electronics

A MCGRAW W H ILL PUBLICATION

for Stock Hermetically Sealed Components

Abstract

- For over fifteen years UTC has been the largest supplier of transformer components for military applications, to customer specifications. Listed below are a number of types, to latest military specifications, which are now catalogued as UTC stock items.

rcof case
Length 1 25/64 Width61/64 Height $113 / 32$ Mounting 1 1/8 Screws4-40 FIL.
Cutout7/8 Dia.
Unit Weight 1.5 oz.

RC-50 CASE
Length 1 5/8
Width 1 5/8
Height 2 5/16
Mounting $15 / 16$
Screws\#6-32
Cutout 1 1/2 Dia.
Unit Weight $80 z$.

SM CASE
Length11/16 Width1/2 Height29/32 Screw4-40 FiL. Unit Weight 8 oz.

MINIATURE AUDIO UNITS...RCOF CASE

$\begin{aligned} & \text { Type } \\ & \text { No. } \end{aligned}$	Application	$\underset{\text { Type }}{\text { MIL }}$	Pri. Imp. Ohms	Sec. Imp. Chms	$\underset{\text { Pri., MA }}{\text { DC }}$	$\begin{gathered} \text { Response } \\ \pm 2 \mathrm{db} \text {. (Cyc.) } \end{gathered}$	Max. level dbm	List Price
H. 1	Mike, pickup, line to grid	TF1A10YY	50,200 CT, 500 CT*	50.000	0	50-10,000	+ 5	\$16.50
H.2	Mike to grid	TFIALIYY	82	135.000	50	250-8,000	+21	16.00
H-3	Single plate to single grid	TFIA15YY	15,000	60.000	0	50-10,000	+ 6	13.50
H.4	Single plate to single grid, DC in Pri.	TF1A15YY	15,000	60,000	4	200-10.000	+14	13.50
H.5	Single plate to P.P. grids	TF1A15YY	15,000	95.000 CT	0	50-10,000	+ 5	15.50
H-6	Single plate to P.P. grids, DC in Pri.	TF1A15YY	15,000	95.000 split	t	200-10,000	+11	16.00
H-7	Single or P.P. plates to line	TFIA13YY	20,000 CT	150,600	4	200-10,000	+21	16.50
H-8	Mixing and matening	TF1A16YY	150/600	600 CT	0	50-10,000	+ 8	15.50
H-9	82/41:1 input to grid	TF1A10YY	150/600	1 meg.	0	200.3,000 (4db.)	+10	16.50
H-10	10:1 single plate to single grid	TF1A15YY	10,000	1 meg .	0	200-3,000 (4db.)	+10	15.00
H-11	Reactor	TF1A2OYY	300 Henries-0	, 50 Henries. 3	3 Ma .00	, 6,000 Ohms.		12.00

COMPACT AUDIO UNITS...RC-5O CASE

$\begin{aligned} & \text { Type } \\ & \text { No. } \end{aligned}$	Application	$\underset{\text { Type }}{\text { MIL }}$	$\begin{aligned} & \text { Pri. Imp. } \\ & \text { Ohms. } \end{aligned}$	$\underset{\partial \mathrm{hms}}{\mathrm{Sec} . \operatorname{Imp} .}$	$\begin{gathered} \text { DC in } \begin{array}{c} \text { Response } \\ \text { Pri., MA } \pm 2 \mathrm{db} \text {. (Cyc.) } \end{array} \end{gathered}$	Max. level dbm	List Price
H-20	Single plate to 2 grids, can also be used for P.P. plates	TF1Al5Y	15,000 split	80,000 split	30.20,000	+12	\$20.00
H-21	Single plate to P.P. grids, DC in Pri.	TF1A15YY	15,000	80,000 split	8 100-20,000	+23	23.00
H-22	Single plate to multiple line	TFIA13YY	15,000	$\begin{gathered} 50 / 200 \\ 125 / 500^{*} \end{gathered}$	8 50-20,000	$+23$	21.00
H-23	P.P. plates to multiple line	TFIA13YY	30,000 split.	$\begin{gathered} 50 / 200 \\ 125 / 500^{\star *} \end{gathered}$	$\begin{aligned} & 8 \\ & \text { BAL. } \\ & \hline \end{aligned}$	+19	20.00
H-24	Reactor	TF1A20YY	$\begin{aligned} & 450 \text { Hys.- } \\ & 65 \text { Hys. }-1 \end{aligned}$	$\begin{aligned} & 50 \text { дys. } 5 \mathrm{Ma} \\ & \mathrm{C}, 1500 \text { ohms. } \end{aligned}$	$\text { DC, } 6000 \text { ohms... }$		15.00

SUBMINIATURE AUDIO UNITS...SM CASE

Type No.	Application	MIL Type	Pri. Imp. Ohms	Sec. Imp. Ohms	$\underset{\text { Pri., MA }}{\text { DC in }}$	$\begin{gathered} \text { Response } \\ \pm 2 \mathrm{db} \text {. (Cyc.) } \end{gathered}$	Max. Ievel dbm	List Price
H-30	Input to grid	TFIAlOYY	50***	6¢,500	0	150-10,000	+13	\$13.00
H-31	Single plate to single grid, 3:1	TFIALSYY	10,000	9C,000	0	300-10,000	+13	13.00
H-32	Single plate to line	TF1A13YY	10,000****	200	3	300-10,000	$+13$	13.00
H-33	Single plate to low impedance	TFIA13YY	30,000	50	1	300-10,000	+15	13.00
H-34	Single plate to low impedance	tF1A13YY	100,000	60	. 5	300-10,000	+ 6	13.00
H-35	Reactor	TF1A20YY	100 Henr	50 Henries	Ma. DC,	4,400 ohms.		11.00

The impedance ratings ore isted in standard manner Obviously, a transformer with 15,000 ohm primary imped. ance con operate from a pube representing a source impedance of 7700 ohms, etc. in addition, transformers can be used for opplications differing considerably from those shown keeping in mind that mpedince ratio is constant lower source impedance will improve response and level mprove response and level pedance will reduce frequency pedance will reduce frequen

* 200 ohm termination can be used for 150 ohms or 250 ohms, 500 o7m termination can be used for 600 ohms.
** 200 ohm termination can be used for 150 ohms or 250 ohms, $125 / 500$ ohm termination can be used for $150 / 600$ ohms.
*** can be used with higher source impedances, with corresponding reduction in frequency range. With 200 ohm source, secondary impedance becomes 250,000 ohms. . . loaded response is -4 db . at 300 cycles.
****can be used for 500 ohm load . . . 25,000 ohm primary impedance ... 1.5 Ma . DC.

> AIRCRAFT ANTENNA STUDY - Electrostatic technique employs large parallel plates and potential-dividing wires to establish uniform field around model at Stanford Research Institute (see p 156).......................COVER
FIGURES OF THE MONTH 4Includes Electronics Output Index, a business barometer for managementINDUSTRY REPORT5
Top-level news, trends and market interpretations
ELECTRONIC DRUMS, by Harry Stockman. 98Electromechanical system takes the work out of playing drums
NEW TRANSISTORS GIVE IMPROVED PERFORMANCE, by J. A. Morton 100
Present status of current types and what to expect in the future
INDUSTRIAL MAGNETRONS FOR DIELECTRIC HEATING, by Richard B. Nelson. 104High-power magnetron oscillators and associated control circuits for $915-\mathrm{mc}$ and $\mathbf{2 , 4 5 0 - \mathrm { mc }}$ bands
IMPROVING TV SYSTEM TRANSIENT RESPONSE, by John Ruston 110
Slight changes in transmitters can bring better pictures to existing receivers
SELECTIVE ERASURE OF MAGNETIC TAPE CROSSTALK, by Robert Herr and Robert A. vonBehren 114
Use of weak erasing field during playback suppresses signals transferred from layer to layer during tape storage
NONSYNCHRONOUS PULSE MULTIPLEX SYSTEM, by Andrew L. Hopper 116Novel system of pulse-amplitude modulation eliminates sync pulse
VIBRATION RECORDER TESTS ARMY PACKAGING, by J. A. Sargeant and R. D. Campbell 121Relates cause and effect in damage by simultaneous recording of nine accelerations
HALF-WAVE MAGNETIC SERVO AMPLIFIER, by Carroll W. Lufcy, A. E. Schmid and P. W. Barnhart 124
Circuit saves size, weight and cost of parts and offers usual magnetic amplifier advantages
RADIOELECTROENCEPHALOGRAPH FOR MEDICAL RESEARCH, by Wilford R. Glasscock and Norman J. Holter 126New medical development permits brain waves and heart patterns to be transmitted from moving patient
REGENERATING COMPOSITE VIDEO SIGNALS, by Robert Betts 130
Television signals from remote pickups or transcontinental relays are standardized before local transmission
BRIDGE OSCILLATOR HAS LINEAR TUNING, by Abe Hershler and Bensor Carlin 134Wide frequency range is obtained from simple R-L. bridge circuit
GATED AMPLIFIER WAVE ANALYZER, by V. Ronald Nelson 136Components of complex waveforms are determined throughout audio spectrum
DECOMMUTATING PULSE TELEMETRY, by W. H. Chester and W. P. Klemens 140
Counter system automatically demodulates pulse-amplitude modulation
ELECTRONIC ANALOG COMPUTER FUNDAMENTALS, by DeWitt H. Pickens. 144Discusses basic electronic analogs for summation, integration and differentiation
AIR BREAKDOWN CHART FOR RADAR PULSES (Reference Sheet), by Harold A. Wheeler. 148
Chart gives approximate breakdown voltage in radar pulse circuits at various frequencies and pressures
CROSSTALK........ 97 ELECTRONS AT WORK....... 152 PRODUCTION TECHNIQUES........ 228 NEW PRODUCTS......... 258
PLANTS AND PEOPLE....... 310 NEW BOOKS........ 318 BACKTALK........ 340 INDEX TO ADVERTISERS (Last Paqe)
W. W. MacDONALD, Executive Editor; John Markus, Vin Zeluff, A. A. McKenzie, James D. Fahnestock, Associate Editors; William P. O'Erien, Ronald K. Jurgen, John M. Carroli, Assistant Editors; Ann Mastropolo, Marilyn Wood, Mary J. Johnson, Editorial Assistants; Gladys T. Montgomery, Washington Editor; Harry Phillips, Art Director; Eleanor Luke, Art Assistant

KEITH HENNEY, Editorial Director
H. W. MATEER, Publisher; WALLACE B. BLOOD, Manager; R. S. Quint, Buyers' Guide Manager; N. F. Cullinan, Promotion \& Research Assistont; H. E. Hilty, Classified Manager; D. H. Miller, James Girdwood, New York; Wm. S. Hodgkinson, New England; Warren W. Shew, Philadelphia; C. D. Wardner, Chicago; J. L. Philips, Cleveland; T. H. Carmody, R. C. Alcorn, San Francisco; Carl W. Dysinger, Los Angeles; Ralph C. Maultsby, Atlanta

Published monthly with an additional issue in June by McGraw-Fill Fublishing Company, Inc.. James M. MeGraw (1860-1948). Founder. Publication Office, 99-129 North Broadway, Albany I, N. Y.

Executive, Editorial and Advertising Offices: MeGraw-Hill Building, 330 w. 42nd St., New York 36, N. Y. Curtis W. McGraw, President; Willard Chevalier. Executive Vice-President; Joseph A. Gerardi, Vice-President and Treasurer; John J. Cooke, Secretary; Paul Montgomery, Senior Vice-President, Publication Division; Ralph B. Smith,
Editorial Director; Nelson Bond, Vice-President and Director of Advertising; J. E. Blackburn, Jr.. Vice-Fresident and Director of Circulation. Ediforial Director; Nelson Bond, Vice-President and Director of Advertising; J. E. Blackburn, Jr.. Vice-President and Director of Circulation.

Subseriptions: Address correspondence to Electronies-Subscription Service, 99-129 N. Broadway Albany 1 . N. Y., or 330 W . 42 nd St., New York 36 , N. Y. Allow one month
ehahge of address. Subscriptions are solicited only from persons engaged in theory, research, design, production, maintenance and use of electronic and industrial control for ehahge of address. Subscriptions are solicited only from persons engaged in theory, research, design, production, maintenance and use of electronic and industrial control components, parts and end products. Position and company connection must be indicated on subseription orders.

Single copies $75 d$ for United States and possessions, and Canada; $\$ 1.50$ for Latin America; $\$ 2.00$ for all other Poreicn countries. Buyers Guide $\$ 2.00$. Subscription rates
Snited States and possessions, $\$ 6.00$ a year; $\$ 9.00$ for two years. Canada, $\$ 10.00$ a year; $\$ 16.00$ for two years. Other western hemisphere countries, $\$ 15.00$ a year; 25.00 -Unlted States and possessions, $\$ 6.00$ a year; $\$ 9.00$ for two years, Canada, $\$ 10.00$ a year; $\$ 16.00$ for two years. Other western hemisphere countries, $\$ 15.00$ a Year; $\$ 25.00$ for two years. All other countries $\$ 20.00$ a year: $\$ 30.00$ for two years. Gntered as second class matter August 2a, 1936 at the Post Office at Albanv, N. Y., under act of

A| INITHATIOU
 to

Development and Design Engineers Working on Highly Specialized Magnetic Recording Equipment pecial Shure is engaged in inteneive research on apect from recording heads for use in heldations. This research conventional record value to you. might be of practical value to your company if you have We invite inquiries from your con. Poseibly we can a specialized recording applicalion based upon our assibt you-by providing a solutioneduction facilities.

Write on company letterhead to: Manutacturling Divislon
SHURE BROTHERS, INCORPGO 10 , Illinals 225 W. Huron Streel

shunt

FIGURES OF THE MONTH

FCC Grants 18 New TV Construction Permits

Denver's KFEL breaks tape for new applicants with tests on channel 2 July 19

Four lean years for would-be telecasters came to an end Friday, July 11, as the FCC granted 18 construction permits; 13 in the uhf band.

Thirteen construction permits were granted in group A priority areas, currently receiving service from cities 40 miles or more distant; while five CP's were issued for priority B areas now receiving local service. FCC recently acquired a $\$ 300,000$ appropriation.

Otherwise, 64 contested applications were designated for hearing while 25 applications were dismissed either because the application had remained unamended since the lifting of the freeze or because the application was incomplete or otherwise defective.

During the meeting, applications
were considered strictly in order of the FCC's city-by-city priority list.

New applications continue to deluge the Commission. During the week ending July 12 there were 84 new applications filed. Total filings now are approaching 600 of which nearly 200 are for uhf assignments. KFEL began tests in July, and KVOD will follow by mid August.

- New TV CP's -

City Ch	Channel	Licensee
Denver, Colo.	2	Eugene P. O'Fallon Inc. (KFEL)
	9	Colorado TV Corp. (KVOD)
	26	Empire Coil Co. (WXEL, Cleveland)
Portland, Ore.	27	Empire Coil Co. (WXEL)
SpringfieldHolyoke, Mass.	55	Hampton-Hampshire
		Corp. (WHYN)
		Broadcasting Co.
Youngstown, Ohio	hio 73	Vindicator Pub. Co. (WFMJ)
	27	WKBN Broadcasting Corp.
Flint, Mich.	28	Trans-America TV Corp.
Spokane, Wash.	. 4	KXLY-TV Co.
Austin, Texas	7	Texas Broadcasting Ce. (KTBC)
	18	Capital City TV Co.

GROUP B
Bridgeport Conn. 43 Southern Conn
Long Island TV Co. (WICC)
New Britain, Conn. 30 New Britain
Broadcasting Co.
(WKNB)
New Bedford, Mass. 28 (WKNB) $\begin{aligned} & \text { E. Anthony and Sons }\end{aligned}$
(WNISH)
York, Pa. $49 \begin{aligned} & \text { Helm Coal Co. } \\ & \text { (WNOW) }\end{aligned}$
(WNOW)
Susquehanna
$3 \begin{aligned} & \text { Susquehanna } \\ & \text { Broadcasting } \\ & \text { Co. }\end{aligned}$
Broadcast
(WSBA)

Backlog Nears \$5-Billion Mark

Electronics industry reports over half its equipment output earmarked for defense

Office of naval material figures gathered for the Department of Defense reveal a January 1, 1952 backlog "of undelivered electronic equipment orders totaling $\$ 4,972$, 100,000 , of which $\$ 824,100,000$

'Going Up' Via Atomic Electronics

[^0]represents subcontracts.
There has been some backlog reduction since that date.

Military production will take an estimated 53.3 -percent bite out of this year's electronic-equipment output. Last year's production, military and civilian, totaled $\$ 3$,818,200,000.

- Survey-The survey upon which the above figures are based covered 409 manufacturers, of which 278 were 'small', with less than 500 employees. Component and piecepart makers were not included.

Small companies reported proportionally more military business than did large firms. Percentage wise, small companies outstripped large firms 65.2 to 52.2 .

Subcontracts for military equipment comprised 16 percent of largecompany backlog, while that of small concerns is approximately 23.3 percent.

Sixty-eight companies said all their business was now military; 28 reported no military business. Applications for certificates of necessity have been filed by 132 companies.

New ILS Transmitters

Improved glide slope transmitters are replacing the old war surplus transmitters in CAA's Instrument Landing System (ILS) as rapidly as they can be manufactured.

The new transmitters will go into 98 domestic airports now using ILS and about 75 additional ones where ILS is scheduled. Installed in duplicate for standby service, they will increase the usable range of the glide slope from 10 to 30 miles.

An improved monitoring system is being installed with the new transmitters. Independent receivers continuously sample the output of the transmitter. If it changes in path width, path angle, or signal level, red lights flash and bells ring in the control tower. The traffic controller can then immediately switch to the standby transmitter.

Cost of the new electronic equipment is approximately $\$ 7,500$ for each location.

Six companies slice $\$ 12$ million melon, as . . .

Pipeline Microwave Blooms

Potential market is barely scratched as microwave links gird nation

Microwaye radio relay, furnishing communications along gas and oil pipelines, represents a capital outlay of nearly $\$ 12$ million. Microwave today links 3,074 miles of oil and natural gas pipeline. An additional 7,140 miles are approaching completion.

Two systems, Mid-Valley and Texas-Illinois, each extending nearly 1,000 miles, are in daily operation. Four systems now under construction will also stretch 1,000 miles or more. These include the 1,-840-mile Transcontinental Gas system, Michigan-Wisconsin, TexasEastern, and Trunkline Gas.

- Potential Market-Microwave systems provide communications for less than four percent of all operating gas and oil pipelines. There are 161,151 miles of oil pipeline, the American Petroleum institute reports, while there are 117,-

000 miles of natural gas pipeline, according to an American Gas Association estimate.

The chart shows how six manufacturers of complete microwave packages have so far served the pipeline market. Federal Telephone and Radio leads in total orders but few Federal pipeline microwave systems are in operation. Motorola, second in total business, leads in systems in operation.

Slow starters, aware of the vast potential market in this field, may be holding back to benefit from the often costly experiences of microwave pathfinders.

- Economic Features - Pipeline communications experts, after carefully eyeing long-distance telephone tolls, conclude that any right-ofway company that requires four or more private lines may well consider installing private communications facilities. Initial cost of a microwave system, $\$ 800$ to $\$ 1,500$ per mile, roughly equals that of
(Continued on poge 8)

Second new plant in New England area to produce magnetrons and special purpose tubes

Again Sylvania prepares for new advances in electronics production with the announcement of plans for a third Electronics Division plant.

Located at Newton, Massachusetts, this up-to-the-minute manufacturing unit will include in-line-exhaust equipment devoted to manufacture of Sylvania Magnetrons for microwave radar equipment use.

This new plant represents one more step in Sylvania's long-range program of provid-
ing high quality electronic tubes for military and commercial use where top performance is needed.

For information on Sylvania tubes for use from 1000 mc . up, write for Microwave Package $\mathrm{H}-4$ which includes catalog material on Sylvania Magnetrons, TR and ATR Tubes, Hydrogen Thyratrons, Microwave Crystals, Rocket Tubes and Tunable Klystrons. Write Dept. E-2608, Sylvania Electric Products Inc., 1740 Broadway, New York 19, N. Y.

Sylvania Magnetrons

Type 2.542-A low = power fixed-frequency X-band type

Type 4J50-High-power X. bandmagnefron

Type 4352-Low power X-band magnetron

Type 4178 -
High-power x High-power X-
bandmagnetron

4Type 6027-Sim. ilar to 2 J 42 with higher power output

10,214 miles of pipeline microwave relay girds nation
a wire line. Microwave, however, does not require easements as does a pole line, it uses less hard-to-get copper, and avoids maintenance headaches arising from ice and windstorm.

Potential microwave users in the pipeline clan have been concerned because of the Bell System's policy regarding interconnection of telephone company facilities and private communications systems. Latest word is that Bell will generally permit interconnection with
telephone - company - owned PBX's for calls along the right-of-way. Toll and exchange connection, however, will not be provided.

This means that the private microwave user will not have to supply an extra telephone for every desk to carry on company business along the right-of-way. However, an oil man in Chicago still cannot legally call up the little woman in Houston, using the oil company's microwave system to save longdistance toll.

Electronic Clerks: Fact or Fancy?

Computer-type business machines are fast and accurate, but high cost discourages large-scale use

Electronic computers can readily be taught to solve extremely complicated mathematical problems, but no really simple method has yet been devised for teaching these machines the simple concepts of reading and writing.
As a result, they have become widely accepted in scientific laboratories, where the math problems are complex and the amount of information involved is small, but in business offices, where the situation is the reverse, electronic computers have yet to prove their worth in all but the most special cases.

- What's New-Many companies are currently engaged in develop-
ing tube devices for doing clerical work that now occupies the time of 16 percent of the country's working population.

Electronic Computer Corp., of Brooklyn, is nearing completion of a 1,000 -tube machine to service a weekly magazine subscription list. It prints 750,000 up-to-date labels for mailing and makes an average of 20,000 corrections in stored information each week.

Potter Instruments will soon unveil a random-access memory device which, in conjunction with the already introduced 5,000 -wpm typewriter (Electronics, May 1952) and a new input keyboard, will provide a completely automatic electronic business machine of extraordinary flexibility and capacity.

- Looking Ahead - Drawing boards are full, but offices are still
unfortunately void of electronic business machines. At present government agencies are the only quantity buyers, but large mail-order houses, insurance companies, banks and publishing houses are catching on fast.

Most research is being directed toward improved memory and input and output devices. The almost universally-used IBM card has limitations. Magnetic tapes are capable of storing large amounts of information, but with present-day techniques it is difficult and time consuming to jump from one end of a long tape to the other.

With the cost of human labor constantly rising, and companies like Remington Rand, IBM and Burroughs constantly working to reduce the cost of electronic office machines, a fairly optomistic prediction for the future can be made. When the breakeven point is reached, the electron tube should be as commonplace in the business office as the filing cabinet is today.

Londoners View Gaite Parisienne

Different picture standards fail to impede international television

International television became a reality this month when British and French viewers witnessed a week-long series of bilingual programs originating in Paris between July 8 and 14 . Although crosschannel television was first tried in August 1950, this latest test marks the first time two national systems have been completely interconnected.

A similar international hook-up is planned to carry next year's coronation ceremonies from London. At this time the network may also include Holland, West Germany, Belgium and Italy.

- Technical Problems-Converting the French 819-line picture to the British 405 -line picture posed a (Continued on page 10)

9 standard terminaldesigns fit every mounting need

20,000-Volt Molded Ceramic Capacitors

Molded in moisture resistant, non-flammable thermosetting plastic, these new Sprague Type 700C Ceramic Capacitors offer exceptional reliability and economy as filters for TV receivers and C-R instrument high-voltage supplies. Standard capacitance is 500 mmf . and the units are conservatively rated for operation at 20,000 volts d-c. Write on letterhead for Engineering Bulletin 606.

Extended Capacitance Ranges for Precision Circuitry

These new Sprague-Herlec Precision Tubular Ceramic Capacitors make it possible to control the capacitance tolerance of exacting 500, 1000 and 1500 V. d-c precision circuits within $\pm 1 \%$. Temperature coefficient tolerances may be reduced to as little as ± 1.0 parts in a million!
A logical development of the design first popularized in Sprague-Herlec cup ceramics, they greatly extend the capacitance range available to designers. " Q " and capacitance stability are high and the units have excellent retrace characteristics. Hermetically sealed in metal tubes, they operate over the range from $-55^{\circ} \mathrm{C}$. to $+85^{\circ} \mathrm{C}$. Bulletin 607 sent on letterhead request to Sprague Electric Company, 35 Marshall St., North Adams, Mass. or to the wholly owned Sprague subsidiary, The Herlec Corp., 422 N. 5th St., Milwaukee 3, Wis.

technical problem solved by scanning, with a 405 -line camera, the picture on an 819-line receiver.

The receiver incorporates, for this purpose, a picture tube having a long-persistence phosphor. The
same system can be used when interconnecting systems using either the American 525-line picture or the 625 -line picture favored in several European countries. London viewers report picture quality compared favorably with regular $B B C$ remotes.

- Microwave Relay - The map shows the Paris-London microwave radio relay. Temporary links connected London with the permanent Paris-Lille installation. Conversion of television signals to British standards was accomplished at Cassel.

The Franco-British test renewed speculation concerning trans-Atlantic television. Suggested schemes envision a radio-relay system using either a chain of high-flying planes or of shore stations located in the Faroe Islands, Iceland, Greenland, Baffin Land and Labrador. Either system, however, would cost upwards of $\$ 50$ million.

High-Frequency Transistors Coming

Developmental point-contact type opens new fields of application

In the short time since the discovery of transistor action, many technical advances have been made.

The so-called 'junction' type quickly followed the point-contact type. Probably second in importance only to the announcement of the junction transistor is the recent news that point-contact transistors can be made to oscillate at frequencies in the 100 to 200 -megacycle band.

- Significance-Early transistors had been publicized as capable of oscillating at 50 megacycles. With operation extended well above 50 megacycles, the transistor is now able to keep company with the tube in new areas of application.

According to B. N. Slade, transistor engineer of the RCA Tube Department in Harrison, N. J., there is a definite correlation between spacing of the contact points of a transistor and fre-
quency response. In general, the closer the spacing, the higher the frequency. Less widely realized, however, is the fact that frequency response as well as stability of a transistor is determined largely by resistivity of the germanium.

Different combinations of spacing and resistivity enable engineers to design transistors with a wide range of operational characteristics. One combination recently resulted in a transistor oscillating stably at 225 megacycles.

Study Army's Use Of Electronics In Korea

A grour of prominent industrialists and scientists has just completed a three-weeks tour of Korea studying problems involved in the Army's utilization of electronics. Their report is expected to give industry and government a better idea of how more effective electronic equipment, of maximum reliability, can be built for battlefield use.

U.S. Lifts Controls

On Engineer Salaries

The nation's 400,000 engineers employed in a professional capacity are among millions of workers brought out from under wage and salary controls by amendments to the Defense Production Act effective July 1.
The Salary Stabilization Board has issued an interpretation, defining 'professional engineer'. Qualifications include holding a college degree or license to practice.

- Non-engineers-SSB warns that technicians, no matter how highly skilled, advisers on sales promotion, business methods and operations are not to be considered engineers. Nor are persons simply designated as engineers, such as stationary, maintenance, sales, management or administrative engineers. Physicists, chemist, mathematicians and others in scientific fields are not classified as professional engineers either, even though their work may be closely related to engineering.

Set Manufacturers Eye Growing Hi-Fi Market

Increasing public demand at-

 tracts more radio companies; some continue waryIncreased interest of StrombergCarlson, Hallicrafters and Pilot in the high-fidelity field is causing other manufacturers to take a closer look at the market. It is reported that General Electric will also introduce a new line of hi-fi equipment this year.

- High Interest—Companies pushing for highly specialized hi-fi business list several reasons for their action. Stromberg-Carlson says that current public interest is 'tremendous.' New York dealers report annual sales increases of 60
(Continued on page 14)

There are 9 features of

Ceramic Trimmers essential to -

and only CBNTHALAB has all 9

Yes...Centralab offers you for always specifying CRL

CENTRALAB MINIATURE CERAMIC TRIMMERS are unusually compact. They have the special quality of maintaining stability under vibration - lightweight rotor is always in balance under heayy
spring pressure. Full capacity range is obtained in 180° rotation. Rotor makes contact on optically ground flat surface, insuring smoothest possible action under adjustment. Write for Bulletin EP-16.

9 good reasons

Miniature Ceramic Trimmers

Check these Centralab Miniature Ceramic Trimmer advantages:

SMALLEST TRIMMERS - the smallest yet produced by Centralab. That means the smallest size available - anywhere.
MOISTURE-RESISTANT ceramic body for complete imperviousness to moisture. Holds moisture absorbtion to 0.007% or less. MORE RUGGED - unnatched ability to withstand temperatures normally encountered in electrical apparatus.
PHENOLIC MOLDED CASE insulates unit electrically - protects working parts from damage. Seals out dust, dirt, moisture. CHOICE OF MOUNTING - base-mounted trimmer easily attaches
to chassis. Unit model terminal-mounts to coil or hoard. WIDE RANGE OF CAPACITY - from $2.5-7 \mathrm{mmf}$ to 8.50 mmf . SMOOTH LINEAR TRIMMING provides easy adjustment and precise alignment when lalancing sensitive circuits.
excelient electrical characteristics - Voltage rating 500 vdew and 1000 vdet. Power factor 0.2% at 1 megacycle.
ACCEPTED FOR MILITARY APPLICATION - meet applicalile portions of JAN-C-81.

CHOOSE CERAMIC CAPACITORS from the WIDEST LINE AVAILABLE

BC HI-KAP TUBULAR CERAMIC CAPACITORS available from 1 mmf to 10,000 mmf. Ideal for use in r.f. by-pass and audio-cotpling applications. For details, write for Bulletin 42-3.

tubular ceramic capacitcrs -- Type TCZ show no capacitance change oser wide temperature range. Type TCN special ceramic body varies capacitance with temperature. Write for Bulletin 42-18.

ANYWHERE

TV HI-VO-KAPS are the standard highvoltage capacitors for the TV industry. Capacitance: $500 \mathrm{mmf}, 10 \mathrm{KV}, 20 \mathrm{KV}$ and 30 KV D. C. working. Write for $42 \cdot 10 \mathrm{~K}$.

CERAMIC DISC HI-KAP CAPACITORS hold thickness to a minimum. Make possible very high capacity in extremely small size. Used in HF by-pass and coupling. For details, write for Bulletin 42.4 R .

HIGH VOLTAGE CERAMIC CAPACITORS. Capacitance: 5 to 500 mmf , 3 KV to 40 KV D.C. working. Ideal for portable or mobile equipment and high-voltage, highfrequency gear. Bullet in 42.102.

EYELET-MOUNTED FEED-THROUGH CERAMIC CAPACITORS--smallest made... widest range obtainatble with general temper ature-compensating characteristics. 10 to 3000 mmf, 500 vdew. Bulletin EP-15.

A Division of Globe-Union Inc. 914 east keefe avenue - milwaukee 1, wis.

CENTRALAB, A Division of Globe-Union Inc. 914 East Keefe Avenue, Milwaukee 1, Wisconsin
Please send me the Techni- \square EP-16
$\square 42-18$
42-10R
\square 42-4R
$\square \mathbf{4 2 - 1 0 2}$
$\square \mathbf{E P - 1 5}$ cal Bulletins on Cera

Name
Address
Company
percent in the past two years and dealers elsewhere report demand for 'custom' sound equipment outrunning their ability to make immediate delivery.

Hallicrafters noted the growing demand for hi-fi last year when they found that their shortwave receivers were being used as hi-fi system components. As a result, a full line of high-fidelity amplifiers was introduced at the recent Audio Fair in Chicago.

Pilot, too, found public demand growing and is now selling a line of amplifiers, tuners and pre-amplifiers on a national basis.

- Market Potential-It has been estimated that there are now about 500,000 hi-fi enthusiasts in the U. S. Manufacturers say that most of them are located around the so called 'cultural centers' of the country, such as New York, Chicago and Los Angeles. As much as 25 percent of the total 1951 national
sales volume of about $\$ 14$ million was probably done in the New York area. Total national sales volume this year is expected to reach at least $\$ 15$ million.
- Future Outlook-Some proponents feel that hi-fi systems will eventually replace standard radio combinations, which continue to lose ground to television. They say that television combinations cannot meet the needs of the growing number of fidelity-conscious people and still remain competitive in price.

Even RTMA recently noted the tendency of manufacturers to order larger and heavier loud speakers. They also predict that before long the hi-fi market will become a more important market factor.

But many manufacturers are still wary. Some remember the unprofitable experience of standard-set manufacturers who entered and soon left the field a few years ago.

Tiny Antennas Read Dot Braille

Duplicating machine demonstrated in London senses words dotted in Brailled sheet and makes corresponding holes in tape that then serves as a stencil. Printer that uses solid plastic ink then readily creates new copies for the blind. Dots shift phase of 30 -me signal emitted by tiny antennos. Phasitron tube in each sensing head detects shifts and sends appropriate signals to perforator

Industry Proposes New Spare-Parts Code

Urges military to delegate spare-parts selection power to contractors

Outcome of current confabs between industrial and military leaders over procurement of spare parts for concurrent delivery with electronic equipment may be appointment of a joint military-industry committee to prepare uniform spare-parts policies for the three services.
-Industry's Gripe-Concerned over the collective black-eye handed the industry by equipment malfunctioning due to lack of spare parts, industry representatives generally indict the military for impeding concurrent delivery through contract red tape.

Industry men suggest five alternate spare-parts procurement plans:

- Precontract selection by govern-ment-In repeat-production contracts, the parts required would be spelled-out specifically in the original contract.
- Selection of equipment spares by contractor-In first-run contracts, the contractor would supply with the equipment those parts peculiar to it. Stock spares, designated by the government, would be furnished later.
- Selection of all spares by con-tractor-Where all spares must be delivered with the equipment, the contractor would take full responsibility for choosing and procuring the needed parts.
- Selection of all spares by govern-ment-This method, similar to that now in use, would be used only with the understanding that concurrent delivery of equipment and spare parts is not promised.

Industry representatives have stipulated that the proposed spareparts regulations provide for government review when the contractor has power of initial selection, subject, however, to compensation of the contractor following either a
(Continued on page 16)

IF SHOCK IS YOUR PROBLEM

"Designing for Shock Resistance" sets forth the principles used by the Navy Department in design of shock-proof equipment for shipboard applications. Published in "Machine Design" Dec. 1950 - Jan. 1951.
"Shock Testing of Airborne Electronic Equipment" describes the characteristics of shock and tells how shock testing machines are used. A paper presented at the Dayton Airborne Electronics Conference, 1951; later reprinted in "Tele-Tech".
"How to Evaluate Shock Tests" tells how mechanical structures respond to shock and shows how such response can be evaluated under controlled test conditions. Originally published in "Machine Design" December 1951.

These Barry reports are part of the complete service we offer in handling shock and vibration problems. When you have an isolation problem, call the nearest Barry representative, or ask our field engineering service to help you.

change-order or partial contract termination.
Industry men further urge that design changes in spares be negotiated simultaneously with equipment design changes, that spare-parts paperwork be greatly simplified in the interests of economy and efficiency and that the proposed regulations be devoid of contractual aspects.

- Military reaction-Some Pentagon brass take a dim view of industry's proposals, feeling that contractors might seize upon the proposed ground-rule changes to pad contracts and furnish spare parts derived from sweeping-up the floor.

Industry has attempted to allay these fears by pointing out the integrity and technical competence of known electronic equipment manufacturers.

Since military departments maintain substantial stocks of standard component parts and have adequate means to determine useage rates, a possible solution to a deadlock might be to exclude standard parts from provisioning chores and permit the contractor to select those spare parts peculiar to the equipment.

Eye-Size X-Ray Tube

Used for irradiating a transplanted cornea, this 4.5 by $1.4-\mathrm{cm} X$-ray tube developed by Philips is said to be the smallest ever made. Gold coating inside the beryllium window is the anode and layer in which X-rays are generated by a variable $25-\mathrm{kw}$ generator. The tube may be useful industrially for checking defects in very light metals

Navy Receivers Fail Tropics Test

Jungle moisture and fungus affect components even when specially treated

REPORT on a four-year study of Navy communications receivers in a tropical jungle indicates that none of the equipment studied is capable of giving prolonged, dependable service under tropical conditions. Navy scientists found no evidence to indicate that use of fungicidal varnish either prolonged the life or increased the reliability of treated equipment.

Eighteen receivers were tested by the Office of Naval Research at the laboratory's tropical exposure station in Panama. Eight receivers were uncoated while the other ten were treated with moisture and fungus-proofing varnish.

Only two of the eighteen receivers survived forty-four months of exposure without requiring com-
ponent replacement, complete realignment, or both. Excluding vacuum tubes, power units, resistors, potentiometers, and mica capacitors were the principal sources of trouble.

- Design Recommendations - Significant recommendations include the elimination of fungus-susceptible materials such as natural-fiber cable lacings, cotton insulation, cellulosic plastics, and vinyls containing susceptible plasticizers; development of flexible glass-to-plastic bonding cements or non-welling plastics for meter cases and tube sockets.

Because ferrous parts rust severely, particularly on areas where condensed moisture can accumulate, such parts should be thoroughly protected. Conventional pigmented finishes, in addition to cadmium plating or other surface treatment, are recommended.

TV Tube Trend Still Far From Stable

Status of tv tube production not affected by expected expansion in cobalt output

New cobalt recovery process developed by Chemical Construction Corporation, which promises to expand cobalt supplies in the near future, will have little immediate effect in determining trends in picture-tube focus methods.

According to major tube manufacturers, even with present short cobalt supplies magnetic-focus tube production still leads electrostatic output by about 3 to 1 .

- Conservation-At the beginning of the Korean War, tube manufacturers stepped up conservation methods for critical metals and started production of electrostaticfocus tubes saving about 5 ounces of Alnico-5 on each tv set made. (Electronics, April, 1951, p 85) But shortages due to expected in-
creases in defense production have not materialized to the extent anticipated. This, coupled with the general decrease in tv sales during the past year, has made conservation less urgent.

Other factors too, have conditioned the expected trend to electrostatic focus. As one tube manufacturer put it, "We are in a buyer's market now and have to produce what our customers want. Right now, most of them want magnetic-focus tubes."

- Opinion-Of six leading tv-set producers, four use magnetic focus almost exclusively in their new receivers. They indicate that one of the reasons for the continued use of the magnetic-focus tube, is that they are more familiar with it and prefer it as long as adequate materials are available.

Most tube and set manufacturers
(Continued on page 18)

THE ELECTRO MOTIVE MFG. CO., INC.
think that the present status of magnetic and electrostatic-focus tube production is not likely to remain stable. A wholesale shift to electrostatic focus could take place almost overnight if increased conservation were necessary or if further technical and competitive developments take place. Until such factors develop, the magnetic-focus picture tube will predominate.

Potentiometer Makers Plan Standardization

Growing precision potentiometer industry is developing a standardization program to facilitate quantity production of such components.

First steps are directed toward standardizing physical dimensions and mechanical accuracies where it
is felt that selections can now be made to satisfy 70 to 80 percent of the users. Plans for standardizing terminology and definitions which will permit all manufacturers and users to converse on a common basis are also in progress.

Groups representing the military and other users are at work on the program but completion is not expected for several months.

What's Behind the Figures-TV Audience

Sixth of a series outlining background of statistics printed in "Figures of the Month"

The sixth listing on the monthly statistics page (p 4), under the heading TV Audience is a count of television receivers actually in use, as compiled by the Sales Planning and Research staff of the NBC TV Network. The figures represent the receiver count as of the first of the month indicated at the top of each column.

The accompanying chart, which shows the trend of the tv audience from October 1950 to the present, shows a steady increase in the total count, despite the limitation imposed by the freeze on new tv stations.

The number of sets served by stations having network connections has paralleled the total count, with a notable sharp increase between August and September of
1951. This coincided with the opening of the transcontinental microwave relay, which added nearly two million receivers to the network.
-Saturation-One evidence of saturation is the set count in New York City, now three million strong. Early in 1951 sets in use in this city were increasing at the rate of nearly 100,000 per month. After the summer doldrums, the rate picked up again to about 80,000 per month at the end of 1951 , but is now only 40,000 per month.

An interesting comparison is that between Chicago and Los Angeles. Chicago and its suburbs, with a population roughly 50 percent greater than Los Angeles and suburbs, has fewer tv sets than Los Angeles ($1,160,000$ vs $1,200,000$ in June, 1952.
This may possibly be explained by the greater choice of programs in Los Angeles, which has seven outlets to Chicago's four.

As of June there were 94,000 sets estimated in use in Canada and Mexico not tallied in the NBC totals. These included 55,000 sets in Canada served by Buffalo, 36,000 in Canada served by Detroit, and 2,500 in Matamoros, Mexico.

How Good Is Russian Radar?

Indications are that the Soviets possess quantities of effective equipment

An Associated Press dispatch datelined Seoul, April 6, listed UN air losses in the Korean campaign as 622 exclusive of naval aircraft. Of this total, 490 planes were lost to ground fire.

World War II air losses due to ground fire seldom exceeded three
percent of total losses. Although the entire increase cannot be definitely credited to assistance from Soviet radar equipment neither can the 80 percent loss to ground-fire be attritbuted solely to North Korean and Chinese marksmanship.

- Four Design Sources - Soviet electronic equipment obviously derives from four sources: (1) native Russian developments, (2)
study of British and American equipment prototypes furnished under the lend-lease program, (3) developments based upon captured German equipment and the work of German scientists captured by Russian forces, and finally, (4) purchase of commercially available equipment adaptable to military use.

A study of Russian technical
(Continued on page 20)

This is only one of the many beauty spots that make New Hampshire an outstanding vacation land in America. Here you can find the answer to vacation yearnings... seashore or mountains ... lakes, rivers or streams . . . hunting, fishing, golf . . . or just plain "resting", New Hampshire offers them all, together with moder conveniences.

Also in New Hampshire is the Marion Electrical Instrument Company - located in one of the historic Amoskeag Mill buildings in Manchester. Not far from Boston (Mass.) on your way to the White Mountains, Manchester offers excellent stop-over facilities. To customers and friends alike we say - this summer mix business with pleasure . . vacation in New Hampshire and be sure to visit us at Marion and see how fine instruments are made.
books and magazine indicates that the technology of both radar and television are well understood by Soviet scientists. In fact, characteristically, they claim to have developed the art some 50 years ago. Photographs showing tv factory interiors are indistinguishable from those of our own factories. It is no stretch of credibility to presume these production lines are perhaps paralleled by others turning out electronic-warfare devices. Specifically, Russian technical literature deals at length with magnetrons, acorn tubes and other high-frequency components that provide the building blocks for microwave ranging equipment.

- Ape Anglo-American - Russian radar engineering texts carefully avoid reference to operational Soviet equipment or to electronic equipment of Russian design. Discussion is confined mainly to British and American equipment.

Early-warning and land-warfare equipment described is of the early British type, while naval radar follows American pattern.

Phototube Sales Rise

Phototube dollar sales volume has tripled since World War II and is expected to reach $\$ 1.9$ million by the end of this year.

Equipment manufacturers were the leading customers during the first quarter of 1952.

Instruction-Manual Writing Is Big Business

Four percent of the cost of new electronic equipment goes in to the preparation of manuals

Writing technical instruction books for the armed services is big business. Just how big, military people aren't saying, but men who should know guesstimate that 4 percent of the total cost of new military electronic equipment is represented by preparation cost of the operating and servicing manual to accompany the equipment.

Material procurement contracts let by all three services generally require the manufacturer to be responsible in some degree for preparation of manuals. At present, most prime contractors do their own technical writing. This is because contracts placed during the initial phase of rearmament went chiefly to large manufacturers maintaining their own writers. However, even the big boys find it necessary to call in outside talent for illustrating and art-layout chores.
-Preparation Costs - Per page costs for military manual preparation run between $\$ 70$ and $\$ 125$. Costs vary considerably with the complexity of the equipment, the availability of necessary technical data, and with engineering changes made during production. The latter factor is especially important since contracts often contain a continuing requirement for manual revision to reflect the latest equipment design changes.

One rule of thumb for estimating nanual preparation cost is to allow $\$ 100$ for each electron tube in the equipment.
-Writing Services-A survey of 58 technical writing services experienced in government work reveals that large, well-established concerns handle most of the business, although there is plenty of incidental work to sustain a multitude of small firms.

About one-third of the writing firms listed in Dun and Bradstreet

entered the field during the last war. Many top men in the newer concerns got their start with one outfit that during World War II established technical writing as a full-time business. Most of the larger firms have some well-established peacetime stock-in-trade. Publishers, printers, advertising men and consulting engineers have invaded the field. Recently two of the largest electronic manufacturing firms have begun to accept outside work for their technical writing departments.

Personnelwise, the largest writing firms employ from 100 to 250 men, while most smaller outfits a staff of under 25.

Geographically, the metropolitan New York area encompasses the bulk of the technical-writing business. Several Detroit firms, long engaged in writing for the automotive industry, have recently turned their talents to the electronics field.
-Navy-The three-way split in Navy electronics procurement carries over to technical instruction books. The bulk of land-based and sea-going electronic equipment is procured by the Bureau of Ships. The Bureau of Aeronautics takes care of airborne electronic equipment, while certain special equipment such as fire-control radar (Continued on page 22)

comes under the Bureau of Ordnance.

Since every naval vessel must be largely self-sufficient at sea, the Bureau of Ships requires that a single all-inclusive instruction manual accompany each item of equipment. The manufacturer of the gear is responsible not only for preparation of the book but for printing and distribution as well.
Four handbooks are required for each piece of airborne equipment, namely: operator's handbook, servicing handbook, overhaul handbook and illustrated parts breakdown. Since these books are distributed to activities and squadrons according to technical requirements, a complete set of books is not needed for each equipment. The Bureau of Aeronautics, therefore, requires only that the manufacturer furnish reproducible copy and takes care of printing and distribution itself.

The Bureau of Ordnance has no hard-and-fast rule concerning instruction book procurement. Generally, in the case of fire-control radar, the manufacturer furnishes an instruction-book manuscript for each equipment prototype. Bureau officials, however, see definite advantages in having the instruction
book prepared by a "third party" not too intimately involved in the equipment's technology.

- Air Force-The Air Material Command at Wright-Patterson Air Force Base is generally responsible for buying and contract approval. However, under a decentralized procurement policy, each air-district headquarters is responsible for procurement of equipment and books from manufacturers located within the district.

In general, the Air Force policy regarding instruction books is similar to that of the navy's air arm.
-Signal Corps-Most army electronic equipment comes under Signal Corps auspices. The Signal Corps Publication Agency, Fort Monmouth, N. J., has 245 men engaged in technical writing. The Army prefers to have the manufacturer furnish reproducible copy from which a technical manual may be prepared.

In certain instances, a manufacturer's instruction book finds interim use as a technical manual. However, when an equipment manual is destined for field or training use it is usually rewritten, printed and distributed by the Signal Corps.

TV Export Volume Increasing

Monthly shipments of tv sets increase in first quarter. More new markets expected this year
Despite technical difficulties and foreign trade restrictions, some U.S. inventory-burdened tv producers are finding a profitable and growing market abroad, especially in countries of the Western Hemisphere.

Indicative of the growth of foreign tv sales is the fact that this year U.S. ty sets exported rose from 3,650 in January to 7,377 in March for a quarterly total of 16,107 sets worth $\$ 3,053,598$.

Leading markets for sets, according to Department of Commerce figures, are Cuba, Mexico, Brazil and Argentina.

- Export Problems-Exports are not accomplished without difficulty. Manufacturers have found that countries such as Mexico, Argentina and Brazil increase import restrictions as their own manufacturing facilities develop. Now, the only countries in the Western Hemisphere where complete U. S. tv receivers are accepted without restriction are Cuba and Canada.

The solution for most U.S. tv manufacturers is the establishment of assembly plants in foreign countries, although even this is not being permitted by some governments.

- Potential Markets-By the end of 1952 it is expected that at least five new areas operating with U.S. standards will be active markets. Station operation is expected in the
capital of the Dominican Republic in August and Caracas, Venezuela plans to have its station operating in November. In addition to Montreal and Toronto, which expect to be telecasting on a regular schedule by September, Hawaii is another market using U.S. tv standards that plans to have a station in operation this year.

With these new markets opening this year and others in such countries as Peru, Uruguay, Columbia, Puerto Rico, Chile and Guatemala expected in the near future, the outlook for tv receiver marketing abroad is promising.

British Firm Announces 'Junior GCA' Radar

An inexpensive ground-controlapproach radar system will soon be available to medium-size airfields for around $\$ 28,000$. The new equipment uses ppi scan, has a range of 15 to 20 miles. Takeoffs and landings at the rate of one every two minutes have been achieved under instrument conditions, using an early model of the equipment.

Flexibility is such that fast jet aircraft can be slipped past slowflying transports while on their final approaches. According to manufacturer A. C. Cossor, airplanes can be tracked easily to within $\frac{1}{2}$ mile of touchdown, and weather minimums of 200 ft and $\frac{1}{2}$-mile visibility are considered safe.

Dry-Disk Rectifiers Invade New Markets

COPPER-OXIDE and selenium rectifiers, once considered useful only at power-line frequency, are being used at higher and higher frequen. cies.

Applications are mostly in the audio and low radio-frequency ranges, up to 50 kilocycles. At least one manufacturer, however, has
(Continued on poge 24)

Disc size $\frac{110}{16}$
Available 2 to 9 electrodes. Electrode treatment Lonly.

5-900 Series
1500 V (RMS)
Disc size $\frac{61}{64} \mathrm{D}$
Available 2 to 9 electrodes. Electrode treatment L only.

7-700 Series 2000 V (RMS)

Disc size $\frac{61}{64} \mathrm{D}$
Available 2 to 7 electrodes.
Electrode treatments
TH, FP, HT and L.

7-900 Series 2000 V (RMS) Disc size $1 \frac{15}{64}$ D
Available 2 to 9 electrodes. Electrode treatments TH, FP, HT, and L.

GENERAL SPECIFICATIONS

materials $=-$ C.R. steel disc and stee! electrodes. Interfused with glass.
finish - - fused electro tin plate.
voltage fest $=$ see individual terminal.
pressure fest - - 12 pounds gauge. insulation test $=\mathbf{~} \quad 10,000$ megohms after sclt water immersion. sudden thermal shock test - dry ice to boiling water.

Key to Electrode Treatmenf Available on These Terminals

TH

FLATTENED HEAD AND PIERCED
SEE US AT BOOTH 101

HT
?
THE 6028 FERNYIEW AYENU

CORPORATION

6028 FERNVIEW AVENUE - CINCINNATI 13, OHIO

Disc size $1 \frac{15}{64} \mathrm{D}$
Available 10 to 13 electrodes. Electrode treatments TH and HT.
7-2300 Series 2000 V (RMS) Disc size $1 \frac{5}{8} \mathrm{D}$
Available 11 to 23 electrodes. Electrode treatments TH and HT.
ised dry disks as high as 10 megacycles, as detectors in communications equipment. The disadvantage of low output at that frequency is more than offset by reliability under extreme vibration.

- Other Applications-In one electronic dictating machine, selenium works well in an automatic-volume-control circuit used to minimize 'blasting.' Germanium diodes formerly used varied greatly in reverse resistance with change of temperature. Selenium enjoys considerably less drift with heating. Further advantage of this characteristic is taken by another company, using selenium rectifiers as detectors in aircraft beacon radio receivers subject to extremes of temperature as well as vibration.

Instrument manufacturers are rediscovering the stability of cop-per-ovide rectifiers and are using them in audic, volume level and db meters, where maintenance of calibration is an important factor.

Industrial TV Aids Landing Aircraft

Industrial television may find widespread application as an airsafety aid if experiments at Washington National Airport prove successful.

Used to observe landings during bad weather, a tv camera located at the runway threshold picks up the plane as it drops out of the overcast, permitting control-tower personnel to determine the pilot's slantheight visibility. Similarly, runway surface visibility may be determined.
Taking up where airport-surveillance radar and ground-control-approach systems leave off, landing $t-v$ is the final link in all-electronic air navigation.

- Results Being Checked-The airport experiment is jointly sponsored by the U.S. Weather Bureau and the Air Navigation Development Board. Television slantheight information is being corre-

Televising a foul-weather landing from runway threshold at Washington National Airport
lated with visual observations and photoelectric measurements of the air's optical density.

The tv system is operated by WTTG engineers, using a DuMont camera chain and remote truck with a $5,700-\mathrm{mc}$ radio link to monitors located on the weather observation deck and in the control tower. Operational installations would probably use coaxial cable links.

Evaluation of the experiment so far indicates that the system is comparable to visual observation with perhaps a 10 -percent safety factor. In its present form the system is not useful at night.

Electronics Industry Wages Average $\$ 1.36$

Hourly earnings range from $\$ 1.19$ for solderers to $\$ 2.13$ for

 tool-and-die makersRadio, television and radar production workers average $\$ 1.36$ an hour, according to the latest industry wage study (November) made by the Bureau of Labor Statistics in Washington.

- Job Categories - Tool-and-die makers earn the top average hourly wage of $\$ 2.13$, solderers the lowest of $\$ 1.19$. About one-fourth of the jobs fall within the "skilled" category and pay average wages of $\$ 1.80$ or more an hour for class-A machine-tool operators, maintenance electricians and machinists, machine-tool set-up men, and class-A testers and welders.

Two-fifths of the workers are in more routine jobs, such as class-C assemblers, inspectors, wirers, coil winders, solderers and janitors. Their average hourly earnings are below $\$ 1.30$.

More than 38,000 routine assemblers, the largest single block of workers, average $\$ 1.20$ an hour. Class-C wirers, next largest job classification with 9,000 workers, average $\$ 1.21$.

- Regional Rates-New England averages are below national averages for all job groups. Hourly earnings for all production workers there average $\$ 1.16$. The Great Lakes and Pacific regions are well above New England job rates.

Most of the plants studied were on a 40 -hour-a-week work schedule. Typically, six or seven paid holidays a year are granted. Most plants give a week's paid vacation after one year's service and more than two-fifths of the workers get two weeks after three years.

Tube Market Over One Billion

ONE out of every fifteen tv sets now in use will need a new picture tube by the end of this year, according to GE.

About $1,100,000$ picture tubes worth $\$ 44,000,000$ and $110,000,000$ receiving tubes worth $\$ 220,000,000$ will be sold for television and radio replacement purposes in 1952.

More than $950,000,000$ receiving tubes are now operating in tv receivers and home and car radios. This total is expected to pass the one billion mark within the next few weeks.

Cash Awards for Educational TV

As an incentive to establishment of noncommercial educational tv stations, Ben Abrams, president of Emerson Radio and Phonograph Corp., has announced a grant of (Continued on page 26)

coit no.	MINIMUM CURRENT AT I VOIT FORWARD MA	MAXIMUM CURENT AY VOITS REVERSE MA	$\begin{gathered} \text { MINIMUM } \\ \text { COREtNT } \\ \text { ATSO VOTS } \\ \text { REVERSE MA } \end{gathered}$	$\begin{gathered} \text { averaget } \\ \text { REGIFEGE } \\ \text { CURRENT Ma } \end{gathered}$	MINIMUM INVESE PEAK VOIIS vols
IN48	4.0	-	0,833	50	85
IN51	2.5	-	1.667	25	50
IN52	4.0	-	0.150	50	85
ing3	4.0	-	0.050	50	125
1 N64	Minimum DCcurrent in 44 mc rectifier is 100 (1) a				20
IN65	2.5	-	0.200	50	85
* IN69	5.0	0.050	0.850	40	75
*1N70	3.0	0.025	0.300	30	125
1N75	2.0	-	0.050	50	125
[1N81	3.0	0.010	-	30	50

*JAN approval pending. TJAN approved.
\ddagger Average half wave rectiffed eurrent at 60 CPS and $25^{\circ} \mathrm{C}$. Consult us for
ratings at other conditions.
Germanium Transistors are coming!
... WATCH FOR OUR ANNOUNCEMENT SOON

SELETRON \&
GERMANIUM DIVISION

RADID RECEPTOR COMPANY, INC.
$\checkmark \mathbb{R R}$ Since 1922 in Radio and Electronies $R R$
Soles Dept.: 251 W. 19th St., New York 11, N. Y. - Foctory: 84 N. 9th St., Brooklyn II, N. Y.
$\$ 100,000$. Equal sums of $\$ 10,000$ will go to each of the first ten such stations to get a test pattern on the air. State universities and municipally operated stations will not be eligible for the awards.

At the same time, Mr. Abrams proposed the formation of a cooperative organization that would include educators, industrialists, artists and public leaders to further the cause of educational tv. He set as his goal a $\$ 5$ million fund to help fill the 242 channels allocated by FCC for schools and colleges.

HomeRadio-TVOutlook Healthy for Decade

Serviceman requirements may double; parts business triple by end of 1961

Keeping Up with America's home radio and television needs will take a steadily increasing segment of the electronics industry's personnel and equipment-at least for the next ten years, according to Sylvania's Fred Mansfield.

Statistical analyses predict almost 50 million sets in use by the end of 1961-an increase of three times over today's figure. Radio sets in use will increase from the present 59 million to around 62 million during the same period.
-Service and Parts-To build, sell, install and maintain this increasing number of sets, more men and companies are expected to enter the field, while those already involved will expand their efforts.

One serviceman can service 780 radio homes or 125 television homes, according to Mansfield, or he can install 250 television sets. Accordingly, in ten years there would be a need for more than twice as many servicemen if service requirements remained essentially as they are today.

In 1952 the radio-tv parts business is estimated at $\$ 500$ million. In the next four years this firure may double, and by the end of 1961 parts business could pass the $\$ 1.5$ billion mark.

MEETINGS

Aug. 11-21: Congress of U.R.S.I. Sydney, Australia.

Aug. 12-15: 1952 APCO Conference, Hotel Whitcomb, San Francisco, Calif.
AUG. 15-16: Emporium Section, IRE, Annual Summer Seminar, Emporium, Pa.
Aug. 10-22: AIEE Pacific General Meeting, Phoenix, Ariz.
AUG. 26-30: Australian IRE Radio Engineering Convention, Sydney, Australia.
Aug. 27-29: Western Electronic Show and Conference, Municipal Auditorium, Long Beach, Calif.
Aug. 27-Sept. 6: British National Radio Show, Earls Court, London.
Sept. 5-7: Fourth Preconference ISA Instrument Maintenance Clinic, Cleveland, Ohio.
Sept. 8-10: American Standards Association, Third National Standardization Conference, Museum of Science and Industry, Chicago, Ill.
SEPT. 8-12: National Instrument Conference and Exhibit, Cleveland, Ohio.
Sept. 10-12: Convocation of the Centennial of Engineering, Congress Hotel, Chicago, Ill.
Sept. 20: Cedar Rapids Section, IRE, Communications Conference, Roosevelt Hotel, Cedar Rapids, Iowa.
Sept. 22-25: NEDA Third Annual Convention and Manufacturers' Conference, Ambassador, Atlantic City, N. J.
Sept. 29-Oct. 1: Eighth Annual National Erectronic Conference and Extibition, Hotel Sherman, Chicago, Ill.

Oct. 1-3: Canadian Electrical Manufacturers Association, General Brock Hotel, Niagara Falls, Ont.
Oct. 6-8: NAED, Fall Meeting of the Pacific Zone, Hotel del Coronado, Coronado, Calif.
Oct. 13-17: AIEE, Fall General Meeting, New Orleans, La.
Oct. 20-22: Radio Fall Meeting, RTMA Engineering Department, Hotel Syracuse, Syracuse, N. Y.
Oct. 20-24: National Metals Show, Philadelphia Auditorium, Philadelphia, Pa.
Ост. 26-29: NAED, Meeting of Board of Governors, Grove Park Inn, Asheville, N. C.
Oct. 28-30: AIEE Middle Eastern District Meeting, Commodore Perry Hotel, Toledo, Ohio.
Nov. 5-7: Sixteenth Annual Time and Motion Study and Management Clinic, Sheraton Hotel, Chicago, Ill.
Nov. 10-13: NEMA, Haddon Hall, Atlantic City, N. J.
Nov. 10-30: International Radio and Electronics Exhibition, Bombay, India.
Nov. 17-18: AIEE, Techniçl Conference on Recording and Controlling Instruments, Benjamin Franklin Hotel, Philadelphia, Pa .
Nov. 19: American Standards Association, 34th Annual Meeting, Waldorf Astoria, N. Y.

Jan. 14-16, 1953: Joint AIEEIRE Conference on High Frequency Measurement, Washington, D. C.

Business Briefs

- Signal Corps Aviation Center recently set up at Fort Monmouth, N. J. to work closely with the Electronic Warfare Center and Signal Corps Engineering Labs in this section, will study and develop the use of microwave and vhf radio relay in helicopters and the use of television, communications and navigational equipment in aircraft.
- Since the outbreak of the Korean incident, the production of military electronics equipment has increased seven times, according to John R. Steelman, defense mobilizer; 95 percent of the items currently being produced were put into production since the opening of hostilities in June 1950.
- Gun-Type high-frequency heater is being used experimentally for glueing wallboard to building studs, eliminating the conventional nails.
- Proposals from contractors for simplifying the design of electronic equipment are being sought by the Electronics Design and Development Division of the Bureau of Ships.
- West German Radio and Television Exhibition in Duesseldorf has been postponed until Feb. 8, 1953 because the North-West German Broadcasting Company does not expect to be telecasting regularly until that time. However, the German Radio Industry will exhibit at the German Industrial Fair, in Berlin, August 22 to 31, 1952.

The development of Mylar** polyester film by
Du Pont chemists and its adaptation as a capacitor dielectric
by Aerovox engineers, presents challenging potentialities in the field of electronic capacitors.
Known as Aerolene Capacitors, these latest components permit
higher operating temperatures without corresponding increase in size, as well as unusually high insulation resistance.

Both gains mean much to the designers of tomorrow's fantastic weapons and again to peaceful electronic applications.

Thus in 1.952 Aerovox auspiciously embarks upon its
fourth decade of capacitor craftsmanship.

H-Q serves national defense

Whenever Electronics Lend Ears to the Fleet

- Among the countless contributions which electronic engineers are making to our armed services, high importance must be placed on long-range eyes and ears for the fleet... ...not only in increasing the ceadliness of its own undersea craft. but equally in protecting its surface vessels from enemy submarines. And throughout the field of electronics, high importance is likewise placed on the dependable long life and rigid adherance to specifications found in Hi-Q components. Among the countless ceramic units carrying the HI-Q trademark, you'll find disc capacitors of by-pass and temperature compensating types ...tubulars, plates and plate assemblies ...new bigh voltage capacitors in many styles...trimmers, wire-wound resistors and chokes. You'll find, too, that $\mathrm{H}_{1}-\mathrm{Q}$ engineers are your best source for specially designed components to meet your specialized, individual needs.
 sinigle and maltiple units in an unlimited range of capacities up to guaranteed minimum values of 33,000 mmf per square inch. The number of capacities on a multiple unit is limited only by the K of the material and the physical size. In HI-Q Plate Assemblies (printed circuite) the number of combinations of condensors and resistors which can be incorporated on a single unit is virtually endless...again, limited only by the K of the material and physical size.

AEROVOX CORPORATION

Hr -
OLEAN, NEW YORK, U.S. A.

AEROVOX
CORPORATION WILKOR

CLEVELAND, OHIO
 developers and manufacturers of precise, dependable instruments in the fields of:
Aircraft Instruments and Controls - - Miniature AC Motors for Indicating and Remote Control Applications - - Optical Parts and Optical Devices • - Radio Communications and Navigation Equipment
While current facilities of our laboratories and plants are geared to production for National Defense, the planning divisions of Kollsman are ever active. And versatile Kollsman research engineers stand ready to assist America's scientists in the solution of instrumentation and control problems.

Kollsman Instrument Corporation
ELMHURST, NEW YORX
GLENDALE, CALIFORNIA
suesidiart of
Standard COIL PRODUCTS CO. INC.

SPICIFCATION:

1. Hermetically seded. Mold cas. Yierifind ceremiz and saals, pigtaik leads Tharorgh y protected - mecterically, aloctriceliy, elimatiooll:-
2. Temperature Soofficient ret eaceeding . 0003 uhm per olim per ${ }^{\circ} \mathrm{C}$. aver semperature ram of $-40^{\circ} \mathrm{C}$-to $+60^{\circ} \mathrm{K}$. up 1015 mepatms. to exreeding .000 g 31 m per ofm per ${ }^{\circ} \mathrm{C}$. UF 10.100 megolimg.
3. Yottcige Coefficie if so extmein loor that for mas applizations it can be discordad.
4. Ovarloods up i5:00\% of rated veltoge, without show ing permonent chasige in resistime.
5. Accurmey: guoran?ed oletanzen of pius/minus 1% at $25^{\circ} \mathrm{C}$. $\left[17^{\circ} \mathrm{F}.\right)$.
6. Aging Changes aegligibl. Averag stang in rell.t ance bor self-aging approximatoty $3 .: \%$ in o yoer.
7. Nolses silver-to zifyer sontech and wileed liods to 830 insuro very high stability ond raciapendingly low noirso levols.
8. In four Sizes: 7wo $1 /$ wall. I woit and 2 walt. Cesed or uncesed.
9. Meet the MIL spocintertions.

Wilkor, the first licensee under Western Electric patents to produce carbon deposited precision resistors, takes another step forward. Wilkor now offers hermetically-sealed Carbofilm Resistors, the first fully-protected precision resistors available on a production basis.
Primarily intended for circuits calling for the accuracy and stability of wire-wound resistors, yet with the compactness of carbon or composition-element resistors. Excellent for measur-ing-instrument applications; in test and lab equipment; in oscillography and other critical electronic circuits; in electronic computers and allied techniques; and now, in the encased, hermetically-sealed construction, particularly in applications where resistance values must be critically maintained over long service life, regardless of climatic conditions.
TEMPERATURE COEFFICIENT OF RESISTANCE (TYPICAL)

Literature on request. Let us collaborate in your precision-resistor requirements.

AEROVOX CORPORATION

*Trade Mark

Everything you need in standard terminal lugs . . . or made to your own specifications!

C.T.C. has exactly the types and sizes of terminal lugs you want . . . or will quickly make them to your specifications in any production quantity. Very likely you'll find what you're looking for in the broad C.T.C. line of standard terminals. There are 28 different types, each available in varied shank lengths.
C.T.C. standard terminals are of silver plated brass, coated with water dip lacquer to keep them chemically clean for soldering.

In addition, combination screw and solder terminals are available in 3 sizes, and a complete line of phenolic or ceramic terminals can be furnished.

All materials, processes and finishes meet applicable government specifica-
tions. Finishes include hot tinned, electro-tin, cadmium plate or gold plate on special order. In the event standard terminals don't meet your needs, C.T.C. offers a special consulting service to solve your solder terminal problems without extra cost or obligation.

For all specifications and prices, write to Cambridge Thermionic Corporation, 437 Concord Avenue, Cambridge 38, Mass. West Coast Manufacturers contact: E. V. Roberts, 5068 West Washington Blvd., Los Angeles 16 and 988 Market Street, San Francisco, California.

CAMBRIDGETHERMIONIC CORPORATION

 custom or standard.. The gwafanteed componentsSee our listing in Electronics Buyers' Guide

TUNESOL

- Unique ceramic sleeve of aluminum oxide, fired to extreme hardness, completely isolotes the cathode from the heater wire. Maximum heat transfer is obtained with fullest insulation protection.

* eliminates external damper tube transformer

t no top cap-simplified wiring

- conserves critical materials
- lowers manufacturing costs

Here is a new TUNG-SOL tube designed for uṣe in television horizontal frequency damper service, which is one of the most important and timely engineering developments ever to come out of any electronic laboratory.
It is a single, indirectly heated diode with the high voltage insulation requirement removed from an external transformer and built into the fube itself.
A specially-designed ceramic sleeve completely isolates the heater from the cathode and other circuits. The receiver designer can handle the damper tube heater just as he does any other heater in the receiver. Normal "warm-up" time is achieved since most of the ceramic insulator body is cut away and yet no sacrifice is made in the insulating properties.
Heater-to-cathode insulation rating has been sharply boosted from 2000 to 4000 volts (pulse rating) and 450 to 900 volts (D. C. rating), thus giving circuit designers new and greater latitude.
Use of the TUNG-SOL 6AX4GT affords manufacturers the opportunity to conserve scarce materials and to effect production economies with the promise of improved set efficiency.

Mechanical Datic

Coated unipotential cathode
Outline drawing RMA \#9-il
Base RMA \#B6-48
Maximum diameter
Maximum overall length
Maximum seated height
Pin connections
Pin 1-no connection
Pin 2-no connection
Pin 3-cathode
Mounting position

Electirical Doric

Ratings

* These are design center ratings. Because of the nature of the service for which this tube is intended, it is important that these values not be exceeded by more than 10% under the most unfavorable operating conditions.
* * This rating is applicable where the duty cycle of the voltage pulse does not exceed 15% of one scanning cycle, and its duration is limited to 10 micro-seconds.
* * * This rating applies to hot switching where transient duration does not exceed 0.2 seconds.

This type is also available with 12.6 Volts, 600 MA . heater and is designated 12AX4GT.

TUYG:SOL ELECTRON TUBES

The TUNG-SOL engineering which has produced the 6AX4GT and the 12AX4GT is constantly at work on a multitude of special electron tube developments for industry. Many exceptionally efficient general and special purpose fubes have resulted. Information about these and other types is available on request to TUNG-SOL Commercial Engineering Department.

TUNG-SOL ELECTRIC INC., Newark 4, New Jersey
Sales Offices: Allanta - Chicage - Culver City • Dallas - Denver - Detroit - Newark

Tung-Sol makes Allsclass Sealed Beam lamps, Miniofure Lamps, Signal Flashers, Picture Tubes, Radio, TV and Special Purpose Electron Tubes

HEO-XIL

 HERMETIC SEAL TERMINALS - Applicable on MIL requirements. Will wiltstand thermal shock, vibrations, mechanical strans, and excessive pressures with no imparmeat of the seal or other fanctional char acteristics, E-3LW terminals are now being used at 1000 psi static oll pressure and uadergo 5000 psi tesis for two minutes.T1EO-SIA OCTAL TIPE PLUG IN HEADERS - Applicable to MIL requirements. These waits can undergo sustained virations, large lemperatore changes, and other strains withoul impairment to the seal tr other frictional characieristics. Available wilh eight and twelve plas.

11EO-SIL MULTIPLE PIN HEADERS - Applicabie for MIL requiremenis. Presently being used on MIL.T-27 transformers. These witis are aralable with 2 to 10 pins. These unils cal nadergo cooditions mentioned above with ao impairmenl to the seal or other characteristics.
[1EO-SII. FUSE HO.DERS, HERMETICALIY SEALED - Arailabie for 3-AG and 4-AG fuses. These wnifs are completely seaded from moisture with or without the cap or fuse liaserted. They are applicable on pressurlzed and gas filled componenls.

CABLES, HERMETICALLY SEALED - The cables are lemedleally sealed of the plug oi thry to the pasel. ROTARY HATERSEAL PANEL ASSEMBLIES - These Mults bave an accellent five year customer history on gas filled pressurized componeals. They are arailable for $1 / 4^{\text {" }}$ shafts and for potentioneters and swith bastings. LIME CDRBS WITH PLUGS FOR EUROPEAN USE, hERMET. ICALLY SEALED - These mits are completely seaded the plog and are being ased on pressuried ubits.

GASKETS, METER, PANEL, COYER, ETC. - MOIded trem Menprese tar complear sealing. adapters, U. S. TO european, afaical, south ayerical SOCKETS - Oar 200A aod 300 A together wifi abil Htaily all standard alags, sockets, and lame sockets of the above meationed ares.

COIL FORMs, CRYSTAL COMTACTS, an shat moted batit and lieo-Sil nbber nalls,

(0)

11EO-511.
CORPORATION
26 CORNLHSONAVE, JERSTY CITY 4. M. d.

Duintenra BRINGS SUBSTANTIAL SAVINGS to Class " B " and Class " H " transformer makers...

. . each using a different type Quinterra to meet his needs

'The two "before and after" photographs above do more than show what manufacturers can do when they employ Quinterra as layer insulation. They also demonstrate that the manufacturer is not limited to one type of this thin, flexible, purified asbestos insulation. Any one of several types will help him conserve materials, gain greater safety, raise overload limits, decrease rejects, lessen production costs, and lengthen service life.

For Class "B" operations, he can choose Type 6 ... the twin-ply Quinterra treated with polyvinyl acetate. It retains its dielectric strength of about 300 VPM at temperatures above the Class " B " maximum of 130 C. Strongest of the Quinterras, it is made by combining and calendering two layers together into a dense, smooth-surfaced sheet. Its excellent tensile and bursting strengths enable assemblers to reach favorable production rates.

And it also provides a large square foot per dollar coverage*.

For Class "H" operations or for high processing and ambient temperatures, the manufacturer can choose single-ply silicone-treated Quinterra Type 3. Its dielectric strength of about 300 VPM is retained ander continuous exposure to temperatures higher than 180 C, the Class " H^{\prime} " maximum. It also has good moisture-resistance, flexibility, and adequate physical strength for many applications.

Each of these Quinterras is made of the same highly purified asbestos base sheet that has the inherent dielectric . . . and has a hole-free, closed structure. They differ only in the saturant used and in the number of plies. For further information and samples of Quinterra, write to Johns-Manville, Box 60, New York 16, N. Y. No cost or obligation.

Johns-Manville ELECTRICAL INSULATIONS

You change chart speeds

Maybe you seldorn change chart speeds . . . while other users frequently do. But should the need arise, isn't it best to have a flesible instrument . . . one quickly adaptable for any requirement that comes along?

As shown above, the change is simple and quick with the new Weston Recording Potentiometer. No multiplicity of gears involved . . . no complicated gear changes to make. This speed linkage permits quick selecrion of 5 different speeds by simple screwdriver adjustment. And these speeds can be doubled or quadrupled by quickly changing only two gears.

This is just one of a dozen features that make this the simplest, most flexible recorder ever offered. Changing ranges, installing charts, removing amplifier . . . all are just as simple and quiçk! Combined, they cut maintenance 'way down. And for accuracy and dependability . . . they're assured by the name the instrument bears.

For full details, ask your local Weston Representative, or write . . . WESTON Electrical Instrument Corporation, 617 Frelinghuysen Ave., Newark 5, N. J. . . manufacturers of Weston and Tag Instruments.

These are just a few of the many different connector assemblies designed and produced by U cinite to fill the varied and constantly changing requirements of our customers. Our engineers have had years of experience in designing parts like these for volume production.

With complete facilities for producing stampings, turnings and molded parts . . . and assembling and wiring them to your specifications . . . Ucinite is in a position to supply
almost any need in this field.
Through Ucinite, you can tap the resources of the entire United-Carr organization. At your command is all the specialized knowledge and experience that United-Carr has gained through working closely with the leading manufacturers of aircraft, automobiles, appliances and furniture.

Contact your nearest Ucinite or United-Carr representative or write for further information.

Specialists in
ELECTRICAL ASSEMBLIES,
RADIO AND AUTOMOTIVE

From this timy DOT fastener
grew a world-famous organization that serves all industry with
TAILOR-MADE FASTENERS AND ALIIED DEVICES IN VOLUME QUANTITIES

Call your nearest Uniled-Carr representative before pour new product cesigns erystall ze. It is in
this all-important planing stoge that you can make the most effecthat you can make the most services.
tive use of specidl

Bradley

pioneering with rectifiers

Pioneering with rectifiers is our business. We welcome the new problems, the tough, unique requirements that others don't want to touch. In fact, these are the types of rectifiers we like most to build.

We are geared for them, mentally and physically. Our production facilities are actually an extension of our laboratory. Manufacturing and quality control are engineering functions. Our exclusive vacuum process for producing selenium and copper oxide rectifiers is a laboratory technique put on a production basis.

Rectifiers are key components. An assured way of getting the right rectifier for your application is to let us make up the specifications. You tell us the use requirements. We will submit specifications precisely suited to your requirements - and most likely much stiffer than any you would draw up yourself. Your rectifiers will probably cost less, too.
 enclosed busses of their own design, and also manufacture several lypes to meel customers own specifications.
Their close attention to details in designing, in selection of materials. in assembling. and in testing before shipment has paid off in reducing costs of installation. and in dependable performance after installation.
In the metal-enclosed busses built by Delta Star for the Department of Water \& Power. City of Los Angeles. Natvar 400 extruded plastic tubing wi used to insulate and protect the bus tubes because it is easy to difate and apply. and because when it shrinks. it provides a snug jacket with uniformly good electrical and physical properties. Natvar 400 tubing. tape and other Natvar flexible electrical insulating materials are consistently uniform, no matter when or where purchased. They are available either from your wholesaler's stocks or direct from our own.

血lew!
 COMPLETE miniature FREQUENCY STANDARD

Acompact, complete, hermetically sealed frequency standard, presenting these features:-

ACTUAL
SIZE

l. JAN-ized construction throughout.
2. SPACE-SAVING, $11 / 2^{\prime \prime}$ dia. $\times 41 / 2^{\prime \prime}$ high.
3. WEIGHT, approximately 10 ounces.
4. AVAILABLE in 400 and 500 cycles.
5. ACCURACY - $.002 \% ~\left(15^{\circ}\right.$ to $35^{\circ} \mathrm{C}$).
6. SHOCK-MOUNTED on Silicone rubber.
7. POWER REQUIRED - 6 Volts, 3 amps. 70 to 200 V . at l to 5 ma .

WRITE FOR DESCRIPTIVE LITERATURE, SPECIFYING 'TYPE 2007"

Also, manufacturers of frequency standards, multifrequency standards, shart-recording chronographs, firing-cycle timers, the Watch-Master Watch Rate Recorder and other high-precision frequency and timing instruments, controlled by our tuning-fork oscillators.

American Time Products, Inc. 580 Fifth Avenue

ctwe WANT A RELAY THAT...'g'

Thats the Signal for ACTON at C CARE!

Almost simultaneously CLARE received requests not long ago from one of the world's largest manufacturers of radio and television equipment and from a nationwide broadcasting system. They presented similar but not identical problems.
Both involved relays for switching circuits carrying video frequencies present in the output of television cameras-frequencies ranging from almost zero to several million cycles. The capacitance between one contact spring and another, as well as between the contact springs and the frame of the relay must be extremely low. Available relays were too large and cumbersome-a typical relay extant at that time occupied 17 cubic inches-their operate, release and transfer times were too slow, and they were full of contact bounce. These customers were familiar with the versa-
tility of the CLARE Type J Relay. They asked us to try to adapt it for switching high-frequency currents. The Type J Video Relay was the result of intelligent cooperation between CLARE and the customers' engineers. It has negligible contact bounce and is otherwise superior to previous designs; and it occupies only about 7 cubic inches. It proved to be ideally suited to the needs of both customers, and it is now in high demand.

Bringing relay problems to CLARE by leading manufacturers has resulted in many outstanding relay developments. You, too, can save time, money and often needless experiment by contacting the nearest CLARE sales engineer. Call him today or write: C. P. Clare \& Co., 4719 West Sunnyside Avenue, Chicago 30, Illinois. In Canada: Canadian Line Materials Ltd., Toronto 13. Cable Address: CLARELAY.

chatic

High voltage areas of TRION Electric Air Filters are protected by MICRO Precision Switches

Let a MICRO SWITCH engineer use MICRO Precision Switches "as a principle of good design."

Close-up of safety screw and safety switch assembly which actuates MICRO precision switch when serew is removed from safely door of Trion "Standard Package" Electric Air Fitter. Small photo shows location of MiCRO panel mounting swith located of rear of terminal board assembly.
charge of engineering.
This use of MICRO precision switches by Trion engineers as an integral component of equipment which must give dependable, unfailing, trouble-free service is typical of the confadence design engineers place in the faithful performance of these precise, snap-action switches.
The MICRO line consisis of a wide variety . . . over 5000 in all . . of different types, characteristics, housings, mountings and actuators. MICRO field engineers, fully experienced in precision switching problems, will be glad to help you choose the switch best fitted to meet your designs. Call the nearest MICRO branch office for cooperation on YOUR switching problem.

- Every Trion Electric Air Filter made by Trion, Inc. uses a MICRO precision switch to break primary circuits before access to high voltage areas is possible. Thus the complete safety of maintenance, operation and other personnel is assured.
Access is impossible while the equipment is in operation. As the machine screw which holds the door is unscrewed, it releases the switch plunger and interrupts the power supply to the filter.
MICRO units were selected by Trion engineers because their operating position and operating travel can be held to very close tolerances... tolerances that cannot vary even after years of continuous use. "Our choice of MICRO has proved very successful," says George F. Landgraf, vice president in

MICRO Snap-Action Switches Honeywell Mercury Switches

to give you better tube performance

- What do you expect when you order a tubular part with a flare or flange at one or both ends?

Certainly you expect that the over-all dimensions of the part will be within certain close tolerances. You expect that the flange or flare will be the only distortion in the tube. You want the flange dimensions and the flare angle to be within the limits established in your specification. You nust be assured that the worked areas will be free from cracks, pits and breaks. You probably hope that the working has not set up unrelieved stresses to result in premature failure of the part.

When Superior supplies the part, you get all you expect, want and hope for.

This isn't a matter for boasting. The ability to deliver flared and flanged
parts to meet these basic requirements is just a part of our job, made possible by our long experience and extensive, highly-developed equipment for performing just such operations.

The rest of our job is in the field of advice, research and development assistance and careful problem analysis to make sure that you have the right metal or alloy for your purpose.

If you are a manufacturer or experimenter in electronics and have need for a tubular part, whether it be a simple cut and tumbled tube, a flared or flanged part, rolled or bent, machined at either or both ends or drilled in one or more places, tell us about it. We can probably help you and we're always glad to do so. Write Superior Tube Company, 2500 Germantown Ave, Norristown, Penna.

Cut and Annealed. Extensive cutting equipment, hand cutting jigs, electronically controlled annealers and other equipment, much of it developed within our own organization, results in high speed, precision production of parts.

Flanging. Automatic flaring and flanging machines are combined in Superior's Electronics Division with carefully trained production and inspection personne! who know how to do a job right and tahe the time to be sure.

Expanded. Here is a part almost ready for delivery. Simple as it looks, it may well have been the subject of a score of operations and at every stage the prime consideration has been the quality of the finished part.

This Belongs in Your Reference File .. . Send for it Today.

NICKEL ALLOYS FOR OXIDE-COATED CATHODES: This reprint describes the manufacturing of the cathode sleeve from the refining of the base metal; includes the action of the small percentage impurities upon the vapor pressure, sublimation rate of the nickel base; also future trends of cathode materials are evaluated.

All analyses $.010^{\prime \prime}$ to $3 / s^{\prime \prime}$ O.D.
Certain onalyses (.035" max. wall) Up to $133^{\prime \prime}$ O.D.

MILITARY

FOR AlR, LAND AND

TYPICAL APPLICATIONS IN WHICH CP DEHYDRATORS PROVIDE

 YEAR 'ROUND TROUBLE-FREE AUTOMATIC SERVICE:- Purging and pressurizing fransmission lines, wavaguides and associated apparatus.
- Pressurizing targe cavities and other radio and radar equipment enclosures.

Fog prevention in precision optical systems.

- Corrosion prevention in precise servo amplifier assemblies.
- For raising and maintaining the power handling capacity of high voltage systems and apparatus and innumerable other similar applications.

CP DEHYDRATORS OFFER THE FOLLOWING UNIQUE FEATURES:
Low dewpoint - operating pressure up to 100 lbs . per square inch fylly automatic operation - continuous duty performance - low noise level - minimum vibration • long service life with minimum maintenance

MANUFACTURERS OF COAXIAL TRANSMISSION LINE, IOWER-HARDWARE,

CP dehydrators are readily adaptable to the critical requirements of the Armed Forces. Standardized parts permit rapid assembly of equipments suitable for practically any specialized need at minimum cost and without prolonged delay. Over a decade of CP experience in dehydrator design and manufacture insures products of long life and dependable service with an absolute minimum of maintenance. Inquiries are invited.

COMMUNICATION PRODUCTS COMPANY•Inc

Rauland Tubes give you a prettier profit picture

When you rely on Rauland picture tubes you get the benefit of acknowledged leadership in picture tube engineering . . . which usually means that you'll be first to know of the latest picture tube improvements. Rauland research has developed more picture tube improvements in the past 5 years than any other picture tube source. And naturally, Rauland
customers get the break in announcing these firsts in their sets.
You get quality you can count on, too. Rauland production employs machines unique in the industry-many of them designed by Rauland engineers and built in Rauland's own plant.
And finally, you get assurance of customer satisfaction beyond
what any other line can give you. Installation and adjustment of sets in the field is faster and better with Rauland's patented Indicator Ion Trap. It gives the surest known protection against ion burn and shortened tube life.

Specify Rauland-deliver Rau-land-and assure yourself of pleased dealers and consumers.

THE RAULAND CORPORATION

BKING HINOUGH ECUMLUENT FASI!

Schematics of most electronic equipment can be broken down into circuit blocks of logically associated functions. These functional circuit blocks can be mounted readily either in the Alden '20'" plug-in packages or Basic Chassis unit. Tube sockets and associated components quickly lay out on full scale Unit Planning Sheets for mounting on terminal cards. These special pre-punched, multi-hole terminal cards have wide flexibility to take an infinite variety of circuit variations. Both sides of card can be used to obtain maximum component density area. Using the Unit Planning Sheets, functional circuit units are all planned in one step.

IT'S AS SIMPLE AS THIS!

Terminal cards have been designed to accommodate tremendous number of circuit variations - to make neat tube and component sub-assemblies with a minimum of wiring and simplified assembly techniques. Special Alden Miniature Terminals are new and radical punch press configuration - ratchet slot holds various size component leads for soldering no twisting of leads with pliers. Figure "eight" shape accommodates cross wiring and buss leads. Terminals are punch press parts - so take a minimum of solder, reduce solder time, eliminate danger of cold solder joints.

Back Connectors - 462MIN Series

Alden Terminal Card System means minimum of inter-cabling - but even this cabling can be laid out easily and proceed as simple sub-assembly. Open sided chassis construction makes cable easy to wire to front panel, terminal cards and back connectors. The Alden Back Connectors are units that can be discretely positioned on the back of the chassis isolating lines with incompatible voltages, currents, or frequencies. This design insures accessible solder terminals for soldering - avoids rat nests of congested conventional back connector wiring. Color coded, the Alden back connectors provide beautiful operational or service check points for all leads to and from chassis.

Hinged Front Panel Design
Hinged front panel design of chassis allows rheostats, indicator lights, jacks. etc. to be mounted on panel as another easy-to-work sub-assembly. This penel attaches easily to chassis - is wired - swung up and fastened with Alden Targer Screws.

GET EASY SUB-DIVISION OF LABOR

Solder terminals and sockets quickly rivet to

 Alden terminal card according to layout on Unit Planning Sheet. Components snap into the special Alden Minioture Terminals which hold them for soldering - (No twisting or wrapping of leads necessary) - With all tube sockets and their associated components mounted on one card - the wiring and soldering of circuits is an open, easy-to-work sub-assembly operation.

Target Screws
These screws have concave head with arced notch so power screw driver locates head quickly, no danger of it slipping out and marring panel surface - yet same screw can be unfastened with coin in order to hinge forward the front panel for servicing and check in the field.

"Serve-A-Unit Lock"

Assembled - the Basic Chassis simplifies operation of equipment - Slashes service and maintenance time. Smooth, positive insertion and removal of the chassis is provided by the Alden "Serve-A-Unit Lock." A simple twist of the handle and the chassis backs off with finger tip ease. It also pilots the chassis back into place - securely locking it for operation with the same facility.

WIDE VARIETY OF APPLICATIONS

ON AIRCRAFT EQUIPMENT - Large manufacturers of aircraft equipment are using the Alden Method of unit construction to simplify design and save engineering time.

ON COMPUTERS - Recent large scale digital computer for Air Corps uses Alden "20" Plug-in Bases and Sockets throughour. One of country's largest manufasturers is building two large computers using Alden " 20 " Plug in Packages.
ON BUSINESS EQUIPMENT - Leading business machine manufacturers are designing with Alden components for greater accessibility and ease of servicing of their equipment.

FOR SMALLER UNITS ALDEN "20" PLUG-IN PACKAGES

Here is a plug-in package unit using the above method of converting schematic into finished assembly quickly. Simply mount the completed terminal card sub-assembly on the Alden " 20 " Non-Interchangeable base, dip solder the leads - add cover or housing and handle and it's completed - In operation, visual or instrument checks are easily made - if irouble occurs doubtful units are quickly isolated - these units easily unplug and a comprehensive inspection made. Spare units can be plugged in so equipment doesn't have to be inoperable while sepairs are in process.

TO GET STARTED QUICKLY!

Send for these tremendously useful Laboratory Work Kits and have them in your lab for use on present equipment or immediately ready for next new project:
Kit \#4 Alden " $20^{\prime \prime \prime}$ Plug-in Packages $\$ 10.00^{\circ}$ $\begin{array}{ll}\text { Kit } \# 24 & \text { Alden Basic Chassis.......... } \$ 26.50^{*} \\ \text { Kit }\end{array}$
 Kip
Kit \#8 8 Tasic rerminal Staking rools
 or send for free booklet, "Basic Chassis and Components for Plug-in Unit Construction. "Prices shown are for sample kits only -
For prodution runs send us your schodule.

Inshuments

BROWN ELECTROMETER

For measuring and recording currents as low as 10-15 amperes. High accuracy provided through use of a null balance servo system and a-c amplifiers which eliminate drift common to d-c amplifiers. Used to measure and record minute currents in ionization chambers and wherever currents as low as a billionth of a microampere are encountered. The only such system that incorporates a recorder as an integral part of the circuit.

Electrical Characteristics

Full Scale Current Ranges Available: 10^{-13} amperes with 10^{11} ohm resistor, and selector switch adjustment for full scale or 10 or scale current changes up to 10^{-7} amperes can seale supplied with velector witch adjugtment up to 10^{-5} amperes. up to 10^{5} amperes.
Input Resistor: 10^{11} ohms for most sensitive current measurement. (Also supplied in values down to $10^{5} \mathrm{ohms}$.)
System Accuracy: Approximately 1 ner cent of scale.
Zero Drift: Should not exceed 0.3 millivolt per day.

System Noise: Approximately 5 microvolts. Instrument Speed of Response: Available for either 24,12 , or $41 / 2$ seconds full scale.
Maximum Speed of Response Using $41 / 2$ Second Instrument Speed: 5 seconds for 90 per cent of change, with preamplifier located at source.
Power Supply: 115 volts, 60 cycles. Also dry cell supplied in instrument.
Power Requirements: 65 watts.
For further information, send for Data Sheet

FUNGTION PLOTTER

Can be advantageously employed wherever there is occasion to depict graphically one variable as a function of another. It imparts speed, accuracy and efficiency to the plotting of curves.

Special Instruments

BROWN EXTENDED RANGE PRECISION INDICATOR

Ideal for facilitating the measurement of a variable where it changes throughout a wide range, and where precise evaluation and good readability are vital factors. Incorporating extended scale with automatic range changing operation, the instrument can be supplied With from two to ive ranges, calibrated in emf or the specific quantity under measurement (i.e., pounds or tons of force or thrust, millivoltage, temperature, etc.)
For further information, send for Data Sheet No. 10.0-3.

DUPLEX TWO PEN RECORDER

Provides simultaneous measurements of practically any combination of two independent variables (voltage, current, temperature, pressure, etc.) on a single chart thereby facilitating comparisons of the two variables. Has two separate measuring systems with associated pens. Pens are entirely independent, and traverse the fult eleven inches of chart width without interfering with each other. Both measuring circuits are standardized simultaneously by means of a push button. Actuation and range of the circuits may be the same or totally different.
For further information, send for Data Sheet No. 10.0-6.

NARROW SPAN RECORDERS

New narrow span potentiometer circuit makes possible precise measurement of spans as low as 100 microvolts. Instruments emhodying this new circuit (recorders and precision indicators) are available as self-contained units requiring no pre-amplifier unit. The instruments find ready use wherever accurate measurement of d-c potentials of the order of microvolts is required. Potentials as low as one microvolt can be precisely determined. Can be calibrated in terms of temperature, emf, etc.
For further information, send for Data Sheet No. 10.0-8.

NEW ElectroniK high speed recorder

Ideal for accurately measuring and recording rapidly changing variables often found in research, engineering analyses and other technical investigations. Develops a pen speed sufficiently high to traverse its 11 -inch graduated chart in one second. Full scale signals which vary as rapidly as 20 cycles per minute can be accurately recorded. Signals with a peak-to-peak amplitude of 10% of scale can be reproduced at variations up to 180 cycles per minute. For further information, send for Data Sheet No. 10.0-7.

Components

BROWN CONVERTERS

SILECTRON "C" CORES for quick delivery IN

 PRODUCTION QUANTITIES
1.

... wound from strip as thin as $\mathbf{0 . 0 0 0 2 5 "}$

Cuality-rosed area roved

\star Arnold "C" Cores are made to highly exacting standards of quailty and uniformity. Physical dimentions are held to close toleantes, and each core is tested as follows:

* 29-gauge Silectron cut cores are tested for watt loss and excitation volt-amperes at 60 cycles, at a peak flux density of 15 kg .
$\star 4$-mil cores are tested for watt loss and excitation volt-amperes at 400 cycles, at a peak flux density of 15 kg .
$\star 2$-mil cores are tested for pulse permeability at 2 microseconds, 400 pulses per second, at a peak flux density of 10 kg .
\star 1-mil cores are tested for pulse permeability at 0.25 microseconds, 1000 pulses per second, at a peak flux density of 2500 gauss.
$\star 1 / 2$ and $1 / 4$-mil core tests by special arrangement with the customer.

Now available -"C'" Cores made from Silectron (oriented silicon steel) thin-gauge strip to the highest standards of quality.
Arnold is now producing these cores in a full range of sizes wound from $1 / 4,1 / 2,1,2$ and 4 -mil strip, also 29 -gauge strip, with the entire output scheduled for end use by the U. S. Government. The oriented silicon steel strip from which they are wound is made to a tolerance of plus nothing and minus mill tolerance, to assure designers and users of the lowest core losses and the highest quality in the respective gauges. Butt joints are accurately made to a high standard of preci-
sion, and careful processing of these joints eliminates short-circuiting of the lamination.

Cores with "RIBBED CON. STRUCTION"* can be supplied where desirable.

Ultra thin-gauge oriented silicon steel strip for Arnold "C" Cores is rolled in our own plant on our new micro-gauge 20-high Sendzimir cold-rolling mill. For the cores in current production, standard tests are conducted as noted in the box at left-and special electrical tests may be made to meet specific operating conditions.

- We invite your inquiries.
*Manufactured under license arrangements with Westinghouse Electric Corp.

FOR Pipelines, Utilities, Railroads, Telephony, Aviation, Highways...

For radio relay - Beave its Simpler!

Federalpim

(PULSE TIME MODULATION)
MICROWAVE

Streamlined Circuitry and Fewer Tubes Provide Greater Economy and Dependability!

SIMPLICITY... that's the basis for the greater efficiency, reliability and economy of maintenance of Federal Pulse Time Modulation Microwave ... for radio relay systems of any size, type or length ... over any terrain.

Through simpler equipment-requiring fewer tubes-Federal PTM successfully meets all needs of telephone, teleprinter, telemetering, remote and supervisory control, VHF mobile radio and other services...for complete, simultaneous, dependable, all-weather voice and signal facilities.

Get the facts about Federal PTM's system-wide superiority and proved performance . . . about Federal's more than 20 years of experience in microwave engineering, planning and installation. Write today to Dept. H-713.

Federal PTM Delay Line -"Heart of the System" Remarkably compact and efficient... has no tubes. Maintains absolute synchronization between channels... provides non-shifting channel selection... eliminates crosstalk.

Federal PTM Pulse Generator
Supplies synchronizing pulse to delay line for simple, automatic channel synchronization, eliminating elaborate individual channel tuning provisions. Uses fewer tubes... greatly increases system dependability.

\because

Modulator and Demodulator
Outstanding for minimum-tube design and interchangeability. Plug-connected for ready maintenance ... greater economy in stocking of spare parts.

HEREare some of the Federal PTM multiplex elements that demonstrate the Simplicity of Design that makes Microwave by Federal -
"Microwave at its BEST"

Federal PTM Pulse Restorer
A valuable insurance factor in longer systems. Automatically cuts in and converts repeater into temporary terminal if adjacent repeater fails...maintains communication over remainder of system.

MICROWAVE MOVIE: Be sure to see Federal's new 16 mm . sound-color motion picture "Modern Commnenications With Microuave." Prints shipped without charge for company or organization showings. Write to: Film Distributing Dept.

Federal Telephone and Radio Corporation

 Export Distributors: International Standard Electric Corp., 67 Broad St., N.Y.

1. New, fast-heating G-E iron weighs only $81 / 2$-oz.

2. New G-E portable hi-pot tester is easy to operate.

Two ways to speed your production

Reach hard-to-solder places with this new thin-shank iron

"As easy to use as a pencil," say operators who use General Electric's new lightweight soldering iron.

Its thin, $\frac{5}{16}$-inch-diameter shank lets the $1 / 4$-inch tip into places a regular iron can't touch. Operators can solder more joints per minute-and with fewer rejects-because the iron's lightness, balanced design and comfortable handle all reduce fatigue.

Long-lasting G-E Calrod* heater provides quick heat-recovery properties, gives plenty of heat for uniformly strong soldered joints. Maintenance of this 60 -watt, 120 -volt iron is low because the long-life Ironclad tip need not be filed or dressed. Send for Bulletin GED-1583.

Eliminate cages and barriers with this new insulation tester

Now you can perform high-potential tests on your equipment with minimum danger to personnel. That's because the current output of General Electric's new high-potential insulation tester is limited to 5 milli-amperes-well below the "let go" value.

Testing time is cut, too-no need to set up cages, barriers, or tape. Tester is portable, weighs only 22 lbs. Simply plug it into any 115 -volt a-c outlet and start testing.

Line surges are virtually eliminated in output. Flash-overs can't burn insulation. Neon light on panel gives warning before insulation breaks down. Output is adjustable from 0 to 3500 volts, with test capacitance up to .006 muf. Bulletin GEC-700.

[^1]
Four ways G-E selenium rectifiers meet your d-c power requirements

Selenium rectifiers provide the electrical designer with versatile and flexible means of getting the right quantity of d-c power. But not all selenium rectifiers are alike. Here are four important "quality points" you'll find in G-E units in comparison with competitive equipment:

1. Lower forward resistance for higher output and cooler operationplus lower costs in other circuit components.
2. Less back leakage-for higher efficiency as well as higher output.
3. Cooler operation-the result of the above characteristics - since there is less heat to dissipate, less ventilation is needed.
4. Slower aging-which extends expected life at rated output to over 60,000 hours.
And of course the G-E line is complete, to meet all your design needs.

For a complete refresher on rectifier fundamentals, circuits, and applications, send for the new 28 -page G-E booklet prepared to aid the design engineer. Check Bulletin GET-2350.

Dual-rated capacitors simplify design problems

Meet your design needs, standardize, and cut inventories with these G-E fixed paper-dielectric capacitors. Equally applicable to $a-c$ and $d-c$, they come in many case styles, with ratings from 236 through 660 volts a-c and 400 through 1500 volts d-c. All units are treated with Pyranol* and hermetically sealed to prevent leakage or contamination. Check Bulletin GEC-809.

Current-sensitive relays stand severe vibrations

G-E current sensitive d-c relays are available with d-c pickup ratings in steps from 4 to 1500 ma . They are especially applicable to circuits using limited power for energizing coils-as in aircraft. Lightweight and corrosionproof, these relays withstand severe vibration and operate at rated current through a wide range of altitudes. See Bulletin GEC-834.

Standard stack construction

Tube-mounted construction

Miniature cell assemblies

Checks dialing on Micro-wave and Carrier Current Equipment

- Brush Recording Analyzers save plotting and testing time in applications everywhere. Here, at a substation of the Bonneville Power Administration, a Brush directcoupled dual channel amplifier and dualchannel oscillograph record dialing pulses for a maintenance check. The test immediately indicates any dialing troubles in the system, and their nature. The Brush equipment is also used to check relay operation, and has been found essential to keeping the micro-wave system "on the air". Duplicate Brush equipment is used to service communication facilities in each Bonneville maintenance area.

MEASURES ELECTRICAL VARIABLES . . . CHART AVAILABLE INSTANTANEOUSLY

Brush Direct.Coupled Ampli. fier fir Rack Mounting, Model BL.962.

This high gain, low-drift D-C amplifier is designed for mounting in a standard 19 -inch rack. Other Brush amplifiers and oscillographs are being designed for rack mounting. When used in conjunction with Brush direct-writing oscillographs, amplifier can be used to make recordings of many types of phenomena which previously required complicated intermediate equipment. Voltage gain gives one chart millimeter deflection per millivolt input. Frequency response is essentially linear from D-C to 100 cycles per second. (Bulletin F-698)

The Brush Magnetic Oscillograph, used with the proper Brush Amplifier, makes a direct chart recording of voltage or current, or of physical phenomena such as strain, pressure, acceleration, torque, force, temperature, displacement and vibration. Either direct inking or electric stylus models available. Gearshift provides chart speeds of 5,25 , and 125 mm per second. An auxiliary chart drive is a vailable for speeds of 50,250 , and 1250 mm per hour. Accessory equipment provides event markers where an accurate time base is required, or where it is desirable to correlate events. Photo shows two-channel model for recording of two phenomena simultaneously.

For Bulletin 618 describing these instruments write The Brush Development Co., Dept. K-33, 3405 Perkins Avenue, Cleveland 14, Ohic. Representatives located throughout the U. S. In Canada: A. C. Wickman Limited, Toronto.

1月:1

Piezoelectric Crystals and Ceramics Magnetic Recording
Acoustic Devices
Ulitrasonics.
Industrial \& Research Instruments

Sering up
 TONS

 of Vaculum Melted Metals

Preparing samples of vacuum melted metals for anolysis.

PRODUCTION on vacuum melted metals that was formerly measured in pounds can now be measured in tons. Vacuum Metals' new expanded facilities are capable of producing 5 tons per day of Gas Free High Purity metals and alloys.

Vacuum melting techniques provide metals of higher purity . . . and alloys held to closer composition tolerances than ever before achieved commercially.

The unusual physical, chemical and electrical properties of these metals have proved of particular value for applications such as electronic and electrical parts, magnetic materials, bearing materials, diaphragms, instrument components, and Atomic Energy projects.

Metals now being vacuum melted include copper, nickel, iron, and molybdenum. Further information will be furnished gladly on request.

HIGH PURITY METALS HIGH VACUUM CASTING SPECIAL ALLOYS
GF (Gas Free) metals

VACUUM METALS CORPORATION

Subsidiary of National Research Corporation
70 memorlal drive, cambridge 42, massachusetts

Contermes

JEWEL BEARINGS

Jewel bearing construction offers watch-like precision, a high degree of shock resistance, and unusually low friction coefficient.

PLATINUM WINDINGS

The non-corrosive characteristic of platinum allows a light brush pressure to maintain efficient contact. This, in furn, virtually eliminates brush friction. Platinum, too, prolongs instrument life and assures dependability. One of the outslanding fealures that make the Microtorque* a truly low torque instrument-quality polentiometer.

SPECIFICATIONS

LINEARITY: $\pm 0.5 \%$ of total resistance.
MAXIMUM OPERATING SPEEO: 100 ipm.
ACCELERATION: Will withstand 50G steady state acceleration in best axis.
vibration: Will withstand 0.06^{*} double amplitude sinusoidal vibration from 10 to 55 cps in best axis.
AMEIENT TEMPERATURE: Will function mechanically from $-54^{\circ} \mathrm{C} .10+71^{\circ} \mathrm{C}$.
MOMENT OF INERTIA: $2 \times 10-{ }^{1} 02$-in. ${ }^{2}$ (approx.)
TEMPERATURE COEFFICIENT OF RESISTANCE: $.0006 /^{\circ}$ C. Max.

A Simple Solution to Remote Indicating

The Giannini Microtorque* is an extremely low torque, instrument-quality potentiometer with an electrical output proportional to the angular position of the shaft. Its compact, light-weight, rugged and dust-proof construction means flexibility in applications. It may be directly connected to altimeters, temperature and pressure instruments; used in automatic flight equipment or in industrial laboratory installations where remote indication is required.

The Microtorque* is designed to have an extremely low starting torque and a negligible operating torque. The low mass of the moving parts makes the Microtorque* useful in those applications where an extremely low moment of inertia is essential. The Microtorque* is a proven instrument with proven performance.

Following Microtorques* are available from stock in quantities of six or less

RES. OHMS	starting	TURNS OF WIRE			PRICE**
	TORQUE $\text { IN. } 02$	TYPE 2	TYPE 9	CURRENT**	
250	.006	35	450	\$1	\$45.00
1,000	.004	570	650	71	1 00
2,800	004	700	750	20	\$40.00
	. 003	900	1200	12	\$40.00
10,000	00.3	1.080	; 300	10	\$40.00
25.300	001	1.000	1300	\%	345.00

- Must be de-rated for ambient temperature over $60^{\circ} \mathrm{C}$.
- - - Prices apply to quantities of six of less. For quotation on larger quantities or specialtypes, please write.
Above Microtorques* are available in the following two types Type $2: 270^{\circ}+10^{\circ}-0^{\circ}$ Electrical Rotation. Mechanieal Rotation. Limited by internal stops.
Type 9:354 $\mathbf{~ M i n . ~ E l e c t r i c a l ~ R o t a t i o n . ~ M e c h a n i c a l ~ R o t a t i o n . ~ C o n t i n u o u s . ~}$ Brush does not short ends of coil.
Giannini also produces potentiometers of various types, including non-linear functions, and tapped windings.

For information on this and other fue instruments write Dept. P. G. 1

> bring facts
> from scores of sensing elements

The scientist or test engineer who has a Speedomax Model G Electronic Indicator at his disposal is ready to save himself a lot of time and energy in running tests at as many as 126 different locations.

A flick of the finger connects the desired sensing element to the Indicator . . . the instrument's calibrated drum whirls to the reading . . . the drum stops dead still. The entire operation takes only $4 \frac{1}{2}$ seconds for consecutive readings at opposite ends of the scale. Minimum time for closetogether points is only a fraction of a second. Logging speed depends only on the operator.

MANY CALIBRATIONS AVAILABLE

The condition most frequently measured with these Indicators is temperature, with stress and strain a close second. However, many other quantities suggest themselves, since the Indicator can
show the output of any sensing element which provides a calibratable d - signal.

The maximum of 126 points per Indicator is for measurement of thermocouples connected to toggle switches on the instrument. Using rotary or push button switches, the totals become 96 and 48 respectively. Push buttons are normally supplied with interlocks to assure one-at-a-time operation, but when desired the interlocks can be disconnected so that several switches may be closed simultaneously, causing the instrument to give the average of those points.

As many as 96 Thermohm electrical resistance thermometers may be connected to the Indicator, using either toggle or rotary switches. The number of points for load cells and other non-tem-perature-sensing elements depends on their requirements, but the Indicator can accommodate more points than any other self-contained Indicator available today.

The equipment is described in our Catalog ND46(1). Whether or not you require this information at present, we will be glad to send a copy for reference. Address our nearest office, or 4979 Stenton Ave., Philadelphia 44, Pa.

duroglass is fully tempered to meet underwriters requirements for television implosion plates . . . available in $7 / 32^{\prime \prime}$ or $1 / 4^{\prime \prime}$ thickness, formed or flat.
There is no finer tempered glass for implosion plate use.

We invite your inquiries.

chicago dial

2919 S. LaSalle Street-Chicago 16, Illinois

SPECIFICATIONS—MODELST-2B

FREQUENGY RESPONSE
Vertical Amplifier
DC- $-110400 \mathrm{kc},+0,-20 \%$, not more than 50% down at 700 kc . AC- -10 cycles to $400 \mathrm{kc},+0,-20 \%$, not more than 50% down at 700 kc Probe-- 2 cycles to $400 \mathrm{kc},+0,-20 \%$, not more than 50% down at 700 kc Resporse independent of gain or attenuator setting.
Horizontal Amplifier
DC- $-310400 \mathrm{kc},+0,-20 \%$, not more than 50% at 700 kc $\mathrm{AC}-10$ cycles $10400 \mathrm{kc},+0,-20 \%$, not more than 50% down at 700 kc Resporsa independent of gain or attenuator setting.
SENSITIVITY
Vertical.
Horizontal.
Probe
Deflection P ates Direct Horizonal

AC- $10 \mathrm{mv} . \mathrm{rms} / \mathrm{inch}$
$\mathrm{DC}-28 \mathrm{mv} . \mathrm{dc} /$ /inch $A C-15 \mathrm{mv} . \mathrm{rms} / \mathrm{inch}$ DC- 42 mV . dc/inch $.130 \mathrm{mv} . \mathrm{rms} / \mathrm{inch}$
22 volts rms/inch 22 volts rms/inch

SWEEP
Range- \mathbf{T} riggerec or recurrent - 2 cycles to 30 kc (may be extended downwards by adt ing external capacity across panel lacks).
Sync- \pm Irternal, \pm line and -Ext. (requires -.3 volts peak to peak for ex
ternal sync) Sweep Expansi

PHASE SHIFT-Negligible phase shift between amplifiers from 0 to 300 kc
BLANKING-Z-axis blanking requires 20 volts peak to blank.
CALIBRATION-Seven voltages available by selector switch:
.1, $3,1,10,30,100$ and 300 volts peak to peak $\pm 15 \%$
DIRECT CONNECTIONS TO DEFLECTION PLATES-Availablle through capacitors-internal positioning circuits still function.
ambient temperature range- 0° to $40^{\circ} \mathrm{C}$
POWER REQUIREMENTS - $105-125$ volts, $50 / 60$ cycles power consumption approximately 120 watts. (By a simple wiring change, may be operated from
$210-250$ volt line.)

Type ST-2C-A 5-inch scope particularly useful where wide frequency response plus portability are required. Ideal for maintenance of microwave installations and TV stations. Low capacity input probe. . . Z-axis input . . . calibration voltages provided . . . deflection plates available...hard tube sweep.

PRECISION THAT

Reliable General Electric Instruments Offer Extreme Versatility in Lab and Industrial Applications

S^{T}TABILITY is the keynote of the ST-2B allpurpose scope, shown in the picture above. Designed to permit a choice of short, medium or long persistence $C R$ tubes, the unit incorporates identical direct coupled vertical and horizontal amplifiers. Filaments and screens on the first amplifier stages are regulated. Vertical selector switch allows choice of probe, calibration, AC or DC inputs.
Across the board against 4 conventional scopes, the General Electric ST-2B tests superior in 11 different characteristics.

Germanium Diode Checker Type ST-12A - A new G-E instrument for use in laboratories, quality control groups, service shops -wherever there is need for checking the static characteristics of diodes. Specifications -POWER REQUIREMENTS: 105-125 volts, 50/60|cycle, approximately 10 watts. FORWARD RANGES: Current-0.3, 1.2,6 and 12 milliamperes full scale. Voltage-. 3 and 1.2 volts full scale. INVERSE RANGES: Current $-60,120,300$ and 1200 microamperes full scale. Voltage-3, 12 and 120 voltsfull scale.

Other applications: general resistance checker (10 ohms to 6 megohms)... accurately-metered power supply ... forming electrolytic capacitors and checking DC leakage current.

Laboratory equipment pays big dividends

TV Channel Sweep Generator Type ST-11A

 -Covers all 12 VHF television channels and is designed primarily for TV receiver production line testing. Simple to operate: one front-panel control selects the sweep range and markers simultaneously. On-off switch and side-band control switch are also on the front panel. Separate crystal for each TV channel . . . picture and audio carrier markers available simultaneously.This instrument combines the characteristics of General Electric's ST-4A Variable Permeability Sweep Generator and ST-5A Crystal Controlled Marker Generator.

Only Speer has this patented notch

...to anchor windings securely
 antee your leads will be anchored securely?
Try Speer. Their rugged, well-made coil forms possess patented notches at both ends. These notches are designed so that the leads of the coil may be wound around and then fastened securely, with a minimum of time and labor.
Speer coil forms are molded from mineral filled material, iron powder, or metallic oxides, and have from two to six terminals. Their effectiveness has been proved by actual performance in hundreds of circuits, under all types of operating conditions.

See what they can do for you...
Write today for information on specifications

Why California comes to Brooklyn for sheet metal fabrication

West Coast electronic manufacturers reach 3000 miles across the country for Karp-fabricated cabinets because:
. . . they know Karp's experience with leaders-both large and small-of the electronic industry qualifies Karp to solve their problems in the design stage . . . economically, quickly, practically.
. . . they know they can often draw upon Karp's thousands of existing dies . . . to eliminate the need for much costly tooling.
. . . and most of all, they know that when their cabinets leave the Karp plant, all dimensions are correct . . . every hole is drilled clean and positioned accurately . . . the finish is perfect.

If you would like to learn how Karp methods can be applied to your problems, write for complete details. Or, if you are on the West Coast, August 27-29, be sure to visit our booth (No. 423) at the Western Electronic Show, Long Beach, California.
Karp Metal Products Co., Inc., 215 63rd Street, Brooklyn 20, N. Y.

Rugged yet attractive... This cabinet for Applied Electronics' 10 -watt radiotelephone (bottom) had to be rugged enough for small boat usage, yet attractive enough to sell. The top cabinet, specially designed for one of Hewlett-Packard's Electronic Frequency counters, is low cost yet distinctive. And among other leading West Coast electronic manufacturers, Packard-Bell is a regular user of cabinets built by Karp.

8

 THEYRE NEW...

 THEYRE NEW... AND THEYRE THOMPSON TOO!

Model CA-26,1P6T, 115 volt, 60 cycle, $A C$ motor-actuated Coaxial Switch for use with RG-9/U cable.

COAXIAL SWITCHES

designed, engineered, manufactured...
by Thompson

Aid or Trade? A CRISIS AHEAD

Acrisis in the foreign trade relations of the United States is in the offing. It is a crisis caused by:

1. Efforts of producers in friendly nations to earn more dollars by increasing exports to the United States, and
2. Efforts of industries in the United States which would be hurt by competition from these imports to keep them out.

This crisis is a threat to the effectiveness of American leadership in the crucial effort to build the nations of the free world into a strong and unified group. It is the purpose of this editorial to advocate a constructive approach to the difficult situation that is developing.

Background of the Crisis

Most countries in the free world-with American aid-have managed to push their outputs well above prewar levels. As they have done so, they have been urged by our highest government officials to increase their exports to us. Sales in our market enable these countries to earn dollars which they use in turn to buy the products of America's farms and factories. Thus, as they become self-supporting, the need of American aid is reduced.

But as these efforts to export more to the United States have promised increasing success, competitive American producers have become increasingly alarmed about what that success might do to them. Consequently, they are seeking more protection-by appeals to the U. S. Tariff Commission to recommend higher import duties and by appeals to Congress for new laws to discourage imports.

Our Friends Protest

A year ago Congress answered one of these appeals by imposing a quota on imports of dairy products. Now, among many other legislative proposals being strenuously pressed is a move to extend the scope of "Buy American" legislation. A year ago the U. S. Tariff Commission had only four petitions for increased import duties on its docket. Since then fourteen more petitions have been filed and others are definitely on the way.
Faced by these mounting efforts to block the sale of their products in the American market, no less than eleven friendly nations, including Great Britain, France, Italy, Canada, the Netherlands, Switzerland and Denmark, have filed protests with our State Department. Through many of the protests runs one refrain. Although stated in diplomatic language, it might be correctly paraphrased to say: "In
sending us aid you have made it very clear that you want us to get on a self-supporting basis at the earliest possible moment. But, when we begin to make headway in that direction by trying to sell you more of the things we are equipped to produce, you start closing your market to us." The threat of European resentment against the United States being stirred up by this argument is obviously great.

At the same time there exist grounds for special resentment in the United States against certain prospective imports of European manufactured goods - those of machine tools, for example. In part these will be produced with machinery that has been sent to Europe as part of our economic aid program. With absolutely no diplomatic language involved, the argument, which will be extended much farther than the facts would justify, will run: "We gave those people the equipment that they now use to cut our throats!" This line of argument will find response among workers as well as employers in industries faced by more competition from imports. Labor, too, is keen for protection against more foreign competition.

Aid or Trade?

As between continuing direct economic aid to Europe or accepting the imports that would make those countries self-supporting, some would prefer to continue the aid program. They argue that the tax machinery of the federal government can spread the burden of aid broadly, while we have no comparable machinery that can cushion the shock to individual industries, firms and communities that may result from stepped-up imports of competitive products.

As we see it, this position is untenable. It would make rubbish of our Atlantic Charter promise ". . . to further the enjoyment by all States, great or small, victor or vanquished, of access, on equal terms, to the trade and to the raw materials of the world which are needed for their economic prosperity." It would be an admission that, for all our profession of faith in competition and our opposition to

European cartels, we really don't believe in competition.

U. S. Self-Interest

The people of this country have invested billions of dollars and seven years of hard work in the attempt to put our allies on a selfsupporting basis. If we keep their goods out by raising trade barriers, we are directly defeating our own purposes.

Also, in moving to protect some groups of American producers we should be hurting others. For many American producers the export market, which this year will take about $\$ 14$ billion of civilian goods, spells the difference between operating at capacity and closing down 25% of their facilities. When we discourage imports we cut off dollar earnings by other nations which are spent here to keep some of our factories and farms going.

At the same time, it must be recognized that certain American industries and their capacity to maintain employment will be hurt by increased imports. Hence it becomes critically important for the United States to formulate a national program designed to help these industries and communities take up the shock.

There is no neat and simple prescription by which this can be done, but several possibilities have been suggested. One on which there is general agreement is that tariff reductions should be gradual. To cushion their impact, the government might well give preference on defense orders to industries and areas adversely affected by an increased volume of imports. Direct assistance to workers and companies in shifting to different lines of business may be worth consideration.

These are by no means all the possibilities. They may not even be the best. But they do serve to suggest the necessity for flexibility and imagination in dealing with the growing crisis in trade relations. Our ingenuity in developing new ideas to meet this crisis may well be a decisive factor in our effort to weld the free nations into a strong and durable alliance.

McGraw-Hill Publishing Company, Inc.

Announces

The

A DUAL TR TUBE

Each section of the BL27 is electrically similar to Type 1B63A. The two sections have a common wave guide wall ard a common gas fill. Used with short-slot hybrids.* the BL27 provides a Highly compact duplexer of utmost simplicity $/$, with excellent performance over the band of $8500-9600 . \mathrm{mc}$. with respect to both transmission and recepion characteristics.
*Proceeding: LR E. February, 1352, Page 180

For additional information write for Technical
Bulletin T-19.

We invite your inquiries regarding

- ENGINEERING
- development
- PRODUCTION

Bomarc Laboratories

INCORPORATED
\qquad

Catalog on request. Write (an you commany letterhead) Dept. C, BOMAC Laboratories Inc. Beverly, Mass

TRIE PRINTHD CIRCUITS

DIODE FILTER

1403-01 1403-02 1403-03

TRIODE PLATE COUPLER

$1404-01$ 1406-01
1404-02 1406-02

VERTICAL INTEGRATOR

1405-01

PENTODE PLATE COUPLER

AUDIO OUTPUT CIRCUIT

ERIE PRINTED CIRCUITS

offer these aduantages:

- Fewer soldered connections mean less installation time.
- One installation unit replaces severral.
- Fewer connections mean fewer wiring errors.
- Circuit stability is improved through simplification.
Lower costs for procurement and slock maintenance.
- Other material costs are decreased by smaller size, lighter weight.

Operations Records Show...

.. . Eimac tubes are of the
highest electronic standards

Eitel-McCullough, Inc
798 San Matoc Avanue
San Bruno, California
Gentlemen:
Panagra operations records show that Elmac tubes have averaged over 10,000 hours of service for us in the ground stations serving our daily, deluxe DC-6 E1 InterAmericano flights down the west coast of South America, Results in terms of efficiency, economy, and allmaround dependability have proven to us that Eimac tubes are of the highest electronic standards.

Very truly yours,

John H. Dittemore assistant supt. of Communications

Pan American-Grace Airways, Inc., pıoneer South American airline has served the west coast countries for 24 years. Find as Panagra has found - that to employ Eimac tubes is to employ the best.

EITEL-McCULLOUGH, INC.
 SANBRUNO, CALIFORNIA

Export Agents: Frazar \& Hansen, 301 Clay St., San Francisco, California

WALDES TRUARC RINGS REPLACE COTTER PINS SAVE 44\% IN LABOR AND ASSEMBLY COSTS

COTTER PIN WAY: Flint wheel shaft in lighter assembly requires cotter pin, washer. Difficulty in drilling perfect hole causes rejects. Assembly is slow, costly.

TRUARC WAY: Woldes Truare "E" ring fits into groove in shaft; locks as. sembly securely for life. Groove is quickly, eosily cut . . . assembly is simple, speedy.

Brown \& Bigelow, St. Paul, Minn., saved $\$ 6.95$ per thousand units by incorporating Truarc Rings in the design for the REDI-FLAME compressed gas desk lighter! In spite of greater initial cost of Truarc Rings as against cotter pins, they were able to cut machining and assembly costs drastically-for an overall savings of 44% !

Redesign with Waldes Truare Rings and you too will cut costs. Wherever you have a fastening problem... wher-
ever you use machined shoulders, bolts, snap rings, cotter pins, there's a Truarc Ring designed to do a better job of holding parts together.

Waldes Truarc Rings are precisionengineered. . . quick and easy to assemble and disassemble. They can be used over and over again.
Find out what Truarc Rings can do for you. Send your blueprints to Waldes Truarc engineers for individual attention, without obligation.

COMPARATIVE COSTS

Cotter Pin Way		Truare Way	
Material	\$PerM	Material	\$PerM
Shaft Cotter pin Washer	. 48	Shaft	. 35
	- 46	Truarc ring	g 8.68
	1.50		
	2.44		9.03
Labor		Labop	
Shaft Washer Assembly	10.22	Shaft	2.27
	. 72		
	9.28	Assembly	4.41
	20.22		6.68
TOTAL	\$22.66	TOTAL \$	\$15.71

TOTAL SAVINGS WITH TRUARC RINGS: $\$ 6.95$ or 44%

For precision internal grooving and undercutting ... Waldes Grooving Tool.

We put the ocean in a box...

In addition to the many complex problems solved by Ford for the Military Services there have been less complicated ones such as "benchtesting" a top-classified mechanism by using input signals to simulate the motion of a ship on the open sea. Ford produced these signals within
the limited confines of a box.
Whatever the problem in intricate computing devices, no matter how simple or complex, Ford has the engineering "know-how" for its successful solution. For 37 years, Ford has pioneered in the field of nationally important automatic equipments with
a record of outstanding success.
That is why Ford Instrument Company is usually considered first to research, develop, design and produce mechanical, hydraulic, electromechanical, and electronic instruments and components for specialized military and industrial applications.

FORD INSTRUMENT COMPANY
 DIVISION OF THE SPERRY CORPORATION

31-10 Thomson Ave., Long Island City 1, N. Y.

general offices: NEWARK 16, DELAWARE

TYPE 252, JAN-R.19, Type Ra20

2 watt, $1174_{4}^{\prime \prime}$. diameter variable wirewound resistor. Also available with other special military features not covered by JAN-R-19. Attached Switch can be supplied.

Resistance $50 \pm 10 \%$ $100 \pm 10 \%$ $250 \pm 10 \%$ $500 \pm 10 \%$ $1000 \pm 10 \%$ $1500 \pm 10 \%$ $2500 \pm 10 \%$ $5000 \pm 10 \%$ $10,000 \pm 10 \%$

RA20, JAN Shaft Type SD CTS Part JAN-R-19 TYPE B8079 RA20A1SD500AK W6929 RA20A1SD101AK $\times 3497$ RA20A1SD251AK X3497 RA20A1SD251AK W6931 RA20A1SD501AK W6932 RA20A1SD102AK W6933 RA20A1SD152AK W6934 RA20A1SD252AK W6935 RA20A1 SD502AK W6936 RA20A1SD103AK

RA20 High Torque, JAN Shaft Type SD CTS Part JAN-R-19 TYPE X3496 RA20A2SD500AK L9388 RA20A2SD101AK M9879 RA20A2SD251AK $\times 3498$ RA20A2SD501AK $\times 3499$ RALOA2SO501AK $\begin{array}{ll}\text { X3499 } & \text { RA20A2SD102AK } \\ \text { M9809 }\end{array}$ 19103 RA20A2SD252AK 19104 RA20A2SD502AK H8979 RA20A2SD103AK

TYPE 25, JAN-R-19, Type RA30 (May also be used as Type RA25)

4 watt, $1{ }^{17 / 32^{\prime \prime}}$
diameter variable wirewound resistor. Also available with other special military features not covered by JAN-R-19. Attached Switch can be supplied.

Resistance
$50 \pm 10 \%$
$100 \pm 10 \%$
$250 \pm 10 \%$
$500 \pm 10 \%$
$1000 \pm 10 \%$ $1500 \pm 10 \%$ $2500 \pm 10 \%$ $500 \pm \pm 10 \%$ $5000 \pm 10 \%$
$10,000 \pm 10 \%$ $15,000 \pm 10 \%$

RA30, JAN Shaft Type SD CTS Part JAN-R-19 TYPE X3502 RA3OA1SD500AK $\times 3503$ RA30A1SD101AK $\times 3505$ RA30A1SD251AK $\times 3507$ RA30A1SD501AK $\times 3508$ RA30A1SD102AK $\times 3509$ RA30A1SD152AK $\times 3511$ RA30A1SD252AK X3511 RA30A1SD252AK Q1409 RA30A1SD502AK $\begin{array}{ll}\text { X3513 } & \text { RA30A1SD103AK } \\ \times 3514 & \text { RA30A1SD153AK }\end{array}$

RA30 High Torque ${ }_{r}$ JAN Shaft Type SD CTS Part JAN-R-19 TYPE W2837 RA30A2SD500AK $\times 3504$ RA30A2SD101AK $\times 3506$ RA30A2SD251AK M7566 RA30A2SD501AK S2444 RA30A2SD102AK X3510 RA30A2SD152AK S2736 RA30A2SD252AK $\times 3512$ RA30A2SD502AK R1561 RA30A2SD103AK RA30A2SD153AK

$I_{\text {mmediate elelivery from stock }}$

JaN-R. 94 and Jan-R-19 type military varlable resistors
Preference given to orders carrying military contract number and DO. rating. Other JAN items or special items with or without associated switches can be fabricated to your specifications. Please give complete details on your requirements including electrical and mechanical specifications.
unfrecedented performance characteristics
Designed for use in military equipment subject to extreme temperature and humidity ranges including jet and other planes, guided missiles, tanks, ships and submarines, telemetering; microwave, portable or mobile equipment and all other military communications.
For further information, write for Stock Sheet No. 162

new 38-page illustrated catalog-Describes Electrical and Mechanical characteristics, Special Features and Constructions of a complete line of variable resistors for military and civilian use. Includes dimensional drawings of each resistor. Write today for your copy.

167 types

specialists in precision mass production of variable resistors
FOUNDED 1896 - ELKHART, INDIANA

CTS SHAFT TYPE $\angle T-2$
CTS SHAFT TYPE RE LOCKING BUSHING

MOUNTING HAROWARE ASSEMALED MOUNTING NUT $\frac{3}{8}$ HEX: * $\frac{3}{2}$ LOCK NUT \& HEX \& \& LOCK WASHER MISHA

[^2]
TYPE 65

	CTS Parl CTS Shafl Type RE	Locking Bushing RTS
CTS Shaft Type LT-2		

$1 / 2$ watt $70^{\circ} \mathrm{C}, 3 / 4^{\prime \prime}$ diameter miniaturized variable
composition resistor.

TYPE 95, JAN-R-94, Type RV4

Resistance $100 \pm 10 \%$ $250 \pm 10 \%$ $500 \pm 10 \%$ $1000 \pm 10 \%$ $2500 \pm 10 \%$ $5000 \pm 10 \%$ $10,000 \pm 10 \%$ $25,000 \pm 10 \%$ $50,000 \pm 10 \%$ $100,000 \pm 10 \%$ $250,000 \pm 10 \%$ $500,000 \pm 10 \%$ 1 Meg $\pm 20 \%$
$2.5 \mathrm{Meg} \pm 20 \%$
$5 \mathrm{Meg} \pm 20 \%$

JAN-R-94 TYPE RV4 JAN Shaft Type SD RV4ATSD101A RV4ATSD251A RV4ATSD501A RV4ATSD501A RV4ATSDI02A RV4ATSD252A RV4ATSD502A RV4ATSD103A RV4ATSD253A RV4ATSD503A RV4ATSD104A RV4ATSD254A RV4ATSD504A RV4ATSO504A RV4ATSO105B RV4ATSD2558 RV4ATSD505B

JAN-R-94 TYPE RV4 JAN Shafl Type Rif RV4ATRJ101A RV4ATRI251A RV4ATR1501A RV4ATR1501A RV4ATRJ102A RV4ATRJ252A RV4ATRI502A RV4ATRJ103A RV4ATRJ253A RV4ATRI503A RV4ATRJ104A RV4ATRJ254A RV4ATRJ504A RV4ATRU05A RV4ATRJ105B RV4ATRJ505B

CTS Pari
Non-JAN Locking Bushing
CTS Shaft Typo LT-1
W3160
W3161
W3161
W3162
W3166
W3166
W3163
W3164
W3167
W3168
W3169
W3170
W3171
W3172
W3173
W3165
W3159

2 watt $70^{\circ} \mathrm{C}, 11 / 8^{\prime \prime}$ diameter variable composition resistor. Also available with other special military features not covered by JAN-R-94.
Attached Switch can be supplied.

TYPE 45, JAN-R-94, Type RV2

	RV2. JAN Shalt Type SD		CTS Part Non-JAN Lacking Bushing
Resistance	CTS Pam	JAN-R-94 TYPE	CTS Shaft Type LT-1
$100 \pm 10 \%$	A5876	RV2ATSD101A	A5922
$250 \pm 10 \%$	A5877	RV2ATSD251A	A5923
$500 \pm 10 \%$	A5878	RV2ATSD501A	A5924
$1000 \pm 10 \%$	A5879	RV2ATSD102A	A5925
$2500 \pm 10 \%$	A5880	RV2ATSD252A	A5926
$5000 \pm 10 \%$	A5881	RV2ATSD502A	A5927
10,000 $\pm 10 \%$	A5882	RV2ATSD103A	A5928
$25,000 \pm 10 \%$	A5883	RV2ATSD253A	A5929
50,000 $\pm 10 \%$	A5884	RV2ATSD503A	A5930
100,000 $\pm 10 \%$	A5885	RV2ATSD104A	A5931
$250,000 \pm 10 \%$	A5886	RV2ATSD254A	A5932
$500,000 \pm 10 \%$	A5887	RV2ATSD504A	A5933
$1 \mathrm{Meg} \pm 20 \%$	A5888	RV2ATSD1058	A5934
2.5 Meg 土 20%	A5889	RV2ATSD255B	A5935

$1 / 4$ watt, $15 / 16^{\prime \prime}$ diameter variable composition resistor. Also available with other special military features not covered by

JAN-R-94.
Attached Switch can be supplied.

TYPE 35, JAN-R-94, Type RV3

	RV3, JAN Shafl Type SD	Non- JAN Locking Bushing	
Heslatance	CTS Part	JAN-R-94 TYPE	CTS Shafl Type LT-1
$100 \pm 10 \%$	A5861	RV3ATSD101A	A5907
$\mathbf{2 5 0} \pm 10 \%$	A5862	RV3ATSD251A	A5908
$500 \pm 10 \%$	A5863	RV3ATSD501A	A5909
$1000 \pm 10 \%$	A5864	RV3ATSD102A	A5910
$2500 \pm 10 \%$	A5865	RV3ATSD252A	A5911
$5000 \pm 10 \%$	A5866	RV3ATSD502A	A5912
$10,000 \pm 10 \%$	A5867	RV3ATSD103A	A5913
$25,000 \pm 10 \%$	A5868	RV3ATSD253A	A5914
$50,000 \pm 10 \%$	A5869	RV3ATSD503A	A5915
$100,000 \pm 10 \%$	A5870	RV3ATSD104A	A5916
$250,000 \pm 10 \%$	A5871	RV3ATSD254A	A5917
$500,000 \pm 10 \%$	A5872	RV3ATSD504A	A5918
$1 M e g \pm 20 \%$	A5873	RV3ATSD105B	A5919
$2.5 \mathrm{Meg} \pm 20 \%$	A5874	RV3ATSD255B	A5920
$5 \mathrm{Meg} \pm 20 \%$	A5875	RV3ATSD505B	A5921

$1 / 2$ watt, $11 / 8^{\prime \prime}$ diameter variable composition resistor. Also available with other special military features not covered by

JAN-R-94.
Attached Switch can be supplied.

1 Crossover wire insulated from each winding by 2000v. insulation (patented).
Special metal molded connecting feature, which bonds end of winding and terminal in a non-corrosive and mechanically secure manner-no solder or flux used.
(3)

Reversed and balanced Pl-windings for low inductance, with use of only the finest resistance alloys.

Impregnated with approved fungus, moisture and salt waterproofing compounds.
JAN approved non-hydroscopic steatite bobbin, specially treated prior to winding in order to provide additional protection for fine enameled wire.

Protective fungi resistant acetate label.

Rigid hot solder coated brass terminals for easier soldering.

Slow leaks can be expensive

HOW SLOW?

40 years 20 years 30 years

Leak Detecfor Model 24-101A detects, locates and measures any leak down to the almost unbelievably minute range where it would require 31 years for one cubic centimeter of gas to escape.

HOW EXPENSIVE?

IF you are working with critical processes or equipment such as hermetically sealed instruments or glass-to-metal seals required in television camera tube assembly, then you know very slow leaks can be costly. In many of these low-volume, low-pressure applications this mass spectrometer type leak detector is the only instrument sensitive enough for the job.

This instrument is also ideal for less critical workchecking industrial vacuum equipment, high pressure cylinders, compressors moving on an assembly line, valves, welded and soldered joints. Write for Bulletin CEC 1801.

Consolidated Engineering CORPORATION

300 North Sierra Madre Villa, Pasadena 8, California Sales and Service through CEC INSTRUMENTS, INC., a subsidiary with offices in: Pasadena, Philadelphia, Chicago, Dallas.

MICROMANOMETER, MODEL 23.105 pro. vides precise absolute pressure measurements in the micron range (0.1 to 150 microns) without knowledge of the composition of the gas. This remarkable property enables the instrument to satis fy many critical requirements in scientific and industrial vacuum applications. Pressure changes of a fraction of a micron can now be determined.
> onolytical instruments for science and industry

DRIVER-HARRIS ANNOUNCES

 macraramaмм

As producers of the world famous "Nichrome"* and other outstanding electric heating and resistance alloys, Driver-Harris engineers are interested in obtaining application results commensurate with the exceptional advantages their alloys afford. Therefore they have developed a new coiling machine which eliminates wire coiling faults-especially coil irregularity due to work-hardened areas produced during coil formation.

This new machine is the result of knowledge accumulated during forty years of close association with wire coiling problems. Its revolutionary principle of operation-the synchronized rolling action of all coiling partsresults in vastly improved performance over that of any other type machine.

Product of long study and a thorough knowledge of the requirements of the industry, this Driver-Harris unit-
(1) handles the full range of resisfance wire coiling normally required, close or open winding (and can be adapted for twin wire coiling);
(2) cuts coil ends clean on all sizes, close or open wound;
(3) maintains resistance accuracy of cuf coils at all times by photo-electric control (variation not exceeding $\pm 1 \%$);
(4) affords the lowest operational and mainfenance costs of any comparable coiling machine.

Note even spocing between turns of stretched coils.

Coil ends lie fol. No burring or fwisting of wire.

Standard Model coils \#20 to \#36 B\&S gauge wire. Units for other gauges huilt to order. Send for illustrated Bulletin C-52, giving full information.
T.M. Res. U.S. Pat. Of

Driver-Harris Company HARRISON, NEW JERSEY

a small, low-cost, electronic digital general purpose computer with 4 important new features

Radically new circuit techniques used in the CADAC 102-A nake possible a small, extremely reliable, digital general purpose computer capable of solving any problem that can be put into numerical form. It uses a conventional three-address command with one instruction and three addresses per word, and has a full set of commands-including addition, subtraction, multiplication, division, shift, compare, over•fow, extract, print decimal, print octal, block search, tape read, tape write, card punch, and card read-available for use by the programmer. It is mounted on casters for mobility, and requires no special floor or ceiling installation for either power or ventilation.

The CADAC 102, predecessor of the 102 -A recently delivered to the Air Force, has been operated for more than 170 hours over a three month period. with only three machine failures. The would be happy to send you complete, detailed information and prices on the CADAC 102.A. Simply write to the Director of Applications:

THESE 4

increase its usefulness to the engineer

100,000 word auxiliary magnetic tape memory

A block search magnetic tape auxiliary memory can be used with the CADAC 102-A. This unit is automatically accessible for reading from and writing on magnetic tape which stores 100,000 words. A multiplicity of these magnetic tape units can be coupled to the CADAC 102 -A if more than 100,000 words of auxiliary storage is desired. Two commands - "read from" and "write on"-are available to the programmer for auxiliary storage use. A third command "block search" may be used to start a tape unit searching for a specific address on the tape. While searching proceeds, the computer can carry out other commands.

Computer can be filled

 automaticallyA Flexowriter electric typewriter can be used for automatic read in and read out. Standard programs and problems can be stored on paper tape.

Decimal filling and printing The new input-output number system of the CADAC 102-A enables it to accept and print decimal digits, with programmed conversion to and from binary numbers. The octal number system can still be used for filling and printing if desired.

IBM punched card input-output
Number and command information can be read into the CADAC 102-A from IBM punched cards. Output from the computer can operate an IBM card punch. Both of these operations are automatic upon command of the computer.

NEW leasing plan NOW available

The CADAC 102-A can be purchased outright, or leased with the option to buy any time during the first two years. A complete parts and service warranty, including both preventive and special maintenance will be included with lease if desired.

For pooces openamataller Under all conditions

Model 446, 350 Waft, 4 channel, 6 frequency transmitter (A1, A3), manufactured by Aerocom. Frequency range from 2.5 to 24 Mcs. Ste billity $.003 \%$ using CR-18/U crystals. Operate's on any stable voltage irom 200 to 250 volts, $50 / 60$ cycles, single phase. This transmitter uses three ADLAKE Relays.

AEROCOM TRANSMITTERS USE Adlakerears

When the "ceiling is zero"- when fog, rain or sleet pulls visibility down and runs flying risks upthen aeronautical transmitters must not fail. Their reliability under all conditions makes ADLAKE Mercury Relays the choice of Aerocom, leading electronic manufacturer of 3090 Douglas Road, Miami 33, Florida.
adLaKE Relays are designed and built to meet the most exacting requirements. Their mercury-tomercury contact prevents burning,
pitting and sticking, and their sturdy construction armors them against outside vibration or impact. And most important of all they require no maintenance, for they are hermetically sealed against dust, dirt and moisture.
Get the full story on the part ADLAKE Relays can play in your business! Write The Adams \& Westlake Company, 1107 N. Michigan, Elkhart, Indiana. No obligation, of course.

EVERY ADLAKE RELAY GIVES YOU THESE ADVANTAGES:

HERMETICALLY SEALED-dust, dirt, moisture, oxidation and temperature changes can't interfere with operation.
MERCURY-TO-MERCURY CONTACT-prevents burning, pitting and sticking. SILENT AND CHATTERLESS ABSOLUTELY SAFE REQUIRES NO MAINTENANCE

[^3]

Fungus-resistant plastic tape harnesses wiring on this D.O.

Insulation rot is no problem on this Defense Order at The Austin Company's Special Devices Division, New York, N. Y. "Scotch" Electrical Tape No. 20 meets all military specifications for this special harnessing jobdoesn't cause "cold flow" of the plastic jacketed wires like ordinary harnessing materials. And this tough plastic tape resists oil, moisture and acids, too.

Dozens of different "Scotch" Electrical Tapes are now available to help you meet D.O. specifications, or to solve practically any insulating or harnessing problem. There are tapes with thermosetting adhesives, high temperature tapes and films; tapes for high frequency insulation you name it!

For complete information write Minnesota Mining \& Mfg. Co., Dept ES-82,St. Paul 6, Minn. Do it today!

The term "Scotch" and the plaid design are registered tradernarks for the more than 200 pressure-sensitive adhesive tapes made in U.S.A. by Minnesota Mining \& Mfg. Co., St. Paul 6, Minn.-also makers of "Scotch" Sound Recording Tape, "Underseal" Rubberized Coating, "Scotchlite" Reflective Sheeting, "Safety-Walk" Noo-slip Surfacing, "3M" Abrasives, " $3 \mathrm{M}^{\prime}$ " Adhesives, General Export: 270 Park Avenue, New York 17, N. Y. In Canada: London, Ont., Can.

CUT 90\% OF RADIO AND TV SET SOLDERING WITH

Cut costs! Use Sylvapia stamped circuits and dipped solder sockets in your radio and television sets. Eliminate expensive hand-wiring . . . the danger of wrong connections and cold soldering joints.

Sylvania engineers are ready to develop stamped circuits for your TV Tuners and TV IF Amplifiers. Or prepare loop antennas for your radios . . completely
prefabricated panels with stamped wiring, and special sockets and terminals for hot dip soldering for all your electronic equipment. Sylvania socket terminals and components are electrically connected to the circuit in one single soldering operation!

For complete details write to: Sylvania Electric Products Inc., Dept. A-1008, Warren, Pa.

SIITINI
 Sylvania Electric Products Inc.

Stokes Microvac Pumps...are dasic to Vacuum Processing

High volumetric and mechanical efficiency make these famous pumps economical and reliable units in any vacuum system.

Capacities of Stokes Microvac Pumps run from 15 to 500 cfm ... pressures to 10 microns absolute. Power consumption is low and the top-mounted motor contributes to compact design requiring minimum floor space.

Lubrication of the four moving parts (including the exhaust valve of corrosionresistant Teflon) is fully automatic. There are no stuffing-boxes or greasefittings, and no packing.

Parts are precision-finished, standard and interchangeable. Freedom from wear assures years of trouble-proof service.

Stokes is the only manufacturer of equipment for complete vacuum systems, including

Send for new Vacuum Calculator for rapid slide-rule calculations. Includes standard ABCD log scale. Also send for Catalog 700, "Stokes Microvac Pumps for High Vacuum" with copious reference material.
 Microvac mechanical pumps, oil diffusion pumps, McLeod Gages and Vacuum Valves.

Consult with Stokes on the application of vacuum to rotary exhaust machines, house vacuum systems, vacuum impregnation, vacuum furnaces, vacuum metallizing, and to other purposes for which vacuum deserves exploration.

STOKES MAKES

Plastics Molding Presses,
Industrial Tabletting and Powder Metal Presses,

F. J. STOKES MACHINE COMPANY, 5547 TABOR ROAD, PHILADELPHIA 20, PA.

LABORATORY for ELECTRONICS, INC.

Research, Engineering and Production of Precision Electronic Equipment

MODEL 401 OSCILLOSCOPE

- a high gain, wide band, versatile, general purpose instrument for precise, quantitative studies of pulse waveforms, transients and other high or low speed electrical phenomena.
For complete information Ask for Bulletin 052

MODEL 101 MAGNETOMETER

Accurately measures mag. netic field strength using the principle of nuclear resonance.
For complete information Ask for Bulletin M52

MERCURY DELAY LINES

Used for storage of information, comparison of two sets of information, correlations and sequential timing devices, they are the smallest, most compact lines available.

For complete information Ask for Bulletin MDL51

MODEL 802 STABLE MICROWAVE OSCILLATCR

Provides a highly stable source of microwave signals, suitable for use as a laboratory standard. Features a direct reading frequency dial, sine wave modulation input and self-contained power supply.

Engineering Representatives:

Albuquerque, New Mexico
Gerald B. Miller Company
$3021 / 2$ West Central Avenue Albuquerque 3-1998
Alexandria, Virginia
W. A. Brown \& Associates
3834 Mt. Vernon Avenue
Overlook 6100
Atlanta, Georgia
W. A. Brown \& Associates
1570 Northside Drive
Vernon 5395
Boston 15, Mass.
Walter T. Hannigan Company
43 Leon Street
Garrison 7-2650
Chicago 45, Illinois
Hugh Marsland \& Company
6405 N. California Avenue
Ambassador 2-155s

Cleveland 15, Ohio
M. P. Odell Company

2536 Euclid Avenue
Prospect 1.6171
Dallas 1, Texas
J. Y. Schoonmaker Co. 2011-13 Cedar Springs Sterling 3335
Dayton 6, Ohio
M. P. Odell Company 2676 Salem Avenue Oregon 4441
Hollywood 28, California
Gerald B. Miller
1540 N. Highland Avenue
Hollywood 9.6305
Minneapolis 2, Minnesota
H. M. Richardson \& Company 2210 Foshay Tower Geneva 4078
New York 23, New York
Land-C-Air Sales Company 1819 Broadway
Plaza 7-7747
San Francisco 3, California
Gerald B. Miller Company
1355 Market Street, Space 280D
Klondike 2-2311
Wichita, Kansas
George E. Harris \& Company
306 Lulu, P. O. Box 3005
Telephone 62-2731
Phone or write your representative for complete information on LFE electronic equipment.

The Triumph Manufacturing Co. "Galley duty in the Navy requires

 a motor control as rugged as the machine"say Sheldon B. Storer (right) and Samuel T. Bryant (left), Sheldon Storer \& Associates, Cincinnati, Ohio, representatives, Ward Leonard Electric Company.

to insure high metal quality, Frank DePaola, chemist, studies samples microscopically for grain and crystal structure.

AN A-C MOTOR CONTROLLER undergoes a careful wiring check by Donald A. Parsons of Ward Leonard's Test Department.

magnetic overload relays are cested for tripping time by Anthony J. Bellitto before they are installed on moror control panels.

COMPONENTS OF A-C SOLENOID STAETERS are being assemblled in Ward Leonard's plant in Mount Vernon, New York.

From PT Boats to Battle Wagons Ward Leonard Designs Controls to Meet Exacting Specifications

At sea, electrical controls or components must meet exacting service conditions involving mechanical shock, vibration, salt spray, plus pitch and roll.

The Ward Leonard control line includes devices designed especially for Navy, Coast Guard and Marine use, as well as the well-known industrial control line. For example, Ward Leonard makes pushbutton stations for the Navy and Marine applications, and a comprehensive line of commercial pushbutton stations. This holds true for a great variety of components.

Ward Leonard frequently builds special control items which involve contactors, starters, rheostats, relays, resistors, and other major electric components.

Ward Leonard controls are of unit construction. Each component is manufactured and tested independently. These components are then combined and mounted to suit customer's exact requirements.

Consult Ward Leonard on the extreme flexibility and adaptability of Ward Leonard controls and components to meet your special needs.

DISTRICT OFFICES AND REPRESENTATIVES

Aflanta 5, Georgla Baltimore 18, Md.

Charlotte I, N. C.
Chlcago 4, Illinols
Cincinnati 2, Ohio
Cleveland 14, Ohio
Corpus Christt, Texas
Denver 2, Colorado
Detroit 21, Mishigan
Hartford 6, Conn.
Houston 1, Texas
Kansas City 2, Mo.
Knoxville, Tennessee
Los Angeles 13, Calif.
Memphis 3, Tenn.
Minneapolis $\mathbf{5}$, Minn.
Newark 2, N. J.
New Ofleans 13, La.
Philadephia 2, Pa.
Pittsburgh 16, Pa.
Roanoke, Virginla
Rochester T, N. Y.
St. Louis 10, Mo.
Salt Lake City I, Uiah
Son Antonio, Texas
San Francisco 3, Calif.
Seattle 4, Wash.
Tucson, Arizona
Washington 5, D. C.
C. B. Rogers and Associores

Durling Electric Co.
James L. Highsmith 8 Co. Ward Leonard Electric Co. Sheldon Sterer and Assoc.

The Ambos-Jones Co.
Brance-Krachy Co., Iac.
Mark G. Mueller
Jesse W. Eakins Co.
Ward Leonard Electric Ca
Brance-Krachy Co., Inc.
Mary E. Bettis Co.
John G. Pettyiohn
Ward Leonard Electric Co.
E. E. Torkell

Maivin H: Kirkeby
Ward Leonard Electric (o.
Electron Engineering Co.
Ward Leonard Electric Co.
W. A. Bittner

Lynn H. Merris
Ward Leonard Electric Co.
Ward Leonard Electric co.
Leonard M. Slusser
8rance-Krachy (0., Ins.
L. F. Church Co.

Northwestern Agencioss, inc.
Central Station Equipment Co.
Federal Engineering Co., Inc. $^{\text {I }}$

CANADA

Edmonton, Alta.
Halifax, N. s.
Montreal 25, P. Q.
Toronte 1, Ont.
Vancouver, B. C.
WInnlpeg, Man.
D. M. Fraser, Lid.
D. M. Fraser, Ltd.
D. M. Fraser, Lid.
D. M. Fraser, Lid.
D. M. Froser, tod.
D. M. Fraser, Ltd.

EXPORT

New York 4, N. Y. | Ad. Aurieme, Inc.

to provide the ultimate in electrical insulation

MIRAGLAS TAPES are available in a wide variety of widths, thicknesses and styles, for practically every electrical insulation requirement where high dimensional stability and tensile strength are desired. Continuous filament MIRAGLAS TAPES are supplied in thicknesses ranging from .003" to . $015^{\prime \prime}$ and in widths from $3 / 8^{\prime \prime}$ to $11 / 2^{\prime \prime}$. Medium weave tapes, for machine taping, range in thicknesses from $005^{\prime \prime}$ to $.015^{\prime \prime}$ while tight weave tapes for manual taping, range in thicknesses from . $003^{\prime \prime}$ to $007^{\prime \prime}$ only. Staple fiber tapes in thicknesses from . $010^{\prime \prime \prime}$ to $.025^{\prime \prime}$ and widths from $1 / 2^{\prime \prime}$ to $11 / 2^{\prime \prime}$ are also available for applications where space is not a primary consideration or where a more resilient wrapper is wanted.

Write for a copy of the MIRAGLAS TAPE BULLETIN
... also for a frie TEST SAMPLE
MITCHELL-RAND INSULATION COMPANY, INC.
51 MURRAY STREET
Corillands 7.7264
MEW YORK T. N. Y.

A PARTIAL LIST OF M-R PROCUCT: FIBERGLAS VARNISHED TUBING, TAPE AND CIOTH INSULATING PAPERS AND TWINES - CABLE FILLING AND POTHEAD CGMPOUNDS - FRICIION TAPE AND SPIICE. TRANSFORMER COMPOUNDS. FIBERGLAS SATURATED SLEEVING • ASBESTOS SLEEVING AND TAPE VARNISHED CANBRIC CIOTH AND TAPE. MICA PLATE, TAPE, PAPER, CLOTH, TUBING. FIBERGLAS BRAIDED SLEEVING COITON TAPES, WEBEINGS ANN SLEEVINGS IMPREG.
NATED YARNISH JUBING. INSULATING VARNISMES OF ALL TYPES. EXTRUDED PLASTIC TUBING

Electronic euviment manveracueras

General Electric offers you Expanded Application Engineering Service

Here's a way to improve the design of your radio-phonograph products and beat rising costs-without increasing your overhead.

The extensive research and engineering facilities of Electronics Park are yours to call upon for consultation or help in the following fields:

CARTRIDGES AND STYLI-G-E single and dual units, diamond or sapphire*tipped for every recording or broadcast application, can be suited to your product requirements. The startlingly different G-E "Golden Treasure" cartridge, now in quantity production, features a dual wide-range diamond and sapphire stylus that reproduces an exceptional tone range of 30 to 15,000
cycles. Stylus pressure for all types of records is low-only 6 to 8 grams.
LOUDSPEAKERS—Choose from 19 G-E types sized from 4 to 12 inches. These include 6 sizes of round speakers, plus a special 6×9 oval for auto radio use. Remember too, that the G-E 1201 and 1203 are the only high fidelity speakers commercially available in production quantities at moderate prices. Of course, all G-E speakers have Alnico 5 magnets and the aluminum voice coil.

Our application engineers are prepared to discuss with your designers ways in which G. E. can be of service to you. Just phone or wire us. Meanwhile, check the coupon below for latest catalogs listing audio components.

GENERAL (3) ELECTRIC

General Electric Company, Section 482
Electronics Park, Syracuse, New York
Please send me the General Electric catalogs or bulletins checked.

NAME.
COMPANY OR TITLE
ADDRESS.
CITY.

Time and Time Rgain...

STANDARD ELECTRIC TIME Helps Attain High Degree of Quality Control at AMERICAN BRASS
$\mathrm{S}_{\text {Plitting }}$ the split second is often essential...
Hours, days are cut to a mere 300 seconds at
The American Brass Company, Waterbury, Conn. . . . where this Direct Reading Spectrometer completely analyzes an electric furnace charge of molten metal before it is even poured.

THE STANIDARD ELECTHIC TIME COMPANY

97 LOGAN STREET • SPRINGFIELD 2, MASSACHUSETTS

TDAB (in case)

NOUSTRIAL

TIMER CDRPORATIOM
 JIS EDISON PLACE, NEW-ARK

MANUFACTURERS OF THESE AND OTHER TIMERS AND CONTROLS for industry - Cam Timers - Manual Set Timers - Tandem Automatic Recycling Timers - Instantaneous Reset Timers - Running Time Meters

Time Delay Timers are designed for application on circuit controls where a time delay is required between the closing of one circuit and the predetermined closing or opening of another.
Series TDAF and Series TDAB Time Delay Timers are built to stand abuse, and afford the dependable, consistent operation which modern industrial applications demand.
These timers are designed to handle time cycles up to 3 hours. They employ an external, magnetically-operated clutch that not only assures exceptional accuracy but permits instantaneons, automatic reset. Thus these timers are ideal for use where rapid recycling is necessary.

OUTSTANDING FEATURES

Automatic, Instant Reset-As soon as the clutch is disengaged, an internal spring brings the actuating arm back to its reset position in a fraction of a second.
Time Setting Adjustment-Adjustment is accomplished by simply moving the black-button pointer to the time cycle required. Quick, easy, accurate.
Dial-Dials of both series have large, easily read numerals.

SERIES TDAF TIMERS

for panel mounting. Terminal strip for electrical connections located at back. 115 volt and 220 volt, A.C. $-25,50$, and 60 cycles. (For time ranges, see chart.)

SERIES TDAB TIMERS

for surface mounting. Terminal strip for electrical connections located at front, below dial. If required, can be supplied in steel housing, as illustrated-eight knockouts for easy hook-up. 115 volt and 220 volt, A.C.-25, 50 and 60 cycles. (For time tanges, see chart.)

TIME RANGES-Series TDAF and Series TDAB Timers

DIAL CALIBRATION	MAXIMUM TIME CYCLE
$1 / 10$ Second	5 Seconds
$1 / 4$ Second	15 Seconds
$1 / 2$ Second	30 Seconds
1 Second	60 Seconds
2 Seconds	3 Minutes
5 Seconds	5 Minutes
15 Seconds	15 Minutes
30 Seconds	30 Minutes
60 Seconds	60 Minutes
2 Minutes	3 Hours

For complete tecbnical datar request billetin 39

When it comes to making a ReulSowing in space...

0tackpole cup cores with their self-shielding characteristic can be mounted close to the chassis or any other metal part for maximum results in extremely close quarters. In some instances, the high Q circuits made possible through their use permit reduction in the number of tubes needed.

Standard rypes include numerous shapes and sizes, each available in a wide range of permeability possibilities. Highly specialized types to meet the most critical specifications can be engineered and produced from a broad back. ground of experience in this exacting field.

STACKPOLE CARBON COMPANY

St. Marys, Pa.

Other Stackpole core fypes include: ALL STANDARD MOLDED IRON CORE TYPES, SIDE-MOLDED,
CHOKE COIL CORES, SLEEVE TYPES, THREADED TYPES and
COIL FORMS. . also Stackpole CERAMAG® CORES (FERRITES).

Write for Electronic Components Catalog RC-8

Reduce Costs, Replace Scarce Metals, Get Higher Performance, Simplify Brazing

GENERAL PLATE

Provided Solutions with Composite Metals

General Plafe provided higher performance and longer wearing qualities in contact assemblies with TOP-LAY.

Manufacturers of many products ranging from circuit breakers, radio tubes, temperature controls, electrical terminal conductors to carbide tipped tools have found the solution to their problems with G ?neral Plate Composite Metals.
No matter what your problem, it will pay you to consult with General Plate. Their vast experience in cladding precious to base metals, or base to base metals can overcome your problems... often reduce costs.
General Plate products include... precious metals clad to base metals, base metals clad to base metals, silver solders, composite contacts, buttons and rivets, Truflex (8) thermostat metals, Alcuplate ${ }^{(8)}$,
platinum fabrication and refining, \#720 manganese age-hardenable-alloy. Write for information.

Have You a Composite Metal Problem? General Plate can solve it for you

GENERAL PLATE

Division of Metals \& Controls Corporation 38 FOREST STREET, ATtLEBORO, MASS.

SPECIFICATIONS

-hp- 460B FAST PULSE AMPLIFIEi
FREQUENCY RESPONSE: Closely matches Gaussian curve. H $\ddagger 3 \mathrm{db}$ point is approx. 140 me. Lf 3 db point is approx. 50 kc into 200-ohm load.
MAXIMUM OUTPUT VOLTAGE: High bias, approx. 125 v. negalive open circuit. Nor mal bias (linear amplification) approx. 8 v . peak into 200 -ohm load or 16 v . peak open circuit, pos. or neg. pulses. GAIN: Approx. 15 db into 200-ohm load. INPUT IMPEDANCE: Approx. 200 ohms. RISE TIME: Approx. $0.0026 \mu \mathrm{sec}$.
DELAY: Approx. 0.016μ sec.
DUTY CYCLE: 0.10 max. for 125 v. output pulse. LINEARITY PULSE OPERATION: See Figure 1. MOUNTING: Relay rack. $51 / 4^{\prime \prime} \times 19^{\prime \prime} .6^{\prime \prime}$ deep. POWER SUPPLY: 115 v. 50/60 cps. 35 watts. PRICE: $\$ 225.00$ f.o.b. factory.
-hp- 460A WIDE-BAND AMPLIFIER
(Specifications same as Model 460 B except:) MAXIMUM OUTPUT VOLTAGE: Approx. 8 v . peak open circuit; 4.75 v . peak into 200 ohm load.
GAIN: Approx. 20 db with $200-\mathrm{ohm}$ load.
DELAY: Approx. $0.012 \mu \mathrm{sec}$.
PRICE: $\$ 185.00$ f.o.b. factory.

-hp- 46A ACCESSORIES

-hp- 46A-16A PATCH CORD - 200 -ohms, 2^{\prime} long. \$18.50.
-hp- 46A-16B PATCH CORD - 200-ohms, 6^{\prime} long. \$25.50.
-hp- 46A-95A PANEL JACK - For 200-ohm cables, low capacitance. $11 / \mathrm{g}^{\prime \prime}$ dia. $\$ 7.50$. -hp- 46A-95B CABLE PLUG-For 200-ohm cables, low capacitance. $\$ 7.50$.
-hp-812-52 CABLE-200-ohm cable in lengths to specification. Per fool $\$ 1.75$.
-hp- 46A-95C 50-OHM ADAPTOR - Type N connector for coupling 50 -ohm line into -hp- amplifiers. \$15.00.
-hp- 46A-95D ADAPTOR-Bayonet sleeve for connecting -hp-410A VTVM to output of 460A / B amplifiers. $\$ 15.00$.
-hp-46A-95E CONNECTOR SLEEVE-Joins two 46A-95B CABLE PLUGS. $\$ 7.50$.
-hp- 46A-95F ADAPTOR-For connecting to $5 \times \mathrm{P}$ CRT. $\$ 10.00$.
-hp- 46A-95G ADAPTOR-For connecting to Tektronix type 511 oscilloscope. $\$ 12.50$.
Data subject to change without notice.

UP $T O 90$ DB GAIN IN CASCADE! AMPLIFIES MILLIMICROSECOND PULSES! RISE TIME . 0026 μ SEC!

125-VOLT OPEN-CIRCUIT OUTPUT! GIVES OVER 100 MC BANDWIDTH TO YOUR STANDARD OSCILLOSCOPE!

Here at last is complete instrumentation for true amplification of fast pulses at high power levels sufficient to operate scalers or counting meters, cathode ray tubes, or to give more than 100 mc band-width to your present oscilloscope. New -bp-460B Fast-Pulse Amplifiers, in cascade with -hp-460A Wide-Band Amplifiers, amplify up to 125 volts, open circuit (limited duty cycle). This permits full deflection of 5 XP cathode ray tubes, or 2 -inch deflection of SCP tubes. Ultra-short rise time of $0.0026 \mu \mathrm{sec}$, combined with zero overshoot, insures distortion-free amplification of pulses faster than $0.01 \mu \mathrm{sec}$.

peak yolts input
Fig. 1: Linearity of hp-460B Fast-Pulse Amplifier

New-hp-460B Amplifier, cascaded with - $h p-460 \mathrm{~A}$ provides linear amplification of 16 volts peak output and pulse amplification of 125 volts output (slight non-linearity). This combination provides maximum usefulness in fast-pulse study for nuclear radiation work, television or VHF research; for increasing frequency range of your oscilloscope, or general wide-band laboratory amplification. In addition to the above instrumentation, - $h p$-also offers series 46A accessories - a complete set of 200 ohm cables, adapters and fittings for inter-connecting amplifiers or patching to oscilloscopes.

Fig. 2: (a) $0.01 \mu \mathrm{sec}$ pulse through -hp- 460B Amplifier (b) $0.02 \mu \mathrm{sec}$ pulse through 3 amplifiers in cascade

Get complete details. W'rite dired or see your hop-sales representative.

HEWLETT-PACKARD COMPANY

2177A Page Mill Road - Palo Alto, California, U.S.A.

Sales Representatives in all principal cities
Export: Frazar \& Hansen, Ltd. San Francisco, New York, Los Angeles

JAN C-62 types

For use in military electronic equipment, Mallory manufactures a line of electrolytic capacitors which will meet the requirements of Specification JAN C-62. Included in the Mallory line is the full selection of standard case styles, ratings and characteristics required under the specification.

Into these military-type capacitors go the same engineering how-how and production craftsmanship which have made Mallory capacitors the standard of quality in the radio and television intustry.
Look to Mallory for all your capacitor needs . . . whether for military or for civilian applications.

New Folder Outlines JAN Capacitor Types

A new folder, a a vailable on request, condenses the information on type designations of all electrolytic caparitors conered by JAN C.62, to convenient, easy-toread chart form. It's an indeal reference for everyone who spucifies or uses elertrolytic capacitors. Write to Mallory for your copy maday.

MAILORY

SERVING INDUSTRY WITH THESE PRODUCTS:

Electromechanical-Resistors - Switches - Television Tuners - Vibrators Electrochemical-Capacitors - Rectifiers * Mercury Dry Bafferies Metallurgical-Contacts•Special Metals and Ceramics•Welding Materials

ELECTRONICS

CROSS
 TALK

- TREND . . . Continued sluggishness of government orders is causing many manufacturers to reexamine their civilian-market prospects. Recent easing of material restrictions permits increased production. It may be, therefore, that moving merchandise rather than building it will be the major problem for the balance of the year.

One way to move merchandise is to increase sales pressure. Another is to bring merchandise within the reach of more people by simplifying design and thus reducing price. And there are signs that the second method is being widely considered along with the first, which puts the engineer right in the driver's seat along with the salesman.

Commercial radar units stripped down to bare essentials have been announced. Computers that won't put out the cat but will perform a few important functions are coming along. In the test-equipment field, particularly, examples of simplified design have been seen in many a back room.

- WORDS . . . Wiring may be printed, etched, stamped or deposited in a variety of ways. Component parts used in conjunction with such wiring may be similarly fabricated or may be of conventional construction. Combinations of wiring and parts are frequently called printed circuits, and this
phrase obviously leaves much to be desired in the way of precise description.

Wiring alone can be readily identified by using the proper adjective telling how it is made, or the whole new group of machinemade wiring boards, panels or chassis could be classified as "mechanized" wiring. But when parts as well as wires are involved the phrase "mechanized circuits" falls short of ideal. For one thing, conventional wiring or cabling and parts can be combined by mechanical means, solder dipping or other automatic assembly methods. For another, some embedment processes are mechanized circuits in a cense.

What should we call printed circuits when they are not actually printed?

- COLOR . . . Several engineers engaged in a high-echelon study of television recently had their eyes tested and turned out to be color blind. This brings up a number of questions that will have to be answered before polychrome pictures progress much farther.
Will men designing transmitters and receivers have to take tests similar to those given railroad engineers? Will factory people on final test periodically sort out bits of colored yarn and pretty beads? Will thousands of servicemen sud-
denly find themselves occupationally handicapped because they don't know mauve from magenta? And what about the consumer whose specs are not color corrected?

We're going to rush right out and get a checkup. We need new cheaters because of the increasing demands of our own occupation anyway.

- WEDDING . . . Motor-generator sets scarcely classify as electronic devices but when they are used to heat metals by induction then they are at least a bridesmaid.

The link is very close indeed in experimental units now being designed for the machine-tool industry. Here $\mathrm{m}-\mathrm{g}$ sets turning out 9,600-cycle power are first used to preheat parts and then tube-powered generators delivering 200 kilocycle power finish up the job.

In this application it is hard to tell which is the bridesmaid and which is the bride, a not uncommon condition in our field since electronics works so closely with so many other things.

- ACHIEVEMENT . . . Transistors have definitely arrived. If anyone needs any proof it is afforded by the fact that the little germanium jiggers were recently mentioned by Chris Welkin, Planeteer, nationally syndicated comic-strip scientist.

FIG. 1-Simple circuit diagram for thyratron-controlled electromagnetic system (A) and grid control via hand-capacitance bridge (B)

FIG. 2-Practical direct a-c type thyratron circuit free from mechanical contacts. Thyratrons are connected in push-pull arrangement

Electronic Drums

Tube-timed drums can develop much higher beat rates, with beats having more abrupt acoustical wavefronts than can be generated conventionally. Volleys of beats can be repeated indefinitely with precision and without change in quality

TWo ways of using a solenoidactuated plunger to obtain drum beats have been developed.* One system uses contacts on a plunger with a single thyratron. The other uses a pair of thyratrons without plunger contacts. A coder can repeat a volley of drum hits.

Several techniques are possible for the input circuits. With the system shown in Fig. 1A, the performer uses one, two or three fingers to operate a feather-light contact spring S to generate voltage pulses. The pulses operate the output stage O driving the electromagnetic system LMP. Finger operation, although effortless in terms of the driving power of the spring contact S, is just as tiresome in the long run as the conventional, manual drum-stick operation.

Figure 1B shows a hand-capacitance bridge $C Z_{1} Z_{2} Z_{3} E^{\prime}$ used to eliminate the work represented by the driving power of the spring. Moving one or more fingers in the air causes unbalance of the bridge and a pulse output to be im-

[^4]By HARRY STOCKMAN
Stockman Electronics Research Co. Waltham, Mass.

proved by pulse-shaping networks.
While 60 -cycle operation of the bridge is possible with the impedances $Z_{1} Z_{2}$ resistive and Z_{3} capacitive, better results have been obtained with 400 -cycle operation and phase compensation.

Pulse Forming

The main problem in electronic operation of a drum lies in the forming of proper pulse-power output and the utilization of this output under high-efficiency conditions in an oscillating electromechanical system of required transient response. This response should be characterized by short rise and decay time and freedom from jitter, overshoot and multiple hits.

There are two reasons for multiple hits on single pulses generated via the switch S. One consists of undesirable transient response and the other of power-supply pulsations when a-c or poorly filtered d-c is used.

The first experimental model built consisted of a class-C, pushpull beam-tube circuit, which was discarded because of insufficient output. The second model at first utilized one thyratron tube (2050 or 2D21) in the circuit shown in Fig. 1 and yielded good efficiency and sufficient output. In the accompanying photograph, the electromagnetic moving system can be seen on top of the drum (it may be mounted inside the drum) and the electronic circuit chassis on the bottom of the U-shaped wooden rack, serving as support and transport case.

The electromechanical system in Fig. 1A consists of a solenoid L surrounded by a bell-shaped laminated iron yoke M of about two inches axial length, inside which a plunger or laminated slug P, moves axially. The design is similar to that of a hypothetical field-coil-operated electrodynamic loudspeaker in which the center, cylindrical core would be free to move back and forth in axial direction, sliding in the concentric air gaps of the ends of the cylindrical core.

Operator playing the electronic drum. The electromagnetic system is mounted above the drum diaphragm

The black part of the slug in Fig. 1A is laminated iron, the white part is a brass extension carrying the glove-skin-covered button that hits the diaphragm or drum skin D. The stroke is approximately $\frac{1}{2}$ inch. The slug P is spring-loaded away from the drum skin D and just prior to the hit it breaks the contact S_{r}, thus discontinuing the thyratron plate current.

Since the cathode potential restoration is determined by the time constants $R_{1} C_{1}, R_{2} C_{2}$ and that of the moving system with the capacitor C_{3}, and since the contact S is only closed a few hundredths of a second, the thyratron will not fire again when the slug approaches its rest position away from the drum skin. The design should be such that one complete cycle of operation has a period shorter than the interval between two sequential pulses on the thyratron tube grid. Actually, the circuit elements $R_{1} C_{1}, C_{2}, C_{3}$ are included to show various ways to infuence the transient performance.

To be useful, the electromagnetic system must have rather uncon-
ventional characteristics, particularly in view of the fact that the power level approaches or exceeds one kilowatt. The proper solution in obtaining precise operation lies basically in the adaptation of nega-tive-feedback principles and essentially in the use of a servo-type loop. Simple circuits in accordance with this principle were tried on the first hard vacuum-tube model but were not found equally applicable to the thyratron model.

Damping Systems

Good results have been obtained by applying nonlinear mechanical damping to the moving system. With electromagnetic transducers, one method consists of sidewise spring loading of the moving slug with the spring loading released by the magnetic field. In the on stroke, the slug rides free in the well-oiled airgaps, while in the off stroke, the slug rides with high friction. It stops dead against the rubber cushion catching the slug at the end of the OFF stroke.

By use of such methods, it was possible to excite the magnet
forcefully almost during the entire on stroke. The limit is set by the heat dissipation in the coil L, causing it to burn out. Coil resistances from 10 to 100 ohms were tried.

Due to the high peak power required by the unit, the power-supply problem is somewhat difficult. Since portable instruments are of interest, power supplies utilizing such sources will have to be designed.

Improved Version

A new circuit, Fig. 2, was developed to cut in half the uncertainty of the starting time. With this circuit, one of the two push-pull plateconnected tubes will fire each 120th second. Since unfiltered a-c is used, heavy and expensive power-supply components are eliminated. The entire power supply may consist of a line transformer T. In both this and the previous circuit, volume is controlled by a series resistor R_{2} of a few hundred ohms in the electromagnet lead.

One of the most important features of the circuit in Fig. 2 is that the switch in series with the electromagnetic system has been eliminated. The unfiltered a-c used extinguishes the thyratrons repeatedly. This circuit has been used with satisfactory results but the accoustical power delivered by the drum was too high for comfortable listening in a living room.
For still larger outputs, needed to operate large bass drums in concert and dance halls, heavier types of thyratrons may be inserted and a heavier line transformer used. The power drawn from the line may then exceed that comfortably handled by a $15-\mathrm{amp}$ house fuse.
One of the recorders, or coders, used in the development work described, consists essentially of a motor-driven drum with spokes which close a switch momentarily during rotation. When used as a signal generator in laboratory experiments, this device produced and repeated endlessly a volley of drum hits.

More reliable recorders may be built in form of magnetic wheels or rings or may utilize reels of magnetic tape. The simplest arrangement is to use a conventional tape recorder, followed by proper pulseshaping circuits.

New Transistors Give

By J. A. MORTON
Member of Technical Staff Bell Telephone Laboratories Murray Hill, N.J.

REPRODUCIBILITY, reliability and designability have been major obstacles in the progress of transistor development. During the past two years, measurable progress has been made in reducing these three limitations through improved understanding, new processes and better germanium materials.

The point-contact cartridge-type transistor is shown in a cutaway view in Fig. 1. This general construction was used for all early transistors. The characteristics of a particular transistor, called the

Table I-Reproducibility of PointContact Linear Characteristics

Element	Range (Sept 1919)	Range (Sept 1951)
a	4 to 1	$\pm 20 \%$
r_{e}	7 to 1	$\pm 30 \%$
r_{e}	3 to 1	$\pm 20 \%$
r_{b}	7 to 1	$\pm 25 \%$

Table II-Characteristics of M1729 Point-Contact Compared to M1752 Junction

Type	M 1729	M 1752
r_{e}	120	25
r_{b}	75	250
r_{c}	15,000	5×10^{6}
a	2.5	0.95

FIG. 1-Type-A cartridge structure used in earliest transistors
type A^{2}, will be used as a reference for measuring results obtainable now with new types under current development.

Physical operation of a type-A point-contact transistor is illustrated in Fig. 2. Two rectifying metal electrodes press down upon the surface of a small die of n-type germanium; one electrode is labelled E for emitter the other C for collector. A large-area ohmic contact to the underside of the die of germanium is the base electrode B.

Rectifying properties of the emitter and collector electrodes are obtained as a result of the $p-n$ barrier, shown by dotted lines in Fig. 2, existing at the interface between the small p-type inserts under each point and the n-type bulk material. When the collector is biased in the back direction with a moderately large negative voltage, the collector barrier has relatively high impedance. A small amount of reverse current in the form of electrons flows from the collector to the base as shown by the small black circles.

If the emitter is biased in the forward direction with a few tenths of a volt positive, a current of holes (small open circles) is injected from the emitter region into the n-type material. Under the influence of the field set up originally by the initial collector electron current, the holes are swept along to the collector. This action adds a controlled increment of collector current. Because the holes have positive

The M1689 bead-type point-contact transistor, progress in miniaturization
charges, they can lower the potential barrier to electron flow from collector to base and allow several electrons to flow in the collector circuit for every hole entering the collector barrier region.

The ratio of change in collector current to change in emitter current for a fixed collector voltage is the current gain α. Alpha may be greater than unity in point-contact transistors. Voltage amplification is obtained also because the collector current flows through a high impedance when the emitter current is injected through a low impedance.

The point-contact transistor has been miniaturized to contain only its bare essentials. Several of the current development types are made in the bead form.

Junction Type

The $n-p-n$ junction transistor is shown in Fig. 3. A thin layer of p-type germanium is formed in the center of a bar of single-crystal n-type germanium.

Ohmic nonrectifying contacts are fastened to the three regions as shown. The essential behavior of point-contact and junction-type transistors is similar in many simple respects except for change in conductivity type from $p-n-p$ in the point-contact to $n-p-n$ in the junction type.

If the collector junction is biased in the reverse direction, Fig. 4, so that electrode C is biased positively

Improved Performance

Better manufacturing processes and germanium materials have provided greater reliability and reproducibility and improved frequency response. Higher power output and better noise figure for high-sensitivity applications are properties of new types
with respect to electrode B, only a small residual back current of holes and electrons will diffuse across the collector barrier as indicated. This reverse current is very much smaller and relatively independent of the collector voltage because the reverse impedance of such bulk carriers is so many times higher than that of the barriers produced near the surface in point-contact transistors.

If the emitter barrier is biased in the forward direction (a few tenths of a volt negative with respect to the base), a relatively large forward current of electrons diffuses from the electron-rich n-type emitter body across the reduced emitter barrier into the base region. Practically all of the injected emitter current can diffuse to the collector barrier if the base region is adequately thin so that the injected electrons do not recombine in the p-type base region, either in bulk or on the surface.

The injected emitter current is swept through the collector barrier field and collected as an increment of controlled collector current. Very high voltage amplification will result since the electrons are injected through the low forward impedance and collected through the high reverse impedance of bulk-type $p-n$ barriers.

No current gain is possible in the simple bulk structure described and the maximum attainable value of alpha is unity. Because the bulk barriers are so much better rectifiers than the point-surface barriers, the ratio of collector reverse imnedance to emitter forward impedance is many times greater. This
greater ratio offsets the point-contact higher alpha and the junction unit may have much larger gain per stage. ${ }^{1,2,8}$

Linear Characteristics

In describing reproducibility of transistor characteristics for smallsignal linear applications, statistical averages and ranges for the open-circuit impedances are given. Such a state of control does exist for most transistors under current development. However, such was not the case for old type-A units so that ranges for commensurate fractions of the total family are given for the old units.

A generalized 4-pole network representing the transistor is shown in Fig. 5. Here the input terminals are emitter-base and the output terminals are collector-base. The pair of linear equations shown represent the linear relations between the incremental emitter and collector voltages and currents over a sufficiently small region of the static characteristics. ${ }^{1}$ The opencircuit driving point and transfer impedances of the transistor are the coefficients of the equations. Any one of a large number of equivalent circuits serve to represent the equations. The T circuit shown in Fig. 6 is perhaps the most useful configuration. In this circuit r_{c} represents the a-c forward impedance of the emitter barrier, r_{c} the a-c reverse impedance of the collector barrier, r_{b} the feedback impedance of the bulk germanium common to both, and a is the circuit current gain representing carrier collection and multiplication if any.

The circuit current gain a turns
out to be very nearly equal to the current multiplication factor α of the collector barrier, mentioned previously. Average values for the different elements are given in Fig. 6.

Table I gives the ranges of these parameters for the type A as of September 1949 and the control limits for the same characteristics for new point-contact transistors now under development. The ranges for September 1949 are taken about the average values shown in Fig. 6 for the type-A transistor. The later control limits apply to many different types of point-contact tran-

FIG. 2-Schematic diagram of a pointcontact transistor

Table III—Reliability Status

	Sept 19.19	Sept 1951
Average Life	$>10,000$ hours	$\begin{gathered} >70,000 \\ \text { hours } \end{gathered}$
Equivalent Temperature Coefficient of r_{c}	-1% per $\operatorname{deg} \mathrm{C}$	$\begin{gathered} -1 / 4 \% \\ \text { per deg } \mathrm{C} \end{gathered}$
Shock	?	$>20,000 \mathrm{~g}$
Vibration	$\%$	$\begin{gathered} 20-5,000 \\ \text { cps } \\ \text { negligible } \\ \text { to } 100 \mathrm{~g} \end{gathered}$

sistors so that the present average values of these equivalent circuit elements depend upon the type of transistor considered.

Table II shows the average values of the characteristics of the M1729 point-contact video-amplifier transistor, bearing the closest resemblance to the older type-A transistor. For contrast, typical figures for the M1752 junction transistor currently in the developmental stage are shown.

Transistors in the grounded-base connection may be short-circuit unstable if $a>1$ and r_{b} is too large because r_{b} appears as a positive feedback element. ${ }^{1}$ The circuit user of type-A anits in 1949 had approximately a 50 -percent chance of obtaining a short-circuit unstable unit from a large family of type-A units. The M1729 transistor presently under development has all members of its family unconditionally stable.

Large-Signal Characteristics

In switching and computing applications and other large-signal uses, the transistor characteristics must be controlled over a broad range of variables from cutoff to saturation.

One characteristic common to practically all of the transistor pulse-handling circuits examined to date is the ability of the transistor by virtue of its current gain to present various types of two-state
negative resistance characteristics at any one or all of its pairs of terminals.

Reliability and Life

Table III is a comparison of reliability for transistors in 1949 and 1951. These estimates are based on extrapolation of survival curves assuming that a known survival law will continue to hold. For the test, the transistors were operated as class-A amplifiers and failure was considered to be the time when the class-A gain had fallen three db or more below its starting value.

For the 1949 figures, the type-A units had been in operation for about 4,000 hours and extrapolation predicted a half-life in excess of 10,000 hours. For the 1951 figures, actual running time was approximately 20,000 hours, giving a more reliable estimate somewhat in excess of 70,000 hours. The units under development now, made with new materials and processes, should be superior in life but it is too early to extrapolate the data.

Temperature Effects

The collector impedance r_{0} and the current gain α of the transistor are the most sensitive elements to temperature variations. The other elements are much less sensitive over the range from -40 C to +80 C .

The r_{c} of early type-A transistors

Table IV—Miniaturization in Space
and Power Drain

Volume	Type A Sept 1949	Sept 1951	New Types
$-\frac{1}{50}-\mathrm{in}^{3}$	$-\frac{1}{2,000} \mathrm{in}^{3}$	Point M1689	
Min collector voltage for class-A	$-\frac{1}{500} \mathrm{in}^{3}$	Junction M1752	
Min collector power for class-A	30 v	2 v	Point M1768, M1734
Class-A efficiency	20%	0.2 v	Junction M1752

FIG. 3-Commenents of the $n-p-c$ Junc. tion transistor

FIG. 4-Schematic diagram of a junction transistor
fell off to about 20 to 30 percent of its room temperature value when the temperature was raised to +80 C . Over the same temperature range, alpha increased from 20 to 30 percent. This variation in r_{c} has been reduced by a factor of about four for most current point-contact types. Variations in the current gain remain about what they were in the older types.

In such linear applications as the grounded-base amplifier, the gain will stay essentially constant within adb or two from -40 C to +80 C . The d-c collector current for fixed emitter current and collector voltage will change at about the same rate as r_{c} (factor of four) in pulse applications. Similar improvements have been made for switching transistors.

It is believed that reliable operation in switching functions, at the present time, may be obtained at temperatures as high as +70 C in most applications and as high as +80 C in others.
Temperature variation effects in junction transistors are not yet well established. It seems there will be smaller variations in such parameters as alpha and r, than in the point-contact type. Variations in the direct current, especially $I_{c o}$ (collector current at zero emitter current) are of the order of ten percent per degree C. However, $I_{c 0}$ is usually much less than the operating value of I_{c}.

The cartridge-type transistor, see Table IV, has a volume of $1 / 50$ cubic inch. The M1689 bead-type pointcontact transistor under current development occupies only about $1 / 2,000$ cubic inch. The M1752 junction bead transistor has a volume of about $1 / 500$ cubic inch which may be reduced to the volume of the bead-type point-contact transistor if necessary. Further size reduction must come about in the passive components of circuits. This seems feasible because of low voltages, low power drain and lower equipment temperatures associated with transistor circuitry.

Advances have been made in the past two years in reducing the collector voltage and power required for practical operation. In 1949, the minimum collector voltage for which the small-signal class-A gain was still within three to six db of its full value was about 30 volts. Today, the M1768 and M1734 pointcontact transitors perform well with collector voltages as low as two to six volts even at relatively high frequencies.

The M1752 junction transistor, at collector voltages as low as 0.2 to 1.0 volt, can deliver useful gains. Under these conditions, the minimum collector power may be as low as two to ten mw for point-contact and 10 to 100μ w for junction types in typical operation.

Efficiencies for class-A operation have been raised to 30 to 35 percent for point-contact and 49 percent out of a possible 50 percent for junction transistors. Efficiencies for class-B and class-C are correspondingly close to their theoretical limiting values.

Performance

Table V compares the progress made in several important performance figures of merit by development of several point-contact and junction types during the past two years. Reference is made to the type-A transistor as of September 1949.

Laboratory models of point-contact transistors for some switching and transmission applications now have useful values of current gain as high as 50. The single-stage gain of point-contact types M1768 and

Table V-_Performance Progress

	Type A Sept 1949	Sept 1951	New Types
Current gain α	5 x	50 x	Point, Junction
Single-stage class-A gain	18 db	$\begin{aligned} & 22 \mathrm{db} \\ & 45 \mathrm{db} \end{aligned}$	Point M1729, M1768 Junction M1752
Noise at $1,000 \mathrm{cps}$	60 db	$\begin{aligned} & 45 \mathrm{db} \\ & 10 \mathrm{db} \end{aligned}$	Point M1768 Junction M1752
Frequency response f_{c}	5 mc	$\begin{array}{r} 7-10 \mathrm{mc} \\ 20-50 \mathrm{mc} \end{array}$	Point M1729 Point M1734
Class-A power output	0.5 w	2 w	Junction
Switching characteristics	none	good	$\begin{aligned} & \text { Point M1698, M1689, } \\ & \text { M1734 } \end{aligned}$
Feedback resistance r_{b}	250 ohms	70 ohms	Point M1729
$\frac{\text { Light }}{\text { Dark }} \text { photocurrent }$	2 to 1	20 to 1	Junction M1740

M1729 for straight transmission applications has been increased to 20 to 24 db and for the M1752 junc-tion-type, the single-stage gain may be as high as 45 to 50 db .

Point-contact devices have been improved to have noise figures of about 40 to 45 db for high-sensitivity low-noise applications. The M1752 junction transistor has noise figures in the 10 to 20 db range. Noise figures are taken at 1,000 cycles and vary inversely with frequency.
Frequency response improvement has been obtained so that for video amplifiers up to about 10 mc , the M1729 point-contact transistor has

FIG. 5-General linear transistor

FIG. 6-Equivalent T circuit and typeaverage element values
a gain of about 18 to 20 db per stage. The M1734 point-contact transistor is under development for high-frequency oscillators and microsecond pulse switching. This transistor has been used in $24-\mathrm{mc}$ i-f amplifiers with a gain of 18 to 24 db per stage and bandwidth of several megacycles. These transistors work well as pulse generators and amplifiers of one-half microsecond pulses with collector voltage of six to eight volts and 12 to 20 mw collector power per stage. Amplitudes of four to five volts out of a total collector voltage of six volts and 0.01 to $0.02-\mu \mathrm{sec}$ rise times are obtainable in the amplified pulses.

Class-A power output has been raised to two watts in junction transistors by increasing the thermal dissipation limits and this is not the upper limit.

Junction-type phototransistors ${ }^{4}$ allow much greater output voltages for the same light flux than do point-contact-type phototransistors. ${ }^{\text {b }}$

Refrerences

(1) R. M. Ryder, R. J. Kircher, Some Circuit Aspects of the Transistor, BSTJ, 28, p 367, 1949.
(2) W.' Shockley, M. Sparks, G. K. Teal, P-N Transistors, Physical Review, 83, p 151, 1951.
Sor, (3) R., L. Wrallace, W. J. Pietenpol, Some Circuit Properties and Applications of n-p-n Transistors, BSTJ, 30, p 530, (4) W. J. Pietenpol, P-N Junction Rectifier and Photocell, Physical Review, 82, p 120, April 1951
(5) J. N. Shive, The Phototransistor, Bell Labs Record, \%8, p 337, 1950.

Industrial Magnetrons for Dielectric Heating

Heating at microwave frequencies can be much faster than at lower frequencies and the bands at 915 mc and $2,450 \mathrm{mc}$ minimize communications interference from leakage radiation. Magnetron oscillators, their control circuits and industrial applications of the tubes are discussed

By RICHARD B, NELSON*
General Electric Research Laboratory

Schenectady, New York

MICROWAVE TUBE developments several years ago reached the stage where kilowatts of power were available at frequencies of 10° to 10^{10} cycles. It was soon evident that many heretofore difficult or impossible jobs of dielectric heating could be done easily at these microwave frequencies.

Fundamental to dielectric heating is the relationship

$$
\begin{equation*}
P=2 \pi f E^{2} \epsilon^{\prime \prime} \times 0.0885 \times 10^{-12} \tag{1}
\end{equation*}
$$

where $P=$ power in watts per cc converted to heat in the dielectric, $f=$ frequency of alternating elec-

[^5]tric field, $E=\mathrm{rms}$ field strength in volts per cm and $\varepsilon^{\prime \prime}=$ loss factor of the dielectric.
The rate of heating for any material is
\[

$$
\begin{align*}
\frac{d T}{d t}= & \frac{P}{4.186 C}=\frac{1}{C} 2 \pi f E^{2} \epsilon^{\prime \prime} \times \\
& 0.0211 \times 10^{-12} \tag{2}
\end{align*}
$$
\]

where $d T / d t=$ time rate of temperature rise in degrees C per sec and $C=$ specific heat of material.

To increase the rate of heating a given dielectric material, either the field strength or the frequency may be increased. The field strength is easy to control but it can be increased only to the limit imposed by
arcing between the electrodes and the work. The field strength at which arcing occurs varies tremendously with different kinds of materials.

Choice of Frequency

Referring to Eq. 2, the rate of heating at constant voltage is proportional to frequency if the loss factor does not change. In most materials, the loss factor actually rises with frequency in the useful ranges. It would seem necessary only to go to a high enough frequency to heat any material rapidly with a voltage safely below the breakdown point. There are, how-

Experimental plastic preheater. Radiation through the entrance and exit holes in the cavity is reduced by quarter-wave chokes

Complete and cut-away views of a water-cooled 915 -mc magnetron with plate dissipation rating of 3.000 watts
ever, limits on usable frequencies, imposed by economic and physical factors.

In the microwave region, it has been found extremely difficult to shield dielectric heating equipment to reduce radiation below the allowable FCC maximum.

Heating apparatus must be essentially confined to the frequency bands assigned for this service where large amounts of stray radiation are permitted. These bands are shown in the table.

Center frequency (me)	Devietion allowance (mic)	Quarter wavelength in air (in.)
915	± 25	3.22
2,450	± 50	1.21
5,850	± 75	0.50
10,600	± 100	0.28
18,000	± 150	0.16

Standard grid-controlled vacuum tubes serve as efficient oscillators up to the order of 100 mc . Their wide use in communications has made them highly developed and cheap.

Throughout the range of 100 to 900 mc , vacuum-tube oscillators can
be built to give as much power as is needed. These are specialized tubes in small production and they are expensive. In view of the lack of frequency assignments, it is doubtful if these frequencies will be used much for heating.

At 915 mc , a rugged magnetron oscillator is available to give $5-\mathrm{kw}$ output. Experimental magnetrons have been built to produce 50 kw in this frequency range. At 2,450 mc, magnetrons are available from the Raytheon Manufacturing Company giving up to $2-\mathrm{kw}$ output. At higher frequencies, tubes suitable for industrial use have not yet been put on the market. They can be made if a demand for them develops.

Uniformity of Heating

Most of the materials to be heated with microwaves are relatively low-loss dielectrics. This means that in the passage of an electromagnetic wave through the material, only a small part of the energy in the wave is absorbed per wavelength of travel. If it is desired to dissipate all the energy in the wave in a piece of dielectric no more than a few wavelengths long, the wave must be reflected back and forth through it many times. Interference of the reflected waves sets up a standing-wave field pattern with maxima and minima of field strength separated by onequarter wavelength.

The standing-wave pattern imposes definite restrictions on the size of objects that may be heated uniformly at a given frequency. Consider the case of a cylindrical resonant cavity excited with the electric field parallel to the axis. The electric field strength is

$$
\begin{equation*}
E=E_{\max } J_{0}(6.28 r / \lambda) \tag{3}
\end{equation*}
$$

where $E_{\text {max }}=$ maximum field (on the axis), $r=$ radial distance from the axis and $\lambda=$ wavelength in the material with which the resonator is filled.

In Fig. 1 is plotted the variation in E^{2} derived from this equation. The rate of heating, proportional to E^{2}, is greater than 90 percent of its maximum value inside a radius of 0.07λ.

In a practical case, such as heating a plastic preform, the dielectric
load is placed in the center of the cavity where the field is high and uniform. If the diameter of the cavity is adjusted for resonance, with a coaxial cylinder of dielectric, the field in the dielectric will be exactly the same as in a smaller cavity completely filled with dielectric.

For a plastic material of dielectric constant 4.0

$$
\begin{equation*}
\lambda=\lambda_{0} / \sqrt{4}=0.5 \lambda_{0} \tag{4}
\end{equation*}
$$

where $\lambda_{0}=$ wavelength in free space.

If the plastic cylinder has a diameter d such that its surface is heated 90 percent as much as its center

$$
\begin{equation*}
d=2 \times 0.07 \times 0.5 \lambda_{0} \tag{5}
\end{equation*}
$$

At $915 \mathrm{mc}, \lambda_{0}=12.9 \mathrm{in}$. and d_{815} $=0.9 \mathrm{in}$. is the maximum diameter permitted.

This example illustrates the role of standing-wave patterns in selecting frequencies. Another effect becomes important for very lossy materials. Here the electromagnetic wave may lose its energy so rapidly in its first passage into the material that at the center of the load the fields are too weak to produce enough heat. For example, at 915 mc roast beef has a dielectric constant of 28 and a loss factor $\varepsilon^{\prime \prime}$ $=5.6$. The attenuation constant α
for the fields of a wave is given by

$$
\begin{equation*}
\frac{\pi}{\lambda_{0}} \frac{\epsilon^{\prime \prime}}{\sqrt{\epsilon^{\prime}}} \tag{6}
\end{equation*}
$$

where $\varepsilon^{\prime}=$ real part of dielectric constant. The power density in the wave is

$$
\begin{equation*}
E^{2}=E_{o}{ }^{2} e^{-2 \alpha} \tag{7}
\end{equation*}
$$

If the effective depth of penetration p of the wave is defined as that depth at which the power density has fallen to $1 / \sqrt{e}$ or 0.61 of its

FIG, 2-Cross-sectional view of a 5 -kw water-cooled magnetron
initial surface value

$$
\begin{equation*}
p=\frac{1}{4 \alpha}=\frac{\lambda_{0} \sqrt{\epsilon^{\prime}}}{4 \pi \epsilon^{\prime \prime}}=\frac{\lambda}{4 \pi \epsilon^{\prime}} \tag{8}
\end{equation*}
$$

In roast beef, $p=0.97 \mathrm{in}$. effective penetration at 915 mc .
These examples indicate how, for any type of load, consideration of the wavelength in the material in relation to the size of the piece leads to the choice of frequency. Present applications use the $2,450-$ mc band and the $915-\mathrm{mc}$ band. It appears that these will remain the most important in the microwave region, even when tubes become available for higher frequencies.

In the General Electric Company, microwave heating investigations and developments have been concentrated at 915 mc . Tube development was started in 1945 with a 5 kw magnetron oscillator operating at $1,040 \mathrm{mc}$. This tube was superseded by the type Z1492, operating at 915 mc . This tube requires a magnetic field of 1,400 gauss and has a plate dissipation rating with water cooling of 3,000 watts.

Construction of the 5 -kw magnetron is shown in Fig. 2. The filament is a helix of pure tungsten wire, 0.400 in . in diameter. Surrounding it are 10 anodes on a 0.687 -in. diameter circle, formed by U-shaped loops of $\frac{3}{16}$-in. copper tub-

FIG. 3-Mountings and connections for the magnetron of Fig. 2

FIG. 4-Performance curves taken with transmission line matched to load
ing through which the cooling water flows. This method of removing heat from the anodes gives good dissipating ability and practically eliminates frequency drift from thermal expansion of the anode structure.

The ten resonant circuits of the oscillator are formed by the anode pipes themselves and the copper tube shell connecting them at their outer ends. At their inner ends, the anode pipes are connected alternately by copper straps into two sets of 5 anodes. The purpose of these straps is to increase the frequency separation between the resonant modes of the anode structure, so that the oscillation will always take place in the desired mode with alternate anodes 180 deg out of phase. The resonant circuits would be quite loosely coupled without the straps, with the resulting resonant frequencies differing by a few percent.

Coupling to Load

In the strapped structure, resonances of a laboratory tube were at $1,063 \mathrm{mc}, 2,110 \mathrm{mc}, 3,040 \mathrm{mc}$, $3,750 \mathrm{mc}$, and up. This extreme mode separation is not necessary but it has proven very desirable in dielectric heating. Where the load impedance may change wildly, it is nice to have insurance against oscillations jumping to another mode.

Referring again to Fig. 2, coupling of the anode tank circuits to the load is provided by a copper strap connected to one leg of one anode pipe and leading through the glass output seal to an external coaxial line. The point of attachment to the anode pipe is determined to give the proper loading of the oscillator when the transmission line is reflectionless.

The tube is mounted by sliding it inside its solenoidal electromagnet. As shown in Fig. 3, the magnet has an iron shell which carries the flux. Jumping a short gap formed by the copper tube shell, the flux enters the iron pole pieces inside the tube and provides the magnetic field parallel to the axis of anode and cathode. As the tube is plugged into its magnet, its output end makes contact with the inner and outer conductors of the transmission line. Air is blown in through

FIG. 5-Hieke diagram for a plate current of 1.0 amp and magnetic field of 1.200 gauss. Hadial coordinate is the voltage reflection coefficient (scale marked in swr in $\mathbf{d b}$) and azimuthal coordinate is phase angle of reflection coefficient (scale marked in wavelengths displacement of standing wave minimum). Upper numbers are wavelength (add $29,000 \mathrm{~cm}$), dotted lines are constant-wavelength contours, lower numbers are percent efficiency and solid lines are constant-efficiency contours
the inner conductor to cool the glass seal, which itself undergoes dielectric heating.

Operating characteristics of a magnetron are best shown by two sets of curves. Figure 4 is a performance chart where contours of magnetic field, output power and efficiency are plotted on coordinates of plate voltage and current. This data is taken with the transmission line matched to the load.

Figure 5 is a Rieke diagram where for standard conditions of plate current and magnetic field, the efficiency and wavelength are plotted on coordinates of reflection coefficient of the load for waves going down the transmission line.

Electromagnet Control

The magnetron is essentially a diode, operated for convenience with its anode grounded. The plate power supply is between cathode and ground. It is advantageous to return the low-voltage end of this
supply to ground through the electromagnet, so the magnet is effectively in series with the plate current of the magnetron. The reason for this is illustrated in Fig. 4. If the magnetic field is constant, a small change in plate voltage produces a large change in current and output power. The dotted curve in Fig. 6 shows this relation. Linevoltage fluctuations can cause serious output variations.

When the plate current flows through the electromagnet, an increase in plate voltage causes increased current to flow, raising the magnetic field in proportion. Referring to Fig. 4, the plate voltage is almost directly proportional to magnetic field. The resultant effect is that plate current becomes proportional to plate voltage. This ohmic characteristic gives much smaller variations of power with plate voltage, as shown by the solid curve in Fig. 6.

The series electromagnet also

FIG. 6 -Effect of plate voltage on output power
stabilizes the output power against variations in load impedance. In Fig. 7, power is plotted versus resistance of an ohmic load measured in terms of Z_{0}, the characteristic impedance of the transmission line which it terminates. The power curve with a series electromagnet is more constant than with a fixed magnetic field and either constant voltage or constant current from the plate supply. Judicious choice of regulation characteristic of the supply could help in this respect also.

One difficulty with the series electromagnet is that when the plate voltage is first applied, the field is zero. Under these conditions, the magnetron will not start in its proper mode, but will oscillate in a high-frequency electronic mode at a voltage too low for the proper mode to take over. The remedy for this trouble is to have a residual magnetic field present before the plate voltage is applied.

Figure 8 shows a rectifier circuit that supplies starting field by feeding current into the magnet in parallel with the plate current. As the plate current rises, the drop in the magnet exceeds the rectifier voltage and the rectifier stops feeding current.

The rectifier shown in Fig. 8 has other uses. It provides a surge path for the magnet current when the plate supply is cut off, avoiding excessive voltage rise due to the inductance of the magnet.

Also, with the variable a-c supply to the rectifier, it may be used as an output power control that is much cheaper than a plate power
supply with continuously variable voltage. Leaving plate voltage fixed, the d-c output voltage of the rectifier is raised until it feeds shunt current into the magnet. This raises the magnetic field and reduces magnetron plate current. In this way, complete and continuous power control is obtained with a small Variac.

One very important piece of circuitry is a device for keeping the magnetron's filament at the proper temperature. The filament receives a considerable amount of energy from bombardment by electrons

FIG. 7-Effect on output power of varying pure resistance loads

FIG. 8-Rectifier circuit supplying starting field for electromagnet
that get into the r-f field in the wrong phase and are accelerated, as in a cyclotron. Most of these electrons strike the cathode.

The back-heating power in a Z1492-type magnetron at 1,000 and 1,400 gauss is plotted as a function of output power in Fig. 9. This data was taken with a load matched to the output transmission line. The heating is also a complicated function of load impedance, getting worse for unloaded conditions. No device capable of anticipating its amount has been very satisfactory.

The Z1492 cathode, running normally at 560 watts, would have its life shortened by a factor of seven by the addition of 155 watts of back heating, so it is worth while to compensate for it.

A regulating circuit, shown in Fig. 10, compares the resistance of the filament with a reference resistor. As the filament temperature rises, its resistance increases. This generates an error signal in the servo circuit, which reduces the heating current.

The circuit as shown will compensate for three-fourths of the back-heating power in a Z1492 magnetron. More elaborate controllers with better regulation have been designed, but the circuit shown has the advantage of simplicity and of failing safe. If a tube loses conductivity, the magnetron filament becomes colder.

The Z1492 is designed to feed into a $3 \frac{1}{8}$-in. coaxial transmission line of 53 ohms characteristic impedance. Lines with dielectric beads supporting the center conductor are not desirable, due to reflections from the beads and dielectric losses in them. Stub-supported lines, having an inner conductor $1^{\frac{1}{4}} \mathrm{in}$. in diameter and an outer conductor with a $3.027-\mathrm{in}$. inside diameter, have been used satisfactorily.

Magnetron Application

Experimental work on dielectric heating at 915 mc has been carried on by several departments of the General Electric Company

FIG. 9-Back heating of the cathode in a 5 -kw magnetron with matched load
and by other organizations. To facilitate experiments, a number of 5 -kw heater units have been built and sold. This heater unit contains a Z1492 magnetron, power supplies, filament temperature regulator, triple-stub r-f impedance matcher and directional couplers to read directly the power in the transmitted and reflected waves. In use, matching the external load to the oscillator is done by adjusting the two controls on the impedance matcher until the reflected power meter reads zero.

In microwave heating, even more than low-frequency heating, each job presents a new problem in coupling power to the load. One example which has been studied is the heating of precooked frozen dinners. A specialized unit was developed for this purpose by P. W. Morse and H. E. Revercomb and described by them in Electronics, October 1947. It contains a resonant cavity, inside which the food is rotated on a turntable to average out the standing-wave pattern.

Another example of coupling methods is in preheating of thermosetting plastics. Here the pieces are small and uniform but a very uniform temperature is required. One method which has been used is the resonant cavity shown in Fig. 11. The transmission line is coupled by an inductive loop to the cavity, which is tuned to resonance by moving one side. The

FIG. 10-Constant-temperature filament regulator circuit

FIG. 11-Resonant cavity for heating plastic preforms
plastic preform pellet is placed at the center of the cavity in the region of most uniform field. A support of nonlossy dielectric prevents burning at the points of contact with the metal walls. In this cavity, fed with 915 -mc power, phenolic plastics can be preheated to a molding temperature of 190 C in one second.

One of the photographs in this article shows an experimental plastic preheater. In this machine, preform pellets are fed through a resonant cavity on an endless belt, emerging at molding temperature. Quarter-wave chokes reduce radiation through the entrance and exit holes in the cavity.

High-Power Magnetron

Experimental magnetrons have been built to give up to $50-\mathrm{kw}$ output at $1,000 \mathrm{mc}$. Fig. 12 shows a cut-open view of a tube which was developed as part of a Signal Corps contract. Similar tubes may be built to a degree of ruggedness and reliability suitable for industrial dielectric heating.

This magnetron operates at about 14 kv , with a magnetic field of 1,500 gauss. Plate efficiency is from 50 to 60 percent.

At the high-power level, it is desirable to use waveguides for transmission lines. The magnetron output is designed to couple directly into the waveguide by a quarter-wave antenna penetrating the guide. Surrounding the antenna is a ceramic dome, which forms the vacuum seal. The ceramic material, a high-alumina vitreous body known as Aluminite, will stand much higher powers than glass.

The anode structure, capable of dissipating 80 kw consists of 16 anodes $3 \frac{1}{2}-\mathrm{in}$. long by $\frac{1}{4}$-in. wide, each carrying cooling water.

The limit on power in these c-w magnetrons is in the cathode, where back-heating is severe. Experiments were carried on with watercooled cathodes coated with good secondary-emitting materials. With a secondary electron yield ratio of three to one, the back-bombarding electrons generate enough secondary emission to sustain oscillations. A small thermionic cathode is used as a starter.

FIG. 12-Cut-away view of a 14 -kv magnetron with magnetic field of 1,500 gauss

With these cathodes, power output of 50 kw was obtained, but the life was measured in tens of hours. The secondary emitting surfaces consisted of active metals such as magnesium and beryilium oxidized to a depth of a few hundred Angstroms. In operating the tube, residual gases are ionized by the high density of electrons between cathode and anode. These positive ions bombard the cathode, and are believed to sputter off the oxide layer, leaving a cleąn metal surface which has a low secondary yield.

Thermionic cathodes coated with thoria were tried, such as the one in the cut-open tube of Fig. 12. Powers around 30 kw were obtained, limited by cathode-to-anode breakdown. These cathodes should have very long life.

A husky pure-tungsten hot cathode required a heating power of 5 kw . With it, outputs of 35 kw were reached, limited by back heating of the cathode exceeding its total power requirement. The conclusion from these high-power tube tests is that a good $30-\mathrm{kw}$ oscillator at $1,000 \mathrm{mc}$ is now realizable.

Improving TV System

FIG. 1-Experimental system used to determine tv system characteristics

IN STANDARDIZING the transient response of the various parts of the television broadcast system a difficulty arose concerning that of the carrier-frequency system linking the transmitter to the receiver. Doubt arose as to whether it was possible to obtain an acceptable transient response within the framework of the present broadcast transmission standards. Accordingly, an investigation was made of the system between the modulator in the transmitter and the final detector in the receiver.

Experimental System

To measure the transient responses of systems having a wide variety of characteristics, an experimental system was set up as shown in Fig. 1. A carrier-frequency signal is amplitude-modulated by a square wave and fed to a linear amplifier that raises the power level to about 100 watts. The signal goes through a passive, linear, minimum-phase-shift network representing the r-f circuits of the transmitter. A sample of the transmitter output is coupled through a similar kind of network representing the carrier-frequency
circuits of the receiver and is then fed directly to the vertical deflection plates of a cathode-ray oscilloscope.

The system is carefully adjusted so that the envelope of the signal fed to the input of the transmitter network is a substantially undistorted square wave of very short rise time.

Any transient distortion introduced by the transmitter and receiver networks can then be assessed by observing the squarewave envelope of the signal displayed by the oscilloscope. Transient response of any specific sys-

By JOHN RUSTON
Television Transmitter Div.
Allen B. DuMont Laboratories, Inc
Clifton, N. J.
tem can be measured by adjusting the networks to have the desired transmission characteristics.

It has been shown that the transient response of any system is dependent upon its amplitude-frequency characteristic and its phase characteristic. However, in the carrier frequency circuits of nearly all practical television systems, the phase characteristic is uniquely determined by the amplitude-frequency characteristic, since simple minimum-phase-shift networks are used almost exclusively. This is also true in the experimental system. Hence as far as transient response is concerned, the experimental system will accurately simulate almost any practical system having the same amplitude-frequency response.

Standard System

Having established a method of measurement, it is appropriate to consider first the transient response of the system defined by the stand-

What The Author Found

- A television system that rigidly adheres to the present standard characteristics has so much inherent transient distortion that it can be considered unacceptable.
- Existing practical systems have transmission characteristics with a more gradual slope in the region of the carrier frequency. This results in improved transient response, but distortion is still objectionable. It cannot be substantially reduced by correction in the video circuits.
- Transient distortion can be largely eliminated by modifying the transmission characteristic to the step type described. By a suitable change in the present transmitter and receiver standards, compatibility with existing receivers could be obtained

Transient Response

Abstract

Studies of existing standards indicate that a transmitter with characteristics only slightly different from those specified by FCC and RTMA will pass essentially undistorted square waves for any practical modulation factor when used with a receiver having a step-type amplitude characteristic

ards for television broadcasting. Figure 2 shows the transmissionamplitude characteristics for this system. The frequencies are shown relative to the carrier frequency so that the curves will apply to any channel and receiver intermediate frequency.

The overall system characteristic, shown in Fig. 2C, is obtained by combining the familiar standard characteristics for the transmitter (A) and receiver (B) as shown. It is noteworthy that the system response is determined primarily by the receiver.

However, when considering system response the individual transmitter and receiver characteristics are of no particular concern except as they affect the overall characteristic.

To measure the transient response of the standard system, the experimental system was adjusted to have an overall transmission amplitude characteristic as nearly

FIG. 2-Standard tv broadeast system transmission-amplitude characteristics

FIG. 3-Standard system ampliture characteristics (A) and output envelope waveforms for varying degrees of modulation (B) and (C)
as possible like that of Fig. 2C. The results are shown in Fig. 3. It is seen that except in the region of high-frequency cutoff the measured curve is everywhere within 5 percent of the standard shown by the dotted line. It was found that approaching any closer to the standard did not have any marked effect on the transient response.

When the carrier signal with square-wave modulation was fed into the system, the modulation factor was first adjusted so that the square wave represented abrupt transitions between the white and black levels of a standard television signal, that is, 12.5 percent and 75 percent respectively of the nominal
sync peak level. This was called full modulation and corresponds to a modulation factor of 0.714 . It is apparent that with this full modulation a given degree of squarewave distortion will be more noticeable in a received picture than it would be for lower modulation factors when the square wave represents transition between points closer together on the gray scale.

The output signal from the system as displayed by the oscilloscope is shown in Fig. 3B. For clarity only the shape of the envelope is shown. The actual display is, of course, a complete amplitudemodulated wave having an envelope of this shape. The output wave is
so distorted as to bear little resemblance to the input wave, which consisted essentially of abrupt transitions from black to white and from white to black.

One very noticeable effect is the marked difference in shape of the two transitions. This indicates a nonlinear type of distortion which it is practically impossible to correct inasmuch as it varies with the type of waveform being transmitted.

When the modulation factor is reduced to about 0.25 or lower, the nonlinear distortion is no longer present as shown by the waveform in Fig. 3C. The distortion remaining in this waveform could be corrected by means of phase-shifting
networks in the video circuits of the system. However, it will be shown later that such phase correction would make the distortion at full modulation even worse.

Modified System

Distortion in the order of that shown in Fig. 3 is unavoidable with any system whose transmission amplitude characteristic is adjusted to conform to the standard. Since practical systems currently in use do not, in general, exhibit so much transient distortion it can only be assumed that they fortunately do not conform to the standard.

Figure 4 shows a characteristic in which the slope near the carrier has been reduced as much as possi-

FIG. 4-Average system amplitude characteristics showing relative frequencies in megacycles

FIG. 5-Envelopes of resultant square waves for varying degrees of modulation (A) and (C) phase corrected (B) and (D)
ble while still maintaining adequate attenuation at the adjacent sound frequency of -1.5 mc . The slope is substantially less than that of the standard shown by the dotted line. This curve approximates that of an average receiver, which has been aligned to have a characteristic of the general standard form without going to great lengths to obtain rigid compliance with the standard.

The square-wave outputs obtained with this system are shown in Fig. 5. Waveforms (A) and (C) show that the transient distortion is appreciably reduced, but it can still be considered objectionable.

It was mentioned previously that the distortion present at low modulation can be corrected in the video circuits of the system. The addition of a suitable phase-shifting network in the modulator input does largely remove the distortion as shown by the waveform at (D). But at full modulation, the phase correction makes the distortion, if anything, somewhat worse as shown by the waveform at (B). The reason is that the phase correction tends to compensate for undershoot and smear that are not present in the white-to-black transition. This results in an extensive overshoot at the black level.

Improved System

The results obtained so far indicate that objectionable transient distortion is unavoidable with a system of the general standard form. It would therefore seem worth-while to investigate the possibility of obtaining an improved transient response by making some major change in the system transmission characteristic.

The nonlinear type of distortion evident at full modulation is caused by the quadrature component produced when the relative amplitudes of the carrier and sidebands are changed asymmetrically. Distortion still present at low modulation results principally from nonlinearity of the phase characteristic, particularly in the region of the carrier frequency.

FIG. 6-Proposed step-type characteristic and resultant square-wave envelope obtained

Hence, the requirements for an improved transient response are a more linear phase characteristic and a transmission amplitude characteristic that is more nearly symmetrical about the carrier frequency.

These requirements are satisfied by the step type of transmission characteristic shown in Fig. 6. The ideal curve shown by the dotted line is symmetrical about the carrier from the lower edge of the channel up to +1.25 mc . Above this frequency the response necessarily increases two-fold to compensate for the loss of the lower sideband. Consideration of the general relationship between amplitude-frequency and phase characteristics indicates that this type of amplitude characteristic should also give a more linear phase characteristic than the standard.

When the experimental system is adjusted to have a transmission characteristic as close as possible to the ideal, the measured characteristic is as shown by the full line, and the output square wave is as shown at (B). The square wave is remarkably free from distortion. The quadrature component has been reduced to such an extent that the difference between the two transitions is less than 5 percent. The improvement in linearity of phase characteristic is so great that there is no detectable undershoot or smear. Furthermore, the waveform is substantially the same for any modulation factor up to the maximum of 0.714 .

In order to obtain this improved transient response, it is necessary
to keep the shape of the curve between the carrier and -1.25 mc the same as that between the carrier and +1.25 mc .

Practical System

It is rather difficult to do this in the r-f circuits of the system, but fortunately it is possible to obtain at least part of the desired shape by suitably modifying the re-

FIG. 7-Amplitude-correcting network for use at videa-írequency level
sponse of the system video circuits. For instance, the two-fold increase in response above +1.25 mc could be obtained by including a suitable network in the video circuit of the receiver. The system r-f response would then be flat in the upper sideband region and the lower sideband response would be shaped to match that of the video network.

Video Network

A suitable network for this purpose is shown in Fig. 7. This network has a constant resistive input impedance and could be used as the detector load or video amplifier load in a receiver.

The response shown at (B) has the desired two-fold increase at the higher frequencies. When the experimental system was suitably modified to include this network in the receiver output, the results shown in Fig. 8 were obtained.

The transmitter characteristic is flat over most of the passband
but the lower sideband response is shaped to match the video network that has been included in the receiver.

The response of the carrier-frequency circuits of the receiver is also substantially flat, with the response maintained as far as possible into the lower sideband region; that is, down to about -1 mc . It then cuts off sharply to obtain about 45 db attenuation at the adjacent sound frequency. The overall square-wave response of the system (C) is again substantially free from distortion for any modulation factor up to the maximum of 0.714 .

Similar to Standard

It will be noted that the transmitter characteristic differs very little from the present standard.

FIG. 8-Transmitter (A), receiver (B) and square-wave (C) characteristics of proposed system standards

The lower sideband response starts sloping off closer to the carrier but the actual amplitude-frequency response is still within the limits specified by the FCC and RTMA. Such a transmitter would then provide substantially the same service to present receivers as that from existing transmitters. However, by carefully controlling the transmitter lower sideband a considerably improved transient response could be obtained from receivers adjusted for this modified transmission characteristic.

Methods of minimizing layer-to-layer transfer of signals in magnetic tape recordings during storage are analyzed. Best results are obtained by using weak erasing field during playback to suppress level of cross-talk without appreciably attenuating desired signal

IN MAGNETIC RECORDING, the tendency of one layer of tape to be magnetized by the field of the layer of tape against which it is wound has been studied empirically. ${ }^{1,2,3}$ In two papers ${ }^{4,5}$ dealing with theory and experiment, a method has been outlined for reducing the layer-to-layer transferred signal by a process of selective erasure. The present study is concerned with this process.

It has been shown that the ease with which a recording can be erased is a function of the bias current used in recording it. The greater the bias current, the more difficult is the recording to erase. A signal which is recorded by layer-to-layer transfer is essentially a recording which has been made with zero bias current and might be expected to be easier to erase than the recorded material. With certain limitations, this is found to be the case.

Erasure Tests

Tests were made by recording reference signals on every sixth layer of a roll of freshly demagnetized tape. After various times of storage they were reproduced to get the level of the two layers adjacent to the recorded one. In tests of this type it is necessary to standardize carefully many factors that affect cross-talk, including bias level, use or absence of bias in unrecorded layers, time of wind (and rewind, if used), temperature, tape tension and other factors ${ }^{1,4}$. In reproducing, an erase head was arranged to provide variable fields from zero up to those which completely erased, so that the relative effects of weak erasure on recorded and unwanted signals could be measured.

It was found, as expected, that the unwanted cross-talk signals were more easily erased than the
recorded signals. A small erase current (about $\frac{1}{10}$ the normal one) would reduce cross-talk signals by 6 or 8 db without any effect on the recorded signal, or the cross-talk could be reduced 10 or 12 db while only reducing the recorded signal 1 db .

Effect of Frequency

These measurements were made on a single frequency but the problem for program material is more complex, because the ease of erasing signals with most heads varies with frequency. Furthermore, this dependence upon frequency is different for different head geometries. If the partial erasure is done by a recording head with a short gap, the field gradients near the gap are large, and short wavelengths are much more easily erased than long ones.

A typical erase head with longer gap produces a more uniform field through the thickness of the tape. A large air-core solenoid can be arranged to give a nearly perfectly uniform field if the tape is run through it. (Such solenoids are not practical for erasing recordings but can be arranged easily to give the fields necessary for selective erasure.) Since short wavelengths are not important in cross-talk but

REDUCING CROSS-TALK

Avoid excessive peak record levels.
Store reel in cool place, away from stray magnetic fields.

Check recorder to make sure no stray fields affect tape in the supply or take-up positions.

Rewind the recorded tape occasionally, especially during the first few months of storage.

If necessary, use selective erasure to reduce cross-talk magnetization while reproducing
are important in recorded material, the best selective erasure head is one that gives most low-frequency erasure and least high-frequency erasure.

To test this, signals were recorded as above except that a highfrequency tone was also recorded. This tone was used to determine the frequency selectivity of the erasing process on recorded signals. After storing the recorded roll for 16 hours at 65 C , the tape was subjected to selective erasure fields of varying intensity from three sources: an Ampex recording head with 0.001-in. gap; an Ampex erase head with $0.020-\mathrm{in}$. gap; a 50 -turn solenoid $\frac{1}{2} \mathrm{in}$. long, $\frac{1}{2} \mathrm{in}$. inside diameter and $1 \frac{1}{2} \mathrm{in}$. outside diameter, having a substantially uniform $60-\mathrm{cps}$ field directed along the length of the tape. The results are summarized in Fig. 1.

It was found that for a given reduction of the printed signal, the 1-ke signal was reduced by about the same amount in all three cases. However, the high-frequency recorded signal was affected to a much greater extent and it was in this respect that the three methods differed markedly. The solenoid produced the least deterioration of the high-frequency signal, followed closely by the erase head, with the recording head running a very poor third. While the solenoid appears to be the most desirable means for selective erasure, practical considerations such as overheating, stray fields and cumbersome tape threading through the solenoid will probably prevent its widespread use.

The quantitative laboratory data in Fig. 1 are restricted to pure tones. They are also for particular heads and recording bias; results will vary somewhat for other experiments. As is often the case, the most satisfying proof of the

Magnetic Tape Cross-Talk

By ROBERT HERR and ROBERT A, von BEHREN
Minnesota Mining and Manufacturing Co. St. Paul, Minnesota

usefulness of the technique is in tests of program material. In this sort of test, the following observations have been made.

The conditions for detectable cross-talk in actual program material are rather restrictive, so that it is rather infrequently encountered. Barring the occurrence of magnetic fields or high temperatures, printed signals are in the range of 50 to 60 db below the signal level even after a few years storage. This requires the complete absence of signal and a very low noise level in order to permit detection of the transfer. One procedure which aggravates the transfer effect is to commence a recording on a thoroughly erased tape in the middle of a loud program passage. Upon subsequent reproduction of this tape, the alert listener is almost certain to be forewarned of the impending affront to his eardrums. In these cases, selective erasure can be utilized to reduce the transfer to the point of insignificance if not inaudibility.

Effect of Rewinding

The effect of selective erasure upon the transferred signal is not permanent, inasmuch as a new transfer signal is started as soon as the tape is rewound. The print level will again rise as the tape is stored, but should the tape be unwound at any time, the cycle will be interrupted. For this reason tapes which are frequently replayed would be expected to give less trouble than those which are stored undisturbed. Subsequent erasures using the same device and the same field intensity will restore the transfer signal to approximately the same level as did the first erasure.

The program will suffer some deterioration during the first selective erasure, but the identical process
can be repeated any number of times without resulting in any additional change in the program. Therefore, if the erase level is carefully monitored, it may be desirable to use selective erasure as a routine procedure whenever tapes are played back. In this case, the equalizers can be adjusted to restore the slight high-frequency loss in the process.

Practical Considerations

Unlike some conceivable methods for the control of layer-to-layer transfer, the selective erasure process is a very practical one. For example, in a conventional type of recorder, it is only necessary to arrange that the bias or erase supply is operated at a suitably reduced power instead of being turned off during the playback operation. Depending upon how generously designed the normal erase current is, the value used for selective erasure may be from $\frac{1}{10}$ to s the normal current. The possible variations in switching technique to accomplish this are large in number but need not be complex. It is necessary that the high-frequency

FIG. l-Effect of selective erasure fields produced in three ways, when using $15-\mathrm{kc}$ recorded signal. With l-kc signals, all three erasing devices give the same results, represented by uppermost curve
supply operate during reproduction, so the method is not applicable to some types of home recorders, as for example, those where the oscillator tube is used as the power output tube in reproduction. However, it is expected that this technique would never be required except for high-quality professional recordings. The use of selective erasure on any professional recorder would present no problem. Patents on the use of selective erasure have been applied for.

One limitation to the application of this selective erasure is in the nature of the magnetic tape which is used. On some magnetic recording tapes, the recording becomes more difficult to erase with time of storage. On such tapes, selective erasure may only be effectively used for a short time after recording. Since serious levels of transfer generally occur only after considerable storage times, this means that the process is nearly worthless with such tapes. The data in this paper were taken with "Scotch" sound recording tape No. 111 and are typical of the results which can be obtained with this tape and comparable tapes and films made from the same magnetic oxide. The process is relatively useless with tapes made from other oxides by the Minnesota Mining and Manufacturing Co. Among other domestic and foreign tapes of different types a wide range of behavior from good to poor in this respect will be found.

References

(1) W. Lippert, Elektrotechnik, 1, p 57, Aug. 1947 .
(2) B. Vinzelberg, Funk und Ton, 12, 633 , Dec. 1948
p $633, \mathrm{Dec}$. 1948 . S . Johnson, Jour. SMPE, 52, (3) S. Wune Johns 1949.
(4) E. D. Daniel) and P. E. Axon, .B.C. Quart., 5, p 241, Winter 1950-51. (5) L. Wiggins, Erasure of Cross-Talk on $1 / 4^{\prime \prime}$ Magnetic Tape, presented by E. Schmidt at Oct. 1951 convention of SMPTE. Hollywood.
(6) R. Herr, B. F. Murphey and W. W. Wetzel, Jour. SMPE, 52, p 77, Jan. 1949.

Nonsynchronous Pulse

Voice transmitters use one frequency simultaneously but no synchronizing pulse is necessary, although time-division multiplexing is used. Random samples from each transmitter are tagged for identification at proper receiver. System is applicable to rural telephony and moving-vehicle communication

By ANDREW L. HOPPER

Bell Telephone Laboratories, Inc.
Murray Hill, N. J.

Transmitter outputs (D) and F) are superimposed on common medium as shown in (G).

Receiver recognizer selects pulse groups from transmitter 1 by their unique spacing (H). Anomalous pulse groups caused by interference between transmitter outputs (H^{\prime} and $H^{\prime \prime}$) are rejected by all receivers.

Step wave (I) is obtained when amplitude-modulated pulses are integrated by the storage capacitor.

Low-pass filter reforms original audio wave (J). Some distortion is caused by missing pulses. Dashed lines show undistorted output

FIG. 1-Nonsynchronous pulse-multiplex may be applied in rural

SEVERAL INDEPENDENT speech transmitters using a time-division multiplex system that employs random sampling may transmit simultaneously over a single broadband carriex. From a sample of its input, each transmitter sends a group pulses into the common medium. This pulse group is coded at the transmitter so that it may be accepted by the proper receiver. Interferences between transmitters are reduced by sampling at irregular internals. No synchronizing pulse is required and the transmitters need not be interconnected.

A possible application of the system to rural telephony is shown in Fig. 1. It consists of a number of subscriber stations with directive antennas pointed at a central omnidirectional repeater. Each subscriber transmits on a common frequency. Subscriber transmitter powers are adjusted so that the repeater receives all signals at approximately the same level. The repeater amplifies the received sig-

Multiplex System

FIG. 2-System block diagram shows how receiver recognizer distinguishes between transmitter outpuls by code delay introduced between pulse pairs
nal pulses, changes frequency and reradiates omnidirectionally.

The system provides both for talking and automatic switching. Each subscriber is assigned a pulsecode group to which his transmitter and receiver will revert when the hook is down. When a certain party is dialed, the caller's transmitter emits pulse groups corresponding to the number dialed. When the called party answers, both parties talk using the pulse-code group of the called party.

The system may also be used for communication between moving vehicles and ships. Here syn-
chronous time-division multiplex seems ruled out because of a number of paths of changing delay involved. Likewise, frequency-division multiplex may be difficult because of the excessive linearity requirements that it imposes on the repeaters.

Nonsynchronous System

Each transmitter consists of five major units as illustrated in Fig. 2. When the audio input is sufficient to operate the voice relay, the random pulser supplies a train of irregularly spaced enabling pulses to the grid of the sampler. Meanwhile, the audio input is applied to the
sampler cathode. The output of the sampler, a train of irregularly spaced, amplitude-modulated pulses is passed through the pulse shaper to the coder. Here each sampling pulse is changed into two equal and opposite pulses separated by a constant delay as determined by the position of the code switch on a ten-microsecond delay line. This code delay identifies the pulse group as having originated in a particular transmitter after it is transmitted through the common medium.

At the receiving end, the recognizer continuously monitors the wave train from the common

Same delay line is used for both transmitter coder and receiver recognizer

FIG. 3-Random pulser uses 2D21 thyratron as noise source for generating irre-gularly-spaced keying pulses

FIG. 4-Attenuation and phase characteristics of 10 -microsecond delay line

FIG. 5-Compensating capacitors help achieve phase-linearity in delay line
medium as it travels down the delay line. Each time a pulse group separated by the proper delay code appears, the receiver gate operates passing the information pulse to the storage capacitor. The storage capacitor holds its charge for each operation of the gate. The resulting step waveform is passed to the lowpass filter where the original audio waveform is reconstructed.

Random Pulser

The random pulser is shown in Fig. 3. It uses a 2D21 thyratron as noise source to permit generating randomly-spaced pulses. The noise is amplified by a 6J6 then fed to
the grid of a blocking oscillator. Because the amplitude of the output of this stage varies considerably with repetition rate it is necessary to add a one-shot multivibrator that has a minimum of amplitude modulation in its output. After differentiating and clipping, randomlyspaced pulses of constant amplitude are available to the sampler grid.

Audio input is connected to the cathode of the sampler and also to a voice-operated relay through an amplifier. When there is no audio input the relay is released biasing the grid of the one-shot multivibrator beyond cutoff so that only during talk spurts are the random pulses sent to the sampler grid and thence to the common medium. This increases channel capacity by having the transmitter turned off during silent intervals in conversation.

Delay Line

The same delay line is used in both transmitter and receiver. As shown in the photograph, the line consists of a continuously wound solenoid approximately 20 inches long having a total delay of approximately 10 microseconds and a characteristic impedance of 248 ohms . Taps are located approximately $\frac{1}{2}$ inch (丕 microsecond) apart. The attenuation and phase characteristics of the line are shown in Fig. 4. The line is about 3 db down at one megacycle with linear phase up to about 1.4 megacycles. To achieve the phase linearity shown in Fig. 4 it is necessary to use compensating capacitors in addition to the ordinary low-pass elements. As shown in Fig. 5 capacitors C_{2} are bridged between adjacent taps and C_{3} between alternate taps.

Pulse Shaper

Pulses delivered to the common medium must be shaped so as to be as nearly noninterfering as possible. Hairpin pulses with no preceding or succeeding overshoots or undershoots would be ideal but would require infinite bandwidth. Figure 6 shows the filtering used and the resulting pulse shapes. The sampler plate pulse A is about 0.4 microsecond long at the base. This pulse is fed to a two-section con-stant-resistance filter. The sec-
tions of this filter are tuned to resonate at 1.4 and 1.7 mc . The output of the filter B is a jagged wave due to the filter's transmitting frequencies beyond cutoff. By passing this wave through four sections of delay line these irregularities are smoothed out as shown at C. Further passage of the wave down the delay line results in additional overshoots and undershoots. The wave shape at the end of the line is shown at D.

Corresponding to the desirable pulse shown at C, the attenuation characteristic of the filter plus four sections of delay line is shown in Fig. 7. There is seen to be little deviation from the ideal Gaussian cutoff. The approximate bandwidth of the experimental system is about 0.5 megacycle corresponding to pulses about 2 microseconds long at the base.

Recognizer

The recognizer must enable the receiver gate only when the proper code is received. This is done as shown in Fig. 8 by sampling the voltage amplitudes at four points along the receiver delay line: A, B, C and D. The transmission delay between taps A and C or B and D must be the same as the interpulse spacing T_{2} of the desired pulse pair. It is assumed that the desired wave (1) has traveled down the delay line (2) to the position shown by the correlation of (1) and (2). At this instant voltages could be measured

FIG. 6-Pulse shaper smooths pulses to forestall pulse interference
at taps A, B, C and D, corresponding to wave amplitudes A, B, C and D shown directly above. The voltages so measured may now be compared in bridge resistance networks. At the instant shown by the correlation of (1) and (2) the voltages are related as shown in Fig. 8B at the upper right.

If all four voltages are zero none of the diodes conducts and no pulses are fed to the grids of differential amplifier G_{1}. When zero voltage is fed into both inputs of this amplifier its output voltage will be zero as at a point X in the wave.

Point X satisfies the requirement that all four voltages are equal but we must also insure that they are not all zero, that is that some pulses are present. This is done by a fifth tap on the line that provides an enabling pulse to G_{3} of the mixer. These voltages coincide on the grids of the mixer to produce a short pulse out of the recognizer to operate the gate.

Gate Circuit

The gate circuit is shown in simplified form in Fig. 9. A sample from a tap on the delay line is fed through a cathode follower to the gate input. The gate is of the double-diode type driven by transformer T_{1} having balanced secondary windings and biased in the conventional manner. If the gate were driven directly from the recognizer output the gate operating pulses

NO SYNC PULSES

Multiplexing, or putting a number of speech channels on a single broad-band carrier is accomplished by two general methods:
(1) Frequency division, in which the band is divided into discrete frequency bands corresponding to the several intelligence channels.
(2) Time division, in which the entire band is used for each channel with only ona channel using it at any instant.

In time-division systems such as pulse-amplitude modulation (pam), pulse-code modulation (pcm), and pulse-position modulation (ppm) speech channels are sampled at different times and pulses corresponding to these channels sent over the common medium and reformed into speech waves at the receiving end.

Existing systems sample the speech channels at regular intervals and in the same order. This requires a synchronizing pulse and the speech transmitters must be interconnected.

The system described makes use of random sampling. The speech channels are sampled at irregular intervals. No synchronizing pulses are needed and the transmitters need not be interconnected.
would vary in amplitude as shown at A owing to modulation and marginal conditions of interference. To avoid distortion, this pulse is regenerated by a one-shot multivibrator producing pulses of constant amplitude. This avoids noise from partial or marginal operations of the gate.

To avoid distortion the storage capacitor should fully charge and hold its charge indefinitely for each operation of the gate. Since the gate is operated for only 14 microsecond and may be unoperated for 100 to 250 microseconds (allowing for randomness and a missed sample) a compromise value of C must be used. The larger values of C make the step wave flatter but
cause a loss of high-frequency response. Smaller values cause the steps to slope more and increase distortion due to random sampling. A compromise value of $300 \mu \mu \mathrm{f}$ was found most satisfactory. The need for a 10 -megohm back resistance dictates the choice of 6AL5 diodes for the gate.

The response of the low-pass filter and the overall audio characteristic of the system is shown in Fig. 10. The difference in the curves results from incomplete charging of the storage capacitor.

Signal-to-Noise Ratio

The results of $1,000 \mathrm{cps}$ signal-tonoise measurements at the output of the system are shown in Fig. 11

FIG. 7-Attenuation characteristics of pulse shaper

FIG. 8-Recognizer opens receiver gate only when pulse pairs separated by proper delay code are received. Pulse Irain is sampled at five points along delay line

in which noise plus distortion is plotted as a function of total output. Tests were made both with and without an interfering transmitter.

To obtain noise-plus-distortion readings, the 1,000 -cycle signal was fed around the complete system from input to output with proper attenuation and phase shift to cancel the signal at the output.

Noise and distortion increase with the signal when both transmitters are operating. This behavior is to be expected when the effect of missing samples is considered. As shown in Fig. 11, maximum signal-to-background-noise ratio is about 42 db . However, maximum signal-to-noise plus distortion ratio at high levels is only about 20 db .

Interference Effects

A rough idea of the interfering effects of a number of transmitters is obtained by driving the interfering one at rates that are various multiples of 8 kc . Each simulated added transmitter degrades the sig-nal-to-background-noise ratio by roughly 3 db . Thus with five simulated interfering transmitters this ratio drops from 42 db to about 30 db.

Listening tests were conducted in which each transmitter was fed
from its own tape recorder while the receiver was arranged to accept signals from either one or the other. In general the operation of the second transmitter did not interfere with intelligibilty at normal talking levels although the transmission was judged to be below toll quality. The loss-of-sample distortion causes a certain rasping quality of speech. When more interfering transmitters are stimulated, distortion becomes progressively worse as expected. It appears that speech intelligibility would still be tolerable with between five and eight active. interfering transmtters.

Features

The proposed system has a number of attractive features: the number of distinct assignments that can be made in a given channel is limited only by the video delay incorporated in receivers and transmitters; repeaters need not be linear to avoid crosstalk and for some forms of modulation nonlinear or even limiting repeaters can be used; and crosstalk is unintelligible noise proportional to signal amplitude.
Since each subscriber is assigned a specific number or pulse-code group to which his transmitter and receiver both automatically revert

FIG. 9-Recognizer drives receiver gate through multivibrator and balanced transformer

FIG. 10-Frequency response of output filter and overall system characteristic

FIG. 11-Overall system signal-to-noise characteristics
when the hook is down, the system provides inherently for both talking and automatic switching. However, among the several subscribers at distant exchanges, there need be one or more operators to provide communication between local exchanges.

The system has one outstanding disadvantage. It is not economical of channel capacity with respect to the number of simultaneous transmissions that it can handle as contrasted with the large amount of distinct and always available channel assignments than can be made with a synchronous system.

Conclusion

Experiments show that the quality of speech transmission is below toll system standards. In general, such a system might be useful where transmission of intelligence rather than high quality speech is of primary interest.
J. R. Pierce originally proposed and analyzed the principles of this system. In developing the system experimentally, the author was assisted by J. L. Wenger.

Vibration Recorder Tests Army Packaging

In studies of shocks transmitted to a packaged article, nine accelerations are measured simultaneously and data recorded on magnetic tape that is played back slowly for chart recording. Pulse-width modulation system avoids distortion due to tape inhomogeneities

By J. A. SARGEANT and
Engineer Research and Development Labs.
Fort Belvoir, Va.
R. D. CAMPBELL
Reed Research, Inc.
Washington, D. C.

CAREFULLY CONTROLLED experiments to correlate cause and effect in damage to packaged articles are being conducted at the packaging development laboratory, Engineer Research and Development Laboratories, Fort Belvoir, Va. These experiments require the recording and analysis of forces transmitted to the contents of packages submitted to controlled shocks or vibrations. The forces are detected by electronic accelerometers located at various points of interest and their outputs remotely recorded for subsequent analysis.

Requirements for associated recording equipment are unusually stringent in an effort to reproduce faithfully data from several accelerometers and to have the records available for analysis in the shortest possible time following the experiment. The E.R.D.L. packaging branch assembled the specifications for recording equipment and turned the problem over to Reed Research Inc., Washington, D.C. for development and fabrication.

The shock and vibration recorder, shown in the photograph, simultaneously records nine accelerations and one set of timing signals. The frequency response of the data channels extends from 2 to 500 cps and full-scale acceleration is \pm 80 g .

Figure 1 is a block diagram illus-
trating the operation of the equipment. Output data are recorded by direct-writing oscillographs, without recourse to photographic techniques. Since these oscillographs cannot record the desired frequency range directly, the data are first recorded on magnetic tape, which is then played back at one tenth its original speed; thus reducing all frequency components of the data to ${ }^{\frac{1}{1}}$ original frequency.

This feature effectively increases frequency response of the oscillo-
graph tenfold and gives a corresponding increase in time scale on the chart paper. A ten-minute test on the acceleration table therefore requires an hour for recording. To achieve this time scale directly, however, would require a chart speed of 50 inches per second which is impractical for multiple-channel chart paper.

A precise method for magnetictape recording is necessary in order that the data be uncontaminated in the recording and playing back

Instrument container with accelerometers attached mounted for acceleration-table test. Table connects to vibration recorder housed in shelter, left

Vibration recorder shelter. From left to right, major components are: record modu-lator-amplifier; magnetic-tape recorder; playback demodulator-amplifier; and stripchart recorder

FIG. 1-Block diagram shows how system frequency response is extended using tape recorder to play back data at reduced speed
processes. This precision requirement excludes ordinary amplitude and frequency-modulation methods. The former is unsuccessful because of occasional clumps of particles in the tape coating whose ability to retain magnetism may be 20 to 50 percent below average. Frequencymodulation methods likewise introduce error since variation in tape speed appears, in magnified form, as a shift in the base line.

Pulse-Width Modulation

Pulse-width modulation is used. This technique consists of recording square waves whose period is
constant but whose ratio of on to off time is varied by the signal. Thus, zero input is represented in Fig. 2A by a symmetrical square wave. Full-scale positive modulation, Fig. 2B, is represented by a square wave on 75 percent of the time and off 25 percent. Similarly, full-scale negative modulation is represented in Fig. 2C by a square wave on 25 percent of the time and off 75 percent. Figure 2D shows how demodulation restores the original a-m waveform.

The record modulator-amplifier circuit is shown schematically in Fig. 3. Intelligence is received
from each of nine accelerometers in the form of an a-m voltage wave. Nine separate record modulatoramplifier channels convert this energy into a pulse-width modulated signal with a pulse repetition frequency of $5,000 \mathrm{pps}$.

Each modulation channel terminates in a separate record-playback head located in the control console. Tape speed while recording is 60 inches per second.

Magnetic-Tape Recording

The pwm signals are impressed upon magnetic tape as magnetized areas of alternate polarity. On playback, a different wave shape is obtained but the original square wave is capable of reconstruction by conventional circuitry. Similarly, variable amplitude of the recovered signal is of no importance. The tape is played back at 6 inches per second. Nine sparking stylii record the channel outputs on current-sensitive Teledeltos paper. Chart speed is variable from 0.5 to 5 inches per second.

It can be shown that variation in tape speed introduces only secondorder errors. The reconstructed square wave is passed through a low-pass filter whose output is the average value of the square wave. This average value cannot depend upon tape speed as long as variations are slow compared with pulserepetition frequency. It is evident that this average value must represent the original modulation.

The accelerometers are attached to significant points of the container to be tested. The accelerometer used here is a grounded-grid 5734 triode with movable anode. As acceleration increases, so does the plate-to-cathode voltage gradient causing a proportional increase in plate current. A signal is developed across the grid resistor of the cathode-follower mixer, shown in Fig. 3, wherein a voltage-rate-ofchange of approximately 1.52 mv represents 1 g acceleration.
The pulse train from the 5 -kc blocking oscillator is applied to the opposite grid of the twin-triode cathode follower. The output of the mixer is coupled to the input of the cathode-coupled multivibrator. Dwelling time of the multivibrator is adjusted by the zero-set potenti-

FIG. 2-Typical waveforms illustrate pulse-width modulation technique
ometer in the mixer grid circuit. The blocking oscillator pulse produces a positive output pulse from the multivibrator every 200 microseconds. In the absence of any input from the accelerometer, the output is a positive square wave of constant period. However, the signal from the accelerometer varies the bias on the multivibrator input grid and, correspondingly, the width of the output pulse.

Circuit Details

Figure 4 is a schematic of the playback-demodulator circuit. The input from the record-playback head is amplified by three class-A triode stages and applied to a double-diode pulse selector which selects only the tips of the pulses. The selected pulses are fed through a one-stage amplifier to a squaring
tube , the output of which is a square wave having a movable leading edge and corresponding to the output waveform of the record multivibrator. This waveform is applied to a push-pull driver-demodulator stage wherein most of the $500-\mathrm{cps}$ carrier component is removed
The two-stage frequency-compensated d-c amplifier provides lowfrequency gain with an essentially flat response from d-c to above 50 cps. A cathode-follower output tube drives the stylus motor of the channel strip-chart recorder.

The linearity of the combined modulation and demodulation process is on the order of one percent. Frequency response extends well
beyond 500 cps and square waves at 200 cps are quite recognizable on playback. The system resolves a square wave with a double overshoot two percent of maximum amplitude and a rise time of 0.7 millisecond. Signals due to tape noise have been reduced to about 50 spurious pulses per mile of tape. Throughout the remainder of the tape the signal to noise ratio is approximately 200 to 1.

In later models of this equipment, frequency response to $2,000 \mathrm{cps}$ is achieved by using a recording tape speed of 60 inches per second and a playback speed of 3 inches per second. Data is reproduced faithfully on a strip-chart recorder whose response is only 100 cps .

FIG. 3-Record modulator-amplifier converts a-m signal from electronic accelerometer to pulse-widih modulated wave train for recording on magnetic tape

FIG. 4-Playback demodulator-amplifier restores accelerometer waveform for recording on strip chart. Tape recorder is slowed down to $1 / 10$ record speed for playback

Half-Wave Magnetic

By CARROLL W. LUFCY,
Program Leader

A. E. SCHMID

Project Leader
and
P. W, BARNHART

Project Leader

Magnetics Division, U. S. Naval Ordnance Laboratory, White Oak, Maryland

Compact size of amplifier is evidence of half-wave circuit economy. Amplifier shown drives 5 -watt servo motor

MAGNETIC AMPLIFIERS for instrument servo systems are currently undergoing considerable investigation. The recently perfected half-wave version shows promise for applications where a minimum speed of response, as well as reliability, long life, and ruggedness normally associated with magnetic amplifiers, are important.

At first it was thought that the output of the half-wave circuit would be unsuitable for driving the two-phase motors generally used in servo systems. This was disproved experimentally; a typical two-phase induction motor will produce at least half torque on a half-wave circuit, and much more if capacitors are used across the motor windings to tune them to the fundamental frequency.

The basic circuit found most useful for this application is shown in Fig. 1. The bridge configuration

[^6]eliminates the need for a centertapped return on the transformer secondary. As shown, two sets of windings appear on a single core, so that one stage requires but one pair of cores.

Either X_{1} and X_{3} or X_{3} and X_{4} could be removed from the circuit. However, all four rectifiers are included to eliminate completely any possibility for circulating currents in any leg or section of the bridge.

Flux Level Setting

One distinct advantage of the half-wave circuit arrangement is that during the half cycle when the power winding circuit is inactive, it has negligible effect on the control windings, thus permitting setting of flux levels with relative ease during these half cycles by the reference windings connected across the a-c line. The control winding need only furnish the incremental power required to override the reference winding and shift the flux along the magnetization curve. For materials exhibiting rectangu-
lar hysteresis loops, this power is quite small.

The bridge power windings are active only when the a-c line polarity is such that point X is positive. During this half cycle the flux in both cores is carried up the BH curve to saturation. At the end of this half cycle a large percentage of residual flux remains. During the succeeding half cycle, when no current flows in the power windings, the zero signal operating flux level is set as determined by the values of R_{1} and R_{2}. Each core may be set independently to ensure balance. The use of separate reference windings, rather than using shunted rectifiers and allowing reverse current to flow through the power windings, permits higher gains.
In this circuit no response-improving resistance is needed in the control circuit since transients cannot exist over a complete operating cycle. When amplifiers are cascaded, the output of one is connected directly to the input of the next with no passive elements required.

FIG. l-Basic circuit shows use of bridge configuration to eliminate need for center tap transformer

Servo Amplifier

Circuit has possibilities for application in automatic feedback controls where reliability of operation and extreme ruggedness are important. Complete details of economical half-wave $60-\mathrm{cps}$ and $400-\mathrm{cps}$ magnetic servo amplifiers are given

FIG. 2-Complete circuit showing parts values for $60-\mathrm{cps}$ and $400-\mathrm{cps}$ (in pareniheses) two-stage magnetic servo amplifiers

The circuit has been used in both 60 - and 400 -cycle applications to obtain performance superior to that obtainable with conventional fullwave circuitry. The over-all time response of a two-stage amplifier is 1_{2}^{1} cycle (1 cycle for the first stage, and one half for each succeeding stage). In comparison to conventional full-wave circuitry, the number of parts required is about half, with resultant savings in cost, size and weight.

Cores and Windings

Figure 2 shows the complete circuit with values for 60 -cycle operation and 400 -cycle operation in parentheses. The resistance R_{3} in series with the input circuit ensures
a certain minimum input impedance, which is desirable where synchro components are used for error detection in a servo system. The capacitor C_{1} around the input resistor of the $60-\mathrm{cps}$ amplifier adjusts the phase to obtain slightly better performance.

The cores used are all tape-wound toroids made of 50 -percent iron, $50-$ percent nickel grain-oriented material having a very rectangular hysteresis loop. Each core bears two power windings, a reference winding and a control winding. Core and winding specifications for a two-stage amplifier are shown in Table I.

The $60-\mathrm{cps}$ amplifier was designed to operate a Ford Instrument Company 5 -watt low-inertia servo motor, presenting an impedance of about 250 ohms to the amplifier.

The 400-cycle amplifier operated a U. S. Navy, Bureau of Ordnance MK 16 Mod 0 servo motor with an impedance of 365 ohms .

The two amplifiers described were tested on typical closed-loop servo systems. Stabilization was provided by a tachometer generator mechanically linked to the motors, the tachometer signal being fed back as an error signal.

Highest available slewing rates are 550 and 1,000 deg per sec for the 60 - and 400 -cycle versions respectively. Voltage gains are 12 (60-cycle) and 20 (400-cycle), while respective static errors amount to less than 0.1 and 0.01 degrees. Following rate for the $60-$ cycle system is 1 deg per 60 deg per sec , while that for the 400 cycle servo is 1 deg per 200 deg per sec.

Table I-Core and Coil Data for 60-cps and 400-cps Magnetic Servo Amplifiers

Core Material: Orthonol $(50 \% \mathrm{Ni} 50 \% \mathrm{Fe}$ alloy, grain oriented, dry hydrogen anneal)								
		60 Cycles				400 Cycles		
		Input		Output		Input	Output	
Core Dimensions								
d (inches). n (inches) W (inches). Tape Thickness (inches)	$\begin{array}{r} 1.00 \\ 1.25 \end{array}$		1. 25		1.00		1.25	
			1.75		1.25		1.75	
	0.25		1.00		0.25		0.375	
	0.002		0.002		0.002		0.002	
Winding Data								
	Turns	Wire Size						
Power.	2,000	33	1,500	30	500	28	850	29
Reference.	500	36	500	34	50	31	50	31
Control. .	100	36	25	28	300	36	10	22

Radioelectroencephalograph

Subject wearing complete two-unit radioelectroencephalograph (REEG), with voltage amplifier on left shoulder and transparent plastic-encased transmitter on right shoulder. The three leads coming from top of amplifier go to electrodes on scalp

THE ELECTROENCEPHALOGRAPH (abbreviated EEG) is a clinical instrument for amplifying and recording the low-frequency alternating potentials which appear at points on the surface of the animal scalp as a result of electrical activity in the underlying cortical mass. These so-called brain-waves vary irregularly in frequency and amplitude in the range from about 6 to 50 cycles per second and from about 10 to $100 \mu \mathrm{v}$ respectively. The subject usually reclines quietly in a shielded room and leads from various scalp regions are switched, in turn, to the amplifier input. The electric leads prevent the subject from engaging in such normal activity as walking around while the record is being made. The researcher is therefore somewhat limited in the scope of his possible investigations.

The present instrument is the re-
sult of an attempt to remove the restrictions imposed by wires between subject and equipment. The feasibility of utilizing radio broadcasting and of making the amplifying and transmifting equipment

Examples of brain-wave patterns obtained from REEG system, for walking subject with eyes open (low-amplitude pattern) and with eyes closed (high. amplitude pattern)
portable has already been shown and the instrument has been given the name radioelectroencephalograph (abbreviated REEG). The present REEG is an improved model from the standpoint of performance, portability and comfort. It can also be used as a radioelectrocardiograph (abbreviated RECG) for remote observation of heart potentials, as well as for the remote recording of pulse rates.

In the study of muscle action other than heart, the unit operates as a radioelectromyograph (abbreviated REMG). For exclusive use as an RECG or REMG, the electronics of the instrument can be simplified with consequent additional reduction in size and weight and with improved performance.

Portable Section

The portable section of the REEG consists of an electrode system, a high-gain voltage amplifier in one rectangular case, and a modulator stage, f-m oscillator, antenna system and power supply in another case. The two cases fit conveniently into suitcoat pockets or pockets of the usual laboratory jacket. These units can also be fastened directly to the body under the clothing with paper masking tape, or clipped or pinned to the clothing at points most suited to the

Example of heart-potential pattern obtained with equipment connected as radioelectrocardiograph (RECG), with center electrode at sterno-xiphoid junction on chest and other electrodes two. inches to right and left. This location gives minimum interference from signals generated by working muscles. Timing voltage and plastic grid overlay are superimposed on pattern

for Medical Research

Patient carries portable f-m transmitter while walking or exercising, for broadcasting brain waves, heart potentials, muscle potentials or pulse rate to receiver and cathode-ray viewer in laboratory. Used for clinical and laboratory research

By WILFORD R. GLASSCOCK and NORMAN J. HOLTER

Medical Physics Laboratory
The Holter Research Foundation, Inc. Helena, Montana
particular physical activity of the subject at the time.

Separation of the amplifier from the r-f section results in better performance and enables the weight to be reduced because the transmitter does not require shielding or shock mounting. Radiation directly from the tank circuit of the r-f section enables the antenna to be dispensed with at short ranges, with consequent greater stability of operation while the subject is active. The amplifier case is therefore of stainless steel and the oscillator case of transparent plastic, molded to fit interior components.

Electrode System

Electrode leads should be kept physically symmetrical with the center ground lead insofar as possible, to help equalize the ampli-
tudes of unwanted signals appearing at the amplifier input.

For humans, flattened drops of solder 5 to 7 mm in diameter form the electrodes proper. Three are needed, as the amplifier is pushpull with the middle connection grounded. A drop of commercial EEG paste is applied to the skin at the point of application and rubbed briefly with the flat side of the electrode. The electrodes are held in place by collodion, or any other standard method can be used.

The leads from the electrodes are light-weight, flexible shielded wire described commercially as grid wire. The conductor is multiplestrand fine copper, rubber and/or fabric insulated, surrounded by metal braid and an outside protective covering. The leads terminate in small male pinjacks. The shield
of the center lead is connected electrically to the center conductor at the electrode end and all three shields are connected electrically at the pinjacks.

Amplifier

The amplifier circuit, shown in Fig. 1, is a high-gain RC-coupled voltage amplifier with push-pull input and single-ended output. The light steel chassis is floated in carefully shaped sponge rubber inside a light stainless steel case with snapon cover. The exterior of the shell is covered with flock to minimize artifacts caused by the subject touching the case, as well as for appearance.

The frequency range for a REEG or RECG amplifier needs to extend as close to zero as possible. Brain waves are principally in the range

EIG. 1-Portable voltage amplifier and transmitter of radioelectroencephalograph, in two housings having total weight of only 2.6 lb
from about 6 to 50 cps , but some applications require a greater range.

A push-pull amplifier with two gain controls gives better rejection of stray $60-\mathrm{cps}$ in-phase signals and those generated by motion through the earth's magnetic field.

The output stage is somewhat unconventional; it performs the functions of cancelling in-phase signals, adding some gain and providing single-ended output. One CK522AX operates as a triode and controls the IR drop in the common 1,500ohm cathode resistor of the stage in response to the signal at the output of one side of the second voltage gain stage of the amplifier. The other side of the second gain stage feeds the grid of the CK522AX which is operated as a pentode.

The overall response of the entire REEG from amplifier input to observing system, including the radio link, is shown in Fig. 2 for three different input conditions. With each of these successively larger inputs, the gain was reduced to approximately that used in actual practice.

FIG. 2-Overall frequency response curves for three different gain settings of the REEG

The modulator and r-f stages with interstage shielding are mounted on a brass chassis in a formed plastic case. The low power requirements permit the use of subminiature tubes for modulator and oscillator. The modulator is a CK518 operating as a variable reactance in parallel with the plate of a single CK5677 tuned-plate tunedgrid r-f oscillator with 90° phase shift accomplished by a tuned circuit at the grid of the reactance tube, loosely coupled to the oscillator tank. The reactance grid tank is tuned by coil spacing. A carrier frequency of about 104 mc minimizes signal variations at the receiver arising from any standingwave patterns in the laboratory, and allows the use of small components. Small frequency adjustments are made by bending the tank coils to change the ratio of the diameter to length and thereby change the inductance.

A single 1.5 -volt flashlight cell operates the filaments of both tubes in parallel. One 67.5 -volt cell supplies B power for both tubes and, with suitable decoupling, power for the amplifier through a lead between the two units. More than four hours of continuous duty and considerably more with intermittent duty is possible with this small power supply, which is readily replaced when needed. As the B battery voltage drops, r-f oscillation ceases before the amplifier is affected; this avoids recording signals which might be faulty as a
result of decreasing amplifier performance.

For most uses, the transmitter antenna system consists of nothing more than the plate tank of the CK568AX. An antenna is indicated in the circuit of Fig. 1 to indicate radiation from this unit, but no wire projects from the tank.

Reception is adequate with this method to a range of about 50 feet, which is sufficient for most purposes. An antenna wire sewn in the sleeve or coat can be coupled to the oscillator for greater range, but with the disadvantage that the subject cannot be as active physically without introducing extraneous signals.

Receiver Section

The receiving antenna is a $300-$ ohm folded dipole tuned to the carrier frequency. It may be used near the receiver, placed in another room with the subject, or mounted outside a window for following out-of-door exercises.

The receiver circuit, given in Fig. 3, is a conventional $f-m$ unit through the r-f and i-f stages but with modified discriminator and audio stages. In use, the r-f stage is tuned to the transmitter carrier. The transmitter has fixed tuning. Two 6AG5 pentodes form a double conversion system in which the 6C4 triode oscillator operates at onehalf signal frequency minus 5.35 mc to provide a 10.7 -mc i-f signal. Two 6BA6 pentodes furnish the i-f gain to drive the 6AL5 ratio de-

FIG. 3-Receiving and observing system of the REEG. The a-f amplifier delivers a signal output of several volts to the viewing section at the right, using a special long-persistence cathode-ray oscilloscope with a plate camera

Pulse rate changes during normal human activity, as calculated and plotted from curves obtained with RECG equipment. Subject shows good recovery time back to his normal from the 130 rate arising from exercise
tector, with limiting. This in turn drives a 6C4 triode having adjustable gain, with circuit elements chosen to give the desired a-f response.

Amplitude modulation by the portable transmitter itself has been satisfactorily minimized; however, some amplitude modulation can exist at the receiving antenna due to a shifting standing wave pattern as the subject moves about a room. This type of amplitude modulation falls within the frequency response of some of the signals being studied and below the frequency at which a normally sized capacitor in the ratio detector circuit can control amplitude fluctuations. In addition, large changes in signal strength at the receiving antenna can occur due to the relatively large changes in transmission distances involved in practice.

Ranges used can be anywhere from one foot to over 100 feet or about two orders of magnitude. The signal over such range differences will vary in an even greater ratio, hence some form of limiting action is needed. This has been achieved by the simple substitution of a $4 \frac{1}{2}-$ volt dry battery in the position of the usual 10 -uf capacitor in the discriminator circuit. Limiting action is shown in Fig. 4, which also shows the additional advantage of rapid falling off of output signal at too-low values of received signal. This is an advantage because the observer can then tell when the subject is in a dead spot, being aided in this by the large increase in receiver noise, with the result that the record will not be misinterpreted as an abnormally lowamplitude brain wave.

The type 9GP7 cathode-ray tube
of the REEG receiver has a magnetic sweep and long-persistence screen. An x-axis linear sweep, adjustable from about 0.5 to 30 cps , enables brain waves and cardiograms to be observed conveniently, and also contains a single-sweep feature. The long-persistence screen permits studying a single trace for at least a minute in a semidarkened room or photographing it after it has been inspected, thus saving film when recording unpredictable patterns. Since the slowly moving spot on the 9GP7 screen covers such a small area per second, the tube is operated at only $1,000 \mathrm{v}$ which is th its rated voltage. This low anode voltage also has the advantage that less magnetic deflection power is required.

Viewer and Recorder

A grid overlay on the face of the c-r tube provides reference lines for time on the x -axis and voltage amplitude on the y-axis. The grid lines are illuminated so that they are recordable by photography but without illuminating the screen where they would otherwise produce an undesirable glow. This is accomplished by forming a $6 \times 6 \times \frac{1}{4}-\mathrm{in}$. piece of plastic to the curved surface of the c-r tube, scribing lines on the back surface and partially filling them with white paint, then completing the filling with black paint. Light is introduced into the plastic by flashlight lamps inserted into frosted holes at the lower edge. Edges of the clear plastic are painted black.

RECG's can be utilized to provide a record of heart pulse rates where the pulse rate alone and not the form of the RECG is of interest. To convert the RECG signals to a

FIG. 4-Action of dry-battery limiter stage of receiver
form suitable for pulse recording the signal is differentiated and amplified, then rectified, with a 1N34 diode to give a simple positive wide peak which actuates a pen on a moving-chart recorder.
This work was financed, as a public service, by the Holter Research Foundation, a non-profit Montana corporation. The authors are also indebted to Professor J. A. Gengerelli of the University of California at Los Angeles for his many valuable suggestions during the course of the present development.

Bibliography

R. G. Bickford, Automatic Electroencephalographic Control of General Anesthesia, Electroencephalography and Clinical Neurophysiology Journal, 2, 93, 1950 Electronics, p 107, Sept. 1950
N. J. Holter and J. A. Gengerelli,, Remote Recording of Physiological Data by Radio, Rocky Mountain Medical Jonernal. 46. 747, 1949.
N. J. Holter and J. A. Gengerelli, A Tiniature Amplifier-Transmitter for the Proadcasting of Bioelectric Potentials, 107th Convention of the American AssoCleveland, Ohio. Dec. 28, 1950 .
C. C. Breakell and C. S. Parker. Radin Transmission of the Human Flectrnencenhalogram and other Electro-Physiologi cal Data, Electroencephalography and Clinical Neurophysiology Journal, 1, 243, 1949.
T. L. Fuller and T. M. Gordon, Jr., The Radioinductograph-a Device for Recording Physinlogical Activity in Unrestrained Animals. Science, 108, $287,1948$.
M. Prinzmetal et al, Jnl. Amer. Mer. Soc., 139. 617, 1949.
J. A. Cengerelli and V. Kalle.iian, Remote Stimulation of the Brain of the Intact Animal. The Journal of Psychology, 29, 263,1950 .

Regenerating Composite Video Signals

Abstract

Hum, d-c surge, poor low-frequency content and sync compression on incoming television signals from network or remote pickup must be standardized before local broadcast transmission. Stabilizing amplifier under control of local operator corrects single faults or combinations of several

The stabilizing amplifier is rack mounfed with a remote control panel for quick adjustment by operator

By ROBERT BETTS

Project Engineer
Allen B. $\stackrel{\text { Transmitter Division }}{\text { Du Mont Laboratories, Inc. }}$
Clifton, N. J.

TECHNICAL personnel in television stations are often faced with the problem of having to use drastically deteriorated, nonstandard composite video signals from a network or remote pickup. These signals may contain noise, hum, or spikes and video in the sync region.

[^7]The sync portion may be compressed, the high or low-frequency content may be poor or sync pulses may even be missing. A means must be provided to improve this deteriorated signal in order that the transmitter output be compatible with FCC requirements.
A so-called stabilizing amplifier has been developed that regenerates such degraded signals. As shown
in Fig. 1, the equipment comprises two main channels; the video amplifier and the sync amplifier. This unit is a device for expanding the sync portion of a composite video signal and clamping during the sync back porch interval. Such clamping will restore low-frequency response and eliminate low-frequency transients despite any synctip modulation.

The degree of sync expansion is sufficient to provide standard output with as little as 17 percent sync on the input signal. Percentage of sync content in the output signal is adjustable. For varying composite video inputs, the unit will maintain a constant sync level in the output.

Functional Arrangement

The video channel (upper half of drawing) has two stages of amplification and a cathode follower whose grid is clamped. This signal is then clipped and amplified in the next stage where either local or remote sync may be added through the sync insertion tube. The next stage is a cathode follower that drives two identical output stages to give one signal for the transmitter or network and one for monitoring purposes.

The sync channel (lower half of Fig. 1) has one stage of amplification followed by a sync separator and two additional stages of amplification. At this point, part of the signal feeds the sync insertion tube.

FIG. 1-Simplified schematic diagram of television video stabilizing amplifier

Another portion feeds a cathode follower to provide a negative remote composite sync signal for use in synchronizing local and remote equipment. The third portion feeds a differentiating circuit coupled to a selective stage that amplifies only the part of the differentiated signal corresponding to the trailing edge of the sync pulses. This signal drives another amplifier whose output is two clamp drive pulses of equal amplitude but opposite polarity.

Circuit Details

The simplified schematic of the stabilizing amplifier shows that the input is terminated in 75 ohms for use with coaxial cable. A 5-to-1 attenuation switch and a potentiometer constitute the gain control for the video channel. The sync channel input depends only on the position of the attenuation switch.

The first two tubes in the video channel V_{1} and V_{2} are shunt-peaked
video amplifiers. The grid of the next tube, V_{5}, a 6AH6 triode-connected pentode, is clamped during the back porch of the sync by a 4 -diode bridge clamp. This action is shown in more detail in Fig. 2A. Clamping is necessary to keep the blanking or black level constant so that the sync-clipping level adjusted in the next stage will remain constant regardless of the video content of the signal.

The black negative composite video signal that appears at the cathode of V_{s} is fed through a series negative clipper circuit detailed in Fig. 2B. A 1N54A ger-

Table I-Sync Switch and Clamp Switch Combinations

Sync	Clamp	Sync	Clamp
Switch	Switch	Inserted	Drive
(1) Local	Local	Local	Local
(2) Local	Remote	Local	Remote
(3) Clamp	Local	Local	Local
(4) Clamp	Remote	Remote	Remot

manium diode is employed as the variable level clipper. The adjustable bias for the diode is supplied from the cathode resistor on V_{0}, a 6AG5 whose cathode current is adjusted by means of screen-voltage variation.

This method of biasing presents a low d-c source impedance that prevents the bias from changing with varying signal amplitude. The amplitude of the signal at this point is large enough to minimize the effect of the crystal nonlinearity at small positive voltages. Therefore, there is at most a 2 percent loss of setup. The clipped signal is fed to V_{8}, a 6AH6 shunt-peaked video amplifier that also employs some cathode peaking, indicated in Fig. 2 C .

Regenerated-Sync Insertion

The plate load of this tube is common to the sync-insertion amplifier V_{i}, a 6AG5. The sync-expand potentiometer provides a variable

FIG. 2-Individual circuit elements of Fig. 1 discussed in text
bias to control the amount of sync signal above the cutoff point on the grid of V_{-}. The rise time of this sync is excellent because only a small portion of the sync is used to obtain the required amplitude at the plate of V_{7}. Therefore, on the plate of V_{s} will appear a composite black positive video signal whose video amplitude is adjusted by the videochannel gain control and whose sync amplitude is adjusted by the sync-expand control described above. Each is independent of the other.
This composite signal is applied to the grid of a cathode follower that drives two output stages, one of which is shown at Fig. 2D. It consists of two 6AQ5's connected in parallel whose plates are a-c coupled to a source termination of 75 ohms. Each of these output stages furn-
ishes a standard RTMA 1.4 -volt composite black negative video signal across a 75 -ohm termination.

The first tube in the sync channel, V_{14}, a 6AH6 pentode, amplifies and inverts the composite black negative video input signal. The second tube, V_{10}, a 6BA6 pentode, is grid leak biased. On account of the grid d-c restoring action and the large sync-positive signal amplitude appearing at its grid, this tube compresses and clips the video or negative portion of the signal. The gain characteristic of the tube is controlled by variation of its screen voltage.
The third tube, V_{17}, is a $6 J 6$ dualtriode connected as a two-stage voltage amplifier. These tubes are overdriven as a result of the large grid-signal amplitude and therefore clip the positive and negative peaks
of the input signal. The output signal is pure composite negative sync. A portion of this signal is fed to a 6J6 cathode follower, V_{18}, whose negative composite-sync output is used for synchronization of local and remote equipment.

A second portion is available for sync insertion in the video channel through the sync switch. A third portion is differentiated by the R-C grid-coupling network that feeds the next tube, V_{19}, a clamp-pulse amplifier. This is shown in Fig. 2E. The tube is a 6.J6 dual triode whose first half, $V_{1 n s}$, is biased so that it only amplifies the positive portion of the differentiated sync pulses. These positive signals correspond to the trailing edges of the sync pulses.

The second half of $V_{1 \cap B}$ amplifies these pulses and feeds them to the clamp-drive tube, V_{20}, a parallel-connected 6J6. Equal plate and ca-thode-load resistors furnish clampdrive pulses from the plate and cathode of equal amplitude but opposite polarity.

Operational Combinations

By placing the clamp switch in the local position, V_{15} is disabled and V_{18} energized. Thus, local sync may be used to drive the clamp and also to feed the sync insertion tube V_{i}. There are four combinations of the sync and clamp switches. Of the four possible combinations, there are only three that are different as indicated in Table I. With these three combinations, however, much signal improvement resulte.

Types of Degradation

There are several faults possible with an incoming network or remote signal. These faults may appear individually or in combinations. Some of the more common shown in Fig. 3 are hum, d-c surge, poor low-frequency content, and sync compression. The action of the clamp in the video channel will overcome the first three difficulties despite any sync-tip modulation because the clamping occurs during the back-porch interval. The signal may now have the sync portion removed by clipping at the desired level.

As explained previously, either remote or local sync may now be in-
serted to any desired degree, thus overcoming sync-compression difficulties with the remote-input signal. If it has been chosen to add local sync, it is necessary that the local and remote sync signals be synchronized. This is accomplished by sync-co-ordinating equipment driven with the negative remote composite sync signal available from this unit.

Through use of long lines and microwave links the incoming network signal has often lost most of its setup. This too may be improved by adding local negative mixed blanking at the sync input terminal instead of local sync. This type of operation also requires synchronization of local and remote equipment.

The control formerly used for sync expansion may now be used to vary the setup. Output signal from the unit would be a black negative video signal with variable setup but without sync. Used in this manner, the unit would be operating as a remote sync stripper and local sync could be added in some subsequent piece of equipment such as mixerline amplifier or switching gear.

Other signal conditions which

FIG. 3-Some common types of incoming video distortion

FIG. 4-Operation of sync-channel cleanup of spiking
may be improved with this unit are: video in the sync region, noisy signal, poor sync rise time, and missing sync pulses. The video in the sync region may be removed by the clipping circuit, and local or remote sync can be added in the sync insertion stage.

For a noisy signal or one with spiking extending into the sync region, the operation of the unit would be similar to that described. Original sync would be clipped and standard RTMA sync pulses added. An explanation of the operation of the sync channel in the presence of noise or spiking is shown in Fig. 4. Signal A is the input signal applied to the grid of V_{14}. That shown at B is the amplified inverted signal appearing at the grid of $V_{i,}$. As mentioned before, the grid-leak bias and the d-c restoring action of the V_{15} grid-cathode circuit tends to keep the sync tips near ground potential regardless of signal modu-
lation and biases the tube near or beyond cutoff.

The resulting signal on the plate of V_{15} and the grid of V_{15} is shown in Fig. 4C. This signal amplitude is large enough to overdrive V_{17} and thus its output is clipped in the manner shown by the dotted lines in D. The final result is a clean composite sync signal with improved rise time and no modulation. This unit will operate well with sig-nal-to-noise ratios as low as 5 -to-1, or sync to video ratio of 17 percent.

Signals containing sync with poor rise time are improved in much the same manner. The amplification and clipping improve the rise time of the pulse. In addition, when the sync is added to the video, it is done as shown in Fig. 2F. The average signal level is moved in relation to cutoff by the bias or syncexpand control. Only 25 to 30 percent of the signal is necessary to give the proper amplitude at the plate for addition to the video signal. This greatly increases the rise time of the output sync. Sync output rise times as low as 0.05 microsecond have been measured with inputs of the order of 0.50 microsecond.

Loss of Remote Sync

When the remote sync generator functions erratically in such a manner that there are missing sync pulses or sporadic sync breakdown, it becomes necessary if not imperative to add local sync. For clamp operation and synchronization of local and remote equipment, a few missing sync pulses do not cause a serious situation. It is possible then to clamp and synchronize with the remote sync pulses and insert local sync for the output signal.

The frequency response of the video amplifier in this unit is down 1 db at 7.5 mc and down 6 db at 10 mc . The inputs are 0.5 to 2.0 volts peak-to-peak composite black negative video into 75 ohms and 3.5 to 8.0 volts peak-to-peak negative sync or blanking into 75 ohms. Outputs are two standard RTMA 1.4volt neak-to-peak black negative composite video signals across 75 ohms, and 1.5 volts of negative remote sync across 75 ohms or 10 volts unterminated.

High frequency stability and good output waveshape are provided by R-L oscillator. Tunes linearly over the range from 1,000 to 500,000 cycles by means of a simple frequency control and a vernier

By ABE HERSHLER
Senior Electronic Engineer
\section*{and}
\section*{BENSON CARLIN}
Chief Engineer

Electro-Marine Manufacturing Corp. New ラ゙ork. N. Y.

BRIDGE-TYPE oscillators are simple in design, capable of almost pure sinusoidal output and able to cover wide frequency ranges. Such units have been designed to generate frequencies which cover the audio, ultrasonic and low radio-frequency spectra with excellent waveform and stability of output frequency and amplitude ${ }^{2}$. Components required for the construction of such units are inexpensive and easily obtained and need not be of particular tolerance.

Basically, a bridge oscillator is a broad-band amplifier whose input and output terminals are the terminals of a frequency-selective bridge network.

The function of the bridge network is to compare a degenerative and a regenerative alternating voltage on the basis of frequency selection, allowing regeneration only at the frequency for which the bridge is balanced. All other frequencies are attenuated. The types of bridges to be used in conventional units have been discussed extensively elsewhere. ${ }^{\text {n. }}{ }^{3}$

One of the basic problems of most oscillators is the fact that the frequency dial is nonlinear and often is compressed at particular sections of the scale. When it is necessary for the frequency dial to be linear, specially constructed variable capacitors are required.

In the bridge described herein all the features of typical bridge oscillators are retained, together with a unique characteristic which allows the choice of practically any tuning curve, one of which is perfectly linear. The controls are two in
number; one varies the frequency rapidly, while the other is a linear vernier at any point in the range.

The diagram of Fig. 1 shows the basic configuration of the R-L type oscillator. The frequency-dependent components are confined to the positive feedback loop.

Oscillation takes place when the regenerative voltage is equal to or slightly greater than the degenerative voltage and the phase relations are correct. The phase and amplitude characteristics of the bridge are plotted in Fig. 2. These characteristics compare favorably with other bridge oscillators. Greater selectivity is obtainable with certain bridge-network equivalents but at the expense of more involved controls and with no possibility of simple linearity.

If losses in the two bridge inductances are considered, assuming the inductances are operated well below their resonant frequencies and are therefore substantially independent of frequency, the bridge relationships may be written

$$
\begin{equation*}
\omega^{2}=\frac{R^{2}-r^{2}}{L^{2}} \text { and } \frac{R_{2}}{R_{1}}=\frac{R}{2(R+r)} \tag{1}
\end{equation*}
$$

where r is the resistance of inductance L considered as a series resistance.

$$
\omega^{2}=\frac{R^{2}}{L^{2}}-\frac{r^{2}}{L^{2}}=\omega_{0}^{2}-\frac{\omega^{2}}{Q^{2}}
$$

where $\quad Q^{2}=\frac{\omega^{2} L^{2}}{r^{2}}$

$$
\omega / \omega_{0}=\frac{1}{\left(1+1 / Q^{2}\right)^{\frac{1}{2}}}
$$

Therefore, when $Q=10, \omega / \omega_{0}=$ 0.995 .

The oscillator will operate in ac-

FIG. 1-Basic schematic of oscillator

FIG. 2-Phase and amplitude characteristics

FIG. 3-Tuning characteristic of the oscillator
cordance with Eq. 1 to at least 0.5 percent as indicated as long as the Q's of the inductors used are equal or greater than 10 . Such inductors are easily attainable in practice without special expedients.

Equation 1 indicates the novel characteristic of this type of bridge oscillator and may be termed the oscillator law. Consideration of this statement shows that frequency is linear with resistance, as shown in Fig. 3, in those cases where the values of the resistance in the two arms are the same. One

Has Linear Tuning

result is a vernier type of oscillator, simple and accurate with no involved calibration necessary.

Figure 4 shows a schematic diagram for such a unit in which a dual-inductance switch controls the frequency ranges. The dual linear potentiometers or decade boxes control variations within each range which are entirely linear.

The two fixed matched resistors $R_{\text {" }}$ employed in the arms of the bridge are used to fix the lower limit of frequency. With accurate inductors and potentiometers or decade resistance boxes, the unit is capable of a high degree of accuracy. No calibration curve is needed. The unit is checked against any single external standard frequency within its range of operation. The linear law then establishes all other generated frequencies.

It is sometimes desirable to have the oscillator tune in a nonlinear manner, but which follows some arbitrary curve. In such a case, the expression which governs the action of the oscillator is given as

$$
\omega=\left[\frac{R_{3} R_{4}}{L_{1} L_{2}}\right]^{\frac{1}{2}} \text { to at least } \frac{1}{2} \text { percent }
$$

$$
\begin{array}{ll}
\text { also } & \text { if } Q_{1} \text { and } Q_{2} \geq 10 \\
\frac{R_{2}}{R_{1}}= & \frac{L_{2} R_{4}}{L_{1}\left(R_{3}+r_{1}\right)+L_{2}\left(R_{1}+r_{2}\right)}
\end{array}
$$

Typical oscillator construction. Tuning unit and amplifier have separate chassis

The same bridge circuit as shown may still be used, but the resistors will no longer be the same. Either one fixed and one variable resistor may be used, or two resistors of unequal values may be varied to control the frequency. Further variations of the linearity are possible by fixing either of the inductances and varying the other, or by varying unequal inductances or at an unequal rate.

The oscillator is economical and simple to construct and adjust. Values for R and L are not given, since they are a function of the frequency desired, and may be computed easily from the basic relationships. The unit shown in the photograph covered the range from

FIG. 4-Schematic diagram of R-L oscillator. For linear case $R_{3}=R_{4}=R$ and $L_{1}=L_{2}=L$

1,000 to 500,000 cycles. The dual inductive range used was 500 to 20 mh . The dual potentiometer was 50,000 ohms.

A three-watt lamp R_{2} is used as a means of amplitude control but the unit seems to have negligible amplitude variation without this expedient. A frequency stability better than 0.01 percent was obtained without any precautions. In a ten-hour continuous run at ten kc , the drift was better than 10 cps . At output levels of the order of 10 volts or lower, the output is very nearly a pure sine wave. At higher outputs, between 10 and 150 volts, the waveform is distorted in accordance with the particular characteristics of the amplifier used.

The only precautions observed in the construction of the oscillator were that of shielding the amplifier and the tuning unit. In general, it is only necessary that the inductors be shielded from each other.

Several methods of varying the inductors were tried and stepswitching and slug-tuning methods were successful. There are a number of linear potentiometers on the market with a variety of tolerances.

References

(1) P. G. Sulzer, Wide Range ROscillator, Elecrronics, 23, p 88, Se 1950.
(2) 'Vacuum Tube Amplifiers"' Radiation Lab. Series, McGraw-Hill F Co, 18 , chap. 10 . Series, McGraw-Hill 'Mor Radiation

Gated Amplifier

Rear view shows use of broadcast-type variable capacitors for setting frequency

MANY METHODS of wave analysis have been devised. Most of these possess one or more of the following disadvantages : the equipment required is quite elaborate and expensive; the frequency and amplitude of low-frequency components are not determined accurately; the frequency range is limited; the impedance offered by the instrument is not constant; tuning is not sharp resulting from low-Q circuits; the equipment is not readily portable.

A research program was launched to investigate the possibility of using a gated amplifier as a method of wave analysis which possesses none of the above mentioned disadvantages. The successful result of this investigation is the analyzer described herein.

Theory Review

If a sine wave is applied to the input of a gated amplifier and if the input wave and the gate are in phase, the output will have the form indicated in Fig. 1A.

The output meter will read the average value of this function. However, if their frequencies are very slightly different, their relative phase will be slowly changing. In this case, shortly after the time of Fig. 1A, the output will be of the
form shown in Fig. 1B.
Again the meter reads the average of this waveform; the average here being somewhat less than that of Fig. 1A. Still later, the waveform will be as shown in Fig. 1C.

The meter reading has dropped to zero which is the average of this waveform. Some time later, the waveform will be as shown in Fig. 1D.

The meter now reads a maximum in the opposite direction from the direction of Fig. 1A.

As the phase changes, the meter reading varies from a maximum in one direction to a maximum in the opposite direction and back again. The frequency of this movement is equal to the difference between the gate frequency and the input frequency. However, because the meter has a certain amount of inertia, it is able to respond only if the difference frequency is of the order of a few cycles per second.

With this arrangement it would seem that a nonsinusidal wave could be analyzed by varying the frequency of the gate and noting the frequency at which beats occur. The appearance of beats should indicate the presence of a frequency component in the complex wave equal to the gate fre-

By

V. RONALD NELSON

Department of Physics
Chiversity of Colorado
Boulder, Colorado
quency with amplitude proportional to the amplitude of the beats.

Figure 2 shows a block diagram of the analyzer.

The circuit consists of three parts: a gating pulse generator, an input attenuator and amplifier, and an amplifier which is turned alternately on and off (gated) by the square wave.

The circuit used for generating the gating pulse for the amplifier is a square-wave generator. Most of the square-wave generators investigated for this purpose were far more elaborate than was desired. Various forms of multivibrators were tried. The circuit finally chosen was a symmetrical multivibrator with zero grid return as described by Terman.

The multivibrator uses resistance capacitance elements for tuning. As shown in Fig. 3, its frequency varies inversely with values of C and R. Because variable capacitors such as are used in radio receivers have a capacitance ratio slightly larger than 10 to 1 , and because of their availability, standard two-gang capacitors of about 500 -w. f maximum capacitance for each section are used as the frequency control. A range-changing switch changes R values in such a manner as to obtain frequency multiplying factors of 2 , $10,100,1,000$, and 10,000 . The frequency for any setting of the two controls is then the product of the dial reading and the multiplying switch reading.

Complete Circuit

Referring to Fig. 3, V_{1} and V_{2}, together with their associated circuits, constitute a symmetrical multivibrator. The variable capacitors provide a means of attaining a vari-able-frequency square wave, while a

Wave Analyzer

Direct-reading instrument quantitatively determines components of complex waveforms in the audio-frequency range. Accuracy is good, especially at low audio frequencies, and distortion introduced by instrument is less than one percent

choice of resistors make possible several ranges of frequency. The plate resistors were chosen as small as possible to improve the square waveform and yet retain sufficient amplitude (60 volts peak to peak) to utilize the square wave as a gate.

This square wave is fed to the grid of a cathode follower V_{3}, whose function is to isolate the multivibrator from the circuits which follow. The gain here is approximately unity.

The output square wave from the cathode of V_{s} is coupled to the SQUARE wAVE terminals, in the event it is desired to use the instrument as a square-wave generator, and to the grid of V_{4}. This grid is biased at 45 volts positive. The tube is alternately switched on and off by the square wave. Because V_{4}, V_{5} and V_{6} have a common cathode resistor, the potential on the cathodes of V_{5} and V_{8} is high when V_{4} is conducting and low when V_{4} is cut off.

The grids of V_{5} and V_{n} are biased at 50 volts positive potential. When V_{4} is conducting, the cathodes of V_{5} and V_{n} are 75 volts positive, giving these tubes a negative grid-cathode
potential of 25 volts which cuts them off. When V_{4} is cut off, the cathodes of V_{5} and V_{6} are 57 volts

FIG. l-Curves show output of gated amplifier for sinewave input at various phase angles

FIG. 2-Block diagram of stages in the wave analyzer
positive, giving them a net negative bias of 7 volts which allows them to conduct.

The gating action of V_{*} causes the plate voltages of V_{5} and V_{0} to rise and fall together between 280 and 200 volts when conducting. Under these conditions, the reading of meter M_{1} is zero.

Cathode follower $V_{\text {F }}$ isolates the meter tubes from the input. Its cathode resistor is chosen to give 7 volts bias with a gain of about 0.8 , allowing a peak-to-peak swing on the input of about 17 volts.

The input attenuator is a conventional potential divider presenting a constant impedance of one and a half megohms, thereby minimizing loading effects upon the signal voltage source.

The output of V_{s} is fed to the grid of V_{θ}, which is alternately conducting and nonconducting.
If the input frequency coincides with the frequency of the gate, and if their phase difference is zero, the waveform on the plate of V_{κ} appears as in Fig. 4A. At the same time, the waveform on the plate of V_{5} is that of Fig. 4B because $V_{\text {s }}$ and V. have a common cathode resistor;

FIG 3-Complete circuit, less power supply. The multivibrator range switch provides frequency-multiplying factors of $2,10,100$,
1,000 and 10,000 . Auxiliary terminals are provided for using the square wave output of the multivibrator separately

FIG. 4-Oscillograms show waveforms on plates of meter tubes
and the voltage between the plates of tubes V_{5} and V_{8} results in pulses of current through M_{1} which reads the average d-c voltage difference. This reading is proportional to the amplitude of that component of the input signal whose frequency coincides with the gate frequency.

If the phase difference is 180 degrees, the voltage waveforms are as pictured in 4 C and 4 D and the meter reads a maximum in the opposite direction. The slow changing of the phase difference results in the modulation of the meter by the difference frequency.

Any steady deflection present in the meter with no input, may be balanced out by the ZERO ADJUST potentiometer.

Stability

The frequency of the multivibrator is a function of the mu of V_{1} and V_{2} so these tubes must be matched. Symmetry of the square wave was achieved by inserting a
milliammeter in the plate circuit of each tube and adjusting the value of the grid resistors until the two meters read the same value of average plate current for each tube, indicating that off-times are equal.

A regulated power supply must be used because the frequency of the multivibrator is a function of its plate voltage.

Calibration

The dial is calibrated in cycles per second. Frequency calibration curves need be used only if great accuracy in reading the frequency is desired.
The meter M_{1} is calibrated in volts by using an input of known frequency and amplitude, and adjusting the potentiometer (CALIbration adjust) in series with the meter.

At frequencies below 25 cps , operation was improved by shunting the meter with a $4-u f$ capacitor. This capacitor filters out the gate
frequency which appears at low frequencies.

Performance

To check performance, signals of 3 -volts amplitude and various frequencies were applied to the input. The meter reading was flat from 10 to about $30,000 \mathrm{cps}$. Above $30,-$ 000 cps , tuning is so sharp that amplitude measurements are very difficult. Below 10 cps , amplitude readings decrease sharply.

For frequencies of $10,60,400$, 1,000 and $10,000 \mathrm{cps}$, various voltages from 0.1 volt to 300 volts were applied to the input. The meter reading was linear and correct over this range provided the proper attenuation was applied to prevent meter deflections of over 30 units. Deflections above 30 ma draw too much current from the plates of V_{5} and V_{0}, resulting in loss of gain and nonlinear meter deflections.

The wave shape of the gating pulse was observed on the cathode of V_{3} at frequencies ranging from 2 to $100,000 \mathrm{cps}$. The wave shape was excellent up to frequencies of about $10,000 \mathrm{cps}$. At this point, the corners of the square wave began to round off. However, the square wave is able to operate effectively as a gate, even though rounded, because its amplitude is larger than is necessary to switch the meter tubes.

Amplitude readings for the various components should be taken with a beat frequency of about 1 cns. An amplitude reading taken with zero beat frequency will be in error because the reading of the output meter is a function of the relative phase of the gate frequency and the particular component frequency being studied as well as be-

(B)

FIFTH HARMONIC

(C) SEVENTH HARMONIC

FIG. 5-Oscillograms of meter tube plate waveforms for old harmonics
ing a function of that component's amplitude.

Operation

Suppose a sine wave with a frequency of 600 cps is applied to the input. The operator begins to search, starting at the high frequency end of the spectrum. The meter reading is zero until the gate frequency approaches, within a few cps , the frequency of the sine wave. Further searching will reduce the difference frequency to 1 cps . The meter reading varies from a maximum in one direction to a maximum in the other direction as the phase of the gate and the input vary from zero to 180 degrees. Figure 4 A shows the waveform present at the plate V_{0} when the two frequencies are equal with zero phase difference.

As the operator continues to search the remaining lower portion of the frequency spectrum, a reading is obtained at 200 cps , although 600 cps is being applied to the input. This reading is one-third that of the reading obtained at 600 cps . Figure 5A shows the waveform present at the plate of V_{σ} when the gate frequency is one-third that of the input frequency with zero phase difference. Under these conditions, the meter should and does give an average d-c reading of one-third the value obtained previously.

Figures 5B and 5C show that similar readings will be obtained at gate frequencies which are one-fifth and one-seventh that of the input with amplitudes correspondingly decreased. Figures 6A, 6B and 6C show that the even harmonics of the gate frequency result in an average d-c reading of zero. Here-
in lies the peculiarity of the instrument. It does pass the odd harmonics, although at increasingly decreased amplitudes (Fig. 7).

For a complex wave composed of frequencies such that the lowest frequency present is higher than one-third of the highest frequency present, the instrument, within the limits of its frequency and sensitivity ranges, analyzes the wave completely and accurately, determining the frequency and amplitude of each component. Such a wave might be one composed of these frequencies: $1,200,1,150$, $1,000,875,600$ and 483 cps . Another example might be a wave made up of frequency components of 11,180 , $9,350,5,000$ and $4,019 \mathrm{cps}$.

To examine a wave composed of the following frequencies and amplitudes: $1,000 \mathrm{cps}$ at 10 volts, 2,000 cps at 5 volts and $3,000 \mathrm{cps}$ at 3 volts, the operator begins at the high-frequency end. At a dial setting of $3,000 \mathrm{cps}$ the meter reads 3 volts. At 2,000, it reads 5 volts. But at 1,000 , it reads 11 voltsall 10 volts of the fundamental plus
one-third of the 3 volts of the third harmonic. However, an operator with some experience and technique is able to analyze a complex wave quite adequately.

Future work might be done on the design of an additional circuit which would eliminate the odd harmonics.

The fact that the input to the meter tube cannot exceed about five volts rms naturally limits the sensitivity of the instrument. For all attenuator positions, frequency components whose strength is about 1 percent of the strongest component present can be detected and measured.

Frequencies as close together as 5 cps can be separated and their amplitudes measured.

Distortion introduced by the instrument including intermodulation distortion is under 1 percent.

The writer wishes to express his indebtedness to Professor Frank Walz and Mr. David Stacy, Research Physicist, both of the staff of the University of Colorado Physics Department.

FIG. 7 - Chart shows analyzer readings for $1,000 \mathrm{cps}$ square-wave input

FIG. 6 - Oscillograms of meter tube plate waveforms for even harmonics

Decommutating

Automatic decommutator separates up to 27 intelligence channels which are time-division multiplexed using pulse-amplitude modulation on a single $\mathrm{f}-\mathrm{m} / \mathrm{f}-\mathrm{m}$ subcarrier. All common telemetering commutation rates may be accomodated. System conserves bandwidth and increases intelligence-handling capacity

27-channel automatic decommutator for pulse-amplitude modulated telemetry

Four-channel separator incorporates four basic information gates and common power supply

By W. H. CHESTER and W. P. KLEMENS

Development Engineers
Bendix Aviation Corporation
Pacific Division Development Laboratories Burbank, Calif.

INCREASED INTELLIGENCE-HANdling capacity and bandwidth economy are achieved in $\mathrm{f}-\mathrm{m} / \mathrm{f}-\mathrm{m}$ telemetry by time-division multiplexing one or more of the individual f-m subcarriers. Figure 1 illustrates a typical subcarrier waveform for commutation systems that employ pulse-amplitude modulation of the individual intelligence channels. The commutation rates listed in Table I have been established by the Research and Development Board committee on guided missiles and are compatible with conventional electronic separation techniques.

The Bendix THC-1 electronic decommutator shown in the photograph, is designed to handle the
two commutator configurations and several rates, which are finding continually wider application. Frontpanel switches permit rapid adjustment to either a system employing 15 intelligence channels at commutator speeds of 5,10 or 25 revolutions per second, or 27 intelligence channels at $2.5,5$ or 10 revolutions per second.
The decommutator simplifies data reduction since each intelligence channel, after separation and conversion, may be recorded on a separate oscillograph trace as an essentially continuous indication. Presentation of the individual channels on panel meters provides a valuable simultaneous indication of measured phenomena. A typical
input signal with corresponding decommutated output signals is shown in Fig. 2.

The input signal to the decommutator is the output from a subcarrier discriminator in a standard $\mathrm{f}-\mathrm{m} / \mathrm{f}-\mathrm{m}$ telemetering receiving station. The discriminator serves to demodulate the frequency-modulated subcarrier and produce an output signal proportional to, and of the same form as, the signal that was employed to modulate the subcarrier oscillator in the airborne telemeter. The waveform is essentially as shown in Fig. 1 except that the keyed subcarrier frequencies have been converted to changes in direct-current level.

Figure 3 presents a functional

Pulse Telemetry

Information gate is basic building block of electronic decommutator
block diagram of decommutator operation. The unseparated information pulse train is applied through a balanced low-pass filter to the input of a balanced, directcoupled information amplifier. Circuitry of the d-c amplifier is conventional. Two amplifier stages drive a cathode-follower output. Heavy inverse feeciback is utilized from the output to the cathodes of the input stage, insuring amplifier stability and reducing the effective output impedance to approximately twenty ohms. The information amplifier feeds twenty-eight paralleled information gates.

Several factors dictated the use of balanced circuitry in the information channels of the decommutator rather than single-ended circuitry requiring fewer components. First, nearly all discriminators employed for subcarrier demodulation use balanced-output circuitry.

Conversion to single-ended operation would reduce long-time stability by permitting variations of average current in the discriminator output tubes to appear as a system error. Second, the trend toward programs of tonger duration made the inherent stability of pushpull amplifiers a desirable feature for the decommutator itself. Third, much of the control and recording equipment available to military facilities at present employs balanced circuitry.

Information Gates

Information gates are normally closed, and are opened by triggering pulses from associated counter stages. These triggering pulses are coincident in time with the leading edge of the information pulses. Therefore, information gates are opened, in sequence, to receive the same channel information pulse
each frame. The gate-input circuit consists of a pair of 6AL5 diodes connected back-to-back to minimize contact potential and also to pass signals of either polarity. A simplified gate schematic is shown in Fig. 4.

During the gate-closed period, the diodes are cut off due to the voltage developed across the diodeload resistors by current flow through the bias tubes. During the gate-open period, the bias tubes are prevented from conducting by the control tube, and information is passed through the diodes to storage circuits.

The storage circuits cause the output to be maintained at a level proportional to the informationpulse amplitude until the gate is again opened by the same channelopening pulse in the next frame. Nominal output of each information gate is ± 5 milliamperes into a 330 -ohm load for band-edge-to-band-edge deflection of the subcarrier oscillator. A high-impedance, single-ended output is also provided from each gate. Linear output simplifies data reduction.

The storage circuit consists of a capacitor in the grid circuit of a specially designed cathode follower that meets the requirements of long time-constant and stability under essentially open-grid operating conditions. Gates are closed before the termination of the information pulse by a triggering voltage developed in the control unit, insuring that gate output is clamped at nearly peak value of the information pulse.

Counter Circuitry

The problem of channel-synchronizing or counter circuitry, was coupled closely with system flexi-

Table I-RDB Standard Commutation Rates

Number of Channels to be Commutated	Commutation Rate Cycles per Sec	Samples per Second (Including Synchronization)
15	5	90
15	10	180
15	25	450
27	2.5	7.7
27	5	150
27	10	300

FIG. 1-Research and Development Board standard wave-forms for pulse-amplitude modulation of an f -m subcarrier. Maximum signal represents 7.5 -percent deviation from subcarrier center frequency

FIG. 2-Typical decommutator waveforms illustrate action of storage circuit. Output signal from information channel 2 shows original intelligence-carrying waveform reconstructed from sample pulses
bility. A tumble open-loop counter, consisting of a series of EcclesJordan trigger circuits, each providing sequential trigger pulses, was chosen. This type of counter has the advantage of expansion to any number of stages without the use of feedback or complex matrices.

Four such stages are included in each four-channel separator assembly and these groups of four counters are interconnected by isolating amplifiers. All counter stages are reset at the end of each information frame, or commutator revolution, by a master synchronization pulse. The choice of a tumble counter also simplified cabinet wiring since each counter stage is close to its associated information gate. The choice of four channels per separator unit was indicated by the divisibility of most commutator configurations by four, resulting usually in a spare channel in the decommutator.

In the decommutator control unit, positive-going information pulses at the output of the filter are applied to the control amplifier. Series diode limiters equalize pulse amplitudes, and a unique negative-feedback loop clamps the base line of the information wavetrain to a reference voltage. Output of the final stage of the amplifier, an Eccles-Jordan trigger circuit, is coincident with the original information pulse train, and is used to actuate the remaining control circuits.

Stepping-Pulse Generator

The stepping-pulse generator consists of a univibrator that delivers output spikes coincident with the leading edge of each information
pulse. This positive pulse is transferred through an isolating cathode follower to an amplifier in each separator unit in use. Amplified and inverted, the pulse is then applied as common drive to the counter string, serving to synchronize information channels. Output trigger pulses from individual counter stages are fed through cathode followers and act to open the associated information gates. Up to seven of these cathode followers can be connected in parallel, by external patch cords, to trigger a single information gate, thereby increasing the frequency-response capability of an individual channel. The six bypassed information gates are inoperative under this condition.

Gate_Closing Pulses

Gate-closing pulses are generated by a univibrator used as a delay circuit. It is forced into its unstable position by the leading edge of the control-amplifier output pulses. Upon return to the stable state, its positive output is differentiated and applied to all gates, serving to close the single open gate. The delay period is chosen by switching timing capacitors.

Forced reset of the counter is utilized to insure that the decommutator is synchronized with the airborne equipment at the beginning of every frame. A pulseselector circuit transforms the master synchronization pulse, which is five times the width of an individual information pulse, into an inverted sawtooth. This waveform is then differentiated and amplified. The resultant reset pulse, coincident with the trailing edge of the master pulse, is applied to all reset grids of the counter.

Reliability of the decommutation equipment is increased by the pulse synthesizer, which injects a substitute pulse to the stepping-pulse generator to replace a missing information pulse, and thereby maintains decommutator synchronization with the airborne commutator. Output of the synthesizer is gated so that with all information pulses present, no synthetic pulses are supplied to the equipment. If it were not for the synthesizer, all channels following a missing pulse would be recorded on the wrong receiving channel because the counter would not have been stepped one count for the missing pulse. The synthesizer consists of a voltage-controlled multivibrator, a combination phase-comparator and gating circuit, and a gate that is normally closed to prevent signal output. Up to five consecutive pulses may be replaced accurately by the synthesizer. Replacement of a much larger number is possible if the airborne commutator has speed stability and freedom from jitter.

System Layout

Standardization and operating convenience were achieved by dividing the equipment into a number of plug-in assemblies. Input filters, amplifiers, control and synchronization circuitry are included in the THS-1 decommutator control unit. This unit also contains the master rate-entrol switch and system-test circuitry.

Trigger pulses for control of individual information gates are generated in a number of THK-1 four-channel separator units. Each separator unit provides plug-in mounting for four information gates. A self-contained, regulated
power supply furnishes power required by the separator and the four information gates. The number of four-channel units employed with any individual system is dictated by the system channel requirements.

Separating the trigger circuitry from the information gates simplified the technical problems of multiple opening of an individual gate within each frame, or commutator revolution. This feature provides an excellent means for monitoring a function that cannot be placed on a separate subcarrier channel but requires higher frequency response than is available with one sample per revolution. Separation of the trigger stages from the gates also simplifies the problem of bringing the trigger signals out to a patch bay on the four-channel separator. The trigger signals may be cross connected by patch cords between units with up to seven trigger signals being fed to a single gate.

Design Features

Removal of pulse circuitry from each individual information gate, and the use of several integral power supplies are a new approach to the problem of system flexibility. The design engineer who must anticipate expanding program requirements can acquire, in the beginning, a 15 -channel system, expand the equipment after a few months to the 27 -channel system and eventually procure a system that may have in excess of 40 chan-
nels. The new configuration eliminates the need for power supplies with inconveniently high capacity. Units are plugged into a standard cabinet for the 15 -channel system. Addition of a standard cabinet and units expands the system up to 32 channels, and more cabinets and units may be added if larger systems are adopted.

Four THG-1 information gates shown in the photograph plug into each separator. The configuration provides one spare for either the 15 or 27 -channel system. The spare is maintained in operating condition with heaters on. Panel meters on the gates provide an indication proportional to the measured function.

Other units are the dual regulated power supply, which furnishes power for the decommutator control unit, and centrifugal blower units for cooling. The quiet operation afforded by the centrifugal blowers enables the system operator to perform normally the many functions during an operation without a distracting high ambient noise level that can contribute to mistakes.

Test Circuitry

Test condition for the equipment is obtained upon the removal of input signal. With no signal applied to the decommutator, the pulse synthesizer supplies stepping pulses to the counter, but does not actuate the gate-closing generator nor the reset circuit. Counter outputs both

FIG. 3-Block diagram of electronic decommutator for 27 channels. Counter circuits supply sequencing trigger pulses to information gates

FIG. 4-Information gate is opened by sequencing pulse. Storage circuit holds information during off time
open and close the information gates. The constant operation of circuits such as the counter stages and the information-gate control tubes helps prevent cathode deterioration, a common trouble with counter-type circuitry.

Under test conditions, two additional counters, normally inoperative with signal input, complete the counter chain. The output of the second of these counters is used to reset the counter every counter cycle. With the equipment in this condition, the power supplies and information amplifier may be adjusted, and the information gates balanced. The only operating adjustments consist of setting output levels and recorder calibration.

Test cathode followers are included in the control unit, with input and output-circuit jacks available on the front panel. Strategically chosen test points are available on two ten-position test switches for oscilloscope observation. Provisions are included to mix waveforms, thus permitting pulse phase comparisons with single-beam oscilloscopes.

Tests indicate that the decommutation equipment should introduce an error of less than 1 percent. The frequency response is normally considered to be approximately one fifth the frame rate, (rps of the commutator). The response can be increased to almost one half the frame rate by employing integration filters and slight circuit modification, but such response is seldom required for commutated functions.

Coordination of layout and mechanical design was contributed by C. P. Wiggins and R. A. Hanson. R. E. Cunningham solved the difficult pulse and timing-circuit problems.

Electronic Ānalog

Application of electronic analog computers to systems study and analysis is described. Author shows derivation of electronic analog for processes of summation, integration and differentiation. Solution is shown for a typical closed-loop system

ANy systems study or analysis resolves itself into the problem of obtaining the response equation of the system and then solving the equation for the particular set of circumstances involved.

The prime use of the electronic analog computer is to obtain this solution of the response equation. The analogy involved is a mathematical one wherein an electronic analog is set up to perform the actual mathematical operations indicated by the solution to the equation.

The heart of the electronic analog computer is a d-c amplifier with specified characteristics. The design of such amplifiers and the difficulties encountered therein have been the subject of many articles which are readily available for reference. Since the performance of the amplifier in an electronic analog computer is of a particular type that can be obtained through the familiar methods of amplifier technique, the design of such an amplifier will not be discussed herein. It will suffice to discuss only the requirements of the amplifier insofar as they affect its operation as a computing mechanism.

Primarily the amplifier must

By DEWITT H. PICKENS

Belmont Radio Corp. Chicago, Ill.
have sufficiently flat frequency response to cover the range of frequencies encountered in the functions which result in the solution to the equation. The second requirement is that there can be no flow of current in the input stage to the amplifier. Perhaps the most important requirement of the amplifier is that it have a high gain in the frequency range in which it is used. The direct result of low gain in the amplifier is error in the solution. The minimum gain that can be tolerated is dependent upon the accuracy requirement of the solution to the system under investigation.

Basic Computer Element

Figure 1A is a functional diagram of a d-c amplifier used to form the basic element in the analog computer. It is from this element that all operations are performed. The element is formed by using a d-c amplifier with a gain of K and a feedback impedance Z_{2}. The input signal to be operated upon is introduced through a series impedance Z_{1}.

Figure 1 B is an equivalent cir-

BACKGROUND

Electronic analog computers were born of necessity to fill man's need for a machine to do the mathematics involved in certain scientific investigations. They currently find widest application in making systems studies and analysis of servomechanisms and related equipment.

This article summarizes the fundamental operating principles involved for readers who are not presently engaged in computer design or operation
cuit from which the following voltage equations are obtained:

$$
\begin{align*}
& e_{i}=I_{1} Z_{1}+e_{1} \tag{1}\\
& e_{1}=I_{2} Z_{2}+e_{o} \tag{2}\\
& e_{1}=\frac{e_{o}}{K} \tag{3}
\end{align*}
$$

Solving Eq. 1 for the current:

$$
\begin{equation*}
I_{1}=\frac{1}{Z_{1}}\left[e_{i}-e_{1}\right] \tag{4}
\end{equation*}
$$

Recalling the requirement that the input stage of the amplifier draw no current, it is seen that I_{1} must equal I_{2}. Substituting Eq. 4 for I_{2} and Eq. 3 for e_{1} in Eq. 2 the following results:

$$
\begin{equation*}
\frac{e_{a}}{K}=-\frac{Z_{2}}{Z_{1}}\left[e_{i}-\frac{e_{0}}{K}\right]+e_{o} \tag{5}
\end{equation*}
$$

Rearranging terms in Eq. 5:

$$
\begin{equation*}
e_{o}\left[\frac{Z_{2}}{Z_{1} \bar{K}}+\frac{1}{\bar{K}}-1\right]=\frac{Z_{2}}{Z_{1}} e_{i} \tag{6}
\end{equation*}
$$

If the amplifier has the required gain, the term involving K will be very much smaller than unity. Hence Eq. 6 can be reduced.

$$
\begin{equation*}
e_{o}=-\frac{Z_{2}}{Z_{1}} e_{i} \tag{7}
\end{equation*}
$$

Equation 7 is the characteristic expression for the output as a function of the input to the computer element. By proper choice of the input and feedback impedances, the element can be made to perform the required mathematical operations in the solution of linear differential equations. The expression is independent of the gain of the amplifier as long as those terms involving the gain are very much less than one. Examination of Eq. 6 will show that for these terms to disappear from the characteristic equation, the value of K must be very large. Experience has shown that as long as the gain of

Computer Fundamentals

the amplifier is over 10,000 the error introduced is negligible as compared with normal instrumentation errors.

Summation

Figure 2A shows the method of using the basic element to obtain the sum of several quantities. For this purpose, the input and feedback impedances are pure resistance. An analysis of this circuit will result in the following expression for the output:

$$
\begin{align*}
e_{o}= & -Z_{2}\left[\frac{e_{1}}{Z_{11}}+\frac{e_{2}}{Z_{12}}+\frac{e_{3}}{Z_{13}}\right. \\
& \left.\ldots+\frac{e_{n}}{Z_{1 n}}\right] \tag{8}
\end{align*}
$$

In some instances, it may be desired to subtract one or more quantities in the same operation that is used to obtain a sum. In this case, it is necessary to insert an additional summing circuit to change the sign of those quantities to be subtracted. If the feedback and input resistances are of equal magnitude, the output will differ from the input only in sign.

Integration

The quadrature method of solving differential equations where the variables are separable involves direct integration; hence, the most used element in the electronic analog computer is the one used for integration. Figure 2B shows the integrating element of the analog computer in which the input impedance is pure resistance and the feedback impedance is capacitive. By applying Eq. 7 to this circuit, the following expression for the output is obtained:

$$
\begin{equation*}
e_{o}=-\frac{1}{j \omega R C} e_{i} \tag{9}
\end{equation*}
$$

To show that this expression represents the integral of the input to the computing element, it is necessary to digress from the present topic and discuss operational methods used in systems analyses.

In the solution of linear differ-
ential equations with constant coefficients, the method using LaPlace transforms reduces mathematical complexity. Here, an operator p replaces the differential equation by an algebraic one involving p. In using this method, an integral in the differential equation will appear as a term involving $1 / p$ in the algebraic equation. In this algebraic equation, the operator p can be replaced by $j \omega$ to obtain the steady state condition for sinusoidal excitation.

Consider the voltage drop across a capacitor C which has a current i flowing through it. Then

$$
\begin{equation*}
E_{\varepsilon}=\frac{1}{C} \int i d t \tag{10}
\end{equation*}
$$

Putting Eq. 10 into LaPlace transform form:

$$
\begin{equation*}
E_{c}(p)=\frac{1}{p C} I(p) \tag{11}
\end{equation*}
$$

Now, replacing p by $j \omega$ we find that the voltage takes the form

$$
\begin{equation*}
E_{c}(j \omega)=\frac{1}{j \omega C} I(j \omega)=-j X_{c} I \tag{12}
\end{equation*}
$$

Neglecting any mathematical rigor, it will be sufficient to say that the appearance of the term $1 / j \omega$ indicates that an integration has been performed. Applying this to Eq. 9 , we find the output of the integrating element:

$$
\begin{equation*}
e_{o}=-\frac{1}{R C} \int e_{i} d t \tag{13}
\end{equation*}
$$

In any operation involving integration, the need for representing the constant of integration becomes evident. Since the constant of integration is the initial value of the variable in the analog computer, it is established by placing an initial charge on the capacitor such that a voltage equal to the initial value, in phase and in magnitude, appears at the output of the integrating element prior to the application of the input. Figure 2 B illustrates this process wherein capacitor C has been initially charged with a voltage E_{0} 。 such

FIG. 1-Bas.c analog computer element consists of an input impedance, a d-c amplifier and some form of feedback loop

FIG. 2-Fundamental processes in andlog computing are (A) summation, (B) integration and (C) differentiation
that an initial voltage $E_{\text {o }}$ appears at the output of the element. In this case, the response equation for the element results.

$$
\begin{equation*}
e_{0}=-\frac{1}{R C} \int e_{i} d t+E_{o} \tag{14}
\end{equation*}
$$

Differentiation

Figure 2C shows the computing element used as a differentiating circuit. In this case the input impedance is a capacitor and the feedback impedance is a resistance. Applying Eq. 7 we find the response of this element:

$$
\begin{equation*}
e_{o}=-j \omega R C^{\dot{e}} e_{i} \tag{15}
\end{equation*}
$$

In a manner similar to that used

FIG. 3-Closed-loop servo system and its differential equation
in the case of integration, it can be shown that the appearance of $j \omega$ indicates that differentiation has been performed. Hence Eq. 15 reduces to

$$
\begin{equation*}
e_{o}=-R C \frac{d e_{i}}{d t} \tag{16}
\end{equation*}
$$

In many cases of systems analysis differentiation is required in order that the analog perform in accordance with the components used in the actual system. An example of this is the process of error rate damping used in certain closed-loop systems. In this case, a particular transducer is required to respond to a signal which is proportional to the rate of change of an error between the input and output. An electronic analog of such a system would involve the use of a differentiating element in the synthesis of the error-rate transducer. Another important use of the differentiating element is the case of compensating networks which are used to improve the phase characteristics of systems. Such networks often involve a p term in their transfer function which requires a differentiating element in the analog.

General Characteristic

With the basic element so far described, it is possible to set up
an analog of systems whose response can be described by a linear differential equation whose coefficients are independent of the variables in the system. In addition to the basic computing elements, there are generally certain other elements required. In many cases it is desired to place limits on the magnitude that certain variables may assume. For this purpose limiters, generally of the diode type, are provided whereby the voltage at any point in the analog may be limited to the desired value.

In systems analysis, the response of the system to prescribed forms of excitation is often desired. When this input is sinusoidal, the problem of excitation is easily answered by the use of oscillators to obtain the forcing functions. For more complex types of forcing functions, it is necessary to generate the prescribed form. A method that is commonly used, if the mathematical form of the function is known, is one which sets up a differential equation whose solution is the required forcing function. This equation is then set up on a portion of the computer and the solution used as the required forcing function. For example, it is often required to excite the system by a signal whose magnitude varies di-
rectly with time, the so-called ramp function. To obtain this, an equation is set up on the computers, the solution to which provides a linear magnitude-time variation with a slope of A. The solution of this equation is the function $y=A t$.

The electronic analog computer has been extended to include certain nonlinear operations such as multiplication of variables. These extensions require the use of mechanisms which will multiply and divide. In most cases, these operations are performed by servotype mechanisms of a mechanical nature rather than electronic circuits. As in any mechanical system, the speed of computation is no longer negligible; hence, the frequencies at which these elements may be used are greatly limited. The subject of servo-type computers will not be dealt with here.

Closed-Loop System

Figure 3 is a diagram of a hypothetical closed-loop system which illustrates very clearly how the electronic analog computer facilitates the study of such a system. In this system, it is desired to displace the angular position of a motor by a voltage system. Aside from the inherent inertia of the motor

FIG. 4-Electronic analog solution of closed-loop system shown in Fig. 3
and the damping in the system, the components which make up the entire system are those which tend to minimize the magnitude and time-lag errors in the system. In order that the output displacement θ_{α} be directly proportional to the magnitude of the input voltage E_{i}, the output is compared with the input through the feedback transducer. This transducer converts the angular output to a proportional voltage which is compared with the input voltage in the subtraction amplifier. If at any time, the output differs from the input, an error signal e will drive the motor until such time as the output is equal to the input and the error signal is reduced to zero.

The response of the system is given by the following differential equation:
$E_{i}=K_{0} \theta_{o}+\frac{J}{K_{m}} \frac{d^{2} \theta_{o}}{d t^{2}}+\frac{f}{K_{m}} \frac{d \theta_{o}}{d t}$
In order that the performance of the system may be studied, it is necessary to solve this equation, in which case the output will appear as a function of time for various types of input signals. To apply the electronic analog computer to the solution of this equation, it is necessary to rearrange the equation by equating the high-
est order derivative in the equation to the remaining terms:

$$
\begin{align*}
& \frac{d^{2} \theta_{o}}{d t^{2}}=\frac{K_{m}}{J} E_{i}-\frac{K_{m} K_{o}}{J} \theta_{o}- \\
& \frac{f}{J} \frac{d \theta_{o}}{d t} \tag{18}
\end{align*}
$$

Starting with the highest order derivative, which is the second derivative in this example, the equation is set up on the computer by successive integration of the high-est-order derivative. Figure 4 shows the analog solution for the example system and represents the solution for Eq. 18. In amplifiers 1 and 2 , the second derivative has been integrated to obtain the first derivative and the variable output of the system. The magnitudes of the impedances in the individual integrating elements have been chosen so that the variables have been multiplied by the constants required by Eq. 18. Having integrated successively to obtain the variable, it is only necessary to combine the required terms with the input signal to satisfy the original equation.
In Fig. 4, this is done in amplifier 6 ; since the output of amplifier 6 now represents the entire righthand portion of Eq. 18, it is used to form the input to the first integrating element.

The entire analog has now been set up and the output θ_{0} may be studied by applying the required input signals at the point shown in Fig. 4. In order that θ_{0} appear with a positive sign and in its true magnitude, amplifiers 3 and 4 have been added. In obtaining quantitative results, it is necessary to adjust the scale factors used throughout the systems, as set up on the computer, in such a manner that the desired quantities are of sufficient magnitude to be measured without excessive instrumentation error. Another important consideration in establishing the scale factors is the capabilities of the d-c amplifiers. Adjustment in scale factors may be required in order that the amplifiers are not overloaded since such overloading will result in considerable error.

Conclusion

While the electronic analog computer is a very important time saving instrument, it is not capable of doing the entire job. The system must be studied and its response equation obtained before the computer will be of any service. As in the case of all man-made devices, it does not experiment nor does it think. It is merely a tool in the hands of the user.

Air Breakdown Chart for Radar Pulses

Abstract

Chart gives approximate breakdown voltage between conductors in air in the three major frequency ranges that are related to the mean free path of electrons in air. Chief use is design of high-voltage pulse circuit components for radar installations

USE of high-power pulses in radar depends on the dielectric strength of air. The design of equipment to handle these pulses should be based on estimates of the breakdown voltage in the air gaps between conductors. The various configurations of the conductor contours make such estimates difficult, but a few simple rules and the accompanying chart are a great help.

The primary purpose of the chart is to show the variation of breakdown voltage with frequency. Breakdown by an alternating voltage is an effect of cumulative ionization by collision during successive cycles of alternation. At high frequencies, such that the electrons and ions oscillate in the field without reaching the electrodes, the free charges accumulate until the ionization and recombination rates reach equilibrium.

At low frequencies, such that the electrons and ions would oscillate further than the distance between electrodes, the free charges are partially collected during each cycle and hence do not accumulate. Consequently the breakdown gradient is greater at lower frequencies. Likewise, the breakdown gradient is greater in smaller distances, which also facilitate the clean-up. These effects are summarized by the three curves on the chart.

The transition between the

By HAROLD A. WHEELER

Wheeler Laboratories Great Neck, N. Y.
medium-frequency and high-frequency curves occurs at certain frequencies and pressures, as indicated for a few cases that have been tested. At high frequencies the gradient is constant (2.9 kv per mm at one atmosphere pressure).

Transition Frequencies

If the distance is of the order of 1,000 times the mean free path of electrons in the air, this transition between middle and lower curves occurs at frequencies of the order of 100 mc , as shown on the chart. This relation is independent of the pressure, although the value of the mean free path is inversely proportional to the pressure. In other words, the product of pressure times distance is proportional to the ratio of distance over mean free path. This is the reason why a single family of curves is valid over a great range of pressure and distance.
The transition between the upper and middle curves (not shown) occurs at frequencies about $1 / 100$ th as great, since the velocity of ions is less than that of electrons in about this ratio, and their mean free path is nearly the same.

In either case, the transition occurs at a value of pressure-times-distance which is inversely proportional to the frequency.

Uniform Gradient

The simplest case for computation and formulation is a uniform voltage gradient between parallel plane conductors. Ordinary configurations have a peak gradient greater than the average, so the maximum gradient may be taken as a criterion of breakdown over a certain distance. This is valid at high frequencies; at lower frequencies the correct criterion is somewhere between the maximum and the average gradient, usually closer to the maximum.

A uniform gradient causes no corona, just a well-defined spark. A maximum gradient much greater than the average gradient causes corona below the sparking voltage, which expedites the final breakdown when the voltage is increased to that point. At high frequencies, it is even possible to have a breakdown (ball of fire) in a limited space separated from the electrodes.

At low frequencies, there can be no spark in a gas at a voltage less than a certain value (about 0.3 kv in air), because the electrons are collected before they can gather sufficient momentum. At high frequencies, this rule fails because most of the elec(Continued on p 150)

Only of CHNCH

.QUANTITY PRODUCTION OF LOW LOSS MICA COMPONENTS... QUICKLY! A mast moder moding unit, conpleter

 equipped and skillfully operated under experienced enj nee-ing supervision... a distinctive feature in the production of STAMCARD electronic components by CINCH. An adequate and uneq-aled facility for quantity production and prompt delivery . . . has advanced CINCH to the foremost as a producer of low loss Mica components.CINCH constantly demonstrates ability to hold tolerances on Mica moldings . . . to meet the most exacting requiremests in small metal plastic assemblies for components of higher qua ity matericls held to closer tolerances.

Cinch Electronic Components are available at leading jobbers - every. where.

CONSULT CINCH

Air Breakdown Chart for Radar Pulses (continued)

Chart giving breakdown voltage in air between parallel planes. For atmospheric pressure, horizontal scale represents distance in millimeters between the plane electrodes
trons oscillate without reaching an electrode.

Experimental Basis

The chart is based on a steady alternating voltage (unmodulated $c-w)$. Short pulses of direct voltage (of the order of one microsecond) occurring at much longer intervals (of the order of one millisecond) stop before equilibrium is reached, so their breakdown voltage is naturally somewhat greater than that of a steady direct voltage, the highest curve on the chart. Such short pulses of high-frequency voltage have been presumed to show a similar tendency relative to the lowest curve, and there is some experimental evidence to this effect.

The chart is valid at lower
pressures, provided that the distance is many times the mean free path of electrons, which is true over the range plotted.

In general, there is a scarcity of reliable experimental evidence either to support or to contradict these curves. It is expected that they will be verified under controlled conditions by providing some continuous supply of electrons. This supply may come from corona or other localized discharge, ultra-violet rays, x-rays or gamma rays, but hardly from thermal agitation at ambient temperatures common in electronics equipment (usually under 100 C). Therefore a somewhat higher breakdown voltage may be fairly certain if such sources are precluded by design. This is especially true of short
pulses such as mentioned above. However, cosmic rays arrive about once per hour per square millimeter, and cannot be stopped by reasonable shielding.

Bibliography

M. J. Druyvesteyn and F. M. Penning, Electrical Discharges in Gases Ring, Electrical Discharges in 8 , Apes 1940 (d-c curves p 114).
J. A. Pim, The Electrical Breakdown Strength of Air at Ultra-high Frequencies, Jour. I.E.E., 97, part 3, $p 117$, March 1949 (curves for $100-300 \mathrm{me}$)
H. A. Wheeler, Breakdown Voltage in Air at High Frequencies. Wheeler Lab. Repont 416, May 2, 1950 (char for all frequencies).
W. A. Prowse, The Initiation of Breakdown in Gases Subject to HighFrequency Fields, Jour. Brit. I.R.E. $10, \mathrm{p} 333$, Nov. 1950 (summary of available information at frequencies up to 9 kmc ; many references).
.r. P. Molnar, Conduction Phenomena in Gases, Flec Eng.. p 1071 , Dec 1950 (simple theory of loreakdown at d-c and high frequencies).

Look to Mallory for economical production

The assembling of tiny contacts of platinum, palladium or other precious metals no longer need bottleneck your production or push manufacturing costs out of line. Through modern tape-welding techniques, Mallory is mass-producing millions of assemblies like those illustrated here, and at low cost!
This process employs a tape of contact material-either solid, or bi-metallic with a facing of a few thousandths of precious metal. The tape is fed into a machine that shapes the contact, welds it in place and ejects the assembly-as a continuous, automatic operation.
This process reduces costs and improves performance because it eliminates individual handling, less precious metal is required and the welded assembly provides excellemt conductivity and physical strength.

Expect More...

Get More From Mallory

Whether your electrical contacts are large or small, Mallory can produce them for you to the highest quality standardsand at the right price.
Your own organization is freed of all problems of purchasing, stocking and fabrication of contact materials and subassemblies. And you benefit by Mallory's single responsibility for the complete job . . . extending from raw materials to final inspection.
Write or call Mallory today about your contact requirements.

In Canucha, made atul sold bes
Johnswon Muwhey \& Mallory, I.th.

MAILORY

SERVING INDUSTRY WITH THESE PRODUCTS:
Electromechanical-Resistors - Switches - Television Tuners - Vibrators Electrochemical-Capacitors - Rectifiers - Mercury Dry Batteries Metallurgical - Contacts ${ }^{\text {S Special Metals and Ceramics }}$ - Welding Materials

ELECTRONS AT WORK

Including INDUSTRIAL CONTROL

Edited by RONALD K. JURGEN

Signals	152	
Tick-Tack-Toe Compute	154	Two-Tube Square-Law D
Producing Barium-Titanate Transdu ers		Precision Raster Sweep Oscillograph. . 212
ata-Displaying	4	mproving Electronic System Re
tion		cast Cueing of Tape

Wire Distribution of TV and Sound
Signals 15
Tick-Tack-Toe Computer. 154
Producing Barium-Titanate Transduc-
Data-Displaying Cathode-RaY Tube... 174
Electronics Measures Human Respiration 186

Economical TV Linearity Tesi Genera-
Tor 198
Precision Raster Sweep Oscillograph. . 212
Improving Electronic System Relia-
Fast Cueing of Tape Programs....... 226

OTHER DEPARTMENTS
featured in this issue:
Page
Production Techniques. . . 228

New Products 258
Plants and People. 310
New Books .318

Backtalk
340
plement its sound service. Initially, this was confined to blocks of flats where a single antenna, suitably sited in the best position on the roof, fed the received signals to a wide-band amplifier having an approximately uniform gain of 55 db . Bandwidth was three me either side of the Alexandra Palace tv station frequency of 45 mc working on 405line definition, 25 pictures per second with double sideband. From an output matching pad, semi airspaced polythene insulated coaxial cables linked up any flat to the system through junction boxes, incorporating 40 or $20-\mathrm{db}$ loss pads.

Signal Level

The system was designed so that the input voltage to any receiver along the cable did not exceed 7.5 mv and was never less than 0.75 mv . The tenants' own standard tv receivers were used or, alternatively, Rediffusion supplied them for an all-in weekly rental which included free maintenance. Using a highquality coaxial cable, the attenuation from the feeder itself plus the receiver insertion loss limited the length to approximately 450 yards.

With an average block of flats, it was found that each feeder could provide a wired tv service at carrier frequency to between 40 and 50 flats and, although there was no practical limit to the actual number of feeders installed, it was preferable not to feed more than five coaxial cables from each wide-band amplifier.

The present BBC tv plan in Great

A production testing instrument with

laboratory accuracy under
 factory conditions

- Rapid and accurate comparison of inductors and capacitors to known standards.
- Sturdy, simple, easily operated by factory personnel.
- Offers quick comparison between supplier and user.

COIL TESTING

Coils are compared by resonating them in the low-loss tuned circuit of the QX-Checker to a frequency which is generally in or near the operating range of the coil. The inductance and Q comparison is thus made under conditions of actual operation. Resonance is indicated by a meter which reads directly the relative Q of the tested coil in percentage relation to the standard coil.

The dial of the vernicr condenser employed indicates the difference in inductance between the standard and test coils. Reasonably accurate readings may be made of inductances differing from the standard by about 0.1 per cent. The scale is provided with a writing surface on which any limits may be marked in pencil. Such marks can be erased and new limits added. Scales may be readily replaced.

CONDENSER TESTING

Condensers are checked by comparing a test condenser to a standard condenser. For condenser tests, accessory coil 112-A22 is required. The QX-Checker is resonated with the standard condenser connected, and with the vernier set at zero. Test condensers are substituted for the standard and resonated with the vernier which indicates directly the difference in capacitance, expressed in uuf, between test condenser and standard. Relative loss of the condensers is indicated by the meter reading at resonance.

SPECIFICATIONS
OSCILLATOR FREQUENCY RANGE: 100 kilocycles to 25 megacycles in six ranges, using plug-in coils or ínductors as follows:

TYPE NO.	FREQ	UUENCY RANGE
111-A 1	$10-$	25 megacycles
111-A 4	4 -	10 megacyeles
111-A12	1.5 -	4 megacycles
*11-A22	$500-$	1500 kilocycles
*11-A27	$300-$	900 kilocycles
111-A36	100 -	300 kilocycles

ACCURACY OF FREQUENCY CALIBRATION: Approximately $\pm \mathbf{3} \%$
RANGE OF COIL CHECKS: Coils having inductance ranging between 1 microhenry and 10 millihenries may be checked or matched.

ACCURACY OF COIL CHECKS: For $Q=100$ or more L above 10 uh. May be checked against standard to within ± 0.1 to $\pm 0.2 \%$.

RANGE OF CONDENSER CHECKS: The capacitance values of condensers ranging between 1 or $\mathbf{2 m m f}$ and 1000 mmf may be checked against the standard by the direct substitution method with an accuracy of a few tenths of one $\mathbf{m m f}$ if the \mathbf{Q} of the condensers is high.

INDICATING SYSTEM: Large diameter \mathbf{Q} indicating meter, with well expanded $31 / 4$ inch scale. The double-range 5 inch vernier condenser scale contains direct-reading calibration in micro-microfarads. The two ranges are plus or minus 5 and plus or minus 50 micro-microfarads.

VOLTMETER: The \mathbf{Q} voltmeter is self-contained. Specially designed for high accuracy over long period of time. Calibrations practically independent of normal line voltage fluctuations.

POWER SUPPLY: $100-125$ volt, $50-60$ cycle. Also 200-250 volt, 50 cycle. Power consumption approximately 50 watis.

PRICE: $\$ 340.00$ FOB Boonton, N.J.

For testing the performance of feeders on vision carrier frequencies, an automatic sweeping eignal generator is used

Britain is limited to the provision of a single program for the whole population. The five main highpowered tv transmitting stations use carriers of 45 mc (double sideband), $51.75,56.75,61.75$ and 66.75 mc (asymmetric sideband) with the sound carrier in each case $3.5-\mathrm{mc}$ lower. It is necessary to convert these carriers to a standard i-f so that identical amplifiers and receivers can be used throughout the wired towns and also to increase substantially the length of cable used before signal attenuation necessitates insertion of a repeater.

Intermediate Frequency

At present, certain technical considerations make it preferable to use an intermediate carrier frequency of the order of 9 to 12 mc and the subscriber to the system is given the choice of one vision program with its accompanying sound plus three other sound programs, all the sound signals distributed being at audio frequency. The scheme is capable of having a second vision channel added later.

Transmission

As mentioned earlier, there is a widespread sound relay service operating in Great Britain and the natural method for a vision relay on the score of convenience and economy is to devise a method that can be combined with the existing audio network technique. Star quad cables, polythene insulated, are employed for modern relay feeders but, at the high frequencies necessary for the vision signal, the
characteristics of this cable are subject to wide variations. These variations may be reduced by metallic screening by lapping helically a thin copper or aluminum tape over the cable before finally sheathing it with polythene. Without this screen stabilizer, the attenuation due to rain and dirt may vary by as much as 100 percent. Using two star quad cables, one screened and one unscreened, it is possible to relay four audio programs with the vision program intermediate carrier superimposed on one pair in the screened cable.

The antenna is sited in an area of low interference level and, by using tall masts and suitable directional arrays of high gain, a good signal-to-noise ratio is secured. When the antenna is located in a fringe area, the signal received by the antenna is fed into a wideband low-noise preamplifier.

Reception

A master vision receiver accepts the antenna or preamplified signal and, after amplification, converts it to the required distribution frequency and shapes it to standard asymmetric characteristics. The sound signal can be derived at the same site by direct reception or by line if more convenient but, in any case, it is made available at the central distribution station for monitoring and general retransmis-
sion at audio frequency. The vision signal is fed to the same point over low-loss screened coaxial cable.

Where the field strength of a tv signal is quite unsatisfactory, a station some miles away from the relay area can be used and a microwave link employed to retransmit the desired programs to the central station, which will then house the master vision receiver for conversion and amplification.

Subscriber's Equipment

The vision side of the subscriber's apparatus consists of a trf unit suitable for the carrier frequency employed and covering the necessary bandwidth. The sensitivity is approximately 0.5 mv and following this unit are the usual detector, video amplifier, scanning circuits and power supplies.

As mentioned earlier, the sound is transmitted at audio frequency and fed through to the loudspeaker at a level suitable for direct operation. This speaker is integral with the cabinet housing the vision chassis. A sound volume control is provided together with a program selector switch, giving the subscriber a choice of three separate audio programs or the combined vision and sound program. This last named program is fed over one pair of the screened star quad cable, a filter separating the h-f and audio signals.

Tick-Tack-Toe Computer

By E. M. McCormick West Riverside, Calif.

THIS PAPER shows how a certain matrix of manually-operated switches alone is sufficient to solve the logical problem of playing the game of tick-tack-toe. Having a machine capable of playing this child's game is not in itself necessarily useful but some of the concepts in its design may be applicable to more useful devices.

Basically, as shown in Fig. 1, this special-purpose logical computer consists of 18 lights (nine "X's" and nine " O 's") in the display, a filament transformer voltage source to operate the pilot lamps in the

FIG. 1-Basic block diagram of the tick-tack-toe machine
display and between these two the switch matrix which operates the lights. The switches in this network not only indicate what has been played but also decide in a logical manner what the machine response should be.

There are nine main switches in this device. Each corresponds to one of the nine possible places one

TINY 10-turn Helipots with BIG performance

12. times the resolution of conventional unitis!

In all airborne and many other modern electronics applications for precision potentiometers, miniaturization, light weight and circuit simplification are key objectives. And you get these features-and morein Helipot's new A.J Models... compact potentiometers the diameter of a penny, yet with 12 times the resolution of conventional potentiometers of the same diameter. Announced only a few months ago, the original AJ has proven so popular that it is now made in two versions to meet the requirements of its many users-the original AJ mounting with a threaded bushing. . . and the new AJS mounting for servo applications. Also, the AJS is available in two bearing arrangements-AJS with sleeve bearings, and the AJSP with ball bearings.

All units have these important features . . .

SMALL SIZE-LIGHT WEIGHT: All AJ Models are only $34^{\prime \prime}$ in diameter (small as a penny) $13 / 8^{\prime \prime}$ long-weigh 1.0 oz. They require a minimum of valuable panel space!
HIGH PRECISION-CIRCUIT SIMPLICITY: On many applications an AJ Series will replace two conventional potentiometers, providing both wide range and fine adjustment in one
unit The $18^{\prime \prime}$ slide wire gives a resolution of $1 / 3000$ in a 100 ohm unit- $1 / 6500$ in a 50,000 ohm unit!
RELIABILITY: The AJ models are rugged and simple-built to close tolerances with careful quality control. Their performance and reliability reflect the usual high standards of Helipot quality.

Advanced Construction

For light weight, unusual compactness, high accuracy and resolution, coupled with utmost reliability, investigate the AJ series...
All types have bearings at each end of the shaft to assure precise alignment and linearity at all times.
Either single or double shaft extensions can be provided to meet individual needs ... also, ball or sleeve bearings, special shaft lengths, flats, screwdriver slots, etc.
By means of a unique Helipot welding technique, tap connections can be made to only one turn of the resistance winding, and can be provided at virtually any desired point on the resistance element.
New improved terminals are rigidly anchored in place to prevent twisting and coil failures due to fatigue. These anchor-locked terminals are used both at the taps and at the coil ends.

Meet Rigid Helipot Standards

Helipot-world's largest manufacturer of precision potentiometershas built an enviable reputation for its high design and construction standards, and the AJ models meet these standards in every way.

The resistance elements are made of precision-drawn alloys, accurately wound by special machines on a heat-dissipating copper core.

Each coil is individually tested, then permanently anchored in grooves precision-machined into the case. Slider contacts are of long-lived Paliney alloy for low contact resistance and low thermal e.m.f.... and all terminals are silver plated and insulated from ground to pass 1,000 volt breakdown test.

In spite of light weight and compact design, all AJ models are built throughout for long life and rugged service. Potentiometer life varies with each application, of course, depending upon rotation speed, temperature, atmospheric dust, etc. But laboratory tests show that under proper conditions, all of the AJ series have a life expectancy in excess of one million cycles each!

Get full details from your nearest Helipot representative-or write direct!

THE
 Helipot CORPORATION

South Pasadena 2, California

Field Offices: Boston, New York, Philadelphia, Rochester, Cleveland, Detroit, Chicago, St. Louis, Los Angeles, Seattle, Dallas and Fort Myers, Florida. In Canada: Cossor Lid., Toronto and Halifax. Export Agents: Frathom Co., New York 18, New York.

THE FRONT COVER

AUNIFORM electrostatic field is produced between the plates of a large parallel-plate capacitor made in the form of a cube shown in the cover photograph and the accompanying drawing. Fringing field effects are prevented in this Stanford Research Institute system by means of the wires shown. Each wire is made
to assume the potential it would have if the capacitor plates were infinitely large by connecting it to an appropriate point on a resistance voltage divider.
Although the field configuration outside the cube is quite complex, the internal field is uniform except for localized distortions near the individual wires. An insulating shaft of laminated plastic passes through the field as shown to support the aircraft model under test.

Values of the equivalent area of an antenna, measured using electrostatic techniques, may be used to determine the low-frequency radiation pattern, receiving sensitivity and radiation resistance of the antenna. Antenna capacitance must be evaluated separately.
can play. A switch thrown to the left will cause an " O " to appear in that place in the display indicating that the machine has played there. A switch turned to the right produces an " X " to record the machine opponent's play. A switch in the normal (center) position indicates that neither player occupies that spot.

Playing Procedure

The person playing the machine starts by turning the switch corresponding to his desired first play to the right. An " X " appears at that place in the display.

After a few seconds an "O" appears in the area where the machine desires to play. It is then necessary

FIG. 2-Details of one of the eight sections of the defensive circuit

FIG. 3-Switching arrangements for the counter circuit
to manually throw the switch corresponding to that area to the left to record this move. If this is not done, the next play of the opponent would cause the machine not only to forget its last play but also to be confused and forget whose turn it is to play. The only means the machine has for knowing what or when to play is on the basis of the position of the nine switches.

After recording the machine response, the opponent plays again and the process is repeated until the game has reached some logical conclusion.

The machine's operation is errorless. If the person playing the machine knows as much about the game as the machine, all games will

FIG. 4-Details for the "any number" circuit
be draws. If the machine's opponent makes an error, the machine will take the advantage to win. As a concession to human nature, a few errors in the machine response have been deliberately wired into the circuit and are optionally available by throwing a switch from INVINCIBLE to VULNERable. Knowing these weaknesses one can beat the machine.

In its present form, the device can indicate only one response each time it plays. It will always play the same game for a given set of opponent plays.

There is an average of 30 individual three-position switches on the nine main switches or 270 individual switches in the network.

Detailed Circuits

The inhibitor circuit is merely an extension of the principle of the commonly used two-way switch. Here, however, the output voltage is on or off depending on whether an odd or even number of the nine main switches have been operated. It determines when it is the machine's turn to play.

The offensive and defensive circuits are quite similar and the basic arrangement of each is indicated by analyzing the defensive circuit. This is shown in Fig. 2. This circuit determines for each of the eight possible combinations whether two of the three have been played by the opponent and whether the third is not occupied. If both conditions are met, then the voltage applied to the input is diverted to operate the lamp which indicates the correct response. For examp.e, if switches corresponding to spaces 1 and 2 are turned to the right and switch 3 is in the unplayed position, the input voltage is applied to the lamp which produces the " O " in the

Use "dag"

Colloidal Graphite...

the Ideal CRT Wall Coating

by "Dag" Exterior Wall Coating, developed
CRT glass Achon Colloids specifically for use on
loosening action envelopes, resists scratching for use on
eat The smooth apply \cdots economical to requires no baking \ldots is Exterior Wall uniform conductive.
less of the glass to whing adheres tenaciock film obtained with "dag"
Apply this specially which it is applied. asly to all CRT walls regard. coating dries so rally processed electric adhesion is obtained rapidy that tubes can ric-furnace graphite by spraying. The infra-red drying for :/ hy drying at room handled in 2 or 3 minutes. Maximum The new and complete hr. at $100^{\circ} \mathrm{C}$.oom temperature for 24 hours or by Electrical Application booklet "Dag" other "dag" dispersions gives full data on "olloidal Graphite for Electronic

$$
\text { in No. } 433-5 \mathrm{H} \text {. }
$$

dag

$$
\begin{align*}
& \text { TODAY for "dag" Exlletin Norior War Electronic } \tag{nd}\\
& \text { Wo. } 433-5 H \text {. Coating }
\end{align*}
$$

Actieson Colloids Company,
 - a also achesol colloios limiteo, lownon, Mich.

OWere QUALITY Counts

 AMPEX fectures including \qquad

- Convenient push button control permits remote operation.
- Accessibilify to every part permits time-saving isspection while operating.
- Built-in preamplifier for
microphone or bridgiñg.

[^8]space corresponding to 3 .
If both of these conditions are not met the voltage is diverted directly to the input of the next of the eight defensive circuits. Any position being occupied by the machine is sufficient to do this. If all three switches are turned to the right, then the machine has lost.

The counter circuit is shown in Fig. 3. Here the input voltage is available at one of the three outputs depending on the number of the main switches which are to the right, that is, are played by the opponent. Unoccupied or machineoccupied positions are not counted.

The "any number" circuit is shown in Fig. 4. Note that the draw light is operated only after all nine positions are occupied.

The special instruction part of

FIG. 5-Portion of special instrucion section of switch matrix
the network is illustrated by the circuit which determines the machine's response to the opponent's first play when the machine is playing second. This is given in Fig. 5. Note that if the opponent's play has been 2 then the response is 3 ; if 6 then 9 ; if 8 then 7 ; if 4 then 1 ; if 5 then 3 ; but if none of these then the response is 5 . If the first opponent play was $1,3,7$, or 9 (that is, any of the corner positions) then the response by default is 5 .

Delay

Since the only information required by the computer is the position of the nine main switches, the response is available as soon as the opponent's play is recorded. However, again as a concession to human nature, the response is purposely delayed by a delay circuit.

This is merely for effect. Humans do not like to play a machine

PhOTOGRAPHY HELPS A COSMOTRON KEEP PROTONS IN LINE

A peak power of $21,000 \mathrm{KVA}$ creates the magnetic field in the cosmotron now being tested at Brookhaven National Laboratory. Protons whirl through the field of a giant doughnut-shaped magnet, over 60 feet in diameter. At every point of the protons' path along the circular quadrants and at all times during the second while the magnetic field is rising to its top value, the configuration of this field must be held within certain limits, or the protons will collide with the walls and be lost.

This monster magnet is built of laminations of $1 / 2^{\prime \prime}$ steel sheets, 8 feet high, 12 in a 5.7 -ton bundle, 288 bundles in all. Each bundle had to be carefully matched to its neighbors to give the utmost overall uniformity of magnetic parameters.

Photography provided a practical solution to the matching problem. The magnetic phenomena of each
block were displayed on a cathode-ray oscillograph and photographed with a Kodak 35 camera. Five months and 8,000 oscillograms later (the shutter didn't fail once), a complete set of photographs like those seen here of the characteristics of each block made it possible to determine the position of each one in the magnet ring, to insure the most satisfactory magnetic field.

Quantitative records-full of detail, quickly made, available for reference whenever needed-are photography's contribution in a great many kinds of scientific and engineering jobs. Kodak makes a large variety of films and papers for them. Drop us a line, and we'll send you a complimentary copy of a new booklet that helps you make the best selection among them. Eastman Kodak Company, Industrial Photographic Division, Rochester 4, N. Y.

PHOTORECORDING . . . an important function of photography

"Home-made coils cost us far too much", you'll say
 when you balance all the costs, wasted time and materials, production delays and excessive rejects against Clippard production-engineered coils. Clippard specialists have made a career of coil and subassembly work ... quickly turn out runs of $1,000 \ldots$ $10,000 \ldots 1,000,000$ or more units using specially designed high-speed equipment of laboratory accuracy.
For you, as for many of the nation's leading electronic and electrical manufacturers, they'll whip production delays, hasten delivery dates, cut costs.

Often, Clippard works out design improvements that save money, critical materials and valuable time.
Devote your production facilities to more profitable work. Turn your coil winding and sub-assembly jobs over to Clippard. Savings will be greater than you thought possible. WRITE TODAY,

PRODUCTION TESTING

Resistors and Condensers?

Send for catalog sheets describing Clippard PR-5 Resistance Comparator and PC-4 Capacitance Comparator. Each will soon earn its keep in your plant by allowing unskilled operators to check more than 30 components per minute with laboratory accuracy.

Clippard

INSTRUMENT LABORATORY INC.
7350-90 Colerain Road - Cincinnati 24, Ohio MANUFACTURERS OF R.F. COILS and electronic equipment

DOUBLE BARREL
Advertising

Advertising men agree-to do a complete advertising job you need the double effect of both Display Adver. tising and Direct Mail.

Display Advertising keeps your name before the public and builds prestige.
Direct Mail supplements your Display Advertising. It pin-points your message right to the executive you want to reach-the person who buys or influences the purchases.

More and more companies are con* stantly increasing their use of Direct Mail because it does a job that no other form of advertising will do.

McGraw-Hill has a special Direct Mail Service that permits the use of McGraw-Hill lists for mailings. Our names give complete coverage in all the industries served by McGrawHill publications-gives your message the undivided personal attention of the top-notch executives in the industrial firms. They put you in direct touch with the men who make policy decisions..

In view of present day difficultica in maintaining your own mailing lists, our efficient personalized service is particularly important in securing the comprehensive market coverage you need and want.

Ask for more detailed information today. You'll be surprised at the low over-all cost and the tested effective ness of these hand-picked selections

Dapt. A

MrGRAW-HIIL publishing co., inc.

330 West 42nd Street NEW YORK 18, N. Y.

High frequency tube socket of Du Pont "TEFLON"

Tube socket manufactured by the United States Gasket Co., Camden, N. J.

retains dielectric properties in high or low ambient temperatures ... maintains frequency stability

Engineers designing a tube socket for high frequency installation needed an insulating material that would meet the conditions imposed by high or low ambient temperatures and frequency stability. The only material to fill the bill was Du Pont "Teflon"* tetrafluoroethylene resin. It makes possible a socket that meets TRMA and JAN specifications.
"Teflon" has a loss factor of less than 0.0005 and a dielectric constant of 2.0 from 60 cycles to 30,000 megacycles. These properties remain stable for long periods of service in temperatures ranging from $-110^{\circ} \mathrm{F}$. to $500^{\circ} \mathrm{F}$., and are not affected by extreme humidities, corrosive atmospheres or fungi.
"Teflon" does not carbonize under an arc discharge. It is noninflammable and under ASTM tests has a water-absorption rating of 0.0%.

Tough, resilient "Teflon" withstands vibration and shock. And it is chemically inert . . . has absolutely no reaction with oil, organic or inorganic acids, alkalis and solvents.

Perhaps the valuable dielectric and physical characteristics of Du Pont "Teflon" can help you improve or develop a product. For further information, write:

[^9]

TRANSMITTING RECTIFIER

INDUSTRIAL
 ELECTRONIC

As always, Taylor is producing tubes of superior quality and outstanding performance. The Taylor Representative nearest you is ready and willing to discuss your particular requirements. Call on him for information any time.

Canada: Allas Radio Corp., Lid.
560 King St., W., Toronto 2-B
Export: Royal National Company 75 West St., New York 6, N. Y.
Cable: ATRADCO
Cable: NATVARNCO
which indicates its answer immediately, when they require time to think about a play.

The cost of the parts in this device was about $\$ 30$.

Producing Barium-
 Titanate Transducers

Barlum-Titanate Transducers for ultrasonic-ranging equipment may replace both piezoelectric materials such as quartz, rochelle salts, and synthetic crystals and critical magnetostrictive materials such as nickel and Permalloy.

Scientists at Naval Air Development Center, Johnsville, Pa., are now investigating application of barium-titanate transducers to airborne underwater-sound gear. The material is especially useful since transducer elements can be formed in any desired shape to produce cus-tom-made radiation patterns. This is a welcome contrast to the problems presented in growing and cutting piezoelectric crystal transducers.

It is anticipated that bariumtitanate transducers will also find application in phonograph pick-ups, microphones, speakers, dielectric amplifiers, capacitor dielectrics and possibly as frequency-determining elements. In contrast to scarce magnetostrictive materials, barium titanate is mined in quantity in Canada. The raw powder, finely ground but containing some ferrous impurities is available at about 20 cents a pound.

Manufacture

In the manufacture of bariumtitanate transducers, the raw powder is first sifted through an 80mesh screen and a small amount of lead titanate added to improve final transducer characteristics. Water is added together with an electrolyte to act as a deflocculant, preventing formation of lumps due to static charge. The wet mixture is ball-mi!!ed to a fine consistancy. A magnetic filter is used to remove ferrous impurities introduced in powder-grinding processes. The mixture is evacuated to prevent formation of air bubbles. Slip castings are made using desired molds When forms are extruded, the mix-

THE SIMPSON MODEL 260 VOLT-OHM-MILLIAMMETER OUTSELLS ALL OTHERS COMBINED BECAUSE

A covers all ranges necessary for Radio and TV set testing
B includes the Simpson 50 Microampere Meter Movement known the world over for its ruggedness
C no bulky harness wiring, thus eliminating all intercircuit leakage at this high sensitivity
D molded recesses for resistors, batteries, etc.
E easy battery replacement
F covered resistors to prevent shorts and protect against dust and moisture

- all components-including case and panels-are specially designed and completely tooled for maximum utility...not merely assembled from stock parts
ranges
20,000 Ohms per Volt DC, 1,000 Ohms per Volt AC
Volts, AC and DC: 2.5, 10, 50, 250, 1000, 5000
Output: 2.5, 10, 50, 250, 1000
Milliamperes, DC: $10,100,500$
Microamperes, DC: 100
Amperes, DC: 10
Decibels (5 ranges):
-12 to +55 DB
Ohms: 0.2000 (12 ohms
center), $0-200,000$ (1200 ohms center), $0-20$ megohms (120,000 ohms center)
prices
Model 260 \$38.95; With Roll Top \$46.90. Complete with test leads and operator's manual. 25,000 volt DC Probe for use with Model 260, \$9.95.

Simpsonf Instruments That Siay Accurate Are Available From All Leading Electronic Distriburars

SIMPSON ELECTRIC COMPANY
5200 W. Kinzie St., Chicago 44, Illinois . Phone: COlumbus 1-1221
In Canada: Bach-Simpson, Ltd., London, Ont.

More Information/Sec.

- TWENTY READINGS/SEC.
- TEN CHANNELS-TWICE/SEC.
- HIGH ACCURACY
- 10-50 OR 100MV INPUTS
- PRINTED OUTPUT-NO DELAY
- HIGH IMPEDANCE INPUT
- NO DARK ROOM
- NO FILM READING

WRITE FOR
BULLETIN C-39-0

HIGH SPEED POTENTIOMETER RECORDER

$\sqrt{ } \ldots \ldots .$. under vibration . under strain
 V for fine adjustment $\sqrt{ } \ldots . .$. in inaccessible places \checkmark needing strength in small sizes $\checkmark \ldots$ in compact design $\sqrt{ }$. . for maximum holding power V. for fastening thin pieces

... use genuine ALLENOHEAD socket screws and keys

Class $3^{\prime} \mathrm{ft}$, quality controlled uniformity and strength, wide range of standard sizes.

Sold only thru leading
INDUSTRIAL DISTRIBUTORS

MANUFACTURING COMPANY

 Hartford 2, Connecticut, U. S. A.
THE RALPH M. PARSONS COMPANY

617 SO. OLIVE STREET LOS ANGELES 14, CALIF.

MICROWAVE RESISTORS TELEWAVE
TYPE R

TYPICAL APPLICATIONS

- Power measurement at any
- Matched terminations for wave.
guides or coaxial lines
- Resistive power pickup loops
- RF pads or attenuators
- Dummy loads
- Temperature measurements - Impedance matching.

SPECIFICATIONS
Resistance: 50 ohms standard, othep values on request.
Tolerance: 5% or 10% at $25^{\circ} \mathrm{C}$ watt continuous duty Size: $1 / 16$ inch diam. $\times 3 / 16$ inch long Terminals: Tinned sections $1 / 16$ inch long film Length: Type R.063-1/16 inch Type R-093 - 3/32 inch Temperature Coefficient approx. 0.0019 ohms $/$ ohm $/{ }^{\circ} \mathrm{C}$. Power Sensitivity: Approx. 10 ohms/ watt

TELEWAVE LABORATORIES, INC. 100 Metropolifan Ave. Brooklyn I1. New York

MEETS MIL-I-3190 CLASS "H" SPECIFICATIONS

A combination of Varglas Sleeving made with continuous filament glass yarns and Silicone High Temperature Resin. Varglas Silicone is the only Class " H " insulation with these features:

FLEXIBLE from 500° to $-85^{\circ} \mathrm{F}$ in some grades.
RESISTANT to flame, möisture and fungus, abrasion, acids, mild alkalies.
DIELECTRIC PROTECTION up to 7,000 volts depending on grade.
AVAILABLE IN 10 COLORS, where required at no extra cost.

Mytinchester JWMectronics INCORPORATED

hove Special features which may be usefyl it solving your difficith electronic design problems!

FUNGUS-RESISTANT, mineral filled, molded melamine body for bigh insulation, bigb arc resistance and mechanical strength.

MONOBLOC* CONSTRUCTION to eliminate unnecessary creepage paths, moisture and dust pockets.

PRECISION MACHINED socket contacts made from spring temper phosphor bronze bar stock assure constant electrical contact under severe conditions of acceleration, shock and vibration. They are gold plated over silver for consistent contact resistance, for prevention of corrosion and for ease of soldering.

CADMIUM PLATED metal shield base for " J " slot type shields for rigidity and mounting strength.
"Trade Mark

PHOTOS AND DIAGRAMS ARE SHOWN ACTUAL SIZE

MS7 mounts in $5 / \mathrm{s}^{\prime \prime}$ dia. chassis, opening; two $1 / \mathrm{s}^{\prime \prime}$ mounting holes on $7 / \mathrm{s}^{\prime \prime}$ centers.

MS9 mounts in $3 / 4^{\prime \prime}$ dia. chassis opening; two $1 / 8^{\prime \prime}$ mounting holes on $11 / 8^{\prime \prime}$ centers.

GLENBROOK, CONN., U.S.A.

West Coast Branch:

1729 WILSHIRE BOULEVARD, SANTA MONICA, CALIFORNIA
ing process is somewhat different.
The hollow-cylinder forms are fired in electric furnaces at 2,600 to 2,700 F. After firing, electrodes are formed on the inner and outer surfaces of the hollow cylinder. The cylinder ends are masked and the ceramic tube dipped in a mixture of finely ground silver and bismuth in an acetone vehicle. The cylinder is again fired, this time at $1,500 \mathrm{~F}$ to fix the electrode coatings.

After the metallic electrodes are fired on, leads are attached and the

White-cedar sonar test tank at NADC is used in calibration of barium-titanate transducers
ceramic cylinder is now a capacitor having a dielectric constant of 1,300 to 1,500 and a plate-to-plate d-c resistance of 50 to 100 kilomegohms. For transducer applications, the tube must now be polarized to make it behave in a piezoelectric manner.
During polarization, crystals are formed in which the central titanium atom is displaced. To accomplish this, the barium-titanate cylinder is immersed in a dielectric bath, usually mineral oil, and the temperature is raised above the curing point. This is the temperature at which the cubical crystals form. Above this temperature, the bar-ium-titanate crystals assume a hexagonal form. Curing point for the barium-lead titanate mixture is 135 C while for pure barium titanate it is 119 C .

A d-c voltage stress of 65,000 volts per inch thickness is applied

Whether your problem is new design or product improvement, take advantage of the greater energy product INDIANA HYFLUX Alnico V offers!

These exclusive, new, super strength permanent magnets mean lower production costs, more compact design and higher efficiency for your products.

What's more, INDIANA HYFLUX with its 16% greater energy product costs not a penny more than regular Alnico V !

Here's still another bonus you'll enjoy! THE INDIANA STEEL PRODUCTS COMPANY, world's largest producer of permanent magnets, offers free of charge its wealth of experience and "knowhow" that has developed more than 30,000 permanent magnet applications.

Let INDIANA engineers help you with your design problems. They can supply out of stock - many types and sizes of INDIANA HYFLUX Alnico V for your experiments, can suggest those best suited to your product.

INDIANA is the only manufacturer furnishing all commercial grades of permanent magnet alloys. You have a choice of cast, sintered, formed or ductile materials.

Why delay - write or phone INDIANA today. Ask for Catalog No. 11A-5 that describes stock experimental magnets.

THE INDIANA STEEL PRODUCTS COMPANY
VALPARAISO, INDIANA - Sales Offices Coast to Coast
$T V_{\text {broadcasters! }}$
HERE IS AN OSCILLOSCOPE WITH THE NECESSARY FEATURES

FOR PROPER MAINTENANCE AND ADJUSTMENT OF TV TRANSMITTING AND STUDIO EQUIPMENT

The TEKTRONIX Type 524-D is a precision laboratory oscilloscope with many specialized television features. A completely new sweep magnifier expands the image to left and right of center, to either 3 times or 10 times normal width —provides you with a minutely detailed display of sync and equalizing pulses. The variable sweep delay circuit provides a zero to 25 millisecond delay. Delayed sweeps, triggered by any line sync pulse throughout the picture, are available through the entire sweep range of $0.01 \mathrm{sec} / \mathrm{cm}$ to $0.1 \mu \mathrm{sec} / \mathrm{cm}$. Field selector lets you switch from one field of the frame to the other at will.

Vertical Sensitivity

dc to $10 \mathrm{mc}-0.15 \mathrm{v} / \mathrm{cm}$
2 cps to $10 \mathrm{mc}-0.015 \mathrm{v} / \mathrm{cm}$

Transient Response

Risetime - $0.04 \mu \mathrm{sec}$
Signal Delay
$0.25 \mu \mathrm{sec}$

Vertical Deflection

More than 6 cm undistorted

Sweep Range

$0.01 \mathrm{sec} / \mathrm{cm}$ to $0.1 \mu \mathrm{sec} / \mathrm{cm}$ continuously variable, accurate within 5% of full scale
Internal Time Mark Generator
Modulates trace brightness, pips
spaced $1 \mu \mathrm{sec}, 0.1 \mu \mathrm{sec}, 0.05 \mu \mathrm{sec}$,
or 200 pips per television line

Regulation

All dc voltages electronically
regulated

TEKTRONIX TYPE 524-D TELEVISION OSCILLOSCOPE $\$ 1180$ f.o.b. Portland, Oregon

TEKTRONIX, Inc.

P. O. Box 831 A, Portland 7, Oregon

Cable: TEKTRONIX

Kenyon
 TRANSFORMERS

FOR STANDARD AND SPECIAL APPLICATIONS

For more than 25 years, Kenyon has led the field in producing premium quality transformers. These rugged units are (1) engineered to specific requirements (2) manufactured for long, trouble-free operation (3) meet all Army-Navy specifications.

KENYON TRANSFORMERS FOR

- JAN Applications
- Radar
- Broadcast
- Atomic Energy Equipment
- Special Machinery
- Automatic Controls
- Experimental Laboratories

Write for details
KENYON TRANSFORMER CO., Inc. 840 Barry Street, New York 59, N. Y.

STOP ELECTRICAL

HARDENING OF THE ARTERIES

WITH

BH"|l5"

BH " 1151 " is a remarkable new electrical insulation that provides permanent flexibility and high dielectric strength at Class H temperatures. It combines braided Fiberglas and Silicone Rubber - and never grows old.

BH "1151" permits continuous operation of electrical equipment through a temperature range of $-90^{\circ} \mathrm{F}$. to 400° without insulation failure. 15 minutes exposure at $600^{\circ} \mathrm{F}$. has no apparent effect.

BH "1151" suffers no dielectric breakdown from handling, installation or operational stresses - takes a bend. It will not crack or craze.

BH "1151" is fungus resistant - resists inorganic acids, alkalis and most organic solvents - meets all NEMA specifications for Class H insulations.

BH " 1151 " is the electrical insulation you are looking for if you want low to high temperature flexibility—protection from heat aging - protection against vibration failure.

BH " 1151 " is available in colors; in coils, 36 inch lengths, or cut to individual specifications. Send for production testing samples and data sheet now.

Address Dept. E-8
Bentley, Harris Manufacturing Co.
Conshohocken, Pa.

[^10]

You'll be well repaid by getting the facts on a special group of Pure Ferric Oxides, developed by Williams especially for use in the manufacture of ferrites.

Williams Ferric Oxides analyze better than $\mathbf{9 9 \%}$ $\mathrm{Fe}_{2} \mathrm{O}_{3}$. They contain a minimum of impurities. They are available in a broad range of particle sizes and shapes. Among them, we're certain you'll find one that's "just right" for your requirements. The proper application of Ferric Oxides to the manufacture of Ferrites is our specially. So
write today, stating your requirements. We'll gladly send samples for test. Chances are good that our Ferric Oxide "Know How" can save you considerable time and money. Address Dept. 25, C. K. Williams \& Co., Easton, Pa.

C. K. WILLIAMS \& CO.

Easton, Pa. • East St. Louis, III. • Emeryville, Cal.
between the electrodes and the temperature is allowed to fall below the curing point. Cubical crystals form as though the high-voltage stress were the normal state of affairs. The voltage is then slowly removed and the hollow cylinder of barium titanate behaves as a piezoelectric transducer with a Q of 200 . Ceramic casting and extruding techniques present the only limitations as to the size and shape of transducers that can be manufactured in this manner. Hollow cylinders up to 15 inches in length present no problem.

Culibration

At NADC, barium-titanate transducers used in underwater sound applications are carefully calibrated to determine the effect of frequency and orientation on their radiation patterns. To accomplish this, a white-cedar test tank, 20 feet in diameter and 14 feet high has been constructed as well as a special sonar test set.

The test set consists of a transmitter of 50 watts peak pulse power, a specially gated receiver and an indicator which provides a continuous measurement of pulse amplitude. The frequency range of the equipment is \pm one db from 2 to 100 kc . A linear range of sound power measurement may be obtained over 35 db . Pulse repetition frequency is variable from 0.8 to 80 pps . Both pulse width and receiver gate delay are independantly variable from 0.001 to 0.1 second.

It is possible with this test set to examine and measure only the portion of the received pulse that interests the experimenter. Thus the only variables influencing transducer calibration measurements are frequency and orientation. Indicator output is independant of pulse rise time and transients, reverberrations and transmitter pulse feedback. The indicator depends upon capacitors charging through a diode and will hold its reading until cleared, indication is 2 db down one minute after a single pulse.

Selective indication is achieved by a variable-length receiver-gating pulse initiated by a variable-length multivibrator pulse which is in turn initiated by the out-going trans-

blut RIbBon RESISTORS

 "The finest flatResistors made!" -

Our Blue Ribbon Resistor-designed in 1939-was the first flat or strip resistor in the field. And now, though there are others of similar type, the Hardwick, Hindle Blue Ribbon still holds first place-and is still winning "blue ribbons," and such comments as quoted above.

Although its basic design is the same, recent improvements assure you "the finest flat resistor made."

Our crazeless gray enamel completely eliminates the disastrous crazing which results in failure of the resistive element due to moisture penetration from humidity, salt and other severe atmospheric conditions -thus giving greater dielectric strength.

The aluminum thru-bar, in contact with the internal surface of the ceramic core, distributes the heat more uniformly along its entire length-than conventional tubular resistors.

The studs-corrosion and rust resistant-are peened to serve as mounting supports and also to permit the stacking of two or more units when space need be saved. And our unique method of fastening the tube to the thru-bar prevents loosening under vibration.

As compared to the conventional tubular resistor Blue Ribbons give you:

1. Higher wattage rating per unit space requirement.
2. Reduction in space behind the panel or mounting surface.
3. Sturdy but simple mounting, either single or stacked.
4. Lighter weight.
5. Lower induction.

Our Blue Ribbons are designed for and manufactured in accordance with JAN-R-26A specifications.

Send for our catalogue, showing these and other Hardwick, Hindle resistors of distinction.

HARDWICK, HINDLE, INC.

Rheostats and Resistors
 Subsidiary of

THE NATIONAL LOCK WASHER COMPANY Established 1886
 NEWARK 5, N.J.
 U.S.A.

The mark
For more than a quarter of a century

Available from stock at TRIAD jobbers!

"The World's Smallest Hermetically Sealed Transformer"

Miniaturization has become increasingly important in the design of all types of electronic equipment. Use of improved core materials and better winding techniques in our JAF series permits these great reductions in size and weight of low level audio transformers. TRIAO JAF Transformers, as listed below, are "the world's smallest hermetically seated transformers." All have 45 dh. shielding and are available in MIL standard Af case as shown above. Carried as stock items at all Triad jobbers.

Maximum level $+10 \mathrm{dbm}, \quad$ oC in primary. except JAF-1, 2 and 3 (0 dom.)

Write for Catalog TR-52E

TRANSFORMER MFG
Plant, Genepal offices: 4055 Redwoad Ave
Venice Area, Les Angetes, Caili. address cuprespondence to; Bax 1.2813

FOR YOUR PANEL

a novel and unique circuit indicator DESIGNED FOR NE-5I NEON LAMP For 110 or 220 volt circuits

The required resistor is an integral part of this assembly -"built-in."

RUGGED • DEPENDABLE LOW IN COST

PATENTED: No. 2,421,321
Cat. No. 521308-997

WILL YOU TRY A SAMPLE?

Write on your company letterhead. We will act at once. No charge, of course.
SEND FOR THE 192 PAGE HANDBOOK OF PILOT LIGHTS
Among our thousands of Pilot Light Assemblies there is one) which will fit your special conditions. Many are especially made and approved for military use. We pride ourselves on prompt deliveries-any quantity.
ASK FOR OUR APPLICATION ENGINEERING SERVICE' Foremost Manufacturer of Pilot Lights
The DIAL LIGHT COMPANY of AMERICA
900 BROADWAY, NEW YORK 3, N. Y.
SPRING 7.1300

An automatic heat treat machine. Production is about 3 times that passible with manual methads while quality is held within very close limits.

Alnico magnets have been getting smaller and lighter, thanks to production techniques in use at Crucible. Automatic machinery cuts the possibility of human error to a minimum, so rejections are low. This helps to maintain stable price levels in the face of rising material and labor costs. At the same time, Crucible's rigid inspection standards and attention to quality have developed a magnet with the highest gap flux per unit weight of any on the market.

Today, Crucible can offer lighter, magnetically stronger Alnico magnets because of these automatic production techniques developed over the sixteen years that we have been producing the Alnico alloys. And behind our familiarity with permanent magnets lies more than 52 years' experience with specialty steelmaking. Let us advise you on your magnet problem.

CRUCIBLE

52 yeass of FFrue stedermating

USE

S.S.WHITE FLEXIBLE SHAFTS

Just compare the simplicity of the flexible shaft control shown above, with the combination of rods, bevel gears and bearings that would otherwise have to be used. The savings in parts is obvious. What's more, the flexible shaft is less complicated, needs no alignment, is easier to install and gives you more freedom in mounting the coupled parts where desired to provide better and more convenient operation.
Design simplification and parts reduction are important advantages you gain by using S.S.White flexible shafts on your remote control applications. In fact, these simple, one-piece mechanical elements are just about the simplest, most economical way there is of providing a smooth, responsive control linkage between two parts.
Our engineers will be glad to cooperate with you in selecting and applying flexible shafts to your needs. Take advantage of their help-it entails no obligation and can save you plenty of valuable time and trouble.

SEND FOR THIS 256-PAGE FLEXIBLE SHAFT HANDBOOK

It bas full details on flexible shaft selection and application. A copy will be sent if you request it on your business letterbead.

THE OUNIVINDUSTRIAL DIVISIOM

Dept. E, 10 East 40th St. NEW YORK 16, N. Y.
mitter pulse. To assure indication of pulse amplitude that is independent of pulse repetition fre quency, an indicator-clearing pulse discharges the capacitors 2 $\mu \mathrm{sec}$ before the receiver is gated to pass the desired echo.-J. M. C.

Data-Displaying Cathode-
 Ray Tube

By Joseph T. McNaney
Senior Electronics Engineer
Electronics and Guidance Section
Consoldated Vultee Aireraft corp. Nan Diego, California

SPECIAL TYPES of cathode ray tubes known as charactrons are designed and constructed to meet many needs of important military and industrial communication applications. Currently, they are being developed for several computer read-out applications.

The main difference between these special tubes and the conventional crt is the use of a beamforming matrix located between the electron gun and fluorescent screen, Fig. 1. The matrix contains char-acter-shaped openings through which the electron beam is directed. When the beam is changed in crosssection to the shape of a predetermined character, it is deflected toward a desired point on the screen from which the character may be read or photographed. The matrix character arrangements shown in Fig. 2 lend themselves to tubes used in analog data converters. The arrangement shown in Fig. 3 is more useful for message-receiving applications.

The tubes use electrostatic deflection plates for selection of char-

FIG. 1-Schematic-mechanical drawing of the special cathode ray tube

always dependable, uniform base-material quality in MOSINEE Forest Fibres!

As a base material for many parts of vital importance to electronics and the electrical goods industry, MOSINEE forest fibres assure you of consistent uniformity of electrical, physical and mechanical characteristics, true to your specifications.

That's why manufacturers in the fields of electronics and electrical goods know MOSINEE in terms of its being "more than paper". For dependable base materials, consult MOSINEE "Fibrologists" . . . experienced and qualified to cooperate in problems of base materials.

HIGH STABILITY IFE RESISTORS FOR CRITICAL ELEGTRONIC APPLICATIONS

I-T-E power and precision wire-wound resistors give you maximum stability in

Hermetically

Sealed

Instruments...

CIRCUIT RECLOSING RELAYS

A new series of highest quality, rigidly tested instruments enclosed in hermetically sealed containers of approved type to meet military and civilian
requirements. These instruments are compact, dependable in every way and designed for efficient performance under specified conditions of altitude, acceleration, inclination, vibration, humidity, salt spray, dust, fungus, etc. They are typical examples of advanced Cramer Time Control Engineering to meet Industry's constantly expanding needs.
Write for special Bulletin No. 4000A.

the R. W. CRAMER CO., INC.

Designed for Application

Mu Metal Shields

The James Millen Mfg. Co. Inc. has for many years specialized in the production of magnetic metal cathode ray tube shields for the entire electronics industry, supplying magnetic metal shields to manufacturing companies, laboratories and research organizations. Stock shields are immediately available for all of the more popular sizes and types of cathode ray tubes as well as bezels for $2^{\prime \prime}, 3^{\prime \prime}$ and $5^{\prime \prime}$ size tubes.

Many production problems, however, make de. sirable special shields designed in conjunction with the specialized requirement of the basic apparatus. Herewith, are illustrated a number of such custom built shields. Our custom design and fabrication department is at the service of our customers for the development and manufacture of magnetic metal shields of either nicoloi or mumetal for such specialized applications.

$$
\begin{aligned}
& \text { MAIK OFFICE } \text { LNS AND FACTORY }
\end{aligned}
$$

MALDEN, MASSACHUSETTS, U.S.A.

Sectional Tower

Actual photograph of VEE-D-X Sectional Tower installation showing 152 MC ground-plane antenna suited for ground-to-plane, ship-toshore, and mobile communications.

THE LAPOINTE-PLASCOMOLD CORP.

61/2* $\times 14$,

Photo-Electric Cells Self-Generating Type Output up to 600 microamperes at 100 foot-candles illumination and 100 ohms external resistance.

Selenium Rectifiers. A recent month's production included Rectifiers to supply 40 microamperes, 1,000 volts, and Rectifiers with a capacity of 140,000 amperes, 14 volts. Designed and built to meet Government Specifications. Manufactured for temperatures up ta $100^{\circ} \mathrm{C}$ ambient-100\% humidity. Owned and managed by Engineers who are specialists in the design and manufacture of Selenium Rectifiers. Submit your problems for analysis and we will be glad to offer our recommendations.

- First with the belt-type 3 -speed motor ... first with the turret-type 3 -speed
motor... General Industries again leads motor . . General Industries again leads the field with this novel 3 -speed motor. Developed for one of General Industries' good customers, and field proven over a period of time, this 3 -speed motor as illustrated has a stepped shaft and shifting idler wheel arrangement. Model illustrated currently being supplied to wellknown record-changer manufacturer, with special construction for customer's own application.

THE GENERAL INDUSTRIES CO.

Tube under test with electronic circuits designed for use in a high-speed printer

Fig. 3, this layout lends itself to message receivers employing a five or six-digit binary code signal. The order of potentials necessary to deflect an electron beam over the matrix area is given by the scale of voltages shown. For example, the selection of letter "C" requires a vertical voltage of 10 volts and a horizontal voltage of 60 volts.

In the process of writing a message on the screen of the tube, essentially three separate deflections of the electron beam occur. The first deflection selects a character, the second compensates for the different positions of the characters in the matrix and the third directs the beam to a desired spot on the screen.

Printing arrangements set up for the tube involve a process of transferring the messages on the screen of the tube to ordinary paper by means of a dry printing process such as Xerography. Time required

FIG. 3-Matrix layout for use in a message receiver

Features:

- Continuously virriable attenuation.
- Stub tuned 50 ohm impedance.
- Wavegnide beyond cutoff attenuator.

WIDE BAND VIDEO AMPLIFIER Model VT 10 CPS to 20 MC

Designed for use as an oscilloscope deflection amplifier for the measurement and viewing of pulses of short duration and rise time. Excellent for TV, both black and white and color applications.

Features:

Model VT

- Flat frequency response from 10 cps to $20 \mathrm{mc} \pm 1.5$ db.
- Uniform time delay of 02 microseconds.
- Gain of 50 db .
- Frequency compensated high impedance attenuator calibrated in 10 db steps from $0-50$.
- Fine attenuator covers a 10 db range
- Phase linear with frequency over entire band.

microwave SIENAL SOURCES

Modiels SS用, SSL, 5SS, S5M, SSX 634 MC to 11,000 MC For use as a reliable source of microwave energy in trans-

mission loss measurements, standing wave determination, etc. Unidial Control for accuracy and ease of operation. Direct reading (no mode charts to consult). Frequency determination accurate to 1% through use of present cal. ibration and temperature compensated klystrons.
Five Microwave Signal Sources are available to cover the frequency range from 634 MC to 11,000 MC. Units ruggedly constructed, mounted on aluminum castings to insure mechanical stability. Klystron reflector voltage automatically tracked with tuning of the klystron cav. ity to provide unidial control. Signal sources supplied complete with klystron.

FREQUENCY MARKER
 Model FM-L 950 mc to $2,040 \mathrm{mc}$

Polarad's Frequency Marker, Model FM-L, provides accurate frequency determination to within 10 kc over the frequency range 940 to 2020 mc .
The Frequency Marker produces calibration signals at precisely. determined frequencies and these signals may be displayed and compared with an unknown rf signal, whose frequency can then be accurately measured.

Feafures:

- Frequency standard accurate to one part in 10°.
- Frequency determination accurate to $\pm 10 \mathrm{kc}$.
- Ten mc, 1 mc , and interpolation markers available.
- Markers throughout entire frequency range, 940 mc to 2040 mc .

TRE \mathbb{N} you Nebo the Reed

 DIOTRON powir lival matraThe Reed Diotron power level meter, built around the novel thermal feedback circuit described in the July 1950 issue of "Electronics", is the only RMS indicator which combines acculracy with convenience. The Diotron, basically an RMS voltmeter with a linear scale in watts is ideal for direct steady state measurement of signal and noise over a band of frequencies extending from audio thru video. The unusually fast response of the circuit, which permits oscilloscopic observation of transients too rapid for the pointer to follow, gives the Diotron a monopoly in direct measurement of pulsed power.

SPECIFICATIONS

LINE VOLTAGE REQUIREMENT .
NPUT IMPEDANCE
INPUT CABLE CAPACITY
EXTERNAL INPUT TERMINATION. FREQUENCY RANGE
INDICATION
RESPONSE TIME
OVERALL ACCURACY
POWER SCALE
POWER LEVEL RANGES

VOLTAGE SCALE
VOLTAGE RANGES
OUTPUT JACK
INTERNAL OVERLOAD POINT
METER PROTECTION SIZE

PRICE
$105-125$ V. $50-60 \mathrm{c} / \mathrm{s}$. 50 watts
1 megohm shunted by 25 mmfd (approx.)
50 mmfd (approx.)
600 ohms shunted by 25 mmfd (approx.) $50 \mathrm{c} / \mathrm{s}$. to $10 \mathrm{Mc} / \mathrm{s}$. (measured at input socket) Depends only on RMS value of applied voltage. 20 milliseconds for frequencies above $1 \mathrm{Kc} / \mathrm{s}$ $\pm 2 \%$ of full scale voltage.

Linear

$1 \mathrm{mw}, 10 \mathrm{mw}, 100 \mathrm{mw}, 1$ watt, 10 watts into 600 ohms
Square law
$0.75 \mathrm{~V}, 2.4 \mathrm{~V}, 7.5 \mathrm{~V}, 24.0 \mathrm{~V}$, and 75 volts For oscilloscopic examination. Full scale $=+0.75 \mathrm{~V}$.
Peak signals of four times full scale reading (RMS) do not cause internal overloading Overvoltage protection up to 100 times full scale $6^{\prime \prime} \times 7^{\prime \prime} \times 12^{\prime \prime}$, Gray baked-on crackle finished metal with carrying handle.
$\$ 420.00$ F.O.B. WASH., D. C.

1048 POTOMAC STREET, N. W. WASHINGTON, D. C. DEcatur 7000

Compare these Outstanding Feafures

- One-piece spring loaded piston and screw made of special invar alloy having extremely low temperature coefficient of expansion.
- Silver band fused to exterior of precision drawn quartz or glass tube serves as sta-
tionary electrode.
- Piston dimensional accuracy is held to close tolerance maintaining minimum air
gap between piston and cylinder wall.
- Approximately zero temperature coefficient for quartz and ± 50 P.P.M. per degree C. for glass units.
- Q rating of over 1000 at 1 mc . Dielectric strength equals 1000 volts DC at ses level pressure and 500 volts at 3.4
inches of mercury.

Oinimum.
C. with tlass dielectric, -55 C . to +125 . with glass dielectric. And -55 C. to
+200 C . with quartz dielectric.
Over 100 megohms moisture resistance after 24 hours exposure to 95% humidity at room temperature.

Write for

Form No. 199

JFD Mfg. Co.
Brooklyn 4
BEnsonhurst 6-9200

world's largest manufacturer of $T V$ antennas $\mathscr{\&}$ accessories

Bendlis Botary POMER SUPPIJS

DYNAMOTORS, INVERTERS, MOTOR GENERATORS Designed to meet the EXACT Requirements of Each Applicationt.

Whenever DC is available, Bendix will tailor a complete power supply or motor from standard, mechanical parts to provide the exact volt-age--either $A C$ or $D C$-called for by your equipment. DYNAMOTORS - essentially DC transformers - will supply one, two, or three DC outputs for direct application to electronic circuits. Radio filtering and voltage regalation are available. Compact, efficient units can be provided with outputs of 10 to 500 watts.
INVERTERS - will produce an AC output for supplying transformer-type power supplies or operating power for servos, synchros, etc. Standard models to work from 28 volts and deliver 115 volts, 400 cycles, single or three phase are available in ratings up to 2500 VA .

Frequency and voltage are closely regulated in all models.
MOTOR GENERATORS - are available for furnishing combinations of $D C$ and $A C$ and for various special requirements.
MOTORS - for performing mechanical functions are designed by Bendix engineers for the most efficient utilization of space and power.
YOUR POWER SUPPLY PROBLEM will receive prompt engineering attention at Bendix. Please send a complete description of the performance required and the condition under which the supply must work. You will be answered with detailed information and specific recommendations for the most practical solution to your problem.

BLACK \&
Los Gatos Type 254 Triode with tantalum anode. Plate dissipation is 75 watts.

Addition of Sintercote anode raises rating to 125 watts. Operating life more than doubles.

WHITE of it:

ANOTHER PLUS for the traditional nine-plus lives of Los Gatos electron tubes. Development by Lewis and Kaufman engineers of the exclusive new Sintercote blackbody anode surface gives you tubes with much more than twice their former service lives.

SINTERCOTE consists of finely-divided particles having a high spectral emissivity - several times that of a bright surface. Result : Increased plate dissipation. In addition, Sintercote is a strong getter which keeps Los Gatos tubes hard throughout their lives; protects cathodes against ion bombardment. Result : Increased life.

Get further details from your regional Los Gatos fieldengineering representative, or write:
for conversion of codes into printer characters may be less than 100 microseconds per character.

Electronics Measures
 Human Respiration

Electronics measurement of human respiration is accomplished by the polyneumograph shown in block diagram form in Fig. 1. Developed by the staff of the University of Washington's psychology department in connection with the Air Force arctic-aeromedical research project, the device provides a written record both of instantaneous air flow as well as expired volume of air integrated over periods of one minute. Provision is also made for sampling and chemically analyzing the expired gases.

Expired air is carried through a unidirectional mask and heat exchanger to a laminer-flow, screen orifice. An increasing rate of flow through this flowmeter results in a pressure drop which is measured by the pressure transducer. This device consists of a balanced capacitance bridge composed of two moveable diaphragms and three fixed plates. This arrangement effectively balances out accelerational effects in gas flow.

Output of the $3,000-\mathrm{cps}$ oscillator is applied to the capacitance bridge and hence to a linear, diodebridge demodulator. A portion of the oscillator output is tapped off

FIG. 1-Block diagram of the polyneumograph

Specify
 CUEGIE:

plasticord-platicotit WIRES and CABES

80-90 105 C UL APPROVED WIRES*

FEEXBIE CORDS
TELEVISION LEAD-N WIRES

COMMUNICATION WIRES and CABLES

COAXIAL CABLE

INSTRMENT WRES

WIRES and CABLES TO SPECIFICATION

4

* Solid Colors or Spiral Marking

Our new catalog is a complete guide to plastic insulated wire and cable for every
 purpose. Write for a copy of this impor tant data compilation for your files today.

Everythingin wining
More and more - engineers, designers, production men and purchasing officials have come to regard Plasticord and Plasticote Wires and Cables by Chester as the standard of comparison. This is because every inch of these dependable insulated conductors is made to conform to exacting quality controls that assure long service life, and performance as specified by the factory. That's the reason electrical men, everywhere, look for the Chester trademark when they're looking for the best!

GET THE INSIIE SIDBY

A PRIMER OF ELECTRONICS AND RADIANT ENERGY

1. Provides ciear explanations of elec-
tronics and radiant energy-what they are and what they do for us in our daily life. Explains how electronics, protons, noutrons, and other composite-energy particles behave-as well as how release is used. Shows how radio and TV, light and heat, ultra volet and jnfrared rays, rays, etc., work... and how controlled. Includes and planations of current, magnetism, radio circuits and tubes, fluorescent p Caverly Commercial Eng'r., Sylvania Flec. Prod., Inc. 2nd EA, 343 pp., 175 illus., $\$ 5.50$

HARMONICS, SIDEBANDS and TRANSIENTS IN COMMUNICATION ENGINEERING
As Studied by Fourier and Laplace
Analysis
2. An authoritative reference on commu2. nication-engineering analysis. Deals not only with the Laplace, Fourler, and Taylor analyses but also with their applicommunications. Shows how harmonlc communicatransient analysis are applied to radio, radar, television, and nuclear electronic problems; fully treats sideband theory. Considers both the mathenatical and engineering viewpoints throughout.

WHEN YOU BUY FILTERS

RESPONSE CURVES and cases may look alike, but component quality and internal construction are the things that determine dependability-in a filter, and in the associated equipment.

TO BE SURE components are the best, Lenkurt presses its own cores, winds the coils, and subjects all parts to the most rigorous checks possible.

IN A LENKURT FILTER, parts are firmly fastened to sturdy headers, connections made to rigid terminal boards. Units are impregnated, cased, and/or hermetically sealed as required.

LENKURT FILTERS are engineered and built to your most exacting specifications on delivery schedules to meet any quantity need by Lenkurt Electric Company - largest independent manufacturers of telephone toll transmission equipment.

LENKURT ELECTRIC SALES COMPANY
 San Carlos 1 California

SHORT-WAVE RADIATION PHENOMENA

4 Gives hundreds of facts, formalas, and . numerical examples to provide a classical wave-propagation concepts. Intensive treatment in 2 volumes explains and shows application of every frequency - trom those of about 30 megs. per sec., use. By August Hund, MeGraw-Hill Radio Communications Series, 2 vols. (not sold neparately). 1382 pp. 97 . tubles, 394 illus., $\$ 20.00$ (available on terns.)

Best News In Years!

no gears

 norcams to change
for winding arry of these coils, accurately!

External Controls Reduce Set-Up
 Time and Speed Up Your
 Production

Do your winding schedules call for both long and short runs . . . for a wide variety of coil sizes?
If so, this modern Leesona ${ }^{(1)}$ No. 108 Coil Winder was made to order for you. Even a trainee can set it up in a matter of minutes. Select gearing for wire size, adjust winding length and turns per layer with only four finger-tip controls. Set the counter and speed control . . . and start winding. Nothing could be simpler!

You get accurate coils, too . . . even with \#44 wire. Leadscrew traverse and quick reversing clutch provide more positive control of wire layer and prevent crossed turns. Manual-feed paper shelf is adjustable up and down, in and out for more accurate insertion. Indicators help operators time paper feeding accurately even at high speeds.

Other new features speed up lead and tap preparation, marking and arbor transfer.

Bulletin 108-A describes all the ways this versatile Leesona No. 108 Coil Winder improves coil quality and increases production. Write for it today.

UNIVERSAL WINDING COMPANY

P. O. Box 1605, Providence 1, R. I.

For winding coils in quantity accurately... automatically use Universal Winding Machines

The new G-R Type 1183-T T.V Station Monitor
meets all of the requirements of the FCC, ineluding those recently established for offset operation. This instrument the first UHF Monitor - is another example of the pioneering in engineering, design and workmanship which has characterized G-R monitoring equipment since the beginning of broadcasting. Stability, accuracy, ease of operation and maintenance, dependability and long life are optimum. The G-R trademark guarantees trouble-free operation with a minimum of maintenance.
Prices: Type 1183-T T.V Station Monitor - from $\$ 2435$ to $\$ 2535$ depending on frequency bands
the output cathode follower and also applied to the demodulator. Detector output is likewise taken off a cathode follower. In the tidalflow recording channel, this voltage is applied to a four-stage, directcoupled, d-c amplifier and hence to a recording potentiometer.

The one-minute integrating circuit resembles the tidal-flow circuit except for the long-time-constant, R-C integrating network which sums up the tidal rate of flow over successive one-minute intervals.

For further details see "Electronic Polyneumograph" by A. C. Young and others, published by the Air Material Command, WrightPatterson A.F.B..

Economical TV Linearity Test Generator

By Frank J. Burris San Francisco, Calif.

No DIrect metallic connection to the receiver under test is required with the television linearity test generator described herein. Output lead connections from the tester are placed close to the i-f tubes of the receiver when making adjustments. This procedure is possible because the output test oscillator is modulated for both the horizontal and vertical bar patterns on the i-f band. The fundamental covers frequencies from 20 to 27 mc and the second harmonic is suitable for receivers in the $40-\mathrm{mc}$ i-f band.

A dpdt switch is incorporated in the tester for selection of either the horizontal or vertical pattern. No variable control of the output of the device is required since the gain may be conveniently controlled in the receiver or by the placement of the pickup lead.

Other features of the instrument include stable operation, ease of adjustment and low cost. Even if all the components are procured new, the total cost should not exceed ten dollars.

Referring to the schematic diagram of Fig. 1, the bar generator is composed primarily of a Hartley shunt-fed oscillator consisting of V_{1} operating through the cathodetapped coil L_{1} or L_{3}, depending upon the position of S. For horizontal
patterns, it has been found advantageous to use at least 12 or 13 bars.

To obtain the horizontal effect, the bar generator must oscillate at a stiffly blocked frequency of about 13×60 or 780 cps . Unless the sscillator is well blocked, the bar edges will present a sine-wave diffusion shading characteristic instead of the clear and sharp narrow lines which are more desirable. The blocking action requires that the grid of V_{1} must be heavily discharged on each pulse so that the plate current will remain at zero for considerable time out of each cycle. Use of heavy feedback and a large coupling capacitor allows this action.

Since L_{2} may be one of the cheapest models of a-f push-pull output transformers, the one-to-one feedback ratio of the primary section can be adjusted through the size of the grid-coupling capacitor and gridleak to vary the number of pattern bars. The voice-coil secondary may be disregarded unless a source of audio signal is needed for other test purposes. In general, the larger the coupling capacitor or the greater the value of gridleak, the fewer the number of horizontal bars.

The bar generator must have good stability because when testing a receiver by this means, both the receiver vertical and horizontal sync circuits receive their timing control from the bar generator. This applies to most linearity generators. A voltage-regulator tube V_{3} is placed in shunt with the platecurrent supply to the generator to keen the oscillator stable.

The vertical bar section of the

FIG. 1-Schematic diagram of the linearity test generator for tv adjustment
\star Continuous indication of percentage modulation and frequency deviation of aural and visual transmitlers - terminals for remole metering.

Overmodulation alarm for aural transmitler - lamp flashes when modulation exceeds predetermined level.
\star High-fidelity audio oulput for distortion and noise-level measurements, and for audio monitoring - residual noise level is down 65 db or better for 25 kc deviation.
\star Sensitivity 1 voll, or better, on high im. pedance input; 500 mov or less on low, for both aural and visual inputs.
\star Excellent signal-lo-noise ratio through channel 83.
\star Separate heater inputs allow dired connection of crystal oven to station standby power.
\star IIighly stable temperalure-controlled master crystal oscillator - stability ± 0.5 parts per million for 10 days, or better - output level read on panel meter.
\star Counter-lype discriminator linear to better than 0.1% for $\pm 100 \mathrm{kc}$ range, permitting accurate dislortion measurcments and cen-ter-frequency indications reliable cven with heavy modulation.
\star Neru Cabinet arranged for maximum heat dissipation and easy removal for servicing.

Large-scale illuminated meter continuously indicates frequency deviation of aural transmitter in terms of highly stable crystal oscillator. Zero correction for crystal oscillator easily accessible from panel, to compensate for longtime drift.

Continuous indication of frequency deviation of visual transmitter in terms of same master crystal is provided by this large-scale meter. Overall stability is \pm (0.5 parts per million +100 cycles) for 10 days.

Modulation in both percentage and db is indicated continuously on this meter Panel switch selects either peak, or both peaks simultaneously. Meter ballistics meet FCC requirements.

For cooperative engineering on cable problems

...call on

CAROL CABLE

Through detailed analysis of your product requirements, Carol Cable engineers can often recommend wire, cable and wiring assemblies that improve product performance and reduce costs.

Carol products are manufactured under closest laboratory control in a complete wire mill. Facilities cover all wire-making operations, from drawing of wire to formulation of insulating materials. This close integration assures efficient service to you . . . and dependable performance of Carol products. Let's work together on your applications; write to us today!

Its control is anybody's job. But when it involves an intricate problem, the concern that may be depended upon to correctly solve it is the A. W. Haydon Company

Thoroughly experienced timing engineers assure prompt, accurate solutions to the most difficult of proposed applications.
 is the reason why 2 out of 3 en-
gineers prefer Burgess... by independent survey. Check for your local source of supply or write now!

WRITE FOR ENGINEERING MANUAL AND CHECK SHEET-No obligation. By return mail you will receive the FREE Engineering Manual listing the complete line of Burgess Batteries together with detailed specifications; also the Burgess "Check Sheet" on which you may outline your battery requirements in the event that the battery you need has not already been developed. Address:
No. Z3ONX

Nobody knows for sure how it started-this line about "See you at the Polls!" we're hearing all over these days.

Best explanation seems to be that it came from that state candidate out west. . . . His opponent in a debate got all riled up and challenged him to fight it out in the alley.
But he said-"I'll settle this the AMERICAN way-I'll see you at the polls!" And the audience picked up the chant.

Now everybody's saying it-and on Nov. 4 everybody will be doing it!

EAD ENGINEERING

"KEEPS YOUR POWER DRY"

A small fräctional H.P. all-purpose electric motor completely waterproof and capable of instant operation even after long periods of submersion in sea water. Another example of EAD's engineering know-how!

SPECIFICATIONS

A.C. Single phase capacitor or 3 phase squirrel cage motor. Induction or synchronous - Reversible rotation - 115 V or $220 \mathrm{~V} \cdot 60$ or 400 cycles • $1 / 15$ H.P. to $1 / 3$ H.P. - 900 RPM to 12,000 RPM - Continuous or intermittent duty Meets military specifications for corrosion resistance, fungusproof, humidity, shock and vibration.

Motor can be furnished totally enclosed or open, with terminals or connectors as required. Can be mounted for operation in any position. Will function efficiently in ambient temperatures up to $71^{\circ} \mathrm{C}$.

> APPLICATIONS

Driving fans, blowers, pumps, generators and antennas.

Solving special problems

is routine at EAD

If your problem involves rotating electrical equipment, bring it to EAD. Our completely staffed organization will modify one of our standard units or design and produce a special unit to meet your most exacting requirements.

EASTERN AIR DEVICES, INC.
585 DEAN STREET, BROOKLYN 17, NEW YORK
generator utilizes the same Hartleyoscillator principle with the same tube V_{1}, gridleak and plate load as formerly. By means of S_{2}, the tank circuit L_{1} may be inserted into the oscillator. This speeds up the oscillator to allow about 19 vertical bars over the raster. In this case the oscillator frequency will be about $19 \times 30 \times 525 / 1,000$ or 299.25 kc . A tank circuit suitable for this frequency, with ample blocking interval, may consist of a center-tapped inductance coil of 400 turns of No. 32 plain enamelled wire, wound on a wooden bobbin $1 \frac{1}{8} \mathrm{in}$. in diameter and $\frac{1}{2}-\mathrm{in}$. long together with a $100-\mu \mu \mathrm{f}$ fixed capacitor in shunt with a 50 -puf variable.

Bearing in mind what was stated previously concerning oscillator stability and its effect upon pattern design, it become apparent that the vertical bar-pattern generator must be stable to even a higher degree. For the purpose of closely adjusting the oscillator, the shaft of $C_{\%}$, or the knob of the tuning slug if such a type coil is used, is extended through the panel for ease of adjustment.

With the addition of the simple power supply, the generator might be considered available for duty at this point by taking a tap off the oscillator output of V_{1} directly to the video amplifier input of the receiver. Extended facility may be realized by adding an output oscillator circuit consisting of the dual triode V_{2} which functions as another shunt-fed Hartley oscillator at i-f, cross-bar modulated and isolated from the the load by means of the grounded-grid cathode-coupled section of V_{2}.
For the oscillator portion of V_{2}, the tank circuit consists of 20 turns of No. 32 plain enamelled wire, wound on one of the $\frac{5}{18}-\mathrm{in}$. slugtuned forms such as found in conventional tv intermediate amplifier transformers. If the tuning capacitor C_{3} of $50 \mu \mu \mathrm{f}$ is not used in the circuit and the tuning range is covered by means of the slug only, the slug control should be extended through the panel for ease of adjustment to the i-f of the receiver.

It is advantageous to use the capacitor with a broadly-calibrated dial on the control panel because the i-f can be set more quickly. This

amazing ///// Imprecnant

makes good capacifors beffer by permitting higher operafing volfages

E-therm impregnated capacitors are now available in production quantities. E-therm is a unique new impregnating material developed and compounded by Sangamo. E-therm impregnated capacitors far exceed the requirements of JAN Specifications. E-therm possesses exceptionally high thermal stability and superior electrical characteristics. E-therm impregnated capacitors mean-higher operating temperatures-lower power factor-higher resistance-longer life.
 Operating temperature $125^{\circ} \mathrm{C}$

E-therm is another example of advanced Sangamo engineering. Continued research and development of new products enables Sangamo to meet the
existing and future needs of the electronic industry. For additional information about E-therm, write for Engineering Bulletin N.J. 104.

SANGAMO ELECTRIC COMPANY

in the IIC Series of Precision Potentiometers

The RVP3-S4 50db logarithmic Potentiometer with an essentially constant resolution is a standard Non-Linear Precision Potentiometer in the TIC line.

FUNCTION

$15000 \Omega \pm 5 \%$, defined with external resistance of 47.4 ohms. Resistance Ratio 376.2 to 1
Accuracy: Constant Fractional $\pm 2 \%$ Temp. Coef: . 00002 parts/degree C.

WIPER

Dual Paliney Contact for long wear. Light Torque, positive electrical connection.
Rotational hife: 500,000 eycles in each direction of 30 rpm or less.

U. H. F. INSULATION

 erties machinability- superior machistance
- high heat resistability and extremely low initial cost

Rexolite 1422 has been specifically designed and developed to meet the growing need for a lightweight - low cost U. H. F. insulating material.
Rexolite 1422 is available for immediate delivery as centerless ground rod in any diameter up to $\mathbf{1}^{\prime \prime}$. Also cast in larger diameter rods and sheets.
Meets JAN-P-77 and MLL-P-77A spec. ifications.
The unusual chemical inertness and physical properties of Rexoliie 1422 allow its use where other materials tail.
For use in: connectors, coaxial conm nectors, waveguide, antennos, leads and spacers, spreaders and air wound coil supports, coil forms.

_ SILVER OVERTRAVEL

precisely fixes electrical rotation to 320; mechanical rotation limited by stops - slider stops on silver at each end of resistance element.
SLIP RINGS
Inlaid Coin Silver - double brushes
for low contact resistance.
TIC standard potentiometers have the same built-in precision and craftsmanship normally found only in custom-built products. Research, engineering and design facilities for special constructions and non-linear or linear functions are an integral part of TIC services. Submit your potentiometer problem, whether the need is for standard or custom design.

Engineering Representatives

Cleveland, Ohio
Chicago, III. PRospect 1-6171
Arn Prior, Ontario - Arn Prior 400
New York, N. Y. - MUrray Hill 8-5858
Cambridge, Mass. - ELiot $4-1751$
Hollywood, Cal. - HOIlywood $9-6305$
Dallas, Texas - Dixon 9918

Iechnology Insirement Corp.

 bulletins and samples. Our engineering staff is always at your dis. posal.

Manufacturers of Non-strip wire, High Tempera. ture Electrical Tubling and other extruded plastic products.
THE REX CORPORATION
61 LANDSDOWNE STREET
CAMBRIDGE 39. MASS.

Photographic comparison of the new G-E Drawn-oval capacitors (in color) and the conventional units they replace, showing savings in size.

New General Electric Capacitor is Smaller, 10 to 20\% Lower in Price

These fixed paper-dielectric hermetically-sealed capacitors offer:

- Reduced costs - 10 to 20%
- Savings in size and weight
- Double-rolled seams
- Drawn-steel cases
- Savings in critical materials

If you're using fixed paper-dielectric capacitors with case styles CP53 and CP70 in ratings from 1 to 10 muf, 600 to 1500 volts d-c or 330 to 660 volts a-c-these Drawn-oval units offer you improved reliability in addition to an opportunity for reducing the size, weight and cost of the electrical equipment you manufacture.

In the new Drawn-oval capacitors, we get minimum seam length by using drawn-steel cases, attaching the capacitor covers with a doublerolled seam of proven reliability. This construction results in a lighter, yel stronger capacitor. Actual savings in size and weight vary with case style and rating but they can amount to as much as 30%.

This new construction has enabled us to increase output while eliminating some critical materials. The resulting savings are passed on to you in the form of shorter shipments and lower prices. Prices average 10 to 20% lower than standard capacitors, again depending upon case style and, of course, quantity ordered.

For more information on the new G-E Drawn-oval capacitors, their ratings, dimensions and prices, see your local G-E apparatus sales representative or write for Bulletin GEA-5777. Address Section 407-311, General Electric Company, Schenectady 5, N. Y.

VARIABLE SPEED DRIVES

Write for Bulletin 99

- Only $1.050^{\prime \prime}$ diameter 1
- Single section weighs only 3 oz.
- STANDARD ratios from 10:9 to 531,441 :1!
- Hobbed gears for smooth, precision running
- Anti-backlash units . . . virtually zero backlash in either direction
Completely sealed
- Permanently lubricated - Mount in any position

Write for Bulletin 100

miniature combination fixed and variable speed changers

For applications requiring variable speed at a reduced nominal output speed, combinations of Metron Variable Speed Drives and Fixed Ratio Speed Changers are available in compact, integral units. Ask for Technical Data, or write giving your requirements for prompt engineering recommendations and prices.

METRON INSTRUMENT COMPANY 440 Lincoln Street Denver 9, Colorado

arrangement also allows a quick receiver i-f checkup since the bars may be brought out at maximum intensity at the optimum of any particular frequency adjustment. The oscillator tank circuit should be adjusted to cover a fundamental range of about 19 to 27 mc . The second harmonic of the lower frequency will accommodate the receivers having $40-\mathrm{mc}$ i-f bands.

The fourth and final element of the instrument consists of the power supply comprising a midget power transformer, a 65 -ma selenium rectifier with protective resistor R_{1} and the filter consisting of R_{3} and the dual capacitor C_{4}.

Two-Tube Square-Law Detector

By David M. Goodman
Engineering Research Division New York University, New York, New York

The Problem of measurement is acute in the field of electronics. One fundamental problem which has existed for many years is the measurement of nonsinusoidal waveforms.

The only description of a nonsinusoidal waveform that is entirely correct would be an instantaneous plot of amplitude versus time. In the case of a recurrent waveform the problem is simplified to the extent that the graph need only represent one cycle of the wave. In the case of a nonperiodic waveform the development of an instantaneous picture can only be used under very limited circumstances. For general application, such a picture is quite unsatisfactory from a practical viewpoint.

To overcome this difficulty the concept of root-mean-square values was adopted which equates the heating power in an a-c circuit to that in a d-c circuit. This concept has its difficulties too, in that the averaging period over which the wave is investigated has a considerable bearing on the indication.

The application of vacuum-tube circuits for the measurement of rms quantities has been attempted many times and has met with partial success in the past. By proper choice of operating poten-

twrnto

 Buss
THE ONE SOURCE FOR ANY

BUSS offers the most complete line of fuses for Television...Radio...Radar... Instruments... Controls... Avionics... in standard types and dual-element (slow blowing) types.

By using BUSS as your one source for fuses you simplify your buying, stock handling and records.

Every BUSS Fuse is Electronically Tested...

in a sensitive device that rejects any fuse that is not correctly calibrated, properly constructed and right in all physical dimensions. This means every BUSS Fuse is a good one.
Manufacturers and servicemen throughout the country have learned that they can rely on BUSS fuses for dependable protection.

If You Have a Special Protection Problem...

let a BUSS engineer help you. He has at his command the world's largest fuse research laboratory and the world's largest fuse production capacity.

Send the Campon

 FOR MORE FACTS...BUSSMANN MFG. CO. Division McGraw Etearic Company. University at Jefferson, St. Louis 7, Mo.

ELECTRICAL ENCLOSURES

One unit . . . or hundreds . . . KIRK \& BLUM has the men, ex. perience and equipment to fabricate any sheet metal enclosurecubicles, cabinets or control panels-to exacting specifications. We specialize in custom-built parts and assemblies of sheet steel, light plate, stainless, aluminum, monel and other alloys in gauges to $1 / 2^{\prime \prime}$ 。

Write now for more detailed information . . . and your copy of the latest KIRK \& BLUM Electrical Enclosures Catalog . . . profusely illustrated. For prompt quotation, send your prints to the KIRK \& BLUM MFG. CO., 3211 Forrer St., Cincinnati 9, O.

Contral Desks - Cubicles - Electrical Cabinets and Enclosures
Outdoor Electrical Enclosures - Instrument Panels - Control Panels
Transformer Tanks - Test Stands - Switch Gear Housings - Louvres
KIRK=BLUM
METAL FABRIGATION

CLEVELITE* and COSMALITE*
 LAMINATED PHENOLIC TUBING

A GRADE FOR EVERY NEED!

Diameters-wall thicknesses and leagths to meet regular or special adaptations.

IN RADIO AND TELEVISION their use is almost universal. They hove high insulation resistance and llow moisture absorption. Their low dielectric loss is suitable for ultra high frequency applications.

IN ELECTRIC MOTORS for armature shaft spacers, insulators, brush holders, and many similar force-fit applications requiring machining, Clevelite is particularly suitable.

IN RELAYS, CONTROLS, SELENIUM RECTIFIERS, the various grades of Clevelite Phenolic Tubing have special properties that guarantee complete satisfaction.
are more than ever before-the first choice in the electronic and electrical industries.

They combine proven performance with low cost and excellent service!
Wherever high dielectric strength, low moisture absorption, physical strength, low loss and good machineability are of prime importance . . . the combined electrical and physical properties of

CLEVELITE and COSMALITE
are essential.

IMMEDIATELY AVAILABLE! Tell us your needs.

- Reg. U. S. Pat. Of.

Factories in Los Angeles, Toronto, New Haven, Benton Harbor. Representatives in principal eities. Address inquiries to Cannon Electric Company, Dept.H-120, P. O. Box 75, Lincoln Heights Station, Los Angeles 31, California.

Another New Phil-trol Relay!

Sets a New High in

Performance, Efficiency and Economy!

The new Phil-trol Type 33 Relay is another triumph of Phillips designing and engineering. It is an important addition to the complete line of Phil-trol Relays that enables you to select the type practically tailor-made for your particular needs.

The Type 33 Phil-trol Relay is of single coil design and box shape construction. Armature and frame construction of a type that affords fast action in both operation and release. Contacts are quickly and easily pressure adjusted by means of screws. The Type 33 is available for either a.c. or d.c. operation (33 AC or 33 QA). The constant of operate and release times has qualified this relay for many applications such as are found in timing circuits.

Write for detailed Data Sheet and copy of latest Phil-trol Relay Catalog

OTHER PHIL-TROL RELAYS:

Power Relay Type 27QA

Miniature Telephone Type 4QA

$=\sqrt{2} \frac{x^{2}}{}$

Hermeticaliy Sealed
Type 20366-1

The new 24 page Stancor catalog lists 475 transformer and related components. Ask your Stancor distributor for a FREE copy, or write us directly.

STANDARD TRANSFORMER CORPORATION

3578 ELSTON AVENUE, CHICAGO 18 , ILLINDIS

NOW AVAILABLE ON EASY TERMS

Save trouble, time, and money with the aid of this practical RADIO ENGINEERINC

 helpHRARE is 2 handy volum or ounciacing s great dea nce materlal covering al delds snd aspects of radio onginsering - concise. d ϵ pendable. arranged in easy 0 - get-at form.
book. Marks' Handbook an ohers sre in their respective lelds. Hentrey's Handbook is nnd now this now Edition is available
with now data on the physl
shl mathematical, psycho-
ogical, and acoustical bases
rommunication exists.
In the means of transmit-
he very high frequency portions of the radio svectrum with completely rewritten sections on radio commun intion, inductance, radio-frequency amplifiers, modu ation and detection, electron tubes, recelving system wio sids to aviation, and many other subjects. 4 Dosstble lo modern practice.

New 4th Edition

RADIO ENGINEERING HANDBOOK

Kelth Henney, Editor-in-Chlet 1197 pages, 6 צ 9,1038 Illustrations, $\$ 10$
[N scope, this book ranges from fundamentala to dia ystems, short-wave systems, etc. Frenuency morfulation levelopments in telerision and aircraft radio, and other aplications are covered. The book abnunds in circut isgrams. tables, charts, formulas, design equations and fata. The clrcuits described quantitatively are those in use today, or soon to be whdely used.
in RADIO ENGINEERING HANDBOOK you qet-

Developed specifically to meet the rigid requirements of U.S.A.F. Spec. MIL-R-5757A, the new Allied line of subminiature double throw relays includes the MH-18 (6-Pole). the MH-12 (4-pole), and MH-6 (2-pole). Contacts are

For detailed specifications and drawings of these new relays, write for Bulletin 1002 rated at 2 amps resistive or 1 amp inductive at 28 volts D.C. - The high performance of these relays has been achieved in an extremely compact, unitized construction and parallels the most recent advances in airborne equipment design.

ALLIED CONTROL COMPANY, INC. 2 EAST END AVE., NEW YORK 21, N. Y.
 izing methods for detecting andi measuring
${ }^{11} 11$
SENSITIVITY゙ 10 times better than a Geiger Counter!

Your RCA Tube Distributor can supply you with RCA multiplier phototubes-and RCA phototubes of all types. He's practically right around the corner from you. For fast, friendly service . . . call him!

FOR low-level detection of gamma rays in scintillation counters, RCA-5819 is at least 10 times more sensitive than a Geiger Counter! Amplification values are extraordinarily high. Service life is extremely long (multiplier phototubes, unlike Geiger-counter tubes, are not limited to a specific number of "counts").
RCA-5819 is readily adaptable to all types of counting and allied applications formerly requiring the use of Geiger Count-ers-is well suited for many orther applications involving detection and measurement of nuclear particle radiation.

RADIO CORPORATION OF AMERICA
GLECTRON TUEGS
MARRFSOW", H.

For Aviation and Electronics

Tell us the type of wire or cable you need - the chances are excellent that it is one of our regular production numbers. If it isn't already in our extensive line, we will design the wire especially for you. We have had long experience in coming up with the right answers in wire and cable for many leading manufacturers in the fields of aviation and electronics. Try us. You Specify - We Supply

Ask us for our new complete catalog. We'll gladly send you a copy.

RHODE ISLAND INSULATED WIRE CO., Inc.

50 burnham avenue

MODEL 126 TAPE RECORDERS

Whatever you put on tape, you can count on the finest reproduction from the Fairchild Model 126 Magnetic Tape Recorder. It is quality designed for a long, useful life . . . for year-in, year-out accuracy and minimum maintenance. That means its final cost is substantially less than other professional recorders. These exclusive Fairchild features explain why.

EXCLUSIVE Highest signal-to-noise ratio of any tape recorder-permits recording with lowest possible distortion and dubbing or transfer without degradation of quality.

EXCLUSIVE Syncroll Drive insures exactly synchronous tape speed from start to finish. Comes up to stable speed faster. Gives you accurate timing of program and on-pitch reproduction. Splice tape from remote sections of roll when required-no change in pitch.

EXCLUSIVE Oversize Capstan, $11 / 4^{\prime \prime}$ diameter with 180° tape wrap, elim. inates tape slippage, giving better timing accuracy.
exclusive Dynamic Reel Braking insures smooth stops. No friction brakes to wear out.

EXCLUSIVE Pic-Sync Attachmentoptional feature. Corrects for tape stretch and shrinkage. Provides absolute timing required for lip synchronous sound on tape with motion pictures and TV programs.

EXCLUSIVE Automatic Framing Control-available with Pic-Syncbrings the recorder into "frame" with movie projector or second tape machine when both are started from standstill, regardless of differences in starting times. Also ideal for editing.

Remember, invest in a Fairchild and you have

154 th STREET \& 7th AVENUE. WHITESTONE, NEW YORK

North American encourages advanced thinking, because they know looking ahead is the only way to maintain leadership in the aviation industry. That's why North American needs men of vision. If you like hard thinking and would like to work for a company that will make the most of your ideas, you'll find real career opportunities at North American. North American offers you many extra benefits, too.

North American Extras -

Salaries commensurate with ability and experience - Paid vacations - A growing organization - Complete employee service program - Cost of living bonuses - Six paid holidays a year - Finest facilities and equipment - Excellent opportunities for advancement - Group insurance including family plan - Sick leave time off - Transportation and moving allowances • Employees Credit Union - Educational refund program - Low-cost group health (including family) and accident and life insurance - A company 24 years young.

Write Today

Please write us for complete information on career opportunities at North American. Include a summary of your education, background and experience.

[^11] by Ciba Research are simplifying manufacturing methods, improving product efficiency, and opening new fields of product development. You will want to know more about them.

Permanent, trouble-free Slip Ring Assemblies are perfected with ARALDITE Resins
Wire leads are securely imbedded in ARALDITE RESINS. Hard silver concentric rings are plated to this precisely machined one-piece plastic form making rings integral part of complete unit in which "specs" are met with degree of accuracy never before achieved in production, for all

LARGEST TRANSFORMER CASTING made with ARALDITE RESINS!
This current transformer cast in Araldite Resins is 12 feet high . . . 30 inches at widest dimension... and the resin used weighs approximately 2600 pounds!
(Courtesy
Maschinenfabrik
Oerlikon) Oerlikon)

your eomb couron . . . or write us on your company letterhead . . . for complete technicel doto on the physical properties and recommended procedures for the successful use of Araldite Resins for your own fabricaling needs.

CIBA COMPANY INC. Piastics 627 Greenwich St., New York 14, N. Y.
(In Canada: Ciba Co. Ltd., Ciba Bldg., Montreall Please send me Ciba Plastics Technical Bulletins for BONDING CASTING \square COATING
Name
Company Title
Address

Typical Low Priced Beckman Ease cOMPUTER Installation showing 20channel operational amplifier and power supply, 2-channel function generator, 3-channel function multiplier, typical variable component and over-voltage panel, 30-channel problem board.

The New EASE Computer, manufactured by Beckman Instruments, Inc., is specifically designed to meet the growing demand for an Analog Computer which is low in cost and yet flexible enough to be successfully utilized by design engineers in every industrial, military, research and educational group working on problems of dynamics.

EASE* Computers are already effecting tremendous savings of time and money in a number of varied applications. A leading manufacturer of jet aircraft is using the Beckman EASE Computer as a flight simulator to prove design still on the drawing board. Several engineering and research organizations have found the computer indispensable in the study of guided missiles. And the Automatic Factory of Tomorrow may soon become a reality as universities throughout the country study the problem of "fully automatic control" with the aid of such computers.

By far the lowest priced quality instrument in the field, the Beckman Ease Computer is the ideal equipment for use as an equation solver, simulator or tester. The unitized design employing compact rack-mounted components permits the user to select a custom computer which meets his particular requirements.

Write for detailed literature which describes the EASE Computer and its applications in greater detail. Ask for Data File 17-59.

[^12]BECKMAN IXSTRUMENTS control modern industries

BECKMAN INSTRUMENTS, INC.

SOUTH PASADENA, CALIFORNIA

plied signal, is apparent from Fig. 1 in the case of a single sine-wave signal.

In the case of a nonsinusoidal signal, the error will be a function of the peak-to-rms ratio as well as the wave shape of the applied signal. The dynamic range is limited by the maximum permissable error on the high side and by the circuit sensitivity on the low end of the scale. The sensitivity in turn is governed by the random d-c plate current drift present in the circuit.
Results obtained in this experiment indicate that a full-scale voltage sensitivity of 0.85 volt would be a suitable compromise requiring only occasional zero-set adjustment. This would allow for the instrument to average signals with a peak-to-rms ratio of 15 db with a maximum error of -10 percent.

Three interesting points remain to be considered. First, the twotube circuit was required to balance out a large portion of the direct current drift. This was done at the expense of decreased sensitivity inasmuch as only one-half the platecurrent change of the active stage is passed through the d-c meter.

It is also necessary to operate the stage at fixed bias. It would therefore be appropriate to use cathode bias whose value would be maintained constant through the use of a d-c feedback amplifier. This would essentially double the sensitivity of the circuit and at the same time afford a means of controlling the response time of the power meter. This modified circuit would have a sensitivity of approximately 0.5 volt and would accurately average $20-\mathrm{db}$ peaks.

Experimental results indicate that the grid can be driven positive with no serious permanent effect. However, it was noticed and it is natural to expect as a result of the grid-heating effects, that a positive grid signal would tend to increase the d-c plate-current drifts. This can be remedied by clipping at the input grid at approximately the zero bias level through appropriate use of crystal diodes.

Because of the simplicity of the input circuit it is possible to broadband the circuit over a considerable

Reduce Core Losses

Lower Core Dimensions

Lessen Core Weight

Save on Copper

Armco Thin Electrical Steels are supplied with directional magnetic properties to suit the job. Armco Tran-Cor T (7 and 5 mils thick) has good permeability in all directions; Tran-Cor T.O (4 mils and
lighter) is an "oriented" type with best permeability in the direction of rolling; Tran-Cor T-O-S (4 mils) is a super-oriented type with even greater permeability in the rolling direction at very high induction.

Where Armeo

Thin Electrical Steels are used

Here are a few parts in which the different thicknesses of Armco Thin Electrical Steels are used:

7, 5 and 4 Mil Thicknesses (400 to 2000 cycles)
400-Cycle Power Transformers
400-Cycle Motors and Converters
Television Deflection Yokes
Horizontal- and Vertical-5weep
Television Transformers
Magnetic Amplifiers
Plate and Filament Transformers
Filter Chokes
Swinging Chokes
Charging Reactors
Timing Pulse Generators

Write for Booklet

For complete design information on these grades write us for the 32 -page booklet, "Armco Thin Electrical Steels." Included are curves that show at a glance the possible operating induction for a given frequency, and enable designers to make a preliminary selection of a suitable lamination thickness when either core loss or excitation is a limiting design factor. Final determination of electrical characteristics can then be made from the curves on the individual thicknesses.

ARMCO STEEL CORPORATION

3672 Curtis Street, Middletown, Ohio

Plants and Disfrict Offices from coast to coast
Export: The Armso International Corporation

Accessibility UNLIMITED...
 with GRANT ELECTRONIC EQUIPMENT SLIDES

Photo shows Raydist navigation, tracking and surveying system master station where components are installed in vertical position, using Grant Slides at top and bottom of rack. Developed by Hastings Instrument Co., Inc., Hampton, Va.

Grant No. 363 Slide applicable where unit is desired to slide fully out of chassis and tilt for servicing of parts otherwise inaccessible. Capacity: 100lbs./pair. Telescoping, 3 section slide with ball bearing action. Aluminum with steel ball spacers.

There is a Grant Slide to meet every requirement... whether to tilt a unit a total of 180 degrees, lock unit in closed, open or pivoted position or meet load requirements from 25 to 2,000 lbs. - call upon, depend upon Grant, the foremost name in Sliding Devices!

Write Electronic Design Division for Complete Catalogue
grant Pulley \& H'OW'E. CO.
31-87 Whitestone Parkway, Flushing, L. I.

frequency range. Actually this last point is of considerable consequence inasmuch as an extended bandwidth is necessary in any system which is required to pass signals with a large peak-to-rms ratio.

In summarizing, it should be mentioned that the underlying theory behind this development is not new. Circuit applications of this theory in the past have suffered shortcomings of one form or another. With the advent of hightransconductance tubes, the chances for satisfactory circuit performance have steadily improved. Here described is a pair of 6AH6's which can be used in a single-ended circuit to provide square-law operation over a nine-volt swing in the grid region. This is especially important in the measurement of noise spectrums, speech signals and multiplexed circuits.

Precision Raster
 Sweep Oscillograph

By H. B. Steinhauser

Instrumont Division
Allen B. DuMont Laboratories, Inc. (lifton. New Jersey

THIS PAPER describes a raster sweep oscillograph designed specifically to reproduce transient electronic information in such form as to allow the time-voltage variations to be analyzed with precision. Its applications embrace measurements of rise time, length, decay time and spacing transient pulses. Any time interval which can be represented by two successive transient pulses may be measured with a high degree of accuracy.

A raster sweep oscillograph differs from the conventional single trace oscillograph in that a large number of successive horizontal traces are displayed on the screen like lines on a sheet of ruled paper. Figure 1 illustrates the raster obtained with this instrument.

To produce the raster, sawtooth deflection voltages are required for both the horizontal and vertical axis. To enable measurements to be made, a source of sharp accurate marks is also needed. These marks are applied to the grid of the

WHEN HEWLETT-PACKARD engineers designed the new -hp- Model 624A SHF Test Set they sought a signal source of dependable uniformity, high stability under shock and temperature changes, and smooth, chatter-free tuning. To meet these needs, they selected the Varian V-50 reflex klystron.

WHEREVER these characteristics are required in an x-band oscillator, the V-50 merits your consideration. For applications involving still greater shock and vibration, where single shaft tuning is not required, the extremely rugged V-51 may be more suitable.

BOTH THESE VARIAN klystrons are notable for integral-resonator construction; the exclusive Varian wideband mica-seal output window; extremely small space requirement; weight of only six ounces; power output, without special matching transformers, of 25 to 65 milliwatts for the V-50, 75 to 260 mw for the V-51. Both bolt directly, without adapters, to standard inch-by-halfinch x -band waveguide.

YOUR MICROWAVE PROBLEMS may be solved by one of these x-band oscillators. Or, your requirements may be different. Many Varian klystrons, for many different types of services, are in production or development but cannot be publicized. Correspondence is invited concerning klystrons for your specific needs.

990 VARIAN STREET - SAN CARLOS 1 , CALIFORNIA
V. 50 REFLEX KIISTRON
8.5-10.0 kmc
...smooth-tuning
-no backlash
...dependably uniform
...temperature and shock-resistant
...simple to install

FOR EVERY wIRING NEBD...

- Why put up with pliers that aren't exactly right - pliers that may be costing you valuable production minutes? In the complete Klein line there is a pair of pliers for every job in radio, TV or amplifier wiring. You'll find long nose pliers that assure a tight grip even in confined space, keen edged cutters, flat nose, duck bill-whatever you need, and in a wide variety of sizes.

Klein Pliers are better pliers, too, each pair individually tested for proper balance and hand-fit. Made by plier specialists with a reputation for quality "Since 1857."

ASK YOUR SUPPLIER

Foreign Distributor: International Standard Electric Corp., New York

FIG. 1-Raster obtained with the instrument
cathode-ray tube and appear as blanking spots on the trace. The incoming video signals are applied to the Y-axis and produce vertical deflection as in a conventional oscillograph.

If the horizontal sweep generator is allowed to run continuously, the horizontal sweeps are visible on the screen only during the interval when the trace is brightened by an intensity gate generated by the vertical sweep generator. Horizontal sweep speeds of five and ten $\mu \mathrm{sec}$ are available and the number of horizontal sweeps in a raster may be adjusted from 10 to 30 permitting measurements up to $300 \mu \mathrm{sec}$. The marker frequency is switched when the sweep speed is switched so that five marks are always displayed on each horizontal sweep.
The vertical sweep may be initiated in several ways: internally with repetition rates of approximately 50 and one cps, manually by means of a push button on the front panel, or externally by means of a suitable pulse. Repetitive and manual triggering are generally used only for setting up and making adjustments.

The equipment is usually triggered by an external pulse and a photograph taken of the single-shot display. To obtain reading accuracy commensurate with the measuring accuracy, the photo negative may be enlarged to two or three feet in width by projection on a screen.

Figure 2 is a simplified block diagram of the equipment. A one-mc temperature-regulated crystal, ac-

The rich experience and vast facilities of Delcっ Radio are again at the service of the nation!
Delco Radio has a major part in the current rearmament program .. is curreatly producing advance-type radio equipment for many branches of the military. Delco Radio products serve equally well in civilian communications . . . in millions of passenger cars and trucks . . . in untold numbers of homes. Yes, in peace as in war, Delco Radio is on the front line in communications with on-time production of superior products. See for yourself!

DIVISION OF GENERAL MOTORS, KOKOMO, INDIANA

IN PRODUCTION
Delco Radio is the world's largest builder of automobile radios... the leader in production and assem. bly of component parts.

CLEADER.

in enginetring
Delco Radio developed many of the most important advances in automotive radio ... has unsurpassed experience in this field.

Every step in the manufacture of Delco Radio prod. ucts is closely supervised to maintain high, uniform product quality.

in manufacturing

Completely integrated for efficient production, from raw material to finished product, Delco Radio meets any customer need

You can't beat a soldered connection

for electrical $\hat{\text { conductivity }}$ and permanence!

SOLDERED connections eliminate loss of current, fire hazard, radio interference and excess heat which result from loose, corroded, arcing NON-SOLDERED connections.

For over 50 years experts have specified American Beauty Electric Soldering Irons. They know American Beauty Irons are built to LAST LONGER, OPERATE DEPENDABLY and BE SERVICED QUICKLY.

Build better with solder Solder better with
 Imerican Beauty : SOLDERING IRONS

WRITE FOR FREE LITERATURE
Dependable • Durable • Efficient

SINCE 1894

AMERICAN ELECTRICAL HEATER COMPANY
curate to ± 0.0025 percent, is used to control both the frequency of the markers and the repetition rate of the horizontal sweep generator. The output of the crystal oscillator is fed directly through a shaper tube to the marker generator for producing marks at one usec intervals. Marks at two-usec intervals are obtained by dividing the crystal output to 500 kc before feeding it to the shaper and marker generator.
The marker generator consists of a ten-mc shock-excited oscillator driven by the sawtooth output from the shaper tube. A resistance across the tuned circuit is adjusted to damp out the shocked oscillations after the first half cycle. Each time the oscillator is shocked into oscillation an output is obtained consisting of one-half cycle of a ten-mc sine wave with a width of 0.05 mec . The marker amplifier increases the amplitude and inverts the marks to obtain the proper polarity for application to the crt grid. The problem of mixing the marks and the intensity gate is avoided by applying the marks to the grid and the intensity gate to the cathode of the crt.

The one-mc crystal-oscillator output is divided down to 200 kc for initiating the five-usec horizontal sweep and divided down to 100 kc for initiating the ten-usec horizontal sweep. The horizontal sweep is generated in a modified bootstrap circuit. Linearity is maintained

FIG. 2-Simplified block diagram of the sweep oscillograph

RCA WR-4IA UHF Sweep Generator

The WR-41A provides a quick, economical means of factory-testing UHF equipment with high accuracy. The instrument incorporates the same high-quality sweep oscillator as used in the WR-40A. Since this unit is designed primarily for production-line use, it employs four semifixed absorption-type markers. These are built inside the case, to prevent alteration of their adjustment during normal use.

NOW—for the UHF development and design laboratory - the new RCA WR-40A combines sweep generator, marker, and calibrator facilities in one compact, practical unit. Its versatility is unmatched for testing UHF-TV tuners, converters, receivers, antennas, and transmission lines in the 470-870-Mc band.

CHECK THIS LIST of Important Features:

\checkmark Center frequency of sweep oscillator is variable from 470 Mc to 890 Mc . Operates on fundamental frequencies withour harmonics or beat notes.
\checkmark Full 45-Mc sweep width available throughout the entire UHF band. "On" or "Off" blanking is included.
\checkmark Sweep generator ourput impedance is 50 ohms-output voltage across a $50-\mathrm{ohm}$ resistive load is 0.5 volt. External pads to match 75 -ohm and 300 -ohm inputs are supplied.
\checkmark Amplitude variation of sweep oscillator does not exceed $0.1 \mathrm{db} / \mathbf{M c}$. \checkmark Marker oscillator, controllable in amplitude, emplovs a hand-calibrated dial and operates on fundamental frequency throughout the UHF band.
\checkmark Crystal calibrator provides $1-\mathrm{Mc}$ and $10-\mathrm{Mc}$ check points throughout entire UHF hand.
\checkmark Marker amplitudes from hand-calibrated variable oscillator and crystal calibrator remain constant over entire oscilloscope pattern.

For complete technical details and prices on the WR-40A and WR-4lA UHF Sweep Generators, write RCA, Commercial Engineering, Section HR 42, Harrison, N. J.

Got a particularly difficult electronic insulation problem? We've got the answer! Call on PHALON . . . you'll discover that one of the PHALON line of electronic hook-up, lead wires or fixture wires will do the job - and do it well.

PHALON electronic hook-up wire is strong and tough, yet strips easily, leaving clean conductors.

Get the complete PHALON story now!

A FEW TYPES OF PHALON ELECTRONIC HOOK-UP WIRE

PHALO PLASTICS CORPORATION corner of commercial st. - worcester - mass.
monufocturers of thermoplestis Insulated Wire, cobles, (ord Sels and Tubing

FIG. 3-Raster of Fig. 1 with ten-mc modulation applied
better than one percent between marks and retrace time is only four percent of the sweep cycle.

It is necessary when using repetitive vertical sweeping to have the vertical sweep synchronized with the horizontal to avoid vertical movement or jitter of the raster. This synchronization is achieved by further dividing down the crystaloscillator frequency to approximately 50 and one cps and using it for triggering the vertical-sweep generator.

Frequency division is obtained in large steps of approximately 40 to 1 and 100 to 1 . The exact division ratio is unimportant so long as the vertical-sweep generator is locked in at some integral submultiple of the horizontal sweep rate. The vertical-sweep generator is a bootstrap circuit. A vertical-sweep amplitude control serves to vary the spacing between horizontal sweeps from 0.1 to 0.3 inch.

For single-shot operation, a thyratron pulse generator is used which may be triggered either manually by a push button located on the front panel or externally by a pulse fed in through the external trigger jack. When the thyratron is fired it generates a single pulse which in turn triggers the vertical sweep generator to give a single vertical sweep. By using a thyratron in this circuit an automatic lockout is obtained, since once the thyratron has fired it cannot be fired again until it has been reset by depressing a reset button on the front panel.

A variable-delay circuit has been included to allow the insertion of

FREED

"PRODUCTS OF EXTENSIVE RESEARCH"

up to 150 usec of delay between the vertical sweep trigger and the vertical sweep. This permits the entire raster to be delayed after the initiating trigger. A panel switch permits selection of the dolayed or undelayed raster. An intensified strobe which occurs at the end of the delay period is displayed on the undelayed raster and enables the setting of the delay to be read. This strobe is obtained by taking the trigger from the delay amplifier, sharpening and amplifying it, and applying it to the cathode of the crt. The delayed trigger is also made available at a coaxial jack for external use.

External video signals are fed in via a coaxial jack through a cathode-follower isolation stage and coupled to one of the vertical deflection plates. Since a short video pulse might possibly be lost in the retrace period of the horizontal sweep, provision has been made for also feeding the signals to the vertical axis through a one-usec delay cable and a phase-inverter isolation stage. This produces an inverted pulse exactly one $\mu \mathrm{sec}$ after the original. Since the delayed video signals are inverted they may be easily identified.

During development of the instrument it was necessary to make frequent checks on the linearity and retrace time of the horizontal sweep. This was done by applying a ten-me signal of approximate sine-wave shape to one of the verti-

[^13]
Sensational Advancements In Science \& Industry

Created the Need THE NEW

 Stacolece " 1 " CAPACITORS
YOUR FREE

 INDUSTRIAL CONDENSER CORPORATION Stabelex "D" Capacitor Catalog may prove to be the most important new single piece of literature for you this year!Curve \#1110, shown at right, is of particular interest and illustrates the long self time constant of Stabelex "D". The time constant of the 10 MFD capacitor illustrated on this curve is 200 days, or 4800 hours. This curve represents measurements on capacitors allowed to stand at normal room conditions of temperature and humidity. This, therefore, represents the time constant of these capacitors under normal conditions of operation.
Performance curves illustrating various characteristics of the Stabelex "D" Capacitor will appear in this magazine each month.

OUTSTANDING FEATURES

INSULATION RESISTANCE AT $20^{\circ} \mathrm{C}$. AFTER THREE MINUTES CHARGE- 900,000 megohm microfarads
INSULATION RESISTANCE AT 75° C.- 78,000 megohm microfarads
INSULATION RESISTANCE AT $-75^{\circ} \mathrm{C}$.-In excess of 5 million megohm microfarads
CHANGE IN CAPACITANCE FROM $25^{\circ} \mathrm{C}$. TO $-80^{\circ} \mathrm{C}$; $+0.76 \%$
SELF TIME CONSTANT OF 10 MFD CAPACI-TOR-4800 hours
Q AT 50 KILOCYCLES- 10,000
POWER FACTOR AT 1 KC-0.00025

SEND FOR CATALOG 1117 TODAY

After a long period of research, Industrial Condenser Corporation now offers to industry for the first time the first of their family of Stabelex capacitors, stabelex "D", which has heen produced for special applications for some time.
Complete information performance curves, characteristics, and suggested anplications of the various types now available will be found in this catalog. Mfrs. of OIL, WAX, ELECTROLYTIC, PLASTIC

INDUSTRIAL CONDENSER CORPORATION

[^14]
TARZAAN TUNER, Moded IT. 7

The Model TT-7 features 12 VHF channels plus 1 or 2 UHF inputs with appropriate UHF power switching built in. Available for 41 mc . IF systems. (Can be supplied for 21 mc . IF systems.)

SPECIFICATIONS:	
RF AMPLIFIER:	6BQ7
OSC. MIXER:	6×8
POWER SUPPLY:	135 volts at 10 ma . 250 volts at 14 ma . 6.3 volts at 0.85 amps .
GAIN:	Into a $5 \mathrm{mc} .6 \mathrm{db} \triangle \mathrm{f}$ IF gridHigh channels 23 db min. Low channels 26 db min.
NOISE FACTOR:	As measured into a 3.0 to 3.5 mc . $\triangle \mathrm{fIF}$ - 9.5 db max. for high channels 8.0 db max. for low channels
IMAGE REJECTION:	40 db min. high channels 46 db min. low channels
IF REJECTION:	50 db min.*
RF BALANCE:	20 db min.
VERNIER RANGE:	Plus or minus 1 mc . min. Plus or minus 2 mc . max.

* Except channels 2-3 and 4 of 41 mc . funers.
* In the UHF position, the tuner is changed to an amplifier for the UHF I.F. Power is applied to the UHF tuner which may be either a FULL-RANGE CONTINUOUS TUNER or a single channel UHF tuner. In either case, a separate UHF antenna input is provided.

Tuner Division
Bloomington, Indiana
cal deflection plates through a small coupling capacitor.

The ten-me test signal was obtained by frequency multiplication from the crystal oscillator so that the pattern would be synchronized with and remain stationary on the horizontal trace.

Figure 3 is a photograph of the raster shown in Fig. 1 but with the ten-mc modulation applied. By counting the modulation cycles it may be determined that the forward-going part of each horizontal sweep is $4.8 \mu \mathrm{sec}$ long while the retrace is $0.2 \quad \mathrm{usec}$. The linearity is checked by measuring and comparing the spacings between adjacent cycles of modulation across the sweep. For perfect linearity, the spacing should be the same between any two adjacent cycles anywhere on the sweep.

Credit is due Arthur Mahren for his valuable contributions to the circuit development of this instrument.

Improving Electronic System Reliability

By W. Wagenseil Associate Head
Production Design Department Radar Laboratories Hughes Aircraft Company Culver City, Calif.

Examination of over 200,000 failure reports on equipment in the field showed that there was no outstanding cause of failure. It was decided to establish a parts application section, staffed with competent engineers selected to become specialists in the various components. These engineers study parts specifications at the time the systems are designed.

As a direct result of the establishment of the parts application section, the following examples have proven worthwhile as reminders to circuit and equipment designers.

The insulation resistance of any capacitor is a function of the voltage across the capacitor. The capacitance of high-K ceramic capacitors is a function of the voltage impressed across them. Below ten volts applied voltage, inserted-tabconstruction capacitors should not be used since they may open. A resistance may build up between

to solve the shortage puzzle

replace key pieces with ${ }^{*}$ Lamicoid
High Dielectric Strength Low Power Factor Heat Resistance
Low Moisture Absorption High Impact Resistance Dimensional Stability Light Weight
Tensile Strength
Resistance to Abrasion

Lamicoid, a thermosetting plastic laminate, has already proved itself for such uses as terminal blocks, panels, dials and many other applications.

The same qualities that make it adaptable to these uses may also provide practical answers to your material shortage problems . . . and perlaps even bring you savings or improvements!

For example, you can obtain Lamicoid in a wide variety of forms and grades which are almost certain to possess the exact characteristics your product
requires. This versatility is possible because LamrCoID is produced through the use of many different fillers such as glass, nylon, fabric, paper, etc. with a variety of resins.

Lamicoin is supplied in standard sheets, rods and tubes, or fabricated into parts to your specification. We will be pleased to put our 58 years of experience to work on your electrical insulation problems. Send your blueprints and specifications today for a prompt quotation.

Schenectady 1, New York
Offices in Principal Cities

"Skew" алтеш"

for VHF and UHF

The ANDREW "Skew" Antenna is the only antenna which provides a circular radiation pattern from antenna elements placed around a supporting structure which is larger than a half wave-length on a side! With the "Skew" Antenna, it is possible to mount a multiplicity of TV antennas on the sides of tall buildings, on the sides of existing towers even towers which also support a standard antenna on top. The economy offered by a joint operation of this type is obvious.

At present, the "Skew" Antenna is custom built for each installation and consequently general performance specifications cannot be delineated. However, ANDREW engineers will be glad to discuss its application to specific situations.

ANDREW four element "Skew" Antenna on the conical end of the mooring mast of the Empire State building, used as auxiliary by WJZ-TV. Lower on the mooring mast, artist's sketch shows the 48 element ANDREW "Skew"
Antenna to be installed tor WATV.
*Patents applied for

TRANSMISSION LINES FGR AM-FM-TV-MICROWAVE - ANTENNAS - DIRECTIONAL antenna equipment - antenna tuning units - tower lighting equipment
the tab and the foil which will not break down at applied voltages of less than ten volts.

A feareful examination and study should be made of any d-c paper capacitors which have alternating currents applied across them since the voltage derating of a d-c capacitor is a function of the frequency of the a-c applied.

During shipping or storage, parts may be subjected to rather low temperatures. Certain wax-impregnated capacitors are permanently damaged after such treatment. Metallized capacitors should not be used in high-impedance circuits because when they short through a paper pin hole or impurity, there may not be enough current to burn out the shorts. Metallized paper capacitors should not be used in pulse-sensitive circuits where sparking inside the capacitor may generate false pulses.
The difference in temperature coefficients between different values of deposited carbon resistors is so great that they are nearly useless for precision voltage-divider circuits used in military gear subject to large temperature variations.

Hermetic Sealing

Parts that are not completely hermetically sealed might best be left open since tests show that changes in humidity, temperature and altitude may cause moisture to collect in such parts. The more commonly used potentiometers are subject to this difficulty.

Circuits must be designed to accept the full JAN tube limits. It is not difficult to obtain a JAN tube which operates within limits narrower than those specified. But when the equipment gets in production, a different manufacturer may provide the tube. This factor may result in the circuit not operating because the second manufacturer's limits are different from those which the first manufacturer selected. Both limits are within the range specified by JAN specifications.
When a 385 -volt capacitor is needed, it is not necessary to specify a 600 -volt capacitor designed to be operated at 900 volts. The parts application engineer can give this

are your readiges TRUE?

You may have the best instrumentation in the laboratory - in shop processes -on test and inspection lines . . . you may collect the most concise data . . . but the information gathered is worthless unless it is dependably accurate. The best instruments can give true readings only when the source of voltage is constant.
There is no better way to maintain constant output voltage from a-c power lines than with a STABILINE Automatic Voltage Regulator type IE This completely electronic device with no moving parts offers instantaneous correction of line voltage variation waveform distortion not exceeding 3%-excellent stabilization and regulation. Numerous types are available in a wide range of ratings to fulfill the needs of your particular requirement.
Send today for complete information on STABILINE Automatic Voltage Regulator type IE, and at the same time, ask about STABILINE type EM. Write to:
208 THURE AVE., BRISTOL, CONN. and ASK FOR SECO BULLETIN S351.

- STABILINE AUTOMATIC VOLTAGE REGULATORS
- POWERSTAT VARIABLE TRANSFORMERS

BRISTOL, CONNECHICUT

- varICELL D-C POWER SUPPLIES
- VOLTBOX A-C POWER SUPPLIES
- SUPERIOR 5-WAY BINDING POSTS
- POWERSTAT LIGHT DIMMING EQUIPMENT

Automatic separation for up to 27 information channels on one commutated subcarrier is now possible with this Bendix Model THC-1 Electronic Decommutator. The equipment can be used with any standard FM/FM telemetering receiving station.

Accuracy is such that the nominal error of the equipment is less than 1.0% and this will not be adversely affected by ambient temperatures between 20° and $110^{\circ} \mathrm{F}$ and relative humidity up to 80%.

The decommutator is capable of separating 27 information channels at $2.5,5$, or 10 revolutions per second and 15 information channels at commutation speeds of 5,10 or 25 revolutions per second.

Major electronic assemblies of the equipment are the decommutator control, four channel separators, information gates, and the dual power supply. Nominal output is ± 5.0 milliamperes into a 330 ohm load for band edge to band edge deflection.

Complete information on the equipment can be obtained by writing the manufacturer.

assurance because he has tested and approved vendor's products against purchase specifications.

All the characteristics of parts are not necessarily controlled. This is one of the things that engineers seems to forget most rapidly. They assume that all characteristics are controlled.
Present-day systems are so interdependent and complicated that there is a tremendous temptation to design with a soldering iron. The designer trys to make his system operate and prefers to forget details. The parts specialist remembers the details and looks for the unexpected things that prevent production systems from operating in the same manner as breadboard systems.

Fast Cueing of Tape Programs

By John B. Ledbetter Bugheer WhRC-TV (incinnati. Ohio

Many times the writer has found it convenient or necessary to record two or more separate programs back-to-back on a single 30 -minute reel. This often happens when the tape recorder is used on several successive spot or special-events shows. In many cases, one of these programs (often the last one the reel) will be scheduled for immediate use, with the others out of order or rescheduled for later playback.
Normally, it would be necessary to run all or part of each reel in order to cue in at the desired spot, or dub each program onto separate reels. All this trouble can be avoided simply by numbering a small tab of paper and attaching with a very small piece of Scotch tape at the point where each program starts and ends. This can be done at the time each show is recorded. The cueing of each show then resolves itself into throwing the recorder switch to FAST FORWARD and stopping at the proner tab. This consumes only a fraction of the usual set-up time and has meant the difference between immediate playback or complete rescheduling.

Do you

 resunize these Gerting new fashions, first is imrecognize these famous movie stars?In New York and other fashion centers, they keep dummies made to the exact measurements of Hollywood stars.

When a star wants a new gown, she calls her shop-and it's measured right on her model!

Then it's only a matter of hours before the gown is in Hollywood. For
these style centers ship their fashions the world's fastest way - via Air Express! portant to Hollywood stars. But it's even more important to fashion buyers in stores all over the country .. where a few days can mean the difference between profit and loss.

That's why stores (as well as stars) get their fashions Air Express!

Whether your business is fashions or factories, you can profit from regular use of Air Express. Here's why:
it's fastest - Air Express gets top priority of all commercial shipping services - gives the fastesr, most complete door-to-door pickup and delivery service in all cities and principal towns at no extra cost.
it's dependable - Air Express pro-
vides one-carrier responsibility all the way and gets a receipt upon delivery.
it's profitable-Air Express service costs less than you think, gives you many profit-making opportunities.

Call your local agent of Air Express Division, Railway Express Agency. 1952 - OUR 25 TH YEAR.

Production Techniques

Edited by JOHN MARKUS

Locking Adapter for Subminiature Tubes

Testing of subminiature tubes is greatly simplified if their thin flexible leads are temporarily attached to a standard plug-in tube base. Since some of the premium subminiatures are given extremely high vibration tests, heat runs and severe electrical tests, firm connections to the leads are essential. So important is this requirement that before development of the locking adapter, leads of each miniature tube were inserted in the pins of an empty octal base and soldered for test purposes, then unsoldered after completion of tests.

The locking adaptor, developed by engineers of Sylvania Electric Products Inc., solves the problem so perfectly that the adapter has been placed in mass production for use
in all of this firm's plants and is available to other manufacturers.
The adapter is made up of five molded plastic parts, eight phosphor bronze contact clips and one machine screw. The base is a standard octal base, made from a revised mold having cutouts for the tabs of the molded plastic locking ring. A cylindrical core which fits inside the base has longitudinal slots located directly over the base pins, into which go the eight contact clips. These are preformed to give a press fit into the tube base pins. This is tight enough to eliminate need for soldering but the base pins are dipped in solder anyway to round off the ends for smoother insertion in sockets.

The locking ring moves up and

[^15]
OTHER DEPARTMENTS

featured in this issue:
Page
Electrons At Work....... 152
New Products 258
Plants and People....... 310
New Books 318
Backtalk 340
down over bends in the contact strips. When moved down toward the base, it presses the strips firmly against the tube leads, to give a tight grip and good electrical connection.

Holes in the cover plate are coned outward to facilitate inserting the tube leads in the adapter. With practice, an operator can fan out the leads of a subminiature and get them into the right holes almost as fast as if plugging in an ordinary tube.

A molded raised dot on the cover plate identifies the space between pins 1 and 8 , and the plate itself is molded with different widths of positioning lugs.

Stripping Enameled Wire

To remove enamel insulation cleanly from leads of magnetic amplifier coils without nicking or otherwise weakening the fine copper wire, Keystone Products Co. in Union City, N. J. uses a special wire stripper with rotating wire brushes, made for the purpose by Newark Brush Co. of Kenilworth, N. J.

The brushes are mounted one above the other and belt-driven by a $\frac{1}{3}$-hp motor; the distance between the brushes is adjustable to accommodate different sizes of wire, by turning a knob that raises or lowers the entire upper brush assembly.

The wire coil leads to be stripped are inserted all at once in the opening located just between the brushes. One slow movement in and out cleans all the leads of the

UNIFORM

Kester Flux-Core Solder UNIFORM In Alloy UNIFORM In Flux Content

Right down the line, spool after spool, Kester " 44 " Resin, "Resin-Five" and Plastic Rosin-Core Solders offer these features of uniformity so necessary to the best in soldering.
Alloy . . just the right amount of Tin and Lead, complying with your specifications every time, and only the best metals used!

Flux content . . . not a single inch of the solder is without uniform flux distribution . . . and remember, only Kester can give you that flexibility in core size or flux content, more or less as needed, the exact predetermined amount. Kester is truly an engineered Solder.

Kester meets all applicable Government Specifications
Free Technical Manual - write for your copy of "SOLDER and Soldering Technique."

KESTER SOLDER COMPANY

4204 Wrightwood Ave., Chicago 39
Newark 5, New Jersey • Brantford, Canada

All leads of this magnetic amplifier coil are cleanly stripped of enamel when inserted in the opening. Wire brushes pull the enamel away from the operator; this direction of rotation also serves to pull in flexible fine-wire leads so they get stripped for the desired length
coil simultaneously. A fan blade, also belt-driven by the motor, creates a vacuum to pull the enamel dust into a collecting drawer pro-
vided for the purpose under the machine. Edges of the drawer are temporarily taped to prevent leakage of the fine dust.

Magnetic Parts-Lifter

TUBE anodes emerging from a baking oven are picked up and loaded into tote boxes with a Multilift Magnetic Separator, made by Multifinish Mfg. Co., Detroit, Mich. In the lifting position, a permanent magnet in the tool attracts the parts. Pulling up an inner handle moves an internal shunt between the magnet poles, reducing the external magnetic field sufficiently so the parts drop off into the box.

The lifter is used for this purpose in the Emporium, Pa. plant of Sylvania Electric Products Inc. because the parts are too hot to touch after emerging from the $1,700 \mathrm{~F}$ oven. Even if parts were cool enough, touching with gloved or bare hands could introduce grease or dirt that neutralized the degreasing and baking operation. The lifter insures cleanliness and permits using a much shorter conveyor for cooling.

Lifting hot anodes from moving woven-wire conveyor which runs through baking oven

Doulble-Anvil Riveter for Miniature Sockets

Through use of a sliding double anvil on a single riveting machine, miniature sockets can be riveted to a television chassis just as fast and just as well as with a more costly dual-machine arrangement.

The operator positions the chassis so each socket hole is over an anvil pin, places a socket over the anvil pins, slides the anvil to one limit of movement and operates

Addition of two-pin anvil makes single riveting machine do work of dual machine
the press to feed and clinch one tubular rivet, then slides the anvil to the other limit of movement and operates the press again to finish the job. This technique is used in the Television Receiver Division of Allen B. DuMont Labs., Inc., in East Paterson, N. J.

Spotlight for Welding

A Lucite rod mounted on a Bausch \& Lomb microscope substage projection lamp gives an intensely bright beam of light at the electrodes of a small welder, to facilitate welding of getters and other small parts to

By utilizing Plastic Films which allow higher volt per mil loading of capacitor dielectric, our pulse forming networks are made in minimum sizes and weights. Losses are considerably lower in comparison to pulse forming networks using other types of dielectric.

Higher temperatures are permissible due to our special dielectric and the use of silicone impregnants. Other characteristics are long life, stable performance at high temperatures, and ranges of voltages up to 60 KV . Highly functional designs make "CP" pulse forming networks preferred where efficiency and economy and small size are essential.

Send us your requirements and we will recommend and design a Pulse Forming Network to solve your need.

Weslern Auto

Steelman

Continental

The value leaders in Clock-Radios continue to be the brands equipped with

Esquire

Becanse Sessions Timers are lower-priced than other dependable makes, more and more clock-radio mamufacturers are offering buyers a better value for their money.

Make any comparison. Take this initial price advantage and add Sessions-quieter operation, unbeatable accuracy, and attraetive styling, and you have a total number of important features unmatched by any other clock-radio timer. For details write the Sessions Clock Company, Timer Division, Dept. 48, Forestville, Connecticut.

Lucite rod on end of lamp housing bends light beam to illuminate small parts being welded
the electrode structure of miniature and subminiature tubes. The projector contains a 21-cp auto lamp operated from a 6.3-volt filament transformer.

Being thermoplastic, the Lucite rod is easily bent to the optimum shape and position by heating with an infrared lamp or hot plate after the projector is mounted on the bench. Aluminum foil is wrapped around the rod to prevent loss of light except at the end where desired. The rod is clamped to a metal disk set into the opening of the projector housing. This technique for supplementing fluorescent table lamps during assembly of small parts is in use at the Emporium, Pa . plant of Sylvania Electric Products Inc.

Heat-Fusing Polystyrene

USE of a polystyrene sleeve over a coil-spring connector for the plate top cap of type 1B3 tubes, in place of the more common molded plastic top-cap connector, cut production costs of the high-voltage power supply for Tele-tone television receivers.

The sleeve came from an outside vendor with one end sealed and a hole punched for the top cap. On

Heating open end of polysiyrene sleeve

HAMMARLUND

DATA TRANSMISSION • SELECTIVE CALLING AND SUPERVISORY CONTROL EQUIPMENT

For the past seven years The Hammarlund Manufacturing Company has specialized in designing and developing electronic control equipment. Based on this experience, and the knowledge gained from 42 years of communications engineering and production, Hammarlund to-
day produces a standard line of equipment for data transmission, supervisory control, telemetering, selective or group calling or signalling, fault alarm and other similar applications. This equipment is designed for use on microwave, radio or wire circuits.

POINT TO POINT SIGNALLING

The Hammarlund Standard Duplex Signalling Unit consists of a tone generator and receiver designed to operate over wire lines, telephone or power line carrier, and radio or microwave communications circuits for signalling, dialing, slow speed telemetering, supervisory controls or other information. Transmitters and receivers are available for 33 frequency channels between 2000 and 6000 cps . This equipment is being used by military and governmental agencies, pipeline and power companies, railroads and other groups requiring remote on-off switching, continuous indication of operating conditions, and automatic detection of wire line or power source failures along their systems.

SELECTIVELY CALLING OR SIGNALLING

Hammarlund Selective Calling equipment, added to 2 -way radio systems used to control large fleets of vehicles, or distant fixed stations, adds privacy, speed, safety, quietness and convenience to day-in-dayout operations. By the push of a button the dispatcher within 0.8 of a second selects the station which he wants to contact. Only the selected operator or group of operators can receive the call. If the operator of the car or station being called doesn't answer, an indicator lamp remains lighted to show he was called. This simple equipment can be added to any present installation, or incorporated in any type of installation now projected.

PROTECTION THROUGH SUPERVISORY CONTROL

The Hammarlund "Multi-Gate" Remote Supervisory and Control System is engineered to provide highly efficient, fully reliable operational controls of important remote equipment such as used by refineries, pipelines, utilities, railroads, civil defense and other commercial, as well as military, groups. Because of a unique design by which a single tone activates a receiver, which in turn will then accept a second tone to operate a relay, this equipment can be used where disturbances on connecting wire or radio circuits make ordinary tone-operated remote controls impractical. Up to 21 individual on-off functions can be handled over a single circuit employing only 7 audio signalling tones.
\Rightarrow Write Today For Detailed Information

HAMMARLUND
 MORE THAN 40 Years experience COUNTS! the hammarlund manuracturing co., inc. 460 WEST 34th STREET . NEW YORK 1, N. Y.

When you cannot see inside the product

it pays to look "inside" the manufacturer

Magnet wire cannot be judged by externals. Hidden manufacturing variables quickly show up in the winding room . . . on the test rack . . . or out in the field.
Producing magnet wire of much better than usual quality . . . especially in the finer gauges . . . is Wheeler's specialty. We invite users of this product . . . whether large or small . . . to LOOK inside Wheeler and see for themselves what we have to offer. Briefly, here is what you will find:

A division of The Sperry Corporation, with all that means in background, up-to-the-minute facilities, excellent engineering and precision manufacturing standards.

Production "under one roof" and under one control, from copper wire drawing to final inspection.

Latest equipment for applying Formvar, Dipsol (liquid Nylon) and other modern insulation coatings as well as all types of natural and synthetic yarn insulation.

Complete specialized enameling department.
Comprehensive design engineering and manufacturing facilities for production of wire wound components, from basic coil to completed transformers and related equipment.
If you are looking for a Dependable source with better than ordinary ability to help you, get in touch with us.

wheler magnet wire

AND WIRE WOUND COMPONENTS
the wheeler insulated wire co., inc., 1101 east aurora st., waterbury 20 , conn. Division of The Sperry Corporation

Squeezing heat-softened plastic to form seal

Method of using sleeve on 1B3 highvoltage rectifier
the horizontal output transformer subassembly line, the sleeve was pushed over the spring clip and the open ends heated with an ordinary soldering iron, then squeezed together quickly with long-nose pliers to seal the sleeve in position.

Panel-Holding Fixture

Grooved wood uprights mounted on a wood base are used to hold a small panel for the Signal Corps I-193 relay test set in a vertical position for mounting of parts from both sides in the East Newark, N. J. plant of Utility Electronics. Parts

Simple wood fixture holds panel upright for maximum convenience in mounling parts on both sides

Yes . . . it pays to figure first . . . instead of afterward. . . how Veeder-Root Counters can profitably be built into your new products, machines, or processes . . . to build up sales appeal and new markets.
Much easier to call in a Veeder-Root engineer now, than waiting until later, when your design is in production.

And remember that you can count on Veeder-Root to help you, consistent with defense commitments.

VEEDER-ROOT INCORPORATED
"The Name That Counts"
HARTFORD 2, CONNECTICUT
Chicago 6, III. New York 19 - Greenville, S.C. © Montreal 2. Canada Dundee, Scotland - Offices and Agents in Principal Cities

Berkeley universal COUNTER \& TIMER

DIRECT
READING
DIGITAL
PRESENTATION
0 F
- Irequencies
- Frequency Ratios
- Time Intervals
- Sam Frequency Periad
Measurements

WITH ACCURACIES TO .001\%!

A MULTI-PURPOSE LABORATORY TOOL, the Berkeley Model 550 Universal Counter \& Timer offers in a single instrument these timesaving functions:

1. Time interval measurements from 10 microseconds to 1 sec ond, with an accuracy of ± 10 microseconds.
2. High speed counting at rates to 100,000 counts per second with an accuracy of ± 1 count.
3. Low frequency period measurements can be obtained with an accuracy of ± 10 microseconds.

DIRECT-READING digital presentation of information eliminates the need for interpolation or conversion; relatively unskilled technical personnel can operate the unit.

TYPICAL APPLICATIONS Frequency and frequency-ratio measurements; high-speed counting; tachometry; precise measurement of velocity, flow, pressure, temperature, viscosity; interval timing

```
SPECIFICATIONS
            RANGE: O to 100,000 cycles per second; 10 microseconds to 1 second
        ACCURACY; }\pm1\mathrm{ event; }\pm10\mathrm{ microseconds
        STABILITY: Better than 1 part in 10}10
    POWER REQUIREMENTS; }117\mathrm{ volts }\pm10%,50.60 cycles; approximately 200 watts
        INPUT REQUIREMENTS: Events-Per-Unit-Time Channel: Any pos. wave, 0.2 v. to 50 v. r.m.s
            input impedance 0.05 mmf condenser in series with 250K potentiometer
                    ime Interval Pulse Channel: Pos. or neg. pulses with a rise time of lv.
                    sec. or better. Max sensitivity 1 v. peak. Input 100k potentiometer
                    Time Interval Photo-Wave Channel: Max. sensitivity 0.5 v. r.m s. Pos.
        ACCESSORY or neg. waves. input 270K to ground
    SOCKET CONNECTION: + 300 volts regulated; 6.3 volts a.c.; contacts for remote start; photo
                ell connection to Events-Per-Unit-Time input amplifier.
            DIMENSIONS: 21" x 20" x 15" deep (approximate
            PANELS: Double decked, each panel 19" }\times83/\mp@subsup{4}{}{\prime\prime}\mathrm{ standard relay rack size
        OISPLAY TIME: Continuously variable from 1 to 5 seconds.
            TIME BASE: Selectable 0.1, 1.0 and 10 seconds.
                FINISH: Hammertone blue-gray, baked enamel smooth finish
        NET WEIGHT: Approximately }120\textrm{lbs}
            PRICE: $1200.00 f.o.b. factory
```

For full information, please urite for Bulletin 108
are mounted with nuts and bolts, and this fixture permits holding the slotted head of the bolt with a screwdriver on one side of the panel while tightening the nut with a spin-type socket wrench on the other side.

The operator inserts a wood block under the panel to raise it to most convenient height in the vertical slides.

Reject Indicator Lamp

Two lamps indicate the quality of assembly-line work in Du Mont's East Paterson, N. J. television receiver plant. When the amber lamp is on, the reject rate is within acceptable control limits. When the red lamp is turned on by the line foreman, the workers know that their reject rate is too high.

Plug-in Panels and Meters

For Test Sets
High-speed production test sets for locating shorts and gas in newly manufactured tubes can be quickly changed for another tube type at

Testing 6CD6G in universal shorts and gas test set. Tube socket panel is held down by locking latch at right, needed for larger tubes. Coil spring makes top cap connection

YOUR PRODUCT

largely determines the success, profits and future of your company. Its marketability and acceptance may well be increased by modern, precision fastening.
 You are invited to enlist Milford Rivet's Design Engineering Service without obligation.

MILFORD...

4 modern plants on Industry's doorstep to expedite service of your needs for QUALITY Tubular and Split Rivets, RivetSetting Machines and Special ColdHeaded Fasteners.

[^16]

Plug-in socket panel for tube under test. Coil spring stretched between posts back of socket makes connection to shell of 6SQ7 for checking continuity to

$$
\text { No. } 1 \text { pin }
$$

the Emporium, Pa. plant of Sylvania Electric Products Inc., through use of plug-in connections instead of conventional permanent test circuitry.

Three types of changes are made. The socket for the tube under test is mounted on a small insulating panel having pins that plug into two permanently connected 7-pin sockets in the test set. A complete file of sockets for different tube types is kept in racks on the production floor, so that correct pin connections for a particular tube are made automatically by inserting the correct socket panel for that tube.
All meters on the test set have

Rack used for stosing socket panels. Some have a special top-cap connecting lead or a shield-connecting spring

HERMETICALIY SEALED

FOR USE ON

 MIL-T AND JAN PROJECTSThe paterited SOLA Constont Voltage Principle provides the following advantages over ordinary translormer design: regulation within $\pm 1 \%$ with total primary variations as great as $30 \% \ldots$ automatic, instantaneous fregulation . . . free--dom from moving parts, mainteriance and manual adjustments . . . selli-protectioñ against short circuit. They afe icvailable in a complete ramge of capacities and special types (such as frequiency coms pensated or with harmonic filter).

Today's complex electrical and electronic defense equipment requires unfailing accuracy and dependability under extreme conditions of humidity, heat, mechanical shock and other adverse conditions. To meet those needs SOLA voltage regulators can be provided in hermetically sealed housings which conform to defense specifications for grades 1, 2 or 3 hermetic sealing. Splash proof design housings are provided for large units where hermetic sealing is not feasible.

SOLA Constant Voltage Transformers were widely employed during World War II wherever continuous precision performance of electrical and electronic units was mandatory. Typical defense applications include: observation and fire-control, radar, omni-directional ranges and other navigation aids, X-ray equipment, flight and navigation trainers, and photoelectric devices.

Often the precise voltage input upon which a device's design was predicated is not available. Yet, input voltage level must continuously meet design requirements for satisfactory performance. You can guarantee optimum performance for your unit by stabilizing input voltage with a SOLA Constant Voltage Transformer.

The engineers and sales representatives of the SOLA Electric Company will be glad to discuss the application of SOLA Constant Voltage Transformers to your specific requirements. Your phone call or letter will receive our prompt attention.

Transformörs fôts Gonstant Voltage. Fuorescent Lighting. Cold Cothodo Lighting. Airport Lighting. Series Lighting Luminous Tube Signs

with
 Apco Mossberg Torque Tools

THERE'S NO NEED for costly delays in testing and measuring the final tension on assembly screws in precision-built electronic equipment. Today, you can do the job quickly, accurately and at a minimum cost . . . with Apco Mossberg Torque Screw Drivers.

ESPECIALLY DESIGNED for greater convenience, Apco Torque Screw Drivers feature easy-to-read dials for accurate, instantaneous measurements. Every Apco screw driver is easy to handle . . . simple to operate . . . completely dependable. There are no springs or intricate parts to get out of kilter. Each driver is equipped with a standard Stanley tool holder to accommodate interchangeable bits for tightening and testing torque on all types of screws - including light plastic screws where precision tightening is an absolute necessity.

YOU'LL FIND that Apco Torque Screw Drivers are available in a complete range of sizes - from the 0 to 6 inch ounce size for light bench work to the 0 to 24 inch ounce models with large positive and positive-negative dials for every job in the shop. Get the complete details on these and other Apco Mossberg Torque Tools for Industry from your distributor or write direct. Apco Mossberg Co., 189 Lamb Street, Attleboro, Mass., U. S. A.

APCO MOSSBERG CO.

ATTLEBORO, MASS.

Plugging meter into test set
banana-plug terminals that fit into jacks located behind panel holes. This permits quiek changing of meters when different ranges are needed. Meters not in use are stored on a sloping plywood panel having an individual cut-out hole for each meter.

A plug-in patch panel, also using banana plugs, serves to tie the correct d-c test voltages to the test adapter socket. An ordinary drawer handle on the panel makes insertion and removal easy.

A coil spring permanently mount-

Meter-storing panel

ELECTRONTGURLNGFORMERS

Better Performance

These wound cores of high permeability, cold-rolled, oriented steel are identical in design and material with the cores used in the famous Moloney HiperCore Transformers. You get greater flux carrying capacity and lower losses without increasing the core size.

Increased Production

Eliminates the need for stacking thus saving assembly costs. In all types of electronic transformers this saving in assembly time makes possible a greater accelerated production schedule.

Smaller Size

Cold-rolled silicon steel has higher permeability in the direction of the grain of the steel. HiperCore design most advantageously utilizes this feature and therefore results in a smaller mass without sacrificing performance.

Less Weight

Up to 30% reductions in weight of the core and coil unit are obtained with HiperCore. This can be reflected in the complete product with subsequent savings in material and assembly costs.

A complete range of core sizes from 1 to 12 mil for electronic meet your specifications.

MOLONEY ELECTRIC COMPANY

Manufacturers of Power Transformers - Distribution Transformers - Load Ratio Control Transformers Step Voltage Regulators - Unit Substations

Changing voltage patch panel in test set. Switches and controls provide additional circuit changes that make test set as nearly universal as possible
ed on an insulating post on the test set makes connections to top caps of tubes automatically. When not needed, this spring can be swung out of the way

Swaging Paper Capacitors

ENDS of rolled paper-and-foil units for tubular paper capacitors are swaged by holding them against a metal cylinder that is rotating in a bath of $650-\mathrm{C}$ molten aluminum. The rotating cylinder, belt-driven by a motor, keeps sludge off the

Holding uncased paper capacitor unit against cylinder, rotating in molten aluminum, to swage foil ends together

Everything that goes into the making of DYNAPRENE Flexible Cord is checked and tested for quality. Whitney Blake is proud of the reputation for long life and hard service that DYNAPRENE has earned. You can be sure that this good reputation will be carefully safeguarded.
Only by using flexible cord of the finest quality can a manufacturer be sure that his electrical products will give completely satisfactory performance. It was to meet manufacturers' demands for a better flexible cord that the rugged neoprene compound used for DYNAPRENE jackets was developed. DYNAPRENE is tough and long lasting, it is extra flexible and unusually resistant to those substances and conditions that play havac with rubber-jacketed cords. Safeguard your product's performance by specifying Whitney Blake DYNAPRENE SO, SJO and SV-neoprene-jacketed type on your next requisition.

WELL BUILT WIRES SINCE 1899

〈 $\widehat{\text { WB }}$ 〉 WHITNEY BLAKE CO.

NEW HAVEN 14, CONNECTICUT

capacitor since the sludge does not adhere to the smooth moving surface.

Exposed foil ends of the rolled capacitor units are completely swaged together and coated with fresh aluminum in preparation for soldering of end leads. The technique is used by Astron Corp. in East Newark, N. J.

Vibration Test Setup

Premium subminiature tubes are given a 96 -hour vibration test at $2 \frac{1}{2}$ g on a Syntron style 1774 paper jogger of the type used in printing plants to line up paper sheets. The tubes are first placed in holding racks, each of which holds 12 tubes in fuse clips.

Heater voltage is applied during vibration by allowing heater leads to project on opposite faces of the insulating rack. Other leads go into holes provided in the rack to keep unconnected leads out of the way. Each rack has a copper strip along the entire length of one face. Racks are stacked with all copper strips down. The strips are connected in parallel alternately by bringing one end of each strip around onto the other face and using a U-shaped jumper on the other end, so that all

Vibration-testing type 5900 premium subminiature tubes a hundred at a time in fixture resting on table of paper jogger. Amplitude-measuring coil is at right rear corner of table

C-D probably has the answer to your electrolytic problem! Is it for a motor? TV circuit? Photoflash? Micro-wave communications? If anybody has the answer to your electrolytic problem, it's likely to be Cornell-Dubilier, the greatest name in capacitors. Write for the complete catalog to: Dept. K-82, Cornell-Dubilier Electric Corp., General Offices, South Plainfield, New Jersey.

CORNELT-DUBILTER

world's largest manufacturers of capacitors
amTENNAS

ROTATORS

capacitors

VIBRATORS

converters

MASTERS OF MARKING - Since 1911

Markem methods, machines, type and inks have been marking the products of industry for forty years. Markem machines can mark up to many thousands of pieces per hour. They make clear, durable imprints on flat, curved or irregular surfaces of paint, paper, wood, glass, metal, leather, plastic, rubber, fabric, composition and pressure sensitive tapes. No special skill is needed for their operation. Legend and color of imprint may be quickly and easily changed.

MAKE YOUR MARK WITH MARKEM

When your products need marking for Identification, Control or Market - ask Markem. Submit your problem, together with a sample of the item to be marked. Markem Machine Company, Keene 5, New Hampshire.

MODEL 300 VARIABLE ELEGTRONIG FILTER

Two simple contrals are all that are necessary to operate the Model 300 Variable Electranic Filter. With the variable frequency dial and range switch any cut-off frequency from 20 cps to 200 KC may be quickly and accurately selected and reselected. With the range switch either low-pass or high-pass filter action may be chosen. In either case the rate of attenuation is 18 db per octave and the insertion loss 0 db . For higher rates of attenuation or continuous band pass operation two or more sections can be cascoded. Its low noise level and flexibility of operation make the Model 300 indispensable in geophysical and acoustic research, industrial noise measurements, in the outomotive and aircraft industries as well as the radio braadcasting, recording and motion picture sfudio.

Wrife for further information foday.

SPECIFICATIONS

- CUT-OFF RANGE

20 cps to 200 KC

- attenuation rate

18 db per octave

- SECTIONS

Single, can be high pass and low pass

- INSERTION LOSS 0 db
- PASS band limits

2 cycles to 4 MC

- NOISE LEVEL

80 db below 1 volt

Tube-holding racks. Phosphor bronze heater connecting strip is on one side of rack only. Strip folds over end at left. Short metal piece folded over end at right serves to connect together the strips on the two adjacent racks when they are stacked
tube heaters are automatically connected in parallel when the racks are stacked in a metal holding fixture. Knurled clamping wheels hold the racks in position tightly to get good heater connections and to insure transmission of vibration from the jogger to all tubes.

At one corner of the vibrating table is a permanent magnet. moving up and down inside a coil that is bolted to the stationary base of the jogger. Measurement of the a-c voltage generated in this coil provides an easy means of checking the amplitude of vibration, once coil output has been correlated with

Corner of paper-jogger table, showing how amplitude-measuring coil is mounted

WESTON ${ }^{\text {ais }}$ CLAMP VOLT-AMMETER

A-C Current-five full scale ranges of 1000/ 250/100/25/10 amperes, with range overlap for good readability. Measurements under 10 amperes readily obtained.

A-C Voltage - three self-contained ranges of 700/350/175 volts insure accurate readability, in the upper half of the scale. Instrument insulated for 750 volt service.

Isolated Voltage and Current - with circuits insulated from each other, instrument can be connected to both voltage and current sources at same time.

Convenient 6 position switch-easily operated with gloved hand, a flick of the thumb selects any of the 5 current ranges, or the Volts position.

Adjustable pointer stop - red stop facilitates measuring starting current of motors.

Here's the instrument that produces big savings by slicing hours off maintenance schedules ... produces worth-while revenue by forestalling costly repairs and shutdowns. Being so quick and simple to use, scheduled maintenance measurements are made more accurately . . . and trouble-shooting is simple and sure. Built to WESTON standards of safety, accuracy and dependability. Also available for A-C Ampere measurement only. Order through your local representative, or write . . WESTON Electrical Instrument Corporation, 617 Frelinghuysen Avenue, Newark 5, New Jersey . . . manufacturers of Weston and Tagliabue instruments.

PRODUCTION TECHNIQUES

measured amplitudes of table movement. Frequency is constant at 120 cps for all tests, hence equivalent gravity values are easily computed.

Testing is done in three different planes, by turning over the tubeholding fixture at 32 -hour intervals. The technique is used for sampling inspection at the Emporium, Pa. plant of Sylvania Electric Products Inc.

Testing Incoming Tubes

By Curtis R. Schafer The Liquidometer Corp. Long Island City, N. Y.

In THE MANUFACTURE of capaci-tance-type fuel gages for high-octane and JP series aircraft fuels, customary statistical percentages of deviations or failures in components cannot be tolerated. An error in the weight of fuel indicated by the gage or its failure can mean loss of an airplane and its crew. For this reason, incoming tubes for fuel gages are given thorough tests at Liquidometer Corp. in production-type test setups that minimize need for operator judgment in making 100 -percent tests of incoming shipments of tubes.

The test circuit arrangement of Fig. 1 is used for testing types 5751, 5814, 12AT7, 12AX7, 2101C,

FIG. l-Circuit arrangement for incom-ing-inspection test of voltage amplifier tubes for airborne electronic equipment

The Brush Models BK-1502 N Magnetic Record/Reproduce Heads are precision aligned, dual channel units. They are designed so that they may be step. mounted side-by-side to provide 4 channels of $1 / 4$ " tape.

- Individual channels are cast into one integral block of especially selected synthetic resin
- All gaps in precise alignment
- Mu metal shields between individual channels
- Individual channel width, 0.044"
- Center to center spacing between channels $0.125^{\prime \prime}$
- Gap width 0.0004"
- Total inductance, 75 millihenrys
- Total resistance 85 ohms
- Special design features can be sup. plied to meet your requirements

Model BK-1502N Record/Reproduce Heads, like all other Brush Magnetic Recording Components, are the products of Brush engineering leadership and Brush skills in precision production.

Write us for help on your magnetic recording problems. Your inquiries will receive the attention of capable engineers.

THE

Brush

DEVELOPMENT COMPANY 3405 Perkins Ave. Cleveland 14, Ohio Piezoelectric Crystals and Ceramics Magnetic Recording Equipment

Acoustic Devices - Ultrasonics Industrial \& Research Instruments

Radio-relay station at Evanston, Wyoming
 W.
 Many of the Bell System's to7 radio
 keeps moisture out of the wavc-

stations connecting New York and San Francisco by microwave radiorelay stand on hills and mountains far from towns. Day after day, the apparatus does its duty; no man need be there to watch it. But when trouble threatens, an alarm system developed by Bell Telephone Laboratories alerts a testman in a town perhaps a hundred miles away.

A bell rings. The testman sends a signal which asks what is wrong. A pattern of lights gives the answer -a power interruption, an overheated tube, a blown fuse, a drop in pressure of the dry air which
guide. At intervals the testman puts the system through its paces to bc sure it is on guard.

Sometimes the testman can correct a trouble condition through remote control, or the station may cure itself-for example, by switching in an emergency power supply. Sometimes the trouble can await the next visit of a maintenance mansometimes he is dispatched at once.

This is one of the newest examples of the way Bell Laboratories adds value to your telephone system by reducing maintenance costs and increasing reliability.

Alarm-receiving bay in town. Lights on a chart report on 42 separate conditions affecting service. Telephone is to communicate with maintenance crews. Eleven alarm centers across the country cover all 107 radiorelag stations. Stations too far of the beaten trail for wire connections signal by verg high frequency radio.

BELL TELEPHONE LABORATORIES

IMPROVING TELEPHONE SERVICE FOR AMERICA PROVIDES CAREERS FOR CREATIVE MEN IN SCIENTIFIC AND TECHNICAL FIELDS.

After years of development, the NATIONAL MOLDITE COMPANY has engine ered and built an automatic machine for making molded coil forms held to the most exact dimensions for length and O.D. This new machine is geared for high speed production, thus providing prompt shipment an most popular sizes

Here is another example of MOLDITE pioneering in order to provide the radio, television, and communication industries with quality engineered components.

Yes, look to MOLDITE for precision engineered magnetic iron cores, RF filter cores, and now MOLDED COIL FORMS.

MAGNETIC IRON CORES • FILTER CORES • MOLDED COIL FORMS THREADED CORES • SLEEVE CORES • CUP CORES

NATIONAL

Samples promptly
submitted upon request for design, pre-production, and test purposes

SEND FOR CATALOG 110

1410 Chestnut Ave., Hillside 5, N. J.

Roberl T. Murry 614 Cenitral Ave.

 East Orange, N. J.Jerry Goliten Co. Martin P. Andraws 2750 W. Morth Ave. Chictigo 22, III.

Mett Road

Fagetteville, M. Y.

Perlmuth Colman \& Assoc. Jose Luis Pontet 1335 South Flower Cardoba 1472 Los Angeles, Cal. Buonos Aires

FIG. 2-Test circuit for measuring out put of tube for given grid voltage

5719 and 6112 tubes. The tubes are tested as voltage amplifiers, being required to exceed a stated output current through a load resistance when a given input voltage is applied.

By a multiple socket arrangement, single triodes are tested in pairs (one of the pair may be a known good tube used as a standard). Dual triodes are tested by cascading the two triode sections. A Variac is used to control the voltage across the secondary of the input transformer and the power transformer; setting this voltage automatically provides the correct operating voltages throughout the unit. Octal sockets are provided to take the proper Sylvania adapt-

Tube test setup using circuit of Fig. 2

as a shaft . . . Rollpin serves as an axle for the sparkwheel of a cigarette lighter. No riveting or threading necessary .. faster assembly. Note flush, clean fit.

AS A DOWEL . . . Rollpin is used here to prevent rotation of a thrust bearing. No reaming, no special locking. Easily removed. Lowest possible dowel pin cost.

AS A STOP PIN . . . in this application, Rollpin is shown in a ratchet wrench adaptor. With its light weight and high shear strength, Rollpin functions perfectly . . cuts assembly costs.

AS A CLEVIS PIN . . . here Rollpin holds firmly in clevis, permits free action of moving member. Rollpin application above is with the plate of a home workshop tool.

AS A SIMPLE FASTENER . . . Rollpin replaces a set screw in pinning a gear to a shaft. Assembly time is shorter, service life longer. Vibration-proof flush fit. Easily removable.

YOUR IMPORTANT FASTENNG JOBS are cheaper . . . faster, with

Rollpin is a pressed-fit pin with chamfered ends. It drives easily into holes drilled to normal tolerances, compressing as driven. No reaming, no tapering, no extra assembly steps required. Rollpin fits flush, locked in place by the constant pressure it exerts against the hole walls. Can be inserted with automatic press, or by hand-removable with a drift or pin punch.

Rollpin is reusable again and again.

MAIL COUPON TODAY. If your present operations or plans include the above applications-or set screws, rivets, hinge pins, cotter pins, pivot pins, taper pins-you can't afford to be without complete details on Rollpin. Write nowfind out how much faster and cheaper Rollpin can do the job.

 \title{

STANDARD
 \title{ \section*{STANDARD

 Radiot the tef fenence

 Radiot the tef fenence and 7ied (1 wemenity and 7ied (1 wemenity measuring equipment measuring equipment Complete Frequency Coverage -- 14 kc to 1000 mc !

NM-IOA VLF

14kc to 250kc

Commercial Equivalent of AN/URM-6.
Very low frequencies.

HF NM - 20A

150 kc to 25 mc
Commercial Equivalent of AN/PRM-1. Self-contained batteries. A.C. supply optional. Includes standard broadcast band, radio range, WWV, and communications frequencies.

NMA - 5A VHF

15 mc to 400 mc

Commercial Equivalent of TS-587/U.
Frequency range includes FM and TV Bands.

UHF NM - 50A
375 mc to 1000 mc Commercial Equivalent of AN/URM-17. Frequency range includes Citizens Band and UHF color TV Band.

These instruments comply with test equipment requirements of such radio interference specifications as JAN-I-225a, ASA C63.2, 16E4(SHIPS), AN-I-24a, AN-I-42, AN-I-27a MIL-I-6722 and others.

STODDART AIRCRAFT RADIO CO. 6644 SANTA MONICA BLVD., HOLIYWOOD 38, CALIFORNIA
Hillside 9294

ers for testing subminiature types. A pin straightener is used by personnel of the incoming inspection department to insure that the miniature types will not damage the sockets in the test unit or in the aircraft fuel gage equipment for which the tubes are intended.

The somewhat similar test unit in Fig. 2 is used to check types 6005, 6AQ5W, 5902 and 5639 tubes. The output voltmeter measures the actual power output delivered by the tube for a given grid voltage. The operator inserts the tube, allows a minute or so warmup time, presses the pushbutton and notes the output power reading.

FIG. 3-Simple test circuit for checking 6 X 4 W ruggedized and 5641 Arinc rectifier tubes

The input signal voltmeter, when correctly set by means of the Variac, insures the correct voltages elsewhere in the unit.

For checking 6X4W and 5641 rectifiers, the circuit of Fig. 3 is used. Correct operating voltages are set with an input voltmeter and Variac, and the total cathode emission is measured with an 0-50 ma meter. Heater-to-cathode leakage, which should not exceed 10 microamperes in this circuit, is indicated on the microammeter. This meter would be damaged by a heater-to-cathode short or even excessive leakage, so two resistors and a neon lamp are incorporated as a protective circuit for the meter.

In operation, the microammeter indicates actual leakage currents up to $100 \mu \mathrm{a}$. If these currents exceed that amount, the lamp fires and shunts most of the current around the meter. The only alternative would have been to place

Stupakoff

Save space and weight
 Speed Assembly

Reduce Costs

Minimize Assembly errors

Soldered connections are reduced by 25% to 80%, assemblies are lighter and more compact, your production time is reduced and better products are made when Stupakoff Printed Circuits are used. These sturdy, compact, accurately produced units combine resistors and capacitors of precision values, in circuits designed in accordance with the requirements of individual applications. One Stupakoff Printed Circuit will replace
many individual components, with consequent simplification of the assembly and reduced costs.

STUPAKOFF Products for Electrical and Electronic Applications

ASSEMBLIES-Metallized ceramic induction coils and shafts; metallized plates for fixed rigid assemblies; ceramic trimmer condensers.

CERAMICS-Precision-made ceramic produets for electrical and electronic applications, all voltages, frequencies and temperatures.

RESISTOR CERAMICS-Used for temperature indicating or measuring equipment, for infrared light source and for heating elements. Complete with ierminals, in the form of rods, fubes, dises, bars, rings, etc.

CERAMIC DIELECTRICS-For by-pass, leadthrough, blocking, stand-off and trimmer applications. Temperafure compensating Ceramic Dielectrics and high K materials. Tubes, discs and special shapes, plain or silvered.

STUPALITH-Will withstand extreme thermal shock. May be made to have zero, low-positive or negative expansivities. Safely used at temperotures up to $2400^{\circ} \mathrm{F}$.
SEALS, KOVAR-GLASS-Terminals, Lead-ins; Stand-offs-for hermetically sealing and mechanical construction in radio, television, electronic and electrical apparatus. Single or multiple terminal units, in a wide variety of sizes and ratings
KOVAR METAL-The ideal alloy for sealing to hard glass. Used for making hermetic attachments. Available as rod, wire, sheet, foit-or as eups, eyelets and other shapes.

has the "specials" IN STOCK

"SPECIAL" FOR AIRCRAFT

The HP3-140 unit is just one of many
"specials" regularly stocked in the Chicago New Equipment Line. chicago makes a practice of stocking "specials" that are hard-to-get elsewhere. You'll find the answers to your transformer needs for practically any of today's circuit requirements in chicago's exclusive "Sealed-in-Steel" New Equipment Linein stock at leading electronic parts distributors. Whether your transformers must pass the most rigid MIL-T-27 specifications or are intended for average applications, it's wise to choose chicago "Sealed-in-Steel" units (the world's toughest) for that extra margin of dependability under all operating conditions.

"Special" or "Standard"- the world's foughest fransformers are in CHICAGO'S "Sealed-in-Steel" NEW EQUIPMENT LINE!

H-TYPE
Hermetic sealing meets all MIL-T-27 specs. Steel base cover is deep-seal soldered into Stud-mounted unit.

S-TYPE

Steel base cover fitted with phenolic lerminal board. Convenient numbered solder lug erminals. Flangemounted unit.

C-TYPE

With 10" color-coded leods brought out through fibre board base cover. Lead ends are stripped and tinned for easy soldering Flange-mounted unit.

All chicago "New Equipment" transformers feature one-piece drawn-steel cases - the strongest, toughest, best-looking units you can buy. The one-piece seamless design, enclosing an electronically perfect construction, provides the best possible electrostatic and magnetic shielding, affording complete protection against adverse atmospheric conditions. For every application: Power, Bias, Filament, Filter Reactor, Audio (in 3 ranges), MIL-T-27, Step-downthere's a chicago "Sealed-in-Steel" transformer, a vailable in a choice of 3 mountings.

Free"New Equipment"Catalog

Get the full details on chicago's New Equipment Line-covering "Sealed-in-Steel"' transformers designed for every modern circuit application. Write for your Free copy of this important catalog today, or get it from your electronic parts distributor.

Loading mica spacers into hopper that distributes them over conveyor belt of sorting machine

.ELECTRICALLY EFFICIENT!

MECHANICALLY PERFECT!

LOW INTER-ELECTRODE
CAPACITANCE

- very low dielectric loss
- HIGH DIELECTRIC STRENGTH
- PERMANENT DIMENSIONAL
- NON-HYGROSCOPIC,

NON-WARPING
INFORMATIVE DATA SHEETS AVAILABLE!
Write for your complete sel, logether with loose-leaf binder for instant, easy reference. Your request will automatic. ally assure prompl forwarding of all subsequent Mycalex data sheets and catalog material. Write on company letterhead please.

MYCALEX engineers designed these sockets to provide a com. plete, yet economical, solution to UHF tube mounting problems. Exhaustive tests have proven their mechanical excellence and high electrical efficiency. The use of "MYCALEX 410" (injection molded glass-bonded mica) with its great dimensional stability permits a minimum amount of dielectric to be used in the body structure. This plus other unique design features results in extremely low inter-electrode capacitance. In addition to its other advantages-high arc resistance, high dielectric strength, nonporosity, etc., "MYCALEX 410 " has very low dielectric loss at all frequencies including UHF and thereby offers great advantage over phenolic materials. "MYCALEX 410" operates continuously in temperatures up to $650^{\circ} \mathrm{F}$ with practically no change in electrical properties or mechanical structure. Soldering operations will not cause body distortion.

MYCALEX TUBE SOCKET CORPORATION
Under exclusive License of Mycolex Corporation of America - 30 ROCKEFELLER PLAZA, N. Y. 20

TROUBLEFREE CONTACT TERMNALS!

Contact terminals on these sockets are so designed that the effective inductance from soldered connection to the tube base is no greater than if the connection was made directly to the tube pin. Special design results in high contact area pressure that effectively reduces contact resistance. Contact terminals are secured in the body in a manner that permits 90° bending of the tab without weakening.

AH TYPES OF MOUNTING HARDWARE!

"MYCALEX 410" UHF Sockets, 7 or 9 pin, can be furnished mounted in various standard saddle hardware-regular saddles (top or bottom mounted), saddles with ground lugs, snap or JAN types, permitting the use of radio tube shields.

Mycalex Corporation of America

Owners of 'MYCALEX' Patents and Trade-Marks Executive Offices: 30 ROCKEFELLER PLAZA, NEW YORK 20 • Plant \& General Offices; CLIFTON, N. J.

FOR CRITICAL JOBS

Series $R-100$
Hermetically Sealed Sub-Miniature Aircraft

4PDT RELAYS

- Operational Shock Resistance: 50 " $\mathrm{G}^{\prime \prime}$ Plus (10-55 cycle vibration with .060" total excursion)
- Weight: 3.76 ounces
- Cubic Displacement: 1.6 cubic inches

Designed for such applications as guided missiles, rockets, super-sonic and high altitude jet aircraft, fire control, radar, geophysical and computer apparatus, Series R-100 Relays meet all requirements of USAF Specification MIL-R-5757A . . . and far surpass many of them.

Contact ratings through 7.5 A . resistive for 100,000 cycles (30 A . resistive for 100 cycles) at 30 V., D.C., or 115 V., A.C. Series R-100 relays have run successfully at 10 A . resistive for 100,000 cycles and 30 A . resistive for 100 cycles. Contact resistance at the end of the tests was less than .030 ohms.

Variations in basic specifications are available to meet a wide variety of specific requirements including temperature ranges from -65° up to $200^{\circ} \mathrm{C}$. and coil resistances up to 35,000 ohms. Also available for socket mounting.
Write for certified test data, telling us your application.

"Diamond H" Aircraft Suitches Built to Meet JAN-S-23 Specifcations (ST40 and 42 A through H) Are Now Available.

THE HART MANUFACTURING COMPANY 202 Bartholomew Ave., Hartford, Conn.
dimensions are collected in the main bin. Those that are too thick or too thin fall into their respective reject bins.

Electronic Attennator

Alignment of receivers while moving past the operator on a conveyor is facilitated by use of electronic attenuation at Philco. The technique keeps signal level at a low constant level while trimmers are peaked, eliminating need for turning down gain controls of signal generators during i-f alignment.

The tone-modulated $455-\mathrm{kc}$ signal is fed directly to the stator of the antenna section of the tuning gang through a $0.1-\mu \mathrm{f}$ capacitor in a connecting jig that can be fitted over the tuning capacitor frame in one easy motion. Voice-coil voltage of a dummy loudspeaker is fed through a diode rectifier to a d-c voltmeter that is watched by the operator while adjusting the six i-f trimmers in turn to resonance. The rectified voltage is also used to control the bias voltages of a twostage r-f amplifier inserted between the signal-cage line and the chassis being aligned. Increasing voice coil voltage thus gives greater negative bias on the amplifier, automatically attenuating the input signal.

ROSIN-FUME FAN

Fan running in reverse pulls soldering fumes away from operator's nose at each soldering position on CBS-Columbia television assembly line in Brooklyn. Simple hardware-cloth cage gives more protection than ordinary fan guard. Fan action can be reversed by putting fan on motor shaft backward or by rebending fan blades

NEW PRODUCTS

Edited by WILLIAM P. O'BRIEN
Recently Developed Test Instruments, New Materials and Components and Controlled Characteristic Power Supplies Are Described . . . Thirty-three Trade Bulletins Are Reviewed Under Literature (p 295)

Precision Power Supplies

John Fluke Engineering Co., P. O. Box 755, Springdale, Conn. Series 400 precision d-c power supplies are especially designed to meet nucleonic needs. Typical models are the 400 B and 400 C , the former with an output voltage from 1,000 to 5,000 , and the latter from 500 to 1,500. Both are rated 1 ma and hold their output voltages constant to ± 0.01 percent short term, and to ± 0.1 percent per day. Noise and hum do not exceed 0.01 percent of the lowest output voltage.

Electrometer

Special Instruments Laboratory, Inc., 1003 Highland Ave., Knoxville, Tenn. Model 145 electrometer is a-c operated and features direct measurement on a panel meter of d-c potentials from 0 to 150 mv . Special modification to give full scale deflection of 30 mv is available. Input imperance of $10^{9}, 10^{10}$, 10^{11} or 10^{12} ohms may be selected. All useful circuit points are avail-
able through panel connectors, and provision is made for connection to a strip chart recorder.

Tubular Paper Capacitors

Pyramid Electric Co., 1445 Hudson Blvd., North Bergen, N. J., is producing a new type of molded tubular paper capacitor, embodying several extremely rugged characteristics. The "Imps" are molded of thermosetting plastic which renders the capacitor impervious to moisture and capable of operating at temperatures ranging from -40 to +100 C . Each section is noninductively wound, and is available in capacitance values ranging from $0.00025 \mu \mathrm{f}$ to $0.5 \mu \mathrm{f}$ in 200 and 400 volt ratings, and from 0.00025 uf to $0.25 \mu \mathrm{f}$ in a 600 -volt rating.

Selenium Diodes

International Rectifier Corp., 1521 E. Grand Ave., El Segundo, Calif., has developed a line of subminiature selenium diodes designed for stable operation in an ambient
OTHER DEPARTMENTS
featured in this issue:
Page
Electrons At Work. 152
Production Techniques 228
Plants and People 310
New Books 318
Backtalk 340
temperature range of -60 to +100 C. Type 1 T 1 measures $\frac{1}{8} \mathrm{in}$. in diameter and $\frac{1}{4}$. long. They are currently available for output voltages of $20,40,60$ and 80 v at average output currents of 200 ua and 1.5 ma . Some of the uses for these diodes are: bias supplies, sensitive relays, digital and analog computers, hearing aids, electronic organs and many compact airborne electronic equipments.

Recorder-Amplifier

Rahm Instruments Inc., 12 West Broadway, New York 7, N. Y. Type R03-E6-1 is a multichannel system providing 9 channels for direct recording of transient phenomena. The instrument is suited for telemetering problems where in a 0 to $20-\mathrm{cps}$ flat frequency response is re-quired. Three signal channels utilizing a $40-\mathrm{mm}$ chart grid width are provided. Five channels are supplied for off-on functions and one channel is assigned to an integral time pulse generator. Features of the instrument include a stylus motor system which permits operation in any plane, six-speed semiautomatic chart drive and auto-

Video Designers who Look into the AATHEO 6AH6 Miniature TV Amplifier

 Pentode...As a result of extensive life tests and continued excellent field performance of the 6AHG, cathode current and screen dissipation ratings are now increased. These new ratings are in line with the increased picture tube drive conditions required by trends to a larger and more brilliant picture.

What's more, despite these increased ratings the inherent low grid current level of the 6 AH 6 , achieved by carefully controlled manufacture, still permits the use of 1 megohm grid resistor in AC coupled video amplifiers.

* New higher rating

Input Coupling and Sync. Polarity	Output Volts P / P	Voltage Gain	Max. Watts Dissipation Screen		Cathode Resistor Ohms	Cathode Current No Sig. (ma.)	With Sig. (ma.)	Resistor Ohms
$D C-$	66	22	0.6	3.2	39	20	13	5000
$D C+$	100	25	0.4	3.2	270	8	15	5000
$A C-$	100	25	0.6	3.2	39	20	21	1 meg.
$A C+$	100	25	0.6	3.2	39	20	18	1 meg.

All data taken with Screen voltage of 150 and Plate load of 4000 ohms with typical on-the-air television signals and average production tubes.
matic reroll mechanism. The complete unit is contained on a chassis 11 in. $\times 18 \frac{2}{3} \mathrm{in}$. $\times 11 \frac{1}{2} \mathrm{in}$.

Recorder Console

Ampex Electric Corp., Redwood City, Calif., announces a new dualspeed console for audio magnetic recording. Features include all pushbutton control and a built-in microphone preamplifier. It has $15,000-\mathrm{cps}$ response at the $7 \frac{1}{2}$-in. speed. At present two models are available: the model 402 has halftrack heads, and model 403 utilizes the full width of standard quarterinch tape. Complete details and specifications are available for the writing.

Resistor

Telewave Laboratories, Inc., 100
Metropolitan Ave., Brooklyn, N. Y., announces its type R resistor, a stable, metal film on glass resistor, for microwave applications. It is ideal for power measurements, resistive pickup loops, pads, impedance matching, attenuators, in both waveguide and coax. An application note is available describing suggested uses of this resistor.

Adjustable Cup Cores

General Ceramics and Steatite Corp., Keasbey, N. J., announces a new line of adjustable cup cores made of high efficiency Ferramic materials suitable for frequencies from low audio up to 1500 mc with Q values to 300 . Both core and cover illustrated are notched on the outside circumference. Angular displacement of one piece with respect to the other will change the effective permeability and therefore the inductance of the coil through a range of 20 percent. Sizes of these cores range from 0.5 in . to 1.5 in . with 11 variations available. Maximum inductance obtainable with the larger size is approximately 20 henries. Complete dimensional and other data will be supplied on request.

Deposited Carbon Resistors

Dale Products, Inc., Columbus, Nebraska, are offering a line of deposited carbon resistors in three resistance ranges: 50 ohms to 5 megohms, 50 ohms to 10 megohms, and 100 ohms to 50 megohms. Temperature coefficients vary only slightly- 140 to 500 parts per mil. lion per deg C , depending upon resistance. Voltage coefficient is less than 0.002 percent per volt with the average coefficient about 0.0012 percent. Resistors are supplied with 1-percent tolerance and are calibrated at 25 deg . C. If such pre-
cision is not required, resistors can be supplied with tolerances of 2 percent and 5 percent.

TV Receiver Tube

Sylvania Electric Products, Inc., 1740 Broadway, New York 19, N. Y. A new high-perveance double triode designed for vertical deflection and oscillator service in tv receivers has been announced. The type 6BX7GT is $1 \frac{9}{32} \mathrm{in}$. in diameter, $3^{\frac{5}{16}} \mathrm{in}$. long, and 23 in. high when seated. Electrical characteristics include: heater volts, 6.3 ; heater current, 1.5 amperes; plate volts (each section), 250; plate current (each section), 42 ma ; plate resistance, 1,300 ohms; transconductance, 7,600 micromhos; and amplification factor, 10 .

Miniature Potentiometers

Avion Instrument Corp., 299 State Highway No. 17, Paramus, N. J., is offering a line of precision potentiometers of miniaturized computing type, available as single units or ganged assemblies. Series N potentiometers cover linear windings and those nonlinear functions which can be fitted by tapping and shunting techniques. Series C incorporates a cam-corrector which makes possible accurate fitting of

SPDT GENERAL PURPOSE SENSITIVE D.C. RELAY. Inexpensive balanced armature for vibration resistance on aircraft at 50 milliwatt adiustment. Sensitive enough for V-T operated relay circuits; can be set to operate down to 10 milliwatts. Precision adjustments for pull-on and drop.out. 2 amp. nominal contact rating. Coil resistance up to 14,000 ohms.

SERIES 41

SPDT SENSItIVE RELAY A.C.-D.C. - KEYING. Unuswal characteristies at low cost. Same D. C. sensitivity as Series 4 but less fexibility of adjustment. Available with long life and baunce-free contacts, it is suited to high speed counting and keying. Mechanical life ex. ceeds 10^{\prime} operations. Good for plate circuirs needing moderate precision and vibration immunity. Contact ratings up to 5 omps. Coil resistonce to 14,000 ohms, A. C. sensitivity exceeds 0.1 V. A. of 60 cps . Serviceable on frequencies from $16-400 \mathrm{cps}$.

SERIEST

SPDT SENSITIVE HIGH SPEED polarized relay. Single or multiple windings up to 14,000 ohms (single). Balanced arma. ture. Nominal contact rating 2 amps. For repeating telegraphic signals a speeds up to 250 WPM. Small in size and weight. Hermetically sealed. Mechanical life exceeds 10^{9} operations. FORMS X, Y and Z (see Type 6 above) available in Series 7 . Sensitivities from less than 1 to 10 milliwatts depending on form and requirements. Form X is useful as the desecting element in positioning bridge circuits.

SERIES 5

SPDT VERY SENsitive D.C. RELAY. Bolanced armature and magnetic efficiency resist air craft vibration on inputs as low as 5 milliwaiis. Withstands 500 g shock without damage. Precision adjustments. 2 amp, nominal contatt rate ing. Coil resistance up to 16,000 ohms. Special adaptations: Built-in rectifier, two-coil differen. tial operation, constont voltage temperature compensation.

SERIES 6
MULTICIRCUIT POL. ARIZED SENSITIVE RELAY. Single ar double (differential) windings. Resistance up to 25,000 ohms tPDT 5 onirs up ro nal rating. Balanced armature for strong vibration resistance FORM X - Three Position ar Null Seeking. For automatic positioning or 2Way process control. Sensitivity (depending on contast complexity) from 10 to 100 milliwatts. FORM Y - Biased (Spring Return). Use as an ordinary sensitive relay if a complex contact cambination is needed. Responds only to one polarity. Combines function of pilot relay and contactor. Sensitivity same as Form X. FORM Z - Latching (permanent magnetic). Replaces mechanical latch electrical reset relays, where longer life and greater vibration resistance is required. Sensitivity from 100 to 250 milliwatts.

SERIES 22

Miniaturized double-pole double-throw Direct Current Sensitive (45 milliwatt) relay, $2-\mathrm{dmp}$ contact rating, coils up to 12,000 ohms. Hermetic seal enclosure only, 1 inch square mounting space. Specially designed for highly stable and precise aperating adjustments, extreme immunity to vibration and to thermal and mechanical shock. Will operate under 50 g 's sustained acceleration if operating and releasing margins are increased.

SIGMA INSTRUMENTS, INC.., 62 Pearl Street, So. Braintree, Boston 85, Mass.
an additional class of more difficult functions. Both types may be ganged separately or intermixed. Accuracy for linear functions is \pm 0.1 percent, for nonlinear, ± 0.25 bercent.

Crystal Microphone

The Turner Co., Cedar Rapids, Iowa. Model 80 crystal microphone features miniature styling and versatility. Frequency response is 80 to $7,000 \mathrm{cps}$ with sensitivity of approximately 58 db below 1 volt per dyne per sq. cm.

Synchronous Brake

Allard Instrument Corp., 30 Broad St., New York, N. Y. Developed for lightweight, airborne instrumentation, the synchronous brake supplies a means for controlling speed of a rotating device. Motive power is derived from a motor running a little above the maximum speed desired. The brake, interposed between motor and load, is actuated by signals of the desired frequency from a vacuum-tube amplifier. The brake mechanism is phase sensitive and has no 180-degree ambiguity. Several devices each equipped with

McGRAW-HILL PUBLICATIONS

gothman products

 mantain o reputation of quality for military as well as civil application

COILS
FOR MEITART, RADIO \& TELEVISION
 antenna coils
oscillator coils
HCRIZONTAL SWEEP TRANSFORMERS
COMPRESSION TYPE MICA TRIMMERS
I.F. TRANSFORMERS

LOOP ANTENNAS
R.F. TUNERS

edwin i. guthman \& co., inc. 15 s . throop st. chicago 7. . CH 3-1800
altso attica, indiana.. 394 J burton arowne adyertisme

NEW PRODUCTS
(continued)
its own brake, can be driven at different speeds from a common shaft.

Nylon Tip Jacks

E. F. Johnson Co., Waseca, Minn., announce their new line of Nylon insulated tip jacks. Breakdown rating is $11,000 \mathrm{v}$. Nominal capacitance to $\frac{1}{8}$-in. panel is $2.0 \mu \mu \mathrm{f}$. Silver plated contacts, either phosphor bronze or beryllium copper, are supplied. Accepting 0.081-in. diameter pins, engagement is positive insuring low contact resistance. Minimum withdrawal force is 1 lb . Integral solder terminals are hot tin dipped.

Constant Current Supply

Weston Electrical Instrument Corp., 617 Frelinghuysen Ave., Newark 5, N. J. Model 50220 con-stant-current supply provides a steady d-c source from an a-c line. Designed primarily for use with potentiometer indicators, recorders and controllers, where automatic standardization is not feasible or where use of batteries is not desirable, it is also used with resistance thermometers, strain gages or other devices requiring a constant d-c current. The standard unit is designed for a $10-\mathrm{ma}$ output at 1.4 v d-c and provides a current with a high degree of stability to well within the limitation of ± 0.1 per-
smaller than a suitcase

AMERICAN ELECTRIC

MOTOR

 AIITERNaTORWEIGHT: Approx 125 lbs .
SIZE: 22" x 12" $\times 12^{\prime \prime}$
Designed for production and laboratory high frequency power supply requirements. Strong-Simple-indestructible construction-No delicate moving parts, brushes or springs to wear out or maintain. Replaces single large, hard-toget H-F power supply serving multiple purposes... A bank of these compact, flexible units costs far less, provides individual portable power sources for each project, avoids downtime hazards of single unit!
Meets power supply requirements for AN-E-19 equipment.
output: Up to 1000 Watts single phase 115 V or up to 1800 Watts three phase $115 / 200 \mathrm{~V}$. Input: 60 cycle AC.
Total harmonic content under 5%; $\pm 1 \%$ voltage regulation.

WRITE FOR DETAILS!

Larger capacities available.

4811 Telegrapt pid. Los Angeles 22,
California

POPULATION-O

 to provide long, trouble-free service with no attendants...

AEROCOM'S

Dual Automatic

Package-Type Radio Beacon

for completely unattended service. This aeroptare (illustrated) consists of two 100 watt (or 50 watt) transmitters with keyer, autematic transfer and antenna funer. (Power needed 110 or 220 volt - $50 / 60$ cycles, 520 V . A. for 50 watt, 630 V . A. for 100 watt.)

Frequency range $200-415 \mathrm{kcs}$.: self-contained P. A. coil and "plug-in" crystal oscillator coil cover entire ranje. (Self-excited oscilator coils covering 200-290 and $290-415 \mathrm{kcs}$. are available.) Higt level plate modulation of final amplifier is Lsed, giving 40% tone modulation in 100 watt transmitter and 60% in 50 watt model. Microphone P-T switch interrupts tone, permitting voice operation.

This unit can be operated in air temperature range $0^{\circ} \mathrm{C}$ to $+45^{\circ} \mathrm{C}$ using 866 A rectifiers, or from $-35^{\circ} \mathrm{C}$ to $+45^{\circ} \mathrm{C}$ using 3B25 rectifiers; humidity up to 95%.

The "stand-by" transmitter is selected when main transmitter suffers loss (or low level) of carrier power or modulation. Audible indication in monitoring receiver tells which transmitter is in operation.

Unit is ruggedly constructed and conservatively rated, providing l.ow operating and maintenance costs.

Prolong Insulation

 GLASS VAR ELECTRO
/mproved thermal endurance
\checkmark High dielectric strength
Vxcellent thermal conductivity \checkmark Top tensile strength
\checkmark Rot repellent
Resists chemicals and acids Good moisture resistance

GLASS VAR is available in rolls, sheets and tape.

TECHNICAL PRODUCTS

You will find these other Class "B" Electro products tops in quality and performance

VARNISHED ASBESTOS CLOTH VARNISHED QUINORGO ASBESTOS PAPER QUIN-GLASS HI-TEMPERATURE INSULATION

Electrical equipment manufacturers are invited to use our Special Service facilities. Write or phone and we'll be glad to help you with your problem and send you technical data, samples, etc.

> You may buy with confidence when you buy ELECTRO-TECHNICAL PRODUCTS

dIVISION OF SUN CHEMICAL CORPORATION
NUTLEY 10 , NEW JERSEY

[^17]cent. Its special compensated feedback circuit allows a flat-current characteristic over an input voltage range of 80 to 140 v .

Ferrite Core Kit

Grayburne Corp., 103 Lafayette St., New York 13, N. Y. Type FCK Ferrite core kit consists of 27 vari-ous-sized cores which are well adapted for experimentation in i-f, r-f coils, solenoids, linearity, width and other variable controls, and in many electromechanical applications.

A-C VTVM

Millivac Instrument Corp., 444 Second St., Schenectady 6, N. Y., has announced a new low-frequency voltmeter designed to satisfy both linear and logarithmic scale requirements. The new dial used in the MV-12A a-c voltmeter features zero suppression of its linear voltage scale. This spreads the logarithmic decibel divisions sufficiently to avoid congestion beyond a point where accurate reading would be difficult. Another feature of the meter is its high sensitivity and

your choice of over "dishes"

The extensive WORKSHOP chucks and dies are now available to you . .. to give you parabolic reflectors - "dishes" - in the widest range of diameters and focal lengths in the industry.

Sizes range from $4^{\prime \prime}$ diameter, $1.26^{\prime \prime}$ focal length, to $120^{\prime \prime}$ diameter, $35.8^{\prime \prime}$ focal length. Modifications of standard sizes on request.

If you manufacture or experiment with microwave, there is an economically priced WORKSHOP reflector for you. Write for complete listing of standard sizes.
for example WORKSHOP has slashed "cish" costs by perfecting a new stamping technique that holds close
to erances. Now available
in 4 foot diameter.
$18^{\prime \prime}$ focal length.

- $\pm .015^{\prime \prime}$ surface tolerance
- $1 / 8^{\prime \prime}$ thick 2 SO aluminum
- rolled rim
- supplied unfinished

Model 48-18-ST, only $\$ 40.00$ each f.o.b. Ashtabula, Ohio-quantity prices on request.

WORKSHOP ASSOCIATES DIVISION

THE GABRIEL COMPANY
Endicott Street Wormwood, Mass.
Designers and Manufacturers of a complete line of microwave antennas

SPECIFY

The most advanced hermetikally sealed relays can best be designed and produced by a firm like Leach which pioneered this field from the begirning.

Here at Leach you will find complete engineering, testing and production facilities to help you solve your relay problems in the electrical and electronic fields.
The unsurpassed dependability of Keach Relays has been proved by nearly four decades of teadership in providing all types of relays for maximum performance under compertive operating conditions.

FOR BETTER CONTROLS through better relays -Specify Leach

No. 637PS
2PDT Hermetically Sealed, Plug-In Type in Octal Plug

Performance characteristics for the
Relays illustrated above are as follows:

- Contacts rated: 10 Amps. Resistive and inductive at 29 VDC.
- 6 Amps. Motor load at 29 VDC.
- 10 Amps. Resistive af 115 VAC, 400 cycles. Coil 24-28 VDC.

LEAGH

wide voltage range ($0.7 \mu \mathrm{v}$ to 1,000 v). Its frequency range is 20 cycles to 250 kc .

Variable Inductance Coils

North Hills Electric Co., Box 427, Great Neck, N. Y., has announced a new series of variable inductance coils covering the 2 -to-$180-\mu$ h range completely. Designed for such applications as video peaking, r-f and i-f amplifiers and filter networks, these coils feature compact plastic forms, four rugged terminals (two of which may be used as separate tiepoints), and durable windings.

Grid Winding Machine

Kahle Engineering Co., 1323 Seventh St., North Bergen, N. J. Especially designed to produce higher pitches, up to 500 turns per in., this semiautomatic grid winder is sturdily constructed for vibra-tion-free operation and increased durability. Provision is made for variable pitch and for swaging the side wires. Accurate stop and start positioning is achieved by brake motor and pushbutton control. The pneumatic cutter rises and disappears automatically leaving the work field clear for complete accessibility. Because the lead screw nut is never disengaged grid wind-

You'll find classmates-and a future-at Boeing!

Mcn from more than 120 top engincering schools arc building rewarding carecrs at Boeing. So chances are, you'd be working with some of your classmates here. And you'd be a member of an Engincering Division that has carned world-wide renown for its trailblazing contributions to both military and civil aviation.

If that's the kind of engineering prestige you'd like to enjoy, look into Boeing opportunities. This company has been growing stcadily for 35 years. It provides the finest rescarch facilitics in the industry. It offers you work on such exciting projects as guided missiles and the fastest known bomber in
the world: the B-47 six-jet medium bomber, as well as the still-classificd B- 52 cight-jet heavy bomber.

There are opportunities at Boeing for experienced and junior engineers in all fields, for aireraft

- DESIGN • RESEARCH - DEVELOPMENT • PRODUCTION

- TOOLING

also for servo-mechanism and electronics designers and analysts, and for physicists and mathematicians with advanced degrces.
You can work in Scattle, in the Pacific Northwest, or in Wichita, Kansas. Bocing provides a generous moving and travel allowance, gives you
special training, and pays a good salary that grows with you.

You'll be proud to say, "I'm a Boeing cnginecr!"

Write today to the address below, or use the convenient coupon.

JOHN C. SANDERS, Staff Engineer-Personnel
Dept. H-8
Boeing Airplane Company, Seattle 14, Wash.
Engineering opportunities at Boaing interest me. Please send me further information.

Name

Address
City and State

TRIGGER-TRIP TIME DELAY RELAYS

for 60 and 400 cycle A.C., also D.C.

The HAYDON* 5103 time delay relay is designed so that the synchronous motor performs its true function as a time standard. Switching work is accomplished by a relay coil, which, when energized, triggers the load switch for release at the end of the delay time. Hair trigger release point assures snap action.

HAYDON specializes in the manufacture of timing components for standard applications and also in the design and mass production of custom-engineered timers for volume applications. The basic element of all HAYDON timers is our own rugged industrial motor. This means that HAYDON timing devices can be depended upon to give long, quiet operation. They are small and compact and offer designers unusual latitude in that they may be mounted and will operate in any position. For military applications various motors are available either separately or in many types of timers; HAYDON engineers will be pleased to review your requirements and specifications.

COMPLETE INFORMATION

Write for literature you need: catalogs on motors or devices; bulletins on D. C. motors, 400 cycle motors, time delay relays.
*trademark reg. u. s. pat. office

HAYDON Manufacłuring Co., Inc.

ing is always in perfect register. The machine is fully geared without the use of ratchet-pawl.

Power Output Tester

Gederat Llegtrosonici, Ii:c, 32 W. 22nd St., New Ycrik 10, I. Y. Moder TS゙-4 power output test set is designed to measura the useful r-f power output of any vasuumtube oscillator, including miniature and subminiature types, carable of dolivering 1 watt of power cr less. It features variable filament and regulated plate supplies, provision for t:se of an external r-f bridge and a self-contained calibration circuit. Dimensions are 28 in. high \times 21 in . wide $\times 15 \mathrm{in}$. deap.

Multigenerator

Precise Development Corp., Oceanside, N. Y., has announced the model 635-Universal a-f sine, square and puise generator, designed to ascertain all audio and video troubles. Among its attributes are: Wien bridge oscillator; sine waves; square waves; pulses variable-impedance output; voltage regulation to insure a constant output; cathode-follower output; minimum overshoot and round-off through 30,000 cycles on square waves and

If the samples you need are not here - send for them.

SPECIFICATIONS

POWER FACTOR: LESS THAN. 1% AT 1 MEGACYCLE WORKING VOLTAGE: 1000 VDC TEST VOLTAGE: 2000 VDC DIELECTRIC CONSTANT: P. 10014 K N. 75088 K N. 2200265 K CODING: CAPACITY, TOLERANCE AND TC STAMPED ON DISC INSULATION: DUREZ PHENOLIC-VACUUM WAXED

LEAKAGE RESISTANCE: INITIAL 7500 MEG OHMS AFTER HUMIDITY 1000 MEG OHMS

LEADS: \# 22 TINNED COPPER (. 026 DIA.)
LEAD LENGTH: $1 / 4^{\prime \prime}$ BODY 1 ", $5 / 16^{\prime \prime}$ BODY $11 / 4 ", 1 / 2^{\prime \prime}$ AND LARGER BODY $11 / 2^{\prime \prime}$
TOLERANCES: $\pm 5 \%, \pm 10 \%, \pm 20 \%$

RMC DISCAPS are Designed to Replace Tubular Ceramic and Mica Condensers at LOWER COST

SEND FOR SAMPLES AND TECHNICAL DATA

RADIO MATERIALS CORPORATIOR GENERAL OFFICE: 3325 N. California Ave., Chicago 18, III.

FACTORIES AT CHICAGO, ILL. AND ATTICA, IND.
Two RMC Plants Devoted Exclusively to Ceramic Condensers

WORK POSITIONERS SPEED PRODUCTION, CUT COSTS

Powrarm gives the worker a powerful third hand . . . holds work rigid in any desired position . . . leaves two hands free to produce faster. For one vital defense manufacturer Powrarm units have cut production time on one subassembly from twelve days to three. With Powrarm aid another manufacturer now produces intricate assemblies three times faster, at half the previous cost. He uses Powrarms mounted on platforms which travel between stations on roller skates.

New, profitable applications for Powrarm are busting bottlenecks daily on the nation's most efficient assembly lines. A Wilton representative can quickly show you how Powrarm on your assembly lines can speed output, cut the cost of assembly, reduce worker fatigue, and boost employee morale.

On Production Lines POWRARM Speeds and Simplifies Every Operation

Write for 32 page Catalog .. full facts on POWRARM and Wilton Vises, Too.
pulses; sine waves through 200,000 cycles; coaxial type fittings and 1.0 -percent ceramic resistors.

Local Control Unit

Bendix Radio, Baltimore 4, Md., has introduced the MS-255A local control unit that resembles an ordinary telephone. The desk-type control unit, which is a part of the Command-Air series of mobile communication equipment, consists of handset, loudspeaker, volume control, squelch control and channel selector in the one unit. An added feature is muting of the speaker to provide for private conversation when handset is removed from base.

Surface-Resistance Indicator

General Electric Co., Schenectady 5, N. Y. The portable surfaceresistance indicator illustrated was designed to help produce a better resistance welding bond by providing a rapid and accurate measurement of the resistance between pieces of metal to be welded. The instrument supplies a simple check on prewelding cleaning processes, upon which surface resistance of the metal depends. It consists of two parts, a microhmmeter and a sample holder. The unit has two ranges: 0 to 200 and 0 to 2,000 microhms. The measured resistance is indicated directly in

BRIDGEPORT BRASS COMPANY Copper Alloy Bulletin
"Bridgepgrt" mills in bridgeport, CONN. AND INDIANAPOLIS, IND.-IN CANADA: NORANDA COPPER AND BRASS LIMITED, MONTREAL

Precision-made automatic screw machine products-
Courtesy Senese Manufacturing Company, Inc., Bridgeport, Conn.

Making Precision Quality Screw Machine Items from Brass

Many companies shy away from taking on an extremely "fussy" screw machine job which calls for close tolerances and numerous gauge and visual inspections, although it may have long run possibilities. However, if the company decides to tackle it, and the job is finally developed, the rewards will more than pay for the long hours spent in experimental work.

Among the essentials for successful operation of precision jobs are:

1. A company policy committed to making precision quality. It must be willing to set up an inspection department with the necessarily large investment in special gauges and equipment.
2. Screw machines must be in perfect order. Although new machines are preferred, old ones will serve if they are first properly rebuilt, then carefully maintained.
3. Prompt notification to the operator if the work deviates even slightly from specifications. A trained inspector should sample the work from the machine at regular intervals. After putting parts through the necessary gauging and visual inspections, he reports his findings to the operator.

Carbide tools are a "must" to maintain the close tolerance requirements on long runs. "Fussy" jobs should be run at moderate speeds and special attention should be given to produce a smooth, clean finish.

Items $1 \& 2$. The delay element illustrated here easily come under the "fussy" classification. The delay holder requires 17 gauge and 5 visual inspections while the primer holder must pass 23 gauge and 8 visual inspections.

All of the operations are made on single spindle No. 00 Brown \& Sharpe machines with a spindle speed of about 3800 rpm . Deburring is done as a secondary operation.

Item 3 is also difficult to make. It has knurl on one end and a threaded hole through the center. The milling on the side is done as a secondary operation.

Item 4 is also an unusual job as it is completely finished on the screw machine. In addition to knurling, the head is also slotted.

Precision screw machine items require dependable quality brass rod for maximum operating efficiency. Frecdom from defects is one of the essentials. In Bridgeport mills, accuracy in

gauge and smoothness of surface result from the use of carbide drawing dies. Straightness is also desirable; consequently the rods should be properly stored if not immediately used.

Bridgeport's laboratory works closely with metal fabricators. Although the standard free turning brass rod alloy No. 6 (61% copper, 3.4% lead, and remainder zinc), meets about 90 per cent of requirements, certain items may require a modification in temper, or possibly a change in alloy. For conditions requiring machining plus some cold working operations such as roll threading, knurling, forming or expanding too severe for Ledrite standard, we supply Ledrite 2, Medium Leaded (approximately 63% copper, 1.8% lead, remainder zinc). Naval brass 24 (approximately 60% copper, 0.65% tin, remainder zinc) may be required to resist sea-water corrosion. This alloy can also be supplied with 0.6% lead (Alloy 28) or with 1.75% lead (Alloy 29) without materially affecting the corrosion resisting properties.
(8622)

BALLANTINE STILL THE FINEST IN ELECTRONIC VOLTMETERS

Ballantine pioneered circuitry and manufacturing integrity assure the maximum in

SENSITIVITY•ACCURACY•STABILITY

- All models have a single easy-to-read logarithmic voltage scale and a uniform DB scale.
- The logarithmic scale assures the same accuracy at all points on the scale.
- Multipliers, decade amplifiers and shunts also available to extend range and usefulness of voltmeters.
- Each model may also be used as a wide-band amplifier.

MODEL	FREQUENCY RANGE	VOLTAGE RANGE	INPUT IMPED ANCE	ACCURACY	PRICE
300	10 to 150,000 cycles	1 millivolt to 100 volts	1/2 meg. shunted by 30 mmfds .	2% up to 100 KC 3% above 100 KC	\$210.
302B Battery Operoted	2 to 150,000 cyeles	100 microvolts to 100 volts	2 megs, shunted by 8 mmfds , on high ranges and 15 mmfds. on low ranges	3% from 5 to 100,000 cycles; 5% elsewhere	\$225.
305	Measures peak values of pulses as short as 3 microseconds with a repefition rate as low as 20 per sec. Also measures peak valves for sine waves from 10 to 150,000 cps.	1 millivolt to 1000 volts Peak to Peak	Same as Model 302B	3% on sine waves 5% on pulses	\$280.
310A	10 cycles to 2 megacycles	100 microvolts to 100 volts	Same as Model 302B	3% below 1 MC 5% above 1 MC	\$235.
314	15 cycles to 6 megacycles	With probe, 1 millivolt to 1000 volts. Without probe, 100 microvolts to 1 millivolt	With probe, 11 megs. shunted by 6 mmfds . Without probe, 1 meg. shunted by 25 mmfds .	3% escept 5% above 3 megacycles	\$265

For further information, write for catalog.

BALLITITIE LIBORLTORIRS. INC.

NEW PRODUCTS
(continued)
microhms on a linear 100 -division scale. Voltage fluctuations in the supply mains do not affect the reading.

Spectrum Analyzer

Polarad Electronics Corp., 100 Metropolitan Ave., Brooklyn 11, N. Y., announces a new and improved all-band direct-reading spectum analyzer, covering the frequency range from 10 mc to 21,000 mc. This range is covered by means of four tuning units. Its features include continuous unidial tuning over the entire range with 5 -kc resolution at all frequencies. The frequency can be read to an accuracy of 1 percent and dispersion is independent of frequency and available from 250 kc to 25 mc . A frequency marker is provided to measure frequency differences from 0 to 25 mc . The microwave tuning units use the latest design nonconducting shorts to insure accurate resettability and long mechanical life.

Sampling Switch

Applied Science Corp., P. O. Box 44, Princeton, N. J., has announced a new type of sampling switch for zero drift correction of $\mathrm{d}-\mathrm{c}$ amplifiers in analog computers. Motordriven, the switch makes possible the use of one a-c amplifier alone for zero correction and gain im-

KEYSTONE PRODUCTS COMPRNY
 UNION CITY 2, N.J. UNion 6-5400

dependable instruments

The Heiland A-500 recorder embodies many features found only in much larger instruments... easy loading; four quick change paper speeds; precision time lines; trace identification; paper movement indicator; direct monitoring of galvanometer light spots. Case dimensions $63 / 4 " \times 97 / 8^{\prime \prime} \times$ $123 / 4^{\prime \prime}$. Weight 33 lbs. Paper width $4^{\prime \prime}-100^{\prime}$ long. Available for either 12 volt or 24 volt D.C. operation.

An 8 volt battery pack provides self contained power source affording complete portability and flexibility to the Heiland A- 401 Recorder. Other features are similar to the A-500. Case dimensions with battery pack $7^{\prime \prime} \times 91 / 2^{\prime \prime} \times 121 / 4^{\prime \prime}$, without $41 / 4^{\prime \prime} \times$ $91 / 2^{\prime \prime} \times 121 / 4^{\prime \prime}$; Weight with pack, 39 lbs., without, 22 lbs. Single speed. Paper width $2^{\prime \prime}-100^{\prime}$ long. Available for 12 volt or 24 volt D.C. operation without battery pack.

Accurate oscillograph records provide data for better product design and performance. Heiland recorders are being widely used for numerous aircraft, laboratory and industrial applications. Write today for Heiland catalog of recorders, galvanometers and associate equipment.

HEILAND RESEARCH CORPORATION - 130 E. fith Avenue, Denver, Colorado
provement of as many as $30 \mathrm{~d}-\mathrm{c}$ computing amplifiers. The unit has two poles with 60 contacts per pole and the sampling rate is $3 \frac{1}{2} \mathrm{rps}$. It has intercontact resistance over 1.000 megohms. The design is compact for easy installation and weighs only $7 \frac{1}{2} \mathrm{lb}$ including the 110 -v 60-cycle motor.

Regulated Power Supply

Oregon Electronic Mfg. Co., 2232 E. Burnside St., Portland 15, Ore. Model D4 regulated power supply provides two completely independent outputs each continuously variable from 0 to 400 v with 0.5 percent regulation at loads from 0 to 200 ma . The two outputs may be paralleled to double the output current or put in series to double the output voltage. Also featured are two continuously-variable bias supplies of 0 to -150 v d-c stabilized. Ripple of all outputs in less than 10 mv . Separate meters monitor output voltage and current of each supply.

Multi-Contact Connectors

De Jur Amsco Corp., 45-01 Northern Blvd., Long Island City, N. Y., has available a line of miniature precision multicontact connectors. The contacts float in the plug and receptacle, thus insuring selfalignment of the individual contacts. Polarization is unusually positive making engagement possible only in the proper position. These connectors are interchangeable with those now being manufactured by other companies. Features are a molded body of Melamine per MIL-P-14 B type MME; socket contacts of spring temper phosphor bronze; pin contacts brass silver plated. gold flash. Voltage breakdown is

The demand for a Nestier to fulfill the requirements of all dipping operations has led to the design of this new expanded metal basket.

Expanded metal sheet is actually more rigid than an equal weight of solid steel plate or wire mesh. Formed to the distinctive Nestier shape and equipped with Nestier bails and runners, you have a unit which retains not only its original strength but all of the features which have made the Nestier outstanding.

This new Nestier, available in the two standard Nestier sizes, is made of flattened expanded steel mesh, electro-zinc plated, and is interchangeable with the standard Nestier.

SPECIFICATIONS

IT NESTS IT TIERS

- performs the same functions as the standard Nestier.

EVERY MATERIALS handiling engineer WILL WANT THIS BULLETIN
Write for this brochure describing the Nestier System, including complete information on racks, trucks, conveyor hangers and inserts.

Our service includes complete engineering advice to systematize small parts handling in your plant.
Nestiers nest to save space. Bails prevent complete telescoping, eliminate jamming or sticking. Tiered, bails lock units to form rigid stack. Parts in all units are visible and accessible from either end.

THE CHARLES WM. DOEPKE MFG. CO., INC., ROSSMOYNE, OHIO

No. 220 -Cubic content -880.3 cu . in. Capacity - 200 lbs . each. $5 / 16^{\prime \prime}$ bails will support maximum load of 600 lbs. or 3 tiers of loaded units.
No. 175 - Cubic content-395.6 cu. in. Capacily-100 lbs. each. $1 / 4^{\prime \prime}$ bails will support maximum load of 400 lbs. or 4 liers of loaded units.

NesTier	Gauge	Mesh	Length	Width	Weight
No. 220	$13-15$	$5 / 16^{\prime \prime} \times 1^{\prime \prime}$	$225 / 8^{\prime \prime}$	$121 / 2^{\prime \prime}$	6 lb .14 oz.
No. 175	$16-18$	$5 / 16^{\prime \prime} \times 1^{\prime \prime}$	$181 / 16^{\prime \prime}$	$91 / 8^{\prime \prime}$	4 lbs.

FULL RANGE HERMETICALLY SEALED UNITS

NYT hermetically sealed transformers are available in all standard sizes to meet MIL-T-27 specifications, and especially designed constructions for a wide variety of military as well as civilian applications. Designed and built to meet the most exacting specifications. Production facilities for quantity production of all sizes.

the HORNET

HORNET transformers, pioneered by NYT, are of open type construction, utilizing Class H insulating materials. Approximately onefourth the size and weight of comparable Class A units. Filament and plate supply transformers and chokes. Units can be designed for ambients up to 190 deg. C., altitudes up to 60,000 feet; power ratings from 2VA to 5 KVA .

> POWER, AUDIO, FILAMENT and PLATE TRANSFORMERS REACTORS • FILTERS • CHOKES TV•RADIO • ELECTRONICS

Engineering and development facilities

NEM YeRK
 TRANSFORMIER COor INC. ALPHA, NEW JERSEY

$3,600 \mathrm{v}$ rms; current rating, $5 \mathrm{am}-$ peres; and contact size, No. 20 AWG wire.

C-R Tube

General Electric Co., Schenectady 5 , N. Y., has announced development of a new c-r tube, type 7UP7, for radar indicator service. It employs magnetic focus and magnetic deflection and can be used as a replacement for the 7BP7 or the 7BP7-A. Use of a reflective aluminized screen reduces undesirable screen charging, permitting more accurate plotting directly from the face of the tube. It also uses an improved anode contact design aimed at decreasing corona discharge permitting operation at higher altitudes. A recessed smallcavity cap has been used on the anode contact instead of the conventional recessed small-ball cap.

Electronic Voltmeter
Ballantine Laboratories, Inc., Boonton, N. J. Model 314 electronic voltmeter is a recent development in the field of sensitive, accurate,

PROBLEM: To perform vibration tests to MIL-E-5272 specification.

is a good example of the quality of vibration engineering that has made MB "headquarters" for products to isolate, control, reproduce, detect, or measure vibration. More information on MB Vibration Exciters in Bulletin 1-VE-5.
Shake testing gives a quick method of developing a product to withstand vibration. Such testing is vital for military equipment - and a good idea for any product. To meet this need, MB has applied its specialized vibration engineering to develop a range of shakers in various ratings for testing everything from electron tubes to airframes.

The big C-25 model illustrated develops large "brute forces" to satisfy specification MIL-E-5272. It has heavy duty capacity for a wide range of work, including fatigue testing. It features accurate, continuous control of force and frequency. Its control panel is available with an automatic cycling system for specific cycling tests called for in the MIL-E-5272 specification.
One of the largest and most dependable electromagnetic shakers available, the $\mathrm{C}-25$ model

Write us.

Want a standard mount for vibration isolation in the special class?

With the Isomode* Type 17 Isolator, you not only conform to MIL-I5432 specification but also get an unusual degree of isolation efficiency. It has equal spring rates in every direction. This means better control of all modes of motion. For details on this mount, write to Dept. 5.
*Trade Mark Reg. U.S: Pat. Off.
THE
MANUFACTURING COMPANY, INC.
1060 STATE STREET, NEW HAVEN 11, CONN.

We invite your inquiries

METHODE Manufacłuring Corp.
 2021 West Churchill Street • Chicago 47, Illinois

Geared to produce Plastic and Metal Electronic Components

Sample Precision Potentiometers now available in 4 to 6 weeks

Better delivery than ever before of Fairchild Precision Potentiometers is the result of recently improved facilities and additions to personnel. Now you can expect delivery of sample standard units with windings to meet your requirements in 4 to 6 weeks after your final approved specifications are received. The same reasonable prices prevail, too.

Enlargement and realignment of facilities
and personnel also enable us to start delivery of production orders in 3 to 4 months after receipt of your order.

Thus, when you look to Fairchild for your precision - potentiometer requirements you get products built to the highest standards of quality coupled with sound engineering help that starts with your idea and carries through to final delivery.

HOW PRECISION IS DESIGNED AND BUILT INTO FAIRCHILD POTENTIOMETERS

1. Shaft is centerless-ground from stainless steel to a tolerance of +0.0000 , -0.0002 in. which, together with preci-sion-bored bearings, results in radial shaft play of less than 0.0009 in .
2. Mounting plate has all critical surfaces accurately machined at one setting to insure shaft-to-mounting squareness of $0.001 \mathrm{in} . / \mathrm{in}$. and concentricity of shaft to pilot bushing within 0.001 in . FIR.
3. Housing is precision-machined from

ahminum bar stock. Close tolerance of this construction permits ganging up to 20 units on a single shaft with no eceentricity of the center cups, even though only two bearings are used.
4. Windings are custom-made by an exclusive technique. This, together with precious metal alloy contacts results in guaranteed accuracies of $\pm 0.5 \%$ linear and $\pm 1.0 \%$ non-linear in standard type potentiometers. Higher accuracies (to 0.05%) are available in other types.

DO YOU HAVE CONTROL PROBLEMS?

Fairchild Sample Laboratory engineers are available to help you with potentiometer problems. To get the benefit of their knowledge and experience write today, giving complete details, to Potentiometer Division, Fairchild Camera and Instrument Corporation, Park Avenue, Hicksville, L. I., New York, Department 140-29A

PRECISION POTENTIOMETERS /II

Unmodulated Carrier

Modulation Index 1.3

Modulation Index 2.4 The Carrier "Disappears"

For carriers in the range 2.5 to 200 megacycles, this ruggedized deviation meter is ideal. With crystal-standardized deviation

FM DEVIATION METER
TF934
 ranges of 5,25 and 75 kilocycles, alternative high- and low-level buffered inlets, visual checking for optimum tuning and level, together with a separately buffered audio outlet, FM Deviation Meter TF 934 incorporates every desirable refinement. There are no critical tuned circuits to drift and the overall demodulation distortion is less than 0.1 per cent.

MARCONI instruments

Specialists in Communication Test Equipment

23-25 BEAVER STREET • NEW YORK 4

[^18]9 db . Approximately 3.5 kw of svne peak drive power is required for full output.

Drawn-Oval Capacitors

General Electric Co., Schenectady 5, N. Y. Drawn-oval capacitors for electronic applications are shown with the rectangular-styled units which they will replace. The new capacitors are stronger, smaller and cost less than the rectangular units. The new units are available in ratings of 600 to 1,500 $\mathrm{v} \mathrm{d}-\mathrm{c}, 330$ to 660 v a-c and $2.0 \mu \mathrm{f}$ to $10.0 \mu \mathrm{f}$.

Wattmeter

Keithley Instruments, 3868 Carnegie Ave., Cleveland 15, Ohio. Model 109 electronic wattmeter employs an amplifier to drive the potential coil of a dynamometer wattmeter. Advantages include an input impedance of 500,000 ohms, eliminating errors due to potential coil current. A frequency response of 20 to $3,0000 \mathrm{cps}$ permits accurate measurement at all power frequencies and their harmonics, of nonlinear circuits with harmonics, and of low audio frequencies. Ranges of $300,100,30,10,3,1,0.3,0.1$ and 0.03 watts are provided, with fullscale accuracy within 2 percent. Maximum permissible current is 1.0 ampere, with external shunts

mOLECULAR LUBRICANT FOR USE WITH MODEL PB VAPOR PUMPS

Litton Molecular Lubricant "C" (Molube " C ") is a highly refined petroleum product with a narrow boiling range. It has a vapor pressure of approximately $10^{-\top} \mathrm{mm}$. Hg. at room temperature. In the presence of ionization, it will give an indicated pressure of $10^{-6} \mathrm{~mm} . \mathrm{Hg}$. It is designed for use in Litton Oil Vapor Vacuum Pumps and with antifriction bearings operating within dynamic vacuum systems.

PRODUCTION EXHAUSTING TO VACUUM 5×10^{-8} WITH ALL-METAL LITTON OIL VAPOR PUMPS

In applications ranging from laboratory research to high vacuum under production conditions, Litton Model PB Vacuum Pumps are meeting today's requirements for higher vacuum more swiftly obtained.

Precision-built Litton pumps are of all-steel construction to eliminate glass breakage, avoid loss of engineering and production time and lengthen pump life. Each unit is water-cooled to insure complete independence of room temperature. Pump heaters are external and mount with a simple clamp for easy replacement. The nozzle assemblies are of stainless steel of high chromium content.

For evacuation problems such as organic distillation, etc., Model PBPumps may be used without accessories. For other problems, a charcoal baffle system with a 2 -inch side outlet is provided. This baffle has an adapting ring and collar which can be soldered to 2 -inch tubing to form a manifold, or through a metal-glass seal to a glass manifold. Baffle systems are water-cooled, and contain a charcoal cell with a built-in heater and lead terminal. Heating voltage required is 18 volts.

An additional accessory is a high-vacuum valve which attaches to the charcoal baffle unit. This valve is available with its own side outlet. It is sufficiently tight so that a manifold may be let down to atmosphere-and a new tube sealed on and roughed out by auxiliary pump - while the Litton vapor pump is still operating. This can materially increase production speed by eliminating outgassing of baffles each time the system is opened to atmosphere.

Boiler, charcoal baffles and high-vacuum valves are easily demountable for cleaning. Units of the pumps are available individually so combinations may be selected appropriate to the research or production problem.

Specifications

Ultimate Vacuum under following conditions:

1. Pump and water baffle only, 1×10^{-n} mm . of Mercury (ion gauge indication).
2. Pump, water and charcoal baffles, $5 \times$ $10^{-8} \mathrm{~mm}$. of Mercury.
3. Pump, water, charcoal baffles and valve, $5 \times 10^{-7} \mathrm{~mm}$. of Mercury.
Speed (measured at $10^{\text {" }} \mathrm{mm}$. of Mercury)
4. Pump only, at connecting inlet, 280 liters.
5. Pump and water baffle at inlet, 200 liters.
6. Pump, water and charcoal baffles, straight through type, at inlet, 75-100 liters.
7. Pump, water and charcoal baffles, and valves, straight through type, 5075 liters.
High vacuum inlet, top $-33 / 8^{\prime \prime}$ ID., $31 / 2^{\prime \prime}$ OD.
High vacuum inlet, side-2" ID., $21 / 8^{\prime \prime}$ OD. Forepump outlet $-1^{\prime \prime}$ copper tubing.
Height of pump only $-181 / 2^{\prime \prime}$.
Height of pumps complete with baffles and valve-30".
Width, max. width at high vacuum outlet $-7 \frac{1144^{\prime \prime} \text {. }}{}$
Construction-pump stainless steel. Auxiliaries -steel, tin clad.
Weight of pump only, with mounting brackets $-161 / 2$ pounds.
Weight completely assembled - 33 pounds. Cooling-water.
Amount of oil-6 ounces.
Recommended oilLitton Molecular Lubricant, Type "C," 375 watts.
Silicone Pumping Fluids, DC702, 400 watts.
Silicone Pumping Fluids, DC703, 425 watts.
Boiler heatersVoltage available, 230, 208 and 115 volts; power, 375 watts.
Charcoal baffle heater - Voltage, 18 volts AC; power, 75 watts.

Eclipse-Pioneer, one of the world's largest producers of Gyros, has developed a series of direct reading and remote transmitting Gyros for radar stabilization, navigation, remote compass, automatic pilot, and other similar airborne applications.
Typical of these Gyros is the type 14104, a two axis, gravity erected Vertical Gyro Transmitter designed for use as a remote vertical reference where vertical stabilization is required. The instrument is essentially an electrically driven, vertical-seeking gyro with separate Autosyn* transmitter pick-offs on the pitch and bank axes. Sealed in an aluminum case, protection against environmental conditions is accomplished by means of a double " O " ring labyrinth air tight seal. Signals are brought out on sealed headers (terminal panels) and caging and uncaging is obtained thru D.C. solenoids. Provisions are incorporated within the case to reduce bank error encountered in turns. A means of sensing turns is required in order to employ this feature.

* beg. trade mabk of benolx aviation corporation look for the pioneer mabk of quality REG. U. S. PAT. DFF.

Specifications for Eclipse-Pioneer Gyro Type 14104

Dimensions: $61 / 8^{\prime \prime}$ diam., $63 / 4 \mathrm{ln}$ high - Weight: $61 / 4 \mathrm{lbs}$.
Operational limits: 360° in roll and pitch with controlled tumbling of the pitch axis at near 90°. Erection device: A gravity sensitive erection system maintains the gyro in a verlcal position to within $\pm 1 / 4^{\circ}$ of vertical.
Caging: From any position at full rotor speed in less than 45 seconde.

Power Requirements

Gyro roter: 115 volts, 400 cycle, 3 phase, 25 VA - Gyro caging: 28 volts DC, 5 amperes. Gyro turn error compensation: 115 rolts, 400 cyele, Single phase 40 MA . Pickoff excitation: 26 rolts, 400 cycle, Single phase, 0.34 watts each.

Bank and Pitch Pickoff Information

Input voltage: (Nominal rotor excitation): 26 volts, 400 cyele, Stingle phase. Input current: 50 milliamperes.
Input impedance (stator open) : $139+\sqrt{ } 510$ ohms. Stator resistance-DC (line to line): 34 ohms. Rotor resistanee-DC : 48 ohms .

Stator output-max. (line to line): 11.8 volte. Sensitivity: 220 millivolts I degree sine of displacement angle.
Null voltage-max. : 70 millivolts. Phase shift (rotor to stater): 4°

For detailed information, write to Dept. C
ECLIPSE-PIONEER DIVISION of

teterboro, New Jersey

Export Soles: Bendix international Division, 72 Fifth Avenue, New York 11, N. Y.
available for measurement $3.0,10$ and 30 ampere circuits.

Ferrite Rod Antennas

Heppner Mfg. Co., Round Lake, Ill., has announced a new line of Ferrite rod antennas including the following sizes: $\frac{1}{3}$ in. diameter $\times 8$ in. long, 点 in. diameter $\times 8 \mathrm{in}$. long, ${ }^{\frac{3}{8}} \mathrm{in}$. diameter $\times 5 \mathrm{in}$. long and $\frac{\mathrm{i}}{\mathrm{s}} \mathrm{in}$. diameter $\times 7 \mathrm{in}$. long. Inductances are held to ± 0.5 per cent and matched to the set for which they are intended. The antennas come without mountings or with mountings to the specifications desired.

Mercury-Vapor Detector

General Electric Co., Schenectady 5, N. Y. The type A completely redesigned portable mecuryvapor detector was developed for indicating concentrations of mercury which could be harmful to industrial workers. The electronic instrument is designed to give an instantaneous indication of mercury vapor by resonant absorption of ultraviolet energy. It will give instant readings ranging from 0.01 to 3.0 mg of mercury per cubic meter of air, and features greater operational stability independent of line voltage. This is possible because of an additional phototube in a bridge-circuit which measures the visible light, thus maintaining the bridge balance although the line voltage may vary. Accuracy for

ELECOD REVOUTIONRY DELAY LINES

Required impedance
Special features such as unusual temperature
range, available space, tapping, etc.

DECADE DELAY LINES

ELECOM decade delay lines are entirely new items of laboratory equipment. Each line provides adjustment over a two decade range, and as much as 1.1 milliseconds delay with excellent rise time is obtainable in a single unit of relatively small size.

Specifications of other ELECOM components available. Please write.

ELECTRONIC COMPUTER CORPORATION

Designers and Manufacturers of Electronic Computers and Components

[^19]ing at ony oltitude or humidity.
Won't be domoged by prolonged
exposure to humidity or salt spray.
PHASE ANGLE Contacts $\log 65^{\circ}$
behind driving sine wave. Dwell time 135°
RESIDUAL NOISE At 1 megöhm impedance, residual noise is less than 400 microvolts peak, measured from any contact to ground.

ACCELERATION Operates under greater thon 50G, ony plane. Will toke over 500G, in sertain planes.
DRIVE Now availoble only of 400 cycles, 6.3 volts, max, coil voltage. Usual frequency range is 380 to 420 cycles.

TEMPERATURE Operotes successfully between 70 C to. $100^{\circ} \mathrm{C}$, not damaged by temperatures varying over those limits.
VIBRATION Operotes well under vibration of 10G, 10 to 55 cycles.
LIFE Repeated life rests by some of nation's major electronic and oircroft concerns show o life expectioncy in excess of 1,000 hours.

Size一Fits 7 pin miniature socket.
Length 1.8 12. Max. dio. 765.
determination is within ± 5 percent.

Subminiature Resistors

The Daven Co., 191 Central Ave., Newark 4, N. J., has available series 1166 and 1167 hermetically sealed, wire-wound subminiature resistors. They can be furnished with wire leads or with solid terminals. Series 1166 is 1 in . long and ${ }^{3} \mathrm{in}$ in. in diameter; 1167 is $1 \frac{5}{8} \mathrm{in}$. long and $\frac{1}{3} \frac{\mathrm{l}}{} \mathrm{in}$. in diameter. Each has leads $2 \frac{1}{2}$ in. long. The units are available with temperature coefficients as low as 20 parts per million per deg C. Tolerances as close as ± 0.1 percent can be supplied. The wattage for series 1166 is 0.5 ; for 1167 it is 1 watt. The resistors meet all requirements of specification JAN-R93 for type RB51A.

DEVELOPMENT

Wgt.- 1.2 oz .

RESIN-IMPREGNATED RESIN-FILLED

for $125^{\circ} \mathrm{C}$ service - without derating

111 DURATOR CAPACITORS

Higher working temperatures at no increase in size are now possible, with Tobe Durators. Features of these capacitors are:

- $125^{\circ} \mathrm{C}$ ratings in same space as $85^{\circ} \mathrm{C}$
- $150^{\circ} \mathrm{C}$ operation for 20 hours without derating
- Welded terminals with silicon insulators
- Hermetically sealed metal cases in bathtub, deep-drawn, and lock-squeeze-seam styles
- Capacitance drift below $71 / 2 \%$ from $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Power factor below 1.5% from $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- Suitable as coupling capacitors at minimum voltage
ously tested by conventional means. The comparator accuracy is $\pm 1 \frac{1}{2}$ percent. Normal meter range is ± 40 percent, with a minimum detectable difference of $\pm 1 \frac{1}{2}$ percent, with a minimum detectable difference of $\pm 1 \frac{1}{2}$ percent, though both range and sensitivity can be increased. Dimensions are $9 \frac{1}{2} \times 6 \frac{1}{2}$ $\times 6 \frac{1}{2}$ inches. Weights is $6 \frac{1}{2} \mathrm{lb}$.

H-F Power Supply

American Electric Motors, 4811 Telegraph Rd., Los Angeles 22, Calif. A new 400 -cycle motor alternator, meeting AN-E-19 requirements for power supplies, offers marked freedom from maintenance. It utilizes no rotating coils, requires no brushes or springs, is small in size and unusually compact. Total size measures approximately 22 in . $\times 12$ in. $\times 12$ in., and weight is approximately 125 lb . Outputs are furnished in wattages up to 1,000 for single phase or 1,800 for 3 phase. Owing to the shape of the inductor, the skew of the inductor laminations and other design considerations, a waveform of unusual purity results. Less than 5 -percent total harmonic content exists. Voltage regulation is ± 1 percent. Output voltage is 115 v single phase: 115 or $200 \mathrm{v}, 3$ phase.

Double Rheostats

Rex Rheostat Co., 3 Foxhurst Rd., Baldwin, N. Y. A group of double rheostats is now available for 1,120 ,

1,560 , and 2,000 -watt capacity. Two tubes of the same length are mounted between sturdy mounting brackets, while only one slider moves a double contact arm with double copper-graphite contact brushes. These models have the advantage of two ranges connecting both tubes in series or in parallel.

Laboratory Power Supply

Saga, Inc., Science Park, Evansville, Ind., has announced a new portable Variac-controlled laboratory power supply. It has continuously variable voltage output, automatic reset, auxiliary circuit protection, positive or negative output, excellent filtering and all necessary switches and controls. The standard model operates from 105 to 125 $\mathrm{v}, 50$ to 60 cycles, providing output of 0 to $2,000 \mathrm{v}$ at 1 ampere maximum, with overload trip selection at $25,50,100,500,650,800$ and 1.000 mils. Other voltages are available on special order.

Standardized Coils

Fugle-Miller Laboratories, Metuchen, N. J., announces a new line of

SUB-MNAATURE WIDE-RANGE

for aircraft service

1 IV FILTERETTE No. 1561-A

Effective protection from radio interference throughout the 150 kilo. cycle to 400 megacycle range is afforded communications circuits, signal circuits, and low-current power circuits by the sub-miniature interference filter shown above.

- Small size . . only $1-1 / 8 \times 1 \times 11 / 16$ inch
- Light weight . . . only one ounce

FEATURES Handles 3 amperes at 125 volts, 0.400 c.p.s.

- Hermetically sealed in bathtub case, with glass-insulated solder-sealed terminals
- Better than 40 db attenuation throughout $0.150-400 \mathrm{mc}$. range

Other miniature and subminiature filters can be furnished to meet the performance requirements of your particular applications. Ask us for filter engineering assistance with any problem.

TOBE DEVTSCHMANN
 CORPORATION
 NORWOOD, MASSACHUSETTS

NOW - IMMEDIATE DELIVERY
 on sfock models of
 HELIPOT PRECISION POTENTIOMETERS
 (both Multi-Turn and Single-Turn)

The demand for Helipot Precision Potentiometers to meet the requirements of constantly expanding applications in the electronic industry has been so great that our production simply couldn't keep up. So some six months ago we stepped up our expansion program ... doubled our plant space-trained additional personnel in our precision operations-and added many new machines and testing facilities.

Today, Helipot capacity is approximately double that of only six months ago...

VOLUME PRODUCTION

We can give you immediate delivery on most stock models of HELIPOT single and multi-turn potentiometers when ordered in reasonable quantities!

- In large quantities of stock items, we can make rapid initial deliveries and maintain volume de. livery schedules.

ADVANCED ENGINEERING

- Our engineering facilities have been increased so that we can more promptly solve your individual potentiometer engineering problems.
- Special HELIPOTS to meet your engineering specifications can also engineering specificaitions can also meet your delivery requirements.

So whatever your need in precision potentiometers, bring your problem to Helipot and get the benefit of the unequalled "know-how," advanced engineering and volume-production facilities of the largest manufacturer of precision potentiometers. Helipot's objective is to provide for you the same flexibility and efficiency that you would expect from a division of your own manufacturing operations.

Resilient... Conductive ... Compressible . . . Cohesive

From closures for cabinets to gaskets for waveguide couplings, Metex Electronic Shielding assures lasting metal-to-metal contact to prevent leakage, without the need for costly machining to secure precise surface-to-surface contacts. Metal wire - knitted, not woven or braided - gives Metex Electronic Strips and Gaskets that combination of conduc-
tivity and resiliency which makes them so effective and economical for shielding.

For a more detailed picture of the scope of utility of Metex Electronic Products, write for free copy of "Metex Electronic Weather Strips." Or outline your specific shielding problem-it will receive immediate attention.

METAL TEXTILE CORPORATION

KNITTERS OF WIRE MESH FOR MORE THAN A QUARTER CENTURY

641 East First Āvenue

Three new models have been added to Victoreen's regular line of thimble chambers for use with the Condenser r-Meter. These supplement the previous models by having walls sufficiently thick to achieve electronic equilibrium for radiation from one and two million volt X-ray machines, cobalt 60 , and radium. These chambers are the Model 552, 2.5r; Model 553, 25 r ; and Model 554, 250r. The new models are calibrated in the same careful manner as the red precision thimbles used for many years with the Model 70 Condenser r-Meter.

Write Our Sales Department for Bulletin 5043.
standardized coils designed for radio, $\mathrm{f}-\mathrm{m}$ and tv receivers. The coils fit standard chassis punchings and areas. Windings can be supplied to meet exactly customers' requirements in all usual types including r-f, i-f, discriminator, oscillator and others. Overall dimensions are $2{ }^{2}$ 学 in. $\times \frac{3}{4} \mathrm{in} . \times \frac{3}{4} \mathrm{in}$. including terminals. Complete details will be supplied on request.

Extruded Plastic Tubing

Irvington Varnish and Insulator Co., 6 Argyle Terrace, Irvington 11, N. J., has developed an extremely fine diameter extruded plastic tubing for use on small and miniature electrical and electronic components. The tubing, 0.012 in . i.d. $\times 0.012$ in. wall in size, was designed to meet the demands of the expanding electronic industry for a wire covering in miniature motors, relays capacitor leads and similar applications. Regardless of its small diameter, all the physical characteristics of the company's regular Temflex 105 and Transflex tubing are maintained. Samples are available.

Equalizer Preamplifier

Hermon Hosmer Scott, Inc., 385 Putnam Ave., Cambridge 39, Mass. The $120-\mathrm{A}$ equalizer preamplifier

Century model 409 RECORDING OSCILLOGRAPH

 FOR VIBRATION, TEMPERATURE, STRESS, STRAIN ANALYSIS

Model 409 with
50 ft . Capacity Magazine

The Century Model 409 Oszillograph was designed for operation under the most adverse conditions and more especially, where space and weight considerations are limited.
This Oscillograph is the smallest and most compact unit available on the present market, yet it incorporates many features found in larger oscillographs, such as trace identification, trace viewing, continuously variable paper speeds and others. The Model 409 Oscillograph has been tested and proven to record faithfully during accelerations in excess of 20 g 's. This makes it especially desirable for uses such as missile launching, parachute seat ejection, fighter aircraft and torpedo studies. Write for Bulletin CGC-303 and CGC-301

REGISTER and VOTE-it's YOUR country

Centurry geophysical corporation TULSA, OKLAHOMA

1505 Race Street
Philadelphia, Po.

238 Lafayette St.
Dayton, Ohio
149 EXPORTway, New York

MINIATURE SLIP RING ASSEMBLIES

Commutators and other Electro-Mechanical Components PRECISION MADE TO YOUR OWN SPECIFICATIONS

Our Swiss methods and techniques are geared to meet exacting requirements. We invite your inquiries.

COLLECTRON CORPORATION 216 EAST 45th STREET - NEW YORK 17, N. Y. MUrray Hill 2-8473

 fundamentals - circuits • equipment

Here is the volume that gives you working knowledge of the complete pares you fuily for technical work in designing television systems-operating television equip-ment-or understanding the details of recelving been done in advancing
 television technology in the past few years. much more is to come. This book gives you the essential grounding and the knowledge of to day"s practice that will equip you to take ad
vantage of the opportunities ahead in this greal vantag
field.

Jus! Published! 2nd Edition

TELEVISION ENGINEERING

By Donald G. Fink
Editor, Electronics; Vice Chairman,
National Television System Committee
721 pages, 512 illustrations, $\$ 8.50$
This outstanding book meets the need for grounding in the engineering and technical fundamentals of television. The whole telev!Aspects peculiar to television technology, such as scanning and wave-form analysis, illumlnation and colorimetry, camera tubes and picture tubes, are treated in detall, starting from first principles. The principles of operation of television systems, in black-and-white and color the design, operation, and use of television equipment.

Brings you these new features:

COLOR TV:

Two chapters devoted to color television fundamentals and description of gix color sya

Explains many NEW DEVELOPMENTS:
-stagger tuning of $1-\mathrm{f}$ amplifiers
-intercarrier sound reception
-the keyed clamp circuit
-offget carrier reduction of co-channel Inter ference
-tonal gradation correction ampliflers
—reaction type power supplies
radiators and superturnstile transmitting
CIRCUIT DIAGRAMS: Contains complete circuit diagrams, with tube types and component values of nearly every item of equipment in the television system, including sync-signal generator, cameras and camera controla for live pick-
up and film, and microwave relay transmitter and receiver

10 DAYS' FREE EXAMINATION

McGraw-Hill Book Co.f Inc., 330 W. 42 St., NYC 36

Send me Fink's TELIEVISION ENGINEERING for 10 days' examination on approval. In 10 days I will renit $\$ 8.50$, plus few cents for delivery or return
book. iWe pay for delivery if you remit with this book. (We pay for delivery if you remit with this
coupon; same return privilege.)
(Print)
Name.
Address
City
Zone. . . State.
Company
Position
This offer applies to U. S. only.
provides versatile remote control and compensation for music reproduction. The record-compensator adjusts for virtually all recording characteristics and levels. Treble roll-off and bass turnover equalization is provided on 8 positions. Combined with the equalization is a 3-position input-selector for tuner and tv. Frequency response is flat from 19 to $35,000 \mathrm{cps}$. The preamplifier is entirely d-c operated to minimize hum. Tubes used are one 12AX7 and two 12AU7's.

Ceramic Capacitors

Sprague Electric Co., 35 Marshall St., North Adams, Mass. An optimum combination of high Q, capacitance stability and excellent retrace characteristics is available in a new precision metal-encased tubular ceramic capacitor. Types B20, B21, B22 and B23 capacitors greatly extend the capacitance range available to circuit designers in close-accuracy ceramic capacitors at rated voltages of $500,1,000$ and $1,500 \mathrm{va-c}$. Their extreme stability often makes possible a controlled capacitance tolerance within ± 1 percent and temperature coefficient tolerances within $\pm 10 \mathrm{ppm}$ per deg. C. For less critical applications, the usual tolerance on temperature coefficient is $\pm 30 \mathrm{ppm}$ or ± 15 percent of the nominal temperature coefficient, whichever is greater.

Universal Binding Post

Hugh H. Eby, Inc., 4700 Stenton Ave., Philadelphia, Pa. A new binding post incorporates a female sleeve connection in the post top to accommodate insertion of a banana plug. Standard cross drill is supplied in the stem for insertion of wire; the top screws tight to wire. It is available in three types of base: plain knurled; with dowel;

If you use parts like these (up to $1 / 4^{\prime \prime}$ dia. and to $11 / 2^{\prime \prime}$ length) in large quantities, it is almost certain that we can show you a big saving. And assure on-time deliveries to meet your pressing defense work schedules. We have something unique back of that claim ...
our quote is lower because nobody has What we have To be able to produce our famous Bead Chain to sell for pennies per yard, we had to develop our own equipment and method . . . our MULTISWAGE Method.
Instead of turning and drilling small parts from solid rod, or stamping and forming them, this advanced method automatically swages them from flat stock into precision tubular forms, with tight seams. By increasing the production rate many times, and eliminating

scrap, this saves a large part of the cost by other methods.
famous users prove it For years leading manufacturers in the radio and electronics field have depended on us to cut costs of millions of contact pins, terminals, jacks and sleeves. And, for pinlike parts and variations of bushings needed for mechanical purposes, we are the money-saving supplier to scores of prominent makers of toys, business machines, appliances, ventilators etc.
what we can make Our Bead Chain MULTI-SWAGE Method permits parts to be beaded, grooved, shouldered, and of almost any metal. Generally, they should not exceed $1 / 4^{\prime \prime}$ dia. or $11 / 2^{\prime \prime}$ length. Catalog shows many Standard Items available in small quantity. Spectal Designs must usually be ordered in lots of a half-million or more, unless they are frequently re-ordered.
get cost comparison: Send blueprint or sample and quantity requirements. Our engineers will return an eye-opener on economy.

Let BEAD CMATN make it by the MULTI-SWAGE METHOD

ACME MAGNETIC AMPLIFIERS

- Carrier operating frequencies from 60 cps to 100 kes
- Power output up to 20 watts
- Input sensitivity to 0.10 microwatts

Write today for catalog page and specification form in which you can list your requirements.

300 No. Lake Ave., Pasadena 4, Calif.

Advertisers:

How about the

 NUCLEAR field?There are a good many advertisers using ELECTRONICS who should also be adrertising in NUCLEONICS.

Particularly in instrumentation and laboratory equipment, there is a cross-over of use in the electronic and in the nuclear field.

But, there is very little crossover in the subscriber lists of the two publications-a matter of a few percentage points.

It is quite possible that you are doing an effective presentation of your products and abilities in this excellent issue, but are missing such presentation before one of the fastest growing fields in the country's history-the field of atomic energy.
The sales representatives of ELECTRONICS are also the sales representatives of NUCLEONICS. They have much evidence pointing to the opportunities in this great NEW field. Ask them to show you what your potentials can be.

NUCLEONICS

and with boss extending from bottom of base to provide insulation through a metal panel, and flatted to prevent rotation.

Regulated Power Supply

Eastgap Co., 285 Columbus Ave., Boston 16, Mass. Model One 300-v d-c regulated power supply is an electronic laboratory instrument designed and constructed for longest life and utmost reliability. Conservative load rating is 0 to 300 ma . output voltage is manually adjustable over $a \pm 10$-percent range by means of a precision bridge. Abundant filtering and a high-gain regulator produce an impedance level below 0.1 ohm , with combined ripple and jitter less than 0.5 mv . To withstand impulse loads, the output terminals are directly shunted by a $15-\mu \mu f$ oil capacitor. All transformers and inductors are hermetically sealed, all having graincriented cores. Model One is for either bench or rack usage, and operates from the standard 50-to-60 cycle, 115-v line.

Literature

Oscillograph. General Electric Co., Schenectady 5, N. Y. Bulletin GEC-580A deals with the type PM18 oscillograph for simultaneous recording of 2,3 or 4 steady-state or varying quantities. Included are an illustrated description, a list of typical applications, operation, prices and information on optional accessories.

Fuses. Littelfuse, Inc., 1865 Miner St., Des Plaines, Ill., has published a completely illustrated list price sheet containing actual-sized drawings of 25 fuse types and blowing characteristics. By matching the blown fuse to the illustration one can determine quickly the fuse needed. A companion sheet accurately illustrates and prices various assortments and kits as well as the complete line of fuse mountings for quick, sure identification.

High-Gain Corner Reflector. Product Development Co., Inc., 307 Bergen Ave., Kearny, N. J. Bulle-

"Teflon" powder is converted into Fluoroflex-T rod, sheet and tube under rigid control, on specially designed equipment, to develop optimum inertness and stability in this material. You can be sure of ideal, low loss insulation for uhf and microwave applications... components which are impervious to virtually every known chemical... and serviceability through temperatures from $-90^{\circ} \mathrm{F}$ to $+500^{\circ} \mathrm{F}$.

Produced in uniform diameters, Fluoroflex-T rods feed properly in automatic screw machines without the costly time and material waste of centerless grinding. Tubes are concentric - permitting easier boring and reaming. Parts are free from internal strain, cracks, or porosity. This means fewer rejects, longer service life.

Mail in the coupon for more data.
*Du Pont trade mark for its tetrafluoroethylene resin. + Fluoroflex is a Resistoflex registered trade mark for products made from fluorocarbon resins.

RESISTOFLEX

tin 252 covers a new high-gain cavity-fed corner reflector for 360 to 420,890 to 960 and 1,850 to 1,990 mc. The antennas described provide a substantial gain over conventional corner reflectors and have a front-to-back ratio of better than 20 db .

Printed Circuits. The Formica Co., Spring Grove Ave., Cincinnati 32, Ohio, has available a 4-page folder describing its developments in the field of printed circuits and their advantages in many types of electrical and electronic production. As illustrated in the brochure these printed circuits employ a photo-etch process on foil-clad plastic laminates to convert a working drawing to a working part.

Pressure-Sensitive Tapes. Minnesota Mining and Mfg. Co., 900 Fauquier St., St. Paul 6, Minn. Two dozen Scotch brand pressuresensitive tapes that meet various government specifications are described in a new 16-page manual. The booklet contains 42 photographs and illustrations, and gives complete data on tapes for packaging, holding, mending, masking, sealing, mounting, protecting, insulating and splicing jobs. It also lists 11 tapes for the construction and maintenance of electrical and electronic equipment, plus two magnetic recording tapes for such jobs as telemetering, computing and industrial training programs.

Wideband Sweep Generator. Polytechnic Research and Development Co., Inc.. 55 Johnson St., Brooklyn 1, N. Y. Vol. 1, No. 1 of PRD Reports is a 4-page article illustrating and describing, complete with specifications and prices, the type 907 wideband sweep generator for both vhf and uhf tv. The publication will be sent regularly upon application. Position and company address should be included in the request.

Tachometers. Metron Instrument Co., 432 Lincoln St., Denver 9, Col. Technical data sheet No. T4 describes the principle of operation of hand, portable and fixed installation tachometers. The literature

FIRST

GREAT IMPROVEMENT IN
WELD FASTENERS

PEM Self-Locating Weld Fasteners are "commonsense engineered," based on the experience of hundreds of users of weld fasteners.

They will speed your assembly, cut equipment and labor costs and do a better fastening job, wherever load carrying threads are required in thin metals that may be welded.

Write for literature and samples for trial. Penn Engineering \& Manufacturing Corp., Doylestown, Pa.

drawn cases

also

OLYMPIC
Fabricated cases End shields Channel frames Mounting brackets

hot tin dipped . . . fabricated terminal and vent holes . . . smooth, one-piece construction using cold rolled steel . . . draw depths up to $21 / 2^{\prime \prime}$. . . inside fit covers for easy hermetic sealing in all sizes . . . available as stock sizes and as special fabrications.

(C)TNDCBP. O. BOX 71 A

METAL PRODUCTS COMPANY, INC.

PHILLIPSBURG, N. J.

INFORMATION

on positions at NORTHROP

Northrop Aircraft, Inc. is engaged in vitally important projects in scientific and engineering development, in addition to aircraft production. The program is diversified, interesting and longrange. Exceptional opportunities await qualified individuals.

The most responsible positions will go to top-caliber engineers and scientists. However, a number of excellent positions exist for capable, but less experienced, engineers. Some examples of the types of positions now open are:

ELECTRONIC PROJECT ENGINEERS... ELECTRONIC INSTRUMENTATION ENGINEERS . . RADAR ENGINEERS ... FLIGHT-TEST ENGINEERS... STRESS ENGINEERS... AERO- AND THERMODYNAMICISTS... SERVO-MECHANISTS... POWER-PLANT InStallation designers... STRUCTURAL DESIGNERS...
ELECTRO-MECHANICAL DESIGNERS... ELECTRICAL INSTALLATION DESIGNERS. ENG1NEERING DRAWING CHECEERS..

Qualified engineers and scientists who wish to locate permanently in

Southern California āre invited
to write for further information regarding these interesting, longrange positions. Please include an outline of your experience and training.

Allowance for travel expenses.

Address correspondence to Director of Engineering,

NORTHROP AIRCRAFT, INC.
 1009 E. BROADWAY * HAWTHORNE, CALIFORNIA

contains simplified circuit diagrams and pictures many available models. The basic circuit and its advantages are described in detail.

Instrument Amplifier. Keithley Instruments, 3868 Carnegie Ave., Cleveland 15, Ohio. An improved instrument amplifier which greatly increases the accuracy of oscilloscopes and vacuum-tube voltmeters is the subject of a new 4page bulletin. The instrument described has an input impedance of over 200 megohms shunted by 6.0 $\mu \mu \mathrm{f}$; gains of $1.0,10$ and 100 ; and frequency response from 5 to over $150,000 \mathrm{cps}$.

Sound-Survey Meter. General Radio Co., 275 Massachusetts Ave., Cambridge 39, Mass. Volume 27 No. 11 of the "Experimenter" contains an 8 -page article on the type $1555-\mathrm{A}$ sound-survey meter. The article is well illustrated and gives complete specifications and prices for the unit described.

Rack and Panel Connectors. Hugh H. Eby, Inc., 4700 Stenton Ave., Philadelphia, Pa., announces publication of an 8-page data catalog describing the company's line of new compact connectors for electronic and aircraft use. Included are dimensional drawings, and detailed description of male and female rack and panel connectors having $3,4,7,8,11,14,15,18$ or 34 pins; miniature 5, 7 and 9 pin connectors, and watertight and universal binding posts.

Decimal Counting Units. Berkeley Scientific Corp., Richmond, Calif. Construction, basic design, typical applications and specifications for a line of decimal counting units are given in a recent four-page folder. The units described are direct-reading, electronic counters capable of operating at speeds up to $1,000,000$ counts per second and resolving paired pulses separated by as little as 0.8 microsecond.

Capacitor Clip. Prestole Corp., 1345 Miami S., Toledo, Ohio. A recent catalog bulletin deals with a newly designed capacitor clip that features a retaining tongue

Westinghouse makes SURE. with BOWSER test equipment

∞Electronic equipment manufactured by the Electronics Division of Westinghouse Electric in Baltimore must meet rigid performance specifications. To evaluate this equipment under controlled atmospheric conditions, Westinghouse uses a Bowser Walk-In Room which will simulate temperatures from $-85^{\circ} \mathrm{F}$. to $+176^{\circ} \mathrm{F}$., and relative humidity from 20% to 95%. In addition, pressures found at altitudes up to 80,000 feet can be created. The entire test facility is operated and controlled from a remote control station.

The complete room was designed, built and installed by Bowser.
This unit is an example of what Bowser can do to help anyone whose products require testing, processing, or stabilized storage. Environmental

SILVER GRAPHALLOY

AND CIINET

... for applications requiring low electrical noise, low and constant contact drop, high current density and minimum wear.

EXTENSIVELY USED IN SELSYNS ROTATING THERMOCOUPLE and STRAIN-GAGE CIRCUITS ROTATING JOINTS GUN-FIRE CONTROLS DYNAMOTORS etc.

Wide range of grades available for standard and special applications.
Brush holders and coinsilver slip rings available for use with Silver Graphalloy Brushes.

OTHER GRAPHALLOY PRODUCTS:

Oil-free self-lubricating Bushings and Bearings, Oilfree Piston Rings, Seal Rings, Thrust and Friction Washers, Pump Vanes.

Write us for Dato Sheets and further information, Outline your problem and we will apply our years of accumulated experience toward its solution.

GRAPHITE METALLIZING CORPORATION
 1055 NEPPERHAN AVENUE - YONKERS, N. Y.

SERVOSCOPE ${ }^{\circ}$

Test analyzer for use in development and PRODUCTION of SERVOMECHANISMS and PROCESS CONTROLS. Measures FREQUENCY RESPONSE, PHASE SHIFT 0.1 to 20 CYCLES SINE WAVE, SQUARE WAVE, MODULATED CARRIER, 50 to 800 CYCLES.

SERVOBOARD

A FLEXIBLE SET of PRECISION mechanical parts for quickly coupling motors, synchros, potentiometers to form assemblies of Servo systems, regulators, computors.

SERVO
CORPORATION OF
dept. E-8

2 NEW ELECTRIC

 PRODUCTIMETERSTwo Companion Counters . . .Two Sizes ... Hi-Speed . . . Accurate . . . Long Life . . . Totally Enclosed

Speeds of 1000 counts per minute. Both counters give maximum readability. Design fits all mounting conditions... panel mounting or base mounting. Hardened steel working parts for long life and dependability.

New type case for compactness,
rigidity, and protection against dust and moisture conditions. Operate accurately over wide current fluctuations.

DURANT MANUFACTURING CO.

1912 N. Buffum St. 112 Orange St. Milwaukee 1, Wis. Providence 3, R. I.

Representatives in Principal Cities
 LECTRIC PRODUCTIMETERS The answer to all electric counting requirements

NEW PRODUCTS
(continued)
on each side that supports the clip by gripping tightly to the mounting surface, thus providing fa-tigue-free holding and longer life. A fully illustrated description and specifications for the seven available sizes are given.

Wattmeter. Keithley Instruments, 3868 Carnegie Ave., Cleveland 15, Ohio. A 2-page bulletin deals with the electronic wattmeter that is especially useful where a high input impedance or sensitivity to low-voltage and low-power circuits is required. The publication contains detailed description, specifications and suggested uses, including transformer core loss and copper-loss tests, measuring audio power to speakers, and power measurements at aircraft frequencies.

Miniature Terminals. Garde Mfg. Co., 588 Eddy St., Providence 3, R. I. A single-page bulletin describes and illustrates the company's miniature insulated FeedThru terminals with voltage breakdown of $4,500 \mathrm{v}$ rms, 60 cycle test. Dimensional drawings and chief features are included.

General Purpose Computer. Computer Research Corp., 3348 W. El Segundo Blvd., Hawthorne, Calif., has issued a 6-page folder describing the chief features and functions of the CRC 102 general purpose computer that solves any type of arithmetic or mathematical problem in which characteristics can be expressed in numerical form. A sample problem and its solution are included.

Electron Microscope. Radio Corp. of America, Camden, N. J., has issued a new brochure entitled "The Electron Microscope at Work in Industry." The booklet emphasizes only typical applications of the electron microscope by industries in the automotive, chemical processing, metal fabrication, petroleum, rubber, food, drug, textile and radio and electric fields. Ask for Form 2R8195.

Germanium Crystal Diode. Berkshire Laboratories, 506 Beaver Pond Road, Lincoln, Mass., has

you'll choose Electra carbon-coat deposited carbon resistors

Yes-when your circuits demand precision resistors, you will want accuracy and stability plus economy and small physical size. Your first choice then is Electra Carbon-Coat Deposited Carbon Resistors. Proved in hundreds of critical circuits by the world's leading electronic manufacturers, Electra Deposited Carbon Resistors offer all these advantages and more-you'll profit by investigating now!

Precision. $\pm 1 \%$ tolerance is the standard, but greater tolerances are furnished.
7 Physical Sizes ranging from body sizes of $17 / 32^{\prime \prime} \times 3 / 32^{\prime \prime}$ in the $1 / 4$ watt capacity to $2-1 / 6^{\prime \prime}$ $\times 9 / 32^{\prime \prime}$ in the 2 watt capacity.
Wattage Capacity. Available in $1 / 4,1 / 2,1$ and 2 watt capacity. Stability. Temperature coefficient is negative with minimum variation in extreme cycling.
Extreme Value Range from 3 ohms to 50 megohms. E.G. $1 / 4$
watt resistor $\pm 1 \%$ offers values from 5 ohms to 1.0 megohm.
Coatings and Sleeves. A variety of special coatings and sleeves available for virtually every need.
Made to Your Specifications. Electra manufactures to many special specifications.
Availability. Because of Electra's expanded manufacturing facilities and improved methods, fast delivery to you is assured.

ELECTRA MFG. COMPANY
2537 Madison - Kansas City 8, Mo. Please send Bulletin E. 3 giving complete specifications and characteristics of Electra CarbonCoat Resistors.

NAME
COMPANY

ADORESS
CITY ...STATE

published bulletin B-46 on the type GCD-1 high back resistance germanium crystal diode for high and low frequency rectification. The units described are useful in computers and other electronic applications. The bulletin includes specifications and price.

Speaker Catalog. Oxford Electric Corp., 3911 South Michigan Ave., Chicago, Ill., has released a catalog containing complete information on a line of speakers including the new Hi-Fidelity speakers and speakers for auto, p-a, inter-com, outdoor and radio and tv, portables and permanent-magnet and electrodynamic applications. Illustrations of the various speakers are included in the 3 -colored catalog.

Variable Resistors. Chicago Telephone Supply Corp., Elkhart, Ind. Complete details on 167 types of military variable resistors are given in Stock Sheet No. 162. Included are JAN-R-94 and JAN-R19 types and non-JAN controls. Pages 2 and 3 list and describe the 167 types of controls available. Six key controls are illustrated and dimensional drawings of five shaft types are given. Page 4 gives pertinent performance characteristics in full detail.

V-T Electrometer. Keithley Instruments, 3868 Carnegie Ave., Cleveland 15, Ohio. Vacuum-tube electrometer applications are discussed in a recent two-page article reprint. The paper explains basic advantages and features of the instrument, includes several circuit schematic diagrams, and discusses many measurements easily madeincluding accurate measurement of potentials, currents, capacitance and resistance.

Electrical Wire and Cable. United States Rubber Co., Rockefeller Center, New York 20, N. Y., has issued a 52 -page engineering cata\log on its line of electrical wires and cables for the coal mining industry. The booklet includes complete performance and specification data on insulation and jacket compounds, portable cords and cables with a voltage rating up to

YOU CHANGE YOUR ADDRESS

Be sure to notify us at once, so future copies of ELECTRONICS will be delivered promptly.

Also make certain you have advised your local Post Master of your new address so other important mail doesn't go astray.

Both the Post Office and we will thank you for your thoughtfulness. Mail the information below to: Subscription Dept., ELECTRONICS, 330 W. 42nd St., New York 36, N. Y.

New

330 W. 42nd St. New York 36, N. Y.
ULTRASONIC SPECTRUM ANALYSIS

Four Input Voltage Ranges. 0.05 V to 50 V . Full scale readings from 1 millivolt to 50 volts

Amplitude Accuracy: Within 1 db Residual harmonics suppressed by at least 50 db
Resolution: Continuously variable. 2 KC at maximum scanning width, 500 c.p.s. for scanning width below 8 KC

RADIO PRODUCTS, INC.

NOW! BECOME EXPERT AT Radio-Television

These 4 books can help you qualify for FCC's New FM, TV 1st Class License Test.
ESSENTIALS OF RADIO, 800 pages, 433 illus. ELEMENTS OF RADIO SERVICING. 475 pages, 375 illus.
basic television, 592 pages, 415 illus.
TELEVISION SERVICING, 429 pages, 318 illus.

IN 4 EASY STEPS!
Complete Self-Training Library in RADIO ond TELEVISION Prepared by Famous Experts-Starts From Scratch. Takes You BY SIMPLE LOGICAL STEPS From Basic Theory to Advanced Problems of Repair, Installation, color TV, etc. Now you can do ANY Radio-TV plained in over TWO THYOUSAND joh like an expert: operate Held- and over SIXTEEN HUNDLELD testing equipment, understand "how-to-do-it" illustrations, crosssection diagrams, ete. .The review, everything sou learn. At-a-glance "trouthle-shooting", charts show how to diaknose instantly any radio
or TV brealkiown. and how to repair it expertly and guickly. The library will pay por itself many times over. It can held you qualify for FCC"s lst-Class License test: gives an experiences
techinician more confidence, shows telmine man more confidence, shows
himm new tricks.

Send No Money

Mail coupon below to examine this complete four-volume library FREF for 10 davs; then, while you use it, send smail monthly install-
Inents until the price of $\$ 19.95$ is minents until the price of $\$ 19.95$ is
pald.
 McGRAW-HILL BOOK COMPANY, inc. 330 W, 42nd St., New York 36

 postpaid.

Address

City ...
Position \qquad

I know that the value of extrusion for greater mechanical strength, where machining is a requisite, is both elementary and common knowledge. Yet, I am prompted to emphasize its value and possibilities when applied to a product of private research, plus proved superior quality at low cost, such as "Lavite" Steatite. The limited assortment of parts shown here is a cross-section of

Ask for booklet giving characteristic data on all "Lavite" Ceramics - ("Lavite" Steatites, "Lavite" Titanates, "Lavite" Ferrites, and others).
daily production here at Stew-ard's-size, shape and mechan. ical oddities are no problem finish can be glazed or natural but most important is the greater uniformity and sharp definition of edges on all cuts, made pos. sible by the added structural strength. And remember, Steward places no obligation on you for recommendations. I am privvileged to suggest that you deal with our engineers as if they were on your own payroll. Send in your specifications.

[^20]NEW PRODUCTS
(continued)
$5,000 \mathrm{v}$. Also included are complete data on shielded portable cables, welding cables, mine power cables and miscellaneous mine equipment such as blasting wires and mine telephone cable. Engineering data on splicing and patching, current carrying capacities, conductor resistance temperature correction factors and formulas for determining amperes are also given.

Clipper Diode. Lewis and Kaufman, Inc., 50 El Rancho Ave., Los Gatos, Calif. A new tube data sheet describes the type 719A clipper diode. It illustrates the tube, gives outline data with dimensions, and lists the general electrical characteristics. Operating curves are supplied as follows: (1) for pulse-current characteristics over a voltage range from 0 to $2,000 \mathrm{v}$ and a current range from 0 to 20 amperes; (2) for plate-current characteristics from 0 to 200 v and 0 to 800 ma . Maximum ratings are included.

Fault Locator. Echo Electronics Co., 3966 Peachtree-Dunwoody Road, Atlanta 5, Ga. A four-page folder gives an illustrated description, theory of operation, chief features, specifications and price of its new fault locator. The instrument discussed was especially designed for measuring the distance to a fault on an open wire circuit.

Audio-Frequency Testers. D \& R, Ltd., 402 E. Gutierrez St., Santa Barbara, Calif., has available a 4 page brochure illustrating and describing a line of audio-frequency test equipment. Instruments covered include the model 1 M 3 B intermodulation meter, model 2 F flutter meter, and model TD2A tape distortion meter.

Tape Recorder. Tapemaster Inc., 13 W. Hubbard St., Chicago 10, Ill. Bulletin No. 102 illustrates and describes the tapeMaster portable model PT-125 professional-quality dual-speed tape recorder - the models TH-25 and PA-1 dual-speed transport mechanism and biaserase oscillator for custom instal-lation-the model SA-13 portable

Advertisers:

How about the NUCLEAR field?

There are a good many adverrisers using ELECTRONICS who should also be advertising in NUCLEONICS.

Particularly in instrumentation and laboratory equipment, there is a cross-over of use in the electronic and in the nuclear field.

But. there is very little cross. over in the subscriber lists of the two publications - a matter of a few percentage points.

It is quite possible that you are doing an effective presentation of your products and abilities in this excellent issue, but are missing such presentation before one of the fastest growing fields in the country's history -the field of atomic energy.

The sales representatives of ELECTRONICS are also the sales representatives of NUCLEONICS. They have much evidence pointing to the opportunities in this great NEW field. Ask them to show you what your potentials can be.

NUCLEONICS

 $A B C$ ARPA McGraw-Hill Publication 330 West 42nd St. New York 36, N. Y.

AIR SPACED ARTICULATED RIF. CABLES
the LOWEST EVER CAPACITANCE OR ATTENUATION
We are specially orgonizedtohondle direct enquiries from overseas and
Gugíhemedate deliverers for usia. Billed in dollars Settlement by your check.

$\sqrt{\text { Ectron offers }}$

Model SA20S F Frequency range, with S-band
-2400 to 3650 mc

Model SA20X - Frequency range, with X-band head - 8500 to 9660 mc .

SPECTRUM ANALYZER

- 5 inch 'scope gives high visibility
- Interchangeable RF heads extend range
- Complete accessibility for adjustment or maintenance
- Panel controls grouped for convenience of user
- Stabilized IF amplifier holds long-term alignment
- Full shielding by mu-metal tube shield and steel case
- Bezel accepts Dumont hood, filters, and camera
- Heavy-duty power supply handles all 300 v . reflex-klystron local oscillators

A complete engineering and manufacturing service in the design and production of electro-mechanical apparatus is available. Your needs in development of instrumentation, gyro-mcchanisms, communication networks, filters, servomechanisms, and electronic systems can be met by our plant, equip-

VECTRON

SERVICES ment, personnel and experience.

Electro-Inechanical-Equipment ECTRON, inc.

235 HIGH STREET, WALTHAM, MASSACHUSETTS

NEVAMAR industrial grade laminates are manufactured by one of the nation's foremost producers of high-pressure decorative laminates. This is immediate assurance of engineering and manufacturing "know how" . . . the ability gained from research and experience to produce industrial grade laminates of superior quality and dependable performance. NEVAMAR is produced in many grades to meet varying requirements. It meets or exceeds the standards of the National Electrical Manufacturers' Association. Would you like to see samples?
 odenton. maryland - mew york- empire siale bulloing - Los anceles: 2232 east 3 3th street
power amplifier and speaker for use with the PT-125 or for other applications. It gives details and specifications on these new units, points out their important features and explains how they make highfidelity tape recording and playback available to everyone.

Tubing Data. Reflin Co., 8525 Higuera, Culver City, Calif., has issued a 4-page brochure of engineering information on a new lightweight, corrosion-resistant, thermosetting plastic and Fibre-glas-reinforced tubing for defense and commercial applications. The tubing described is claimed ideal for underground conduits, fuel, natural gas, irrigation or sanitary lines, shipboard piping systems and housings for airborne equipment and components.

Electrometers and Accessories. Keithley Instruments, 3868 Carnegie Ave., Cleveland 15, Ohio. A new eight-page bulletin on vacuum-tube electrometers and accessories describes the instruments in complete detail and gives application diagrams of 17 basic uses. These include potential measurements to 200 v , extreme sensitivity in location and detection of static fields, current measurements to 10^{-14} ampere and resistance measurements up to 10^{18} ohms.

Resistor Catalog. Ward Leonard Electric Co., Mount Vernon, N. Y., has issued catalog No. 15, a 64page publication illustrating and describing a complete line of Vitrohm power-type wire-wound resistors for every use. Listed are resistor ratings ranging from 5 to 550 w and resistance values from 0.04 ohm to 1.75 megohms. Full details on terminals, mountings and enclosures are given. Valuable technical information is presented, including selection and application data with numerous detailed charts and useful data tables.

Ball Bearings. Miniature Precision Bearings, Inc., Keene, N. H., has issued a new catalog containing complete specifications on

You can't shake, pull or rotate a tube out of place when it's secured by a Birtcher Tube Clamp. The tube is there to stay. Made of Stainless Steel, the Birtcher Tube Clamp is impervious to wear and weather.

BIRTCHER TUBE CLAMPS can be used in the most confined spaces of any compact electronic device. Added stray capacity is kept at a minimum. Weight of tube clamp is negligible.

Millions of Birtcher Tube Clamps are in use in all parts of the world. They're recommended for all types of tubes: glass or metal-chassis or sub-chassis mounted.

$$
\begin{gathered}
\text { THERE'S A BIRTCHER TUBE CLAMP } \\
\text { FOR EVERY STANDARD AND } \\
\text { MINIATURE TUBE! }
\end{gathered}
$$

Write for sumples, catalogue and price lists.
THE BIRTCHER CORPORATION 4371 Valley Blvd. Los Angeles 32, Calif.

You Get TOPS
 In Transformer Performance when built by NOTHELFER

The large transformer in the picture is 300 KVA, 3 phase, $550 \mathrm{~V} / 42 \mathrm{~V}, 60$ cycle. The small one is . 01 KVA, 1 phase. $440 \mathrm{~V} / 6 \mathrm{~V}$.

Over 28 years experience in the manufacture of specials at cost that compares favorably with standard types. Built-in quality proved by years of actual use.

From 10 VA to 300 KVA Dry-Type only. Both open and encased. 1, 2 and 3 phase. 15 to 400 cycles.

SEND FOR 8 PAGE BULLETIN, AND PRICE LIST

NOTHELFER
WINDING LABORATORIES

FIMNFLEX

Conform to
JAN-C-172A
SPECIFICATIONS
... but are actually made to exceed AN-E-19 Drop Test requirements RUGGED PROTECTION for VITAL EQUIPMENT: Finnflex Mannts isolate vibration and shock from Electronic. Communication, and Control Equipment. They offer unimpaired efficiency from $\overline{-80}$ to ${ }^{-250^{\circ} \mathrm{F} . .} \mathrm{Selective}$ non-linear steel springs. and other features. Wide range of sizes and load ratings available.
SHOCK MOUNTS for Signal Corps Mobile Equipment and for Naval Fire Control Units.
SPECIAL PROBLEMS: Complete facilities for designing and fabricating Shock and Vibration Mounts to order - regardless of size or weight of equipment mounted.
Specify FINNFLEX—for Ruggedness, Effciency, and Economy.
Write for Catalog MB-110

F. í STME \&
 Specialists in Vibration Control

AIRBORNE MOUNTING BASES

TYPE IPM YIBRATION ISOLAIOR

VIBRATION
ISOLATORS
and SHOCK MOUNTS

To JAN-C-172A SPECIFICATIONS and TO ORDER

- Priced well below other toroidal winders Easily Adjusted to wind any segment or are up
 to 345°. Winds in layers, automatically reversing at each extremity - Equipped with both automatic winding traverse and overriding pushbutton manual control on the same machine - Coil Sizes Wound-as small as $.187^{\prime \prime}$ finished-wound inside diameter. Other winding heads can be supplied to produce larger coils where correspondingly larger finished-wound inside diameters are permissible - Wire Sizes $-5^{\prime \prime}$ shuttle easily winds wire sizes 24 to 36 . With care, same shuttle winds wire sizes as fine as No. 41. Shuttle capacity is 1 ounce of wire. On special order, larger or smaller shuttle and winding heads can be
 supplied - Winding Speed-up to 800 turns per minute - Built-in lubrication. Entire machine is lubricated simply by lifting one plunger.
important-This machine is available in Limited QUANTITES only. When requesting further information, please specify 1) wire size, 2) number of turns, 3) core size and 4) finished inside diameter of your windings on each core size. For your convenience, the engineering department will supply a sample wound to your specified inductance on a core supplied by you.

GED. STEVENS ${ }_{\text {wacame }}$

Frank Tatro
Rogers Ave. 6022 No. Rogers Ave.
Chicago 30, Illinois

Insulation \& Wires, Inc. 2240 E . Washington Blvd.
Los Angeies 21, California
R. F. Siaff \& Co. Cleveland 13. Ohio

toroidal winder in operation

Harco Equipment Company
2436 Ninth St NW 2436 Ninth, St. NW
Washington 1, D.C.
and other Geo. Stevens machines for winding practically every type of coil at Insulation and Wires Display Booth, Western Electrcnic Show and Conference. Aug. 27, ¿́8, 29. Long Beach, Calif.
more than 120 different types and sizes of miniature ball bearings. In addition to the basic catalog 52 B , additional engineering data sheets covering load ratings, clearances, tolerances and bearing installations are available.

Instrument Amplifier. Keithley Instruments, 3868 Carnegie Ave., Cleveland 15, Ohio. An instrument amplifier that greatly increases the accuracy of oscilloscopes and vacuum-tube voltmeters is the subject of a new 4-page bulletin. The model 102 Phantom Repeater described has an input impedance of over 200 megohms shunted by $6.0 \mu \mu \mathrm{f}$; gains of $1.0,10$ and 100 ; and frequency response from 5 to over $150,000 \mathrm{cps}$.

Capacitor Catalog. Hammarlund Mfg. Co., 460 W. 34th St., New York 1, N. Y., has published a new 1952 capacitor catalog. The detailed and illustrated 2 -color, 12 page brochure includes complete drawings and electrical and mechanical specifications covering a broad selection of standard variable air capacitors.

Capacitor Catalog. Pyramid Electric Co., 1445 Hudson Blvd., North Bergen, N. J. Catalog J-7 is a $32-$ page compilation of paper, electrolytic, oil-paper and metallized paper capacitors. Specifications, construction and engineering data, sizes and prices on 18 different types are included.

Electrical Fittings. Buchanan Electrical Products Corp., 225 Route 29, Hillside, N. J. Catalog 52 gives a 12-page description of the company's complete line of solderless wire connectors, cable and conduit fittings and wiring devices. It contains illustrated descriptive information on pressure connectors for solderless wire splicing and terminating, Bushend insulated conduit bushings, box connectors for nonmetallic sheathed cables, conduit locknuts and molded terminal blocks. The publication gives complete specifications, dimensional data, application instructions and ordering information.

NOW
a really high-powered RFDIO FNGINEERING LIBRARY

Special Offer on This Complete Up-to-Date Set

Save $\$ 6.00$! These Ane enaineering books mould single-cony prices, if you bought them one or two at a time. Under this offer you can have the whole set at once and we"ll pass along the saving in handing in a special low Library of only $\$ 37.50$. In addition you may spread this over several installment payments as shown in the coupon below. Take advantage of these convenient terms to add these helpful books to four working library right away.

$$
5 \text { volumes, 3,921 pages, }
$$

2,770 illustrations
Eastman's Fundamentals of Vacuum Tubes, sra Terman's Radio Engineering, srd Ed.
Everitt's Communication Engineering, 2nd $0 d$. Hund's High-Frequengy Measurements, 2nd Ed. Henney's Radio Engineering Fandbooi, fth Ed.

What this library gives you

These books cover circuit phenomena, tube theory, networks, measurements, and other subjects-give specialized treatments of all flelds of practical design and applications. They are books of recognized position in the Hiteraturebooks you will refer to and be referred to often. If you are a practical designer, researcher, or engineer in any feld based on radio, rou need these books for the help they give in hundreds of problems throughout the whole fleld of radio engineering.

10 DAYS FREE EXAMINATION

McGraw- Hill Book Co, 330 W. 42 nd St., N.Y.C. 36 Send me radio Enginemping Libraby for 10 daps' examination on approval. In 10 days T will send
$\$ 750$, plus few cents for delivery, and $\$ 6.00$ monthly until $\$ 37.50$ is paid, or return books postpaid. (We pay delivery if first payment accompanies this coupon; same return privilege.)
(Print)
(Print
Name
Address .
City.
Zone.... State
Company
Position (rhis orfer applies to US. only) FL-8-52

GRC cuts cost and time

INJECTION MOULDED PRECISION PLASTIC PARTS

Completely
delivered $t r i m$ parts ready for use, in ed, operation, with GRC's speedy, specialized producton facilities. NYLON A SPECIALTY

INDIVIDUAL PARTS No limit on smaliness. Intricacy and mecision

CONTINUOUS INSERTS Small members accurately spaced on tap".
cord, wire, chain. ete. WRITE TODAY FOR SAMPLES and PRICES

GRIIES REPRODUCER CORP.

100 Willow Ave., New York 54 Q Phone: MO 5-7400

PROVIDE DELAYS RANGING FROM I TO 120 SECONDS FeAtures: - Compenscted for ambient tempera. $^{\text {and }}$ ture changes from - 40° to $110^{\circ} \mathrm{F} \ldots$. Hermetically sealed; not affected by altitude, moisture or other climate changes . . . Explosion-proof . . . Octal radio base .. . Compact, light, rugged, irexpensive . . . Circuits available: SPST Normally Open; SPST Normally Closed. PROBLEM? Send for "Special Problem Sheet"

Amperite REGULATORS are the sim-
plest, lightest,
cheapest, and most compact method of obtaining current or voltage regulation ... For currents of .060 to 6 Amps. . . . Hermetically sealed; not affected by altitude, ambient temperature, humidity.

Write for 4-page Illustrated Bulletin.
Write for 4-page Illustrated Bull
In Canada: Allas Radio Corp., Ltd., 560 King St., W. Toronto

PLANTS AND PEOPLE

Edited by WILLIAM P. O'BRIEN

West Coast Manufacturers' Activities

Recent news from the west coast reports the activities of four companies:
Hoffman Radio Corp. has established a wholly-owned subsidiary, Hoffman Laboratories, Inc., which will specialize in the electronics field. The new subsidiary will be housed in three plants- 3761 South Hill St. and 3716 South Grand Ave. in Los Angeles, and 335 South Pasadena Ave., Pasadena, and will operate as a separate corporate entity.
Coast Coil Co., Los Angeles, Calif., recently announced the opening of a new plant for the manufacture of toroidal coils and associated components. The engineering department is equipped to design filters, inductors and magnetic amplifiers to customer specifications. Facilities are available for baking, potting and coating to AN specifications.

Davis Electronics, manufacturers
of a new tv antenna particularly suited for fringe area installations and for insuring high gain on all channels (2 through 13), has moved from Los Angeles to a new enlarged plant at 4313 W. Magnolia Blvd., Burbank, Calif.

Helipot Corp., South Pasadena, Calif., has announced that it will soon open a $15,000-\mathrm{sq}$ ft factory branch within the New York metropolitan area.

NBS Reorganizes

The Ordnance Development Division of the National Bureau of Standards has been reorganized into three new divisions and three new division chiefs have been designated. In addition an associate director for ordnance development has been appointed.

Wilbur S. Hinman, Jr., former chief of the Ordnance Development

FIFTIETH ANNIVERSARY MEMENTO

R. L. Triplett, president of Triplett Electrical Instrument Co., Bluffton, Ohio, receives gold watch from his sales force, commemorating his fiftieth year in the electrical measuring instrument industry. Making the presentation is E. K. Seyd. left, 20 year veteran of the Triplett sales organization. Looking on is A. D. Plamondon, Jr., president of The Indiana Steel Products Co., Valparaiso, Ind., and vice-president of RTMA, of which Mr. Triplett is also a director

OTHER DEPARTMENTS

 featured in this issue:Page
Electrons At Work 152
Production Techniques. . 228
New Products 258
New Books 318
Backtalk 340

Division, was appointed to the newly established position of associate director. He will coordinate NBS work in the field of ordnance research and development.

The NBS ordnance program is concerned with research, development and engineering of electronic ordnance devices-in particular, proximity fuzes for a wide variety of weapons. The Bureau serves as a primary developmental facility for the Army Ordnance Corps and through that agency fulfills needs of the Army, Navy and Air Force for particular electronic ordnance items.

The three divisions and their chiefs are: Division 13, Ordnance Development Program A, with M. G. Domsitz as chief; Division 16, Ordnance Development Program B, with Jacob Rabinow as chief; and Division 17, Ordnance Development Program C, with Harold Goldberg as chief.

California IRE Doings

Twelve professional groups from the 7th IRE region will have technical papers read Aug. 27 to 29 when the 1952 Western Electronic Show \& Convention will be held in the Long Beach, Calif., municipal auditorium. WCEMA and IRE jointly operate the exhibits and the speaking program.

The groups are: airborne electronics, antennas and propagation, audio, broadcast and television receivers broadcast transinission systems, circuit theory, electron devices, electronic computers, information theory, instrumentation,

Never before has there been a record changer equal to the B.S.R. Monarch, which without doubt gives tremendous sales appeal to any instrument in which it is mounted. It includes all features demanded by the discriminating listener and has a styling and colour that will blend with any cabinet design.

Simplicity of design guarantees long life and trouble-free operation. The controls consist of one knob only, no levers to adjust, no loose fitments, no confusing adjustments for playing the increasingly popular 7" L.P. records.

A brilliant new three diameter selector enables different diameter records to be played automatically. The machine thinks for you by automatically adjusting itself for all three diameters.

Quality of reproduction is unequalled due to the outstanding performance of the latest B.S.R. reversible pick-up cartridge with two sapphire styli for standard and long playing records.

OUTSTANDING FEATURES

* Automatically selects and plays $12^{\prime \prime}, 10^{\prime \prime}$, and $7^{\prime \prime}$ records, mixed in any order at $33 \frac{1}{3}, 45$, or 78 R.P.M.
₹ Changer automatically stops after last record, motor is switched off and pick-up is returned to rest position.
* Carefully designed to reduce moving parts to the very minimum, giving long trouble-free life.
* New turn over pick-up has extended range up to 10,000 c.p.s. Self compensated accurately for the L.P. lower frequencies with the Turnover frequency at the correct point. Compliant enough to take the lowest frequencies.
* Operates on 100/125-200/250 volts, 50 cycles, A.C. mains. Models avail-
 able for 60 cycles A.C. mains.
Careful design allows us to deliver this unrivalled unit anywhere in the world at competitive prices.

U.S. Offices

149 Broadway, New York 6, N.Y.
Telephone Worth 4.4847

MONARCH

REGENT

MU14

Birmingham Sound Reproducers Ltd., Old Hill, Staffs. Grams: 'Electronic Old Hill, Cradley Heath.'
radio telemetry and remote control. Frederick Suffield of Manhattan Beach, Calif., is chairman of the papers committee.

During the three-day gathering, the 7 th IRE region will present its Electronic Achievement Award to an outstanding electronics man selected by secret ballot of the regional committee. John P. Day, junior past chairman of the San Diego Section, will be chairman of the nominations committee.

NPA Personnel Changes

George W. Henyan has resigned as chief of the components branch of the National Production Authority's Electronics Division, and returned to the General Electric Co. as assistant to the general manager of the Tube Department in Schenectady, N. Y.
J. A. Milling, who has been director of the Electronics Division of the NPA, on leave from his post as operating vice-president of RCA Service Co., Inc., has resigned both positions to become executive vicepresident and general manager of Howard W. Sams \& Co., Inc.,

J. A. Milling

Indianapolis, Ind. He will be in charge of the firm's expansion program in behalf of Photofact Publications and allied enterprises in the electronics field.

Richards W. Cotton has been given a temporary leave of absence from Philco Corp., where he has been assistant to the president on special assignments, to accept appointment as Chairman of Electronics Production Board of the Defense Production Administration and Director of the Electronics Division of NPA. As Director of NPA's Electronics Division he will

NAVY POSITION SWITCH

Captain Willis H. Beltz, USN, (right) is greeted by Captain Frederick R. Furth, USN, at the Naval Research Laboratory in Washington, D. C. Captain Beltz becomes Director of the NRL. He succeeds Captain Furth who in turn relieves Captain Beltz as Assistant Chief of the Bureau of Ships for Electronics
be responsible for obtaining critical materials for manufacturers of electronic components and end equipment and solving other production problems. Through the Electronics Production Board, representing all defense agencies concerned with procurement and production of electronic equipment, he will keep tabs on the development and production of military electronics, and initiate action to prevent production losses or delays.

AIEE Elects President

Election of Donald A. Quarles as 1952-53 president of the AIEE was recently announced at the Summer General Meeting of the Institute in Minneapolis, Minn. He takes office as head of the society in August.

Mr. Quarles is president of Sandia Corp. at Albuquerque, N. M., and is a vice-president of Western Electric Co., N. Y. He is former vice-president of the Bell Telephone Laboratories.

Bogue Expands Facilities

To meet the increased demand for its products, Bogue Electric Mfg. Co. is building a new plant, its third in Paterson, N. J. The new structure will add $25,000 \mathrm{sq} \mathrm{ft}$ of floor space.

The company is a major builder of electric motors and generators, selenium rectifiers, magnetic amplifiers and automatic industrial controls as well as electronic and electrical equipment for railway applications.

Six New Engineering Appointments

American Rectifier Corp. of New York City, manufacturers of large industrial selenium rectifiers, has announced the appointment of Samuel Heller as chief engineer.

Ultrasonic Corp., Cambridge, Mass., has named William M. Pease vice-president and director of engineering, and Paul Travers chief engineer.

Stanley Kramer has been promoted from project engineer for

Latest in a long line of transformer core advancements, ribbed design gives additional stability to the inherent high level of Hipersil ${ }^{\circledR}$ Core performance.

Because this improvement adds to the mechanical strength of the core, it minimizes the possibility of springing the sections, thus keeps the matching etched core surfaces in intimate contact. This assures the best in a low-reluctance, low-loss butt joint. Ribbed cores have the same sizes and tolerances as superseded non-ribbed cores.

You can cut size, weight and assembly costs in all types of electrical and electronic transformers with Hipersil Cores. They combine highest permeability
with lowest losses in a wide range of sizes, for all frequencies (1 through 12 mil cores). Greater fluxcarrying capacity, increased mechanical strength help make them the best core on the market. For specific information on how to apply them to your product, write Westinghouse Electric Corporation, P. O. Box 868, Pittsburgh 30, Pennsylvania.
J. 70629

YOU CAN BE SURE...IF ITS Westinghouse

HIPERSIL CORES

POTTER ILSTRUMENT COMPAIY 110 cutter mill road, great neck. new york

MANUFACTURERS OF

PREDETERMINED ELECTRONIC COUNTERS - FREQUENCY TIME COUNTERS - PRESET INTERVAL GENERATORS high speed printing and recording, shift registers, and data handing equipment

SEE US AT BOOTH 1101 WEST COAST I. R. E. SHOW AND NATIONAL INSTRUMENT EXHIBIT, BOOTH 414, CLEVELAND

the Radio Receptor Co. Inc.'s Communications Division to chief applications engineer of the company's newly formed Germanium Products Division. Also in the new division, Herbert Friedman, after four years with Columbia University as electronics development engineer, has been appointed sales engineer.
S. H. Van Wambeck has joined the Hammarlund Mfg. Co., designers and producers of variable capacitors, all-wave receivers and remote control equipment, as chief engineer. He was previously di-

S. H. Van Wambeck
rector of research and enginering for Knapp-Monarch Co. in St. Louis and director of a U.S. Army Signal Corps project, making studies of special types of radio receiving equipment.

Companies Set Up Separate Divisions
Fairchild Camera and Instrument Corp., Jamaica, N. Y., has announced the formation of a new Potentiometer Division to be devoted exclusively to the development and manufacture of precision potentiometers. The new division, to be located in a recently acquired building in Hicksville, L. I., N. Y., will provide completely integrated facilities for engineering, production and sales.
The Gabriel Co. of Cleveland, Ohio, recently established the Gabriel Laboratories as a separate division of the company. The Laboratories, formerly the engineering department of the Workshop Associates Division, Needham, Mass., will serve as the research and

Electronic glass working equipment for radio, television tubes, INCANDESCENT LaMPS, Glass lathes for television tube repalr
We make Transformers, Spot and Wire Butt Welders, Wire Cutting Machines and 50 strer items indispensoble in your production. Eisler Engineers are constantly developing Vew Eqvipment. If you prefer your own designs, let us build them for you. Write to Charles Eiler whathas served

Machines for small Radio Tubes of all kinds 24-Head Stem, 24-Head Sealing and 24-Head Exhoust Machines, Spot Welders, etc

- WE MAKE MANY TYPES OF TRANSFORMERS FOR THE ELECTRONIC INDUSTRY

EISLER ENGINEERING CO., Inc.
751 So. 13th St Newark 3, N. J.

PRIMARY BATTERIES for your Specialized Needs

DRY TYPES

78 Standard Industrial, Laboratory and Government Types.
 BATTERIES
Our engineers will design and create to your requirements. Send us your specifications.

Precision-built, low-cost, battery-operatedavailable for delivery now.

Send for FREE Catalog

RESERVE TYPES
Water activated "One Shot" Batteries.

SPECIALTY BAITET GOMPANY A Subsidiary of the CAYOV Ray-O-Vac Company

MADISON 10, WISCONSIN

Alloy of Nickel, Copper and Gold . our exclusive development

SUPERIOR FLOW CHARACTERISTICS

- MINIMUM "LEAKERS"
GREATER STRENGTH

WRITEFOR
FACTUALDATA AND PRICES

Your name

Firm name

Address

City
State

WESTERN GOLD \& PLATINUM W O R K S
Smelters - Refiners - Manufacturers 589 BRYANT STREET SAN FRANCISCO 7, CALIF.

cubic's 3 SIDED coverage

 RESEARCH lectronic instruments and equipment wicome inquiries - no only in conn problems, or design of microwave assemblies of your own specification you may want developed and produced.

MICROWAVE CALORIMETRIC WATTMETER

portable . . . forlab and field use . . . to measure absolute microwave power. Frequency Range: 2600 MC to 26500 MC

Max. VSWR: 1.1
Max. Peak Power: 600 KW

COAXIAL
 CALORIMETRIC WATTMETER

Frequency Range: 200 MC to 3000 MC-Max. VSWR: 1.5 over range - Max. Peak Power: $15 /{ }^{\prime \prime}$ Coaxial rating

MICROWAVE (X-BAND) PULSE MEASURING WATTMETER

for measuring peak power of microwave pulses from signal generators or radar systems.

ELECTRONIC DIRECTREADING PHASE METER

Frequency Range: 20 to 50,000 cycles $0-360$ degrees

Shown af left are a few of our standard microwave components available as catalog items. Special purpose wave guide assemblies designed to customer's specs can also be produced.

 SCOIt \& CANON STS. sAN DIEGO 6 CALIFORNIA

Devoted Exclusively to Electronics \& Electronic Equipment

development center for all Gabriel divisions, both automotive and electronic.

GE Expands in South

The General Electric Co. recently opened a new $\$ 6,000,000$ electronic tube plant near Oxford, three miles south of Anniston, Ala. Total floor space is more than $160,000 \mathrm{sq} \mathrm{ft}$ and current employment is about 300 . By next year the plant will employ an estimated 2,000 people in the production of miniature glass receiving tubes for radio, television and a wide variety of other communications and industrial equipment.

The plant marks another step in GE expansion in the south. The company has plants in Owensboro, Louisville and Lexington, Ky., and Jackson, Miss., and recently announced plans for a transformer plant at Rome, Ga.

Besides the Anniston Tube Works, six other GE tube manufacturing plants are in operation in Owensboro, Ky.; Tell City and Huntingburg, Ind.; Schenectady, Syracuse and Buffalo, N. Y. Another plant in Scranton, Pa., is being converted to tube production.

Westinghouse Names

Two Executives
Jay M. Allen has been named manager of manufacturing and Ricardo Muniz has been appointed superintendent of manufacturing at the Westinghouse TelevisionRadio Division plant in Sunbury, Pa .

Mr. Allen, formerly superintendent of production, had previously held executive positions at Federal Telephone and Radio Corp., RCA, Erie Resistor Corp. and Stewart Warner Corp.

Mr. Muniz comes to this assignment from the Trad TV Corp. where he was vice-president and operations manager. He has previously held executive posts at DuMont, Radio Navigational Instrument Corp. and Munston Mfg. and Service Co.

The appointments are part of a general staff reorganization and increase in the overall company expansion program in tv and radio.

thas fellow is trained in your business. His main duty is to travel the country - and world - penetrating the plants, laboratories and man. agement councils . . . reporting back to you every significant innovation in technology, selling tactics, management strategy. He functions as your all-seeing, all-hearing, all-reporting business communications system.
the man we mean is a composite of the edi. torial staff of this magazine. For, obviously, no one individual could ever accomplish such a vast business news job. It's the result of many qualified men of diversified and specialized talents.

AND, THERE'S ANOTHER SIDE TO THIS "composite man," another complete news service which complements the editorial section of this magazine - the advertising pages. It's been said that in a business publication the editorial pages tell "how they do it" - "they" being all the industry's front line of innovators and improv. ers-and the advertising pages tell "with what." Each issue unfolds an industrial exposition be. fore you - giving a ready panorama of up-to. date tools, materials, equipment.
such a "man" is on your payroll. Be sure to "listen" regularly and carefully to the practical business information he gathers.

McGRAW-HILL PUBLLCATONS

NEW) Áútograf
 a general purpose, wide range, poriable, universal $X=(f) Y$ graphic recorder

Now you can expedite your research, development, and test programs with the AUTOGRAF - a precision recorder that automatically plots curves showing relationship between a dependent and an independent variable. Through two rebalancing, servo-actuated recording axes, the AUTOGRAF draws cartesian coordinate graphs from any data that can be reduced to electrical form. You save the time it would ordinarily take to read meters, collate data, transfer data to grid, draw in curves... The AUTOGRAF does all this work for you, plotting the data simultaneously with occurrence of the phenomenon being studied. Too, the AUTOGRAF draws related curves in families as fast as input information can be altered. Without any additional steps, once a test is run, you have in hand a complete, accurate, pen-and-ink graph, drawn on a standard $81 / 2^{\prime \prime} \times 11^{\prime \prime}$ sheet of paper, ready for study, file, notebook, or reproduction.

SPECIFICATIONS: - Two independent servo-actuated recording axes: input free of ground. - Recording speed, both axes, 1 second for full scale travel. - Scales: from 0.5 millivolts up to 0.100 volts, both axes. Full-range o. millivolts up tot on either axis - plots data in any desired quadrane. zero set on either axis - plors data in any desired quadrane.

- Sensitivity - 200,000 ohms per volt, 5 microamperes - Sensitivity- 200.000 ohms per volt, 5 microamperes drain for full scale. ©ize and weight: $13^{\prime \prime} \times 13^{\prime \prime} \times 10^{\prime \prime}$;
35 lbs . Self.contained; operates from 115 volt 60 cycle 35 libs. Self.c
line, 85 watts.

WRITE

=MOSELEY=

for
complete ,FRANCIS L.MOSELEY details 1136 N. LAS PALMAS AVENUE LOS ANGELES 38, CALIFORNIA

CONTINENTAL

MINIATURE Precision COONEETOKS

RACK TO PANEL TYPE

4 to 100 contacts

POSITIVE POLARIZATION - FLOATING CONTACTS. PRECISION MA. ING CONTACTS ${ }^{\circ}$ PRECISION MA. CHINED CONTACTS VIBRATION PROOF MINERAL FILLED MELA.
MINE BODY FLAME RESISTANT. MINE BODY CI-DIELECTRIC AND MECHANICAL STRENGTH

CABLE TO PANEL TYPE

4 to 100 contacts

VOLTAGE BREAKDOWN (Sea level normal humidtiy)
CURRENT RATING $\quad 3600 \mathrm{~V}$. RMS CONTACT SIZE 20 AWG 5 AMPS CONTACI SIZE 20 AWG wire MECHANICAL SPACING $5 / 64 \mathrm{in}$.

CABLE TO PANEL TYPE

Hexagonal type is provided with positive polarization and a Vibration Ring and spring with detent locking action. Volrage breakdown it Sea - 1600 V RMS ity. - 1600 V. RMS
CATALOG WITH COMPLETE
AILS - AVAILABLE ON REQUEST. TO DEPT.E-8

NEW BOOKS

Radio Antema Engineering

By Edmund A. Laport. McGraw-Hill Book Co., 1952, 563 pages, $\$ 9.00$.
This book is a practical treatment of antennas for frequencies up to 30 mc and down to 30 kc . In addition to considering the antenna problem proper, the author also discusses the many other considerations which are directly related to the radiating structure proper. These considerations, which are generally illustrated by concrete examples, include: coupling networks and feed systems, ground systems, problems of voltage breakdown on wires and insulators, propagation phenomena, methods of array construction and transmission line problems.
The standard problems of radiation pattern analysis and determination of the input impedance of antenna elements have not been slighted, by any means. Methods of designing arrays to produce given coverage diagrams are discussed in detail. Computation of the input impedance taking into account the mutual impedance is also discussed. Most of the design formula have been given without proof, since the book is intended to help nonspecialists with some of the ordinary antenna problems that occur in practice. This represents no great omission since a substantial number of books on antenna theory and allied topics have appeared within the past decade.
Mr. Laport's book consists of six chapters, the first three of which respectively treat l-f antennas, m-f broadcast antennas and h-f antennas. These chapters, which comprise the first two-thirds of the book, are mainly concerned with the antenna problem, although the associated topics have not been neglected. The last three chapters respectively treat r-f transmission lines, graphical synthesis of im-pedance-matching networks and logarithmic potential theory. The book closes with a collection of appendixes, half of which are a collection of numerical data useful in antenna design.

The reviewer has only two minor

Deullin

 MEETS MIL-M-10304

- Mechanism suspended by internal live rubber ring mounts for maxi. mum shock displacement and protection.
- External live rubber grommet for shock mounting with interlocking part of front bezel eliminates glass breakage and bezel distortion.
- Water-tight seal to panel provided by rubber grommet.
- Glass to metal seal for perfect hermetic sealing.
- Drawn steel case with heavy cadmium plate provides high degree of magnetic shielding.
- High-grade fusion seals for terminals and window glass withstand thermal shock of extreme temperature changes.
- Rugged glass-to-metal seal terminals withstand a 3000 volt breakdown test under extreme humidity conditions.
- Entire mechanism has complete ruggedized construction for high shock and vibration resistance.
Ranges from 250 microamperes to 8 milliamperes D.C. available for immediate delivery in $21 / 2^{\prime \prime}$ size. Other ranges in $21 / 2^{\prime \prime}$ and $31 / 2^{\prime \prime}$ being submitted for government approval.

A request on company letterhead to Dept M-N will put you on our mailing list, and bring you bulletin 200E.

ance
CORPORADON
4S-OI NORTHERN SOULEVARD, L. I. C. I, N. Y.

PRECISION POTENTIOMETER

CORNELL PRECISION POTENTIOMETER, an instrument of perfection and compact design incorporates many features:

- Anodized Aluminum case, precision machined from solid stock. Fully enclosed, from 5 to 200,000 ohms. Accuracy up to 0.1%. Linear or non-linear resistance elements to meet your requirements. Centerless ground stainless steel Ball-bearings at each end. Paliney precious metal contact. Low Torque 1 oz inch. Long life in excess of one million cycles. Silver plated Terminals. Accurate phasing of individual units. Ganging if desired. Also built to individual specifications.

CORNELL
PRECISION RESISTORS
Standard \& Non-inductive Fixed WireWound to Mill specifications. Accuracy 1\% to 0.1%.

Bulletin on request.
CORNELL ELECTRONICS CORPORATION
Designers \& Manufacturers Of
PRECISION RESISTORS. LINEAR \& NONLINEAR PRECISION POTENTIOMETERS 40-33 MAIN AVENUE, DOUGLASTON, N. Y.

BAyside 4-2337

ELECTRIC INSTRUMENT \& CONTROL HEADQUARTERS

 YES, OFFTHESHELF SERVICE

Electro-Tech maintains one of the largest and most complete stocks in the country of electrical meters, instruments and industrial control equipment-representing over 250 top lines.
Yes, our warehouse is bulging with standard sfocks of
Counters Panel Meters Transformers Switchboard Meters Micro Switches Photo Electric Equipment Relays
and Laborato

Solenoids Tachomefers Thermometers Thermostats Rectifiers Rheostats
Timers

Toggle Switches Shunts (Electrical) Meggers Solenoid Valves Pyrometers Multimeters Oscilloscopes

ments

In addition, we manufacture and stock Special Test Equipment - Electric Heating Units - Current Transformers Pyrometers - Thermocouples - Rectifiers.

Our laboratory is available for repair work, rescaling, recalibration and special calibration of your electrical and industrial instruments. Often months are saved by rescaling and calibrating stock instruments to your specifications.
consult us about your requirements

ELECTRO-TECH fquipment co.

55 LISPENARD ST., NEW YORK 13, N. Y.

In electronics - for insulation against heat, flame, moisture and grounding - use re. F́rasil. A refined fibrous silica product, refrasil applications are virtually unlimited: An ideal insulation for power equipment ... electric muffle furnaces...soldering iron heating elements...electric heating mantles, rheostats ... and for thermocouple lead wire covering. If insulation is your problem specify refrasil-the most versatile product of its kind in use today in many industries.

IMPORTANT FEATURES

\star Chemical resistance of pure silica
\star Resists temperatures up to $1800^{\circ} \mathrm{F}$.

* Low thermal conductivity
\star Fiber diameter .00020-00040 in.
\star Specific heat 19
\star Thickness. 14 - 15 in .
* Surface density $.05 \mathrm{lb} . / \mathrm{sq}$. ft.

WRITE OR CALL YOUR NEAREST REPRESENTATIVE.
EASTERN TIXAS, OKLA KANSAS SED

Burnie L. Weddio
3219 West 29 th 5 .
3219 West 2 sth st,
Indionopolis 2t, Ind
Miskory Be BS
HIICO
THE H. I. THOMPSON COMPANY 1729 CORDOVA STREET IOS ANGELES 7, CALIE.

> Model 844
> Low Pass Filter

- Suppression of low-order harmonics in transmitters operating below 400 mc is the prime function of Model 844 Low Pass Filter. 40 db or more attenuation of 2 nd to 5 th harmonics of transmitters operating between $225-400 \mathrm{mc}$ is afforded. Insertion loss and VSWR are very low thruout the pass band. Teflon insulation and rugged construction thruout assures reliability.
FREQUENCY RANGE - pass band $0-400 \mathrm{mc}$. Stop band 500-2000 mc.
POWER RANGE - 150 watts maximum.
IMPEDANCE - 50 ohms. VSWR better than 1.35
thru pass band.

CONNECTORS - Type N. One male and one ATTENUATION - pass band. 3 db or less ATTENUATION - pass band. 3 db or less
below 400 mc . Stop band -40 db or more below 400 mc . Stop band -40 db or more
500 to 2000 mc .

: $\sqrt{2}$ ELECTRONIC CORP TERMALINE © insxilumenis

1800 EAST 38TH ST. CLEVELAND 14, OHIO West Coast: NEELY ENTERPRISES HOLLY WOOD 46, CAL.

FOR THOSE TIGHT SPECIFICATIONS

EVERY DESIRABLE CHARACTERISTIC

- Smallest in size.
- Sealed in Silicone
- 100% impervious to moisture and salt spray.
- Complete welded construction from terminal to terminal.
- Temperature coefficient 0.00002% per degree C.
- Ranges from . 05 Ohms to 55,000 Ohms, depending on type.
- Tolerance $.1 \%, .5 \%, 1 \%, 3 \%$, and 5%.
- RH Types-Silicone sealed in a die-cast, black anodiized radiator finned housing and mounts on sub-panel for maximum heat dissipation.
- Prompt Delivery.
- Let us quote on your immediate needs.

Phone, wire or write George Risk
Telephone 2139-2500 13th Street For Price \& Delivery
(We also manufacture deposited carben resistors)

DALE PRODUCTS, INC.

Columbus, Nebraska
comments to make regarding this text. The first is in connection with the sections on the suppression of the secondary lobes in broadside arrays. Here, the author shows how secondary lobes can be reduced by pattern-splitting techniques and also by the use of binominal current distributions. However, no discussion is given of Dolph's theory of current distributions that produce the Tschebycheff type of pattern in which the relationship between beamwidth and side-lobe level has been optimized. This technique has proved quite useful in the design of linear arrays at microwave frequencies and could well prove useful in designing high-frequency curtain arrays. The second comment is with regard to the author's preference for the rectangular transmission line chart. In recent years, the Smith chart type of circle diagram has found essentially universal acceptance for working impedance problems so that a brief discussion of its form and uses would have been appropriate.

On the whole, the book does an excellent job of treating its subject and should be of great use to those who are concerned with antenna problems in the frequency range below 30 mc . The book is well organized and easy to read. Not the least of the book's merits is its large collection of photographs showing the details of construction of numerous antenna arrays and transmission line systems.

Mr. Laport is to be commended for having made available his wealth of experience in practical antenna design.-HENry Jasik, Assistant Supervising Engineer, Antenna Section, Airborne Instruments Laboratory, Mineola, N. Y.

Electrical Measurements

By Forest K. Harris, National Bureau of Standards. John Wiley \& Sons, Inc., 784 pages, $\$ 8.00,1952$.
Although numerous books on the general subject of electrical measurements have been written in the last few years, this volume by Dr. Harris of the Bureau of Standards appears to be outstanding in its completeness in many respects. It is the first book on electrical meas-

Advertisers:

How about the NUCLEAR field?

There are a good many advertisers using ELECTRONICS who should also be advertising in NUCLEONICS.

Particularly in instrumentation and laboratory equipment. there is a cross-over of use in the electronic and in the nuclear field.

But, there is very little crossover in the subscriber lists of the two publications -a matter of a few percentage points.

It is quite possible that you are doing an effective presentation of your products and abilities in this excellent issue. but are missing such presentation before one of the fastest growing fields in the country's history - the field of atomic energy.

The sales representatives of ELECTRONICS are also the sales representatives of NUCLEONICS. They have much evidence pointing to the opportunities in this great NEW field. Ask them to show you what your potentials can be.

NUCLEONICS

 ABC ABPA McGraw-Hill Publication 330 West 42nd St. New York 36, N. Y.

On the Frontiers of Design You'll Find

 Micro Ground Miniature Ball Bearings

Where instrumentation and other delicate mechanisms call for the last refinement in saving weight, space and friction, the chances are good that Micro bearings are part of the picture. America's first and only fully ground miniature ball bearing, Micro offers 85 sizes and types with $3 / 8^{\prime \prime}$ to $1 / 8^{\prime \prime}$ O.D. and in tolerance ranges of ABEC-5 and above. They provide all the precision advantages which are possible only in a ground bearing, yet they actually cost less than comparable unground miniatures.

Write for Technical Bulletin No. 50

Ball Bearings, Ine.

5 Main Street, Peterborough, N. H.

by the originators of "Die-less Duplicating"
This instructive and authoritative booklet will quickly prove itself indispensable wherever bending is done or is needed. It brings you a veritable gold mine of tested, authentic bending methods applicable to any rotary type bender. The proper bending technique may frequently offer a new approach to an old problem by simplifying product design and cutting production costs.
The exact methods of producing various types of bends in a wide range of materials are illustrated, step by step, with
over 90 diagrams and charts together with valuable wide range of materials are illuscrated, step by step, with
over 90 diagrams and charts together with valuable

urements to make reference to currently available instrument standards such as the American Standard C39.1 for Electrical Indicating Instruments. There is considerable discussion on this and other standards, and of parallel importance is the discussion on how to write specifications for the instrumentation required for any particular electrical project.

The first chapter on the art of measurement appeals enormously to this reviewer because of the very pertinent discussion on accuracy and experimental errors. The point is well made that the order of accuracy of the several components in the measuring system should be the same; a low-accuracy link in the chain may spoil the whole result, but by the same token a too-precise element requiring excessive manipulation leads to no greater accuracy in the end. The discussion of random errors and root-mean-square deviation, the so-called standard deviation, is rarely found in books of this type and an understanding of this philosophy is most helpful.

The section on laboratory practices should be read by everyone involved with laboratory work; anyone who has burned out an instrument or a circuit component will be doubly interested in the pertinent comments as to the use of protective resistors, the order of making connections, applying potential and the like.

The chapter on electrical units is excellent, giving some brief history as to the basis of the International Units used until a few years ago, and the new Absolute Units with their conversion factors from those used previously. It is noted that there is no discussion of any special parameters commonly used in electronics and high-frequency work, and the book thus appears to be rather definitely limited to power frequencies except as the extension to high frequency may be made directly.

Direct-current instruments are discussed in great detail, starting with galvanometers which are discussed through the various phases of design and including the equations of motion, response time and damping. There is a considerable discussion of sensitivity limits,

2 KW VACUUM TUBE BOMBARDER OR INDUCTION HEATING UNIT

For Only \$650.

Never before a value like this new 2-KW bench model "Bombarder" or high frequency induction heater . . . for saving time and money in surface hardening, brazing, soldering, annealing and many other heat treating operations.

Simple . . . Easy to Operate . . . Economical Standardization of Unit Makes This New Low Price Possible.

This compact induction heater saves space, yet performs with high efficiency. Operates from 220 -volt line. Complete with foot switch and one heating coil made to customer's requirements. Send samples of work wanted. We will advise time cycle required for your particular job. Cost, complete, only $\$ 650$. Immediate delivery from stock.

Scientific Electric Electronic Heaters are mode in the following ranges of Power: 1-2-3 $1 / 2-5-71 / 2-10-121 / 2-15-18-25-40-60-$ 80-100-250KW.

Division of
" S " CORRUGATED QUENCHED GAP CQ.
107 Monroe St., Garfield, N. J.

The Tinyłorque

Model T Single-Turn Precision Potentiometer
The Tinytorque combines an absolute minimum of operating torque with smallest possible space and weight requirements-plus high precision and rugged dependability.
Here are the highlights...
ULTRA-LOW TORQUE: 015 in. oz. standard starting torque. As low as .005 in . oz. available in potentlometers with resistances of from 10 K . to 100 K . ohms.
MINIATURE SIZE: $7 / 8$ inch diameter $x 25 / 32$ inch length!

- FEATHERWEIGHT! Welghs only half an ounce (0.56 ounce)!
- BALL BEARING CONSTRUCTION: 5/64 inch stainless steel shaft rotates on two prectsion miniature ball bearings, providing ultra-low torque and great ruggedness!

Actual Size
Ideal for applica tions where space and light weight are vital-such as guided misslles, instrumentation aviation electronics, etc.-the Tinyrorque is available in resistance ranges from 1000 to 100,000 ohms-power rating 1/2 watt-with close resistance and Inearity tolerances. Servo mountings, single or double shaft extensions, ganged assemblles, spot welded taps to speciflcations, many other features.
along with several excellent tabulations of the sensitivities of galvanometers commercially available.

Proceeding with indicating instruments there is a discussion of springs, bearings, scales and pointers and magnetic systems, all of which may be of more interest to the instrument manufacturer than to the user who is rarely in a position to modify any such items in his laboratory equipment. Nevertheless a general picture of what is involved may be of some value in a better understanding of instrument physiology.

The potentiometer (not a circular rheostat!) is considered in great detail and many types are shown which are rarely seen in the modern laboratory. This section of the book, along with the discussion of standard cells, is perhaps of more use to those involved with instrument calibration and maintenance than to the engineer with a pressing problem in electronics. Nevertheless, the potentiometer approach to measurement, effectively a balance or substitution method, is a powerful approach and one which frequently can be used in r-f measurements where a thermoelement or a bolometer can convert the end result into d-c phenomena.

The section on resistors, including decade boxes, is quite valuable and there is a considerable discussion of the time constants of resistors which should be important in resistance measurements at higher frequencies. Bridge methods are similarly discussed and again will find considerable utility in all measurements since the bridge or balance approach to measurement is most useful.

The section on magnets and magnet testing is particularly pertinent today in view of recent advances in magnetic materials. From the ferrites through the powdered and sintered materials to the anisotropic alnicos, the spread in magnetic testing requirements has enormously broadened in recent years and this section will be of value to those concerned with ferromagnetism from the loudsneaker nermanent magnet to the tv fly-back transformer.

Basic a-c measurements of current, voltage and power are discussed in detail and it might be

DOUBLEBARREL AdYQuiciog

Advertising men agree-to do a complete advertising job you need the double effect of both Display Adver. ciaing and Direct Mail.

Display Advertising keeps your name before the public and build prestige.

Direct Mail supplements your Display Advertising. It pin-points your message right to the executive you want to reach-the person who buys or influences the purchases.

More and more companies are conatantly increasing their use of Direct Mail because it does a job that no other form of advertising will do.
McGraw-Hill has a special Direct Mail Service that permits the use of McGraw-Hill lists for mailings. Our names give complete coverage in all the industries served by McGrawHill publications-gives your message the undivided personal attention of the top-notch executives in the industrial firms. They put you in direct touch with the men who make policy decisions.

In view of present day difficulties in maintaining your own mailing lists, our efficient personalized service is particularly important in securing the comprehensive market coverage you need and want.

Ask for more detailed information today. You'll be surprised at the low over-all cost and the tested effectiveness of these hand-picked selections.

MrGRAW-HIIL PUBLISHING CO., INC.

330 West 42nd Sireet 1 NEW YORK :8, N. Y.

ACCURATELY MEASURES

Rate of Acceleration or Motion

UP TO 20,000 PER SECOND WITHOUT CONTACT

NEW

IMPULSE GENERATOR

Small low cost electromagnetic pick-up amplifies electrical impulses for countiay recurring operations, revolutions, sequences, cycles or motions. It produces a voltage output proportional to the object's rate of speed. And may be actuated by the displacement or vibration of any magnetic material in the field of the pick-up. Such as a slot or keyway in the rim of a wheel or shaft, the feeth in a gear or any magnetic part on a moving body. Consult Our Engineers on Your Particular Problem.

NEW "TELEVER SWITCH"

A unique design Telephone Type Lever Switch of relatively light construction with the ruggedness of structural "T-Beam" frame construction. For applications requiring dependable switching. Standard circuits in both 2 \& 3 position actuators, either type locking or non-locking. Special circuits available.

NEW "ADAPTERS"

Real time savers. Provide convenient interchange of equipment between various wiring devices.
No. 332 - (illustrated) Standard Phone Jack input to Female Microphone Connector output. No. 334, similar, with Phono Jack Connector input.
No. 342 - Dual-purpose binding post/Banana Jack input to Phone Plug Output.
No. 346 - Tip Jack input to Phone Plug output.
No. 336 - Phone Jack input to Phono Plug Connector output. No. 338, similar, except Microphone Connector input.
No. 344 - Phono Jack Connector input to Phone Plug output.
No. 338 - Male Microphone Connector input to Phono Plug Connector output.

These and many other New Components will be found in the Switchcraft catalog for 1952. Send for your copy of catalog No. S-52 today.

MAGNET, RESISTANCE and AlloY WIRE

Small space factor
Unaffected by chemicals or corrosive atmosphere

Capable of withstanding 250° centigrade

High dielectric
Excellent flexibility and abrasion resistance

Sizes: 10 through 50 A.W.G.

Send for NEW Warren Wire Specification 1001

WARREN WIRE CO.
 pownal
 VERMONT

Producers of Nylon, Plain Enamel and Served Magnet Wire, Tinned and Bare Copper Wira.
*Du-Pont trademark for Polytotrafluoroethylene Enamel
pointed out that these measurements have been extended into the higher power frequencies approaching the audio spectrum to a very considerable degree in the last decade. The use of 400 cycles in aircraft has required new instruments and instrument circuit designs as compared with the 60-cycle instruments of some years ago which had large errors above 200 cycles, and reference is made to the methods used to attain the improved results. In a similar vein, the recent improvements in instrument transformers are considered; using the various nickel alloy cores, enormously improved results are obtained and the newer transformers will also function well and accurately in many instances into the audio band.

While the discussion of oscillographs is reasonably complete and includes a discussion of the modern scope with a set of typical Lissajous figures, the section on electronic instruments is limited to some fourteen pages. This seems unfortunate in view of the rather enormous utility of electronic gear in the measurement art and it might well be that an additional chapter showing the detailed use of amplifying and detecting techniques derived from the vacuum tube would be well worthwhile.

In general, however, Dr. Harris has written an outstanding book on the subject of electrical measurements; no errors of fact have been located. The manuscript having been based on a great deal of prior work, it seems likely that the book can be used as a reference for many years to come--JOHN H. Miller, Weston Electrical Instrument Co.

Electric Transmission Lines

By Hugh Hildreth Skilling. Mc-Graw-Hill Book Company, New York, 1951, 438 pages, $\$ 6.50$.
IN THE preface of his new book concerning transmission line theory, Dr. Skilling indicates that it is intended as an introduction to the field and states ". . . the purpose of this book is to give as much on circuits with distributed constants, and their practical applications, as

DÁu

specification designed
CANVAS
and leather PRODUCTS

BG BAGS-CW BAGS
CARBINE CLIP BAGS
TOOL ROLLS-BAGS \& CASES for
Radio Equipment
Electronic Equipment Radar Equipment

C. R. DANIELS, INC. DANIELS, MD

```
75 West St
New York 6, N. Y.
```


Hermetically Sealed microtran

Transformers LIGHTWEIGHT TRANSMITTERS

These units were developed to meet the demands of a growing miniaturization program. Despite their small size they are designed to work at an ODB level with full frequency response.

MICRO-MINIATURE FOR HEARING aIDSTRANSMITIERS AND RECEIVERS

Providing the ultimate in miniaturization, these Microminiature transformers are the tiniest commercial units available.
Also available for ultra-miniature requirements are open frame units. Double Epoxy resin impregnation provides thorough protection from adverse climatic conditions.

MIL TYPES CASES-Power, Audio, Pulse and Reactor FAMILIES-AF, AG, AH, AJ
On special order standard stock miniatures can be supplied to meet Military requirements and are given the necessary tests as pre-described for MIL-T-27.

For descriptions of complete stock items and prices write for catalog "A."
CREST LABORATORIES, INC. Whitehall Building Far Rockoway, N. Y.

M.S.C.
(Mass Spectrometer Checked)
RARE GASES
HELIUM - NEON
ARGON • KRYPTON • XENON

LINDE Rare Goses are mass spectrometer checked to assure you gases of known purity and uniformly high quality. Available in commercial-size cylinders and glass bulbs.

LINDE, the world's largest producer of gases derived from the atmosphere, can meet your individual needs of purity...volume ...mixture ... containers...

IINDE AIR PRODUCTS COMPANY
a division of union carbide
and carbon corporation
30 East A2nd Street ULIS New York 17, N. Y.
In Conoda:
Dominion Oxygen Compony, Limited, Toronto
The term "Linde" is a registered trade-mork of Union Corbide ond Corbon Corporation

another ARROW special

JAN-R-94 Type RVAATRJ101A RV4ATRJ251A RV4ATRJ501A RV4ATRJ102A RV4ATRJ252A RV4ATRJ502A RV4ATRJ103A RV4ATRJ253A RV4ATRJ503A RV4ATRJ104A RV4ATRJ254A RV4ATRJ504A RV4ATRJ105B RV4ATRJ255B RV4ATRJ505B

Resistance 100 ohms* 250 ohms* 500 ohms* 1000 ohms* 2500 ohms* 5000 ohms* 10,000 ohms* 25,000 ohms* 50,000 ohms* 100,000 ohms* 250,000 ohms* 500,000 ohms* 1 Megohm** 2.5 Megohms** 5 Megohms** Any Above, Standard $2^{\prime \prime}$ Shaft, EA. 1.09 Any Above, locking Slotted Shaft, EA. 1.39 * $\pm 10 \% \quad * * \pm 20 \%$

\$1.09

STANDARD TYPE
This is the most spectacular money-saving buy of the year! New, famous make 2-watt carbon potentiometers to JAN-R-94 specifications at better than one-third off regular price. Two types: (1) Standard with $.250^{\prime \prime}$ full-round shaft. (2) Locking type screwdriver slotted shaft. All in the most desired values-see listing below. 3/8" -32 bushings. Arrow made a sensational purchase-and the savings are all yours. Order nowand SAVE!
Certificate of Compliance or ASESA certificate number can be supplied.

Every year more and more manufacturers are using Supreme meters as initial equipment in hundreds of electrical and electronic devices. Quality built in every respect with many outstanding features such as EFFICIENT ALNICO BAR MAGNETSELECTED PIVOTS AND JEWELS-DOUBLE BRIDGE CONSTRUCTION-HIGH TORQUE MOVEMENT-STRONG TOUGH POINTER-RUGGED MOVING ELEMENT. Available in a variety of sizes and types with or without special dials. Write Supreme D $\quad \begin{aligned} & \text { today obout your meter needs. Requests for prices } \\ & \text { and delivery given prompt attention. }\end{aligned}$ Our 25th Year
SUPREME, INC.
GREENWOOD 3R, MISSISSIPPI

Type 2A TAP SWITCHES

have a constant contact resistance of ONLY 1 or 2 MLLIOHMS!

These high quality switches with up to 24 contacts were specifically developed to meet the need for rugged precision instrument switches that have longer operating life and are economical components in competitively priced electronic instruments and military equipment.

Write for Technical

Bulletin No. 28.
Exclusive Canadian Dist. RCA Victor Ltd.

PALISADES PARK B0X 148, N. J.

is needed by all electrical engineers. but it is not intended to train the specialist." The treatment as evolved by Dr. Skilling progresses significantly toward that ambitious goal. Dr. Skilling presents the subject in the same lucid and logical style which characterizes his other books.

Chapters 1 through 8 discuss the theory of transmission lines starting from the simplified high-frequency, low-loss point-of-view; thus the student is introduced to the unfamiliar world of distributed constant circuits in the familiar environment of trigonometric functions. After a discussion of traveling and standing waves, the treatment is generalized, using complex hyperbolic functions, to include the line with loss. A discussion of line parameters (characteristic impedance, propagation constant, etc), line constants (inductance, capacitance, effective resistance, etc), and artificial lines completes the theoretical section.

Chapters 9 through 13 consider application of the theory to l-f power lines, m-f telephone lines, h-f radio lines, and uhf wave guides. It is stressed that the behavior of each of these is best specified by different forms of the equations, and the snecialized analysis techniques apnlicable to each are described. The different characteristics of lines associated with their operating frequency are matters that few engineers appreciate. The treatment here is gratifying.

The theory of wave guides is approached as an extension of transmission line concepts with hardly a mention of Maxwell's equations. The ideas of phase and group velocity, cut-off phenomenon, reactive and resistive attenuation, etc, are derived from the suitably modified line equations. The matters of higher modes, reactive obstacles, terminations, and coax-to-waveguide couplings are discussed somewhat heuristically. Chapter 10 is an introduction to filter theory from the traditional point of view. The final chapter, Chapter 14, discusses transient waves of arbitrary form traveling on periodic structures. Single and multiple reflections and the transition to steady-

DIGITAL COMPUTER SALES ENGINEERS ELECTRICAL ENGINEERS

needed for customer contacts, sales, service, and contract administration concerning large commercial installations of electronic digital computers, inventory and accounting systems.

Minimum 2 years experience required
Replies Strictly confi-

- Interviews arranged dential at our expens

Leaders in the Development of Digital Computers 1902 W. Minnehaha, 5t. Paul' 4, Minn. "You Will Enjoy Living in Minnesota"

WASHERS-ALL KINDS

WASHER SPECIALISTS for nearly half-a-century. Dies in stock will produce most sizes. Big runs made with automatic presses. An economical, accurate, aad highly reliable source for washers, also all kinds of metal stampings. HAVE WHITE. HEAD'S CATALOG ON FILE; write for it.

BEVELED
BEVI
CUP
D-HOLE
RETAINER
LOCK
SPACERS
SPRING TENSION
SQUARE HOLI
STAR LOCK
THRUST
THRUST
TONGUE

1691 W. LAFAYETTE
-
DETROIT 16, MICH.

At your service, for all small bearing problems, the Bird Company engineering staff designs accurate sapphire and

glass jewel bearings used in the world's most famous aircraft, electrical and timing instruments; weather and all types of recorders; and fine
 indicating apparatus.

Close tolerances, accuracy, and long life qualify Bird Jewel Bearings to insure quality in your
 finest instruments. Quotations on request for jewels made to specifications for your individual requirements.

Exyly

The engineering staff of the Bird Company is at your service for all small-bearing problems.

Serving industry with fine jewels since 1913

Sapphire and glass jewels - Precision glass grinding Ferrite precision products Sapphire stylis 7 Spruce Street, Waltham 54, Mass.

StaR

 PORCELAIN BEADS

for the Insulation of Bare Wire

These ball and socket bushings of STAR Lavolain, a steatite ceramic, are the best high temperature bare wire insulation you can buy. They are high in dielectric and mechanical strength-and, when joined, provide great flexibility. They are stocked and immediately available in 13 sizes with openings from . 056 to .400 inches. Send for samples and full information.
state behavior are considered.
The viewpoint taken in this book is one which fundamentally separates transmission line theory from electromagnetic field theory. There are, of course, other approaches to the subject which some will consider preferable and more basic. On the other hand, their opinion will not be shared, perhaps, by their students, who will be striving for an intuitive grasp of the subject. This matter is one which must be decided according to the desires and objectives of the prospective user. Similarly, there will be those who desire to change the emphasis, as placed by Dr. Skilling, on various subjects. For example, although inherent in the treatment of traveling waves, there is no mention of the important use of lines for delaying and storing electrical signals. Also, the treatment of distortionless lines starts from the seemingly arbitrary condition. $r / g=l / c$. rather than from the perhans more logical requirement of flat amplitude and linear phase response. This latter condition is the requirement for facsimile transmission through any network. Such criticisms, however, must be considered as secondary when the overall objective of conveying to the students an understanding of transmission lines in considered. In that, Dr. Skilling succeeds admirably. Winston E. Kock, Director of Acoustics Research, Bell Telephone Laboratories, Murray Hill Laboratory.

The Design of
Switching Circuits
By William Keister, Alistair E. Ritchie and Seth H. Washburn, Bell Telephone Laboratories. D. Van Nostrand Co., Inc. New York, 1952, 556 pages, $\$ 8.00$.
THE field of switching circuits and its application to data processing machines has developed rapidly in the last few years, but there has been very little information published on the techniques of organizing the elementary switching circuits into the complex arrangements required in these applications. This, one of the first books concerned with a systematic treat-

HUGHES
 Research and Development Laboratories invites inquiries from Engineers and Physicists Cuber City, Los Angeles County, California

 assurance is required that re-location of the applicant WILL NOT CAUSE DISRUPTION OF AN URGENT MILITARY PROJECT.
The confidence vote in coils goes to DANO

- Form Wound
- Paper Saction
- Paper Section
- Acetate Babbin
- Cotton Interweave
- Coils for High Temperature
Applications

ALSO,
TRANSFORMERS MADE TO ORDER

Dano for coil performance! Dano for coil dependability! From simple electrical coil windings to specially treated coils-I ano is the confident choice everytime.

Decade Resistances
 FOR FAST, ACCURATE TESTING

You'll find Shall-

Wheatstone Accuracy and Flexibility plus
 PERCENT LIMIT BRIDGE CONVENIENCE

Here is a new Shallcross instrument for really fast and accurate (0.05%) GO, NO-GO comparative resistance measurements. The model 6320 Wheatstone Limit Bridge features a range of 0.1 ohm to 111.11 megohms adjustable in steps of 0.1 ohm and individual Plus and Minus percentage selectors covering 0.05% to 20% in 9 steps.

SHALLCROSS MANUFACTURING COMPANY Collingdale, Penna.

Here at Coto-Coil...

. . . the Impregnating Department applies the final protective coating to precision-made Coto Coils. Each coil is pre-heated,

Finished coil impregnoted with varnish cooting immersed in varnish and drained . . . sometimes 3 or 4 times. The varnish finish, baked in these modern ovens, not only provides a hard, durable outer surface but completely fills all voids within the coil, resulting in a solid, pocket-free mass. Such modern production facilities, plus 35 years of experience, combine to make Coto Coils the first choice for engineered coils. Coto-Coil Company, 65 Pavilion Avenue, Providence 5, R. I.

$$
\begin{aligned}
& \text { YOUND }
\end{aligned}
$$

ment of the subject, is an exposition of the principles of the logical design of relay circuits as developed by members of the Bell Telephone Laboratories. Its treatment of the time sequential properties of these circuits is the first published presentation of this subject known to the reviewer. Part of the book is concerned with an extension of the techniques to electronic switching circuits employing gas tubes, vacuum tubes and semiconductor devices.

For the most part, this book is a description of the logical properties of relays and several classes of relay circuits used in telephone systems. It presents a large amount of design information which forms the basis of the "inspection" techniques used by the experienced designer. An attempt at development of a mathematical theory of switching circuits is made with a description of Shannon's treatment of the Boolean algebra of relay circuits. The algebra is introduced in terms of a sort of physical analogy between relays and logic. The notation and operations of the algebra are presented before any mathematical definition of the symbols is made. In the chapter on electronic switching circuits, the algebra is applied without mentioning what properties of the circuits are identified with the binary digit values of the algebraic-letter symbols, except for an implication that activation of a terminal has something to do with the mathematics. This vagueness must make the presentation confusing to the beginner as well as lacking in rigor.-Eldred C. Nelson, Head, Computer Systems Department, Hughes Aircraft Co., Culver City, Calif.

Transient Electric Currents

By H. H. Skilling, Professor of Electrical Engineering, Stanford University, McGraw-Hill Book Co., New York, 2nd ed., 1952, 361 pages, $\$ 6.00$.
THIS book is written at an undergraduate level, for engineering students taking a first course in transients or for engineers desiring a home refresher course. Classical methods for solving transient problems are used in the first nine chapters. Transformation methods are

neurotic or welladjusted to the most critical circuitry requirements?
We package all the right kinds of ohms, you know, in appropriate resistors. You can get ohms for splitsecond, military electronics functions-or for day-in, day-out plodding where the heat's on.

Take a moment to tell us the kind of ohms you need. We'll wager they're already packaged-ready for you!
1 (RC

international resistance co.
403 North Broad Street
Philadelphia 8, Pa.

en you need QUALITY OSCILLATOR
 SIE

MODEL M-2 IS YOUR ANSWER

The unique SIE oscillator circuit which has no lower limit to its possible frequency of oscillation is responsible for the excellent low frequency performance of the Model M-2 and other SIE oscillators. Write today for complete specifications.

SOUTHWESTERN INDUSTRIAL ELECTRONICS CO.

2831 Post Oak Rd. Housion 19. Texas 434 Seventh Ave. East-Calgary, Alberta, Canada

A NEW Way to Measure Flux-DYNA-LABS, Inc., D-79 GAUSSWETER

- Reads 10 to $\mathbf{3 0 , 0 0 0}$ Gauss Flux Fields
- No Puli Needed-Steady Meter Reading
- Probe only .025" Thick
- Active Area .01 sq. in.
- Probe Does Not Distort Field
- Vector Field Measurements Obtainable
- Non-Uniformity Quickly Established
- Special Probes Readily Available
- Production Test Jigs Available
- Size only $13^{\prime \prime} \times 63 / 4^{\prime \prime} \times 10 \frac{1}{2 \prime \prime}$
- Net Weight $101 / 2$ Ibs.
- Power Supply 105-125 V, 50-60 cycles

Write today for further details-Dept. E-8

Announcing the opening of our new, larger, modern plant and general offices-located at the address given below:

DYNA - LABS., Inc.
 1075 Stewart Are. Garden City, N. Y. GArden City 3-2700

HIGH PRECISION Thermistors

 from a high precision source
made to your order for resistance values • size
temperature coefficient • mountings • quality
Widely useful as temperature measuring elements and as liquil level sensors, these temperature responsive resistors are built by Bendix-Friez under a system of 'quality controls set up to met exacting military slandards of accuraey. You can coum on them as the very best obtainable, whether purchased from slock or made to your own specification. Ask for a list of applications.
STANDARD TYPES IMMEDIATELY AVAILIBLE

Size (inches)	$\left(a+30^{\circ} \mathrm{C}\right.$	@ $0^{\circ} \mathrm{C}$	$\left(a,-30^{\circ} \mathrm{C}\right.$.
$.140 \times 3 / 4$	45 ohms	86 ohms	194 ohms
$.040 \times 1.5$	12,250 ohms	26,200 ohms	65,340 ohms
$.018 \times 1.5$	35,000 ohms	82,290 ohms	229,600 ohms

Write for details to Dept.M

[^21]I. You atet permonent accuracer be couse the resistionce wire is locked
in place. It is precision positioned and moulded integrally with the housing.
2. You get permonently accurate set-- tings, smooth action and low unilom torque provided by the stainless steel, precision ground, double thread lead serew guiding the moving contact.
6. You get precise positioning of the moving contact because of the iwo bearings supporting the rotor assembly.

1. You get good rigid terminals becouse they are moulded integrally with the housing.
2. Terminals soldered to ends of re-- sistance element before moulding. Entire resistance circuit is an inte: gral part of the housing.
F. You set accurate setting and re selting due fo anti-backlash sping in contact suld.

7 You get a fine resolution because of the $439 /{ }^{\prime \prime}$ length of resistance wire in the spiral element.
P. You get a resistance output directly proportional to shaft rotation within $\pm 0.1 \%$ of the total resistance. Every potentioneter is automatic ally machine tested for linearity of 101 points.

Units for immediate shipment: 1,000 to 30,000 ohm range. Special resistance values made to order.

WRITE TODAY FOR INGINEYRING INFORMATION

BORG EQUIPMENT DIVISION THE GEDRGE W. BOIRG CORIPORATION JANESVILLE WISCONSIN

MIDGET TELEPHONE TYPE RELAYS in hermetically sealed centainers आயППППाएा

Surface mounting, open type, Series 80 Relay size: $1^{15 / 32^{\prime \prime}} 1$. x 5/8" w. x 125\%4" h.

Compact, multiple contact with vibration and shock-proof characteristics. Designed to meet various operating requirements typical of Armed Services applications.

Unique pile-up arrangement reduces width below the conventional relay, thereby reducing over-all space volume.

Coils are varnish-impregnated to resist high humidity conditions. All ferrous parts are treated to pass salt-spray tests.

Engineering Representatives in Principal Cities

WRITE FOR
BULLETIN MTR-6

presented in the last chapter.
The theory of transient voltage drops and of current and energy flow in a network are presented in great detail. A reader with a working knowledge of differential and integral calculus should follow the developments readily. Practical examples, introduced from time to time, indicate the utility of the material and the importance of transients.

The first two chapters consider the $R L$ and $R C$ series circuit. The operator p is introduced and a method for solving transient problems is standardized, thereby obtaining four readily remembered rules that can be applied to the above types of circuits to obtain a solution easily.

Chapter three discusses first-and second-order differential equations and their solutions. The fourth chapter considers the series $R L C$ circuit for underdamped, critically damped and overdamped conditions. Simultaneous solutions for firstand second-order differential equations are discussed in chapter five, which treats simple networks. Chapter six discusses the transient current in series $R L, R C$ and $R L C$ circuits when a sinusoidal driving voltage is applied. A few pages are devoted to transient currents in a network when a nonsinusoidal periodic or a nonsinusoidal nonperiodic (other than a step-function) driving voltage is applied.

The seventh chapter discusses transient currents in coupled resonant circuits. This chapter is an extension (for a particular case) of the fourth chapter with regard to the simultaneous solution of second-order differential equations. Transient currents in circuits with variable parameters are discussed in chapter eight. Two methods of solution are presented for simple $R L$ and $R L C$ circuits in which the inductance is a function of current.

Transmission lines are considered in chapter nine. Differential equations for a transmission line are developed and their solution is shown to lead to a voltage (or current) that is a function of position and time; that is, a traveling wave. Reflections are treated for the case of a d-c step-function driving volt-

MICHDIDAL
 TEN TURN-COUNTING DIAL

Microdial is composed of two concentrisally mounted difls . . . one for counting increments of each tom and the other for counting tums. The inerementel dial has 100 equal divisions and is attached rigidly to the shaft so there is no backlosh. Thus the contact position is indicated to an indexed accurecy of 1 part in 1000. Rotation
is esatinuous in cither direction. There are no stops on the Mierodial assembly.

C OMPACT... Missodial has rame O.D. as Mierepot . . . requires no more pand space.

CLAAR READING Forced foxreading tests showed only $1 / 20$ th os many errors with Mierodial open window as with next most lesible dial. Turn counter distinguihhes between 0 and 10 tum readings, and accelereles to avoid confusion on readiags near integral turns. Precine readings are mode from larger dial with maximum sepanation of gradualions and wide angle visibility.

CONVENIRNT . . . delivered completely assembled with dials synchronized. Easily mounted in 0 faw seconds. All dials may be locked.

Microdial . . . turn-counting dial, pimarily designed for use on Mieropot ten turn linear potentiometers. . . une it on any multiturn device hoving ten turns or less.

OU' MOISTURE and FUYCUS PROOFING PROCESS

Production Engineering's complete Moisture- and Fun-gus-Proofing Process (Hot Wax, Varnish and Dow Corning 200) is already saving more and more electronic component manufacturers substantial sums and hours. You, too, can effect the same type of DOLLAR and time savings.

Our process-vacuum centrifuging, etc.-passing all government specifications-is complete
for rugged or delicate parts of practically any type of material.
We guarantee that it will be satisfactory. It will accurately fulfill your specifications and banish moisture- and fungus-proofing headaches. It will pay you to investigate the money and time saving features of our service. Get the FACTS.

MAIL COUPON NOW!
Production Engincering Corp. Dept. E, Clifton, N. J. Please send ne details of your Moisture and Fungus Proot ing Process
Name.
Title
Company
Address

Try Remler for Service-Tested "Hard-to-Get" Components

PL-294

Componento
 Metal-plastic components

 designed and manufactured to order. Write for quotations specifying electrical and mechanical characteristics. Describe application. No obligation.
PLUGS \& CONNECTORS
 BANANA PIN TYPES...JAN SPECIFICATIONS

Multi-contact connectors and mating chassis counterparts. Melamine or alkyd insulation; steel or brass nickel-plated shells. Banana springs are heat treated beryllium copper. Unexcelled low resistance contact. Highest quality ... good for thousands of connects and disconnects.
Special Connectors to Order-Miniatures; water tight and pressure proof types to JAN specifications.

Remler Company Ltd. 2101 Bryant St. San Francisco 10, Calif.

Since $/ 9 / 8^{\circ}$ pioners in electronics and plastics

age. This chapter avoids the mathematical complexity of other texts on elementary transmissionline theory.

Chapter ten introduces the reader to the transformation method. The Fourier-series transform is then discussed and the Laplacian transform is introduced by analogy tothe Fourier-series transform.

Occasionally material elsewhere in the book is referred to incorrectly. For illustration, on page 173 reference is made to an example in Section 19; actually the example is in Section 18. The reader will find that if he understands the text, the continuity is not disturbed and the correct material can be easily found and verified.

Although this review has stressed the mathematical aspects of the book, it should be pointed out that the physical descriptions are complete and that, when necessary, the mathematical steps taken to reach a particular expression are fully described.
The first two-thirds of the book can be considered a first course in transients. The last part of the book, especially chapter ten, should prove most interesting to engineers dealing with transients.-Walter J. Dauksher, Engineer, Airborne Instruments Laboratory, Mineola, New York.

Materials Technology for Electron Tubes

By Walter H. Kohl. Reinhold Publishing Co., New York, N. Y., 1951, 493 pages, $\$ 10.00$.
Ever since Espe and Knoll published their classic work sixteen years ago, tube development engineers have hoped for a similar authoritative book in the English language. This book is the first attempt to fill this need. The purpose, according to its preface, is "to present the physical characteristics of the solids used in the fabrication of vacuum tubes and to describe some of the processes for the application of these materials."

The book contains a great deal of well-indexed information hitherto not available in a single source and is to be especially commended for its excellent and complete bibliog-

PRECISION

 POTENTIOMETERS SINUSOIDAL TYPE

CONDENSED SPECIFICATIONS	RL 11-C	RL 14-MS
Total resistance.	$16,000 \pm 10 \%$	35,400 $\pm 1 \%$
Percent resistance within brush circle	Approx. 85%	$99 \pm 1 / 4$
Ansle of rotation	360°	360°
Weight	4.75 oz .	1.8 lbs
Torque (Approximate)	3/402. in.	2 oz in.
Resolution	$80{ }^{4} 4^{\circ}$	$8.2{ }^{\circ}$
Angular accuracy	$\pm .6{ }^{\circ}$	$\pm .5^{\circ}$
Amplitude accuracy	$\pm .8 \%$	$\pm .6 \%$
Maximum volts across winding		
Maximum speed	60 pm 350,000 cycles	60 rpm 200,000 cycles
Expected Life.	350,000 cycles	200,000 cycies
Illustration shows RL-IIC unit, RL-1 of these standard designs, availab speeds with some loss of accuracy cosine voltoges are produced simult available within certain limits.	ximately twice er, permit ope ntial increase i nces other the	Minor variations high rotational d life. Sine and shown above are

FOR COMPLETE DETAILS SEND FOR BULLETIN F-68-A

PIX
 WIRE FORMING SPECIALISTS

Precision Parts to meet your Production and Engineering needs. From . $002^{\prime \prime}$ dia. to $125^{\prime \prime}$ dia. Radio tube parts-Stampings-Drawings Modern facilities, high-production equipment.

Metal Crystal Holder Parts Send sketch or print for quotation. PIX MANUFACTURING CO., Inc. 24A Bedford St., Newark 3, N. J.

YOUR PRODUCTS HERMETICALLY SEALED

\author{

- Meet Militory Specifications
 - Insure reliability
 - Unexcelled high clititude operation
 - Provide permanent protection from dust and corrosive ctmospheres
 - Förever free from humidity effects
}

Our engineers will design suitable enclosures for your electronic parts. We assemble and seal your units in dry air or inert gas. All assemblies are evacuated and 100% leak tested by the Veeco Mass Spectromefer. Write for complete information.

ENGINEERS DEPEND UPON FILTRON for RF INTERFERENCE SUPPRESSION FILTERS

FILTRON IS SPECIFIED ON THE MAJORITY OF MODERN AIRCRAFT, GUIDED MISSILES, SIGNAL CORPS, ORDNANCE AND NAVAL EQUIPMENT

FILTRON'S experienced RF Interference Suppression engineers are avail able for the measuring, testing, and filter design for your equipment. The modern shielded laboratories are equipped to measure RF Interference from 14 KC to 1000 MC , in accord. ance with military specifications
FILTRON'S engineers have more than 700 standard filters available, or will design a unit to meet your size, weight, mounting, voltage and current requirements.
FILTRON'S capacitor manufacturing and coil winding divisions, metal fabrication shop and metal stamping departments are exclusively producing the highest quality components for FILTRON'S RF Interference filters.

Send for our LATEST CATALOG on your company letterhead

[^22]

New!

Thalysistois

and CRYSTAL DIODE TEST INSTRUMENTS
 Laboratory and Production Types

T-D SERIES INSTRUMENTS

- A.C. transistor measurements of " a " and terminal impedances
- 1).C. measurements of both transistor and diode characteristics
- Sufficient metering and bias control circuits for rapid tests
- Internal calibration and precision components for reliable data
- Flexible panel controls for wide selection of test conditions
- Units completely self-contained, power supplies optional

D SERIES INSTRUMENTS

- Specifically designed for germanium diode laboratory and quality control tests
- Includes diode curve plotter for oscilloscope presentation of forward and reverse voltage-current characteristics

Production instruments designed for minimum maintenance, maximum protection, adaptability to future requirements and rapid procedures.

INQUIRIES FOR SPECIAL TEST INSTRUMENTS INVITED.
TELETRONICS LABORATORY ${ }_{\text {inc }}$
WESTBURY, L. I., N. Y.

MANUFACTURERS OF ELECTRONIC INSTRUMENTS AND PRODUCTION TEST EQUIPMENT
raphy. However, on the one hand it contains much material which is irrelevant to tube design and construction while, on the other hand, it omits or slights other material of prime importance. For example, most of the copper alloys and most of the solders mentioned contain metals of high vapor pressure and could, therefore, not be used inside vacuum tubes. The tabulation of refractory minerals includes many that are rare and are not commercially available. Although much space is given to porcelain and magnetic ferrites, neither finds use as internal parts of tubes. No mention is made of phosphors so important to cathode-ray tubes nor of chromecopper alloys so important to receiving tubes.
Glass, ceramics and soldering are covered in adequate detail. Other matters such as metals, getters, processing operation and emission, if one may judge by the space given to them. received rather limited treatment. For example. the chapter on emission is devoted primarily to the thoriated-tungsten filament and the L-cathode, with little mention of the very important oxidecoated cathode.

In all, this is not a book for the inexperienced reader but rather one which requires considerable judgement to evaluate the material presented and to choose from it. Although the book suffers from the faults common to first efforts, it does contain much which the tube engineer will find valuable, including an especially complete and useful bibliography.-Stan Umbreit, Tube Department, Radio Corporation of America, Harrison, N. J.

THUMBNAIL REVIEWS

INTRODUCTION TO ELECTRICAL FANGINEERRING, 2nd edition. By Robert P. Ward. Prentice-Hall, 416 pages, 1952 . For a first course ; uses MKS units throughout.

VADE-MECUM, 1952. P. H. Brans, Antwerp, Belgium, 416 pages, $\$ 5.60$, 1952. Now divided into two volumes, this 9th edition of a world-wide list of tubes con-
tains only receiving and transmitting tains only recelving and transmitting tubes, the loth edition, yet to be pubcrystal diodes, klystrons, etc.

ATOMS, SPECTRES, MATERIERE. By Yvette Cauchois. Albin Michel, Paris, 640 pages, 119 figures, 1,800 francs. A paperbound text on the structure of matter in French. According to the publisher's blurb, "l'ensemble est agreable a lire" and a glance through the volume indicates that this is, indeed, true.

Reliability

ERA Magnetic Drum Storage Systems have established a record of operational dependabitity. For a typical example of the design details which contribute to dependable system operation, take a closer look at one of the more than 200 ERA magnetic heads installed in the model 1101 Al drum pictured above. This head, which incorporates reading and recording windings on a single core, is capable of reading or recording more than 120,000 magnetic marks per second. A differential-thread mounting feature facilitates precise adjustment of head-to-drum spacing and maintains
the head setting during all normal conditions of shipment or use. In ERA systems, the nominal head-to-drum spacing is 0.002 inches, thus minimizing the possibility of damage to the drum surface and making the signal voltage relatively insensitive to slight variations in head-to. drum spacing normally encountered in opera-
 tion.
Proven dependability, large storage capacity, alterable yet non-volatile storage, and high speed are characteristics which make ERA Magnetic Drum Storage Systems the optimum choice for many high-speed data-handling problems.

ERA's experienced engincers will be pleased to assist you in the application of ERA Magnetic Drum Storage Systems to your particular system requirements.

1902 WEST MINNEHAHA AVENUE
ST. PAUL 4, MINNESOTA DEPARTMENT E-2

- Digital Computers • Data-Handling Systems - Magnetic Storage Systems - Instruments - Analog Magnetic Recording Systems - Communications Equipment

NEW WIDE BAND D.C. AMPLIFIER MODEL 120

A precision instrument designed for use as a preamplifier in conjunction with an oscilloscope, vacuum tube voltmeter or other instruments.

SPECIFICATIONS

[^23]

Write for descriptive literature on the Model 120 D.C. Amplifier and other Furst laboratory instruments including Regulated Power Supplies.

FURST ELECTRONICS
3324 W. Lawrence Avenue,
Chicago 25, Illinois

HYCOR

Decade-Inductor units

- HYCOR DECADE - INDUCTOR units are indispensable for design and experimentation work on audio filters.
- The units are available in four ranges up
to 10 henries. Units may be used individually or all four may be connected in series to obtain 11.11 henries in 1 milli-
henry steps.
- Toroid coils are used to obtain high " Q ", stability and low pickup from external
fields. Inductance accuracy is 2%.
Send for bulletin D-2
HYCOR COMPANY, INC.
11423 VANOWEN STREET, NORTH HOLLYWOOD, CALJFORNIA
- SUnset 3-3860
, $\begin{aligned} & \text { Manufacturers of Toroid Inductors, Decade Inductor Instruments, } \\ & \text { Wave Filters, Resistive Networks, and Precision Resistors }\end{aligned}$

BACKTALK

Medical Electronics

THE FOLLOWING are abstracts from a small sample of letters to Dr. Herman I. Kantor regarding his article "Electronics Engineering Needed In Medicine" (ElecTRONICS, p 82, Feb. 1952)

DEAR SIR:

THIS LETTER is written as a result of your very stimulating article in the February issue of Electronics. It has long been my hope to make some useful contribution to the field of medical instrumentation. This goal exists for me because, like many engineers, I have been largely occupied in the last ten years by various phases of weapon making and I yearn to apply the same efforts to some positive good.

I have previously studied the possibility of applying electronics to such jobs as simplifying the presentation of some of the information that is now available with the electrocardiograph. It seems reasonable to presume that if heart malfunctions can be heard with a stethoscope the same variations can be made visible and thus subject to quantitative interpretation.

As a nonmedical man and since I have been unable to enlist the interest of my family doctor I have been at a loss as to where to turn for advice.

Donald V. Richardson
Glenwood Landing, N. Y

Dear Prof. Kantor:

I HAVE just read your interesting article in Electronics where you so daringly use statements like "pseudo science" and "art of medicine." I am an electronics engineer and the manager of a factory which produces medical electronics instruments. Some time ago we made a trial run of 20 chronaximeters, for which I had accumulated the electronic specifications out of American, English, French, Italian and German handbooks on physiotherapy. These 20 units were sent to 20 outstanding neurologists at various institutions all over the U.S.free of charge for examination, application and comments. The result was a huge correspondence without

Nicest Ohms

In The Business...

That's what we package! Maybe you call the packages 'resistors' but they're really only containers for ohms. Ohms-we've got millions of 'em. All kinds! Persnickety, specialist ohms. Delicate, sensitive ohms. Rough-and-ready, workhorse ohms. And ohms that beat the be-junior out of JAN Specs.
What sort of ohms do you need? It's a megohm to a micro-farad we have them. Just write us.

INTERNATIONAL RESISTANCE CO.

403 North Brood Streel

 Philodelphio 8, Pa.

Write for liferature on other Curtis Blocks - or, for quick reference, consult our condensed catalog in the McGraw. Hill Electrical Cafalog for Production Engineers.

TYPE:
Feed-thru, factory assembled 1 to 16 terminals. Designed to accommodate your standard banana type plug.

TERMINALS:
Combination banana plug jack and solder connection. Also available with banana plug jack and screw connection. Separately insulated, held permanently in metal strip. Banana plugs are not furnished with Type "FT8" Terminal Blocks.

RATED:
300 volts between terminals of opposite polarity and to ground. 20 amps. (conservative).

CURTIS DEVELOPMENT \& MFG. CO.

3203 NORTH 33rd STREET MILWAUKEE 16, WISCONSIN

any positive comments, very few negative comments, but mainly enquiries regarding application and necessity of these instruments. Two "scientists" phoned me to say that these instruments were too easy to operate and would therefore annihilate the importance of specialists!!!

This and previous personal experience plus your article lead me to believe that during the few thousand years of medical experiments with that same old object, the human being, very little has changed so far. However, in less than a hundred years electronics has been speeded up by international cooperation of, for example, radio amateurs who had the urge to read everything printed about a subject and who communicated and compared their simple results with each other.

Mark M. Siera
Forest Hills. New York

Dear Sir:
I was very much interested in your article on medical electronics in the February issue of Electronics. I have been looking around for some spare-time projects, but unfortunately, I have absolutely no connections in the medical profession. Could you suggest someone in this part of the country whom I could interview and thereby get a fuller grasp of the problems involved? A small independent laboratory such as mine would find it necessary to work in close cooperation with one or more hospitals, I would think.

Arthur S. Kramer
Cedar Grove, New Jersey
(Editor's Note: Most of the other letters received by Dr. Kantor, regarding his article, praised him for taking his stand and all correspondence fron electronics engineers expressed eagerness for additional information about the needs of medicine. We have already made arrangements for several medical electronics articles to be published in the near future to meet the overwhelming demand expressed by our readers as a result of Dr. Kantors article and Backtalk letter. The following is a sample of letters illustrat expressed in letters directed to this office.)

Congratulations Doctor

Dear Sirs:
Your Crosstalk item entitled, "Medicos" (Electronics, p 97, May 1952) has aroused my curiosity. Your assertion that any article that draws about 10 letters

SECON
 development and production.
 METALLURGISTS

BASE, RARE AND PRECIOUS METALS AND ALLOYS

SMALL UNITS
SMALL SIZES
CLOSE TOLERANCES
Nickel alloy, filament wire and ribbon: flat, grooved, crowned. Grid wire electroplated.

Alloys for special requirements, bare or enamelled.

Further details upon request.

SECON

METALS CORPORATION
228 East 45th Street, New York 17, N. Y. MUrray Hill 7-1594

Here's Why it Pays You . . .

to Read the Advertising

The advertising is a rich source of valuable information. In this magazine it offers you ideas and products that may well apply advantageously to your business.

Every issue is a catalog of goods, materials, and services quickly available to you - just for the reading.

Leaders in business and industry turn to the advertising because they've discovered it helps them run their businesses more profitably.

When you read all the ads in this magazine, the chances are good that you'll get a lead that will materially help you do a better job. For example, you may find a specific piece of equipment that will be a profitable time-saver. Or a tool that will increase worker efficiency. That's why it pays to read the advertis.ng. It's good business.

McGRAW-HILL publication:

PHASE SHIFT Measurement

from

50kc - 20mc

THE AIRMEC PHASE MEASURING EQUIPMENT TYPE RX. 103 is unique in being the only instrument at present manufactured commercially for the measurement of both phase shift and gain over the entire frequency range $50 \mathrm{kc}-20 \mathrm{mc}$. It is absolutely invaluable in the design, development and production testing of feedback repeaters, amplifiers, filters, equalizers and all types of four terminal networks.

The unit is only one of the extensive range of Airmec electronic equipments which are available in the United States at short delivery.

Full details of this or any other instrument will be sent immediately upon request.

HIGH WYCOMBE - BUCKINGHAMSHIRE
S.S. White resistion mivis

Of particular interest to all who need resistors with inherent low noise level and good stability in all climates

STANDARD RANGE
 1000 OHMS TO 9 MEGOHMS

Used extensively in commercial equipment including radio, telephone, telegraph, sound pictures, television, etc. Also in a variety of U. S. Navy equipment.

High Value Range 10 to $10,000,000$ MEGOHMS

This unusual range of high value resistors was developed to meet the needs of scientific and industrial control, measuring and laboratory equipment - and of high voltage applications.

SEND FOR
 BULLETIN 4906

It gives details of both the Standard and High Value resistors, including construction, characteristics, di mensions, ete Copy with Price List mailed on request.

[^24]requesting further information rates high is not surprising.

The reason that so few letters are received by authors of most articles is, in my humble opinion, that most articles are mainly spectacular and shall we say of the pedantic. Such articles are of specific importance to but a minor percentage of readers, though perhaps this percentage is at some particular instant a very important one.

As soon as you publish an article that has an appeal for 25 percent of your readers, it will draw attention and the writer of such an article will, as I personally know from experience, find that he has landed a bigger fish than his line can cope with.

May I therefore offer my congratulations to Dr. Kantor, and also to your discerning staff responsible for once again including something of both interest and importance among the humdrum of academicals and involved technical specialties.

James R. Cornelius
Cornelius Electronic Instruments Coventry. England
(Editor's Note: From our experience it is difficult to predict reader interests in our field. An extensive survey conducted a few years ago, revealed many interesting, and some surprising, facts about subscribers' likes and dislikes. Our selection of articles is based on such survey information and spot checks in the field. Comments from subscribers on this subject are always welcome and will help guide us toward making a more useful ELECTRONICS.)

Interprofessional Meeting

Dear Sirs:
This refers to the Backtalk letter written by Dr. Herman I. Kantor that appeared in the June 1952 issue of Electronics (p 332). As he points out, many electronics engineers are eager to apply their knowledge to medical problems.

I don't know if the IRE has a committee on medical electronics. (See Editor's Note at the end of this letter.) I would like to see a program set up wherein some recognized group of engineers would meet regularly with some recognized group of doctors, under joint sponsorship of the American Medical Association and of some other organization in our field, such as the IRE.

The goal, I believe, should be formally only the transmission of information relative to problems

D I
 SMALI MIETAL STAMIPINES Patron-IV I Lacurer

For over 33 years P.M has been a dependable source for small metal stampings. An extensive modern plant, complete equipment, specialized engineering experience and toolmaking skill combine at P.M to produce stamped metal parts accurately, economically. promptly. Moderate die charges. Modern facilities for large volume production. Special stamping problems are gladly accepted; recommendations for the most efficient and economical solutions are made promptly. Send prints for your next stamping job to P-M.

TERMINALS for ELECTRIC WIRES

Belng long experienced specialists in the terminal field, we have dies to produce over 400 different kinds of separate terminals, and every modern facility to meet your standard or special requirements. We also provide terminals in continuous form, supplied on reels, with machine for attaching and soldering tandem terminals to wires in one continuous operation. Send for folder.

PATTON-MacGUYER COMPANY

201 CHAPMAN STREET, PROVIDENCE 5, R. I.

FEATURES

1. No amplitude adjustment
2. Direct indication of phase lead or lag
3. 100 kc to zero cps
4. Equal accuracy for any symmetrical or unsym metrical waveform
5. Good sensitivity

Type 404 ADVANCETRON PHASE METER
100 kc to zero cps
Any symmetrical or unsymmetrical waveform SPECIFICATIONS
Frequency: External indicator- 100 kc to zero cps. Panel meter- 100 kc to 0.05 cps.
Range: 36, 90, 180, and 360 degrees full scale, phase lead or lag.
Input voltage: 0.5 to 50 volts from zero cps to 10 kc , then the lower limit increases slowly up to 1 volt at 100 ke; better sensitivity can be obtained through panel adjustment.
Accuracy: $\pm 1 \%$ or one degree from zero cps to 10 kc , then increases slowly up to 4% or four degrees at 100 kc with external indicator; an additional with of $\pm 1.5 \%$ at any operating frequency With panel meter.
Waveform: Any symmetrical or unsymmetrical periodic waveform does not affect the accuracy of the
ADVANCE ELECTRONICS CO.
P. O. Box 394, Passaic, N. J.

NOW available to you . . . withou costly sub-contracting PAR BAMES.... MIL-B-233A FOR THE PROTECTION OF ON-BOARD Sorvice your Stock standard TYPE M need tor Specification STEEL SPARE OR REPAIR Spare-Parts Boxes we PARTS BOXES, made in have put them on a mass strict accordance with production line. Write for size and price chats INC.

FOR AIRCRAFT, GUIDED MISSILES, ELECTRONIC EQUIPMENT, COMMUNICATIONS INSTRUMENTATION AND INDUSTRY

International Instruments specializes exclusively in miniature and sub-miniature electrical instruments. This ideal of doing one thing well is your assurance that in all phases of manufacture each meter is extensively tested and inspected to maintain rigid standards of quality and performance.

International Instruments incorporates exclusive features of quality and construction that provide operation comparable to larger sized models your guarantee of full-time serviceability under gll conditions.
The miniature and sub-miniature meters are especially adaptable for use as test instruments built into an installation. A switching arrangement allows the check-out of various circuits and eliminates the necessity of portable testers.
Engineering data sheets for standard models sent on request . . . special scales, ranges and other modifications can be provided to meet your specifications. Consult our engineering department giving details. Just write:

international instruments INCORPORATED

P. O. BOX 2954, NEW HAVEN 15, CONN. lialson engimeers in primeipal cities

The THYRATRON Control allows PROPORTIONAL regulation of output power to electrically heated furnaces. Instead of turning current on-and-off, or adjusting the time of application of full power, the power level is continually monitored in accordance with the furnace demand. In this way the number of expansions and contractions of the heated elements is greatly reduced, increasing heater element life. The controller operates proportionally from a resistance thermometer, and thus insures maximum sensitivity of control.

SPECIFICATIONS:

Resistance Thermometer Actuated
Controls up to $71 / 2$ amperes @ 220V
Standard Ranges: -55 to $200^{\circ} \mathrm{C} ; 0-1000^{\circ} \mathrm{F} ; 0-1000^{\circ} \mathrm{C}$
Controls to $0.1^{\circ} \mathrm{C}\left(0.01^{\circ} \mathrm{C}\right.$ or better with improved furnaces)

W. S. MACDONALD CO., INC.

University Road - Cambridge - Massachusetts

Double Barrel Advertising

Advertising men agree - to do a complete advertising job you need the double effect of both Display Advertising and Direct Mail.

Display Advertising keeps your name before the public and builds prestige.
Direct Mail supplements your Display Advertising. It pin-points your message right to the executive you want to reach-the person who buys or influences the purchases.

More and more companies are constantly increasing their use of Direct Mail because it does a job that no other form of advertising will do.

McGraw-Hill has a special Direct Mail Service that permits the use of McGraw-Hill lists for mailings. Our names give complete coverage in all the industries served by McGraw-Hill publications - gives your message the undivided personal attention of the top-notch executives in the industrial firms. They put you in direct touch with the men.who make policy decisions.

Mc GRAW-HILL dibect mall list service

In view of present day difficulties in maintaining your own mailing lists, our efficient personalized service is particularly important in securing the comprehensive market corerage you need and want.
Ask for more detailed information today. You'll be surprised at the low over-all cost and the tested effectiveness of these hand-picked selections.

McGraw-Hill Publishing Co.,Inc.
330 West' 42nd Street, New York 36, N. Y.
and their solution. Suitable publishing of problems such as Dr. Kantor refers to, after screening by the electronics committee and conversion to terms conducive to attack by electronics development engineers, would get the information before the people best equipped to handle it. I venture to say that, if large laboratories are too busy these days to attack the problems themselves, then small groups of men, in their spare time, will do the job for the medical industry, for the electronics industry, for humanity and for themselves.

With large medical and biological research laboratories in existance, as they are now, I know of one specific case (and there must be more), where physicists and electronics men are so directly responsible to and are so directly controlled by the doctors who are unaware of the capabilities of the electronic and physical approach, that really significant work has yet to emerge from the combination. Giving the electronics boys complete freedom (as they would have to have if they tackled the jobs voluntarily, even on their own time) will help to avoid this situation.
In any case, I volunteer to serve on a committee, (as senior member of the IRE and a member of the American Physical Society I imagine I qualify), and I think I could find time to perform individual effort at design if required. Your comments will be appreciated.

> WILLIAM B. LURIE
> Fleetunorl Laboratorirs Bronxille. N. Y.

Abstract

(Editor's Note: There is a professional group within the Institute of Radio Engineers for Medical Electronics, but it is in neers for Medical Electronics, but it is in a formative stage at the present time. Plans are being made for special meetings and symposiums at the National IRE Conferences. Requests for further information should be directed to the present chairman of the group, Mr. L. H. Montgomery, University School of Medicine, Vanderbilt University, Nashville, Tenn., or direct to the IRE.)

Flat But Not Dull
 Dear Sirs:

The letter by Mr. Walter E. Sellman in Backtalk of the June, 1952 issue of Electronics contains a statement which is indicative of a false impression to which many have fallen prey over the years. Unfortunately some of these are num-

MICO

Precision Apparatus

UHF COAXIAL WAVEMETERS

MODEL 433.. 20 to 75 Centimeters MODEL 501... 4 to 20 Centimeters MODEL 402A. . 2 to 10 Centimeters MODEL 402B. . 2 to 10 Centimeters (Reaction Type)

MCO INSTRUMENT CO.

76E TROWBRIDGE ST., CAMBRIDGE, MASS.

VAWMETERS

MODEL 101 SUPERSONIC FREQUENCY RANGE 20 sps to 200,000 eps

MODEL 102
LOW POWER factor RANGE 20 sps to 20,000 eps
for measurement of Volts • Amps • Watts

MODEL 101

- power range: 100 m 109 km
- INPIUT IMPEDANCE: I MEGOHM
- voltage range: full scale 0.1. to 300V.
- CURRENT RANGE: FULL SCALE . 001 to 30A. MODEL 102
- reads watis at full scale at both 10%

AND UNITY POWER FACTORS.

 - VOLTAGE RANGE: FULL SCALE, I.SV to 6000 .

. O. BOX 755 - SPRINGDALE, CONN. BURLINGAME ASSOC., New York, Boston, GERALD B. MILLER CO. Hollywood M ${ }^{\text {P }}$ ODELL, Cleveland, Dayton; JAMES L. KEARNS. portland, Ore.: EARL LIPSCOMB ASSOC Dallas, Houston.

Terminal Strips

Showni Screw Ter-minals-Scrow and Soider Terminals ScrewTerminal above, Panel with Solder Terminal below. For every need.
Six series meet overy requirementz No. 140, 5-40 screws; No. 141, 6-32 screws; No. 142, 8-32 screws; No. 150, 10-32 scrows; Na 151. 12-32 scrows; No. 152, 1/4-28 serews.
Catalog No. 18 lists complete line. Send for your copy.

LABORATORY POWER SUPPLIES

"Just tell them they CAN'T AFFORD TO USE ANYTHING ELSE . . .

That's Joe Gibbons speaking. We were talking about how to make people realize what a terrific thing this new

JELLIFF ALLOY 1000 RESISTANCE WIRE

really is, and that's the way he summed it up. And even when you make allowances for a salesman's natural enthusiasm, he's pretty near right. Just look at some of the important data:

Resistivity 1000 ohms/cmf Tensile strength 165,000 psiTC of Resistance 20 ppmCoefficent of Expansion 13.9 ppm-
Corrosion Resistance equal to the best nickel-chromiums-
Winds fast and solders easily-
Lots more ohms in lots less space.
See what we mean? For the whole story, write for Bulletin 17.

BRING US YOUR HEADER PROBLEMS!

SIMPLE OR COMPLEX

- We make them all, ranging from 2- and 3-electrode crystal holder bases and standard octal headers, to 14 . and 18 -terminal headers for sealed Transformer and Relay applications - with a wide selection of styles and sizes in our series of basic designs.

SPECIAL DESIGNS

- We also manufacture Sealed Headers and Terminals to meet special requirements, and will be glad to quote upon receiving your specifications.

COMPIETE ASSEMBIIES

- We have facilities for handling the complete assembly of many units - including wiring, evacuating and pressure-filling enclosures.

NEW CATALOG

- Just off the press, a new Hermaseal catalog, with descriptions and specifications of some of our standard Sealed Headers and Terminals. Write for your copy today!

THE HERMASEAL CO, Inc.
Elkhart 10, Indiana
bered among the engineering profession. Mr. Sellman, while citing various reasons for the admitteily poor sound quality of network programs as mentioned in a previous editorial in the March, 1952 issue of Electronics discussing the "flat, dull" tone of radio networks, made the statement "One of the limitations, of course, is the $5,000-$ cycle limit on a-m broadcast transmitters."

We a-m broadcasters have enough difficulty sneaking our little signals into the far corners of our claimed coverage areas amid all the interference of an overcrowded band without being saddled with an upper limit of 5,000 cycles in our transmitters. The "flat" truth of the matter is that a-m broadcast transmitters are not limited to a frequency response of 5,000 cycles. The false impression that they are, possibly stems from the fact that since a-m broadcast frequencies are separated by 10,000 cycles, to broadcast any sound intelligence containing frequencies higher than 5,000 cycles would result in sidebands spilling over into an adjacent channel. But standard a-m braodcast stations are not licensed by the FCC on adjacent channels in the same local area. The FCC Standards of Good Engineering Practice contain a requirement that "the audio frequency transmitting characteristics of the equipment from the microphone terminals . . . to the antenna output does not depart more than 2 decibels from that at 1,000 cycles between 100 and 5,000 cycles." However, this requirement does not place an upper limit of 5,000 cycles upon the transmitting equipment. In fact, the FCC does not place any upper limit on a-m broadcast transmitters except to say that "in the event interference is caused to other stations by modulating frequencies in excess of 7,500 cycles . . . the licensee shall install equipment or make adjustments which limit the emissions to within this band or to such an extent above 7,500 cycles as to reduce the interference to where it is no longer objectionable." In the absence of such interference no upper limit exists from a legal standpoint. In passing it might be added that the FCC Standards do

You'll find them in the most costly and intricate electronic and avionic equipment-and in scads of everyday applications, too.
For at IRC we package ohms for nearly every use. You can have them as finicky, as friendly, as versatile or as varied as you wish. All are packaged in resistors that are reliable in every respect. Rigid quality control makes them so.
The ohms you need are ready right now! You can get them without delay. Just let us know the kind and quantity you want.

(1)C

INTERNATIONAL RESISTANCE CO.
403 North Broad Streat Philadelphia 8, Pa.

CHALLENGING POSITIONS in
 NEW YORK—NEW MEXICO CALIFORNIA ON GUIDED MISSILES for ELECTRONICS ENGINEERS

Assignments on antennas, wave guides, radomes, instrumentation, telemetering, radar, gyroscopes, servomechanisms, autopilots, computors, circuits, components and system design, production design, transformer design and packaging and general electronics.

Write to Mgr., Eng. Personnel

P. O. Box 1

Buffalo 5, N. Y.

ELECTRO PLATING

Screw Machine Products

from - Brass, Aluminum,

- Stainless Steel

New, modern mochinery. Forword vour specs and prints for prompt estimates.

Maryland Precision Instrument Co. 12 E. Lanvale St. - Mulberry 4789 - Balto. 2, Md. Complete Manufacturing Facilities 20 Years Production Knowhow

ELECTROACUSTIC G.m.b.H.

Westring 425-429, Kiel, W. Germany
Electronic Research, Development \&
Production-Prime \& Subcontracting
Highly quallifed staff specializing in Underwater Sound Engineering (Sonar,
otc.), Radio Communication (HF, VHF ote.), Radio Communication (HF, VH
Radar, etc.), \& Air Sound Equipment. Interested in cooperating with U.S. electronics firms in development work, In Europe; willing license own patents in U.S.A. (Radar, Sonar Underwater Soundlng. Ships Radio).
U. S. Rep.:

American and Foreign Enterprises, Inc. 521 Fifth Avenue New York 17, N. Y.
require $a-m$ broadcasting equipment to be capable of at least 85 to 95 percent modulation at 7,500 cycles with not more than 7.5 percent harmonic distortion.

In the interest of reducing such sideband interference most manufacturers of broadcast transmitters include in their design a low-pass audio filter, or other means, whose purpose it is to present a rapid attenuation of audio frequencies above 10,000 cycles, and the frequency response of the transmitting equipment is therefore not seriously impaired over the audio band of 50 to 10,000 cycles. Several standard a-m stations broadcast signals having substantially flat response out to 15,000 cycles. These facts may come as a surprise to many who have never troubled to equip themselves with a good a-m receiver with a wide band-pass i-f section and a creditable audio amplifier and speaker. In fact, while listening with such a receiver to the station at which the writer is chief engineer, the principal technical faults of our a-m broadcasting will be found to be the ever-present small dynamic range and susceptibility to atmospherics. The real reason for the seeming poor frequency response of a-m broadcasting stations airing "non-network" programs will often be found in the

This CONTACTS Section

supplements other advertising in this issue with these additional announcements of products essential to efficient and economical production and maintenance. Make a habit of checking this page, each issue.
narrow band-pass and poor audio sections of the millions of " $\$ 39.95$ and equivalent" a-m receivers studding the U.S.A.

Elmer Troutman
Chief Engineer. WIRC Hickory. N. C.

Research \& Development of Electronic Equipment

Single or Medium Quantities
MICHEL MANUFACTURING CO. 227 North Water St., Milwaukee, Wisconsin

MICROMETER FREQUENCY METER Maeavere centern trecuence of ay number Mc.,. 0.0023 str
 LAMPKIN LABORATORIES, INC.
 arADENTON, FLORIDA

Graph Paper Available

Dear Sirs:
IN M. W. Scheldorf's recent article, "Antenna Gain by Graphical Means" (Electronics, p 144, Mar. 1952), three special types of graph paper were illustrated in Fig. 3, 4 and 5.

These graph sheets are available for purchase from Andrew. Type numbers are as follows:

Fig. 3 K-13901
Fig. 4 K-13902
Fig. 5 K-13900
J. F. Moynitan

Andrcue Corporation

Professional Services

CROSBY LABORATORIES, INC.
Murray G. Crosby \& Staff Radio - Electronio
Research Develodment \& Manufacturing Communications, FM \& TV
Robbins Lane, Hicksville, N. Y. Heksville 3-3181

DATA ENGINEERS, INC.
Engineering that "Counts"
Designers \& Manufacturers of
Data Recording Instruments
4608 Ravenswood Ave.,

DUBROW DEVELOPMENT CO Design - Development - M Quality Electrontc Equipment 347 High

EDGERTON, GERMESHAUSEN

 \& GRIER, INC.Consulting Engineers
Research, Development and Manufacture
of Electronic and Stroboscopic Equipment
Specislists in High-Speed Phetography 160 Brookline Avenue, Bosten 15. Mass.

Eldico of New York Inc.

Pioneers of Television Interference Elimination from Transmitters, Induction Heaters, Diathermy and etc.

Donald J. S. Merten \& Engineering Stafi 44-31 Douglaston Pkwy Douglaston, N .Y. Bayside 9-8686

FRANK J. EPSTEIN

Registered Patent Agent General Patent Practice
Radlo, Radar and TV El
837 So. Sycamore Ave., $\underset{\text { WHitney } 9317}{\text { Los Angeles 36, Calif. }}$

ERCO RADIO LABORATORIES, INC.
Radio Communications Equipment
Engineering - Design - Development - Production Pioneers in Frequency Slift Telegraph Garden City • Long Island * New York

HARRIS GALLAY

Consultant
MICROWAVE AND
PULSE TECFNIQUES
BE Leville 2-4237 60 Perry St., Belleville 9, N. J.

HANSON-GORRILL-BRIAN INC.

Products \& Mfg. Development ELECTRICAL - ELECTRONIC HYDRAULIC - MECFANICAL
One Continental Hil Glen Cove, N. Y.
Glen Cove 4-1922

WHEN

TIME
IS

SHORT

put the solution of your problems up to a speciallzed Consultemt whose pro fessional cord appears on this page His broad txperience mary save you months of costly experimentation.

ELECTRONICS

330 West 42nd St., New York 36, N. Y.

R. W. HODGSON

RESEARCH \& DEVELOPMENT ENGINERRS SPE CTALIZING IN ELECTRONICS NUCLEONICS,
INSTRUMENTATION, SERVOMECHANISMS INSTRUMENTATION, SERVOMECHANISMS CYBERNETICS
Office-6600 Lexington Ave. Hollywoo 38, Calif.
All Mail to Bor 874, Sherman Oaks, Calif. GIadstone 9680

R. W. HODGSON

PATENT AGFNT SPECIALIZING
Begistered to Practice Before the U. S. \&
Offce- 6600 Lerington 4 He Holltwo
All Mail to Box 874, Sherman Oaks, Calif GLadstone 9680

HOGAN LABORATORIES, INC.

John V. L. Hogan, Pres.
Applied Research, Development, Engineering
Est. 1929. Electronics, Optics, Mechanisms, Facimile Con解
155 Perry Street, New York 14. CHelses 2-7855

THE KULJIAN CORPORATION

Consultants • Engineers - Constructors
Electronic Control Speciallists
Utility - Industrial - Chemical
1200 N. Broad St.
Phila. 21, Pa.

MEASUREMENTS CORPORATION

Research \& Manufacturing Engineers
Harry W. Houck John M. van Beuren Jerry B. Minter
Specialists in the Desiga
Development of Electronic Test Instruments Boonton, N. J.

Eugene Mittelmann, E.E., Ph.D.
Consulting Engineer E Pbysicist
High Frequency Heating-Industrial Electronics
applied Physics and Mathematics
549 W. Washington Blvd. Chicago 0. Ill State 2-8021

NIAGARA ELECTRON LABORATORIES

 CONSULTATION - DESIGN - CONSTRUCTION MFG. TIE THERMOCAP RELAYSpecializing in solution of problems of electronic search of analytical laboratory. Industrial plant problems also invited.
andorer, New York Cable Address: niatronlat:

ALBERT PREISMAN
Consulting Engineer
Telerision, Pulse Techniques, Video Ampliffers. Phasing Networks, Industrial Appliance
Affluated with
MANAGEMENT-TRAINING ASSOCLATES 3308-14th St., N. W. Washington 10. D. C.

JOSEPH RACKER COMPANY
 Radar Consultants \mathcal{E} Editor

Technical Manizals
Research and Development
140 Nassau Street.
New York 38. N. Y
Worth 4-1463

W. C. ROBINETTE CO

motron deadbeat high gain servos
Speed control of any Prime Mover $1 / 2 \%$ to .001 controle-Zero droop-No load to tull
802 Fair Oaks Ave. South Pasadena, Calif Py 11504

SKINNER, HARLAN AND IRELAND, INC.
Consulting Engineers
Specializing in Magnetic Materials and Their Application

Office and Laboratory Indianapolis 7. Indiana

THE TECHNICAL MATERIEL CORPORATION
 Communications Consultants Systems Engineering
 General Offces and Laboratory
 121 Spencer Place, Mamaroneck, N. Y.

HARRIS A. THOMPSON

Microwave Electronic Radar Electro-Mechanical
Consulting

Consulting
MFG. \& DEVELOPMEN' PROBLEMS 2525 Penn., Boulder. Colorado, Phone 1202 W

WHEELER LABORATORIES, INC.

 Radio and ElectronicsConsulting-Research-Developmen R-F Circuits-Lines-Antennas
Microwave Components-Test Equipment
Harold A. Wheeler and Engineering Staft
Harold A. Wheeler and Engineering Staff
Great Neck, N. Y. Great Neck 2-7806

YARDNEY LABORATORIES, INC.
 Research - Design - Development Electro-Chemical Generators of Energy
 105 Chambers Street
 worth 2-3534. 35, 36
 New York 7, N, Y.

ELECTRONIC ENGINEERS * PHYSICISTS

OUR STEADILY EXPANDING LABORATORY OPERATIONS ASSURE PERMANENT POSITIONS AND UNEXCELLED OPPORTUNITY FOR PROFESSIONAL GROWTH IN

RESEARCH \& DEVELOPMENT

GUIDED MISSILES
TELEVISION
ELECTRONIC NAVIGATION
SOLID STATE PHYSICS
VACUUM TUBES
RADAR
ADDRESS
INQUIRIES to
CAPEHART FARNSWORTH CORP.
FORT WAYNE, IND.

TRANSFORMER \& COIL DESIGN ENGINEER

Small company, well financed, looking for an executive type who has a thorough background in the design and manufacturing processes for all types of coil windings and transformers. The man we are looking for should be making at least $\$ 10,000.00$ per year now. Our employees know of this advertisement.

P-1758, Electronics
330 W. 42 St., New York 36, N. Y,

[^25]
DIRECT to DRAKE ALL YOUR EMPLOYMENT PROBLEMS
 International Coverage
 GUARANTEES
 CLIENT and CANDIDATE MAXIMUM SELECTION

A brief letter telling us your needs or experience, will receive our prompt and confldential attention.

ERIC MOORE, Manager
DRAKE PERSONNEL

$$
\text { Suite } 1009
$$

7 W. Madison St.
Chicago 2, III.
FInancial 6.2100

SALES ENGINEER

Old established Toronto firm in radio and electronics industry requires the services of a scles engineer, with college degree in Communications Engineering or Electronics, to handle one of the world's leading lines of laboratory test equipment. Should have at least two or three years practical engineering experience. Must have ability to meet and handle people. Permanent poiltion. Live in Tosonto, but willing to travel throughout Canada. Please submit all pertinent information, including salary required to:

> SW-4736, Electronics

330 W. 42 St., New York 36 , N. Y.

POSITIONS OPEN

Location
KANSAS CITY, MO.

Electronic \& Mechanical Engineers
ELECTRONIC ENGINEERS: Must have conslderable devalopment experlence in radio transmitposition of Senior Project Engineer a requidite.
MECHANICAL ENGINEER: Must have developMECHANICAL ENGINEER: Must have development experience in mechanical design or elice and theoretical knowledge of materials, finishes, sheet metal, and machine shop design are basio requirements.
responsibility.
responsibility.
BALARY: Open.
These positions are permanent.
Write stating educational and professional hatory direct to:

Jay V. Wilcox, President
WILCOX ELECTRIC COMPANY, INC.
1400 Chestnut St. Kansas City 1, Mo.
Dependable communications since 1951

REPLIES (Box No.): Address to offoe nearest you
NEW YORK: 390 W. 42nd St. (36)
CHICAGO: 520 NA Michigan Ave, (11)
SAN FANCISCO: 68 Post St. (4)

POSITIONS VACANT

INTERESTING OPPORTUNITY. Long estabINTERESTIN zation requires ingenious B.S. for design and development of electronic circuits for industrial clients. $0-5$ years experience. Salary and bonus plan. P-4714, Electronics.

WANTED-GRADUATE electrical engineer for work in Connecticut. A man having approximately 3 years experience in design of transformers or electrical machinery could qualify. Salary commensurate with ability, The Su
perior Electric Company, Bristol, Connecticut perior Electric Company, Bristol, Connecticut

POSITIONS WANTED

CHEMICAL ENGINEERING, electronics, degrees, age 40, 10 years chemical experience,
first class phone license, Sigma Xi, available immedíately. PW-4691, Electronics.

ELECTRONICS ENGINEER desires Foreign position, married-several years experience in research, development, design of electronic
circuity-radar advanced degree. PW-4619, Electronics.

SELLING OPPORTUNITY

SALES REPRESENTATIVE Engineers are seeking additional lines in electronics and allied flields. Metropolitan N. Y. location. Organization offers over 20 years experience in field. RA-4191, Electronics.

"SEARCHLIGHT"

IS

Opportunity Advertising
-to help you get what you want. -to help you sell what you no longer need.

Take Advantage Of It For Every Business Want "Think Searchliget First"

RESEARCH AND DEVELOPMENT

forge the KEY to America's future in the AIR fake YOUR place . . . with GOODYEAR AIRCRAFT

The continued and steady growth of established research and development projects presents a number of unusual opportunities for outstanding and experienced men.

SCIENTISTS
 ENGINEERS
 DESIGNERS

Positions are available in our organization for qualified personnel in the following fields:

- Electrical Systems
- Circuit Analysis
- Analog Computers
- Servomechanisms
- Test Equipment
- Structures
- Aerodynamics
- Applied Mathematics
- Electronics
- Physics
- Stress Analysis
- Flight Test
- Missile Design
- Dynamics
- Microwaves

Openings also exist for welding engineers, civil engineers, and mechanical engineers with experience in metals fabrication; and for personnel with ability and experience in technical edifing, art, and motion pictures.

Positions are available at several levels, and inquiries are also invited from recent graduates. Salaries are based on education, ability, and experience. Liberal salary, vacation, insurance, and retirement plans are yours if you qualify.
If YOU are interested in a secure future, write, giving full details, to
Mr. C. G. Jones, Salary Personnel Department.

We urgently need men with electronic background, and preferably radar or computer experience, to supervise, instruct and assist in installation-maintenance of electronic equipment.
Excellent starting salary during factory training, plus overtime premium in field. Substantial insurance program. Domestic \& overseas assignments available. Salary will be commensurate with experience.

Please forward your personal experience record to:

> Personnel Supervisor Field Eng. Div.

Reeves Instrument Corp. 215 East 91st St. New York, 28, N. Y.

SALES ENGINEER

- ELECTRONIC COUNTERS
- AUTOMATIC CLERICAL SYSTEM
- dATA HANDLING EQUIPMENT
- DIGITAL COMPUTERS
- PRECISION TIMING INSTRUMENTS
- automatic machine control
- FIYING TYPEWRITER

Excellent opportunity for a man with elecironic background, mechanical aptitude, and IMAGINATION.

- Well-established and expanding company -

Please send resume of education and experience to Sales Manager.

POIIIR IISTRUMENT COMPAMY

115 Cutter Mill Road, Great Neck, N. Y.

ENGINEERS

ELECTRONIC

and
Electro-Mechanical

MAKE
YOUR MOVE
IN THE
RIGHT
DIRECTION

POSITIONS THAT POINT TO A SUCCESSFUL FUTURE!
Minimum Requirements
Four years' experience in advanced research and development on Radar Systems, Computers, Wave Guide and Antennas, Servo-mechanisms, Pulse Techniques Gyroscopic Equipment and Related Fields.

If your skills are now being fully utilized in a vital defense industry, please do not apply.

Kindly send resume and salary requirements to

The W. L. MAXSON CORPORATION

460 W. 34th St. New York 1, N. Y.

STAVID ENGINEERING, INC.

has openings for Groduate

ELECTRONIC ENGINEERS
 MECHANICAL ENGINEERS

Experience in Design and Development of Radar and Sonar necessary.
Broad knowledge of Search and Fire Control Systems; Servo Mechanisms, Special Weapons, Microwave, Antenna and Antenno Mounts, etc.
Mechanical Engineer should have experience in packaging of Electronic Equipment to Gov't specifications including design of complex cabinets, shock mount and sway brace structures, Servo Mechanisms.
Positions are available in Field Service and Technical Writing.
Liberal personnel benefits including life, sickness and accident insurance, and a worthwhile pension system. Paid holidays and vacations.

> Personnel Office
> 200 W. Seventh St. Plainfield, N. J.

Telephone Plainfield 6-4806
$\mathrm{U}_{\text {nusual career-building openings }}$ await experienced

```
ELECTRONIC ENGINEERS . . .
```

ELECTRONIC ENGINEERS . . .
electrical engineers ...
electrical engineers ...
mechanical engineers . . .
mechanical engineers . . .
COMMUNICATION ENGINEERS . . .
COMMUNICATION ENGINEERS . . .
COMPUTER ENGINEERS...
COMPUTER ENGINEERS...
PHYSICISTS...
PHYSICISTS...
and METALLURGISTS

```
and METALLURGISTS
```

Positions open offer lifelong career opportunities to men who expect more from their work than is provided by an ordinary engineering assignment.

RCA IS A GOOD PLACE TO WORK

At RCA you receive recognition for your accomplishments. You work in close collaboration with distinguished scientists and engineers. You enjoy highest professional recognition among your colleagues. You have unexcelled facilities for creative work. The surroundings in which you work are pleasant and stimulating. You and your family enjoy outstanding employee benefits. Opportunities are excellent for advancement in position and income. Unlike "feast-or-famine" businesses, RCA has forged ahead regardless of war or depression.

Immediate Openings in
 RESEARCH - DEVELOPMENT • DESIGN • APPLICATION in the following fields:

RADAR • MISSILE GUIDANCE • SERVO MECHANISMS

 ANALOG COMPUTERS • TRANSFORMERS AND COILS NAVIGATION AIDS • TELEVISION • ELECTRON TUBES COMMUNICATIONS • TECHNICAL SALES ELECTRONIC EQUIPMENT FIELD SERVICESend a complete résumé of your education and experience. Personal interviews arranged in your city.

Send résumé to:
Mr. ROBERT E. McQUISTON, Manager
Specialized Employment Division, Dept. 46H
Radio Corporation of America 30 Rockefeller Plaza, New York 20, N. Y.

ENGINERS

CHEMISTS

METALLURGISTS
Choose a Future of t chienement

cuith
 GENERAL ELECTRIC

Through the opportunity to work with leading scientists on important advanced projects . . . through continued advancement possibilities . . . and the stability of association with a company whose products are vital to American defense, industrial and consumer needs, you can be more certain of a furure of satisfaction and achievement.

Positions are now open in Advanced Development, Design, Field Service, and Technical Writing in connection with:

MILITARY RADIO \& RADAR
MOBILE COMMUNICATION
mULTIPLEX MICROWAVE
COMMUNICATIONS
ELECTRONIC COMPONENTS television, tubes \& ANTENNAS
Bachelor's or advanced degrees in Electrical or Mechanical Engineering, Physics, Metallurgy, or Physical Chemistry and/or experience in electronics industry necessary.

Do not apply, please, if your best skills
are being used for vital defense work.
Please send resume to:
Dept. 82-E, Technical Personnel
ELECTRONICS PARK
N. \mathbf{Y}.

ELECTRONIC ENGINEERS

Mechanical Designers for Research and Engineering

To work in the design and development of new electronic equipment. Excellent working and living conditions, good salaries and exceptional employee benefits. Write, giving full details including education and experience. Personal interviews will be arranged.

THE NATIONAL CASH REGISTER COMPANY Main \& K Sts., Dayton 9, Ohio

ELECTRONIC ENGINEER

for
Challenging Opportunity in

ATOMIC ENERGY

Tracerlab, Inc., the foremost commercial firm in the development of peacetime applications of atomic energy and electronic instrumentation for measuring radioactivity seeks an outstanding Electronic Engineer to take complete responsibility for a group of major projects.

Position requires a B.S. in Electronic Engineering, with an M.S. preferred. Minimum of 5 years industrial experience. Familiarity with applications and limitations of manual and machine tools used in sheet metal work, good knowledge of drafting practice and complete understand. ing of electronic test equipment necessary.

Unparalleled opportunities await the qualified applicant. Salary commensurate with training and experience. Please send resume to:

Industrial Relations Department
TRACERLAB, INC.
130 High Street Boston 10, Mass.

DEPARTMENT HEAD

Missile Electronics

Prominent well-established aircraft and missile manufacturer offers an outstanding opportunity to a person qualified to head an expanding electronics organization. Must have at least ten years experience in airborne electronics, five of which should be in missile or radar design and development. Advanced degree preferred. Position reports to chief engineer. Send detailed resume of background and recent photograph to

P-4684, Electronics
520 N. Michigan Ave., Chicago 11, Ill.

ELECTRONIC ENGINEERS ALL GRADES

Small electronic research and development laboratory, located 8 miles outside of Washington, D. C., has several openings for junior and senior electronic engineers. Degree essential. Varied projects include analog computers, servo mechanisms, special test equipment, etc. Liberal salaries dependent upon experience.
THE DAVIES LABORATORIES Incorporated
4705 Queensbury Road, Riverdale,Maryland

. . An invitation to

ELECTRONIC ENGINEERS

MCOONNEL ARCRAFT CORPORATION

Offers attractive opportunities to engineers experienced in the missiles field. If technological impact and challenge to ability are features you look for in an assignment, study these classifications and "square off."

SENIOR and JUNIOR ENGINEERS for:

Package Design

Microwave Design and Development
Radar Design and Development
Auto-Pilot Design and Development
Instrumentation Development
Control Systems
Servomechanism Design and Development
Systems Analysis and Synthesis
Fire Control Computation and Development
Reeves Electronic Analogue Computers
Aircraft Antenna and Radome Design
Laboratory Testing and Evaluation

CONTACT:

TECHNICAL PLACEMENT SUPERVISOR MCDONNELL AIRCRAFT CORPORATION BOX 516, ST. LOUIS 3, MISSOURI

You'll Like Working for M.A.C.!

ENGINEERS

LOCATE IN THE

Mechanical Engineers, Electronics and Electrical Engineers, Physicists, and Mathematicians. A variety of positions in research, development and production open for men with Bachelors or advanced degrees with or without applicable experience.
These are permanent positions with Sandia Corporation, a subsidiary of the Western Electric Company, which operates the Laboratory under contract with the Atomic Energy Commission. The Laboratory offers excellent working conditions and liberal employee benefits, including paid vacations, sickness benefits, group life insurance and a contributory retirement plan.

Sand of Enchantment

Albuquerque, center of a metropolitan area 150,000 , is located in the Rio Grande Valley, one mile above sea level. The "Heart of the Land of Enchantment," Albuquerque lies at the foot of the Sandia Mountains which rise to 11,000 feet. Cosmopolitan shopping centers, scenic beauty, historic interest, year 'round sports, and sunny, mild, dry climate make Albuquerque an ideal home. New residents experience little difficulty in obtaining adequate housing in the Albuquerque area.

Make application to the

AVIATION CORPORATION

has the following openings for experienced men:

- Mechanical Engineers
- Electronic Engineers
- Electronic Technicians
- Radio-Chemists - Physicists

These permanent positions will involve work in all phases of nuclear technology. Special emphasis will be on the design and development of instruments, equipment and components for measurement of radiation and radioactivity, as well as the synthesis and application of radiocompounds.
Excellent opportunity for advancement with new, expanding division of one of the country's most progressive corporations.
Please forward resume of educational background and experience

CORNELL AERONAUTICAL LABORATORY, INC.

We are continually seeking men of outstanding ability who are willing and able to add to our research efforts. Typical fields include:

RADAR
 COMPUTERS INSTRUMENTATION SERVOMECHANISMS SYSTEMS ANALYSIS

For additional information write, referencing this advertisement. Due to clearance problems it is impossible to consider noncitizens.

Employment Manager
Cornell Aeronautical Laboratory
4455 Genesee Street Buffalo 21, New York

ENGINEERS

AND
PHYSICISTS BS - MS - Ph.D:

Responsible positions in mechanical, electrical or electronic engineering, physics or engineering physics for advanced development and design of special equipment and instruments. Prefer men with minimum of two years' experience in experimental research design and development of equipment, instruments, intricate mechanisms, electronic apporatus, optical equipment, servomechanisms, control devices and allied subjects. Positions are of immediate and permanent importance to our operations. Southwestern location in medium sized community. Excellent employee benefits. Reply by letter giving age, experience and other qualifications. All applications carefully considered and kept strictly confidential.

Ind. Rel. Manager,
Research \& Development Dept.
PHILLIPS
PETROLEUM COMPANY Bartlesville - Oklahoma

to Personnel Manager
 BENDIX AVIATION CORPORATION
 203 W. Third Street
 Cincinnati 2, Ohio

CML

Project Engineers and Senior Scientists needed to wark on the University of Chicago compus in the felds of Solid State, Electronics, Physical Chemistry, Physics and Meteorology.

Complete facilities and excellent associations are available in this ocademic atmosphere. Various research projects deal with longrange problems of the Tactical Air Command.

We offer salaries generally prevailing in industry as well as the security of a continuing position with this military loborotory. Applicants must be U. S. citizens.

For information write to:
Director of Scientific Personnel Chicago Midway Laboratories 6040 South Greenwood Avenue Chicago 37, Illinois

ENGINEERS!

PHYSICISTS!

We have openings in research, development and production at our New. ark and Livingston, New Jersey plants for engineers and physicists in the following fields:

- Vacuum Tubes
- Gas Tubes
- Hydrogen Thyratrons
- Computer Tubes
- Computer Circuits
- Nucleonic Instruments
- Pulse Circuits
- Electronics Equipment

Excellent opportunities for men with ability and experience. Openings exist for recent graduates. Write giving full details to:

Personnel Department

CHATHAM

 ELECTRONICS CORP.475 Washington Street Newark, New Jersey

HELICOPTER INSTRUMENTATION ENGINEER

Instrumentation Engineer to solve theoretical and practical instrumentation problems involved in wind tunnel, whirlstand and flight testing of helicopters and convertiplanes. Desirable background would include aeronautical or mechanical engineering course (including instrumentation theory) and several years of industrial dynamic instrumentation work. Will you please state training, experience and salary requirements. All replies will be confidential. Write:

Technical Placement Supervisor
McDonnell Airctaft Corporation Post Office Box 516

St. Louis 3
Missouri

ENGINEERS - PHYSICISTS

Applied Physics Laboratory
The Johns Hopkins University
has a limited number of openings for Senior Staff Members in the Guided Missile Field

ENGINEERS

Microwave theory and practice in communications or radar using pulse techniques
Design and modification of radar systems
Field testing electronic gear of all types
Circuit designers of servomechanisms experienced in various electronic techniques

Servosystems-theory and practice including electrical or hydraulic experience
Mechanical and aeronautical engineering design

PHYSICISTS

Electronic physics - information theory background
We have excellent facilities and opportunities in modern research laboratories.

For further information write
MR. E. M. LANE
Applied Physics Laboratory
The Johns Hopkins University
8621 GEORGIA AVENUE
SILVER SPRING, MARYLAND

ELECTRONIC AND MECHANICAL ENGINEERS

Electronic or electrical engineer with of least three years' experience in either development or production of electronic equipment; to act as liaison between development laboratory and production facilities. Salary commensurate with experience.

Electronic or electrical engineer with of least two years' experience in development of electronic equipment; to assist product engineers in the analysis and solution of problems arising when components coming out of a development laboratory are put into production. Salary commensurate with experience.
Senior electronic engineer for the design and supervision of design of electronic instrumentation for underwater ordnance. Salary commensurate with experience.

Mechanical design with at least two years' of machine design experience in the small mechanisms field. Design work on a model basis, with an eye on future production problems. Salary commensurate with experience.

Opportunities for graduate study.
For additional details write:

ORDNANCE RESEARCH LABORATORY the pennsylvania state college
 STATE COLLEGE
 PENNSYLVANIA

ELECTRONIC ENGINEERS

Degree in Electrical Engineering Plus Maintenance or Repair Experience on SCR-584 Radar

ELECTRONIC ENGINEERING COMPANY OF CALIFBRNIA
 180 SO. ALVARADO STREET
 LOS ANGELES, CALIFORNIA

Electronic Engineers

Man with eloctrical engineering degree and three to
five years' experience (circuits, video, ontica) for five years' experience (circuits, video, optical) for
position in Reasearch Department. This job offers:
(1) Position with expanding organization interested in color motion pictures and television..
(2) Employment in Southern California with excellent long-range peace-time prospects. Exceilent employee benefits such as group
insurance, pension, etc. insurance, pension, etc.
If interested contact Personnel Department describ.
TECHN
NICOLOR MOTION
PICTURE CORPORATION 6311 ROMAINE STREET HOLLYWOOD 38, CALIFORNIA

MANUFACTURING SUPERINTENDENT

Salary $\$ 12,000-\$ 15,000$

Well-established, medium-sized company located on Long Island, N. Y. Continually expanding. Products include electronic measurement instruments, industrial control equipment and electronic business machine systems. Ideal opportunity for industrious and talented manufacturing superintendent. Engineering degree required.

> Must be qualified
> for supervision of

Electronic and Electromechanical Manufacture
Experimental \& Production Machine Shop
Sheet Metal Construction
Quality Control
Production Scheduling
Send summary of education and experience to:

P-4759, Electronics
$330 \mathrm{~W}, 42 \mathrm{St} .$, New York 36, N. Y.

EIECTRONC AND MECHANCAL ENCIINERS
 UNUSUAL SIARYY OPPORTUNIIIIS

Senior Electronic Engineers
Senior Mechanical Engineers
UHF Engineers
Junior Electronic Engineers
Junior Mechanical Engineers
Experienced Draftsman with Electronic Background

Excellent Opportunities for Advancement in our New Research Laboratory Furnished with Finest Equipment.

Write Giving Full Details To:
Personnel Director, Dept. A.
GIBBS MANHACturing and RISEARCH COPPORAIION

Janesville, Wisconsin

AC SPARK PLUG DIVISIOM of
 GENERAL MOTORS CORPORATION

PRECISION INSTRUMENT PLANT
Positions now available for highest caliber personnel in the field of airborne automatic electro-mechanical control equipment.
Mechanical desian encineers ELECTRONC ENGINEERS SERVO ENGINEERS ELECTRONCC DESGGERS mechanical designers

New and expanding division of an established firm with 20 years of successful experience in the instrument field. Work involved deals with the manufacture and development of highly complex equipment of the most advanced type.

Write or Apply
AC Spark Plug Division GENERAL MOTORS CORPORATION

1925 E. Kenilworth Place Milwaukee 2, Wisconsin

KAMAN AIRCRAFT'S

entrance into the field of ELECTRONIC DEVICES for HELICOPTER use has created an immediate need for

RADIO ENGINEERS

Minimum of 5 years experience in the design and development of high frequency FM transmitters and receivers. Engineering graduates with advanced degrees preferred.

RADIO and ELECTRONIC TECHNICIANS

3 to 5 years experience in the construction testing and operation of high frequency FM transmitters and receivers. Engineering graduates preferred.

ELECTRO-MECHANICAL TECHNICIANS
3 to 5 years experience in aircraft servocontrol systems. Engineering graduates preferred.

> Please send detailed resume to W. M. TYNAN
> Administrative Engineer Department E
> KAMAN AIRCRAFT CORPORATION Windsor Locks, Connecticut

OIL FILLED CONDENSERS

| MFD | VDC | Price | MFD | VDC | Price |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Pr | | | | | |

COAXIAL CONNECTORS

คֻู
 $\mathbf{s . 6 5}$
.56
1.36
1.195
1.40
2.10
1.50

1.50 | $83-2$ |
| :--- |
| 83 |
| 83 |
| 83 |
| 83 |
| 83 |
| 83 |
| 83 |
| 83 |

\& .68
1.90
1.95
.15
.15
.84

FULL LINE OF JAN APPROVED COAXIAL CONNECTORS UHF-N-PULSE-BN-BNC

				${ }_{93-\mathrm{AI}}^{93-\mathrm{C}}$	${ }_{4}^{49120}$	D-163950	
${ }_{\text {M1-360 }}$	${ }_{\text {PL }}$	${ }_{\text {PLL }} \mathrm{PL}^{-283}$	TM-201				

2ϕ LOW INERTIA SERVO MOTORS KOLLSMAN- 15 Voit 60 cycle 4 watts 1500 RPM, $\$ 22.50$
 duction gear -2.3. PIONEER—CK-14 115 solt 400 cscle-includes damp-
ing signal generator (antossn)................ $\$ 47.50$

HIGH VOLTAGE TRANSFORMERS
G.E.-Pri. 115 V 60 cy . Sec. $6250 \mathrm{~V} 80 \mathrm{MA}-12.5 \mathrm{KV}$

ANTENNAS

RELAYS

Sioma type $4 A H-2000 \Omega$ a ma DC coll-SPDT con-
tacts-hermetically sealed
5 pin plug-in base. $\$ 3.30$ Sigma type 4 R- $8000 \Omega 1$ ma DC coil-SPDT contacts Stevens Arnosd type 171 Millisec relay-... 900 ohm coil SPST NO contacts.

Cutler-Hammer and Square D type $\bar{B}-7$ A contactor24 VDC coil-SPST NO 200 Anmp contacts... $\$ 4.75$ | Price Bros. type $161 . \mathrm{M}-220$ VAC contactor-SPST |
| :--- |
| NO double bK 30 A contacts........................ | G. E. CR5I81-IAG 115 V 60 cy. AC contactor $4 P$ ST

 ina. DC Fan type-4" scale (rem. from equipt). 3.95

2 amp . $\mathrm{RF} 21 /{ }^{2} \mathrm{Sa}$ - Simpso

OIL-FILLED 35 KV AND 50 KV
ISOLATION TRANSFORMERS
Pri. 460 V 60 cy . Sec. 115 V 200 VA insulated for 50 KV DC-G. E. Form ElR $36^{\prime \prime}$ H X $13^{\prime \prime}$ D..... $\$ 125.00$
Pri 115 V 60 cy. Sec. 115 V 250 VA Insulated for 35
KV DC.

	CRYSTAL DIODES				
1N21	\$1.19	$1{ }^{1 N 27}$	\$1.79	${ }_{1}{ }^{41}$	\$11.25
${ }_{1 N 21 B}$	3.50	$1{ }^{1} 34$	8.66	iN43	18.55
$1 \mathrm{~N}^{22}$	1.99	IN34A	. 95	${ }^{1} 1{ }^{\text {d }}$	0
$1{ }^{1} 23$ 23	1.95	1N39	1.725	INS5	. 15
1 N 23 B	4.25	1N40	10.60	IN6,	. 5

TYPE "J" POTENTIOMETERS
Res
$\mathbf{6 0}$
60
100
200
250
500
500
500
500
$\mathbf{6 5 0}$
$1 K$
$2 K$
2500
$4 K$
$5 K$

Resis.
$5 K$
$5 K$
$5 K$
$10 K$
$10 K$
$10 K$
$15 K$
$15 K$
$20 K$
$25 K$
$25 K$
$30 K$
$40 K$
$50 K$
$50 K$

\$1.25 each

SOUND POWERED TELEPHONES
U. S. NAVY TYPE M HEAD AND CHEST SETS S.S.I. A-260 W.E. D. 173013 ANY TYP E- $\$ 14.88 \mathrm{EACH}$
TS. 10 Type ANandscts.
. $\$ 9.25$

GENERATORS AND INVERTERS

Erlinse-Pioneer type 716-3A (Navy Model NEA.3A) Output-AC 115 V 10.4 A 800 to 1400 cy . I $\mathrm{N}: \mathrm{DC} 30$
Eclinse-Pioneer type $1235-1$. Dutput-30 Volts DC Velts 60 Anıps. Brand new..................... $\$ 38.50$ I5 Amps. Brand New-original Packing.... \$15.50
VE-218 Inverters-28 VDC to 115 VAC 400 cy 15000 Pioneer Type $800-1 \mathrm{~B}$ Inverter-28VDC to 120 V 800
 ATR inverter 6 VDC to 110 VAC 60 cy 75 w..... $\$ 32.59$ VA (used) Eclipse-Pioneer type i2i2iA Invertor-Voltage and frequency regulated- 24 VDC 18 Amp indut-AC output l15V $3 \phi 400$ cy $250 \mathrm{VA} 0.7 \mathrm{PF}-(\mathrm{New}$)

TEST EQUIPMENT

 - Dumont 175A Oscilloscope.

- Gen. Radio 757-PI Power Supply.................. $\$ 225.00$
 - TS. IOA/APN Delay Line Test Set
- TS.19/APQ. 5 Callbrator Test Set $\$ 75.00$ - CWI-60NAG Range Calibrator for ASB, ASE, ASV - CRV-14AAS Phantom Antenna for Transmitters uD - to 400 MC Pickup Horn Antenna AT-48/UP............................... 95
- 3 CM Pickup Horn Antenna AT-48/UP....... $\$ 9.95$ - 1.138A Signal Generator-10 cm.............. $\$ 185.00$ - BC-221 Freq. Meter (late models). - Weston Model I D.C. Milliameter $150 / 1500^{997.50}$ with leather case. $\$ 75.00$ Al itenis New Except Where noted * (Exc. Used Condition.

MISCELLANEOUS EQUIPMENT

Amperex 1898 Gamma Counter...............
Powerstat $1226-115 / 230 \mathrm{~V}$ input- $0-270 \mathrm{~V}$ out
EIMAC 35 T lonization Gauge.
R.7/APS. 2 Receiver.

R-:8/APS. 15 Recaiver
FL. 1020 cycle filter
FL-8 1020 cycle filter....
RM- 29 remote control un
RTA-1B $12 / 24$ V dynamotor
AS-1206-CM2 Receiver

Navy DP-14 Direction Finder complete -24/ART-13 Antenna Loading Cond. -85/APT-5 300-1600 MC Transmitter.
BC. 1016 Tape Recorder
AN/APA-30
and Alock Equip...................... Quote

UTAH UTAH
$\underset{\substack{3318 \\ 3.350}}{ }$
G.E. 68 G .627 G.E. 68 G 828
G.E. 68 G 929 GI
G.E. 80 GI 13
G. E.
K. .2469 A
$\mathrm{~K}-2744 \mathrm{~B}$
G.E.K-2744B AN/APN-9 (901756-502) AN/APN-9
AN/APN -9
$(352-7250)$
$(352-725)$ Westinghouse 132.AW Westinghouse 139DW2F Westinghouse 187AW2F

Westinghouse 232-AW2
Westinghouse Westinahouse 232- BW-2 Philco 352-7149 Ose. Philco 352-7150 Philco $352-7071$
Philco 352.7178 Philco $352-7178$
Raytheon UX-7350
W.E W.E. D- 161310 W.E. D- 163247
W.E. $D-163325$
W.E.
W. -164651

AN/APA-23 RECORDER
Sweeps any receiver through its tuning range and iqnals on paper chart. Power input-(motor) 27 V DC 1.5 A , and (recorder) $80 / 115 \mathrm{~V}$ AC 60.2600 cy Originally designed to record pulse or slnewave hodulated signals received by AN-APR-I, AN/APR BRAND NEW' $\$ 147.50$

SPRAGUE PULSE NETWORKS

7.5 E3+1-200-67P, 7.5 KV, "E""Cireuit I Mierosec 7.5 E3-3-200-67P. 7.5 KV, "E"" Circuit 3 " Mïcrosec. ${ }^{20 C}$ PPS, 67 chms imped, 3 sections......... $\$ 6.75$
7.5 E4-16-60-67P. 7.5 KV , "E", Clreuit 4 sections 15 E4-.91-400-50P, 15 KV. KV. "E" Cireuit . 91 microsec

[^26]

GUARANTEED

$$
\begin{aligned}
& \text { D. C. ALNICO FIELD MOTOR } \\
& \text { DIEHL TYPE FD6-23, } 27 \text { vts. } 10,000 \mathrm{RPM} \text {. } \\
& \text { DELCO TYPE } 5072400,27 \text { vts. } 10,000 \mathrm{RPM} \text {. }
\end{aligned}
$$

8TJ9-PAB TRANSMITTER 24 VTS.
8TJ11- INDICATOR, dial 0 to $360^{\circ}, 24$ vts.
RECTIFIER POWER SUPPLY HAMMETT ELECTRIC MFG. CO. MODEL SPS-130 phase, 21 amps. Output 28 volts at 130 amps.
continuous duty, 8 joint tap switch, voltmeter ammeter, thermo reset all on front panel. SחOJNV773コSIW
PIONEER MAGNETIC AMPLIFIER ASSEMBLY Saturable reactor type, designed to supply variable voltage to a servo motor such as
CK1, CK2, CK5 or 10047 . SPERRY A5 CONTROL UNIT, part No. 644836. SPERRY A5 AZIMUTH FOLLOW-UP AMPLIFIER SPERRY A5 DIRECTIONAL GYRO, part No. 656029 SPERRY A5 PILOT DIRECTION INDICATOR, part ALLEN CALCULATOR, TYPE C1, TURN \& BANK
 No. GIOBOA3. PIONEER GYRO FLUX GATE AMPLIFIER, TYPC
$12076.1-\mathrm{A}, 115 \mathrm{rt} .400$ cycle. POTR POEAT NEPK N Y , 351 GBEATiEGM ROAD, GREAT iEGN. A. Y. GENLRAL ELECTRIC, GEN. TYPE AN5531-1, Pad mounting 3 phase variable frequency output.
GENERAL ELECTRIC, GEN. TYPE AN5531-2, Screw mounting 3 phase variable frequency output.
GENERAL ELECTRIC, IND. 8DJ13AAA, works in conjunction with above generators, range 0 to conjunction with above generators, range 0 to
$\mathbf{3 5 0 0}$ RPM.
 TYPE AY1, AY5, AY14G, AY14D, AY20, AY27D,
AY38D, AY54D. put 115 vts. at $1.5 \mathrm{~K} . \mathrm{V} . \mathrm{A} ., 400$ cycle, 11 phase.
LELAND, TYPE D.A. input 28 vtr., at 12 amp. PIONEER AUTOSYNS 400 CYCLE PIONEER AUTOSYN POSITION.
INDICATORS \& TRANSMITTERS.
INDICATORS \& TRANSMITTERS.

 Vis. at 35 cmps., output 115 vts . at 485 V .A., LELAND, PE 218, input 24 vts at 90 amps. outPIONEER TYPE 12117 , input 24 vts., output 26
Vts. at 6 V.A., 400 cycle.
WINCHARGER CORP., PU/7, MG2500 input 24 WINCHARGER CORP., PU/7,
vts . at 160 amp., output 115 vts . at 21.6 amp ., 400 cycle, 1 phase.
GENERAL ELECTRIC, TYPE 5D21NJ3A, input 24 SyヨVㅋNI

 WINCHARGER CORP. PU 16/AP, MG750, input
 36 amps., output 26 vts. at 250 ViAs . and
115 vts at $500 \mathrm{~V} . \mathrm{A}^{2}$., both 400 cycle, i phase. PIONEER TYPE 12117, input 12 vts., output 26 vts. at 6 V.A., 400 cycle.
PIONEER TYPE 12117 , input 24 vts., output 26 TACHOMETER GENERATOR YOLVOIGNI 8
\square
\square eo tYpe b CARBON PILE. Input
 WESTERN ELEC. TYPE BC937B, input 110 to 120 ohms at 5 to 2.75 amps.
WESTERN ELEC. TRANSTAT, input 115 vts., 400 rating . 5 K.V.A. 115 vts.,

SERVO MOTORS

BODINE NFHG-12, 27 VTS., governor controlled,
constant speed $3600 \mathrm{RPM}, 1 / 30$ H.P. DELCO TYPE 5068750, 27 VTS., 160 RPM, built DUMORE, TYPE EIY2PB, 24 VTS., 5 AMP., .05 GENERAL ELECTRIC, TYPE 5BA10AJI8D 27 VTS., GENERAL ELECTRIC, TYPE 5BA10AJ37C 27 VTS., ENGINE HOUR METER
GENERAL ELECTRIC
 WHITE ROGER ACTUATOR TYPE 6905, 12 VT .,
JOHN W. HOBBS, MODEL MI-277 records time up
to 1000 hours, and repeats, operates from 20
to 30 volts.
S vis., 400 cycle.
D. C. SELSYNS

$\sqrt{2}$

Western Union address:
WUX Great Neck, N. Y.

SEARCHLIGHÝ SECTION

Buy TOP Radio-Electronic Values!

WESTERN ELECTRIC C-114
Loading cails
$\$ 2.95 \mathrm{ed}$

TOGGLE SWITCHES				
$\begin{aligned} & \text { Stock } \\ & \text { No. } \end{aligned}$	Mfg.	Action	Rating	Price
5443 A	H \& H	S.P.D.T.	$6 \mathrm{~A}-125 \mathrm{~V}$	35\%
52814	$\mathrm{Carligag}_{\text {C-H, }}$ (86)	S.P.S.T.	${ }_{\substack{10 \mathrm{~A}-125 \mathrm{~V} \\ 5125 \mathrm{~V}}}$	39% 25%
	OTHER T	YPES A	ailable	

FILAMENT TRANSFORMERS

Prlmary 115 Volt, 60 Cycle, 1600 Volt Insulation Horizontal half shell. Mounting centers. $2-13 / 18^{\prime \prime}$ x $3-3 / 8^{n}$ core size. $2-1 / 2^{\prime \prime}$ above Chassis. Solder lug terminals-All terminals marised
6.3 Volts @ 4.9 Amps; 6.3 Volts @ 4.5 Amps; 6.3 Volts @ 1.1 Amps

Stock
No.
5254 A
$\underset{\text { Each }}{\text { Price }} \$ \mathbf{2 . 6 5}$

PRI: 115 volt 60 cycle. Secondaries: 5 volt @ 3

> Stock No. 6008 A
$\underset{\substack{\text { Prich } \\ \text { Each }}}{\mathbf{P}} \mathbf{1 . 5 0}$

PRI: 115 volt 60 cycle. Secondaries 6.5 volt C. T (a) 8 Amp.; 6.5 Volt (a) 4 Amp ; 5 rolt (6) 2 Amp . 5.2 volt C. T. @ 5 Amp.: 71 volt C. T.@ 40 MA . U.T.C. type RC-125 case.

> No. Stock Nol
$\underset{\text { Each }}{\text { Price }} \mathbf{\$ 3 . 0 0}$

HIGH CURRENT FILAMENT TRANSFORMER
Primary 115 vac 60 Cycle. Secondary 1.25 VAC at 100 AMP.

$$
\begin{aligned}
& \text { Stock } \\
& \text { No. } 5783 \mathrm{~A}
\end{aligned}
$$

$\underset{\substack{\text { Price } \\ \text { Each }}}{\$ 5.00}$

PLATE TRANSFORMER

Primary 210-220-230-240-250 volts 60 Cycle Secondary 500 Volts Center Tapped 130 Mils.

$$
\text { No. } \underset{\text { Stock }}{672.2830 A} \underset{\text { Pireh }}{\substack{\text { Prive } \\ \text { Ele }}} \mathbf{\$ 1 . 5 0}
$$

POWER TRANSFORMERS

Vertical Double Half Shell Type. Pri.: 117 VAC. 60 Cycle. Secondary Delivers 200 vDC (6) $70 \mathrm{Ma} ., 6.3 \mathrm{VAC}$. (a) 1.2A. 3000 Volt Ins. $234^{\prime \prime} \times 2-9 / 16^{\prime \prime} \times 31 / 8^{\prime \prime} .2^{\prime \prime}$ Mtg. Centers. Wire Leads

$$
\begin{array}{cc}
\begin{array}{c}
\text { Price } \\
\text { Eacli }
\end{array} & \mathbf{S t o c k} \\
\text { No. } 5969 \mathrm{~A}
\end{array}
$$

PRI: 200-220-240 Volt $50 / 60$ cycle. Sec. : 1400 Volt C. T. @ $350 \mathrm{MA} .5^{\prime \prime} \times 6^{\prime \prime} \times 5{ }^{3 / 4}$ ". Sig. Corps No. 2Z9601.51. Mfd. bs Sota.

$$
\begin{array}{cc}
\begin{array}{c}
\text { Stock } \\
\text { No. } 5990 \mathrm{~A}
\end{array} & \begin{array}{c}
\text { Price } \\
\text { Eacl }
\end{array} \$ 19.75
\end{array}
$$

PRI: 115 volt 60 cycle. Secondarles: $1600-390$ -$0-390-1600$ volts @ 200 MLA ; 12 Volt C. T. (a) . 5 Amp. U.T.C. tspe RC- 175 Case.

$$
\begin{array}{ll}
\text { No. 5996A } \\
\text { Soriee } \\
\text { Each }
\end{array} \$ 10.95
$$

TRANSMITTING MICAS

Stock	Cap.	Test Volts	Type		
No.				\quad	Price
:---:					
Each					

* Supplied with Meter Bracket
-D.C. Working Voltag
OTHER TYPES AND SIZES AVAILABLE

MICA CAPACITORS

Sizes from 10 to 7.000 MMFD in CM20, CM30 CM35 and CM40 case sizes. Tan mica and silver Complete lists with prices available upon request
G. E. SATURABLE REACTOR 15 KVA. \#67G469
$\$ 100.00$

FILTER CHOKES

Stock
No. 6002 A
$\underset{\text { Each }}{\text { Price }} \mathbf{\$ 2 . 2 5}$

SELENIUM RECTIFIER
 TRANSFORMER

Made by Thordarson - CHT Case. 105 Volt @. ${ }^{43}$ A, 25 to 60 Cycle. Secondary 68 Yolt (@ $3^{\prime \prime} \times 38^{\prime \prime} \times 41 / 4^{\prime \prime}$.

No. ${ }_{\text {Stock }}^{\text {T64799A }}$
Price
Each $\mathbf{9 5 c}$

Band pass 800 to 1200 cycles input 10000 ohms25000 ohms Level 10DB

Stock No. T48500A Price to $\$ 5.50$ ea.

J. 38 KEYS

Signal Corps Type J- 38 Keys. No. $\begin{gathered}\text { Stock } \\ 5293 \mathrm{~A}\end{gathered}$

10" PM SPEAKERS

1'ernoflux $10^{\prime \prime}$ PM Speaker with 2.15 oz . Magnet Packed 18 to a carton.

$$
\begin{gathered}
\text { Stock } \\
\text { So. } 5335 \mathrm{~A}
\end{gathered}
$$

$\underset{\text { Price }}{\substack{\text { Pach } \\ \$ 3.00}}$
Carton Lot $\$ 50.00$

2 VOLT BATTERY

Sismal Corps Type RB-54A 2 VoIt 27 Ampere Hour Storage battery, Non-Spilable Transparent Acid Proof Plastic, Case has Built-in Ball Type Hy-
drometers. $3^{\prime \prime} \mathrm{X}^{\prime \prime} 4^{\prime \prime} \mathrm{x}^{\prime \prime}$ High. Shivped Dry with Acid in Separate Container. Made by Willard.
Carton of $12 @ \$ 1.60$ Each
Stock
51584

No. 5458A DIFFERENTIAL DYNAMIC MICROPHONE
A close talking, noise-cancelling Speech Microphone. A close talinge noise-cancelling Speech Microphone. with Dress-to-talk switch and 5 Ft. Shielded Four Conductor Cable. Brand New. Individually boxed. No. ${ }_{5282 \mathrm{~A}}^{\text {Stock }}$
$\left.\begin{array}{ccc} & 72 \text { OHM COAX } \\ \text { Plastoid RG-59/U Coax. }\end{array}\right]$

83-1R COAX CONNECTOR
No. 5657 A
$\underset{\text { Pach }}{\substack{\text { Price } \\ \text { Each } \\ \hline}}$
OIL FILLED CONDENSERS
045 MFD 16.000 Volt Vitamln " Q "' One Ceramic

Stock
No. 5399 A.
$\underset{\substack{\text { Price } \\ \text { Eich }}}{\substack{\text { Pr }}} \mathbf{4 . 9 5}$
$2 \mathrm{x}, 15 \mathrm{mpd} 8000 \mathrm{VDC}$ Two Ceramic Ins. Terms.
Stock
Stock
No. 6052 A
$\underset{\substack{\text { Price } \\ \text { Each } \\ \$ 4.95}}{ }$
Oil Filled Condensèr 1010 MFD. 220 V.A.C. Round
Can, $2-1 / 2^{\prime \prime}$ Diameter $\times 3.7 \mathrm{~g}^{\prime \prime}$ High. Can, $2-1 / 2^{\prime \prime}$ Diameter $\mathrm{x} 3-7 / \mathrm{m}^{\prime \prime}$ High.

No. 5658 A
$\underset{\text { Each }}{\text { Price }} \$.95$

$$
4 \text { MFD. }-1000 \text { VOLT }
$$

 "Terminals. $2 \frac{1}{2} 2^{\prime \prime} \times 1^{11 / 4^{\prime \prime}} \times 43 / 4^{\prime \prime}$. High Can. Figure

Stock
No.
5865 A
$\underset{\text { Ear }}{\substack{\text { Price }}} \mathbf{\$ 1 . 9 5}$

$$
4 \text { MFD.-600 VOLT }
$$

C-D No. KG3040. Bakelite insulated solder lug
terminals.
2 狻 termi

$$
\begin{aligned}
& \text { Stock } \\
& \text { No. } 5994 \mathrm{~A}
\end{aligned}
$$

$\underset{\text { Price }}{\substack{\text { Pace }}} \mathbf{\$ 1 . 5 0}$

$$
4 \text { MFD. }-4000 \text { VOLT }
$$

 Figure "C

Stock
$\underset{\text { Each }}{\text { Price }} \$ 9.95$
LINE TO GRID XFORMER
PRI. \#1 500 ohms tapped @ 250. PRI, $\# 2$ R Ohns tapped @ 15. SEC: P. P. Paraltel 6L6
grids class AB2
60 .0 8000 CPS. plus or 2 DB . Vertical half shell Mte.

No. 6013 A

Price
Each
E.
1.50

HIGH FIDELITY TRANSFORMER
P.P. 10.000 ohim to 250 ohm Line. Frequencr
 Botom Solder Lug Terminals. 4 Stud Mtg. Bolts. Stock
No.
5792 A
$\underset{\text { Erice }}{\substack{\text { Price } \\ \text { Eact } \\ \$ 3.75}}$
HIGH VOLTAGE TRANSFORMER
21.000 volt 100MA. Half wave oil filled. Maloney Electric Co.

Stock
No. 5728 A
$\underset{\substack{\text { Price } \\ \text { Each }}}{\$ 300.00}$

HAND MICROPHONE

Replacement for T. 17 Mike. English make
 talk switch. Stock No. 5883 A . Unshielded cable.

Price Ea. \$3.25

UNITS • TORQUE UNITS • AMPLIDYNES • INVERTERS • ELECTRONIC SERVO SYSTEMS • TACHOMETER GENERATORS

COMMUNICATIONSEQUIPMENTCO.

- Coil Forms
- Condensers
- Dynamotors
- Fuses
- Insulators
- Inverters
- Lugs
- Micas
- Networks
- Pilot Lights
- Plugs
- Standoffs
-

[S BAND - $3^{\prime \prime} \times 1^{1 / 2 \prime \prime}$ WAVEGUIDE

 REACTION WAVEMETER, MITO. G.E. $3000 \cdot 3700$ MC. Mio. Head. 5125.00
 beacon Lighthouse cavity 10 cmm . Mfg, Bernard Rice. eath. . 547.50

 MCNALLY KLYSTRON CAVITIES for 707B or 2 K28................. 54.00 F 29/SPR-2 FILTERS, type " ${ }^{\text {N }}$ " fnDat

 Homedelli-to-TYPE "N" Male Adaptera, W.E. No. DiGi284...52.75

7/8" RIGID COAX- $3 / 8^{\prime \prime} 1$. C.
RIGHT ANGLE BEND, with Hexible coax output pickup loop. .s8.00 SHORT RIGHT ANGLE EEND, with preesurizing nipple......... 53.00 RIGID COAX to flex coar connector................................ $\$ 3.50$
 RT. ANGLES for abore.
 7/8' RIGID COAX. BULKHEAD FEED-THRU..................... S4.25

$140-600 \mathrm{mc}$ Directional Antenna
$140-310 \mathrm{me}$ cone and $300-600 \mathrm{mc}$ cone, each consisting of 2 end
fed half wave conical sections with enclosed matching stub for
reactance changes with changing frequency.
New: complete with mast, guys, cables, carrying chest.... $\$ 49.50$

30' SIGNAL CORPS RADIO MASTS

PULSE TRANSFORMERS

 G.E.K.-2745 (.......................... 539.50

\qquad
\qquad
\qquad

PULSE EQUIPMENT

 TPS-3 PULSE MODULATOR. Pk. Dower 50 nmp. $24 \mathrm{KW}(1200 \mathrm{KW}$ pk): pulee rate 200 PPS . 1.8

PULSE NETWORKS

15A-1-400-50i 18 EV، "A" CKT, i mieronec 400 PPS. 50 ohms imp......................... 537.50
G.E. No. BE3-5-2000-80P2T, BKY "E" oirouit. 3 qections . 5 miernsecond, 2000 PPS 50 ohme imped-
 .3E3-1-200-67P. 7.5 KV. "E" Circuit, 1 inicrosec 200 PPS. 67 ohms impedance 3 sectiong 57.50

DELAY LINES
D-168184: . 5 microbed. up to 2000 PPS 1800 ohm term... $\$ 4.00$
D-170499: .25/.50/.75 mierose0. 8 Ky 50 ohms imp... . . 516.50

THERMISTORS

MAGNETRONS

D167018
D167332.
0167613.

D166228.
D164699.
D-163903.
D-166792.

VARISTORS
D171812.
D172155
D167176
O168687
D167208E, D171858
D167208E, D171858
$308 A, 3 A, 27-B \ldots$
D168403 $\ldots \ldots \ldots$

COMMUNICATIONS EQUIPMENTGO.

DYNAMOTORS

INVERTERS

POWER TRANSFORMERS

Comb. Transtormers- $115 \mathrm{~V} / \mathbf{5 0 - 6 0} \mathrm{ep}$ Input CT75E 600-0-600V/.6A, $2 \times 5 \mathrm{VCT} / 6.2 \mathrm{~A}, 6.3 \mathrm{VCT} /$
 CT-15A $4200 \mathrm{~V} .002 \mathrm{~A} / 12 \mathrm{KV}$ Test., $5 \mathrm{VCT} / 3 \mathrm{BA} / 12 \mathrm{KV}$

Filament Transformers- $115 \mathrm{~V} / 50$-S0 cps input

Item	Rating	Each
FT-674	8.1V/1.5A	\$1.10
FT-157	4V/16A, 2.5V/1.75A	2.95
FT-10.1	6V/.25A	5
FT-924	$5.25 \mathrm{~V} / 21 \mathrm{~A}$ 2x7.75V/6.5A.	
FT-824	$\underset{6.4 V / 2 A}{2 \times 26 V / 2.5 A}, 16 V / 1 A, 7.2 V / 7 A, 6.4 V / 10 A$,	95
FT-463	6.3VCT/1A, 5VCT/3A, 5VCT/3A	5.49
FT-55.2	7.2V/21,5A, $6.5 \mathrm{~V} / 6.85 \mathrm{~A}, 5 \mathrm{~V} / 6 \mathrm{~A}, 5 \mathrm{~V} / 3 \mathrm{~A}$.	8.95 3.75
FT-986		3.19
FT-427		
	2.SEST.	18.95
FT-608	$6.3 \mathrm{~V} / 3 \mathrm{~A} / 750 \mathrm{~V}$ Test	
FT-873	4.5V/.5A, 7V/7A	$\begin{array}{r}24.19 \\ \hline\end{array}$
FT-899	2x5V aㅏ 5A, 29KV Test	24.

Item	Plate Trans.- $\mathbf{1 1 5 V}$, 60 cps Price		
PT-446	$18553.5 A$$300 / 150 V$		\$4.59
PT-699			2.79
PT-302	120-0-120V/350 MA		${ }_{120.00}^{4.69}$
PT-108	17,600V/144 MA...		5
PT-671	62V/3.5A		
c	Special Fil. Transformers-60 cps		
$\begin{array}{r} \text { Item } \\ \text { STF- } 370 \end{array}$	Pri. Volts	Secondaries$3 \times 2.5 \mathrm{~V} / 5 \mathrm{~A}, 3 \mathrm{KV} \text { Test }$	
	220/440		
F-11A	$220 \mathrm{~V}$	$\begin{aligned} & 2.5 \mathrm{~V} / 15 \mathrm{~A}, \\ & 2 \times 40 \mathrm{~V} / .05 \mathrm{~A}, 2 \times 5 \mathrm{~V} / 6 \mathrm{~A} \end{aligned}$	
STF-608	220 V	24V/5V/1A $5 \mathrm{~V} / 3 \mathrm{~A}, \mathrm{6} 3 \mathrm{~V} / 1 \mathrm{~A}$,	
		$6.3 \mathrm{~V} / 1 \mathrm{~A} .$	3.45
$\begin{aligned} & \text { STF-968 } \\ & \text { STF-631 } \end{aligned}$	230 V		3.50
	230 V	2x5V/27A, $2 \times 5 \mathrm{~V} / 9 \mathrm{~S}$	17.59
Item	Special Plate Transformers-60 cps		
	${ }_{230 \mathrm{~V}} \mathrm{Pri}$. Volts	Secondaries$230 / .05 \mathrm{~A}, 230 \mathrm{~V} / .05$	Price
STP-613			
STP-409	220/440V	136VCT/3.5A	5.69
STP-815	240/440, 3ph	1310V/.67A, 6KV	27.50 42
STP-129	230 V , ${ }^{\text {ph }}$	3850V/3.12K	42.59
STP-823	137 V	222VCT/.3A	2.35
STP-088	50 V	5000V/1A	1.79
	210/220/230		59.75
STP-945		210/220/230 550-0-553V	5.95
	Special Comb. Transformers- 60 cps		
	Pri. Volts	Secondar	Prics
	220 V		
$\begin{aligned} & \text { STC-609 } \\ & \text { STC-047 } \end{aligned}$	$\begin{aligned} & 220 \mathrm{~V} \end{aligned}$	220V/3A6. 6.9	
		$700 \mathrm{~V} / 80 \mathrm{MA}, 110 \mathrm{~V}$	
		${ }_{6}^{24 V} / 80 \mathrm{MA}$,	
		$5 \mathrm{~A}, 2.5 \mathrm{~V} / 5 \mathrm{~A}$.	6.95
ScT-607	220 V	350-0-350V/.0	

AUDIO TRANSFORMERS

AT 2015026 output (4000 ohms) to V.c. (3 ohms) ${ }^{\text {AT }}$. 5 . 40

 AThmailiö (soo ohms) to Grid (isk ohms:

400 CYCLE TRANSFORMERS

k	(All Primaries $\underset{\text { Ratings }}{\mathbf{1 1 5 V}} \mathbf{4 0 0}$ Cveles)	Priee
352-7039	640 VCT (9) $250 \mathrm{MA}, 6.3 \mathrm{~V} / .9 \mathrm{~A}, 6.3 \mathrm{~V} / 6 \mathrm{~A}$,	
		${ }_{8.93}$
12033	$4540 \mathrm{~V} / 250 \mathrm{~mA}$	17.50
$K 59584$ 521652	5000V/290 MA,	22.85
K59607	$734 \mathrm{VCT} / 177 \mathrm{~A}, 17$	
352-7273	$700 \mathrm{VCT} / 350 \mathrm{MA}, 6.3 \mathrm{~V} / 0.9 \mathrm{~A}, 6.3 \mathrm{~V} / 2.5 \mathrm{~A}$,	
352-7070	$2 \times 2.5 \mathrm{Y} / 2.54{ }^{\text {a }}$ (2KV TEsT) $6.3 \mathrm{~V} / 2.25 \mathrm{~A}$,	
352-7136		
352-717	$320 \mathrm{VCT} / 50 \mathrm{MA}$	
	$2.5 \mathrm{~V}^{2 \times 6.3 V C T / 6}$	2.35
901692	$13 \mathrm{~V} / 9 \mathrm{~A}$	2.49
901699-501	${ }^{2} .700 \mathrm{~V} / 75 \mathrm{ma}$	4.45
U $\times 8855 \mathrm{C}$	$900 \mathrm{VCT} / .06$	3.73
RAG405-1	$800 \mathrm{VCT} / 85 \mathrm{MA}, 5 \mathrm{SV} 3 \mathrm{Sa}$,	4.25
352-7098	2500V/6MA. $300 \mathrm{VCT}, 13$	5.95
KS 9336	1100/50MA ${ }^{\text {a }}$	25
Ks 8984	27	2.75
${ }^{52 \mathrm{CO}} \mathbf{3}$		5
${ }_{68663}$	$1000-1150 \mathrm{~V}$.	
${ }_{302433}{ }^{80 G 198}$	6VCT/.00006 KV	
		5.
KS 9685	$\text { 59,4/7.5A, } 6.4 V / 3,8 A, G, 4 V / 2,5 A .$	
70G30G1 M-7474318	$600 \mathrm{VCT} / 36 \mathrm{MA}$ $2100 \mathrm{~V} / .027 \mathrm{~A} .$.	$\begin{aligned} & 2.65 \\ & 4.95 \end{aligned}$
${ }_{95-6-45}$	$2000 \mathrm{~V} / .002 \mathrm{~A}, 465 \mathrm{~V} / .6 \mathrm{~A}, 44 \mathrm{~V} / \mathrm{IOA}, 6.3 \mathrm{~V}$ $235 A^{-2}, 3 \mathrm{~V} / 1.8 \mathrm{~A}, 5 \mathrm{~V} / 9 \mathrm{~A}, \quad 2 \times 2.5$	
TRANSTAT	1.754	
	,	12.95

SPECIALS

BIRTCHER TUBE CLAMPS

${ }_{9}^{9268-16}$
 \qquad

STEP-DOWN TRANSFORMERS

$210-250 \mathrm{~V}$ PRI
$110-220 \mathrm{~V}$ SEC
Watts ${ }^{110-220 V}$ SEC

Watts	Pric
250...	\$5.9
300.	7.4
500	10.
1000	19.9

SURPLUS EQUIPMENT

PE 218 Leland Electric
Output: 115 VAC; Single Phase; PF 90; 380/500 cycle 1500 VA. Input: 25-28 VDC; 92 amps; 8000 RPM; Exc. Volts 27.5. BRAND NEW
$\$ 39.95$ ea.

16486 Leland Electric

Output: 115 VAC; 400 Cycle; 3Phase; 175 VA; 80 PF. Input: 27.5 DC $12.5 \mathrm{amp} ;$ Cont. Duty $\$ 90.00$ ea.

INVERTERS

10563 LELAND ELECTRIC

 Output: 115 YAC; 400 cycle; 3-phase; amp. $\$ 80.00$ eн.5 RPM GEAR HEAD MOTOR

Mfg. RAE., Type 7519, 115 Volts AD, DC, Fractional HP, Overall dimension: $51 / 2^{\prime \prime}$. $\$ 12.95$ คп. $\$ 12.95$ ค月.
$\$ 11.95$ ea.

METERS

AMMETER: DC; $2^{\prime \prime}$ 100-0-100, complete with external shunt.......................95 ea. inch round. F.S. $10 \mathrm{MA} . . . \mathrm{M}^{2} . . . \$ 6.95$ ea.

MICROPOSITIONER

Barber Colman AYLZ 2133-1 Polarized D.C Relay: Double Coil Differential sensitive Alnico P.M. Polarized field. 24 V contacts .5 amps; 88 v. Used for remote positioning.
sychronizing, control, etc........ $\$ 12.50$ ea,

VEEDER ROOT COUNTER MODEL S-1
5 -figure $(0-99,999)$ non-reset type. Adds ten for each com plete revolution of shaft in one direction. Sulbtracts ten fil eath revolution in opposite dibackground. Size: $3 / 4{ }^{\prime \prime}$ high $x \quad 3 / 4 "^{\prime \prime}$ wide 1-5/16" long. arm removable $\$ 1.95$ ea

6 RPM GEAR BOX MOTOR
110 Volt, 60 cyc., Single Phase; Ratio-544:1; Mfg. by
Merkle-Korff Gear Co., Overall dimensions approx. $31 / 2^{\prime \prime} \times$ Lots of 10 $\$ 9.50$ ea.

WESTINGHOUSE HYDRAULIC TRANSMISSION

Ideal as hydrauli torque converters fontains hydraul ce pump and hy
draulic motor: ball bearings; ha reversible con trols. High qual ity precision
workmanship workmanship. specifications for use on 2 -ton 40 mm antiaircraft guns. Overall dimensions: 12" long $x^{5} 1 / 2^{\prime \prime}$ wide $x^{1 / 2 " ~ h i g h . ~ S h i p p i n g ~ w e i g h t ~}$
20 ibs. Government cost more than $\$ 300$ LIKE NEW, UNUSED. $\$ 29.95$ ea.

AC CONTROL MOTOR

Diehl Mfg. Co., FPE-25-7, 20 Volts, 2 phase,
1600 RPM, 85 amps........... $\$ 15.00$ es.
all Equipment fully guaranteed
Pleose enclose full amount with order All prices net FOB Pasadena, Calif.
Prices subject to change without notice

G. E. ALTERNATOR

208 Volts, 400 Cycle, 3 Phase Mod.
2 CM97B1 5 PF 75 Speed 8000 KW 15
Cont. Duty, Limited Quantity. . $\$ 320.00$
SERVO MOTOR 10047-2-A: 2 Phase; 400 Cycle; with $40-1$ Reduction Gear $\$ 10.00 \mathrm{ea}$.

PIONEER TORQUE UNITS

TVIE 12604-3-A: Contain CK5 Motor coupled to output shaft through $125: 1$ gear reduction train. Output shaft coupled to autosyn follow-up (AY43). Ratio of output
shaft to follow-up Autosyn is $15: 1 \$ 70.00 \mathrm{em}$. Shaft to follow-up Autosyn as 12604-3-A except it has a $30: 1$ ratio between output shaft TVPE 12602-1-A: Same as 12606-1-A except it has base mounting type cover for

BLOWER ASSENBLY

115 Volt, 400 Cycle. Westinghouse Type
FI, 17 CF . Complete with capacitor.

ALNICO FIELD MOTORS (Approx. size overall)
Delco-Tvpe 5069230 : \$27.50 PIONEER AUTOSYNS

400 CYCLE MOTORS

AIRESFAIRCH: 115 V ; 40 CPS; Single phase; 6500 RPM; 1.4 amp; Torque 4.6 in. EZASTP HPN AIR DEVICES TYPE JNGH: 200 VAC; 1 amp; 3 phase; 400 cycles; EASTEMN AIR DEVICES', TYPE J31B: 115 V, 400-1200 Cycle, Single Phase. $\$ 12.50$ ea. 11ONEER, CK-2, 400 cycle 2 -phase. AIRESEAIRCH: AC Induction, 200.00 ; ; I'hase, 400 Cycle, 2 H.P.; 11,000 RPM; 8 AKRSEARCII: AV Induction. 200 v;

SYNCHROS

IF Sperial Repeater (115V-400 Cycle)
2.J1F3 Generator ($115 \mathrm{~V}-400 \mathrm{cyc}$) $\$ 15.00$ ea.
 5CT Control Transformer: $90-50$ Volt: 60
 5G Gienerator ($115 / 90$ volt- 60 cyc.) 5SDG Differential Generutor ($90 \% 90$ volts - 40 cyc. Different Generator 90.830 .00 ea. 5IDG Differential Generator ($90 / 90$ volts 60

12116-2-A PIONEER

Output: 115 VAC; 400 cyc; single phase; 45 amp. Input : 24 VDC $5 \mathrm{amp} . . \$ 80.00$ ea.

MG 153 HOLTZER-CABOT

Input: $24 \mathrm{~V}, \mathrm{DC}, 52$ amps; Output: 115 volts- 400 cycles, 3 -phase, 750 VA , and 26 Volt-400 cycle, 250 VA. Voltage and frequency regulated $\$ 95.00$ ea.

94-32270-A LELAND ELECTRIC

OUTPUT: 115 Volts, 190 V.A., Single Phase, 400 cyc. 90 PF, and 26 Volts, 60
V.A., 400 cye., 40 PF. INPUT: 27.5 Volts D.A., 180 cye.. 40 PF. INPUT: 27.5 Volts
amps; Cont. Duty, Voltage and DC, 18 amps; Cont. Duty, Voltage and

1/2, Wortel 5LY77AB1, Input: 115 rolts D.C $1 / 2$ F.P. motor: $13 \mathrm{amp} ; 3600$ RPM: shunt 69 cycles; KVA shunt self excited MG-183, Input: 70 Volts DC, 5.4 amps $\mathbf{~} 129$. HiP- 35, Input: 70 Volts $\mathrm{DC}, 5.4$ amps., $1 / 3$ amps., 175 cycles, 3 phase, 225 KVA . $\$ 9.00$ ea.

SYNCHRONOUS SELSYNS 110 volt, 60 rycle, brass cased, approx. t" dia. x ${ }^{6 \prime \prime}$ long Bendix.
Quantities Avallable
REPEATERS

SINE-COSINE GENERATORS

(Resolvers)
Diehl Type FUE-43-9 (Single Phase Rotor). Two stator vindings 90° apart, provides two outputs equal to the sine and cosine voltage 115 volts, 400 cycle....... $\mathbf{\$ 2 5 . 0 0}$ er. except it supplies maximum stator voltage of 220 volts with 115 volts applied to
rotor

\section*{NEWYORK'S RADIO TUBE SYY EXCHANGE
 | | | | | | | | | | PRICE | TYPE | | RIICE | TYPE | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T | PR1CE | | PRICE | TYPE | PRICE | TYPE | PRICE | TYPE | PRICE 14.5 | 705 A . | | R | | 3.50
 1.45 | | 5 |
| OA3 | 1.75 | | 20.00 | | | | | | 4.95 | -07A | | 17.95 | | | E1148 | . 35 |
| OH_{2} | 1.75 | ${ }_{2} \mathrm{C} 43$ | 27.00 | $3{ }^{1}$ | 10.95 | ${ }^{6} 65$ | 10.95 | 310 A | 7.95 | 707 B | | 27.00 | | 13.95 | 1280 | 1.95 |
| | 1.25 | 2 C 44 | | $3 \mathrm{DP1S2}$ | 12.00 | $7 \mathrm{BP}^{7}$ | 7.95 | | 7.95 3.95 | ${ }_{715} 714 \mathrm{~A}$ Y | | 17.95 | | 15.95 | 1811 | 1.95 |
| O | 8 | ${ }^{2} \mathrm{E} 22$ | 1.75 | ${ }^{3}{ }^{3 \mathrm{E} 29} \mathrm{P} 1$ | 15.50 5 5 | ${ }^{72 \mathrm{DP4}}$ | 10.00 55.00 | 323 A | 25.00 | 715 B | | 18.00 | | 3.50 7.95 | | 1.38 |
| ${ }_{C 1}$ | 6.95 | 2 E 30 | 2.75 | ${ }^{3} \mathrm{SNP}$ | 5.50 5.50 | ${ }_{15 \mathrm{E}}^{12} \mathrm{~A}^{4}$ | 15.05 | 327A | 3.95 | 7150 | | 25.00 | | 9.95 | 1619 | . 89 |
| H21A | 2.75 | 2 J 21 | 17.95 | 4 Al | 1.75 | 15 F | 95 | 328A | 9.95 | 717 A | | 18.95 | ${ }_{833} 8$ | 49.95 | 1622 | 2.75 |
| 1182 | 3.95 9.95 | ${ }_{2} 329$ | 17.75 | ${ }^{4}{ }^{\text {A2 }} 2$ | 10.75 | FGE1 | 6.95 | ${ }_{3501}^{350 A}$ | 5.95 | \%19a | | 29.50 | 834 | 4.95 | | 2.15 |
| $1 \mathrm{H24}$ | 17.95 | $2{ }^{2} 27$ | 29.95 | 4 C 27 | 25.00 | R $\mathrm{K}^{\text {a }}$ | 3.95 | 3574. | 20.00 | 7214 | | 3.95 3 | 837 | 2.95 | 1851 | 1.85 |
| 1826 | 2.95 | ${ }_{2}^{23131}$ | 29.95 | 4 C 28 | 35.00 17.50 | ${ }_{3}{ }^{\text {FGT }}$ | 4 | ${ }_{371 \mathrm{~B}}^{3}$ | 2.95 | ${ }_{723}{ }^{2}$ | | 17.95 | 838 | 6.95 5 | 2050 | 1.85 1.80 |
| 1 l 2 B 27 | 19.50 | ${ }_{2} 5336$ | 69.95 105.00 | ${ }_{4}^{4} \mathrm{~J} 25$ | 199.00 | ${ }^{5} 5 \mathrm{Spe}$ | . 35 | 385 A | A.95 | 724. | | ${ }_{4}^{4.95}$ | 8848 | 52.50 | 8012 | 4.25 |
| 1 B 38 | 33.00 | ${ }_{2}{ }^{3} 388$ | 17.95 | 4326 $+\sqrt{27}$ | 199.00 | RK39 | 2.725 | ${ }_{394} 38$ | 7.95 | 725 A | | 9.95 | | 80.50 | ${ }_{8013}^{8013}$ | 2.95 5.95 |
| ${ }_{1}^{1852}$ | 19.95 9.95 | 2 J 49 | 35.00 109.00 | ${ }_{4}^{4}{ }^{4} 31$ | 199.00 199.00 | VT52 | | M X 408 C | | - | | 6.95 | | 39.50 | 8019 | 1.75 |
| 1 B 58. | 49.95 | ${ }^{2} 550$ | 69.50 | $4{ }^{3} 32$ | 199.00 | RE72 | 1.95 | 417 A | 27.95 | 72813 | | 56.00 69.00 | | 1.79 | 8020 | 3.50 |
| 1860 | 69.95 | $2 J 55$ | 95.00 | ${ }_{4}^{4} 533$ | 199.00 | | 19.95 | ${ }_{4}^{43}$ | 29.95 1.95 | ${ }_{728 \mathrm{~A}}^{2} \mathrm{Y}$ | | 69.00 | 869 B . | 37.50 35.00 | ${ }_{\text {PD8 }}^{8025}$ | 69.9 89.00 |
| $1{ }^{1} 21$ | 1.75 | ${ }_{25}{ }_{2} 62$ | 75.00 7500 | ${ }_{4}{ }^{4} 38$ | 199.00 89.00 | ${ }_{\text {FG }} 105$ | 19.00 | ${ }_{446}$ | 5.40 | 801 A . | | 1.00 | ${ }_{872 \mathrm{~A}}^{888 \mathrm{BX}}$ | 35.00 3.95 | | 1.75 |
| 1 N 21 B | 4.25 | $2{ }^{2} 25$ | $\begin{array}{r}37.50 \\ 37 \\ \hline\end{array}$ | 4 4 39 | 199.00 | F_{123} | 8.95 8.95 | 450 TH | 45.00 45.00 | 802 803 | | 7.25 | ${ }_{878}^{872}$ | 1.95 | 9002 | 1.50 1.75 |
| ${ }_{1}^{1} \mathrm{~N}^{22}$ | 2.00 | ${ }_{2}^{2} \mathrm{~K} 29$ | 37.50 37 | ${ }^{4} 513$ | 199.09 | | 8 | 464 A | 9.95 | 8804 | | 13.50 | | 1.75 | | 1.75 |
| | 2.00 | 21.1 | 100.00 | ${ }_{5}^{513 P 1}$ | 6.95 | 217 | 18.00 | 4714 | 2.75 15.00 | ${ }_{806}^{805}$ | | | 889 R | 199.50 | 9005 | 1.90 |
| ${ }_{1}{ }^{\text {N } 23} \mathbf{2 3}$ | 3.75 6.00 | ${ }_{2}^{2} \backslash 3 \mathrm{G}$ | 10.10 | ${ }_{5 C P 1}$ | 6.95 | | 12.95 | WL530 | 3.50 | 807 | | 1.69 | 914 | 6.00 | | ${ }^{35}$ |
| $1 \mathrm{~N}^{27}$. | 5.00 | 3 BPL | 7.50 | ${ }_{5} 5121$ | 27.50 | 249 C | 4.95 | WL531. | 22.50 | 808 | | $\begin{array}{r}3.50 \\ 11.00 \\ \hline\end{array}$ | ${ }_{95}^{93}$ | . 35 | ini | r |
| $1 \mathrm{H}_{1} 21$ | 6.95 | $3 \mathrm{B24}$ | 7.50 | ${ }_{5} 5 \mathrm{JP2}$ | 19.50 | 274 A . | 3.00 | 700A/D. | 25.00 | 811 A | | 3.15 | 9.5 | . 69 | | |
| ${ }_{2}^{2822}$ | 1.95 | EL 3 C 3 C 22 | 5.95 120.00 | WESA | 27.50 250 | ${ }_{304 \mathrm{~T}}^{274}$ | 3.00 15.00 | | 7.50 6.95 | | | 3.95 | 957. | 29 | | |

ATTENTION OIL COMPANY ENGINEERS SHIP SUPPLIERS USERS OF SHORAN
WE HAVE FOR IMMEDIATE DELIVERY TESTED AND GUARANTEED PERFECT, NEW

4C28 SPECIAL PRICE $\$ 35.00$
 MICROWAVE TEST EQUIPMENT

TS148/UP

 SPECTRUM ANALYZERField type X Band Spectrum Analyzer, Band 8430 5580 Megacycles.

Will check Frequency and Operation of various X Band equipment such as Radar Magnetrons, Klystrons, TR Boxes. It will also measure pulse width, c-w spectrum width and Q of resonant carities. Will also check frequency of signal generators in the X band. Can also be used as frequency modulated Signal Generator etc. Available new complete with all occessories, in carrying case.

Also ovailable of new production TS239A Synchroscope and TS147/UP X Band Signal Generator.

Other test equipment, used checked out, surplus.

TSK $1 /$ SE K Band Spectrum Analyzer TS3A/AP Frequency and power meter RF4A AP
RF4A/AP Phantom Target S Band TS10/APN Altimeter Test Set X Band TSi3/AP X Band Signal Generator TS15/AP Flux Meter
TSi6/AP Altimeter Test Set
TS33/AP X Band Power and Frequency Meter
TS34/AP Western El. Synchroscope

SPECIAL

Wide Band S Band Signal Generator $2700 / 3400 \mathrm{MC}$ Using $2 K 41$ or PD 8365 Klystron, Internal Cavity Attenuator, Precision individually calibrated Frequency measuring Cavity. Modulated, externally or internally.

TS34A/AP Western El. Synchroscope TS35/AP X Band Signal Generator TS36/AP X Band Power Meter TS45/AP X Band Power Source TS47/APR 40-400 MC Signal Generator TS69/AP Frequency Meter 400-1000 MC TS100 Scope
TS102A/AP Range Calibrator TSilo/AP S Band Echo Box TS125/AP X Band Power Meter TS126/AP Synchroscope TSi74/AP Signal Generator

TS 175 Signal Generator
TS226 Power Meter
TS251 Range Calibrator APN9
TS270 S Band Echo Box
APA10 Oscilloscope and panoramic receiver
APA38 Panoramic Receiver APS 3 and APS 4 Radar APR5A Microwave Receiver APT2 Radar Jamming Transmitter APT5 Radar Jamming Transmitter

Large quantities of quartz crystals mounted and unmounted.
Crystal Holders: FT243, FT171B others.
Quartz Crystal Comparators.
North American Phillips Fluoroscopes Type 80

Large quantity of Polystyrene beaded coaxial Cable
YOU CAN REACH US ON TWX NY1-3235

MINIMUM ORDER 25 Dollars

UG CONNECTORS
 ALL JAN APPROVED

Available for immediate delivery from stock.
Write, wire, phone your requirements.
Complete stock of "AN" Cannectors. Send for our bulletins and listings of all components.

ACORN ELECTRONICS CORP.
 76-E Vesey St. WOrth 4-3270 New York 7, N. Y.

WE BUY AND SELL GOVERNMENT SURPLUS

electronic components, units, wire, etc. Your Inquiries Invited LAPIROW BROS.
1649 Hoffner S
Klrby 1285 Cimeinnati 23 , Ohio
AUGUST SPECIAL SALE
2 K25 Klystrons \$22.50 Each Plus mony other equal volues
us on any type Crystal Diodes and Query
type Tubes. ALLIED ELECTRONIC SALES
${ }^{136}$ Liberty Street, $\begin{gathered}\text { Tel. } \\ \text { cortlandt } 7-4320 \\ 7\end{gathered}$

Photacin sales

417 N. Foothill Blvd. SY camore 2-4131
Pasadena 8, Calif.
RY an 1-6751

SUMMER SURPLUS SALES CATALOG

WANTED new or clean used electronic surplus.
Please state exact description of the condfion
and details of modification. Include lowest
price in frst letter.

TS-56A/AP Slotted line complete with Indi-
 R111/APR-5A. $\cdots \cdots, \ldots, \ldots, e_{\text {Exc }}$ PUR*
Measurements Corp. Model 82 Siandard Sig. PR
Gen. 20 cy -50mc.
Gen. 20 cy-50mc.. Model 80 Standard ${ }^{\text {Exc. }}$ Sig.
Gen. $2-400 \mathrm{mc}$. General Radio 650 A Impedance Bridige..... PUR* Audio (onillator Hewlett-Pack rd 200 Br R
$20-20.000 \mathrm{cp}$. 5110.00 LM \& BC-221 Frequency Meter with Eal. 400.00
 TS-173/UR Frequency Meter $90-450$ me.
Complete with cryatal, cal. book.

 Industrial Circuit Teater Weston Modil 785
$\begin{array}{llll}\text { Electronic Analyrer Weaton } 769 . . . \text { Like New } & 125.00 \\ \text { Like New } & 225.00 \\ \text { PUR }\end{array}$
 Tuning Hand Microphone with cord and
T-17
PL-68
 $\begin{array}{ll}115-238000 \mathrm{ohm} . \text {. Used } & \$ 2.95 \\ \text { IIS-18 } 8000 \mathrm{ohm} \text {.. Used } & 1.75\end{array}$ HS-33 600 ohm...Used
$115-38600$ ohm...Used
1.75

[^27]NOTE: One of the largest and most complete eleotronio surplus stocks in the country. We have thousands of tubes, capacitors, plugs, accessories,
transmitters-receivers, tast equipment, etc. Send ransmitters-receivers,
TERMS: Prices F.O.B. Pasadena, Californis. 25% Tax. Prices subject to cliange without notice.

ROTARY'S VAST INVENTORY KEAPS PRICES DOWN

100,000 Carbon Potentiometers available
for Immediate Delivery.
Note: Lock Nuts Available for Type "Jl" Potentiometers at 104 each.

POTENTIOMETERS \$. 5 SINGLE tYpe "j" AND "Jl"-

OHMS	BUSHING	SHAFT	TAPER
50	$1 / 2$ LB	5/6	U
50	3/8	$1 / 4$ SD	U
50	$1 / 4$	$1 / 8$ SD	U
60	$1 / 2$	3/8	U
100	$1 / 2$ LB	$1 / 6$ SD	U
150	$1 / 4$	7/16	U
150	$1 / 2$ LB	$1 / 8$ SD	U
300	$1 / 4$	3/8	B
350	$1 / 2$ LB	$1 / 8$ SD	U
350	$1 / 4$	1/8 SD	U
500	$1 / 2$ LB	$1 / 2$	U
500	$1 / 4$	3/8	B
500	1/4	$13 / 8$	U
500	$1 / 2$ LB	1/8 SD	U
1,000	$1 / 2$ LB	1/6 SD	U
1,000	1/4	1/8 SD	U
2,000	$1 / 2$ LB	$1 / 8$ SD	U
2,500	$3 / 8$	1/6 SD	U
2,500	1/4	5/8	B
2,500	$1 / 2$ LB	1/6SD	U
5,000	3/8	$3 / 8$ SD	A
6,000	3/8	7/16 SD	U
10,000	3/8	$11 / 8$ SD	U
10,000	$1 / 2$ LB	$1 / 8$ SD	U
10,000	$1 / 2$ LB	1/6 SD	A
10,000	3/8	3/8	U
10.000	3/8	3/8	B
10.000	$1 / 2$ LB	$1 / 2$	U
10,000	3/8	5/16	U
15,000	$1 / 4$	$1 / 4$	U

CARBON

RESISTORS

Type EB- $1 / 2$ Watt, GB-1 Watt, HB-2 Watts

OHMS	BUSHING	SHAFT	TAPER	DUAL TYPE "JJ' - \$2.50 each			
15,000	1/4	$1 / 4$ SD	A				
20,000	$1 / 2$	1/8 SD	U	OHMS	BUSHING	SHAFT	TAPER
20,000	$1 / 2$ LB	$1 / 8$ SD	U				
20,000	$1 / 2$ LB	1/2	U	200	$1 / 2$	$1 / 2$	U
20.000	$1 / 2$ LB	3	U	500	$1 / 4$	$11 / 2$	U
25.000	$1 / 2$ LB	213/16 AS	U	500	$1 / 2$ LB	$1 / 2$	U
25,000	$1 / 2$ LB	1/8 SD	U	500	$1 / 2$ LB	$1 / 2$	U
25,000	3/8	$1 / 8$ SD	U	500	$1 / 4$	$11 / 2$	U
30,000	1/4	$1 / 2$	U	600	$1 / 4$	$1 / 4$	U
40,000	$1 / 2$ LB	$1 / 8$ SD	U	600	3/8	$1 / 8$ SD	U
50,000	$1 / 4$	$1 / 6$ SD	U	1,500	$1 / 4$	$1 / 4$ SD	U
50,000	$1 / 2$ LB	$1 / 8 \mathrm{SD}$	A	2,000	$1 / 2$ LB	$1 / 8$ SD	U
50,000	3/8	3/8	A	3,000	$1 / 4$	$1 / 2$ SD	U
50.000	$1 / 2$ LB	$1 / 8$ SD	U	20,000	1/4	$3 / 16$ SD	U
50,000	$1 / 2$ LB	213/10 AS	U	25,000	3/8	3/8 SD	U
60.000	$1 / 2$ LB	$1 / 8$ SD	U	25,000	$1 / 2$ LB	$1 / 6$ SD	U
70,000	$1 / 2$ LB	$1 / 8$ SD	U	25,000	1/4	1/2	U
100,000	1/4	$1 / 8$ SD	U	25,000	3/8	$1 / 1 / 50$	U
100,000	3/8	$1 / 4$ SD	U	30,000	$1 / 2$ LB	$1 / 8$ SD	U
100,000	$1 / 2$ LB	$1 / 8$ SD	U	40,000	3/8	$1 / 8$ SD	U
150,000	$1 / 2$ LB	$1 / 8$ SD	U	100,000	$1 / 2$ LB	$1 / 8$ SD	U
250,000	$1 / 2$	3/8	A	200,000	3/8	1	U
250,000	3/8	55/8	A	250,000	$1 / 4$	3/8	B
250,000	3/6	$1 / 2$	A	500,000	$1 / 2$ LB	3/8	A
250,000	1/4	1/8 SD	A	500,000	$1 / 2 L B$	5/8	A
350,000	$1 / 2$ LB	1/8 SD	A	1. Meg.	$1 / 2$ LB	3/8 AS	U
1. Meg.	3/8	$1 / 8$ SD	U	1. Meg.	$1 / 2$ LB	$1 / 8$ SD	U
1. Meg.	$1 / 4$	1/8 SD	U	1. Meg.	$1 / 4$	1/8 SD	U
2. Meg.	3/8	5 \%/8	A	1. Meg.	1/4	3/8	U
3. Meg.	3/8	11/16	A	2. Meg.	3/8	3/8 SD	U

SYLVANIA DIODES

UG CONNECTORS

UG $12 / \mathrm{U} \quad 1.00$ $\begin{array}{ll}\text { UG } 15 / \mathrm{U} & 1.00 \\ \text { UG } 21 / \mathrm{U} & 1.00\end{array}$ UG 29/U 1.00 UG 88/U 1.00 UG 245/U 1.00 UG $260 / \mathrm{U} 1.00$ UG $261 / \mathrm{U} \quad 1.00$ UG 262/U 1.00 UG 290/U 1.00 UG 291/U 1.00

$1 / 2$ WATT \pm		$\begin{array}{r} 10 \% \\ \text { OHMS } \end{array}$	OHMS	OHMS	OHMS 620.000
OHMS	OHMS		22	5,100	$\begin{aligned} & 620,000 \\ & 680,000 \end{aligned}$
10	2,200	82.000	27	8,200	1.2 Meg.
22	2,700	100,000	30	13.000	1.8 Meg.
24	3,000	120,000	47	15,000	2.7 Meg.
27	3,300	150,000	56	18,000	3. Meg.
33	3,900	180,000	68	22,000	3.3 Meg.
39	4,700	220,000	100	43,000	5. Meg.
47	5,000	270,000	220	47,000	6.8 Meg.
82	5,600	330,000	270	75,000	7.5 Meg.
100	6,800	470,000	330	100,000	16. Meg.
120	3,200	560,000	470	150,000	
150	10,000	680,000	1,000	160,000	
220	12,000	1. Meg.	1,500	220,000	
270	15,000	1.2 Meg.	1,800	270,000	
330	18,000	1.5 Meg.		270,000	
390	22,000	1.8 Meg .			
470	27,000	2.2 Meg .	1 V	ATT =	$\pm 10 \%$
560	33,000	3.3 Meg.		330	33,000
680	39,000	4.7 Meg .		470	39,000
820	47,000			680	120,000
1,000	56,000			,500	270,000
1,500	68,000			,300	470,000
				,900	820,000
$1 / 2$	ATT	- 5%		4,700 1	1. Meg.
10	2,700	300,000		,800 2	2.7 Meg.
13	3.900	390,000		,000 4	4.7 Meg.
16	4,700	470,000		2,000	

1 WATT $\pm 5 \%$			2 WATT $\pm 5 \%$		
OHMS	5 OHMS	OHMS	OHMS	OHMS	
22	1,500	360,000	10	5,600	
24	2,000	430,000	13	7,500	
43	2,200	470,000	39	10,000	
47	3,000	560,000	56	15,000	
62	-7,500	750,000	82	18,000	
100	15,000	1. Meg.	120	22,000	
130	30,000	2.2 Meg.	270	27,000	
150	62,000	3. Meg.	470	39,000	
200	75,000	5.6 Meg .	680	56,000	
330	100,000	12. Meg.	1,500	62,000	
680	150,000	15. Meg.	1,800	130,000	
820	240,000		2,700	180,000	
	240,000		4,300	1. Meg.	
2 WATT \pm		10%	1.2 Meg.	11. Meg.	
		1.6 Meg.	12. Meg.		
22	470		12,000	2.7 Meg.	13. Meg
47	680	56,000	3. Meg.	15. Meg.	
56	1,000	150,000	3.3 Meg .	16. Meg	
82	1,800	390,000	3.6 Meg .	18. Meg	
100	2,700	1.2 Meg.	4.7 Meg.	20. Meg	
120	3,900	1.5 Meg .	6.2 Meg.	22. Meg	
220	4,700	2.7 Meg .	6.8 Meg.		
330	5,600		7.5 Meg.		
390	6,800		8.2 Meg.		
			9.1 Meg .		
			10. Meg.		

PRICE SCHEDULE

| | | 100.499 | 500.499 | 1000 \& Upp |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Wottage | Tol. | Per Type Per Type | Per Type | |
| $1 / 2$ Walt | 10% | .04 | .037 | .035 |
| $1 / 2$ Watt | 5% | .08 | .075 | .07 |
| 1 Watt | 10% | .08 | .055 | .05 |
| 1 Wait | 5% | .12 | .11 | .10 |
| 2 Wait | 10% | .10 | .09 | .09 |
| 2 Watt | 5% | .24 | .22 | .20 |

LARGEST VARIETIES OF NEW SURPLUS AT LOWEST PRICES

- OIL CAPACITORS
 LARGE RECTANGULARS SMALL RECTANGULARS BATHTUBS; TUBULAR

- MICA SILVER G-1-2-3-4
ELRASM.
AMPTROLYTIC FP CANS

- AMPHENOL-CANNON

- AN-UG-UHF CONNECTORS
- LORD SHOCK MOUNTS
- BIRTCHER Tube CLAMPS
- JONES PLUGS-SOCKETS
- POWER RHEOSTATS
- SWITCHES $\begin{gathered}\text { TOGGLE, ROTARY } \\ \text { MICRO. PUSH-MOM. }\end{gathered}$
- POTENTIOMETERS 方 ij.
- OTHER WIRARBON POUND POTS
- MOSSMAN SWEVER

- AIRCRAFT	$\left.\begin{array}{c}\text { FNOISE } \\ \text { FILERS } \\ \hline\end{array}\right)$

- FUSEHOLDERS-MOUNTS
- INSTRUMENT KNOBS
- MANY OTHER ITEMS

HIGH POWER TRANS. MICA

full ratings and prices upon request. Specify your needs.

A. MOGULL CO.
 50 West Broadway N. Y. 7, N. Y.

Phone: WORTH 4-0865
"PREMIER" Prime Source for

- MANUFACTURERS
- JOBBERS and
- EXPORTERS TUBES
Receiving, Special Purpose and Picture Tubes

All Types - All Brands - Special Lots Critical tubes are always on hand and at the right prices . . . in quantity.

Electronic components of all descriptions are available including condensers, resistors, transformers, speakers, coils, wire, antennas, I.F.'s, etc., and television picture tubes, television chassis and television cabinets.

Look at these terrific

COE	$\square 1$
1B3GT 57	6S4 41
1L4 50	6S8GT 63
1R5 48	6SD7GT 77
1S5 39	6SL7GT 53
1T4 49	6SN7GT 47
1U4 48	6T8 70
1U5 39	6V6GT 40
3A4 54	6W4GT 40
3Q4 54	6X4 29
354 51	12AT6 32
3V4 52	12AT7 61
5U4G 36	12AU6 37
5Y3GT 25	12AU7 47
6AG5 46	12AV7 47
6AK5 86	12AX4GT .. . 54
6AL5 36	12AX7 53
6AQ5 41	12BA6 38
6AT6 32	12BE6 40
6AU6 37	12SN7GT .. . 47
6AV6 37	19 T 8 70
6AX4GT 54	25BQ6GT . . 77
6BA6 38	25L6GT 43
6BC5 46	35B5 41
6BD6 41	35C5 41
6BE6 \ldots. 40	35L6GT 45
6BG6G \ldots WH6 $\ldots . .1 .21$	35W4 26
6BH6 \ldots. 50	35Z5GT $\ldots . . .31$
6BQ6GT ${ }^{\text {. } 77}$	5085 41
6C4 32	50C5 41
6CB6 46	50L6GT 43
6CD6G ... 1.58	11723 34

We Will Be Pleased to Quote Special Prices for Large Quantity Purchases.
Write—Wire—Phone TODAY!

PREMEER
 RADIO TUBE DIVISION

Continental Corporation
Your Prime Source Since 1926
547 W. Randolph St. Chicago 6, III. ANdover 3-1590

suverus "buss"!

Drastic Price Reductions on TEST EQUIPMENT

TS-16/APN TS-33/APN TS—36/APN TS—47/APR TS-61/AP TS-69/AP TS-89/AP TS-92/AP TS-100/AP TS—105/TPM-1 TS-126/AP TS-131/AP TS-110/AP

TS-183/U
TS-184/AP
TS-204/AP
IE-I7
IE—19

-56

BC-376-H
BE-67
710A UHF
Sig. Gen
Model 83 CEC
Sig. Gen
TS—170/ARN

TS-34 SYNCHROSCOPE SPARE PARTS

- Power Transformer KS-9213
- Retard Coil KS-9214
- Input Tronsformer D-166638
- Network D-168435

SAVE ON TUBES

$\begin{aligned} & 715 A \\ & .656 \end{aligned}$	\$5.95	.829B	. 10.95
	79¢	. 832	8.50
	4 for 3.00	832A	9.50
.2AP1 9,50	813	8.49
. 829	. 8.95		

MISC. EQUIPMENT

Priced for QUICK Sale!
AN/PPN-1
AN/PPN-2
TA-2J-24
SCR-610 with brand new spare parts SCR-284
MAB Walkie Talkies
BC-949A Range Calibrators
BC-736-B Interference Reducers
BC-978A Target Transmitters
BC-1202A Coupling Heads
BC-1158A Target Transmitters
C33A/APS 15 Control Boxes
JB-87A Radar Junction Box and Cable Assembly
Wilcox Model 602A VHF Receiver

RA-34	METER
AC SUPPLY	FREQUENCY
for BC-191 Transmitter	3-Inch round - two separate dials; One
110 V. 60-cycle input; Output 1,000 V. @ 350 mils.	48 to 52 cycles and other dial, 58 to 62 collent condition.
\$235	Speciall $\$ 7.95$
R111/APR-5A	T116/APT-5A
RECEIVERS	TRANSMITTERS
WRITE FOR COMPLETE INFORMATION	WRITE FOR COMPLETE INFORMATION

ORDER DIRECT FROM THIS AD. Prompt shipment of all orders. Cash with order. Minimum order $\$ 3.00,35 \%$ deposit on all C. O.D. orders. Shipments by truck or RR
express collect. Galif. buyers please add state express collect Gaili. buyers ploase add state merchandise subject to prior sale.

ALVARADIO SUPPLY CO.

4665 Melrose Ave. Dept. E-10
Los Angeles 29,
Callfornia

GEAR ASSORTMENT

PANEL METERS

lab and PORTABLE STANDARDS TEST EQUIPMENT AND SHUNTS

- Weston - Simpson
- Sensitive Research, Etc.

Ledco stocks a complete line of precision portable and switchboard shunts as well as a variety of factory reconditioned lab test equipment of the General Radio, Leeds and Northrup, Rubicon and Weston caliber.
Ledco's new, modern, U. S. Air Force approved standard laboratory with its highly skilled personnel has complete facilities for designing, calibrating, scaling and repairing panel meters, lab standards and special test equipment to your most exacting requirements.
Stock panel meters converted and rescaled to your specifications.

Let Us Know Your Requirements
Send for brochure of facilities on your company letterhead.

LEDCO, INC.

380 Great Neck Road
Great Neck, L. I., N. Y.
Phones: Great Neck 2-0081, 0082

Arch St. Cor. Croskey Phila. 3, Pa. Telephone RIttenhouse 6-4927

FOR SALE!

39 UNITS BC957A RADAR INDICATOR UNUSED

COMMERCIAL SURPLUS SALES CO.
4101 Curtis Avenue, Baltimore 26, Maryland
Telephone Curtis 3300

SEARCHLIGHT SECTION

FOR ELECTRONIC COMPONENTS
We offer immediate delivery from our vast stock of more than 25,000 items-all standard make, carefully inspected and fully guaranteed. Our prices are below market.
Always Check Wells' Stock First!
Quotations and quantities available will be given immediately upon request.

A complete signal corps stock number listing of items in our stock. Write for listing No. SG-200. (For government agencies and contractors only.)
Manufacturers and distributors-write for Radio-Electronics Catalog No. H 501.
Write, Wire, Phone Your Requirements all phones: SEeley 8-4143

833 W. CHICAGO AVE., DEPT. SL,CHICAGO 22, ILl.

COLUMBIA ELEGTRONICS LTD.

of N. Hollywood and ARROW SALES, INC. of Chicago

PORTABLE RADAR
Model SQ . 12 cm . Used on small ships. Has PPI
indicator. Maximum ran

NEW HEADSETS \& HANDSETS $\xrightarrow{\mathrm{HS}-23} \mathrm{HS}$ $\mathrm{HS}-38$
$\mathrm{RS}-83$ RADAR

$\mathrm{APT}-1$
$\mathrm{APT}-2$
$\mathrm{APT}-3$
$\mathrm{MDP} / \mathrm{APS}^{2}$
$\mathrm{MD} / \mathrm{APS3}$ $\mathrm{RC}-214$
$\mathrm{RCO}-224$
$\mathrm{RC}-266$ $\mathrm{RC}-266$
$\mathrm{RT} 34 / \mathrm{APS}$
$\mathrm{T}-85 / \mathrm{APS}$

TEST EQUIPMENT
Complete Linel
DuMont 224-A Complilocecope
1-77 HIckok Tube Checker
1-708 FM Signal Generator
${ }_{\text {RPC }}$ Model 644 Multimeter
Ferris Milcrovolter Mod. 18-C
1-198 TS24A/ARR-2 $\{$ TS 150
${ }_{1 \mathrm{E}-36}^{\mathrm{BC}-1255}$

VHF FREQUENCY METER
Complete, crystar coutrolled, with $110 / 220$ VAC 60 cycle power supply. ${ }^{5}$ channels. Freq. range: gram, less crystals. NEW . . . Price on Request.

AN/ART-13 PARTS
Part
Barometric Switch
${ }_{565027}^{66416} \quad \begin{aligned} & \text { Barometric SWitch } \\ & 4-\text { Plle Ceramic, Varlable Ca }\end{aligned}$
${ }^{\text {K7 }} 76800443$ 6-Plie Ceramic, Variable Cap.
${ }_{-}^{564605} \quad \begin{gathered}\text { Centralab-Type 843-003 Cap. }\end{gathered}$
RA-38 RECTIFIER
High poltage power supply, Used with ground radar set. New.

FLUX METER

For measuring flux density between niagnet poles. Has two meters in series with a potentiometer and battery for power supply. Range: 500-4000 Gauss in 3 scales. Requires 1 battery which mounts in

DIRECTION FINDER KIT

Complete kit to make any recelver (freq. range: This kit consists of: MN-20 Lood. Loop-To-Re ceiver Transmission Line, MN-52 Loop Control with 360° azimuth dial and shaft. New. $\$ 17.50$

RECEIVERS-TRANSMITTERS

APR-4	ID-6/APN-4	R89
APR-5	MP-10G	RTA/1B
ARC-1	PE-125AX	SCR-522
ARC-3	R-9/APN-4	TA2J-24
R-4/ARR-2	$340-580$ MC. New	733-D
	complete	

RA-52 RECTIFIER

Transtat controlled to produce high voltage DC
from 110 V.IC 60 cycle source. UD to 11.500 VDC from 110 V.AC 60 cycle source. UD to 11.500 VDC
(a) 50 W. Metered high voltage $(0-13 \mathrm{KV})$ and
current ($0-20$ MA). NEW.

MISCELLANEOUS

MINE OETECTOR: SCR-625 for prospecting, minLig, etc. Loops: Mod. Li............................. $\$ 59.50$ - NOTE: WE HAVE ONE OF THE LOARGEST. - TARY ELECTRONICS IN THE U, S. CALI - Catalogue

ARROW SALES, INC.
7460 VARNA AVE.
N. HOLLYWOOD, CALIF.

SUnset $\begin{aligned} & \text { 3-7319 } \\ & \text { Cable address: ARROWSALES }\end{aligned} \quad$ STanley 7.6005
(See Arrow Sales Inc. od Page 382)

ATTENTION bUYERS OF ELECTRONIC EQUIPMENT
Here is Your One Complete Dependable Source for All of Your Electronics Needs

	RECEIVING TUBES			
024	6AU6	6SC7	$7 F 7$	12SK7GT
1 U 4	6BA6	6SN7GT	7Y4	12SQ7GT
354	6BE6	6 T8	12 AT 7	25L6GT
5V4G	6CB6	6W4GT	$12 \mathrm{AV7}$	35W4
6AB4	68K7	7A4/XXL	12BA7	35Z5GT
6AC7	$6 \mathrm{F6}$	7A6	12BF6	50B5
6AH6	6.16	$7 \mathrm{B6}$	12H6	50L6GT
6AS7G	6L6G	766	12SH7	75
TRANSMITTING AND SPECIAL PURPOSE TUBES				
$3 \mathrm{CA5}$		304TH	832A	2051
5R4GY		723A/B	845	5829
GAN5		807	954	8020
100TH		813	957	9002
211		829B	658	9003

$$
\begin{aligned}
& 300 \text { OHM Lead } \\
& \$ 19.00 \text { per } M \text { Feet }
\end{aligned}
$$

JK26 Jacks-394 ea. 500 MMFD Volt DCW TV High Voltage Condensers-36e ca.
Centralab TV1-501-One end threaded, other end plain stud.32
Centralab TV3-501 \quad One end threaded, other
end screw terminal.....32 $¢$
LET US KNOW ALL YOUR ELECTRONIC NEEDS
Write - Wire - Phone For Prices Pectromix \rightarrow xpediters Dept. EEf 225 N. Wabash Cable Address "ELEXPED'́TE" " TWX CG1510

SELENIUM RECTIFIERS FULL-WAVE BRIDGE TYPES				
$\begin{aligned} & \text { Current } \\ & \text { Con- } \\ & \text { tinuous } \end{aligned}$	$\begin{aligned} & 18 / 14 \\ & \text { Volts } \end{aligned}$	$\begin{aligned} & 36 / 28 \\ & \text { Volts } \end{aligned}$	$\begin{aligned} & 54 / 42 \\ & \text { Volts } \end{aligned}$	$\begin{aligned} & 130 / 100 \\ & \text { Volts } \end{aligned}$
, $\begin{array}{r}1 \\ 2 \\ 2 \\ \text { Amp. } \\ 2\end{array}$	\$2.20	$\$ 2.10$ 3.60	\$6.50	58.95 10.50
				13.00
${ }_{5}{ }^{\text {a }}$ Amps.	3.75 5.00	6.75 8.00	8.75 13.00	32.00
5 Amps,	5.95	9.95	13.00 16.50	32.00 36.50
10 Amps.	6.75	12.00	20.00	45.00
12 Amps.	8.50	16.00	25.50	52.50
20 Amps.	13.25	24.00	36.00	90.00
	16.00 18.50	31.00	39.50	98.00
30 Amps.	18.50	36.00		
	25.50	45.00		
We manufacture standard as well as special types of selenium rectiffers, rect. supplios and XFMRS. Low prices. . Write. You will like our quick service, jow prices. and good workmanship.				
- New, Selenium Rectifier Transformers				
PRI: 115 V., 60 cycles In .) 4 Amps..... \$8.75				
Sec: 9, 12, 18, 24, and 36			Amps	-16.75
volts		,	Amps	. 35.75
- 115 V . PRI.-36V, 50 amp second XFMR. $\$ 39.95$				
- 115V.PRI.-5V.@190 Amp. SEC......... \$59.95				
$115 / 230$ V. 60 cy . PRI. SEC.: 1.5, 30.5, 33.5, and 36.5 V @ 4 AMPS. Herm. Sealed. \qquad \$6.50				
PROBLEMS ON TRANSFORMERS AND CHOKES? LET US QUOTE YOU ON YOUR SHORT RUN NEEDS. YOU WILL LIKE OUR PRICES, PRODUCTS, AND FAST ACTION!				

- LM-13 Mod. Freq. Meter W/............... $\$ 150.00$ Power Supply. $\$ 199.00$ - PBE SEE BACK ISSUES FOR

 \% Deposit with or Terms: $\mathrm{FOB}-\mathrm{NYC-25} \mathrm{\%}$ Deposit with order—or
send full remittance to save COD charges-Rated Firms (D.\&B.) Net 10 days - All merchandise guaranteed.

136 LIBERTY STREET NEW YORK 6, N. Y. Cable: Barrylect, N. Y.

WIRE-CAIBLE

PA MTS

CORDAGE

CO-122 3 conductor each \#22 AWG neoprene CO-127 single \#14 AWG braided and tinned copper braid shield

MULTI-CONDUCTOR
2 conductor AWG 127 conductor AWG 16 7 conductor AWG 1419 conductor AWG 16 14 conductor AWG $16 \quad 6$ conductor AWG 20 AWG 20 shelded 12 conductor AWG 16 2 conductor AWG 18

2 conductor shielded AWG 10
ARMOUR
SINGLE CONDUCTOR AWG
shielded cable with terminal lug each end 100^{\prime} and 150^{\prime} lengths

WIRE
AWG 18 copperweld
AWG 29 tinned copper
Resistance wire AWG 32
AWG 22 with nyIon core plastic insulation
LINEAR WIRE WOUND

POTENTIOMETERS

SPECIALS
$30-86$ Crystal in Holder $\$ 2.50$
Balloon with Hydrogen Generator $\$ 2.50$
300 Feet Aerial Wire $\$ 2.00$
Box Kite $17^{\prime \prime} \times 17^{\prime \prime} \times 36^{\prime \prime} \$ 2.25$

MICROWAVE TEST EQUIPMENT 10 CM echo box CABV 14ABA-1 of OBU-3, requency range 2890 MC - 3170 MCS . Direct reading micrometer head. Ring rediction scale plus 9% to minus 9% Ype With accescories, spares and 10 CM directional coupler. Brand New

TUBES

	\$0.55	803		CEQ-72...	15
${ }_{3 \times 24}^{2 \times 2 / 979 \ldots}$	${ }^{1.60}$	886	. 95	P-72	15
	1.75	931 A	4.45	E1148	35
${ }^{7 C 1 / 1203 A}$. 75	955	. 40	HY 615	. 15
15 R	. 75	${ }^{957}$. 50	${ }_{\text {HK. }}$	1.15
Special	. 45	CK100\%	. 90	513	4.95
$39 / 44 \ldots$. 30	1626.	40	5 FP 7	. 95
45 Special.	. 35	1029	. 35	1 J 6 G	70
W E 203A.	8.00	2051	1.50	IB3GT	89
${ }^{31} \mathrm{~W}$ L-53	5.50	${ }_{8011} 71$.	1.50		5
713 A	. 95	9006	${ }^{4} .40$	6K6G	
1 A	. 40	C5	8.50	1246	

HI VOLTAGE FILTER CHOKES
. 4 HY 4.5 Amp DC 3 ohms 1230 RMS to ground. New
25 HY 4 Amp .5 ohm 20,000 Test. New.
I HY 3.2 Amp DC 3.5 ohm GE69G459.
New $1.7-3$ HY 2 Amp DC 34,000 VDC GE Y346A.
1.7-3 HY 2 Amp DC 34,000 VDC GE Y346A.
New.

SPECIAL
Bodine NSHG-12 Motor. Constant Speed. 27 VDC governor controlled 3600 RPM I/30 HP 5 Amp. Brand New, S13.95.

10 CM ROTATING ANTENNA
24", Parabola in turret 360° span at 12 RPM
DE, motor control and reversing switch New

TIME DELAY SWITCHES

1 Minute 115 VAC 60 cyclo Enc. in Water proof Metal Case New $\$ 5.23$
Micro Switches Contact at 40-41-42 Second Time Delay 110 VAC Motor New $\$ 4.50$ Thermo Switch 50° to $300^{\circ} \mathrm{F} 115$ VAC @ 6A Breaks Contact
Breaks Contact with Increase in Tempera
CONTACTORS
DPST 115 VAC 60 cycle 15 Amp De-Ion Line Starter Westingho ase $\$ 6.95$
DPST 115 VAC "AB" $\# 700$ S5.9

RELAYS

12 VDC DPST Allied Control Box 32....S1.25 4 VDC DPDT Allied Control BJ6D36 $\$ 1.45$ 24 VDC 3PDT 8 Amp...................... 1.50
10 VAC DPST 1 Amp Contacts Struthers
 115 VAC DPST Struthers Dunn CXA 2997 \$3.65 220 VDC DPDT Struthers Dunn CK 2122..54.50 230 V 50 cycle DPDT G.E. 12HGAllA2.. 54.00
ROLLER INDUCTANCE COIL 0-75 MH WITH VERNIER ADJUSTNENT Coil is wound on ceramic form $31 / 8$," long. Three position switch for vernier operation New-Meissner-C-625

METERS
Portable 0-25 Amps AC Weston \#433 Brand New $\$ 37.50$
Switch Board Panel 0.100 Amps DC Weston \#269 with 100 Amp Shunt Brand New S24.95

EQUIPMENT
Walkie-Talkies $2.3-4.6 \mathrm{MC}$
MN-26Y Bendix Compass Receiver
BC-733 Glide Path Receiver
DAB-3-Direction Finder
RDF Receiver Equipment 200-550 KC Fixed Tuned

SWITCHES - bathtub - OIL f lled - mica condensers - potentiometers. send for catalog

COMET ELECTRONIC SALES CO. सH:
 22 Washington St.
 Tel. BEacon 2-7863
 Brighton 35, Mass.
 Boston. Mass. Send M.O. or cheek. Shipping eharges sent C.O.D. 25%. nosit reguired withzall C.O.D. orders.

TIME DELAY
RELAY 115 y 60cy adjustable 6 sec. to 2 minutes
Cramer TD2.12eS. Also TDGOS 6 to 60 sec. $\$ 1$
 SYNCHROMOTOR MOR
FIL XFRMR

 CONDENSERS: BATHTUB, MICA, AIR, OIL, HV CER.

EMPIRE ELECTRONICS COMPANY
CLoverdale 2.241

MINIATURE AIRCRAFT TYPE-4 Pole D.T.
$11 / 2^{\prime \prime}$ overatacts. 280 ohm coll. 24 V.D.C. $\$ 2.95$
RADIO DEVELOPMENT \& SALES CO. 323 Atlantic Ave. Brooklyn 2, N. Y. ULster 5.0488

FOR EMERGENCY ELECTRONIC TUBES CONTACT
T. R. LOWENTHAL CO. electronic components Technical Radio Since 1919 1205 West Sherwin Ave. Chicago 26, III Phone: Rogers Park 4-0784

AMNTA													
ONOUR ENTIRE													
OA2. ${ }^{\text {O }}$, 89	2C43..... 14.95	4J42/7ça A	17.50	5D21	24.00	331 A	6.95	707A	7.95	715 C	22.50	1608.	3.95
OA3/VR75 1.04	2C44....... 75	5AP1	3.49	FEL5	$45 . C 0$	35 CB	3.95	708A	3.75	8298	12.95	1616.	. 69
$\mathrm{CB2}^{\text {Crice }} 1 . \mathrm{C5}$	$2 J 22 \cdots \cdots \quad 7.50$	5C30, 556.	3.75 3	FC81A	3.45	$353 A$	3.95 14.95	710A 8011	. 75	830 B	2.75	1619.	. 35
CB3/VRSO CC3			3.95 3.75	V190.	75.75	357A	14.95 .89	714AA	.92 4.95	${ }_{8431} 84$.	. 39	1625.	. 45
CD3/VR150 85	2J39....... 19.50	C6A	5.75	HY114B	. 65	388 A	1.29	715 A .	4.95	846	49.95	1629	30
1B22...... 2.09	$2540 \ldots . . .29 .50$	6AK5	. 85	VT127	1.75	394A	4.75	715B	6.95	851	39.50	1636	2.95
1826...... 225	$2161 \ldots . .239 .50$	¢K7G	. 45	205B	1.49	417A	14.95	717A	98	860	6.50	1642.	
1B27...... 14.50	$2 \mathrm{~J} 22 \ldots . . .29 .95$	7EP5	14.95	211	. 65	4501H	37.50	7¢1A	1.75	861	21.50	1851.	1.69
1829..... 2.45	$2 V^{2} \mathrm{~F} \ldots .$. . 75	7C4	. 35	211	1.75	530	16.95	722A	1.89	864	. 75	2051	. 95
1836...... 7.50	$2 \times 2 \ldots \ldots$.	7 E 5	. 39	217	6.95	531	6.75	723AB	19.95	865	1.25	7193	30
$185624 .50$	3B7/1291.. ${ }^{30}$	$10 y$. 39	2501 H	18.95	533	45.C0	724 B	2.49	86t A	1.35 3	8011.	. 75
EL1C...... 2.49 1D8GT... .59	$\begin{array}{ll}\text { 3B22..... } & 2.49 \\ 3 \text { 3 } 24 . \ldots . . & 1.49\end{array}$	$\begin{aligned} & 12 \mathrm{AB} \\ & 24 \mathrm{G} . \end{aligned}$.49 1.49	${ }_{257 B}^{25 C 1}$	16.95 9.95	55931 $H Y 61$	$\begin{array}{r}2.25 \\ \hline 15\end{array}$	725A	6.75 1.75	${ }_{874}^{872 A}$ GE.	3.95 .69	${ }_{8013} 8012$	2.75 2.25
1L4....... . 59	3C28..... 4.95	FK34	. 39	285A	4.95	7CCA	17.50	801 A	. 25	876	. 59	8021.	1.95
1R4/1294.. 69	3CP1/S1... 1.49	45 Special..	29	28t A	6.95	701A	4.95	803	3.25	879	. 49	8025	5.45
${ }^{1 T 4} \ldots$	$3 \mathrm{CP1} \ldots . .3 .95$	FC17....	4.50	3041 H	7.50 8	702A	2.49	805	3.69	931 A	4.25	9001	1.25
2C21/1642 . 44	3D6/1299. ${ }^{35}$	CRP72	1.60	3041 L	8.75	703A	4.75	807	1.59	954	. 35	9002	. 95
${ }^{2} \mathrm{C} 22 / 7193$. 29	${ }^{3 \mathrm{D} 23 \ldots \ldots .} 4.75$	KK72.	$1 . \mathrm{Co}$	307A	3.50	764A	.89 .85		1.75		. 45	9003	1.65
2C26A. 2C		CRP73 RK73.	1.1 .0	$316 A$ $388 A$	7.49	7C6AY-DY	1.95 39.50	$\begin{aligned} & 812 \\ & 813 \end{aligned}$	3.25 9.95	$\begin{aligned} & 957 . \\ & \text { E1148. } \end{aligned}$. 45	9004	.35 1.45
$2 \mathrm{C40} \ldots . . \mathrm{C} .49$	4B28....... 2.95	RK75.	3.50	329A	7.25	TCEEY-Gy	¢9.95	814	2.69	CK1005.'.	. 65	9006	. 25

MARITIME INTERNATIONAL COMPANY

11 State Street, New York 4, N. Y.

- TELEMARINE -

We believe that we have the largest and finest stock of Surplus End-Equipment in the country, This material is in our warehouses, available for immediate delivery. Listing below indi-
cates material in quantity, mostly NEW or cates material in quantity, mostly NEW or
excellent-condition equipment. Hundreds of excelfent-condition equipment. Hundreds of
other units, not listed, also available. All other units, not listed, also available. All
Material Guaranteed and Checked Out Before Shipment.
AM-2/FRC Ampllfer
AN- 101 (SCR-584) Antenna
AN.AMQ-1 Radiosonde Trans.
AN-FMQ- 1 Radiosonde Rerr, et
AS 69/APT
ASB-5 Aircraft Radar
AT:49/APR-4 1 irewaft Radar Intenna
ATD Aircraft frans
Eilw. Nomed system
C-221 Frect.
BC-224 lerr.
BC-443 leces, er
BC-611 Handy-Talky
BC-620 FM Trans-Re
$\mathrm{BC}-620$ FM Trans-Ric
$\mathrm{BC}-654$ Trans-llevr.
BC-659 FM Trans-Hevr.
BC-689 Transmitter
BC-701A Receiver
BC-733A Receiver
BC 745 Trans-Rcvr.
BC-969. II
Leceiver
BC-974-T2 Receiver
BC-797A VHF Trans.
BC-793B DF Revr., w/lood
BC-1062A Range Unit
BC-1068A VHF Ver
BC-1149A Transmitter
BC-1236A Sig. Generator
BD. 72 Switchbord
CRV-60028 Freq. Moter
CTZ-66AFJ Ant. Assembly
CW-60013 Test Oscillator
DM-28 Dynamotor
DM-32 Dynamoto
DZ-2 Aircraft DF , is to 1750 Kt : excellent for
FT-I54H Mounting
FT-349 Mounting
FTE
GE-BF-1A 1 K N FM RF Amplifier
GE-BF-2A
GE-BF-3A 10 KW FM RF Ampliter
GO-9 Transmitter
HLAS 500W. Sound System
1-148A Test Set
-222A Sig. Generator
JEFF. TRAVIS
JEFF. TRAVIS 18W, Radiotelephone
KY-3/APN 7 Coding
LINK 1498 VIF Trans-Revr
LRN-IA Loran EqDt.
MACKAY 1048 Recelver
MACKAY 136A TTansmitt
MACKAY 149A Transmitter
MACKAY 150AY Transmitter
MACKAY I5IAY Transmitter
M-1 Radio Range Training Equt.
MP-22A Mast Base Insu
NAA Underwater Beacon Eqpt.
QBG Driver-Rer.
QBE Underwater Sonic
QBF Resr. \& Driver Osc
R-8/ARN-8 Receiver
RBM Receiver
RBS Recelver
RC-163 Beacon Eqpt.
RMCA Remote Control Unit
RMCA 8010 Eragcy Transmitter
RMCA 8021 25W. Radiotelephone
RMCA $4 U$ Ship Equipment
RT-3/ARN-1 Altimeter EgDt
RT-21/APN-7 Radar
SB-14GY Console Switchboard
SB-23/GTA Power Supply above
SCR-206 DF Intercept Eat
SCR-206 DF Intercept EqDt.
SCR-2II Freq. Meter
SCR-284 Trans-Rcrr Eq
SCR-508/528 FMM Trans-Rerr Eqpt.
SCR-509/510 FM Trans-Rcrr Eqpt.
SCR-608/628 FM Trans-Rcy
SCR-608/628 FM Trans-Revt EqDt.
SCR-624 VHF Trans-Rert Eqpt.
TBK Ship Transmitter
TCO 25W. Radiotelephone
TOE Shis-Rcrr EqDt.
TDQ VHF Transmitter
TE-54 \& 55 Cable Vulcanizer EQDt
TS-143/CPM-1 Synchroscope
TS-48AP Echo Box
TU. 5638 to 95 mc Tuning Unit
TU. 57300 to $1,000 \mathrm{me}$ Tuning Unit
T.4/FRC Transmitter
T. 34 APQ- 2 Radar Jammer
T.42/UPT-TI Transmitter

WILCOX 96.200 A 2 KW RF Tinit
WILCOX $36 A$ Rectifler for Above
WiLCOX 50 A Modulator for Abor
WILCOX 50A Modulator for Abore
YJ- 1 FF EqDt.
2B-3 Aircraft Homing Adaster
WLL MATERIALTE SUBJECT TO PRIOR SALE
_ TELEMARINE ——
COMMUNICATIONS COMPANY
540 West 27 th Street, New York 1, N. Y.

Will drive anythin:
Can be used for door opener, win-
dow raiser, model kir turntable. $\$ 10.95$ dow raiser, model RIR tur
Complete with transformer.

10 for $\$ 95.00$

MARKTIME

 5 HOUR SWITCH A 10 amp. thining derlce. Pointer moves back to zeroafter time elapses. Ideal for after time elapses. Ideal for sets when you go to bed. Limited supply at this spe
cial PIICE....... $\$ 4.90$ Also avallable in $15 \mathrm{~min} ., 30 \mathrm{~min} ., 1 \mathrm{hr}$. at $\$ 5.90$ A similar tinner to the above but less calibration and Mxer, Cookers, Time Delay, etc. Biggest Bargain Ve Ever Had
Veeder-Root Counter, Rotary
Guardlan, No. $4,115^{\circ}$ V. A.C. Solenoid
LATION TRANSORMER $\$ 1.95$

ISOLATION TRANSFORMER $\$ 1.95$ Nat. known Mfgrs. 50 watt 2 windings. 115 V. to
115 V . 60 cy. Ideal to prevent shocks from small

$39^{\text {c }}$ EACH
 ANTENNA ROTATOR ar DOOR OPENER

s7.50
Geared down 24v. universal motor with
.4 for $\$ 1.00$
Lamps............
100 for $\$ 20.00$
Mossman Lever Switch \$1.50 10 Amp. Heary Duty
Sllver Contacts. Sllver Cont oct ons.
Contacts can easily be restacked. Now can be changed by user to STAY either side. Removed from unused Government Surplus
Equipment.

ALL PRICES F.O.B. N. Y.
\ldots
64 Dey St. New York 7, N. Y.

Portable Instruments

Molded Bakelite cose $7^{\prime \prime} \times 41 / 2^{\prime \prime} \times 3^{\prime \prime}$
D.C. MICROAMMETERS
5..10.. 50 microamperes THERMOCOUPLE MILLIAMMETERS

1, 5..5., 10 milliamperes
THERMOCOUPLE VOLTMETERS
5 to 500 volts
Available in multiple range combinations
Precision Electrical Instrument Co.
146 Grand Street New York 13, N. Y.

EMPLOYMENT
(Continued from page 361)

ENGINEERS

 interested in COLOR'SKEVISINN

Sylvania is leading the field in its development of an all-electronic compatible color television receiver. Your imagination and engineering talent can be used in furthering this development. Here is your chance to get real professional recognition.

Sylvania, a sound, well established firm, is still expanding, still reaching out for new ideas. If you are interested in challenging assignments and definite opportunity for personal growth.
Investigate NOW!
All replies will be held in strict confidence. Send your personal resume' to

> William B. Seiniger Supervisor of Employment

Sylvania Electric Products, Inc. Radio \& Television Division 254 Rano Street
Buffalo 7,
New York

To EMPLOYERS

Who Advertise

for MEN:

Frequently, when there are many applicants for a position, only the most promising letters are acknowledged. The other applicants never know whether their letters reached a prospective employer or not. These men often become discouraged, will not respond to future advertisements and even question their bona fide character.

Every Advertisement Printed in the Searchlight Section Is Duly Authorixed.

You can help keep our readers interested and get better returns to your advertising in this section if you acknowledge each reply-in plain envelopes, if you wish.

Classified Advertising Division
McGRaw hill publishing co., inc.
"Put Yourself in his place."

QUARTZ CRYSTALS
 NEW LISTING

Made from the finest Brazilian Quartz．Will provide a high degree of activity and frequency stability．All tested and marked by the manufacturer to a very close tolerance．In the frequencies outlined below the crystals itemized under the heading＂From \＆To＂are mostly in progressive frequencies between the limits shown （as for example：＂From 3300 to 3377 ，＂are as follows： $3300 \mathrm{KC}, 3301 \mathrm{KC}, 3302 \mathrm{KC}$－， 3377 KC ．）are of limited quantities in each frequency．Those listed singly are in quantities of 50 or more．

	Prong	FT lers $1 / 2^{\prime}$ 1.15 ea	3	$3 / 32^{\prime \prime}$ $5.00)$		CR 1A／AR or FT241 Prong spacing $1 / 2^{\prime \prime}$ ，Prong dia $1 / 8^{\prime \prime}$ Price $79 ¢$ ea． 12 for $\$ 9.00$				XL5 Dual 3 prongs $1 / 2^{\prime \prime} X$ 1 19／32＂prong dia．	
	$\begin{aligned} & 190 \\ & 1909 \end{aligned}$	FROM	6173.3	（trom	то					Price	5 ea．
	2155	¢ 6250		${ }_{8100}^{8075}$			4374	7760 7770 778			
	2390 2490		6292 6375 6×89		8275 8375	䢕 48888	5090	年775			
				8385 8800 800	8475	¢		7780 7790			
		${ }^{65706} \mathbf{6 7 0 6}$	¢675	\％${ }^{8500}$	－	（	${ }_{5295}$	77800 7800 780			
（2940				${ }^{87888.25}$			5396	${ }_{7830}^{7825}$			
－ 315	3689	¢930	6975	¢ 3878				7850 7851 7	7880		
	（3793		${ }_{7375}^{7281}$	cist	${ }_{93949} 9$		5780			XL5	ingle
	（1150			93325	9399	5810		${ }^{7930}$		3 pron	
4300 4305		\％ 7500	${ }_{7673.3}$	${ }_{9} 9568$	${ }_{95659}^{9685}$		${ }_{5080}^{5080}$	79850 7970 7970		1 19／3	prong
41006		7655		－		6011 6203 6203	${ }_{6198} 685$	${ }^{7975}$			
4735	47998	${ }_{7}^{7675}$			（127838	cickio	6375	88000			
4913	－ 5949	${ }^{77725}$ ． 8		133002	${ }_{13009}^{12989}$		6499	（8002	8010	Price	35 ea．
5100	${ }_{5195}$	$\xrightarrow{7750}$		13010 $\substack{13100}$ 1000	${ }^{133909}$			¢			
¢ 5306	5397.5	${ }_{7775}^{775}$		13308 13302 1302	ciske		6685		8092 8298		$\underset{\substack{2210 \\ 2384}}{ }$
年5630		¢ 77716	7784			${ }_{\text {G615 }}$	6877			2410	2456
${ }^{5659} 5$		7825 7885 7		1335686 13702		${ }_{\substack{7730 \\ 7310}}$		¢	\％	2360 $\substack{260 \\ 2704}$	${ }^{2698}$
5700		－ 78975			－			¢	1		${ }_{2811}^{2787}$
	（ 58.85	（7905		cile		${ }_{7}^{74500}$		${ }_{\text {cke }}^{85065}$		${ }^{23115}$	3171
（600\％	${ }_{6075}$	（7935		${ }^{1414210}$	${ }_{14391}^{141985}$	7560 7860 8020			3650		3371
${ }_{6178}$		88080				${ }_{7625}^{7620}$		11677		${ }_{3}^{3435}$	

EDLIE ELECTRONICS，Inc．

FT241A
SPECIAL TYPE WE Prong spacing 1＂CTS． Prong Size 3／32＂dia．
These are in successive steps of .1 MC variation from 20.0 MC to 38MC．
Suitable for low frequency purposes （1／72 of Stated Values）

Price $\$ 1.15$ ea．

UNASSEMBLED CRYSTALS
consists of quartz crystal plates made for FT243 holders．Furnished complete with holders，electrodes， springs and all hardware． Price .29 ea．
Crystal piates available in the fol－ lowing frequencies：－

154 Greenwich Street， New York，N．Y． Telephone DIgby 9－3143

LOOKING FOR HARD－TO－FIND EQUIPMENT

SWEET DEALS

from α
SWEET OUTFIT
Here is just a partial list of What we have to offer：
－BC－348＇s－BC－342＇s • ART－13＇s
－ARC－1＇s－ARC＇s－LM＇s
－SCR－522＇s－BC－221－BC－611
－VARIOUS TEST EQUIPMENT

We＇ll Pay
 SWEET PRICES

for your
RADIO \＆AIRCRAFT

EQUIPMENT

We want to buy parts or equipment－and we＇ll pay top doliar to get it．Just send us
the complete dope on what you have，the type the complete dope on what you have，the type and condition of your equipment－and your asking price．You＇ll get fast，profitable ac－
thon．It＇s just Hike taking＂Candee＂from a baby 1 Write today！

CANDEE－AIRCO

Dept．E－4 3306 Burbank Blvd． Burbank，California
CHARLESTON 0－1486 ROCKWELL 9－1070

TUBE REBUILDING

Large Transmitting and Power types
Economical－Guaranteod FREELAND PRODUCTS CO．
700 DRYADES ST．，N．O．，LA．

GLASS TUBING
PYREX－NONEX－URANIUM
BULBS \＆CYLINDERS
WRITE FOR FREE MONTHLY LIST
HOUDE SUPPLY COMPANY
PHONE KEYPORT 7－I286
M．R．\＃1 Box 86X

Shall gearhead motors

LEAR-(Left flg.) Stock \#GHM-L6. 24 VDC, 5.5 amperes, series wound, reversíble. Motor turns
9000 RP M driving a 1500 to 1 gear reduction hox which turns flnal take-ofp shaft at 6 RPM. Has
 LEAR-(Right flg.) Stock \#GHMT-L11C. 24 VDC, overload clutch. Motor turns 11,000 RPM driving through a 10 to 1 gear reduction box which turns the final take-off shaft 1100 RISM. Unit has ad-
justable hmit switches to control limit of travel. justable hmi switches to control limit of trace.
Take-oti shaft is addaptable to flexille or rigid drives.
Size $41 / 2 \times 5 \times \mathrm{m}^{\prime \prime}$. Wt. $41 / 2 \mathrm{bs}$. Price NEW. $\$ 8.50$

3,750 WATT RECTIFIER TUBE
Continental Electric Co.-Type CE202. Half-wave mercury rapor. Rated up to 250 VDC at 15 anip.
Filament 2.5 volt- 20 amps. Mosul base. $\left.\begin{array}{l}\text { Price }\end{array}\right) .99 .95$

MAGNETRON TUBE

RAYTHEON-No. 2J56. Price NEW......... $\$ 29.50$

INDUCTION VOLTAGE

 REGULATORGeneral Electric Spec. \#3263300-
Single phase 60 cycle. IMmary volt ages $(0-460 \mathrm{~V})$ applied to regulator can be varied smoothly and infinitely
78.6% abore and below their values 78.6% abore and below thelr values
by remote control. Operated by 115 Itype KCP control motor. Con tinuous ratings for typical innyuts
are: 120 VOLT output 28 to 214 at 1.85 amp . 240 VOLT -output 52 to 428 V at $1.63 \mathrm{amp} ., 460 \mathrm{VOLT}$-output 98 to 822 List over $\$ 300.00$. Price NEW $\$ 29.50$

ELAPSED TIME METER AERO INSTRRUMENT CO.-Model 1001. Records operating time of
AC electrical and electronic equipAC electrical and electronic equip-
ment. Registers up to $9,909.9$ ment. Registers up to 9, gis.
hours in $1 / 10$ hour steps. then automatically resets. $1 / 10$ tins shown in red numerals, others in black. TXcentipment, maintenance schenures, machite overnit measures $31 / 2^{\prime \prime}$ in diameter and has glass covered face. 120 VAC 60 cycle. Price NEW........ $\$ 8.50$

SPECIALS

AMPLIDYNE MOTOR GENERATOR. EmPrson Electric. \#5AM31NJ18A. Input 27 Wits- 84 amps. Output 60 VDC- 8.8 amps. 530 watts, 8.800
RPM.
$6 \times 8 \times 12^{n}$. Wt. 34 liss. Price NEW... $\$ 7.95$

WHITE-ROGER SERVO MOTORS 24 VDC Torque 150 in.ibs. Reversible. Control box on top (to block AC out of motor). $5 \times 5 \times 4^{\prime \prime}$. Can be shd plied in Models $6904-5 \mathrm{RPM}$. $6904-31 / 2$ RPM or
$6905-21 / 2$ RPM. Price each NEW....... $\$ 8.95$

PROMPT DELIVERY ON ALL ORDERS ALL MERCHANDISE FULLY GUARANTEED Terms: Prices FOB St. Louis. Cash or 25% with orders. Balance COD. Rated Concerns (D\&B) Net 10 days cash. Prices subject to change without notice

McNEAL ELECTRIC \& EQUIPMENT CO.
4736 Olive St.
St. Louis 8, Mo.

AUGUST SPECIALS
New Material TOGGLE \& MICRO SWS. - RELAYS RHEOSTATS - CIL CONDENSERS
Aircraft type-20A@24VDC-10A @125VAC-C-H CHF Govt. Spec. SPST On-Oft $\begin{array}{ll}8201 \mathrm{~K} 4 & \mathrm{~B}-5 \mathrm{~A} \\ 8211 \mathrm{~K} 5 & \mathrm{~B}-6 \mathrm{~B}\end{array}$

SPST On-Of $\begin{array}{ll}8211 \mathrm{K5} & \mathrm{~B}-6 \mathrm{~B} \\ 8208 \mathrm{~K} 4 & \mathrm{~B}-7 \mathrm{~A}\end{array}$
$8208 \mathrm{~K} 5 \mathrm{~B}-1 \mathrm{~A}$ SPST Off-Mom. On

8200 K 8 B-1 SPST On-Off-Mom. On 200 K 8 AN3022-1B SPDT On-Off-On lush Mounted-Luminous Tip-Bat. Handle-rice- $\$.22$ ea; $\$ 20 / 100 ; \$ 170 / 1000$.

OTHER AIRCRAFT TYPES

Ch\# Circuit Cur. @ 125VAC Price 8871K-1 SPST 15A Push but.- On \quad On-Mom. Of $\$.59$ P.T $8905 \mathrm{~K}-514$ SP-4Pos. 35A @. 24VDC On-Off-Mom. $8905 \mathrm{~K}-526$ SPST $\quad 5 \mathrm{~A} \underset{\text { B-SA-11/"" Bat. }}{\text { Handle }}$. $8905 \mathrm{~K}-722$ 3PST \quad| Handle |
| :--- |
| Off-Mom. On |
| $.32 \mathrm{~L} . \mathrm{T}$ |
| 19 L | 8911 K-524 DPST 15A Push But.-Off$8202 \mathrm{~K}-7$ SPST 10 A 2 Gang B-5A $\quad .32 \mathrm{~L} . \mathrm{T}$.

10% Dis. in quas. of 100 or more per Type.

TOGGLE SWITCHES

$\begin{array}{cccccc}\text { CHF } & \text { Circuit } & \text { Price } & \text { AH \& } \& & \text { Circuit } & \text { Price } \\ 8800 \mathrm{~K} 4 & \text { SPDT } & \$.60 & 6 \mathrm{~A}, 125 \mathrm{~V} & \text { DPST } & \$.42\end{array}$ | 8800 K 4 | SPDT | $\$.60$ | $6 \mathrm{~A}, 125 \mathrm{~V}$ | DPST | $\$.42$ |
| :--- | :--- | ---: | :--- | :--- | :--- |
| 8824 K 4 | DPDT | .75 | $6 \mathrm{~A}, 125 \mathrm{~V}$ | DPDT | .50 |

8894 K-1 SP-4 Pos. Cir. Breaker \#110003-

> Auto Un-unDecr. RPM Mom. OI Incr. RPM Mom. On Plain Tip Bat Handle $\$ 1.75$
PLM60 Klixon Cir. Breaker-Man. Reset-60 Amps. $\$.98$ Ant. Change-over Knife Sw. $\# 962$ Sq. D. SPDT $32 \mathrm{~K} 9503-20$.
$\$.95$

MICRO S		SWITCHES		Price
Number	Actuator	Circuit	Term.	
WLR-31	Pin	SPST-N.C.	Screw	49
WZR-31-M	MC2711			
	Plunge	SPST-N.C.	Screw	-
WZ-RS13	Plunger	SPST-N.C.	Serew	. 79
W $2 R-31$	H03-RE11	SPST-N.C.	Screw	1.9
WZ-2YST	Plunger	SPST N.O.	Screw	. 89
W2R041	Plunger	SPST N.C.	Screw	. 8
YZR-31 T-	Actuator-LH	SPST N.O.	Screw	79
Y27RDTC	Plunger	SPST N.O.	Solder	. 6
Y 23 RDT	Plunger	SPST N.O.	Screw	. 69
YP3	Button	SPST N.O.	Solder	. 4
BZRL2	Roller	SPDT	Solder	. 9
BZ3RW2T	Roller	SPDT	Screw	1.05
MU-SW(15A	125V) Lever	DPST N.O.	Solder	1.05

RELAYS \& CONTRACTORS

Typer Volt Ohms Current Action Price $\begin{array}{llrrr}1027 & 12 & \text { Leach } & 67 & 8 \\ 1077 \text {-BFW } & 24 & \text { Leach } & 160 & 1 / 4 \text { Cont. } \\ & \text { DPDT } & 1.25 \\ & 1.50\end{array}$ $\begin{array}{llll}1220-\mathrm{DE} & 24 \text { Leach } & 95 & 20 \\ & & \text { DPST- } & \\ & & & \\ \text { Double Break } & 1.25\end{array}$
$\begin{array}{lllcc}1222-\mathrm{BF} & 24 \text { Leach } & 160 & \begin{array}{c}\text { 10 SPST- } \\ \text { Double Break }\end{array} & 1.25 \\ & & 1227-\mathrm{B} A \mathrm{~A} & 24 \text { Leach } & 140 \\ 25 & \text { SPST } & 1.25\end{array}$
$\begin{array}{llllll}1254 \mathrm{M} & 24 \text { Leach } & 160 & 10 & 2 \text {-SPST } & \\ & & & \text { N.O. } & 1.25\end{array}$
$\begin{array}{llll}7055 & 12 \text { Leach } & 100 & 50 \\ \text { SPST N.O.3.50 }\end{array}$
2791-B100-C3 24 GE 150 DPDT . 85
$\begin{array}{ll}2791-\mathrm{B} 100-\mathrm{G} 3 & 24 \mathrm{GE} \\ 9350-\mathrm{B} 7 \mathrm{~A} & 24 \mathrm{Sq.D} \quad 132 \\ \text { 3IST N.O. } \\ 250 \\ \text { SPST N.O. } 95\end{array}$
$\begin{array}{lllll}9350-\mathrm{B} 7 \mathrm{~A} & 24 \mathrm{Sq} . \mathrm{D} & 132 & 250 & \text { SPST N.O. } 4.75 \\ 6041-\mathrm{H} 81 \mathrm{~A} & 24 \mathrm{CH} & & 100 & \text { SPST N.O. } 2.95\end{array}$
$\begin{array}{llrlr}6046-\mathrm{H} 1 \mathrm{~A}-\mathrm{Cl} & 24 \mathrm{CH} & 50 & \text { DPDT } & 9.95 \\ 6046-\mathrm{H} 1 \mathrm{~B}-\mathrm{Cl} & 24 \mathrm{CH} & 50 & \text { DPDT } & 9.95 \\ 6046-\mathrm{H} 2 \mathrm{~B}-\mathrm{C} 2 & 24 \mathrm{CH} & 100 & \text { DPDT } & 11.95\end{array}$

9340-975
8.95

Latching Relay
OIL CONDENSERS

Mid.	Volts	Price	Mfd.	Volts	Price
.5	400 V	$\$.19$	4	600 V	1.10
1	500 V	.58	7	600 V	1.25
1	600 V	.40	8	600 V	1.50
1	25 KV	Quote	12	600 V	1.95
2	600 V	$\$.59$			

Thousands of Other Types-See July \& May Issues PCJP-20ABX for ASB 7 Pupecial @, $\$ 6.75$
np. 20ABX for ASB 7/7A/7B equip. $800 \mathrm{cy}$.115 V . inp. 2.5/56.5/880/2000V. out. Contains 6AC7, 5T4 \& 2X2, plus oil conds; chokes, resistors, connectors \& switches. Parts alone, easily removed worth con-
siderably more. Brand new. Individually boxed. siderably more
Qua. discount.
MONMOUTH RADIO LABS.
BOX 159
OAKHURST, N. J.

TELEPHONE

 RELAYSLarge Stock of
CLARE, TYPES C, D \&
COOKE, AUTOMATIC-ELECTRIC
ALL TYPES of COILS and PILE-UPS Send Us Fiour S'pecs. for Our Quote

Clare Type G Half Size
Sensitive Telephone Relays
Coil Contacts Will Close At Price

1)	6500 ohms	2 A	5	MA	S
2)	5800 ohms	3A	5	ma	2.50
3)	5800 ohms	28-1C	5	mA	2.5
4)	4850 ohms	1 C	4	NIA	2.5
5)	3600 ohms	1 C	6	MA	2.0
6)	4850 ohms	14			2.0
7)	3300 ohms	(None)			

All above Relays may be used for continuous duty operation on 110 V, D.C.

Other Type G Telephone Relays $\begin{array}{llll}\text { 1) } & 1300 \text { ohms } \\ 700 \text { ohms } & \quad 1 \mathrm{~A}-1 \mathrm{C} & 24 \text { or } 48 \mathrm{~V} . & 2.50 \mathrm{ea.} \\ 2 \mathrm{~A}-1 \mathrm{C} & 24 \mathrm{~V} . & 2.50 \text { ea. }\end{array}$

Legend (-1) Normally open set of contacts. (13) Normally closed set of contacts. $=$ contacts. 7 man Chase Electronic Supply Co.

222 Fulton St. | York $7,{ }^{\text {N. }}$ Y. |
| :--- |
| DIgby |
| $4-3088$ | HOllis 4.5033

FOR SALE

PLATE TRANSFORMERS

Several hundred new 10 K.W. Amertran oil cooled plate iransformers 115 V. 60 cy 1 phase primary, 17,600 volts, 5 amp sec ondary. Can be furnished center tapped or two wire 8800 volts, 1.0 amps . Priced $\$ 75.00$ each f.o.b. Los Angeles. Special Quantity discounts available.
SCR 545-A Radar
New RA-38 15 KV Power Supplies and components.

EPCO
1527 E. 7 th St., Los Angeles 21, Calif.

COMMERCIAL TUBES
 TYPE 8020

PRICE $\quad \$ 5.00$ EACH
NEW PRODUCTION
MINIMUM ORDER 50
FS-4618, Electronics
330 W. 42 St., New York 36. N. Y

R.C.A. Model MI-8167 TRANSMITTERS

Point-to-point communications

Freq. Pange: 2000 to 20,000 Kes.
Output: 350 Watts C.W. 250 Watts Radio telephone Input: 190 to 250 Volts $\mathrm{AC} 50 / 60 \mathrm{cps}$.
Size: $60^{\prime \prime}$ high, $17^{\prime \prime}$ wide, $27^{\prime \prime}$ deep.
Tubes: 807s, $813 \mathrm{~s}, 805 \mathrm{~s}, 866 \mathrm{~s}$.
Crystal Oscillator unit built-in fully shielded and stable. All self contained including antenna net. work. Master Oscillator unit (available) fits in phace of Xtal unit. Sueech amplifier is only exstages, high gain. Total net weight, 625 lbs. four

Complete! New! From Stock! Quantities! Prices on Request

COMMUNICATION DEVICES CO INCORPORATED
2331 Twelfth Ave. N. Y. 27, N. Y.

- CERAMICON CONDENSERS

All sizes and types

manufacturers price.
Large quantities in stock. Immediate delivery.
Cap Electronics, Inc. 136 Liberty St.
New York City, N. Y. Dlgby 9.2797

DEPENDABILITY IN ELECTRONICS
 Attn: Industrial Purchasing Agents

Our new Radio Master Catalogue is available to you at no charge upon receipt of your request on your letterhead. We are National Distributors of General Electric, Sylvania, Ohmite, Amphenol, Sprague, Aerovox, Sangamo, Stancor, Merit, A. H. \& H., Simpson and many others. All telegrams, cablegrams, and inquiries acknowledged and promptly answered.

GADGEEEERS, ELECTRONIC GIMMICKS, and SPECIALTY MANUFACTURERS
We have thousands of items you can use at lowest BELVISION, INC.
265 Greenwich St., \quad Barclay 7 6063

FOR SALE

AIRCRAFT AUTOMATIC PILOTS
Brand new, made U.S.A. I944, Cost a million
dollars to manufacture. Offers invited to:DOMINION SALES (London)
DO

6 Finsbury Square LONDON, E.C. Telegrams: 'DOSALFIN', London.

AN/APR-4 LABORATORY RECEIVERS

Complete with all five Tuning Units, covering the range 38 to $4,000 \mathrm{Mc}$.; wideband discone and other antennas, wavetraps, mobile accessories, 100 page technical manual, etc. Versatile, accurate, compact-the arisiocrat of lab receivers in this range. Write for data sheet and quotations. For the limited budget, we can supply AN/APR-1 Receivers (α predecessor to the APR.4), or even the earlier SCR-587; or individual Tuning Units covering the desired frequencies, for use as a converter feeding your own 30 Mc . L. F. strip or receiver tuned to 30 Mc .
SOME SPECIAL ITEMS IN OUR STOCK: 723A/B Tubes, $\$ 12.00$ postpaid. . GL-446A Tubes (interchangeable with 2C40), $\$ 1.00$ each in lots of ten, postpaid . . . APR-5A Receivers ($1,000-6,230 \mathrm{Mc}$.) . APA-10 Panadapters . . G-R 804, Ferris 16 C , Measurements 78B, etc. Signal Generators. . . BC-433 ADF Receivers, new . . ARR-5, ARR-7, BC-348 etc. Receivers . . . BC-221, TS-323, etc. Frequency Meters . . . BC-1016 Code Recorders . . . BC-303B A-N Beacon Transmitters . . . RBL-3 Receivers ($16-630 \mathrm{Kc}$.) . . . TS-13, TS-14, etc. Microwave Units . . APS-2 R-F Heads (new) . . . Northern Radio Oscillator-RF Bridge-Detector Equipment . . Sonar Generator \& 60 -cycle Power Supply ($17-27 \mathrm{Kc}, 600$ Watts) \ldots G-R 81550 Cycle Standard Fork set . . . ARN-7, APN-1, ARR-1 Spares ... ARC-1, ARC-3, ART-13, etc. ...
Buy from us with confidence-Army-Navy Standards are rigidly maintained. When any irregularities exist, you will be advised in detail. Write for quotations and data on your needs: place your name on our mailing list. We also have production line items-Power Supplies to 800 Amps at 12 to 28 volts DC, and 0-15.000 VDC 500MA, from 60 cycle line, etc.

We will buy any Electronic Material at top prices.
 SCHOOLS_We will obtain anything you can use and exchange for your useless surplus.

ENGINEERING ASSOCIATES

434 E. Patterson Road
Dayton 9, Ohio

WANTED

WANTED

- AN/TRC-1 Equipments.
- Tl4 Transmitters.
- R19 Receivers.

Any condition or quantity
W-3858. Electronics
330 W. 42nd St., New York 36, N. Y.

If there is anything you want that other readers can supply

OR . . . something you don't wantthat other readers can use-
Advertise it in the
SEARCHLIGHTSECTION

ELECTRONIC EQUPMENT WANTED!

We want to buy all types of new and used surplus electronics equipment. Use coupon to tell us what you hove. We are the largest purchasers of such equipment. WRITE TODAY!

| Use following numbers to indicate conditions: $\mathrm{N}-1$, brand new; $\mathrm{N}-2$, used, like new; N-3, used. | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| ITEM | CONDITION | PRICE WANTED |
| | | |
| | | |

To: ARROW SALES, INC., 7460 Varna Ave., N. Hollywood, Calif.
Name
Address
sef arrow sales, inc. Ad on page jic

Prompt ANSWERS

to business problems
$M^{\text {ISCELLANEOUS }}$ business problems are daily being solved quickly and -asily by the use of the Searchlight (classified advertising) Section of this and other McGraw-Hill publications.

When you want additional employees, want to buy or sell used or surplus now equipment, want additional products to manufacture, seek additional capital, or have other business wants - advertise them in the Searchlight Section for quick, profitable results

American Machinist
Aviation Week
Business Week
Bus Transportation
Chemical Engineering
Chemical Week
Coal Age
Construction Methods \& Equipment
Electrical Construction 8
Maintenance
Electrical Merchandising
Electrical World
Electronics
Eng. 8 Mining Journal
E. 8 M. J. Markets

Engineering News-Record
Factory Mgt. \& Maintenance
Fleet Owner
Food Engineering
Nucleonics
Power
Product Engineering
Textile Worid
Welding Engineer
Clossified Advertising Division
McGraw-Hill Publishing Co.
330 W. 42nd St., New York City 36, N. Y.

θ
 CHECK YOUR
 reLAY NEEDS

RELAYS ... WORLD'S

 LARGEST STOCK!Your requirements of large or small quantities of relays can be
 quickly supplied from our huge stock. Wide variety of types, all made by leading manufacturers. Each relay is brand new, inspected and fully guaranteed by Relay Sales.

VSTANDARD TELEPHONE RELAYS VSHORT TELEPHONE RELAYS \checkmark DUAL TELEPHONE RELAYS \checkmark SLOW ACTING RELAYS \checkmark SEALED RELAYS \checkmark ROTARY RELAYS \checkmark MIDGET RELAYS VKEYING RELAYS VDIFFERENTIAL relays \checkmark PLATE CURRENT RELAYS \checkmark ANTENNA SWITCHING RELAYS \checkmark "BK"SERIES \checkmark STEPPERS \& RATCHET RELAYS VLATCHING \& INTERLOCKING RELAYS MECHANICAL ACTION RELAYS \checkmark VOLTAGE REGULATORS \checkmark OVERLOAD - CIRCUIT BREAKERS VREVERSE CURRENT RELAYS VAIRCRAFT CONTACTORS $V M O T O R \& ~ C O N T R O L$ DEVICES V TIMERS \checkmark SOLENOIDS relay assemblies

THREE CONDUCTOR WIRE
Three twisted conductors of 18 gauge. conductivity, 4 strands steel for strength. Ideal for intercoms. telephone or any communication work. Tough, dural.le covering or outdoor or indoor use. Government

525 foot roll $\$ 4.75$ per rolt, f.o.b. Cincin-
nati-rated concerns net ten days, others
please mail check or m. 0
LAPIROW BROS.
1649-1657 HOFFNER STREET
CINCINNATI 23, OHIO

TO THE ADVERTISERS

August, 1952

Care is taken to make it accurate but ELECTRONICS assumes no responsibility for errors or omissions.

General Motor Corp, AC Spark Plug Div ribbs Manufacturing \& Research Corp. Goodyear Aircraft Corp

Harrison Radio Corp.
Houde Supply Co.
Instruments Associates.
Johns Hopkins University
J S H Sales Co.
Kaman Aircraft Corp
Kollsman Instrument Corp.
Klein, Manuel Co.
Laperow Brothers
Lectronic Research Laboratories.
372, 383

Ledco Inc.
362, 363

Liberty Electronics Inc
Lowenthal Co T R .
Maritime International Co
Maritime Switchboard
Maxson, W. L.
McDonnell Aircraft Corp
McNeal Electric Equipment Co
Melpar Inc.
Mogull Co Inc Alexander
Monmouth Radio Laboratories.
National Cash Register Co.
Norman Radio Distributors Inc.
Pennsylvania State College, The
Phillips Petroleum Co
Photocon Sales
Potter Instrument Co
Precision Electrical Instrument Co.
Premier Radio Tube Div
Radio Corp. of America.
Radio Development \& Sales Co
Radio \& Electronic Surplus
Radio Han Shack Inc.
386387
Radio Surplus Corp.
Reeves Instrument Corp.
Relay Sales
Reliance Merchandizing Cu
Rotary Electronic Sales
Sandia Corp.
Servo-Tek Products Inc
Stavid Engineering Inc.
Tab
Technical Materials Co.
Technicolor Motion Picture Corp
Telemarine Communications Co
Tracerlab Inc.
Universal General Corp.
V \& H Radio \& Electrical Supply Co. Wells Sales Inc..
Weston Laboratories.
Wilcox Electric Co.

MOTORS AND GENERATORS

Elec Spec Type 1A1, Spec 321390. 24VDC. $15 \mathrm{FA}, 1 / 4 \mathrm{~A}$ HP, 3800RPM

HIGH VOLTAGE CAPACITORS
 $\underset{204}{\# 19 \mathrm{~F} 210}$ rated 0.1 Mfd @ $6000 \mathrm{VDC}, \max \$ 37.50$

Inerteen type Fi, rated 1.0 ufd (ω 10,000 $\div 0.0$ $\# 14 \mathrm{~F} 13$ rated 5.0 Mff . $10,000 \mathrm{VDC}$
$\# 2668$ rated $0.1 \mathrm{Mfd} @ 12,000 \mathrm{VDC}$.
 \#15020, rated o.25 Mfic $15,000 \mathrm{VOC}$ स20n20 rated 0.25 Mfd © 20,0100 VDC.
\#'TK20002-2 laner rated $0.2 \overline{5}$ Mfd @ 20,000 $=14 \mathrm{~F} 64$ rated 0.25 Mff a $20,000 \mathrm{VDC}$.

 \#26F585 rated 0.06 Mf ($25,000 \mathrm{VDC}$
\#14 19,

\square
DAVEN SOUND ATTENUATORS

ELAPSED TIME METERS

Mfd. by H. W. ©ramer Co. Type IET-2II. 0-10,001)

HEAVY DUTY

COPPER OXIDE RECTIFIERS

Hammett Model 1 SPS-130. Input AC: $208 /$ 230 V 60 G7 3pht 21A. Output DC: 28 volts ((6)
130 A, Cont. Duty. Output voltage varialle by means of power tap switch. Complete with in dicating meters on front panel. Self Cooled.
Schematic available. Brand New. Export
Schematic svailable. Brand New.
Packed ... $\$ 297.50$

MOTOR SPARES FOR SO RADAR

GLFGTROCales Company Inc. (GD)

TARRISON HAS IT]

STEEL TOWERS

20-30-40-50 Feet

Unguyed . . . Brand New

I•IN STOCK!
l • PRICES SLASHED!
SUPply lImited - ask for detalls nowi
ARRIEON HAG IT?
Dependoble... Money-Saving Values
RELAYS All in Sealed Boxes

SENSITIVE. 2000 ohm, ${ }^{3}$ MA DC. Sealed. $5-$

 ($\$ 3.45$ ea, $\$ 275 / \mathrm{C}$. TELEPHONE TYPE RBM $452-1041$. DPDT.12.000 ohm
$\$ 3.75$ each. $\$ 275$ per C. AE. 9000 ohm DB28092. DPDT.
LATCHING. Kurman. $5000 \begin{gathered}\$ 3.25 \\ \text { ohm. } \\ \text { ea. } \\ \text { I } \\ \text { MA } \\ \text { DC }\end{gathered}$ coll and 115 V . 60 cycle conl. SPSi. $\$ 2.65$ ea.

CAPACITORS

$4 \mathrm{mtd}, 600 \mathrm{~V} .26 \mathrm{~F} 317$
$2 \mathrm{mld}, 600 \mathrm{~V}$. Sprague bathtub. $95 ¢$ each $\$ 1.65$.
$79 / \mathrm{C}$.

SELSYNS

2JIG1. Sealed containers Each $\$ 5.75$
| Selsyn Assembly Position Transmiter. 24V. Remote Indicating Compass AN-5730-2A 1 (Attractive Quantity Prices)
tubes
Boxed, Guaranteed
 4D32 Raytheon … $\$ 1.50$ each. $\$ 120$ per C.
(Largest Stock of Eimac Tubes in the East!)

Cable

CO-138 3-\#14, 2-\#16, 2-\#20; shielded, RC.
 RG-34/U. Coaxial. Like RG-11/U but handles $\left\lvert\, \begin{aligned} & \text { more } \\ & 50 \text {-ft lengths (List } \$ 30.00 \text {) }\end{aligned}\right.$
BHEOSTATS
12 ohm, 50 watts. $\quad \$ 1.45$ each. $\$ 85$ per \mathbf{C}.

CHOKI

UTC Commercial Grade 1 Class A, potted 12 hy. 110 MA DC. \#81354. Labelled
| RF CHOKES W-L Z Z. 1.7 uh. pamp. $5 / 16 \times 13 / 4^{4}$. Enamelled.Lugs. $10 ¢$ ea. $\$ 50$ per C.

TABRISON HAS IT.

Complete New York Stock of all Leading Manufacturers

- SAVE TIME
- SAVE MONEY - SAVE PA ULCERS
| PHONE BArclay 7-7777 FIRST
INDUSTRIAL SALES DEPARTMENT

r 1 ARRISON
 Rado corip
 225 GREENWICH STREET NEW YORK 7, N.Y.

Depondable Servise SInce 1925

SPECIAIS OF THE MONTH $\$ 4.95$ 4.93 1.35 3.95 6.95 2.9 3.95 $\mathbf{6 . 9 5}$ 2.49 2.50 22.50 a. 129 6.95

 TUBES! ! BRAND NEW! STANDARD BRANDS! TUBES!!We are clearing our tremendous tube stock at the lowest prices ever. Take advantage of this opportunity to stock up. Transmitting-Cathode Ray-Mag-netrons-Photo Electric-Klystrons-Special Purpose-Receiving.

WANTED WANTED

Test Sets TS-12, 13, 14, 33, 35, 146, 147, lif, etc. Radio Radar Equip. ARC-1, 3,
ART-13, ATC, APS-10, 15, 33, 34 , TPQ-2, ART-13, ATC, APS-10, 15, 33, 34, TPQ
BC-348, 342, BC-1016 Recorders, etc.

2" SQUARE WESTON-SANGAMO
 0.5
$0-100$
Amp
Ma .$\$ 2.95$

RADAR-COMMUNICATIONS AND TEST EQUIPMENT

FLUXMETER

 Portable Gauss Meter with range of $500-4000$Gauss. Used to test Magnatron and other mag-

TS-34/AP SYNCROSCOPE AND OSCILLOSCOPE Used to test and service alrborne and ground rarars.
Complete in portable carrying case with all probes cables and accessories. Input $110 \mathrm{v} \quad 60-2600$ csc Excellent condition. TS. 16 Altimeter Test Set. Used to check various TS.61/AP S-band Fcho Box. Using meter provider it is possible to maximize the RM, Comjustment and determine relative power output. Comiplete
rolehe and cable. Yery good condition. $\$ 140.00$ TS.13/AP Xa band signal generator. vave meter. wattmeter. Precision lab microwave. Test set will
proride either pulsed or CW output in Xa band.

TS-226/AP used to measure pralk power outmut on vision for oscilloscopic sigmal observation and built in calibration. Part of AN/APM-2?.
$T S-69 / A P$ freq. meter covering range of $400-1000$ mes. complete with calibration clarts, antenna \& crank TS-1/0/ARN-5 XTAL controlleft test osc. with the fol loming freq. ranges: 332.6 . 333.8 . 335 depending on
XTAL in use. This set is used to align glide path receivers Batteries and antenna are self contalned TS-69/AP Voltage Divider. 1:10 and 1:100 ratlos Wide hand for true nulse shanes. Outrut to scope. plete with cables and dunmy antrmna........ $\$ 35.00$ with amplifer, slotted line termination, adaptors,
 mos. pulsed \& C CW output. Used to check
 measuring circuit Meter, Consists of Dower kuide adaptor, connecting cable and probe. Will measure either alsolute or relative nower. Nomi
nal hand of usefulness is approx. $8,5-0.7 \mathrm{KMC}$ TS-3/AP S-band Frenuency and Power Meter. Port TS-33/AP X-hand Frequencr Meter. $85500-9600$ mes out to scope will indicate and indicating meter. Out
 and untuned input. Will indicate resonance on

 strength bC-22I PRECISION FREO. METER. Covers 150 kc ${ }^{20.0001 \mathrm{c}}$ modulation. Can he Portable. Complete with calibration S-BAND SIGNAL GENERATOR Lahoratory test set using 80 - Klystron in Mc Nally Cavity. Has preelsion attenuator and wave meter Complote with cables.
Mfg'r. Western
Electric. Input $110 v$
$60-2600$
croce cw-60ABM wavemeter in portable carying cace with
calib. chart \& cables. Newt.............. $\$ 97.50$

	OTHER TEST	SETS
菛-278/AP	TS. $189 / \mathrm{T}$	${ }_{\text {LEF }}^{\text {Le }}$
(ts. ${ }^{\text {T/APR }}$		Ts-20

AN/TPS-3 PORTABLE RADAR Lightweight Portable Search Radar for detection
of aircraft. in the freauency range of 600 MCS
power input: 115 v
400 ccc . 1330 watts, 28 V D power input, Complete installation

SO-13 S-Band Marine Radar P.P.I. indication is provided. Complete in origi-
nal cases with complete sets of spares. Excellent condition.
shop and development faboratory. All equipment is seconditioned and checked out to original spees. Our laboratory facilities, technical and production knowhow and thirty thousand feet of space is availabi

AN/APS-15A RADAR High resolution X-band Navigation and Milind
Borabing Radar. Can le used for high or low altitude blind bombing. werision navigation and to home on X--vand ground beacons, Can also bo used for ground installations. Available with or
without the flux gate gyro stahilizing system. Pre-
 remote P.P.I. Power input is $28 v$ and 110040
cyc. Weight is approx. $3 \overline{5}$ Ins. installed. Electri cal characteristics are as foilows freq. x -bant
1ower output upprox. 40 KW , rante $\overline{5}, 30,50$ and 4°. Suwplied from stock, reconditioned and checked

SCR-718A, AM. C hish altitude altimeter. A conplete eauipment for installation in aircraft to
 $0.54,000 \mathrm{ft}$. Dorver inp POW MOBILE POWER PLANT Output: $220 v-3 \mathrm{KW}-60$ cyc. One phase. Excel

SCR-555 DIRECTION FINDER Frect range $18-65$ mes. Complete insting indication is aural-null or left-right bearing on a meter type indl cator power input 18 l l2
installation, approx. 2500 lbs.

AN/UPN 1 \& 2 PORTABLE RADAR BEACONS

-band beacons that can he interrogated by any S-hand radar in a 45 mile range and nill answer With a coded renly which can be changed as
desired. The UPN-1 is battery operated. The
UPY-2 is $110 \mathrm{v} 60-2600$ cyc. Weight is approx. 65 ibs . complete.

APR-1 MICROWAVE RECEIVER 3 tuning units to cover the freq. range of $38-1000$ mes. These receivers are almost identical to the
APR^{4} equipment and the tuning units are directis ApR- intequingeable. These sets have outputs for a panadiaptor and putse analyzer which can be supplied on

AN/ARC-1 TRANS/REC.

rrovides hadio-Telephone Communication betwe tircraft or Aircraft and Ground. Complete win

 Sxxellent contition. Arailabhe in Rither 10 or 20
Crystal Controlled Chammels $100-156$ MCS. checked
 CS CO and condition. TCS Marine Radio Telephone and Telegraph Xmittin Consists of mintter, receiver, antenna loading coll remote control hox. power unit, cables, etc. Power input is 12 or $32 y$ DC. We can supnly an 1100 a
power supply for stationary use at additional cost power supply for stationary use at additional cost
Excellent condition. SCR-536 X $3885-5500 \mathrm{KC}$. Complete with coils, tubes, crystals.
Verv good condition. Pair. $\$ 185.00$ AN/APA. 10 Panoramic Adaptor for use with any re ceiver with tollowing 1 F 's 455 KC , ${ }^{5}$ mes, 30 nic
Unit will give panoramic presentation (1 me wide fo Unit will give pinoramic presentation (1 mic wade
455 KC input) (100KC for 5 MC input) (2 MC for 3 mes input). Fowe input 115 y 400 cyc. hut can le
changed with the addition of a proper power trans0 CM R.F. paclage condition.................. 2700 mits. Consists of BC-100 thodulator and BC-1091 RF heall. Power output AN/CRT-3 Victory Girl. Dual frequency emergene hydrogen generator, etc. New in knapsack. C. ait Radar Search Iteceiver. Frea rimbe 1000-3100 mes. Will detect signals wh to 10.000 and mixer cavity, IF strip, Dower su
$60-2600$ cre. $115 v$. Excellent condition

- 50 Radiotelegradh Transmitter complete
supply and all accessories with spares. rortable AN/APT-5 300-1500 mes. xmitter cavity oscillato using 3 C 22 lighthouse tube. l'ower output C169.50 PE-104 Vibrapack for SCI-284. Overseas packed orginal carow sum SCR-522 VHF Airborne Command Equipment. Frer range $100-156 \mathrm{mcs}$ in 4 channels receiver an
transmitter. Crystal controled. Complete equip ment. Consists of trans/rec, control box BC-602
dynamotor PE-94. AN104A antenna, plugs, ftc drower input with PE-94 in antenna, We can suplis

HEADSETS——MICROPHONES

 CONDITION: EXCELLENT, CHECKEO OUT)HS-18 Headset 8000 ohm PL-54 I Ilug $\$ 2.95$ HS- 23 Headset 8000 ohm PL-54 Plug $\begin{array}{llll}\text { HS-30 Headset } & 200 & \mathrm{ohm} \\ \text { HS. } 33 & \text { Headset } \\ \text { HS } \\ \text { HS }\end{array}$

MISCELLANEOUS

SEE OUR TUBE AD OPPOSITE PAGE
PHONE: DIGBY 9-0347-8-9
TELETYPE: NY1-771

H0CF BLOWERS

Focm ins 40

$\%$ \%

 ~ロ NANOGN
inimi
 1000 nooos.

 $\frac{\text { Cmiter Maz Motorne.......... }}{\text { SELSYNS }}$

ANTENNA Relay BC442-A. Moter Thr
Couple. 50 mma yac indor Comnit....

 coRD RGiIU S foot length coro

TAB"' TESTED
PRICES SUBJECT TO CHANGE
RITE FOR COMPLETE TUBE LISTING

 Mo inicom MNNNNNNNNN

POWER TRANSFORMERS

INDEX TO ADVERTISERS

A'G'A' Bivision of Elastic Stop Nut Corp. Acheson Colloids Company..................... 157
Acme Electronics, Inc...................... 294
Adams \& Westlake Company............ 78
Advance Electronics Co.................... . 345
Advertising Council 193
Aeronautical Commnnications Equipment. Inc. 265
Aerovox Corporation 27
Arcraft-Marine Products, Inc............ . 243
Airmee Laboratories, Ltd.. 344
Airpax Products Company 286
Alden Products Company............... 47
Allen Co., Inc., I., B. 350
Allen Mannfacturing Company 164
Allied Control Company, Inc............. 205
American Electric Motors. 264
American Elpetrical Heater Company... 216
American Lava Corporation............. 237
American Phenolle Corporation......... 55
American Television \& Radio Co.......... 296
American Time Products, Inc............ . 40
Amperex Electronic Corp......... Third Cover
Amperite Co., Inc........................... . . 309
Ampex Electric Corporation............. 158
Andersen Laboratories, Inc. 343
Andrew Corporation 224
Apco Mossberg Co............................ . . . 240
Arkwright Finishing Co. 242
Armce Steel Corporation................. 211
Arnold Engineering Company. 50
Arrow Electronics, Inc.................... 327

Batlantine Laboratories, Inc. 274

Barry Corp. 15
Bead Chain Manufacturing Co........... 293
Beckman Instruments, Inc................ . . 210
Bell Arcraft Corporation. 349
Bell Telephone Laboratories........... . . 249
Bendix Avlation Corporation
Eclipse-Pioneer Division
Friez Instrument Division Parific Division
Red Bank Division.
284
-333
. 185
Hentley, Hartis Manufacturing Co....... 169
Berkeley Scientific Corp.
. 236
Bird \& Co., Inc., Richard H............. 329
Rird Electronic Corp. 320
Eirmingham Sound Reproducers Ltd.... 311
Birnbach Radio Co., Inc. 331
Birtcher Corporation 307
Hodnar Industries, Inc.. 339
Boeing Alrplane Company. 269
Bomac Laboratories, Inc. 66
Boonton Radio Corporation. 153
Borg Corporation, Gcorge W........334, 335
Bowser, Inc.
335
299

Bradley Laboratories, Inc.................. 38
Hrand \& Co., Inc., William............ . . 323
Bridgeport Brass Company. 273
Brush Development Company........54, 248
Burgess Battery Company. 192
Burnell \& Company 89
Bussmann Mfg. Co.......................... . . . 199

Cambridge Thermionic Corporation..... 32
Cannon Electric Company............... . 202
Carter Motor Co............................. . . . 341

Centralab, Div. Globe-t'nion, Inc. .11, 12, 13
Century Geophysical Curporation...... 291
Chester Cable Corp........................... 187
Chicago Dial Company. 59
Chicago Telephone Supply Corpora- '73
Chicago Transformer, Div. of Essex Wire Corp.
Cíba Company, Inc. 209
Cineh Manufacturing Corporation........ 149
Clare \& Co., C. P......................... 41
Cleveland Container Co................... 201
Clippard Instrument Laboratory, Inc.... 160
C'ohn Corp., Sigruund 317
Collectron Corporation 292
Communication I'roducts Company, Inc.44, 45
Computer Hesearch Corporation of Cali-
fornia 77
Condenser Products Company 231
Consolidated Engineering Corp........... 75
Continental Connectors Corp............. 318
Continental-Diamond Fibre Company.... 31
Cornell-Dubilier Electric Co.............. . 245
Cornell Electronics Corp................... 319
Cornish Wire Co., Inc..................... . . . 343
Coto-Coil Company 332
Cramer Co., Inc., K. W................... . . . 178
Crescent Company, Inc..................... . . . 192
Crest Iaboratories, Inc. 327
Cross Co., H................................. . . . 335
Crucible Steel Company of America..... 173
Cubic Corporation 316
Curtis Development \& Mfg. Co.......... 342
Dage Llectric Company, Inc. 340
Dale Products, Inc. 320
Daniels, Inc., C. R. 327
Dano Electric Co.. 331
Dayen Co. 21
Dedur Amsco Corp. 318
Delco Radio, Div, of General Motors. 215
Dial Light Company of Antrica. 172
Doepke Mfg. Co., Inc., Charles Wm. 27
Dolin Metal Products, Inc. 345
Uriver-IIarris Company 76
duront deNemours \& Co., (Inc.) E. I., Polychemicals Dept 161
Durant Manufacturing Co. 300
Dyna-Labs, Ine 333
DX LRadio I'rodiucts Co. 298
Eastern Air Devices, Inc. 194
Eastman Kodak Company, Industrial Photographic Div. 159
Eisler Engineering Co., luc. 315,350
Eitel-McCullough, Inc. 68
Elastic Stop Nut Corporation of Amer- 251
Electra MPg. Co.. 301
Electran Mfg. Co.. 323
Electrical Industries, Ine. 257
Electronic Computer Corporation. 285
Electronic Parts Manufacturing C 322
Electro Motive Mfg. Co., Inc.. 17
Flectro Products Laboratories. 325
Electro-Tech Equipment Co. 319
Electro-Technical Products, Div. of Sun
Chemical Corporation

Wt. $161 / 4 \mathrm{lhs}$. $12^{\prime \prime} \times 8^{\prime \prime} \times 7^{\prime \prime}$

A new concept in multiple trace oscilloscopy made possible by Waterman developed RAYONIC rectangular cathode ray tube, providing for the first time, optional screen characteristics in each channel. S-15-A is a portable twin tube, high sensitivity oscilloscope, with two independent vertical as well as horizontal channels. A "must" for investigation of elec. tronic circuits in industry, school, or laboratory.

Vertical channels: 10 mv rms/inch, with response within - 2 DB from DC to 200 kc , with pulse rise of $1.8 \mu \mathrm{~s}$. Horizontal channels: $1 \mathrm{v} \mathrm{rms} / \mathrm{inch}$ within-2DB from DC to 150 kc , with pulse rise of $3 \mu \mathrm{~s}$. Non-frequency discriminating attenuators and gain controls, with internal calibration of traces. Repetitive or trigger time base, with linearization, from $1 / 2 \mathrm{cps}$ to 50 kc , with \pm sync. or trigger. Mu metal shield. Filter graph screen. And a host of other features.

PHILADELPHIA 25,PPA.
CABLE ADDRESS, POKETSCOPE
WATERMAN PRODUCTS INCLUDE:

S-4-A SAR	PULSESCOPE
S-5-A LAB	PULSESCOPE
S-10-B GENERAL	POCKETSCOPE
S-1-A INDUSTRIAL	POCKETSCOPE
S-14-A HIGH GAIN	POCKETSCOPE
S-14-B WIDE BAND POCKETSCOPE	

AISO RAKSCOPES, LINEAR AMPLIFIERS, RAYONIC TUBES and other equipment

JOHNSON TYPEL Capacitors

High frequency capacitors designed to absorb punishment. Full soldered construction makes JOHNSON "L" variables vitually impervious to the effects of shock and vibration. No parts can work loose - capacity can't fuctuate. Ideally suited for airborne and mobile transmitting, receiving applications.

Plates are heavy $.020^{\prime \prime}$ brass with corrosion resistant bright alloy plating. Rotor and stator assemblies are soldered; split sleeve bearing, mounting posts, tie rods and stator assembly are all soldered directly to the heavy ceramic end plates. Steatite insulators are located outside the most intense RF fields for lowest possible losses at very high frequencies. Silver plated beryllium copper rotor contact may be brought out at any one of four different angles. This, together with dual stator contacts, insures short, low inductance leads in any application.

	Cat. No.	Type No.	Cap. Mox.	Sect. Min.	*Spacing	lates Per Sec.	L
SINGLE SECTION	Single End Plate $167-101$ 10 L 15 $167-109$ 25 L 15 $167-103$ 50 L 15 $167-104$ $75 L 15$		$\begin{aligned} & 11 \\ & 27 \\ & 51 \\ & 75 \end{aligned}$	2.8 3.5 4.6 5.7	$\begin{aligned} & .030^{\circ} \\ & .030^{\circ} \\ & .030^{\prime} \\ & .030^{\circ} \end{aligned}$	3 7 13 19	$\begin{aligned} & 18,16 \\ & 19 / 6 \\ & 17 / 10 \\ & 13 / 4 \end{aligned}$
	$\begin{array}{ll} \text { Double End Plase } \\ 167-151 & 100 L 15 \\ 167-159 & 200 L 15 \end{array}$		$\begin{array}{r} 99 \\ 202 \end{array}$	$\begin{array}{r} 6.8 \\ 11.6 \end{array}$	$\begin{aligned} & .030^{\circ} \\ & .030^{\circ} \end{aligned}$	$\begin{array}{r} 25 \\ 51 \end{array}$	$\begin{aligned} & 2^{7 / 6} \\ & 3^{31 / 46} \end{aligned}$
DUAL SECTION	$\begin{aligned} & 167.501 \\ & 167.508 \\ & 167.503 \end{aligned}$	$\begin{aligned} & \text { 25LD15 } \\ & \text { 50LD15 } \\ & \text { 100LD15 } \end{aligned}$	$\begin{aligned} & 97 \\ & 51 \\ & 99 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 4.6 \\ & 6.8 \end{aligned}$	$\begin{aligned} & .030^{\circ} \\ & .030^{\prime} \\ & .030^{\prime} \end{aligned}$	$\begin{array}{r} 7 \\ 13 \\ 25 \end{array}$	$\begin{aligned} & 113 / 18 \\ & 9^{27 / 6} \\ & 35 / 8 \end{aligned}$
DIFFERENTIAL	$\begin{aligned} & 167.301 \\ & 167.308 \\ & 167.303 \end{aligned}$	$\begin{aligned} & \text { 10LA15 } \\ & 25 L A 15 \\ & 50 L A 15 \end{aligned}$	$\begin{aligned} & 11 \\ & 27 \\ & 51 \end{aligned}$	$\begin{aligned} & 2.8 \\ & 3.5 \\ & 4.6 \end{aligned}$	$\begin{aligned} & .030^{\circ} \\ & .030^{\circ} \\ & .030^{\circ} \end{aligned}$	$\begin{array}{r} 3 \\ 7 \\ 13 \end{array}$	$\begin{aligned} & 15 / 4 \\ & 1964 \\ & 174 \end{aligned}$
BUTTERFLY	$\begin{aligned} & 167-901 \\ & 167.208 \\ & 167.903 \end{aligned}$	10LB15 25LB15 50LB1 5	$\begin{aligned} & 10.5 \\ & 26 \\ & 51 \end{aligned}$	$\begin{aligned} & 9.8 \\ & 4.3 \\ & 6.8 \end{aligned}$	$\begin{aligned} & .030^{\circ} \\ & .030^{\circ} \\ & .030^{\circ} \end{aligned}$	$\begin{array}{r} 5 \\ 18 \\ 23 \end{array}$	$\begin{aligned} & 1^{3 / 64} \\ & 174 \\ & 115 / 20 \end{aligned}$

*.020, .060, . 080 spacing also available.

We have produced numerous special " L " capacitors including those with $.020^{\prime \prime}$, $.060^{\prime \prime}$ and $.080^{\prime \prime}$ plate spacing. Other specials have incorporated such features ass. slotted end rotor plates, bearings for motor driven applications, integral inductors, special shafts, etc.

Adapting JOHNSON capacitors to dif. ficult applications is part of our business. We'll be more than glad to help. Like to know more about JOHNSON capacitors? Send for catalog 701-A8 today.

WASECA, MINNESOTA

Capacitors, Inductors, Sockets, Insulators, Plugs \& Jacks, Knobs \& Dials, Pliot Lighls.

Electroacustic, G. M. B. H............... . 350
Engineering Research Aseociates, Inc.329, 339
Erie Resistor Corp. 67
Eveready Plating Co.. 350
Fairchild Camera \& Instrument Corp... 281Fairchild Recording Equipment Corp... 208Federal Telephone \& Radio Corporation 51
Filtron Co., Inc. 33
Finn \& Company, Inc., T. R............ 30 30%
Fluke Engineering Co., John. 34%
Ford Instrument Company. 6
Freed Transformer Co., Inc.
Frequency Standards 339
Furst Electronics 340
Fusite Corporation, The 23
Galr Company, Inc., Robert 329
Gamewell Company 33%
General Electric Company Apparatus Dept. 52. 53, 197
Electronics Dept. 60, 61, 87
General Hermetle Sealing Corp. 337
General Industries Co. 182
General Radio Company 190, 191
Glannini \& Co., Inc., G. M.. 5
Goslin Electric \& Manufacturing Co.... 24
Grant Pulley \& Hardware Co. 212
Graplite Metallizing Corporation 300
Grayhill 338
Green Instrument Co. 335
Gries Reproducer Corp. 309
Guthman \& Co., Inc., Edwin I. 264
Hammarlund Manufacturing Co., Inc.... 233
Iardwick, II indle, Inc. 171
Hart Manufacturing Cor 256
Haydon Manufacturing Co., In 270
IIelland Research Corporation 172
Heinemann Electric Co 261
Helipot Corporation 324
Hermetic Seal Products Co 175
Hewlett-Packard Company 95
Huglres Research \& Development Lab-
Hycor Company, Inc 331
340
Improved Seamless Wire Company 324
Indiana Steel Products Company 16
conal Condenser Cor 221
Industrial Timer Corporation. 90
Instrument Resistors Co... 325
International Instruments Inc.... 345
International Resistance
Ippollto \& Co., Inc., James 349
I-T-E Circuit Breaker Company 177
JFD Mfg. Co. 184Jeffers Electronies Division, Speer CarbonCo.82
$\begin{array}{ll}\text { Jeliff Manufarturing Corp., C. O } & 348 \\ \text { Johms-Manville } & 34 \\ \text { Johnson Co., E. F. } & 390\end{array}$
Jones Div. Howard B. Cinch Mfg. Corp. 347

ENGINEERED FLUOROCARBONS

SILICATES

Offer Engineers a Whole New Family of Materials

Starting with TEFLON*, United States Gasket Company engineers have developed a series of "Filled" Fluorocarbon materials, greatly broadening the scope of usefulness of this wonder-plastic. For example, United States Gasket Company "Application Engineering" has already helped solve such material problems as long-wearing chemical resistant bearings and pump impellers; valve and pump packings, expansion joints and chambers, gaskets; the metal plating of Teflon; the hermetic sealing of electronic components; soldering and cementing to Teflon; etc., etc.

If you have a special materials problem, that one of these Teflon "alloys" might solve, tell us about it. Our engineering department will work with yours to determine the Chemelec Mixture best suited to your requirements.

National Company, Inc. 180
Vational Moldite Company 250
National Plastic Products Company 306
Natvar Corporation 39
Neo-Sil Corporation 33
New Hampshire Ball Bearings, Inc....... 321
New Hermes, Inc......................... 349
Kartron299
Keystone Iroducts Company 275830
MacDonald Co., Inc., W. S. 346
Mallory \& Co., Inc., P. R........... 96,151
oni Instruments Ltd. 282246

Maryland Precision Instrument Co...... 350McGraw-IIIll Book Co........... 176. 188, 20| 176. |
| ---: |
| 892 |
| 803, |
| 309 |

Mepco. Inc.4
Metal Textile Corporation.

Div. \& Controis Corp., General PlateMethode Manufacturing Corp280
Metron Instrument Company. 198
Hica Insulator Company 223
Michel Manufacturing Co. 350
Iico Instrument Co. 347
Micro Switch, Div, of Minneapolis-Hon- 42Miles Reprodncer Co., Inc.Milford350
Millen Mfg. Co., Inc., James. 179
Minneapolis-Honeywell Regulator Co.. 48, 49
Minnesota Mining \& Mfg. Co. 79
Mitchell Rand Insulation Company, Inc. 86
Toloney Electric Company 241
Moseley, Francis L 317
Iosinee Paper Mills Company 176
Muirhead \& Co., Ltd. 3
Mycalex Corporation of Americ: 25.5

Compact, laboratory style, high sensitivity test sot "Application Engineered" for production, test, laboratory. school and service-maintenance phases of modern radio-electronics-communications.

20,000 Ohms per Volt D.C.
1000 ohms per Valt A.C.
VOLTAGE RANGES: 0-3.12-60-300.1200-6000
A.C. \& D.C.

CURRENT RANGES: 0.120 microamps
$0.1 .2 \cdot 12 \cdot 120 \cdot 1200 \mathrm{MA}$.
0.12 Amps D.C.

QESISTANCE RANGES: $0.6000 \cdot 600 \mathrm{~K}$ Ohms $0.6 \cdot 60$ Megohms.
decibel ranges: From- 26 to +70 DB .
Complete with batteries
and test leads $\mathbf{\$ 9 9 5}$
PLUS superior physlcal features:

* 4th" wide angle meter
* Heavy duty molded bakelite instrument case, size $51 / 2 \times 71 / 8 \times 3^{11}$
- Heavy gauge, anodized aluminum panel
- Rotary Range and Function Selection
- Recessed 6000 volt safety jacks
- Only two pin jacks for all standard ranges

LC- 1 Leather Carrying Case

Custom designed top-grain cowhide case $\$ \mathbf{Q 5}^{50}$
with lool and test lead compartment.
See tins and other "Precision" Application En. gineered instruments on sisplay at leading radio parts distributors. Write for latest catalog.

New York Transformer Co., Inc. 278
North American Aviation, Inc............ 208
Northrop Aircraft, Inc..................... 298
Nothelfer Winding Laboratories. 307

Olympic Metal Products ('ompany, Inc... 298
Onan it Sons, Ine., D. W............... . 33:
O'Neil-Irwin Mfg. Co......................... 32:

Panoramic Radio Products. Ine......... . . 303
Paramobut Paper Tube ('orp............ . 342
Parsons Company, Katph M.. 164
IPatton-MacGuyer Company. 345
Fenn Engineering \& Manufacturing Corp. 29:
Phalo Plastics Corporation.............. 218
lhaostron Co. 296
Phillips Control Corporation 203
Pix Manufacturing Co., Inc.............. . . 337
I'slarad Electronics Corp............... . . . 183
Potter Insrument Company, Inc......... 314
Precision Apparatus Co., Inc............ . . 392
Precision Paper Tube Co................ 336
Presto Recording Corporation. 65
Production Engineering Corp............. . . 335
I'yroferric Co. 302

Radio Corporation of America.206, 217
Radio Materials Corporation............ 271
Radio Receptor Company, Inc............ . 2.5
Railway Express Agency, Air Express
Div. 227
Kauland Corporation 46
Kaytheon Manufucturing Company 259
Reed Research Inc........................ 184
Remler Company, Ltd. 336
Resistoflex Corporation 295
Rex Corporation 196
Khode Island Insulated Wire Co., Inc.. . 207
Robinson Inc., Edward E.. 339
Kunzel Cord \& Wire Co.................... . . 347

Sangamo Wlectric Company. 195
Narkes Tarzian, Inc.. 222
Scientific Electric Div of "S" Corrugated
Quenched Gap Co.......................
Secon Metals Corporation. 343
Nervo Corporation of America........... 300
Sessions Clock Co., Timer Div........ . . . 232
Shalleross Manufacturing Company.... 331
Shure Brothers, Inc.......................... 2
Sigma Instruments, Inc.................... 262
Signal Engineering \& Mig. Co........... 334
Simpson Electric Company. 163
Sola Electric Company. 239
Sorensen \& Company, Inc................ . . 93
Southwestern Industrial Electronics Co.. 333
Specialty Battery Company 315
Speer Resistor Corp. 62
Spencer-Kennedy Laboratories, Inc.. 246
Sprague Electric Company 9
Stackpole Carbon Company............... 91
Standard Electric Time Company...... 88
Standard Piezo Company................ . 296
Standard Transformer Corp.. 204
Star Porcelain Company................... 330
Ntevens Mfg. Co., Inc., Geo............. 308

Steward Manufacturing Co., D. M....... 304
Stoddart Aircraft Radio Co................ 252
Stokes Machine Company, F. J.......... 81
Stupakoff Ceramic \& Mfg. Co............. 253
Superior Electric Co......................... . 225
Superior Tube Company................... 43
Supreme, Inc. 328
Switcheraft, Inc. 326
Sylvania Electric Products, Inc.........7. 80
Taylor Tubes, Inc 16
Tech Laboratories 328
Technology Instrument Corp. 196
Tektronix, Inc. 168
Teletronics Laboratory, Inc. 350
Telewave Laboratories, Inc. 16
Thompson Compans, H. I. 319
Thompson Products, Inc. 64
Tobe Deutschmann Corp. 89
Transradio Ltd. 305
Triad Transformer Mfg. Co.............. 172
Tung-Sol Electric Co. .32 A, 32 B
Urinite Co. 36
Union (arbide \mathbb{A} Carbon Corp. 3:7
United-Carr Fastener Corp. $3 i$
United Manufacturing \& Service Co 330
United States Gasket Company... 391
United Transformer Corp...... Second CoverUniversal Winding Company............ 189
Vacuum Metals Corporation............ 51
Varflex Sales Co.,
Varian Associates 165
Vectron, Inc. 305
Victoreen Instrument Company. 290
Vulcan Electric Company. 341
Waldes Kohinoor, Ine. 69
Ward Leonard Electric Company....84, 85
Warren Wire Company 326
Waterman Products Co., Inc.. 389
Westinghouse Electric Corp..........200, 313
Wheeler Insulated Wire Co., Inc.......... . 234
Whitelead Stamping Co 329
Whitney Blake Co.. 244
Willians \& Co., C. K. 170
Winchester Electronics, Inc 166
Torkshop Associates, Div. 267
Zophar Mills, Ine. 341

This index is published as a convenience to the readers. Every care is taken to make it accurate, but ELECTRONICS assumes no responsibllity for errors or omissions.

For Highest Power AM Broadcasting or Induction Heating

FEw tubes have won such wide popularity in so shorta time as the RCA-developed 6146 and 6159 beam power tubes. Both types are extremely versatile as to application, and offer considerable latitude in circuit design because of their ability to operate efficiently over a wide range of plate voltages and frequencies. Low in cost, compact, and unusually rugged, these types are particularly suited to VHF transmitter designs for fixed and mobile services.
The RCA-6146, with a 6.3 -volt heater, is designed for general service. The RCA6159 , with a 26.5 -volt heater, is intended
for use in VHF aircraft transmitters. In all other respects, the two tubes are identical.
Because of their high power sensitivity and low plate-voltage requirements, the RCA-6146 and 6159 permit compact, economical designs without a sacrifice in efficiency. A single tube as unmodulated Class C rf power amplifier will deliver an output of 69 watts up to 60 Mc with a plate supply of 600 volts . . . and 35 watts output at 175 Mc with a plate supply of 400 volts. A pair operated Class $A B_{1}$ will
provide an audio output of 120 watts . . in Class AB2, 130 watts. A pair of either type triode connected will deliver an output of 19 watts with a total harmonic distortion of 4.6%.

For complete technical data on the RCA6146 and RCA-6159, write RCA, Commercial Engineering, Section 42HR, Harrison, N. J., or your nearest Field Office.

FIELD OfFICES: (East) Humboldt 5-3900, 415 S. 5th St., Harrison, N. J. (Midwest) Whitehall 4-2900, 589 E. Illinois St., Chicago, Ill. (West) Madison 9-3671, 420 S. San Pedro St., Los Angeles, Calif.

[^0]: Experimental radioactive elevator buttons which control leveling to within 0.05 of an inch are checked with a Geiger counter. When an elevator is signalled, the buttons, located at each floor, pass energy through 0.005 -inch slits in their lead cases to a modified counter on the car and trigger electronic control mechanisms. Automatic timing equipment (right) is located at the top of the elevator shaft

[^1]: *Reg. Trade-mark

[^2]: MOUNTING HAROWARE ASSEMELED MOUNTING NUT 合 HEX * $\frac{3}{2}$ LOCK WASHER ISIAA

[^3]: Established 1857 - ELKHART, INDIANA - New York • Chicago Manufacturers of ADLAKE Hermetically Sealed Mercury Relays

[^4]: * U. S. Patent Appl.

 Nr. $191,550$.

[^5]: * Now with Varian Associates, San Carlos, California.

[^6]: This article is based on a paper delivered at the Summer General Meeting of the AIEE. The conference paper will appear in the $A I E E$ Transactions.

[^7]: Presented at the 6th annual broadcast engineering conference (NARTB) at Chicago, Ill., Mar. 31, 1952.

[^8]: AMPEX ELECTRIC CORPORATION•Redwoad City, California

[^9]: E. I. du Pont de Nemours \& Co., Inc.

 Polychemicals Department; District Offices: 350 Fifth Avenue, New York 1, N. Y.
 7 S. Dearborn Street, Chicago 3, III.
 845 E. 60th Street, Los Angeles 1, Calif.

[^10]: *BH Non-Fraying Fiberglas Sleevings are made by an exclusive Bentley, Harris process (U. S. Pat. No. 2393530). "Fiberglas" is Reg. TM of Owens-Corning Fiberglas Corp.

[^11]: NORTH AMERICAN AVIATION, INC.
 Aerophysics, Electro-Mechanical Research Division

 ## Depf. 3, Personnel Section,

[^12]: *Electronic Analog Simulating Equipment

[^13]: External view of the complete equipment

[^14]: - 3244 N. California Avenue

 Chicago 18, Illinois, U.S.A.
 I Please send me my FREE copy of your new Catalog 1117 on | Stabelex "D" Capacitors.
 I Name
 Company
 Position
 Street
 City...
 State
 CAPACITORS and RADIO INTERFERENCE FILTERS

[^15]: Component parts of locking adapter. In background is an assembled adapter with subminiature tube locked in position

[^16]: 855 Bridgeport Ave., MILFORD, CONN. 806 Hininois Ave., AURORA 1106 W. River St., ELYRIA, O. 26 Platt St., HATBORO, PA.

[^17]: -T. M. Reg. U. S. Pat. Off. by Owens Corning Fiberglas Corp.

[^18]: CANADA: CANADIAN MARCONI CO., MARCONI BUILDING, 2442 TRENTON AVENUE, MONTREAL ENGLAND: Head Office: MARCONI INSTRUMENTS LIMITED • ST. ALBANS - HERTS.
 Managing Agents in Export: MARCONI'S WIRELESS TELEGRAPH COMPANY LIMITED MARCONI HOUSE, STRAND•LONDON•W.C. 2

[^19]: OFFICES: 160 AVENUE OF THE AMERICAS, NEW YORK 13, N. Y. PLANT: 265 BUTLER ST., BROOKLYN 17, N. Y.

[^20]: D. M. STEWARD MANUFACTURING CO. 3604 Jerome Ave. Chattanooga, Tenn.

 Sales Offices in Principal Cities

[^21]: FRIEZ INSTRUMENT DIVISION of 1324 Taylor Avenue - Baltimore 4, Maryland
 Export Sales: Bendix International Division, 72 Fith Ave., N. Y. 11, ल. Y.

[^22]: FIUSHING, LONG ISIAND, N. Y. LARCEST EXCLUSIVE MANUFAGTURERS OF RF INTERFERENGE FILTERS

[^23]: FREQUENCY RESPONSE: Within $\pm 1 \mathrm{db}$ between D.C. and 100,000 cycles per second.

 GAIN: Approximately 100.
 INPUT CONNECTION: Double channel, can be used for single ended and push-pull signals or as a differential amplifier
 INPUT IMPEDANCE: One Megohm shunted by approximately 15 mmf in each channel
 DUAL INPUT ATTENUATOR: One to one, 10 to one, 100 to one and "off" positions in each channel immediately adjustable.
 OUTPUT CONNECTION: Push-pull or single ended. OUTPUT IMPEDANCE: Less than 50 Ohms single ended or 100 Ohms push-pull.
 HUM AND NOISE LEVEL: Below 40 microvolts referred to input.
 LOW DRIFT due to regulated heater voltage in input stage.
 MOUNTING: Metal cabinet approximately 7" wide by $7^{\prime \prime}$ high by $11^{\prime \prime}$ deep.

[^24]: Western District Office - Times Building, Long Beach, California

[^25]: SAN FRANCISCO OPPORTUNITY FOR ELECTRONICS ENGINEER
 in sales promotion work for industrial adv. agency. Writing ability required and sales sense important.

 P-4627, Electronics
 68 Post St., San Francisco 4, Calif,

[^26]: Terms 20% cash with order, balance C. O. D.
 house Phila. A prices net F.O.B our ware out notice.
 house, Phila. Penna. subject to change with

[^27]: * PUR-Price upon request.

