electronics

A MEGRAWCHILIL PUBLICATION

FOR MINIATURIZATION

The miniaturization of transformers has been a UTC specialty ever since the development of the Ouncer series in 1937. The importance of this engineering "know how" is reflected by the large number of UTC Miniature components in present military equipment. Some examples of this engineering leadership are illustrated below.

DC CONTROLLED OSCILLATOR INDUCTORS

The curves below illustrate oscillator frequency variation using two lypes of RF inductors varied by the amount of DC through the controlled windings. These units are available in ouncer size and maller.

MINIATURIZED AIRCRAFT FILTERS

The standard $90-150$ cycle aircraft filters have been reduced in sixe and weight in UTC's miniaturization program. The curves below illustrate program. The curves below illustrate the frequency प

Ouncer case, non hermetic, is $7 / \mathrm{s}^{\prime \prime}$ diameter $\times 1 \mathrm{l} / \mathrm{e}^{\prime \prime}$ height. Weight -.06 lbs.

Ouncer case, hermetic, is 15/16" diameter x $13 / 8^{\prime \prime}$ height. Weight - . 11 lbs.

Miniaturized filfer case is $111 / 16^{\prime \prime} \times 13 / 16^{\prime \prime} \times 15 /$ " $^{\prime \prime}$ height. Weight - . 3 lbs.

SM sub-miniafure audio components, $7 / 16^{\prime \prime} \times 1 / 2^{\prime \prime} \times$ $7 / 16^{\prime \prime}$ hoighi. Weight .009 tbs.
sM Unit actual size As photographed with normal pen for comparison.

OUNCER FILTERS

Filter miniaturization is a specialized ort. The curves below show a low pass filter and a high pass filter being supplied in the UTC ouncer case.

EXTREME

 MINIATURIZATIONThrough the use of specialized materials, extremely compact designs are possible. The curve below illustrates the Q characteristics af a 7500 hy. low frequency reactor housed in the UTC ouncer caso.

The sub-miniapure audio transformer whose frequency curve is shown above, weighs less than one-seventh of an ounce yet provides wide range frequency char500 to 50,000 impedance ratio is 500 to 5,000 ohins opera into a $1 / 2$ meg. Loaded grid.

figures of the month4Includes Electronics Output Index, a business barometer for management
INDUSTRY REPORT 5
Top-level news, trends and morket interpretations
REMOTE-CONTROL AUTOMATIC WEIGHING, by Enrico Klein 98
Dial settings control remote proportioning of industrial-process ingredients BINARY COUNTER USES TWO TRANSISTORS, by Robert L. Trent 100
General-purpose circuit may be triggered by either positive or negative pulses
TRANSMITTERS FOR UHF TELEVISION 102Improved designs result in higher power bul not megawatts deemed essential in 1948
INTERNAL ELECTROSTATIC DEFLECTION YOKE, by Kurt Schlesinger 105
Beam experiences simultaneous deflection with equal horizontal and vertical sensitivities
INDUSTRIAL YARN CLASSIFIER, by Fred P. Strother 110
Phototube device is used for measuring textile yorn diameters
DISTRIBUTED AMPLIFIER COVERS 10 TO 360 MC , by Howard Scharfman 113
Nine 6AK5 tubes provide 8-db gain within 2 db over entire range
REDUCING TV RECEIVER OSCILLATOR RADIATION, by E. W. Chapin and Willmar K. Roberts 116
Additional shielding and filtering needed to eliminate interference costs little extra if designed into tuner
PRECISION PREAMPLIFIER, by George E. Beggs, Jr 121Gives 6-db-per-octave rise from crossover frequency down to 10 cps , with choice of five high-frequency rolloffs
PULP-LOG METAL DETECTOR, by Marcel Grobtuch and D. J. Williams 124
Single-coil system prevents damage to multiblade log chippers by ferrous tramp metal
RECORDING COCHANNEL BROADCAST INTERFERENCE, by Mal Mobley, Jr 127Measures interfering station's field intensity before desired station leaves the airCONSTANT-CURRENT D-C AMPLIFIER, by Donald McDonald130Double-ended output stage allows for simplification ond economy in power supply
TONE-BURST GENERATOR CHECKS A-F TRANSIENTS, by Marshall C. Kidd 132
Transient distortion of networks and loudspeakers is measured directly
ULTRASONIC RANGING FOR CANCER DIAGNOSIS, by John M. Reid and John J. Wild 136
Modification of AN/APS-T3 radar trainer gives promising results
NONDISTORTING CRO SWITCH, by William L. Firestone and Richard M. Bloniarz 139Simple circuit provides high performance at low cost
PROTECTING SENSITIVE CURRENT METERS, by L. J. Giacoletto 142Three electronic circuits used to avoid overload of meters measuring microamperes
SCRIPTOSCOPE SHOWS MESSAGES ON C-R TUBE, by A. G. Hubby and R. B. Watson 144
Permits reproducing handwriting electronically at a distance, using simple four-channel amplifier 146MAXIMUM COVERAGE FOR VHF-UHF TV, by Frederick W. SmithSimplified curves derived fom FCC data facilitate choice of frequency and site
CROSSTALK........ 97 ELECTRONS AT WORK........ 152 PRODUCTION TECHNIQUES......... 228 NEW PRODUCTS......... 258
PLANTS AND PEOPLE......... 302 NEW BOOKS......... 312 BACKTALK.......... 328 INDEX TO ADVERTISERS (Last Page)
W. W. MacDONALD, Executive Editor; John Markus, Vin Zeluff, A. A. McKenzie, James D. Fahnestock, Associate Editors; William P O^{\prime} Brien, Ronald K. Jurgen, John M. Carroll, Assistant Editors; Ann Mastropolo, Marilyn Wood, Mary J. Johnson, Editorial Assistants; Gladys T. Montgomery, Washington Editor; Harry Phillips, Art Director; Eleanor Luke, Art Assistant

KEITH HENNEY, Editorial Director

H. W. MATEER, Publisher; WALLACE B. BLOOD, Manager; R. S. Quint, Buyers' Guide Manager; N. F. Cullinan, Promotion \& Research Assistant; H. E. Hilty, Classified Manager; D. H. Miller, James Girdwood, New York; Wm. S. Hodgkinson, New England; Warren W. Shew, Philadelphia; C. D. Wardner, Chicago; J. L. Phillips, Cleveland; T. H. Carmody, R. C. Alcorn, San Francisco; Carl W. Dysinger, Los Angeles; Ralph'C. Maultsby, Atlanta

Executive, Editorial and Advertising Offices: McGraw-Hill Building, 330 W. 42nd St., New York 36, N. Y. Curtis W. McGraw, President: Willard Chevaller, Executive
 Editorial Director; Nelson Bond, Vice-President and Director of Advertislag; J. E. Blackiburn, Jr., Vice-1'resident and Director of Circulation

Subseriptions: Address correspondence to Electronics-Subscription Service, 99-129 N. Broadway, Albany I, N. Y., or 330 W. 42 nd St., New York 36, N. Y. Allow ten days or change of address. Subscriptions are solicited only from persons engaged in theory, research, design, production, maintenance and use of electronic and industrial contro omponents, parts and end products. Position and company connection must be indicated on subseription orders.

Single copies $75 \$$ for United States and possessions, and Canada; $\$ 1.50$ for Latin America; $\$ 2.00$ for all other forelgn countries, Buyers' Gulde $\$ 2.00$. Subserlptlon rates Itnited States and possessions, $\$ 6.00$ a year; $\$ 9.00$ for two years. Canada, $\$ 10.00$ a year; $\$ 16.00$ for two years. Other western hemisphere countrles, $\$ 15.00$ a Year: $\$ 25.00$
 H1.; 68 Post Street. San Francisco 4; McGraw-1lill House, London, E.C. 4; Washington, D. C., 4; Philadelphia 3; Cleveland 15; Detroit 26; St. Louls 8; Boston 16: 132i
 ndex.

marion

 methods dieat, paoce ond difin each dial individuallyBecause the accuracy of an indicating instrument is completely dependent upon the accuracy of its dial, Marion takes extraordinary care with each dial... from the simplest black and white type to a fluorescent type of seven colors.
Marion dials are never printed in sheets and then stamped out, as are ordinary dials. Each Marion dial is die-cut, prepared and printed separately. This individual handling guarantees finished painted edges, which reduces high voltage corona; it also assures accurate mechanical registration of the dial with the pivot center of the instrument.

Precision and dependable performance are built into every Marion dial... in each step of manufacture.

Preliminary Operations . . . Dial data furnished by the customer is carefully checked by Marion's Engineering Department. After Engineering OK, data and suggested layout are sent to the Art Department.
The dial scale is drawn 4 to 6 times "life size," then the drawing is photographed and reduced to the proper size.
Preparation of Plates ... After photography, a positive print is made. Color separations are made by hand, and deep-etched zinc plates for offset lithography are produced. The offset process is used to assure sharp printing definition and good color.

Preparation of Dial Blank ... Each metal dial blank is thoroughly rinsed and vapor de-greased. Then, three separate coats of special fume and age-proof eggshell-white lacquer are applied. This lacquering technique gives a surface that will not chip, flake, fade or discolor.

Registering . . . After careful inspection, dial blanks are securely mounted on the printing press. Each blank is individually adjusted, and the printing plate is positioned exactly. This step ensures perfect registration for multi-color printing.

Printing and Drying . . . Each dial is then printed separately. After special inks of each color are applied, dials are baked for 15 to 20 minutes to set the ink. This process eliminates smudging, and minimizes the amount of lint picked up during drying. Dials are thoroughly inspected again before they are mounted on Marion instruments.

Other Marion Methods. Marion's method of assuring the top accuracy and service of each dial by individual handling is only one of a number of methods which
 Marion is presenting in the hope that some of them will help you as they have helped us. We will be pleased to send more information if desired.
marion electrical instrument co., 401 Canal St., manchester, N. h. marion meters
manufacturers of marion

FIGURES OF THE MONTH

RECEIVER PRODUCTION

(Source: RTMA)
Television sets
Home Radio sets
Portable sets

469, 157 469,157 150,494 542,021

RECEIVER SALES

(Source: Licensee figures)	Mar. '51
Television sets, units...	718,986
Electric radio sets, units	768,083
Battery sets, units.....	135,300
Auto sets, units.......	273,130
Teievision sets, value.. $\$ 142,035,675$	
Electric radio sets, valu	$\$ 21,565,687$
Battery sets, value....	$\$ 2,656,750$
Auto sets, value......	$\$ 8,696,203$

RECEIVING TUBE SALES

(Source: RTMA)	Apr. '51
Receiv. tubes, total units	$35,883,627$
Receiving tubes, new sets	$25,284,390$
Rec. tubes, replacement.	$9,052,251$
Receiving tubes gov't...	229,339
Receiving tubes, export.	$1,317,647$
Picture tubes, to mfrs...	278,955
BROADCAST STATIONS	
(Source: FCC)	
TV Stations on Air....	May '51
TV Stns CPs-not on air	107
TV Stns-Applications.	2
AM Stations on Air....	208
AM Stns CPs-not on air	105
AM Stns-Applications.	267
FM Stations on Air....	648
FM Stns CPs-not on air	14
FM Stns-Applications..	9

NETWORK BILLINGS

(Source: Pub. Info. Bureau)
Apr. '51

AM/FM-ABC	$\ldots \ldots$	$\$ 2,980,183$
AM/FM-CBS	$\ldots \ldots$	$\$ 6,487,717$
AM/FM-MBS	$\ldots \ldots$	$\$ 1,539,801$
AM/FM-NBC	$\ldots \ldots \ldots$	$\$ 4,897,882$
TV-ABC $\ldots \ldots \ldots$.	$\$ 1,432,319$	
TV-CBS $\ldots \ldots \ldots \ldots$	$\$ 2,906,891$	
TV-DuMont $\ldots \ldots \ldots$	$\$ 574,025$	
TV-NBC $\ldots \ldots \ldots$	$\$ 4,758,309$	

Previous
Month

Latest Month

Mar. '52
510,561 532,858 99,720 343,314

Apr. '52
322,878-p 462,167-p 110,529-p

	Year Ago	Previous Month	Latest Month
TV AUDIENCE			
(Source: NBC Research Dept.)	May '51	Apr. '52	May '52
Sets in Use-total......	$12,499,900$	$16,939,100$	$17,290,800$
Sets in Use-netw'k conn.	$10,608,300$	$16,024,900$	$16,352,300$
Sets in Use-New York.	$2,350,000$	$2,930,000$	$2,970,000$
Sets in Use-Los Angeles	918,000	$1,155,000$	$1,185,000$
Sets in Use-Chicago...	921,000	$1,135,000$	$1,155,000$

COMMUNICATION AUTHORIZATIONS

(Source: FCC)	Apr. '51	Mar. '52	Apr. '52
Aeronautical	32,531	32,176	32,147
Marine	28,722	34,843	35,116
Police, fire, etc.	8,825	10,592	10,787
Industrial	8,852	12,475	12,766
Land Transportation	4,112	4,847	4,886
Amateur	90,691	106,832	108,648
Citizens Radio	497	878	971
Disaster	0	29	31
Experimental	482	458	349
Common carrier	827	922	942

Mar. '52	Apr. '52
$30,935,220$	$26,247,{ }^{\prime} 58$
$19,513,454$	$15,334,092$
$7,231,186$	$6,095,641$
$2,776,796$	$3,257,119$
$1,413,784$	$1,560,406$
370,206	270,781
Apr. ${ }^{\prime} 52$	May '52
108	108
0	0
536	541
2,347	2,352
68	66
324	323
632	630
14	17
9	10

$$
\begin{array}{rr}
\text { Mar. '52 } & \text { Apr. '52 } \\
\$ 3,355,715 & 3,244,146 \\
\$ 5,154,077 & \$ 4,943,400 \\
\$ 1,826,527 & \$ 1,677,748 \\
\$ 4,184,074 & \$ 4,078,593 \\
\$ 2,07,782 & \$ 1,686,583 \\
\$ 5,643,123 & \$ 5,641,831 \\
\$ 758,763 & \$ 738,926 \\
\$ 7,357,305 & \$ 6,946,751
\end{array}
$$

Feb. '52
Mar. '52 410,280 370,905 344,008 $\quad 380,846$ $\begin{array}{ll}43,638 & 68,339\end{array}$ 195,689 71,835,056 \$6,488,686 $\$ 844,091$ \$5,539,061

204,990 \$62,988,663
\$7,963,825
\$1,332,640 \$5,912,217

Apr. '52 26,247,258 5,334,092 5,641 $3,257,119$
$1,560,406$ 270,781

May '52 108 541

2,352
66
630
17
10

Feb. '52	Mar. ${ }^{\prime} 52$
$273,100-r$	$272,900-\mathrm{p}$
$171,000-r$	$171,100-\mathrm{p}$
$\$ 65.14-r$	$\$ 64.99-\mathrm{p}$
$\$ 61.28-\mathrm{r}$	$\$ 60.84-\mathrm{p}$
$41.2-\mathrm{r}$	$41.0-\mathrm{p}$
$40.8-\mathrm{r}$	$40.4-\mathrm{p}$

STOCK PRICE AVERAGES

(Source: Standard and Poor's) May'51
Radio-TV \& Electronics 2220
Radio Broadcasters ... 208.7
Apr. '52

$$
292.5
$$

May '52

INDUSTRIAL TUBE SALES

(Source: NEMA)	lst '51	4th '51	lst '52
Vacuum (non-receiving).	$\$ 6,550,000$	$\$ 14,300,000$	$\$ 11,320,000$
Gas or vapor.........	$\$ 2,230,000$	$\$ 3,170,000$	$\$ 3,100,000$
Phototubes	$\$ 410,000$	$\$ 400,000$	$\$ 500,000$
Magnetrons and velocity			
modulation tubes....	$\$ 1,400,000$	$\$ 6,670,000$	$\$ 8,460,000$

INDUSTRY REPORT

electronics—JULY • 1952

Atomic Energy Contracts Rising

Electronics industry equipment

 'take' totalled $\$ 39.5$ million in '50-51; more comingIMPORTANT to the national economy as well as to the national defense are government expenditures on the atomic energy program. They have totalled $\$ 6.5$ billion in the last ten years, according to the McGrawHill magazine Nucleonics.

In the fiscal years 1950 and 1951 the Atomic Energy Commission spent $\$ 521$ million with 41 American industries for equipment and supplies alone, exclusive of expenditures for construction, research and development and raw materials.

Of this $\$ 521$ million, $\$ 39.5$ million (8 percent) went to the electronics industry.

- Electronics' Share - Between June 31, 1949 and June 31, 1951
electronics industry contractors received 146 contracts making up the $\$ 39.5$-million. Subcontractors handled $\$ 8.5$ million (22 percent) of this business.

Prime contractors obtained 96 percent of their equipment and supply business through negotiations, 4 percent by bidding competitively. Firms having more than 500 employees received 97 percent of the dollar volume, those with fewer employees 3 percent.

Subcontractors negotiated 67 percent of their business, obtaining 33 percent by bidding. Companies with over 500 employees got 65 percent of it, smaller ones 35 percent.

- Future Prospects-No estimate of the amount of money to be spent by the AEC on equipment and supplies and, in particular, electronic

equipment and supplies, in the fiscal year 1953 (beginning July 1, 1952) is yet available.

The Commission has, however, asked for an overall $\$ 4.5$-billion appropriation (including a supplemental request), and this is 246 percent higher than in 1952.

Wanted: More Electronic Engineers

\$4,000 starting salaries clean

 up crop of June grads; pirating is costly; last reserve is EuropeThe law of supply and demand determines pay rates. With the shortage of electronic engineers, salaries are rising.

To attract badly-needed engineers, many firms are surveying the industry-wide salary situation almost monthly and adjusting their own rates accordingly.

- Fledgling Pay-June graduates with a B.S. degree are signing up at about $\$ 320$ a month, in a range of $\$ 280$ to $\$ 350$.

Some factors affecting the figure are company size and location, fringe benefits, extent of job security, amount of practical" industrial or military experience obtained before graduation.

To offset high starting salaries, more complex work is being assigned to graduates right from the start. This includes responsibility for paper work, easing the burden of such work on more experienced engineers.

A Master's degree today rates little or no automatic boost in starting pay. Instead, salary upping is based on ability to analyze circuits and understand theory. A maximum of $\$ 50$ extra per month for an M.S generally goes to those having
a thesis directly related to the work they will do.

- Pirating-The limited supply of June grads is just about gone. There is now practically universal agreement that pirating of engineers eventually hurts the pirating firm along with the rest of the industry, hence engineer job-changing today is principally for reasons other than salary.

Reserve of engineers in Europe appears to be greater than our own. Already a few U.S. firms are importing these men, despite language difficulties, expenses of moving and delays in getting security clearances.

- Holding Their Own-Turnover is a major factor in the engineering picture. At least one large electronic firm is now holding engineering turnover below 0.1 percent per month, without paying abovenormal salaries, but 1 percent per month is considered good by other companies in the industry.

Car-Card Radio Wins Decision

By a 7 -to- 1 vote the Supreme Court of the United States has decided that broadcast reception in buses and streetcars does not violate the constitutional rights of passengers.

This was good news for Transit Radio, Inc., chief proponent of the system. Its next hurdle will be to gain unqualified approval by FCC, which has never actually disapproved.

- Counting Sheep-Advertisers like the idea of broadcasting to a captive audience that can be accurately counted (Electronics, p 72, June 1948). A musical program available to the general listening public can be hopped up during commercials by a special ultrasonic tone that raises the volume on the bus receivers.

Transit Radio now operates in nine cities and has equipment installed in 3.200 vehicles, according to Rishard C. Crisler, president.

Microwave Telephone Expands

Bell System adds new facilities. Several independents enter field

LARGEST OPERATOR of microwave telephone equipment is the Bell System, with 5,350 miles of radiorelay links in operation and an additional 1,560 miles under construction. This represents a total capital outlay of $\$ 75$ million.

The map shows Bell's microwave network, including 407 miles operated by Bell of Canada. Coaxial cable routes supplementing these facilities are shown as light lines.

Major radio-relay links provide six broad-band communication channels. Each broad-band channel can carry either one television program or upwards of 600 telephone conversations. At present, Bell's microwave facilities largely carry television programs. However the amount of telephone traffic carried by microwave will be doubled by the end of 1952.

- Selling to Bell-Western Electric, AT \& T's manufacturing subsidiary, builds the bulk of the Bell System's microwave equipment, including all major radio-relay links. However, where the great traffichandling capacity provided by WE erluipment is not required, Bell often buvs microwave equipment manufactured by outside concerns.

Philco has supplied 218 miles of
microwave radio relay for singlechannel tv service.

Chief suppliers of so-called "skinny" route equipment that provides up to 24 telephone channels between toll centers include Federal, Philco and REL; 642 miles of such equipment are operated by the Bell System.

- Independent Companies - Destruction of outside plant by ice, windstorm or rockslide can be disastrously costly to the telephone industry's little fellow. So independent companies, totaling 5,300, are also eyeing microwave favorably.

Peninsular Telephone of Tampa, Fla., Tidewater of Warsaw, Va., and Citizens' Utilities of Redding, Calif., have installed Federal 24channel links for toll-center hookup.

Outside continental U. S., Maritime Telephone and Telegraph of Canada and the Puerto Rico Telenhone Co. use Federal links. In Hawaii, Mutual Telephone has installed Link Radio equipment for intra-island use.

Silicon Transistors?

one Major Drawback of germanium transistors, both point-contact and junction, is that above 75 or 80 degrees centigrade they become un(Continued on page 8)

SYLVANIA CHALKS UP

Sylvania proudly announces a new InstantFiring ATR Tube, Type 6214.

This tube now makes possible for the first time, the operation of a Beacon Radar from a single antenna. Previously, reliable Beacon operation required use of two separate antennaeone for receiving and one for sending.

The New Sylvania Tube permits a Beacon to "clear its throat" immediately and answer a received signal instantly by transmitting a reply signal-OVER THE SAME ANTENNA. It opens
the ray to new and more compact designs resilting in worthwhile savings in equipment manufactere.

This new component is just one more example of the constant research and engineering skill which has established Sylvania's leadership in electronic development.

For data concerning the ATR-6214 or any other Sylvania Microwave Tube, write today to: Sylvania Electric Products Inc., Dept. E-2507, 174(1 Broadway, New York, N. Y.
SYMNNA

stable or may not operate. Reports from the field indicate that silicon, abandoned in early transistor development for more promising germanium, remains stable at higher temperatures.

'Silver Ear' Speaker Due In Few Months

'Golden Ear' high-fidelity audio enthusiasts who are accustomed to pay three and four-figure prices for their equipment recently heard a reasonably high-fidelity loudspeaker destined to sell for $\$ 20$ to $\$ 25$.

Using four $\$ 1.25$, five-inch speaker units in a specially constructed plywood cabinet, Jordan J. Baruch of MIT's Acoustics Lab has obtained a speaker system that is reasonably flat from 40 to 11,000 cycles. He could really please the Golden Ears, using similar techniques, but the end product would cost more.

- Availability—Good news for Silver Ears (who like high-fidelity but can't afford premium prices) is the fact that Ultrasonics Corp. of Cambridge, Mass., has already taken out a license, made a production prototype and will be in production in a few months.

NARTB Seeks to Ease Federal Operator Requirements

FCC proposal might free needed technicians for coming tv activity

Following on the heels of several individual grants to $f-m$ broadcasters, the National Association of Radio and Television Broadcasters has petitioned the Federal Communications Commission for indus-try-wide relaxation of rules on station operations.

For an f-m transmitter perched upon a mountain accessible only by jeep or skis, remote-control unattended operation may mean the difference between f-m programs or no programs. Any station carrying a high percentage of commercial programs might find a full complement of $\$ 85$-a-week operators good insurance against a blowup in the middle of a revenue-producer. But most $\mathrm{f}-\mathrm{m}$ stations are not in the big money.

- Standard Broadcasting - FCC, nudged by NARTB, now proposes that all nondirectional a-m stations (as well as f-m) with power less than 10 kw shall be allowed to
operate by remote control. Moreover, it would relax the requirement calling for a first-class licensee to run the equipment, although NARTB suggests that one operator of this grade be kept on call. Actually, routine station operation by men of lesser license grade under a top-licensed man is already permitted because of personnel shortages. The new proposal would standardize a temporary measure.

Operator unions will file lengthy dissents by the Commission's deadline for comments on August 4, 1952. Labor groups that are usually in bitter competition are united in opposition to what they consider the industry's bid for 'cheap help'. Pointing out that a good operator is paid as much for what he knows as for what he does, the unions feel that by keeping standards high both operating engineers and broadcasters get needed protection.

- TV Squeeze--Strongest motivation for the NARTB petition stems from the economic pressures of (Continued on page 10)

Tank Trucks Use Electronics to Facilitate Passing

[^0]
television. In New York City, where salaries in most fields are highest, operators are getting as much as $\$ 150$ for a 5 -day, 40 -hour week. Here, the income from f-m is inconsequential and a-m rates are being forced down. Many a-m broadcasters anticipate embarking upon tv's ocean of red ink. They see the engineer market being inflated by the very fact that they must then double their own licensed-operator employment. And this is but a fraction of the nonlicensed technical personnel necessary.

The Commission asks one $\$ 64$ question: how is it proposed that remotely controlled stations or those using nontechnical operators put into immediate effect, after an alert, the Conelrad (Electronics, p94, Aug. 1951) fre-quency-changing program that denies navigational information to enemy aircraft?

Parts Distributors Score Bypassing

Disturbing to industrial distributors of electronic parts is bypassing by manufacturers dealing directly wiťh large plants. Affected distributors have recently become vocal enough on the subject to induce at least a few parts manufacturers to protect them with respect to price.

Not so readily reduced is the bypassing of radio-tv replacementpart distributors by set makers selling components to servicemen direct or through their own distributors. This part of the distribution picture is complicated by the fact that there are (1) set makers doing a legitimate business in 'original replacement', (2) those that have inadvertently bought more parts than they can use in receiver nroduction and, (3), those that deliberately overbuy to hammer down price and plan to dump the surplus.

Several industry groups are studying the last-mentioned situation but so far the most concrete suggestion reported involves somewhat vague 'monitoring' of suspected factory accounts.

'Community' TV Antennas Big Business

Even applicants for uhf-tvstation licenses are wooing operators; 'built-in' audience easily captured

Community tv antenna systems have quietly become a very respectable equipment market.

These systems, which simply pick up distant tv stations on a master antenna and distribute the signals to homes of subscribers via cable, require neither heavy manufacturing facilities nor extensive staff. Thus the new field may very well attract many companies which couldn't possibly consider entering, say, the manufacture of tv transmitters.

- Expansion Plans-Though only 70 to 80 systems are operating today, serving perhaps 10,000 to 15,000 homes, at least twice that many more are being planned. And the planners seem to have little fear, even though the late unlamented freeze on new stations is over, that the advent of new stations will dry up their future.

Investment per system can be quite substantial. The largest system in operation today, Trans-Video, Pottsville, Pa., has invested $\$ 300,000$
to serve 1,600 subscribers - and it plans to expand to serve 3,000 or more. Many other companies have even more ambitious plans, in such cities as Harrisburg, (5,000 subscribers) and Williamsport, Pa. $(4,000)$.

- Cable is Key - Early company in the business was Jerrold Electronics, Philadelphia. RCA, Philco, and Technical Appliance are active and latest is Spencer-Kennedy, Cambridge, Mass. The price differential between companies is as great as 2-to-1.

Such systems are proving a boon to coaxial-cable manufacturers, since each installation uses miles of high-quality lines. To date, most systems have employed cable such as $\mathrm{RG} / 59 \mathrm{U}$ and $\mathrm{RG} / 11 \mathrm{U}$. Operators are constantly pushing cable makers to develop lower-loss lines, so that amplifiers may be spaced farther apart-substantially reducing costs.

- UHF 'IN' - Applicants for uhf-tv stations are wooing communitysystem operators, for the simple reason that they can provide a 'built in' audience the day a uhf station begins telecasting.

One converter at the master antenna can bring a uhf signal down to a vhf channel to be fed to the entire system - obviating the need for each set owner to buy a converter and uhf antenna at $\$ 50$ or more.

New Battery Designs Hit Market

Alkaline electrolytes used

 in B batteries for
personal portables

Alkaline dry-cell batteries have received widespread publicity in recent weeks by virtue of their use as B batteries in personal-portable radios. Two companies, RCA and Emerson, have already announced new sets using such batteries. Others are expected to follow suit.

- Content-Design of a flat-type alkaline dry cell, according to the Ray-O-Vac Company, centers about the use of sodium-hydroxide (caustic soda) electrolyte, with a

Rear view of the new RCA personal portable, showing the new alkaline B battery at the left
zinc anode and a manganese-dioxide mixture for the cathode material. With usage of the battery,
(Continued on page 14)

CENTRALAB'S ELECTRONIC FAMILY

Many members have made electronic history!

Today, many of the most advanced
developments in electronic equip-
ment -- from modern hearing aids
to television, radar and X-ray
-- are built around the revolu-
tionary components pioneered and
introduced by Centralab.
Tangible evidence of the cease-
less research that gives fresh
emphasis to the fact that many products bearing your trademark serve better -- last longer ... thanks to the continuing engineering advances of Centralab.

As in the past -- so in the future -- you can look to Centralab for leadership in electronic component research.
(Great grandad)

1922 Fust composition variable resiaticeverbuit
(She started this brauch of the family)

1936 a rew and comelte tine of wave bend switeres

Variable Resistors

1929 First combination variable restotir andswith

1946 Model 1-Worlds smallest switth type variable resitor

1949 Model 2 Radiohn the mast madern high quality variable resiotor
(Latest addetion to this

1951 New High TorqueVariable Pesistor-worlds mallest-wo bigger than a dime!
(our most beautiful babies!?

1951. New miniatere rotary switch ($1 \% / s^{\circ}$ dia.)

1943 The industy's fust low locs, high frequevcy medium duty proverswith wether

Switches

1938 The inductrys frut 24 contectipersingle sectionswith

1939 First multiple contast lever action switch

1947 The first slide swith introduced to the industry

HAS BEEN GROWING FOR 30 YEARS

Capacitars

1936 Tumprature Compensationg Cormic Capacitors

P46The finct DiseType By Prass conpterg ceravic dapacitiosictio. adnced to the dectromicindastry

1939 Indusirys firt Coramic Trimmer Capacitors

1947 Svanstry's first TV High vottage Ceramic Capacitors

 Transwiting Ceramic cappeitors

1949 Sudustry's first Cermic Tubular Trimmer Capacitors
(War babies who made peactime) more than good in per

19459ndeustris first Tubular: Typer By Pasconpling Ceramic capocitors-

1951 New Eyelet Mounted Fed-Through Ceramic Capasitios

Printed Electionic Circutes

(Nobody ever saiv anything tike these, but now everybody wands them)

1943 Centralab originated the industry's first printed ELECTRONIC circuit

Ceramics

1942 First offered fune ceramics to industry. Actually, Centralab hod been mating ceramies forits cun use since 1928 . . but in 1942 developed a grade 15 steatite Ceramic superior to the then exisiting Navy grode " G " specification
Centralab was the first to matalize ceramics. By 1945 Coritierite and Zircouite bodles with grade L-4 rating were developed.
G
(This brawch of the family just grows and growis and grows and theres no room for all their pistures)
the electrolyte becomes absorbed gradually.

For portable-radio use, the batteries are light-drain devices, rated at about ou0 milliampere hours and able to withstand up to 15 -milliamperes current drain. The same basic design, changed slightly by the addition of mercuric oxide to the electrolyte, gives a heavy-drain battery for other uses.

Several new radios are using two 1㐘-volt A batteries connected in parallel. These are of the conventional zinc-carbon construction but with a special mix of manganese dioxide for the depolarizer. Leak-proof steel containers seal in the ingredients for longer life.

- Mercury Cell-The new alkaline batteries are somewhat similar in action to the mercury cell of the P. R. Mallory Company, in which a solution of potassium hydroxicle and zinc oxide forms the electrolyte, a pressed zinc pellet or a roll of thin corrugated zinc strip forms the anode and pure mercuric oxide with graphite added forms the depolarizing cathode. Mercury cells have long shelf life because there is little or no internal cell reaction until electrical energy is drawn from the cell.
Batteries of the carbon-zinc type, for portable-radio use, are being revamped by the National Carbon Company and improved designs are expected to be on the market at low cost early in July. The new carbon-zinc B battery will be of the flat-type, and the new cylindrical A battery will be twice the length of the usual $1 \frac{1}{2}$-volt cell.
been virtually forced to promote tv sales in what has nearly always been a month of very low buying activity.
- Plans-Westinghouse, Admiral and Philco are engaged in twin summer promotions. Each is sponsoring convention coverage on television and introducing new tv sets. Other manufacturers such as RCA, Crosley, Zenith and CBSColumbia are unveiling new tv models during the slow season.

For some companies, this is the third time in 1952 that new set debuts have taken place. There may be more this year. Normally, new models are introduced twice a year.

In addition, many special promo-
tions are planned. Free phonographs with each console sold, free use of a set during the convention and special contests for cash prizes are some of them.

- Outlook-Consensus of opinion is that price is the really important consideration in today's market. In fact, some companies expect a trend toward greater production of low-priced 17 -inch models.

One manufacturer sees 1952 sales by tube size reaching the following percentages: Consoles: 60 percent 20 -inch tubes, 40 percent 17-inch tubes; Combinations: 85 percent 20 -inch tubes, 15 percent 17-inch tubes; Table Models: 40 percent 20 -inch tubes, 60 percent 17 -inch tubes.

R-F Heater De-Bugging Slow

Industry struggles to meet FCC's June 30 deadline on radiation and interference

On JUNE 30 FCC rules limiting radiation from radio-frequency heating equipment go into effect. At the time of this writing, it appears that a substantial percentage of the country's r-f equipment will then be operating illegally, or shut down.

A survey among specialists engaged in de-bugging industrial equipment and issuing FCC-required certificates showing compliance with FCC rules shows that many are flooded with jobs and will not be able to take on additional ones (or even complete those con-
tracted for) by June 30.
Estimates of the percentage of equipment that will be operating legally after June 30 run between 30 and 90 percent, with several expressing concern over industrial production interruptions caused by shutting down equipment that has not been or cannot be certified.

- Relaxations - Certain of the FCC rules have been eased.

A multi-unit installation covering an area that can be contained in a $500-\mathrm{ft}$. circle may be covered by one certificate.

Medical diathermy users have been granted a year extension to June 30, 1953.
-Field Findings - Each installation
(Continued on page 16)

TV Manufacturers Fight Summer Slump

New line introductions plus special convention promotions may boost summer sales

NEw television models and new advertising campaigns are usually introduced in the fall. This year, however, because of the July political conventions, manufacturers have

Equipment Type	Freq. Range	Recommended Steps
High-frequency motor-generator sets	up to 3,000 cpe	Usually no corrective measures necessary, unless harmonic radiation is high
Vacumertube generators	100 to 500 ke	Shielding and power-line filtering
Quenched-gap	200 to 500 kc	Shielding often needed if manufactured prior to July 1, 1947
Mercury-hydrogen gap	20 to 70 ke	Most units already provided with steel shielding. May require extra shielding and some line filtering
Plastic-sealing	6 to 160 mc	Shielding of both vacuum-tube oscillator and electrodes essential
Plastic-preheaters	6 to 50 me	Usually provided with oseillator and electrode shielding. If not, shielding essential
Wood-gluing, rubber, chemical heating and drying	2 to 50 me	Usually necessary to improve shielding to meet requirements
Foundry core baking		Most units manufactured after July 1 , 1947, and thus certified by manufacturer

insures the reliability of your equipment.

Miniature air-damped Barrymounts were developed specifically to help you with your miniaturization projects. They give you these advantages :

1. Less space - reduced height cuts cubage of mounted equipment.
2. Less weight - only $5 / 16$ ounce per unit isolator.
3. Wide load range -0.1 to 3.0 pounds per isolator.
4. Satisfy temperature (-67 to $+170 \mathrm{~F})$, vibration, and other performance requirements of JAN-C-172A special models available for extreme high or low temperatures.
5. Ruggedized models - available for equipment that must meet shock-test requirements of AN-E-19, MIL-E-5272, and MIL-T-5422.
6. Four styles - available as unit isolators or assembled with mounting bases built to your needs.

707 PLEASANT ST., WATERTOWN 72, MASSACHUSETTS
presents different problems to engineers and technicians doing the debugging and making certification measurements.

It takes 20 to 40 man hours to add required screening and filtering to make an offending piece of equipment operate properly, and 10 to 20 hours to make certification measurements.

Cost usually runs between $\$ 300$ and $\$ 500$. Figures are subject to wide variations.

One specialist saves multi-unit customers money by de-bugging one piece of equipment and letting company employees perform like operations on other units.

In difficult cases, many companies have been forced to use elaborate screen rooms to house heating equipment.

Some firms move equipment into basement locations to take advantage of the natural shielding afforded by the earth.

Electronics Firms Lead In Defense Contracts

Sixteen electronics companies are among top 100 listed by Munitions Board

Eleven percent of the $\$ 44$ billion spent oil defense contracts from July, 1950 to December, 1951 went into the coffers of sixteen electronics and related-industry manufacturers.

These firms were among the top 100 military contractors who received 59.9 percent or $\$ 26$ billion of all military prime contracts for the period.

General Electric again topped the electronic firms on the list but a large percentage of its contracts are for jet engines. Along with GE, Westinghouse and AT\&T were other major electronic manufacturers in the first 20 companies. Principal upward change is for Sylvania, which moved from 91 on the previous list to 71st place on the present one.

- Top Firms-Following are the electronics and related-industry
firms on the list of 100 military prime contractors:

Position Millions percent
General Wlectric. $\quad 5 \quad \underset{5}{\text { Mosition Mions }}$ of Total
Westinghouse
AT\&T
Sperry
lendix
IT\&T.
RCA

5	$\$ 976.8$	2.2
12	674.4	1.5
13	657.8	1.5
17	479.0	1.1
18	473.4	1.1
22	286.8	0.7
27	211.3	11.5
33	184.6	0.4
40	160.7	0.4
42	142.7	0.3
44	138.7	0.3
56	93.1	0.2
59	91.4	0.2
71	76.9	0.2
78	63.3	1.2
87	53.3	0.1

Kaiser-Frazer Eyeing Electronics

Automobile-maker Kaiser-Frazer is studying the electronics field, may manufacture power tubes.

Negotiations are reported to be under way with another company that would provide plant facilities and electronic engineers.

What's Behind the FiguresNetwork Billings

Fifth of a series explaining items reported on statistical page each month

Network billings, the fifth category of statistics reported each month in Figures of the Month (p 4), represent the gross time charges billed to advertisers and agencies each month by the major radio and ty networks, as compiled by the Publishers Information Bureau of New York.

Only network charges are included; billings for time sold by individual stations, not carried as network programs, are not reported.

The accompanying charts, which
show the trend in billings for each network from October 1950 to the present, reveal that tv is forging steadily ahead of sound radio in gross billings. For the first four months of 1952 network radio (ABC, CBS, MBS, and NBC) produced billings of $\$ 56.5$ million while tv (ABC, CBS, DuMont, NBC) accounted for $\$ 60.7$ million.

This is a sharp reversal of position from the previous year. In 1951 network radio billings were $\$ 174.7$ million for twelve months, against $\$ 128.0$ million for tv.

- Competition-NBC has pushed ahead in tv, capitalizing on its early promotion of video as a net(Continued on page 18)

All in
Distortion Analyzer Noise Indicator Frequency Meter and a Highly Sensitive Voltmeter
the type 1932-A Distortion and Noise Meter $\quad \$ 595.00$

Here is a highly accurate, easily operated instrument widely used for the measurement of audio fidelity, distortion and noise. This instrument is very valuable for production-checking and adjusting attenuators, audio amplifiers, audio oscillators and radio receivers, and checking envelope distortion of oscillators up to 900 Mc . Among Its Many Uses Are:

* Complete, continuous and accurate wave analysis of fundamentals from 50 to 15,000 cycles; with harmonic range up to 45,000 cycles when used with an oscilloscope - invaluable for checking hum, noise and distortion
* Rapid selection of frequency - only one main tuning control and push buttons used
* Indication of frequency with accuracy of better than 3%, making it a reliable frequency meter
* Direct audio voltage measurements of 600 -ohm systems over a range of +20 to -40 dbm
* Highly sensitive voltage measurements from 1 mv to 100 volts, if calibrated first
* Detection of noise levels down to $200 \mu \mathrm{v}$ - inherent noise of instrument considerably less
* Visual observation of distortion components with an oscilloscope; the distortion components at the output jack and the input to the analyzer are applied to the horizontal and vertical plates of a scope. The resulting lissajous figures give visual indication of the prevalent distortion harmonics. Simply by tuning through the frequency spectrum, a continuous visual indication of distortion present is obtained.
The accuracy, rapidity and ease with which a wide variety of measurements can be made has ideally adapted this instrument to the production checking of radio receivers, electronic instruments and components, as well as for everyday measurements in the communications laboratory.

Abridged Specifications

Distortion Range: Push buttons select fullscale meter deflections of .3, 1, 3, 10 or 30 per cent distortion
Noise Range: Noise measurements made to 80 db below reference calibration level
Audio-Frequency Range: 50 to 15,000 cycles for fundamental in distortion measurements; 30 to 45,000 cycles for noise and hum measurements
Required Input Voltage: between 1.2 and 30 volts for 100,000 -ohm input; between 0.8 and 30 volts for 600 -ohm input

Residual Distortion Level: 100,000 - om input -. 05% (maximum distortion) below 7,500 cycles; 0.10% above 7,500

Residual Noise Level: Less than 80 db

Accuracy: Essentially $\pm 5 \%$ of full scale for distortion, noise and dbm measurements

275 Massachusetts Avenue, Cambridge 39, Massachusetts, U. S. A. 90 West Streat NEW YORK 6

920 S. Mirhigan Ave. Chicaco 5
1000 N. Seward St. LOS ANGELES 38
work medium, but is below CBS in radio. The combined billings (radio and tv) of these two networks are about on a par: $\$ 111.2$ million for CBS vs $\$ 113.5$ million for NBC during the year 1951, and $\$ 41.5$ million for CBS vs $\$ 44.9$ million for NBC in first third of 1952.

Both networks now get more gross income from tv than from radio, whereas $A B C$ still makes its major revenue from radio.

Primes Off W-H Hook

Labor defartment plan to hold government contractors responsible for the wage and hour policies of their subcontractors (p 20, June) under the Walsh-Healey act has been indefinitely postponed.
Secretary Maurice Tobin cancelled a June 10 hearing which was to have lead to a July 1 regulation, has announced no new dates.

Converters Hold UHF-TV Fort

Present price problem defers production of complete-coverage receivers

Although coverage of 82 channels will be provided in the ultimate tv receiver, a survey of 30 receiver manufacturers reveals that the need to maintain present low prices prevents immediate production of such sets.

Only two receiver models so far announced provide complete coverage of vhf and uhf channels without additional parts or accessories. However, some companies have engineering models built, and at least one front-end manufacturer offers a tuner covering channels 2 to 83.
The present uncertainty of when and where stations will open on the uhf channels is reflected in the receiver industry. Manufacturers are more concerned with holding down the cost of a receiver than providing maximum utility in the near future. In the words of one, "We will not use a complete 82 channel tuner until forced to. Some of our new models use strips, others converters."

- Biggest Market-Manufacturers are most concerned with sales in presently served areas which will get additional stations. In such areas 17 million receivers now operate. Any of these can be used with a converter to receive uhf channels, and those equipped with turret tuners can usually be modified with strips to receive a few uhf channels. As a result, nearly all manufacturers are planning
to push the sale of converters.
For the oldest receivers, the converter sets on top of or alongside the receiver cabinet. Some models made since 1949 have had space provided in the design of cabinet and chassis for the converter to be fitted in. Some of these cover only a few selected uhf channels, other tune all uhf channels from 14 to 83.
Some manufacturers will produce their own design of converter, others plan to purchase from front-end makers, as complete chassis or as subassemblies like vhf tuners.

Separate-unit converters covering uhf channels range in price from $\$ 29.95$ (Teleking) to $\$ 49.95$ (GE), most companies say "will be under $\$ 50$." Strips for old sets having turrent tuners cost from $\$ 2$ up, are given free during 1952 to viewers in cities getting uhf channels by Sparton and Admiral.

Coin-Box Television Will Show on Wire

Telemeter is Paramount's version of subscription television, whereby the home viewer may hope to see first-run movies from his easy chair. Zenith (Phonevision), NBC and Skiatron also have systems for the same purpose but use different methods of denying the program to nonsubscribers and other ways of collecting.

International Telemeter Corp., of Los Angeles, places a coin box beside the television set and wires in

Telemeter coin box that shows program price is connected by cable to chassis within television cabinet. When sufficient coins are deposited, the movie is seen and the sound track heard. An electronic tape recorder notes the show and amount paid
a sealed chassis connected by armored cable. When the receiver is switched to a Telemeter band, a dial on the coin box is lighted and soon clicks out the price of the program. At the same time, a 'barker' audio channel starts advertising the attraction persuasively. The screen shows a futuristic pattern of lightning flashes, with an occasional tantalyzing glimpse of a close-up or still scene.

- Nickel-in-the-Drum-When coins are dropped into the box, the dial revolves to show the balance due. When the full viewing price has been deposited, the show comes on bright and clear. The set automatically switches to the program sound channel. Other sets, unequipped for Telemeter, see only the darting flashes, while two sound channels fight, the barker being somewhat the stronger.

Whether FCC will ever license any subscription tv system over the protests of film exhibitors and constitutionalists is a moot question now. For a field test, Telemeter
(Continued on page 20)

GENERAL OFFICES:
1521 E. Grand Ave. El Segundo, Calif. Phone EI Segundo 1890 chicaco branch office: 205 W. Wacker Dr. Franklin 2-3889
proponents expect to tie their idea into a wired-television system serving Palm Springs, Calif. Telemeter programs will be connected into the local cable at certain hours for viewing on one of the receiver channels. By avoiding going on the air, the system can be home-tested without embarrassment to FCC.

Military Parts Orders Momentarily Slow

Recent end-equipment contracts have not yet been reflected to the componentmaker's level

Present Lull in placement of com-ponent-part orders by holders of military-equipment contracts is temporary, according to Washington sources.

The military started to 'stretch out' placement of equipment contracts in late 1951 and, seeing less new business immediately ahead, prime contractors tightened up on parts purchases. Parts manufacturers, in turn, became reluctant to expand production facilities and in
some instances this resulted in a delivery slowdown even on existing orders.

Military end-equipment orders stepped up a little in May and June, 1952. This should be felt at the component-manufacturing level by August or September.

- 'Spares' Too-Further complicating the planning of componentpart makers is the reluctance of the military to commit itself for quantities of spare parts when it places initial end-equipment orders. Government officials, remembering the vast quantities of spare parts stored up during World War II and the criticism which this later invoked, are moving cautiously. "How," they say, "can we determine spare parts needs until a reasonable number of new equipments are field tested?"

Relatively few spare parts are at present manufactured along with those needed for assembly of new military equipment. Thus economies that might be achieved by volume production must be foregone. Several possible solutions are currently under consideration. One of them involves placement of spare parts orders concurrently with equipment reorders.

Audio Ordnance

Rated at 300-watts firepower, this University loudspeaker is mounted atop the turret of a U. S. tank and used by Army 'loudspeaker and leaflet companies' to broadcast surrender invitations and news to the enemy

New Director For NPA Electronics Division

Named to a dual post, R. W. Cotton succeeds J. A. Milling as Director of NPA's Electronics Division and Chairman of the Electronics Production Board. He directs the electronics phases of the mobilization program and is responsible for obtaining critical materials and allocating them to electronic producers.

Now on leave from Philco, where he is Assistant to the President, and Vice President of Philco International Cotton was formerly Managing Director and Chairman of the Board of British Rola Ltd., loudspeaker manufacturers. During World War II, he was Controller of Signal Equipment for the British Air Commission. He has been serving as consultant to the U.S. Munitions Board.

California Surveys Electronics Potential

Parts and equipment markets growing but there are cost hurdles

High market potential is weighed against high costs in a new survey of California as a location for electronics manufacturing made by the state's Chamber of Commerce.

- Growing Market-The study indicates that one of the most vitally needed areas of expansion is component parts. Manufacturers need more local production of capacitors and resistors in particular. Only 10 to 25 percent of such parts are available from nearby suppliers.

Industrial electronic equipment is also needed by the state's mushrooming aviation and experimental military installations.

Television and radio market potential is between 300 and 400 percent greater than the state's present productive capacity. One out of five radio and television sets
(Continued on page 22)

Production Men like

Here's a production man's dream -a uniform easy-to-work material that can be readily machined in any manner in which it is possible to machine metal. Yes, Taylor Vulcanized Fibre, which weighs only half as much as aluminum, is a real time and trouble saver for production men in nearly every branch of the manufacturing industry.
And another advantage in using this workable material is that it is available in numerous forms including sheets, strips, rods, and rolls, and in a wide range of sizes and thicknesses. When production schedules call for the purchase of fabricated parts, made to your specifications, Taylor can furnish them, too -on time-ready for your assembly lines.
It will be well worth your while to get all the facts about Taylor Vulcanized Fibre. You may find new ways and means to use it in making your products better, faster, and cheaper. Let us also give you the details about other Taylor products, such as Phenol, Silicone, and Melamine Laminates, as well as Taylor Insulation.

In the
railroad field...

Rail-joint insulation-which must withstand, year-after-year, the brutal pounding of locomotive and car wheels-offers conelusive proof of the inherent "toughness" of Taylor Vulcanized Fibre.

This 62-page fact-filled Taylor Catalog describes bow the many Taylor Kaminated Plastics are made, how and when they're used, and more important, bow you can use these basic materials to make your product better... at lower cost!
 Write today for a copy of Catalog E\%.

TAYLOR FIBRE CO.
morristown, pa. -la verne, calif.
purchased west of the Rocky Mountains is made in California.

- High Costs-Balanced against these good market prospects are the state's relatively high manufacturing costs. Electronics manufacturers there pay about 5 percent more for materials than do similar producers in Pennsyl-vania-New Jersey and Chicago areas.

Labor and shipping costs are also higher in California's electronics industry. The survey's figures show that the average hourly wage for assemblers and technicians is about $\$ 1.65$, while the average in the Chicago and New Jersey areas is near $\$ 1.44$.
Employment in the industry has jumped from less than 4,000 to a total of 36,000 in the last ten years.

TV "Saturation-Plus" Seen In Eight Years

Number of television receivers in operation in the United States may exceed the number of homes with electricity by 1960. That is the prediction of W. R. G. Baker, General Electric vice president and general manager of its Electronics Division.

GE market research indicates that 53 million sets will be in operation by 1960 , more than three times the present number and five million more than the number of homes exnected to have electricity by that time.

Retween seven and 10 million homes will have two television sets.

Computers Used To Predict Weather

Quicker and more exact weather forecasts may result from use of BARK, the Swedish binary computing machine which can retain one hundred 7 -digit numbers in its brain.

The application is being worked out by a group of research scientists from eight nations under the auspices of UNESCO.

MEETINGS

AUG. 11-21: Congress of U.R.S.I. Sydney, Australia.

Aug. 12-15: 1952 APCO Conference, Hotel Whitcomb, San Francisco, Calif.
AUG. 15-16: Emporium Section, IRE, Annual Summer Seminar, Emporium, Pa.
Aug. 19-22: AIEE Pacific General Meeting, Phoenix, Ariz.
Aug. 22-31: Grand German Radio and Television Exhibition, Dusseldorf, Germany.
AUG. 26-30: Australian IRE Radio Engineering Convention, Sidney, Australia.
Aug. 27-29: Western Electronic Show and Conference, Municipal Auditorium, Long Beach, Calif.
Aug. 27-Sept. 6: British National Radio Show, Earls Court, London.
Sept. 8-10: American Standards Association, Third National Standardization Conference, Museum of Science and Industry, Chicago, Ill.
Sept. 8-12: National Instrument Conference and Exhibit, Cleveland, Ohio.
Sept. 20: Cedar Rapids Section, IRE, Communications Conference, Roosevelt Hotel, Cedar Rapids, Iowa.
Sept. 22-25: NEDA Third Annual Convention and Manufacturers' Conference, Ambas-
sador, Atlantic City, N. J
Sept. 29-Oct. 1: Eighth Annual National Electronic Conference and Exhibition, Hotel Sherman, Chicago, Ill.
Oct. 1-3: Canadian Electrical Manufacturers Association, General Brock Hotel, Niagara Falls, Ont.
Oct. 6-8: NAED, Fall Meeting of the Pacific Zone, Hotel del Coronado, Coronado, Calif.
Oct. 13-17: AIEE, Fall General Meeting, New Orleans, La.
Oct. 20-22: Radio Fall Meeting, RTMA Engineering Department, Hotel Syracuse, Syracuse, N. Y.
Oct. 26-29: NAED, Meeting of Board of Governors, Grove Park Inn, Asheville, N. C.
Nov. 10-13: NEMA, Haddon Hall, Atlantic City, N. J.
Nov. 10-30: International Radio and Electronics Exhibition, Bombay, India.
Nov. 17-18: AIEE, Technical Conference on Recording and Controlling Instruments, Benjamin Franklin Hotel, Philadelphia, Pa .
Nov. 19: American Standards Association, 34 th Annual, Waldorf Astoria, New York.
Jan. 14-16, 1953: Joint AIEEIRE Conference on High Frequency Measurement, Washington, D. C.

Business Briefs

- Electronics and communication equipment production and delivery for the armed forces is now five times greater than it was in January, 1951, according to General Omar N. Bradley.
-21 Servicemen strategically located about the country form a field advisory board serving the Standard Transformer Corp. They advise the firm on replacement problems, are consulted concerning new products and new technical literature.
- Industry now leads educational institutions and government agencies as the largest customer for scientific instruments and apparatus, according to the Scientific Apparatus Makers Association.
- Two Contracts for television equipment have been signed by Bogota, Columbia. One for 6,000
tv sets at $\$ 840,000$ goes to E. K. Cole Ltd., London. The other, for a tv transmitter and associated equipment costing $\$ 230,971$, goes to Marconi's Wireless Co. Ltd., London.
- West German market for radio receivers is expected to increase this year. In 1951, manufacturers there produced $2,500,000$ sets, of which 200,000 were exported.
- Magnetic Amplifiers are being used to regulate current and voltage in a new type of railway passenger car lighting generator system developed by Bogue Electric Mfg. Co.
- Electronics may eliminate one of the solid institutions of the electrical age, the meter man. Devices that read household meters and automatically transmit the information to distant electronic business machines for billing and complete record keeping are forecast by W. R. G. Baker of GE.

ELECTRONIC ENGINEERS, DESIGNERS, MANUFACTURERS:

(1)

기 PLUG-IN HEADERS PRECISION HERMETICALLY SEALED

- with solid metal blanks that withstand extraordinary punishment
Here's a completely new line of plug-in headers that represent an entirely new principle of hermetic sealing-a type more rugged than any design previously available anywhere. In these headers a great increase in mechanical strength as been achieved by substituting solid metal blanks in place of the usual metal stamping. The result is effective sealing with vastly improved ability to withstand stress, strain and shock.
- many standard types for economical problem solutions

Available in an extended range of types, these headers incorporate all the time-proven features that have made E-I headers and terminals the standatd of quality for more than 10 years. These include low expansion, high temperature glass, tindip for easy soldering, silicone treatment to combat spray and trumidity, individual testing, and many others. Why not call, wire or write today for full particulars.

- available in 8 to 11 pins with or without flange

New (40x) Amplifier and

> New (40X) amplifier combines high gain and sensitivity with good stability.

Specially designed to reduce thermal potentials and stray pickup, the new Brown $40 X$ servo amplifier incorporates an extra stage of amplification to provide increased sensitivity . . . permitting motor drive from signals as low as 0.05 microvolts.

Pictured with the amplifier is the rectifier which provides $d-c$ filament voltage for the first amplifier tubes. It can be used as the basic link in a closed servo loop (where great sensitivity is required) . . . to translate electrical signals into directional motion ... to provide corrective action in conjunction with minute error signals . . . for null detection . . . or for remote positioning.

Narrow Span Potentiometer

Self-contained Electronik narrow span potentiometer, incorporating new (40X) amplifier, is ideal for measuring low level potentials.

Electrical Characteristics

- RANGES-Recorders: 0-100 $0-200,0-500$ microvolts, $0-1$ millivolts. Indicators: 0-500 microvolt and 0-1.1 millivolts.
- STABILITY (after warmup)-1 microvolt or less for all ranges.
- LIMIT OF ERROR -1/3\% of span.
- SENSITIVITY -0.1 microvolt
- DEAD ZONE- 0.1 microvolt or 0.006% of span (whichever is greater).
- PEN SPEEDS-24 or 12 seconds full travel.
- CONTROL FORMS-Any standard pneumatic form, circular chart only.
- CHART SPEEDS-Any standard speed.
- POWER SUPPLY -115 volts, 69 cycles only.
- RANGE OF INPUT SIGNALS TO RECORDER- (approx.) 0.0.5 $\mu \mathrm{v}$. to 1 mv .
- Important Reference Data Send for Data Sheet Na. 10.20-4 on the (40 X) Amplifier. . Data Sheet No. 10.0-8 on the ElectroniK Narrow Span Potentiometerand Bulletin No. 15-14, "Instruments Accelerate Research "

Now, with the development of a new high gain amplifier and potentiometer circuit, extremely low level potentials can be measured, recorded and controlled in this new self-contained instrument. The sensitivity of this instrument is so high that a change in signal as low as one-tenth of a microvolt can be determined. Spans as narrow as 100 microvolts provide a high degree of resolution. Internal design practically eliminates thermal emf's and stray a-c pickups.
The new ElectroniK Narrow Span Potentiometer may be used wherever the accurate measurement of dec potentials of the order of microvolts is required . . . it is available as a Strip Chart Recorder (illustrated), as a Multi-Point Precision Indicator, and as a Circular Chart Recorder with pneumatic control.
Minneapolis-Honeywell Regulator Co., Industrial Devision, 4428 Wayne Ave., Philadelphia 44, Pa.

Honeywell

INSTRUMENTS-Fig. A is a damping magnet formerly used in GE portable indicators. Fig. B is the new Carboloy Alnico magnet now used. Its smaller size permitted improved instrument design and lower
magnet cost with no decrease in efficiency. Fig. C. New magnet also speeds assembly, makes faster and easier calibrations.

How Carboloy permanent magnets improve electrical products

CONTROLS-Switches in compact Minneapolis-Honeywell controls use permanent magnets to give safer snap action, help quench arcs. The magnets are exceptionally stable; provide uniform high energy for the life of the control.

Want to cut down product size, weight? Build a better-performing product for less money?
Then check the possibility of using Carboloy Alnico permanent magnets wherever you need lasting magnetic energy.
Carboloy permanent magnets are simple, self-containing sources of energy that never fail. They are powerful in small sizes Need no outside power supply, no maintenance. They help reduce fabrication costs by eliminating wires, coils and operating parts. Above all, they let you simplify design .. . build a lighter, more compact, finer-performing product at a saving.

On these pages you'll see how others got the jump on competitors by using permanent magnets. Perhaps you'll get an application idea from reading about them.

FREE SERVICES

If so, check Carboloy magnet engineers for free, expert advice and an assist in design and application. Look to Carboloy production lines, too, for the uniform, high-energy Alnico magnets you'll need for best results - all sizes, all shapes; cast or sintered to your specifications.

Send coupon for free Magnet Design Manual PM-101 and Standard Stock Catalog PM-100.

CARBOLOY

DEPARTMENT OF GENERAL ELECTRIC COMPANY 11139 East 8 Mile Road, Detroit 32, Michigan

SPEAKERS - In speakers, permanent magnets replace larger electro-magnets in field structure. Current passing through Alnico's uniform field makes voice coil and cone vibrate in proportion to voltage; tone is truer.

Figure A

Figure B
mAGNETOS - To Scintilla Magneto Division, Bendix Aviation Corp., weight savings are vital in their aircraft products. Fig. A shows chrome rotor weighing approximately 4 lbs. 9 ozs. Fig. B shows newer model rotor using Alnico. It weighs only 2 lbs. 4 ozs.

GENERATORS-When GE engineers had only $6^{\prime \prime} \times 6^{\prime \prime}$ area for jet's tachometer generator, they whipped design problem with a tiny permanent magnet. It eliminated coils and wires, supplied the powerful energy required.

ADVANTAGES OF CARBOLOY PERMANENT MAGNETS

T Simple - no operating parts

2 Uniformly powerful
3 Last forever
4 No coils to wire
5 Cool-running
No operating costs
"Carboloy" is the trademark for the products of Carboloy Department of Generol Electric Company

Plants at Detroit, Michigan; Edmore, Michigan; and Schenectady, New York

Corboloy Deportment of General Electric Company 11139 East 8 Mile Road, Detroit 32, Michigan

Gentlemen:
Please rush me, without cost or obligation, copies of Permanent Magnet Design Manual PM-101 and Standard Stock Catalog PM-100.

NAME

POSITION \qquad
COMPANY NAME

ADDRESS \qquad

CITY \qquad STATE \qquad

to give you better tubular parts

- Cutting tubing into exact lengths as the first step in the fabrication of tubular Electronic parts is a simple operation. Or is it?

Complications set in when the temper of the tubing is changed to meet customer specifications; when the tubing to be cut has a wall $.010^{\prime \prime}$ or thinner; when length tolerances as close as $.010^{\prime \prime}$ are required; when a 3° to 10° angle cut with a tolerance of $\pm 1 / 2^{\circ}$ is called for; and when flattening, denting or other distortion must be prevented.

But overcoming complications in simple operations . . and finding ways around them in other basically more difficult ones, is a specialty of the Electronics Division of Superior.

Our customers for Electronics parts have come to expect us to deliver the goods, exacily to specifications, whether standard production or complex experimental parts. What's more, they frequently ask us for suggestions about improvement on their designs and specifications . . . and they get them.

There is nothing unusual about all this-it's our job and we know how to do it. If you are a manufacturer or experimenter in the Electronics Industry and you need a tubular part that presents a problem, tell us about it. We'll probably be able to help and will gladly do so. Write The Superior Tube Company, 2500 Germantown Ave., Norristown, Pennsylvania.

Cutting and Tumbling. Cutting machines and jigs of many types and sizes are combined with extensive lumbling equipment to permit fast accurate production of quantities of parts at Superior.

Fabrication: Parts can be readily rolled at either or hoth ends, flared. flanged, expanded, or beaded (embossed) as required. The anode above is one of many such parts we produce at high speed and low cost.

The Finished Part. Final stage in the fabrication of the part shown above at three stages of production is a bend nicely controlled for both precise angle and freedom from other, unwanted distortion.

This Belongs in Your Reference File . . . Send for It Today.

 NICKEL ALLOYS FOR OXIDE-COATED CATHODES: This reprint describes the manufacturing of the cathode sleeve from the refining of the base metal. Includes the action of the small percentage impurities upon the vapor pressure, sublimation rate of the nickel base; also future trends of cathode materials are evaluated.

The Bridgeport warehouses are designed to supply from stock limited quantities of sheet, rod, wire or tubing. It is the policy of the company to maintain adequate warehouse stocks at all times so that small orders can be filled without delay.

The fabricator is in a position to obtain promptly metal to fill orders for experimental work or to start production runs, while waiting for mill shipments.

Bridgeport warehouses make every effort to carry the variety of alloys, sizes and gages which fulfill the requirements of the locality they serve.

To take care of the maximum range of widths of strip metal, slitting service is available-not only to serve warehouse stocks, but also to make customers' stocks of non-ferrous strip metal more flexible.

Bridgeport's Warehouse Stocklist carries weight tables and a technical digest giving the properties of the most popular copper-base alloys. If you do not have a copy, ask your nearest Bridgeport office.

Mills in Bridgeport, Conn. and Indianapolis, Ind.
In Canada: Noranda Copper and Brass Limited, Montreal

BRIDGEPDRT BRASS COMPANY

"Bridgepgrt"

30 GRAND STREET, BRIDGEPORT 2, CONNECTICUT

SUBMINIATURE

Metalite* Capacitors

Astron METALITE* metallized paper capacitors, distinguished by their extremely small size and light weight, are currently serving commercial and military users who must meet strict government specifications. Their unique self-healing property, long life and precision manufacture have made them the accepted standard for quality metallized paper capacitors throughout the world. If you have a capacitor problem of any kind, our engineers will be glad to consult with you.

For complete information on Astron METALITE and other standard capacitars, write for Catalag AC-3.

Depend On-Insist On

255 Grant Avenue, E. Newark, N. J.

... wound from strip as thin as $0.00025^{\prime \prime}$

Quality-Tested and Proved

* Arnold "C" Cores are made to highly exacting standards of quality and uniformity. Physical dimensions are held to close tolerances, and each core is tested as follows:
* 29-gauge Silectron cut cores are tested for watt loss and excitation volt-amperes at 60 cycles, at a peak flux density of 15 kg .
$\star 4$-mil cores are tested for watt loss and excitation volt-amperes at 400 cycles, at a peak flux density of 15 kg .
$\star 2$-mil cores are tested for pulse permeability at 2 microseconds, 400 pulses per second, at a peak flux density of 10 kg .
\star 1-mil cores are tested for pulse permeahility at 0.25 mic oseconds, 1000 pulses per second, at a peak flux density of 2500 gauss.
$\star 1 / 2$ and $1 / 4-$ mil core tests by special arrangement with the customer.

Now available-"C" Cores made from Silectron (oriented silicon steel) thin-gauge strip to the highest standards of quality.

Arnold is now producing these cores in a full range of sizes wound from $1 / 4,1 / 2,1,2$ and 4 -mil strip, also 29-gauge strip, with the entire output scheduled for end use by the U. S. Government. The oriented silicon steel strip from which they are wound is made to a tolerance of plus nothing and minus mill tolerance, to assure designers and users of the lowest core losses and the highest quality in the respective gauges. Butt joints are accurately made to a high standard of preci-
sion, and careful processing of these joints eliminates short-circuiting of the laminations.

Cores with "RIBBED CON. STRUCTION"* can be supplied where desirable.

Ultra thin-gauge oriented silicon steel strip for Arnold "C" Cores is rolled in our own plant on our new micro-gauge 20-high Sendzimir cold-rolling mill. For the cores in current production, standard tests are conducted as noted in the box at left-and special electrical tests may be made to meet specific operating conditions.

- We invite your inquiries.

ORADTE

OHMITE WWive-Wound RESISTORS

10

 FOR LONG LIFE AND DEPENDABLE OPERATION

EVEN, UNIFORM

WINDING

The unsurpassed uni formity of the resistance windling pre vents "hot spots" and resultant failures This uniformity is permunent - locked in by vitreous ent amel.

VITREOUS ENAMEL

 COVERING
Acts as both heat conductor and electrical insulator. Holds the winding rigidly in place, and protects it against mechanical damage, moisture, and fumes.

STR ONG

CERAMIC CORE

The high-strengtl coramic tube provides a sturdy in sulating base for the resistance wind ing. It is unaffected by cold. heat, fumes, or high humidity.

RESILIENT MOUNTING

TINNED TERMINALS

 dipped for ease in sol dering to comecting wires. Resistance wire is welded or brazed to the lug, assuring per fert electrical conner. tion.

OHMITE MANUFACTURING CO. 4816 Flournoy Street, Chicago 44, III.

Be Right with

One-thousand miles of Y3 Gidd Wire

. . . have gone into America's finest electronic vacuum tubes

Withstands high
temperatures

O
Adaptable to hand or machine winding

-

No substantial primary emission

Outstanding performances by many, many thousands of electronic vacuum tubes ufilizing Y3 grid wire have followed years of research by Eimac engineers. Uniquely treated Y 3 grid wire suppresses primary emission by nullifying thorium contamination. It maintains rigidity at high temperatures-has a ductility that makes it adaptable for hand or machine winding and is ideal for spot-welding techniques. Eimac's Y3 is superior to molybdenum or tantalum grids operated in similar tubes and conditions. Intended for use with thoriated tungsten filaments, Y3 has long life and no substantial primary emission up to 1300° centigrade brightness temperature. Type Y3 grid wire is produced by Eimac and is available in quan.. tity lots of $100,500,1000,5000$ and 10,000 meters.

Write our application engineering department for further information

EITEL-McCULLOUGH, INC.
SANBRUNO, CALIFORNIA Export Agents: Frazar \& Hansen, 301 Clay St., San Francisco, California

High precision checking and calibrating under factory conditions using D-C Indicating Amplifier as null detector for accurate bridge and potentiometer circuits. Through combination of a-c amplification and balanced feedback network, zero and gain stability are designed right into instrument. Trimmer controls are eliminated.

SPECIFICATION S	
MICROVOLT	MICRO-MICRO-
UNIT	AMPERE UNIT
No. 9835	No. 9836

FULL SCALE RANGES WITH BUILT.IN 4" METERS 0 to 50 or -25 to 0 to 1000 or -500 to +25 Microvolis; scale roloo or - 500 ro volis; scale mulfipliers: 1, 2, 4, 10, +500 Micro - Micro. amps, scale multipli. ers: $1,2,5,10,20,50$, 100, 200, 500, 1000, 2000
ACCURACY

ZERO OFFSET

Max. offset: ± 0.5 Microvolt	Max. offset: $\pm 2 \%$ of scale
*SOURCE	SISTANCE

Up to 10,000 ohms. | 0.1 megohm or more. REPONSE TIME
2 to $3^{*} \sec . \quad \mid 2$ to $3^{*} \mathrm{sec}$. OUTPUT
For full scale input on any range: 10 millivolts of output impedance of 500 ohms for null recorder; 1 volt for 20,000-ohm external meter.

Front panel fits standard 19 " relay rack.
-Acruracy and Response Time depend an Source Resitiance.
> can be used ad. . .
> \checkmark DIRECT-READING MICROVOLTMETER OR MICRO-MICROAMMETER
> \checkmark RECORDER PREAMPLIFIER
> \checkmark NULL DETECTOR

These new D.C Indicating Amplifiers are the answer for all your low-level measurements with thermocouples, strain gages, bolometers-bridge and potentiometer circuitsionization, leakage, and phototube currents-almost any measurement of extremely small direct current or voltage.
Actually 3 instruments in 1, Amplifiers can be used as:
\checkmark Direct-reading instruments-Scale multiplier knob lets you select the range in which you want to work.
\checkmark Recorder preamplifiers-with broad flexibility. One or two degrees temperature difference can be spread right across a $10^{\prime \prime}$ Speedomax recorder chart.
\checkmark Null detectors-more sensitive than most reflecting galvanometers, yet with full scale response time of only 2 to 3 seconds. Leveling is unnecessary; the instrument is not affected by vibration. At the turn of a range knob, you have available a wide choice of sensitivities. And when using non-linear response, not only does the instrument stay on scale at extreme unbalance; sensitivity increases automatically as the null point is approached.

For details, send for Folder EM9-51(1). Write our nearest office, or 4979 Stenton Ave., Phila. 44, Pa.
measunina imstaumints telemetian autamatic contaos meat-tacatime numacre LEEDS \& NORTHRUP CO.

THERE'S ALWAYS ONE LEADER... TUMONT

Fine receivers can be
made finer through the use of Du Mont Teletrons. *
Available in all popular screen sizes.
Cathode-ray Tube Division, Allen B. Du Mont Laboratories, Inc., Clifton, N. J.
*Trade mark

NLef's take this capacifor problem to CoD'I About 3 times out of 4, we find that a capacitor problem submitted to us has come up before, and the solution is ready and waiting.
Coincidence? No, just that C-D is usually called on to tackle the capacitor problems of other companies engaged in the same type of work as your own.

If your problem is new or old, our engineers will be glad to collaborate with you. Dept. K-72, Cornell-Dubilier Electric Corporation, South Plainfield, New Jersey.

CORNELI-DUBILIER

world's largest manufacturers of capacitors

antennas

converters

Noxic Suppuacion?

FILTRON engineers haven't licked Barber Interference Suppression, yet, but we can solve all your problems of RF Interference Suppression on electronic equipment.
FILTRON will custom design the filter for your circuit conditions to meet size, weight and overall configuration-and meet military RF Inter-
ference Suppression limits and specifications.
FILTRON's advanced engineering, due to constant research and development, together with FILTRON's production know-how, insures quality components to meet your delivery requirements. Your inquiries are invited.

Which part

interests

 YOU?...Perhaps that's one question that rightfully belongs with your future planning
For, like ourselves, your manufacturing divisions may be toiling night and day in the interests of America's safety.

But to research scientists - seeking the solution to some intricate problem of instrumentation and control-Kollsman offers an experienced hand. A reputation based on inventive ingenuity, precision craftsmanship and world-over acceptance of its products.

In manufacture or research, there is no finer name than Kollsman-designers, developers and makers of:

> Aircraft Instruments and Controls

Miniature AC Motors for Indicating and Remote Control Applications • - Optical Parts and Optical Devices Radio Communications and Navigation Equipment
 Dear is actually -we
Quality
Answer simp
changed to Belsen changed fir

1. Low Installation Cost
2. Low Inspection Cost
3. Fewer Rejects
4. Less Returned Goods
5. Less Failures in Service
6. Satisfied Customers

WRITE: Selden Manufacturing Co.
4625 West Van Buran Street
Chicago 44, Illinois

Belden

Peantre prowiut texiderxip dippurls al cumpunely yulity

Tehtronix, Inc: relies on . . .

 Srrarr- Seletron]-
Hת几ת几

SELENIUM RECTIFIERS

The Tektronix Cathode-Ray Oscilloscope, recognized leader in its field, is a high precision instrument and light in weight because of essential mobility. Since it is urgent that sweep rates and deflection sensitivities remain constant in spite of line voltage variations, all critical voltages are electronically controlled.

Specified for the power supply, of course, are Seletron Selenium Rectifiers to help maintain Tektronix standards. In the type 517 Oscilloscope, Seletron 5Q1 rectifiers are combined to furnish 750 milliamps at 150 volts and 500 milliamps at 225 volts. Their ruggedness and dependability aid materially in maintaining the stability of this wide band high voltage instrument.

Versatile Seletron Selenium Rectifiers are available in a complete range of sizes for every electronic circuit-from a few mils up to thousands of amps. Whatever your problem in rectification-whether in radio, communications or for heavy industrial use, count on our engineers to be of real assistance. Your correspondence is invited . . . Remember, product quality depends on component quality!

[^1]
-..KARP

"Accurated". Fabrication OF SHEET METAL
 CABINETS, HOUSINGS, CHASSIS, ENCLOSURES

Production is rolling and costs stay down in hun. dreds of plants, thanks to KARP "Accurated" Fabrication. Here is insurance that every dimension is accurate . . . every hole drilled clean, correctly sized and positioned... openings accurately spaced . . . all units uniform, and finish perfect.
That adds up to smooth, fast assembly that ends lost motion and builds volume output!
Why not let Karp Design Engineers study your assembly requirements for a fabricated sheet metal unit? Whether it's a liberal or close-tolerance job-whether it calls for simple or intricate forming, drawing, bending, welding, finishing, or all combined. . ."Accurated" Fabrication the Karp way means real insurance of assembly ease, speed, and economy. Send us your blueprints.

> *Jobs are rated for required tolerances-liberal or close - with quality maintained at its best.

See us at the
WESTERN ELECTRONIC SHOW AND CONVENTION, Booth 423

August 27th, 28th and 29th Long Beach, Calif.

KARP METAL PRODUCTS CO., INC.

[^2]
SCinfleX assures YOU PEAK PROTECTION

AGAINST CIRCUIT FAILURE

When operating conditions demand an elecrical connector that will stand up under the most rugged requirements, always choose Bendix Scinflex Electrical Connectors. The insert material, an exclusive Bendix development, is one of our contributions to the electrical connector industry. The dielectric strength remains well above requirements within the temperature range of $-67^{\circ} \mathrm{F}$ to $+275^{\circ} \mathrm{F}$. It makes possible a design increasing resistance to flashover and creepage. It withstands maximum conditions of current and voltage without breakdown. But that is only part of the story. It's also the reason why they are vibration-proof and moisture-proof. So, naturally, it pays to specify Bendix Scinflex Connectors and get this extra protection. Our sales department will be glad to furnish complete information on request.

- Moisfura-Proof - Radio Quiet - Single Piece Inserts -Vibration-Proof • Light Weight - High Insulation Resistance - High Resistance to Fuels and Oils - Fungus Resistant Easy Assembly and Disassembly . Fewer Parts than any other Connector - No additional solder required,

SCINTILLA MAGNETO DIVISION of SIDNEY, NEW YORK

Export Sales: Bendix International Division, 12 Fitth Avenue, New York 11, N. Y.
FACTORY BRANCH OFFICES: 118 E, Providencia Ave., Burbank, Calif. - Stephenson Bldg., 6560 Cass Ave., Detroit 2, Michigan - Brouwer Bldg., 176 W. Wisconsin Avenue, Milwaukee, Wisconsin - 582 Market Street, San Francisco 4, California

LABORATORIES: Experimental and development work requires extremely close voltoge control for accurate and dependable results.

MANUFACTURING: To achieve maximum rated performance of electrically powered equipment, the input nameplate voltage must be maintained.

TESTING: Constant voltage must be maintuined when testing or inspecting your product to obtain a valid check.

MAINTENANCE: By maintaining constant voltage to lamp loads and electrically operated equipment, productive life is increased and maintenance costs reduced.

THERE IS NO BETTER WAY TO MAINTAIN

 CONSTANT OUTPUT VOLTAGEtyPE INSTANTANEOUS ELECTRONIC

IE Completely electronic automatic voltage regulators with no moving parts. Offer instantaneous correction . . . excellent stabilization and regulation, Waveform distortion does not exceed 3%. Particularly adapted for use in laboratories... test lines and for all other applications where the most exacting voltage regulation is necessary.
TYPE

EM

ELECTRO MECHANICAL

Consists basically of a very sensitive detector controlling a motor-driven POWERSTAT variable transformer and auxiliary transformer. Correction is not instantaneous but is faster than most automatic voltage regulators. Features zero waveform distortion and high efficiency. Ideally suited for controlling large industrial loads.
FOR YOUR ELECTRICAL OPERATIONS .. .
. . . there is a STABILINE Automatic Voltage Regulator right for the job . . to maintain constant voltage regardless of line or load changes. Send today for complete information.
WRITE TO-207 THURE AVENUE, BRISTOL, CONNECTICUT ASK FOR - SECO BULLETIN S351

- STABILINE AUTOMATIC VOLTAGE REGULATORS
- POWERSTAT VARIABLE TRANSFORMERS
- VARICELL D-C POWER SUPPLIES
- VOLTBOX A-C POWER SUPPLIES
- SUPERIOR 5-WAY BINDING POSTS
- POWERSTAT LIGHT DIMMING EQUIPMENT

- Precision Wire Wound Resistors: JAN-R-93, and Commercial

External Mefer Multiplier Resistors:
JAN-R-29
Pre-Wired Resistor Switch Assemblies
Other Types to Your Specifications

MEPCO, INC., MORRISTOWN, NEW JERSEY

Gloom chaser... that works

Fair weather or foul, when you flip a light switch you expect light. You take it for granted. Actually, like a touchdown in football, the result is the triumph of teamwork in electrical apparatus. The power company is the captain. The players include the manufacturers of generators, transformers, switch gear, and electrical fixtures. But an unseen essential called Synthane is present, too. Synthane is a laminated plastic. It is an excellent electrical insulator. It is also a mechanical material that combines light weight and strength, a chemicalresistant material that machines easily.
Send for the complete Synthane Catalog. Then, if you find Synthane a material you can use, we will be glad to help you with design, sheets, rods, tubes or fabricated parts. Synthane Corporation, 6 River Road, Oaks, Pennsylvania.

Insulator (left) made from Grade X Black Synthane for Square D Company and switch mounting plate made for Cutler-Hammer inc. of Grade GICC-M Synthane. Both parts require good electrical characteristics.

Synthane-one of industry's unseen essentials

LAMINATED PLASTICS

Why are there 74 different Westinghouse Instruments to measure power?

If you produce a product

The wider choice you get in Westinghouse Instruments offers you new opportunities to improve your product's performance, appearance, salability. Whether you want to measure amperes, volts, watts, vars, power factor, frequency or synchronism, there's a Westinghouse Instrument to meet the precise requirements of your customers. And the performance of all Westinghouse Instruments meet ASA Standards.

pilot a plant

If your job is supervision of production or plant operation, getting just the right instrument can help you gain closer control of a process or more efficient operation of plant facilities. Moreover, Westinghouse offers you competent application assistance to help you employ instruments most effectively.

or probe the unknown

If your job is research, this complete line of instruments serves all your needs for the measurement of electrical values. The diversity of types, for any given measurement, includes many variations in size, types or mounting, types of scale, range, accuracy and styling, as well as instruments to measure position, time, temperature and speed.

you gam benefits like this:

Take the case of a leading electronic equipment manufacturer. They needed to equip tube test stations with a variety of instruments having co-ordinated styling for best appearance; small enough to permit close grouping and accurate enough to serve as "standards". Standard Westinghouse Instruments answered every requirement! Next time you need instruments to improve a product, perfect a process or probe a problem . . . specify Westinghouse!

For complete information about Westinghouse Instruments, write for Booklet B.4696. Address: Westinghouse Electric Corporation P. O. Box 868, Pittsburgh 30, Pennsylvania.

You cAN BE SURE...IF IT'S Westinghouse

rCA乌ICTOR Television CHOOSES INSUROK

T-725 INSULATING LAMINATE

The RCA Victor name is a symbol for the highest quality in electronic equipment. To meet their exacting standards, RCA Victor engineers selected INSUROK Grade T-725 phenolic laminatc for their television receivers.

INSUROK T- 725 provides RCA Victor with a unique combination of electrical properties. It is used in the R.F. tuners, to maintain insulation resistance under high temperatures and humidities . . . in the I.F. tube sockets, to minimize capacity changes with changes in humidity . . . and in the high-voltage compartment, to provide high dielectric strength and surface resistivity.

For the "tough spots" in your product, write or phone about T-725

IN PRODUCTION FACILITIES
Delco Radio is the world's largest builder of automobile radios-the leader in production and assembly of component parts.

IN ENGINEERING
Delco Radio developed many of the most important advances in automobile radios ... has outstanding experience in this field.

IN MANUFACTURING CONTROL
Completely integrated for efficient production from raw material to finished product, Delco Radio meets any customer need.

Here at Delco Radio, we are keenly aware of national defense requirements and of the necessity for further accomplishment in the field of radio. Delco Radio is even now developing and producing-on time-superior devices that meet the test of modern military needs.
You can depend on Delco Radio for on-time delivery of products with uniformly high quality.

DIVISION OF GENERAL MOTORS KOKOMO, INDIANA

40.109 240.65 1174.6 20000. - OR ANY OTHER

FROM 40 TO 20,000 CYCLES

conservative accuracy under usual conditions 1 PART IN 100,000 -(.001 \%)

Have you a need for any specific number of cycles in precision frequencies?
Can a source of such frequency solve your design problem or increase its factor of safety?
Have you a system that requires great accuracy, stability and dependability?
The frequencies shown at the top of the page are but α few among hundreds furnished for precision application in industries, laboratories and Government departments.

Callgrated against a standard ACCURATE TO I PART IN 10-MILLION The basic unit of this trequency standard is an electronically driven fork,-temperature compensated and hermetically sealed against changes of humidity and barometric pressure. Through its use, any frequency or multi-frequencies between 40 and 20,000, fractional or otherwise, are obtainable.

OUR ENGINEERS
ARE AVAILABLE
TO COOPERATE
ON ANY PROBLEM

American Time Products, Inc. 580 Fifth Avenue

AMERICAN LAVA CORPORATION

Sporlights (HLSjM MG ${ }^{\circ}$

metallized ceranics

[^3]

For Aviation and Electronics

Tell us the type of wire or cable you need - the chances are excellent that it is one of our regular production numbers. If it isn't already in our extensive line, we will desizn the wire especially for you. We have had long experience in coming up with the right answers in wire and cable for many leading manufacturers in the fields of oviation and electronics. Try us. You Specify - We Supply!

Ask us for our new complete catalog. We'll gladly send you a copy.

National Sales Offices: 624 S. Michigan Blvd., Chicago, Ill.

BRING THROUGH EQUIPMENT FAST!

Schematics of most electronic equipment can be broken down into circuit blocks of logically associated functions. These functional circuit blocks can be mounted readily either in the Alden " 20 " plug-in packages or Basic Chassis unit. Tube sockets and associated components quickly lay out on full scale Unit Planning Sheets for mounting on terminal cards. These special pre-punched, multi-hole terminal cards have wide flexibility to take an infinite variety of circuit variations. Both sides of card can be used to obtain maximum component density area. Using the Unit Planning Sheets, functional circuit units are all planned in one step.

IT'S AS SIMPLE AS THIS!

Terminal cards have been designed to accommodate tremendous number of circuit variations - to make neat tube and component sub-assemblies with a minimum of wiring and simplified assembly techniques. Special Alden Miniature Terminals are new and radical punch press configuration - ratchet slot holds various size component leads for soldering no rwisting of leads with pliers. Figure "eight" shape accommodates cross wiring and buss leads. Terminals are punch press parts - so take a min. imum of solder, reduce solder time, eliminate danger of cold solder joints.

Eack Connectors - 462MIN Series
Alden Terminal Card System means minimum of inter-cabling - but even this cabling can be laid out easily and proceed as simple sub-assembly. Open sided chassis construction makes cable easy to wire to front panel, terminal cards and back connectors. The Alden Back Connectors are units that can be discretely positioned on the back of the chassis isolating lines with incompatible voltages, currents, or frequencies. This desiga insures accessible solder terminals for soldering - avoids rat nests of congested conventional back connector wiring. Color gested conventional back connector wiring. Color
coded, the Alden back connectors provide beautiful operational or service check points for all leads to and from chassis.

Hinged Front Panel Design

Hinged front panel design of chassis allows rheostats, indicator lights, jacks, etc. to be mounted on panel as another easy-to-work sub-assembly. This panel attaches easily to chassis - is wired - swung up and fastened with Alden Target Screws.
(2)

GET EASY SUB-DIVISION

OF LABOR

Solder terminals and sockets quiskly rivet to Alden terminal card according to layout on Unit Planning Sheet. Components snap into the special Alden Miniature Terminals which hold them for soldering - (No twisting or wrapping of leads necessary) - With all tube sockets and their associated components mounted on one card - the wiring and soldering of circuits is an open, easy-to-work sub-assembly operation.

Target Screws
These screws have concave head with arced notch so power screw driver locates head quickly, no danger of it slipping out and marring panel surface - yet same screw can be unfastened with coin in order to hinge forward the front panel for servicing and check in the field.

"Serve-A-Unit Lock"
Assembled - the Basic Chassis simplifies operation of equipment - Slashes service and maintenance time. Smoorh, positive insertion and removal of the chassis is provided by the Alden "Serve-A-Unit Lock." A simple twist of the handle and the chassis backs off with finger tip ease. It also pilots the chassis back into place - securely locking it for operation with the same facility.
WIDE VARIETY OF APPLICATIONS
ON AIRCRAFT EQUIPMENT - Large manufac* turers of aircraft equipment are using the Alden Method of unit construction to simplify design and Method of unit constru
save engineering time.

ON COMPUTERS - Recent large scale digital computer for Air Corps uses Alden " 20 " Plug-in Bases and Sockets throughout. One of country's largest manufacturers is building two large computers using Alden " 20 " Plug in Packages.
ON BUSINESS EQUIPMENT - Leading business machine manufacturers are designing with Alden components for greater accessibility and ease of servicing of their equipmeat.

Here is a plug-in package unit using the above method of converting schematic into finished assembly quickly. Simply mount the completed terminal card sub-assembly on the Alden " 20 " Non-Interchangeable base, dip solder the leads - add cover or housing and handle and it's completed - In operation, visual or instrument checks are easily made - if trouble occurs doubtful units are quickly isolated - these units easily unplug and a comprehensive inspection made. Spare units can be plugged in so equipment doesn't have to be inoperable while repairs are in process.
 Construction

Shielded
Construction

TO GET STARTED QUICKLY!

Send for these tremendousiy useful Labormtory Work Kits and have them in your lab for use on present equipment or immediately ready for next new project:
Kit $\# 4$ Alden "20" Plug-in Packages.... $\$ 10.00$ *
Kit $\$ 24$ Alden Basic Chassis Kit \#24 Alden Basic Chassis
Kit $\# 25$ Terminal Card Mig. 5ystem...... $\$ 11.50$ * Kit \#25 Terminal Card Mig. System..... \$11.50 Kit \# \#8 Target \& Cap Captive Screws..... \$ 3.00^{*} $\begin{array}{ll}\text { Kit } \# 29 & \text { Color Coded Back Connectors...... } \$ 4.50^{*}\end{array}$ or send for free booklet, "Basic Chassis and Components for Plug-in Unit Construction. *Prices shown are for sample kits only -

MILITARY

TYPICAL APPLICATIONS IN WHICH CP DEHYDRATORS PROVIDE YEAR 'ROUND TROUBLE-FREE AUTOMATIC SERVICE:

- Purging and pressurizing transmission lines, waveguides aña associated apparatus.
- Pressurizing targe cavities and other radio and radar equipment enclosures.
- Fog prevention in precision optical systems.
- Corrosion prevention in precise servo amplifier assemblies.
- For raising and maintaining the power handling sapacity of high voltage systems and apparatus and innumerable other similar applications.

CP DEHYDRATORS OFFER THE FOLLOWING UNIQUE FEATURES:

Low dewpaint - operating pressure up to 100 lbs. per square inch fully áutomatic operation - continuous duty performancé - low noise

level - minimum vibration • long service life with minímum maintenance

MANUFACTURERS OF COAXIAL TRANSMISSION IINE, TOWER HARDWARE,

SEABPRNE SERYICE

CP dehydrators are readily adaptable to the critical requirements of the Armed Forces. Standardized parts permit rapid assembly of equipments suitable for practically any specialized need at minimum cost and without prolonged delay. Over a decade of $\mathbb{C P}$ experience in dehydrator design and manufacture insures products of long life and dependable service with an absolute minimum of maintenance. Inquiries are invited.

MAMMARLDND PRECISION-BUILT CAPACITORS

Hammarlund Capacitors, backed by 42 years of design, engineering and production experience, are today recognized by the military services, electronic manufacturers and research engineers, as the finest quality capacitors available. Since the founding of the Hammarlund Manufacturing Company in 1910, it has designed and developed capacitors that today are standard in industry. Millions of them are in use by almost every important manufacturer of electronic equipment.

NOW AVAILABLE! 1952

CAPACITOR CATALOG

This detailed and illustrated 12-page catalog is yours for the asking. It will be a valuable addition to your library of radio parts suppliers, for it includes complete diagrams and electrical and mechanical specifications covering the broadest selection of standard variable air capacitors available to the electronic industry.

FOR YOUR FREE COPY of the 1952 Hammarlund Capacitor Catalog write us today. All capacitors listed in this catalog are stock items which can be purchased from jobbers, dealers everywhere.

A GRADE FOR EVERY NEED!

Diameters-wall thicknesses and lengths to meet regular or special adaptations.

IN RADIO AND TELEVISION their use is almost universal. They have high insulation resistance and low moisture absorption. Their low dielectric loss is suitable for ultra high frequency applications,

IN ELECTRIC MOTORS for armature shaft spacers, insulators, brush holders, and many similar force-fit applications requiring machining, Clevelite is particularly suitable.

IN RELAYS, CONTROLS, SELENIUM RECTIFIERS, the various grades of Clevelite Phenolic Tubing have special properties that guarantee complete satisfaction.

CLEVELITE* and COSMALTE*
 LAMINATED PHENOLIC TUBING

are more than ever before-the first choice in the electronic and electrical industries.
They combine proven performance with low cost and excellent service!

Wherever high dielectric strength, low moisture absorption, physical strength, low loss and good machineability are of prime importance . . . the combined electrical and physical properties of

CLEVELITE and COSMALITE are essential

IMMEDIATELY AVAILABLE Tell us your needs.

* Heg. U. S. Pat. Off.

NEW YORK AREA R.T. MURRAY, 604 CENTRAL AVE, EAST ORANGE, N. \perp NEW ENGLAND R. S. PETTIGREW \& CO., 62 La SALLE RD., WEST HARTFORD. CONN. Chicaigo area plastic tubing sales, 5215 n. ravenswood ave, chicago

What's the big attraction?

The same brilliance that catches Mr. Trout's eye is also found on a wide range of brass and copper products, from costume jewelry to the gleaming brightwork on a ship.

The clean, bright surface of Chase metals doesn't just happen . . . it is controlled in research laboratories by Chase metallurgists . . . it is checked and tested every step along the way to the finished sheet, rod, wire or tube.

Chase brass and copper products are available, subject to government controls, through dealers, and jobbers across the nation and through Chase's 23 convenient mill warehouses. * Chase Brass \& Copper Co., Incorporated, Waterbury 20, Conn.

Chase brass and other copper alloys range in color from rich red to bright yellow. The right color for each product and use is one of the features of Chase research and quality control.

When the Chase Technical Advisory Service is asked to solve a problem by a manufacturer, Chase metallurgists will often find the right answer in this research laboratory test furnace.

Patented Chase Telnic ${ }^{\circledR}$ Bronze makes better switchboard parts. Chase research developed Telnic for high strength, excellent machinability, corrosion resistance, and conductivity.

Chase

Chase Brass \& Copper Co. is a subsidiary of KENNECOTT COPPER CORPORATION

[^4] Minneapolis Newark New Orleans New York Philadelphia Pittsburgh Providence Rochester \dagger St. Louis San Francisco Seattle Waterbury (\dagger Sales Office Only)

(2) DESIGNER'S

1. New, fast-heating G-E iron weighs only $8 \frac{1}{2}-\mathrm{oz}$.

2. New G-E portable hi-pot tester is easy to operate.

Two ways to speed your production

Reach hard-to-solder places with this new thin-shank iron

"As easy to use as a pencil," say operators who use General Electric's new lightweight soldering iron.

Its thin, $\frac{5}{16}$-inch-diameter shank lets the $1 / 4$-inch tip into places a regular iron can't touch. Operators can solder more joints per minute and with fewer rejects-because the iron's lightness, balanced design and comfortable handle all reduce fatigue.

Long-lasting G-E Calrod* heater provides quick heat-recovery properties, gives plenty of heat for uniformly strong soldered joints. Maintenance of this 60 -watt, 120 -volt iron is low because the long-life Ironclad tip need not be filed or dressed. Send for Bulletin GED-1583.

Eliminate cages and barriers with this new insulation tester

Now you can perform high-potential tests on your equipment with minimum danger to personnel. That's because the current output of General Electric's new high-potential insulation tester is limited to 5 milli-amperes-well below the "let go" value.

Testing time is cut, too-no need to set up cages, barriers, or tape. Tester is portable, weighs only 22 lbs. Simply plug it into any 115 -volt a-c outlet and start testing.

Line surges are virtually eliminated in output. Flash-overs can't burn insulation. Neon light on panel gives warning before insulation breaks down. Output is adjustable from 0 to 3500 volts, with test capacitance up to .006 muf. Bulletin GEC-700.
*Reg. Trade-mark

01

Four ways G-E selenium rectifiers meet your d-c power requirements
Selenium rectifiers provide the electrical designer with versatile and flexible means of getting the right quantity of d-c power. But not all selenium rectifiers are alike. Here are four important "quality points" you'll find in G-E units in comparison with competitive equipment:

1. Lower forward resistance-for higher output and cooler operationplus lower costs in other circuit components.
2. Less back leakage-for higher efficiency as well as higher output.
3. Cooler operation -the result of the above characteristics - since there is less heat to dissipate, less ventilation is needed.
4. Slower aging - which extends expected life at rated output to over 60,000 hours.
And of course the G-E line is complete, to meet all your design needs.

For a complete refresher on rectifier fundamentals, circuits, and applications, send for the new 28 -page G-E booklet prepared to aid the design engineer. Check Bulletin GET-2350.

Standard stack construction

Tube-mounted constraction

Miniature cell assemblies

Dual-rated capacitors simplify design problems

Meet your design needs, standardize, and cut inventories with these G-E fixed paper-dielectric capacitors. Equally applicable to a-c and d-c, they come in many case styles, with ratings from 236 through 660 volts a-e and 400 through 1500 volts d-c. All units are treated with Pyranol* and hermetically sealed to prevent leakage or contamination. Check Balletin GEC-809.

Current-sensitive relays stand severe vibrations

G-E current sensitive d-c relays are available with d-c pickup ratings in steps from 4 to 1500 ma . They are especially applicable to circuits using limited power for energizing coils-as in aircraft. Lightweight and corrosionproof, these relays withstand severe vibration and operate at rated current through a wide range of altitudes. See Bulletin GEC-834.

EQUIPMENT FOR

 ELECTRONIC MANUFACTURERSA partial list of the thousands of items in the complete G-E line. We'll tell you about them each month on these pages.

Components

Meters and Instruments	Timers Capacitors Indicating lights
Transformers	Control switches
Pulse-forming networks	Generators
Delay lines	Selsyns
Reactors	Relays
*Thyrite	Amplidynes
Motor-generator sets	Amplistats
Inductrols	Terminal boards
Resistors	Push buttons
Voltage Stabilizers	Photovoltaic cells
Fractional-hp motors	Glass bushings
Rectifiers	Dynamotors

Development and Production Equipment

Soldering irons
Resistance-welding control
Current-limited high-potential tester
Insulation testers
Vacuum-tube voltmeter
Photoelectric recorders Demagnetizers
*Reg. trade-mark of General Electric Co.

General Electric Company, Section A667-21
Schenectady 5, New York
Please send me the following bulletins:
Indicate: $\sqrt{ }$ for reference only
X for planning an immediate project
\square GEC-700 High-Potential Tester
\square GEC-809 Paper-Dielectric Capacitors
\square GEC-834 Current-Sensitive D-C Relays
\square GED-1583 Lightweight Soldering Iron
\square GET-2350 Selenium Rectifiers

Name

Company
City
City

General Plate has the Facilities to meet all your Electrical Contact Requirements

There are many advantages for using General Plate composite contact materials and completely fabricated assemblies. Among the more important are better performance, longer operating life and lower fabricating costs.

But that's not all - here at General Plate you have a single source that can supply your contact requirements be it raw stock or complete assemblies. General Plate contacts and stock are available in a wide range of alloys designed to meet your specific requirements.

Raw stock is supplied in various combinations, in overlay, single or double inlay, single or double edgelay, and Top-Lay stock. The precious metal is clad to your required base metals such as brass, bronze, nickel, monel, copper, beryllium copper, etc. In addition General Plate provides composite buttons, rivets, stampings, welded or brazed assemblies.

General Plate fabricated assemblies including assemblies requiring stampings, screw machine or
headed parts with contacts attached, etc. are made to your exact specifications.

Make General Plate your headquarters for solid or composite contacts, contact material and fabricated contact assemblies.

GENERAL PLATE PRODUCTS INCLUDE

Precious metals clad to base metals, Base metals clad to base metals, Silver solders, Composite contacts, buttons and rivets, Truflex ${ }^{\circledR}$, Thermostat Metals, Alcuplate ${ }^{\circledR}$, Platinum fabrication and refining, \#720 Manganese Age Hardening Alloy. Write for technical data bulletins.

Have You a Composite Metal Prablem? General Plate can solve if for you

GENERAL PLATE
Division of Metals \& Controls Corporation
37 forest street
ATtLEBORO, MASSACHUSETTS

dependable electron tubes

Differentially tempered leads

The leads of all Bradleyunits are differentially tempered. This graducted softness of leads near the body of the resistor prevents sharp bends and avoids damage to resistor.

SIZES OF UNITS		
Rating	L	D
$\frac{1}{2}-\mathrm{w}$	$3 / 8^{\prime \prime}$	$9 / 64^{\prime \prime}$
$1-\mathrm{w}$	$9 / 16^{\prime \prime}$	$7 / 32^{\prime \prime}$
$2-\mathrm{w}$	$11 / 16^{\prime \prime}$	$5 / 16^{\prime \prime}$

IMPORTANT NOTICE

The tremendous demand for Bradleyunits has, in the past, resulted in disappointments due to extended deliveries. Our production facilities have been substantially increased, and your demands for Bradleyunits can now be satisfied quite promptly.

Give your assemblers the laborsaving advantage of Allen-Bradley honeycomb packaging. This unique container keeps resistor leads straight and free from tangling. It makes it easy to pick up a Bradleyunit from the patented Allen-Bradley carton, which holds the resistors in perfectly spaced rows. The removal of one or even fifty resistors does not affect the alignment of the remaining units.
Bradleyunits have permanent characteristics because they are rated to operate continuously at 70 C ambient temperature and not at 40 C . Therefore, they can withstand extremes of temperature and humidity. Bradleyunits need no wax impregnation to pass salt water immersion tests.

Allen-Bradley Co.
110 W. Greenfield Ave., Milwaukee 4, Wis.

Official U.S. Navy Photo

liallge...

The range of these big guns exceeds anything else afloat. In a like manner, Edo echo-sounding equipment now being installed on ships of the U.S. Navy gives far greater range and accuracy than other types of sonar previously used. This superior performance promises important advances in both ocean navigation and naval tactics.

For instance, the Edo Model 185 deep sounder continuously measures and records any known ocean depths giving the navigator a new means of plotting his course by ocean bottom contours. Other Edo sonar devices search out and detect distant vessels with a range and accuracy never before believed possible.

Such successful results come only from a research and engineering staff endowed with imagination, ingenuity and the ability to apply the latest developments in the whole field of electronics to any specific problem - a characteristic Edo trait for over a quarter of a century.

A SYMBOL KNOWN AND RESPECTED FOR OVER A QUARTER OF A CENTURY

Twenty-seven years of experience are behind the leadership which Edo enjoys in the field of sonar development, research and manufacture. Members of the Edo engineering staff have pioneered many of the developments which make the use of echo-ranging underwater detection equipment an increasingly important function not only in anti-submarine warfare but also in the safe and efficient operation of modern ships.
The exceptional performance of Edo equipment brings to the famous flying fish emblem increasing recognition as the symbol of superior equipment.

Using 2 Waldes Truarc " E " Retaining Rings in their Automatic Cabinet Ironer, saved The Horton Manufacturing Co., Fort Wayne, Ind., \$.0219 per unit. Truarc Rings saved 50% in assembly time . . . cut down on rejects . . . increased efficiency of the unit...eliminated risk of damage to hands and clothing of workers in assembly.

Redesign with Truarc Rings and you, too, will cut costs. Wherever you use machined shoulders, bolts, snap rings, cotter pins, there's a Waldes Truarc Retaining Ring designed to do a better job of holding parts together.
Truarc Rings are precision-engineered...quick and easy to assemble and disassemble. Remain circular to give a never-failing grip. They can be used over and over again.

Find out what Truarc Rings can do for you. Send your blueprints to Waldes Truarc engineers for individual ottention, without obligation.

For precision internal grooving and undercutting ... Waldes Grooving Tool.

Honeywell Mercury Switches

PROTECTED FOR

USE UNDER SEVERE

OPERATING CONDITIONS

Honeywell Mercury Switch 1 MP1 embedded in plastic case held in hand to indicate size and compactness of design.

HONEYWELL glass-enclosed mercury switches are durable enough to meet every "normal" operating condition. For applications where mechanical shock and impact are present, MICRO has designed added protection for these glass-enclosed mercury switches. This consists of embedding the switches in plastic "potting" compounds.

Pictured here is the new lMP1 Mercury Switch. This unit provides less than 1 degree differential angle, with a basic 2 ampere, 115 volt a-c; 1 ampere, 115 volt d-c rating. The contact arrangement is single-pole, single-throw. Mounting holes accommodate a $1 / 4^{\prime \prime}$ mounting screw and pin. This allows for simple assembly and adjustment which can be locked in position.

There are more than 90 Honeywell mercury tube designs with many variations in size, differential angles, electrical ratings and contact arrangements. MTCRO field engineers are located near you to provide full information on Honeywell Mercury Switches, either glass-enclosed or embedded. Conlact your nearest MICRO SWITCH branch office.

MICRO SWITCH

FREEPORT, ILLINOIS
MICRO Snap-Action Switches . . . Honeywell Mercury Switches

Cut open view of embedded Honeywell Mercury Switch illustrates switch embedded in plastic "potting" compound.

Let a MICRO SWITCH Engineer show you how you can
"use Honeywell Mercury Switches as a principle of good design"

A Molehill of Difference Can Make a Mountain

 of Trouble in Waveguides
... A little difference in waveguidesimperceptible to the eye-can jeopardize a costly investment.

If you want to be sure of your electronic equipment, if you want to reduce operational failures,
 insist upon Titeflex microwave components.

Send for free catalog of uses, properties., and specifications.

Remember this traffic-stopper at the 1952 IRE Show in Grand Central Palace? It's a torture test. Flexed well over $1,000,000$ times, Waveflex flexible Waveguides gave no evidence af failure or loss of physical or electrical properties.

Fabricated to precision methods, Titeflex flexible and rigid Waveguides are produced to the closest tolerances and to exacting specifications. Titeflex maintains strict quality control and inspection from raw materials to finished products.

No Waveguide gets by this department without a thorough electrial check-up. Every single Titeflex Waveguide is tagged before shipment with its test score on IAN-W. 287 specifications for flexible Waveguides or JAN-W-85A for rigid Waveguides

Let Our Family of Products Help Yours

(iitefiex)

TITEFLEX, INC. 524 Frelinghuysen Ave. Newark 5, N.J

Please send me without cost information about the products
checked ot the left.
NAME
title
FIRM
ADDRESS
city
ONE STATE

FASTENERS

MACHINE SCREWS - NUTS • BOLTS - WASHERS - PINS - RIVETS
AVAILABLE IMMEDIATELY FROM STOCK, an endless stream of first quality "AN" stainless fasteners is Allmetal's answer to the exacting demands of defense production . . . in aircraft, electronics, ordnance, in industry everywhere. Always remember Allmetal, to get the fasteners you want-when you want them.

WRITE FOR CATALOG, ON YOUR LETTERHEAD, today!

1 AX2 DATA

The CBS-Hytron 1AX2 is a compact, 9 -pin miniature TV pulse rectifier. Plate is brought out to top cap and filament is oxide-coated. Absolute maximum ratings are: peak inverse plate voltage, 25,000 volts; $\mathrm{d}-\mathrm{c}$ load current, 1.0 ma. ; and steady-state peak plate current, 11.0 ma .

Typical Operation TV Pulse Rectifier

Filament voltage
$1.4 v \pm 10 \%$
Filament current 650 ma
Positive-pulse plate voltage $20,000 \mathrm{v}$ Negative-pulse plate voltage $5,000 \mathrm{v}$
Peak inverse plate voltage $25,000 \vee$
D-c output voltage $20,000 \mathrm{v}$
D-c load current $\quad 300 \mu \mathrm{a}$

ADVANTAGES OF NEW CBS-HYTRON IAX2

1 Rugged, high-wattage filament of CBS-Hytron 1AX2 has adequate peak emission for the new, larger TV picture tubes. 1AX2 may be run simultaneously at both its peak inverse voltage and maximum d-c current.

2 Higher load of 1AX2 filament on transformer tends to regulate filament voltage. Eliminates need for limiting resistor. Yet lower plate-tofilament capacitance ($0.7 \mu \mu \mathrm{f})$ of 1 AX 2 prevents loss of high voltage.
3 Insulated tension bar (patent applied for) through center of 1AX2 coiled filament limits destructive movement of filament by electromechanical stresses.

4 Filament of 1AX2 is located in base and shielded to eliminate bombardment of cool ends of filament by gas molecules.

5 An overloaded 1X2A may be replaced with its big brother, the CBSHytron 1AX2, by simply removing the limiting resistor. In rare cases, it may be necessary to add another turn to the secondary of the filament transformer to obtain the required 1.4 volts for the 1 AX 2 .
bottom view OF SOCKET

TV high-voltage rectifiers take a beating: Terrific variations occur in applied filament voltage... 0.8 to 2.4 volts! Sudden arcs in the rectifying system place destructive electromechanical stresses on the filament. And the increasingly larger TV picture tubes demand peak emission and peak inverse voltage simultaneously. The new CBSHytron 1AX2 was especially designed to take such rough treatment and come up smiling.

CTS Part
CTS Shaft Type RE
$\times 3516$
X3517
$\times 3518$
$\times 3518$
$\times 3519$
X3520
$\times 3521$
$\times 3522$
\times
\times
$\begin{array}{r}\times 3522 \\ \times 3523 \\ \hline\end{array}$
$\times 3523$
$\times 3524$
$\times 3524$
$\times 3525$
$X 3525$
$\times 3526$
$\times 3527$
$\times 3528$

TS Part
Locking Bushing
CTS Shafi Type LT-2
$\times 3531$
$\times 3531$
$\times 3532$
$\times 3533$
\times
$\times 3534$
\times
$\times 3535$
\times
$\times 3536$
$\times 3537$
$\times 3535$
$\times 3537$
$\times 353$
$\times 3537$
$\times 3538$
$\times 3539$
$X 3538$
$\times 3539$
$\times 3539$
$\times 3540$
$\times 3541$
$\times 3542$

TYPE 95, JAN-R-94, Type RV4

Resistance $100 \pm 10 \%$ $250 \pm 10 \%$ $500 \pm 10 \%$ $1000 \pm 10 \%$ $2500 \pm 10 \%$ $5000 \pm 10 \%$ $10000+10 \%$ $10,000 \pm 10 \%$ $25,000 \pm 10 \%$ $50,000 \pm 10 \%$ $100,000 \pm 10 \%$ $250,000 \pm 10 \%$ $500,000 \pm 10 \%$ $1 \mathrm{Meg} \pm 20 \%$ $2.5 \mathrm{Meg} \pm 20 \%$ $5 \mathrm{Meg} \pm 20 \%$

JAN-R-94 TYPE RVA JAN Shaft Type SD RV4ATSD101A RV4ATSD251A RV4ATSD501A RV4ATSD102A RV4ATSD252A RV4ATSD502A RV4ATSD103A RV4ATSD103A RV4ATSD253A RV4ATSD503A RV4ATSD104A RV4ATSD254A RV4ATSD504A RV4ATSD105B RV4ATSD255B RV4AT SD505B

JAN-R-94
TYPE RV4 JAN Shaft Type RI RV4ATRJI01A RV4ATRJ251A RV4ATRJ501A RV4ATRJI02A RV4ATRJ252A RV4ATRJ502A RV4ATRJ103A RV4ATRJ103A RV4ATRJ253A RV4ATRJ503A RV4ATRJI04A RV4ATRJ254A RV4ATRJ504A RV4ATRJ105B RV4ATRJ255B RV4ATRJ505B

CTS Part
Non-JAN Locking Bushing CTS Shafl Type LT-1
W3160
W3161
W3162
W3166
W3163
W3164
W3167
W3168
W3169
W3170
W3171
W3172 W3173 W3165 W3159

2 watt $70^{\circ} \mathrm{C}, 11 / 8^{\prime \prime}$ diameter variable composition resistor. Also available with other special military features not covered by JAN-R-94.
Attached Switch can be supplied.

TYPE 45, JAN-R.94, Type RY2

			RV2. JAN Shaft Type SD
	CTS Part	JAN-R-94 TYPE	CTS Part
Resistance	A5876	RTS Shaft Type LT-1	
$100 \pm 10 \%$	RV2ATSD101A	A5922	
$250 \pm 10 \%$	A5877	RV2ATSD251A	A5923
$500 \pm 10 \%$	A5879	RV2ATSD501A	A5924
$1000 \pm 10 \%$	RV2ATSD102A	A5925	
$2500 \pm 10 \%$	A5880	RV2ATSD252A	A5926
$5000 \pm 10 \%$	A5881	RV2ATSD502A	A5927
$10,000 \pm 10 \%$	A5882	RV2ATSD103A	A5928
$25,000 \pm 10 \%$	A5883	RV2ATSD253A	A5929
$50,000 \pm 10 \%$	A5884	RV2ATSD503A	A5930
$100,000 \pm 10 \%$	A5885	RV2ATSD104A	A5931
$250,000 \pm 10 \%$	A5886	RV2ATSD254A	A5932
$500000 \pm 10 \%$	A5887	RV2ATSD504A	A5933
$1 M e g \pm 20 \%$	A5888	RV2ATSD105B	A5934
$2.5 M e g \pm 20 \%$	A5889	RV2ATSD255B	A5935

$1 / 4$ watt, $15 /{ }^{16}{ }^{\prime \prime}$ diameter variable composition resistor. Also available with other special military features not covered by

JAN-R-94. Attached Switch can be supplied.

TYPE 35, JAN-R-94, Type RV3

	RV3, JAN Shaft Type SD	
Resistance	CTS Part	JAN-R-94 TYPE
$100 \pm 10 \%$	A5861	RV3ATSD101A
$250 \pm 10 \%$	A5862	RV3ATSD251A
$500 \pm 10 \%$	A5863	RV3ATSD501A
$1000 \pm 10 \%$	A5864	RV3ATSD102A
$2500 \pm 10 \%$	A5865	RV3ATSD252A
$5000 \pm 10 \%$	A5866	RV3ATSD502A
$10,000 \pm 10 \%$	A5867	RV3ATSD103A
$25,000 \pm 10 \%$	A5868	RV3ATSD253A
$50,000 \pm 10 \%$	A5869	RV3ATSD503A
$100,000 \pm 10 \%$	A5870	RV3ATSD104A
$250,000 \pm 10 \%$	A5871	RV3ATSD254A
$500,000 \pm 10 \%$	A5872	RV3ATSD504A
$1 M e g \pm 20 \%$	A5873	RV3ATSD105B
$2.5 \mathrm{Meg} \pm 20 \%$	A5874	RV3ATSD255B
$5 \mathrm{Meg} \pm 20 \%$	A5875	RV3ATSD505B

CTS Part
Non-JAN Locking Bushing CTS Shaft Type LT-1
A5907
A5907
A5908
A5909
A5910
A5911
A5912
A5913
A5914
A5915
A5916
A5917
A5917
A5918
A5918
A5919
A5919
A5920
A5921
$1 / 2$ watt, $11 / 8^{\prime \prime}$ diameter variable composition resistor. Also available with other special military features not covered by

JAN-R-94.
Attached Switch can be supplied.

MOUNTING HAROWARE AS.TEMEYED MCLENTINE NUT N HEX. * je Lecir WASHER \#fioroa

MOUNTING HAADWARE ASSEMALLED
MOUNTING NUT S HEX. का I
LOCA WASHER F19COA
 MOUNTING NUT A'HEX \times है LOCN NUT $\frac{1}{2}$ MEX A $\frac{5}{52}$ LOCK WASHER ROLOA

1. This rotary switch demonstrates several of the unusual properties that are winning a leading place for $\mathrm{Kel}-\mathrm{F}$ in electronic applications. In production, Kel-F is injection molded into the metal switch case around an intricate insert... result -an hermetic seal between plastic and metal, plus high electrical resistance and dimensional stability.

2. These coil forms are molded on standard injection equipment at very favorable production rates, again pointing up Kel-F's superior molding properties. Further reasons for specification of Kel-F in a rapidly growing list of such high frequency electronic applications are-performance at high temperature; excellent insulating properties; and zero moisture absorption

3. Glass fiber and Kel-F are combined to produce these compres-sion-molded valve seats for compressed-gas tanks. Kel-F's chemical inertness eliminates chance of corrosion problems. Its dimensional stability combines with that of the glass fiber to deliver finished parts that have minimum deformation over an extremely wide temperature range.

4. Machined to close tolerance from solid rod, on an ordinary automatic screw machine, these bushings illustrate Kel-F's versatility. Such ready machinability combines with physical strength, chemical inertness, dimensional stability and electrical resistance to make Kel-F a sound specification for many types of chemical and electrical fittings.

A Capsule Report on the Properties of KEL-F

> * Chemical Inertness
> * Wide temperature range -minus 320 F to 390 F
> * High electrical resistance
> * Low Cold Flow

* Zero Moisture Absorption
* Variable transparency and flexibility properties
* Readily molded, extruded and machined

Basic Kel-F Products Available

MOLDING POWDERS

DISPERSIONS

NW-25 . flows readily at
fusion temperature OILS, WAXES and GREASES

Standard Fabricated Kel-F Materials and Parts Available from Commercial Sources

Unplasticized
$\# \mathbf{3 0 0} \ldots$ for high temper-
ature service

\#270 ... for less severe
temperatures

\#1 . Light Oil

\#3 Medium Oit

*40 Weavy Oil
point $80-90 \mathrm{~F}$)

\$150 Hard Wax at 70 F

(Greases compounded to order)

Molded Sheet ${ }^{\text {T}}$ Extruded and Molded Ro* Extruded Tubing Thin Film (extruded as lay-flat tubing) Gasketst Washerk Valve Disct "U"Packing " 0 " Ringt Kel-F coated Resilient-core " 0 " Rings Valve Diaphragms
Transformer Terminals Rotary Electric Switches Hook-up Wire Electronic Terminals, Tube Bases and Coil Forms
For full information on various molders, extruders and fabricators of Kel-F products; also technical data on deabiled properties, molding and application fechniques tailed
write
Chemical Manufacturing Division
the M. W. Kellog Company A SUBSIDIARY OF PULLIMAN INCORPORATED P. O. Box 469, Jersey City 3, N. J.

Another Best-Choice for You

With

 the famous Sensicon circuit and Permakay selectivity sealed unitNow you can have all the advantages of uncongested non-interference operation up in the 450 megacycle range . . .
. . for F.C.C. has given you the space, and Motorola has built for you the quality tool for best results.
It is now released for sale to you after more than 2 years of rigorous testing and service in the field.

Here, once again, Motorola has put your best long-term value ahead of everything. It will save you up to 25% in maintenance alone.

This completely new design has the same guaranteed, obsolescence-free features that make Motorola equipment all-ways your best buy!
-the one others always try to copy

Motorola, Inc.

Communications \& Electronics Division 4545 Augusta Blvd.
Chicago 51, III.

PLEASE DISPATCH LITERATURE AND HAVE YOUR ENGINEERS CONTACT.
(Name)
(Company)
Address.
City \qquad

Erie Ceramicons fulfill all the requisites for efficient by-passing-compact design, low inductance, and conservative 500 volt D. C. rating. Erie Resistor offers the most complete line of ceramic bypass units available. Each design has been thoroughly proven in domestic and military equipment.

Eighteen popular styles in ceramic ca-
pacitors are shown above. Feed-Thru's are supplied in values up to 2000 mmf , Stand-Off units up to 5000 mmf , Tubular and Disc units up to .01 mfd . Also shown above are two Silver Button Micas representing the 370 series for values up to 1000 mmf and the 4700 series for values up to 6000 mmf . Write for samples to meet your specific requirements.

Slectranics Dimisian ERIE RESISTOR CORP., ERIE, PA. LONDON, ENGLAND • • . . TORONTO, CANADA

Cliffside, N. J. : Philodelphio, Po, • Buffalo, N. Y. - Chicogo, ill.
Delroit, Mith, - Cinkinnali, Ohio - Los Angeles, Calif.

For the Answer to Your Insulation Problem

Look Through the Line...

VARGLAS SILICONE. That's the insulating sleeving and tubingpioneered by Varflex-that takes temperatures ranging from $500^{\circ} \mathrm{F}$ above to $85^{\circ} \mathrm{F}$ below in its efficient, resistant stride. Lead wire and treated cord too.
VARGLAS TUBING IMPREGNATED WITH GENERALELECTRIC
PERMAFIL. Tough, flexible, heat-resistant—available in coils. Premium tubing at a reasonable price.

VARGLAS SLEEVING AND TUBING. Numerous types and grades-including synthetic treated, varnished, lacquered, saturated, litewall and others.

VARGLAS NON-FRAY SLEEVING. Three types - may be subjected to temperatures up to $1200^{\circ} \mathrm{F}$-for applications where dielectric requirements are not primary.

VARFLO TUBING AND SLEEVING. New, low-priced - for applications where unusually high temperatures are not a factor. A real economy line, this.

VARFLEX COTTON TUBING AND SLEEVING. Varnish or lacquer impregnants - for applications where Fiberglas products are not required.

SYNTHOLVAR EXTRUDED PLASTIC TUBING. Low temperature flexibil-ity-high dielectric and tensile strength-made from a standard formulation of vinyl polymers.
SAMPLES? All you want with our compliments. For free

\qquad
 AND

SOLDERING THAT LASTS...

USE...

For any soldering job that demands freedom from corrosion and conductive flux residue . . . for ease of working and unequalled consistency . . . there is nothing better than Federated Rosin Core Solder.

Each Rosin Core Solder composition . . . there is a variety for different purposes ... is a tin and lead alloy with a rosin flux that is effective but not corrosive. Because the rosin residue is chemically inactive, current leakage at radio and television frequencies is prevented.

Federated Rosin Core Solder is a quality product that is unsurpassed for the permanence of the bond it produces . . for the consistently easier soldering job it does! Look for it in $1,5,20,25$, and 50 -pound sizes on the familiar orange and black metal spool. Listed by Underwriters' Laboratories Inc.

AMERICAN SMELTING AND REFINING COMPANY • 120 BROADWAY, NEW YORK 5, N. Y.

NEW,

for precise, quantitative studies of pulse waveforms, transients and other high or low speed electrical phenomena

LFE Nodel 401 Oscilloscope ... A high gain, wide band, versatile, general purpoise instrument

Advances in electronics have placed greater demands on the time, frequency, and amplitude measuring capabilities of laboratory oscilloscopes. LABORATORY FOR ELECTRONICS, INC., recognizing the ever-increasing requirements of the rapidly expanding e-ectronics industry, and using specifications set forth by eectronic engineers, has developed the Model 401 oscill-scope to provide the features and conveniences required in a medium price, general purpose instrument.

SPECIFICATIONS

Y-Axis

Deflection Sensitiviry - 15 millivolts peak-to-peak/cm
Frequency Response - DC to 10 Mc
Transient Response - Rise Time 0.035 microseconds

Signal Delay - 0.25 microseconds
Input line terminations - 52, 72, or 93 ohms, or no termination, for either AC or DC input
Calibrating Voltage -60 cycle square wave.
Input Imp. - 1 megohm, 30 mmf .

X-Axis

Sweep Range - $0.01 \mathrm{sec} / \mathrm{cm}$ to 0.1 microseconds $/ \mathrm{cm}$
Delay Sweep Range - 5-5000 microseconds in three ranges - continuously adjustable
Triggers - Internal or External, + and -, or 60 cycles, or delayed trigger outputs are available at suitable binding posts.
Built-in trigger generator for triggering external circuirs and sweeps.

General

Low capacity probe
Functionally colored control knobs conveniently grouped
Folding stand for better viewing
Adjustable scale lighting
Facilities for mounting oscilloscope cameras
Dimensions - $121 / 2^{\prime \prime}$ wide, $15^{\prime \prime} \mathrm{high}$, 19" deep
Weight - 55 lbs .
Price-\$895. F. O. B., Boston

Write for full cator bookel with complete information.

\$50,000 a dayfor waiting!

These manufacturers are waiting.
In their factory, the production line has halted, the men are idle. And every day of this inactivity is costing them \$50,000-and more!

What happened? One small breakdown in an important machine has stopped the works!

Even though replacement parts are hundreds of miles away, there's one
way they could cut those days of waiting to hour's. It's an answer that is saving thousands of manufacturers thousands of dollars every day.

That answer is-Air Express!
Air Express speed means production line speed. Whether your business is factories, films, or food, you can profit from regular use of Air Express. Here's why:
it's fastest - Air Express gets top priority of all commercial shipping services - gives the fastest, most complete door-to-door pick-up and delivery service in all cities and principal towns at no extra cost.
it's dependable - Air Express provides one-carrier responsibility all the
way and gets a receipt upon delivery.
It's Profitable-Air Express service costs less than you think, gives you many profit-making opportunities.

Call your local agent of Air Express Division, Railway Express Agency.

BUSS offers a complete line of fuses for Radio - Television Controls - Avionics - Radar \cdot Instruments - PLUS a companion line of fuse clips, fuse blocks and fuse holders.

BUSS FUSE "Brow llom" Helps Protect Your Reputation

The BUSS Fuses you buy today are the result of the production of millions upon millions of BUSS Fuses during the past 37 years. These years of specializing have taught BUSS engineers how to make fuses of unquestioned high quality and still maintain a competitive price.

To make sure that a BUSS Fuse will always operate properly under service conditions . . . each and every BUSS Fuse is tested in a highly sensitive electronic device that records: - the fuse has the right capacity, is properly constructed and right in all physical dimensions.

Behind the established reputation of BUSSFuses is the world's largest fuse research laboratory and the world's largest fuse production capacity.

If you have a special problem concerning electrical protection, let our engineers help you select or design the right fuse, or fuse mounting, to meet your needs. Our staff of engineers and laboratory are at your service.

BUSSMANN MFG. CO. University at Jefferson St. Louis 7, Mo. Division of McGraw Electric Company

SEND THE COUPON FOR COMPLETE FACTS

Elevator Mileage Recorders give accurate figures on vertical miles . . . so that it can be plainly seen...in advance...when it's time to replace cables, overhaul cars, motors, and what have you . . . including your life.

Yes, the V-R wheelmark monogram protects millions of people daily, from the depths of the sea to the stratosphere. Of course, not all V-R Products and services are available nowadays
... but if your work counts importantly in defense, then you can count on VeederRoot to help you, as soon as rush commitments permit.

VEEDER-ROOT INCORPORATED

"The Name That Counts" HARTFORD 2, CONN.

Chicago 6, Ill. New York $19 \cdot$ Greenville, S. C.
Montreal 2, Canada - Dundee, Scotland
Offices and agents in principal cities
Counts Everythingon Eurth

These hermetically-sealed, self-contained power supplies are designed to transform AC to high voltage-low current DC for many applications. Our exclusive engineering techniques and oil-filled construction assure smaller, lighter, more flexible units.

Applications:

radiation counters
photoflash devices
spectographic analyzers
projection television sets
dust and electrostatic precipitators
oscilloscopes
display tubes
etc.

Send us your requirements and we will recommend the best HiVolt Power Supply.

MANUFACTURERS

Glassmike Capacitors Plasticon Capacitors HiVolt Power Supplies Pulse Forming Networks.

\square

```
7517 North Clark Street. Chicago 26, Illinois
```

* HiVolt Power Supplies . . . occupy as little as $1 / 3$ the space; weigh as little as 20% of conventional supplies

MINIATURE PREGISION

Meedirg EXActing REQUIREMENTS FOR ELECTRONIC INSTRUMENTATION

CONSTANT RELIABILITY

CONTINENTAL
CONNECTORS

Grchorive Sales efyents

litulit

From the tiny peanut tube in hearing aids to the tremendous power producer in transmitting equipment...in almost every tube... electronics manufacturers turn to Nickel to improve performance.

In cathodes, side rods, lead wires, grids, sleeves, connecting straps . . . in virtually every part . . . it's Nickel's special qualities that make that part do its special job... and do it better.

What are these qualities?

- Excellent forming quality. Simplifies production of precision parts.
- Strong, spot-welded joints practically free of oxidation.
- Strength to maintain precision despite handling in mounting parts.
- Rustproof in handling and storage. Corrosion resisting to solvents in cleaning.
- Lower gas content. Faster evacuation because gas can be removed at higher temperatures.
- Greater strength at high evacuation temperatures without crystal change, means less change in dimensions and tube constants.
- Better electron emission from coated nickel cathodes.
- Better carbon coating adherence with less embrittlement of strip.
- Conducts heat better at elevated temperatures.
- Good damping characteristics minimizing microphonic effects.

All of which means an electronic tube made with Nickel and Nickel Alloy components can perform better, whatever its application.

Low carbon Nickel was the choice for the spun anode sleeve and other critical parts in this 40 million watt power tube produced by the Chatham Electronics Corp. Newark 2, N. J.

Perhaps there's a Nickel or a Nickel Alloy that will help improve your product's performance. There's a concise booklet available-"Inco Nickel Alloys for Electronic Uses" which may answer your questions. Send to Bruce Winter for your copy today. Also, if you have a special metal selection problem, just write giving full details.

Nickel and Nickel Alloys are on extended delivery, so anticipate needs. It pays to order well in advance, always giving NPA rating and full end-use information.

Recent experience indicates that Stackpole molded iron cores and Ceramag ${ }^{\circledR}$ cores (ferrites) help materially in minimizing "hash" and r-f interference when used in the filter systems of electrical tools and equipment. Their advantages include

Less IR Drop because of lower d-c resistance Greater R-F Atfenuation because of less distributed capacitance
 Concentrated Field with consequent reduction in coupling to other coils
 Reduced Space Requirements
 Increased Inducfance for a given amount of wire.... or, conversely....
 Less Wire for the same inductance

As one of the earliest pioneers in core production, and backed with a complete line of materials, sizes, shapes and production facilities, Stackpole welcomes the opportunity to cooperate in adapting suitable cores to particular noise suppression problems.

Your inquiry entails no obligation and will receive prompt, skilled attention. Write to Electronic Components Division, Stackpole Carbon Company, St. Marys, Pa.

Ucinite Anode Connectors are available in several types for standard recessed small cavity caps in cathode ray tubes. Straight or right angle lead connections can be made with or without insulating shields. Shields are made from corona resistant neoprene or silicon.

Good contact and firm holding power are assured by silver plated, heat treated steel United-Carr Plug Burtons. Metal parts are designed to keep corona at a minimum.

Also available is the right angle connector with rubber suction cup shield for recessed small ball caps.

Other special corona resistant connectors and adaptors are available or can be readily designed for specific requirements.

Wire leads are furnished to customer's specifications.

Uciniteofferscomplete design and engineering services as well as volume production facilities.

1. ..in electronic test instrumentation..

Today, $h p$ - offers complete instrumentation for virtually every type of electronic measuring. For audio work, $-h p$ oscillators and generators, $1 / 2$ to $10,000,000 \mathrm{cps}$. For voltage measurements, vacuum tube voltmeters (ac and battery) 2 to $700,000,000 \mathrm{cps}$. For VHF, UHF and SHF, signal generators 10 to $7,600 \mathrm{mc}$. For microwave, a broad-band line covering all coaxial and 6 most-used waveguide frequencies. For microwave impedance and power measurements, complete new instrumentation, 10 to $12,400 \mathrm{mc}$. For frequency measurement, standards, monitors and cycle counters, 01 to 200 mc. These and more - over 200 fast, accurate, easy-to-use instruments - the world's most complete coverage of electronic measuring needs.

2. ..in convenient, "next-door" service.

- $h p$ - has selected the best independent organizations in America to give you person-to-person help with your measuring problems. You are served by electronic specialists-men trained by Hewlett-Packard, fully informed about all - $b p$ - instruments. These men save your time by helping select exact instrumentation you require. They can offer expert counsel on your measuring problems. They are located in major business centers, as near to you as your telephone. Call them whenever, wherever you need personal help, in your plant, today!

The -hp- field service program saves time!
The -hp- direct-to-you sales policy saves money!
HEWLETT-PACKARD COMPANY

There is a trained -hp- representative near you!

Albuquerque, New Mexico Neely Enterprises 107 S. Washington St. Albuquerque 5.8731

Boston 16, Massachusetts Burlingame Associates 270 Commonwealth Ave.

KEnmore-6-8100
Chicago 40, Illinois
Alfred Crossley \& Associates 4501 N. Ravenswood Ave. UPtown 8-1141

Cleveland 15, Ohio
M. P. Odell Co.

2536 Euclid Ave.
PRospect 1-6171
Dallas 5, Texas
Earl Lipscomb Associates
P. O. Box 8042

Elmhurst 5345
Dayton 2, Ohio Alfred Crossley \& Associates 410 W. First St. Michigan 8721

Denver 3, Colorado Ronald G. Bowen Co. 852 Broadway AComa 5211

Detroit 5, Michigan S. Sterling Company 13331 Linwood Ave. Townsend 8-3130

Fort Myers, Florida
Arthur Lynch \& Associates P. O. Box 466 Fort Myers 5-6762

High Point, North Carolina Bivins \& Caldwell Security Bank Bldg. High Point 3672

Houston 5, Texas

Earl Lipscomb Associates 2420-B Rice Blvd. P. O. Box 6573 Linden 9303

Los Angeles 46, California Neely Enterprises 7422 Melrose Ave. WEbster 3-9201
New York 13, New York
Burlingame Associates 103 Lafayette St DIghy 9-1240

Philadelphia (Upper Darby), Pennsylvania
Burlingame Associates 7060 Garrett Road FLanders 2-1597
Phoenix, Arizona Neely Enterprises
32 West Jefferson St. Phoenix 4-7311

Sacramento, California Neely Enterprises 309 Ochsner BIdg. GI lbert 3-7461
Salt Lake City, Utah Ronald G. Bowen Co. P. 0. Box 2215 MUrray 900

San Francisco 18, California Neely Enterprises 2830 Geary Blvd. WAInut 1-3960
Seattle 9, Washington Ron Merritt Company 217 Ninth Avenue North SEneca 4948

St. Louis 9, Missouri Harris-Hanson Company 5506 S. Kingshighway SWeetbrier 5584-85

Syracuse 2, New York
Burlingame Associates
712 State Tower Bldg SYracuse 2-0194
Toronto 2-B Ontario, Canada
Atlas Radio Corporation, Ltd. 560 King St., West WAverley 4761

Washington 9, D. C. Burlingame Associates 2017 S Street N. W. DEcatur 8000

GUARD RING SEAL

 Clearly nuclear and defnititen fin whievement in precision production, the Gudra Ring seal is typical ch trifluoride filled neutron accomplishments. Currently used for borond Ring Seal gives imcounters, Geiger counters, etc., then of high humidity and con proved operation under gives freedom from micro-second 2000 V . tamination. It also gives to body valtage is 2000 breakdown pulse when pinyour requirements in hermetic seals, for Formation and help in planning a product, consult the experienced source for quality hermetic seals and $b \in$ right every time. Visit Hermetic's booth \#418 at the Western Electronic Show and Convention, Long Beach, Cal., August 27, 28 and 29.

for your copy of our new 32 . page brochure, the most complete and informative presentic tion ever made seals.

The Triumph Manufacturing Co. ${ }^{\text {"Galley duty in the Navy requires }}$ a motor control as rugged as the machine"

say Sheldon B. Storer (right) and Samuel T. Bryant (left), Sheldon Storer \& Associates, Cincinnati, Ohio, representatives, Ward Leonard Electric Company.

to insure high metal quality, Frank DePaola, chemist, studies samples microscopically for grain and crystal structure.

AN A-C MOTOR CONTROLLER undergoes a careful wiring check by Donald A. Parsons of Ward Leonard's Test Department.

magnetic overload relays are tested for tripping time by Anthony 1 . Bellitto before they are installed on motor control panels

COMPONENTS OF A-C SOLENOID STARTERS are being assembled in Ward Leonard's plant in Mount Vernon, New York.

From PT Boats to Battle Wagons Ward Leonard Designs Controls to Meet Exacting Specifications

At sea, electrical controls or components must meet exacting service conditions involving mechanical shock, vibration, salt spray, plus pitch and roll.

The Ward Leonard control line includes devices designed especially for Navy, Coast Guard and Maritime use, as well as the well-known industrial control line. For example, Ward Leonard makes pushburton stations for the Navy and Maritime applications, and a comprehensive line of commercial pushbutton starions. This holds true for a great variety of components.

Ward Leonard frequently builds special control items which involve contactors, starters, rheostats, relays, resistors, and other major electric components.

Ward Leonard controls are of unit construction. Each component is manufactured and tested independently. These components are then combined and mounted to suit customer's exact requirements.
Consult Ward Leonard on the extreme flexibility and adaptability of Ward Leonard controls and components to meer your special needs.

DISTRICT OFFICES AND REPRESENTATIVES

Atlanta 5, Georgia
Baltimore 18, Md.
Charlotte I, N. C.
Chicago 4, Illinois
Cincinnati 2, Ohio
Cleveland 14, Ohio
Corpus Christi, Texas
Denver 2, Colorado
Detroit 21, Michigan
Martford 6, Conn.
Houston 1, Texas
Kansas City 2, Mo.
Knoxville, Tennessee
Los Angeles 13, Calif.
Memphis 3, Tenn.
Minneapolis 5, Minn.
Newark 2, N. J.
New Orleans 13, La.
Philadephia 2, Pa. Pittsburgh 16, Pa.

Roanoke, Virginio
Rochester 7, N. Y. St. Louis 10, Mo.

Salt Lake City 1 , Utah
San Antonio, Texas
San Francisco 3, Colif.
Seattle 4, Wash.
Tucson, Arizona
Washington 5, D. C.
C. B. Rogers and Associates

Durling Electric Co.
Jomes L. Highsmith \& Co.
Word Leonard Electric Co.
Sheldon Storer ond Assoc.
The Ambos.Jones Co.
Brence-Krachy Co., Inc.
Mark G. Mueller
Jesse W. Eakins Co.
Ward Leonord Electric Ca.
Brance-Xrachy Co., Inc.
Maury E. Bettis Co.
John G. Pettyjohn
Ward Leonord Electric Co.
E. E. Torkell

Maivin H. Xirkeby
Ward Leonord Electric Co.
Electron Engineering $\mathbf{C o}$.
Ward Leonard Electric Co.
W. A. Bittner

Lynn H. Morris
Ward Leonard Electric Co.
Word Leonard Electric Co.
Leonord M. Slusser
Bronce-Xrochy Co., Inc
L. F. Church Co $^{\circ}$

Northwestern Agencies, Inc.
Central Station Equipment Co.
Federal Engineering Co., Inc.

CANADA

Edmonton, Alta.
Halifax, N. S.
Montreal 25, P. Q.
Toronto 1, Ont.
Vancouver, B. C.
Winnipeg, Man.
D. M. Fraser, Ltd.
D. M. Fraser, Ltd.
D. M. Fraser, Lid.
D. M. Fraser, Lid.
D. M. Fraser, Lid.
D. M. Fraser, LId.

EXPORT

New York 4, N. Y. |Ad. Auriema, Inc.

Unusual NON-LINEAR voltage resistance sensitivity

These unretouched photos of oscilloscope screens show the effect

GLOBAR Type BNR conductive ceramic body resistors

Dampen the effect of transient voltages and provide instant protection for electrical circuits.

THESE ADVANTAGES
are realized in magnetic solenoid valves, motor governors, relay contacts and other surge absorb-

1. Oil burner ignition transformers to prevent high voltage feed back into line.
2 . Small motors to prevent arcing of governor contact points.
2.

Stabilizing rectifier circuits by limiting peak voltages.

PUSH-ON SPEED NUTS

Make New Record FOR GRAY AUDOGRAPH

Here's how SPEED NUTS made a 50% savings in time, and a 75% material savings in the assembly of Gray AUDOGRAPH Dictating Machines . . .

Engineers at Gray Manufacturing Company took a second look at the index strip on their Audograph Machine and this is what they found. Five standard Tinnerman Push-On Type SPEED NUTS could be zipped over plain studs to attach the complete Index Strip Holder Assembly in half the time. . . replacing hex nuts, lock washers and eliminating special threaded studs.
This is just one of the many SPEED NUT Savings Stories being reported every day in a wide variety
of industries. Take a second look at some of your assembly operations with an eye to keeping costs down and quality production UP; your Tinnerman representative is prepared to help. SPEED NUTS are the most economical fasteners ever developedto prove the point, we'd like to make a comprehensive Fastening Analysis of your product line. In the meantime, write for your copy of SPEED NUT Savings Stories, TINNERMAN PRODUCTS, INC., Box 6688, Cleveland 1, Ohio. In Canada: Dominion Fasteners, Ltd., Hamilton. In Great Britain: Simmonds Aerocessories, Ltd., Treforest, Wales. In France: Aerocessoires Simmonds, S. A.7 rue Henri Barbusse, Levallois (Seine) France.

Built for the toughest service

If you need a wire wound control that will stand up under the most severe conditions, here's the answer to your problemMallory Series Q controls. These new features make the Q series your best choice for military and other exacting applications:
IMPERVIOUS TO MOISTURE AND FUNGUS: all insulation used in this control is made of high resistance material which has exceptionally low moisture absorption... treated to prevent fungus growth.
WEATHERPROOF FINISH : nickel plated case, stainless steel shaft, and all other metal parts will pass a 100 -hour salt spray test.
LONGER LIFE: hard nickel-silver contacts withstand the wear of thousands of rotations.
SELECTION OF TAPERS: all standard JAN tapers are available.

In addition to these standard features, Q series controls can be supplied in a number of special variations invaluable in applications requiring complete waterproofing or extreme resistance to vibration:

WATERPROOF SHAFT BUSHING: a waterproof gasket between shaft and bushing, sealed with silicone grease, prevents leakage along the shaft.
WATERPROOF PANEL SEAL: gasketed seal prevents leaks at the point of panel mounting. BUSHING LOCK: a split bushing, when tightened, prevents shaft rotation even under severe shock and vibration.

Mallory carbon controls - with all the construction features of the wire wound units - are also available in the Q series design.

For full information on Q series controls, call or write Mallory today.

			Similar
Series	Watts	Diameter	JAN Type
QC	2	$11 / 6^{\prime \prime}$	RA15
QR	2	$1 / 4^{\prime \prime}$	RA20
QM	4	$158^{\prime \prime}$	RA25 \& RA30

SERVING IND USTRY WITH THESE PRODUCTS:

Electromechanical-Resistors - Switches * Television Tuners - Vibrators Electrochemical - Capacitors - Rectifiers - Mercury Dry Batteries Metallurgical - Contacts Special Metals and Ceramics. Welding Materials

ELECTRONICS

CROSS
 TALK

- AGE . . . Electronics is often called a young man's business, despite the fact that it is now well out of swaddling clothes.

Our field continues to attract young men, and profits from their freshness and virility. It does so for two reasons. First, the potential applications of electronics still seem boundless. Second, the field now also represents one of the country's most important going businesses. Mere newness is no longer the sole attraction.

The industry itself is frequently fascinated by youth alone and, currently desperate for technicians, sometimes robs the cradle. There are signs of returning good sense in Help Wanted ads. Several companies are deliberately bidding for the engineering experience found side by side with age. Others are welcoming older engineers into management.

A good oldster is better than a bad youngster. A good youngster is better than a bad oldster. The yardstick is ability, not age.

- BOATS . . . In the approaching summer season we will spend what is laughingly called spare time cruising Long Island Sound under power and sail.

Marine radiophone WC2600, aboard "Dolphin," taxes the rarely-charged storage battery. Amateur station W2TY normally remains silent for this reason, and because two hobbies overtax weekend recuperative powers. The idea of installing an electronic depth
finder is nevertheless appealing. But there is a bug.

Units we've seen tell how much water is under the boat. Since we normally puddle-jump close inshore, what is needed is one that puts out a nice narrow pencil of ultrasonic energy ahead. This would enable us to duck unlighted buoys on night runs and safely grope our way into tight and shallow little harbors.

There's a market for a different kind of design.

- PARTS . . . As transistors develop commercially, electronic circuitry will change. This is widely recognized. Among other things, input and output impedances are quite different from those involved in conventional tubes.

Not so widely appreciated is the certainty that other component parts will change too. Consider several publicized virtues of the transistor. It is small. It requires no heater current. It operates at low voltages. So associated parts will also have to be small, and their ability to handle watts may be a minor rather than a major design consideration.

Maybe we are in for an era of sub-subminiature components. Or do you prefer micro-miniature?

- DEFINITION . . . Making the rounds in Washington to sort out the facts and fictions that so obsess this and other industries, we picked up a phrase about the city that explains why such checking
of rumors is necessary.
Washington, it is said, is "the only place in the country where sound travels faster than light."

- SPECIALIZATION . . . Engi-

 neering is a highly specialized field of endeavor. Don't look now, but right in your own shop it is rapidly becoming even more so.There are administrative engineers, development engineers, systems engineers, project engineers, product engineers, standards engineers, production engineers, quality control engineers, test engineers, packaging engineers, field engineers and even publication engineers. Probably we've left out a few.

Electronic applications of one kind or another are becoming so complex that engineers are subdividing right in their own bailiwick.

- SHOPTALK . . . Many readers have found "Industry Report" (p 5) interesting and valuable, if not downright indispensable. Others have found "Production Techniques" (p 228) ditto. But some are apparently so far behind in their reading that they are not yet aware of these two innovations running regularly since February.

A piece of our editorial hide adheres monthly to these two new departments. So, we can't resist planting this sixth-month call-up.

Not even electronically do we know a way to put a steam whistle on the contents page.

Weighing industrial-process ingredient by electronic control. Equipment shown is manually sequenced. Fully automatic controls handle several ingredients

Remote-Control Automatic Weighing

AUTOMATIC PROPORTIONING of solid and liquid ingredients for industrial processes is accomplished electronically by the Richardson Select-O-Weigh. This device permits remote control of one or more automatic scales to deliver an unlimited number of commodities into a continuous process either cumulatively or consecutively. For example, a proportioning system installed in a rubber-processing plant allows four different grades of carbon blacks to be weighed accumulatively into a single scale-hopper according to preselected schedules. Upon completion of the required accumulation, the machine discharges its load and is ready to begin a new cycle.

The system comprises a dial scale, a remote weight-setting vernier dial, and an electronic cut-off switch to stop the various feeders when the correct weight of an ingredient has been attained. The cut-off switch is actuated by proximity of a metal flag on the weight-scale pointer to

By ENRICO KLEIN
Chief Electrical Engineer Richardson Scale Co., Clifton, N. J.

a plastic-enclosed metal flag remotely positioned on the periphery of the weight-scale dial by means of a servomechanism.

Figure 1 shows schematically the

FIG. 1-System schematic showing screw feeders, weigh hopper, and weighing machine
physical arrangement of the weighing mechanism and feeders. The loading cycle of the scale is as follows: The electronic proximityswitch flag advances to the position pre-established on the servo pickup coil scheduling the first weighing. The first feeder, indexed by selection, starts. When the flag mounted on the dial-scale pointer, in advancing, meets the proximity flag, the feeder stops. The proximity flag then proceeds immediately to the position pre-established by the setting of the pick-up coil scheduling the second weighing and the second feeder starts.

Adequate time lags introduced into the cycle permit the flag to position itself before the feeder initiates. At the conclusion of the second feed, the remaining ingredients are added proportionally as scheduled. When the weighing cycle is complete, the machine rests awaiting the discharging impulse. The order of feeder selection is not critical and several pick-up coils

FIG. 2-Servomechanism positions proxim-ity-switch sensing plate to program desired weight

FIG. 3-Proximity flag-to-scale pointer capacitance tunes r-f oscillator of sharplyresonant switch circuit. Diode output voltage fires thyratron with 10,000 -ohm relay in plate circuit

Industrial control circuits applied to automatic weighing facilitate remote batching of process ingredients. Desired weights set up on vernier dial are automatically obtained in proper sequence from storage bins by servomechanism

may be sequenced to operate the same feeder.

Each time the scale is discharged, a permanently adjusted pick-up coil is switched into the servomechanism. This compels the proximity switch to position itself at the zero or tare balance position on the weight-scale dial. The proximityswitch circuit is then actuated and a signal indicates complete evacuation of the scale's weigh hopper before the next cycle is initiated. An alarm pilot light indicates failure of the tare-check circuit to the operator.

Servomechanism

The proximity-flag positioning servo consists of two linear vari-able-differential transformers connected as shown in Fig. 2. Each transformer consists of three coils wound on a single spool with a freemoving armature of magnetic material mounted inside the spool. Alternating current is supplied to the center, or primary coil C and the magnetic flux generated by this coil is distributed by the armature so that a voltage is induced in the secondary coils A and B. If the armature is symmetrically located, the induced voltages will be equal, but if the armature moves to the left (up) the induced voltage in coil A
will be greater than the induced voltage in coil B. If the armature moves to the right (down) the voltage in coil B will be greater than that induced in coil A. In normal operation the coils are connected in a series bucking relationship so that, when the armature is centered and both coils have equal voltages induced, the resulting output is zero. If the armature moves to the left a voltage of one phase, A, will predominate and if the armature moves to the right a voltage of the other phase, B, will predominate. Phase A will differ from phase B by 180 degrees.

The pick-up transformer is connected to the vernier dial, which is graduated in pounds and installed on the control panel. This manual control is so calibrated that 0.1 inch motion of the servo pick-up coil armature represents full-scale displacement of the weighing-scale dial. Since the vernier-dial graduations are therefore proportional to the peripherically located weight markings on the weight-scale dial, the servomechanism can be used to position the proximity-switch flag at the desired ingredient weight.

The electronic proximity switch consists of a frequency-drift, pro-portional-output triggering circuit shown schematically in Fig. 3.

Oscillator tube V_{1} is tuned to the broadcast frequency that will deliver highest power output through the i-f transformer at 455 kc and through the conventional mixeroscillator circuit of V_{2}. Tuning is performed by C_{1} and the fixed setting of the sensing plate in proximity to the scale-pointer flag.

Circuit Details

Coupling coil L_{1} is a Meissnertype 14-1022 broadcast antenna transformer. The mixer-oscillator stage is a conventional arrangement. Output voltage through diode V_{8} when the oscillator swings at the calibrated radio frequency of approximately $1,650 \mathrm{kc}$ with the flag in proper proximity to the scale pointer is approximately 100 volts, while it is only 0 to 10 volts when off resonance. The voltage gradient between these two conditions is due to the sharply tuned i-f transformer.

The rectified output is fed into a 2D21 thyratron V_{4}, the triggering point of which is adjusted by biasing potentiometer R_{1}. Automatictimed interlocks in the process-control circuit reset the thyratron plate circuit, dropping out the plate relay, by interrupting it at point A. A 10,000 -ohm, plate-circuit, plug-in relay is used.

FIG. 1-Schematic diagram of the stabilized binary counter. The two transistors are point-contact type

FIG. 2-Stabilized single transistor for triggering pulse input

FIG. 3-Characteristic and load line for circuit of Fig. 2

TWo TRANSISTORS are employed in the general-purpose binary counter with two stable d-c equilibrium points described herein. The counter may be triggered from one stable point to the other by the application of pulses of the same polarity to a common input terminal.

Figure 1 is a schematic diagram of the counter. Two balanced transistor stages with back couplings between collectors and bases, consisting of C_{2} and R_{4}, C_{1} and R_{5}, are used. Direct $\mathrm{d}-\mathrm{c}$ coupling is obtained by load resistor R_{12} and direct a-c coupling between emitters by C_{3}.

Regenerative paths for a-c signals are provided by the couplings as well as d-c paths to achieve stability once the transient effects-have

Binary Counter

subsided. A diode steering circuit consisting of D_{1} and D_{2} impresses triggering pulses upon the transistor bases. The steering circuit is given direction by the difference of potential existing between the bases when one unit is in the on condition and the other in the OFF condition.

The common emitter resistance R_{12} eliminates the necessity for a separate biasing supply for the emitters because it always passes the emitter current of the on stage to provide the biasing potential for the off stage. The circuit also utilizes base stabilization and a feature insuring low triggering requirements.

Stabilization Feature

Triggering sensitivity and stable operating points of transistor trigger circuits may be affected markedly by variations among transistors and by variations in the operation of a single transistor at different temperatures. Transistors, at present, vary widely from one another in the amount of base current $I_{c o}$ which flows when the emitters are biased negatively in the nonconducting region.

The variable base current, when flowing through the large base resistance added in the base circuit to obtain the desired negative resistance characteristic, causes variations in the turning point of the characteristic. By adding a biased diode in the base lead, a low shunting impedance is provided in the negative emitter current range.

by robert l. trent

Member of Techmical Staff Bell Telephone Laboratories Murray Hill, N.J.

This feature is illustrated in Fig. 2. The low impedance keeps variations in $I_{c o}$ from unit to unit from causing a wide range of voltages to be developed across the base resistances. The remainder of the standard negative resistance characteristic is obtained over a range of positive emitter current because of the high impedance condition.

To insure at least a minimum value of negative resistance as soon as positive emitter current is obtained after triggering, a small resistor has been added in series with the shunting diode. This resistor also gives a sharply defined turning point in the characteristic, resulting in ease of triggering and less loading of the triggering source. Higher frequency response is obtained because the transition time is decreased.

Effects of variations in $I_{c o}$ on the turning point may be kept within practicable limits by proper proportioning of the added resistance. The characteristic resulting is shown in Fig. 3. The stabilization feature has been applied to both transistors in the circuit under discussion.

Triggering Sensitivity

A binary counter stage should be stable enough so that when set to one condition, it maintains that

FIG. 4-Trigger circuit with lockup feature (A) and emitter characteristic (B)

Various timing and registry functions are provided by transistorized counter with repetition rate from 0 to 50 kc . It has stability without the usual sacrifice in sensitivity and it permits either positive or negative triggering pulses to be used

condition indefinitely until the next incident pulse is impressed upon the input lead. Unfortunately, satisfaction of this requirement often leads to poor triggering sensitivity. The counter under discussion uses circuits enabling both stability and sensitivity to be secured.

The simplified circuit of Fig. 4A shows the required lockup feature as performed by the common emitter coupling resistance R_{1} and the cross-coupling resistors R_{2}. Figure 4B is the characteristic for such a circuit, assuming that both transistors have identical characteristics and that each transistor acts separately as a two-terminal device. The ON unit is assumed to be stable at point B where the characteristic curve and the load line R_{1} intersect. The off unit must be stable at the same emitter potential as in the previous case because of the coupling action of R_{1}. The positive triggering pulse must have an amplitude greater than Δ.

When R_{3} and the diodes are added, Fig. 5A, the effect on the characteristic and load line is shown in Fig. 5B. The on unit has the same operating point B as before but the off unit no longer operates at point A. The diode in series with the off unit emitter is biased in the reverse direction to
give a new load line $E-E_{1}$ for the off unit.

The new load line intersects the normal characteristic at point C. The triggering pulse amplitude decreases from a value greater than Δ, as in the previous case, to greater than δ. A further decrease in the required positive triggering amplitude is obtained by use of shunt resistor R_{3} to give intersection at point D. Triggering occurs in this case when the pulse is greater than $\%$ The sensitivity has been increased without sacrificing stability of the circuit.

Triggering. Mechanism

The counter circuit, Fig. 1, may be triggered with either positive or negative pulses if the proper steering diode polarity is observed. With the circuit as shown, the diodes are connected for positive-pulse triggering. Steering is accomplished by the difference of potential between on and off unit base connections. The on unit base is always 5 to 10 volts more negative than the OFF unit base with the result that a positive pulse at the input will be impressed upon the on unit base. This pulse also appears on the emitter of the 0 N unit because of the low impedance from base to emitter in the on condition.

FIG. 5-Modified trigger circuit (A) and emitter characteristic (B)

Coupling capacitor C_{3} passes the pulse to the off unit emitter which is at a high impedance. The off unit is then triggered because it is stable at a point close to the turning point in the characteristic. A sharp pulse, 20 volts in amplitude with a rise time of 0.2 to $0.3 \mu \mathrm{sec}$, appears at the collector of $T R_{1}$ because of the triggering action. This pulse is passed back to the base of the on unit by means of capacitor C_{1}. The characteristic of the on unit shifts abruptly in a positive direction.

If the characteristic shifts enough so that the emitter load line no longer intersects the characteristic, the only remaining stable point is in the OFF stable region. Following the time constant of C_{2} and its discharging resistor, the collector voltage becomes more negative. This time constant sets the upper limit on the repetition rate of the counter.

Capacitor C_{3} performs another function in keeping the potential difference existing between the emitters, during the triggering interval. This insures that the steering diodes will remain polarized correctly until the end of the transition period.

Triggering with negative pulses is accomplished by reversing the steering diodes. A negative pulse at the input is then impressed upon the base of the off unit.

Triggering pulse requirements for the counter are that the polarity may be either negative or positive, amplitude from 3 to 6 volts and duration greater than 0.6 usec. Repetition rate is from 0 to 50 kc . Output pulse amplitude is from 16 to 25 volts with a rise time of 0.2 to $0.4 u \mathrm{sec}$ and a fall time of from 2 to $4 \mu \mathrm{sec}$. Power input is about 0.5 watt.

TRANSMITTERS for

Design techniques have progressed since the 1948 JTAC report but the necessary megawatts then anticipated have yet to be realized. Transmitter powers to be commercially available in Fall and Winter will not exceed ten kilowatts but substantially higher power may be feasible in 1953

NOW THAT the FCC has officially unscrambled the television broadcasting situation in this country there remains the problem of engineering equipment for useful operation in the channels between 470 and 890 mc . The problem of delivering the required power levels is proving difficult.

When the uhf-tv band was first considered, the FCC asked the Joint Technical Advisory Committee (JTAC) to study the propagation characteristics of the proposed allocations. The resulting JTAC report showed that field strengths as much as ten times those normally required on the vhf channels would be necessary at uhf. ${ }^{1}$

The FCC established a field strength of 500 microvolts per meter as adequate for residentialrural service on the 54 to $216-\mathrm{mc}$ channels. The JTAC report estimated that 5,000 microvolts per meter would probably be required for same grade of service on the uhf channels.

The Norton propagation formula indicates that a signal of 5,000 microvolts per meter from an antenna height of 500 feet can be maintained at 40 miles only if an effective power of 214 kilowatts is radiated. An experimental trans-
mitter on the Empire State Building, operating on 510 and 910 mc showed that an effective radiated power of as much as 5 to 20 megawatts might be required in actual practice for such coverage.

Existing Equipment

At the time the new channels were proposed in 1948, the RMA Television Transmitter Committee reported that the maximum power available from existing tubes over a $6-\mathrm{mc}$ channel was 2,000 watts at 475 mc and 500 watts at 890 mc . Antenna power gains of ten were then considered tops.

To evaluate the practical service possibilities of the uhf frequencies, NBC has operated station KC2XAK at Bridgeport, Conn. since December, 1949. ${ }^{2}$ The transmitter comprises a 500 -watt commercial vhf unit, providing picture and sound output on 176.75 and 178.25 mc , plus a tripler and power amplifier for each service. Final picture output frequency is 530.25 mc at a power output of one kw on sync signal peaks.
Both tripler and output amplifiers employ cavities with eight 4 X 150 tubes in each cavity. A slot antenna is employed at this station. A horizontal circular pattern is ob-

FIG. 1-Tube line-up of RCA one-kw pic̣ture transmitter
tained with 22 sets of four slots alternately arranged at $45-\mathrm{deg}$ intervals about the supporting pole. The measured pattern of such an antenna 40 feet long shows a power gain of 17 .

Tubes in parallel as the final amplifier have been operated on 609.25 and 709.25 mc by DuMont. Six 2C39A lighthouse tubes were mounted in a so-called beer-barrel cavity. ${ }^{3}$ This is formed of two coaxial-line cavities with the tubes mounted in the center of half-wave foreshortened lines and connected as a grounded-grid amplifier. One cavity becomes the cathode-grid circuit and the other is the plate-grid circuit. Fed to an antenna having a gain of 20 , an output of 8 kw erp can be expected.

Another experimental DuMont setup used eighteen tubes in a similar beer-barrel cavity arrangement. About 750 watts of $c-w$ power was available with good modulation characteristics at 600 mc .

To avoid parallel operation of several small tubes, General Electric has used a high-power klystron in a five-kw transmitter. ${ }^{4}$ The tube operates single-ended as a linear amplifier and can provide a power gain of 50. Using a helical antenna having a power gain of 20 , an effective radiated power of 100 kw can be obtained. ${ }^{\text {b }}$ Recently, G-E filed specifications with the FCC for a $60-\mathrm{kw}$ uhf transmitter designed around a higher-power klystron. This would produce about $1,000 \mathrm{kw}$ of effective radiated power, the maximum presently authorized for uhf by FCC.

Commercial Equipment

For channels 14 to 83, RCA offers commercially the TTU-1B transmitter which provides 1 -kw peak picture power and 500 watts of

UHF

aural power out of the sideband filter and diplexer. A block diagram of the video transmitter is shown in Fig. 1.

Overtone crystals having output frequencies in the order of 26 to 37 megacycles are used. This permits a low multiplying factor between 18 and 24 (18 from 470 to 630 mc). At station KC2XAK, the crystal frequency of the video transmitter was $4,909.7 \mathrm{kc}$, and a multiplying factor of 108 provided $530-\mathrm{mc}$ output. On a similar basis, a $6-\mathrm{mc}$ crystal and a multiplying factor of 144 would be required to reach a final operating frequency in the order of 850 mc .

Proper operation of intercarrier receivers requires that the beat frequency between picture and sound carriers be 4.5 mc . The RTMA recommends that the maximum difference between the carriers not exceed 5,000 cycles. At vhf fre-

FIG. 2-Oscillator circuit for thirdovertone crystal
quencies, this can be achieved by using crystals with a tolerance of 0.0005 percent for the picture carrier and 0.001 percent for the sound carrier. At uhf, a tolerance of 0.0001 percent for the visual carrier and 0.0004 percent for the aural carrier maintain the difference between the two carriers to an acceptable value.

The difference has been maintained in some designs by using the beat between the carriers to control an afc system in the transmitter but this requires common circuits between picture and sound transmitter. The use of overtone crystals in the transmitter described permits the two transmit-

FIG. 3-Quarter-wave plate cavity for 2214J tube
ters to operate independently.
A schematic of the oscillator circuit is shown in Fig. 2. The crystalholder capacitance and the tube input capacitance combine with coil L_{1} to provide a high impedance in the grid circuit necessary to permit the crystal to operate on its third overtone.

Stage Lineup

Following the crystal there is a buffer stage using a 5763 tube. A second 5763 operates as a doubler for transmitter output frequencies between 630 and 890 mc or as a tripler for frequencies between 470 and 630 mc .

A 4422 tube acts as an amplifier for the lower group of channels or as a doubler for the upper group of channels.

The next stage is a $4 \times 150 \mathrm{~A}$ which operates as a frequency tripler and provides an output of 50 watts in the region of 235 to 445 megacycles. Up to this point, conventional circuitry and lumpedconstant plate circuits are employed. The following stages contain coaxial cavities. The remainder of the r-f unit includes two 2214 J tubes and the A2504 final output stage.

The first 2214J operates as a frequency doubler and produces an output of about 80 watts. The second 2214J is a straight-through amplifier and develops 180 watts. The 4 X 150 A and the two 2214 J cavities are supplied with a plate
voltage of approximately 1,100 volts.

A coaxial cavity circuit for the 2214J tubes with a quarter-wavelength plate circuit is shown in Fig. 3 in cross-section. The cavity sketch is simplified to show only the plate circuit. The metallic tuning slug is wrapped with Teflon tape. The portion of the tape parallel to the long dimension of the cavity and the slug and cavity cylinders, both inner and outer, form the output coupling capacitor. The r-f currents flowing between plate and grid must flow through these two capacitors. In effect, the slug capacitor is in series with the tube output capacitance across an equivalent inductance.

Movement of the slug changes the resonant frequency of the plate circuit. Except for a small voltage drop across the Teflon capacitors, the moving slug arrangement can be thought of as a noncontacting short circuit.
The r-f voltage drop across the Teflon capacitors excites the lower portion of the cavity. The distance L_{1}, between the output connector and the nominal setting of the tuning slug, and L_{2}, the distance between the load adjustment and the output connector, determines the actual loading across the equivalent plate circuit. Looking into the cavity at the output connector, the distance L_{2} determines the amount of inductive reactance placed in parallel with the 50 -ohm load. Dis-
tance L_{1} is chosen so that the impedance at the output connector position appears as resistance shunted across the equivalent output tank at the tuning slug.

The grid circuits of the 2214 J cavities are also of coaxial construction. A simplified sketch is illustrated in Fig. 4. The tuning slug which is wrapped with Teflon tape to form a capacitor acts to tune out the reactive component of impedance that the grid of the tube presents. This matches the 50 -ohm input line to the grid of the tube and acts as the input tuning control. The knurled grid tuning adjustment moves the Teflon screw which in turn moves the Teflon concentric capacitor.

A cross-section view of the A2504 final amplifier tube appears in Fig. 5. An air-cooled tetrode, it employs a cavity plate circuit like that of the 2214 J but larger in diameter.

Video Modulator

Five video stages are used in the modulator portion of the transmitter. The arrangement of stages is shown in Fig. 1. The output stage is a cathode-follower modulator which drives the grid of the A2504 final power amplifier tube directly.

Inverse feedback is used between the first 6AH6 and the second 6AH6 to help reduce distortion, noise and to increase stability.

The 5763, a cathode follower, acts as a phase inverter to drive the first 4422 with a signal of the proper polarity. The 4422 is a conventional video amplifier and its plate circuit contains the only set of peaking coils in the video chain. The clamp circuit operates on the grid of this stage, and the d-c component of the video signal is maintained from this point on.

The output voltage of the cath-ode-follower modulator is produced across a capacitance of about $225 \mu \mu \mathrm{f}$. To reproduce fine detail in the picture, the voltage across this output capacitance must change in an extremely short period of time. For design purposes, a figure of $0.08 \mu \mathrm{sec}$ is used. For steep-fronted waveforms, a peak current from the modulator tubes is required that exceeds the current normally required to produce the output voltage across the cathode resistor for relatively slow signal changes. The four 4422 tubes in parallel provide peak plate current of about 800 ma with the grid well in the negative region.

When the grid is driven in the negative direction, the charge across the stray capacitance may not follow the grid signal and distortion will result. Some minimum current is kept flowing through the modulator tubes to keep the equivalent time constant of the R-C discharge circuit fast enough. Whitelevel current through the tubes is not allowed to drop below a certain level and all signal excursions are above this value.

Sound Transmitter

In the sound transmitter, an f-m exciter takes the place of the crystal oscillator and buffer stages of the picture transmitter.

A crystal oscillator and pulse generator produce a series of narrow pulses which are used to synchronize a saw-tooth generator. The saw-tooth output is clipped at a level corresponding to the instantaneous audio modulation applied. A series of pulses from the modulator that have been shifted in phase or timing according to the instantaneous modulation applied are fed to a series of frequency multipliers

FIG. 4-Simplified drawing of grid cavity for 2214J tube

FIG. 5-Cross-section of one-kw final amplifier tube, type A2504, an aircooled tetrode having ceramic seals
and restored to sine-wave form. The second crystal oscillator and mixer translates the f-m signal to a new portion of the spectrum without altering the initial deviation. The following amplifiers increase the signal level and act as selective filters.

This unit is a phase modulator and a frequency-selective device is provided at the audio input terminal to make the audio output of the second audio amplifier vary inversely with frequency. This is done to maintain a frequency deviation independent of the modulating frequency.

Other r-f stages of the sound transmitter are similar to the units in the video transmitter.

10 Kilowatts

For higher-power operation, a 10kw amplifier is planned to be added to the picture transmitter described. This consists of an A2500 tetrode as a linear amplifier using a coaxial plate circuit like that of the 2214 J tube. Another A2500 provides sound channel output of five kw.-v.z.

References

(1) D. G. Fink, The Prospects for LTHF Television, ELectronics, p 68, Nov. 1948. (2) R.F. Guy, UHF Television Field Test, Electronics, p 70, April 1950
(3) W. H. Sayer, Jr. and E. Mehrbach, Cavity, Transmitter Uses Beer-Barrel Cavity, ELECTRONICS, p 125, Dec. 1951 . UHF Television Transmitter, ELECTRONios, p 108, June 1951 . ICs; p 108, June 1951.
UHF-TV Transmitting Antenna, Hellx tronics, p 107, Aug. 1951.

Internal Electrostatic Deflection Yokes

Equal horizontal and vertical deflection sensitivities result from simultaneous deflection. Confinement of fringe fields provides greater freedom from scan distortion and defocusing and permits wider angles of deflection

WHEN COMPARING conventional electrostatic and magnetic deflections in their present forms, it is found that the former is basically sequential and the latter simultaneous in operation. The crossed-pair system of deflector plates delivers first one component of deflection and then the other, whereas the modern magnetic yoke handles both components at once. Undoubtedly, it is desirable to do the same with electric fields.
The resemblance between the physical laws for static electricity and magnetism holds a clue for the construction of an electrostatic yoke. Assuming cylindrical geometry, that analogy demands that we should provide two crossed sets of boundary potentials, each of them with a cosine distribution around either axis of deflection. On the basis of these considerations, the present form of deflection electrode was developed. Since this is a separate unit, structurally and functionally, within the tube, the designation Deflectron was coined for it.

Early Efforts

There have been earlier attempts to solve the problem of simultaneous electrostatic deflection in two dimensions. For instance R. R. Law suggested resistive material to obtain the correct boundary potentials; ${ }^{1} H$. Salinger used, for the same purpose, a 12 -wire cage connected to a mixing network outside of the tube; ${ }^{2}$ and F. Gray applied V.

By KURT SCHLESINGER
 Television Research Dept. Motorola, Inc.
 Chicago, Ill.

Ardenne's principle of distributed shielding, ${ }^{3}$ to perform various electronic functions, including deflection. ${ }^{4}$

However, none of these earlier efforts seems to have resulted in a practical device suitable for use in modern cathode-ray tubes. To be useful, such a unit should have no more than four terminals, high sensitivity, low admittance, a rigid, lightweight structure and it should be easy to produce and to reproduce. The Deflectron meets all of these requirements.

Figure 1 explains the principle of composite electrodes, which are the basic elements of the Deflectron. In Fig. 1A metallic areas of different width are connected, alternately, to separate voltages V_{1} and V_{2}. An electron flying in the Z direction across the strips at an altitude d, will see a resultant potential V as described by

$$
\begin{aligned}
V^{\prime}= & {\left[V_{1} \frac{l_{1}}{\lambda}+V_{2} \frac{l_{2}}{\lambda}\right] } \\
& +06+\left(V_{1}-V_{2}\right) \sin \left(\frac{\pi l_{1}}{\lambda}\right) \\
& \quad \epsilon^{-2 \pi} \frac{d}{\lambda} \cos \left(2 \pi \frac{z}{\lambda}\right)
\end{aligned}
$$

This effective potential consists essentially of a constant term and an

Typical electrostatic deflection units for tv (left) circular (center) and 30 -degree pencil (right) yokes

Sweep patterns from rectangular unit with and without matrix network. Matrix provides almost double scanning area
alternating term. The constant term indicates an average potential which is the sum of the two bias voltages, each weighed by the effective length of the strip, to which they are applied. This term does not change with distance.

The alternating term on the other hand is proportional to the biasdifference between strips, and it is found to decrease rapidly with distance from the electrode. Figures 1 B and 1 C show the potential-functions at the surface and approximately $\frac{1}{3}$ wavelength away, respectively. An observer who is more than one-half a wavelength away will therefore see less than 4 percent of the alternating component, but all of the average potential.

$$
V_{a v}=V_{1} l_{1} / \lambda+V_{2} l_{2} / \lambda
$$

Since the relative strip width may be varied, across the surface by design, we are in a position to realize many desirable potential distributions including the case of a constant gradient parallel to the surface of the electrode. This is illustrated in Fig. 2.

Rectangular Deflectron

Figure 2A shows the conventional sequential type of electrostatic deflection using two crossed pairs of plates as contrasted to an equivalent Deflectron which performs biaxial deflection, simultane-
ously. The deflection box is only half as long as the crossed-plate structure. The sides of the box are formed by composite electrodes with triangular boundaries. Each coating is continuous along an edge so that there are four terminals.

Center of deflection R is the same for all rays. In the conventional structure, there are two separate deflection centers R_{V} and R_{H} and two different sensitivities for the two axes. In the crossedplate arrangement, the fringe field between pairs has to be traversed by the beam thus giving rise to defocusing and keystone distortion. In the box system, these fringe fields are confined to the vicinity of the composite surfaces. The beam passes through the central region where the field is uni-

Television test pattern scanned with circular electrostatic deflection unit
form. This provides greater freedom from scan distortion and defocusing so that wider angles of deflection become practical.

Figure 3A shows what happens if the corner terminals are directly connected to two balanced sweep generators V and H. If the box is cut for an aspect ratio of $4 \times$ 3 , the figure of scanning becomes a rhombus, standing on one point and including an angle of 74 degrees.

Figure 3B shows how to obtain a rectangular television scan parallel to the sides of the box. A matrix R-C network is inserted between the generators and the tube. Two arms of this matrix are reactances and the other two are resistances. If designed for a crossover frequency of $1,000 \mathrm{cps}$, the network will behave at the line and field frequency as if R or C, respectively, did not exist. As shown in the crt face by the use of the matrix the scanning area is almost doubled.

Deflection Sensitivity

A box in matrix connection is the equivalent of a matched pair, that is, a set of parallel plates cut for the same exit angle. The ultimate deflection sensitivity of such plates depends only on their aperture and the beam voltage as indicated by

$$
e_{d}=4 E_{A} \tan ^{2}\left(\frac{1}{2} \alpha\right)
$$

where E_{A} is the beam voltage at the point of deflection, e_{d} the peak-topeak voltage between plates and x the total deflection angle.

This expression shows that at 52 degrees, deflection requires as much voltage as acceleration and, at 72 degrees, twice as much.

Fortunately, only one-half of this total has to be supplied to each plate, if push-pull operation is used. This high voltage demand, rather than functional deficiencies, seems to draw a line beyond which the use of electrostatic deflection becomes increasingly difficult. The practical limit appears to be reached at 50 degrees total deflection angle.
Figure 4 gives a general idea of the sweep circuit techniques for television. The system, when sealed into a bulb type 16LP4 run at 15,000 volts, requires 4,500 volts
for vertical and 7,900 for horizontal deflection, if no use is made of post acceleration. The vertical sweep voltage may be readily derived from two small triodes type 6SF5, running in push-pull off a plate supply of 2,700 volts and drawing 600 microamperes apiece.

The line sweep comes from a pulse amplifier with reactive load. It uses a power pentode type 6AU5 and a step-up transformer, whose secondary is tuned to approximately one-sixth of the line frequency (2,500 cps.). An early model of this sweep unit consumed 10 watts which is only a fraction of the power input used for conventional magnetic sweep circuits.

The need for a matrix network
with its attending frequency restrictions is obviated by the use of Deflectrons with rotational sym-

FIG. 1-Typical composite electrode configuration (A) and theoretical potential functions at (B) and at a distance d
(C) from electrode surface
metry. The circular unit may be used with or without matrix, in a great variety of applications including to picture tubes, radar indicators and oscilloscopes. The cylindrical form has the advantage of providing greater spacing between beam and electrode surface for most of the scan, thus minimizing deleterious wall effects. This advantage is largely maintained but the sensitivity is increased, if the cylinder is tapered off to a cone.

Circular Analysis

Figure 5 illustrates the basic conditions under which a uniform field with an inclination of o degrees is properly reproduced in a

FIG. 2-Biaxial electrostatic deflection system (B) has advantage over concentional sequential type (A) of equal deflection sensitivities and common center of deflection

FIG. 3-Matrix connection (B) corrects for rhombic geometry

FIG. 4-Rectangular deflection box with matrix and sweep circuits

FIG. 5-Circular deflection unit offers production advantages
circular deflectron. Suppose two voltages V_{x} and V_{y} are applied to the plates of a conventional oscilloscope in ratio of

$$
V_{y} / V_{x}=\tan \varphi
$$

To reproduce that angle correctly, with the same voltages, a circular deflectron has to be printed in such a way that the active length of the pattern is a sine and/or cosine function of the angle. In Fig. 5 this is accomplished by metallic areas which are bounded by half waves of sine and cosine, respectively. The boundary potential then is the sum of the applied voltages weighed by their respective lengths

$$
\Phi=V_{y} \sin \alpha+V_{x} \cos \alpha
$$

From the voltage ratio equation we find this to be the equivalent of a new cosine distribution.

$$
\Phi=V \cos (\varphi-\alpha)
$$

where $V^{2}=V_{\infty}{ }^{2}+V_{y}{ }^{2}$. The potential described by this equation generates, within the cylinder, a uniform field of the desired inclination. This reveals, moreover, that it is mandatory to keep the deflection voltages balanced at all times, including any d-c shift and positioning voltages. In this respect, the Deflectron is more touchy than its counterpart, the plate deflector, which may be operated from singleended sources without too much trouble, at least at small angles.

There is apparently more than
one way to meet the required cosine distribution of potential in circular configurations. Figure 6 shows three geometries which are equivalent at least to a first approximation. Figure 6A shows the sinusoidal area distribution just mentioned. This pattern has the disadvantage of requiring conducting bridges which spoil the potential distribution and introduce points of high voltage gradient involving insulation difficulties.

The pattern of Fig. 6B shows the offset sine, which has inherent continuity thus avoiding one of the above defects. Figure 6 C , or the arrow pattern, offers both continuity as well as good voltage stability. It consists of four groups

Bar pattern obtained with conical deflection unit
of metallic ribbons, whose width in axial direction varies as a sinefunction of the angle. Each ribbon covers one-half of the perimeter.

The center of the photograph of various configurations shows a conical Deflectron of the offset-sine variety. Below it is a conical electrode with arrow pattern. These cones are cut for a 60-degree opening and have a 2 to 1 taper, which results in a sensitivity increase of 30 percent. The positive lens effect caused by the taper is negligible.

The gun used in all these Deflectron tubes is short and straight since no ion trap is required. Focus is done electrostatically at voltages between zero and 300 volts.

The conical unit has been successfully employed for radar applications. Figure 7 shows the extremely simple circuitry required
for ppi displays. Two pairs of 6SF5 triodes generate the required 7,200 volts of clipped sawtooth wave in push-pull out of a B-supply of 4 kv . With an input of 45 volts per phase, we obtained 50 -degree deflection of an 8,000 -volt beam using a moderate amount of post-acceleration (1.4 to 1).

The combined power supply for preamplifiers and tube employs a pulse-operated voltage doubler at a repetition rate of 20 kc . Since balanced d-c deflection is provided for, the spot may be shifted permanently toward the perimeter without defocusing. The small Deflectron capacitance (25 ; puf per phase) permits fast sweeps with negligible plate power.

Radar ppi obtained using conical deflection circuit shown in Fig. 7

To illustrate an oscilloscope application, a 30 -degree pencil unit was developed and mounted on top of a standard electron gun type 5CP1-A.

The pencil-Deflectron electrode shown at right in the composite of different types is a glass-cylinder two inches long and $\frac{1}{2}$ inch wide with an arrow pattern. Similar pencil units may also be produced inside of a 1 -inch cylinder with $\frac{1}{x}$ inch diameter.

In its present form, the deflection factor of this tube is about twice as high as that of a conventional 5CP1, but both axes have identical characteristics. The mechanical ruggedness, simplicity of mounting and alignment, and the ease of reproduction may outweigh the loss of sensitivity for many applications.

Flying-spot illuminator for photoengraving electrostatic deflection yokes

One of the advantages of the Deflectron over the conventional crossed-pair system is the ease by which it may be reproduced with high accuracy. The Deflectron uses a glass base with narrow inside, but with wide outside, tolerances. Such a body may be readily produced by pressing glass around a precision graphite filler in a mold. The accurate reproduction of the metallic pattern is assured by using methods of photo-engraving. With this technique, all units are printed from a single master negative which is, itself, a photographic copy from an enlarged pattern design drawing.

Production Techniques

In production, a film carrying the master pattern is inserted on the inside of the glass envelope and illuminated by a concentrated arc lamp. The small size of this light source insures sharp contours, in spite of the fact that contact between glass and film may be as far off as 20 mils .

To obtain constant and uniform exposure all along the inside of the electrode, it was found necessary to use a flying-spot method of illumination, rather than a stationary lighthouse setup. A small motor rotates a surface-silvered 45 -degree mirror around the axis of the elec-
trode, so that the reflected light hits the film glass surface under almost normal incidence. At the same time, the motor carriage rolls slowly back and forth, so that the inside is scanned in a helix. The rest of the procedure follows the established methods of photo engraving. The etched silver base is built up by electro-plating of copper.

When placed inside the evacuated envelope, the units are able to withstand the high sweep voltages without arc-over. On a glass base, the phase to ground capacitance averages $20 \mu \mu \mathrm{f}$, while the surface insulation after processing regularly exceeds 100 megohms, thus permitting the use of high-impedance sweep circuits with low power consumption.

The project has been supported by D. E. Noble, vice-president of Motorola, Inc. and Director of Research, and benefitted from the assistance of Gerald C. Hoffman, V. Graziano and James H. Grigg.

Bibliography

[^5]
INDUSTRIAL

The complete instrument used for measuring and recording diameters of yarn and other filamentary materials

MEASUREMENT OF YARN and similar materials by means of their shadows in a beam of light falling on a phototube is not new. Most of the instruments designed for this purpose in the past, however, have suffered from a number of faults.

Instability of the d-c amplifiers, lack of provision for a suitable method of passing the yarn or material being measured through the measuring gap and poor choice of the basic method by which the yarn is to be measured are a few of the difficulties often encountered.

Instruments on the market today

[^6]that utilize the shadow method are entirely satisfactory when the material being measured is perfectly round. In the case of textiles, however, there is reason to measure yarns that may tend to band, ribbon or twist and give erroneous readings due to the apparent change in diameter. Actually, the weight or total amount of material being measured has not changed.

In the instrument to be described, known as the Filometer, this difficulty has been overcome by employing a high-intensity beam of light so arranged that light is actually transmitted through the material being measured. The changing amount of light reaching the phototube is a measure of the

By FRED P. STROTHER*
Head, Electronics Department
West Point Research Division
West Point Manufacturing Company

amount of material present and not of the physical size alone.

Measurements by this method may cause apparent errors for dif-ferent-colored yarns but corrections can be introduced to take care of this in most types of yarn.

Instrument Description

The instrument is complete in itself. Within one cabinet are included a small creel or holding arrangement for the yarn to be measured, the actual measuring head with its associated mechanical and electronic equipment, the recorder with the necessary drives and a three-speed winder for spooling the measured yarn. This enables the operator to measure yarn without any auxiliary equipment or special setup.
The yarn to be measured is unreeled from the quill, or spool, and fed continuously through the measuring unit on the instrument. After that it is rewound on a package that may be used on standard textile machinery. The recording pens make a record on chart paper driven by a synchronous motor. The chart is exactly in step with the yarn as it is fed through the machine. At any point on the chart, the size of the corresponding point on the yarn being measured can be read.
From the chart one can calculate the percentage variation existing in the yarn and discover any waves or cyclic variations that may appear. A fairly complete analysis of the quality of the yarn can be made relative to its size.
The instrument is arranged with a sloping panel on which are located all of the controls necessary for easy operation and a window through which the chart may be viewed while the recording is being made.

YARN CLASSIFIER

Instrument for use in textile industry measures and records diameters of filamentary materials such as yarn. Device is more accurate and has better stability than other similar instruments using phototubes

Figure 1 is a mechanical drawing of the functional parts. The yarn is unwound from bobbin B at a constant speed by means of the synchronously driven drum winder W and repackaged for further use.

While traveling from bobbin to drum, the yarn passes through the gap between the prisms mounted on the measuring head H. The head contains a light source I_{1}, light beams that are directed on the measuring phototube V_{1} and the balancing phototube V_{2}, the latter through the adjustable shutter K.

The purpose of the second phototube is to correct to a first order for variations in the light output of I_{1}. Balance is achieved initially by adjustment of the shutter K. It can also compensate to a degree for variations in the phototubes due to aging and other reasons.

Any material lying within the measuring-head light beam causes the bridge, Fig. 2, to be unbalanced. The resulting signal is fed through the sensitivity control to the chan-nel-one amplifier, its recorder and then to the channel-two amplifier and its recorder.

Integrating Circuit

An integrating circuit located between amplifiers one and two is used to level out the fine shortterm variations existing in the yarn in order that the long-term variations may be more easily seen. These are recorded in channel two. A balancing meter M_{1}, Fig. 1, is included with a switch allowing it to be used on either of the two amplifiers.

Particular attention has been given to make the design of each unit stable and sound. The proper location of each item, with respect to the rest of the instrument, is such that operation requires a min-
imum of effort. There is no interaction between the various elements or circuits.

Calibration is effected by means of a block on which are fastened four wires of suitable sizes so arranged that when the block is placed in the measuring gap, a
wire of a certain size is interposed in the beam of light.

Sizes of the wires are chosen so that the shadow they cast will bear a specified relationship to a given yarn size. As the wire casts a solid shadow compared to the integrated reduction in light caused by the

FIG. 1-Principal elements used in the Filometer

FIG. 2-Simplified schematic of the measuring circuit, coarse-sensitivity control and channel-one ampliffer
yarn, a calibration is necessary to establish the relationship between the two

Calibration is done when the measuring block is fabricated. Different calibration blocks are required for colored yarns. Generally, the percentage variation is the important thing and this does not require absolute calibration. The sensitivity is set so that the recorder pen writes above or below any desired line on the chart. When the chart is finished, the precent variation can be calculated.

If absolute calibration is desired, the yarn is temporarily removed from the measuring slot, the gauge substituted and centering checked. The instrument is then calibrated by means of the gain control R_{12}, Fig. 2. The calibrating block is removed, the yarn replaced and the machine is ready for operation.

Circuitry

Figure 2 is a simplified schematic of the phototube and coarse-sensitivity circuits. Figures 2, 3 and 4 show channels one and two and the integrating circuit interposed between them. It may be seen from Fig. 2 that the coarse-sensitivity control consists of a switch that shorts out progressively R_{1}, R_{2} and R_{3}. In this manner, the value of load resistance is reduced and, as a result, the maximum voltage appearing across it is also reduced.

When yarn is being measured, the amount of light reaching V_{1}. Fig. 2, is less than that reaching $V=$ because the yarn lies in the light path between the exciter lamp I_{1} and the phototube V_{1}. This in turn reduces the current flowing in V_{1} proportional to the amount

FIG. 3-Simplified schematic of the integrating circuit

FIG. 4-Schematic of amplifier used in channel two
of yarn present in the beam of light and reduces the current i_{2}. The difference in i_{1} and i_{2} now causes a voltage drop across the resistor chain, constituting the signal sent to the channel-one amplifier. This signal is proportional to the yarn size.

A fine-sensitivity control is also provided in the amplifier shown in Fig. 2 and allows adjustment to be made between the positions obtained on the coarse-sensitivity control switch.

Design of the amplifier for channel one, Fig. 2, is standard with a phase inverter and amplifier stage V_{3}.

Push-pull output tubes V_{4} and V_{5} drive the pen motor. Negative feedback from the plates of V_{4} and V_{5} to the grids of V_{3} is secured through R_{13} and R_{14}. This feedback in conjunction with the unbypassed cathode resistor R_{s} tends to stabilize the circuit with respect to both gain and drift.

The network of resistors connected to -150 volts reduces the plate voltage from V_{3} to a value suitable for the grid circuit of V_{4} and V_{5}.

The cathode of V_{3} is also connected to -150 volts through R_{15}. Resistors R_{7} and R_{21} provide suitable balancing voltages. With the circuit shown, the impedance of the plate circuit of the output tubes V_{4} and V_{3} is reduced sufficiently to be used for driving a pen motor.

Output from the channel-one amplifier is also fed into the integrating circuit shown in Fig. 3. This
circuit consists merely of suitable series resistors and a capacitor in what is essentially a low-pass filter combination.

The channel-two amplifier, as shown in Fig. 4, is very similar to the amplifier used in channel one with feedback utilized. A modulating circuit consists of a transformer and its switch, which introduces a 60-cycle modulating voltage in series with the negative supply to the center tap of the grid circuit of the output tubes V_{7} and V_{8}.

Other switches modify the rest of the circuit so that the pen motor will operate about a center line on the chart rather than biased to one side as is the case when the unit is used for measuring size.

The pattern produced is similar to that of a modulated r-f pattern on an oscilloscope. It may be thought of as a greatly magnified shadow picture of the yarn but compressed in length.
Extensive tests have proved that the measurements made by the machine have sufficient accuracy for practically all textile research and production work.
The writer is indebted to Dr. Norman C. Armitage, president of the Deering Milliken Research Trust, for permission to publish this article, to Walter Frere for his assistance in compiling the necessary data, to Dr. W. C. Anderson and the entire staff of the Research Trust for their contributions, and especially to Dr. D. G. C. Hare, for his suggestions that made these d-c amplifiers practical.

Top view of distributed amplifier shows placement of nine 6AK5's

Bottom view reveals size, shape and position of grid and plate line coils

Distributed Amplifier Covers 10 to 360 MC

Provides 8 -db gain, $\pm 2 \mathrm{db}$, using readily available or easily fabricated parts. Applications include millimicrosecond oscillography, wideband i-f and r-f amplification and any other requiring extremely wideband amplification

Considerable progress has been made in extending the band width of amplifiers through the use of distributed amplification. Indications that amplification was possible to frequencies approaching 400 mc have been made, and for such applications as millimicrosecond oscillography ${ }^{1}$, wideband i-f amplifiers and r-f preamplifiers, a need exists.

A distributed amplifier with a gain of 8 db flat to $\pm 2 \mathrm{db}$ over the 10 to $360-\mathrm{mc}$ band is shown in the photograph. The amplifier employs readily available parts except for the inductors of the grid and plate lines. These are easily constructed. The grid and plate artificial trans-

By HOWARD SCHARFMAN

Research Associate
The Johns Hopkins University Radiation Laboratory
Baltimore, Maryland

FIG. 1-Two sections of constant-k type circuit used in distributed amplifier
mission lines are of the constant-k type with m-derived half sections ($\mathrm{m}=0.6$) matching the lines to the terminating resistors. This type of distributed amplifier has been analyzed to some extend ${ }^{2,3}$ and based on an extension of this analysis, the present amplifier was designed and built.

Two sections of the constant-k type of distributed amplifier are shown in Fig. 1. The impedance level of the grid line is 50 ohms and for the plate line it is 93 ohms. The grid-to-cathode and plate-to-cathode capacitances as well as the associated socket capacitances are incorporated in the lumped C's required for the lines. For the low-
pass constant-k line employed,

$$
\begin{aligned}
C / \text { per section } & =\frac{2}{R \omega_{c}} \\
L / \text { per section } & =\frac{2 R}{\omega_{c}}
\end{aligned}
$$

where $R=\sqrt{L / C}=$ characteristic resistance of line and $w_{c}=$ angular cutoff frequency. The 6AK5 was chosen since it has a high figure of merit, is readily obtainable, and is physically small. It was operated with $E_{b}=E_{s c}=120 \mathrm{v}$, and $E_{c}=-1.5 \mathrm{v}$ (fixed bias).

FIG. 2-Curves show grid-line loss com pensation at high frequencies

Analysis of the distributed amplifier using constant-k lines in grid and plate circuit has been carried out previously. However, past investigations have been primarily concerned with cascaded distributed amplifiers where grid and plate lines having the same impedance level are desirable. If only a single stage of amplification is necessary (gains of 10 db or less), considerably higher cutoff frequencies are attainable if the plate-line impedance is made larger than the grid-line impedance.

Response

An extension of the analysis made in reference 2 indicates that for maximally flat amplitude response, with a gain of $e=2.718=$ 8.68 db , the upper cutoff frequency is given as

$$
f_{c}=0.607 f_{i} \sqrt{\frac{g_{m}}{g_{i}} \frac{R_{p}}{R_{\sigma}}}
$$

where $f_{c}=$ upper cutoff frequency, $g_{m}=$ transconductance of tube, $R_{p}=$ characteristic resistance of plate line, $R_{g}=$ characteristic resistance of grid line and $g_{i}=$ input shunt conductance at a frequency f_{i}.

Thus, if $R_{p}=2 R_{g}$, an increase of over 40 percent in upper cutoff frequency over the case of $R_{p}=R_{g}$ is predicted. The maximum R_{p} is limited by the output capacitance (plus socket capacitance) of the tube used and the chosen upper cutoff frequency through the relationship stated above for constant-k lines, C_{p} per section $=2 / R_{p} \omega_{c}$.
Due to transit-time effects, the

FIG. 3-Gain-frequency curve shows response of amplifier to be flat within $\pm 2 \mathrm{db}$ from 10 to 360 mc
input shunt conductance varies proportional to the square of the frequency. Thus, at high frequencies (above 100 mc), the grid line becomes lossy. This is compensated by an increase in the impedance seen at the plate of each tube as the frequency increases as shown in Fig. 2. If the parameters of the circuit are properly chosen, these two effects can be made to cancel yielding a flat response over almost the entire band. This maximally flat response is achieved when $N C_{c} / \omega_{o} C_{b}=1$, where $N=$ number of tubes, $C_{o}=$ grid-to-cathode capacitance, $\omega_{c}=$ angular upper cutoff frequency and $g_{0}=$ shunt conductance at f_{c}.

In addition to the shunt conductance variation with frequency, there is also some increase in input capacitance due to transit-time effects. This variation in capacitance with frequency combined with differences in input and output capacitance among a batch of the same tube type introduces mismatch and therefore reflections along the grid and plate lines. These effects are most noticeable at the higher frequencies for the phase shift per section increases sharply as the cutoff frequencies are approached. The gain-frequency curve will then have a rapidly varying form near cutoff. Tube capacitance and lead lengths, as well as any undesired mutual inductance between adjacent inductances, add to this effect.

Impedance Variation

Another serious difficulty arises from the variation of impedance with frequency of the terminating resistors for the lines. Tests on composition resistors indicate that values of resistance below 50 ohms remain more nearly constant with frequency than those above 50 ohms. Consequently, the 93 -ohm terminations were made of three resistors in series. Comparison with results using a 93 -ohm resistor showed a substantial improvement in flatness of the gain-frequency characteristic.

The m-derived terminating half sections were built with variable capacitors to compensate for reflections and mismatch arising from the aforesaid variables. Trimming of these capacitors had a consider-

Gain of distributed amplifier is measured by comparing with accarately-calibrated amplifier-attenuator combination

FIG. 4-Measuring system for obtaining gain-frequency curve shown in Fig. 3. Actual setup is pictured at left
able effect on the response curve, especially near cutoff.

In dealing with such a wideband amplifier, oscillation due to undesired feed back is possible despite the nominally low gain. This is particularly true at frequencies just below cutoff where it is possible for the gain to rise sharply due to reflections and increased plate impedance. Any small feedback path through the tubes, through radiation, or through ground currents, can cause oscillation. It was therefore necessary to use $\frac{1}{4}$-inch 24 -ST aluminum sheet for the chassis, place an aluminum shield plate between grid and plate lines, and carefully adjust the inductance of each section to minimize reflections on the lines. The resultant gain-frequency characteristic is shown in Fig. 3.

Test Setup

The system used for the measurement of the gain-frequency curve is shown in Fig. 4. A calibrated r-f signal generator modulated at 1,000 cps feeds the input of the distributed amplifier. The amplifier is terminated in its characteristic plate resistance and the input terminals are also properly terminated as the output impedance of the signal generator matches the grid line impedance. Two fittings permanently mounted on the chassis connect to the input and output points through $0.001-\mu \mathrm{f}$ ceramic capacitors. A type 1N45 crystal and its associated peak detecting circuit is mounted in a small copper box

FIG. 5-Partial circuit shows component values for $360-\mathrm{mc}$ distributed amplifier
such that the crystal end can be directly connected to either the input or output test point through a male fitting. The crystal output is determined by using a HewlettPackard 415A-1KC amplifier and reading the calibrated input attenuator directly in db after adjusting it for the same amplifier output reading at the input and output test points. If the r-f signal is kept small (less than 10 mv), the crystal will operate in the square-law region, and the difference in amplifier output resulting from connecting the crystal circuit to the input and output test points can be read off the output meter, which is also calibrated in db. These two methods yielded readings that had a maxi-
mum difference less than 0.2 db .
It should be noted that the results of the first method are independent of the crystal constants, and that the second method requires only that the crystal characteristics be square law.

The writer wishes to thank D. D. King for his many helpful suggestions pertaining to the measurement procedure, and to M. Brodwin, H. M. Watts and G. de Socio for their help in writing this paper.

References

(1) Y. P. Yu, H. Kallmann, P. S. Christaldi, Y. Milimicrosecond Oscillography, ELECTRONICs, p 106, July 1951.
(2) W. R. Hewlett, J. H. Janberg, J. D. Noe, Distributed Amplification. Proc. $I R E$, poe, 956 . Aug. 1948 .
(3) W. H. Horton, J. G. Jasberg, J. D. Noe, Distributed Amplification-Practical Considerations and Experimental Results. Proc. $I R E$, p 748 , July 1950 .

Receiver on turntable, with its antenna 30 feet above ground

By E. W. CHAPIN and Willmar k. roberts
chief, Laboratory Division Assistant Chiet. Laboratory Division
Ferletal Commmuications Commission. Lamol. Marbinnd

INTERFERENCE caused by nearby receiver local oscillator radiation cannot usually be corrected at the receiver which has the interference. Furthermore, the preponderance of oscillator radiation on some channels may place one station in an unfair competitive position with regard to another in the same area. This type of interference has led at least one station to request a frequency reassignment.

Radiations from f-m receivers have seriously interfered with the use of certain air navigation frequencies. This problem has been solved by changing the frequency of the station to which the offending receivers were tuned, but the solution is not fundamentally sound and will become increasingly difficult or impossible as the spectrum becomes more fully utilized.

The choice of a particular intermediate frequency to alleviate oscillator radiation interference may conflict with other important considerations which also are involved in this choice, such as direct pickup of signals on the intermediate frequency and the necessity for obtaining a satisfactory image ratio.

Reverse TVI

When an i-f value is such that the oscillator radiation does not fall in a tv channel, it may fall on a channel occupied in the same locality by some other service that can get along with a field intensity as low as 0.1 microvolt per meter. It is thus possible that relatively more interference can be caused to a service essential to the public interest by the choice of oscillator frequencies outside of tv channels.
The fundamental solution is therefore considered to be a reduction in the level of the oscillator radiation produced by new receivers. This matter is related to costs, but only a small additional cost is
required for a considerable degree of suppression. The present lack of shielding may be partly blamed on a lack of an appreciation of the order of magnitude of the radiation and the degree to which radiation can easily be reduced. The lack of appreciation in turn may stem from the dearth of suitable measurements of the strength of the radiations.

Measurement Technique

Spurious radiation may come from the receiver chassis itself, acting as an antenna, or from individual circuit components and wiring. It may also result from coupling of a certain part of the oscillator power into the antenna circuit and its subsequent radiation by the antenna. The field arriving at a distant point is the vector sum of the radiations coming from different parts of the receiver and antenna structure.

Minor changes in the location of components and leads may result in large changes in the field measured at a distant point, not so much as a result of an actual increase or decrease in the total radiation, but as a result of a change in the distribution of the several components which add vectorially at the measuring point. Recognizing these difficulties of measurement, the Institute of Radio Engineers recently agreed upon and published a standard method of measurement. ${ }^{1}$

The oscillator test range constructed at the Iaboratory of the Federal Communications Commission permits measurements in accordance with the IRE Standard, as well as other types of measurements. The test site is a level space clear of obstructions for at least 100 feet in all directions from both the receiver and the measuring point.

The receiver whose oscillator

Oscillator Radiation

Interference with other receivers can be reduced substantially by simple shielding and filtering of the tv tuner, at little extra cost if incorporated in initial design. Examples of modifications for two types of tuners are given and radiation measuring setup is described

Test range for measuring radiation from oscillator of tv receiver, with field intensity meter and antenna in foreground and receiver 100 feet away at right

Field intensity meter uses antenna mounted so that antenna elevation and polarization can be changed by manipulating ropes
radiation is to be measured is placed on a turntable, the rotation of which is controlled from the measuring point. The electric power for both ends of the system is fed through buried cables. No metallic object greater than 6 inches in length exists in any part of the setup above ground level, with the exception of the receiver being tested, the field intensity measuring set and the associated antennas.

Provision is made to raise and lower the measuring dipole of the field intensity set and to change its polarization. The azimuthal orien-
tation of the horizontal dipole of the receiver is adjustable, independently of turntable rotation, or may be revolved with the turntable. The distance between the two antennas is 100 feet. The elevation of the receiver antenna is 30 ft , and the height of the field intensity meter antenna is continuously variable from 7 to 20 feet. All of the variables are manipulated independently to obtain the maximum possible indication.

Several $\mathrm{f}-\mathrm{m}$ and tv receivers of post-war manufacture have been tested, employing substantially the
methods set forth in the IRE standard. The results are tabulated in Table I.

The conclusion from these measurements is that receiver radiation difficulties can exist and will occur in the future as frequencies occupied by the radiations are assigned for use by licensees in the same area. Frequency evasion is not alone satisfactory as a means of controlling the interference.

Shielding Problem

The usual local oscillator has a plate power input of the order of

Example of continuous type of tv tuner, modified to reduce oscillator radiation below 10 microvolts per meter at 100 feet. Soldered cylindrical enclosures cover the three tubes

1 watt and available output power of $\frac{1}{4}$ to $\frac{1}{2}$ watt. If all of this power were efficiently radiated by a dipole antenna, a field of 160 millivolts per meter could be produced at a distance of 100 feet in free space. Fortunately, as shown in Table I, only a fraction of this oscillator power is typically radiated from the chassis and from circuit components and wiring.
Most of the measured radiation from f-m and tv receivers is stray radiation from the chassis. This can be demonstrated by short-circuiting the antenna terminals and completely eliminating the antenna and transmission line. It is only when the radiation has been reduced to levels considerably below those originally measured that any substantial radiation from the dipole antenna can be noticed.

More satisfactory shielding enclosures around the receiver or around the tuner itself (since the tuner generally is a separate unit assembled into the receiver chassis) offer the greatest possibility for improvement. Such enclosures should provide feed-through capacitors for power supply leads. Signal leads that must pass through the wall of the shielding enclosure may be equipped with filters, preventing the escape of oscillator energy.

The use of a low-pass filter in the video i-f lead of a wide-band stage may not be desirable because it increases circuit capacitance to ground and thereby reduces the
maximum amplification for a given bandwidth. Instead, the video i-f lead may be made very short and covered with a partial or complete shield. In f-m receivers, where the circuit bandwidth requirement is not great, either feed-through capacitors or suitable low-pass filters may be used for the mixer output lead.

The antenna input circuit of the tuner can be shielded from the rest of the unit by using suitable barrier walls and using a pentode or ground-ed-grid triode r-f amplifier (with the possible exception of the uhf band, where r-f amplifier tubes may not yet be economical). If a pentode is used, the screen should be grounded carefully for r-f potentials. The use of inductance in the screen circuit, as is sometimes done to obtain desirable input impedance characteristics for the r-f amplifier, will largely offset the value of the r-f amplifier as a radiation suppressor.

Fixed or switched low-pass filters may be employed in the antenna input circuit, or an additional tuned circuit may be included to provide further isolation for oscillator frequencies between the antenna and the input stage.

Indoor Tests

While an outdoor test site is preferable for radiation measurements, weather conditions may be unfavorable during a period when a particular tuner design is being
tested. An indoor test setup that gives related results is therefore desirable. It can use a field intensity meter (or a receiver with suitable indicator) whose dipole antenna is mounted at some arbitrary position in the room, plus a simple turntable on which the tuner or complete receiver may be placed. A shielded room is not essential. The antenna of the field intensity meter may be placed near a wall, well above the floor. The turntable may be at any convenient point in the room.

The turntable is particularly useful when checking leakage from the chassis. Minor adjustments and modifications may merely shift the distribution of field intensity in the room, without changing the level of leakage. Without a turntable, the impression may be gained that a particular change in the receiver has desirable results, whereas only the angle of peak radiation was changed.

By comparison of indoor and outdoor results, it is possible to arrive at an approximate relationship between the two that will serve as a useful guide in establishing the degree to which suppression must be achieved in the laboratory room before it is worthwhile to measure out of doors.

Certain field intensity meters are equipped by the manufacturers with small magnetic probes that have electrostatic shielding. These probes are useful in searching for leaks and other deficiencies in the enclosure of the receiver or tuner.

Desirable Radiation Limits

While it would be desirable to suppress oscillator radiation completely, there is probably an economic balance between the probability of interference at a given maximum radiation level and the cost of achieving that level in the large number of receivers that are to be manufactured. A goal of about 15 microvolts per meter at 100 feet seems reasonably attainable below about 250 mc . This may still cause interference to the reception of otherwise useful tv signals as strong as 1,500 microvolts per meter, as well as to signals of other services which may use much lower intensities. However, the test conditions are related to the maximum
radiation condition; the probability is that certain channels of the receiver will have much lower radiation than the maximum, and the direction of radiation of the maximum signal may not coincide with the location of the nearest receiver. Also, if the limit of 15 microvolts per meter is met in receiver production, most of the receivers will radiate less than the specified maximum and cause less interference.

At frequencies above about 250 mc , other man-made and natural interference is less, permitting the utilization of lower field strengths, and propagation difficulties may require an appreciable portion of listeners to use weak fields. Suppression of oscillator radiation will therefore be important for uhf television tuners and receivers.

Modification of Continuous Tuner

To determine the extent to which existing tuners could be modified to reduce oscillator radiation, two representative types of tuners that have had considerable production were selected for a laboratory experimental program.
The first tuner modified was continuously tunable in frequency over the 12 television channels from 54 to 216 mc . The modifications may be considered extreme in that they include use of a complete metallic covering around the entire tuner, including its tubes. Joints in this ccvering were soldered except where it was necessary to leave provision for access.

The end of the tuning shaft that projects directly into the oscillator compartment had to be grounded effectively to keep the stray radiated field below the desired 15 microvolts per meter. The mere ungrounding of this one shaft and its protrusion about 2 inches outside the shield resulted in fields at some frequencies of the order of 100 microvolts per meter at 100 feet. An insulated shaft would be desirable.

To reduce the escape of oscillator energy through the i-f output path the first i-f grid coil was moved into the tuner shield box inside a small separate shield. This i-f coil was coupled to a second i-f tuned circuit
in the grid of the first i-f amplifier by a capacitive coupling network which included a feed-through capacitor to ground having an impedance of about 200 ohms at the intermediate frequency and proportionately less at the oscillator frequencies.

Power supply leads were brought into the tuner from the top through button-type feed-through capacitors and r-f chokes which were enclosed in a separate shield inside the main shield.

Reduction of the antenna component of radiation was effected by placing a cylindrical shield around the r-f amplifier tube socket. This cylindrical shield has an additional wall across it to isolate the input and output circuits of the r-f amplifier. Bypassing of the screen, filament and cathode leads was done with button-type capacitors placed as close as possible to the socket.

The modified tuner was tested in the standard outdoor test setup and found to produce a maximum field of 10 microvolts per meter at 100 feet at the worst frequency. It is considered that althought the intended goal had been met, certain parts of the work had not been done in the most economical manner; also it would be desirable to provide more satisfactory access to the tuner, especially for replacement of tubes and for alignment adjustments. Therefore, on the basis of the experience already gained, work was begun on a second tuner.

Modification of Turret Tuner

The second tuner used had 12 channel strips, each supporting the necessary r-f, mixer and oscillator coils for one vhf channel. Zinccoated steel was used for shielding, to stay away from copper or other metals which might be difficult or expensive to obtain. The modifications were as follows.
(1) An assembly of three $500-\mu \mu \mathrm{f}$ button-type feed-through capacitors was arranged to cover the slot in the side of the tuner through which the power supply and i-f leads originally came, and to filter the power supply leads. These capacitors should have low impedance at the oscillator frequencies as compared to the impedance of conven-

Table I-Radiation Measured on TYpical Receivers

Channel (me for UHF)		Osc Freq in me	$\begin{gathered} \mu \mathrm{v} \\ \text { per met } \mathrm{r} \\ \text { at } 100 \mathrm{ft} \end{gathered}$
	2	82	63
	3	88	116
	1	94.	145
	5	104	18.5
1918	6	110	23.5
TV	7	198	627
Receiver	8	208	273
	10	220	476
	11	226	362
	12	232	298
	13	238	552
	3	88	176
	6	110	65
1949	8	208	587
TV	10	220	600
Receiver	11	226	762
	12	232	520
	13	238	269
	2	103	84
	4	113	64
1950	5	123	88
TV	7	133	220
Receiver	9	146	360
	11	158	390
	13	170	175
	2	81	356
	3	87	90
	4	93	151
	5	103	74
	6	109	83
1951	7	201	87
TV	8	207	89
Receiver	9	213	95
	10	219	125
	11	225	117
	12	231	131
	13	237	198
	500	375	512
	550	425	612
	600	475	650
1951	650	525	645
UHF	700	575	900
TV	750	625	1,160
Converter	800	675	805
	850	725	900
	900	775	555
	500	420	1,500
	550	470	2,340
	600	520	2,840
1951	650	570	1,300
UHF	700	620	1,310
TV	750	670	890
Converter	800	720	560
	850	770	1,000
	890	810	1,300

Modified version of turret-type tuner. Main openings are covered by zinc-coated steel, with button-type feed-through capacitors for filament, plate and ave leads

Method of cutting channel strips and mounting additional shield wall through turret assembly. Tuning shaft at top is grounded by adding collar and spring
tional bypass capacitors.
(2) A cover was folded out of one piece of metal and fastened to the open bottom of the tuner with selftapping screws.
(3) A bent metal cover was placed over the side opening of the tuner chassis.
(4) A small metal cover was fitted over that part of the top of the chassis where aligning screw adjustments come through. Some of these screws are mounted in Bakelite and are therefore quite hot. Alignment adjustments may be made through holes in the top of the new shield cover.
(5) A single metal shield wall was put through the tuner at the center of the r-f amplifier tube socket, to isolate the r-f input circuit. This required cutting each of the channel strips.
(6) A bent metal piece was used to cover the detent spring, which projects partly through a slot in the chassis.
(7) A grounding spring and shaft collar were used to reduce oscillator leakage through the finetuning shaft. (An insulated shaft is indicated.)
(8) The extra screen inductance in the r-f amplifier was eliminated, to further isolate the r-f input.
(9) The picture i-f lead was
rearranged so that only about 2 inches of it are exposed to reach the first i-f grid.
(10) The $47-\mu \mu \mathrm{f}$ capacitor in the sound trap tank circuit was moved to a point on the surface of the chassis where the sound i-f lead comes through. A feed-through capacitor would be more satisfactory mechanically.
(11) The flanges of tube shields were soldered to the chassis, instead of relying on rivets only.

Conclusions

These modifications serve to cover the entire outer surface of the tuner as completely as practical with a metallic covering and to isolate the antenna input circuit from the remainder of the tuner. There are still numerous joints and connections between the metal parts and there are holes. However, if the holes are kept small and if the joints are tied in such a manner that they are not over two inches in length, no particular difficulty results. A new tuner could very likely be designed and manufactured that would achieve these modifications in a much simpler manner at a cost but little higher than that of the original tuner.
The modified turret-type tuner was installed in a tv receiver, tested
for oscillator radiation, and found to produce a maximum of 9 microvolts per meter at 100 feet on the worst channel. Most of the 9 microvolts are still obtained when the antenna and its feed line are completely removed from the tuner, showing that if further suppression were desired it should be sought in the direction of improving the shielding around the chassis.

While the work reported in this paper was performed in the course of official duties, the opinions are those of the authors and do not necessarily represent the position of the Federal Communications Commission.

Valuable contributions to this work have been made by other members of the Laboratory staff, especially F. D. Craig, who did much of the development work, and M. C. Mobley, who constructed the outdoor test range. The work was nerformed under the direction of the Chief Engineer of the Federal Communications Commission, as a result of a suggestion made by Commissioner G. E. Sterling.

Reference

(1) Subcommitter on Spurious Radiation. IRE Receirer Standards Committee, Standards on Radio Receivers: Open Field Methorl of Measurement of Spurious and Television Broadcast Receivers, 1951, Proc. IRE, p 803. July 1951.

Precision Preamplifier

New circuit gives 6-db-per-octave rise in response from crossover frequency down to 10 cps to match recent improvements in other components of high-fidelity sound systems. Passive network compensator gives choice of five high-frequency rolloffs

Top and bottom views of preamplifier, showing partition shielding between power supply and amplifier section

THE DEVELOPMENT of a modern preamplifier leads to many problems from the standpoint of hum, noise, stability and overload characteristics. In addition, the preamplifier should accurately match the 6-db-per-octave rise in response below the turnover frequency, to frequencies as low as 20 cps, to fully justify the use of speakers and amplifiers capable of good response in this region, and greatly improve low-frequency transient response when used with tonearms having little or no arm response.

The preamplifier design presented here meets these requirements for a high-quality sound system. Midfrequency gain is 39 db , maximum input for less than 0.7 percent harmonic distortion is 0.25 v and maximum output is 22 v . Equivalent grid noise at 60 cps is $3.1 \mu \mathrm{v}$. Required input for 1.0 v output at $2,000 \mathrm{cps}$ is less than 15 mv.

If a complete radio-phonograph system is under consideration, the preamplifier may be used as a con-

By GEORGE E. BEGGS, Jr.
Continental Sound Consultants Warrington, $P a$.
cealed unit, power being switched on and off by a radio tuner. The output of the preamplifier, properly attentuated by means of a gain control initially preset to give matching levels of radio and phonograph program material, is fed into the uncompensated phonochannel of the tuner. The tuner volume and tone controls, a-c line switch and input switching then centralize and simplify the complete operation of the home system without the use of a separate preamplifier control panel.
The low output source impedance of the preamplifier allows its use adjacent to a phonograph turntable, which in itself may be placed remote from the other amplifier stages. Assuming the cable capacitance to be of the order of 40 u $\mu \mathrm{f}$ per foot, it will have little effect upon the high-frequency performance of the unit up to 500 feet. A shunt capacitance of $20,000 \mu \mu \mathrm{f}$
on the output will attenuate 15 kc only 3 db .

For broadcast applications, the preamplifier may be fed into a 600 ohm isolating pad if desired and thus into the input channel of a standard program console.

Performance

A preamplifier-equalizer meeting the requirements outlined would ideally have flat response from a selected turnover frequency, say 500 or 600 cps , up to the top end of the desired range, say 30 or 40 kc. Below the crossover, the response would rise uniformly at 6 db per octave down to the lowest frequency desired, at which point the response would fall off rapidly.

The actual measured response of the unit shown in the circuit diagram of Fig. 1 is presented in Fig. 2. Other crossover frequencies can be provided by changing the capacitance values in the two selective networks of the 7F7 plate circuits, or by the use of external networks as described below. The deviation curve shown is a plot of

FIG. 1-Complete circuit of new preamplifier-equalizer with selfcontained power supply
the difference between the desired curve and the measured characteristics obtained with the unit. It will be noted that the deviation curve is flat within less than one db from approximately 15 cps to over $20,000 \mathrm{cps}$, providing excellent low and high-frequency transient response.

Circuit Details

The circuit of the preamplifier is relatively straightforward. Cathode bias is used in all cases to minimize distortion which arises from the contact bias used in some preamplifiers. The separation of the two cathodes of the 7F7 is essential to maintain stability in the system, otherwise motorboating will occur regardless of the size of the cathode capacitor utilized to bypass a common cathode resistor.

The 7 F 7 is operated with positive heater bias derived from the $B+$ supply. A variable heater center-tap potentiometer, adjusted for minimum noise, is also employed. Wiring of the input stage is point to point, with a common ground return point for the grid circuit, cathode circuit and fre-quency-discriminating circuit in the plate of each section of the 7 F 7 . This common ground point is the center point on the loctal socket.

The input ground is also returned directly to this point, the input
jack being isolated from the chassis. Furthermore, the input magnetic loop is kept small. Loom shielding is unnecessary. Independent decoupling is used in the two low-level plate supplies, although it is omitted from the third stage and cathode follower circuits. This decoupling also provides adequate filtering of the B supply ripple.

Where pickups generating output voltages greatly in excess of 10 millivolts are utilized, it is desirable to provide a gain control in the system so that the output voltage from the cathode follower will be of the same order of magnitude as that derived from a detector in an a-m or f-m tuner. Accordingly, a $10,000-\mathrm{ohm}$ gain control is suggested in place of the 6,800 -ohm fixed output resistor in the output circuit of the cathode follower stage. Since the system will tolerate input voltages as high as 250 mv without producing distortion in excess of 0.7 percent, an output gain control is feasible and desirable to maintain the highest signal-to-noise ratio.

Low-impedance output (without the gain control) is not very susceptible to capacitive or resistive loading, hence the preamplifier may be fed directly into any high-impedance input channel or into a 600 -ohm input line (unbalanced) if the 6,800 -ohm output resistor is

FIG. 2-Frequency response curve of preamp
retained. A $600-\mathrm{ohm}$ termination results in about 5 db loss at all frequencies in the response range.

The amplifier section is completely isolated from the power supply section, being placed across one end of the chassis and shielded from the power supply components. In-line construction is utilized. Where vibration may be encountered, the two amplifier tubes should be mounted on a cushioned or floated plate sufficiently large to accommodate most of the circuit elements, making necessary only connection of B supply, heater leads and input and output lines.

Response Measurement

A Hewlett-Packard 202D oscillator covering the frequencies from below 10 cycles to above 70,000 cycles was utilized for response tests.

An output attenuator which reduced the output voltage by 200 to 1 was placed across the terminals of the oscillator; the output voltage was developed across 50 ohms. A signal of about 10 millivolts at $2,000 \mathrm{cps}$ was fed to the input of the preamplifier. As the input frequency was varied, the output voltage of the preamplifier was maintained constant regardless of input frequency, the level being read with a Hewlett-Packard 400A vacuum-tube voltmeter. The variations in oscillator voltage as developed across the oscillator terminals were measured with the same vacuum-tube voltmeter by switching it from output to input, and the variations in required input voltage were inversely plotted to measure the overall response of the system.

This method of measurement eliminates any errors present in

FIG. 3-Method of designing network to give desired high-frequency rolloff
the frequency response of the vacuum-tube voltmeter and errors which might arise due to variation of oscillator output voltage with frequency, since the same errors are present in the measurement of both the input and output voltages.

Noise Distortion

Distortion and noise measurements were made by using a General Radio low-distortion model 1301-A oscillator as a source and a General Radio model 1932-A noise and distortion analyzer as a measuring instrument.

The equivalent noise at 60 cps , including nonsinusoidal bounce and flicker noise as well as hum, is computed by measuring the output voltage with the input open-circuited, then measuring the 60 cps gain, which is 60 db . Since this is a factor of 1,000 (voltage gain) the output voltage in millivolts is equivalent to the effective $60-\mathrm{cps}$ input voltage in microvolts at the input grid. The measured output voltage is 3.1 mv (50 db below 1.0 v); the effective $60-\mathrm{cps}$ input noise is thus $3.1 \mu \mathrm{v}$.

Distortion measurements were made in the same manner as response measurements, the output voltage being maintained constant at all input frequencies. The distortion of the preamplifier, measured at 0.070 v input, is less than 0.1 percent. Oscillator distortion of the order of 0.1 percent makes measurements below this level difficult. Maximum input limitations are well above the outputs of magnetic cartridges now available.

It is possible, and perfectly feasible, to provide networks external to the preamplifier which will provide various high-frequency rolloff

FIG. 4-Recording characteristics compensator
characteristics and change the crossover frequency. Initially this seems a bit difficult, but the basic philosophy of the circuits required is simple.

Crossover Frequency

In Fig. 3 the curve of the preamplifier with its $600-\mathrm{cps}$ crossover frequency is drawn in conjunction with the desired curve for a 300 cps crossover. The difference curve is then derived, resulting in the curve shown at the lower half of Fig. 3.

A network to satisfy such a response characteristic is also shown. Basically, the network must produce the desired loss below the sloped portion of the difference curve. A simple voltage divider network will solve the problem. Above the sloped portion of the curve, no loss is desired. The voltage divider must thus be shortcircuited at these frequencies. A capacitor shunting one section of the divider, selected to have an impedance equal to the resistance it shunts in the slope frequency region, preferably near the lower end of the slope, satisfies the requirement. Below the slope-frequency region, the network gives the desired fixed loss.

The circuit components needed to produce crossover frequencies of 400 cps and 300 cps in association with the preamplifier $600-\mathrm{cps}$ cross-
over are given in Fig. 4. To these are added various shunt resistors on the first three switch decks to give rolloffs for various recording characteristics. The rolloffs are produced by these shunts as a result of the inductance of the cartridge with which they are used. Since various makes of cartridges are different, different shunt circuits are provided. Where the inductive impedance and the shunt impedance are equal, there will be $6-\mathrm{db}$ loss and frequencies above this point will be further reduced, approaching a loss curve of 6 db per octave.

More rapid attenuation may be produced by shunting capacitors across the loss resistors. Little change in level results from these shunts, as the effective source impedance of the pickups is relatively low compared to the shunt values of the capacitors.

The philosophy behind the passive network compensator is that the buried preamplifier should have its circuits intact, without need to extend any of the networks by remote cable and switch. The passive network compensator allows centralization of all controls at the tuner in a small space, or the compensator may be adjacent to the turntable. Since all components of the compensator are small, they may be mounted on the switch itself.

Pulp-Log Metal Detector

Abstract

Designed specifically to detect relatively large pieces of tramp metal in work areas subject to great vibration. Immunity to strong electromagnetic fields from nearby induction motors and to fluctuating line voltage is provided

By MARCEL GROBTUCH and D. J, WILLIAMS

McGraw-Hill World News Melbourne, Australia

Australian Paper Manufacturers Ltd. Melbourne, Australia

DESIGNED FOR the pulp and paper industry, this detector protects multiblade chippers from damage by pieces of ferrous metal. The device has been installed in the Maryvale pulp mill of the Australian Paper Manufacturers Ltd. of Melbourne, Australia.

In its first months of operation, the new detector has located several pieces of tramp metal which could have caused considerable damage and possible substantial loss of production.

The detector is immune to the effects of fluctuating line voltage and it is automatically compen-
sated against drift from the balance condition.

At the mill where it is now installed, the tramp metal encountered comprised mainly steel wedges used for timber splitting. Other metal encountered was in the form of pickaxe heads and pieces of metal dislodged from the conveyors and barking drums ahead of the chippers.

The layout of the plant at the only available site of installation is somewhat cramped and a considerable quantity of mild steel structure is in the immediate vicinity. All surroundings are subject to
heavy vibration, a factor which would seriously affect the operation of the usual metal detector. For these reasons a single-coil method has been adopted, although mutualinductance systems generally offer somewhat better stability and sensitivity.

Frequency of Operation

A frequency of 1,000 cycles is used. The bridge initially tried was of the Maxwell type. This system proved impractical due to the presence of strong interfering electromagnetic fields varying in intensity with the rapidly fluctuating loads

Search coil of the detector is located around the conveyor carrying billets to the chipping machines. Typical pieces of tramp metal encountered were in the form of steel wedges and pickaxe heads

Detector and recorder. Second panel from top has resistance-adjusting knobs for bridge circuit

FIG. 1-Oscillator, bridge and automatic balance control circuits for the metal detector
on the induction motors driving the chippers. There are three such motors with an aggregate of 1,000 hp in the vicinity of the equipment installation.

A special inductance bridge using two similar 370 -turn coils, each on a wooden form 3 feet 8 in . wide by 2 feet 10 in . high, was used. One coil was wound around the conveyor and the other was placed immediately above in the same plane to assure a like orientation to the interfering electromagnetic fields.

The coils are connected in the bridge so that the unwanted induced voltages are of opposite polarity and therefore cancel each other out.

Further improvements in eliminating the effects of this interference were made by increasing the power input to the bridge from 3.5 to 8 watts and by decreasing
the sensitivity of the unbalance detector amplifier.

Because of the vibration present at the site of the search coil, the instrument is located some distance away where the effect is greatly reduced. The 60 -foot lead used for connecting the coils is shielded, with the braided metal shield used as a common ground return.

Circuit Description

The 1,000-cycle oscillator used, shown in Fig. 1, is of the Wienbridge type using a 6SN7. Output of good stability with respect to amplitude and frequency, is fed to the first section of the second 6SN7 used as a cathode follower, from which it is amplified by the second section to drive the 6J5 phasesplitter and pushpull 6V6 vacuum tubes.

Tapped secondary impedances are used on the output transformer so
that the bridge impedance, approximately 3,500 ohms, may be well matched. Power output is about eight watts.

The two coils are in opposite arms of the bridge. A Q balance control of 1,111 ohms, adjustable in steps of 0.1 ohm , is in series with one coil. The two ratio arms of the bridge are resistive, and one is variable from 0 to 11,111 ohms in steps of 0.1 ohm . For convenience, the junction of the two coils is maintained at ground potential.

The unbalance is transformercoupled to a filter system consisting of two 850-cycle high-pass filters separated by a bridged-T network tuned for maximum attenuation at line frequency. This system reduces the interfering voltages to less than $150 \mu \mathrm{v}$ at the input to the three-stage amplifier.

The first two stages of the am-

FIG. 2-Amplifier and control circuits for the equipment
plifier, shown in Fig. 2, are tuned to 1,000 cycles by degeneration at all frequencies but 1,000 cycles. This effect is obtained by connecting a bridged-T network tuned for maximum attenuation at 1,000 cycles between the anode and grid of each stage.

Because of the magnitude of harmonics remaining at balance, it was found necessary to interpose 1,100 -cycle low-pass filters between the first and second and between the second and third stages. This circuit arrangement produces pure 1,000 -cycle signals from the bridge at the input to the third stage in the event of an unbalance. The gain control is situated at this point.

Amplifier Output

The amplifier output is applied simultaneously to two diodes and the d-c output from each is of opposite polarity. Positive polarity is applied to the 2050 thyratron which controls the relay alarm system.

The negative polarity is applied to a second thyratron which is held inoperative by this continuous bias. Should the bias disappear because of a fault in the circuit, the tube conducts and the neon diode in the cathode indicates the trouble. A $50-\mu$ meter measures the current in the diode circuit and serves as a balance indicator.
Sensitivity of the detector can be adjusted by the variable nega-
tive bias voltage applied to the grid of the relay control thyratron. A third output from the amplifier is taken via a 6J5 cathode follower to the automatic balance control circuit in Fig. 1.

Balance Controls

Automatic balance control is obtained by the use of two 6SJ7's in parallel with the arm of the bridge containing one coil and the Q balance control. One tube simulates a resistance and the other an inductive reactance.

The unbalance voltages from two balance controls differ in phase by 90 deg and are separated by phasediscriminating rectifiers. Two reference voltages for these rectifiers are taken from the oscillator, one direct and one through a $90-\mathrm{deg}$ phase-shifting network. These voltages are used to suppress the component which is out of phase with the reference.

Each diode gives a d-c potential dependent upon the unbalance of the component to which it is sensitive. The polarity of that potential depends on the direction of unbalance of the component. Each potential is applied between grid and cathode of the impedance tube equivalent to the component which is out of balance and controls the current so that the initial change is opposed. A delay in application of the bias introduced after the rectifier permits detection of rapid pulses.

The unit has maintained balance
for periods of several weeks. The bridge is manually rebalanced from time to time so that the automatic balance control is operating near the center of its range.
The detector relay controls the supply to a larger contactor which in turn isolates the log conveyor motor and closes the circuit to a warning light and the marker solenoid valve. The latter is then opened by a time-delay relay. The unit is reset by a push-button control at the search coil. This control opens the cathode circuit of the relay control thyratron. Indications are always shown on a strip-chart recorder.

Marker

The marker is incorporated in the control circuit so that the position of intruding metal is indicated. This became necessary in the local application of the detector because of serious variation in distance traveled by the conveyor after the circuit was opened. This distance depends actually on the load on the conveyor belt.

The detector was designed by the Research Division of the Australian Paper Manufacturers Ltd., Melbourne. Mr. Williams was assisted in the development of the automatic balance control circuit by J. W. Bayliss of Industrial Electronic Instruments Ltd. and in the initial development of his work by A. W. Pybus and G. Karoly of the Australian Defense Research Laboratories.

Recording Cochannel Broadcast Interference

Abstract

Continuous field-intensity recording of an interfering standard broadcast station is possible using only one recorder. Extremely selective receiver having 13.5-cycle i-f accepts the interfering sky-wave signal while rejecting the stronger desired signal

By MAL MOBLEY, JR.
Field Supervisor
Station $K M P C$
Los Angeles, Calif.

SKY-WAVE INTERFERENCE from a cochannel standard-broadcast station may be measured directly using a narrow-band recorder with a $13.5-\mathrm{cps}$ intermediate frequency even before the desired station leaves the air.

The narrow-band recorder consists of a crystal-controlled superheterodyne receiver that incorporates four stages of tuned r-f. A selective i-f amplifier with two par-allel-T feedback networks rejects to a high degree any signal differing appreciably from 13.5 cps. Further rejection of the desired signal is achieved by choosing frequencies such that strong unwanted signals are near zero beat with the local oscillator.

Since a standard field-intensity meter will measure some function of the vector sum of both desired and interfering stations, it is otherwise impossible to measure the interfering station's field intensity until the desired station leaves the air.

Standard Practice

Standard practice ${ }^{1}$ is to measure a monitor station from sunset through the evening hours, obtaining its curve of skywave field intensity with respect to time. The monitor station should be close to the station under study, in frequency and location, and should preferably be a clear-channel station with known antenna characteristics.

After the desired station signs off, the undesired station is measured directly and a ratio obtained
between its measured field intensity and that of the monitor station. Using the curve of field intensity versus time for the monitor station and the above-mentioned ratio, the field intensity of the undesired station is extrapolated for earlier hours.

The FCC recognizes the second hour after sunset, $s s+2$, as the standard hour for calculating or measuring interference. Having already established a field ratio between the undesired station and the
monitor station's skywave curve, it is possible to determine the undesired station's field intensity at the standard hour, ss +2 , making any corrections for transmission conditions.

An earlier system for measuring interference directly ${ }^{2,8}$ utilized a field-intensity recorder that made two graphical records. The first of these was a chart of the field intensity of the strongest signal on the channel and the second was a chart of the heterodyne voltage between

Narrow-band field-intensity recorder and associated calibrating equipment

Block diagram of complete setup for measuring and recording cochannel interference
the strongest and weaker signals.
During summer 1948, measurements were made wherein all signals involved were skywaves. From time to time the desired or strongest signal on the channel varied widely in intensity, upsetting the reference voltage ratio of desired versus undesired signals. Under these circumstances, the equipment provided very little useful information.

Narrow-Band Recorder

The narrow-band recorder, which was developed in the fall of 1948, is shown with its associated calibration gear in the photograph and the block diagram. The receiver consists of four stages of tuned r-f, a diode detector, and an audio stage tuned to 13.5 cycles that actually constitutes the first stage of the i-f system. The selective amplifier follows the receiver. The output of the selective amplifier is connected to a diode detector and also to a cathode follower, which supplies the i-f to a frequency-discriminator circuit. The discriminator provides an afc voltage that is applied to a reactance tube in the crystal oscillator, thereby maintaining the output frequency in such a manner as to sustain the i-f at 13.5 cycles. Figure 1 is the overall i-f selectivity curve.

The crystal oscillator also introduces a voltage ahead of the detector for stabilizing the ave voltage produced by the desired signal. The output of the second detector supplies ave voltage to the first two r-f stages in the receiver and excites a d-c amplifier and graphic recorder. The narrow-band recorder incorporates both primary a-c nower regulation and regulated d-c power supplies.

Calibration of the narrow-band recorder is accomplished by using a crystal-controlled signal generator to feed increments of power into the receiver antenna innut terminals while maintaining a frequency difference of 13.5 cycles with respect to the receiver oscillator.

Figure 2 shows the response curve of signal innut voltage versus recorder output in chart ma. This receiver resbonse curve is corrected for the effective height of the receiving antenna to obtain an

FIG. 1-Overall i-f selectivity curve shows high degree of reiection of signals differing from 13.5 cycles
output response in millivolts per meter versus chart ma.

After calibration of the narrowband recorder, the antenna is connected and the signal to be measured is tuned in by adjustment of the local oscillator.

During operation of the recorder, the intermediate frequency is constantly monitored by a frequency meter that operates from the discriminator circuit. A Brush highspeed oscillograph is connected into the i-f system for frequent graphic checks of the intermediate frequency. A vacuum-tube voltmeter reads diode detector voltage, indicating the magnitude of oscillator injection voltage and the beat frequency between the local oscillator and any unwanted signals.

Field Tests

During 1949, the narrow-band recorder was field tested, making skywave studies of clear channel interference problems. Figure 4 shows three charts in terms of sunset hour. The narrow-band chart, Fig. 3A shows the drop in the undesired station's field intensity as operation is switched from nondirectional. Also shown are charts of desired signal, Fig. 3B, and the monitor signal, Fig. 3C.

Figure 4 shows three charts at

FIG. 2-Basic recorder response curve (right) and the same curve corrected for antenna effective height
ss +4 and $s s+5$. Figure $4 B$ is the standard field-intensity recording of the desired station leaving the air with the undesired station remaining on. Figure 4 A is the nar-row-band recording of the undesired station. The monitor station field-intensity recording is shown in Fig. 4C. Also shown is the frequency check chart, Fig. 4D.

Supplementary Recordings

Cochannel skywave measurements made with the narrow-band recorder were supplemented by recordings of monitor and desired signals on separate recorders since the narrow-band recorder recorded only the undesired signal.

The monitor and desired stations were recorded using converted Command receivers. These receivers operated from regulated power supplies, with ave added for logarithmic recording, and d-c amplifiers driving Esterline-Angus recorders. Vertical antennas were used on all recorders. A Federal field-intensity meter calibrated by the Bureau of Standards was used to correct for effective antenna height of receiving antennas thus correcting the recorders' output response curves to read directly in mv per meter versus chart ma.

One-minute time constants were

FIG. 3-Field intensity recordings made during sunset hour. Undesired signal (A) shows effects of changeover from nondirectional to directional antenna operation

FIG. 4-Field-intensity recordings made at desired station's signoff time. Trace (B) shows interfering station's field-intensity after desired station signs off
used on all three recorders as this value is generally used in skywave studies. Measurements were usually limited to a certain bearing, centered around the desired station's 0.5 mv per meter contour.

Analysis of Data

In an analysis of skywave measurements between two stations, field-strength or interference ratios are determined with respect to sunset time. This is the time of sunset at midpoint of the transmission path between the station measured and the point of measurement. This time is obtained from FCC or Naval Observatory charts showing sunset time with respect to location. Analysis of skywave charts is made, determining the field strength exceeded for either 10 percent or 50 percent of sunset hour and each hour following.

Since skywave transmission varies from night to night, measurements are normally made over a thirty-day period. At the conclusion of the month's recording, the field intensities exceeded for either 10 percent or 50 percent of every hour during each night's operation are plotted against midpath sunset time, resulting in an average skywave curve during the thirty-day test. From this curve, it is possible to determine the average field in-
tensity for ss +2 or any other time.
Figure 5 shows a thirty-day summary curve of fifty-percent values for the undesired station, desired station, and the monitor station.

In conclusion, it may be of interest to note that nondirectional-todirectional antenna skywave ratio tests showed very poor correlation with calculated and ground-plane measurements. FCC nondirection-al-to-directional antenna skywave ratio tests, involving approximately twenty-five radio stations showed similar results.

It appears that many existing directional systems, adjusted by ground-plane measurements, are not giving adequate skywave protection. Improved engineering standards are needed if the growth of cochannel skywave interference is to be kept to the same order of magnitude as that intended.

Credits

The narrow-band cochannel recorder is based upon the ideas of G. F. Leydorf, vice president and chief engineer of WJR. R. K. Clark, C. W. Jones, and G. L. Mills of WJR and R. A. Fox, and W. G. Hutton, of WGAR, developed the equipment under Mr. Leydorf's direction. Field testing was done by Mal Mobley. Mr. Leydorf assisted in the preparation of this paper.

FIG. 5-Thirty-day summary of 50 -per. cent hourly median values recorded both on narrow-band sel and by conventional techniques

References

(1) Federal Communications Commission, "Standards of Good Engineering Practice, Concerning Standard Broadcast Stations", p 11, Washington, D. ('.. 1947. 2,079,265, May 4, 1937 . $2,079,265$, Mav 4, 1937.
(3) R. A. Fox, A Sxstem for rontinuously Recording Co-Channel Interference, NAB Convention, Los Angeles, 1949.

Constant-Current

Design reduces power-supply requirements because amplifier does not present varying load as do conventional circuits. Costs are cut by using only one high-voltage winding, one rectifier tube and minimum of filtering components in power supply

0NLY a simple, light power supply is required for the directcarrent amplifier to be described. It does not present a variable load to the B supply, therefore the supply needs regulation only for line variations. Since line variations require a much smaller percentage of regulation control, a resulting overall system simplification is achieved.

The circuit of the newly developed amplifier shown in Fig. 1 differs from conventional d-c amplifier circuits only in the final pushpull stage. One-half of this stage serves as the output stage delivering power to the load. The other half delivers out-of-phase current to ground through an equivalent load, neutralizing both the flow of load current to ground and the accompanying drain on the B power supply.

The double-ended output stage acts like a single-ended output without the usual load current change in B-supply current. Consequently, the supply shown in Fig. 1 for the
amplifier is considerably simpler than a conventional one for a d-c amplifier.

In particular, the simplified supply of Fig. 1 requires only one highvoltage winding and one rectifier tube instead of the two high-voltage windings and two rectifier tubes of the conventional supply. Because the load current does not change, neither voltage amplifier nor power amplifier tubes are required for voltage regulation and a resistor may be used in the place of a choke for filtering.

The divider formed by the two regulator tubes provides a satisfactory ground return because no load current flows to the mid-point of this divider.

Although the quiescent current from the B supply of Fig. 1 is twice the quiescent current of a conventional supply the maximum capacity of a conventional supply must be the same as that of Fig. 1 because at full load it delivers just as much current as does the supply shown in Fig. 1.

Drift of the amplifier of Fig. 1 is comparable to that of conventional, stable d-c amplifiers and averages one mv referred to the input grid. Over its rated operating range this amplifier is linear to $\pm \frac{1}{2}$ percent. Although no choke is used in the Bsupply filter, the 60 -cycle hum appearing across the output terminals is less than one mv referred to the input grid. Response of the amplifier is flat from zero to 20 kc for gains from 1 to 15.

The operating range of the output for which the amplifier of Fig. 1 retains its linearity of $\pm \frac{1}{2}$ percent is $\pm 10 \mathrm{ma}$ into a load of 50 to 1,000 ohms. By changing the cathode resistor in the output stage, the amplifier can be made to develop ± 50 volts into loads greater than 50,000 ohms with a linearity of $\pm \frac{1}{2}$ percent.

Adiustment

There are only three points of adjustment; R_{a}, R_{b}, and R_{n} in the amplifier of Fig. 1 and two of these are used infrequently. Potentiom-

FIG. 1-Schematic diagram of the d-c amplifier. Double-ended output stage acts like single-ended output without the usual load current change

Modified version of the amplifier and power supply shown in
Fig. 1. This circuit is designed for driving both photographic recorders and direct-writing recorders

D-C Amplifier

By DONALD McDONALD

Cook $\begin{gathered}\text { Research Engineer } \\ \text { Chicago, Illino }\end{gathered}$ Chicago, Illinois
eter R_{a} is a zero adjustment used to bring the output to ground. Potentiometer R_{b} is adjusted infrequently and is used to bring the cathode of the left-hand half of the output stage to ground. Potentiometer R_{n} is touched only when the output load of the amplifier is changed and it is then adjusted for neutralization of the load current flowing to ground. Proper adjustment of R_{n} is accomplished by inserting a milliammeter at point P and adjusting R_{n} until the meter reading is less than 0.5 ma for fullscale output. Fortunately, this adjustment of R_{n} is not very critical.

These new d-c amplifiers were developed by the author for driving galvanometer elements of photographic oscillograph recorders used

FIG. 2-Schematic diagram of power supply for driving ten or more amplifiers with outputs of about $\pm 50 \mathrm{ma}$ each
in the playback of multiple-channel magnetic recording systems. In the playback of these systems, permanent visible records were made of as many as 12 channels at one time. This required $12 \mathrm{~d}-\mathrm{c}$ amplifiers to drive the 12 galvanometer elements.

When the d-c amplifiers use output tubes capable of delivering about ± 50 ma and ten or more such amplifiers are powered from one B supply, the load current flowing

Bank of 12 driver amplifiers capable of delivering $\pm 50 \mathrm{ma}$ inio 100 ohms used for driving 12 galvanometer elements
to ground may cause distortion unless considerable care is taken in adjusting R_{n}. If it is difficuit to adjust R_{n} satisfactorily then a B supply of the type shown in Fig. 2 will supply these amplifiers without accompanying distortion.

The supply of Fig. 2 also uses a voltage divider to provide a ground return. This voltage divider is composed of a resistor R_{1} and a VR tube. A regulator circuit is employed, but, as will be noted, the regulating tube is shunted by a resistor which carries the majority of the supply current, because the regulator tube must correct for only small variations in load current.
If excessive unneutralized load current flows to the center of the voltage divider, the voltage across the VR tube may increase. This increase is sensed by the regulating circuit, and the total supply voltage
correspondingly increases so that the mid-point or ground return of the divider still remains at the same relative position between $B-$ and $B+$. Because of the balanced stages used throughout the amplifier, such an increase in the overall supply voltage does not produce appreciable drift or distortion when the ground point remains at the same relative position between $\mathrm{B}+$ and B-.

A modified version of the amplifier and B supply of Fig. 1 makes the fullest use of the power capacity of the 6 BL 7 output tube. In this circuit, the second stage was redesigned to increase the drive of the output stage. The B supply has been increased to permit a larger swing of the output stage. This amplifier can deliver $\pm 20 \mathrm{ma}$ into a load of 50 to $1,500 \mathrm{ohms}$, with a linearity of $\pm \frac{1}{2}$ percent.

Tone-Burst Generator

Transient distortion of loudspeakers, enclosures, microphones and networks can be measured quickly and easily by system reducing such distortions to numbers for comparison. Information supplements sound-pressure curves for better evaluation

0F MANY FACTORS involved in reproduction of sound, transient distortion is the one measured most rarely. The loudspeaker-enclosure combination is the most serious contributor to this type of distortion.

The three basic driving-force or input functions used in transient work are the suddenly applied sine wave, the unit step function and the unit impulse or delta function. For loudspeaker considerations, it was felt that the simplest and most convenient automatic transient recording system should use the tone-burst type of input signal, a form of the suddenly applied sine-wave method. ${ }^{1}$

A tone consisting of a given number of cycles is applied to the loudspeaker and then turned off for an equal period. All sound coming from the loudspeaker during the time the burst is turned off is recorded on a level recorder as transient distortion. For such a signal, the buildup and decay transients are

By MARSHALL C. KIDD
 Advanced Development Section

 Home Instruments Department RCA Viotor Division Camden, New Jerseyessentially the same so it does not matter which is measured.

With this recording system, transient and steady-state curves are drawn with the same recorder on the same sheet of paper since both systems measure the full-wave rectified average value of the wave form. Results are expressed in the db difference between the sound pressure and transient curves. This can easily be converted to percentage values.

Equipment Description

The block diagram of the system is shown in Fig. 1. An oscillator of the beat-frequency type is applied to a gate in which the signal is interrupted to produce bursts of tone 4,8 or 16 cycles long, followed by equal off periods. The bursts feed

FIG. 1-Block diagram of the transient recorder
a power amplifier which drives the loudspeaker. The loudspeaker and a microphone are placed in an acoustically dead room and the microphone develops a voltage proportional to the sound-pressure output from the loudspeaker. This voltage is amplified and applied to a second gate circuit which eliminates that portion of the transient output corresponding to the original burst portion of the signal. The hangover, or transient distortion, corresponding to the sound output when the input signal is turned off, is then applied to the recorder.
To generate the pulses necessary to operate the two gates, the oscillator output is fed to a limiting amplifier where the sides of the wave are made steep enough to trigger a binary counter. ${ }^{2}$ Output from the counter operates a flip-flop circuit driving the gate of the toneburst generator. Two delay networks are driven by the squarewave output from the flip-flop but the waves are 180 deg out of phase.

Two paths of the delay network are adjusted to delay the gating pulses applied to the tone-burst eliminator by the time required for the sound to travel from the loudspeaker to the microphone. Waveforms at each point of the block diagram show how this is done with the use of differentiators, clippers and delay multivibrators. Output of the delay network then feeds the second flip-flop circuit driving the gate of the tone-burst eliminator.

The circuit diagram in Fig. 2 shows the limiting amplifier and the five-stage counter. All voltages are given for normal operating conditions. The limiting amplifier uses four 6AH6 tubes driven into the

Checks A-F Transients

FIG. 2-Schematic diagram of the limiting amplifier and the five-stage counter
grid-current region. These tubes were chosen to get the greatest gain for a given bandwidth. It was found necessary to use four stages of amplification to obtain a squarewave output with a rise time fast enough to trigger the counter at low frequencies.

The square-wave output from the limiting amplifier drives the first tube of the binary counter, which operates like a frequency divider. For every two pulses into each counter tube one pulse comes out. The binary counter is essentially a multivibrator with two stable states. Operation of all five counter tubes is the same except that each one operates at one half the frequency of the tube ahead.

The points marked 4, 8, and 16 cycles are pick-off points for the square-wave signal operating the flip-flop tube. The square-wave period is determined by the number of cycles (4,8 , or 16) of the original sine wave from which all the pulses are derived. Slight variations in the first two counter circuit elements were made to increase the stability of operation.

FIG. 3-Tone-burst generator schematic diagram

The circuit for the tone-burst generator is shown in Fig. 3. The 12AU7 gate tube normally has the right side conducting, thus bringing the cathode voltage up and cutting off the left half of the tube. When a negative square wave from the flip-flop is applied to the righthand grid, the right side of the gate is turned off and the left side conducts. This allows the left half of the tube to operate as a class-A amplifier. The grid is allowed to
float and set its own bias.
The right-hand grid bias varies the tube from saturation to cutoff. The potentiometer in the plate circuit of the gate balances out the d-c component. The output is then attenuated with a voltage divider to prevent overloading the cathode follower operating into a 500 -ohm load.

Delay Network

The delay network circuits are shown in Fig. 4. Square-wave inputs are applied to the differentiators to produce sharp pulses. The crystal-diode clippers remove the positive pulses. The negative pulses are applied to the grids of the limiting amplifier, which inverts and amplifies the pulses. The combination of the diodes and limitingamplifier stage is therefore equivalent to a negative clipper. The amplified positive pulses are used to trigger the delay multivibrators. The delay time is adjusted by the variable 5 -meg resistor in the grid circuit.

Normally, the right half of the delay multivibrator tube is conduct-

FIG. 4-Schematic diagram of the delay networks
ing and the left half is cut off. When a positive input pulse is applied to the left grid, the left half of the tube fires and the right half is cut off. This firing time is determined by the R-C time constant of the $0.015-\mu \mathrm{f}$ capacitor and 5 -megohm variable grid resistor. The delay is normally set for about 2 milliseconds since sound-pressure curves are drawn with a microphone distance of two feet.

The differentiated output of each multivibrator is then fed to the grid of the 12AU7 positive clipper. Clipping is obtained by the use of a large cathode resistor which cuts off both tubes so that after inversion in the tube only negative pulses can be produced in the output.

The tone-burst eliminator is shown in Fig. 5. The negative pulses from the positive clipper cause the 12AU7 flip-flop circuit to operate in the same manner as the tone-burst-generator flip-flop. The output square wave of this flip-flop then opens and closes the 12AUT gate tube of the eliminator. The generator and eliminator circuits operate in essentially the same manner. The amplified signal from the microphone is observed at the test point.

Equipment Operation

When the transient distortion of a system is measured, three curves are drawn. The steady-state or sound-pressure curve is always drawn for a reference. To make
this curve directly comparable with the transient curves it is drawn in exactly the same way as the transient curves except that the speaker is not pulsed with the tone-burst but has a steady tone of variable frequency applied to it.

Microphone Channel

The microphone channel is gated with the tone-burst eliminator so that the recorder receives a signal 50 percent of the time, the same as when the transient curves are drawn. The rectified average value of this wave is recorded and experience shows that the resultant curve shape is always within 0.5 db of the curve obtained when the recorder is fed with an ungated signal, but is $6-\mathrm{db}$ down. To obtain the best presentation of the transient distortion of loudspeakers, the transient distortion curve is drawn in two parts to cover the range of 30 to 15,000 cycles.

The low-frequency end of the spectrum is measured with four cycles on and four off and the highfrequency end is measured with 16 cycles on and 16 off. The changeover frequency at which one curve stops and the other starts is not critical but 200 cycles is normally taken since this frequency is between the fundamental resonance and the cone-breakup resonances for most loudspeakers.

Below 200 cycles the recorder tends to follow the 16-cycle burst instead of averaging it. For enclosure studies the four-cycle burst

FIG. 5-Circuit of the tone-burst eliminator since there are few resonances above 1,000 or 2,000 cycles in most enclosures.

The equipment is designed to operate only when the delay time is less than 85 percent of the period of the highest frequency burst. The delay network has no memory and as the period of the incoming wave approaches the delay time at high frequencies, instability will result. This is because the delay multivibrator cannot be triggered again until it has returned to its previous stablestate condition.

In the initial setup of the equipment, it is necessary to adjust the delay multivibrators so that the beginning and the end of the original

FIG. 6-Voice-coil current, acoustic output and transient distortion for two loudspeakers each operating at the fundamental low-frequency response
burst are just eliminated by the tone-burst eliminator. This can be done most accurately at the highfrequency end of the range of the particular loudspeaker being tested. It is also necessary to carefully balance out any d-c component in the signal fed to the recorder by means of the balancing potentiometers in the plates of the gate circuit since an unbalance will record as transient distortion. Once these adjustments are made, they need be checked only occasionally during the operation of the equipment.

Experimental Results

The oscillograms of Fig. 6 show the voice-coil current, acoustic out-
some acoustic damping. These units show the two extremes in lowfrequency transient response of loudspeakers.

Figure 7 shows the sound-pressure and transient-distortion curves of the same 12 -inch loudspeaker. The ordinate is in db for all curves and zero db is arbitrary. Note the lack of rise in either curve at the low-frequency resonant frequency of 50 cycles. This is characteristic of all expensive large-magnet units. The 16 -cycle transient curve always has lower amplitude than the fourcycle transient curve since the decay is averaged over a period four times longer.

The cone begins to act as a trans-

FIG. 7-Sound-pressure and Iransient-distortion curves for the $\mathbf{1 2}$-inch loudspeaker of Fig. 6
put and transient distortion for two loudspeakers, each operating at the fundamental low-frequency resonance.
The electrical input to each shows a slight distortion of the wave due to the limited bandwidth of the amplifier but the waveform is still reasonably good.

The eight-inch loudspeaker is a conventional one with a small magnet and low flux density in the air gap. The 12 -inch loudspeaker has a very large ring magnet and the mechanical design also incorporates
mission line at about 700 cycles and the first major vibrational mode occurs at 800 cycles. ${ }^{3}$ This is associated with a dip in the sound-pressure curve and a peak in the transient curve. The next major mode, shown by the transient curve, occurs at 1,400 cycles. This peak corresponds to a peak in the soundpressure curve. At 2,100 and 2,750 cycles, respectively, two more peaks occur. At higher frequencies the transient response becomes progressively worse.

Figure 8 shows the waveforms
associated with the 2,750-cycle resonance. A simple tuned circuit with approximately the same transient response is shown for comparison. Note that the Q of the equivalent tuned electrical circuit is eight.

Conclusions

It is now possible to draw loudspeaker transient distortion curves quickly and easily. The system described isolates and reduces transient distortion to numbers for comparison purposes. Any speaker with less than 10 to 12.5 percent transient curves, 18 to 20 db down, over its useful range is comparable to the best loudspeakers measured. It is felt that this information supplements sound-pressure curves and enables a better evaluation of the variations in these curves, including diffraction effects. The equipment is also useful in measuring transient distortion of enclosures, microphones and networks. It is a very helpful design tool for studying loudspeaker cones.

The author wishes to acknowledge the helpful advice and suggestions of Murlan S. Corrington in preparing this paper.

References

(1) Murlan S. Corrington. Transient Testing of Loudspeakers, Audio Eng., 34, No. 8, p 9, Aug. 1950.
(2). John T. Potter, A Four-Tube Counter Decade, ELECTRONICS, 17, p 110, June 1944 .
(3) Murlan S. Corrington and Marshall C. Kidd, Amplitude and Phase Measurements on Loudspeaker Cones, Proc. I.R.E., 39, p 1,021, Sept. 1951.

FIG. 8-Waveform associated with 2,750-cycle resonance

Equipment showing increased echo amplitude from cancerous tissue has been used in cancer diagnosis. Results have been confirmed in 20 operations. Crystal transducer is coupled to tissue by water column

XRAY IS OF LItTle USE in very early diagnosis of cancer, the existence of which can be confirmed definitely only by microscopic examination of removed suspect tissue. However, ultrasound, since it is a form of mechanical energy, may be employed to investigate tissue properties.
The instrument shown in the photographs detects reflections of ultrasonic energy from acoustic impedance discontinuities between tissue elements of differing elastic properties. Termed the Echograph, it has been used with promising results in efforts to diagnose cancer in 20 human breast tumors before operation, to examine a brain tumor during operation and for laboratory studies.
Preliminary work ${ }^{1}$ was carried out using an ultrasonic radar trainer, AN/APS-T3, at its operating frequency of $15 \mathrm{mc} .^{2}$ Discovery that internal reflections from cancerous tissue were of greater amplitude than those from surrounding normal tissue prompted development of the portable instru-
ment to be described.
The same crystal transducer is used both to transmit pulsed ultrasound and to pick up reflected echoes. By displaying echoes from a narrow sound beam on a linear time-base cro sweep, confusion from the presence of many structures is greatly lessened.

Frequency Considerations

Frequencies in the megacycle range are necessary to keep wavelength short at the mean velocity of 1,540 meters per second ${ }^{3}$ for human muscle tissue. As the frequency is raised, trouble with diffraction effects is lessened and resolution is improved. However, since attenuation by tissue increases with frequency, range is decreased at higher frequencies.

Since crystal transducers must be operated at mechanical resonance to obtain sufficient sensitivity, the frequency of operation depends

[^7]

FIG. 1-Block diagram of ultrasonic echo-ranging equipment
also upon the crystals available. The limited bandwidth of resonant crystals also affects resolution, placing a lower limit on the length of the transmitted pulse. Damping of the crystal may be used to increase bandwidth.

The crystals used, ${ }^{4}$ X-cut, quartz discs thickness-resonant at 15 mc , have a minimum pulse length of about 0.5 microsecond. The crystals are operated undamped, one face radiating into a water coupling column and the other air backed. Mismatch between the acoustic impedance of quartz and air prevents radiation in the back direction.

System Operation

Referring to Fig. 1, the repeti-tion-rate oscillator produces timing pulses at a rate variable from 400 to $4,000 \mathrm{pps}$. A rapid rate is used to permit short exposures when photographing the oscilloscope screen, minimizing blurring from breathing and other motion of the patient.

Brought to the desired width at sufficient amplitude, actuating pulses are applied to the clamp-tube-controlled oscillator which generates r-f pulses. Output pulses as short as 1.5 cycles at 15 mc can be generated by this circuit. However, the crystal stretches the acoustic pulse to at least 0.5 microsecond. This corresponds to a crystal Q of about ten. It is therefore important to avoid use of high Q circuits in the transmitter if further stretching is to be prevented. This is accomplished using nonresonant impedance coupling in a class-A voltage amplifier, and using the crystal itself as the only resonant element in the output power amplifier. This latter stage is operated class C with fixed bias so that advantage can be taken of the low duty

for Cancer Diagnosis

By JOHN M, REID

and JOHN J, WILD

Department of Electrical Engineering
University of Minnesola Minneapolis, Minn.
cycle by using a high plate voltage to obtain a high peak-power output. A peak power of about 1 kw is used.

Details of the crystal coupling network are shown in Fig. 2. The coupling network allows both the transmitted pulse and the signals from reflected echoes to be applied through a matching L section to the grid of a low-noise, receiver-input stage.

Receiver blocking by the transmitter pulse is minimized by use of single-tuned, coupling coils connected from grid to ground. These provide a low-resistance path for grid current. Thus, the receiver recovers from the transmitted pulse more rapidly than the crystal, which produces a detectable voltage for about 30 microseconds after the applied pulse ends. The remainder of the receiver is conventional. Overall bandwidth is 4 me with a gain of about 100 db . A wide-band oscilloscope is employed for presentation of reflected signals on a linear time-base sweep.

Zero Range

The problem of working to zero range is met by interposing a column of water between the crystal and the tissue, and sealing the assembly with a thin rubber membrane. The signal returned from this membrane becomes the zerorange marker, and arrives after both the transmitted pulse and the crystal's hangover have ceased. The delay multivibrator (Fig. - ;, produces a pulse which starts the oscilloscope trace just before the membrane signal is received. The display thus utilizes the entire screen.

The water column conducts the acoustic pulse away from the crystal, and since it does not return

Ulifasonic echo-ranging equipment in use during laboratory examination of removed tissue specimens

[^8]from the membrane until after the applied pulse ends, the crystal is effectively loaded at all times. When the load is removed during handling of the probe, the crystal is not in danger of fracture. The water attenuates the signal somewhat, but a part of the loss can be made up by increasing the pulse power.

This solution to the problem of achieving zero range has the disadvantage that multiple reflections of transmitted energy take place between the sealing membrane and the crystal face. The water column must therefore be long enough to make the second reflection arrive at the crystal later than the deepest signals of interest.

Depth of Penetration

The factor limiting the depth from which echoes can be received is the attenuation offered by intervening tissue. This effect is noticeable at 15 mc for only a few centimeters of depth, appearing as a large dynamic range between early and deep echoes with the result that echoes on the first part of the time base saturate the oscillograph screen.

Attenuation effects may be compensated for by making receiver gain an increasing function of time across the time base, synchronized with the operating cycle. This is the same solution used in radar systems to minimize close-in land or sea return, usually termed sensitiv-

Crystal probe applied to brain coverings after removal of the skull during a brain-tumor operation

FIG. 2-Crystal coupling networks

FIG. 3-Oscilloscope traces, showing echoes from normal brain tissue (A) and from a cancerous tumor in the same brain (B)
ity time control. This circuit (see Fig. 1) is actuated by the same delayed pulse that starts the timebase sweep and uses the buildup of voltage across a capacitor to obtain an exponential waveform. Voltage is impressed on the negative voltage used for gain control in the i-f amplifier. Receiver gain is therefore decreased coincidentally with receipt of the membrane echo and rises exponentially across the time base.

Present range of about two cm can be extended by further use of stc until the limit imposed by random noise in the receiver is reached. Increasing depth by the use of greater pulse power should be approached with caution, since the damage threshold on a pulse basis at 15 mc has not been definitely determined. Present power was checked by direct experiments on the living brains of laboratory animals, without producing detectable damage. ${ }^{\text {. }}$ The present range has allowed examination of practically all breast tumors encountered.

For greater depths, where loss in definition could be tolerated, advantage could be taken of the
reduced attenuation of lower frequencies.

Example

Typical oscilloscope traces are shown in Fig. 3. These particular records are from the first known attempt to localize and diagnose a brain tumor in a live human being by this method during an operation. The crystal probe, in a sterilized holder, was applied to the brain coverings after the skull had been removed.

Figure 3A shows echoes from normal brain tissue following the saturated signal received from the water-column sealing membrane. Figure 3B shows signals returned from suspected tissue. The subsequent operation confirmed the location of the tumor, and that it was cancerous (Glioblastoma Multiforme).

The differences illustrated in Fig. 3 have been found almost consistently with cancerous tissues of various types from different parts of the body. Comparison of normal and tumor echoes removes factors such as variation in system sensitivity, differences in crystal efficiency and variations from patient to patient.

Acknowledgement is due Henry E. Hartig of the University of Minnesota and Finn J. Larsen of Minneapolis-Honeywell for their kind help and advice, and to medical photographer Lloyd Wolf of the University of Minnesota.

References

(1) J. J. Wild, The Use of Ultrasonic Pulses for the Measurement of Biologic Tissues and the Detection of Tissue Feb. 1950 . Donald Neal, $\begin{gathered}\text { French, John } \\ \text { Detection of } \\ \text { Cerebral Tild }\end{gathered}$ mors by Ultrasonic Pulses, Cancer, 3, p 705 , July 1950.

Lyle A. French, John J. Wild and Donald Neal, The Experimental Application of Ultrasonics to the Localization of Brain Tumors, Journal of Neurosurgery, 8, p 198, 1951 .'
J. J. Wild and Donald Neal. Use of High-Frecuency Ultrasonic Waves for Desues, The Lancet, p 655, March 34 , 1951 .
(2) Finn J. Larsen, Ultrasonic Trainer Circuits, ELECTRONICS, 19, p 126, June Circuits, ELECTRONICS, 19, p 126, June
1946.
(3) George D. Ludwig. The Velocity of Sound throurh Tissues and the Lecity of Impedance of Tissues, The Journal of the Acoustical Society of America, 22, 862 . Aov. 1950 .
(4) John F. Blackburn, Components Handbook Radiation Laboratory Series, Vol. 17, p 180, McGraw-Hill Book Co., N . \mathbf{Y}.
(5) Lyle A. French. John J. Wild and Donald Neal, Attempts to Determine Harmful Efrects of Pulsed Uitrasonic Vi brations, Cancer, 4, p 342, March 1951.

Nondistorting CRO Switch

Oscilloscope accessory uses miniature receiving-type tubes and permits simultaneous viewing of two signals from subaudio to ultrasonic frequencies. Distortion of signals is low, and internal amplifiers provide gain up to 28 for stepping up low-voltage signals

By WILLIAM L, FIRESTONE and RICHARD M. BLONIARZ

Motorola, Inc.
Clicatgo. Illinois

IN MOST LABORATORIES, the simultaneous study of two separate phenomena is required only occasionally, but when the need does arise there is no simple substitute for an electronic switch. It is therefore desirable to have one available, but its cost and complexity should be held within reasonable limits since it is usually regarded as a stand-by piece of equipment.

The electronic switch shown in the photograph performs satisfactorily and yet its design is such that only a few hours and a handful of parts are required for its construction. A brief review of the reasoning behind its design is given prior to actual circuit description.

There are two basic methods of alternately sampling two signals for simultaneous display on the face of a single cathode-ray oscilloscope.

Slow Switching

The first method ${ }^{1}$, one which has been in use for many years, is to present on the oscilloscope face several cycles of one of the signals and then by switching to present several cycles of the other signal. By continuous repetition of the process both signals appear as continuous phenomena. Even though the switching rate is rather slow the picture may appear continuous because of the persistence of the cathode-ray screen and be-
cause of the persistence of vision. This process usually requires a reasonably low switching frequency, particularly when lowfrequency phenomena are to be observed. This switching rate is usually made variable and must normally be synchronized with one of the input signals.

Fast Switching

The second method ${ }^{2}$, which has found application in more recent
times, has a high switching rate of fixed frequency and samples both signals continuously. Each signal is sampled many times during each cycle. This of course necessitates a switching rate which is much higher in frequency than the signal to be viewed. For example, if the switching rate is 25 kc and it is assumed that at least 10 samples per cycle are necessary to have reasonably good reproduction, then the highest signal frequency that

Simplified electronic switch employs readily-available tubes. Signals up to 20 kc can be displayed with almost no distortion

Oscillograms show (A) comparison of 180 and $60-\mathrm{cps}$ sine waves, (B) 7,500-cps switching wave, (C) comparison of 120 and $60-\mathrm{cps}$ sine waves, (D) 60 -cps sine and square waves, (E) 5 and $10-\mathrm{kc}$ signals and (F) $20-\mathrm{kc}$ signals applied to each input
may be expected to be observed is approximately 2.5 kc . This second method of switching is normally considered to be primarily for the observation of low-frequency phenomena.

It has not been commonly realized that this second method of switching need not have so high a fixed switching rate nor be limited to viewing phenomena having signal frequencies much lower than the switching frequency.

The switch to be described has several distinct advantages. It uses a minimum number of tubes, namely three, and it permits viewing of all frequencies in the pass band of the gated amplifiers with only two fixed switching frequencies which are not harmonically related. Good signal amplification is provided.

Circuit Details

The circuit is shown in Fig. 1. The output of the 12 AT 7 squarewave generator alternately cuts off and allows conduction of the 6BE6 amplifiers at a rate of approximately 7,500 cps. Although the frequency is not critical, this value was chosen on the following basis:

Since this device was originally designed for the study of low-frequency signals, a maximum oscilloscope sweep frequency of 75 cps was arbitrarily set. Assuming a trace length of 4 inches and a sampling width of $1 / 50$ th inch, a square-wave is required whose period corresponds to a width of $1 / 25$ th inch. The switching frequency is therefore $4 \times 25 \times 75$ or $7,500 \mathrm{cps}$.

The particular square-wave gen-
erator ${ }^{3}$ used provides an excellent waveshape of sufficient amplitude and does so with a minimum of components. A good waveshape is essential to minimize the switchover time of the amplifiers and keep each sampling as clean as possible for faithful reproduction.

In keeping with the idea of simplicity of design, a minimum number of tubes was used, and pentagrid tubes were employed because of their great versatility. Positive switching is assured by impressing the square waves on the control grids of the 6BE6's. Separation of the signals on the oscilloscope is accomplished by the difference in screen voltage obtained by the position control.

The gain controls and 10-to-1 attenuator permit input signals of up to 10 volts to be examined. Fixed bias of approximately 6 volts is required to prevent grid current flow and to minimize distortion. The maximum voltage gain of the amplifiers under these conditions is 28. Separation of the signals by varying the screen voltage should be kept to a reasonable amount, since the gain of the amplifiers is a function of the screen grid voltage.

Operation

When possible, the gain of the oscilloscope should be used as an aid to the separation of the signals. Since the screen circuits are symmetrical the signals may be positioned in any manner; either signal may be placed above or below the other or the two signals may be superimposed.

To view two periodic signals of
different frequencies, a harmonic relation must exist between these signals, since the oscilloscope may be synchronized to only one frequency. This is a limitation imposed upon any type of electronic switch. No harmonic relation need exist, however, between the switch frequency and the signal frequencies. It will be shown later that it is actually undesirable that such a harmonic relation exist between the switch frequency and signal frequencies.

Although this switch was primarily designed for the viewing of low-frequency phenomena, it is possible to view signals of all frequencies within the response characteristics of the gated amplifiers. This may be explained as follows:

All frequencies passed by the amplifiers fall into two categories relative to the switching frequency: (a) Signal frequencies less than the switch frequency, and (b) signal frequencies greater than the switch frequency.

For signals under category (a), the simultaneous viewing is the result of sampling each signal many times per cycle, resulting in waveforms composed of a number of closely-spaced points. Examples of this type of operation are shown in the oscillograms. As the signal frequency increases, the number of samples per cycle decreases, which would suggest an upper limit on the signal frequency. This apparent upper limit would be determined by the minimum number of samples per signal cycle which would provide an acceptable presentation. Such an upper limit, however, does not exist except for the frequency limitations of the amplifiers. This can be seen by considering a signal frequency of say 5.02 kc and a switching frequency of 7.5 kc . With these frequencies the switch would sample $5.02 /(2 \times 7.5)$ or 0.334666 cycles of the signal each time.

Synchronization

If the oscilloscope is externally synchronized by the signal under observation, but not synchronized with the sampling rate, then the sampling of the signal would be at a different place on each cycle.

With external synchronization the sweep would start at the same point on the oscilloscope and always be in synchronization with the signal. However, because the samples occur at different places on the signal they would run on the oscilloscope and consequently blend together, presenting a smooth and continuous waveform. The oscilloscope has in effect integrated the waveform.

Exceptions to the above occur when the signal frequency F, or any of its harmonics, namely $n F_{s}$, is equal to the switch frequency $F_{\text {o }}$ or any of the switch frequency harmonics $m F_{o}$. In other words, whenever the following equation is satisfied a signal might not be presented in an acceptable manner :

$$
\begin{equation*}
n F_{1}=m F_{0} \tag{1}
\end{equation*}
$$

where $F_{s}=$ signal frequency, $F_{0}=$ switch frequency, $n=1,2,3,4, \ldots$ and $m=1,2,3,4, \ldots$.

This may be shown by considering the case where one signal frequency $F_{s 1}$ is $2 / 3$ of the switch frequency, so that $n_{1}=3$ and $m_{1}=$ 2. Since $F_{o}=7,500 \mathrm{cps}$ it follows that $F_{s 1}$ becomes $5,000 \mathrm{cps}$. Since the input signals must be harmonically related, the second signal is $10,000 \mathrm{cps}$ and $2 F_{s 1}=F_{s 2}$. Using Eq. 1 again, for the second signal $n_{2}=3$ and $m_{2}=4$. By choosing the signal frequencies in this manner it is possible to examine two cases at one time; that is, signals above and below the switch frequency and harmonically related to it. The waveforms of Fig. 2 indicate the
type of presentation to be expected with this condition.

Drift

It should be remembered that if the switch frequency F_{0} or the signal frequencies F_{01} and $F_{i 2}$ vary, the samples will drift on the oscilloscope. If this drift is fairly rapid the picture presented will be smooth and continuous. Under these conditions the vertical traces created during switchover will decrease in brilliance and become barely noticeable. If two switching rates, not harmonically related, are employed, whenever a combination of switching rates and signal frequencies gives a poor presentation, it is merely necessary to change to the other switching rate. Since the two switching rates are not harmonically related the new sampling rate will result in drift of the samples on the oscilloscope and hence a complete presentation will occur. Since the frequency of the multivibrator is controlled only by a single capacitor C, it is possible to obtain a two-frequency multivibrator by adding one capacitor and one switch.

On the other hand, if the signal frequencies are much lower than the switch frequency, so that $n>$ 10 m , a good waveform will result even with harmonic relationships being present, because there are a sufficient number of samples occurring in each signal cycle to give the illusion of a continuous trace.

The accompanying oscillograms

FIG. 1-Electronic switch uses $12 A T 7$ square-wave oscillator to gate two 6BE6 amplifiers
show waveforms taken under actual test conditions. It has been found that if the input signal at the grids of the gated amplifier is limited to one volt the distortion is kept low even with full gain. However, higher quality reproduction is possible if the signals on the grids are kept somewhat below this level.

FIG. 2-Relationship between switch and signal frequencies

Operating experience with the instrument has shown that it is possible to view all recurrent-type phenomena within the pass band of the gated amplifiers by using only two fixed switching rates. By using fixed switching rates the multivibrator may be simplified as compared with a variable-frequency type of multivibrator. The switching rates may be close in frequency if desired, but must not be harmonically related.

The signals to be viewed may be either higher or lower in frequency than the switching rates and preferably not harmonically related to it. The switching rates need not be synchronized to any other signal; in fact it is desirable not to do so.

For best viewing conditions the oscilloscope sweep oscillator should always be externally synchronized to one of the signals.

References

(1) H. K. Hughes and R. F. Foch, Combiration Vacuum Tube switch for Double-Trace Cathode-Ray Oscillograph, Double-Trace Cathode-Ray Oscillograph, Audio-Amplifier
(2) N. A. Moerman, Four-Channel Flectronic Switch, Electronics, Apr. 1946, (3) G. W. Gray, An Inexpensive squareWave Generator, Flectronics, Fels. 1952. (4) J. R. Cosby and C. W. Lampson, An Electronic Switch and Square-Wave Oscillator, Rev. Sci. Instr.. Apr. 1941. (5) H. J. Reich. An Ejectronic Jwitch for the Simultaneous Observation of Two Waves with the Cathode-Ray Oscilloscope. Rev. Sci. Instr., Apr. 1941.

MOVEMENTS of meters having full-scale readings of less than one ma can be protected against overload by electronic means. Fuses are not readily available for such sensitive meters.
Figure 1 shows an electronic protection circuit ${ }^{1}$ that has been used previously in some test equipment. The circuit consists of a triode amplifier whose input is connected across the meter to be protected and whose output is d-c connected to a thyratron grid. When the voltage across the meter exceeds a predetermined value, the thyratron conducts and actuates a relay which opens the load circuit.

Current meters used in test equipment are often connected in the positive side of the load circuit in which case a separate power supply is necessary to operate the protection circuit.

The circuit of Fig. 1 does not provide protection against overload currents in the reverse direction through the meter. Also, the protection provided is not fail-safe in operation. The circuit of Fig. 2 was developed to overcome these deficiencies. The mechanical size and power consumption were also reduced.
The operation of the circuit of Fig. 2 is basically the same as that of Fig. 1. The following paragraphs explain points of differences.

Neon glow tubes are used as d-c coupling elements to reduce the overall voltage required. Protection against overload in the reverse direction is provided by the following means. For reverse current, the triode grid goes more positive. The plate voltage drops to a point where neon tube V_{4} ceases conduction. The thyratron grid voltage then drops to ground potential and neon tube V_{5} conducts. The resulting thyratron grid voltage is sufficient to cause the tube to conduct. Proper operating voltages are required to obtain equal protection in both directions.

To reset the circuit of Fig. 1, a reset switch is used to short-circuit the thyratron causing it to cease conduction. When the reset switch is opened, the thyratron may again be triggered to conduction by an a node-voltage surge generated by the stored energy in the relay coil. Reconduction is eliminated by connecting, with the aid of an auxiliary pair of relay contacts, a $20-\mu f$ capacitor and series resistor in shunt with the reset switch.

Resetting of the circuit of Fig. 2 or 3 is accomplished by opening the thyratron circuit. The load circuit is opened simultaneously to prevent meter overload while the protection circuit is inoperative. The contacts on the reset switch are mechanically interlocked so that the load circuit is opened before the thyratron circuit and closed in the reverse order. Either of the above methods of resetting appears satisfactory.

To provide fail-safe operation, the load circuit of Fig. 2 is open until current flowing through the relay coil closes the relay. This occurs at about the same time the protection circuit becomes operative.

With universal shunt multirange meters, the terminal voltage corresponding to full-scale deflection changes with the different ranges. In order to get the same protection, independent of range setting, the voltage across the meter coil is monitored by the protection circuit.

A voltage-regulator tube V_{2} was introduced in order to improve reliability and stability particularly against line-voltage surges producing erroneous operation. The volt-age-regulator tube may not be required in all cases.

Operation

Grid current flowing in the d-c amplifier tube V_{3} is a potential source of error in the meter reading. Measurements were made to ascertain the magnitude of the grid current. Using a $1-\mu \mathrm{a}$ full-scale

By L. J. GIACOLETTO

Research Department RCA Laboratories Division Princeton, N.J.

FIG. 1-Basic electronic protection circuit for low-current meters
d'Arsonval-type instrument, no deflection was noticeable for several 6AQ6 tubes operating with plate voltages of 85 v and grid voltages of -0.75 v . It was concluded that error from this source could normally be neglected.
The protection circuit has been successfully employed to protect meters having 30 to 50 mv corresponding to full-scale deflection. Resetting difficulties were encountered when employed to protect some 10-ua meters. These difficulties, due to stored mechanical energy in the meter movement, can be eliminated by placing a resistor of suitable value in series with the meter and using the voltage drop across this resistor to operate the protection circuit.

Adjustment of meter zero setting can be used to compensate for constant circuit leakage that cannot be eliminated.

The NE51 neon tubes are sufficiently nonuniform that the circuit will usually have to be readjusted when a tube is changed. The neon tubes should be aged several hours initially before adjusting the circuit. With these precautions, after a few minutes initial warmup, the

CURRENT METERS

Damage due to overload of microammeters and milliammeters can be prevented by use of electronic monitor circuit. Thyratron-operated relay opens the load circuit when voltage across the meter exceeds a predetermined value

FIG. 2-Improved circuit with reverse-current protection and fail-safe operation. Voltage regulator V_{2} prevents damage from line voltage surges
operation of the circuit is reliable and stable even with the overload point set at 1.5 times full load current. A more typical adjustment is to have the relay operate for 2 x forward current and 5 x reverse current. Reverse current protection need not be as good as forward current protection since it is much less likely to occur and since the meter movement is immediately brought to rest in the reverse direction. By careful adjustment, the same protection in both directions can be obtained if desired. For some operating conditions the neon tube will oscillate. This situation is not serious and has not caused improper operation.

Short-circuit protection is of considerable importance for meter safety. It is dependent in part upon the speed with which the relay coil is deenergized through the thyratron. The mechanical and electrical constants of the meter movement and the internal impedance of the power source are also important in determining short-circuit protection. The circuit of Fig. 2 provides reasonably good short-circuit protection.

To improve short-circuit opera-
tion, the time required to open the relay must be decreased. The circuit of Fig. 3 was developed to improve short-circuit operation by decreasing the relay operation time.
In this circuit the relay is normally nonenergized until overload occurs. By overdriving the relay, fast operation can be obtained. The time required to open the relay may be further reduced by changing the adjustment of the relay for more sensitive operation at the expense of less open contact pressure, and by increasing the relay overdrive.

Since the overload protection circuit is practically instantaneous in operation, some load-current surges, as for instance capacitor charging current, may operate the relay although the meter would not be in danger of damage. Relay operations caused by very rapid surges are eliminated by the $\mathrm{R}-\mathrm{C}$ elements in the thyratron grid circuit. The R -C time constant must not be made too large, however, since meter protection against short-circuit overload conditions becomes worse.

Adjustment

The triode bias, overload set, and reverse set controls permit

FIG. 3-Revised portion of circuit of Fig. 2 for fast operation
initial adjustment of the protection circuit. With V_{5} and V_{8} nonconducting and no load current, the triode bias control is adjusted so that V_{4} just conducts. The load current is then increased to correspond with the maximum overload current, and the overload set control adjusted to cause V_{6} to conduct. If desired, the maximum overload current can be simulated by connecting a suitable d-c potential at the coil terminal leads.

To adjust the reverse set control, reverse current is passed through the current meter of sufficient magnitude to cause V_{1} to cease conduction. The reverse set control is then adjusted so that V_{5} conducts sufficiently to cause V_{8} to conduct. Normally with this procedure of adjustment the reverse current required to produce relay operation will be comparable to the forward current required to produce relay operation. If this is not the case, the controls can be adjusted slightly to achieve the desired operation.

Reference

(1) C. W. Cain's adaption of circuit developed by G. D. Hanchett, Jr. An Electronic Multicircuit Breaker, QST, p 34 , Aug. 1947 .

FIG. 1-Construction of wood form for the four rectangular pickup coils

FIG. 2-Circuit of one of the four identical channels that amplify the $10,000 \mathrm{ke}$ signals from the writing-table coils before and after detection

Scriptoscope Shows

Coil surrounding tracing pencil is fed by 10 -ke oscillator, producing moving magnetic field that induces varying voltages in the four rectangular coils surrounding the writing board. Output currents are amplified separately and changed to varying direct current for c -r deflecting coils to give exact reproduction of handwriting on long-persistence screen

By A. G. HUBBY and R. B. WATSON
Depurtment of Ihysics, Unirersity of Texas Austin, Texus

WHEN HANDWRITING is to be reproduced electronically on a cathode-ray tube screen, this reproduction must take place simultaneously with the act of writing. The appearance of the trace on the screen should be a proper likeness of the handwriting of the particular individual operating the instrument, though the trace may be in any desired ratio to the original size of the writing.

The Scriptoscope utilizes the process of induction of voltages in suitably disposed coils to achieve this effect. A magnetic field alternating at a frequency of about 10 kc is produced by a small circular coil which is wound on the stylus or pencil used for the writing.

The desired writing is traced on the surface of a square wooden block having four long, rectangular
coils wound around it, as shown in Fig. 1. The alternating magnetic field from the pencil induces, in these four coils, voltages whose magnitudes and phases depend on the position of the pencil.

Construction Data

The coil for generating the magnetic field consists of about 200 turns of No. 36 DSC wire wound in a groove 1 inch long and $\frac{3}{8}$ inch deep near one end of the pencil. The coil fills only part of this groove, and is covered with a layer of insulating tape for protection.

The exact number of turns for the coils is not critical. Small wire was used for the generating coil to allow production of a considerable magnetic field by a coil of relatively small size. The number of turns on the coils in the box is a
compromise that avoids hum pickup while giving reasonable voltage at the coil terminals.
The difference between the induced voltages in the two side coils varies nearly linearly with the side-to-side position of the pencil (and generating coil) in the neighborhood of the center of the surface of the box. The difference voltage from these two coils on the edges of the box is thus representative of the component of the motion of the pencil in the lateral direction.

To make use of the region of linearity, only a small region in the center of the box is used.

The resultant voltages from the four coils are separately amplified, rectified and applied to the deflection circuits of a cathode-ray tube, as indicated in Fig. 2.

It was found convenient to am-

Example of writing as seen on cathoderay screen

Using Scriptoscope pencil while watching resulting handwriting on rack-mounted cathode-ray tube

Messages on C-R Tube

plify and rectify the signal from each coil separately, since the deflection coils are arranged in pairs for both vertical and horizontal deflection in the cathode-ray section of the radar remote indicator unit used in the first model. A long-persistence screen on the cathode-ray tube allows easy viewing of the trace. The trace is blanked out between words or symbols by means of a switch on the pencil which operates as the pencil is removed from the box. This switch impresses a negative voltage on the grid of the cathode-ray tube which is of sufficient magnitude to cut off the electron beam.

Circuit Details

All four electronic channels employ the circuit of Fig. 2. The three amplifier stages have a gain of about 15 each. The output from the 6J5 final amplifier stage is applied to a linear detector having a resistor-capacitor combination in the cathode return. Direct coupling from this detector to the cathode-ray tube deflection coil is required to handle slow variations and steady deflections. Sufficient power for deflection is obtained from a 6L6 cathode-follower power stage driven from the detector,
using the cathode-ray tube deflection coil as a cathode load.
The power stage has its grid voltage centered about zero as a quiescent operating point by returning the detector cathode to a negative voltage supply. The use of the 6L6 as a cathode follower gives a good match to the deflection-coil load and quenches any tendency to oscillate arising from the distributed capacitance of the deflection coil.

A simple 6V6 Hartley electroncoupled oscillator (not shown) provides a signal for the generating coil of the pencil. Four separate conventional power supplies are used for the various parts of the system. A negative supply is used for the cathode-ray tube blanking voltage and for the return from the cathode-follower detector stages. A second supply provides +150 volts for the power output stages, the cathode-follower detectors and the Hartley oscillator. A third supply provides +450 volts (unregulated) for the plate potential and focus coil current for the cathode-ray tube and +300 volts (regulated) for the amplifier stages. The fourth supply is a conventional half-wave rectifier providing 4,000 volts accelerating potential for the cathoderay tube.

The region of linearity on the box occupies a space of about 6 square inches at the center, at which point the coils are separated by about 5.5 inches. The gains of the four channels are kept approximately equal by choice of components. Centering of the spot on the cathode-ray tube to correspond to the center position of the pencil is secured by adjusting taps on the 25,000 -ohm voltage dividers in the cathodes of the detector stages.

The ratio between the size of the actual handwriting and the writing appearing on the cathode-ray tube is adjusted by changing the amplitude of the current into the generating coil, thereby affecting the signal applied to all four channels in an identical way.

This article is drawn largely from a thesis, Scriptoscope, presented for the degree of Master of Arts in August, 1948 by A. G. Hubby, who is now with Magnolia Petroleum Co., Dallas, Texas. The authors acknowledge the loan of the cathode-ray tube assembly and other electronic components from the Defense Research Laboratory at the University of Texas operating under Contract No. NOrd-9195 with the Bureau of Ordnance, Navy Department.

Television zone map showing three areas in which standards differ

Maximum Coverage for VHF-UHF TV

Initial choice of transmitter sites and frequencies is facilitated by simplified curves derived from FCC rules. Power limits for two grades of service in the various zones are plotted directly upon antenna height vs distance graphs. Use of decibel scales permits adding antenna gain and subtracting line loss

AS A RESULT of three years of technical hearings and research, the Federal Communications Commission has recently adopted extensive revisions of the Standards of Good Engineering Practice and the Rules and Regulations Concern-
ing the Television Broadcast Service. ${ }^{1}$ These revisions provide for the allocation of television broadcast stations in the band from 470 to 890 megacycles, and "unfreeze" the expansion of television service on a national basis which has been
held in abeyance since 1948.
The new rules make available 70 channels in the uhf band between 470 and 890 megacycles for television broadcasting, in addition to the twelve vhf channels presently available between 54 and 216 mega-

FIG. 1-Maximum and minimum power vs antenna height for all channels and zones

Table I—Required Median Field Strength in db Above $1 \mu \mathrm{v} / \mathrm{m}$ (dbu) at Outer Limits of Service

Grade of	Cbannels 2-6	Channels $7-13$	Channels 1.1-83
Service	68		
A	47	71	74
B		56	64

creles. Of the important changes to be made in the engineering standards, one of the most significant is an upward revision of the maximum effective radiated power that may be transmitted by television broadcast stations, which will make pos-
sible substantial increases in the service radii of existing stations.

The maximum and minimum powers that will henceforth be used in television broadcasting depend on transmitting antenna height and the population of the city to

By FREDERICK W. SMITH
Radio and Allocations Engineering National Broadcasting Co.

New York, N. Y.
be served as shown in Fig 1. For channels 2 to 6 (54 to 88 mc) a maximum of 20 db above 1 kw (dbk) of power may be transmitted for antenna heights of 1,000 feet or less; for channels 7 to 13 (174 to 216 mc) 25 dbk for antenna heights of 1,000 feet or less; and for channels 14 to 83 (470 to $890 \mathrm{mc}) 30 \mathrm{dbk}$ for antenna heights of 2.000 feet or less. For greater antenna heights, radiated power of a station must be derated as shown in Fig. 1, according to the particular zone of the country in which the transmitter is to be located. The zone divisions established by the FCC are shown in the map.

It will be noted that in the new standards, transmitted effective radiated power (erp) is expressed in terms of decibels above a reference level of one kilowatt or dbk. The maximum levels of 20,25 , and 30 dbk , therefore, represent power levels of 100,316 , and 1,000 kilowatts, respectively. Likewise, the FCC will henceforth specify field strength levels in terms of decibels above a reference level of one microvolt per meter or dbu. This convention has the advantage that transmission-line losses and antenna gains may be directly subtracted and added to transmitter power output levels. A power increase of one decibel at the transmitter will result in an increase of a decibel in received field strength.

Coverage Prediction

Under the old standards that have been superseded, the coverage of television stations was described in terms of contours based on a median field strength of 5.0 and 0.5 millivolts per meter. In the new standards, the coverage of television stations is expressed in terms of two grades of service, which are defined in Table I. The grade A and B service classifications are essentially specifications
of the extent of signal penetration that will prove to be satisfactory to the average urban or rural observer equipped with an average television receiving system, both from a subjective and a time-availability standpoint. According to the propagation characteristics of uhf and vhf, and considering the performance capabilities of the average television receiver and receiving antenna system, if the field-strength levels specified in Table I are provided, then the re-
quirements for Grade A and B service will be met.

Another innovation is the inclusion in the standards of television field-strength curves that are based on a statistical analysis of the service rendered by the existing television stations. These replace fieldstrength charts, such as those in the old standards, or previously published elsewhere ${ }^{2}$, which were based on the theoretical propagation to be expected over a smooth, spherical earth, and which did not

FIG. 2-Grade A and B contour distance for channels 2 through 6
take into account the statistical effects of terrain losses, or provide median field strengths. Figures 2, 3 and 4 represent condensed versions of these curves and are arranged to permit convenient and rapid computation of the distances to the Grade A and B service contours when the antenna height above average terrain and the effective radiated power of a station in dbk are known.

Typical Case

Figures 2, 3 and 4 are used as follows: Assume that an antenna site has been selected for a station to be located in Zone II, and that the radiation center of the antenna will be 1,500 feet above mean sea level. A topographic map, such as prepared by the U. S. Geological Survey, is then secured and eight or more radials are drawn on it, each extending to a distance of ten or more miles from the proposed transmitter location, as described in the FCC standards. One or more of these radials must extend through the major city or cities to be served. A profile graph for each of these radials is then constructed, which also shows the elevation of the antenna radiation center, as shown in Fig. 5. This represents a hypothetical profile that might be obtained along a $\mathrm{N} 30^{\circ} \mathrm{E}$ radial from a proposed television site.

Once such a profile has been obtained, average elevation of the profile graph of the radial for the eight-mile distance between two and ten miles from the proposed transmitter location is determined by means of a planimeter or by averaging successive points in the interval.

In the case of the radial profile graph shown, this proves to be 305 feet above mean sea level. The height of the radiation center of the antenna above the average elevation of the radial between two and ten miles, the antenna height above average terrain, is 1,500 feet minus 305 feet, or 1,195 feet. This height is taken as 1,190 feet because the FCC specifies antenna height to the nearest 10 feet, taking the lower alternative for midway figures. The antenna height above average terrain is

CONSULT CINCH FOR THE PRO-

 DUCTION OF ANY COMPONENT ASSEMBLY FOR COMMERCIAL
OR MILITARY USE THAT FALLS WITHIN THE GENERAL CATEGORY OF ELECTRONICS PARTS MANUFACTURE

Cinch sockets and shields to JAN specifications:

DESCRIPTION	MAT.	JAN S-28	JAN S-28-A	JAN S-28-A AMEND 1	
7 Pin Miniature	Mica	$\begin{aligned} & \text { SO-10-M } \\ & (T 9365-1) \end{aligned}$	TSE7TIO1 (9356)	TST02PO1 (9356)	
7 Pin Miniature	Ceramic	$\begin{gathered} 50.10-\mathrm{C} \\ (T 9316-1) \\ \hline \end{gathered}$	$\begin{gathered} \text { TSE7T102 } \\ (9355) \end{gathered}$	$\begin{gathered} \text { TS102C01 } \\ (9355) \\ \hline \end{gathered}$	
8 Pin Octal	Mica	See Note \# 1	$\begin{gathered} \text { TSB8T101 } \\ (51 \mathrm{B16203}) \end{gathered}$	$\begin{gathered} \text { TSIO1P01 } \\ \text { (51816203) } \\ \hline \end{gathered}$	
8 Pin Octal	Mica	See Note \#1	See Note \#1	$\begin{aligned} & \text { TS101P02 } \\ & (51816758) \\ & \hline \end{aligned}$	With Mig. Nuts
8 Pin Octal	Ceramic	See Note \# 1	$\begin{aligned} & \text { TSB8T102 } \\ & (51 \text { B16220) } \end{aligned}$	$\begin{aligned} & \text { TS101C01 } \\ & (51816220) \\ & \hline \end{aligned}$	
8 Pin Octiol	Ceramic	See Note \# I	See Note \# 1	$\begin{aligned} & \text { TS101C02 } \\ & (51816759) \\ & \hline \end{aligned}$	With Mig. Nuts
9 Pin Noval	Mica	$\begin{gathered} \text { See Note \#1 } \\ (53 F 12875) \\ \hline \end{gathered}$	$\begin{gathered} \text { TSE9T101 } \\ \text { (53F13373) } \\ \hline \end{gathered}$	$\begin{aligned} & \text { TS 103PO1 } \\ & (53 F 13373) \\ & \hline \end{aligned}$	
9 Pin Noval	Ceramic	$\begin{gathered} \text { See Note \#1 } \\ (53 F 12776) \end{gathered}$	$\begin{aligned} & \text { TSE9T102 } \\ & \text { (53F13381) } \end{aligned}$	$\begin{aligned} & \text { TS103C01 } \\ & (53 F 13381) \\ & \hline \end{aligned}$	
7 Pin Shield	*	$\begin{gathered} \text { SOS.3 } \\ (8660.1) \end{gathered}$	$\begin{aligned} & \text { TSFOT101 } \\ & (8690-1) \end{aligned}$	$\begin{aligned} & \text { TS102U01 } \\ & (8690-1) \end{aligned}$	$13 / 8{ }^{\prime \prime}$
7 Pin Shield	*	$\begin{gathered} \text { SOS-6 } \\ (8661-1) \\ \hline \end{gathered}$	$\begin{aligned} & \text { TSFOT102 } \\ & (8691-1) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { TS102U02 } \\ & (869 \dagger-1) \\ & \hline \end{aligned}$	$13 / 4{ }^{\prime \prime}$
7 Pin Shield	*	$\begin{gathered} \text { See Note \# \# } \\ (16 \mathrm{G} 12564) \\ \hline \end{gathered}$	$\begin{gathered} \text { TSFOT103 } \\ (8698-1) \\ \hline \end{gathered}$	$\begin{gathered} \text { TS102U03 } \\ (8698-1) \\ \hline \end{gathered}$	21/4"
9 Pin Shield	*	See Note \#1 (16G12626)	$\begin{gathered} \text { TSFOT104 } \\ (16 G 13375) \end{gathered}$	$\begin{gathered} \text { TS103U01 } \\ \text { (16G13375) } \\ \hline \end{gathered}$	$11 / 2^{\prime \prime}$
9 Pin Shield	*	See Note \# I (16G12627)	$\begin{aligned} & \text { TSFOT105 } \\ & (16 \mathrm{G} 13376) \end{aligned}$	$\begin{gathered} \text { TS103U02 } \\ (16 G 13376) \\ \hline \end{gathered}$	1.15/16"
9 Pin Shield	*	See Note \#1 (16G12628)	TSFOT106 (16G13377)	$\begin{aligned} & \text { TS103U03 } \\ & (16 \mathrm{G} 13377) \end{aligned}$	$23 / 8{ }^{\prime \prime}$

*JAN S. 28 Shields-Steel-Cadmium Plated
JAN S-28-A Shields, Brass-Nickel Plated
JAN S-28-A Amend 1 Brass-Nickel Plated
Note \#1. Not Included in Jan. Spec.
Numbers Shown in Parentheses () Indicate Cinch Part Numbers
Cinch is producing many variations of standard electronic components for military use. An organization that is flexible, readily adapted to any requirement . . . in military or commercial emergency. Ample physical properties... space and production facilities.

Consult Cinch today!

FIG. 3-Grade A and B contour distances for channels through 13

FIG. 4-Grade A and B contour distances for channels 14 through 83
usually taken as 100 feet where it proves to be less than 100 feet or negative.

According to Fig. 2, the coverage for an effective radiated power of 20 dbk on channel 2 at this site, and along this particular radial, will be about 40 miles, A , and 73.5 miles, B. If the station were to be located in Zone I, the coverage limit would be set by the maximum power curve in Fig. 1 as indicated by the dashed lines ("A Limit Zone I" and "B Limit Zone I" in Fig. 2) and would be 36 miles, A, and 69.5 miles, B.

The complete contours for the station are then secured by repeating the above process for each of the radials and by marking off the distances obtained for all of the radials on a suitable map. A smooth curve that joins the appropriate points then represents the

FIG. 5-Representative radial showing method of determining average elevation
contour at which the specified service is obtained. If the coverage map is to be submịtted to the FCC as part of an application for construction permit, the contours
should be constructed on the Sectional Aeronautical Chart for the area.

The effective radiated power of a television station is the sum of the transmitter power output in decibels above one kilowatt, and the transmitting antenna gain over a half-wave dipole in decibels, less the loss in decibels incurred in the diplexer, triplexer (if used), and transmission-line feed system. When the transmitter power output rating already incorporates the diplexer loss, the latter need not be considered.

References

(1) Sixth Report and Order; Amendment of the Rules, Regulations and Engineering Standards Concerning the Television Broadcast Service, Appendix D, Federal Communications Commission, Washington 25 , D. C., April 14, 1952 . (2) F. W. Smith, Calculating UHF Field Intensities, ELECTRONICS, p 110 , Oct.
1950 .

Get more

of the properties you want in a high density metal with MALLORY 1000 METAL

Expect More . . . Get More From Mallory

At your service when you bring your metallurgical problems to Mallory is a well-rounded, skilled organization with years of specialized research and practical production experience.
Many have found that the combination of Mallory products and Mallory technical service results in product betterment . . . production economy - value beyond expectation.
It may well be to your advantage to see It may well be to your advan can do for you. ,

Today designers are finding wide use for Mallory 1000 Metal-a sintered Tungsten-base alloy - because it possesses properties which other high density metals cannot offer. Mallory 1000 Metal gives you...
HIGH DENSITY... Mallory 1000 Metal has a density of 16.8 to 17.0 grams per cubic centimeter.

GREAT STRENGTH... Mallory 1000 Metal has a tensile strength of more than $80,000 \mathrm{lbs}$. per square inch.

EASY MACHINABILITY... Mallory 1000 Metal machining is like that of grey iron in operation and chip.
drift resistance... Mallory 1000 Metal shows no objectionable drift or shift at rotational speeds as high as 35,000 RPM.

You'll find Mallory 1000 Metal at work wherever high density and great strength are required-as in rotors, flywheels, balance weights . . or as a shield for radium and x-rays. Write today for technical information about versatile Mallory 1000 Metal.

Metallurgical Products and Alloys

SERVING INDUSTRY WITH
Electromechanical Products-Resistors - Switches - TV Tuners * Vibrators
Electrochemical Products - Capacitors Rectifiers • Mercury Dry Batteries
Metallurgical Produets - Contacts - Special Metals • Welding Materials

ELECTRONS AT WORK

Including INDUSTRIAL CONTROL

Edited by RONALD K. JURGEN

Preamplifier for Medical Use. 52
Electronic Projectile Test Rang 152
Visual Tracking of Front Ends 154
Sorting Coins Electronically 154
Vacuum-Tube Analogy of Transistors. 156
Life Testing Reliable Tubes 169
Voice and Sound-Operated Relays. . . . 176
Alarm Signal Generators 204
Television Spot Wobbler 212
Simple Capacitance Alarm Sysiem. 214
Ultrasonics Aids DiathermyExperiments216
Radio Hazard with Electric Blasting
Caps 220
Design of a Low-Noise Pentode...... 194Electronic Elevator Touch Button224
Preamplifier for Medical Use

By J. L. Murphy and H. W. Pavela Assistant Chairman Electrical Engincer Electrical Engineering Research Armour Research Foundation Chicago, Illinois

Electromyography is the electrical recording of the potentials arising in muscle tissue. The preamplifier and amplifier described herein are used with a magnetic recorder for that purpose.

Referring to Fig. 1, a pair of electrodes is inserted into, or near, an area of the muscle of interest. These are the active and reference points and are connected to the two input grids of the differential preamplifier. A third electrode attached to the subject in an inactive area serves as a ground for the system.

The differential action of the am-
plifier is defined as the ratio of the in-phase voltage to the signal potential for equal outputs. The signal applied between the two grids tied together and ground for a given output should be larger by a factor of over 2,000 than a signal applied between the two grids.

In this amplifier, the first stage consists of two tubes connected in the Toennies differential circuit which provides good in-phase rejection. This input stage consists of a cathode-follower pentode 6AU6 coupled to the cathode of a singleended amplifier. Test were conducted on tube types 6AU6, 5693, 6SJ7, 6BA6 and 6AG5 for the input circuit and led to the selection of the 6AU6 from the standpoint of low inherent noise, high amplification and high differential ratio. This

FIG. 1-Schematic diagram of the preamplifier for magnetic recording in medical applications

OTHER DEPARTMENTS
 featured in this issue:

type of input stage gives a high differential ratio which is further improved by adjustment of C_{1} and R_{1}.

Regardless of tube type tested, selection for gain, low noise and differential ratio was necessary. However, it was found that 20 percent of stock 6AU6's were suitable for input pairs.

The single-ended output of the differential stage is fed into two stages of amplification, each consisting of a 12AX7 dual triode. The first section of each tube is connected as a conventional triode amplifier and is direct-coupled to the second section which functions as a cathode follower, providing good high frequency response and low output impedance.

The preamplifier has a frequency response of 0.5 cycles to 10 kc between 3 -db points, a noise level of approximately three microvolts rms referred to the input grids and an overall gain of 16,000 . High and low frequency cut-off filters are provided for reducing the bandwidth.

The complete paper entitled "A Magnetic Recorder for Medical Application" was presented by the authors at the 1951 National Electronics Conference.

Electronic Projectile Test Range

In a new projectile test range at the Naval Ordnance Laboratory, White Oak, Md., guns up to 40 mm will be fired through the muffler partly seen at right in the photo-

Type 2int SIGNAL GENERATOR for Mobile Communications Receivers

Frequency Range
 146 mc to 176 mc

PANEL B

Mobile communications receivers in the 148 to 174 mc range have high sensitivity and rigid selectivity specifications. The receivers must not drift nor suffer detuning from variations in signal level. To be certain that these important requirements are met, laboratories and manufacturers must have a test instrument with capabilities at least an order better than receiver requirements.

The Type 206-A FM Signal Generator meets these needs. Output frequency is adjusted by a mechanism with a fast and vernier drive which is marked in 1.0, 0.1 , and 0.01 mc divisions (see panel A). The dial mechanism position can be changed with respect to the tuning condenser shaft by a lock mechanism to calibrate any single point. Tuning in discrete steps for selectivity measurements may be carried out rapidly by a switched electronic tuner (see panel B). Very fine tuning corrections can be made by an additional electronic vernier. Drift of oscillator output with time is very low and variation in output frequency with attenuator setting negligible. A wide range of output levels is available (see panel A). The instrument is characterized by low microphonism and low leakage.

Workmen shown putting finishing touches on new Naval projectile test range
graph. A line of 25 frames will automatically set off a battery of cameras to record the flight of a missile.
Purpose of the range is to carry on stability and drag investigations on spinning and finned projectiles. The range allows for the use of larger missiles and lower mach
numbers than is possible in a pressurized range.

Two possible electronic means under consideration for setting off the cameras are the use of a photoelectric beam to be cut by the projectile and use of a magnetic field in which a magnetized steel bullet is fired through a magnetic coil.

Visual Tracking of Superheterodyne Front Ends

FIG. 1-Block diagram of the setup for aligning superheterodyne front ends

By Philip S. Wessels
Federal $\begin{aligned} & \text { Clectronic Somunicationtist } \\ & \text { Laboratory Division } \\ & \text { Laursion } \\ & \text { Laurel, Maryland }\end{aligned}$ Laurel, Maryland
Numerous articles in the literature have presented the mathematics of tracking in superheterodyne receivers, but little has been published on methods of checking possible solutions. The equipment
shown in Fig. 1 provides rapid and accurate checking means.

The output of a sweep oscillator is coupled to the antenna in a manner that its effect on the first tuned circuit is minimized. A standard dummy antenna probably would be used in most cases. This signal is taken off the grid of the mixer tube with a cathode follower and detected in a manner that gives a presentation of the response curve of the r-f amplifier on the screen of an oscilloscope.

It is standard procedure to place markers on such a picture by injecting an r-f voltage of appropriate frequency into the circuit. These markers occur when the beat note between the sweep oscillator and the injected signal fall within the pass band of the oscilloscope. In general there will be enough stray pickup from the local oscillator to give such a marker appropriately
placed relative to the r-f response curve. .

If a third signal is mixed into the system, additional beat notes will appear. Two of these will occur at points on the sweep which represent frequencies equal to the sum and difference of the local oscillator and the third signal. If this third signal is set equal to the intermediate frequency, one of these markers should fall somewhere on the response curve of the r-f amplifier, depending on the tracking error at this particular point.

The r-f amplifier now can be tuned from one end of the band to the other and tracking error and changes in the response curve can be observed at the same time. Additional markers could be introduced to designate the desired frequency of either end of the band and perhaps the crossover point.
This system makes it possible to check quickly the solution of any tracking problem. It could be used on the production line where all bands of a receiver could be checked in a matter of minutes.

Sorting Coins Electronically

When the United Kingdom began issuing cupronickel coins and withdrawing from circulation those coins containing silver, an electronic device for sorting the coins was developed. Experimental work indicated that the two types of alloy could be separated by measuring their relative conductivities. The

The coin sorting machine

He checks

15 DIMENSIONS
8 RADII 7 ANGLES

in ONE operation

To check this part completely and accurately by usual methods, you might need as many as two dozen or more different gages-and you still wouldn't be sure all corners were sharp, all angles and radii exact. There's a much faster, more accurate way to do the job completely, one that requires no mechanical gages that can lose accuracy through wear.

On the Kodak Contour Projector, Model 3, you just slip the part into a holding fixture and compare its magnified image with a "chart-gage" over the bright screen. Every detail shown on the drawing is quickly and directly compared against the part itself, to close tolerances and in one operation. Little training or experience is required.

The part we show here is a relatively simple one for an optical comparator. With proper fixtures, charts,
and accessories, you can measure all sorts of complex parts, large or small. Changes in specifications generally require nothing more than a corresponding change on the chart.

So overwhelmingly has industry turned to optical gaging that production of the Kodak Contour Projector, Model 3, the outstanding instrument for this method, has been greatly accelerated. Deliveries are rapid, and the cost of projector, fixture, chart-gages, and accessories usually comes below corresponding sets of mechanical gages. To get an idea of the large labor savings that the Kodak Contour Projector can bring to your inspection problems, get in touch with Eastman Kodak Company, Industrial Optical Sales Division, Rochester 4, N. Y.

THE FRONT COVER

1HE FREQUENCY COUNTER shown in the cover photograph in a crystal-testing application, measures and displays direatly the crystal frequency.

Range of the instrument is from 0.01 cps to 10 mc . The accompanying drawing shows the display arrangement of the counter. Neon tubes behind the panel slots illuminate the proper numerals for direct indication.

Pulse techniques are used in the device manufactured by the Hewlett-Packard Company. The complete counting circuit consists of eight cascaded scalers with indicating systems. Each scaler is a decade type and generates one output pulse for every ten pulses received.
equipment is shown in the accompanying photographs.

The mixed coins are placed in the rotary hopper which feeds them down a vertical chute. The chute guides the coins through a sensing head consisting of a gapped ironcore inductance. The effect the coins have on the flux present in the gap is taken as an indication of their composition.

If the flux variation shows the coin to be of cupronickel composition, the coin falls uninterruptedly down the guide to a receptacle. Silver coins cause accurately-timed pulses to be fed to an ejector unit. The pulses energize a small solenoid causing an inclined deflector, attached to the plunger, to move
across the chute and into the path of the falling coins. Upon hitting the deflector, the silver coins are conveyed to a special receptacle.

The machine will handle a range of denominations if the guide in the hopper is changed and the right switch position on the control unit is selected. The machine has a capacity of about eight coins per second.

The information in this article was abstracted from Electronic Engineering for January 1952. Teledictor Limited of Dudley, England, did the developmental work on the unit. This description is published with the permission of the Superintendent, Royal Mint, London, England.

Rear view of the instrument with covers removed. The sensing head and ejector unit are on the vertical chute behind the rotary hopper

Vacuum-Tube Analogy of Transistors

By Hans E. Hollmann

U. S. Naval Air Missile Test Center Point Mugu, California

According to duality, the transistor requires a constant bias current instead of a constant bias voltage, reactances in vacuum tube circuits are equivalent to admittances, resistors to conductances, and so forth. Although somewhat tricky in complex circuits, the duality principle has been found to be very useful in practical circuitry design.

If the general rule is followed that the duality principle requires every significant element to be replaced with its dual, this concept may be applied not only in the direction from common vacuum tubes to transistors but also conversely.

FIG. l-Basic schematic of the retard-ing-field tube

The final step would be the exchange of grid and plate of a triode, that is, let the plate carry the input or control energy while the grid is the output electrode.
Such a tube will not operate on the principle of space-charge control. A highly positive grid and a plate potential in the vicinity of zero, however, leads directly to a retarding-field tube. Since this peculiar vacuum tube may not be well known, its basic performance briefly is summarized in modern terminology.

The retarding-field tube has been utilized as a generator and detector for microwaves and has been found to operate successfully beyond the region of electron oscillations. As shown in Fig. 1, the cathode may be assumed to be a tungsten filament and the grid potential to be above

 AMPHENOL RG CABLES set the standard for quality in a field where quality and dependable performance are a "must." Frequent laboratory and production tests insure uniform quality and performance. Users of Amphenol RG Cables know that they will perform as specified!
AMPHENCL RI CONNECTORS provide an efficient connecting link between coaxial cables. They feature never-failing continuity, extremely low R F loss and the assurance of a long life of sustained quality. The design, materials and finishes of each type connector are carefully chosen to give the best possible performance under the required conditions.
AMPHENOL A N CONNECTORS are strong! They have a tensile strength of 53,000 pounds. Engineered to meet the rigid Army-Navy Specifications, these connectors insure lowest milivolt loss. The non-rotating solder pockets cut soldering time and reduce operator fatigue. Amphenol has the widest selection of A N Connectors to meet MILL-C-5015 Specifications.
Now Available . . Catalog B-2 - A General Catalog of Amphenol Components - will be sent on request.

AMERICAN PHENOLIC CORPORATION 1830 SOUTH 54TH aVENUE - GHICAGO 50, IUINOIS CIPHINOD

Designed for Application

Grid Ilip Meters

Millen Grid Dip Meters are avalable to meet all various laboratory and servicing requirements.
The 90662 Industrial Grid Dip. Meter completely calihrated for laboratory use with a range from 225 ke , to 300 mc . incorporates features desired for both industrial and laboratory application, including three wire grounding type power cord and suitable carrying case,
The 90661 Industrial Grid Dip Meter is similar to the 90662 except for a reduced range of 1.7 to 300 mc . It likewise incorporates the three wire grounding type cord and metal carrying case.
The 90651 Standard Grid Dip Meter is a somewhat less expensive version of the grid dip meter. The calibration while adequate for general usage is not as complete as in the case of the industrial model. It is supplied is not as complete as in the case of the mindustral model. It is suppled
without gromoding lead and without carrying case. Ihe range is 1.7 to without grounding lead and without carrying case. The
300 me. Extra indietors avaiable extends range to 220 ke .
The Millen Grid Dip Meter is a calihrated stable RF oscillator unit with a meter to read prid current. The frequency determining coil is plugged inte) the unit so that it may be used as a probe.
These instruments are complete with a built in transformer type A.C. power supply and interminal terminal hoard to provide connections for battery operation where it is desirable to use the unit on antenna measurements and other usages where A.C. power is not available. Compactuess
has been achieved without loss of performance or convenience of usage. The incorporation of the power supply, oscillator and prohe into a single unit provides a convenient device for cheching all types of circuits. The indicating instrument is a standard 2 inch General Electric instrument with an easy to read scale. The calihrated dial is a large 270° drum dial which provides seven direct reading scakes, plas an additional universal scale, all with the same length and readability. Fach range has its individual plug-in probe completely enclosed in a contour fitting polystyrene case for assurance of permanence of calibration as well as to prevent any possibility of mecharical damage or of unintentional contact with the components of the circuit being tested.

The Grid Dip Meters may be used as:

1. A Grid Dip, Oscillator
2. An Oscillating Detcetor
3. A Signal Generator
4. An Indicating Absorption Wavemeter

The most common usage of the Grid Dip Meter is ans ancillating frequency meter to determine the resonant frequencies of de-energized tuned circuits.
Size of Grid Dip Meter o:ly (less probe): 7 in. x $3^{3} / 1 \mathrm{t}_{\mathrm{s}}$ in. $\times 3 \frac{3}{3}$ in.

James millen \{妾\} MFG. CO., INC. MAIN OFFICE
 - MALDEN, MASSACHUSETTS, U.S. A.

MEGOHMS
 MEGOHMS
 \% Chesper MEGOHMS MEGOHMS MEGOHMS MEGOHMS MEGOHMS

This new material packs 1000 ohms $/ \mathrm{cmf}-48 \%$ more than the widely-used nickel-chromium alloys.
And what's more, there's no loss of other important physical and electrical properties. High tensile strength-excellent solderability-TC of Resistance is 20 -EFM vs Copper +7 micro-volts -Coefficient of Expansion 13.9-remarkable Surface-Corrosion Resistance -and many more vital characteristics make ALLOY 1000 a money-making, prestige-building component of compact, precision resistors. For complete data get Bulletin 17.

Sectional Tower
MOST ECONOMICAL FOR MICROWAVE • FM • TV COMMUNICATIONS • RADAR

Actual photograph of VEE-D-X Sectional Tower installation showing 152 MC ground-plane antenna suited for ground-to-plane, ship-toshore, and mobile communications.

THE LaPOINTE-PLASCOMOLD CORP.

Perfectly closed and durable airtight assemblies are made with Stupakoff Kovar-Glass Seals. The use of hard glass for these seals provides the highest degree of protection against thermal shock and weathering. Kovar is the ideal metal for such seals because its expansion characteristics closely match those of the hard glass to which it is readily bonded. The resulting seals are uniform and easily assembled.

Stupakoff Seals are available in a wide variety of standard sizes and designs, and can be made in many special forms, as indicated by the illustration above. Extensive experience has given Stupakoff the engineering and manufacturing knowledge and skill to produce Kovar-Glass Seals that are made accurately, uniform and dependable. We will gladly submit samples and quotations.

SEND for Stupakoff Bulletin No. 851, containing photographs, drawings and specifications on many standard seals.

STCPAKOFF Products for Electrical and Electronic Applications

ASSEMBLIES-Metallized ceramic induction coils and shafts; mefallized plates for fixed rigid assemblies; ceramic trimmer condensers.

CERAMICS-Precision-made ceramic products for electrical and electronic applications, all voltages, frequencies and temperatures.

RESISTOR CERAMICS Used for temperature indicating or measuring equipment, for infrared light source and for heating elements. Complete with terminals, in the form of rods, tubes, dises, bars, rings, etc.

CERAMIC DIELECTRICS-For by-pass, leodthrough, blocking, stand-off and trimmer applications. Temperafure compensating Ceramic Dielectrics and high K materials. Tubes, discs and special shapes, plain or silvered.

PRINTED CIRCUITS-Amplifiers, couplings, fil-

 ters, integrators.

STUPALITH-Will withstand extreme thermal shock. May be made to have zero, low-positive or negative expansivities. Safely used at temperatures up to $2400^{\circ} \mathrm{F}$.
SEALS, KOVAR-GLASS-Terminals, Lead-ins; Stand-offs-for hermetically sealing and mechanical construction in radio, television, electronic and electrical apparatus. Single or mulfiple terminal units, in a wide variety of sizes and ratings.
KOVAR METAL - The ideal olloy for sealing to hard glass. Used for making hermetic attachments. Available as rod, wire, sheet, foi-or as cups, eyelets and other shapes.

STUPAKOFF CERAMIC \& MFG. CO., Latrobe, Pennsylvania

under the influence of an external or internal resonance system or even of resonating electrodes. Such electron oscillations cause deformations of the aperiodic characteristics in that they may reduce the current gain but, on the other hand, they also may cause x to be greater than one.

Irrespective of this phenomenon, retarding-field amplifiers and re-tarding-field oscillators have bee? built, particularly a retarding-field audion in which the nonlinear plat characteristic provides the detector action or rectification while the current transfer produces the amplification of the a-f energy.

FIG. 3-Retarding-field audion with short-circuit of the current transter. Plate input (A) and grid input (B)

The input load of the r-f source has been reduced considerably by the so-called "short-circuiting of the current transfer" ${ }^{\prime 1,2}$. According to Fig. 3A, grid and plate are bridged over by a capacitor C while the r-f choke D in the grid lead prevents r-f energy from penetrating into the output circuit. The input source can clearly be seen as being loaded with the saturation resistance so that only very low r-f power is dissipated.

Since grid and plate, for the r-f, are short-circuited, it makes no difference whether the r-f voltage is introduced into the plate or grid circuit. This conclusion leads to the diagram portrayed in Fig. 3B. Both circuits, in modern terminology, are grounded-plate circuits, at least for the r-f.

A current gain greater than one, as resulting from electron oscilla-

You can bring crystals to frequency quickly, accurately ... by high vacuum coating

Hcre's a way to bring piezo-electric crystals to an exact frequency without the usual time-consuming grinding, testing, grinding method.

It works like this: In a high vacuum coating chamber, silver is evaporated on a number of crystal blanks simultaneously through masks used to build the metal up solidly in the center. Then, in another vacuum unit, each crystal is individually brought down rapidly to required frequency by further coating. Frequency can be checked continuously during the second operation-there's no grind-and-try experimentation required.

DPi makes the high vacuum equipment you need to set up a complete crystal coating system. Units are easy to operate and capable of turning out highly accurate crystals on an economical massproduction basis. For complete information on this, or any application of high vacuum in the electronics industry, write to Distillation Products Industries, Vacuum Equipment Department, 727 Ridge Road West, Rochester 3, N. Y.

Typical layout for a complete crystal coating system. Work fows through a base coating unit which bandles a number of crystals at a time to final coating units which bring each crystal down to exact frequency.

DPi base coating unit Model LC1-14. Completely self-contained with mechanical pump and operating controls, it uses a bigbly effrient DPi oil diffusion pump. Vacuum is quickly achieved, coating is rapid.
high vacuum research and engineering

DIALS OR NAMEPLATES OF ANY TYPE at savings that will surprise you!

Because of our company name, you may think of U. S. Radium Corporation as a source of only luminous dials or nameplates. Actually we make self-luminous, fluorescent, phosphorescent, and nonluminescent types, including Alumilite, lithographed or etched aluminum, brass, steel, or stainless steel - finished in lacquer, nickel, chromium, or silver - with black, color, or luminescent markings. In other words, you name it - we make it!

Moreover, having produced millions of dials and nameplates for all kinds of instruments, timepieces, and other uses, we've learned to combine mass-production techniques
with our traditional standards of accuracy and fine quality. Result: you get exactly the dials or nameplates you want - at lower costs than you are likely to think possible.

We are, of course, equipped to meet Government specifications ... and to produce large quantities of routine-type dials or nameplates, or small runs of special, high-accuracy scientific ones.

To find out how we can provide your apparatus with better-designed or lower-cost dials or nameplates, write to Department E7, United States Radium Corporation, 535 Pearl Street, New York 7, New York.

Other Products of U. S. Radium

RADIOACTIVE FOILS
(alpha-ray ionization sources)
IONOTRON STATIC ELIMINATORS RADIUM LOCATORS:
lenses, buttons, screws, markers LUMINOUS RETICLES
and other specialties

POWDERS:

cathode-ray tube and television tube

SILHOUETTE ILLUMINATION

of clocks, watches, and instruments

RADIATION MATERIALS:

radiation, neutron, and standard-light sources

BETTER DIALS AND NAMEPLATES AT LOWER COST

FIG. 4-Transistor audion equivalent to Fig. 3
tions, makes the retarding-field tube unstable. On the other hand, the resulting negative plate resistance produces self-excitation of a tank circuit connected to the plate so that the electron oscillations are self-modulated with a-f or i-f.
By means of this example, it can be seen that the retarding-field tube is the perfect analog of the transistor. This analogy makes it possible to change the retarding-field audion immediately into a transistor audion provided the supply voltages have the right polarity as well as suitable magnitudes in order to cause the transistor to operate in a nonlinear region. In this way the basic schematic of a transistor audion as shown in Fig. 4 is obtained. Depending on whether selfexcitation is desired for heterodyning purposes or not, the bridge capacitor C must be properly adjusted. Hence, a variable bridge capacitor may serve for the adjustment of damping reduction, similar to the vacuum tube audion with controllable feedback.

Other transistor circuits may be derived from retarding-field technique, for example: oscillators and amplifier cascades in which each base-resistance loads the output circuit of the preceding stage. From such a multistage retarding-field amplifier, the transistor cascade portrayed in Fig. 5 may be derived in which the input stage is the grounded-emitter type, whereas the next stages follow alternately in-

FIG. 5-Transistor cascade equivalent to a multistage retarding-field amplifier

Photo taken in the University of Washington shop during fabrication of the two Ds and D Stems.

Seven miles of Revere copper bus bar were wound into great coils for the cyclotron electromagnet. The University built the winding machine itself, and wound the coils in its own shop. The special Revere bar is soft temper, free from scale, with rounded edges.

FOR YOUR PANEL

A NOVEL and UNIQUE CIRCUIT INDICATOR DESIGNED FOR NE-5I NEON LAMP For 110 or 220 volt circuits The required resistor is an integral part of this assembly -"built-in." RUGGED - DEPENDABLE LOW IN COST

WILL YOU TRY A SAMPLE?

Write on your company letterhead. We will act at once. No charge, of course.
SEND fOR THE 192 PAGE hANDBOOK OF PILOT LIGHTS
Among our thousands of Pilot Light Assemblies there is one which will fit your special conditions. Many are especially made and approved for military use. We pride ourselves on prompt deliveries-any quantity.
ask for our application engineering service
The DIAL LIGHT COMPANY of AMERICA 900 BROADWAY, NEW YORK 3 , N. Y.

SPRING 7.1300

Century model 408 RECORDING OSCILLOGRAPH FOR VIBRATION, TEMPERATURE, STRESS, STRAIN ANALYSIS

After conducting a na-
 tion-wide survey among the users of oscillograph equipment and carefully considering the problems which have confronted them for a number of years, Century is proud to offer the Model 408 Oscillograph. This Oscillograph has been designed and built expressly for mobile and airborne operation. As with all Century products, this oscillograph incorporates the utmost in modern design and workmanship, yet it remains simple in its operation and maintenance.

Write for Bulletin CGC- 302
REGISTER and VOTE-it's YOUR country

1505 Race Street Philadelphia, Pa.

GEOPHYSICAL CORPOBATION TULSA, OKLAHOMA
238 Lafayette St. Dayton, Ohio

EXPORT OFFICE:
149 Broadway, New York

SILVER GRAPHALLOY

. . . for applications requiring low electrical noise, low and constant contact drop, high current density and minimum wear.

EXTENSIVELY USED IN
SELSYNS
ROTATING THERMOCOUPLE and STRAIN-GAGE CIRCUITS ROTATING JOINTS GUN-FIRE CONTROLS DYNAMOTORS efc.

Wide range of grades available for standard and special applications.
Brush holders and coinsilver slip rings available for use with Silver Graphalloy Brushes.

OTHER GRAPHALLOY PRODUCTS:

Oil-free self-lubricating Bushings and Bearings, Oilfree Piston Rings, Seal Rings, Thrust and Friction Washers, Pump Vanes.

Write us for Data Sheets and further information. Outline your problem and we will apply our years of accumulated experience toward its solution.

GRAPHITE METALLIZING CORPORATION

1055 NEPPERHAN AVENUE - YONKERS, N. Y.

WHEELER TRANSFORMER

manviactured with

HELDOR CANS \& TERMINALS

PRECISION production techniques enI able Wheeler to manufacture hermeti-cally-sealed transformers to meet Mil-T-27 Specifications. To accomplish this, all components must be of consistent high quality. That is why Wheeler uses Heldor transformer cans and terminals for their products.

Whether your products must conform to Mil-T-27 specifications or not, it will pay you to standardize on Heldor transformer cans, compression-type hermetic seal bushings or complete can assemblies that save headaches, time and money. Get the facts!

MAIL THIS COUPON TODAY!
Name
Tille
Company
Address.

verted. If necessary, stability may be secured by inserting damping resistors in the input circuit or between the stages, therelry introducing negative feedback

Referfnces

(1) H. E. Hollmann, The RetardingField Tube as a Detector for any Carrier Frequency, Proc. IRE, 22, p 630.
(2) H. J. Hollmann, Positive-Grid Valve as a Detector, Exp. Wireless, May $1934, \mathrm{p} 245$? tune, 1309.

Life Testing Reliable Tubes
By Herbert A. Hammel
Sylvania Electric Products Inc. New York. N. Y.

During the last decade there has been a trend towards the use of more complex electronic equipment. This trend has been most evident in the field of military operations. The vital nature of these operations and their reliance upon electronic equipment have brought about the need for vastly increased reliability in such equipment.
A definition currently proposed for reliable tubes is: "Reliable tubes are those tubes so designed and manufactured as to give continuity of operation superior to ordinary commercial tubes." A supplier may submit to the Armed Services as "reliable" only those tubes which have been specifically produced as "reliable" tubes.

The rate of tube failure (inoperative and characteristic failures) must not exceed that stated on the tube specification.

To judge any life test, one must study the distribution of tube failures. Data from many tests run by Sylvania show that the distribution of life test failures with time is a complex curve. Figure 1 shows a typical rate of failure curve (curve 1) and its various components. The first component (curve 2) is a con-

FIG. 1-Typical failure curves for tubes operating under normal conditions

WILL RECORD ALL RDB TELEMETERNG BAMDS (Fp to ioa kc)

- WILL RECORD THE OUTPUT OF 4 RECEIVERS
- FOUR INDEPENDENT DATA TRACKS
- OVER-ALL PLAYBAC ERROR LESS THAN 0.7% ON FINAL DATA
- COMPLETE SHOCK IND VIBRATION RROTECTIOA
- 16 MINUTES RECORDING TIME AT 60 INCH TAPL SPEED

Mode2 Complete Information

AMPEX ELECTRIC CORPORATION RedwGai Caty, Califorsia

Yesterday's "impossible"
are being executed successfully with Micro Ground Miniature Ball Bearings

America's first and only fully ground miniature ball bearings, Micro makes possible design refinements unheard of only a few years ago. With 85 sizes and types from $3 / 8^{\prime \prime}$ down to $1 / 8^{\prime \prime}$ o.d. and in tolerance ranges of ABEC-5 and above, Micro bearings offer tremendous opportunities to minimize space, weight and friction and at the same time to retain high capacity. Yet Micro precision ground bearings actually cost less than comparable unground miniatures.

Write for Technical Bulletin No. 50
MICRO Ball Bearings, Ine.

5 Main Street, Peterborough I, N. H.

North American encourages advanced thinking, because they know looking ahead is the only way to maintain leadership in the aviation industry. That's why North American needs men of vision. If you like hard thinking and would like to work for a company that will make the most of your ideas, you'll find real career opportunities at North American. North American offers you many extra benefits, too.

North American Extras -

Salaries commensurate with ability and experience - Paid vacations - A growing organization - Complete employee service program - Cost of living bonuses - Six paid holidays a year - Finest facilities and equipment - Excellent opportunities for ad vancement - Group insurance including family plan - Sick leave time off - Transportation and moving allowances • Employees Credit Union - Educational refund program - Low-cost group health (including family) and accident and life insurance - A company 24 years young.

Write Today

Please write us for complete information on career opportunities at North American. Include a summary of your education, background and experience.

Airborne Electronic Equipment Equipment Flight Tests Precision Instruments Automatic Controls Propulsion Systems Servo-Mechanisms Airframe Studies Radar Devices Instrumentation Micro Wave Techniques Metallurgical
Electroplating Engineering Planning

NORTH AMERICAN AVIATION, INC.

Aerophysics, Electro-Mechanical Research Division

Dept. 3, Personnel Section,

12214 Lakewood Blvd., Downey, California North American Has Built More Airplanes Than Any Other Company In The World

- Designers, engineers, production men everywhere are changing their thinking (and specifications) over to economical C-D-F spiral tubing. Whether it's round, square, or rectangular, C-D.F tubing is stiff, sturdy, crush resistant. It has good tensile strength, along with good dimensional stability under varying atmospheric conditions.
Above all, it is low in cost. C-D-F experts in insulation, recommend spiral tubing for coils and structural spacers. For transformers, switches, selenium rectifiers.

The round tubing ranges from $1 / 8^{\prime \prime}$ to $6^{\prime \prime}$, with wall thicknesses from $.0075^{\prime \prime}$ to $1 / 8^{\prime \prime}$. The minimum ID of the square and rectangular tubing is $3 / 8^{\prime \prime}$, with $21 / 8^{\prime \prime}$ the maximum ID. $1 / 16^{\prime \prime}$ is the maximum wall thickness. All tubing can be supplied in lengths from 2^{\prime} to 4^{\prime}. From our own fabricating experience, we know you will find this sturdy material easy to drill. tap, rivet, flute or thread.
Think it over... then talk to the man from C.D.F, a skilled plastics engineer. C.D-F has sales offices in principal cities with modern test laboratories at all plants. C.D.F spiral tubing. The man from C.D.F. Both are good to know!

FOR LITTLE COILS..

- C-D-F puts notches in so that cores can be inserted and accurately adjusted. Hard to crush, this tube withstands prolonged heat of $190^{\circ} \mathrm{F}$., $240^{\circ} \mathrm{F}$. intermittently. Write for samples and complete specifications. For availability, economy, adaptability . . . buy your spiral tubing from C-D-F.

NEWARK 16, DELAWARE

For a long time, our business has been Precision Plating in the precious metal field and we number among our customers leading manufacturers in the electronics and the electrical fields. We have turned out plated parts in the face of some of the most severe specifications ever confronting platers, as for example, the connectors illustrated above. The specifications tell the story.

Precision Plating and ordinary commercial plating are as far apart as the poles. Precision Plating insists upon:

> 1. . . high uniformity of deposit on interior as well as exterior surfaces

2 . . . high uniformity piece by piece
3 ...exceptionally strong bond or adhesion
4 ... reproducibility, batch by batch
Yes, Precision Plating is our business. We go even further. In a number of cases, we have suggested minor changes in design of the piece in order to assure desired plating results. Perhaps you have been looking for just such a plating service as we can offer.

$\lambda_{0}{ }^{2}$ man

Specialists in stuer, gold, and other precluys meal fimshes
THOMASTON, CONN.

FIG. 2-Typical fcilure curves for tubes operated under normal and abnormal conditions
stant low rate of failure. These failures are usually of the inoperative type and are due to random failures of welds or heaters.

The second component (curve 3) is a high initial transient resembling an exponential curve. These failures are also of the inoperative type, however, they are due primarily to faulty manufacturing. Finally, there is a distribution (curve 4) of failures, resembling the gaussian or normal distribution, which is due to the wearing out of the tubes. If tubes are operated under normal conditions of voltage and temperature, the lowest point of the overall failure curve (curve 1) generally occurs somewhere between 500 and 1,000 hours. This point will vary widely with the tube type.

High ambient temperature, excessive plate dissipation, or any other unusual operating condition will result in an increased rate of tube failure. This increase causes the wear-out component of tube failures to start earlier in life and to affect a greater number of tubes. Figure 2 shows what may happen to the rate of failure curve when tubes are used beyond their rated conditions.

Subcommittees of the Joint Electron Tube Enginearing Council and the Armed Services Electro Standards Agency have developed a life test procedure for reliable tubes which is currently receiving the favorable consideration of both industry and government. The proposed life test is basically a two-step procedure. The first step limits failures to the prescribed rate. The

RESEARCH-DEVELOPMENT-PRODUCTION

CENTIMETER AND MILLIMETER WAVE

 MAGNETRONS - GAS DISCHARGE TUBES - WAVEGUIDE COMPONENTS TEST EQUIPMENT - SILICON DIODES - THE NEW TRANSISTORMICROWAVE ASSOCIATES, Inc. combines specialized production techniques with the latest research in vacuum tubes, microwave gas discharge phenomena and solid state physics. Our excellently equipped and capably staffed Boston plant can fill many of your microwave component needs. All of our production is to exacting military and commercial specifications.

SEMICONDUCTORS

MICROWAVE is establishing new production facilities to supply a complete semiconductor line including lN21B, 1N21C, 1N23B, 1N25, lN26, and special millimeter wave silicon diodes. Production will commence shortly on - n-p-n TRANSISTORS under license to The Western Electric Company.

LOOK FOR THE TRADEMARK
 μ^{A}

WAVEGUIDE COMPONENTS AND TEST EQUIPMENT

Our competent MICROWAVE component group specializes in the 3 cm and millimeter region producing duplexers, mixers, attenuators, roving stub tuners, frequency meters, standing wave detectors, dry and water loads and other excellent components.

MAGNETRONS AND GAS DISCHARGE TUBES
The seasoned MICROWAVE tube engineering and production teams are now producing several magnetron types including the popular $2 J 42$ and $2 J 42 A$. High level TR microwave gas discharge switching tubes are available for several bands. Our research personnel in this field are always ready to assist in special microwave tube design problems.

WRITE FOR THE LATEST CATALOG INFORMATION A-I ON THIS RAPIDLY EXPANDING LINE

TVS Moncm

FOR

VOLTAGE RESISTORS

Stable, dependable resistors made in sizes from one inch to $181 / 2$ inches long. Power Rating 1 watt to 90 watts. Resistance values to 100,000 megohms. Designed for easy mounting on a panel or stand-off insulator. Can be assembled to make tapped combinations. Matched pair resistors with 2% accuracy available for high. voltage instrumentation. rpc High Voltage Resistors are used in quantity by leading Manufacturers, Instrument Makers, Universities and Laboratories.
also manufacturers of high quality precision wire wound resistors. high frequency resistors and high megohm resistors. write today for catalog.

P PESISTANCE PRODJCTS CO. M M 714 RACE STREET • HARRISBURG 2. PA.

Bardwell \& McAlister's Line of Television Lights

 $A M B \bullet$ • Designed for Telexision Studios and StagesDrawing upon their sixteen years of experience in the production of studio lights used by the motion picture industry, Bardwell \& McAlister, Inc. now offers a complete new line of lights especially designed and engineered for TV stage and studio lighting.

Paint with Light

Painting with light is the ability to control the light source, in order to emphasize the necessary highlights and the all-important shadows. Only through controlled light can the scene or subject be given the desired brilliance, beauty and third dimensional effects.

Our Specialists...

are always ready to assist and advise your engineering staff, so that your studios and stages will be fully equipped to properly "Paint with Light."
Write for complete specifications and prices of these TV SPOTS. Address Depr. 68.

BARDWELL \& McALISTER

The Nonmelting Silicone Insulating and Waterproofing Compound that is stable from -70° to over $400^{\circ} \mathrm{F}$.

Meets all
Requirements of AN-C-128a DOW CORNING 4 compound (

Dow Corning 4 applied by brushing to AN con, nector receptacle of pilot's "jack box" prevents interterence caustd by moisture at this sritical
iunction in aircraft communications system.

Dow Corning 4 applied by brushing ta AN con moisture without oppreciable change in resistance ocross properly mated pin and socket connections.

More water repellent than paraffin, Dow Corning 4 Sticone Compound is highly resistant to ezygen, ezone and deferioration caused by corong discharge. Toled2 Fortact for your cepy of our now boeklet on Dow Cerning 4 Compound. Address Department BD.

MIDLAND, MICHIGAN

BALLANTINE STILL THE FINEST IN ELECTRONIC VOLTMETERS

Ballantine pioneered circuitry and manufacturing integrity assure the maximum in

SENSITIVITY•ACCURACY•STABILITY

- All models have a single easy-to-read logarithmic voltage scale and a uniform DB scale.
- The logarithmic scale assures the same accuracy at all points on the scale.
- Multipliers, decade amplifiers and shunts also available to extend range and usefulness of voltmeters.
- Each model may also be used as a wide-band amplifier.

MODEL	FREQUENCY RANGE	VOLTAGE RANGE	INPUT IMPEDANCE	ACCURACY	PRICE
300	10 to 150,000 cycles	1 milisivolt to 100 volts	$1 / 2$ meg. shunted by 30 mmfds .	2% up to 100 KC 3% above 100 KC	\$210.
302 B Battery Operated	2 to 150,000 cycles	100 microvolts to 100 volts	2 megs. shunted by 8 mmfds. on high ranges and 15 mmfds . on low ranges	3% from 5 to 100,000 cycles; 5% elsewhere	\$225.
305	Measures peak valves of pulses as short as 3 microseconds with a repetition rate as low as 20 per sec. Also measures peak valves for sine waves from 10 to 150,000 cps.	1 millivalt to 1000 volts Peak to Peak	Same as Model 302B	3% on sine waves 5% on pulses	\$280.
310A	10 cycles to 2 megacycles	100 microvolts to 100 volts	Same as Model 302B	3% below 1 MC 5% above 1 MC	\$235.
314	15 cycles to ó megocycles	With probe, 1 millivolt to 1000 volts. Without probe, 100 microvolts to 1 millivolt	With probe, 11 megs. shunted by 6 mmfds. Withcut probe, 1 meg. shunted by 25 mmfds .	3% except 5% above 3 megacycles	\$265

For further information, urite for catalog.

BILLANTIES LIBORTTORIES, IIS.

Tantalytic Capacitors get key role in "servo" circuit for positioning control

This servo-amplifier circuit controls the positioning of equipment which operates in high altitudes. Its capacitors must provide stable operation in widely varying temperatures. They must withstand considerable vibration. And their size and weight have to be kept to a minimum-without sacrificing operating life.

To meet these requirements, our capacitor application engineers recommended General Electric Tantalytic capacitors. These capacitors offer an operating temperature range from $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ -with at least 65% capacitance at $-55^{\circ} \mathrm{C}$. They contain a non-acid electrolyte - making them chemically stable and providing long operating life. They combine large capacitance with small size and weight. And they have the ability to withstand
severe physical shock.
Other features of G-E Tantalytic capacitors include: exceedingly low leakage currents, extremely long shelf life and complete hermetic sealing. They're presently available in ratings from . 1 muf to 12 muf at 150 volts d-c.

If you have a similar large-volume application where a low price is secondary to a combination of small size and superior performance-it will pay you to get in touch with us. You can get more complete information on the outstanding characteristics of Tantalytic capacitors from your local G-E representative. Or write General Electric Company, Section 407-309, Schenectady 5, New York. Ask for Bulletin GEC-808.

General Electric Company, Schenectady 5, N. Y.
GEnERAL (3) Electric
 Alloy of Nickel, Copper and Gold . our exclusive development

SUPERIOR FLOW CHARACTERISTICS
MINIMUM "LEAKERS"
GREATER STRENGTH

WRITEFOR FACTUALDATA AND PRICES
--- MAIL THIS COUPON ---

Your name

Firm name

Address

City
State

WESTERN GOLD \& PLATINUM W O R K S

Smelters • Refiners • Manufacturers
589 BRYANT STREET SAN FRANCISCO 7, CALIF.

4 NEW afrocoms new apincial avituna
simuativo actiat oprea. TING CONDITIONS, SAVES TIME ON TRANSMITTER AND RECEIVER TUNING

It is no longer necessary to final tune transmitters or receivers aboard aircraft. With the new Artificial Antenna (Model DA200) you can preciscly simulate, electrically, any normal aircratit antenna. All this withour leaving the test bench. This equipment will accept any transmitter power up to 200 watts \cdot conxial fiting provides direct 52 ohm metered load. Sturdily corstructed for hard usage, can be mounted in standard rack cabinet or used on bench top.

A letter or wive from you will hring destriphive literature

30و0 DOUGLAS ROAD mia

NOW
 Fully automatic Leesona ${ }^{\oplus}$ No. 107 Coil Winder turns out

accurate coils faster than ever before

Because:

1. New Automatic Delivery Shelf accurately feeds paper inserts to the coils... tensionizes paper upon insertion to minimize finished coil diameters . . .staggers overlaps to prevent egg shaped coils. Individual paper inserts are automatically measured and cut to the required lengths gradually increasing as the coil grows in diameter.
2. Electronic Speed Control gives a slow, cushioned start ...gradually accelerates
to full speed. . . then, maintains constant rate of winding speed for uniform wire tension and coil density.
3. Positive Traverse . . . Large cam surface insures absolute traverse accuracy even on long coil lengths. Cam groove assures "quick-return". . . eliminates crossed turns at the ends of wire layers.
4. Automatic Counter stops the machine when the exact number of turns has been reached.

NO CAMS TO CHANGE!

5. Graduated Quadrant eliminates changing cams. You get the winding length and turns per layer you want merely by adjusting the quadrant and changing 3 gears. Only 68 gears cover the entire range from 20 to 500 turns per layer.

Bulletin 107 shows you how this fully Automatic Leesona No. 107 Interleave Coil Winder gives you paper-insulated or acetate-insulated coils with the electrical characteristics you want at highest speeds and lowest costs. Write for Bulletin 107.

Andrew Ommidirectional Antenna for VITF Communications

No, this new High Gain Communications Antenna isn't cheap, but it does offer the most economical solution to your coverage problem. Whether you want maximum coverage for a specific transmitter power, minimum power or shortest tower for a specific coverage, or freedom from dead spots, the Andrew Type 3000 Antenna is the least expensive solution. Why? Because talk-back is the limiting factor in mobile communications. Gain in the central station antenna costs less than increased power in every mobile unit.

Andrew Type 3000 High Gain Communications Antenna offers better than 6 db gain in the 148-174 MCS band. This means that the power delivered to the receiver on both talk-out and talk-back is increased four times. The horizontal radiation pattern is circular.

Write for the Andrew High Gain Antenna bulletin today!

363 EAST 75TH STREET, CHICAGO 19
ANTENNA SPECIALISTS
TRANSMISSION LINES FOR AM.FM-TV-MICROWAVE ANTENNA EOUIPMENT • ANTENNA TUNING UNITS

FIG. 1-Sound-operated alarm circuit for actuating a relay. Pickup is through a carbon microphone
simple to obtaining effective amplification.

Such is the case with the circuit shown in Fig. 1. The throat-type carbon microphone is mounted directly in contact with a plastic miniature radio-type cabinet. With such an acoustical arrangement, it is possible to cause the relay to pick up with a snap of the fingers, 15 to 20 feet distant.

One disadvantage in long-term use of any carbon-type microphone is the inherent packing of the granules with time, causing an attendant decrease in sensitivity. This fault can be corrected by giving the microphone, or entire unit if attached as described, a slight shake when turning the unit on. When a hand microphone is used, normal use keeps the granules free.

The unit is called the Baby-Larm, and is intended for use in the nursery. It can be placed on a stand or dresser near the crib and whenever the baby cries or whimpers, a buzzer sounds in the living room, garden or other convenient location. If the relay is to be mounted integral with the microphone unit, some provisions must be made to avoid a cycling phenomena caused by the sound of the relay

Chassis of the baby-watching alarm circuit

A beautiful new

multi-turn dial

that adds distinction
to the finest
instrument panels

THE MODEL "RA"

-Accuracy

with a Mirror-Scale

Try it at your distributors

A Quality Relay for RUGGED DUTY!

 AMRECON TYPE: DO A.C. or D.C.WITH CONTACT ARRANGEMENTS UP TO 4-POLE, DOUBLE THROW

Wherever severe shock and vibration are encountered, this rugged little relay can be relied upon to give dependable service. Originally designed for aircraft and mobile equipment, the versatile AMRECON Type DO is adaptable to many other uses where maximum protection against mechanical injury is required. Small in size ($21 / 4^{\prime \prime}$ high, $2 \frac{1}{16}$ " wide, $1 \frac{133^{\prime \prime}}{}$ deep) it is available in contact arrangements up to four-pole, double throw. Coils are normally rated at 3 watts d.c., or 6 watts, 60 . cycle a.c.-for voltages up to 230 volts d.c., or 440 volts a.c. Contact rating: 10 amps-at 115 volts a.c. non-inductive, or 32 volts d.c. Weight : approximately six ounces.

WRITE FOR

COMPLETE INFORMATION
American Relay \& Controls, Inc. 4911 W. Flournoy St., Chicago 44, III.

EIECTRIC INSTRUMENT \& CONTROL HEADQUARTERS

 YES, OFF-THE-SHELF SERVICE

CONSULT US ABOUT YOUR REQUIREMENTS over 250 top lines.

Counters

Panel Meters Transformers Switchboard Meters Micro Switches Photo Electric Equipment Relays

Solenoids Tachometers Thermometers Thermostats Rectifiers Rheostats Timers Pyrometers • Thermocouples • Rectifiers.

Our laboratory is available for repair work, rescaling, recalibration and special calibration of your electrical and industrial instruments. Often months are saved by rescaling and calibrating stock instruments to your specifications.

Electro-Tech maintains one of the largest and most complete stocks in the country of electrical meters, instruments and industrial control equipment-representing

Yes, our warehouse is bulging with standard sfocks of
roggle Switches Shunts (Electrical) Meggers Solenoid Valves Pyrometers Multimeters Oscilloscopes
and Laboratory Standard Instruments
In addition, we manufacture and stock Special Test Equipment - Electric Heating Units - Current Transformers -

FREE

New Panoramic engineering achievements embodied in these improved instruments open important new applications invoiving modulation and interference problems.
SA-8a and SB-8a enable spectrum analysis of signals so close in frequency that their corresponding indications would normalily mask one another.

IMPROVED RESOLUTION down to 50 cps for RF spectrum analysis where maximum resolution is a must

- LOW SWEEP RATES down to 1 scan per second for analysis of pulsed RF signals with low p.r.f.'s
- LONG PERSISTENCE DISPLAYS
- CONTINUOUSLY VARIABLE SCANNING WIDTH
3 types available with moximum sweepwidths of 200 KC . 1 MC . and 10 MC .

10 South Second Avenue, Mount Vernon, N. Y. MOunt Vernon 4-3970

HIPERSIL' CORES

help revolutionize this soldering gun!

In designing their new Versa-Tool soldering gun, Phillips Manufacturing Company wanted a power unit that would provide instantaneous heat for off-on operation, yet operate on household voltage. A transformer was needed to build adequate amperage. But it had to be small, to fit into the handle . . . lightweight, for balance . . . reasonable in cost, to insure competitive pricing of the assembled unit.

Westinghouse Type RC Hipersil Cores provided the complete answer.

Because Hipersil Cores have greater flux-carrying capacity, Phillips engineers were able to cut size and weight of the transformer, effecting considerable savings in coil as well as core costs. But, better still, because the two-piece cores simplified assembly, manufacturing costs were slashed.

Hipersil Cores can cut cost, size and weight in all types of electrical and electronic transformers. Available in a wide range of sizes and shapes for low or high-frequency applications. Greater flux-carrying capacity, compact construction, plus the savings they effect in your manufacturing costs make them the best transformer cores on the market today. For more technical information on applying Hipersil Cores to your product, write to Westinghouse Electric Corporation, P. O. Box 868, Pittsburgh 30, Pennsylvania.
J.70628

HIPERSIL CORES

Dimensions
Length - $6^{\prime \prime}$
Length-6
Diameter- 2^{\prime}

TRANSMITTING
RECTIFIER

* INDUSTRIAL \star ELECTRONIC

As always, Taylor is producing tubes of superior qualify and outstanding performance. The Taylor Representative nearest you is ready and willing to discuss your particular requirements. Call on him for information any time.

armature dropping out. The relay must be shock-mounted on soft rubber grommets in the manner of nonmicrophonic tube sockets. It was also necessary to slip a soft rubber sleeve over the armature stop to silence the click made by the armature when it snaps against the stop.

The circuit makes use of a 2051 thyratron and is a-c operated. An adjustable bias is provided by the 1,000 -ohm potentiometer. Although such an adjustment is usually sufficient, other uses requiring a continuous sensitivity control from zero can be controlled by placing a 1,000 -ohm rheostat directly across the microphone.

A standard carbon-microphone transformer drives the grid. Microphone excitation voltage is derived from the 6.3 -volt filament transformer and a single-plate selenium rectifier. Phasing of the microphone transformer was found to be important in that both the thyratron and the microphone are operating substantially half wave. A hold-over delay, consisting simply of a capacitor across the relay, is provided to continue the buzzer circuit for at least one second for any sound.

Other applications of this circuit are as an aid in the home of deaf persons, utilizing a signal light instead of a buzzer, automobile-operated garage-door openers, keying transmitters and call systems automatically, timers and remote triggering of scientific apparatus by a shout, shot or other shock wave. It could be useful at unattended airports, to light the field lights whenever a flyer buzzed the field desiring to land, the sound of his engine could trip the sound-operated relay. A five-minute time-delay tube

FIG. 2-Voice-operated circuit designed for remote-control toy electric trains

You probably know Lamicoid (Laminated Plastic) as an old friend for such uses as tube socket supports, coil forms, dials, panels, antenna parts and many other applications.

The same qualities that make it adaptable to these uses may also provide practical answers to your material shortage problems . . . and perhaps even bring you savings or improvements!

Lamicoid is made with fillers such as glass, nylon,
paper, fabric, etc. and a varicty of resins. This wide range of materials makes it almost certain that Lamicoid can give you the essential mechanical, structural, or insulating characteristics your product requires.
Lamicoid is supplied as standard shcets, rods and tubes, or fabricated into parts to your specification. Why not let us put our 5^{8} years of experience to work on your electrical insulation problems. Send your blueprints and specifications to us today for prompt quotation.

Schenectady 1, New York
Offices in Principal Cities

Be a

Engineer!

If you meet Boeing's exacting standards. you will share the prestige of Boeing's engineering leadership. And you'll work with men famous for their pioneering contributions to both civil and military aviation. You'll be aided by the finest research facilities in the industry.

At Boeing you'll work on such challenging projects as supersonic research, guided missiles, the B-47 (world's fastest jet bomber), the still-classified B-52, and other exceptional programs. You'll find a rewarding, long-range career here, in a company that has been growing steadily for 35 years.

There are opportunities at Boeing, right now, for experienced and junior engincers for aireraft

$$
\begin{aligned}
& \text { - DESIGN } \\
& \text { - RESEARCH } \\
& \text { - prolopment } \\
& \hline
\end{aligned}
$$

t tooling

also for servo-mprhanism and electronies designers and analysts, and for physicists and mathematicians with advanced degrees.
Openings are available at Seattle, Washington, and at Wichita, Kansas. Boeing provides generous moving and travel allowances, gives you special training, and pays a good salary that grows with you.
You'll be proud to say, "I'm a Boeing engineer!'

Write today to the address below or use the convenient coupon

```
JOHN C. SANDERS, Stall Engineer-Personne!
DEPT. H-7
Boeing Airplane Company, Seattle 14, Wash.*
Engineering opportunities at Boeing interest
me. Please send me further information.
Name
Address
City and State
```

THERMISTOR POWER SUPPLY

Provides voltages required by BOLOMETER bridge and PREAMPLIFIER. Regulated and filtered permitting THEORETICAL NOISE LIMITS of amplification, while operating from 60 CYCLE line.

FS
 MICROMETER HEAD

for the Electronics Industry
flectronic engineers praise fy micrometer heads for their precise accuracy even after long hard usage. this accuracy is made possible by a patented thread-form with radiallyloaded nut for ellmimation of back-lash, and automatic wear compensation . . . other features and specifications are described in our hew bulletin, obtainable on request.

Fripuency Standards P. 0. BOX 66, eatontown, M. J. - TElephene asbury park 1-1018

MIL-P-7788

COMPLETE TESTING FACILITIES
FOR 'GOVERNMENT INSPECTION AT SOURCE'

BH"|||5|"

. . . for longer electrical equipment life

BH " 1151 " is a new electrical sleeving that provides the unique combination of permanent flexibility and high dielectric strength at Class "H" temperatures. It offers a long-lasting union of two great inorganic materials - Fiberglas and Silicone Rubber.

BH " 1151 " shows no change in physical or dielectric properties after 15 minutes at $600^{\circ} \mathrm{F}$.; 4 hours at $500^{\circ} \mathrm{F}$.; or 96 hours at $450^{\circ} \mathrm{F}$. It is applicable for continuous operation through a temperature range of $-90^{\circ} \mathrm{F}$. to $400^{\circ} \mathrm{F}$.

BH "1151" can be twisted, knotted or bent without crazing, cracking, or loss of dielectric strength. Available in rated grades up to 7,000 volts. Electrical
resistance is unusually high. It will not support fungus growth. Offers excellent chemical resistance. Meets all applicable NEMA specifications for Class H insulations.

BH " 1151 " is available in colors, for circuit tracing and coding, in continuous coils, 36 inch lengths, or in short lengths cut to individual specifications. It is made in Grades H-A-1, H-B-1, H-C-1 and $\mathrm{H}-\mathrm{C}-2$. Get all the facts on this superior electrical insulation - write for data sheets today.

Address Dept. E-7

Bentley, Harris Manufacturing Co. Conshohocken, Pa.
BH Therellens

Chassis of the voice-operated relay control
would hold the lights on for a maximum of five minutes without reenergizing the thyratron. This would prevent the lights from burning all night after a clap of thunder for instance. The circuit obviously could also be applied to an automobile parked advantageously near a private runway, to turn on the car headlights for marker illumination in landing.

The second circuit, although less sensitive, has interesting uses. It is designed to trip a relay once for each word or syllable spoken, or for each sound impulse of a given duration and repetition rate. The VoiceTrol, a unit making use of this circuit is shown in Fig. 2. It was designed primarily to provide a voice control for standard remote control electric toy trains. Since these trains come equipped with a built-in stepping relay to control their direction, no alterations are necessary.

Normally a button is pressed twice for a moving train to reverse; the current to the track being interrupted twice, causing the stepping relay to move to the reverse position. The two terminals of the Voice-Trol are simply connected in series with the track feeders. The words, "Back-up" are spoken into the microphone, the current is interrupted twice, and the train reverses. "Stop" brings the train to a halt with one pulse, and "Forward" causes it to move forward again. Various combinations of commands were derived which presented a very convincing display. It can be used by the hobbyist, and

ELECTRONIC GLASS WORKING EQUIPMENT for RADIO, TELEVISION TUBES, INCANDESCENT LAMPS, GLASS LATHES for TELEVISION TUBE REPAIR. We make Transformers, Spot and Wire Butt Welders, Wire Cutting Machines and 500 other items, indispensable in your production. Eisler Engineers are constantly developing New Equipment. If you prefer your own designs, let us build them for you. Write to Charles Eisler who has served The Industry over 30 years.

Machines for small Radio Tubes of all kinds; 24 Head Stem, 24-Head Sealing and 24-Head Exhaust Machines, Spot Welders, etc.

EISLER ENGINEERING CO., Inc.
751 So. 13th St. Newark 3, N.J.

PRIMARY BATTERIES for your Specialized Needs

DRY TYPES

78 Standard Industrial, Laboratory and Gov. ernment Types.

BATTERIES
Our engineers will design and create to your requirements. Send us your specifications.

Precision-built, low-cost, battery-operatedavailable for delivery now.

RESERVE TYPES

Water activated

Send for FREE Cafalog

ELECTRONIC ANALOG COMPUTERS

1. Gives aid in the design and operation of elec1. tronic computers of the d-c analogy type used as differential analyzers and equation solvers. Shows
procedure for setting up problems that procedure for setting up problems that lessens chief
error of faulty assignment of scale factors. Gives samples of practical applications. Covers design of computer circuits, auxiliary components, and comA. Korn, Staff Engr., Lockheed Aircraft Corp Granino Korn, Staff Engr Locheed Aircraft Corp., and ly Engr., Boeing Aircraft
Co. 378 pp., 70 illus.. $\$ 7.00$ p., 70 illus.

EIECTRONC MEASUREMENTS

2. Covers measurement fundamentals in many fields 2. beyond conventional radio, including television riques, and techniques of value to engineers in other areas who use electronics in their instrumentation Treats circuit constants and lumped circuits; wave form, phase, and time interval measurements: receiver waveforms: attenuators and signal generators, etc By F. E. Terman, Dean. School of Engin., Stanford U., and J. M. Pettit, Assoc. Prof. of Elec. Engin.,

RADIO ANTENNA ENGINEERING

3. Provides quidance in the design and construction point to point, ground-to-air, and military com munications, as well as broadcasting. Deals with *ires, masts, and towers, with frequencies up to 30 megs. Treats radiation, circuitaI, and mechanical engineering, operational requirements, bandwidth
propagation and system engineering for each type of antenna. Includes advanced designs suggested hy rery-high frequency and ultra-high-frequency teching importance. By Edmund A. Div. 563 pp., 386 illus., $\$ 9.00$

MUSICAL ENGINEERING

4. Explains the theory and practice of interrelated music, musical instruments, acoustics, and hearlng Treats the construction, range, characteristics, vibrating and resonating systems of musical instruments Anayzes each aspect of sound reproducing and pickup systems. instrumental and problems in recording, transmission, and broadcasting of music and speech. By harry F. Olson, Dir. Acoustical Laboratory, RCA Laboratories

SEE THESE BOOKS 10 DAYS FREE

McGraw-Hill Book Co.

330 W. 42nd St., NYC 36
send me book (s) checked below for 10 days' examination on approval. In 10 days I will remit for book(s) I keep, plus few cents for delivery, and return unwanted book(s) postdaid. (We day for de-
livery if you remit with this coupon; same return privilege,)
[I. Korn \& Korn-ELECTRONIC ANALOG - 2. Terman \& Pettit-ELECTRONIC MEASURE2. MENTS $\$ 10.00$
[] 3. Laport-RADIO ANTENNA ENGINEERING [4. OIson-MUSICAL ENGINEERING $\$ 6.50$

(Print) Name

Address
(ity ..
Company
I'osition
This offer applies to U. S. only.

Good ideas for electronic circuitry sometimes run afoul of connector problems. Maybe existing cdnnector units won't hold air pressure gradients, won't stand the heat, aren't rugged enough for the job. Or maybe it's a question of altitude, or under-water application. But if you can sketch the circuit, we'll take it from there. We've engineered so many special connectors, solved so many "impossible" problems, that whatever the requirements are, we can usually provide the answer.

WRITE TODAYfor specific information, or send us your sketches. We'll forward recommendations promptly.

BREEZF Special CONNECTORS

BREEZE CORPORATIONS, INC.

41 South Sixth Street
Newark, New Jersey

Lightweight actuators for any requirement.

Flexible conduit and ig. nition assemblies.

Job engineered, weldeddiaphragm bellows.

Removable pins in Breeze connectors speed soldering, save time, trouble. Pins snap back into block.

as a novelty attraction as well.
The circuit shown in Fig. 2 is built around a 117L7 tube, the diode section making possible one-tube operation. Microphone current is obtained in the cathode circuit and standard carbon-microphone transformer supplies the signal to the grid. The tube is operating relatively cut-off until a word is spoken. The positive half cycle at the grid turns the tube fully on. This large amplitude square wave is fed through a matching transformer and is rectified to provide the d-c relay excitation. A capacitor, across the relay, was chosen to provide the proper holding characteristics to obtain a relay pick-up once for each normally spoken word or syllable.

The output winding must be so phased as to provide rectification of the negative-going plate signal. Ringing, found to be present with strong signals, during the positive

FIG. 3-Modified form of Fig. 2 using a dynamic loudspeaker as a microphone
peaks (when the tube is completely cut off) was of no consequence since that half cycle is unused.
Numerous stepping relay functions can be achieved with the basic circuit to deduce any predetermined intelligence from groups of sound impulses. This circuit lends itself readily to exhibits and demonstrations.

By increasing the relay holding capacitor to approximately $40 \mu \mathrm{f}$, and connecting the grid to the voltage amplifier of a public-address call system or transmitter, automatic keying can be obtained with this circuit. Also, a counter could be made to total the number of times any audio equipment is used or any sound has occurred.

A third circuit is shown in Fig. 3 which is used in instances where a carbon microphone would be unde-

Minneapolis-Honeywell eliminates soddering operations ... by slipping TEMFLEX 105 over coil leads

Quantity use of Temflex 105 flexible plastic tubing effects substantial savings in assembly costs of the RA 117 Protectorelay oil burner control, according to Minneapolis-Honeywell Regulator Company, makers of the famous MH Control Systems and Brown Instruments. Assembly of the control calls for suitable insulation of two lead wires from each of two coils of the type shown in the illustration.
Conventional methods would call for clipping off the lead wires close
to the coils, and making soldered joints to insulated wires - calling
for four soldering operations for each control.
But Minneapolis-Honeywell merely slips a length of Temflex 105 over each lead. RESULT: Soldering operations are eliminated . . . leads are thoroughly insulated, remain flexible . . . assembly costs

Look so

IRVINGTON

for insulation leadership INSULATING VARNISHES VARNISHED CAMBRIC VARNISHED CAMBRIG
VARNISHED PAPER VARNISHED PAPER VARNISHED FIBERGLAS insulating tubing class "H" insulation

Service advantages of Temflex 105 - in this and many other applica-
tions-are even more outstanding. This Irvington tubing is approved
by Underwriters' Laboratories for $90^{\circ} \mathrm{C}$ operation in oil - as well as for continuous operation at $105^{\circ} \mathrm{C}$. In addition to this superior oil resistance, Temflex 105 offers good resistance to mineral and coal tar solvents - and prolonged exposure to acids and alkalies has little effect on its initial high dielectric strength of 1200 vpm .

Get the full facts on Temflex 105 - mail the coupon for free technical data sheet.

Irvington VARNISH \& INSULATOR

Irvington 11, New Jersey
Plants: Irvington N. J.; El Monte, Calif.; Hamilton, Ontario, Canada

Irvington Varnish \& Insulator Co.
11 Argyle Terrace, Irvington 11, N. J.

Gentlemen:

Please send me your technical data sheet on Temflex 105 Plastic Tubing.
Name.
Title
Company...
Street.
City \qquad

T Extreme Uniformity

Superior Staking Qualities ...ends will roll without splitting
Better for Molded Parts
...closed end keeps compound out

If you use pins for vacuum tubes, adapters, fluorescent lamps, plugs, or electrical equipment of any kind, the chances are you'll save time, money and rejections by using these super-smooth, seamless, patented Radio Pins. They are available in a wide variety of styles and sizes, with staking end either closed or open. For a quotation, simply send a sketch, sample or description and state the quantity and finish you need.

SHEET METAL STAMPINGS?

In addition to Radio Pins, we produce large quantities of top caps, base shells and adapter shells for vacuum tubes; also a wide variety of other metal products, including deep-drawn shells and cups, blanks and stampings, ferrules, grommets, washers, vents, fastenersand, for almost every manufacturing requirement, the world's largest assortment of eyelets.

We invite your inquiry to the Waterbury Brass Goods Branch of The American Brass Company, Waterbury 20, Connecticut.

FOR QUALITY BRASS GOODS - ANACONDA
sirable. Although using a dynamic loudspeaker as a microphone, and two stages of amplification, the circuit is still moderately simple, using only two multipurpose tubes. The circuit is essentially that of Fig. 2 with the addition of the two-stage preamplifier. Sensitivity is controlled by the input to the second stage. It is advantageous to mount the loudspeaker pickup on some sounding board or resonator.

Design of a Low-Noise Pentode

By P. Welch
Whgineering Division
stamard Telomar Thitue Works
standard Telophones and Cables Lid. Kent, England

Tubes required for service in the first stage of high-gain amplifiers and similar equipments using very low signal input levels set a special problem in thermionic tube design. The main requirement for a tube of this type is that it should produce very little extraneous noise in relation to the signal level.

Three main sources of tube noise are microphony, hum and hiss. Besides limitation of these noises as much as possible, the tube must be capable of giving a reasonably high gain because if the first stage amplification is not high enough, the noise output from the second tube becomes appreciable.

The 6BR7 has been designed with low noise requirements in mind. The high gain required limited the choice of tube type to a pentode although this structure does introduce certain undesirable noise features. The most natural choice of

FIG. 1-Means for locking the cathode in the insulating member

EDISON selects NICHROME V WIRE for new, high-accuracy, long life MINIATURE RELAYS

Edison's new space-saving miniature thermal timedelay relays, scarcely larger than a door key, are built to handle big jobs-accurately and dependably, day in and day out.
They offer the simplest, most trouble-free, and least expensive way of introducing delay periods into electric circuits. Thus they are ideal for control functions relating to cathode protection, motor starting, "holdovers," overload protection, automatic cycling, and numerous applications where magnetic relays have hitherto been used.

Since accuracy of operation depends, essentially, upon the consistent performance of the extremely small heater, wire of this winding must be exceptionally stable-be capable of retaining its physical and electrical characteristics indefinitely.

Nichrome V alloy, unique product of Driver-Harris, fulfills these all-important conditions. With a temperature co-efficient of resistance that remains constant between $20^{\circ} \mathrm{C}$. and $500^{\circ} \mathrm{C}$.-a considerably wider temperature range than actually here involved Nichrome V assures uniform, precision performance. And being highly resistant to heat and corrosion, it assures outstanding stability for a lifetime.

This particular application serves to emphasize other desirable properties which make Nichrome V wire extremely suitable for heating, or resistance units required to occupy very limited space. For example: Only a few milliamperes of current are utilized by the Edison miniature thermal relay. The heater winding must, therefore, have high resistance in order to produce sufficient heat to deflect the bi-metal contact strip. The electrical resistivity of Nichrome V ($650 \mathrm{ohms} / \mathrm{cmf}$) permits a short length of one-mil-diameter wire to be used, thus saving space; and the high tensile strength of

New Edison Time-Delay Relay - Model 207 Standard Voltages 115-27.5-6.32 Hermetically sealed. Vibration and shock proof. Ambient compensated $-60^{\circ} \mathrm{C}$. to $+85^{\circ} \mathrm{C}$. Wide range of delay periods available.

Nichrome $V\left(200,000\right.$ p.s.i. at $20^{\circ} \mathrm{C}$. $)$ eliminates breakage in winding operation.

For products whose successful operation depends upon application of stable electrical alloys, highly resistant to heat and corrosion, you'll find Nichrome and Nichrome V offer plus values that are unequalled. At the present time, these alloys are on allocation; but if you will let us have your specifications, we shall be glad to make recommendations and serve you to the best of our ability.

Driver-Harris Company
 HARRISON, NEW JERSEY

BRANCHES: Chisago, Defroit, Cleveland, Los Angeles, San Francisco
*T.M. Reg. U.S. Pat. Off.
Sold in Canada by the B. GREENING WIRE COMPANY, LTD., Hamilton, Ontario, Canada

You'll be well repaid by getting the. facts on a special group of Pure Ferric Oxides, developed by Williams especially for use in the manufacture of ferrites.

Williams Ferric Oxides analyze beiter than $\mathbf{9 9 \%}$ $\mathrm{Fe}_{2} \mathrm{O}_{3}$. They contain a minimum of impurities.
They are available in a broad range of particle sizes and shapes. Among them, we're certain you'll find one that's "just right" for your requirements. The proper application of Ferric Oxides to the manufacture of Ferrites is our specialty. So write today, stating your requirements. We'll gladly send samples for test. Chances are good that our Ferric Oxide "Know How' can save you considerable time and money. Address Dept. 25, C. K. Williams \& Co., Easton, Pa.

WILIAMS COLORS \& PIGMENTS

C. K. WILLIAMS \& CO.

 Easton, Pa. - East St, Louis, III. •Emeryville, CaI.P. S. We also produce IRN Magnetic Iron powders for the Electronic Core Industry, the Magnetic Tape Recording Industry and others. Write for complete technical information.
existing characteristics was that of the h-f pentode type 6J7 and in order that the 6BR7 should be fully equivalent it was designed with a low anode-to-grid capacitance.

The tube is of the nine-pin jumbo miniature type. This size of singleended tube has advantages and disadvantages for low noise design.

Reduction of Microphony
The use of the nine-pin miniature construction allowed the tube elements to be moיnted close to the glass base. This lowered the center of gravity of the tube, as compared with a conventional octal-based type, and it was therefore less prone to movement under conditions of vibration.
In the design of the 6BR7, the size and shape of each electrode was carefully chosen so that it should not have a low frequency fundamental resonance. This insured that the vibration of the element should not give rise to regenerative feedback at low values of gain in the amplifying equipment. As previously explained, this effect is usually the limiting factor to the tube performance and therefore every effort was made to effect improvements over previous designs.

In order that the general resonance value should be of relatively high frequency and low amplitude, the structural length of the tube was kept as short as possible. Individual electrodes were then studied in turn.

To prevent movement, the cathode of the 6BR7 was locked in the insulating member. This was done by making a small bead in the round wall of the cathode, inserting it through the insulator and then

FIG. 2-Grid profile for the 6BR7

Buttoned-up and navigating blind

Operating tanks with full effectiveness in featureless arctic or desert terrain presents a new problem in "blind" navigation.

Dead reckoning and navigating under such conditions requires electronic and electromechanical systems that are highly complex yet simple to operate and maintain.

This growing field of vehicular navigation is
another place where Arma is a leader in basic research, design, development and production. Over 34 years of close cooperation with the Armed Forces-and more recently the Atomic Energy Commission-stand behind Arma's reputation. Arma Corporation, Brooklyn, N. Y.; Mineola, N. Y.; Subsidiary of American Bosch Corporation.

FIG. 3-Conventional insulator and grid assembly
clamping the end together on the other side of the insulator. This is shown in Fig. 1.

The grids of the 6BR7 were made with either a keyhole or an oval type of profile, Fig. 2. This was done so that the grid wires could expand during the heating associated with tube manufacture and yet return to their original shape when they cooled. It was not necessary therefore to provide expansion slots in the insulators for the supporting members, which could then be held by very tight fitting holes.
The most serious cause of grid movement was found to be the resonance of the supporting member itself. Figure 3 shows a consimilarly to a beam supported at two points. If the beam could be supporting member will behave clamped at either end the frequency bly. It can be seen that the grid ventional insulator and grid assemof resonance would increase and the amplitude for a given accelerating force would be less. The 6BR7 therefore incorporates a double-insulator system at each end with the two insulators separated by a small distance, Fig. 4. This type of construction achieves the results of clamping at both ends and yet allows the grid-supporting member to expand.

Experiments showed that by using the double-insulator construction the fundamental resonance of the suppressor grid could be increased from 700 to $1,700 \mathrm{cps}$ with a decrease of noise output under conditions of constant acceleration of about 10 to 1 . This construction was applied to all the grids except the control grid. In this case the

METAL CABINETS ARE "GOOD AS GOLD" when fabricated by BALI'IC

Let our craftsmen give your products the golden touch that makes them look worth their price. We fabricate sheet metal cabinets, racks, panels, chassis or other formations to the most exacting requirements.

We work with any metal, any gauge and any dimensions or quantity, adhering to the same high standards whether the job is simple or challenging to our skill and ingenuity.

BALTIC METAL PRODUCTS CO. 120 Sutton St., BROoklyn 22, N. Y. "Derfectioncers" in Sheet Meral Jabrication

The Science of Ultrasonics, today, is in about the same relative position as that of electricity 75 years ago. In 1877 it was known that electricity, activating the arc lamp, would create light but there were few other practical uses for it.

Today, preliminary investigations of Ultrasonics indicate many possible applications. Among the fields worthy of exploration are the application of Ultrasonics to the processing of foods, chemicals and metals. Also of interest is the application to the cleaning of small precision parts.

In addition to carrying on extensive Ultrasonic investigations in their laboratories, The Brush Development Company has recently introduced a line of standard hypersonic* equipment. This equipment has been designed to permit research staffs everywhere to join in the exploration of the potentialities of Ultrasonics.

Brush engineers welcome the opportunity to discuss with you the application of Ultrasonics to your specific problems. For further information, write The Brush Development Co., Department 3405 Perkins Avenue, Cleveland 14, Ohio.
*T. M. Reg.

Piezoelectric Crystals and Ceramics Magnetic Recording Equipment Acoustic Devices Ultrasonics

Industrial \& Restarch Instruments
grid was clamped at the top end but the connecting member to the stem wire at the bottom end achieved the same results.

As a further feature in structural design the four insulators of the 6BR7 were held by four wires which passed through holes near the periphery. The shielding members were all welded to these wires insuring that the insulators were all firmly held.

The anode of the 6 BR7 was designed to reduce vibration. Besides the usual strengthening ribs it was supported between the insulators in three places preventing movement in any direction, Fig. 5.
Finally the tube assembly was located in the glass bulb very tightly by virtue of the four-insulator construction. This is important because as a rule the glass bulbs are of irregular internal diameter and a structure which is held by two insulators cannot always accommodate these variations.

Reduction of Hum

Hum is caused by the a-c heating of the cathode. It may be due to the capacitance between heater and grid, the induction effect between heater and grid, the magnetic effect, heater emission and/or by poor insulation between heater and cathode.
Insulation hum is rarely serious with the modern techniques of heater coating and in any case its effects can be largely countered by the cathode by-pass capacitor used in the circuit.
Magnetic hum is always met when faggot-type heaters are used and it may be almost completely avoided by using a double helical heater with a low heater rating be-

FIG. 4-Double-insulator system

Precious cargos!

-with Telechroin motors on guard

 where accuracy, dependability, and long life are essential

M odern safety devices for high-speed transportation help assure safe arrival of loved ones who travel. And Telechron synchronous timing motors play a big part in making these safety devices reliable.
Because of design and the reservoir of specially compounded oil, all moving parts are continuously lubricated. The rotor shaft itself literally floats on a film of oil, and the entire mechanism turns
quietly and with minimum friction. Even under the wide extremes in temperature and humidity common in the transportation field,
Telechron motors - with their superior lubrication - have demonstrated consistent, year-in, year-out dependability.
Investigate the extra advantages of quality Telechron motors for your new product designs. They're available in a wide range of sizes and characteristics. For complete details, write for catalog IS-120.
Telechron Department, General Electric Company, 47 Homer Ave., Ashland, Mass.

RECORDING

VERSATILITY

Current

Voltage pressure Temperature

You enint haition

 mestem WHEN IT'S A SANBORN
Stress

Strain
KPM

Displacement

Paper speed $25 \mathrm{~mm} / \mathrm{sec}$ (slower speeds available). All systems record without ink in true rectangular coordinates.
Torque

Shock

Radiant Energy

Humidity

For complete catalog address Industrial Division.

Acceleration

Thickness

Sound Pressure

ONE channel
 Five dual sets of speeds, from 0.5 to $100 \mathrm{~mm} / \mathrm{sec}$. Channels on 2 and 4 channel systems operate independently of each
other, register simultaneously on one record,

FIG. 5-Means for securing the anode to grevent movement
cause in such a heater design the return heix balances out the magnetic effect of the first helix. 'The 6 BR 7 uses a heater of this type with a rating of 6.3 volts at 0.15 ampere.

The static hum, caused by the capacitive effect and induction hum may be reduced by suitable screening between grid and heater. The more serious of these two is that due to the capacitive effect. The 6BR7 incorporates shielding devices so that the capacitance between grid and heater within the tube envelope is practically zero, Fig. 6. The disadvantage of the singleended tube is apparent, as there must always be a capacitance effect in the glass base. Experiments show that nearly all of the hum produced in the 6BR7 is due to this.

Lastly the conduction effect due to heater emission is nonexistent since the cathode is pinched at the top and the heater shielded at the bottom, Fig. 6.

Reduction of Hiss

It has been explained that hiss noise due to electron emission is of a fundamental nature. The effect can be aggravated, however, if there are gas molecules present within the tube. These will ionize and change the nature of the space current. In the manufacture of the 6 BR 7 , every effort is made to produce a tube with a very good vacuum. Surface texture of the cathode coating, in extreme cases, is also responsible for noise effects. If the emission is limited to isolated patches, the motion of the electrons becomes sporadic. By insuring

17EO-512 HERMET C SEAL TERMINALS - Applicable on MIL requirements. Will withstand thermal shock, vibraions, mechanical stains. and excussive pressures with no impaifnent of the seal or other functional characteristics. E. $\mathfrak{S L W}$ terminals ae now being ased at 1000 psi static oil pressure and undergo 5000 p: lesis for two minutes.
 OCTAL TYPE PLUG IN HEADERS - Applicable for MIL require. ments. These units can undergo sustained vibrations, large temperature charges, and other strains without impairment to the seal or other funcHonal charactersics, Avaltabla with eight and twelve pins.

11 1:O-3 11 MULTIPLE PIN HEADERS - Applicable for MIL requiremenis. Presenty being used on MIL-T-27 transtormers. These unils are available with 2 to 10 pins. These units can undergo conditions mentioned above with no impainen to the seal or other characteristics.

FUSE IOLDERS, HERMETICALLY SEALED - Available for 3.AG and 4-AG fuses. These-units are complaty sealed from moisture with or vithout the caf or fuse inserted. They are applicabe on pressurized and gas filled sanponents.
7EO-x \cap CABLES, HERMETICALLY SEALED - The cadles are hermelically sealed at the plag on thru to the panel,
n IEO-STI ROTARY NATERSEAL PANEL ASSEMBLIES - These units have 1.-. an exceilent five year customer history on gas تilled pressurized componesils. Trry are arailable fos $1 / 4^{\text {" }}$ shafts and for potentiometers and switch bushings.
 LIME CDAOS WITH PLUGS FOR EUROPEAN USE, HERMET. ically sealed - These units are completely sealed at the flag and are being used on pressurized enits.

COIL FORMS, CBYSTAL CONTACTS, and other molded bakelite and Neo-Sil rubber uails.

1150-511.
CORPORATION
CHICAGO REPRESENTATIVE: GASSNER \& CLARK COMPANY 6349 North Clark St, Chicago 26, III.
26 CORNELISON AVE, JERSEY CITY 4, N. J.

We welcome your inquires on any phase of design, development or production.

TEST DATA
The result of the Electrical Teating Laboratories Inc., Report $\# 330655$, dited Moreh 18, 194\%, on this material shows the following

2OCO SERIES AYAILABLE
WITH2TO 6 TERMMALS

CO-SIL HERNETIC SEDS

Roáron Temperaftre $25^{\circ} \mathrm{C}$ R.H. 30 percent
Mrgohm-indes
$1.4 \times 10^{\circ}$$\quad$ ober crnimeters
Dielectric Constant and Dies pation Factor

Constrat © 60 cycles per aeceni
@ 60 eycles per secc.a $058 \quad 5.32$
6.17 @ 1 megacycle per Fiond
5.35 @ 50 megacyeles per acond
5.35 Dielectic Strength ai co cycles

Dielectric Strength at 90 c
Volts per mil - 373
Duromeler Average - 80 ± 5
Temperalure - Rated as: Clam A materia! conservalively $+175^{\circ}$ to -70° cent grade.

The Flashover Voltagea indicated were taken at a temperature

FIG. 6-Section of tube showing shielding (heary lines) to reduce grid-toheater capacity
that all the cathodes have a smooth coating and that the processing involved in manufacture is closely controlled, this trouble has been avoided in the 6BR7.

Finally, the insulators of the 6 BR 7 are all coated with a preparation that insures a very high resistance between electrodes. This is essential because the tube is normally used with a very high grid resistor which would produce a noise voltage at the grid if the leakage current were high. Values of grid current due to this cause for the tube structure alone, vary from 1.0×10^{-3} to 1.0×10^{-10} amperes.

Alarm Signal Generators

By M. B. Freedman and T. E. Rolf
Special Devices Engincering Section Engineering Products Department RCA Victor Division Camden, New Jersey

Figure 1 shows a circuit using the gas tube type VR75-30 to produce a simulated motor-driven horn. Constants were chosen to provide a fixed frequency of approximately 600 cps for the fundamental tone with a very short initial voltage delay to simulate the motor starting time. The tone was roughened by introducing a 60 -cycle voltage into the network to simulate the ratchet frequency.

The maximum leakage current of the tube was not a factor in this

[^9][^10]used: the DC output is sufficient to maintain 60 lead acid battery cells at 129 volts; it will also furnish power to switchboard loads within the rating of the charger, and at all times the output voltage is automatically regulated to within ± 0.5 percent, for AC line voltage fluctuations of ± 5 volts on a 230 volt circuit.

Exceptional reliability is shown by the fact that if the electronic control section should be disconnected, the magnetic control section will still automatically hold the output voltage to within ± 3 percent of nominal voltage.
Write for complete specifications today.

for World-Wide Settings in YOUR TV Studios

First Professional 16 mm TV Background Projector Provides 2,000 Lumens

46 ampere arc lamp. f/1.5 20 mm lens, air-cooled film gate, sprocket intermittent that ends film wear and holds old film steady.

TV Version of Famous
Simplex X-L 35 mm Projector: 7,000 Lumens

An incomparable projector used in 80% of all theatres; now equipped for TV use with " $2-3$ " intermittent. 80-110 ampere arc; f/1.9 $2^{\prime \prime}$ lens.

Here, at last, is background projection made practical for any TV studio or network . . . brilliant, steady motion pictures that make any action scene in 16 mm or 35 mm film libraries available as a setting for TV programs.

No complex phasing needed with TV cameras. Simply focus camera on the background screen for a perfect picture. The GPL " $2-3$ " intermittent pulldown, coupled with a 60 light-pulse per second shutter, automatically meets the camera's requirements. Special optical systems for each projector reduce "throw" required, save studio space.

Get full details on these outstanding projectors, now in use on major networks. Consider them in your new studio planning; add to the utility of your present equipment.

WRITE, WIRE or PHONE . ..
General Precision Laboratory
I N C OR PORATED
PLEASANTVILLE NEW YORK

Few instruments will prove so handy in so many ways as this versatile B\&W Model 600 Dip Meter! Ideal for lab, production, service or ham shack use, it provides a quick, accurate means for measuring resonant circuit frequencies, spurious emissions and many other tuned circuit characteristics. Shaped for easy use in today's compact electronic assemblies, highly sensitive and accurately calibrated, it incorporates many features previously found only in higher-priced instruments. You'll find dozens of uses for it as ...

A Grid Dip Oscillator for determining resonant frequencies of tank circuits, antennas. feed line systems, and parasitic circuits; align-
ing filters and traps; peaking coils, neutralizing and tuning transmitters before power is applied
An Absorption Wave Meter for accurately identifying the frequency of radiated power from various transmitter stages: locating spurious emissions causing troublesome TV and radio interference, and many similar uses.
An Auxiliary Signal Generator providing a signal for tracing purposes and for preliminary alignment of receivers, converters, and I-F stages.

An R-F Signal Monitor for audible observation of hum, audio quality, and other audible characteristics of radiated power.

For Capacity, Inductance, and " Q " measurements in conjunction with other components of known value.

TECHNICAL FEATURES

$\sqrt{ }$ Adjustable sensitivity control.
$\sqrt{ }$ Size $3^{\prime \prime} \times 3^{\prime \prime} \times 7^{\prime \prime}$. Weight 2 lbs.
$\sqrt{\text { Handy wedge-shape for easy ac- }}$ cess in hard-to-get-at places.
$\sqrt{ }$ Monitoring jack and $B+$ OFF switch.
V Rust-proofed chassis, aluminum case.
§ Built-in power supply for 110 volts A.C.

BARKEReWILTIAMSON,Inc. 237 Fairfield Avenue
 Upper Darby, Penna.

FIG. 1-Gas-fube simulated horn
circuit since the resistance values are relatively low. However, since one multivibrator oscillator could be used for both the siren and horn signals by changing voltage conditions, the gas tube was eliminated entirely.

The multivibrator oscillator has proven to be a versatile tool for the designer of alarm and attention signals because of the ease with which its frequency can be changed by voltage variation. It has been substituted for the gas tube in the siren and horn circuits as shown in Fig. 2 which shows a circuit used to obtain both signals from one oscillator by switching the circuit elements.

The multivibrator oscillator has been further applied in the production of signals for timing the bell repetition rate and the recurrence rate of a siren signal which cycles approximately every three seconds. In these cases a pulsing relay in one of the multivibrator plate circuits applies or varies the frequency control voltages.

Recently, the building-block principle has been applied in the development of a new audio generator for producing alarm signals in an announcing system. Two phaseshift oscillators, two multivibrators

FIG. 2-Siren horn circuit, Switch S_{1} is shown in the siren position

As old as

 yet as young as ELECTRONICS...
AEROVOX CAPACITORS

 Today, giant atomsmashing betatrons ... radar gear spotting unseen targets...transoceanic radio-guided rocket bombs... world-wide radio communications . . . electronic computers reducing thousands of calculation man-hours to mere seconds... the modern miracle of television-for all facets of the Electronic Age, Aerovox capacitors are still engineered to customer specifications.
Indeed, from tiny precision "ceramics" and metallized-paper "space-savers," to giant power-handling "oils" and "micas," Aerovox remains the time-proven source for ALL capacitor needs.

1922. At the very dawn of radio- 30 years ago, Aerovox came into being to meet capacitor needs. Pioneer radiophone transmitters and earliest radio receivers specified Aerovox capacitors. Such collaboration has continued down through the first three decades of radio-electronic progress.

Sub-miniature vitrified ceramic terminal endseal Type P123ZN Aerolene-impregnated metallized-paper tubular capacitor.
for

MILLIMICROSECOND Pulse Observation

The TEKTRONIX Type 517 Cathode-Ray Oscilloscope is a specialized instrument designed primarily for the observation and photographic recording of very fast rising wave forms having a low duty cycle. Vertical amplifier risetime of $7 \mathrm{~m} \mu \mathrm{sec}$ and sweeps as fast as 10 $\mathrm{m} \mu \mathrm{sec} / \mathrm{cm}$ permit step-function reproduction with an accuracy never before attainable in a commercial oscilloscope. Sufficient delay is incorporated in the vertical amplifier to permit the observed signal to trigger the sweep. Built-in rate generator can be used to trigger the circuit under study.

SENSITIVITY - $0.1 \mathrm{v} / \mathrm{cm}$
RISETIME - $0.007 \mu_{\mathrm{sec}}$ or less
TIME BASES - 11 fixed, $0.01 \mu_{\mathrm{sec}} / \mathrm{cm}$ to $20 \mu_{\mathrm{sec}} / \mathrm{cm}$, accurate within 2%
NET SIGNAL DELAY-(Tolal delay minus sweep starting time) 20 to $50 \mathrm{~m} \mu_{\mathrm{sec}}$

ACCELERATING POTENTIAL — 24kv metallized CRT
REGULATION -All critical voltages electronically regulated
AMPLITUDE CALIBRATOR - 25 kc pulse, 0.15 v 1050 v full scale, accurate within 4%

FIG. 3-Bell-generator circuit
and an amplifier connected in various combinations by external switching arrangements comprise all the circuitry needed to create the bell, siren and horn signals.

Figure 3 shows the bell circuit minus the switching setup. The phase-shift oscillators apply a continuous tone signal to the amplifier. The exponential amplitude decay is introduced in the plate circuit of V_{5} where C_{3} is seen to be in series with the B supply. The charging rate of C_{3} through V_{5} and R_{3} determines the decay characteristic of the bell.

Relays K_{1} and K_{2} and multivibrator $V_{3} V_{4}$ comprise the cycling actuator. Relay K_{2} is pulsed by the surge of charging current in C_{z} each time K_{1} is energized by V_{4}. Contact $K_{2} A$ remains closed only a small fraction of a second, but long enough to discharge C_{3} completely through R_{4}, a small resistor. The pulsing of K_{z} thus results in the momentary application of full $\mathrm{B}+$ voltage to V_{5}, hence momentary full output. With $K_{\mathbf{r}} A$ open again and C_{3} charging, the amplitude diminishes in accordance with the decay of potential on the tube side of C_{3}.

The time constant is adjusted so that the signal voltage amplitude is about one-fifth of maximum value when recycling occurs. The type of multivibrator shown in Fig. 3 was chosen to insure that when $B+$ is turned on to start the generator, V_{4} would always conduct immediately so that the closing of $K_{2} A$ would always coincide with the initial application of $B+$ to V_{5}. If this were not done, application of $\mathrm{B}+$ to the previously "dead" circuit would start a bell cycle which would be reactuated prematurely when the relay tube did conduct, thus producing a double-strike at the outset.

The siren circuit, shown in Fig.

Let MONOWATT help you with your ordnance connector reaulrements

- Connectors made to Government specifications, for ordnance vehicles. Includes a complete line of accessories which provide moisture-proofing, radio shielding, prevention of wire breakage, and use under special applications.

Pictured here are the basic styles of ordnance connectors made by Monowatt, with several accessories. What the camera cannot show is the organization back of the prod-uct-the sound engineering, expert workmanship, and facilities for mass-production.

Monowatt is now supplying ordnance connectors for such com. panies as American Locomotive (for tanks), Auto-Lite (for vehicle generators and voltage regulators), as well as Detroit Tank Arsenal (for spare parts for tanks).

If you use ordnance connectorsor any of the wiring components shown below-you will be interested in what Monowatt can do for you.

For complete information, mail the coupon.

And you can count on MONOWATT for all types ofelectrical components - made to your specifications

Harness Assemblies Made to your specifications

Wiring Devices
For mass-produced èlectrical equipment and appliances

Wiring Components Made to your specifications

MARCONI

first radio patent 1896.
first radio Company.
first to span Atlantic with a radio signal.
first ship to shore radio transmissions.
first commercial air radio service.
first short wave directional beam.

These are but a few of the vital contributions which the Company, founded by Guglielmo Marconi has, in the course of half a century, given in the service of mankind.

MARCONI of England serves mankind

FIG. 4-Siren-generator circuit

4, uses two of the three blocks used for the bell. The tone generator, however, is now a multivibrator. The amplifier is now directly powered by $\mathrm{B}+$. The circuit operation is as follows: Initial application of $B+$ power starts both multivibrators and the amplifier. Relay K_{1} is energized immediately, preventing application of $B+$ to the tone generator grid circuits. Capacitor C_{2} is charged negatively by current from V_{1} and V_{2} grids and the gradual accumulation of this bias on the grids gradually reduces the plate waveform amplitudes, resulting in lesser grid swings and consequently shorter multivibrator periods.

The frequency rises exponentially toward a much higher value. The decreasing amplitude is not in evidence at the output because of the amplifiers limiting effect. Exponential return of the frequency to the lower value is initiated by the reversal of multivibrator $V_{3}-V_{4}$, whereupon K_{1} is deenergized and $\mathrm{B}+$ is applied to C_{2} through R_{3}. Capacitor C_{2} must now charge from its negative potential toward the $B+$ potential, retracing approximately the path it followed in going negative. The charge is never permitted to start positive, for when

FIG. 5-Grid-circuit waveforms for siren tone-generator multibrator. Explanation of curves is in text

TH:YRE N:W...
 AND THEYRE THOMPSON TOO!

Model CA-26, 1 PóT, 115 volt, 60 cycle, AC motor-actuated Coaxial Switch for use with RG.9/U coble.

Model CA-31, 2P2T Sensing or Lobing Switch, 115 volt, $380-1000$ cycle AC motor actuotor. Switching speed, 15-35 Rev/sec. For use with RG-58/U cable.

COAXIAL SWITCHES

designed, engineered, manufactured... ${ }_{\text {br }}$ Thiompson ually-actuated RG.17/U Coaxial Switch with elecPrical and mechanical interlock.

Only Sessions Switch Timers provide the exclusive, two-way switching feature that can double the buy appeal of your radio and television sets.

Sessions Timers not only feature the popular, automatic switch-on control-used to awaken or remind -but an exclusive shut-off switch as well. Thus, a Sessions-equipped clock radio may be set to turn off automatically $11 / 2$ to 2 hours after set turn-on... can be used as a Sleep Switch or as safety Shut-off. That's just one fast-selling Sessions feature available at an amazing low cost.

Advanced design brings splitsecond accuracy and kitten-quiet operation to all fully-guaranteed Sessions movements. Custom styling enables you to specify dial, hands and bezel characters to fit your exact requirements. Timers are available with separate, adjustable "Sleep-Slector" switches, and other features. These important considerations make it worth your while to buy the better buy ... SESSIONS SWITCH TIMERS. Write for technical details. The Sessions Clock Company, Timer Div., Dept. 44, Forestville, Conn.

FIG. 6-Horn-generator circuit
the negative potential has been reduced nearly to zero, K_{1} is energized again and the cycle repeats. Figure 5 illustrates a series of grid waveforms, $A-D$ taken in that order as the frequency rises.
The horn circuit, Fig. 6, utilizes all three of the blocks which were used in the siren. The modulation of the tone generator is now direct, a resistor replacing the relay coil in the V_{4} plate circuit. The composite signal appears as a fundamental tone of about 400 cps roughened by a lower frequency tone at about 30 cps , the latter corresponding to the ratchet frequency. The amplitude of the modulating component is about onefourth the fundamental amplitude and appears both as frequencymodulation and as a mixed-in amplitude component.

Television Spot Wobbler

The circuit diagram shown in Fig. 1 is of the "spot-wobble" portion of the Ekco Model TC165 television receiver, designed for the reception of 405 -line transmissions as used in Great Britain.
The purpose of the device is to fill in the spaces between the lines on the normal television picture. It is thus of greatest value in receivers employing large picture tubes with a small, well-focused spot.
It will be seen that the circuit comprises a Colpitts oscillator in which the oscillator coil takes the form of an extra pair of vertical deflection coils. These coils are mounted on the neck of the picture tube, adjacent to the focus magnet.

From the point of view of achieving the required result in the picture, the exact oscillator frequency

Sensational Advancements In Science \& Industry

Created the Need for THE NEW Stadelece "In" CAPACITORS
 YOUR FREE

CONDENSER CORPORATION Industikiat "D" Capacitor Catolog Stabelex to be the most important may prove to biece of literature for new single you this year!

The low power factor is shown on Curve \#1108. It is to be noticed that the losses over a wide range of temperature are practically negligible.

Performance curves illustrating various characteristics of the Stabelex "D" Capacitor will appear in this magazine each month.

OUTSTANDING FEATURES

INSULATION RESISTANCE AT 20° C. AFTER THREE MINUTES CHARGE-900,000 megohm microfarads
INSULATION RESISTANCE AT 75° C. $-78,000$ megohm microfarads
INSULATION RESISTANCE AT -75° C.-In excess of 5 million megohm microfarads
CHANGE IN CAPACITANCE FROM 25° C. TO $-80^{\circ} \mathrm{C} ;+0.76 \%$
SELF TIME CONSTANT OF 10 MFD CAPACI-TOR-4800 hours
Q AT 50 KILOCYCLES- 10,000
POWER FACTOR AT $1 \mathrm{KC}-\mathbf{0 . 0 0 0 2 5}$

SEND FOR CATALOG 1117 TODAY

After a long period of research, Industrial Condenser Corporation now offers to industry for the first time the first of their family of Stabelex capacitors, stabelex "D", which has been produced for special applications for some time.

Complete information performance curves, characteristics, and suggested applications of the various types now available will be found in this catalog. Mfrs. of OIL, WAX, ELECTROLYTIC, PLASTIC

INDUSTRIAL CONDENSER CORPORATION

- Eclipse-Pioneer, one of the world's largest producers of Gyros, has developed a series of direct reading and remote transmitting Gyros for radar stabilization, navigation, remote compass, automatic pilot, and other similar airborne applications.

Typical of these Gyros is the type 14104, a two axis, gravity erected Vertical Gyro Transmitter designed for use as a remote vertical reference where vertical stabilization is required. The instrument is essentially an electrically driven, vertical-seeking gyro with separate Aıtosyn* transmitter pick-offs on the pitch and bank axes. Sealed in an aluminum case, protection against environmental conditions is acconmplished by means of a double "O" ring labyrinth air tight seal. Signals are brought out on sealed headers (terminal panels) and caging and uncaging is obtained thru D.C. solenoids. Provisions are incorporated within the case to reduce bank error encountered in turns. A means of sensing turns is required in order to employ this feature.

* reg. trade mark of bendix aviation corporation look for the pioneer mark of quality REG. U. S PAT. OFF

Specifications for Eclipse-Pioneer Gyro Type 14104
Dimensions: 61/8" diam., $63 / 4$ " ligh . Weight: $61 / 4 \mathrm{lhs}$.
Operational limits: 360° in roll and piteh with controlled tumbling of the pitch axis at near 90°.
Erection device: A gravity sensitive erection system malntains the gyro in a vertical position to within $\pm 14^{\circ}$ of vertical.
Caging: From any position at full rotor speed in less than 45 seconds.

Power Requirements

Gyro rotor: 115 volts, 400 cycle. 3 phase, 25 VA Gyro caging: 28 volts DC, 5 amperes.
Gyro turn error compensation: 115 rolts, 400 cycle, Single phase 40 MA .
Pickoff excitation: 26 volts. 400 cycle. Single phase, 0.34 watts each.

Bank and Pitch Pickoff Information

Input voltage: (Nominal rotor excitation): 26 volts, 400 cyele, Single phase,

Input current: 50 milliamperes.
Input impedance (stator open): $139+J 510$ ohms. Stator resistance-DC (line to line): 34 ohms. Rotor resistance-DC: 48 obms.

Stator output-max. (line to line): 11.8 volts. Sensitivity: 220 millivolts x degree sine of displacement angle.
Null voltage-max.: 70 millivolts.
Phase shift (rotor to stator): 4°

For detailed information, write to Dept. C
ECLIPSE-PIONEER DIVISION of
TETERBORO, NEW JERSEY
Export Sales: Bendix International Division, 72 Fifth Avenue, New York 11, N. Y.

FIG. 1-British circuit uses Colpitts oscillator. Oscillator coil is used as an extra pair of vertical deflection coils
is not very critical but, for normal size picture tubes, should be such as to produce about 1,000 complete cycles or wobbles in each line. As in the British system, the visible portion of each line represents 83.5 percent of the whole, 1,000 wobbles per line will produce 835 visible wobbles across the width of the picture. The "wavelength" of each wobble in a 13 -in. wide picture is thus $13 / 835 \mathrm{in}$. which is roughly 0.015 in . The required amplitude of wobble is related to the line-pitch of the picture.

For the British 405-line, 25 image-per-second system, 1,000 wobbles per line entails an oscillator frequency of slightly over 10 mc but in practice this frequency is adjusted within this region to a value which eliminates the possibility of harmonic interference with the receiver. This adjustment is carried out in relation to the reception channel to which the receiver is tuned.

Referring to Fig. 1, L_{1} is the combined oscillator coil and wobble deflection coils and C_{1} adjusts the operating frequency. Resistor R_{1} is the amplitude control which is preset and $S W_{1}$ permits the device to be switched out of circuit to facilitate adjustment of focus.

Simple Capacitance
 Alarm System

The Circuit shown in Fig. 1 is for a simple capacitance alarm device known as the Intrudalarm and manufactured by Harvey-Wells Electronics, Inc., Southbridge, Mass.

Essentially, the circuit consists of a weak oscillator and a relay tube biased to cutoff by some of

PRE

At the very heart of highly critical equipment such as electronic computers, electronic gunsights and radar assemblies, the control requirements call for outstanding electrical and mechanical precision. Indeed, from single section to as many as twenty sections, the precision controls must track with mathematical accuracy.

Clarostat Series 42 Controls fully meet these requirements. Thus the climax in precision controls.
Clarostat has made the major portion of such precision controls in use today. Many were supplied to the armed forces in World War II.
Many more have been supplied for civilian purposes since then.
And now, based on an unparalleled experience background,
Clarostat engineers offer you further refinements in
their latest Series 42 design.

You can stand pat with CLAROSTAT

Engineering Bulletin No. 142 sent on request. And remember, when your control or resistor requirements call for quality, quantity and economy, you can meet them with Clarostat's engineering and production facilities. Submit that problem!

CHECK

THESE FEATURES OF THE

 HORNETSIZE AND WEIGHT Because they are designed for high operating temperatures, Hornet Transformers and Reactors have only about one-fourth the size and weight of Class A units of comparable rating.

VOLTAGE RATINGS Designs are available for RMS test voltages up to 10,000 volts at sea level, and up to 5,000 volts at 50,000 feet altitude. Power ratings from 2VA to 5 KVA .
POWER FREQUENCIES These units are designed to operate on $380 / 1600 \mathrm{cps}$ aircraft power supplies, 60 cps power supplies, and any other required power frequency.
AMBIENT TEMPERATURES Hornet Units can be designed for ambient temperatures up to 200 deg . C. Size for any given rating depends upon ambient temperature and required life.
LIFE EXPECTANCY Extensive tests indicate that the life expectancy of Hornet units at continuous winding temperatures of 200 deg . C. is over 50,000 hours.
MOISTURE RESISTANCE Since Hornet Transformers and Reactors contain only inorganic insulation, they are far more moisture resistant than conventional Class \mathbf{A} insulated units.
EFFICIENCY Regulation and efficiency of Hornet Transformers compare favorably with Class \mathbf{A} units.

SPECIFICATIONS Hornet Transformers meet the requirements of Government specifications covering this type of equipment.

Bulletin B300, containing full electrical and dimensional data on Hornet units, is now available. Write for it, or tell us your specifications for special units.

${ }^{r}$ FIG. 1-Schematic of the intruder alarm 1 system
the output voltage from the oscillator. In normal operation, any additional capacitance caused by a person or object coming close to the antenna will cause the oscillator to stop oscillating. When this happens, the bias on the 50L6GT is removed, the tube conducts and actuates the relay which closes the circuit of the warning device.

Ultrasonics Aids Diathermy

 Experiments> By HERMAN P. SCHWAN and EDWIN L. CARSTENSEN Department of Physioal Medioine Moore School of Engineering University of Pennsylvania Philadelphia, Pennsylvania

In the investigation of the heating of tissue by high-frequency sound, relatively little work has been reported on the acoustic impedance of tissue. There has been evidence, however, to show that frequencies in the order of one mc are of interest for diathermy.

The first biological material chosen for investigation was blood. Figure 1 is a diagram of the mechanical arrangement used in the measurements. The test vessel is divided into two compartments by a rubber diaphragm. One half is filled with degassed water and the other with the liquid under investigation.

Transducers are mounted on a sliding assembly source in the water chamber and the receiver is located in the test liquid. The separation between the transducers is held constant and the transducer assembly is moved along the axis of the test tank.

Variation of receiving intensity with assembly position is used to obtain the absorption coefficient of the sample liquid. Barium titanate

REPORT CARD...from Space!

STRUCTURE
AERODYNAMICS
PROPULSION
ELECTRICAL
SYSTEM_
CONTROLS_
GUIDANCE
PR

SI

Guided missiles send their "report cards" home in the form of complex radio singnals which are received and recorded permanently at the ground station. These records inform the missile engineer if his foster-child flunked its final exams or passed at the head of its class. Bendix-Pacific airborne telemetering systems and ground-based receiving stations have been transmitting and recording accurate "report cards" for guided missiles continuously since the kindergarten era of pilotess flight.

The great number of Bendix-Pacific electronic components used in presentday guided missiles and aircraft attest to this company*s leadership in the field of airborne electronics. Bendix-Pacific standard telemetering assemblies, radar equipment, tadio-control systems and electronic servo components are recognized for their advanced design, ultra-compacrness and reliability.

Your company, too, can profir from the years of diversified experience built into every piece of electronic equipment bearing the Bendix-Pacific nameplate. You are invited to write for a free copy of the booklet illustrating Bendix-Pacific electronic developments.

Production "ProblemChildren" LICKED!

 with smooth-sailing production and profits.
In many instances the creative thinking of Clippard design, production and control engineers also results in significant mechanical and electrical improvement. We produce windings and sub-assemblies that save size, weight, critical materials, money, assembly problems and production delays for some of the foremost names in electronics, and can do the same for you.

A manufacturers' manufacturer, Clippard specializes in production runs of $1,000,10,000,10,000,000$ or more units of laboratory accuracy. High speed coil winding and control equipment of our own design plus a staff of skilled technicians assure you the quality coils and sub-assemblies you want, when you want them, with a minimum of rejects, fuss or bother.

Call on Clippard to free your production facilities for more profitable work...to get precision coils and sub-assemblies quickly and economically. Send us a sample, specifications or other details for a prompt solution or quotation, NOW!

Want to save TIME and MONEY Testing Resistors and Condensers?

Send for catalog sheets describing our P.R. 5 Resistance Comporitor or P.C. 4 Copocitance Comporitor. Both quickly pay for themselves by ollowing unskilled operators to check 30 or more components per minute with loborofory accuracy!

INSTRUMENT LABORATORY INC.
7350-90 Colerain Road - Cincinnati 24, ohio MANUFACTURERS OF R.F. COILS and Electronic equipment

FIG. 1-Mechanical drawing of the setup for ulirasonic diathermy measurements
plates were used for transducers to cover the range from 300 to 2,400 kc. Magnitudes of acoustic impedance for water and blood are approximately equal. There are only small reflections from the liquid interface and refraction effects at this boundary are negligible.
One of the greatest difficulties associated with conventional techniques for measuring absorption in liquids is that the output of the receiving transducer depends not only on the absorption of the liquid but is also a complicated function of transducer separation. This method avoids these difficulties by maintaining a constant transducer separation.
For velocity of sound determinaticns, the wave length in the test liquid is measured by comparison of phase of the r-f output of the receiver with a direct signal from the generator while the transducer separation was varied by micrometer control.
Effectively free field conditions are obtained through the use of pulsing techniques. A pulse of r-f is applied to the source, Fig. 2. The output of the receiver is amplified and presented on an oscil!oscope. The relative output inten-

FIG. 2-Block-mechanical drawing of r-f pulse equipment

ALL THE ADVANTAGES of master-oscillator-power-amplifier operation in the x-band are made practical by the new Varian V-27 amplifier. This is another of the compact two-resonator tubes derived from the outstanding Varian X-21, and can utilize any of the Varian x-band oscillators as driver.

IN APPLICATION, the new V-27 serves as a buffer amplifier to prevent oscillator frequency changes caused by varying load impedances; as a linear amplifier; or as a phase-modulated amplifier; in relay service and in certain types of radar and beacons.

FEATURES OF THE V-27 include the unusually light weight of six ounces; a space factor less than that of a two-inch cube; a convenient new integral pigtail termination for leads; a special rugged cathode construction; and wideband Varian mica-seal flange windows.

OPERATIONALLY, the V-27 provides output powers of 4 to 8 watts c-w or 100 to 500 watts with 3 - to $5-\mathrm{kv}$ pulses on a 3 per cent duty cycle. It is rated with a beam voltage of 1350 volts, beam current of 100 ma. Both input and output flanges fit inch by halfinch waveguide.

SEND FOR FULL DETAILS on these or other Varian klystrons. Your particular microwave problem may find a solution in one of the Varian commercial klystrons-or in one of the many developmental types which cannot be publicized.
associates
990 VARIAN STREET - SAN GARLOS I. CALIFORNIA

VARIAN csswcictes

for mopa operation

varian V. 27
9.1 to 11.0 kmc

5 watts c•w
500 watts pulsed

GIELD ENGINEERING REPRESENTATIVES IN PRINCIPAL CITIES

 quality is needed and where the value of long, trouble-free performance is recognized.

Originally this 2-gang connector was designed to assist in the standardization of radio and instrument assemblies so that such equipment might be interchanged between similar aircraft. It allows for compact design in close quarters with access from the front only. This type of application and variations of the fittings are shown at right. Any Cannon DPD insert may be placed within the shell, with or without tuning shaft, coax, twinax, large or small contacts, provided the separation forces of both halves are similar.

This plug typifies the close attention to important detail that distinguishes every Cannon Plug - the world's most extensive line. If you are looking for real value, regardless of the field you work in , your best bet is Cannon.

CANNON ELECTRIC

CANNON ELECTRIC COMPANY

 LOS ANGELES 31, CALIFORNIAFactories in Los Angeles, Toronto, New Haven. Representatives in orincipal cities. Address inquiries to Cannon Electric Company. Dept. G-120, P. O. Box 75, Lincoln Heights Station, Los Angeles 31, California.
 netic diathermy

Radio Hazard with Electric Blasting Caps

RADIO-FREQUENCY HAZARDS may exist in the use and transportation of electric blasting caps and similar electrically actuated devices such as delay electric blasting caps and electric squibs.
Amplitude-modulated radio stations are the greatest hazard because of their high power, relatively low frequencies and presence in open country where blasting operations are apt to take place. Television and f-m stations are less hazardous because of their high frequencies and antenna locations.

Induced currents may also come from mobile radio, although because of low power, vertical antennas and high frequencies, chances are slim that premature explosions would be caused.

Intensity of r-f energy normally
Table I-Safe Distances for
Various Transmitted Powers

Power (watts)	Distance (feet)	
$5-$	25	100
$25-$	50	150
$50-$	100	220
$100-$	250	350
$250-$	500	450
$500-$	1,000	650
$1,000-$	2,500	1,000
$2,500-$	5,000	1,500
$5,000-10,000$	2,200	
$10,000-$	25,000	3,500
$25,000-50,000$	5,000	
$50,000-100,000$	7,000	

POWER FACTOR: INITIAL 1.5\% @ 1 KC AFTER HUMIDITY 2.5\% @ I KC WORKING VOLTAGE: 1000 VDC-IESI VOLIAGE: 2000 VDC INSULATION: DUREZ PHENOLIC-VACUUM WAXED

RADIO MATERIALS CORPORATION GENERAL OFFICE: 3325 N. California Ave., Chicago 18, III.

Two RMC Plants Devoted Exclusively to Ceramic Condensers

To preclude possibility of elements changing beyond predictable tolerances, precautionary measures are required.
... Assembly, adjustment, testing and sealing takes place in our Air-Conditioned, Tempercture-Controlled plant.
... All jewels and pivots are cleaned during microscopic inspection.

... All meters are baked at $180^{\circ} \mathrm{F}$. for 16 hours to remove possible moisture and stabilize all components.

... Only after stabilization is accomplished are the meters balanced and calibrated.
... Uncontaminated environment is then sealed into the meter by means of glass-to-metal hermetic sealing. All meters are tested to determine the integrity of the hermetic seal.

New York
Blair-Steinberg Co.
B ...
Chicago
Walter Berggren \& Assoc.

An illustrated Brochure \#PMI is available on request.

ENVIRONMENT FREE ELECTRICAL EQUIPMENT by

PHAOSTRON CO. 151 PASADENA AVE. SOUTH PASADENA, CAL.
decreases as the square of the distance from the transmitter. Table I shows distances beyond which there would seem to be no possibility of a premature explosion for the transmitted powers shown. The distances given are based on the worst possible conditions such as wire length and position of the circuit. A substantial margin of safety is also included.

The induced energy picked up by the blasting cap circuit may be reduced substantially by application of a few rules of thumb. If the wire lengths are made to be other than half or one-quarter the radio wave length, induced currents will be small. The wires should not be parallel to the transmitter antenna nor in its zone of maximum radiation. Induced current is less if the wires are on the ground rather than suspended a few feet above it. Additional information on safe handling of such devices is presented in the E. I. DuPont de Nemours and Company Technical Service Bulletin No. 13.

Spark Speeds in the Audio Region

By Joseph F. Swingle, Jr. Rouss Physical Laboratory
University of Virginia University of Virginia Charlottesville, Va.
In many cases where a triggered spark gap is used as a source of light the question arises as to when the spark ceases to follow the input signal. This usually occurs because of too fast an input signal. Figure 1 illustrates the setup for a situation of this type.

In Fig. 1, a light beam from the spark-gap light source S is reflected from a revolving mirror located on the ultracentrifuge shaft and triggers a multiplier phototube. The output is amplified and drives a thyratron circuit which fires the

FIG. I--System using triggered spark gap as a source of light

Several Things Less to Worry About... When You Specify Synkote Coux Cable

Attenuation, impedance, shielding, insulation, velocity of propagation, all the worrisome wire factors affecting your final signal are dependably constant in SYNKOTE Coaxial Cables.

Manufactured to 10 standard specifications, SYNKOTE Coax Cables are available in impedances from 50 to 300 ohms . . . insure minimum attenuation and maximum dependability at all frequencies and under most conditions.

For specifications other than standard, our engineering service department
will be glad to work with you. Write today - your inquiry will be given prompt attention.

> DEPENDABLE Coaxial Cable "Made by the mile - tested by the inch"

```
\(\begin{array}{lllllllllllllllllll}\mathbf{P} & \mathbf{L} & \mathbf{A} & \mathrm{S} & \mathbf{T} & \mathbf{O} & \mathbf{I} & \mathbf{D} & \mathbf{C} & \mathbf{O} & \mathbf{R} & \mathbf{P} & \mathbf{O} & \mathbf{R} & \mathbf{A} & \mathbf{T} & \mathbf{I} & \mathbf{O} & \mathbf{N}\end{array}\) 42-61 24th STREET, LONG ISLAND CITY 1, NEW YORK
```

```
HOOK-UP WIRE - AIRCRAFT CABLE - TV WIRE - COAXIAL CABLE -
NYLON JACKETING - HIGH TEMPERATURE WIRE - MULTI-CONDUCTOR CABLES
```


FIJ. 2-Circuit for checking to see when the spark gap ceases to follow the input signal
spark gap at the same rate. The problem is to determine when the spark gap ceases to follow the input signal and fires at some other rate lower than the input signal.

An accurate check may be had by driving the thyratron with an audio oscillator and by measuring the voltage to ground of the capacitor, see Fig. 2. The capacitor voltage will decrease as the frequency of the input increases until the gap ceases to follow the trigger. The capacitor voltage then rises.

Another possible method is to observe the output of a communications receiver on an oscilloscope while the gap is firing. This signal is the radiation of the spark gap. The signal may be measured by Lissajous figures and the point where following ceases is easily determined.

Electronic Elevator Touch Button

An interesting use of electronics developed in recent years and known as the electronic touch button has been installed in the new Chrysler Building East in New York City by the Otis Elevator Company.

Figure 1 shows a sketch of a typical elevator fixture. An insulating material with a high dielectric constant is used to cover the face of the button. An electrically conductive material coats the back of the button and makes contact through a spring with a similar coating on the top of the tube. The button forms one plate and the dielectric of a capacitor.

The tubes used are neon diodes. Referring to Fig. 2, as long as current flows through the tube, a

The resistor line which is specified by engineers employed by the nation's foremost manufacturers of original equipment.

DELIVERY

iwo separate self-contained resistance plants guaranteg prompt delivery.

QUALITY

as the world's leading manufacturers of wire wound resistors, we assure you that only the finest engineering techniques and material are utilized.

PRICE

ourtremendous manufacturing capacity enables us to offer resissors . . . in any quantity ... af exceptionally altractive prices.

ENCINEARING

 modern machine shops and engineering facilities. Our experienced engiassist department is of your service to designing any resistance unir to Specifications.We invife your"inquiries

Quinew multi-colored caralog, complete with engineering dela and illustrations, is yours witheur obligation. WRIIE JOpAY!

mon mex RTOHM Power RHEOSTAT

...the practical sheostat in its mōst exacting form, with a compensating constant pressure confact brush... designed to meel JAN Specifications. Write for complete technical literafure:

Division of Model Engineering 8 Mfg., Inc.

General sates Offies: 74:00 N. Milwoukee Avenue, Chicago 18, III.
Factory: Huntington, Indiania
MANUFACTURERS: Powei Wheostar, Fined Resistors, Adjustobso

- 6 insulated
contact rimgs
- ring width ,030"
- barrier width .015"
- RING DIAMEIER .045"
- weight 5.5 gralns (1/80 OUNCE)
- RINGS 60.70 BRINELL FINE SILVER
- tarnish resistant, friction minimizing SURFACE DEPOSITS
- 1000 velt hi-pot
between rings
- color coded leads

PROBLEM: ULTRA MINIATURIZATION - Design

 and mass produce an extremely miniaturized slip ring assembly. Reduce diameter of rings to absolute minimum to lessen torque friction. Maintain microtolerances; eliminate accumulated errors common to "assembled" slip rings.
SOLUTION: ELECTRO TEC EXCLUSIVE* METHOD

of unitized, one piece construction provided a prompt, economical solution to this problem. Final design was even smaller than was originally specified and tolerances were held to closer limits.

*PATENTS PENDING
Same Exclusive* One-Piece Construction Used in All Electro Tec Assemblies
Diameter of Electro Tec assemblies range from $.045^{\prime \prime}$ to $24^{\prime \prime}$ cylindrical or flat. Cross sections of the rings may range from $.005^{\prime \prime}$ to $.060^{\prime \prime}$ or more. Rings are polished to a jewel-like finish . . . can be held to four micro-inches or better. Regardless of size, the same exclusive Electro Tec manufacturing technique is used to guarantee precise concentricity, higher dielectric strength, longer life and closer tolerances.

WRITE FOR LITERATURE!

A completeiy illustrated, four page folder contains full information on Electro Tec Miniature Slip Rings and Commutators. Describes the Exclusive* method of con. struction that has made Electro Tec the teading supplier to America's major instrument manufacturers. Send for your free copy lodoy on company letterheod.

ELECTRO TEC
SO. HACKENSACK

PRODUCTS OF PRECISION CRAFTSMANSHIP
BY A NEW AND REVOLUTIONARY PROCESS

FIG. 1-Skeich of a touch-button fixture
call remains registered. No call is registered when current flow ceases.

If no call is registered and, consequently, no current is flowing through the tube, a 135 -volt d-c potential exists across the gap between the anode and cathode of the tube.

This potential is not large enough to cause conduction. However, there is also a 150 -volt a-c potential between anode and ground. When a person's finger touches the button, the distribution of electrostatic fields inside the tube is changed sufficiently for the tube to ionize and start conducting current. Current continues to flow after the person's finger is removed because the d-c potential will then maintain the flow of current after it has once started.

A negative pulse of voltage is applied to the circuit when an elevator answers the call. This reduces the voltage across the tube, current flow ceases and the call is no longer registered.

FIG. 2-Simplified schematic diagram of the touch-button circuit

Achild or an adult . . . a man or a woman an American or an Englishman-all speak a certain word. Their voices differ greatly. Yet listeners understand the word at once. What are the common factors in speech which convey this information to the hearer's brain?

Bell scientists are searching for the key. Once discovered, it could lead to new electrical systems obedient in new ways to the spoken word, saving time and money in telephony.

Chief tool in the research is the sound spectrograph which Bell Telephone Laboratories developed to make speech visible. Many kinds of persons record their voices, each trying to duplicate an electrically produced "model" sound. While their voice patterns are studied, a parallel investigation is made of the way human vocal cords, mouth, nose and throat produce speech.

Thus, scientists at Bell Laboratories dig deeply into the fundamentals of the way people talk, so that tomorrow's telephone system may carry your voice still more efficiently -offering more value, kecping the cost low.

Spectrograms of young girl's voice (right) and man's voice making " 4 h " sound as in "up." Horizontal bars reveal frequencies in the vocal cavities at which energy is concentrated. The top of the picture is 6000 cycles per second. Pictures show how child's resonance bars are pitched higher than man's.

The word "five." Graph shows ratio of frequency of spectrogram bars. The solid line is for a girl and the dotted line is for a man. Note the similar patterns despite pitch differences. Human hearing extracts the speech sounds from this sort of pattern in the identification of words. Scientists aim at machines that can do the same.

IBELLLTEILEPHANEKIAIBCIRITAIRIES
Improving telephone service for America provides carears for creative men in scientific: and technical fields.

Production Techniques

Edited by JOHN MARKUS	
Tape-Cutting Fixtures Spesd Production	Magnet-Wire Container............. 244
R-F Coil Winder..................... 228	Steel-Wool Pad on Bench Discharges
Lamination Stacker For Magnetic Amplifiers	Capacitors 246 Far-Infrared Baking............ 246
Cart for Pass-Along TV Line 232	Spaghetti Chopper................. . 248
Magnify ing-Glass Holders 234	Lead-Positioning Springs............ 250
Salvaging Tungsten. 238	Serial-Number Disk 252
Production-Floor Carts. 240	Core-Banding Tool.................. 252
Output Transformer Tester.......... 242	Diode Clip Boards. 254

Tape-Cutting Fixtures Speed Production of Transformers

Winding adhesive tape spirally on drum made from removable U-channels, for cutting into tabs at Keystone Products Co.

TABS of adhesive tape or cloth, widely used for anchoring coil leads and many other purposes in the production of electronic equipment, present a cutting and dispensing problem that can be solved in various ways depending on the speed and volume of the assembly-line operation.

Where large quantities of tabs are needed for anchoring leads of coils for miniature amplifiers, the elaborate cutting fixture and dispensing rack arrangement used by Keystone Products Co. in Union City, N. J. becomes economically feasible. Here quarter-inch-wide U-shaped channels fit into slots arranged $\frac{1}{4}$ inch apart on two aluminum disks. A friction fit keeps the channels in position, forming a drum that can be turned by a crank
on one end of the shaft.
The tape to be cut is wound spirally on the channels until the drum is full. A razor blade or sharp knife is then run alongside each channel in turn to cut the tape quickly into tabs. Cutting on one side of each channel gives $\frac{1}{2}$-inch tabs, which are the shortest that can be obtained with the setup. Tab length can be increased in $\frac{1}{4}$-inch intervals by appropriately spacing the cuts.

After the tabs have been cut, the channels are lifted out one by one and placed over metal pegs on the dispensing rack. For a half-inch tab, half its length projects above the channel and can easily be pulled off for use.

A simpler wood cutting drum is

Rack for supporting U-channels with tape tabs alongside coil-winding machine

Wood fixture used at Utility Electronics for cutting tape into tabs
in use at Utility Electronics in East Newark, N. J. for smaller production runs. Slots are cut lengthwise in the square drum at the desired tab distance. Dowel rods serve as the shaft and handle. The base and frame are also wood. The tape is spirally wound over the arbor, then cut into tabs by running the razor blade along each groove in turn.

R-F Coil Winder

Coils for television tuners and similar high-frequency applications are wound more efficiently and accurately with a simple hand-operated gear-train arrangement than with elaborate motor-driven equipment in the Television Receiver Division of Allen B. DuMont Labs.,

FAST

KESTER FLUX-CORE SOLDER

FAST . . . FASTER . . . FASTEST

FAST . . . Kester Plastic Rosin-Core, the old reliable, always does a fast job.
FASTER . . Step up the tempo with Kester "Resin-Five" and still retain flux stability.
FASTEST . . For high-speed soldering, unbelievable flux mobility. You'll want Kester " 44 " Resin-Core the newest of all Core Solders.
W

Over 100,000 types
Kester Flux-Core Solder available

Free Technical Manual-write for your copy of "SOLDER and Soldering Technique."

KESTER SOLDER COMPANY 4204 Wrightwood Ave., Chicago 39 Newark 5, New Jersey - Brantford, Canada

Kester SOLDER

Inserting wire in hole in hinged lever of mandrel. Pulling handle of large gear forward to stop winds complete r-f coil in few seconds

Inc., in East Paterson, N. J.
Metal pegs inserted in the large drive gear are located to hit against the gear bearing supports or other stops, limiting the motion of the gear to the exact angle needed to give the desired number of turns on the coil mandrel. A convenient handle is attached to the large gear for moving it through this angle to wind a coil. By changing positions of stops and/or changing gear ratios, coil turns can be changed.
The entire mechanism, including the axle for the spool of wire, is

Modification of mandrel for obtaining preformed hook in coil lead
mounted on a heavy metal plate. From the spool, the wire goes over three straightening pulleys to a mandrel having on its end a hinged lever. The end of the wire is inserted in a hole in the lever, the hole being positioned far enough away from the mandrel to give the desired lead length. With the wire in position, the operator presses against the hinged lever lightly with her left hand to keep it at right angles to the mandrel, then pulls the gear handle forward to its stop to wind the coil. The wire is clipped at both ends with sidecutting pliers, and the hinged lever is straightened out so the completed coil can be slipped off.

In another setup, a hook is formed in the starting lead of the coil by using a modified mandrel without the hinged lever. The end of the wire is bent around a metal tab inserted in a hole in the mandrel, as shown, and the coil is wound as before. The tab is pulled out after winding so the coil can be removed, then put back in readiness for the next coil.

Laminated Stacker for Magnetic Amplifiers

UsE of a Lamator automatic E-I lamination stacker speeds production of magnetic amplifiers at Keystone Products Co. in Union City, N. J. As designed for this particular application, the machine takes three coils (one for each leg
of the core) and stacks in the laminations from the bottom rather than from the top. The vertical storage racks each contain both E and I laminations. When the lefthand rack releases an E for feeding under the stack already in the coils,
the right-hand rack releases an I; on the next pass an I comes from the left and an Efrom the right, for alternate stacking just as would be done manually.

A split pulley on the motor gear box permits adjusting the speed of the machine for optimum operation without jamming. In event of a jam, the operator moves a lever that slides the motor forward to ease belt tension, then removes the jammed laminations, Bent, off-size or burred laminations are commonest causes of jams.

A snap-action switch is actuated

Loading E laminations into one of vertical racks of stacker for magnetic ampiifiers. Jams due to imperfect laminations are minimized by feeding in laminations from the bottom of the stack, so weigh of stack aids operation

Partly stacked coils of magnetic amplifier. Spring-loaded cover plate of ma. chine hides laminations. The snap-action switch has a button that is pushed by the cover plate to stop the machine when the coils are full

- WITHSTANDS $250^{\circ} \mathrm{C}$

If smaller, lighter electrical components are needed in the military electronic gear or aircraft controls you are concerned with, investigate the use of CEROC ST, the newest Sprague magnet wire.

Application of a single Teflon overlay to the base ceramic insulation results in a magnet wire which has many of the best properties of both Sprague's CEROC 200 silicone-coated ceramic-insulated wire and CEROC T double-Teflon ceramic-insulated wire.

Complete details of this important new development are given in Engineering Bulletin 404, available on letterhead request.

For latest information on CEROC 200 and CEROC T, write for Bulletins $401 \cdot \mathrm{~B}, 402 \cdot \mathrm{H}$, and $403 \cdot \mathrm{C}$.

SPRAGUE ELECTRIC COMPANY

35 Marshall Street, North Adams, Massachusetts

QUICK DELIVERY

Immediate deliveries from stock on small sample quantities of all CEROC wires as well as short delivery cycles on production runs are now in effect.

There is plenty of room for your orders on the production schedules of our North Adams, Mass. and Bennington, Vt. plants with their newly-expanded facilities.

the NEW S:8 Oscillograph

Here, in a versatile instrument of advanced design, are all the things you need for complete oscillographic recording. The Hathaway Type S-8 Oscillograph, which has long been the standard of oscillographic recording, has been improved to meet the rapidly expanding demands of modern research. Whether your measurement problems are simple or complex, the NEW Type S-8 Oscillograph has the inherent capabilities necessary to measure vibration, pressure, acceleration, and strain with new ease and accuracy.

The newest feafures include:

QUICK-CHANGE TRANSMISSION fully enclosed with gears running in oil to provide instantaneous selection of 16 record speeds over the range of 120:1
CHART TRAVEL INDICATOR provides continuous indication of chart motion. Operator knows instantly by flashing lamp if anything should happen to interfere with chart motion FULL-RESILIENT MOUNTING FOR MOTOR AND TRANSMISSION isolates all possible vibration and makes possible the use of modern super-sensitive galvanometers
NEW GALVANOMETER STAGE accommodates all Hathaway galvanometer for recording milliamperes, microamperes, or wats
NEW RECORD-LENGTH CONTROL AND NUMBERING SYSTEM designed for long, trouble-free service under all kinds of ambient conditions
All the other valuable features are retained, such as
PRECISION TUNING-FORK-CONTROLLED TIMING SYSTEM produces either $1 / 10$-second or $1 / 100$-second time lines across sheet
WIDE RANGE OF GALVANOMETER TYPES AND CHARACTERISTICS provide for almost any recording requirements. Natural frequencies to $10,000 \mathrm{eps}$. Sensitivities to $50,000 \mathrm{~mm}$ per ma, single and polyphase watts
DAYLIGHT LOADING AND UNLOADING RECORDS TO 200 FT. IN LENGTH, width to 10 inches
SIMULTANEOUS VIEWING AND RECORDING
AUTOMATIC BRILLIANCY CONTROL

12 TO 92 ELEMENTS

Whatever your needs may be, investigate the NEW Type S-8 Oscillograph and its 170 types of galvanometers - the most versatile equipment in existence for general-purpose applications.

WRITE FOR BULLETIN 2BI-K FOR DETAILS

Plunger of butt stacker is here delivering correct number of E-E laminations for half of core for single-coil unit
by the rising stack in the coils, to stop the machine automatically when the desired thickness of stack is attained. The stacker is made by LaCesa Engineering Corp., 5910 W. Division St., Chicago, IIl.

For smaller transformers using butting E-E stacks without interleaving, Keystone speeds assembly of cores with a special LaCesa butt stacker operated by a foot lever. This delivers exactly the correct number of laminations for each half of the core.
When the foot lever is pressed, an accurately machined plunger moves forward under cam action to push the laminations out to the fingers of the operator, for immediate insertion in the single coil. A similar stack is inserted from the other side of the coil to complete the core. An accurately positioned stop bar prevents unwanted laminations from coming out when the plunger moves forward.

Cart for Pass-Along TV Line

Either an ordinary surfaced bench or angle-iron rails can be used with the furniture-caster cart developed for Tele-tone's television receiver assembly line. With rails, the freeswiveling casters and the flat plywood base of the cart keep it moving straight down the line. On a flat bench, a fifth ball-bearing wheel mounted vertically under the cart

to provide the ultimate in electrical insulation

MIRAGLAS TAPES are available in a wide variety of widths, thicknesses and styles, for practically every electrical insulation requirement where high dimensional stability and tensile strength are desired. Continuous filament MIRAGLAS TAPES are supplied in thicknesses ranging from $.003^{\prime \prime}$ to $.015^{\prime \prime}$ and in widths from $3 / \mathrm{B}^{\prime \prime}$ to $11 / 2^{\prime \prime}$. Medium weave tapes, for machine taping, range in thicknesses from $.005^{\prime \prime \prime}$ to $.015^{\prime \prime}$ while tight weave tapes for manual taping, range in thicknesses from .003" to $.007^{\prime \prime}$ omly. Staple fiber tapes in thicknesses from. $010^{\prime \prime \prime}$ to $025^{\prime \prime}$ and widths from $1 / 2^{\prime \prime}$ to $11 / 2^{\prime \prime}$ are also available for applications where space is not a primary consideration or where a more resilient wrapper is wanted.

Write for a copy of the MIRAGLAS TAPE BULLETIN
. . . also for a FREE TEST SAMPLE

```
MTCMELL-RAND INSURATION COMPANY, INC.
```


> A PARTIAL LIST OF M-R PRODUCTS: FIBERGLAS VARNISHED TUBING. TAPE AND CLOTH INSULATING PAPERS AND TWINES GABLE FILLING AND POTHEAD COMPOUNDS: FRICTION TAPE AND SPLICE - TRANSFORMER COMPOUNDS FIBERGLAS SATURATED SLEEYING. ASBESOTH SLEEVING AND TAPE. VARNISHED CAMBRIC CIOTH AND TAPE. MICA LLATE, SLEVINGSER IMPREG: NATED VARNISH TUBING. INSULATING VARNISHES OF ALl TYPES - EXTRUDED PLASTIC TUBING

Quality control of the components of EICOR products is maintained by innumerable inspections and tests. And such thoroughness pays-it assures reliable motors and dynamotors for our Armed Forces-it helps us produce perfect units, faster.

For example, the insulation tester illustrated was designed and built by EICOR engineers expressly for applying high potential stresses between certain insulated components. Such tests are made between high or low voltage windings and ground; from high to low voltage windings; from field coils to ground, and between other parts, depending on the type of the unit. Every motor and every dynamotor, large or small, must "take it" at a specified voltage as a routine part of production testing.

Long experience in this highly specialized field has helped earn an enviable reputation for EICOR products. This experience may be of considerable assistance to you when rotary electrical equipment is a factor in your post war planning.

Eicor, Inc. 1501 w. Congess s., chiceso 7 , wlininais
DYNAMOTORS-INVERTERS•ELECTRONIC CONTROLS • ALTERNATORS •MOTORS

Three-purpose chassis cart for television receiver assembly line
runs between two closely spaced angle-iron strips screwed to the bench. This wheel is at the leading end of the cart.

For a powered conveyor line, a roller-chain conveyor can be run behind or under the line, with rods projecting from the chain to engage some part of the cart.

Magnifying-Glass Holders

For inspecting connections and checking clearances in intricate subminiature assemblies for military and commercial electronic units, magnifying lenses are becoming more and more essential. Varieties of holders for these lenses are becoming almost as numerous as for soldering irons, in commercial as well as homemade versions. Three examples are shown, along with a modification of one holder

Lens holder devised by RCA engineers to aid inspector in checking clearances between parts on subminiature plug-in i.f amplifier stage

Want an oscilloscope camera NOW?

1. Single-frame photography of stationary pat1. terns using a continuously running sweep.

Scope Image

Film Recording
2. Single-frame photography of single transients 2. using a single sweep.

Film Recording
3. Continuous-motion photography employing film . motion as a time base.

Film Recording
4. Continuous-motion photography employing 4. ascilloscope sweep as a time base.

FILM MOTION

FILM MOTION AND SCOPE SWEEP
5. Continuous-motion photography employing sweep as a time base.

Fairchild Oscillo-Record Cameras are now available from stock for immediate shipment. With these units you can make permanent photographic records of oscilloscope traces, thereby eliminating possible errors in making hand sketches from memory. In time-saving and convenience alone, these cameras will pay for themselves many times over.

FAIRCHILD OSCILLO-RECORD CAMERA IS UNUSUALLY VERSATILE

Users of the Fairchild Oscillo-Record Camera like its versatility. Designed for both still and continuous-motion photography on $35-\mathrm{mm}$ film, it records non-recurring phenomena that are too rapid for visual study, others that are so slow that continuity is lost, and the occasions where very high-speed transients are combined with very slow-speed phenomena. For some idea of the types of jolss this instrument can do, study the examples at the left. Each solves a particular problem. Oscillo-Record camera users especially like its:

- CONTINUOUSLY VARIABLE SPEED CONTROL-1 $\mathrm{in} / \mathrm{min}$. to $3600 \mathrm{in} / \mathrm{min}$.
- TOP OF SCOPE MOUNTING that leaves controls easily accessible.
- PROVISION FOR 3 FILM LENGTHS-100, 400 or 1,000 feet.

1. Camera, 2. periscope, 3. electronic speed control. Accessories include 400- and 1,000ft . film magazines, magazine adaptor and motor, universal mount for camera and periscope, binocular split-beam viewer.

Complete information about applications and operation of both the Fairchild Oscillo-Record Camera and the Fairchild-Polaroid Oscilloscope Camera is available. Write today to Fairchild Camera and Instrument Corporation, 88-06 Van Wyck Boulevard, Jamaica 1, New York, Department 120-18A-1.

Presenting JOHNSON E and F capacitors. Designed to have the best possible capacity/volume ratio for their ratings, they waste no space. Rigidity, quality materials and low losses qualify them for the most exacting applications.

CONSTRUCTION

Aluminum plates, $032^{\prime \prime}$ thick with rounded edges. Heavy aluminum end frames with $1 / 4^{\prime \prime}$ aluminum tie rods. Dense molded Steatite insulators combine strength and minimum electrical losses. Shafts are $1 / 4^{\prime \prime}$ stainless steel with $3 / \mathbf{s}^{\prime \prime}$ rear extensions. Cadmium plated, phosphor bronze rotor contacts; dual models have center rotor contact for electrical symmetry. Normal mounting is with stator up providing low capacity to ground and effectively reducing the minimum. Both end frames drilled and tapped 6-32 for optional panel mounting. Brackets supplied for inverted mounting or mounting of accessories.

PANEL SPACE REQUIRED:
Type E, 25/" wide x 2-19/32" high; Type F, $2-1 / 16^{\prime \prime}$ wide $\times 2^{\prime \prime}$ high. " L " dimension is nominal length excluding shaft extensions. Mounting dimension is $7 / 16^{\prime \prime}$ more than "L" dimension.

TYPE E

TYPE E SINGLE SECTION						
Cap. per Sect.* Number						
Cat. No.	Type No.	Max.	Min.	Spacing	Plates	L
154-1	250E20	244	12	.045"	23	20.63"
154-2	350 E 20	353	15	.045"	33	3178
154-3	S00E20	488	19	.045"	45	41×10
154-4	35E30	39	8	. $075^{\prime \prime}$	6	1230"
154-5	50 E 30	52	9	. 075 "	8	115仿"
154-6	70E30	73	9	. $075^{\prime \prime}$	11	2\% \% ${ }^{\prime \prime}$
154.7	100 E 30	100	11	. $075^{\prime \prime}$	15	$2917{ }^{\prime \prime}$
154-8	150E30	154	14	. $075^{\prime \prime}$	23	$3^{\prime} / 11{ }^{\prime \prime}$
154-9	250 E 30	251	20	. 075 "	37	$41.11 i^{\prime \prime}$
154-10	350830	347	25	. $075^{\prime \prime}$	51	$6 \%_{11 i^{\prime \prime}}$
154-11	35 E 45	38	9	.125"	9	2\%1\%"
154-12	50 E 45	53	11	.125"	12	231/2, "
154-13	$70 \mathrm{E45}$	74	13	.125"	17	$3!1{ }^{\prime \prime}$
154.14	$100 \mathrm{E45}$	101	16	.125"	23	
154-15	150 E 45	145	20	.125"	33	6 \% K",
154-16	250E45	241	32	.125"	55	91/1;"
TYPE E DUAL SECTION						
154-501	200 ED20	200	10	.045"	19	51/8"
154-502	300 ED 20	312	13	.045"	29	6 $01 / 3 \times 1$
154-503	50 ED 30	52	8	. $075^{\prime \prime}$	8	4303\%
154.504	70ED30	72	8	. $075^{\prime \prime}$	11	417
154-505	100 ED 30	99	10	. $075^{\prime \prime}$	15	53/8'
154-506	150ED30	153	13	. $075^{\prime \prime}$	23	71,3i"
154-507	200ED30	196	15	. 075 "	29	83/8"
154-508	50ED45	52	10	.125"	12	6\%\%"
154-509	$70 \mathrm{ED45}$	74	12	. $125^{\prime \prime}$	17	7110"
154-510	100ED45	100	15	.125'	23	9193
35F20 TYPE F SINGLE SECTION						
155-1	35 F 20	35	7	.045"	6	115,
155-2	S0F20	54	8	. $045^{\prime \prime}$	9	15/8"
155-3	70F20	66	8	. $045^{\prime \prime}$	11	123)
155-4	100F20	106	10	.045 ${ }^{\prime \prime}$	17	21/4"
155-5	150F20	154	12	.045"	25	27/8"
155-6	250F20	252	17	. $045^{\prime \prime}$	41	43.3 , ${ }^{\prime \prime \prime}$
155-7	35F30	36	8	.075"	9	178
155-8	S0F30	52	9	.075"	13	2. $115^{\prime \prime}$
155-9	70 F 30	67	11	. $075^{\prime \prime}$	17	$2 \div 3$
155-10	100 F 30	99	14	. $075^{\prime \prime}$	25	$31 \times 10^{\prime \prime}$
155-11	150F30	148	18	.075"	37	$47 / 8$
155-501 50FD20 TYPEF DUAL SECTION						
	50FD2J 70FD20	53	7	.045"	9	31/2"
$155-502$ $155-503$	70FD20 100FD20	66 104	7	.045"	11	
$155-503$ $155-504$	100FD20	104 153	${ }^{9} 1$.045"	17	411 11;"
$155-504$ $155-505$	150FD20	153	11	.045"'	25	
155-506	S0FD30	51	14 8	.045 ${ }^{\prime \prime}$	33 13	740,
155-507	70 FD30	66	10	. $075^{\prime \prime}$	17	5-6,
155-508	100FD30	99	13	. $075^{\prime \prime}$	25	7\% $10^{\prime \prime}$

Many variations from standards are available where the quantities justify special production. These variations include: special capacitances, .030 spacing, special shafts and bearings, dynamically balanced rotors, special contacts, etc.

For additional description of E and F capacitors as well as the complete JOHNSON line of outstanding capacitors, write for catalog 701-A7

Modification of RCA battery-clip fixture for holding plug-in stage
for supporting the subminiature chassis itself.

A large battery clip screwed to the rod of a ball-and-socket base serves as holder for a conventional reading glass used at an AN/PRC10 inspection position in RCA's Camden, N. J. plant. The inspector here uses a piano-wire feeler to check clearance between the components and the chassis of a plug-in stage. Holding pressure on the steel ball can be adjusted by loosening or tightening one of the screws that fasten the socket casting to the wood base.

By brazing semicircular pieces to the jaws of the battery clip, RCA methods engineers modified this same holder to support the plug-in chassis during assembly. The circular jaws permit rotating the plugin base readily for work on both sides, and the fixture itself can be

Large Bausch \& Lomb magnifier and stand used by RCA for inspecting subminiature chassis

An automatic heat treat machine. Production is about 3 times that possible with manual methods while quality is held within very close limits.

automatic production that gives quality control

Alnico magnets have been getting smaller and lighter, thanks to production techniques in use at Crucible. Automatic machinery cuts the possibility of human error to a minimum, so rejections are low. This helps to maintain stablc price levels in the face of rising material and labor costs. At the same time, Crucible's rigid inspection standards and attention to quality have developed a magnet with the highest gap flux per unit weight of any on the market.

Today, Crucible can offer lighter, magnetically stronger Alnico magnets beeause of these automatic production techniques developed over the sixteen years that we have been producing the Alnico alloys. And behind our familiarity with permanent magnets lies more than 52 years' experience with specialty steelmaking. Let us advise you on your magnet problem.

CRUCIBLE STEEL COMPANY OF AMERICA, GENERAL SALES OFFICES, OLIVER BUILDING, PITTSBURGH 30, PA.
STAINLESS•REX HIGH SPEED. TOOL• ALLOY•MACHINERY• SPECIALPURPOSESTEELS

Magnetic holder for supporting 4-power two-inch magnifying lens on ferrous surface
set at the most convenient angle for each stage of assembly work.

At another inspection position in the same RCA plant, a standard Bausch and Lomb magnifying-lens holder is used to obtain a greater range of height adjustment.

For greater magnification, a twolens 4-power magnifier is now available from Enco Mfg. Co., 4524 W. Fullerton Ave., Chicago 39, Ill., along with a magnetic base holder that grips to any ferrous surface and has a magnetic pull of about 50 lb.

Salvaging Tungsten

AN ultrasonic vibrator operating at 27,000 cycles per second is used to remove glass beads from tungsten rods taken out of defective vacuum tubes at Raytheon's Waltham, Mass. plant. When the tungsten

To remove adhering glass, operator inserts rod in hole in end of ultrasonic vibrator

Polarad's Model LSA Spectrum Analyzer is the result of years of research and development. It provides a simple and direct means of rapid and accurate measurement and spectral display of an r.f. signal.

Outstanding Features:

- Continuous tuning.
- One tuning control.
- 5 KC resolution at all frequencies.
- 250 KC to 25 MCS display at a!l frequencies.
- Tuning dial frequency accuracy 1 percent.
- No Klystron modes to set.
- Broadband attenuators supplied with equipment from 1 to 12 KMC.

Frequency marker for measuring frequency differences 0-25 MCS.

- Only four tuning units required to cover entire range.
- Microwave components used latest design non-contacting shorts for long mechanical life.
b. Maximum frequency coverage per dollar invested.
- 5 inch CRT display.

Where Used:

Polarad's Model LSA Spectrum Analyzer is a laboratory instrument used to provide a visual indication of the frequency of distribution of energy in an r.f. signal in the range 10 to $21,000 \mathrm{MCS}$.

Other uses are:

1. Observe and measure sidebands associated with amplitude and frequency modulated signals.
2. Determine the presence and accurately
measure the frequency of radio and/or radar signals.
3. Check the spectrum of magnetron oscillators.
4. Measures noise spectra.
5. Check and observe tracking of r.f. components of a radar system.
6. Check two r.f. signals differing by a small frequency separation.

Write for Complete Details
the instrumicat consists of the following units:
ModeI LTU-1 R.F. Tuning Unit- 10 fre 1000 MCS.
Hodel LTU-2,R.F. uning Unit- 940 \%o 4500 MCS
Aodel KTU A R.F. Uning Unit- $15,000^{\text {to }}$ to 21,030 MCS.
Model LDU-1 Spec-rum Display Urit.
Nócel LPU.? Pows Unit.
nocel LKU I Kiytron Power Unit
Manuifacturers of broadbānd' microwave laboratöry instruments.

...WHEN YOU BUY FILTERS

RESPONSE CURVES and cases may look alike, but component quality and internal construction are the things that determine dependability-in a filter, and in the associated equipment.

TO BE SURE components are the best, Lenkurt presses its own cores, winds the coils, and subjects all parts to the most rigorous checks possible.

IN A LENKURT FILTER, parts are firmly fastened to sturdy headers, connections made to rigid terminal boards. Units are impregnated, cased, and/or hermetically sealed as required.

LENKURT FILTERS are engineered and built to your most exacting specifications on delivery schedules to meet any quantity need by Lenkurt Electric Company-largest independent manufacturers of telephone toll transmission equipment.

LENKURT ELECTRIC SALES COMPANY
 San Carlos 1 California

rod is inserted in a small hole at the end of the vibrator all glass on the rod disintegrates instantly. The former manual hammering-off of the glass was much slower and often resulted in cracked pieces of tungsten that were unfit for further use.

Other glass-sealing alloys can be salvaged by the same method, with similar savings in critical materials such as coba!t and nickel.

Production-Floor Carts

Removable steel shelves almost double the capacity of carts used for transporting and storing finished chassis units and larger components on the production floor at Utility Electronics in East Newark, N. J.

Metal brackets were welded to

Inserting extra shelf in cart to increase capacity

Joly, 1952 - ELECTRONICS

Now with a New 27 -inch Rectangular Picture Tube

Again Sylvania steps ahead with a big all-glass picture tube to meet your demands for larger sets and larger screens.
This tube is designed for easier, more comfortable viewing. It employs a neutral-density, gray filter face plate. The tube is magnetically focused and deflected. Equipped with an ion trap gun . . . no external conductive coating.

NEW COMPACT DESIGN

Here is a big tube that's actually shorter in depth to overcome many cabinet design problems. By employing a deflection angle of 90
degrees, the over-all, front-to-rear dimension of this tube has been held to only $22 \frac{1}{2}$ inches.

For full detailed data and characteristics of this latest Sylvania picture tube, write today to Sylvania Electric Products Inc., Dept. R-1407, Emporium, Pa.

on endastrys doorstep to expreve seve of your needs for

QUALITY

tuja and andit rivets，rivelzetirg mationes an］special cold－hezced fastoners

Es年13：9

855 BR CGEPOETAE，MILFORD， $20 N \mathrm{~N}$ ．

MJLFORE
the neme te RIVET 是 four in elory
但 latet frmer infilasteners
the angle－iron framework of the cart to serve as supports for three additional shelves，centered between the four original shelves，for use when handling smaller units．An added advantage of the technique is reduction in the total number of carts and hence of floor space needed for cart storage．The tech－ nique was introduced by J．P． Breickner，production manager of the plant．

Output Transformer Tester

> By Curtis R. Schafer
> The Liquidometer Corp.
> Long Island City, N. F .

Five electrical characteristics of a servo－system output transformer are checked automatically by the production－type test setup shown． When the operator inserts a trans－ former in the test fixture，plate and screen voltages are automatically applied by means of a switch built into the fixture．
Correct phasing of the trans－ former is checked by noting the di－

Hermetically sealed output iransformers， used to couple the electronic amplifier to the two－phase motor of a self－balanc－ ing bridge used in capacitance－type air－ craft gasoline gages，are checked com． pletely in a few seconds when inserted in socket on box in foreground

is the world's toughest transformer

H-tyPE
Hermetic sealing meets all MIL-T-27 spees. Steel base cover is
deep-seal soldered into case. Ceramic bushings. Stud-mounted unit.

S-TYPE

Steel base cover fitted with phenolic terminal board. Convenient terminals. Flange erounted unit $\begin{aligned} & \text { ange- }\end{aligned}$ mounted unit.

there's nothing tougher than CHICAGO

"Sealed-in-Steel" construction

chicago"New Equipment" transformers (available in 3 mountings) feature onepiece drawn-steel cases - the strongest, toughest, best-looking units you can buy. The one-piece seamless design, enclosing an electronically perfect construction, provides the best possible electrostatic and magnetic shielding, with complete protection against adverse atmospheric conditions. For every application: Power, Bias, Filament, Filter Reactor, Audio, MIL-T-27, Step-down-ask your electronic parts distributor for chicago "Sealed-in-Steel" Transformers - the world's toughest with that extra margin of dependability.

CHICAGO TRANSFORMER
 division of essex wire corporation
 3501 ADDISON STREET • CHICAGO 18, ILLINOIS

Output transformer test circuit
rection of rotation of a pointer attached to the shaft of the panelmounted load motor. The primary inductance with d-c flowing, the insertion loss, the turns ratio and the power-handling ability are all checked by noting the a-c voltage across one phase of the motor, as all four characteristics will effect this voltage.

The milliammeter in the cathode circuit of the type 6005 Arinc tube serves as a built-in tube checker, providing a continuous check on the test setup itself. The equipment was constructed by Arthur Hull of The Liquidometer Corp.

Magnet-Wire Container

Two identical parts of molded fiber comprise a new method of packaging spools of magnet wire for shipment. Weight is only one-third that of the old-style wooden shipping box. Sharp corners, nail hazards

Molded fiber carton for wire shipment

SUB-MINIATURERELAYS

Developed specifically to meet the rigid requirements of U.S.A.F. Spec. MIL-R-5757A, the new Allied line of sub-miniature double throw relays includes the MH-18 (6 -pole), the MH-12 (4-pole), and the MH-6 (2-pole) will follow.

Contacts are rated at 2 amps resistive or 1 amp inductive at 28 volts D.C.
The high performance of these relays has been achieved in an extremely compact, unitized construction and parallels the most recent advances in airborne equipment design.
Complete details in Bulletin 1002.

Sub-miniature relays to be developed

. . . for prompt service

Carol Cable's complete manufacturing facilities assure you efficient service and prompt delivery. We draw our own wire, and formulate our own insulation from all modern synthetic rubbers and plastics. Your orders are engineered and manufactured by an organization that operates as an integrated, independent unit, without intermediate profits.

Constant laboratory control over raw materials, work in process and finished cable is your guarantee of dependable performance of all Carol products.

Your wire and cable problems will receive our immediate attention. Write to us today!

and slivers are eliminated.
After removing the top cover, the customer can lift the lower tray to storage shelves or use it directly alongside coil-winding machinery on production floors, without unpacking.

The new container was developed under the sponsorship of Anaconda Wire \& Cable Co. as a solution to the serious problem of damage to magnet wire during shipment.

Steel-Wool Pad on Bench Discharges Capacitors

AFTER testing four-section electrolytic capacitors for capacitance and for leakage current at rated voltage, the units are discharged simply yet completely by jabbing the terminals

Discharging electrolytic capacitor in steel wool after leakage test
into a pad of fine steel wool at Astron Corporation's East Newark, N. J. plant.

Tiny individual wads of the steel wool are also used behind the holes provided for the capacitor terminals in the test fixture, to make positive contact with the terminals when a unit is slid into the fixture.

Far-Infrared Baking

Breakage loss caused by uneven heating during baking of the interior graphite coating of television picture tubes was reduced more than 80 percent and production stoppages cut in half by changing filament-type infrared heat sources in the baking oven to far-infrared electric radiant heaters. The glass

with the compact

ARC SIGNAL GENERATOR

ARC Signal Generators permit quick, accurate check-out of aircraft before take-off, as well as fast, dependable bench checks and trouble shooting.

TYPE H-14 108-132 Megacycles
Standard signal source for complete testing of VHF Airborne omnirange and localizer receivers in aircraft or on the bench. Checks up to 24 omni courses, omni course sensitivity, to-from and flag-alarm operation, left-center-right on 90/150 cycle and phase-localizers, and all necessary quantitative bench tests. For bench checks, $0-10,000$ microvolts; for ramp checks, RF output 1 volt into 52 ohm line. Equal to Mil. SG-66/ARM-5.

Price: $\$ 885.00$ net, F.O.B. Boonton, N. J.
TYPE H-12 - VHF Signal Generator, a 900 to 2100 mc source of cw or pulse amplitude-modulated RF. Power level 0 to -120 dbm . Internal pulse circuits with controls for width, delay, and rate, and provision for external pulsing. Frequency calibration better than 1%. Built to Navy specs for research, production testing. Equal to Military TS-419/U.
Price: $\$ 1,950.00$ net F.O.B. Boonton, N. J.
Wrife today for complete details

Aircraft Radio

CORPORATION
Boonton, New Jersey
Dependoble Electronic Equipment Since 1928

Take advartage of one of C.T.C.'s mos popular and useful services the winding of slug tuned coils to exact specifications Single layer or pie types furnished. You can be sure your specs - military or personal - will be faithfully followed to the last detail of materials and methods, and with expert workmanship
C.T.C. coil forms are made of quality paper base phenolic or grade L-5 silicone impregnated ceramic. Mounting bushings are cadmium plated brass and ring type terminals are silver plated brass. Terminal retaining collars of nylon-phenolic also available in types LST, LS5, LS6.

Wound units can be coated with durable resin varrish, wax or lacquer. Both
coils and coil forms are furnished with slugs and mounting hardware - and are obtainable in large or small production quantities. Be sure to send complete specifications for specially wound coils.
All C.T.C. materials, methods, and processes meet applicable government specifications. For further information on coils, coil forms or C.T.C.'s special consulting service, write us direct. This service is available to you without extra cost. Cambridge Thermionic Corporation, 437 Coneord Avenue, Cambridge 38, Mass. West Coast manufacturers. contact: E. V. Roberts, 5068 W. Washington Blvd., Los Angeles 16, and 988 Market Street, San Francisco, California.

CAMBRIDGETHERMIONIC CORPORATION

custom or standard
the guaranteed components

New Catalog! Send for your copy now,

NEW CERAMIC COIL FORM KIT. Helps you spark ideas in designing electronic equipment or developing protolypes and pilot models. Contains 3 each of the following 5 C.T.C. ceramic coil form types: LST, LS5, LS6, LS7, LS8. Color-coded chart simplifies slug-identification and gives approximate frequency ranges and specifications. Nylonphenolic collars to replace metallic rings available with kit for all ceramic coil forms except LS7 and LS8.

NEW NYLON-PHENOLIC COLLARS. Terminals heid securely; soldering spaces doubled; excellent for both bifilar and single pie windings. Show an increase in Q and many new benefits over metallic rings - without impairing in any way the moisture- and fungus-resistant qualities of coil form assemblies.

SENDFORTHIS 256-PAGE HANDBOOK

This authoritative reference manual gives a comprehensive picture of flexible shaft construction, selection and application. Get your copy by writing to us on your company letterhead.

Western District Office • Times Building, Long Beach, California

Baking coating inside picture tubes with far-infrared heaters in oven through which overhead conveyor suns
absorbs far-infrared energy (between the limits of 1 and 16 mi crons), speeding up the baking of the coating on the glass, whereas it transmits most of the near-infrared radiation (between about 0.4 and 5 microns). The change also permitted reducing oven power consumption from 66 to 54 kw . Tubular-type Chromalox far-infrared heaters are made by Edwin L. Wiegand Co., 7500 Thomas Blvd., Pittsburgh 8, Pa.

Similar heaters are focused on the bases of kinescopes moving past on a belt conveyor, to dry out the sealing cement.

Spaghetti Chopper

A STANDARD bare-wire cutting machine is being used successfully without modification for cutting many different types of spaghetti and plastic tubing into short lengths required for television receiver production at the CBSColumbia plant in Brooklyn, N. Y. The operator merely pushes into the feed rollers a handful of long

68 N 6
Combined limiter, discniminator, and oudio amplifier

6BK5
High-sensitivity power sube, designed for use with 6BN6

GENERAL (3) ELECTRIC

small

OPEN GEAR TRAINS made to your specifications

Many units, such as timers, transmitters, vending mechanisms, and similar devices require the adoption of small open gear trains for intermittent duty.
Beaver Gear Works is equipped to make these trains to any degree of accuracy required. Beaver Gear engineers, knowing what is expected, and qualified to assist in details of fine-pitch gear applications, can advise you as to what will work best under various conditions and can specify the correct design.

1021. PARMELE STREET, ROCKFORD, ILLINOIS

Chopping spaghetti with motor-driven wire-cutting machine
lengths of the material to be cut.
The cutting blade is coupled through a variable-speed linkage to the feed rollers. The rate at which the blade moves up and down in its chopping action thus determines the length of cut, which can be up to 9 inches. Polyethylene tubing up to $\frac{5}{8}$ inch in diameter is cleanly cut, as are other materials heretofore considered difficult to cut accurately into short lengths.

Lead-Positioning Springs

Stiff coil springs hold top-cap connectors directly over their respective tube sockets on a 12-tube aging rack built by Chatham Electronics Corp., Newark, N. J., for aging high-voltage industrial and communications tubes. Plastic strips

Use of springs around topeap leads to speed up connections on tube aging rack

CHECK THESE FEATURES

LOW-EXPANSION WINDING FORMS

(non-hygroscopic) prevent distorted windings, breaking of seal, breakdown of dielectric.

HIGH-STABILITY RESISTANCE WIFES
-pure, carefully selected, pretested alloys.

PRECISION WINDING

-uniformly wound, mechanically tied under scientifically controlled conditions.

NON-CORROSIVE, ANCHORED TERMINALS

-strong, tin-dipped copper terminals, securely and permanently attached to winding form.

HERMETIC SEALING

A special process, employing chemically inert compounds, seals winding against destructive effects of salts, moisture, and atmospheric conditions.

PRETESTED FOR ACCURACY
-quality assured by temperature cycling, salt water immersion, humidity, and overload tests.

JAN R-93 or MIL R93A SPECS.

If finding reliable, lightweight, precision wire wound resistors is your problem, investigate the I-T-E product. I-T-E precision resistors have been developed by experts to meet the exacting requirements of the electronics industry.
Simple basic design, engineering skill, extensive production facilities, and close quality control are all combined to give you lightweight resistors that far exceed requirements of JAN R-93 or MIL R93A specifications. You get quality-close tolerance in every unit-in any quantity you need.

RATINGS:

I-T-E precision wire wound resistors can be supplied in quantity all the way from 0.01 ohms to 10 megohms0.125 to 5 watts. Standard tolerances $\pm 1 \%$. Available in specified tolerances down to $\pm 0.05 \%$. Ideal for all JAN "A" and "B" as well as MIL applications.

FOR DETAILED INFORMATION-Get in touch with your nearest I-T-E representative or write direct to:

I-T-E RESISTOR DIVISION
1924 Hamilton Street
Philadelphia 30, Penna.
RESISTORS

I-T-E CIRCUIT BREAKER COMPANY • RESISTOR DIVISION • PHILADELPHIA 30, PA.

guthman products

 maintain a reputation of quality for militory as well as civil application

ANTENNA CJILS
OSCILLATOF: COILS
HORIZONTLL SNEEP TRANSFORMERS
COMPRESSION TYPE MICA TRIMMERS
I.F. TRANSFORMERS

LOOP ANTEVNRS
R.F. TÜNEF.S

edwin i. guthman \& co., inc. 15 s. throop st. chicago 7. . CH 3-1600

BIRTCHER

 TUBE CLAMPSHold Tubes in Sockets under all Vibration, Impact and Climatic Conditions

Serial-Number Disk

A reduction in the cost of applying individual serial numbers to each Tele-tome television receiver chassis was achieved by stamping the numbers beforehand on left-over brass

Use of scrap brass disk for serial number of tv set
punchout disks and riveting a disk to each chassis. The disk can be attached after assembly of the chassis if desired, as when running models having the same chassis but different picture-tube assemblies.

Core-Banding Tool

After two-section Hypersil cores have been assembled around their coils and banded with a special Westinghouse core-banding tool, the banding clip is soldered for extra locking during production of

Fixed mounting of core-banding tool to facilitate soldering of banding clamp. Solder is brought up through hole in bench so it is always conveniently within reach

You can't shake, pull or rotate a tube out of place when it's secured by a Birtcher Tube Clamp. The tube is there to stay. Made of Stainless Steel, the Birtcher Tube Clamp is impervious to wear and weather.

BIRTCHER TUBE CLAMPS can be used in the most confined spaces of any compact electronic device. Added stray capacity is kept at a minimum. Weight of tube clamp is negligible.

Millions of Birtcher Tube Clamps are in use in all parts of the world. They're recommended for all types of tubes: glass or metal - chassis or sub-chassis mounted.
THERE'S A BIRTCHER TUBE CLAMP FOR EVERY STANDARD AND MINIATURE TUBE!
Write for samples, catalogue and price lists.
THE BIRTCHER CORPORATION
4371 Valley Blvd.
Los Angeles 32, Calif.

July, 1952 - ELECTRONICS

TOP MANAGEMENT!

 Emergency Sroprop Recovery"

APPROYEO by

NATIONAL PRODJICTION AUTHORITY, OEPARTMENT OF COMMERCE
Commithe fer schap. Ione. .io and

It's a problem calling for the assistance of every thoughtful business man-now. Unless the steel mills get more scrap... furnaces may have to be shut down.

Shut down-at a time when our armed forces need more and more equipment . . . $\dot{w} h e n$ civilian demands for steel are greater than ever . . . when our economy is fight. ing desperately against inflation!
You Can Help. Yes . . . regardless of the business you're in . . . you're in the scrap business, too.

If you're in the steel-fabricating bus.
iness, you have extra dormant scrap to be added to your production scrap.

If you're in any other business, you surely have idle metal that will do youand America-more good being fed into furnaces than cluttering up your premises. Write for Suggestions. The booklet shown here tells how to set up a Scrap Salvage Program with least amount of effort and minimum interference with your regular operation. It tells where to look for scrap, what to do with it when you get it.

You are urged to send for the booklet
now. Use the coupon.

FACTS ABOUT SCRAP SALVAGE

Steel production $1950-97,800,000$ net tohs Estimated capacity 1952 - $119,500,000$ net tons Purchased
scrap used* $1950-29,500,000$ gross tons Estimoted purchased
scrap requirement* $1952-36,200,000$ gross tons *All consumers
Where will the extra tonnage come from? Mostly from your dormant metalobsolete machines and structures, tools, jigs, fixtures, gears, wheels, chains, track.

NON FERROUS METAL NEEDED, TOO:

This advertisement is
a contribution, in the national interest, by

McGRAW-HILL PUBLISHING COMPANY, INC.

330 WEST 42nd Street
NEW YORK 36, N. Y.

Advertising Council
25 W. 45th St.
New York 19, N. Y.
Please send me a copy of the free booklet: "Top Management: Your Program for Emergency Scrap Recovery"
กаме. q. $_{\text {: }}$
company . TITLE.
address.
CITY. ZONE. STATE.
\qquad

MASTERS OF MARKING - Since 1911

Markem methods, machines, type and inks have been marking the products of industry for forty years. Markem machines can mark up to many thousands of pieces per hour. They make clear, durable imprints on flat, curved or irregular surfaces of paint, paper, wood, glass, metal, leather, plastic, rubber, fabric, composition and pressure sensitive tapes. No special skill is needed for their operation. Legend and color of imprint may be quickly and easily changed.

MAKE YOUR MARK WITH MARKEM

When your products need marking for Identification, Control or Market - ask Markem. Submit your problem, together with a sample of the item to be marked. Markem Machine Company, Keene 5, New Hampshire.

interstage transformers for radar antenna stabilizers at the Union City, N. J. plant of Keystone Products Co.

Though normally hand-held, the banding tool is here mounted on a wood block which in turn is fastened to the bench, so as to leave the operator's hands free to hold the soldering iron and solder.

Diode Clip Boards

Holders for crystal diodes

Simple clips stamped out of flat sheet metal are inserted in round drilled holes in an insulaing board to form holders for the 1,200 crystal diodes used in the Maddida computer made by Northrop Aircraft,

Diode clip board mounted on front of magnetic drum memory chassis for Maddida computer

The easiest way to solve your vibration problem is to put it up to your nearest Lord Fieid Engineer. He will analyze it and recommend the specific type of Lord Mounting necessary. By drawing upon complete data files of more than 27,000 Lord Mountings and their variations, it is probable that he can solve your problem from this reservoir of available Lord Mountings.
If your vibration trouble involves circumstances which have not been encountered before, your Lord Field Engineer will work closely with you and with engineers at the Lord Factory to design the type of specific Lord Mounting most profitable to you.

For immediate attention to your problem call or write to

Inc., of Hawthorne, California. Two different sizes of indentations accommodate the two terminal sizes on these diodes. The holders fit snugly in the drilled holes, and are anchored in place by the soldered connections made on the other side of the board.

Hookup Wire Rack

A convenient rack for spools of hookup wire was constructed from steel bar and rod stock at the Bogue Electric Company's Paterson, N. J. plant. The wire from each spool is threaded through a hole in the wood front-panel boards of the rack just above a white tape strip on which the wire sizes and other specifications are lettered. Holes for the wires are made just large enough to prevent the wires from slipping back onto the spools.

Simple rack holds up to 100 large spools of wire and provides convenient access to ends of wires

Thick washers are placed between the spools on each shaft, to insure that each spool will turn freely. Shafts are held in position by cotter pins at the ends. Empty spools can be replaced from either end of a shaft after first slipping the shaft out of its bearing hole, but generally all spools on a given shaft have the same type of wire. Replacement of spools is then not necessary until all are empty. The rack saves operator time, conserves floor space and improves the general appearance of the shop.

Announcing the NEW Eederal SELENIUM RECTIFIER.... with

(RMS)

CELLS

Designed for Special Applications where SIZE-WEIGHT and EFFICIENCY cre TOP CONSIDERATIONS

Federal CONTRIBUTION

- Fewer plates
- Lighter weight
- Smaller size
- Greater Over-all Efficiency
- Dependable
"Federal Performance"

Here's the answer to your selenium rectifier stack requirements . . . for applications where space is at a premium . . . where weight is of prime importance. This is the ideal rectifier for many military end-use equipments . . . for aircraft . . . for compact, portable units.

Developed by America's first manufacturer of selenium rectifiers, you can depend on its quality, efficiency and economy.

Wherever you need DC from an AC source - look to Federal . . . from milliwatts to kilowatts! For details on Federal's new 36 -volt rectifier cells of various sizes - or any other DC power requirement-write to Dept. F-113.

Amerisa's oldest and Iargest manufacturer of selenium rectifiers

Federal Telephone and Radio Corporation

NEW PRODUCTS

Edited by WILLIAM P. O'BRIEN

Control, Testing and Measuring Equipment Described and Illustrated . . . Recent Tubes and Components Are Covered . . . Thirty-Five Trade Bulletins Reviewed

Dynamic Pressure Indicator
Rutishauser Corp., 490 So. Fair Oaks Ave., Pasadena 1, Calif. Model ST-12 electronic pickup indicator measures transient, recurrent and static pressures. Operation is based on phase modulation principle using capacitance-type pickup. Carrier frequency of about 12.5 mc , with only $\frac{3}{8} \mathrm{in}$. free diameter pickup diaphragm, enables uniform response to pressure transients having frequency components much higher than heretofore measurable. The unit uses long-life subminiature tubes, takes up less than 3 cu ft of space and weighs 13 lb . Multichannel installations are available for rack mounting.

Plug-In Amplifier

Engineering Research Associates, Inc., 1902 W. Minnehaha Ave., St. Paul W4, Minn., has developed
a new miniature plug-in amplifier characterized by exceptionally high gain and relative independence of power supply voltage fluctuation. The unit, measuring $1 \frac{7}{8} \mathrm{in} . \times 2 \frac{1}{4} \mathrm{in}$. $\times 3 \mathrm{in}$., is potted in a steel case, thus reducing microphonics. Specific characteristics include a maximum gain of 9,000 and a flat frequency response from 2 to $1,000 \mathrm{cps}$. Power supply requirements consist of $600-\mathrm{ma}, 6.3$-volt filament supply and a $0.5-\mathrm{ma}, 250$-volt plate supply. Maximum output voltage is 20 v . Applications include use in widerange integrating circuits in which integration is achieved by a stabilizing negative feedback circuit.

Measuring Bridge

The Herman H. Sticht Co., 27 Park Place, New York, N. Y. Type Z measuring bridge is designed to take the place of a large Wheatstone bridge for measuring resistances in the field, workshop or laboratory. Its small dimensions make it convenient for carrying in coat pocket or briefcase. Range is 0.05 to 50 ,000 ohms over six ratios. The source of supply, a standard flashlight battery, is contained in the case. Accuracy of the instrument is approximately ± 1 percent. The bridge comes for d-c measurements

OTHER DEPARTMENTS
featured in this issue:

Page
Electrons At Work. 152
Production Techniques. . 228
Plants and People. 302
New Books 312
Backtalk 328
with galvanometer and flashlight batteryund can also be used for d-c and a-c current by means of an auxiliary plug-in buzzer and head phone.

Wide-Band Voltmeter

Ballantine Laboratories, Inc., Boonton, N. J. Model 314 wideband electronic voltmeter measures a-c voltages from $100 \mu \mathrm{v}$ to $1,000 \mathrm{v}$ in the frequency range of 15 cycles to 6 mc . Its accuracy of 3 percent up to 3 mc and 5 percent above is the same at all points on the single logarithmic voltage scale. With its probe, the input impedance is $6 \mu \mu \mathrm{f}$ shunted by 11 megohms and the voltage range is 1 mv to $1,000 \mathrm{v}$ in 6 decade ranges. Without its probe it may be used to measure down to $100 \mu \mathrm{v}$ but the input impedance is reduced to 25μ.f shunted by 1.1 megohms. The unit may also be used as a wide-band amplifier with maximum gain of 60 db vari-

READIN'-'RITIN'-'RITHMETIC

KNOW YOUR

THREE RS RAYTHEON YRELIABLE

when it comes to

 Tubes for Industrialra RUGGEDIZED Military and Transportation serviceLook at the chart. Keep it for reference. If tells you better than a thousand words why RAYTHEON may be regarded as the No. 1 source of Reliable and Rugged Tubes of all kinds.

Type	Description	Contro led Characteristics									Protolype	Heater		Plate		Grid Volts	Screen		Amp. Fac. tor	Mut. Cond.
Reliable Miniatures CK5654	RF Amplifier Pentode	\checkmark		v	\checkmark		\checkmark		v		6AK5	6.3	175	120	7.5	-2.0	120	2.5	-	5000
CK5670	Medium Mu Dual Triode	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark		2C51	6.3	350	150	8.2	$\mathrm{R}_{\mathrm{k}}=240$ ohms	-	-	35	5500
CK5686	AF-RF Output Pentode	\checkmark	v	\checkmark	\checkmark		\checkmark				-	6.3	350	250	27.0	-12.5	250	5.0	-	3100^{*}
CK5725	RF Mixer Pentode	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\downarrow		6AS6	6.3	175	120	5.2	-2.0	120	35	-	3200
CK5726	Dual Diode	\checkmark	v		\checkmark		\checkmark		\checkmark		6AL5	6.3	300	Max.	Peak	Inv. 330 volts.	$10=9 \mathrm{~m}$	ma. dc	c per	plate
CK5749	RF Amplifier Pentode	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark		6BA6	6.3	300	250	11.0	$\mathrm{R}_{\mathrm{k}}=680 \mathrm{hms}$	100	4.2	-	14400
CK5751	High Mu Dual Triode	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark		\checkmark		12AX7	6.3/12.6	350/175	250	1.1	-3.0	-	-	70	1200
CK5814	Low Mu Dual Triode	\checkmark	v	\checkmark	\checkmark		\checkmark		\checkmark		12AU7	6.3/12.6	350/175	250	10.5	-8.5	-	-	17	2200
Reliable Subminiatures tCK5702WA (6148)	RF Amplifier Pentode	\checkmark		\checkmark	5702	6.3	200	120	7.5	$\mathrm{R}_{\mathrm{x}}=200$ ohms	120	2.5	5	5000						
tCK5703WA (6149)	High Frequency Triode	\checkmark	\checkmark	ν	v	$\frac{1}{}{ }^{2}$	v	v		\checkmark	5703	6.3	200	120	9.0	$\mathrm{R}_{\mathrm{k}}=200$ ohms	-	-	25	5000
+CK5744WA (6151)	High Mu Triode	\checkmark	v	\checkmark	\checkmark	$\checkmark \vee$	\checkmark	\checkmark		\checkmark	5744	6.3	200	250	4.0	$\mathrm{R}_{\mathrm{k}}=500$ ohms	-	-	70	4000
tCK5784WA (6150)	RF Mixer Pentode	v	\checkmark	\checkmark	v	$\checkmark \vee$	v	\checkmark		\checkmark	5784	6.3	200	120	5.2	-2.0	120	3.5	-	3200
CK6021	Medium Mu Dual Triode	\checkmark	\checkmark	\checkmark	v	v	v	v		\checkmark	-	6.3	300	100	6.5	$\mathrm{R}_{\mathrm{k}}=150$ ohms	-	-	35	5400
CK6110	Dual Diode	\checkmark	\checkmark	\checkmark	v	ν	v	v		\checkmark	-	6.3	150	Max.	Peak	Inverse 420 volts	$10=4$	4 ma	a. per	plate
CK6111	Low Mu Dual Triode	\checkmark	\checkmark	\checkmark	v	\checkmark	v	1		\downarrow	二	6.3	300	100	8.5	$\mathrm{R}_{\mathrm{k}}=220$ ohms	1-1	-	20	4750
CK6112	High Mu Dual Triode	v	\checkmark	\checkmark	\checkmark	$)^{2}$	v	\downarrow		\checkmark	\rightarrow	6.3	300	100	0.8	$\mathrm{R}_{\mathrm{k}}=1500$ ohms	-	-	70	1800
CK6152	Low Mu Triode	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	v	\downarrow		\checkmark	5975	6.3	200	200	12.5	$\mathrm{R}_{\mathrm{k}}=680$ ohms	-	-	15.8	4000
Rugged Miniatures 6AK5W	RF Amplifier Pentode	\checkmark		\checkmark			\downarrow				6 6K5	6.3	175	120	7.5	-2.0	120	2.5	-	5000
6AL5W	Dual Diode	\checkmark	\downarrow				\checkmark	L			6AL5	6.3	300		x. Pea	Inv. 420 volts.	$10-9$	ma.	dc per	plate
6AS6W	RF Mixer Pentode	\checkmark	\checkmark	\checkmark			\downarrow	v			6AS6	6.3	175	120	5.2	-2.0	1120	3.5	$1-$	3200
6C4W	RF Power Triode	\checkmark	\checkmark	\checkmark			\downarrow				6C4	6.3	150	250	10.5	-8.5	-	-	17	2200
6 J 6 W	Dual AF-RF Triode	\checkmark		v	v						6 J 6	6.3	450	100	8.5	$\mathrm{R}_{\mathrm{k}}=50$ ohms	-	-	38	5300
6X4W	Full Wave Rectifier	\checkmark	\checkmark				\checkmark	\checkmark			6X4	6.3	600		Max.	eak Inv. 1250 vol	Its. $10=$	-70	ma. dc.	
Rugged GT Types 6J5WGT	General Purpose Triode	\checkmark	\checkmark	\checkmark							6J5GT	6.3	300	250	9	-8.0	-	-	20	2600
12J5WGT	General Purpose Triode	v		ν							1215GT	12.6	150	250	9	-8.0	-	-	20	2600
6SN7WGT	Dual Triode	\checkmark		\checkmark							6SN7GT	6.3	600	250	9	-8.0	1 -	-	20	2600
6X5WGT	Full Wave Rectifier	\checkmark	\checkmark	1							6X5GT	6.3	600		Max. P	eak Inv. 1250 v	olts. 1_{0}	$=70$	ma.	

The above listing of Controlled Characteristics is based on the requirements and test limits of the applicable JAN-1A test specification.
$\bullet 2.7$ watts Class A output. 10 watts Class C input powet to 160 mc For simplicity of identification with the prototypes, the type numbers with a "WA" suffix were established at the request of tFor simplicity of identification with the prototypes,

Over 300 Raytheon distributors are at your service on these tubes. Application information is readily available at Newton, Chicago, Los Angeles.

[^11]able in $20-\mathrm{db}$ steps and flat within 0.5 db from 100 cycles to 3 mc and within 1 db from 50 cycles to 6 mc .

UHF Oscillator Triode

Radio Corp. of America, Harrison, N. J. The 6AF4 miniature triode is designed to operate as an oscillator in uhf tv receivers covering the frequency range from 470 to 890 mc. It features good frequency stability; short mount structure with small elements to provide low interelectrode capacitances; short internal leads to reduce lead inductance and r-f resistance; silverplated base pins to minimize losses caused by skin effect at ultrahigh frequencies; and double base-pin connections for both plate and grid. A technical bulletin is available.

Pressurizing Kit

Lear, Inc., Romec Division, Elyria, Ohio. Model RR-9650 pressurizing kit is designed for use on aircraft powered by gas turbine engine. The object is to take air with elevated pressure from the compressor section of the engine and convert it into dry, oil-free air for pressuriz-
ing radar or other electronic plenums of jet aircraft; also to discharge a uniform pressure regardless of gas turbine pressure. Included with the equipment is a $1 / 15-\mathrm{hp}, 27$-volt, d-c air compressor with rated capacity of 300 cu . in. per minute at 8 psi absolute inlet pressure and 20 psi absolute discharge pressure. Overall dimensions are $11 \frac{3}{4} \times 95 \times 7 \frac{7}{82} \mathrm{in}$, high. Weight is 13.9 lb . Control of discharge pressure is fully automatic as is the control of inlet pressure fed from the gas turbine, so excessively high pressure is never passed on into the electronic equipment.

Oscilloscope Calibrator

Simpson Electric Co., 5200 W. Kinzie, Chicago, Ill. Model 276 oscilloscope calibrator just over 2 lb in weight, is completely self contained and operates from 117 v , $50-60$ cycles and can be used with any oscilloscope. It has a sine-wave output which is used directly on the $4 \frac{1}{2}-\mathrm{in}$. meter. The meter is calibrated directly in rms, peak, and peak-to-peak values. Six ranges are provided with peak-to-peak full scale values of $1,2.5,10,25,100$ and 250 v with an accuracy of 3 percent. Each range is continuously adjustable from zero to full scale value. A 12 -position function switch provides the range positions. Alternate positions of the switch provide for feeding the signal under test to the oscilloscope. External pickup is eliminated by providing power shut., off in these feedthrough positions.

Power-Type Resistors

Ward Leonard Electric Co., 115 MacQuesten Parkway South, Mt. Vernon, N. Y., has developed the Axiohm miniature power type resistors with axial leads. They are made with special alloy resistance wire of low temperature coefficient of resistivity wound on tough miniature ceramic cores. Sturdy No. 20 B\&S tinned axial leads are mechanically anchored and silver brazed to end caps. The entire assembly is encased in Vitrohm enamel forming a hard, crazeless, heat conducting hermetic seal. The resistors are available in conservatively rated 5 and 10 watt sizes. Standard resistance tolerance is ± 5 percent.

Harmonic Generator

Sierra Electronic Corp., 810 Brittan Ave., San Carlos, Calif. Fed by a $10-\mathrm{kc}$ square wave at 5 volts minimum, the model 133 harmonic generator supplies harmonic voltages of this input at every 10 -kc point up to 15 mc . Containing its own power supply, it operates from standard $115-\mathrm{v}, 50$ or $60-\mathrm{cps}$ power, consuming 25 w . Designed for use in an instantaneous frequencycomparison arrangement, the unit has application possibilities wherever such a harmonic frequency source is needed. In frequencycomparison work, an unknown frequency is beaten against an adjacent and identifiable harmonic voltage and the beat frequency meas-

the finest in modern sound recording methods and equipment

Radio stations from coast to coast recognize this label as the mark of a top quality transcription. One that can be depended on to meet or exceed the extremely high broadcast standards of sound quality.

To maintain this reputation, WOR Recording Studios, one of the largest in the world, use the finest and most costly tape and disc recording equipment obtainable. And-what's equally important - their engineers have found that Audiotape and Audiodiscs are an ideal combination for meeting the exacting requirements of broadcast transcription and commercial recording work. This same record-making combination is also being used with outstanding success by America's leading producers of fine phonograph records.

With Audiotape and Audiodiscs, you can achieve this same sound perfection in your recording work, too. Their consistent, uniform quality is the result of more than 12 years of specialized experience by the only company in America devoted solely to the manufacture of fine recording media, both tape and discs.

AUDIO DEVICES,Inc.
444 MADISON AVE., NEW YORK 22, N. Y. Export Dept.: 13 East 40th St., New York 16, N. Y., Cables "ARLAB'"

. . .including
 and cudiodises*

Temperature affects the chirping of crickets. In fact, you can actually tell temperature with a chirping cricket and a watch. Count the number of chirps in 15 seconds, add 37 - and there is your answer in degrees Fahrenheit! Try it some time.

TEMPERATURE vs. ADJUSTMENT

Years of work on the thermal behavior of many relay designs has yielded a broad grasp of the principles of stability. For example, springs with a high negative thermoelastic cuefficient cause a decrease in magnetomotive force values at the limits of the work stroke. A negative expansion coeflicient of the air gap will do the same thing. These facts are typical, except in the presence of noise, which, obscuring the Bellows factor, shows up graphically as a liysterical expression. At the desim level, it is desirable to replace frictional individuals with compliant constituents, matched to the thermal density of the enviromment ambient propensity.
Recent tightening of military specifications has forced us to study nichrostrictures, for which the tri-stable two-stage Caloriferer* with Biased Viewpoint adjustment now in use is a most useful tool. The interrelated variables of the Barkhausen effect, gyrotechnesis, and low-expunction refractifiers are thus coming under closer scrutiny and control than ever before.
Scientific study and attention to detail are the keynotes.

OUR CONCLUSIONS

As a result (somehow or other) certain Sigma Relays have relatively good themal stability. If you have a problem of this nature there's no telling what Sigma can do for you.

* Particulars of this equipment urailable free "hen requested on your company letuerhead.

SIGMA INSTRUMENTS, INC. 62 PEARL ST., So. braintree, bostun b5, mass.
ured on an oscilloscope or with a frequency counter.

R-F Coax Connectors

Dage Electric Co., Inc., 62 N. Second St., Beech Grove, Ind. Type C r-f coaxial connectors are designed for use up to $1,000 \mathrm{v}$ under strict military specifications. They are of constant impedance and are to be used with 50 -ohm medium size r-f cables. The connectors provide for easy connect-disconnect operations through a bayonet lock top coupling. A minimum of cable indentation is maintained through an improved cable clamping mechanism. Silicone rubber gaskets are used to make the connector waterproof.

Voltage-Regulator Tube

Radio Corp. of America, Harrison, N. J. Type 6073 cold-cathode, glowdischarge tube of the 7-pin miniature type is intended for voltageregulator service critical as to excessive shock and vibration. It is a premium version of the OA2 and OB2, and is constructed and processed to meet military requirements. The tube can withstand an instantaneous impact acceleration

NEW MODEL "NF" meets most requirements in a DC power supply ... extremely low AC ripple or hum, at this output range . . . low price . . . dependability. One control gives you adjustable output voltage over its rated range. Exclusive "Electro" application of selenium rectifiers increases rectifier power rating and lowers cost per ampere output. Top quality components and special
design withstand high
overloads.
For Aircraft, Tank, Marine Electronic Equipment. Laboratory Instruments, Research, Relays, Solenoids, Phone Circuits.
Model "B" 6 Volts, 1-20 Amps. $\$ 49.80$ Madel "BJ" 6 Volts, 1-12.5 Amps..... $\$ 37.50$ Send for Details Today!

Electro Products Laboratories

 4501-Ef North Ravenswood Ave. Chicago 40, III. In CanadaATLAS RADIO CORP., LTD., TORONTO PRECISION INSTRUMENTS SINCE 1944

SOLDER PR:EORMMS

lower cost

exacting precision standards

- The new Art Wire Solder Preforms reduce your costs, eliminate variability in soldering, insure sounder, stronger joints, and minimize hand labor. Precision made to every specification including Military and Federal for soft solder ... in shapes that meet the requirements

Complete information on request. Send blueprints or of your induction soldering operation. samples for estimates.

ART WIRE \& STAMPING CO.

1 Boyden Place
Newark 2, N. J.

of 900 g , and a vibrational acceleration for extended periods of 2.5 g . Operating-current range is from 5 to 30 ma . It regulates at an averare value of 108 v .

Small Paper Capacitor

Astron Corp., 255 Grant Ave., E. Newark, N. J., has a new type AQ subminiature paper capacitor designed for operation at temperatures through 125 C . Capacitance stability over a wide temperature range is from -65 C to +125 C , without derating, plus high insulation resistance, low power factor and high test voltage. These capacitors are supplied in the extended foil, noninductive-type construction. Hermetically sealed, they are capable of meeting all military requirements.

Magnetic Transient Recorder

Magne-Pulse Corp., 140 Nassau St., New York, N. Y. Aperiodic or "one-shot" waveforms can now be permanently recorded and displayed at any desired repetition rate on an oscilloscope through the use of the type 102 magnetic transient recorder. Providing a recording rate of up to 1,000 pulses per inch-or a bandwidth of 1 me-this low cost, lightweight unit, which can also record and display recurrent waveforms, should find wide application
in laboratories conducting research on radar, tv, atomic phenomena, computers and allied fields.

Laboratory Power Supply

Alco Electronics Mfg. Co., 102 Marston St., Lawrence, Mass. Model 400-A comprises two independently regulated power supplies with extremely low ripple and output impedance. Each of the $200-\mathrm{ma}$ regulated outputs may be operated independently and simultaneously, and by front-panel switching may be combined in parallel to provide double output current (400 ma) over the voltage range of 0 to 425 v. The outputs are floating, permitting operation with other than negative ground. Stabilized negative bias voltage is provided with continuous adjustment from 0 to -150 v . Heater voltages (unregulated) of 6.3 v at 10 amperes are available at binding posts.

Twin Scaler

Radiation Counter Laboratories, Inc., 5122 W. Grove St., Skokie, Ill., has designed a Higinbotham binary scaler with two input connectors, two scales of 16 and two recorders. Each scale of 16 and its recorder operates independently from the other, using a single $h-v$ power supply. The single h-v power supply employs two separate regulating circuits so the voltage avail-

the only VHF receiver in the low-priced field!

Here is the perfect answer to the need for compact, dependable, versatile and low-priced VHF reception. Can be operated from power supply or batteries for fixed or mobile use. Can be used as a complete receiver in itself or as a VHF converter with any receiver tuning to 10.7 mcs . As converter makes features of connected receiver usable on VHF.

$\$ 1422_{\text {lof ol ol cols }}^{*}$

 Power supply, \$22.43**Slightly higher west of the Rockies

Now your Screen-rooms can be

RADIO-SILENT

from 0.150 to $25,000 \mathrm{mc}$.

for screen-booth power lines cover the entire spectrum from the LF through the SHF range with high attenuation at all frequencies.
The performance curve above shows the combined attenuation of a double-shielded test room, a Tobe \#1180-2 medium-range filter, and a Tobe \#1457-1 high-range filter. The filters, rated at $100 \mathrm{am}-$ peres 500 volts a.c./d.c., have a total line drop of only 0.2 volts per circuit at full load; others available at lower and higher ratings. Catalog E-201 giving electrical characteristics, dimensions, mounting provisions, weights, terminal data, and recommendations for your use of wide-range line filters
able at each G-M tube may be reyulated to the desired value. A switch enables one to check the voltage on first one and then the other G-M tube. Counting rates up to and in excess of 20,000 counts per minute can be independently registered on each Veeder-Root recorder.

Standing-Wave Amplifier

Polytechnic Research and Development Co., 55 Johnson St., Brooklyn, N. Y. Type 275 amplifier is a high-gain linear audio amplifier designed to accurately indicate vswr's over the full scale ranges of 1 to $1.3,1$ to 3,3 to 10,10 to 30 and 30 to 100 . A normalizing gain control channel minimizes the effect of power drift on the r-f source. The unit may be operated as either a broadband amplifier over the range of 300 to $3,000 \mathrm{cps}$ or as a narrow-band amplifier at $500,1,000$ and $1,300 \mathrm{cps}$ with a $25-\mathrm{cps}$ pass band. Noise level is $0.03 \mu \mathrm{v}$. Fullscale narrow-band sensitivity is 0.1 u.v. The input circuit provides for either crystal or bolometer operation with a variable bolometer bias of 2.5 to 8 ma .

Printed Circuits
Stupakoff Ceramic and Mfg. Co., Latrobe, Pa., has developed a line of printed electrical circuits some of
which incorporate as many as six separate resistors and capacitors in a permanent circuit. In their production patterns for resistors, capacitors and conductors are printed on vitreous, high-dielectric ceramic plates by a silk-screen process. The dielectric properties of the ceramic are used for the capacitors, while silver is used for conductors and carbon graphite or other resistance materials for resistors. After the patterns are printed they are bonded permanently to the ceramic surface by controlled curing; then are protected from abrasion and humidity by the application of an impervious plastic covering. One printed circuit replaces from two to six individual components. Typical circuits are described in bulletin 1151.

Plug and Jack

SWitchcraft, Inc., 1328 N. Halsted St., Chicago 22, Ill., has announced two new related products most commonly used in military communication and industrial equipment. The No. 440 "Little Plug" (PJ-055B) features a onepiece tiprod which together with the sleeve are assembled into the mold as an insert; providing a finished plug with complete continuity of thermoplastic insulation between this tiprod and the sleeve of the plug. Design and material are in accordance with specification JAN-P-642. The No. 820 "Extension Jax" (JJ-026) features spring tempered nickel silver springs assembled into a rigid stack assembly, insulated by phenolic spacers and

GLASS - TERMINAL TUBULAR

midget • metal-cased • hermetically-sealed

For miniaturized apparatus and where the self-healing characteristic is desirable, specify Tobe metallized-paper glass-terminal tubulars. Capacitance ratings from 0.01 to 10 mfd . Voltage ratings from 150 to 600 volts d.c. Mineral-wax or mineral-oil imprequation for temperatures -55 to +85 C ; silicone-fluid impregnation for -55 to +105 C range.
For the "hot spots" where space is limited, specify Tobe silicone-fluid-impregnated glass-terminal tubulars. These units are built to work over a range of -55 to +125 C . Capacitances 0.001 to 1.0 mfd . Working voltages 200 to 1000 volts $\mathrm{d} \cdot \mathrm{c}$.
For cramped space in circuits whose surge characteristics prevent use of metallized-paper units, specify Tobe foil-paper capacitors with stahilized-Halowax impregnation. Capacitances 0.001 to 1.0 mifd. Voltage ratings 200 to 400 volts d.c. Temperature range -40 to +85 C .
For general service specify Tobe glass-terminal tubulars with min. eral-oil impregnation. Capacitances 0.001 to 1.0 mfd . Working voltages 200 to 1000 volts d-c. Temperature range -55 to +85 C .
All types available with windings insulated from or grounded to case. Extended-foil windings for low-voltage high-frequency service; tabbed windings for minimum size. Standard capacitance toler-

TOBE DEUTSCHIANT CORPORATION NORWOOD, MASSACHUSETTS

DESIGNED

- ENGINEERED
- MANUFACTURED for
PRECISION PERFORMANCE

- 9999.9 hour range
- 10,000 hour automatic reset
- -55 to $+55^{\circ} \mathrm{C}$. operating temperature.

Bureingtón

RUNNING TIME METER

- Designed for use on AC lines where successful servicing of electronic or electrical equipment depends upon the regular servicing of such equipment based on actual operating (or idle) time. Unit has a range of 9999.9 hours and resets automatically at 10,000 hours. Can be supplied for either 120 or 240 volts. 60 cycle operation and has operating temperatures of -55 to $+55^{\circ}$ C.
- The Running Time Meter is housed in Burlington's attractive, black bakelite $3^{\prime \prime}$ square or $31 / 2^{\prime \prime}$ round case.

Write Dept F-72 for further details.

BURLINGTON INSTRUMENT COMPANY BURLINGTON, IOWA

tubing, firmly assembled to long brass body by stainless steel screws. Materials and finishes are in accordance with specifications JAN-J641.

Humidity Control

Barber-Colman Co., Rockford, Ill. Two-position or proportioning, humidifying or dehumidifying, for process or comfort control, the new electronic humidity control features supersensitive, instant response with plug-in elements, wide range and simple adjustments. A mois-ture-sensitive element changes resistance instantly with minute changes in relative humidity. In spaces supplied by a central fan the sensing element is mounted either in the duct or the conditioned space, remote from the amplifier and adjustments. For controlling the relative humidity in spaces not completely air conditioned, the control is available with all operating adjustment mechanisms mounted in a convenient cabinet.

Broadcast Console

Altec Lansing Corp., 9356 Santa Monica Blvd., Beverly Hills, Calif. Model 250A console is a completely self-contained a-c operated unit designed for high quality control in a-m, f-m or tv breadcasting. Especially featured in the console is the use of newly designed miniature plug-in preamplifiers, line amplifiers, monitor amplifiers and power supplies. Available input impedances are $30,150,250$ or 600 ohms with a nominal output impedance of 600 ohms. Frequency response is $\pm 1 \mathrm{db}$ from 20 to 20,000 cycles and the signal-to-noise ratio is 70 db . Overall dimensions of the con-

X-YAR is non-corfosive, non-creeping - leaves wire ready for
soldering. Now in use by leading manufacturers of electriced products. Write for FREE SAMPLE for festing.
FIDELITY CHEMICAL PRODUCTS CORP. 472 Frelinghaysen Avenue, Newark S, New Jersey

INFORMATION

on positions at

NORTHROP

Northrop Aircraft, Inc. is engaged in vitally important projects in scientific and engineering development, in addition to aircraft production. The program is diversified, interesting and longrange. Exceptional opportunities await qualified individuals.

The most responsible positions will go to top-caliber engineers and scientists. However, a number of excellent positions exist for capable, but less experienced, engineers. Some examples of the types of positions now open are:

ELECTRONIC PROJECT ENGINEERS... ELECTRONIC INSTRUMENTATION ENGINEERS . . . RADAR ENGINEERS... FLIGHT-TEST ENGINEERS... STRESS ENGINEERS. AERO- AND THERMODYNAMICISTS.. SERVO-MECHANISTS, .. POWER-PLANT INSTALLATION DESIGNERS.. STRUCTURAL DESIGNERS...

ELECTRO-MECHANICAL DESIGNERS... ELECTRICAL INSTALLATION DESIGNERS.

Qualified engineers and scientists who wish to locate permanently in

Southern California are invited
to write for further information regarding these interesting, longrange positions. Please include an outline of your experience and training.

Allowance for travel expenses.

Address correspondence to Director of Engineering,

NORTHROP AIRCRAFT, inc.

1009 E. BROADWAY HAWTHORNE, CALIFORNIA
sole including table are 36 in . high, 55 in . long and 31 in . deep and weight is 280 lb .

Toroidal Windings

D\&R, LTD., 402 E. Gutierrez St., Santa Barbara, Calif., announce the availability of toroidal coils characterized by improved winding techniques. High-Q inductor requirements of miniaturized apparatus may be readily met by the use of these coils. Both powdered-iron and continuous strip-wound core materials are utilized, depending upon the particular application.

High-Speed Printer

Anelex Corp., Concord, N. H. The Synchroprinter, a high-speed printer developed for recording the output of analog or digital computers in directly readable form on standard paper, may be used in any application where data is available in electrical or mechanical form. It is capable of printing 15 lines of 40 characters each in one second, or a rate of 600 characters per second. Printing is accomplished by means of continuously rotating type wheels and cooperating print hammers. The device features independent control of printing and

If you manufacture any type of electronic equipment, you know how important high quality, noncorrosive fastenings can be to your production.
H. M. Harper is the largest manufacturer specializing in fastenings of non-ferrous metal and stainless steel. Over 7,000 items carried in stock.
Harper Everlasting Fastenings offer manufacturers of electronic equipment:

- fastenings of brass, naval bronze, silicon bronze, Monel, nickel, aluminum, all stainless steel-many non-magnetic materials
- high quality and extreme accuracy
- a vast metallurgical and engineering background capable of solving any fastening problem
- twenty-nine years of manufacturing experience
- one source of supply for all your needs, with the added advantages of one source of responsibility, one account to handle, one bill to pay.
There is a Harper distributor near you with stocks to fill your order. Harper engineers and metallurgists will be glad to assist you in the solution of any fastening problem.

THE H. M. HARPER COMPANY
8244 Lehigh Avenue, Morton Grove, Ill.
Mail the coupon below for complete catalog of Harper Everlasting Fastenings. There is a Harper distributor near you with stocks to fill your requirements.

The H. M. Harper Company
The H. M. Hath Avenue
Morton Grove, Illinois
Please send the complete catalog of Harper Everlasting Fastenings.
Name. .
Position...
\qquad
\qquad
City. Zone. . . . State.

CONDENSED SPECIFKATIONS

 Diameter (in.) Rating (watts)Vrque, max. (oz. in.)
Mounting:
Mounting: 3 holes $1 / 8^{\prime \prime}$ deep
Max, resistance (ohms) $\pm 100^{\circ}$
Min. resistance (ohms) $\pm 10 \%$
Max useful angle (deg.)
Max. resolution (\%)
Min. resolution (\%)
inearity (\%)
Standard Shaft: single end, $3 /^{\prime \prime \prime}$ extension, specify if otherwise $\quad \pm 0.10$
Double ended shaft special, specify diameter and length
Multiple sections specia s specify diameter and length.
Terminals will be positionec on the circumference as rall length for each additional section
Expected life of all types over $1,000,000$ cycles.
FOR COMPLETE DETAILS SEND FOR BULLETIN F-68-A
Mysigit THE GAMEWELL COMPANY

paper feed. This permits data produced at irregular time intervals to be consolidated into adjacent lines of print.

Electrical Delay Lines

Gulton Mfg. Corp., 212 Durham Ave., Metuchen, N. J., is offering electrical delay lines for use in computers, radar, tv and other electronic applications where delays are required ranging up to $100 \mu \mathrm{sec}$. These feature low-loss, excellent temperature stability through the use of specially engineered temperature compensating capacitors, and small physical size. All of these delay lines are custom engineered to the exact mechanical specifications and electrical characteristics required by the customer. Typical characteristics are delay time, 1.1 $\mu \mathrm{sec}$; rise time, $0.1 \mu \mathrm{sec}$; bandwidth 2.0 mc ; attenuation, less than 1 db and characteristic impedance, 460 ohms.

Volt-Ohm-Milliammeter

American Chronoscope Corp., 316 W. First St., Mt. Vernon, N. Y. Model 601 portable v-t volt-ohmmilliammeter is a self-contained, universal test instrument that is battery operated and requires no external source of power supply. The meter accurately measures a wide range of a-c and d-c voltages, resistances and currents. It has six d-c voltage ranges from 3 to 1 , 200 v full scale, 13 -megohm input impedance; 5 a-c voltage ranges from 3 to 300 v full range, 6 -megohm input impedance; 6 ohm ranges from 1 to 100 megohms; and 6 current ranges from 3 to $1,200 \mathrm{ma}$. Designed for all types of radio, electronic or industrial work, the unit is extremely useful when ex-

why label with Kum.K民eens - Wherever there's an unanswered question, a guess instead of a know, or a hesitation on identification or procedure, that's the place for Kum-Kleen labels. One electronic manufacturer records assembly and testing steps on Kum-Kleen labels, which are easily peeled off and filed for future reference.
Kum.Kheens are easily applied - Avery Kum-Kleen, pressure-sensitive labels are just laid-on with a finger-touch. They're self-adhesive - easy to apply - stick to any clean, smooth surface ... require no moistening, soaking, heating.
Kum.Kleens cut labeling costs-The patented Avery Dispensers-manual or electric-feed die-cut labels off roller tape, ready for quick, clean labeling. Many users report labeling speeds 5 times faster than conventional methods.
Kum.Keeens are more practical-Kum-Kleens stay stuck even in extremes of temperature and humidity with no pop, peel or curl. No excess glue or moisture to clean up! THEY SAVE TIME, LABOR AND COSTLY MISTAKES! what to label with Kum.KReens: Nameplates-Trademarks - Guarantees - Instructions - Approval Seals - Diagrams - Inspection - Caution - Repairs - Prices - Masking - Routing - How to use Copy ... and many others.

Kum.Kleen - the original
pressure-sensitive label-is a product of

WHERE can you use these
labels in your business?

117 Liberty St., New York 6 - 608 S. Dearborn St. Chicago 5 - 1616 So. California Ave., Monrovia Offices in other principal cities. \square Please send case histories, free samples and prices Have the Avery label man call

[^12]
If your D. O. contracts call for: . .
 CONTACTS AND CONTACT ASSEMBLIES BRUSHES - WIPERS - SLIP RINGS COMMUTATOR SEGMENTS • RESISTANCE WIRES NON-CORROSIVE WEAR RESISTANT PARTS

l:ALL NEY . . . TOIIAY!

F_{or} years Ney
Research has covered not only
 the development of specialized precious metal alloys for applications such as these, but also the design of both standard and special contacts, brushes, wipers and other component parts. Our increased facilities are now geared to economical production of these important precious metal components . . . in large or small quantities. Consult us.
 Sperialists in Irrecious Metal Metallurgy Since 1812.

SCOPE DOLLY
 Model 1

Convenient Height and Viewing Angle Adjustable to Hold Portable Scopes Boll Bearing Swivel Rubber Tired Casters Lightweight Aluminum Construction Recommended by Laborataries Wherever Used
$\$ 35.00$ fob louisville, ky.
formerly manufactured by UNIQUE DEVICES

```
Now manufactured and sold by
```

TECHNICAL SERVICE CORPORATION
3116 Michigan Drive
Louisville 5, Kentucky

WASHERS-ALL KINDS

ternal power is not available; when limitations are imposed by grounds; or to prevent small amounts of 60-cycle hum.

Capacitors

Industrial Condenser Corp., 3243 N. California Ave., Chicago 18, Ill. Illustrated are the type D of the Stabelex "D" hermetically sealed capacitors that hold a charge for as much as 200 days or longer. Case material is lead-coated steel. Terminals are specially prepared and treated glass, standoff type. Type of winding is noninductive. Operating temperature is -80 C to +75 C . Capacitance tolerance is ± 10 percent. Catalog 117 gives complete details and applications for the entire Stabelex "D" line.

Station Console

Altec Lansing Corp., 9356 Santa Monica Blvd., Beverly Hills, Calif. Model 230B console is designed for two-studio station use and is equally suited for use in elaborate p -a and recording installations. In the self-contained, a-c operated unit there are four separate preamplifiers, two booster amplifiers, a line amplifier and a monitor amplifier, all mounted on one chassis. Available input impedances are 50,150 , 300 or 600 ohms and output impedance is 600 ohms. System gain is 100 db (including a $6-\mathrm{db}$ isolation pad). Frequency response is ± 1 $\mathrm{db}, 20$ to 20,000 cycles, and the sig-nal-to-noise ratio is 74 db . Measure-

A 640 -page guide to relay selection and use
Lot "RELAY ENGINEERING", the famous StruthersDunn handbook, help solve your problems of relay selection, application, circuitry and maintenancel Over 17,000 copies in use. Price $\$ 3.00$.

STRUTHERS-DUNN 5,348 RELAY TYPES

Struthers-Dunn, Inc., 150 N. 13th St., Philadelphia 7, Pa.

BALTIMORE - BOSTON • BUFFALO - CHARLOTTE - CHICAGO - CINCINNATI CLEVELAND • DALLAS • DETROIT • KANSAS CITY • LOS ANGELES MINNEAPOLIS • MONTREAL • NEW ORLEANS • NEW YORK • PITTSBURGH ST. LOUIS • SANFRANCISCO • SEATTLE • SYRACUSE • TORONTO

TEFLON MAGNET WIRE

FOR HIGHEST TEMPERATURE APPLICATIONS

We invite inquiries where requirements call for:

small SPACE FACTOR

HIGHEST ABRASION RESISTANCE

 FLEXIBILITY AND ADHERENCE DIELECTRIC STRENGTH hesistance to chemicalscapable of withstanding temperatures of 250 centigrade.

WARREN WIRE COMPANY

pownal
VERMONT
Producers of Nylon, Plain Enamel, and Served Magnet Wire
Tinned and Bare Copper Wire.

Made by a new process to a uniform, high quality for continuous, heavy-duty service.
$1^{\prime \prime}$ sq. to $12^{\prime \prime} \times 16^{\prime \prime}$ cells -in stacks, or single cells for customer assembly.

Write For Illustrated Folder

SYNTRON CO. 241.Lexington Ave. Homer City, Pa.

A real money saver for industry.
Proven by the experience of tool and die, electronic machine, radio, electrical and instrument manufacturers.

The Green Engraver zips out precision work on metal, plastics, wood, glass, hard rubber, etc. engraves panels, name plates, scales, dials, molds, lenses, instruments, instruction plates, directional tigns ... by simple tracing. Routing, profiling and three dimensional modeling indicate its versatility. Electronic etching attachment available.

Specify the Green Engraver for the best in low cost performance.

Special attachments and engineering service available for production work.

FREE - Fact-packed folder yours upon request.

ments of the unit are $9 \frac{3}{8} \mathrm{in}$. high, 363 in . long and 17 in . deep.

Tiny Phone Plug

Carter Parts Co., 213 West Institute Place, Chicago 10, Ill., has introduced a new "imp" phone plug. The tip and sleeve of the new plug fit standard 2 -conductor jacks but the molded Bakelite handle has been reduced to about one-half normal size. The new design makes for added convenience and savings in space.

Control Relay

Automatic Temperature Control Co., 5200 Pulaski Ave., Philadelphia 44, Pa., has developed an electronic control relay designed to operate in conjunction with a differential transformer transmitter. To obtain control of any variable the differential transformer is adjusted so that its zero position is at the exact point at which it is desired to obtain control. This position is sensitive to less than 0.0001 in ., and as the armature of the transformer is moved off this null point by a change in the variable, a signal is generated having amplitude and phase definition. The control relay is sensitive to this minute signal and either pulls in or drops out depending on the direction of the

After years of development, the NATIONAL MOLDITE COMPANY has engineered and built an automatic machine for making molded coil forms held to the most exact dimensions for length and O.D. This new machine is geared for high speed production, thus providing prompt shipment on most popular sizes.

Here is another example of MOLDITE pioneering in order to provide the radio, television, and communication industries with quality engineered components.

Yes, look to MOLDITE for precision engineered magnetic iron cores, RF filter cores, and now MOLDED COIL FORMS.

MAGNETIC IRON CORES • FILTER CORES - MOLDED COIL FORMS THREADED CORES • SLEEVE CORES • CUP CORES

NATIONAL

Samples promptly

 submitted upon request for design, pre-production, and test purposesSEND FOR CATALOG 110

1410 Chestnut Ave., Hillside 5, N. J.

OVERLOAD PROTECTION

... or prevent single-phasing
This tiny, low cost Heinemann Silic-O-Netic Relay puts overload protection right into your circuits . . . or it can prevent single-phasing on three-phase motor applications.
TIME DELAY to allow for starting in-rush or temporary overloads is provided by a hydraulic-magnetic principle ... and the complete time element is hermetically sealed, forever free of dirt and atmospheric conditions. Delay characteristics are inversely proportional to overload. They are unaffected by ambient temperature ... and available with curves to suit your requirements

Send for informative Bulletin 5001A.

LuEDELCADK
ELECTRIC COMPANY
97 Plum Street, Trenton 2, N. J.

NEWPULSE GENERATOR
 FEATURES

Pulse Height: 0.50 v. continuously variable, positive or negative polarity. Pulse Width: 0.07 to $7 \mu \mathrm{~s}$. continuously variable.
Repetition Frequency: 50-5000 cycles, controlled from an internal or external oscillator.
Output Impedonce: 75 ohms or less.
Pulse Shope: $0.02 \mu \mathrm{~s}$. rise and fall times. Top flat within 2%
Synch Out: 50 v . into 200 ohms, $1 \mu \mathrm{~s}$. wide, $0.1 \mu \mathrm{~s}$. rise time
Pulse Phosing: Output pulse can be delayed $100 \mu \mathrm{~s}$. or advanced $10 \mu \mathrm{~s}$. with respect to the synch output.

Other laboratory pulse generators also available.
For full details write for Bulletin PG-50
MANSON LABORATORIES
STAMFORD

signal. The relay can be installed up to $5,000 \mathrm{ft}$ away from the source of the measured variable.

Focusing Device

Heppner Mfg. Co., Round Lake, III., has available a tv p-m focusing device designed for use with the new low-energy magnetic focus tube. It is installed in two seconds by simply slipping over the tube's neck and tightening the clamp. No brackets or special mounting contrivances are required. Because the entire device weighs only 5 oz , including the $1 \frac{1}{1} \mathrm{oz}$ Alnico permanent magnet, it cannot damage the neck of the tube. Two turns of the adjusting screw are sufficient to cover the entire focus range.

Sound-Level Meter

General Radio Co., 275 Massachusetts Ave., Cambridge 39, Mass. Type 1551-A sound-level meter measures product noise and work-ing-area noise levels. Its stable circuit uses a two-stage preamplifier as well as a three-stage main amplifier. Overall frequency response of the amplifiers is flat from 20 cycles to 20 kc so that full advantage can be taken of new highfidelity microphones. Direct measurement of sound pressure levels can be made over a range from 24

Resonant circuits with Q 's in the range of millions are one of the many practical applications of low-temperature techniques and phenomena being studied by laboratories equipped with our Collins Helium Cryostat. With this reliable equipment for the production of liquid helium, phenomena known to occur in the neighborhood of Absolute Zero are now being exploited for useful purposes.
Various industrial low-temperature laboratories are studying the very low energy effects, masked by thermal noise at normal temperatures, for their application to communications and control processes. Other potential uses of low-temperature phenomena include the development of sensitive bolometers, perfect conductors, magnetic shields, and insulators which will hold a charge for unusually long periods.
Your industry, equipped for low-temperature research, can expand the growing list of practical uses for these lowtemperature effects.

For further information on the Collins Helium Cryostar and other potential applications of low-temperafure research write for Bulletin E-3.

Here, designed into one small frame, is a variable frequency capacitor motor capable of operating at dual frequency ranges of $50 / 60$ cycles or $360 / 1600$ cycles. Another oustanding EAD engineering achievement . . . one motor that does the work of two!

SPECIFICATIONS

Continuous duty - single phase - 115 volts AC - Ambient temperatures: $-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ - Weight: $1 \mathrm{lb} ., 1 \mathrm{oz}$. Meets military specifications for humidity, salt, shock, vibration and tropicalization.
Applications: Airborne equipment (fans, blowers, pumps and other suitable uses.)

_ Solving special problems is routine at EAD If your problem involves rotating electrical equipment, bring it to EAD. Our completely staffed organization will modify one of our standard units or designs and produce a special unit to meet your most exacting requirements.

EASTERN AIR DEVICES, INC.

585 DEAN STREET, BROOKLYN 17, NEW YORK
the company's U. S. agent, Beam Instruments Corp., 350 Fifth Ave., New York, N. Y

H-V Tip Jack

Insuline Corp. of America, 3602 35th Ave., Long Island City 1, N. Y., has announced the No. 1899 high-voltage tip jack, designed expressly for stability in sensitive electronic test equipment. The insulation is nylon, withstands 10,000 volts and has negligible moisture absorption. The spring contact is made from one piece of phosphor bronze and takes all standard phone tips and test prods. The jack is furnished with a molded washer that affords positive protection against shorts to a metal panel.

Tape Recorder Head

The Indiana Steel Products Co., Valparaiso, Ind. The TD-704 high output record-playback head has a frequency response flat within 1 db from 100 cycles to 7,000 cycles at a tape speed of 7.5 in . per second. At a tape speed of 15 in . per second maximum frequency response is increased to nearly 12,000 cycles. Signal output is in the order of 5 mv. The head utilizes a track width of 0.200 in . assuring maximum out-

HERE'S YOUR ANSWER.
 Pome Synthinol 901

Hook-Up Wire

Today's trend towards miniaturization makes severe demands on electronic wiring. That is why so many leading electronic equipment manufacturers specify Rome Synthinol 901. A resin plasticized polyvinyl chloride thermoplastic compound, it is Underwriters' approved for temperatures up to $105^{\circ} \mathrm{C}$., as a special small-diameter type with no assigned voltage, as well as for regular 300 and 600 volt ratings.

Where space is a problem, Rome Cable engineers have developed a small-size hook-up with with an 8 mil wall of Rome Synthinol 901 insulation and an exceptionally small over-all diameter. With nylon sheath maximum diameters run from as small as $.051^{\prime \prime}$ for 24 AWG to $.100^{\prime \prime}$ for 16 AWG.

What's more Rome Synthinol 901 has greater resistance to heat deformation, baking embrittlement, shrinkage, cracking, solvents, moisture and flame, plus improved solderability. It is available in distinct, permanent colors, either plain or with outer coverings.

MILITARY TYPE HOOK-UP WIRE

Rome Cable is an approved manufacturer of military types SRIR. SRHV and WL, complying with Army-Navy Joint Specification JAN-C-76, as well as shipboard types SRI and SRIB conforming to Specification MIL-C-915. Insulated with Rome Synthinol thermoplastic compound, these wires are manufactured in the complete range of specification sizes.

Whatever your requirements, you can depend on Rome for electronic wires of the highest quality. The coupon will bring you descriptive literature.
MAIL IT TODAY.

ROME CABLE CORPORATION
DEPT. E-7, ROME, N. Y.
Please send me information on Electronic Wiring.
Name
Company ..-..-----
\qquad
City-.............................. State--

IT COSTS LESS TO BUY THE BEST

ROME CABLE CORPORATION ROME, NEW YORK and TORRANCE, CALIFORNIA

Stancor is, of course, one of the world's largest producers of special design transformers for use in all types of electronic equipment.

In addition, Stancor has the most complete stock line in the industry for use in your prototypes or lab equipment. If you need one or a hundred transformers in a hurry, you can probably find the type you need in the Stancor catalogued line. They are quickly available through the Stancor parts distributor in your locality.

The new 24 page Stancor catalog lists 475 transformer and related components. Ask your Stancor distributor for a FREE copy, or write us directly.

JUST PUBLISHED!

STANDARD TRANSFORMER CORPORATION

3578 ELSTON AVENUE, CHICAGO 18 , ILLINOIS
\qquad
put and signal-to-noise ratio and a constant overall level of the playback signal. Impedance is 1,000 ohms at $1,000 \mathrm{cps}$. The unit is designed for single track recording on $\frac{1}{2}$-in. tape.

F-M Phonograph Cartridge

Weathers Industries, 510 Richey Ave., West Collingswood, N. J., has introduced a new f-m phonograph cartridge operating on a unique variable-capacitance principle. With a good transcription arm it tracks at a stylus pressure of one gram. When installed in modern Webster and RCA-45 record changers the stylus pressure can be adjusted to 3 grams or less. Frequency response is 20 to $20,000 \mathrm{cps}$. The cartridge operates with an oscillator unit using one 6AT6 tube. Filament and plate current may be taken from the audio amplifier, or from a power supply sold separately.

Timer

Nuclear Instrument \& Chemical Corp., 229 W. Erie St., Chicago 10, Ill., has introduced the model T100 timer designed to measure elapsed time in one-hundredths of minutes for greater accuracy in radioactive sample counting. The unit operates on standard 110 -volt, 60 -cycle current and has a convenient off-on switch in the line cord. It can be quickly reset to zero when counting
is completed. Measurements are $3{ }_{3}^{5} \mathrm{in}$. high $\times 3{ }^{5} \mathrm{~g} \mathrm{in}$. wide $\times 4 \mathrm{in}$. deep.

Portable Recorder

Audio \& Video Products Corp., 730 Fifth Ave., New York 19, N. Y. The portable Wagner-16 Micro Dise recorder, model P16-450 is a professional instrument enabling one to record and play back a full hour of speech or music on a single unbreakable vinylite disc that is only $4^{3} \mathrm{in}$. in diameter, operating at 16 rpm and at a pitch of 448 lines per in. Contained within the portable carrying case is the complete mechanism and recording head, amplifier and power supply, playback pickup and loudspeaker for recording and playing back instantaneous Micro Discs. The equipment operates from $115 \mathrm{v}, 60$ cycles a-c.

F-M Signal Generator

New London Instrument Co., P. O. Box 189, New London, Conn. Type 100 B -m signal generator covers the frequency range from 20 to 110 mc . At $150-\mathrm{kc}$ deviation typical distortion is 2 percent at 1,000 cycles modulation to a maximum of 4.5 percent at 15,000 cycles modulation. Distortions are proportionately lower for deviations smalle than 150 kc . In addition to a fine

1. Reduced cost per core
smaller assemblies (less space necessary)
. Smalest If transformer core design
2. Simplest if trans 0 " by elimination of metal inserts
3. Higher " Q "' by elimination ormits top tuning
4. Hexagonal hole saving of critical material
5. Sal
Television, Electronic and Radio set designers are considering the advantages of the Threaded Core. Where Threaded Core substitutions for Insert Cores are stability and better practicable design, greater economy, Sart and labor cost performance have been the result. Parough the eliminareductions can easily be visualized simplified assembly. tion of brass screw inserts and slank-formed with screwdriver Threaded Iron Cores are blank then externally threaded slats or hex holes. The blank is then exheaded core self. on a centerless the the serrated paper coil form. Threaded core permeability is effected by the type of threads selected. The table illustrates the advantages of
selecting finer and shallower threads.
P ERMEAB ILITY: Diameter Tolerance VSTHREAD FORM: Vs. Permeability The permeability of a
thraded core is conthraded core is controlled by varying
outside diameter.

$$
\begin{aligned}
& \text { Permeability } \\
& \text { O. D. }
\end{aligned}
$$ tolerance tolerance ± 0.001 in. $\pm 4 \%$ $\pm 0.002 \pm 2 \%$ WM 32 shallow pitch -6.5 . Cores having the least The " Q " potential: Threaded Cores usually provide the permeab "Q", as smaller coils (less copper) are required to achieve the given inductance.

Threaded Core Size and Strength Thysical strength is allained in the Threaded Core Greater physical finer threads because of the effell not larger diameter. The ratio of length to diamereconomical be less than $11 / 2$ to 1 , nor more than 4101 , for econ $0.181 ; 0.238$; core design.
$0.249 ;$
0.304 .)

Radio Core Quality Control All Radio Cores manufactured, are produced with special attention to both mechanical inspection and assemances resulting in lower incoming customer. bly costs on the part of the custor

塞

niusin
mpa
Histornat

Do you know this fact about

 Germanium Crystal Diodes?Ordinary test methods reveal all there is to know about the static characteristics of germanium crystal diodes. However, an important but little known characteristic shows up to plague the engineer when the diode is actually operating in the circuit.
Under dynamic operation some diodes have a much higher forward resistance than under static conditions. A finite time, measured in microseconds, is needed for the diode to recover its normal static resistance after the voltage changes from back to forward.

This dynamic characteristic, if not within allowable limits, would affect the performance of the circuit. For example, if two diodes are to be matched for a bridge circuit, the static forward resistance of both may be 200 ohms, while the dynamic forward resistance at 500 kc might be 300 ohms for one, and $1,000 \mathrm{ohms}$ for the other.

New CRC Diode Tester fests dynamic characteristics.
The new CRC Diode Tester tests both forward and back characteristics under static and dynamic conditions...telling you how the diode will perform before you mount it in the circuit. Where large numbers of diodes are used in plugin form, the Diode Tester can also be used for periodic circuit checks to detect potential diode failures before they occur.
If you are using germanium crystal diodes, the CRC Dynamic Crystal Diode Tester will be a valuable addition to your electronic test equipment

Write today to the
Director of Applications for a helpful information sheet.

Forward resistanct ol a goot germaniun crystal diode under dynamic conditions.

Forward resistance of a bat diade under dymamic conditions showing exeessive overshast.

Computer Rescacch CORPORATION

3348 W. EL SEGUNDO BIVD. HAWTHORNE, CALIFORNIA... OSBORNE S-IITI
tuning knob the single-band frequency range can be even more precisely adjusted with an incremental frequency dial that changes the carrier up to $\pm 100 \mathrm{kc}$. It also features a precision piston attenuator100,000 to $0.02-\mu \mathrm{v}$ output, and external and internal (100 to 15,000 cycles) modulation.

Edgewise Fader

Painton \& Co. Ltd., Kingsthorpe, Northampton, England, has designed a miniature edgewise fader for tv applications where the video signal actually passes through the fader. Features of the instrument include: coaxial plugs and sockets for the incoming and outgoing video signal; provision for a 30 step bridged-T network, insuring smooth video fade; and changeover contacts providing cueing facilities. Attenuations up to 34 db are possible and frequency response is substantially flat up to 5 mc for all attenuations.

Dual Regulated Power Supply

Oregon Electronic Mfg. Co., 206 S. W. Washington St., Portland 4, Oregon. Model D6 is a versatile heavy-duty regulated power supply. It supplies two regulated outputs continuously variable from 0 to 600 v at a maximum current of 200 ma each, with regulation better than 0.5 percent from 10 v to a maximum and ripple of less than 10 mv peak to peak. A turn of a knob combines the two outputs to give a maximum output current of 400 ma . Other outputs are 6.3 v a-c at 10 amperes center-tapped, 650 v d-c unregulated with less than 2 v ripple, 0 to

Brush Magnotic

Recoring

Components

Model BK 985

Better Performance-

Uniformity-Stability-Because of 5 Precision Lapping Operations
THE MODEL BK 985 narrow channel recording cartridge is typical of the advanced design and production quality of Brush Magnetic Recording Components. Brush engineering leadership in this field means improved basic design. Brush experience and skill in precision production means a product you can count on to do its job efficiently.

Brush Magnetic Recording Components include a full line of single and multiple recording heads applicable to every type of tape recording.

Write us for help on your magnetic recording problems. Your inquiries will receive the attention of capable engineers. Address Dept. E-7.

THE

6
HRUSH

DEVELOPMENT COMPANY 3405 Perkins Ave. - Cleveland 14, Ohlo Piezoelectric Crystals and Ceramics Magnetic Recording Equipment Acoustic Devices - Uitrasonics Industrial \& Research Instruments

MIDGET TELEPHONE TYPE RELAYS

 in hermetically sealed containers嫘路

Surface mounting, open type, Series 80 Relay size: $1^{15} / 2^{\prime \prime} 1 . x^{5 / 8}$ w. x $\mathrm{J}^{25} / \mathrm{m}^{\prime \prime} \mathrm{h}$.

Compact, multiple contact with vibration and shock-proof characteristics. Designed to meet various operating requirements typical of Armed Services applications. Unique pile-up arrangement reduces width below the conventional relay, thereby reducing over-all space volume.
Coils are varnish-impregnated to resist high humidity conditions. All ferrous parts are treated to pass salt-spray tests.

Engineering Representatives in Principal Cities

WRITE FOR BULLETIN MTR-6

Available for envelope types T7, T8, MT8, T9, T12, ST12, T122DI, ST14, S14, ST16, T51/2, T61/2, MT-IC, ST19, T14, ST128CT-9.

Manufacturers of Electronic Components

J A M E S I P POL I TO \& CO., I NC.
401 CONCORD AVENUE,
BRONX 54, N. Y.

FLOW MEASUREMENT

-150 v d-c at 5 ma variable and stabilized. Both voltmeter and milliammeter may be switched to monitor any of the regulated or stabilized outputs.

Literature

Snap-Acting Thermostats. Stevens Mfg. Co., Inc., 69 S. Walnut St., Mansfield, Ohio. Bulletin L-4144 covers a line of snap-acting thermostats for operation on wide or narrow differentials. In addition to suggested applications the bulletin describes the operating principle and illustrates it with schematic diagrams. Ratings, typical performance curves, dimensions and construction data are included.

Potentiometers. DeJur-Amsco Corp., 45-01 Northern Blvd., Long Island City 1, N. Y., has issued bulletin 101-E covering its new line of series C-200 external phasing potentiometer. The series described has been engineered and designed to fulfill the exacting requirements of contemporary instrument, computer and similar electronic equipment. Complete specifications are furnished, and a wide variety of applications for single and multiple-ganged units is shown.

Transformers. Crest Laboratories, Inc., Whitehall Building, Far Rockaway, N. Y., announces the availability of an eight-page catalog describing their new hermetically sealed transformers. Complete technical specifications are given on the line of miniature, subminiature and microminiature transformers. Catalogs may be obtained upon letter head request.

Radioactivity Glossary. Radiation Counter Laboratories, Inc., 5122 W. Grove St., Skokie, Ill. Fiftyeight terms commonly used in radio activity measurements are listed and defined in a single-page glossary now available.

Resistor Data. The Daven Co., 191 Central Ave., Newark 4, N. J., has completed a 6 -page brochure con-

Especially designed for spot cooling electronic cquipment aboardaircraft. Unique design insures minimum watis loss over full frequency range of 320 to 1000 cycles.
In spite of wide frequency variations, the cfm output remains essentially constant at sea level. As pressure is reduced, the rpm increases, providing additional velocity of cooling air
AIR DELIVERY: Blower heads available for any direction of air delivery.

Write for literature!

4811 Telegraph Rd. Las Angeles 22, California

 Yyantill
 for recently calling the
 attention of industry to the substantial growth of UNILECTRIC'S volume in your advertising in Business Week, Advertising Age, Advertising Agency, Printers' Ink and Sales Management, and by direct mail.
 Your featuring of our company in your folder of "Examples of Successful Business Paper Advertising" is deeply appreciated. We will strive to maintain the precision standards and cost saving features of UNILECTRIC WIRING SYSTEMS responsible for the progress that called forth your generous comments.
 UNITED MANUFACTURING \& SERVICE CO. 409 South 6th St., Milwaukee 4, Wis.
 Copits of the McGrat-Hill report are awaldable on request. Send to day for this additional evidence that UNILECTRIC WIRING SYSTEMS will reduce yonr product wiving costs - and improte your products.

Now! A Complete New Line of

STANDARDIZED COIIS

for Radio, FM and TV Receivers

* FIT STANDARD CHASSIS PUNCHINGS AND AREAS - HIGHEST QUALITY AT NO EXTRA COST
- PROMPT, DEPENDABLE DELIVERY DATES

These standardized coils are manufactured to the highest standards of the industry-yet cost no more. They fit the most commonly used chassis punchings-are made for all Radio, FM and TV receiver applications. Windings can be supplied to exactly meet your requirements. For prompt quotations and firm delivery dates, call, wire or write.

Telephone
Metuchen 6-2245

ADDRESS INQUIRIES TO DEPARTMENT E-7
fin

TARZIIAN TUNER, Moide IT- 7

The Model TT-7 features 12 VHF channels plus 1 or 2 UHF inputs with appropriate UHF power switching built in. Available for 41 mc . IF systems. (Can be supplied for 21 mc . IF systems.)

SPECIFICATIONS:	
RF AMPLIFIER:	6BQ7
OSC. MIXER:	6X8
POWER SUPPLY:	135 volts at 10 ma . 250 volts at 14 ma . 6.3 volts at 0.85 amps .
GAIN:	Into a $5 \mathrm{mc} .6 \mathrm{db} \triangle \mathrm{fIF}$ gridHigh channels 23 db min. Low channels 26 db min.
NOISE FACTOR:	As measured into a 3.0 to $3.5 \mathrm{mc} . \triangle \mathrm{fIF}-$ 9.5 db max. for high channels 8.0 db max. for low channels
IMAGE REJECTION:	40 db min. high channels 46 db min. low channels
IF REJECTION:	50 db min.*
RF BALANCE:	20 db min .
VERNIER RANGE:	Plus or minus 1 mc . min. Plus or minus 2 mc . max.

* Except channels $2-3$ and 4 of 41 mc. tuners.
* In the UHF position, the tuner is changed to an amplifier for the UHF I.F. Power is applied to the UHF tuner which may be either a FULL-RANGE CONTINUOUS TUNER or a single channel UHF tuner. In either case, a separate UHF antenna input is provided.
taining full descriptive material on precision wire-wound resistors, hermetically sealed resistors and miniature resistors. The resistors are individually charted, diagrammed and tabled to provide valuable information, such as wattage dissipation, tolerances, temperature coefficients and maximum resistance values with different types of wire, physical dimensions and types of mounting.

Identification Tape. Labelon Tape Co., Inc., 450 Atlantic Ave., Rochester 9, N. Y. A folder in four colors tells the story of the newly developed pressure-sensitive plastic tape that can be written upon. Many of its countless uses include the identification of circuits in panel boards and the labeling of component parts of electronic testing equipment. Labelon may be applied to any smooth surface, written on with pencil or stylus, and is resistant to dirt, oil, water or acids, and unaffected by temperatures from -40 to 160 F . Data on the many colors and widths are included.

Tube Data. Hytron Radio \& Electronics Co., Salem, Mass. Five recent engineering bulletins give mechanical and electrical data on the 5 Y3WGT fullwave rectifier, the 12 BY 7 video pentode amplifier, the 12BZ7 high-mu dual triode, the 12A4 medium-mu triode and the 12B4 low-mu triode.

Servo Stabilizer. Kalbfell Laboratories, Inc., P. O. Box 1578, San Diego 10, Calif., has available a descriptive pamphlet on the Twin-T servo stabilizer, a device that contains a phase-shifting network to compensate for the lag caused by motors or other inertial elements. The unit described overcomes hunting while maintaining fast response time.

Signal-Splitters. J. L. A. McLaughlin, La Jolla, Calif. A recent 6-page folder gives complete specifications on the series 10 signal splitters that eliminate adjacent channel and heterodyne interference. The units described can be used with standard type communications receivers and are

Development

Engineers

This is the age of Automatic Control

Play your part in the development of Automatic Controls with Honeywell, long established leader in the control industry.

Help solve today's problems in some of the fields listed below as they pertain to automatic control, and help pave the way to a better future.

- Electronics
- Servo Mechanisms
- Hydraulics
- Electro-Magnetics
- Gyros
- Computers
- Electro-mechanical devices
- Electrical contact phenomena

If you are interested, please write giving a resume of your qualifications to Mr. Ross Wagner, MinneapolisHoneywell Regulator Co., Dept. EL-1, Minneapolis 8, Minn. Your correspondence held in strict confidence, of course.
If you are now utilizing your highest skill in a defense industry, please do not apply.

Hönèẙwè̉ll

Finst in Oppertunty

WORK EASIER and FASTER

with XCELITE COMBINatION TOOLS!

XCELITE tools give you instant selection of the correct size and save you money over cost of individual tools.

XCELITE CK-3 Set of 3 most used screwdriver sizes.

1. Nos, 1, 2 and 3 Phillips, reversible to $3 / 16^{\prime \prime}, 1 / 4^{\prime \prime}$ and 5/16" regular.
2. New spring-type fastener master handle. Without b'ace, becomes 7/16" nutdriver.

CK-3 SET
XCELITE 99 Set

1. 9 Detachable chrome-plated nut driver blades from $3 / 16^{\prime \prime}$ to $1 / 2^{\prime \prime}$.
2. 2 Standard blade screwdriver sizes.
3. Nos. 1 and 2 Phillips Screwdriver blades plus big master handle. 13 tools in 1 . all in durable plastic roll kit.

See your dealer today or write for complete XCELITE tool catalog!

XCELITE INCORPORATED
Formerly Park Metalware Co., Inc. Dept. C Orchard Park, N. Y.

sub-miniature AND moisture-proof S-15 8 S-30
 WIRE WOUND RESIETOBS

THE ECONOMICAL SOLUTION where moisture proof resistive elements of comparatively small size are required for commercial applications. Type $\mathrm{S}-15$ is $3 / 8^{\prime \prime}$ long by $1 / 4^{\prime \prime}$ diameter; type $\mathrm{S}-30$ measures $3 / 4^{\prime \prime}$ by $1 / 4^{\prime \prime}$ diameter. Both types are moisture proof and capable of high performance over long periods of continuous service. IN-RES-CO Resistors for every ordnance or civilian requirement are available at a cost that solves circuit design problems both performancewise and cost-wise. Check up now, on the complete line of IN-RES-CO quality wire wound resistors.

AUTOMATIC CYCLING Simplified by EDISON Relay

ABOVE: Electrical control panel of SEC Dry Cleaning System illustrated at left, open to show position of Enison Thermal Relays.
the sec-o-matic CORP. chose the Edison Model 501 Time Delay Relay to provide an automatic delay period in the washer and extractor cycles of their SEC automatic dry cleaning system.
the edison time delay relay was selected because of its long dependable service record in many industrial applications, its low cost, and plug-in feature.
HOW IT works-The heater of the Edison delay relay is in the circuit between the washing timer and the washing motor starter relay. When the timer is set, the heater of the delay relay is energized and a valve is opened allowing the cleaning fluid to reach its level in

INGORPORATED

Instrument Division

51 Lakeside Avenue, West Orange, N. J.
MANUFACTURERS OF
Electrical Resistance Bulbs
Temperature Indicating and Alarm Systems Sealed Thermostats
the washing tank. The delay relay then closes its contacts and the washing motor begins its agitating cycle.
AT THE END of the washing cycle, the washing timer closes the extractor circuit which energizes the heater of the second delay relay and reverses the valve to drain the washing tank. When the contacts close, the centrifugal dryer is set in motion.

AUTOMATIC DELAYS are only one of the many uses found for this EdISON relay. Send now for further details. Bulletin E8-3007 will be sent free.

ASK FOR Bulletin E8-3027 on the new EdISON Miniature Thermal Relay.
normally supplied with inputs for receivers having i-f amplifiers of 455 kc but can be modified to match other frequencies.

Packaged Pulse Control Units. Control Instrument Co., Inc., 67 Thirty-Fifth St., Brooklyn 32, N. Y., has released a new bulletin on the Burroughs line of unitized pulse generating and control apparatus for use in the fields of tv, radar, digital computers, telemetering and nuclear physics. It contains detailed information, specifications, characteristics and some typical applications.

High-Temperature Magnet Wire.

 Sprague Electric Co., North Adams, Mass. Engineering bulletin 404 deals with Ceroc ST single-Teflon, ceramic-insulated, high-temperature magnet wire. Standard sizes and performance characteristics are shown. Also included is a guide for application and operation.Electrical Tapes. Industrial Tape Corp., New Brunswick, N. J., has published a four-page folder covering its line of Permacel electrical tapes. Technical data and prices for thirteen different types are given.

Quartz Crystals. Bliley Electric Co., Union Station Building, Erie, Pa. Bulletin No. 43 is a 16 -page catalog dealing with a wide line of quartz crystal units. Descriptions, photographs and mechanical drawings for each are given. Included are a two-page specification index for military crystal units and concise ordering information.

Soldering Hints. Federated Metals Division, American Smelting and Refining Co., 120 Broadway, New York 5, N. Y., has published a new 16-page booklet on the fundamentals of soldering, entitled "How to Solder." It contains simple instructions and illustrations aimed at making soldering more successful and easier to do.

UHF TV. Allen B. DuMont Laboratories, Inc., 1,000 Main Ave., Clifton, N. J. Written in nontech-

PRODUCE PROFESSIONAL COMMERCIALS AT LOW COST WITH the New Gray TELOP II

- Now, with the new versatile Gray telor il you can produce and broadcast an amazing variety of professional-quality commercials at surprisingly low cost. Local sponsors will marvel at the way telop il presents their selling message with opaque cards, pholographs, art work and transparencies. And you get the real effect of superimposition. lap-dissolve and fade-out. Only limitation is your imagination. Takes up very little space. One operator does it all!

IV rite lor full information on the new exciting Gray telop II.

GRAYRESEARCH

and Development Co., Inc., 598 Hilliard St., Manchester, Conn.
Mater द. Ditunaror Prosident
Division of The GRay Manufacturing Company -Originators of the Gray Telephone Pay Station and the Gray Audograph

nical language, a recent booklet (while primarily directed at the broadcasters) will be of assistance in providing some background on uhf for everyone. In it are discussed how uhf is different, what a uhf station would cost and how it should be laid out.

Directional Coupler. HewlettPackard Co., 395 Page Mill Road, Palo Alto, Calif. Volume 3, No. 7-8 of the Journal presents a technical article dealing with a precision directional coupler that uses multihole coupling. Units described in this well-illustrated article are useful in many types of applications such as mixing and isolation.

Dynamic Pressure Indicator. Rutishauser Corp., 490 So. Fair Oaks Ave., Pasadena 1, Calif. A seven-page bulletin illustrates and describes the new model ST-12 electronic pickup indicator having very high frequency response. It includes construction and specifications.

Microwave Components. Technicraft Laboratories, Inc., Thomas-ton-Waterbury Road, Thomaston, Conn., have released their 1952 catalog for general distribution. Subject matter includes illustrations and detailed description of their flexible and rigid waveguide assemblies and other components. In addition, it describes the many laboratory facilities and services offered by the company.

Photoelectric Equipment. De-TecTronic Laboratories, Inc., 1711 Terra Cotta Place, Chicago 14, Ill., has published a new catalog of photoelectric equipment for industry. It illustrates and describes a complete line of amplifier-relays and light source and phototube units with design standardized to eliminate the high cost of specially engineered apparatus.

Loudspeakers. The Plessey Co Ltd., Ilford, Essex, England. Puł lication No. 542 is a 16-page cat \log describing in detail a new 1 of shrouded loudspeakers. line described includes four ; of circular units, and one

- Specifically designed to meet the growing need for a U. H. F. insulating material thats low in cost.
- Meets JAN-P-77 and MIL-P-77A specifications.
- Withstands high temperature due to ita thermosetting nature.
- Has outstanding electrical prop erties.
- Has low spocitic gravity - is strong and rigid with unusually high compressive and tensile strength.
- Has excellent impact strength and hardness allowing its use under highly abusive conditions.
- Its dimensional stability and anusual chemical inertness allow its use where other materials fail.
- Readily machinable to extremely close tolerances.
- Available as centerless ground rods in any diameter up to $1^{\prime \prime}$. Also cast in larger diameter rods and sheets.
Write today for technical balletins and samples. Our engineering staff is always at your disposal.

[^13]CAMBRIDGE 39, MASS.

Special TRANSFORMERS Individually Built

To YOUR Specifications

Estab. 1920

IN
Small quantitites For 31 years we have been building transformers in single units or in quantity to the most exacting requirements. Cost compares favorably with standard types. Quality proved by years of actual use in Electronics, Research and Special Instrument fields. Built to meet NEMA and ASA Standards.

From 10 VA to 300 KVA Dry-Type only. Both open and enclosed. 1, 2 and 3 Phase 15 to 400 Cycles.
SEND FOR 8 PAGE BULLETIN, AND PRICE LIST

WINDING LABORATORIES
9 ALBEMARLE AVE., TRENTON 3, N. J.

New G-E Hermetically-Sealed Relay Protected from Breakdowns

Cuts Down on Relay Replacements

General Electric's new aircraft relay is more highly arc-resistant, has non-tracking stack insulation, because of a revolutionary technique for directly molding contact arms into a polyester compound.

Rated at 28 volts d.c., the relay withstands surges up to 1500 volts.

A more powerful magnet structure yields a higher tip pressure, adds to the surety
of making contacts. And the relay is a higher tip pressure, adds to the surety
of making contacts. And the relay is available for quick shipment. Write Section 730-38 for Bulletin GEA-5729.
General Electric Co., Scbenectady 5, N. Y.

INSTRUMENTS

FOR APPLICATIONS INVOLVING THESE BASIC MEASUREMENTS

CALCULATION $+\cdots \div x$

For business, industrial and scientific opplications requiring computation, data han dling, memory ond high speed printing, the Potter Instrument Company can supply complete systems. Some of the newly developed equipments include simplified electronic arith. metic units, multipurpose shift registers, storage devices, photoelectric readers, tape handlers and high speed line-at-a-time printer

QUANTITY

Pills, buttons, bottle caps, hardware, etc., can be counted and batched in precise predetermined quantities of speeds up to 60,000 per minute. Important savings in labor and overages are assured by the speed and accuracy of the Potter Electronic Counter. Count Detectors for any product are available.

LENGTH

Wire or strip material can be automatically sheared or marked in precise predetermined lengths at high rates of speed, and if required, automatically stacked in predetermined quontities. Practically any definition of measure. ment can be obtained

tIME

Time intervals can be easily measured or generated with extremely high accuracy through the use of Potter Counter Chronograph Interval Timers. Registration of measurement is retained until reset. Accuracy of one part in $8,000,000$ can be provided

SEQUENCE

Since the electronic counters can be ar ranged to predetermine any sequence of selected counts, they can be readily and advantageously substituted for cams, gears, patterns, chains and other systems of timing control. Control by absolute count assures high accuracy, faster operating speeds, since there are no moving parts to wear.

FREQUENCY

Potter Electronic Counters provide on exact ratio of division which is maintained even though the input frequency is varied If the input frequentcy is stopped the output also stops. Frequencies can be measured or generated with high precision Square waves of variable frequency, pulse width and number can be easily generated

REVOLUTION

Through electromagnetic or photoelectric pickup, shaft rotation can be accurately counted or timed without physical contact. Fractional parts of a revolution can be measured or used to control automatic machine processes as a function of predetermined counts.

PROBLEMS

Your specific counting, timing or control problem, explained on our data sheet, will result in a prompt and efficient solution by our engineers.

WRITE FOR DESCRIPTIVE CATALOG NO. 38
POTTER IUSTRUMENT COMPAMY
117 CUTTER MILL ROAD, GREAT NECK, NEW YORK
tical, each available in a choice of four flux densities, and each providing a choice of cones having performance characteristics adapted for various classes of receivers.

Capacitor Catalog. John E. Fast \& Co., 3101 N. Pulaski Road, Chicago 41, Ill. Catalog No. 27 lists an entire line of power-factorcorrection capacitors. Section 1 gives general information on their applications and locations, with general standards and specifications; section 2 details individual units; section 3 is devoted to racktype assemblies; and section 4 lists pole types.

Semiconductors. Carboloy Department of General Electric Co., Detroit 32, Mich. Catalog TH-5 contains 30 pages of general basic information relating to physical and operating characteristics of thermistors, which are electronic semiconductor control elements whose electrical resistance responds negatively to minute temperature changes. Typical applications and wiring diagrams are listed. Graphical data of tempera-ture-resistance ratio characteristics for rod, disk and washer-types are included. The last page gives suggested applications for thermistors in various industries.

Drawn-Oval Capacitors. General Electric Co., Schenectady 5, N. Y. Bulletin GEA-5777 covers the new line of dual-rated capacitors in drawn oval containers. The units described, designed to replace case styles CP53 and CP70, are lighter, smaller, mechanically stronger, 10 to 20 percent lower in cost, and constructed so as to save critical materials. Dimensional drawings and a table of prices and data are included.

Differential Transformers. Automatic Temperature Control Co., 5200 Pulaski Ave., Philadelphia 44, Pa. Bulletin R-31 explains the principles of differential transformers. It covers in detail the characteristics of linear transducers and their wide and varied use in industry. Profusely illus-

ACME MAKES BOTH!

FILTERS WITH TOROIDS
... FILTERS WITH LAMINATIONS

Depending on what frequency is required, Acme can supply standard or miniaturized filters with either toroidal or lamınated inductors.

Where required, these filters can be manufactured to hold very close phase shift tolerances and close output requirements over wide temperature ranges.

Write for complete catalog on this and other Acme standard and custom designed electronic products.

300 NORTH LAKE AVENUE, PASADENA 4, CALIF.

 CORPORATION 1200 E. MERMAID LANE PHILADELFHIA 18, PA.

Raytheon offers you allof the newest Toroid winding facilities plus a rich background of experience in the design and production of Toroid coils for military and commercial applications. As a pioneer in the field of precision-wound Toroidal inductors and transformers, Raytheon has led the way in the development of advanced techniques for combating moisture and maintaining high values of Q ...
in meeting today's needs for special audio and ultra high frequency transformers ... and in the development of special high-precision deflection coils for military applications.
In every way Raytheon is completely equipped to serve you as your reliable source of supply for all types of highest quality precision wound Magnetic Components. Write for complete information.

RAYTHEON

MANUFACTURING COMPANY EQUIPMENT SALES DIVISION
DEPT. 6470-A WALTHAM 54, MASSACHUSETTS district offices: boston, new york, cleveland, chicago, new orleans, los angeles (wilmington), san francisco, seattle INTERNATIONAL DIVISION: 19 RECTOR ST., NEW YORK CITY

[^14]trated, it includes all the various types of indicators, recorders, pressure transmitters, control relays, servomechanisms, load cells, demodulators, amplifiers, micrometer positioners and many other industrial instruments.

Moisture \& Fungus-Resistant Varnish. Brooklyn Paint \& Varnish Co., Inc., 50 Jay St., Brooklyn 1, N. Y. A 4-page brochure deals with the TUF-ON 747-S moisture and fungus-resistant varnish that conforms to government specificacation MIL-V-173A. The varnish described is designed for the treatment of communications, electronic and associated electrical equipment. Included are a table of test requirements, methods of application, safety precautions and drying information.

Airborne Mounting Bases. T. R. Finn \& Co., Inc., 333 Jackson Ave., New York 54, N. Y. Catalog MB110 is a four-page illustrated brochure on airborne electronic mounting bases; vibration isolators for these mounting bases to JAN-C-172A specifications; type M shock mounts to Signal Corps specifications; and fire control shock mounts for Naval vessels. Included are diagrams showing specifications, technical characteristics and explanatory notes.

Interference Filters. Photovolt Corp., 95 Madison Ave., New York 16, N. Y. Bulletin No. 180 deals with G.A.B. interference filters for the isolation of narrow spectral bands in colorimetry, fluorimetry, microscopy, photomicrography, flame photometry and color densitrometry. The units described are also used in reflectometry, lightscattering measurements, microcolorimetry, refractometry, polarimetry, and in all other fields requiring monochromatic light in the visible and near-infrared range.

Low-Voltage Vehicular Capacitors. Sprague Electric Co., 35 Marshall St., North Adams, Mass. Bulletin No. 217 gives full details on type 131J line of hermetically-sealed corrosion-resistant capacitors for

2 KW
 VACUUM TUBE BOMBARDER OR INDUCTION HEATING UNIT

For Only \$650.

Never before a value like this new 2-KW bench model "Bombarder" or high frequency induction heater . . . for saving time and money in surface hardening, brazing, soldering, annealing and many other heat treating operations.

Simple . . . Easy to Operate . . . Economical Standardization of Unit Makes This New Low Price Possible.

This compact induction heater saves space, yet performs with high efficiency. Operates from 220 -volt line. Complete with foot switch and one heating coil made to customer's requirements. Send samples of work wanted. We will advise time cycle required for your particular job. Cost, complete, only $\$ 650$. Immediate delivery from stock.
Scientific Electric Electronic Heaters are made in the following ranges of Power: 1-2-31/2-5-71/2-10-121/2-15-18-25-40-60. 80-100-250KW.

Division of
" S " CORRUGATED QUENCHED GAP CO. 107 Manroe St., Garfield, N. J.

U. G. CONNECTORS

Our Coaxial Cable Connectors Meet All Government Specifications

\star All ORDERS DELIVERED PROMPTIY \star
Manufacturers of Higbest Quality Connectors
ALIIED INDUSTRIES, INC. 1023 S. 21st STREET LOUISVILLE 10 , KY.

Phone Arlington 4640

FOR THOSE TIGHT SPECIFICATIONS

- Ranges from . 05 Ohms to 55,000 Ohms, depending on type.
- Tolerance $.1 \%, .5 \%, 1 \%, 3 \%$ and 5%.
- RH Types-Silicone sealed in a die-cast, black
anodized radiator finned housing and mounts on sub-panel for maximum heat dissipation.
- Prompt Delivery.
- Let us quote on your immediate needs. Phone, wire or write George Risk Telephone 2139-2500 13th Street For Price \& Delivery
(We alse manufacture deposited carbon resistors)

10.Watt

Type RS-10

"DALOHM"
 MINIATURE PRECISION RESISTORS
 MANUFACTURED IN ACCORDANCE TO
 JAN-R-26A Specifications Characteristic $\mathbf{G '}^{\prime}$

We're sorry, but we think it's only fair to tell possible new customers our Standing Room Only sign must be changed to Sold Right Out!

The design and production facilities of our microwave department are now taken over by the increasing requirements of our present customers. Because of our responsibility to them, this situation may continue quite a while.

We are sorry to say this because we enjoy making new friends. But we feel that we should tell those who might be interested in our engineering and manufacturing facilities, that for some time we may not be able to serve them.

Any change in the situation will be announced in this publication.

radio-interference suppression on the low-voltage electrical systems of military vehicles and portable gasoline-driven power plants. The metal-encased capacitors described, designed to meet U.S. Army Specification 71-1667 and Ordnance Drawing DQBX1, withstand severe shock and vibration as well as atmospheric moisture and salt spray.

Damage Control. The Brinnell Co., Simsbury, Conn. Bulletin 252 fully describes the Protectron, an electronic device for preventive maintenance and increased production efficiency. The catalog points out that Protectron-equipped plants have been able to step up production of present equipment by 12.5 to 22 percent, have reduced tool and die breakage up to 86 percent, and have been able to effect a manpower gain up to 300 percent, since one man can safely handle four Protectron-eqipped automatic machines.

Picture-Tube Data. Allen B. DuMont Laboratories Inc., 1,000 Main Ave., Clifton, N. J., has announced distribution of the latest edition of the "Picture Tube Data Chart." The chart, printed on heavy stock and suitable for wall mounting, lists the electrical and physical characteristics for any modern RTMA-registered tv picture tubes.

Pressure-Sensitive Tapes. Insulation Manufacturers Corp., 565 W. Washington Blvd., Chicago 6, Ill. Detailed information on characteristics, uses and technical data for Permacel pressure-sensitive electrical tapes is provided in a new 16 -page catalog. Descriptions of nonelectrical Permacel and Texcel tapes are included. Cotton cloth, crepe paper, flatback paper, acetate cloth, acetate film, acetate cloth-film combination and vinyl film electrical tapes are covered. A special section is devoted to nonelectrical paper, cloth, glass-reinforced paper, cellophane, and acetate fiber tapes.

Subminiature Terminals. Garde Mfg. Co., 588 Eddy St.,Providence 3, R. I. A single-page bulletin

The Victoreen 5886 Quality subminiature electrometer pentode has unusually low filament current and high emission stability. It's structure is designed to reduce microphonics, an improvement of prime importance in portable equipment. The tube has a high ratio of transconductance to control grid current, a feature which makes it especially useful in single stage circuits in portable equipment.

DATA	Pentode Connected	Triode Connected
TYPICAL SERVICE	Electrometer	Electrometer
PLATE VOITAGE (volts)	+12	+10.5
ACCELERATOR GRID VOLTAGE (volts)	+4.5	- - -
$\underset{\substack{\text { CONTROL } \\ \text { (volts) }}}{\substack{\text { GRITAGE }}}$	2.0	3.0
PLATE CURRENT ($\mu \mathrm{a}$)	6	200
$\begin{aligned} & \text { CONTROL } \\ & \text { GRID CIRRENT } \\ & (\mu \mathrm{a}) \end{aligned}$	3×10^{-16}	2×10^{-13}
${ }^{\mu}$	1	
$\underset{(\mu \mathrm{mhos})}{\mathrm{Gm}}$	14	160
FILAMENT	1.25 volts	at 10 ma

Write cur Technical Service Department for further details.

RESEARCH DESIGN

DEYELOPMENT PRODUCTION

Televiso Corporation

$746 G$ WEST IRVING PARK RDAD - CHICAGD 34.ILL

shonz deyces
To: Chiof Engineer
subject: Redio Interfurerce

Gentlemen:

The problem of Padio Interference roduction is coning into greater orominence, with greater emphasis being given in M1litary specificetions, and more stringent rules boing enacted by the Federal to consider interforence in the design of neve equipment, and as a result, few componies have odequate measuring equiprent or porsonnel trained to use it.
Teleriso has been a pioneer in the Interference Reduction ffeld, end for some time has been performing research and acting as consultant to the chited States Navy. We ere one of only four companior in to Cnitai stestes - and the only one lin the Wiake acceptance tests,

Our facilitias include Goverriment epproved measuring instruments covering the renge from 11 ke to 1000 me and a sereen room 12' by L4' by $7 \frac{1}{3}^{\prime}$. The instrunents ses acrtekle, ant we can make mensure ments outsids our plent wien necessary * Our engineering staff hae been trained by the Eureau of Ships, S. Navy, at hmapolis, en has thed extenstve exper Radio Interforence.

Phether you are a manufacturer, operator, or repeirman of electronic cr electro-mecharicel

For complete detelis, please contact the writer.
Very truly yours,
TELEVISO CORPORATION

FAH:LC

Technology Instrument Corporation potentiometers are designed for application in computing devices, instrumentation, electronic control and servo mechanisms - wherever extreme electrical and mechanical precision is an essential requirement.

As a result of years of custom manufacturing a complete line of standard sizes is available ranging from 7 inches in diameter to the sub-miniature $7 / 8^{\prime \prime}$ in diameter.

Custom design both mechanical and electrical is a featured TIC service. Precision non-linear pots may be designed to meet customer's requirements from either empirical data or implicit functions. Taps and special winding angles anywhere up to 360° continuous winding can be incorporated into both linear and non-linear precision potentiometers. Greatly expanded facilities plus mass production techniques meet customer volume needs yet maintain precision tolerances in both linear and non-linear potentiometers.

Engineering Represenfatives

533 Main Street, Acton, Massachusetts, Telephone: Acton 600
illustrates and describes the subminiature insulated standoff terminals featuring a voltage breakdown of $3,500 \mathrm{v}$ a-c, rms, 60-cycle test. The molded Melamine insulation included in the units described is in accordance with latest revisions of MIL-P-14 specification.

Test Equipment. Communication Measurements Laboratory, Inc., 120 Greenwich St., New York 6, N. Y. A recent 12 -page catalog contains illustrated descriptions and specifications for the following instruments: models 1430 , 1435 and 1420 variable frequency electronic generators; models $1115-\mathrm{A}, 1100,1110,1130$ and 1135 regulated power supplies; model 1010 automatic inspector Rotobridge; models 1060 and 1061 Rotobridge cable test stands; model 1210B stroboscope; and model 1500 megohmmeter. Prices for each are included.

Control Selection. General Electric Co., Schenectady 5, N. Y., offers an eight-page selection guide for a wide range of electric and electronic controls, devices and accessories. Bulletin GEA-5781 contains quick-reference selection data, photographs and listings of additional publications that give complete information on each of the equipments. Products included are: manual, magnetic, combination and reversing motor starters; pushbutton stations; relays; limit switches; solenoids; photoelectric relay; electronic relay; electronic timer; pressure and vacuum switch ; float switch; pressure governor; reduced-voltage starter; Thy-mo-trol drive; and smoke density indicator and control.

Mobile Antennas. Ward Products Corp., Division of The Gabriel Co., 1523 E. 45th St., Cleveland 3, Ohio. A new catalog sheet gives complete specifications on model SPPC-88. The sheet describes a special mobile antenna used to eliminate the frequent breakage that occurs when antennas for the 30 to $50-\mathrm{mc}$ bands are mounted on a high vehicle such as a bus or truck.

Here's a quick solution to MulThiny PACKAGGNG

P
Meets all Specifications for Signal Corps, Navy and Air Force Shipments of Electronic Equipment with Facilities that include-

- special packaging

EQUIPMENT

- experts in military

SPECIFICATIONS

- economical assembly

LINE METHODS

- full compliance in

EVERY DETAIL

- COMPETENT CONSULTING

SERVICE
NEW ILLUSTRATED BROCHURE explains in detail how Cargo Packers can economically handle all details of your military packaging problems. You save valuable plant space, costly equipment and the need for experienced specification packaging experts. Find out now, how Cargo Packers production line methods save you time, money, endless detail work, and costly errors. Request your copy, now!

CARGO PACKERS

incorporated 73 RUTLEDGE STREET BROOKLYN 11, NEW YORK

also OLYMPIC
Fabricated cases End shields Channel frames Mounting brackets
hot tin dipped . . . fabricated terminal and vent holes . . . smooth, one-piece construction using cold rolled steel ... draw depths up to $21 / 2^{\prime \prime}$. . . inside fit covers for easy hermetic sealing in all sizes . . . available as stock sizes and as special fabrications.
(C) CuTM D P. O. BOX 71A

PHILLIPSBURG, N. J.

Federated offers industry's most useful testing instrument!

THE NEW RCA MASTER VOLTOHMYST

For direct measurement of:

- peak-to-peak values of unsymmetrical complex waves from 0.2 volt to 2,000 volts
- peak-to-peak values of symmetrical complex waves from 0.2 volt to 4,200 volts
- rms values of sine waves from 0.1 volt to 1,500 volts
- de voltages from 0.02 to 1,500 volts
- resistance over the range of 0.2 ohm to 1.000 megohms
- small currents from 10 microamperes to 500 milliamperes, de
- large currents from 500 ma up to 15 amperes, de

For servicing, production, research: Accurate $81 / 2^{\prime \prime}$ meter.
Complete specifications on request.

PLANTS AND PEOPLE

Edited by WILLIAM P. O'BRIEN

Engineers Form New Company

AN electronics development and manufacturing organization in Baltimore, to be known as Phebco, Inc., was recently set up by J. M. Pearce, P. A. Hoffman and T. T. Eaton, previously with the Glenn L. Martin Co. as chief electronics engineer, assistant chief electronics engineer and section head of the missile guidance group respectively. They are specializing in electronic instrumentation, special test equipment and telemetry for the missile and radar fields.

Kupfrian Doubles Plant Space

The Kupfrian Mfg. Co., producers of flexible shafting, universal joints, wire shielding and remote controls,
announce the recent purchase of a five-story brick building at 395 State St., Binghamton, N. Y., containing over $12,000 \mathrm{sq} \mathrm{ft}$ of floor space.
With the new space Kupfrian more than doubles the area in which operations were started in 1950. During this first two years, the number of employees has increased from the initial ten to forty-five. Much of the current production is for military requirements.

Antema Test Range

On the site of their new Natick, Mass., laboratory, Workshop Associates, Division of The Gabriel Co., has completed a new antenna pat-tern-measuring range. The range will be used for measuring antenna radiation patterns over a distance

GETTING READY FOR EXPANDED TV

Television transmitters and amplifiers undergoing final testing at GE's Electronics Park plant, Syracuse, N. Y. Pictured are five-kw units for vhf channels 2 through 13 and $35-\mathrm{kw}$ amplifiers for increasing the range and improving the picture quality of present and future tv stations. General Electric anticipated the end of the freeze on new to construction to make possible the delivery of transmitting equipment this year. The company also has in production low-power transmitters for the new ultra-high frequencies, some of which will be delivered this year
 antenna pattern-measuring range
of about 1,200 feet. It consists of a transmitting tower (illustrated) and a receiver 1,200 feet away where the actual measuring is done.
The transmitter is 35 ft above the ground, on the top of a knoll, and the terrain is clear and sloping to the receiver. The enclosure has a $20 \mathrm{ft} \times 12 \mathrm{ft}$ floor area and provision for transmitting four frequencies simultaneously.

The new range is now in operation and supplements the $3,200-\mathrm{ft}$ range Workshop has been using for several years at its Needham, Mass., plant.

Poole Expands UHF TV

C. F. Rothrock, Jr., field engineer with Link Radio Corp., has joined the John H. Poole Broadcasting Co., Hollywood, Calif., as uhf television development supervisor to direct equipment improvement in the company's experimental station on channel 22, KM2XAZ.

Rothrock's most recent assignments for Link have included a uhf

electronic wire and cables for standard and special applications

Whether your particular requirements are for standard or special application, choose $L E N Z$ for the finest in precision-manufactured electronic wire and cable.

GOYRRNMENT PURPOSE R ADIO AND INSTRUMEMT HOOK-UP WIRE,

plastic or bratded type, conforming to Government Specificalian $\$ \mathrm{AN}-\mathrm{C}-76$, ste., ior radio and instruments. Solid or flexible conductors, in a variety of sizes and colors.

RADIO AND BNSTRUMENT HOOK-UP WIRE,

Underwriters Approved, fac 80° C., $90^{\circ} \mathrm{C}$, and 105° C. temperature requirements. Plastic insulated, with or without bratds.

RF CIRCUIT HOOK-UP AND LEAD WIRE

for VHF and UHF, AM, FM and TV high frequency circuits. LENZ Low-Loss RF wire, solld or stranded tinned copper conductors, bralded, with color-coded insulatlon, waxed impregnation.

SHIELDED MULTEPLE CONDUCTOR CABLES
Canductars: Multipte-2 to 7 or more of tlexible finmed copper. Insulation: extruded coloricaded plastic, Closely braided ilinned copper sheld. For: Auto radia, indoor PA systems and sound recording equipment.

SHIELDED COTTON BRAIDED CABLES
Conductors: Multiple--2 to 7 or more of flexible tinned copper. Insulations extruded color-coded plastic. Cable concentrically formed. Closely braided tinned copper shield plus brown overall cotton braid.

SPECIAL HARNESSESS,

cords and cables, conforming to Government and civilian requirements.

SHIELDED SACKETED MUCROPHONE CABLE
Conductors: Mulfiple 2 to 7 or more conductors of stranded tinned copper. Insulation: extruded coiorcoded plastic. Closely braided tinned copper shield. Tough, durable jacket overall.

JACKETED MICROPHONE CABLE

Conductors: Extra-flexible tinned copper. Polythene insulation. Shield: ± 35 tinned copper, closely bralded, with tough durable jacket overall. Capacity per foot: 29MMF.

TINHED COPPER BHIELPING AND

 EOMDING ERAIDSConstruction: 834 tinned copper braid, flattened to various widths. Bonding Braids contorming to Federat Spec. QQ-B-S75 or Alt Force Spec, $94-40229$.

PA AAD INTERCOMMUMICATION CAELK

Conducfors: $\$ 22$ stranded tinned copper. Insulation texilie or plastic insulated conductors. Cable formed of Twisted Pairs, color-cuded. Cotton braid or plastic ackat overall. Furnished in $2.5,7,13$ and 25 paired, or to specific requirements.

Lenz Electric Manufacturing Co.
1751 N. Western Ave., Chicago 47, llifinois
radio-telephone link for a large war plant, the first highway truck radio system in the west and several police radio departments.

His engagement is the latest stage in Poole's uhf developmental program, which has included establishment of KM2XAZ on Signal Hill, Long Beach, in 1949; creation of improved transmission facilities in cooperation with Stanford Research Institute; and enlargement of coverage by moving the station to Mt. Wilson early this year.

WCEMA Addition

NEWEST corporate member elected to the Los Angeles Council of the West Coast Electronic Manufacturers' Association is Franklin C. Wolfe Co., 11,723 Mississippi Ave., Los Angeles, Calif., makers of terminals and other electronic products, and serving also as design engineers and consultants.

Speer Carbon Consolidates

Speer Carbon Co., St. Marys, Pa., and its subsidiaries, Jeffers Electronics, Inc., DuBois, Pa., Inter-
national Graphite and Electrode Corp., Niagara Falls, N. Y., and Speer Resistor Corp., St. Marys, Pa., have consolidated into one company, the Speer Carbon Co., with headquarters at St. Marys. The various subsidiaries henceforth will operate as divisions of Speer Carbon Co.

National Union Forms Transistor Division

FORmATION of a transistor division, to be engaged in the manufacture of germanium and silicon diodes and transistors of both the point contact and junction types, has been announced by National Union Radio Corp., Orange, N. J.

Edmund G. Shower has been appointed head of the new division. He was for many years with the Bell Telephone Laboratories where he set up the initial transistor production line. On leave of absence from Bell Labs from 1943 to 1946, he served in the Navy, where as a member of the Bureau of Ships, Electronics Division, he had charge of coordination of electron tube design for the Naval Establishment

ELECTRONICS LANDMARKS INSPECTED

Two major landmarks in the history of electronics are represented by the devices in the hands of the men pictured above. On the left is William Shockley of Bell Telephone Laboratories, who direcied the research program leading to the invention of the transistor. On the right is Lee deForest, who in 1907 invented the audion, forerunner of modern vacuum tubes, and the cornerstone of modern electronics. The photo, made during a recent visit to Bell Laboratories by Dr. deForest, shows him holding the transistor and Dr. Shockley holding the audion
with the Army, Air Force, Marine and allied agencies.

RDB Appointment

Appointment of C. Guy Suits as a civilian member of the Committee on Electronics of the Department of Defense Research and Development Board was recently announced by D. A. Quarles, committee chairman.
Dr. Suits, who is vice-president and director of research for the General Electric Co., Schenectady, N. Y., was formerly a member of the Committee on Ordnance of the Research and Development Board, and is presently a member of the Special Technical Advisory Group of the Board and the Joint Chiefs of Staff.

Civilian members in addition to Mr. Quarles, vice-president of Western Electric Co. and president of the Sandia Corp., and Dr. Suits, are Dr. E. W. Engstrom, research director of RCA Laboratories, Princeton, N. J., and Dr. William L. Everitt, dean of engineering at the University of Illinois, Urbana, Ill.
Three representatives from each of the military departments complete the membership of the group.

West Coast Company Expansions

Four companies have recently announced plant expansion on the west coast:

The Pacific division of Bendix Aviation Corp., North Hollywood, Calif., has purchased the PhotoElectric Pilot Corp., Seattle, Wash., and Photo-Electric president A. B. Dickison is joining the Bendix organization in an executive capacity. Manufacture of Photo-Electric marine pilots will be continued temporarily at the Seattle plant, and will be moved to North Hollywood in late summer. Pacific division of Bendix first entered the marine field in 1947 with its electronic depth recorder.

Varian Associates, San Carlos, Calif., has awarded a contract for construction of its new research and development laboratory to be built on a 10 -acre land tract leased from

A PIRIMARY STANIDARD IN THE MHCROWA VE SPECTREM FAST • SIMPLE • ACCURATE

THE MICROWAVE MEGA-NODES

NOISE OUTPUT (All Guides) 15.8 db Accurate to $\pm 0.25 \mathrm{db}$

USES: The Microwave Mega-Nodes are sources of ran dom noise provided in six waveguide sizes. The Microwaye Mega-Nodes may be used for the measurement of noise figure, receiver gain, and for the calibration of standard signal sources. The noise figure is obtained by comparing the noise output of a system with the amount of noise introduced by the Microwave Mega-Node. Comparative receiver sensitivity measurements may be easily made unless excessive noise is present in the systems under comparison. In radar systems the Microwave MegaNode is particularly useful in checking the over-all performance.

DESCRIPTION: The Microwave MegaNodes employ a gas discharge which is radiating substantially monochromatic light. The Mega-Nodes are available in the following waveguide sizes and cover the following ranges:

RG 69/U	1,200 to 1,400 megacycles
RG 48/U	2,600 to 3.950 megacycles
RG 49/U	3,950 to 5,850 megacycles
RG 50/U	5,850 to 8,200 megacycles
RG 51/U	7,050 to 10.000 megacycles
RG 52/U	8,200 to 12,400 megacycles

One end of each waveguide is terminated in a standard flange.

A thermometer is attached to each waveguide to correct for temperature varictions.

The standing wave ratio is less than 1.2 over the entire range and is usually less than 1.1 over most of the operating region.

PRICE:
Single waveguides RG-48/U, RG-49/U, RG-50/U, RG-51/U, or RG-52/U
$\$ 195.00$
Standard power supply for any of above $\$ 100.00$
RG-69/U (L-Band) Waveguide . . $\$ 400.00$
Special power supply for RG69/U guide \$120.00

Set consisting of standard power supply and one each of the following waveguides: RG-48/U, RG-49/U, RG. 52 /U \qquad
Prices are F.O.B Factory
Export charges: Add 10% for outside U. S. and Canada.

Pit teperate MOSINEE Forest Fibres to work for you!

Remember . . . MOSINEE means more than "paper" in the field of electronics and electrical products. MOSINEE stands for FIBRES that have scientifically controlled electrical, chemical and physical properties, to perform specific functions . . . fibres of dependable technical uniformity vital to your quality standards and production requirements.
MOSINEE fibres can be made to your specifications, with

- good dielectric strength, high tensile or tear strength . . .
- specified pH for maximum-minimum acidity or alkalinity ...
- accurate caliper or density . . .
- proper impregnation characteristics for resin, wax or other substances...
- proper characteristics for plastics operations and parts ...
- uniform softness, stiffness, flexibility, toughness ... or other vital technical characteristics.

MOSINEE has its sources of quality forest fibres, practical experience, laboratory facilities, and scientific production controls to create and produce the type of fibres your operations require. Contact MOSINEE.

Stanford University. The new laboratory will be ready for operation by April 1953. At the same time, San Carlos facilities will be expanded to include a staff of about 500 to manufacture klystrons and other electronic products.

The Walkirt Co., designers and' manufacturers of electronic pulse circuitry, have moved into their new and expanded quarters at 145 W . Hazel St., Inglewood, Calif. Offices and enlarged production facilities are available for custom engineering and manufacturing, with emphasis placed on miniaturization, resin encapsulation and pulse circuitry for all types of high-speed or high-precision counting or mensuration of time, frequency and rotational sneeds. The Walkirt Co. was formerly located in Culver City, Calif.

The Ajax Condenser Co., Inc., of Chicago, Ill., has announced the opening of a capacitor factory at 10905 Chandler Blvd., North Hollywood, Calif. The new factory will soon be able to offer to the electronic and electrical industries on the west coast the same complete lines of electrolvtic and paper capacitors and noise filter units produced by the Illinois corporation.

Majestic Appoints VicePresidents

Frank J. Dieli has been appointed vice-president and chief engineer of Majestic Radio \& Television, Division of The Wilcox-Gay Corp., Brooklyn, N. Y. He heads the engineering and research staffs for Majestic Radio \& Television, Garod Radio, and recently assumed charge of engineering for Wilcox-Gay re-

F. J. Dieli

REIIABIITY

MAGNETIC DRUM STORAGE SYSTEMS

Ruggedly designed to rigid specifications, operationally proved by tens of thousands of hours of operation in a variety of applications, ERA Magnetic Drum Storage Systems are fully engineered, operationally reliable systems.

Large storage capacity, proven dependabilitg, alterable yet noa-volatile storage, and high speed are among the importan characteristics which make these systems the optimum choice for many high-speed data-handling problems.

ERA's experienced engineers will be pleased to assist you in the application of ERA Magnetic Drum Storage Systems to your particular system requirements.

Department E-1, 1902 West Minnehaha Avenue St. Paul 4, Minnesota

Digital Computers Data-Handling Systemse Magnetic
Storage Systems \quad Instruments Analog Magnetic Recording Systems - Communications Equipment.
hermetically sealed

miniature and sub-miniature

axliot tansoromers

- MANUFACTURED
to meet most
exacting MIL-T-27 specifications.
- STYPOL
impregnation prior to potting assures quiet operation and long life under all adverse conditions.
- MU-METAL
core assures a light weight, compoct unit with full efficiency and wide frequency response.
- MIL FAMILY TYPE AVAILABLE:
Input-10, 11; Drive;-12; Output-13; Modulation-14; Interstage-15;
Matching-16, 17;
Audio Oscillator-18;
Multi-Purpose - 19 ;
Audio Inductor-20.
- PRODUCTION SAMPLES

Submitted for your inspection and approval.

- TRANSISTOR APPLICATION:
Stock items designed for transistor circuitry
- JOBBER LINE

Immediate delivery on full line of ouncer and subouncer type miniatures

LABORATORIES, INC.

Whitehall Building, Far Rockaway, N. Y. - FA 7-2732

this you MOISTURE and must FUNGUS PROOF read your PARTS?

D RODUCTION Engineering's complete Moisture- and Fun-gus-Proofing Process (Hot Wax, Varnish and Dow Corning 200) is already saving more and more electronic component manufacturers substantial sums and hours. You, too, can effect the same type of DOLLAR and time savings.

Our process-vacuum centrifuging, etc.-passing all government specifications-is complete for rugged or delicate parts of practically any type of material.

We guarantee that it will be satisfactory. It will accurately fulfill your specifications and banish moisture- and fungus-proofing headaches. It will pay you to investigate the money and time saving features of our service. Get the FACTS

[^15]

Here is a highly efficient, easily operated, sweep generator that eliminates many production test headaches.

Any one of 12 T.V. Channels can be instantly selected by means of a prominent front panel dial. R.F. tuning alignment is greatly accelerated and simplified through the use of a pre-set 15 MC . sweep for each channel, complete with crystal sound and video markers.

These features, plus the added advantage of continuous maintenancefree operation, warrant your immediate investigation.

Plan ahead for your instrument requirements, now!

SPECIFICATIONS

FREQUENCY COVERAGE:

Television channels 2 to 13 inclusive on fundamental oscillator frequency.

BANDWIDTH:

15 MC . on all channels. May be adjusted to greater or lesser bandwidth. Return trace blanking to provide reference baseline.

OUTPUT:

At least 0.5 volt peak across 75 ohm terminated cable. Amplitude of sweep constant within $\pm 5 \%$ over entire band. Output probes furnished for 75 and 300 ohm receiver inputs.

attenuator:

Push button constant impedance type. Four fixed steps of 20, 20,20 , and 10 db plus 10 db variable.

AUXILIARY OUTPUT SIGNALS:

Sawtooth sweep signal automatically phased for " X " axis of oscillograph.
Monitor output derived from germanium crystal rectifier connected across output cable. Marker pulses both positive and negative in polarity and variable in amplitude when connected externally.

PRICE: $\$ 695.00$ F.O.B. factory.

Manufacturers of a complete line of TV and Radar Test Equipment
Tet-rusirumient Co. Inc.
50 PATERSON AVENUE - EAST RUTHERFORD; N. J
cording products. He joined Garod ten years ago and was made chief engineer in 1950.

The company has also announced the appointment of Robert J. Leykum to vice-president in charge of

R. J. Leykum
manufacturing. He joined Garod in 1935 and prior to his new appointment served as plant superintendent in the company's Brooklyn tv and radio receiver plant.

OTHER NEWS

New Radio Disturbance Warnings

Beginning July 1, 1952, the National Bureau of Standards will broadcast new short-wave radio disturbance forecasts via the NBS standard frequency broadcasting station WWV. This new service will replace the radio disturbance warning notices that have been transmitted by WWV since 1946. The broadcasts will tell users of radio transmission paths over the North Atlantic the condition of the ionosphere at the time of the announcement and also how good or bad communication conditions are expected to be for the next 12 hours.

The NBS radio disturbance forecasts, prepared four times daily, will be transmitted in Morse code twice each hour-193 $\frac{1}{2}$ and $49 \frac{1}{2}$ minutes past the hour-on WWV standard frequencies of $2.5,5,10,15,20$, and 25 mc , as was done prior to July 1. As in the past, the notices will include a letter indicating present radio reception conditions. However, the new notices will also contain a digit indicating the expected quality of future reception. As be-

Transformers for Television
... Radar. . . Aircraft ... Geophysics. . Radio

You will find Thermador ready, willing and fully qualified to handle your transformer requirements. Engineering experience and manufacturing knowhow, developed over a period of 35 years, form the hard core that makes Thermador today's largest West Coast manufacturer of electrical appliances and transformers. We would like to work with you on your next project involving the design and production of transformers for specific requirements...including joint Army-Navy specifications.

transformers:

Audio Auto	Geophysical
Driver Filament	High-Fidelity Audio
Input-Output	Midget Plug-In
Plate Power	Television

...also Chokes and Reactors MANUFACTURING CO. 3-320
5110 District Boulevard - Los Angeles 22, Calif.

Make a BHT porases pansonval GALVANOMETER

FÓR MEASURING LIGHT reflectance and color, the Photovolt Corporation of New. York uses a Model 600 G-M Galvanometer for its popuiar Reflection Meter (left). Whatever your own particular instrument field, you can achieve this same self-zontained portability, ruggedness and high sensifivity with G-M Galvanometers. Complete catalog on request.
GN LABORITORIRS•Isc.
In Canada: Cossor (Canada) Litd.
301 Windsor St., Halifax, N. S. $\mathbf{4 3 3 6}$ NORTH KNOX AVE., CHICAGO 41

PURE DUCTILE

ZIRCONIUM

lodide processed Zirconium of highest 'purity for commercial use. - 20% lighter than steel.

- oulstanding resistance to corrosive attack by both acids and olkalies.
- remarkable gas absorption properties.

Zirconium is ductile and malleable. Its use in atomic reactors... as a "getter" in electronic tubes... as an additive in metal alloying ... as an igniter in flash bulbs and as a non-corrosive metal in surgical specialties are a few of Zirconium's applications. Investigate Zirconium, the metal with a future.

Price reductions averaging 50% have been made on Foote Zirconium rods, sheets and wire.

Write now for the new Foote Zirconium price schedule and data. Experimental samples are available upon request.

FOOTE MINERAL COMPANY
426 Eighteen W. Chelten Building
Philadelphia 44, Pennsylvania

PATENT ATTORNEYS

An unusual situation has developed at Hughes. In the last few years, our Laboratories have grown to a population of more than three thousand men and women, who cover a wide range of research and development. New electronics products we have developed support a manufacturing organization of thousands of additional people.

And yet today our patent attorneys can be numbered on the fingers of two hands!

The explanation is, of course, that our growth has been very rapid and we have gotten a late start in trying to build an appropriately large patent department. The situation has not been made any easier for us by a current rapid expansion of our commercial, nonmilitary interests. As a result, however, we believe that the opportunities for patent attorneys are now unusually attractive at Hughes.

To keep abreast with the work being done in our Laboratories, our patent department must be greatly enlarged; this means that today's openings carry unusual potentialities for rapid advancement. On the other hand, the fact that the Research and Development organization to be served has already established itself as one of the largest and most productive electronics laboratories in the country provides a degree of security not usually associated with opportunities for rapid individual growth.

Inquiries should be addressed to: Engineering Personnel Department

RESEARCH and DEVELOPMENT LABORATORIES

Culver City, Los Angeles County, California

Assurance is required that re-location of the applicant will not cause disruption of an urgent military project.
fore, the letters used will be N, U, and W , signifying that radio propagation conditions are normal, unsettled or disturbed, respectively. The digit will be the forecast of expected quality of transmitting conditions on the NBS-CRPL scale of 1 (impossible) to 9 (excellent).

Digit (Forecast)	Propagation Condition	Letter (Current)
1	Impossible	W
2	Very Poor	\mathbf{W}
3	Poor Poor	\mathbf{W}
4	Fair to Pair	\mathbf{W}
5	Fair to Good	U
6	Good	N
7	Very Good	N
8	Excellent	N
9		

If, for example, propagation conditions at the time the forecast is made are normal but are expected to be only "fair to poor" within the next 12 hours, the forecast statement would be broadcast as N4 in Morse code, repeated five times; that is, "N4, N4, N4, N4, N4."
The New NBS radio disturbance forecasts refer only to North Atlantic paths, such as Washington to London or New York to Berlin. The forecasters assume that the most suitable radio frequencies for communications are available and in use along these paths. Because of this assumption, their notices must be interpreted on a relative scale in terms of experience on each radio circuit in use. It is impossible to rate conditions on an absolute scale because the varied effects of transmitter power, type of communications traffic and procedure, antennas and receivers prevent an evaluation that will be valid for all systems and all circuits. One purpose of broadcasting both a description and a forecast is to show more clearly whether propagation conditions are expected to deteriorate or improve in the 12 -hour period.
For the past 18 months, the NBS Radio Warning Service has been making continuous 24 -hour daily studies of the North Atlantic circuits by specialized techniques. The new disturbance information to be transmitted by WWV is one of the results of this investigation. Other radio disturbance forecasts which NBS has supplied regularly for almost ten years are forecasts of propagation conditions 1 to 25 days in advance and daily 24 -hour forecasts.

- Q-Max is widely accepted as the etandard for R-F circuit components because it is chemically engineered for this sole purpose.
- Q-Max provides a clear, practically Eoss-free covering, penetrates deeply, seals out moisture, imparts rigidity and promotes electrical stability.
- Q-Max is easy to apply, dries quickly and adheres to practically all materials. It is useful over a wide temperature range and serves as a mild flux on tinned surfaces.
- Q-Max is an ideal impregnant for "high" Q coils, Coil "Q" remains nearly constant from wet application to dry fnish. In 1, 5 and 55 galion containers.

BE SAFE WITH
Qmind From closures for cabinets to gas kets for waveguide couplings, Metex Electronic Shielding assures lasting metal-to-metal contact to prevent leakage, without the need for costly machining to secure precise surface-to-surface contacts. Metal wire - knitted, not woven or braided - gives Metex Electronic Strips and Gaskets that combination of conduc-
tivity and resiliency which makes them so effective and economical for shielding.

For a more detailed picture of the scope of utility of Metex Electronic Products, write for free copy of "Metex Electronic Weather Strips." Or outline your specific shielding problem-it will receive immediate attention.

METAL TEXTILE CORPORATION
KNITIERS OF WIRE MESH FOR MORE THAN A QUARTER CENTURY

641 East First Avenue Roselle, N. J.

Shallcross

 DECADE RESISTANCE
for fast, accurate laboratory or production testing

36Standard Types

1,2,3,4,5 and 6-dial

Accuracy: 10 ohms and above, 0.1%; 1.0. ohm, $0.25 \% ; 0.1$ ohm, 1% and 0.01 ohm, 5%. Closer tolerances on special order.
Ask for Engineering Bulletin L-17
Shallcross Manufacturing Company

[^16]
NEW BOOKS

Nomography and Empirical Equations
By Lem H. Johnson, Tulane University. John Wiley \& Sons, Inc., New York, 1952, 150 pages, $\$ 3.75$.
THIS interesting and useful book is divided into two broad parts: first, the technique of constructing nomographs or alignment charts for equations containing more than two variables, and, second, the technique of determining the mathematical equation which expresses the relations existing between several variables.

The chapter headings show the range of subject matter:- paral-lel-scale nomographs, Z-charts, parallel and perpendicular index lines, concurrent scales, recurrent variables, combined nomographs, methods of curve fitting, curves of two, three and four constants.

For anyone who uses alignment charts (and who in this field does not?) and who wishes to know how they are made, this is a good way to find out. Not only will the reader learn the techniques but he will learn much about the accuracy of such charts, how to determine the scales, and other necessary facts-and he need not be a mathematician to do it.-K.H.

Electronics For
 Communication Engineers

By John Markus and Vin Zeluff. McGraw-Hill Book Co., New York, 1952, 610 pages, $\$ 10$.
This is the third of a series of books by these two authors comprising a collection of previously published articles grouped by subject matter. This book is really a second volume of the authors' "Electronics Manual For Radio Engineers." The first volume covered the years 1940-1948.

The current one covers a period of five years. A total of 252 articles, all from Electronics, are included. Chapters are: (1) Amplifiers; (2) Antennas; (3) Audio; (4) CathodeRay Tubes; (5) Components; (6) Electronic Music; (7) Filters; (8) Measurements; (9) Microwaves; (10) Oscillators; (11) Power Supplies; (12) Propagation; (13) Pulses; (14) Receivers; (15)

CONVENIENCE

Even without station test pattern or in remote, weak signal areas!

A television set will produce a picture only when it is supplied with a COMPOSITE VIDEO SIGNAL. To check any TV sot properly, you must have a COMPOSITE VIDEO SIGNAL.
Every TV station sends a COMPOSITE VIDEO SIGNAL when telecasting a program or a test pattern. This COMPOSITE VIDEO SIGNAL is composed of-(1) a synchronleing and blanking signal to lock the free running raster into a frame of two interlaced fields. and-(2) a video signal to control the amount of light and produce the picture (which may be a program scene or a lest pattern for analysis purposes).

21•运
 MODEL 665

The SUPREME COMPOSITE VIDEO GEN. ERATOR provides the same type of sync and blanking signal as the TV station-even the equalizing pulses. In addition, it incorporates a video section which generates a special test pattern for analysis and adjustment of TV sets. Other patterns or pictures can be presented by using auxiliary equipment connected to the special "gated" video input section of this versatile instrument. The Model 665 should not be confused with the cross-hatch or bar-pattern generators. The Supreme Model 665 supplies a COMPOSITE VIDEO SIGNAL.
Why lose time and money waiting for that ideal scene or test pattern to check a TV set? In fringe or weak signal areas, you are strictly in the "driver's seat" with a SUPREME COMPOSITE VIDEO GENERATOR. Write SUPREME, Inc., Dept. P-7, GREENWOOD. MISSISSIPPI for descriptive folder.

Our 25th Year

SUPREME

Testing Instruments
"SUPREME BY COMPARISON"
TUBE TESTERS - OSCILLOSCOPES
SIGNAL GENERATORS - MULTI-METERS FOR RADIO AND TELEVISION

manma curs ruan Work...

McGraw-Hill Industrial Mailing Lists are a direc* route to today's purchase-controlling executives and technicians in practically every major industry.

These names are of particular value now when most manufacturers are experiencing constantly increasing difficulty in maintaining their own lists.

Probably no other organization is as well equipped as McGraw-Hill to solve the complicated problem of list maintenance during this period of unparalleled changes in industrial personnel. These lists are compiled from exclusive sources, based on hundreds of thousands of mail questionnaires and the reports of a nationwide field staff, and are maintained on α twenty-four hour basis.

Investigate their tremendous possibilities in relation to your own product or service. Your specifications are our guide in recommending the particular McGraw-Hill lists that best cover your market. When planning your industrial advertising and sales promotional activities, ask for more facts or, better still, write today. No obligation, of course.

McGraw-Hill Publishing Co.r Inc. DIRECT MAIL DIVISION
330 West 42nd Street
New York, 36, N. Y. when you need IPCPIURE wimatoms DPPPENOBBLE
 STAMPINGS

QUALITY, ECONOMY and PROMPT SERVICE on Every Order - Large or Small!

There is never any letdown in Lewis quality or service. Your order will be given prompt, efficient attention regardless of size. You can be sure that the springs, wireforms or stampings you order will be fairly, economically priced. What's more, Lewis has the extensive, modern facilities, the long-experienced engineers and skilled production craftsmen to supply you with springs, wireforms and stampings tailored to your exact needs.

If you have any tricky or tough problems involving springs, Lewis's engineers will be glad to help you solve them. Or, if you need large or small quantities of standard springs in a hurry - just call on Lewis! Send us your drawings, specifications or samples today!

LEWIS SPRING \& MANUFACTURING CO. 2656 W. NORTH AVENUE, CHICAGO 47, ILLINOIS

The Finest Light Springs and Wireforms of Every Type and Material

Transmission Lines; (16) Transmitters. The chapter on electronic music consists of 10 articles; although not strictly in the communications field, this is a subject in which a considerable number of electrical engineers have become interested of late.

In addition to the chapter article index, there are an author index and a comprehensive subject index that lists many features of the contents that may not be apparent from the titles. Some of the articles have been condensed but the issue of Electronics in which each appeared is given so that reference to the original source is a simple matter. The many drawings, graphs and wiring diagrams (they average several per page), which added so much to the value of the original articles, have been retained. Any references included in the original articles have also been included so that further information is easily obtainable.

This book makes a valuable addition to the communication engineer's library. His text books are the source of basic information while this book supplies the details and practical aspects of the latest applications and practices.-W. C. White, Research Laboratory, General Electric Co., Schenectady, N. Y.

Introduction to Electronic Circuits

By R. Feinberg. Longmans, Green and Co., New York, 1952, 168 pages, $\$ 3.50$.
THIS book moves at a fairly high rate from the first page on. Maximum use is made of symbols to represent physical and electrical phenomena, and very few words are wasted.

Such a feature should be very appealing to some, but may bring objection from others. The work is complete, but to derive maximum benefit, a great deal of careful analytic reading is required. For the graduate student, this terse writing is usually desirable, but for the second or third year student (for whom the book is intended) it may be difficult to absorb.

Being British, the book naturally

MICO
 Precision Apparatus TOROID COIL

WINDERS
Flexible machines for your laboratory prototype development work.

Production machines built for volume manufacturing of specific coils.
MICO INSTRUMENT CO.
76E Trowbridge St., Cambridge, Mass.

Miniat
ne

MODEL PB THERMAL TIMER Here's a rugged unit with timing ranges of 2 scconds to 3 minutes. Ceramic base provides stability - Bakelite bracket insures full insulation. Made to accepted Ulanet specifications. Clinch bracket secures adjustment screw. Contact rating is 100 watts, $115-230 \mathrm{~V}$. ac.

MODEL 13 THERMOSTAT Designed so precision calibra tion is unalfected by extreme temperatures. Totally enclosed and mechanically rugged, easily mounted and readily wired Electrolytic silver contacts.

Your requirements for Timing or Thermostatic Control can readily be met uith a Ulanet unit. Please state application and desired operation when uriting.

THE ULANET ORGANIZATION SPECIALIZES IN THE DESIGN AND MANUFACTURE OF
THERMAL UNITS FOR ALL TYPES OF TIMING \& THERMOSTATIC CONTROLS

It will pay you to compare our units - contact us and you'll save time \& money by using engineered Ulanet Controls.

... for your coin silver slip rings
This "IMPROVED" modern equipment assures faster production and more accurate slip rings in sizes up to $1^{\prime \prime}$. Coin silver or standard inlay coin silver $.025^{\prime \prime}$ thigk bonded to a brass base. Tolerances - $\pm .001$ outside and

refers to valves instead of tubes. This difference no longer represents any trouble in the globe-wide information-sharing programs in effect today. Typical tube characteristics are discussed, rather than typical tubes, which makes the material useful to those familiar with British or American types.

For the student who can apply himself, the book is recommended for its direct approach. Analogies used are well chosen and serve fully to explain the concepts that lend themselves to such treatment. The numerous examples given, though brief, are also helpful in understanding ideas.

Main emphasis is directed toward tube construction and internal operation, and typical application of tubes in oscillators, amplifiers and other simple circuits. Some attention is given to industrial tubes and circuits. Since no specific design details (circuit values, tube types, etc.) are given, the book is not recommended for designers, but rather as a text book for a college course on fundamentals of electron tubes.-J.D.F.

Tubes a Modulation Vitesse

By R. Warnecke and P. Guenard. Gauthier-Villars, Paris, 800 pages, 1951.

Many of the older generation of tube engineers believe that too few comprehensive publications exist on many important aspects of vacuum tube theory and design. The need for having assembled in book form technical information which has been accumulated over a period of years is particularly felt at this time when many young engineers are being introduced to the field of electror tube techniques. The book on velocity-modulation tubes by Warnecke and Guenard represents a very complete and systematic presentation of the subject. Both authors are well known for their original contributions in this field and for their skill in presenting technical material. This reviewer believes that their present effort in preparing a book on velocity-modulation tubes will be greatly appreciated both by junior and senior engineers concerned with efficient utilization of engineering talent in

LABORATORY POWER SUPPLY

- Excellent electronic regulation.
- Two independent regulated outputs continuously variable 0 to 425 volts at 200 ma . Positive or Negative ground.
- 0 to 425 @ 400 ma if the two sources are combined.
- Stabilized bias supply 0 to - 150 volts.
- 6.3V AC @ 10 amps .
- Low Ripple Voltage.
- Compact. Fits standard rack.
- Moderately Priced.

WRITE FOR BULLETIN B
fluf ELECTRONICS MFG. CO.
102 Marston Street
Lawrence, Massachusetts

- Improved Socket Contacts - 4 individual flexing surfaces. Positive contact over practically their entire length.
- Cadmium plated Plug and Socket, Contacts mounted in recessed pockets, greatly increasing leakage distance, INCREAS. ING VOLTAGE RATING.
- Interchangeable
 with 400 Series.

S-2406-5B
Send for complete Catalog No. 18 . Plugs, Sockets, Terminal Strips.

MANUFACTURERS OP ELECTRONIC INSTRUMENTS AND PRODUCTION TEST EQUIPMENT

the field of tube development.
In the preface the authors state that in reviewing literature on velocity-modulation tubes they were greatly helped by having at their disposal the unpublished lecture notes by Professors Hansen and Feenberg, which contain a summary of most important results of research and development in the United States during the war. The authors' own studies and experiences in the laboratories of the Compagnie Generale de Telegraphie sans Fil naturally served as a guide and influenced the choice of material included in the book.

The book comprises almost 800 pages and is divided into seven parts. After an introduction containing a brief history of the invention of velocity-modulation and allied tubes, the first big chapter is devoted to a review of fundamentals of interaction between electrons and radio-frequency fields and the exposition of the velocity modulation principle involving conversion of electron velocity modulation into current modulation. Bunching and debunching effects, and the influence of finite electron transit time on effectiveness of energy interchange are also discussed.

The second part develops the theory and presents methods of design of cavity resonators suitable for velocity-modulation tubes. The third part describes different types of v-m tubes, such as two and three cavity amplifiers, reflex oscillators and frequency multipliers. The fourth part presents experimental results and technical data on practical tubes. It also describes some special forms of v -m tubes and gives design data on tube components, such as cathodes, guns, cavities, collectors, repellers, etc. The fifth part is devoted to the extension and refinement of the theory and discusses such topics as the behavior of electrons in non-uniform fields, multipactor effect, focusing of electron beams, effects of space charge in drift space, hysteresis effects, tube noise, relativity corrections, sealing methods, and gives examples of design of tubes to specified characteristics. The sixth part is concerned with the problems of frequency limits, bandwidth, modulation, impedance

POCKETSCOPE confirming the obsolescence of conventional oscilloscopes. Characterized by wide band amplifier fidelity without peaking as well as amazing portability. S-14-B POCKETSCOPE is ideal for laboratory and field investigation of transient signals, aperiodic pulses, or recurrent electrical wave forms.

Vertical channel: 50 mv rms $/ \mathrm{inch}$, with response within -2DB from $D C$ to 700 KC , and pulse rise of $0.35 \mu \mathrm{~s}$. Horizontal channel: 0.3 V rms /inch with response within -2DB from $D C$ to 200 KC , and pulse rise of $1.8 \mu \mathrm{~s}$. Non-frequency discriminating attenuators and gain controls, with internal calibration of trace amplitude. Repetitive or trigger time base, with linearization, from $1 / 2 c$ cps to $50 K C$, with \pm sync. or trigger. Trace expansion. Filter graph screen. Mu metal shield. And a host of other features.

STANDARD RANGE
1,000 OHMS TO 9 MEGOHMS
These resistors are used extensively in commercial equipment, including radio, telephone, telegraph, sound pictures, television, etc. They are also nsed in a variety of U. S. Navy equipment.

HIGH VALUE RANGE
1.0 TO $10,000,000$ MEGOHMS

This unusual range of high value resistors has been developed to meet the needs of scientific and industrial control, measuring and laboratory devices - and of high voltage applications.

SEND FOR BULLETIN 4906

It gives details of Standard and High Value Resistors, including construction, characteristics, dimensions, etc. Also described are S.S.White 80 X Resistors, designed for extremely high voltage equipment. Copy with Price List sent on reguest.

Dept. R, 10 East 40th St NEW YORK 16, N. Y.
WESTERN DISTRICT OffICE: Times Building, Long Beach, Calif.

Its control is anybody's job. But when it involves an intricate problem, the concern that may be depended upon to correctly solve it is the A. W. Haydon Company

Thoroughly experienced timing engineers assure prompt, accurate solutions to the most difficult of proposed applications.

Are YOUR Recordings Accurate?

THE EDIN COMPANY 8, Mass., Dept. B 207 Main St., Won \quad Gent \square Edin Send complete informants Companion amplifiers.

Name.
No.
Street
City.
Position.
matching, stability of power supplies, etc. The seventh and final part is devoted to the discussion of future possibilities of velocity-modulation tubes such as achieving greater bandwidth, higher power, lower noise, etc.

The book contains 476 illustrations and a bibliography comprising 385 items including a list of books, review articles, papers on specialized topics, and a list of pertinent patents. This reviewer, who possesses only a limited knowledge of technical French, believes that many tube engineers, even with little familiarity with the language, will be able to follow the presentation and make effective use of the great deal of information contained in the book.-Andrew V. Haeff.

Alternating Current Machines

By George V. Mueller. McGraw-Hill Book Co., New York, N. Y., 1952, 502 pages, $\$ 7.50$.

In spite of the inroads of electronic techniques into established areas of electrical engineering, and the creation of new areas, the basic electrical-mechanical energy - con version process in industry is still accomplished by rotating electrical machinery. Moreover, the use of regulator- and servo-controlled machines is growing, largely through the coordinated application of electronic equipment with electrical machinery. For these reasons, training in the fundamental principles of electrical machinery is a necessity for engineers working in many of the areas now constituting electrical engineering.

There are other aspects of electrical machinery that are important to the electrical engineer and the electrical-engineering student aside from machinery for machinery's sake. For example, the principles of torque and force production through the interaction of electromagnetic fields, and the principles of voltage generation through relative movements of conductors and fields, apply equally well to the conventional rotating machinery as to the wide variety of microphones, recorders, loudspeakers, meter movements, pickup devices, and the like, that serve as the ter-

for accurate

 TDNDME

All wrenches meet Spec. \#MIL-H 4034A. Write For Catalog

SENIOR ENGINEERS

Opportunities Western Connecticut
Opportunities for personnel experienced in the following fields. Our present operations require us to be concerned with the following materials, processes, specifications and equipment: Fosterite, Hermetically sealed transformers, Casing resins, Vacuum impregnation, MIL-T-27 and AN-E-19, Precision testing equipment, Oil filling.
Our record of over 40 years of successful business operation indicates the security of this company. If you are experienced in the design of audio transformers, power transformers, reactors, pulse transformers, please send resume to Director of Personnel.
the wheller insulated wire co.
Division of Sperry Corporation 150 E. Aurora St., Waterbury, Conn.

Kahle

SPECIALISTS IN

 HIGH-SPEED
electron tube machinery

Kahle's 40 years of experience eliminate trial orders and experimental set-ups. Standard toolings for all tube manufacturing event ualities already have been tested and approved. This means that Kahle can assemble mochines for everything from sub-miniature to largest TV picture tubes to your exact specifications . . . at lower costs!

ENGINEERING CO.

\# 1384 12-HEAD BUTTON STEM MACHINE. FOR SUB-MINIATURE TUBES. Upper and lower molds on every head. Dual motor drive. Indexing and head rotation are by separate motors. For oblong, square, round buttons, etc.

Muchinery for all types of electron tubes and reloted glass products.
Consultations invited. Write today for our new catalog with complete details.

1309 Seventh St., North Bergen, N. J.

Send your electronic control, communications or appliance wiring specifications for a recommended solution by our engineers. FOR A TRIAL ORDER OR A CARLOAD consult
 engineered and designed by DeJur-Amsco to fulfill the exacting requirements of contemporary instrument, computer and similar electronic equipment.

Designers are invited to submit their applications to DeJur engineers for recommendations and suggestions.

- $2^{\prime \prime}$ Diameter
- 4 Watts Fully Enclosed
- 10 to 200,000 Ohms Accuracy up to 1%
- Linearity up to 0.3%
- Non Linear Windings
- 360° (Continuous) Mechanical Rotation
- 320° Electrical Rotation
- Taps as Required
- High Resolution 1,000,000 Cycles Operational Life
- Precious Metal Contacts
- Low Torque 1 oz . inch
- Centerless Ground Stainless Steel Shafts
- Ball Bearings to Special Order
- Single or Ganged Units
- Servo Type Mounting or Single Hole Threaded Bushing
- Numerous Shaft Designs

WRITE FOR BULLETIN IOO-E

AMSCO CORPORATION
 manufacturgas of scientific precision egupment for over a ouarter of a centuat - Campats - projectors. Entargens e exposurf meters.
minating devices of electronic and communications systems. The concepts of sinusoidal space and time waves of B and H that are used to explain the operation of induction motors and synchronous machines apply equally well to the wave picture for open-wire transmission lines and wave guides. Finally, the idea that an equivalent circuit represents a physical device only within specified assumptions is equally important in the analysis of electrical machinery as in the analysis of vacuum-tube circuits.

Professor Mueller's book is designed for fourth-year electricalengineering students. As such, it covers material on transformers, single-phase and polyphase induction motors, synchronous machines, synchronous converters, and rectifiers.

The section on transformers utilizes 210 out of the 502 pages in the book, and covers not only singlephase and polyphase-connected power transformers, but instrument transformers, constant-voltage transformers, induction regulators, and so forth. The section on polyphase induction motors shows the best balance of content between principles and details and between length of the section to length of the book. In addition to the conventional induction-motor material, the section has interesting discussions of speed control and induction-generator action. The section on synchronous machines includes introductory material on the tivo-reaction theory. The sin-gle-phase-motor material is largely qualitative. The synchronous-converter treatment is conventional, while the rectifier section is short and applied largely to waveforms of the single-phase two-anode rectifier and the three-phase rectifier.

The book is liberally illustrated with oscillograms that provide convincing representations of waveform phenomena. However, they lose their effectiveness where several traces are crowded onto one axis with inadequate labeling. The photographs illustrating equipment types appear up to date and informative. Plots of air-gap flux waves are used relatively little; vector diagrams are apparently the more-

Fine Wire Specialists

1700 Inches of No. 50 Wire on This Meter Coil

Want really micro-fine wire? Write for price list on our full line of highest quality enameled magnet and Litz wire Immediate delivery. All sizes - Numbers 44 to 52 (. $002^{\prime \prime}$ to $.0008^{\prime \prime}$)

IN STRUMENT

 WIRE COMPANY150 Church Street • Guilford, Conn.

ELECTRGNICALLY REGULATED LABORATORY
PowER SUPPLIES

LICR SOLDERING FATIGUE!

So light its weight is hardly noticeable, but more powerful than its wattage rating indicates. Hatchet design makes it more comfortable and practical to use than a soldering pencil. No transformer required.

HEXACON ELECTRIC CO.
 130 WEST CLAY AVE.,

ROSELLE PARK, N.J.

WEIGHT-51/2 OUNCES (LESS CORDI; WATTS-40 OR 60; TIP DIA.-BOTH $1 / a^{\prime \prime}$ AND $1 / 4^{\prime \prime}$ TIPS FURNISHED WITH EACH IRON; PRICE-
 $\$ 550$
 Write today for catalog describing the complete line of screw tip, plug tip and hatchet irons.
 -with the new HEXACON FEATHERWEIGHT MODEL 30H

- Form Wound
- Paper Section
- Acetate Bobbin
- Bakelite Bobbin
- Cotton Interweave
- Coils for High Temperature Applications

ALSO,
TRANSFORMERS
MADE TO ORDER

The confidence vote in coils goes to DANO

Dano for coil performance! Dano for coil dependability! From simple electrical coil windings to specially treated coils-Dano is the confident choice everytime.

THE DANO ELECTRIC CO.
MAIN ST., WINSTED, CONN.

DIGITAL COMPUTER ENGINEERS

ELECTRICAL ENGINEERS and PHYSICISTS

needed for circuit design and development. Engineers and Physicists with 1 to 4 years experience in pulse circuits, puls handling techniques, and systems development. Openings also for recent graduates.

- Replies strictly confidential
- Interviews arranged at our expense

Leaders in the Development of Digital Computers

[^17]
MICTDIDT PRECISION TEN-TURN POTENTIOMETER

1. You get permanent accuracy because the renistance wire is locked in place. It ifs preceision positioned and moulded integrally with the housing.
2. You get permanently accurate setunillorm toraue action and low stainless steel provided by the double thread lead soew ground, heuble thread lead screw guiding
3. You get precise positioning of the moving contact because of the two bearings supporting the rotor assembly.
4. You get good rigid terminals because they are moulded integrally with the housing.
5. Terminals soldered to ends of re Entire resistance circuit moulding. En gral port of the housing.
B. You get azeurate setting and re setting due to anti-backlash spring in contact guide.
6. You set a fine resolution because of the $431 / 2^{*}$. length of resistance wire in the spiral element.
7. You geta resistance output directly proportional to shaft rotation withIn $\pm 0.1 \%$ of the totol resistance. ally machine lested is outomaticat 101 points: at 101 Doints:

Units for immediate shipment:
1,000 to 30,000 ohm range.
Special resistance values made to order.
WRITE TODAY FOA GNGIMILRINO IMHORMATION

BORG EQUIPMENT DIVISION

THE GEORGE W. HOIRG COIRPORATION JANESVILLE WISCONSIN

fEATURING
Hermetically sealed quartz crystal holders and all types of Hermetic Seals, built to meet critical govern ment specifications.

Hermetic Seals made to most exacting standards in one of New Jersey's mos modern equipped plant with latest manufacturing facilities.
Our engineering staff is ready to serve your needs promptly.

Route 6 and Franklin Ave., Lodi, N.J.
favored graphical teaching aid. In general, the presentation of physical concepts of machine behavior could be improved.

Examples appear frequently in the text; they serve the triple purpose of illustrating particular points, providing additional subject material, and demonstrating typical sizes and orders of magnitude. As a teaching text, the book has other features. It has a plentiful supply of problems at the end of each chapter. In addition, it has instructions in the appendix for 22 experiments on a-c machinery. The text material is apparently keyed to the experiments to such an extent that parts of the text read like instructions for laboratory work, rather than explanations of particular topics. Nevertheless, this book has advantages for the busy teacher who must be concerned with the combination of class work, problems, and labora-tory.-Alexander Kusko, Department of Electrical Engineering, Massachusetts Institute of Technology.

Measurements at Centimeter Wavelength

By Donald D. King, Johns Hopkins University. Van Nostrand, 327 pages, $\$ 5.50$, 1952 .

This is an excellent book for people who have a nodding acquaintance with the properties of centimeter waves. The book is so written that should more theory of microwave propagation be needed, more than adequate references are given in each chapter.

Chapter 1 is introductory, outlining the general scope of the material. It sets the limitations in the use of lumped network elements and ordinary electronic devices at centimeter wavelength.

Chapter 2 discusses methods of transmitting power at centimeter wavelengths. Two-conductor transmission lines and hollow pipes are correlated and normalized transmission formulas are explained. The properties of the more common uniconductor wave guides are completely tabulated. Transmissionline charts are presented along with a discussion about the properties

RECORDERE
 RECORD TMME
 count quantity and weight

Actuated by an electrical impulse
operates on the output of a scaler, photo tube, limit switch or any similar device. Records counts with relation to time and quantity on a roll of tape . . . automatically resets to zero. In Radioactive Research, it saves precious man hours and resuits in greater economy and efficiency.
In Industry, it maintains a permanent record automatically, recording production and time aach hour.
Whatever your counting problems, our Engineering Department can adapt these Recorders to meet your particular need. Write for interesting

Booklet SC34

MICRDDHAL
TEN TURN-COUNTING DIAL

Microdial is composed of two concentrically mounted dials . . . one for counting increments of each tum and the other for counting turns, The incremental dial has 100 equal divisions and is ettached risidly to the shalt so there is no backlash. Thus the contect position is indieated to an indexed accuracy of 1 part in $\mathbf{1 0 0 0}$. Rotetion is continuous in either direction. There are no stops on the Mierodial assembly.

COMPACT... Microdial has same O.D. as Mieropot . . . requiras no more panel space.
ChEAR READING ... Forced fastreading tests, showed only $1 / 80 \mathrm{Ch}$ as many errors with Mierodial open window as with next most legible dial. Turn counter distinguishas between 0 and 10 turn readinss, and acealerates to ayoid confusion on readings near integral tums. Pracise readings are made from larger dial with maximum reparation of sraduations and wide angle visibility.
CONVENISNT . . . dalivared complately assemblad with diols synchronized. Easily mounted in a fow seconds. All dials may be locked.

Microdial .. . turn-counting dlal, primarlly designed for use on Micropot ten turn linear potentiometers. . . use it on any multiturn device having ten turns or less.

BORG EQUIPMENT DIVISION
 THE GEDRGE W. BOIRG CORPORATION
 JANESVILLE - WISCONSIN

Try Remler for Service-Tested
"Hard-to-Get" Components

sllastic rubber SHOCK MOUNTS

(1) Ideal for sub-panel mounting. Isolates tubes from shock and vibration. Mount retains compliance from minus 70° to plus $480^{\circ} \mathrm{F}$. Invaluable for military and airborne equipment.

Custom
 Components

Metal-plastic components designed and manufactured to order. Write for quatations specifying electrical and mechonical characteristics. Describe application. No obligation.

MINIATURE TUBE CLAMP
(2) Corrosion resistant. Holds miniatures in sockets under severe conditions of shock and vibration without restricting air circulation. Easy to insert and withdraw tubes. Three sizes.

101 Remler Company Ltd.
2101 Bryant St. Son Francisco IO, Calif.

Here at Coto-Coil...

. . . the High Speed Covering Department winds outer covers of natural or synthetic yarns over Coto Coils. These top quality yarns position and hold down leads according to specifications, provide electrical insulation and physical protection. Here power winders and expert operators insure maximum production output of the highest quality. These modern production facilities, plus 35 years of experience, combine to make Coto Coils the first choice for engineered coils. Coto-Coil Company, 65 Pavilion Avenue, Providence 5, R.I.

of each chart and a key as to which chart is the best for a particular type of problems. The physical construction of transmission guides is treated along with methods of suppressing reflections due to physical supports. Matching sections, baluns, switches and attenuators are presented.

Chapter 3 discusses the devices used for converting high frequency power to power at frequencies more amenable to measurement with instruments. Bolometers, thermocouples, load lamps, crystals, electron tubes, barreters and their associated circuitry are described. Methods of coupling these components to lines and guides and ways of calibrating the system as a detector are given. Wattmeters, attenuation and noise measurements terminate the chapter.

Chapter 4 covers the measurement of frequency, wavelength and wave form. Comparison with the harmonics of a known frequency, tuned resonant circuits (lumped and cavities) and measurement of velocity are used for frequency measurements. Methods of panoramic displays are given. The methods of measurement are compared in a table which gives the limitations of each.

Chapter 5 presents the more common centimeter-wave generators. Methods of modulation and stabilization are discussed. Tests on oscillators are outlined. Frequency pulling due to loading is discussed.

Chapter 6 covers impedance measurement by means of lines, bridges and combinations of the two. Standing-wave or resonance ratios, curve width and multiple fixed probes are used on lines. Lumped as well as wave guide bridges are used as impedance comparator devices. Measurement of dielectric properties is accomplished by using wave guides and resonators.

Chapter 7 describes methods of measuring antenna fields. The basic construction of the equipment for making such measurements and its properties are discussed in some detail.

This book fills the need of those who wish to learn the general technique of centimeter-wave measure-
ments without wading through a sea of introductory words and mathematics. The pertinent facts are well presented. No words are wasted. There is no unnecessary mathematical manipulation. Sufficient references are given for the reader who wishes more de-tail.-Charles A. Hachemeister, Brooklyn Polytechnic Institute.

THUMBNAIL REVIEWS

CALIBRATION OF COMMERCIAL RADIO FIELD-STRENGTH METERS. BY Frank M. Greene, National Bureau of Standards, Circular 517,5 pages, 10 cents, Government Printing Óffice, Washington 25, D. C. Describes standards and methods used in calibrating meters in the range 10 kc to 300 mc .
RADIO AMATEUR'S HANDBOOK, 29th Edition. American Radio Relay League, West Hartford, Conn., 1952, \$3.00. 784 pages, 93 charts, 459 tube base dagrams, 85 basic formulas. This hardy perennial continues to grow. This new edition containing matertal published in QST during the past year involves new gear and up-todate modiflcations of older radio equipment, plus history, basic theory and a vas quantity of data useful to all practicing radio people.
AN ADHESIVE TAPE-RESISTOR SYSTEM. By B. L. Davis, National Bureau of Standards, Circular 530,83 pages, 30 cents, 1952 , Government Printing Office, Wash ington 25, D. C. Complete description of $N B S$ development of carbon-film resistor in form of adhesive tape as a useful component in the miniaturization program. Description of ovens, switching equipment, recorder for life tests and data on each of the carbons studied plus sources of supply are included.

TRAITE D'ELEECTRICITE THEORIQUE; Vol. 1, Electrostatics. By Marc Jouguet. Gauthier-Villars, Paris; 359 pages, $\$ 11.78$, 1952. First of what promises to be several volumes of a profound and rigid analysis of all electrical theory.
ELECTRICAL ENGINEERING. Volume 1, Direct Currents. By Chester L. Dawes. McGraw-Hill Book Co., 736 pages, $\$ 7.00$, 1952. For the beginning student of electrical engineering, a new edition including recent developments in applied electrisal science; elect
physical phenomena.

INDUSTRIAL CARBON \& GRAPHITE PRODUCTS. A vest pocket handbook giving properties and dimensions of carbon and graphite electrodes 0 als. 42 St . thonal Carbon Company, 30 East 42 St., New York 17, N. Y.
RADIOTELEPHONE LICENSE MANUAL. By Woodrow Smith. Editors and Engineers, Ltd., Santa Barbara, Calif., 1952, 197 pages, $\$ 3.75$. Answers are given to questions taken from the lhrough IV Study Guide for Elements I through IV as preparation for an grases An apmercial radiotelephone ${ }_{\text {pendix }}$ ense. signals, misyendix glves rormatians and excerpts from cews and regulations. No questions on radlotelegraph operating practice, advanced radiotelegraph, aircraft radiotelegraph or ship radar techniques are included.

SUBCONTRACTING FOR DEFENSE. Chamber of Commerce of the United States Washington, 6, D. C., 36 pages, 1952,504 . A how-to pamphlet on getting subcontract orders on the vast number of items which go into defense end-products.

CORRECTION. By error, the price of "High Frequency Transmission Lines" by Willis Jackson, published by John Wiley Electronica to be $\$ 0.75$ whereas the correct price is $\$ 1.75$.

Winchester Electronics incompatio

NEW sum sus

RECEPTACLE SMRE 145-G

PLUG SMRE 14P-G

SUB-MINIATURE "SECANGUAR CONNECTORS

MONOBLOC* CONSTRUCTION eliminates unnecessary creepage paths, moisture and dusi pockets and provides stronger molded parts.

MOLDED MELAMINE BODIES (in accordance with MIL-P14al-mineral filled-are fungus-proof and provide mechanical strength as well as high are and dielectric resistance.

CONTACTS and GUIDES are precision machined: pins from brass bar (QQ-B6111 and sockets from spring temper phosphor bronze bar (OQ-B746a). They are gold plated over silver for consistent low confact resistance, reduction of corrosion and aid in soldering.

SMRE HOOD SIZES VARY TO FIT THE RESPECTIVE CONNECTORS ABOVE.

4,

ETRADE MARK REG. U.S. PAT. OFF.

Linear and functional outpur, rugged construction, ball bearings, small size, low torque, syncro-type mount.

Push-pull motion, linear and functional output, high resolution. rectilinear potentiometer.

Functional and linear outputs, coils independently adjustable. variety of flexible assemblies.
 potentiometer and selsyn outputs, most ultra sensitive of them all.

These potentiometers are available in a variety of resistance values and circuits. For details on these and other fine instruments, write:

G. M. GIANNINI \& CO., INC.

Pasadena 1, Calif.

Giannini

BACKTALK

Networks

Dear Sirs:

In the January 1952 issue of Electronics appeared an article by Mr. Peter G. Sulzer (p 95, "SingleBand Audio Generator") in which reference is made to an R-C network (reference 8, p 97) that "... has been described in the German and Japanese literature, but suitable reference is not available".

On page 66 of the January 1945 issue of the Proceedings of the IRE, I give myself credit for having developed the circuit (network E, Fig. 1 in Mr. Sulzer's paper).

As the development of this network is a rather simple matter it is possible that someone else found the circuit before I did. Such a thing, I understand, happened in the case of the Ginzton and Hollingsworth network (Sulzer's reference 3).

On the other hand, the Sulzer network can be readily shown to be an unsymmetrical twin-T network which may be transformed into an equivalent pi. Examination of the resulting impedance equations do not seem to throw any light as to the manner in which the network meets these conditions. Use of the approximations (according to Mr . Sulzer's circuit constants) $R \gg$ $R_{3} ; R_{1} \gg R_{3} ; R_{1}=R_{2}$ does not give any additional information. The question arises as to the desirability of a network that does not lend itself to design by means of pencil and paper.

Braulio Dueno
Phiversidaysics Department
Universidad de Puerto Rico
Mayaguez, Puerto Rico
(Editor's Note: Space limitations forced us to omit Dueno's elegant mathematical verification of his contentions as outlined above.)

Audio Generator

Dear Sirs:
Sergeant H. B. Kendall, of the Royal Canadian Air Force Station at Clinton, Ontario, has called to my attention an error that appeared in one of the figures in my recent article, "Single-Band Audio Generator" (Electronics, p 95, Jan. 1952).

In Fig. 2C and 2D the vestor E_{B} should be drawn downward and

ELECTRONIC DESIGN ENGINEERS

TECHNICAL WRITERS

- DESIGN DRAFTSMEN
- PHYSICISTS

Westinghouse

offers you

 SECURITY AND OPPORTUNITYEE's and ME's with over 3 years experience . . . a number of excellent positions are now available in our Electronic \& X-ray and Air-Arm Divisions for work on:

- Broadcast Transmitters
- Power Line Carrier Communication Equipment
- Railroad Radio
- Radio Frequency Heating
- Medical and Industrial X-ray
- Commercial Radar
- Balancing Equipment
- Military Radar (ship, ground, airborne)
- Military Transmitters
- Specialized Electronic Equipment
- Fire Control Systems
- Automatic Pilots
- Guided Missiles

Check These Outstanding Benefits: Top pay, ideal working conditions, advancement on merit, graduate study opportunities, employee scholarships, paid relocation expenses, Baltimore location.

Send resume of experience and education to: Manager of Industrial Relations, Westinghouse Electric Corp., 2519 Wilkens Ave., Baltimore 3, Md.

If you are using your greatest skill in a defense industry, do not apply.

YOU CAN BE SURE...IFIT'S Westinghouse

BASE, RARE AND PRECIOUS METALS AND ALLOYS

SMALL UNITS
SMALL SIZES
CLOSE TOLERANCES
Nickel alloy, filament wire and ribbon: flat, grooved, crowned. Grid wire electroplated. Alloys for special requirements, bare or enamelled.

Further details upan request.

SECON

METALS CORPORATION
228 East 45th Street, New York 17, N. Y. MUrray Hill 7-1594

ENGRAVE PANELS OF ANY DIMENSIONS IN

YOUR OWN SHOP

 I-S 29 -portable model H-29 -heavy duty model

NEW HERMES, Inc. 13-19 University Place, N.Y. 3 CANADA: 359 St. James St., Montreal

5

new hermes

- The only portable machine which reproduces 15 sizes from one master alphabet.
- The only one with adjustable
copy holding slides for multiline engraving in one set-up.
- Self-centering holding vise for nameplates.

NEW HERMES, Inc. 13 -19 University Place, N.Y. 3, N.Y. In Canada: 359 St. James St, Montreal Worid's Largest Manufacturer of Portable Engraving Machines
SEALING
DIPPING
POTTING

IMPREGNATING | INSULATING |
| :--- |
| FUNGUSPROOFING |
| MOISTUREPROOFING |
| HEAT CONDUCTING |

Developed and produced for manufacturers of electronic components and other electrical units.

Specifications and samples available on request.
Information relative to your problem or application will enable us to make suggestions and recommendations.
BIWAX CORPORATION ${ }^{\text {3as }}$ howaro street skokie, illinois

Simplifying HF Poover Measurement Model 67 TERMALINE DIRECT-READIWG R-F WATTMETER

30 mc to 500 mc
(fo 1000 me if specified) 50 ohms
Triple Range $0-25$ watts
$0-100$
$0-500$ '

Type N Input Connector (Adapfor for PL-259 supplied)

- Model 67 is a larger type Wattmeter than the well-known AN-ME. 11/U (our Model 611) R.F Wattmeter. Specifically designed for fixed station transmitters to 500 watts output, it may be used nicely on low range for mobile gear. Provided with an aluminum cased, shockmounted meter, Model 67 is as simple to use as a DC voltmeter. Now in general use throughout the industry, TERMALINE Wattmerers may be depended upon for fast, accurate and repeatable power readings.

NON-RADIATING ... Accuracy - 5\%
RUGGED CONSTRUCTION
... Size - $17^{\prime \prime} \times 9^{\prime \prime} \times 6^{\prime \prime}$
Wght. - $\mathbf{3 0}$ pounds

1800 EAST 38TH ST. CLEVELAND 14, OHIO

West Coast: NEELY ENTERPRISES HOLIYWOOD 46, CAL.

HUGHES

Research and Development Laboratories

 invites inquiries from Engineers and Physicists Culver City, Los Angeles County, Californiato the right, and the markings of E_{C} and E_{R} should be interchanged. These changes do not alter the explanation in the text.

Peter G. Sulzer
Central Ranospheric Research Section Radio Propagation Laboratory National Bureau of Standards Washington, $D . C$.

More on Phase

Dear Sirs:
The article by John L. Glaser entitled, "Accurate Phase Difference by Lissajous Figures" (ElecTronics, p 206, Mar. 1952) leads me to mention still another method of determining phase angle between two sinusoidal voltages of the same frequency. The method is so obvious that it might be overlooked. The accuracy possible with this method is particularly good for values of phase angle around 90 degrees, so that it might very well supplement the methods mentioned in Glaser's article.

The horizontal and vertical amplifications are adjusted so that the ellipse is tangent to a pair of vertical lines distant $2 X$ apart and to

Additional method for measuring phase between sinusoidal voltages with maxi mum accuracy around 90 degrees
a pair of horizontal lines distant $2 Y$ apart as shown in the accompanying diagram. Then the distances from the coordinate axes to the points of tangency are $X \cos$ θ and $Y \cos \theta$ as shown.

If the positive x and y directions are to the right and up as shown then θ is the angle by which the X signal laps the Y signal. For θ equals zero the ellipse degenerates into a straight line in the first and third quadrants. With increasing θ the axes of the ellipse rotate clockwise. At 0 equals 90 degrees they are horizontal and vertical. With increasing θ the clockwise rotation continues until
at θ equals 180 degrees the ellipse becomes a straight line in the fourth and second quadrants.

The average of four values of \cos 0 may be used for any ellipse to improve the accuracy in determining θ.

Justification for the method is easily provided by considering the projections of two rotating vectors of lengths Y and X separated by phase angle 0 . When one is projected true length, say X, the projection of the other is $Y \cos 0$. This gives one point of tangency on the ellipse. Vice versa for the other tangent point.
E. E. Weibel

Professor of Mechanical Engineering University of Colorado Boulder, Colorado

Military Justice

Dear Sirs:
In the March issue of Electronics there appeared some paragraphs (Industry Report, p 16) entitled "What Happens to Drafted Engineers?" There are some glaring errors, or rather omissions in this piece that I feel bear illumination because of your widespread circulation throughout the industry and the possible misconceptions that might be formed, and because I have yet to read an article on engineers in service in any publication which accurately portrays the situation.

The picture you paint of OCS is quite accurate as far as it goes. But it implies that OCS grads are utilized in technical endeavors. To quote your context, ". . . receive assignments in line with their civilian occupations." Nothing could be further from fact. Upon receiving his commission, the new 2nd lieutenant is placed upon the nearest boat to the Far East. He might delay his departure thirteen weeks by undertaking more extensive training in a particular field (radar, radio, wire, photo). Or he might possibly be sent to Germany. But in any case, he winds up as an administrative officer, usually in a signal company or service company, or if he's exceptionally lucky, in a signal repair depot. I have yet to hear of the need for an en-

Model A589, a rugged 400 cycle chopper, 6 volt. Will withstand 10 G vibration operating, 50 G non-oper ating and can be used reof -70 C to 100 C . This chopper has a phase lag of 65° between the drive voltage and the square 380 to 420 cycles, can be operated over much wider ranges. The residual noise is less than 1.5 mv peak at one megohm circuily
impedance. soaled, built in accordance with exacting military sneciflcations and adjusted precisely to very close tolerances. AN. Con.
structed per AN employs silicone shock mounting, silicone glass insulation for maximum
stability.

For more than five years, AIRPAX has blazed a trail in the chopper and miniature power supply field which is now clearly marked by acceptance in the nation's most prominent electronic concerns. Phone, wire or write, we can offer field proven experience, reliable units, quick sample delivery and volume production to meet your schedules.

Model A702 heavy duty miniature 400 cyele vibra. tor inverter, specifically cycle gyro motors. The nominal rating is 110 volts, 30 watts, but it will deliver 4o wats for short power factor correction as vibrator loads, this model has power factor eorrection louilt in to operate 4
smal motors. Discuss your application with our engineering department. they may find it wise to make changes to accomoperate at temperatures down to - 70 C , up to 85 C , can be subleeted to vio: lent vibration, accolera. ple t e ly hermotically sealed. Weioht I Ib., 6 oz.

- CONTACTS

FOR THE FIELD OF ELECTRONICS

(fis $\begin{aligned} & \text { TOP QUALITY } \\ & \text { PRICED LOWER }\end{aligned}$ WING dUTS

Rust-proof zino alloy with GRC's recessed-wing finger-grip. All commercial finishes, all popular thread sizes. Special threads or untapped wing nuts; special designs to order.

Write today for samplea
and prices-and comparol
GRIES REPRODUCER CORP.
ro0 Willow Ave., N. Y. 54 - Phone: M0 5.7400

ELECTRO PLATING

Shorted Turn Indicator

 for unmounted onls

SUB-CONTRACTING

MILITARY and COMMERCIAL receivers-test equipment transmitters-controls sub-assemblies
TELETRONICS LABORATORY, INC. Westbury, L. I., N. Y. Westbury 7-1028

WALKIE-RECOROALL $\begin{gathered}\text { It minituty BATTEAY } \\ \text { BECORDER.PLAYBACK }\end{gathered}$
Continuous, permanent. indered recording, up to 4 hrs., only 30 hr. Instanteneous, permanent playback. Picks up sound up to 60 ft . Records conferences, lectures, dictation, 2-way phone \& sales talks; while with "hidden mike"! Write for Detalled Literature. MILES REPRODUGER CO., INC:
aIz BROADWAY Dep't E-7 NEW YORK 3, M. Y.
We do Sub-Contracting
for Military \& Commercial sub-assemblies • test equipment • receivers MICHEL MANUFACTURING CO. 227 North Water Milwaukee, Wisconsim

coults

Bobbin, spool, form, layer, interleaved, interwoven types. Made of any material, any finish, for any application.

Send blue-prints and specifications lor prompt quotation.

THE FIVE STAR COMPANY

West Main Street Plantsville, Conn.

ELECTROACUSTIC G.m.b.H.

Westring 425-429, Kiel, W. Germany
Electronic Research, Development \&
Production-Prime
Production-Prime \& Subcontracting
Highly quallfled staff specializing in Underwater Sound Engineering (Sonar, etc.), Radio Communteation (HF, VHF Radar, etc.), \& Air Sound Equipment. electronics firms in development work, licensed manufacture and representation in Europe; willing license own patents in U.S.A. (Radar, Sonar Underwater Sounding, Ships Radio).
U. S. Rep.:

American and Foreign Enterprises, Inc. 521 Fifth Avenue New York 17, N. Y.

EL-TRONICS, INC.
Rasearch-Development-Manufacture
A single unit to large production quantities. Specialists in Nuclear Instruments, Test Equipment and Instrumentation

Send for Free Resume of our Facilitles 2657 N. Howard St. ${ }^{-}$Phlia, 33, Pe GArfiold 5-2026

FM MODULATION METER
 Mearures maximum modulation deviotion on mobile-system FM transmitters, all fre- quencies, 25 to $200 \cdot \mathrm{MC}$. Price $\$ 240.00$. LAMPKIN LABORATORIES, INC. bradienton, florida

TRANS-WIND CO.

Research-Development-Manufacture
Master Precision Potentiometers \& Ferro-magnetic Components.
Single units. \& limited production of Transformers,
Reactors. Marnetic Reactors, Magnetic Amplifiers our specialty. Master potentiometers, linear \& non-linear, single
\& multiturn, designed \& constructed. Linearity \& metter than $.01 \%$. 603 Amboy Stroet

Brooklyn 12, N. Y.

gineer's talents in any of these places.

Incidentally, if your engineers have college degrees, they are eligible for direct commissions. This has the advantage of eliminating twenty-two weeks of OCS, but the ultimate assignment is still the same-administration.

On the other hand, what's happening to the EM (enlisted man) who was an engineer in civilian life? Believe it or not, he is getting a break. A great many of the electronics people are being sent to Ft. Monmouth, New Jersey, where the majority are working in SCEL (Signal Corps Engineering Laboratories) on research and development projects. But lo, the poor officer-he sees SCEL only on guided tours; guides, by the way, are En's.
This, gentlemen, is the picture as seen through the eyes of a young engineer who is a mere corporal (said rank attained on the basis of military proficiency-not technical ability). Bv all means check my statemerts. I hope this letter will cause you to do so. Print it in Backtalk if you think it worthy but don't advise unsuspecting people to get into Signal Corns OCS. You're doing them a terrible injustice.

Corporal Signal Corps
(Editor's Note: The above letter exmost service personnel in letters to this office. As far as we can determine, the true officer experience lies somewhere between that outlined in our original article and the situation described above. Since we have, in the Corporal's letter, documentary proof that there is at least one enlisted man who is satisfied that his civilian talents are being used, we must conclude that progress is being made. May the trend continue.)

Transistor Supply Increases

In the item entitled "Transistor Supply Increases," appearing on page 10 of the June issue, the table containing production and delivery figures was based upon information presented by Lt. Col. William F. Starr but also contained other data gathered by the Editors. The text of the item, as well, contained data gathered from several sources.

Professional Services

Consulting-Patents-Design—Development-Measurement in

Radio, Audio, Industrial Electronic Appliances

CROSBY LABORATORIES, INC.
 Murray G. Crosby \& Staff
 Radio - Electronic
 Research Development \& Manufacturing Communications, FM \& TV Robbins Lane, Hicksville, N. Y.

R. W. HODGSON

RESEARCH \& DEVELOPMENT ENGINEERS SPE-C'ALIZING IN GLECTRONICS NUCLEONICS. INSTRUMENTATION, SERVOMECHANISMS \& Office-6600 Lexington Ave., Hollywood 38. Cal GLadstone 9680

DATA ENGINEERS, INC.
Engineering that "Counts" Designers \& Manufacturers of Data Recording Instruments
4608 Ravenswood Ave.,
Chicago 40, 111.

DUBROW DEVELOPMENT CO.

Design - Development - M Quality Electronic Equipment 347 IIigh St.

Burlington. N. J.
Burlington 3-0446

EDGERTON, GERMESHAUSEN \& GRIER, INC.

Consulting Engineers
Research, Develonment and Manufacture
of Electronic and Stroboscopic Equipment
Specialists in High-Speed Photography
160 Brookline Avenue. Boston 15, Mass.

Eldico of New York Inc.

Fioneers of Television Interference Elimination from Transmitters, Induction Heaters, Diathermy and ete.

Donald J. S. Merten \& Engineering Staft 44-31 Douglaston Pkwy Douglaston, N .Y. Bayside 9-8686

FRANK J. EPSTEIN

Registered Patent Agent General Patent Practice
Radio, Radar and IV Electronics
857 So. Sycamore Ave., Los Angeles 36, Calif. WHitney 9317

ERCO RADIO

LABORATORIES, INC.
Radio Communications Equipment
$\underset{\text { Pioneers in Frequency Shift Telegraph }}{\text { Enction }}$
Garden Clty - Long Island - New York

HANSON-GORRILL-BRIAN INC.

Products \& Mfg. Development miectrical - electronic hidraulic - mechanical Ona Continental Hil Glen Cove, N. Y. Glen Cove 4-1922
R. W. HODGSON

PATENT AGENT SPECIALIZING Registered to Practice Before the U.S. \&
Foreign l'atent Offees
Office-6 600 Lexington Ave. Hollywood 38. Calif. All Mail to Box 874 , Sherman Oaks, Calif. GLadstone 9680

HOGAN LABORATORIES, INC.

Jolin V. L. Hogan, Pres.
Applied Rcsearch, Development, Endincering Est. 1929. Electronics, Optics, Mechanisms, Facsimile Communication, Disital Computers, Flectrosensitive recording media, Instrumentation.
155 Perry Strect, New York 14 . CHelsea 2-7855

THE KULJIAN CORPORATION

Consultants - Engineers - Constructors Electronic Control Specialists
Utility - Industrial - Chemical
1200 N. Lroad St. .
I'hila, 21, Pa.

MEASUREMENTS CORPORATION

Research \& Manufacturing Engineers Harry w. Houck Jerry B. Minter John M. van Reuren
Specialists in the Design
Development of Electronic Test Instruments Boonton, N. J.

Eugene Mittelmann, E.E., Ph.D.

Consulting Engineer \mathcal{E} Pbysicist
High Frequency Heating-Industrial Electronics
applied Physics and Mathenatics
549 W. Washington Blvd. Chicago 6. Ill.
State 2-8021
Chicago 6. Inl.

NIAGARA ELECTRON LABORATORIES

 CONSULTATION - DESIGN COASTRUCTIONSpecializing in solution of problems of electronic
and electro-phssical instrumentation for the reand electro-physical instrumentation for the reproblems also invited.
Andover, New York Cable Address: Niatromiab

ALBERT PREISMAN

Consulting Engineer
Telerision, Pulse Techniques, Video Ampuriers,
ndustrial Appliance
Affliated with
managmannt-training associates 3308-14th St., N. W. Washington 10, D. C.

JOSEPH RACKER COMPANY

Radar Consultants \mathcal{E} Editors
Technical Manuals
Research and Development
140 Nassau Street.
Worth $4-1463$

W. C. ROBINETTE CO.

motron deadreat iligit gain seirvos Speed control of any Prime Mover $1 / 2 \%$ to 001% average. Electric Transmissions $1 / 2$ to 50.
controls-Zero drood-No load to full load. 802 Fair Oaks Ave. South Pasadena, Calif. Py 11594

SKINNER, HARLAN AND IRELAND, INC.
Consulting Engineers
Specializing in Magnetic Materials and
Their Application
offee and Laboratory Indianapolis 7, ludiana

THE TECHNICAL
 MATERIEL CORPORATION
 Conmunications Consultants
 Systems Engineering
 Systems Engineering General Offices and Laboratory
 121 Spencer Place, Mamaroneck, N. Y.

TELECHROME, INC.

Electronic Design Specialist
COLOR TELEVISION EQUIPMENT Flying Spot Scanners, Color Synthesizers. Keyers,
J. R. Popkin-Clurman, Pres. \& Ch. Enor.

88 Merrick Rd.
Amityville, L. I., N. Y.

HARRIS A. THOMPSON

Microwave Electronic Radar Electro-Mechanical
Consulting

Consulting
MFG. \& DEVELOIMENT PROMLEMS
2525 Penn., Boulder, Colorado, Phone 1202W

WHEELER LABORATORIES, INC. Radio and Electronics
 Consulting-Research-Development B -F Circuits-Lines-Antennas
 Microwave Components-Test Equipment Harold A. Wheeler and Engineering Staff
 Great Neck, N. Y. Great Neck 2-7806

YARDNEY LABORATORIES, INC.

Research - Design - Development
Electro-Chemical Generators of Energy
105 Chambers Street
WOrth 2-3534. 35. 36
New York 7, N. Y.

PEIV ON THE NATION'S CLEARING HOUSE FOR

GLECTPONIN IT NiEDSO
TUSES Staje Labs. Inc.,

MORE THAN

4,000 TUBE TYPES MORE THAN $10,000,000$ TUBES

LEADING BRANDS

AMPEREX • BOMAC • CHATHAM • CEIRON DUMONT • EIMAC • FEDERAL GENERAL ELECTRIC - HYTRON - INDUSTRO LEWIS \& KAUFMAN • MACHLETT NATIONAL • NATIONAL UNION NO. AMERICAN PHILIPS • PHILCO RAYTHEON - R C A - SYIVANIA - SPERRY TAYIOR • TUNG-SOL • UNITED
WESTERN ELECTRIC - WESTINGHOUSE

TUBE TYPES

RECEIVING • SUBMINIATURES • CRT
TRANSMITIING• SPECIAL PURPOSE CRYSTAL DIODES • GIOW MODULATOR GAS PRESSURED MEASURING
STROBOTRONS • TR \& ATR • ROCKET MAGNETRONS•KIYSTRONS•THYRATRONS

FLASH • PHOTRONS • PHOTOTUBES KENOTRONS • IGNITRONS • PHANOTRONS

AS THE

MAN-POWER SHORTAGE

becomes more acute.

You may be facing the problem of finding enough engineers or highly technical men to keep your production up to the new demands growing out of the defense effort.

In a recent advertisement, one of the leading aircraft manufacturers restated a wellknown but seldom practiced principle: "a trained, experienced engineer in one specialty can be retrained in almost any other engineering specialty with a minimum of time and effort expended".

Engineers follow with intense interest the publication devoted to their particular field. And so they are gathered into convenient groups whenever you wish to reach them - as readers of America's industrial publications.

Let us help you select the proper publications in order to reach just the type technical men you need.

Classified Advertising Division
McGRAW-HILL PUBLICATIONS 330 W. 42nd St. N. Y. 36, N. Y.

Development Engineer

We have on opening for an experienced Engineer to develop laboratory quality electronic test equipment.

This position requires both practical and theoretical ability and only those with a real interest and optitude should apply.

We are a stable, well-established small firm, located in a desirable residential area. Our laboratory is modern and well-equipped. You will find on outlet for all your talents.
please send resume and salary requireDevelopment.

BOONTON RADIO CORP.

Intervale Road Boonton, New Jersey

NEW PRODUCTS WANTED

Do you have a new of improved device or component with broad sales possibilities in the electronic or mechanical field?
Che of our clients-a progressive, experienced and vell-equipped manufacturer-is interested in developing, volume-producing,
tignal products for industry.
Outright purchase, royaity or license arrangement will be considered.
Hrite, giving preliminary details. Strict confidence
is assured.

MICHENER \& HOLLAND 2100 Lincoln Liberty BIdg. Philadelphia, Pa.

COMMIERCIAL PRODULCT Wanted

At present 90 percent on defense work, wo Electro-Mechanical in character, we employ ap preximately 200 weople. Facilities include complete engineering depattment, with research laboratory and competent technical staff, model shop and
conplete machine slop, assembly department and conplete
related services.
We are interested in any practical item with, open market possibilities of an Electrical. Mechanical or Electro-Meclianical nature, in any
condition of development from idea to productlon condition
mondel.

BO-4044, Electronics
330 W. 42 St., New York 36 , N. Y

Contract Work Advertising See page 363

REPLIES (Box No.): Address to office nearest tou NEW YORK: 830 W. $42 n d$ St. (96)

CHICAGO: 520 N. Mirhigan Ave. (11) SAN FRANCISCO: 68 Post St. (4)

POSITIONS VACANT

RUSSIAN TECHNICAL translators-permabackground in electronics and aeronautics. Applicants must have a good current knowledge of technical English as well Russian. Must pass U. S. Government security regulations. Good starting salary and excellent possibilities for adrlitional earnings. Also possibility for advancement to editor. Free-lance avain able for those not interested in perm
position. Reply to Box 188 , Nyack, \mathbf{N}.

STSTEM PLANNING Engineers. Graduate electrical engineers wanted to assist in planning the electrical development of a large metropolitan electric utility in the northeastern part of the United States. Work consists of determining the location, size, and method of connections for additional generating capacity, and associated transmission lines and swibsing; distribution invelves many electrical cal culations to determine load distribution, short circuit current, stability, voltage regulation, and involves the use of AC and DC Calculating Boards. Applicants to be not over 30 years old with BS in EE from an accredited college o univergity. Salary range pending upon experience and education. Ex pending upon experience record, education, salary expected perience record, edrach should be submitted and recent phot of application. P-4301, Elec tronics.

WANTED-B.S.E.E. graduate, 25-35 years. for radio. TV, radar 'Transiormer design and development. Should be experienced, three to five years. Allractive salary range with top fringe benefits. Our modern plant is located in Midwest in good living area. Give full details covering your expertence. Anows of this adver tisement. P-4345.

WANTED-GRADUATED electrical engineer for work in Connecticut. A man having approximately 3 years experience in achery could transformers or electrical machinery ability. Thalify. Salary commerior Electric Company, Connecticut.

EMPLOYMENT SERVICE

SALARIED PERSONNEL, $\$ 3,000-\$ 25,000$. This confidential service established 1920 , is geared to needs of high grade men who seek a change of connection under condresent position. Send name and address only for details. Personal consultation invited. Jira Thayer Jennings, Dept. L, 241 Orange St., New Haven, Conn

POSITION WANTED

ELECTRONIC ENGINEER BSEE 20 years experience design, application, ship installation planning, admin. engineering, prograni coordination. Desire position of responsible admin nature in East. PW゙-4425, Electronics

SELLING OPPORTUNITY WANTED

SALES REPRESENTATIVE Engineers are seeking additional lines in electronics and allied fields. Metropolitan N. Y. location. OrGanization offers over 20 yea
field. RA-4191, Electronics.

BUSINESS OPPORTUNITIES

Basie Component-
We have developed a new low cost patentable process for manufacturing inolded insulated near completion. Additional capital is required and a partnership or outright sale will be con sidered. BO-4341.

We Need more products.
Aggressive lelectronics Manutacturer desires to manufacture and disiribute parts and equip ment on a royalty basis. We have complete research and development facilities, and nation wide representation. Also can do cond strictly confidential. Send inquiries to BO-4563, Electronics.

. ENGNEERS
 who will be vacationing in
 YORK

Your chance of a lifetime... apply for a CAREER JOB in Engineering with CURTISS-WRIGHT

Make your vacation pay off. Talk to our engineering representative while in N.Y., learn how you can broaden your life, expand your future with one of the nation's great industrial organizations.

Start at good pay. Work in suburban New Jersey just minutes from Manhat\tan via express highways. Live in the beautiful lake area of fine homes, modern schools. Enjoy nearby ocean beaches, deep-sea fishing, year-round big league sports, 7 TV channels.

Here are jobs in one of the best areas of the U.S. for good living, combined with a real career. For you work on new frontiers of science, make headline engineering news. You pay no state income tax. And there's long-range security in the growing diversity of products at Curtiss-Wright.
-
Set up Your Inferview in advance. If your engineering field is listed below, send us your resume and this notice today.

CURIISS-WRIGHI

Corporation - Wood-Ridge, N. J. A GOOD PLACE TO WORK'"

CLIP NOW AND MAIL!

Simply attach this reminder to a resume, giv ing the following information: Personal backin detail; salary requirements.

City__ State

I am interested in the following field of engineering \square Aeronautical, \square Electrical, \square Elec tranic, \square Mechanical, \square Metallurgical.
MAIL TO: Mr. Leo Sweeney, Dept. ERB-31 Curtiss-Wright Corporation Wood-Ridge, N.J.
Please odvise address and phone where you can be reached while in New York.

SEARCHLIGHT SECTION

ENGINEERING WITH A FUTURE

RESEARCH • DEVELOPMENT • DESIGN

The continued and steady growth of established research and development projects has opened a number of unusual opportunities for outstanding and experienced men.

ENGINEERS•SCIENTISTS • PHYSICISTS

Positions are available in our organization for qualified personnel in the following fields:

Circuit Analysis	Aerodynamics
Microwaves	Applied Mathematics
Analog Computers	Physics
Servomechanisms	Flight Test
Dynamics	Design

Openings exist at several levels, and inquiries from recent graduates are also invited. Salaries are based on education, ability, and experience. Liberal salary, vacation, insurance, and retirement plans are yours if you qualify.

If you are interested in a secure future in these experimental fields, write and give full details to Mr. C. G. Jones, Salary Personnel Department.

ELECTRONIC ENGINEERS

Degree in Electrical Engineering Plus Maintenance or Repair Experience on SCR-584 Radar

ELECTRONIC ENGINEERING COMPANY
OF CALIFORNIA
180 SO. ALVARADO STREET
LOS ANGELES, CALIFORNIA

HOUSTON, TEXAS TRANSFORMER ENGINEER

Precision equipment manufacturer needs qualified, experienced engineer for audio and sub-audio transformer design and development. Experience with the high permeability alloys desirable. Knowledge of magnetic circuitry must be sufficient for development wark on magnetic amplifiers. Sclary commensurate with ability.

P-4510, Electronics
520 N. Michigan Ave., Chicago 11, Ill.

ENGINEERS

 ELECTRONIC and Electro-Mechanical

MAKE YOUR MOVE IN THE RIGHT DIRECTION

POSITIONS THAT POINT TO A SUCCESSFUL FUTURE!

Minimum Requirements
Four years' experience in advanced research and development on Radar Systems, Computers, Wave Guide and Antennas, Servo-mechanisms, Pulse Techniques Gyroscopic Equipment and Related Fields.

- If your skills are now being fully utilized in a vital defense industry, please do not apply.

Kindiy send resume and salary requiraments to
 CORPORATION
460 W. 34th St. New York 1, N. Y.

ENGINEER!

- IS YOUR WORK STIMULATING?
- ARE YOU CHALLENGED BY YOUR JOB?
- ARE YOU RECEIVING PROFESSIONAL RECOGNITION?

SYLVANIA

believes in building men
The company now in its 51st year is expanding rapidly. Net sales this year exceed 1938 by 16 times. Additional high caliber men are needed with training and experience in all phases of electronics, physics and mechanics.

Write us about yourself, if your experience and future plans fit into this pieture.

William B. Seiniger
 Department 501

SYLVania electric products, inc.
Radio \& Television Division
254 Rano Street, Buffalo 7, New York

ELECTRONIC ENGINEERS

MCDONNELL ARCRAFT CORPORATION

Offers attractive opportunities to engineers experienced in the missiles field. If technological impact and challenge to ability are features you look for in an assignment, study these classifications and "square off."

SENIOR and JUNIOR ENGINEERS for:

Package Design

Microwave Design and Development
Radar Design and Development
Auto-Pilot Design and Development
Instrumentation Development
Control Systems
Servomechanisms design and Development
Systems Analysis and Synthesis
Fire Control Computation and Development
Reeves Electronic Analogue Computers
Aircraft Antenna and Radome Design
Laboratory Testing and Evaluation

CONTACT:

TECHNICAL PLACEMENT SUPERVISOR McDONNELL AIRCRAFT CORPORATION boX 516, ST. LOUIS 3, MISSOURI

You'll Like Working for M.A.C.!

ENGINEERS

LOCATE IN THE

Mechanical Engineers, Electronics and Electrical Engineers, Physicists, and Mathematicians. A variety of positions in research, development and production open for men with Bachelors or advanced degrees with or without applicable experience.
These are permanent positions with Sandia Corporation, a subsidiary of the Western Electric Company, which operates the Laboratory under contract with the Atomic Energy Commission. The Laboratory offers excellent working conditions and liberal employee benefits, including paid vacations, sickness benefits, group life insurance and a contributory retirement plan.

Land of Enchantment

Albuquerque, center of a metropolitan area of 150,000, is located in the Rio Grande Valley, one mile above sea level. The "Heart of the Land of Enchantment," Albuquerque lies at the foot of the Sandia Mountains which rise to 11,000 feet. Cosmopolitan shopping centers, scenic beauty, historic interest, year 'round sports, and sunny, mild, dry climate make Albuquerque an ideal home. New residents experience little difficulty in obtaining adequate housing in the Albuquerque area.

Make application to the
PROFESSIONAL EMPLOYMENT DIVISION

Gorporation SANDIA BASE

 ALBUQUERQUE, N. M.

Your Professional TYuture

AND

An element you can count upon for continuing satis. faction and security.
Satisfaction - through the challenging and diversified nature of your work, the prestige and stimulation of your professional associates.
Security - through the singular importance of General Electric's role in the American economy and the recog. nition of your contribution.
Positions now open in Advanced Development, Design, Field Service, and Technical Writing in connection with:

MILITARY RADIO \& RADAR
MOBILE COMMUNICATION
MOBILE COMMUNICATION
COMMUNICATIONS
ELECTRONIC COMPONENTS
TELEVISION, TUBES \& ANTENNAS
Bachelor's or Advanced Degree in Electrical or Mechanical Engineering, Physics, Metallurgy or Physical Chemistry and/or experience in the electronics industry necessary. Do not apply, please, if your best skills are being used for vital defense work.

Please send resume to:
Dept. 72-E, Technical Personnel ELECTRONICS PARK

GENERAL ELECTRIC

SYRACUSE, N. Y.

ELECTRONIC ENGINEERS

Mechanical Designers for Research and Engineering

> To work in the design and development of new electronic equipment. Excellent working and living conditions, good salaries and exceptional employee beneflts. Write, giving full details including education and experience. Personal interviews will be arranged.

THE NATIONAL CASH REGISTER COMPANY
Main \& K Sts., Dayton 9, Ohio

CORNELL AERONAUTICAL LABORATORY, INC.

We are continually seeking men of outstanding ability who are willing and able to add to our research efforts. Typical fields include:

RADAR

COMPUTERS INSTRUMENTATION SERVOMECHANISMS SYSTEMS ANALYSIS
For additional information write, referencing this advertisement. Due to clearance problems it is impossible to consider noncitizens.

Employment Manager
 Cornell Aeronautical Laboratory 4455 Genesee Street Buffalo 21, New York

ENGINEERS

AND
 PHYSICISTS

BS - MS - Ph.D:

Responsible positions in mechanical, electrical or electronic engineering, physics or engineering physics for advanced development and design of special equipment and instruments. Prefer men with minimum of two years' experience in experimental research design and development of equipment, instruments, intricate mechanisms, electronic apparatus, optical equipment, servomechanisms, control devices and allied subjects. Positions are of immediate and permanent importance to our operations. Southwestern location in medium sized community. Excellent employee benefits. Reply by letter giving age, experience and other qualifications. All applications carefully considered and kept strictly confidential.

> Ind. Rel. Manager,
> Research \& Development Dept.
> PHILLIPS
> PETROLEUM COMPANY
> Bartlesville - Oklahoma

HELICOPTER INSTRUMENTATION ENGINEER

Instrumentation Engineer to solve theoretical and practical instrumentation problems involved in wind tunnel, whirlstand and flight testing of helicopters and convertiplanes. Desirable background would include aeronautical or mechanical engineering course (including instrumentation theary) and several years of industrial dynamic instrumentation work. Will you please state training, experience and salary requirements. All replies will be confidential. Write:

Technical Placement Supervisor

McDONNELL AIRCRAFT CORPORATION

Post Office Box 516
St. Louis 3,
Missouri

STAVID ENGINEERING, INC.

 has openings for GraduateELECTRONIC ENGINEERS

MECHANICAL ENGINEERS

Experience in Design and Development of Radar and Sonar necessary.
Broad knowledge of Search and Fire Control Systems; Servo Mechanisms, Special Weapons, Microwave, Antenma and Antenna Mounts, etc.
Mechanical Engineer should have experience in packaging of Electronic Equipment to Gov't specifications including design of complex cabinets, shock mount and sway brace structures, Servo Mechanisms.
Positions are available in Field Service and Technical Writing
Liberal personnel benefits including life, sickness and accident insurance, and a worthwhile pension system. Paid holidays and vacations.

Personnel Office

200 W. Seventh St.
Plainfield, N.J.
Telephone Plainfield 6-4806

Senior Engineers

SEE PAGE 342
FOR OPENINGS IN CONVAIR'S COMMERCIAL CHARACTRON PROJECT

SPECIAL OPPORTUNITIES FOR SENIOR ENGINEERS

Convair in cool, clean, beautiful San Diego invites you to join an "engineers" engineering department. Interesting, challenging, essential long-range projects in commercial aircraft, military aircraft, missiles, engineering research and electronics development. Positions open in these specialized fields:

Radar Systems Missile Guidance Systems Servo-mechanisms Electronic Circuits
Microwave Components and Systems
Generous travel allowances to those accepted. For free brochure, write Mr. H. T. Brooks, Engineering Dept. 900

CONVAIR

IN BEAUTIFUL

SAN DIEGO

3302 PACIFIC HIWAY
SAN DIEGO 12, CALIFORNIA

Write, Wire or phone 3 Bemdix Aedio
MR. E. O. COLE, DEPT. J.
DIVISION OF BENDIX AVIATION CORPORATION BALTIMORE-4, MD. Phone: TOWSON 2200

Nakisis of the World's Jinest Electionic Equipment

COMPONENT APPLICATION ENGINEERS

Collins Radio Company needs experienced component application engineers. Experience in component application or testing and specifications is required. EE degree desirable but equivalent additional experience will be considered. Immediate need is for men familiar with motors, dynamotors, vacuum tubes, transistors, meters, relays, transformers, capacitors and resistors.

Salary commensurate with ability. Write fully—today. Address letter to

COLLINS RADIO COMPANY
 CEDAR RAPIDS, IOWA

SALES ENGINEER

Old established Toronto firm in radio and electronics indusiry requires the services of a scles engineer, with college degree in Communications Engineering or Electronics, to handle one of the world's leading lines of laboratory test equipment. Should have at least two or three years practical engineering experience. Must have ability to meet and handle people. Permanent position. Live in Toronto, but willing to travel throughout Canada. Plecrse submit all pertinent information, including salary required to:

SW-3989, Electronics
330 W. 42nd St., New York 36, N. Y.

MALE HELP WANTED

ENGINEERS
SCIENTISTS
MATHEMATIGIANS
STATISTIGIANS
TECHNICIANS
DESIGNERS
COMPUTERS
MACHINISTS, Precision
spectaltios: electronic, optical, mechanical, servo-mechanisms, etc.
Flelds: measurement, recording, transscription, computation and analysts of guided missile and guidance systems performance.
Work Types: operation, maintenance, design, development, censtruction, research,
study. study.
Work at: lab, shop and/or outdoors.

INSTRUMENTATION

of guided missiles and aircraft blind navigation systems.
Equipment worked with: cinetheodolltes, spectal optical instruments, recorders, ravices, digital computers, many types of IBM equipment.
Locations: Air Force bases near Alamogerdo, New Mexico and Dayton, Ohio.
Other openlngs: throughout U. S. A. and world.
Advantages: excellent opportunity for advancerment, rapidly expanding organization relmbursed company paid insurane and other beneflts.
Salary: you'll be interested! Write for application form to:

LAND-AIR, INC.
Holloman Air Force Base New Mexico

POSITIONS OPEN

| Location
 I KANSAS CITY, MD.

Electronic \& Mechanical Engineers

ELECTRONIC ENGINEERS: Must have considerable development experience in radio transmitting and recelving equipment. Ablity to flll position of Senior Project Englneer a requisita
MECHANICAL ENGINEER: Must have develodment experience in mechanical design of electronic or similar precise equipment. Practical sheet metal, and machine shop design are basic requirements. Position is one of conslderable responsi bility.
SALARY: ODen.
These positions are permanent.
Write stating educational and professional history direct to:

Jay V. Wilcox, President
WILCOX ELECTRIC COMPANY, INC.
1400 Chestnut St. Kansas City I, Mo.
Dependable communications since 1931

STANDARDS ENGINEER

To establish and direct engineering and manufacturing standards program for the manufacture of military and commercial electronic equipment. Education required: $B S$ in $M E$ or $E E$ or equivalent. Experience: 6 years minimum in electrical engineering or manufacturing including at least 2 years as standards engineer.

P-4866, Electronics
1111 Wilshire Blvd., Los Angeles 17, Calif.

渵 ATTENTION!

Former Field Engineers
We urgently need men with electronic background, and preferably radar or computer experience, to supervise, instruct and assist in installation-maintenance of electronic equipment.
Excellent starting salary during factory training, plus overtime premium in field. Substantial insurance program. Domestic \& overseas assignments available. Salary will be commensurate with experience.
Please forward your personal experience record to:
Personnel Supervisor Field Eng. Div.
Reeves Instrument Corp. 215 East 91st St. New York, 28, N. Y.

AC SPARK PLUG DIVISION of
 GENERAL MOTORS CORPORATION

PRECISION INSTRUMENT PLANT
Positions now available for highest caliber personnel in the field of airborne automotic electro-mechanical control equipment.
MECHANICAL DESIGN ENGINEERS electronic enaineers SERYO ENGINEERS Electronic designers mechanical designers

New and expanding division of an established firm with 20 years of successful experience in the instrument field. Work involved deals with the manufacture and development of highly complex equipment of the most advanced type.

Write or Apply

AC Spark Plug Division
 GENERAL MOTORS CORPORATION

1925 E. Kenilworth Place Milwaukee 2, Wisconsin

electronic engineers

A new plant now under construction with a major Navy contract for electronic gunfire control units and a progressive management. Job opportunities are open for Electronic Engineers for Navy Fire Control work involving computers, gyros, radar, and engineering positions at all levels.

Daystrom offers a sound chance of advancement, a post-defense future in one of the most modern plants in the country.

> WRITE
> or
> PHONE

DAYSTROM

 Instrument DivisionPERSONNEL DEPARTMENT OF DAYSTROM, INCORPORATED
ARCHBALD, PA.

JERMYN-1144

PRINTED CIRCUIT ENGINEER

We require an engineer, electrical or chemical, experienced in printed carhon resistors to set up this process and take complete charge of developing primted circuits. Location, Virginia, This is an sive components manufacturer. Our smalf engineering staff will grow considerably creating responsible positions for qualifled men. Write your qualifleakept strictly confldential.

```
.4542, Electronics
```

330 W. 42 St., New York 36, N. Y.

ELECTRONIC ENGINEERS
 ALL GRADES

Small electronic research and development laboratory, located 8 miles outside of Washington, D. C., has several openings for junior and serrior electronic engineers. Degree essential. Varied projects include analog computers, servo mechanisms, special test equipment, etc. All Defense work. Liberal salaries dependent upon experience.
THE DAVIES LABORATORIES Incorporated
4705 Queensbury Road, Riverdale,Maryland

SENIOR ENGINEERS - DEVELOP NEW COMMERCIAL USES FOR CONVAIR CHARACTRON

Convair's new commercial charactron project has openings for Senior Engineers in Pulse Circuitry, Electronic Storage Systems, High Speed Printing and Electron Optics.
Write: H. T. BROOKS
ENGINEERING DEPARTMENT 910

CONVAIR
 SAN DIEGO 12 CALIFORNIA

URGENTLY NEEDED
 TECHNICAL WRITERS
 FOR
 COLLINS RADIO'S ENGINEERING PUBLICATIONS DEPARTMENT

Collins Radio Company's ever-growing leadership in the fields of communications, navigation and broadcasting is placing an increasing importance upon the completeness and quality of the technical literature required to support its equipment in the field.
If you are qualified to write such material, join us and watch electronics progress with Collins.
Collins' facilities include a complete, self-sufficient publications organization, including writers, editors, artists, draftsmen and a well-equipped offset printing plant.
DUTIES-Preparing and editing copy for commercial and government operating and maintenance manuals, engineering reports and equipment specifications.
QUALIFICATIONS_Degree in electrical engineering or degree in journalism and several years of practical radio experience.
Write us fully about yourself-today. The jobs are open now! Address your letter to Merrill S. Smith, Collins Radio Company, Cedar Rapids, Iowa.

ELECTRONIC ENGINEER

for
Challenging Opportunity in

ATOMIC ENERGY

Tracerlab, Inc., the foremost commercial firm in the development of peacetime applications of atomic energy and olectronic instrumentation for measuring radioactiv ity seeks an outstanding Electronic Engineer to take complete responsibility for a group of major projects.

Position requires a B.S. in Electronic Engineering, with an M.S. preferred. Mini-
mum of 5 years industrial experience. mum of 5 years industrial experience.
Familiarity with applications and limitaFamiliarity with applications and limita-
tions of manual and machine tools used tions of manual and machine tools used
in sheet metal work, good knowledge of drafting practice and complete understanding of electronic test equipment necessary.

Unparalleled opportunities await the qualified applicant. Salary commensurate with training and experience. Please send resume to:

Industrial Relations Department
TRACERLAB, INC.
130 High Street Boston 10, Mass.

TAKE ADVANTAGE OF These Opportunities Today! Positions Open NOW for: ENGINEERS and TECHNICIANS

Here's a real chance to gain valuable experience in the field of ELECTRONICS!
You will be working on the vital problem of electron tube reliability for an established aeronautical communications firm,
We need men of good educational background and experience who can handle either field or laboratory assignments, men who understand circuits and the mechanical ospects of electronics, engineers with electron tube design and opplication background. We will consider men who do not have o college degree if they have comparable experience. Salaries commensurate with ability.
Our personnel have been informed of this advertisement. Replies will be kept in strict confidence. Send a resume of your education and experience to:

P-4459, Electronics
330 W. 42 St., New York 36, N. Y.

RESEARCH OPPORTUNITIES

The University of Michigen is expanding its research organization and will have a number of excellent opportunities open in important research pro groms for ENGINEERS, PHYSICISTS and MATHEMATICIANS. Work classifications are in the fields of:

ELECTRONICS
(Experience in circuit development and de sign on analog and digital computers, telephone switching equipment or cathode ray displays preferred.)

SYSTEMS ANALYSIS SIMULATION
OPERATIONAL ANALYSIS

OPTICS

MECHANICAL ENGINEERING (Icing Research)
Researchers have an opportunity to complete their requirements for graduate degrees while employed.

Salaries are commensurate with training and experience. Applicants are invited to send a resume of education and experience to:

Personnel Office
University of Michigan Ann Arbor, Michigan

TEACHING POSITIONS IN ISRAEL

The Hebrew Institute of Technology, Halfa, israel, proposes to appoint I professor in power engineering, with special qualifications in electrio
machines: associate professors in olectric engineering (electric machines, telecommunications, and electronics).
Applicants should have Arst-rate professional and academic qualifications, be willing to integrate course, to teach in Hebrew.

Applications with full details should be sent, for transmission to Haifa, to:

The American Technion Society 80 Fifth Avenue New York 11, New York

TRANSFORMER ENGINEER

to head development

Rare opportunity to join staff of nation's leading manufacturer of specialty transformers as head of development section. Company has lowest turnover in the industry. Background should include at least three years in responsible position as project or development en gineer with experience in at least three of the following lines: fluorescent lamp ballasts,-transformers for luminous tube, ignition, mercury lamp, power cir cuit, control and radio. Age preferred, 30 to 40 years.

Attractive salary range. Midwest location in area of good living conditions. Give complete data regarding past and present work. All replies confidential. Our engineers know of this advertise. ment.

P-4287, Electronics
520 N. Michigan Are., Chicago 11, Ill.

INSTRUMENT ENGINEERS

Research and Development Engineers experienced in pneumatic and electrical instruments. Also openings for recent engineering graduates, Mechanical preferred. Excellent opportunity with rapidly growing Research and Development Department. These are permanent positions with stable organization. Send resume to:

> AMERICAN METER CO. Personnel Department 10th \& Payne Avenue Erie, Pa.

HOUSTON, TEXAS TRANSFORMER ENGINEER

Precision equipment manufacturer needs qualified, experienced engineer for cudio and sub-audio transformer design and development. Experience with the high permeability alloys desirable. Knowledge of magnetic circuitry must be sufficient fiers. Salary commensurate with ability.

P-3864, Electronies
520 N. Michigan Ave., Chicago 11, Ill.

ELCIIIERS WTHHOUI Collife defilis

We put no limits on your engineering future!!

- Are you capable of doing real professioncl-level eng neering worl? If you have dem onstrated your ability to do first class engineering work but feel you are being handicapped by in touch of a college degree, ge in touch with this company.
W^{E} ARE a lugse manutcturer of Electronic Equipmont (Milfary, Aviation, Automotive, Television) and have over 100-million-dollar bacliog. Located on Eastern Seaboard.

There are many responsible positions open in our orcyeni zation which offer unlimited opportunity. We womit them filled of their formal educetional back their formal educational back grounds.

ELECTRONIC ENGINEERS \& PHYSICISTS

OUR STEADILY EXPANDING LABORATORY OPERATIONS ASSURE PERMANENT POSITIONS AND UNEXCELLED OPPORTUNITY FOR PROFESSIONAL GROWTH IN

RESEARCH \& DEVELOPMENT

GUIDED MISSILES
TELEVISION
ELECTRONIC NAVIGATION
SOLID STATE PHYSICS
VACUUM TUBES
RADAR
adderss CAPEHART FARNSWORTH CORP. INQUIRIES TO

FORT WAYNE, IND.

ENGINEERS! PHYSICISTS!

We have openings in research, development and production at our Newark and Livingston, New Jersey plants for engineers and physicists in the following fields:

- Vacuum Tubes
- Gas Tubes
- Hydrogen Thyratrons
- Computer Tubes
- Computer Circuits
- Nucleonic Instruments
${ }^{-}$- Pulse Circuits
- Electronics Equipment

Excellent opportunities for men with ability and experience. Openings exist for recent graduates. Write giving full details to:

Personnel Department

CHATHAM
-ELECTRONICS CORP.
475 Washington Street
Newark, New Jersey

KAMAN AIRCRAFT'S

entrance into the field of ELECTRONIC DEVICES for HELICOPTER use has creoted an immediate need for

RADIO ENGINEERS

Minimum of 5 years experience in the design and development of high frequency FM transmitters and receivers. Engineering graduates with advanced degrees preferred.

RADIO and ELECTRONIC TECHNICIANS

3 to 5 years experience in the construction testing and operation of high frequency $F M$ transmitters and receivers. Engineering graduates preferred.

ELECTRO-MECHANICAL TECHNICIANS

3 to 5 years experience in aircraft servocontrol systems. Engineering graduates preferred.

Please send detailed resume to W. M. TYNAN
Administrative Engineer Department E
kaman aircraft corporation
Windsor Locks, Connecticut

OIL FILLED CONDENSERS											
MFD	vDC	Price	M FD	VDC	Price	MFD	vDC	Price	MFD	VDC	Price
2	400	\$. 55	. 1	1500	. 59	.1-. 1	7000	5.95	. 125	27 KV	37.50
5-5	400	1.65	.5	1500	1.25		7500	2.85	. 001	50 KV	24.50
1	600 6.00	. 65	3	1500 1500	2.50	${ }^{5}$	7500	8.95	. 025	50 KV	42.50 8500
2	600R'd	. 69	. $1-.5$	1500	2.95	- 075 -. 075	508 KV	22.50	.25	50 KV	95.00
2	600 R 'd	1.65	.25	2000	1.50	. 5	$10^{\text {KV }}$	16.50	${ }^{7} .5$	220 VAC	1.95
3	600	. 95	${ }^{3}$	2000	1.30	1	10 KV	29.50	1-3	330 VAC	1.95
4	600	1.65	1	2000	1.95	. 1	12 KV	8.95	10	330 VAC	3.95
4	600R'd	1.65	3	2000	3.75	1	15 KV	37.50	12.75	330 VAC	4.10
5	600	1.75	12	2000	8.95	. 045	16 KV	4.70	15	330 VAC	4.50
8	6000 'd	1.85	${ }_{1-1}$	2500	2.75	. 05	16 KV	4.95	5.9	440 VAC	3.10
88	${ }_{600}^{600}{ }^{\text {c }}$ 'd	1.85	${ }_{32} 1$	2500 2500	3.85 15.80	. 25	16 KV 20 KV	8.95 19.95	2.9	660 VAC 660 VAC	3.50 4.25
4-4-4	600	2.50	${ }^{.} 5$	3000	15.80	i^{25}	20 KV	19.95 54.00	8	660 VAC	4.50
4×3	600	2.50	i	3000	3.40						
10	600	3.25	2	3000	4.50						
1	1000	. 65	. 03	4000	1.25			OILM	ITES		
2	${ }^{1000}$ 1000 ${ }^{\prime}$ d	. 90	3 x .2	4000 4000	2.95						
3.5-. 5	$1000{ }^{\text {d }}$ d	$\mathbf{1 . 8 5}$	2	4000 5000	6.95 1.60	MFD		V00	T	P602	Price
4	1000	1.95	2	5000	2.50	. 05		600	OM	6005	. 48
8	1000	2.50	1	5000	4.88	. 1		600	OM	10	. 51
8	1000	3.25	${ }^{2} .01-.03$	5000	18.50	. 25		600	OM	65	.55
1-1-1	1200	1.85	. 1 -.03	${ }_{7000 R} \mathbf{6 0 0}$ d	1.65	1.0		600 600	OM	601	. 60

COAXIAL CONNECTORS

FULL LINE OF JAN APPROVED COAXIAL CONNECTORS UHF-N-PULSE—BN—BNC

2 中 LOW INERTIA SERVO MOTORS

 KOLLSMAN-45 Volt 60 cycle 4 watts 1500 RPM-
 PIONEER-CK-14 115 volt 400 cycle-includes damp-
ing signal generator (antossn)............. $\$ 47.50$

HIGH VOLTAGE TRANSFORMERS

 G.E.-Pri. 115 V 60 cy . Sec. $6250 \mathrm{~V} 80 \mathrm{MA}-12.5 \mathrm{KV}$

ANTENNAS

AN -65A (P/O SCR-521).
ASB Yagi- 5 element 450 to 560 MC
ASB Yagi-5 eoumbent stacked 6 oflement....
ASA Yagi-D ouble stacked 370 to 430 MC

RELAYS

Sigma type 4AH-2000 4 ma DC coil-SPDT con-tacts- hermetically sealed 5 pin plug-in base. $\$ 3.30$
Sigma type $48-8000 \Omega$ I ma DC coll-SPDT contacts melosed type 5 pin plug in base........... $\$ 4.25$
 SPST NO contacts
Cutler-Hammer and Squaro D type B-7A contactorPrice Bros. type $161-\mathrm{M}-220 \mathrm{VAC}$ contactor- 24.75
 G.E. CR5181-1A6-115 V 60 ey, AC contactor 4 PST

$\begin{array}{ll}93-\mathrm{C} & 49120 \\ 93-\mathrm{M} & 49121 \mathrm{~A}\end{array}$
D-163950
ES-6890172-1

ADD 25% TO PRICES SHOWN FOR QUANTITIES

OIL-FILLED 35 KV AND 50 KV ISOLATION TRANSFORMERS Pri. 460 V 60 cy . Sec. 15 I 200 VA Insulated for 50 KV

	CRYSTAL DIODES				
1N	\$1.19	$1{ }^{1} 27$	\$1.79	1 N	
1N21B	3.50	in34	. 10	iN	55
${ }_{1}{ }^{2} 22$	1.99	${ }^{1} \mathbf{N 3 4 A}$	95	1N4	94
	1.95	1N38	1.70	${ }^{1 N}$	1.05
1N23B	3.25	1N40	10.60 10.25	IN60	

TYPE "'J"' POTENTIOMETERS

Res
160
160
100
100
200
250
500
500
500
500
650
$1 K$
2 K
25
4 K
5 K
Shaft
SS
$9 / 16^{\circ}$
SS
SS
$1 / 8^{\circ}$
SS
$5 / 1^{\circ}$
$1 / 2^{\circ}$
$5 / 8^{\circ}$
$1 / 2^{\circ}$
SS
$3 / 8^{\circ}$
$S S^{\circ}$
SS
SS Resis.
5 F
5 K
5 K
10 K
10 K
10 K
15 K
15 K
25 K
25 K
20 K
30 K
40 K
50 K
50 K

[^18]SOUND POWERED TELEPHONES
U. S. NAVY TYPE M HEAD AND CHEST SETS U.S.I. A-260 W.E. D-173013

ANY TYPE- $\$ 14.88$ EACH
TS-10 Type Handsets............................. $\$ 9.25$

GENERATORS AND INVERTERS

 Eclipse-Pioneer type 716-3A (Navy Model NEA-3A)Output-AC 115 V 10.4 A 800 to 1400 cy . $16: \mathrm{DC}$) 30
Volts 60 Amps Volts 60 Amps. Brand new............... $\$ 338.50$
Eclipse-Pioneer type $1235-1 A$ DC 15 Amps. Brand New-Original Packing.... $\$ 15.50$
PE-218 !nverters-28 VDC to 115 VAC 400 cy 1500

 G. ${ }^{\text {Cy }} 7$ Inverter- 28 VDC to 120 VAC 800 oy
 PU-7/AP Inverter-28 VDC to 115 VAC 400 ey 2500
(used) Eclipse-Pioneer type 12121A Inverter-Voltage and
frequency regulated-24VDC 18 Amp input-A

TEST EQUIPMENT

- Gen, Radio 475B Frequency Monitor....... $\$ \$ 200.00$
 - TS.143/CPN Öschioscope
- Dument 175A Oscilloscope
- Gen. Radio 757-P1 Power Supply.
- A.W. Barber Labs. VM-25 VTVM.

TS.19/APA N Delay Line Test Set $\$ 86.0$

- CWI-60AAG Range Calibrator for ASB, ASE $\$ 75.00$ and ASVC Radars............................. $\$ 39.9$ to 400 MC.. $\$ 11.75$
- 3 CM Pickup Horn Antenna AT-48/UP...... 1.138 A Signal Generator- $10 \mathrm{~cm} . . .{ }^{2}$
 - BC-221 Freq. Meter (late models)
- WW 60 ABM Frequency Meter- 10 CiM.... $\$ 125.00$
- Weston - Weston Model I D.C. Milliameter $150 / 1500$ MA All itens New Excent Where noted* (Exc. Used Gondition.

AN/APA-23 RECORDER
Sweeps any receiver through Its tuning range and permanently records frequency and time of recelved signals on paper chart. Power input- (motor) ${ }^{27 V}$
DC $1.5 A$, and (recorder) $80 / 115 \mathrm{~V}$ AC $60-2600$ cy DC 1.5 A , and (recorder) $80 / 1 \mathrm{ISV}$ AC $60-2600$ cy
135 W . Originally designed to record pulse or sinewave
modulated signals received by AN-APR-I, AN/APR

SPRAGUE PULSE NETWORKS

7.5 E3-1-200-67P, 7.5 KV, "E"' Circuit I Microsec.
 $200 \mathrm{PPS}, 67 \mathrm{chms}$ imped, 3 sections........ $\$ 6.75$

Terms 20% cash with order, balance C. O. D house, phila., Penna., subject to change without notice.

LECTRONIC RESEARCH TUBE SPECIALS

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Recei \& \& \[
6 \mathrm{~A}
\] \& \[
\begin{aligned}
\& 1.59 \\
\& 1.39
\end{aligned}
\] \& \[
\begin{aligned}
\& \text { 6SK7 } \\
\& \text { 6SK7 }
\end{aligned}
\] \& \[
.89 .
\] \& \[
\begin{aligned}
\& 14 A 7 \\
\& 14 B 6
\end{aligned} \cdot
\] \& \[
.97
\] \& \begin{tabular}{ll}
3FP7 \&... \\
\hline 6.95 \\
\hline
\end{tabular} \& \begin{tabular}{ll}
\(885 \ldots \ldots\) \& 1.90 \\
\(1665 \ldots\) \& 1.80
\end{tabular} \& \({ }^{4 B 24}\) 4B25; \(\cdots \quad 5.75\) \& \[
\begin{aligned}
\& \text { WE-257A } \\
\& \text { WE-274 }
\end{aligned}
\] \& \[
\begin{aligned}
\& 3.77 \\
\& 5.50
\end{aligned}
\] \& \[
\begin{aligned}
\& 807 \\
\& 808
\end{aligned}
\] \& 1.70
2.65 \\
\hline OOA. \& \$1.50 \& \[
611
\] \& \[
\begin{aligned}
\& \mathbf{1 . 3 9} \\
\& \mathbf{2} 50
\end{aligned}
\] \& 6SK7GT. \& \[
\begin{aligned}
\& .89 \\
\& .96
\end{aligned}
\] \& 14B6... \& \[
\begin{array}{r}
.93 \\
1.09
\end{array}
\] \& \(\begin{array}{ll}\text { 3FP7A.... } \& 6.95 \\ \text { 3GP1.... } \& 4.95\end{array}\) \& \(\begin{array}{ll}1665 \ldots \& 1.80 \\ 1904 \ldots \& 14.80\end{array}\) \& \begin{tabular}{l}
4B25/ \\
EL-6GF 8.95
\end{tabular} \& \[
\begin{aligned}
\& \text { WE-274A } \\
\& \text { 274B. }
\end{aligned}
\] \& \[
\begin{aligned}
\& 5.50 \\
\& 2.85
\end{aligned}
\] \& \[
\begin{aligned}
\& 808 \\
\& 809
\end{aligned}
\] \& \[
\begin{aligned}
\& 2.68 \\
\& 2.40
\end{aligned}
\] \\
\hline C1A \& 67 \& 6 6K5 \& 1.35 \& \& . 89 \& 14C5 \& 1.29 \& 3HP7.... 4.91 \& \(2050{ }^{\text {c }}\). 1.80 \& 4E27.... 17.25 \& WE-275A \& 6.95 \& 810 \& 10.95 \\
\hline CZ \& 74 \& WE-6AK5 \& 2.85 \& 6SN7WGT \& 2.30 \& 14C7 \& 1.15 \& 4AP10,.. 4.75 \& 2051.... . 1.15 \& 4.136.... 150.00 \& WE-283A \& 4.25 \& 811 \& 3.60 \\
\hline 024 \& . 90 \& 6AK5W.. \& 3.05 \& \({ }^{6} \mathrm{SO} 7\) \& . 75 \& 14E6 \& 1.09 \& 5AP1.... 5.95 \& 5545..... 32.50 \& 4, \(338120 .00\) \& WE-285A \& 5.57 \& 813 \& 9.50 \\
\hline 1 A3 \& . 71 \& 6AK6 \& . 99 \& 6S \& . 75 \& 14 E \& 1.29 \& 5AP4, ... 4.75 \& Transmitting \& 4, \(150 \ldots . .375 .00\) \& WE-286A \& 7.90 \& \& 3.95 \\
\hline 1.4 .5 \& . 72 \& 6AL5 \& 69 \& 6S1 \& . 81 \& 14F7 \& . 93 \& 5BP1.... 5.75 \& \& Spectal \& \& \& \& \& \\
\hline 146 \& . 72 \& 6AL5 \& 2.90 \& 6SS7 \& . 99 \& 14H7 \& . 93 \& 58P4.... 5.75 \& Purpose Tubes \& 5D21.... 26.50 \& 304 TH \& 9.75 \& 816 \& 1.45 \\
\hline 1 A 7 \& .91 \& 6A05 \& . 89 \& 6ST7 \& 1.25 \& 14 \& . 93 \& 5CP1.... 4.95 \& OA2.... \$1.30 \& \& \& 9.73 \& 828 \& 13.45 \\
\hline 1485 \& . 89 \& 6 AO \& . 79 \& 6T7 \& 1.09 \& \& . 93 \& \({ }^{5} 5 \mathrm{FP} 7 \times . . .9 .50\) \& OR3..... 1.51 \& 6-8B . . . 18.55 \& WE-30 \& 6.45 \& 829 \& 9.95 \\
\hline 183 \& 1.17 \& 6 6RR5 \& . 79 \& 6T8 \& 1.11 \& \[
\begin{aligned}
\& 14 \mathrm{R} \\
\& 14 \mathrm{~W}
\end{aligned}
\] \& .93 \& \(\begin{array}{ll}\text { 5FP7. . . } \& \mathbf{4 . 9 5} \\ \text { 5HP1 }\end{array}\) \& \(\begin{array}{ll}\text { OB2 } \& . . . \\ \text { OB3.... } \& 1.50 \\ 1.29\end{array}\) \& \& WE-310A \& 7.45 \& 8298 \& 14.50 \\
\hline 18 \& 1.85 \& 6A \& 3.30 \& 6 \& 1.88 \& 14X \& . 93 \& 5HP4.... 5.75 \& OC3..... 1.20 \& 6AR6.... 3.35 \& WE-313C \& 4.15 \& 829 B \& 14.50 \\
\hline 1 C 6 \& . 69 \& 6AS7 \& 4.53 \& \& 1.60 \& 19 \& . 89 \& 5JP1, . . 26.50 \& OD3 1.15 \& \({ }^{6 C 21} \ldots . . .29 .50\) \& \(316 A\) \& . 89 \& 8301 \& 3.95 \\
\hline 1.0 \& . 69 \& 6AT6 \& 63 \& \& . 89 \& \& 1.16 \& 5.JP2. . . . 26.50 \& 1B21A... 2.85 \& \({ }_{6} 614 . . .{ }^{\text {22,50 }}\) \& 327E \& 4.25 \& 832 \& 7.95
9.95 \\
\hline 1D5 \& . 69 \& 6AU5GT \& 1.21 \& 6V6GT \& . 79 \& 22 \& 1.16 \& 5JP4.... 26.50 \& 1822.... 3.25 \& \& \& \& 836 \& 9.95
3.50 \\
\hline 1D7G \& . 69 \& 6A \& . 69 \& 6W4GT \& . 72 \& 24 \& . 79 \& 5LP1.... 19.75 \& 1B23.... 9.95 \& 7-7-11... 1.19 \& WE-343A \& 2.75 \& 837 \& 3.50
1.85 \\
\hline 1 D 8 \& . 71 \& 6AV6 \& . 63 \& 6W6GT \& . 99 \& 25 \& 1.16 \& 5LP5, . . \({ }^{\text {5MP1 }} \ldots\) \& (West) 12.95 \& 10Y.... \({ }^{\text {10, }} \mathbf{4 5}\) \& WE-3 \& 6.95 \& 838 \& 1.85
3.25 \\
\hline 1 F 4 \& . 69 \& 685 \& 1.20 \& 6X5'G \& . 59 \& \(25 Z\) \& . 99 \& 7BP1.... 8.75 \& 1 B 24 (\({ }^{\text {d }}\) \& 13-4.... 8 \& 3508 \& 4.95 \& 841 \& . 49 \\
\hline 1 F5 \& . 69 \& 6 B 7 \& . 97 \& 6Y6G \& . 99 \& 26 \& .79 \& 7BP7.... 7.95 \& Sylv) , 18.95 \& 15E..... 2.35 \& WE-356B \& 5.45 \& 843 \& 59 \\
\hline 1 F 6 \& . 71 \& \(6 \mathrm{B8}\) \& . 99 \& \(62 Y 5\) \& . 89 \& 27 \& . 69 \& 7BP12... 14.95 \& 1826.... 3.73 \& 15R.... 95 \& 361A \& 4.75 \& 845 \& \\
\hline 1 G 4 \& . 69 \& 6B8G \& . 85 \& 7A4 \& . 79 \& 28 \& 1.75 \& 7BP14... 14.95 \& 1B27.... 19.50 \& REL-21.. 2.25 \& 368A \& 6.95 \& 845 \& 55 \\
\hline \(1 \mathrm{G5G}\) \& . 69 \& 6BA6 \& . 72 \& 7 A 5 \& . 88 \& 30 \& . 72 \& 7CP1.... 14.95 \& 1829... 2.90 \& 24G.7... 1.85 \& 371 B \& 95 \& 851 \& 29.50
67.00 \\
\hline 1G6 \& . 69 \& 6BA7 \& 1.20 \& 7A6 \& . 83 \& 30 \& . 48 \& 9GP7.... 12.85 \& 1832... 3.95 \& \& \& \& 85 \& \\
\hline 1 H 4 \& . 89 \& 6BC5 \& . 88 \& 7A7 \& . 83 \& 31 \& . 62 \& \& 1835.... 12.50 \& RK-25... 3.8. \& 388A \& 2.95 \& 860 \& 22.69
4.95 \\
\hline \[
\begin{aligned}
\& 1 H 5 \\
\& 1 H 6
\end{aligned}
\] \& . 74 \& 6BC7 \& 1.10 \& 7A8 \& 83 \& \& . 99 \& 108P4... 18.50 \& \begin{tabular}{l}
\(1836 \ldots .\). \\
1838 \\
\hline 12.50 \\
\hline
\end{tabular} \& 5558... 6.75 \& 417A \& 4.70
16.95 \& 861 \& 4.50 \\
\hline 1 H 6 \& 1,01 \& 6BD6 \& . 99 \& 7AH \& 1.08 \& 33 \& .99 \& 12DP7... 16.50 \& 1B41..... 47.50 \& RK-34... 4.49 \& 434A \& 17.50 \& 864 \& 39 \\
\hline 1 J 5 \& . 74 \& 6BE \& . 72 \& 7B4 \& 83 \& \& . 99 \& 12GP7... 16.50 \& 1B42, ... 9.80 \& 35T.... 4.95 \& 446 \& 1,95 \& 865 \& 8 \\
\hline \(1 . J 6\) \& . 95 \& 6BF5 \& 1.10 \& 785 \& . 83 \& 35/51 \& . 79 \& 12HP7... 16.50 \& 1854.... 32.50 \& 35T Ion \& 4 \& 1,95 \& \& \\
\hline 1 LA \& . 69 \& 6BF6 \& . 83 \& 7B6 \& 83 \& 35A5 \& . 89 \& 902P1.... 9.95 \& 1H20... . . 88 \& gruge. 5.95 \& 446B \& 2.25 \& 869 B \& 5.00 \\
\hline 1 LA 4 \& . 87 \& 6BG6 \& 1.92 \& 7B7 \& 83 \& 3585 \& . 87 \& 905.... . 4.45 \& 1521.... 9.50 \& \& \& 42.50 \& 87 \& 3.95
1.45 \\
\hline 1 LA6 \& 1.10 \& 6BH6 \& . 99 \& 7 B \& . 89 \& 35 L 6 \& . 81 \& \& 122
2822 \(\cdots \cdot{ }^{3.75}\) \& \begin{tabular}{l}
REL-36... \\
RK-47... \\
\hline 4.92
\end{tabular} \& \& 1.39 \& \& 1.60 \\
\hline \(1 \mathrm{LB4}\) \& 1.01 \& 6BJ \& 1.99 \& 7C4 \& . 69 \& 35V \& . 81 \& \$118.10 \& \(\begin{array}{r}\text { 2B22.... } \\ \text { 2C21, } \\ \hline 1\end{array}\) \& \& 471A/ \& \& 878 \& 1,85 \\
\hline \(1 \mathrm{LC6}\) \& .93 \& \({ }^{6} \mathrm{BL} 7 \mathrm{C}\) \& 1.45 \& 7 C \& . 83 \& 35Z4 \& . 69 \& 1P24.... 1.27 \& 2C22.... . 75 \& VT-52... 65 \& \(1 \mathrm{B21A}\). \& 2.75 \& 886 \& 3.50 \\
\hline 1 L \& . 93 \& 6BN6 \& 1.59 \& 7E \& 1.20 \& 3525GT. \& 59 \& 918..... 1.65 \& 2C26...: 49 \& \& SS-501. \& 12.55 \& 95 \& 70 \\
\hline 1 LE 3 \& .93 \& 6BQ6 \& 1.26 \& 7E6 \& . 58 \& \& 69 \& 919..... 1.95 \& 2C26A... 49 \& RK-59... 2.44 \& 03 \& 1.65 \& \& 70 \\
\hline 1 LH \& . 82 \& \({ }^{6} \mathrm{C}\) \& . 65 \& 7E7 \& . 83 \& \& 69 \& \begin{tabular}{l}
\(923\). \\
\hline 1.85
\end{tabular} \& \& \& \& \& \& 99 \\
\hline 1 LN5 \& . 91 \& 6C5 \& . 75 \& \({ }_{7} 7 \mathrm{~F} 7\) \& 1.59 \& \& 69 \& 1.85
6.95 \& \& \(\begin{array}{ll}\text { VT-62(Br) } \& 1.15 \\ \text { RK-63... } \& 22.50\end{array}\) \& \& 12.25 \& 958 \& 69 \\
\hline 1N5G \& . 85 \& \({ }^{6} \mathbf{C}\) \& .89 \& 7F8 \& 1.59 \& \[
\begin{aligned}
\& 39 \\
\& 41
\end{aligned}
\] \& 71 \& \(\begin{array}{lll}931 \mathrm{~A}\end{array} . . .6 .9 .95\) \& 2C40.... \({ }_{\text {26.25 }}\) \& VR-67... \({ }^{\text {R }}\) - 48 \& 530 \& 17.20 \& 959 \& 1,50 \\
\hline 1P5GT \& . 69 \& 6C8 \& . 96 \& 7H7 \& . 83 \& \& 89 \& \& 2C43… 22.50 \& RK-69... 2.25 \& 531 \& 8.25 \& 991 \& 45 \\
\hline 105GT \& . 99 \& 6CD \& 2.40 \& 7 J 7 \& 1.32 \& \& 89 \& Thyratrons \& \& 2C44.... 1.50 \& \(72 \ldots . . .1 .32\) \& 532 \& 3.95 \& \& \\
\hline 1 R 4 \& . 69 \& 6D6 \& . 88 \& 7 K 7 \& 1.32 \& \& 89 \& Ignitrons \& \& \begin{tabular}{lll}
\(\mathbf{7 3}\). \\
RK-75 \& \(\cdots\) \& \(\mathbf{1 . 3 2}\) \\
\hline
\end{tabular} \& \& 65.06
2.20 \& C-11 \& 35 \\
\hline \[
\begin{aligned}
\& \text { 1R } \\
\& \text { iS }
\end{aligned}
\] \& .81 \& 6 D \& . 83 \& \& . 97 \& \& 9 \& \& 1.85 \& VR \& 56 \& 3.50 \& 1201 \& 1.20 \\
\hline 155 \& . 81 \& 6F5 \& 83 \& 7 O \& . 83 \& \& 99 \& 2A4G.... 1.25 \& 2E24.... 4.10 \& OA3... 1.51 \& HY6 \& . 49 \& 1203 \& . 69 \\
\hline 154 \& . 81 \& 6F6 \& . 99 \& 7R7 \& .94 \& 4 \& 1.60 \& 2B4.... 2.10 \& 2J21A... 9.95 \& 75 T 5.80 \& WL670A. \& 8.70 \& 129 \& \\
\hline \(1 T 5\) \& . 71 \& 6F6 \& . 99 \& 7S7 \& 1.11 \& 49 \& 1.19 \& \({ }_{2} \mathrm{C} 33 \ldots . .4 .95\) \& 2.J22.... 9.95 \& VR-78... 64 \& 700 A \& 24.50 \& 129 \& 69 \\
\hline 1 4 \& . 86 \& \& .85 \& 7 7 7 \& 1.11 \& \& 1.41 \& 2D21... 1.55 \& 2J26.... 26.50 \& VR-90 \& 700 B \& 24.50 \& \& . 2.69 \\
\hline 1 V \& . 81 \& \& . 91 \& 7 T \& 1.11 \& \& . 81 \& \& 2 J 27 \& VT-98... 1.29 \& 700 \& \& 16 \& 1.20 \\
\hline 1 1 2 \& 1.09 \& \& 1.06
.83 \& \(7 \mathrm{7Z}\) \& . 73 \& 50 L \& . 88 \& 3C31/EL-
C1B..
3.95 \& 2.531 \& Br) ... 65.00 \& 702 L \& 24.50
2.95 \& 1614 \& 2.00 \\
\hline 2 A 3 \& 1.28 \& \({ }^{6} \mathbf{H} 6\) \& .83 \& 10 \& . 45 \& \& 79 \& 3C45.... 17.50 \& 2J33..... 39.50 \& C100E... 2.30 \& 792B \& 4.25 \& 1616 \& 1.07 \\
\hline 2A5 \& . 79 \& 6.55 \& .75 \& 12A \& . 65 \& \(50 Y\) \& . 92 \& 4C35 28.75 \& 2534..... 39.50 \& 100R \({ }^{\text {R }}\). . 2.90 \& 703A \& 6.95 \& 1619 \& \\
\hline 2 A 7 \& . 89 \& 6 J 5 \& . 64 \& 12A6 \& . 71 \& 53 \& . 95 \& EL-C5B.. 9.95 \& 2536..... 85.00 \& 100TH... 10.25 \& 704 \& 5 \& 162 \& \\
\hline 2B7 \& . 79 \& \(6 J 5\) \& . 64 \& 12A6 \& . 69 \& \& . 99 \& \({ }^{5 C 22} \ldots 5 . . .53 .45\) \& \(2 \mathrm{2J37} \ldots . .13 .7{ }^{13}\) \& WE-101D
WE-101F

3.65 \& \& 45.75 \& 16 \& 1.95

\hline 2 E \& . 94 \& \& 1.09 \& 12A \& 1.16 \& \& . 32 \& 5 \& $2 \mathrm{2J9}$..... ${ }^{179.50}$ \& WE-102F 2.85 \& \& 45.00 \& 162 \& . 4

\hline 2×2 \& 1.85 \& 6 J 7 \& 79 \& 12AH7GT \& 1.32 \& 56 \& . 69 \& FG-17/55575.25 \& 2J40..... 39.50 \& VR-105/ \& 706 \& 45.00 \& 162 \& 39

\hline 3 A 4 \& . 65 \& \& 1.28 \& 12AL \& . 89 \& \& 89 \& FG-33. . . 17.50 \& 2J41..... 175.00 \& OC3... 1.20 \& 706 \& 45.00 \& \&

\hline 3 A 5 \& 1.89 \& 6 K 5 \& . 99 \& 12AT \& . 59 \& \& . 89 \& FG-41... 122.50 \& 2J48..... 27.50 \& WE-113A 1.32 \& 706 \& 45.00 \& 163 \&

\hline 318 \& 2.25 \& \& . 69 \& 12A \& 1.15 \& \& 1.24 \& FG-67.. 14.80 \& $2 \mathrm{~L} 49 \ldots . .665 .00$ \& HY-114. $\quad .75$ \& 707 \& 9.95 \& \&

\hline 3 B 7 \& , \& \& . 83 \& 12AU \& .79 \& 701 \& .91 \& 5 \& | $2 J 50 \ldots .$. |
| :--- |
| 29.50 |
| 10 | \& \& 707 A \& 22.50 \& 163 \& 3.10

\hline \& 1.15 \& \& 1.22 \& 12 \& . 95 \& \& . 89 \& FG: \& 2J55.... 87.50 \& WE-124 ${ }^{\text {W }} 3.80$ \& 709A \& 4.87 \& 1638 \& 5

\hline LF \& .91 \& 6K8 \& . 96 \& 12AW6 \& 1.20 \& 76 \& . 69 \& $5560 \ldots 25.00$ \& $2556 \ldots . .150 .00$ \& F-127A 22.50 \& 710 A \& 1.70 \& 164 \& 95

\hline \& . 77 \& 6L5G \& 1.06 \& 12AX7 \& 1.08 \& \& . 69 \& G-104 \& 2J61..... 45.20 \& VT-127A. 3.60 \& 713A \& 1.45 \& 16 \& 75

\hline \& . 83 \& \& 1.87 \& 12BA6 \& . 72 \& \& . 79 \& 561... 24.60 \& 2K23.... 37.50 \& AB-150.. 12.50 \& 714 A \& 6.95 \& 16 \& 1.90

\hline 354 \& . 77 \& 61 \& 1.79 \& 12BA7 \& . 95 \& \& 85 \& FG-105.. 19.50 \& 2K25.... 33.50 \& R-150/ 1.15 \& \& \& \& 90

\hline \& . 87 \& \& 1.59 \& 12BD \& . 99 \& \& 1.41 \& | FG-166.. |
| :--- |
| FG-172.00 |
| 9.50 | \& 2K26... 107.15 \& FG-190... 12.15 \& 715 \& 26.50 \& 5611 \& 35.00

\hline 5R4 \& 1.59 \& 6 L \& . 95 \& 12 C \& . 77 \& 8 \& 1.19 \& FG-178.. 14.50 \& 2K29.... 26.00 \& HP-200... 16.50 \& 717A \& 1.47 \& 565 \& 3.05

\hline \& 1.91 \& \& 1.19 \& 12 F 5 \& . 79 \& 83 \& 1.11 \& RX-233A 4.95 \& $2 \mathrm{~L} 33295 .00$ \& 203A... 7.40 \& 718A \& 45.00 \& 65 \& 5.85

\hline 504 \& . 69 \& 6N7GT \& 1.10 \& 12H6 \& . 69 \& 831 \& 1.45 \& FG-235A/ \& 2K45 145.00 \& 203B . . . 6.33 \& 718E \& 45.00 \& \& 7.

\hline $5{ }^{5}$ \& 1.07 \& 6P5G1 \& . 96 \& 12 J 5 \& . 69 \& 84 \& . 79 \& 94.50 \& 2K54.... ${ }^{1355.00}$ \& \& 720C \& 75.00 \& 569 \& 6.40

\hline $5 W 4$ \& . 82 \& \& . 99 \& 12 K 8 \& . 83 \& 85 \& . 75 \& G5551... 62.50 \& 2K55...
2X
135.00 \& CE-206.. 3.15 \& 720 D \& 75.00 \& UX- \& 6.45

\hline 55 \& . 87 \& \& . 89 \& 12 SA 7 \& . 87 \& ${ }^{811} \mathrm{Y}$ L 7 \& 1.89 \& 393A 88.88 .60 \& 3B22; ${ }^{\text {2 }}$, 1.8 \& WE-211D 12.50 \& 721A \& 4.90 \& 7193 \& . 75

\hline \& .71 \& 654 \& . 72 \& 12 SA 7 \& . 89 \& 117P7GT \& 1.89 \& 394A.... 4.77 \& EL-1C. 2.95 \& WE-211E 12.50 \& 723A \& 9.95 \& 8005 \& 5.95

\hline 523 \& . 87 \& 6 S \& 1.06 \& 12SF5 \& . 79 \& 11723 \& . 74 \& GL-415 \& 3B23.... 4.75 \& 212E 42.50 \& 723 A \& 18.50 \& 801 \& 87

\hline 524 \& 1.11 \& 687 \& . 99 \& 12SF5GT \& . 79 \& 117Z6GT \& 97 \& 5550 ... 39.50 \& 3B24.... 5.25 \& WE-215A . 24 \& 724A \& 3.22 \& 8012 \& 2.60

\hline 6. \& 1.35 \& 6SA7 \& . 84 \& 12SF7 \& . 79 \& FM-1000 \& 1,59 \& KU-610.. 12.50 \& 3B24W . 7.95 \& 217C.... 8.95 \& 72 \& 8.22 \& 801 \& 2.75
4.90

\hline 6. \& 1.17 \& ${ }_{6 S A 7 G}$ \& . 74 \& 12SG7 \& . 93 \& \& \& KU-623.. 39.50 \& \& ${ }_{221 A}$, \cdots. 1.95 \& 725 \& 8.85 \& 801 \& 1.05

\hline 6.47 \& 1.05 \& ${ }_{6} 6 \mathbf{S B 7}$ \& 1.05 \& $$
\begin{aligned}
& 12 \mathrm{SH} 7 \\
& 12 \mathrm{~S} . \mathrm{I7}
\end{aligned}
$$ \& . 73 \& Thode \& Ray \& KU-628.. 22.25 \& $\begin{array}{lll}3826 & \cdots & 3.75 \\ 3827 & \\ \end{array}$ \& ${ }^{227}{ }^{\text {5 }}$ /27 . 4.60 \& 7268 \& 45.50 \& 8020 \& 1.39

\hline $6 \mathrm{A8}$ \& 1.08 \& \& 1.05 \& ${ }_{12 S}{ }^{\text {2SJ }} 7$ \& . 89 \& Tub \& \& K ${ }_{\text {WL-652 }}{ }^{\text {\% }}$ - 39.50 \& $\begin{array}{lll}3827 & . . . & 3.95 \\ 3 \mathrm{C} 24 & 1.85\end{array}$ \& WE-231D ${ }^{\mathbf{2}} \mathbf{2 . 2 5}$ \& 730 A \& 25.00 \& 8025 \& 6.95

\hline $6 \pm B 7$ \& 1.05 \& 6SD7GT. \& . 94 \& 12 SK 7 \& . 81 \& 2AP1 \& \$9.75 \& $5551 . .62 .50$ \& 3C27.... 6.95 \& $232 \mathrm{CH} . .240 .00$ \& 731A.... \& 2.45 \& 9001 \& 1.75

\hline 6AC5 \& 1.19 \& 6SF5 \& . 83 \& 12SL7GT \& 1.03 \& 2AP5 \& 9.75 \& WL-654/ \& 3D21... 1.98 \& WE-244A 5.20 \& WL-787., \& 9.80
140 \& 9002 \&

\hline $6 \mathrm{AC7}$ \& 1.11 \& 6SF5G \& . 80 \& 12SN7GT \& . 99 \& 3AP1 \& 10.25
10.25 \& WL59.6. ${ }^{82.00}$ \& 3D21A... ${ }^{2} \mathbf{2 . 2 5}$ \& $\begin{array}{ll}\text { WE-245A } & 2.35 \\ W E-2498 & 3.50\end{array}$ \& 788 8 \& 1.40 \& 9003 \& 1.75

\hline $6^{6 A C 7} \mathbf{}$ \& 3.28 \& 6 S \& . 69 \& ${ }^{12 S O 7 G T}$ \& . 79 \& ${ }^{3 A P}$ \& 10.25 \& \& \& $\begin{array}{ll}\text { WE-249B } & 3.50 \\ \text { WE-249C } & 3.50\end{array}$ \& 801 A \& . 188 \& 9005 \& 1.95

\hline D6G \& 1.38 \& ${ }_{6} 6$ \& .91 \& \& .89 \& ${ }_{3}{ }^{3} \mathrm{CP}$ \& 7.95
2.25 \& WL-677.. 39.50 \& $\begin{aligned} & 3531 \\ & 4-125 A\end{aligned} . . .929 .50$ \& 250TH... 22.50 \& 803. \& 4.95 \& 9006 \& 1.95

\hline E6G \& 1.31 \& ${ }_{6 S H 7}^{6 S}$ \& . 89 \& 12X3... \& .89
1.19 \& $3^{3} \mathrm{CPP} 1$ \& 2.25 \& $\begin{array}{ccc}\text { WL-681. } & 39.50\end{array}$ \& 4-12.... 1.18 \& 250TL.... 22.50 \& 804 \& 8.95 \& 189048 \& 3.79

\hline F6G \& . 89 \& 6S57 \& . 89 \& $12 \mathrm{Z3}$ \& . 8.89 \& 3DP1A \& 6.75 \& 722A.... 3.75 \& 4 B 22 \& WE-252A 5.65 \& 805...... \& 4.50 \& 1890 \& 3.79

\hline A G5. \& . 87 \& 6SJ7GT \& . 89 \& 14A4 \& . 97 \& 3EP1.... \& 4.95 \& 884...... 1.85 \& EL-5B. 8.95 \& WE-254A 5.90 \& 806...... \& 24,50 \& 199698 \& 2.69

\hline
\end{tabular}

SYNCHROS

ARMY ORDNANCE, NAVY ORDNANCE AND COMMERCIAL SIZE 1, 3, 5, 6, 7 and 8 GENERATORS, MOTORS, CONTROL TRANSFORMERS, DIFFERENTIAL GENERATORS AND DIFFERENTIAL MOTORS IN STOCK

AY-101D	1 G	$5 F$	7DG	N	C-44968-6	C-69406-1	C-78411
AY-120D	${ }_{5 B}$	${ }_{5} 5$	${ }_{7 G}$	X	C-56701	C-77610	C-78415
AY-130D	${ }_{5 C T}$	5 N	A	2J1F1	C-56776-1	C-78248	C-79331
1 FT	5 D	${ }_{6}^{60}$ G	${ }_{\text {B }}^{\text {B }}$	${ }_{2}^{2 J 1 G 1}$	C-69405-2	C-78249 $C-78410$	C-78254 $\mathbf{C - 7 8 6 7 0}$
$1 F$	5DG	6 G	M	2 L 1 H 1			
	SEND	APLETE			RO CAPAC	(1N STOCK	

Terms 20\% cash with order, balance C. O. D. unless rated. All prices net F.O.B, our warehouse, Phila., Penna., subject to change without notice.

NEW YORK'S RADIO TUBE GeN EXCHANGE

TYPE	PRICE	2	PRICE	TYPE	PRICE	TYPE	Price	TYPE	Price	TYPE			RICE	TVPE	PRICE
OA3	51.40 1.75	${ }_{2}^{2}{ }_{2}^{2 C 34}$	${ }^{20.00}$	${ }_{3}^{3} \mathrm{C} 24$	1.95 5.95	${ }^{8681}$	29.50	304 TL	14.50	705 A .	3.95		3.50	958A.	. 65
0 O 2		${ }_{2} \mathrm{C}^{2} 43$	20.00 27.00						4.95		17.95		1.45		65 5
$\mathrm{OCS}^{\text {c }}$	1.25	2 C 44	27.90	${ }_{3}{ }^{3} \mathrm{DP} 1 \mathrm{P}_{1} \mathrm{~S}^{2}$.	10.95 12.00	${ }_{7 \mathrm{CbP}}$	10.95	${ }_{3} 310 \mathrm{~A}$	7.95	707 B	${ }^{27.00}$	829	12.95	E11488.	1.35 1.95
	1.25	$2{ }^{2} 21$	1.75	3 E 29.	15.50	7 DP	10.00	${ }_{312}$		715A	17.95		15.95	1611	1.95
$\mathrm{ClA}_{\mathrm{Cl}}$	4.95	${ }_{2} \mathbf{E} 22$	3.75	3 GPI	5.50	12 A	55.00	323 A	25.00	715 B	18.00		3.50	1613	1.38
${ }_{11821}$	6.95 2.75	${ }_{2}^{2}{ }_{2}{ }^{\text {E30 }}$	- 27.75	8N4	5.50	${ }_{1} 15 \mathrm{E}$	1.95	327 A	2.95	715 C	25.00	${ }_{832}$	7.95	1616	2.95
1822.	3.95	2 J 22	17.95	${ }_{4}^{4}{ }^{4} 21$	1.75 2.75	15R	. 68	$328 A$ 350	7.95	717 A	1.95 48.50	${ }_{8}^{832}$	9.95	1619	2.85
1823	9.95	${ }_{2527}^{2 J 26}$	27.75 29.95	${ }_{4}^{4826}$	10.95	FG17	6.95	${ }_{350 \mathrm{~B}}^{350 \mathrm{~A}}$	5.95	7189	48.50 29.50		7.95	1624	2.00
$1 \mathrm{~B}_{26}$	21.95	${ }_{2}{ }^{2} 31$	29.95 2.95	${ }_{4}$	25.00 $35: 00$	${ }_{\text {R }}$	3.95 12.95	${ }^{3575}{ }^{\text {a }}$	20.00	721 A	3.95	83	4.95	${ }_{1851}^{1625}$	1.45
1827	19.50	${ }_{2}^{2} 332$	$\begin{array}{r}69.95 \\ 10500 \\ \hline\end{array}$	$4 \mathrm{EP2}$	17.50	35 T	12.95	${ }_{371 \mathrm{~B}}^{368}$	6.95 2.95	${ }_{723 A} 724$	$\begin{array}{r}3 \\ 17.95 \\ \hline\end{array}$	837 838	2.95 6.95		1.85
1838	33.100	${ }_{2538}$	105.00 17.95	${ }_{4}^{4} 422$	199.00 199.00	${ }^{45}$ Spe	. 35	${ }_{388 \mathrm{~A}}^{38}$	${ }^{4.95}$	724	4.95	84	5.59 5 5	2001	1.80
${ }_{11851}^{182}$	19.95 9.95	$2 J 40$ 2549	35.00 109	4 4 27	199.00	HF50	1.75	${ }_{394} 388$	72.95	${ }_{725} 724$	6.95 9.95	8	52.50 80.50	${ }_{8013}^{8012}$	
1 B 58	49.95	${ }_{2}{ }^{\text {J50 }}$	109.00 69.50	${ }_{4}^{4} 531$	199.00 19900	VT52	- 295	MX408	7.75	728	${ }^{6} 6.95$		4.95	80	5.95 1.75
$1 \mathrm{B60}$	69.95	$2{ }^{2} 55$	95.00		199.00	R K73	1.95	434 A	29.95	${ }_{726} 72$	56.00 69.00	${ }_{8661}^{881}$	19.50	88020	3.50
$1{ }^{1} 21 \times$	1.75	${ }_{2562}$	75.00 75.00	4337 $4 J 88$	$\begin{array}{r}199.00 \\ 89.00 \\ \\ \hline\end{array}$	100 T R	9.00	446 A	1.95	728	27.00	8891	37.50 35	802	6.95 89.00
1 N 21 B	4.55	2 K 25	37.50	4 J 38	199.00	$\mathrm{F}_{123 \mathrm{~A}}$	19.00	${ }_{4}^{448 \mathrm{~B}}$	5.40 45.00	8	1.00		35.00 3.95		1.75
${ }_{1}{ }^{2} 23$	1.75	+	37.50 37.50	${ }^{4} \mathrm{C}$	199.00 3.95	203 A	8.95	${ }_{4}^{450 \mathrm{~T}}$	95.00		${ }^{7} 7.95$	878	1.95	${ }_{9}^{9002}$	1.50 1.75
$1 \mathrm{~N}^{23}$	${ }^{2} .75$	2 K 4	150.00	${ }^{58 P}$	3.95 6.95	${ }_{217}^{211}$	18.00	471 A	2.75	${ }_{80}^{80}$	13.50 5 5		1.95		1.75 1.75
${ }_{1}{ }^{2} 23$	3.75 6.00	${ }_{2}^{2 k}$	149.50	58P4	6.95	242 C	10.00	627.	15.00	80	25.00	889 R	199.50	90	1.90
$1{ }^{2} 27$	5	$3 \mathrm{3BP1}$	7.50	5 D 21	27.50	${ }_{249}^{244}$	12.95 4.95	WL55	3.50 22.50		1.69	${ }_{931}^{914}$	75.00 6.95		. 35
$1{ }^{1} 21$	2.50 6.95	3824 3824	5.50 7.50	${ }_{\text {EJP2 }}^{\text {EJP1 }}$	27.50 19.50	${ }_{274}^{250 \mathrm{TL}}$	19.95 3.00	$\underset{701543}{\text { Wlis }}$	17.50 15.50 25.0		11.00		.35 .55	Minim	Order
2 B 22	1.95	EL3C		${ }_{5}{ }^{\text {JP4 }}$	27.50	${ }_{274 \mathrm{~B}}^{274 \mathrm{~A}}$		$7001 / \mathrm{D}$.	25.00	${ }_{811} 81$					
$2 \mathrm{B26}$	3.75	3 C	120,00	W EGA Kб́	2.50	304 Tit	15.00	703 A .	6.95	$814 .$.	3.95	${ }_{957} 98$.	. 29		

ATTENTION OIL COMPANY ENGINEERS SHIP SUPPLIERS USERS OF SHORAN WE HAVE FOR IMMEDIATE DELIVERY TESTED AND GUARANTEED PERFECT, NEW

4 C28 SPECIAL PRICE $\$ 35.00$ MICROWAVE TEST EQUIPMENT

TS148U/P SPECTRUM ANALYZER
 147 also available

Field type X Band Spectrum Analyzer, Band 8430-9580 Megacycles
Will check Frequency and Operation of various X Band equipment such as Radar Magnetrons, Klystrons, TR Boxes. It will also measure pulse width, $c-w$ spectrum width and Q of resonant cavities. Will also check frequency of signal generators in the X band. Can also be used as frequency modulated Signal Generator etc. Available new complete with all accessories.

Also available of new production TS239A Synchroscope.

Other test equipment, used checked out, surplus.

TSKI/SE K Band Spectrum Analyzer TS3A/AP Frequency and power meter S Band
RF4A/AP Phantom Target S Band TS10/APN Altimeter Test Set TS12/AP VSWR Test Set for X Band TSi3/AP X Band Signal Generator TS15/AP Flux Meter
TS16/AP Altimeter Test Set
TS33/AP X Band Power and Frequency Meter
TS34/AP Western El. Synchroscope
TS34A/AP Western El. Synchroscope

TS35/AP X Band Signal Generator TS36/AP X Band Power Meter TS45/AP X Band Power Source TS47/APR 40-400 MC Signal Generator
TS69/AP Frequency Meter 400-1000 MC
TS100 Scope
TS102A/AP Range Calibrator TSIIO/AP S Band Echo Box TS125/AP X Band Power Meter TS126/AP Synchroscope TS174/AP Signal Generator

TS175 Signal Generator TS226 Power Meter
TS251 Range Calibrator APN9 TS270 S Band Echo Box

SURPLUS EQUIPMENT
APAIO Oscilloscope and panoramic receiver
APA38 Panoramic Receiver APS 3 and APS 4 Radar APR5A Microwave Receiver APT2 Radar Jamming Transmitter APT5 Radar Jamming Transmitter

SPECIAL

Wide Band S Band Signal Generator 2700/3400 MC Using 2 K41 or PD 8365 Klystron, Internal Cavity Attenuator, Precision individually calibrated Fre-
quency measuring Cavity. CW or Pulse Modulated, externally or internally.

Large quantities of quartz crystals mounted and unmounted.
Crystal Holders: FT243, FT171B others.
Quartz Crystal Comparators.
North American Phillips Fluoroscopes Type 80
Large quantity of Polystyrene beaded coaxial Cable

Cables:
TELSERSUP

Reliance

GEAR ASSORTMENT 100 small assorted gears. Most are stainless steel or brass. VERNIER DIAL or DRUM (From BC-221) Dial- $25 \%^{\prime \prime}$ dia. $0-100$ in 360°. Black with silver marks
 SOUND POWER HANDSET

BRAND NEW

Includes 6 ft . cord.-No batteries
or external power source-used. external power source $\$ 18.50 \mathrm{pr}$.
AC LINE CORDS 6 ft . long with molded rubber plug 186 BALL BEARINGS

NEEDLE BEARINGS

TORRINGTON B108 $1 / 2^{\prime \prime}$ wide $5^{\prime \prime *} 13^{\prime \prime} 16^{\prime \prime} \quad 304$
Brand New Meters-Guaranteed 2.50
 SELENIUM RECTIFIERS Full Ware 200 MA 115 V.
Half Wave 100 MA
115 V TIMING MOTOR 8 RPM 115 V 60 cyc E. Ingraham C_{0}

400 CYCLE INVERTERS
$\# 10890$ in: $20-28$ V.D.C. 92 A. 8000 R.P.M. Out: 115 V
400 Cyc. 1 phase. 1500 V.A. 90 PF................ $\$ 24.95$

Amp.	Per 100	$\begin{gathered} 3 \mathrm{mp} . \end{gathered}$	Per 100	Amp.	Per 100
1/8.	\$4.00	3/4	. $\$ 4.00$	Amp.	\$3.00
3/8	4.00	$\frac{1}{4} .$	3.00 300	10	. 00
1/2.	4.00		3.00		
3 AG FUSE					

AL CABLES
Price pe

 Specials

anxar carar conar

DELAY NETWORK—ALL 1400Ω

SPAGHETTI SLEEVING-assortment- 90 feet..... $\$ 1.00$
TYPE "J"' POTENTIOMETERS

SILVER MICAS								
mmt	mmp	mmf	mmf	mmf	mmf	mid	mid	mid
8	40	82	155	270	470	800	. 0024	. 0039
10	50	100	170	325	500	0011	. 0025	. 004
18	51	110	180	350	510	. 0013	. 0027	. 005
22	56	115	208	360	525	. 0015	. 00288	. 0051
23	60	120	225	370	580	. 0016	. 002826	. 005
24	62	125	240	390	570	. 001625	0037	. 006
27	66	130	250	400	680	. 0018	. 0033	.0068
30	68	135	255	410	700	. 0022		. 0082
39	75	150	260	430		. 0023		. 01

8 mmp to 800 mfd Price Schedule
8 mmp to $800 \mathrm{mfd} . . .$.
.0011 mfd to .002 mfd
.01 mfd to .0082 mfd.

PULSE TRANSFORMERS

WESTERN ELECTRTIC-D166173 D1613 KS889. KS nl , GENERAL ELECTRIC-K2731 K2729A 80-G-5 JEFFERSON ELECTRIC-C-12A-1318

T-1229621-60

TIME DELAY RELAY

Raytheon CPX 24166
in. Delay. 115 V., 60 Cyele
21/2 second recycling time spring return • long as yower is applied - Fully Cased ONLY

AN CONNECTORS IMMEDATE SERVICE
 PhoNe WIRE WRITE YOUR NEEDS

Arch St. Cor. Croskey Phila. 3, Pa. Telephone RIttenhouse 6-4927

Buy TOP Radio-Slestronic Values!

AIR TRIMMER CDNDENSERS

STOCK NO.		CAPACITY Min. Max.		MANUFACTURER'S NUMBER	FIGURE	$\begin{aligned} & \text { SHAFT } \\ & \text { LENGTH } \end{aligned}$		$\begin{aligned} & \text { POST } \\ & \text { LENGTH } \end{aligned}$	$\begin{aligned} & \text { GROUND } \\ & \text { LUG } \end{aligned}$	PRICE EACH		
		D				3/32	Right.	18.				
$\begin{aligned} & 2937 \\ & 5716 \end{aligned}$				2.5	-		A	$9 / 1$		3/32	Top ${ }^{\text {To }}$	258
5717		3	- 10	ASP $22 \mathrm{G192}$	A	911	$1 / 4^{\circ} \mathrm{D}$	$3 / 32$ $3 / 32$	Left. .	25 ¢		
4090		2	- 15	A SP 482212	c	$1 \times$		1/4	Top	20.		
2939		3	15 $-\quad 15$	ASP 217-2.	D	$5 / 1$		3/32	Right	20 c		
5718		3		Telrad 682090-30 Hamm 682070-30	D	$5 / 1$		3/32	Risht	208		
5719		3	$\begin{array}{r}15 \\ -\quad 25 \\ \hline\end{array}$	CAIM 481887 .	A	$9 / 1$		3/32		25 c		
231.		3	- 27	Hamm 11725-1	D	5/1		3/32	Righ	254		
5721		2.5	- 28	Comar M42C864-6	D	5/1		$3 / 32$ $3 / 32$	Top.	25 \%		
5723		3	- 29	ASP 22G190.	${ }_{\text {A }}$	$5 / 1$		5/16	To Post	30 C		
2940		4.5	30 30	ASP A8H-501	D	51		5/16	Right.	30 d		
5724		4.5	$\begin{array}{r}\text { a } \\ \hline \\ \hline\end{array}$	Hamm SBL-72265-3	B	$1 / 2$		3/32	Bottom	30 c		
5086 2941		4.5		Hamm ESA \$82070-37	D	5/16		3/32	Left	30		
2941.		5	[54	Hamm ESA 582070-35	D	$5 / 1$		3/32	Ref	40 c		
5087		5	- 54	Hamm BL 722654	B	1/2		$3 / 32$ $3 / 32$	To Po	55 ¢		
236 *			- 140 -150	ASP 19A34504.			$1 / 16^{\prime \prime} \times 1 / 4$	3/32	Right	$75 ¢$		
5675		6	-150 $-\quad 204$	$\begin{aligned} & \text { Hamm APQE15 } \\ & \text { OAK } 114 \mathrm{M} 10 \end{aligned}$	F	$9 / 1$		3/32	Top	95%		
* Double spaced plates. ** Adjusts both ends, some available w/dust cover. Fig. A Round Shatt Screwdriver adj. w/locknut ni, A Baleelite Knob Ins. Screwdriver adj.					Fig. C Round shaft Screwdriver adj. Fig. D Hexnut Screwdriver adj. Fii. Fi Fif Round shaft. Fig. D Double End Plate. Fig. " Double End late.							

Fig. A lound Shatt Screrdriver add, w/ Tocknut. Fin. E1 $1 / 4$ Round Shart.
Fig. I Double End Plate

SIGNAL CORPS TRANSFORMERS CHOKES \& FILTERS			
		cin	
	coick	边	
为	cole		
			${ }^{3} 32$
Soile			$\substack { 3 \\ \begin{subarray}{c}{3 \\ 3 \\ 3 \\ 3{ 3 \\ \begin{subarray} { c } { 3 \\ 3 \\ 3 \\ 3 } } \\{4.4} \end{subarray}$
coin	2276		
cis			${ }_{3}^{3 C 5759}$
Si.ts			
coick			

TRANSMITTING MICAS					
Stock	Cap.	Test Volts	Type	Price	
5493A*	. 11	1000	14/45	. 35	
5494 A	. 02	1000	$144{ }^{1 / 2}$. 400	
$5495 A$ $5496 A$. 0001	1500	BE 15	. 20%	
5493 A	. 004	2500		. 60.4	
5499 A	. 00036	5000 5000		si.00	
5600A	${ }^{.15}$	${ }_{10000}^{500}$	$\times \mathrm{S}$	1.90	
${ }_{5602 \mathrm{~A}}$.0007	2500 V	${ }_{3}$	i 900	
5603A	. 0000105	3010 V $\mathbf{5 0 1 0 0}$	${ }_{\text {F } 2 \mathrm{~L}}$	1.00	
5605A	00008	5000 V	${ }^{\text {F21 }}$	1.00	
5606A	. 000025	10,000	${ }_{\text {PL-315 }}$	7.95	
5607A** ** D.C. WorkIng Voltage OTHER TYPES AND SIZES AVAILABLE					
- THORDARSON					
AUDIO PASS					
FILTERS					
Sif			Band	pass	
			800 to	200	
χ^{7}			cycles	put	
0 - 1			10000 oh		
			0 hmis		
			10DB		
	ock No. T48500 Price to: \$5.50 ea.				

Stock No. T48500 Price to: $\$ 5.50$ ea.

HAND MICROPHONE
 Removalo element. Press. to. talk
switch. Stock No. $5883 A$. Un. switch. Stock
shielded cable.

Price Ea. $\$ 3.25$
TERMS:
Open Account to rated or accept.
able reference accounts. Others
Pre payment of 25% deposit with
orter, balance c.0.D. Price F.0.B.
Chicago and subject to change
without notice. Merchandise sub.
ject to prior sale.
ORDER TODAY!

SEARCHLIGHT SECTION

COMMUNIGATIONSEQUIPMENTCO．

PULSE EQUIPMENT

MIT．MOD． 3 HARD TUBE PULSER．Out
KW
KY Pulse Power
144
KY K
duration： $5,1.0,2.0$ microsec．Input roltage $: ~$
$115 \mathrm{y} ~$
400 duration： $1.0,2.0$ microsec．Input roltage： 115 v 400 to 2400 APQ－I3 PULSE MODULATOR．Pulse Width 5 to 1.1 Micro Sec．rep．rate 624 to 1348 Pps．Pk Pwr．out 35 KW Energo TPS－3 PULSE MODULATOR．Pk．power 50 amp． 24 KW （1200 ance 50 ohms．Circuit series charging version of DC Resonance New with all tubes．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 49.50$ APS－IC MODULATOR DECK．Complete，less tubes．．．．．．\＄75．00

PULSE NETWORKS

$15 A-1-400-50: 15 \mathrm{KV}$ ．＂A＂CKT． 1 microsec 400 PPS 50
ohms imp． 50 G．E．\＃6E3－5－2000－50P2T， 6 KY ＂ $\mathrm{E}^{\text {＂}}$＇circuit， 3 sections .5 micro－ second， 2000 PPS ． 20 ohms impedance．
G．E．\＃3E（3－84－810）（8－2．24－405）50P4T；3KV＇＇E＂＇CKT Dual Unit 2,8 Sections， 2.24 microsec． 405 PPS， 50 ohms imp $\$ 6.50$

 $60 \mathrm{PPS}, 67$ ohms impecance．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 15.00$

DELAY LINES

RADAR SETS
－AN／APS－3 Alrborne 3Cm Radar AN／APS－4 3CM Airborne Radar 10 CM Portable Radar
$115 \mathrm{~V}, 60 \mathrm{Cy}$ ． Loran Set，Airborne Shoran，Xmtr．only 10 cm Surface Search 10CM SEA Radar， 115 VDC Radar， 10 CM Portable Radar，
$115 \mathrm{~V}, 60 \mathrm{Cy}$ ． DC Power Supply from 10CM Gun laying 10Cm Gun Laying 800 MC Radar 10CM Radar，115VDC 10CM NAV，Beacon，
Ground Station 10CM Heavy Duty Ship TEST SETS

370－560 MC ．．． 350.00
Signal Gen．Type $605 \mathrm{CS}, \mathbf{9 . 5 \mathrm { KC }}$－

20A Mierovolter 175.00
TS 10 A
TS 16／AP IS 36

Altimicrovalter Set．．．．．．．．．．．．．．32．50 Altimeter Test Set
Power Meter， 3 CM Power Meter， 3 CM Test Osc．MC ．． 325.00 Slotted Line， Wavemeter ．．．．．． 325.00 300－700 Mic ．．．． 72.50 Waverrueter
$340-1000$ MC ．．． 72.50 Crystal Test Set．．．50．00

MICROWAVE PLUMBING—ACCESSORIES
MICROWAVE PLUMBING—ACCESSORIES

PULSE TRANSFORMERS

U－10198．PRI：4．5KV，97．I＇K．SEC．18KV 26A．PRR－350－500 G．Ey．D．URAATION 1.3 usec．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 42.50$ ＠ 200 KW oper．$(270 \mathrm{KW}$ max． 1 microsee．or $1 /$ Vow Voltage W．E．－KS $1 \times 1 \times$ ．．$\$ 39.50$ terminals 300 Input transformer．Winding ratio betwee 1 is 2：1．Frequency range： $380-520$ c．p．s．，Permalloy core． W．E．\＃D169271 Hi Volt input Dulse Transformer．．．．．．．．\＄27．50

 UTAH $\# 9262,9332,9278,9341$ ．${ }^{352-7287}$ RAYTHEON：UX8693，UX7428，UX7350．
WEST．ELECT．D－161310，D－166638，D－166173，D－169114， U－11716 PRI： 13.2 KV ＠20A．SEC： 3.6 KV \＄65．00

140－600 mc	MAGNETRONS	
Directional Antenna		
$140-310 \mathrm{mc}$ cone and 300－600	Tube 2327	2162 331
c cone，each consisting of 2	${ }_{2121}{ }^{2} 12$	7180Y
end fed half wave conical sec－	${ }_{2}^{2 J 22}$	7208Y
tions with enclosed matching	$2 J 32$ 2138	${ }^{730-A}$
stub for reactance changes	${ }_{2}^{2 J 38} \mathbf{2 J 3 9}$ Pkg．	GK 62
with changing frequency．New：	$2 J 49$ $2 J 61$	QK 60
complete with mast，guys，		
bles，carrying chest．．$\$ 49.50$	${ }^{706}$ A	Y，EY

MAGNETRONS

XBAND－ 1 ＂\times VM WAVEGUDE

 Rotating Joints supplied either witl or without per leckgth，$\$ 7.5$ $2 J 42$ Magnetron Pulse Modulator，j4kw max．rating filiw min．$\$ 17.50$ voltage pulsed $5.5 k k^{2} 6.5 \mathrm{Amp} .001$ duty cycles． 2.5 usec
 TS 268 Crystal Checke
Bukkead Feed．Thru Assembry
Pressure Gauge Section 15 lb ．gauge and press ni．．．．．．．．．．．．．．．．．．．
Dual Oscillator－Beacon Mount． $\bar{\sim} / 0$ APS 10 Radar
erystal mits．matching slugs，shiply
Dual Oscillator，Mount．（Back to back）with crystal mount，thnabl Directional Coupler．TG－40／U Take oft 20 db
佂 R－ATR Duple iris coupling and choke coupling to TR．．
CU 105／APS 31 Direction Coupler 25 dib
asab mixer－heacon dual Osc．Mnt．w／xtal holder
radius Section 12 long choke to cover 45 deg．twist
Twist 90 deg． $5^{\prime \prime}$ choke to cover w／press nipple
Rotary Joint choke to 3 cm ．mitred elbow＇E＂plane
90 degree elbows，＂E ，＂${ }^{\text {＂}}$ or＂＂II＂plane $21 / 2$ radius
90 degree twist 6 ＂
90 degree twist
45 degree twist
．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
40KW X BAND Radar．complete as described and illustra $\$ 8.00$ APS．4 Under Belly Assembly，less tubes．．．．．．．．．．．．．．．．．．．$\$ 375.00$

$11 / 4^{\prime \prime} \times 5 / 8^{\prime \prime}$ WAVEGUIDE

THERMISTORS VARISTORS

D167018
D167332
D167613．
D 166228.
DIG4699．
$\$ 1.50$
D171812

D172155． D167176． D168687． | DI67208E DI．．．．． | 1.50 |
| :--- | :--- | :--- | $\begin{array}{ll}\text { 308A，3A，27－B．．．．} & 1.50\end{array}$

K BAND－ $1 / 21 \times 1 / 4{ }^{\prime \prime}$ WAVEGUIDE Aps－s4 Kotating Joint．．$\$ 49.50$ Right Angie Bend \mathbf{E} or H Plane，specify combination of couplings 45° Bend \mathbf{E} or II Plane choke to cover
Mitered Elbow，cover to cover．．．
Flexible Section 1 ＂hoke to cover．to choke．
Adanter，round to square cover．
Adapter，round to square cover
Feedback to Parabola Horn with

B BAND－3＂＇$\times 11^{\prime \prime}$＇WAVEGUIDE

REACTION WAVEMETER $3000-3700 \mathrm{Mc}$ ，Mfg．Head．Comp．with

 BEACONLGHTHOUSE cavity io cm．Sitg．Bernara Rice magnetron to waveguide coupler with 721A each S47．50

 （2C40，etc．） 115 vac． 60 ceveles．Panel Mounting．Less tubes $\$ 32.50$

 F 29／SPR－2 FILTERS，type WAVEGUIDE TO 7／8＂RIGID COAX＂DOORKNOB＇，ADiPTEI CHOKE FLANGE，SILVER PLATED BROAD BAND．．．．$\$ 32.50$ puide sections，each polarized， 45 degrees．．．．．．．．．．．per set $\$ 75.00$ AS14A／AP． 10 CM Pick uD Dipoib with＂N＂Cables．．．per set $\$ 75.00$
S BAND SIGNAL GENERATOR $\$ 4.50$
S BAND SIGNAL GENERATOR，complete with calibrated attenu－ power supply operates from 115 V．A．C．50－1200（cries．Manu－ OAJ ECHOBOX， 10 CM，TUNABLE

$$
7 / 8^{\prime \prime} \text { RIGID COAX-3/8" I. C. }
$$

解 corx output pickup loon $\$ 8.00$ SHORT RIGHT ANGLE BEND，with pressurizing nipple．．．．．．．$\$ 3.00$
 RT．ANGLES for above．．．$\because \ddot{ }$
FLEXIBLE SECTION， 15 L．Male to female $8^{\prime \prime}$ RIGID COAX，BULKKHEAD FEED－THBU Homedell－to－Type＇＂N＂Male Adapters，W．F．\＃\＃ibiasi
 Polyrod Antenna，AS3I／APN－7 in Lucite Ball．Type＇${ }^{\prime \prime \prime}$＇feed $\$ 22.50$

MICROWAVE ANTENNAS Relay System Parabolic reflectors approx．range
2000 to 6000 Mc ．Dinensions 116 ， New ．．．．．．．．．．．．．．．．．．．．．．．．．$\$ 75.00^{\circ}$ AS－31／APN－7： 10 em．Polvrod in Iucite Ball． TDY＂JAM＂Radar rotating antenna 10 cm Parabogic beam， 115 Y AC drive．New．$\$ 195.00$ Parabolic Peel．Radiation pattern approx． 25
deg．In horizontal， 33 deg，in vertical planes Cone Antenna．AS 125 APR，1000－320 $\$ 3.00$ Stub supported，with APRe＂${ }^{1000-3200 \mathrm{me}}$ connector SEND P． PARCELS IN EXCESS OF 20 POUNDS WILL BE SHIPPED VIA CHEAPEST TRUCK CHANGE WITHOUT NOTICE．

COMMUNICATIONSEQUIPMENT CO． 131 Liberty Sti，New York 7，w．Y．Depf E－7 Chas．Rosen Phone：Dlgby 9－4124

COMMUNICATIONSEQUIPMENTCO.

PE. $218-\mathrm{H}:$ I Input: 25
$350-500$ cy 1500 volt-amperes. 92 amp. Output: 115 ew........... $\$ 44.50$
 LELAND \#10536: 1N: 28 VDC, 12 A. OUT: 115 V ,

POWER TRAMSFORMERS
Comb. Transformers-115V/50-60 cps input
 $\begin{array}{lll}\text { CT-15A } & 550 \mathrm{VCT} \\ \text { CT-164 } & \text { 4200V.002A/12KV Test, } \\ \text { SVCT/3A/12KV }\end{array}$

160A \quad 5.3VCT/3A, 30/100.... 3.95

 $\begin{array}{ll}\text { CT-720 } & 550-0-550 \mathrm{~V} / 250 \mathrm{MA}, 6.3 \mathrm{~V} / 1.8 \mathrm{~A} . \\ \text { CT-43A } & 600-0-600 \mathrm{~V} / .08 \mathrm{~V}, 2.5 \mathrm{VCT} / 6 \mathrm{~A} .6 \mathrm{CT} / 1 \mathrm{~A}\end{array}$
 Filament Transformers-115V/50-60 cps indut

> STEP DOWN TRANSFORMERS ALL PRIMARIES $230 \mathrm{~V}, 60 \mathrm{Cy} ., 1$ ph. SECOMDARIES $110 \mathrm{~V}, 60 \mathrm{Cy} 1 \mathrm{ph}$. NEW STANDARD BRANDS, COMPLETE

WITH LINE CORD AND OUTLET

 $\begin{array}{r}\text { Wat } \\ 250 \\ 300 \\ 500 \\ \hline\end{array}$$\begin{array}{r}250 \\ 300 \\ 500 \\ 1000 \\ 1500 \\ \hline\end{array}$

$$
\begin{aligned}
& \text { POWER INVERTERS } \\
& \text { INPUT-115 VOC } \\
& \text { 5r0 W. ONT. OR WT: } 115 \text { OUAC } 60 \mathrm{CONT} . \\
& \text { NEW. ORIGIMNLPACKING }
\end{aligned}
$$

$\$ 75.00$

FILTER SHOKES		
Stock	Description	Price
CH-917	10H/450 MA-10	
CH-366	204/3A	6.95
CH-322	.35H/350 MA-10 Ohms DCR	5
CH-141	Dual 7H/75 MA, 11H/60 MA	
	5KV DC Tes	4.69
CH-119	8.5H/125 MA	2.79
CH-69-1	Dual: 120H/17 MA	2.35
СН-8-28	$2 \times .5 \mathrm{H} / 380 \mathrm{MA} / 25$ Ohms	1.79
CH-8-19	SWING, .006H/5A-.035H/.5A, . 032 ohs DCR. 1 KV TEST	2.95
CH-776	1.28H/130 MA/75 ohms	2.25
CH-344	1.5H/145MA/1200V Test	2.35
CH-43A	10HY/15MA - 850 ohms DCR	1.75
CH-917	$10 \mathrm{H}, 450 \mathrm{MA}, 10 \mathrm{KV}$ TEST	12.95
CH-366	20H/300MA	6.95
CH-999	15HY/15MA-400 ohms DCR	1.95
CH-511	6H/80MA- 310 ohmis DCR	2.45
CH3-501	2x5H/400MA.	2.79
CH-188M	5HY 200MA.	1.79
CH-488	10HY .030A	1.19
CH. 791	Dual 1.75-.125 HY 100 MA	1.27
CH-981	15 HY .110A	1.59
CH.22-1	1 HY .100 A	1.17
CH-779	. 6 HY .490A	1.25
CH-25A	SW .09/.018 HY 3/.3A	8.95
CH-922	10000 HY O MA	2.75
CH-043	2.2 HY 80 MA	. 98
CH 89A	$2 \times 1.52 \mathrm{H}$ (9).167A	. 39
CH 69A	Mult. Choke	
	SECT. 1. Swing 3-12H/.52-.05A	
	SECT. 2. Smooth 5H/.52A	
	SECT. 3. Swing 3.25-18H/-138-014A	
	SECT. 4. Smooth 3.4H/.138A.	4.9

400 CYCLE TRANSFORMERS
L(Alt Primaries $\mathbf{1 1 5 V}, 400$ Cycles)
Stock
$352-70391$
640 VCT @ $250 \mathrm{MA}, 6.3 \mathrm{~V} / .9 \mathrm{~A}, 6.3 \mathrm{~V} / \mathrm{J}$
$702724 \quad 9800 / 8600 \mathrm{VA}$ @ 32 ivA
$\begin{array}{ll}12033 & 4540 \mathrm{~V} / 250 \mathrm{MA} \\ \mathrm{KS9584} & 5000 \mathrm{~V} / 290 \mathrm{MA}\end{array}$
$\begin{array}{ll} & 59588 \\ 2 \mathrm{~J} 652^{19} & 5000 \mathrm{~V} / 290 \mathrm{MA}, 5 \mathrm{~V} / 10 \mathrm{~A} .\end{array}$

SRECIALS

CIRCUIT BREAKERS
$24 \mathrm{~V}, 7 \mathrm{FA}-\mathrm{AMI} 510 \mathrm{M}-7$
$40 \mathrm{~V}, 10 \mathrm{~A} .1 \mathrm{POLE}$
$\$ 1.95$
1.95
3.15 uuf. 8-85 uuf, 3.35 uuf, $5-50$ uuf, ${ }^{3-10}$ uuf,

SHOCK MOUNT RACKS
MT-5/ARR-2/FT-338/FT-156/FT-487/FT-185/FT-265A
MT-5/ARR-2/FT-338/FT-156/FT-487/FT-185/FT-2
MT-62/ARG-5FT-225/FT-I62/MT-170A/FT-449/
MT-I71A/MT-167/Urite for Prices
T. 30 Carbon Mikes. New.
Tel. Tape. $3 / \mathbf{a}^{\prime \prime} \times 81 / 2^{n}$ Rollis.

AN/109.A Antenna
C. $30 /$ ARC. 5 Control Box

EE-89A Telephone Repeater
D24/ARM-9 Cross Point indicator

BC496-A Dual Revr. 150 mc . ${ }^{\text {AN/ } 104 \text {. A Antenna. . }}$
BC929 indicator, 3BPI, all tubes, New.... 22.50 ea.
Noise Filters, 100 AMP G.E.
iF Transformers, 112 KG Double siug Tune
IF Transformers, 112 KC Double Slug Tun
if Transformers, 1600 KC Double Slug... MD/7 Modulator for ARC/5, All tubes. ARC-5 Xmttr. Tuning Cond. \#5032...
ARC-5 Xmttr. M.O. Trimmer \#4990......
BIRTCHER TUBE CLAMPS
$\begin{array}{ccc}926 \mathrm{~B}-16 & 926 \mathrm{C}-15 & 926 \mathrm{C}-19 \\ 926 \mathrm{~B}-18 & 926 \mathrm{~K}-2 & \text { Q } 22 \mathrm{ed}\end{array}$
COILS FOR BC 230 XMTTRS.
$\begin{array}{ll}\mathrm{C} .293 & 1250-1500 \mathrm{kc} \\ \mathrm{C} .382 & 3200-4000 \mathrm{kc}\end{array}$ \qquad \$. 97 ea.
C .293
C .382
$\mathrm{C} .18200-4000 \mathrm{kc}$
C
C .5 mc (with
Dual Coil Set, $\mathbf{c} 439$ for BC429 Revir.,

MAIL ORDERS PROMPTLY FILLED. ALL PRICES F.O.B. NEW YORK CITY, SEND M.O. OR CHECK, ONLY SHIPPING SENT C.O.D. RATED CONCERNS SEND P.O. ALL MDSE. SUBJECT TO PRIOR SALE, AND PRICES SUBJECT TO CHANGE W

PARCELS IN EXCESS OF 20 POUNDS WILL BE SHIPPED VIA CHEAPEST TRUCK OR RAILEX.

COMMUNICATIONSEQUIPMENTCO.
 131 tiboriy st, Mew York 7, N. Y. Dopt E.7] Chas. Roson Phone: Dtgby $9-4124$

SEARCHLIGHT SECTION

SPECIALISTS IN FRACTIONAL HORSE POWER MOTORS SPEE CONTROL

SURPLUS EQUIPMENT

PE 218 Leland Electric

Output: 115 VAC; Single Phase; PF 90; 380/500 cycle 1500 VA. Input: 25-28 VDC; 92 amps; 8000 RPM; Exc. Volts 27.5. BRAND NEW . . . $\$ 39.95$ ea.

16486 Leland Electric

Output: 115 VAC; 400 Cycle; 3Phase; $175 \mathrm{VA} ; 80$ PF. Input: 27.5 DC 12.5 amp; Cont. Duty $\$ 90.00$ ea.

INVERTERS

10563 LELAND ELECTRIC

Output: $115 \mathrm{VAC} ; 400$ cycle; 3-phase; $115 \mathrm{VA} ; 75 \mathrm{PF}$. Input: $28.5 \mathrm{VDC} ; 12$ amp.

5 RPM GEAR HEAD MOTOR

Mfg. RAE., Type 7519, 115 Volts AD, DC. Fractional HP, Overall dimension: 51/a" $\$ 12.95$ ea. Lots of $10 \ldots .$. . $\$ 11.95$ ea.

METERS

AMMETER: DC; $2 " 100-0-100$, complete with external shunt................... $\$ 5.95$ ea. AG Volt, Westinghouse, Type NA-35-3inch round. F.S. 10 MA

MICROPOSITIONER

Barber Colman AYLZ 2133-I Polarized D.C. Relay: Double Coil Differential sensitive Alnico P.M. Polarized field. 24 contacts symchronizing, control, etc.........\$12.50 ea

VEEDER ROOT COUNTER

MODEL S-1
5-figure (0-99,999) non-reset type. Adds ten for each complete revolution of shaft in one drection. Substracts ten for each revolution in opposite dibackground. Section. Black figures on metal 8 $1-5 / 16^{\prime \prime}$ long. Dovetall mounting - Lever
arm removable $\$ 1.95$ ea. 10 for .. $\$ 17.50$

6 RPM GEAR BOX MOTOR

110 Volt, 60 cyc., Single Phase; Ratio-544:1; Mfg. by Merkle-Korff Gear Co., Overall dimensions approx. $31 / 22^{\prime \prime} \mathrm{x}$ $81 / 2$
Lots of 10 .
$\$ 9.50$ ea.

G. E. ALTERNATOR
208 Volts, 400 Cycle, 3 Phase Mod.
$2 C M 97 B 1$
55.5 Amps., PF .75, Speed 8000 KW 15,
Cont. Duty, Limited Quantity. $\$ 320.00$

SERVO MOTOR 10047-2-A: 2 Phase; 400 Cycle; with 40-1 Reduction Gear $\$ 10.00$ ea.
PIONEER TORQUE UNITS
TYPE 12604-3-A: Contain CK5 Motor cou pled to output shaft through $125: 1$ gear reduction train. Output shaft coupled to autosyn follow-up -uA Autosyn is $15: 1 \$ 70.00$ ea. TTYP 12606-1-A: Same as 12604-3-A except it has a $30: 1$ ratio between output shaft and follow-up Autosyn.............. $\$ 70.00$ ea. TYPE 12602-1-A: Same as 12606-1-A except it has base mounting type cover $\$ 70.00$ er motor and

BLOWER ASSEMBLY

115 Volt, 400 Cycle. Westinghouse Type 115 Volt, 400 cycle. wiete with capacitor.
 (Approx. size overall
 Delco-TYP
volts; DC: $145 R P M \$ 19.95$ ea. PIONEER AUTOSYNS
AY-1.. 26 Volt- 400 Cycle..
AY-1
AY-5
AY 27

AY14D . $\$ 25.014 .0$ ea.

400 CYCLE MOTORS
ATRESEARCH: 115 V ; 40 CPS; Single phase: 6500 RPM; 1.4 amp ; Torque 4.6 in .
 200 VAC; 1 amp; 3 phase; 400 cycles:
 115 V, 400-1200 Cycle, Single Phase. $\$ 12.50$ ea. PIONEFR, CK-2, 400 cycle 2 -phase. $\$ 20.00$ ea. AIRESEARCH: AC Induction, 200 V : 3 Pyase, 400 Cycle, 2 H.P. 11,000 sig.50 ea. Amps. Phase, 400 Cycle; 12 H.P., 6500 RPM: 1.5 amps.

SYNCHROS

IF Special Repeater ($115 \mathrm{~V}-400$ Cycle)
2.TF3 Generator ($115 \mathrm{~V}-400 \mathrm{cyc}$) $\$ 15.00$ ea. 5CT Control Transformer; $90-50$ Volt 60 yyc.. 5F Motor (115/90 volt-60 cyc.)... $\$ 60.00$ ea. 5G Generator ($115 / 90$ volt-60 cyc.) $\$ 50.00$ ea. 5SDG Differential Generator ($90 / 90$ volts - 400 cyc.) $\$ 30.00$ ea. 5DG Differential Generator ($90 / 90$ volts 60 cycle TRANSMTTER, BENDIX C-78248: ${ }^{\text {en }}$ TRANSMITTER, BENDIX C-78248: ${ }^{115}$ Volt. 60 Cycle

12116-2-A PIONEER

Output: 115 VAC: 400 cyc; single phase; 45 amp. Input: 24 VDC 5 amp... $\$ 90.00$ ea.

MG 153 HOLTZER-CABOT

Input: $24 \mathrm{~V}, \mathrm{DC}, 62 \mathrm{amps}$; Output: 115 volts- 400 cycles, 3 -phase, 750 VA , and 26 Volt- 400 cycle, 250 VA. Voltage and frequency regulated $\$ 95.00$ ea

94-32270-A LELAND ELECTRIC

OUTPUT: 115 Volts, 190 V.A. Single Phase, 400 cyc. 90 PF, and 26 Volts, 60 DC., 18 amps; Cont. Duty, Voltage and DC, 18 amps; Cont. Duty, Voltage and

REPEATER, BENDIX C-78410: 115 Volt,
 REPEATER, AC synchronous 115 V. 60

POWER RHEOSTATS

Standard Brands: 5 Ohms; 100 Watt; 4.48 amps 100 Boxed Brand New with Knob \$2.50 each - or $\$ 25.00$ per Doz.

SMALL DC MOTORS

(Approx. size....4" long x $11 / 4$ " dla.) volts, General Glectric-Type 5AB10AJ37; 5 amps 8 oz inches torque; 250 RPM ; DC; 5 amps, 8 oz inches torque, $\$ 12.50$ ea. G. E. Type 5 BA10FJ215, 84 volts DC. 77 amp. 30 ibs. in. torque, 4 RPM \$15.00 A8. General Electric-Type 5BA10AJE CC: 27 volts, DC; 5 amps, 8 oz. inches rorque; 145 RPM; shut wound; 4 leads; $\$ 12.50$ ea.

SENSITIVE ALTIMETERS
Pioneer Sensitive altimeters, $0-35,000$ ft. range
cal cal brated in 100 's of feet. Barometric setting adjustment. No hook-up required. . . \$12.95 ea.
PIONEER GYRO FLUX GATE AMPLIFIER Type 12076-1-A, complete with tubes $\underset{\$ 27.58 \text { ea. }}{\text { en }}$

MOTOR GENERATORS

G.E. Model 5LY'raiB1, Input: 115 volts D.C.; $11 / 2$ H.P. motor; 13 amp; 3600 RPM; shunt contact regulated. Output: 115 Volts A.C. MG3. Input: 70 Volts DC 5.4 1mps ea. MG-183. Input: 70 Volts DC, 5.4 amps., $1 / 3$ amps., 175 cycles, 3 phase, . 225 KVA . $\$ 79.00$ ea.

SYNCHRONOUS

SELSYNS 110 volt, 60 cycle, $4^{\prime \prime}$ dia. X. 6 "pprox. Mfg. by Deihl and Bendix.
Quantities Available REPEATERS

SINE-COSINE GENERATORS

(Resolvers)
Diehl Type FJE-43-9 (Single Phase Rotor). Two stator windings 90° apart, provides two outputs equal to the sine and cosine of the angular rotor displacement. Input voltage 115 volts, 400 cycle....... $\$ 25.0$ ean. Diehl Type FPE-43-1 same as ator voltage except it supplies maximum atator voltage of 229 volts with 115 volts applied to
rotor $\$ 25.00$ ea

Diehl Mfg. Co., FPE-25-7, 20 Volts, 2 phase,

ALL EQUIPMENT FULLY GUARANTEED

Please enlose full amount with order All prices net FOB Pasadena, Calif.
Prices subject to change without notice
 C -H
BOX 356-X EAST PASADENA STATION

THE BEST IN ELECTRONIC SURPLUS

TRANSMITTERS

3KW GE FM BREOADCAST STATION (FORmerly WGYN), COMPLETE. $88-108 \mathrm{mc}$ ${ }_{3}$ Includes FMI Exciter-Driver in one cabinet, ond cabinet. 2 RCA type TO -C1 Transcription turntables $331 / 3$ and 78 rpm include
Gray Recorder arms and heads, $1-$ R.CA MIGray Recorder arms and heads, 1-RCA MI-
11301 A Power Supply. 1 RCA Type $76-\mathrm{B} 2$ Studio Console, plus Freq, \& Mod. Monitor, Station Monitor, Monitor Amplifier, etc., and all tubes for all equipment. All in good operating condition.
PRICE (not erated)
$. \$ 5,000.00$ 2 KW Radio Ranging or Homing Transmitter, 125 to $525 \mathrm{KC} ; \mathrm{A} 1, \mathrm{~A}^{2}$ \& A3 emission.
Consists of Wilcox $96-200 \mathrm{~A}$ with VFO or Grystal-Controlled Oscillator in one cabinet, Wilcox 50 A Rectifler in 2nd cabinet, and NEW, unused equipment, export packed Operation from $220 \mathrm{~V}_{\text {., }}$ 50-60 cycles, 3 -phase A.C. Write for Price. $70-100 \mathrm{mc}, 50$ watts output. Model 1498 DC.t. Wall style cabinet containing transmitter, receiver and 14 V. D.C. or 110 V . A.C.
power supply, hand-set. Dim, : $34^{\prime \prime}$ x $21^{\prime \prime}$. $1 \begin{aligned} & \text { por } \\ & 11^{\prime \prime} \text { NEW condition. Complete with tubes, } \\ & \text { NEW }\end{aligned}$ tion book. PRICE MODEL ATD AIRCRIFT RADIO TRANSMITTER EQUIPMENT. This is a Navy switching), covering the range of 540 KC to ates K-1, Autput 50 watis phone, but oper-24-28 volt DC Dynamotor. Operates from cludes: Dynamotor, Remote Control, Chan ating Tubes, Spare Chest Connectors, Oper and Parts, and Instruction Books. All ${ }_{\text {BRAND N NEW, in Original Cases; each }}$ tioned range of frequency. TDACEEACH TRANSMITHERS, VHF, 45 waits 016 put AM, 110 to $156 \mathrm{mc}, 115,230$ W. AC, 60 cyeles, with tubes, cables, EXCELLENT HC-797-A TRANSMITTERS, $110-126 \mathrm{mc}, 50$ watts output phone, AM. for $110 \mathrm{~V}, 60$ cycle
operation PRICE, EACH. REN-JLVEHF AMRBORNE TRANSMITTER RECEIVERS, With Tubes, LIKE NEW con
PRICE, EACH, less accessories.
${ }^{\$ 75.00}$ MODEL GP- A ARCRAFT TRANSMITKING EQPT, 40 watts output A1, A2, and A3,
Range 350 to 9050 Kcs covered by 6 plug-in tuning coil units. Eqpt. includes: External Loading (Ant.) Coil. Operator's Control Box, Pilot's Control Box, Cable Connectors. Price, Per Set...................... $\$ 75.00$

NEW GE $1 \mathrm{KW}, 3 \mathrm{KW}$, and 10 KW-RF AMPLIFIERS!!

G.E. Transmitting Equipment of recent design,
NOT WAR SURPLUS, all NE W and exnorit cased-at tremendous reduction from export
 KW Power Amplifer and Power Suply,
BF. $2-A, 3$,
KW Power Amplifer BF-2-A, 3 KW Power Amplifer with separate
matching Rectifier. Power Suply; BF-3.A. 10
KW Power An KW Power Ampliffer with supply; BF-3.A, 10
Rectifler-Power Sute matching Rectifer-Power Supply. This equipment is de-
signed for 88.108 MC FM broadcasting applica-
tion tion, beautifully engineered and and constructed.
(250 Watt FM Exciter or CLUDED). Conversion to lower frequencies (2 to 24 mc , or-other frequencies) can be accomolished at very low cost. Our factory will be glad to quote on conversion to spectifed fre-
quencies. All units designed for $50 / 60$ cycles operation: 3 KW and 10 KW vits.
50 Klts , require 3-phase. All incorporate internal blower
systems systems for forced aircooling. and use latest
G.E. hi-efficiency tubes. Quant G.E. hi-efficiency tubes. Quantities sufficient to interest manufacturers- ${ }^{\text {to }}$ convert for other ap.
plications. Ideal for F Broadcasters, cation companies, Schools, Labs! Available as
soparate separate units, or complete. Write for more com-
plete specifcations pleto speciffations and prices.

TRANS-RECEIVERS

TCS COLLINS SHIP TRANSMITTER-RECEIVERS. Each with cables, remote control radio-telegraph at 20 and 40 Watts 15 and 12.0 mc Following power supplies avail-
able. 12 V DC. 24 V. DC. 230 V . DC. 110 V.AC. Complete with all accessories EXFOR PRICE. SCR-624 VHF ($100-156 \mathrm{me})$ TRANSMIT-TING-RECEIVING EQPT. Same as
ply, all contained in Chests CH-172-A and CH-173-A, with Antenna Masts MA-7-A fo each set. 4-channels, crystal control both modulated. NEW material. WRITE FOR PRICE.
SCR-284 EQUIPMENT, consisting of BC-654 Transmitter-Receiver, PE-103 Generator Power Supply, GN-45 Hand Generator with cranks and legs, and PE-104 Receiver-Vicessories. All equipment in ENCELLENT Condition, with complete tubes. WRITE SCR-511 POGO STICK WALKIE-TALKIE This is a low-powered portable AM Radio a frepune Transmitter-Receiver. covering Tuned Plug-in Tuning Units ${ }^{(B C-746}$) which contain appropriate Transmitter and Receiver Crystals and matching coils are employed to provide quick changeover to any frequency in the ${ }^{3}{ }^{10} 6 \mathrm{mc}$. band. The on a $30^{\prime \prime}$ metal stake, which can be driven into the ground to support the unit. A telescopic antenna is provided at the top, switeh. Each set consists of: BC-745 Trans mitter-Receiver, complete with Tubes: 13 and coils to prounis BC-74, wh crystals and colls to provide coverage over the ${ }^{3}$ to ${ }^{6}$
mange; PE-15i Vibrator Power Supply. which incorporates the dynamic Loud speaker (for reception). Vibrator. Dry Dise
Recifier, and space for a 2 volt non-spillable acid type slorage battery (not supplied).
Equipment is New and UNUSED. A T-17 Aquipment (Plastic case aphe readily available) are all that are required for each set to put into
operation. PRICE, EAC'II. AUDIO SOUND
 ILAS-500W.; RCA 25W.

RECEIVERS

RBM, RBS, BC-1068 VIIF, SCR-206 Direc-
 RT-3/ARN-1 Radio Receivers, New, Model RH-3, Aircraft Homing Adapters, with plugs and accessories. New Eqpt.

MISCELLANEOUS

GENERAL ELECTRIC VOLTAGE REGULATOR (POWER SUPPLY), Model 3GVD$14 \mathrm{~B}-3$, delivers up to 750 volts at 100 MA . with vollage divider network to provile switch for "regulating", "non-regulating", and "Stand-by". Uses following tubes (not supplied): 1-807, $1-6 \mathrm{SJ7},{ }^{2-6 \mathrm{H} 6,1-\mathrm{VR}-}$ Chassis dimensions $11^{\prime \prime} \times 16^{\prime \prime} x^{\prime \prime} 3^{\prime \prime}$, witli chassis cover $9 "$ high. Ideal for laboratories,
Frequency Shift Equipment Stable Oscil. Frequency Shift Equipment, Stable Oscillator construction, ete. All NEW Units. RADIOSONDE AN/MMO-1. Meteorological Balloon transmitter with self-contained instruments. New Units, with slide-rule temmidity elements. Large quantity available Receiving and Recording supplementary WRITE FOR PRICE Type AN/FMQ-1. WRITE FOR PRICE
"SNOOPERSCOPE" TUBES, British InfraRed Image Converter Tubes, with matching Bausch \& Lomb front-end Lens.

20-40 MC RADIO BEACON EQUIPMENT
For SCR-508, 528, $608,628,509,510,609$, MODEL RC-163 is a, etc.
MODEL RC-163 is designed for ready connection to RADIO SET SCR-508, 628 , etc. and 608 , 628 , etc.-or similar transmitting rectional transmission and reception for beacon, homing, etc., applications. Eqpt consists essentially of a rotating direc. tional antenna (Adcock type) synchronized to an automatic code keyer (which can be removed) Four sets of plug-in inductors are supplied to cover the 20 to 40 mc range. battery, power consumed approximately 54 watts (4.5 amps.). Supplied with antenna array, antenna mount with rotating motor, code disss, audio oscillator, phase-load box, mast sight, tuning indicator-receiver which checks feld strength as well as frequency, all necessary cables and complete technical manuals for installation, theory and service. Equipment is NEW and export packed, two cases per complete set. 169.50

TELEMARINE COMMUNICATIONS COMPANY

CABLE ADDRESS:
TELEMARINE, N. Y.
Phone-
LOngacre
540 W. 27th St., N. Y. 1, N. Y.

ZENITH 1951 TV Remote Control Motor Units
Reversing control switch at end of 17 foot cable Will drive anything
Can be used for door opener, win-
$\$ 10.95$ dow raiser. model RR turntable.
Complete with transformer.

10 for $\$ 95.00$

MARKTIME 5 HOUR SWITCH A 10 amp. timing device. after time elapses. Ideal for shutting ott' radios and T sets when you go to bed.
Limited supdly at this siecial I'RICE.
$\$ 4.90$
Also arailable in 15 min ., 30 min ., 1 hr . at $\$ 5.90$
A similar timer to the above but less calibration and Mi xer. 10 sec. to 24 min. for Photographic. Electric We Ever Had

Veeder-Root Counter, Rotary
Veeder-Root Counter, Ratchet
Guardian, No. 4 , IA 5. A.C. Solenoid
ISOLATION TRANSFORMER \$1.95 Nat. known Mfyrs. 50 watt 2 windings, 115 V. to
115 V. 60 cs. Ideal to prevent shocks from smali

ANTENNA ROTATOR of ENNA ROTATOR DOOR OPENER

Geared down 24v. universal motor wht
57.50

GE Argon Giow Lamps.........
transformer for sio.o

an be changed by momentary OFF CENTER but Removed changed by user to STAY either side. Equipment.
all prices f.o.b. N. Y.
EST.
1923 A A A A A EST.
64 Dey St. New York 7, N. Y.

Portable Instruments

Molded Bakelite case 7" $\times 41 / 2^{\prime \prime} \times 3^{\prime \prime}$ D.C. MICROAMMETERS THERMOCOUPLE MILLIAMMETERS
12..5..10 miliamperes THERMOCOUPLE VOLTMETERS

5 to 500 volts
Available in multiple range
Precision Electrical Instrument Co.
146 Grand Street

393 GREENWICH STREET
NEW YORK 13, N. Y.
CABLE ADDRESS: COMPRADIO, N. Y.
ALL PHONES: BEEKMAN 3-6509

WE MAINTAIN OUR OWN FULLY EQUIPPED TESTING LABORATORY TO TEST AND GUARANTEE ANYTHING WE SELL

Suppliers of

MARINE, GROUND \& AIRBORNE

TRANSMITTERS

FROM 25 WATTS TO 5 KILOWATTS
RADAR
SONAR
TEST SETS
TELEPHONE EQP'T. CONVERSION EQP'T.
-MOTOR GENERATORS
-CONVERTORS
-DYNAMOTORS
-INVERTERS
_-POWER SUPPLIES
-RECTIFIERS

TCS—Collins mfd. Navy radiotelephones for shipboard and mobile use, complete with all accessories for operation from 12, 24, 110 , 230 volts d.c. and 110 or 220 volts a.c.

TDE-Navy or commercial marine transmitters, complete $110 \& 220$ volts d.c. and a.c.

TBK - Navy high frequency transmitter, 2-20 mcs; 500 watts output. Supplied complete with m / g and starter for d.c. or a.c. operation.

TBM-same transmitter but with speech input equipment to give 350 watts phone.

TBL—Navy all-wave transmitter; 350 watts output: CW and phone. Supplied complete with m / g and starter for d.c. or a.c. operation.

TAJ-Navy intermediate freq. transmitter, $175-550 \mathrm{kcs} ; 500$ watts output. Supplied complete with m / g and starter for a.c. or d.c. operation.
SCR-284-the famous mobile and ground station for field use. Large quantity of complete sets available:
MAG-10 cm. portable link radar transmitter receivers, 6 -volt operation.
TBN-200-500 kcs, complete with 220/440 volt, 3 ph. $50-60 \mathrm{c}$. power supply-conservatively rated at 1 kw . output.
SCR-510 and 610 in quantity.

- BEACONS

AN/CPN-6 3 cm.

AN/CPN-8

TUBES

Tube\#	Selling Price	Tube\#	Selling Price	Tube\#	Selling Price	Tube\#	Selling Price	Tube\#	Selling Price	Tube\# $9 \times 9 / 879$	Selling Price 1.75
O1A.	write	2J32.	65.00	3B28.	9.00	250 TH	30.00	725 A	write	$2 \times 2 / 879$	1.75
OC3.	\$1.60	2 J 33	100.00	3C31	5.75	250TL	30.00	730A	45.00	61	$\begin{array}{r}2.75 \\ \hline 75\end{array}$
OD3	1.50	$2 J 34$	write	3 E29.	15.00	304 TH	9.75	803	7.00 1.65	1619.	.75 2.00
C1 A	6.00	2J36.	100.00	4C27.	25.00	3041	00	807	9.00	1625	. 65
C1B	7.00	2J38.	49.50	4C28.	35.00	30	35.00	829	12.00	1626.	. 75
C6A	write	2J39.	49.50	4E27.	17.50	33	35.00 2.50	832A	10.00	1629	. 65
C6F	12.50	2 J 42.	150.00	4J25.	175.00	37	2.50	833A	42.50	1636.	3.00
C6J.	write	$2 J 49$.	100.00	4J26.	175.00	388A	2.75	836..	4.75	1642	3.50
1 B22	3.95	2 J 50.	75.00	4J28.	175.00	446A	3.75	837	2.75	2050	2.00
1B23	10.00	2 J 61.	75.00	4J29	175.00	446B	45.00	843	write	8012	4.25
1 B 24.	write	2 J 62.	75.00	4J30.	write	450 TH	45.00 45.00	849	50.00	8020	3.50
2B22.	4.95	2K22	write	4J31	175.00	4501	45.00	851	45.00	8025	7.00
2B26.	3.75	2K25	35.00	4J33	190.00	464A	9.50 3.95	851	5.00	9001	1.65
2 C 40.	18.00	2K26	150.00	4J52.	350.00	705A	3.25	86		9002	1.50
$2 \mathrm{C43}$.	25.00	2K29	35.00	5J23	write	706AGY	45.00		write	9003	1.75
2D21	1.70	2K36	write	5J26.	350.00	707B.	12.50	872		9004	1.75
2 E 22.	3.75	2K41	150.00	5J29	write	714AY.	17.50	872		9005	1.90
$2 \mathrm{21}$.	17.50	2K45	100.00	6C21	29.50	715B.	17.50			9006	. 50
2 J 22.	17.50	2K54	150.00	$10 Y$.	1.25	720	write				
2 J 26.	27.50	2K55	100.00	100TH	9.00	721 A	3.75	89			
2J27.	27.50	3B24	5.40	204A.	60.00	723A/B.	25.00				
2 3 1.	27.50	3B27	10.00	211	1.00	724B	6.5	89	250.00		

all tubes guaranteed. all prices are f.o.b. our warehouse, and are subject to change without notice

SEARCHLIGHT SECTION

WIRE-CABLE

CORDAGE

CO. 1223 conductor each \#22 AWG neoprene facket 550 lengths
CO-127 single \#14 AWG braided and tinned copper braid shield

MULTI-CONDUCTOR
2 conductor AWG 12 conductor AWG 16 7 conductor AWG 1419 conductor AWG 16 14 conductor AWG 186 conductor AWG 20 AWG 20 shielded 10 conductor AWG 16 2 conductor AWG 1822 conductor AWG 16

ARMOUR
 DRIA-23 DHFA-100 FRLA-4

SINGLE CONDUCTOR AWG 10
hielded cable with terminal lug each end 100° and 150° length WIRE
AWG 18 copperweld
AWG 29 tinned copper
AWG 22 with nylon core plastic insulation LINEAR WIRE WOUND POTENTIOMETERS

MICROWAVE TEST EQUIPMENT 10 CM echo box CABV 14ABA-1 of OBU-3 frequency range 2890 MC - 3170 MCS Direct reading micrometer head. Ring prediction scale plus 9% to minus 9% Type "N" input. Resonance indicator meter. With accessories, spares and 10 CM directional coupler. Brand New

TUBES

${ }_{2} \mathrm{C}_{3}$	\$0.55	803	\$3.75	CEQ-72	\$1.15
2X2/879..			. 95		4.25
3 B 24	5.00	864	. 40	CRP-72.	1.15
${ }^{3 C 24}$	1.75	931A	4.45	E1148.	5
7C4/1203A	. 75	955	. 40	HY-615	仡
	. 45		. 40	RKR 72.	15
		CK1005.	. 50	RK-	
30 Special.	. 45	CK1007.	. 90	5BP4	4.95
39/44	.30	1626	. 40	5FP7	1.95
45 Special.	. 35	1629	. 35		7.70
WE 203A..	8.00	2051	1.15	${ }_{13} 1 \mathbf{3}$	89
${ }^{316 A}$. 65	7193			65
WL-531...	5.50	8011	1.50	5U4	. 57
${ }^{713 A}$ A.	. 95		. 40	6K6GT...	. 65
8014.	. 40	C5B	8.50	12A6	. 65

HI VOLTAGE FILTER CHOKES . 4 HY 4.5 Amp DC 3 ohms 1230 RMS to 5 HY 4 GE69G351. New.
.25 HY 4 Amp .5 ohm 20,000 Test. New. 1 HY 3.2 Amp DC 3.5 ohm GE69G459.
.7-3 HY 2 Amp DC 34,000 VDC GE Y346A. N

SPECIAL
Bodine NSHG-12 Motor. Constent Speed. 27 VDC 5 governor controlled 3600 RPM i/30 HP 5 Amp. Brand New, \$13.95.
10 CM ROTATING ANTENNA
24" Parabola in turret 360° span at 12 HPM

80-86 Crystal in Holder $\$ 2.50$
Balloon with Hydrogen Generctor $\$ 2.50$ Box Kite $17^{\prime \prime} \times 17^{\prime \prime} \times 36^{\prime \prime} \$ 2$

UG CONNECTORS
 ALL JAN APPROVED

Available for immediate delivery from stock.
Write, wire, phone your requirements.
Complete stock of "AN" Connectors. Send for our bulletins and listings
of all components. of all components.

76-E Vesey St.

TIME DELAY SWITCHES

Minute 115 VAC 60 cycle Enc. in Waterproof Metal Case New $\$ 5.25$
3 Micro Switches Contact at 40-41-42 Second Therme Selay 110 VAC Motor New $\$ 4.50$ Thermo Switch 50° to 300° F 115 VAC @ 6A Breaks Contact wi New $\$ 1.35$ with increase of Temperature New $\$ 1.35$

CONTACTORS

DPST 115 VAC 60 ercle 15 Amp De-Ion Line Starter Westinghouse $\$ 6.95$
DPST 115 VAC "AB" $700 \$ 5.9$

RELAYS

12 VDC DPST Allied Control Box 32.... . $\$ 1.25$ 24 VDC DPDT Allied Control BJ6D36...\$1.45 110 VAC BPD 8 Amp................................ 50 10 VAC DPST 1 Amp Contacts Struthers 15 VAC DPST Struthers Dunn CXA $2997 \$ 3.65$ 220 VDC DPDT Struthers Dunn CK 2122. $\$ 4.60$ 230 V 50 cycle DPDT G.E. 12HGA11A2.. $\$ 4.00$

	TRANSMITTING MICAS				
MFD	VDC		MFD	VDC	
. 000075	3000	51.30	. 005	3500	\$1.
. 0005	3000	1.10	. 006	3500	2.
. 0001	3000	1.30	. 00075	5000	2.
. 004	3000	1.50	. 000375	5000	2.
. 003	3000	METERS 5000			

Portable 0-25 Amps AC Weston \#433 Brand New \$37.50
Switch Board Panel $0-100$ Amps DC Weston \#269 with 100 Amp Shunt Brand New $\$ 24.95$

Walkie-EQUIPMENT

MN-26Y Bendix 2.3 -4.6 MC Receiver
BC-733 Glide Path Receiver
DAB-3-Direction Finder
RDF Receiver Equipment $200-550 \mathrm{KC}$ Fixed Tuned

ATTENTION buyers of ELECTRONIC EQUIPMENT

Here is Your One Complete Dependable Source for All of Your Electronics Needs

		RECEIVING	TUBES	
OZ4	6AU6	6SC7	7F7	12SK7GT
144	6BA6	6SN7GT	7Y4	12SQ7GT
3S4	6BE6	678	12AT7	25L6GT
5V4G	6CB6	6W4GT	12 AV 7	35W4
6AB4	6 BK 7	7A4/XXL	12BA7	35Z5GT
6AC7	6 F 6	7A6	12BF6	$50 \mathrm{B5}$
6AH6	6 J 6	7B6	12H6	50L6GT
6AS7G	6L6G	7C6	12SH7	75
	TRANSMITTING AND SPECIAL PURPOSE TUBES			
3 C 45		304 TH	832A	2051
5R4GY		723A/B	845	5829
6AN5		807	954	8020
100TH		813	957	9002
211		829 B	658	9003

BRAND NEW COAXIAL CABLE
Meeting Jan-C-17A Specifications
RG-8/U $\$ 110.00$ per M Feet
RG-11/U 107.90 per M Feet
RG-59/U
OHM
OH

$\$ 19.00$ per M Fet
JK26 Jacks-39e ea 500 MMFD Volt DCW TV High Voltage Condensers-36c ed Centralab TV1-501-One end threaded, othe end plain stud ... 32 c
Centralab TV3-501-One end threaded, other
LET US KNOW ALL YOUR ELECTRONIC NEEDS
Write - Wire - Phone For Prices
\& lectronic \sum ppediters
Dept. EE, 225 N. Wabash Avenue Cable Address "ELEXPED'ITE"* TWX CG1510

RELAYS ...WORLD'S

 LARGEST STOCK!Your requirements of large or small quantities of relays can be
 quickly supplied from our huge stock. Wide variety of types, all made by leading manufacturers. Each relay is brand new, inspected and fully guaranteed by Relay Sales.
\checkmark STANDARD TELEPHONE RELAYS \checkmark SHORT TELEPHONE RELAYS \checkmark DUAL TELEPHONE RELAYS V SLOW ACTING RELAYS V SEALED RELAYS \checkmark rotary relays \checkmark midget relays VKEYING RELAYS VDIFFERENTIAL relays Vplate current relays VANTENNA SWITCHING RELAYS \checkmark "BK"SERIES \checkmark STEPPERS \& RATCHET relays VLATCHING \& INTERLOCKING RELAYS \checkmark MECHANICAL ACTION RELAYS \checkmark VOLTAGE REGULATORS \checkmark OVERLOAD \& CIRCUIT BREAKERS V REVERSE CURRENT RELAYS VAIRCRAFT CONTACTORS $V M O T O R \& C O N T R O L$ DEVICES \checkmark TIMERS V SOLENOIDS

\checkmark RELAY ASSEMBLIES

TEST EQUIPMENT

Dummy Load, X Band, $11 / 4^{" x} \times 5 / 8^{\prime \prime}$ guide, choke or plain flange, dissipates 300 watts average power continuously in still air, VSWR less than 1.15 between 7 and 10 KMC, weight $51 / 4$ pounds.
Dummy Load, X Band, $1 / 2^{\prime \prime} x l^{\text {d }}$ guide, choke flange, dissipates 100 watts average power continuously in still air. VSWR less than 1.15 beiween $8.2 \times 12.4 \mathrm{KMC}$, weight 14 oz .
Dummy Load, X Band, $11 / 4^{\prime \prime} x /{ }^{\prime \prime}$ g guide, plain flange, dissipates 250 watts average power continuously in still air VSWR less than 1.15 between 7-10 KMC, weigh $31 / 4$ pounds.
Dummy Load, XBand, $11 / 4^{\prime \prime} \times 5 / /^{\prime \prime}$ guide, plain flange, dissipates 200 watts average continuously in still air, weight 2 pounds 4 ounces.
Dummy Load, S Band, $11 / 2$ " $x 3^{\prime \prime}$ guide dissipates 1000 watts average power in still air, VSWR less than 1.15 between 2.5 to 3.7 KMC , choke flange, weight 13 pounds.
TS-36, X Band Power Meter measures 1 milliwatt to 1 watt of X Band average power for $5 / 8^{\prime \prime} \times 11 / 4^{\prime \prime}$ wave guide,- $\$ 200.00$.
X Band Power and Frequency Meter for 8,500 to 9,600 megacycles measures 1 to 1,000 milliwatts average power. The frequency meter is direct reading within 25 megacycles and within 4 megacycles with correction chart; commercial equivalent of TS-230 B/AP.
X Band Spectrum Analyzer $8500-9600$ Mc., calibrated linear below cut-off attenu ator, calibrated frequency meter, tuned mixer, 4 i.f. stages, 3 video stages over all gain $125 \mathrm{db} .$, reg. power supply. Can be used as signal generator with internal or external modulation.
S Band Spectrum Analyzer 2700-3400 Mc., similar to above.
Amplifier Strip AM-CCA/SPR-2, contains I. F. amplifier, detector, video amplifier, pulse stretcher and audio amplifier and Rectifier Power Unit PP-155A/SPR-2, band width 10 megacycles, center frequency 30 megacycles, sensitivity 50 microvolts for 10 milliwatts output. Power supply $80 / 115 \mathrm{~V}$ ac, $60-2600 \mathrm{cps}, 1.3$ amps. Send for schematic.
Tuning Units for APR-4 Receiver-TN $1630-80$ megacycles, TN $1780-300$ megacycles, TN 18 300-1,000 megacycles, TN 19 1,000-2.200 megacycles, TN 54 2,2004,000 megacycles.
T-85/APT-5, 300-1,600 megacycles Noise Modulated Transmitter, 40 watts C. W. Microline MK SX-12 Klystron Supply and Panel
Spectrum Analyzer R. R. L. Model D 1203 100-490 Mc. Made by Hewlett-Packard.
Spectrum Analyzer, made by G.E. for NDRC, RP-347 100-1500 Mc
Standard Signal Generator, Measurements Model 75, 124-510 MC.
Ferris Model 18B Microvolter
Ferris Model 10B Microvolter
TS-226, TS 184, TS 100, TS-12AP, TS 89, P-4E Synchroscope.
Power Supply, input 220 V 3 ph 60 cycles
output: 3500 volts 2 amps DC $11 v 31 a$ ac 1750 volts 0.4 amps DC $\quad 10 \mathrm{v} 6.5 \alpha$ ac 600 volts 0.3 amps DC $10 \mathrm{v} 6.5 a \mathrm{ac}$
7.56 .0 ac

Waveguide Below Cut-Off Attenuator L101-A, U. H.F. Connectors at each end, calibration $30.100 \mathrm{db},-\$ 25.00$.

ELECTRO IMPULSE LABORATORY
 62 White Street
 Red Bank 6-0404
 Red Bank, N. J.

AIRCRAFT ELECTRONLCS

ARC-I's, ART-13's, RTA IB's, BC348's
AND COMPONENT PARTS FOR ABOVE
WRITE OR CALL FOR bUlLetin
MERRICK ELECTRONICS
166-08 DOUGLAS AVE.
JAMAICA, N. Y.
RE 9-5960

TUBE REBUILDING

Large Transmitting and Power types
Economical - Guaranteed FREELAND PRODUCTS CO.
700 DRYADES ST., N. O., LA.

GLASS TUBING

PYREX - NONEX - URANIUM BULBS \& CYLINDERS WRITE FOR FREE MONTHLY LIST HOUDE SUPPLY COMPANY

PHONE KEYPORT $7-1286$
M. R. \#l Box 86X Keyport, N. J

SAVE With New Surplus!

LARGEST VARIETIES AT GREAT SAVINGS

- OIL CAPACITIORS

LARGE RECTANGULARS
SMALL RECTANGULARS BATHTUBS; TUBULAR

- MIICA sinver Ci-2.3-4
- AIPPELOL-CAINON
- AN-IVR-IIIF connec
- LORD SHOCK MOUNTS
- BIRTCHEP utueCLAMPS
- POWER RHEOSTAIS
IIOMEIE

Write-Wire-Phone Your Specs.

ALEXANDER MOGULL COMPANY

50 W. Broadway
N. Y. 7, N. Y.

WORTH 4-0865

SURPLUS NEW GUAIANTEED

METEIRS

QUARTZ CRYSTALS NEW LISTING

Made from the finest Brazilian Quartz. Will provide a high degree of activity and frequency stability. All tested and marked by the manufacturer to a very close folerance. In the frequencies outlined below the crystals itemized under the heading "From \& To" are mostly in progressive frequencies between the limits shown (as for example: 'From 3300 to 3377 ," are as follows: $3300 \mathrm{KC}, 3301 \mathrm{KC}, 3302 \mathrm{KC}$-, 3377 KC .) are of limited quantities in each frequency. Those listed singly are in quantities of 50 or more.
FT243

Prong centers $1 / 2^{\prime \prime}$, Prong dia. 3/32" Price $\$ \mathbf{1 . 1 5}$ ea. (25 for $\$ 25.00$)

CR 1 A/AR or FT241

XL5 Dual
3 prongs $1 / 2^{\prime \prime} X$
1 19/32" prong dia.
Price $\$ 1.95$ ea.

XL5 Single
3 prongs $1 / 2^{\prime \prime} X$ 1 19/32' prong dia.

Price $\$ 1.35$ ea.

氙
ज日

FT241A
SPECIAL TYPE WE. Prong spacing 1" CTS. Prong Size $3 / 32^{\prime \prime}$ dia.
These are in successive steps of, 1 MC variation from 20.0 MC to 38 MC .

Suitable for low frequency purposes ($1 / 72$ of Stated Values)

Price $\$ 1.15$ ea.

UNASSEMBLED CRYSTALS
consists of quartz crystal plates made for FT243 holders. Furnished complete with holders, electrodes, springs and all hardware.

Price . 29 ea.

Crystal plates available in the following frequencies:	7750	7873	8475
77755	7850	8750	
7800			
7825	8855		
7850	8450		

154 Greenwich Street, New York, N. Y. Telephone Dlgby 9-3143

SEARCHLIGHT SECTION

change without notice. Minimum order $\$ 3.00$

एHDTDEDN EAME

417 N. Foothill Blyd. SY camore 2-4131 Pasadena 8, Calif. RY an 1-6751 FREE 24 PAGE
SUMMER SURPLUS SALES CATALOG
WANTED new or clean used electronic surplus.
Please state oxe oxact description of the condition
and details of modification. Includ

Audio Oscillator Hewlett-Pack:rd 200BR ${ }^{20-20,000}$ c.p.. Leeds \& Northro Wheatsione Briage Test 4286 Keivin Bridge Ohmmeter, Leeds

 LM \& BC-221 Frequency Meter with Eal.
 Knight FS334............ TS-251/UP Test Set, lese cryitili.......Ne. Ne.
 Complete with crystal, cal. book. \& TS 15 VAC. Power Supply.Like Now Measurements Corp. Signal Gearerator

 Industrial Circuit Tester Weston Modeli 785 Electronic Analyzer Weston 769.... Like New APR-4 Search Recoivar
Tuning Units for APR--
Communication Receivers-made by Halli
moders, Nacionals, \& Hammerlund. Many
T-17 Hand Microphone with Prices star

- PUR-Prico mpon request.

NOTE: One of the largest and most complate electronic surplus stocks in the country. We have
thousands of tubes, capacitors, plugs. accessories, trousands of tubes, capacitors, plugs, accessories, us your requirements.
TERMS: Prices F.O.B. Pasadena, California. 25\% on all C.O.D. orders. Californians, add 3% Sales

WHOLESALE ONLY

ELECTRONIC COMPONENTS

 AIRCRART EQUIPMENT HYDRAULICSRADIO \& ELECTRONIC SURPLUS 13933-9 Brush St, Detroit 3, Mich. Phone Townsend 9.3403

CLARE, TYPES C. D\&E
ALL TYPES of COILS and PILE-UPS Send Us Your Specs. for Our Quote

Clare Type C Standard Size Sensitive Telephone Relays

	Colt	Contacts	Will close At	Pri
	6500 ohms		2.8 MA	
	6500 ohms	18-1C	3.2 MA	2.75 ea.
4)	6500 ohms	${ }_{3 A-1 B}$	${ }_{4}^{4.0} \mathrm{MA}$	${ }^{3.00}$ ea.
	6500 ohms	1 C	1.5 MA	3.25 ea.
Clare Type G Half Size Sensitive Telephone Relays				
	6500 ohms	2 A		
	5800 ohms		MA	2.50 ea
	5800 ${ }^{\text {chms }}$	$2 \mathrm{C}-1$	5 MA	2.50 ea
	${ }^{3600} \mathrm{ohms}$	1 l	${ }_{6}^{4}$ MA	2.50 ea
	4850 ohms	1 A	5 MA	${ }_{2.00}$ eas.

All above Relays may he used for continuous duty
operation on 110V. D.C.
Other Type G Telephone Relays

Legend (A) Normally open set of contacts. (B) Normally closed set of contacts. $\mathrm{MA}=$ Milliamps.

SIGMA HERMETICALLY SEALED RELAYS Operates at six volts A.C. 60 cycles or 400 cycles
Contacts-SPDT
(1) 222 Fultion St.
New York $7, \mathrm{~N}$.
Y.

Dlgby 4.3088

Hollis $4-5033$

FOR SALE

 MAGNET WIRENos. 29, 30, \& 31 SCE, 31 DCC \& 44 HE At Close-Out Prices CORD SETS 17,000 22" G.E. Plastic, $7 ¢$ STRICKLAND ELECTRIC CO. 1427 E. 18th Ave., columbus, ohio

FOR SALE

PLATE TRANSFORMERS

Several hundred new 10 K.W. Amertran oil cooled plate transformers 115 . 80 cy , 1 phase primary, 17,600 volts, .5 amp sec ondary. Can be furnished center tapped Or two wire 8800 volts, 1.0 cmps. Priced Quantity discounts arailable Special Quantity discounts arailable.

SCR 545-A Radar

New RA-38 15 KV Power Supplies and components.

EPCO

1527 E. 7 th St., Los Angeles 21, Calif.

TIME DELAY

R.C.A. Model MI-8167 TRANSMITTERS

Point-to-peint communications

Freg. Range: 2000 to 20,000 Kcs. Output: 350 Watts C.W. 250 Watts Radio telephone Input: 190 to 250 Volts AC $50 / 60 \mathrm{cps}$.
Size: $60^{\prime \prime}$ high, 17^{\prime} wide, $27^{\prime \prime}$ deep.
Tubes: 807s, 813 s . $505 \mathrm{~s}, 866 \mathrm{~s}$.
Crystal Oscillator unit built-in, fully shielded and stable. All self contained including antenna net-
work. Master 0scillator unit (available) fits in place of Xtal urit. Speech amplifier is only explace
ternal unit and has $10 / 220$ v. $A C$ input, four
stages, high gain Total net weight, 625 lbs. stages, high gain. Total net weight, 625 lbs.

Complete! New! From Stock! Quantitios!
Prices on Request.
COMMUNIEATION DEVICES CO. INCORPORATED
2331 Twelfth Ave.
N. Y, 27, N. Y.

ANNOUNCING THE AVAILABILITY
 OF NEW

TS-125 S BAND POWER METERS

This precision instrument, now being produced by Weston Laboratories, provides for quick visual measurement of CW, modulated or pulsed average power output from 0-2 MW to more than four watts. Calibrated in two scales (MW of power and DB above and below one milliwatt). Temperature compensated thermistor construction with $1 / 4$ wave matching stub RF element. Supplied with complete accessories and instruction book available now.
A partial list of other test equipment available follows:

TS-1ARR		TS-173/UR	TS-324/U	I-167-A	6/
TS-3A/AP	TS-62/AP	TS-174/U	TS-328	I-177	$\begin{aligned} & \text { BC-1255 } \\ & \text { BC- } 1287 \end{aligned}$
TS/8A/U	TS-69/AP	TS-175/U	TS-359A/U	-178	
TS-10A/APN-1	TS-76/APM-3	TS-184/AP	TS-363/U	-196A	
TS-11/AP	TS-87/AP	TS-192/CPM-4	TS-375/U	$\begin{aligned} & \text { I-198A } \\ & \text { I-208/A } \end{aligned}$	LAD
*TS-12	$\begin{aligned} & \text { TS-89/AP } \\ & \text { TS-92/AP } \end{aligned}$	TS-194/CPM-4	TS-389/U	-212	LAF
TS-14	TS-96/TPS-1	TS-198/CPM-4	TS-421/U	I-222/A	LAG
TS-15B/AP	TS-98/AP	TS-203/AP	TS-437/U	1-223A	LM13
TS-16/APN	TS-100/AP	TS-204/AP	1-56	1-225	LU^{2}
TS-18	TS101/AP	TS-205/AP	1-61B	1-233	
TS-19	TS-102/AP	TS-210/MPM	1-83 ${ }^{-95} / \mathrm{A}$	\|E-36	OAA
TS-23/AP	TS-108/AP	TS-218/UP	1-98A	If F -12/C	OAW
TS-26/TSM	TS-110/AP		-106/A	IS-185	
$\begin{aligned} & \text { TS- } 27 / \text { TS } \\ & \text { TS-32A/TRC-1 } \end{aligned}$	$\begin{aligned} & \text { TS-111/CP } \\ & * T S-117 / G P \end{aligned}$	TS-233/TPN-2	I-114	IS-189	SG/8U
TS-33/AP	TS-118/AP	TS-239A	-115	AN-PNS-1	TAA-16E
TS-34/AP	*TS-125/AP	TS-251	-122	BC-221 (*)	TSS4SE
TS-34A/AP	TS-121/U	TS-263	-122-B	BC-376	TSX3SE
TS-35/AP	TS-131/AP	TS-268	1-126	(${ }_{\text {BC-438 }}$	TTS-48R
TS-36/AP	TS-142/APG	TS-270A/UP	1-130A	BC-838	TTX-10RH
TS-24/APM-3	TS-144/TRC-6	TS-285/GP ${ }^{\text {c }}$	I-137A	BC-908/D	TUN-9HU
TS-46/AP	$* \mathbf{T} \mathbf{S}-147 / \mathbf{U P}$	TS-294/U	I-139A	BC-949/A	
TS-48	*TS-143	TS-297/U	1-145	BC-1050/A	
TS-51/APG-4	TS-153	TS-301/U	I-147	BC-1066/A	
TS-56/AP	*TS-155A/AF	TS-314/FSM-1	${ }_{-158}^{-148}$	${ }_{\text {BC-1203 }}$	

* Ot new manufacture

Before selling your idle test equipment, please get our offer
Cable: WESLAB
Tel: Boston: WE 5-4500

Weston Laboratorise Weston 93. TMass.

ATTENTIDN: PURCIASING AGENTS

SEARCHLIGHT SECTION

FOR ELECTRONIC COMPONENTS
We offer immediate delivery from our vast stock of more than 25,000 items-all standard make, carefully inspected and fully guaranteed. Our prices are below market.
Always Check Wells' Stock First! Quotations and quantities available will be given immediately upon request.

ADEL CLAMPS
ANTENNAS
Insulators, Mast Sections BINDING POSTS BLOWERS

CABLE ASSEMBLIES CHOKES
COILS
CONDENSERS
Oif Filled, Bathtub, Hearing Aid, Transmitting Micas, Silver Micas, Ceramic, Variable, Trimmer CRYSTALS
DYNAMOTORS \& BRUSHES FILTERS
FUSES \& MOUNTINGS GENERATORS GROUND RODS HEADSETS IF COILS JACKS
JACK BOXES
KEYS, Telegraph KNOBS LAMPS
LAD MOUNT LUGS
MOTORS \& BRUSHES PLUGS RECTIFIERS
Selenium, Copper Oxide, Meter, Diode
RESISTORS—All Types SELSYNS SWITCHE
Aircraft, Micro, Switchettes, Toggle TIMERS
IUBING-Flexible TUNING SHAFTS
TR ANSFORMERS—All Types VIBRATORS WALKIE TALKIES
Available Now!
A complete signal corps stock number listing of items in our stock. Write for listing No. SG-200. (For government agencies and contractors only.)
Manufacturers and distributors-write for Radio-Electronics Catalog No. H 501.
Write, Wire, Phone Your Requirements all phones: SEeley 8-4143

833 W. CHICAGO AVE., DEPT. SL,CHICAGO 22, ILI.

SALES INC.

Formerly CDEMBA ELECTMONICS LTD.
of N. Hollywood and ARPOW SALES INC. of Chicago

NEW HEADSETS \& HANDSETS $\mathrm{HS}_{\mathrm{H}}-23$
$\mathrm{HS}-33$
$\mathrm{HS}-38$
$\mathrm{RS}-8.3$ TS-13-C

RADAR

 $\begin{array}{lll}\text { APTT- } & \text { MD4/APS2 } & \text { RC-224 } \\ \text { APT-3 } & \text { MD5/APS3 } & \text { RC-266 } \\ \text { APT-4 } & \text { MD32/UPN2 } & \text { RT34/APS13 }\end{array}$

TEST EQUIPMENT

Complete Line!
DuMont 224-A Oscilloscope
$1-77$ Hickok Tube Checker
$1-208 \mathrm{FM}$ Signal Generator
RPC Model 644 Multimeter
Ferris Microvolter Mod. 18-C
Ferris Microvolter Mod. 18 -
Hewlett Packard $\psi 200-\mathbf{C}$

1-83G	TS12/AP	TS159
$1-88 \mathrm{~A}$ $1-114$	TSIL/APN	TSIT0 ARN
1-183	TS24A/ARR-2	TS182/UP
1-185	TS27/TSM	TS184A/AP
1-198	TS36/AP	TS251/AP
BC-1255	TS61/AP	TS311A/UP
	TS62/AP	TS323/UP
-139	TS92	SLi Slotted
I-145	TS100/ap	Range Callbrator
${ }_{1}^{1-222}$	TS126	UPM-1
TSIMAP	TS127/U	

VHF FREQUENCY METER
Complete, crystal controlled, with $110 / 220$ VAC 60
cycle power samply. cycle Dower supyly. 5 channels, Frect, range:
$100-156 \mathrm{MC}$. Mourits in standard gram, less crvstals. NEW ...1 1rice on Request.

AN/ART-13 PARTS
Part
564916
565027
564916 Barometric Switeh
$\begin{array}{ll}\text { K7890443 } & \text { 4-Pile Ceramic, Variable Cap. } \\ \text { 6-Pile Ceramic, Varinhe }\end{array}$
$564605 \quad 4$ Centralab-Type 843-003 Cap 4 Centralab-Type 843-003 Cap
Assembly

RA-38 RECTIFIER
High poltage riower supply. Used with ground radar
set. New. Price on request.

FLUX METER

For measuring flux density letween magnet doles. battery for power supply. Range: $500-4000$ Gauss in 3 seales, Requires l battery which mounts in case. NLW. Price On Remtuest.

DIRECTION FINDER KIT
Complete kit to make any receirer (freq. range:
$200-1750 \mathrm{Kc}$, a complete Direction Finder Sel. This kit consists of: MN-20 Loor, Loop-TO-MQreiver Transmission Line, MIN-52 Loop Control with
360° azimuth dial and shaft. New . $\$ 17.50$

RECEIVERS—TRANSMITTERS

RA-52 RECTIFIER

Transtat controlled to prodnce high roltage DC
from 110 . 4 AC 60 cycle source. UD to 11.500 VIDC

MISCELLANEOUS

MINE DETEGTOR: SCR-825 for prospecting, minLig. 21 LOOPS: Mod. LM, AM, A. Excel. cond. 8 - NOTE: VE HAVE ONE OF THE LARGEST, - MOST COMPLETE INVENTORIES OF MLI. TARY GLECTHONICS IN THE U. S. CAL
OR WRITE TODAY SEND FOH FBEE
CATALOGUE.

ARROW SALES, INC.

7460 VARNA AVE.

N. HOLLYWOOD, CALIF.

SUnset $\begin{aligned} & \text { 3-7319 } \\ & \text { Cable address: ARROWSALES } \\ & \\ & \text { STM }\end{aligned}$ 7-6005
Cable address: ARROWSALES
(See Arrow Sales Inc. ad Page 364)

SWEET DEALS

FROM A SWEET OUTFIT

Looking for
Hard-to-Find Equipment?
Here is just a partial list of What we have to offer:

- BC-348's - BC-342's - ART-13's
- ARC-I's ARC-3's LM's
- DYNAMOTORS - SCR-522's
- APN-9's - APN-4's
- VARIOUS TEST EQUIPMENT

We'll Pay
SWEET PRICES
for your
RADIO \& AIRCRAFT
EQUIPMENT
We want to huy parts or equipruent-ant
we'll pay top dolar to get it. Just send us
the complete dope on what you have, the type
and condition of your equipment-and sour
asking price. You'll get fast. profitable ne-
tion. It's jist like taking "Candee" from a
laby! Vrite today!
CANDEE-AIRCO
Dept. E-3, 3306 Burbank Blvd. Burbank, California
Cilarleston 0-1486 rockweld 9-1070

WESTINGHOUSE HIPERSIL CORES

Quantity Gauge Strip Build Window Window $\begin{array}{llllll}11,365 & .003 & 11 / 8 & 1 / 2 & 7 / 16 & 3\end{array}$ 3,741 $\begin{array}{llllll}003 & 7 / 8 & 3 / 8 & 7 / 16 & 3\end{array}$

Available for immediate delivery
RAYTHEON MFG. CO.
Surplus Sales Dept. Waltham, Mass.
Tel. Waltham 5-5860—Ext. 2

TUBES
 FOR SALE 2C40

RCA, JAN, individ. boxed and in Hermetic Sealed Bags at $\$ 12.00$ each.
2K25 at $\$ 29.50$
2K29 at $\$ 25.00$ each
Emeltone Electronics Co.
1975 Walton Ave., Bronx, New York LUdlow 3.8775

SEARCHLIGHT SECTION

- New, Selenium Rectifier Transformers				
PRI: $115 \mathrm{~V}, .60$ cycles in.			4 Amps	\$ 8.75
${ }^{\text {Yonts }}$ Made to our specs. for continuous, heavy duty use"				
- 115 V . PRI. $\mathbf{3 6 V}$. 50 amp second XFMR. $\$ 39.95$ - $115 / 230 \mathrm{~V} .60$ cy. PRI. SEC.: $1.5,30.5,33.5$, and				
PROBLEMS ON TRANSFORMERS AND CHOKES? LET US QUOTE YOU ON YOUR SHORT RUN NEEDS. YOU WILL LIKE OUR PRICES, PRODUCTS, AND FAST ACTION!				
SELENIUM RECTIFIERS FULL. WAVE BRIDGE TYPES				
Current continuous				130/100
	Volts	Volts	Volts	volts
1 Amp . 2 2 Amps.				
	\$2.20	3.60	56.	10.50
		6.75	8.75	
5/Amps.	5.00	8.00	13.00	32.00
	5.95	9.95	16.50	${ }^{36.50}$
${ }_{10}^{6}$ Amps.	6.75	12.00		45.80 58.50
12 Amps.	-8.50	16.00 $\mathbf{2 4 . 0 0}$	${ }^{256.50}$	52.50 90.00
20 Amps.	16.00	31.00	39.50	98.00
30 Amps.36 Amps.	${ }^{18.50}$	36.00 45.00		
	25.50	45.00		

We manufacture standard as well as special types of selenium rectiffers, rect. supplies and XFMRS. Low
prices. Write. You will like our quick service, prices prices, and good workmanship.

Phone: REctor 2-2563

JULY SPECIAL SALE

Jan 814 TUBES \$2.25 Each Plus many other equal values Query us on any type Crystal Diodes and Jan ALLIED ELECTRONIC SALES 136 Liberty Street, cortlandt $\underset{\substack{\text { Tel. } \\ \text { New } \\ \text { New }}}{(1320} \mathbf{Y o r k} 6$, N. Y.

CONTRACT WORK

Do you NEED precision rolled OR ULTRA-THIN METAL STRIP?

WE ROLL • Borylilium-Copper-lavar Phesphor Bronis - Copper - Brass Nickel-slivar - Stainless Steals Low Corben steels - Wickel - Manal Hoynes sealito Alloys. Mognotic Alloy - Orome tron alloys - ond Mony evters WE REGULARLY PRODUCE metal strip up to 8° in width OUR MODERN EQUPPMENT IMCLUDES Sendzimit, 2 +hagh, and 4-tigh precision rolling milis, prect.
WE CARRY A WORKING INVENTORY of some manols for prompt zervics. Send us your order for ane pound or o
thouzand-or writs for catalog of producss and wervitese.

AMERICAN SILVER CO., Inc. 36-03 PRIMCE ST. - FLUSHING 54, N. Y.

INDUCTION VOLTAGE REGULATOR

General Electric. Spec. $\# 3263300$ Single phase 60 cycle. Irimary voitages ($0-460$) applied to refulator
can be varied smoothly and infinitely can be varied snioothly and in values
78.6% above and below their vin by remote control. Operated by 115
y type KCP control motor. Continuous ratings for typical inputs are: 120 VOLT -output 26 to 214 Y
at $1.85 \mathrm{amp}, 240 \mathrm{VOLT}$-output 52
502 to 428 V at 1.03 amp. 460 VOLT-output 98 to 822

RADIO RECEIVER
BG.AR-429. Western Elec tric. Uses four- $39 / 44$'s, one Comes complete with six new tubes and tuning cable. Price brand new....... $\$ 7.95$
3.750 WATT RECTIFIER TUBE Continental Electric Co.-Type CE202. Half- wase
mercury vador. Rated up to 250 VDC at 15 amp.

28 KVA PLATE TRANSFORMER United Transformer Co- -117 VAC-60 cy primary. Secondary 4800 voits Sec-7000. VRMS. Hermetically sealed. Size $10 \times 10 \times 11^{\prime \prime}$. Wt. 94 ibs. Finish has a few scratches but otherwise perfect. Price brand

ELAPSED TIME METERS

GENERAL ELECTRIC. (Left fig.) Sym. M305. Indicates $1-99,999$ hours. 115 YAC 60 cycles. $3^{\prime \prime}$
round bakelite case. Square tlush face. Price AERO iNSTRUMENT CO. (Right fig.) Model 1001 . Indicates 0.1 to $9,999.9$ hours by tenths. Totally enclosed in heavy bakelite case Front measures
$31 / /^{\prime 2}$ in diameter and has glass covered face. $\$ 820$

SPECIALS

AMPLIDYNE MOTOR GENERATOR. Emerson

 WHITE-KOGER SERVO MOTORS-24 VDC. Torpue 150 in. Ibs. Reversible. Control box on top has limit switehes, relays, and selenium rectifiers vliet in Models $6904-5$ RPM. $6904-34 / \mathrm{RIM}^{2}$ or SEE APRIL AD ON PAGE 380 FOR OTHER GEAR HEAD MOTORS, OUR CUSTOMERS HAVE USED THESE TO MAKE COIL. WINDERS, MIX ERS, HOISTS, WINCHES, DUMB WAITERS. GARAGE DOOR-OPENERS, RE MAR MANY OTHER
STAIRS, BUFFERS, AND OR MAN
APPLICATIONS LIMITED STOCK ON SOME APPLIC
TYPES

HAND CONTROL Emerson Electric. \#25n CE15. For Martin Posal Gun Turret which this und assembly moves in two planes, operating hath fol elbeostats. Six switchettec
cuilt tnto molded plastic handles, control signals ann
is filled with other switches. flring of puns. Unit
 original boxes

NOTE. OTHER GUN TURRET EQUIPMENT IN
STOCK INCLUDING JUNCTION BOXES. CON. TOUR FOLLOWERS, JUNCTION BOXESIMUN. AMPLIDYNE UNITS, SWITCH BOXES, AND INTERRUPTERS.

OPEN TYPE

TRANSFORMERS-60 CY.
\# 0692 . Input $115 / 230 \mathrm{~V}$. Output 18

PROMPT DELIVERY ON ALL ORDERS
ALL MERCHANDISE FULLY GUARANTEED
Terms: Prices FOB St. Louis. Cash or 25\% with orders. Balance COD. Rated Concerns (D\&B) Net 10 days cash. Prices subject to change without notice.

McNEAL ELECTRIC \& EQUIPMENT CO.
 4736 Olive St
 St. Louis 8, Mo.

 Monoy Back Guat antee Cost of Mrdse
Only S5 Min. Ordor
FOB N. Y. C. Add
 Without Notice. 21/2 MILLION PRECISION RESISTORS IN STOCK

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 0.116 \& 150 \& 600 \& 183 \& 33 \& 10500 \& 36000 \& 000

\hline 0.42 \& 160 \& 612
620 \& ${ }_{1}^{1855}$ \& 3384
3500 \& 10900 \& 38140 \& 205000

\hline 0.607 \& 170 \& 625 \& 1892 \& 3509 \& 10936 \& 38500 \& 210000

\hline \& 175 \& 633 \& 1894 \& 3600 \& 11000 \& 39000 \& 215000

\hline 1.03 \& 179 \& 640 \& 1895 \& 3700 \& 114 \& 395 \&

\hline 1.3 \& 180 \& 641 \& 1896 \& 3730 \& 11500 \& 40000 \& 225000

\hline 1.75 \& 182 \& 645 \& 1897 \& 3760 \& 11690 \& 42400
42000 \& 230000

\hline 2. \& 182.4 \& 649 \& 1898 \& 3900 \& 12200 \& ${ }_{43000}$ \& 235500

\hline 3
3
3 \& ${ }_{209.4}^{200}$ \& 650 \& 1900 \& 4030 \& 12800 \& 45000 \& 238000

\hline 4 \& 210 \& 665 \& 1901 \& 4200 \& \& 470 \&

\hline 4.35 \& ${ }_{216}^{216}$ \& 670 \& 1902 \& 4220 \& 13100
13500 \& 48000 \& 250000

\hline 5.025
5 \& $\stackrel{220}{220.4}$ \& 673 \& 1903 \& ${ }_{4300}$ \& 13550 \& 48660 \& 265000

\hline 6.25 \& 225 \& 680 \& 1905 \& ${ }^{4314}$ \& 13600 \& 49000

50000 \& 2780000

\hline 7 \& 235
235 \& 684 \& 1907 \& 4444 \& 14250 \& 51000 \& 275000

\hline 7. \& 240 \& 689 \& 1908 \& 4500 \& 14400 \& 52000
55000 \&

\hline 8 \& 245
245.4 \& ${ }_{699}$ \& 1910 \& 4720 \& 14550 \& 560 \& 307500

\hline 10.38 \& 250 \& 790 \& 1911 \& 5750 \& 146 \& 57 \& 311000
314000

\hline \& 270 \& ${ }_{73} 71$ \& 1913 \& ${ }_{4885}$ \& 16000 \& 60000 \& 316000

\hline . 52 \& 271 \& 740 \& 1914 \& 4900 \& 16500 \& 61 \& 325000
330000

\hline \& ${ }_{280}$ \& 8500 \& 1915 \& 5100 \& 16800
17000 \& 54000 \& 333500

\hline 14.5 \& ${ }^{286}$ \& 806 \& 1917 \& ${ }^{8210}$ \& 17500 \& 55000 \& 350000
$\mathbf{3 5 3 5 0}$

\hline 15 \& 289 \& 820 \& 1918 \& 5235 \& 17977 \& 666 \& $\mathbf{3 5 3 5 0 0}$
$\mathbf{3 7 5 0 0 0}$

\hline 16 \& 2990 \& 850
854
88 \& 1919 \& 5270
5300 \& 18300 \& 67500 \& 380000

\hline 19.5 \& 310 \& 899 \& 1924 \& 5500 \& 18380 \& 68000 \& 390000

\hline 19.2 \& ${ }^{311.5}$ \& 990 \& ${ }^{1965}$ \& 5600
5730 \& 18800 \& 72000 \& 402000

\hline 22 \& 325 \& 917 \& 1980 \& 5770 \& 19900 \& 73500 \& 420000

\hline 23
24
24 \& 330
340 \& ${ }_{978}^{97}$ \& 2000
2045 \& ${ }_{6000}$ \& 20000 \& 80000 \& 425000

\hline 25 \& 350 \& 1000 \& 2080 \& 6100 \& 20441 \& 82000 \& 430000

\hline ${ }_{28}^{27}$ \& -360 \& 1030 \& 2141 \& 6125 \& 22000 \& 85000 \& 458000

\hline 30 \& 370 \& 1059 \& 2142 \& 6200 \& 21500 \& 85750 \& 470000

\hline ${ }_{37}^{31.5}$ \& 375
380 \& 1067 \& 2145
2150 \& 6300
6495 \& 22500 \& 88000
9000 \& 478000

\hline 48 \& | 389 |
| :--- | \& 1110 \& 2160 \& 6500 \& 22990 \& 91000 \& 500000

\hline \& 390 \& 1150 \& 2180 \& 6880
6840 \& (23000 \& ${ }_{93300}$ \&

\hline 51.78 \& ${ }_{410}$ \& 1155 \& 2195 \& 6990 \& 23325 \& 950 \&

\hline \& 414.3 \& 1200 \& 2200 \& 7000 \& -2300 \& 100000 \& 525000
543000

\hline 56. \& 418.8 \& 1225 \& 2250 \& 7320 \& -23500 \& 1150000 \& 543000
550800

\hline 60
60 \& ${ }_{426.9}^{425}$ \& 11260 \& 2300
2400 \& 7700 \& 24600 \& 116667 \& 0

\hline 68 \& 427 \& \& 2450 \& 7717 \& -25000 \& 120000
130000 \& 575000

\hline 75 \& 440 \& 1135 \& 2485 \& 7930 \& 25400 \& 135000 \& 600000

\hline 80 \& 450
452 \& (1480 \& 2490 \& 7950
8000 \& -25833 \& 140000
141000 \&

\hline ${ }_{88}^{81.4}$ \& 452
460 \& 1195 \& 2525 \& 8094 \& 26500 \& 145000 \& 654000

\hline \& 470 \& 1500 \& 2600 \& 8820 \& 26600
27000 \& 147000
150000 \&

\hline ${ }^{95}$ \& 475
478 \& 1515 \& 2625 \& 82500
8500 \& 27500 \& 155000 \&

\hline 101 \& 480 \& 1600 \& 2700 \& 88700 \& 28000 \& 160000 \&

\hline 103 \& 487
500 \& ${ }_{1646}$ \& 2855 \& ${ }_{9000}$ \& 28500 \& 166750 \& 761300

\hline 105.7 \& 510 \& 1650 \& 2860 \& 9100 \& 29900 \& 167000 \& 860000
813000

\hline 110 \& 520 \& 1680 \& ${ }_{2909}$ \& 95450
950 \& 29990 \& 175000 \& 885000

\hline 120 \& 540 \& 1710 \& 3000 \& 9710 \& 30000 \& 180000 \& 850000
860000

\hline 121. \& 550
560 \& ${ }_{1712} 170$ \& 313163 \& ${ }_{9900}$ \& 31500 \& 185000 \& 900000

\hline 13 \& 575 \& 1770 \& 3159
3290 \& ${ }_{1002}^{990}$ \& 32000

33000 \& | 186600 |
| :--- |
| 190000 | \& ${ }_{9} 910000$

\hline 147.5
18 \& 588 \& 1818 \& 3290
3300 \& 10430 \& 35000 \& 198000 \& 95000

\hline \multicolumn{8}{|c|}{53.29}

\hline \multicolumn{8}{|c|}{Any Sizo Above, Each mer}

\hline 1.1 \& 1.5 \& $\frac{1}{2}$ \& \& 3.9 \& 5.5 \& 7.62 \& 11.55

\hline 1.2 \& 1.57 \& 2.11 \& 2.855 \& \& \& 7.74 \&

\hline 1.25 \& ${ }_{1}^{1.65}$ \& 2.25 \& 3.
3. \& ${ }_{4.25}^{4.23}$ \& 6.65 \& ${ }_{8.02}^{8.0}$ \& 13.

\hline 1.35 \& 1.75 \& 2.5 \& 3.5 \& 4.5 \& 6.7 \& 8.5 \& 13.8

\hline 1.39 \& 1.8 \& 2.7 \& 3.673 \& 5. \& 7. \& \& 51.

\hline
\end{tabular}

音

 150mmp/300VGap VAFIABLE CONDENSERS
3UD Dual 75 map ea. Sect 1000 V Gap. Hi
OHNSON 70 H 30 in $\mathrm{mm} / 3000 \mathrm{~V}$ Gap.
K-300-US 53 to 312 mmf . Can be made spitit Stato
10W HI-FI AMPLIFIER KIT
SUPER-WIDEERange HIFI TRIODE IOW KIT. 10 , $\begin{gathered}0000 \\ \text { S27.95 }\end{gathered}$

 CpS Range English mfgr.
FEATURES: 5 mc brd width, 10 MV sens, DD horiz \& vert amp.

 SOLDERING IRON GUN
 and large parts
 SOUND-POWERED Head 8. Chest Sets

"TAB"
Dept. 7E
6 Church St. New York 6, N.Y., U.S.A. REctor 2-6245

AN/APR-4 LABORATORY RECEIVERS

Complete with all five Tuning Units, covering the range 38 to $4,000 \mathrm{Mc}$.; wideband discone and other antennas, wavetraps, mobile accessories, 100 page technical manual, etc. Versatile, accurate, compact-the aristocrat of lab receivers in this range. Write for data sheet and quotations.
For the limited budget, we can supply AN/APR-1 Receivers (a predecessor to the APR-4), or even the earlier SCR-587; or individual Tuning Units covering the desired frequencies, for use as a converter feeding your own 30 Mc . L. F. strip or receiver tuned to 30 Mc .
SOME SPECIAL ITEMS IN OUR STOCK: 723A/B Tubes, $\$ 12.00$ postpaid GL-446A Tubes (interchangeable with 2C40), $\$ 1.00$ each in lots of ten, postpaid . . . APR-5A Receivers ($1,000-6,230 \mathrm{Mc}$.) . . APA-10 Panadapters . . . G-R 804, Ferris 16 C , Measurements 78B, etc. Signal Generators . . . BC-433 ADF Receivers, new . . ARR-5, ARR-7, BC-348 etc. Receivers . . BC-221, TS-323, etc. Frequency Meters . . . BC-1016 Code Recorders . . BC-303B A-N Beacon Transmitters. . . RBL-3 Receivers (16-630Kc.) . . . TS-13, TS-14, etc. Microwave Units ... APS-2 R-F.Heads (new) . . . Northern Radio Oscillator-RF Bridge-Detector Equipment ... Sonar Generator \& 60 -cycle Power Supply (17-27Kc, 600 Watts) ...G-R 81550 Cycle Standard Fork set ...ARN-7, APN-1, ARR-1 Spares ...ARC-1, ARC-3, ART-13, etc. . . .

Buy from us with confidence-Army-Navy Standards are rigidly maintained. When any irregularities exist, you will be advised in detail. Write for quotations and data on your needs; place your name on our mailing list. We also have production line items-Power Supplies to 800 Amps at 12 to 28 volts DC, and 0-15.000 VDC 500MA, from 60 cycle line, etc.

We will buy any Electronic Material at top prices.
SCHOOLS-We will obtain anything you can use and exchange for your useless surplus.
ENGINEERING ASSOCIATES
434 E. Patterson Road

THREE CONDUCTOR WIRE
Three twisted conductors of 18 gauge.
Each conductor has 3 strands copper for conductivity. i strands strands for strength. ldeal for intercoms. teleplione or any com: munication work. Tough, durable covering
for outdoor or indoor use. Government for outdoor or indoor use. Government
surplus $=W T-1 / U$.
525 foot roll $\$ 4.75$ 525 foot roll $\$ 4.75$ per roll. f. 0. b. Cincinplease mail check or M. 0 .

LAPIROW BROS. 1649-1657 HOFFNER STREET CINCINNATI 23, OHIO

WANT TO BUY SYNCHROS SELSYNS

Size 5-60 or 400 cycles Any Electronic Material Give full details-Cash wating AMBER COMPANY
393 Greenwich St., N. Y. 13, N. Y. BEekman 3-6509

wanted SYNCHROS

Autosyns-Selsyns
Any Type-Any Quantity

WANTED

- AN/TRC-1 Equipments.
- T14 Transmitters.
- Rl9 Receivers.
- TS32 Test Oscillctors

Any condition or quantity
W-3858, Electronics
330 W. 42 nd St., New York 36, N. Y.

EVERY

 EVERY DESCRIPTION - MUST BE NEW CONDITION Electrical, Radio, Telenhone, Etc. Ete.Please Airmail Written F.O.B. Ofters to: DOMINION SALES (LONDON) 6 Finsbury Square, LONDON, E.C. 2

WANTED BDIIO Telephone Switchboards, BDIOO Telegraph Switchboards, BD90 Power Boards, EE101 V-F Ringers, BE72 Cabinets, FM19 Frames, RA43, REC30, KS5988, RA87, RA37, RA91 Rectiners, BD101 Test Boards. SB6 Switchboards. Type CFIA, CF3A, CF2B condition and quantity. Carrier Equipments. Any ond $330 \mathrm{~W} .{ }_{42}^{\mathrm{W}-4212 \text { St. Electronics }}$ New York 36, N. Y.

FOR PROMPT ANSWERS to your business problems use

The SEARCHLIGHT SECTIONS (Classified Advertising)

American Machinist Aviation Weok	Engineoring and MinIng Journal
Business Week	Engineering
Bus Transportation	Nows-Record
Chemical Engineering	E. \& M. J. Markets
Chemical Week	Factory Management
Coal Age	and Maintenance
Construction Methods \& Equipment	F leet Owner
Electrical Construction	Food Engineering
and Maintenance	
Electrical Merchandising	Power
Electrical World	Textile World
Electronles	Welding Englneor

For advertising rates or other Information addrese Classified Advertising Division
McGRAW-HILL PUBLISHING CO., INC. New York 36, N. Y.

DFPMNDABILITY IN HEECTRONICS
 Attn: Industrial Purchasing Agents

Our new Radio Master Catalogue is available to you at no charge upon receipt of your request on your letterhead. We are National Distributors of General Electric, Sylvania, Ohmite, Amphenol, Sprague, Aerovox, Sangamo, Stancor, Merit, A. H. \& H., Simpson and many others. All telegrams, cablegrams, and inquiries acknowledged and promptly answered.
 tacts. 1 1/2" Overall. 280 ohm coil. 24 V.D.C.. $\$ 2.95$
SIX.POLE DOUBLE THROW ALLIED \#BN- 18 D . 39 has 10 AMPERE CONTACTS 2800 ohm coil
 tacts. Ceramic insulation..................... $\$ 3.95$ AUTHORIZED FACTORY DISTRIBUTORS STRUTHERS-DUNN: POTTER \& BRUMFIELD WOR Yote for Catalog \#552
FOVITE, WIRE OR CAENOIDS
RADIO DEVELOPMENT \& SALES CO. 323 Atlantic Ave. Brooklyn 2, N. Y. ULster 5-0488

- CERAMICON • CONDENSERS
All sizes and types

manufacturers price. Large quantities in stock. Immediate delivery.
Cap Electronics, Inc.
136 Liberty St.
New York City, N. Y.
DIgby 9-2797

AIRCRAFT EQUIPMENT
ARN. 7 RADIO COMPASS. Complete...... $\$ 150.00$ MN-26C RADIO COMPASS. Complete.... 89.50 Anlete 18.
 SCR-274N Or ACR-5 Medium or VHiF frequency) Complete installation available P. P. R.
LORAN APN-4 Complete....................... ${ }^{2} 50.00$ APN ALTIMETER, Complete.

SCR-625 MINE DETECTOR
NEW cond. $\$ 59.50$ USED cond. $\$ 39.50$
TUBES

TEST EQUIPMENT

BC-221	TS-10	TS-124
I-36	TS-16	TS-127
I-130A	TS-34A	TS-170
I-222	TS-46SP	TS-215/AP
IM	TS-47APIR	

MN.24C LOOP CAA approved. $\$ 34.50$
MN.24C LOOP CAA approved. w . Complete with tuning unit, dynamotor. plugs and cables $\$ 47.50$ BG-312 RECEIVER
HS-33 HEADSETS: New with CD-30t cord to
match.
WHAT DO YOU NEED?
Halicrafter BC-f10 Transmitter. 400 W .
BC-640 \& BC-639. Complete.
BC- 460 Collins Auto-Tune Xmer. 200 W
BD-71 \& BD-72 Switchboard. SCR -193 .
WE WILL NOT BE UNDERSOLD ON ANY ITERI! REMEMBER: WE ALSO BUY NEW AND LSED RADIO GEAR. WE PAY TOP DOLJAIRAND WADL BEAT, ANY COMPETITIVE PRICE: WRITE US

WE HAVE TREMENDOUS STOCK.
WRITE FOR PRICES AND INFORMATION ON ANYTHING IN ELECTRONICS!
COLUMBIA ELECTRONCS SALES
522 South San Pedro St.
Los Angeles 13, Calif.

JULY SPECIALS OIL CONDENSERS

JAN APPROVED

$10 \mathrm{mfd}-1000 \mathrm{~V} 4.55$$8 \mathrm{mfd}-1500 \mathrm{~V} 4.95$$8 \mathrm{mid}-1000 \mathrm{~V} 3.25$			$8 \mathrm{mfd}-600 \mathrm{~V} 2.25$$6 \mathrm{mfd}-600 \mathrm{~V}$$4 \mathrm{mfd}-600 \mathrm{~V}$1.75		
Mfd	Volts	Price	Mfd	1 Volts	Price
.005-			2	2500 V	3.39
.005-. 01	10 KV	3.75	?	3000 V	4.69
. 012	25 KV	19.50	2	4000 V	5.69
. 02	20 KV	15.90	2	5000 V	10.95
. 0755			2	13.5 KV	39.50
. 075	7.5 KV	V 3.95	2-2	600 V	1.25
. 08	12.5 KV	V 15.95		600 V	. 59
. 1	1500 V	. 59	3	4000 V	6.95
. 1	2000 V	. 49	3-3	150 V	. 29
. 1	2500 V	1.20	3-3-3	400 V	. 75
. 1	3000 V	1.75	3.75	1000 V	1.59
. 1	7500 V	1.95	,	400 V	. 85
1-1	7500 V	4.25		600 V	1.25
.1-.1	7500 V	6.25	4 TLAD	600 V	1.35
. 1	10 KV	8.95	4	1000 V	1.95
${ }^{1}$	15 KV	15.95	4	1500 V	2.79
.15-15	25 KV	25.95	4	2000 V	4.25
. $15-.15$	8000V	1.95	4	3000 V	7.95
. 2	10 KV	10.95	4	4000 V	10.95
. 25	2000 V	1.25	4-4	1000 V	1.85
. 25	30001 y	2.15	5	330	
. 25	60010 V	1.75		VAC	1.75
. 2.5	18 KV	15.95	5	600	1.35
. 25	20 KV	19.95	5	606 V	2.49
. 4	10 KV	12.95	5-1	400 V	. 89
. 5	1500 V	1.02	6	600 V	1.45
. 5	2000 V	1.39	6	330	
5	3000 V	2.69		VAC	2.49
. 5	25 KV	Qnote	6	1000 V	2.49
.5-. 1	2000 V	. 89	6	1500 V	3.25
5-. 5	600 V	. 69	6	2000 V	3.95
1	400 V	. 45	7	6001 V	1.45
1	500 V	. 59	7	800 V	1.90
1 -	1000 V	. 69	7	1000 V	2.49
	1500 V	1.35	8	500 Y	1.35
1 -	2000 V	1.95	8	600 V 1	1.75-
1	2500 V	2.25			2.15
1 I	3000 V	3.50	8	660	
1	5000 V	4.99		VAC	4.25
1	15 KV	Quote	8	1000 V	3.25
1 l	16 KV	Quote	8	2000 V	4.95
1 -	90 KV	Quote	8 8-8	600 V	1.75
1	25 KV	Ouote	10	600 V	2.50
1-1	7500 V	19.50	10	1000 V	4.55
2	600 V .5	.59-. 79	10	6000 V	Quote
TLAD	600 V	. 80	12	1000 V	4.95
2	1000 V	. 85	14	1000 V	5.25
2 TLA	1000 V	1.29	15	1006 V	5.25
	1500 V	1.65	17	25 V	. 69
2	2000 V	2.80	24	1500 V	8.50

> POWER SUPPLY: 800 cycle 115 V input, $2.5 / 56.5 / 880 / 2000 \mathrm{~V}$ output. Complete with controllers. tubes, resistors and male connectors. New. SPEGIALLY PRICED.

SEE MAY ISSUE

For many other listings of condensers, switches connectors and instruments. Inquiries solicited.

WANTED
Condensers of all types in any quantity, also other standard components. Top prices.
Write:-ART

OAKHURST, N. J.

Coaxial Relay K-101 SPDT-24y DC5
Set of 83-1SP Coak-Connetors Set 100 KC Crystat BT cut
VS. 2 Vacuum
Sigma Plate Relay 8000 ohm SPDT
150^{\prime}
roll....... $\$ 11.95$ ohm 3 300' roll
15 HY SO 800 MA Choke
TUBES!! BRAND NEW! STANDARD BRANDS! TUBES!!
We are clearing our tremendous tube stock at the lowest prices ever. Take advantage of this opportunity to stock up. Transmitting-Cathode Ray-Mag-netrons-Photo Electric-Klystrons-Special Purpose-Receiving
 SEE OUR EQUIPMENT AD OPPOSITE PAGE
\square
PHONE DIGBY 9-0347-8-9

CABLE
HAMSHACK NEWYORK

TELETYPE
 NY1-771

WANTED WANTED

Test Sets TS-12, 13, 14, 33, 35, 146, 147 . 174, etc. Radio Radar Equip. ARC-1, 3,
ART-13, ATC, APS-10, 15, 33, 34, TPQ-2, ART'13, ATC, APS-10, $15,33,34$, TPQ
BC-348, 342 , BC-1016 Recorders, etc. BC-348, 342, BC-1016 Re
WRITE! WIRE!

PANEL METERS

$2^{\prime \prime}$ SQUARE WESTON-SANGAMO

\section*{CALL!}
 RADAR-COMMUNICATIONS AND TEST EQUIPMENT

FLUXMETER

Portable Gauss Meter with range of 500-4000 Gauss. Used to test Magnatron and other magnets. Probe has a gap of $11 / 4$. Complete, Brand

TS-34/AP SYNCROSCOPE AND OSCILLOSCOPE, Used to test and service airborne and case with all probes, cables and Excellent. TS-16 Altimeter Test Set. Used to check various
altimeters or as an accurate waverneter New . \$29.95 TS-61/AP S-band Echo Box. Using meter provided,
it is possible to maximize the XMTR adjustment and determine relative power output, Complete
with probe and cable. Very good condition. $\$ 140.00$ TS-13/AP Xa band signal generator, wave meter, watmeter, Precision lab microwave. Test set band. Input 115 v 60-800 cyc. TS-226/AP used to measure peak power output of
any xmitter in the range of $200-1000 \mathrm{mcs}$. Has any xmitter in the range signal observation and
provision for oscilloscopic sign
built in calibration. Part of AN/APM-29. TS-69/AP freq. meter covering range of 400-1000 mes. complete with calibration charts, antenna
\& crank. In metal carrying case. Excellent $\$ 72.50$ TS-170/ARN-5 XTAL controlled test osc. with the
following freq. ranges: $332.6,333.8,335.0$ defollowing freq. ranges:
pending on XTAL in use. This set is used to align
glide path receivers. Batteries and antenna are self contained. Excellent condition.
TS. $89 /$ AP Voltage Divider. $1: 10$ and $1: 100$ ratios.
Wide band for true pulse shape. Output to scope. TS-10/APN Altimeter Test Set. Good condition. TS-12/AP V.S.W.R. Test Set for X-band. Complete with amplifier, siory ine, Excelle tors, etc.
TS-45/APM-3 X -band signal generator. $8400-9600$
mes. pulsed \& CW output. Used to check APS4 and similar sets. measuring circuit. Horn antenna, co-ax to wave
guide adaptor, connecting cable and probe. Will measure either absolute or relative power. Nomi-
nal band of usefulness is approx. $8.5-9.7 \mathrm{KMC}$. TS-3/AP S-band Frequency and Power Meter. Port-
able. Battery operated. Complete with all cables. TS-33/AP X-band Frequency Meter. 8500-9600
mos. Contains crystal detector and indicating mcs. Contains crystal detector and indicating
meter. Output to scope will indicate pulse wave shape,
TS-62/AP X-band Echo Box. $8400-9600$ mes. tuned and untuned input, Will indicate resonance on
meter. Complete with pick up antenna and cable. IE-19 TEST SET. V.H.F. portable equipment cover-
ing 100-156 mcs. Used to test SCR-522, ARC-1, ARC-3, ete. Complete with signal generator, field strength meter and accessories.
Excellent.
BC-221 PRECISION FREQ. METER. Covers 150 kc BC-221 PRECISION FREQ. METER. Covers
$20,000 \mathrm{kc}$. Can be supplied with or without
or modulation. Portable. Complete with calibration
hook and crystal. Excellent. S-BAND SIGNAL GENERATOR. Laboratory test set
using 707 Klystron in McNally Cavity. Has using iocision attenuator and wave meter Complete

OTHER TEST SETS

PE-104 VIBRAPACK for SGR-284. Overseas packed

SO.13 S-BAND MARINE RADAR Compact Sea Search Radar for small vessels.
P.P.1. indication is provided. Complete in original cases with
lent condition.

We maintain a completely equipped reconditioning
shop and development laboratory. Alt equipment is
is
 recondition ed and che kee out out ond prinauction nhow-
laboratory facilities. tenhinal
how and thirty thousand feet of space is available for electronic subcontracts.

SCR-555 DIRECTION FINDER Freo. range 18 - 65 mcs. Complete installations
available including the quonset hut. Bearing indi-
cation is zural-null or left-right bearing on a meter cation is aural-null or left-right bearing on a meter plete installation, approx. 2500 lbs .

AN/UPN 1 \& 2 PORTABLE RADAR BEACONS

S-band beacons that can be interrogated by any
S-band radar in a 45 mile $\begin{aligned} & \text { range and will an }\end{aligned}$ an swer with a coded reply which can be changed

APR-1 MICROWAVE RECEIVER We cean supply from stock AN/APR-1 receivers and
3 tunins 3 tuning units to cover the freq. range of $38-1000$
mes. These receivers are almost identical to the
 Anterchangeabe.e. These sets have outpurs for a
panadapor and pulse analyzer which can be sup-

AN/TPS-1 SEARCH RADAR. This is a pack port. able ground search radar for the detection of colve of ist surged ness, dependability and ease cot servicing. Complete tech data is as follows: of	
Range Max. 100 Mi	R. 200 Per Sec.
Azımuth Mech Automatic 360^{-} 360^{*}	${ }_{\text {Pulse }}^{\text {Sec. }}$ Width 2 Micro
Accuracy Scanning Manual Automatic	deth 3° Horiz. 13° Vert.
Presentation $7^{7 \prime}$ P. P. 5_{1} 5^{\prime} Scope	
1.F.F. not provided but Fas orvision for Frequency $1074-1086$	Power Input 1100 W at 115 V 400 Cyc and 180 W at 27 V DC
Power output	Weight: 1.518 Lbs

AN/ARC-1 TRANS/REC.

> Provides Radio-Telephone Communication bo tween Aircraft or Aircraft and Ground. Complete with Shock Mount and Control Box. Input: 28V DC. Excellent condition. Available in either 10 or 20 Crystal Controlled Channels 100-156 MCS. checked out.
SCR-269/G Automatic Radio Compass. Freq, range 200-1750 KC. Complete with BC-433-G receiver BC-434, LP-21, 1-81, 1-82, BK22, etc. Very
good condition. 129.95 TCS Marine Radio Telephone and Telegraph Xmit12000 KC . Consists of xmitter, receiver, antenna loading coil, remote control box, power unit cables, etc. Power input is 12 or 32 v DC. We
can supply an 110 v AC power supply for station can supply an 110 v AC power supply for station-SCR-536 Xmitter-Receiver (handy talkie). Freq. range $3885-5500 \mathrm{KC}$. Complete with coils, tubes,
crystals. Very good condition. Pair. . $\$ 185.00$ crystals. Very good condition. Pair. . \$iss. mes. Unit will give panoramic presentation (1
mc wide for 455 KC input) (100KC for 5 MC input) (2 MC for 30 mcs input). Power input $115 v$
addition of a proper power transformer. Excellent addition of a proper power transformer. Excellen CM R.F. 1007 modulator and BC-1091 RF head. Power
 AN/CRT-3 Victory Girl. Dual frequency emergency hydrogen generator, etc. New in knapsack. C.A.A. AN/APR-5 Radar Search Receiver. Freq. range 1000-3100 mis. 1 detect sighir tor and mixer cavity, IF strip, power supply. Input 60-2600 cyc. 115 v . Excellent condition. power supply and all Portable. New in cases. $\$ 275.00$ using 3C22 lighthouse tube. Power output 30 watts, Noise modulated. Excellent condition. CK-1Mplete with all Receiver Indicators. Freq. 195 mes. condition … $\$ 97.50$ SCR-522 VHF Alrborne Command Equlpment. Freq. transmitter. Crystal controlled. Complete equipment. Consists of trans/rec, control box BC-602,
dynamotor PE-94, AN104A anterna, plugs, etc. dynamotor PE-94, AN 104 A anterna, plugs, etc

SEE OUR TUBE AD OPPOSITE PAGE
PHONE: DIGBY 9-0347-8-9

SEARCHLIGHT SECTION

DIODE PROBE TUBE

INDEX TO ADVERTISERS

A'G'A IVivision of Elastic Stop Nut Corporation of America.Acme Electric Corporation

Acme Electronics, In 311
295
Acme Electronics, Inc. 295
Advertising Council
Aeronaitical Communications
Equipment, Inc.
Aerovox Corporation
Aircraft Radio Corporation.
Airpax Products Company
Alco Electronies Mfg. Co.
Alden Products Company.
Allen-Bradley Co.
Allen Co., Inc., L. B .
Allied Control Company, lne
Allied Industries, Ine.
178
llmetal Srrew Products Company, Inc 297
Imerican Electric Motors Co............. . $288^{\prime \prime}$
American Enterprises
Imerican Lava Corporation 53
Imerican Phenolic Corporation 158
American Phenolic Corporation 188
American Relay \& Controls. Inc.
American Relay \& Controls. Inc.
American Smelting \& Refining Co.,
Federated Metals Div.
78
American Television \& Kudio Co........ 274
Amerian Time Products, Inc........... 52
Amperite Co., Inc. 160
Ampex Electric Corporation. 169
Indrew Corporation 180
Arma Corporation . 19\%
Arnold Engineering Company 32
Arrow Electronics, Inc..................... 263
Art Wire \& Stamping Co................. . . 263
Astron Corporation
Audio Devices, Inc.
Avery Adhesive Label Corp 273

Ballantine Laboratories, Inc. 176
Baltic Metal I'roducts Co................... 199
Barlwell McAlister....................... 17 .
Barker \& Williamson, Inc................ . . . 206
Barry Corporation. 15

Beaden Manufacturing Co............................ 41
Bell Telephone Laboratories. 227
Bendix Aviation Corporation.
Eelipse-Pioncer Division
Pacific Division
214
....... 217
Sentley, IIarris Manufacturing Co........ 18 . 286
erken seientic
Electronic Corp
Birnbach Kadio Co., Ine
Birtcher Corporation
Biwax Corporation
Bodnar Industries, Inc.
Bueing Airplane Company
Boonton Radio Corp.
Borg Corporation, George W......... 324, 325
Breeze Corporations. Inc.
Bridgeport Brass Company , 191

Brown Electro-Measurement Corp.
Hrush Derelopment Company 200, 285
Burlington Instrument Company........ 268
t Company
Burnell d Company 61
Bussmann Mfg. Co.

Cambridge Thermionic Corporation...... 247 Cannon Electric Co
Carboloy Dept.
Ceneral Fientric Company. . . . 20
Carborundum Compan
26. 27

Carborundum Company
94
Cargo Packers, Inc. 301
Centralab, Div. Globe-Union, Inc...11, 12, 13 Century Geophysical Corporation......... 166
Chase Brass \& Copper, Sub. of Kennecott
Chase Brass \& Copper, Sub. of Kennecott
Copper Corp. 6
Chicago Telephone Supply Corporation,
Chicago Transformer, Div. of Essex Wire Corporation
Cinch Manufacturing Corp
Clarostat Mfg. Co., Inc.
Cleveland Container Co
149
.............. 59
Clippard Instrument Laboratory, Inc.... 218
Cohn Mfg. Co., Inc., Sigmund. 25
Communication Products Company,
Inc. ... 371
Computer Research Corp.

Condenser Products Company
83 Constantin \& Co., I. L.
Continental Connectors
Div. of DeJur Amsco Corp. 85

Continental-Diamond Fibre Company.... 171
Cornell-Dublier Electric Corp........... 38
Coto-Coil Company
[rescent Company, Inc 326
Crescent Company, Inc 246
Crest Laboratories, Inc 307
Cross Co., H.
325
Cricible Steel Company of America. 23 'y

Dage Electric Company, Inc. 325
Dale Droducts, Inc.......................... . . 297
Daniels, Inc.. C. R.
272
323
Daven Co. Third Cover
DeJur Amsco Corporation. 322
Delco Radio,
Div. of General Motors. 51

Dial Light Company of America.......... 166
IVistillation Produets Industries. 163
Uonham Craft, Ine
bow Corning Corp
Driver-Harris Company 195
DuMont Laboratories, Inc., Allen B...... 37
DX Radio Products Co. 268

Eastern Air Devices, Inc. 280
Ha,
Industrial Optical Sales'Div. 155
Edin Company
Edison, Inc., Thomas A
Ldo Corporation . 66
Eicor, Inc. 234
Eisler Engineering Co. 190, 332
Fitel-McCullough, Inc. 33
Electrical Industries, Inc.... 23
El-Tronies, Inc. 332
Electro Products Laboratories. 263
Electro-Tec Corporation
Electro-Tech Equipment Co.
Electronic Associates, Inc.
226

Electrons Incorporated 188
Engineering Liesearch Associates, Inc.30\%, 323
Erie Resistor Corp. 76
Eveready Plating Co. 332

Fairchild Camera \& Instrument Corporation	235
Federnl Telephone \& Radio Corp	257
Federated Purchaser, Inc	301
Fidelity Chemical Products Co	270
Filtron Co., Ine	
Five Star Co.	332
Foote Mineral Company	
Frequency Standards	
Fugle-Miller Laboratories	287
Furst Electronics	370

Gamewell Company 272
General Electric Company, $. .62,63,17 \%$, 293 Apparatus Dep.

249
General Precision Laboratory, Inc. 205
General Radio Company 17
Giannini \& Co., Inc., G. M. 328
GM Laboratories, Inc. 309
Graphite Metallizing Corporation......... 166
Gray Research \& Development Co., Inc. . 201
Green Instrument Co., Inc. 276
Gries Reproducer Corp. 332
Guthman © Co., Inc., Edwin I 252

Hallicrafters 84
IIammarlund Manufacturing Co., Inc.... 58
Harper Company, H. M 271
Hathaway Instrument Company. 232
Haydon Company, A. W 319
Heath Company. 1 178
Heiland Research Corp. 369
Heinemann Electric Company............. 278
Heldor Manufacturing Company.......... . 168

FOR AIRCRAFT LABORATORY AND INDUSTRIAL APPLICATIONS

The A-500 Portable Recorder is being widely used in many diversified fields as it is designed for applications where space is at a premium. Although extremely compact, $63 / 4^{\prime \prime} \times 97 / 8^{\prime \prime} \times 123 / 4^{\prime \prime}$, and lightweight, 33 lbs ., the Heiland A-500 retains the versatility and embod. ies many of the features usually found only in much larger instruments. The features of the A-500 include four quick change paper speeds; precision time lines: trace identification; direct monitoring of galvanometer light spots. Paper width, $4^{\prime \prime}-100^{\prime}$ long. Available for either 12 volt or 24 volt D.C. operation.

Write today for catalog of Heiland oscillograph recorders, galvanometers and associate equipment.

heiland research corp.
130 E. FIFTH AVE. O DENVER, COLORADO

1500 VOLT Regulated POWER SUPPLY
 For Photo-Multiplier Tubes

Front View of Model 710-PR Power Supply

Continuously Adjustable from 600 to 1500 V.D.C. at $0-1$ Milliamperes POSITIVE TERMINAL GROUNDED

Regulation: Output voltage varies less than $.01 \%$ per volt change of line voltage. Output voltage varies less than 1 volt with variations of output current between $0-1$ milliampere. (Internal impedance less than 1000 ohms.)

Also available with 2 or 3 independ-
 ently regulated and independently adjustable outputs.

MODEL 710-P Cabinet Mounted $\$ 190.00^{*}$ MODEL $710-P R$ Standard Rack Mounting $\$ 195.00^{*}$
Models Available With Negative Terminol Grounded (Substitute letter " N "" for
in model designation)
*Prices net F.O.B. Chicago

FURST BIECTRONTCS 3324 W. Lawrence Ave., Chicago 25, Illinois

Also, conscientious testing of all materials with modern laboratory methods makes Precision Coil Bobbins 15 to 20% stronger-yet lighter-in weight. Still another important feature is the greatly increased coil winding space of Precision Bobbins.

Flanges with leads, slots, holes or plain-all types furnished flat, recessed or embossed to fit any mounting. Tube ends swaged to lock flanges. Any size, any shape available-round. square, rectangular-in dielectric Kraft, Fish Paper, Cellulose Acetate or combinations.

PRECISION PAPER TUBE CO.
 2041 W. Charleston St., Chicage 47, III.

Helipot Corporation 180A, 180R
Hermetic Seal Products Co................ 91
Hewlett-Packard Company 89
Hexacon Electric Co....................... . . 323
Hudson Tool \& Die Company, Inc........ 35
Hughes Research \& Development Laboratories

310, 330
Hytron Radio \& Electronics Co........... 71

Improved Seamless Wire Company 315 Industrial Condeuser Corporation. 213
Instrument IResistors Co. 289
Instrument Wire Company 323
International Nickel Company, Inc...... 86
Intermational Rectifier Corporation...... 19
Ippolito \& Co., Inc., James. 285
Irvington Varnish \& Insulat or Co......,., 193
I-T-E Circuit Breaker Company 251

Jeffers Electronics Division,
Speer Carbon Company.
90
Jelliff Manufacturing Corp., C. O......... 160
Jennings Radio Manufacturing Co........ . 198
Johnson Co., E. F . 236
Jones Div., Howard B. Cinclı Mfg. Corp. . 317

Kahle Engineering Co 321
Karp Metal Products Co., Inc. 43
Kartron ... 332
Kay Electric Company. 305
Kellogg Company, M. W. 74
Kenyon Transformer Co., Inc............ . . 175
Kester Solder Company, 229
Keystone Products Company , 255
Kirk \& Blum Mfg. Co.......................... . . 224
Knights Company, James. 243
Kollsman Instrument Corp............... . . 40

Laboratory for Electronics, Ine.,......,.. 79
Lambda Electronics Corp., ., 323
Lampkin Laboratories, Inc. 332
LaPointe-Plascomold Corp. (Vee-D-X) . . 160
Lapp Insulator Co., Inc. 29
Leeds \& Northrup Co....................... . . 84
Lenkurt Electrie Sales Company 840
Lenz Electric Manufacturing Co.......... 303
Lewis Engineering Co........................ 321
Lewis Spring \& Manufacturing Co....... 814
Little, Ine., Arthur D.......................... 279
Lord Manufacturing Company 256

Mallory \& Co., Ine., P. R 96,151
Manson Laboratories 278
Marconi's Wireless Telegraph Company,
Ltd. , , , 210
Marion Electrical Instrument Co........ 2
Markem Machine Company 254
VeGraw-Hill Book Co......................... 190
Melpar Inc. . . .,,., 318
Mepco, Inc. 46
Metal Textile Corporation. 311
Metals \& Controls Corp., General Plate

Mi..... 185

Michel Manufacturing Co. 332
Mico Instrument Co........................... . . 315
Micro Switch, Div. of Minneapolis- 68
Merowave Associates Inc...................... 173
Miles Reproducer Co., Inc. 332
Milford Rivet \& Machine Co.............. . 242
Millen Mfg. Co., Inc., James. 159
Minneapolis-Honeywell Regulator Co. $24,25,289$
Mitchell-Rand Insulation Company, Inc. . 233
Monowatt Department,
General Electric Company. 209
Mosinee Paper Mills Company 306
Motorola, Inc. 75
Muirhead \& Co., Ltd. 3
Mycalex Corporation of America............................... 36

Natlonal Company, Inc................ 264, 265
National Moldite Company................ . 277
Neo-Sil Corporation 203
New Hampshire Ball Bearings, Inc. 170
New Hermes Inc,
July, 1952 - ELECTRONICS

New York Transformer Co., Inc. 216
Ney Company, J. M.......................... . 274
North American Aviation, Inc.............. 1 . 1 o
Northrop Aireraft, Inc. 270
Nothelfer Winding Laboratories,......... 293

Ohmite Manufactnring Company32A, 32 B Olympic Metal Iroducts Company, Inc. . 301 Oregon Electronirs Mfg. Co............. 170

PCA Electronies, Incorporated........... 291 Panoramic liadio Products, Inc. 182
Phalo Plasties Corporation.............. . . 272
Phaostron Co. 222
Pix Manufacturing Co., Inc.............. 278
Plastoid Corporation 223
Polarad Electronics Corporation........... 239
Potter Instrument Company, Ine. 294
Power Equipment Company.......... 204
Precision Apparatus Co., Inc.............. 372
Precision Paper Tube Co... 370
Premax IProducts, Div. Chisholm-Ryder
Co., Inc. 311
Production Engineering Corp................................. 30%
Pyroferric Co. 238

Radio Cores, Inc . 283
Radio Corporation of America, Fourth Cover
Radio Materials Corporation. 221
Radio Receptor Company, Inc........... 42
Railway Express Agency, Air Express Div. 80
Raytheon Manufacturing Company...259, 296
Remler Company, Ltd 326
Republic Foil \& Metal Mills Incorporated 269
Resistance l'roducta Company........... 174
Revere Copper \& Brass Inc............... . . 165
Rex Corporation . 293
Rhode Island Insulated Wire Co., Inc.... 54
Richardson Company 50
Frobinson Aviation, Inc. 272
Rome Cable Corporation 281
Runzel Cord \& Wire Co. 329

Sanborn Company 202
Sarkes Tarzian, Inc., Tuner Division. 288
Scientific Electric Div. of "S"' Corrugated
Quenched Gap
Scintilla Magneto Div. of Bendix Aviation
Corp. 44
Secon Metals Corporation. 329
Servo Corporation of America. 186
Sessions Clock Company, Timer Div...... 212
Shakeproof, Inc. . 189
Shalleross Mamifacturing Company...... 312
Sigma Instruments, Ine.................... . . . 268
Signal Fingineering \& Mfg. Co................... 85
Simpson Electric Company............... . . 167
Skyway Precision Tool Co.................. 321
Sonthwestern Industrial Electronics Co. . 162
Specialty IBattery Company 190
Spragie Electric Company 9, 281
Stackpole Carbon Company. 85
Standard Piezo Company.................. 278
Standard Transformer Corporation...... 282
Stoddart Airrraft Radio Co. 298
Streeter-Amet Company 325
Struthers-Dunn Inc. 275
Stupakoff Ceramic \& Mfg. Co............. 161
Sturtevant Company, P. A................. . 315
superior Electric Co....................... 45
Superior Tube Company. 28
Supreme Inc. 31 .
Sylvania Electric Products, Inc.........7, 241
Synthane Corporation 47
Syntron Co. 276

Taylor Fibre Co	21
Taylor Tubes, Inc	184
Tech Laboratories	276
Technical Service Corporation	274
Technology Instrument Corp	300
Tektronix, Inc.	208
Tel-Instrument Co., Inc	308
Telechron Department, General Electric Coma	201
Teletronics Laboratory Inc	332
Televiso Corporation	29

CHEMELEC(2) ELEGTRONIC PARTS

*duPoni's irademarz' for its thafluorothytue resin.

Chemelec Teflon*-insulated electronic components include a complete line of 7 and 9 pin miniature tube sockets, crystal sockets, feedthrough insulators and terminals.
All provide the same high performance which this superior insulating material assures. Surface resistivity 3.5×10^{13} ohms. Loss factor less than 0.0005 . Dielectric constant 2.0 (60 cycles to 30,000 megacycles). Serviceable at $-110^{\circ} \mathrm{F}$. to $500^{\circ} \mathrm{F}$. Won't carbonize under arcing. Zero water absorption by ASTM Test. Unaffected by extreme humidity. Won't DC plate. Chemically inert, non-gassing, immune to corrosive atmospheres, fungus, oil, solvents. Non-flammable, tough, resilient, withstands and absorbs mechanical shock and vibration.

TEFLON and KEL-F STOCK and Custom-Fabricated Parts

Fabricating "Know-how", the result of years of specialized experience-and the most modern facilities for rapid, low-cost, close-tolerance production are at your command when you specify Teflon or Kel-F \dagger, fabricated by the United States Gasket Company. Ours is the most complete line in the country-sheets, tape, rods, cylinders, tubing, bars, and custom-machined or molded parts to. manufacturers' specifications.

UNITED STATES
 PRODUCTS DIVISION

 GASKET COMPANYpabacators of "tehlon", "Kel-F" AND OTHER FLUOROCARSON PLASTICS camden 1, mew jersey

IMPORTANT FEATURES

* High Sensitivity, Extended Range, Push-Pull, Voltage Regulated Vertical Amplifier - 10 cycles to 1 MC response. Input 2 megs .22 mmfd .
* Frequency Compensated "V" Input Step Attenuator.
\star Vertical Phase-Reversing Switch.
\star Extended Range, High Sensitivity, Push-Pull Horlzontal Amplifier - 10 cycles to 1 MC response at full gain. Input $1 / 2$ meg. and 20 mmfd .
* Linear Multi-Vibrator Sweep Circuit - 10 cycles to 30 KG plus line and external sweep.
* 4-Way Synch. Selection - Internal Positive, Internal Negative, External and Line.
* "2" Axis Modulation terminal for blanking, etc * Internal, Phasable, 60 cycle Beam Blanking.
* Sweep Phasing Control. Wide-angle bridge circuit
\$ Direct H and V Plate Connections; all 4 plates.
* Audio Monitoring Phone Jacks.
* High Intensity CR Patterns through use of adequate high voltage power supply with 2×2 rectifier.
* Tube Complement and Circuit - 6C4 "V" cathode follower, 6CB6 "V"' amplifier. 6C4 "V'" phase inverter. Push.Pull 6AU6's "V'"CR driver. 7N7 " H " amplifier and phase inverter. Push-Pull 6AU6's " H ' CR driver. 7N7 sweep oscillator. 5 Y 3 and 2×2 rec tifiers. VR-150 voltage regulator. 5CPI /A CR Tube
* 7 four-Way Lab. Type Input Terminals - Take banana plugs, phone tips, bare wire or spade lugs. * Light Shield and Mask removable and rotatable.
* Extra Heavy-Duty Construction and components to assure "Precision" performance.
* Heavy Gauge, Anodized, No-Glare, Aluminum Panel.
* Fully Licensed under W.E. Co. patents.
\star In lourred, black ripple, heavy gauge steel case. Size $81 /^{\prime \prime} \times 14^{4 / 2 \prime \prime} \times 18^{\prime \prime}$. Complete with
light shield. calibrating mask and instruction light shield. calibrating mask and instruction
manual.................. NET PRICE $\$ 169.50$
See thes
new "PRECISION" 5" Oscilloscop
on display and available of leading radio equipment distributors.

Telewave Laboratories Inc. $2 \% 0$ Terpening Company, L. H................ . 298 Thermador Electrical Manufacturing Co.. 309 Thompson Products Inc. 211
Tinnerman Products Inc
Titeflex, Inc. 95
Tobe Deutschmann Corporation.266, 267
Transradio, Ltd. 295
Trans-Wind Co. 295
332
Trimount Plastle Co., Ine 332

Triplett Electrical Instrument Co........... 181
Tru-Ohm Products Division of Model
Engineering Mfg. Co., Inc............... 225
Tung-Sol Electric Co.................64A, 64B

Ucinite Company . 88
Ulanet Company, George. 315
United Manufacturing \& Service Co...... 287
United States Gasket Company........... 371
Cnited States Radium Corporation. 164
United Transformer Co......... Second Cover
Universal Winding Company............ 179

Varflex Corporation
77
Varian Associates . 219
Veeder-Root Inc.
21
Victoreen Instrument Company... 299
Victory Engineering Corporation....... . . 268

Waldes Kohinoor Inc. 67
Ward Leonard Electric Co.92, 93
Warren Wire Company 876
Waterbury Brass Goods Branch of The American Brass Co............... . . . 194
Waterman Products Co., Inc. 319
Western Gold \& Platinum Works..... 178
Westinghouse Electric Corporation $48,49,183,398$
Wheeler Insulated Wire Co................ 321
White Dental Mfg. Co., S. S.248, 319
Whitehead Stamping Company 274
Williams \& Co., C. K. 196
Winchester Electronics, Inc............. . . 327

Xcelite Incorporaied 289

Zophar Mills, lnc........................... . . 291

PROFESSIONAL SERVICES............ 333

SEARCHLIGIIT SECTION
(Classified Advertising)
H. E. Hilty, Mgr.

EMPLOYMENT
Positions Vacant. 335-343
Selling Opportunities Offered........... . 340
Positions Wanted. 335
Selling Opportunities Wanted. 335
Employment Agencies..................... 335
SPECIAL SERVICES
Contract Work............................. 363
Rebuilding 358
BUSINESS OPPORTUNITIES
Offered
335

EQUIPMENT

(Used or Surplus New)
For Sale...........................334, 344-368

WANTED

Equipment364

ADVERTISERS INDEX

Acorn Electronics Corp.................. . . 356
Allied Electronic Sales..................... . . . 363

American Meter Co. 343
American Silver Co......................... . . . 363
American Technion Society................. . 342
Arrow Sales Inc......................... . . 362,364
Barry Electronics Corp.................... 363
Bendix Aviation Corp...................... . . 340
Blan 354
Boonton Radio Corp 335
Brooks Inc B D. 362
Candee-Airco 362
Capehart-Farnsworth Corp.. 343
C \& H Sales Co. 353
Chase Electronic Supply Co. 360
Chatham Electronics. 343
Collins Radio Co 340. 342
Columbia Electronics Sales. 365
Comet Electronic Sales Co. 356
Commercial Surplus Sales Co. 365
Communications Devices Co 361
Communications Equipment Co 350, 351
Compass Communications Co. 3... 355
342
Convair 338
Curtiss-Wright Corp 335
Daystrom Inc Instrument Division. 341
Davies Laboratories The. 341
Dominion Sales (London) 364
Edlis Electronics Inc. 359
Electro Impulse Laboratory. 358
Electronic Engineering Co of Calif. 336
electronic Expediters 356
Electronic Specialty Supply Co. 357
Emeltone Electronics Co. 362
Empire Electronics Co. 360
Engineering Associates. 364
F PCO. 360
Freeland Products Co. 358
General Motors Corp, AC Spark Plıg Div. 3
Goodyear Aircraft Corp.341
Toude Supply Co. 358
nstruments Associates 347
S H Sales Co 360
Kaman Aircraft Corp. 343
Kein, Manuel 340
Land-Air Inc 340
Laperow Brothers 364
Lectronic Research Laboratories...... 344, 345Liberty Electronics Inc346
Maritime International C 361
Taritime Switchboard 359
Taxson W L. 336
McDonnell Aircraft Corp. 337, 339
McNeal Electric Equipment Co... 363
Merrick Electronics 358
Michener \& Holland. 335
Michigan, University of. 342
Minnesota, University of 340
Mogull Co Inc Alexander. 358
Monmouth Radio Laboratories 366
National Cash Register Co. 338
Norman Radio Distributors Inc 365
Phillips Petroleum Co. 338
Photocon Sales 360
Precision Electrical Instrument Co 354
Radio Development \& Sales Co 365
Ratio \& Electronic Surplus 360
Radio Ham Shack Inc.... 367
Radio Surplus Corp. 349
Raytheon Mfg Co. 362
Reeves Instrument Corp. 341
Relay Sales 357
Reliance Merchandizing Co. 348
andia Corp 337
Servo-Tek 352
Stavid Engineering Inc 339
Strickland Electric Co. 360
Sylvania Electric Products Inc 336
Tab 368
Tecbnical Materials Co. 365
Telemarine Communications Co 354
Tracerlab Inc 342
Universal General Corp. 357
V \& H Radio \& Electrical Supply C 364
Wells Sales Inc 362
Weston Laboratories 361
Wilcox Electric Co. 340

To Find Out Why More \&

 SUPER DAVOHM Precision Wire Wound RESISTORS

Bulletin R Now!

The

... with the new RCA-6CL6 miniature power pentode

Another RCA First . . . the new RCA-6CL6 miniature power pentode was specifically designed to fill the need for a low-cost, high-output video amplifier tube.

Improved in performance over the RCA-developed 6AG7, this new 9-pin miniature has decreased microphonic response and is capable of driving highvoltage picture tubes with low amplitude distortion.
Having a voltage gain of approximately 44 , the RCA-6CL6 can be driven directly by the video detector. It will pro-
vide an output of 132 volts peak-to-peak with an input of only 3 volts peak-to-peak from the video detector in a $4-\mathrm{Mc}$ video amplifier.

RCA Application Engineers are ready to assist you in the application of the RCA-6CL6 to your television receiver designs. For further information write RCA, Commercial Engineering, Section GR-42, Harrison, N. J., or contact your nearest RCA field office:

FIELD OFFICES: (East) Humboldt 5.3900. 415 S. 5 th1 St., Harrison, N. J. (Midwest) Whice. hall! $\mathbf{1} 2900,589$ E. Illinois St., Chicago, 111 . (West) Madison 9-3671, 420 S. San Pedro St., Los Angeles, Calif.

Tmks. (i)

RCA-6AF4 Miniafure UHF Triade, for use as the local oscillator in UHF television receivers covering the range of 470 to 890 Mc . Features silver-plated base pins and short mount structure.

THE FOUNTAINHEAD OF MODERN TUBE DEVELOPMENT IS RCA

[^0]: When a motorist wants to pass this truck, his horn signal is picked up by a microphone at the rear of the truck, amplified and fed to a loudspeaker in the cab. The driver then operates the pass or don't pass signal light switch at his fingertips. Designed to increase road safety, the warning device is being installed on Shell tank trucks in Sweden

[^1]: Seletron and Germanium Division

 RADIO RECEPTOR COMPANY, INC.
 RP Since 1922 in Radio and Electronics RR
 Sales Dept.: 251 W. 19th St., New York 11, N. Y. - Factory: 84 N. 9th St., Brooklyn 11, N. Y.

[^2]: Specialists in Fabricating Sheet Metal for Industry

[^3]: OFFICES: METROPOLITAN AREA: 671 Broad St., Nework, N. J., Mitcholl 2.8159 - PHILADELPHIA. 1649 North Brood St., Sievenson 4.2823 SOUTHWEST: John A. Green Co., 6815 Oriole Drive, Dollas 9, Dixon 9918 - NEW ENGLAND, 1374 Massachusells Ave., Cambridge, Mass., Kirklond 7.4498 IOS ANGELES, 5603 North Huntington Drive, Capital 0901 CHICAGO, 228 North laSalte St., Control 0.1721 - ST. LOUIS, 1123 Woshington Ave., Gorfield 4959

[^4]: * Albany \dagger Atlanta Baltimore Boston Chicago Cincinnati Cleveland Dallas Denver \dagger Detroit Houston \dagger Indianapolis Kansas City, Mo. Los Angeles Milwaukee

[^5]: (1) IT. S. Patent 2,179.097.
 (2) H. Salinger: The eleotro-static Dissector Proc. NEC p $82,1946$. (3) ${ }^{\top}$. S. Patent.
 $2,080,485$. $2,202.11 \mathrm{~s}$ S. Pat+nts 2.293.599 and (5) W. D. Buckingham and C . R. Deilhert. Characteristics and Applications of Concentrated Arc Lamps, /our. SMPE, p $376,4 \%$, Nov. 1946 .

[^6]: * Work done by the author while in the employ of Deering Milliken Research Trust

[^7]: This investigation was supported by a research grant from the National Cancer Institute of the National Institutes of Health, U. S. Public Health Service.

[^8]: - 2 ther

 Investigction of a brecst tumor, using ranging equipment

[^9]: This is the second and final section of the paper. The first section appeared in the June issue, page 200 .

[^10]: Battery Chargers a Battery Etimtators: D.C. Pywer Sipply Unils \& Regulaled Exciters

[^11]: RAYTHEON MANUFAGTVRMNGGOMPANY
 Newion, Mass., Chicago, III., Atlanta, Ga., Los Angeles, Calif.
 Exrallence in Eilentronics

[^12]: Name \qquad
 Company

 Addres

[^13]: Manulacturers of Non-strip wire, High Tomperature Electrical Tubing and other oxtruded plastic products.
 THE BEX CORPORATION
 60 LANDSDOWNE STREET

[^14]: RAYTHEON PRODUCTS INCLUDE: WELDPOWER* welders;
 Voltage stabilizers (regulators); Transformers; Sonic oscil. lators for laboratory research; Standard control knobs; Electronic calculators and computers; Radio, television, suhminiature and special purpose tubes and other electronic equipment. *Reg. U.S. Pat. Off.

[^15]: PRODUCTION ENGNEERING CORP.
 173 SARGEANT AVENUE,

[^16]: Collingdale, Pa.

[^17]: 1902 W. Minnehaha, St. Paul 4, Minn.
 -
 "You WIII Enjoy Livlng In Minnesota"

[^18]: IECTRONIC RESEARCH LABORATORIIES
 715-19 ARCH ST.
 Telephones - MARKET

