, so far, is via the pilot.

- Steady as You Go-The pilot's control is a small housing not unlike the throttle of a Diesel locomotive. With the handle in the
lower circular slot, he can steer the tug electronically by means of a magnetic amplifier in a box mounted nearby. By moving the handle upwards into the top slot, the last course setting is held with the help of a gyrocompass. Movement of the handle corrects to any new desired course.

Pushing a 1,000 -foot string of barges up the Mississippi is slow work at best, sometimes as slow as a knot an hour. Even a good pilot is likely to oversteer a little, especially at night. Whenever he does, he must turn his rudder in the other direction. And while steering, he slows his progress. With the automatic pilot, it may be possible to cut a fifteen-day trip to ten days.

On the Hudson River-Champlain Canal system there is one skipper who saves two hours out of every twenty-four with the new device.

Modern Mark Twain can either steer or automatically hold a course with this new electronic pilot. Big-boat skippers can use it instead of shouting to the helmsman from the radar screen

'Automation' Comes To Modern Industry

Feedback loops built into complex controls presage automatic industrial production

Built into functioning plants, servomechanisms based on the feedback principle are operating complex industrial processes faster and better than men can.

In all applications the principle is the same-A continuous measurement of the work being done is compared with instructions set into the control instrument's 'memory'. Deviation, the so-called 'error signal', is fed back to the controls, continuing or decreasing the work until the goal is reached. Then the control shuts the machine off, or starts the cycle over again.

By extending this principle, whole sequences of operations can be done at amazing speeds and accuracies.

- Existing Applications-A new Ford plant in Cleveland operates entirely by 'automation' - automatic industrial production-and 250 men do twice the work 2,500 men did before. One instrument balances crankshafts, by automatically controlling drilling and grinding operations.

In continuous-strip production, such as steel, paper and rubber, servomechanisms control the strip width, continuously readjusting machines to maintain a tolerance impossible with old methods involving sample caliper measurements.

Television Assumes Role in Cold War

East and West stations vie in divided Berlin; relay spans Red Zone

Regular television broadcasting in Germany has opened a new battlefield in the propaganda war for men's minds. Programs are now
(Continued on page 22)

Select the right Krodin-iline Oscillatior in the ULTRA-LOW FREQUENCY RANGE

REMEMBER: All KROHN-HITE OSCILLATORS provide sine and square wave simultaneously

- COMPACT and LOW PRICED price $\$ 350^{00}$

model 400-A

FREQUENCY RANGE: 0.009 to $1,100 \mathrm{cps}$., continuously variable in five decade bands.
FREQUENCY ACCURACY: Calibration $\pm 2 \%$, drift is less than 1% including warm-up and less than $.05 \%$ for $\pm 10 \%$ change in line voltage.
SINE WAVE OUTPUT:
VOLTAGE: 30 volts maximum, adjustable continuously with a logarithmic output control calibrated from . 01 to 10 rms. volts.
AMPLITUDE: Varies less than $\pm \mathrm{l} \mathrm{db}$ over entire ranme from 0.009 to 1,100 cps. and less than $\pm 0.25 \mathrm{db}$ for $\pm 10 \%$ change in line voltage.
POWER: 25 mw maximum across 1,000 ohms.
DISTORTION: Less than 1% at any output level setting.
HUM: Less than 0.1% at any output level setting.
SQUARE WAVE OUTPUT: 10 volts peak to peak maximum.

- STANDARD RACK
MOUNTING
- SINGLE ENDED OR BALANCED OUTPUT
price $\$ 37500$

model 400-C

FREQUENCY RANGE: 0.009 to $1,100 \mathrm{cps}$, continuously variable in five decade bands.
FREQUENCY ACCURACY: Calibration $\pm 2 \%$, drift is less than 1% including warm-up and less than $.05 \%$ for $\pm 10 \%$ change in line voltage.
SINE WAVE OUTPUT:
VOLTAGE: 30 volts maximum, adjustable continuously with a logarithmic output control calibrated from 01 to 10 rims. volts.
AMPLITUDE: Varies less than ± 1 db over entire range from 0.009 to $1,100 \mathrm{cps}$. and less than $\pm 0.25 \mathrm{db}$ for $\pm 10 \%$ change in line voltage.
POWER: 100 mw maximum across 1000 ohms.
DISTORTION: Less than 1% at any output level setting. HUM: Less than 0.1% at any output level setting.
SQUARE WAVE OUTPUT: 10 volts peak to peak maximum.

SPECIFICATIONS: FREQUENCY RANGE: 0.02 to $20,000 \mathrm{cps}$, , continuously variable in six decade bands.
FREQUENCY ACCURACY: Calibration $\pm 2 \%$, drift is less than l, including initial warm-up and less than $.01 \%$ for $\pm 10 \%$ change in line voltage.
SINE WAVE OUTPUT:
VOLTAGE: 15 volts maximum adjustable continuously by a "T"" pad, and by a step switch providing $100: 1,10: 1,2: 1$, and $1: 1$ attenuation.
AMPLITUDE: Varies less than 0.25 db over entire frequency range from .02 to $20,000 \mathrm{cps}$.
POWER: 10 mw maximum across 500 ohms.
DISTORTION: Less than 0.1% over entire frequency range from . 02 to $20,000 \mathrm{cps}$.
HUM: Less than . 1% at any output level.
SQUARE WAVE OU'TPUT: 10 volts peak to peak maximum.

KROHN-HIIE

INSTRUMENT COMPANY
580 MASSACHUSETTSAVENUE DEPT. E, CAMBRIDGE 39, MASS.

Microwave relay links new German tv stations. Tower houses repeater station
broadcast from transmitters in both East and West Berlin. The West Berlin transmitter is linked by vhf relay across the Soviet Zone with the Northwest German Radio (NWDR) network; the East Berlin station may soon be joined by other stations in the Hartz Mountains near the West German border and in Thuringia.

The Voice of America reports that it has no plans to acquire television equipment, although it will make filmed programs available to West German broadcasters. Radio Free Europe, a private organization broadcasting to Russia and her satellites, likewise disclaims interest in television broadcasting. Such programs "would reach only a small portion of Europe's captive population due to propagation difficulties and would be overly vulnerable to interference and jamming."

- Limited Audience-Only 1,200 television sets are in use in West Berlin; about 200 are in bars. Chief reason for the small tv audience is economic; the cheapest German television sets cost $\$ 300$, almost six months income for the average German. Television receivers in East Berlin are Russian 7 -inch sets. Most of these have been installed in public places, presumably to discourage channel jumping. Both East and West German television stations
broadcast a 625 -line, 25 -frame picture using a $7-\mathrm{mc}$ bandwidth with f-m sound.

NWDR operates stations in Hamburg, Hanover, Langenberg (in the Ruhr basin) and Cologne. The stations are linked by microwave radio relay stations, like the one in the photograph, sited at 40 -mile intervals. Stations are planned for Frankfurt, Stuttgart and Munich.

The 200 -mic vhf relay that ties West Berlin into the network terminates atop a $500-\mathrm{ft}$ tower built on a $200-\mathrm{ft}$ hill at Hoebeck in the British zone. Signals received from West Berlin 80 miles away are relayed to the other network stations through Hamburg.

Lawrence Tri-ColorTube In Production

Now called 'chromatron', the tricolor tube (p 81 and 146, Nov. 1951) developed by E. O. Lawrence of the University of California is being produced in pilot-plant quantities by Chromatic Television
(Paramount Pictures) of Oakland, Calif. At a closed-circuit demonstration for the press in New York City, Richard Hodgson, president of Chromatic, said 200 have already been made. The tube is 22 inches in diameter but, due to the wire grid arrangement integral to construction, it produced an 18 -in. pičure.

- Claims-Demonstrated with a flying-spot scanner and Kodachrome slides, the picture was very bright. Hodgson said less scanning power is now needed for the color sync pulses, as a result of insreasing the number of vertical grid wires and other improvements. A major advantage claimed for the new tube is its adaptability to mass assembly methods. Massproduced color grids and massproduced phosphor-striped screens may be mass-assembled without much hand tailoring, giving a color tube for about twice the cost of conventional monochrome types.
The tube was demonstrated on the CBS color system but is adaptable to NTSC signals. It can be made as short as monochrome tubes usually are.

Militronic Equipment: Too Complex?

> "Perhaps," say top brass as drive gains to reduce both cost and upkeep

Leveled jointly at military men and equipment designers is the charge that excess gimmicks and gadgets in modern weapons are killing our boys with kindness. Critics also contend that weapons cost more than they are worth, that they should be far simpler in design and construction. The charge is popular with economy-minded congressmen and a widespread conclusion has been drawn that we are designing ourselves into bankruptcy.

Much of the complexity arises from wider application of electronic devices. A modern battle-
ship uses 9,000 electron tubes, a B-36 heavy bomber depends upon 2,100 tubes for navigation and control. An F-86 Sabrejet employs 600 . In all, $15,000,000$ tubes are currently used in military equipment. Costwise, electronic gear aboard a destroyer brings $\$ 3,000,000$ today as against $\$ 40$,000 during World War II.

Maintenance costs likewise measure complexity of new weapons. Experience shows that each 100 million dollars worth of military electronic equipment needs one billion dollars worth of maintenance before it wears out.

- How to Simplify-Interest is mounting in simple and reliable equipment. Department of De-
(Continued on page 24)

fense procurement officials are offering incentive contracts rewarding manufacturers who design and perfect weapons that do their job and are simpler than predecessors. Britain's RAF recently ordered 25 'poor-man's' radar sets. Hand-operated, the sets cost $\$ 11,200$ and use only 50 tubes. Shying from 'cheap-and-dirty' equipment, U.S. military men too have nevertheless embarked on a program of simplifying equipment and reducing upkeep through unitization and automatic fault location.
- Plug-In Radar - Unitization means building up equipment with independent black boxes that can be plugged in when needed. A unitized radar set aboard a battleship would be replete with all extras while the same set, stripped to its essentials, would serve adequately aboard an LST.

Fault-locating devices of sufficient sensitivity to predict failure simplify maintenance in an emergency. Repair consists of plugging in a complete spare unit, with overhaul chores deferred to a convenient time and place.

Transistor Weds
 Magnetic Amplifier

Ceremony yields rugged servo system with high gain, fast response and high power output

Use of transistors in conjunction with magnetic amplifiers was suggested shortly after the transistor was announced. Each was known to be extremely rugged. The absence of standby power inherent in both devices showed promise.

The transistor is an efficient amplifier at low power levels and the magnetic amplifier excels at high power levels.

The marriage is in a servo amplifier by the Industrial Control Co. of Wyandanch, New York. The transistor acts, in effect, as a preamplifier for the magnetic amplifier power stage.

- Simple Circuit-The circuit used is quite simple, and yet it
offers power gains of several thousand with a speed of response limited only by the operating frequency.

Input and output may be either d-c or a-c, and negligible power is consumed by the amplifier when no power is being delivered to the load.

Work is still going on to develop new designs, although the existing circuit is directly applicable to a wide variety of control applications in its present form.
A number of improvements are expected to result from use of better transistors, when they become available in sufficient quantity to make their use in
commercial equipment feasible. Higher gains may be obtained by using cascaded transistors.

The new development makes available to industry a highly efficient and versatile packaged servo amplifier that is virtually indestructible and may be expected to have a long life. With present models power levels of a fraction of a watt to 500 watts may be controlled by such lowpower devices as thermocouples, synchros, small potentiometers and photocells. The transistormagnetic amplifier may also be used in other applications where low-frequency amplification is desired.

TV Servicing Business Patterns

Survey of dealers reveals large variations in efficiency of operation and charges for work

The pattern of radio and television service business operation shows up as hectic and varied in a recent GE survey of 2,175 full-time dealers.

Average dollar volume for all dealers in 1951 ranged from \$6,150 per technician in the small shop to $\$ 8,200$ per technician in shops having over 10 technicians. Corresponding figures for shops specializing in ty work are $\$ 7$,330 to $\$ 8,500$.

- Jobs Per Technician-An average of 35 jobs is completed per week by each technician, but the average is by no means representative. Some of the six to nine man shops fixed over 60 sets per week per technician, while others got less than 14 jobs per week out of each technician.

Billing per service call also showed an extreme variation from the $\$ 8$ average figure for tv and $\$ 5.50$ for radio. Combining all dealers, the extremes show 9 percent of the firms averaging $\$ 3$ per call as a low and $\$ 14$ per call as
a high. On the other hand, over 75 percent had average billings in the range of $\$ 5$ to $\$ 10$.

- Contracts-In firms having under 5 technicians, less than 10 percent of the tv calls were under service contract. With large firms specializing in tv service, a surprisingly high figure was reported for 1951; 75 percent of the calls were under service contract.
Percent of service jobs completed in the home on tv sets ranged from 78 percent for the small dealer to 86 percent for those having over 40 technicians.

Triple-Use Waveguide For TV, Phones, Power?

"Barlow's Tube" in London has U. S. counterpart at Bell Labs and Signal Corps

For many years, power companies have also been using their hightension lines stretching across the country as carriers for wired-wireless radiotelephone communication. More recently, the Signal Corps has been experimenting with
(Continued on page 26)

A GOOD NAME TO REMEMBER WHEN YOU NEED DEPENDABLE COMPONENTS... faster!

Stackpole Carbon Company, St. Marys, Pa.
AIso - LINE AND SLIDE SWITCHES - CERAMAG (ferrite) CORES - IRON CORES - MOLDED COIL FORMS • GA 'GIMMICK'' CAPACITORS, eIC.
the G-string, a single wire coated with enamel or plastic along which very high-frequency currents travel. Radar has made familiar the use of the waveguide, a hollow tube through which microwaves pass.

- Marriage of Convenience-H. M. Barlow, a professor at the University of London, proposes the use of a pair of hollow copper tubes that will carry multiple telephone conversations within, television signals on the outside surface and power within the copper. So far, he has confined his research primarily to the radio phase of the problem.

Bell Telephone Laboratories engineers, whose main concern likewise is communications, admit to "strenuous activity" in the development of long-distance techniques using circular waveguides at 50,000 megacycles-only slightly different from those employed by Barlow.

The new Bell type L-3 coaxial cable system handles 1,800 circuits. The number might be more than doubled with the waveguide technique.

Business Briefs

- Cheaper, better transistors may not be far away, if a new "substance" recently announced by Brown-Allen Chemicals, Inc. of New York City lives up to claims made for it.
- Super-sniffer that smells gas leaks by electronics and sounds an alarm if all is not well is now being used to detect leaks in hermetically sealed aircraft equipment.
- Swiss financial group representing the Union des Banques Suisses may invest in tv set manufacturing in Italy. It has been estimated that 100,000 sets could be absorbed by the Italian market in 1953.
- If the Bureau of Internal Revenue takes over Grand Central Palace for office space later this

MEETINGS

Feb. 4-6: Western Computer Conference, Hotel Statler, Los Angeles, Calif.
Feb. 5-7: IRE Southwestern Conference and Electronics Show, Plaza Hotel, San Antonio, Texas.
Feb. 5-7: Audio Fair, Alexandria Hotel, Los Angeles, Calif.
March 9-12: NEMA, Edgewater Beach Hotel. Chicago, Ill.
March 19-20: National Collegiate Industry-Government Conference on Instrumentation, Michigan State College, East Lansing, Mich.
March 23-25: Sixth Annual Conference for Protective Relay Engineers, A \& M College of Texas, College Station, Texas.
March 23-26: IRE National Convention, Waldorf-Astoria Hotel and Grand Central Palace, New York, N. Y.
March 23-27: Western Metal Exposition, Pan-Pacific Auditorium and Western Metal Congress, Statler Hotel, Los Angeles, Calif.
APRIL 18: Seventh Annual Spring Technical Conference, Cincinnati IRE, Cincinnati, Ohio.
APRIL 27-30: Spring Meeting of USA National Committee of URSI-IRE Professional Group on Antennas and Propagation, National Bureau Of Standards, Washington, D. C.
APril 27-MAY 8: British Industries Fair, Birmingham \& London, England.
April 28-May 1: Seventh Annual NARTB Broadcast Engineering Conference, Burdette Hall, Philharmonic Auditorium, Los Angeles,

California.
APRIL 29-MAY 1: 1953 IREAIEE Electronic Components Symposium, Shakespeare Club, Pasadena, Calif.
May 1: American Association of Spectrographers Symposium, Chicago, Ill.
MAY 11-13: IRE National Conference on Airborne Electronics, Dayton, Ohio.
MAY 18-21: 1953 Electronic Parts Show, Conrad Hilton Hotel, Chicago, IIl.
May 18-23: Third International Congress On Electroheat, Paris, France.
May 24-28: NAED, 45th Annual Convention, Conrad Hilton Hotel, Chicago, Ill.
May 24-28: Scientific Apparatus Makers Association Annual Meeting, The Greenbrier, White Sulphur Springs, W. Va.
June 15-19: Exposition of Basic Materials for Industry, Grand Central Palace, New York N. Y.

June 16-24: International Elec-tro-acoustics Congress, The Netherlands.
June 20-Oct. 11: German Communication and Transport Exhibition, Munich. Germany.
Aug. 19-21: IRE Western Electronic Show \& Convention, Municipal Auditorium, San Francisco, Calif.
Aug. 29-Sept. 6: West German Radio and Television Exhibition, Duesseldorf, Germany.
Sept. 1-3: International Sight and Sound Exposition, Palmer House, Chicago, Ill.
Sept. 21-25: Eighth National Instrument Exhibit, Sherman Hotel, Chicago, Ill.
year, as has been reported, the 1954 IRE National Convention will be held in the Kingsbridge Armory, Bronx, N. Y., according to an announcement by J. W. McRae, president, and G. W. Bailey, executive secretary of the Institute.

- Australia will spend a total of $\$ 20$ million on military electronic equipment with local manufacturers. New types of radar equipment will not, however, be developed in Australia as previously planned because of insufficient time. U. S. and British designed radar will be used. It will be made by local firms having overseas affiliations.

Satellite tv station for Hawaii may be put into operation this year by KGMB-TV in Honolulu as part of a plan to extend tv service to six major islands extending over a chain 300 miles long.

Power consumption of tv home receivers adds an estimated $\$ 200$ million a year to the utility industry's revenues, according to C. B. Jolliffe of RCA. Tv studios and transmitters increase income another $\$ 2.5$ million. In New York alone, an income of $\$ 12$ million during the year ending June 30 , 1952 is attributed to home tv usage.

(0.15 TO 1000 MEGACYCLES)

FILTRON'S Engineering division, with its completely equipped screen room facilities, is always available to measure and recommend RF Interference Filters for your equipment, to meet and exceed the Radio Interference requirements of MIL-I-6181.

FILTRON'S production facilities are suppying more RF Interference filters for use in military electronic equipment than ever before, to meet the nation's requirements.

FILTRON... the LEADER IN RF INTERFERENCE FILTERS... has pioneered:

Sub-miniature Filters
High-temperature Filters
RF Filters to withstand Shock and Vibration

Wide band Multi-section Units RF Filters "Custom Designed" to meet YOUR requirements

THEFTHRROMI COMPANY INC., FLUSHING,LONGISLAND, NEWYORK MARGEST EXGLUSIVE MANUFACTURERS OF RF INTERFERENGEFILTERS

What does this 126

Offs Shed Stater of Pineta

 is ven in e mind

 Sorn Swine Hims

year old Patent mean to you?

One hundred twenty-six years of experience, know-how, inven-tiveness-call it what you will-is something we alone can give you in our particular field.
For Chester Stone, the inventor of the washing machine of this patent, was the father of our founder, and the great uncle of our president.
One hundred twenty-six years later to the month, we continue to be very much interested in washing machines, but in a different way. Today we manufacture insulating bushings for the electric motors, fibre bobbins for the time controls, and laminated paper base phenolic sleeves for mounting insulation.
The United States has become a nation of specialists in the years since John Quincy Adams, the President; Henry Clay, the Secretary of State; and William Wirt, the Attorney General, signed this patent in 1827.

We have become specialists in the manufacture of spiral wound insulating tubing, sleeves, and bobbins. They can be furnished in diameters as small as 3 /64" ID, various wall thicknesses and lengths, and of many materials including hi-dielectric kraft, fish paper, and plastic films. We can produce these custom-made quality products to close tolerances. They are low in cost and our service is unsurpassed.
The use of our products by many hundreds of America's leading manufacturers is ample testimony that this heritage of one hundred twenty-six years has well equipped us to satisfactorily fulfill a large number of their specific requirements.
Sales representatives are located in principal cities. We would welcome an opportunity to serve you.

For more than a quarter century Stone has aided the expanding automotive and electrical industries by the devdopment of low cost spiral insulating tubes.

Stonized spiral wound phenolic coil forms, collars, and assemblies are finding increasing acceptance by the electronics industry.

Stone's plain or printed containers and specialties are widely used in the pharmaceutical and industrial fields.

High-Voltage CAPACITORS?

Write today on your company letterhead for your copy of this comprehensive catalog.

Plastic Capacitors, Inc., achieve capacitor designs in smaller sizes and higher working temperatures with increased life expectancy.

This is accomplished by uniquely processing plastic films for use as the solid dielectric in their capacitors.

Our catalog describes these features including capacitors with voltage range up to 60 Kv . but AC capacitors and higher voltage $D C$ capacitors are available on special order.

Your inquiries are invited.

Plastic Capacitors, Inc.

Thin wall 3-core construction as sures flux continuity...prevents "dry" joints.

Contains only Virgin tin \& lead. Tin-99.75\% pure. Lead 97.97\% pure.

Only Multicore has Ersin Flux high grade waterwhite rosin, hemogeneously activated.

Non-corrosiva even after long exposure to humidity.

Wets metal rap idly due to reduced surface tension.

Vigorous fluxing action.

Leaves only pure rosin after scldering.

Perfect joints on difificult metals \& alloys even if oxidized.

Total \% flux to solder less than many sing e cored solders.

Rigid quality control insuras same standands in every Multicore reel.

Conforms with 00.S. 571-b and all other netinent Federal Specifications.

On the Assembly line...time is money!
Save the time lost in producing "rejects"; the time lost with ordinary "slow" solders on difficult metals; the time dost in finding "dry" joints.
Save the lime...save the money... the efficiency of your plant... the good name of your product!
In every part of the World, leaders in Electronics are insuring their production efficiency with Multicore.
Nothing less will do...
MULTICORE IS THE WORIL'S FINEST SOLDER!

164 Duane Street - New York 13, N. Y.
MULTICORE SOLDERS LTD.
Maylands Ave. Hemel Hempsteed, Herts., Engiand

NE-11-20-S SPECTRUM ANALYZER

Description

The Spectrum Analyzer is test equipment designed primarily for use with aircraft radar and beacon equipment operating over a frequency range of 8470 to $9630 \mathrm{mc} / \mathrm{s}$. Housed in a compact portable carrying case, the whole assembly weighs approximately 90 pounds.
In operation, the Spectrum Analyzer displays on an oscilloscope a pattern representative of the distribution of energy among the various frequencies in the output of a pulsed oscillator. This equipment is equal to our government models TS-148/UP.

Applications

This very sensitive micro-wave receiver will provide accurate measurement of the spectra of radio frequency oscillations in radar and beacon equipment. It will also measure, within its own range, frequencies of echo boxes, magnetrons, test sets, local oscillators and a variety of resonant cavities. It can also be used to check magnetron pulling and AFC circuits, and as a frequency-modulated oscillator to tune T / R Boxes and R / T Boxes in transmitter-converters.
The Analyzer is so sensitive that the magnetron signal can usually be picked up at some distance from the source, thus making the equipment easy to use in any convenient location.

Specifications

Power Supply .. S0-1200 Cps; 105-125 Volts; 125 Watts

Sweep Frequencies
Attentuation (Spectrum Amplitude)
Operating Temperature Range
Frequency swing of analyzer r-f oscillator (sawtooth FM) Continuously Variable from 10 to 30 Cps

Overall i-f bandwidth at half power points
$\cdots . . .-40^{\circ} \mathrm{C}$. to $+55^{\circ} \mathrm{C}$.
40 to $50 \mathrm{mc} / \mathrm{s}$ $50 \mathrm{kc} / \mathrm{s}$ Oscilloscope Screen.

- Spectrum Position - 55 db . below 1 watt for 1 inch of deflection of Oscilloscope Screen.
Maximum dispersion of spectra .. $1.5 \mathrm{mc} / \mathrm{s}$ per inch
Maximum error ± 5 megacycles

We will gladly furnish all details regarding specifications, prices, and delivery.

Joums

This English physicist was one of the first propounders of the principle of the conservation of energy. His expet: ments in 1843 determined the value for the equivalet quantities of heat and work. He also proved by experment that the heat produced in a wire by the passage of electricity varies directly with the resistance of the w and with the square of the current (Heat $=.2388^{2} \mathrm{P}$. The Joule, a standard unit for measuring work or energh, was so named in his honor.
.. FIRST to accurately determine the mechanical and electrical equivalent of heat

\author{

James Prescott Joule 1878-1889

}

First to provide Tubes and Transistors that are correctly designed for quick, efficient printed circuit assembly. For the ultimate in portable performance, combine Raytheon's high-efficiency, filamentary Subminiature Tubes with Raytheon's Junction Transistors.

Subminiatures	Filament Volts Ma.		Plate Volts	Screen Volts	Grid Volts	Plate Ma.	Screen Ma.	Mutual Cond. Umhos.	Voltage Gain	Plate Resis. Meg.
IAG4 Output Pentode	1.25	40	41.4	41.4	-3.6	2.4	0.6	1000	$35 \dagger$	0.18
IAH4 RF Pentode	1.25	40	45.	45.	0	0.75	0.2	750		1.5
1AJ5 Diode-Pentode	1.25	40	45.	45.	0	1.0	0.3	425	50	0.3
1V6* ${ }^{\text {- }}$ Mixer-Pentode			45.	45.	0	0.4	0.15	200**		1.0
Osc.-Triode	1.25	40	45.	-	$\mathrm{Rg}=1 \mathrm{meg}$.	0.4	-	550		
IAK4 RF Pentode	1.25	20	45.	45.	0	0.75	0.2	750		1.5
IAK5 Diode-Pentode	2.25	20	45.	45.	5 meg .	0.5	0.2	280	40	0.4

\dagger Power Output - milliwatts

* Conversion Conductance

*Type IV6 is a high performance, low battery drain converteri. Note the comparison with 1 R5 using 45 volt supply.		
	IV6	125
Total Cathode Current (ua)	960	2750
Conversion Conductance (umhos)	200	235
Plate Resistance (megohms)	1.0	0.6
Conversion Gain (load $=175 \mathrm{~K}$)	30	32
Equiv. Noise Resistance (ohms)	70K	180 K

PNP JUNCTION TRANSISTORS (Average Charasteristics at $30^{\circ} \mathrm{C}$)		
	CK721	CK722
Collector Voliage (volts)	-1.5	-1.5
Collector Current (ma.)	-0.5	-0.5
Base Current* (ua.)	-6	-20
Current Amplification Factor*	40	12
Power Gain ${ }^{\text {a }}$ (db)	38	30
Noise Factor" (1,000 cycles) (db)	22	22

*Grounded Emitter connection

SPLITTING THE SPLIT SECOND at the Bendix-Westinghouse Engineering Research Department laboratories is absolutely essential in exploring every possible braking requirement for transportation tomorrow.

STANDARD ELECTRIC TIME has been serving industry, government and educational institutions for almost seventy years with fine precision instruments and equipment for the accurate measurement of time.

STANDARD ELECTIRC MODELS-I Clocks are a part of the modern laboratory controls testing equipment and timing devices shown in this photograph ... they accarately measure air brake application and release transmission time to one-hundredth of a second. . . The timers are started instantaneous to brake pedal movement transmitted through an electronic circuit and are stopped by means of a highly sensitive electro pneumatic switch located at pre-denermined stations in the air brake system.
 g7 LOGANSTREET - SPRINGFIELD 2 , MASSACHUSETTS

New Waldes Truarc E-Ring Dispenser* Speeds Assembly, Cuts Time and Costs

for Greater time-saving, more efficient handling and assembly of Waldes Truarc E-rings,* here is an automatic, precision tool. Designed for one-at-a-time repeating action, the Truarc E-ring Dispenser can be easily operated by any assembly worker.
waldes truarc e-rings (sizes 5133-9 to 50 inclusive) are now available packed on stackrods in quantities ranging from 250 to 500 pieces per rod. Stackrods are precision-made, allow re-loading in seconds. No interruptions to continuous flow in assembly.
*Dispensers for Waldes Truarc Crescent Rings (series 5103) also available.

SIMPLE 1, 2,3 ASSEMBLY OPERATION

Truarc applicator is pushed forward and grips a single E-ring.

Applicator withdrawn (new ring automatically feeds into place).

Ring is installed in groove on shaft. No waste time or motion.

RETAINING RINGS

WALDES KOHINOOR, INC., LONG ISLAND CITY I. NEW YORK

Waldes Kohinoor, Inc.

47-16 Austel Place, L. I. C. 1, N. Y.
\square Please send me the new Waldes Truarc E-ring Dispenser brochure.
\square I am also interested in dispensers for Crescent Rings.

NAME
TITLE
COMPANY
BUSINESS ADDRESS
CITY \qquad ZONE _STATE \qquad 025

DIODE FILTERS

(

1403-01 1403-02
1403-03

TRIODE PLATE COUPLERS

VERTICAL INTEGRATOR

1405-01

PENTODE PLATE COUPLERS

1407-01 1407-02
1407-03

AUDIO OUTPUT CIRCUITS

ERIE electronic printed circuits

PERFECTED BY MORE THAN A DECADE OF DEVELOPMENT

. . . OFFER THESE ADVANTAGES

Fewer soldered connections mean less installation time.
Fewer connections mean fewer wiring errors.
Circuit stability is improved through simplification.
Costs for procurement and stock maintenance are considerably reduced.
Space is saved by substituting a single installation for several installations.
Reduced space requirements permit reduced size and weight of complete product.
Other material costs are reduced by smaller size, lighter weight.

ERIE Electronic Printed Circuits achieve miniaturization by bonding the complete or partial circuit to a ceramic base plate, thus combining the work of several capacitors in one installation unit.

Erie began the development of Printed Circuits in 1940, and today they are widely used by manufacturers of electronic products to effect a reduction in size, weight, and cost; and to improve performance. ERIE Electronic Printed Circuits have helped to solve design and production problems in radio and television receivers, hearing aids, military equipment, and many other products employing electronic control. Write for catalog and samples.

in instruments where reliability is imperative

 where other materials fail

To assure maximum service life and accuracy, engineers at Lear, Incorporated, planned to protect their new vertical gyro-mechanism from corrosion by housing it in a completely inert and dehydrated atmosphere.
Sealing the housing, however, proved to be more easily said than done. Despite the most elaborate precautions, solder and flux fumes often penetrated the joint and contaminated the delicate mechanism. Once sealed, it was impossible to reopen the case without loss of the expensive cover and harness.
To both of these problems a simple and ingenious solution was found. A thin O-ring of Silastic molded to fit snugly under the cover flange is used to exclude the
corrosive fumes generated in soldering a metal strip over the entire joint. The Dow Corning silicone rubber O-ring is not damaged by soldering temperatures. And, the gyro-mechanism is just as accessible for repairs as the contents of a hermetically sealed can of coffee. Lear also uses a large ring washer of Silastic at each end of the housing to serve as resilient, shock-absorbing cushions for the apparatus at stratospheric temperatures.
And that's just one of hundreds of examples of how Silastic is used to improve the performance of products ranging from cable to traction motors, from domestic steam irons to aircraft.

For more information about the properties or fabricators of Silastic, mail this coupon today or phone our nearest branch office.

Dow Corning Corporation, Dept. BE-2,Midland, Michr.
Please send me
\square Silastic Facts 10a with new data on properties and applications of all Silastic stocks and pastes.
\square "What's A Silicone?". your new 32 -page booklet on silicone products and applications.
Name Company Address
City \qquad

Anrouncing the ML-6257

- Outside diameter of tubes and rods as small as .062" diameter centerless ground to tolerance of $\pm .0001^{\prime \prime}$.
- Rods free of camber for precision shafts.
- Rods and tubes centerless polished to

5 micro inch RMS finish $\sqrt[5]{ }$.

- Cylindrical parts ground both inside and outside to diameter tolerance of $\pm .0005^{\prime \prime}$ with concentricity of .001" TIR. Sizes up to $81 / 2^{\prime \prime}$ O.D. by $24^{\prime \prime}$ long are available.
- Holes as small as $187^{\prime \prime}$ diameter can be economically lapped to tolerance of $\pm .001$ ".
- Plates and discs up to 50 square inches can be precision ground. Flat parts up to 4 square inch area are ground flat and parallel simultaneously on two sides; flat within $.0002^{\prime \prime}$, parallel within $.0005^{\prime \prime}$, and thickness tolerance $.001^{\prime \prime}$ is practical.
- Parts lapped flat within a few light bands. Special parts have been lapped to $.008^{\prime \prime}$ thickness.

As a rule of thumb: On critical dimensions which lend themselves to grinding, AlsiMag ceramics can be furnished with the accuracy of comparable precision metal parts. AlsiMag ceramics are more wear resistant than steel and, in many designs, can be manufactured to close tolerances at lower cost.

Precision TOLERANCES TOLERA

AVAILABLE IN

CUSTOM MADETECHNICAL CERAMICS

Each year we have added more equipment and gained more skill and experience in grinding AlSiMag
ceramics. We like difficult and complicated problems. If you have a tough one, send it to us. We'll tackle it.

51 ST YEAR OF CERAMIC LEADERSHIP AMERIGAN LAYA GORPORATION

New Materials - New Techniques - New Advantages Features in 4 New IRC Resistors

IRC Type BOC Boron-Carbon $1 / 2$-Watt PRECISTOR Meets All Requirements of MIL-R-10509 Specification

No other non-wire-wound resistor combines the advantages of this all-new Boron-Carbon unit. Type BOC reduces the temperature coefficient of conventional deposited carbon resistors-provides high accuracy and long-time stability replaces high value wire wound precisions at savings in space and cost. You'll find it adaptable to a host of critical circuitry needs - in electronics and avionics, communications, telemetering, computing and service instruments. Send for full details in Catalog Data Bulletin B-6.

Tömptratifurel Coefficient-Parts Por Million

Type BOC conforms to oll requirements of MIL-R-10509. Exposed to a temperature of $65^{\circ} \mathrm{C}$. for one hour, the new BOC shows a resistance chonge of less thon $.2 \%$. High femperature operation with reliability is now possib e, Voltage coefficient is less than 20 parts per million per volt. Load life is outstandigg; on a 500 -hour test at ambient temperazre of $40^{\circ} \mathrm{C}$., resistance change will not exceses 2%.

essential

New IRC Type DCC (Deposited Carbon) Small-Size, High-Stability Resistors

This is the latest small-size addition to IRC's famous line of deposited carbon PRECISTORS. Canservatively rated of $1 / 2$ watt, it combines accuracy and economy-assures high stability, low voltage coefficient, and low capacitive and inductive reactance in high frequency applications. Recommended for:-Metering and voltage divider circuits requi-ing high stability and close tslerance-High frequency circuits demanding accuracy and stability-Other critical circuits in which characteristics of carbon compositions are unsuit. able and wire-wound precisions are too large or expensive. Type DCC meets Signal Corps Specification MIL-R-10509. Complete technical data in Catalog Bulletin B-7.

4New IRC Type WW Precision Wire Wounds Surpass JAN-R-93 Characteristic B Specilications

Here is the most reliable and stable of all wire-wound precisions... by unbiased test! Actually, new Type WW's for surpass JAN-R-93 Characteristic B Speciffations. New winding forms hold more wire for higher resistance values. Now winding rechnique and rigid insulation tests eliminate possibility of shorted turns or winding strains. Now type insulation withstands humidity, assures long life, provides stability and freedom from noise. Now terminations (except in small size WW-10) are rugged lug terminals for solder connection. Full dato in Catolog Bulletin D.3.

	Original Resist	$\begin{gathered} 151 \\ \text { Cycle } \\ \text { Chige } \end{gathered}$	$\begin{gathered} \text { 2nd } \\ \text { Cycle } \\ \% \\ \text { Chige } \end{gathered}$	$\begin{gathered} 31 \mathrm{ld} \\ \mathrm{Cycle} \\ \mathrm{ch} \\ \mathrm{Chge} \end{gathered}$	$\begin{gathered} 4 \text { th } \\ \text { cycle } \\ \% \\ \text { Chige } \end{gathered}$	$\begin{aligned} & \text { Resist. } \\ & \text { at End } \\ & \text { ol } 100 \\ & \text { his load } \end{aligned}$	$\begin{aligned} & \text { Total } \\ & \text { oy } \\ & \text { Cnge } \end{aligned}$	\% Chge 1om Last Temp Cycle 10 End ol $100 \mathrm{hrs.g} \mathrm{load}$ $\%$	$\begin{gathered} \text { Resistan } \\ \text { at End } \\ \text { His Lo } \\ \% \\ \text { no cy } \end{gathered}$	$\begin{aligned} & \text { ce Cnge } \\ & \text { of } 100 \\ & \text { ad only } \\ & \text { cling' } \end{aligned}$
1	100.010	$+04$	$+04$	$+05$	+. 05	100.050	+ 04	-01	100.040	-02
2	100.000	$+.03$	+.04	+ 03	+ 05	100,060	+. 06	+ 01	100000	0
3	100.000	$+01$	+. 02	$+02$	+ 05	100.000	0	+. 05	100050	- 02
4	100.000	$+02$	0	+ 02	+ 02	100.000	0	-. 02	100.040	-01
5	100.010	+ 03	$+04$	+04	+ 05	100,000	0	-05	100,030	-03
6	100,000	0	+ 03	+ 04	+ 04	100.100	$+1$	+. 06	99.980	0
7	100,000	$+04$	+ 05	$+04$	$+04$	100.070	$+07$	$+.03$	100.000	0
8	100.000	$+03$	+. 05	+ 05	+ 05	100.050	+ 05	0	100000	0
9	100,000	+.04	+ 03	+ 05	+ 04	100.010	+ 01	- 03	100050	0
10	100.000	$+.02$	+ 02	$+02$	+ 04	100,010	+ 01	$-.03$	100000	0
11	100.000	0	+01	+01	+ 03	100,000	0	-. 03		

Tested side-by-side with competing resistors, new IRC Type WW's proved superior to all. Severe cycling and 100 -hour load tests resulted in virtually zero changes in resistance. Other stringent tests proved Type WW's high mechanical strength, freedom from shorting, resisto once ta high humidity.

For full information on these products, or assistance in adapting them to any specific application, write IRC. Types BOC and DCC are currently available on short delivery cycles to manufacturers of military equipment only.

Soron-Carbon PRECISTORS - Power Resistors Vollmeter Multipllerte'- Insuloted Composilion Resistors - Low Watlage Wire Wound, . Volume Controls - Vollage Dividers - Procision Wire Wounds. Deposited Corbon PRECISTORS - Uliro-HF ond High Vgtroge Resistors - Insulated Chokes

Mail Coupon Today for Full Details of These Now IRC Resistors International resistance co., 403 N. BROAD ST., PHILADELPHIA 8, PA.

Wherever the Cirouit Sayt-W-

INTERNATIONAL RESISTANCE COMPANY

401 N. Broad Streef, Philadelphia 8 每 Po.
Conodo: Internationag Rusiatañee Ca. Lidi, Toronto, Licenge

Please send me full dato on the following checked items:-
\square Type BOC Boron-Carbon PRECISTORS
\square Type WW Precision Wire Wounds
\square Type DCC Deposised Carbon PRECISTORS
\square Type FS Fuse Resistors
\square Name and Address of Nearest IRC Distributor
NAME
title
COMPANY
ADDRESS
CITY
ZONE
STATE..... .

VOLTAGE REGULATED POWER SUPPLY MODEL 700

The Kepco Model 700 features one regulated voltage supply with excellent regulation, low ripple content and low output impedance.

SPECIFIGATIONS

OUTPUT VOLTAGE DC: 0.350 volts continuously variable.
OUTPUT CURRENT DC: 0.750 milliamperes continuous duty.

REGULATION: In the range 30.350 volts the output voltage variation is less than $1 / 2 \%$ for both line fluctuations from 105-125 volts and load variation from minimum to maximum current.

RIPPLE VOLTAGE: Less than 10 millivolts.
FUSE PROTECTION: Input and output fuses on front panel. Time delay relay is included to protect rectifier tubes.

POWER REQUIREMENTS: $105-125$ volts, $50-60$ cycles.
OUTPUT TERMINATIONS: DC terminals are clearly marked on the front panel. Either positive or negative terminal of the supply may be grounded. DC terminals are isolated from the chassis. A binding post mounted on the front of the panel is available for

FOR NEW POWER SUPPLY CATALOG - WRITE DEPT. \#1
connecting to the chassis. All terminals are also brought out at the back of the chassis.

METERS:

Ammeter: 0-1 ampere, $4^{\prime \prime}$ rectangular. Voltmeter: $0-500$ volts, $4^{\prime \prime}$ rectangular.

PHYSICAL SPECIFICATIONS: Cabinet height $22^{3} \mathbf{4}^{\prime \prime}$, width $2134^{\prime \prime}$, depth $151_{4} 4^{\prime \prime}$. Rack panel height $21^{\prime \prime}$, width $19^{\prime \prime}$, color gray, panel engraved.

CONTROLS: Power on-off switch, H.V. on-off switch, H.V. control.

ADDITIONAL MODELS AVALLABLE IN THE 700 SERIES
VOLTAGE REGULATED POWER SUPPLIES

Volts	Current	Model
0.350	$0-0.75$ Amp.	700
0.350	$0-1.50$ Amp.	710
0.350	$0-2.25$ Amp.	720
0.350	$0-3.00$ Amp.	730
0.600	0.0 .75 Amp.	750
0.600	0.1 .50 Amp.	760
0.600	$0-2.25$ Amp.	770
0.600	$0-3.00$ Amp.	780

KEPCO LABORATORIES, Inc.

131-38 SANFORD AVENUE
FLUSHING 55, NEW YORK

 takes the beating of extreme heat without excessive drift. Quality control starts with exacting selection of quartz and extends through every step of processing.
For example, slicing of the crystal is guided by X-ray checks to maintain highest accuracy. Correct angular relationships are strictly maintained. After lapping, X-ray is again used to detect any deviation from precision standards. And finally, after sealing, tests are made again - tests far more punishing than conditions found in actual use.

That's why STABILITY is something you can count on in your Midland crystal - and why Midland quality will give you years of dependable service in every respect.

Whatever your crystal need, conventional or highly specialized...

When

MANUFACTURING CO., INC. 3155 Fiberglas Road Kansas City, Kansas

How SPEED NUT Coil Form Fasteners

TINNERMAN Spead Not Ganings Gtopiles Transmit B-way aduantage

to Weather-Reporting RADIOSONDE

....as told by FRIEZ INSTRUMENT DIVISION of Bendix Aviation Corp., Baltimore, Md.

FRIEZ engineers faced three basic requirements in specifying fasteners for the AN/AMT-4A Radiosonde. First, fasteners had to be light-weight, since the device is set free and carried to upper altitudes by balloon. Second, this equipment is expendable, making economy a prime factor. And third, because the Radiosonde transmits vital weather data back to the ground, its precise nature demands rigid, vibration-resistant fasteners for proper operation. Tinnerman Speed Nut Coil Form fasteners were selected by Friez after checking many various attaching methods. They more than met the 3 -count performance requirement, giving added savingsin materials and handling over elaborate machined types.

No matter what your fastening problem, you can rely on a Tinnerman Fastening Analysis to lead the way to production savings. See your Tinnerman representative for details on this free service for your products. And, write today for your copy of Speed Nut Savings Stories, a booklet of amazing savings to industry: Tinnerman Products, Inc. Department 12, Box 6688, Cleveland 1, Ohio.

In Canada: Dominion Fasteners Ltd., Hamilton, Ontario. In Great Britain: Simmonds Aerocessories, Ltd, Treforest, Wales. In France: Aerocessoires Simmonds, S. A. -7 rue Henri Barbusse, Levallois (Seine).

LIMIT SWITCHES - Even under severe service, this double-break switch will stand up well. Its 2 independent circuits are alternately held open and closed solely by small Carboloy permanent magnets. The magnets assure positive
contacts, cleaner breaks without strain or appreciable wear on operating parts, plus a higher degree of accuracy within limits. Also cut down costs of materials, assembly. A typical case of product improvement with Carboloy magnets.

How you can improve controls size, weight, cost with

[^0]
OUTSTANDING ADVANTAGES OF CARBOLOY PERMANENT MAGNETS

1 Cool-generate no heat
2 Require no electrical energy
3 Cost nothing to operate
4 Eliminate coils, windings, wiring, etc.
5 Need no maintenance - no coils to burn out, no slip rings to clean or replace, etc.
6 Simplify mechanical assemblies exert strong tractive force for holding, lifting and separating devices that eliminates component parts, makes product design and fabrication simple
7 Save space-great magnetic strength in small sizes
8 Powerful - and power is constant
9 Combine electrical and mechanical features-transform electrical energy into mechanical motion; mechanical motion into electrical energy
10 No power failures ever
11 Resist moisture - no coils to collect dampness
12 Give uninterrupted operation
13 Create savings - often eliminate costly, power-supplying parts
14 Simple - no operating parts
15 Reduce weight, product size
16 Supply a permanent source of energy

PLUGGING CONTROLS - New device for brakeless stopping of motors features Carboloy magnets. Eddy-current disk rotates in magnetic assembly, creates torque. As motor's speed nears zero with power reversed, torque interrupts circuit, cuts stopping time from 20 seconds to 1 second.

CIRCUIT BREAKERS - Here, a Carboloy magnet assembly simplifies trip element. It eliminates a coil and polarizing connection ... makes possible reverse-current tripping independent of system voltage. Breaker weighs less. costs less to build, eliminates nuisance trips in circuits.

SNAP SWITCHES - Three reasons Minne-apolis-Honeywell uses a Carboloy permanent magnet in this fan control and highlimit switch: 1) It occupies a small space and gives a higher degree of magnetic energy per unit per space. 2). It offers higher stability. 3) The cost is low.

. . .trim down their Carboloy Permanent Magnets

Here are 5 compact controls that now work better, weigh less and cost less to build, thanks to engineering foresight and Carboloy permanent magnets.

Do you manufacture controls or similar devices? If so, chances are excellent that you can profit from Carboloy permanent magnets, too.
For these magnets are simple, self-containing sources of energy that never fail. Powerful in small sizes, they need no external power supply, never require maintenance. They reduce fabrication costs by eliminating wires, coils and operating parts. They let you simplify designs.
build lighter, smaller, finer-performing products at substantial savings.

Check the controls on these pages. Then check Carboloy magnet engineers. These experts can likely tell you in a hurry just where and how a magnetic assembly can help you. And, of course, they're at your service whenever you want a hand in magnet design and application.

Look to Carboloy production lines, too, for uniform, high-quality, low-cost magnets for control equipment-all sizes, all shapes; cast or sintered to your specifications. Mail coupon for free Magnet Design Manual and Standard Stock Catalog.

MAIL COUPON TODAY

CARBOLOY
 OEPARTMENT OF GENERAL ELECTRIC COMPANY

11139 E. 8 Mile Ave., Detroit 32, Michigan
Plants at Detroit, Michigan; Edmore, Michigan
and Schenectady, New York
"Carboloy" is the registered trademark for the products of Carboloy Department of General Electric Company

CARBOLOY Department of General Electric Company

 11139 E. 8 Mile Ave., Detroit 32, MichiganSirs:
Rush me, without cost or obligation, copies of Permanent Magnet Design Manual PM-101 and Standard Stack Catalog PM-100.

```
NAME POSITION
```

COMPANY
adoress

[^1]General features of 1189,30 test jack: Silverplated, heat-freated beryllium copper contact is made in one piece with large terminal end for easy soldering. Terminal end is tindipped. Brass, nickel-plated shell and nut.

Metal shell insures firm, dependable mounting. Phosphor bronze lock washer is nickel-plated. Nylon insulator available in different colors: White, black, red, green, brown, orange, blue.
$A L S O$ AVAILABLE

119052. Same as 118930 but with special milled end with elongated hole for wiring.

118984. Feed through type, similar to 118930 but with one-piece brass terminal stud, tinplated.

Specialises in

ELECTRICAL ASSEMBLIES,

RADIO AND AUTOMOTIVES

wastinc
 TECHNIC

Turn over your special fastening problems to specialists . . . trained fastener engineers who have been through the trial-and-ermor stage in this highly specialized field and can free ycur own engineering staff for finished-product engineering.

It pays. We've proved it . . . for leading manufacturers in the electronics industry . . . and in the automotive, aviation, appliance and furniture industries, too.

United-Carr and its subsidiaries have had years of experience in the design and production of tailor-made fasteners and allied devices. Each division of the company provides a reservo:r of special knowledge for the others. The result: an integratedorganization that makes use of every improvement in materials and methods to
 produce fasteners that spzed assembly, cut costs and, in many cases, actually improve product performance.

With complete facilities in our own plants for the volume production of special metal stampings and for the assembly of metal to plastic and ceramic components, we are in a posi-:on tc supply practically any fastening need.

Before bidding on goternneent contracts requiring fasteners or special fastening deviecs, conzelt your nearest UnitedCarr field representative.

UNITED-GARR

FASTENERS

LABORATORY TEST EQUIPMENT

Accuracy
 Dependability The COLLINS 51J

Communications Receiver

The Collins 51J Communications Receiver in addition to its outstanding performance in the communications field, is being widely used in industrial laboratories as a sensitive and accurate measuring instrument and as a spectrum analyzer. Write for complete specifications and details today.

CONDENSED SPECIFICATIONS

FREQUENCY RANGE:
.54 to 30.5 megacycles.

TYPE OF CIRCUIT:

Double Conversion Superheterodyne.
CALIBRATION:
Direct reading in megacycles and kilocycles. One turn of main tuning dial covers 100 kilocycles on all bands.

TUNING:

Linear, divided into $30-$ one mc bands.
FREQUENCY STABILITY:
Overall stability within 1 kc under normal operating conditions.

SELECTIVITY:

5.5 to 6.5 kilocycles wide at 6 db down. 17 to 20 kilocycles wide at 60 db down.

AUDIO OUTPUT:
4 and 600 ohms impedance. $11 / 2$ watts at 1000 cps with less than 15% distortion overall. " S " meter may be switched to read audio output.
RF INPUT:
High impedance single-ended. Break-in relay mounted internally. Antenna trimmer will resonate input circuit when used with any normal antenna.

POWER REQUIREMENTS:

85 watts $45 / 70 \mathrm{cDs}, 115$ volts or 230 volts by reconnection on power transformer.

DIMENSIONS:

Panel-101/2 inches high, 19 inches wide, notched for rack mounting. Optional nietal cabinet - $211 / 8$ inches wide, $121 / 4$ inches high and $131 / 8$ inches deep. Speaker available in metal cabinet 15 inches wide, $105 / 8$ inches high and $91 / 8$ inches deep.

For excellence in radio communications equipment, it's . . .

WHATEVER YOUR FUSE NEEDS this oile sourge saves tine aid trouble

BUSS fuses for TELEVISION...RADIO...RADAR INSTRUMENTS...CONIROLS...AVIONICS

From fractional amperage types to huge industrial fuses, BUSS has specialized in a complete fuse line for the past 39 years. Whatever your circuit protection problem, you can choose from this complete line not only with convenience but with confidence in the unequalled BUSS reputation for quality and dependability.

Evidence of BUSS dependability is the rigid electronic testing every fuse must undergo before leaving the factory. Ultra-sensitive electronic devices check it to exacting standards of construction, calibration and physical dimension.

When you install BUSS Fuses you can forget about fuse troubles yet you can be certain of positive protection.

Turn To BUSS Engineers With Your Fuse Problems.

They will be glad to assist you in selecting the fuse to do the job best ... and if possible a fuse that will be available from local wholesaler's stocks.

USE THE HANDY COUPON-It's just
good business to rely on BUSS FUSES
...Plus
A COMPIETE LINE OF FUSE CLIPS, BLOCKS AND HOLDERS

Cam projectiles be "seen" approaching and their flight backtracked to locate the mortar or gin that fires them? This problem was simply reconciled with special computing equipment designed to be built right into the gun. The engineering of such a computer, the handling of such ballistic data, all falls into the pattern of previous Forl achievements.

This is typical of the problems that Ford has solved since 1915. For from the vast engineering and production facilitics of the Ford Instrument Company, come the mechanical, hydraulic electro-mechanical, magnetic and electronic instruments that bring us our "tomorrow" today. Control problems of both Industry and the Military are Ford specialties.

You can see why a job with Ford Instrument Company offers o challenge to young engineers. If you qualify, there may be a spot for you in automatic control development al Ford. Write for illustrated brochure

Specifically designed and built to performance standards far beyond present concepts of potentiometer design, Gangrot
Instrument-Quality potentiometers are ready to solve multiple potentiometer problems.
Rugged, aluminum-housed units with low torque, high performance, and long-life accuracy, Gangrots are presented in two sizes to fill all requirements. gangrot extras include solid, stainless steel shafts, toroidally wound coils for up to 360° windings, shielded ball bearings, syncro or screw type mounting, and adaptability to non-linear functional windings. Built without any bulky external bolts, clamps or rings, the gangrots lend themselves to an unsurpassed versatility of design applications.

Self-locking screwdriver-actualed phasing adjustmenl. Each section easily adjusted 10 maximum resolution (one wire) in $\pm 11^{\circ}$ range. $21 / 2^{\prime \prime}$ diameter; $1 / 4^{\prime \prime}$ shaft; 2,000 10 300.000 ohms per section; 4 watts @ $25^{\circ} \mathrm{C}_{i}$
1 to 6 sections; body length $4.8^{\prime \prime}$ max.

SPECIFICATIONS

resistance: 2,000 to 300,000 ohms $/$ section ($\pm 5 \%$).
LINEARITr: $\pm 0.3 \%$ of total resistance.
power rating: 4 watts per section at $+25^{\circ} \mathrm{C}$ ambient.
electrical contact angle: 356° standard. (Any winding angle up to 360° on order).
MECHANICAL SHAFT ROTATION: 360° continuous.
rorque: Starting torque for 6 -section unit: 1.202 .-in. femperature rating: Operating range from $-55^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$ ambient.
acceleration: Will function during acceleration of 50G, applied along any axis.
WEIGHT: 402 /section.

MODEL 85193
Compact-rugged-accurate. A smaller version of the GANGPOT without the phasing feature. Diameter $11 /{ }^{\prime \prime} ; 1 / 4$ " shafi; aluminum housing; 500 to 70,000 ohms per section; 1 to 6 sections; body length 3.5" max.; dual mounting; linear or non-linear windings up to 360° availoble.

SPECIFICATIONS

Resistance: 500 to 70,000 ohms $/$ section ($\pm 5 \%$). LINEARITYi $\pm 0.5 \%$ of total resistance.
power rainmg: 2 watts per section at $+25^{\circ} \mathrm{C}$ ambient. electrical contact angles 354° standard (Any winding up to 360° on order), with the brush non- shorting. MECHANICAL SHAFT ROTATION: 360° continuous. rorques Starting: less than 0.602 . in. for a 6 -section unit. temperature rating: Operating range from $-54^{\circ} \mathrm{C}$ to $+71^{\circ} \mathrm{C}$ ambient.
accelerations Will function during acceleration of 50G, applied along any axis.
welght: 1 oz. per section.
For modifications of standard specifications, please forward requirements.

For catalog and engineering data on these and other fine instrumerts write:

Gicnnini

INSTRUMENT QUALITY POTENTIOMETERS
G. M. GIANNINI \& CO. INC. PASADENA T, CALIFORNIA-EAST ORANGE, NEW JERSEY

Uniuwe PHEIPS DODOEf developmment DRASTICALLY CUTS

FAST WIRE-TO-WIRE BONDING INTO RIGID COIL.
REDUCES FORMING AND ASSEMBLY OPERATIONS.
FAR FEWER STEPS IN WINDING TYPICAL TV YOKE COIL.

MAKES POSSIBLE UNUSUAL SHAPE COILS.

"Bobbin-less" coil

"Dt takes the lest

$$
\begin{gathered}
\text { PHELPS DODEF FIPPER PRODULTS } \\
\substack{\text { corporation }}
\end{gathered}
$$

COIL WINDING COSTS!

*Bondeze is a Phelps Dodge Trade Mark

to make the best!"

INCA MANUFACTURING DIVISION

FORT WAYNE, INDIANA

Name your needs in terminal boards ... we'll meet them accurately

The rigid specifications of government agencies and the armed forces need pose no problem to you. C.T.C. is in an excellent position to handle government sub-contracts for electronic parts and assemblies.

Our Custom Engineering Service is constantly supplying special terminal boards to the top names in electronics. These boards are built to severe government specifications, are fabricated of certified materials to fit the job. Among the specifications involved are: MIL-P-3115A, MIL-P-15037, MIL-P-15035A, MIL-P-15047, MIL-P-997A.

Boards can be made of cloth, paper, nylon or glass laminates (phenolic, melamine or silicone resin), and can be lacquered or varnished to specifications: JAN-C-173 and JAN-T-152. Lettering
and numbering is done by rubber stamping, silk screening, hot stamping, engraving. Inks used in rubber stamping contain anti-fungus and fluorescent additives.

Terminals, feed-throughs, mounting hardware and all other terminal board fixtures meet all applicable government specifications.

Standard "All Set" Boards, scribed for easy separation, for the assembly line and laboratory are
available in cotton fabric phenolic per specification MIL-P-15035A and in nylon phenolic per MIL-P15047A.

For complete information write: Cambridge Thermionic Corporation, 437 Concord Avenue, Cambridge 38, Mass. West Coast manufacturers, contact: E. V. Roberts, 5068 W. Washington Blvd., Los Angeles 16, or 988 Market St., San Francisco, Cal.
custom or standard.. the guaranteed components U

Tlwo 2L-indi Netal Cone Pisture Tubes lunoonced by Tlessingghouse

21AP4 and 21MP4 now available for immediate delivery

 Manufacturers faced with problenis of handling, cost and uniformity in large picture tubes now may order Westinghouse 21-Inch RELIA. $\mathrm{TRON}_{\text {th }}$ Metal Cone Picture Tubes for immediate delivery. The new tubes -almost $331 / 3 \%$ lighter in weightare manufactured under the most rigid quality control system in the country. Superior face plate quality assures greater freedom from blemishes and glass imperfections. Uniform face plate thickness greatly reduces optical distortion over the viewing area. The etched glass of the face plate eliminates glare from external light sources.

Improved Gun Employs Glass Beads. Westinghouse makes the new metal conce electrostatic focus tube with glassbeaded assembly. This assures accurate element spacing within close tolerances to improve spot size and pieture uniformity.

The 2l-Inch RELIATRON Picture Tulies feature still another important improvement. The face plate is sealed to the metal cone using an intermediate glass-enamel frit.

PRODUCTION SAVINGS

The 2l-Inch RELIATRON Picture Tubes introduce new economies throughout TV set production. Their lighter weight cuts shipping costs. The 2 MMP 4 tube is electrostatically focused, requiring no focusing coil or focusing magnet. The 21AP4 is designed for magnetically focused operation.
Metal cone tubes give increased mechanical strength, and because of their light weight are easier to handle and assemble in TV receivers.

BETTER PICTURES

Metal cone picture tubes permit the use of spherical face plates of uniform thickness that allow receiver manufacturers to use standard available deflection components that produce pictures of consistently high quality.
Employment of the Westinghouse 21. Inch Reliatron Metal Cone Picture Tubes enables you to meet the growing demand for larger screen TV receivers, to deliver a better picture, and at the same time, to realize important savings in your production operations.
The new RELIATRON metal cone tubes now are available in quantities which permit immediate delivery of production-size orders. For complete details, write Dept. A-202.

EXPANDIMG Proouction in Toroids a Coils

At every management meeting in Burnell \& Company there is an unseen but highly respected visitor. He is the spectre of all our customers and his opinions carry weight. Recently he suggested that in addition to our other expansion measures that we mast find a way to improve deliveries for emergency and special sample orders. Our solution is certainly not original but no less effective.

Burnell \& Company's new sample department has been able to produce audio filters from proverbial 'scratch' to the customer's waiting hands in as little as ten days!
Frankly, this cannot always be accomplished but our average has been ranging between three to four weeks for emergency samples and four to six weeks for regular prototypes instead of the former twelve weeks of the presample department days.
Adding this to our new winding department and our new testing and finishing departments the sum total has been a still better product at a better delivery than ever before.
it's the
Extra Factor of Assurance that counts...

AMP CONTROLLED WIRE TERMINATION

All the gadgets or combinction tools in the world will not insure the correct installation of ycur wire terminations day in, day out, on the line. It's the extra fac or of assurance that counts! AMP tools and terminals are made to use together. They're made so that you can be sure that you have a correctly installed termination. AMP application tools and dies and automotic machines are so designed that at the point of application you can control accuracy and uniformity within $\pm .003^{\prime \prime}$. Remember: In wire termination there is no short cut to precision and foolproof production!

Shown below: AMP CERTI-CRIMP* hand tools - will not release until proper crimping pressure has been reached. (Below right) the AMP INSPECTO-MASTER* gives continuous inspection at point of terminal application. Write to AMP for information about these and other recent developments in wire termination.

YOU CAN
COUNT ON AMP

AIRCRAFT-MARINE PRODUCTS, INC. 2100 Paxton Street, Harrisburg, Pa.

Potter Instrument Company, Inc.

says Jack Leight, Sales Engineer, Ward Leonard Electric Company, Mount Vernon, New York

The "Flying Typewriter" is a revolutionary new highspeed electronic printer for data handling, communications, and computing. Developed by the Potter Instrument Company, Inc., Great Neck, New York, it is capable of printing 24,000 characters a minute "on the fly" from a continuously revolving type wheel.

Coupled to an electronic storage or memory unit, the machine first interprets, then prints in familiar typed lines, information taken in coded form from magnetic tape and punched cards or transmitted over narrow channel radio link, telephone and telegraph lines. The entire alphabet, numerals, punctuation and other special symbols are used in printing 300 lines per minute.

Such speed and accuracy in a machine require reliable, rugged electric components. That is why the Potter Instrument Company uses Ward Leonard vitrohm resistors and relays in the electronic counters for the "Flying Typewriter" as well as in many other types of high-speed electronic counters.

The trouble-free operation of Ward Leonard controls also eliminates many costly and time-consuming repairs.

Ward Leonard is always ready to put its staff of application engineers to work with you.

Special alloy resistance wire is being wound on Vitrohm cores by Caroline Jervisa, for 17 years an emplioyee of the company.

Skilled operators spot weld terminals to Vitrohm resistor ceramic cores. Welding assures permanent anchorage to the cores.

Long service life of VITROHM resistors results from unified manufacture, uniform quality, matched thermal characteristics

vitrohm resistors stay on the job under the most adverse operating conditions such as those to which they are subjected in electronic counters where less carefully made resistors would break down.

Thermal shock, vibration, corrosive atmosphere, overloads, even prolonged exposure to humidity and electrolysis will not affect their performance. All

O.D. and concentricity of finished ceramic cares is checked by Minna M. Henderson, who has had 12 years experience with Ward Leonard.
parts are uniform in quality, balanced in respect 10 thermal coefficient of expansion.

All Ward Leonard controls are made to exacting specifications, are guaranteed to give dependable service.

Consult Ward Leonard on their complete line of resistors, relays, theostats, and other electric controls to meet your special needs.

Prior to firing, tubular ceramic cores are being cut to exact size by Ann Trotta. A continuous check is made to maintain close dimensional tolerances.

DISTRICT OFFICES AND REPRESENTATIVES

Atlanta 5, Georgla	C. B. Rogers and Associates
Baltimere 18 , Md.	Durling Electric Co.
Charlotte I, N. C.	Jomes L. Highsmith \& Co.
Chicago 4, Illinais	Ward Leonard Electric Co.
Cincinnati 2, Ohio	Sheldon Storer and Assoc.
Cleveland 14, Ohio	The Ambos-Jones $\mathrm{Co}^{\text {c }}$
Corpus Christl, Texas	Brance-Krachy Co., Inc.
Denver 2, Colorado	Mark G. Mueller
Detroit 21, Michigan	Jesse W. Eakins Co.
Hartford 6, Conn.	Ward Leonard Electric Co.
Houston 1, Texas	Brance-Krachy Co., Inc.
Kansas City 2, Mo.	Maury E. Bettis Co.
Knoxville, Tennessee	John G. Petiyjohn
Los Angeles 13, Calif.	Ward Leonard Electric Co.
Memphis 3, Tenn.	E. E. Torkell
MInneapolis 5, Minn.	Marvin H. Kirkeby
Newark 2, N. J.	Ward Leonard Electric Ca.
New Orleans 13, La.	Electron Engineering Co.
Philadelphia 2, Pa.	Ward Leonard Electric Ca.
Pittsburgh 16, Pa.	W. A. Bitmer
Roanoke, Virginia	Lynn H. Morris
Rochester 7, N. Y.	Ward Leonard Electric Co.
\$t. Louis 10, Mo.	Ward Leonard Electric Co.
Salt Lake City 1, Utah	Leonard M. Stusser
San Antonlo, Texas	Brance-Krachy Co., Inc.
San Francisco 3, Calif.	L. F. Church CO_{0}.
Seattle 4, Wash.	Northwestern Agencies, inc.
Tucson, Arizona	Central Station Equipment Co.

CANADA

Edmonton, Alta.	D. M. Fraser, Ltd.
Halifax, M. S.	D. M. Fraser, Ltd.
Montreal 25, P. Q.	D. M. Fraser, Ltd.
Toronto 1, Ont.	D. M. Fraser, Lid.
Vancouver, B. C.	D. M. Fraser, Lid.
WInnipeg, Man.	D. M. Fraser, Ltd.

EXPORT

New York 4, N. Y. Ad. Auriema, Inc. 2

NEW LOW COST-WIDER RANGE

BATTERY OPERATION eliminates expensive power supply, improves accuracy and stability by removing variables of line voltage and power supply.
1000 TO 0.0001 mm HG READINGS. Wider range than previous models. Full scale deflections at $1000,100,10,1,0.1$ and .01 mm HG absolute. All scales linear.
QUICK START. Only a few seconds warm-up time required. Convenient "on-off" operation saves batteries. Special switch permits instant check of battery condition on meter.
PERMANENT ACCURACY of $\pm 2 \%$ full scale. Long half-life ionization source insures permanent maintenance of original factory calibration.
INSTANT RESPONSE, Tracks pressure fluctuations with negligible time lag.

SMALL VOLUME. Net addition to your vacuum system about 50 cc .

SMALL, LIGHT, PORTABLE. As convenient to use as it is accurate and dependable. Write for more information.

National Research
Corporation
EQUIPMENT DIVISION
Seventy Memorial Drive, Cambridge, Massachusetts

Special alloy resistance wire is being wound on Vitrohm cores by Caroline Jervisa, for 17 years an employee of the company.

Skilled operators spot weld terminals to Vitrohm resistor ceramic cores. Welding assures permanent anchorage to the cores.

Long service life of VITROHM resistors

 results from unified manufacture, uniform quality, matched thermal characteristicsvitrohm resistors stay on the job under the most adverse operating conditions such as those to which they are subjected in electronic counters where less carefully made resistors would break down.

Thermal shock, vibration, corrosive atmosphere, overloads, even prolonged exposure to humidity and electrolysis will not affect their performance. All

O.D. and concentricity of finished ceramic cores is checked by Minna M. Henderson, who has had 12 years experience with Ward Leonard.
parts are uniform in quality, balanced in respect to thermal coefficient of expansion.

All Ward Leonard controls are made to exacting specifications, are guaranteed to give dependable service.

Consult Ward Leonard on their complete line of resistors, relays, rheostats, and other electric controls to meet your special needs.

Prior to firing, tubular ceramic cores are being cut to exact size by Ann Trotta. A continuous check is made to maintain close dimensional tolerances.

DISTRICT OFFICES AND REPRESENTATIVES

Atlanta 5, Georgla
Baltimore 18, Md. Charlotte I, N. C. Chicago 4, illinols Cincinnati 2, Ohlo

Cleveland 14, Ohio
Corpus Christl, Texas Denver 2, Colorado
Defroit 21, Michigan Hartford 6, Conn. Houston I, Texas Kansas City 2, Mo.

Knoxvilile, Tennessee

Los Angeles 13, Calif.
Memphis 3, Tenn.
Minneapolis 5, Minn.
Newark 2, N. J.
New Orleans 13, La.
Philadelphia 2, Pa. Pittsburgh 16, Pa.
Roanoke, Virginia
Rochester 7, N. Y.
St. Louls 10, Mo.
Salt Lake City 1 , Utah
San Anfonlo, Texas San Francisco 3, Calif.

Seattle 4, Wash. Tucson, Arizona
C. B. Rogers and Associatas Durling Electris Co.
Jomes L. Highsmith \& Co.
Ward Leonard Electric Co. Sheidon Storer and Assoc.

The Ambos-Jones Co.
Brance-Krachy Co., Inc.
Mark G. Muelles
Jesse W. Eakins Co.
Ward Leonard Electric Co.
Brance-Krachy Co., Inc.
Maury E. Bettis Co.
John G. Pentyiohn
Ward Leonard Electric Co.
E. E. Torkell

Marvin H. Kirkeby
Ward Leonard Electric Ca.
Electron Engineering Co. 2
Ward Leonard Electric Co.
W. A. Bittner

Lynn H. Morris
Ward Leonord Electric Co.
Word Leonard Electric Co.
Leonard M. Slusser
Brance-Krachy Co., Inc.
L. F. Church Co.

Northwestern Agencies, Inc.
Central Station Equipment Co.

CANADA

Edmonton, Alta.	D. M. Fraser, Ltd.
Hailfax, N. S.	D. M. Fraser, Ltd.
Montreal 25, P. Q.	D. M. Fraser, Ltd.
Torante I, Ont.	D. M. Fraser, Lid.
Vancouver, B. C.	D. M. Fraser, Ltd.
Winnipeg, Man.	D. M. Fraser, Ltd.

EXPORT

New York 4, N. Y. \mid Ad. Auriema, Inc.

NEW LOW COST-WIDER RANGE

BATTERY OPERATION eliminates expensive power supply, improves accuracy and stability by removing variables of line voltage and power supply.
1000 TO 0.0001 mm HG READINGS. Wider range than previous models. Full scale deflections at $1000,100,10,1,0.1$ and .01 mm HG absolute. All scales linear.
QUICK START. Only a few seconds warm-up time required. Convenient "on-off" operation saves batteries. Special switch permits instant check of battery condition on meter.
PERMANENT ACCURACY of $\pm 2 \%$ full scale. Long half-life ionization source insures permanent maintenance of original factory calibration.
INSTANT RESPONSE. Tracks pressure fluctuations with negligible time lag.

SMALL VOLUME. Net addition to your vacuum system about 50 cc .
SMALL, LIGHT, PORTABLE. As convenient to use as it is accurate and dependable. Write for more information.

Flying Saucers?

Frankly we don't know if they're fact or fiction . . . but if they are fact it wouldn't surprise us a bit to learn that some extraterrestrial manufacturer has incorporated Seletron Selenium Rectifiers and R. R. Co. Germanium Diodes into the design.

That's because-as pioneers in the field of electronic develop-ment-we've had our hand in some of the most difficult projects and met some of the stiffest requirements ever cooked up! Making drawing board dreams come true are daily chores at Radio Receptor Co.!

GR GERMANIUM DIODES

- Seletronl|

Radio Receptor's new Germanium Diodes feature polarity at a glance combined with simplicity of construction and sound design principles. The tapered shape speeds. assembly because operators can see at a glance the correct direction of assembly. Users are enthusiastic over the quality of the product which is currently being used in walkie-talkies, computers, TV sets, tuners and other electronic applications.

SELENIUM RECTIFIERS

Seletron Selenium Rectifiers, in both miniature and industrial types, are in constant demand by an increasingly large number of engineers throughout the world because they are completely dependable under the most grueling conditions. Years of experience have given Radio Receptor Co . a deep insight into the idiosyncrasies of rectification.

Our Germanium Diodes and Seletron Selenium Rectifiers may hold the answer to many of your problems. Radio Receptor Engineers will be glad to study your requirements and submit their recommendations on both of these products.

Germanium Transistors available in limited quantities.

Seletron and Germanium Division

बR Since 1922 in Radio and Electronics बR
SALES OEPT: 251 West 19th Street, New York 11, N. Y. - FACTORY: 84 North 9th Street, Brooklyn 11, N. Y.

Solve your hermetic seal problems with this expanded line of rugged

 GENERAL CERAMICS- EASE OF ASSEMBLY
- SUPERIOR STRENGTH
- NON-DETERIORATION
© PERMANENT SEALING - RESISTANCE TO HEAT - EXTREMELY LOW-LOSS

- General Ceramics Solder-Seal Terminals are available in a range of sizes and shapes capable of meeting practically any requirement. Solder-Seal Terminals are easily soft-soldered to closures and effect a
permanent, positive hermetic seal that is virtually immune to mechanical or thermal shock. There are no rubber or plastic gaskets to age or deteriorate. For complete information call, wire or write today.

CERAMICS and STEATITE CORP.

GENERAL OFFICES and PLANT: KEASBEY, NEW JERSEY

COMPLETE CIVILIAN LINE

Exceptionally good delivery cycle on civilian orders due to tremendous mass production facilities.

NEW HIGH QUALITY MINIATURIZED "DIME-SIZE" CIVILIAN CONTROLPerformance fally Equals larger Iypes.
TYPE 70, 3/4" diameter variable composition resistor. Wortoge rating: .3 watt for resistonses through 10,000 ahms, 2 watt with 350 volts maximum across end erminals for resistances over 10,000 ohmns. Also available in concentric shaft iandem construc. tion C45-70 as shown above.

 mum across end terminals for resistances over 25,000 ohms. Available with or without illustrated attached switch and in concentric shaff tandem construction C2-35 as shown obove.

TYPE GC-45, 15/16" diameter variable composition resistor. Wattoge ratinga 1/2 watt for resistances through 10,000 ohms, $1 / 3$ wott for resistonces over 10,000 ohms through 100,000 ohms, $1 / 4$ watt with 500 volts moximum across ond terminals for resistances over 100,000 ohms. Available with or without illustrated aftached switch and in concentric shoft tandem construction C2-45 as shown obove.

IYPE GC-35, $11 / \mathrm{s}^{\prime \prime}$ diamoter variable composition resistor. Wattage rating: $3 / 4$ wall for resistances through 10,000 ohms, $2 / 3$ watt for resistances over 10,000 ohms through 25,000 ohms, $1 / 2$ watl with 500 volts maxi-

TYPE GC-252, 2 waft, $117 / 6 f^{\prime \prime}$ diameter variable wirewound resistor. Available with or without illustrated attached switch ond in concentric thaft tandem construction C2-252 as shawn abave.

TYPE ©2-25
TYPE C2-252

TYPE GC-25, 4 watt, $117 / 32^{\prime \prime}$ diameter variable wirewound resistor. Available with or without Ilustrated aftached switch and in concentric shoff tandem construction $=2.25$ as shown abova.

Typical concentric shaff landem with panel and rear sections operating separately from concentric shofts (TYPE C45-70 ILLUSTRATED). Similar construction gvailable for all military resistors.

REPRESENTATIVES
Henry E. Sanders mechachy side Upper Darby, Penna.
 W. S. Harmon Company

John A. Green Company Shn A. Green Company 6815
Dalias 9 , Texas

IN CANAOA C. C. Mejeditis Co.

SOUTH AMERICA Jose Luis Pontat Buenos Aires, Argenting Montevideo, Uruguay Sao Paulo, Brazil OTHER EXPORT Sywan Ginsbury
8 West
doth Stree 8 West 40th Stieet.
New York $18, \mathrm{~N} . \mathrm{Y}$.

NEW 38-PAGE ILIUSTRATED CATALOG-
Describes Electricol and Mechanical characteristics, Special Features and Constructions of a complete line of varioble resistors for military and civilian use. Includes dimensional drowings of each resistor. Write today for yaur copy.

TYPE 45, (3AN-R:94, TYpe RV2) 1/4 wolf, 15/16" difametor vorioble composition resistor. Also available with other special milisary features not covered by JAN-R. 94 including concentric shaff tandem construction. Alfached switch can be supplied.

TYPE $35,9 \mathrm{SAN}-\mathrm{R}-94$, Type RV3) $1 / 2$ wall, $11 / 8^{\prime \prime}$ diamefer varioble tomposition resistor. Also ovailable with othor special milifary teatures not covered by JAN-R-94 including conceniric shaft tandem construction. Attached switch can be supplied.

IYPE 257,(JAN-R2-19, Type RA20) 2 wall, $17 / 64^{\prime \prime}$ diameler variable wirewound resistor. Also avoilobler with other special military features not covered by SAN.R. 19 includ. ing roncentric shaft tondem construction. Atroched switch can bo supplied.

TYPE 25, (IAN- W-19, TYBe RA30) (May alsobe used os Iype RA2S) 4 watl. $117 / 32^{\prime \prime}$ diameter varioble wirewound resistor: Also ovoiloble with other special military features nol copered by JAN R R 19 inctuding concentric shaft fondem construction. Aftached switch ede be supplied.

TYPE 65, (miniaturized)
$1 / 2$ watt $70^{\circ} \mathrm{C}, 3 / 4^{\prime \prime}$ diameter miniafurized variable composition resistor.

TYPE 90
1 wolt $70^{\circ} \mathrm{C}, 15 / 16^{\prime \prime}$ diameler varioble compesitian resistor. Attached switch con be supplied. Also avail. able in concentric shaft tandem construction.

 2 walt $70^{\circ} \mathrm{C}, 11 / 8^{\prime \prime}$ diamefer variable sempesition resisfor. Also avallable with other special miltrary foatures not covered by JAN-R-94 including concentric shaft tondem construction. Atrached switch can be supplied.

See the complete CTS military and eivilion lines of variable resistors af the

IRE SHOW

Grond Central Palace, New York City MARCH 23-26, 1953

BOOTH 4-608

UENPRECEDENTED PERFORMANCE CHARACTERISTICS

Spocially dosigned for milifary communications equipment subject to extreme remperature and humidity ranges. $-35^{\circ} \mathrm{C}$ ta $+150^{\circ} \mathrm{C}$....artility to saturation.

GHIGAGO TELEPHONE SUPPLY

 STAINLESS STEEL FASTENINGS in large or small quantities?Greatly expanded production capacity PLUS a tremendous inventory of IN STOCK items gives you quick-to-IMMEDIATE just a few samples:

ONLY THE LFE 401 OSCILLOSCOPE

 Offers all theseImportant Features

LINEARITY OF VERTICAL

DEFLECTION The vertical amplifier provides up to 2.5 inches positive or negative uni-polar deflection without serious compression; at 3 inches, the compression is approximately 15%. The accompanying photographs illustrate transient response and linearity of deflection.

HIGH SENSITIVITY AND WIDE FREQUENCY RESPONSE OF Y-AXIS AMPLIFIER The vertical amplifier of the 401 has been designed to provide uniform response and high sensitivity from D.C. The accompanying amplifier response curve shows the output down 3 db . at 10 Mc . and 12 db . at 20 Mc . Alignment of the amplifier is for best transient response, resulting in no overshoot for pulses of short duration and fast rise time. Coupled with this wide band characteristic is a high deflection sensitivity oî 15 Mv . $/ \mathrm{cm}$. peak to peak, D-CandA-C.

SWEEP DELAY The accurately calibrated delay of the 401 provides means for measuring pulse widths, time intervals between pulses, accurately calibrating sweeps and other useful applications wherein accurate time measurements are required.
The absolute value of delay is accurate to within 1% of the full scale calibration. The incremental accuracy is good to within 0.1% of full scale calibration.

SPECIFICATIONS

Y-Axis
Deflection Sens.- $15 \mathrm{Mv} . / \mathrm{cm}$, peak-to-peak.
Frequency Response - DC to 10 Mc
Signal Delay-0.25usec
Input line terminations - 52,72 or 93 ohms, or no termination Input Imp.-Direct-1 megohm, $30 \mu \mu \mathrm{f}$ Probe -10 megohms, $10 \mu \mu \mathrm{f}$

X-Axis
Sweep Range $-0.01 \mathrm{sec} / \mathrm{cm}$ to 0.1 u sec/cm
Delay Sweep Range $-5.5000 \mu \mathrm{sec}$ in three adjustable ranges.
Triggers - Internal or External, + and - , trigger generator, or 60 cycles, or undelayed or delayed triggers may be used.

Built-in trigger generator with repetition rate from $500-5000 \mathrm{cps}$. General
Low Capacity probe
Functionally colored control knobs
Folding stand for better viewing
Adjustable scale lighting
Facilities for mounting cameras
PRICE: $\$ 895.00$

Additional Features:

TRIGOER GENERATOR with variable repetition rate from 500 to 5000 cps .
POSITIVE NEGATIVE UNDELAYED TRIGGERS and a POSITIVE DELAYED TRIGGER are externally available.

An InPut termination switch for terminat. ing transmission lines at the oscilloscope. A FOLDING STAND for convenient viewing. FUNCTIONALIY COLORED KNOBS for easier location of controls.

Designed and built for electronic engineers, the 401, with its high gain and wide band characteristics, and its versatility, satisfies the ever-increasing requirements of the rapidly growing electronics industry for the ideal medium priced oscilloscope.
precision electronic equipment - oscilloscopes - magnetometers - computers - microwave oscillators - mercury delay lines

Our most eloquent salesman

(2) can't talk

\$ut he can sell. In fact, every prospect who meets him becomes a customer. Every one.

For "he" is the Karp plant itself. And if you saw him, you'd know why he's a successful salesman.
It begins with our engineering department where your designs are detailed for sheet metal production. It continues through tooling where our vast assortment of available dies often eliminates the need for new tooling... where our toolmakers create special tooling when needed.
Then to actual fabrication, where skilled craftsmen process every job, whether large or small, with equal care-and use the finest of metalworking equipment to do it.
You'd see all of these things and much, much more as you travel through our plant ranging three city blocks.
At the risk of becoming dissatisfied with your present sheet metal fabrications, you're invited to tour the Karp plant-any time. Meanwhile, write for a copy of our data book.

KARP METAL PRODUCTS CO., INC. • 215 63Rd ST., BROOKLYN 20, N. Y.

EXPORT AGENTS: FRAZAR \& HANSEN• 3CI CLAY STREET• SANFRANCISCO II, CALIFORNIA

developers and manufacturers of precise, dependable instruments in the fields of:
Aircraft Instruments and Controls • • Miniature AC Motors for Indicating and Remote
Control Applications - Optical Parts and Optical Devices
and Navigation Equipment
While current facilities of our laboratories and plants are geared to production for National Defense, the planning divisions of Kollsman are ever active. And versatile Kollsman research engineers stand ready to assist America's scientists in the solution of instrumentation and control problems.

Analyzing air brakes

Consolidated Engineering

300 North Sierra Madre Villa, Pasadena 8, California
Sales and Service through CEE instruments, inc.,
a subsidiary with offices in: Pasadena, New York, Chicago, Washington D. C., Philadelphia, Dayton.
analytical instruments for science and industry

Dynamic Recording Systems

... like the one shown here are designed and manufactured by Consolidated. Variations in the arrangement of the equipment are infinite. Applications are widely varied throughout industry and the sciences. A typical recording system includes pickups, amplifiers or bridge balances, and a recording oscillograph. Write for Bulletin CEC 1500 B .

THE STORY OF THE BIG I.R.E. SHOW

HERE'S SIX /TERRS PROOF OF...

Coluntayy Accoptanue

In the last six years, during which time the I. R.E. Shoy has achieved wide international prominence, the March issue of ELECTRONICS has enjoyed a considerable increase in advertising space over the average monthly space for all of those years. And, this, despite the fact that the March issue has never been promoted in any fashion as a special
issue. This increase is entirely due to voluntary acceptance. Manufacturers, whether exhibitors or not, just naturally turn to ELECTRONICS as the most effective means of alerting the widest audience of customers and prospects. Proof can be found in the charts below - the facts are given in clear detail for the years from 1947 through 1952.

MAKE PLANS AND SPACE RESERVATIONS NOW

The 1953 I. R.E. Show promises to be better than ever before. All manufacturers participating should make plans and space reservations in the March issue of ELECTRONICS now. It is the best insurance you can get of wide attendance and interest in your booth. If you are not exhibiting, this carefully read issue can serve as your "Show in Print." For rates or further details, consult your nearest ELECTRONICS district manager or write direct to ELECTRONICS.

MANUFACTURERS HAVE ALWAYS SAID...

 "See you at the show" electronicsA McGRAW-HILL PUBLICATION • 330 W. 42nd ST., NEW YORK 36

Keeping conmunications ON THE BEAM

113

Phip-to-Shore is Ship Shape

Her tacke may be awash buf there's foit wecther in the radio hack, Desple wind anc waver the Captain's massegse It reach the hono port In tor westior z° Bu, you'll finc JK Eryotoll rate a Nevy "E" far hair pant ir koeoliny miarine communieaflene 'saip" shape.'

CRYSTALS FOR THE CRITICAL

A versatile crystal the JK H-4 is widely used as a replacenent crystal in marine and other communications systems. Pressure mounted, dust and water proof, stainless steel electrodes. Frequency range 1800 kc to 15 me . Military type holder. Anether of the many KK Crystals available to eerf every need.

Monton any four hequencies armiere be twoen 25 me ond 175 me, checking zoh fro aubency dovilifioz and anount of modulasios: Koops the "boon" on a locations zuerertea more scalid coverage, tool.

Now ... an extremely flexible high-temperature tubing... IRVINGTON Silicone Rubber-Coated Fiberglas*

If you need a flexible insulating tubing that meets Class " H " specif. cations-and particularly if you need it now-look into this new Irvington product!

With the introduction of Silicone Rubber-Coated Fiberglas Tubing, Irvington offers to the electrical industry a product that, like the resincoated type, meets all NEMA Class " H " requirements. In addition, this new tubing has the advantage of extreme flexibility. Its white color is a plus wherever appearance is a factor.
AND . . . Irvington Silicone Rubber-Coated Fiberglas Tubing is available for immediate delivery!

Get the full story-just mail the coupon for technical data sheet.
*T.M. Reg. U. S. Paf. Off. by Owens-Corning Fiberglas Carp.

Irvington 11, New Jersey
I'lants: Irvington, N. J.; Monrovia, Calif.; Hamilton, Ontario, Canada

Irvington Varnish \& Insulator Co.
EL-2.53
11 Argyle Terrace, Irvington 11, N. J.

Gentlemen:

Please send me technical data sheet on Irvington Silicone Rubber-Coated Fiberglas Insulating Tubing.
Name.
Title.
Company
Street.
City \qquad Zone \qquad State

New
 purpose

Newt

-hp- 612A - VERSATILE, DIRECT READING. FOR UHF-TV, OTHER WORK 450 TO $\mathbf{1 , 2 0 0} \mathbf{m c}$

This master oscillator-power amplifier generator is especially designed for UHF-TV measurements including receiver and amplifier gain, selectivity, sensitivity and image rejection. It is also a convenient, direct-reading laboratory power source for driving bridges, slotted lines, antennas and filter networks. Both frequency and output are directly set on large, precisely calibrated dials. No charts or interpolation are required.

Model 612A has a maximum output of 0.5 volts into 50 ohms over its entire frequency range. The instrument also has low incidental fm and broad band modulation up to 5 mc . It may be modulated internally or externally, amplitude modulated, or pulse modulated (good rf pulses $0.2 \mu \mathrm{sec}$ or longer). Pulse modulation may be applied to the amplifier; or direct to the oscillator when high on-off signal ratios are required.

BRIEF SPECIFICATIONS

Frequency Range: 450 to $1,200 \mathrm{mc}, 1$ band.
Accuracy: Calibration $\pm 1 \%$. Resettability better than 5 mc at high frequencies.
Output: $0.1 \mu v$ to 0.5 v continuously variable. Calibrated in volts and dbm. Impedance 50 ohms Max. VSWR 1.2. Accuracy $\pm 1 \mathrm{db}$ entire range.
Modulation: Amplitude: From 0 to 90% indicated by panel meter.
Envelope Distortion: 2\% at 30\% modulation. Internal: Fixed modulation frequencies, 400 and $1,000 \mathrm{cps}$.
External: Any frequency 20 cps to 5 mc .
Pulse Requirements, External Modulation :
Pulse to Amplifier: Good pulse shape at 0.2 μ sec length.
Pulse to Oscillator: $1.0 \mu \mathrm{sec}$ minimum.
Size: Cabinet $12^{\prime \prime} \times 14^{\prime \prime} \times 18^{\prime \prime}$ deep.
Price: $\$ 1,200.00$

-hp-608A VHF Signal Generator provides output ranging from $0.1 \mu \mathrm{v}$ to 1.0 v into 50 ohms. Accuracy is $\pm 1 \mathrm{db}$. Direct reading frequency and output calibration; no charts or interpolation required. Pulsed, cw or amplitude modulated output (50 cps to 1 mc). Resettability better than 1 mc . Has master oscillator-power amplifier for widest modulation capabilities. Constant internal impedance. Maximum VSWR 1.2. $\$ 850.00$

800 TO $2,100 \mathrm{mc}$

-hp. 614A UHF Signal Generotor provides output ranging from $0.1 \mu \mathrm{~V}$ to 0.223 v (1 mw) into 50 ohms. Accuracy $\pm 1 \mathrm{db}$. Has single dial, direct reading frequency and output, no charts or interpolation. Offers cw, fm or pulsed output. Widely variable pulsing, synchronizing, delay and triggering features. Extremely fast rise/decay time of $0.1 \mu \mathrm{sec}$. Constant internal impedance. Maximum VSWR 1.6. \$1,950.00

Complete Coverage HEWLETT-PACKARD

INSTRUMENTS

signal GENERATORS

BRIEF SPECIFICATIONS

Frequency Range: 3,800 to $7,600 \mathrm{mc}$. 1 band.
Calibraticn: Direct. Accuracy better than 1\%.
Stability: Frequency; less than 0.006% per ${ }^{\circ} \mathrm{C}$ change.
Line Variation: $\pm 10 \mathrm{v}$ causes less than 0.01\% frequency change.

Output: $1 \mathrm{mw} / 0.223 \vee$ to $0.1 \mu \mathrm{v}$ info 52 ohms. (0 to -127 dbm).
Modulation: internal or external pulse, fm , or internal square wave.

Extermal Sync: (1) Sine wave 40 to $4,000 \mathrm{cps}$, 5 to 50 y rms.
(2) Pulse signals 40 to $4,000 \mathrm{pps}$, 5 to 50 v (pos. and neg.) Pulse width 0.5 to 5 psec . Rise time 0.1 to $1.0 \mu \mathrm{sec}$.

Size: Cabinet $163^{\prime \prime \prime} \times 1312^{\prime \prime} \times 16^{\prime \prime}$ deep.
Price: \$2,250.00

Newi

-hp-618B - VARIED PULSING CAFABILITIES, DIRECT READING. RANGE 3,800 TO 7,600 mc

Model 618B offers faster, more accurate measurement of component performance in radar, radio relay and TV carrier systems and similar field and laboratory applications. Frequency is generated in a reflex klystron oscillator; accuracy and stability are high throughout the instrument's wide frequency range. Frequency and voltage are directly set and read. Dial tuning is tracked automatically, and no voltage adjustment is required during operation.

Extremely wide pulsing capabilities have been built into - $h p-618 \mathrm{~B}$ The instrument may be internally or externally pulse modulated, internally square wave modulated and frequency modulated. The repetition rate is continuously variable between 40 and $4,000 \mathrm{pps}$. Pulse width is variable 0.5 to $10 \mu \mathrm{sec}$. Sync-out signals are simultaneous with the rf pulse or in advance by any time-span from 3 to $300 \mu \mathrm{sec}$. The instrument also may be synchronized with an external sine wave, or with positive or negative pulse signals.

1,800 TO $4,000 \mathrm{mc}$

-hp-616A UHF Signal Generator offers the same simple operation, wide pulsing capabilities, high stability and accuracy as -hp618B, but is designed for UHF frequencies. Output ranges from $0.1 \mu \mathrm{v}$ to 0.223 v (1 mw) into a 50 -ohm load. Accuracy is ± 1 db . Output may be cw, fin or pulsed. Mod ulation and synchronizing features are similar with $-h p-618 \mathrm{~B}$. Oscillator section is a refiex klystron. Frequency changes are automatically tracked and no voltage adjustment is needed during operation. Frequency and output are directly set and read on large, carefully calibrated dials. No charts or interpolation are needed. $\$ 1,950.00$

For complete details, see your -hp- field representative or urite divect

HEWLETT-PACKARD COMPANY

(1ip) INSTRUMENTS Complete Coverage

They've always been the best! VARIABLE CAPACITORS

Hammarlund Capacitors, backed by 42 years of design, engineering and production experience, are today recognized by the military services, electronic manufacturers and research engineers, as the finest quality capacitors available. Millions of them are in use by almost every important manufacturer of electronic equipment.

See for yourself. Write today for the 1952 CAPACITOR CATALOG. It has the complete story.

$K^{\prime} O V A R^{*}$ Glass Sealing Alloy

Western Electric

Supplied by

Stupakoff

6 YEARS

in the form of: SHEET, ROD, WIRE, FOIL, TUBING, EYELETs, LEADS and FABRICATED SHAPES

The ideal alloy for glass sealing, Kovar matches the expansivity of certain hard glasses over the entire working temperature range. It resists mercury attack, has ample mechanical strength and seals readily with simple oxidation procedure. It is available as sheet,
strip, foil, rod, tube, wire-or fabricated into cups, eyelets, leads and other shapes. The prominent users of KOVAR and the length of time they have employed this metal are convincing proof of satisfaction.
*Westinghouse Trade Mark No. 337,962

STUPAK0FF Products for Electrical and Electronic Applications

ASSEMBLIES-Metallized ceramic induction
coils and shofts; metalifized plates for fixed rigid assemblies, cercmic trimmer condensers.

CERAMICS-Precision-made ceramic products for electrical and electronic applications, all voltages, frequencies and temperatures.

RESISTOR CERAMICS-Usec for temperature indicating or measuring equipment, for infrared light scurce and for heating elements. Complete w th terminals, in the form of rods, fubes, disces, bars, rings, etc.

CERAMIC DIELECTRICS-For by-pass, leadthrough, blocking, stand-off and trimmer applcotions. Temperature compensaling Ceramic Cielectrics and high K materials. Tubes, discs and special shapes, plain or silvered.
PRINTED CIRCUITS-Amplifiers, couplings, fisters, integrators.

STUPALITH-Will withstand extrerie tharmal shock. May be made to have zero, tow-pesitive or negative expansivities. Safely used atemperatures up to $2400^{\circ} \mathrm{F}$.

SEALS, KOVAR-GLASS-Terminak, Leayains, Stand-offs-for hermetically sealinj and mechanical construction in radio, television, electronic and electrical apparalus. Singls or multiple terminal units, in a wide variey of sizes and ratings.
KOVAR METAL-The ideal alloy for sealing to hard glass. Used for moking hermetic atachments. Available os rod, wire, sheet, fo-or as cups, eyelets and other shopes.

STUPAKOFF CERAMIC \& MFG. CO., Latrobe, Pennsylvania

Precision-Built...for dependable performance

Whatever your requirements for top quality wire-wound components, you can count on I-T-E products. Power resistors, precision resistors, deflection yokes - all are specially designed and precision-built to meet the
exacting standards demanded for critical electronic applications. Close quality control and modern production methods give you assurance of quality components in any quantity you need.

I-T-E POWER RESISTORS

Non-hygroscopic ceramic foundations are in accordance with JAN specifications.

Purest resistance wires are uniformly wound to prevent shorted turns and excessive hot spots. All connections silver-soldered.

Vitreous enamel coating (organic if required) provides a glazed moisturerepellent surface with fast heat-dissipation qualities.
Advanced production methods assure high stability, long life.

Standard fixed resistors: 5-200 watts

Adjusiable resistors: 10-200 watts

Oval resistors: 30-75 watts

Ferrule resisfors: 12-200 watts

Special resistors: built to specifications

Standard Tolerance: $\pm 10 \% . \pm 5 \%$ and less made to order.

I-T-E PRECISION RESISTORS

High-quality wire alloys are usedfree from internal stresses and strains.
Automatic precision winding assures even tension-eliminates hot spots.
Hermetic or vacuum-impregnated sealing protects against destructive effects of salts, moisture, and atmospheric conditions.
Accelerated aging process prior to calibration assures accuracy.
Critical quality control eliminates all resistors which do not come up to high I-T-E standards.

TYPEA:
lightweight, hermetically sealed-for precision operation up to $125^{\circ} \mathrm{C}$. Surpass JAN R-93 A, Characteristic A, and MIL R-93 A specifications.
TYPEB:
vacuum-impregnated, moisture-resistant. For JAN R-93, Characteristic B, specifications.
Ratings from 0.01 ohm10 megohms, 0.1255 watts.

Standard Tolerance:
$\pm 1 \%$. Available in specified tolerances down to $\pm 0.05 \%$.

I-T-E DEFLECTION YOKES

Wire size and quality constantly checked. Coils impregnated in special moisture-resistant thermo-plastic-properly cured to assure
firm coil with minimum losses. Yokes can be ohtained complete with wire leads, resistors, and capacitors to your specifications.

WRITE FOR DETAILS

1924 Hamilton St., Phila. 30, Pa. - A division of the I-T-E Circuit Breaker Co.

Prove to yourself...

These are better

AN connectors--and at competitive prices

AN Solid Shell Connector

BETTER . . . because its snap-in retaining sleeve connot work loose, yet can be released quickly with a screw driver and the insert removed for inspection or soldering.

EETTER . .

... Because Monowatt $A N$ Comectors have all these fcatures:

- Moisture-proof seal. Two-piece inserts are joined with a silicone sealing compound. Moisture and condensation effectively excluded . . . parts held together while inserts are soldered to cable assemblies.
- Diallyl Phthalate insert material (hlue) used in all connectors. Negligible post-mold shrinkage . . . superior dielectric properties.
- Fewer parts and simpler design make installation and inspection easy.
- Cadmium-plated housings resist corrosien.
- Tellurium copper pins, heavily silver-plated, insure greater conductivity... 99% that of copper.
- Available in complete wiring harness or cable assemblies. Made by Monowatt to your specifications.

AN Split-Shell 90° Angle Plug
BETTER...because top can be removed to inspect wiring without unmoting or disassembling plug from conduit or cable. Conduit thread is not split. Splitshell ease of wiring is combined with advantages of solid shell construction.

AN Split-Shell Straight Plug

BETTER . . . because Monowatt engineers have succeeded in reducing number of metal parts and weight, while improving connector performance. This type is preferred where assembly must be made in tight places.

Here is Plug-in Unit Construction

Everything you need to mount, house, fasten, connect, monitor your equipment.

ALDEN MINIATURE TERMINALS

Here's a beautiful new little Terminal new little Terminal
that really puts soldering on a produc tion basis; taking a minimum of space and material. Ratchet holds leads firmly for soldering, no wrap-around or pliering necessary. Unique punch press configuration gives rapid heat transfer, taking less time and solder. Designed for Govt. Miniaturization contracts. Staked in Alden Prepunched Terminal Cards, allow patterns for any circuit.

$$
\begin{aligned}
& \text { No pliers-No twisting } \\
& \text { Wires-Buss bars easily accessible } \\
& \text { Snip off loops desired to by-pass. } \\
& \text { JUMPER } \\
& \text { STAR ATchet holds } \\
& \text { leads firmly }
\end{aligned}
$$

Stake under Terminals for common circuits. Loops match prepunched holes in Terminal Cards. Snip off loops desired to by-pass.

1stTake Pre-punched Terminal Mounting Card ready-cut to size you recquire Stake in Alden Miniature Terminals to mount your circuitry.

Prepunched Terminal Mounting Cards come in all sizes needed for Packages: miniature Packages: miniature
7 -pin and 9 -pin units, or 11 -pin and 20 -pin plug-in units. Card is natural phenolic $1 / 10^{\prime \prime}$ thick prepunched on $1 / 4^{\prime \prime}$ centers with $.101^{\prime \prime}$ holes for taking the Miniature Terminals.

2nd
Attach Alden Card - mounting Tube Sockets and Mounting Brackets, which mount in the prepunched holes.

Alden Card - mounting Tube Sockets for mini ature 7, miniature 9 and octal tubes, are complete with studs and eyelets for eas and eyelets for easy punched Cards.

Ts ${ }^{\text {PI }}$ Lay out circuitry with Prepunched Terminal Mounting Card in lengths up to 3^{\prime}.
 Card to stake in Alden Miniature Terminals to your circuitry layout. Vertical minals to your circuitry layout. Vertical position gives ready accessibility; the

Attach Alden Card-mounting Tube Sockets and Mounting Brackets, which fit any of the

T○ ○BTAINCOMPLETEDETAILS

Tiny Sensing Elements specifically designed to spot trouble instanfly in any unit.
Here are tiny components to isolate trouble instantly by providing visual tell-tales for each unit.

"PAN-i-LITE' MIN. INDICATOR LIGHT

So compact you can use it in places never before possible. Glows like a red-hot poker. Push-mounts in $.348^{\prime \prime}$ drill hole. Bulbs replace from front. Tiny spares are unbreakable, easily kept available, taped in recess of equipment. Alden \#86L, ruby, sapphire, pearl, emerald.

MINIATURE TEST POINT JACK

Here are tiny insulated Test Point Jacks that make possible checking critical plate or circuit voltages from the front of your equipment panel-without pulling out equipment or digging into the chassis. Takes a minimum of space, has low capacitance to ground, long life beryllium copper contacts. Available in black, red, blue. green, tan and brown phenolic conforming to MIL-P 14 B - CGF; also nylon in black, red, orange, blue, yellow, white, green. Alden \#110BCS.

ALDEN "FUSE-LITE's

Fuse Blows - Lite Glows.
Signals immediately blown fuse. Lite visible from any angle. To replace fuse simply unscrew the $1-\mathrm{pc}$. Lite-lens unit. Mounts easily by standard production techniques, in absolute minimum of space. 110 V Alden $\# 440-4 \mathrm{FH} .28 \mathrm{~V} \# 440-6 \mathrm{FH}$.
Free Samples Sent Upon Request

Get one point of check of all incoming and outgoing leads thru ALDEN BACK CONNECTORS

462-2

SINGLE CHECK POINT

Here for the first time is a slide-in connector that lrings all incoming and outgoing leads to a central check point in orderly rows, every lead equally accessible and color coded.
Avoid conventional
rats nest wiring

Permit direct efficient wiring

STRAIGHT-THROUGH CIRCUITRY

Wiring is kept in orderly planes, avoiding rat's nest of conventional back plate wiring. Connections between Terminal Mounting Cards are through Back Connectors so that all circuitry is controlled at this central point. Incompatible voltages safely isolated and separated.

EASY INSERTION AND REMOVAL
Mating tolerances permit easy insertion and removal without demanding critical alignment tolerances. Assure proper contact, with safety shielding of dangerous voltages. Leads can be attached above, below or out of the back for most direct and efficient interconnects.

Ready-made Alden Back Connectors meet all conceivable needs, for slide-in chassis replaccable in 30 seconds with spare.

VISIT OUR COMPLETE DISPLAY AT THE I.R.E. SHOW

READY-MADE for your Electronic Equipment

All designed - all tooled - production immediately available - no procurement problems. Apply ALDEN Standards wholly or in part.

ALDEN PLUG-IN PAGKAGES

3rdAfter mounting your circuits on Terminal Cards, use Alden Standard Plug-in Bases, Housings, Bails for packaging.

Min. 7 \& 9-pin BASES avail. able, also 11. pin \& 20-pin. B A ILS \& HOUSINGS or LIDS to match.

SLIDE-IN BACK CONNECTORS
3rd Fit Prepunched Cards carrying completed circuitry into Standard Alden Basic Chassis Body.

Prepunched to your specs. Easy accessibility at sides, front for completing wiring.

SERV-A-UNIT LOCK pulls in or ejects chassis.

See description

 See descriptionon opposite page.

PLUG-IN PACKAGES

Using standard Alden Plug-in Packaging Components you can mount a tremendous variety of circuits on chassis or in racks.

ALDEN

 \title{
ALDEN BASIC CHASSIS
}
 \title{
ALDEN BASIC CHASSIS
}

Miniaturize your product with Tantalytic capacitors

On low-voltage d-c applications, where your equipment miniaturization calls for both small size and superior performance, General Electric Tantalytic capacitors offer a host of advantages. These foil-type, tantalum electrode, electrolytic capacitors have greater capacitance per unit volume and far longer shelf life than aluminum-electrolytic types. Long operating life, too, is provided by their inherently inert characteristics, and the use of non-corrosive, chemically neutral electrolyte. And leakage current is low-less than 10 microamps per microfarad.

Built to withstand severe shock, these lightweight units operate over a wide temperature range (-55 C to +85 C and higher). Hermetic sealing protects them against leakage and contamination. Available in polar and non-polar construction, in ratings from 175 muf at 5 volts d-c to 12 muf at 150 volts d-c. For complete description of the line, plus application information, check Bulletins GEC-808 and GER-451 in the coupon on the next page.

Now-greater flexibility in voltage stabilizers

Fluctuating voltage is serious on sensitive electronic equipment designed for best performance at a specified voltage. Now, to help you get rid of voltage ups and downs, G.E. offers a new 15 - to 5000 -va line of automatic voltage stabilizers that gives you greater design flexibility at no increase in price, plus weight reduction in larger sizes. New output ratings of $1000,2000,3000$, and 5000 volt-amperes-with 115 and 230 volts on both input and output-permit operation in any combination of these input and output voltages.

Fluctuations between 95 and 130 volts, or 190 and 260 volts, are corrected to a stable 115 or 230 volts within ± 1 percent-and in less than two cycles. Single-core construction permits input circuit to be completely isolated from output circuit. Installation is easy: connect one set of terminals for supply and another set for the load. With no moving parts, maintenance is virtually eliminated. See Bulletin GEA5754 for complete description.

DIGEST
 TIMELY HIGHLLGHTS ON G-E COMPONENTS

Prices reduced as much as $\mathbf{3 5 \%}$ on light, flexible delay line

Increased use of delay line in special circuits for electronic equipment now enables General Electric to mass produce it, at savings to you of up to 35 percent. Originally developed to provide delay with minimum distortion in radar equipment, G-E delay line now has many commercial uses such as color television and electronic calculators.

Bulk line is available in lengths of 100 feet or less to be cut as desired. Time delay is approximately $1 / 2$ microsecond per foot for 1100 -ohm line, $1 / 4$ microsecond per foot for 400 -ohm line. Line is light in weight, $1 / 4$-inch in diameter, and easily bent into a 4 -inch diameter coil. Operates between -50 C and 100 C . Bulletin GEC-459.

Size 00 relays cut inventories

Many of your control-circuit needs can be met with compact G-E size 00 contactors and relays-available in any combination of normally open and normally closed contacts from 2 to 8 poles. Since contact tips are easily changed from NO to NC without extra parts, your "specials" inventory is cut. Easily accessible terminals take up to 3 wires, speed connections. For complete details, see your General Electric apparatus sales representative.

Reliable d-c to a-c amplification
Designed mainly for 400 -cycle excitation, the General Electric second-harmonic converter is a magnetic-amplifier type unit that converts low-level d-c error signals (such as thermocouple output) to 800 -cycle a-c output. Static operation and hermetic sealing make it reliable under extreme conditions of acceleration, temperature, and pressure -important in aircraft applications. Length is $3 \frac{1}{16}$ in., tube diameter $11 / 4 \mathrm{in}$., weight, 0.2 lb . See Bulletin GEC-832.

Now-sealed-relay line expanded

G-E hermetically sealed relays for 28 volt circuits are now available in these forms: DPDT, 3PDT, 4PDT, 6PNOwith coil ratings up to 10,000 ohms. Certain other configurations available on request. All have extra-high tip pressures, yet don't exceed Air Force-Navy size and weight specs. They withstand all outside atmospheric conditions, 50 g operational shocks, ard instantaneous voltage surges up to 1500 volts. Bulletin GEA-5729.

EQUIPMENT FOR ELECTRONICS MANUFACTURERS			General Electric Company, Section Schenectady 5, New York Please send me the following bulletins $\sqrt{ }$ for reference only X for immediate project	667-24	
Components	Fractional-hp motors Rectifiers	Development	\square GEA-5729 Sealed Relays	$\Delta_{\Delta \ll}<^{L^{2}}$	
Meters, Instruments	Timers	and Production Equipment	\square GEA-5754 Voltage Stabilizers		
Dynamotors	Indicotina liahts		\square GEC-459 Delay Line		
Capacitors	Control switches	Soldering irons	\square GEC-808 \& GER-451 Tantalytic Capazitors		
Transformers	Generators	Resistance-welding			
Pulse-forming networks	Selsyns	conirol			
Deloy lines	Reloys	Currert-limited highpotential tester			
Reactors	Amplidynes		Name.		
Thyrite*	Amplistats	Insulation testers			
Motor-generator sels Inductrols	Terminal boards	Vacuum-tube voltmeter	Company		
Inductrols Resistors	Push buttons	Photoelectric recorders		---3-	
Resistors	Photovoltoic cells				
Valtage stabilizers *Reg. Trade-mark of Gener	Glass bushings Electric Co.	Demagnetizers	City	State	

new advancement in moisfureresisłant coils

Luxolene Green molded coils have been engineered especially for applications involving intense moisture conditions, such as in refrigeration, air conditioning, water pumping, etc. . . . also for explosion proof applications.
Field tests of production coils have proven more than satisfactory.
The cost of Luxolene Green encased coils is nominal. Send for complete information.
(NOTE: Deluxe Coils, inc., manufactures coils only-no complete transformers, relays, solenoids, etc.)

ENGINEERING DATA

COIL CONSTRUCTION: Random, paper layer or precision wound.
Excellent $\left\{\right.$ Lead Wires $105^{\circ} \mathrm{C}$ Polyvinylchloride U.L. approved
Bond \quad Molding Compound-Luxolene Green Resin
Core Tube-Luxolene Green Resin
IONE
HOMOGENOUS
MASS

Operoting Temperatures:

Properties of Luxolene Green Resin:
Tensile strength
$10,900 \mathrm{ps}$.
Water absorption
less than $1 / 10$ of 1% after 24 hours
Thermal coefficient of
expansion
Volume resistivity
Dielectric strength
Are resistance
Dielectric constant
Loss factor immersion
6.1×10^{-0}
4.9×10^{-4}
megohms CMS 10"
400 volts, 1 mil
85

10:0 cycles
Solubility Attacked by concentrated sulphuric
deid, but is resistant to concentrated hydrochloric acid. Trichlorethylene. hydrochloric acid. Trichlorethylene. but not dissolve Luxolene.
Achesion Very strong to metal. Makes excellent ery strong to metal. Makes excellent
bond with $105^{\circ} \mathrm{C}$ Polyvinylchloride lead wires.

LUXOLENE CERTIFICATION
EVERY SHIPMENT COVERED SY THIS CERTIFICATION:

DELUXE COILS, INC. 1304 First St., Wabash Ind.

presto change-0

If you're not using Presto discs at present, then it's time for a change. The reason, in one word . . . quality! From the meticulous preparation of the aluminum base in the Presto plant to the final play-back in the studio, quality is the byword ... your assurance of consistent performance, unmatched fidelity of reproduction, long service. That's why Presto is the proven leader in the professional disc field . . . a leader that merits your consideration
when you decide that it's time for a change . . right now.

SCINFLEX assures

LOW MAINTENANCE BECAUSE

 IT PERMITS SIMPLICITYWhen operating conditions demand an electrical connector that will stand up under the most rugged requirements, always choose Bendix Scinflex Electrical Connectors. The insert material, an exclusive Bendix development, is one of our contributions to the electrical connector industry. The dielectric strength remains well above requirements within the temperature range of $-67^{\circ} \mathrm{F}$ to $+275^{\circ} \mathrm{F}$. It makes possible a design increasing resistance to flashover and creepage. It withstands maximum conditions of current and voltage without breakdown. But that is only part of the story. It's also the reason why they are vibration-proof and moisture-proof. So, naturally, it pays to specify Bendix Scinflex Connectors and get this extra protection. Our sales department will be glad to furnish complete information on request.

- Moisture-Proof - Radio Quie† - Single Piece Inserts . Vibration-Proof • Light Weight - High Insulation Resistance - High Resistance to Fuels and Oils - Fungus Resistant. Easy Assembly and Disassembly - Fewer Parts than any other Connector - No additional solder required.

SCINTILLA MAGNETO DIVISION of SIDNEY, NEW YORK

Export Sales: Bendix International Division, 72 Fifth Avenue, New York 11, N. Y
factory branch offices: 118 E. Providencia Ave., Burbank, Calif. Stephenson Bldg., 6560 Cass Ave., Detroit 2, Michigan - Brouwer Bldg., 176 W. Wisconsin Avenue, Milwaukee, Wisconsin - 582 Market Street, San Francisco 4, California

LITTON INDUSTRIES NEWS

ANOTHER ADDITION TO LITTON PLANT TO HELP meet Your tube development and production needs

Litton is now building a new addition to its vacuum tube plant at San Carlos, California. This expansion will approximately double tube development and manufacturing facilities and will allow expansion of our affiliate, Litton Engineering Laboratories, which has taken over the manufacture of glassworking lathes and other machine products. Like the plant completed last year, the new building has been designed specifically for vacuum tube manufacture; it has similar reinforced concrete block walls with large glass-block panels for diffused daytime illumination.

Included is complete environmental control of temperature, sound, light and air for optimum manufacturing conditions.

Increasing demand for Litton products has brought about this expansion, and we expect that the added capacity will provide greater volume and service to our friends in industry.

IITTON MAGNETRONS

Concurrent with plant expansion is a marked increase in the variety of pulse and CW magnetrons for radar, beacon and countermeasure equipment. It is quite possible that Litton Industries now has in production or development the specific tube to meet your needs.

Application of Litton design and processing criteria to all our tube types permits manufacture of tubes that require no aging racks in the plant or in the field and have long shelf life with snap-on operation to full rated power output immediately after completion of the cathode warm-up period.

TYPE VC-1257
Hydrogen filled, zero bias thyratron with hydrogen generator for generation of pulse power up to 40 megawatts,

TYPE 5948/1754 Hydrogen filled. zero bias thyratron with hydrogen reservoir for generation of
peak pulse power up to 12.5 megawatts.

- for Pulse

 Voltage Generation

TYPE 5949/1907
Hydrogen filled, zero bias thyratron with hydrogen reservoir for generation of peak pulse power up to 6.25 megawatts.
ELECTRICAL DATA*

Type	VC. 1258	$5949 / 1907$	$5948 / 1754$	VC-1257
Maximum Peak Forward Anode Potential	1000 volts	25000 volts	25000 volts	38000 volts
Maximum Peak Anode Current	20 amps	500 amps	1000 amps	2000 amps
Maximum Average Anode Current	0.05 amps	0.50 amps	1.0 amps	2.0 amps
Maximum Heating Foctor lepy xprrxib)	1.0×10^{8}	6.25×10^{9}	9.0×10^{9}	-
Nominal Filament Power	12.6 watts	95 watts	190 watts	230 watts
Hydrogen Reservoir	No	Yes	Yes	Yes

- More detailed information on electrical and mechanical data will be supplied on request.

TYPE VC-1258
Zero bias miniature hydrogen thyratron for the generation of peak pulse power up to 10 KW .

- A NEW CONCEPT OF HYDROGEN THYRATRON DESIGN! The tubes illustrated represent a departure from conventional hydrogen thyratron designs and are a result of several years of concentrated development work. They are primarily em. ployed in the generation of peak voltages with durations in the order of microseconds.

Custom-built Electronic Equipment

- CHATHAM specializes in the development, design, and construction of custombuilt electronic equipment to exactly meet customers' requirements. Our capable staff of engineers will furnish prompt estimates or, if desired, will call to discuss your problem personally. Call or write today.

Pulse life test equipment built by CHATHAM checks receiver type tubes under pulse conditions.

20 Megawatt Hydrogen Thyratron Test Equipment built, by CHATHAM to customers' specifications.

5 Megawatt radar modulator built by CHA THAM to rigid government standards.

ESGHSDSES

Ruggedized

 Type Tubes* The following tubes fully conform to JAN specifica tions and can be supplied promptly usually direct from stock:

Hectronic Tubes

5R4WGY	2D21W
6AL5W	OC3W
6H6WGT	OD3W
25Z6WGT	$2050 W$

5R4WGY 2D21W 6AL5W OC3W 552WWGT 2050W 25Z6WGT 2050W

TYPE 719-A HIGH VACUUM

 CLIPPER DIODEThis tube is used primarily for clipper diode service in hard tube modulator circuits. Filament 7 volts, 7 amps... Inverse peak anode voltage 25 kv , Max., peak anode current 10 amps, Max., anode dissipation 75 watts.

TYPE $1 Z 2$ RECTIFIER

A small bulb high voltage vacuum sectifier. Low cathode heating power and low dielectric losses make tube suitable for radio frequency supply circuits. Filament 1.5 volts, 290 amps ... Inverse peak anode voltage 20,000 , average plate current 2 ma.... peak plate current 10 ma

TYPE 1 B46 REGULATOR

A cold cathode glow discharge tube designed for voltage stability. DC operating voltage 82 volts. operating current range 1 ma minimum, 2 ma maximum. Regulation 3 volts.

TYPE 395-A COLD CATHODE GAS TRIODE

Requires no filament supply and is used in many grid controlled rectifier and relay applications. Maximum D.C. anode current- 10 ma . Maximum D.C. anode voltage -150 volts

TYPE 4B32 RECTIFIER

A rugged half-wave Xenon filled rectifier. Operates in any position throughout an ambient temperature range of $-75^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$. Filament 5 volts, $7.5 \mathrm{amp} .$. Inverse peak anode voltage 10,000 average anode current 1.25 amps.

TYPE 394-A THYRATRON

A Mercury vapor and Argon filled thyratron for grid controlled rectifier service. Operates over wide ambient temperature range. Heater 2.5 volts, 3.2 amps... Inverse peak anode voltage 1250 , average anode current 640 ma .

TYPE 3B28 RECTIFIER
This rugged half-wave Xenon filled rectifier will operate in any position and throughout an ambient temperature range of $-75^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$. Filament 2.5 volts, 5.0 amps ... Inverse peak plate voltage 10,000 , average anode current .25 amp.

Chatham Vacuum Switches

TYPE 1522 (illus. trated) is a mechanically actuated. single-pole, double. throw. glass vacuum switeh. This and other types can be supplied.

SPECIFICATIONS

HOLD OFF VOLTAGE: Internal- 10,000 volts ims; External (at 27,000 feet oltitude)10,000 volts rms; External* (at 40,000 feet altitude) $-7,500$ volts rms.
interrupting rating, resistive load: 1,000 operations life at $10,000 \mathrm{v}$, ac, rms10 amF , oc, rms; $1,000,000$ aperations life of $10,000 \mathrm{v}$, ac, rms -2 amp , oc, rms; $500,000,000$ operations life at $10,000 \mathrm{v}$, ac, rms -0.1 amp , ac, rms.

NET WEIGHT (opprox.) $\quad 2$ ozs. MAXIMUM WIDTH (overall) 4 I't ins. MAXIMUM LENGTH (overall - $35 / \mathrm{sins}$. MAXIMUM THICK. (overall)__, $\mathrm{I}_{\mathrm{T}_{6}^{\prime}}$ ins. -at 50% humidity

HIGH VOLTAGE VACUUM FUSES

Can be supplied by Chatham to exact customers' specifications if ordered in adequate quantity. Call or write for full particulars and quotes.

The Mallory Tantalum Capacitor shown is but one of the complete range of sizes and ratings indicated in the table. Note the following advantages:

Compactiness

Contimous performance over a temperature range of $-60^{\circ} \mathrm{C} .10+200^{\circ} \mathrm{C}$.
High resistance to shock and vitration
Prool against thermal shoch from -610° C. to $+200^{\circ} \mathrm{C}$. withent damage
Double sealing for absolute protection under all operating conditions.
Originally developed for the Armed Forces subminiaturization program, Mallory Tantalum Capacitors are now available in quantity. If you are redesigning vour equipment, don't hesitate to call on us for help in any problem involving the application of capacitors, the development of special types or the simplification of related circuits.

Expect more...Get more from MALLORY

Parts distributors in all major cities stock Mallory standard components for your convenience

SERVING INDUSTRY WITH THESE PRODUCTS:

Electromechanical-Resistors - Switches - Television Tuners - Vibrators
Electrochemical-Capacitors - Rectifiers - Mercury Dry Batteries
Metallurgical-Contacts•Special Metals and Ceramics \cdot Welding Materials

P. R. MALLORY \& CO., INC., INDIANAPOLIS 6, INDIANA

TALK

- VISION . . . As we enter the age of transistors it is important that engineers open their eyes wide to the potentialities of these new devices that are like tubes and yet are not like tubes. Circuits can be developed by thinking of transistors as substitutes for tubes. But more important circuits will come from the harnessing of characteristics that are peculiar to transistors themselves.

It is, for example, possible to build an audio amplifier that contains junction transistors and nothing much else in the way of component parts. The output of a phonograph pickup is fed into an $\mathrm{n}-\mathrm{p}-\mathrm{n}$ and also into a p-n-p junction. "Complementary symmetry" of the two dissimilar transistors permits this first stage to be directcoupled to another pair of $n-p-n$ and p-n-p junctions so connected that they drive a loudspeaker without benefit of an output transformer. Phase inversion and impedance matching are inherent in the system, and are accomplished by phenomena that have no counterpart in the terminology of tubes.

In the spring Electronics begins a carefully planned series of articles dealing with the basic characteristics of semiconductors in general and transistors in particular. This series will appear side by side with detailed descriptions of practical transistor circuits as these are developed. The double-pronged editorial approach to a new horizon will, we think, provide a solid base
upon which men with imagination can build.

- MONOPOLY . . . We are also entering an era in which no one amplifying device will monopolize the expanding field of electronics. Tubes will share it not only with transistors and magnetic amplifiers but also with other devices as yet largely a gleam in some physicist's eye.

Time alone will tell which device is to dominate what equipment. Meanwhile, it does seem that tubes are at their shining best where high power is required at high frequencies and, particularly, where complex broadband modulation components are involved. This, at any rate, is the area in which much current development work is going on, sparked to a considerable extent by the increasing demands of uhf television.
Much is being done to increase the usefulness of klystrons. A new magnetron incorporating a grid exhibits considerable flexibility. Traveling-wave tubes tuneable over a moderate frequency range by mere variation of operating voltages show experimental promise. There is a great deal of constructive thinking going on in the laboratories of highly competitive tube manufacturers.

- MISTAKE . . . Our whole field is unusually active technically, and the future seems bright. All is not sweetness and light on the sales
front, however, and there is one part of the business that has recently acquired a beautiful black eye from which it will take some time to recover.

It seems that an active micro-wave-relay equipment market attracted some manufacturers who either cut design corners to get into the game quickly or spaced stations too far apart on paper to hold price down and get the order. Now some of the stuff doesn't work too well when transmission conditions are ideal and falls down completely when they are poor. Several installed systems are unused and just gathering dust.

- PICTURE . . . If you are wondering whether the admittedly flattering photograph at the top of this page is to be a regular eyesore then wonder no more. The answer is, quote: "No."

The subject of the picture has been active in management and sales as well as in technical circles of this industry since 1924, with McGraw-Hill since 1926 and ElecTRONICS since 1941. He was appointed editor January 1, just after the preceding issue mailed. The thought therefore occurred that there may be two or three of the paper's thirty-some-odd-thousand subscribers who wonder what the editor looks like, a condition to be personally rectified in the years ahead as rapidly as flesh and blood, a liberal travel budget and time permit.

Multiple-stylus printer has punch-card feed and photoelectric card reader located behind printing unit (left). Electronic urit converts punch-card data to impulses that drive printing styli

Electronic Addressing

Computers and high-speed printers team up to rush publications to readers. Multiplestylus machine works directly from punch cards and prints up to 42,000 individual fourline address labels per hour

LFFEBLOOD of a publication is its readership.
To serve the reader, the subscrip-tion-fulfillment department keeps lists current and mails each copy promptly. This involves storing and servicing vast quantities of data as well as printing many thousands of individual address labels for each issue of the publication. Electronic equipment is proving adept at both chores, particularly for publications having large mailing lists.

Currently in use is a facsimile
printer ${ }^{1}$ made by AddressographMultigraph, that works from printed address cards and has a capacity of 6,000 four-line address labels per hour. The address cards are helically scanned by a phototube linked mechanically to the printing bar. Relays are so adjusted that the printing bar strikes when the phototube receives a black signal. Nearly 100 machines are in use.

Multiple-Stylus Printer

A recent addition to the field, the multiple-stylus electronic print-
er^{2}, works directly from punch cards and prints up to 42,000 fourline address labels per hour. Developed by Eastman Kodan, the machine is used in that company's advertising and direct-mail department to service extensive mailing lists.

Printing speed depends upon the number of printing heads used and may be increased 24,000 characters per minute with each additional printing head. The present model uses four heads, one for each line of the address. Individual char-

Printing styli strike impact blows on paper through carbon; each of four printing heads prints one line of address

Aids Publishers

By JOHN M. CARROLL

Issistant Editor
DiLPCTRONICS
acters are built-up by printing rectangular dots in a 5×7-dot rectangle to form a pattern. Synthesis by this method of the letter E is shown in Fig. 1A.

Use of a fixed card carrying city and state names common to many cards increases address-card information capacity and eliminates repetitive card punching.

Each printing head consists of seven styli actuated by multiple vibrators. The styli print rectangular dots by striking impact blows on carbon paper. They are released
in the desired pattern by independent relays working in accordance with signals received from an electronic matrix. Carloon impressions are fixed by drying lamps and a flying punch pierces holes between address labels. The close-up shows the printing operation. The four printing heads are arranged in a semi-circle at the top of the picture.

Information to be printed is stored on punch cards like those shown in Fig. 1B. A punch card for a four-line address of 96 characters must have 576 holes ar-
ranged in 48 columns of 12 holes each. The card is quartered, each quarter corresponding to one line of the address (24 characters). Characters are expressed in sixunit code and represented by holes punched in the card.

Punch cards are fed to the printer in batches of 700. Reading is done photoelectrically by four independent reading heads that correspond to the four lines of the address. Each head has six lead-sulphide photocells, so that all places of the six-unit code g roups are read simultaneously by light shining through the punched holes.

Timing pulses are supplied by a slotted wheel that rotates in synchronism with the card feed and interrupts the light beam falling on another photocell.

Each reading head transmits a group of pulses as a card column passes. These pulse groups are amplified, gated by the timing pulses to insure exact synchronism and fed to the storage matrix.

The matrix has 96 memory sockets, each one corresponding to a possible character in a four-line address. The sockets are arranged in four banks of 24 , the same as the code groups on the punch card. A memory plug consisting of seven magnetic memories is inserted in every memory socket from which a printed character is desired.

Pulse groups from the reading heads are channeled into the storage bank corresponding to the proper line of the address. Meanwhile, the timing pulses are applied to step a ring circuit that delivers actuating pulses to successive memory units in exact synchronism with the card reading. Six of each memory unit's magnetic memories are used to store code signals representing characters while the seventh memory forms part of an error-detection system.

Printing

A second slotted wheel rotating in synchronism with the printing unit generates a series of seven pulses for each character to be printed. These pulses drive a seven-tube ring circuit. Every seventh pulse steps a second ring circuit that applies simultaneous read-out pulses successively to the

FIG. 1-Letter E is built up on 35 -dot matrix (A) in five blows by printing styli. Punch cards (B) are quartered to give four-line address of 24 characters per line. Alphabetical and numerical characters are expressed in six-unit code

FIG. 2-Output lines from decoding mattix select pattern of switch combinations corresponding to desired character. Switch matrix columns are read out by five of the seven printer timing pulses
memory units in each of the four storage rows.

As each memory unit is read out, its signals go to one of four lineprinting units where the signals are first applied to a group of six flip-flops. A trigger signal is set up for each pulse from the memory unit. The trigger signals are connected to a germanium-diode de-
coding matrix in such a manner that for every different pulse-code group a unique output line is selected that corresponds to the printed character desired.

Each output line connects to a 5×7 matrix of 35 switches (Fig. 2). When an output line is energized, certain of the switches close to form the pattern of the char-
acter to be printed. Consider the switch matrix to consist of five columns of seven switches each.

A printer timing pulse feeds into each of the five matrix columns in turn. A separate vibrator amplifier is connected to each row of seven switches and as each column is pulsed, a signal is sent to every amplifier whose switch in the column is closed. Each vibrator amplifier is connected to a vibrator that activates one of the seven printing styli. The paper tape advances one dot space as each column is pulsed and the character is built up in five pulses. The fifth pulse resets the trigger tube for the following character.

Over the Horizon

Several other methods of electronic subscription fulfillment are under study. The Potter Instrument Co. is working on a system in which their flying typewriter ${ }^{3}$, its tube complement now reduced to 300 , teams with a random access memory (RAM) to print 10,800 address labels per hour per printer. The random access memory is the outstanding feature of the system. Over a million subscription records can be stored magnetically and each day's transactions entered without disturbing the unaffected records. Serial tape-handling systems require that the entire tape be rearranged when subsequent transactions are to be filed.

Another proposed method would display information from a storage device on the screen of the Charactron ${ }^{4,5}$, a cathode-ray tube with a beam-forming matrix of character-shaped openings through which the electron beam is directed. Addresses, displayed at rates up to 10,000 per sec on the crt face, can be transferred to ordinary paper by a dry-printing process such as Xerography.

Refferences

(1) Tumbling Characters, Anthur D. Little Industrial Bulletin, Nov. 1952.
(2) R. G. Thompson and C. E. Hunt, Jr., Eastman Kodak Multiple-Stylus Electronic Printer, Joint AIEE-IRE-ACM Computer Conference paper, Dec. 1952
(3) J. J. Wild, High-Speed Printer for Computers and Communications, ELECTRONICS, p 116, May 1952 .
(4) J. T. MeNaney, Data-Displaying Cathode-nay Tube, ELECTRoNics, p 174 , Aug. 1952 .
(5) J. T. McNaney, The Charactron, IRE National Conference paper, May 1952.

By HENRY FOGEL*

and

SEYMOUR NAPOLIN
Radio Receptor Co. Brooklym, N. $\begin{gathered}\text {. }\end{gathered}$

Tuning elements for preselector and oscillator employ plungers

Cavity Tuner for UHF Television

All 70 of the high-band channels are continuously tuned by varying the center-loading capacitance of a modified coaxial line section. Design avoids moving contacts and minimizes radiation from oscillator by inherent shielding

DEVELOPMENT of a tv receiver front-end to cover the uhf channels imposes severe requirements. After consideration of butterfly arrangements, coaxial lines with wiping contacts or capacitors and other devices, a modified resonant cavity was adopted as the basic tuning element.

The tuner shown in the diagram, Fig. 1, contains three cavities. Two

Now with Granco Products, Inc., Long Istand City, N. Y.
of these function as a bandpass preselector and the third controls the local oscillator frequency. The preselector is essentially an overcoupled double-tuned transformer with a balanced 300 -ohm antenna input and unbalanced output to the miser.

Tuning of each cavity is accomplished by a metallic plunger traveling in a low-loss dielectric sleeve which varies the value of center loading capacitance. The plunger serves only as a transfer medium

FIG. 1 -Three cavities are employed, two for preselection and one for the local oscillator
and makes no physical contact with the cavity or loading capacitor.

Suitably formed loops couple in and out of the cavity field with the degree of coupling controlled by physical dimensions and placement. The tuning plungers are ganged together and moved by a simple linkage that provides substantially linear frequency calibration. Dial and inter-cavity tracking are adjustable at three points by positioning the plunger, trimming the loading capacitance and by an additional mechanical means of changing the electrical length of the cavity:

The view of the complete converter shows the three cavities assembled to a small subchassis, with their tuning plungers at tached to the ganged drive. This drive consists of a metal frame pivoted at one end and swung in an are by a link mechanism against a spring.

Straight-line motion is imparted to the plungers by the rotation of the frame. The dial is concentric with the tuning knob and calibrated

FIG. 2-Insertion loss for two cavities plotted against frequency

FIG. 3-Crystal injection current is nearly constant over the frequency range
directly in channel numbers. A metal wrap-around encloses the entire unit to guard against mechanical damage during handling, and act as a second r-f shield to reduce radiated interference.

The local oscillator, a Colpitts type, tunes below the signal frequency for double superheterodyne or converter applications. Mixing takes place in a low-noise diode, with the i-f signal appearing at vhf channels 5 or 6 .

Tuning is controlled by a single knob which functions as both a channel selector and fine-tuning control. The complete uhf television band is covered by five turns of the tuning knob. A circular dial, linearly calibrated, rotates approximately 150 degrees.

In Fig. 1, the resonant cavity tuning elements are represented schematically by their lumped-constant equivalents to facilitate circuit analysis. Balanced 300 -ohm antenna coupling is achieved simply by a loop located in the cavity field. Since the coupling is almost constant over the entire tuning range, antenna mismatch losses are minimized.

Selectivity

The skirt selectivity requirements at uhf are more severe than for vhf because of the relatively close spacing of signal and image frequencies
and the multiple spurious responses which result from double conversion. Considerable selectivity may be obtained by using three or four tuned circuits; however, because of increased insertion loss and tracking errors, improvement in selectivity is accompanied by rapid degradation of noise figure. Fortunately, because of the high operating Q's possible at uhf, two tuned circuits provide adequate image and i-f rejection.

The double-tuned preselector shown has an image ratio better than 60 db , an i-f (80 mc) rejection greater than 90 db , with an insertion loss of approximately 2 db at 890 mc . A plot of insertion loss versus frequency is given in Fig. 2.

Radiation

Another measure of the effectiveness of a preselector is the value of end-to-end feed-through capacitance which generally determines the amount of oscillator voltage appearing across the antenna terminals. The preselector coupling throughout the tumer is primarily magnetic, and capacitance feedthrough is reduced to negligible proportions. The attenuation at oscillator frequency is in the order of 45 db , which means that antenna radiation due to back-to-front coupling is less than $100 \mathrm{p} \cdot \mathrm{v}$ per meter.

Another source of uscillator radiation, that due to coupling around the preselector by stray magnetic and electrostatic flelds, is minimized by careful layout and fully shielded construction, which effectively confines the r-f and oscillator fields
within the metallic cavity walls.
A 1 N82 low-noise silicon diode is used as a mixer. Diode rather than triode conversion was selected because better noise figures are possible, and as a result of the small injection voltages required, oscillator radiation is considerably reduced. In addition, the loose coupling between oscillator and mixer permits more stable oscillator performance. The preselector and oscillator outputs are linked by a com-

Ganged plungers move in and out of the cavities for tuning the complete uhf range
mon coupling loop which combines the fields of both cavities at the mixer input.

Osciflator Circuit

The 6AF4 local oscillator tunes below the carrier, to prevent reversal of the sound and picture position on the i-f response curve of the television receiver during double

FIG. 4-Converter circuit includes cascode i.f stage
conversion. To assure stable oscillator performance all circuit elements are designed as an integral part of the resonant cavity, which results in almost constant injection current as shown in Fig. 3. This helps conime the oscillator field and substantially reduces radiated interference.

Although the uhf oscillator operates at a much higher frequency than a vhf oscillator, the permissible frequency drift on an absolute basis must be much smaller. This is the direct result of double superheterodyne oyeration, in which the additive drift of two local oscillators determines the overall frequency stability of the uhf raceiver. Theoretically, assuming that the vhf tuner designer has taken full advantage of the permissible drift tolerance, the uhf oscillator must either be absolutely stable, or have a drift characteristic opposing that at rhf.

Fortunately, modern vhf tuners operate well within the allowable drift tolerance, and the television industry, in anticipation of the severe uhf requirements, is now producing sets using intercarrier sound circuits. While this eliminates the possibility of complete loss of sound due to drift, picture quality degradation and loss of sensitivity still remain.

Two factors generally influencing oscillator frequency stability are temperature changes and power supply fluctuations. The tuner local oscillator contains a temperaturesensitive element which varies the electrical length of the cavity, and holds the frequency substantially constant over a wide temperature range. Voltage sensitivity is reduced to a second-order effect by circuit design, and a regulated supply is therefore unnecessary for normal applications.

Output Frequency

For practical design purposes, vhf channels 5 and 6 were chosen as the intermediate frequency. Despite the fact that it is possible to receive weak transmissions in some scattered geographical locations on both these channels, high i-f attenuation through the tuner still permits interference-free uhf reception. Since the output tuned cir-

Cavituner is completely shielded frontend for uhf

FIG. 5 Overall i-f response curve of converter
cuit is sufficiently broad to pass both channels, no readjustment of the oscillator is necessary to shift frequency, in the presence of strong local signals.

For those applications where the tuner is combined wtih a specially designed vhf tuner as an 82 -channel front-end for new television receivers, no significant improvement in either noise figure or isolation can be expected from the addition of an i-f amplifier.

When used as a tuner or con-

FIG. 6-Overall 3-db bandwidth for converter
verter for existing television receivers, improved performance can be realized by the insertion of a cascode amplifier between the tuner output and the receiver input. Such a low-noise stage would provide needed gain, allow the tuner noise to dominate that of the vhf receiver, and further isolate the uhf and vhf oscillators. The individual tuning element is a modified, coaxial line section shorted at both ends, and center loaded by lumped capacitance to attain the necessary electrical length within small practical dimensions.

The complete circuit of a converter using the tuner and a cascode i-f amplifier is shown in Fig. 4.

The 6BQ7 cascode i-f amplifier has a noise figure of 6 db and power gain of approximately 15 db . Three tuned circuits are used to give a uniform response from 76 to 88 mc (channels 5 and 6) with relatively steep skirts to prevent spurious responses at vhf image frequency, and to sharply attenuate vhf oscillator feedback to the converter. Because of the broad flat-top response, no retuning is required whenever an alternate channel is selected.

An overall i-f response curve is shown in Fig. 5. Both the i-f response and power gain were measured with a 175 -ohm generator to simulate the i-f impedance of the diode mixer. Layout and wiring of i-f connections to the mixer minimize parasitic "suck-outs" which adversely effect oscillator injection current.

Figures 6 and 7 provide supplementary data on bandwidth and noise figure.

FIG. 7-Noise figure over the tuning range

Noise in Transistor

By EDWARD KEONJIAN and JOHANNES S. SCHAFFNER

General Electric Company

TRaNSISTOR NOISE differs from other types such as thermal and shot noise, since the transistor noise power per unit bandwidth is approximately inversely proportional to frequency. Figure 1 shows this variation of the noise power per cycle bandwidth with frequency. One consequence of this type of noise spectrum is that each octave of the frequency range contains the same noise power.

In the equivalent circuit representation of the transistor it is convenient to represent the noise by adding two noise-voltage generators with rms voltages $E_{n s}$ and $E_{n c}$ as shown in Fig. 2. It is then assumed that the other elements of the equivalent circuit are noiseless.

Representative values for $E_{n c}$ and $E_{\text {ne }}$ for point-contact transistors are $100 \mu v$ and $1 \mu v$ respectively, measured at a frequency of $1,000 \mathrm{cps}$ for a bandwidth of one cycle. Corresponding voltages for junction transistors are $5 \mu \mathrm{~V}$ and $0.05 \mu \mathrm{~V}$ respectively.

For practical applications, it is more convenient to express the noise characteristics of the tran-

This paper will appear in the NEC Proceedings for 1952.

FIG. 1-Inverse relationship of transis. tor noise power per unit bandwidth and frequency

FIG. 2-Equivalent circuit of transistor including two noise-voltage generators
sistor by giving its noise figure. The noise figure is defined as the ratio of the total noise power in the output (disregarding the noise originating in the load impedance) divided by that portion of the output noise that results from thermal agitation in the source resistance R_{g}. This noise figure provides a convenient way of comparing the noise properties of transistors.

Figure 3 shows the variation of noise figure with frequency for two junction transistors. Representative values for noise figures, measured at a frequency of $1,000 \mathrm{cps}$ are 40 to 60 db for point-contact transistors and 10 to 25 db for junction types transistors. Figure 4 shows the distribution of noise figure for 60 transistors of both types.

Mathematically, the noise figures for the three basic types of amplifier circuits may be expressed as follows: For grounded emitter

$$
\begin{align*}
\tilde{F}= & 1+\frac{1}{4 K T B R_{g}} \tag{1}\\
& {\left[E_{n e}{ }^{2}\left(\frac{R_{g}+\alpha r_{c}+r_{b}}{\alpha r_{c}-r_{e}}\right)^{2}+\right.} \\
& \left.E_{n c}{ }^{2}\left(\frac{R_{g}+r_{b}+r_{e}}{\alpha r_{c}-r_{e}}\right)^{2}\right]
\end{align*}
$$

For grounded base

$$
\begin{aligned}
F= & 1+\frac{1}{4 K T B R_{g}} \\
& {\left[E_{n e}^{2}+E_{n c}^{2}\left(\frac{R_{o}+r_{e}+r_{b}}{\alpha r_{c}+r_{b}}\right)^{2}\right] }
\end{aligned}
$$

For grounded collector

$$
\begin{equation*}
F=1+\frac{1}{4 K T B R^{g}} \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
& {\left[E_{n e}^{2}\left(\frac{R_{0}+r_{c}+r_{b}{ }^{\eta}}{r_{c}}\right)^{2}+\right.} \\
& \left.E_{n c}^{2}\left(\frac{R_{b}+r_{b}}{r_{c}}\right)^{2}\right]
\end{aligned}
$$

In these equations $\alpha, r_{o}, r_{c}, r_{0}$ and r_{m} are equivalent circuit parameters for the transistor. $E_{n e}$ and $E_{n c}$ are open-circuit voltages, $R_{\text {o }}$ is source resistance, B is frequency band, K is Boltzmann's constant ($=1.347 \times 10^{-23}$), and T is temperature in deg Kelvin. The addition sign in these equations expresses addition with attention to any correlation between $E_{n e}$ and $E_{n c}$. If no correlation exists, then this operation may be replaced by simple addition.

The noise figure of a transistor depends on the operating point. For example, while the emitter noise is almost independent of the collector voltage V_{d}, the collector noise depends strongly on it. Figure 5 shows variation of the collector noise voltage for one-cycle bandwidth with the collector voltage V_{c}. The noise figure for point-contact transistors is almost independent of the collector voltage V_{c} as shown by the experimental curves in Fig. 6.

The noise figures of some junction transistors display the same independence of the collector voltage. The noise figure for most junction transistors, however, decreases with decrease in collector voltage, as shown in Fig. 7. Figure 8 shows the contributions to noise figure by the emitter and collector together with total noise figure. It is, therefore, necessary to operate the transistor at collector voltages falling into region A of Fig. 8.

Signal-to-Noise Ratio

The total noise power in a frequency band $f_{2}-f_{1}$ is

Amplifiers

Particular recommendations for obtaining the optimum signal-to-noise ratio in pointcontact and junction transistor amplifiers. Typical values and curves show how this type of noise figure varies with operating point of transistor and source impedance

FIG. 3-Variation of noise figure with frequency for two different types of junction transistors

$$
\begin{equation*}
\int_{f_{1}}^{f_{2}} \frac{K}{f} d j=K \ln \frac{f_{2}}{f_{1}} \tag{4}
\end{equation*}
$$

On the other hand, the thermal noise power due to R_{g} is proportional to the bandwidth $f_{2}-f_{1}$. The noise figure for the bandwidth limited by the frequencies f_{2} and f_{1} is

$$
\begin{equation*}
F=1,000 F_{0} \frac{\ln f_{2} / f_{1}}{f_{2}-j_{1}} \tag{5}
\end{equation*}
$$

where F_{0} is the noise figure at 1,000 cps for a bandwidth of one cycle. If

$$
f_{2} / f_{1} \cong 1
$$

then

$$
\ln \frac{f_{2}}{f_{3}} \simeq \frac{f_{2}-f_{1}}{f_{1}}
$$

and

$$
\begin{equation*}
F \cong F_{0} \frac{1,000}{f_{1}} \tag{6}
\end{equation*}
$$

The noise figure may be considered fairly independent of the band-
width if this bandwidth remains relatively small.

The expression for signal-tonoise ratio for the transistor amplifier may be obtained in the following manner. The noise figure in accordance with the definition is

FIG. 4-Distribution of noise figure for 60 transistors of both types: A, junction transistors with $V_{c}=1 \mathrm{v}$ and $I_{c}=0.5$ ma ; $B_{\text {, junction transistors at }} V_{c}=5 \mathrm{v}$ and $I_{c}=1 \mathrm{ma}$ and C, point-contact transistors at $V_{c}=10 \mathrm{v}$ and $I_{c}=0.5$
$F=\frac{\text { noise power at output }}{\text { available noise power at input due to } R_{0}}$

$$
\begin{equation*}
\times \frac{1}{\text { transducer gain }} \tag{7}
\end{equation*}
$$

and the noise power at input will be

$$
\begin{equation*}
N=F K T \times\left(f_{2}-f_{1}\right) \tag{8}
\end{equation*}
$$

Consequently, the signal-to-noise ratio

$$
\begin{equation*}
\frac{S}{N}=\frac{V_{0}^{2}}{4 K T\left(f_{2}-f_{1}\right) R_{g} F} \tag{9}
\end{equation*}
$$

or replacing F by F_{o}

$$
\begin{equation*}
\frac{S}{N}=\frac{V_{0}^{2}}{4 R_{0} K T\left(F_{o} 1,000 \ln f_{2} / f_{1}\right)} \tag{10}
\end{equation*}
$$

From Eq. 10 it can be seen, that the quantity

$$
\left[1,000 K T F_{o} \ln f_{2} / f_{1}\right]
$$

is equivalent to the available noise power at input. Let us call this power equivalent noise power P_{0}

$$
\begin{equation*}
P_{0} \cong 1,0003 K T F_{0} \ln f_{2} / f_{1} \tag{11}
\end{equation*}
$$

If the base of the logarithm is now changed to 10 and values of K and T substituted, the equivalent noise power will be

$$
\begin{equation*}
P_{o} \cong 0.9 \times 10^{-17} F_{o} \times \log j_{2} / j_{1}(\text { watts }) \tag{12}
\end{equation*}
$$

This equation shows that the noise power depends on the ratio of the frequencies f_{2} and f_{1} and not on their magnitudes.

Equation 12 for the equivalent noise power may be rewritten approximately as

$$
\begin{align*}
P_{o} & \cong 0.9 \times 10^{-17} F_{o} \tag{13}\\
& \times \log \left(13+\frac{\Delta f}{f}\right) \text { (watts) }
\end{align*}
$$

where Δf is the bandwidth and f the center frequency. This equation shows that for a constant bandwidth the noise power will decrease as the center frequency increases.

The signal-to-noise ratio may now be expressed as

$$
\begin{aligned}
\frac{S}{N} & =\frac{V_{g}{ }^{2}}{4 R_{0} P_{o}} \\
& =\frac{V_{o}^{2}}{3.6 \times 10^{-17} R_{\theta} F_{o} \log f_{2} / f_{1}}
\end{aligned}
$$

(14)

FIG. 5-Open-circuit collector noise voltage for four different point-contact transistors

FIG. 6-Variation of noise figure with collector voltage for three different point-contact transistors
where V_{g} is the rms value of the signal voltage. Using this equation it is possible to determine the maximum permissible noise figure of a transistor for the first stage of an amplifier.

This is illustrated in Fig. 9 which is a plot of the Eq. 12 for different values of F_{0}.

Assuming that the available signal power is 10^{-8} watts in an audio band from 50 to $5,000 \mathrm{cps}\left(f_{2} / f_{1}=\right.$ 100) and that the desirable signal-to-noise ratio must be not less than $40 \mathrm{db}, P_{\text {. }}$ must be less than 10^{-12} watts. For the given ratio $f_{2} / f_{1}=$ 100. This corresponds to a maximum permissible noise figure of 48 db .

Similarly, in the case of an i-f amplifier with $f_{2} / f_{1}=1.1, \mathrm{~S} / \mathrm{N}=$ 50 db and with an available signal power of 10^{-11} watts, the maximum permissible noise figure will be 24 db.

For d-c amplifiers, if one assumes that the bandwith of the amplifier is limited by the frequencies $f_{1}=1 /$ day and $f_{2}=10 \mathrm{kc}$, and that available signal power is 10^{-10} watts, the maximum permissible noise figure of a transistor is equal to 21 db for the signal-tonoise ratio 40 db .

Amplifier Source Resistance

Equations 1, 2 and 3 give the noise figure for the three basic
types of amplifier circuits. For a given operating point and given transistor, $E_{n c}$ and $E_{n c}$ are constant. A parameter

$$
\begin{equation*}
\rho=\frac{E_{n e}}{E_{n c}} \tag{15}
\end{equation*}
$$

may be introduced, practical values for which are between 10^{-2} and 10^{-8}.

The equations for the noise figures are then: For grounded emitter

$$
\begin{align*}
& F=1+\frac{R_{n}}{R_{g}} \\
& \times \frac{\rho^{2}\left(R_{o}+\alpha r_{c}\right)^{2}+\left(R_{o}+r_{c}+r_{b}\right)^{2}}{\alpha^{2} r_{c}^{2}} \tag{16}
\end{align*}
$$

For grounded base

$$
\begin{equation*}
F=1+\frac{R_{n}\left[\rho^{2} \alpha^{2} r_{c^{2}}^{2}+\left(R_{g}+r_{e}+r_{b}\right)^{2}\right]}{R_{g} \alpha^{2} r_{g}^{2}} \tag{17}
\end{equation*}
$$

For grounded collector

$$
\begin{equation*}
F=1+\frac{R_{n}\left[\rho^{2}\left(R_{g}+r_{c}\right)^{2}+\left(R_{o}+r_{b}\right)^{2}\right]}{R_{g} r_{c}^{2}} \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{n}=\frac{E_{n c}^{2}}{4 K T\left(f_{2}-f_{1}\right)} \tag{19}
\end{equation*}
$$

The only parameter of these equations that can be varied externally is the source resistance R_{g}. Figure 10 shows the variation of F with R, for different values of the parameter ρ.

The noise figure F has a minimum for the following values of R_{v} :

For grounded emitter

$$
\begin{equation*}
R_{\vartheta}^{\prime} \cong\left[\frac{\rho^{2} \alpha^{2} r_{c}^{2}+\left(r_{e}+r_{b}\right)^{2}}{1+\rho^{2}}\right]^{1 / 2} \tag{20}
\end{equation*}
$$

For grounded base
$R_{g} \cong\left[\rho^{2} \alpha^{2} r_{c}^{2}+\left(r_{e}+r_{b}\right)^{2}\right]^{\kappa}$
For grounded collector
$R_{g^{\prime}} \cong\left[\frac{\rho^{2} r_{c}{ }^{2}+r_{b^{2}}}{1+\rho^{2}}\right]^{1 / 2}$
This minimum, however, is not very critical as it can be seen from the theoretical curves in Fig. 10 and the experimental curves in Fig. 11. Somewhat larger or smaller values of R_{s} may be used without an appreciable increase in amplifier noise.

Using Eq. 17 and 21 for the grounded-base connection, the minimum noise figure will be

$$
\begin{align*}
F_{\min }= & R_{n}\left[\frac{2\left(r_{e}+r_{b}\right)}{\alpha^{2} r_{e}^{2}}+\right. \tag{23}\\
& \left.\frac{2 \rho^{2}}{\sqrt{\rho^{2} \alpha^{2} r_{c}^{2}+\left(r_{e}+r_{b}\right)^{2}}}\right]
\end{align*}
$$

Now if the value of R_{g} is increased or decreased four times, the noise

FIG. 8-Contribution to noise figure due to emitier and collector noise

FIG. 7-Transistor noise versus operating point

FIG. 9 Available equivalent noise power
figure will be

$$
\begin{align*}
F_{m \text { in }}{ }^{\prime}= & R_{n}\left[\frac{2\left(r_{e}+r_{b}\right)}{\alpha^{2} r_{c}^{2}}+\right. \\
& \left.\frac{17 \rho^{2}}{4 \sqrt{\rho^{2} \alpha^{2} r_{c}^{2}+\left(r_{c}+r_{b}\right)^{2}}}\right] \tag{24}
\end{align*}
$$

which indicates that the noise figure changes at most 2.12 times or 3.2 db . This figure is actually much less for most practical cases.

The addition of a resistance in series with R_{g} or in parallel with the input of the transistor amplifier will not improve the signal-to-noise ratio.

Generally, in multistage transistor amplifiers, the first stage will contribute significantly to the noise figure. However, if the equivalent source impedance of the second stage differs very much from the value of R_{g} given by Eq. 20, 21 and 22 the noise of the second stage must also be taken into account.

The noise figure of a two stage amplifier is

$$
\begin{equation*}
F=F_{1}+\frac{F_{2}-1}{G_{1}} \tag{25}
\end{equation*}
$$

where F_{1} and F_{2} are the noise figures of the first and second stage respectively and G_{1} is the available power gain of the first stage. This available power gain has the following values: For grounded base

$$
\begin{align*}
& G_{1}= \\
& \frac{\alpha^{2} r_{c} R_{g}}{\left(r_{e}+r_{b}+R_{g}\right)\left[r_{e}+r_{b}(1-\alpha)+R_{g}\right]} \tag{26}
\end{align*}
$$

For grounded emitter

$$
\begin{align*}
G_{1}= & \frac{\alpha^{2} r_{c} R_{\theta}}{\left(r_{\theta}+r_{b}+R_{\theta}\right)} \times \\
& \frac{1}{\left[r_{\theta}+r_{b}(1-\alpha)+R_{g}(1-\alpha)\right]} \tag{27}
\end{align*}
$$

For grounded collector

$$
\begin{align*}
G_{1}= & \frac{r_{c} R_{v}}{\left(r_{c}+r_{b}+R_{g}\right)} \times \\
& \frac{1}{\left[r_{c}+r_{b}(1-\alpha)+R_{v}(1-\alpha)\right]} \tag{28}
\end{align*}
$$

The noise figure of the second stage depends on the operating point of the second transistor and the first stage output resistance. This output resistance can be changed by transformer coupling the two stages. This coupling will leave G_{1} unchanged. Adjusting the transformer turns ratio so that the apparent source impedance of the second stage is that given in Eq. 20,21 and 22 , will reduce the influence of the second stage.

If the two stages are coupled without a transformer, one obtains

FIG. 10-Variation of noise figure with source resistance for different values of $E_{n e} / E_{n c}$
the following approximate expressions for the grounded emitter stage: Assuming that in Eq. 1; $E_{n \mathrm{n}}{ }^{2}$ $\gg E_{n e}{ }^{2}$ and $R_{g}=R_{01}$ (where $R_{o 1}$ is the output resistance of the first stage of the amplifier) and $R_{o 1} \gg$ $R_{e}+R_{b}$, the noise figure of the second stage is

$$
\begin{equation*}
\left(F_{2}-1\right) \cong \frac{E_{n c 2}^{2}}{4 K T B} \times \frac{R_{o 1}}{\alpha_{2}^{2} r_{c 2^{2}}{ }^{2}} \tag{29}
\end{equation*}
$$

The available power gain is

$$
\begin{align*}
& G_{1}^{\prime}=\frac{\alpha_{1}^{2} r_{c 1}^{2} R_{g}}{\left(r_{e 1}+r_{b 1}+R_{g}\right)} \times \\
& {\left[\overline{\left.r_{e 1}+r_{b 1}\left(1-\alpha_{1}\right)+R_{g}\left(1-\alpha_{1}\right)\right]}\right.} \tag{30}
\end{align*}
$$

First stage output resistance is $R_{o 1}=r_{c 1} \times$
$\left[\frac{r_{e 1}+r_{b 1}\left(1-\alpha_{1}\right)+R_{g}\left(1-\alpha_{1}\right)}{r_{e 1}+r_{b 1}+R_{g}}\right]$

FIG. 11-Comparison of noise figure in point-contact and junction transistors
and therefore

$$
\begin{align*}
& F=F_{1}+\frac{E_{n c 2^{2}}}{4 K T B} \times \\
& \frac{\left[r_{e 1}+r_{b 1}\left(1-\alpha_{1}\right)+R_{g}\left(1-\alpha_{1}\right)\right]^{2}}{\alpha_{2}^{2} r_{c 2^{2}} \alpha_{1}^{2} R_{g}}
\end{align*}
$$

This equation permits calculation of the contribution of second stage to overall noise figure for direct or R-C coupled amplifiers.

Noise in transistor amplifiers is similar to contact noise insofar as it depends strongly on the frequency. Total noise power is not proportional to amplifier bandwidth but depends on the ratio of the frequencies limiting it.

This work was supported by the Air Material Command, Signal Corps and Bureau of Ships under contract AF 33-16001-17793.

Bibliography

E. Keonjian and J. S. Schaffner, in Experimental Investigation of Transistor Noise, Proc. IRE, p 1,456 , Nov. 1952 . H. C. Montgomery, Transistor Noise in Circuit Applications, Proc. $I R E$, p 1,461,

Frequency Changer for

Three-phase resistance welding control (right) used with a spot-welding machine at a West Coast aeronautical plant

Three-phase power of one frequency, usually 60 cycles, may be changed electronically to singlephase power of lower frequency. This practice eliminates the annoying blinking of lights caused by the large intermittent load of a resistance welder on an inadequate power supply. Quality of welds is improved by elimination of these voltage dips when several welding machines are operated randomly on the same lines.

One cause of the heavy load is that resistance-welder loads usually are highly inductive and have a low power factor at 60 cycles. The welding transformer secondary circuit of a large press-type welder is essentially a very-low-resistance loop. In some cases, the welding current is largely reactance limited and only part of the kva demand is used for heating.

Changing to a lower frequency decreases the reactance drop, improves the power factor, reduces the required secondary voltage and reduces the kva demand and line drop. Distributing the demand current on three lines, instead of on two lines, further reduces the line drop.

The frequency-changing principle is shown in Fig. 1. A cycle of the l-f single-phase output is started with a l-f half cycle, arbitrarily called a positive half cycle. This l-f half cycle is started by drawing power through a power tube, from what is designated as the A phase of the three-phase power supply (lines 1 and 2). Instead of allowing this phase to continue to energize the load at 60 cycles, the load is transferred to phase B by means of power tubes when the phase- B volt-

FIG. 1-Basic principle of converting three-phase power to single-phase lowfrequency power by using power tubes

By M, E, BIVENS

Control Engineering Department
General Electric Co.
Schenectady, N. Y.
age of corresponding polarity exceeds that of phase A. Similarly, the load is next transferred from phase B to phase C, then to phase A and so on to produce a continuous load voltage of positive polarity for the first half cycle of the low frequency.

Load voltage is made up of 120 deg segments of positive voltages from the three phases. Load current is composed of $120-\mathrm{deg}$ blocks of unidirectional currents drawn successively from the three phases as shown in Fig. 1A. The power lines carry alternating current as shown in Fig. 1B. The distinct build-up of the load current as shown by the waveform sketch is for an inductive load (welder load) and is a characteristic of the current rise when d-c is applied to an inductive circuit.

During the l-f half cycle, the load transformer must be capable of developing a continuously increasing flux to generate the required unidirectional back emf or induced voltage. After a few cycles of applied rectified 60 -cycle three-phase voltage, the load is disconnected from the power supply. At the end of the positive l-f half cycle, and when the phase- A voltage reverses, the load is reconnected to phase A through a power tube of opposite polarity so as to cause the load transformer to induce a secondary voltage of negative polarity to start the negative l-f half cycle.

Load Transfer

By means of power tubes, the load is transferred from phase to phase at the proper instant to provide a continuous load voltage of negative polarity to make up the

Resistance Welding

Direct conversion from three-phase 60 -cycle power to single-phase low-frequency power improves power factor and reduces kva demand and line drop compared to the more commonly used 60 -rycle single-phase machines

FIG. 2-Phase-controlled power tubes determine the effective value of the single-phase low-frequency voltage
negative l-f half cycle during a few cycles of the 60 -cycle supply.

Each l-f half cycle is started by drawing power from phase A and is terminated by drawing power from phase C. In the case illustrated by Fig. 1, power is fed to the load during two cycles of the 60 cycles, with one-half of a $60-$ cycle between l-f half cycles. The whole l-f cycle has a duration of 5 cycles out of 60 cycles or a fundamental frequency of 12 cycles.

Heat Control

Power tubes, used for transferring the load from phase to phase as previously explained, also provide a convenient means of adjusting the effective value of the applied l-f voltage. This heat control is effected by delaying the transfer from one phase to the next as shown by Fig. 2.

The transfer is shown in Fig. 1 as occurring at about 30 deg on the phase voltages, thus utilizing the maximum envelope of the three phase voltages. In Fig. 2, the transfer is shown as occurring at about 65 deg on the phase voltages and producing about 50 -percent maximum current or 25 -percent heat. The range of current control from 100 down to 20 percent (100 to 4 -percent heat) requires adjust-
ing the transfer or commutation from about 30 deg to 110 deg on the phase voltages. Figure 2 also shows the current in line 1 which is composed of the currents of the A and C phases. For reference, the full-heat current is shown dotted.

Figure 3A shows a case where the duration of applied unidirectional voltage during the l-f half cycles, designated as the pulse time, is increased to 3 cycles of the 60 cycles for a welding frequency of $8-4 / 7 \mathrm{cps}$. With other factors the same, the welding transformer must be capable of developing a larger amount of flux for 3 cycles than for 2 cycles because it must maintain the same rate of increase in flux for the longer time interval of a l-f half cycle. Size of the welding transformer is determined by the pulse time. For example, Fig. 3 B also has a welding frequency of $8-4 / 7 \mathrm{cps}$, but has a pulse time of 2 cycles and can use a smaller weld-

FIG. 3-_Illustration of terms pulse time and interpulse time
ing transformer.
Figures 1, 2 and 3 show l-f welding current as applied to produce a spot weld requiring one or more l-f cycles of current. The reasons for using different pulse times as shown by Fig. 1A and 3A, or for using different time intervals (designated as interpulse time) between l-f half cycles as shown by Fig. 1A and 3B, are somewhat as follows:

Benefits from reduction in kva demand are greater when using lower welding frequency as in Fig. 3A but the lower transformer frequency requires a larger welding transformer. In general, the optimum low frequency is considered as being $8-4 / 7$ or 12 cps , with a pulse time of 2 or 3 cycles.

There are several uses for different time intervals between the l-f half cycles as shown by Fig. 1A and 3B. Thin gauges of metal may be welded by using a single l-f half cycle. In some cases, seam welding may be done by the continuous application of l-f half cycles and by using a time interval of a few cycles of 60 cps between l-f half cycles. Thus, the interpulse time interval between l-f half cycles in Fig. 1A, 3A and 3B is much longer

FIG. 4-Cause of commutation faults
(A) and prevention of commutation faults by applying inversion operation
(-1
than for seam welding.
When spot welding is done by means of a single l-f half cycle, successive spot welds should be made using welding current of opposite polarity, known as antipolar half-cycle operation. This practice avoids energizing the welding transformer with a series of unidirectional voltage impulses which might cause saturation of the welding transformer. If unidirectional l-f half cycles are used for spot welding, the welding transformer should be premagnetized with flux of opposite polarity during the intervals between welding.

Commutation Faults

Certain conditions of spot welding with full l-f cycles may require using more than $\frac{1}{2}$-cycle interpulse time, as shown in Fig. 4A. A long pulse time, a high percentage current setting and a secondary circuit having high inductance may, at the end of a l-f half cycle, cause the current from the C phase to drag out. These conditions would keep the load connected to phase C until phase C again becomes positive.

Starting the negative l-f half cycle at point \bar{X} while the positive current persists will result in a commutation fault. The supply currents, being limited only by resistance of transformer primary windings and leakage reactance between windings, would be excessive and several times their normal magnitude. The commutation fault may be prevented by increasing the interpulse time interval between l-f half cycles as shown in Fig. 4A. Another method of avoiding commutation faults, which provides a more continuous flow of welding
current, is the use of inversion as shown in Fig. 4B.

Inversion

Inversion operation consists of controlling the conductivity of the power tubes so that at the end of a l-f half cycle, the energy stored in the load and welding transformer continues to be forced back into the supply to extinguish the current. Otherwise, the load and welding transformer would again draw power from the C phase. As shown in Fig. 4B, inversion operation is accomplished by transferring the phase- C drag-out current (at point P) to the phase- A power tube which has been operating during the l-f half cycle. A voltage of opposite polarity to the preceding l-f half cycle is maintained on the primary of the welding transformer to accelerate the decay of primary current.

At point P in Fig. 4B, the phaseA voltage is zero and the phase- A power tube cannot be fired on the phase- A voltage. If phase C is still connected to the load by drag-out current through the C power tube, the phase- C voltage is induced in the anode circuit of the A power tubes. During that part of the cycle, the anode voltage of the phase- A power tubes is the difference between the phase- A and phase- C voltages. Because of the induced transformer voltage, there is considerable positive anode voltage to refire the phase- A power tube at the time the phase- A voltage is zero.

Immediately after point P and during the time that the drag-out current is being carried by the $+A$ power tube, the anode voltage of
the $-A$ power tube is negative. The grid of its firing tube may be turned on so that the next l-f half cycle starts as soon as current of the preceding half cycle is extinguished. In contrast with the case of Fig. 4A where a welding frequency of $8-4 / 7 \mathrm{cps}$ is desired but a welding frequency of 6.67 cps must be used to prevent a commutation fault, the addition of inversion operation as shown in Fig. $4 B$ permits using the $8-4 / 7-\mathrm{cps}$ frequency with a more steady flow of welding current.

Control Operation

The mode of l-f control operation is outlined by the schematic diagram of Fig. 5. All control tubes are small thyratrons. Larger thyratrons are used for firing the ignitron power tubes. Control is a-c operated in that all tubes have a-c anode voltages. This frequencychanging control may be separated into five functional sections: the sequence control, low-frequency timer, trailing exciters, firing tubes and power tubes (with the welding transformer). The control functions of each of these sections and the relationship of section operations will be explained with reference to Fig. 5.

As shown by Fig. 5, the sequence control and low-frequency timer operate from phase- A control voltage. Governed by the sequence control, the squeeze time allows the welder electrodes to close on the work before welding current is applied. The weld interval is the duration of low-frequency welding current. The hold time maintains the electrode pressure on the work while the weld is cooling. The off

FIG. 5-Control and power circuit sections and basic mode of operation

FIG. 6-Details of exciter unit circuit and power circuit, including firing tubes
time, used only for repeat operation, is the time that the electrodes remain open for the removal of the welded parts and the placement of new parts to be welded.

The l-f timer controls the duration of the l-f half cycles (pulse time) and the time interval between l-f half cycles (interpulse time). It also insures that each weld starts with a full positive l-f half cycle and is ended with a full negative l-f half cycle to provide complete l-f cycles of welding current, except where l-f half-cycle welding is being done.

In response to the l-f timer, the exciter section sets up a pattern of three-phase control voltages or signals for turning on the firing tubes in the proper order. The control operation thus branches out into three-phase operation in the exciter section. Inversion control also originates in this section. The $+A$ exciter tube controls all the other tubes in the + circuit branches (phases $\mathrm{A}, \mathrm{B}, \mathrm{C}$) extending toward the power circuit. The $-A$ exciter tube controls all the other tubes in the -- circuit branches extending toward the power circuit.

The turn-on voltages from the exciter unit, applied in the grid circuits of the firing tubes, are really releasing voltages rather than turn-ing-on voltages because the operation of the firing tubes further depends upon phase-controlled voltages in their grid circuits for heat control (percent current). The firing tubes turn on the ignitron power tubes to phase-control the

Operater's control station, showing control operation adjustments
three-phase power applied to the welder and to refire the A power tubes at the right time for inversion operation.

In this case, the load consists of the welding transformer having three primary windings and one secondary winding on a common magnetic core. It may be considered as a single-phase welding transformer having three primaries connected to the three-phase power supply through time-controlled and phase-controlled power tubes to compose the single-phase l-f output.

Circuit Details

The power circuit, including the welding transformer, power tubes and firing tubes, is shown in the upper right corner of Fig. 6. Igniter current of each power tube is controlled by the firing tube connected between anode and igniter. Since each power tube and its firing tube have the same anode voltage, except at the instant while the igniter current flows, the combination may be thought of as grid control on the ignitron.

During standby, the anode volt-
ages are the phase voltages. During three-phase operation, a much different condition exists. Consider the A power tubes, for example. During welding, the anode voltage is the difference between the phaseA voltage and the voltage of the operating phase induced through transformer action in the primaries of the welding transformer. This is shown in the waveform sketch of Fig. 6. This condition must be recognized when considering tube ratings and should be kept in mind when considering inversion operation.

All of the firing tubes are phasecontrolled for heat control. The grid circuits of the A firing tubes provide the additional feature of inversion. An A firing tube and its grid circuit is shown in Fig. 7 for the analysis of firing-tube grid-circuit operation.

Figure 7A shows the essential components of the grid circuit. The component circuits are shown separately in the successive figures. Figure 7B shows the negative d-c grid-bias voltage provided by rectifier 3 and applied by switching tube 4 to keep the firing tube nonconductive during standby. Figure 7C shows the phase-shifted sine-wave component of voltage applied to the grid to trigger the firing tube at the desired point in the anode voltage wave. These component voltages of the grid circuit exist simultaneously during standby and are shown combined in Fig. 7D. In this case, during any time in the cycle the grid potential of the firing tube is at which ever potential is more negative, the d-c bias or the sine-wave phase-controlled voltage component.

In Fig. 7E, a half cycle of sinewave turn-on (or releasing) grid voltage in phase with the firingtube anode voltage is applied to raise the cathode potential of switching tube 4 above the cathode potential of the firing tube. The firing tube is then permitted to become conductive in accordance with the phase-controlled grid voltage or heat setting.

In Fig. 7F, the turn-on grid voltage is obtained from phase- B control voltage and the firing tube is not triggered until the phase- A voltage has decreased to about zero

FIG. 7-Analysis of firing-tube grid circuit for turn-on, heat control and inversion
at the end of the positive half cycle of anode voltage. However, at this time there is considerable anode voltage as previously explained. At the end of a l-f half cycle, if A firing tube has not been triggered for heat control and if the phase- C power tube continues to carry current, the A power tube is fired to provide inversion operation.

Exciter Unit

With reference again to Fig. 6, the exciter tubes turn on and control the order of firing of the firing tubes. The $+A$ and $-A$ exciter tubes respond in accordance with the l-f grid-supply voltage patterns made up by the l-f timer. The $+A$ exciter tube, with its trailing $+B$ and $+C$ tubes, turn on the positive half cycle of l-f welding current. The $+B^{\prime}$ exciter tube, trailing the $+C$ exciter tube, provides the half cycle of voltage from phase B to turn on the $+A$ firing tube for inversion operation at the end of the positive l-f half cycle. The $-A$, $-B,-C$ and $-B^{\prime}$ exciter tubes operate in similar manner to produce the negative l-f half cycle of welding current.

The l-f timer is composed of electronically interlocked electronic timing circuits. Operation of the l-f timer may be explained best by first considering Fig. 8. This circuit embodies all of the basic circuit operating principles in the l-f timer.

With reference to Fig. 8A, the anode voltage of thyratron tubes 1 and 3 are in phase but are 180 deg out of phase with the anode voltage of thyratron tube 2. Each tube has an a-c sine-wave grid bias, $180-\mathrm{deg}$ out of phase with its anode voltage and supplemented by the conventional d-c self-rectified bias. When the initiating switch is closed, tube 1 will conduct during the next positive half cycle of its anode voltage as shown by E_{1} of Fig. 8B. The anode circuit is inductive and tube 1 will continue to conduct for a portion of a half cycle after the anode supply voltage has reversed and become negative. During this time, after the anode supply voltage has reversed, the anode of tube 1 is maintained positive by the inductive anode current feeding back into the control voltage supply.

During the carry-over of tube 1 , the grid of tube 2 , connected to the anode of tube 1 , is held positive and
tube 2 trails as shown by E_{2}. Tube 2 may start conducting as soon as its anode voltage becomes positive. It does not have to wait until tube 1 stops. Similarly, tube 1 will now trail tube 2 if the initiating switch is opened. The operation of tubes 1 and 2 may be initiated by closing the initiating switch but cannot be stopped by opening the switch.

If the self-rectified bias component of the grid voltage applied to tube 3 has a very short time constant, tube 3 will trail tube 2 immediately. As shown, the selfrectified bias of tube 3 is adjustable (C_{t} and R_{t}) and, for the case of the waveform sketch, is set to provide a grid voltage as shown by the curve designated E_{1}, timing grid voltage. During the next positive half cycle of anode voltage on tube 3 after tube 2 starts conducting, the grid of tube 3 is held negative by the negative d-c timing voltage and tube 3 does not trail tube 2 immediately. After a time delay, shown as set for one cycle, the timing voltage decays sufficiently to allow the grid of tube 3 to become positive at point P and tube 3 conducts during the next positive half cycle of anode voltage. The time constant of the timing circuit may be adjusted so that tube 3 will not start conducting until several cycles after tube 2 starts conducting.

Tube 3 has a neutralizing trans-
former in its anode circuit. This transformer is equivalent to a reactor having a secondary winding. Transformer T_{3} secondary voltages are shown by the curve designated E_{375}. One secondary of transformer T_{3} feeds an impulse of this voltage back into the grid circuit of tube 2 to neutralize the positive grid-voltage component derived from the carry-over of tube 1 . Tube 2 cannot trail tube 1 during the next half cycle after tube 3 conducts.

If the initiating switch has previously been opened, the nonconduction of tube 2 will cause tubes 1 and 3 to stop and the circuit comes to rest. If the initiating switch has been maintained closed, tube 1 will continue to conduct and the nonconduction of tube 2 will stop only tube 3. During the half cycle that tube 2 does not conduct, timing capacitor C_{t} recharges by grid current from tube 3. During the next half cycle, tube 3 does not conduct. Then tube 2 starts conducting again and thus reinitiates the operation. Tube 3 operates periodically during every third cycle of its positive anode voltage. The R-C circuit may be adjusted for several cycles between conductions.

The circuit may be extended so that the anode potential of tube 3 triggers periodically other tubes connected similarly, or a secondary

FIG. 8-Basic timing circuit used in low-frequency timing section
of transformer T_{3} may be used to initiate or cause certain control functions to be performed in other circuits. Other patterns of signal voltage may be supplied by providing transformers in the anode circuits of tubes 1 and 2. By the use of these circuit operating principles, almost any kind of sequencing or timing-voltage pattern based on 60 -cycle control operation can be provided. This will be evident during the explanation of the l-f timer operation.

It should be observed that this circuit operation is synchronous. That is, the initiating tube 2 and timing tube 3 must start conducting at the beginning of their positive half cycles of anode voltage or they cannot conduct at all. This is because the grid voltage abruptly goes negative soon after the anode voltage becomes positive.

Low-Frequency Timer

Figure 9A shows the circuits of the l-f timer, including sequence control tubes 4 and 5 that are directly associated with l-f operation. Figure 9B shows the time relationship of the control-tube operations. This is an $8-4 / 7$ cycle welding frequency having 3-cycle pulse time and one-half cycle cool time.
With reference to Fig. 9A and 9B, the l-f circuit operation is as follows: At the end of the sequence squeeze time, when the welder electrodes have closed on the work, tubes 4 and 5 operate simultaneously. Tube 5 initiates the weld interval. Tube 4 initiates the positive l-f half cycle of welding current by triggering the $+A$ exciter tube and initiates l-f timing by triggering tube 11. Tube 4 also prevents weld-interval timer-tube 6 from trailing tube 5 in case the weld-interval R -C timing circuit times out during the l-f cycle.
Because of the inherent $\frac{1}{2}$-cycle delay of one tube trailing another, there is one-cycle inherent delay between tubes 4 and 12. For an $8-4 / 7$ cycle welding frequency having 3 cycles of $60-\mathrm{cps}$ pulse time, three times around on the three phases, the inherent one-cycle delay between tubes 4 and 12 is supplemented with a two-cycle R-C delay designated as pulse time No. 1. This allows the $+A$ exciter tube to

FIG. 9-Low-frequency timing circuit
operate three times in succession, as shown by the waveform sketch Fig. 9C. Tube 12 then conducts and stops the $+A$ exciter tube from trailing tube 4. This operation, including inversion operation which originates in the exciter unit, terminates the positive l-f half cycle of welding current.

For minimum permissible interpulse time of $\frac{1}{2}$ cycle (60 cps) between l-f half cycles, there must be one full $60-\mathrm{cps}$ interval between conductions of the $+A$ and $-A$ exciter tubes. The $-A$ exciter tube must be turned on for the pulse time of 3 cycles of 60 cps . The voltage patterns for three successive conductions of the $+A$ exciter tube and three successive conductions of the $-A$ exciter tube must be antipolar. Tube 13 is allowed to trail tube 12 without time delay and the $-A$ exciter tube trails tube 13 to start the negative l-f half cycle of welding current.

A one-cycle R-C delay between tubes 13 and 14 allows the $-A$ exciter tube to conduct once before tube 14 conducts, and this exciter tube trails tube 13 a second time while tube 14 conducts. Tube 15 trails tube 14 without time delay. Tube 15, by energizing transformer T_{0}, stops tubes 4,12 and 14
from trailing their respective leading tubes but the $-A$ exciter tube trails tube 13 for the third time (three times around on three-phase operation).

Tubes 11, 13 and 15 that were trailing tubes 4,12 and 14 are stopped. None of these tubes conduct during the next cycle (of 60 cps) after tube 15 operates. The weld-interval initiating tube 5 in the sequence control continues to operate. Tube 4, stopped by tube 15, gives tube 6 a chance to operate if the weld-interval R - C timing circuit has timed out. This completes one cycle of l-f operation.

If the weld interval has not elapsed to limit the l-f welding current to one l-f cycle, tube 6 will not conduct to keep transformer T_{B} energized after it has been energized for one-half cycle by tube 15 . Since tube 6 does not respond, tube 4 starts conducting again and reinitiates the next l-f cycle of welding current and tube 4 again blocks tube 6 from operating during the next l-f cycle.

When the weld-interval R-C circuit does time out, tube 4 holds off the operation of tube 6 until the l-f cycle is completed. When the weld interval has elapsed during the l-f cycle and when tube 15 stops tube 4
at the end of the 1-f cycle, weldinterval timer-tube 6 is released to keep T_{0} energized. The anode of tube 6 , which is connected to the anode of tube 15 , prevents tube 4 from reinitiating any more l-f cycles of welding current. Therefore the welding transformer is energized for full l-f cycles. Tube 16 is required to terminate the negative l-f half cycle when the interpulse time exceeds $1 \frac{1}{2}$ cycles.

Tube 6 also initiates the holdtime during which the welder electrodes remain closed with full pressure on the work while the weld is cooling. From the foregoing description of the l-f timing circuit operations, one may visualize the general scheme of providing the sequence control functions of squeeze, weld interval, hold and off periods by means of a group of similar interlocked component timing circuits.

Bibliography

[^2]By B, G. WELBY
Development Engineer
Computer Group
Fierranti Ltd.,
Moston, England

Tape reader, with lamp housing lifted to show feed mechanism

Intermittent-Feed

Computer Tape Reader

Five-phototube input system for digital computers reads teleprinter punched tape at speeds up to 200 five-hole characters per second. Intermittent tape drive uses clutch and brake solenoids fed by signal derived from sixth phototube located under tape sprocket holes

WHile the storage and arithmetic units of a digtal computer are extremely rapid in operation, a limit to the overall speed of computation is often set by the comparatively slow speed of the in-put-output system.

With this point in mind, the tape reader described has been ceveloped for use in the input system of the Ferranti Digital Computer (Mark I), the first of which was installed in the University of Manchester, Manchester, England, and the second in the University of Toronto. Five-unit teleprinter tape is used and the tape reader is capable of operation at speeds up to 200
characters per second. One character is represented by a single row of holes across the tape. Provision is made for the tape to be stopped at each character and, after reading has been completed, to be moved forward to bring the next character into place.

The present tape reader adopts a friction drive arrangement in which the tape is driven by means of a drum held firmly against the tape by a pair of spring-loaded rollers. Wear on the tape through the use of such a drive is negligible. A tape which becomes twisted or is otherwise prevented from passing through the tape reader in a nor-
mal manner is able to slip in the mechanism without being torn. A loop of tape has been passed through the tape reader 10,000 times without signs of wear. Splicing of the tape is not a critical operation. A photoelectric reading system has been adopted, which obviates the necessity for metallic contacts and uses the sprocket holes in the tape in a rapid and efficient tape-positioning arrangement.

The general arrangement of the drive mechanism is indicated in Fig. 1. A differential gear is driven by a continuously running induction motor. To one of the output shafts of the gear is attached the

Six phototubes of system are in foreground, with cathode follower stages and power transformer behind. Optical system is in main housing, not shown
tape-feed drum and a drum known as the brake drum. To the second output shaft of the gear is connected another drum known as the clutch drum. With this arrangement, the sum of the velocities of the two output shafts is equal in value to twice the velocity of the input shaft. If one of the output shafts is held stationary, the other will achieve a velocity equal to twice that of the imput shaft. Rotation of the tape-feed drum is controlled by electromagnetically operated brakes on the brake drum and clutch drum.

The braking mechanism is illustrated in Fig. 2. In the off position, the brake shoes are held lightly against the drum and only a slight movement of the armatures is required for braking. The greater part of the force produced by energizing the electromagnets is thus
utilized in forcing the brake shoes against the drum. Since each armature is held close to the core of its electromagnet, a small air gap is possible, giving a high gap flux and economy in magnetizing current.

Brake Design

The air gap is of the order of 0.002 inch in the brake drum system and 0.01 inch in the clutch drum. The armatures are made of soft iron and are designed to have a rigid construction with low inertia. The core is built of Radiometal laminations. The coils have an inductance of $2 \frac{1}{2}$ henrys and a resistance of 80 ohms .

A pull of ${ }^{\frac{3}{3}} \mathrm{lb}$ is exerted by each electromagnet on its armature and the measured braking force at each brake shoe is $1 \frac{1}{2} \mathrm{lb}$; with a coefficient of friction estimated at 0.4
this results in an effective braking force on each drum of 1.2 bb and a braking torque of $0.48 \mathrm{lb}-\mathrm{in}$. The drums are constructed of stainless steel since a plated surface would, when worn, tend to produce a nonuniform surface. A resin-bonded fabric (Tufnol) has been used for the brake shoes and has shown no sign of wear after many months of service.

The two braking systems are controlled by a bistable triggered circuit, the state of which decides whethar the brake or the clutch will be operated upon. The inertia of the moving parts has been kept as low as possible in order that rapid and efficient braking and acceleration of the tape can be obtained. The inertia of the two drums and the associated moving parts is calculated to be $0.015 \mathrm{lb}-\mathrm{in} .^{2}$ Applica-

FIG. 1-Tape feed mechanism

FIG. 2-Arrangement of brake

FIG. 3-Electronic control system for tape feed

FIG. 4-Solenoid control circuit
tion of braking torque stops the drum in 0.004 sec . This represents a displacement of 0.04 in . of the tape. Due to delay in operation of the electromagnet, a further 0.005 in. displacement must be taken into account. If braking is commenced when a character is just entering the reading position, the tape will be stopped while the character is located centrally in the reading position. From a stationary position, full speed may be reached and the next character made available for reading within six milliseconds.

Tape-Feed Control System

One system of tape feed which has been devised is indicated in Fig. 3. Sprocket holes in the tape are used to control the braking systems. Entry of a character into the reading position over the masking plate holes initiates a tape-locating signal which operates the brake drum system. The signal is applied to a squaring circuit and thence to a cathode follower whose output is connected to one input of the triggered circuit. By this means, the locating signal produces a trigger pulse at A which applies the appropriate output of the triggered circuit to the brake-drum electromagnet circuits.

A read signal will be given to the external circuits only when two negative-going signals are applied simultaneously to the inputs of the coincidence gate at P and Q. If for any particular character the tape does not stop in the correct position, the signal at P will no longer be present and, although the triggered circuit will be set, no read

FIG. 5-Photoelectric reading stage
signal will be transmitted. When reading is completed, a signal is applied to B, resetting the triggered circuit and causing the clutch mechanism to operate and the tape to move forward.

It is essential that the buildup of the current in the electromagnet coils be as rapid as possible. To insure this, a large voltage must be applied initially across the coils. Referring to Fig. 4, the grid of V_{1} has a large negative potential in the absence of a signal from the triggered circuit. When a braking signal is applied, the grid potential of V_{1} quickly becomes zero. This action will result in a rapid fall of anode potential and, since point P is initially at plate supply potential, there is applied across the coil a sudden large change of voltage. Due to the presence of C_{1}, the voltage across the coil tends to be maintained and there is a consequent rapid rate of increase of current in the coil. The time taken for the current to build up to its maximum value is 0.5 millisecond. When V_{1} becomes cut off again, in the absence of a signal, C_{2} limits the rate of decay of current through the coil and hence limits the back emf.

Photoelectric Circuits

Six phototubes are provided in the tape reader, each being connected to a cathode follower. Five of these phototubes are associated with the positions of the five digits of a character on the tape. The sixth or reader location phototube is associated with the sprocket holes and is used to control the movement of the tape.

FIG. 6-Optical system of reader

A typical phototube circuit is shown in Fig. 5 along with the optical system, which uses a single 36 -watt prefocussed lamp. By means of the pinhole projection principle, images of the cylindrical (coiled) filament of the lamp are formed by the holes in the tape so as to cover the entire area of the appropriate phototube cathodes.

Blue-sensitive phototubes have been found most suitable for this tape reader. With tubes having a sensitivity of 45 ua per lumen, a signal change of at least 12 volts is available due to the presence of light through a hole.

The tape-reader unit comprises the tape-feed mechanism, the optical projection system and the phototube circuits together with their cathode followers. Provision is made for viewing the tape in the reading position. The tape may be left stationary in the tape reader for long periods without deterioration by heat from the lamp.

Although the tape reader was designed for a specific purpose, it should be readily adaptable for many other applications of a similar nature and in telecommunications. A model of this tape reader has been developed to accommodate either 5 -unit or 7 -unit teleprinter tape.

The author wishes to express his thanks to the following members of the Computer Group at Ferranti Ltd.: B. W. Pollard for his guidance and helpful suggestions, G. Fox for his help in the production design of the tape reader and D. F. Chatt for his assistance in the preparation of this article.

Ultrasonic Recorder

Torpedo-borne recorder continuously measures running depth by transit time of ultrasonic pulse reflected from ocean's surface. Lock-out bars false echoes arising from scattering. Output level holds when echoes are lost due to roll and pitch

By G.E.GOODELL
Naval Ordnance Laboratory
White Oak, Maryland

INSTANTANEOUS running-depth of a torpedo may be found by recording transit time of ultrasonic pulses reflected by the air-water interface at the surface of the ocean. An ultrasonic transmitter and receiver with necessary timing circuits is mounted in the exercise
head of the torpedo as shown in Fig. 1. An output voltage, proportional to the torpedo's running depth is fed to an external recording device located immediately forward of the battery compartment. The exercise head is a dummy head with which the torpedo

FIG. I-Test torpedo fitted with exercise head. Cut-away shows depth recorder in place. Strip-chart recorder is forward of battery compartment

How Deep Does A Torpedo Run?

Study of torpedo performance on a test range requires knowledge of the torpedo's instantaneous depth throughout its run. The hydrostat, generally used for torpedo-depth measurement, operates much like an aneroid altimeter and responds only to average change of a rapid fluctuation.

The depth sounder responds to rapid fluctuations but indicates depth with respect to the ocean floor, a poor reference surface for torpedo-depth measurement. In deep water, the ocean floor may be out of range of a sounder suitable for installation in a torpedo.

The ocean's surface has been chosen as reference plane for torpedo-depth measurement despite surface irregularities that produce an inherently poor reflecting surface. Naval Ordnance Laboratory has developed an ultrasonic echo-ranging instrument that uses this air-water interface as a reflector.
is fitted for testing and practice as contrasted to the war head that packs the torpedo's explosive Sunday punch.

The photographs show the acoustic transducer mounted on the torpedo's dorsal surface and the ultra-sonic-recorder chassis withdrawn from its cylindrical housing. The recorder operates on a carrier frequency of 400 kc .

Reflection Problems

Air-water boundary, used as a reflector, is neither of regular shape nor unchanging with time. Variability of surface waves, travel of the torpedo, and large-scale temperature stratifications cause variations in pulse transit time. This appears as jitter in the return pulse position and an apparent fluctuation in depth.

Return-pulse amplitude fluctuation is also troublesome. This is caused by factors having to do with the propagation of sound in water and factors characterizing reflective properties of the air-water interface. The fluctuation in intensity, at a given point, is due to the reinforcement or cancellation of many signals arriving from different reflectors.
The effects of wave troughs upon echoes can be compared to dispersion of light by a convex mirror, while wave peaks act as a concave mirror. The net effect causes loss of echo. Other factors that affect

Gages Torpedo Depth

Depth recorder chassis is mounted in watertight cylinder with acoustic transducer forming top of can

Acoustic transducer is located on torpedo's dorsal surface
seriously return echo detection are noise properties of vehicle, pitch and roll of vehicle and directivity of the transducer.

Figure 2 is a block diagram of the depth recorder. Pulse width and repetition interval are set by a highly unbalanced free-running multivibrator. The ratio of repetition interval to pulse width is 50 to 1 . Absolute repetition time determines the maximum depth that can be recorded while pulse width determines both minimum recordable depth and the required amplifier bandpass for most consistent echo detection.

The multivibrator provides three separate signals for recorder actuation. One signal turns on the gated oscillator. Coincident with this, a second signal turns off the tuned r-f amplifier and blocks the thyratron shield grid. The third signal, corresponding to the leading edge of the other pulses, sets the EcclesJordan trigger circuit in the on state.

Transmitter

The r-f pulse generated by the gated oscillator excites a tuned power amplifier, which in turn drives the acoustic transducer. The output of the power amplifier is also applied, through a diode limiter, to the input of the tuned r-f amplifiers. However the limiting action of the diodes and the off gate applied to the second stage
of the tuned amplifier prevent signals from appearing at the amplifier output during the transmit interval.

Receiver

After an unlocking interval, which follows the transmitted pulse, the tuned amplifiers become active and await the echo signal from the transducer. Unlocking time is controlled by the time constant $\mathrm{R}_{1} \mathrm{C}_{1}$ (Fig. 3). After an interval corresponding to the time required for the
pulse to travel to the air-water surface and return, an echo signal will appear. Since the signal is, in general, smaller in amplitude than the transmitted pulse, limiting by the diodes is practically nonexistent. The echo is amplified and the negative envelope obtained by a german-ium-diode detector. The pulse is further amplified and inverted in a triode amplifier. Figure 4 illustrates waveforms present at various points in the circuit.

Because of the irregular char-

FIG. 2-Depth recorder employs ultrasonic transceiver. Variable-width pulse from Eccles-Jordan measures transit time of ultrasonic pulse reflected at air-water interface

FIG. 3-Free-running multivibrator keys transmitter oscillator and Eccles-Jordan while disabling receiver and pulse shaper during main bang. Shortest-path echo fires thyratron to turn off Eccles-Jordan
acter of the air-water interface, there are many points on the surface that reflect signals and no single echo signal exists. The main or shortest-path echo is followed by a series of irregular echoes of diminishing amplitude as shown in the photograph. To prevent these false echoes from activating the recorder circuits a lock-out device is employed following the pulse amplifier.

The leading edge of the shortestpath echo fires a thyratron that immediately prevents any false echoes from effecting the timing circuits for a period determined by the time constant $R_{2} C_{2}$, in Fig. 3. This time constant is normally adjusted for 20 percent of the repetition interval since experience has shown that any false echoes appearing after that time are of such small amplitude as to cause no malfunction of the recorder.

The trigger spike from the thyratron circuit returns the EcclesJordan circuit to the off state. Thus
a square wave of constant height whose width is proportional to depth is generated. An increase in depth results in a square wave of increasing width. The EcclesJordan is always in the correct state at the start of each pulserepetition interval even if no echoes
were received during the previous interval.

Integrated Output

To utilize the intelligence in the square wave it must be converted into depth indication that can be recorded for later analysis. One

FIG. 4-Waveforms illustrate how multivibrator imitiates recorder operation. Ex. ponential decay of pulse provides 20 -millisecond lock-out of spurious echoes
method is to integrate the square wave to produce a d-c potential proportional to depth. This signal could then actuate a conventional strip-chart recorder. However, if loss of echo occurs, there will be a sudden increase in apparent depth. However, if it is known that the torpedo cannot possibly change depth as suddenly as might be indicated, and if loss of echo occurs infrequently, this error can be resolved.

Another method that more clearly indicates malfunction of the recorder is to record the square wave on moving film. Any loss of echo is indicated immediately by a sudden widening of the square wave that returns to normal width within the next frame. This system is unsatisfactory from the standpoint of record analysis in that it requires point-by-point scaling of depth indications on a considerable quantity of film.

Boxcar Demodulator

A method that shows promise of accurate depth recording utilizes a modified boxcar demodulator. Figure 5 shows the operation of this circuit. A capacitor, C_{1}, is charged linearly in each pulse-repetition interval from a potential $V=V_{0}$ at t_{0} $=0$ to V at time t, where it is clamped until the end of the interval. Time $t-t_{0}$ corresponds to pulse transit time. At the end of the pulse-repetition interval, potential V is transferred to another ca-
pacitor, C_{2}, whose potential remains clamped throughout the next repetition interval while C_{1} is returned to V_{0}. In the event that C_{1} charges to \bar{V} (maximum value of V) indicating loss of echo, C_{2} maintains the potential determined during the preceding interval, and C_{1} is again discharged to V_{0}.

Extrapolation is effected over a repetition interval for which no new information is available. This type of demodulation also provides filter action that essentially suppresses the pulse-repetition frequency and harmonics.

Demodulator requirements could be simplified if loss of echo could be completely eliminated. This is not

FIG. 6-Transducer sacrifices directivity to reduce loss of echo due to torpedo roll and pitch
possible, although, the probability of echo detection would be much enhanced by reducing the threshold setting of the thyratron. In this way more complete phase cancellation of echoes from two or more reflecting points would be required if malfunction of the recorder were to occur. However there is a limit

FIG. 5-Boxcar demodulator holds Eccles-Jordan output during repetition intervals in which echo is lost

False-echo return due to scattering at air-water interface. Lock-out bars all but shortest-path echo
to sensitivity increase that can be tolerated. This limit is set by the noise properties of the vehicle in which the recorder is carried.

Some increase in sensitivity can be accomplished by narrowing the bandwidth of the tuned amplifiers thereby effectively filtering out a greater number of noise-frequency components. However the limit to the amount of bandwidth reduction that can be tolerated depends upon pulse rise time. Too narrow a bandwidth results in an excessive rise time and decreases accuracy of transit-time measurement. A compromise must therefore be reached between the noise rejection and sensitivity.

Transducer Directivity

If the directivity pattern of the transducer employed is too narrow, loss of echo may result from the absence of a wave-surface normal. This is shown in Fig. 5. Torpedo roll and pitch, shallowest depth of operation and, to some extent, maximum length and height of surface waves encountered are factors determining the required minimum transducer angular coverage. For depth determination below five feet in water having surface waves 10 feet long and 1.39 feet high, a total transducer angle of 100 deg appears adequate. Because of reduced transducer sensitivity near the outer fringes of the radiation pattern, a transducer having a 150 deg radiation pattern is employed.

Cathode-Ray Tube Plots

Transistor

FIG. 1-Transistor output characteristics. Schematic (B) shows common-base connection used in deriving curves for point-contact transistor (A) and junction type (C)

Either point-contact or junction transistors can be tested and new power transistors under development will be handled. Electrode and transfer characteristics, automatically displayed on oscilloscope, may be photographed to provide circuit-design data

By J. KURSHAW, R. D, LOHMAN and G. B. HERZOG

David Sarnoff Research Center
RCA Laboratories Division
Princeton, N. J.

TRANSISTOR CHARACTERISTICS are displayed automatically on a cathode-ray oscilloscope by the transistor-curve tracer to be described. The instrument accepts either point-contact or junction transistors. Both sweep and bias sources are designed to accommodate transistors of greater power-handling ability than those currently available although data gathering in the microwatt range
was also a design objective.
Nine current ranges are available with full-scale deflections from 0.1 milliampere to one ampere. Fullscale sweep voltage ranges from 0.1 to 300 volts are provided with a 1,000 -volt sweep range available at reduced current. The 1,000 -volt sweep is also useful for determining peak back voltage on rectifiers.

Constant-current bias is provided in steps from 0.1 microampere to
one ampere and constant-voltage bias is provided in steps from 0.1 millivolt to 10 volts.

The photograph shows a frontpanel view of the transistor-curve tracer, which consists of four separate chassis: oscilloscope, sweep chassis, bias and d-c supplies. The transistor is connected to the receptacles at the right of the sweep chassis and its characteristics displayed on the oscilloscope face of

Curves

the chassis below.
Either all four quadrants of a volt-ampere coordinate system can be displayed simultaneously or the entire scope face may be used to display one quadrant. Each of eleven curves in a family is automatically traced in sequence as the running parameter of the system is stepped. The long-persistance crt screen gives continuous presentation suitable for photographing and the coordinate axes are displayed with superimposed calibrations.

Transistor Characteristics

Some transistor characteristic curves obtained by photographing the scope illustrate the versatility of the curve tracer. Figure 1A is a family of curves showing collector characteristics of a point-contact transistor operated with commonbase connection shown in Fig. 1B. A similar family of curves for a junction transistor is shown in Fig. 1 C . In both cases, the emitter current, I_{c}, is varied in discrete steps to give the family of curves. Bias range for the point-contact transistor is one-third that of the junction transistor. The junction transistor's unity current gain may be contrasted with the greater current gain of the point-contact transistor.

To obtain maximum use of the scope face only one quadrant is displayed. For convenient comparison with other characteristics, the curves are shown in the first quadrant although both abcissa and ordinate are negative as indicated.

Figure 2 shows some characteristics of junction transistors with common emitter connection shown in Fig. 2B. Collector characteristics, Fig. 2A and C, are obtained as the base current is stepped from zero to -30μ. Figure 2A shows one quadrant only while Fig. 2C

Curve tracer consists of four separate chassis. Transistor is connected to triple receptacle at right of sweep chassis: characteristics are displayed on scope face
is a four-quadrant display.
Transfer characteristics of the junction transistor are shown in Fig. 2D where collector current is plotted against base voltage as emitter current is varied from zero to -30 microamperes in three-microampere steps.

Requirements

A transistor is a three-terminal device whose behavior may be described completely by two equations relating its electrode voltages and currents. In functional notation, $V_{1}=R_{1}\left(I_{1}, I_{2}\right)$ and $V_{2}=R_{2}\left(I_{1}, I_{2}\right)$ where voltages and currents are defined in Figs. 1B and 2B. Since the two functions R_{1} and R_{2} are not readily represented analytically over extended ranges of their argument, it is desirable to display them graphically. The information contained in these graphs can then be applied to design problems in which the transistor is a circuit element.

This information may be displayed with a minimum number of curves by plotting feedback transfer characteristic (I_{2} vs V_{1}, with I_{1} as a running parameter), and outputelectrode characteristic (I_{2} vs V_{2}, with I_{1} as a running parameter).

The first set can be used to determine input power requirements and feedback effects. The second set is useful in deriving output characteristics such as power delivered to a load, distortion, and efficiency. The slopes of these curves, as well as of corresponding curves with I_{2} as the parameter, also furnish information useful in analyzing small-signal, low-frequency behavior of a transistor. For point-contact transistors, it is convenient to use the base as the common connection and let 1 and 2 stand for emitter and collector (Fig. 1B). For simple junction transistors, base and collector are often preferred as 1 and 2 , with

FIG. 2-Collector and transfer characteristics for junction transistor with commonemitter connection (B). Collector curves are shown for negative current and voltage (A) and for all quadrants of volt-ampere coordinate system
the common (Fig. 2B) emitter circuit.

Visual representation of the functions on a d-c oscilloscope may be obtained by biasing one electrode with constant current and sweeping the other with alternating voltage. If, after each trace, the bias is stepped to a new value, an entire family of characteristics may be displayed sequentially. If the oscilloscope tube has long persistence, the display will appear continuous. The equipment to be described consists of multirange sweeping and biasing circuits with provisions for single and multiple displays.
Other families of characteristics may also be desired. For example, $I_{1}=G_{1}\left(V_{1}, V_{2}\right)$ and $I_{2}=G_{2}\left(V_{1}, V_{2}\right)$ are equivalent to the equations previously given and sometimes more useful. Their representation requires constant-voltage bias which is also provided.

Sweep Circuits

A block diagram of the curve tracer is shown in Fig. 3. There is a sweep power supply (Fig. 4) consisting of a variable-output transformer and one of three additional transformers, which provide a continuous range of alternating sweep voltages from 0 to 1,000 volts. The maximum current available is one ampere at zero to nine volts or zero to 300 volts and 0.1 ampere at zero to 1,000 volts. A rectifier is included in series with the transformers to permit unidirectional sweep. Switch S_{2} selects either an electrode or a transfer characteristic for display.

Positive-Current Bias

The transistor under test can be supplied with constant-current bias from a current-regulated source. Figure 5A shows a simplified schematic of the supply connected to deliver positive current with respect to ground to the load R_{o}. To keep one side of R_{o} at ground, the rest of the circuit must have a different common return point as shown. The circuit is almost the same as a conventional degenerative voltage regulator.

However, to maintain constant current in the load R_{n}, the load is connected in series with the feedback resistor R_{f}, rather than in par-
allel with it, A reference voltage, V_{R}, is applied to the grid of V_{1}, while a voltage proportional to the load current I_{0} is applied to the g.id of V_{2}. The output at the plate of V_{g} is proportional to $V_{R}-I_{o} R_{f}$ and appears at the grid of V_{3} after amplification by the d-c amplifier. The impedance of V_{3} thus changes until load current, supplied by a separate, unregulated supply, assumes a value very nearly equal to V_{R} / R_{t}. The differential output resistance of the regulator is approximately

$$
r_{\text {out }}=r_{p s}+R_{f}\left(1+\frac{\mu_{1} \mu_{3} A R_{1}}{2 r_{p 1}+R_{1}}\right)
$$

where: $\mu_{1}=$ amplification factor of V_{1} or $V_{2}, r_{p 1}=$ plate resistance of V_{1} or $V_{2,}, \mu_{3}=$ amplification factor of $V_{3}, r_{p 3}=$ plate resistance of V_{3}, $A=$ gain of the d-c amplifier and $R_{1}=$ load resistance for V_{2}.

The extremely high output impedance results in almost constant output current over a large range of load resistance R_{o}. Full-scale current ranges of $0.1,0.3,1,3,10$, $30,100,300$ and 1,000 milliamperes are provided by switching R_{f} and V_{3}, Within any one range, the current is set by varying V_{R}, which has a maximum value of 10 volts. Thus, the voltage fed back to V_{2} and the grid bias required for V_{3} can be kept within reasonable limits. The voltage required across the load $R_{\text {o }}$ at any current I_{o} depends on R_{o}. In practice, this output voltage is limited to that which corresponds to the intersection of the load line ($R_{f}+R_{o}$) and the zero grid-bias line on the plate characteristic of V_{3}. Increasing either I_{o} or R_{0} beyond these values would require a positive grid-bias on V_{3} which is not a suitable operating condition. About 50 volts are available on all ranges. Automatic over-voltage protection is provided since the regulator saturates at higher voltages under conditions of high I_{0} and R_{0}.

Negative-Current Bias

Figure 3 shows that the circuit has been arranged to permit the transistor to have one terminal connected to oscilloscope ground. It is therefore necessary that the feedback voltage across R_{f} be derived with respect to a common point other than ground. This common

FlG. 3-Block diagram of curve tracer. Either electrode or transfer characteristics may be displayed. Sweep voltage is applied to one electrode while stepped increments of bias are applied to the other

FIG. 4-Sweep voltage is obtained from transformers. Rectifiers select proper portion of alternating voltage waveform to produce desired display
point must be maintained throughout the d-c amplifier and the reference stage. Capacitance C_{1} (shown dotted in Fig. 5) between common and ground, together with R_{f} and R_{0}, form a closed loop around which objectionable hum currents may be induced. As long as these currents pass through both R_{r} and R_{o}, they furnish an error signal to the regulator and are, for the most part. suppressed. However, the regulator is ineffective in reducing these currents if either ground or common is placed at the junction of R 。 and R_{r}. These considerations lead to the circuit of Fig. 5B when negative bias currents are required. With suitable switching and inversion of the reference voltage V_{R}, the
circuit operation is equivalent to that giving positive bias current.

Zero output current is obtained when V_{3} is biased to cutoff. However, with the positive output connection of Fig. 5A, hum currents may still flow through R_{e} and R_{f} while V_{s} remains inactive. By bleeding current through V_{3} by means of V_{a} and R_{a}, conduction is maintained even at zero load-current in R_{o} and R_{f}. Hum currents are then suppressed in the usual manner. A similar bleeder is desirable for the negative output connection as shown in Fig. 5B, to help maintain linearity near zero load current conditions.

To supply constant-voltage bias for a transistor imposes problems
not normally encountered in electronic voltage regulator design. For example, the emitter input impedance of a transistor may be tens of ohms and the maximum voltage required less than one volt.

Constant-Voltage Bias

The simplest way to provide regulated voltage to such a load is to take the regulated current from the bias supply described above and feed it into a fixed low resistance shunting the load. Thus, a one-ohm resistor adds voltage ranges from one millivolt to one volt at one-ohm internal impedance. To provide a 10 -volt range, a 10 -ohm resistor is also made available. Higher voltage ranges are not provided and would best be obtained directly from a conventional voltage regulator. An adjustable offset voltage, derived from a battery, can be added to the regulated bias voltage and is useful for automatic operation.

Microampere Bias Supply

Since junction transistors are commonly operated in a base input circuit, it is desirable to take characteristic curves with base current

FIG. 6-Siaircase generator steps bias current automatically to display family of transistor characteristics
as parameter. With transistors having a low leakage current and current gain near unity, the total bias tange of interest may be only a few microamperes. The current regulator already described cannot readily be arranged to provide such low currents because conventional tubes used for V_{3} in Fig. 5 are not suited to the task. However, for these. low currents, the direct method of using a voltage in series

FIG. 5-Current regulator supplies either positive or negative constant-current bias to transistor's unswept terminal
with a high resistance is especially suitable. The voltage is obtained as previously described. Ten volts are used in series with resistors varying from 10 megohms to 10,000 ohms to give microampere ranges from one to 1,000 . An adjustable offset current is obtained here by adding a battery-derived voltage to that supplied by the electronic regulator.

Step Generator

A family of curves may be displayed sequentially if the bias current is stepped after each sweeping trace. The current steps are obtained by causing the voltage V_{k} to have a staircase waveform. The circuit for providing such a staircase is shown in Fig. 6. The charging tube V_{4} is normally biased below cutoff. Sharp pulses at the input, derived from alternate half cycles of line voltage, drive the grid slightly positive and cause a charge to flow into the capacitance, C_{2}. An analysis of circuit operation shows that the necessary conditions for equal steps are readily met.

The staircase is applied to the grid of the discharge tube, V_{5}, a modified blocking oscillator biased below cutoff. The steps continue to build up until the blocking oscillator fires. The resulting grid current then discharges C_{2} and allows the cycle to repeat.

The electrode connections used in V_{1} are unconventional, but were determined empirically for best performance.

Transformers with an electro-

FIG. 7-Transistar-curve tracer implements study of collector breakdown voltage under varying bias conditions
static shield are used to avoid spurious sweep voltages at low-level operation. Grounds to each chassis are made at a single point. The chassis are strapped together and to a good ground. Use of two phases of a three-phase distribution system simplifies phase-shifting in the blanking circuit. Precision resistors are used at all points that determine calibration of the pattern.

Construction Details

An interlock box fits over the test terminals to protect the transistor and the operator. This box must be in place to energize the $1-\mathrm{kv}$ sweep transformer. If the box is removed, a relay disconnects and shorts the bias supply. If this were not done, the bias source would increase to its maximum voltage under the open circuit condition before a transistor is plugged in. On inserting a transistor with the interlock operating, the single characteristic for zero bias current will be displayed. By closing a springreturn switch, the complete family of curves may be viewed without replacing the interlock box. The transistor is protected from transients when switches are set to different ranges or polarities by the use of short-circuiting-type switches.

The oscilloscope has been provided with an illuminated scale to permit photographing calibrated axes along with the characteristic curves in a single exposure. An en-
graved transparent plastic disk is fitted under the camera-mounting bezel and illuminated at its edges with small lamps. Intensity of illumination is set by a control on the oscilloscope panel.

As supplied, the X-amplifier of the oscilloscope has about one-tenth the gain of the Y-amplifier. To decrease the voltage drop required on the current sampling resistor R_{s} (Fig. 3), more X-amplifier gain is desirable for the current display. The X-amplifier of the oscilloscope is, therefore, replaced with one equivalent to the Y-amplifier. A new centering control for this amplifier has been added to the oscilloscope panel; the X-amplifier gain control was not brought out to the front panel since it is reset only during calibration. The decade Y attenuator of the oscilloscope, relabelled V-attenuator, is used in setting the voltage-scale calibration and has been supplemented with a three-times attenuator (Fig. 4).

Operation

The family of characteristics to be viewed is selected by choosing the terminal to be swept and utilized for the current deflection signal (terminal 1 or 2) and by choosing independently whether the same terminal is used for the voltage deflection (electrode characteristic) or the other one (transfer characteristic). Bias is automatically supplied to the unswept terminal.

The circuit can be adjusted for different numbers of bias steps, but

FIG. 8-Family of emitfer character. istics
ten steps plus zero are preferred for a simple relation between the maximum and the incremental values of bias. Manual control of the bias supplied by the current regulator is also provided. The panel meter then reads the bias current. Under automatic operation, this meter reads the average current, normally the value of the middle step, and can be used to monitor the stepping circuit. Meter damping has been added externally.

Accuracy is limited in practice by the linearity of the step generator. The steps can be checked on the oscilloscope and adjusted for d-c level, amplitude, and linearity. Stabilized power supplies with good long-time behavior are used to maintain adjustment of the step generator.

Studies of collector breakdown voltage and the influence of bias conditions are implemented by the curve tracer. In the collector family (Fig. 7A), breakdown voltages of the order of 80 volts are obtained when constant-current emitter bias is used. When the emitter is common and constant-current bias is applied to the base, the breakdown voltage is reduced to about 50 volts as shown in Fig. 7B.

Characteristics other than collector families are readily obtained. Figure 8 shows an emitter family with collector voltage as the parameter. All the curves are virtually coincident and appear as a single broad line. To obtain these curves, terminal 1 was swept rather than terminal 2.

Frequency Discriminator

Top view of narrow-band discriminator

Under-chassis view of modified circuit

DISCRIMINATION of narrow-band frequency modulation provides greater output when accomplished by a modified Foster-Seeley circuit than when a standard discriminator is used. The circuit, shown in Figure 1, is identical with the conventional circuit except for two component values.

Because of limited linearity, the circuit is not intended as a substitute for present circuits in general f-m work but for reception of fre-quency-shift-keyed teleprinter signals and narrow-band f-m voice communication. It has been possible to get solid copy on fsk teleprinter signals using only 150 cps shift. When measured at 425 cps shift, output of the modified discriminator exceeded by $2 \frac{1}{2}$ times that of the original circuit.

Foster-Seeley Circuit

Figures 2A, 2B and 2C illustrate vector voltages within the Foster-

Seeley circuit for conditions at center, below-center, and above-center frequency respectively. Figures 2D, 2 E and 2 F show resultant rectified voltages and total output voltage under the same conditions.

At center frequency, primary and secondary of T_{1} are both tuned to resonance. The voltage appearing across the secondary is 90 degrees out of phase with the primary voltage. The voltage across L is almost in phase with the primary voltage,

As the frequency shifts in either direction, the phase of the secondary voltage with respect to the primary voltage deviates from 90 degrees, either increasing or decreasing depending upon whether the frequency shifts upwards or downwards.

The voltage across L remains almost in phase with E_{p}, regardless of applied frequency. Thus, the only vector that changes with respect to E_{p} is E_{s}.

FIG. 1-Conventional discriminator is modified for narrow-band f-m by changing values of L and C to resonate above T_{1} primary

In the modified circuit, the values of L and C are changed such that their resonant frequency will be slightly above that of the primary of T_{1}, instead of much below as in the Foster-Seeley design. The $L C$ combination is tuned above center frequency an amount that will cause a difference of phase between E_{P} and E_{L} of 45 degrees.

Center Frequency

To get zero output at center frequency, the secondary of T_{1} must be tuned below center frequency enough to allow 45 degrees phase difference between E_{p} and E_{s}. This results in $90-\mathrm{deg}$ phase shift between E_{8} and E_{L}, the same as at center frequency in the unmodified circuit. The vectors are shown in Fig. 3A, 3B and 3C. The output voltages are shown in Fig. 3D, 3E and $3 F$.

Variable Output

As the applied frequency changes, the phase relations of E_{L} to E_{n} and E_{*} to E_{p} change equal amounts in opposite directions. Vectors E_{L} and E_{s} both move in opposite directions as the frequency is varied, while in the original circuit, only E_{s} moves.

For a given frequency shift, output from the modified circuit is about twice that of the FosterSeeley discriminator. The output is a linear function of frequency for about one percent of center frequency. When used at an i-f of 456

for Narrow-Band F-M

Modified discriminator provides increased output for narrow-band f-m and frequency-shift-keyed teleprinter signals. Schematically identical with Foster-Seeley design, circuit requires changes in values of two components and special tuning procedure

By E, C. MILLER

Chief Engineer KWEI
Weiser, Idaho
kc , it will work satisfactorily for a maximum shift of 4 kc . This is adequate for voice communication and more than enough for fsk teleprinter.

Tuning Procedure

It is not necessary that the phase shift of $L C$ and T_{1} both equal exactly 45 deg at center frequency, if the sum of their phase shifts equals 90 deg. This simplifies alignment and adjustment can be accomplished as follows:

Tune C_{1} to resonance at center frequency.

Tune $C_{\text {a }}$ to resonance about one or two kilocycles below center frequency.

This can be done by setting C at minimum capacitance, applying the necessary signal to the input of the preceding i-f amplifier and measuring the di-c voltage at the output of the discriminator while tuning $C_{\text {e }}$ for maximum output voltage.

Finally, set the signal generator to center frequency, and adjust C for zero voltage at the discriminator output.

The circuit is now adjusted for phone work.

If a strong fsk signal is available, it should be tuned in and with the vertical plates of a scope connected to the discriminator output, C and C_{2} may be adjusted simultaneously until maximum deflection is obtained.

FIG. 2-Vector voltages, resultant rectified voltages and output voltages for standard discriminator

FIG. 3-Voltages for modified Foster-Seeley circuit show increased output for slight frequency deviation

New Developments in

FIG. 1-Conventional traveling-wave tube with low-noise gun operates at 500 volts beam potential

FIG. 2-Short tube uses folded-back antenna, bypass sleeve for input and collector for output coupling

PRactical utility of the travel-ing-wave tube ${ }^{2}$ as an amplifier above $3,000 \mathrm{mc}$ was questioned by some engineers following announcement in June 1946 of its development. Recent performance data of operational significance show that the traveling-wave tube is not only here to stay but is at present a factor of consequence in microwave systems design. Since the use of traveling-wave tubes can be divided naturally into considerations of low-level and high-level amplifiers, a description will first be given of research work leading to a very low-noise, low-voltage, input-stage amplifier at $3,000 \mathrm{mc}$. Comparisons are made with other types of microwave amplifiers. Next, operating data are given for low-voltage, medium-power amplifiers with fairly good efficiencies, intended for use in commercial microwave relaying at $2,000 \mathrm{mc}$. Mention will be
made of narrow-band types with filter-helix circuits, and of packaged designs.

Low-Noise Amplifier

In general, work in this field has been conditioned by the probable requirements of communications service. In the case of the inputstage amplifier, consideration must be given to the fact that the type 416A triode is available, which gives about $10-\mathrm{db}$ gain at microwaves with noise factors in the region of 14 db at $4,000 \mathrm{mc}$. Crystal mixers are in use that give noise factors of about 10 db . To compete fully, the twt must not only give greater bandwidth and gain, but also comparable noise factor, since this receiver characteristic greatly influences transmitter design.

For some time, attempts to reduce the noise factor of the helix-type twt below about 15 db met with no

FIG. 3-Cross section of the tube shown in Fig. 2 with coaxial input and output matching transformers
success. However, an extended series of analyses ${ }^{2}$ of shot noise in long electron beams indicated that the noise originating from a space-charge-limited cathode, had the aspect of a standing wave in space. with alternate minima and maxima of shot noise recurring axially along the beam. Analysis and experiments showed that if the helix in a conventional twt amplifier were so placed that the beam began to interact with the applied signal near a noise minimum, the noise factor of the tube would be improved. Furthermore, optimum electrode arrangements and voltages for guns were found that produce a low-noise beam.

Tube Constructions

Two typical low-noise travelingwave tube constructions are shown in Fig. 1 and 2. The new design of Fig. 2 is a shortened version of the tube design of Fig. 1. Its crosssection is shown in Fig. 3. The input coupling antenna and sleeve are folded back and the collector is used as the output coupling sleeve to reduce the tube length to a minimum.

Table I indicates relative performance data for the twt and competing types in the 3,000 -to- $4,000-$ mc range. It is noteworthy that the operating voltage of the twt has been brought down to a low level strongly recommended by systems engineers in the interest of economy, reliability and compactness of equipment.

Traveling-Wave Tubes

Continuing research on low-noise tubes shows promise of noise factors between 8 and 9 db at $3,000 \mathrm{mc}$ for wide-band amplifiers. Power amplifiers delivering several watts r-f output power at $2,000 \mathrm{mc}$ will make possible improved microwave radio-relay service

By W. J, DODDS, R. W, PETER and S. F, KAISEL*

RCA Laboratories Divisiom
Princeton, New Jersey

Analytical investigation of an electron gun such as that shown in Fig. 4 with three accelerating electrodes B, C and D indicated that the first and second electrodes B and C, have to be at very low potentials, and the distance $B-C$ has to be such that the noise current has a minimum at C, while the corresponding noise velocity fluctuations are a maximum at C as illustrated. Rapid acceleration of the beam up to helix potential at D reduces the velocity fluctuations considerably. Experimental tests on nine tubes of the type shown in Fig. 1 with this three-electrode low-noise gun yielded consistently low-noise factors.

There are some further basic requirements that have to be met in order to keep the noise factor at a minimum: (1) The emission should be space-charge limited over the entire cathode area. (2) No beam current (much less than one percent) should be intercepted in the gun or in the beginning of the helix. (3) No input signal power should be lost in the tube input region by reflection or attenuation. (4) No oscillations of any kind should exist in the tube.

Heavy Emission

The first requirement calls for a homogeneously emitting and wellactivated cathode. To obtain a smoothed beam from an oxide-

[^3]Table I-Microwave Performance Data

Tulse type	Frequency in me	Noise factor in db	$\begin{aligned} & \text { Gain } \\ & \text { in } \mathbf{d b} \end{aligned}$	Bandwidth in me	Plate voltage in volts
Traveling-Ware Tube.	3,000	8 to 9	≈ 20	200	500
Traveling-Wave Tube.	3,000	9 to 10	≈ 20	500	500
Triode (16A)	4,000	14 to 20	10	100	250
Crystal Mixer	4,000	8 to 15	-6 to -8	8	...

Table II-Traveling-Wave Tube vs Triode

Tube type	Frequency in me	$\begin{aligned} & \text { Gain } \\ & \text { in } \mathrm{db} \end{aligned}$	Power output. in watts	ciency in percent	Voltage in volts.
Traveling-Wave Tube.	2,000	10	1.5	14	350
Traveling-Wave Tube.	2,000	16	1.	16	600
Traveling-Wave Tube.	2,000	$\stackrel{0}{2}$	10	23	1, 100
Triode (${ }^{2} \mathrm{C} 39-\mathrm{A}$) . . .	2,000	3 to.	5	10	, 500

FIG. 4-Design principles employed in low-noise electron gun with three accelerating anodes

Table III-Filter Helix Tubes

Frequency	Gain	Power output	Enliciency	Noise figure in db	Voltage in volts
in me	${ }_{10}$	4.5	22.5		800
3,300	17	1/3	15		800
6,000	20				950
3,000	20			8	540
3,000	35			5	540

coated cathode, it was found necessary to have about ten times more emission current available than needed.

The second condition is extremely important as it can be computed that 1 percent current intercepted at the first helix turn will result in 10 db additional partition noise in the amplifier. The low-noise tubes quoted here have $0.096-\mathrm{in}$. insidediameter helices enclosing $0.035-\mathrm{in}$. minimum diameter beams. The maximum beam diameter depends mainly upon the magnetic focusing field. This helix-to-beam-diameter ratio was found to be a good compromise between low partition noise and a large gain factor.

To meet the last two requirements a new wide-band coax-tohelix transformer of the form shown in Fig. 3 was developed. It consists of a short resonator in which the electric field is concentrated in a gap. The helix antenna is placed into this gap and excited by the field. If its radiation resistance and the helix impedance are adjusted to be equal, a wide-band match is obtained. The wide-band character of the circuit is seen from Fig. 5, which shows the cold insertion loss and the gain of a tube of the type of Fig. 2 and 3. A useful frequency bandwidth of 30 percent is obtained.

The frequency dependence of the noise factor of two low-noise twit amplifiers with three-electrode guns is shown in Fig. 6. Both are lowvoltage tubes of the type shown in Fig. 1. The gun voltages were adjusted for best noise factor at 3,000 mc . A noise factor of less than 10 db was obtained over a frequency band between 2,800 and $3,300 \mathrm{mc}$ in tube I. A noise factor of less than 9 db was measured between 2,900 and $3,100 \mathrm{mc}$ in tube II. With the three-electrode low-noise gun of Fig. 6 it is possible to construct
an S-band microwave amplifier with a noise factor of less than 10 db and a gain in the order of 20 db over a ± 10-percent frequency band.

Noise Measurement

The noise-factor measurements were made with a gas discharge noise source ${ }^{3}$, which is the essential part of a continuously monitoring noise-factor meter described elsewhere. The absolute accuracy of this standard is within $\pm 0.5 \mathrm{db}$ as obtained by comparison with a hot waveguide, the relative probable error of the noise factor measuring system is less than $\pm 0.1 \mathrm{db}$.

Power-Amplifier Tubes

Another general application possible for the twt is as a microwave power output tube. In the regions

FIG. 5-Net gain and cold-insertion loss curves vary owing to imperfect match between helix and coaxial input and output lines

FIG. 6-Noise figures of two tubes as function of frequency
above 2,000 megacycles the gainbandwidth figure for triodes begins deteriorating. Ability of triodes to deliver sufficient power with long life and reliability is likewise compromised. The klystron suffers somewhat in that it is difficult to obtain large bandwidths consistent with adequate gain and efficiency, a major difficulty being the high voltages required.

It was felt that long life might well be achieved in the twit compared to the triode because of the fact that the cathode is practically isolated from the beam collector

FIG. 7-Medium-power tube compared wilh type 6L6
and less subject to contamination; the collector is not part of the r-f circuit and can be cooled more conveniently. No part of the r-f circuit need intercept direct current that would aggravate any heating due to signal currents. A typical specification for a relay system at 2,000 megacycles requires a power amplifier to deliver 5 watts or more with over $10-\mathrm{db}$ gain at a maximum voltage of 750 volts.

Since the present status of highlevel theory is quite unsatisfactory, a largely experimental approach was made to determine what could be done to satisfy this application. The data in Table II indicate some results obtained with experimental traveling-wave tubes as compared with triodes, in a relay system under development for use in the 1,750-to-2,250 mc band.

Figure 7 shows a traveling-wave power amplifier for operation in the vicinity of $2,000 \mathrm{mc}$, in comparison with a standard 6L6. The twet length in this case is only slightly greater than seven inches. The reduction in size from that of the usual tubes designed for this frequency and voltage has been effected by folding the input-coupling antenma back over the helix. Later designs have incorporated this fea-
ture in the coupling antennas at both ends of the helix.

Filter-Helix Tubes

In many applications the extreme bandwidth characteristics of the helix circuit is not utilized. This makes possible the use of a narrowband interaction circuit. Fundamentally, artificial attenuation is required in helix-type travelingwave tubes because of the difficulty in securing reflectionless helix terminations over the very wide amplification band of this type of tube. It is generally assumed that at some point in the helix amplification band, complete reflection will occur at one or both ends.

To prevent this reflection from resulting in regenerative oscillations, attenuation is introduced that exceeds the net gain of the tube. This condition automatically prevents oscillation at any other frequency for which the terminal reflections are large. If, instead of a uniform helix, another form of interaction circuit is used for which the phase velocity of the growing wave can be made to coincide with the electron-beam velocity over a narrow frequency range only, amplification can be limited to this narrow range. One need not, then, he concerned about large terminal reflections outside this range, since those waves are not amplified.

Because, as a rule, good matching is possible within limited frequency ranges, it now becomes possible greatly to reduce the artificial attenuation. In fact, it is often possible to depend entirely upon the unavoidable losses in the transmission structure to provide the attenuation needed since perfect match over a finite frequency band

FIG. 8-Internal structure gives filter characteristic
can never be achieved. Because circuits of the type desired, wherein the phase velocity is fairly uniform over a narrow frequency band and changes rapidly outside this band, behave like band-pass filters, tubes employing such structures have been designated filter-type tubes. Certain of their characteristics are listed in Table III.
Uniform transmission lines, which are wide band in performance, are distinguished from iterated filter networks, which are narrow band. The former has uniform impedance and the latter has localized repetitive changes in its impedance. This suggests that by introducing the feature of nonuniformity into a helix the desired goal of filter-type behavior can be achieved while retaining the advantages of the helix. Such a circuit has been designated a filter helix.

Various means of accomplishing this result suggest themselves. Figure 8 shows a helix loaded once in each turn with a capacitive element. In this structure the beam travels through the openings in the capacitive loading disks. Figure 9A shows a structure in which the objective is attained by coupling an external filter helix to a plain inner beam-interaction helix. By making changes in the outer helix, the range of operating frequencies can be selected. A filter-helix circuit can be made by introducing the repetitive impedance discontinuities as sudden changes in pitch shown in Fig. 9B. A low-level amplifier for $3,000 \mathrm{mc}$, made according to this principle, and utilizing the increased impedance characteristic of this structure, gave a noise factor slightly below 8 db at 20 db gain, and a noise factor slightly below 8.5 at 35 db gain.

An added advantage of filterhelix structures is that they can be considerably more rugged than the conventional helix designed for the same frequency. This is exemplified by the helix of Fig. 8, which was designed for a medium-power amplifier at $1,900 \mathrm{mc}$. When incorporated into a tube, 4.5 watts output was obtained with 22.5 -percent efficiency.

Figure 10 is a schematic phase velocity versus frequency characteristic for a filter helix. The operat-

FIG. 9-External filter helix (A) can be changed to select operating frequency of tube containing inner helix or impedance discontinuities can be introduced by changes in helix pitch (B)

FIG. 10-Phase velocity versus frequency for a filter helix
ing data given above are for region I (the first passband) although successful tests have been made in region II (the second passband).

Focusing Magnet

A necessary adjunct in the use of present traveling-wave tubes is a magnet to generate a focusing field for constraining the relatively long electron beams from striking the helix. An electromagnet is not attractive as a systems component because of its excessive size, weight and power consumption. Electronoptical data on the tube shown in Fig. 7, placed in a magnetron-type electromagnet with hollow pole pieces, indicate that permanent focusing magnets can be designed by standard procedures to permit packaging the twt in a manner analogous to the standard practice for radar magnetrons.

A portion of the work on the low-noise amplifier was done under the sponsorship of the Signal Corps under Contract No. DA36-039-sc5548.

References

(1) J. R. pierce, 'Traveling-Wave Tubes," D. van Nostrand.
(2) i. W. Peter, Low-Noise TravelingWave Amplifier, RCA Review, 13, p 344, Sept. 1952 .
(3) II. Johnson, K. R. DeRener, Gaseous Discharge Super-High - Frequency Noise Sources, Proc IRE, 39, w 908, Aug. $19 \overline{1}$.
(f) R W. Peter, Direct-Reading NoiseFactor Measuring Systems, RCA Revieio, 12. p 269, June 1951.

Passive Repeater

Signal path from the passive repeater (right. compared with jeep) lies over Merwin Dam to the station just visible (upper left)

Because intervening hills prevent direct line of sight, a passive repeater was built to reflect microwave beams around a bend in the Lewis River in western Washington. By this means, the Pacific Power and Light Company can centrol its new 100,000 -kilowatt installation at Yale Dam from the control room at existing Merwin Dam, some twelve miles down river.

The most economical and reliable communication medium in this rugged country was found to be a microwave system in the 6,700megacycle band, including full duplicate standby radio-frequercy equipment and automatic switehover circuits. The equipment utilizes a frequency-division multiplexing system with separate frequency-modulated subcarriers for each voice channel. The microwave carrier frequency is modulated by all the subcarriers. Usage of the channels is shown in Fig. 1.

System Requirements

A glance at the contour map of Fig. 2 shows why it was necessary to use a passive repeater, defined as a large reflector (or a periscope combination of two large reflectors) which passively receives and re-
transmits a signal similarly to an electronic repeater, but without adding power. The usual electronic repeater cannot be used since a power line to this isolated spot would prove about as expensive and vulnerable to outages from natural causes as a multiple-pair cable between the two stations. Then, too, access to the location ean be had only by laborious hill climbing on foot or, in good weather, by jeep aver an unused logging trail.

The repeater attenuation may be evaluated by use of a well-known propagation equation that relates the received power P_{r} to the transmitted power P_{s}, the effective areas of the receiving and transmitting antennas A_{r} and A_{t}, the distance s, and the wavelength λ.

$$
P_{r}=P_{t} A_{T} A_{t} / s^{2} \lambda^{2}
$$

Since a passive repeater is a réradiator of energy rather than being analogous to an optical mirror, it car be considered first as a receiving antenna and then as a transmitting antenna reradiating the received power and this equation is applicable to each of the two legs of the total path. Hence, power received by the repeater P_{r} is

$$
P_{r}^{\prime}=P_{t}^{\prime} A_{7}{ }^{\prime} A_{t} / s_{1}^{2} \lambda^{2}
$$

And the power received from the repeater P_{r} is

$$
P_{r}=P_{t}{ }^{t} A_{r} A_{t} / / s_{3}^{2} \lambda^{2}
$$

Since the repeater receives and transmits with the same surface and its efficiency approximates onehundred percent

$$
A_{r}^{\prime}=A_{t^{\prime}}^{\prime}=A
$$

and

$$
P_{t}{ }^{t}=P_{f}{ }^{t}
$$

Hence

$$
P_{r}=P_{t} A_{r} A_{t} A^{2} / s_{1}^{2} s_{2}^{2} \lambda^{4}
$$

Extension of this equation to a path containing N passive repeaters makes it of the form

$$
P_{r}=\frac{P_{t}\left(A_{r} A_{t} \cdot A_{1}^{2} A_{2}{ }^{2} \ldots A_{N^{2}}\right)}{\left(s_{1}^{2} s_{2}^{2} \ldots s^{2} N+1\right) \lambda^{2 N+3}}
$$

However, in this case only one passive repeater was to be used. Hence, the total attenuation in decibels, being a ratio of the transmitted power P_{t} to the received power P_{r}, becomes

$$
\alpha=-10 \log \left[A_{r} A_{t} A^{2} / s_{1}{ }^{2} s_{2}{ }^{2} \lambda^{4}\right]
$$

With no passive repeater, the attenuation over a path of this same length is

$$
\alpha_{o}=-10 \log \left[A_{r} A_{t} /\left(s_{1}+s_{2}\right)^{2} \lambda^{*}\right]
$$

And, by subtraction, the attenuation due to the passive repeater is
$\left.\alpha_{R}=-10 \log \llbracket A^{2}\left(s_{\mathrm{I}}+s_{2}\right)^{2} / s_{1}^{2} s_{q^{2}} \lambda^{2}\right]$

Bends Microwave Beam

Perforated aluminum screen of $480-\mathrm{sq}-\mathrm{ft}$ area picks up $6,700-\mathrm{mc}$ beam and reradiates it with only 7 -db loss. Repeater located on hillside effectively bends telemeter and telephone signals 1,800 feet below optical horizon

By HENRY MAGNUSKI and THEODORE F: KOCH

Chief Engineer, Assistant Manager,
Microwave Research Miorowave Systems Engineering
Motorola, Inc., Chicago, Ill.

It can be seen that the passiverepeater attenuation can be reduced by increasing the reflector area or the frequency (decreasing the wavelength) while maintaining the other factors constant. Since the location of the reflector in the center of the path will give the greatest attenuation, it should be located as close as possible to one of the terminals.

The fading margin is defined as the difference between the path attenuation at which minimum communication can be maintained (105 db in this case) and the actual path attenuation. For conservative design, the fading margin chosen was 33 db , making the design objective a path attenuation of 72 db .

Antenna Sizes

Effective area of the 40 -inch diameter receiving and transmitting antennas (with an efficiency of 0.624) is 5.45 square feet and the average wavelength used is 0.148 feet (corresponding to 6,645 megacycles). In this system, the distances were 1.236 miles and 11.052 miles. Hence, the required effective area of the passive repeater was calculated to be 384 square feet.

The effective area of the passive repeater is, of course, its projected area times its efficiency. Since the energy passing through the perforations of a microwave reflector has been measured as 0.1 percent of the incident energy and it is estimated that 0.1 percent of the incident energy is converted to heat, the efficiency of a flat reflector can be taken as 99.8 percent. In this

FIG. 1-Channel utilization in microwave control systems between Merwin and Yale dams shows functions possible with five existing subcarrier channels. Seven additional channels, not yet installed, can be made available
installation, the included angle between the incident and reflected beams was found to be 75.81 degrees. From this, it was calculated that the actual area required for the passive repeater was 488 square feet. The standard reflecting surface used in such installations is one-sixteenth inch aluminum sheet, four feet by six feet, perforated with 0.200 -inch holes spaced onequarter inch apart to reduce the wind resistance. Twenty of these sheets can be arranged on a twenty by twenty-four foot surface to provide 480 square feet, very close to the calculated area.

Since the passive repeater is relatively small and distant, it receives only a small fraction of the power transmitted to it. Still, it adds a very high gain to this power in the retransmission, as is shown by the equation for the gain G

$$
G=4 \pi A \quad \lambda^{2}
$$

With this gain of 217,000 , the beam leaving the repeater will be very narrow, in accordance with the approximate formula

$$
B=60 \lambda / L
$$

where B is the beam angle between the half-power points in degrees and L is the effective length of the reflector in the plane under consideration. From this it is apparent that the beam width is a function only of the wavelength and the repeater dimensions (assuming a parallel incident beam or appropriate shaping of the reflector surface for a considerably diverging beam.) Since the paths to both terminals slant downward at different angles, the effective length in the vertical plane is 19.9 feet, resulting in a beam height of 0.45 degrees. That in the horizontal plane is 18.9 feet, yielding a beam width of 0.47 degrees.

Propagation Assumptions

While microwaves are generally thought of as traveling in a straight line and can be so regarded for most practical purposes, under varying atmospheric conditions the beam is actually curved around the earth with radii of curvature varying from approximately twice the earth's radius to infinite (true line-of-sight propagation). The radius is normally assumed equal to four
times that of the earth in a socalled standard atmosphere. Calculations on this basis show that the receiving antenna will remain well within the one-db points of the reflected beam, even for extreme beam curvatures.

To satisfy the laws of reflection, the passive repeater must be so positioned that the angle its face makes with the beam from one station is equal to the angle it makes with the beam to the other station. Since both terminals are at lower altitudes than the passive repeater, it was necessary to tilt the reflecting surface forward. The amount of this tilt and the geographic bearing of the face were calculated readily by establishing a system of rectangular co-ordinates, using the center of the passive repeater as the origin and visualizing a horizontal plane, a vertical north-south plane, and a vertical east-west plane mutually intersecting at the origin. The various distances involved were taken as shown in Table I.

The angle between the face of the passive repeater and the horizontal is given by
$\cos ^{2} H=(d u+c t)^{2} / 2 d t(a w+b n+c u+d t)$ and the bearing of the face is given by

$$
\tan B=\left(d v^{\prime}+b t\right) /(d v+a t)
$$

The site chosen is only as far up the hill as was necessary to provide sufficient clearance and is athwart the unused logging trail at a place where it is nearly level. Hence, no tree removal or even brush clearance was required, it being neces-

Table I-Co-ordinates for Measuring Tilt

(1) Parallel distances measured in the same direction from the origin may be taken as positive, while one of any pair me negative. (2) De negative.
2) Must be corrected for curvature of the earth by use of the formula $h=$
$0.667 \mathrm{~m}^{2}$, when h is the correction in feet and m is the distance between the points in miles. Add h when the passive repeater is higher than the antenna and substract when the antenna is higher.
sary only to set the concrete foundation piers in the proper position. The ground in front of the passive repeater drops so quickly that there is no danger of growing brush obscuring the reflector. This location at the edge of a relatively level area of a number of acres is expected to make it unlikely that snow will drift against the reflector face, since its lower edge was placed five feet above ground.

Effect of Hydrometeors

So-called silver thaws are not uncommon in the area and may coat the reflector with ice. Being a good reflector in itself, ice will affect the signal only to the extent it roughens the surface and then in accordance with the formula given later for calculating the effect of surface roughness.

Slush, or wet snow, does interfere considerably with reflection, but it is considered unlikely that it can adhere to the forward-tilted surface.

It is to be noted that total obscuration of half the surface will result in nothing more than a 6 db drop in received signal strength. The system design fading margin of 33 (d), then, assures that the threshold of limiter action will be reached only after the reflecting surface is reduced to $2 \frac{1}{2}$ percent of its total area or eleven square feet.

Reflection will approximately double any horizontal angular movement of the passive repeater and will multiply vertical movement by 1.6. This effect combines with the narrow beam angle previously calculated to require that the structure be rigid enough to resist vertical distortion beyond 0.14 degrees and horizontal distortion beyond 0.12 degrees, even when coated with ice and buffeted by sixty-mile-perhour winds, since it is desired to maintain the loss below 3 db under these conditions.

The design used to satisfy all of the above conditions is an aluminum structure, similar to a large billboard, supported by three Aframes, the back legs of which are built of three six-inch channels welded so their backs partially enclose a two-by-six inch box section, which is completed by welding in a two by one-quarter inch strip. The

FIG. 2-Map of Lewis River, Washington, region shows how topography affects microwave control and communications between new Yale Dam and existing Merwin Dam downriver
front legs consist of two six-inch channels welded on opposite sides of a similar box and the cross braces are two-by-six boxes made from a six-inch channel with a onequarter inch plate welded in the open side. These fit neatly into the front and back legs. The A-frames are tied together by six five-inch channels that constitute the backing for the reflecting panels. The whole structure is designed for bolted assembly in the field and the perforated sheet aluminum reflecting surface is shop-attached with drive screws to shop-welded six-by-twenty-foot panels. These are made of three-inch channels with two by one and one-half inch angles to stiffen the one-sixteenth inch sheet.

Flatness Factor

Since a surface as large as this cannot be made truly flat, it was necessary to calculate the effect of its lack of flatness. The energy reflected from a surface displaced forward or backward from its neighbors will be out of phase with the remaining energy by an angle P in degrees

$$
P=(360) 2 h / \lambda \sin R
$$

where h is the displacement in feet and R is the angle between the surface and the incident beam. This shows that a spot displaced 0.177 inch will reflect energy ninety degrees out of phase with the main reflection, thus neither adding to nor subtracting from the main beam. This was taken as the limiting case and the flatness tolerance
was specified as one-eighth inch.
Aluminum was chosen for the structural material so any tendency to buckle due to thermal stresses would be avoided by the uniform rate of thermal expansion or contraction of the entire structure. In addition, by specifying all aluminum hardware, the possibility of electrolytic corrosion was eliminated, periodic protective coatings were made unnecessary, and individual structural elements were light enough to make for ease in transportation and erection.

To be prepared for contingencies and to permit reasonable tolerances in fabrication and erection as well as allowing adjustment to prove the accuracy of the calculations, the base of each leg was equipped with slotted holes through which the studs anchored in the foundation passed. These provided for bearing changes of up to one and onehalf degree in either direction from the midpoint. Alterations in tilt were made with jack screws in each foot and shims were provided to allow permanently securing the structure at a tilt of one degree more or less than planned.

Optimum alignment was accomplished by first adjusting each of the terminal antennas to give peak limiter readings on a transportable microwave set temporarily activated at the repeater site.

With the passive repeater in the position calculated by the formulas presented, a strong terminal-toterminal signal was present, and it
was necessary only to scan the structure through a small portion of the built-in adjustments to insure optimum positioning. The final position varied from the calculated by 0.02 degree in bearing and 0.05 degree in tilt.

Test Results

Actual attenuation in each direction over the installed path was measured by substituting a calibrated i-f amplifier successively for each of those in the main and standby microwave receivers at each terminal. The average measured value of 72.0 db agreed very closely with the calculated attenuation for the actual system of 72.1 db and proved definitely that the increase in attenuation due to the passive repeater is very small, only 7.0 db in this case. The actual fading margin available is 33 db , equal to the design objective.

The formulas cited demonstrate that the high microwave frequencies (in the 6,700-megacycle band) used on this system have special value when a passive repeater is required. Lower frequencies would have resulted in a higher path attenuation or a considerably larger passive repeater. Putting this installation in service has also proved that it is practical to assume an efficiency very close to unity for a passive repeater in future systems if careful attention is paid to achieving flatness in structure design, fabrication, and erection.

Multiplier Phototube

FIG. 1-Block-schematic diagram of the signal converter

RECORDING SLOWLY VARIANT signals or even steady-state values concurrently with rapid fluctuations is often necessary in research projects to obtain an accurate representation of the instantaneous behavior of a certain factor.

In biophysical research such information is contained frequently in the intensity modulation of small light sources. A multiplier phototube is generally used to convert these light fluctuations to a varying current. Conventionally these current variations have been amplified by d-c amplifiers. The low sensitivity and zero-drift problems of d-c amplifiers in this application have been circumvented by interrupting the light beam with a mechanical chopper and using a-c amplifiers but it is difficult to attain a wide bandwidth with a mechanical chopper.

Signal Converter

The multiplier phototube may be used in a heterodyne-type circuit to avoid use of mechanical choppers and to obtain bandwidths extending from d-c to kilocycles. The principle of operation is illustrated in the circuit of Fig. 1.

In addition to the d-c dynode
voltages applied to the multiplier phototube, two a-c voltages differing in frequency are injected into the photocathode and first dynode respectively. These voltages cause the collection efficiency and amplification of the tube to vary as the time function of their instantaneous sum. A node current is thus a function of light incident on the photocathode and the gain variation of the electron multiplier.

The signal contains the original frequencies as well as the sum and difference frequencies. The difference frequency is utilized as the carrier and is amplitude modulated in accordance with the light intensity.

Bandwidth Considerations

The filter at the anode of the phototube consists of a simple par-allel-resonant capacitor and high-Q toroid inductor in conjunction with an R-C leg to furnish greater high-frequency attenuation. Selection of circuit Q is governed by bandwidth considerations for the signal amplification channel.

The difference-frequency carrier is amplified in a fixed-frequency amplifier. It is desirable to make the response characteristic of the

By DOUGLASA. KOHL

Departments of sur!lery and Radiology University of Minnesota Medical School Minneapolis, Minnesota
amplifier as flat as possible within a bandwidth compatible with overall frequency response and amplifier noise requirements. It is also desirable to establish the low-frequency cutoff point at a value greater than 120 cps to allow freedom from line frequency pickup. The upper frequency cutoff point is less than the lower of the two oscillator frequencies, assuring good refection ratios for those voltages.

A diode detector with R-C load re-establishes the signal with the carrier-frequency ripple superimposed upon it. In general, the difference frequency is much higher than the upper cutoff frequency of the desired signal transmission band and a simple R-C diode load thus furnishes very little distortion. In the event that the difference frequency is low compared to the bandwidth, a ripple rejection filter on the output is desirable.

The choice of the oscillator frequencies is also dependent upon the desired signal-channel bandwidth in that it determines how high the Q of the input filter can be and still give satisfactory rejection to the oscillator frequencies. It is also feasible in multistage and feedback amplifiers to shape the frequencyresponse characteristic sufficiently to provide satisfactory rejection ratios.

The light detector is contained in a light-tight pickup unit connected by cable to the power supply and amplifier chassis. The amplifier is located as far as possible from the oscillators to minimize stray voltage amplification which in effect raises the lower limit of sensitivity of the signal converter.

This circuit operates with the phototube high-voltage positive off

Intensity modulation of small light sources is converted to alternating voltage by use of a multiplier phototube giving bandwidth from zero cycles into the kilocycle region. Bandwidth is greater than that obtainable with mechanical choppers

ground to allow the oscillator injection capacitors and wiring to be conveniently electrostaticaily shielded from the anode circuit. The parallel-resonant circuit is located in the pickup so that the inductor will not pick up any stray magnetic fields of power transformers in the main chassis.

The oscillators are the familiar Wien bridge R-C feedback type and may be constructed side-by-side without shielding with no interaction although the oscillator voltages to the pickup must be fed through shielded conductors within the cable. It is desirable to regulate the B voltage applied to the oscillators to provide positive assurance that the oscillator voltage amplitude can be held constant by the range of compensation of the pilot-light vari-able-resistance element. The oscillator relative frequencies were chosen to match the highest Q of the inductor and, in this instance, provide a large enough bandwidth.

Performance Characteristics

The mechanism of the carrier modulation for low light levels is shown graphically in Fig. 2 by the envelope patterns taken from the phototube anode. The envelope repetition rate is 5,000 cps. The first pattern, created with no incident light, is representative of the interference of two oscillator voltages due to shunt capacitance formed by the proximity of pins in the cable connectors, tube bases and other circuit configurations. Effect of this stray pickup is to cause a slight nonlinearity in the variation of the d-c component of the complex envelope as shown by the other patterns.

The peak-to-peak amplitude of the waveforms maintains a linear
relationship with the light input but the output of the peak-reading halfwave detector shows a deviation from the linear characteristic. The deviation is really a change in slope and it is equally valid to utilize the linear portions on either side of the knee of the curve which occurs at 1.1 microlumens. The higher lightlevel portion may be utilized by employing a base light, or small constant light source, within the light field to furnish a residual output just beyond the knee.

Envelope Patterns

The waveforms of Fig. 2 were taken from the signal converter used as the pickup device for an electrokymograph design used with a constant-potential x-ray machine. The bandwidth requirement of this electrokymograph, d-c to $2,000 \mathrm{cps}$ is easily obtained. The frequency response was determined by mechanically interrupting the light from a d-c light source with a var-iable-speed motor-driven disk with 200 radial slits along its periphery. The peak-to-peak amplitude of the signal at the anode of the tube shows no frequency dependence in this range. The use of a bridged-T five-kilocycle filter to eliminate the ripple results in the amplitude decrease with increasing frequency.

FIG. 2-Envelope patterns at the anode of the multiplier phototube

Rejection of the oscillator frequencies of 15 to 20 kc is at least 3,500 to 1 at the output of the phototube anode filter and 15,000 to 1 at the grid of the first amplifier. With an operating voltage of 700 volts on a 931-A phototube, the overall signal-to-noise ratio is 40 with an anode current of $10 \mathrm{micro-}$ amperes. The noise component due to the random phase shift of the oscillators is the equivalent of a sig-nal-to-noise ratio of 65 under the same conditions. This phase-shift noise is approximately 15 times larger than the dark-current noise of the phototube itself.

Stability of the system is essentially that of the multiplier phototube high-voltage supply which should have regulation better than 0.001 percent for each percent change in line voltage and comparable long-time stability. After a 15minute warm-up time for the oscillators and the carrier amplifier, the sensitivity drift is 0.03 percent per hour.

This system is applicable not only to measurements involving light measurements directly but also to problems where the conversion of the signal information to light may be accomplished efficiently with fidelity. Not only does the multiplier phototube add its inherent highgain advantages but the signal information may be amplified and handled in a high-level mode in the carrier amplifier with complete freedom from 60-cycle pickup and line hash.
The greatest single advantage of this converter is that it offers an all-electronic method of obtaining high-fidelity amplification of signals requiring a wide bandwidth including d-c.

Gunshot Generator

Method of using gunshot generator during television drama. Engineer at right holds single-shot pushbutton in hand and presses it when television detective Martin Kane pulls trigger of unloaded gun

By J. L. HATHAWAY and R. E, LAFFERTY
Finginerrina Dfvelopment
Netiontel Froadcastino Co., Inc., New Yonl: N. Y.

IN A Large Radio City studio, television detective Martir Kane faces this week's criminal. Millions of viewers expectantly wait for the story to reach its climax. Suddenly Kane whips out his pistol and pulls the trigger . . ptzz. The exposion has all the roar of a wet cap.

This is certainly not the climax the director of the show expected, nor does it conform with the thoughts of the audience. For most viewers, twenty-five minutes of drama is forgotten for a few seconds of humor. It is not funny, however, to television broadcasters. Breaking the cortinuity of a dramatic story with unscheduled comedy is disastrous.

Why did the shot fail? An investigation by the Engineering Development Group of the National Broadcasting Company has disclosed a multitude of possible reasons. In some instances the fault was not at all technical but simply a case of fright. Some actors, and a few actresses, have complained that as they were about to pull the trigger, they were seized with the thought that the pistol was loaded with actual bullets and were therefore afraid to fire the gun.

Technical Fizzes

Other reasons for gunshot failures are mostly technical. The mechanical condition of the gun
and particularly the firing pin, the cap, the type of powder and the loading in the cartridge all contribute to the quality of the report. The condition of a gun can be checked prior to its use, but unfortunately, the only satisfactory test for a blank cartridge results in its destruction. Efforts, therefore, were directed toward a more reliable powder, and for reasons that will be discussed later, a longer burning powder. This approach resulted in the selection of large-caliber cartridges for desirable burning characteristics and reliability. Reports from pistols using these special blanks were so loud, however, that many actors refused to use them. Even

for Television Studios

Abstract

Guns loaded with blank cartridges sound unreal, occasionally misfire and often scare performers in acoustically dead television drama studios. To offset this, a new electronic unit automatically reinforces weak shots or generates the entire sound effect for revolver, machine-gun and cannon fire, as well as ricochet effects

these cartridges occasionally misfired and moreover, there seemed to be little correlation between the loudness of the report within the studio and that of the reproduced sound.

It is axiomatic in both the broadcasting and motion-picture fields that loud studio shots do not necessarily produce loud sounds for the ultimate listener. In any medium where the amplitude must be controlled to prevent an overload of the system, high-intensity sound of extremely short duration is heard, when reproduced, as lowintensity sound of short duration. In such systems of limited volume range, the apparent loudness can be increased only by increasing the duration of the sound. Thus, long-burning powders of medium intensity reproduce louder than high-intensity, short-burning powders after both reports are transmitted through a broadcasting system.

Need for Reverberation

Still another problem, peculiar to the medium of television, is the special acoustical treatment required in the studios. In other studios, such as those for radio broadcasting, tape or dise recording, or motion-picture sound, extraneous noise can be minimized during the actual production and excessive reverberation of speech avoided by reducing the microphone working distance.

In television, quite large microphone distances are frequently una voidable. Furthermore, the desired sound must compete with considerable background noise.

The combined motion of actors and actresses to and from stage sets, stagehands with scenery and props, dolly pushers moving cameras and microphone booms, lighting men, floor managers and many others makes for a relatively high ambient noise level.

The television broadcaster must combat background noise with directional microphones and acoustical absorbing materials located on the studio walls and ceiling. By radio broadcasting standards, the result is a dead studio. Reverberation would allow gunshots to persist and increase their apparent loudness. The lack of it, coupled with amplitude restriction of the audio system, is deleterious to realistic gunshot reproduction.

As a possible remedy for the anemic shot reproductions, a small reverberation chamber was constructed. The large chambers which are normally used for special effects with speech and music were tried for this purpose with considerable success, but the de-

FIG. 1-Block diagram showing portion of generator used to furnish reverberation to gunshot by inserting a decaying random-noise signal after the actual shot signal
mand for these on other effects was so great that programs involving gunplay were unable to depend on their availability.

Although considerable attention was given to the elimination of pronounced resonant effects in the small chamber, several objectional peaks in the medium-frequency region were evident while at other frequencies the reverberation time was insufficient. These defects forced a new approach which resulted in the design and construction of an electronic shot reinforcer and shot effects generator.

Gunshot Reinforcer

A study of various pistol shots showed the sound of a shot to be largely a function of the bore and length of the gun barrel, the nature of the powder and its burning rate and the loading of the cartridge. The wave envelopes of most shots, however, have steep fronts and trailing edges that decay slowly. The acoustical energy within the envelope is generally heterogeneous, and in this respect resembles noise. Further investigation proved that noise, properly controlled, could be made to simulate a pistol shot effectively.

The first use of this principle was in a reinforcer unit in combination with an actual gunshot. Because it is the reverberation of the shot that is insufficient in television studios, the arangement of Fig. 1 was designed to insert a decaying random-noise signal automatically after the actual pistol shot. This equipment has been successfully used for some time, and several additional units have

FIG. 2-Complete circuit diagram of gunshot generator, with all values of components indicated
been installed in various locations.
The gun shot reinforcer is inserted in the outgoing line of a studio prior to the start of the program and carries the entire audio output of the studio. It is levelactuated and hence completely automatic in its operation. When a gun is fired in the studio, the trigger tube actuates a relay, which removes the excessive bias from a pair of push-pull amplifier tubes normally held at cutoff. The output of a noise generator, after filtering, is continuously applied to the grids of these same amplifier tubes.

After the keyer tubes are pulsed into operation they are slowly returned to the cutoff state. The reproduced effect of the sudden noise pulse with a slow decay is essentially that of a gunshot. If the push-pull keyer tubes are purposely unbalanced to a slight degree, the d-c thump component when the bias is suddenly removed produces an impact with the shot to further enhance its realism.

The trigger tube and circuit design are such that, assuming a fixed gain adjustment, extremely
loud sounds with steep wave fronts cause the reinforcer to fire, whereas shouts and screams only a foot from the microphone do not.

Gunshot Generator

The steps from an automatically triggered shot reinforcer to a versatile manually operated shot generator were fairly obvious. The level-acutated trigger circuit was first replaced by a pushbutton. Unbalanced keyer tubes gave the synthetic shot an initial impact followed by the decaying noise to simulate the effect of reverberation. The length of the shot is controlled by varying the recovery time of the keyer tubes. These are normally held at cutoff by a large negative voltage, fed to the grids through an R-C filter consisting of a $4.0-\mu \mathrm{f}$ capacitor and a resistor. The value of this resistor serves as an excellent adjustment of recovery time. Actually the rate of noise decay is a function of the cutoff characteristic of the keyer tubes and several other factors. Constants are so chosen as to produce essentially a logarithmic decay of sound output.

The characteristics of shots may be altered by another factor, namely the frequency response of the noise amplifiers preceding and following the keying. If the high-frequency components of the noise are attenuated and the length of the shot increased, large-caliber arms can be simulated. Carried to an extreme, the effect of distant cannon fire can be realistically produced.

Machine-Gun Simulation

Once single shots are generated, an additional possibility becomes apparent. When the trigger button is pushed a number of times in quick succession, an excellent machine-gun effect results. The requirement of manual dexterity can be eliminated from the operation by using a low-frequency oscillator to trigger the shots repeatedly. The rate of fire is adjustable by varying the frequency of this oscillator. When a variablebandwidth filter in the noise amplifier is simultaneously adjusted, a number of machine gun effects are readily obtained, ranging from a light-weight 0.45 -caliber machine

FIG. 3-Circuit used to obtain either single-shot effect or machine-gun sounds
gun (tommy gun) to a large $40-\mathrm{mm}$ anti-aireraft gun (pom-pom gun). Thus, a master switch is provided to select the shot length and also establish the bandpass characteristic of the noise amplifier. Fewer high-frequency noise components are amplified when the length of the shot is increased. This conforms with the character of natural reverberation where the high frequencies are quickly attenuated by air, making the reverberation principally a medium and low-frequency phenomenon.

Because the controls for the rate of machine-gun fire and shot length are independent, a variety of effects is possible. Experience has shown, however, that some combinations are anomalous. The rapid chatter of a Thompson submachine gun, for example, is out of place with the roar of a $40-\mathrm{mm}$ anti-aircraft gun.

Ricochet Effect

A further embellishment which increases the flexibility of the shot effects generator is a ricochet effect. This is accomplished with a free-running resistance-capacitance oscillator which generates a harsh whine. The sequence of events is as follows: A shot with long decay time is generated in a normal manner, while at the same time a pulse initiates a singlecycle delay multivibrator. At the completion of the cycle the ricochet oscillator is activated through a mechanical relay and its output mixed with the decaying noise of the shot. The overall effect is a loud report with reverberation, then, after a short delay, a whine of decreasing frequency and am-

FIG. 4-Delay multivibrator circuit in simplified form, with pulse waveform

FIG. 5-Ricochet delay relay circuit and associated double-triode oscillator

Front-panel controls of generator permit quick setting to give variety of shot effects
plitude. A control is provided to adjust the delay before the start of the ricochet from about 0.1 to 0.75 second.

An interesting point developed concerning the whine of a ricocheted bullet. This whine is generally produced by a bullet that wobbles irragularly or spins end-over-end in its flight after striking. but not entering, a solid object. The frequency variation of the whine depends on Doppler effect as well as the changing rate of spin. Marksmen agree that the pitch may increase at first, then decrease, or it may steadily decrease. The average person, however, has only heard ricochets through the medium of motion pictures. A survey of several films indicates that only one type of ricochet whine has been used ex-tensively-the gradually decreasing pitch.

It was apparent, after a brief listening test, that the movies have educated us to accept this ricochet.

Rather than oppose public opinion, the shot-effects generator was designed to conform with the accepted version. To provide some variety, ricochets of three different pitches may be selected.

Complete Circuit

A few refinements were incorporated in the final design, shown in Fig. 2. For example, functions are preset with the master switch and only one pushbutton is required to fire the shots. Thus a remote pushbutton can be used to trigger from a distant point in the studio if desired. Operating errors are minimized in equipment which can be preset, as opposed to equipment in which several switches must be thrown at a critical time. An overall volume control is provided as well as separate faders for feeding the line and speaker.

To permit headset monitoring and last-minute selection and adjustment, a phone jack is provided
which disconnects both output feeds. Thus, the control settings as well as overall performance may be checked during a show. Output level may be adjusted by means of the neon-tube indicator if necessary. Maximum output from each channel is $+8 v u$ at 250 ohms impedance.

While many of the circuits function in a straight-forward manner, several warrant some attention. For example, the desirable feature of a single pushbutton was achieved with the relatively simple circuit of Fig. 3. With this, when single shots are needed, a master switch connects a resistance-capacitance coupling network between the pushbutton and the trigger circuit.

When the button is pressed, a single voltage pulse of positive polarity is fed through normally closed contacts on the trigger relay to the grid of the relay tube. This positive pulse causes a surge of current to flow through the tube and relay, energizing the latter. This action results, by way of the make contacts, in the application of a large negative voltage on the grid which returns the tube and relay to the normal state.

Unless the grid receives another pulse of positive voltage, the tube remains in this condition. Holding the button down after firing a single shot does not produce additional shots by virtue of the re-sistance-capacitance coupling network.

If the action in the studio calls for a machine-gun effect, the master switch on the shot-effect generator is positioned to connect the positive voltage through the pushbutton and a resistive network to the grid of the relay tube. Consequently, this tube, in conjunction with the relay, oscillates as long as the pushbutton is depressed since there is no capacitor in series with the positive source of voltage as in the case of the single-shot circuit. The frequency of oscillation is determined by a combination of resistance and capacitance in the grid circuit of the relay tube.

Delay Circuits

Consider now the ricochet effect, where for realism, a short delay

Rear of generator, showing the four preset controls for shot amplitude, trigger adjust, keyer balance and amplifier gain
must exist between the shot and the start of the whine. The circuitry consists of a single-shot multivibrator which accomplishes the delay, plus a relay tube and relay that turns on the ricochet oscillator to produce the actual whine.

The delay portion of the shoteffects generator is shown in simplified schematic form in Fig. 4. The d-c positive pulse that initiates the shot is also coupled to the first grid of the delay multivibrator. The plate of this tube then feeds a negative pulse to the second grid, cutting it off. The delay time is equal to the time this tube remains at cutoff and is a function of the time constant, $R C$. When C discharges sufficently to bring the second grid into the conduction region, the cycle is completed and this tube is snapped into heavy conduction. By virtue of the interconnection of the cathodes, the first tube is then returned to its normal condition of cutoff, completing the cycle with a large negative swing at the second plate. This pulse is partially differentiated by the coupling network and fed to the grid of the relay tube, causing it to release the relay momentarily.

Fig. 5 shows the ricochet delay relay and the oscillator which it activates. A high negative bias on the first grid of this resistancecapacitance oscillator maintains it normally inactive. When the relay momentarily opens, however, the

10-yf capacitor is positively charged, causing oscillations to start. Frequency is a function of the magnitude of voltage applied to the grid. As the capacitor discharges, the pitch decreases. The output of this oscillator is mixed with the synthetic reverberation of the shot and the amplitudes of both signals decay logarithmically through the keyer tubes.

Because the ricochet oscillator continues to function until the voltage on the $10-\mathrm{f}$ capacitor drops below ground potential, a means is provided to discharge this capacitor quickly, permitting other ricochet shots to follow in rapid sequence. Otherwise, during the delay period between the second shot and its ricochet, low-pitched oscillations remaining from the previous shot would be heard. A pair of open contacts on the triggering relay is therefore connected across this capacitor. Each time a shot is fired, these contacts close to discharge the capacitor quickly.

Principles learned during the development of these instruments, coupled with a little imagination, point the way to the creation of many electronic sound effects. The only limitations would appear to be those imposed by size and cost. Present knowledge makes feasible such effects as distant thunder, large or small bells, wind and waves, sirens, screaming shells, creaking doors or wheels, audience applause and many other similar effects.

Gated Decade Counter Requires No Feedback

Abstract

Combining convenience of decade system with reliability of binary, gated decade counter uses electronically-switched gate instead of critical clamping and feedback networks. Bias range is same as for binary system. Resolution is limited only by resolution of binaries

VARIOUS COMPUTER and counter systems make use of the Eccles-Jordan binary circuit as a pulse divider. Since a scale of two is not compatible with the decimal system, feedback is often used to convert the normal binary sequence to a decade. Typical decade systems using feedback are: the Potter decade ${ }^{1}$ and the sixteen-minus-six decade. ${ }^{2}$ In both systems, use of feedback makes the decade bias range less than the bias range of a binary system using no feedback. The gated decade overcomes this disadvantage by using a switched gate.

General Description

Bias range for this decade is the same as the bias range of a binary system. This type of decade has no critical clamping or feedback networks. It depends solely upon the

By E, L. KEMP
Les Alamos Seientific Laboratory Los Alromos, New Mexico

binary operation of the circuit to accomplish the permutation of binary to decade counting. Resolution of the system is limited only by the resolution of the binaries. The gated decade lends itself inherently to four-light interpolation; it has been used successfully in a nuclear scaler and is adaptable to any type of counting.

The gated decade contains five stages. The decade divides by sending eight pulses into one storage system and two pulses into another, then resetting. Eccles-Jordan binaries are used as storage devices. An electric-switch-type gate circuit is used to control the direction of pulse flow through the decade.

Figure 1 is a block diagram of the gated decade. The first eight pulses go into the first binary, the gated amplifier and the second and third binaries. The eighth pulse activates the gate so that the ninth and tenth pulses go into the second system consisting of the gated amplifier and the gate-control binary. The tenth pulse resets the decade. The output from the gated decade is taken from the gate-control binary.

Gate Operation

The gate controlling the direction of pulse flow through the decade uses two tubes as shown in Fig. 2. One tube is used as an amplifier and the other as an Eccles-Jordan binary. The action of the gate may be best understood by reviewing briefly the operation of the binary circuit. It is a characteristic of

TAXPAYERS' DIVIDEND

Vast sums spent for otomic veapons development forge a vital link in our national defense. An additional payoff for the engineer comes in the form of equipment and techniques dereloped in atomic research that are useful in many diverse fields.

Introduced in a nuclear scaler used at Los Alamos, this improved counting circuit is adaptable to any type of counting operation

FIG. 1--Decade counter uses electronically-switched gate. Eighth input pulse trips gate; tenth pulse resets counter

Nuclear scaler using gated decade has set record for reliable operation
this circuit that the grid of the conducting plate is at cathode potential or zero bias. Conversely, the grid of the nonconducting plate is beyond cutoff. When the binary is Hipped, the grids reverse their potentials. A binary can be flipped with negative input pulses.

Figure 2 shows the grids of the gated amplifier fed in parallel. It should be noted also that they are returned through isolating resistors to grids of the gate-control binary. Thus the conducting plate of the amplifier corresponds to the conducting plate of the gate-control binary. The other plate of the amplifier is likewise cut off corresponding to the state of the binary. A pulse entering the gated amplifier may be passed in the direction dictated by the state of the
gate-control binary.
The cathode bias for the gate tubes may be taken from a cathode resistor as shown in Fig. 2. The dotted lines in Fig. 2 indicate an alternative bias scheme, which uses a negative supply for biasing the grids of the gate. Figure 3 illus-

FIG. 2-Gated amplifier with paralleled grids is switched by gate-control binary
trates the negative supply method.
A schematic drawing of the gated decade is shown in Fig. 3. All the binaries are capacitor-coupled through common plate impedances. C_{d} and R_{d} form a differentiating network between the first binary and the gated amplifier and the subsequent binaries.

Circuit Description

There is a crystal diode in series with the coupling capacitor from the third binary to the gate-control binary. The action of this diode is to prevent the output from plate A of the gated amplifier from feeding into the third binary. The output of the gated decade is taken from a plate of the gate-control binary.

The operation of the gated decade may be better understood by following pulses through the circuit. The plate waveforms shown in Fig. 4 refer to the labeled stages in the schematic drawing.

The input pulses are converted into square waves by the first binary. These square waves are differentiated by C_{d} and R_{d} and fed into both grids of the gated amplifier. Plate B of the amplifier inverts the positive input pulses and feeds them into the second binary and subsequently into the third. The eighth pulse causes the third binary to send out a negative pulse which flips the gate-control binary. The ninth pulse is negative when

FIG. 3-Counting operation may be traced from circuit schematic. Eighth pulse flips third binary, which, in turn, flips gate-control binary. Gated amplifier feeds tenth pulse to gate-control binary resetting decade and producing output pulse
entering the gated amplifier, so it is rejected. The tenth pulse which is positive is inverted by the amplifier and fed into the gate-control binary which then flips back and resets the decade. The output to drive another decade is taken from plate B of the gate-control binary.

It should be observed from the waveforms that the gate-control binary and the gated amplifier have the time from the end of pulse eight to the start of pulse ten in which to be reset. This is also true for the time between pulse ten and pulse two. The resolution time of the decade can therefore be as fast as the resolution time for the first binary if care is used to design the gate-control binary with a resolution no more than twice the resolution time for the first binary.

Nuclear Scaler

The gated decade circuit has been used successfully in the scaler

FIG. 4-Plate waveforms
shown in the photograph to count particles in radioactive decay. The familiar four-light interpolation scheme was used. Figure 5 shows the schematic of the scaler.

The scaler contains a regulated power supply, a discriminator, three decades and a mechanical register. The scaling factor is 1,000 . The resolution of the instrument is two microseconds. The discrimination range is from 10 volts input to 100 volts. The maximum counting speed, which is set by the register, is 700,000 counts per minute. The power supply is regulated and delivers 125 ma plate current for the whole instrument. The instrument has been extremely reliable, giving satisfactory performance for as long a period as three months of 24 -hour daily operation.

References

(1) J. T. Potter, Electronics, p 110 , June 1444. Grossdoff, R.C.A. Rev 7, p 428, 1946.

FIG. 5-Nuclear scaler uses input discriminator and three gated decades to count particles in radioactive decay. Four-light interpola. tion is used

Vacuum-Tube T-Pad

IN A T-pad, such as is illustrated in Fig. 1A, it is possible to make R_{1} equal to the input impedance and R_{2} equal to the output impedance, if the loss of the pad is greater than 20 db . This approximation is permissible since the calculated values of these resistors so nearly approach (but never quite equal) their respective impedances.

It is then possible to calculate the maximum value of R for a loss of 20 db and, by varying this resistance from zero ohms to the calculated maximum, to produce an attenuation of any amount from infinity to 20 db with one variable element.

In the electronic attenuator circuit to be described, R is replaced by the plate-to-cathode resistance of a vacuum tube, and attenuation is controlled by changing its positive d-c grid voltage. The characteristics of most low-power triodes are such that with proper plate voltage, an approximately logarithmic change in plate current, and therefore plate resistance, is produced by a linear change in positive grid voltage.

Figure 1B illustrates the basic circuit with the addition of a rectifier to provide a grid voltage corresponding in amplitude to the a-c signal. Because of the logarithmic change in plate resistance caused by a linear change in grid voltage, the output of Fig. 1B will be constant, though the input changes appreciably.

Limitations

At first look it would appear that the range of input changes for which constant output would be maintained would be unlimited. There are limits, however.

On one hand, because R and R_{3} are in parallel as regards the a-c signal, the ratio of R_{3} to R (at minimum attenuation of 20 db) must be at least 10 to 1 . On the other hand, the plate current fails to increase in \log fashion when the plate voltage approaches the value of the d-c grid voltage. The range available with a 6.55 triode is about 20 db .

FIG. 1-Replacing it with signal-biased vacuum tube provides signal compression

FIG. 2-More elaborate circuits prohibit distortion by input loading and extend frequency response

Grid current is drawn by the limiting tube because the grid voltage increases in a positive direction with increasing input signal. If this changing current were supplied by the a-c signal, distortion would result. In Fig. 2A, the grid voltage is supplied by the d-c plate supply, but is proportional to the signal level. To further insure that the input will not be loaded, the grid of the cathode-follower-rectifier V_{1} is attached to a voltage divider, instead of directly to the input. Capacitors C_{3}, C_{2} and C_{3} are merely isolating capacitors, and C_{4} filters the rectified signal.

Adjustment of the zero compression point for individual tubes may be done by making R_{1} equal to 10 times the plate-to-cathode resistance of V_{2}, with the grid of V_{2} connected to the cathode of V_{1}, and by

By ED G. MILLER
Chief Enguneer
Weiser, Idrmo

making R_{3} equal to R_{1}. A simpler way is to use equal fixed values for these resistors and to adjust the grid voltage of V_{2} to the point where the plate-to-cathode resistance is 10 percent of R_{1}. This can be done with R_{6}. In practice R_{u} can be set to give a reading of 10 percent of the plate supply voltage, as measured with a vtvm at the plate of V_{2} with no signal applied.

Frequency Response

The frequency response of this circuit is limited on the high end by the plate-to-cathode capacitance, and on the low end by the time constant of $C_{4} R_{8}$ and the grid-to-cathode resistance. With C_{4} chosen to give sufficiently rapid compression and sufficiently long release for speech, the response is flat from several hundred kc down to 100 cy cles with rising distortion below 200 cycles.

Where better low-frequency response and variable compression and release are desired, the circuit of Fig. 2B may be used. The lowest frequency of this design is limited by the d-c transient produced by sudden input amplitude fluctuations.

By using a remote-cutoff pentode as the first succeeding amplifier and operating it at fairly high bias, these transients will not adversely affect the overall performance. If frequencies below 200 cycles are not desired, as in communications work, the time constants of $C_{1}\left(R_{4}+R_{5}\right)$ and $C_{3} R_{7}$ of Fig. 2A, should be short enough to attenuate the lower frequencies. Tubes that have proved satisfactory for V_{2} are the $655,6 \mathrm{C} 5,6 \mathrm{SL} 7$, 6SN7, 6SQ7, 6SF5 and 6SC7.

For the satisfactory operation

Logarithmic Attenuator

Abstract

Circuit provides basis for communications-type speech compressor using vacuum tube in leg of T-pad to limit speech peaks logarithmically and provide high percentage of modulation for a-m transmitter. Complete modulator is described

of any volume compressing unit, there must be an input amplitude up to which no compression takes place. If this were not so, the output would be held at zero. In the present circuit V_{1} performs this function along with controlling the grid voltage to V_{2}. The cathode bias supplied by R_{0} can not completely cut off current flow in V_{1}. Until the negative halfcycle of the applied signal is of sufficient intensity to cause cutoff when added to the cathode bias, the d-c voltages at the top of R_{g} and at the grid of V_{2} will remain unchanged. After this level is exceeded, the cathode voltage will follow, in a nearly linear manner, the signal amplitude.

Operating Conditions

Plate supply voltage is not critical, and if V_{1} and V_{2} are supplied from the same source the voltage may vary from 150 to 500 volts. It should be remembered that an attenuator introduces a loss in the circuit to which it is connected. This loss varies from 20 db at no compression to 40 db at maximum compression. The 20 -db loss can easily be regained by the addition
of a single stage of amplification following the compressor.

The signal level at which logarithmic compression takes place will vary with different tubes. For a 6SL7GT, used for V_{1} and V_{2}, compression will begin at about three volts rms at the input.

This volume limiting circuit has many applications in various audio circuits, but its simple construction, easy adjustment and low cost readily adapt it to use at a low-level point in a speech amplifier for modulating a communications transmitter.

Figure 3 shows the schematic of a modulator using the circuit. It was designed to supply about 50 watts output with 700 volts plate supply to the class B tubes.

The high-impedance crystal communications microphone output is amplified by V_{1} sufficiently to operate the electronic attenuator or limiter at up to $20-\mathrm{db}$ compression without clipping. No gain control is used before the limiter because the mike output for almost any operator works into the compression level range. The only change in the limiter from that already described is the insertion of $S W$,
across R_{6}. When this switch is open, normal limiter action takes place. Closing it shorts out the input to the high-impedance rectifier so the grid voltage on the limiter $V_{2 B}$ remains at the value for zero compression, that is, a fixed attenuation of 20 db . This switch allows the modulator to be used with or without compression. Pentode V_{3} is used to compensate for the 20 db loss inserted by V_{2}. A 6SJ7 with the values shown does this easily with enough to spare to drive a 6 V 6 GT as a low-power power amplifier. The gain control in the grid of V_{4} is used to adjust the modulation to the desired amount with the compressor in operation.

Adjustment

Adjustment is achieved by setting R_{8} to make the voltage at the plate of $V_{2 n}$ equal to ten percent of that at the plate of $V_{2 A}$ as measured on a vacuum-tube voltmeter, with $S W_{1}$ closed. Then, with $S W_{1}$ open, one talks into the microphone sufficiently loud and close to cause the vtom connected to the plate of $V_{2 n}$ never to exceed 50 percent of the voltage present when $S W_{1}$ is closed.

FIG. 3-Typical 50 -watt modulator built around compressor circuit. Resistor R_{2} (Fig. 1) can be omitted for speech work

Graphical Solution of Sky-Wave Problems

Chart shows relationship between great-circle distance, virtual height of reflection, equivalent path distance, angle of departure and angle of incidence at ionosphere so any three can be found if other two are known

By R. A, HELLIWELL

Assistant Professor
Department of Enectrical Engineering
Stanford University
Stanford, California

In radio communication problems involving transmission by means of sky-waves reflected from the ionosphere it is often necessary to relate: (1) greatcircle distance between transmitter and receiver, (2) virtual height of reflection, (3) equivalent path distance between transmitter and receiver, (4) angle of departure, and (5) angle of incidence at the ionosphere. It is the purpose of this paper to present a simple graphical method whereby these factors can be determined rapidly without recourse to the analytical expressions. If any two factors are given, the other three can be found.

It is assumed that propagation can be represented by a ray and that the characteristics of the actual path of the ray can be represented with sufficient accuracy by the so-called equivalent path, shown in Fig. 1 as the lines $A B$ and $B C$. The height h^{\prime} of the apex B is called the virtual height, and D is the greatcircle distance between the endpoints A and C. The angle β between $A B$ and the tangent at A is called the vertical angle or
angle of departure. The ionosphere is assumed to be horizontally stratified and earth's magnetic field effects are neglected. The path is therefore symmetrical about the midpoint, and the angle of arrival is equal to the angle of departure.

Graphical computations are facilitated with the aid of the sky-wave transmission chart shown in Fig. 2. This is simply a vertical cross-section of the earth's atmosphere up to a height of 600 km . Great-circle

FIG. 1-Diagram shows geometry of sky-wave propagation
distance D on the earth's surface is plotted against virtual height h^{\prime} appearing at left with the chart held sideways.

The vertical angle β is determined by aligning a straight edge with the origin and the midpoint of the equivalent path (co-ordinates h^{\prime} and $D / 2$) and reading the upper scale. The angle of incidence ϕ_{o} is interpolated in the family of curves of constant ϕ_{0} plotted on the chart. Secant ϕ_{0} is read from the conversion chart below the main chart.

Since there are five basic variables ($D, P, h^{\prime} \beta$, and ϕ_{0}) only two of which can be independent, there are ten possible combinations of independent variables. For any given pair of variables, the other three are determined from the chart. The procedure is illustrated in the following example for a selected pair of variables (D and h^{\prime}).

Example

Problem: Given a great-circle distance D of $3,000 \mathrm{~km}$ and a virtual height h^{\prime} of 310 km , find the vertical angle β, the angle
(Continuted on p 152)

Cinch MCRO CONNECTORS

. . MINIATURIZED MICRO CON-

NECTORS THAT SAVE SPACE, WEIGH

LESS AND ARE MORE EFFICIENT

14 pin Plug 8 Socket
54A17923 - Sockel 54817924 - Plug

Designed for "miniaturization" requirements in aircraft equipment. Skilfully made of materials to meet most exacting needs of Armed Forces installation.

21 pin Plug \& Socket 54A17976 - Socket 54817977 - Plug

Molded miniaturized connectors, 14 , 21,34 and 50 contacts available in low loss material for chassis mounting applications.

The utmost in service assured by the production methods thet have made CINCH the standard in electronic components.

CINCH experience indicated in the wide variety of designs and materials assures you the connector for your purpose.

CONSULT CINCH!

50 pin Plug \& Socket 54 Al 7907 - Socket 54B17908 - Plug

Sky-Wave Problems (continued from p 150)

of incidence ϕ_{0} at the ionosphere, sec ϕ_{0}, the path distance P, and the transmission time t.
Solution: Locate the apex of the path at $D / 2=1,500 \mathrm{~km}$ and $h^{\prime}=310 \mathrm{~km}$ on Fig. 2. Align straight edge with origin and apex. Read $\beta=4.5$ degrees on the upper scale. Read $\phi_{0}=72$ degrees by interpolating in family of curves of constant ϕ_{0}. Obtain sec $\phi_{0}=3.2$ from conversion scale. Obtain $P=3,140 \mathrm{~km}$ by measuring distance from origin to apex, using the height scale on the chart, and multiplying result by 2. The transmission time $t=10,470 \times 10^{-6}$ seconds is obtained by dividing the path distance P by the speed of light ($3 \times 10^{5} \mathrm{~km}$ per sec).
The author wishes to acknowledge the helpful comments of A. M. Peterson.

Appendix

Some of the more important analytical expressions, based on Fig. 1, are given below for reference. Others can be derived readily.

$$
\begin{aligned}
& \phi_{0}=\tan ^{-1} \frac{\sin \frac{D}{2 R} \frac{180}{\pi}}{1-\cos \frac{D}{2 R} \frac{180}{\pi}+\frac{h^{\prime}}{R}} \\
& \beta=90-\phi_{0}-\frac{D}{2 R} \frac{180}{\pi} \\
& h^{\prime}=R\left[\frac{\cos \beta}{\cos \left(\frac{D}{2 R} \frac{180}{\pi}+\beta\right)}\right]
\end{aligned}
$$

$$
I)=
$$

$$
2 h\left[\cos ^{-1}\left(\frac{R}{R+h^{\prime}} \cos \beta\right)-\frac{\pi}{180} \beta\right]
$$

$$
P=2 \times
$$

$$
\sqrt{2 R\left(R+h^{\prime}\right)\left(1-\cos \frac{D}{2 R} \frac{180}{\pi}\right)+h^{\prime 2}}
$$

where $D=$ great circle distance in km
$h^{\prime}=$ virtual height in km
$P=$ path distance in km
$\beta=$ vertical angle in degrees
$\phi_{n}=$ angle of incidence in degrees
$R=$ earth radius (6,367 km)

FIG. 2-Sky-wave transmission chart relates great-circle distance D/2 (see Fig. 1), virtual height, path distance, vertical angle and angle of incidence

MALIORY wire wound Potentiometers and Rheostats

Military and Commercial Types

New
 Technical Information
 Bulletin Available

New Mallory Bulletin $76-3$ contains complete data on both Military and Commercial Type Rhoostats and Potentionctets. Write for your copy today.

To meet the exacting requirements of military specifications. Mallory potentiometers are especially designed to conform to specification JAN-R-19 for the following Iypers:

$$
\begin{aligned}
& \text { RA } 20-2 \text { waths-husulated rotor } \\
& \text { RA } 25-\text { RA } 30-4 \text { watts-Insulated rotor }
\end{aligned}
$$

In addition, Mallory C and $Q C$ controls of the -2 -wat grounded rotor type-formerly covered by specification JIN-R-19, style RA15-are also a a ailable.
Into these military-type potentiometers go the same enginecring know-how and production shill that has made Mallory potentiometers the stambard of epality in industrial and electronic fields.
Precision built Mallory potentioncters and rhoostats are used extensively in precision test equipment ...special medical and tahoratory electric and electronic devices... and in numerous applications for aircraft, marine and radio transmiluing and recciving equipment.

Expect more...
 Get more from MALLORY

Parts distributors in all major cities stock Mallory standard components for your convenience.

SERVING INDUSTRY WITH THESE PRODUCTS:

Electromechanical-Resistors - Switches - Television Tuners - Vibrators
Electrochemical-Capacitors - Rectifiers - Mercury Dry Batteries
Metallurgical-Contacts*Special Metals and Ceramics•Welding Materials

[^4]
ELECTRONS AT WORK

Including INDUSTRIALCONTROL

Edited by ALEXANDER A. McKENZIE

Type 6X4 Tube Applications 154	gative Resistance Crystal
Transistor Organs 156	Oscillators . 198
Pertinent Patents 158	Vehicular Communications Symposium. 200
Prediction of Electronic Failures. 180	Suppressor Grid Control of
Milled Block Simplifies Microwave	Thyratrons 208
Construction 189	Measurement of Harmonic Distortion
Resistance for Symmetrical T and H	With a Filter 212
Pads . 193	High Sensitivity Tone Discriminator.... 215
Echo Box Provides Target for Radar Training \qquad 196	Clutch Operates on Loudspeaker Principle

Deposited-Film G-M Counter Tubes.... 220

Type 6X4 Tube Applications

By Walter R. Jones
Panel on Electron Tubes Research and Development Board New York, N. \boldsymbol{Y}.

Beginning with this issue, Electronics will publish a number of specialized tube application notes as they become available. This material results from activities of the Applications Subcommittee of the Panel on Electron Tubes, Committee on Electronics, Research and Development Board, with headquarters at 346 Eroadway, 8 th Floor, New Jork, N. Y. Working as teams, two or three tube applications engineers from the industry, together with a Service representative. have been investigating proposed uses of tubes in military equipment. Typical data obtained is pre-
sented below.

ONE OF THE MOST FREQUENT Problems encountered in military electronic equipment involves application of type 6X4 tubes in capaci-tor-input circuits at a power-supply frequency of 400 cycles. The problem arises because sufficient impedance is not included in each plate circuit to limit the steady-state peak plate current and the hotswitching current to their respective rated maximum values. When either of these currents exceeds the maximum safe rating, the tube

FIG. 1-Operation for 6 X 4 with 210 ma maximum safe peak steady-state current per plate
may become permanently damaged and the power transformer and first filter capacitor may also be ruined.
To avoid many tedious calculations, three charts have been calculated that fulfill criteria for safe operation for type 6 X 4 operated with capacitor input. If the proposed operating point falls within

FIG. 2-Load current vs efficiency for 6 X 4 for 210 ma peak steady-state current
the shaded area of all three charts, then the circuit should give reliable operation. Figures 1 and 2 are based on the assumption that the maximum safe peak steady-state current is 210 ma per plate, while Fig. 3 is based on the assumption that the maximum allowable hotswitching current is 1.8 amperes.

It is only necessary to make three measurements at maximum line voltage or primary supply voltage.

OTHER DEPARTMENTS

featured in this issue:

Page
Production Techniques. . . 222
New Products 280
Plants and People....... 354
New Books 382
Backtalk 386

FIG. 3-Operation for hot-switching current of 1.8 amp

These measurements are:
(A) d-c load current (divide this value by 2 if full-wave circuit is employed).
(B) d-c voltage at input to filter
(C) a-c rms no-load voltage across transformer secondary (half of winding if full wave circuit is employed). A high resistance voltmeter must be employed in order that the true no-load voltage is obtained. Fig. 4 indicates where these measurements are made. A calculation of rectification efficiency is made by dividing

$$
(B) / 1.4(C)
$$

The operating point can thus be located on Fig. 1. If this point falls within the area of permissible operation then the operating conditions can be checked on Fig. 2. In the event that the proposed conditions satisfy both charts then it can be certain that the maximum safe steady-state peak current will not be exceeded. If the point is outside the area of permissible operation, the operating conditions should be changed so that the new

NEW RX METER.....

TYPE 250-A

FREQUENCY RANGE: 0.5 me to 250 me

The 250-A RX Meter is a completely self-contained instrument for use in measuring the equivalent parallel resistance and capacitance or inductance of two terminal networks over a wide frequency range. It indudes an accurate continuously tuned oscillator, high frequeacy bridge, "unbalance" detector and null indicator.

All variable components of the bridge are high quality capacitors, which are driven by carefully designed antibacklash gear trains. The Cajacitance indicating dial can be read to 0.05 mmf , and the Resistance indscating scale, is expanded to cover 28 inches in length. No corrections are required over the frequency r ange for the Resistance readings.

USES

The 250-A RX Meter can be used to measure the equivalent parallel resistance and capacitance of resistors at high frequency. If the reactance is inductive the value can be determined. 3y very simple ̇ormulas the cquivalent series paramoters can be deduced. The instrument will also measure components which are primarily inductive or capacitive. The characteristic impedance, attenuation and velocity of propagation of transmission lines can be determined.

Specifictlions

FREQUENCY: 0.5 mc to $2: 0 \mathrm{mc}$ in eight ranges Rp RESISTANCE RANGE: 15 to 100,000 ohms. CP CAPACITANCE RANGE: + 20 , yyf to- 100 上עf.*

FEATURES
 Measures equivalent parallel resisfance and capacitance or inductance of iwo serminal nefworks.
 Operates over a Wide Frequency Range.

- Includes self-co fained oscillafor, bridge, detector and null indicator. Null Indicating Meler has automatic gain control which maintains on scale readings under all conditions to avoid meter damage and permit indication of proper direction of adjustment for reaching bridge balance.
Wide spread resistance dial scale covering total of 28 inches.
Power Supply infernally regulaied.
*Copacitance range may be increased to $\pm 120 \mu \mu f$ by use of external coils or condensers.

FIG. 4-Reference diagram for measurements described in text
point falls within the shaded area.
The simplest method of altering operating conditions is to add sufficient series resistance in the center lead or in each plate lead of the transformer to bring the rectification efficiency within the necessary limits. These charts are computed on the basis that 150 ohms per plate, the rated value, has been added to the circuit.

Assuming the proposed operating conditions indicate Fig. 1 and 2 are satisfied, there remains still one more condition-the safe value of hot-switching current that would flow in the circuit. Hot-switching current is that current that would flow if the filter becomes shorted or in the event that the circuit is turned off long enough to permit the input filter capacitor to discharge and is immediately turned on again while the cathode is still hot enough to conduct, such a current flows.

Figure 3 indicates the minimum plate supply impedance per plate required for safe operation for any given a-c plate supply voltage. A simple although not completely accurate method of determining the ninimum plate supply impedance per plate is to measure the value of d-c resistance for half the transformer secondary winding (for full-wave operation) and add to that value the additional resistance supplied to the circuit to meet the conditions of Fig. 2. If this value of total resistance is not as high as indicated in Fig. 3 additional resistance should be added to satisfy this condition.

If the conditions indicated in all three charts are complied with, the power-supply problems, regardless of the power-supply frequency and the value of innut capacitance to the filter, will be greatly reduced.

It is true, of course, that the regulation will be worse with the additional resistance but for a given supply voltage and a given resistance a definite amount of current
must flow. The analysis given above holds for sine-wave input. If the waveform differs from this, the peak currents may even be higher than indicated.

Transistor Organs

By James D. Fahnestock Associale Editor, Electronics

Commonest among the point-contact transistors available today at reasonable cost is the Western Electric 1698, a point contact version intended primarily for use in switching circuits. One or more spares can be applied, in conjunction with a handful of inexpensive parts, to a number of applications -one of which is the electronic organ shown in the accompanying photograph. Several versions are described, including one circuit that permits the playing of any two notes on the keyboard simultaneously with only one set of fre-quency-determining capacitors and

FIG. 1-Circuit of R-C oscillator for toy transistor organ

FIG. 2-Wooden keys of toy piano are modified as shown to serve as spst switches for playing notes of transistor organ
two transistors.
The basic circuit employed is shown in Fig. 1. This circuit is a simple relaxation oscillator that provides a pleasing tone in the headphone. Volume is sufficient to be heard all over a large-size room. The exact values of capacitors must, of course, be determined by trial and error. Any desired note may be obtained, by applying the proper value of capacitance across the emitter resistor R_{1}, from a few cycles per second up through the entire audio range. Output decreases slightly with frequency,

Transistor orqan uses a toy piano case and keyboard (see inset upper right) for all components and baltery shown in principal photograph. Single headphone is mounted against top (at right)

THE FRONT COVER

however, so for loud tones, the low notes are preferred.

Different ranges may be obtained by varying R_{1}, but different values of capacitance are needed to obtain frequencies in musical progression.

The experimental unit shown in the photograph was made from a child's toy piano by removing the resonant rods and hammers and modifying the keys as shown in Fig. 2. Thin strips of brass were tacked to the ends of each key and a strip of brass running below the metalized tips of the keys serves as a common bus.

With appropriate capacitance values connected by small flexible wires to each key notes of the scale can be played. Interesting combi-

FIG. 3-More elaborate keyboard permits playing of two notes simultane. ously with a single set of frequencydetermining capacitors. Circled letters on key refer to points on circuit below
nations of low notes can be synthesized by depressing combinations of keys simultaneously, which parallels clusters of capacitors to produce low frequencies.

Two-Note Organ

Considerably more flexibility can be obtained at the cost of some added complexity as illustrated in Fig. 3. With the arrangement shown, combinations of two notes may be played with a single keyboard and a single set of frequencydetermining capacitors, and two transistors.

Collector current averages 3 to 5 ma, which is well within the limits of the 1698 transistor, and allows for long life of the 45 -volt battery.

In experimenting with values for C and R_{1}, it is advisable to place a 0 to 5 ma meter in series with the collector to protect the transistor against accidental overloads. The value of 1,000 ohms for R_{1} will work for most 1698 's, but variations may be desired for changing range, or for tuning up with instruments. A 5,000 -ohm potentiometer was used in the experimental organ shown, but it is usually set at the $1,000-\mathrm{ohm}$ value. An octave is covered by eight sets of capacitors ranging from about 0.75 to $0.25 \mu \mathrm{f}$. The switch is provided in the collector lead to disconnect battery when organ is not in use, since some battery current flows when no keys are depressed.

PERTINENT PATENTS

EACH WEEK many hundreds of patents are granted to inventors in all of the arts to which patents apply. A survey of recently issued patents made over an arbitrarily selected period of four months during 1952 reveals that of all the patents issued in any week the average number of those applicable to the electrical and electronic arts represents 12 percent of the total.

A maximum of 14 percent of all patents was electrical or electronic in the week containing the largest relative number of these patents. The minimum number represented 8 percent of the total.

Patent Groupings

A recent innovation on the publication of patents granted by the U. S. Patent Office is the breakdown

Do you know this panel of experts?

These Avien gages tell a story that may shape your future-especially if you're an engineer.

Remember the days of "ball and needle" instruments?
The men in today's cockpits need far more accurate gages of fuel and other quantities. Instrumentation has become a new science - a science in which Avien is a vital part.
Every month, Avien produces over 10,000 major instrument components for the aviation industry.
We'd like you to meet some of our panel members:
A-Jet Tailpipe Thermometer, first to use the servo principle. Result: long siale and a gage unaffected by lead characteristics.
B-Cylinder Head Temperature Indicator. Again, first to use the servo principle for long scale and greater accuracy.
C-Jet Engine Thrustmeter that computes gross thrust from measurements of tailpipe pressures and ambient pressures.
D-One of more than fifty Avien fuel gages. It measures fuel quantity by weight, eliminates moving parts in fuel tank.
E-Avien fuel gage with a "sensitive" or vernier indicator to provide readability to 0.1% of contents.
F-Counter Indicator, also readable to 0.1% of tank fuel. You can see how it tells the fuel story at a glance.

Avien has made these gages smaller, simpler, lighter, more reliable, more accurate.
Sound engineering made them that way. Hard work and hard thinking made them that way. Individual responsibility - all the way from drawing board to control board made them that way.
Avien is an engineering operation. Engineers are the "works" here, not the gears. And we're welcoming new members, engineers who can work head-to-head with some of the hardest-hitting men in this business.
If you are an engineer of allied experience, we offer: 1High pay. 2-Interesting assignments, and the chance to follow through on every good idea you produce. 3-More money and more work, as you earn it.
Modern plants? Of course. Employee benefits? All of them. But most important, Avien offers work! Important, rewarding, fascinating - and not easy.
If this makes sense to you, send us a detailed resume before the day is over.

AVIATION ENGINEERING CORPORATION 34-56 58th STREET, WOODSIDE, L. I., NEW YORK

a versatile High Vacuum "Packaged System" for leak detecting, gas filling, sealing

- CVC's 10-PORT VACUUM MANIFOLD SYSTEM is greatly improving the efficiency of processing sealed relays, small containers, and delicate mechanisms in the electronics industries.

Used specifically for leak detecting, gas filling, and sealing, it is particularly effective in checking units for microscopically small leaks. (A Consolidated Leak Detector, which is connected to the system, can sound an alarm for a leak so small that a thimbleful of air would take 30 years to get through.)

The Vacuum Manifold System is a completely contained "packaged unit," designed to operate from any 110-volt, 60 -cycle line capable of handling 35 amperes.

Two mechanical pumps serve as the roughing and the backing pumps for the unit. The roughing pump evacuates the ports to a pressure within the operating range of the diffusion pump. The backing pump maintains a forepressure on the diffusion pump that is well below the required pressure for efficient diffusion pump operation. And three electrically energized solenoid valves on each port of the manifold permit continuous operation of the diffusion pump during the entire processing cycle.
This diffusion pump, CVC model MC-275, is capable of producing an ultimate vacuum of approximately 5×10^{-5}

The unit is equipped with a two station Pirani gauge and
If you would like complete technical data on this unit, or perhaps information on some of the many other ways in which CVC is putting high vacuum at industry's service, simply write to Consolidated Vacuum Corporation, Rochester 3, N. Y. (subsidiary of Consolidated Engineering

FIG. 1-Pulser used to determine health of tooth pulp
now included in its Official Gazette. The publication groups all mechanical and general patents in one section and all chemical patents in a second. Electrical patents (including electronic devices and circuits) are in a third grouping. In each of the sections other than electrical there may be included occasionally devices that are electrical or electronic in nature. As an example, phonograph pickups, motors and record changers have been found in the mechanical and general section. Semiconductor devices, particularly those features dealing with the structure of the materials employed, crop up in the chemical section.

New Patent Law

A new Patent Law of 1952 went into effect January 1953. This law modifies previous law and codifies the several laws pertaining to patents into U. S. Code section 35 . There will be, accordingly, changes in the rules of practice in the prosecution of patents before the Patent Office and in the operation of the

FIG. 2-Pulse forms required for dental festing

make your package a dramatic salesman . . . how to put your customers in a buying mood... how to demonstrate product features . . . how to sell more merchandise-faster. An impressive gallery of photographs will help you visualize countless ideas to streamline your packaging program, cut costs, and improve efficiency. Get "Pack To Attract" for your reference library. Write Hinde \& Dauch, 5314-B Decatur St., Sandusky, Ohio.

Portfolio of merchandising idess FREE!

Our 65年 Year HINDE \& DAUCH

40 SALES OFFICES • 17 MILLS AND FACTORIES

New Hpressil core

 cuts air-borne transformer size and weightTransformer weight reduced 25%, size cut 20% in a single unit of air-borne electronic equipment. This is the mark set by a new lightweight Hipersil ${ }^{(1)}$ Core designed by Westinghouse for the Navy Bureau of Aeronautics.

Adaptable to commercial as well as military use, the new core makes possible more powerful equipment within the size and weight limitations of previous models. A special silicon steel, rolled to a new 4 -mil thinness, with grain structure super-oriented by a refinement of the Hipersil process, achieves the size and weight reductions.

Hipersil Cores cut size and weight in all types of electrical and electronic transformers. They combine highest permeability with lowest losses in a wide
range of sizes (1 through 5 and 12 mils). Two-piece assembly simplifies transformer manufacturing, cuts fabricating costs. Greater flux-carrying capacity, increased mechanical strength belp to make them the best core on the market. For specific information on how to apply Hipersil Cores to your product, write Westinghouse Electric Corporation, P. O. Box 868, Pittsburgh 30, Pennsylwania.

J-70632

rou an es SURE...f ins Westinghouse

 hipzrsil cores$$
2 \text { ways control works }
$$

It's a fact and here's why! First, Chester quality control engineers certify every phase of manufacture from raw material to finished product packed for shipment. No detail is too small or unimportant to merit their full attention. Second, quality in turn governs productionnot a single foot of Chester wire or cable is ever "hurried through" to meet a shipping date or heavy schedule. Extra shifts, not faster production is the method used to break bottlenecks at Chester.
This two way quality control is just one of many important reasons why electrical and electronic men, in increasing number, specify Chester wire and cable for an extra measure of reliability. Why not check your requirements with Chester today.

FOR EVERY APPLICATION -
JAN-C. 76 - $80^{\circ} .90^{\circ}-105^{\circ} \mathrm{C}$
Hook-Up Wire - Shielded Wire and Cable Flexible Cords - Coaxial Cable - Television Lead-In Cable - Gas Tube High Tensiom Cable - Oil Burner Ignition Cable - Blasting Wire - Thermostat Cable - Bell and Office Wire - TW Building and Fixture Wire

Rely on Plasticord and Plasticote - write for the new Catalog today

AMPHENOL builds to the future of ELECTRONICS . .

Electronics, tomorrow's industry today, has fully come of age! As industrial, commercial ard military equipment manufacturers turn more and more to automatic and semi-automatic equipment, electronics assumes an increasingly prominent position.

As electronics becomes increasingly a part of our modern living and its future is unlimited in application, Amphenol builds to the future! A program of planned expansion is being conducted in order that the quality and immediate availability of Amphenol electronic components may keep pace with the growing electronics giant.

Underlying the design and construction of quality electronic equipment has been the realization that no equipment functions any better than its RF and electronic circuits. Because of this fact, the electronics industry has come to rely on the standard of Amphenol quality.

Amphenol now has five modern plants, each one equipped and staffed to fulfill a critical phase of the intricate and complex task of supplying quality components to the entire electronics industry.

AMERICAN PHENOLIC CORPORATION

FLAT \& TUBULAR TWIN-LEAD

FIG. 5-Mounting and contects for crystal triode
must be unidirectional and have a substantially rectangular shape, rising to the intended value steeply and remaining at this level for a predetermined period, which in practice is 5 to 40 milliseconds.

The circuit for generating the pulse may be any well-known pulse generator device. The inventors' preferred embodiment is shown in Fig. 1. A pulse having the shape ABE is generated across resistor $R_{,}$by $R C$ network and the gas-discharge tube acting as a relaxation oscillator. The pulse applied to the amplifier grid is limited by the diodes shown to a shape $A C D E$. The output of the amplifier is applied through electrodes one of which contacts the tooth and the return circuit electrode is held in the patient's hand.

Pulse Width Discriminator

Patent 2,609,501 has been granted to G. B. Guthrie Jr., assigned to the United States of America as represented by the Secretary of War, for a "Pulse Width Discriminator Circuit." The circuit of this invention is shown in Fig 3. A group of representative waveforms is shown in Fig. 4. The circuit will accept only pulses of a critical duration t_{c} or greater and is independent of the amplitude of the pulse. Tube V_{1} is normally conducting; V_{z} is nonconducting by virtue of the drop across the common

FIG. 6-Circuit of the disk-contact crystal triode

electronic

 components by AMPHENOLWhatever your application problem may be, some one of the Amphenol components contained in the general categories listed below will probably answer your need.
Should your problem be so new or complex that no existing component will serve, then Amphenol's complete engineering and laboratory facilities will be concentrated in an effort to solve your problem. Look to Amphenol for the best in service, quality and delivery!
RACK \& PANEL TYPE CONNECTORS

AN TYPE CONNECTORS
RF TYPE CONNECTORS
AUDIO CONNECTORS
POWER PLUGS
BLUE RIBBON CONNECTORS
INDUSTRIAL SOCKETS
MINIATURE SOCKETS
TUBE SOCKETS \&
RADIO COMPONENTS
MICROPHONE CONNECTORS
RG COAXIAL CABLES,
TEFLON \& POLYETHYLENE
CABLE \& WIRE ASSEMBLIES
PLASTICS - EXTRUDED
\& INJECTION MOLDED
Write Department $13 L$ for your copy of General Catalog B-2
AMERICAN
PHENOLIC CORPORATION
chicugo 50, illinois

RF TYPE CONNECTORS

"Bridgepgrt" MILLS IN BRIDGEPORT, CONN. AND INDIANAPOLIS, IND.-IN CANADA: NORANDA COPPER AND BRASS LIMITED, MONTREAL

Radio Receiving Set, R-366/TRR5, a 14 -tube superheterodyne with a frequency range of 540 30,000 kilocycles covered in five bands. Courtesy Espey Mfg. Co., New York

Communications Receiver Uses Copper-base Alloys for Rugged, Trouble-free Service

Hard practical experience gained during extreme service conditions in World War II and the present Korean War dictated the necessity of using strong, dependable, corrosion resisting materials in the construction of the R-366/TRR5 radio receiving set designed for use by the United States Marine Corps. Ocean spray, wide temperature and humidity ranges, rough handling, and a minimum of maintenance care are a few of the many points which required consideration.

It is only natural that copper-base alloys due to their resistance to corrosion, ease of machining, ability to take plating, and lack of magnetic properties should play an important part in the construction of this receiver. For example, brass is used for brackets, mounting hardware, gears, bushings, solder lugs, control shafts, tube socket bases, shields, etc.

For dependable electrical and mechanical contacts, hot tinned brass (70% copper, 30% zinc) solder lugs are used exclusively on all terminal boards. They are easy to manufacture, take solder well and offer high resistance to corrosion.

Band Switching Assembly

A highly efficient positive acting band switching arrangement for trou-
ble-free service is one of the main features of this receiver. The coils are completely enclosed fully protecting them from dirt and damage from handling. Screw studs made from free machining brass rod (approximately 61% copper, 3.4% lead, remainder zinc) support the tuning slugs used for adjusting the various circuits and are located on the ends of the two large housings for making adjustments without opening the sealed units and expos-
ing the coils. The complete assembly is suspended between two cast bronze brackets for rigidity.

The band selector switch operates through a geared mechanism consisting of a brass gear (approximately 62.25% copper, 2% lead, balance zinc) and an indexing device which rotates the two coil housings, changing their beryllium copper supported coin silver contact points and connecting the 32 phosphor bronze (approximately 95% copper, 5% tin) shorting fingers. In this manner, the desired coils are connected into the circuit and the unused ones completely disabled.

Brass Tube Shields

Fifteen nickel-plated cartridge brass (70% copper, 30% zinc) tube shields are used to prevent unwanted voltages from being picked up or radiated by the various tubes. The shields are fastened to nickel-plated brass shield bases which are formed to the tube sockets. The shields themselves are removable to allow tube changing.

Bridgeport Brass Service

Bridgeport Brass supplies a wide range of copper-base alloys used in the electronic field. As a special service to electronic manufacturers, our Laboratory will be glad to assist in choosing the proper alloys for the many different applications found in their field. Call or write to your nearest Bridgeport representative.
(9417)

Top view of receiver R-366/TRR5 showing Band Switching Assembly, which has brass gears, cast bronze mounting brackets, and phosing brackets, and phos-
phor bronze shorting finphor bronze shorting fin-
gers. Other brass parts illustrated are tube shields, control shafts, tuaing slugs, and mounting brackets. Courtesy Espey Mfg. Co., New York

AMPEX

brings you these cost-saving operating advantages:

- UNINTERRUPTED SERVICE

Under the demand of heavy-duty programming, AMPEX Recorders deliver thousands of hours of unbroken service. Recently a set of AMPEX heads was returned from Honolulu for routine replacement after 11,000 hours continuous use, 17 hours a day. The heads were still within AMPEX specifications for new heads and had several thousand more hours of use remaining.

- MINIMUM "DOWN TIME"

AMPEX Recorders are designed for thousands of hours of continuous operation with minimum "down time," resulting in low maintenance costs and protection from sudden broadcast failures.

- accerate timing

AMPEX split-second timing accuracy protects your programs and commercials from embarrassing time overlaps.

- IIGIIEST FIDELITY

Even when programs are repeatedly transcribed from one tape to another, there is no noticeable build-up of noise level, "wow" or distortion.

- LINGG LIFE

AMPEX Recorders are designed and built for years of service dependability. Its recordings match established NARTB standards. When you have an AMPEX, you have a machine built for years-ahead performance.
IF YOU PLAN FOR TOMORROW, BUY AN AMPEX TODAY

MAGNETIC RECORDERS

A MPEX ELECTRIC CORP 934 CHARTERSTREET•REDWOODCITY,CALIF

cathode resistance R_{c}.
A signal as shown in waveform A applied to the input of V_{1} appears at the cathode as shown in waveform B. At the grid of V_{2} the waveform of C appears because of the integrating action of R_{g} and C_{4}. When at time t_{c} the voltage across C_{i} equals the amplitude of the pulse appearing on the cathode of V_{2} (same as cathode of V_{1}), V_{2} becomes conducting to produce a negative output pulse as at D.

If, however, the pulse duration t_{p} is less than the time required for capacitor C_{1} to reach the critical value at which the grid of V_{2} will be more positive than the cathode, then V_{2} will not conduct and not pass the pulse. This condition of operation is shown in waveform E.

Knife-Edge Transistor

In the transistor fields patents are currently appearing in rapid succession. Recent patent $2,610,234$ granted to A. H. Dickinson, assignor to the International Business Machines Corp., for a novel "Crystal Triode" is of some interest as an indicator of development trends in this art.

To overcome disadvantages of two point contacts in the conventional transistor, Dickinson's transistor employs a whisker as the emitter element and a knife-edged cylinder attached to a disk. The disk surrounds the whisker tip in a construction that can be seen in Fig. 5. A circuit connection that can be used for this crystal is shown

FIG. 7-Collector voltage versus collector current

FROM low level DC measurements requiring good stability to observing wave forms with significant components as high as 1 mc , the ST-2B gives outstanding service. Designed to permit a choice of short, medium or long persistence CR tubes, the unit incorporates identical direct coupled vertical and horizontal amplifiers. Filaments and screens on the first amplifier stages are regulated. Vertical selector switch allows choice of probe, calibration, AC or DC inputs.

GERMANIUM DIODE CHECKER
For use in laboratories, quality control groups, service shops. Measures the static characteristics of diodes. FORWARI) RANGES: Current-0.3. 1.2 , 6 and 12 milliamperes full scale. Voltage.3 and 1.2 volts full scale. INVERSF RANGES: Current-60, 120, 300 and 1200 microamperes full scale. Voltage-3, 12 and 120 volts fult scal POWER REQUIREMANTS : $105-125$ volis, $50 / 60$ cycle, approximately 10 watts.

SPECIFICATIONS—MODELST-2B

frequency response
Vertical Amplifier
DC - 0 to $400 \mathrm{kc}, ~+0,-20 \%$. not more than 50% dowri at 700 kc AC - 10 cycles to $400 \mathrm{kc},-0-20 \%$ not more than 50% down at 700 kc Probe -2 cycles to $400 \mathrm{kc},+0,-20 \%$. not niore than 50% down at 700 kc . Response independent of gain or attenuator setting.
Horizontal Amplifier
DC - $010400 \mathrm{kc},+0,-20 \%$, not more than 50% at 700 kc .
AC Response independent of gain or attenuator setting.
sensitivity
Vertical.
Horizontal.
Probe
Detlection Plates Direct Vertical Horizontal
SWEEP
Range - Triggered or recurrent - 2 cycles to 30 kc (may be extended downwards by adding external capacity across panel jacks).
Sync- \pm Internal, \pm line and -Ext. (requires -.3 volts peak to peak for ex.
ternal sync). Sync limiter on recurrent position.
Sweep Expansion-At least 4 times tube diameter.
PHASE SHIF T--Negligible phase shift hetween amplifiers from 0 to 300 kc
BLANKING- 2 -axis blanking requires 20 volts peak to blank
CALIBRATION-Eight voltages available by selector switch
.1, $3,1,3,10,30,100$ and 300 volts peak to peak $\pm 15 \%$.
DIRECT CONNECTIONS TO DEFLECTION PLATES - Avallable through capacitors -internal positioning circuits still function.

These Industrial Timer Corporation timers provide accurate and highly dependable instruments for control of a single operation or multiple operations (simultaneously or in sequence).

OUTSTANDING FEATURES ARE:

(l) the wide range of over-all time cycles obtainable from any one model,
(2) the ease with which over-all time cycles can be changed;
(3) the simplicity with which individual cams can be adjusted for ON and OFF periods, and positioned in specific timing sequence.

Model 446 transmitter operates on 4 crystal-controlled frequencies (plus 2 closely spaced frequencies) in the band 2.5-24.0 Mcs (1.6-2.5 Mcs available). Operates on one frequency at a time; channeling time 2 seconds. Carrier power 350 watts, A1 or A3 AM. Stability $.003 \%$ using CR-7 (or HC-6U) crystals. Operates in ambient 0° to + $45^{\circ} \mathrm{C}$ using mercury rectifiers;-35${ }^{\circ}$ to $+45^{\circ} \mathrm{C}$ using gas-filled rectifiers. Power supply, 200-250 volts, $50 / 60$ cycles, single phase. Conservatively rated, sturdily constructed. Complete technical data on request.

Here's the ideal general-purpose high frequency transmitter! Model 446... 4-channel, 6-frequency, medium power, high stability. Suitable for point-topoint or ground-to-air communication. Can be remotely located from operating position. Co-axial fitting to accept frequency shift signals.

FIG. 8-Corn popper uses r-f to explode kernels in plastic bag. Alternative system pops corn, bags it later
in Fig. 6 on p 165.
Performance of the Dickinson crystal triode is indicated in the curves of Fig. 7, which compare the output vs input characteristics of the Dickinson crystal with typical crystal triodes previously reported.

More output voltage for a given input signal and a lower output impedance are claimed by Dickinson, and in view of the latter characteristic a greater response at higher frequencies of operation.

Corn Popper

Use of electronics for automatically popping corn in a coinoperated vending machine is the subject of patent $2,603,142$ granted to C. C. Miller of Altadena, Calif. for "An Apparatus for Popping Corn by High Frequency Radiation."

A measured quantity of corn kernels already sealed in their plastic container are passed through the dielectric field of an r-f oscillator and the kernels are popped instantaneously. A diagram of this mechanism is shown in Fig. 8.

Transistor Amplifier

Patent 2,609,459 granted to G. Bergson, assignor to the Radio Corp. of America, for a high-input

FIG. 9-Transistor amplifier uses impedance between emitter and collector

Serles AJ Hellpot models are only $3 / 4^{\prime \prime}$ in diameter and 13/6" long; weight 1.0 oz . Ten-turn $18^{\prime \prime}$ slide wire gives adjustmentaccuracy cf $1 / 3000$ in a 100. chm unit- $1 / 6500$ in c 50,000 -ohm unit.

Helipot achieves "HIGHEST PRECISION' with DRIVER-HARRIS RESISTANCE WIRE

Cuławay view of Model A 10 -turn Helipot precision helical potenfiometer. Resistance element 45" long is contained in case $2^{\prime \prime} \times 1-13 / 16^{\prime \prime}$ diameter. On element are wound 3009 to 9800 turns of resistance wire, depending on total resistance value required. Adjustment aceuracy is 12 to 14 times that of conventional single-turn potentiometer of equal diameter.

To win consumer preference and assure customer satisfaction, Helipot Corporation is guided by a basic policy that has proved as effective as it is simple. It is: (1) to produce components of the highest precision, and (2) to realize the economies inherent in mass production.

By following these objectives, Helipot has become the world's largest maker of precision potentiometers, producing the widest selection of single-turn and multi-turn units available anywhere.
States Helipor: "Our policy of mass producing the highest precision potentiometers practicable, in order to deliver top quality at moderate cost, is reflected in the fact that standard linearity accuracy of all our stock models, selling competitively, is held to $\pm 0.5 \%$. Our reliance on Driver-Harris alloys such as Nichrome V, Advance, and

Karma to provide resistance windings for many of our products constitutes a strong endorsement of DriverHarris skills and reliability."
Driver-Harris takes particular pride in having played so important a role in the Helipot story, and is fully conscious of the responsibility the confidence of this famous manufacturer imposes.
Nichrome*, Advance*, and Karma* are at your service, too; as are more than 80 other alloys developed exclusively by Driver-Harris for application in the electrical and electronic fields. We feel confident that, like Helipot, you will realize outstanding advantages by putting one or more of them to work for you. Let us have your specifications. We'll be glad to make recommendations based on your specific requirements.
*T.M. Rex. U.S. Pat. Off.

Driver-Harris Company

HARRISON, NEW JERSEY

BRANCHES: Chicago, Detroit, Cleveland, Los Angeles, San francisco
In Canada: The B. GREENING WIRE COMPANY, Ltd., Hamilton, Ontario.

when you think of fastening think...

Here is help in securing the right fastener for your particular needs in metal-to-metal and metal-to-wood applications. Southco engineers work with you to find the standard or special fastener that means lowest overall costs.

Holding power, speed and ease of installation, elimination of special tooling, convenience of use in opening and closing applications . . . each factor involved is analyzed to assure the best fastener at lowest possible cost. When special designs are indicated, the experience and background of Southco engineers in solving thousands of fastener problems can be of special value to you.

When you are faced with a fastener problem, write Southco Div., South Chester Corporation, 1417 Finance Bldg. Philadelphia 2, Pa. District Offices are located in principal cities.

SOUTHCO

FASTENERS

OFFICES IN PRINCIPAL CITIES...

Wherever two or more parts are fastened together, standard and special designs for improved performance and lower production costs

BUREA HX ET USINES \quad GBOAATOIRES
6, RUE JULES-SIMON - BOVLOCNE-SUR-SENE 64, RUE DU CNATEAU - BOULOCNE-SUR-SANE TEL. : MOUITOR 37-00

TLL: MOLITOR 73-90 of 91

Battery Connectors

8-pin type for both A and B batteries used in all types of field commmication equipment, "RUGGEDIZED" for extra security and long sersice life: polarizing stud is ALL METAL and all metal parts are cadmium plated and sealed with an iridite sealcr. Cable may be brought out at any desired site postion and locked. Handy bail makes removal from inaccessible places easy.

Quick Disconnect

Simply push male and female members together and lock. To disconnect with minimum resistance, pull back sleeve on plug shell and disconnect. Exceptionally low disengaging force required (less than 6 lbs., excepting pin friction). Vibration proof, moisture-proofed with symhetic rubber insert. Meets AN pin pattern and voltage requirements, in accordance with MIL C-5015. Plug sliell and coupling sleeve are aluminum alloy, cadmium plated and iriditesealed.
(Federal Spec.
QQP-416, Type 2.)

Receptacle Types:
Found flange single lule panel-monnted, square flange for 4 bols, or specially flanged to specification. All contacts silver plated.

We invite your inquiries an any problems concerning connectors. Our wealh of engineering experience in this specially is at your setvice.

CORPORATIONS, INC. 41 South Sixth Street, Newark, N. J.
impedance transistor amplifier describes circuit means for accomplishing the claimed results.

By the insertion of an impedance between the emitter and collector electrodes, as shown in Fig. 9, Bergson shows that when the output is taken from a point on this impedance the input impedance of the transistor amplifier is raised to a much higher level. Improvement results in the operation of transistor amplifiers by reduction of the load-

FIG. 10-Frequency meter measures discharge of Geiger tube
ing effect of the normally low input impedance shown by previously disclosed transistor amplifiers.

Briefly the operation of the highimpedance transistor amplifier may be described as follows. The output is derived from load resistor R_{1} in the collector circuit of Fig. 9. A part of the output current flows to the emitter circuit and opposes the emitter current to raise the input impedance and increase the gain of the amplifier.

Frequency Meter

A rather unusual frequency meter of particular application to GeigerMuller tubes is the subject of patent 2,609,512 granted to H. Conviser, assignor to Bendix Aviation Corp.

The frequency meter is illustrated in Fig. 10. In operation ionization of the G-M tube applies a pulse of negative polarity across capacitor C on to the grid of a stable free-running blocking oscillator to quench the oscillator for the duration of the pulse. During this quenched interval the cathode bridge R_{1}, R_{2}, R_{3} and R_{4} made up of temperature-sensitive resistors and forming an arm of the Wheatstone bridge averaging circuit, will no longer have a potential across it to unbalance the bridge and provide

Whether your problem is new design or product improvement, take advantage of the greater energy product INDIANA HYFLUX Alnico V offers!

These exclusive, new, super strength permanent magnets mean lower production costs, more compact design and higher efficiency for your products.

What's more, INDIANA HYFLUX with its 16% greater energy product costs not a penny more than regular Alnico V !

Here's still another bonus you'll enjoy! THE INDIANA STEEL PRODUCTS COMPANY, world's largest producer of permanent magnets, offers free of charge its wealth of experience and "know-how" that has developed more than 30,000 permanent magnet applications.

Let INDIANA engineers help you with your design problems. They can supply out of stock - many types and sizes of INDIANA HYFLUX Alnico V for your experiments, can suggest those best suited to your product.

INDIANA is the only manufacturer furnishing all commercial grades of permanent magnet alloys. You have a choice of cast, sintered, formed or ductile materials.

Why delay - write or phone INDIANA today. Ask for Catalog Nio. 11A-5 that describes stock experimental magnets.

Need Precision

 immediate delivery. i items, initial dalance on close schedule. prelarge orders made prompty, will be given your ties will prompt attention individual specifications. the same flexibility and cision Pots 10 yourHelipot's obiective is to give you company. Ourve your needs. efficiency as a department of your are ready 10 servecial designs in sonnel and unequalled units shown hertare splications.
 quantily for fast service, call direct!

MODEL A HELIPOTS

The most widely adaptable of all multiturn Helipots. A 10-turn unit of convenient, compact size
offering resolution accuracies 12 to 14 times that of conventional singleof conventional singleeter. 10 -turn range permits direct decimal readings. 10-turns... Power rating 5 watts. ..Coil length 46.5" Linearity and up, $\pm 0.25 \%$ below 5 K).*

MODEL AJ HELIPOTS

The AJ is a high performance 10 -turn helical potentiometer of miniature size ($3 / 4^{\prime \prime}$ " dia.) and light weight (1 02.). Available with bushing mount (AJ) or servo mount AJs, bath Servo sleevt beangs. servo mounisiso arallable with nrecision ball bear-
ings (AJSP). 10 -turns. . Power rat$\operatorname{ing}_{\text {length }}{ }^{2}$ watts...Coit length 18 . 5% (std) tolerance $\pm 0.5 \%$ (std.) $\ldots z$.. Starting torque
oz. in
Dia. $3 / 4, \ldots$
table of stock values

| Catalog |
| :---: | :---: | :---: | :---: |
| No. | | Total |
| :---: |
| Resistance |
| (Ohms) |\quad| Wire |
| :---: |
| Turns |\quad| Temperature |
| :---: |
| Coefficient |

table of stock values

$\begin{aligned} & \text { Cataliog } \\ & \text { No. } \end{aligned}$	rotal Resistance (0hms)	Wire	Temperature Coefficient
$25-A Z$	25	3,000	. 00071
50-AZ	50	3,200	. 00071
100-AZ	100	3,800	00071
200-AZ	200	4,750	. 00071
500.AZ	500	4,000	. 00002
1,000-AZ	1,000	5,000	00002
2,000-AZ	2,000	6,500	.00002
5,000-AZ	5,000	7,200	. 00013
10,000-AZ	10,000	9,000	. 00013
20,000-AZ	20,000	10,000	. 00013
30,000-AZ	30,000	11,500	. 00013
50,000-AZ	50,000	12,500	. 00013
100,000-AZ	100,000	15,000	. 00013
200,000-AZ	200,000	15,500	. 00013
300,000-AZ	300,000	16,000	00013

MODEL B HELIPOTS

A large diameter ($3-5 / 16^{\prime \prime}$) 15-furn Helipot with $139^{\prime \prime}$ slide wire length providing the highest resolution $(.01 \%$ to $.003 \%)$ and ad. justment accuracy available today in a standard mass-production unit. Rugged, dependable, low in cost.
15-turns ... Power rating 10 watts ... Coil rength $139^{\prime \prime}$... Linearity tolerance $\pm 0.5 \%$ (std.).*
table of stock values

Catalog	Total Resistance (Ohms)	Wire Turns	Temperature Coefficient
No.	1,000	10,900	.00002
$1,000-$ BZ	5,000	19,600	.00002
$5,000-\mathrm{BZ}$	10,000	17,700	.00013
$10,000 \cdot \mathrm{BZ}$	25,000	21,800	.00013
$25,000 \cdot \mathrm{BZ}$	2500		
$50,000-\mathrm{BZ}$	50,000	25,400	.00013
$100,000-\mathrm{BZ}$	100,000	34,100	.00013

Please note that 1000 volts is highest that may be applied across coil regardless of resistance value.

MODEL T HELIPOTS A single-turn, continuousrotation servo-mounting
unit of minimum weight unit of minimum weight (0.56 oz.) requiring very small cubic space and operating with negligible torque. precision ball bearings -
unit built throughout to highest possible precision highest possible precision.
1-turn ... Power rating $1 / 2$ watt Coil length $2^{\prime \prime}$ 1/2 Wat Linearity tolerance $+0.5 \%$ (Std.). . . Starting torque . 015 in . or. (Running torque is negligible) Wgt. 0.56 oz .*
table of stock values

Total Catalog	Wire Resistance (Ohms)	Wurns Turn	Temperature Coefficient
$1,000-\mathrm{TZ}$	1,000	705	various
$2,000-\mathrm{TZ}$	2,000	750	various
$5,000-\mathrm{TZ}$	5,000	800	various
$10,000-\mathrm{TZ}$	10,000	1,650	various
$20,000-\mathrm{TZ}$	20,000	1,500	.00002
$25,000-\mathrm{TZ}$	25,000	1,500	.00002
$30,000-\mathrm{TZ}$	30,000	1,400	.00002
$50,000-\mathrm{TZ}$	50,000	1,400	.00002
$100,000-\mathrm{TZ}$	100,000	1,500	.00002

MODEL C HELIPOTS Identical in general design to Model A except has only 3 helical turns of resistance winding and proproportionately shorter length. Ideal for high-accuracy applications with restricted behind-panel depths.
3-turns ... Power rating 3 watts . . . Coil length $131 / 2^{\prime \prime}$. . . Linearity tolerance $\pm 0.5 \%$ (Sto.) Behind-Panel Length 1-9/64".*

- ON SPECIAL ORDER MOS DI

Engineering Sales Representatives are locatod near you to asture personal attention. Tolotype connects our Now York, Boston, Chicago and Los Angeles offices for rapid informetion an orders and deliveries. And our Mountainside, New Jersoy plant, now unde construction, will soon be in production to further assist you.

THE IPHIDDHCORPORATION

(2)

MODEL 」 HELIPOTS

first production potent ometer equipped with ballbearing shaft supports as standard and 3 -way servo type mounting. Ganged as semblies can be independ ently phased after instal Cation without externa clamps or brackets.
1-turn... Power rating 5 watts coil length $51 / 2^{\prime \prime} \ldots 360^{\circ}$ Cont. Mech. Rotation ... Linearity tolerance $\pm 0.5 \%$... Starting orque $1.0 \pm .250 z$. in.
table of stock values

Catalog No.	Total Resistance (Ohms)	Wire Turns	Temperature Coefficient
$100-\mathrm{JZ}$	100	630	.00002
$1,000-\mathrm{JZ}$	1,000	875	.00017
$5,000-\mathrm{JZ}$	5,000	1,300	.00017
$10,000-\mathrm{JZ}$	10,000	1,475	.00017
$20,000-\mathrm{JZ}$	20,000	1,900	.00017
$30,000-\mathrm{JZ}$	30,000	1,975	.00017
$50,000-\mathrm{JZ}$	50,000	2,260	.00002

Please note that 400 volts is highest that may be applied across coil regardless of resistance value.

MODEL G HELIPOTS

 A small, extra rugged single-turn pot developed initially for aircraft servo mechanisms. Its compact size, high accuracy, long life make it ideal for many instrumentation and servo echanism applications. 1-turn... Power rating 2 watts... Coil length $31 / 4^{\prime \prime}$. . 360° Cont. Mech. Rotation... Linearity tol erance $\pm 0.5 \%$ (Std.) Wgt. 20 y....Dia. 5/16", *
(2)

MODEL F HELIPOTS A $3^{\prime \prime}$ dia. single-turn high precision potentiomete with continuous mechani cal rotation and minimum dead spot between electrical ends. Versatile in ap plication. Ideal where con tinuous rotation simplifies circuitry. 1-turn. . . Power rating 5 watts . . Coil length $91 / 4^{\prime \prime}$. . . Linearity foler ance $\pm 0.5 \%$.*

table of stock values

Catalog No.	Total Resistance (0hms)	Wire Turns	Temperature Coefficient
$100-\mathrm{FZ}$	100	800	.00002
$500-\mathrm{FZ}$	500	1,300	.00002
$1,000-\mathrm{FZ}$	1,000	1,200	.00003
$5,000-\mathrm{FZ}$	5,000	2,000	.00013
$10,000-\mathrm{FZ}$	10,000	2,500	.00013
$20,000 \mathrm{FZ}$	20,000	2,700	.00013
$50,000-\mathrm{FZ}$	50,000	4,000	.00013
$100,000-\mathrm{FZ}$	100,000	5,000	.00002
Please note tiat 400 volts is highest that may be			
applied acrosi coil regardles of sesistiance value.			

NOT CARRIED IN STOCK but quickly availab

 but quickly available on order
.

MODELS AN and CN HELIPOTS tentiometers of same highly linear sions as Models A and geseral dimenand are buntings, ball-bearingt have sible. Havit to highest pracig shafts in linearity approximately 2 precision pos. ing A and accuracies over 21 advantage arity tolerancipots. (Moral hespond in values of $5 k$ as close s AN line. AN (10-turns) 5 K and above.) $\pm .025 \%$ 250.000 ohms resistance ranges 75,000 ohms...CN (3-turas) 30 to Write for tolerances, special features, on finearity

MODELS D and E HELIPOTS Helipots with extre5/16"), wide ran windings for highest dong resistance tions coupled withest possible resolu with close linearity tol Model D ha
hind of rotation, is $4.94^{\prime \prime}$ coil length rang the panel, and is $4.94^{\prime \prime}$ deep be Modes from 100 to 750 is available in $14,400^{\circ}$ Ehas 40 turns, $373^{\prime \prime}$ ohms. behind panel rotion, is $6-1 / 64^{\prime \prime}$ dength, behind panel, resistances $6-1 / 64^{\prime \prime}$ deen , 000,000 ohms. 'esistances 200 to Write for full

TABLE OF STOCK VALUES

Catalog No.	Total Resistance (Ohms)	Wire Turns	Temperature Coefficient
$10 \cdot \mathrm{GZ}$	10	300	.00071
$100-\mathrm{GZ}$	100	400	.00002
$500-\mathrm{GZ}$	500	500	.00013
$1,000-\mathrm{GZ}$	1,000	650	.00013
$5,000-\mathrm{GZ}$	5,000	750	.00013
$10,000-\mathrm{GZ}$	10,000	950	.00013
$20,000-\mathrm{GZ}$	20,000	1,200	.00013

OTHER UNIQUE HELIPOT PRODUCTS

MODEL RA Precision DUODIALS
A beautiful, precision-built, multi-turn dial of compact dimensions ($1-13 / 16^{\prime \prime}$ dia.) for all types of quality mult.turn instal:ations. Features unique "uump" mechanism that keens secondary dial stationary until primary dial has completed a full turn then secondary dial "jumps" to new position. A vibration-proof lock holos dial settings whenever desired.
Black nylon knobs, satin aluminum dials, quality "fee!" and appearance :hroughout. Available in 10-turn design for use with 3 and 10 -tuan Heli ipots and in RA) version for use with small A) Helipots. Write for full details.

MODEL W DUODIALS
A large diameter ($43 / 4^{\prime \prime}$) multi-turn dial ideal for primary control applicaticns. The inner dial shows the exact position of the slider on any multi-turn Helipo: while the outer dial shows the particular turn on which the slider is moving. Thus with 10-turn units, readings can be made directly in decimal equivalents of total resistance winding. Since primary dial is direct-connected to shaft, backlash is eliminated.
Available in 10:1, 15:1, 25:1, and 40:1 Ratios for use with various Helipot models as well as with other multi-turn equipment.

Write for full details.
\qquad

B. B. Taylor

241 Sunrise Highway
Rockville Centre, New York ROCkville Centre 6-1014-6-1015 TWX: Rockville Centre NY 3685
2. ROCHESTER
E. A. Ossmann Corp 3 Juniper Street Rochester 10, New York CUlver 7640
3. SCHENECTADY, N. Y. E. A. Ossmann

Harold Gerber
25 Huntington Avenue
Baston 16, Massachusetts
CC.pley 7-1961

TWX: BS 168
5. PhiLADELPHIA
farmes C. Muggle vorth
Sct Richey Avenue Collingswood 6, New Jersey
Collingswood 5-3515
cleveland
Howard N. Heasley
1940 East Sixth Street Cleveland, ohic PRospect 1552

1. Chicago

Roy 1. Magnuson
4258 West Irving Park Road
Chicago 41, illinols
PAlisade 51170
TWX: CG 913-X
8. ST. LOUIS Harris-Hanson Company 5506 South Kingshighway St. Louis S. Missouri SWeetbriar 5584
9. FORT MYERS

Arthur H. tynch \& Associates P. 0. 80×466

Fort Myera, Florida
FOrt Myers 5-6762

1. SEATHLE

\qquad 1612 Broadway Seattle 22, Washington FRanilin 7515-7516
12. DALLAS

1. Y. Schoonmaker Company

2011 Cedar Springs
dallas 1 , Texas

LABORATORY HELIPOT-MODEL T-10A

his unit combines in a handsome walnut case 10-turn Helipot, an "RA" Duodial, and three-way binding posts for quickly setting up and changing experimental or temporary circuits. Ideal for laboralory and instruction purposes is far more compact, simpler and 5 times faster to set than decade boxes.
Power rating 5 watts...Linearity 0.1%
Standard Resistance Ranges 100 . . $500 \ldots 1,000$
$5,000 \ldots 10,000 \ldots 20,000 \ldots 50,000 \ldots 100,000$ ohms in stock. Other ranges on order.

Write for full details.

EXPORT AGENT: Frathom Company, 33 West 42 nd Street, New York 36 , New Yerk, BRyant $9-1296$
13. DETROIT S. Sterling Company 15310 West McNichols Rd Detrolt 35, Michigan Broadway 32900
14. SOUTH CENTRAL Bivins \& Caldwell Security Bank Bldg Security Bank Bldg High Point 3672
15. CANADA
J. S. Root

290 Lawrence Ave W. Toronto 12, Ontario, Canada ORehard 3003

...when the Milford Method may save you thousands of dollars in costly fasteners and assembly!

askd dourt the Miliford Method

This scientific approach to product and parts assembly is a fastener-engineering consulting service which analyzes your needs at the blueprint stage... before you invest in expensive tools and dies! It projects for you the right fastener. Look into the economies of the "MILFORD

METHOD" now. Send your blueprints and samples for analysis and planning by the "MILFORD

METHOD", or write for the
"Milford Method" brochure today.

MILFORD, the name to rivet in your memory for fasteners.

```
855 Bridgeporl Ave., Milford, Conn.
806 Illinois Ave., Aurora, Ill.
    1106 W. River St., Elyria, Ohio
        26 Platt Street, Hatboro, Penn.
    715 So. Palm Ave., Alhambra, Calif.
```

an indication of the unbalance on the meter. The meter is adjusted to show the average of the pulses appearing at the output of the $\mathrm{C}-\mathrm{M}$ tube.

Prediction of Electronic Failures

The failure of a tube or other component in an electronic device can happen suddenly or result from gradual deterioration. Possibility of sudden failure can be reduced only by improvement in design, but the nature of gradual deterioration makes possible the detection of a failing component before it becomes inoperative.

Detection of incipient failure in multistage equipment by input-output measurements is unreliable. Tolerances in overall measurements may mask changes caused by deterioration of a tube in one stage, and the point at which deterioration becomes detectable may practically coincide with the failure point. In order to make successful predictions a means of testing individual stages is necessary.

A technique developed experimentally by the National Bureau of Standards permits an unskilled maintenence man with a portable failure-prediction unit to test slightly modified equipment for failing components. The prediction unit includes a 3,000 -cycle oscillator, voltage sensing circuits, a leakage detection circuit and an alarm light.

Measurement Procedure

In use, the unit is plugged into the device being tested and a multi-

FIG. 1-Chart showing deterioration in performance during life of component. This type of curve is applicable to many types of components including tubes, resistors, capacitors or complete subassemblies

better than 0.02 of 1%

accuracy

Designed to the most exacting specifications for such applications as timing operations in industrial laboratories or for measurement processes in the chemical and metals industries. Incorporates new principle of differential clutching that prevents slippage and overrun and insures unusually high accuracy and depend. able performance.

FEATURES

High Accuracy... Better than 0.02 of 1% of full scale reading.

Positive Clutching ...Differential gear clutch provides positive action. No friction element to slip or wear. Accuracy further improved by clutching at a high. speed part of the gear train.Extra Strength Motor... High torque motor insures adequate reserve for adverse operating conditions.

Easy-to-Read Dial . . Large sweep hand permits extremely precise readings.

Compact Size . . Takes up minimum space on crowded panels. . . ideal for portable or airborne equipment.
Military Specifications ... Models available to meet exacting specifications as to shock, vibration, temperature, etc.

the R. W. CRAMER CO., Inc. Box No. 3, Centerbrook, Conn.
 Please send complete information about (Pleose check) the ET Time Totalizer.
 Send copy of General Bulletin on
 Synchronous Timing Motors and Electric Timers. \square
 NAME:
 Address:

In this unique clutch mechanism, the motor is permanenfly connected to the sun gear of a differential gear system. A solenoid pawl moves between the two differential members so that only one is free to rotate at one time. Starts and stops are thus effected by pasitive engagement of pawl with gear. There can be none of the slippage or overrun associated with friction clutches; nor can characteristics change with age.

C-Cores to meet any requirement For your single-phase applications, Arnold "C "-Cores are available in any shape and quantity, and in any size from fractions of an ounce to hundreds of pounds . . . wound from Silectron strip in a wide range of ultra-thin and heavier gauges. (Sizes up to 10 lbs. in I 2-mil strip; to any weight in thinner gauges.)

made from SILECTRON strip (grain-oriented silicon steel)

The use of "E" cores, wound from grain-oriented silicon steel, results in weight and size reduction as well as higher efficiency and possible cost savings. " E " cores can be supplied in a variety of window sizes and core areas from 1, 2, 4 or 12 -mil Silectron strip, for high or low frequency 3-phase applications. - All Arnold cores are made by precision methods, and carefully rested under closely controlled conditions to assure highest quality and reliability. We'll welcome your inquiries.

WaD 4.437

HLet's take this capacitor problem to Cobrr About 3 times out of 4 , we find that a capacitor problem submitted to us has come up before, and the solution is ready and waiting.
Coincidence? No, just that C-D is usually called on to tackle the capacitor problems of other companies engaged in the same type of work as your own.
If your problem is new or old, our engineers will be glad to collaborate with you.
Cornell-Dubilier Electric Corporation, South Plainfield, New Jersey.

CORNFTT-DUBITTPR

world's largest manufacturers of capacitors

IN ADDITION to the products listed above, H. H. Buggie And Company designs, engineers and manufactures many special parts and assemblies for companies in the field of electronics. We invite your inquiries.

H. H. BUGGIE And Company

Sales Engineers in All Principal Cities

position switch is used to connect the tester with individual stages. Audio signals of different predetermined levels are applied to the grid of each stage. Each of the input signals is preadjusted so that the voltage-sensing circuit will actuate the alarm light if the gain of the stage has decreased by more than the safe amount. A separate threeposition switch on the test unit allows capacitor-leakage sensing and voltage-and-current sensing, in addition to gain sensing.

In electronic equipment, the most common cause of failure is defective tubes. The failure predicting unit operates by sensing the decrease in transconductance of tubes in critical stages. To do this, the tube is operated as a resistancecoupled amplifier. A 3,000 -cycle signal is applied and the sensing unit determines if the gain has fallen below the predetermined limit. Defects in components other than tubes will be detected by this test if their change affects the gain of the stage.

In developing the failure-prediction unit, six 18 -stage military receivers were modified to permit insertion of the audio signal and measurement of gain. The receivers were then subjected to a 1.000-hour accelerated aging test. Temperatures were cycled between 10 C and 120 C with a total period of fifteen minutes. Voltages were maintained at 15 percent above design values and plate voltages were raised periodically to 150 percent of normal for one second, to simulate switching transients. Prediction checks were made every five hours.

In the thousand-hour test period. 79 tube failures occurred in the six 11-tube receivers. Of these failures. 65 were of the gradual and predictable type. There were 14 open and short circuits, six of which occurred during a 60 -hour period when heaters and plates were cycled one minute on and one minute off. The other eight failures were spread over the remaining 940 -hour period.

Of the 65 predictable failures, 58 were accurately predicted many hours before the receiver failed. Of the seven predictable failures not successfully predicted, four were in
 specifying ADLAKE Mercury Relays
for Timing and Control Functions?

... BECAUSE they are designed and built to meet the most exacting needs of industry! They've won their place by proven dependability-year in and year out--in jobs that conventional relays can do in an uncertain manner at best! For every adlake relay is tested-and guaranteed - to meet specifications!
For instance, adlake Mercury Relays have proved their ability to stand up under the most adverse conditions of temperature and moisture. Their time delay characteristics are fixed and non-adjustable... normal line voltage fluctuations or ambient temperatures from - 38.8° to $200^{\circ} \mathrm{F}$. have no material effect on these characteristics.

Yes, in chick incubators or diesel generators... wherever sensitivity and dependability are required... ADLAKE Relays can always be counted on! Send for the adlake Relay Catalog today... no obligation, of course. The Adams \& Westlake Company, 1107 N. Michigan, Elkhart, Indiana.

EVERY ADLAKE RELAY GIVES YOU THESE PLUS FEATURES:

- HERMETICALLY SEALED-dust, dirt, moisture, oxidation and temperature changes can't interfere with operation - SILENT AND CHATTERLESS • REQUIRES NO MAINTENANCE • ABSOLUTELY SAFE • MER-CURY-TO-MERCURY CONTACT-prevents burning, pitting and sticking
... And every adlake Relay is tested-and guaranteed to meet specifications!

me Adams \& Westlake comarar

Established 1857 . ELKHART, INDIANA. New York • Chicago
Manufacturers of ADLAKE Hermetically Sealed Mercury Relays

OPERATING UNDER PATENTS OF THE WESTERN ELECTRIC COMPANY

7 Reasons why

Regohm is a natural for

This compact, electro-mechanical controller provides sensitivity, speed of response and system stabilization under severe operating conditions. Its design and operating features have made Regolum useful for automatic control systems in which heavier, more expensive and complex, but less accurate equipment had previously been the only available solution.
ת2 small SIZE - Regohm is a compact, plug-in device; lightweight, extremely rugged and position-free. The unit's small size does not limit its power-handing capacity. This makes Regohn a "natural" where ecomomy of space and weight are your major considerations.
22 POWER AMPLIFYING \cdot Regohm is a high-gain electro-mechanical power amplifier. Milliwatt variations in signal energy can control energy changes millions of times greater.
32 impedance matching \cdot Signal and controlled circuits are isolated, both electrically and structurally. Signal coils may have ratings from 0.01 to 350 amperes. Controlled resistors on a panel in which Regohin is plagged, can have values from zero to infinity, depending on the controlled system.
(4) SYStem stabilizing - A thoroughly reliable, sturdy dashpot aids in system damping. It can casily and readily be adjusted over a wide range to march the dynamic character-
istics of the Regohm to those of your present system.
55 analytically definable. The response of Regohm is independent of the rest of the serve system. Its response characteristic can be expressed in terms of conventional "transfer functions." Regohm acts as an integrating error-rate proportional controller. No appreciable stady-state error can occur. Regohm's effect can be calculated in advance, simplifying design and facilitating prediction of performance.
56 continuous control - In "closed loop" systems a highspeed averaging effect occurs as Regohm's armature oscillates over a small amplitude. This provides intermediate values between step resistances and results in continuous, stepless control in systems operating at power frequencies and below.
52 long life • In properly engincered installations, Regohm's life is measured in years. Plug-in feature simplifies replacement and maintenance-there are no parts to renew or lubricate. Shelf life is substantially unlimited.
Our engineering and research facilities can help you apply Regohm to your servo system or regulator problem. Write for Bulletin 505.00, containing a complete discussion of Regohm's characteristics and applications. Address Dept. F: Electric Regulator Corp., Norwalk, Conn.
a single stage where parasitic oscillations interfered with measurements, one was masked by a change in value of an overloaded resistor and four were in stages not being checked. Failures in components other than tubes were negligible.

Although the principles on which this experimental work is based are not new, the success of the tests indicate that practical failure-prediction systems can be devised and that provisions for such systems should receive the serious attention of design engineers.

Milled Block Simplifies Microwave Construction

By using waveguides cut in blocks of conductive material it is possible to reduce the bulk and complexity of microwave circuits. Sharper curves without spreading of the waveguide walls, and reduction of reflection losses in fitting mechanical components are also possible by this method.
Developed by Ferranti, Ltd., the circuit is made up of two mated milled blocks. Each block has rectangular channels half the width of the major dimension of the waveguide. When joined together the channels coincide to form complete waveguide and duplexer circuits. Guideways for t-r cells, crystals or probes can be milled where required.

The fact that the waveguides are divided through their centerline has no effect on electrical performance, and is convenient for

FIG. 1-Complex waveguide circuit cut in metal block. Spaces in block allow mounting of other components

ELEC TRONICS - February, 1953

outsells all others combined

because...

A covers all ranges necessary for Radio and TV set testing Bincludes the Simpson 50 Microampere Meter Movement known the world over for its ruggedness
Cno bulky harness wiring. thus eliminating all intercircuit leakage at this high sensitivity
Dmolded recesses for resistors, batteries etc.
Eeasy battery replacement
-all components - including case and panels - are specia designed and completely tooled for maximum utility . . not merely assembled from stock parts
ranges 20.000 Obms per Volt DC,
1,000 Ohms per Volt AC
V olts, $A C$ and DC: 2.5, 10, 50 ,
257, 1000, 5000
Output: 2.5, 10, 50, 250, 1000
Milliamperes, DC: $10,100,500$
Microamperes, DC: 100
Amperes, DC: 10
Decibels (5 ranges):
-12 to $+55 D B$
Olms: 0-2000 (12 obms
center), 0-200,000 (1200 ohms
center), 0-20 megohms
(120,000 ohms center)

SIMPSON ELECTRIC COMPANY 5200 W. Kinzie St., Chicago 44 Phone COlumbus $1-1221$

In Canada: Bach.Simpson, Ltd., London, Ont.

General Plate is a source of supply for precious and composite metal contacts, buttons, rivets, contact assemblies and contact materials.

Contacts of solid precious metals are economical where a small amount of precious metal is used. In applications requiring larger contacts, General Plate composite metal parts offer better performance, longer operating life and reduced costs in comparison with solid precious metal types. These advantages are obtained by combining the physical and electrical properties of the precious metal with the greater strength and lower cost of the base metal.

General Plate produces overlay, inlay, edgelay and Top-Lay contact materials by bonding a precious metal layer or stripe to practically any malleable base metal. Composite contact materials make it possible to manufacture complete contact assemblies to close tolerances by simple blanking and forming operations.

General Plate's Contact Department is completely equipped to produce blanked and formed parts of solid or composite metals, buttons, rivets, and brazed, welded or staked assemblies ... fabricated to exact specifications. By letting General Plate fabricate your contacts, you eliminate costly fabrication problems, needless equipment costs and problems of scrap disposal ... contacts and/or assemblies are shipped to you ready for installation.

Write for complete information and Catalog PR 700 today.

Have You a Composite Metal Problem? General Plate can solve it for you

METALS \& CONTROLS CORPORATION GENERAL PLATE DIVISION

32 FOREST STREET, ATYLEBORO, MASS.

Photographic comparison of the new G-E Drawn-oval capacitors (in color) and the conventional units they replace, showing savings in size.

New General Electric Capacitor is Smaller, 10 to 20% Lower in Price

These fixed paper-dielectric hermetically-sealed capacitors offer:
- Reduced costs - 10 to 20%
- Savings in size and weilght
- Double-rolled seams
- Drawn-steel cases
- Savings in critical materials

If you're using fixed paper-dielectric capacitors with case styles CP53 and CP子 7 in ratings from 1 to 10 mul, 600 to 1500 volts d-c or 330 to 660 volts a-t-these Drawn-oval units offer you improved reliability in addition to an opportunity for reducing the size, weight and cost of the electrical equipment you manutarlure.

In the new Drawn-oval capacitors, we get minimum seam length by using drawn-steel cases, ataching the capacitor covers with a doublerolled seam of proven reliability. This construcionn results in a lighter, yel stronger capacitor. Actual savings in size and weight vary with case slyle and rating but thev can amount to as much as 30%.

This new construction has enabled us to increase output while eliminaling some cribical materials. The resulting savings are passed on to vou in the form of shorter shipments and lower prices. Prices average 10 to 20% lower than standard capacitors, again depending upon case style and, of course, quanlity ordered.

For more information on the new G-E Drawn-oval capacitors, their ralings, dimensions and prices, see vour local G-E apparatus sales representative or write for Bulletin GEA-5777. Aldress Section 4.07-311, General Electric Company, Schenectady 5, N. Y.

GENERAL (3) ELECTRIC

to give you the parts you need

Need a tubular part machined, inside or out, at one or both ends? Like to have it drilled transversely at one or several points?

Want it tomeetrigiddimensional and metallurgical specifications? You're reading the right addertisement for all of these are Superior Specialties.

Superior has the experienced men, the specialized, highly developed equipment, the floor space, and the research facilities to produce quantities of drilled and machined tubular parts rapidly and economically,

It's a job we like to do and know how to do. But there's more to the story than simple production of fabricated or semi-finished parts, or even top-quality tubing in any analysis and many sizes.

The rest of the story is our willingness, desire and ability to work closely with customers" development engineers and product designers. Frequently we are able to materially assist in design of parts, selection of analysis, and development of processes. Many times we have been able to suggest minor changes in shape or method to effect major economies in assembly time and product cost.

If you are a manufacturer or an experimenter in electronics and have a need for a tubular part of any kind, check with us. We can probably help by giving you quantity production of the parts you need. Write Superior 'Tube Company, 2500 Germantown Ave, Norristown, Pennsylvania.

Cut and Annealed. Extensive cutting equipmet, hand cutting jigs, electronically controlled anncalers and other equipment, much of it developed within our own organization results in high speed, presvision production of parts.

Flanging. Automatic flaring and flagging machines are combined in Superior's Alectronics Division with carefully trained production and inspection personnel who know how to do a job right and take the time to be sure.

Expanded. Here is a part almost ready for delivery. Simple as it looks, it may well have been the subject of a score of operalions and at every stage the prime considerton has been the quality of the finished part.

This Belongs in Your Reference File ... Send for It Today.

NICKEL ALLOYS FOR OXIDE-COATED CATHODES: This reprint describes the manufacturing of the cathode sleeve from the refining of the base metal. Includes the action of the small percentage impurities upon the vapor pressure sublimation rate of the nickel base; also future trends of cathode materials are evaluated.
internal inspection of the guides or insertion of attenuator wedges and other r-f components.

Time required for manufacture of circuits by this method is about one third of that required to make up a conventional waveguide assembly. The solid construction provided by the milled block technique allows the use of the block as a mount for other circuits. Amplifiers for r-f and i-f can be plugged directly into the block. eliminating the need for flexible leads.

Resistances for Symmetrical T and I Pads

Calculation of resistances used in T or H pad attennetors for a given amount of attenuation can be simplified by the use of Table I. For a symetrical T pad, the values of R_{1} and R_{z} can be found by multiplying the impedance that the pad should have by the value in the table for the desired attenuation, according to the Lenkurt Demedulator for Nov. 1952.

For example, to construct a 603ohm T pad with $10-\mathrm{db}$ attenuation, the resistance values are as follows: R_{1} is equal to 600 times 0.5193 or $^{\circ}$

FIG. 1 - Values of resistor: for T-type (A), H-type (B) and low-loss L-type (C) pad attenuators can be dotermined from Table I

311.58 ohms; R is equal to 600 times 0.7031 or 421.86 ohms. If an H pad were required, the values of the line resistors would be half the values of R, and R_{2}, as shown in Fig. 1.

Pi and O-type pads are equivalent electrically to T and H pads and are ordinarily used when the resistances required are more easily ob-

Table I-Resistance and Loss Values

db	Multiplier for R_{1}	Multiplier for H_{2}
0.5	0.0287	17.3775
1.0	0.0575	8.6680
1.5	0.0861	5.7620
2.0	0.1147	4.3037
2.5	0.14 .29	3.4270
3.0	0.1712	2.8357
3.5	0. 1987	2.4168
4.0	0.2263	2.0963
4.5	0.2532	1.8183
5.0	0.2801	1.6453
5.5	0.3060	1.4808
6.0	0.3322	1.3389
6.5	0.3573	1. 2206
7.0	0.3825	1.1158
7.5	0.4065	1.0267
8.0	0.4304	0.9466
8.5	0.4536	0.8756
9.0	0.476 .1	0.8112
9.5	0.4981	0.7547
10.0	0.5193	0.7031
10.5	0.5103	0.6552
11.0	0.560 .1	0.6119
11.5	0.5798	0.5721
12.0	0.5984	0.5364
12.5	0.6169	0.5021
13.0	0.6314	0.4710
13.5	0.6516	0.4416
14.0	0.6672	0.4158
14.5	0.6830	0.3905
15.0	0.6983	0.3668
15.5	0.7126	0.3453
16.0	0.7264	0.3251
16.5	0.7399	0.3058
17.0	0.7528	0.2878
17.5	0.7617	0.2715
18.0	0.776 .5	0.2556
18.5	0.7876	0.2411
19.0	0.7982	0.2273
19.5	0.8084	0.2143
20.0	0.8182	0.2020
20.5	0.8275	0.1905
21.0	0.8363	0.1797
21.5	0.8418	0.1683
22.0	0.8523	0.1599
22.5	0.8605	0.1508
23.0	0.8678	0.1423
23.5	0.8747	0.1343
24.0	0.8813	0.1267
24.5	0.8876	0.1195
25.0	0.8935	0.1128
$R_{1}=R_{0}\left(\frac{x-1}{x+1}\right)$		
$\mathbf{R}_{2}=R_{0}\left(\frac{2 x}{(x-1)(x+1)}\right)$		

DEPEND ON IWI FOR THESE PRODUCTS

Varnishad Cambric Froducts
Insulating Paper
Varnished Tubing
Saturated Sleeving Insulating Varnish Vulcanized Fibre Phenolite
Fibre Wedges
Wood Wedges
Buill-up Mica Prociuts
Asbestos Insulation
Woven Glass Insulaton
Pressure Sensitive Tipe
Cotton Tape
Cotton Sleeving
Commutators Built To Specifications
Teflon
Silicone Resins
Silicone Insulations

INSULATION \& WIRES INCORPORATED

Warehouses Strategically Located to give you service anywhere.
Nationally Advertised Quality Products, approved and used by leading electrical manufacturers everywhere.

Experienced Field Service Representatives offer technical assistance without obligation on any problem involving electrical insulating materials.

Large Stocks Of Production Materials in every warehouse. Quick delivery will eliminate many of your inventory problems.

Rely On IWI For Immediate Serulee. Dependable 2uallty

A MATIOMAL NGWORK OF WAREMOUSES SERVING ELECTRICAL MANUFACTURERS

INSULATION AND WIRES INCORPORATED

3435 Chouteau Avenue - St. Louis 3, Missouri
Write For 7 he Address of 7 he Warehouse Nearest Your Plant

METALLIZED CERAMICS?

P.S. I can probably also be of considerable service to you on your ceramic problems with precision produced "Lavite" Ceramics ("Lavite" Steatites,
"Lavite" Ferrites and "Lavite" Titanates).

Please don't ask me where the many metallized "Lavite" Ceramic parts we have produced are used, because I just don't know - but I will be happy to solve any metallizing problem you may have. Perhaps you can profit from metallized ceramics in lower production costs because of less soldering and handling-maybe it is a more solid job you are seeking - and again you may wish to eliminate awkward and costly assembly soldering. Whichever it be please feel free to send me the specifications on your job and I guarantee a cost and time saving solution. I would like to say "send for descriptive literature" but frankly I wouldn't know what to put into such literature - so, again I suggest you send me details of your requirements.
D. M. STEWARD MANUFACTURING CO.

3604 Jerome Ave.
Chattanooga, Tenn. Sales Offices in Principal Cities
tained than those for a T or H pad. Most handbooks have formulas for conversions between the two types.

Resistance values for minimumloss L pads can be obtained from the table by the use of the following formulas.

Echo Box Provides Target
 for Radar Training

By Lt. Ropert A. Latimer
Connally AFH
waco, Texas
Using an echo box to reflect radar waves, a target trainer in use at Connally Air Force Base, Texas, simulates airborne targets on radarscopes in ground school classrooms. The device allows students to become familiar with target tracking operations before making actual training flights.

The synthetic trainer is powered by two 28 -volt motors mounted on a trolley that rides a curved track on a narrow table. One motor is geared to the drive wheels of the trolley and the other is used to move the echo box on a five-foot vertical rod. By varying the speed of the motors the position of the echo box

FIG. 1-Target simulator used in radar training. Echo box at lower left reflects radar waves to give same scope patlern as a plane in flight

INTE THTIONAL

Selenium

el segundo
 california

SELENIUM DIODES

DIAMETER : From 1/8" to 13/32"
LENGTH: From 1/4" to $1 / 2^{\prime \prime}$
RMS applied voltage:
From 26 volts to 104 volts
RMS input current:
max. 500 microamperes
DC output voltage :
From 20 volts to 80 volts
DC output current: avg. from 200 microamperes to 5 milliamperes
Reverse Leakage at 10 volts RMS
0.6 microamperes to 2.4 microamperes Potted in thermosetting compound Temperature Range:
From $-60^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$
Available in 1, 2, 3 and 4 cell Diodes
Send for Bulletin SD-1
CELL SIZES: From 1"x $1^{\prime \prime}$ to $61 / 4^{\prime \prime} \times 71 / 4 \prime$ CURRENT RATINGS, per cell:
0.125 amperes to 7 amperes

VOLTAGE RATINGS, inverse per cell: 22 volts rms to 40 volts rms
Efficiency to 87%. Power factor 95%
Suitable for oil immersion.
Ratings to 250 KW . Sence for Bulletin C-3:49

[^5]

miniature air variables

Capacitors too can turn on a dime ... and require iust a $5 / 8^{" 1} \times 3 / 4$ " panel area! Johnson miniatures are designed to solve the space and dependability problem in modern portable, mobile and airborne equipment through the VHF range. You can depend on Johnson quality to maintain the high standards of your equipment.

SPECIFICATIONS

SINGLE

$\begin{array}{lcl}\text { CAT. NOMINAL CAP. NO. } \\ \text { NO. MAX. MMF. PLATES L } \\ & & \text { MIN. }\end{array}$

$5 \mathrm{Ml1}$	5.0	1.5	5	1-7/64
$9 \mathrm{M11}$	8.7	1.8	9	1-7/32
$15 \mathrm{Ml1}$	14.2	2.3	15	1.13/32
20 Ml 1	19.6	2.7	21	1-37/64
DIFFERENTIAL				
SMAII	5.0	1.5	7	1-7/64
9 MAlI	8.7	1.8	13	1-7/32
15 MAII	14.2	2.3	22	1-13/32
19MAI 1	19.6	2.7	31	1-37/64
BUTTERFLY				
3 MBI 11	3.1	1.5	7	1-7/64
5 MB 11	5.1	1.8	13	1-7/32
$9 \mathrm{MB11}$	8.0	2.2	22	1-13/32
$11 \mathrm{MB11}$	10.8	2.7	31	1-37/64

The Miniature Size with All Full Size Features!

- Low inductance - Soldered plates assembled with precision - Split sleeve bearings • Beryllium copper tension spring contact for permanent alignment, constant torque and low inherent noise - Differential and butterfly types electrically symmetrical
- Excellent vibration characteristic due to low inertia - Steatite insulation impregnated with DC-200 • Metal parts brass, nickel plated Single hole mounting bushing threaded $1 / 4-32$ with flats to prevent turning • $3 / 16^{\prime \prime}$ shaft slotted for screw driver adjustment - Plate spacing .O17"•Peak voltage rating, 1250.

Features available in production quantities: Locking bearing, 180° stop, various shafl extensions, . $0135^{\prime \prime}$ spacing with capacities up to 30 mmfd, high torque.

can be changed to simulate climbs or dives in any direction.

Control of the unit is centralized at a desk alongside the radar set. By using electronic controls, range and speed variations, peel-offs, dives and similar evasive actions can be provided.

Negative Resistance
 Crystal Oscillators

By Sergio Bernstein
Fuda Government Division Eado and Electric Co. Inc. Rad.o and Electric Co

The Frequency stability of a crystal oscillator is affected essentially by variation of the quartz crystal properties, variations of the oscillator tube parameters, and Variation of the associated circuit parameters (R, L, C). Modern crystal cutting and mounting techniques have produced crystals whose frequency stability is very high. Thus changes occurring in the associated oscillator circuits are by far the greatest factors affecting the frequency stability.

A new circuit is presented here in which the circuit constants comprise only resistances. These resistances may have extremely small temperature coefficients by using special wire (such as manganin) and can be made noninductive by special winding methods.

Essentially the oscillator circuit comprises a piezoelectric crystal, driven by a vacuum tube connected so as to present a negative differential transconductance to the crystal terminals. Two possible meth-

FIG. 1-Two crystal oscillators using only resistances as circuit components

The Right Connection . . . right now!

Dage RF connectors are designed right, engineered right, built rightand available now. Each part is carefully made--Dage connectors are precision assembled to assure a sure connection.

Dage design engineers are experienced in meeting difficult connector requirements-involving, for example, "extra" precision machine work, high temperature and low loss insulation, silver soldered assemblies; silver plated bodies and contacts, water proofing, pressurizing.

Dage complete manufacturing facilities enable skilled craftsmen to produce quickly, expertly all types of coaxial connectors.

Check your specifications - be sure you're right-ask for Dage radio frequency connectors.

Dage is versatile . . . any standard or special RF connector can be quickly produced at Dage. Write for Catalog 101.

ALWAYS SPECIFY

RADIO FREQUENCY CONNECTORS
ods of comnection are shown in Fig. 1 A and B . The first method of connection has a practical advantage over the second, since all the voltages can be derived from taps on a single power supply.

Another property of this type of crystal oscillator is that it is possible to make the frequency of oscillation of the system exactly coincident with the mechanical resonant frequency of the crystal. It is also possible to obtain small frequency changes by shunting very small capacitances across the crystal. To prevent appreciable changes in the figure of merit of the quartz crystal, these shunting capacitances should be on the order of 0.1 w.f.

Variation of tube parameters call be reduced to extremely small values by the proper choice of applied potentials. Moreover, if all the voltages are obtained from a common voltage divider, these variations will be practically nullified through a self compensating action.

When extreme frequency stability is desired, it is important to insure that the operating point coincides with the point of inflection of the negative transconductance characteristic. This precaution has to be taken to obtain the best possible excitation voltage waveform, since any distortion in the exciting waveform will modify the oscillation frequency of the system.

Experimental results obtained with a 100 -ke crystal oscillator has shown that it is possible to make the oscillator frequency coincide exactly with the mechanical resonant frequency of the quartz crystal. Variation of ± 5 percent of any or all of the applied voltages caused frequency variations of less than 1 part in 10^{8}.

Vehicular Communications Symposium

TECH NICAL PAPERS presented before 250 engineers at Washington, D. C. in early December outlined problems in the growth of mobile radio communications, particularly at vhf. Sponsored by the Professional Group on Vehicular Communications of the Institute of Radio Engineers, the meeting concentrated upon spectrum-conservation meas-

EVER RUN INTO THESE FALSE IDEAS

ABOUT SYNCHRONOUS TIMING MOTORS?

ALL SYNCHRONOUS TIMING MOTORS

are fundamentally alike

Not true. Telechron motors have the lightweight, low-inertia rotor that rotates once for every cycle of the alternating current. Thus Telechron motors are truly synchronous. They start instantly ... reach full speed in less than a twentieth of a second ... don't get out of "sync," even with severe fluctuations in line voltage.

ALL SYNCHRONOUS TIMING MOTORS GET

 NOISY AND FAIL AFTER A FEW YEARSThat hasn't been the experience of our customers. Of course, the rotor unit is entirely enclosed in Telechron motors . . . with a reservoir of special lubricant sealed in. Capillary action carries oil to all bearings. Dirt and dust can't get in. Many Telechron Synchronous Timing Motors are stil! giving dependable, accurate, quiet service after 20 years of continuous use.

WHAT'S YOUR APPLICATION?
Let us send you our complete catalog and application data sheet. Write Telechron Department, General Electric Company, 42 Homer Ave., Ashland, Mass.

IT'S EASY TO SPECIFY THE RIGHT MOTOR FOR A PARTICULAR JOB

Not unless you're an expert on timing problems.
Because most of the time, only a timing motor specialist knows how to figure all the factors. And when you use Telechron Synchronous Timing Motors, you have the support of our experienced Application Engineering Service.
We analyze the requirements of your application ... and give an honest recommendation designed to assure you the longest motor life at the lowest unit cost:

Designed for

TELEVISION 10:: Broadcasters

Type 524-D and Scope-Mobile
For a true picture of circuit behavior use a Type 524-D Television Scope. This instrument was designed for you. It has the features you need for proper maintenance and adjustment of your transmitting and studio equipment. Variable delayed sweep lets you examine a field...one line at a time. You can quickly shift to the corresponding line in the opposite field by touching the field selector button. The new sweep magnifier expands the image $3 x$ or $10 x$ for a detailed picture of sync and equalizing pulses. Time markers are provided for accurate timing of the sync pulses of a composite signal.

The Type 524-D is also well suited to a wide range of research and experimental uses. It offers the advantages of direct coupling, high gain, excellent transient response, and wide time base range in a portable cathode-ray oscilloscope.

Sync Separator

Permits triggering from composite signal.

Delayed Sweeps

Zero to 25 milliseconds from start of field-triggered at any selected line.

Field Selector
Instant shift to opposite field.

New Sweep Magnifier

$3 x$ or 10x magnification - expands sweep to left and right of center.

Flat-Faced CRT
4 kv accelerating potentiol.

Time Base Range

$0.01 \mathrm{sec} / \mathrm{cm}$ to $0.1 \mu_{\mathrm{sec}} / \mathrm{cm}$ continuously variable, accurote within 5%.

Transient Response

Risetime - $0.04 \mu_{\mathrm{sec}}$.

Direct Coupled

Sensitivity de to $10 \mathrm{mc}-0.15 \mathrm{v} / \mathrm{cm}$ to $50 \mathrm{v} / \mathrm{cm} \ldots 2 \mathrm{cps}$ to 10 mc $0.015 \mathrm{v} / \mathrm{cm}$ to $50 \mathrm{v} / \mathrm{cm}$.

Signal Delay- $0.25 \mu_{\text {sec }}$.
Undistorted Vertical Deflection More thon 6 cm .

Internal Time Mark Generator Pips spoced $1 \mu_{\text {sec }}, 0.1 \mu_{\text {sec }}, 0.05$ $\mu \mathrm{sec}$, or 200 pips per television line.

Amplitude Calibrator

Square wave, zero to $50 \vee$ in 7 ranges, accurote within 3%... duty cycle variable from 1% to 99%.

Line-Indicating Video Output
Lines being observed are brightened on monitor.

60-Cycle Sweep
Separate phase and amplitude controls.

Regulation
All de voltages electronically regulated.

Type 524-D—\$1180 f.o.b. Portland, Oregon
Pictured above with the Type 524-D, the TEKTRONIX Type 500 Scope-Mobile $\$ 97.50$ f.o.b. Portland, Oregon.

For complete specifications call your TEKTRONIX Field Engineer, or write to:

RECORDS 6 VARIABLES AT ONCE with Brush Oscillograph

TTHIS Electronic Analog Computer, developed and manufactured by the Boeing Airplane Company, permits engineers to explore problems in all their variations at one time. Hours of laborious calculations are eliminated.
With the use of the Brush six-channel Oscillograph, results from as many as six different computations are recorded simultaneously. Plotting of results is not necessary, since the Brush Oscillograph provides permanent chart records-immediately !
Boeing uses Brush Recorders extensively in their analog computer activities and indicates that their experience with this equipment has been very satisfactory.
Investigate Brush Recording Analyzers for your studies. . . in the laboratory, on the test floor, in the field. Expert technical assistance from Brush representatives located throughout the U.S. In Canada: A. C. Wickman, Limited, Toronto. For bulletin write Brush Electronics Company, Dept. K-2, 3405 Perkins Ave., Cleveland 14, Ohic.

BRUSH ELECTRONICS
ELECTRONIC INSTRUMENTS FOR INDUSTRY PIEZOELECTRIC MATERIALS - ACOUSTIC [JEVICES ultrasonic equipment - tape recorders RECORDING EQUIPMENT

> COMPANY formerly The Brush Development Co. Brush Electronics Company Brush Electronics
is an operating unit of is an oprating wit of
Clevite Corporation
were summarized by N. H. Shephard of GE who played back tape recordings showing comparisons of fringe-area signals employing a variety of systems characteristics. Receivers used were widenose ($\pm 15 \mathrm{kc}$), and narrow-nose ($\pm 5 \mathrm{kc}$) types, while the transmissions were characterized as wideband ($\pm 15 \mathrm{kc}$), narrow-band ($\pm 5 \mathrm{kc}$) and narrow-band-filter types. In the latter, deviation was held to $\pm 5 \mathrm{kc}$ and the audio signal limited to 2,500 cycles.

Field tests included those of rango comparison and adjacentchannel interference under varying proximity of the undesired signal. The latter tests bear importantly upon what changes will be necessary during the probable transition from present standards and older equipment to those employing narrow-band receivers and transmitters.
D. E. Noble described the operation of a year-old Miscellaneous Common Carrier serving about 100 mobile customers at Phoenix, Ariona. Standard $\pm 15-\mathrm{kc}$ deviation equipment modified for $\pm 5 \mathrm{kc}$ is used on a split-channel basis. The land station is located 30 miles from the city atop White Tanks Mountain. Included in the system is a two-way microwave link for control of car-to-car relaying. With this system, two mobile units a mile apart can be interconnected to communicate over a circuit that may be 120 miles long. In general. howerer, relaving is accomplished at the mountain and is seldom returned through the city operating room so the circuit is 60 miles. Mobile equipment is provided with selective calling that gives a busy signal to the car and locks out its transmitter.

Filters suitable for use in mobile channel selection were discussed by two engineers. L. J. Labrie of Bell Telephone Laboratories described a new AT-cut crystal with a single resonant response. The circular faces of this crystal are of lesser diameter than the maximum diameter of the quartz button, with a radius of curvature five times that of the face between each face and maximum diameter. Operating in a

The Westinghouse 296 -million dollar expansion program has produced exceptional career opportunities in the Electronics Division, and in the new Air Arm Division ins suburban Baltimore, housed in a modern new plant adjacent to Friendship International Airport.
Immediate openings are available for those trained in any of the Engineering scifnces. Graduates in Electrical, Mechanical, Aeronantical, Industrial, and Sales Engineering, as well as Physicists. Mathematicians. Business Administration graduates, Electronic Technicians and others
with related training, are inviled to inquire about the alltractive openings available.
Challenging, absorbing assimments are offered boll, at the plant and in the field on such projects as Guided Missiles, Automatic Pilots, Ground Radar, Atomic Power Control Devices, and other advanced electronic products.
To insure your future, Westinghouse provides leading emplove benefils, graduate study opportunities, employe scholarships, relocation expenses, in addition to unlimited ground-floor growth opportunities depending only on individual initiative and ability.

Send resume of qualifications to:
Manager, Industrial Relations, Dept. M

[^6]
thickness shear mode, the new crystal filter also requires special electrodes. Milton Dishal of Federal Telecommunication Laboratories, discussing the best filter with reference to a required i-f selectivity, analyzed L-C, mechanical and crystal devices. He showed that the coil-capacitor combination is not fundamentally inferior to newer types that are currently being recommended.
D. M. Heller of Bendix Radio and Kenneth Bullington of Bell Labs considered systems aspects of improved mobile communications. Mr. Heller showed that equipment using crystal control with an accuracy of 0.003 percent can be improved to 0.0006 percent by addition of simple temperature control. He suggested removing the residual i-f response error by improved mechanical design or temperature compensation indicating that characteristics of ± 1 kc per mo of mean frequency of the i-f over a range from -40 to +60 C is possible.

Mr. Bullington's paper covered in detail the necessary considerations of a coordinated system for a large metropolitan area wherein all high-power land stations would be located near a common pointwithin a mile of each other. By employing automatic gain control on the mobile receivers, all nearby signals could be fairly equally attenuated, whereas at a distance intermodulation effects of undesired signals will be too weak to cause interference. Base transmitters will require r-f filters for interference falling outside the bands employed in the coordinated system, but these can be installed easily at a base station.

Coordinated reception is not possible. Mobile power should therefore be cut to two or three watts (decreasing drain on the car battery) and multiple base receivers employed. While this has some disadvantages, it provides space diversity reception, which is good. In this system, guard bands will be needed at the system frequency extremities, but the sum total of spectrum required will be less because interchannel guard bands can be extremely narrow if not entirely eliminated. The alternative

The NEW rugged
 "Built to take it
 11
 A-25

How two HONEYWELL Mercury Switches are used to shut off motor when oil supply is too low

Honeywell mercury switches meet the demands for low operating force and have the additional advantage of contacts being sealed in a glass case, protected from effects of oil fumes.
Problem of the designers of a pressure lubricaling device was how to use low operating force to signal the operator when the supply of oil in the reservoir became low and . . . if oil was not replenished immediately . . . o shut off the motor.
The solution was found by attaching two HONEY WELL mercury switches to a float in the reservoir. When the level dropped to where the reservoir needed refilling, movement of the lloat actuated one switch to turn on a warning light. If the level became dangerously low, the float movement actuated the second switch to stop the machine.
HONEYWELL mercury switches have been recognized for 30 years as precise, dependable components for many types of switching controls. MICRO field engineering service, fully experienced in every type of switch problem, is available to assist you in the choice of the proper HONEYWELL mercury switch to meet your needs. Call your nearest MICRO branch office.

A DIVISION OF
MINNEAPOLIS.HONEYWELL REGULATOR COMPANY

All of us here at the Rectifier Division are rather proud of the parts we play in the production of Sarkes Tarzan "Centre-Kooled" Selenium Rectifiers. Barbara, shown here color-coding, is no exception.
where
$\neq \#$ arc wed Specify Savate

If you are not familiar with the wide variety of applications of Sarkes Tarzian Rectifiers, your inquiry is invited.

Our staff of engineers is ready to assist you with your power conversion problems.
Send for your FREE copy of the new Embedded Selentum Rectifier Catalog B-1. The Selenium Rectifier Handbook is available at 504 . Write us ar see your dealer.

Sarkes Tarzan, Inc.

RECTIFIER DIVISION

Dept. E-1, 415 North College Ave., Bloomington, Indiana

use this sulb-assembly service

to solve your design and production problems.

You can speed up development and production of electronic devices of all types . . . meet those tough delivery dates. Just call on SEALTRON to design and build hermetically-sealed plug-in assemblies especially for your products! Produced with SEALTRON's expert engineering, biggest selection of stock seals, miniaturization "knowhow," these assemblies:

1. Provide compactness and miniaturization 2. Streamline circuitry 3. Insure conformity of production to design, reducing chances for stray "pick-ups," etc. 4. Eliminate tedious sub-assembly operations 5. Simplify final assembly, ease tough praduction schedules 6. Release key personnel for other work

Write us about your special sub-assembly needs. You will receive complete information by return mail.

[^7]Manufacturers of the world's most complefe line of seals-over 1600 types

- increases plane let-down safety for any airfield
- changes 'fair-weather" to all weather airline service
- permits marginal weather landings by private and executive aircraft.

New terminal VHF omnidirectional radio range adds safe instrument approach facilities to any airport. CAA approved. Installs directly on the airfield. Includes field detector, antenna and installation test equipment. And is available on 90 day delivery.

TVOR radiates 50 watts of power, ample for most installations. It uses the same quality components and gets the same tests as CAA equipment. Installation operates almost entirely without attention. Any plane with standard VOR instrumentation can make precision approaches to a TVOR equipped field.
TVOR builds air traffic by extending service through marginal weather . . . increases airline passenger service by eliminating flights lost due to rain and fog . . brings corporation aircraft to their home field in poor visibility.

TVOR commercial transmitters are the same as those designed and built for the CAA.

Flight test TVOR with your own plane at the College Park Airfield. Convince yourself that your group cannot afford to be without low cost, high quality TVOR.

TVOR guides corporation aircraft to their home fields, in spite of low ceilings.

TVOR works with standard instrumentation. Private planes "home" on their own airfield.

> MAM ANM C MANUFACTURING
> CO1LEGE
> M A R YY A N D
trols the current flowing through $V_{2 .}$ In the application for which this circuit was devised, the input to V_{1} was 60 cycle from a temperature sensitive bridge, giving the circuit the advantage of phase sensitivity. It was sensitive only to an input in phase with the suppressor of V_{3}. However, d-c input works as well. Also, the role of suppressor and control grids can be interchanged.

The waveform photographs show the grid voltage (lower wave) and plate current (upper wave) of V_{2}, superimposed with an electronic switch. It demonstrates how the grid goes negative during the negative half cycle, and then rises until the tube fires and current flows. Negative grid swing and decrease in signal applied to V_{1} is also shown with the period of plate conduction increased in the same manner, as indicated in operating theory.

Measurement of Harmonic

Distortion With A Filter

Since it is customary to operate a magnetic recording system at the highest possible recording level that does not exceed the allowable distortion limits, it is important to have an accurate means of measuring the amount of distortion present in a system. Because recording level is also dependent on such variable factors as the properties of the magnetic medium, the bias current, the recording heads and the gain characteristics of the recording amplifier, the method should be simple enough for periodical checking of professional

FIG. 1-Block diagram of distortion measuring system

OVER 10,000 BRADLEYUNITS in this Electronic Calculating Punch

The IBM Electronic Calculating Punch, shown above, will punch 6,000 cards per hour, performing up to 60 operating steps for each card.

The master key is the IBM Electronic Tube Assembly which comprises an electron tube and several resistors and capacitors. There are more than 1,200 of these pluggable units in each punch. With 8 or 9 Bradleyunits per assembly there are over 10,000 Bradleyunits per punch.

Bradleyunits are ideal resistors for such critical service, because they are rated at 70 C . . . not 40C . . . which assures stability and permanence.

Made in all R.T.M.A. values, Bradleyunits are available from 10 ohms to 22 megohms in $1 / 2$ and 2 watt sizes, and from 2.7 ohms to 22 megohms in the one-watt size. They need no wax impregnation to pass salt water immersion tests.

Allen-Bradley Co.

110 W. Greenfield Ave., Milwaukee 4, Wis.

Made under Western Electric license agreement, these depositedcarbon resistors serve a real need in lebioratory-grade instruments and assemblies. For superlative stability under the most adverse operating conditions, Carbofilm resistors are now available in hermetically-sealed metal casings with glass-to-metal end seals. Thoroughly protected - mechanically, electrically, climatically. Guaranteed tolerance of plus/ minus 1%. Available in $1 / 2,1$ and 2 watt sizes. Just about everything a precision resistor should be!
Also in the coated (special resin film seal) type for accuracy, stability, economy. Guaranteed tolerance of plus/minus 1%. Excellent characteristics. $1 / 2,1$ and 2 watt sizes.

Carbofilm resistors, in both hermetically-seated and coaled types, are available in standard values as well as special values made to your requirements. Literature on request. Let us quote on your precision resistance needs.

AEROVOX CORPORATION NEW BEDFORD MASS.

Hi-Q Division CIEAN, $\mathbf{N} . \mathbf{y}$.
Expert: 41 E. d2nd St, Now York 47 , N. Y e Comb: AbROCAY, N. Y.

recording machines in the field.
A method of measuring distortion with a band-pass filter developed by the Minnesota Mining \& Manufacturing Co., greatly reduces the time and equipment needed for this operation. In a magnetic tape overload the principal distortion results from the third harmonic component. By recording a pure sine wave and then separating the third harmonic and measuring it with a vacuum tube voltmeter, it is possible to determine the third harmonic distortion. This set up is shown in Fig. 1. The only equipment required is an audio oscillator with good waveshape, a vacuum tube voltmeter with a fairly wide

FIG. 2-Alignment chart for converting decibels to percent distortion
range, and a band-pass filter. A $1,200-\mathrm{cps}$ filter is ideal for this purpose since it is customary to measure distortion at 400 cps . However, a more common 100 or $5,000-\mathrm{cps}$ filter can be used if the test frequency is adjusted to a suitable value. For highest accuracy, a filter having a rejection of at least 60 db at the fundamental, should be used.
Before testing a recording system it is necessary to calibrate it for the insertion loss of the filter. Since the input termination affects this value, the filter should be calibrated on the recorder under test. First, the output level is measured at 400 and $1,200 \mathrm{cps}$, with the filter disconnected, to determine if the level is the same at both frequencies. If it is not, the input must be readjusted during the test to compensate for the difference.
With the filter connected to the recorder, readings are taken at the filter input at 400 cps and at the filter output at $1,200 \mathrm{cps}$ adjusting the input level as previously deter-
mined. The insertion loss of the filter is the difference between these two readings.

To make the actual distortion test, the 400 -cps signal is fed into the recorder and the level reading taken at both the input and output of the filter. The true ratio between the signal and the third harmonic component is the difference between these two readings minus the insertion loss of the filter. This value can be converted to percent by use of the alignment chart in Fig. 2.

Once the insertion loss calibration has been made for a particular system, it is not necessary to repeat this step on subsequent tests. It is only necessary to connect the oscillator, filter and voltmeter and take two readings.

High Sensitivity Tone Discriminator

By Sidney Wald
UsE OF sharply tuned parallel-T R-C networks in place of L-C filters results in sensitive, compact, and inexpensive tone localizer that is useful in guidance or navigation equipment or as a low-frequency discriminator in f-m subcarrier systems.

In the usual arrangement for these purposes, band-pass L-C type filters are used in a subtractive rectifying circuit. The size and weight of these filters becomes large if reasonably high sensitivity is to be realized.

The circuit shown in Fig. 1 was designed as a tone-localizer for 90 or 150 cycle input. When equal amplitudes of 90 and 150 cps are present in the input, the meter reads zero center. When one signal amplitude is larger than the other, the d-c microammeter defects to

FIG. 1-Circuit diagram of the simplified tone indicator

For dependable miniaturization and simplified assembly, you can use $\mathrm{Hi}-\mathrm{Q}$ plate assemblies for the replacement of groups of capacitors and resistors, with absolute assurance of circuit stability between the component parts.
Type PA-113 is typical. Combines 8 elements of the second detector and audio amplifier stages of a receiver, on a single plate. This network requires only 7 leads instead of usual 16 for individual components. Minimizes soldering time; eliminates mounting strips; reduces stocking and handling problems.
Other Hi-Q plate assemblies provide vertical integrator, vertical integrator and coupler, audio plate grid coupler, pentode second detector and audio amplifier,
pentode plate coupler and screen supply, etc.

*function-fitited to your needs

Regardless what your "circuit squeexe" problems may be, Hi-Q specialists can provide the ideal solution in either standard or special types. Send us those problems!

AEROVOX CORPORATION

Berhelay priseit countres

DESCRIPTION-The Berkeley Preset Counter is an electronic decade with provisions for producing an output signal or pulse at any desired preset count within the unit's capacity. Any physical, electrical, mechanical or optical events that can be converted into changing voltages can be counted, at rates from 1 to 40,000 counts per second. Total count is displayed in direct-reading digital form. Presetting is accomplished by depressing pushbuttons corresponding to the desired digit in each column. Model 730 Preset Decimal Counting Units are used. These are completely interchangeable plug-in units designed for simplicity of maintenance and replacement.

APPLICATIONS-Flexibility and simplicity of operation make the Berkeley Preset Counter suitable for both production line and laboratory use. It has practical applications wherever signalling or control, based on occurrence of a predetermined number of events or increments of time is desired. Output signals from the unit can be used to actuate virtually any type of process control device, or to provide aural or visual signals.

SPECIFICATIONS	Model				
MAX. COUNT CAPACITY	422	423	424	425	426
	100	1000	10,000	100,000	1,000,000
INPUT SENSITIVITY (MIN.)	± 1 v. to ground, peak; at least 2μ sec. wide				
OUTPUT	Choice of pos. pulse and relay closure, or pos. pulse. SPST relay closure approx. $1 / 30$ sec; pulse output is +125 v . with $3 \mu \mathrm{sec}$. rise time and $15 \mu \mathrm{sec}$. duration.				
PANEL DIMENSIONS OVERALL DIMENSIONS POWER REQUIREMENTS	$\begin{aligned} & 15^{3 / 8^{\prime \prime}} \times 8^{3 / 4^{\prime \prime}} \\ & 163^{\prime \prime} \times 10^{1 / 4^{\prime \prime}} \times 13^{\prime \prime} \\ & 117 \mathrm{v} \pm 10 \% @ 90 \mathrm{w} . \end{aligned}$		$\begin{aligned} & 19^{\prime \prime} \times 8^{3 / 3 \prime} \\ & 20^{3 / 4^{\prime \prime} \times 10^{1 / 2 \prime \prime} \times 15^{\prime \prime}} \\ & 117 \mathrm{v} . \pm 10 \% @ 180 \mathrm{w} . \end{aligned}$		
PRICE (F.O.B. FACTORY)	\$375	\$450	\$595	\$695	\$795

For complete information, please request Bulletin
102

Berkeley Scientific

division of BECKMAN INSTRUMENTS INC. 2200 WRIGHT AVENUE • RICHMOND, CALIFORNIA

[^8]

FIG. 2-Attenuation characteristics of the parallel-T filters
one side to indicate the relative magnitudes of the input frequencies. With the 100 K -ohm input resistors in the circuit the output sensitivity is $50 \mu \mathrm{a}$ deflection for 2 db difference between 90 and 150 cps signals into a 330 -ohm microammeter. The input voltage is approximately 15 to 20 volts rms for this condition.

Figure 2 indicates the attenuation characteristics of the parallelT filters.

Clutch Operates
 On Loudspeaker

A NEW CLutch that will find use in instruments and computers where fast response is required, uses the same moving-coil principle as an electrodynamic loudspeaker. Developed by the National Bureau of Standards, the clutch is actuated by the interaction of a magnetic field and current in a coil. The resulting force moves the coil causing the output disk to be pressed against the rotating input shaft. In an experimental model response time was less than a third of a millisecond.

The operating principle of the clutch makes it inherently capable of a faster response than is possible with most electric or magnetic friction clutches. In the loudspeaker type, the magnetic field is in existence before actuation, and the normally small induction of the coil is the only time factor involved. This coil inductance can be made

Volume demand now measured in the hundreds of tons and improved production methods-have combined to radically reduce the per lh. cost of Kel.F. Further, experience has shown that potential applications require only small quantities of Kel-F per finished item, because of the plastic's superior properties. In view of these two facts, design engineers are currently reevaluating the use of Kel-F for all applications where the seven basic Kel-F properties meet design or performance specifications.

LEADING MOLDERS NOW OFFER KEL-F PARTS AND BASIC MATERIALS

Already, more than 50 leading molders in the country are prepared to deliver Kel-F tubing, rod, sheet, film and strip in a variety of sizes and types of material. Many of these are supplying not only these basic fabricating materials but are also producing finished parts by the standard methods such as compression, transfer, injection and extrusion nolding.

TECHNICAL BULLETINS, SERVICES NOW AVAILABLE ... Detailed data-in hulletin form - on physical properties, molding techniques, dispersions and other Kel-F products are available. The Chemical Manufacturing Division's Techinical Service Department has been angmented to offer additional help to design and materials engineers, as well as molders, in the use of this unique material.

Chemical Manufacturing Division
 The M. W. KELLOGG Company
 P. O. Box 469 - Jersey City 3, N. J.

In N. Y. WOrth 4-6775
In N. J. DElaware 3-3100

BASIC KEL-F MATERIALS AVAILABLE

(Order direct from Kellogg)
Molding
Powders
$\left.\begin{array}{c}\text { Plasticized } \\ \text { (In Grade } \\ \# 300)\end{array}\right\}$ \#270 - for less severe temperatures P20 - Containing 20\% plasticizer \#300) P30-Contoining 30\% plasticizer
Dispersions NW-25 - Flows readily at fusion temperatures
Oils, Waxes and Greases $\mathrm{N}-1$ - High molecular weight

PURCHASE Taxil
in any desired form -

Products

FABRICATED PRODUCTS

Gaskets
Washers " O " Rings
"U" Packing Valve Discs Valve Seots
Volve Diaphragms Pump Diaphragms Resilient-Core "O" Rings
Drum and Tank Liners Flexible Non-Corrosive
Containers
Machined Fittings
Coated Wire
Coated Hook-up Wire
Coil Forms
Transformer Terminals Multi-tead Terminals Rotary Switches
Tube Socket Bases
Aerial Supports
Resistor Sleeves

FABRICATED
MATERIALS
Molded Sheets
Thickness - $1 / 4^{\prime \prime}$ to $1 / 2^{\prime \prime}$
Diameter - in disc form to 45"

Exiruded Rod

Diameter - up to $1^{\prime \prime}$
Length - to specification

Molded Rod

Diameter - up to 4"
Length - to $12^{\prime \prime}$
Exiruded Tubing
Diameter - up to $2^{\prime \prime}$
Wall thickness -
to specification
Length - to specification

Extruded Strip

Thickness - . $010^{\prime \prime}$ to $.125^{\prime \prime}$
Width - $2^{\prime \prime}$ to $4^{\prime \prime}$
length - to specification

Thin Film

(EXTRUDED AS lay-flat tubing) Thickness - .002" to $.010^{\prime \prime}$ Width - lay.flat up to $20^{\prime \prime}$ (total width to $40^{\prime \prime}$)

List of the molders, extruders, fabricators and coaters furnishing the above listed items available on request.

62 STATE STREET • MANKATO, MINN.

FIG. 1-Cross-sectional view of loud speaker type clutch showing (1) actu ating coil, (2) magnetic poles, (3) output shaft, (4) output disk, (5) flexible diaphragm, (6) backing disk. (7) slip rings for actuating current, (8) inpul shaft, (9) magnetic structure, (10) compensating coils. Lower diagram shows placement and action of compensating coils
negligible by the use of bucking or compensating coils, that have current flow in the opposite direction to that of the actuating coil. In the test model, the $1-\mathrm{kc}$ inductance of the actuating coil was reduced from 2.4 mh to 0.15 mh .

In the experimental model, having an output torque of 10 ounceinches, an electromagnet was used to provide the field. A permanent magnet could have been used, but the electromagnet allows shutting the field off to remove any magnetic particles that may have become attached to the pole pieces. The actuating assembly is mounted in the input member, and two sets of sliprings carry the field and actuating currents to the rotating assembly. A thin flexible diaphragm attached to the actuating coil presses against the output disk when the coil is energized, holding the disk firmly against the backing disk.

An ordinary crystal phonograph pickup and an oscilloscope were used to test response time. The phonograph needle, resting in a small depression on the output shaft, gave an indication when motion started. Connecting the oscilloscope to the actuating switch and the phonograph pickup permitted observation of the time lapse between application of power and the

All Moloney HiperCore Electronic Cores, including over 1000 standard sizes, are manufactured under rigid quality controls. Electronic manufacturers will find this to be of great importance when performance specifications demand tranformer cores that have lower losses and greater flux carrying capacity. HiperCore Electronic Cores test well within industry standards. Typical test requirements for various types are listed in the panel at right. Special tests for specific operating conditions are also made when required. If your product demands better performance, smaller size and less weight, we can help you.

A booklet containing performance characteristics, sizes and weights, along with price information is available upon request. Write for it today.

STANDARD TESTS

All 12 mil cores are tested for core loss (true watts) and exciting volt-amperes (apparent watts) at 60 cycles. 4 mil cores are tested at 400 cycles. Following table gives maximum test values. Average values are approximately 20% less than maximum.

	$12 \mathrm{Mil}-60 \mathrm{Cycle}$ (it) 15000 gauss	4 Mil-400 Cycle (a) 10000 gauss
Core Loss (TW)	$0.95 \times \mathrm{lbs}$.	$3.75 \times$ Jbs .
Exciting Volt-Amps (AW)	$1.85 \times \mathrm{lbs} .+6.25 A^{*}$	$4.6 \times \mathrm{lbs} .+16.6 \mathrm{~A}^{*}$

All 2 mil cores are tested for pulse permeability by using a 2 microsecond pulse width at 400 P. P. S. and maximum net flux density of 10000 gauss. The minimum permeability will be 550 .

All 1 mil cores are tested for pulse permeability by using a 0.50 microsecond pulse width at $1000 \mathrm{P} . \mathrm{P} . \mathrm{S}$. and maximum net flux density of 3000 gauss. The minimum permeability will be 350 .

MOLONEY ELECTRIC COMPANY

Manufacturers of Power Transformers. Distribution Transformers - Load Ratio Control Transformers Step Voltage Regulators - Unit Substations

PROMPT DELIVERY of small telephone type relays for D.C.

American Encaustic's new up-to-the-minute

 electronics division can help solve delivery problems on precision made telephone type relays with a current rating of 5 amperes or less.American Encaustic relays are open type or hermetically sealed, with plug-in or solder tabs. Components are carefully inspected before assembly. Completed relays are individually tested before shipment. We believe there are no more precisely made relays of this type manufactured.

WRITE FOR FULL INFORMATION

... Send us your drawings and specifications. Samples and quotations will be promptly sub-
 mitted without obligation.
start of motion in the output shaft.
Using 300 volts on both the field and actuating coils, the output shaft began to move within 200 mi croseconds and attained full speed in 300 microseconds. Using 100 volts on the field and 215 volts on the actuating coil, the time delays were 500 and 625 microseconds. The actuation voltages are required only momentarily and must be reduced promptly when the clutch reaches operating speed to avoid overheating and burnout.

When measuring response time, the effect of the compensating coils was also investigated. With the coil connections reversed so that the compensating coils aided rather than bucked the actuating coils, response time was increased to 900 microseconds. This indicates that the response time with the coils connected properly is limited by mechanical rather than electrical factors.

Deposited-Film G-M Counter Tubes

A NEW method for depositing a transparent, nonmetallic conducting film of constant thickness on the inside of a glass tube was announced recently by the Naval Research Laboratory, Washington, D. C. The new method has been used mainly, so far, for the production of halogen-quenched G-M counter tubes for laboratory research.

In the process, a nonmetallic film is deposited by condensation of a vapor on the inside of an electrically heated Pyrex glass envelope. A thin platinum-iridium wire is used for the anode, the tube is sealed off and mounted for a plug-in connection.

Various thicknesses of films have been deposited in this manner in areas up to 18 square inches. Although the films are actually colorless, they appear colored due to their light reflection-interference patterns.

The G-M tubes made by this process are nonsensitive to light, have an almost indefinite operating life, have uniform sensitivity response throughout their length and require no critical materials such as copper or stainless steel.

Punched and formed pieces of tough, resilient National Vulcanized Fibre reinforce spectacle case to provide lasting shape retention and serviceability.

in spectacle cases for American (b) Optical

> NATIONAL FIBRE

This practical use of National Vulcanized Fibre by American Optical Company in their attractive spectacle cases is typical of the countless contributions National Vulcanized Fibre-the material of a million uses-makes to industry and business.

National Vulcanized Fibre applications, both mechanical and electrical, are varied and extensive. In mechanical applications it is desirable because it possesses exceptional tensile and crushing strength, toughness, density and resistance to wear-coupled with ease of fabrication. It actually improves with age; for many mechanical purposes it is better, more durable than metal.

In the electrical field National Vulcanized Fibre has been the standard insulation for years. It has high dielectric strength and, when subjected to hot electrical arcing, it evolves neutral gas which extinguishes arc without "tracking." Many electric appliances find National Vulcanized Fibre to be the one best material for one or more of their parts.

Available in various grades and colors; and in sheets, rods, tubes and special shapes. Write for detailed literature and engineering service information-

Production Techniques

Edited by JOHN MARKUS

Model of Television Plant Facilitates Rearrangement of Production Lines.	222
Turntable for Pass-Along Assembly Line	222
Cutting Resistor Leads	224
Defect-Indicating Diagrams for Deflection Yoke Test Set	224
Magnetic Separator Recovers Alnico from Grinder	228
Water Cooling for Resistance Soldering Tool	230
Reject-Identifying Board	232
Spring Scale Checks Slip.	234

Tube Aging and Testing Techniques 236
Wire-Stripping Machine. 250
Testing High-Voltage Tubes 252
Selection of Casting Resins 254
Induction Sealing of Pencil Triodes 262
Brackets on Pallet Hold Auto Radios 264
Automatic Coil Dipper 266
Masking Tape Holds Meters. 268
Aluminum Soldering Alloy 272
Two-Spool Solder Holder 274
Vacuum Bakeout Ovens 276

OTHER DEPARTMENTS

 featured in this issue:Page
Electrons At Work..... 154
New Products 280
Plants and People 354
New Books 382
Backtalk 386

Model of Television Plant Facilitates Rearrangement of Production Lines

A complete and accurate scale model showing locations of all partitions, shelves, benches, conveyors and offices in the 200,000 -square-foot plant of Olympic Radio \& Television was built for a total cost of only $\$ 100$ and paid for itself in the first month of use. Light-weight steel angle iron was bolted together to represent the framework of the building. On one side the angle iron was partly cut out to permit sliding out the sheet of plywood used for each floor.

Floor plan blueprints, drawn to a scale of $\frac{1}{k}$ inch to the foot, are cemented directly onto the plywood and serve as guides for showing positions of permanent columns or partitions when rearranging a floor.

In the drawers of the table that supports the model are sets of wood blocks representing movable equipment and Lucite sheets representing partitions. Blocks representing shelves are painted yellow; blocks for benches are green; blocks for conveyor runs are red.

B. Bordiga, director of manufacturing at Olympic, tries out an idea for rearranging benches on second floor of his plant simply by sliding out plywood floor of model and shifting accurately scaled wood blocks. When the best setup for a new production problem is found, a draftsman is called in to take measurements and notes from which new floor plans can be drawn

When the need for this model first arose, the price quoted for its construction by an outside firm specializing in such work was $\$ 3,000$. Instead of accepting this bid, an alert young man in the plant was assigned to the job full time for a week to see what he could do. The results were entirely satisfactory.

Turntable for Pass-Along Assembly Line

The problem of getting a television chassis around the bend of a U-shaped pass-along assembly line was solved in Olympic's plant with a free-spinning five-foot-diameter disc of one-inch plywood. When a chassis reaches the last position on one side of the long bench, the operator lifts it onto the plywood turntable. Here there are permanently mounted cleats and supports to hold each chassis, spaced equidistant to give six positions on the turntable.

Depending on the needs of the line, one or more workers are stationed around the turntable to perform assembly or inspection operations while the sets are going around the bend. One of the workers advances the turntable each time another chassis comes to it. On the other side of the bench, the first operator takes each chassis in turn off the turntable and starts it on its ride down the rails on

Turntable on pass-along assembly line for television receivers
that side of the bench.
No pallets are used on the benches; instead, the chassis slides on two wood rails, one low on the bench near the front edge and the other high enough to support the chassis at the desired working
angle. A plywood strip is clamped to the bottom edge of the chassis with bolts and wingnuts to serve as a sled runner that rides in the lowest rail, thereby protecting the antenna terminal strip and other chassis parts.

Cutting Resistor Leads

An ordinary large hand-operated paper cutter is used at Olympic Radio \& Television Inc. for cutting leads of resistors that come packaged in flat strips of corrugated cardboard. A group of a dozen or more resistors can thus be taken out of its shipping carton, placed on the cutting table and pushed against an adjustable stop. All leads on one side are cut to a desired shorter length in one downward movement of the cutting blade. The group of resistors is then turned over for cutting leads at the other ends.

In another manufacturers' plant, this same guillotine cutting action is used in an air-actuated twoblade automatic setup that cuts both leads simultaneously of each resistor in a flat-packaged group.

Defect-Indicating Diagrams for Deflection Yoke Test Set

In THE FINAL performance of deflection yoke assemblies for Crosley television receivers, the picturetube presentation associated with each type of yoke defect is shown on a chart attached to the side of the test set. When a defective yoke is encountered, the operator merely jots down the number of the observed diagram on the reject card. From this, troubleshooters can
probe for the defect and clear it without need for further measurements.

The test set uses a 12 -inch round picture tube of a type that does not require an ion trap. The tube is mounted rigidly in a protective metal box, with the neck projecting out the rear. Under the neck is a metal platform running on ballbearing rails, on which are mounted

Crosley developed test set for deflection yokes, with slant-line pattern for good yoke showing in mirror at upper right. Operator must press down cover of switch against spring action as shown in order to apply power for test

Placing 90-degree yoke over neck of 30 inch picture tube in DuMont test set
the picture tube socket, focus coil and safety switch. This platform is pulled back on its rails so that a tested deflection yoke can be removed and the next one slipped onto the neck of the tube.

Test signals are obtained from a Raytheon-Belmont vertical and horizontal sync pulse generator, now manufactured by Supreme, Inc. A $630-\mathrm{kc}$ oscillator generates dots, which appear on the screen as short slanting lines due to inten-

The pioneer in the newest of synthetic materials for capacitor development provides another "first" with 'M" film.

Plasticon Type " M " Capacitors are offered where high resistance, high temperature (-40° to $+125^{\circ} \mathrm{C}$), smaller size and lighter weight are required.

Plasticon Type "M" Capacitors are available with either or both ends insulated and with any selection of brackets.

Engineered to your exact specifications.

The only miniafure snap switch

where size and high rating come to terms with cost

Repeat: where size and high rating come to terms with cost. Consider this in terms of engineering that seeks to increase product efficiency while holding costs at a minimum. Then base your snap switch specifications on the following facts.

TYNISWITCII is a low cost, compact snap-action unit based on simplified construction principles. It permits high-load switching in a minimum amount of space. It eliminates costly, nonfunctional bulk in new or redesigned products. No other model or make - of comparable size and rating - can match its high-standard performance. Its action is flawlessly smooth and dependable. Moreover, it has been conclusively proved by approved laboratory tests that tyniswitch is completely reliable at high operating speeds . . . for over millions of cycles!

Investigate these and many other tyniswitch advantages today. New models can be developed economically to fit your speed and specifications-or you can select conventional circuit arrangements from a variety of standard units. Write for details. TYNISWITCH Division, The Sessions Clock Company, 104 East Mạin Street, Forest ville, Comecticut.

Deflection yoke reject chart
tional misalignment of the test set. The direction in which the dots slant then indicates whether deflection yoke leads are correct or reversed.

A somewhat similar sliding platform is used for the same purpose in Final Test at the East Paterson, N. J. plant of Allen B. DuMont Labs. Inc. to test 90 -degree yokes

There are hundreds of jobs open to engineers today!
 but few opportunities like these

Westinghouse is in nuclear power to stay. We believe in the development of atomic energy as man's next great source of power. If you want to get in on a new era in industry, we want to talk to you.

Atomic power opportunities are waiting for electronic engineers with 4 to 10 years of this kind of experience...

ELECTRONIC COMPUTERS, employing pulse amplifying wide range linear amplifying and rate circuits.

NULL BALANCE DEVICES, employing both vacuum tube and magnetic amplifiers, SERVOMECHANISMS, PLANT CONTROL SYSTEMS.

LIAISON with customers, contractors, designers of component equipment.

SUPERVISION of drafting work.

REMEMBER! We are primarily interested in good experienced application and development engineers-lack of previous reactor development experience is no handicap in this type of work.

HOW TO APPLY! What Westinghouse wants to know is: Where and when you obtained your degree . . . how you did in school . . . where you have worked at your profession ... what kind of work you have done.
In other words, right now we're more interested in your ability to fill current openings and to develop in the Westinghouse Atomic Power Division than we are in your vital statistics. Write your letter of application accordingly.
You will be in communication with men who are experienced in keeping secrets. All negotiations will be discreet, and your reply will be kept strictly confidential.

Address your applleation letter to: Manager, Industrial Relations Department, Westinghouse Electric Corporation, P. O. Box 1468, Plttsburgh 30, Pennsylvanla.

What do you want?

MONEY? Good jobs are open here now-waiting for good men who want to make a permanent connection.
A Permanent job? Many of the engineers who joined Westinghouse 20 and 25 years ago are still with Westinghouse -and in key positions -and engineers who join us now will have the opportunity to make this work their lifetime careers. When many other industries may be going through slack times, atomic energy will still be in a stage of expansion.
SUBURBAN LIVING? It's here-within easy driving distance of your work. Within a few minutes of shopping centers . . . schools . . . metropolitan centers.

JOB EXTRAS? Westinghouse offers: Low cost life, sickness and accident insurance with hospital and surgical benefits. A modern pension plan. Westinghouse stock at favorable prices. Westinghouse appliances for your home at discount.

YOUR KIND OF ASSOCIATES? Every fourth person in the Division is an engineer or scientist. More than half the top Westinghouse executives are engineers.
FASCINATING WORK? What other branch of science offers such exciting challenges? So many opportunities for discovery? So many chances to benefit mankind? So many opportunities for original work?
GROWTH OPPORTUNITIES? Never again in your lifetime will you be able to get into such a sure-to-expand industry so early in its development.

rou can be SURE.. if its Westinghouse

Maximum cooling for airborne radar and hot-running electronic equipment is assured with this compact doubleended centrifugal blower. It meets government specifications for use at altitudes up to 50,000 feet. Another illustration of EAD's design ability!

SPECIFICATIONS

OPERATING FREQUENCY RANGE: 320 to 1000 cycles. OPERATING TEMPERATURE RANGE: $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$. AIR DELIVERY: 80 CFM @ $0^{\prime \prime}$ Static Pressure (Sea Level).

MOTOR: Self Cooling-wound and impregnated with Class H Insulation.

MOUNTING: Any Position.
OVERALL DIMENSIONS: $6-3 / 64^{\prime \prime} \times 4-3 / 8^{\prime \prime} \times 3-7 / 8^{\prime \prime}$.

Solving special problems is routine at EAD

If your problem involves rotating electrical equipment, bring it to E A D. Our completely staffed organization will modify one of our standard units or design and produce a special unit to meet your most exacting requirements.

EASTERN AIR DEVICES, INC.

586 DEAN STREET, BROOKLYN 17, NEW YORK
for 30 -inch picture tubes. Here the actual 30 -inch tube is used in the test set. Connections to the yoke terminals are made with a plastic cable clamp.

Magnetic Separator Recovers Alnico from Grinder

Alnico particles slide down metal incline to bin in foreground after being scraped off drum of magnetic separator, here installed on Besly No. 226 doubleend grinder

Valuable particles of Alnico V are recovered and recast into magnets in the Peterboro, Ontario plant of General Electric Co., Ltd. by a magnetic automatic coolant separator made by Barnes Drill Co., Rockford, Ill. The separator is installed on a grinder that automatically trims Alnico castings to final size. The grinder is arranged to compensate for abrasive wear. Three pumps, each delivering 30 gallons per minute, bring the Alnico-bearing coolant water to the separator for recovery.

The separator itself uses Alnico magnets. These hold the desired

Cross-section of separator, showing how U-shaped Alnico magnets are mounted inside drum

hygrade
anderive
whine ond shovinos
to meet every particular insulation requirement

In the Mitchell-Rand line of HYGRADE an 1 FLEXITE Tubings and Sleevings, there is a particular grade and class to meet the specific insulation requirement of temperature resistance, dielectric strength, abrasion resistance, flexibility and push-back. HYGRADE Tubings and Sleevings conform to the NEMA Standards VSI-1950 and to the Armed Services Specification MIL-1-3190.

The "Select-It" chart details the various grades and classes of HYGRADE Tubings and Sleevings . . . grades differ according to amount of insulating coating applied and class is a A.I.E.E. standardization to indicate the cbility of varnished coated products to withstand heat and temperature rises: Class A: $105^{\circ} \mathrm{C}$ or $221^{\circ} \mathrm{F}$, class $\mathrm{B}: 130^{\circ} \mathrm{C}$ or $277^{\circ} \mathrm{F}$, class $\mathrm{H}: 200^{\circ} \mathrm{C}$ or $392^{\circ} \mathrm{F}$. Class A is organic, treated with organic varnishes or coatings. Class B and H are fiberglas treated with organic varnishes or coatings.

Wrife to MITCHELL-RAND for free samples and descriptive dafa.

MITCHELL-RAND INSULATION COMPANY, İNc.
 51 muRRAY STREET
 COrilandf゙ $7-9264$
 NEW YORK \%, N. Y,

A PaRTIAL list of m-R products: fiberglas varnished tubing, tape and cioth INSULATING PAPERS AND TWINES. CABLE FILIING AND POTHEAD COMPOUNDS. FRICTION TAPE AND SPLICE-TRANSFORMER COMPOUNDS - FIBERGLAS SATURATED SLEEVING: ASBESTOS SLEEVING AND TAPE VARNIISHED CABBRIC CLOTH AND TAPE. MICA PLATE, TAPE, PAPER, CLOTH, TUBING FIBERGLAS BRAIDED SLEEVING. COTHON TAPES, WEBBINGS AND'SLEEVVANG.'IMPREG: nated varnish tubing - insulating varnishes of all trpes. Extruded plastic tubing

BEGINS HERE...

with General Industries' Phonomotors

The fidelity reputation of your record players, phono-combinations, and portables begins at the phonomotor. Be sure it's a good reputation that stays good... protected by General Industries' Smooth Power Phonomotors.

Complete data and specifications on the entire line of Smooth Power
Phonomotors will be sent promptly on your request.

Univac election prediction proves 99\% accurate!

GENERAL ((3LECTRIC

JUST two hours after the first polls had closed, Remington Rand's giant electronic computer predicted the election results almost to the actual electoral vote? UNIVAC accepted a mere three million vote count at 9:15 p.m. and juggled it with avairable "trends" over the past 25 years to uncork an answer since proven 99% correct!

16,000 G-E DIODES USED
What does this amazing mechanical mind consist of? Univac's makers in Philadelphia tell us that " 90% of diodes used in the sys-
tem are $G \cdot E$, and without them, the equipment couldn't operate."

new circuits possible

Recently announced G-E Diffused Junction Germanium Rectifiers open the door to even greater advancement in circuit design for this and similar equipment. G-E Junction Rectifiers feature extremely low forward resistance, high inverse
voltage, hermetic seal, and minivoltage, hermetic seal, and miniature size. Their application may result in units that will do more work more $75^{1953}{ }^{2}{ }^{2}$ efficiently less ${ }^{T T_{r}}$ expensively.

NEWS FROM OUR ADVANGD DEVELOPMENT LABORATOR ES

G-E scuensists have tested specially mace germanium junction rextiliers and transistors at $140^{\circ} \approx$. Results indicate nex products may be usable al

so as to force out water when the battery-clip valve on the soldering tool is open.

Tubulations are soldered to the cover for the air and water hose lines. The cover is sweat-soldered to the can. Filling with water, required only about three times a day during continuous production, is done through a threaded plug in the bottom of the can.

When water pressure gets so low that the stream no longer hits the hot plug, the operator merely reaches over and gives the rubber bulb a few squeezes to build up pressure again. The technique was developed in the East Newark, N. J. plant of Utility Electronics.

Reject-Identifying Board

As a guide for sorting defective television receiver coils and transformers for return to vendors, a sample board containing one of each type and make of coil is maintained in Olympic's Long Island City plant. The products of twelve different vendors are represented. Coils are grouped by function and identified by number.

As an example, ten different units differing in only minor details are wired to the board over the heading

Using coil sample board to identify a defective unit. Vendors are identified on board by code letters, generally the first letter in the company name. Loops of wire pass through holes in board to hold each sample in position

February, 1953 - ELECTRONICS

Astron Type AQ Subminiature Paper Capacitors are designed for dependable operation at temperatures up to $+125^{\circ} \mathrm{C}$. without derating-thanks to Astron's newly developed high temperature impregnant, X-250*. They also provide exceptional capacitance stability over the wide range of $-65^{\circ} \mathrm{C}$. to $+125^{\circ} \mathrm{C}$.
High insulation resistance, low power factor, unusually low resonance loss, and high test voltage are achieved in an amazingly compact and rugged unit meeting all Armed Forces requirements. All AQ's are noninductively wound in an extended foil construction. Glass-to-metal seal terminals assure positive hermetic sealing. And Astron AQ's are supplied in a variety of construction styles to meet your specific needs.

Write for engineering bulletin, containing test specifications and performance characteristics of Astron AQ Subminiatures, today.

Astron manufactures a complete line of dry electrolylic capacitors, metallized paper capacitors, plastic molded capacitors, subminiature paper capacitors and standard and subminiature RF interference filters for every radio, television and electronic use.

255 Grant Avenue, E. Newark, N. J.

Export Division: Rocke International Corp., 13 E. 40th St., N.Y.C.
In Canada: Charles W. Peinton, 1926 Gerrard St. East, Toronto.

a common problem... General Controls Co. of Glendale, California manufactures automatic controls for widely diversified applications. Warehousing formerly required segregation of more than 100 different boxes. Product changes, from time to time, would make certain preprinted box inventories obsolete.
solved with Kum. Kleen labels... Now box inventories are maintained by size alone-IN HALF THE ORIGINAL SPACE! A self-adhesive Kum-Kleen label identifies the contents of each box as it is used.
According to General Controls, "The unique characteristics of Kum-Kleen labels made this new packaging program possible, and they are saving us many thousands of dollars yearly,' Their many Avery electric label dispensers "are proving themselves daily to be a most worthwhile investment as a time and labor saver:'
how Kum. Kleen labels work...They're pressure sensitive -LAID ON fast with a finger-touch-no moistening, no mess! They stay neat and attractive-won't dry out, pop, curl or peel. Patented Avery dispensers - manual or electric-feed die-cut, Kum-Kleen labels off roller tape for quick, clean labeling.
Where can YOU use these labels in YOUR business?
For case histories, samples and prices, please mail the coupon below.

117 Liberty St., New York 6
608 S. Dearborn St., Chicago 5 1616 So. California Ave., Monrovia Offices in Other Principal Cities
"Pix I-F Coil"; here it is often necessary to compare an unknown coil carefully with each one on the board in turn to determine its manufacturer. This detailed comparison is only required a few times a day, as rejected coils usually come through in batches all from one vendor:

Spring Scale Cheeks Slip

Inspection of cavities for RCA pencil triodes involves checking the force required to move the plunger in the cavity. To check this in the Harrison, N. J. tube plant of the manufacturer, an ordinary spring scale is mounted upside down on a rack and gear arrangement operated by a hand wheel.
The operator places a finished cavity on the anvil, then turns the hand wheel to lower a cylinder which is mounted on a rod that goes inside the scale to its weighing point. With the left hand re-

Upside-down scale operated by rack and gear measures downward testing pressure being applied to plunger in pencil triode cavity. New printed numbers have been placed on scale so operator does not have to read upsidedown values

LAPP GAS-FILLED CONDENSERS

You can't beaf a soldered connection

for electrical $\hat{\text { conductivity }}$ and permanence!

SOLDERED connections eliminate loss of current, fire hezaad, radio interference and excess heat which result from loose, corroded, arcing NON.SOIDERED connections.

For over 50 years experts have specified Amcrican Beauty Electric Soldering Irons. They know American Beauty Irons are built to LAST LONGER, OPERATE DEPENDABLY and BE SERVICED QUICKLY.

Build better with solder Solder better with fimerican Beauly
 WRITE FOR FREE LITERATURE
 Dependable • Durable • Efficient SINCE 1894
 AMERICAN ELECTRICAL HEATER COMPANY

maining on the cavity in order to feel for any slip, the operator turns the wheel to apply pressure while watching the pointer on the scale. Loose plungers are set aside for repair or replacement.

Tube Aging and Testing Techuiques

Production of miniature and subminiature tubes is expedited through use of a large variety of test sets and aging racks in Sylvania's Emporium plant. Most of these are applied 100 percent to the entire production to meet the requirements for premium tubes.

Tubes are aged on vertically mounted sliding drawers each having 100 sockets. Plugs at the rear of each drawer mate automatically with jacks at the rear of the rack when the drawer is pushed in, to apply the required voltages for aging. Miniature tubes plug directly into the sockets. Subminiatures are mounted in octal adapters that in turn plug into drawers having octal sockets.

The pull-out drawers are supported by roller suspensions at the top. Power supplies are below the drawers, in sections having a similar pull-out construction.

At the front of each drawer are two lamps with jewels. One indicates application of normal d-c plate voltage, and the other indicates a

Pull-out drawers for aging tubes. Each drawer has 100 sockets. Operator is here loading one with type 6095's, which are the ruggedized equivalents of 6AQ5 pentodes

At last! A tubing that's TAILOR-MADE FOR TV ANTENNAE

 RENOLDS ALUMINUM ANIENAA TUBNGHIGH STRENGTH ALUMINUM ALLOY CORE FOR INCREASED DURABILITY

HIGH PURITY ALUMINUM RESISTS CORROSION... GIVES BRIGHTER FINISH

INCREASE YOUR CAPACITY AND YOUR PROFITS...USE
Diligent research by the industry's electronics engineers have brought forth wonderful improvements in today's television receivers . . . and antenna designs that insure better performance. Now, Reynolds-pioneer producer of antenna tubing-offers a vastly superior aluminum antenna tubing to help you produce a superior antenna! The new Reynolds Aluminum Antenna Tubing is precision roll-formed... tailor-made for TV antenna manufacturers. It is extra-sturdy, lightweight, and its gleaming, corrosionresistant finish invites sales.

Reynolds Antenna Tubing 31-a maximum strength tubing; and Reynolds Antenna Tubing 41 -designed with ample strength for most demands. Available in either butt seam or lock seam tubing Reynolds Aluminum Antenna Tubing is offered in a complete range of sizes and in lengths to meet your specifications. For additional information and sample sections, call your nearest Reynolds Sales Office listed under "Aluminum" in the classified telephone directory.
 REYNOLDS METALS COMPANY - 2000 SOUTH NINTH STREET - LOUISVILLE I, KENTUCKY

Up to 4 Channels on a standard $\frac{1}{4}$ inch tape

The first automatic continuous recorder

Precision engineered and JANized for the Civil Aeronautic Authority - now available for commercial and industrial monitoring of communications... air to ground, utility and pipe line service, municipal fire and police calls, common carriers, civil defense and many other applications. Magnecord monitoring equipment is available in 1,2 and now 4 channel models. Write Magnecord for complete details.

Complete system includes 2 recorders, each in turn recording 4 tours without reloadingreproducer, erase unit, bias-record meter, storage table.

Drawer for octal sockets, used with octal adarters for subminiature tubes
heater-cathode short in one of the tubes. In the event of a short, which is rare, the tubes must be pulled out one by one while power is being applied, until the shorted tube is removed. The bad tube is indicated by darkening of the short-indicating lamp.

High-temperature life runs of subminiature tubes are carried out

Rear view of slide-out aging drawer, showing jacks that make comections to mating jacks at rear of rack. Supporting rollers are at iop of drawer and locking latch is at bottom

Speed your data recording with these Electronik instruments

For recording $y=f(x)$-the Function Plotter. One of the best time-savers for any laboratory, this instrument automatically records a continuous curve such as stress vs. strain, speed vs. torque, temperature vs. pressure. It eliminates hours of hand logging and point-by-point plotting. It has two independent measuring systems; one moves the pen, the other moves the chart. Optional selsyn drive for the chart can also be supplied. Either can measure any variable that can be converted to a d-c signal. The chart moves 11 inches, at only 4 seconds for full travel. Pen movement is 11
 inches; pen traverse time 2 seconds.

For recording two variables-the Duplex Recorder. This two-in-one instrument combines continuous records of any two independent variables on a single chart . . . where they can be conveniently compared without tedious cross-reference. Each of the two recording pens has its own independent "Continuous Balance" measuring system. Fach pen can traverse the full 11 inches of chart width. Different calibrations can be supplied for each pen.
Your local Honeywell engineering representative will be glad to discuss ways that these instruments can save time in your research work. Call him today . . . he is as near as your phone.
Minneapolis-Honeywell Regulator Co.
Industrial Division
4428 Wayne Avenue
Philadelphia 44, Penna.

REFERENCE DATA: Write for Data Sheet No. 10.3-5 on the Function Plotter
and Data Sheet No. 10.0-6 on the Duplex Recorder.
Honeỹwèll
BROWNINSTRUMENTS First in controls

Mlew Tvedeon FROM JAMMING!

SIGNAL-SPLITTER MCL-10-VBX eliminates adjacent-channel and heterodyne interference to either CW, narrow-band voice or broadcast-quality receptions - will separate two carriers on the same "assigned" frequency when difference is but $.005 \%$ with 60db attenuation to jamming carrier (at carrier frequencies of the order of $10 / 15 \mathrm{MC}$).
Signal-Splitters are used with standard communications receivers.
This new variable selectivity model can be supplied with from three to seven selectivity switch positions in either selected sideband, providing a total of fourteen useful single-sideband widths from 100 cps out to $10,000 \mathrm{cps}$ with high attenuation to all frequencies outside the selected passband.
Carrier accenter circuit greatly reduces the distortion effects, of selective-fading and high-percentage modulation detection sighal carrier is raised $20 d b$ above sidebands
Used by nine Departments and Agencies of U.5\% Governmerl and many foreign comr unications companies and ofern onts to protect their radio-tetep telegraph circuits om bunting. Signal-Splitter insit ow over ten ters old gre ofll in service.
 Spliters in

J. L. A. MCLAUGHLIN - LA JOLLA, CALIFORNIA • U.S.A.

Rack for holding five subminiature tubes at a time inside high-tempercture oven
with small panels holding five tubes each and with individual singletube panels that mount over holes in the ceramic lining of an oven. The tubes project inside where they are subjected to a temperature of 175 F for accelerated life runs of 500 hours, 1,000 hours and even up to 5,000 hours in some cases. Normal operating voltages are applied. All important characteristics of each tube are measured every 500 hours or less.

High-temperature tests are conducted on a sampling basis, to show how tubes hold up in equipment that runs at high temperatures. This is important in the special applications for which a large number of these subminia-

Method of supporting subminicture tube in life test oven. Swinging metal tab above hole in oven locks socket in position. Neon lamp on panel below indi cates shorts, and jack permits monitor. ing of tube current at 500 -hour intervals during the run

Revlon's Treasurer and General Manager, Joseph Revson, with" "Fire and Ice" givl Dorian Leigh

He kept 7,235 dates with this girl!

Five months ago she was just an idea Today, as the temptress who sells Revlon's new "Fire and Ice" Lipstick and Nail Enamel, she's America's most talked-about glamour girl!
"She created the greatest shipping problem we ever had," says Joseph Revson. "7,235 stores wanted 'Fire and Ice' merchandise and displays - to be delivered before the promotion date of November 1.
"There was only one way to keep all
those dates! And as heavy re-orders flooded in, we continued to fill them via Air Express. Volume is now the heaviest in our history! In maintaining that momentum-and keeping the good will of the stores-Air Express service has been invaluable.
'We don't overlook costs, either Air Express rates are the lowest in the field on practically every shipment we make. With a volume like ours, those savings add up to a very substantial figure!"

Division of Railway Express Agency

SENSITIVITY-ACCURACY-STABILITY

make BALLANTINE

The World's Leading Electronic Voltmeters

$100 \mu \mathrm{v}-100 \mathrm{v}$....	Valtage Range
$2 \mathrm{eps}-150 \mathrm{kc}$	Frequency Range
$3 \% 5 \mathrm{cps}-100 \mathrm{kc}$	
$5 \% 2 \mathrm{cps}-5 \mathrm{cps}$	
$100 \mathrm{kc}-150 \mathrm{kc}$	Accuracy
2 meg. shunfed by 15 urf*	Input Impedance
AUDIO TO 2 MC	Model 310
$100 \mu \mathrm{v}-100 \mathrm{v}$. Valtage Range
$10 \mathrm{cps}-2 \mathrm{mc}$	Frequency Range
3% to 1 mc	
5\% 1 me-2 me	Accuracy
2 meg. shunted by $15 \mu \nu f^{*}$	Inpul Impedance
AUDIO TO 6 MC	Model
$1 \mathrm{mv}-1000 v$ (100 uv-1 mv	Vallage Range robe)
$15 \mathrm{cps}-6 \mathrm{me}$.	Frequency Range
$\begin{aligned} & 3 \% 103 \mathrm{mc} \\ & 5 \% 3 \mathrm{mc}-6 \mathrm{mc} \end{aligned}$	Accuracy
11 meg. shunted by 6 mpf	Inpue Impedance
(1 meg. shunted by	hout probe)

PEAK-TO-PEAK

Model 305

1 mv -1000 r pk-to-pk	Voltage Range
$10 \mathrm{cps}-100 \mathrm{kc}$ (Sine Wave)	Frequency Range
$3 \boldsymbol{\mu s e c}-250$ usec	Pulse Width
20 pulses per sec.	Min. Rep. Rale
5\% for pulses	Accuracy
2 meg . shunted by $15 \mu \nu f^{*}$	Inpul Impedance

*Shunt capacitance is 8 y μ f on all ranges except two most sensitive ranges.

Write for complete catalog of all Ballantine Electronic Instruments

Aging and preheating conveyor used to transport tubes from Sealex machine (off picture at right) to operator at first test position
ture tubes are intended. Temperature in the oven is automatically controlled.
Initial aging of all tubes is accomplished automatically by the moving conveyor that transfers tubes from the automatic tube machine to the first test position. This short-period aging also serves to preheat the tubes, thereby speeding up the electrical test.

Each slat on the conveyor contains nine tube sockets, to which the required voltages are fed throngh a

Closeup view of sockef on test set, showing solencids that drive plungers against tube in sequence when pressure is applied to socket. A snap-action switch. located under the socket. initiales the tapping action

Sensational Advancements In Science \& Industry

 Created the Need for the New Stabelex "D" CAPACITORS
yOUR FREE

INDUSTRIAL CONDENSER CORPORATION Stabelex "D" Capacitor Catalog may prove to be the most important new single piece of literature for

INDUSTRIAL CONDENSER CORPORATION

Curve \#1111 illustrates the low dielectric absorption of Stabelex "D" and also makes a comparison with mica and paper capasitors. The absorption of mica and paper capacitors may be considerably higher, depending on the impregnating materials and design. The dielectric absorption of Stabelex " D " is never more than $1 / 25$ th that of the best commercially available Mica capacitors or $1 / 35$ th that of Paper capacitors.

Performance curves illustiating various characteristics of the Stabelex "D" Capacitor will appear in this magazine each monti.

OUTSTANDING FEATURES

INSULATION RESISTANCE AT $20^{\circ} \mathrm{C}$. AFTER THREE MINUTES CHARGE-900,000 megohm microfarads
INSULATION RESISTANCE AT 75° C. $-78,000$ megohm microf arads
INSULATION RESISTANCE AT-75 ${ }^{\circ}$ C.—In excess of 5 million megohm microfarads
CHANGE IN CAI'ACITANCE FROM 25° C. TO $-80^{\circ} \mathrm{C} ;+0.76 \%$
SELF TIME CONSTANT OF 10 MFD CAPACI-TOR-4800 hours
(${ }^{\text {AT }} 50$ KILOCYCLES- 10,000
POWER FACTOR AT $1 \mathrm{KC}-0.00025$

SEND FOR CATALOG 1117 TODAY

After a long period of research, Industrial Condenser Corporation now offers to industry for the first time the first of their family of Stabelex capacitors, stabelex "D", which has been produced for special applications for some time.
Complete information performance curves, characteristics, and suggested applications of the various types now available will be found in this catalog.
Mfrs. of OIL, WAX, ELECTROLYTIC, PLASTIC

FREQUENCYTIME COUNTERS... automatically neaos FREQUENCY, TIME INTER VAL AND PERIOD

Every known need in frequency and pulse measurement is now satisfied by four completely new designs of Potter frequency-time counting equipment.

The simplified Potter 100 KC Frequency Time Counters, Models 820 and 830 , are suitable for rapid and precise production line applications. The versatile Potter 100 KC and 1 MC FrequencyTime Counters, Models 840 and 850, include all gating, switching, timing and counting circuitry required for any conceivable count-ing-type measurement.

All models feature the convenience of smaller size, lighter weight, and functional panel layout. And, optional readout in-dication-either the dependable Potter 12-4-8 decimal readout or the conventional 0-9 lamp panels -is available.

For further data or engineering assistance write Dept. 2-C.

115 CUTTER MILL ROAD GREAT NECK, N. Y.

Method of locking subminiature tube in position, and construction details of excite?
system of brushes and wiping contacts. As tubes are taken out of the Sealex machine, they are inserted in sockets on the conveyor for a ride over the top. The tubes come down alongside the operator at the test position, within easy reach for transfer to the socket in front of her.

Insertion of a tube in the test socket automatically energizes two solenoids in sequence to drive fiber rods sharply against the tube from directions 90 degrees apart. This

Vibration test set using magnetron magnets for 100 -percent production lesting of subminiature tubes

Cut costs of BLIND ASSEMBLY!

5HAKEPRODF"SPEED NUT5"
SELF-RETAINING FEATURE ELIMINATES RIVETING, STAKING OR WELDING
They're easy to install without special tools... can't clog
with paint... make screw driving faster
 ... lock tignt with unique thread gripping action assure a strong, shock resistant fastening.

"Frastening Headquarters"
DIVISION OF ILLINOIS TOOL WORKS
St. Charles Road, Elgin, Illinois - Offices in principal cities

America's Great Resources Plus A Free Economy Made This Business Possible!

ELECTRO

 and

SIL-THIN-BESTOS

.003 to. 0035

offer design economies

 at higher temperaturesElectro Extra Thin Hi-Temperature Insulation possesses exceptional dielectric and tensile strength. Its thinness, flexibility and lightweight permits compact construction . . size and weight reduction of electronic and electrical equipment.
These Electro products meet all Class " H " requirements and are available in rolls, sheet or tape form.

For complete data or samples of these and other ELECTRO products contact Dept. EI

ELECTRO-TECHNICAL PRODUCTS

dIVISION OF SUN CHEMICAL CORPORATION
113 East Centre Street, Nutley 10, N. J.

Laboratory-type vibration test setup used for sampling inspection of tubes. Exciter is mounted on concrete block to minimize extraneous vibrations
test reveals loose elements by noise heard from the loudspeaker behind the sloping panel of the test set. Pushbuttons are then operated to make remaining tests in quick succession on tubes that pass the vibration test.

Conveyor speed is governed by the rate at which the operator can remove tubes for tests. If any tubes are left in long enough to reach a wire stretched across the conveyor near the floor, they trigger a snap-action switch that stops the conveyor. Cord sets equipped with Jones plugs are used to change conveyor aging voltages whenever a different type of tube is placed in production.

Premium subminiature tubes are given a 100 -percent test for ability to withstand 15 g vibration at 40 cycles. The exact magnitude of vibration is calculated from the measured displacement of the tube

KLEIN Quality Pliers SHECHALIY DESIGNED

FOR THE ELECTRONICS INDUSTRY

Now, Klein quality pliers are available in new compact patterns for precision wiring and cutting in confined space. Note, too, the replaceable leaf spring that keeps the plier in open position,
ready for work. All are hammer forged fromhigh-grade toolsteel, individually fitted, tempered, adjusted and tested-made by plier specialists with a reputation for quality "since 1857."

LONG NOSE PLIER
307-5-1/2L -Exiremely slim paftern ideal for the really tight spots. Jaws are knurled to insure a posifive grip.

CHAIN NOSE PLIER
317-5L-A full inch smaller than standard pattern. Has a very fine knurl that will not damage soft wire. Also available without knurl.

OBLIQUE CUTTING PLIER - 210-51 - For cutfing small wires or trimming plasfic. Enfire length of cutting knives works flushagainst cutfing surface. 5 or 6-inch sizes.

DUCK BILL PLIER

306-5-1/2-This compact plier has jaws of sufficient width to hold small springs, yet small enough to form wire in confined places.

ASK YOUR SUPPLIER

Foreign Distributor: International Standard Electric Corp.,
New York

This Klein Pocket Tool Guide gites full information on all types and sizes of Klein Pliers. A copy will be sent without obligation.

at the known frequency. The vibrator developed for the purpose utilizes two pairs of large magnetron magnets, with coils surrounding their poles. These coils are energized by a 30 -watt audio oscillator and amplifier set.

Rated operating voltages are applied during the test, with a $10,000-$ ohm resistor in the plate circuit. The a-c voltage drop across this resistor is measured with a vtvm as an indication of the extent to which the tube is reacting to the 40 -cycle vibration frequency. At the right of the operator on the vibration test set is a 16 -socket rack for preheating the tubes, to speed up the actual test.

In a more elaborate vibration test

Closeup of electromagnetic-lype vibration exciter. Use of two sockets permits vibrating tubes in two planes 90 degrees apart. Direction of motion is in and out of the field coil. just as in a loudspeaker voice coil
set used to measure any change in plate current during either 2.5 g or 15 g under complete normal operating conditions, a standard vibration exciter made by MB Mfg. Co., New Haven, Connecticut, is mounted on a large concrete block. The exciter employs a voice coil and field construction similar to that of an electrodynamic loudspeaker. Direct current for the field coil is obtained from a power supply in an adjacent rack, and variable-frequency audio power for the voice coil is obtained from a Hewlett Packard 202D audio oscillator feeding a 500 -watt amplifier. Most tests are conducted at either 25 or 40 cps .

This test setup is used for

MICROWAVE RECEIVERS
 1000-10,750 me

- Single Dial Tuning
- Low Naise Figure
- Tracked R. F. Preselec tion, Triple-Tuned
- Linear Db Output Indication
- AM-FM Reception

Video Output - 10 v
Pulse across 100 ohms

- Audio - BFO

Four microwave receivers of high sensitivity, wide tuning range and selectivity. Image rejection is greater than 60 db . Gain stability better than $\pm 2 \mathrm{db}$, permits application as a field intensity meter. Extra large dials enable frequency to be clearly read to an accuracy of 2%. Video bandwidth is 3.0 mc . Input power required is $\mathbf{1 0 5 - 1 2 5 ~ v , 5 0 / 1 0 0 0 ~}$ cps.

- Recorder Output
- Provisions for Using External Attenuators in I.F. Channel
- Frequency Calibration Accuracy - 2\%
- Separate Audio \& Video Channels
- AFC
- Calibrated Tuning Meter

WIDE BAND VIDEO AMPLIFIER
 Model VT 10 CPS to 20 MC

Designed for use as an oscilloscope deflection amplifier for the measurement and viewing of pulses of short duration and rise time. Excellent for TV, both black, and white and color applications.

Feałures:

Model VT

- Flat frequency response from 10 cps to $20 \mathrm{mc} \pm 1.5$ db.
- Uniform time delay of .02 microseconds.
- Gain of 50 db .
- Frequency compensated high impedance attenuator calibrated in 10 db steps from 0-50.
- Fine attenuator cquers a 10 db range.
- Phase linear with frequency over entire band.

MICROWAVE Signal sources

Models SSR, SSL, SSS, SSM, SSX 634 MC to 10.750 MC
For use as a reliable source of microwave energy in trans-

mission loss measurements, standing wave determination, etc. Unidial Control for accuracy and ease of operation. Direct reading (no mode charts to consult). Frequency determination accurate to 1% through use of present cal. ibration and temperature compensated klystrons.
Five Microwave Signal Sources are available to cover the frequency range from 634 MC to 10,750 MC. Units ruggedly constructed, mounted on aluminum castings to insure mechanical stability. Klystron reflector voltage automatically tracked with tuning of the klystron cav. ity to provide unidial control. Signal sources supplied complete
with klystron.

MICROWAVE SIGNAL GENERRTOR
Model MSG. 4 $7,000 \mathrm{mc} \leftrightarrows 10,750 \mathrm{mc}$ Polarad's Microwave Signal Generator, Model MSG-4, is an ideal source of an accurately known signal voltage, precisely modulated. Sensitivity, frequency and performance of radio and radar equipments in the frequency, range from 7 to 10.75 kme can be readily measured on this continuously variable, direct reading signal generator.

Features:

- Continuous tuning
- One tuning control
- Tuning dial accuracy 1%
- No Klystron modes to set
- Accurate stable power messuremext
- Non-contacting shorts guarantee long life
- Modulation - Internal Pulse, FM and external
- Syac output - delayed and undelayed.

...give positive, powerful snap action!

The magnetic pull moves the armature along the Solenoid axis. This action is efficiently converted into a rotary motion by means of ball bearings on inclined races. The inclined ball races are made to compensate for the magnetic pull increase as the Solenoid air gap closes, thereby providing substantially constant torque throughout the Solenoid stroke. The rotary snap-action power of the Ledex can be efficiently harnessed with a minimum of linkages, through the use of one or more standard features available on all models.

here's why LEDEX ROTARY SOLENOIDS are dependable!

As can be seen from the exploded view, Ledex Rotary Solenoids are simply constructed with few moving parts. All parts are manufactured to exacting tolerances and are carefully inspected and assembled.

The copper wire coil, the heart of the Solenoid, was developed especially for this product. It is wound by a precision winding process that puts a maximum amount of magnet wire inio available space . . . giving tremendous power to compact Ledex Rotary Solenoids.

six basic LEDEX

 ROTARY SOLENOIDS to choose from!| Model Number | 2 | 3 | 5 | 6 | 7 | 8 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Diameter | $11 / 8^{\prime \prime}$ | $15 / 0_{0}^{\prime \prime}$ | $17 / 8^{\prime \prime}$ | $21 / 4^{\prime \prime}$ | $23 / 4^{\prime \prime}$ | $33 / 8^{\prime \prime}$ |
| Torque $\mathrm{Ib} .-\mathrm{In}$. | $1 / 4$ | 1 | 5 | 10 | 25 | 50 |
| Weight lbs. | $1 / 8$ | $1 / 4$ | $1 / 2$ | 1 | $21 / 4$ | $41 / 4$ |

Engineering data is available upon request. Write for descriptive literature today!

sampling inspection only, being too costly and delicate for production purposes. Two sockets are provided, oriented 90 degrees to check vibration in two planes.

Wire-Stripping Machine

CONTINUOUS uniform movement of wire and accurate timing of operations are features of a new wirestripping machine constructed by Jeffers Electronics Inc.

The machine was designed to handle wire from B\&S No. 20 to B\&S No. 32, in lengths from 2 to 48 inches. The length of the stripped end is adjustable from zero to the whole length of the cut wire.

The change in length of the cut wire is made by changing the gears, which changes the speed and the time for the cam shaft to make one complete turn. The cam that controls the cutting of the wire is a simple one-point cam which can be located in any angular position.

The cam which controls the stripping is a double cam that can be adjusted to control the time or the distance the wire is stripped. Special cut cams can be used which will permit stripping of the wire at one or more points between the cut ends.

The wire is pulled from the supply spool and makes one loop around two driving drums, then goes around the idler wheel and between the two stripping brushes.

The stripping brushes are small, round brushes that are driven at high speed and are in contact on their outside diameter. A solenoid is connected to the lower brush

Operating principle of high-speed continuous wire stripping and cutting machine, in which gear-driven cams control operation of the stripping and cutting solenoids

New " 500 " telephone. It has already been introduced on a limited scale and will be put in use as opportunity permits, in places where it can serve best. Note new dial and 25 per cent lighter handset.

It adds miles

to your voice

For years the telephone you hnow and use has done its job well-and still does. But as America grows, more people are settling in suburhan areas. Telephone lines must be longer; mose voice energy is needed to span the extra miles.
Engineers at Bell Telephone Laboratories have developed a new telephone which can deliver a voice ten times more powerfully than hefore. Outlying points may
now be served without the installation of extra-heavy wires or special batteries on subseribers' premises. For shorter distances, the job can be done with thinner wires than before. Thus thousands of tons of copper and other strategic materials are being conserved.

The new telephone shows once again how Bell Telephone Laboratories keeps making telephony better while the cost stays low.

BELL TELEPHONE LABORATORIES

[^9]

Adjustable volume control on bottom of new telephone permits subscriber to set it to ring as loudly or softly as he pleases. Ring is pleasant and harmonious, yet stands out clearer.

QUICK FACTS ON NEW TELEPHONE

Transmitter is much more powerful, date largely to increased sound pressure a! the diaphragm and more efficient use of the carbon granules that turn sound waves into electrical impulses.

Light ring armature diaphragm receiver produces three limes as much acoustic energy for the same input power. It transmits more of the high frequencies.

Improved dial mechanism can send pulses over greater distances to operate switches in dial exchange.

Huilt-in varistors equalize current, so voices don't get too loud close to telephone offices.

Despite increased sensitivity of receiver, "rlicks" are subdued by copper oxide varistor which chops off peaks of current surges.

A difficult but fascinating one. Works this way. Long in advance we try to calculate just what components our industrial users will need in a hurry.

How many, of what size and specification, of what type of part, will you be likely to want most of ten? Which parts, though unusual, will you nevertheless need on occasion for your special purposes? Which of the many brands we can supply will have the greater user acceptance?

We have no crystal ball. No computers; (though we supply you with parts to make them). All we have is experience in component supply: awareness of new developments - gained from study and conversation with men in the design and application fields of the art; constant effort at seeking out sources; evaluating available shipping methods; and a willingness to risk an occasional oversupply.

Here's a hobby that helps you! It doesn't throw us often. We get a wonderful satisfaction when we can answer you, "In Stock! How many do you want."

check your requirements:

Batteries	Hardware	Sockets
Cable \& Connectors	Meters	Solder \& Irons
Capacitors	Panels \& Racks	Speakers
Chassis	Pilat Assemblies	Switches
Chokes	Power Supplies	Terminal Strips
Coils	Power Controls	Test Instruments
Controls	Reactors	Tools
Diodes, Germanium	Receptacles	Transformers
\& Silicon Crystal	Rectifiers	
Fuses \& Plugs	Relays	Special Purpose
Jacks \& Plugs	Resistors	Voltage Regulators
Knobs	Shields \& Tubing	Wire \& Miscel. Supplies

JAN-APPROVED COMPONENTS

FREE INDUSTRIAL TUBE BOOKLET
Chief Engineers, Purchasing Agents, Purchasing Execulives! Write now if you haven't received our Industrial Electronic Tube Booklet \#EB. Use company letterhead and state your title. Address Dept. E-2.
the ONE source for ALL your electronic needs
bearing so that the lower brush can be pulled away from the upper brush, permitting the wire to pass between them without being stripped.

After passing between the two stripping brushes, the wire makes three loops around the two driving drums. These two driving drums are connected by a chain and are driven at a constant speed by a drive motor.

The wire, after leaving the driving drums, is pulled to the cutoff part of the machine by two take-up wheels that are driven by a spring belt which keeps tension on the wire at all times. Here the wire goes through a cutting arrangement which consists of a stationary shear block and a movable shear blade which is round and has a series of holes about the outside diameter. The wire passes through the hole in the stationary shear block and through one of the holes in the movable shear blade. In operation, the power solenoid advances the shearing disc the spacing of one hole, which cuts the wire off and allows the new wire to push out through the next hole in the shearing disc. The length of cut is adjusted by rotating the cam that controls the cut solenoid.

Testing High-Voltage Tubes

A test console developed for power tubes makes plate voltage connections automatically to the top caps of ten tubes at a time when the top cover is lowered, and applies voltage automatically only when the operator has pushed the front

Safety-first console developed for testing ten large tubes at a time without risk of electrical shock to the operator

STABLE...RELIABLE...COMPACT

This is the most rugged and lightest weight crystal controlled transmitter on the market and is unusually stable under extremes of temperature, vibration, altitude and acceleration. The transmitter produces a two watt frequency deviated signal within the telemetering band of 215 to 235 mc .

SPECIFICATIONS

TYPICAL OPERATION:
" A " Voltage. 6.0 V d.c. or r.m.s. a.c.
"A" Current 1.2 amps $B+$ Voltage..................... 180 V d.c. B+Current......................... 85 ma Power Output. 2.0 watls Distortion total harmonic distorlion for modulation index of 4

INSTALLATION:
Size.............. . . $1.5^{\prime \prime}$ high $\times 2.75^{\prime \prime}$ wide \times
4.5" long

Weight. 1.1 pound
Connectors: Power and
Modulation R.F. Output. . . Winchester M5P (mating M55 with H-19 hood furnished) UG. $625 / \mathrm{U}$ (maling UG. $88 / \mathrm{U}$ furnished)

When ordering, specify model number and output frequency desired

Write for
complete information.

Pacife Division
Bendix Aviotion Corporation Nontn Nolirmoos. cair.
safety cover all the way up. Pairs of shorting plugs on the front screen mate into jacks on the top cover to complete the circuit for testing the tubes in this arrangement, developed by Westinghouse.

Phosphor bronze strips mounted on an insulating sheet under the top cover make contact with the top caps of the tubes. Each strip is double-ended, to take care of an additional ten tubes for which a second row of ten sockets is provided. This permits using the test set for tubes requiring another type of socket.

Selcetion of Casting Resins

The three principal applications for casting resin in connection with the production of electronic equipment are for circuit and component immobilization, for high-voltage insulation and for moisture protection. The five most important properties used as criteria when choosing a resin for one of these applications are dissipation factor, dielectric constant, dielectric strength, heat-distortion temperature and moisture absorption. Tables I and II show at a glance the best resin for each requirement and give pertinent properties.

The general casting procedure for encapsulating electronic circuits or components is diagrammed in Fig. 1. Some resins will require heat during mixing, as specified in manufacturer's instructions. Various techniques are used for releas-

Table I-Selection of Casting Resins

For Circuit and Component Immobilization:
High Temperature-GRX-71
High Dielectric Strength-AN-5; R-1433
Low Loss-NBS; St ycast
Low Dielectric Constant-Stycast; AN-5; NBS
Low Moisture Absorption-NBS
For High-Voltage Insulation:
Stycast; AN-5: Kriston: NEL177; RLS-3869; EC 10C10CM; R-1433

For Moisture Protection:
Stycast; Epon RN-34;AN-5; NBS

EAST COAST OFFICE: $\triangle 75$ FIFIH AVE., NEW YORK 'I7, N, Y
EXPORT DIVISION BENDIX INTERNATIONAL, 72 FIFIH AVE., NEW YORK II N.Y.

Here's how to get production for Transisiors - lamps HERMEIC SEALS • Lamp

Now it is possible for progressive manufacturers to produce their own precision electronic components. For example, the Automatic Lead Wire Welding Machine, shown below, was recently designed and built by Kahle to produce 12,000 3-piece leads per hour for miniature receiving tubes. Although this machine, Model 2148, is designed to make standard welds, it is but one step from a machine to produce leads for electronics' latest wonder...the transistor. In addition, Kahle has produced a fully automatic Filament Making and Tabbing Machine, Model 2036, that produces from 1,200 to 3,000 filaments per hour depending upon wire diameter.

These machines reflect Kahle's ability to design and build special-purpose machinery to meet any given specifications. Regardless of your current production problems, learn ... without obligation... how Kahle's more than 40 years of practical experience can benefit you.

For specific information, write Kahle . . now.

SOLVES＂MINIMUM＂WEIGHT AND SPACE PROBLEMS

SUB－MINIATURE

Single－and Double－Contact CONNECTORS

MONOBLOC＊CONSTRUCTION eliminates un－ MONOBLO dust pockets and provides stronger molded parts．
molded melamine bodies（in accord－ ance with MIL－P14a）－mineral filled －are fungus－proof and provide me－ chanical strength as well as high are and dielectric resistance．
CONTACTS PRECISION MACHINED：Pins from brass bar（QQ－B611）and Sockets from spring temper phosphor bronze from spring temper phosphor bronze bar（QQ－B7 46al）．They are gold plated
over silver for consistent low contact resistance．reduction of corrosion and aid in soldering．

SUB－MINIATURE RECTANGULAR CONNECTORS
These connectors also employ standard
Winchester Electronics Winchester Electronics features：

STAND－OFF MINIATURE STAND－OFF FEED－THROUGH

Shown here are but a few of the large line of terminals now available and which are par－ ticularly useful in limited space applications： 1）As a substantial，well insulated electrical iie point（Stand－off type）and 2）for passing high voltage through a chassis or a panel （Feed－through pype）．

MOLDED MELAMINE BODY：（MIL－Spec．

 P－14，Type MTS－G－2 or G－3）for higterminals：Solder Type（Bifurcated or Turret）brass，hot tin dipped；Screw Thread Type（Tapped insert or Threaded stud）No．4－40 or No．6－32， hrass，cadmimm plated，clear iridite finish

MOUNTING METHUD：Rivet，hollow alu－ minum shank（．094＂O．D．）assembled by swaging or spinning；Tapped Insert，
hrass，cadminm plated，clear iridite finish，assembled with No．4－40 or No． 6－32 standard machine screw；Thread－ ed Stud，brass，cadmium plated，clear iridite finish，assembled with No．4－40 or No．6－32 nut．

BREAKDOWN VOLTAGE：
Stand－off Body Length D．C．Voltage

7／32＂	7，000 V
3／8＂	14，000 V
17／32＂	22，000 V
19／32＂	24，000 V
Fred－tl	gth
$5 / 32$＂	$4,500 \mathrm{~V}$

$\begin{array}{ll}5 / 32^{\prime \prime} & \ldots \ldots \ldots . ~ \\ 8,000 \\ 9 / 32^{\prime \prime} & \text { V }\end{array}$

POLARIZATION：Bodly design of the＂SM2＂permits engegement in one position only
RACK \＆PANEL MOUNTING：Either plug or receptacle may be panel mounted with a $1 / 4-28$ cadmium plated brass nut．A melamine hood protects soldered wires．

PHYSICAL AND ELECTRICAL DATA

$\begin{array}{\|l} \text { Recept. } \\ \text { Code } \\ \text { No. } \end{array}$	PlugCodeNo．	No． of Con－ tacts	Solder Cup Die． In．	Weight Oz．			D．C．Yolts Ereakdown Connector Engaged			
							Sea laval llNormal Humidity		$\begin{gathered} 60,000 \mathrm{Ft} \\ \text { Altitude } \end{gathered}$	
				\＆゙	$\frac{5}{2}$	\％	¢	䔍	旡葡	产宮
SM1S	SM1P	1	． 043	． 02	． 04	． 02	\ldots	5400	\ldots	1750
Sm2S	Sm2P	2	． 0225	． 02	． 01	． 02	1600	2600	800	1100
$\begin{aligned} & \text { SMRE } \\ & 7 S . G \end{aligned}$	$\begin{aligned} & \text { SMRE } \\ & 7 P-6 \end{aligned}$	7	． 0225	． 1	． 1	． 1	2450	2050	950	675
SMRE 145－6	$\begin{aligned} & \text { SMRE } \\ & 14 P-G \end{aligned}$	14	． 0275	． 1	． 2	． 1	2450	2050	950	675
$\begin{aligned} & \text { SMRE } \\ & 205-6 \end{aligned}$	$\begin{aligned} & \text { SMRE } \\ & \text { 2OP-G } \end{aligned}$	20	． 0225	． 2	． 2	． 2	2450	2050	950	675
$\begin{aligned} & \text { SMRE } \\ & 265-6 \end{aligned}$	$\begin{gathered} \text { SMRE } \\ \text { 2OP-G } \end{gathered}$	26	． 0225	． 2	2	． 2	2450	2050	950	675
$\begin{aligned} & \text { SMRE } \\ & \text { 295-G } \end{aligned}$	$\begin{aligned} & \text { SMRE } \\ & \text { 29P-G } \end{aligned}$	29	． 0125	． 2	． 2	． 2	2450	2050	950	675
$\begin{aligned} & \text { SMRE } \\ & 345-6 \end{aligned}$	$\begin{aligned} & \text { SMRE } \\ & \text { 34P-G } \end{aligned}$	34	． 0225	． 2	． 2	． 2	2450	2050	950	675

Trade Mark

Pats．Pend．

Write for dimensions and other details ins． and mounting methods．

Wesp Coost Branch：

MINGEESTER ELEGTRONICS incorporated

 1729 WILSHIRE BLVD． SANTA MONICA，CALIF．

FIG．1－General casting process for circuit and component embedment
ing the cured product from the mold．When expendable molds， made of wax or some similar mate－ rial，are used it may be necessary to add additional operations such as melting away the mold after the casting is cured．

Curing times vary greatly with choice of resin and curing condi－ tions，hence examples of recom－ mended cure conditions are given below for typical casting resins． These cure conditions are taken

Table II－Properties of Resins

Resin，Mfr，Temp Range \＆Max Freq：

Araldite Resin B（Ciba Co．）； 30 C to 140 C ；freq unknown．

Bakelite C－8 with Inert Filler （Bakelite Corp．）；-64 C to +80 C ： 400 eps ．
Hysol $6000 \mathrm{PR}, 6020,6500$ and 6501 （IIoughton Labs．）；-55 C to +150 C ； $3,000 \mathrm{mc}$ ．
Laminac 4116 （American Cyana－ mid Co．）；-45 C to $+100 \mathrm{C} ; 50 \mathrm{mc}$ ．
N．E．L．No． 177 （U．S．Nary Electronics Lab．）；-54 C to $+100 \mathrm{C}: 200 \mathrm{mc}$ ．

Paraplex P－13（Rohin and Hatas）； -40 C to 100 C ；freq unknown．
Paraplex P－43（Rohm and Haas）： -45 C to $+100 \mathrm{C} ; 50 \mathrm{mc}$ ．
Polystyrene（Emerson and Cum－ ing）；up to $80 \mathrm{C} ; 1,000 \mathrm{cps}$ ．
Selectron 5003（Pittsburg Plate Glass Co．）；-6.5 C to +12.5 C ； 30 mc ．
Selectron 5016，5081， 5208 （Pitis－ burg Plate Glass Co．）；－5 C to $+71 \mathrm{C} ; 30$ me．
Selectron 5209 （Pittsburg Plate Glass Co．）：-65 C to $\mathrm{C}=120 \mathrm{C}$ ；D－C．
Stypol 503 （H．IT．Robertson Co．）； -55 C to +100 C ；freq unknown

Picture distribution amplifier unit as well as synchronizing generator and power supply units are mounted on Grant Industrial Slides. Units are mormally retracted but roll out for servicing.
Grant Slides Smooth. Fast and Efficient!

DuMont's problem was space

Compactness was the prime requirement for the DuMont Telecruiser - a mobile unit which had to duplicate actual studio operating conditions in every respect.

It was absolutely necessary to confine the servicing operations of various units to a limited area. Consultation with Grant representatives resulted in the selection of the proper (Electronic Equipment) Slides for the DuMont Telecruiser.

Do you have a servicing and maintenance problem?
Grant Research and Development facililies are at your service. Let us assist you in the choice and application of Crant Slides to your equipment. Engineering liaison is available from the planning stage through the production processes.

GRANT INDUSTRIAL SLIDES

a product of the engineering design department of Grant Pulley and Hardware Company
31.73 Whitestone Parkway, Flushing, New York.

Wite for information...consult on any problem

1. FULL EXTEMSION - Continous ball bearing action permits smooth non-jar chassis removal. Locks in fully extended position, must be unlocked to return.

2. PIVOT RELEASE - Withdrawing release rods disengages them from quadrant mechanism, enables perfectly balanced unit to be tilted by simply raising.

3. 45° PIVOT - Unit locks in 45 degree or 90 degree position. Special pivoted positions can be obtained to fit individual requirements.

4. FULL TILT - Mainferiance and repairs easily made. Access to component is gained in a few seconds. Special slides can prozite plus or minus 90° tilt.

STRONG, INERT AND heat resistant glass

"SIIVERFLEX" PROCESSED BRAID FOR NON-FRAYING

silicone rubber treated flexible glass tubings and sleevings are made in NEMA Grades A-1, B-1, C-1, and C-2, in sizes No. 24 through $1^{\prime \prime}$ in standard natural white color. Other Dieflex products guaranteed to meet or surpass all applicable NEMA and ASTM standards include varnished cotton tubings and saturated cotton sleevings, varnished glass tubings and saturated glass sleevings, "Vinylglas" vinyl-coated glass tubings and sleevings, and silicone varnished glass tubings and saturated glass sleevings.
ASK YOUR NEAREST IMC OFFICE FOR MORE INFORMATION, TODAY

PRODUCTION TECHNIQUES
from manufacturer's data; faster cures may be obtained at higher temperatures, but size and shape of the casting should be considered before attempting an accelerated cure. The resins listed here are only representative of those available, hence this is by no means a complete listing.

Curing Times and Catalysts

Stycast (Emerson \& Cuming Co.) -5 days at room temperature, then 24 hours at 60 C followed by 4 hours at 85 C . Catalyst-benzoyl peroxide.

Epon RN-34 (Shell Development Co.) -24 hours at 60 C , then 2 to 3 hours at 100 C . Catalyst-pipiridine.
$A N-5$ (developed by National Bureau of Standards) - 1 day at 50 C. Catalyst-1. benzoyl peroxide; 2. cobalt dryer; 3. Pro-A.

NBS (developed by National Bureau of Standards) - Room temperature for gelation period, followed by 8 to 10 hours at 50 C to 60 C. Catalyst-1. Uniperox $60 ; 2$ benzoyl peroxide.
NEL (Rohm \& Haas Co.; developed by Naval Electronics Lab, San Diego, Calif.) - 8 hours refrigerated, then 2 hours at room temperature and 10 hours at 45 C . Catalyst-Uniperox 60.
Selectron 5000-5200 (Pittsburgh Plate Glass Co.) - 6 hours gelation at room temperature, then 15 to 30 minutes at 250 F to 260 F . Catalyst -1. Uniperox 60; 2. benzoyl peroxide.

Resin 40 (Emerson \& Cuming Co.) - 36 hours at room temperature, then 4 hours at 85 C . Cata-lyst-benzoyl peroxide.
R-143.3 (Minnesota Mining \& Mfg. Co.) -Gelation cure 2 to 4 hours at 250 F to 275 F , then final cure 2 to 4 hours at 300 F to 325 F . Catalyst- phthalic anhydride.

RLS-3869 (Minnesota Mining \& Mfg. Co.) - 2 to 4 hours at 250 F to 275 F , then 1 to 2 hours at 300 F to 325 F. Catalyst-diallyl phthalate.

EC 10C-10CM (Emerson \& Cuming Co.)-Cure time. not given Catalyst-Emerson \& Cuming Catalyst No. 6.

It should be noted that P-43, the Selectron resins and EC 10C-10CM are air-inhibited, hence the surface of the casting exposed to air will

General electric is a large supplier of high-reliability tubes to Collins Radio Company, who use G-E 5-Star types widely in the 51 R -series receivers for air navigation and communjcations.

25 tubes, or practically the entire complement of the chassis, are highreliability types. "Every 51 R component has to do its job under the toughest flight conditions," says J. H. Hamilton, Manager, Aviation Sales. "So we specify high-reliabiity tubes all along the line. The result is equipment with maximum dependability.'

G-E 5-Star Tubes have an extensive record of dependable tube service to airlines and to the armed forces. The Collins application is further evidence of the ability of these tubes to solve your electronic equipment problems.

Courtesy American Airliner, Inc.

AND NOW-G.E 5.STAR SUBMINIATURES!

As the largest supplier of high-reliability tubesmanufacturing the most types, and with outstanding production facilities-General Electric now offers to designers a complete line of ten 5 -Star subminiatures.

In all respects, these subminiatures match the premium performance of regular 5-Star types. They are uniformly operable when installed. They are shock-proof... extra-dependable . . . long-lived . . . with fewer shorts, fewer heater failures than standard tubes.
Select the right types for your new miniaturized equipment from the listing at right! For detailed application facts about 5 -Star Tubes-both regular and subminiature-wire or write for new Booklet ETD-548A. Tube Department, General Electric Company, Schenectady 5, New York.

SPECIFY THESE 5-STAR SUBMINIATURESI

GL-5718	Medium-mu triode
GL-5719	High-mu triode
GL-5797	Semi-remote-cutoff pentode
GL-5798	Medium-mu twin triode
GL-5840	Sharp-cutoff r-f pentode
GL-5896	Twin diode
GL-5899	Semi-remote-cutoff pentode
GL-5902	Beam power amplifier
GL-6111	Medium-mu twin triode
GL-6112	High-mu twin triode

remain tacky after cure.
Recommended fillers that may be used with all resins are powder glass, micronized silica, aluminum powder, calcium carbonate, powdered slate, talc, asbestos, glass beads and powdered mica.

Casting Problems and Examples of
Corrective Measures
Cracking of Resin Castings. (1) Amount of promoter was reduced; this lowered temperature during curing and increased setting time; (2) fillers were added, such as asbestos, tale, mica, slate flower or powdered glass; (3) casting resin was modified; (4) casting was cured in temperature-controlled oven; (5) sharp edges or projections were eliminated from articles to be embedded; (6) flexible resins made from epoxides were used; (7) article to be embedded was coated with flexible material such as Silastic 181; (8) curing technique was modified with respect to activation and temperature.

Cracking of Fragile Components. (1) Filler was added to resin; (2) parts were coated with an elastomer before encapsulating.

Excessive Shrinkage of Castings.
(1) Filler was added; (2) a maximum amount of rigid resin was used; (3) epoxy resins were used instead of polyesters; (4) materials and curing procedure changed. Maximum shrinkage of Houghton Labs resins is specified to be 2.3 percent.

Casting Adheres to Mold. (1) Use mold release agents, such as silicone grease, Hi-Glo parting lacquer or mineral oil; (2) use molds made of teflon or nylon.

Poor Adherence to Embedded Parts. (1) Prepare metal surfaces more thoroughly; (2) match thermal coefficient of expansion of resin to that of metal by adding fillers; (3) omit insulating tubing from components, as Selectron resin would not adhere to the tubing.

Poor Heat Transfer. (1) Add fillers to improve heat transfer from components to outside of casting; (2) change circuit configuration, so that high-temperature components were near radiating

... ELECTRICALLY
EFFICIENT!
. MECHANICALLY PERFECT!

- LOW INTER-ELECTRODE
- very low dielectric loss
- high dielectric strength
- PERMANENT DIMENSIONAL
- NON-HYGROSCOPIC,

NON-WARPING
INFORMATIVE DATA
SHEETS AVAILABLE!
Write far your camplete set, together with loase-leaf binder far instant, easy reference. Your request will outamatically assure prompt forwarding of all subsequent Mycalex data sheets and catalog material. Write on company letterhead please.

MYCALEX engineers designed these sockets to provide a com. plete, yet economical, solution to UHF tube mounting problems. Exhaustive tests have proven their mechanical excellence and high electrical efficiency. The use of "MYCALEX 410" (injection molded glass-bonded mica) with its great dimensional stability permits a minimum amount of dielectric to be used in the body structure. This plus other unique design features results in extremely low inter-electrode capacitance. In addition to its other advantages-high arc resistance, high dielectric strength, nonporosity, etc., "MYCALEX 410" has very low dielectric loss at all frequencies including UHF and thereby offers great advantage over phenolic materials. "MYCALEX 410" operates continuously in temperatures up to $650^{\circ} \mathrm{F}$ with practically no change in electrical properties or mechanical structure. Soldering operations will not cause body distortion.

MYCALEX TUBE SOCKET CORPORATION
Under exclusive License of Mycalex corporation of America - 30 ROCKEFELLER PLAZA, N. Y. 20

TROUBLE-FREF CONLACT TERMINALS!

Contact terminals on these sockets are so designed that the effective inductance from soldered connection to the tube base is no greater than if the connection was made directly to the tube pin. Special design results in high contact area pressure that effectively reduces contact resistance. Contact terminals are secured in the body in a manner that permits 90° bending of the tab without weakening.

AIL TYPZS OF MOUNING GAROWARE!

"MYCALEX 410" UHF Sockets, 7 or 9 pin, can be furnished mounted in various standard saddle hardware-regular saddles (top or bottom mounted), saddles with ground lugs, snap or JAN types, permitting the use of radio tube shields. Mycalex Corporation of America.

Owners of 'MYCALEX' Pafents and Trade-Marks

 Executive Offices: 30 ROCKEFELLER PLAZA, NEW YORK 20 - Plant \& General Offices: CLIFTON, N. J.
this

is of vital interest

to everyone who has a

VIBRATION PROBLEM!

Here is a fresh approach to vibration and shock control-an all-metal mount! Just look at the careful fabrication of the stainless steel wire cushioning. This is the heart of the new Robinson Met-L-Flex mount. Shock and vibrationareabsorbed from every angle, thereby isolating and protecting the mounted equipment.

Wide Range of Applications

Robinson Met-L-Flex design control can be applied to the mountings for delicate precision equipment or heavy machinery.

Far better vibration control has been sorely needed to keep pace with modern advances in the design and use of electronic and precision equipment. Well, here it is!

Great Cost Savings:

Where the new principle of all-metal vibration control is used with Robinson unit mounts or engineered mounting systems it effects decided economy. It not only permits simplified design and construction of equipment, but also contributes to far longer useful life.

Outstanding Performance

Robinson Met-L-Flex mounts were originally developed to meet unprecedented, severe conditions of modern high speed planes.

From take-off to landing' a plane's vital equipment is subject to the combined violence of shock and vibration. Sure protection is needed. Met-L-Flex meets such challenges with flying colors, to the great relief of engineers. Moreover, unlike old-fashioned rubber mountings, Robinson Met-L-Flex mounts perform at peak efficiency under any atmospheric conditions. They are not daunted by oil, temperature extremes, or moisture - and the need for replacement due to fatigue is virtually nil.

Proved and Accepted

Robinson mounts have been tested and accepted by more than three hundred electronics, aircraft and industrial manufacturers. With such a background and record of performance, Robinson offers the advice and counsel of its engineers toward finding the best and most economical answer for every problem of vibration and shock.

JUST WRITE AND ASK US

If you are an engineer, architect or manufacturer who would be interested in having more information as to how this new kind of engineered vibration control might help your special problem, we will be glad to hear from you. Drop us a line.
surfaces; (3) use heat radiators.
Fume Hazards. (1) Use convection heating equipment, because of danger of fire when curing with heat lamp because catalyst and promoter are inflammable; (2) install proper ventilation to carry off fumes while mixing, pouring and setting as the fumes are toxic to some operators.

These corrective measures are presented as things to try one after another when a particular problem is encountered. As a rule, not all the corrective measures are necessary; sometimes only one is sufficient to solve the problem.

The foregoing information was abstracted from a technical report, "Development and Application of Automatic Assembly Techniques for Miniaturized Electronic Equipment", prepared by Stanford Research Institute for the Wright Air Development Center.

Induction Sealing of Pencil Triodes

IN THE envelope-assembling machine used for pencil triodes at RCA's Harrison, N. J. plant, induction heating is used exclusively for making the required vacuum-tight glass-to-metal seals. The parts making up the assembly are supported on a Nichrome jig which aligns and spaces the parts. Six separate high-frequency generators

Electronic heating generators here speed production of pencil triodes, appearing here as tiny vertical white rods under the work coils

7 good reasons for specifying MEPCO Precision Resistors

1
Crossover wire insulated from each winding by 2000 v . insulation (patented).
Special metal molded connecting feature, which bonds end of winding and ferminal in a non-corrosive and mechanically secure manner-no solder or flux used.

Reversed and balanced PI-windings for low inductance, with use of only the finest resistance alloys.
(4)

Impregnated with approved fungus, moisture and salt waterproofing compounds.
5
JAN approved non-hydroscopic steatite bobbin, specially treated prior to winding in order to provide additional protection for fine enameled wire.

Protective fungi resistant acetate label.
σ
Rigid hot solder coated brass terminals for easier soldering.

MEPCO, INC.
MORRISTOWN. NEW JERSEY
are required, one for each of the six heating positions. The watercooled work ccils are connected to the generators by multiple layers of flexible bonding braid and rubber hose sections are used as water lines, to permit vertical movement of the heating coils. As each tube in turn is indexed to a heating position, the work coil is lowered and automatically energized. Fluorescent lamps fastened overhead with tape glow to indicate that power is on. The electric field is sufficiently strong so that no connections are needed for the lamps.

Brackets on Pallet Hold Auto Radios

Simple angle brackets and straight metal pieces are fastened to plain wood pallets with screws to provide non-slip positioning of the wrap-

Use of inexpensive angle brackets on pallets to position auto radios, and simple support for solder reel. The solder holder can be slid along the bench readily, and may be lifted off when no longer neaded

TYPES OF WIRE AND STRIPPING METHODS

Hol Solder:-This method is well adapted in many applications for removing Nylclad or Formvar films with or without nylon or celanese textile covering. The leads are tinned and ready to solder after this operation. Sizes 21 to 30 AWG represent a range that is best adapted for this method. The high surface tension and temperature of the hot solder, the tendency for the solder to amalgamate and reduce the size or embrittle fine wire leads usually limits the usefulness of this method to the intermediate wire sizes shown.

A 50-50 lead-tin solder bath is used generally, at a temperature of approximately $500^{\circ} \mathrm{C}$ or higher. The tin percentage, after the bath has been used for sometime, will decrease. Tin additions must be made therefore from time to time as dictated by experience.

Some formulations of Formvar films are not uniformly removed by the hot solder method and erratic results sometimes are encountered. Formvar nylon combination coatings such as Nylclad can be removed consistently.
Brushing:-For large wire sizes with insulations such as cotton glass (with or without plain enamel, Formvar, Nylclad), Formvar, Nylclad, plain enamel, revolving steel wire brushes are in general use for stripping apparatus leads.

For finer film coated wire, glass fibre brushes are being increasingly used. In the case of fine wires, steel wire brushes tend to scratch the copper and embrittle the leads whereas glass fibre brushes remove the insulation with a burnishing action and have practically no injurious effect on the copper itself.
Burning:-Equipment has been developed and is being used especially for atripping wound motor armature leads that first removed
the insulation by burning. Copper oxide thus formed is next removed by brushing.
Welding:-Lead wires and coil leads frequently are welded. A smalt high-temperature gas flame is applied to heat the spliced lead to a temperature that just melts the copper. This method is used extensively for medium and large motor stator coils. In this operation, of course, all the film coating and textile is burned off.
Chomicals:-There are many proprietary compounds in general use for stripping film-coated magnet wire. They have one property in common. All are evil smelling and injurious to the skin. Care must be exercised therefore in handling these materials, and for some the use of a ventilated enclosure or hood is mandatory.
Soldering Iron and low-temperature solder pols:-Celenamel and nylon film-coated wires are in general use, particularly in the radio and television industry. Both materials being thermoplastic can be removed by using a rosin alcohol flux and the application of a soldering iron, or dipping in $650^{\circ} \mathrm{F}$ lead-tin solder.

Reprints of this table for shop use available on request.

MAGNET WIRE
BELDEN MANUFACTURING CO.
4625 West Van Buren Street, Chicago 44, Illinois

CANNON plugs

for laboratory and

 switchboardHere are a few examples of Cannon's Experimental Laboratory and Switchboard Connectors. They are used extensively throughout industry, public utilities, sound studios, broadcasting stations, college and university physics and chemistry laboratories, in AC network analyzers and electronic analog computers. They may be applied wherever quick disconnect switching
CSR Tandem Receptacle CSP Plug

SWPR. 4 Switching Plug having both pin and socket contacts
and patch cord plugs are required. High grade materials are used throughout. Molded phenolic of high dielectric strength is used for insulation. Both pin and socket contacts are machined from solid brass. Some are silver plated. All are rated at 75 amps . Pin contacts are split for low loss seating in tapered bore sockets. Single contact fittings are supplied in either red or black phenolic to designate direct or alternating current circuits respectively. Two-contact and larger plugs have sand-blasted cast aluminum shells and handles with clear lacquer finish. Various combinations of pin and socket contacts are used as a polarizing guide. For further information write for Bulletin LS5-1951.

SCR Plug

SCP Plug
SRB Receptacle

CANNON ELECTRIC

Since 1915

Factories in Los Angeles, Toronto, New Haven, Benton Harbor. Representatives in principal cities. Address inquiries to Cannon Electric Company, Dept. B-120, P. O. Box 75, Lincoln Heights Station, Los Angeles 31, Calif.
around housing of an auto radio as it moves down the assembly line on a moving conveyor belt in Sylvania's Buffalo plant. Positions of the brackets are easily changed to accommodate a new housing design. Two brackets project inside the housing and one on the outside at the front edge to give rigid positioning.
The spool of solder is mounted on the bench directly under the left hand of the operator. This keeps the length of unrolled solder at a minimum and thereby prevents tangling. The solder holder is a piece of sheet metal that hooks over the metal front edge of the work bench. The stud for the spool is welded or bolted to the center of the projecting sheet.

Automatic Coil Dipper

A special Crosley-designed automatic dipping machine applies a plastic protective coating to television receiver peaking coils at a production rate of 650 coils an hour. On the motor-driven face plate of the machine are six coilholding arbors, each driven by gears inside the face plate.

The operator pushes the lead of a coil into the hole in the end of an

Automatic dipping machine set up for applying plastic coating to peaking coils. The same machine is also used for adding a plastic corona bead to flyback coils

To Guarantee QUALITY BEYOND QUESTION

Standard Control Knobs

So that you may specify them with confidence for the finest electronic and electrical equipment, Raytheon Standard Control Knobs must pass these quality control tests:

HUMIDITY - 48 hours of 95% relative humidity at $65^{\circ} \mathrm{C}$.
SALT SPRAY - 50 hour fog test in accordance with Specification QQ-M-151.
VIBRATION - tested in 3 planes from 10 CPS to 33 CPS at an amplitude of $.072^{\prime \prime}$ for 3 minutes each way in accordance with Specification 40 T 9
IMPACT - blows of 400,800 and 1200 foot pounds through each of 3 axes in accordance with Specification 40 T 9.
HIGH TEMPERATURE - 4 hours at $85^{\circ} \mathrm{C}$ combined with torque test.
TORQUE - 25 to 50 pound-inches applied in one direction, then opposite while under high temperature test.
ROTATION - crank knobs rotated 200,000 times with $1^{1} \frac{1}{2}$ pound load applied intermittently to handle during each rotation.
EXTREME TEMPERATURE - knobs subjected for 2 hours to 95% relative humidity at plus $65^{\circ} \mathrm{C}$, then minus $40^{\circ} \mathrm{C}$ for 2 年 hours, then quickly back to room temperature.
RAYTHEON STANDARD CONTROL KNOBS are made in five basic sizes and six functional styles of tough, durable "Tenite II" (cellulose acetate butyrate), injection molded with anodized aluminum inserts and dual setscrews. Black knobs available in "matte" or "mirror" finish.

BRAILLE KNOBS

Based on Navy Drawing RE10F651A and styled to match our Standard Control Knob line. Available in two size ranges with symbol caps molded in the required colors.

Write for complete information

RAYTHEON
 MANUFACTURING COMPANY EQUIPMENT SALES DIVISION
 DEPT. 6270-KA, WALTHAM 54, MASSACHUSETTS

 DISTRICT OFFICES: BOSTON, NEW YORK, CLEVELAND, CHICAGO, NEW ORLEANS, LOS ANGELES (WILMINGTON), SAN FRANCISCO, SEATTLE INTERNATIONAL DIVISION: 19 RECTOR ST., NEW YORK CITY

- Full scale VSWR ranges: $1.1 / 1-4.0 / 1-10 . / 1$ and to $100 / 1$ using included calibrated probe depth attenuators.
- Differential probe system for accurate measurement of low VSWR.
- Useable electrical probe travel 150 centimeters ($1 / 2$ wave at $100 \mathrm{mc} / \mathrm{s}$).
- Removable end tapers exhibit negligible impedance transformation under 1%.
- Residual VSWR under 1%-voltage uniformity $\pm 0.5 \%$ or better-mechanical tolerances held to 0.2%.
- Machine engraved centimeter scale and vernier (Starrett) measures probe travel to 0.1 millimeter accurate to 0.01 mm .
- Continuously adjustable probe depth $0-.500^{\prime \prime}$ calibrated in .001 " steps. Permits measurements of relative power and maintenance of square law crystal characteristic.

Machine with container of hot wax raised to dunking position. U-shaped metal bar comes up with pot, to serve as guard, because the wax is hot enough to burn fingers
arbor. A spring clip on the arbor holds the lead there. When the undipped coil reaches the lowest point on its orbital route, the operator pushes a foot pedal that controls an air-operated cylinder. This brings a pan of hot high-melting point wax up to the rotating coil. It is held there long enough for the coil to make several revolutions and get thoroughly coated with wax. Release of the foot pedal lowers the semicircular pan into the larger wax pot without splashing.

By the time that the dipped coil has completed its single revolution of travel around the face plate, the wax has cooled and hardened sufficiently to permit removal by the operator. Gloves are not needed. The completed coil is placed in a screen-type tray for further hardening, transporting and storage. A rack supports this tray directly in front of the operator.

The wax is heated by a Sta-Warm automatic electric heater having a range of 260 F to 550 F in seven steps.

Masking Tape Holds Meters

When RUNNING performance and life tests of experimental magnetic amplifiers, engineers at Bogue Electric use miniature multimeters

HUGHES

GERMANIUM DIODES

MOISTURE-PROOF
Each hermetically sealed Hughes Diode is humidity cycled in saturated water vapor from $+90^{\circ} \mathrm{C}$. to $-78^{\circ} \mathrm{C}$. and then oscilloscope-tested for humidity penetration.

DEPENDABLE

Each Hughes Diode is subjected to JAN shock tests and then inspected under vibration for the familiar electrical in-stabilities-hysteresis, drift, and flutter. Each diode is aged and then reinspected for stability of electrical characteristics.

3
THERMALLY STABLE
The Hughes Diode is designed to reduce differential expansion which would cause instability of electrical characteristics with fluctuations in temperature. Each diode is temperature cycled and then tested to assure that the operating temperature range is limited only by inherent characteristics of germanium itself.
subminiaturized
The Hughes Diode is designed for maximum space economy.

ELECTRICAL SPECIFICATIONS AT $25^{\circ} \mathrm{C}$.

Because of expanded production capacity, Hughes Diodes are now available for commercial sale. Moderate quantities can be delivered from stock. Hughes Diodes are classified in accordance with RTMA specifications, and also are supplied to special custonter specifications, including high temperature electrical requirements.

Address inquiries to:
SEMICONDUCTOR department
HUGHES
Aircraft Company, Culver City, California

From the basic raw materials . . . to the final performHence tests . . Vickers selenium rectifiers are put through one of industry's most rigid and comprehensive quality control systems to produce consistent quality rectifiers.

[^10]
ICKERS ELECTRIC DIVISION

A UNIT OF THE SPERRY CORPORATION
1801 LOCUST STREET - SAINT LOUIS, MISSOURI

Magnetic amplifier test setup, showing use of masking tape for anchoring additional selenium rectifier on top of cabinet and for supporting glass thermometer
rather than individual voltmeters and ammeters for measuring circuit values. To minimize chances of having the multimeters pulled off the bench by their test leads, the instruments are grouped together with masking tape. The tape can readily be removed when the test is completed, for returning the individual meters to the stock room or rearranging them for other tests.

To avoid mistakes in reading meters, a piece of masking tape is placed on the face of each instrument and the characteristic being measured is lettered on the tape. These notes are in abbreviated forms; thus, sensing identifies the Simpson multimeter which is set

Use of masking tape to fasten four multimeters together temporarily, and method of using the tape to identify the function of each instrument. Tape across test lead plugs of lone multimeter in foreground is safety precaution when measuring 440 -valt line voltage

Weston Model 1411

SPECIAL APPLICATION SCHEMATICS

Continuous Operation

 Suntione Insulated Hook-up Wirefrom
$+130^{\circ} \mathrm{C}$
($+266^{\circ} \mathrm{F}$)
to

$-60^{\circ} \mathrm{C}$
($-76^{\circ} \mathrm{F}$) LOW

HEAT • FUNGI • ABRASION CHEMICALS • EXTREME LOW TEM.

"Surflene", extruded monochlorotrifluoroethylene, has high insulation resistance, dielectric strength and outstanding resistance to heat, abrasion, most chemicals and concentrated acids, including fuming nitric acid. It is non-inflammable, inert to fungi and has low surface leakage. It is especially designed for hermetically sealed and miniature equipment for high temperatures encountered in power supply and continuous duty apparatus. Also available in multi-conductor cables.
"Surflene" is available in thirteen colors - red, orange, yellow, pink, light and dark green, blue gray, tan, brown, black, white and clear.

Write our Engineering Service TODAY for technical assistance and samples.
to a milliampere range for measuring the sensing current.

When a multimeter is used on a high-voltage range, such as 440 volts, masking tape is placed across the instrument ends of the test leads after they are plugged in. This strip of tape serves as a highvoltage warning and minimizes chances of accidentally or carelessly pulling out the test leads and thus exposing the high-voltage pins.

When measuring the temperature rise of selenium rectifiers during heat runs of magnetic amplifiers, masking tape is used to hold the bulb end of the glass thermometer against a rectifier plate. A longer strip of tape is used to support the other end of the thermometer in a position for easy reading.

During experimental work with magnetic amplifiers it is often necessary to hook in additional components temporarily. Instead of drilling holes in a chassis or cabinet for mounting these, the parts are set on top of the cabinet and held in position with masking tape. Leads with test clips can then be used for making connections, without risk that the part will fall off and dislodge all leads.

Aluminum Soldering Alloy

A new metal alloy called Chemalloy facilities soldering to aluminum sheet or wire. The aluminum is merely heated beyond 800 F and the alloy rod rubbed on. After this tinning operation, conventional soft soldering is possible.

During shortages of copper wire in Crosley's radio plant, the new alloy was used to tin aluminum wire after cutting and stripping. The wire could then be soldered conven-

Tinning an aluminum radio chassis by heating with a gas torch and rubbing the heated area with a rod of the new alloy
.- and knowing the advantages of automatic voltage regulation, this man depends on

Scientific developments are based on EXACT knowledge. To obtain exact data in tests involving electrical circuitry, input voltages must remain constant. To insure dependable, accurate results . . . to eliminate the need for rerunning experiments because a change in input voltage has invalidated the first run ... depend on a STABILINE Automatic Voltage Regulator to maintain constant voltage regardless of line or load changes.
Offering the finest in automatic voltoge regulation equipment, The Superior Electric Company offers two types of STABILINE Automatic Voltage Regulators. Type IE (Instantaneous Electronic) is completely electronic with no moving parts. Correction - when compared with other types - may be considered instantaneous. Regulation and stabilization are excellent; maximum change in output voltage will not exceed $1 / 4$ of 1% for any or all variations in operating conditions. Waveform distortion never exceeds 3%.
Type EM (Electro Mechanical) is an electro-mechanical device with inherent characteristics of zero waveform distortion, high efficiency and faster correction than most types of automatic voltage regulators. It is ideal for controlling large industrial loads. Both types are available in numerous capacities and ratings.

SPECIAL MODELS of STABILINE Automatic Voltage Regulators can be supplied to meet individual requirements. Specializing exclusively in the design, development and manufacture of voltage control equipment, The Superior Electric Company is thoroughly experienced to help you in studying your exact needs and recommending the right equipment to serve you best.

FOR ENGINEERING INFORMATION and CATALOG, WRITE TO 202 MAE AVENUE

- POWERSTAT LIGHT DIMMING EQUIPMENT
- stabiline automatic voltage regulators
- 5-WAY biNDING POSTS
- Voltbox a-C power supplies
- powerstat variable transformers
- varicell d-c power supplies

CEN-TRI-CORE ENERGIZED ROSIN-FILLED SOLDER

SOLDER
 SOLDER

tionally on the production lines.
In Lear's radio plant, ingots of the alloy were melted in large solder pots, and aluminum cans inserted therein to facilitate making hermetic seals. A similar setup was used by the Navy to coat aluminum transducers so they could be immersed in sea water.

At the melting point of the alloy, it acts as a simple solder. Above the melting point, the action is that of welding, and capillary action starts under the skin of the parent metal. This spreading of the alloy in every direction away from concentrated heat makes it ideal for use on thingage aluminum or screen wire that would normally disintegrate or burn through.

The alloy was developed by Chemally Associates, Santee, California, while seeking an improved method of fabricating aluminum waveguides and attaching flanges. Even where one sheet of aluminum stands on edge against the full surface of another sheet, a weld made with the alloy and a small propane gas torch is sufficiently strong that the aluminum breaks before the weld.

Two-Spool Solder Holder

A PORTABLE on-the-floor holder for spools of solder gives fiexibility for rearranging soldering positions on an assembly line, provides storage space for discarded and newly cleaned soldering iron tips, and makes a supply of solder last twice as long before replenishing from the stock room.
The holders are constructed from

Simple holder for two spools of solder. Compartments at ends hold soldering iron tips

What kind of copper or copper alloy do you need? Free-cutting brass rod? Sheet and strip brass? Phosphor bronze for springs? Call your nearby Chase warehouse. We can supply you, subject to government controls, with the widest variety of brass or copper materials for production, maintenance or repair.

Many of our branches are equipped to slit, saw, or shear our metals or your own stocks to specifications.

\section*{Chase,
 BRASS \& COPPER
 Waterbury 20, connecticut - subsidiary of kennecoit copper corporation
 | Albany \dagger | Cincinnati | Houston \dagger | Minneapolis | Pittsburgh | Seattie |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Atlianta | Cleveland | indianapolis | Newark | Providence | Waterbury |
| Baltimore | Dallas | Kanses City, Mo. | New Oricans | Rochester \dagger | |
| Boston' | Denver \dagger | Los Angales | New York | St. Lotis | § \dagger sales office |
| Chicago | Detroit | Milwaukee | Philadelphia | San francisco | only) |

SYNCHRONOUS TIMING MOTORS and TIMERS for

- Industrial
- Military

400 Cycle Motor

- Cammercial Uses

HAYDON* research and engineering staffs constantly seek to develop new and build better products. One example is the HAYDON 400 cycle timing motor. This is an hysteresis type synchronous timing motor, for use as a separate motor or in many different types of timers. HAYDON personnel and plant are equipped to build motors and timers using D.C., 60 cycle or 400 cycle for military or civilian applications.
HAYDON manufactures a wide range of dependable timing motors notable for their small size; quiet operation; total enclosure; separate systems for controlled lubrication of rotor and gear train; ability to operate in any position. Standard speed range from 60 rpm to one revolution in 7 days. The HAYDON motor is the basic element for standard timing components and custom-engineered timers designed and manufactured by the company for volume applications.

DESIGN INFORMATION

HAYDON will gladly send you technical data on request.

Subsidiary of GENERAL TIME CORPORATION

2426 ELM STREET

TORRINGTON

plywood and assembled entirely with box nails, hence can be built at minimum cost. Slots are cut in the uprights for a half-inch hardwood dowel rod that serves as a shaft for the two spools of solder. This holder is used in the plant of Olympic Radio \& Television.

Vacuum Bakeoul Ovens

Thorough cleaning of precision parts for mass spectrometers is achieved with a carefully planned sequence of cleaning operations associated with a $\triangle .500$-watt oven providing vacuum bakeout, in a Pasadena plant of Consolidated Engineering Cory.

The oven is mounted directly over the vacuum pump. with its controls on an adjacent table. The Pyrex bell jar and the metal shield surrounding the insulation are counterbalanced for ease in lifting. Nichrome ribbon is wound around the outside of the bell jar to serve as the heating element for the oven.

Preliminary cleaning of the parts before vacuum bakeout is accomplished by washing in Dreft deter-

Bakeout equipment with bell jar and oven lifted to show basket in which parts are placee for final degasification. Large part on bench is an analyzer tube for a mass spectrometer, one of the largest parts customarily baked out

Short cut to loss

8:30 on a hectic night - and bids for the Cohansey Run Bridge had to be in the night's mail. It was after 5 when the estimators finished the roughs everything was supposed to be automatic from that point on. Miss Exton was at the new electric calculating machine literally steaming alongwhen suddenly it stopped. Scems it wasn't stean - it was smoke - the machine had shorted through failure of the electrical insulation. Too late to get a serviceman - and it took 'til 4 A.M. to finish the calculations by hand - all because some manufacturer tried to save pennies by using an electrical insulation that cracked.

Ewhen it works. But ent is wonderful short out and failure is complete.

BH " 649 ", pioneer in the field of vinyl-coated fiberglas tubings, provides extra protection for your equipment against costly rejections and failures. It is permanently flexible, and offers high
ating temperatures of $110^{\circ} \mathrm{C}$., with "spot" resistance up to $220^{\circ} \mathrm{C}$., without regard to aging and abuse.

Made of continuous Fiberglas yarns, coated with a vinyl compound, BH " 649 " can be twisted and knotted without damage. It withstands "push-back" during installation, without loss of physical or dielectric properties. It will not fail on a bend - even when bent back upon itself. It is absolutely fray and ravel proof. An imposing list of users testifies to its superiority - specific applications cited on request.

BH " 649 " is one of a family of BH electrical insulations, each designed to meet particular conditions in service. Give us a few facts about your requirements, product, operating temperatures, voltages. We will furnish production samples for testing purposes.

Address Dept. E-2

Bentley, Harris Manufacturing Co. Conshohocken, Pa.
BHEMEME"
*BH Non-Fraying Fiberglas Sleevings are made bs an exclusive Eentley, Harris process (U S. Pat. No. 2393530). "Filerylas" is Rex. TM of Dwens-Corning Fiberglas Corp.

- Only $\mathbf{1 . 0 5 0 " ~ d i a m e t e r ~} 1$
- Single section weighs only 3 oz .
- STANDARD ratios from 10:9 to 531,441:1!
- Hobbed gears for smooth, precision running
- Anti-backlash units . . . virtually zero backlash in either direction
- Completely sealed
- Permanently lubricated
- Mount in any position

Write for Bulletin 100

屏期

miniature combination fixed and Variable speed changers

For applications requiring variable speed at a reduced nominal output speed, combinations of Metron Variable Speed Drives and Fixed Ratio Speed Changers are available in compact, integral units. Ask for Technical Data, or write giving your requirements for prompt engineering recommendations and prices.

METRON INSTRUMENT COMPANY 440 Lincoln Street Denver 9, Colorado

Method of handling baked-out parts with a lint-free cloth. Glass contaner is used for storage before baking, and container at right is used after bake ou
gent and warm water, followed by a series of rinses in tap water, distilled water, alcohol, benzine and ether, and drying under a heat lamp. After the dunking in Dreft, the parts are handled with clean tweezers to prevent further contamination.

After this cleaning, the parts are placed in the work basket inside the bell jar. Small parts may be placed around larger parts to utilize the full capacity of the basket. Pressure in the bakeout oven is approximately $2 \times 10^{-8} \mathrm{~mm} \mathrm{Hg}$, and temperature of baking is about 400 C . A typical baking cycle requires three hours, with the exact time depending upon the load in the oven. The gasses driven off from the surfaces and the microscopic pores and fissures of the parts include nitrogen, oxygen, hydrogen, carbon dioxide and carbon monoxide.

Without the bakeout procedure, parts installed in highly sensitive mass spectrometers and mass spec-trometer-type leak detectors would require a lengthy period of bakeout after assembly in the machine.

When parts are to be stored between cleaning and bakeout, they are placed in stoppered glass containers. For storage and shipment after bakeout, the parts are placed in special metal containers that can be evacuated and filled with helium to prevent corrosion or contamination. Baked-out parts are handled only through special lint-free cloths.

AT NORTH AMERICAN AVIATION

An airplane's rate of descent used to be painstakingly computed from photographs which took several days to evaluate. Then North American's electro-mechanical engineers developed Trodi (above) for the Navy for carrier suitability tests.

Trodi is an electro-optical Touchdown Rate of Descent Indicator that watches the airplane descend, measures its rate, and electronically readies its information so it's available the minute the pilot lands. Trodis electronic brain saves untold time, men and money for the Navy.

Trodi is just one ingenious example of the challenging electronic and electro-mechanical work being pioneered at North American by some of the
nation's best scientific minds, using the most advanced facilities

If you like theory, you may find an exciting and secure future at North American in the field of operations analysis, advanced dynamics, kinematics, noise, error or information theory, systems engineering, statistical quality control or servo analysis.

If research and development are your specialty, you'll find attractive opportunities in radar and communications systems, analogue and digital computers, automatic guidance systems or optics.

Write today, including a summary of your education and experience, to:

NORTH AMERICAN AVIATION. INC.

Engineering Personnel, Missile and Control Equipment Department

 12214 Lakewood Boulevard, Dept. 93-E, Downey, California

NORTH AMERICAN HAS BUILT MORE AIRPLANES THAN ANY OTHER COMPANY IN THE WORLD

NEW PRODUCTS

Edited by WILLIAM P. O'BRIEN

Recently Developed Test Instruments, New Materials and Components and Several of the Latest Tubes Are Included . . . Forty-Six Trade Bulletins Reviewed Under Literature (p 328)

Transistor Sockets

Mycalex Tube Socket Corp., 60 Clifton Blvd., Clifton, N. J. The body of these transistor sockets is precision-molded of Mycalex 410, glass-bonded mica insulation for lasting dimensional stability, low dielectric loss, immunity to high temperature and humidity exposure combined with maximum mechanical strength. The loss factor is only 0.014 at 1 mc and dielectric strength is 400 v per mil. Contacts can be supplied in brass or beryllium copper. The sockets are readily solderable. Socket bodies will not warp or crack when subjected to high soldering temperatures. They function in ambient temperatures to 700 F .

F-M Monitor

Browning Laboratories, Inc., 750 Main St., Winchester, Mass., announces the MD-33 frequencymodulation monitor designed to
check the modulation swing of f-m transmitters operating in the police, fire and special service bands from 25 to 174 mc . This continuous coverage is accomplished in two bands without the use of plug-in units of any kind. Modulation swing is indicated directly on a 4 -in. panel meter with a $20-\mathrm{kc}$ full scale linear calibration. A dual range flasher circuit permits checking overmodulation by the shortest of voice peaks at either of two preset amounts of swing. The unit is 9 in . high $\times 20$ 3 in. wide $\times 12 \mathrm{in}$. deep. Weight is 35 lb .

Miniature Power Supply

Airpax Products Co., Middle River, Baltimore 20, Md., has released model A-1220, the first of a series of miniaturized d-c to d-c power supplies using a 450 -cycle vibrator. Total weight is only 1 lb .14 oz . Vibrator and power supply are hermetically sealed. The vibrator attaches with snap fasteners. Output is 150 v at 100 ma ; peak ripple, 1.0 percent. Three standard units of 6,12 and 26.5 v d-c input are offered. On special order output power up to 20 w , output voltages up to 300 v , and input voltage between 4 and $110 \mathrm{v} \mathrm{d}-\mathrm{c}$ can be furnished. The unit is designed to meet severe military standards of

OTHER DEPARTMENTS

featured in this issue:
Page
Electrons At Work 154
Production Techniques . . . 222
Plants and People....... 354
New Books 382
Brcktalk 386
vibration, shock, temperature range, humidity and altitude.

Tiny Transmitter
Motorola, Inc., 4545 W. Augusta Blvd., Chicago 51, Ill., has announced mass production of a hand sized Handie Micro-Talkie transmitter designed to operate in the 152 to 174 -me frequency bands. The compact unit, weighing only 1 lb 13 oz , has a power output of 20 to 40 mw and a tested optimum range up to 5 miles. Overall case dimensions are only $7 \frac{3}{8}$ in. $\times 2 \frac{1}{3} \mathrm{in}$. x 1^{3} in. A rigid, chrome plated loop antenna doubles as the carrying handle. The unit uses 8 subminiature tube stages with printed associated circuitry. With the transmitter operated on the practical duty cycle of 15 seconds out of each 5 minutes, A battery life is one work week with the B batteries lasting $2 \frac{1}{2}$ weeks. The unit is especially useful for patrolmen on foot, firemen at the scene of a fire, or for on-the-spot news reporting. Indus-

Make betiter connections with Sylvania's improved terminal strips

radio tubes: television picture tubes; electronic prooucts; electronic test equipment; fluorescent tubes, fixtures, sign tubing, wiring devices; light bulbs; photolamps; television seis
trial uses include railroad car checking, inventory control and materials handling.

Multiconductor Cable

Koiled Kords, Inc., 1565 Dixwell Ave., New Haven, Conn., has developed a 19 -conductor retractile cord for use with movable relay rack mountings for electronic equipment. The retractile feature of the cord permits the equipment to remain operative when the mounting shelves are pulled out and then rotated for inspection or servicing. This shielded cable answers the need for a cord that would extend to the desired length but would not become fouled in the mechanism when relaxed. Conductors are No. 23 AWG tinned Hi-Tenso bronze insulated with synthetic rubber. A wound shield of tinsel is applied over the core of seven conductors. The remaining 12 conductors are cabled about this core and covered with another tinsel shield and an overall rubber jacket to an outside diameter of 0.540 in . The cord is then vulcanized in the coiled shape and terminated as required.

Insulated Terminals

Sealectro Corp., 186 Union Ave., New Rochelle, N. Y., has intro-
duced a line of DuPont Teflon insulated standoff and feed-through terminals. These Press-Fit terminals are one complete unit ready for assembly, eliminating the use of any and all hardware for installation. A simple press fit with an inexpensive hand tool or drill press, into a chassis drilled with a predetermined diameter hole fastens the terminal securely. Teflon's excellent electrical properties are unaffected by thermal change. Its dielectric constant is lower than almost any other engineering material and in combination with the extremely low power factor results in a loss factor lower than for any other material. The losses are also constant into the microwave region. It is unaffected by sparking over its surface and sheds moisture. Additionally, it will not support the growth of fungus and is therefore useful in equipment to be used in the tropics.

Power Pentode

General Electric Co., Schenectady, N. Y., has announced type 6CL6 power pentode for use in the video output stage of television receivers. Using this tube it is possible to obtain a voltage gain of from 40 to 45 in wide band video circuits. The tube features high transconductance, low capacitances and high output current capability. It provides a high plate current at low plate voltages and can supply enough peak-to-peak output voltage to drive large picture tubes with high efficiency and low amplitude distortion. It is capable of supplying 132 v peak-to-peak output across a load resistor of $3,900 \mathrm{ohms}$. In addition to its use in video output service, the new 9 -pin miniature
may also be used as a wide-band amplifier in industrial and laboratory equipment.

Wave Analyzer

Sierra Electronic Corp., 810 Brit\tan Ave., San Carlos, Calif. Analysis of the frequencies and amplitudes of signal components in a complex waveform is accomplished in a simple and direct way with the model 121 wave analyzer. A novel two attenuator design permits a wide range of measuring amplitudes without the introduction of instrument distortion. Signal components are read directly on a 4-in. indicating instrument calibrated in db. Voltage calibration is accomplished with an internal $100-\mathrm{kc}$ injection oscillator, and a listening jack is provided for monitoring the signal being measured. The instrument has an input level range from +42 dbm to -70 dbm at a 600 -ohm impedance level. Input impedance is 10,000 ohms in the pass band. Selectivity is such that 100 cps off resonance the response is 3 db down; 200 cps off resonance, 10 db down; $500 \mathrm{cps}, 30 \mathrm{db}$; and 1,000 $\mathrm{cps}, 45 \mathrm{db}$. Measuring accuracy is $\pm 2 \mathrm{db}$ and spurious components are at least 50 db below signal fundamental.

High Speed Trigger

The Walkirt Co., 145 W. Hazel St., Inglewood, Calif., announces the type M1563 high speed trigger. It is a Schmitt type circuit designed to meet the wide need for a fast pulse suitable for driving many types of counting or scaling equipment from a sine wave input. The unit can also be driven from a square wave input, in which case it acts as an amplifier and will pro-

Successfully used in Armed Forces' most critical applications

Scores of results have established the superiority and outstanding quality of RPC's new TYPE C PRECISION WIRE WOUND RESISTORS. These high quality units are designed to meet the stringent requirements of JAN-R-93.
Completely insulated precision resistors which may be soldered directly into circuits. Their small size and light weight make them self supporting. Ideal for aircraft applications where reduction in size and weight are vital.
Completely enclosed in rugged plastic of high insulation value. Windings are im-
pregnated in special compound and protected against dust, salt spray, humidity and mechanical damage.
Winding form is of low loss steatite having extremely high insulating quality with low coefficient of expansion. Impervious to moisture.
Type C resistors are wound with specially tested low temperature coefficient alloys. RPC's Type C resistors are being used by many of America's outstanding manufacturers. They are available in any amount with prompt delivery. Write for complete information.

RESISTANCE PRODUCTS CO.

HARRISBURG, PENNA.

SPECIALIZING IN
THE MANUFACTURE OF QUALITY RESISTORS

IN ANY AMOUNT

squeEzing the most OUT OF Sensitive relays

New procedure developed by Prime Contractors accomplishes up-grading of general specifications - of real henefit to all concerned.

1. Select a collection of irrelerval MIL specs. (preferably obsolete).
2. Using $K=1.63 Q^{N}$, raise all known numerical considerations.
3. From the Sigma Catalog, select the characterisacs of at least three relays. Divide all numbers by 1.3.6r2.
4. Apply these characteristics to the smallest and cheapest relay and prepare the spec. accordingly.
5. Type in Ipsilanti on $36^{\prime \prime} \times 48^{\prime \prime}$ drawing.
6. Your Purchasing Department will do the rest.
7. Any resemblance between the product and the drawing is purely coincidental.
8. There is a possibility that the relay will do the joh.
9. Seriously, shouting at our application engineers gets you nowhere. They are paid to be helpfil and courteous. but they are not yes-men.

A realistic set of requirements can usually be met even by Simma Relays, and the aforesaid engineers can often suggest circuit modifications to better suit existing standards and components.

SIGMA INSTRUMENTS, INC.
6\% PEARL ST., So. braintree, boston 35, Mass.
duce pulses of either positive or negative polarity. The $150-\mathrm{v}$ peak-to-peak output has a rise of 0.2 usec and a fall time of $0.45 \mu \mathrm{sec}$, measured to 90 -percent amplitude. Nominal plate to ground voltage on the type 5670 tube employed is 100 v when conducting, and 250 v when nonconducting. The type 5570 tube is used meeting new military reliable tube requirements. The unit is packaged in a resin encapsulated plug-in form with a versatile 11-prong octal-style base.

Digital Preset Counter

Digital Instrument Co., Inc.. P. O. Box 1246, Coral Gables; Florida, has introduced two highspeed presetting types of counters In the model 333 any number may be set from 0 to 999 and in mode: 334 , any number from 0 to 9,999 . Recycling can be obtained at speeds as high as 20,000 per second and the counter will operate as a standard counter at speeds up to 100,000 counts per second. Relay contacts are available for control functions. Direct-coupled output is available for electronic control and gating.

Mobile Wireless Receiver
Radio Apparatus Corp., Indianapolis, Ind., now has available the

How many of these electrical insulation problems do you have?

1. Looking for an efficient coil wrapping for small spaces? EMPIRE ${ }^{(3)}$ varnished bias-cut nylon tape is highly flexible, strong and efficient . . . makes a thin insulation of unusually high dielectric strength with good resistance to oil and water.

2. Looking for a better material for wiring diagrams, controls, instruments, dials and nameplates? DECORATIVE LAMICOID® resists wear, aging, weathering, oils, corrosive vapors, moisture and temperature extremes. Won't warp, check or chip. Good electrical properties. Wipes clean with a damp cloth.

3. Need accurately punched mica stampings for filament, grid and plate supports? MICO produces mica stampings to extremely fine tolerances. Whenever you need precision-fabricated mica parts of the highest quality, call on MICO.

4. Need a class H segment plate that's easy to work with? ISOMICA* Segment Plate - made of built-up continuous mica sheet - shows no tendency to split or flake. Small segments of heavy thickness may be punched, and larger segments can be accurately sawed, milled, punched, etc.

Whatever electrical insulation material you need - standard or special class A to class $H-M I C O$ makes it best. We manufacture it. cut it to size, or fabricate it to your specification. Send us your blueprints or problems today.
*Trade-mark

Schenectady 1, New York
Offices in Principal Cities
LAMICOID ${ }^{\text {(}}$ (Laminated Plastic) - MICANITE (Built-up Mica) - EmpIRE@ (Varnished Fabrics and Paper) - FABRICATED MICA - ISOMICA**

Use Fairchild Precision Potentiometers

Experience with Fairchild potentiometers in humdreds of applications shows that these units are unusually precise. Accuracies of $\pm 1 \%$ in nonlinear types and as high as $\pm 0.05 \%$ in linear types can be guaranteed. Service life as high as $10,000,000$ cycles, mander certain conditions, also can be provided. High resolution, low torque, and low noise level are other performance features worth noting.

Fairchild Precision Potentiometers perform mathematical computations in electrical computing systems for machine-tool controls, process controls, telemetering, guided missiles, flight control, fire control, and amalog computers of all types. They are available in non-linear and linear types and in ganged combinations of either or both windings to meet your requirements.

Use the coupon below to get full details.

THIS COUPON MAY HELP SOLVE YOUR POTENTIOMETER PROBLEMS!

Monitoradio Pager-model AmC-1 -which is a radio paging receiver for use in motor cars as a supplement to the pocket receiver utilized by most paging systems. Thoroughly field tested in conjunction with one of the paging systems now in operation, this unit is the only demonstrated receiver available for this type of operation. The receiver is expected to be used in many fields within a short time.

Medium-Mu Twin Triode

Radio Corp. of America, Harrison, N. J. The 6211 is a new mediummu twin triode of the 9 -pin miniature type designed especially for frequency-divider circuits in electronic computers and other on-off control applications involving long periods of operation under cutoff conditions. It has separate terminals for each cathode to facilitate flexibility of circuit arrangement, and a midtapped heater to permit operation from either a $6.3-\mathrm{v}$ or $12.6-\mathrm{v}$ supply. The heater is made of pure tungsten to give long life under conditions of frequent on-off switching.

Transformer Cans

Triad Transformer Mfg. Co., 4055 Redwood Ave., Venice, Calif., announces the introduction of a line of deep drawn transformer cans. These cans are seamless and are drawn from cold rolled steel to meet the dimensional specifications of MIL-T-27. The lids are internal and require no stops since they fit the can snugly. Cans are available only

SAVE POUIER

 ...with RCA thoriated-tungsten tilament tubes

 ...with RCA thoriated-tungsten tilament tubes}

Designed specifically for industrial, communication, and broadcast services, these high-power tubes can save hundreds of dollars a year in filament power-can cut initial equipment power costs substantially.

For instance - RCA-5770 takes $150-\mathrm{kw}$ input up to 20 Mc , yet this triode requires only 3.1 kw of filament power-saves 60% over the comparable pure-tungsten-filament type - RCA-5671 takes $100-\mathrm{kw}$ input up to 10 Mc . This air-cooled triode requires only 3.1 kw of filament power-saves 60% over the comparable pure-tungsten-filament type ${ }^{\text {RCA-5771 }}$ takes $60-\mathrm{kw}$ up to 25 Me . This triode requires only 1275 watts of filament power-saves 70% over the pure-tungsten-filament type - RCA- 5762 takes $5.5-\mathrm{kw}$ inpet up to 110 Mc . This VHF triode takes only 365 watis of filament power!
Consider these important features for the equipment you design. For additional technical information write RCA, Commercial Engineering, Section 42BR, Harrison, New Jersey. For application assistance, simply call your nearest RCA Field Office:
(EAST) Humboldt 5-3900, 415 S. 5th St., Harrison, N. J.
(MIDWEST) Whitehall 4-2900, 589 E. Illinois St., Chicago, Ill. (WEST) Madison 9-3671, 420 S. San Pedro St., Los Angeles, Cal.

IN PRODUCT IMPROVEMENT

for military contracts. Specifications and prices are available from the company

Direct-Drive Yokes

Halldorson Transformer Co., 4500 N. Ravenswood Ave., Chicago 40 , Ill., is currently supplying their new $6,000-\mathrm{y}$ test deflection yokes, DR603 and DF604, extra-heavily insulated to stand up under the rigors of direct-drive tv service. Both deflection yokes have $30-\mathrm{mh}$ horizontal inductance, but to cover all direct-drive applications, the vertical inductance of DF603 is 3.5 mh , while DF604 is 50 mh . Both yokes are supplied with $20-\mathrm{in}$. colorcoded leads and networks. Bulletin 109 fully describes the deflection yokes discussed.

Tiny Capacitor
Sprague Electric Co., 35 Marshall St., North Adams, Mass., has developed a very tiny molded paper capacitor for continuous operation at temperatures up to 125 C. Designated type 85 P , these capacitors are impregnated with Prokar, an exclusive high-temperature organic material which is polymerized to a

MICROPOT
BORG MICROPOT TEN-TURN POTENTIOMETER: Built to fit the specifications of control system engineers and designers . . constructed with Micro accuracy for precise voltage adjustments ... featuring an assembly scientifically designed, machined, assembled and automatically machine tested for linearity of $\pm 0.1 \%$ and 0.05%, zerobased. MICROPOTS ARE AVAILABLE IN 1.15 to 3 OHM and 30 to $250,000 \mathrm{OHM}$ RANGES FOR IMMEDIATE SHIPMENT.

BORG MICRODIAL: Two concentrically mounted dials: one for counting increments of each turn and the other for counfing turns delivered completely assembled with dials synchronized. Outstanding features include smooth, uniform action... no backlash between incremental dial and potentiometer contact . . less wear, only one moving part aside from the two dials... contact position indicated to an indexed accuracy of 1 part in 1,000 .
MICROPOT-MICRODIAL CATALOG
SENT PROMPTLY ON REQUEST

A precision ten-lurn indicating dial assembly. Has screw locking device on operating knob.

Same as 746.A bul has knurled locking screw mounted externally to operating knob.

BORG ECUIPMENT DIVISION
THE GEORGE W.BORG CORPORATION danesville • Wisconsin
solid resin. The resulting dielectric is completely solid and permits considerable size reduction with extreme stability under all operating conditions. The impregnated sections are then molded in a mineralfilled, high temperature plastic. Originally developed for military use, these miniatures are now available for precision electroni equipment requiring high-quality components such as electronic ccmputers and geophysical amplifiers. Type 85 P units are available in 2 molded sizes- 0.175 in . diameter x \& in. long and 0.200 in . diameter x $\$$ in. long. Standard RTMA 20-percent and 10 -percent capacitance decade values are available as well as D-percent values.

Microwave Gain Set

Kay Elfctric Co., 14 Maple Ave., Pine Brook, N. J. The microwave gain set illustrated is a complete equipment for making precision measurements of gain or loss in microwave components or systems, and it can also be adapted for use down to the vhf range. Unusually high precision is attainable, since the gain set, which is readable to 0.025 db , is capable of measurement accuracy within 0.1 db of the attenuator calibration. Measurements can be made where available power is as low as -80 dbm . In order to measure the gain, loss, standingwave ratio, or other properties of a microwave system or component, energy of the desired frequency is sent through the component under test and then received by a microwate receiver. The microwave gain

$K^{\text {lixon }}$ Protective devices and controls, manufactured by Spencer Thermostat Division of Metals \& Controls Corporation, are used by foremost makers of refrigerating and other electrical equipment to assure safe, continuous operation under all service conditions.

Since reliability of KLIXON devices is essential, only the best materials are used. Natvar 400 extruded plastic tubing has been selected as the most suitable lead insulation for the starting relay shown above because of its excellent physical and electrical properties and its dependable uniformity.
Natvar 400 and other Natvar flexible insulating materials are available either from your wholesalers stock or direct from our own.

Natvar Products

- Varnished cambric-straight cut and bias
- Varnished cable tape
- Varnished canvas
- Varnished duck
- Varnished silk
- Varnished special rayon
- Varnished Fiberglas cloth
- Silicone coated fiberglas
- Varnished papers
- Slot insulation
- Varnished fubing and sleeving
- Varnished identification markers
- Lacquered tubing and sleeving
- Extruded plastic fubing and tape
- Extruded plastic identification markers

Ask for Catalog No. 22

Working closely with Underwriters' Laboratories, Inc. and with leading fuse manufacturers, Markem has developed a method which makes possible for the first time the printing of label information directly on cartridge enclosed fuses at production rates. Markem's direct ink imprints cannot "fall off" and are unaffected by moisture or ordinary chemical atmospheres. Paper label inventory and wastage problems are eliminated. Print is larger and color coding and identification are simplified. Fuse manufacturers anticipate better labeling at higher production rates and with lower costs. The Markem Method - Markem Machine, Markem type and ink and the special recording die roll for use when UL Manifest is required-as well as the imprint itself meet with UL approval.

CAN MARKEM Printing labels directly on cartridge enclosed fuses is but an example of how Markem solves industry's marking problems. Markem has been providing industry with production techniques and equipHELP YOU? ment to identify, decorate or designate its products, parts and packages since 1911. Markem also pailable in your area to assure continued satisfaction with Markem are available in your area
methods and equipment.
When $y o u$ have a marking problem, tell us about it and send a sample of the item to be marked. Perhaps a complete Markem method has already been developed to solve your problem. If not, Markem will work out a practical solution.

Markem Machine Company, Keene 5, N. H., U.S.A.

set is available with or without r-f heads, and it may be used in conjunction with a klystron signal source and a local oscillator for any frequency range.

L-F Time Calibrator

OWEN Laboratories, 9130 Orion Ave., San Fernando, Calif. The type 190 low-frequency time calibrator is a synchronous-motor driven device furnishing pulses at intervals of $0.01,0.1$, or 1.0 second. It is intended for use with oscilloscopes and various types of recording equipment in electrical, mechanical biological investigations. Pulse amplitude is about 1.5 v . Size is $5 \frac{1}{4} \times 3 \frac{1}{1} \times 3 \mathrm{in}$.

Gas-Switching Tube

General Electric Co., 1 River Road, Schenectady 5, N. Y. Type GL-1B24-A gas switching tube for airborne radar is an integral-cavity tunable type designed for use in simple duplexers in pulsed microwave circuits which do not require that the short circuit in the tube have a fixed electrical position. The tube is designed for use in an operation band of from 8,490 to 9,600

Simple, maintenance-free TIME DELAYS with GLOBAR Type F Resistors

Now time delays in many relay and solenoid circuits ate being obtained inexpensively by simply connecting a globar Type F Ceramic Resistor in series with the actuating coil. Delays range from a few seconds up to two minutes, depending upon the values and sizes of the resistors used.

When power is applied in the circuit, the current through the resistor causes it to heat. As it heats, its resistance decreases and the current increases until the tripping value of coil current is reached.

It's simple, inexpensive, and mainte-
rance-free-and requires less space than cash-pots or other more complicated dclay devices. It is useful in single delay appli-cations-as in the starting of critical clectron tubes; or in multiple delayapplications where fixed timing of a series of events is necessary-as in the starting of oil burners.

If you have a time delay problem-or any circuit problem where long-life globar Ceramic Resistors might provide the answer-let our engineers help you. Just send complete circuit information to Depr. E 87-31.
 by CARBORUNDUM
"Carborundum" and "Globar" are registered tradematks which indicate manufacture by the Carborundum Company, Niagara Falls, New York

mc. It operates to decouple the receiver effectively from a common transmitting and receiving antenna during a transmission period. The GL-1B24-A has a recovery time of $4 \mu \mathrm{sec}$ at 10 kw peak, 3 db down. It has a leakage power of 30 mw . Transmitter peak power is 100 kw .

Cable Tester

Lloyd's Enterprises, Box 313, Altadena, Calif., has available a cable tester for testing multiconductor cables for opens, shorts between any other conductor or shorts te ground. The model LK24-7 tests the TV24 conductor camera cable (three conductors are coax) and the RCA field sync generator 7 conductor cables. Any combination with standard fittings can be supplied upon request. The buzzer is normally used to indicate continuity or shorts, but binding posts are supplied so that an external ohmeter can be used if desired.

Repeat Cycle Timer

G. C. Wilson \& Co., 2 North Passaic Ave., Chatham, N. J. Model No. 1 electronic repeat cycle timer is suitable for regulation of automatic machinery, sampling, valve pacing and heat sealing as well as

The OPAD-gREEN General Purpose Power Supplies are designed to furnish an adjusiable source of unfiltered direct current from single phase 50 or 60 rycle A.C. power lines. A mique feature is their stepless control of the D.C. output voltage which permits them to serve as power sources for a wide variety of electrical equipment and electro-chemical processes. For additional information write for Bulletin No. 147

D.C. OUTPUT		catalog no.	
VOLTS	AMPERES	$\begin{array}{r} 115 \text { V.A.C } \\ 60 \sim 10 \end{array}$	$\begin{aligned} & 230 \text { V.A.C. } \\ & 60 \sim 10 \end{aligned}$
0.6	25.0	K38	-
	50.0	K47	K48
	100.0	K56	K57
0-12	12.5	K65	-
	25.0	K74	K75
	50.0	K83	K84
O.28	10.0	K92	-
	20.0	K101	K102
	40.0	K110	K111

71-2 WARREN STREET, NEW YORK 7, N. Y.

OVER 200 BASIC TYPES TO CHOOSE FROM

Do audio attenuator problems cost you money? Chances are Shallcross has a model to match your specifications exactly-and at moderate cost.

Shallcross attenuators are made in over 200 basic types. Each type can be supplied with a choice of attenuation characteristics . . . with a positive detent mechanism . . and in numerous input and output impedances. Where calibration must be extermely accurate, Shallcross precision wire-wound resistors are used. For less critical applications, models with high grade composition resistors can be supplied-often at lower cost.

A complete description of all Shallcross attenuators - mountings, characteristics, and circuits is yours for the asking in Bulletin L-4A. SHALLCROSS MFG. CO., 522 Pusey Avenue, Collingdale, Penna.

QUICK DELIVERIES! Small quantities of
QUICK DEL Shalleross composidion restishout popular 20 sers and wire-wund wate. potenuonete innediately aranabie.
laboratory testing such as heat cycling and refluxing. The timer uses a single electron tube to charge a resistance-capacitance network so that on cycles are adjustable from 0.2 to 200 seconds and off cycles range from 0.1 second to 1 minute. The unit is supplied in a $6 \times 6 \times 6$ in. cabinet for operation on 105 to $120-\mathrm{v}, 60$-cycle a-c. Output is supplied to a dpdt relay for noninductive loads up to 10 amperes at 115 v or 2 amperes at 460 v . Relay contacts are wired to a plug or a terminal strip to facilitate installation.

Frequency Standard

American Time Products, Inc., 580 Fifth Ave., New York 36, N. Y. Type 2007 hermetically sealed frequency standard contains a shockmounted miniature high-Q tuning fork, a subminiature double triode tube and all circuitry. Output frequencies available are 400 or 500 cycles with an accuracy of ± 1 part in 50,000 from 15 to 35 deg C and ± 1 part in 5,000 from -65 to +85 deg C. It is sealed in an octal base container, $1 \frac{1}{2} \mathrm{in}$. in diameter and $4 \frac{1}{2}$ in. high. It weighs less than 10 oz . Power required is 75 to 200 v d-c at 1 to 5 ma , and 6.3 v at 300 ma . It is designed to withstand MIL environment.

Transformers

A.J.F. Industries, lnc., 852 Monroe St., Brooklyn 21, N. Y., is now

February, 1953 - ELECTRONICS

If the samples you need are not here - send for them.

SPECIFICATIONS

POWER FACTOR; LESS THAN . 1% AT I MEGACYCLE WORKING VOLTAGE: 1000 VDC TEST VOLTAGE: 2000 VDC DIELECTRIC CONSTANT: P. 10014 K N. 75088 K N. 2200 265K CODING: CAPACITY, TOLERANCE AND TC STAMFED ON DISC

INSULATION: DUREZ PHENOLIC-VACUUM WAXED

LEAKAGE RESISTANCE: INITIAL 7500 MEG OHMS AFTER HUMIDITY 1000 MEG OHMS LEADS: \# 22 TINNED COPPER (. 026 DIA.)
LEAD LENGTH: $1 / 4^{\prime \prime}$ BODY 1 ", $5 / 1 s^{\prime \prime}$ BOOY $11 / 4^{\prime \prime}, 1 / 2^{\prime \prime}$ AND LARGER BODY $11 / 2^{\prime \prime}$

TOLERANCES: $\pm 5 \%, \pm 10 \%, \pm 20 \%$

RMC DISCAPS are Designed to Replace Tubular Ceramic and Mica Condensers at LOWER COST

SEND FOR SAMPLES AND TECHNICAL DATA

RADIO MATERIALS CORPORATION
 GENERAL OFFICE: 3325 N. California Ave., Chicago 18, III.

FACTORIES AT CHICAGO, ILL. AND ATTICA, IND.
DISTRIBUTORS: Contact Jobber Sales Co., 146 Broadway St., Paterson 1, N. J.

NEW PRODUCTS

producing hermetically sealed transformers per MIL-T-27 specifications in quantity. Sizes range from the sub-subminiature (less than (oz) to 1 kva for the audio, power, plate and filament for temperature rise of 40 C at 65 C ambient and are made grade 1 with can and also encapsulated without the can. They are manufacturing high temperature 200 C transformers which are made hermetically sealed; and pulse transformers ranging in size from trigger and blocking oscillator units of 300 v peak secondary to pulse units of 80 kw peak power and 10 kv peak volts.

Wire Twister
The Eraser Co., Inc., Rush Wire Stripper Div., 114 S. State St., Syracuse 2, N. Y. Designed for uniform, low-cost wire twisting, this new wire twister consists of a spiral rod with hooks on both ends and a follower shaped to fit the thumb and forefinger. With the followers at one end, the wire is attached to the hook on that end and the follower drawn the full length of the spiral rod. Then the unit is turned end for end and the operation repeated. The No. G-3 is designed for 6 turns; the No. G-4, for 12 turns.

Servo Tester

Industrial Control Co., Wyandanch, Long Island, N. Y. The
 ...specially designed for relay closures and similar applications

New GS Series multiple headers are another step forward in standardization by E-I engineers. They offer engineers in electronic and electrical design a selection of economical standard components that solve most, if not all, problems of hermetically sealed terminals for relay closures and similar applications. Over 200 standard headers are now available for this type of service. For complete information on other types, consult the bulletin described below.

80CS/4OW.HS
60GS/ 10 W. HS

$$
50 G 5 / 4 J W \cdot H P
$$

10JGS/4DW-RRPP 4

$$
\text { 80G.S / } 40 W \text { RR.PG }
$$

$$
3000 / 901
$$

RUGGEDLY DESIGNED FOR EXTRA DEPENDABILITY
MANY TYPES AVAILABLE WITH EXHAUST TUBES
WIDE RANGE OF SIZES FOR ALL REQUIREMENTS
STANDARD TYPES FOR MAXIMUM ECONOMY

E-1 . . . your Headquarters for Hermetically-Sealed Multiple Headers. Octal Plug-Ins, Terminals, Color Coded Terminals, End Seals, etc.

MULTIPLE HEADER BULLETIN O50-B!
Includes the corr.plete line o: E-I Standard Multiple Headers which offer an economical solution to practically any problem of design involving hermetically sealed terminals.
\square

101-A servo tester is designed for the rapid field maintenance and production testing of servo systems by technical personnel using no additional instrumentation. The transient response of the loop under test is shown on a 3 -in. c-r screen, and viewed through a mask onto which has been previously drawn the response specified by the manufacturer. The operator adjusts the servo loop to match the two traces; if this is not possible, the loop is declared inoperative and returned to a laboratory area or maintenance depot for repairs. A standard servo test receptacle is installed on the equipment to be checked, and wired into the data system. A single cable connects this plug to the 101-A. The tester can be used with d-c and carrier frequency servos, and operates from the 117 v 60 or 400 cycle line.

By the use of 18 Lenkurt precision-wound wedding-ring toroids, the two bandpass filters shown at right were redesigned into a single hermetically-sealed plug-in unit, as shown at left. Volume was reduced from 179 cu in. to 36 cu in ., a factor of 5 to 1. But, at the same time, performance was actually improved.
Whenever your military or commercial designs call for maximum filter or toroidalcoil reliability under adverse service conditions, and where exacting electrical performance must be maintained, bring your problems to Lenkurt. The Lenkurt engineering group has a rich background of experience from which to offer valuable suggestions in the matter of setting practical specifications to attain the utmost from
 materials, components and techniques.

LENKURT ELECTRIC SALES CO. SAN CARLOS 1 CALIFORNIA
products of
Lenkurt Electric Company world's leading independent manufaçurer of toll-transmission equipment

WHEN you need a quick answer to WHO MAKES IT... Just look it up in the electronics BUYERS' GUIDE

There are...

23,367 ANSWERS

to
1,445 PROBLEMS
covering every...

COMPONENT

 EQUIPMENT and MATERIALused in every phase of electronics

GET IN THE HABIT OF LOOKING IT UP IN the

electronics BUYERS' GUIDE

A McGRAW-HILL PUBLICATION 330 West 42nd Street NEW YORK 36, N. Y.

SHEET METAL FABRICATION

BY
KIRKN.BLUM

Coutract
Manufucturing
Facilities

Whatever your requirements in sheet, plate and alloy fabrication, Kirk \& Blum can produce for you : . . economically and quickly.
Complete facilities to $1 / 2^{\prime \prime}$ capacity for square and rotary shearing, braking, forming, roling, punching, riveting, welding, grinding, drilling and finishing sheets and light plates and structurcils.
For complete details, write for literature on fabrication facilities and experience or send prints to:
THE KIRK AND BLUM MANUFACTURING COMPANY 3211 FORRERSTREET•CINCINNATI 9, OHIO

talk about a beating!

 multiplex radio telephony systems must take it.for Die-less Duplicating
 321 8th Ave., Lake Ciry, Minnesoto
signed for service in tv receivers. The tube features miniature T-6 $\frac{1}{2}$ construction, and will furnish large output voltages across low values of load resistance and supply voltage. The separate suppressor grid connection allows the 12 BY 7 to be used for more diversified applications. The heater may be operated from either 6.3 or 12.6 v .

Linear Motion Potentiometer

Bourns Laboratories, 6135 Magnolia Ave., Riverside, Calif. The new linear motion potentiometer with precision wire-wound resistance elements was designed for airborne and industrial electronic systems. Linearity, tested by the continuous calibration method is ± 0.5 percent or better. A resolution of 0.001 in . is attainable with standard shaft travels of 1 婂 (model illustrated), 21, 4 and 6 in . The potentiometer will withstand sustained acceleration of 100 g 's and vibration of more than 1,000 cps. Standard resistances range from 1,000 to $50,000 \mathrm{ohms}$. An output of at least 26 v is attainable from the unit. Size is $\frac{5_{8}}{} \mathrm{in}$. $x \frac{1}{2} \mathrm{in}$. $\mathrm{x} 2 \frac{1}{2} \mathrm{in}$. Weight is $\mathbf{1} \frac{1}{\mathrm{l}} \mathrm{oz}$.

Miniature Transformer

Fortiphone Lid., 247 Regent St., London, W.1, England. Type T. 4 miniature transformer has been

TWO SPEEDS • SINGLE CONTROL

FREE OF BACKLASH

Accuracy of scale reading 100% Coarse searching speed plus fine setting control.
Single control knob displaced axially to select the speed ratio.
Spring-loaded gears with automatic take-up of any wear or play between primary and secondary drives.
Pointers geared directly to centre spindle.
Security in operation: friction clutch obviates overdriving.

TYPE No.	NUMBER OF DIAL MARKINGS	EFFECTIVE SCALE LENGTH	SPEED RATIOS	
			COARSE	FINE
52	1.000	3.3 feer	1:8	1:120
63	1.000	3.3 feer	1:8	1:120
57	2.000	6.6 feer	1:15	1:200
56	2.000	6.6 leer	1:15	1:200
53	2.000	6.6 lece	1:15	1:200

We are specially organized to handle direct enquiries and orders from U.S.A.
Billed in dollars. Settlement by your check.
CABLE OR AIRMAIL TO-DAY
TRANSRADIO LTD
C.ONTRACTORS TO H.M. GOVERNMENT 138 A CROMWELL ROAD, LONDON, S.W.7., ENGLAND

CABLES - TRANSRAD, LONDON

THE S.S.WHITE "ADR:RASDVY"UNT

Ideal for high precision cutting, surface film removal,etching and light deburring

Aufomatic setup on a lathe far cutting spiral bands on a deposited carbon resistar.

Cutting a piece of hard, brittle metal manually by means of the "Airbrasive"

This remarkably versatile machine can be used for a wide variety of high precision operations from cutting hard, brittle materials to producing fine matte surface finishes.

Using a high speed jet of gas-propelled abrasive particles, it can produce cuts as fine as $.018^{\prime \prime}$ diameter. Its basic advantages are that it cuts cool and without shock or vibration - its accuracy is unaffected by surface irregularities of the work-and it can be accurately regulated for depth and type of cut.

Many manufacturers are now using the Unit to remove surface coatings on depos. ited carbon resistors and on printed circuits - for light deburring on inside surfaces of tubular parts - drilling fine holes through glass - cutting germanium.

We will be glad to make tests to determine the suitability of the "Airbrasive" Unit to your production requirements. Send us a sample of the part or material as well as details of the job you have in mind. There's no obligation.

WRITE FOR BULLETIN 5212

It bas full facts and data on the Airbrasite Unit. It tells you bow the "Airbrasive" Unit uorks and provides information on where, when and bow it can be used.

THECOUWORITEINDUSTRIAL DIVISION DENTAL MEG. Co.

Dept. E, 10 East 40 th St. NEW YORK 16, N. Y.

Western District Office - Times Building, Long Beach, California
designed for use as an output transformer in hearing aids and similar miniature equipment. The windings of the transformer are brought out to terminals molded into the robust thermosetting plastic material of the bobbin. A laminated core of high permeability magnetic alloy is used. All coils are tested to insure that there are no short circuited turns and each completed transformer is checked for efficiency at three frequencies under typical operating conditions. Insulation resistance between primary and secondary at 500 v d-c is better than 100 megohms. Ratio of primary turns to secondary turns is normally 31.6 to 1 although other ratios are available on request.

Isol-tion Amplifier

Seay Instrument Co., 6521 N. Lamar Blvd., Austin 5, Texas, announces a new amplifier designed primarily for use in driving resolvers and computing potentiometers. Virtually universal application has been achieved through a novel circuit design that has been tried and proven in several large scale computors. A very high input resistance has been obtained through elimination of the conventional input summing resistors normally used. Up to 66 db of negative feedback provides almost complete independence from tube, power supply and frequency variations. The networks for controlling the frequency response of the amplifier are molded in a thermosetting material for stability and simplified packaging. Their broad band design permits use of the amplifier at any carrier frequency from 30 cps to 1 kc . Detailed information on performance, circuit
applications and dimensions are published in technical bulletin No. 1.

TV Master Switchboard
Federal Telecommunication Laboratories, Inc., Nutley, N. J., has developed a television master switchboard for increased operating control and flexibility. Completely self-contained, the unit permits channeling six separate inputs to six destinations by means of indirect relay switching. These relays may be located in the operating console or at a remote rack. A larger automatic clearing, and automatic termination and automatic holding features have been incorporated, as well as adjustment of the gap or lap switching interval. The built-in fader employs a twochannel video amplifier through which any two incoming signals may be routed. The output signal may then be reinserted as an additional signal source.

Electronic Micrometer

J. W. Dice Co., 1 Engle St., Englewood, N. J. Model W electronic

Design equipment for more convenient operation

with
 S.S.WHITE FLEXIBLE SHAETS

S.S.White flexible shafts - the low-cost way to provide your equipment with control __meet every requirement for convenience, utility and sensitivity. By using them as couplings between control knobs and variable elements, you can bring control to any point in the circuit, regardless of where the elements are placed.

The advantages you gain are many. You are free to place elements anywhere you want them. You cut costs because you can dispense with complex systems of gears and pulleys, cut down on extra parts, and shorten assembly time. And you can get an effective grouping of control knobs on cabinets and instrument panels.
You can save yourself a lot of design headaches by using S.S. White flexible shafts. And you can save a lot of valuable time by enlisting the cooperation of an S.S.White engineer in working out details. His services are yours without obligation.

GET THIS 256-PAGE FLEXIBLE SHAFT HANDBOOK

 We'll gladly send you this valuable bandbook on flexible shaft selection and application. It's full of helpful ideas. just ask for it on your business letterbead. NEW YORK 16, N. Y.

[^11]
WININTURE TOEE MIHRFBRENG FILTER

- Covers 0.15 to 1000 megacycles
- Handles up to 20 amperes 500 v.d.c. $/ 130$ v.a.c., $0-1700 \mathrm{cps}$

In a space onlv $2^{\prime \prime} \times 2^{\prime \prime} \times 1-3 / 16^{\circ}$, you can get better than 85 db atterua ion throughout rost of the useful raige up to 1000 megacycles by using any one of the $\# 547$ series of T be interference fiters. With their extremely low serie: resistance, these effective filters have negligible voltage drop and only slight texipera-tu-e risé. Herme ically sealed, Series 1547 filers meet mitary specifications for use from 55 C to -105 C .

ATTENUATION YS. FREQUENCF IN A 50-OHM LINE

hegacyc-es

Can ke furnished ir various mounting stzles; write for free data sheet giving detailed information.

TOBE DEUTSCHMANN CORPORATION
 NORWOOB,
 MASSACHUSETTS

micrometer permits direct measurements to 0.00002 in . without any measuring pressure being exerted on the work. The measuring head consists of an extiemely accurate micrometer screw. An electronic circuit, sensitive to five millionths of an inch displacement at the micrometer tip, gives a visual indication at the moment of contact but before pressure is exerted. Model W is especially designed for use in research, development and performance testing of diaphragms and bellows used in flight instruments, temperature, refrigerator and other types of controls where a pressureless means of testing is required. This new model is an addition to the other models now widely used for measuring thin paper, fine wire, foil, machined parts, springs, radio tube grids and cathodes and other items requiring the highest possible accuracy in a direct measurement.

Miniature Oval Resistors
Milwaukee Resistor Co., 700 W. Virginia St., Milwaukee 4., Wisc., is manufacturing oval type wire wound resistors designed to give higher wattage ratings within small space limitations. These small resistors are equipped with an aluminum mounting strip to provide cooler operating temperatures and greater dissipation of heat caused by intimate contact with the ceramic core. Spacers attached to the ends of the aluminum strip permit easy stack mounting and better heat conduction to the mounting surface. The resistors are available in 10 watts ($\frac{3}{8} \times \frac{3}{4}$ in.) and 15 watts ($\frac{3}{3} \times 1$ in.) sizes. They are wound on oval steatite
cores with silver soldered connections and coated with vitreous enamel. Samples are available on request.

Turnover Pickup

Pickering \& Co., Oceanside, N. Y., has developed a new contribution to the technique of recreating recorded music. Model 260 turnover pickup has an output of 30 mv at 10 cm per second; and it mounts easily in any type arm. Detailed literature is available for the writing.

Small Variable Transfornier Pacific Transducer Corp., 11921 W. Pico Blyd., Los Angeles 64, Calif., announces model 226 small variable transformer for portable use in factory and laboratory. With a primary of 117 va ac, 50 watts, the secondary is from 7 to 13 va a-c continuously variable and 4 amperes continuous duty. It can be used for 6 to $12-\mathrm{r}$ lamps, small motors, heater elements and for operation of a-c relays and solenoids. The unit weighs 3 lb . Its dimensions

RESIN-IMPREGNATED RESIN-FILLED

for $125^{\circ} \mathrm{C}$ service - without derating

Higher working temperatures at no increase in size are now possible, with Tobe Durators. Features of these capacitors are:

- Brackets conventional JAN-C types
- $150^{\circ} \mathrm{C}$ operation for 20 hours without derating
- Welded terminals with silicon insulators
- Hermetically sealed metal cases in bathtub, deep-drawn, and lock-squeeze-seam styles
- Capacitance drift below $71 / 2 \%$ from - $65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Power factor below 1.5% from - $65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Suitable as coupling capacitors at low signal voltages

Here's the cable that gives the best in electrostatic and interference shielding - for stationary and portable microphones, speakers, P. A. systems, automobile radios and other electronic devices.
Tinned soft copper conductors are stranded for exceptional flexibility, paper served for easy stripping, individually insulated with low capacitance rubber or polyethylene, in some sizes. Wires are cabled to perfect roundness, cotton served and shielded with tinned copper braid. Outer jacket is either rubber, neoprene or plastic, depending on service requirements.
For expert engineering assistance and prompt service on all your cable applications, write or call Carol today.

Compact ...Dust-Proof TIME DELAY RELAYS

solenoid actuated - pneumatically timed
Introduces time delays into a-c or d-c circuits. Easily adjusted to provide delays ranging from 0.1 second to five or more minutes.

The AGASTAT is small, light, and operates in any position. Dust-proof timing chamber assures long operating life with a minimum of maintenance.
Write for Bulletin.

Dept. AI-24,

A'G'A

Division of Elastic Stop Nut Corporation of America 1027 Newark Avenue, Elizabeth 3, New Jersey

Specialists in SMALL quantities of custom built transformers from milliwatts
to 50 KVA , single or polyphasedesigned and manufactured to best meet your exact requirements.

Each
Electran Transformer is built to the highest standards of quality and precision. There is no "second" grade af Electran.
are $3^{\frac{1}{2}} \mathrm{in} . \times 4 \mathrm{in} . \times 3 \frac{1}{2} \mathrm{in}$. high. Each unit is supplied with a 6 - ft a-c cord.

Miniature Connector Hood

DeJur-Amsco Corp., 45-01 Northern Blvd., Long Island City, N. Y., announces the addition of a new hood to the series 20 miniature hexagonal connector line of Continental precision connectors, terminal boards and stand-off terminals. The type C38-C hood, molded from melamine with aluminum anodized cable clamp is now an added feature to the C5, 7, and 9 contact hexagonal connectors. It provides for strain relief on cable assemblies when disengaging connectors in hard-to-getat places.

Sharp-Cutoff Pentode

Radio Corp. of America, Harrison, N. J. The 5654 is a "premium" version of the miniature sharp-cutoff pentode 6AK5 for use as a broadband r-f or i-f amplifier in mobile and aircraft receivers. Compact structure provides increased mount strength against shock and vibration. A pure-tungsten heater gives long life under conditions of on-off switching. The tube also features high transconductance, low interelectrode capacitances, high input resistance and high signal-to-noise ratio. A recent data sheet gives a complete technical description, in-

T] TrTABCR日m
 ANALOG COMPUTATION with T]I PRECLISIN POTENTIOMEETERS

The type RVP3-S121 solves the following mathematical equation:

$$
\frac{E_{0}}{\operatorname{Ein}}=\left(\frac{\theta}{180}\right)^{2}, \quad-180^{\circ} \leqq \theta \leqq+180^{\circ}
$$

SPECIFICATIONS

- Total resistance: $2500 \pm 5 \%$
- Conformity to function: $\pm 0.25 \%$ Ein
- Function Angle: $\pm 180^{\circ}$
- Mechanical Rotation: 360°

Your analog computations in control processes, computers, servomechanisms, and telemetering may likewise be solved by Technology Instrument Corporation precision potentiometers, with ease, economy and extreme accuracy. Precision non-linear potentiometers may be designed to meet your requirements from either implicit functions or empirical data. Submit your problem today for our analysis and recommendations.

A complete line of standard sizes is available, ranging from $7^{\prime \prime}$ to $1 / 2^{\prime \prime}$ in diameter. Greatly expanded facilities plus mass production techniques will meet your volume needs yet maintain precision tolerances in both linear and non-linear potentiometers. Write for catalog for complete information.

Engineering Representatives

Cleveland, Ohio - Prospect 1.6.671 Chicago, ill. - UPtown 8 -1141 Rochester, N. Y. Monroe 3143 Canaan, Conn. - Canaan 649 Dayton, Ohio-Michigan 8721 Baltimore, Md. - Plaza 7694

Arnprior Ont. Can. - Arnprior 400 New York, N. Y. - MUrray Hill 8-8858 Cambridge, Mass. - ELiot 4-1751 Hollywood, Cal. - Hollyw.od 9-6305 Dallas. Texas - Dixon 9918 Binghamton, N.Y.-Binghanton 3-1511

Iechnology Instrument Corp.

533 Main Street. Acton, Massachusetts, Phone Acton 3-7711

INSTRUMENT BALL BEARING with a $\frac{\text { NON-RUBBING }}{\text { SEAL! }}$

In the new RMB FILMOSEAL bearing, a capillary film of oil forms between cylindrical washer (A) and the tapered 0.D. of inner race (B). This strong film of oil seals the bearing - keeps the lubricant in, keeps dirf out - yet there is no rubbing contact between the sealing elements.
The FILMOSEAL bearing thus has oll the advantages of a sealed bearing, plus the freedom of rotation of an open bearing:

- Permits the use of oil instead of grease as a lubricant.
- Low starting and running forque.
- Torque constant over long periods.
- Adiusts for pressure variations.
- No heating or scoring af high speed.
- Remains sealed in any position.
- Maintenance is greatly reduced.

FILMOSEAL precision bearings are available in 10 bore sizes from 2 mm . (.0787") to $8 \mathrm{~mm} .\left(.3150^{\prime \prime}\right)$ and corresponding 0.D. from $6 \mathrm{~mm} .\left(.2362^{\prime \prime}\right)$ to 22 mm ($\left(.8667^{\prime \prime}\right)$.

[^12]electronic glass working equipment for radio, television tubes, INCANOESCENT LAMPS, GLASS LATHES for TELEVISION TUBES
We make Transformers, Spot and Wire Butt Welders, Wire Cutting Machines and 500 other items, indispensable in your production. Eisler Engineers are canstantly developing New Equipment. If you preter your own designs, Int us build them for you. Write to Charles Eisler who has served you preter your own designs,

Machines for small Radio Tubes of all kinds:

High Temperature Hydrogen Electric Furnaces

Hydrogen atmosphere heating chamber, hydrogen drying tower, water cooled unloading chamber, heat control with air cooled transformer with 11 position tap switch. Automatic temperature control (optional) standard furnaces from $1^{\prime \prime}$ bore $1800^{\circ} \mathrm{C}$. to $8^{\prime \prime}$ bore 1100° C. Molybdenum wound heating units, loading and unloading chambers equipped with safety doors. Supplied with hydrogen flow gauges. Made to order in many sizes.

EISLER ENGINEERING CO., InC. $\begin{gathered}\text { 751 So. } \\ \text { Newark } \\ 3,13 \text { ith } \\ \text { N. } \\ \text { St. } \\ \mathrm{J} .\end{gathered}$

Made of the finest dielectric kraft, fish paper, acetate, or combinations, PRECISION Paper Tubes are die-formed under heat and pressure. Uniformity, strength, and light weight are assured. High manufacturing standards and rigid testing result in maximum insulation, heat dissipation, and moisture resistant characteristics.
Available in any shape, length, I.D. or O.D. Finished to your exact specifications.

> Send today for free sample and request new Arbor List of over 1500 sizes.
cluding characteristics charts and dimensional diagram.

Magnetic Signal

Federal Tllephone and Radio Corp., Clifton, N. J., has developed a new magnetic switchboard signal capable of providing both visual and audible indication. Designed for fast indication, long life and dependable performance under rugged conditions, this sturdy, compact magnetic unit supplants the mechanical operation commen to the old-type drop signal. It is only $\frac{3}{4} \mathrm{in}$. $\mathrm{sq} \times 3 \frac{1}{2}$ in. long, and operates on 8 mad de or 8 mat a-c in series with selenium rectifier equipment or its equivalent. The unit is equipped with a contact for an audible signal when required. The new signal is dust and moisture proof, nonpositional and constructed to withstand severe vibration. It has high sensitivity, a luminous face indicator that is clearly visible day or night, and the signal is mechanically restored.

L-V Power Supply

OWEN Laboratories, 9130 Orion Ave., San Fernando, Calif. The type 200 low-voltage power supply is a highly regulated unit for use with resistance strain-gage elements, and for similar exacting applications. Output is one ampere maxi-

Technology Instrument Corp. Presents a

 Compactly-Built Wide-Band Decade AmplifierFeatured by its wide band response, high input impedance, low output impedance, and compact dimensions, TIC's Type 500 -A wide band decade amplifier is excellent as a general purpose laboratory instrument. Here is an instrument for special applications requiring a zero phase shift and high stability of gain. TIC increases the general utility of this amplifier by including a self-contained power supply and cabinet or rack mounting.

SPECIFICATIONS:
Amplification: 10, 100 and 1000 times, selected by 3 -position rotary switch. Frequency Resoonse: Flat to $\pm .5 \mathrm{db}$ from 5 cycles to 2 mc on gain of 10 ; Flat to $\pm .5 \mathrm{db}$ from 5 cycles to 1.5 mc on gain of $100 ;$ Flat to $\pm .8 \mathrm{db}$ from 5 cycles to 1 mc on gain of 1000 .

Amplification Accuracy: $\pm 2 \%$ of nominal - dependent on precision resistors only; Unaffected by normal tube characteristics or line variations.
Phase Shift on All Ranges: 0 to $\pm 2^{\circ}$ from 20 cycles through 100 kc
Gain Stability on All Ranges: Constant with line voltages of 105 to 124 volts, Noise and Hum: 60 db below maximum output voltage with input shorted. Input Impedance: Approximately 160 megohms shunted by $7 \mu \mu f$.
Oufput Impedance: Approximately 200 ohms.
Ouiput Voltage on All Ranges: 20 volts maximum output across a load of $20 \mathrm{k} \Omega$ or greater.
Power Supply: $105-125$ volts, $50-60$ cycles self-contained power supply requiring approx. 30 watts. (230 volt, $50-60$ cycles models available).
Mounting Dimensions: Single, in cabinet: $131 / 4{ }^{\prime \prime}$ wide x $5^{\prime \prime}$ high x $93 / 8^{\prime \prime}$ deep. ($111 / 4{ }^{\prime \prime}$ x $31 / 2^{\prime \prime}$ panel) Single, for rack: $19^{\prime \prime}$ wide $\times 31 / 2^{\prime \prime}$ high $\times 8 \frac{1}{2 \prime \prime}$ deep.
The low distortion is a feature much desired in amplifiers of this type.
Further information and details gladly sent upon request.
Engineering Representatives
$\begin{array}{ll}\text { Chicago, Ill. - UPtown 8-1141 } & \text { Arnprior, Ont. Can. } \\ \text { Cleveland, Ohio Arnprior } 400\end{array}$ Cleveland, Ohio - PRospect 1-6171
Waltham, Mass - WAltham 506900 Waltham, Mass. - WAltham 5-6900 Boonton, N. J. - Boonton 8-3097 Dayton, Ohio - Michigan-8721

Hollywood Cal. HOllywood 9.6305
Dallas. Texas - DIxon 9918
Roseland, New Jersey-Caldwell 6-4545
Wyncote, Pa. - Ogontz 8805 Wyncote, Pa.-Ogontz 8805
Md. - Siligo 7-550

Technology Instrement Corp.

Research - Development • Engineering - Manufacturing

CUSTOM BULLT ELECTRONCS!

CDC are designers and engineers of Electronic Devices to fit your requirements.

Digital and Analogue
Computers

- Test and Measuring Equipment
- Servo Systems
- Instrumentation
- Engineering Consulting Service
- Product Engineeing and Design
- Parts Machining and Assembly
- Instrument and Elecrtonic Equipment Overhaul
- Field Maintenance of Electronic Computers
- Developments for Armed Forces

YOUR ENQUIRIES WILL RECEIVE
PROMPT AND EFFICIENT ATTENTION

COMPUTING DEVICES of CANADA LIMITED
General Offices-338 Queen Street Laboratories-475 Cambridge Street, Ottawa, Ontario, Canada

mum, at from 0 to 15 v d-c Where absolute freedom from drift is required a small chopper-amplifier provides precise stabilization against an external reference. The supply may be rack mounted.

Streamlined Speaker
Carbonneau Industries, 21 Ionia N. W., Grand Rapids, Mich. The Gold Cup speaker features the ultimate in simplicity of design, thus eliminating costly bulk and weight. Ten-inch Gold Cups are now available with 2.15 oz magnet, 1 -in. voice coil, and 1.00 oz magnets with 1 -in. voice coil, both supplying flux in the air gap equivalent to speakers using up to 50 percent more magnet.

Strip-Wound
Transformer Cores
Permoflux Corf., 4900 West Grand Ave., Chicago 39, Ill., announces the availability of its new Cee-Cor strip-wound transformer cores, manufactured from grain-oriented silicon steel strip to exacting mechanical and electrical tolerances. These units give the transformer engineer cores of extremely high efficiency and permeability and are particularly suited to designs where space and weight are critical fact-

ELECTRONICS - February, 1953

Attention!...ELECTRONIC DEVELQPMENT ENGINERS

Reduce your problems with the NEW EUREKA "SNAPPER" THERMAL TIME DEAMREAY
Features. . . Snap action. Single Pole Double Throw. Lightweight. Low operating temperature. Operates in any position. High contact rating. Gas filled. Low heater current. Durability and long life.

The ELIMINATION OF CHATTERING is accomplished with the incorporation of "POSITIVE SNAP ACTION" in the EUREKA "SNAPPER" ... LEADING ELECTRONIC MANUFACTURERS have acknowledged the new EUREKA "SNAPPER" as a major advancement in this field, and have already accepted this relay as a standard component of their latest equipment.
Inquiries are invired . . . send for our "Bulletin Number Snapper" EUREKA TELEVISION AND TUBE CORP. Manufacturers of Cathode-Ray Tubes and Electronic Products 69 FIFTH AVE., HAWTHORNE, N. J. - TEL. HAWTHORNE 7-3907

Costs are reduced, production increased and more efficient terminations consistently result when P-M Pre-Soldered Tandem Terminals are machire allached and soldered! Produced in continuous form, and supplied on reels, P-M Tandem Terminals are applied in our machine that cuts off, clinches and solders terminals to wires in one instantaneous operation. This method has replaced slow, costly hand attachment in many leading plants. Handling of loose terminals, solder and flux are eliminated to cut costs and boost production on long runs. Standard types available. Send for detailed information, and enclose sample of terminal and wire now used. Address Dept. E.
For ordinary runs in moderate quantities we continue to produce

SEPARATE TERMINALS for ELECTRIC WIRES

We are also large producers of SMALL METAL STAMPINGS. Modern plant with complete equipment for large volume production of stamped metal parts in accordance with customers' prints. Moderate die charges. Precision work. Prompt service.

PATION-MacGUYER COMPANY

201 CHAPMAN ST., PROVIDENCE 5, R. 1.

a TRUE

hlefthestitic

 гйтивтеи

This instrument permits voltage readings on $A C$ or $D C$ circuits of very high resistance. The only current drawn is the very small leakage current and a very low capacitance current on AC circuits. Very useful for the many high volt-age-low current circuits employed in nuclear research. Available with full scale voltages ranging between 300 and 3500 volts. Special laboratory instrument available with full scale reading of 150 volts. Full scale capacitance ranges from 8 mmfds for the 3500 volt model to 100 mmfds for the 150 volt instrument.Magnetic damping. $21 / 2^{\prime \prime}$ dial. Write for complete specifications.

FERRANTIELECTRIC, INC. 30 Rockefeller Plaza - New York 20, N. Y. FERRANTI, LTD., Hollinwood, England FERRANTI ELECTRIC, LTD., Toronto, Canada
ors. Cee-Cor's, wound from 1, 2, 4 and 12 -mil material, are available in a wide variety of standard window sizes and build-ups. Facilities also make possible the winding of special cores for unusual applications.

Germanium Rectifiers
General Electric Co., Syracuse, N. Y., has announced new diffused junction germanium rectifiers for use in computers, magnetie amplifiers, tv receivers and telephone switchboards. The four models in the new series are hermetically sealed and extremely small in size. Forward resistance of the new units is very low, less than 2 ohms at rated load. Back resistance and peak inverse voltages are high. Peak inverse voltages range from 100 to 400 v . The d-c output currents into a resistive load range from 75 to 500 ma. Full load voltage drop is 0.5 in three models and 0.7 in the fourth. All ratings are at ambient temperature up to 55 C .

Audio Amplifier

Summit Electronics, Inc., 7 Industrial Place, Summit, N. J. A new precision audio amplifier combines unusually low signal-to-noise and distortion factors with high power output. The equipment is available in several models for vary-

from

millivolts to hundreds

of volts

AIRPAX CHOPPERS

operate well

and reliably

positive performance

from 70° below

to $100^{\circ} \mathrm{C}$
or while being
vibrated or shocked
far beyond
usual test extremes!

TUBE COST DATA

 you've always wanted!

Most comprehensive and accurate purchas. ing and cost-analysis tool in tube history! Product of over 2 years' research. Covers every tube type and crystal manufactured in U.S.-from tiniest crystal to largest transmitting tube -including. .
Amperes - Bomac - Chatham - Cetron Du Mont - Eimac - Federal - General Electric Hytron - Industro - Lewis \& Kaufman Machlett - National - National Union North American Philips - Philco - Raytheon RCA - Sperry - Sylvania - Taylor - TongSol - United - Western Electric - Westinghouse Tells list prices and your current costs for over 4,000 tube types! Kept up-to-date by State Labs' famous Weekly Marbet Guides mailed free to all owners of the Tube Buyers' Guide. In looseleaf form, alphabetically and numerically indexed for quick, easy reference.
PRAISED BY INDUSTRY LEADERS
Says W. L.: Urquhart. President, W. L. Urqu. bart, Inc. one of Amer. ca's leading
Rube exporters:
"Woe exporters
"Without doubt your
new 1953 U.S. Elea. new 1953 U.S. Elea: Guide contains the most Guide contains the most extensive tube cost information ever tube markets of this the tube markets of this
country. It's invaluable country. It's mavaiable without it for a day."

for YOUR cOPy-USE the COUPON!

Note: 'This Tube Buyers' Guide is necessarily restricted to Purchasing Agents. Manufacturers, Industrials, Government Agencies. coupon in full and attach to your letterhead.

[^13]

EXAMPLE:
Working with the North Electric Manufacturing Co., Gabion, Ohio, we developed a new miniature hermetically sealed relay to meet exacting military requirements. Features include an 8 -terminal sealed header $.600^{\prime \prime}$ O.D. and a new design balanced armature relay, sealed in a $\frac{7^{\prime \prime}}{8} \times \frac{7^{\prime \prime}}{8} \times \frac{7^{\prime \prime}}{8}$ drawn aluminum can. The entire unit may be panel mounted from either the top or bottom. The unit can be furnished either with a dry air fill or vacuum-pumped and pressure filled with dry nitrogen.

HAVING HEADER TROUBLES? We make all types of Sealed Headers, ranging from simple 2 - and 3 -electrode, crystal holder bases, and standard octal headers, to 14 - and 16 -terminal headers for sealed Transformer and Relay applications. (Also a variety of special-design headers and terminals.) Write for catalog and quotes.

THE HERMASEAL COMPANY, Inc.
Elkhart 10, Indiana

DX Announces a NEW 90° YOKE for $27^{\prime \prime}$ TUBES

It's Engineered for TOP PERFORMANCE ... in Production NOW!

This new DX 90° Deflection Yoke has everything a television receiver manufactourer wants . . . a sharp full-screen focus, a minimum of pincushioning, the ultimate in compactness and a price that's downright attractive. Because this yoke has been brilliantly designed for mass production on DX's specialized equipment, it warrants immediate consideration in your $27^{\prime \prime}$ receiver plans. Write us today:

DEFLECTION YOKES . . . TOROID COILS . . CRYSTALS I. F. TRANSFORMERS . . . R. F. COILS . . . DISCRIMINATORS SPEAKERS . . TV TUNERS . . ION TRAPS . . . TRANSFORMERS

ing input impedance requirements, while output impedance is switch controlled from 4 to 600 ohms in all models. Employing negative feedback on all stages, the new amplifier offers extremely stable characteristics. Distortion is less than 1.0 percent at the full rated output of 30 w while frequency response is exceptionally flat over a $30-\mathrm{cps}$ to $15-\mathrm{kc}$ range; with a high impedance input the response is flat $\pm 0.2 \mathrm{db}$ over the entire range, and similarly low variances are encountered when low bridging or terminating impedances are used. All components have been carefully chosen to assure fulfillment of the flat frequency response, low distortion and noise characteristics for which the amplifier was designed.

Bandwidth Compressor

Haller, Raymond and Brown, Inc., State College, Pa. The Rafax bandwidth compressor is a device for laboratory use in connection with testing radar relay equipment and processes. It accepts radar video signals from a search type radar. These signals usually have a bandwidth of from 1 to 5 mc . Its output is a compressed video signal whose bandwidth is of the order of 1 to 5 kc . The device takes advantage of the inherent redundancy in radar signals and of the fact that the usual ppi type radar picture can be reproduced at a bandwidth of only a few kc. Since the Rafax unit should be matched to the parent radar, each application calls for a

Acid etching inks, used for permanent stamping on metal and all non-porous surfaces will eat away at rubber. Vinylite resists this action - gives longer life by far!

ENGRAVED VINYLITE STAMPING GIVES RAZOR-SHARP IMPRESSIONS EVERY TIME

Heavy base inks will clog shallow rubber stamp faces rapidly. Our deepmolded engraved VINYLITE stamp faces have more than three times the depth of ordinary rubber stamps. Markings always remain super sharp . . . an important advantage since this mark is a permanent record of your inspector's approval.

f vinyite HAS CUSHION-LIKE RESILIENCE

Our VINYLITE molding process includes a timed curing that imparts to this versatile plastic all the elasticity of rubber. Resilient VINYLITE resists abrasive action, conforms to irregular surfaces ... and lasts much longer!

(1118)

NO TUBES

Incorporating the use of mag. netic amplifier techniques - eliminating
all vacuum tubes - this new Acme Regulated Power Supply provides an extremely dependable, trouble.free precision unit for both industrial and laboratory use. Because of the absence of all tubes, the equipment will give a minimum of 20,000 hours continuous service. It is available in a variety of voltages and frequencies.

Write for complete information.

Acme Model 5.715 60-cycle Regulated Power Supply, 300 volt D.C. Output with $\pm 1 \%$ regulation from 0 to 200 MA , with less than. $\%$ ripple.

ACME ELECTRONICS, INC., 300 N. LAKE AVENUE, PASADENA 4, CALIF.

tailor-made model in which the motor scan rate and integrator storage time are optimized.

Combination Rheostat
Rex Rheostat Co., 3 Foxhurst Road, Baldwin, L. I., N. Y., has introduced a new vernier rheostat for extremely fine control of current and voltage. It consists of a combination of a standard tubular rheostat with a turnable vernier rheostat in series or in parallel connection. Each step on the vernier has about $\frac{1}{10}$ th of the ohmic value of one winding of the main rheostat. Each rheostat is provided with a dial, making exact settings of the slider positions possible. Ask for catalog No. 5.

Half-Wave Rectifier

General Electric Co., 1 River Road, Schenectady 5, N. Y., has added to its industrial tube line a half-wave rectifier designed for use in $h-v$ rectifier circuits. The type GL-4B32 is designed particularly for use as a rectifier in radio and ty transmitters, industrial heating oscillators, and other applications where high-voltage d-c is required. The tube is an inert-gas-filled tube that will operate over a wide temperature range, from -55 to +70 C. Use of an inert gas instead of mercury permits mounting it in any position. Maximum ratings for

1902 West Minnehaha Avenue, Dept. E-8, St. Paul 4, Minnesota

[^14]APPLICATIONS:
Current/Voltage Lift/Drag
Speed/Torque Magnetization
Frequency response
Analog computer output curves Temperature/Pressure Stress/Stroin
Transistor and Diode characteristics
Magnetic amplifier, input/oułput Temperafure/Activify $X=(f) Y$

AUTOGRAF
a general purpose, wide range, portable, universal $X=(f) Y$ graphic recorder

Now you can expedite your research, development, and test programs with the AUTOGRAF -a precision recorder that automatically plots curves showing relationship between a dependent and an independent variable. Through two rebalancing, servo-actuated recording axes, the AUTOGRAF draws cartesian coordinate graphs from any data that can be reduced to electrical form. You save the time it would ordinarily take to read meters, collate data, transfer data to grid, draw in curves...The AUTOGRAF does all this work for you, plotting the data simultaneous ly with occurrence of the phenomenon being studied. Too, the AUTOGRAF draws related curves in families as fast as input information can be altered. Without any additional steps, once a test is run, you have in hand a complete, accurate pen-and-ink graph, drawn on a standard $81^{1 / 2 " x} 11^{\prime \prime}$ sheet of paper, ready for study, file, notebook, or reproduction.

SPECIFICATIONS: - Two independent servo-actuated recording axes: input free of ground. - Recording speed 0.5 millivolts up to 0.100 vols, both axes. Full-range zero set on either axis - plots data in any desired quadrant - Sensitivity - 200,000 ohms per volt, 5 microamperes drain for full scale. Size and weight: $13^{\prime \prime} \times 13^{\prime \prime} \times 10^{\prime \prime}$; 35 lbs . Self-contained; operates from 115 volt 60 cycle line, 85 watts.

PASADENA 3, CALIFORNIA

If THE WIRING FAILS

SO DOES YOUR PRODUCT'S REPUTATION

FOR DEPENDABLE PRODUCT WIRING USE

HILEETRIE M/RING SYSTEMS

Year after year - for over ten years - UNILECTRIC has produced millions of wiring systems, for more than 150 leading manufacturers of electric and electronic products. From controls to complex armed forces equipment, these wiring systems have consistently met the most exacting requirements and provided substantial savings to each customer.
To assure utmost dependability plus cost saving engineering assistance, low cost production and "on-schedule delivery" investigate UNILECIRIC today. $40 S$ SOUTH 6th STREET - MILWAUKEE 4, WISCONSIN

WHO MAKES IT...

Just look it up in the electronics BUYERS' GUIDE

There are...

23,367 ANSWERS

fo
1,445 PROBLEMS
covering every...

COMPONENT EQUIPMENT and MATERIAL

used in every phase of electronics

GET IN THE HABIT OF LOOKING IT UP IN the

electronics BUYERS' GUIDE

A McGRAW-HILL PUBLICATION 330 West 42nd Street NEW YORK 36, N. Y.

Two Companion Counters . . . Two Sizes . . . Hi-Speed . . . Accurate . . . Long Life . . . Totally Enclosed

Speeds of 1000 counts per minute. Both counters give maximum readability. Design fits all mounting conditions . . . panel mounting or base mounting. Hardened steel working parts for long life and dependability.

New type case for compactness,
rigidity, and protection against dust and moisture conditions. Operate accurately over wide current fluctuations.

DURANT MANUFACTURING CO.

1912 N. Buffum St. 112 Orange St. Milwaukee 1, Wis. Providence 3, R. I. Representatives in Principal Cities

AYAN

The enginecring staff of the Bird Company is at your service for all small-bearing problems.

Sapphire and glass jewels - Precision glass grinding
Ferrite precition products - Sapphire stylis
1 Spruce Street, Waltham 54, Mass.

GUARANTEES ACCURATE PLATING

IN ELECTRONICS!

Since 1946, M.W LABORATORIES has electroplated precious metal for suppliers to the U.S. Army, U.S. Navy, Atomic Energy Commission and to leading manufacturers in the electronics industry.

M-W Laboratories, Inc. 1824 N. Milwaukee Ave.
Chicago 47, Illinois
the GL-4B32 include a peak maximum cathode current of 5 amperes, an average maximum cathode current of 1.25 amperes, and a maximum peak inverse anode voltage of $10,000 \mathrm{v}$. The tube is recommended for use with a filament voltage of 5 v and a filament current of 7.5 amperes.

Oscilloscope

Electronic Measurements Corp., New York, N. Y. Model 600 oscilloscope features the use of a 5VPI new 5 -in. scope tube. The vertical amplifier has a wide band and can be used up to 5 mc . A two step attenuator input is available. Synchronization is available on either positive or negative phase of input voltage through the vertical amplifier or from an external source. A multivibrator type of sweep from 15 cycles to 75 kc is incorporated.

Dynamotor

Electro Engineering Products Co., 609 W. Lake St., Chicago, Ill. Model ES-129 dynamotor is a 4-commutator unit that will operate with equally efficient performance from 6,12 or 24 -v power supply. Output is 500 v at 0.100

Turn your problem over to the A. W. HAYDON COMPANY - past masters at solving the tough ones.
The know-how of A. W. Haydon
Engineers is your assurance of prompt, accurate service regardless of the

Send for catalog.
Would you like to work with us? We need qualified engineers now. Excellent opportunities for men who are looking to the future.
intricacies of the problem. .

A.W.HAYDON C OMPANY 235 NORTHELMSTREET WATERBURY 20, CONNECIICUT
Design and Manufacture of Electrical Timing Devices

teleghrome's ALl-SYSTEM Color TV Colossus

RACK \#1 RACK \#2 RACK \#3 RACK \#4 RACK \#5 RACS \#6 RACK \#7

A comprehensive integrated system for transmitting and monitoring self-created as well as remote-origin signals.

TELECHRONE'S color equipment now being used by many of the nation's leading broadcasters, receiver manufacturers and laboratory groups, for establishing standards and for further development in the television color field.

Custom made laboratory-quality instrumentation.

. through advanced research e development
"TELECHROME'S Color Package" functions brielly as follows
BLCK \#1 - Driving source; produces all pulses: driving, blanking, sync, etc. for BTMA, F.C.C., and HFSC color; includes The subcarrier.
RACK \#2-Gamma kmplifiers, color encoders to convert color signals to requirements of specific system under examination.
RACK \#3-Distribution, monitoring, and switching manitoring
AACK \#4 - Contains universal color picture generator with crossed dichroic mirror assembly and scanner tube.
BACK $=5$ - Uniyersal color monitor with dichroic unit.
RACK \#6 - Contains Ruth
offthe-air T.Y. receiver, ofththe-air T.V. receiver,
color bar genieraior, and color bar genieralor, an
three video amplifiers.
RACK \#7- Picture (and sound) signal source closely approximating the proper characteristics of I.Y. slation transmilters; this rack contains also this rack contains also decoders for both MS and field sequential rales.

This outstanding " Standard" V.H.F. Attenuator now in its second year of production remains the first and only accurate instrument of its kind and continues to meet a heavy demand from leading organisations and authorities the world over.

Four models now available

Characteristic Impedance	75 ohms	500hms
$0-9 \mathrm{db}$ in I db steps	Type 74600-A	Type 746C0-E
$0-90 \mathrm{db}$ in 10 db steps	Type 74600-B	Type 74600-F

All types will handle inputs up to 0.25 watts.

Accuracy of D.C. adjustment

0.9 db Models: The insertion loss error will not exceed $\pm 0.05 \mathrm{db}$ for any setting.
$0-90 \mathrm{db}$ Models The insertion loss error for the 90 db setting will not exceed $\pm 0.3 \mathrm{db}$. For other settings this limit falls linearly to a value of $\pm 0 . \mathrm{C} 6 \mathrm{db}$ at the 10 db setting.

High frequency performance

$0-9 \mathrm{db}$ Models: At $50 \mathrm{Mc} / \mathrm{s}$ the insertion loss error for the 9 db setting will not exceed $\pm 0.15 \mathrm{db}$. For other settings this limit falls linearly to a value of $\pm 0.05 \mathrm{db}$ for the 1 db setting.
$0-90 \mathrm{db}$ Models: At $50 \mathrm{Mc} / \mathrm{s}$ the insertion loss error will not exceed $\pm 0.1 \mathrm{db}$ per step. N.B. All insertion loss errors are relative to zero db setting.

Ready for Building into your own equipment. Calibration charts for frequencies up to $100 \mathrm{Mc} / \mathrm{s}$ for the $0-9 \mathrm{db}$ models of $65 \mathrm{Mc} / \mathrm{s}$ for the 0.90 db models can be supplied on request.

Standard Telephones and Cables Limited
 (An I.T \& T. Associate)

TRANSMISSION DIVISION, NORTH WOOLWICH, LONDON, EI6
ampere. Length of the unit is $10^{\frac{1}{4}}$ in. and diameter is $4 \frac{1}{2} \mathrm{in}$. Total weight is $11_{\frac{1}{2}} \mathrm{lb}$. The dynamotor is intended for continuous service, with a rated temperature rise of 50 C . It is ideal for heavy-duty or standard use in communications, laboratory applications, and wherever power supply is variable.

Deflection Yoke

DX Radio Products Co., 2300 West Armitage Ave., Chicago 47, Ill., announces that it is in production on a newly designed $90-\mathrm{deg}$ deflection yoke for 27 -in. television tubes. The yoke provides a sharp focus across the entire picture tube screen. The horizontal inductance is 11.2 millihenries and the vertical inductance is 45 millihenries.

Banana Plugs and Jacks

Insuline Corp. of America, 3602 35th Ave., Long Island City 1, N. Y., has announced a new line of silver-plated banana plugs and jacks, intended for use in military, industrial and commercial equipment requiring very low contact resistance. The No. 428 plug has a straight threaded shank $1 \frac{1}{8} \mathrm{in}$. long. The No. 429 has a combina-

the Type H-12 TYF SIGNAL generator 900-2100 Megacycles

This compact, self-contained unit, weighing only 43 lbs., provides an accurate source of CW or pulse amplitudemodulated RF. A well-established design, the Type 12 has been in production since 1948. The power level is 0 to - 120 dbm , continuously adjustable by a directly calibrated control accurate to $\pm 2 \mathrm{dbm}$. The frequency range is controlled by a single dial directly calibrated to $\pm 1 \%$. Pulse modulation is provided by a self-contained pulse generator with controls for width, delay, and rate; or by synchronization with an external sine wave or pulse generator; or by direct amplification of externally supplied pulses.
Gold Plating of the oscillato: cavity and tuning plunger assures smooth action and reliable performance over long periods. Generous use of siliconetreated ceramic insulation, including resistor and capacitor terminal boards, and the use of sealed capacitors, transformers, and chokes, insures operation under conditions of high humidity for long periods.

Built to Navy specifications for research and production testing, the unit is equal to military TS-419/U. It is in production and available for delivery.

Price: $\$ 1,950$ net, f.o.b. Boonton, N. J.

Type H-14 Signal Generator

(108 to 132 megacycles) for testing OMNI receivers on bench or ramp. Checks on: 24 OMNI courses, left-center-right on $90 / 150$ cps localizer, left-center-right on phase localizer, Omni course sensitivity, operation of TO. FROM meter, operation of flag alarms.

Price: $\$ 942.00$ net, f.o.b. Boonton, N. J.
WRITE TODAY for descriptive literature on A.R.C. Signal Generators or airborne LF and VHF
cammunication and navigation equipments, CAA cammunication and navigation equipments, CAA
Type Certificated for transport or privote use. Dept. 5

Dependable
Electronic Equipment Since 1928

Aircraft Radio Corporation
 Boonton, New Jersey

We offer a complete Engineering and Manutacturing Service with emphasis on Special Applications. Small pilot runs, or full scale production executed economically and on schedule. Consult us for these products: -

COILS:

High Freq. Air Core Multi-Layer Solenoids Peaking
Synchro Windings Television RF, IF, etc.

TRANSFORMERS:
Audio • Power
Elevator
High Voltage
Pulse Applications Synchros, etc.

Experimental Samples promptly submitted, usually without charge. Write to:
COMPONENTS MFG. DIV., Dept.E23
TRANSVIsIon, ine.
NEW ROCHELLE, N. Y.
NE 6.6000

YOUR PRODUCTION RESERVE:

is standing by to quickly tool up for your metal parts requirements. Specializing in large volume production of quality parts at competitive prices. Facilities for all secondary operations, automatic assemblies and finishing. 4 -slide equipment available for multi-forming operations.

WILLIAM THOMAS \& SONS
91 Pearl St., Brooklyn 1, N. Y., TRiangle 5-5626
FOURGENERATIONSOFEXPERIENCE...

new miniaturized tuning fork resonator...

(Model J)

 IINIATURE MINIATHRE MINIAIURE. MIMIATURE MINI RE - MINIATURE MINIATURE MINIAIURE MINIAIURE
 RE. MINIATURE.MINIAT, MATURE. MINIATUR AINIATURE. MINIATY, O. MINIATURE MIT RE - MINIATURE ME MINIAIUK ATURE. MI

 IINIATURE IRE - MINWPHE +10
UINIATURE. MIN
JRE MINIATURE MINIATURE • ? MINIATURE MINIATUEE MINIATURE. MINIATURE IRE • MINIATURE • MINIATURE • MINIATURE•MIN MINIATURE MINIATURE. MINIATURE MINIATURE

> ILLUSTRATED ACTUAL SIZE
> DIMENSIONS $1^{\prime \prime} \times 2 \frac{1}{16} \times 21 / 166$

accuracies...

1 part in $10,000(.01 \%)$ or 1 part in $2,000(.05 \%)$, from -40° to $+85^{\circ}$ Centigrade.
frequencies...
From 400 to 2,000 cycles in either accuracy rating.

construction...

Thermally compensated, solder-sealed and evacuated, completely interchangeable, internally mounted using shock retarding silicone rubber, externally designed for fastening to chassis through silicone rubber grommets thus providing excellent vibration and shock isolation.
tion shank 4 in. long with a knurled collar for force-fit in a panel hole and a threaded section in addition. Both plugs have contact springs of beryllium copper. The No. 431 banana jack is machined of solid brass, also heavily silver-plated. It has a knurled shoulder and a threaded body. The hex head is 1 In in. across flats, and the shank is 3.4 in. long.

Miniature Attenuator

The Daven Co., 191 Central Ave., Newark 4, N. J., has available the series 120 miniature attenuator that is 13 in . in diameter $\mathrm{x} 1 \mathrm{~S}_{2} \mathrm{in}$. deep. The unit was developed primarily for government and commercial applications requiring a smaller step-type attenuator. Its reduced size and weight make it particularly suitable for use in portable equipment as well as stationary equipment where space is at a premium. This miniature attenuator is available in 20 steps having a ladder or potentiometer network. All standard decibel steps and various impedances up to 500,000 ohms are available. Resistor accuracy is ± 5.0 percent and power dissipation is 0.6 watt.

ULF Oscillator

Krohn-Hite Instrument Co., 580 Massachusetts Ave., Cambridge 39, Mass., announces a new ultra-low-

PANELS, LIDS, DOORS MADE RF-TIGHT BY LOW COST METHOD

Electronic Weatherstripping, made of knitted wire mesh compressed to required sizes and shapes, effectively "shields" these openings against RF leakage just as weatherstrips seal doors and windows

Openings such as these are necessary for operating and servicing the electronic equipment housed in the metal cabinet. Yet these same openings destroy the full shielding efficiency which an "unbroken" metal container would otherwise provide. Careful machining of mating surfaces at

"Thermatron built by Radio Receptor Co., Inc."
these openings is an obvious answer. But such work is expensive, and the initial close fit is often destroyed by repeated openings and closings, by warping of the lid or door and by corrosion of the mating surfaces. Numerous latches, screws, bolts and other fasteners, closely spaced, will help keep these joints RF tight, but they are a time consuming nuisance whenever the cabinet must be opened and closed, and they are expensive to purchase and install.
Metex Electronic strips and gaskets eliminate these objections. Being made of metal, they are conductive; and being knitted they are resilient and conform to normal surface irregularities. They actually "block" the otherwise leaky openings with a gasket of flexible metal, ar.d make the cabinet as effective a conductive shield as if the openings had never been made.

Metex clectronic strips and gaskets are easy to install. Not only are they inexpensive, but their use may well save more than their cost by eliminating many operations that would otherwise be necessary. They are available in different shapes, dimensions and resiliencies to meet the varied requirements of specific electronic applications and can be made of metals or alloys selected to meet actual or anticipated corrosive conditions.

A bulletin giving detailed information is available on request from the manufacturer, Metal Textile Corporation, 641 East First Avenue, Roselle, N. J.

PLASTIC - METAL GLASS•PAPER RUBBER - CERAMIC CARDBOARD
in such products as Resistors, capacitors, valves, tubes, labels, sleeves, spark plugs, cartons, etc., etc.
THESE PRODUCTS AND MANY OTHERS OF ALMOST ANY MATERIAL AND SHAPE CAN BE IMPRINTED
ON THE

REJAFIX

MARKING MACHINE
Why not send us samples of your products? They will be test-printed and returned to you for your examination!

\author{

- REJAFIX HAND-OPERATED MODELS FOR SMALL RUNS. FULLY AUTOMATIC MODELS FOR MASS PRODUCTION.
}

EST. 1922

DOPES \& SONE INC. 300 FOURTH AVENUE

The - SKL - Model 302 includes two independent filter sections, each having a continuously variable cut-off range of 20 cps to 200 KC . Providing a choice of filter types each section has 18 db per octave attenuation. When cascaded 36 db is obtained in the high and low pass setting and 18 $d b$ in the band pass position. With low noise level and 0 insertion loss this versatile filter can be used as an analyzer in industry and the research laboratory or to control sound in the communications laboratory, radio broadcasting, recording and moving picture industries.

SPECIFICATIONS

- cut-off range

20 cps to 200 KC

- sections

2-can be high, low and band pass

- attenuations 36 db /octave maximum
- insertion loss. 0 db
- nolse level

80 dh below 1 volt

- frequency response

2 cps to 4 MC 181 MASSACHUSETTS AVE, CAMBRIDGE 39, MASS.

Manpower ... machinery ... technical skill-these are the wastes of many companies adapting inflexible standard components to meet the requirements of their applications.

Sometimes they buy standard components and struggle to build systems around them, thus limiting the efficiency of their own designs. But more often they perform one or more secondary operations on the component to make it usable. The result is not only waste but loss of the component's "built-in" precision.
When you buy Transicoil components for servo systems, secondary operations are nil. You get a finished product ... built for your particular application....and ready for immediate installation... with all the accuracy and efficiency for which it was designed.
Our technical catalog describes some of the precision Transicoil units which enable you to take full advantage of your servo system designs. Write for a copy today.

Minialure Control Motors

Motor and Gear Train Assemblies

Motor, Generator, and Gear Train Combinations

Amplifiers
frequency oscillator, model 400 C , with standard rack panel construction. It simultaneously provides both sine and square-wave voltages at any frequency between 0.009 and $1,100 \mathrm{cps}$. The sine wave output may be used either balanced or single ended. Maximum output is 30 v peak-to-peak across a $1,000-$ ohm load. Special circuitry to eliminate tuning and band-switching transients has been incorporated. Other features are low hum and distortion, excellent amplitude constancy over the entire frequency range, a single scale logarithmic dial with a vernier tuning control, and low input power. The unit is especially useful for the designing and testing of servomechanisms for geophysical and seismological instruments and feedback amplifiers, for vibration checks and medical research and in conjunction with timing and production controls. Dimensions of the unit are 19 x 8 等 $\times 7$ in.

Literature

Permanent-Magnet Motors. Bar-ber-Colman Co., Rockford, Ill., has available $\mathrm{p}-\mathrm{m}$ motors with electrically balanced armature that insures low radio noise level, higher efficiency, and longer brush life. Ask for bulletin F4344.

Metalized - Power Capacitors. Aerovox Corp, New Bedford, Mass. Concise, yet highly informative, is the "High-Temperature MetallizedPaper Capacitors" bulletin now available. It deals with the performance characteristics of such capacitors, including facts, figures and graphs on rated voltages, temperature range, insulation resistance, nominal capacitance, power factor, vibration, humidity and life test. It also gives available types and listings.

Gas Tubes in Industry. Electrons, Inc., 127 Sussex Ave., Newark 4, N. J. A treatise on the history, development and application of hot cathode gas-filled rectifier and thyratron tubes has just been pub-

GET DETAILS -Write for the Grayhill Catalog now.

4522 West Madison St., Chicago 24, Illinois

in 9udiana"

I.D.E.A., Inc., is looking for a design engineer.

Someone who would like to make Indianapolis his permanent home-who would like to work for a young,
forward looking company that is already the leader in its field. If you are that man, address full information about yourself to: 2. A. Morris, Chief Engineer,
I.D.E.A., Inc., 7900 Pendleton Pike, Indianapolis 26.

Makers of the Regency VHF Booster, UHF Converter

INDIANAPOLIS INDIANA

The costly headaches and limitations of loose tolerances-which have vexed the engineer with variations of $1 / 32^{\prime \prime}$ in permanent magnet design-have been virtually eliminated by Thomas \& Skinner, specialists in magnetics for more than half a century.

Now your engineers can specify the intricate casting shapes-with sharply defined relief-which in the past have been too difficult or too expensive to produce. Through radically new techniques, Thomas \&

Skinner permanent magnets are cast with such close precision that little or no grinding and finishing is required for dimensional accuracy.

Call in a Thomas \& Skinner en-gineer-let him work with your own development specialists-learn how your permanent magnet problems of close tolerances and intricate designs may be solved by the new Thomas \& Skinner techniquenow! Write today-ask for the new Thomas \& Skinner Permanent Magnet Bulletin, No. 151.

THOMAS \& SKINNER Steel Products Company 1120 Egst 23 rd Street. Indiancpolis, Indiana
lished. Entitled "Gas Tubes in Industry," the treatise is concisely written, but comprehensive in its coverage of the subject. It will give the reader a well-rounded introduction to the many useful purposes of the EL rectifier and grid control (thyratron) tube.

Parts Catalog. Newark Electric Co., 223 W. Madison St., Chicago 6, III., has published a 196 -page comprehensive parts catalog containing thousands of items for industry, laboratories, high fidelity, radio and television. Whole sections are devoted to test equipment, industrial equipment and supplies, high-fidelity systems and components, tv chassis, accessories and antennas, including the latest vhf antennas and converters, tape, wire and disk recorders, phonos and changers, p -a and intercom systems, books, tools and the latest in amateur equipment. Wherever possible the complete lines of all nationally-known manufacturers are listed.

Printed Circuits. Electralab, Inc., 105 First St., Cambridge 41, Mass. A recent 8 -page catalog contains a picture story showing the company's facilities for engineering and designing printed circuits in addition to the large scale production of this type of assembly. Included is a list of 17 of the many electronic applications that have been engineered by the company utilizing printed circuits and unitization techniques.

Research Laboratories. Cook Electric Co., 2700 Southport Ave., Chicago 14, Ill., has published bulletin R10, a 47 -page book containing information on the latest facilities and services of its new Research Laboratories. The book will be of interest to anyone engaged in research, development and instrumentation in the fields of nuclear physics, servomechanisms, upper air research, weather reconnaissance, radar, sonar, guided missiles and ceneral electronics.

Transmission Systems. Fischer \& Porter Co., 7250 Jacksonville Road, Hatboro, Pa. Catalog T-50 de-

Measuring and

Controlling

- TEMPERATURE
- CURRENT
- POWER
- VOLTAGE ?
- PRESSURE
- VOlume
- COMPOSITION
- FLOW OF

AIR, GAS,
AND LIQUIDS ?

VECO THERMISTORS, approved and accepted by Government Agencies, are highly versatile new circuit elements - electrical resistance varies extensively with relatively minute thermal changes.

QUANTITY PRODUCTION - stocked in a wide range of specific resistance values and made in the forms of rods, discs, washers, and beads.

Western Electric and Victory have a crosslicense arrangement covering thermistors, and are the only manufacturers in the U. S. making the bead type.

VECO VARISTORS are used in voltage control and limiting circuits, and
VECO GAS ANALYSIS CELLS incorporate the extremely sensitive VECO THERMISTORS.

Submit your unusual or new measurement or control problem to Victory for a prompt complete analysis and recommendation.

Visit Victory at the IRE Show, 3rd Floor, Booth 403 -
Grand Central Palace, New York, N. Y. - March 23-26.

scribes completely the pneumatic, magnetic, electric, electronic and electronic-follower transmission systems for use in measurement and control of flow, pressure, liquid level, viscosity and specific gravity. The booklet is profusely illustrated containing performance characteristics and schematic diagrams of the various systems.

UHF Booklet. The Brach Mfg. Corp., 200 Central Ave., Newark 4, N. J., has available a booklet entitled "How to Select UHF TV Antennas". The introduction to the booklet outlines the major differences between vhf and uhf and also the different problems that may arise. Example 1 takes into account the primary signal area where there are no reflections. Example 2 describes the primary area with reflections and interference. Example 3 discusses primary areas with both uhf and rhf. Examples 4, 5 and 6 discuss respectively the problems of installation that arise in primary uhf areas with medium vhf signals, fringe areas for uhf only, and indoor reception with uhf. Example 7 outlines the new Mul-Tels designed primarily for uhf multiple installation systems.

General Catalog. ThordarsonMeissner, Mt. Carmel, Ill. The No. 53-A general catalog includes such new products as a novice transmitter kit and a new highfidelity 10 -w amplifier. The catalog is packed full of information and specifications on the compary's line of a-m/f-m tuners, receivers and amplifiers. Included also is a section on receiver and amplifier kits, for those who like to build their own. Many new items have been added to the regular list of coils, chokes and traps.

X-Ray Spectrograph Chart. North American Philips Co., Inc., 750 S . Fulton Ave., Mt. Vernon, N. Y., has available a new $17 \frac{1}{2} \times 22 \frac{1}{2}$ in. X-ray spectrograph chart showing characteristic secondary x-ray beams for elements from sodium (Atomic No. 11) to uranium (Atomic No. 92). The new chart is suitable for wall display and will greatly assist scientific personnel in understand-

You can't shake, pull or rotate a tube out of place when it's secured by a Birtcher Tube Clamp. The tube is there to stay. Made of Stainless Steel, the Birtcher Tube Clamp is impervious to wear and weather.
BIRTCHER TUBE CLAMPS can be used in the most confined spaces of any compact electronic device. Added stray capacity is kept at a minimum. Weight of tube clamp is negligible.
Millions of Birtcher Tube Clamps are in use in all parts of the world. They're recommended for all types of tubes: glass or metal-chassis or sub-chassis mounted.

THERE'S A BIRTCHER TUBE CLAMP FOR EVERY STANDARD AND MINIATURE TUBE!

Write for samples, catalogue and price lists.
THE BIRTCHER CORPORATION 4371 Valley Blvd.
Los Angeles 32, Calif.

IN-RES.CO TYPES SM-15 \& SM-30 wipe wouno RESISTORS
 SUB-MINIMTURE weathar-tested midgats

Type SM-15 and SM-30 Resistors offer three vital advantages - subminiature size, weather resistant construction and high resistance. The elimination of center hole mounting and the inclusion of axial leads increases winding area and results in 25% greater resistance value than resistors of standard design. Special coating is moisture and fungus proof and designed to meet JAN-R-93 specifications. Sealed in Bakelite construction affords additional climatic protectection. As ratings are conservative, types SM- 15 and SM-30 can be specified with confidence for service under rigorous conditions.

ASK FOR THE NEW RESISTOR HANDBOOK Contains complete data on resisfors for every purpose and their recommended appifacions. Prease pany letterhead.

TYPE SM-15
5/16" DIA. x 3/8" LG

TYPE SN 30
5/16" DIA. x 3/4" LG

APPLICATION-DESIGNED RESISTORS FOR ELECTRONICS AND INSTRUMENTATION

STANDARD

vLF

14 kc to 250 kc

Commercial Equivalent of AN/URM-6B.
Very low frequencies.

150kc to 25 mc

Cammercial Equivalent of AN/PRM-1A. Self.contained batteries. A.C. supply optional. Includes standard broadcast bend, radio range, WWV, and commu-
nications frequencies. Has B.F.O.

VHF
15 mc to 400 mc
Commercial Equivalent of TS-587/U.
Frequency range includes FM and TV Bands.

375 mc to 1000 mc
Commercial Equivalent of AN/URM-17.
Frequency range includes Citizens Band and UHF color TV Band.

These instruments comply with test equipment requirements of such radio interference specifications as MIL-I-6181, MIL--16910, PRO-MIL-S1D-225, ASA C63.2, 16E4, AN-I-24a, AN-I-42, AN-I.27a, MIL-I-6722 and others.

STODDART AIRCRAFT RADIO Co., Inc.

6644-A Santa Monica Boulevard, Hollywood 38, California • Hillside 9294
ing the theory and principles of x-ray spectrography and will be useful in handling actual problems. It shows K Alpha and K Beta lines for mica analyzing crystal, for quarts analyzing crystal, for lithium fluoride analyzing crystal and rock salt analyzing crystal. It also shows L Alpha ${ }_{1}$ and L Beta, lines, 1st and 2nd orders, for rock salt analyzing crystal. The horizontal scale on the chart shows 2 Theta Angle in degrees, as well as wavelengths in Angstroms for all elements under various conditions.

Antennas \& Accessories. United Catalog Publishers, 110 Laffayette St., New York 13, N. Y., has available a 76-page booklet cataloging radio and tv antenna systems, antennas and accessories, and giving detailed specifications, illustrations, descriptions and prices. It covers the products of the 32 leading manufacturers and includes f-m, a-m and uhf antennas, ty towers, masts, tv boosters, insulators, wire and mounting hardware, among other items.

Germanium Diodes. Amperex Electronic Corp., 230 Duffy Ave., Hicksville, Long Island, N. Y. A single-sheet bulletin announces the addition of a line of seven germanium diodes of the hermetically sealed glass variety which are not affected by atmospheric conditions of humidity, altitude and extremely low temperature. Four of the diodes described are electrically interchangeable with well-known standard types, and the others are new. All are highly resistant to shock and vibration. Characteristics, ratings and curves are included.

Electrometer. Special Instruments Laboratory, Inc., Knoxville, Tenn., has published a single-sheet bulletin illustrating and describing the model 145 electrometer, an a-c operated sensitive d-c amplifier of very high input impedance and excellent stability. The instrument discussed measure voltages of 0 to 150 mv directly on a panel meter, and it may be used to measure currents from 10^{-3} to 10^{-16} amperes either directly or by the slide-back voltage method. The unit described

ENGINEERS

Electronic Aeronautical Servomechanical Telemetering Mechanical

TECHNICIANS

Electronic Mechanical
APPLY NOW for this long-term testing program to:
FIELD TEST DIRECTOR BELL AIRCRAFT CORPORATION NAVAL AIR MISSILE TEST CENTER POINT MUGU
PORT HUENEME, CALIFORNIA

ELECTRONICALLY REGLLATED

 LABORATORYPOWER SUPPLIES
 \$1/4" $\times 19^{\prime \prime}$ wionit 16 Les. than 10 millivolts rms
For complete information write for Bulletin E
himbd blectroyios
CORORA NEW YORK

the Impregnating Department applies the final proiective coating to precision-made Coto Coils. Each coil is pre-heated, immersed in varnish and drained . . . sometimes 3 or 4 times. The varnish finish, baked in these modern ovens, not noted with varnish coating only provides a hard, durable outer surface but completely fills all voids within the coil, resulting in a solid, pocket-free moss. Such modern production tacilities, plus 35 years of experience, combine to make Coto Coils the first choice tor engineered coils. Coto-Coil Company, 65 Pavilion Avenue, Providence 5, R. I.
$\mathrm{ecls}^{\mathrm{Cl}} \mathrm{O}$
Coto

Coils

$$
{ }^{2 O U N}
$$

Unmodulated Carrier

Modulation Index 1.3

FM DEVIATION METER

Modulation Index 2.4 The Carrier "Disappears"

For carriers in the range 2.5 to 200 megacyeles, this ruggedized deviation meter is ideal. With crystal-standardized deviation
 ranges of 5,25 and 75 kilocycles, alternative high- and low-level buffered inlets, visual checking for optimum tuning and level, together with a separately buffered audio outlet, FM Deviation Meter TF 934 incorporates every desirable refinement. There are no critical tuned circuits to drift and the overall demodulation distortion is less than 0.1 per cent.

MARCONI instruments

Specialists in Communication Test Equipment
23-25 BEAVER STREET • NEW YORK 4
CANADA: CANADIAN MARCONI CO., MARCONI BUILDING, 2442 TRENTON AVENUE, MONTREAL ENGLAND: Head Office: MARCONI INSTRUMENTS LIMITED . ST. ALBANS. HERTS.
Managing Agents in Export: MARCONI'S WIRELESS TELEGRAPH COMPANY LIMITED MARCONI HOUSE, STRAND - LONDON. W.C. 2
also measures resistances from 10^{8} to 10^{13} ohms. Circuit and operation specifications are included.

TV Replacement Guide. Thordar-son-Meissner, Seventh and Bellmont, Mt. Carmel, Ill., has released a new to replacement guide handbook for the service industry. Complete up-to-the-minute information is arranged alphabetically by manufacturers and their model numbers, for over 2,500 tv models. Manufacturers' parts numbers and the Thordarson-Meissner replacement types are listed for power and filament transformers, filter chokes, audio, vertical and horizontal output transformers, focus coils, booster transformers, horizontal and vertical blocking transformers and deflection yokes. In addition, the guide contains much other information, such as color codes on all kinds of transformers, resistors, capacitors and coils.

Analog Computer. Computer Corp. of America, New York, N. Y., has released a 12-page catalog that gives full product description and specifications of IDA (IntegroDifferential Analyzer). The catalog discusses the general theory of analog computers and describes the method of setting up problems for solution. Three pages of typical examples in various fields of dynamics furnish graphical illustration of these principles. Also described is the new NLU-2 function simulator, which makes possible the addition of backlash, dead-zone and limit stops to IDA or any other analog computer.

Cords, Tapes \& Sleevings. Insulation Manufacturers Corp., 565 W. Washington Blvd., Chicago 6, Ill. Cotton, glass and asbestos woven tapes, braided sleevings, and cords for electrical insulating purposes are fully described in a new 28 -page catalog. Information on applications, properties, technical data, sizes, types and packaging is included. Products described are used in motors, coils, ty sets, transformers and other electrical units in a variety of ways. As well as covering the Imcor, Electra, Fiberglas, R/M and Asbeston brands of

FWHCHONIC STITNDINO

The recently developed and improved LINDGREN DOUBLE SHIELDED SCREEN ROOMS - designed, engineered and constructed to incorporate True Insulated double shielding-FOR MAXIMUM shielding efficiency and the highest possible attenuation. TWO close mesh copper screens are each physically separated and electrically insulated from each other. Each screen is independently grounded. No soldered connections. A true laboratory screen room made in sections-casily assembled. Can be supplied in Special Sizes. Built to be a permonent investment.

QUICK FACTS by return mail, with construction diagrams and engineering test reports. Write us today.

ERIK A. LINDGREN \& ASSOCIATES

 Established 1939> 4515-17 N. Ravenswood Avenue Chicago 40 , Illinois Phone Sunnyside $4-0710$

Sales Engineering Representatives Throughout The United States

MINIATURIZATION

Thru constant research, Acme transformer engineers have developed designs, that save pounds and ounces in weight and provide long-life performance. We build miniature transformers by the thousands, each individually performance tested.

PRESSURIZEDSEAL

Here is a transformer design with terminals sealed under pressure with a resilient sleeve that accommodates expansion and contraction of temperature changes.

PLASTIC COATING

This is one of a number of ways that plastic has been adapted to seal transformers or individual cails far service in humid atmospheres or under conditions which breed fungi.

Acmesim Flectric

ACME ELECTRIC CORPORATION
312 WATER STREET • CUBA, NEW YORK IN CANADA: ACME ELECTRIC CORPORATION LTI, 50 NORTH LINE ROAD TORONTO, CANADA

WARREN WIRE CO.
 POWNAL
 VERMONT

Producers of Nylon, Plain Enamel and Served Magnet Wire, Tinned and Bare Copper Wire.

cords, tapes and sleevings, the catalog explains characteristics of the basic cotton, glass and asbestos fibers.

Audio Facilities for Schools. Radio - Television Manufacturers Association 777-14th St. N.W., Washington 5, D. C. The Association's School Equipment Committee has available a new booklet on audio facilities for school use. This booklet, the title of which is "Teaching with Radio, Audio, Recording and Television Equipment," combines and brings up to date material contained in the three former Committee publications and also includes information on the use of tv in public schools. It was prepared with the assistance of a group of educators appointed by the U.S. Office of Education.

Strip Chart Potentiometer. Minne-apolis-Honeywell Regulator Co., Brown Instruments Div., Wayne and Windrim Aves., Philadelphia 44 Pa . Specification sheet 179 illustrates and gives full details of the new Brown ElectroniK strip chart potentiometer with two-second full scale pen travel for 60 -cycle operation. The instrument described has a calibrated accuracy within $\pm \frac{3}{8}$ of 1.0 percent of scale span for spans in excess of 12 mv ; within ± 0.045 mv for spans less than 12 mv .

Sound-Powered Communications Equipment. The Wheeler Insulated Wire Co., Division of The Sperry Corp., Waterbury 20, Conn., offers a new file-size comprehensive catalog bulletin covering soundpowered communications equipment for industrial and commercial use. Designated as bulletin SA-25, it includes installation information, wiring and dimension diagrams and description of special instruments.

Microwave Products. Microwave Associates, Inc., 22 Cummington St., Boston 15, Mass., announces the availability of the 8 -page cata$\log 52 \mathrm{~A}$. Over eighty products are described, including magnetrons, radar gas-switching tubes, silicon diodes, waveguide components and test equipment for the millimeter

Available ranges 100 valt; to 35,000 volts
Mcasure true R.M.S values on A.C., no waveform or frequency errors

NO POWER CONSUMPTION
Leakage resistance greater than one million megohms. These meters may be used to measure STATIC ELECTRICITY!
Ideal for measuring high voltage power supplies with zero current drain. Rugged well-damped movement. All elements surrounded by metal shielding for aecuracy and safety.

Write for bulletin
RAWSON ELECTRICAL INSTRUMENT COMPANY 111 POTTER ST CAMBFIDGE, MASS.

Chicago Representatives

Millions of Coils soound on PARAMOUNT Paper 7abes

Stock Arbors or Special Tubes to Meet Every Need SQUARE, ROUND, RECTANGULAR $.450^{\prime \prime}$ to $25^{\prime \prime}$ I.P. ${ }^{1 / 2 \prime \prime}$ to $30^{\prime \prime}$ long. Toleronces $\pm .002^{\prime \prime}$

You find PARAMOUNT Spiral Wound Paper Tubes at the core of coil dependability in nationally known products and equipment. That's proof they're made right to wind right and stay right on the job. Hi-Dielectric. Hi-Strength. Kraft, Fish Paper, Red Rope, or any combination, wound on automatic machines.

NEW! Shellac-Bound Kraft paper tubing. Heated shellac forms an adhesive bond between the laminations. Absolutely moisture resistant.

SEND FOR ARBOR LIST OF OVER 1000 SIZES

Write on company lefterhead for stock arbor list. Includes many odd sizes.

Deracalar arma PAPER TUBE CORP.

616 LAFAYETTE ST., FORT WAYNE, IND.
1frs. of Paper Tubing for the Eleclicical Industry Since 193

John P. Poth,
Chief Engineer, ERCO says
'Precision potentiometers play a primary part in the constructoin of the present day Operational Flight Trainers and Simulators developed by the
Engincering and Research Corporation. They constitute a basic part of the high accuracy analog computers which solve varied and comp-ex mathematical functions in completely simulating fight of all types of modern aircraft. Such potentiometers are a necessary part of circuits for multiplication and division in the gene

Photos show complete simulator and internal application of precision
RVC-2 "UNITIZED" CONSTRUCTION provides:

- Maximum versatility
- Units interchangeable
- Standardization of individual units
- Maximum economy
- Ease of service and maintenance
- Ideal for both experimental and production application
- Meet the most exacting standards of quality and performance

small or large quantities
 with Technologr
lostrument Corp.

ENGINEERING REPRESENTATIVES
Cleveland, Ohio - PRospect 1-6171 Arnprior, Ontario. Con. - Arnpaior 400 Chicago, III. - UPtown 8.1141 Roch New York, N. Y. - MUrray Hil Rochester. N. Y. - Canroe 3143 Cambridge, Mass.- ELiot 4-1751
Canaan Conn. - Canaan 649
Hollywood, Cal. - Hollywood $9-6305$ Dayton, Ohio - Michigon 8721 Dallas, Texas - Dlxon 9918.

Baltimore. Md. - Plaza 7694

SERVOTROL company

114 WEST ILLINOIS SIREET, CHICAGO 10. ILLINOIS - TEL. SUPERIOR 7.3082
trol - tel. framinigham 4421
and centimeter wavelengths. The research and production facilities are also described with numerous illustrations.

Snap Nut Fasteners. Prestole Corp., Toledo, Ohio. Bulletin 8000-A gives complete engineering and application data on snap nut fasteners that have been popular with production personnel as a means of securing front mounting, and/or blind assembly applications with metal screws or studs. The fasteners described allow high speed assembly and prevent "deadtight" fastening that might craze enameled or painted surfaces.

Small High-Reliability Tubes. General Electric Co., 1 River Road, Schenectady 5, N. Y., has published a new booklet describing the essential characteristics of 17 Five Star miniature and 8 subminiature high reliability tubes. Publication ETD-548A covers tubes designed for use in critical applications, both industrial and military, in which operational dependability is essential to protect life, customer's investment or product reputation. Included in the data are the specific differences between individual Five Star Tubes and their stand-ard-tube prototypes, heater ratings, maximum design center ratings and operating characteristics.

Digital Recorder. Berkeley Scientific, Division of Beckman Instruments Inc., Richmond, Calif., has available a single-sheet, loose-leafperforated bulletin dealing with the series 1550 digital recorder that provides a simple, reliable and inexpensive means of converting electronic count information into printed form. Illustrations, description, basic design information, operation data and specifications are included.

High-Current Test Unit. MultiCorp., Harrison, N. J. Bulletin 1005-111 announces the development of a portable high-current test unit designed primarily for use by electrical utilities and larger industrials. Principal uses of the unit described include testing and calibrating oil circuit reclosers,

For SPECIFIED PERFORMANCE Specify JELLIFF RESISTANCE WIRE

COMPLETE CONTROL OF MANUFACTURE A WIDE RANGE OF EXPERIENCE a WIDE RANGE OF ALLOYS make JELLIFF the ideal source of Resistance Wire to assure your Product's

Performance According to Specs.

Precision resistors—rheostats-relays-thermocouples-ohmmeters —bridges—high-temperature furnaces can all benefit from the PLUS-PERFORMANCE of JELLIFF RESISTANCE WIRE

Detailed Enquiries Welcomed. Address Dept. 17.

POMPAB WORK POSITIONERS

HERE'S HOW OTHERS DO IT

POWRARM cuts costs by increasing every worker's productivity. It gives the worker a powerful third hand to hold work while two hands produce. That's why POWRARM works on the most efficient assembly lines in America today, and belongs on yours. Write us about your production "headache" . . . we'll show you how POWRARM can cure it.

Write For Catalog $101 E$
32 informative pages, FREE
$D C=A C$

CHOPPERS

A model for every use.
$10-500$ cycles
Single pole
60 cycles
Single pole and double pole
Make-before-break contacts

22 ELKINS STREET
SOUTH BOSTON 27. MASS.

"Sken" SkeW antenna*

CSP transformer breakers, sectionalizers, circuit breakers, motor overload relays, current transformers, fuse links and overcurrent relays of all types. Also available with the bulletin is a partial list of Multi-Amp users.

Magnetic Amplifiers. Karl-Douglas Associates, 3160 W. El Segundo Blvd., Hawthorne, Calif., have released a brochure describing their line of magnetic amplifiers. The publication describes the six important advantages of magnetic amplifiers over other power control amplifier designs; lists typical performance specifications for 60 -cycle and 400 -cycle units; and lists the various applications where they can be used.

Printed Circuits. Electralab, Inc., 105 First St., Cambridge 41, Mass. A recent 8 -page catalog contains a picture story showing the company's facilities for engineering and designing printed circuits in addition to the large scale production of this type of assembly. Included is a list of 17 of the many electronic applications that have been engineered by the company utilizing printed circuits and unitization technicules.

Servo Amplifiers. Industrial Control Co., Wyandanch, L. I., N. Y., has available a booklet dealing with a line of standard servo amplifiers that lead the way to the quick and facile use of servo systems, and obsolete the development delays and expense otherwise necessary. Truly versatile, with adjustable parameters, the instruments discussed mate with a broad range of gear ratios and load constants. Illustrations, specifications and applications are given for the model 410-A and 423-A servo amplifiers, model 100-A dynamic analyzer, model 204-A null detector, model 200 -A d-c millivoltmeter and model 302 -A motor control. Also included is a servo data sheet that will enable one to define all his servo performance requirements.

Resistors and Controls. Clarostat Mfg. Co., Inc., Dover, N. H. An exceptionally wide choice of resistors, controls and resistance de-

Now...
a new
group of
TERMINALS
especially
designed
for use in the U.H.F. region... available in both feed-thru and stand-off types . . . for hermetic or non-hermetic applications.

50 MICRO VOLTS TO 500 VOLTS
 model 47 VOLTMETER

SELF-CONTAINED ALL AC OPERATED UNIT An extremely sensitive amplifier type instrument that serves simultancously as a voltmeter and high gain amplifier.

- Accuracy $\pm 2 \%$ from 15 cycles to 30 kc .
- Input impedance 1 megohm pius 15 uuf. shunt capacity.
- Amplifier Gain 23000

- Output indicator for microphones of all
types.
- Low level phonograph pickups
pickups.
- Sound level measurements.
- Gain and frequency measurements for all
- types of audio equipment.
- Densitometric measurements in photography
- and film production.
- Light flux measurements in conjunction with ohoto cells.

Instrument Electronics Sorp.
90 MAIN STREET PORT WASHINGTON, N. Y.

HOW IO SQUEEZE PENNIES

OUT OF

UPSET SPECIALS COSTS
Specially designed upset products are solving thousands of problems. Dozens of design pointers on them are yours for the asking. Send us your sketches, prints, finished products for suggestions.

MACHINE SCREWS AND SPECIAL FASTENERS ARE OUR BUSINESS

THE PROGRESSIVE

 MANUFACTURING COMPANY 50 NORWOOD ST., TORRINGTON, CONN.vices is presented in the latest catalog, No. 52. The catalog features expanded listings of carbon and wire-wound controls, including Pick-A-Shaft or field-inserted-shaft controls taking any one of 12 different shaft types, plus the nonmetallic shaft and the high-voltage coupler. For the first time the air-craft-type metal-cased power rheostats are offered, together with miniaturized carbon and wirewound controls, and the outdoortheatre L-pad.

Electrical Embedment Resin. Minnesota Mining and Mfy. Co., 900 Fauquier St., St. Paul 6, Minn. A new industrial technique embedding electrical components in "Scotchcast" brand electrical insulating resins-is described in an 8-page, illustrated booklet. Applications for both "Scotchcast" resin No. 1 (hot pouring) and "Scotchcast" resin No. 2 (cold pouring) are given, the use of fillers to obtain special characteristics is discussed, and casting techniques are outlined briefly. The outstanding properties of these epoxy "Scotchcast" resins-moisture resistance, dielectric strength, adhesion, low shrinkage and stability over a wide range of temperatures-are presented in detail on a technical data page.

Two-Way Radio. General Electric Co., Syracuse, N. Y. A new 8 -page illustrated booklet discusses the use of two-way radio for better coordination of men, materials and machines. The booklet, titled "Instant Communication," is slanted to those businesses using materials handling and emergency service equipments, and others who have plant protection problems. It outlines the use of two-way radio in numerous industries, and shows equipment now available for a wide variety of applications. The new publication also carries a list of 27 GE offices throughout the U. S., from which advisory service is now available on communications problems.

Flexible Cords. Whitney Blake Co., New Haven 14, Conn., has available an illustrated 24-page bulletin that includes all of the new Underwriters' classifications for its flexi-

SENSITVE MINATURE RELAYS

PERFECTLY COUNTER-BALANCED
Contact arrangements up to and including DP DT 3 Amp at 28 volts D.C., or 100 Milliamperes at 150 volts D.C. resistive load.

Hermetically Sealed.

Required coil power as low as 20 milliwatts.

Coil resistance up to 15,000 ohms.

Weight, maximum 3.5 oz .

DUE TO ITS PERFECTLY COUNTER-BALANCED FEATURES THIS RELAY WILL WITHSTAND HIGH ACCELERATION, VIBRATION, SHOCK AND TUMBLING

Mass Production Requirements Invited
Detailed information on request.

Phaostron Company • 151 Pasadena Ave. - South Pasadena, Calif.

KENYON
 TRANSFORMERS
 FOR
 - MIL Applications
 - Radar
 - Broadcast
 - Atomic Energy Equipment
 - Special Machinery
 - Automatic Controls
 - Experimental Laboratories

Write for details
KENYON TRANSFORMER CO., Inc.
840 Barry Strect, New York 59, N. Y.

National makes a complete line of insulated and non-insulated, flexible and rigid shaft couplings designed for a wide variety of practical applications. Free from backlash, mechanically strong, and exceptionally smooth in operation, they fit all standard shaft diameters. Write for drawings and specifications.

VELVET VERNIER MECHANISMS

National's famous line of velvet vernier mechanisms has been accepted by well-known commercial users as well as individual builders. Having a standard 5 to 1 ratio, they are available with either $3 / 16^{\prime \prime}$ or $1 / 4^{\prime \prime}$ shafts. Types are also available with insulated or noninsulated output hubs for connecting to $1 / 4^{\prime \prime}$ output shafts. Write for drawings and specifications.

Write for drawings

ble cords. Featuring catalog data on Dynaprene and rubber-jacketed cords as well as braid-covered types, the bulletin also gives information on cord selection, how to order specialties and technical data of interest to users of wire and cable. It includes illustrations of factory operations and laboratory facilities.

Transformer Catalog. Thordar-son-Meissner, Mt. Carmel, Ill., has announced its new No. 400-K transformer catalog. It contains unusually complete listings of replacement types of power, filament and audio transformers for the service industry, as well as standard types. A special section is devoted to various types of transformers used in the tv service field. Many special transformers, such as vibrator, isolation and band-pass speech filter types are also listed in the catalog.

C-R Tube Reflectance Meter. Gardner Laboratory, Inc., 4723 Elm St., Bethesda 14, Md. Bulletin 120 covers the portable Glossmeter for television tube face plates. The instrument discussed is highly versatile and convenient for measuring reflectance from any type of tube face with a radius of curvature greater than 12 in . An illustration, descriptive of the instrument and method of operation, is included.

Embedded Selenium Rectifiers. Sarkes Tarzian, Inc., 415 N. College Ave., Bloomington, Ind., has published a new 4-page folder dealing with embedded selenum rectifiers. (Embedments are designed principally for use where because of environmental conditions or extreme altitudes, standard convection cooled painted rectifiers are not suitable.) Designated as Number B-1, this catalog gives detailed information on the various types of embedments made by the firm. Illustrations and dimensional diagrams are included.

Audio Catalog. Terminal Radio Corp., 85 Cortlandt St., New York 7, N. Y., has published a 132 -page audio equipment catalog. Besides fifty pages of high-fidelity home music system components, the book

Precision drilling made easy!

Phillips \& Hiss 204-c

Sensitive "Feel"

Sensitive Speed Control: Foot-operated, leaves both hands free

High Precision: Selected Chuck and Bearings. Spindle true within $.0002^{\prime \prime}$. Table square $.0005^{\prime \prime}$ in $5^{\prime \prime}$ circle. Permanent accuracy, castings annealed and ground.

WRITE: Bulletin E2
 Phillips \& Hiss Co., Inc. 1155 N. McCadden Place Hollywood 38, California

FOR STRAIN GAGE APPLICATIONS

THE TYPE 200

d-c supply furnishes one
ampere at zero to 15 volts, for the most exacting applications. The output will vary less than .005 volt for 10% line voltage changes. Drift is low, and can be completely eliminated by an accessory plug-in unit which provides chopper stabilization. Write for details.

LABORATORIES

412 WOODWARD BLVD. PASADENA 10, CALIF

A NEW COMPLETE SERVICE ON

 .

Century $\operatorname{modEL} 1809$ BRIDGE CONTROL UNIT

FOR VIBRATION AND STRESS ANALYSIS

Designed as a companion unit to Century's famous Model 409 Oscillograph, the Model 1809 Bridge Control Unit is the latest addition to Century's line of industry-standard vibration and stress analyzing equipment. Packaged in a small, compact space, the unit contains all of the facilities necessary for use with 12 channels of resistance strain gages or bridge-type transducers. Where used with the Model 409 Oscillograph, it is necessary only to connect strain gages and power source to have a complete stress-strain measuring and recording system, small and rugged enough to be placed in an aircraft wing tip or guided missile warhead.

features:

Size: $4^{1 / 2^{\prime \prime}} \times 7^{\prime \prime} \times 11^{\prime \prime}$.
Weight: $101 / 2$ pounds.
Aluminum case.
Up to 12 chonnels.
For any resistance strain gage or bridge-type transducer.
May be used with direct indicating instrument.
Power: Control unit, 22.28 Volt D.C.
Strain gage, 6.28 Volt D.C.
Write for Bulletin CGC-307

MODEL 409 OSCILLOGRAPH

The Century Model 409 Oscillograph has been designed for recording dato where space and weight requirements are limited. The Oscillograph has been tested to record faithfully while subjected to accelerations up to 20 G 's.

FEATURES:
Size: $5^{\prime \prime} \times 6^{15} / 16^{\prime \prime} \times 11^{15 / 16^{\prime \prime}}$.
Weight: 13 pounds.
Cast aluminum case.
Paper speeds variable $1 / 2^{\prime \prime}$ to $6^{\prime \prime}$ and $2^{\prime \prime}$ to $24^{\prime \prime}$ per second.

Detachable daylight looding magazine with a copacity of $35 / 8^{\prime \prime} \times 100^{\prime}$ paper.

2 to 14 individual channels.
Trace identification.
Trace viewing

Write for Bulletin CGC-303

Century geophysigal corporation TULSA, OKLAHOHA

4447 No. Bedine
Philodelphic 40, Po

3406 W. Washington Blyd. 238 tofayette St. 309 Growder St. tos Angeles 18, Colf. Doyton 2, Ohio Dollos, Texas
illustrates and describes seventysix pages full of public address, institutional, recording and broadcast equipment as well as audio test instruments and similar specialized equipment.

Shaded Pole Motors. Barber-Colman Co., Rockford, Ill. Motor sheet F 4271-2 describes a complete line of unidirectional, reversible and synchronous shaded pole motors for servomechanisms, communication equipment, industrial instruments and other uses. The publication is available on request.

Retaining Rings. Waldes Kohinoor, Inc., 47-16 Austel Place, Long Island City 1, N. Y. The new 52page retaining ring catalog is packed with engineering specifications, data and other useful information covering 17 different types of Truare rings and more than 600 different sizes. Designed to help engineers properly select and use the rings to best advantage, the catalog devotes 28 pages to data and charts giving ring dimensions, groove dimensions, clearance, allowable thrust loads, safety rpiu limits and countless other valuable data. Six pages graphically illustrate typical cost-cutting applications and at-random field applications covering self-locking ring types, basic ring types, rings for taking up end-play and rings applied radially. Assembly and acessory tools designed to handle retaining rings on a speedy production line basis are illustrated and described in detail.

Wiring and Insulation. The William Brand and Co., Inc., North and Valley Sts., Willimantic, Conn., has released a new wiring and insulation manual entitled "Here's How Turbonics Will Assist You in Solving your Complicated Wiring System and Insulation Problems." The manual explains how to obtain pertinent information required to permit uninterrupted operation of any electrical unit or component from a wiring and insulation point of view. It is intended particularly for all aircraft, design, development engineers who are continuously faced with the trend toward lighter weight, smaller space factor, better

Heat

VULCAN
 ELECTRIC COMPANY
 DANVERS 10. MASS

STAR low-loss STEATITE has proved an ideal insulation for electronic applications. It is a strong, dense material with excellent dielectric and mechanical strength.

Every STAR STEATITE part is engineered for your specific job and precision made to meet demands for dimensiona! accuracy. And STAR'S facilities for volume output assure you a steady flow of material to maintain your production schedules.

The STAR PORCELAIN COMPANY

49 Muirhead Avenue
Trenton, N. J.

PRIMARY BATTERIES for your Specialized Needs

DRY TYPES

78 Standard Industrial, Laboratory and Government Types.

LAB-BILT BATTERIES
Our engineers will design and create to your requirements. Send us your specifications.

Precision-built, low-cost, battery-operatedavailable for delivery now.

Send for FREE Catalogs

RESERVE TYPES
Water activated "One Shot" Batteries.

SPECIALTY BALIERY GOMPANY

 A Subsidiary of the CHZD S Ray-O-Vac CompanyMADISON 10. WISGONSIN

Westinghouse makes SURE. with BOWSER test equipment

$\$$
Electronic equipment manufactured by the Electronics Division of Westinghouse Electric in Baltimore must meet rigid performance specifications. To evaluate this equipment under controlled atmospheric conditions, Westinghouse uses a Bowser Walk-In Room which will simulate temperatures from $-85^{\circ} \mathrm{F}$. to $+176^{\circ} \mathrm{F}$., and relative humidity from 20% to 95%. In addition, pressures found at altitudes up to 80,000 feet can be created. The entire test facility is operated and controlled from a remote control station.

The complete room was designed, built and installed by Bowser.
This unit is an example of what Bowser can do to help anyone whose products require testing, processing, or stabilized storage. Environmental simulation units, as well as other Bowser equipment, can be

PROGRESS REPORT
To meet the increasing demand for Bowser test equipment, a new building containing 5,000 sq. ft. of floor space has just been added to our facilities ... and to carry on our policy of independent research, we have doubled our engineering staff.

CHECK AND MAIL TODAY engineered to meet individual requirements with unlimited specifications for size, temperature and humidity ranges and peak altitude.

Why not take advantage of Bowser's long continuous experience, the first and best in the field. Our trained engineers are available for consultation at your plant without obligation.

electrical properties and greater temperature extremes problems.

Setting \& Adjustment of Adapters. Kinetix Instrument Co., Inc., 902 Broadway, New York 10, N. Y., has announced a 2 -page catalog sheet illustrating and describing tools for setting and adjustment of adapters on synchros, resolvers and servo motors. The purpose is described. Also included are diagrammatic methods of recommended mounting.

Synchro Electrical Transformer. Kinetix Instrument Co., Inc., 902 Broadway, New York 10, N. Y. For an illustrated description of receiving electrically the angular position of synchro transmitter rotor and inducing a voltage in the transformer rotor which falls to a null when matched to the angular position of the transmitter, see a recent 2 -page perforated catalog. Average electrical characteristics are included.

Microwave Transmission Line. Product Development Co., Inc., 307 Bergen Ave., Kearny, N. J. Technical bulletin No. 28, entitled "Microwave Transmission Line Measured Technical Data" is available upon written request. Complete technical data concerning frequency in mc, peak volts, approximate weight per 20 -ft section and nominal characteristic impedance are included.

Potentiometers and Noise. Technology Instrument Corp., 531 Main St., Acton, Mass., has available on request Laboratory Report No. 6. It contains an article entitled "Precision Potentiometers and Noise" by Joseph R. Atieri. Application of the Ponogometer production noise tester is also included as a feature of this report. Causes of potentiometer noise, definition of noise and advantages of the Ponogometer are detailed.

Retractile Cords. Koiled Kords Inc., Box K, New Haven 14, Conn., has available an 8-page bulletin on retractile cords for general communication and power applications. Containing catalog data and in-

Augat Adjustable Tube Clamps

 are 3 ways more dependable!1. Made of 18% nickel silver for greater fatigue value, tensile strength and durability.
2. Available in an endless variety for standard and special type tubes.
3. Rigidly tested; meets all requirements of government specifications.

Wiite todoy for Catalog and Samples

AUGAT BROS. INC.

31 PERRY AVENUE • ATTLEBORO, MASS.

PDX
 WIRE FORMING SPECIALISTS

Precision Parts to meet your Production and Engincering needs. From .002" dia. to $125^{\prime \prime}$ dia. Radio tube parts-Stampings-Drawings Modern facilities, high-production equipment.

Metal Crystal Holder Parts
Send sketch or print for quotation. PIX MANUFACTURING CO., Inc. 24A Bedford St., Newark 3, N. J.

Another example of waterman pioneering, a compact, portable instrument for precision pulse measurements adaptable for all electronic work, including radar and TV. S-4-A SAR PULSESCOPE will portray all attributes of the pulse; such as shape, amplitude, duration and time displacement. In 5 mode of operation, the unit functions as a wide band oscilloscope, with optional video delay, in either repetitive or triggered sweep conditions. In A mode of operation the unit functions as a precision time measuring device, with internal crystal controlled markers available for self calibration. In \mathbf{R} mode of operation a desired small segment of A Sweep is expanded to fll the face of the tube for detailed observation.

Video Amplifler band pass up to $11 \mathrm{mc} .$. optional Video delay $0.55 \mu \mathrm{~s}$... Pulse rise and fall time better than $0.07 \mu \mathrm{~s}$... Video sensitivity of 0.5 p to $\mathrm{p} /$ inch ... S Sweep 80 cycles to 400 KC either triggered or repetitive... A Sweep $1.2 \mu \mathrm{~s}$ to $12,000 \mu \mathrm{~s}$, R Delay $3 \mu \mathrm{~s}$ to $10,000 \mu \mathrm{~s}$... Directly calibrated on a precision dial... R Pedestal (or sweep) 2.4μ s to $24 \mu \mathrm{~s}$... A \& R Sweep Triggers available externally .. Internal crystal markers of $10 \mu \mathrm{~s} \pm 50 \mu \mathrm{~s}$.. Built in precision amplitude calibration.. Operates on 50 to 1000 cycles at 115 V AC.

WAIERMA PROOLCTS CO. INC.

PHILADELPHIA 25, PA.
ABIE ADDRESS: POKETSCOPE
WATERMAN PRODUCTS INCLUDE:
S-5-A LAB PULSESCOPE S-10-B GENERAL POCKETSCOPE S-11-A INDUSTRIAL POCKETSCOPE S-14-A HIGH GAIN POCKETSCOPE S-14-B WIDE BAND POCKETSCOPE S-15-A TWIN TUBE POCKETSCOPE
Also RAYONIC Cathode Ray Tubes RAKSCOPES and other equipment

to the

ELECTRICAL ENGINEER

or
PHYSICIST
with experience in

RADAR

or

ELECTRONICS

Hughes Research and Development Laboratories, one of the nation's leading electronics organizations, are now creating a number of new openings in an important phase of their operations.

Here is what one of these positions offers you:

THE COMPANY

Hughes Research and Development Laboratories, located in Southern California, are presently engaged in the development and production of advanced radar systems, electronic computers and guided missiles.

THE NEW OPENINGS

The positions are for men who will serve as technical advisors to government agencies and companies purchasing Hughes equip-ment-also as technical consultants with engineers of other companies working on associated equipment. Your specific job would be essentially to help insure successful operation of Hughes equipment in the field.

THE TRAINING

On joining our organization, you will work in the Laboratories for several months to become thoroughly familiar with the equipnent which you will later help users to understand and properly employ. If you have already had radar or electronics experience, you will find this knowledge helpful in your new work.

WhERE YOU WORK

After your period of train-ing-at full pay - you may (1) remain with the Laboratories in Southern California in an instructive or administrative capacity, (2) become the Hughes representative at a company where our equipment is being installed, or (3) be the

Hughes representative at a military base in this country or overseas (single men only). Compensation is made for traveling and moving household effects. and married men keep their families with them at all times.

YOUR FUTURE

In one of these positions you will gain all-around experience that will increase your value to our organization as it further expands in the field of electronics. The next few years are certain to see large-scale commercial employment of electronic systems. Your training in and familiarity with the most advanced electronic techniques now will qualify you for even more important future positions.

How to apply:

HUGHES
RESEARCH AND
DEVELOPMENT LABORATORIES
Engineering Personnel Department Culver City,
Los Angeles County, California

If you are under thirty-five years of age. and if you have an E.E. or Physics degree, write to the Laboratories, giving resumé of your experience. Assurance is required that relocation of the applicant will not cause disruption of an urgent military project.
formation helpful in ordering as well as photographs of actual applications, the bulletin explains how the cords are made, where they are used and the specific features which make their use advantageous.

Metal \& Contacts. Metals \& Controls Corp., Attleboro, Mass., has an illustrated, 12 -page catalog that describes the various composite metals, precious metals, electrical contacts and Truflex metals manufactured by the company. Contents cover some of the unusual composite metals recently developed; information on the platinum-group metals and manganese age-hardening alloys; and two sections dealing with thin-gage rolling and mirror-finish rolling.

Temperature - Humidity Test Chambers. Tenny Engineering, Inc., 26 Avenue B, Newark 5, N. J., announces a new two-color fourpage bulletin on its standard line of temperature-humidity test chambers. Chambers covered can simulate temperatures from -100 F to +200 F and relative humidities from 20 to 95 percent. Specifications give data on heaters, humidification, dehumidification, temperature and humidity controllers, compressor equipment, insulation, exterior construction, access door, air circulation, standard equipment and optional equipment. Chamber construction information, performance characteristics and typical applications are given. Interior dimensions and temperature ranges for eight different standard model types are tabularized in a specification section. Included also are 5 pictures showing typical chambers and chamber applications. Ask for bulletin TR.

Direct-Writing Recorders. Sanborn Co., 38 Osborne St., Cambridge 39, Mass. A new booklet that explains the advantages of using the company's equipment for the study and recording of a wide variety of electrical and mechanical phenomena has been released. It contains 16 pages of pert illustration and pertinent text that describes directrecording equipment for industrial users.

RICHARD D. BREW and CO., INC. 106 CONCORD AVE., BELMONT 73, MASS.

any way you book at it....
REON PRECISION WIRE WOUND RESISTORS stay dependable under the most adverse conditions. The resistance changes less than $.05 \%$ after completion of the MIL-R-93A tests.
The resistor is the heart of your electronic equipment. No other type of resistor has the inherent stability and accuracy of a REON PRECISION WIRE WOUND RESISTOR.

Specification brochure on request.
For delivery information, call YOnkers 5-9850.

heon resistor corporation 117 Stanley Avenue, Yonkers, N. Y.

Conform to
JAN-C-172A
SPECIFICATIONS
... but are actually
made to exceed AN-E-19 Drop Test requirements rugged protection for vital EQUIPMENT: Finnflex Mounts isolate vibration and shock from Electronic, Commnmication, and Control Equipment. They offer unimpaired efficiency from -80° to $+250^{\circ} \mathrm{F}$.. "Selective -Acrion" friction dampening. non-linear steel springs, and other features. Wide range of sizes and load ratings available.
SHOCK MOUNTS for Signal Corps Mobile Equipment and for Naval Fire Control Units.
SPECIAL PROBLEMS: Complete facilities for designing and fabricating Shock and Vibration Mounts to order - regardless of size or weight of equipment mounted.
Specify FINNFLEX—for Ruggedness. Efficiency. and Economy Write for Catalog MB-110

T. A. FINA \& COMPANY, Inc.
 Specialists in Vibration Control

AIRBORNE MOUNTING BASES

TYPE TPM VIBRATION ISOLAIOR

VIBRATION
ISOLATORS and SHOCK MOUNTS
To JAN-C-172A SPECIFICATIONS and TO ORDER

333 JACKSON AVENUE, NEW YORK 54, N. Y.
Phone: CYpress 2-4192-3-4

PLANTS AND PEOPLE

Edited by WILLIAM G. ARNOLD

RAC TO Build Manufacturing Plant In Spain

PLANS of RCA to build a factory in Spain for the production of $45-\mathrm{rpm}$ phonograph records, record players and eventually to home receivers were recently announced by F. M. Folsom, president of RCA. The proposed plant is expected to be completed in mid1953. It is to be erected at a 322,000 sq ft site overlooking Madrid, on the main highway to Barajas Airport and the city of Barcelona. Estimated cost of the new plant is $\$ 0.5$ million. When in full operation it will employ about 1,000 people.

According to RCA's president, a favorable economic climate for electronic development exists in Spain and the country offers a good ground for investment. He noted that a large amount of building was being done in Spain, largely with Spanish capital and not with U. S. ECA funds.

Arrangements for the project were made in cooperation with Gabriel Soria, president and managing director of Industria Electronica S.A., associate RCA company in Spain. Industria Electronica will share the cost of the plant with RCA. Chairman of the board of the new company is Demetrio Carceller, former Spanish Minister of Industry and Commerce. Another former Spanish cabinet minister, Jose Luis de Arreseo, also is a member of the board. He is at present a ranking counselor to the Government of Spain.

Mr. Soria, president of the new company, said that when the opportunity arises, Spanish workers would be sent to the U. S. for further training in RCA factories. Although no tv stations now exist in Spain, plans are in progress that will be developed rapidly.

BENDIX PLANS COMPUTER DIVISION

FORMATION of the Bendix Computer Division of the Bendix Aviation Corp. with headquarters in Hawthorne, California was announced recently by E. Palmer Nicholls (left), vice-president of the Bendix Pacific Division, Maurice W. Horrell (right), former executive engineer of the Bendix Research Laboratories in Detroit, Mich., will head the computer division staff. They are discussing one of the parts used in computers. The new division is being formed for the perfection and manufacture of digital computers designed to provide immediate answers to scientific and industrial problems. Horrell is now organizing a staff of top engineers and scientists for the new division

OTHER DEPARTMENTS
featured for this issue:
Page
Electrons At Work 154
Production Techniques . . . 222
New Products 280
New Books 382
Backtalk 386

Zworykin Awarded Edison Medal

V. K. Zworykin, pioneer researcher in electronics, has been awarded the 1952 Edison Medal by the AIEE "for outstanding contribution to the concept and design of electronic components and systems". The medal was presented at the opening session of the Winter General Meeting of the Institute at the Hotel Statler.

This honor is the latest of many won by Dr. Zworykin, who is vicepresident and technical consultant of the RCA Laboratories Division, RCA, Princeton, N. J. He has been associated with RCA since 1929. Others include the Morris Liebmann Memorial Prize of the IRE for pioneer work in television, the Howard N, Potts Medal of the Franklin Institute for contributions to commercial television, the AIEE Lamme Medal for outstanding contribution to the concept and design

Birmingham Sound Reproducers Ltd., Old Hill, Stafis. England, Grams: 'Electronic Old Hill, Cradley Heath.'
of electronic apparatus basic to modern television, the Poor Richard Club Gold Medal for Achievement, and the Chevalier Cross of the French Legion of Honor in recognition of his contribution to victory in World War II.

The Edison Medal, first awarded in 1909 , has been won by such outstanding scientists as Alexander Graham Bell, George Westinghouse, Frank B. Jewett, and Vannevar Bush. The medal was founded by associates and friends of Edison.

MIT Appoints Electronics Lab Research Heads

George G. Harvey, associate, professor of physics, and Henry J. Zimmermann, associate professor of electrical engineering, have been appointed associate directors of the Research Laboratory of Electronics at MIT.

Frank White Elected President of NBC

Frank White, vice-president and general manager of the radio and television networks of NBC, has been elected president and a director of NBC to succeed Joseph H. McConnell.

Mr. McConnell has resigned from NBC to join a company in another industry, and his new position will be announced by that company. It is reported that he will become president of the Colgate-Palmolive-Peet-Co.

Sylvester L. Weaver, J̌., vicepresident in charge of the radio and television networks of NBC, was elected vice-chairman of the NBC board of directors, a new position.

John K. Herbert, vice-president in charge of retwork sales, has been appointed to succeed Mr. Weaver as vice-president in charge of the radio and television networks.

CAPTAIN ROUND RECEIVES ARMSTRONG MEDAL

Capt. Henry J. Round of England (right) received the prized Armstrong Medal from John Bose, president of the Radio Club of America, at the Club's 43rd annual banquet. The Medal was awarded to Capt. Round in recognition of his pioneering work in radio. especially in the fields of radio direction and position finding and the amplification of short-wave signals. During World War I the direction-finding apparatus he designed and operated made it possible to trace the movements of the German Fleet, making possible interception by the British Fleet in the Battle of Jutland

IBM To Build New Electronics Center

International business machines Corp, has announced plans to begin construction of a research center near its Poughkeepsie, N. Y., plant early next spring, to be completed before the end of 1954. The plant, a model of which is shown above, will add 179,000 square feet of floor space to the company's existing laboratory facilities. An estimated 750 employees will work in the building. The research center will provide centralized facilities for the company's widespread electronics research program.

Honeywell Elects Seidel V.P

Glenn E. Seidel has been elected a vice-president of MinneapolisHoneywell Regulator Company in charge of engineering in the company's Minneapolis plants, Harold W. Sweatt, president, announced recently.

Seidel, a member of Honeywell's engineering organization since 1943, has been director of the company's expanding ordnance division for the past year and a half. Before that he served for a number of years as assistant to W. J. McGoldrick who, as part of his duties as vice-president, has been handling the engineering activities that Seidel will take over.

Outstanding Engineers Honored

The Eta Kappa NU plaque designating the most outstanding young electrical engineer for 1952 was awarded to John V. N. Granger, 34, of the Stanford Research Institute, Stanford, California. In addition Edward O. Johnson, 33, of RCA Laboratories, Princeton, New Jersey and Gustave W. Staats, 33, of the Allis Chalmers Mfg. Co., Mil-

For more than 18 years, Eclipse-Pioneer has been a leader in the development and production of high precision synchros for use in automatic control circuits of aircraft, marine and other industrial applications. Today, thanks to this long experience and specialization, Eclipse-Pioneer has available a complete line of standard ($1.431^{\prime \prime}$ dia. $\mathrm{X} 1.631^{\prime \prime} \mathrm{lg}$.) and Pygmy ($0.937^{\prime \prime}$ dia. $\mathrm{X} 1.278^{\prime \prime} \mathrm{Ig}$.) Autosyn synchros of unmatched precision. Furthermore, current production quantities and techniques have reduced cost to a new low. For either present or future requirements, it will pay you to investigate Eclipse-Pioneer high precision at the new low cost. *reg. trade mark bendix aviation corporation
average electrical characteristics-Ay-200 Series**

	Typa Numbor	Input Voltage Nominal Excltation	Input Current Mlifimperes	$\begin{gathered} \text { Input } \\ \text { Powor } \\ \text { Waths } \end{gathered}$	Input Impedance Ohms	Stater Output Voltages Line to Line	Rotor Rasigfanc: (DC) Ohms	Stater Rusistance (DC) Ohma	Maximum Error Spread Minutes
Transmitters	AY201-1	$26 \mathrm{~V}, 400 \sim 1 \mathrm{ph}$.	225	1.25	$25+j 115$	11.8	9.5	3.5	15
	AY201-4	$26 \mathrm{~V}, 400 \sim, 1 \mathrm{ph}$.	100	0.45	$45+1225$	11.8	16.0	6.7	20
Receivers	AY201-2	25V. 400~, 1 ph.	100	0.45	$45+\mathrm{i} 225$	11.8	16.0	6.7	45
Control	AY201-3	From Yrans. Autosyn	Dependent Upon Circuit Design				42.0	10.8	15
Transformers	AY201-5	From Trans. Autosyn	Dependent Upon Circuit Design				250.0	63.0	15
Resolvers	AY221-3	26V. $400 \sim .1 \mathrm{ph}$.	60	0.35	$108+1425$	11.8	53.0	12.5	20
	AY241-5	1V, 30~, 1 ph.	3.7	-	$240+1130$	0.34	239.0	180.0	40
Differentials	AY231-3	from Yrans. Autosyn	Dependent Upon Circuit Design				14.0	10.8	20
AY-500 (PYGMY) SERIES									
Transmitters	AY503-4	26V, 400~, 1 ph .	235	2.2	$45+\mathrm{j} 100$	11.8	25.0	10.5	24
Receivers	AY503-2	26V, 400~, 1 ph.	235	2.2	$45+j 100$	11.8	23.0	10.5	90
Control Transformers	AY503-3	From Trans. Autosyn	Dependent Upon Circuit Design				170.0	45.0	24
	AY503-5	From Trans. Autosyn	Dependent Upon Circuit Design				550.0	188.0	30
Resolvers	AY523-3	26V, 400~, 1 ph.	45	0.5	$290+\mathrm{i} 490$	11.8	210.0	42.0	30
	AY543-5	26V, 400~, 1 ph.	9	0.1	$900+\mathrm{i} 2200$	11.8	560.0	165.0	30
Differentials	AY533-3	From Trans. Autosyn	Dependent Upon Circuit Design				45.0	93.0	30

For detailed information, write to Dept. C.

ECLIPSE-PIONEER DIVISION of

teterboro, New jersey
Export Sales: Bendix Imternational Division, 72 fith Avenue, New Yark 11, N. Y.
waukee, Wisconsin received honorable mention citations.

Citations presented to the men were as follows:

John V. N. Granger
"By virtue of his noteworthy researches on aircraft radio antennas, his organization and direction of a large radiation systems laboratory, and his unusual interest in cultural and professional activities, Eta Kappa Nu recognizes John Van Nuys Granger as an outstanding young American engineer."

Edward O. Johnson
"By virtue of his notable contributions to the field of gaseous electronics, his invention of the plasmatron, and his special interests in art and professional activities, Eta Kappa Nu recognizes with

free!
 NEW AGF BURNER CATALOG

The first complete catalog of never before available technical data.

Gives hole sizes, flame patterns, gas consumption on various gases and complete information with illustrations of -

BURNERS BLOW PIPES GLASS FIRES MIXERS INSERTS BALL JOINTS MANIFOLDS CROSSFIRES MACHLET TIPS GOVERNORS tunnels OXYGEN gas burners

Write for your copy today on your company letterbead.

AGF

130 SPRING ST., ELIZABETH 4, N.J.

ROANWELL CORPORATION

27 sixin avénee, brookiyn 17, iflw yoak

MANUFACTURERS OF ELECTRONIC INSTRUMENTS AND PRODUCTION TEST EQUIPMENT

If it is important for your transmitting and receiving equipment to stay "on the beam"--always, regardless of atmospheric extremes and rough han-dling-be sure to specify Standard

Piezo Crystals. They're built to take it. Send for our completely illustrated catalog or submit your problems to our engineers for recommendations.

FOR POCINCORD SETS CALL ON

WHITNEY BLAKE

Special cord sets of flexible cord, shielded communications wires and multiple conductor cables, equipped with molded rubber or plastic fittings are among the many quality products offered by Whitney Blake.
If standard molds cannot be adapted to individual applications, Whitney Blake is prepared to design and make special molded junctions and other fittings to provide the water and impact resistance, small size, light weight and protection from tampering so important to many of today's applications. Whitney Blake has over thirty years experience in the cord set field and more than fifty years in producing well built wires. The close control exercised in the production of Whitney Blake cord and cable and the extensive testing facilities make Whitney Blake Cord Sets completely dependable.
If you have a cord set problem our design engineers will be glad to help you solve it.

WELL BUILT WIRES.SINCE 1899

〈wb WHITNEY BLAKE CO.

NEW HAVEN 14, CONNECTICUT

honorable mention, Edward 0 . Johnson."
"By virtue of his outstanding contributions to the design and construction of supercharged hydrogen cooled turbine generators, and his extraordinary participation in the life of his community, Eta Kappa Nu recognizes with honorable mention Gustav W. Staats."

Motorola To Expand Plant

Motorola president Paul V. Galvin announced that his company plans to spend $\$ 3$ million for a plant expansion program in 1953. A major new plant will be built in Franklin Park, Illinois which will nearly double the production capacity of the electronics firm's television manufacturing facilities. Some $27 \frac{1}{2}$ acres of land have been acquired to accommodate the single large structure measuring 833 feet by 325 feet, embracing 278,000 square feet of usable factory space.

Paul V. Galvin
The new facilities will constitute a bulk assembly plant for final assembly, packing, storing and shipping of tv units. The completion of the new plant, with all installations necessary for operation, is anticipated by mid-year.

GE Elects Vice-Presidents

President Ralph J. Cordiner of the General Electric Company announced that general managers of eight operating divisions of the company have been elected vice-

P-O-R-T-A-B-L-E VaCUUM TUBE VOLT.OHM-MILLIAMMETER
 Specify and Use MEYERCORD DECALS to...

Model 601 Vacuum Tube Voli-OhmMilliammeter
An accurate, universal test instrument Battery operated, over 100 hours of battery life . . Extremely useful when external power is not available ... Useful when limitations are imposed by A. C. power grounds; prevents 60 cycle hum ... Effectively measures ungrounded or symmetrical circuits.
For complete information write for Catalog 601A, AMERICAN CHRONOSCOPE CORPORATION
316 West First St. Mount Vernon, N, Y.

MISSILE

Engineers and Technicians

For Field Test Positions in NEW MEXICO
"The Land of Enchantment" ON
Guidance Flight Testing Servomechanisms
Telemetering Test Equipment Airborne Electronics Equipment IDEAL WORKING CONDITIONS Write: field test director P. O. BOX 391
holloman alr development center NEW MEXICO

Low Cost . . . High Speed Application

Among the many new applications of decals for American industry is the tough Meyercord acid, chemical and weather resistant identification of dangerous chemical containers. If you process and ship dangerous chemicals, be sure to ask for full information on this important feature.

Meyercord Decals have been adopted by cost-conscious manufacturers in thousands of industries as nameplates, trademarks, instructions, markers, wiring diagrams, safety warnings and many other important industrial applications.

THE MEYERCORD CO.

CAUTION

DO NOT STAND HERE AT ANY time while clutch is engaged AND BAIER IS OPERATING.

DEPT. A-303, 5323 WEST LAKE STREET

ELECTRIC INSTRUMENT \& CONTROL HEADQUARTERS

 YES, OFF-THESHELF SERVICE

Electro-Tech maintains one of the largest and most complete stocks in the country of electrical meters, instruments and industrial control equipment-representing over 250 top lines.
Yes, our warehouse is bulging with standard stocks of

Counters	Solenoids	Toggle Switches
Panel Meters	Tachometers	Shunts (Electrical)
Transformers	Thermometers	Meggers
Switchboard Meters	Thermostats	Solenoid Valves
Micro Switches	Rectifiers	Pyrometers
Photo Electric Equipment	Rheostats	Multimeters
Relays	Timers	Oscilloscopes

and Laboratory Standard Instruments
In addition, we manufacture and stock Special Tesl Equipment - Electric Heating Units - Current Transformers Pyrometers - Thermocouples - Rectifiers. Photo Electric Equipment Relays Thermostats Recifiers Solenoid Valves Pyrometers Multimeters oscilloscopes

ELECTRO-TECH $\operatorname{rquipment~co.~}$
55 LISPENARD ST., NEW YORK 13, N. Y.

Our laboratory is available for repair work, rescaling, recalibration and special calibration of your electrical and industrial instruments. Often months are saved by rescaling and calibrating stock instruments to your specifications.

CONSULT US ABOUT YOUR REQUIREMENTS

But "just any decal" won't do the job on "just any surface". For today's rigid requirements, Meyercord Decals are carefully laboratory engineered to assure complete and perfect adhesion to any commercial surface or finish. Write for facts on our technical consultation and designing services.

free nameplate manual

Hundreds of uses for durable, washable decal nameplates . . . as trademarks, instructions, charts, diagramsin any size, colors, or design. Ask for it on your business letterhead, please.
CHICAGO 44, ILLINOIS

> SANGAMO offers an exceptionally wide choice of subminiafure paper capacitors in hermetically sealed metal cans!

There's no need to search for the right miniaturized hermetically sealed paper tubular capacitor for your application . . . You can choose from Sangamo's full range of capacities and voltages.
You have a choice of two impregnants-Sanowax for $85^{\circ} \mathrm{C}$ operation and Sangamo's amazing new E-therm for $85^{\circ} \mathrm{C}$ or $125^{\circ} \mathrm{C}$ operation. You can choose from two types of element construction -inserted tabs or extended foil . . . And, you can obtain all these capacitors with either grounded or insulated circuits.
These Sangamo subminiature paper capacitors, Types SA through SM, are sealed in non-magnetic cases, finished with a high tin content alloy. They are hermetically sealed with glass to Kovar, solder-seal terminals.
Complete information is yours in Engineering Bulletin TS-105. Write today.

Those urotrow... (inilifini chosse Sangama SANGAMO ELECTRIC COMPANY

MARION, ILLINOIS
presidents by the board of directors. Mr. Cordiner said that the promotions were made in furtherance of the company's announced plan of decentralization.

Those elected were: James M. Crawford, general manager of the Motor and Generator Division, Schenectady, N. Y.; Francis E. Fairman, general manager of the Transformer and Allied Products Division, Pittsfield, Mass.; Cramer W. LaPierre, general manager of the Aircraft Gas Turbine Division, Evendale, Ohio; Clarence H. Linder, general manger of the Major Appliance Division, Louisville, Ky.; Harold A. MacKinnon, general manager of the Component Products Division, Fort Wayne, Ind.; Charles K. Rieger, general manager of the Small Appliance Division, Bridgeport, Conn.; Glenn B. Warren, general manager of the Turbine Division, Schenectady; and William C. Wichman, general manager of the Industrial Power Components Division, Plainville, Conn.

Warde B. Stringham of Washington, D. C, has been elected a commercial vice-president of GE.

Zenith Plans Expansion

Directors of Zenith Radio Corporation have authorized new construction that will add more than 300,000 square feet of floor space to the company's main plant at 6001 Dickens Avenue, Chicago, it was announced by Hugh Robertson, executive vice-president.

The new space will be used chiefly to provide additional packing and shipping facilities required for the steadily increasing volume of Zenith's production.

Construction will begin as soon as final drawings are completed, and is scheduled for completion within a year. With this new addition Zenith and subsidiary companies will have total floor space exceeding 1.8 million square feet. Estimated cost of the new addition is $\$ 3$ million.

Bendix Names

Chief Engineers
Albert E. Namey has been promoted to the position of chief engineer of the Test Equipment Design

High Current Regulated Power Supplies

New	Standard Sizes, 350 Series
Series	$0-350 \vee @$ 750. ma.
	$0-350 \vee @ 1$. Amp.
	$0-350 \vee$ 2. Amp.
	$0-350 \vee @ 3$. Amp.

Featuring: Very low output impedance at high power levels;
$1 / 2 \%$ regulation; 5 MV ripple.
Continuous duty components; short delivery.
Other units available; any voltage and capacity, regulated or unregulated, fixed or adjustable output voltage. We invite inquiries.

PESCHEL ELECTRONICS, INC.
13 garden street, new rochelle, n. y. - New rochelle 6-3342

WASHERS-ALL KINDS

WASHER SPECIALISTS for nearly half-a-century. [ilies in stock will produce most sizes. Big runs made with automatic presses. An economical, accurate, ard highly reliable source for washers, also all kinds of metal stampings. HAVE WHITEHEAD'S CATALOG ON FILE; write for it.

Spurious signals

$$
-40 \mathrm{db} . \text { or better. }
$$

Investigate Andersen
SOLID ultra-sonic delay lines.
Complete facilities for research and development.

CLARY

Electronic Pulse Data Recording Combination

This versatile combination consists of the Clary Pulse Counter and the Clary Digital Read-Out Machine. It is already in use by lab and industry for counting, totaling and printing results from a wide varicty of applications. It provides standard, decimally correct summations in algebraic form from Electronic Computers, Geiger Counters, Oscillogram Readers, Test Instruments, and other data reduction equipment. When used with the Clary Analogue Converter, the combination can immediately transform an analogue value like a variation in pressure, temperature, stress, voltage, ete., into a printed digital number. You may have a problem to which this combination may be applied. Why not write Clary, giving details? Our engineers will furnish free information and cooperate in a practical application of the scanner and read-out to your problem.

CLARY MULTIPLIER CORPORATION

SAN GABRIEL, CALIFORNIA

Department at the Towson Plant of Bendix Radio, Division of Bendix Aviation Corporation, it was announced recently by A. C. Omberg, Director of Engineering and Research. He will be responsible for the design, production and purchase of all test equipment used by Bendix Radio and also maintain custody of all primary standard equipment and climatic and environmental test equipment.

Norman Caplan has been named to the position of Chief Engineer of the Military Communication and Navigation Engineering Department of the Bendix Radio Division. He will be responsible for the administration of the design and developmental work currently being undertaken in connection with military communication and navigation equipment programs. Prior to this appointment, he occupied the position of Chief Engineer of the Test Equipment Design Department.

Sparks-Withington Names Fisk Chief Engineer

Sparks-Withington Company, Jackson, Michigan, announced the appointment of Harry Fisk as chief electronics engineer of the company's Sparton Radio-tv division. He replaces H. H. Knubbe who served Sparton in that capacity for five years.

Harry Fisk
Formerly Sparton assistant chief electronics engineer, Fisk has been a major factor in Sparton engineering and research for 26 years. In his new post, Fisk will be responsible for all engineering research at

THE ULANET ORGANIZATION SPECIALIZES IN THE DESIGN AND MANUFACTURE OF
THERMAL UNITS
FOR ALL TYPES OF TIMING \& Thermostatic controls

It will pay you to compare our units - contact us and you'll save time \& money by using engineered Ulanet Controls.
$\star \star \star \star \star \star$

> It's "TREATMENT" that makes DANO your Best Bet for Coils

Dano's battery of vicuum impregnating tanks and heat controlled ovens for curing varnish impregnations is always at your service. Yes, Dano coils and Dano customers are always treated in the manner that makes your production pay dividends. Send us samples or specifications with guantity requirements. for our recommendations. No obligation!

Also, Transformers Made To Order

- Form Wound

Paper Section

- Acetate Bobbin
- Molded Coils
- Bakelite Bobbi
- Cotton Interweave
- Coils for High Temperature Application

THE DANO ELECTRIC CO.
MAIN ST., WINSTED, CONN.

DOUBLE BARREL ADVERTISING

Mc GRAW-HILL direct mail list service

Advartiaing mon agroe - to do a comploto advortintng job you noed the double effect of both Display Adres. Ding and Direct Maril.
Display Rdvertining keop your name before the public amd builde prostige.
Direct Mail eupplemente your Display Advertiming. It pin-points your masage right to the executive yow want to reach - the person who buys or influences the purchases.
Ask for more detail information today. You'll be eurprised at the love overall cost and the tested at fectiveness of those hand-picked selections.

McGraw-Hill Publishing Co., Inc.
330 West 42nd Street
New York 36, New York

Gerrold Announces new MODEL 704
 Direct Reading field strengit meter

Model 704 offers the answer to field signal measurement! direct reading . . .

Microvolts and $d b$ meter scales
5 microvolts to 3.0 volts
ACCURACY . .
$\pm 0.8 \mathrm{db}$ FREQUENCY RANGE ...

Continuous Tuning 50-220 M C INPUT IMPEDANCE ...

72 or 300 ohms
Separates and measures video, audio and adiacent Channel carriers. Locates RF interference.

6 Volt Vibrator Pack available for battery operation.

MODEL 704-6V Price $\$ 24.75$ (includes cable)

Sparton as well as engineering supervision of the company's radio, television and government projects.

Admiral Works On Color TV

Admiral Corp. announced an established research laboratory for color television at Palo Alto, Calif., near the campus of Stanford University. The company has more than 20 engineers working on various phases of color television and other electronic developments. Robert M. Jones is director of research at Palo Alto.

Sylvania Names McClintock

Appointment of Raymond K. McClintock to the newly created post of manager of new product promotion of Sylvania Electric Products Inc. was announced by B. K. Wickstrum, vice-president and director

New Sylvania product promotion manager
of sales. From company headquarters in New York City, he will be responsible for fostering the promotion and sale of new products and for exploratory work leading to the consideration of new lines of products by Sylvania.

Magnecord Sets Expansion

Arrangements for $\$ 300,000$ additional capitalization have been completed by Magnecord, Inc., Chicago, manufacturer of professional magnetic tape recording equipment. The funds are to come from Ameri-

Portable Communication Masts

Available in . . .

STANDARD MILITARY DESIGNS INCLUDING AB-38/CR, AB-26/CR, AB-54/FR, AB-72, AB-282/GRC

Also in Special Designs to meet particular requirements

- Criton Masts and Antenna Supports are made of Fibre Glass Reinforced Thermosetting Plastic Tubing
- Weight-approx. $1 / 5$ of Steel, $1 / 2$ of Aluminum
- Non-Corrosive-Can't rust, oxidize or mildew
- Not affected by weather, sun or salt spray
- Highly shock resistant
- Easy to erect (90 ft . in less than 1 hour)

MANUFACTURED BY
Southern Industries of martand, inc.
Pikesville
Baltimore 8
Maryland
Phone: Pikesville 3316
*Trademark Reg.
the distinctive new ER-225

SERIES
RACKS by PAR-METAL
18" Deep, 22" Wide
offer you the greatest dollar-for-dollar value in the industry today!
Because only in the ER-225 will you find these unique features:
\checkmark Standard $43^{1 / 44^{\prime \prime}, 63^{\prime \prime}}$, and $83^{1 / 2^{\prime \prime}}$ heights.

- New ribbed design corner trims, with new quick FRONT detachable fastenings.
- The door is stamped from one piece of steel and reinforced-with formed, elean, smooth, double thick edges.
- "Multiracks" available with closed or open intermediate sides for rack-to-rack wiring.
\checkmark Streamlined modern design; beautiful finish.
- LAMINATED TUBE SOCKETS
- TERMINAL STRIPS
- WIRED ASSEMBLIES
- BAKELITE STAMPINGS
- TERMINAL BOARD ASSEMBLIES

Our extensive desion and production
facilities are available for developing your special requirements and applications. Representatives in principal cities throughout U.S.A. Call or
write for samples and information. write for samples and information.
ORegon 7.1881 .

INDUSTRIAL HARDWARE Mig. Coo, Inc. 109 PRINCE STREET - NEW YORK 12, N. Y.

Planning an electronic product? Consult Par-Metal for

RACKS • CABINETS

 CHASSIS • PANELSRemember, Par-Metal equipment is made by electronic specialists, not iust a sheet metal shop. Made by

WRITE FOR CATALOG !

"MULTIRACKS ${ }^{\text {" }}$
These Racksmaybog assembled in multiple urits as shown above. SHELVES availoble. Also ROLLER TRUCKS available for single racks
or "Multiracks". or "Multiracks".
NO INCREASE IN COST! The ER-225 is priced 10 compete with racks not having the equivalent fea. pures. Beyond doubt - in's pures. Beyond doubt-iss
the indusfry's greafest the industry's greate
value.
The ER-225 Rack as used by the American Communi-
cations Corp., N. Y. C. 13.

HERMETICALLY SEALED TO MIL-T-27 SPECIFICATIONS

NYT offers a wide variety of transformer types to meet military and civilian specifications, designed and manufactured by specialists in transformer development.

Latest NYT service for customers is a complete test laboratory equipped and approved for on-the-spot MIL-T-27 testing and faster approvals.

NEW YORK TRANSFORMER CO., INC. ALPHA, NEW JERSEY

can Research and Development Corporation, Boston, Mass.

In announcing the increased capitalization, A. P. Buetow, executive vice-president of Magnecord, outlined a broad program of general expansion. Plans call for immediate extension of manufacturing facilities.

R. J. Sullivan Joins Fairchild

Robert J. Sullivan has joined the Potentiometer Division of the Fairchild Camera and Instrument Corporation at its Hicksville, N. Y. plant, to act as head of research and development. He was formerly chief of the Potentiometer Research Unit of the Air Force Cambridge Research Center, Cambridge, Mass.

New research head
At Fairchild, he will guide a new effort towards continual improvement in potentiometer design to meet the stringent requirements of both the military and industrial markets.

Hallicrafters Names
 Graver and Wilson

Richard A. Graver, formerly vicepresident and general manager of the Capehart-Farnsworth Corp., Ft. Wayne, Ind., has been appointed vice-president and director of marketing of the Hallicrafters Co.

Mr. Graver's position at Hallicrafters is a new one with more comprehensive duties than those of the former vice-president in charge of sales, Roland J. Sherwood, who recently resigned to form an auto

A NEW RACK-MOUNTING 5"BASIC SCOPE

A new $5^{\prime \prime}$ rack mounted basic oscilloscope of high quality parts and design.

- Push-Pull input with blanking post.
- Potted power transformer.
- 2,200 volt anode supply for short, medium and long persistence screens.
- Astigmatism control on panel.
- $1 / 4$ " lucite safety glass and grating.
- Flanged bezel for scope cameras.
- Mu metal C. R. fube shield.
- Standard $83 / 4$ " $\times 19$ " rack panel in black or grey engraved crackle.
All high quality parts and workmanship are used in this excellent indicating unit. Balanced input signal connections are at rear of C. R. fube with low sapacity leads. Furnished with 5UP1, 5UP7 or 5UP11 as requested. Available for immediate delivery. Manufactured by
TINKER \& RASOR
P.O. Box 281

San Gabriel, California

U. G. CONNECTORS

 Our Coaxial Cable Connectors Meet All Government Specifications All ORDERS DELIUERED PROMPILYManufacturers of Higbest Quality Connectors

ALIED INDUSTRIES, INC.

 1023 S. 21st STREET LOUISVILLE 10, KY.Phone Arlington 4640

Ivailable for envelope types T7. T8, MT8, T9, T12, ST12, T12ZDI, ST14, S14, ST16, T51/2, T61/2, MT-IC, ST19, T14, ST128CT-9.

Manufacturers of Electronic Components JAMES IPPOLITO\& CO., INC. 401 CONCORD AVENUE, BRONX 54, N. Y.

parts manufacturing business of his own.

At Hallicrafters, Mr. Graver will be in complete supervision of all merchandising, marketing and advertising activities of the company.
M. Robert Wilson, prominent major appliance sales executive, has been appointed vice-president in charge of sales for Hallicrafters Co.

IRC Elects Officers

THE board of directors of the International Resistance Company, Philadelphia, elected Ernest Searing chairman of the board of directors. Charles Weyl, formerly executive vice-president, was elected president.

JFD Completes Plant

JFD Manufacturing Company, INC., has just announced the completion of a new plant that will expand the company's factory space to a total of more than 200,000

JFD factory
square feet. In addition, a 32,000 square foot area recently purchased will be eventually utilized for another factory, according to Julius Finkel, president of JFD.

Barthel Board
 Chairman of NEC

Christopher E. Barthel, Jr., was elected chairman of the board of directors of the National Electronics Conference. Starting his fourth year as a member of the NEC board, Dr. Barthel succeeds Kipling Adams of General Radio Company. During the current year, he was chairman of the publications committee which prepared the proceedings for the organization's eighth annual conference and exhibition in Chicago.

Ransom Joins Karl-Douglas As Chief Engineer

David H. Ransom, formerly director of research at Bogue Electric

Now...get ABSOLUTE

Q. your

 ORDINARY POWER SUPPLYKhat - lab
SUPER-REGULATOR
OUTPUT IMPEDANCE
0.005 OHMS

NOISE•RIPPLE UNDER 100 MICROVOLTS STANDARD CELL STABILITY AVAILABLE

PRECISION ELECTRONIC INSTRUMENTS
KALBFELL LABORATORIES, INC.
1090 MORENA BLVD. P. O. BOX 1578
SAN DIEGO 10, CALIFORNIA

DOUBLE BARREL ADVERTISING

Advertising men agree-to do a complete advertising job you need the double effect of both Display Advertising and Direct Mail
Display Advertising keeps your name before the public and builds prestige. Direct Mail supplements your Display Advertising. It pin-points your message right to the executive you want to reach -the person who buys or influences the -the perse
purchases.
In view of present day difficulties in maintaining your own mailing lis *s, our efficient personalized service is particularly important in securing the comprehensive market coverage you need and want.

Ask for more detailed information today. You'll be surprised at the low overin cost and the tested effectiveness of thee hand-picked selections.

MeGraw-Hill Publishing Co., Inc. $\$ 30$ West 42nd St., New York 36, N. Y.

SERVOTHERM PRODUCTS

BOLOMETER AND PREAMPLIFIER

Thermistor bolometers are FAST, sensifive INFRARED and HEAT detectors. Especially RUGGED for industrial, scientific, and military applications. PREAMPLIFIER provides NOISEFREE initial amplification and mount.

THERMISTOR POWER SUPPLY

Provides voltages required by BOLOMETER bridge and PREAMPLIFIER. Regulated and filtered permitting THEORETICAL NOISE LIMITS of amplification, while operating from 60 CYCLE line.

Built of heavy, rolled steel plate for extra-rugged service and great versatility, the standard Tenney Zphere Altitude Chamber provides vacuum conditions that simulate altitudes from sea level to approximately 80,000 feet ($0.8^{\prime \prime}$ Mercury, absolute). Available temperature range is from $+200^{\circ} \mathrm{F}$. to $-100^{\circ} \mathrm{F}$. Relative humidities range from 20% to 95% at above-freezing temperatures and are limited by the minimum and maximum dew points of $33^{\circ} \mathrm{F}$. and $178^{\circ} \mathrm{F}$., respectively. Temperature control is held within $\pm 2{ }^{\circ} \mathrm{F}$.

Standard equipment includes electric temperature and humidity recording controllers, altitude gauge, mercury manometer, 8 -post terminal panel, and pre-set control for maintenance of altitude. Special features may include high-voltage lead-ins, side viewing windows, handoperated tuning shafts, high wattage dissipation, utility ports up to $6^{\prime \prime}$ diameter. Also stainless steel power shafts, special instrumentation, rapid cooling and heating rates, low temperatures to $-150^{\circ} \mathrm{F}$., altitudes to $120,000 \mathrm{ft}$. Also custom-size chambers.

Manufacturing Co., Paterson, N. J. has been appointed chief engineer of the Electronic Division of KarlDouglas Associates, Hawthorne, California. In his new duties he will direct the design and production of various electronic and electrical products, including a new line of magnetic amplifiers.

Randall Named RDB Electronics Head

Walter G. Whitman, chairman of the Research and Development Board of the Department of Defense, announced the appointment of Henry Randall as executive director of the RDB Committee on Electronics.

Randall has been associated with RDB since March, 1948, having served successively with the Planning Division, the Committee Coordination Division in the Office of the Vice-Chairman, and as acting executive director of the Committee on Electronics.

Canadian Radio Board Re-elects Officers

R. A. Hackbusch of Toronto, president and managing director of Stromberg-Carlson Co. Ltd., was re-elected president of the Canadian Radio Technical Planning Board at the eighth annual meeting of the Board.
C. W. Boadway, communications engineer, Ontario Hydro Electric Power Commissioner was re-elected vice-president and Stuart D. Brownlee of Toronto was re-elected Secretary-Treasurer.

Mr. Hackbusch in his annual report pointed out that 160 of the top-ranking engineers, scientists and specialists of all kinds in the electronic fields have been devoting a considerable portion of their time and effort to planning the future of electronics in Canada.

LaPointe-Plascomold Appoints Damerel

William A. Damerel has been appointed to the position of assistant to the president, it was announced by J. E. Respess, president of the LaPointe-Plascomold Corporation. Damerel, who was with the Maxim

RADIO
FNGINFERING LIBRARY

especially selected by radio specialists of McGraw-Hill puthlications

- to give most complete, dependabie coverage of facts needed by all whose flelts are grounded on radio fundamentals
- available at a special price and terms

These books cover circuit phenomena, tube theory, networks, measurements, and other subjects-give specialized treatments of all are books of recognized position in the ilterature of the field-books you will refer to and be referred to often. If you are a practical designer, researcher, or engineer in any field based on radio, you need these books for the help they give in hundreds of problems 5 volumes, 4213 pages, 2949 illustrations
Eastman's FUNDAMENTALS OF VACUUM TUBES, 3rd edition
Terman's RADIO ENGINEERING, 3rd edition
Everitt's COMMUNICATION ENGINEERING, 2nd edition
Hund's HIGH FREQUENCY MEASUREMENTS, 2nd edition
Henney's RADIO ENGINEERING HAND. BOOK, 4th edition
SPECIAL LOW PRICE EASY TERMS Special price under this offer less than cost of books bought separately. In addition, you ments beginning with $\$ 750$ in 10 dasy installreceipt of books, and $\$ 6.00$ monthly thereafter Already these books are recognized as standard works that you are bound to requare sooner or ater. Take advantage of these convenient terms to add them to your library now.
FOR 10 DAYS' EXAMINATION SEND THIS
 McGraw-Hill Book Co., Inc., 330 W. 42 nd St., N. Y. 36 Send me Radio Engineering Library for 10 days' examinatuon on approval. $\frac{10}{}$ and $\$ 6.0$ of monthly fend $\$ 37.50$ is paid, or return books postpaid. (We vas postage on orders accompanied by remittance of flrst instalment.
(PRIVT)
Name
Address
City
Zone..... State
Combany
l'osition
This ofrer applies to U. S. orly

ENGRAVING•PROFILING

for heavy production

with the

 GUIDED FOR UNSKILLED LABOR

NEW HERMES, Inc.

13.19 University Place, New York 3, N.Y.

Write for literalure describing:

1. Heavy Duty model (as illustrated) - Catalog H 29
2. Portable models - Catalog IM 29

NEW HERMES, Inc. $13-19$ University Place, N.Y. 3, N.Y. In Canada: 359 St. James St., Montreal
World's Largest Manufacturer of Portable Engraving Machines

DIGITAL COMPUTER ENGINEERS

ELECTRICAL ENGINEERS and PHYSICISTS
needed for circuit design and development. Engineers and Physicists with 1 to 4 years experience in pulse circuits, pulse handling techniques, and systems development. Openings also for recent graduates.

- Replies strictly Interviews arranged confidential at our expense

Enginering Reouch Avociatoo

Division of MPerningryore Minced
Leaders in the Development of Digital Computers
1902 W. Minnehaha, St. Paul 4, Minn. "You Will Enjoy Living in Minnesotá

GAMEWELL LINEAR AND NON-LINEAR

 Precision PotentiometersTo solve your specific precision potentiometer problem, send your specs and sample orders to Gamewell. With over 98 years of experience in manufacturing precision electrical products, Gamewell can provide the answer promptly.

Linear and non-linear units are described in the Gamewell Precision Potentiometer booklet. The booklet also contains a convenient glossary of terms used in conjunction with precision potentiometers. Write for your copy.

THE GAMEWELL COMPANY Newton Upper Falls 64, Massachusetts

PRECISION POTENTIOMETERS

[^15]PLANTS AND PEOPLE
(continued)
Silencer Company, Hartford, Connecticut, will coordinate all phases of administration. He will aid Mr. Respess in the formulation of overall company planning and policies.

Bogen In New Quarters

The David Bogen Company, Inc. has completed the removal of its complete plant facilities to new quarters at 29 Ninth Avenue in New York City. The building, which contains a total of 70,000

New Bogen plant
square feet of area on six floors and basement, will permit expansion of all departments, especially engineering laboratories and production facilities for the company's new products.

MASCO Appoints
 Two Executives

Ralph Aasen has been appointed chief engineer and G. L. Werner has been appointed director of sales engineering of Mark Simpson Mfg. Co., Inc. of Long Island City, New York, it was announced by John A. Van Auken, general manager.

Stackpole Promotes Five

Dr. E. J. Shobert has been appointed manager of carbon research and engineering for the Stackpole Carbon Co., St. Marys, Pa., and Henry M. Dressel will serve as director of research and engineering for the firm's electronic components division.

Other Stackpole appointments also announced by H. S. Conrad,

MIDGET TELEPHONE TYPE RELAYS SERIES (80)-OPEN TYPE FOR SURFACE MOUNTING, OR in hermetical γ SEALED CONTAINERS. | This vibration and |
| :---: |
| shockproof Midget | Type Relay is the answer to numerous applications where unfailing operation is necessary. In fact, it is

 built to meet rigid Army and Navy specifications. This rugged little space saver" is a compact, multiple contact relay which has been developed over years of specialized engineering in the field by Signal Engineering and Mfg. Co., manufacturers of a comprehensive line of relays and signals of various designs and sizes.

Engineering Representatives in Principal Cities.

There is Always One Leader in Every Field BODNAR INDUSTRIES, Inc. leads in the field of transilluminated plastic lighting plates

BECAUSE OF Quality • Uniformity - Performance Design \& Layout "Know-How Service" Quantity Production Promptly
NEW YORK - 19 koilroad Ave., New Rochelle (Home Office) TEXAS —Jefferson Tower Building, Dallas CALIFORNIA -l1056 Cumpston St., N. Hollywood CANADA - 313 Montreal Trust Bldg., 67 Yong St., Toronto
DEMONSTRATION PANEL MIL-P-7788 (AN-P-89) Sent on Letterhead Request

Time Delay Relay

Retard action of coil in magnetic field for delays to 10 seconds.

> Model 261-C

This moving coil, permanent magnet relay gives adjustable delays in ranges of volts and current. AC and DC. Delay results from the magnetic drag inherent in sensitive microammeters. All contact meter ranges listed in Bulletin CMR-79 can be furnished with time delay.

The dial can indicate current, volts or femperature, or it can show delay in seconds. Timing is little affected by temperature or pressure. The relay uses no condensers, dash pots nor motors so size and weight are small.

SPST or SPDT contacts are self locking, rated five milliamperes DC for one million op-erations-ratings to 500 milliamperes for reduced number of operations. Contacts are locked by an extra coil in meter-released by braking circuit to that coil. Non-locking contacts can be supplied for special applicaions.

Normal reset time is about the same as openate time. Special adaptions provide fast operate, slow release or slow operate, fast release. Delay is adjusted by setting index pointer. Or, relays may have fixed setting. They are adaptable to hermetic seal.

Here are typical specifications:
Cat. No. 306-7000, range $0-10$ seconds, 0.1 DCMA, 100 ohms $\$ 30.00$ Cat. No. 306-7002, range 0.5 seconds, $0-50$ DCUa, 2800 ohms $\$ 45.00$ Cat. No. 705-7003, range $0-10$ seconds, $0-150$ AC volts
$\$ 47.00$

Simplytrol Double CMR Improved Self-Releasing Circuit

There are so many possible variations for these relays it is suggested that engineers submit descriptions of proposed use. Inclaude diagrams of associated circuits. Write Bradley Thompson, Assembly Products, Inc., Chagrin Falls 16, Ohio. Phone 7374.

SHARP PERMANENT MARKING

vice-president and general manager, include: L. D. Andrews, director of research and engineering on magnetic materials; E. F. Kiefer, director of research and engineering on carbon products; and F. X. Sorg, director of research and engineering on fixed resistors.

Packard-Bell Enlarges Plant

Packard-Bell Co., Los Angeles radio-tv manufacturer, is now constructing a new $92,460 \mathrm{sq} \mathrm{ft}$ addition to its Los Angeles main plant. Fuilding and equipment together will represent an investment exceeding $\$ 750,000$.

The addition will have two units, one housing a division for milling and assembling tv cabinets and the other housing the electronics division for government contracts. When this addition is completed, the total facility will contain 250,000 sq ft.

Capehart Names
 Manufacturing V-P

L. G. HagGerty was elected vicepresident in charge of manufacturing of the Capehart-Farnsworth Corporation, associate of IT\&T, at a meeting of the firm's directors in Chicago.

Arma Advances Walz

Allen W. (Skip) Walz has been advanced by Arma Corporation, subsidiary of American Bosch Corporation, to executive staff assistant to Clifton T. Foss, Arma's vice-president for engineering. His executive position is a newly created one made necessary by the tremendous blacklog of orders, now on Arma's books, requiring engineering and development work. The Engineering Division of Arma Corporation now has some 1,700 employees.

Allied Radio Builds \$2 Million Building

RAPID progress is being made on a new $\$ 2$ million building of Allied Radio Corporation, Chicago, national distributor of electronics

WHEN

 you need a quick answer to
WHO MAKES IT...

Just look it up in the electronics BUYERS' GUIDE

There are...

23,367 ANSWERS

to

1,445 PROBLEMS

covering every...
COMPONENT EQUIPMENT and MATERIAL used in every phase of electronics

GET IN THE HABIT OF LOOKING IT UP IN
the

electronics BUYERS' GUIDE

A McGRAW-HILL PUBLICATION 330 West 42nd Street NEW YORK 36, N. Y. CERAMIC INSULATORS

- High purity . . . free of all impurities such as Iron, Titania, Alkali group elements.
- Made to various formulations with Alumina content from 94% to a pure sintered Alumina with 99.85% minimum $\mathrm{Al}_{2} \mathrm{O}_{3}$.
- Available in porosities ranging from 20\% to an impervious, vacuum tight body.
- Formed to dimensional tolerances of plus or minus $1 / 2 \%$, minimum of plus or minus .001 ".
(Completely homogeneous structure.

Never before a value like this new 2-KW bench model "Bomborder" or high frequency induction heater . . . for saving time and money in surface hardening, brazing. soldering, annealing and many other heat treating operations.

This compact induction heater saves space, performs with high efficiency Operates from 220 -volt line. Complete with foot switch

VACUUM TUBE
OIIBARER INDUCTION UNI

Simple . . Easy to Operate . Economical Standardization of Unit Makes This New Low Price Possible
and one heating coil made to customer's requirements. Send samples of work wanted. Specify time cycle required for your partic. ulor job. We will quote on proper size unit for your requirements. Immediate delivery.

Scientific Electric Electronic Heaters are made in the following ranges of power: $1-2-31 / 2-5-71 / 2-10-121 / 2-15-18-25$ $40-60-80-100-250 \mathrm{KW}$.

depends on

PRECISION AMBIENT COMPENSATION

The Beckmon Model \vee Micro-Microommeter-for the precise measurement of extremely smoll electrical currents. Beckman Instruments, Inc., South Pasadena, Colifornia.

TO MEASURE ELECTRICAL CURRENTS as small as three-tenths of a trillionth ampere within 1%, the Beckman Model V Micro-Microammeter depends on precision ambient compensation by an EDISON sealed-in-glass thermostat.

IN OPERATION, the Micro-Microammeter conducts the current to be measured through a very high input resistance _from 3×10^{7} to 10^{11} ohms. The voltage produced across this resistance charges a vibrating reed capacity modulator, oscillating at 120 cycles per second, which converts the voltage to an alternating signal. After passing through a four-stage amplifier, the signal is converted back to direct current for measurement.

WITHOUT THE PROTECTION of an EDISON thermostat to control the temperature of the input compartment, the precise, 1% reproducibility could be destroyed through variation of the temperature with input resistance or contact potential of the vibrating reed.

EDISON THERMOSTATS feature stability measured in years, control within $\pm 0.1^{\circ} \mathrm{F}$ and capacity to 115 volts, 8 am peres d.c. or 1000 watts. EDISON temperature control engineers will be glad to work with you on the solution of your ambient protection problems. Just call or write to:

[^16]parts and equipment. With a total floor space of 150,000 square feet, the new center is expected to be ready for occupancy this summer.
A. D. Davis, president of Allied, points out that the firm's rapidly expanding sales have been keeping pace with the phenomenal growth of the electronics industry. The firm now stocks 19,000 items, with an increase to 25,000 anticipated within a few years. Processing of 7,500 shipments daily instead of the current peak of 4,000 daily will be possible in the new building. Allied maintains a $\$ 2.5$ million inventory to meet everyday demands for electronic products.

New NBS Lab Under Way

Construction has begun on a major laboratory of the National Bureau of Standards at Boulder ${ }_{r}$ Colorado. The new building will house the Bureau's Central Radio Propagation Laboratory on a 210 acre site directly south of the city. Complete and modern facilities are to be provided for research on the propagation of radio waves and on the expanded utilization of the radio spectrum now being used for $\mathrm{f}-\mathrm{m}$, television, facsimile and radar.

The new building is scheduled for completion in early 1954. By mid-1954 a staff of about 500 will be employed there.

OTHER NEWS

Westinghouse Readies
 Round-The-World Sub

Three nuclear power plants of major size are under construction or design at Westinghouse. One, known as Mark II, will be used on the submarine Nautilus for which the keel was laid last July. It will be the first submarine to receive this revolutionary new type of power plant. In the ship, nuclear energy will be put to use for largescale power utilization for the first time, resulting in an around-theworld submarine.

The second plant is a full-size
working model of a submarine atomic plant, while the third is another nuclear power plant many times larger than those mentioned above. It is planned that this power plant shall be suitable to power major naval vessels such as aircraft carriers.

GE INSTRUCTS SIGNAL CORPS MEN

SERIES of month-long classes is conducted by General Electric to instruct Signal Corps technicians on the installa. tion, operation and maintenance of microwave relay communications equipment. The company is producing the equipment for the Signal Corps at its Syracuse, N. Y. plant. Assisting in structor Gus Kandaris (right rear) is J. N. Craver (left rear), chief radio engineer for the Signal Corps plant engineering agency, who attended the class to further familiarize himself with the equipment

RTMA Launches
 Serviceman Program

A program designed to improve the technical proficiency and business technique of radio-tv service technicians is being launched by RTMA with the institution of a pilot course in the New York Trade School.

The vocational training program, developed by the RTMA Service Committee under Chairman R. J. Yeranko of The Magnavox Co., has as its immediate objective the upgrading of television service technicians through existing vocational and trade schools. This is to be accomplished through the development and publication of manuals and teaching aids for schools and instructors which would reflect the recommendations of the radio-tv

Micro Bearings Measure Up

... in this high speed aerial camera gearbox

Made by Exact Engineering \& Mfg. Co., Oceanside, California, the tiny gear box shown above is used to drive high speed aerial cameras in modern jet aircraft. Very small size and precision quality are required in every bearing for lowest possible friction, accurate positioning of shafts and minimum back lash in the gears. Assurance of long, trouble-free operation is also important, since battle area servicing is always a problem.

We are proud that Micro Ball Bearings measure up on every count. At least eight are used in each gearbox, all fully processed to a true micro-finish for smooth, quiet operation and maximum wearing qualities.

If you have a problem that calls for a saving in weight, space and friction, contact Micro for the finest in quality and service.

Micro"manall bearncs

NEW HAMPSHIRE BALL BEARINGS, INC. 5 Main Street, Peterborough, N. H.

CHECK THESE MICRO ADVANTAGES

- Precision Tolerances

Fully processed to a true micro-finish. Tolerances are ABEC-5 and higher.

- More Sizes and Types Available in 135 sizes and types down to $.04^{\prime \prime}$ bore, $1 / 8^{\prime \prime}$ O.D. Materials include chrome, stainless steel and beryllium copper. Special items and materials considered.
- Engineering Assistance

Top staff of design engineers avoilable to help customers at any time.

- Availability

Small-quantity orders for items in production are shipped aither from stock or as the next run comes through. Large quantities are scheduled for earliest possible delivery prevailing of time of order.

36000 SERIES
 Ceramic Plate or Grid Caps

A new addition to this series of exclusive Millen "Designed for Application" products is the 36004 for use on lubes with $1 / 4^{\prime \prime}$ diometer contacts. Efficient, compost, easy to use and neat appearing. Soldering lug and contact one-piece. Lug ears annealed and solder dipped to facilitate easy combination "mechanical plus soldered" connection of cable. No. 36001 for $9 / 16^{\prime \prime}$ tube terminals. No. 36002 for $1 / \mathbf{s}^{\prime \prime}$. No. 36004 for $1 / 4^{\prime \prime}$.

JAMES MULLEN MFG. CO., INC.

MAIN OFFICE AND FACTORY
MAIDEN
MASSACHUSETTS

the annual electronics BUYERS' GUIDE

is the electronic engineer's

BREADBOARD WHO'S WHO

for

quick, accurate answers to any questions about

COMPONENTS

EQUIPMENT MATERIALS
used in electronics
-
Get in the habit of laoking it up in...
twe electronics

BUYERS' GUIDE

"The Book that has all the arswers"
a mcGraw. Hill publication 330 West 42nd Street NEW YORK 36, N. Y

Vacuum Tube Accessories By Eimac - Now Available!

Designed primarily to simplify and increase the efficiency of cooling the most popular Eimac tetrodes. Sockets are supplied with necessary mounting screws, clips, and a pyrex glass chimney. The 4×150 socket, in addition, incorporates a built-in screen to cathode by-pass capacitor

- Write for new Eimar Catalogue Summary showing Eimac tubes and other accessories.

Eitel-McCullough, Inc. San Bruno, California
made right to work right

BENDIX-FRIEZ

high-precision thermistors

Whether you use these temperature responsive resistors in standard or special models, you can be sure of this. They'll match your needs for resistance values, size, temperature coefficient, mountings and quality. Made in our own plant under carefully controlled conditions, Bendix-Friez Thermistors know no equal.

STANDARD TYPES FOR IMMEDIATE DELIVERY

Size (inches)	@ $+30^{\circ} \mathrm{C}$.	@ $0^{\circ} \mathrm{C}$.	$@-30^{\circ} \mathrm{C}$.
$.140 \times .75$	45.0 ohms	86 ohms	194 ohms
$.040 \times 1.5$	12,250 ohms	26,200 ohms	65,340 ohms
$.018 \times 1.5$	35,000 ohms	82,290 ohms	229,600 ohms

Write for details.
FR\|EZ INSTRUMENT DIVISION of 1454 Taylor Avenue, BALTIMORE 4, MARYLAND Export Sales: Bendix international Division 72 Fifth Avenue, New York 11, N. Y.

Used in this typical application for sensing the temperature of nydraulic oil.

Try Remler for Service-Tested "Hard-to-Get" Components

 designed and manufactured to order. Write for quotations specifying electrical and mechanical characteristics. Describe application. No obligation.

REMLER TUBE SOCKETS

- STANDARD FOR 30 YEARS... THE BEST IN THE INDUSTRY
Heavy duty phenolic sockets with high current wiping action contacts... for industrial, transmitter and test applications. Rugged. Years of tube insertions and withdrawals do not impair contact effectiveness. Black phenolic is standard, low loss phenolic or alkyd on order.

Remler Company Lfd. 2101 Bryant St. San Francisco 10, Calif.

Since 1918 pioners in electronics and plastics

NEW BOOKS

Advances in Electronics

Edited by L. Marton. Academic Press, Inc., New York, New York, 344 pages, 118 illustrations, 1952, \$7.80.
THE remarkable group of books, of which this is the fourth, comprises a series of tutorial articles on subjects chosen annually by a distinguished editorial board. The choice of subjects displays a catholic interest, ranging from the manufacture of cathode-ray tubes to mathematical treatises on electron scattering in solids.

As the preface to the first edition states: "The "Advances in Electronics' is a yearly publication devoted to the general field of electronics. The term 'Electronics' comprises both physical electronics and engineering electronics; namely the basic physics of charged particles, on the one hand, and the methods and instrumentation for employing such charged particles usefully."

Rather a conservative statement in the light of Dr. Everitt's recent definition!

The articles usually run from 25 to 75 pages, there being seven in this volume:-

1. Electron Scattering in Solids, H. S. W. Massey, F. R. S.
2. The Scintillation Counter, G. A. Morton.
3. Fluctuation Phenomena, AIdert van der Ziel.
4. Electronic Digital Computers, C. V. L. Smith.
5. Modulation of ContinuousWave Magnetrons, J. S. Donal.
6. The Magnetic Airborne Detector, Winfield E. Fromm.
7. Multichannel Radio Telemetering, M. G. Pawley and W. E. Friest.

None of these articles is exactly easy reading since space limitations force the maximum of compression. Naturally the skill with which the selection and compression of material is effected varies from article to article. On the whole the quality is quite high. Mr. Fromm's discussion of the MAD system is particularly likable. On the other hand Mr. Smith's article on computers suffers from too much packing. It
could have been made much more readable with the increase of only a few pages.
The format of the books is attractive, the type easy to read, and typographical errors are few.
This series forms an excellent source of material for the research worker who wishes to broaden his interest and to keep abreast with advances in related fields.-Knox Mcluwain, Hazeltine Electronics Corporation, Little Neck, New York.

Applied Electronics
 Annual 1952

Eiftor, R. E. Blaise. British-Continental Trade Press Ltd., London. J. D. Griffths, 3606-A Parkwood Dr., Greensboro, N. C., 240 pages, 1952, $\$ 8.00$.
A SERIES of short articles on the applications of electronics to industrial operations, such as in textiles, medical diagnosis, motor control and high-frequency heating, plus articles on germanium, magnetic recording, underwater television and new materials for components. In addition there is a list of trade and technical societies and manufacturers of radio and electronic apparatus and components throughout the world, a list of trade marks and names, wholesalers, importers, etc. Interspersed with the text are advertisements of the principal British manufacturers.-K.H.

Principles of Radar

By. M. I. T. Radar School Staff, Third edition by J. F. Reintjes and G. T. Coate. McGraw-Hill Book Company, Inc., 985 pages, $\$ 7.75,1952$.
The subject matter of this book is an expansion and reorganization of the earlier editions of the book. The scope can be appreciated by listing of the chapter headings and number of pages devoted to each: Pulsed Radar (54 pp); Timing Circuits (99 pp) ; Modulators (62 pp) ; Indicators (62 pp); Synchros and Servomechanisms (61 pp); Receivers (130 pp); Radio Frequency Transmission Lines (77 pp) ; Waveguides (68 pp) ; Resonant Lines and Cavities (84 pp) ; High-Frequency

Simplifying HF Power Measurement Model 67 TERMALINE DIRECT-READING R-F WATTMETER

30 me to 500 mc

 (to 1000 me if specified)50 ohms
Triple Range $0-25$ watts
$0-100$
$0-500$

Type N Input Connector (Adapfor for PL-259 supplied) Wattmerer than the well-known AN-ME11/U (our Model 611) R.F Wattmeter. Specifically designed for fixed station transmitters to 500 watts output, it may be used nicely on low range for mobile gear. Provided with an aluminum cased, shock. mounted meter. Model 67 is as simple to use as a DC voltmeter. Now in general use throughout the industry. TERMALINE Wattmeters may be depended upon for fast accurate and repeatable power readings

NON-RADIATING

... Accuracy - 5\%

RUGGED CONSTRUCTION

...Size -17"×9"×6"
Wght. -30 pounds

BETTER, FASTER, CHEAPER TESTING for insulation and winding faults

Westinghouse Surge Comparison Tester reduces production test time, permits positive results, fewer rejects-bringing substantial savings. This electronic device is designed to detect and locate insulation faults and winding dissymmetries in motors, generators, some types of transformers and coils. It operates quickly, simply, with fingertip control. Highly mobile and portable, it fits easily into production line techniques as well as repair shop. For more complete information, write Westinghouse Electric Corporation, I. E. Devices Section, 2519 Wilkens Avenue, Baltimore 3, Maryland.

YOU CAN BE SURE...IF IT'S
 Westinghouse

matching of light sources and photocathodes, vacuum and gasfilled tubes, multiplier phototubes and applications of all types of lightsensitive tubes.-K. \mathbf{H}.

THUMBNAIL REVIEWS

ELECTRICAL MEASURING INSTRUMENTS, Part One, Second Edition. Revised by George F. Tagg, chief research engineer, Evershed and Vignoles, Ltd. 598 pages, $\$ 12.00$, John Wiley \& Sons, Inc., New York. A classic dealing with the design, manufacture and use of fundamental electrical instruments.

THE CHEMICAL ELEMENTS. By Helen Miles Davis, editor Chemistry Magazine. Science Service, 1719 N Street NW, Washington 6, D. C. 160 pages, $1952, \$ 2.00$. Basic information on the 98 elements and particles plus a periodic table plus some hitherto untranslated accounts of the discovery of certain elements.

THE MILITARY ELECTRONIC STUDY. By William C. Urlovic, Pacific Mercury Research Center, Santa Barbara, Calif. 23 pages, 1952, free. For anyone contemplating, or engaged in, research on any subject for the armed forces. The philosophy, technique and pitfalls of setting up an organization, estimating study time and costs, maintaining good relations all round.

RADIO AND TELEVISION WORKSHOP MANUAL. By Sidney A. Diamond, Boston University, and Donald M. Anderson, Massachusetts Department of Education. Prentice-Hall, New York, N. Y. 1952, 300 pages, large format, $\$ 4.50$. A "how-to" book, for those who wish to be successful in front of a microphone or camera. Dia\log, rules, tricks, music etc.

COMPUTING METHODS AND THE PHASE PROBLEM IN X-RAY CRYSTAL ANALYSIS. Edited by Ray Pepinsky. X-ray Crystal Analysis Laboratory, Pennsylvania State College, State College, Pa. 1952, 390 pages, large format, $\$ 7.50$. Proceedings of a Conference on the subject held at State College in April 1950 under the auspices of the Rockefeller Foundation, the Office of Naval Research and Pennsylvania State College. Twenty papers and nine appendices.

PHYSICAL FOUNDATIONS OF RADIOLOGY. By Otto Glasser, Edith H. Quimby, L. S. Taylor and J. L. Weatherwax. Paul B. Hoeber, Inc. (Harper \& Bros.), 1952, 581 pages, \$6.50. A new and thoroughly revised edition of a well known text which, in the first edition, went through eight printings. Gives the history of x-rays, technical aspects of the use of x-rays, dosage considerations and measurement of dosage, plus new material on usage of radioactive isotopes. Small handy format, very practical.

TiIE ONAN

5,000 or 10,000 watts

LOWEST COST per kilowatt, HIGHEST OUTPUT per pound, MOST COMPACT!

For any use .. standby, mobile, portable or stationary, the new Onan CW-5 and CW-10 give you top performance and value! Here, for the first time, are 5 and 10 KW electric plants powered by engines designed and built by Onan exclusively for electric plant use.

Both engines are 1800 R.P.M. Weigh less and are much more compact than general-purpose engines. Two-cylinder, alternate-firing design. New vacuum air cooling. High-tension magnelo

Far Out-Front

in design and enginetring

- Twin-cylinder opposed engines
- Aluminum alloy cylinder heads

Extra-large bearings

- Excellent accessibility
- Pressure lubrication
- High performance generators
- Completely equipped with controls, instruments ignition. Standard voltages 60-cycle A.C.

Write for folder and specifications D. W. ONAN \& SONS INC.

We have them all!

We have machines for Laboratory, Moderate or Maximum Production. See the new developments in Coil Winding at the IRE Show, March 23-26 in Booth 3-521.

109 AUDREY AVE., OYSTER BAY, NEW YORK

Phalo wires, cables and cord set assemblies for radio, television, electronics, communication and industrial applications - illustrated and described for easy reference in - THE NEW 46-PAGE

BACKTALK

Smaller Necks

Dear Sirs:
The memories referred to in Frank Willey's letter in the November 1952 issue of Electronics (Backtalk, p 436) brought back others to this writer. Among the various $\frac{3}{4}$-inch neck tubes built in those days at General Electric was one for wide-angle deflection. It was of flat face and such short bulb length that it was promptly catalogued as the Squatron. We also successfully built tubes with neck stems of ${ }_{3}^{3}$-inch outside diameter. For my "Museum" I have kept one of these with a 2 -inch screen. Its deflection yoke, built for the occasion by S . Hansen, is in a $\frac{7}{8}$-inch cube.
C. H. Bachman

Department of Physics
Syracuse University Syracuse, New Yorle

Electronic Embalming

Dear Sirs:
Your .November, 1952 issue of Electronics (p. 98) carrying the excellent paper by Gale \& Burrill on "Electron Beams Sterilize Food and Drugs" once again calls to my mind my earlier contention that Van de Graaf generators with scanned beam output operating at from 2 to 10 million volts could be used for human cadaver preser-vation-electronic embalming, if you will!

This rather gruesome approach was promulgated by this writer in 1944 while still an engineering student at Ohio State University. Unfortunately, the idea was received rather badly, not for technical reasons but because of the possible social objections to the plan. Practically the plan would be two-fold, destroying the bacteria extant in the tissues of the deceased and curtailing enzymic action which would otherwise permit degeneration of the cadaver tissue.

Embalming is a time-honored science going back thousands of years. Cremation is also an ancient alternate technique. Practiced among the Jews, temporary packing in ice while awaiting burial is the third popular method of han-

Come againCommunications Men!

Welcome to the Radio Engineering Show -

> March 23-26, 1953 at New York City

19 IRE Professional Groups have prepared skillfully organized symposia and technical sessions on all phases of radio, TV, and electronics. These papers will keep you up-to-the-minute on the developments which are to come in the next few years-for the IRE Convention Theme is:

Radio-Electronics
 "A Preview of Progress"

The colorful Annual Meeting on Monday at 10 (opening morning) will feature the "Founders" Award". Social Events include the "Get Together Cocktail Party" Monday, and the Annual Banquet Wednesday, all at the Waldorf Astoria Hotel.
405 Exhibitors are using $\mathbf{5 8 , 6 8 0}$ square feet-the entire four floors of Grand Central Palace, to give you a "Preview of Progress" in the apparatus, components and instruments of Radio-Electronics. Registration: IRE Members \$1.00, Non-Members \$3.00. Register at Grand Central Palace, 47th \& Lexington Avenue, or The Waldorf Astoria Hotel, 49th \& Lexington Avenue, New York City.

THE INSTITUTE OF RADIO ENGINEERS

ROBERT GAIR COMPANY, INC.
155 EAST 44TH STREET, NEW YORK - TORONTO PAPERBOARD - FOLDING CARTONS - SHIPPIAG COMTANEES

PERNOHM Precision Wire Wound RESISTOR

STABLE . . ACCURATE . DEPENDABLE COM. MERCIAL, SPECIAL and MLL-R-93A TYPES
Contractual Governmental Approval
Resistors made to your specifications. For full information write to YONKERS INDUS. TRIES, INC. Resistors are available on short delivery to manufacturers and lab. oratories.
TOLERANCE: Standard tolerance within 1%. Any tolerance within $1 / 20 \%$ can he supplied at slight added cost.

Write for Bulletin NO. Y1

R. F. WATTMETER ME-82/U Model MM-625 Series 50 to more than 1000 MCS.

This series of instruments was designed to measure RF power up to 400 watts, and serve as an excellent dummy antenna load over the frequency range 50 to more than 1000 MCS in 52 ohm coaxial line circuits.

Some of the outstanding features are:

1. Directional coupler pick-up probe which eliminates high frequency reso nant responses and errors due to slight deviations in the load impedance.
2. Rugged construction for field and laboratory use.
3. Hermetically sealed and ruggedized indicating instrument in accordance with specification MIL-M-10304.
4. Two spare erystal rectifiers supplied with each instrument.
5. Model MM-625 has recently been assigned the Armed Forces nomenclature ME-82/U.

SPECIFICATIONS

Impedance
Frequency Range
Maximum VSWR
RF Power Scale
Model MM-625
Model MM-626
Model MM-627
Accuracy
RF Connector

Size
Weight

52 Ohms
50 to over 1000 MCS 1.2

120 watts
40 watts
400 watts
$\pm 5 \%$ of full scale Type C (Adanters available for other types)
$6 \times 71 / 8 \times 13-9 / 16$
$91 / 2 \mathrm{lbs}$.

ELECTRONICS COMPANY bristol. connecticut
Distributed outside of Continental U.S.A. by
RCA International Div.. 'N.Y., N.Y., U.S.A.
dling cadavers before interment.
Utilizing up to 10 -million-volt Van de Graaf electron accelerator, an output of some 30 kw of scanned electron power output could sterilize (electrically embalm) a human cadaver dressed in his street clothes in about 60 seconds with apparatus amortized over a $20-$ year period at a cost per patient of some $19 ¢$!
It is my estimate that such embalming would permit the cadaver to remain without decomposition, alteration in appearance or odor up to two weeks without any other treatment.

David GNessin
New Rochelle, New York

WWV's Accuracy

Dear Sils:
IN THE November issue of ElecTRONICS is an article entitled "Industrial Frequency Standard" by H. W. Kline (p 130), in which a crystal oscillator is not used, a locked oscillator being synchronized with WWV's received signal. While WWV's claimed accuracy, as transmitted, is 2 parts in 100 magacycles, their usual accuracy is perhaps twice this, or one part in 10°.

However, due to the Doppler effect, caused by the motion of the ionized reflecting layer in the stratosphere, the accuracy of the received signal is, usually, only about 5 parts in 10^{7}.

This effect has been known for several years. See such articles as: A Standard of Frequency, Jour. IEE, Jul., 1946; High-Precision Frequency and Time Standards, Proc. IRE, Jan., 1950 ; and my own article in the Western Union Technical Review for Apr. 1952. Also in the first footnote of an article by A. W. Warner, in the Sept. 1952 Proc. IRE, he states, "There is no known method of communicating a frequency accurate to one part in 10^{8} or better from one place to another hundreds of miles away:. . .".

Even land lines, microwave relays, or coaxial cables will have some variable phase shift, although less than the Doppler effect of skywave transmission. To see the ef-
fect of the Doppler effect, an independent standard of high accuracy must be available at the receiving end of the circuit. I think that a correction of the accuracy of this type of standard might be desirable.
L. W. Franklin

Radio Research Division The Western Union Telegraph
New York,
R.

Dowsers

Dear Sirs:

The correspondent who asked to have his name withheld concerning water dowsers need not be so cautious. There are quite a few scientists of good repute working in this most interesting parapsychics field today on a purely mechanistic and communications theory basis.

There is no witheraft or supernatural effect involved, but some obscure magnetic, electric and infrared senses possessed by abnormally sensitive humans which are similiar to the uncanny homing, tracking and migrating senses of some animals. The water dowser's gifts appear to be related to the magnetic sense of homing pigeons and the infrared smell senses of insects. Endocardiographic readings taken by Prof. S. W. Tromp ${ }^{1}$ indicate that nerve potential variations coincide with the magnetic and electric field variations about a dowser's body and the nerve reflex responses of his arm muscles and the divining rod. Running water is different from still water in that it develops a frictional electric charge which strongly effects a sensitive dowser's sensory motors. Bioelectrical fields have been measured at distances up to 15 feet from animals and plants.

Professor Tromp found that some dowsers got responses where there were no measurable currents, fields or radiations. This he eventually tracked down to abrupt changes in soil resistivity with geological equipment, according to a personal corespondence letter to the writer. Hence a dowser's body radiates either an electrical or infrared field and his fantastically sensitive nervous system picks up the tiny reflections from the soil boundary, which may also be a wet-soil bound-

Model 109

"Complete Radar Test Facility"

Multi-Purpose X Band Test Equipmert

$$
\begin{aligned}
& \text { Spectrum Analyzer }\left\{\begin{array}{l}
\text { Displays supplied spectra from } 8.5 \text { to } \\
10 . \mathrm{KMC} \mathrm{on} \mathrm{a} 3^{\prime \prime} \mathrm{CRT}
\end{array}\right. \\
& \text { Signal Generator } \begin{array}{l}
\text { Delivers CW, square wave, FM, or pulse }(1,5 \mathrm{or} \\
10 \mu \mathrm{~S}) \text { modulated } \mathrm{RF}, 8.5 \text { to } 10 \mathrm{KMC} \text { up to } 25 \mathrm{MW}
\end{array} \\
& \text { Power Monitor }\left\{\begin{array}{l}
\text { Measures average power of CW or pulsed } \\
\mathrm{RF}, \text { external or internal, from } 8.5-10.5 \mathrm{KMC}
\end{array}\right. \\
& \text { Frequency Meter } \begin{array}{l}
\text { Measures applied } \mathrm{RF} \text { from } 8.5-10.5 \mathrm{KMC} \\
\text { to } 1 \% \text { accuracy. }
\end{array} \\
& \text { All major units plug in, } 17^{\prime \prime} \times 10^{1 / 2^{\prime \prime} \times 13^{\prime \prime} .45 \mathrm{lbs} .}
\end{aligned}
$$

FIrcyRONTC DIVISION

Century Metalcraft Corporation box 2098-14806 oXnARD STREET VAN NUYS, CALIFORNIA

hot tin dipped . . . fabricated terminal and vent holes . . . smooth, one-piece construction using cold rolled steel ... draw depths up to $21 / 2^{\prime \prime}$. . . inside fit covers for easy hermetic sealing in all sizes . . . available as stock sizes and as special fabrications.

Onsmpis
P. O. BOX 71 A

METAL PRODUCTS COMPANY, INC.
PHILLIPSBURG, N. J.

DICO влс CONNECTORS

Illustrating part of our comprehensive line of

R.F. connectors.

D \| A © $\boldsymbol{\sim}$ MANUFACTURING CORPORATION

 7 North Avenue, Wakefield, Mass.ary caused by a body of water. For discussions of such biological phenomena, see the papers of Burr, Yeagley, Rhine, Ravitz, Puharich, Rajewsky, Reich, Cazamalli, Miles, Beck, Humphrey et al, and the books on dowsers by Maby, Tromp and Roberts.

The blind little bat, for instance, emits a triple-modulated sonar pulse to clock distance objects by timing the pulse echoes, and close objects by analyzing the a-m and f-m modulation beats, to extract a maximum of information from a restricted bandwidth of 40 to 70 kc , and has applied Shannon's information theory millions of years before man appeared on this earth. A castual study of so-called "psychics" indicates that Mother Nature may be even better an empiricalmethods engineer in communications than in the bat's little sonar-computor-servo blind-navigation system.
T. Powell

Great Necli Long 1stand, V . J .

Reference

(1) S. W. Tromp, "Physical Physies." clseviel Press, Holland and New rork 450 pages, $\$ 8.00,19+8$.

More On Dowsers

DEAR Sirs:
THE AUTHOR of the unsigned letter on the subject of dowsing and electronics in the Backtall column of Elactronics, December, 1952, (p 398) is perhaps maware that:
(1) Dowsers are not infallible. For example, H. B. Nichols, in the Scientific Monthly, May, 1951, p 340, states that in New South Wales the dowsing history of several thousands of water wells was recorded by the government, and that the dowsed wells were consistently less successful than the undowsed locations. From this it might appear that chance, or possibly that more rare quality, common sense, could be as effective as dowsing.
(2) Competent geophysicists and geologists are not completely unaware of electronics as applied to water-finding, and the subject has received some attention by C. A. Heiland, "Geophysical Exploration," Prentice-Hall, New York

REXOLITE 1422
 (FORMERLY G. E. TEXTOLITE 1422)

THE Better

- superior machinability
- high heat resistance
dimensional sty low initial cost
and extremely CH1

Rexolite 1422 has been specifically designed and developed to meet the growing need for a lightweight - low cost U. H. F. insulating material.
Rexolite 1422 is available for immediate delivery as centerless ground rod in any diameter up to 1". Also cast in larger diameter rods and sheets.
Meets IAN-P-77 and MIL-P-77A spec. ifications.
The unusual chemical inertness and physical properties of Rexolite 1422 allow its use where other materials fail.
For use in: connector 5, coaxial connectors, waveguide, antennas, leads and spacers, spreaders and air wound coll supports, coil forms.
 samples. Our ent gineering staff is af. ways at your dis. posal.

Manufacturers of Non-strip wire, High Tempera. ture Electrical Tubing and other extruded plastlc

products.
 the beX corporation
 67 LANDSDOWNE STREET
 CAMBRIDGE 39, MASS.

Want more information? Use post card on last page.
February, 1953 - ELECTRONICS

PRECISION in MINIATURE!

520-A
Voltmeter

1 Millivolt Full Scale to 300 Volts 10 Cycles to 2 Megacycles Only $41 / 4^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime}$ Deep $\$ 180$

ALSO - MATCHING
510-B OSCILLATOR
18 Cycles to 1.2 Megacycles Distortion Less Than 0.2\% Constant Output $\pm 0.5 \mathrm{db}$ $\$ 150$

Literature on Request
Waveforms, inc.
333 SIXth aVe. NEW YORK, N. Y. 1

The DS-606 is a versatile laboratory scaler easily adaptable to GM and scintillation counting and frequency checks. Pulse height discriminator from 0 to 100 volts; position or negative pulses. It has a high voltage power supply which is variable in one step from 0 to 2.5 KV . The power can supply either the GM input or can be used as a power source for accessory equipment.

Write for folder 78

5631 CAhUENGA blVd. NORTH HOLLYWOOD, CALIF,

Specialy Transformers

 HIGH QUALITY ELECTRONICS DESIGNS FOR JAN-T-27 or MIL-T-27 Requirements

Facilities also available for COMMERCIAL UNITS
Experienced design engineers

241 FAIRFIELD AVE., UPPER DARBY, PA. Telephone: GRanite 4-8000

TWIN Power Supply

Electronically

Regulated for

Precise

Measurements

Two independent sources of continuously variable D.C. are combined in this one convenient unit. Its double utility makes it a most useful instrument for laboratory and test station work. Three power ranges are instantly selected with a rotary switch:

175-350 V. at $0-60 \mathrm{Ma}$., terminated and controlled independently, may be used to supply 2 separate requirements.
$0-175 \mathrm{~V}$. at $0-60 \mathrm{Ma}$. for single supply.
175-350 V. at 0-120 Ma. for single supply.
In addition, a convenient 6.3 V.A.C. filament source is provided. The normally flooting system is properly terminated for external grounding when desired. Adequately protected against overloads.

Twin Power Supply Model 210
Complete $\$ 130.00$
Dimensions: $16^{\prime \prime} \times 8^{\prime \prime} \times 8^{\prime \prime} \quad$ Shipping Wt. 35 lbs . Inquiries Invited on our line of Regulated Power Supplies
FURST ELECTRONICS 3324 W. Lawrence, Chicago 25, III.

MODEL 101
SUPERSONIC FREQUENCY RANGE 20 (ps to 200,000 cps

MODEL 102
LOW POWER factor range 20 cps to 20,000 cps

for measurement of Volts • Amps - Watts

MODEL 101

- power range: $100 z$ w to 9 Kw .
- INPUT IMPEDANCE: I MEGOHM.
- VOLTAGE RANGE: FULL SCALE 0.IV to 300V.
- current range: full scale 001 to 30A.

MODEL 102

- reads watts at full scale at both 10% AND UNITY POWER FACTORS.
- INPUT IMPEDAICE: I MEGOHM. \quad POWER RANGE: FULL SCALE, $225, \ldots \mathrm{WW}$. 18 KW
- power range: full scale, $225, u$ W to 18 kW .
- voltage range: full scale, 1.5 t to 600 V .
- VOLTAGE RANGE: FULL SCALE, $.0015 A$ to 30 A.

WRITE WIRE PHONE

FOR POWER and LOSS MEASUREMENTS in Cables - in Iron Cores - in Transformers Copper, Core and Impedances - in Classes A, B, C Amplifier Inputs and Outputs - at Aircraft Upper Power Frequencies - in Underwater Sound EquipPower Frequencies. in Underwater Sound Equipment - in Loud Speakers in Synchro, Motor, and General Servo Circuiry in Carrier Current Equipment in Complex Waveforms - Circuit Analysis, both Linear and Non-linear a few sound and Noise Analysis. These are but a few of the nearly unlimited applications of the VAW meters.

Our Engineers will be happy to discuss the application of the VAW Meter to solve your particular problem. Write Dept. E-2. Literature availabla on request.

JOHN FLUKE ENGINEERING COMPANY

*Registered Trademart
till WEST NICKERSON STREET, SEATTLE 99, Washington; BURLINGAMGH MARSLAND Chicago: GERALD B. MIL'LER GO., Holtywood; M. PR ODELL, Cleveland, Dayton; JAMES L. KEARNS, Portland, ORe.; EARL LIPSCOMB ASSOC., Daltas, Houston; H. M. RICHARDSON

Represented by .
user to wide tolerances.
The special industrial and ruggedized series is a step in the right direction, except that they add just so much more to the confusion by bearing rouges' gallery numbers that bear absolutely no relation to anything-thus very successfully hiding their identify from the user and adding another to the already-too-long list of types to remember.

Even in the mass-produced home market, the use of the wide-tolerance tubes means engineering and servicing headaches.

Why cannot we clean house somewhat on both the ever-growing list of tube types and the thinking to back it up and assure that progress goes forward rather than being tied down to old-fashioned ideas?

Philip C. Tait Emeryville California

Calculated Curves

Dear Sirs:
I was not very happy to see that you had to omit two calculated curves of antenna patterns in my

Measured pattern for 90 -degree skewed antenna

Microlytic capacitors are available in production quantities

Address your inquiries to Dept. E1

MICAMOLD BADIO CORPORATION 1087 FLUSHING AVENUE, BROOKLYN 37, N. Y.

CONTINENTAL

MINIATURE Precision CONNEGTORS

SERIES 20

RACK TO PANEL TYPE

4 to 100 contacts

POSITIVE POLARIZATION - FLOAT. ING CONTACTS PRECISION MA. CHINED CONTACIS VIBRAIION CHINED CONTACIS MERAL FILED MELA. MINE BODY: FLAME RESISTANT -HI-DIELECTRIC AND MECHANICAL STRENGTH

CABIE TO PANEL TYPE

4 to 100 contacts

VOLTAGE BREAKDOWN
(Sea level normal humidtiy)
CURRENT RATIN
3600 V. RMS CONTACT SIZE 20 AWG wire MECHANICAL SPACING 5164 in

CABLE TO PANEL TYPE

Hexogonal type is provided with positive polorization and a Vibration Ring and Spring with detent locking action. Voltage breakdown at Sea level normal humid. ity. - 1600 V. RMS.
CATALOG WITH COMPLETE CATALOG WITH COMPLETE REQUEST. TO DEPT. E-2

Calculated pattern for antenna without skew

Measured patterns for antenna without skew
article, "Skewed Antenna at WJZTV" which appeared in the October issue of Electronics on page 130 .

Among engineers it is quite well accepted to measure the success of a project by the correlation of calculated and measured work. In this case the measured patterns differ so much without the calculated results to substantiate these wide differences, there is reason to doubt the propriety of the work in the no-skew case. It is easy to obtain poor curves by an error in circuit arrangement or phasing.
M. W. Schetdorf

Andrew Corporation Chicarso, Illimois
(Editor's Note: In order to show the close correlation between measured and calculated patterns, as requested by the author, we are reprinting the measured patterns below, along with copies of the calculated patterns that were omitted in editing the article.)

NIM

Dear Sirs:
We NOTE in the November, 1952 issue of Electronics the article "Digital Computer Plass NIM" (p 155), which brings to mind that The North Electric Manufacturing

Delllin

 1
MEETS MIL-M-10304

- Mechanism suspended by internal live rubber ring mounts for maximum shock displacement and protection.
- External live rubber grommet for shock mounting with interlocking part of front bezel eliminates glass breakage and bezel distortion.
- Water-tight seal to panel provided by rubber grommet.
- Glass to metal seal for perfect hermetic sealing.
- Drawn steel case with heavy cadmium plate provides high degree of magnetic shielding.
- High-grade fusion seals for terminals and window glass with. stand thermal shock of extreme temperature changes.
- Rugged glass-to-metal seal terminals withstand a 3000 volt breakdown test under extreme humidity conditions.
- Entire mechanism has complete ruggedized construction for high shock and vibration resistance. Ranges from 250 microamperes to 8 milliamperes D.C. available for immediate delivery in $21 / 2^{\prime \prime}$ size. Other ranges in $21 / 2^{\prime \prime}$ and $312^{\prime \prime}$ being submitted for government approval.

A request on company letterhead to Dept M-N will put you on our mailing list, and bring you BULLETIN 200E

AMSCO
CORPORABICN
45-DI NORTHERN BOULEARC. L.I. C. L, N. Y.

CONTINENTAL

 These precision power connectors were developed to employ the same electrical and mechanical properties as 25% in height with acre reduced by cup for H14 AWG wire larger solder The for Hisengagement fore siderably reduced force is also con-

CABLE TO PANE TYPE
7-9-10-15 CONTACTS

SPECIFICATIONS
MAXIMUM WIRE SIZE =14 AWG Creepage between contacts Air Space between contacts $7 / 32^{\prime \prime}$ MIN. Breakdown voltage $3 / 32^{\prime \prime}$ MIN. Breakdown valtage between contacts with connector engaged at sea level,
normal conditions.... 550 C V.R.M.S.
CABLE TO PANEL TYPE

ALUMINUM HOOD AND CABLE CLAMP IS AVAILABLE FOR ALL TYPES DESIGNATED BY ADDING "'H" TO TYPE DESIRED, i.e.: 7-14 PH, Plug with Hood, 7-14 SH, Recepacle with Hood, 7-14 H, Hood only. CATALOG WITH COMPLETE DETAILS - AVAILABLE ON
REQUEST. TO DEPT. E-2
AMsco
CORPORATION.
4s-ه1 NORTMLRN DOULIVARD. ᄂ. I. ©. 1, N. Y

Nem LOW COST-PRECISIIN Direct Reading PHASEMETER

Model 100A Phasemeter

- 0° to 180° lead or lag in 90° expanded scale ranges.
- 2 cycles to 200 kilocycles.
- Error less than 4° from 20 cycles to 20 kilocycles; above 20 kilocycles and below 20 cycles increasing gradually to 8°.
- Input impedance approximately 20 megohms shunted by 10 mmf .
- Input voltage 1 to 50 volts sine wave; to 500 volts with accessory input dividers.
- Invaluable in the audio, ultrasonic, servomechanism, industrial control and acoustical fields for determination of phase characteristics and time relationships.
- Applicable to the power field and general laboratory use for power factor measurements and electronic component testing.
Literature on request.
Price: $\$ 145$.

BRTBEACH
Electrande WIRE \& CABLE

For ALL Your Wiring Needs! GOVT. SPEC. HOOKUP WIRE

- JAN-C. 76 SRIR-SRHV PLASTIC
- 105° C. U.L. APPROVED

Solid Colors or Spiral Marking
WL-EXTRUDED NYLON
JACIKET JACIKET
alpcraft wirbral Markings
JACKET WIRE-NYLON
Mu-W-5086 (Supersedes
AN-J-C-48a)
Thermonlustic Homan Mrir

- Jan-C. 76 WL-gLaSS Brald Solid or 'Iracer Colors
- MULTICONDUCTOR. SHIELD ED CABLES

COMPLETE WAREHOUSE STOCKS

Quality Products for the Electronics Industries since 1923
BIRWBARD
MEW YORK 13, M. Y.
WRITE FOR CATALOG 53-E

- MODEL. 200-A DC MILLIVOLTMETER

DC Mesarifenents 5 microvolts
to 18 VOLTS

A precision converter, that changes the input DC into an amplified, sinusoidal AC Voltage

- 5 Microvolts internal noise
- 2 Megohms input resistance
- Stabilized gain and zero
- Insensitive to power line pickup

Makes the $A C$ Vacuum tube Voltmeter direct reading in DC microvolts and millivolts.

With the cathode ray oscilligraph yields an extremely sensitive DC null detector.

Relay-operated Nimatron played faultless NIM as early as 1940

Company built a similar machine in 1940. While it operated on relay principle only, the results were the same.

This machine was designed and built for Westinghouse and was displayed in the 1940 World's Fair in New York. It was also described in the August 1940 issue of Popular Mechanics.

This machine was known as a "Nimatron". We believe the machine is still on display in the Planetarium at Pittsburgh. The photograph shows the front of the machine, with four rows of seven lights and the operating buttons. The queue on the top merely repeated all of the lights in four directions. In the event the player won the game, a small token was delivered in the slot, lower center, front.

There were four counting chains which operated with the lights in each row and compared the powers of two to determine which play was winning. There was also an additional counting chain which kept track of the number of games and set up nine different starting combinations. All starting combina-
tions were arranged so that the player could win if he did not make a mistake. However, once a mistake had been made, the machine took over and would never lose from that point. In cases where the player had a winning combination, the machine made random plays extinguishing one, two or three lights in rotation, the idea of this being to eliminate memorizing previous plays. This arrangement, together with the nine different starting combinations, gave an infinite number of plays, so that a previous winning combination would be very difficult to memorize and retain.

We thought perhaps you might be interested in knowing that this type of machine had been designed and manufactured at least twelve years prior to your publication of a similar machine designed by Maxson Corporation.

Eric Brooke Chief Engineer, The North Electric Galion, Ohio

Zero and Negative

Dear Sirs:
This refers to "Zero Impedance" in the Backtalk department of Electronics, p 385, May 1953.

Attention of your correspondent and readers is hereby drawn to my article "On Voltage Stabilizer Circuits" in the April, 1942 issue of the Indian Journal of Physics. Certain innovations for obtaining zero or negative internal resistance and others for perfect and more than perfect negative stabilization has been described there. I believe that is the first publication on stabilizer circuits giving satisfactory methods of obtaining readily these unusual performances. In their classic work published in Rev. Sci. Instr. in 1939, Hunt and Hickman have only made an observation (on the basis of a mathematical study of the effect of source resistance on the performance of stabilizers) that zero or negative internal resistance may be shown by a stabilizer having negative stabilization when working off a primary source of high internal resistance.

The usual two-valve stabilizer circuit cannot give five perfect sta-bilization--the change in output voltage $d V$. can never become zero for a change $d V_{1}$ in the input volt-

MINIATURE SLIP RING ASSEMBLIES

Commutators and other Electro-Mechanical Components PRECISION MADE TO YOUR OWN SPECIFICATIONS

Our Swiss methods and techniques are geared to meet exacting requirements. We invite your inquiries.
COLLECTRON CORPORATION
216 EAST 45th STREET
MUrray Hill 2.8473

Potentiometers

Designed by CORNELL for application wherever extreme precision is essential requirement.

inear and NON-linear pots are designed to meet customer's requirements. Taps and special winding angles anywhere up to 360 continuous winding can be incorporated into both linear and non-linear units.

Type DS-6: $15 / 8^{\prime \prime}$ in diameter, RAS-4: $11 / 2^{\prime \prime}$ in diameter. Other Types available.
Request additional information please.

CORNELL ELECTRONICS CORP.

40-33 MAIN AVENUE

DOUGLASTON, N. Y.

TRULY "MCROOMNAATURZED"

- TRANSISTOR PRODUCTS' GOLD BONDED GERMANIUM DIODES

These extremely smail plastic-encased germanium diodes offer a great many advantages for a multitude of applications. Excellent for low level use, they also have unusually high conductivity at high levels. The gold bonding technique produces a permanent weld to the germanium surface. Noise characteristics are excellent, and high frequency rectification characteristics are vastly superior to conventional types.

- TRANSISTOR PRODUCTS' GERMANIUM TRANSISTORS

Designed to perform many of the functions of vacuum tubes as well as opening frontiers for new apparatus in the field of electronics, TRANSISTOR PRODUCTS point contact transistors may be used for power amplifiers, oscillators, and switches. Junction transistors and phototransistors are ovailable as well. All have been adjudged by experts in the field to be superior, the finest performers that can be had.

Actual Size

- TRANSISTOR PRODUCTS' TRANSISTOR TEST SET

This device is designed to test the signal behavior of all transistors, and can be used most advantageously by circuit engincers and transistor manufacturers. Comparable to a vocuum tube bridge in that field it is not, however, o null instrument. Its design insures continued usefullness as new transistors are developed.

Write to TRAN SISTOR PROD UCTS now for additional infor mation.

TRANSISTOR PRODUCTS, ins.

Circuit of zero or negative impedance power supply regulator
age although it may be very small in comparison. The very nature of operation of these circuits demand the presence of some control voltage at the $\mathrm{g}_{\mathrm{r}} \mathrm{id}$ of V_{2}. This control voltage is furnished by the change in the output voltage $d V_{0}$ in the usual two-tube circuits. However the necessary control voltage may be easily supplied from the varying input voltage. In that case, no additional change in output voltage will be necessary to provide extra control and in this sense the circuit may be said to give perfect stabilization.

The circuit I developed is shown in the diagram.

The resistance R_{3} between the cathode of V_{z} and the negative line in the circuit brings about negative internal resistance in two-valve voltage stabilizer circuits. A simple analysis gives the intermal resistance defined by the relation

$$
\begin{aligned}
& R_{o}=-\left(\frac{\delta V_{o}}{\delta I_{o}}\right) V_{i} u s \\
& R_{o}=\left[\frac{1}{G A \beta}-R_{s}\left(\frac{1}{\beta}-1\right)\right]
\end{aligned}
$$

where G is the mutual conductance of V_{1}; A, the amplification given by
V_{2} and $\beta=R_{2} /\left(R_{1}+R_{2}\right)$
It will be seen that by a suitable choice of the value of R_{3}, one can make the internal resistance zero or negative. A negative value of several hundred ohms is not difficult to attain.

The stabilization factor of the circuit remains practically unalfected by the inclusion of R_{3} and is approximately given by $S_{0}=$ $\beta A \mu$. where , . is the amplification factor of V_{1}.
B. M. Banfrjee

Institute of Nuclear Physics
Caloutta, india

Professional SERVICES

Consulting-Patents—Design—Development—Measurement in

Radio, Audio, Industrial Electronic Appliances

CROSBY LABORATORIES, INC.
 Murray G. Crosby \& Staff Radio - Electronic
 research Development \& Manufacturing Comnunications, FM \& TV
 Robbins Lane, Hickssille, N. Y. ILicksville 3-3191

EDGERTON, GERMESHAUSEN \& GRIER, INC.
Consulting Engineers
Research, Development and Manufacture Of Electronic and Stroboscopic Equipment 160 Brookline Avenue. Boston 15, Mass.

Eldico of New York, Inc.
Pioneers of Television Interference Elimination from Transmitters, Induction Heaters, Diathermy and etc.

Donald J. S. Merten \& Engineering Staff
44-31 Douglaston Pkwy Douglaston, N. Y. Bayside $9-8686$

ERCO RADIO LABORATORIES, INC.
Radio Communications Equipment
Engineering - Desiom - Development - Production Pioneers in Frequency Shift Telegraph
Garden City • Long Island - New York

HARRIS GALLAY

Consultant

MICROWAVE AND
I'ULSE TECIINIQUES
Plymouth 9-4237 60 Perry St., Belleville 9, N. J.

HANSON-GORRILL-BRIAN INC.

Products \& Mfg. Development Electrical - Electronic HYDRALLIC - amecimanical
One ContInental Hill Glen Cove 4-1922

HIGHLAND ENGINEERING CO.

 William R. Spittal \& StaffDESIGN. DEYELOPMFNT AND MANUFACTURE ELECTRONIC. INDUSTRIAL \& ALLIRD FIELDS $\underset{\text { WE-7-2433 }}{\text { Main } \& ~ U r b a n, ~ W e s t h u r y, ~ I . . ~ N . Y . ~}$

R. W. HODGSON

RFSEARCH DEVELOPMENT ENGINEERS SPECLILIZNG IN ELECTRONICS NUCLE-
ONICS, INSTRUMENTATION, SERVONECEA-
nisms \& cybetetics
 GLadstone 9680

R. W. HODGSON

PATENT AGENT SI'ECIALIZING

- IN ELECTROMICS

Registered to Practice Before the U. S. \&
Foreign Patent Offices
Offiee-6600 Lexington Ave, Hollywood 38. Calif.
All Mail to Box 874 Sherman Oaks. Calif.
All Mail to Box 874 , Sherman Oaks, Calif. GLadstone 9680

HOGAN LABORATORIES, INC.

John V. L. Hogan, Pres
Applied Research, Development, Engineering
Est. 1929. Electronics. Optics, Mechanisms, Facsimile Communication, Digital Computers, Electrosensive recording media, Instrumentation. 155 Perry Street, New York 14. CHelsea 2-7855

THE KULJIAN CORPORATION

Consultants - Engineers - Constructors
Electronic Control Specialists
Utility - Industrial - Chemical
1200 N. Broad St. \quad Phila. 21, Pa.

MEASUREMENTS CORPORATION

Research \mathcal{E} M.nnfacturing Engineers
Hary W. Houck John M. van Beuren Jerry 13. Minter Specialists in the Design and
Development of Electronfc Test Instruments Boonton, N. J.

Eugene Mittelmann, E.E., Ph.D.
Consulting Engineer \& Pbysicist
High Frequency Heating-Industrial Electronics applied Physics and Mathematics
54 E W. Washington Blvd. Chicago 6. ml .
State 2-8021

NIAGARA ELECTRON LABORATORIES CONSULTATION-DESIGN - CONSTRUCTION MFG. THE THERMOCAP RELAY
Specializing in solution of problems of electronic and electro-physical instrumentation for the research of analstical laboratory. Industrial plant
problems also invited prablems also imited.
andover. New York Cahle Address: niatronlan

PHYSICS RESEARCH LABORATORIES, INC. Avplied Mechanics, Thermodynamics. Heat Transfer. Optics, Magnetic and Electrical Devices, Elec507 It West Hempstead, L. I., N. Y.

PICKARD AND BURNS, INC.
Consulting Electronic Engineers

> Analysis and Evaluation of Radio Systems

Research, Developinent and Design
of Special Electronic Equipment
240 Highland Ave.. Needham 94, Mass
ALBERT PREISMAN
Consulting Engineer
Television, Pulse Techniques, video
Ampliflers, Phasing Networks.
Industrial Applances
Affliated with
MANAGEMENT-TRAINING ASSOCIATFS
3308-14th St., N. W.
Washington 10, D. C.

JOSEPH RACKER COMPANY

Radar Consultants \& Editors
Technical Manuals
Research and Development
140 Nassall Street. Neiv York 38, N. Y.
Worth 4-1463

w. C. Robinette co.

motron deadbeat high gain servos Speed control of any Prime Mover $1 / 2 \%$ to $.001 \%$ controly Zero Irood No load to full load plus control-Zeto noob-No load to full load 802 Fair Oaks Ave. South Pasadena, Calif. Py 11594

SKINNER, HARLAN AND IRELAND, INC.
Consuling Engineers
Specializing in Marmetic Materials and Their Application

Office and Laboratory Indianapolis 7. Indians

THE TECHNICAL MATERIEL CORPORATION

Communications Consultants Systems Engineering General Offices and Laboratory 121 Spencer Place, Mamaroneck. N. Y.

WHEELER LABORATORIES, INC.

Radio and Electronics
Consulting-Research-Derelopment
R-F Circuits-Lines-Antennas R-F Circults-Lines-Antenaas
Microwave Components-Test Euipment
Harold A. Wheeler and Enginecring Staff
Great Neck. N. Y. Great Neck 2-7806

YARDNEY LABORATORIES, INC.
 Research - Design - Development
 Electro-Chemical Generators of Energy
 105 Chambers Street WOrth 2-3534. 35, 36
 New York 7, N. Y.

- CONTACTS
 FOR THE FIELD OF ELECTRONICS

Unconditionally guar anteed for 6 months. Temperatures to 1 , $200^{\circ} \mathrm{F}$. Adjustable long-life thermostat. Ceramic embedded heating element.

Standard Models to Meet Most Needs

Moder 85 $12^{\prime 2} \times 6^{\prime \prime} \times 22^{1 / s^{\prime}}$

DEE ELECTRIC COMPANY
MELTING POTS
1105 N. Paulina St., Chicago 22, III.

SUBCONTRACTING
 MILITARY and COMMERCIAL.

Power supplies, controls, test equipment, sub-assemblies, cable and harness work.

PESCHEL ELECTRONICS, INC. 13 GARDEN ST. NEW ROCHELLE, N. Y NEW Rochelle 6-3342

ISLER MANUFACTURES COMPLETE EQUIPMENT WELDERS FOR SPOT \& WIRE BUTT
RADIO, TV TUBE EQUIPMENT \& REPAIR UNITS INCANDESGENT, FLUORESCENT MFG EQUIPMENT ELECTRONIC EQUIPMENT, VACUUM PUMPS. Etc. Wet Glass SLICING \& CUTTING MACHINES for Lab Uso TRANSFORMERS, SPECIAL \& STANDARD TYPES EISLER ENGINEERING CO., INC.
751 So. 13 th St.

SUB-CONTRACTING
MILITARY and COMMERCIAL receivers-test equipment transmitters-controls sub-assemblies
TELETRONICS LABORATORY, INC. Westbury, L. I., N. Y. Westbury 7-1028

FM MODULATION METER Meosures moximum modulation deviotion on mobile-zystem FM iransmitrers, all tres
quencies, 25 to 200 MC. Price $\$ 240.00$.
LAMPKIN LABORATORIES; INC. bRADENTON, FLORIDA

Shorted Turn Indicator for unmounted coils
MODEL 101 C
BULLETIN 42 U KARTRON

This CONTACTS Section

supplements other advertising in this issue with these additional announcements of products essential to efficient nance. Make a habit of checking this nance. Make a habit of checking this page, each issue.
the annual

electronics

 BUYERS' GUIDEis the electronic engineer's

BREADBOARD

WHO'S WHO

for
quick, accurate answers to any questions about

COMPONENTS

 EQUIPMENT MATERIALSused in electronics

Get in the habit of looking it up in...

the
 electronics

BUYERS' GUIDE

"The Book that has all the answers" A McGRAW-HILL PUBLICATION 330 West 42nd Street NEW YORK 36, N. Y.

CLASSIFIED
EMPLOYMENT SEARCHLIGHTSECTON Aоvarınc

UNDISPLAYED RATE
$\$ 1.50$ a line, minimum 3 lines. To figure advance payment count 5 average words as a line. POSITION WANTED \& INDIVIDUAL SELLING OPPORTUNITY undisplayed advertising rate is one-half of above rate, payable in BOX NUMBERS count 1 line odditional. NEW ADVERTISEMENTS ADDRES, N. Y. Office, 330 W. 42 St., N. Y. 36, for the March issue closing February 2nd. The publisher cannot aceept advertising in the Searchlight Section, which lists the names of the manufacturers of resistors, capacitors, rheostats, and potentiometers or other names designed to describe the Searchlight Section, which lists the names of the manutacturers of resistors, capacit $\begin{gathered}\text { such products. }\end{gathered}$
ments acceptable only in Displayed Style.

DISPLAYED-RATE PER INCH
The advertising rate is $\$ 14.00$ per inch for DISCOUNT 10% if full payment is made in advance for four consecutive insertions of undisplayed ads (not including proposals). EQUIPMENT WANTED OR FOR SALE Advertiseuch products.

EIECTRONIC ENGINEERS

ALL GRADES

Small electronic research and development laboratory, located 8 miles outside of Washington, D. C., has several openings for junior and senior electronic engineers. Degree essential. Varied projects, including considerable Defense work. Liberal salaries dependent upon experience. Excellent personnel policies.
THE DAVIES LABORATORIES Incorporated
4705 Queensbury Road, Riverdale, Maryland

CANADIAN MANUFACTURING FACILITIES

Light Engineering and Electronies Plant in Canada with excellent facilities is pre. in Canada with excellent iacilities is prepared to manufacture for U. S. Firms deable to export owing to Customs or other obstacles.

CW-6550. Electronics
330 W. 42 St., New York 3 5, N. Y.

REPLIES (Hox No.) Address to offce nearest you
NEW YORK: 330 W. 42nd Si. (36)
OHICAGO: 520 N. Michigan Ave. (11)

SELLING OPPORTUNITY OFFERED
MANUFACTURLER REPRESENTATIVE Wanted. Well-known contract fabricator of steel and aluminum enclosures, housings, cabi-
nets, chassis. consoles, has numerous highly nets, chassis. consoles, has numerous highly with project engineers and purchasing agents in the electronics industry and should have some engineering and manufacturing knowl-
edge. We are interested in representatives wlio edge. We are interested in representatives who
call on industry only, not jobbers. Write RW-6571, Electronics.
REPRESENTATIVE WANTED-Gastern ElecRonic and Machine parts manufacturer, Requires representation in Eastern New Eng-
land, Chicago, and West Coast areas. RW-656, Electronics.

POSITIONS WANTED

PROTFCT RNGINFER, 11 years electronic engineering experisence, 5 years radar and guided missile. Thoroughly familiar with system design. 2 years analog computer design. tenna development. PW-6383, Electronics.

PATENT LAWYER Experienced in electronic practice. four years engineering design experience, excellent scholastic record, desires responsible position with small or medium size patent organization. PW-6542, Electronics.

SALES ENGINEER or manager-EE age 37 ; Selling Electronic Industry east coast. Will
locate east or west coast. PW-6547, Electronics.

ELECTRONIC ENGINEERS * PHYSICISTS

OUR STEADILY EXPANDING LABORATORY OPERATIONS ASSURE PERMANENT POSITIONS AND UNEXCELLED OPPORTUNITY FOR PROFESSIONAL GROWTH IN

RESEARCH \& DEVELOPMENT

GUIDED MISSILES

TELEVISION
ELECTRONIC NAVIGATION
SOLID STATE PHYSICS VACUUM TUBES RADAR

THE EMPLOYMENT DEPT.
ADDRESS INQUIRIES to CAPEHART FARNSWORTH CORP. FORT WAYNE, IND.

ELECTRONIC ENGINEERS

Mechanical Designers for Research and Engineering
To work in the design and development of new electronic equipment. Excellent working and living conditions, good salaries and exceptional employee benefits. Write, giving full details including education and experience. Personal interviews will be arranged.

> THE NATIONAL CASH REGISTER COMPANY
> Main \& K Sts., Dayton 9, Ohio

POSITIONS WANTED

ACCOMPLISHED TELEVISION Receiver Design Engineer. Specific background \& experience in VHF-UHF tuner design, author $\&$
inventor.
Strong in
fundamental theory practical experience in overall recejver design. Salary requirement $\$ 10,000$. Royalties or other form of participation considered an important ${ }_{6}$ inducement. Foreign inquiries invited. PW-

POSITIONS WANTED

[^17]

for Permanent Position with
 WILLOW RUN RESEARCH CENTER UNIVERSITY OF MICHIGAN
 Outstanding opportunities for:
 RESEARCH ENGINEERS AND PHYSICISTS

with experience or advanced degrees in the field of

Circuit Design
Switching
Digital Computer Logical Design
Pulse Techniques
Digital Computer Programming
Radar
Electromagnetic Theory

Systems Analysis
Servomechanisms
Analog and Digital Computers
Component Development
Aerodynamics
Cathode Ray Tube Displays
Communications

Mechanical Designers and Draftsmen

with experience in mechanical designs. Assignments involve the design and layout of electro-mechanical devices at the development level.

TECHNICAL WRITERS

with electronics background. Good salaries and living conditions, excellent working conditions and fringe benefits, unusual opportunities for professional development and opportunity to carry on University graduate work while working full time. Moving expenses paid. U. S. citizenship required.

Interviews Arranged
Write, giving details of education and experience, to
B. W. WHEATLEY, Personnel Supervisor, WRRC, University of Michigan, Willow Run Airport, Ypsilanti, Michigan

EXECUTIVE RLECTRONIC ENGINEER

Engineer or Physicist with administrative experience required to direct Engineering Department of a company engaged in the design and manufacture of precision electronic test equipment. Major effort concentrated on commercial equipments.

Permanent responsible position with a progressive established company. Applicant must have Technical Degree and approximately 15 years experience.
Apply in writing to the President, giving full details. All replies held in confidence.

BOONTON RADIO CORPORATION
Boonton, New Jersey

You gain MORE with W. L. MAXSON. Top salaries ingeater opportunities... more responsibilities. Advance with W. L. Maxson.
BACKGROUND: Practical and research experience in advanced Electronic Circuits and Systems Engineering DESIGN \& ANAL YSIS, related to: Instrumentation, Fire - related to: Instrumentation, Fire tions, Navigation, or Optical Fields. Ability in management and supervision desirable.
If your skills are now being fully utilized in vital defense indus try please do not apply

Kindly send resume and salary requirements to

A NEW Bendix Division! A NEW Electronic Product! NEW JOB OPPORTUNITIES

In our modern plant at York, Pennsylvonia, this new division of Bendix Avia tion Corporation is producing a new elec. future and this is your fute, and the ground for opportunity to possibilities for rapid advancoment. W possibilities for rapid advancement. We need the following

- ELECTRONICS ENG.

- MECHANICAL ENG.

What menns most toan Engineer?

A Career at RCA offers all Four!

RCA offers opportunities now-real career opportunities-for qualified Electronic, Computer, Electrical, Mechanical and Communications Engineers . . Physicists . . . Metallurgists... Physical Chemists... Ceramists... Glass Technologists.

Positions are open in research, development, design and application. Long range work in many fields is being carried on both for commercial developments and military projects for war and peace.
At RCA you'll work in an exciting professional atmosphere, with technical and laboratory facilities unsurpassed anywhere in the radio-electronic industry. You are in close and constant
association with leading scientists and engineers. Individual accomplishment is not only recognized, it is sought out. Delightful suburban living is easily a vailable for your family. And there's ample opportunity for income and position advancement.
Plus, Company-paid hospitalization for you and your family . . accident and life insurance... progressive retirement plan... fine recreational program... modern tuition-refund plan at recognized universities for advanced study.
Join the team at RCA, world leader in electronic development, first in radio, first in recorded music, first in television. Rest easy in the knowledge that your future is secure, the rewards many and varied.

Personal interviews arranged in your city.
Please send a complete resume of your education and experience to:

MR. RCBERT E. McQUISTON, Manager
Specialized Employment Division, Dept. 200B
Radio Corporation of America
30 Reckefeller Plaza, New York 20, N.Y.

Positions Open In : RESEARCH -DEVELOPMENT-DESIGN-APPLICATION in any of the following fields:

RADAR-Circuitry-Antenna Design-ServoSys-tems-Infomation Disulay Systems-Gear

COMPUTERS - Digital and Analog-Systems Plan-ning-Storage Trehnique-Circuitry Servo Mechanisms Assembly Design-High Speed Intricate Mechanisms

COMMUNICATIONS - Microwave - Aviation -Mobile-Specialized Military Systems

MISSILE GUIDANCE Systems Ilanning and Design Radar and Fire Control Servo Mechanisms -Vibration and Shock l'roblems

NAVIGATIONAL AID5-Loran - Shoran - Altim eters-Airborme Radar
television development-Receivers-Trainsmitters and Studio Equipment

COMPONENT PARTS-'Transformer-Coil-IRelay -Capacitor-Switch-Motor-Resistor

ELECTRONIC TUBE DEVELOPMENT-IReceiving -Transmitting-Cathode-Ray-1'hototubes and Magnetrons

ELECTRONIC EQUIPMENT FIELD ENGINEERS Specialists for domestic and overseas assign ment on military electronic communications and detection gear.

Write, Wire or phone
MR. E. O. COLE, DEPT. J. Bendix Radio division of bendix aviation corporation BALTIMORE-4, MD. Phone: TOWSON 2200 Makers of the TVorld's Jinest Electionic Equitment

[^18]
ENGINEERS

DESIGNESS-LAYOUT MEN

MECHANICAL DESIGN ELECTRONIC ELECTRONIC
MECHANICAL SERVO

This work deals with the manufacture and development of highly complex equipment of the most advanced type in a new and expanding division of an established firm with 20 years of successful experience in the precision instrument field.

We cite α few of the good reasons why you might like to join our organization...

SALART incraases are based on merit and initiative-two weeks VACATION, HOSPITALIZATION BENEFITS, GM's own IISURANCE PLAN-POSITIONS ARE PERMANENT due to long range manufacturing and developing pro-grams-EXPENSES incident to interviews and moving all absorbed by company-HOUSING and LIVING CONDIIIONS among the best and finest of any along Lake Michigan.

- We have a Junior Engineoring Training Program of one year for inexperionced engineering graduates. Opportunity to be industry.
- For the convenience and direct une of engineers in our Engineering Dopartment. we have our own model shop where highest skilled mechanics are employed.
- Educational opportunities for advaneed degrees available at U. of W., Marquette. Technical engineering offered at Milwau kee Vocational School.
. . . all inquiries answered-write or apply ...
\star ac spark plug division

General Motors Corporation

1925 E. KENILWORTH PL.
MHIWAUKEE 2, WIS.

Electronics Eneineers WANTED

 SOUTHERN CALIFORNIAAttractive opportunities offered to Engineers experienced in and quali. fied to design aircraft flush antennas and radomes.

Complete modern facilities for lab. oratory testing and evaluation avail. able،

Salary dependent upon experience and ability.

Contact Mr. J. C. Buckwalter. Chief Engineer

DOUGLAS AIRCRAFT COMPANY, InC. LONG BEACH, CALIFORNIA

ENGINEERS

AND

PHYSICISTS
BS-MS-Ph.D:
Responsible positions in mechanical, electrical or electronic engineering, physics or engineering physics for advanced development and design of special equipment and instruments. Prefer men with minimum of two years' experience in experimental research design and development of equipment, instruments, intricate mechanisms, electronic apparatus, optical equipment, servomechanisms, control devices and allied subjects. Positions are of immediate and permanent importance to our operations. Southwestern location in medium sized community. Excellent employee benefits. Reply by letter giving age, experience and other qualifications. All applications carefully considered and kept strictly confidential.

Ind. Rel. Manager
 Research \& Development Dept.
 PHILLIPS
 PETROLEUM COMPANY

Bartlesville - Oklahoma

If you are seeking a position where ingenuity personal initiative, and ability count most, investigate the various opportunities dfered by Goodyear Aircraft. We have openings for able. experienced personnel in the following fields
Electrical Systems
Circuit Analysis
Analog Computers
Servomechanisms
Iest Equipment
Applied Mathematics
Electronics

Werodynamics
Vrool Design
\sim rool Planning
Tool Processing
Industrial Engineerina Estimation Applied Mathematics \checkmark lime Study \downarrow Electronics

Physics

1 Flight test
Stress Analysis Dynamics
Microwave
Plant Engineering

Openings also exist for welding, civil, and mechanical engineers with experience in metals fabrication. Needed too are personnel with ability and experience in technical editing, copywriting, illustration, and photography
Positions are available at several levels; inquiries are also invited from recent graduates. Liberal salaries are based on education, ability, and experience. Paid vacations and holidays, sick leave, insurance, and retirement plans are added benefits

Goodyear Aircraft is centrally located in the Great Lakes region... in the heart of northeastern Ohio Akron, a community of 350,000 . is a clean and friendly home town to thonsands of Goodyear employees and their families who enjoy metropolitan living and fine cultural and educational advantages. Excellent parks, golf courses, and inland lakes give active, year-round enjoyment. The Aircraft di/ision is a full-fledged member of the Goodyear family a name famous the world over.
If YOU are interepted in a secure future, write and give full details to
Mr. C. G. Jones. Salary Personnel Department

Engineers... (Scientists.
 Mechanical Engineers - Electrical Engineers
 Servo Engineers - Aerodynamicists-Physicists - Mathematicians
 Do You Know the MELPAR Story?

Fom complete information about the opportunities available for qualified engineers and scientists write to

PERSONNEL DIRECTOR melpar, inc. The Research Laboratory of Westinghouse Air Brake Co. and its subsidiaries 452 Swann Avenue, Alexandria, Virginia

THE DE HAVILLAND AIRCRAFT OF CANADA LTD.

is requiring experienced engineers for development work on special new projects. Applicants should possess an honours degree together with at least two years industrial experience. Preference will be given to Canadian Nationals.

Employment is offered in four general categories as follows:-
(a) Physicists. Men with a sound background of basic physics to work on optical. electronic and mechanical devices.
(b) Servo Engineers. A thorough knowledge of basic servo-mechanism theory is essential together with experience in the design and operation of electronic servo systems. A knowledge of air-operated servos would be an advantage.
(c) Gyro Engineers. Applicants should have had first hand experience in development work on electrically driven gyros preferably from both the electrical and mechanical viewpoints. A knowledge of production techniques is essential.
(d) Electro-Mechanical Engineers to work on accelerometers, proportional relays, high-frequency motors and similar devices. A knowledge of production methods is desirable.

Successful applicants are to be sent to the U.K. for a period of one to two years to work on the research and development team of the parent De Havilland Company. After this period, they will return to Canada continuing the work at De Havilland, Toronto. There, a team of engineers will be built up with the U.K. trained personnel as a nucleus.

Please apply to: Mr. D. G. Simpson

The De Havilland Aircraft of Canada Ltd.

Postal Station "L", Toronto, Canada

SYSTEMS ENGINEERS

For design and installation of radio communication systems of all types in HF, VHF and Microwave bands for use in foreign countries.

Applicants should have experience in either radio propogation studies and antenna design or in the application of telephone and telegraph terminal equipment.

These positions are not dependent on government contracts and would be based in New York with occasional overseas duty.

Send full details to Personnel Dept.

Radio Corporation of America

RCA International Div. 30 Rockefeller Plaza
New York 20 New York

EIECTRONIC ENGINEER WANTED!

An established business organization engaged in development and manufacture of products for VHF and UHF Television Application, requires on individual qualified to work independently, to organize, and to supervise development projects.
This position is to be permanent and will offer the opportunity for unlimited advancement to a successful career. Offers stimulating and congenial surroundings in a newly acquired plant.

Attractive Salary Write stating qualifications

Blonder-Tongue
LABORATORIES
526-536 North Avenue Westfield, New Jersey

Flectronics

Research \& Development

Positions Open

Cornell Aeronautical Laborctory, Inc. has several professionally challenging and rewarding positions open in the field of Electronic Engineerine.

The laboratory was acquired in January, 1946, by Cornell University in response to a widespread need for a stable, highly competent research organization in the aeronautical sciences. Since its acquisition the laboratory has grown steadily to a multi-million dollar annual contract level with a staff of over 850 .

The laboratory's projects deal largely with applied science. Typical electronics projects include computer design, radar and microwave applications, precision instrumentation, missile guidance, telemetering, and complex control systems.

Professional growth of staff members is encouraged through regular seminars, attendance at meetings of scientific societies, a graduate study tuition refund program, and constant irterchange of ideas and discussions with senior level scientists. Salary level. and em. ployee benefit programs are on a par with industry. While the pace of projects is high, the informal organization of the laboratory tends more toward a friendly, thought-stimulating, academic atmosphere. Practical scientists and engineers work closely together in making important contributions to America's scientific progress.

If you would like to learn more about this unique organization or its personnel needs, please feel free to write. No obligation, of course.

CORNELL AERONAUTICAL LABORATORY, IEC.
P.O. BOX 235

BUFFALO 25, NEW YORK

ENGINEERS

FOR ATOMIC
 WEAPONS INSTALLATION

Abstract

Mechanical Engineers, Electronics and Electrical Engineers, Physicists, Aerodynamicists, and Mathematicians. A variety of positions in research and development open for men with Bachelors or advanced degrees with or without applicable experience.

These are permanent positions with Sandia Corporation, a subsidiary of the Western Electric Company, which operates the Laboratory under contract with the Atomic Energy Commission. The Laboratory offers excellent working conditions and liberal employee benefits, including paid vacations, sickness benefits, group life insurance and a contributory retirement plan.

LOCATE IN THE

Albuquerque, center of a metropolitan area of 150,000, is located in the Rio Grande Valley, one mile above sea level. Albuquerque lies at the foot of the Sandia Mountains which rise to 11,000 feet. Cosmopolitan shopping centers, scenic beauty, historic interest, year 'round sports, and sunny, mild, dry climate make Albuquerque an ideal home. New residents experience little difficulty in obtaining adequate housing in the Albuquerque area.

THIS IS NOT A

CIVIL SERVICE APPOINTMENT

Design, development engineers...
Here's a real success formula!

YOU + HONEYWELL $=$ OPPORTUNITY ${ }^{6}$

TF you're an experienced design or Idevelopment engineer who'd welcome the right change, be sure to look into the Honeywell success formula.

Opportunity raised to the sixth power refers to the six areas in which we now have excellent openings:

```
- Servomechanisms * Aerodynamics
- Vacuum fubes - Electromechanics
- Electromagnetics - Supersonics
```

Duties of the jobs. Take on complex design work requiring analysis and decision to bring into design form the requirements for a new or modified instrument, device or control system.
Requirements. B. S. or M. S. in Electrical, Mechanical or Aeronautical Engineering.
Atmosphere. A company that understands engineering - where one out of every ten employees is actively engaged in engineering and research.
Openings. In Minneapolis, Philadelphia and Freeport, Illinois.

For details write H. D. Elverum, Personnel Dept. EL-2-12, Honeywell, Minneapolis 8, Minn. Ask for our book, "Emphasis on Research."

Honeywell

H
First in Controls

ELECTRONIC ENGINEERS

Wide range of experience including design of wide band receivers, radar display systems, analogue computers, servo systems \& CR oscillographs . . . thorough knowledge of KF circuits, wave shaping, pulse forming, triggers \& gates (microwave techniques unnecessary)
A FEW KEY POSITIONS
Opening of our own manufacturing facilities creates permanent positions th research and develomment of pital, long-range products.
CONSIDER THESE ADVANTAGES
Gracious "ountry living. free front hig-city pressures, mrovides a telaxing atmosphere in wral advantages of New York Cit $\overline{\text { Pas }}$ \therefore Aszociation with an established vet growing organization with few competitors in the field, where your merit and ability are given full
Unusual company-paid benefls . . . 40 hour week with considerable remium overtime. moving expenses paid.
TAKE ADVANTAGE OF THIS OPPORTUNITY NOW!
Address all inquiries to J. H. McCann

SPERRY PRODUCTS wc.

DANBURY
CONNECTICUT

ELECTRONICS ENGINEERS
 Project - Design - Group - Field - Junior - Senior

AIRCRAFT ARMAMENTS' development engineering program in the fields of radar, fire control and associated equipment has provided more openings for men at all levels of experience.

If you are considering a change and are looking for a young, growing company with a continuing program of development work, we would appreciate receiving your resume and would welcome the opportunity of providing you with information about our company.
D. J. WISHART

Director of Personnel

WILCOX ELECTRIC COMPANY, INC. KANSAS CITY, MISSOURI
 ENGINEERS!

with Experience in

- HF and VHF systems
- Aeronautical Equipmen
- Application of Advanced Circuit Technique
- Ability to combine associated engineering skills in electronic systems also needed
PROJECT ENGINEERS (2)
who can accept responsibility for successful completion of a system design These positions are available in a company which supplies equipment to the major airways of the world

Write stating Education \&
A. E. HARRISON, Director of Engineering WILCOX
ELECTRIC COMPANY, INC.
1400 Chestnut Street
Kansas City 27, Missouri

The New
Scientific Research Laboratory of the Ford Motor Company has openings for
ELECTRONIC ENGINEERS ELECTRICAL ENGINEERS PHYSICISTS
to research, design and develop electronic controls, instrumentation, and devices on a permanent, non-military program.
Positions available at various levels of engineering achievement.

> FORD MOTOR COMPANY Engineering Personnel Oakwood Boulevard West Dearborn, Michigan

STAVID ENGINEERING, INC.

 has openings for GRADUATE ELECTRONIC and MECHANICAL ENGINEERSExperience in Design and Development of Radar and Sonar necessary.
Broad knowledge of Search and Fire Control Systems; Servo Mechanisms, Special Weapons, Microwave, Antennas and Antenna Maunts, etc. Mechanical Engineer should also have experience in packaging of Electronic Equipment to Gov't specifications including design of complex cabinets, shock mounts and sway brace structures.

FIELD ENGINEERS

Qualified to instruct in the operation and supervise installation, maintenance and repair of Radar, Sonar and allied electronic equipments in the Field.

A chance to grow with a young and progressive company; salary and advancement commensurate with ability; liberal vacation, sick leave, 9 paid holidays, group life, sickness and accident insurance plans, and a worthwhile pension system.
Personnel Office, 200 W. Serenth St.
Plainfield, N. J. - Tel. Pl. 6-4806

TRANSISTOR RESEARCH IN

 SUNNY ARIZONA[^19]

Convair in beautiful, sunshiny San Diego invites you to join an "engineers" engineering department. Interesting, challenging, essentia long-range projects in commercial aircraft, military aircraft, missiles, engineering research and electronics development. Positions open in these specialized fields
Electrical Design
Mechanical Design
Structural Design
Structures
Servo-mechanisms
Aerodynamies Thermodynamics Operation Analysis System Analysis

Generous travel allowances to those accepted For free brochure, write Mr. H. T. Brooks, Engineering Dept. 900

CONVAIR

IN BEAUTIFUL

3302 PACIFIC HIWAY SAN DIEGO 12, CALIFORNIA

STAFF ENGINEERS

Design and Development

Leading Chicago Electronics firm is seeking the services of qualified men to fill several staff openings in its Electronic Design and Development Division. Persons selected will be given intermediate and advanced level assignments in our Television, Radio and Government Equipment Laboratories.

Experience in monochrome receivers, deflection and high voltage circuits, radiation interference, NTSC color receivers, color generating equipment or UHF systems essential.
These are permanent positions and offer excellent opportunities for advancement. Company has well planned, long range program of design and development.

Please write Mr. Walter Wecker, Personnel Division, giving related experience and educational qualifications.-Or telephone SPaulding 2-0100.

Interviews arranged at your convenience.

Admiral Corporation

3800 W. Cortland St.
Chicago 47, Illinois

ELECTRONIC DESIGNERS
 Design of mechanical and electrical components and chassis in UHF and micro. wave systems

RADIO ENGINEERS

Development of radio and radar components $\&$ systems

Design of components for magnetic deflection of Cath-
ode Ray Tubes

TO MEN WHO WANT

 THE BESTKollsman provides excellent facilities for the design and development of America's finest aircraft instruments. In our modern radio communications group you'll find a congenial atmosphere in which you can do your best work. You'll be encouraged to advance as our progressive organization continues to grow. And you'll receive liberal benefits including completely paid life, hospitalization, surgical, accident and health insur- ance.

ENGINEERS ELECTRONIC ORGANS

 DesignDevelopment Quality Control

Unusual opportunities exist with expanding manufacturer in a fascinating field. Send resume to President
ALLEN ORGAN COMPANY
Allentown, Pennsylvania

ENGINEERS or PHYSICISTS

A midwestern progressive manufacturer of electrical resistors, rheostats and allied components, is looking for experienced engineers or physicists interested in research and development or production engineering work in this field.
Replies from men with experience in specialized types of these components will be welcome. Excellent opportunity, attractive conditions. Give full details as to training and experience, state salary desired.

P-fir31. Electronics
520 N . Michigan Ave., Chicago 11. Ill.

DESIGN ENGINEER
 TRANSFORMERS
 Power and High Fidelity Audio and experience in one or more of the following:
 Pulse Transformers, Filters, Magnetic Amplifiers
 LANGEVIN MFG. CORP. 37 W. 65 St., N.Y.C.
 EN 2-7200

COOD OPPORTUNITY
 for SALES-ENGINEER

Sales-engineer for leading electronics manufacturer to cover greater St. Louis area. Practical engineering background desirable. Give complete information concerning experience, education, previous employment, salary requirements. Write to

SW-65\%3. Electronics

- 20 N. Michigan Ave., Chicago 11. Ill.

HICTRONIC ENGINERS

We are looking for electronic engineers, with experience in the development af electronic digital computers, to work in the development of business machines. Plenty of opportunities for advancement.
Write, giving full details, including education and experience.
THE NATIONAL CASH REGISTER CO.
South Main and "K" Streets Dayton 9, Ohio

RESEARCH ASSISTANTSHIPS

Ph.D. candidates in chemistry and M. S. candidates in chemistry electrical engineering (Electronics), chemical engineering, physics and geology are wanted by a South-western State University.
These positions provide part-time research duties with time for academic work toward advanced degrees. Stipends are up to $\$ 2,150$ for 12 months. Nonresidents fees are waived.

```
P-5756, Electronics
```

520 N. Michigan Ave., Chicago 11, Ill.

ENGINEERS-SWITCHES

Wanted for design and development work on switches of all types-microswitches: leaf-type; fap: etc. ; for circuitry control. Progressive manufull details, give salary desired.

520 N (P-6408, Electronics
520 N. Michigan Ave., Chicago 11, 111.

FOR SALE

Special
 RADAR TUBES

Purpose
attention manufacturers, Lab's. HAM'S!! We will pay you immediate and highest cash prices for special purpose tubes and X'TAL Diodes in any quantity.
For a prompt quotation write to

MICROWAVE

425 Riverside Drive, New York City 25, N. Y. Dept. 6B2
Or for immediate action Phone Monument 2-1480 and ask for Miss Rainbow

GLASS TUBING

PYREX - NONEX - URANIUM BULBS \& CYLINDERS
WRITE FOR FREE MONTHLY LIST
HOUDE SUPPLY COMPANY
PHONE KEYPORT 7-1286
M.R.\# 1 Bav 85X Keyp

$$
\begin{aligned}
& \text { T-47A/ART - } 13, \text { T-47/ART - 13, ATC } \\
& \text { Transmitters, DY-12 Dynamotors, LM \& } \\
& \text { BC-221 Freq. Meters, SCR-694-C, Pano- } \\
& \text { ramic Adaptors, Teletype motors, parts, } \\
& \text { equipment. } \\
& \text { ARROW APPLIANCE COMPANY } \\
& \text { Box } 19 \text { Tel: Richmond 2-0916, Bynn } 8-3100 \text { Mass. }
\end{aligned}
$$

CAREER OPPORTUNITIES EVGINEERS and PHYSILISTS

Desiring the challenge of interesting, diversified, important projects Wishing to work with congenial associates and modern equipment and facilities Seeking permanence of affiliation with a leading company and steady advancement Will find these in a career here at GENERAL MOTORS.

Positions now are open in ADVANCED DEVELOPMENT and PRODUCT DESIGN, INDUSTRIAL ENGINEERING, TEST and TEST EQUIPMENT DEVELOPMENT.

COMMERCIAL AUTOMOBILE RADIO
MILITARY RADIO, RADAR AND ELECTRONIC EQUIPMENT ELECTRONIC COMPONENTS

TRANSISTORS AND TRANSISTOR AND VACUUM TUBE APPLICATIONS INTRICATE MECHANISMS such as tuners, telemetering, mechanical linkage, controls, etc.

ACOUSTICS-loud speakers, etc.
Inquiries invited from recent and prospective graduates as well as experienced men with bachelors or advanced degrees in physics, electrical or mechanical engineering, chemistry, metallurgy
Salary increases based on merit and initiative.
Vacations with pay, complete insurance and retirement programs
Location is in a low living cost center.
Relocation expenses paid for those hired.
All inquiries held in confidence and answered-WRITE or APPLY to
DELCO RADIO DIVISION
GENERAL MOTORS CORPORATION Kokomo, Indiana

FOR SALE

MOTOR GENERATORS

NEW
1 KVA Allis Chalmers 230 Volt D.C. to 120 Volt, 60 Cycle, A.C., Single Phase, 120 volt, 60 CYcle, A.C., Single Phase,
Speed 3600 R.P.M.-packed for export. Speed
$\$ 250.00$
Immediate Shipment, F.O.B. Keyport, N. J.
C. C. GALBRAI'TH \& SON, Inc

99 Park Place
New York, N. Y.

AVAILABLE FOR IMMEDIATE DELIVERY

One 2-Mer Van de Graaf Generator, output $140-\mathrm{r}$ per minute at 70 cm ., inherent filtration equivalent to 6 mm . lead.
Rugged construction. stable and dependable outDut. Suitable for industrial radiography. for regreater than 400 microamperes is desirable). or fol iniliation therauv.
Can readily he converted to proton or cleuteron accelerator.
Offers and bids welcomed. Will consitler ex change for equipment or materials needed for hospital expansion program
Further details. photographs. or blueprints avail
able on request.
FS-6539. Electronics
1111 Wilshire Blvd., Los Angeles 17, Calif

ERIE CERAMCONS

Large quantities in stock; immediate delivery.
All values and tolerances.
N.P.O. \& TEMPERATURE COEFFICIENT FEED-THRU, STANDOFF, DISC, CERAMICONS. littlefuse fuse-all values.

BELOW FACTORY PRICE.
CAP ELECTRONICS INC.
102 Warren Street
New York 7, N Y
WOrth 24363

RELAY SPECIALISTS	
AUTHORIZE FACTORY DISTRIBUTORS	
STRUTHERS-DUNN	POTTER \& BRUMFIELD

GE Servo type 2CV1C1 400 cycle
GE Servo type 2 CV 1 Cl 400 cycle
Constant Output Line RC-730C
Constant output Line
Synchro Amplifers for Radar
Intercommunication type DC-605 ANTENNAS
 AS-125/APR for APPR-5A
TDY RADAR JAMER HORNS
PARABOLOIDS, MAGNESIUM DISHES $171 / 2^{\prime \prime} \mathrm{d} \mathrm{da}$. SCR -623-A (Dart of RC -153- B Antenna)
CU 64/APT Antenna matching unit 50 to 100 bal. POTENTIOMETERS
W.E. KS-15138 Linear Sawtooth
W.E. KS
W732 for SCI 547 liadar
W.E. KS-8732 for SClis 547 lia

G. \mathbf{E}.
 400 CYCLE SERVO AMPLIFIERS

Type 2CV1C1
Brand New
$\$ 29.50$
Metal Dust Cover Included

mote BC-624C receivers and BC-625AM T

CRYSTAL DIODE
 Sylvania 1 N 21 B
 diviually boxed and

MISCELLANEOUS

Cathode Ray Shields for 3^{37} tube.
Varicict type Motor Controls 600 watt.
10 CM ${ }^{10}$ CMI Wareguide 90° elbow. Adel Clamps assorted types-write for sami Shock Mounts Lord \#20..... 5150 C
Shock Mounts U. S. Ruller $\# 510$ Comulindo Pole Jacks (Cook Flec Switchborrd Lamp receptacles SClis22 Transmitter IReceivers. 13
Fire Detector Wilcolator No. A-4242. Ord. No. B 257736 Dial Drive Asembly for Bendix,
Instruction Manual for SCR 193
Solenoid Cannon 24 V.D. Solenoid Cannon 24 V.D.C.-New,
Attenuators Tech -Lab
$500 \mathrm{~F}, 50$ Switche control Dual for $\mathrm{BC}-433 \mathrm{G}$. Switch Arkless on sec. Rotary.
Switch Arkless 16 sec. Rotary Switch Arkless 16 sec. Rotary
Switch Iranels SA-2 Switch Mlicro R-RJ.2T Switch Navy Rovary \# 647491 Contactor ClRP-2AGGO for SG I radar Rand-Switch assembly for AR-88 receirer..... $\$ 9.50 .50$
1RT-7-AN/APN-1 $\mathrm{BC}-423 \mathrm{~B}$, M - 1 Receivers
BC-423B Modulators
BC-136 M Jack Boxes-Larse quantity

LINEAR SAWTOOTH POTENTIOMETER

W.E. No. KS 15138

The d-c potentioneter consists of a closed type die-cast alumi-
num allog frame consisting of num alioy frame consisting of to which electric power is sup plied through two powed is sup.
dens 180
derress degrees apart. Two rotating

brushes $(180$ degrees apart and brushes 1180 degress apart and ing) and two take-off brushes are nrovided for the out put volt age. Varying the position of the brushes varies the | output voltage in accordance with a linear sawtooth |
| :--- |
| wave. The potentiometer is excited with 24 -volt | wave. The Dotentiometer is excited with bravot mounting, is approximately $3-11 / 16$ inches in diameter, 3 inches deep, $43 /$ inches long, and has an

approximate weight of one pound. External conapproximate weikht of one pound External con-
nections are made through a standard AN type connextor.
Brand New
$\$ 5.75$

RADAR EQUIPMENT

Model S. ©. 10CM Portable Radar Set. Operates or $90-130$ volt, 60 cy., 1 lhase. Presentation: A, B and P.P.I. Complete with tech. manual and full set of spare parts.

Model ASG-1 Radar with Parabola,
S.O.-11 Modulator unit

Pulse Timer units for SD5 Radar
Radar Crystal units-1taytheon 98.35 ke
S.O. Radar Accessory Control Panels.
S.O. Transmitter-Receiver units.
S.O. Radar Bearing Control Units.

Spare Parts Kit for S.Q. Radar

FLUXMETER
Used to calibrate fleld strength of magnets from 500 to 4000 gauss and indicate polarity. Frobe has gad of $11 / 4^{\prime \prime}$. Reautifully huilt in hardwood case with hinged cover. Instructions for operation on under side of cover. Size $123 \times 9 \times 6 \mathrm{in}$. Ideal for lal and school use, New. An exceptional $\$ 29.50$

G. E. BATTERY CHARGER

Charges 54 cell battery
at from 1 to 10 ampere rate
Input 115y., 60 cy .1 Phase.
The model 6 RC89F16 Codper Oxicle battery charger consists of a transformer, a secondary reactor, a copper oxide rectifying element, a ventilating fan,
control circuits and auxiliary equipment necessars for proper operations. Transformer tapped for various supply voltage. Eight secondary taps for adjusting changing rate. Built into metal cabinet. Metered.
Complete with spare fan and fuses. New in
Niginal packing cases. Shipuing weight aporox. 305 lbs.
Price
$\$ 255.00$

RADAR REPEATER ADAPTERS
NAVY TYPE CBM-50AFO
A repeater unit for video signals and trigger pulses designed to work in conjunction with standmade for operation of remote P.P.I. sets. This adapter jrovides four video and trigger pulse lines for operating one or more remote P.P. I. installa-
tions. The equipment contains its own D. C. power tions. The equipment contains its own D.C. power
suprily: 115 Yolts. 60 cycles A.C. from ships power supply lithe is recuired for operation. Dimensions are $311 / 2 \times 21 \times 15 \mathrm{in}$.
Description
A: Output Video Signal Lines.
B: Output Trigger Lines
C: Video Amplifter Bandwidth.
4 mines at +2 volts amplitude.
4 lines at $+50-+65 \mathrm{~V}$. Amplitude.
Flat within 1 db from 60 cy to 3.5 mc .
s-6AG7, $-003,3-6 S N 7,2-5 R 4 G Y$. Full details on request.

OIL FILLED CONDENSERS											
MFi)	$\mathrm{V}_{40} \mathrm{C}$	Price	MFi	V1)C 1500	${ }_{5}^{\text {Price }}$	$\mathrm{i}^{\text {1FD }}$	VDC 6000	${ }_{\text {Price }}$	MFl		${ }_{\text {Price }}$
5-5	400	\$. 65	. 5	1500	${ }^{1} .25$. 1	7000 R 'd	d 1.79	. 001	50 KV	\$85.50
1	600	- 5.5	3	1500	2.50	-1-1	7000	5.95	025	50 KV	42.50
2	${ }_{6000}^{600} \mathrm{R}$ d	. 69	4. 1.5	1500 2000	$\begin{array}{r}2.95 \\ \hline\end{array}$	-175-	${ }^{500} 8 \mathrm{KV}$	2.85	$\stackrel{2}{2}$	50KV	85.00 95.100
2-2	$600 \mathrm{R} \cdot \mathrm{d}$	1.65	. 25	2000	1.50		10 KV	29.50	7.5	220 VAC	95.40 1.95
$3{ }^{3}$	${ }_{600}{ }^{\text {a }}$. 95	${ }^{3}$	2000	1.30	. 1	12 KV	8.95	1-3	330 VAC	1.95
4	${ }^{600} \mathbf{0}$-d	1.65	3	2000	1.95 3 3	${ }_{1045}$	${ }_{16 \mathrm{~K}}^{15 \mathrm{~K}}$	45.00	${ }^{10} 75$	330 VAC	3.95
$\stackrel{4}{5}$	${ }_{6000}^{600} \mathrm{R} \cdot \mathrm{d}$	1.65	${ }_{12}^{3}$	${ }_{2000}^{2000}$	3.75 8.95	${ }^{.05}{ }^{\text {. }}$	16 KVV 16 K	4.70 4.45	${ }_{15}^{12.75} 3$	330 VAC 330 VAC	4.10 4.50
8	600	1.85	1	2500	2.75	. 075	166 Y	8.95	54	440 VAC	3.10
8	${ }_{600} \mathrm{R} \times \mathrm{d}$	1.85	${ }_{31}^{1-1}$	2500	3.85	${ }^{25}$	20 KV	19.95	2.9	660 VAC	3.50
8-4-4	600 600	1.95	32	2500 3000				54.00	6	6600 dc	4.25 4 4
4×3	600	3.50	-	3000	3.40						
${ }_{1}^{10}$	800 1000 1000	3.25	${ }^{2}$	3000 4000	4.50			OILM	ITES		
1	1000	90	${ }_{3}{ }_{\text {x }}$	4000	2.95			voc	TY		
$\frac{2}{3.5-.5}$	${ }_{1000}^{1000} \mathrm{R} \cdot \mathrm{d}$	- 95	2	${ }_{5000}^{4000}$	6.95	MFD		${ }^{1} \mathrm{DC}$	TYPE		Price
3.5-. 5	1000 1000	1.85 1.95	$\stackrel{1}{2}$	(5000 $\begin{array}{r}5000 \\ \hline 8000\end{array}$	+ 1.60	.02		600 600	OM 60002		*.45
8	1000 1000	2.50 3.25	1	5000 5000	$\begin{array}{r}4.88 \\ 18.50 \\ \hline\end{array}$	${ }^{1}$		600 600	OM-610		. 51
${ }_{1}^{8}$	$1{ }_{1200}^{1000}$	${ }_{3}^{3.25}$	5	5000	29.50	${ }_{5}^{25}$		600 600	OM1-625		
1-1-1	1200	1.85	.01-.03	6000	1.65	1.0		600	OM-601		85

COAXIAL CONNECTORS

83-1AC:	\$ 42	83-1RTy	\$. 65	83-22R
83-1A1'	. 30	83-19P	. 45	$83-22 \mathrm{SP}$
83-1F	1.10	83-1sPN	50	83-22 ${ }^{\text {T }}$
83-1H	12	8,3-1T	1.30	83-168
83-1HP	22	$83-2 \mathrm{AP}$	1.95	83-185
8.3-1J	73	83-22AP	1.40	83-765
83-1R	40	83-22F	2.10	83-776
		83-22.J	1.40	

FULL LINE OF JAN APPROVED COAXIAL CONNECTORS IN STOCK UHF-N-PULSE-BN—BNC

2ϕ LOW INERTIA SERVO MOTORS
KOLLSMAN- 35 Volt 60 cyele 4 watts 1500 RPM-PIONEER-10047.2.A 26 volt 400 cycle with 40 : PIONEER-CK PIONEER-CK 13115 volt +00 cycle-includes
damping signal nelerator (autosyn)

HIGH VOLTAGE TRANSFORMERS

G. K.-Pri. 115 V 60 cy. Sec. 6250 V 80 MA- 12.5

ANTENNAS

AT- -38 ARN- 1 APT $(7010400 \mathrm{MC}$)
AT- 49 A APR $+(300$ to 3300 MC$)$

AIA-3CM conieal scan
ASB Yai-Double stacke d 6 element.
ASA Yagi-Douhle stackerl 370 to 430

RELAYS

Sigma tyrie 4 AH-2000
tacts-hermetically sealed man
5 Stevens Arnold type 171 Millisec relay- 900 ohm coil SPST NO contacts.
 Price Bros. tyne $161-\mathrm{M}-220 \mathrm{VAC}$ contactor-SPST

G. E. CR5181-1AG- 115 V fio cy. AC contacto - IPST

LECTRONIC RESERRCH LABORATORIES
 715-19 ARCH ST.
 Telephones - MARKET 7-6771-2-3

SOUND POWERED TELEPHONES
U. S. NAVY TYPE M HEAD AND CHEST SETS A. A. A. GL G 832 BAD

ANY A.E. GPLB32BAO
TS. 10 Type Handsets......................25

GENERATORS AND INVERTERS Ectinse-Pioneer type 716-3A (Navy Model NEA-3A)
Output.AC $115 V$ N 10.4 A 800 to

 Pioncer Type 800 -is inverter-28VDC to 120 V 800

 $\mathrm{PU}-7 / \mathrm{AP}$ inverter- 28 VDC to 115 VAC 400 cy 2500 Eclipse-Pione
frequency requilated-21-1A 2 Inverter-Voltage and 18 Amp input-AC

TEST EQUIPMENT

- Gen. Radio 475B Frequency Monitor..... $\$ 200.00$

Gen. Radio 681A Frea. Deviation Meter -72K Sipnar Generator Dumont 175A 0sciloscope
Gen. Radio 757-PI Power Suoply.
A. Warber Labs. VM-25 VTVM A. W. Barher Labs. VM-25 VTVM
TS. 10A/APN Delay Line Test Set.
TS.19/APQ-5 Calibrator

CWI-60AAG Ranoe Calibrator for ASB 185.00
ASV And ASvC Radar Cibator for ASB. ASE.
CRV-IIAAS Phantom An
u11 to 100 MC
3 CM Fickup Horn Antenna AT-48/UP
1 -138A Signal Gener
1-138A Signal Generator- 10 cm

- $\mathbf{C W}-60 \mathrm{ABM}$ Frequency Meter- 10 CM

Weston Model I D.C. Milliameter $150,150097.50$
MISCELLANEOUS EQUIPMENT

SCR-5I5 compl. W/dylimotor control box
Amperex I
B98 Gamma Counter....
Amperex 1898 Gamma Counter...o.270v out.
EIMAC. 35 FT ionization Gailge
FL- 81020 cycle filter
RM. 29 remote control unit
RM.
RM-1 remote control unit
RTA-IB $12 / 24 \mathrm{~V}$ dynamotor
BC-1206.CM2 Receiver
ASB-4 Radar equil. Complete
RCA AVR-15 Beacon Recvi
RCA AVy op-1t Direction Finder comblete
CU-2t/ART. 13 Antenna Loadine Cond
T.85/APT-5 $300-1600 \mathrm{MC}$ Transmitter

PP-104/APT-5 Rectifier Unit for above
Sola $=30807$ Constant Volt. Transf. 250 VA
Sola $=30807$ Constant $\begin{aligned} & \text { V } \\ & \text { BC-101F } \\ & \text { Tape Recorter }\end{aligned}$
AN/APA-30
BC- 1068 Receiver
ATI and ATK TV Block Equib
BC-318 Receiver
RTA.IB Transceiver
T.47/ART-13 Transmitte
T.47ART-13 Transmiter
Sperti IS2I vacumm relay \qquad
PULSE TRANSFORMERS
UTAH $\underset{\substack{\text { and } \\ 29280}}{\text { and }}$ UTAH

,	
G. E. $1(5+1318$	Westinghouse 187AW2F
G. E. 6 ; 8 G-627	Westinghouse 232.AW2
G.E. 68G828	Westinghouse 232-BW-2
G.E. 68G929G।	AN/APN-4 Block Osc.
G.E. 80GI3	Philco 352.71.19
G.E. K-2468B	Plitco 352-7150
G.E. K-2469A	Philco 352.7071
G.E. K-274 ${ }^{\text {B }}$	Philco 352-7178
AN/APN 9 (901756-501)	Raytheon UX. 7350
AN/APN-9 (9011756.502)	Raytheon UX-10066
AN/APN-9 (352-7250)	W.E. D.161310
AN/APN-9 (352-7251)	W.E. D-163247
Westinghouse 132-AW	W.E. D-163325
Westinghouse 1390W2F	W.E. D-164661
Westinghouse 166AW2F	W.E. KS.9563
Westinghous9 176AW2F	

FOR ARMY AND NAVY RADIO,
RADAR \& SONAR EQUIPMENT
$\begin{array}{ll}\text { AN/APS } 2 & A N \text { APN } 4 \\ \text { AN APS } & \text { ARC-5 QCB } \\ \text { AN }\end{array}$
$\begin{array}{ll}\text { AN APS-3 AN APN } & \text { SF } \\ \text { AN APS-4 AN ARC } 1 \text { SL } & \text { QCJ } \\ \text { AN APS-15 AN ARC-3 SO }\end{array}$
AN APS-15 AN ARC-3 SO Etc.
etc. \quad QUA

SPRAGUE PULSE NETWORKS

 400 PPS. 50 olimis imped

Increased business from our ever-
expanding list of accounts . . . and a
desire to give these customers the utmost in service . . . has prompted us to move our facilities from Paterson to adjacent

Hawthorne, N.J. Here we have built twin plants with more than twice the office, service, storage, and shipping space as in our previous quarters.

Our greatly increased capacity now permits us to stock many more items and in much larger quantity - so that immediate delivery is assured. Every shipment carries our guarantee to meet original manufacturers' specifications.

N:W IOCATION

1086 GOFFLE ROAD HAWTHORNE, NEW JERSEY
HAwthorne 7-3100

Thimern

H雨

CS ON THE

SYNCHROS • DC MOTORS • AC MOTORS • INVERTERS SERVO MOTORS • ACTUATORS • GEAR MOTORS • GENERATORS

Standard Type FQ. 6 inch push-pull cylinder Operates with any air pressure up to 350 pounds. Control valve is electrically operated with 24 volts D.C. Ideal for remote or automatic control. Stock \#SA. 370 each $\$ 12.50$

DRAFTING MACHINE

Will save many hours of labor on plans, schematics, drawings, etc. Each arm 18 inches long with full ball-bearing construction. Designed by Brunning for the Navy and moditied by Servo-Tek to be equivalent of their standard machine, with chucks to hold stand. ard vertical and horizontal scales. Supplied with one 18 inch Brunning scale. Packed in special fitted wooden box. Stock \#S A-375 each ... \$39.50 Additional 12 inch scale for above. Stock \#S A-378 .. each \$4.85

HIGH H.P. AIRCRAFT MOTORS All 24-28 volts D.C.

SA. 340 Electric Specialty . 75 HeP. @ 3800 rpm SA -341 Electric Spec'lty 1.75 H.P.@ 6000 rpm . SA -325 Electric Specialty . 25 H.P. @ 3800 rpm . SA-270 General Electric 5 H.P.@ 4600 rpm . SA-199 National Mineral 1.0 H.P. @ 5800 rpm. SA-154 General Induct's . 125 H.P.@ 8500 rpm . SA-279 Holtzer Cabot .5 H.P.@ 3600 rpm.

Prices on request.

400 CYCLE TRANSTAT

115 volts, 400 cycle, single phase input. 75 to 120 volts at δ amperes max. output. Com. pletely enclosed with AN connector for input and output. Locking device for permanent setting. Stock \#SA-368 each \$12.95

BENDIX AY-201-3-B
HIGH PRECISION AUTOSYN
For use as transmitter or control transformer in controlled (servo) circuits. Average eleatrical characteristics: input voltage - nominal excitation, 26 volts, 400 cycles, single -phase; input current - milliamperes, 65 ; input power - watts, 0.33; input impedance - (stator open) - ohms, $80+i 400$; rotor resistance (DC) - ohms, 42; brush contact resistance (DC) ohms - 0.5 @ 300 rpm max; stator output voltages - (line to line) 11.8 volts; stator resistance (DC) - ohms, 10.8 ; phase shift (rotor to stator) - degrees 5.5; accuracy (against standard) spread - minutes 15 max.

PIONEER 10047-2A SERVO MOTOR
400 cycle, 2 phase low inertia drag cup servo motor. 26 volts fixed phase, 45 volts maximum variable phase. Makes excellent rate generator. Stock \#SA-90 each \$12.50

208 VOLT AIRCRAFT ACTUATORS
In stack various 208 volt, 3 phase, 400 cycle Actuators, including all the other actuators used with the Northrup Flying Wing. Prices on request.

WRITE FOR LISTING
Prices F.O.B. Hawthorne
Telephone HAwthorne 7-3100

1086 GOFFLE ROAD
hawthorne, new jersey
PRODUCTS CO.

INCOAFONATED

［M Motor．Deleo Type $=5069371$ DC Alnico Field： $10,000 \mathrm{mphm}$ ．dimensions
 DC Alnico Eield： $11,0001.12 \mathrm{~mm}$ ．dimensions

AC CONTROL MOTOR

1600 RPM .85 anuns

400 CYCLE MOTORS
IIONFER：TVI＇E Clis ？hitse：ton criles

 400－120）yote ringle 「hatst AIKEFEIKCI AIRESESURCIT： Whectrir Motor：
 SERVO MOTOR 10047－2－A； 2 Phase 400 Cycle；with 40－1 Reduction Gear \＄17．50 ea．

SMALL DC MOTORS

DEI．CO－50G＊z50 DC MOTORS
 J．HSTER：series revorsibia motar $1 / 50$ at

 DC： 5 amps． 8 o\％inches tortue； 50 RPDI
 General Elmetric．Mod．5BA 10Fis3； 12 oz Gemeral Elactric－proe jR，$\$ 15.00$ eat．
 GENEREIL ELECTRIC DC MOTOR MOA

WESTINGIGOESE OVEK－
CERRENT REAM
TVVDE Ms．adjustable from nt－16 resp push bution．Extmolosed

BLOWER

BLOWER ASSEMBLY
115 Volt． 400 Cvele Westinghouse Type Vew 1 ．CliM．wmplete with captritior MICROPOSITIONER
Barber Cobman IVIZ 2133－I Polarized D．C． Ithlay：Double Coil Differential sensitive
Alnico 1 ．W．Polarizel field． s amps： 28 ．Used for remote positioning．

SENSITIVE ALTIMETERS
Pioneer Sensilite altimeters．
$0-35,000$ ft．
 mate in ling of leet．Baro－
metrie selling adusiment．No
hook－mp regulred．．．\＄12．95 ea．

INVERTERS

PE 218 LELAND ELECTRIC

MG 153 HOLTZER－CABOT

I口риt

（1）

PIONEER $12130-3$－B
Outpat
Inpur：
12116－2－A PIONEER

\＄8！．50（a）

10285 LELAND ELECTRIC
Ourput：
le 40 PF And
and Freaurnch wenated \＄195．00
10486 LELAND ELECTRIC
Output

SOLA TRANSFORMERS One KVC，210－270 Volts， 240 Sec．，3－Phase $\# 30663$ $\$ 175.00$

Wrimmet．Gen．Diew．＝7tG6321：Primary

FILAMHET．NAERTKAN－Z90I\＆：I＇rimary 15 lolts， $51 / 60$ reve secondars 5 volts ，Shapping weiglt approx． 536.50 VIRIAKLE．AMFKTRIN \＃－3914： 5011 VA

METERS

－＂＇100－100．
complet

 GLAPSED TIME METERA，Hero Inst ment Co．－Molel 1001 ．Fiecords operating ment．Registers ap to electronic equip－ toth hour incoment ．， lien automati ered titce， 120 V゙AC゚： 60 cycle．NEW． 14.95

SCHWEIN REMOTE CONTROL DUAL GYRO

Free ind rate syo type
45000 ．Contains two tr DC constant speed gy ros one operates horizontaily，
the other verticallw．Vertical the other vertically．Vertical
master gyru influences hor；－ mastel gyru influences hori－
zomtal gyro position．which witen rin actuate a series of himiting rical devices．Borh gyros tumber of elec－ the 38.000 rom．Stae $8^{\prime \prime} x+1 / 4^{\prime \prime} \times 4^{1 / 4 \prime \prime}$ Comes

Immediate Delivery all equipment fully guaranteed
 All prices net FOB Pasadena，Calif．

PIONEER GYRO FLUX GATE AMPLIFIER
TYIN 1．OVG－I－A． タミス． 50 عa

SINE－COSINE GENERATORS

Phase Rotor）

 expept supplas maximum stator voltage

isRiND NEW in original hox．．．$\$ 39.95$ ea，

3JF 3 Genemator（ $115-400$ cyc．）\＄15．04 est CT Control Transformer：90－50 Volt； 60
 －G Generator（ $115 / 40$ volt－ 60 cy
 TRINGMITTER．HKNDIX C－z82IX；11． Folt， 60 Cycle $\quad . .$. REYEATER．BENDIX C－i\＆410； 115 Fi．00 RETEATER，AC synchronous
 Synctiro（xelmatior（ $115 / 90$ volt； 60 GG Sumehro Gemerator（ $115 / 90$ volt， 60
 ？JFs1 Nelsyu Control Trimstormer： $105-55$ 2．DD．J．Snlsyn Motor：115－90 Volts； 6 g cycle 5JDnHAt Selsyn Generator：115－105 Volto 2．JIL GHKERATOR： $115-57.5$ Volt 100 2．11H1DINEGRENTIVGHNERATOR：

PIONEER AUTOSYNS

26 Volt 400 Cycle
24 Volt－ 400 Cvcle

PIONEER TORQUE UNITS

11．12604－3－A：Conlain CKo Motor coul pled to output shatt through $125: 1$ gear re－ syn．follow－up（AY＋3）．Ratio of output Shaft to follow－11，Aulosyn is $15 ; 1$ ．Sonomen． TYPE 12G0ミ－1－A：Same as $12606-1-\mathrm{A}$ ex－ cept follow inp Autosyn．．．．．．．．．．$\$ 70.00$ fat TXPE 12602－1－1：siane as $12606-1 \mathrm{~A}$ ex－ cept it has base mounting type cover for
motor and gear thin．．．．．．．．．．．．．．．．70．00 pa．

Buy TOP Radio-Electronic Values!

JAN TUBES

OB3/VR90	S 8.85	832A	\$ 8.50
OC3/VR105	. 85	836	3.00
3E29	12.95	GL8002R	95.00
6C21	12.95	9003	1.00
204A	75.00	3 BPI	5.95
368AS	7.00	5FP4	3.95
371 B	. 75	12GP7	14.95

FILAMENT TRANSFORMERS

 TEST
$\underset{\substack{\text { Stock } \\ 6212 \mathrm{~A}}}{\substack{\text { No. } \\ \text { Erico } \\ \text { Each }}} \mathbf{\$ 1 0 . 0 0}$
CHICAGO TRANSFORMER-10 VOLT C.T- -6.5 AMP. SEC. 230 VOLT $50 / 60$ CYCLE PRI. 5000
$V O L T$ TEST Stock No.

Price
Each
$\mathbf{N a}$
$\mathbf{5 . 0 0}$

TEST SETS

IE-36 FOR SCR 522
$\$ 35.00$
EE-65G TELEPHONE TEST SET $\$ 25.00$

POWER TRANSFORMER
PRI: 115 VOLT 60 CYCLE
SEC. 188 V . C. ${ }^{\text {T. }}$ 95MA 6.3 VOLT @ 6.2 Amps.
HERMETICALLY SEALED. P/0 R.19/TRC.1 $\underset{\substack{\text { Stock } \\ 611+A}}{\text { No. }} \underset{\substack{\text { Price } \\ \text { Each }}}{\mathbf{S} 2.00}$

SENSITIVE RELAY SPST- 2 MA- 6500 Ohmis. Stock No. 102152 A . Price Each $\$ 1.25$.

RADAR OSCILLATOR APR-5 Sig. Cr. Stk. No. 2C 2784. Used for tuning $1000-$
3100 Mg .

POWER TRANSFORMER
Horizontal Double Half Shell Type. Prii: 117
Volt -60 Cycle. Sec.: $265-0-265$ V.A.C. @ 40 Ma. Volt-60 Cycle. Sec.: $265-0-265$ V.A.C. @ 40 Ma,
Sec.: 6.3 V.A.C. $@ 1.65$ Anas. Mtg. Centers $21 / 2^{\prime \prime}$
$\times 2$ H.V.Center Tan is grounded to core $\begin{array}{cc}\text { Stock } \\ \text { No. } 6183 & \begin{array}{l}\text { Price } \\ \text { Each }\end{array} \$ 1.25\end{array}$

HIGH FIDELITY TRANSFIRMER P. P. 10.000 olun to 250 ohm Line. Frequency Re-
sponise 30 to 20.000 C.P.S. plus or minus DB Grey Rectangular Case $3^{3 \prime} \times 22^{3 \prime} \times 3^{5} 5^{5}$ high. Bot.
$\begin{array}{cc}\text { Stock } \\ \text { No. } 5792 \mathrm{~A} & \begin{array}{c}\text { Price } \\ \text { Eact }\end{array} \\ \mathbf{S N . 5 0}\end{array}$
high current filament TRANSFORMER
Primary 115 VAC 60 Cycle. Secondary 1.25 VAC at 100 Anlp
$\begin{array}{cc}\begin{array}{c}\text { Stock } \\ \text { No. } 5783 \mathrm{~A}\end{array} & \begin{array}{c}\text { Price } \\ \text { Each }\end{array} \\ \$ \mathbf{5 . 0 0}\end{array}$

01 MFD.-600 VOLT MICA CONDENSERS

Large quantities available in both CM-35 and TOLERANCE

$$
\begin{aligned}
& \text { PRICE PER } \\
& 1000 \\
& \$ 150.00 \\
& 125.00 \\
& 100.00
\end{aligned}
$$

AN/APQ-13 MODULATOR UNIT Signal Corps 2 CK $2537-13$ W.E. NNO. D. 151754 .
Oil filled modulator containing a pulse amplifier ant associated rectifier. $\quad \$ 125.00$ ea.

SYNCHRO CAPACITOR

 terninals. 2/2 $\times 1 / 4 \times 3 / 8$ high can
$\underset{\substack{\text { Stock } \\ \text { No. } 6158 \mathrm{~A}} \underset{\substack{\text { Price } \\ \text { Each }}}{\substack{\text { and }}} \mathbf{\$ 1 . 5 0}}{ }$

4 WATT RHEOSTAT

Type M200R $\&$ Watt 200 Ohm Wire Wound Rheo
stat

$\underset{\text { No. btock }}{\substack{\text { S.37A }}} \underset{\text { Each }}{\text { Price }} \mathbf{3 0}$ ¢

J. 38 KEYS

Signal Corps Type 1.38 Keys
$\underset{\mathrm{No} .5293 \mathrm{~A}}{\text { Stock }} \underset{\substack{\text { Price } \\ \text { Each } \\ 85}}{\text { C }}$

HIGH VOLTAGE TRANSFORMER 21,000 rolt 100 xt . Hald wave oil flled. Matone
$\underset{\text { No. }}{\substack{\text { Stock } \\ 5728 \mathrm{~A}}} \underset{\substack{\text { Price } \\ \text { Eacli }}}{\text { and }} \mathbf{\$ 3 0 0 . 0 0}$

MICA CAPACITORS

Sizes from 10 to 7.000 MMFD in CM20, CM 30.
CM35 and CMM CM35 and CM40 case sizes. Tan mica and silver mica.
Complete lists with prices available upon request.
G. E. SATURABLE REACTOR
$\$ 100.00$

THORDARSON
AUDIO PASS FILTERS

ONAN GAS-DRIVEN GENERATOR 14 V-2500 WATT D.C. $\$ 225.00$

GAS DRIVEN LIGHT PLANT 125V 3 Phase 3KVA 50-60 Cycle $\$ 395.00$

SWITCHBOARD BD74

RCA and KENRAD Individually Boxed JAN 826's
$75 \not \subset \quad$ Each 100 Lot
85 ca
RAYTHEON Individually Boxed JAN VT-127's
$25 ¢ \underset{\substack{\text { Each } \\ 100 \\ \text { Lots }}}{\text { and }}$ 35 c each 3 for $\$ 1.00$

10 MFD. - 600 VDC
Sprague No . R2-157. 10 Mfll . 220 VAC 600 VDC
Capacitator with Universal Capacitator with Universal Mounting Ring. 2.7/19 iameter. $3^{33,4}$ lish. Bakelite insulatedl terminals.

TRANSMITTING MICAS

Stock		Test	Type	Price
No.	Cap.	Volts	No.	Each
5493A*	. 01	1000	1415	.35d
5494A	. 02	1000	144 T	. 40 \%
5495A	. 0106	1200	A2	.40c
5496A	. 10011	15011	13E: 15	20.
5498A	001	3500	,	. 30 C
5499A	001	5000	F	.60.
5600A	.0036	5040	12	\$1.00
5601A	.15	1000 V	x	1.90
5602A	. 100007	25060 V	3	.90\%
5603A	. 000065	3000 V	15 I .	1.00
5604A	. 10001	5000 V	F-21.	1.00
5605A	. 0003	50004	F21	1.00
5606A	. 0013025	10.000	P1.-34	1.95
5607A**	.00015	10.000	PL-315	7.95
*Supplied with Meter Bracket **D.C. Working Voltage				

9.62 muld per section. 6.34 mumfd sections in ings. $1 / 4^{\prime \prime}$ diam. shaft, $5 / 16^{p / 2}$ long. 965 plate spacing end plates $1.3 / \mathbf{c}^{m}$ square. 065 Plate $\begin{array}{ccc}\text { Stock } \\ \text { No. } 5076-4 & \text { Fig. } 1 & \text { Price }\end{array}$
4. 22 mmfd per section. $3-12 \mathrm{mmfd}$ sections in series. Single ceranic end plate 1.3 , quan $^{\prime \prime}$ square 4 Stock 4 long shaft. No. $5077 . \mathrm{A} \quad$ FIG. $2 \quad \underset{\substack{\text { Price } \\ \text { Each }}}{ } \quad 60$ ¢

AN-109A WHIP ANTENNA $25 \mathrm{w} / \mathrm{b}$ ase, .75 less base

6.3 VOLT FILAMENT TRANSFORMERS

Primary 115 Volt 60 Cycle 1600 Insulation Three 6.4 Volt Secondaries
6.3 Volts @ 4.9 Amps 6.3 Volts @ 1.1 Amps

Stork No.
5254 A

Horizontal Half Shell Mounting. 21/4" $213 / 16^{\prime \prime}$ Mounting Centers. $213 / 16^{\prime \prime} \mathrm{x}$ $33 / 8^{\prime \prime}$ Core Size. $1 / 2^{\prime \prime}$ above Chassis. Sode Lug Terminals-All Terminals Marked.

Chicago 5, lllinols Phone: HArrison 7,5923

TYPE	PRICE	TYPE	FRICE	TYPE	PRICE								
OA2.	\$1.40	2J21A	17.95	4E27.	17.50	R1, ${ }^{\text {a }}$	1.95	150 TH .	45.00	806	27.50	455	. 55
OA3.	1.10	2 J 22	17.95	4 J 25	199.00	100711	9.95	450 TL .	45.00	807	1.69		. 69
$\mathrm{OH2}$	1.35	2 J 26	27.75	(1) 26	199.00	FG95.	24.95	464 A	9.95	808	3.50	957	-29
OC3	1.25	2727	29.95	4 J 27	199.00	FG105	19.00	471 A	2.75	810	11.00	953 A	-69
OD3	1.25	$2 J 31$	29.95	1.331	199.00	203A	8.95	527	15.00	811 A	3.95	F1148	-65
C18.	3.95	2 J 32	69.95	4 J 32	199.00	211	. 95	WL530.	3.50	813	9.95	F1148	-.35
11321A.	2.75	$2 J 36$	105.60	4 J 33	199.00	217 C	18.00	WL531.	22.50	814	3.95 3.50	1611	1.95
IB22.	3.95	2 3 38	17.95	4132	199.00 89.00	9.42 C	12.60	700A/D	25.00	116	1.45	1613.	1.38
1823	9.95	2 J 39	12.50 35.00	${ }_{4}^{4} 1538$	89.00 199.00	249 C	12.95	701 A . ${ }^{\text {c }}$	7.50	829	12.95	1616	2.95
11324.	17.95 2.95	2 J 40	35.00 200.00	4J39	199.00	250 TH	22.50	703 A	6.95	829 A	13.95	1619	. 89
11827.	13.50	2 J 49	109.00	C5B	3.95	250 TL	19.95	705 A	3.95	82913	15.95	1622	2.75
1832	4.10	$2 J 50$	195.60	$5 \mathrm{BP}{ }^{\prime}$	6.95	2741.	3.00	707A	17.95	830 B	2.50	1624	2.00
11338.	33.00	2 J (1)	45.00	518 P 4	6.95	274 B	3.00	707 A		832.	7.95	1625	. 45
1 H 42.	19.95	$2 \mathrm{~J} \mathrm{ta}^{2}$	45.00	$5 \mathrm{CP1}$	6.95	304 TH	10.00	7114	17.95	832 A .	9.95	1851	1.85 1.85
1 B 51.	9.95	¢K 25	29.50	5D21	21.60	304 TL	10.60	715 A	7.95	833 A	79.95	2051	
$1 \mathrm{B56}$.	49.95	2 K 28	37.50	5JP1.	27.50	307 A	4.95	715 C	12.00	834.	8.95	8012	1.80
1 1360.	69.95	2 K 29.	37.50		19.50	310 A		715 C	25.00 1.95	8836	4.95 2	8013	2.95
1 N 21	1.35	2 K 41	150.00	5JP'tict	27.50 2.50	311 A	6.95 3.95		48.50	838	6.95	B013A	5.95
1 N 21 A	1.75 4.25	21,45	149.50 2.10	C6A	2.50 12.50	323 A	15.00	719A . . .	29.50	845	5.59	8019	1.75
1 N 22.	1.75	$3 \mathrm{BP}^{1}$	7.50	C6, 1	10.95	327 A	3.95	721 A	3.95	849	52.50	8020	3.50
1 N 23	2.00	3124.	5.50	\% EP7	7.95	328 A	6.95	722 A	3.95	851	80.50 4.95	8025	6.95 89.00
1 N 23 A	2.75	$31324 W$	7.50	$7 \mathrm{DPP}^{4}$	10.00	350 A	6.95 5.95	$72.3 \mathrm{~A} / \mathrm{B}$	24.95 4.95		4.95 29.50	9001.	1.75
1 N 23 B	4.25	$1.13 C$	5.95	$12 \mathrm{AP4}$	55.00	350 B	5.95 20.00	724 B	4.95	866 A	1.79	9002	. 95
1 N 34 A	. 96	3 C 22	120.00	151.	1.95 .95	351 A $36 \% \mathrm{AS}$	20.00 6.95	725 A	9.95	869 B	57.50	9003	1.75
1 N 43	2.50	${ }_{3}{ }^{\text {C }} \mathrm{C} 31$	1.95 3.95	NE16	. 98	3 T , ${ }^{\text {3 }}$	6.95	726 A.	24.00	869 BX	35.00	9004	1.75
2 H 26.	3.75	3DPIA.	10.95	FG17	6.95	385A	4.95	:2613	56.00	872 A	3.95	9005	1.90
2 C 31.	. 35	3 DPI 82	12.00	KY21A	8.75	388 A	2.95	${ }^{726} \mathrm{C}$ ¢ ${ }^{\text {a }}$	69.40	878	1.95	9006	
2 C 40.	10.00	${ }^{31} 29$.	15.50	FG33.	12.95	${ }^{394} \times 400$		728 AY	27.00 1.00	${ }_{8}^{88} 8$	1.75		
${ }_{2} \mathrm{C} 414$	20.00 .90	$3 \mathrm{Gl}{ }^{\text {lal }}$	5.50 2.75	35 T Special.	4.95 .35	117 A .	17.95	801 A	1.00	889 R	199.50	Minim	Order
2 D 21	1.75	4826	6.95	HK39	2.95	$43: \mathrm{A}$	19.95	802.	4.25	914	75.00		
2 E 22.	2.75	4 C 27	25.00	1/F50.	1.75	146 A	1.95	803	7.95	931 A	5.00		
2 E 30.	2.75	4 C 28	35.00	V'55	. 25	4.468	5.40	805.	5:95	954.	. 35		

MICROWAVE TEST

EQUIPMENT TS148/UP SPECTRUM ANALYZER

Field type X Band Spectrum Analyzer, Band 8430-9580 Megacycles.

Will check Frequency and Operation of various X Band equipment such as Radar Magnetrons, Klystrons, TR Boxes. It will also measure pulse width, c-w spectrum width and Q or resonant cavities. Will also check frequency of signal generators in the X band. Can also be used as frequency modulated Signal Generator etc. Available new complete with all accessories, in carrying case.

Also ovailable of new production TS147/UP and TS239A Synchroscope.

MOUNTED QUARTZ CRYSTALS IN FT241A HOLDERS WESTERN ELECTRIC

Other test equipment, used checked out, surplus.

TSKI/SE K Bond Spectrum Analyzer TS3A/AP Frequency and power meter S Band RF4A/AP Phantom Target S Band TS10/APN Altimeter Test Set TS12/AP VSWR Test Set for X Band TS13/AP X Band Signal Generator TSI4/AP Signal Generator TSI5/AP Flux Meter TS16/AP Altimeter Test Set TS19/APQ 5 Calibrator TS33/AP X Band Power and Frequency Meter TS34/AP Western El Synchroscope T35/AP X Band Signal Generator

TS36/AP X Band Power Meter TS47/APR 40-400 MC Signal Generator TS69/AP Frequency Meter 400-1000 MC TS 100 Scope
TS102A/AP Range Calibrator TS108 Power Load
TS110/AP S Band Echo Box TS125/AP S Band Power Meter TS126/AP Synchroscope TS147 X Band Signal Generator TS251 Range Calibrator APN9 TS270 S Band Echo Box TS174/AP Signal Generator TS175 Signal Generator

TS226 Power Meter TS239A Synchroscope

SURPLUS EQUIPMENT

32A Ferris Noise Meter
APA10 Oscilloscope and panoramic receiver APA38 Panoramic Receiver
APS 3 and APS 4 Radar and Parts APR 4 Microwave Receiver APR5A Microwave Receiver
APT2 Radar Jamming Transmitter
APT5 Radar Jamming Transmitter

SPECIAL
Wide Band S Band Signal Generator
$2700 / 3400 \mathrm{MC}$ Using $2 K 41$ or PD 8365
Klystron, Internal Cavity Attenuator, Precision individually calibrated Frequency measuring Cavity. CW or Pulse Modulated, externally or internally.

Large quantities of quartz crystals mounted and unmounted.
Crystal Holders: FT243, FT171B others.
Quartz Crystal Comparators.
North American Philips Fluoroscopes Type 80.
Large quantity of Polystyrene beaded coaxial Cable.

NEW LOWER LIST PRICES!! AN CONNECTORS
 3100 A \& B AND 3101 A \& B SHELLS AVAILABLE BLACK INSERTS 50% OFF LIST - 01 A 8. B SHELLS AVAILABLE IMMEDIATE 40\% OFF LIST

Shell
 102 List Price

 31023106 A 3106 B 3108 A 3108 B

 $\begin{array}{ll}\text { Insert } & 3 \\ 28-20 P & \$ 3 \\ 28-20 S & 5 \\ 28-21 P & 6 \\ 28-21 \mathrm{~S} & 7 \\ 28-22 \mathrm{P} & 3 \\ 28-22 \mathrm{~S} & 5 \\ 32-1 \mathrm{P} & \end{array}$ $31023106 A$ She

\section*{| .48 | $\$ 3.9$ |
| :---: | :---: |
| .111 | 4.5 |
| 5.59 | 3.5 |
| .15 | 3.0 |}

 $\begin{array}{ll}.19 & 3.6 \\ .59 & 4.07\end{array}$. $70 \$ 5.3$

${ }^{1088}$

55.4
8.7
8.71
5.74

8.70
10.48

Hunters

 Attention!When you are in need of specialized men for specialized jobsfrom general managers to supervisors-contact them through the SEARCHLIGHT SECTION of McGraw-Hill publications.

The SEARCHLIGHT SECTION (Classified Advertising) is the national market place for those wanting the services of men in technical, engineering and operating capacities in the fields served by these publications.

AMERICAN MACHINIST
AVIATION WEEK
BUS TRANSPORTATION
BUSINESS WEEK
CHEMICAL ENGINEERING
CHEMICAL WEEK
COAL AGE
CONSTRUCTION METHODS AND EQUIPMENT
ELECTRICAL CONSTRUCTION AND MAINTENANCE
ELECTRICAL MERCHANDISING
ELECTRICAL WORLD

ELECTRONICS
ENGINEERING AND MINING JOURNAL
ENGINEERING NEWS-RECORD
FACTORY MANAGEMENT AND MAINTENANCE
FLEET OWNER
FOOD ENGINEERING
NUCLEONICS
POWER
PRODUCT ENGINEERING
TEXTILE WORLD
WELDING ENGINEER

The men you need are the men who read the

SEARCHLIGHT SECTION of McGRAW-HILL PUBLICATIONS

330 West 42nd St., New York 36, N. Y.

SEE OUR PREVIOUS ELECTRONICS ADS FOR LISTINGS OR WRITE FOR CIRCULARS

RELAYS! RELAY! RELAYS!

TERMS:-All Prices F.O.B. Our Plant. Rated Firms Net 10 Days. All Others Remittance with Order. Orders Under $\$ 10$
Remittance With Order Plus Approximate Shipping Remittance With Order, Plus Approximate Shipping Charges
(overage will be returned.)

TELEPHONE TYPE RELAYS

'These relays have been standardized so that coils and frames of most manufacturers can be interchanged without affecting adjustments. A wide variety of applicable combinations are thus possible from a comparatively small number of relays.

Listed below are frames and coils from our stock. They may be purchased separately. which coil with which frame, i.e. fiol with rifame. In ordering complete relays specify
Mecol wh which frame, i.e.: Fiol with K1it.
are indicative of sensitivity relays are also listed with voltage and current ratings. Values combinations

 5035AT AUTOMATIC, 1300 ohm, BmadC,
SI'ST
n.o. (1A).

FRAMES
(For Cost of Relay Add Price
of Frame to Price of Coil) Ω

FRAMES WITH MICROSWITCH

$\stackrel{\text { F125 }}{\text { F126 }}$
1A, 1C (Microsw.)
1.75
1.75

A18258 BENDIX
per Slug. Ter Slug. slow Release. SirDT, 200 olmm.
 R5021A1 AUTOMATIC 1300 olm, 20 maDC ,

COILS

Stock		Price	Stock		Price
No.	Ohms	each	No.	Ohms	each
K101	0.75	1.25	K 106	$1100 / 500$ Dual	2.00
K102	12	1.25	K1111	1300	1.75
K103	250	1.25	K112	2000	2.25

2.49 2.50 2.95

\qquad

K109
Stock
No.
K119
K120
K121

A-C

A-C COIL
Voltage
6 V IC
24 V AC
SLOW ACTION COILS

Stock		Stow
No.	Ohms	Action
K122	33	Make
K123	75	Release
K124	200	Release
K125	300	Make
K126	2000	Make
K127	2500	Release

$\mathbf{A}=$ Normatily $\mathrm{O}_{\mathrm{den}} ; \mathbf{B}=$ Normally Closed $; \mathbf{C}=$ Double Throw.

AMPERITE THERMAL TIME DELAY Single Pole Normally Open 2.40 ea.

No.	Volts	Delay	No.	Volts	Delay
	AC/DC	Sec.		AC/DC	
R946	115 115	60 30	R316	24	$\begin{aligned} \\ \\ 2 \end{aligned}$
R948	115	30 15	R950	6	60 30
R943*	115	5	R952	6	15
* Edison	Type 501		R953	6	5

SELENIUM RECTIFIERS
Full-Wage Bridge Types

$\begin{aligned} & \text { Current } \\ & \text { (Conq } \\ & \text { tinuous) } \end{aligned}$	18/14	$\begin{aligned} & 36 / 28 \\ & \text { Volts } \end{aligned}$	54/42	$\begin{gathered} 130 / 100 \\ \text { Volts } \end{gathered}$
${ }_{2}^{1}$ Ampp.	S1.25 2.20	52.20 5.60	60	${ }^{58} 8.95$
$2{ }^{2} / 2$ Amps.				10.50 13.00
${ }_{5}^{4} \mathrm{Ampss}$ Amps.	3.75	6.75	-8.75	
6 Amps.	5.50	9.00	14.00	${ }_{36.00}^{27}$
110 Amps.	\%.75	12.00	20.00	${ }_{5}^{45.00}$
20 Amps.	13.25	24.00	${ }_{36.00}$	92.50
24 Amps.	16.00	31.00	39.50	98.00
30 36 Amps.	18.50 25.50	36.00 45.00		

ROTARY RELAYS These relays are manufactured l) Price Brothers Co. for operation at the roltage indicated. Application of this voltage causes the mechanism to rotate shafts for use with standard wafer switch decles.

Volts
D.C

D.C. Ohms Mfgr. No | Switch | $\begin{array}{c}\text { Stock } \\ \text { Decks }\end{array}$ | |
| :--- | :--- | :--- |
| No. | | | \(\begin{aligned} \& Price

\& Each\end{aligned}\)

SHORT TELEPHONE RELAYS
Al1996 CLARE. (H77519-1) 24TDC, 3JST
n. o. (3As), 2000 ohm, $\#$ R94. 6385 ARC $12 \mathrm{V1PC}$. SPST n.o. (1A). 10 A con-
tact. 200 ohm. Fart of ARC5 or SCR 274 N ,
 C58180 BENDIX. 12 VDC DPDT \& SPST $=1458$ (2C. 1B) 150 olm. Part of SCR522. A22268 CLARE, 12 VDC , SPST no. (1A) 200 ohmi. \#RAI
5586 W.E. $12.24 \sqrt{\circ} \mathrm{DC}$. SPS' n.o. (1A), 425
ohm, \# 4414 $\begin{array}{lll}\text { DI70788 } \\ { }_{\$ 1992} & \text { W.E., } 4850 \text { ohm, } 8 \text { maDC. SPDT, }\end{array}$
CLARE 24 V IMC SPDT(IC). 500 ohm

 W.E. Dig9615, 5800 ohm. f ma DC, 2lss, 1 C CLARE BI6I98, 24 VDC .500 ohm IE, \#12262. G.M. D282377, 8-12vDC, 90 ohm, IC, 1F

KOVAR GLASS TO METAL SEALS HIGH-VOLTAGE FEED THRU

$\frac{8}{8}$

Many types and slzes. Send us your blueprint on siample for our quote. Our prices are a fraction of

$\begin{array}{lll}\text { LaAR KIT } \\ 300 \text { seals (20 types) } & \mathbf{5 0 0} & \text { postpaid } \\ \text { in USA }\end{array}$

MU-METAL LAMINATIONS

Es, Fs, Is, Ls. Ten Sizes. Quantities Available.
Sample Kit, 6 lbs, Sufficient Quantity of Each Size for One Unit-Postpaid in U. S. A.
$\$ 19.75$

H-F TIE POST
Low-loss Melamine Insulation, pictured actual size
(4-10 Thread) ... $\$ 7.50 / \mathbf{C}$ $\$ 67.50 / \mathrm{M}$

Headquarters for MICROWAVE TEST EQUIPMENT

- the widest assortment, the strongest depth and the most immediate availability of any source on test equipment.

We are pleased to announce March occupancy of new enlarged quarters for Weston Iasoratories, Incorporated. This latest expansion provides us with almost $2 C, 000$ square feet of space exclusively dedicated to the manufacture of high fruality test equipment. May we have the opportunity of quoting on your needs? A partial listing of those pieces of military test equipment which is availazle follows:

- G 宣 new manuractre

BEFORE SELLING YOUR IDLE TEST EQUIPMENT. please get our offer
 Weston Laboratories incorporated

WESTON 93, MASS.
Cable: WESLAB Tel: Boston: WE 5-4500

A LEADING SÜPP A.C. SYNCHRONOUS MOTORS

110 Vt. 60 Cycle
HAYDON TYPE 1600, 1/240 RPM HAYDON TYPE 1600, 1/60 RPM HAYDON TYPE 1600, 4/5 RPM HAYDON TYPE 1600, 1 RPM HAYDON TYPE 1600, $11 / 5 \mathrm{RPM}$ telechron type b3, 2 RPM TELECHRON TYPE BC, 60 RPM HOLTZER CABOT, TYPE RBC 2505, 2 RPM, 60 oz .1 in . torque.

SERVO MOTORS

PIONER TYPE CK1, $2 \phi 400$ CrCLE
PIONEER TYPE 10047-2-A, $2 \phi, 400$ CYCLE, with $40: 1$ reduction gear.

D. C. MOTORS

BODINE NFHG-12, 27 VTS., governor con* trolled, constant speed 3600 RPM, 1/30 H.P.

DELCO TYP 5068750, 27 VTS., 160 RPM, built in brake.
DUMORE, TYPE EIY2PB, 24 VTS., 5 AMP., . 05 H.P., 200 RPM.
GENERAL ELECTRIC, TYPE 5BA10AJ18D, 27 VTS., 110 RPM, 1 oz. 1 ft. torque.
GENERAL ELECTRIC, TYPE 5BA10AJ37C, 27 VTS., 250 RPM, 8 oz., 1 in. forque.
BARBER COLMAN ACTUATOR TYPE AYLC 5091 , 27 VTS., 7 amp., 1 RPM, 500 in. lbs. torque.
WHITE ROGER ACTUATOR TYPE 6905, 12 VT., 1.3 amp., $11 / 2$ RPM, 75 in. lbs. torque.

AMPLIDYNE AND MOTOR

AMPLIDYNE, GEN, ELEC. 5AM3INJI8A input 27 vts., at 44 amp. output 60 vis. at $8.8 \mathrm{amp} ., 530$ watts.
MOTOR, GEN. ELEC. 5BA5OLJ22, armature 60 vis. of 8.3 amp., field 27 vts. at 2.9 omp. $1 / 2$ H.P., 4000 RPM.

PIONEER AUTOSYNS 400 CYCLE

TYPE AY1, AY5, AY14G, AY14D, AY20, AY27D, AY38D, AY54D.
PIONEER AUTOSYN POSITION.
INDICATORS \& TRANSMITTERS.
TYPE 5907-17, single, Ind. dial graduated 0 to $360^{\circ}, 26$ vts., 400 cycle.
TYPE 6007-39, dual Ind., dial graduated 0 to $360^{\circ}, 26$ vts., 400 cycle.
TYPE 4550-2-A, Transmitter, 2:1 gear ratio 26 vts., 400 cycle.

INVERTERS

WINCHARGER CORP. PU 16/AP, MG750, input 24 vts. 60 amps. outputs 115 vts., 400 cycle, 6.5 amp ., 1 phase.
HOLTZER CABOT, TYPE 149F, input 24 vts. at 36 amps., output 26 vts. of 250 V.A. and 115 vts. at 500 V.A., both 400 cycle, 1 phase.
PIONEER TYPE 12117, input 12 vts., output 26 vts. at 6 V.A., 400 cycle.
PIONEER TYPE 12117, input 24 vts., output 26 vts. at 6 V.A., 400 eycle.
WIINCHARGER CORP., PU/7, MG2500 input 24 vts. at 160 amp., output 115 vts. at 21.6 amp., 400 cycle, 1 phase.
GENERAL ELECTRIC, TYPE 5D21NJ3A, Input 24 vts. at 35 amps., output 115 vts. ot 485 V.A., 400 cycle, 1 phase.
LELAND, PE 218, input 24 vts . at 90 amps . output 115 vts. at 1.5 K.V.A., 400 eycle, 1 phase.
LELAND, TYPE D.A. input 28 vts., at 12 amp. output 115 vts. at 115 V.A., 400 cyele, 3 phase.

ENGINE HOUR METER

JOHN W. HOBBS, MODEL MI-277 records time up to 1000 hours, and repeats, operates from 20 to $\mathbf{3 0}$ volts.

VOLTAGE REGULATOR

LELAND ELEC. CO. TYPE B, CARBON PILE. Input 21 to 30 volts D.C. regulated output 18.25 vts . at 5 amp .
WESTERN ELEC. TYPE BC937B, input 110 to 120 volts 400 cycle. Output variation 0 to $\mathbf{7 . 2}$ ohms at 5 to 2.75 omps .
WESTERN ELEC, TRANSTAT, input 115 vts., 400 cycle output adjustable from 92 to iil 15 vts., rating $5 \mathrm{~K} . \mathrm{V} . \mathrm{A}$.
AMERICAN TRANS. CO., Transtat input 115 vts., 400 cycle output 75 to 120 vts. or 0 to 45 volts, rating .72 K.V.A.

SYNCHROS

1 F SPECIAL REPEATER 115 vt. 400 cycle. 2JIFI GENERATOR, 115 vt. 400 cycle. 2JIF3 GENERATOR, 115 vt. 400 cycle. 2JIG1 CONTROL TRANSFORMER 57.5 vt . 400 cycle.
2J1H1 DIFFERENTIAL GEN. 57.5/57.5 vt. 400 cycle.
SG GENERATOR, 115 vt. 60 cycle.
SDG DIFFERENTIAL GEN. 90/90 vts. 60 cycle.
5HCT CONTROL TRAN. $90 / 55 \mathrm{vts} .60$ cycle. 5CT CONTROL TRAN. $90 / 55 \mathrm{vts} .60$ cycle. 5SDG DIFFERENTIAL GEN. $90 / 90$ vts. 400 cycle.

TACHOMETER GENERATOR \& INDICATOR

GENERAL ELECTRIC, GEN. TYPE AN5531-1, Pad mounting 3 phase variable frequency output.
GENERAL ELECTRIC, GEN. TYPE AN5531-2, Screw mounting 3 phase variable frequency output.
GENERAL ELECTRIC, IND. 8DJI3AAA, works in conjunction with above generators, range 0 to 3500 RPM.

D. C. ALNICO FIELD MOTOR
 DIEHL TYPE FD6-23, 27 vts. 10,000 RPM.

GENERAL ELECTRIC

D. C. SELSYNS

8TJ9.PAB TRANSMITTER 24 VTS.
8TJ11- INDICATOR, dial 0 to $360^{\circ}, 24$ vts.

RECTIFIER POWER SUPPLY

HAMMETT ELECTRIC MFG. CO. MODEL SPS-130. Input voltage 208 ar 230 volts, 60 cycle, 3 phase, 21 amps. Output 28 volts at 130 amps. continuous duty, 8 point tap switch, voltmeter ammeter, thermo reset all on front panel.

MISCELLANEOUS

PIONEER MAGNETIC AMPLIFIER ASSEMBLY Saturable reactor type, designed to supply variable voltage to a servo motor such as CK1, CK2, CK5 or 10047.
SPERRY AS CONTROL UNIT, part No. 644836.

SPERRY A5 AZIMUTH FOLLOW-UP AMPLIFIER, part No. 656030.
SPERRY AS DIRECTIONAL GYRO, part No. 656029, 115 vt. 400 cycle, 3 phase.
SPERRY A5 PILOT DIRECTION INDICATOR, part No. 645262 contains AY 20.
ALLEN CALCULATOR, TYPE C1, TURN $\&$ BANK IND., part No. 21500,28 vts. D. C. TYPE C1, AUTO-PILOT FORMATION STICK, part No. Gl080A3.
PIONEER GYRO FLUX GATE AMPLIFIER, type $12076-1$-A, 115 vt. 400 cycle.

ALL PRICES
F. O. B.
GREAT NECK
N. Y.

COMMUNIGATIONSEQUIPMENTCO.

MICA CAPACITORS CM-45-2500 V. TEST					
MFD, .01 .015	$\begin{aligned} & \text { Price } \\ & \text { S0.85 } \end{aligned}$	MFD.	$\begin{gathered} \text { Price } \\ \hline 60 \\ \hline \end{gathered}$	MFD.	Price .80
. 015	$\begin{array}{r} 30.85 \\ .85 \\ .85 \end{array}$.0025	. 60	. 0076	. 80
. 04	. 85	:003	. 60	. 00085	. 80
. 0011	-60	-004	-60	. 00005	-80
. 00015	. 60	${ }^{.005}$	-60	. 00085	- 60
. 0022	.60	${ }_{\text {. }}^{\text {. } 0065}$. 60	Writ	60
. 0023	. 60	.0063	:60	Write	Many
CM-55-2500 V. TEST					
${ }_{.}^{\text {MFD }}$. 0000	Price	MFD.	Price	MFD.	Price
.000025	50. 29	. 0015	-35	. 00775	1.79
-00003	. 29	. 0016	-35	. 008	1.79
-0000075	. 29	. 00017	. 50	. 017	1.10
-0001	. 29	. 0023	-50	. 015	1.10
. 000015	-29	. 0003	- 50	. 025	1.10
-.0003	. 29	.004	1.79	. 027	1.10
-0004	. 29	.006	1.79 1	. 03	1.10
. 0005		. 0063	1.79	5000	
. 00075		. 0069	1.79		
. 00085	. 35	. 007	1.79	:002	2.00

UNIVERSAL SUPPLY KIT

INTERPHONE TRANSFORMER SET
Rig your own interplone.
Transfornier (Matches 4 or
consists
0 and
and
25 L 6 Output Transfornier

12-14V SUPPLY KIT

24 VOLT TRANSFORMERS

For operating surplus gear, toy trains, gad-

RECTIFIER TRANSFORMERS

 Pri: 115 V 60 Cy See: 8.1V @ 1.5A......... $\$ 1.39$ Pri: 115 V 60 Cy Sec: 18.5V @ 5A........ $\$ 4.25$

FLEXIBLE COUPLING SHAFTS 34
135
(ALL LENGTHS IN ${ }_{260}$ INCHES) MC 124

SELENIUM RECTIFIERS-Full-Wave Bridge Types | Current | $18 / 14$ | $36 / 28$ | $54 / 42$ | $130 / 100$ |
| :---: | :---: | :---: | :---: | :---: |
| Continuous) | Volts | Volts | Volts | Volts |

1 Amp .	51.25	52.10	53.60	57.50
2 Amps .	2.20	3.60	6.50	10.50

-2 冷 Amps.
5Amps.
6 Amps.
10 Amps.
12 Amps.
20 Amps .
30 Amps.
POWER TRANSORTETS

Comb. Transformers- $115 \mathrm{~V} / 50-60 \mathrm{cps}$ Input
CT $55-2-600 \mathrm{VCT} / .2 \mathrm{~A}, 5 \mathrm{~V} / 6 \mathrm{~A}$ $\begin{array}{ll}\text { CTJ5-2-600VCT/.2A, } 5 \mathrm{~V} / 6 \mathrm{~A} \\ \text { CT-15A } & 550 \text { VCT } \\ \text { CT }\end{array}$ CT-164 $4200 \mathrm{~V} .002 \mathrm{~A} / 12 \mathrm{KV}$ Test, $5 \mathrm{SVCT} / 3 \mathrm{~A} / 12 \mathrm{KV} \mathrm{T}_{12}$

$$
\begin{array}{|lllll|}
\text { CT-071 } & 110 \mathrm{~V} & -200 \mathrm{~A} & 33 /-200,5 \mathrm{~V} / 10 & \\
\text { CT-367 } & 580 \mathrm{VCT} & .050 \mathrm{~A} & 5 \mathrm{LCT} / 30 & \\
\text { CT-99A } & 2 \times 110 \mathrm{VCT} & .010 \mathrm{~A} & 6.3 / 1 \mathrm{AA}, 2.5 \mathrm{VCT} / 7 \mathrm{~A} & 2.25 \\
\text { CT-403 } & 350 \mathrm{VCT} & .026 \mathrm{~A} & 5 \mathrm{~V} / 3 \mathrm{AA} &
\end{array}
$$

$$
\begin{array}{lll}
\\
\text { STF-968 } & 230 \mathrm{~V} & \mathbf{2 . 5 V} / 6 / 1 \mathrm{SA} \\
\text { STF-631 } & 230 \mathrm{~V} & 2 \times 5 \mathrm{~V} / 27 \mathrm{~A}, 2 \times 5 \mathrm{~V} / 9 \mathrm{AA}
\end{array}
$$

		Transformers -60 cps	
$\begin{aligned} & \text { Item } \\ & \text { STP-613 } \end{aligned}$	Pri. Volts $230 \mathrm{~V}$	Secondaries $230 / .05 \mathrm{~A}, 230 \mathrm{~V} \quad .05 \mathrm{~A}$	Price
STP-409	$220 / 440 \mathrm{~V}$	$136 \mathrm{VCT} / 3.5 \mathrm{~A}$	5.69
STP-815	240/440, 3ph	1310V 67A, 6KV Test	27.50
STP-129	230 V	3850 V 3.12 KVA	42.59
STP-823	137 V	$222 \mathrm{VCT} / 3 \mathrm{~A}$	2.35
STP-08B	50 V	2x750V/.001A	1.79
STP-622	210/220/230	5000V/1A	59.75
STP-945	210/220/230	550-0-550V/.3A	5.95
Special Comb. Transformers - 60 cps			
Item	Pri. Volts	260 Secondaries	Price
		$260 \mathrm{~V} / .03 \mathrm{~A}, 100 \mathrm{~V} / 1 \mathrm{~A}$,	
STC-609	220 V	220V/3A	6.95

PHASE-SHIFTING HELMHOLTZ COILS
O-360 DEGREES
BLEEDER RESISTOR. TYPE-HA. OHM-25W, 7500 OHM-5W. 23 OHM1W, 23 OHM-1W WITH MITG. BRACK.
SA4A/APA-1 Motor Driven Coaxial Ant. SWitch DPDT, Continuous Operation from
24VDC. Completely Enclosed MP-22 MAST BASE Mobile Antenna Mount
SA1A APN-1 Alt
S SA1A/APN-1 Altitude Limit Switch for ALTITUDE INDICATOR for APN-1
C-387-D Final P.A. Coil for BC610 $\mathbf{2 - 3 . 5} \mathbf{~ M i c}$ Variable Link
RA-74 Power Supply for Super Pro. J-17/ARC-5 Junction Box for ARC-5
J22, ARC-5 Junction Box
SUPERSONIC CRYSTALS, Rochelle salt MOTOR. 24 vdc . 3 HP 3800 rpm , New
TV LEAD-IN WIRE, 300 ohms , HI-Q TV LEAD-IN WIRE, 300 ohms, HI-Q ${ }_{\text {S17. }}$.50/M FT Roll BC 30G ANTENNA TUNN
R9/APN.4. New. With Tubes................. ID $6 /$ APN -4 . New, With Tub A-62 Phantom Antenna
2 Meter Choke. 1000 MA, 20-144
Supersonic Crystal Head, M-1,
HI-2 7.95
12.50
4.89
69.50
7.95
3.49
.50
75.00
FT Ro
6.95
75.00
75.00
8.50
1.00
27.45

FILER CHOKES

Stock CH- 366

$\begin{array}{ll}\text { CH-366 } & 20 \mathrm{H} / .3 \mathrm{~A} \\ \mathrm{CH}-322 & 35 \mathrm{H}\end{array}$

$$
\begin{array}{lllll}
& \text { Test } & 4.59 \\
\text { CH-119 } & 8.5 H / 125 \text { MA } & 2.79 \\
\text { CH-69-1 } & \text { Dual; 120.4 } & 17 \text { MA } & 2.35
\end{array}
$$

CIRCUIT BREAKERS

This Mouth' Special

$$
\text { CH-8-35 } 2 / \begin{gathered}
5 \mathrm{H} / 380 \\
\mathrm{MA} / 25 \mathrm{Ohms} 1.79
\end{gathered}
$$

$$
\begin{aligned}
& \text { Stock } \\
& \text { CH }-776 \\
& \text { Description } \\
& \text { D }
\end{aligned}
$$

$$
\begin{array}{ll}
\text { CHO } 776 & 1.28 H / 130 \mathrm{MA} / 75 \text { ohtims } \\
\text { CH- } 344 & 1.5 H / 145 \mathrm{MAA} / 1200 \mathrm{~V} \text { Test }
\end{array}
$$

$$
\begin{array}{ll}
\text { CH-511 } & 6 \mathrm{H} / 80 \mathrm{MA} \\
\mathrm{CH} 3-501 & 2 \times .5 \mathrm{H} / 400 \mathrm{MA}
\end{array}
$$

$$
\begin{array}{ll}
\text { CH3-501 } & 2 \times .5 H / 400 \mathrm{MA} \\
\text { CH-188M } & 5 \mathrm{HY} 200 \mathrm{MA}
\end{array}
$$

$$
\begin{array}{ll}
\mathrm{CH}-188 \mathrm{M} & 5 \mathrm{HY} \\
\mathrm{CH}-488 \mathrm{MA} \\
\mathrm{CH} & 10 \mathrm{HY} \\
\hline
\end{array}
$$

$$
\begin{array}{ll}
\text { CH-488 } & \text { 10HY } 1030 \mathrm{~A} \\
\text { CH-791 } & \text { Dual } 1.75-.125 \mathrm{HY} 100 \mathrm{MA} \text {. }
\end{array}
$$

$$
\begin{array}{ll}
\text { CH } 981 & 15 H Y .110 A \\
\text { CH } 22.1 & 1 \text { HY } \\
\hline
\end{array}
$$

$\begin{array}{ll}\mathrm{CH}-043 & 2.2 \mathrm{HY} 80 \mathrm{MA} .\end{array}$

SECT. 1. Swing 3-12H/-52-.05A

$\begin{array}{ll}\text { CH- } 445 & 0.5 \mathrm{HY} / 200 \mathrm{MA} .32 .2 \mathrm{OH} \mathrm{HS}, 300 \mathrm{~V} \\ \mathrm{CH}-170 & 2 \times 0.5 \mathrm{H} / 380 \mathrm{MA}, 25 \text { OHMS }\end{array}$

INTERPHONE

 AMPLIFIEREnsily converted to an ideal inter.

[^20]PARCELS IN EXCESS OF 20 POUNDS WILL BE SHIPPED VIA CHEAPEST TRUCK OR RAILEX.

COMMUNICATIONSEQUIPMENTCO.

PULSE EQUIPMENT

PULSE TRANSFORMERS
G.E. $\underset{\text { Oh2 }}{F} \mathrm{~K} 2731$ Repetition Rate: 635 PPS. Pri. Imp
 Aınd. ... $\$ 65.00$ U-10198 Pri: $4-5 \mathrm{KV}, 97 \mathrm{~A}$ Pk Sec: $18 \mathrm{KV}, 26 \mathrm{~A}$, ITRH-
? $250-500 \mathrm{C}$. Duration 1.3 usec.............. $\$ 42.50$ O. I66173: Video, Ration $=50: 900$ Ohms 1018C-
291 C G.E.K.-2745 ... $\$ 39.50$ G.E.K.-27.14-A. 11.5 KV High voltage. 3.2 KV Low
roltage et 200 KW oper (270 kW max.) 1 tuicrosec Or 1 microsec. @ 600 PI S. $\$ 39.50$
W.E. DI6927। Hi Volt input pulse Transformer. $\$ 27.50$

 G. E. K 2748 A . lulse Injut line to magnetron.... $\$ 36.00$
Ray UX 7896 -lulse Outult Tri. 5 v . sec. $41 \mathrm{y} . . \begin{aligned} & \\ & \mathbf{7} .50\end{aligned}$
 RAY LUX7361
PHILCO $352.7250,352-7251,352-7287$ UTAH 9332, 9278. 934
RAYTHEON: UX8693, UX5986
W.E.: D-166310, D-16638, KS 9800, KS 9948.

DELAY LINES

RCA 255686-502. $2.2 u$ sec 1400 olvis $\$ 7.50$

PULSE NETWORKS

G. E. F6R3-5-2000-50P2T, 6KV " ${ }^{\text {E }}$ "
cuit, 3 sections . 5 mierosecond, 2000 50 ohms impedare
$15 \mathrm{~A}-1-400-50: 15 \mathrm{KV}$, "A", CLT.
 sections, 0.84 Microsec. 810 PI'S. 50 ohms
sections. 2. 24 nicrosec. 405 P'S. 50 7.5E3.1.200-67P.
200 I 1 P'S. 67 olims impedance 3 Cections. 7.5E3-3-200-6F T. 7.5 KV . 'E'
H'SS. 6 ohns imns. \#755: 10 KV .2 .2 usec., 375 P's.

 G.E. 25 E5-I-350-50 P2T, "N' CK'T, 1 Mierosec. 1 luise

TEST EQUIPMENT

MICROWAVE COMPONENTTS
S BAND-3" $\times 111 / 2^{\prime \prime}$ W.G. 10 CM. DIRECTIONAL COUPLER, Broadband, 20 db . Coupling. Type " N " Takeoff. Complete with all Har $\$ 37.50$ WAVEMETER 2700-3400 MC. liaction TYDe with REACTION WAVEMETER, MIG. G.E. $3000-3700$ MC. HTR LIGHTHOUSE ASSEMBLY. 1 'a APG 5 A APG 15. Receiver and Trans. Cavities BEACS Silverliated LIGHTHOUSE cavity 10 cm . Mifg. Pernard MAGNETRON TO WAVEGUIDE Coupler with 52 ta RT-39/APG-5 10 cm. lighthouse RF head c/o Ximtr--Rec*r-TR catity, compl recyr A $30 \mathrm{MC} \mathbf{1 F}$ strin using 6AK゙5 (2040, 2 C 43 1127 lineup) w/Tubes. MeNALLY KLYSTRON CAVITIES for T0TM. or F 29/SPR-2 FiLTERS. tspe N " ingut and olltput
 ASIAD/AP-10 CM licli up Dipole with " N " Cables OAJ ECHO BOX, IOCM TUNABLE HOMEDELL-TO-TYPE Male Allaters $\$ 22.50$ 1. F AIGMP STRIP: Mo MC $120 \mathrm{~d}, \mathrm{~b}$ gain, 2 MC Band$\$ 24.50$ POLYROO ANTENNA, AS31/APN゙- in Lucite Rall.
 "E", or "H"PLANE BENDS, 90 Deg. less thanges 50 COAXIAL FILTER, F3/APR-2, LO-PASS, PELOW

$$
7 / 8^{\prime \prime} \text { RIGID COAX—3/8" I. C. }
$$

ROTARY JOINT, Stub-sumported, UG 40/UG $\$ 527.50$ 10 CM STABiLiZER Cavity, unable, standard UG46/ RG $44 / \mathrm{U}$ RIGID COAX, stub sumprt. 5 ft sections. RT. ANGLES for
RIGHT ANGLE BEND, with dexible coax output picliSHORT RIGHT ANGLE BEND, with pressirizing nin- $\$ 3.00$ RIGID COAX to the coax connector................ $\$ 3.50$ RT. ANGLE BEND 15" L. OA Male to female.. \$4.25
FLEXIBLE SECTION. 15 L. MEAD FEED-THRU. $\$ 14.00$

X BAND- $1^{\prime \prime} \times 1 / 2^{\prime \prime}$ W.G. 3 CM.
 CROSS.G
Section

 nipple Gange, is inis.
Pressure Gans
Waveguide Section $12^{\prime \prime}$ long choke to cover 45 deg.

Waveguide Section $21 / 2 \mathrm{ft}$. long silver plated with chokif

R.cm. mitered elbow "E", plane.
U.
UG 39 Fianges

UG 39 Flannes
90 degree ellows.
45 degree twist
APS 4 Under Belly Assembly, less iulies........ $\$ 375.00$
MICROWAVE RECEIVER, 3 CM,
 NPHLCNCUTS
 TYPE AFC CIRCUIT. COMPLETE WITH ALL
TUBES. INCLUDING $\overline{\text { OHA/B LOCAL }}$ OSCILLATOR
$\$ 175.00$

K BAND— $1 / 2^{\prime \prime} \times 1 / 4^{\prime \prime}$ W.G. 1.25CM. APS-34 Rotating joint. Right Angle Bend E a or
couplings desirect
$\$ 49.50$
ination 45° Bend F or H Plathe, chok to cover
Mitered Elhow, enver to cover....
TR-ATR-Section. Choke
TR.ATR-Section.
Flexihle Section " choke to chol
"S" Curve Chole to cover. Adapter. ronnd to square cover Feedback to larabola lora with presinized Feedback
row
90° Twist

MAGNETRONS

400 CYCLE TRANSFORMERS
(All Primaries $115 \mathrm{~V}, 400$ Cycles)

MICROWAVE ANTENNA EQUIPMENT

30' SIGNAL CORPS RADIO MASTS
muplete set for erection of a full flat ton antenna.
ruggen plymold construction telescoping into 3 foot sections for 'asy stowage and transportation. perfect set-up for getting out, suppied complete: 2

MAIL ORDERS PROMPTLY FILLED. ALL PRICES F.O.B. NEW YORK CITY. SEND M.O. OR CHECK. ONLY SHIPPING SENT C.O.D. RATED CONCERNS SEND P. O. ALL MDSE. SUBJECT TO PRIOR SALE, AND PRICES SUBJECT TO CHANGE

L. A. HAM SHACK SELLS FOR LESS

METERS:
WESTON
sangamo ${ }_{0}^{\text {annew }} 0$ - All D. C. $\cdot 2^{\prime \prime}$ Square

$0-2 \mathrm{Ma} \mathrm{s3.95} \begin{array}{ccc} \\ 0\end{array}$ Mfg'rs inquiries: lots over 100

 $3^{\prime \prime}$ Ampund Meiers ${ }^{\prime \prime}$

L. A. HAM SHACK

1306 Bond St. ot Pico. - Los Angeles 15, Calif.

SUPDRIOT VALUES FHOMI AMERICA'S LARGEST ELEGTRICAL CONVERSION, HOUSE

400 CYCLE MG UNITS

LOUIS.ALLIS 3 UNIT MG SET. Consists of 5 MP motor operative at $220 / 440-3-60$ directly coupled to alwith exciter unit all mounted on steel base. $1.8 \mathrm{~K} . \mathrm{V}^{2} . \mathrm{A}$
price ... $\$ 565.00$ AMERICAN 400 CYCLE SETS. A precision built motor generator set infal for laboratorr test work. Consists of
$10 \mathrm{II} . \mathrm{P}$. motor directly connected to alternator with out put of 5 KYA. $120 / 208$ Yolts, three phase, 400 cycles With electronic exciter-voltage restaitor. Frequ varia-
tion $\pm 5 \%$ Voltage rariation $\pm 1 \%$; Total harmonic cont.
12%. Plice GENERAL ELECTRIC 400 CYCLE UNITS. operate at 26 VDC 100 Amp. Output: 115 VAC 14.400 CPS.
1500 V.A. With filter system built-in. Price.... $\$ 39.50$ WINCHARGER PU-7/AP; Input 28 VDC. 1 R0 Amps Output: 115 VAC. single ph. 2500 V.A. 400 C.P.S. Frc-
quency and voltage regulation built-in. 1 rice.. $\$ 97.00$ WINCHARGER PU-IG/AP INVERTER Trpe MG750 Input: 28 volts, 60 amp. Output: 115 volts, 6.5, amp.
400 cre., 1 ph. Brand new. Price.............. $\$ 69.50$
 HOLTZER-CABOT MG2I8. Compact 2 bearing units for low current 100 crcle output. Operative at 115 VDC,
23 a mp. Outpit 110 Volts, 1.0 amp. 1 ph. 400 CPS. BOGUE THREE PHASE MG SETS. Consists of Motor 10 II. ${ }^{\prime}$. operative at $220 / 440-3$-6 Selp-exc. alternator
with output of $120 / 208 \mathrm{~V}$. $3 \phi, 400$ cyc. 5 KVA . Brand New
With Voltage Kegulator..............................iliCE, $\$ 1850.00$
$\$ 1950.00$ BTH 400 CYCLE M-G SETS. Consists of an alternator of 6 KVA with output of 115 volts, $1 \phi, 400 \mathrm{CPS}$. V
helted drive to 10 HP . motor operative at $220 / 440-3-60$. Excitation provided by dry fisk rectifler. Complete with
feld rheostat. SPECI LOUIS ALLIS FREQUENCY CHANGER SETS. Pri: 25
H.P. $220 / 440-3$ 60; Sec. $15 / 10.8 \mathrm{~K} . W .3300 / 2200 \mathrm{RPM} /$ H.P. $220 / 440-360 ;$ Sec. $15 / 10.8 \mathrm{~K} . \mathrm{W} .3300 / 2200 \mathrm{RPM}$
$306 / 220$ Volts $35 / 35$ Amps. 2 ph. $500 / 360$ C. $\mathrm{C} . \mathrm{S}$.
 We can sumple these units for 400 crele output and with
transfomers to supply 3 phase, wre output. Write for further information

G. E INVERTER UNITS, Motlel 5ATI21JJ2B; Input phase, 400 Cris. 500 RA RMI Secotbut: 155 Volts, 20 voltuge and freunemer regrlation, buit in. Relsuilt and varranted eynal to new. Similar to Sodel 153 F . $\$ 97.50$
SPECIAL Plice 400 CYCLE COMBINATION I AND 3PHASE MOTOR GUNERATOR. Consistins of 20 RP Sinchronous $220 /$
 Cl'S with voltage remuator. Cencrator II: Onan 4 KVA ,

USE AMPLIDYNE TYPE MG SEST
Motor: TYpe CS Fr 204, 208 : 3 ph., 60 cyc., 4 antps. 1.5 HPP , directly connerten to 2 DC gen. (1) 125 VDC. 2.8 สทเp. 35 F Gen. (2) 250 VDC, 2 anul.. sep. exc. 35 wolts. The 3 units are con tained in olle housing. Brand new. The generators have similar characteristic of an amplidune with a set of control tielts and are completely enclosed with mulher taskets on the enclosing covers, whet call be removed for increased kiv output. An exceptional value at $\$ 183.00$

WE CAN SUPPLY MOTOR-GENERATOR SEES TO ANY FREQUENCY SPECIFICONSULT OUR ENGINEERING
DEPARTMENT

BRITISH MADE 400 CYCLE SETS. Consists of 10 H.P. Motor. operative it $220-3-600$ V-belted to Alternater with outsme of ge regulator. Prand new. s 1095.00 MARCONI MG. UNit. Operates at 110 VDC with output of 250 watts, 115 volts, 11 ph. 300 cyc. With

 operative at
with output of 3 KVA .120 Volts, slngle ph. 400 ccc .

. PELCEND MG. SET. Consists of 5 Mi Motor operatve | a $2.20-3-60$ direct connected to self exc. alternator with |
| :--- |
| |
| $120 / 208 \mathrm{~V} .3$ ph. 400 csc. | GREAT LAKES 400 CYCLE UNIT, OUtDut of 2 KVA, 20 V. single ph. 420 CYE UNIT. Output of 2 KVA , RICE 40 -60. Compact two bearing undt. Reshait. SPECIAL MG. SET. MMot: 25 HP 2204440-3-60. inge ph. AnO cre. PRICE CYCIESET io... $\$ 325.00$ $220 / 400$ Yolts, $30.60 \sim$-belted to alternator with20/400 Volts, $3 \phi .60 \widetilde{y}^{6}$ - belted to alternator withand voltage remplator on same base, making completely

intexral unit. PlIICE KATO MG SET. Motor: $12.5 \mathrm{HP}, 220 / 440-3.60$ O. Out-

 100 An.p. 800 MPM Output: 115 V . 10.400 .544 .50
 10 HP, 200/440-3-6i0 direct connected to self -exc.

$\$ 2150.00$
$\$ 2250.00$

800 CYCLE MG UNITS

ONAN 800 CYCLE MG UNIT. Emploring 5 F.P. Motor operative at $220 / 440$ Volts. $34,60 \mathrm{Cs}$. belted Vols. Single ph. 800 CPS, and secondary output of ECLIPSE 800° CYCLE GENERATORS. Flange mount-
 Pice H.F. MOTOR GENERATOR, G. E. MOdei $5 L Y / 26 A 4$. Motor: 115 VDC direct connected to Generator $24-32$
IDC.
amps. and to allernator 120 VAC. 720 creles, COHTINENTAL DC/AC SET. Motor: 1.5 HP, 230

 Alse available for operation it ils vDC at the same
 1 gin Volt at 720 C 10 Des Dilvers 70 Volts at 120 Crcles
 U.'.S Complete tilter systm mounted thereon. $\$ 46.75$
INVEPTER UNIT PE206A... Input: 27.5 VDC 28 THICE

500 CYCLE MG UNITS

BR TISH MADE 500 CYCLE MG SETS. Motor: 230

 7.8 tmp. 500 Cycles, Excitation- 110 VidC. When CROCKER.WHEELER 500 CYCLE MG SET. COINDACT 2 hearing Unit. Operative at 120 YDC, 7.3 amps. CROCKER-WHEELER 500 CYCLE SET. ONerate 110 Yolts. D.C. 29.6 Amys OutDut: 120 Volts, single
 Stparate units mounter on cotmmon ber plate $\$ 150.00$ G.E. MG SET MODEL $5 L Y 56 A B 5 A$. MOOO - 1 II amb

HIGH FREQUENCY UNITS

ELECTRIC SPECIALTY FREQUENCY CHANGERS Tyue RFS52/BFRS354 Injut: 230 Voits, 3 Ph. 60 cy
3600 RPM Output: 250 Volts, 20 Anps. single ph. 180 Cxe 5000 A. . 8000 Watts. Brand New. Compact
 Mont: 220 VBC . 8.8 amp. 2 HP 4200 RPM . directl connected to H . F. alternator with output of
 I P.MER UNIT. Primary: 32 VDC. 16 Rmperes, 3000
 BENDIX POWER MG SET. Conctits of 2 IIP Rep-Ind Motor, 115 rolts, single phase. 60 cese directly connected to Bendix altornator with output of 120 rolts. 700 exce, 600 watts and DC output of 14.5 volts. DC
 nator: 17 VAC 1300 - 1600 cyc. sed exc. at 24 VDD
 Alternators only to same specifications as abore sep WESTING HOUSE 180 CYCLE ALTERNATORS. 750 R.P.M. spparately excited at 110 VDC. Price. $\$ 65.00$ GENERAL ELECTRIC-HIGH FREQUENGY UNIT Operating at $440-3-60.75$ amp. Output: 70 OVlts. 3 ph
$1+8$ cyc. 220 Wats, 1.8 amperes. An Ideal unit for experimential wark or for operation of equipment. WESTINGHOUSE HIGH FREQUENCY UNITS. In
 olvainpd with built-in controller on and of unit. 548.50 BURKE ALTERNATOR. 625 KVA 220 Volts. 3 Ph ${ }^{80} \%$ P FF. Type ACr-7. Complete with ansiliary exciter
 IDEAL FREQUENCY CHANGER SET. NIotor orera
 BURKE FREQUENCY CHANGER $440-3-60$ with outbut of $12.5 \mathrm{KVA} 23 n$ Volts. 3 ph
180 crcles . Wwo bearing machine with direct connectry MARCONI 3 kW UNIT. Onerative at 110 VIC. 2100
 Can he used with tielrt rhenstat for 400 other inter
medint BRITISH HIGH FREQUENCY UNIT. Onerates with input of 110 YOC will deliver 200 watts, with adjustable
frenumcies uTi
10 ESCO HIGH FPEOUENCY MACHINE In Int: IIN ${ }_{8} \mathrm{AmD}$ HOLTEER-CABOTM-G UNITS O ORYatite At 11, HOLTZER-CABOT FREQUENCY CHANGER. THMUT GENERAL ELECTRIC HIGHFREOUENCY MG. COM
 wh field rhe KVA PRICF 115 (olts, DC.. ${ }^{2} 525.0$ WESTINGHOUSE HF UNITS. In it: IIS TDC frequency acrommished by built in knob controne. GENERAL ELECTRIC 180 CYCLE GENERATORS.

OTHER SPECIAL VALUES
CORNELL OUBILIER VIBRATOR TYPEINVERTER UNITS. Input: $105-125$ VDC: Outpurt: 115 VAC, 1Φ, starts unit with connectrd load. STECIAL PIBCE \$9.90 Invit: 115 Tolts. Dutpur: 115 Volts, $1 d, 60$ cye, 245 anmmencally turrs on inerter with connected load ESPCOAT, TRICE MO MOTAL-in masmetic bralie for $\$ 12.95$
 In origina eises STMCIAT IMCE MO...... 537.50 lleconditionert WATTHOUR METERS. $110 / 110$ rolt DC operation

COMPASS

 COMMUNICATIONS COMPANY
393 GREENWICH STREET NEW YORK 13, N. Y.

 CABLE ADDRESS: COMPRADIO, N. Y. ALL PHONES: BEEKMAN 3-6509
WE MAINTAIN OUR OWN FULLY EQUIPPED TESTING LABORATORY TO TEST AND GUARANTEE ANYTHING WE SELL

TCS-Collins mfd. Navy radiotelephones for shipboard and mobile use, complete with all accessories for operation from $12,24,110,230$ volts d.c. and 110 or 220 volts a.c.
TDE- Navy or commercial marine transmitters, complete 110 \& 220 volts d.c. and a.c

TBK--Navy high frequency transmitter, $2-20$ mcs; 500 watts output. Supplied complete with m / g and starter for d.c. or a.c. operation.

TBM-same transmitter but with speech input equipment to give 350 watts phone. TBL Navy all-wave transmitter; 350 watts output: CW and phone. Supplied complete with m / g and starter for d.c. or a.c. operation.
TAJ-Navy intermediate freq. transmitter, 175-550 kcs; 500 watts output. Supplied complete with m / g and starter for a.c. or d.c. operation.
SCR-284-the famous mobile and ground station for field use. Large quantity of complete sets available.

MAG- 10 cm . portable link radar transmitter receivers, 6 -volt operation.
TBN-200-500 kcs, complete with $220 / 440$ volt, 3 ph. 50-60c. power supply-conservatively rated at 1 kw . outout
SCR-510 and 610 in quantity

RADAR BEACONS

AN/CPN-6	3
AN/CPN-8	10
YJ and YG	G for shipboord
AN/CPN-6	3
AN/CPN-8	0

mos TUBES-
SPECIAL PURPOSE and TRANSMITTING TYPES
this is a sample listing

Tube\#	Selling Price	Tube\#	Selling Price
O1A	write	2J33	100.00
OC3	\$1.60	2)34	write
OD3	1.50	2J36	100.00
C1A	6.00	2J38	49.50
C1B.	7.00	2J39	49.50
C6A	write	2J 42	100.00
C6F	¢ 2.50	2J49	100.00
(6)	write	2J50	75.00
1 B 22	3.95	2J61	75.00
1 B 23	10.00	2J62	75.00
1 B24	write	2 K 22	write
1B44	write	2K25	35.00
2B22	4.95	2K26	150.00
2B26	3.75	2K29	35.00
2C40	18.00	2K36	write
2C43	25.00	2K41	150.00
2D21.	1.70	2K45	100.00
2E22	3.75	2K54	150.00
2J21	17.50	2K55	100.00
2J22	17.50	3B24	5.40
2J26	27.50	3B27.	10.00
$2 J 27$	27.50	3B28	9.00
2)31	27.50	3C31	5.75
2J32	65.00	3E29.	15.00

Tube\#	Selling Price	Tube\#	Selling Price	Tube\#	Selling Price	Tube\#	Selling Price
4C27	25.00	304 TH	9.75	813	9.00	1625	. 65
4C28	35.00	304TL	9.75	829A	12.00	1626	75
4C35	27.50	307A	5.00	832A	10.00	1629	. 65
4D32.	write	339A	35.00	833 A	42.50	1636	3.00
4 E 27	17.50	371 B	2.50	836	4.75	1642	3.50
4J25	. 175.00	388 A	2.75	837	2.75	2050	2.00
4J26	175.00	446A	2.00	843	write	8012	4.25
4J28	175.00	446B	3.75	849	50.00	8020	3.50
4」29	175.00	450 TH	45.00	851	45.00	8025	7.00
4」30	write	450TL	45.00	860	5.00	9001	1.65
4)31	175.00	464A	9.50	861.	write	9002	1.50
$4 J 33$	190.00	705A	3.25	865	. 40	9003	1.75
$4 J 52$	350.00	706AGY	45.00	872 A	3.85	9004	1.75
5С22	write	707B	12.50	874	1.50	9005	1.90
5J23	write	714 AY ..	17.50	889R.	195.00	9006	. 50
5J26	350.00	715B.	17.50	891 R.	250.00		
5J29	write	720	write	892	150.00		
6C21	29.50	721 A	3.75	892 R .	250.00	Also:	
$10 y$	1.25	723A /	25.00	2×2/879	1.75		
100 TH	9.00	724B	6.50	K1069P7	write	IGNIT	
204A	60.00	725A	write	1614	write	PLIOT	
211	1.00	730A	45.00	1616	2.75		
250 TH	30.00	803	7.00	1619	. 75	PHAN	RONS
250 TL .	30.00	807	1.65	1624	2.00		

all tubes guaranteed, all prices are foob. our warehouse, and are subject to change without notice

ALL NEW JAN TUBES

1829	\$2.25	*	10 Y	\$.45
1 N 26	7.75	s	120A	7.50
114	. 55	A	121 A	2.95
$2 \mathrm{C40}$	7.25	v	211/G.E	1.25
2 C 46	25.00	E	394A	3.95
2 E 22	1.50	*	417 A	17.00
2 J 32	22.50	*	446B	3.50
2533	22.50	c	507AX	1.35
2 J 34	22.50	0	721A	2.25
2K22	35.00	m	931 A	4.75
2K23	27.50	P	954	. 45
$3 \mathrm{C} 24 / 24 \mathrm{G}$	1.75	A	955	. 45
3DP1	3.50	R	957	. 65
3GP1	3.75	E	1005	. 55
$5 \mathrm{CP1}$	4.00	*	1616	1.25
5LP1	20.00	*	1629	1.25
5NP1	4.50	S	1644	. 75
6AC7	. 80	A	2051	. 95
6AS6	2.00	v	7193	. 45
6H6	. 50	E	8020	1.75
6.14	6.25	*	9004	. 45
6.5	. 55	*	9006	. 35

Write for other types not listed above.
Minimum order $\$ 10.00$ F.O.B. N.Y.C Rated Firms send P. 0.

ALLIED ELECTRONICS SALES
74 Cortlandt Street, New York 7, N. Y Phone BArcloy 7-5839-5840

WHER-CATBLE

CORDAGE

CO-122 3 conductor each $\ddagger 22$ AWG neoprene jacket 550 lengths
CO- 127 single $=14$ AWG braided and tinned copper braid shield

MULTI-CONDUCTOR

2 conductor AWG $12 \quad 7$ conductor AWG 16 7 conductor AWG 14 19 conductor AWG 16 14 conductor AWG 16
11 conductor shielded 10 conductor AWG 20
10 conductor shielded 10 conductor AWG 16
AWG 20 2 AWG 20 conductor AWG 1822 conductor AWG 16 2 conductor shielded AWG 10
$\begin{array}{ccc} & \text { AMOUR } \\ \text { DRIA-23 } & \text { DHFA-100 FRIA-4 }\end{array}$
SINGLE CONDUCTOR AWG 10 shielded cable with terminal lug each end 100^{\prime} and 150^{\prime} lengths

WIRE

AWG 18 copperweld
AWG 29 tinned coppe
Resistance wire AWG 32
AWG 22 with nylon core plastic insulation LINEAR WIRE WOUND

	POTENTIOMETERS				
10 Ohm	25	Watt 5.90	15000 Ohm	25 Watt	\$1.70
15	25	. 95	20000	25	2.00
20	25	. 95	6	50	1.60
25	25	. 95	$150 \mathrm{w} / \mathrm{CW}$	50	2.15
50	25	.95	200) w/Ew ch	50	2.15
100	25	. 95	$10000{ }^{\text {bW }}$	50	2.95
200	25	1.20	15	75	2.95
350	25	1.20	. 5 Meg $1^{\prime \prime}$ Shaft	$A B$ "J"	1.45
500	25	1.20	$200.000 \mathrm{l} / 8 \mathrm{SD}$	AIf "J."	1.40
1000	25	1.30	$2001 / 8 \mathrm{SD}$	AB "J"	1.40

80-86 Crystal in Holder \$2.5
Balloon with Hydrogen Generator $\$ 2.50$ 300 Feet Aerial Wire $\$ 2.00$

MICROWAVE TEST EQUIPMENT 10 CM echo box CABV 14ABA-1 of OBU-3, frequency range $2890 \mathrm{MC}-3170 \mathrm{MCS}$. Direct reading micrometer head. Ring prediction scale plus 9% to minus 9% Type "N" input. Resonance indicator meter. With accessories, spares and 10 CM directional coupler. Brand New.

TUBES					
2 C 34	5.45	801 A	. 25		. 30
3824.....	${ }_{4}^{.95}$	826	$\begin{array}{r}3.60 \\ \hline 65\end{array}$		8.00 4.15
${ }^{3 \mathrm{C} 24}$	1.60	864.	25	E1148	30
7C4/1203A	. 75	${ }_{9}^{9314}$	4.45	HY 615	20
	. 65	957	. 35	$\mathrm{RK}^{\text {P3 }}{ }^{3}$	45
30 Sp	.40		. 45	5FP	4.25
39/44	. 25	CK 1007	. 90		. 70
${ }_{\text {WE }}{ }_{\text {W }}$	6.75	1626	. 35	${ }_{31}^{183}$ GT	0
316A.		2051	.10	${ }_{5} \mathbf{U 4} \mathbf{G}$	7
${ }_{713}{ }^{\text {L }}$ S 51	$\begin{array}{r}4.95 \\ \hline 90\end{array}$	88193	50	6KGGT	. 60

HI VOLTAGE FILTER CHOKES
. 4 HY 4.5 Amp DC 3 ohms 1230 RMS to ground. New.
1 HY 3.2 Amp DC 3.5 ohm GE69G459. New.
1.7-3 HY 2 AMP DC 34,000 VDC GE Y346A. New.

NAVY ENTERING TYPE INSULATOR Porcelain flanged bowl with brass rod, fittings and aluminum shield. Dimensions $43 / 8$ high, 6-5/16" OD at base. Brand new \$4.50.

10 CM ROTATING ANTENNA

24"' Parabola in turret 360° span at 12 RPM SWITCHES-BATHTUB-OIL FILLED-MICA CONDENSERS—POTENTIOMETE

SALES
Brighton 35, Mass.
TERMS: Minimum order $\$ 5.00$ - Mail orders promptly filled-All prices F.O.B. Shipping charges sent c.0.D. 25% de-
Portable 0-25 Amps AC Weston \#433 Brand
Portable 0-25 Amps AC Weston \#433 Brand New $\$ 37.50$
4269 Board Panel 0-100 Amps DC Weston \#269 with 100 Amp Shunt Brand New $\$ 24.95$

EQUIPMENT

Walkie-Talkies 2.3-4.6 MC
MN-26Y Bendix Compass Receiver
BC-733 Glide Path Receiver
DAB 3-Direction Finder
RDF Receiver Equipment 200-550 KC Fixed Tuned

TIME DELAY SWITCHES

1 Minute 115 VAC 60 cycle Enc. in WaterMinute Metal Case. New $\$ 5.25$. in Water-
Micro Switches Contact at 40-41-42 Second Time Delay 110 VAC Motor New $\$ 4.50$
Thermo Switch 50° to 300° F 115 VAC @ 6A
Breaks Con with increase in Temperafure. New \$1.35

CONTACTORS
DPST 115 VAC 60 cycle 15 Amp De-Ion Line Starter Westinghouse 56.95

RELAYS

12 VDC DPST Allied Control Box 32... $\$ 1.25$ 24 VDC DPDT Allied Control BJD36 $\$ 1.45$ 12 VDC 3PDT 8 Amp 1.50 VAC DPST 1 Amp Contacts Struthers Dunn CKA 1970 $\$ 3.6$ 115 VAC DPST Struthers Dunn CXA $2997 . \$ 3.65$ 220 VDC DPDT Struthers Dunn CK 2122. $\$ 4.50$ OIL FILLED CONDENSERS

MFD VDC Each Ten MFD VDC Each | MFD | VDC | Each | Ten | MFD | VDC | Each | Ten |
| :--- | ---: | ---: | ---: | :--- | :--- | :--- | :--- |
| 1 | 600 | .85 | .80 | .5 | 2000 | 2.00 | 1.90 |
| 2 | 600 | .95 | .95 | $\mathbf{- 2 5}$ | 3000 | 2.85 | 2.80 |
| 4 | 600 | 1.40 | 1.40 | .5 | 3000 | 2.95 | 2.90 |
| 5 | 600 | 1.65 | 1.60 | .2 | 5000 | $\mathbf{4 . 5 0}$ | 4.25 |
| $1-8$ | 600 | 2.50 | $\mathbf{2 . 3 5}$ | .1 | 7500 | 3.95 | 3.95 |

	1-9 ea.	$10.49 \mathrm{ea}$.	$50+$ over
Single J	1.80 ea.	1.50 and up (x)	1.20 and up (x)
Dual JJ	5.50 ea,	4.25 and up (x)	3.85 and up (x)
Triple JJJ		on spec. quote	

(x) depends on bushing, shaft and taper

CERAMIC CAPACITORS and DISCS

any values
5.-per C and up or $35 / M$ and up

IMMEDIATE DELIVERY from stock in New York LEGRIS Company
158 West 99 St., New York 25, N. Y.
Phone: University 5-4110
Since 1945-Resistors is our business.

WAREHOUSE CLEARANCE TUBE SALE NEW, STANDARD MANUFACTURERS, IMMEDIATE DEIVERY
OB3/VR90
0C3/VR105
OD3 VR150
103 OC3 VR105
OD3 VR150 1A3
1A5GT
$1 A 5 G T$
$1 B 22$
1824
1827
1827
$1832 / 532 \mathrm{~A}$
1N21
2N22
1N22
IN23
1N23
IN27
1 P23/CE-1
IR4/1294
$1 T 4$
$2 A 3$
2API
2B22
2C33/RX233A
2C40
2C40
$2 E 22$
2J21
2 l 22
2 L 27
2 l
$2 J 34$
$2 J 50$
2 J 50
2 J 55
2×2
$2 \times 2 \mathrm{~A}$
$2 \times 2 A$
$3 A 4$
3B7/1291
3824
3 C 23
3C24/24G
3DP1
3D6/1299
3EP1
3FP7
$3 F P 7$
$3 G P 1$
3GP1
3 JPl 2
$4822 / E L 5 B$
4B25/EL6CF
$4 J 36$
$4 J 37$
4 J 37
5 BPI
$58 P 1$
5021
$5 F P 7$

$\$$.99
	$5 \mathrm{JP2}$

5JP2
5T4
6AC7
$6 A G 7$
$6 A J 5$
$6 A J 6$
$6 B 6 G$
$6 C 6$
$6 C 8 G$
$6 H 6$
$6 K 7$
$6 S A 7$
$6 S C 7$
$6 S H 7 G T$
$6 S H 7$
$7 C 4 / 1203 A$
$7 E 5 / 1201$
$7 E 6$
$10 Y$
$12 A 6$
$12 C 8$
$12 H 6$
$12 J 5 G T$
$125 F 7$
$125 J 7 G T$
$14 H 7$
$14 J 7$
$15 R$
$23 D 4$
30 \cdots

\section*{| $\$ 19.50$ | 450 TL |
| :---: | :---: | :---: |
 19.50

1.50} $450 T \mathrm{~L}$
464 A
531
$532 \mathrm{~A} / 1 \mathrm{~B}^{2}$
705 A 705 A
706 AB
706AB
705AY GY
707 A
$721 A$

$\$ 44.50$	20
9.50	80

2051
8005
8020
9001
9002
9002
9003
9003
9004

$721 A$	14.50	9006
$723 A B$	2.45	CE22/918
	2.50	CK5

CE22 918
CK501LX
CK1089
EL5B/4822
ELC5B
ELC5B
ELC6A
EL302.5/3B21
FG27A
FG.90
FG. 90
GL. $316 A$
GL. $316 A$
$G L .434 A$
GL.446A
GL. 605
GL. 605
ML. 531
QK. 59
QK. 60
. $\$ \begin{array}{r}.95 \\ 5.85\end{array}$
$723 A B$
$724 B$
$725 A$ $725 A$
$726 A$
$750 T 1$ $\left.\begin{array}{l}801 \\ 803 \\ 803 \\ 804 \\ 805 \\ 807 \\ 810 \\ 811 \\ 813 \\ 814 \\ 815 \\ 816 \\ 826 \\ 830 B \\ 832 \\ 832 A \\ 836 \\ 838 \\ 838 W \\ 845 \\ 8454 \\ 866 A \\ 872 A \\ 884 \\ 902 P 2\end{array}\right]$.

NEW! FOR REMOTE CONTROL! ROTARY, SOLENOID-OPERATED 6V DC MULTI-CIRCUIT WAFER SWITCH!

REG. $\$ 7.25$

\$3.95

THE SWITCH OF 1000 USES!

Wonder solenoid that obsoletes manual switching. Remote selection of crystals, band changing, audio circuits, antenna switching etc. Solenoid (F) produces a rotary motion (from 6 V DC source), transmitting this motion to rotor shaft of 4 gang wafer switch by novel racchet mechanism, advancing switch. Camoperated interrupter switch (E) attached to wafer (A) opens when solenoid nears end of stroke, de-energizing solenoid. By combining E and A, either stepping or rotary selective action is achieved. Requires 6 V DC @ 10 A for .03 seconds. Control wafers: Decks A, B and C are 1 pole 6 pos. Deck D is DPST. Resistance $1 / 2$ ohm DC. 25 degree rotary stroke; 8 lbs./in. torque. Size: $41 / 2 \times 21 / 2 \times 21 / 2^{\prime \prime}$. Shipping weight 1 lb . Pictorial schematic circuits included. ORDER NO. RE-4519

FOR THE BEST IN ELECTRONICS!
 Partial listing

 TELEMARINE

 TELEMARINE COMMUNICATIONS CO.

 COMMUNICATIONS CO.} OF OUTSTANDING SURPLUS COMMUNICATIONS EQPT.
MARINE

TCS X'mttr-Receivers for Ship or Shore. TBK HF 500W. Transmitter with MG. Starter, and Spares.
TAJ 500 Watts Output, 175-550 KC. New. Equipment, with Spares. Motor Generator (AC and DC available) Starter, Tubes, Complete.
G0-9 100/125 W. IF/HF Ship or Aircraft Transmitter, A1 and A2 Emission. All New with Spares.
150-AY Mackay IF Ship X'mtrrs.
8707 RMCA Ship Radio Compass.

EXTRA!

PE-104 POWER SUPPLIES for Receiver of SCR-284, NEW, with Spare Vibrator, Export-Packed. Large Quantity Available. WRITE FOR PRICES.

MISCELLANEOUS

DZ-2 Direction Finders.
GP-7 Aircraft Transmitters
ZB-3 ILAS Eqpt.
SCR-283 Rcvg. \& X'mttng Eqpt. Complete. RT-3/ARN-1 Altimeter.
RADIOSONDES AN/AMQ-1A to [3. New.

IMMEDIATELY
 AVAILABLE
 FROM STOCK

GROUND, SHIP \& AIR COMMUNICATIONS

3040 W. 21ST STREET, B'KLYN 24, NEW YORK.

PHONE: ESPLANADE 2-4300 CABLE: TELEMARINE, N. Y.

CONDENSER MICROPHONE
 Double Helmholtz Resonator Type

> MICROPHONE T-21-B. Sig. Corp. Stock No 2BI621B. Description: Condenser type, Manu facturer, The Allen D. Cardwell Co., mounted inside a cylindrical metal case, $16^{\prime \prime}$ high, $6^{\prime \prime}$ diameter, brass cylindrical case. 5 to 25 cycles per second, output 48 db into 10 ohms. Mike is a combination condenser mike and two-stage amplifier and a double Helmholtz resonator. The condenser head of resonating chamber and consists of a thin stretched metallic dicaphragm mounted sym metrically .004 inch from an insulated metal plate, access of air pressure from the main chamber of the mike to this chamber is through holes of a removable pluq. Access of air pressure from the outside to the main chamber is through the holes of another re movable plug. The combination of the two plugs and the inner and outer chambers form a two-section acoustical low-pass filter. The dimensions of the plug holes have been calculated to obtain a 25 -cycle per second cutoff frequency for this filter. By drill ing vent holes in cylindrical case and remov ing plugs, frequency response can be widened for normal usage. Original use with Sound ranging equipment GR-3. Ha excellent applications in geo-physical and oil exploration work. Tubes used in ampl Price, Each, F.O.B. our address...... $\$ 34.50^{\circ}$

TDQ VHF 100-156 MC 50W. AM X'mttr for $110 \mathrm{~V} .50 / 60 \mathrm{C}$. AC.
BC. 797 VHF $110-126$ MC. 50 W . AM Output for $110 \mathrm{~V} .50 / 60 \mathrm{C}$. AC.

SCR-284 Ground Portable AM, Trans-Rcvg. Eqpt. for Field Communications.
SCR-522 VHF, 4-Channel, 100-156 MC Trans-Rcvg. Eqpt. for Flane or Ground Communications.
SCR-511, Walky-Talky, 3-6 MC, Crystal Controlled Trans-Rcvg, with Plug-In Units for Freq. Changing.

96-200A, 2 KW Wilcox X'mttr. $125-525 \mathrm{KC}$, 3 Cabinets: RF Unit, Modulator, Rectifier ; A1, A2 and A3 Emission.
10 KW GE FM RF Amplifiers, Type BF-3-A, 88-108 MC with separate Power Supply. NEW UNITS! Excellent for increasing power of FM \& Television stations. Write for Prices and descriptive data.

250 \& 500 WATT SOUND SYSTEMS for Airports, Shipyards, Amusement Parks, Civilian Defense, Etc. Write for Prices and Literature.

Mamulacturers' Specials

Nignal Lamp DC Green. U.S.A.A.C. Dwg 39B2822-3. Mfg. Lights. Inc. New-orig-
inal boxes. 5000 available. Stock \#A-263. Special@s22.00/C.

AN-104A Antenna Mast. For AN/ARC-5. Aluminum UHF antenna with hardwood base-coas connecior. Original cartons.
800 avatable. Stock $\#$ SA-23. Special @ $\$ 200 / \mathrm{C}$.

D-101 Dynamotor-G E. 5DY82AR52. Input $\because \overline{3} .5 \mathrm{v}$ dc. Output 220 volts de at 0.08 amps ${ }^{4-1 / 2 i n . ~} 15 . \times \quad 2-3 / 4$ in. diameter. Stock \pm A.60. Special $\$ 450.00 / \mathrm{C}$.

IN-æl-IM Radio Compass Loops-Neworiginal packing. A scarce item and only - A-99. Special@ $\$ 75.00$ euch.

Micro-Switches-Type RZ-7RST. S.P.D.T
2000 available. Stock 2000 available. Stock $=A-351$. Special
$\mathbf{\$ 1 0 . 0 0 / C .}$

IX S.layn Transinittert Liquid Lerel. G.E. Types 8TJ17ABK and AEL-AEM.
Over 2000 on hand. Stock $=$ A- 204 . price $\$ 350.00 / \mathrm{C}$.

Carbon Pile Voltage Regulator-Eclipse Pioneer D-111144. Mounted on cover assem. with adith NEA-2D or $584-3-\mathrm{A} 50$ amper use with NEA-2D or $584-3-A$ sed ampere
generators. Packed in sealed metal containers. 500 available. Stock $\#$ A-282.
Price $500.00 / \mathbf{C}$.

Tachometer Indicator-Army Type Mark V. Lollsman Type $621-\mathrm{KN}-04$ and Pioneer
$=2222-1 \mathrm{~F} 2$-A. For use with Mark Tachometer generator use with Mark V Tachometer generator. 1000 available In sperial@ \$800.00/C.

AIROTOR BLOWER WHEEL

Torrington $\# 300-101-$ Black anodized. $3^{\prime \prime}$
diam, x $1-1 / 32^{\prime \prime}$ thick. $1 / 4^{\prime \prime}$ shaft size. De livers 63 cfm at 3450 rpm clockwise rota
tion, ISraml New-special @ $\$ 27.00 / \mathbf{C}$.

SHOCKMOUNT SPECIALS

Lord 100-P-1 Load rating 1 lbs. . $\$ 6.00 / \mathrm{C}$ Lord $100-\mathrm{P}^{3}-4$ Load rating $4 \mathrm{lbs} \ldots 15.00 / \mathrm{C}$
Lord $100-\mathrm{P}-6 \mathrm{load}$ rating $6 \mathrm{lbs} .{ }^{2} 5.00 / \mathrm{C}$ Lord 150-1-12 load rating $12 \mathrm{lbs} . .30 .00 / \mathrm{C}$
Lord $200-\mathrm{P}-25 \mathrm{Load}$ rating $25 \mathrm{lbs} .50 .00 / \mathrm{C}$ Lord $200-\mathrm{P}-25$ Load ratince 25 lbs.
Harris $1020.00 / \mathrm{C}$
Load rating 3 lb

lb | Harris 5205 load rating $10 \mathrm{lbs}, \cdots 18.00 / \mathrm{C}$ |
| :--- |
| Harris 5215 L.Oad rating 15 los. |
| $18.00 / \mathrm{C}$ |

$18.00 / \mathrm{C}$
AMPERE DEMAND METER Stewart Warner-748, 0-20 Amps. Ther-
mal Operation. High Time Jag. Indication lollows for average reading as would aftec supply ransformers. Ideal for de-
sign laboratories and industrial motor sign laboratories and industrial moto
load checking. Special at 10 for $\$ 30.00$.

CIB THYRATRONS

1 ampere DC continuous rating. Filament Special Q. $\$ 350.00$ per 100 . Liarge Quantity Available.

See earlier ads fol other items. Write for 4 page catalogue with descriptions and prices. Smaller Qty prices upon request.

Call ARmory 4-8989

REMOVAL SALE
Moving to Our Own Building POWER RHEOSTATS

ohm
.1
.5
.5
.5
1
2
2
2
2
3
3
5

6

7
7.5
8
10

12
12
15

20
22
25
50

HIGH POWER TR. MICA

G-1 TYPE		. 10005	10 KV	. 0016	10 KV
. 0001	6 KV	.10065	10 KV	. 015	7 KV
. 01015	6 KV	. 001	10 KV	. 25	1.6 KV
. 0002	6 KV	. 002	10 KV	G-4	TYPE
. 000.4	6 KV	. 03	2 KV	. 010025	30 KV
. 0008	6 KV	. 045	2 KV	. 01006	35 KV
. 001	6 KV	G-3	TYPE	. 0025	25 KV
. 01	4 KV	. 0001	20 KV	. 0039	20 KV
. 032	2 KV	. 00015	20 KV	. 0055	15 KV
. 04	1 KV	. 00025	20 KV	. 01	15 KV
. 051	1.5 KV	0001	20 KV	. 01083	12 KV
. 08	1.5 KV	. 00045	15 KV	. 030	8KV
. 09	1.5 KV	. 10047	20 KV	. 056	5KV
G-2.	YPE	. 0005	20 KV	- Oth	HERS
. 0001	10 KV	. 000995	5 KV	.060155	30 KV
-10015	10 KV	. 001	20 KV	. 0164	30 KV
. 0002	111 KV	. 0012	20 KV	. 1001533	30 KV
-0003	10 KV	. 00124	15 KV	. 101	30 KV
. 00101375	10 KV	. 0015	20 kV	. 007	15 EV
. 0004	5 KV	. 0051	10 KV	(Many	Others)

TRANSMITTING MICAS TYPE " 4 " and " 9 "							
mfd.	wv		ca.	mfd.		typ	ca.
. 0001	600	4	. 36	. 0015	600	4	. 36
. 0003	690	4	. 36	. 00162	600	4	42
. 00005	(it)	4	. 29	002	600	4	. 39
- 00005	2500	9	. 57	. 002	1200	4	. 72
. 0001	600	4	. 29	. 01225	600	4	. 39
-0001	2500	9	. 57	. 003	600	\pm	. 43
. 00015	600	4	. 36	004	600	4	. 45
-0002	600	4	29	. 005	1200	9	. 99
. 00025	600	4	. 29	. 0047	600	t	47
-0005	600	t	29	. 005	2500	9	1.86
. 0005	2500	-1	. 75	.006	600	4	. 54
-0005	2500	9	. 77	. 01	600	4	. 65
. 0006	2500	9	. 85	. 01	1200	9	1.41
. 0007	600	4	36	. 02	600	4	. .92
-00075	600	4	36	. 02	1250	9	2.12
-0005	600	4	36	025	000	-	$1.0 \times$
. 0009	600	t	. 36	03	300	4	. 99
. 001	600	t	. 36	. 03	600	-i	1.34
-001	1200	1	. 54	. 045	600	+	1.75
. 001 1200 9			. 57	. 05	300	4	1.19
			her	es in s	tock		1.19

ohms	ohms	ohms	10: ohms	ohms
65*+	$4000 \dagger$	80K \dagger	100-100*	130K-130K*
$200+$	5000*+	$100 \mathrm{~K}^{*} \dagger$	500-500*+	150K-150K \dagger
$300+$	6500* \dagger	125K*	600-600 \dagger	100K-200K +
400* +	$9000+$	150K \dagger	1500-1500*	250K-250K ${ }^{+}$
500* \dagger	10K* \dagger	165K ${ }^{+}$	2000-2000* \dagger	300K-300K \dagger
$600+$	12K \dagger	250K*	2000-50K*	350K-350K*
650* \dagger	15K * \dagger	300K \dagger	2200-25K \dagger	2 meg -2meg ${ }^{+}$
$750 \dagger$	20K* \dagger	400K*	5000-35K ${ }^{\text {+ }}$	25K-25K* \dagger
1000*	25K* +	500K +	25K-10K ${ }^{\text {c }}$ w	10K-10K* +
$1400{ }^{+}$	30K*	$1 \mathrm{meg} \dagger$	2000-20K \dagger	1meg-1meg \dagger
1500* \dagger	50 K	$2 \mathrm{meg}{ }^{*} \dagger$	25K-10K +	5K-5K*+
2000* \dagger	75K+	3meg*	7 K-1meg \dagger 300K-5K 25K-400K +	$\begin{aligned} & 400 \mathrm{~K}-400 \mathrm{~K} \\ & \mathbf{5 0 0 K}-500 \mathrm{~K}+ \\ & \mathbf{5 0 K}-50 \mathbf{K}++ \end{aligned}$

$\frac{\text { Type "JJJ" } \$ 4.95}{\mathbf{2 0 K - 2 0 0 K - 2 0 K ~} \dagger \quad}$

\section*{BIRTCHER TUBE CLAMPS} | $926 A$ | 926 B 2 | FROM | 926 C | 926 E |
| :--- | :--- | :--- | :--- | :--- |
| $926 A 1$ | 926 B | | | |

 $\left.\begin{array}{lll}926 \mathrm{BI} & 926 \mathrm{BI} 22 \\ 926 \mathrm{BI} 22\end{array}\right) \begin{array}{ll}926 \mathrm{C24} & 930-19 \\ 926 \mathrm{D} & 930-21\end{array}$ Many other Hard-To-Get items available for Immediate delivery from our large inventory. A. MOGULL CO.

50 West Broadway, N. Y. 7, N. Y. Phone: WORTH 4-0865-6

1011 Seonds 1024 Minutes Iimer A hand wound electric TIMING SWITCH Pointer moves back to ZERO and shuts off Devices-Time Delay etc. Furnished with Calibration Chart and Pointer \$1.25
Knob. Biggest bargain we ever had.

HAYDON SYNCHRONOUS TIMING MOTOR
110 v. 60 cscle 30RPM.... $\$ 2.60$ 110 v. 60 cycle $1 / 10$ RPM. $\$ 2.35$
110 ซ. 60 cscle 1RPM...
$\$ 2.85$

REDMOND Powerful 5° Blower or Vontilator 115 volts AC 60 cycles 18 watts. For Kitchen - Laboratory. Heat or Cold or Chemicals... $\$ 7.50$

1800 RTM SYNCHRONOUS Motor: 115 \$4.50 Assorted Micro Switches, Acro Switched, \$1.00

ALL PRICES f.O.b. N. Y.

64 Dey St.
New York 7, N. Y

CARRIER EQUIPMENT

Western Electrlc CF-IA 4-channel carrier telephone EE-101-A 2.channel 1000/20 cycle carrier ringers. Forminals complete with four channels $1000 / 20$ cycle rinaina. C-42-A \mathbf{V}. F. telegraph in from 2- to 12 -channol automatic revulation. duplex signaling each channel. Carrier frequencies above 35 KC . Ideal for adding channels above type "C"' Complete
offered.

RAILWAY COMMUNICATIONS, INC.
Raytown, Missouri
Telephone: \dot{F} Leming 2121

QUARTZ CRYSTALS NEW LISTING

Made from the finest Brazilian Quartz. Will provide a high degree of activity and frequency stability. All tested and marked by the manufacturer to a very close tolerance. In the frequencies outlined below the crystals itemized under the heading "From \& To" are mostly in progressive frequencies between the limits shown (as for example: "From 3300 to 3377 ," are as follows: $3300 \mathrm{KC}, 3301 \mathrm{KC}, 3302 \mathrm{KC}-, 3377 \mathrm{KC}$.) are of limited quantities in each frequency. Those listed singly are in quantities of 50 or more.

FT243
Prong centers $1 / 2^{\prime \prime}$, Prong dia. 3/32" Price $\$ 1.15$ ea. (25 for $\$ 25.00$)

\begin{tabular}{|c|c|c|c|c|}
\hline ${ }_{19}{ }^{\text {P9, }}$ \& From \& \% \& FROM \& то

\hline 21065
2155
20 \& ${ }_{6250}$ \& \& ${ }_{8050}$ \&

\hline \& 6275
6300 \& 6292
6375 \& 8100
8206 \& 8175
8275

\hline 2390
2490 \& cision
6500
650 \& 6498 \& \& 8375

\hline \& ${ }^{65506}$ \& 6675 \& 8385
8800
8000 \& 8475

\hline \& 6700
6825 \& ${ }_{6875}^{6675}$ \& ${ }_{8}^{8500}$ \& 8575
8650

\hline 3689
3799 \& 6815
6830 \& \& -8786. ${ }^{885}$ \&

\hline 3823 \& ${ }_{6}^{6900} \mathbf{6 9 7 8 . 7 5}$ \& 6975 \& \&

\hline 4150 \& cilize \& ${ }_{7375}^{7281}$ \& ${ }_{\substack{\text { 913 } \\ 93525}}$ \&

\hline 4397 \& ${ }_{7}^{7558} \mathbf{7} 5$ \& \& 9305 \& ${ }_{9}^{9399}$

\hline 4690 \& ${ }^{75400}$ \& ${ }_{7}^{7795}$ \& 9556 \& 9589

\hline ${ }^{48988}$ \& 7606 \& 7673.3 \& \&

\hline ${ }_{5195}$ \& 7658
7675
7675 \& \& 122658
12700

120 \& ${ }_{12698}^{12783}$

\hline 5897.5 \& 7770 \& \& 12800 \&

\hline \& ${ }_{7728.8}^{7725}$ \& \& ${ }^{129292}$ \& ${ }^{2139098}$

\hline \& \& \& (13010 \& -13099

\hline \& ${ }^{77771}$ \& \& ${ }^{131313}$ \& ${ }_{131299}$

\hline 5775 \& ${ }_{7} 77800$ \& 7790 \& 13302
13400 \& 13361
13496

\hline \& ${ }^{7825}$ \& \& - 13500 \& ${ }^{13354}$

\hline \& ${ }_{7875} 78$ \& \& 13837 \& 13897
13996

\hline 5975 \& 7900 \& \& 14038 \& 14092

\hline 6075 \& ${ }^{7925}$ \& \& ${ }_{1}^{14110} 1685$ \& 14198

\hline \& ${ }_{7} 7925$ \& 7968 \& \&

\hline 6173.3 \& 8000 \& \& \&

\hline
\end{tabular}

EDLIE ELECTRONICS,

FT214A SPECIAL TYPE WE. Prong spacing $1^{\prime \prime}$ CTS. Prong Size $3 / 32^{\prime \prime}$ dia.
These are in successive steps of . 1 MC variation from 20.0 MC to 27.9 MC
Suitable for low frequency purposes (1/54 of Stated Values)

Price $\$ 1.15$ ea.
UNASSEMBLED CRYSTALS
consists of quartz crystal plates made for FT243 holders. Furnished complete with holders, electrodes, springs and all hardware.

Price 29 ea.
Crystal plates available in the following frequencies:-

$\begin{array}{r}7533 \\ 7841 \\ \hline 855\end{array}$	7750	7873 7850 885	${ }_{8}^{8475}$
7550 7640 7650	(7775	(8875	
7650 7700	7885 78		

154 Greenwich Street New York, N. Y.
Telephone Dlgby 9-3143

CONDENSERS
 SPECIALS

- ALSO-

RECTANGULAR OILS
TUBULARS
BATHTUB \& CHANNELS MICAS-TRANS \& RCVG SWITCHES-MICRO \& TOGGLE POTS
RHEOSTAT-25 WATT RELAYS

SEE JAN. ISSUE

WANTED Condensers of all types in any quantity Also other standard components. Write: ART HANKINS, Owner

MONMOUTH
 RADIO LABS.

BOX 159
OAKHURST, N.J.
Long Branch 6-5 192

Excellent
 "RW" Values!

RA-52 RECTIFIER

Transtat controlled to produce high voltage DC from 110 VAC 60 cycle source. Up to 11,500 VDC @ 50 W . Metered high voltage ($0-15 \mathrm{KV}$) and current ($0-20 \mathrm{MA}$). New
$\$ 74.50$
SCR 625 Famous Army Mine-Detector For Prospectors, Miners, Oil Companies, Plumbers, etc.
This unit is being offered now at a considerable reduction in price. Recently advertised at $\$ 79.50$ it is now availatle in the same brand new wrappings in suitcase style carrying case (less batteries) at

$\$ \mathbf{5 9 . 5 0}$ Whle ther

Used, $\$ 39.50$
TS159/TPX
COMBINATION SIGNAL GENERATOR AND FREQUENCY METER
Freq. range: $150-200 \mathrm{MC}$., crystal calibrated. Has separate 30 MC signal output, crystal cal: 3-stage, AF amplifier. Power measurements by built-in VTVM circuit. $0-1$ MA. meter as 2 -range voltmeter. Builtin 400 cps . voltage regulated power supply. New.
\$69.95

WOBULATOR

BUILD TV-FM-AM SWEEP GENERATOR
You can build "Versatile Sweep Frequency Generator" with APN-1 magnetic units...
$\$ 5.95$
RM 29 with the TS-13 handset $\$ 14.95$ ea.

2 for $\$ 27.50$
RL-42 Reversible Motor with antenna reel and clutch, used. $\$ 2.95$

WRITE FOR PRICES

BC1033	BC376	LP21LM
APS33	BC638	TS61
ARN7	RA42	TS92
SCR269F\&G	RTA1B	BC1277
SCR619	CRT3	BC1287
B00NTON SIG.	MP10	APR-4
GEN. I. 26 B	MN26Y	MN26C
TS 100/AP		

TS 100/AP

WANTED!

All TS, APR, APS, ARC, ARN, ART, SCR, R89 and BC equipment . . . write today!
Quote lowest prices in your first letter

Shipments FOB warehouse. 20% Deposit on orders. Minimum order $\$ 5.00$. Illinols residents, add regular sales tax to remittance.

Prices subject to change without notice.

R W EIEGTRONICS

Dept. EL, 1712-14 S. Michigon Ave? Chicago 16,
III.

CHECK AND COMPARE OUR COMPLETE STOCKS
The following is just a partial list of the current electronic and aircraft equipment now in aur warchouse. Write for complete information. Prompt replies to all inquiries
RC-103 \& AN/ARN-5 ILS
New in original cartons. Complete.
Consists of all accessories, plus AS. $27 A$, R89B/ARN-5 and BC-733D. Modified to flag alarm.
BC-611 \& BC-721 HANDIE TALKIES, Plus SPARE PARTS, Quantity available. IE-17 TEST SET
AN/ARN-7 COMPLETE
SCR-269 COMPLETE
TBS 4 \& 5, NEW, COMPLETE
AN/ARC-1 VHF EQUIPMENT
BC-348 RECEIVERS
BC-342 RECEIVERS

31 KVA BUDA DIESEL PLANT 3 phase, 110 V, 60 cycles. Spare parts and generator available. Has been run only 40 hours.	
AN/ART-13	EQUIPMENT
ATC XMTR	T-47A/ART-13 XMTR
T-47/ART-13 XMTR	CU-24 ANT. LOAD
CU-25 ANT. LOAD	DY-11 \& 12 Dynam't'r
MT-283 MOUNT	0-16 LFO
MT-284 MOUNT	ATC DYNAM'T'R
SA-22 ANT. LOAD	C-87 CONTROL BOX
AN/APG-1 Absolutely com	3A RADAR plete, brand new

AN/APN-2	MG-153
SCR-729 New	APS-2, 3, \& 15
TA2J-24	Components
RTA.1B	AN/ARC-5 VHF
BC-1016	SCR-274 \& ARC-5
APA-6 INDICATOR	Command Equipm't
APA-11 INDICATOR	R-4/ARR-2 Receivers
APA-17 RADAR	BC-640 VHF XMTR
HS-33 HEAD SETS,	SCR-510
NEW	SCR-522
MG-149F \& H	MG-153
SPARE	PARTS
SCR-720	SCR-522
SO. 7	AN/ART-13
AN/ARN-7	AN/ARC-1
SCR-269	BC-611

SCR-718 A, AM, B \& C
Altimeter equipment-complete
To insure the finest of service and quality of merchandise, we have just recently put into operation our own reconditioning and function-testing plant, complete with all facilities.

EXPORT INQUIRIES INVITED

 We carry an unusually large stock of AirlineEquipment. Test Equipment, Radar Sets, etc. Write for our low prices and complete informa. inquiries. Write today!

ELECTRONIC INDUSTRIES INC.
2033 West Venice Blyd.-Dept. E-20 Los Angeles 6, California Phone: REpublic 3-1127

UG CONNECTORS

UG 9/U	UG 28A/U	UG 89/U	UGC 115/U	LG 203/U	G $252 / \mathrm{U}$	UG 333/U
$\text { UG } 10$	UG 29/U	UG 90 U	UG i19U/P	UG 204 A U	UG 253 U	UG 3,34
$\begin{aligned} & \text { UG } 11 / \mathbf{U} \\ & \text { UG } \\ & 12 / 2 \end{aligned}$	UG 29A	UG $91 / U^{\text {U }}$	CW 123A U	UG 206 U	UG 254. U	UG 335/U
UG $13 / \mathrm{U}$	UG 30/U	UG 91. ${ }^{\text {U }}$ U	UG 131 U	UG 207/U	UG 255 U	UG $347 / \mathrm{U}$
UG 14/U	UG $32 / \mathrm{U}$	UG92A U	UG 148A	UG 212A	UG $258 / \mathrm{U}$	UG $348 / \mathrm{U}$
UG 15 U	UG $33 / \mathbf{}$	UG 93/U	UG 149A U	UG 213A U	PL ${ }^{\text {U }}$ 258 ${ }^{\text {d }}$	UG $349 / \mathrm{U}$
UG 16/U	UG 34 U	UG 93A/U	UG, 154 U	UG 215/U	PL 259	UG 358 U
UG 17/U	UG 35A/U	UG 94/U	CW 155 U	UG 216 U	PL 259:	M 358
UG 18 U	UG 36/U	UG 94A U	UG $155 / \mathrm{U}$	UG 217 U	UG 259 /	M 359A
UG 18A U	UG 37/U	UG 95/U	UG 156/U	UG 218	UG 260/U	MT 412
$\begin{aligned} & \text { UG } 18 \mathrm{~B} \mathrm{U} \\ & \text { UG } 1 \% / \mathrm{U} \end{aligned}$	UG 37A U	UG 95A U	UG 157 U	UG 219 U	UG 261 U	UG $414 / \mathrm{U}$
UG 19A U	UG $3^{9} \mathbf{U}$	UG 96/ U	UG 158 U	UG 220/U	UG 262/U	UG $421 / \mathrm{U}$
UG 19B/U	UG $40 / \mathrm{U}$	UG 97\%	UG 159A	UG $222 / \mathrm{U}$	UG 266/U	UG $422 / \mathrm{U}$
UG 20/U.	UG 45/U	UG 97A/U	UG 160B,	UG: 224/U	UG 270/U	UG 478/U
						UG $489 / \mathrm{U}$
						UG 483/U
						UG 484/U
						UG 486/U
						U
						UG $492 / \mathrm{U}$
						UG 493 /
						UG 494/U
						UG $495 / \mathrm{U}$
						UG 496/U
						UG 503 U
	UGG56/U	UG 98/U	UG 166/U	UG 231/U	UG 271/U	MX 504
UG 21 U	UG 57 H U	UG 100 U	UG $167 / \mathrm{U}$ U	UG 233/U	UG 272/U	UG 505
UG 21A U	UG 58/U	UG 100A U	UG 173 U	UG 235/U	UG 274 U	UG 507/U
UG 213 U	UG 58, U	UG $101 / \mathrm{U}$	UG 174 U	UG $236 / \mathrm{U}$	PL 274	UG 526/U
UG $21 \mathrm{C} / \mathrm{U}$	UG 59/U	UG 101A U	UG 175U	UG $237 / \mathrm{U}$	UG $275 / \mathrm{U}$	UG $530 / \mathrm{U}$
UG 22 U	UG 59A U	UG 102 U	UG 176/U	SO 239	UG 276/U	UG 531/U
UG 22A U	UG 60/U	UG 106 U	UG 180A U	UG; 241/U	UG 279/U	UG 532/U
UG 22i3/U	UG 60A/U	UG 107A U	UG 1siA U	UG 242 U	UG 286/U	UG $533 / \mathrm{U}$
UG 23/U	UG 61/U	UG 10713 U	UG 182A/U	UG $243 / \mathrm{U}$	UG 287/U	UG 535/U
UG 23, U	UG 61/ U	UG 108/L	UG 185/U	UG 244/U	UG 290 /	MX 554/U
UG 23B U	UG $83 / \mathrm{U}$	UG 108A/U	UG 18\%/U	UG 245/U	UG 291/U	UG 557/U
UG 23C U	UG 85/U	UG 109/U	MX 195 U	UG 246/U	UG 294/U	MX 564/U
UG 27A U	UG 86/C	UG 109A U	UG 197/U	UG 249 / U	UG 299 U	UG 586/U
UG 278 U	UG 87/U	UG 110 U	UG 201 U	UG 250/U	UG 306/U	UG625/U
UG 28/U	UG 88/U	UG 114/U	UG 202/U	UG 251/U	UG 309/U	MX $913 / \mathrm{U}$

Available for immediate delivery from stock.
Write, wire, phone your requirements.
Complete stock of "AN" Connectors. Send for our bulletins and listings of all components.

ACORN ELECTRONICS CORP.

76.A Vesey St.

WOrth 4-3270
New York 7, N. Y.

TELEPHONE

 RELAYS
Large Stock

CLARE. TYPES C D \& E COOKE. AUTOMATIC-ELECTRIC ALL TYPES of COILS and PILE-UPS					
Send Us Your Specs. for Our Quote					
CLARE TYPE C STANDARD SIZE SENSITIVE TELEPHONE RELAYS Coil Contacts Will close at					
	6500 ohms	1A		MA	5225
	6500 ohms	1 C		MA	3.00
	6500 ohms	1B-1C			2.75
4)	6500 ohms	2A-1B		MA	3.00
5)	6500 ohms	3A		MA	3.00
6)	6500 ohms	3A-1B		MA	3.00
	500 ohm				3.25

CLARE TYPE G HALF SIIE
ENSITIVE TELEPHONE RELAYS

following crystals available in FT 243 HOLDERS $1 / 2^{\prime \prime}$ PIN SPACING

3500	5035	7350
3590	5127.5	7450
4165	5285	7750
4280	5587	7875
4335	5660	8006.7
4350	5730	8025
4370	6073.3	8200
4440	6075	
4445	6140	
4540	6150	
4580	6350	\$700
4620	6525 6700	1 EACH
4710	6875	
4880	6975	
4980	7075	10.00, Pos
4995	7150	

PLEASE ENCLOSE fULL AMOUNT WITH ORDER QUANTITIES AVAILABLE
WRITE FOR YOUR REQUIREMENT
C \& H SALES CO.
B0X 356.fe east pasadena sta. - pasadena 8, calif.

GAPACITOR HEADQUARTERS

BATHTUR COND.				CHANNEL TYPES		
MFD	400 V	600 V	1000 V	400 V	600 V	1000V
. 05	5.30	\$. 35	\$. 40	\$. 35	5.40	\$. 50
. 10	. 35	. 40	. 45	. 40	. 45	. 50
. 25	. 40	. 45	. 50	. 50	. 60	. 65
. 50	45	. 50	. 60	. 60	. 65	. 70
1.0	. 50	65	. 75	. 75	. 85	
2.0	. 85	1.15				
$2 \times .05$. 35	. 40	. 45	. 40	. 45	. 60
$2 \times .10$. 40	. 45	. 50	. 45	. 50	. 65
$2 \times .25$. 45	. 55	. 65	. 50	. 65	.
$2 \times .50$. 55	. 65	. 85	. 60	. 75	
2×1.0	. 85	. 95				
3×1.05 3×10	. 40	. 45	. 50	. 45	. 50	. 65
3×10	. 40	. 45	. 65	-45	. 50	
$3 \times .25$. 50	. 65		. 60	75	
$3 \times .50$. 60	. 65		YAB	WA	
SPECIFY TERMINAL LAYOUT WHEN ORDERING OTHER VALUES VOLTAGES AVAILABLE JAN-C-25 TYPES AVAILABLE IN QUANTITY						
ATTENTION						
New Manufacture Hi-Capacity Oil Cond. For Servo-Control-Network Applications 20-30-40-50-60 MFD/600 VDC, also AC roted						
COMPACT UNITS						
10-20-40-80-100 MFD/100 VDC (Oils) Fast Delivery-Let Us Quote on Your Needs						
For Fast Intelligent Friendly Service "CALL ON ESSCO"						

ELECTRONIC SPECIALTY SUPPLY CO.
58 Walker St. WA 5-8187 NYC 13 NY

END OF YEAR CLEARANGE ON OUR ENTIRE STOCK OF SPECIAL PURPOSE \& TRANSMITTING TUBES. ADDITIONAL DISCOUNTS FOR QUANTITY SHIPMENTS

OA

SEND US YOUR INQUIRIES ON TYPES NOT LISTED

MARITIME INTERNATIONAL COMPANY

11 STATE STREET
Phone: Dlgby 4-3192
NEW YORK 4, N. Y.
Cable Address: FOXCROFT

瞢 HICTROMIC EXPEDITERS
 SUPPLYING

THE NEEDS OF INDUSTRY GOVERNMENT - FOREIGN PURCHASING COMMISSIONS WITH
COMMUNICATIONS EQUIPMENT, RECEIVING AND TRANSMITTING TUBES, ELECTRIC WIRE AND CABLE
AIRCRAFT ELECTRONICS-INSTRUMENTSHYDRAULICS

PROMPT ATTENTION GIVEN TO ALL INQUIRIES

Rated-Dun \& Bradstreet
Electronic \sum xpediters
Dept. WW, 225 N. Wabush Avenue
Chicago 1, Illinois • ANdover 3-0841 Cable Address: "ELEXPEDITE" • TWXCG1510

SEARCHLIGHT SECTION

NEW GUARANTEED MRTRES

Portable Instruments

Molded Bakelite case $7^{\prime \prime} \times 41 / 2^{\prime \prime} \times 3^{\prime \prime}$ D.C. MICROAMMETERS

THERMOCOUPLE MILIO. 50 microamperes MILLIAMMETERS
THERMOCOUPLE VOL
5 to
Available in multiple range
combinations
Precision Electrical Instrument co.
146 Grand Street New York 13, N. Y

AN Connectors, complete stocks on hand. Blue pthalate, melamine or bakelite with cadmium plated or sand blast shells. Write for four page reduced price list.

Up to $\mathbf{8 0} \%$ discount!
Coaxial Connectors, 21,468 pieces in stock in 152 different types.

Write for latest price list.
HAFOLD H. POWELL \& CO.
2104 Market Street Philadelphia 3, Pa.
R.C.A, Model MI-8167 TRANSMITTERS

Point-to-point communcations

Output: 350 Watts C.W. 250 Watts Radio telephone
Input: 190 to 250 Volts $A C 50 / 60$ cos.
Size: $60^{\prime \prime}$ high. $17^{\prime \prime}$ wide, $27^{\prime \prime}$ deep.
Tubes: 807s. 813s, 805 s . 866s.
Crystal Oscillator unit built-in, fully shielded tenna network. Master Oscillator unit (available) fits in olace of Xtal unit. Speech ampli. her is only external unit and has $110 / 220 \mathrm{v}$.
AC input. four stages, high gain. Total weight. 625 lbs.
Complete: Now ! From Stockl Quantitios.」
COMMUNICATION DEVICES CO.
2331 Twelfth Are. N. Y. 27, N. Y

RA-38 RECTIFIER
 $\$ 595.00$ $\$ 59.95$
New Special
RADAR EQUIPMENT
All popular dear for land, sea and air. Write
for Infermation. for Infermation

18 amp
60 mmp
100 mp

	METERS

TEST EQUIPMENT Price On Request $\begin{array}{lllll}\text { BC-221 } & & \text { T6.47 } & \text { TS-34 } & \text { IE-19 } \\ \text { TS-10 } & \text { TS.16 } & \text { TS. } 127 & \text { LM } & \text { IE.36 }\end{array}$

Radar
SGR-545A Search and Track. Complete traller, power supply and spare parts. Nearly New, Writy power suppription and price.

Transformers \& Chokes
Now $10 \mathrm{~K} . \mathrm{W}^{2}$ Amertran oil cooled glate trans. formers $115 \mathrm{v} . / 230 \mathrm{v}$. 60 cy. single phase primary. center tapped or two wire 8800 volts, 1.0 amp. State primary and secondary voltage desired Priced $\$ 75.00$ each f.o.b. Los Angeles.
Filament, American Transformer Co. Spec. 29106,
Type WS, .050 KVA. $50 / 60$ cy. S. 35 KVA Type WS, 050 KVA. $50 / 60$ cy S.P., 35 KVA test, 12 KV d-c operating. Pri. 115 v., Sec. 5 V. 10 amps w/integral stand-off insulator and socket
for $\$ 371,872$, etc., rectifler tubes. $\$ 15.00$ each. Transtat, line voitage regulator, 115 v .60 cy . Range $103-126$ v. 2.17 amp. Amertran Spec. \$29144. \$9.50 each
Battery Charger, G.E. Cat. \#WS-99316. Pri.
$105.115-125$ V. 60 C. Sec. $105.90-75-60-45-30$ v. (a) $105.115-125 \mathrm{~V}$. Ko C. Sec. 105-90-75-60.45-30 v.@ 6 amps. each side of center tap. Voltage reduced
10% and 20% thru tapped primary; two $\times 5 \mathrm{v}$. 18 amp . C.T. (Tungar filaments) and two $\times 7 \mathrm{v}$. to amp. $71 / 4^{\prime \prime} h . \times 8-8 / 4^{*}$ W. $\times 51 / 2^{\prime \prime}$ d. Wt. 56 lbs. Now, orig. packing. G. E. Price $\$ 52.00$. $\$ 17.50$. 2 for \$30.00.
Choke, swinging 15,000 v. d-c line, ripple fre. cuency 120,149 ohms. 02 amp. © 900 henrys; .52
amp. © 25 henrys; 48% ripple. Amertran Spec. 29107. $\$ 42.00$.

*Capacitors

9.12 mfd.. 1265 v. 60 c. a-c or $4000 \mathrm{v}. \mathrm{d-c}$ power factor correction 5.0 K.V.A.R. Cat. $\# 2528908$. .25-.25, 6000 v. d-c or 125° @ 12,000 v. d-c., Fast $1.25 / 1.25$
$\$ 17.50$

*Resistors

Fixed w.w. 160,000 ohm, 200 w . ferrule ends. . $\$ 1.00$
Fixed, $w . w .5,000 \mathrm{ohm}, 200 \mathrm{w}$. ferrule ends. $\$ 1.00$
*Meters \& Multipliers
Westinghouse Type R.5, I meg, precision meter multiplier resistors, wire wound, non inductive. $1 / 2 \%$ tolerance. Can be scrowed together for any desired total. New. $\$ 4.00$ each.
Ammeter, $\mathrm{a}-\mathrm{c}, 3^{\prime \prime}$ Westinghouse NA-35 or weston 0.120 in, 3 amps, f.s. defection; scale calibrated w/200-5 rades doughnut type current transformer
*Relays
Allen-Bradley overload relay, 110 v .60 cy . Cat $=810$. Adjustable 6.3 to 18.1 amps. $\$ 7.95$ each. Westinghouse, 110 V. ${ }^{60}$ cy. D.P.S.T. 15 amp.

*Rectifiers, Dry Disc

Cu.S. FWB $1.8 v . d-0$ @ 1 amp.... S. 754 for 2.50 Selenium, FWCT. $2.2 \mathrm{v} . \mathrm{d}-0$ @ 3 amp .754 for 2.50 Selenium, HW. 36 b . d.ce $@ 2$ amp. .754 for 2.50 Selenium, FWB. 54 v . a-c 1.6 amp Selenium. FWB, 180 v. a-c . 4 amp.
*Stand Off Insulators, Ceramic
 All sizes with metal caps and bases.
High Voltage Rectifier Power Supply Variable output 0-15,000 v. d-c @ 500 mills. Input
 are new. complete with snare tubss and remote con-
trol. Write for detailed information.

* Quantities available-subject to special discounts.

1527 E. Seventh Street
Los Angeles 21, Calif.

S BAND

converter-RF end \& 2 stage 15 mc . I.F. Navy 446 B lighthouse cavity autodyne designed to cover 2850 to 3150 megaeycles (approx. 9.5 to 11 Cm). Tuning ly self contained 115 v 60 cy. reversible 1 rpm Bodine motor with limit switches. Conies set up
to cover range once in $51 / 2$ minntes. Complete with tubes \& motor less power supply, in case $11^{\prime \prime} x$
 Cavities \& other parts of the CG-46ABW
$55 A C Q$ units of Mark 11 Radar available.
30.40 Mc Link xintr 25UFM of SCR-298, $\$ 59.50$ Many other items. Send for Bulletin.
EMPIRE ELECTRONICS COMPANY 409 Ave. L. Bronklvir 30, N. Y. Clovertale 2.2411

TUBE REBUILDING

Large Transmitting and Power types
Economical Guaranteed
FREELAND PRODUCTS CO.
700 DRYADES ST., N, O., LA.

HADAIR

SPECIAL PURPOSE TUBES

HADAR

All Tubes listed below are fully guaranteed and in stock for immediate shipment.

Type	Price	Type	Price	Type	Price	Type Price						
O82.	\$0.90	1N45/400C	1.25	2 K 33	290.00	4С35 14.90	Type	Price 24.50	Type	Price 1.95	S07.	Price $\begin{array}{r}\text { Pr } \\ \hline 1.60\end{array}$
1822		1 P 21	42.50	2 K 34	225.00	$4{ }^{4} 52$. 295.00	66^{4}	6.00	CK532DX	1.95	814	3.50
1 B 24	$\begin{array}{r}11.75 \\ 1.95\end{array}$	$1{ }^{\text {1R26 G.E }}$	79.50	2 K 35	399.00	${ }_{5 C 22}$. . . . 51.50	654	6.85	CK533AX.	1.25	815	2.90
1827	-12.95	${ }_{2} 1$ 2C3/1294	. 79	2 K 39	135.00	5D21. 22.50	6 K 4	4.90	CK536AX.	1.10	829 B	12.95
1836	12.98 9.90	$2 C 39$ $2 C 39 A$	23.95 30.00	2 K 41	149.50	5R4GY 1,55	616	2.19	CK537AX.	3.25	832 A	9.50
1 B 42	14.95	2 C 40 Jan	15.00	$2 \mathrm{2k42}$	142.59		6L6G	1.25	CK538DX	1.25	833A	35.95
1860	14.50	${ }_{2} \mathrm{C}_{42}$ an	15.95 25.95	${ }_{2}^{2} 444$	139.00 139.59		6L6 GAY	2.25	CK542DX	1.15	9314	5.25
1D21/631P1	5.00	2 C 43	17.95	${ }_{2 K 45}$	139.50 145.00	Highest Cash	GSN7 WGT	2.70	CK543DX.	1.20	1620	5.95
1 N 21	1.20	2 C 51	6.15	2 K 46	349.50	Your Paid tor	6SU7GT	2.85	CK544DX	1.15	1622 2050	2.79 1.49
1N218	1.70	2D21	1.49	2K47	475.50	Your Special	FG104	28.90	CK547DX	2.25	5651	1.49 2.95
1 N 21 C	18.95 18	2E24 ${ }^{\text {2 }}$ HY 65	4.60	2 K 48	125.00	Purpose Tubes!	FG105	18.95	575A	14.90	5654	2.75
${ }_{1} \mathrm{~N} 23$.	1.30	2E26/HY65	4.95 3.00	${ }_{3} \mathbf{3} \mathrm{~K} 24$	700.00	Any Quantity	FG172	32.00	702A	3.00	5656	6.75
${ }_{1}^{1} \mathrm{~N} 23 \mathrm{~A}$	2.40	2 E 30	3.00 1.99	3824 3 B 24 W	5.20	1 to 1,000.	300-R	12.50	703 A.	5.90	5670	4.95
1 N 23 B	3.45	2 E 43	1.35	3 B 22.	$\begin{array}{r}79.50 \\ \hline\end{array}$		$307-A$ $350-B$	3.95 4.75	705-A/8021 $707-\mathrm{B}$	2.25 14.25	${ }_{5687} \mathbf{5 6 7 6}$	1.35 5.40
${ }_{1} \mathrm{~N} 25$	5.15	$2 J 32$	38.50	3 C 23	10.50	5T4.......... . 2.25	355-A	13.95	715-B	14.50 8.50	CK5697	5.40 4.95
${ }_{1} \mathrm{~N} 26$	8.50 2.50	$2 \mathrm{2k} 3$.	34.50	3 3 33	14.50	C6. ${ }^{\text {a }}$....... 8.50	393-A	11.50	715-C	21.95	CK5702	5.95
$1{ }^{\text {N }} 31$	3.00	2 K 22	50.00	3 C 45	17.95	6AH6....... 1.25	394-A	4.75	721A.	2.25	CK5703	1.49
$1 \mathrm{~N}_{32}$	24.00	2K25			14.59 325.00	6AK5...... 1.25	${ }^{434-A}$	18.00	723A/B	19.50	CK5704	3.95
1 N 34	. 65	2K25/723A/B	25.90	3 K 23	375.00	GAN5 $\ldots . . .{ }^{\text {GAK }}$, 3.00	CK501DX	1.75	724 A	3.50 3	5744	1.50
1 N40	7.55	2K26	159.00	4 C 28	24.00	6AR6 3.25	CK522AX	1.25	${ }_{7268}$	$\begin{array}{r}39.50 \\ \hline\end{array}$	5814 5829	3.50 5.49
1 N 41	9.53	2K28	31.95	4 C 33	60.00	6AS6........ 3.25	CK526AX	1.45	726C	59.25	CK5875	1.75
1N42.	18.00	2K29	28.90	4 C 35	26.50	6AS7G 4.50	CK528AX	1.62	804	12.95	8014A.	52.50

Above Listing is only partial.
Write or Phone if your requirements are not listed. ALL TUBES ARE NEW, MOST WITH JAN MARKINGS AND IN ORIGINAL CARTONS.
"All Prices" subject to change without notice.
MICROWAVE EQUIPMENT SUPPIY CO. ${ }^{\text {as }}$ seme

WANTED! - RADCOM pays highest prices for surplus equipment, parts and tubes

- TCS-7 and up - SCR 274N, SCR-300
- SCR 399 Equipment JB 70, JB 60, BC-939A, BC-610-E, RA-63, EE8, BC 614-E, PE95, PE197, Trailer K-52, Cords, LS-3
- SCR-508 . . . BC-604, BC-603, FT-237 Crystal Sets
- SCR-506 . . . BC-653-A. BC-652-A, DM-40-A, FT-253-A, BC-658-A
- BC312, 342, 348, 1000 Receivers
- SCR522 Equipment, RA-34 Rectifiers
- ARC-1, ARC-3, ART-13
- Transmitters BC 696, R89/ARN-5A, MN 62, Test Equipment SCR-211. 1208.
- Selsyns-All kinds . . . Magnetrons.
- Generators--GN 45-All kinds
- 5 KW Gas Generators PE 75, PE 95, PE 197
- Plugs and Connectors. Technical Manuals
- Tubes-Special Purpose, Lots

Telegraph WUX, Newark
BIgelow 2-6666
ATluays Right with Earl White
8 LIVINGSTON ST NEWARK 3, N. J.

WE BUY

all kinds of
DOGS

SURPLUS MATERIAL Aircraft \& Electronics

- Amplidynes
- Dynamotors
- Motor Generators
- Switches
- Wire
or What Have You?

ATLAS EQUIP. CO.

229 Southwest Blvd.
KANSAS CITY, MO.

WANTED

- AN/TRC-l Equipments.
- T14 Transmitters.
- Rig Receivers.
- TS32 Test Oscillators.

Any condition or quantity
W-3858, Electronics 330 W. 42nd St. New York 36, N. Y.

NEED \#241 Dumont Oscilloscopes \#804-C Signal Generators			
H. FINNEGAN 49 Washington Ave. Little Ferry, N. J.			
WANTED Federal type			
10:B Voice-frequency Ringers Signal Corps type TA-3/FT.			
330 W .42 St ., New York 36, N. Y.			

WANTED

Western Electric gray-finished EQUIPMENT CABINETS For $19^{\prime \prime}$ panels. Heights of $2^{\prime} 6^{\prime \prime}, 3^{\prime} 6^{\prime \prime}$, $7^{\prime} 0^{\prime \prime}$ and $7^{\prime} 6^{\prime \prime}$.

330 w .42 St., New York 36 , N. Y

Will buy "ALL"	
	BC-348 APN modifled, $\$ 200.00$.
ART-13 / type T-47.	
\$150.00.	ARC-1, 8600.000
8C-348 unmodified,	
\$75.00 ${ }^{\text {Ship via Express c.o. }}$	
.	Gect
49 Washington Ave.	Little Ferry, N. J.

WANTED

BDilo Telephone Switchboards, BDI00 Telegraph Switchboards. BD90 Power Boards, EE101 V.F Ringers, BE72 Cabinets, FM19 Frames, RA43, REC30, KS5988, RA87, RA37, RA91 Rectiflers.
 condition and quantity. 330 W .42 St., New York 36, N. Y

New "SEARCHLIGHT" Advertisements

received by February 2nd will appear in the March issue subject to limitations of the March issue
space available.

Classified Adsertising Die ision
ELECTRONICS
330 West 42 nd St. New York 36, N. Y.

COMPETITORS

team up to bring you one GREAT ELECTRONICS FIRM geared to serve you with

HARD-TO-FIND PARTS \& EQUIP.

Just a partial list of our present stock

- BC-348 • BC-342 • ART-13
- ARC-3 - APN-9 - LM
- BC-221 - BC-611
- VARIOUS TEST EQUIPMENT NEW EXPORT DIVISION FOR ALL FOREIGN ORDERS Prompt attention to all inquiries-all longuages!

Attn: Schools, Labs, Hams! WE PAY MORE FOR RADIO PARTS \& EQUIPMENT Cash in on your surplus equlipmentor we'll trade for something you really
HARJO SALES CO
Formerly CANDEE-AIRCO combined with Alvaradio Sales Co 4109 BURBANK BLVD. P. O. Box 1187

Magnolia Park Station BURBANK, CALIFORNIA
CHarleston 0-1486•ROckwell 9-1070

WE BUY AND SELL GOVERNMENT SURPLUS electronic components, units, wire, etc. Your Inquiries Invited
 LAPIROW BROS.
 1649 Hoffner KIrby 1285 Cincinnati 23, onlo

TELEPHONE EQUIPMENT \& PARTS

EASTERN TELEPHONE COMPANY
323 VANDERBILT AVENUE
BROOKLYN 5, N. Y. MA 2-3753
Standard Brands

INDEX SEARCHLIGHT

February, 1953

This index is published as a convenience to the readers. Care is taken to make it accurate but ELECTRONICS assumes no responsibility for errors or omissions.

EMPLOYMENT	
Positions Vacant.	. 401 -411
Selling Opportunities Offered	.401, 410
Positions Wanted.	... 401
SPECIAL SERVICES	
Contract Work.	... 401
EQUIPMENT	
(Used or Surplus New)	
For Sale..................	. $411-448$
WANTED	
Equipment	442

ADVERTISERS INDEX

Acorn Electronics Corp.	438
Admiral Corporation.	410
Aircraft Armaments Inc.	408
Allen Organ Co.	. 410
Allied Electronics Sales	. 431
Arrow Appliance Co.	. 411
Arrow Sales Inc...	. 428
Atlas Equipment Co	442
Barry Electronics Corp	436
Bendix Aviation Corp, Mork Div	. 402
Bendix Radio Div. of Bendix Avia	Corp. . 404
Blan 434
Blonder-Tonguc Laboratories Inc	. 406
Boonton Radio Corp.	402

Davies Laboratories. The. 401
DeHavilland DeHavilland Aircraft of Canada Ltd....... 406
Douglas Aircraft Co., Inc................ . . 404
Eastern Telephone Co 442
Edlie Electronics Inc. 435
435
Electro Devices Inc

Electronic Fngineering Co. of Calif. 410
Electronic Expediters 439
Electronic Surplus Brokers................. . $4+$
Electronicraft Inc.
Empire Electronics Co
E PCO.
Fair: Radio Sales. 430
Finnegan, I. ...
Ford Motor Co......
Freeland Products Co
+42
408

Galbraith \& Son Inc., C. C............... 411
General Motors Corp., AC Spark Plug Div. 40 General Motors Corp., Delco Radio Div..... 411
Goodyear Aircraft Corp.................... 405

February, 1953 - ELECTRONICS

TO THE ADVERTISERS

February, 1953

SEARCHLIGHT SECTION
(Classified Advertising) H. E. Hilty, Mgr.

Ham Shack, L.A	428
Harjo Sales Co	442
Hatry \& Young	428
Horlick Co., William	429
Houde Supply Co...	411
Instrument Associates.	425
J. S. H. Sales Co	435
Kollsman Instrunient Corp.	410
L. A. Ham Shack	428
Langevin Mfg. Corp	410
Lapirow Bros.	442
Lectronic Research Laboratories	415
Legri S Company	432
Lemar Electronics Co	441
Liberty Electronics Inc	420
Line Hardware Co.	446
Maritime International Co.	439
Maritime Switchboard Co.	440
Maxson Corp., W. L	402
McNeal Flectric \& Equipment C	436
Melpar, Inc.	406
Merrick Electronics.	430
Michigan, University of	402
Microwave Equipment Supply Co.	441
Minneapolis Honeywell Regulator.	408
Mogull Co., Inc., Alexander	434
Monmouth Radio Laboratories	436

National Cash Register Co............401, 411 O'Del Electronics Corp.... 446

Phillips Petroleum Co..................... . . . 404 Photocon Sales 13 439 Powell, Harold H 440
Precision Electrical Instrument Corf..... 440 Premier TV Radio Supply, Div. of Con-
tinental
Corp. 430

Radcom Engineering Co. 442
kadio Corp. of America, RCA Interrational
Radio Develonment \& Sales C........................ 406
Radio \& Electronics Surplus.
Radio Ham Shack Inc
Radio Shack Corp.
Ralway Communications Inc
Relay Sales.
Reliance Merchandising Co........................ 4394
Rose Products Co............................... 440
Sandia Corn
Servo Tek Products Co., Inc...............416, 417
Serry Products, Inc.
Stavid Engineering Inc.
408
"TAB"
447, 448
Universal General Corp.
$V \& H$ Electionics Industries Inc. 437
Wells Sales Inc. 437
Weston Laboratories Inc 408

ELECTR0-FOR ELECTRONIC SURPLUS

PULSE NETWORKS AND TRANSFORMERS

MOTORS AND GENERATORS

 Westinghouse Type GN-wis3 Aiternator, 12 V17.50

 Bendix Mk1 Mod. 3 Step by Step Motor
Pioneer Magesyn PR-51505-1-2320.1A
 Holtzer Cabot PM Mtr \#B3:
Pioneer Autosyn AY-27DW
Pioncer Autosyn AY-59D1.

```
G.E.Selsyn 2JD55JB1. 60 c
```


\qquad

 Wir. E, Sine Wave Motor Generator KS. 59132.50

 G.E. Amplidyne 5 AM 31 Niga

MOTOR SPARES FOR SO RADAR

 GE Gear Mtr Model $58 \mathrm{MA4AB1643}$
\#7W712CY5. $1 / 4 \mathrm{HP}, 250 \mathrm{VDC}$ Gear
 Fields. Shunt. 3450 RrM Armature 30 V

Prices subject to change without notice. TERMS: Rated firms net 10 days, non-rated $\mathbf{2 5} \%$ with order balance COD. Prices $F O B$ Boston. Minimum order $\$ 10.00$.

IN STOCK

FOR IMMEDIATE DELIVERY

JAN-C-25 CAPACITORS

CP53-CP54-CP55
CP61-CP63-CP65 CP67-CP69

Every "E" Characteristic Item Listed In Jan-C-25 Also Every " F " Characteristic Where The Size Is Smaller Than "E"

ALSO
CP70 CAPACITORS
"E" Characteristic 600 and 1000 Volts " B " and " E " Terminals

O'DEL ELECTRONICS CORPORATION

293 WEST BROADWAY NEW YORK 13, N. Y.

WORTH 4-2176 WORTH 4-2177

DYNAMOTORS
From our inventory. New, original containers, BD-77; DM-21; DM-32; DM-36; DY-22; PE-86 and others. Substantial quantities. Also John Oster Co. fractional horsepower motors.

LINE HARDWARE CO.
1515 N. 26th St. Phila. 21, Pa.
State Iabs Inc.
Nation's Largest
Wholesale Supplier
Specializing ONLY in Buying and Selling
electronic TBES
AND CRYSTALS
OVER 4000 TYPES AVAILABLE
TOP STANDARD BRANDS
IMMEDIATE QUOTATIONS
WRITE FOR
FREE
WEEKLY
MARKET
GUIDE
State Fabs Ime.
37 EAST 28 STREET, NEW YORK 16, N. Y.
PHONE: MURRAY HILL $3-9802$
WIRE: STATE LABS, WUX, N. Y
WIRE: STATE LABS, WUX, N. Y.
TELETYPE: N. Y. $1-1807$ CABLE: STATELABS

YOUR

PERSONNEL?

Do you need competent men for your staft? Do you need men to fill executive, sales or technical positions?

EMPLOYMENT?

Are you one of the readers of ELECTRONICS seeking employment in any of the above capacities?

OPPORTUNITY?

Are you looking for or offering a business opportunity of special interest to men in the electronics industry?

EQUIPMENT?

Surplus new or used? Do you have any to offer? Or do you want to purchase some?

The solution to any of these problems can logically be found first among the other readers of ELECTRONICS. You can get their attention-and action-at a relatively low cost through the SEARCHLIGHT SECTION of

ELECTRONICS

INDEX TO ADVERTISERS

Acme Electric Corporation. 337
Acme Electronics, Inc.
Adams \& Westlake Co.....................
Aeronautical Communications Equipment, Inc.
A'G'A Div. of Elastic Stop Nut Corpora tion of America
Air Marine Motors, Inc.

Aircraft-Marine Products, 1ur............... 61
Aircraft Radio Corp.
Airdesign lac.
325
Airpax Products Company 315
Alden Products Company................ 86, 87
Allen-Bradley Co. 213
Allen Co., Inc., L. B....................... 400
Allied Industries, Inc....................... 369
Alpha Metals, Inc.
American Chronoscope Corp
an Electrical Heatrr Company ... 236
American Encaustic Tiling Co............. 220
American Gas Furnace Co................. . 359
American Lava corporation.
American Plenolic Corporation..... 1f4. 165
American Television \& Radio Co....... 318
American Time Products, Inc........... 186
Ampex Electric Corp...
Andersen Laboratories Inc................. 363
Andrew Corporation 349
Anti-Corrosive Metal Products Co.. Ine
Alkwright Finishing Company
Arnold Engineering Co..
182
Corp -.... 335
Assembly Products, Iuc.................... 375
Astron Corporation 233
Augat Brothers, Inc. 351
Antomatic Eleptric Mpy. Co................ 218
Avery Adhesive Label Corp.............. 234
Aviation Engineering Corp................ 159

Ballantine Laboratorien. Inc.............. 242
Batry Corp., The
15
Belden Manufacturing Company......... 265
Bell Aircraft Corp. 321, 335, 361
Bell Telephone Laboratorien. 251
Bendix Aviation Corporation
Eclipscr-ipneer Div.358

Bentley, Harris Manufacturing Co.......
Berkeley Scientific, Division of Beokman 21
Hird \& Co., Inc.. Richard II.
Bird Electronic Corp.
321

Birningham Sound Reproducurs Lid... 350
Birter Cort Co., Mc..................... 395
Hitey Electric Company 203
Bodnar Industries, Inc..................... . 375
Boonton Radio Corb. 155
Borg Corporation, George w............. 290
bowser, Inc.
LBreeze Corporations, Inc................... . . 176
Brew \& Co., Inc., Richard D............. 353
Bridgeport Brass Company.............. 166
Brush Electronies Company 204
Bugyie \& Company, H. HI.................. 184
Burgess Battery Co......................... 331
Burneh \& Company
Bussmana Mfe. Co
50

Cambridge Thermionic Corp. 56
Cannon Electric Company.................. 266
Carboloy Dept., General Electric Co...46, 47
Carborundum Company 293
Centralal, A Div. of Globe-
Union, Ime.11, 12, 13
Century Geophysical Corporation....... 348
Century Metalcraft Corp., Electronic Div.

Chase lbrass deopper Co. Chatham Electronics Corb.
hester Cable Cor
Chicago Telephone Smply Corp.......68, 69
Chicaso Trabsformer, Div, of Nissex Wire Corp.
Cimeh Mantacturing Corp.
Cinemat Engineering Compan
Clare \& Co.
Clary Multiplier
Oleveland Container
Cohn Mfg. Co.. Inc. Sirm
Coil Winding Equipment
collectron Corporation
Collins Radio Compa
Computing Devices of Canada, Ltal..... 312
Condenser I'roducts Company, Dis. of New Haven Clock $\$$ Wateh Co....... 22
Consolidated Engincering Cor
Consolidated Vacuum Corp
Cornell-Dubilier Electric Corp
Cornell Electronics Cor
ornish Wire Co., Inc
Coto-Coil Company
Cramer Co., Ine., R. W
cent Company, lue.

Mage Electric Co.. Inc.................... 200	
Dano Etectric Co. 365	
daven Co., The	rd Cover
re Electric 400
Drodur Amseo Corp.	,
beltron Inc.	395
Luse Coils Ine	90
Detretron	
ialight Corporation	0
Diamond Mannfacturing Cor	
Dow Corning Corporation	
Driver-Harris Company	17
Durant Mfg. Compa	

Eastern Air Devices. luc.............. . . 228
Edison lncorporated, Thomas A....... 378
Eisier Engincering Co., line..........310, 400
Eitel-McCullough, Inc.73, 381
Flectran Mig. Co.....
Ftectric Regutator Corp. 188
Wlectrical Industries Division Amperex
Electronic Corp. 29
Flectro Motive Mfr. Co., Inc..
Electro-Tedi Eguipment Co..
Electro-Technical Products, Div. of Sun
Chemical Corb.
. 246
Engrimearing Co. 371
Engineering Researeh Associates
Inc.
Rerie Besistor Corporation................... 36
Eureka Trlevision \& Tube Corp.......... 313
Eveready llating Co, 400
Fairchild Camerat \mathbb{d} Instrument Corp.: $\mathbf{2 8 6}$
Ferranti Electric, Inc....................... 314
Piltron Co., Inc............................. 27
Finnd Company, Ine., T. R.............. 353
Fhake Engineering Company, John, 39\%
Ford Instrument Company.............. 52
Freed Transformor Co., Inc............. 209
Frequency Standards 375
Furst Electronies 30 :
G. W. Issociates 396
Gair Company, Inc., Robert............. 387
Gamewnll Company
General Ceramic \& Steatite Corp........
G7

New

Vacuum Tube Electrometer
 has many uses

Here is an exceptionally versatile dc voltmeter, and a few of its many uses. The Keithley Instruments Model 200 Electrometer has an input resistance of over 10^{14} ohms shunted by $6 \mathrm{mmf} ; 2$ and 20 volt scales, with input currents of 5×10^{-14} and 5×10^{-13} ampere respectively. Accuracy is within 2% full scale, or within 5% of the reading at low values.

POTENTIALS OVER 20 Volts-Model 2002 Voltage Divider has 100: 1 ratio, clips over guard ring of HI termi. nal. Thus, de circuit potentials up to 500 volts, such as the open circuit voltage of this high impedance source, are read directly.

RESISTANCES UP TO 10^{16} OHMS are easily measured with Wheatstone Bridge circuit diagramed, of by measuring current resulting from known applied voltage. Typical usesinclude: standardizing resistors, measuring insulation samples.

EXCEPTIONALLY FAST Way to check capacitor leakageby direct measurement of voltage decay. Also easily measured: piezoelectric potentials, vacuum tube electrode potentials, electrostatic fields.

CURRENTS AS LOW AS 10-14 ampere are measured directly with Model 2001 Electrometer shunts. Available with resistances from 1.0×10^{6} up to $1.0 \times 10^{12} \mathrm{ohms}$. Typical uses: photocell currents (shown), ion chambers, capacitor and insulation leakages.

complete literofure

KEITHLEY INSTRUMENTS

 3868 Carnegie Avenve Cleveland 15, OhioWant more information? Use post card on last page.

ZINC ALLOY FASTENHIGS

GRC WING NUTS
Exclusive, finger-grip design; easy to assemble, disassemble; brightly finished; clean threads

GRC WING SCREWS
A steel screw combined with GRC's attractive finger-grip wing-nut.

Die cast, not turned! Free of tool marks and cut-off burrs; class 2 threads tapped square with face of nut.

GRC SMALL TUBULAR RIVETS
Die cast, not headed! Closer tolerances, more uniform heads for greater riveting efficiency. Dia. up to $9 / 64^{\prime \prime}$; lengths to $5 / 16^{\prime \prime}$.

Gries die cast zinc alloy fastenings are durable, rustproof ... economical, too! All Gries fastenrustproof be economical, too! All Gries fostenings may be used without protective finishes in most applications. Furnished in all commercial sizes-specials to order.

WRITE TODAY FOR SAMPLES AND PRICES
whrtoonfor samiles copp.
GRIES REPRODUGER CORP.

The New Series "H" Hycor Precision wire-wound resistors have been developed to meet the increasingly stringent requirements of the electionics industry. The resistors are permanently sealed in a high stability plastic compound which virtually immunizes them against the effects of HIGH HUMIDITY, MECHANICAL SHOCK and AMBIENT TEMPERATURES UP TO $135^{\circ} \mathrm{C}$. They will conform to JAN R-93 or MIL R93A specifications. Hycor Series " H " Precision wire-wound resistors have a temperature coefficient of 25 parts per million per degree C. and are available in resistances from 0.1 ohm to 6 megohms.

11423 VANOWEN ST., NORTH HOLLYWOOD, CALIFORNIA

Manufacturers of Precision Resistors, Toroid Inductors and Electric Wave Filters

EPRESENTATIVES

Jack Beebe, 5707 W. Lake Street, Chicago, Illinois
George E. Harris \& Co., Box 3005, Municipal Airport, Wichita, Kansas
Marvin E. Nuisen, 5376 E. Washington St., Indianapolis 19, Indiana
Burlingame Associates, 103 Lafayette Street, New York City

For further information contact your nearest Hycor representative or write for Bulletin H

General Electric Company

aneral Industries Co. 230
General Radio Company. 1 :
Giannini \mathbb{N} Co., Inc., G. N............... 53
Grant Irulley \mathbb{A} Hardware Co............ 25%
Grayhill - 399
Green Instrument Co., Iuc 345
Ciries Keproducer Corp. 450

Hammarlund Manufacturing Co.. Ine... 82
II: riwiek, Hindle, Inc'. 207
Haydon Co., A. W......................... . . 323
Haydon Hanutacturing Co., Inc........ 276
IIeath Company . 318
Heiland Research Corporation........ 298
Heldor Xanufacturing Company 263
IIAlinot Corporation. The178, 179
Iermaseal Co., Inc'............................ . . . 316
Hermes IPlastics Inc. 36%
Hermetic Seal Products Co................. 43
Hewlett-Packaral Company80, 81
Hi-Q IDiv. of Aerovox Corporation 215
Hinde \& Dauch 161
Hughes Resiarch \& Development
Laboratories
.269, 352
IIyeor Compthy, Inc....................... . . . 450

Indiana Steel Iroducts Co............... . . 177
Industrial Condenser Corp.. 243
Industrial Control Company 396
Industrial Hardware Nifg. Co., Inc....... 367
Industrial Timer Corporation 170
Institute of Radio Enginears 387
Instrimment Corp. of Americat........... 317
Instriment Electronics Corp. 343
Insirument Resistors Co. 333
Insulation \mathcal{E} Wires Inc. 195
Insulation Manufacturers Corp. 258
International Instruments. Inc........... 323
InternationaI Rectifler Corp.............. . 197
International Resistance Company.... 40, 41
Ippolito \& Co., Inc., James. 369
Irvington Varnish \mathbb{N} Insulator Co...... 79
I-T-E Resistor Division of the I-T-E
Cirenit lseaker Co. 8
elliff Manufacturing Corp., C. O......... 341
Jerrold EIectronics Corp.................. . . 366
Johnson Companyy, E. F......................... 198
Jones Div., Howard B. Cinch Mfg. Co... 337
Jones Electronics Company. M. C....... 388

Kahle Engineering Company 255
Kalbfell Laboratories, Inc................ 371
Kary Metal Produets Co., Inc........... in $^{\text {I }}$
Kartron . 400
Keithey Instruments 449
Kelloge Company, M. W.................. 217
Kenyon Transformer Co., Inc.......... 345
Kiepco Laboratories, Inc. 42
Kester Solder Company 223
Keystone I'roducts Company............ . 289
Kinney Manufacturing Co. 199
Kirk \& HIum Mfg. Co....................... . . 301
KIein \& Sons, Mathias 248
Knights Company, James 78
Kolisman Instrument Corporation....... 74
Krengel Manufacturing Co., Inc....... 317
Krohn-Ilite Instrument Company...... 21

[^21]| Itandis d Gyr, Inc. | 310 |
| :---: | :---: |
| Lapp Insulator Company, Inc. | 235 |
| 1.rith Kriay Co. | 294 |
| Letand Inc., G. H | 250 |
| Lankuri Electric Sales Co | 300 |
| Lewis \& Kiaufman, lne. | 15% |
| Limdyren Ansociates. Erik A | 3:7 |
| Litton lorlustripes | |
| Lundey Assoriates | 34.3 |

Nacbleti Laboratories, luc.
Mánecord Inc.
38

Mareoni lustrmment, Ltel.
Markem Machine Company
Maryland Electronic Mfg. Corp
MrGraw-IIill Book Co.
Melanghlin, J. L. A.
373
Melabghlin, J. L. A..................... 240
Meper. Inc.
Melal Textile Corp. 38
Mosals \& Controls Corp., General I'late Div. 190
Methonle Manufacturing Corb. 253
Matron Instrument Company 278
Mryerrord Co.
Mica Insulator Company 285
Dicamold Radio Corp.................... 39 .
Mirro, A Division of Mimmotholis-
Homeywall Regulator Cor
Microdot Division Eelts Corp............ 35%
Mitlond Danufacturing Co., Ine........ 41
Miles Koprodacer Co. 404
Milford Rivet N Machine Co. 180
Millan Mfg. Co., Inc., James................ 3 K
Milo Radio \& Nlectronics Corp......... 25°
Mintreapolis-Honeywall Regulator Co..

Mitchell-Rand Insulation Un.. Inc.......
Monowatt llept., General Electric Co. 85
Moselay, Francis L...................... 32
Moirhead d Co., Ltd.
Multicore Sales Corp., Multicore Solders. Ital.3
31M-W I aboratoriag Inc.
Mrealex Corporation of America $2(i)$
National Company, Inc. 346
Vational Researeli Corp.. 64
221
Nationat Vulcanized Fibre Ca 291
Vatvar Corporation 291
Neo-Sil Corp 388
379
New llampshire lkall Brarings. Ins..373
New Rochelle Tool Corp.400
New York Transformer Co. 368
Norden Instruments, Inc... 260
Dorth American Aviation, Inc. 273
Northeastern Engineering, Inc.32
383Ohmite Mfg. Co.$32, \mathrm{~A}, 32, \mathrm{~B}$
Olympic Metal Products Co.. Inc.. 389
Owan A sons Inc., B. W.
O Neil-trwin Manuiacturing Co.......... 303Opad-Green Company 295Owen Laboratories .. 347
Panoramic Radio Produets, Inc 380
Par-Metal products corp. 339
ratton-MacGuyer Company 314
Penta Laboratories, Inc... 339
Ieschel Electronies, Inc... , 400
Phalo Plastics Corporation 386
Phelps Dodge Copper Products Corp. Inca Manufacturing Division......54, Philamon Laboratories, Inc..

> Most Complete Line of Sheets, Rods, Tape, Tubing, Bars, Cylinders, Fabricated Parts

Profit from our broad experience and completely modern specialized facilities for rapid, low-cosr production of these fluorocarbon "wonder" plastics.

The finest dielectrics. especially for high frequency, high temperature service. Won't carbonize urder arcing. Won't DC plate. Zero water absorption by ASTM test. Unaffected by extreme humidity. Chemically inert, non-gassing, immune to corrosive atmospheres, fungus, oil, solvents. Non-flammable, tough, resilient, withstand and absorb mechanical shock and vibration.

Whatever your requirements, whether for stock or for custom machined or molded parts, your inquiry will receive prompt attention. Write for Bulletins No. 300 and 500 .

$$
\begin{array}{ll}
\text { *duPont's trademark for } & \text { TTardarark } \\
\text { itstetrafluorochbleneresin. } & \text { M. W. Keloseg Co. }
\end{array}
$$

- High Sensitivizy, Extended Range, Push-PulI, Yoltage Regulated Vertical Amplifier - 10 cycles to 1 MC Regulated Vertical Amplifier - 10 cy
response. Input 2 megs. 22 mmfd.
* Frequency Compensated 'V' Input Step Attenuator.
\star Vertical Phase-Reversing Switch.
* Extended Range, High Sensitivity, Push-Pul Horizontal amplifier - 10 cycles to 1 MC response at full gain. Input $1 / 2 \mathrm{meg}$. and 20 mmfd
- Linear Multi-Vibrator Sweep Circuit - 10 cycles to 30 KC plus line and external sweep.
* 4-Way Synch. Selection - Internal Positive, Internal Negative, External and Line.
* "Z" Axis Modulation terminal for blanking, etc. * Internal, Phasable, 60 cycle Beam Blanking. Sweep Phasing Control. Wide-angle bridge eircuit. Direct H and V Plate Connections; all 4 plates. Audio Monitoring Phone Jacks.
* High Intensity CR Patterns through use of adequate high voltage power supply with 2×2 rectifier
* Tuhe Complement and Circuit - 6C4 "V" cathode follower, 6C86 " V "" amplifier. 6C4 " V " phase invollower, $6 C 8 E$ " V " amplifier. 6C4 "V" phase in-
verter. Push-Pull $6 A U 6$'s " V " $C R$ driver. 7N7 " H " amplifier ard phase inverter Pusir-Pull 6AU6"s "H" CR driver 7 N 7 swe inverter, Pusil-Pull 6AU6 ${ }^{\text {S }}$. CRifiers VP-150 voltage regulator. 5CPI A CF
7 Four way ${ }^{2}$. Type * 7 Four-Way Lab. Type Input Terminals - Take banana plugs, phone tips, bare wire or spade lugs.
* Light Shield and Mask removable and rotatable.
* Extra Heavy-Duty Construction and components to assure "Precision'" performance.
t Heavy Gauge, Anodized, No-Glare, Aluminum Panel.
* Fully Licensed under W.E. Co. patents.
* In lourred, black rilple, heavy gauge stcel light shicld calibrating mask . Cond Instruction manual. NET PRICE $\mathbf{\$ 1 6 9} \mathbf{5 0}$
See this "PRECISION" ${ }^{5}$ " Oscilluscope on display and available at leading radio equipment distributors.

Precision Apparatus Co., Inc.

92-27 HORACE HARIDING BIVD. ELMHURST 10, N. Y.

Export: 458 E'way, N.Y.C., U.S.A. Cables: MORHANEX Want more informotion? Use post card on last page.

Phillips d Hiss Co., Inc................... $34 \boldsymbol{4}$
Pix Manufacturing Co. Inc................. 34
Plastic Capacitors, Inc.................... 30
Polarad Electronics Corporation......... 249
Popper \& Sons, Ine........................ 32%
Polter Instrument Conmany, Inc...... 244
I'recision Apparatus Co., Inc............ 452
Precision Paper Tube Co................. 310
Presto Recording Corporation........... © 9
Progressive Mamufacturing Company... 344
Preroferic Co., Inc.............................. 338

Quality Product, Co.......................... 400

Radio Corporation of America247. 282.
Radio Materials
Cadio Her Corporatron.
Radio Keceptor Company, Inc........... 66
Railway Express Agency, Air Express
Lawson Electrical Instrument Co...... 339
Itaytheon Manufacturing Company.. 33,262
R-H-M Division, Essex Wire Corp..... $\mathbf{1 7}^{17}$
Regency
Remer Compary It
Reon Resistor
353
Resistattee IProducts Co........................ 283
Rex Corporation 390
Rex Rheostat Co. 400
Reynolds Metals Company. 23
Rotinwell Corporation 35
Robinson Aviation, Inc.................... 262
Kobinson Inc.. Edward E................. 343
Kollin Company, The 26
Royal Metal Mfy. Co. 39
Runzel Cord \& Wire Co................. 347
Rutherford Etectronies Co................. 318

Sanginmo Llecetric Company 30 .
Narke's Parzian. Inc., Keetitier Div..... 210
Schmidt, Jne.. Geo. T 3 .
Scientific Eicetric Div. of " S "
Corrogited Quenched Gap Co...... 3 :
Scintila Magmeto Div., Jemelix IViation Corporation
sealtron Company 211
Seron Metals Corporation............. 38
Servo Corporation of Amrricat. 371
Servotrol Company 340
Nessions Clock Co.. Tyni Switch Div.... 220
Whakeproof, Inc.
245
shalleross Mamblacturing Co 200
sigmat Instrmment lma..................... . . 28
Signal Enginerring \& Mfr. Co........... 375
Simpson Electric Company IRO, 193
Sorensen \& Compans. Inc. $1!$
southe Div.. South (hester (ori).... 17
Sourhern Industries of Marslamd Ine. . . 36^{2}
Specially latitery Compatiy 349

Sprague Difectric Cumpans
Stackpole Carloon ('o
Standard Fiectric T:m* (0
Standard Piazo Co
Standard T'elephones \& Cablles I.td
Star Porcelain Compars
State Labs. Ine
Sterling Tmasformer ('py
Stevens-irnold Incorporated

Stoddald Areralt kiadio Cor
Stone Paper 'Tube Company I 334
Stupalootr Ceramic d Matufatuanag Co. 8
Superior Electric Co.
Superior Tube Co
23
Suprenant llff. Co.
102
Sylvania Electric Products, lur........ 7. 281

[^22]Teletronics Laboratory, Inc 59, 406
Telewave Laboratories, Ine 814
Tenney Engineering, Incorparated. 372
Thoinas \& Skinner Steel Produets Co. 330
Thomas \& Sons. William 325
Tinker \& Rasor 368
Tinnerman Products, Ine. 45
Tobe Deutschmann Corporution
Tobe Deutschmann Corporution 06, 307
Trad Television Corp 381
Transicoil Corporation 328
Transistor Products, Inc 388
Transradio, Ltd 303
Trimsvision, Ine. 325
Udinite Co., The 48
Uinnt Company, George 365
United Catalog I'ublishers 351
United Manufacturing \& Service Com- 320
(Compa 4
United Transformer Co........ Second Cover
Universal Winding Company................
reder-Root, Inc 58
Victoreen Instrument Co 194
Vulean Electric Compans 349
Waldes Kohinoor, Inc 35
Ward Leonard Electric C 62, 63
Warren Vire Company 337
351
Waveforms, Inc. 291
Veckesser Company 369
Westinghouse Electric Corp....57, 162. 205
Weston Electrical Instrument Corp.... 271
White Dental Mfg. Co., S. S...304, 305, 331
Whitney Blake Co 60
Wilkor Div., Aerovox Corporation 214
Vilton Tool \& Mfg. Co 341
Winchester Electronics Inc. 256
Yonkers Industries, Inc 387
Zophar Mills, In 333
PROFESSIONAL SERVICES 39

SEARCIILIGHT SECTION
(Classified Advertising) H. E. HILTY, Mor.

SEARCIILIGHT ADVERTISERS INDEX 444, 445

[^23]
New

Switch

SWITCHES

DAEN

 changes from standard units to special switches by using components at hand.As a result, you are able to select, from thousands of variations, the right switch for your particular requirements.

And . . . here's a new switch for problems that defy solution with standard components. If your prototype is that of an unusual piece of equipment and requires a switch not yet developed, DAVEN will engineer it for you.

This is a service which DAVEN is singularly well qualified to perform by reason of its skilled engineering staff and exceptional facilities. For more than a generation, DAVEN has built up a Development Department that is second to none in solving difficult switch problems.

Furthermore, because only DAVEN has the patented "knee-action" rotor, units can be produced with a greater number of switch positions and poles in a smaller space than was ever possible before.

Why not call on DAVEN today to assist with your development project, especially if you need switches that must render maximum performance in minimum space.

191 CENTRAL AVENUE NEWARK 4, NEW JERSEY

Write for your copy of DAVEN's new, 28-page brochure on SWItCHES.

Here you see what can happen to a TV picture when viewed in a lighted room. The untreated faceplate of the ordinary picture tube shows disturbing reflections of room lights and objects ... but the frosted faceplate of a metal-shell kinescope SUPPRESSES ANNOYiNG REFLECTIONS...gives a clear, vivid picture over the entire faceplate.

Today, this feature of "freedom from annoying reflections" adds extra consumer appeal to your 1953 set designs ... extra spark to your merchandising programs. Now get these important sales
benefits at low cost, specify RCA metalshell kinescopes . . the picture tubes that have faceplates frosted to suppress distracting and annoying reflections.
For technical data . . . or design assistance on RCA kinescopes ... write RCA, Commercial Engineering, Section 42BR. Or simply call your nearest RCA Field Office: (EAST) Humboldt 5-3900, 415 S. 5th St., Harrison, N. J.
(MIDWEST) Whitehall 4-2900, 589 E. Illinois St., Chicago, III.
(WEST) Madison 9-3671, 420 S. San Pedro St., Los Angeles, Cal.

RCA
-
RADIO CORPORATION OF AMERICA
ELECTRON TUEES
MARRISOM, N.J.

[^0]: TENSION BRAKES - Three tiny Carboloy permanent magnets are used in this new magnetic brake that controls the winding of yarn and fine fibres. The magnets (shown in cutaway) provide even tension through magnetic drag, cut down on abrasion, slippage, static electricity - give wider tension and speed ranges. Carboloy permanent magnets never need maintenance, never fail.

[^1]: CITY
 ZONE STATE

[^2]: W. K. Boice, Circuit Analysis of Frequency-Changer Welders, Welding Journal, Oct. 1949.
 Fiv, Brandt, R. T. Vredenburgh, L. S. Wilkins, M. S. Shane, P. L. Nies and C. N. Clark, Discussion of Circuit Analysis of Frequency-Changer Welders, Welding Journal, Feb. 1950
 verters, Stadum, Low. Frequency Converters. Welding Enuineer, Aug. 1950.
 W. B. sistance Woice, Are You welding Date on Re sistance
 Sept. 1950. ${ }^{\text {Welding? }}$ Welding Engineer

[^3]: *Now with Electronics Research LabCatify. Stanford University, Stanford,

[^4]: P. R. MALLORY\& CO., INC., INDIANAPOLIS G, INDIANA

[^5]: General Offices: 1521 E. Grand Ave., El Segundo, Calif. P Phone: El Segundo 1890

[^6]: 41 HOPKINS PLACE, BALTIMORE, MD.

[^7]:
 9701 READING ROAD - CINCINNATI 15, OHIO - TELEPHONE VALLEY 8500

[^8]: "DIRECT READING DIGITAL PRESENTATION OF INFORMATION"'

[^9]: Improving telephone service for America provides careers for creative men in scientific and technical fields.

[^10]: Write for Bulletin 3000. Vickers engineering service is available without obligation

[^11]: Western District Office - Times Building, Long Beach, California

[^12]: LANDIS \& GYR, INC. 45 W. 45th St., New York 36

[^13]: 「STATE LABS, INC. Dept. E
 37 East 28 th St., New York 16, N. Y
 Send me your FREE 1953 U.S. Electronic
 Tube Buyers' Guide.
 HAME
 TITLE
 © COMPANY NAME
 A adDRESS.
 CITY__ STATE
 NATURE OF COMPANY BUSINESS
 1 State Labs, Inc., 37 E. 28 St., N.Y.C. MUrray Hill 3-9802

[^14]: dIGITAL COMPUTERS . . DATA.HANDIING SYSTEMS . . MAGNETIC STORAGE SYSTEMS INSTRUMENTS . . ANALOG MAGNETIC RECORDING SYSTEMS . . COMMUNICATIONS EQUIPMENT

[^15]: Manufacturers of precision electrical equipment since 1855

[^16]: Insfrumenf Division - Dept. 54, West Orange, New Jersey

[^17]: ASSISTANT TO Sales Manager in small electronic mfg. co desires change with opporpreferred. PW-6521, Electronics. ELECTRONIC ENGINEER: 10 years experi5 ence ${ }^{5}$ years y .H.F. antennas and circuitry. sires position with television manufacturer.
 PVV-6382, Electronics.

[^18]: We desire personnel of the highest caliber-experienced in the field of airborne automatic electro-mechanical control equipment.

[^19]: Motorola Research Laboratories offer healthful Phoenix, Arizona, resort climate living and a challenging program of research and development work in the field of semi-conductors and transistors. Physicists, metallurgists, chemists, and practical transistor scientists with specialized education or semi-conductor experience should investigate this opportunity for stimulating work in this field which is destined to revolutionize electronics. There are also several positions open for both experienced and inexperienced Ph.D's.

 > Write to Joseph A. Chambers, Manager, Motorola Research Laboratory, Inc., 3102 N. Ingleside Drive, Phoenix, Arizona. State education, experience and salary requirements in the first letter

[^20]: MAIL ORDERS PROMPTLY FILLED. ALL PRICES F.O.B. NEW YORK CITY. SEND M.O. OR CHECK. ONLY SHIPPING SENT C.O.D
 RATED CONCERNS SEND P. O. ALL MDSE. SUBJET TO PRIOR SALE, AND PRICES SUBJECT TO CHANGE WITHOUT NOTICE.

[^21]: Laboratories IR. Derveaux
 175
 Laboratory for Electronics, Inc......... 71
 Lambda Electronies Corporation...... 335
 Lampkin Laboratories, Inc................ . 400

[^22]: Technology Instrument Corp........309, 311
 Tektronix, Inc.
 202
 Telechrome Incorporated 323
 Telechron Dept. General Electric Co.... 201

[^23]: This index is published as a cenveafence to the readers. Every care is taken to make t moeurate, but ELECTRONICS assumes ne responslblity for ertors or omissions.

