

Precision

Production to Military Requirements

The manufacture of transformers and associated devices for military requirements has been one of the specialties of United Transformer for the past fifteen years. Thousands of military designs are in present production and a few examples are illustrated above.
In this photograph you will find transformers, reactors, filters, high \mathbf{Q} coils, and magnetic amplifiers. Types illustrated include units to MIL-T-27, JAN-T-27, and ANE-19.
If you have a tough problem in an Hermetic or Fosterized unit, UTC is your logical production soarce.

JANUARY • 1952

ELECTRONIC TOMATO GRADING COVER
California inspector B. A. Marchette uses photoelectric equipment to check color of shipment going to the Richmond-
Chase cannery in San Jose (see p 92)
AIRCRAFT PLANTS AND ELECTRONIC ENGINEERS, by John Markus 82Why they were hired, types of work they do and how they build bigger markets for the electronic industry
STANDARDS CONVERSION OF TV SIGNALS, by V. K. Zworykin and E. G. Ramberg 86Problems involved in converting from one set of standards to another having a different frame rate
TOMATO CLASSIFICATION BY SPECTROPHOTOMETRY, by Traver J. Smith and Richard A. Huggins 92
Accurate grading of tomato color by state inspector using this equipment antiquates subjective method previously used
SINGLE-BAND AUDIO GENERATOR, by Peter G. Sulzer 95New circuit that simplifies telemetering control is applicable to video and low radio frequenciesACCURATE TIME FOR SCIENTIFIC OBSERVATIONS, by Fred E. Fowler98Synchronous clocks far from power line are kept in step with WWV by selsyn control of crystal standard
MAGNETIC CENTERING OF ELECTROSTATIC C-R TUBES, by S. L. Reiches and D. P. Ingle 101
Describes and evaluates three basic types of p-m centering units
TUNABLE MINIATURE MAGNETRON, by D. A. Wilbur, P. H. Peters and H. W. A. Chalberg 104Fits miniature 7-pin tube socket and furnishes up to 0.5 watt from zero to $1,000 \mathrm{mc}$
REDUCING OUTAGE AT WNBT AND WNBC-FM, by Lester A. Looney and Frederick A. Everctt 110
Toggle switch on control console puts television program on emergency transmitter within secondsNUCLEAR-RESONANCE MAGNETIC FIELD CONTROL, by H. A. Thomas.114
Field of a 35 -ton magnet is controlled by servo system in grid circuit of four parallel 807's
JOB EVALUATION CHART, by R. W. Johnson 119
Permits systematic comparison of employment opportunities
AUTOMATIC ANTENNA WAVE-FRONT PLOTTER, by Robert M. Barrett and Malcolm H. Barnes 120
Near-field microwave antenna patterns are plotted automatically and accurately by this device
SPECIFICATIONS FOR COLOR TV FIELD TESTS 126Compatible color signal adopted by NTSC for test purposes in five citiesSHORT-PULSE AMPLIFIERS, by George F. Myers128Twelve-tube distributed-line amplifier for 0.015 -microsecond pulsesUHF RECEIVING ANTENNAS (Reference Sheet), by E. O. Johnson and J. D. Callaghan 132Performance data on five types found to be outstanding for 470 to $890-\mathrm{mc}$ uhf television band

business briefs		ELECTRON ART	140	NEW BOORS
CROSSTALR		NEW PRODUCTS	144	BACKTALK
TUBES AT WÖ	136	NEWS OF THE IND	148	INDEX TO A

DONALD G. FINK, Editor; W. W. MacDONALD, Managing Editor; John Markus, Vin Zeluff, A. A. McKenzie, James D. Fahnestock, Associate Editors; William P. O'Brien, Ronald K. Jurgen, Assistant Editors; John M. Carroll (on Military leave), Ann Mastropolo, Marilyn Wood, Editorial Assistants; Gladys T. Montgomery, Washington Editor; Harry Phillips, Art Director; Eleanor Luke, Art Assistant

KEITH HENNEY, Consulting Editor

H. W. MATEER, Publisher; WALLACE B. BLOOD, Manager; R. S. Quint, Buyers' Guide Manager; N. F. Cullinan, Promotion \& Research Assistant; D. H. Miller, James Girdwood, New York; Wm. S. Hodgkinson, New England; Warren W. Shew, Philadelphia; C. D. Wardner, Chicago; J. L. Phillips, Cleveland; T. H. Carmody, R. C. Alcorn, San Francisco; Carl W. Dysinger, Los Angeles; Ralph C. Maultsby, Atlanta

Published monthly with an additional dssue in June by McGraw-Hill Publishing Company, Inc., James H. McGraw (1860-1948). Founder. Publication Office. 99-129 North Broadway, Albany 1. N. Y.

Executive. Editorial and Advertising offices: McGraw-Hill Building, 330 W .42 nd St., New York 36, N. Y. Curtis W. MeGraw. President, Willard Cheralier. Frecutire Vice-President; Joseph A. Gersidi, Vice-1resident and Treasurer: John J. Cooke, Secretary; Paul Mont Nomery, Senilor Vice-President. Pubications Division; Raloh B. Smith, Editorial Director; Nelson'Bond. Vice-President and Director of $\Delta d v e r t i s i n g ;$ J. E. Blackburn, Jr.. Vice-President and Director of Circulation.

Subscriptions: Address correspondence to Electronics-Subseriptlon sorvice 99.129 N. Broadway. Albany 1, N. Y., or 330 W. 42 nd St., New York 36, N. Y. Allow ten

This amazing new family of Marion ruggedized electrical indicating instruments sets new standards of quality and accuracy in electrical measurement. Marion "Ruggedized" instruments give better performance in any application. Use them with confidence even where you never before dared use "delicate instruments." They exceed all JAN-I-6 requirements, are bermetically sealed and completely interchangeable with existing JAN $21 / 2^{\prime \prime}$ and $31 / 2^{\prime \prime}$ types.

Marion Ruggedized instruments perform perfectly under critical conditions of shock, vibration, mechanical stress and strain. Hermetic sealing makes them impervious to weather and climate.

When you want the best in meters for any application - from bulldozers to Geiger Counters insist on Marion, the name that means the most in meters.

Send for our booklet on Marion Ruggedized Instruments. Marion Electrical Instrument Company, 401 Canal Street, Manchester, New Hampshire.

MARION MEANS THE MOST IN METERS
Canadian Representative: Astral Electric Company, 44 Danforth Road, Toronto, Ontario, Canada
Export Division: 458 Broadway, Now York 13, U.S.A., Cables MORHANEX

Designed for use at freqeancias from 50 cos - $2000 \mathrm{c} / \mathrm{s}$. Phanic Mozors of this typeforre the nucleas Jrotne which are buite she timing destoes iltustrated en thle page.

The Timin, Device Trope $7-195-A$ provides El impuise of it sccond duration cice every second, wheo the motor is supplied with powss at efecuency of EOC c/s
The Timing Device Twxe D-193-A provides an impulse of T/10 second duracton 6: tupez per minute zne in acdition, an impulse of secend furation once pee mantre. A worm and wheel effestrins diows phasing correction.

MOTOR FORQUE

Phonic Motors
 and
 Timing Devices

IN many branches of scientific work the need I arises for a motor capable of a very high standard of constancy of speed. The frequency of the mains electricity supply is not normally controlled :o better than one or two per cent. so that a mains-operated synchronous motor may be inadequate, and centrifugal govarnors, as used on gramophone motors, may not provide a sufficiently precise control. In such cases a phonic motor driven by an alternating current supply of high frequency stability may be employed. It is not perhaps generally realized thet in their modern form such motors may be used to give quite a large torque, and are able te maintain synchronism despite the sudden imsosition of relatively large inctia loads. Under steady-state conditions, " humting " is atmost entirely climinated, and the constancy of rotational speed is alnost entirely dependent on the frequency stability of the alternating current supply.
A precision quartz crystal controlled frequency of $100 \mathrm{kc} / \mathrm{s}$ may attain a frequency stability of the order of one part in 10^{8}. This frequency is then divided electronically 10 $1,000 \mathrm{c} / \mathrm{s}$ by means of regencrative dividers or locked mutivibrators. In order to facilitate comparisors with time signals, or to use the frequency standard as al clock, it is necessary to derive a still lower frequency-preferably one cycle per second. Electronic division in the range 1.000 to 1 cycle per second, with high phase stabitity, is difficult, and the simplest and most reliable method is to drive a phonic motor from the 1,010 e's source, and to fit mechanical contacts to suitably geared driven shafts. Ar added advantage is that by employing further gearing, more widely spaced signals may be obtained. Thus signals spaced at intervals of one sidereal second, or any other specified interval, may be obtained from an oscillator with a fiundamental frequency of 100 kilocyces per mean time second. By means of a simple mechanical device. controlled changes in phase of the timing of the contacts are also poisible.

Cre you

ON OUR MAILING LIST for TECH:IQUE
A JOURNAL OF INSTRUMENT ENGINEERING

IF NOT
MAIL ÇQQPON
NOW

MUIRHEAD. $\$$ CO. LTD • BECKENHAM • KENT • ENGLAND

Plcase mail me, free of charge, your quarterly journal "TECHNIQUE'"

NAME

POSITION

COMPANY

ADDRESS

MUIRHEAD \& Co. Ltd.
PRECISION ELECTRICAL INSTRUMENT MAKERS
PRECISION

Nem((40x) Amplifier and

New (40X) amplifier combines

high gain and sensitivity with good stability.

Specially designed to reduce thermal potentials and stray pickup, the new Brown 40X servo amplifier incorporates an extra stage of amplification to provide increased sensitivity . . . permitting motor drive from signals as low as 0.05 microvolts.

Pictured with the amplifier is the rectifier which provides d-c filament voltage for the first amplifier tubes. It can be used as the basic link in a closed servo loop (where great sensitivity is required) . . . to translate electrical signals into directional motion . . . to provide corrective action in conjunction with minute error signals . . . for null detection . . . or for remote positioning.

Narrow Span Potentiometer

Self-contained Electronik narrow span potentiometer, incorporating new (40X) amplifier, is ideal for measuring low level potentials.

Electrical Characteristics

- RANGES -Recorders: 0-100 $0-200,0-500$ microvolts, $0-1$ millvolts. Indicators: $0-500$ microvolt and $0-1.1$ millivolts.
- STABILITY (after warmup)-1 microvolt or less for all ranges.
- LIMIT OF ERROR- $1 / 3 \%$ of span.
- SENSITIVITY -0.1 microvolt.
- DEAD ZONE-0.1 microvolt or 0.006% of span (whichever is greater).
- PEN SPEEDS-24 or 12 seconds full travel.
- CONTROL FORMS-Any standard pneumatic form, circular chart only.
- CHARTSPEEDS-Any standard speed.
- POWER SUPPLY -115 volts, 60 cycles only.
- RANGE OF INPUT SIGNALS TO RECORDER-(approx.) 0.05 $\mu \mathrm{v}$. to 1 mv .
- Inerrant Reference Dat Sone for Dele shoe Mo. $10.20-4$ on the (40X) Amplifier... Dove Shot No. 10.0-1 on Me Bulletin Mo. 18-14. "Instruments Acreiento

Now, with the development of a new high gain amplifier and potentiometer circuit, extremely low level potentials can be measured, recorded and controlled in this new self-contained instrument. The sensitivity of this instrument is so high that a change in signal as low as one-tenth of a microvolt can be determined. Spans as narrow as 100 microvolts provide a high degree of resolution. Internal design practically eliminates thermal emf's and stray a-c pickups.

The new ElectroniK Narrow Span Potentiometer may be used wherever the accurate measurement of d-c potentials of the order of microvolt is required . . . it is available as a Strip Chart Recorder (illustrated), as a Multi-Point Precision Indicator, and as a Circular Chart Recorder with pneumatic control.

Minneapolis-Honeywell Regulator Co., Industrial Division, 4428 Wayne Ave., Philadelphia 44, Pa.
Honeywell First in Controls

MORE FOR YOUR MONEY

vemENDIX SCINFEEX ELECTRICAL CONNECTORS

MOISTURE PROOF

SHELL.
High strength aluminum alloy . . . High resislance to corrosion . . . with surface finish.

CONTACTS
High currenl capacity . . . Low vollage drop.
SCINFLEX ONE-PIECE INSERT High dielectric strength . . High insulation resistance.

Type
 " L 99 GLASSMIKES
 - - distinctively advantageous

Design and construction of Plasticon Type LSG* feature low-loss silicone-impregnated capacitor elements encased in hermetically-sealed glass tubes.

All current conductors have large surface area and large cross-section to maintain low $I^{2} R$ losses. Non-ferrous materials are used throughout. Type LSG Capacitors are easy to mount . . . small and rugged. Studs (as shown) are standard. Wire leads are available on request.

The capacitor elements are designed for the lowest possible inductance by using the most advantageous geometric configuration consistent with modern production practices.
"Type LSG-
Low-loss
Silicone-impregnated Glass-encased

Our specialty is engineering capacitors to exacting requirements. We invite your inquiries.

Type "L" Glassmikes utilize their superior characteristics in the following applications:

- Radio frequency coupling
- De-spiking networks
- Pulse-coupling
- Radio frequency bypass
- Pulse forming networks
- Audio frequency coupling
- Low and high pass filter networks
- Frequency determining circuits

MANUFACTURERS

Glassmike Capacitors Plasticon Capacitors HiVolt Power Supplies
Pulse Forming Networks
All Phones: AMbassador 2-3727
C_{p}

If it's a tough potentiometer problem, bring it to MAlipl

 -for Helipot has facilities ond know-how unequalled in the industry for mass-producing precision potentiometers with odvanced operating and electrical feotures.This recently-developed 'Model J' Helipot, for example, combines several revolutionary advoncements never before ovailoble in the potentiometer field...

Precise Mechanical Concentricity

Modern servo mechanisms and computer hook-ups require high mechanical precision to insure uniform accuracy when connected to servo motors through close-tolerance gears and couplings.

In the "Model J," close concentricity between mounting surface and shaft is assured by a unique mounting arrangement. The unit can be aligned on either of two wide-base flange registers and secured with three screws from the front of the panel... or it can be secured with adjustable clamps from the rear of the panel to permit angular phasing. Or if preferred, it can be equipped with the conventional single-hole bushing type of mounting.

In addition to accurate mounting alignment, exact rotational alignment is assured by the long-life, precision-type ball bearings upon which the shaft rotates. Precise initial alignment coupled with negligible wear mean high sustained accuracy.

High Electrical Accuracy

Helipot products have long been noted for their unusually high electrical accuracy and the "Model J" embodies the latest advancements of Helipot engineering in this field.

For example, tap connections are made by a new Helipot welding rechnique whereby
the tap is connected to only ONE turn of the resistance winding. This unique process eliminates "shorted section" problems!

High linearity is also assured by Helipot's advanced production methods. Standard "Model J" linearity accuracies are guaranteed within $\pm 0.5 \%$. On special order, accuracies to $\pm 0.15 \%$ (capacities of 5000 ohms and up) have been obtained.

Ball Bearing Construction

The shaft of each "Model J " is carefully mounted on precision-type ball bearings that not only assure sustained rotational accuracy, but also provide the constant low-torque operation so essential for servo and computer applications. Starting torque is only $3 / 4$ of an inch-ounce ($\pm .25$ in.. oz.) -running torque, of course, is even less.

Independent Phasing

TYPICAL E GANE mULTIPLE AESEMBLY

When using the "Model J" in ganged multiple assemblies, each section can be independently phased electrically or mechanically - even after installation on the panel-by means of hidden internal clamps controlled from outside the housing. Phasing is simple, quick, accurate!

Mass-Production Economies

In addition to its many other unique features, Helipot engineers have developed unusual techniques that permit mass-production economies in manufacturing the "Model J ". Actual price depends upon the number of taps required, special features, etc.... but with all its unique features, you will find the "Model J" very moderate in cost."

Wide Choice of Designs

The "Model J" Helipot is available in a wide selection of standard resistance ranges $-50,100,1,000,5,000,10,000,20,000$, 30,000 and 50,000 ohms... in single- or double-shaft designs ... with choice of many special features to meet virtually any requirement within its operating field.

-Write for Bulletin 107 which gives complete date and prico information on the versatile "Modol J" Helipotl

 South .Pasadena 2, California

Field Offices: Boston, New York, Philadelphia, Rochester, Cleveland, Detroit, Chicaga, St Louls, Lor Angeles and Fort Myers, Forida. Export Agoats: fratham Co., Now York 18, New York:

Brings you all these

new features:

COLOR TV

More than 100 pages give you one of the most up-to-date treatments of color TV in book form, covering color fundamentals and describing six television systems-the field sequential type and five of the dot-sequential simultaneous type.

RECENT
 DEVELOPMENTS

Among the many new developments covered
with understandable explanations are:
-stagger tuning of i-f amplifiers
-intercarrier sound reception
-distributed amplification
-the keyed clamp circuit
-offset carrier reduction of
co-channel inter.
-tonal gradation correction amplifiers
-reaction type power supplies
-u-h-f and s-h-f transmission e
-batwing and superturnstile equipment
-new camera tubes and picture tubes

CIRCUIT DIAGRAMS

Contains complete circuit diagrams, with tube types and component values marked, of nearly every item of equipment employed in the television system, including the syncsignal generator, cameras and camera controls for live pickup and film, microwave relay transmitter and receiver, and three different types of receivers for the home.

11 BIG CHAPTERS

The Tolevision System System

Analysis and Syn-
thesis of
thesis of Images
3. Cameras and Pro-
ture Tubec
4. Scanning and Methods
5. Transmission of the

Vlcleo Signal
6. Video Amplif
cation Amplifi-
7. Carrier Transinission of Picture and Eound Signals
8. Color Fundamentals
9. Color Television Systems
10. Television Broadcasting Equipment
11. Telerision Recelving Equidment
Adpendix. Standards n:
Gooli Fntineering Practice

10 DAYS' FREE EXAMINATION JUST MAIL COUPON

NOW READY

The completely revised and rewritten Second Edition of Fink's great TV book

Here is the volume that gives you working knowledge of the complete television system-prepares you fully for technical work in designing television systems-operating television equipment-or understanding the details of receiving equipment. Much has been done in advancing television technology in the past few years-much more is to come. This book gives you the essential grounding and the knowledge of today's practice that will equip you to take advantage of the opportunities ahead in this great field.

TELEVISION ENGINEERING

$\mp \mathrm{HE}$ thoroughness with which Donald Fink presents the great and rapid advances in television technology makes this second edition more than a revision. It is virtually a new book. Published originally as Principles of Television Engineering, it is now fully up to date in its practical coverage of the whole field, including color.
For technical workers who want to add familiarity with television engineering to their knowledge of radio engineering - for readers who want adequate self-training material for engineering jobs in television broadcasting and manufacturing plants-for college and technical institute students in this field-this book meets the need for grounding in the engineering and technical fundamentals of television. The whole television process, from studio to receiver, is covered soundly and clearlv. Asnects peculiar to tele. vision tecchnolors, such as scanning and wave-

By Donald G. Fink

Editor, Electronics: Vice Chairman, National Television System Committee

721 pages
512 ilustrations $\$ 8.50$
tion and colorimetry, camera tubes and picture tubes, are treated in detail, starting from first principles.
The principles of operation of television systems, in black-andwhite and color, are covered, and the book describes in detail the design, operation, and use of television equipment.
Entirely the work of Donald Fink, this revision offers you roday's television fundamentals and practice, in the clear and comprehensive form that made the previous edition so widely used.

MeGraw-Hill Book Co., 330 W, 42nd St., N.Y.C. 36, N.Y.

Send me Fink's Television Engineering for 10 dars' examtuation on approval. In 10 days i will send 88.50 , plus few cents for delivery, or return book nostpald. (whe pay delivery if you remit with thls coupon; same examination and return privilege.)
PRINT
Name
Home Address

City

Company

riosition
This offer applies to U. S. only

BUSINESS IN MOTION

The fact that a Revere Distributor is now celebrating its 125 th anniversary year is an indication of the service the company has given its customers through those years. It is also another proof of the essential function performed by distributors for American industry. Most goods, whether industrial materials such as copper and copper alloys, aluminum alloys, iron and steel, or consumer articles such as refrigerators, radio and television receivers, kitchen utensils and ranges, go through the hands of distributors. Generally speaking, only the large buyers are in a position to purchase direct from manufacturers, who do not find it economical to handle the smaller orders. Yet those orders when pooled in the hands of an organization set up to handle them attain sizable totals, and hence a good distributor account is exceedingly attractive to a large manufacturer such as Revere.

A distributor serves not only the factories from which he buys. He also performs an invaluable service to his customers by making quickly available to them the products they require. A machine shop, for example, may need only a few hundred pounds of brass rod; there is a distributor within easy reach who can furnish it almost immediately. Or a contractor may want a few pieces of steel pipe and a thousand feet or so of copper water tube. Again, the distributor has them. A metal products distributor has to carry such items and an infinite number of others. The Revere Distributor who started in business 125 years ago actually has in stock 53,000 different items, cataloged, indexed, and held in warehouses ready for immediate shipment throughout its territory. Each month this stock is drawn upon by 5,000 to 8,000 customers, each order relatively small. There are many Revere Distributors with similar stocks and offering equal service.

To keep this distributor's warehouses filled with a balanced inventory, 18 people are required in his purchasing staff, which includes specialists in various kinds of materials, machines, tools and supplies. And to serve customers with information, quotations and the like, 25 salesmen are on the go constantly, calling on manufacturers, contractors, builders and stores throughout the busy industrial area in which the distributor operates. The large business done by the company is in great contrast to that of 125 years ago, when it was little more than a hardware store. The enterprise has grown in the American tradition of freedom to prosper in accordance with the principles of reliability and efficiency, fair dealing and integrity in performing a desired function.

Revere Distributors are selected for their ability to serve, and also chosen as to location, so that no matter where you are in this big country of ours, there is a Revere Distributor within easy reach. Today metal stocks may be short due to defense demands but manufacturers are doing everything possible to keep distributors supplied.
If you buy from distributors we suggest you renember that they are not only "central stockrooms," but have a great deal of special knowledge about the products they sell and can give you much helpful advice. Not only that, through the Revere Distributors you can be put in touch with the Revere Technical Advisory Service, which will cooperate with you on matters concerning the selection and fabrication of the Revere Metals. Our distributors, and those of every other manufacturer, render many essential services, both to those to whom they sell, and to those from whom they buy. The distributor system as it operates in the United States arose in response to the need for it. Today it fulfills that need more effectively than ever before.

REVERE COPPER AND BRASS INCORPORATED

Founded by Paul Revere in 180150 thymar of
Executive Offices: 230 Park Avenue, New York 17, N. Y. SEE "MEET THE PRES5" ON NBC TELEVISION EVERY SUNDAY

we can show you how to use it less and less and less and less

Here's Proof: Printed Electronic

What are Printed Electronic Circuits?

Printed Electronic Circuits are complete or partial circuits (including all integral circuit connections) consisting of pure metallic silver and resistance materials fired to CRL's famous Steatite or Ceram-ic-X and brought out to convenient, permanently anchored external leads. They provide compact miniature units of widely diversified circuits -
from single resistor plates to complete speech amplifiers. No other modern electronic development offers such tremendous time and cost saving advantages in low-power applications. Important to note: All PEC's illustrated are developed for standard applications. Numerous other circuit complements can be furnished for volume requirements.

How Do They Save Time and Money - Space and Weight?

Because Printed Electronic Circuits combine several components on a single plate unit, they eliminate approximately 25% to 80% of formerly required soldered connections within the circuits they replace. This means simplified assembly - savings in material. What's more, because they replace several

60% Less Soldered Connections with Centralab Triode Couplates

Centralab Triode Couplates replace 5 components normally used in audio circuits. Triode Couplates are complete assemblies of 3 capacitors and 2 resistors bonded to a dielectric ceramic plate. Available in a variety of resistor and capacitor values. Technical Bulletin 42-127.

50\% Less Soldered Connections with Centralab's AUDET

Audet Printed Electronic Circuits furnish all values of all components generally found in the output stage of AC -DC radio receivers. They provide 4 capacitors and 3 resistors on a small plate with only 7 leads. Technical Bulletin 42-129.
individual components, they cut down your purchases and inventory. Because they are complete assembled circuits, they do much to eliminate wiring errors. Their small size (note illustrations) means less space needed as well as less weight . . . important factors in today's crowded chasses.

Plate Capacitor and Resistor-Capacitors Excellent for Miniature Use

Actual size photograph of plate capacitor, resistor, and resistor-capacitor units. Because of size, they readily fit all types of miniature and portable electronic equipment... overcome crowded conditions in TV, AM, FM and record-player chassis. Technical Bulletin 42-24.

NEW Model 3 AMPEC - A Sub Miniature
3 Stage Speech Amplifier

Here's the latest outgrowth of Centralab's constant research in Printed Electronic Circuit development. The remarkably small dimensions of this new amplifier unit are approximately $11 / 32^{\prime \prime} \times 15 / 6^{\prime \prime} \times 1 / 32^{\prime \prime}$ 。 Check coupon for Technical Bulletin 42-130.

Circuits = BIG SAVINGS

50% Less Soldered Connections With
 Centralab's NEW PENDET

PENDET consists of 5 capacitors and 4 resistors in a single plate with only 9 leads. Similar to the popular AUDET, it is designed to couple the diodetriode and pentode tubes in the output stage of $\mathrm{AC}-\mathrm{DC}$ sets. Check coupon for Technical Bulletin 42-149.

50% Less Soldered Connections With Centralab's PENTODE COUPLATE

Pentode couplates are complete interstage coupling circuits consisting of 3 capacitors and 3 resistors on a small 6 lead ceramic plate. Compared with old-style audio circuits, they actually reduce soldered connections 50\%-wiring errors accordingly. Technical Bulletin 42-128.

Standard Model 2 AMPEC Miniature
 3 Stage Speech Amplifier

AMPEC - A full 3 -stage speech amplifier. Provides highly efficient performance. Size $11 / 4^{\prime \prime} \times 118^{\prime \prime} \times 340^{\prime \prime}$ over tube sockets! Used in
hearing aids, mike preamps and other applications where small size hearing aids, mike preamps and other applications where small siz
and outstanding performance counts. Technical Bulletin $42-117$.
82% Less Soldered Connections With P.E.C. VERTICAL INTEGRATOR

Centralab Vertical Integrators give you big savings in assembly of TV vertical integrator networks. One type consists of 4 resistors and 4 capacitors brought out to 3 leads...reduces former 16 soldered connections to 3! Check coupon for Technical Bulletin 42-126.
28% Less Soldered Connections With NEW FILPLATE

FILPLATES (2 resistors and 2 capacitors) for bypass and filter application in TV, FM and AM, where filter networks of comparable component values and layout are needed. Smaller than special delivery stamp. Save vital low wattage resistor stocks. Technical Bulletin 42-131.

Centralab

Division of GLOBE-UNION INC. • Milwaukee

Centralab, Div. of Globe-Union Inc.
914 East Keefe Avenue, Milwaukee 1, Wisconsin
Please send me the Technical Bulletins on Printed Electronic Circuits as checked below:
\square 42-24
\square 42-117 \square 42-126
$\square 42-127$
$\square 42.128$
\square 42-129
$\square 42$-130
$\square 42$ - 131
$\square 42-149$

Name.
\qquad

Company..

Title. \qquad

With our hands full today...we've our eye on tomorrow

Buildings . . . enclosing more than 4 acres -all deveted to the development, production and testing of fine small tubing.

Men and Machines...fabricating, inspecting and finishing parts to meet the most exacting specifications.

Engineering . . laboratory equipment for all kinds of testing, including emission characteristics of nickel cathode materials.

SEAMLESS ...? The finest tubes that can be made. Standard production is . $010^{\prime \prime}$ to . $121^{\prime \prime}$ O.D. inclusive, with wall thicknesses of $.0015^{\prime \prime}$ to . $005^{\prime \prime}$. Cathodes with larger diameters and heavier walls will be produced to customer specification.
cathodes... more than doubled capacity. 1950 production of Lockseam cathodes increased 280% over 1949. Demand kept pace with the increase.

Plans for the future inclute the installation of new machines and the improvement of already good processes so that the Electronics Industry's coming needs may be as well met as its past demands.

Then as now, we at Superior will deliver truly superior small tubing products to do tough jobs better. Superior Tube Company, 2500 Germantown Ave., Norristown, Pa.

Here at Superior we produce quantities of quality parts for the Electronics Industry. Our research engineers are constantly at work to improve these products and to develop new parts to do the job better. Production-wise we're working just as constantly to produce more and more of these better products for you.

During the year 1950, we doubled our disc cathode capacity, added over 50% to Seamless cathode capacity. Through the same period we almost doubled the number of machines making Lockseam

Which Is The Befter For Your Product . . .

*mrd lunedu. s pats. SUPERIOR TUBE COMPANY - Electronic Products for export through Driver-Harris Company, Harrison, New Jersey - Harrison 6.4800

LEADING TV MANUFACTURERS REPORT-

G.E's ELECTROSTATIC-FOCUS TUBES GIVE THE Sharpest FOCUS OF ALL!

Comparative tests proved General Electric tubes far superior in needle-sharp distinctness!

FOUR large builders of TV receivers ran their own detailed tests of new G-E zero-focus types against other makes of electrostatic tubes. In every case, General Electric tubes gave pictures with greater sharpness and definition over the entire view. ing area!

- Improved gun design, precision manafacture, share the credit for this G-E contribution to a TV industry that continues to move ahead despite metal shortages and a heavy defense load.
- Saving precious cobalt, nickel, and cop per-needing no receiver focus control, which means simpler TV operationGeneral Electric's new zero-focus tubes have this third big advantage: they pro duce outstandingly clear, vivid pictures!
- Five types in popular sizes are listed above. Wire or write for complete facts about the tubes in which you are interested as TV designer or manufacturer! Electroniss Division, General Electric Company, Schenectady 5, New York.

You can pul your copflenere inn -

GENERAL (马\%) Electric

Roller-Smith
 Ruggedized Instruments

Shock-Proof • Vibration-Proof - Weather-Proof

Roller-Smith announces production of hermetically sealed Ruggedized $21 / 2^{\prime \prime}$ and $3^{1 / 2^{\prime \prime}}$ instruments conforming to MIL-M-10304.

In addition to Ruggedized instruments, a complete line of hermetically sealed and unsealed types in conformance with Government specifications are available.

ROLLER-SMITH CORPORATION

 bethlehem, pennsylvania
Our Defense Program Faces a Crisis

A major crisis will soon confront our defense program.

It is not a crisis in raw materials. To find enough materials, from steel to cobalt, for defense production is a serious problem. But it is one that is being solved.

It is not a crisis in manpower. Shortages of workers with special skills hamper production, but these shortages are being relieved, slowly.

It is not a crisis in manufacturing capacity. American industry's record-breaking expansion is, with very few exceptions, keeping abreast of defense needs.

The coming crisis will be one of finance. It will rise from our failure to provide the means to PAY FOR the defense program we now have under way.

A \$15 Billion Deficit?

Congress has approved a defense program which is scheduled to raise total federal spending in the year from June, 1952, to June, 1953, to somewhere between $\$ 85$ and $\$ 90$ billion. Additional appropriations for more air power and atomic development, which are now proposed, would add several billion dollars.

But Congress has not approved a tax plan to match such spending. With the new levies
enacted in this session, tax collections during the 1952-53 fiscal year are estimated to fall somewhere between $\$ 70$ and $\$ 75$ billion. That would be roughly $\$ 15$ billion short of balancing the budget. If the defense program is expanded, the deficit will be that much greater.

We have not yet felt the impact of the crisis that would accompany a federal deficit of this magnitude. Federal tax collections currently are big enough to balance federal expenditures. But the defense program is scheduled to boost the annual rate of federal expenditures $\$ 25$ billion in the next year.

To Meet the Crisis

By January the crisis will be clearly in sight.
Then the President will present his budget. After that, Congress must act to close the broad gap between government income and government spending. If it fails to do that, the whole defense program will be menaced by weakness in its financial foundations. That weakness might well take the form of another destructive wave of inflation.

We have three ways to meet this crisis.

The best approach, of course, is to cut unessential expenditures. That can make a real dent in the deficit. The second is to collect more
taxes. The third, and by all odds the most dangerous, is to have the federal government meet its deficit by going deeper into debt. Borrowing, which might feed inflation, can easily lead to disaster.

Near Income Tax Limits

It will not be possible to raise taxes to meet the deficit merely by increasing further the rates on corporations and on persons in the upper income brackets. Congress has about scraped the bottom of that barrel.

The Senate Finance Committee said as much in reporting this year's tax bill. The Committee reported that it had "serious doubts as to the feasibility of raising any substantial additional amounts of revenue from income tax sources." The Committee observed that recent tax legislation brings the burdens of most corporate and individual income taxpayers close to the World War II peaks, and actually carries the rates paid by many taxpayers above those peaks.

Our ramshackle federal tax system must be thoroughly overhauled in order to broaden the tax base if it is to produce more revenue without doing much more harm than good.

The shocking fact is that no one seems ready to act along any line that might enable us to surmount the crisis.

That fact of itself aggravates the coming crisis. And next year's presidential election doesn't make it any easier to move effectively. Both parties will shrink even more than normally from backing any program that might irritate any considerable number of voters.

If we are to meet this crisis on the tax front in an orderly way, the technical work should
be in progress right now. To a large extent it is being ignored.

If we are to enforce the vitally essential program of government economy, there is the same urgent need to get under way the spade work that is required.

And if - as a last miserable expedient-we decide to let the federal government drift deeper into debt, it must have a well-developed program of borrowing from individuals and other investors, such as insurance companies, rather than from the commercial banks. Borrowing from commercial banks might speedily translate the deficit into more and more price inflation. No adequate program of borrowing from savings is now in sight.

Now Is the Time

It is possible, of course, that international relations may improve sufficiently to make it safe for us to slow down the rearmament program. If that should happen, the fiscal crisis would not be so critical. But that kind of good fortune has been notably absent in recent years.

Lenin, patron saint of Communism, is quoted to the effect that to destroy a political and social system such as ours "you must debauch its money."

We shall set democracy to digging its own grave if, through our preoccupation with politics during the presidential campaign, we pave the way for further debauchery of our money.

If we really want to avert that disaster, now is the time for us to get going.

Once the crisis is full upon us, it will be too late.

Holtzer-Cabot motors help the Spectrophotometer record "signaturest on a beam of light!

The double beam infrared recording Spectrophotometer
developed and manufactured by Baird Associates of Cambridge, Mass., is an ingenious instrument which has proven itself invaluable in quickly and surely identifying and defining complex chemical compositions.

The Spectrophotometer analyzes organic samples by passing an infrared beam through them. The resulting vibration and energy absorption of the sample's molecules form a pattern on the Spectrophotometer's recording drum chart. Comparison of the sample's recorded characteristics with those of known elements reveals the sample's identity and composition.

> Associates, developed two different adaptations of the H-C R-25, which met specifications perfectly. These motors are now standard components of the Spectrophotometer and are giving satisfactory, dependable service.
> This is but another example of Holtzer-Cabot's ability to meet the most exacting specifications in small-motor applications. Holtzer-Cabot motors range from $1 / 2000$ up through $11 / 2 \mathrm{H} . \mathrm{P}$. , from 24,000 RPM to 1 revolution per day!

HOLTZER-CABOT

DIVISION OF NATIONAL PNEUMATIC CO., INC.
BOSTON19, MASSACHUSETTS
"builders of fine electric motors for three quarters of a century"

[^0]
how MB san anep you

MEET MLITARY SPECIFICATIONS ON VIBRATION

Does Your Military Production require vibration testing? Shock absorption - vibration isolation? Representative of MB's specialized vibration engineering, these products show that, from a single source, you can get the equipment and information you need to meet your requirements. For example:

1. measurement of vibration with MB vibration pickup and meter supplies data for study of disturbing frequencies and for design adjustments. The electrically damped and highly sensitive pickup is convertible for horizontal or vertical operation. Meter gives you accelerations, velocities or displacements of the vibrations directly. Made for each other, the two are the "eyes" for any vibration testing program.

2. Shake testing to mil-E-5272
and 41065 -B is easily accomplished with MB Vibration Exciters. Model S-3 shown delivers $200-\mathrm{lb}$ force. Others available with $10-\mathrm{lbs}$ to $2500-\mathrm{lbs}$ force ratings-all easily, quickly and accurately controlled for force and frequency.
3. ISOMODE* SHOCK MOUNTS have been developed for supporting and protecting aircraft engines from damage while transported in crates or "cans." High load capacity combined with high deflection capacity provides good absorption of shock.
${ }^{*}$ Reg. U.S. Pat. Off.

4. MIL-I-5432 (AN-I-16a) can be met with the Type 17 ISOMODE Mount. This unit available for loads from 0.5 to 100 pounds, and controls all modes of vibration with equal efficiency because of equal spring rate in all directions.

Remember, if you need help with a vibration problem, you can save yourself time and work by contacting MB's vibration specialists. For details on any of the above products, address your inquiry to Dept. N5.

THE IIB MANUFÄCTURING COMPANY, Inc.

1060 State 5ta New Haven 11, Conn.

Controls

At the very heart of highly critical equipment such as electronic
computers, electronic gunsights and radar assemblies, the control requirements call for outstanding electrical and mechanical precision. Indeed, from single section to as many as twenty sections, the precision controls must track with mathematical accuracy.
Clarostat Series 42 Controls fully meet these requirements.
Thus the climax in precision controls.
Clarostat has made the major portion of such precision controls in use today. Many were supplied to the armed forces in World War II.
Many more have been supplied for civilian purposes since then. And now, based on an unparalleled experience background, Clarostat engineers offer you further refinements in their latest Series 42 design.

You can stand pat with CLAROSTAT

Engineering Bulletin No. 142 sent on request. And remember, when your control or resistor requirements call for quality, quantity and economy, you can meet them with Clarostat's engineering and production facilities. Submit that problem!

Now Clarostat Series 42 potentiometer. Available in single and multiple assembles up to 20 secfions. Precision windings to plus/ minus 0.5% and betfer. Positive confact rofor, smooth rotation, minimum wear. Perfect tracking of all units in assembly. No backlash or play. Rotor of each polentiometer maynted on centerless-ground shaff passing through all sections.

Controls and Resistors

Clarostat mfg. CO., INC., dover, NEW hampshire In Canada: Canadian Marconi Co., Ltd., Toronto, Ontario

ERIE adds another outstanding capacitor to the most complete line of ceramic by páss units available. Style 327 Feed-Thru design is a further result of continued Erie development in accomplishing ruggedness in components to meet severe military requirements and to give trouble-free service in other electronic applications. It embodies the following outstanding features:

1. Mechanically rugged. Tubular ceramic Eapacitor is sealed at both ends in thermosetting low loss insulation.
2 Very low and uniform inductance path to ground.
2. Electrical shielding is provided by means of the grounded metal case.
3. All internal connections are soldered; no pressure contacts.
4. Hook type terminals provide sturdy connection tie points; also facilitate precision spacing of leads from other components where required in VHF and UHF circuits.

Specifications:

Standard capacitance values, mmf: $10,33,47,68$, 82, 100, 470, 680, 1000
Capacitance tolerance: $\pm 20 \%$ or $+80 \%,-20 \%$
Rated voltage: 500 WVDC (values through 100 mmf also available in 1000 WVDC rating)

IF YOURS IS A TOUGH RF INTERFERENCE PROBLEM - LET FILTRON SOLVE IT

FILTRON'S engineering department, cooperating with engineers of leading companies, has solved RF Interference Suppression problems throughout the country

If your equipment must meet the RF Interference limits set by the military specifications, consult with FILTRON'S engineers in the earliest stages of design. FILTRON can furnish RF Interference Suppression Filters whose size, weight and overall configuration will fit into your equipment.

FILTRON has custom designed over 1000 different types of RF Interference Suppression Filters for equipment that meets military RF Interference Suppression limits and specifications.

FILTRON'S completely equipped screen rooms are always available for the RF Interference testing of your units and equipment.

An inquiry on your company lefterhecd will receive prompt attention.

FILTRON can best solve your RF Inferference problems because:

- FILTRON'S engineering, research and design divisions are staffed by experienced RF Interference Suppression filter engineers.
- FILTRON'S modern shielded laboratories are equipped to measure RF Inferference from 14 KC to 1000 MC in accordance with military specifications.
- FILTRON'S production facilities, comprising a capacitor manufacturing division, coil winding division, metal fabrication shop, metal stamping and toal and die shops, are exclusively producing the highest quality components for FILTRON'S RF Interference Suppression filters.
- FILTRON'S extensive production facilities permit us to meet your delivery requirements. NOW!

8 circuit miniaturized filter for wide band RF interference Suppression.

Minioture 3 amp. -125 VAC - 400~ filter -hermetically sealed size $11 / 6^{\prime \prime} \times 1^{\prime \prime} \times 11 / 15^{\prime \prime}$

15 amp. -28 VDC filter, size $2^{\prime \prime} \times 2^{\prime \prime} \times 11 / 4^{\prime \prime}$, with pressurized AN sonnectors-high attenuation from 150 KC to 400 MC .

RF INTERFERENCE SUPPRESSION FILTERS FOR:

Motors	Dynamotors Generators
PowerP Plant	
Inverters	Acpuatiors
Electronic	Gasoline
Controls	Engines

And other RF Interference producing equipment

Seletron SELENIUM RECTIFIERS

 May be up your alley, too!
AS THEY ARE FOR THE BRUNSWICK-BALKECOLLENDER COMPANY

The new "Tel-E-Foul," photo-electric Foul Indicator produced by The Brunswick-Balke-Collender Company, famous manufacturer of bowling equipment, includes 75 MA Seletron miniatures in its electronic circuits.

Seletron Selenium Rectifiers are the choice of an increasing number of manufacturers in diversified fields because they are so thoroughly dependable under

Illustrated above is the "Tel-E-Foul" control box. When the bowler oversteps the foul line the electronic brain conveys an impulse causing a light to flash above the alley. A 75 MA Seletron miniature is built into the control box on each bowling lane.
all types of grueling conditions. Seletron is available in the miniature sizes required for radio, TV and other electronic circuits, all the way up to heavy duty power stacks used in a wide range of industrial applications.
Whenever you meet up with a power conversion problem, no doubt Seletron engineers can be of substantial
assistance in recommending the right rectifier for your needs. Write us today!

Honeywell Mercury Switches

are engineered to solve many complex switching problems

- Honeywell Mercury Switches are ideal for use in applications where tilt motion and low operating force are provided. Because all the switch elements are permanently sealed in glass, they are effective components where dust, fumes, spray and/or splash are present.
Often the proper tilt motion to permit the use of Honeywell Mercury Switches on a given application can be developed in cooperation with MICRO SWITCH engineering field service. These experienced switching specialists will review your re-
quirements as to mounting, actuating linkages, lead supports, terminal blocks and enclosures. Thus you will not only be sure of the switch best suited to your need but have engineering help in developing complete mercury switch assemblies.

There are over 125 designs of Honeywell Mercury Switches from which to select the exact switch characteristics to meet your specific problem. You are invited to write for catalog and to contact your nearest MICRO SWITCH branch office for more complete information.

NOW...

Multiple-point Speedomax recorder at left is a familiar sight in scientific laboratories throughout the world. While the 6 new instruments described below all appear to be practically identical, each is different from the others.

See how these 6 new Speedomax recorders

> SPEEDOMAX X-Y RECORDER

Automatically plots the relationship between any two variables which can be conwerted to d.c. signals. Both pen and chart motion are reversible. Instiument records vacuum tube choracteristics, hysteresis loops, stress-strain, temperature-elongation, differential thermal analysis curves ... Applicafions are as broad as a researcher's imagination. Write for Folder EM9-420(2).

SPEEDOMAX ADJUSTABLE RANGE - ZERO RECORDER

Automatically plots valtage representing force, weight, temperature, temperature-difference, speed.... or any other condition. Suppressing ZERO pushes non-significant mv off scale. Adiusting RANGE spreads few significant mv right acros; chart. Range continuously adjustable from -0.1 to $+1 \mathrm{mv} \ldots$ up to -2 to +20 mvi zero suppression, from -50 to +50 mv . Folder ND46(2).

SPEEDOMAX 2-PEN

 RECORDERAutomatically plots 2 curves on 1 chart simultaneously . . overlapping or side-by-side. Follows minute shifts in fast-changing variables with ease. A "2-in-1" recorder, it takes any two standard Speedomax ranges. Circuits work with thermocouples, Thermohms, strain gages, tachometers, thermal converters, pH cells . . . or most other primary elements. Write for Folder EM9(1).

LEEDS

SPEEDOMAX presents

6 precision electronic servants to speed plotting of test dats

AsS the tempo and complexity of today's research and engineering activities accelerate, more and more investigators are stepping up efficiency through use of timesaving Speedomax recorders. Tireless automatic assistants, these electronic servants are taking over the chores of routine computation . . . eliminating tedious manual plotting of data.

Especially timely are these 6 new Speedomax recorders developed specifically for laboratory use. While each is a specialist, it is also designed for a diversity of applications.

Common denominators for all six are traditional Speedomax precision and high-speed response. Recording pens can whip across the $978^{\prime \prime}$ chart in as little as 1 second, if the ap-
plication demands, though speeds of 2 and 3 seconds full scale are also available. Balancing is velocity-damped to take advantage of this high speed.

Alert to the most minute variation in " X ," the sensitive electronic balancing system is the perfect complement for the instrument's accurate null-balance measuring circuit. Thorough filtering, shielding and guarding screen out transients . . . permit use of Speedomax in the presence of severe stray fields.

Net result: the investigator can follow complex, fast-changing variables with ease and confidence . . . knowing that the record on his Speedomax is faithfully following the actual function being measured.

can solve your data-logging problems...

SPEEDOMAX PHOTOMULTIPLIER TUBE RECORDER

Automatically plots accurate record of light intensity or other low level radiation. Can be direct-connected to photo-multiplier tubes . . . eliminating separate preamplifier. Available by switch are four ranges: 0.02, $0.06,0.2$, and $0.6 \mu \mathrm{~s}$. Dark current or noise of photo-multiplier tube is readily offset by built-in manual compensator. Write for DS-240-70. EM9(1) to (3).

SPEEDOMAX POWER LEVEL RECORDER

Automatically plots radiation patterns of antennas and hydrophones . . . frequency characteristics of filters, amplifiers, loudspeakers, etc. Applies accurate "insertion loss" principle of measurement. Recorder can be supplied with full scale reading of $20,30,40,50$, or 60 db , referred to a base level of as little as 0.02 microwatt. Write for Folder ND46-51(1).

SPEEDOMAX PRECISION THERMOMETER RECORDER

Automatically plots temperature curves for calorimetry, freezing and boiling points . . reads resistance of platinum thermometer to five significant figures. An "automatic Mueller Bridge," it covers the entire range from - 260 to +500 C with precision of ± 0.01 C. Automatic range-changing mechanism expands chart width 100 times. Write for Folder ND46-33.240(1).

CHASE warehouses from coast to coast offer complete metal cutting services!

CINCINNATI PROVIDENCE LOS ANGELES INDIANAPOLIS CHICAGO PHILADELPHIA MILWAUKEE ST. LOUIS DETROIT NEW YORK NEWARK
chicago philadelphia MILWAUKEE St. LOUIS DETROIT NEW YORK newark
These warehouses also do slitting

When it comes time for slitting, shearing or sawing, check the Chase Warehouses listed above for the cutting facilities each of them have.

Naturally, this work is done to your specifications on orders for metals we are able to fill. We'll help
out, too, on your brass, bronze, copper, aluminum, steel, fibreboard or other materials. Just tell us how you want it. The work will be done accurately.

As usual-call Chase!

WATERBURY 20, CONNECTICUT • SUBSIDIARY OF KENNECOTT COPPER CORPORATION

- The Vation's Headquarters for Brass \& Capper

Albanyt	Cleveland	Kansas City, Mo.	Now York	Son Francista
Atlanta	Dallas	Los Angeles	Philadeipha	Seattig
Baltimore	Deivert	Milwaukee	Pittsburgh	Waterbury
Boston	Detroit	Minneapolis	Providence	
Chicago	Houston \dagger	Newark	Rochesteri	(†salas
Cincinnat	Indianapolis	New Orleans	St. Louis	offict only)

の
 Soctronce
 $\pm 0.01 \%$ AC Regulation!

That's the degree of accuracy attained by Sorensen's new Model 1001 AC Line Voltage Regulator!

GENERAL SPECIFICATIONS

Heretofore, the closest regulation in commercially available regulators has been $\pm \mathbf{0 . 1} \%$, regardless of manufacturer or circuit approach. Now, Sorensen's continuing study and design refinements have produced a super-accurate regulator - the Model 1001 - as a standard catalog item.

\quad Load range	$0-1000 \mathrm{VA}$
Input voltage range	$95-130 \mathrm{VAC}, 1 \phi, 55-65 \sim$
Load P. F. range	0.7 lagging to 0.95 leading
Output voltage	$115 \mathrm{VAC}, 1 \phi$ (adjustable from $110-120$ volts)
Distortion	3% max.
Time constant	0.1 seconds
Regulation aceuracy	$\pm 0.01 \%$

The accuracy is guaranteed at room temperature, for a resistive load, an input variation of $\pm 10 \%$, and over a two-to-one load change. For all other conditions within the specifications, the Model 1001 has a proportionate amount of accommodation.
*
Isofronics is a trade marked word pertaining to the electronic regulation and control of voltage, current, power, or frequency.

Not thate extria features

- Combination twist-lock and double-T receptacle, or, output terminals to eliminate contact resistance.
- Three-function output switch for

1 Normal regulator functioning.
2 Operation with integral semi-fixed resistance in place of potentiometer.
3 Direct load connection with the control diode for regulation of voltages other than 115 volts.

- Only FOUR vacuum fubes and NO relays are used.
- All tube filament voltages are regulated for long dependable life.

RELAYS and CONTACTORS

for A-C and D-C Automatic Control Panels

Fifty ampere Contactor in genaral purpose Type 1 Enclosure.

Do you need small relays from one to eight poles . . . or contactors up to 900 amperes? You will find these units, and many more, in the AllenBradley line, factory-tested for millions of maintenance -free operations.

Type $B X$ universal relays have interchangeable normally open and normally closed contacts. No assembling to change from normally open to normally closed contacts. A few of the relays in the Allen-Bradley line are illustrated above.

Write for Bulletins 700 and 200 .

1. Type BX Universal A-C Relay-in Enclosure
2. Type BM Mechanically Held Re-lay-No Hum
3. Type CL Low Coil Current Relay
4. Type BA 3-Wire Thermostat Relay -Open
5. Type BX 8-Pole Universal RelayOpen
6. Type B 2-Pole A-C Relay-Open
7. Type BX Universal A-C RelayOpen
8. Type BM Mechanically Held Re-lay-Open
9. Bulletin 202 2-Pole D-C 25-Ampere Relay

Allen-Bradley Company, 110 West

Greenfield Ave., Milwaukee 4, Wis.

ALLEN-BRADLEY

 RELAYS • RESISTORS

Reeves saves space in its Electronic Brain... with IRV=O-LITE Tubing

The Reeves Electronic Analog Computer (REAC) saves plenty of man-hours in performing complex calculations. And in this Electronic Brain's complicated wiring system, shielding and terminal labeling are done exclusively with IRV-O-LITE•XTE-30 Plastic Tubing-saving plenty of space.
XTE-30's high dielectric strength of $1,000 \mathrm{vpm}$ (dry) frequently permits the use of thinner-walled tubing. Where space is at a premium, follow the example of Reeves and hundreds of other manu-facturers-use XTE-30!
You get these other advantages, too, with XTE- 30 Plastic Tubing: high mechanical strength: lasting flexibility; excellent chemical and moisture resistance.
XTE-30 comes in a standard range of sizes from .022" to $2^{\prime \prime}$ ID and

Look tef

even larger for special applications. Six contrasting colors simplify

 Sond this convenient coupon now
 Irvington

Irvington 11, New Jersey
Plants: El Monte, California
Hamilton, Ontario, Canada

DISTORTION READINGS

Fast-operating $-h p$ - analyzers give you accurate, dependable distortion and wave form measurements at appreciable savings in engineering time. $h p$ - instruments shown here provide complete coverage between 20 cps and 20 kc ; they are basic equipment in laboratories, radio and television stations and on production
lines everywhere. Each instrument has the traditional -hp-family characteristics of simple operation, minimum adjustment, independence of line voltage or tube changes, generous overload protection and sturdy construction from quality components. For complete information, see your-hp-field engineer, or write direct.

For TOTAL DISTORTION MEASUREMENTS

Figure 1. Rejection Characteristics, hp- $\mathbf{3 3 0}$ series
-hp- 330B DISTORTION ANALYZER (left) is an unusually versatile instrument offering fast, accurate measurement of distortion values as low as 0.1% at any frequency between 20 cps and 20 kc . The equipment also quickly determines voltage level and power output, measures amplifier gain and response, measures audio noise and hum (direct readings), determines unknown audio frequencies and serves as a high-gain, wideband, stabilized amplifier.

This equipment is actually three instruments in one. It includes a high-quality 20 db amplifier with less than 0.1% distortion, a tunable rejection filter offering almost infinite attenuation at any one frequency (see Figure 1), and a wide range, high sensitivity VTVM offering flat response from 10 cps to 100 kc . All of these elements are usable separately, and the amplifier may be cascaded with the VTVM to measure voltages as small as $100 \mu \mathrm{v}$.

For BROADCAST MEASUREMENTS

-hp- 330C DISTORTION ANALYZER, for FM measurements, is identical with -hp-330B except that indicating meter movement has VU ballistic characteristics meeting F. C. C. requirements for FM broadcasting.
-hp- 330D DISTORTION ANALYZER is designed for both AM and FM measurements. It includes an AM detector to rectify AM carrier, plus meter movement having VU ballistic characteristics meeting F.C.C. requirements for FM.

HEWLETT-PACKARD COMPANY
2371 A PAGE MILL ROAD - PALO ALTO, CALIFORNIA, U.S.A.
FIELD ENGINEERS IN PRINCIPAL AREAS
Expori: Frazar \& Hansen, Lid., San Francisco, New York, Los Angeles

Complete Coverage

20 cps to 20 kc

For MEASURING INDIVIDUAL WAVE COMPONENTS

-hp- 300A HARMONIC WAVE ANALYZER (right) is a selective voltmeter measuring the value of individual components of complex waves. Its variable selectivity is the key to its speed and versatility of operation. When wave components are close together, a unique selective amplifier can be narrowed to accept only desired components. When components are far apart, selectivity may be broadened to speed measuring without sacrificing accuracy. This feature is also important when measuring waves (such as in sound tracks) where some FM is present. The equipment is also ideal for analysis of noise, broadcast amplifier and network characteristics, recording devices, rotating machinery, hum and for all types of audio distortion measurements.
$-h p-300 \mathrm{~A}$ is direct reading, covers the audio spectrum from 30 cps to 16,000 cps, and makes possible full-scale readings with inpurs of 0.001 to 500 volts. Selectivity may be varied between limits shown in Fig. 2.

For TRANSIENT and FREQUENCY RESPONSE

-hp- $210 A$ SQUARE WAVE GENERATOR provides a convenient, rapid method of determining transient and frequency response in a single measurement. It is widely used for testing receivers, video amplifiers, networks and transmitters; to measure time constants or provide a time base; to check cathode sweep circuits, indicate phase shift, transient effects or frequency response, to generate harmonics or control electronic switchers.
The 210 A is an excellent, easy-to-use source of square waves for production line tests and laboratory use. Highquality square waves are generated over frequencies from 20 cps to 10 kc , and the equipment provides usable square waves up to 100 kc .

LOW COST DISTORTION ANALYZERS

-hp- 320A/B DISTORTION ANALYZERS are simple, lowcost devices for determining total harmonic distortion in audio frequency apparatus. They are particularly useful for high-speed production tests. - $b p-320 \mathrm{~A}$ operates at two fixed frequencies: 400 and 5,000 cps. $-b p$ - 320 B operates at five fixed frequencies: $50,100,400,1,000$ and $5,000 \mathrm{cps}$. Both models require an external detector.

153		eycr
	Figure 2. Selectivity, hp-300A	
analyzer	PRIMARY USES	PRICE
-hp. 300A	Wave form analysis. $\quad 30$ cps to $16 \mathrm{kc} \quad$Variable selectivity: measuring range 1 mv $10500 \mathrm{r} .5 \%$ occuracy.	\$625.00
-hp-320A	Measures total hor. manic distortion ot 2 fixed frequencies.	\$75.00*
-hp-320B	Measures total har- monic distortion of o fixed frequencies.$\quad 50,100.400 \mathrm{cps}$; $\quad 1,5$ and $7.5 \mathrm{kc} \quad$ Same as above.	\$150.00*
-hp. 3308	Meosures total dis- Tortion, frequency runoble.$\quad 20 \mathrm{cps}$ to $20 \mathrm{kc} \quad$Includes input amplifier and VTVM	\$395.00 \dagger
-hp-330C	Similor to 3308.For FM broodcastmeosurements. $\quad 20$ cps to $20 \mathrm{kc} \quad$VTVM has special characteristics to meet F.C.C. requifements.	\$425.00 \dagger
-hp. 3300	Similer to 3308. $\quad 20 \mathrm{cps}$ to $20 \mathrm{kc} \quad$includes $A M$ detector and special meter to meet F.C. C. requirements.cast measurements.	\$410.00t
	SQUARE WAVE GENERATOR	
-hp. 210A	For rapid determina. tion of wansient and frequency response. $\quad 20 \mathrm{cps}$ to $10 \mathrm{kc} \quad$ Output 50 v . peakkto-peak. 1,000	\$150.00*
Rack mounting available of \$ $\$.00$ exta cost.		
Dato Subiect to Change Without Notice. - Prices f.o.b. Palo Alto, California.		

Complete Coverage

MSABAIIE

 A.tanter
VOLTAGE REGULATORS

Two types of STABILINE Automatic Voltage Regulators are offered by The Superior Electric Company to meet the requirements of maintaining constant a-c voltage to electrical equipment.

INSTANTANEOUS ELECTRONIC

Type IE is a completely electronic unit with no moving parts. It provides almost instantaneous correction of line voltage or load changes. Waveform distortion never exceeds 3 per cent. Output voltage is held to within ± 0.1 per cent of nominal for wide line variations; to within ± 0.15 per cent of nominal for any load current change or load power factor change from 0.5 lagging to 0.9 leading. Type IE is versatile in application finding wide use in laboratory work, on test lines and as a component of other equipment where the most exacting voltage regulation is necessary. There are 28 standard models for 115 and 230 volts, 50 or 60 cycles, single phase operation ranging in capacity from $1 / 4$ to 5 KVA . Special units are available for higher frequency operation . . . to meet government agency specifications . . . or for unusual applications.

ELECTRO MECHANICAL

Type EM is an electro mechanical unit with a very sensitive detector controlling a motor-driven POWERSTAT variable transformer which feeds a buck-boost auxiliary transformer. Its outstanding advantages are zero waveform distortion and high efficiency. Type EM is most often used in the control of industrial loads. However; the demand of today's electronic equipment for constant voltage with absolutely zero waveform distortion necessitates the incorporation of a type $E M$ as an integral part of the assembly. Type EM is offered in standard models for 115, 230 and 460 volts, 50 and 60 cycles, single and three phase duty in ratings from 2 to 100 KVA. Special units can be designed for higher frequencies, for conformance to government agency requirements and for individual needs.

FOR INFORMATION ON STANDARD STABILINE AUTOMATIC VOLTAGE REGULATORS SEND FOR BULLETIN S351
COMPLETE WITH ENGINEERING DATA, PHOTOGRAPHS, RATINGS, DIMENSIONS AND DIAGRAMS.

20I thure ave, bristol, connecticut
MANUFACTURERS OF POWERSTAT VARIABLE TRANSFORMERS, STABILINE AUTOMATIC VOLTAGE REGULATORS, VARICELL D.C POWER SUPPLIES, VOLTBOX A-C POWER SUPPLIES, SUPERIOR 5. WAY BINDING POSTS, POWERSTAT LIGHT DIMMING EQUIPMENT.

$1180-711$
 CORPORATION

E3-LW TERMINAL
"E-Series terminals are applicable on MIL require ments and will withstand thermal shock, vibrations, mechanical strains, and excessive pressures with no impairment of the seal or other functional character. istics. E-3LW terminals are now being used at 1000 psi static oil pressure and under go 5000 psi tests.

1/4" SHAFT WATERSEAL BUSHING "Rotary Waterseal Panel Assemblies, with GRAF-SIL Packing Glands, have an ex cellent five year customer history on gas filled pressurized components. They are available for $1 / 4 "$ shafts and for potentiometers and switch bushings."
 rejects resulting from breakage, strains, cracks, etc. Each NEO-SIL compenent is pressure checked at 25 psi -m fo meet militory requirements and as appligd ho our unify, NfEO-Sil rublor whll resist abusive temperature cycling, salt wator, most acids and alkaliss, and withstand high pressures and vacuums."?
"In addition to the items illustrated above, NEO-SIL offers many other components, such as Hermetieally Sealed Fuse Holders,-Octal
 Cables,-Hermetically Secled Line Cords With Plugs For Eüropsan use, Meter Gaskats, Panel Gaskets, Adapters IU.S. to Continentall, Coil Forms, Crystal Coniacts and ofthes melded bakelite and NEO-SIL rubunits."
"Memmerically seafed Fux Nordars are awcilaibh for 3-AG and 4-AG fuses. These units are cempletely sealed from mointure with or without-the cap or fuse inserted and are applicable for use on vacuum ar gas filled units."

Your ypecial problenee sut solicites.

$180-711$

26 CORNELSSON AYE. JERSEY CITY 4, N. J.

LABORATORY for ELECTRONICS, INC.

Founded in 1946, Laboratory for Electronics has grown ever since in size, experience and creative ability. As prime contractors for the United States Government on important classified projects, the company pioneered in the development of many new and advanced electronic devices. Soon Electronic Equipment will be ready for commercial distribution . . . research and engineering have been underway for years . . . production has now started. Look for Laboratory for Electronics advertising on your desk and Laboratory for Electronics salesmen at your door. The news they bring to you will be interesting and important.

LABORATORY

43 LEON STREET BOSTON 15, MASS.

To design Electronic Equipment that must be produced quickly and in quantity, make Your model with Klden Basic Chassis and " 20 " Packages. Save vital engineering and planning time - machine and tool hours - critical material and manhours.

(1) organize circuits QUICKLY FOR SYSTEMATIC LAYOUT AND CONSTRUCTION

Schematics of most all electronic equipment can be broken down into circuit blocks of logically associated functions. These functional circuit blocks can be mounted readily either in the Alden " 20 " plug-in packages or Basic Chassis unit. The tube sockets and associated components lay out quickly on full scale Unit Planning Sheets for mounting on terminal cards. These special pre-punched, multi-hole terminal cards have wide flexibility to take an infinite variety of circuit variations. Both sides of card can be used to obtain maximum component density area. Using the Unit Planning Sheets, functional circuit units - components and housings - are all planned in one step.

For Smaller Units Alden "20" Plug-in Packages

Here is a plug-in package unit using the above method of converting schematic into finished as sembly quickly. Simply mount the completed terminal card sub-assembly on the Alden " 20 " Non Interchangeable base, dip soldering the leads and adding cover or housing and handle . . . In opera ion, visual or instrument checks are easily made - if trouble occurs doubtful units are quickly isolated - these units easily unplug and a compre hensive inspection made. Spare units can be plugged n so equipment doesn't have to be inoperable while repairs are in process.

20" Non-Interchangeable Base

(2) Get the most matural, EASY SUB-DIVISION OF LABOR IN MANUFACTURE

Solder terminals and sockets quickly rivet to Alden terminal card according to layout on Unit Planning Mineet. Components snap into the special Alden Miniature Terminals which hold them for solder. sary.- - With all tube sockets and their associated components mounted on one card - the wiring and soldering of circuits is an open, easy-to-work sub-assembly operation.

Terminal cards have been designed to accommodate tremendous number of circuit variations - to make neat tube and component sub-assemblies with a minimum of wiring.
"20' Rack and Chassis Mounting Sockets

(3) insure the lowest OPERATING AND SERVICE COSTS IN FINAL EQUIPMENT

The ALDEN BASIC CHASSIS UNIT is rapidly completed by mounting terminal cards into the chassis - soldering unit cables and making connections to Alden Color Coded Back Connectors and detachable front panel Completed unit is asily piloted front panel. Completed unit is Unit Lock. Open sided construction, aided by the neat direct front and back connections, gives instant accessibility for rapid circuit checks and service. Alden Terminal Card System means minimum of intercabling - but even this cabling can be laid out easily and proceed as simple sub-assembly. Open sided chassis construction makes cable easy to wire to front panel, terminal cards and back connectors.

Back Connectors - 462 Min Series

The Alden Back Connectors are units that can be discretely positioned on the back of the chassis isolating lines with incompatible voltages, currents, or frequencies. This design insures accessible solder terminals for soldering - avoids rat nests of congested conventional back connector wiring. - Color coded, the Alden back connectors provide beautiful operational or service check points for all leads to and from chassis.
Hinged front ponel design of chassis - allows theostats, indicator lights, jacks, etc. to be mounted on panel as another easy-to-work sub-assembly. This panel attaches easily to chassis -is wired - swung up and fastened with Alden Target Screws.
Assembled - Basic Chassis simplifies the operation of your equipment - Slashes service and mainte. nance time. Smooth, positive insertion and removal of the chassis is provided by the Alden "Serve-A-Unit Lock

TO EET STARTED QUICKLY! 'phone our New Products Director for an appointment to visit our plant - Wire for a sample Basic Chassis at $\$ 40.00$ or an Open and Closed Alden " 20 " Plug-in Package at $\$ 10.00$ or write Dept. E for Booklet:"Basic Chassis and Components for Plug-in Unit Construction".

ALDEN PRODUCTS COMPANY

117 North Main Street - Brockton . Massachusetts NA-ALD)

A COMPLETE APPROACH TO SINGLE TRANSIENTS and PULSES of low-repetition rate

For visual observation of pulses and single transients, the Type 294-A Cathode-ray Oscillograph provides high light-output and wide-band response. For careful study and permanent reference of these signals the Type 295 Oscillograph-record Camera records writing rates as high as 35 inches per microsecond.

PULSE RESPONSE FREQUENCY RESPONSE SENSITIVITY

This oscillogram illustrates the double exposure tech. nique. Binocular viewing in the Type 295 facilitates proper positioning for close comparison.

The pulses in the oscillogram at left are identical pulses of 0.25 microsecond width. The first pulse was applied through the Y-axis amplifier of the Type 294-A, and the second, directly to the vertical deflection plates. A comparison of their waveforms illustrates the excellent transient response of the Y -axis of the Type 294-A.
Response of the Y-axis amplifier to a rise time of 0.01 microsecond or less is 0.03 microseconds max. Notice that a minimum of overshoot (less than 2%) is introduced by the amplifier.
For the study of sinusoidal trequencies, the response of the Type 294-A extends from 10 cps . to 12 megacycles (down 30%). Sensitivity of the Y -axis, through the amplifier, is 0.42 peak-to-peak volts per inch.

avallable oeflection LIGHT OUTPUT SIGNAL DELAY

Time" and "Bulb" expo. sures may be taken with the Type 295. And provision is made so that equipment may be triggered simultaneously with shutter opening. With appropriate accelerating potentials, the Type 295 is capable of recording single transients in excess of 280 inches per microsecond.

The Type 294-A provides undistorted vertical deflection of 1.3 inches or more for both positive and negative pulses; and 2.75 inches for symmetrical signals. The high light-output of the Type $294-\AA$ increases the value of the large, vertical deflection provided by the Y-axis amplifier. This is illustrated by the high visibility of the rise and decay of the pulse shown at lelt. Here, the Type 5XP- Cathode-ray Tube of the Type 294-A was operated at 12 kv . However, where maximum light output is not required, the accelerating potential may be lowered to 7 kv by means of a switch. At this level of operation, of course, the available undistorted deflection is increased.
To insure the complete display of fast pulses such as those at left, the Y-axis includes $\alpha 0.25$ microsecond signal-delay line.

Complementing the Y-axis performance of the Type 294.A. sweep durations are continuously variable from 0.1 second to 3 microseconds. BY increasing the length of the sweep, speeds greater than 0.25 microsecond per inch may be obtained, thus providing more detail to facilitate the study of short-duration pulses.
Calibration of the sweeps of the Type 294-A is accomplished with vertical marks occurring at intervals of 100,10 , 1 , or 0.1 microseconds. In the oscillogram at left, the 0.1 microsecond markers appear mixed with the signal on the vertical axis. Time measurements may also be made by double exposure of first, the signal, and second, the timing markers.

G A \& F Carbonyl Iron Powders are unique ... This new book is unique . . . Here is the most comprehensive treatment ever given to the characteristics and applications of Carbonyl Iron Powders.(The 3-page bibliography alone is a valuable addition to your reference library.)

This book was written for the manufacturer or engineer who wants a maximum of facts with a minimum of verbiage. 80% of the
story is told with photomicrographs, diagrams, performance charts and tables. Established applications are fully covered; new applications are suggested. Ask your core maker, your coil winder, your industrial designer, how G A \& F Carbonyl Iron Powders can improve the performance and reduce the cost of the equipment you manufacture. Write us - without obligation for your copy of this new book. Kindly address your inquiry to Dept. 11.

ANTARA. CHEMICALS

Designed Right

Built Right

Carboloy

 Alnico permanent magnets

Delivered Right on Time

and with

Energy-Potential Right

Do you need permanent magnets . . . to improve a meter, motor, instrument or other essential product? To modernize a chuck or holding assembly? Or for one of the many communication applications?
Then, whether cast or sintered . . . specially designed or from standard stock . . . in blank, assemblies or subassemblies, you'll find that Carboloy Alnico permanent magnets are right for you.
For Carboloy magnet engineers, backed by the very men who first developed permanent magnets, expertly design magnets to your exact specifications . . . or select the proper magnet from among the many thousands already designed and in stock.
Strict Carboloy quality controls and expansive facilities assure you better-built magnets, too. Each tops in quality . . . the absolute in uniformity . . . and each guaranteed to meet or surpass the industry's external energy minimum. And, once your magnet order has been accepted and scheduled, it is delivered right on the dot, as promised.
If you need help in a hurry on permanent magnets, contact Carboloy magnet engineers now. Turn your problem over to them. Send specifications, or write forStandard Stock Catalog PM-100.

$C A R B O M O T$
 DEPARTMENT OF GENERAL ELECTRIC COMPANY
 11139 E. 8 MILE BLVD., DETROIT 32, MICHIGAN
 FIRST IN MAN-MADE METALS FOR BETTER PRODUCTS

HERE ARE THE FACTS AND FICURES:

CONTACTS: 10 amp . standard. 24 volts D.C., 115 volts A.C.
15 amp . contacts available.
SENSITIVITY: D.C.: 4 pole 1.5 watts
2 pole .7 watts
A.C.: 4 pole 5 volt amperes 2 pole 2.5 volt amperes
Can also be furnished in 6 pole AC and DC up to 4000 Ohms.

COIL: To 115 volts D.C., 230 volts A.C.
NOMINAL HEAT RISE: D.C. $30^{\circ} \mathrm{C}$ above room ambient
A.C. $45^{\circ} \mathrm{C}$ above room ambient

MAX. INPUT FOR 85° RISE: D.C. 5 watls
A.C. 11 volt amperes

MOUNTING: Base or end mounting
WEIGHT: 4.5 or. 4 P.D.T.
WEIGHT HERMETICALLY SEALED: 7.7 oz.
DIMENSIONS: Open Relay- $21 / 16^{\circ}$, $11 / \mathbf{s}^{\prime \prime}, 21 / 16^{\circ}$
Sealed Relay- $31 / 3^{\prime \prime}, 11 / 2^{\prime \prime}, 23 / 16^{\prime \prime}$
Overall Mounting Flange- $31 / 3$
Center to Center Mounting Holes- $\mathbf{2 ~}^{11 / 16^{\circ}}$

A Quality Reloy

The new Allied PK Relay is designed to offer wersatilisy in a power relay where quality and low cost are factors. Bes des stability in operation its seliability allows a range in apocations from high quality instruments to vending machines. The Fra relay will comply with Unde-writers' Laboratories requizementsand can also be supplied hermerically scalcd.
Bulletin. PK gives cemplete defails. Send for your copy today.
Be sure to send for your copy of Allied's Relay Guide. It gives the enginecring data for 2: Allied relays in a concise tabur ar form for casy reference.

ALLIED CONTROL COMPANY, INC. 2eastend avenue,newyork21,N.y.

 chinery that turns out each item exactly the same as the last.

Our equipment, contrived to serve the diverse needs of the European market, is versatile enough to take on the problems of American designers, however complex or in whatever volume.

Our large Research Department stands ready to give immediate technical assistance. Why don't you submit your model specifications to us and let us quote you prices for volume production, based on our study and previous wide experience?

A glance through our descriptive brochure, sent to you without obligation, will show you the characteristics of the hundreds of standard parts we have already turned out for discriminating manufacturers.

Loboratoire Industriel de Physique Appliuvée
 67. Rue M. A. - Colombier - BAGNOLET (Seine) FRANCE

\qquad
\qquad * ATtRACTIVE PRICES \star HIGHEST STANDARDIZED QUALITY \star RELIABLE ON TIME DELIVERY

ARENA

ALL TYPES OF VARIABLE CONDENSERS FOR RADIO BROADCASTING AND ALL ELECTRONICS APPLICATIONS BY THE
 GREATEST PRODUCTION IN EUROPE

AU D AX

ALL TYPES OF LOUDSPEAKERS BY
 THE MOST IMPORTANT PRODUCTION ON THE CONTINENT

SAFCO-TREVOUX

 CAPACITORS OF ALL TYPES BY THE MOST IMPORTANT SPECIALIZED PLANTS ON THE CONTINENT

VEDOVELLI

TRANSFORMERS AND COILS FOR RADIO - TV. AND ALL ELECTRONICS AND INDUSTRIAL APPLICATIONS

DEAL WITH THEIR

High stability Resistors

Actual Size

Very low noise level and temperature coefficient 1/4, 1/2, I watt and $2-3$ watts models.
Available from $\pm 10 \%$ to $\pm 0,5 \%$ tolerance.
Noiseless Potentiometers

Available without switch and with multi-pole switch . Every variation curve obtainable.

Ask for free catalog
Name
Address
City
State
Distributor for U.S.A.:
ARNHOLD CERAMICS INC.
II-54, 44 th. Drive
LONG ISLAND CITY-I
N. Y.
U.S.A.

RADIAC S. A.
 206, Rue Lafayette, PARIS-Xe (FRANCE)
 CABLES: SARADIAC-PARIS

member federation rationale bes syndicate bes industries radioelectriques et electroniques

in the Circuits

You Know Your Products are PROTECTED....

Long ago, the makers of BUSS fuses realized that you never know when a fuse might have to operate to protect expensive equipment. It might be the day installed... or weeks, months . . . even years later, in the hands of someone thousands of miles away.

That's why, for 37 years, BUSS has emphasized quality . . . finding new ways to make better fuses . . . and making new test equipment to be sure every fuse is up to standard. Today, every BUSS fuse is electronically tested for correct electrical characteristics . . . for size, straightness of caps and other physical properties.

These important safeguards make sure that you and your customers get the right kind of electrical protection. BUSS fuses are made to protect - not to blow needlessly.

When your problem involves electrical protection, call in a BUSS Sales Engineer. He is at your service - to help you select or design the fuse best suited to your needs.

[^1]

VERSATILE G-E AMPLISTATS PROVIDE HIGH-GAIN DC AMPLIFICATION

1-va amplistat

40-va amplistat

Educational amplistat

- INSTANT STARTING—No warm-up time
 - STATIC OPERATION—No moving parts, no maintenance
 - DURABILITY—Unaffected by moderate shock or vibration
 - LONG LIFE—Will operate indefinitely without attention

As part of a continuing effort to better serve the electronics industry, General Electric has recently enlarged its line of amplistats (self-saturating magnetic amplifiers). These remarkable units, for amplifying small d-c signals from relatively low-impedance sources, can be profitably applied to many control and instrumentation circuits both in conjunction with, and in place of, electronic equipment.

At present, G-E amplistats are available in three component ratings and one "educational" or laboratory research device. G-E engineers will be glad to aid and advise in developing complete amplification systems around these products.
1-VA AMPLISTAT is easy to connect and remove because it's mounted on a standard tube-type base. Maximum power gain is over 2000 watts per watt. Response time is $1 / 3 \mathrm{sec}$ or less. Operates directly on 40 -volt, 60 -cycle a-c. Dimensions, $2 \times 2 \times 25 / 8 \mathrm{in}$. high including octal base. Weight, 11 oz . Further details in Bulletin GEC-784.
40-VA MODEL has selenium rectifiers and four separate control windings. Maxi-
mum power gain is $15,000 \mathrm{w} / \mathrm{w}$. Response time is 2 sec , corresponding to maximum-gain conditions. No special power supply-operates directly on 115 volt, a-c. Dimensions, $5 \times 73 / 4 \times 45 / 8$ in. Weight 7 lb . See Bulletin GEC- 790.
400-CYCLE UNITS are push-pull output, d-c linear amplifiers with three separate d-c input windings. Designed as the first and second stages for thermocouple signal amplifiers meeting aircraft requirements, they're also applicable to many other amplification problems.

Available for power supplies rated 15 or 30 volts, they have a maximum power gain of $2050 \mathrm{w} / \mathrm{w}$. Response time ranges from 0.0036 to 0.0177 sec . Output ratings, 20 to 30 milliamp. Dimensions, $3 \frac{3}{32} \times 2 \frac{9}{16} \times 23 / 4 \mathrm{in}$. Weight, 14 oz . For further information write to Special Products Sales, General Electric Company, Schenectady 5, N. Y.
"EDUCATIONAL" AMPLISTAT is useful in laboratories for experimental work and for studying new circuits. Operates directly from 115 -volt, 60 -cycle power. Gain is up to 25,000 watts per watt. Output is 1.0 amp continuous. Get more details in Bulletin GEC-599.

400-cycle amplistat

DIGEST

TIMELY HIGHLLGHTS ON G-E COMPONENTS

HOLD VOLTAGE STEADY—OR ADJUST IT PRECISELY— WITH G-E INDUCTROLS

For precise and dependable stepless voltage regulation or variation it's G-E inductrols. These singlephase units are available in ratings from 3 to 240 kva for circuits 600 volts and below. Motor-operated units, used with automatic control,

G-E SELSYNS INDICATE POSITION —CONTROL MOTION

G-E selsyn transmitters and receivers provide automatically synchronized indication or control at one location with respect to an initial remote reference point. Built for accurate, economical, continuous service, they can be used to indicate angular or linear movement, or to control the motion of a device by controlling its actuating element. Two types are availablegeneral purpose, for accuracy within ± 5 deg; and high accuracy, ± 1 deg. See Bulletin GEA-2176.

CONTROL WIRING SIMPLIFIED WITH G-E TERMINAL BOARDS

You get positive electrical connections without soldering using G-E Type EB-6 terminal boards fabricated from strong, durable molded Textolite* parts. To facilitate marking, reversible marking strips are white on one side, black on the other. Boards have 4 to 12 poles. Rated $30 \mathrm{amp}, 600$ volts. Complete details are contained in Bulletin GEA-1497.
*Reg. Trade-mark of General Electric Co.
maintain voltage within narrow limits regardless of line-voltage variation. Hand-operated models provide smooth and precise voltage adjustment for instrument calibration, rectifier control, and similar uses. Check Bulletin GEC-795.

A partial list of the thousands of items in the complete G-E line. We'll tell you about them each month on these pages.

Components

Meters and instruments	Timers
Capacitors	Indicating lights
Transformers	Control switches
Pulse-forming networks	Generators
Delay lines	Selsyns
Reactors	Relays
Thyrite	Amplidynes
Motor-generator sets Amplistats	
Inductrols	Terminal boards
Resistors	Push buttons
Fractional-hpmotors	Glass bushings
Rectifiers	Dynamotors
Development and	
Production Equipment	
Soldering irons	
Resistance-welding control	
Current-limited high-potential tester	
Insulation testers	
Vacuum-tube voltmeter	
Photoelectric recorders	
Demagnetizers	

General Electric Company, Section A667-18 Schenectady 5, N. Y.

Please send me the following bulletins:
Indicate: $\sqrt{ }$ for reference only
X for planning an immediate project
() GEA-1497 Fabricated Terminal Boards
() GEA-2176 Selsyns
() GEC-599 Educational Amplistal
() GEC-784 One-Volt-Ampere Amplistat
() GEC. 790 Forty-Volt-Ampere Amplistat
() GEC. 795 Single-Phase Inductrols

Name

Company
Address
City State

general electric

Single and multiple deck selector switches
by Ucinite

The UCLNITE CD.
Newtonville 60, Mass.
Division of United. Carr Fastener Corp.

2 WALDES TRUARC RINGS REPLACE COTTER PINS AND WASHERS... SAVE ${ }^{\$} .0219$ PER UNIT

OLD WAY

Cam shafl for breathing roll ironer mechanism required: drilling 2 holes; 2 cotter pins; 2 washers. Inaccuracy in locating holes for cotter pins coused frequent rejects.

Using 2 Waldes Truarc "E" Retaining Rings in their Automatic Cabinet Ironer, saved The Horton Manufacturing Co., Fort Wayne, Ind., $\$.0219$ per unit. Truarc Rings saved 50% in assembly time . . . cut down on rejects . . . increased efficiency of the unit...eliminated risk of damage to hands and clothing of workers in assembly.

Redesign with Truarc Rings and you, too, will cut costs. Wherever you use machined shoulders, bolts, snap rings, cotter pins, there's a Waldes Truarc Retaining Ring designed to do a better job of holding parts together.

Truarc Rings are precision-engineered...quick and easy to assemble and disassemble. Remain circular to give a never-failing grip. They can be used over and over again.

Find out what Truarc Rings can do for you. Send your blueprints to Waldes Truarc engineers for individual attention, without obligation.

For precision internal grooving and undercutting . . . Waldes Grooving Tool.

the truth about Dow Corning Stilicones...

. . . is more fantastic than the patter of the pitchman or the spiel of the barkers that doubled in advertising and sales a generation ago. For example:

- Silicone (Class H) electrical insulation makes motors and other kinds of electrical equipment last 10 times as long as they ever did before.
- These same insulating materials are used to double the power per pound ratio in electric machines.
- Silastic,* the Dow Corning silicone rubber is used to seal hot air at $600^{\circ} \mathrm{F}$., hot oil at $350-400^{\circ} \mathrm{F}$., limit switches and bomb bay doors at $-100^{\circ} \mathrm{F}$.
- Dow Corning Silicone oils and greases make permanent lubrication a practical reality.
To many engineers and executives, such silicone facts as these still sound too good to be true. That's why we have built and assembled 16,000 pounds of demonstration units and typical applications to prove that our silicone products will do all that we claim for them. This is the first comprehensive Silicone Exposition ever assembled. Previewed in Washington, D. C. during the week of October 22nd, this exhibit will be given private showings in major industrial centers across the country.

A GRADE FOR EVERY NEED!

Available in diameters, wall thicknesses and lengths to meet regular or special adaptations.

CLEVELITE

Grade E........Improved post cure fabrication and stapling. Grade EX Special grade for TV deflection yoke sleeve. Grade EEImproved general purpose.
Grade EEXSuperior electrical and moisture absorption properties.
Grade EEE Critical electrical and high voltage applications. Grade XAX Special grade for government phenolic specifications.

COSMALITE

Grade SP	Post cure fabrication and stapling.
Grade SS	General purpose.
Grade SSP	General purpose - punching grade.
Grade SLF	.Thin wall tubing - high dielectric and com

Grade SSPeneral purpose - punching grade.
Grade SLFThin wall tubing - high dielectric and compression strength.

CLEVELITE* and COSMALITE*
 LAMINATED PHENOLIC TUBING

meets the most exacting requirements of the electronic and electrical industries!

Whether to insulate the live electrical parts of a rectifier, a high voltage transformer, or any one of countless other applications . . . satisfaction is ensured.

For wherever physical strength, low moisture absorption, high dielectric strength, low loss and good machineability are of prime importance . . . the combined electrical and physical properties of CLEVELITE and COSMALITE are essential.

DEPENDABLE - ECONOMICAL • LONG LASTING Why pay more? . . . for the best call CLEVELAND

- Reg. U. S. Pat. Off.

The CLEVELAND CONTAINER $C O$.

NEW YORK AREA R. T. MURRAY, 604 CENTRAI AVE., EAST ORANGE, N.J.
NEW ENGLAND R. S. PETTIGREW \& CO., 62 LA SALLE RD., WEST HARTFORD, CONN. Chicago area plastic tubing sales, 5215 n. ravenswood ave, chicago

TYPE B DISCAPS

GMV By-Pass Series ${ }^{*}$

Type 8 DISCAPS are the finest high frequency by-pass capacitors available and are engineered to exceed guaranteed minimum capacity at $85^{\circ} \mathrm{C}$ with 250 applied V.D.C. Capacity change between room temperature and 5 C is only $+18 \%,-0 \%$. Availa standard capasities from . 001 MFD to .02 MFD and in a number of dual capacity types.

SPECIFICATIONS

POWER FACTOR 1.5% of 1 KC WORKING VOLTAGE 600 V.D.C. TEST VOLTAGE 1200 V.D.C. INSULATION. Durez Phenolic-Vacuum Waxed RESISTANCE Initial 7500 Megohms After Humidity 1000 Megohms LEADS. ... \#22 Tinned Copper 1.026 DIA. CAPACITY TOLERANCE

TYPE C DISCAPS

NPO and TC

Type C DISCAPS are ideally suited to coupling and funed cirevit applications. Their copacity will not change under voltage. Available in a wide range of capacities and temperature coefficients copacities and temperature to the RMA specifications for Class I ceramic condensers.

SPECIFICATIONS
POWER FACTOR
Less than. 1% at 1 Megacycle WORKING VOITAGE.... 600 V.D.C. TEST VOLTAGE 1200 V.D.C. INSULATION.

Durez Phenolic-Vacuum Waxed RESISTANCE . . . Initial 7500 Megotims After Humidity 1000 Megohms LEADS $\$ 22$ Tinned Copper (. 026 DIA.) CAPACITY TOLERANCE...
$\pm 5 \%, \pm 10 \%, \pm 20 \%$

TYPE D DISCAPS

STABLE CAPACITY

Specify Type D DISCAPS when a more stable capacity is required for coupling and by-passing filter networks. Available in a capacity range between 150 MMF and 5000 MMF. They feature a very small capatity change between $+25^{\circ} \mathrm{C}$ and capatity
$+85^{\circ} \mathrm{C}$

SPECIFICATIONS
POWER FACTOR. 1% of I KC WORKING VOLTAGE. 600 V.D.C. TEST VOLTAGE 1200 V.D.C. INSULATION.

Durez Phenolic-Vacuum Waxed RESISTANCE . . Initial 7500 Megohms After Humidity 1000 Megohms LEADS.. \#22 Tinned Copper 1.026 DIA. 1 CAPACITY TOLERANCE.
$\pm \mathbf{2 0 \%}$ of $+25^{\circ} \mathrm{C}$

ACTUAL SIZE hi-voltage DISCAPS

SEND FOR SAMPLES AND TECHNICAL DATA

RADIO MATERIALS CORPORATION
general Office: 3325 North California Avenue, Chicago 18, Illinois
FACTORIES AT CHICAGO, ILL. AND ATTICA, IND.
Two RMC Plants Devofed Exclusively to Ceramic Condensers

Faster gunnery for our "flat-tops"through electronics

Constantly faster and more accurate aerial attack upon aircraft carriers can only be answered in kind. Split-second gunnery is urgently demanded - and met through the miracles of electronics. Working closely with our Armed Forces for 33 years, Arma has developed the wealth of engineêring experience and production techmiques that plays an outstanding part in the production of these complex, compact, accurate instruments.

ARMA
 C O R P O R ATION

254 36th Street, Broolklyn 32, N. Y.
SUBSIDIARY OF AMERICAN EOSCH CORPORATION

ExCLUSIVE* ELECTRO TEC TECHNQues

insure closer folerances, absolute uniformity, and the ultimate in miniaturization

Electro Tec units are the product of an exclusive manufacturing technique that results in accuracy unattainable by conventional fabricating methods. In this process a plastic is moulded around the wire leads. Accurate machining reduces this blank to the proper shape, complete with grooves. Hard silver is deposited into the grooves by electroplating to produce the required rings. Final machining insures concentricity and dimensional accuracy. The result is one-piece, unitized construction with conducting rings of 60 to 70 Brinell hardness.
Diameters of these assemblies range from $.045^{\prime \prime}$ to $24^{\prime \prime}$ cylindrical or flat. Cross-sections may range from $.005^{\prime \prime}$ to $.060^{\prime \prime}$ or more. Rings are polished to a jewel-like finish and can be held to 4 micro-inches or better. Even the smallest sizes withstand a 1000 V.A.C. breakdown test. Most types easily withstand rotational speeds up to 12000 rpm .

ELECTRO TEC Assemblies are Specified by the Nation's
Leading Precision Instrument and Equipment Manufacturers for Proven Greater Dependability, Longer Life, Smoother Functioning.
The uniformly superior performance of Electro Tec slip ring and commutator assemblies in thousands of industrial and governmental applications has resulted in wide adoption of these component units by most leading manufacturers of precision instruments and equipment. Although these products provide improved performance and extra dependability, prices are strictly competitive. Write today for fully illustrated literature.

Products of precision craftsmanship by a new and revolutionary process

- ONE PIECE, UNITIZED CONSTRUCTION
- ABSOLUTE MINIMUM TORQUE FRICTION
- DIAMETERS FROM .045" TO 24.0"
- MINIMUM 1000 V.A.C. HIPOT INTER-CIRCUIT
- UNIFORMLY HARD SILVER RINGS PLATED INTO GROOVES ON PRECISION MACHINED ONE PIECE PLASTIC FORM
- SPECIAL SURFACE DEPOSITS PREVENT TARNISH, MINIMIZE FRICTION, BRUSH NOISE AND PRACTICALLY ELIMINATE WEAR

[^2]

Bogue Magnetic Amplifiers
for
PRECISION CURRENT
CONTROL WITHOUT MOVING PARTS

Bogue Power Supplies for

CONTROLLED CURRENT \& VOLTAGE - OUTPUT REGULATED

TO 1\%, LESS THAN 1\% RIPPLE

Bogue Control Panels for

ALL TYPES OF PRECISION AUTOMATIC PROCESS AND ELECTRIC CONTROL

Bogue DC Generators

for
LOW RIPPLE
PRACTICALLY PURE
DC CURRENT

ACo - De

 $\mathbb{C} U R R E \mathbb{R T}$ its production and control that's where Bogue's outstanding engineering ability is best able to help you, today!Full control in one plant over the design of specialized equipment, plus extreme precision in production results in a quality of equipment not ordinarily available in an assembled unit.
The following high quality is available is Rogue-built power equipments: Practically pure DC supplies with voltage regulation and ripple held to within a small fraction of a percent . . . 1 KW to 150 KW ; AC supplies at frequencies np to 20 KC with voltage regulation and harrionic content held to within z small fraction of a percent ... 1 KW to 150 KW.
If you have a requirement along these lines, give us a call -engineers who are really experts in their chosen fields will be glad to discuss your problems.

BOGUE ELECTRIC MANUFACTURING CO.

Bogue 400 Cycle Power for

LABORATORY - PRODUCTION TESTING OF ELECTRONIC EQUIPMENT

Bogue Motor Alternators for CONVERTING DC POWER TO SPECIFIED FREQUENCIES OF ALTERNATING CURRENT

Only a complefe line answers all your electrical measuring requirements

The case of Mastic Tile Corporation demonstrates how the complete line of Westinghouse Instruments holds answers to your electrical measurement problems.

Mastic's problem was one of predetermining load on a Banbury Mixer motor in order to facilitate the operator's job and speed the mixing cycle. It was answered by the standard Westinghouse GY-40 Recording Wattmeter with proper choice of scale, current and potential transformers, and chart speed. In fact, so well did this standard instrument accomplish its job that final results show-a 15 percent reduction in mixing cycle time along with the elimination of damaging surge shocks which can now be anticipated and prevented by the machine operator.
Westinghouse will continue to give you a wider selection for every need . . . whether it be a-c or d-c current and voltage, single or polyphase circuits, watts or vars, frequency, power factor, synchroscopes, temperature indicators, ground detectors or synchrotie. You get assurance of quality too, because every applicable instrument . .

Meets A.S.A. Performance Requirements!

All Westinghouse Instruments are built to meet the rigid performance requirements of the American Standards Association. No more exacting guarantee of an instrument can be made. And you get . .

Competent Application Assistance!

Westinghouse Instrument Application Engineers are available to help you in selecting and applying the proper instruments for your application. Simply call your nearest Westinghouse office.
For complete information about Westinghouse Instruments write for Booklet B-4696, address: Westinghouse Electric Corporation, P. O. Box 868, Pittsburgh 30, Pennsylvania.

rou can be Sure. if its Westinghouse

INSTRUMENTS

Where would you go for help on springs with low relaxation at

Trutner and Boumans, Inc., Hillside, N. J., came to Inco.

They had designed a new type of television tube screen baker. But they needed a spring material to hold the cathode tubes on a hot air tube - a spring material that would stand up in the $750^{\circ} \mathrm{F}$. temperature of the oven.

INCO spring specialists studied the specifications and recommended .042 " Inconel " X " ${ }^{\circledR 8}$ wire. Ten months passed - in steady, round-the-clock service - and not a single failure was reported.

The same research and knowledge that enabled Inco engineers to solve this metal problem are available to you. And to help you save time in the design stages of your electronic products Inco has recently published a revision of "Inco Nickel Alloys for Electronic Uses."

It discusses in short form the characteristics of various nickel alloys and gives limiting chemical compositions.

With the aid of this valuable booklet, you may be able to find the alloy having the exact electrical, corrosion or heat-resisting characteristics you need. A glance at the pages reproduced here will give you an idea of the wealth of information contained in the 26 pages. And remember, if you don't find the alloy you need, you can always call on Inco's Development and Research Division for help.

THE INTERNATIONAL NICKEL COMPANY, INC.
twate fiof sexice JNCO

[^3]This view shows how the tube is placed on the spider which is held in place by an Inconel " X " spring.

Your letterhead inquiries are invited

Veede complete with its built-in counting mechanism, indicates the number of feet of antenna reeled in and out of certain types of military aircraft. Manufactured completely by Veeder-Root, including outside bakelite cover and box, this unit shows another imaginative application of the universal language of direct-reading Countrol.

Now if you, in any of your defense work,* have a counting problem, then you can count on Veeder-Root to help you in every possible way.

VEEDER-ROOT INCORPORATED
"The Name That Counts"
HARTFORD 2, CONN. - GREENVILLE, S.C. Montreal 2, Canada • Dundee, Scotland Offices and agents in principal cities

"Counts Everytbing on Eartb"

A BASIC TOOL

POCKET-SIZE: VOLT-OHM-MIL-AMMETER WITH SELF-CONTAINED RESISTANCE RANGES TO 3 MEGOHMS

1. Resistance Ranges from $0-3000$ Ohms (. 5 Ohm low reading) to 3 Megohms, self-contained. Also A.C.-D.C. Volts to 5000, 10 ranges; and 3 Direct Current ranges.
2. Enclosed Selector Switch, molded construction. Keeps dirt out, and retains contact alignment permanently.
3. Unit Construetion-Resistors, shunts, rectifier, batteries, are housed in a molded base integral with the switch. Direct connections without cabling. No chance for shorts.
4. Resistors are precision film or wire-wound types, each in its own compartment.

DNLY \&26.50-at your Distributor
Prices Subject to Change

FOR THE MAN WHO TAKES PRIDE IN HIS WORK

THE VARIED AND OFTEN UNUSUAL APPLICATIONS THAT HAVE BEEN FOUND FOR TOROIDS AND FILTERS IN MILITARY ELECTRONICS HAVE KEPT OUR ENGINEERING STAFF CONSTANTLY ON ITS TOES. EVERY DAY WE ARE CON. FRONTED WITH THE TECHNICAL PROBLEMS OF OUR CUS. TOMERS WHO ARE TRYING TO MEET THE DEMAND FOR SMALLER, LIGHTER AND MORE SERVICEABLE EQUIPMENT. FORTUNATELY OUR INGENUITY AND EXPERIENCE HAS SERVED US IN GOOD STEAD IN THE DEVELOPMENT OF FILTERS TO MEET THESE DEMANDS. CONSEQUENTLY IT IS WITH MORE THAN A LITTLE PRIDE THAT WE SEE OUR PRODUCTS SPECIFIED BY MORE AND MORE ENGINEERS WHO CANNOT BUT REALIZE THAT IN THE DESIGN OF QUALITY EQUIPMENT THE "BILL OF MATERIALS" SHOULD INCLUDE BURNELL PRODUCTS.

EXCLUSIVE MANUFACTURERS OF COMMUNICATIONS NETWORK COMPONENTS

TINY TYPE 85LPT

TUBULAR PAPER CAPACITORS

Fit anywhere!

Suitable for $85^{\circ} \mathbf{C}$. operation!

CAPACITANCE RANGE: .0001 TO . 5 MFD.
VOLTAGE RANGE:
200 TO 600 V., INCIUSIVE
Sturdily built in phenolicimpregnated tubes. Ends are plastic-sealed.

WRITE FOR COMPLETE LITERATURE
Representatives and Distributors
Throughout the U.S.A. and Canada
PYRAMID

[^4]
BUSINESS BRIEFS

By W. W. MacDONALD

SEMICONDUCTORS are being studied by 28 percent of the research personnel in one of the largest laboratories in our field, an indication of probable future importance of the subject. The metallurgical work going on in this laboratory and elsewhere aimed primarily at development of better transistors is, curiously, also proving of value in the development of better tube cathodes.

SPEAKING OF TUBES, the subject of reliability, to which we devoted so much space in this column a year or so ago, is once again bubbling to the surface. Cooperation between aviation customers and tube manufacturers at that time has since resulted in substantially better types for this class of service. So has cooperation between the military and tube makers.

Industrial users of tubes are aware of the work going on in many places to increase tube reliability. That's why the subject is found on so many current convention programs, and why requests for more information on more reliable tubes are swelling the mail of tube manufacturers.

IN-LINE READOUT, which might be defined as "digital indication in the simplest possible form," (or, still more simply, as "reading from left to right without ambiguity, like the mileage total on your automobile speedometer) is very much in the minds of many men who design electronic instruments.

Modern instruments such as frequency meters, counters and computers perform a wide variety of functions rapidly and with a high order of accuracy. Making them easier to read, regardless of whether they are used in the laboratory or on the production line, is the next important step.

MINIATURIZATION of military apparatus, and particularly electronic component parts, is making rapid progress. Several

TUBE RELIABILITY depends to a large extent upon how hard the ambidextrous little bottles are worked, aptly illustrated by this drawing from a Department of Defense booklet
readers have asked us what effect this trend will ultimately have on the design of commercial gear.

Some techniques are already being carried over from military to commercial equipment, while others seem too expensive. So we think that commercial apparatus of tomorrow will be smaller than it is today but not as small as its military counterpart.

AIR FREIGHT carries most of the $\$ 32,000$ mass spectrometers made by Consolidated Engineering despite the fact that the instruments are necessarily both bulky and heavy. Management says it saves money on packaging, that breakage is reduced, and that less time is required for adjustment following installation.

WE UNDERSTAND that RCA's Lancaster plant seals $500-\mathrm{kw}$ tubes at 4 o'clock in the morning to avoid dimming the town's lights. The whole output of the laboratory's largest power supply is hooked to an induction heater for the job.

Fortunately for engineers who like to get home at night, the plant doesn't make one of these big bottles every day.

PUERTO RICO, with its attractive industrial tax exemption plan (p 60, Oct. 1950), has one active electronic equipment plant, the Rico Television Company, a subsidiary of Teletone. The company is assembling 1,200 table-type ra-

ENGINEERS, TECHNICIANS, HOBBYISTSHere's the most complete collection of Germanium Diode Applications

Sylvania's handy-sized book, " 40 Uses for Germanium Diodes," presents for the first time all the most important applications of germanium diodes. In it, the engineer and technician will find timesaving devices and simplified circuits. Hams, hobbyists and experimenters will find plans for a host of interesting instruments and gadgets, from crystal receivers to voltage and frequency multipliers.

Simple, clear explanations, plus more than 40 separate diagrams, describe germanium diode applications in receiver and transmitter circuits, instrument construction and electronic devices.

This book is full of new circuit ideas. It will save you time and money. It costs only 25 cents. Mail the coupon today with your quarter and your copy will be sent you at once.

BARRYMOUNTS FOR ASSURED CONTROL OF SHOCK AND VIBRATION ALL-METL barrymounts

FOR EXTREME LOW TEMPERATURES
dios per day, will soon start trial runs on ty sets. Two other companies are reported ready to open tv plants as soon as station facilities are available. A recent FCC allocations report recommends that tv licenses be issued for the island.

Rico employs 100 workers, mostly native women, whose natural skill with a needle helps them learn the operations they perform in set assembly. The supply of labor is said to be nearly inexhaustible.

AIRCRAFT CARRIERS use

 more than 13,000 electron tubes, not counting those used in planes carried by the carriers.
SHIPBOARD ELECTRONICS

 accounted for 700 million dollars of the fiscal year 1951's defense appropriation. During the current fiscal year additional procurement up to 500 million dollars is planned.AMONG NAVY ORDERS for conversion of various existing ships the following items appear:

12 destroyers to radar picket destroyers 6 submarines to antisubmarine submarines
4 submarines to radar picket submarines 1 submarine to guided missile submarine
In warfare, it looks like electronics is here to stay.

DRY BATTERIES have more than 1,000 military applications.

NICE SET OF SIMILES attributed to Sylvania's E. Finley Carter:
"Both electron tubes and human beings suffer from a small but significant mortality in early life. If they survive the early critical period their chances for a long life are gond.
"Tube failure because of defects in other components, because of contamination, and because of old age may be likened to human mortality by accident, by epidemic, and through ultimate old age.
"Tubes, like humans, can be damaged beyond repair by overwork or overloading."

INFLUENCE OF ELECTRON-
ICS: Rohm \& Haas describes translucent plastic sheets intended to be inset into corru-
gated metal factory walls for lighting purposes as having corrugations with the "same frequency and amplitude" as the metal.

ELECTRONIC MOISTURE ME-

 TERS are being widely used in the agricultural and food fields. Among the things for which Tagliabue (Weston) instruments are calibrated areAlmonds
Barley
Beans
Buckwheat Corn Starel
Corn Starel
Flaxseed
Hops
Peanuts
Peanuts Pecans
Pecans
Rice
Rye
Seeds
Sorghums
Soybeans
Vetch
Wheat

They are also calibrated for tobacco and for

Ash Basswood
Birch
Cypres
Fir
Gum
Hemlock
Hickory
Larch
Magnolia
Mahogany
Maple
Oak
Pine Poplar
Poplar Redwood
Shorea
Spruce
Valnut

NEARLY 2 MILLION wire and tape machines have been sold since magnetic recorders were first offered commercially, according to Webster-Chicago's W. S. Hartford.

HOW'S THAT AGAIN: The National Labor Relations Board recently held that the Jefferson Standard Broadcasting Company of Charlotte, N. C., operator of WBT and WBT-TV, did not violate the Labor-Management Relations Act by discharging an employee who circulated handbills disparaging the stations' programs as second rate.

A FRIEND reports that he telephoned a company in our field late one evening and asked to be connected with the engineering department. There was a perceptible pause and then a feminine voice at the other end of the wire said: "Oh, you mean the cone heads."

Precisely what the lady implied remains veiled in mystery.

MILLION-DOLLAR DIALS

...for penmies!

 dollar" accuracy and finish, at mass-production costYes, even though they cost less than you'd think, U. S. Radium dials look like a million dollars. That's because, in producing millions of dials for instruments and timepieces, we've learned how to apply precise markings with big-volume methods that are a boon to the budget. We also make high-accuracy dials, in as small quantity as desired, for scientific requirements.

To find out how our dial experience can benefit your instruments - with better dial design, or lower cost, or both - write Dept. E-1, U. S. Radium Corp., 535 Pearl Street, New York 7, N. Y.

Other Products of U. S. Radium

RADIOACTIVE FOILS

(alpharay ionization sources)

IONOTRON STATIC ELIMINATORS

RADIUM LOCATORS:

pendants, lenses, buttons, screws, markers

LUMINOUS RETICLES

and other specialties

POWDER5:

cathode-ray tube and television tube
SILHOUETTE ILLUMINATION
of elocks, watches and instruments

UNITED STATES RADIUM CORPORATION

The new Mallory IH-R Series Magnesium-Copper Sulfide Rectifiers now make it possible for the first time to get all-around, satisfactory operation of metallic rectifier stacks at ambient temperatures as high as $400^{\circ} \mathrm{F}$.

To deliver this long-sought performance, Mallory IH-R rectifiers are hermetically sealed in metal containers-a step that effectively solves the problem of protecting rectifier stacks when ambient temperatures are high. In addition, it is a complete safeguard against the dangers of humidity and atmospheric dirt or dust.

Only inorganic materials, fused seals and silver solder are used in Mallory IH-R rectifiers. Rectification heat is transferred both by radiation through the case and by conduction to the chassis on which the container is mounted.

Ruggedly constructed to withstand the stresses of acceleration and deceleration and other vibration, IH-R rectifiers are compact, suitable for use where space is at a premium.
Models now available will provide from 3 to 12 volts DC at $1 / 2$ to 2 amperes and will operate over a broad frequency range up to 3000 cycles. For higher output they may be wired in series, parallel or series-parallel.
For complete details and technical data sheets on the new IH-R Series Magnesium-Copper Sulfide Rectifiers, call or write Mallory today.

MAILORY

ELECTRONICS....DONALD G. FINK....Editor...JANUARY, 1952

cross TALK

- WRECK . . . The train wreck in Wyoming last November, in which more than 20 people were killed, inspired the editor of the San Antonio Light, one of the Hearst chain, to write "the great challenge to communications science remains today exactly what it was five years ago-the perfection of a system of two-way radio capable of giving instant instructions to train crews when disaster is imminent".
Here we have an accurate statement of a need, but confusion as to modus operandi. This is not a challenge to communications science. The techniques are available, were available long before Mr. Hearst first wrote about the need in 1946. The problem is operational and economic, not technical. Railroad operators must find the economic justification for installation of equipment and training of personnel, suitable for accident prevention as well as more routine uses, and they must develop operational procedures which will prevent equipment or personnel failure when disaster impends.

This is a costly business, but technically straightforward. The electronics industry is ready to offer a sound solution to the problem, but it needs a welcoming hand from the railroaders, not "we can't possibly pay for anything like that!" The need for some kind of electronic disaster-prevention control is evident; it has already been accepted and paid for by passen-ger-carrying ships, and a start has
been made in a very much more difficult medium, air travel. Lives of rail passengers will no doubt continue to be lost while economic roadblocks stand in the way of the fruits of existing technology.

- FIGURE . . . A reliable Defense

 Department source informs us that the money appropriated and spent for electronic equipment and installations by the Armed Forces has amounted to $\$ 6$ billion during the period December 1949 to July 1951, an average of about $\$ 4$ billion a year. It is dangerous to compare this figure with previous allocations and expenditures which may have been arrived at on a different basis. But we are reminded that the peak expenditure in World War II occurred in 1944, and the figure then was $\$ 4.6$ billion for the year. Moreover during the 1949-51 period mentioned, we had a civilian economy in electronics virtually unaffected by defense demands. We've come a long way, friends, since 1944 and the end is not in sight.- MINOR MIRACLE . . . At the Toronto Fall meeting, W. B. Whalley described a new vertical-deflection circuit for tv sets that has greatly improved linearity and, mirabile dictu, costs less than conventional circuits. This is a very rare occurrence indeed among circuit designers and one worthy of special mention. For years tv set designers have been unwilling to
spend money on stabilization of vertical linearity because the performance of tv broadcasters in this respect is so poor that the set owner would never know the difference. But if it saves money, that's different. We can't hope for many minor miracles like this, but we can emphasize the suspicion that at the average tv station the equipment is not as well adjusted, in scanning, as the sets that are tuned to it, and this condition acts as a strong brake on improvements in set design.
- FAITH . . . In a description of the Canadian atomic pile at the Chalk River (Physics Today, November), we find the statement that Friday afternoon is the busiest time around the pile, because the physicists are then setting up their electronic counting and recording apparatus to work for them on a long run over the weekend. Then follows, "This implies faith in the reliability of electronic apparatus which has been won only by much attention in design and maintenance specifically directed towards achieving reliability".

For the faith, we give thanks, even if the faith of a physicist is more readily won than that of the manager of a steel plant. To the prescription of "much attention in design and maintenance" we say, Amen! And if physicists can do it, so can anyone else who goes about it with care and understanding.

AT SUPERSONIC SPEEDS, things happen so fast in a military airplane that automatic devices become essential for the control of flight and fighting. Target-finding, gun aiming, gun firing, bomb aiming, bomb guidance, identification and navigation are just a few of the functions relegated to electronic equipment in modern planes. These electronic systems are so complex and so integrated with each other that they must be designed into the plane rather than shoved into or stuck onto a finished airframe.

The new electronic systems requirement has caused airplane builders to hire more electronic engineers and establish electronic research and development departments. In most cases these new departments work on an equal basis with older aerodynamic, weight, stress, and power plant groups. This is both fitting and essential, because in many planes currently in production the electronic equipment represents well over a quarter of the total cost. The electronic requirements of aviation, building up gradually from the simple black-box radios of the first world war, today represent a new branch of electronics second to none in importance, size and dollar value.

Early Black Boxes

In the days of the Jenny, De Havilland, Spad and Nieuport fighters, the aircraft manufacturer turned out plain and simple airplanes and a pilot flew by the seat of his pants. When weather was bad he stayed on the ground because he couldn't see the enemy anyway.

The advent of two-way aircraft radio along about the end of World War I did not change the planebuilding picture. The military airframe manufacturer still turned out pure airplanes and the electronic engineer designed and built the black boxes separately. Installation, done by squadron crews, involved mounting the trailing-wire antenna reel outside the fuselage within reach of the pilot and supporting the transmitter and receiver black boxes inside the fuselage with shock cord and springs, plus elaborate shielding of the engine ignition system. The radio installation belonged to the squad-

PROTUBERANCES Though still permitted on relatively slow planes such as this Boeing-made C-97 Stratofreightez, all protruding antennas and radomes are much deprecated for travel at speeds approaching or exceeding Mach 1

Aircraft Plants

By JOHN MARKUS
Associnte Editor
Electronics

RADAR CHECK Final on-the-ground chect of radar equipment in radar observer's station af Northrop Black Widow F-61 night fighter

COMPUTER TEAM Electronic engineers make extensive use of analog computers to replace try-and-see or crystal-ball techniquen for finding out whether a proposed new ixea will work. Here evaluation group for experimental analog computer af Cornell Aeronautical Laboralory converts computer readings into yes-orno decisions for new airborne electronic control designs

and Electronic Engineers

The Korean invasion accelerated transfer of responsibility to aircraft manufacturers for performance of electronic gear in fighting planes, forcing them to recruit more electronic engineers. Today these transplanted engineers do a variety of jabs

IN-THE AIR TESTS Convair electronic engineers install a pressure-survey panel and strain recorder in B-24D in preparation for flight lests that inwolve checking of airframe performance as well as electronic gear

RADIO-CONTROLEED MODEL Free-flight radio-controlled models such as this are used extensively at Consolidated Vultee Aircraft Corporation's San Diego labs to facilitate solution of many Convair hydrodynamic design problems. For many electronic engineers, assignment to the radio control group is play combined with work
ron and stayed with the squadron when the airplane was transferred.

The fadar Era

During World War II, electronic engineers largely stayed in their own factories while aircraft manufacturers produced and delivered standard military airplanes having only the minimum electronic equipment need for flying. This had the advantage of keeping aircraft production rate high because production was independent of the
frequent changes in electronic equipment design. The airplanes were fitted with final equipment at one of twelve or more modification centers, most of which were also operated by aircraft manufacturers.
Increasing complexity of airborne electronic gear emphasized the many drawbacks of the modifi-cation-center technique. There was a tendency toward laxness because the responsibility for installing, adjusting and flight-testing was held by the military. More important
was impairment of airplane performance by addition of radome and antenna protruberances, by addition of weight at locations not considered in original design and by addition of generators that robbed engines of badly needed power. Worse yet, there were many cases where bombing radar had not even been considered in basic design, with the result that a gun turret or other major structure was located at the optimum location for the bombing radar antenna. Finally, there was little or no channeling of essential airframe design changes back to the airframe manufacturer, hence correctable errors went uncorrected. In a nutshell, there was little liaison and cooperation among airframe designers. electronic equipment designers and the engineers who had to squeeze the electronic gear into or onto the plane.

The Turning Point

Modification centers were terminated at the end of the war in 1945, and all their work was given to aircraft manufacturers to help keep staffs going. This was the beginning of the exodus of electronic engineers from their own plants into aircraft factories. But the transition in responsibility for installing and checking out electronic

ANTENNA MOCKUP For testing performance of flush-mounted antennas, wire mesh is as effective as regular aluminum airplane skin. Boeing engineer Michael Schwartz is here fitting such an antenna on a full-size mockup of the Boeing B-47 Stratojet bomber. Structures in background check radiation patterns of scale-model antennas on scale-model planes

PRODUCTION Though most airborne electronic equipment still comes from electronic manufacturers, small runs of a newly designed unit are at times produced right in the aircraft plant. Here chief electronic engineer J. M. Pearce (right) and electronic design engineer H. W. Royce look over some of the equip. ment turned out in The Glenn L. Martin Co. Baltimore plant
equipment was not an overnight affair with every manufacturer. Some companies started by taking over the responsibility for bench tests of military electronic gear, then graduated to in-the-plane tests and finally to flight tests. Radar was the last of the electronic gear to come under the responsibility of the aircraft manufacturer's electronic engineers, even though radar antenna requirements have the most effect on airframe design. The gradual transition, limited preKorean production of military aircraft and inherent reluctance of long-established aircraft manufacturers to change their thinking overnight all still served to hold down the migration of electronic engineers.

Korean Stimulus

Military aircraft orders built up in volume rapidly after UN troops entered Korea. These orders gave complete responsibility to aircraft manufacturers for installation and performance of all electronic equipment, and some even involved electronic research and development. Thus was created an urgent need for electronic engineers in aircraft plants. Intensive recruiting campaigns brought results, and today these engineers are firmly estab-

EARLY BLACK BOXES Experimental installation of Radio Set SCR-134 in De Haviland two-seater fighter about 1926. using coil springs instead of shock cord to support the two boxes in fuselage space behind machine-gunner. Vibration was so great that they went back to shock cord. Weighted trailing-wire antenna was lowered through slanting pipe under gunner's feet-Air Force Photo
lished in a variety of jobs all contributing to the design and production of better military aircraft. The illustrations in this article show some of these engineers at work.
The Air Force today wants allweather fighting planes, usable day and night when needed, regardless of fog, snow, rain and other weather conditions that conceal the target and the landing runways of home base, and regardless of atmospheric static that formerly interfered with radio communication.

SYSTEMS CHECK Rare today is the single-chassis airborne electronic unit. Many units must be hooked together each time an advanced development is checked, as is being done in this electronics lab at The Glenn L. Martin Company's plant in Baltimore. Interconnection of systems, layout and shielding of wiring, layout of equipment so units cannot bump each other and provision for clearance needed to remove units are just α few new duties of the electronic engineer

The primary job of the electronic engineer is to open up the dark and zero-ceiling fog hours to flying and fighting. For each pound of electronic equipment added for this purpose, the gross weight of the plane must be boosted as much as 7.5 pounds to get the same range and pay load, hence counting the ounces has become a new instinctive reaction for the electronic engineer in an aircraft plant.
The electronic industry has gained tremendously by closer contact with the aircraft industry, because no aircraft plants produce all their own electronic equipment. A few may turn out pilot models or even small model-shop runs of a special electronic unit, but large production orders are usually farmed out to the electronic industry either by the aircraft manufacturer or the military purchaser. Guided-missile manufacturers are generally authorized to build their own electronic equipment, but only because standard black-box units for missile control are not yet available.

By finding ways to improve the usefulness of existing electronic black boxes and by helping to develop improved or new units, the transplanted electronic engineer is also helping the military and the aircraft industry to match the production figures of the last war, even though the fighting plane of today is vastly more complex than ever before.

Standards Conversion

With different television standards in various areas of the world, converting picture signals from one set of standards to another is a problem requiring an early solution.

It is most urgent in those areas within reach of stations operating on different standards and, in the long term view, to meet the future need for direct exchange of programs between continents. In most contiguous regions, the difference between standards affects only the line frequency, but there are instances where the frame frequency differs as well. ${ }^{\text {. }}$

The present discussion deals specifically with problems raised by program interchange between stations operating with 525 lines, 60 fields interlaced and with 625 lines, 50 fields interlaced - the standards prevalent in the western hemisphere and most countries of continental Europe, respectively.

There are, in principle, two different approaches to the problem of conversion; namely, recording of the program and subsequent retransmission and the continuous and immediate translation of the picture signals from one set of standards to the other with the aid of suitable storage devices.

Only the first of these is at present capable of yielding satisfactory reproductions. Furthermore, mo-tion-picture film is the only recording medium which has proved practical so far. With high-speed film development, delay between reception and retransmission need only be a minute.

Photographic Recording

The intermediate film technique is simplest for the transition $525 / 60$ to $625 / 50$. For this purpose it is sufficient to employ standard filmrecording equipment ${ }^{2}$ which produces 24 frame-per-second positive film by photographing the 60 -field-per-second negative image on the face of a suitable picture tube, blanking every sixth half-field for

By V. K. ZWORYKIN and E, G. RAMBERG
RCA Laboratovies Division
Radio Corponation of America
David Sarnoff Research Center
Princeton. New Jersey

proper pulldown as required.
The time division for this process is shown in Fig. 1. An electronic counter is employed to control the exposure in such fashion that exactly 525 lines are scanned for every exposed frame. This prevents banding at the center of the picture. The sound may be recorded directly on the film with the picture or may be recorded separately.

The film obtained is standard 16mm film and could be reproduced with any $16-\mathrm{mm}$ film-scanning equipment designed for 50 -field-per-second transmissions. The pitch of the sound will be increased in the ratio of $25 / 24$, but this is not re-
garded as objectionable in practice and applies quite generally for normal transmission of standard $35-\mathrm{mm}$ sound film on 50 -field-persecond television systems.

The transition from $625 / 50$ to $525 / 60$ offers somewhat greater difficulties, but here, also, the necessary equipment is available. A Cameflex Eclair camera ${ }^{3}$ synchronized with the received 50 -field-persecond signal may be employed to produce a $16{ }_{3}^{2}$-frame-per-second negative film by photography of a kinescope face, every third field period being utilized for pull-down. Figure 2 shows the time division.
This film is then printed so that

FIG. 1 -Time division for recording 60 -field-per-second transmissions on film

FIG. 2-Time division for recording 50 -field-per-second transmissions on film

of Television Signals

Abstract

Although there are a number of techniques for converting picture signals from one set of standards to another with a different frame rate, such as from $625 / 50$ to $525 / 60$, they all possess some inherent drawbacks. The intermediate-film process and instantaneous methods are discussed and remedies suggested

every second frame is recorded twice, such printers being available at present for the conversion of 16 frame silent film into 24 -frame sound film. Sound must be recorded separately and may also be printed on the resulting 25 -frame-per-sec ond positive film. As an alternative, the step-printing can be carried out in the camera itself and the sound be recorded directly on the positive. ${ }^{4}$ The resulting film may be employed in standard American television film scanners. The pitch of the sound will be lowered in the ratio $24 / 25$.

Techniques also exist for recording 25 frame-per-second film di-
rectly from 50 field-per-second transmissions without loss of interlace. These employ continuously moving film. Thus, in a modified Mechau optical compensation projector the tilting of a mirror on a rotating drum holds the image of the kinescope face stationary on the moving film for the course of a frame time; the next mirror on the drum transfers the image to the next frame on the film.

In another system, the so-called split-field method, the picture is formed, compressed to half-size in the vertical direction, on the screen of a flying-spot tube. ${ }^{5}$ Two alternative optical paths, for odd and

FIG. 3-System for instantaneous conversion of picture signals to different standards

FIG. 4-The Graphechon as standards converter. The writing beam produces bombardment conductivity in the screen-supported insulating target
even interlaced fields respectively, are provided for imaging the picture on the film. A rotating shutter selects one or the other in alternate fields. The reduced vertical deflection on the tube screen and the motion of the film combine to record the picture on the film with the proper ratio of height to width.

In all cases it is desirable to take special care that line structure is absent from the recorded images. In the presence of line structure, interference between the two scanning patterns can give rise to a system of horizontal bars in the picture; the frequency of this brightness modulation will be (625 525) $/ 2=50$ per field time, so that the bars will be $1 / 50$ picture height or some 10 to 12 scanning lines apart. (In practice, vertical blanking will slightly reduce the number of bars observed and increase their separation in terms of picture height.) This effect may be rendered negligible without appreciable loss of picture resolution by applying a small-amplitude highfrequency vertical spot wobble to the kinescope scanning beam.

Time Difference

In principle, neither transformation can be carried out without time delay, since the rates of transmission of the original program and of the prepared film differ. Thus a continuous hour-long broadcast which is transformed to the $625 / 50$ standard would take only 57.6 minutes to rebroadcast; the initial time delay between broadcast and rebroadcast would hence have to be 2.4 minutes plus the time required for preparing the film. In the opposite direction the delay between broadcast and rebroadcast would

FIG. 5-Standards converter with image-orthicon-type reading section
increase by 2.5 minutes between the beginning and the end of the program.

A more serious objection to the intermediate film process is the great care demanded in the control of development to prevent undue distortion in the transmitted picture signals. Some loss of picture detail is also inherent in the photographic process, and particularly with the type of $16-\mathrm{mm}$ film which is today most widely used for video recordings.

Immediate Conversion

Instantaneous methods of signal transformation necessarily involve storage of the original signals (the written signals) for periods of the order of the rebroadcasting frame time (the reading period). If existing devices are to be employed, the storage may be supplied by a stor-age-type camera tube; the original picture, reproduced on the face of a kinescope, is imaged on the photosensitive surface of this tube (Fig. 3).

The interposition of a viewing screen between the picture tube and the camera tube may be convenient for checking the adjustment of the kinescope image, but only adds to the deterioration of the final picture. By contrast the use of a storage tube, such as the Graphechon ${ }^{\text {b }}$, as a standards converter has the advantage of eliminating the optical imaging process. Here a charge image is traced out on a target by a writing beam controlled by the original picture signals and this is, in turn, read off by a reading beam to provide picture signals on the new standards (Fig. 4).

Instantaneous conversion be-
tween standards with equal field rates and different line rates has been discussed ${ }^{7}$ and some difficulties have been pointed out. These are:

The superposition of the written signal on the read signal.

Interference effects between the two scanning patterns.

Variation in stored signal, depending on the relative instantaneous position of writing spot and reading spot.

Weakening and distortion of the transferred signal by redistribution in the camera tube, such as the iconoscope and image iconoscope, in which storage of the written signal is not saturated.

The last consideration renders tubes of the iconoscope and image iconoscope type unsuitable as storage tubes in conversion systems.

Remedies

Ways in which the other difficulties may be overcome in the conversion between standards with equal field rates have also been indicated. In orthicons, vidicons, and graphechons, in which the output signal is obtained from the signal plate of the target, separation of output and input signals may be effected by high-frequency modulation of the reading beam and the insertion of a corresponding bandpass filter in the output circuit; in the image orthicon or any other storage tube in which the reading signal is separately derived from a collector or electron multiplier (Fig. 5) this is unnecessary.

Interference between scanning patterns may be eliminated by minimizing line structure in the written image, eventually by supplying an appropriate high-frequency vertical
wobble to the writing beam.
The variation in the transferred signals with relative position of reading and writing spot can be minimized by establishng a large phase difference (for example, 立 field period) between the vertical deflections of the reading and writing beams.

The remedies, with the exception of the last, apply also if the standards differ in field frequency as well as in line frequency. The difference in the field period now causes a continuous change in the relative phase of the writing and reading spots. This is accompanied by intensity fluctuations in the image whose nature depends on the dimensioning of the writing and reading spots.

These will be examined next, with special reference to a uniformly illuminated object field. In addition, it will be noted under what circumstances the resolution conveyed by interlace is preserved.

It is assumed that writing storage is complete for times of the order of a frame period of the writing beam, that erasure by the reading beam is complete, and that the writing process is instantaneous. This signifies, in the kinescopecamera tube conversion system, that the decay time of the phosphor is small compared to a field period of the reading or writing process, whichever is shorter.

The simplest conditions are realized if both the writing spot and the reading spot are given (eventually by spot wobble) a vertical height just equal to two line widths. This is the only condition for which a flat object field gives rise throughout to individually flat image fields and for which, furthermore, the resolution conveyed by interlacing is preserved for a single frame.

The relationship between the writing and reading spots for signal transformation between $525 / 60$ and $625 / 50$ standards may be represented by Fig. 6. The horizontal scale here represents time, the vertical scale, the vertical position of the writing spot (broken line) and reading spot (full line) on the scanning pattern. The arrows indicate the interval between storage (writing) and erasure (reading) of the picture signals.

The basic period of repetition is $\frac{7}{5}$ second, corresponding to the frequency difference between the two frame frequencies. Successive subperiods of $1 / 10$ second are not identical. To consider a single such subperiod, for all but the first reading field the picture signals are provided simply by the preceding writing field; furthermore, odd and even writing fields provide signals for odd and even reading fields, respectively. The first reading field, however, derives its signals from the sum of the two preceding fields for the transformation $525 / 60$ to $625 / 50$ and is entirely free of picture signals for the transformation $625 / 50$ to $525 / 60$.

Every fifth field of a reproduced 50 -cycle picture has double brightness, every sixth field of a reproduced 60 -cycle picture is black. It must be anticipated that this jump in picture brightness, with a repetition rate of 10 cps , will prove disturbing to the viewer. Since the 50 -cycle system and 60 -cycle system are not synchronized, the phase of the anomalous field period will tend to drift, rendering correcting measures difficult. It will not coincide exactly with one scanning field as in the figure, but be distributed in some fashion between two successive reading fields.

Interlace Resolution

In the next succeeding subperiod of $1 / 10$ second, odd writing fields produce the picture signals for even reading fields and vice versa. It can readily be demonstrated that this inversion in the relationship of the interlaced fields leads to a loss of the vertical resolution resulting from interlacing.

For example, suppose that the original picture consists of 263 odd black lines and 262 even white lines. Then, in the first subperiod odd lines of the reproduced $625 / 50$ picture will be black, even lines white; however, in the next subperiod the odd lines will be white and the even lines black, so that, averaged over a full $\frac{1}{3}$-second period, the picture will appear a uniform gray.

The loss of interlace resolution and the presence of the low-frequency field flicker described above clearly render a system employing double-width reading and writing
spots unusable for practical use.
When, instead, a single-line-width writing spot is employed in conjunction with a double-width reading spot, the only change which results is that, now, a bar moiré (with a period of $1 / 50$ picture height) appears in the individual field. For rectangular spots with uniform distribution the fluctuation amplitude for a transition from $625 / 50$ to $525 / 60$ may be shown to ± 16 percent for a single field; for a frame it is reduced to half this value and averaged over the entire period of $\frac{1}{3}$ second it vanishes. Loss of interlace resolution and $10-\mathrm{cps}$ field flicker occur as in the preceding example.

With a double-width writing spot and a single line width reading spot, interlace resolution is lost even for a single frame; on the other hand, the intensity, for a flat object field,
is reduced, for the transition 625/50 to $525 / 60$, to half on two fields in each $1 / 10$-second subperiod, instead of to zero on one of them.

Figure 7 shows a diagram corresponding to Fig. 6 which applies to this example. The charge patterns on the storage tube target are represented in Fig. 8; shaded areas represent the signal taken off in the indicated reading field.

Improved Resolution

Evidently, the preservation of interlace resolution is not consistent with the reproduction of a flat object field by individually flat image fields or image frames when the field frequency is changed, provided that our general assumptions regarding full storage, complete erasure, and instantaneous writing are fulfilled. Consider, then, the intensity variation in the image

FIG. 6-Relationship between writing and reading process when double-width reading spot is employed

FIG. 7-Relationship between writing and reading process when single-line-width reading spot is employed
which may be expected with rectangular writing and reading spots whose vertical extent is exactly equal to a line width. Interlace resolution is now preserved.

The picture signals obtained for a sequence of 12 reading lines and an equal number of reading fields (constituting one complete s-second period) are shown in Fig. 9. This chart indicates: The average intensity for two fields out of six is reduced to half that of the remaining fields, as for the last example. The four normal fields are flat; in the two anomalous fields the line
intensity fluctuates approximately in the ratio of $5: 1$. Averaged over a full $\frac{1}{s}$ second period, the line intensity is constant.

In brief, interlace resolution is purchased at the cost of a fluctuating intensity variation within the image (with a periodicity of $1 / 50$ picture height) added onto the field flicker which is observed in systems with double spot width. This probably represents the best compromise which can be achieved under the assumed conditions.

The effect of incomplete storage, such as might be present with a

FIG. 8-Picture signal (shaded area) and charge left after reading (clear area) for flat object field when double-width writing beam and single-line width reading beam is employed

FIG. 9-Picture signal (shaded area) and charge left stored (clear area) for flat object field when single-line-width reading and writing spots are employed
leaky camera tube target, can most readily be recognized with a diagram like that in Fig. 6. It shows that the picture signal would decrease with increasing length of the arrows shown. Thus, for the transition $525 / 60$ to $625 / 50$, there would be a gradual decrease in intensity in the course of a $1 / 10$-second subperiod, terminated in an abrupt increase; for the transition $625 / 50$ to $525 / 60$, there would be instead a gradual increase in image intensity terminated by an abrupt drop to zero. This should prove more disturbing than the contrast variation with perfect storage. Interlace resolution would be lost as before.

Incomplete erasure by the reading beam would cause trailing for moving objects; at the same time it would reduce somewhat the amplitude of the intensity fluctuations.

If the writing process is not instantaneous, but persists for an appreciable fraction of the writing frame period (as the result of the persistence of the picture-tube phosphor in a kinescope-camera tube converter) the amplitude of the intensity fluctuations also is reduced. Trailing will be observed if the persistence exceeds a frame period. Since phosphor decay is not abrupt, but gradual, some trailing will be noted if the decay is made slow enough to greatly reduce the field and bar flicker which is observed with a rapidly decaying phosphor.

Flicker

All flicker effects could be removed completely if the writingspot brightness would remain unchanged for an entire writing frame period and would then be corrected to take on its new value. In this case the reading and writing process for a flat object field might be represented, for the transition $625 / 50$ to $525 / 60$, by the diagram in Fig. 10. The broadening of the arrows symbolizes the increase in stored charge in the period intervening between successive erasures by the reading beam. The time relation between the writing process and reading process has here become entirely irrelevant.

The writing portion of such a
conversion system has the basic properties of a storage kinescope, whereas the reading portion may be any pickup system, of a storage or nonstorage type. The usefulness of such a device for standards conversion, as well as the possibility of its realization, have been recognized by Schröter. ${ }^{\text {s }}$

Proposed System

In the arrangement proposed by Schröter (Fig. 11) the electron emission is provided by a uniformly illuminated, extended conducting photocathode which is deposited on a perforated insulating sheet. As the insulator is scanned by a medium-velocity constant-current beam, a closely spaced collector grill (or transparent conducting film) is modulated by the writing picture signals. As a result, the insulator spot scanned at any moment tends to assume (by distribution of its secondary emission) the instantaneous potential of the grill.

In this manner an essentially stationary charge pattern is generated on the insulator, changes occurring only as there are changes in the transmitted scene. This charge pattern controls the emission of the photocathode by coplanar grid action-field leakage through the insulator perforations. The remainder of the storage kinescope is essentially an image tube.

Schröter has suggested the transformation of this system into a standards converter by replacing the fluorescent screen by an aperture and multiplier and providing transverse deflecting coils actuated at reading line and field frequency. The reading portion is here simply an image dissector. The instantaneous potential of the grill would influence the photoemission, resulting in a superposition of the writing signals on the reading signals. This would be most serious with the nonstorage (dissector-type) reading section here contemplated, but spurious intensity fluctuations dependent on picture content would occur also if the reading portion of the converter were an image orthicon, provided that a change in field frequency is involved.

There are other systems involv-

FIG. 10 -Relationship between writing and reading process in converter consisting of storage kinescope and storage camera tube (single-line-width reading and writing spots)

FIG. 11-Principle of storage kinescope (Schroter)
ing the storage kinescope principle from which this crosstalk could be eliminated. However, the perfection of these devices meets considerable technical difficulties and none of them have been tried so far even on an experimental basis. However attractive they are in principle, they do not constitute a means of solving the problem of standards conversion at present or in the near future. This approach is not neglected; work on the development of new types of standards converters is in progress.

At the present time there are just two methods of standards conversion between systems with different field frequencies:

The intermediate film method, which is fundamentally capable of yielding good results, but will introduce serious picture deterioration unless great care is exercised in controlling the photographic process and the instantaneous method of signal conversion, utilizing a picture tube and camera tube, which inevitably introduces a certain amount of objectionable low-
frequency flicker. Storage-tube converters utilizing tubes of known type are súbject to the same drawback. The employment of long-persistence phosphors in the kinescope would reduce the flicker effects to some extent; but their practical elimination by this means would also lead to trailing effects on moving objects.

References

(1) D. G. Fink, TV-The International Scene, Electronics, 23, p 70 , Aug. 1950 . (2) R. V. Little, Television Film Recording, Eroalcast News, $54, \mathrm{p} 32$, Apr cording, Eroalcast News, 54, p 32, Apr.
1949 . Also R. M. Fraser, Motion Picture Photography of Television Images, $R C A$ Review, 9, p 202, 1948, and C. G. Mayer, Enregistrement des Images de Television, Congres de Television, Paris, p 182, Oct. 1948.
(3) Y. L. Delbord, L'Enregistrement sur film des emissions de television en vue des echanges internationaux de programmes, Conference Int'l de Television, Zurich, 1948 Bull. Ass. suisse electr., 40. p 571,1949 .
(4) H. W. Baker and W. D. Kemp, The Recording of Television Programmes, B.B.C. Quarterly, 4, p 236, 1949-50
(5) A New Television Film Scanner Electronic Engineering, 20, p 174, 1948. (6) L. Pensak, The Graphechon-A Picture Storage Tube, RCA Review, 10, p $59,1949$.
(7) A. Cazalas, Transformation des p 30, May 1951 Confer. Schroter, Bildspeicherprobleme, 1948 , 1949 .

Tomato Classification

The Agtron, photoelectric bridge spectrophotometer designed for grading tomatoes by color

FIG. 1-Cross-section of the light source and phototube assembly for the instrument

RICHARD A. HUGGINS

Huggins Laboratories
Menlo Park, Calif.

When tomatoes are delivered by the grower to the canning plant they are usually inspected by a state or state-federal inspector for various factors, including color. The grading is based on a random sampling procedure and the tomatoes are classified as well colored, fairly-well colored or cull in accordance with U.S. Government Standards. Disagreements as to grade nearly always concern tomatoes of borderline color.

Tomatoes are graded for color by comparison with specially-prepared color photographs. The inspectors are carefully trained in color comparison and are closely supervised. Work periods are adjusted to avoid eye fatigue and the inspectors are continuously shifted among the many grading stations to assure uniform statewide grading.

With all these precautions, there persists the feeling that grading suffers from human differences between inspectors. These differences can be eliminated through the use of a color-measuring instrument.

Shown in operation in the photograph, the new instrument, the Agtron, was developed especially for tomato inspection by Magnuson

Engineers in consultation with Huggins Laboratories. It has been tested and approved by the state and will now be used by California tomato inspectors for precision color grading. With the instrument, tomato grading is quick, simple and positive. Sample tomatoes are cut in two and inspected visually. When the color grade is not immediately apparent, the instrument is used. The two tomato halves are placed in spring-supported cradles and moved into position. Phototubes view them through red and blue filters while the tomatoes are illuminated by low-pressure neon and mercuryvapor lamps. A sketch of the physical setup is shown in Fig. 1.

To adjust for tomato variations, the red reflectance is set to a fullscale meter reading of 100 and then the band selector switch is pressed to give a blue-reflectance reading. The ratio of red reflectance to blue reflectance has been demonstrated to represent the maturity of the tomato. The meter scale is calibrated in red, yellow and green bands to indicate the three classifications of ripeness. These bands were established by correlating
numerical scale readings with the average judgment of a number of experienced inspectors.

Color Considerations

Visual color sensations in the human eye are the combined effect of the spectral reflectance of the surface viewed, the spectral energy distribution of the illuminant, the spectral absorption of the transmitting medium and the spectral sensitivity of the eye. In judging tomatoes by eye, the inspector is attempting to evaluate the first factor while the other three factors are subject to probable variations. In addition, his judgment may be modified by the following secondary considerations: surface gloss of the tomato, its size and shape, its internal cell structure, variations in color over the cut surface, direction of incident light, conditioning the inspector has received from examination of previous tomatoes and the contrast between a given tomato and others within view.

Figure 2 shows the spectral reflectance curves of four tomatoes graded as marked. Curve number one is identified as below minimum, fairly well ripened; curve two is

by Spectrophotometry

To eliminate human element in judgment of color, bridge spectrophotometer measures ratio of reflectance at two critical points. Technique is applicable to grading other agricultural products by use of appropriate points on spectral reflectance curves

approximate minimum, fairly well ripened, curve three is approximately minimum, well ripened and curve four is definitely well ripened.
The presence of chlorophyll in the greener tomatoes is responsible for the dip at 680 millimicrons. Curves for relative eye sensitivity and relative daylight energy have been superimposed. Their effect is to modify the tomato curves to the form of Fig. 3 which represents the relative visual stimulation by which one recognizes color difference.

In development of the instrument, the primary objective was to eliminate the many variables discussed and to produce an instrument which would be direct reading and suitable for use by nontechnical personnel. Additional desirable features were that the instrument would not require destruction of the tomatoes beyond cutting in two, it would be portable, rugged, unaffected by weather conditions in open field stations, simple to calibrate and standardize, not susceptible to inaccuracies from varying supply voltage and moderately priced because of the quantities needed. Since production problems are not involved, it is only necessary to grade one tomato at a time. Further, the equipment is not required to serve any other purpose than evaluating tomato color.

The circuit of the instrument is shown in Fig. 4. Selected blue and red reflectance responses, containing 120 -cps modulation from the a-c light sources, feed a 6SJ7 followed by half of a 6SN7. Both tubes are a-c amplifier stages. The other half of the 6SN7 is a detector whose output goes to the bridge vtvm formed by two halves of another 6SN7 with the meter connected across the two cathodes. Various types of d-c amplifiers were
investigated but were discarded because of their inherent drift and poor stability.

Operation is as follows: Reference to the spectral reflectance curves of Fig. 2 shows that there are two well-established plateaus, one in the 400 to 520 -millimicron region and the other in the 640 to 740 -millimicron region. Operation is based upon the fact that the ratio of monochromatic reflectances in
these two bands forms a dimensionless function which indicates the ripeness of the tomato. Such a function is independent of variations which would affect the absolute spectral response of the instrument. Previously, general proof of a definite relationship between spectral reflectance curves of agricultural products and their maturity had been published by White ${ }^{1}$.

Selection of light sources dictated

FIG. 2-Spectral reflectance curves for four grades of tomatoes. Normal visibility curve and spectral energy distribution of sunlight have been superimposed

FIG. 3-Curves of Fig. 2 as modified by the normal-visibility and sunlight-illumination curves. The curves indicate the color differences the inspector sees

FIG. 4-Circuit of the bridge spectrophotometer includes two stages of amplification and a detector ahead of the measuring bridge
the use of monochromatic elements to eliminate spectral-response differences in phototubes as well as spectral shifts in aging light sources. Use of white light with standard optical filter combinations did not produce sufficient monochromaticity.

The final solution was a low-pressure mercury-vapor arc in conjunction with a Corning number 5113 filter to isolate the 436 -millimicron mercury line and a low-pressure neon arc lamp with a Corning number 2412 filter to isolate the 632, 640 and 651-millimicron neon lines. These three dominant neon lines are sufficiently close together to approximate a single line since the tomato curves are flat over this band of wavelengths.
Type-926 phototubes with S-3 spectral response were used because of their good sensitivity in the chosen region.

Grading Procedure

Graphically, the grading procedure may be represented by Fig. 5. First, the unit is set up for use by balancing out the dark current for each color. This is accomplished by using the red-balance and bluebalance controls shown in the accompanying circuit. This operation establishes the baseline along the X-axis shown in Fig. 5. The zeroset control in the bridge plate supply is used to adjust for warmup drift. Next, a standard white disk

FIG. 5-Graphical representation of tomato grading procedure. Curves 1 to 4 have the same identification as in Fig. 2 and are described in text

Plug-in phototube enclosure projects downward through the chassis above the grading compartment. The inner surfaces of the compartment are finished in black to prevent unwanted spurious reflections. Reference control and band-selection control are on front panel
with equal reflectance in the red and blue regions is inserted in the tomato test position and, using the ratio control shown in the output circuit of the red-response phototube, blue sensitivity is set at 10 times red sensitivity. This establishes test points C and D in Fig. 5 and provides full-scale sensitivity for the various tomato grades. The instrument is now fully calibrated and ready to grade tomatoes.
During grading, the tomato halves are put in position and the red response is adjusted to read 100 on the meter scale, by use of the reference control on the front panel. This establishes operating point E (Fig. 5) for that particular tomato. In effect, this procedure causes the spectral reflectance curves of all tomatoes tested to pass through point E regardless of their grade, size, shape or other variables. The amplifier-gain control is originally set so that the reference control will have adequate range for the establishment of point E for all grades from well-ripened to cull and for all diameters from two to four inches.

Operating the push-button color selector then switches the ganged control to blue response and the grade of the tomato is read directly on the meter. These readings are represented by the points marked F in Fig. 5. This illustrates the scale spread resulting from the ten-to-one ratio previously established.

Grading points F range from 8 to 86 on the meter dial while the actual ratios from the spectral reflectance curves produce a range of only 0.086 to 0.185 .

The instrument is housed in a deep cabinet with a drawer-type grading carriage. Spring-loaded cups press the halved tomatoes against a reference plane established by crossed fine wires. The inner surfaces of this compartment are blackened to prevent spurious reflections. The phototubes are mounted in a plug-in enclosure, illustrated above. The enclosure projects downward through the chassis deck above the grading compartment. Only the reference control and the red-to-blue band-selection control are brought out to the front panel.

The Agtron weighs 65 lb and has carrying handles. It operates from $115-\mathrm{v} 60-\mathrm{cps}$ with built-in regulated power supply, drawing 1.0 ampere.

Successful development of this grading device suggests the practicality of grading many agricultural products in a similar way by utilizing the salient points of spectral reflectance curves.

Reference

(1) David C. White, "Maximizing Color Differences," Stanford University, 1949.

BIBLIOGRAPHY

Arthur C. Hardy, "Handbook of Colorimetry," Massachusetts Institute of Technolrgy, 1936

Ralph M. Evans, "An Introduction to Color," John Wiley \& Sons, Inc., New York, 1948.

SINGLE-BAND AUDIO GENERATOR

The complete range from 30 to 15,000 cycles is covered by varying a single resistance. Three-tube device gives choice of two outputs: either 5 volts across 250 ohms or 30 volts across $5,000 \mathrm{ohms}$. Principles are applicable to equipment for video or l-f

THE device to be described is a simple resistance-tuned sinusoidal oscillator that is capable of covering the audio-frequency range with the variation of a single resistor. This oscillator was developed to meet the need for a circuit providing excellent waveform and constant output voltage without requiring the use of precise, expensive components.

Several types of resistance-capacitance oscillators have been described in the literature. Each consists of an amplifier with either one or two feedback connections. A fre-quency-selective network is placed in one feedback loop, while an amplitude regulator such as a lamp or thermistor may be placed in the other feedback loop. The condition for steady-state oscillation is met; that is, a net loop gain of unity at zero phase angle is produced.

It is of interest to consider some of the frequency-selective networks employed in these oscillators. Perhaps the first used in such an application is the half-Wien bridge ${ }^{1}$ of Fig. 1A. Here a broad maximum, accompanied by zero phase shift, is obtained at the operating frequency. This network, which is placed in the positive-feedback path of the oscillator, requires the variation of two capacitors or two resistors to change the operating frequency for a constant attenuation and constant oscillator output voltage.

A second network is the twin- T^{2}, Fig. 1B, which produces a null at the operating frequency. This network, placed in the negative-feedback loop, requires that three circuit elements be varied.

The phase-shift network of Fig. 1 C has been employed as an oscil-

By PETER G. SULZER

National Bureau of Standards Washington, D. C.
lator ${ }^{3,1,5}$ in connection with a singlestage amplifier. The oscillator is usually operated at a fixed frequency, since tuning requires a three-gang capacitor or resistor.

Likewise the circuits of Fig. 1D ${ }^{\text {®, }}$ and Fig. $1 \mathrm{E}^{8}$ require ganged capacitors or resistors for tuning. The last network, Fig. 1F, whose application in an oscillator and selective amplifier has been described by Villard ${ }^{\text { }}$, consists of two all-pass phase shifters in cascade to provide a total phase shift of 180 degrees at the operating frequency. A single stage of amplification is sufficient to complete the oscillator, and a constant output voltage with variable frequency is obtained by changing both resistors R or both capacitors C. Accurate tracking of these components is not required.

It has been pointed out ${ }^{10}$ that variable-frequency operation may be obtained by changing either one resistor or one capacitor. Since allpass sections are used, a constant attenuation is provided in spite of the fact that different time constants may be employed in the two phase shifters. However, this scheme suffers from two serious drawbacks. If a 10 -to- 1 (or larger) frequency ratio is required, a considerably larger variation in the variable time constant must be produced. In a practical oscillator this may impose a heavy load on the phase inverter at one extreme of the frequency range, violating the condition (equal but opposite input voltages) required to produce the all-pass structure. A second limitation is that a very nonlinear frequency scale is produced.

Fig. 2A shows the vector diagram used in analyzing the phaseshift networks of Fig. 1F. As mentioned, two equal voltages of op-

Rear view of the complete oscillator with back and top removed. Resistor R in center. Front panel has calibrated dial, gain control and high-low impedance output switch as well as output terminals, on-off switch and fuse
posite phase are applied to the series R-C circuit. A constant-output (all-pass) network is obtained as a consequence of the fact that the voltages across the resistor and the capacitor are 90 degrees out of phase. Thus the locus of the tip of the output-voltage vector is a semicircle as either the frequency or the time constant is varied, providing the load impedance is very high.

In considering the above, the writer was led to question what would happen in such a network if the phase difference between the input voltages were 90 degrees instead of 180 degrees. This is shown in Fig. 2B, where E_{A} and E_{B} are the input voltages, E_{R} and E_{σ} are the voltages across the resistor and capacitor respectively, and E_{0} is the output voltage. As before, the locus of the junction of E_{C} and E_{R} is a semicircle. However, this semicircle passes through the origin, and hence E_{0} experiences a null.

In a practical network the magnitude of E_{B}, whose phase has been shifted 90 degrees, may vary with frequency. The dashed lines of Fig. 2 B show the condition where $E_{R}>$ E_{s}. It is apparent from the geometry that the production of a null in E_{o} is independent of the magnitude of E_{B}. This fact suggests the practical network shown in Fig. 2C, in which a phase lag of slightly less than 90 degrees is produced by R_{1} and C_{1}. The resistors R_{2} and R_{3} function as an attenuator to render E_{4} and E_{B} approximately equal at the middle range of frequencies. In drawing the accompanying vector diagram it was assumed that R was much greater than both R_{3} and the reactance of C_{1}.

It will be noted that a true null

Bandspreading	
The network shown in Fig. 3 covers 30	
to 15,000 cycles in one range. Use the values below in microfarads for C and	
C_{1} to cover 20 to 20,000 cycles in three decade ranges.	
Frequency range	$\begin{aligned} & \text { Capacitor Capacitor } \\ & C \end{aligned}$
20-200 cycles. . .	0.510 .0
200-2,000 cycles.	$0.05 \quad 1.0$
$2 \mathrm{kc}-20 \mathrm{kc} \ldots .$. .	$0.005 \quad 0.1$
Resistor R is also c	changed to a variable
50,000 ohms with	fixed 330 ohms.

is not obtained, since the phase shift of E_{n} is less than 90 degrees. However, five interesting points are observed on the vector diagram. Points 1 and 2 produce 90 -degree phase shifts in E_{0}, accompanied by two different degrees of attenuation. At point 3, E_{o} passes through a minimum, accompanied by a phase shift between zero degrees and 90 degrees. Point four produces zero phase shift with some attenuation, while at point five E_{o} becomes equal to E_{4} in magnitude and phase.

Suppose that this network is in-

FIG. I-Frequency-selective networks employed in resistance-capacitance oscillators
serted in the negative-feedback path of an amplifier, and also suppose that controlled positive feedback, independent of frequency, is applied. As the positive feedback is increased to where the negative feedback through the network is cancelled, oscillation will commence.

Since the condition for oscillation requires zero phase shift, the network must be operating at points 4 or 5 . However, oscillations will take place at point 4 , since greater attenuation (and less negative feedback) is obtained here. If either
R or C is varied, variable-frequency operation will be obtained. As the frequency is varied, however, point 4 will move along the X axis, indicating a change in the magnitude of E_{0}. This requires a readjustment of the positive feedback, producing a variation of the oscillator output voltage. Fortunately the magnitude and phase angle of E_{B} vary with frequency in such a manner that the variation of E_{0} is partially compensated.

As a final step in the development of the circuit, consider the effect of adding a constant voltage E_{4} to the output voltage E_{0}. This is easily accomplished by adding a resistor $R_{\text {: }}$ in series with the ground terminal of the network, as shown in Fig. 2D. It is seen that the percentage variation in the magnitude of E_{o} is greatly decreased.

A typical network shows an attenuation constant within ± 3 percent over the frequency range from 30 to $15,000 \mathrm{cps}$. It should be noted that the effect of adding such a voltage is to decrease the rate of change of phase of the output voltage with frequency, which would tend to decrease the frequency stability of an oscillator employing the network. This' effect has not been found serious.

A simple oscillator employing the network is shown in Fig. 3. Here V_{1} is a single-stage pentode amplifier followed by the cathode follower V_{3}. The frequency-selective circuit is connected in the negativefeedback path from the cathode of V_{2} to the control grid of V_{1}, while positive feedback is applied between the cathodes of the tubes through an attenuator consisting of a variable resistor R_{5} and two tungsten-filament lamps.

With the circuit constants shown, a frequency range of 30 to 15,000 cycles was covered with a single rotation of the variable resistor R. The output voltage was constant within ± 3 percent, while the waveform appeared good at all frequencies.

The distortion was not measured, but it is presumed to be very low, since the output voltage is stabilized at approximately one-quarter the level at which clipping was observed. Although a maximum output of approximately 20 volts
can be obtained, it is desirable to decrease this to about 5 volts by adjusting R_{5}.
In covering such a wide frequency range with a single variable resistor, it is observed that the frequency calibration is crowded at the higher frequencies. In some applications, therefore, where precision and resettability are important, an alternate network can be employed. This permits covering the frequency range from 20 to 20,000 cycles in three decade ranges. Suitable circuit values are shown.

Alignment of the oscillator consists principally of obtaining the correct amount of positive feedback. Initially the resistance of R_{5} is adjusted to its minimum value, and the plate and heater supplies are connected. The plate voltage of V_{1} should be between 110 and 130 volts with the indicated plate-supply voltage. With R adjusted to onehalf its maximum value and R_{4} adjusted to $500 \mathrm{ohms}, R_{5}$ is increased until an output of 5 volts is obtained.

The frequency control R is then adjusted through its entire range, and the output-voltage variation is observed. If the output voltage is not constant, $R_{\text {i }}$ is changed, and the test is repeated. This may require the readjustment of R_{σ} to obtain the correct output voltage.

It is felt that the oscillator will fill the need for an economical audiofrequency generator capable of covering a wide frequency range. With a suitable circuit design it should be possible to employ the same scheme at low radio frequencies, and also at video frequencies.

References

(1) F. E. Terman, R. R. Buss, W. R. Hewlett, and F. C. Cahill, Some ApplicaHewlett, and F. C. Cahill, Some Applicatian Reference to Laboratory Equipment, lar Rererence to Laboratory Equipment, Graw-Hill Book Co., New York, 20. (3) E. L. Ginzton and L. M. Hollingsworth, Phase-Shift Oscillators, Proc IRE, 29, Feb. 1941.
(4) R. W. Johnson, Extending the Frequency Range of the Phase-Shift Oscillator, Proc IRE, 33, Sept. 1945.
(5) P. G. Sulzer, The Tapered PhaseShift Oscillator, Proc IRE, 36, Oct. 1948.
(6) P. M. Honnell, Bridged-T Measurement of High Resistances at Radio Frequencies, Proc IRE, 28, Feb. 1940.
(7) P. G. Sulzer, Wide-Range Oscillator, Electronics, 23, Sept. 1950.
(8) This circuit has been described in the German and Japanese literature, but suitable reference is not available.
(9) O. G. Villard, Jr., Tunable A-F Amplifier, Electronics, 22, July, 1949 . cillators, Wireless World, 56 , Nov. 1950 .

FIG. 2-Steps in deriving the new frequency-selective network described in text

FIG. 3-Complete circuit of the single-resistor (R) oscillator. In low position. maximum output is 5 v at 250 ohms; in high position, 30 v is obtained at an impedance of 5,000 ohms

ACCURATE TIME for

Top chassis shows commercial frequency standard built in. Portion of front panel indicates master clock and stroboscopic monitor also shown at top

ESTABLISHMENT of a correlation between natural phenomena of different types is frequently the objective of a research program. Often such a program requires the comparison of data taken independently at a number of observing stations, and in many cases the value of the data may depend upon the accurate timing of the development of a particular phenomenon.

The timing equipment used at the Sacramento Peak Station of Harvard College Observatory is driven by synchronous motors. The device to be described was designed to make possible the accurate operation of exactly synchronized interval timers, exposure timers, and clocks at a number of different stations on Sacramento Peak.

A block diagram of the timing
system is shown in Fig. 1. Essentially it consists of a frequency standard that generates a fre-quency-stable voltage, a phaseshifter to provide a means for correcting the clocks, a power amplifier to drive the clocks, and a monitoring method for indicating time discrepancies between the system and time as given by radio station WWV.

Frequency Standard

The frequency standard shown in the block diagram is a commercial unit built by the Ernst Norrman Laboratories. This unit consists of a temperature-controlled quartz crystal working at a frequency of 90.72 kc . The crystal oscillator is followed by the frequency dividers necessary to give a 60 -cycle output.

By FRED E. FOWLER

High Altitude Observatory of Harvard University and the University of Colorado Boulder, Colorado

In terms of time, this unit has a stability of better than ± 0.1 second in 24 hours.

Clock Correction

When several clocks or timers are to be driven in the timing system, means must be provided for making corrections simultaneously to all of the clocks and timers on the line.

One method of clock correction is to switch the input to the power amplifier to a frequency several cycles above or below 60 cycles ${ }^{2}$. Thus the operator can increase or decrease the speed of the clocks until the desired time correction is accomplished. This method was tried in a breadboard model of the timing system, but it was not always possible to get identical response from the different rotors driving the clocks as the frequency was switched during correction.

It appears that if the switching takes place at a critical point in the phase relationship between the two frequencies involved, differential errors between clocks may be introduced by small differences in the mechanical and electrical characteristics of the motors. If such an error occurs, the differential rotor displacement usually will be one pair of poles, which results in a time error of one-sixtieth of a second. Therefore, there is the possibility that after a number of corrections have been made, a significant differential error may be accumulated in the system.

To check the magnitude of any differential errors introduced into the system, the gear boxes and cover plates of the synchronous motors used to drive the clocks and timers were removed. Reference marks were placed on the exposed rotors and the operation of the motors was observed in the light of a

Scientific Observations

Exact synchronism of all clocks, interval and exposure timers driven by synchronous motors depends upon a crystal-controlled 60 -cps source with stability exceeding ± 0.1 second in 24 hours. Phase splitter and selsyn permit resetting to WWV ticks at any moment

Strobotron lamp fired at the frequency of the power applied to the motors.

Before applying power to the motors, the rotors were positioned manually so that all of the reference marks were in the same direction. Rotor displacements that appeared after power was applied indicated the differences in time required for the individual rotors to reach synchronous speed. Differential errors due to the introduction of a correction signal were observed as further rotor displacements.

Three groups of motors were used in the tests. Each group consisted of motors identical in model and manufacture. Two of the groups comprised motors of the hysteresis type while the motors of the third group were of the inductor type. In each case it was found that differential errors could be introduced.

Phase-Shift Method

To overcome the difficulties observed with the correction method just described a phase-shifter is used instead to apply the corrections to the clocks and timers. The operation of the phase-shifter may be understood by referring to the circuit diagram, Fig. 2. The output of the frequency standard is connected to the primary of T_{1}. The primary of the transformer is resonated to improve the waveform of the voltage from the frequency standard.

The secondary of this transformer drives a resistance-capacitance network that provides three voltages of equal amplitude but separated in phase by 120 degrees. Each of the three voltages is applied to the grid of a cathodefollower. The outputs of these cathode-followers, $V_{14}, V_{1 H}$ and $V_{2,}$
are used to drive the three stator windings of a selsyn. Therefore, if the selsyn rotor is turned through one revolution the voltage at the rotor is progressively shifted in phase through 360 degrees with respect to the voltage at the output of the frequency standard.

Shifting the phase through 360 degrees will add to or subtract from each clock rotor, depending upon the direction of the phase-shift, a displacement corresponding to one pair of poles. Thus, one rotation of the phase-shifter will apply a correction of one-sixtieth of a second to the clocks. To prevent corrections from being applied at a rate that the clock rotors could not follow, a mechanical damper is fastened to the selsyn shaft.

Amplifier

The output of the selsyn is amplified by $V_{8 A}, V_{i, A}$ and $V_{7 B}$, and used to drive a cathode-loaded power amplifier. The regulation of the power amplifier is such that timers may be connected or disconnected across the output without requiring adjustments at the amplifier. This feature is of convenience to the
operator when the timers are used intermittently and when the timers are located beyond reach of the control panel. The amplifier shown in the diagram furnishes power to the frequency monitoring stroboscope disk, a panel clock, and three additional clocks or timers. This output is sufficient for the central observing position at Sacramento Peak.

The cathode-follower $V_{v i}$ provides a low-impedance, low-voltage output so that the standard frequency and corrections may be transmitted to other observing positions. Additional power amplifiers are supplied at the receiving end of the signal line.

Fręquency Monitoring

The frequency is monitored by using the once-per-second ticks of WWV to fire a Strobotron lamp placed behind an aperture in a rotating disk. The disk is driven at one revolution per second by a synchronous motor connected across the clock line. Errors in time that result from frequency deviations from the 60 -cycle rate are shown by the shifting in position of the aperture with respect

FIG. 1-Elements of the standard time-clock system show dual outputs for local clocks and remote line, stroboscopic monitor to check with WWV and selsyn reset control

FIG. 2-Features of the timing system include clipping and filtering circuits (upper part of drawing) so that discrete time ticks from WWV allow resetting with great accuracy: and phase splitter for selsyn resel
to the firing time of the lamp.
To remove modulation components other than the 1,000 -cycle tick from the andio output of the receiver tuned to WWV, a clipper and a 1,000 -cycle filter are used. The clipper consists of two 1 N34 diodes that clip both the positive and negative sides of the receiver output to prevent noise pulses from firing the Strobotron lamp.

A parallel-T resistance-capacitance null network in a feedback loop is used for the 1,000 -cycle filter. Tubes $V_{3 A}$ and $V_{3 B}$ are operated in a cascode arrangement. The signal from the clipper is applied to the upper grid while the feedback through the parallel-T is applied to the lower grid. A cathodefollower $V_{1 A}$ completes the feedback loop.

The cathode-follower also drives the amplifier $V_{A B}$. This stage is biased to cutoff so that a large negative pulse is produced with each incoming tick. These negative pulses cause the Strobotron lamp V_{5} to fire once each second. Tube $V_{2 B}$ is a rectifier that furnishes the negative bias for $V_{4 B}$ and the clipper.

To place the equipment in operation, all the clocks are preset for a WWV time signal. The second hands of the clocks and the stroboscope disk are all set to zero. When
the time signal is given, the operator throws the clock-starting switch that applies drive to the power amplifier.

The motors used throughout the system reach synchronous speed within two cycles of the applied voltage. This characteristic limits the differential starting time error to less than this value. The error due to the operator's reaction time in throwing the switch may be corrected by rotating the phaseshifter until the stroboscope disk is at the zero position.

Errors that accumulate owing to frequency drifts in the standard oscillator are indicated by a shifting of the position of the aperture of the stroboscope disk with respect to the firing time of the lamp. These errors are also corrected by rotating the phase-shifter. Since the correction system does not introduce differential errors between clocks, the equipment may be left in operation until maintenance is required.

The monitoring disk may be calibrated so that the displacement of the aperture from the zero position may be read directly in terms of error in time. Since the number of rotations of the phase shifter to correct any given error is known, it is a simple matter to reduce the error to zero. It is possible, there-
fore, to make corrections even when extremely adverse radio reception conditions permit only occasional ticks to come through. Since an error of one-sixtieth of a second results in a shifting of the stroboscope aperture of six degrees, the limit of the indicating system is approximately the same as that of the differential starting error, and this is the available accuracy
The electronic components of the system are housed in a standard two-deck cabinet. The top chassis contains the circuits of the frequency standard, the phase-shifter, and the stroboscope. The amplifier and power supply are mounted on the bottom chassis. These units and a front panel view of the instrument are shown in the accompanying photographs.

The instrument was designed and constructed for Harvard University by the electronics group of the High Altitude Observatory. Members of the group are R, H. Lee, J. C. Palmer, D. S. Johnson, and the writer. The work was sponsored by the Geophysical Research Division of Air Force Cambridge Research Center under Contract W19-122ac-17.

Reference

(1) J. H. Greenwood, Accurate Time for Broadcast Studios, ELECTRONics, p 97 June 1951 .

Magnetic Centering of Electrostatic C-R Tubes

Pictures on the new electrostatically-focused tubes can be centered by one of three different $\mathrm{p}-\mathrm{m}$ devices-the rotatable magnet, the contrarotatable magnet or the offset ring. Design and adjustment procedures of three basic types are shown

By S. L. REICHES and D. P, INGLE

Engineering Department
All Star Products. Inc. Defance, Ohio

Electrostatically-focusel picture tubes require some separate centering means since the usual centering methods of moving the entire focus unit in the e-m case and the slide pole piece in the p-m case are not available. The new device used to accomplish centering on the electrostatic tube is called the centering unit and at this time there are three distinct types available. While there are many variations among the three basic types, all being mechanical or material differences, this paper is confined to a typical example in each group.

Early in the development of the electrostatic tube, using the socalled deceleration lens, it was recognized that the quality of focus is sensitive to the maintenance of a high degree of concentricity between the electron beam and the elements of the electron lens. In addition, it was found that the dot is readily distorted into the astigmatic shape or the comma when the beam traverses a magnetic field placed between the ion trap and the deflection yoke if this field is not uniform to a high degree. While it was found that the sensitivity of the beam to these distortions varied with the make of the tube, all tubes suffer to a more or less degree. In addition to the variation between tubes of different manufacture the type of ion trap used was also found to have an effect on the degree of nonlinearity that can be tolerated in the magnetic field.

This information showed that any

FIG. 1-Curves show linearity of flux distribution across neck of tube

FIG. 2-Plug and flux meter setup used to make field measurements on ion traps and centering units
magnetic device placed between the ion trap and the deflection yoke for centering purposes must have, as a first requisite, a uniform field in the area of interest and should not have a field component parallel to the electron beam since this field will produce some magnetic focusing which is not desired.

The amount of centering motion considered necessary has been decided upon by consultation with tube manufacturers. While most manufacturers feel they will be able to hold the beam within one inch of the center of the face of the tube it is felt that about $2 \frac{1}{4}$ to $2 \frac{1}{2}$ inches total displacement should be made available.

Basic Types

The three basic types of centering units may be classified as: The rotatable magnet, contrarotatable magnet, and the offset open ring magnet type.

The rotatable magnet type is based upon the principle that an electron beam will be displaced with minimum distortion as to size and shape when it is passed transverse to a uniform magnetic field. The amount and direction of this displacement is determined by the strength of the field and its direction.
In the rotatable magnet design the control of flux density and field direction is achieved by arranging a magnet that can be rotated between two pole pieces which surround the neck of the tube and between which the electron beam passes in the general manner of the ion trap.

The usual ion trap shape pole pieces can not be used since the flux distribution along the axis of beam displacement is very nonlinear. The measuring technique used in the development of linear flux distribution pole pieces is the same as used in the development of ion trap pole pieces. Figure 1 shows measurements made on two types of centering units along the axis of beam displacement. The ion trap flux distribution is far from the desired linear distribution, as proved by tests on various ion trap types currently being used. Figure 2 shows the plug used for field measurements on both the ion trap and the
centering unit as used in conjunction with a General Electric gauss meter.

Rotatable Magnet

The mechanical design of the rotatable magnet unit begins with a small magnet mounted on a shaft with an associated bearing. The magnet is positioned between the pole pieces, which are also used to mount the unit to the neck of the tube as is shown in Fig. 3. The magnet size is such that a field of about 9 gausses is developed at the center of the arcuate section of the pole pieces. As the magnet is rotated from this position the flux goes through zero and then reaches 9 gausses again but with the direction of the field reversed from the original direction. Adjustment of the picture when one of these units is used alone consists of rotating the entire unit around the neck of the tube until the long axis of the device (the one that passes through the magnet) is lined up with the polar axis of displacement of the picture. The magnet is rotated and the picture moves along the polar axis until it is centered.
Some manufacturers prefer to make provision for external control of centering. One in particular has taken advantage of the fact that he has always carried some d-c in the horizontal windings of the deflection yoke. This current is made controllable and is used for horizontal centering. A rotatable magnet type of unit provides the vertical centering and external control is achieved by adding an extension to the magnet shaft which then extends out the back of the set. The other solution, the more general among those requiring external control, has been to arrange two of the rotatable magnet units at right angles to each other and one behind the other. (The one producing the horizontal displacement is closest to the deflection yoke.)
It is possible to combine the two right-angle units into one assembly but the economics are such that nothing is saved by doing so while the magnet problem becomes quite troublesome.

Of prime importance in all units is the choice of magnet material. The highest coercive material eco-

FIG. 3-Rotatable-magnet type centering unit
nomically available should be used. This is necessary since like the ion trap and the p-m focus unit the device is operating pretty much under open-circuit conditions and thus is subject to self-demagnetizing effects. In addition, in the case of centering devices, due to operating them so close to the deflection yoke, heavy demagnetizing effects by the field from the deflection yoke also exist. In the event an anastigmatic type yoke is used, the demagnetizing can be really serious. As an example, one device tested before installation measured 11 gausses. After exposure to the field from the anastigmatic yoke this dropped to 6 gausses. Because of this, the rotatable magnet type uses a small piece of Alnico V to minimize this problem.

Contrarotatable Magnets

The second basic type of centering control, the contrarotatable magnet design, is shown installed on a tube in Fig. 4. This unit consists of two open ring magnets of either Cunife or piano wire. They fit into two aluminum supports (the pieces with the ears) and the whole assembly is held together by a fiber ring.
The entire unit is held on the neck of the tube by the spring tension afforded by a brass strap that curls inside of the fiber assembly ring.

While this unit looks radically different from the rotatable magnet centering unit, the principles of operation are similar. The two ring magnets, with the diameter larger than the neck of the tube, in addition to being magnets provide the equivalent of the pole pieces of the rotatable magnet unit. Being an-

FIG. 4-Contrarotatable unit consists of two open ring magnets
nular and of homogenous magnetic construction it is found that the flux distribution along the axis of beam displacement is uniform and as good as the rotatable magnet device. Control of magnetic flux density is achieved by rotating one ring magnet with respect to the other. This is done by using the ears on the aluminum pieces as purchases.

When the openings of the ring magnets are opposite one another and each tip of the same polarity the strongest field is produced. When one magnet is rotated, with the other held still, when the openings are opposite each other again, the magnetic flux is at a minimum. Therefore, by rotating one magnet with respect to the other the flux changes from maximum to minimum, and the beam will displace.

If the openings on the ring magnets are on the wrong side of the tube, it will be found that the beam will displace more in the undesired direction. When this occurs the unit need only be rotated through 180 degrees and the rings again rotated with respect to each other until centering is achieved.

In use, this unit is best handled by orienting the openings of the ring magnets along the axis in the same manner as the magnet of the rotatable type was oriented, and one ring rotated with respect to the other. If this moves the picture in the wrong direction, the entire unit should be rotated through 180 degrees and the rings again displaced.

No convenient method exists to date for providing external control with this type of device which limits it to the serviceman's type of installation. Designs other than the one shown have more positive methods

FIG. 5-Offset open ring magnet centering device
of maintaining the position of the unit on the neck of the tube. One design affords a means for clamping by a screw arrangement similar to the type used on the rotatable magnet unit shown above.

The use of low-coercive magnetic materials, like carbon steels, in an area where strong a-c fields exist, such as in back of the deflection yoke, seems to merit further consideration. One type of contrarotating magnet design uses Alnico V which will undoubtedly be trouble free.

One of the major limitations to this type unit as compared with the rotatable magnet design, is that in spite of relation between magnet position and beam displacement described above, in production and in the field, there are no positive indications between the unit and what a change in the unit will do to the beam.

In the rotatable magnet design, there is a definite and easilyspotted relationship between the position of the unit and what a rotation of the magnet will do to the beam position. This represents a material time savings in final adjustment and inspection in production in addition to helping the worker in the field, whether set owner or serviceman. The amount of centering and the amount of dot distortion produced by most of these units is comparable with the rotatable magnet type.

Offset Open Ring

The third method for centering the picture is the offset open ring magnet. This device consists of one open ring magnet similar to those used in the contrarotatable magnet design except that the ring is large:
in diameter. As can be seen in Fig. 5 this ring magnet is mounted on a support in such a manner that it can be rotated about the neck of the tube and also moved transversely with respect to the electron beam axis. Thus by moving in some combination of these two displacements some centering can be achieved.

The method of mounting this device may be seen in Fig. 5. Three ears grasp the cap cover of the deflection yoke sufficiently well for all practical purposes. In addition to the limitations of the contrarotatable magnet device, the only units examined to date are quite limited as to the amount of displacement to the point that their use on electrostatic tubes is debatable.

The contrarotatable types using low-coercive magnet material are not as desirable as these using Alnico V. In either case it is felt that the most desired unit in this group is one with Alnico V magnets and provision for clamping other than spring tension. While spring tension is certainly adequate for ion traps, a clamp is believed necessary in the centering device not only to prevent rotation around the neck of the tube but to insure against twisting of the centering unit. In addition to a good clamping means this requires adequate width of the part that is arcuate with the neck of the tube.

Present Status

At this time, the only rotatable magnet type in use is the one shown in Fig. 3. This unit uses Alnico V (less than $\frac{1}{8}$ th oz) between properlyshaped pole pieces to insure a high degree of field uniformity. The unit is held in place, once it has been positioned, by a screw and wing nut. The pole piece width is about 0.5 inch preventing any twisting of the unit. Movement of the picture by this unit is directly correlated to movement of the magnet and to the unit as a whole thus eliminating cut and try centering. External control of centering is available if desired.

The rotatable magnet type has the further advantage that it can be used on tubes that require little or no centering correction. The contrarotatable type cannot provide low or zero flux in most cases.

FIG. 1-Cut-away drawing of miniature magnetron shows interdigital construction. A permanent magnet furnishes the required field of 500 to 600 gauss

MAGNETRON OSCILLATORS, well known for their high-power microwave performance, may be constructed on a miniature scale to serve as efficient local oscillators delivering high-frequency $c-w$ energy at levels in the order of onehalf watt. Experiments show that such magnetrons are culiet in performance, having carrier-to-rms noise ratios equal to those of an ordinary triode oscillator.

Although conventional triodes are readily available for local oscillator service below 500 mc , their performance above this frequency, in the proposed uhf-tv range of 475 to 890 mc for example, is marginal. In particular, at frequencies much above 500 mc triode dimensional tolerances and element spacings become critical and result in relatively expensive tubes.

On the other hand, a magnetron of the so-called interdigital type is structurally a simple multi-anode diode having relatively large spacings and tolerances between elements. As an oscillator its circuit is inherently simple since no external provision for feedback is required. Efficient operation at the 900 -mc end of the spectrum may be attained with comparative ease since the magnetron, operating in the travelling-wave mode, utilizes the effect of electron transit time beneficially in its production of oscillations. It is also possible to generate frequencies as low as a

By D. A. WILBUR, P, H. PETERS
and H, W, A, CHALBERG

General Electric Company
Electronics $P(t \cdot k$
Syracuse, New 5ovk
few cycles per second by operating it as a negative-conductance oscillator.

As a result of these considerations a new inexpensive miniature magnetron has been developed to cover a frequency range from 0 to $1,000 \mathrm{mc}$ and to deliver r -f powers in the order of one-half watt or less. Its experimental designation is Z-2061.

Tube Structure

A cut-away drawing of the new magnetron and its associated ring magnet is shown in Fig. 1. Mounted on a standard 7-pin miniature base the anode structure is of the interdigital type and consists simply of eight vanes anchored alternately to two end rings so that four vanes are connected to each end ring. Two mica spacer disks are used to secure the vane assembly and to center an axially-located indirectly-heated oxide cathode.
A permanent magnet with a field strength in the order of 500 to 600 gauss is used to supply the magnetic field. Magnetization is transverse to the cylindrical axis of the magnet. Nonmagnetic material is used for the vanes and supporting rings to assure uniform flux density over the entire anodecathode interaction space. The T-5 $\frac{1}{2}$ bulb diameter reduces the magnetic path length in air to a minimum. To minimize hum modulation a reverse coil heater has been used.

D-C Characteristic

To measure the static behavior of the miniature magnetron, both sets of vanes are connected to a common positive d-c potential, and in the absence of oscillations, the static anode current is found to vary as shown in the curves of Fig.
2. Simple theory predicts that for any fixed magnetic field strength a cutoff voltage exists below which no anode current will flow. However, there is always some leakage current below this cutoff voltage in all magnetrons and the relative effect of two different field strengths in minimizing this leakage current is shown in Fig. 2.

The diode leakage current is seen to be as high as 18 ma at 160 volts and 600 gauss. This leakage current below the cutoff voltage has been found especially useful in its

FIG. 2-TYpical static plate characteristics of miniature magnetron

FIG. 3-Circuits for low-frequency oscillator and for measuring negative conductance of miniature magnetron

Miniature Magnetron

Tube designed for use as local oscillator in uhf receivers fits miniature 7-pin socket and provides outputs up to 0.5 watt over a frequency range of zero to $1,000 \mathrm{mc}$. Stability is good and associated circuitry is extremely simple
effect on the starting characteristics, as will be described later.

Types of Oscillations

If the terminals of a frequencydetermining circuit are connected in push-pull fashion to each anode set, as shown in Fig. 3A, and the voltage raised from zero upward, oscillations at the circuit resonant frequency will occur. Two general types of oscillation can be produced depending on the operating voltage and resonant frequency. One type of oscillation utilizes a static negative conductance existing between adjacent anodes to sustain oscillations. The voltage and field strength need merely be set at a static operating point about which the negative conductance is sufficient to compensate circuit and load loss. Operating voltages for this mode are kept large enough so that the electrons complete their work on the r-f field as they cross under only one gap before being collected by the most negative vane, and they therefore move at velocities greater than required for synchronization with the r-f field alternations.

The highest frequency possible for a given voltage is determined when the duration of one-half r-f cycle becomes comparable to the transit time of electrons in passing from one vane to the next. Although the anode voltage can be increased to raise this frequency limit somewhat, the diode leakage current soon loads the tank circuit so heavily that oscillations are no longer generated. For the voltage, magnetic field, and geometry of the tube, the negative-conductance effect seems best suited for power generation below 100 mc .

Above 100 mc , a second type of oscillation is brought into action.

Magnetron tuner and power supply for continuous tuning from 515 to 930 mc

This type, called the travellingwave mode, is most commonly employed in present day uhf magnetrons and utilizes to advantage the effects of transit time. Instead of attempting to maintain electron velocities much faster than required for synchronization with the anode $r-f$ voltage, the electrons are made to rotate about the cathode in synchronism with the r-f voltage on the tank circuit. The electrons being in step with the r-f field deliver energy to the tank over several r-f cycles, crossing under several vanes before collection takes place.

For a given frequency the operating voltage is much lower than that required for negative-conductance oscillations and energy transfer is more efficient. The voltage must, however, be sufficient to synchronize the electron angular velocity with r-f field. As a consequence there is a minimum starting voltage for each operating frequency in the travelling-wave mode.

It is found that for a given anode voltage, a gradual transition from the negative-conductance type oscillation to the travelling-wave type oscillation takes place as the operating frequency is increased. For voltages near the cutoff voltage, there is evidence that the negative conductance action remains effective well into the uhf range.

Oscillations at UHF

In investigating the operating characteristics of the Z-2061 particular emphasis has been given to operation in the uhf portion of its range as regards power output, noise level, frequency stability and efficiency.

In Fig. 4 are shown the characteristic curves for 600 gauss which result for oscillating frequencies between 400 and 950 megacycles. The tube is acting as a travellingwave magnetron and, as the voltage is raised from zero, only leakage current is drawn by the anodes
until the proper synchronizing voltage is reached, at which point oscillations begin. A further increase in voltage results in a rapid increase in anode current as the r-f energy stored in the tank circuit increases. Depending on the loading of the tank circuit, the rate at which anode current builds up with increasing anode voltage may be more or less rapid and the slope of the dynamic oscillating curves will be altered correspondingly. Light loading results in large r-f voltages and large current collection at the anodes. Heavy loading restricts r-f vane-to-vane voltage and the d-c collection grows less rapidly with applied d-c voltage. The curves of Fig. 4 correspond to particular loading conditions obtained in a turret tuner to be described in a later section, but they are representative of the behavior to be ex-
pected with typical uhf circuits.
Referring again to Fig. 4, suppose oscillation is taking place at 700 mc . This corresponds to an operating point of 10 ma at a fixed voltage of 100 volts. If the tank circuit is tuned downward to 500 mc , the anode current will rise rapidly until it reaches about 32 ma which is considerably above normal rated current. Continued lowering of the operating frequency finally causes the electrons to fall out of step with the lower radio frequency being generated. Then the oscillations abruptly stop. Restarting can be accomplished only by lowering the voltage to the $500-\mathrm{mc}$ starting level of about 70 volts or by raising the tank frequency upward again toward 700 mc .

If we retune to our original oscillation at 700 mc and now tune the tube upward in frequency, the anode

FIG. 4-Stable dynamic plate characteristics for 400 to 900 me turret tuner

FIG. 5-Neqative-conductance characteristic for 600-gauss field
current drops until at about 750 mc , oscillation ceases and the current consists merely of the diode-leakage component given by the static plate characteristic.

These processes indicate that considerable adjustment of the anode voltage is required to maintain optimum r-f power over a two-to-one frequency band. For operation of the magnetron over a wide frequency range from a fixed voltage supply a series resistor in the anode circuit provides a satisfactory self adjustment of the anode voltage. In Fig. 4 is shown a load line for a $10,000-\mathrm{ohm}$ series resistor and a supply voltage of 300 volts d-c. With this value of resistance the magnetron will run at a reasonably uniform current level near 20 ma between 400 to 950 mc and the anode voltage will be automatically adjusted from 85 to 125 volts over that tuning range.

Oscillation Stability

The two ends of each dynamic curve in Fig. 4 define a stable voltage range over which the oscillations at each respective frequency are stable with respect to loading out. While oscillations will continue for currents much higher than defined by the high-current end points in Fig. 4, they will not restart when once loaded out. Within the boundaries of these curves, oscillations will start again upon removal of the load.

For example, suppose at 400 mc the anode voltage is momentarily raised above the top stable point of 95 volts and 37 ma . If the tube is now loaded out of oscillation, it will not restart again until the voltage is reduced so as to be in the $400-\mathrm{mc}$ stable voltage range. On the other hand, if the voltage is made less than 60 volts, of course, oscillations will not commence in the first place.

Addition of the series resistor modifies the loading-out and restarting behavior. When the oscillator is loaded so as to stop oscillations, the anode current and the voltage across the series resistor will drop, as the anode voltage rises to the point where the static characteristic intersects at point A. This corresponds to an anode voltage and leakage current of about 154 volts and 14 ma .

It would be presumed, therefore, that unless the supply voltage itself were lowered to the stable voltage range corresponding to the tank setting, oscillations could not begin again even after load removal.

However, in practice, the tube will begin to oscillate again even though its anode voltage is far in excess of the proper synchronous voltage. Restarting occurs because of the negative conductance which exists between the anodes at the 154 -volt and 14 -ma level. This negative conductance is described in detail in the discussion of class-A oscillations. As the oscillation amplitude increases it causes an increase in anode current and a decrease in anode voltage along the series-resistor load line. In turn, the decrease in anode voltage occasions a reduction in the available low-level negative conductance. However, for a given d-c anode voltage, the negative conductance is greater for large r-f signals than it is for small. Consequently, oscillations once started at point A quickly become large enough to sustain themselves even though the d-c anode voltage falls well below the 154 -volt level. Ultimately this voltage falls low enough for the electrons to synchronize and generate travelling-wave oscillations. The voltage and current then stabilize at an intersection of the load line and one of the curves.

Low-Frequency Oscillations

Although the Z-2061 has been designed principally as a high-frequency oscillator, measurements show that it will generate considerable power in lower frequency bands, including the audio range. Operation from a few cycles to approximately 100 mc is of the nega-tive-conductance type.

This negative conductance is exhibited between the two anode sets and may be measured by applying an incremental positive voltage to one anode and an equal but negative voltage to the other with respect to a quiescent d-c level, as illustrated in Fig. 3B. It is observed that while current to the slightly positive anode will increase slightly, the current to the less positive anode increases far more. Consequently, the difference current

Turret tuner uses six tuner strips of the type shown in Fig. 6 and can be adjusted for any six frequencies between 400 and $1,000 \mathrm{mc}$

FIG. 6-Drawing of tuner strip for coverage of frequency range from 500 to 600 mc
through an impedance connected between the anodes will appear to flow toward the anode that is least positive, a condition indicating negative conductance.

If the incremental voltages are applied in opposite sense, the anode which had formerly been most positive will be least positive and will be collecting the most current. In Fig. 5 are shown relationships between incremental difference current and differential anode voltage for two quiescent voltage levels. For example, a +40 -volt differential means that +20 volts has been applied to anode 1 and -20 volts to anode 2. The resulting current change is negative indicating a positive current flow away from anode 1.

Class-A Oscillations

As the quiescent level is increased toward the cutoff voltage of 160 volts at 600 gauss, the negative conductance continues to increase. At 150 volts it has been measured as
-312 micromhos, whereas at 100 volts it is only -50 micromhos. Of particular interest is the fact that the negative conductance is appreciable for very small incremental voltages about any given quiescent point, when the quiescent voltage is a relatively large fraction of the cutoff voltage. The oscillations generated by this type of operation can start from noise level. Such oscillations are only about five percent efficient, and may be classified as being developed under class-A operation of the tube.

More familiar is a second type of negative-conductance oscillation which compares with that developed by a class-C triode oscillator. The 50 -volt curve of Fig. 5 is suitable for such oscillations. For a typical loaded tank circuit the conductance at the origin is too low to build up oscillations from noise. If a surge across the tank can be established in the order of 50 volts, when the tube is turned on, sufficient power will be delivered to the tank at the

Table I-Typical Oscillator Data for the Miniature Magnetron Operating from 700 cps to 225 mc

Frequency	Anode Voltage	D-C Input (Watts)	R-F Ouput (Watts)	$\begin{aligned} & \text { Eff } \\ & (\%) \end{aligned}$	Mode Type
(Tank Q too low to start Class-C oscillation)					
2.1 mc	$\begin{array}{r} 76 \\ 123 \end{array}$	$\begin{aligned} & 0.80 \\ & 0.81 \end{aligned}$	$\begin{aligned} & 0.053 \\ & 0.020 \end{aligned}$	$\begin{aligned} & 6.6 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \text { Class-C } \\ & \text { Class-A } \end{aligned}$
38.5 mc	140 (Tank	$\begin{gathered} 2.24 \\ \text { too low to sta } \end{gathered}$	$\begin{gathered} 0.125 \\ \text { lass-C oscill } \end{gathered}$	5.6	Class-A
116 mc	$\begin{array}{r} 59 \\ 70 \\ 140 \end{array}$	$\begin{aligned} & 0.54 \\ & 1.79 \\ & 2.8 \end{aligned}$		11.8 11.7 4.5	T-W Class-C Class-A
295 mc	67 110	1.34 2.31	0.185 0.080	13.8 3.5	T-W or Class-C Class-A

peak of the surge, where the negative conductance is much higher than it is at the origin, to sustain oscillation. Thus maximum current is collected at the most negative anode over a short portion of the r-f cycle, and the circuit is kept oscillating as in a class-C oscillator.

Class-C negative-conductance oscillations begin and drop out abruptly and are about 10 percent efficient. The starting and loadingout behavior are very similar to traveling-wave oscillations and much above 100 mc it is sometimes difficult to distinguish between the two types, since the ranges of operating voltage for each type overlap considerably.

Several tubes were checked at five spot frequencies from 225 meg acycles down to 700 cycles per second. Selected data from these tests are listed in Table I. At each frequency the loading was adjusted to give optimum power output. The data particularly show the transitions between the three possible types of oscillation and the relative efficiency of each for increasing
values of anode voltage.
Note that the efficiency drops with increasing voltage at each frequency point. The output powers given are not the maximum attainable in any given mode. They lie near the middle of the voltage range for each mode. In operation, the moding action is recognized by an abrupt change in operating current as the voltage is changed uniformly in one direction.

From the data it is seen that much above 100 mc it is evidently most practical to utilize the travel-ling-wave mode for local-oscillator use. However, even though the class-A mode is least efficient, it does permit 100 -percent amplitude modulation of the magnetron with minimum distortion and frequency modulation, a characteristic that may find other practical applications.

Tuned-Circuit Design

The use of printed circuits in vhf and uhf applications of the Z-2061 is entirely feasible and such commercial tuning elements as the vhf

Mallory Inductuner work very well.
Two factors inherent in the tube design dictate the design of the external tuning circuits. These include the anode-to-anode capacitance and anode lead inductances. If the tube is mounted in a typical molded socket and the anode pins are shorted as close to the socket as possible the oscillating frequency will be near 600 mc . This upper frequency may be raised to 1,000 mc by first series-resonating the lead inductances with a small capacitor placed in series with each anode lead. This effectively places the anodes electrically much nearer the anode pins. A shorted transmission line may now be connected to these capacitors and used to tune the entire uhf band. The length of this line will be less than one quarter wavelength by the amount of foreshortening due to the interanode capacitance. The line may also be operated in a three-quarter wavelength mode above 900 mc .

Alternate Method

An alternative tuning method has been used which results in somewhat stronger oscillations above 600 mc . In this method an openended transmission line is connected either directly or through the series capacitors to the anode pins. The operation results in a half-wave distribution on the line with a voltage minimum near the pins and voltage maxima inside the tube at the anodes and at the open end of the line.

To tune the entire 400 to $1,000-$ megacycle range, a novel type of tuned circuit has been developed using a combination of the tuning and compensating methods just described. Essentially it consists of an open-ended transmission line

FIG. 7--Equivalent electrical circuit

FIG. 8-Tuning element for continuous coverage of frequency range from 515 to 930 mc

FIG. 9-Curves show power output as function of input (left) and frequency (right)
capacitively coupled to a short-circuited line. With large coupling the two elements combine to act like a short-circuited quarter-wave line. As this capacitance coupling is decreased there is a gradual transition from the quarter-wave line mode to a half-wave line mode. Figure 6 is a drawing of a tuner strip which covers the frequency range from 500 to 600 mc . The frequency increases as the spacing between the open and short-circuited lines is increased.

The photograph shows a turret tuner which uses six tuner strips similar to that shown in Fig. 6. This tuner can be adjusted to resonate at six different frequencies between 400 and $1,000 \mathrm{mc}$. The tuning ranges of each strip are made to overlap to assure operation at all possible frequencies in the band.

Figure 7 shows the equivalent electrical circuit of the tuner connected to a magnetron. Plate voltage is applied through a pair of r-f chokes consisting of 15 turns of No. 28 wire on a $\frac{1}{8} \times \frac{3}{8} \mathrm{in}$. phenolic coil form. To prevent spurious oscillation at the choke resonant frequency, the chokes may be wound over 200 -ohm, one-half watt resistors and connected to their terminal leads.

Another type of tuner using the same tuning method was designed to provide continuous tuning from 515 to 930 megacycles. Figure 8 shows the constructional details of the tuning element.

It has been found that the addition of a small r-f choke and series blocking capacitor connected from one anode to chassis ground, as
shown dotted in Fig. 7, greatly improves operation at frequencies over 700 megacycles. In the tuners shown in the photographs, an inductance of approximately 0.25 mi crohenry and a blocking capacitor of 10 y.uf were found to be satisfactory. Design consideration should be given to disconnecting this L-C combination below 500 megacycles since it may affect operation of the tube at the lower frequencies.

Operating Conditions

Power output measurements in the range between 400 and 1,000 mc are shown at left in Fig. 9. With a maximum plate input of 3 watts, the tentative maximum rating of the tube, an average power output of 725 milliwatts has been measured at 400 megacycles and 210 milliwatts at 1,000 megacycles. These curves also show that power output is proportional to power input. The relationship between power output and frequency at 3 watts input is also shown in Fig. 9.

Frequency stability measurements of the turret tuner have been made as a function of line voltage, filament voltage, plate supply voltage, flux density, and time. The results of these measurements show that changes in plate voltage and filament voltage compensate each other. This, of course, is an advantage when the line voltage is changed. The dependence of stability on the magnetic field is not a problem because the magnetic field is quite constant over a long period of time.

The average frequency drift dur-
ing the first 20 minutes is about 400 kc . In designing a tuner, consideration should be given toward compensating for frequency drift due to temperature change.

With the oscillator circuit tuning fixed near 900 megacycles, the average spread in frequency among 25 sample tubes was approximately 20 megacycles.

Measurements of sixty-cycle hum indicate that the hum and noise level is down more than 60 db below the carrier level. With d-c operated heaters, the noise-to-carrier ratio is better than -75 db . The radiofrequency spectrum, as observed on a spectrum analyzer, shows only a single-frequency signal when observed over a bandwidth up to 60 megacycles.

Several tests made to determine the effect of variations of cathodeanode alignment with respect to the tube pins indicate that once the magnet has been aligned for minimum plate current, further adjustment of its position in replacing tubes is unnecessary. However, the initial alignment of the magnet to within a few degrees may be necessary. Design activity on the magnet structure is under way and future designs may possibly eliminate the alignment procedure.

Conclusion

Although the miniature magnetron has been designed primarly for use as a local oscillator its application is not necessarily limited to this service. The extreme frequency range, 0 to $1,000 \mathrm{mc}$, and relatively large output make it an intriguing tool in such apparatus as signal generators, transmitters operating in the citizen's band, and wherever a low power, compact, and stable source of r-f energy is required.

Availability

The Z-2061 is not currently commercially available. Shortages of cobalt and nickel which are essential in the manufacturing of Alnico V have necessarily curtailed any production plans for the tube.

The authors wish to acknowledge the valuable assistance of C. R. Knight and L. U. Hamvas of the Advanced Development Section of the Tube Divisions in the design and development of this tube.

Complete emergency television transmitter with filaments lighted. In event of main transmitter failure, operator flicks toggle switch and moves chair to emergency console. Coaxial cable run starts behind talse wall back of clock and continues around to right. Tall cabinet to left of oscilloscope houses $2,000-\mathrm{mc}$ link that programs Bridgeport uhi experimental transmitter

Reducing Outage

By LESTER A. LOONEY and FREDERICK C. EVERETT

Assistant Manager

Radio and Allocations Engineeving
Eugineer
Vational Broadcasting Co.,
New York, N, Y.

WIth the installation of a new television and frequencymodulation antenna for the Na tional Broadcasting Company, atop the Empire State Building, ${ }^{1}$ some innovations were made in the feed arrangements between the tv and f-m transmitters and the antenna.

The time charges at WNBT have now reached $\$ 4,000$ an hour. Added to this figure must be such items as talent costs. It can be seen that with even a short-time outage, serious financial losses can result. At the present state of the art, it is virtually impossible to eliminate transmitter outages completely, tube failures being one important factor.

To provide tv operation with a minimum of outages, a second tv transmitter, picture and sound, has been used for emergencies. This transmitter, in the past, was normally connected to an emergency antenna, which allowed its immediate use when needed, by merely applying plate voltage. Facilities were provided whereby the coaxial lines could be opened up and elbows moved to plug the emergency transmitters into the regular antenna, but this was cumbersome and could result in delay and lost air time.

Because the emergency antenna had lower gain than the regular antenna, in case of transmitter failure the operator was faced with a diffi-
cult choice whether to switch transmitters, make repairs, or sacrifice coverage by operating on the emergency antenna. Should he elect to rectify the trouble he might later regret his selection because it might have been quicker to spend a few minutes in changing transmitters.

The new arrangement here described, makes it possible to switch emergency sound or video transmitters to the regular antenna and to do so practically instantaneously.

Referring to Fig. 1, the outputs of two transmitters are joined together and to the antenna feed by means of a tee. Back a quarter wave toward each transmitter is placed a transmission line switch

Top two lines carry $f-m$. Next line down is emergency sound. It passes through coax switch. To it is attached compensating stub near center of picture. Regular sound line comes in from right through another coax switch and joins extension of emergency sound line. Next lines visible are emergency picture and regular picture lines

at WNBT and WNBC-FM

With television time charges at $\$ 4,000$ an hour, transmitter outages can no longer be tolerated. Standard coaxial lines and iris-type shorting switches uniquely arranged allow a quick changeover to the emergency transmitter without interaction with f-m equipment triplexed to same antenna
of the short-circuiting iris type. A short circuit on the unused transmitter line is reflected as an open circuit at the tee connection and allows the signal from the transmitter in use to proceed along the line toward the antenna.

These switches were originally designed for power cut-back systems in f-m transmitters and were not considered sufficiently broad banded for tv use. Furthermore, the presence of the tee fitting and the quarter-wave stub left on the other leg of the tee produces a certain additional amount of discontinuity on the transmission line.

By placing an adjustable, shortcircuited, quarter-wave stub a

Complete transmitter and antenna system used at WNBT and WNBC-FM

FIG. 1-Elementary arrangement of coaxial shorting switches and compensating stub for emergency transmitter changeover

FIG. 2-First approximation of a filter interposed between the WNBC-FM transmitter and common-antenna triplexer
quarter wavelength farther along the line toward the antenna, it was possible to broad-band the switching system. It is a well-known principle that two identical discontinuities a quarter wave apart will cause nearly complete compensation for each other over a relatively wide frequency range.

Before installation the effect of the switching without the compensating stub was checked and while the discontinuity was small, it was easily detectable. With the compensation, the effect is hardly measurable and the stub can be adjusted in advance by the utilization of sweep methods. It was probably not necessary to supply a compensating stub on the sound line, the standing-wave-ratio requirements not being so severe. However, it was simple to build two, so both picture and sound lines were treated similarly.

These transmission line switches are solenoid-operated and are controlled by special five-position switches mounted in the operator's console. To change from one transmitter to the other requires only a
flip of the switch. They are suitably interlocked so that the transmitter in use is turned off, the coaxial switch solenoids are pulsed and the other transmitter is turned on in sequence so that the r-f power cannot be applied unless and until the switches are in the proper position.

In practice the switchover is accomplished essentially in the length of time it takes the regular transmitter plate contactors to operate, and the transition is barely recognizable on the air.

Antenna switching between regular and emergency antennas is done by means of double elbows in such a manner that a coaxial patch panel is used. Presumably antenna failures will be few and far between and a few moments longer may be taken to perform this operation.

Triplexer

The tv and f-m signals are all radiated from the same antenna. As the complete tv signal radiated consists of the output of two transmitters, these signals are combined in a diplexer. Similarly, for the $\mathrm{f}-\mathrm{m}$ signal, a triplexer unit is used. This is a notching type of filter that is now a standard commercial product, originally developed several years ago for the NBC Washington station, WNBW. ${ }^{2}$ Similar notch filters are used in such applications as part of the tv vestigial sideband filter.

Due to the physical layout of the station, it would have been almost impossible to install the triplexer close to the f-m transmitter. To do

FIG. 3-General method of plotting values of $3 / 4$ wavelength f-m lines to find characteristic at television fre. quencies
so would have made the tv trans-mission-line route complex and undesirable. However, since the notching filter in the triplexer consists of tuned circuits (in this case, made of coaxial transmission-line elements) it is vulnerable to impedance presented to its $\mathrm{f}-\mathrm{m}$ input.
When the triplexer had been installed in a convenient place, the distance back to the f-m transmitter was in the order of 90 feet. The f-m transmitter output circuit presents some variable impedancewhich may be variable in value due to tuning. But even if the impedance has a fixed value, as it goes through the length of transmission line connected to it, the values presented along the line go through a complete cycle every half wavelength. This means that at the end of this line containing a large number of half wavelengths, the impedance varies rapidly with frequency. Resonance effects therefore occur with the triplexer circuit elements to cause undesired tv feedthrough into the f-m transmitter with a corresponding mismatch point within the tv frequency band.

Separation Filter

To remove the effect of line length it was desirable to equip the line with a separation filter so designed that the $f-m$ passed through it unimpeded but so made that looking into the f-m line from the triplexer in the direction of the f-m transmitter, the line is terminated in a pure resistance across the tv channel.

A sketch is shown in Fig. 2 of

FIG. 4-Fundamental Smith-chart plot shows how short-circuited stub can be modified to have zero impedance at tv midband
the filter, built of coaxial transmis-sion-line elements. The sketch shows the inner conductors only, for simplicity, and indicates that it is installed on the transmission line normally coming out of the f-m transmitter (proceeding in the direction from A to B).

At point A there is a tee that connects a short-circuited stub $\frac{3}{4}$ wavelength long at the f-m frequency. To point A, therefore, the stub presents a high or infinite impedance and the f -m signal goes by undisturbed. At point C there is an open-circuited stub $\frac{3}{4}$ wavelength at the $\mathrm{f}-\mathrm{m}$ frequency. This produces a short circuit at the f-m frequency at point C. The addition of a resistor at this short circuited point has no effect on the f-m because of this short-circuited condition. Point C is joined to the tee at point B by an additional quarter wavelength of line that causes a high or infinite impedance to be presented to the f-m at point B so the f-m signal goes by undisturbed enroute to the triplexer.

Filter at TV Frequencies

By a fortuitous circumstance, $\frac{3}{4}$ wavelength at the $f-m$ frequency $(97.1 \mathrm{mc}$) is almost exactly a half wavelength at channel 4 (66 to 72 mc). This is not quite true, but for the purposes of discussion it is assumed so. It will be shown later how the discrepancy is handled.

Since the short-circuited line at point A is a half wavelength at the picture frequencies now under consideration, it presents a short circuit at this place. The effect of the

FIG. 5-Open-circuited stub can be formed from two different diameters of inner conductor to represent infinite impedance
f-m transmitter is negligible since it is connected to a short-circuited point. The length of line between A and B is made a quarter wavelength at the picture frequencies so that the short circuit at A becomes an open circuit at B, in effect disconnecting the f-m transmitter and stubs at that point. Simi arly, at C, the paralleled stub that is a half wavelength long at tv and opencircuited, produces only an open circuit there, where the resistor is attached.

Looking into the line from the triplexer in the direction of the filter and f-m transmitter, the line sees the resistor at C only at television frequencies. Since this is a termination on the line, the length of the line is no longer significant.

Use of Smith Chart

Figure 3 shows the method of making a Smitn chart plot ${ }^{8}$ of the open-end short-circuited stubs that are $\frac{3}{4}$ wavelength at $\mathrm{f}-\mathrm{m}$ frequencies. It can be shown that zero impedance at the start of the stub does not result in a short circuit at the various frequencies in the television band since rotating through $\frac{3}{4}$ wavelength at the f-m frequency is somewhat more than a half wavelength at tv. Similarly, the open-circuit stubs produce various values of impedance which are high, but none of which are infinite in the television band.

However, changing the characteristic impedance of the lines, at the points that are a quarter wavelength or multiples of a quarter wavelength at the f-m frequency can result in correction, if properly done, such that the midband television impedance can be made infinite and zero for the two stubs. This will cause no change in the action of the stubs at $f-m$ frequency.

Figure 4 indicates the method of plotting the short-circuited stub. The first quarter wavelength of the stub is made of a piece of line of lower impedance than the last half wavelength, by changing the diameter of the inner conductor. The impedance of the end of the stub is thus made zero at midband of the television channel.

Sim:Iarly, Fig. 5 shows the effect of changing the characteristic impedance of part of the open-cir-

FIG. 6-Completely developed filter differs from that of Fig. 2 by its effectiveness at television frequencies

FIG. 7-Physical dimensions of the filter show how it can be constructed from standard fittings
cuited stub, causing the television midband impedance to be infinity.

The completely developed filter is shown in Fig. 6, while Fig. 7 gives the physical layout with some folding done to make the unit occupy a reasonable amount of space.

References

[^5]
Nuclear-Resonance

Nuclear-resonance technique makes it possible to regulate a 35 -ton magnet with four type 807 tubes to accuracies approaching 0.0025 percent. Servo system control loop is actuated by negative-resistance resonance detector coupled to a proton sample vial of water or mineral oil. Measurements of absolute field obtained with oscilloscope and frequency meter

RAPID GROWTH of scientific research and development has led to numerous applications requiring the precise measurement or stabilization of magnetic fields. Among the better-known applications that are receiving increased attention in both industrial and basic research are mass spectrometry (gas analysis and mass measurement), magnetron development and cyclotrons.

Previous conventional methods, such as using a search-coil or bismuth spiral for obtaining a correcting or measuring signal directly from a magnetic field are relatively insensitive to small field changes. In addition, absolute measurements with such devices are limited to accuracies of the order of 1 percent. Because of the relative insensitivity of these methods, magnet regulators have usually been designed to regulate the magnet excitation current resulting in stabilization factors of the order of a few thousand.

By the use of nuclear resonance techniques described here it is possible, with relatively simple apparatus, to obtain stabilization factors ranging from 10^{5} to 10^{6} and to make absolute field measurements with accuracies approaching 0.0025 percent. The techniques involved are
largely of a radio-frequency nature and the magnetic field is determined by measuring a frequency.

Protons characterized by a spin I and magnetic moment μ are established in two energy levels when immersed in a magnetic field H_{0}. These two states differ in energy by an amount

$$
\begin{equation*}
\Delta w=\mu H_{o} / I=h \nu \tag{1}
\end{equation*}
$$

The division of nuclei between the two states is governed by the Boltzmann factor which gives a slight surplus in the lower state if the proton sample is in thermal equilibrium at ordinary temperatures. Application of a weak radio-frequency field produces transitions between the levels with a net absorption of energy from the r-f field as long as there remains a surplus of protons in the lower state. To fulfill this latter condition, the net energy gained by the protons must be lost to the surrounding lattice.

This process takes place with a characteristic relaxation time T_{1}. Thus, it can be seen that the absorption of energy from the r-f field tends to upset the normal equilibrium population of the states by equalizing it and the new equilibrium established is a balance between the process of energy ab-
sorption by the spin system and transfer of this excess energy to its surroundings.

From Eq. 1 it is seen that the absorption of energy takes place at a single frequency. Actually, if all the active nuclei in the sample see the same field, H_{o}, the sample shows a small but finite resonance width. In practice, field inhomogeneities spoil this condition and broaden the resonance. The observed line width may be expressed in terms of the frequency width or the magnetic field width at half maximum. A second relaxation time T_{0}^{*} is a measure of the inverse line width and is given by $T_{2}{ }^{*}=1 / \pi \Delta y$ where Δy is the full line width at half maximum.

Equation 1 can be put in the form

$$
\begin{equation*}
\omega_{o}=\gamma H_{o} \tag{2}
\end{equation*}
$$

where $\omega_{o}=2 \pi \nu, \gamma=2 \pi \mu / h$ I and is known as the gyromagnetic ratio of the nucleus. The value of the gyromagnetic ratio of the proton in absolute units has been recently measured ${ }^{1}$ with an uncertainty of less than 25 parts per million. This makes it possible to measure magnetic fields with accuracies approaching 25 ppm by means of a relatively simple radio-frequency apparatus for detecting proton

FIG. 1-Basic detector circuit can be modified for control of large magnet

FIG. 2-Amplitude bridge circuit

Magnetic Field Control

By H. A. THOMAS
Vational Bureau of Standards Washington, D. C.

transitions in a water or oil sample and frequency measuring apparatus that is readily available.

Transition Detector

In the absorption method, the essential apparatus for detecting transitions takes the form of a small r-f coil, approximately 1 cm in diameter for fields of the order of 1,000 to 20,000 gausses, with its axis at right angles to the field H_{o}. A glass vial containing water or mineral oil may be placed in the r-f coil for the proton sample. The coil is resonated with a capacitor and fed through a high impedance from a signal generator as shown in Fig. 1.

If the field or frequency is adjusted to that value at which the transition takes place, that is, the resonant frequency, power will be absorbed from the coil, the Q will drop, and the r-f voltage across the coil will decrease. It is customary to modulate the field or frequency at an audio rate so that the r-f voltage across the coil will be modulated as the nuclear-resonant condition is passed through. It simply remains, then, to arrange suitable r-f amplifiers, detectors, and audio amplifiers to display the nuclear absorption line on an oscilloscope.

Bloembergen, Purcell, and Pound ${ }^{2}$ have shown that the power absorbed per cu cm of sample is given by

$$
P \alpha^{1}=\frac{\gamma^{2} H_{1}{ }^{2} N_{o}(h \nu)^{2}(I+1) I g(\nu)}{6 K T}
$$

and that where the line width is not the natural line width, T_{2}, but is broadened by inhomogeneity in the magnetic field, the line shape function, $g(v)$, can be conveniently ex-

The nuclear resonance probe being used to measure the field distribution of α magnet. The probe, at lower center, is mounted on a crossfeed for accurate positioning in the magnet gap
pressed in terms of a relaxation time $T_{2}{ }^{*}$ by the relation $T_{2}{ }^{*}=$ $g(\nu) / 2$. In Eq. 3, K is Boltzmann's constant, T the absolute temperature, N_{0} the number of active nuclei per cu cm of sample, and H_{1} half the magnitude of the r-f magnetic field. The oscillating magnetic field of magnitude $2 \mathrm{H}_{2}$ can be considered to be made up of two fields each having a magnitude H_{1} and rotating in opposite directions. They have further shown that because of saturation the signal predicted by Eq. 3 is reduced by a factor of two when the optimum r-f field, $2 H_{1}$, is used. This optimum r-f field is given by

$$
\begin{equation*}
H_{1}{ }^{2} \gamma^{2} T_{1} T_{2}^{*}=1 \tag{4}
\end{equation*}
$$

Substituting these relations into Eq. 3 and introducing the volume of the sample $v_{c} \alpha$, where v_{0} is the volume of the coil and α is a filling factor for the sample, the total absorption is obtained
$P \alpha=\frac{v_{c} \alpha N_{o}(h \nu)^{2} I(I+1)}{6 K T T_{1}} \mathrm{ergs} / \mathrm{sec}$

Power Needed

The power input to the coil required to maintain the optimum
value of r-f magnetic field can be easily obtained as follows, if it is remembered that for a simple solenoid approximately all of the energy stored in the magnetic field is contained in the volume of the coil and that H_{1} is half the amplitude of the r-f magnetic field. Since energy density is $H^{2} / 8 \pi$ the total energy $E_{\text {o }}$ stored in the magnetic field is

$$
\begin{equation*}
E_{o}=H_{1}{ }^{2} v_{c} / 2 \pi \tag{6}
\end{equation*}
$$

Recalling that $P_{\circ}=\omega E_{0} / Q_{0}$ and using Eq. 4 and 5 there is obtained the power required to maintain the field H_{1}

$$
\begin{equation*}
P_{0}=\frac{\omega v_{c}}{2 \pi \gamma^{2} T_{1} T_{2}^{*} Q_{0}} \tag{7}
\end{equation*}
$$

where Q_{0} is the Q of the r-f coil in the absence of an absorption signal.

Now assume that the L-C circuit receives its power, P_{0}, from a generator having a resistance many times greater than the equivalent shunt resistance, R_{o}, of the tuned L-C circuit thus making essentially a constant-current circuit in which the loading effect of the generator need not be considered.

Let the voltage across the L-C
circuit in the absence of nuclear absorption be V_{0} and the change in this voltage due to the peak absorption be ΔV then since $i=\left(P_{o} / R_{o}\right)^{1 / 2}$ and $P \alpha=i \Delta V$ we get as a good approximation

$$
\begin{equation*}
\Delta V=P_{\alpha}\left(R_{o} / P_{0}\right) \frac{1}{1} \tag{8}
\end{equation*}
$$

Dividing Eq. 5 and 7 by 10^{7} to put them into practical units and then substituting them into Eq. 8 we get

$$
\begin{align*}
\Delta V= & \frac{I(I+1) h^{2} \gamma N_{o} v_{c} \alpha}{6 K T\left(10^{7}\right)^{\frac{1}{2}} v_{c}^{\frac{1}{2}}} \\
& \left(\frac{T_{2}^{*}}{T_{1}} R_{0} Q_{o} \nu^{3}\right)^{\frac{1}{2}} \text { volts } \tag{9}
\end{align*}
$$

The quantity $T_{2}{ }^{*}$ is a measure of the inverse line width and is dependent only on the area and maximum value of the line shape curve. If $g(v)$, the line-shape function, is that of a simple singly-tuned circuit it may be shown ${ }^{2}$ that Δv the width of the line between half maximum points (on a power basis) is $1 / \pi T_{2}^{*}$. From this relationship, Eq. 7, and the relation that $\omega_{0}=\gamma H_{0}$ it may be shown that the power required to maintain the optimum r-f field is

$$
\begin{equation*}
P_{\bullet}=\frac{H_{o} H_{2} v_{c}}{4 \pi T_{1} Q_{o}} \tag{10}
\end{equation*}
$$

where H_{z} is the line width at half maximum in oersteds. The coil voltage required to maintain this field is

$$
\begin{align*}
V_{o}= & \left(P_{o} R_{o}\right)^{\frac{1}{2}}= \\
& \left(\frac{H_{o} H_{2} v_{c} R_{o}}{4 \pi T_{1} Q_{\Delta} 10^{7}}\right)^{\frac{1}{2}} \text { volts } \tag{11}
\end{align*}
$$

For a water sample at room temperature, Eq. 7 reduces to

$$
\begin{equation*}
\Delta V=7.5 \times 10^{-17}\left(\frac{T_{2}^{*} v_{e} R_{o} Q_{o} \nu^{3}}{T_{1}^{\prime}}\right)^{\frac{1}{2}} \alpha \tag{12}
\end{equation*}
$$

It will be recalled from an earlier discussion that T_{2}^{*} is related to the absorption line width and may be expressed either in terms of frequency Δv or in terms of gausses H_{a} by the relations $T_{2}{ }^{*}=1 / \pi \Delta v=$ $2 / \gamma H_{2}$.

For pure water, the natural line width is of the order of a few milligausses but the measured line widths are usually much greater than this because of inhomogeneities in the field H_{o}. Where this is the case, paramagnetic ions may be added to the water sample without appreciably altering the observed line width. Adding ferric nitrate has the advantage that the interac-

FIG. 3-Signal and noise characteristics of amplitude bridge
tion between the protons and the lattice (surrounding sample) is increased, decreasing the rate of energy transfer and thus decreasing the value of T_{1}. For pure water T_{1} is of the order of 3 sec but by the addition of a small amount of ferric nitrate may be decreased to an order of 10^{-3} to 10^{-4} thus increasing the available signal by a factor of at least 1,000 .

In most cases, depending on the field inhomogeneity, it is possible to make T_{1} about equal to $T_{2}{ }^{*}$. In practice the optimum condition is obtained by adding the ferric nitrate very slowly while watching the absorption signal grow in magnitude until it is seen that the absorption line starts broadening instead of increasing in magnitude.

Representative Measurement

To illustrate the use of the above equations, the following example of some measurements made with the detector circuit shown in Fig. 2 is given. This circuit is one of the very few that lends itself readily to the absolute measurement of absorption pip magnitudes. With a Q_{0} of $100, R_{\circ}=4,000$ ohms, $v=$ $1.5 \mathrm{cu} \mathrm{cm}, v_{c} \alpha=0.4 \mathrm{cu} \mathrm{cm}, v=20$ mc , and $H_{o}=4,700$ gausses, the line width of an adjusted water sample was 0.5 gauss and the maximum signal occurred at an r-f coil voltage of 2.4 volts. Using Eq. 11 gives a value for T_{1} of about $2 \times 10^{-4} \mathrm{sec}$ and substituting this in Eq. 12 indicates that ΔV should be about 1,100 microvolts.

Since the bridge circuit of Fig. 2 reduces the audio output voltage by a factor of 2 and the rectification efficiency of the diodes, ξ, is approximately unity, the output signal should be about $550 \mu . v$. This can be compared with the actual observed
output voltage of $490 \mu \nu$. This is closer agreement than would normally be expected. The absorption pip voltage curve of Fig. 3 illustrates the saturation effect mentioned earlier, which gives rise to the optimum r-f coil voltage.

Detection Circuits

Several different types of circuits have been developed for the detection of nuclear resonance signals, only a few of which will be discussed here. The simplest type of circuit is, perhaps, the amplitude bridge ${ }^{8}$ circuit shown in Fig. 2 that stems directly from the basic detector of Fig. 1. In that, the coil L containing the water sample is tuned to resonance at the required frequency by C. The resulting resonant circuit having a shunt resonant impedance R_{o}, is fed from a signal generator through an impedance $R \gg R_{\text {o }}$. The change in r-f voltage across the L-C circuit that results when the d-c magnetic field H_{0} is varied through the value required for nuclear resonance is detected by the diode circuit.

The value of H. may be varied repetitiously through the critical value by applying a low audio-frequency sweep voltage to small Helmholtz coils mounted on either side of the sample. The resulting audio voltage output of the diode circuit may be amplified and displayed on an oscilloscope.

This circuit is not practical because the noise modulation usually present in the output of the average signal generator will mask the desired signal. In the amplitude bridge of Fig. 2 this noise modulation is cancelled out by having another voltage dividing network and diode detector that detects only the generator noise and then combining the two outputs in phase opposition so that the noise modulation cancels out in the output, whereas the signal does not.

This system does not eliminate noise generated in the diode circuits and, since this is usually much greater than the thermal noise generated in R_{0}, the circuit has a rather poor noise figure. In spite of this, the circuit will produce quite adequate signal-to-noise ratios as indicated in Fig. 3 and the resonanceline photograph for fields above a
few thousand gausses. It displays only the absorption component and is relatively insensitive to microphonics but is not readily tunable. For the latter reason, the circuit is quite satisfactory for use in fieldregulator application but not for field measurement.

The photograph shows an ampli-tude-bridge resonance probe mounted on a crossfeed in a magnet gap for plotting the field distribution. Another probe operating from the same signal generator was used to stabilize the field, while field variations were plotted by noting the bias current through the Helmholtz coils on the movable probe. An inner set of Helmholtz coils is used as magnetic sweep. Relative field measurements of this type can easily be made to 1 part in 10^{5}.

R-F Bridge Detector

Since the detection of nuclear resonance signals requires detecting a very small change in a relatively large r-f voltage, it would appear that an r-f bridge could be utilized to advantage because the steady component could be reduced to the point where low-noise r-f amplifiers could be used to advantage and also noise modulation of the signal generator could effectively be reduced in the output.

Circuits of this type using a straight r-f bridge ${ }^{2}$ and a bridge-T network ${ }^{4}$ have been used that show excellent noise figures. These circuits are not particularly applicable to field measurement or regulation, however, because of their complexity, microphony, and critical adjustment required. In addition they are not readily tunable and since they are phase-sensitive as well as ampli-tude-sensitive they also may indicate the dispersion component of the resonance signal.

It might be noted that resonance absorption, except for the saturation effect, produces a signal much as if a high-Q tuned circuit were coupled into the coil L, thus indicating a reactance term (corresponding to the dispersion component) as well as the resistance term.

As early as 1947, Roberts ${ }^{5}$ pointed out that either a superregenerative oscillator or a simple regenerative oscillator could be used as a detector
of nuclear-resonance signals and these methods have been used ${ }^{\mathrm{e}, 7}$ to some extent. It appears that the simplest and best circuit for field measurement is a negative-resistance oscillating detector developed by R. D. Huntoon and A. Weiss of the National Bureau of Standards. This is a free-running tunable oscillating detector but a slight modification of the original circuit, replacing a feedback capacitor with a crystal, X, as shown at the bottom of Fig. 4, will stabilize the oscillation frequency at the series-resonant frequency of the crystal and make the same circuit highly suitable for the field stabilization application.

When oscillating at a low level, the magnitude of oscillation of this circuit is extremely sensitive to small changes in impedance of the L-C circuit. While the theory of this circuit as a detector has not been completely worked out nor has the noise figure been measured, comparison of the signal-to-noise ratios obtained between this and other methods of detecting nuclear resonance indicate that it is very good. The required low level of oscillation is obtained by using a reduced plate voltage of only 45 volts and then reducing further by means of the $50,000-\mathrm{ohm}$ variable resistor. In addition, reduced filament voltage
can be used if desired.
The audio output signal can be obtained in three different ways. Since a change in r-f level will change the grid bias that will be amplified and will appear in the plate circuit as a superimposed audio voltage, the signal can be taken directly from the plate of one of the tli'es through an r-f decoupling network as indicated. The grid bias change can be taken directly off the grid circuit at S. In either of these methods audio noise generated in tube T_{1} appears in the output and hence to obtain the best signal-to-noise ratio the diode circuit shown in the lower left-hand corner should be used. The diode circuit is connected across points A and B and the grid-leak capacitor C_{1} is changed to $10 \mu \mathrm{f}$ so that the grid bias cannot change. Audio tube noise is prevented from reaching the diode circuit by the $100-\mu \mu \mathrm{f}$ capacitors. This method gives a much better signal-to-noise ratio than either of the other two methods but for most purposes they are good enough.

Field Measurement

From Eq. 2 it can be seen that to measure a magnetic field strength $H_{\text {o }}$ it is only necessary to measure the frequency required for proton resonance in that field. The value ${ }^{1}$

FIG. 4-Circuit of the magnetic regulator applied to control of 35 -ton magnet
of γ is $\gamma=(2.67528 \pm 0.00006) \times$ $10^{-4} \mathrm{sec}^{-1}$ gausses $^{-1}$ and since frequency can be easily measured to a few parts per milion, the limit of accuracy on field measurements is limited by the uncertainty in γ or the signal-to-noise ratio of the detecting circuit. The signal-to-noise ratio depends on the detector noise figure, the size of the water sample, and the inhomogeneity in the field. The greater the field gradient, the smaller the sample has to be to keep the total line width within a reasonable value.

With the negative-resistance oscillating detector, usable signal-tonoise ratios have been obtained in fields of 4,000 gausses having a gradient of approximately 5 gausses per cm . The sample used in this case was about 2 mm in diameter. With smaller gradients, it can be used in fields as low as a few hundred gausses.

In practice, the circuit shown at the bottom of Fig. 4 is built in the form of a probe with the coil L mounted in the end of a brass tube a foot or so long and the rest of the circuit mounted in a small box on the other end. If it is desired to make the complete unit portable, the filament battery (d-c is required to prevent $60-\mathrm{cps}$ modulation), $45-$ volt plate battery and any additional audio stages can be mounted in a portable carrying case.

The sweep coils can be excited from 60 -cps filament supply if desired. If the sweep voltage is applied to the horizontal input of the scope and the signal output to vertical input, a double trace of the resonance pip will be seen. With a slight phase shift, the pips will be separated slightly and the crossover point makes an excellent indication of the center of resonance. Using a broad sweep, resonance can be approximately located by tuning C and then for the final adjustment decreasing the sweep voltage to approximately a line width.

If desired a lock-in amplifier or phase detector similar to that used in the field regulator may be used and the resonance signal indicated on a meter or electron-ray tube instead of an oscilloscope.

The frequency can be measured either by the use of a crystal calibrator unit, wavemeter, or with
less accuracy by calibrating the dial on capacitor C. Frequency measurement techniques are well known. It should be noted that if the highest precision is to be obtained in field measurement, the shape and type of the sample used must be chosen with care. Water samples with an excessive amount of ferric salts in them sometimes produce a small field shift from the true resonance. Mineral oil samples, though giving a lower signal, have negligible shift ${ }^{8}$. Care must also be used to insure that the sample holder, coil, and shield do not have ferromagnetic impurities.

Magnetic Field Regulation

The nuclear-resonance signal has been used to regulate magnetic fields with good success. It will

Proton resonance line using a water sample adjusted with ferric nitrate
hold the field to less than 10 percent of a line width and since the error signal is obtained directly from the field, it also corrects for changes in geometry and temperature which the customary current regulator will not do.

The complete details of a regulator used to regulate a 35 -ton magnet ${ }^{0}$ have been shown in Fig. 4. In this case the error signal was used to control the field of the main generator and antihunt was obtained by feeding in series with the error signal a rate voltage obtained from an auxiliary magnet winding of small size wire. Because of the high gain of this system, the rate signal had to be amplified by a single-stage floating d-c amplifier. The effect of this rate voltage cir-
cuit was to increase the time constant of the magnet from its normal 8 seconds to 17 minutes. The series control tube shown in the field circuit was actually four 807 tubes in parallel, which were quite adequate for controlling the $500-\mathrm{ma}$, $400-$ volt field of the 300 -ampere generator.

While the method of antihunt and method of introducing the error signal may vary, depending on the magnet design, the rest of the circuit details shown may be used to regulate any magnet. The nuclearresonance probe used is a crystalstabilized negative-resistance oscillator described earlier.

The rest of the circuit shows a typical sweep-voltage source (R-C oscillator plus amplifier stage), nar-row-band amplifier (twin-T network), and the phase detector circuit. All of these including power supply are mounted on one chassis, and both filament and plate supply for the probe are also obtained from that chassis. The phase detector will not be discussed further as it has already been described ${ }^{10}$.

In putting the circuit into operation for the first time it is advisable to use an oscilloscope for locating the resonance line and making the initial adjustments. When locking the magnet in with the nuclearresonance signal, a fine field adjustment is required since the resonance line is so narrow that it is quite easy to pass through it so fast that the regulator does not have time to pull in. If the feedback phase is wrong, the regulator will try to regulate on either side of the resonance line instead of the center. This may be easily remedied by reversing the sweep-coil leads.

References

(1) H. A. Thomas, R. L. Driscoll, and J. A. Hipple, J. Research NBS 44, p 569 RP2104, 1950 .
(2) N. Bloembergen, E. M. Purcell, and R. V. Pound, Phys. Rev. ${ }^{\text {(2) }}$. Purcell, and (3) H. A. Thomas and R. D. Huntoon, Rev. Sci. Inst. 20, p 516,1949 .
(4) Quarterly Progress Report, Research Laboratories of Electronics, MIT April 15, 1950
(5) A. Roberts, Phys. Rev. 72, 182, A. 1947 .
(6) N. J. Hopkins, Rev. Sci. Inst., 20, p 401, 1949.
(7) Rev. V. Pound and W. D. Knight, Rev. Sci. Inst 21, p 219, 1950.
(8) 1950. A. Thomas, Phys. Rev., 80, p 901, 1950.
(9) H. A. Thomas, Phys. Rev., 78, p
(10) I. A. Greenwood, J. V. Holdam,
nd D. Macrae "Electronic Instruments" p 383, McGraw-Hill, 1948.

Job Evaluation Chart

Systematic comparison of advantages and disadvantages offered by various employment opportunities ensures more intelligent decisions. Chart shown below illustrates one engineer's system. It can easily be modified to apply to other individuals and jobs

By R. W. JOHNSON
Electronics Engineer
U. S. Naval Ordnance Test Station
China Lake, Califormia

CURRENT FLOODS of advertisements pleading for engineers are often bewildering to the average young electronics engineer. Each hiring concern claims certain advantages in living conditions, working conditions, security, and so on. It is usually difficult to evaluate these claims in the true perspective. It is the purpose of this short article to present a flexible system of engineering job evaluation that might be of assistance to engineers considering a change in employment.

The first step is to list all factors that might enter into the selection of a job. In the second step, these factors are weighted in accordance with some arbitrary scale depending on the importance the individual places on each particular factor. The factors and weightings shown in the example of Table I are arbitrary, representing only the views of a particular individual.

The actual evaluation process consists of considering separately each factor for each job possibility and assigning it an appropriate number with respect to maximum allowable for that particular factor. The results may be tabulated as illustrated in the table. The summation of vertical columns may then be compared with the maximum by any convenient means, the highest sum representing the most desirable situation, and so on.

Particularly close results should be compared separately for more reliable evaluation. The accuracy of the system depends on the amount of thought and effort given to the listing, weighting and evaluating. The latter implies an adequate knowledge of the situation
in each case. It is generally desirable, if one has an acquaintance at a particular location, to have him prepare an evaluation as a check.

It is surprising how brown the grass can get on the other side of that fence when this system is applied!

TABLE I-Engineering Job Evaluation Chart

Item		Job Possibilities					
	Max. Pts.	A	B	C	D	E	F
LIVING:							
Weather	20	10	10	5	15	12	20
Housing-cost	15	10	10	5	5	10	15
Housing-availability.	15	10	10	10	10	5	15
Housing-location...	15	12	11	10	9	7	10
Schools.	10	2	10	5	10	10	10
Recreation	10	5	5	7	9	10	5
Traffic.	10	5	5	7	8	10	10
Travel to work............	10	10	7	6	8	5	5
Moving expense and inconvenience	10	10	10	10	8	6	歇 5
Medical facilities.	5	5	5	4	4	4	4
Shopping facilities.	5	5	5	4	3	3	5
Neighbors.......	5	5	5	5	5	5	5
WORKING:							
Supervisor(s)	15	8	7	7	10	15	12
Challenge of job........	15	12	14	10	10	10	15
Chance for advancement. .	20	10	10	15	15	5	20
Prestige of organization...	20	15	12	13	18	10	20
Supply and red tape.	15	15	12	8	7	15	5
Military relationships.	10	10	10	10	7	6	5
Security of future.	20	10	5	15	10	5	20
Recognition for work	15	10	10	15	15	10	15
Amount of travel.	10	5	5	10	7	8	9
Other opportunities in area:	10	10	9	8	6	5	7
Laboratory facilities.	15	5	7	10	10	10	15
Policies of organization....	20	5	15	12	13	15	15
Salary.	30	20	25	30	15	20	20
Value of experience	20	20	10	15	15	15	20
Type of work.	20	20	10	15	10	15	20
Totals	385	264	254	271	262	251	327
Percent	100	681/2	66	701/2	68	65	85

The authors shown operating the automatic phase-front ploter

Automatic Antenna

Automatic device scans 30 by $36-\mathrm{in}$. plane in front of microwave antenna and plots fullsize map showing either phase or amplitude variations in the plane. Accurate plot eliminates difficult mathematical computing in the near-field region

By ROBERT M. BARRETT and MALCOLM H, BARNES

Air Force Cambridge Research Center
Cambridge, Massachusetts

IN THE DESIGN of reflectors, horns, lenses and other microwave optical systems, it is necessary to know the shape of the emerging wave front in some detail. The study of such a wave front provides a powerful tool in the analysis and correction of aberrations of the optical device under consideration.

Directional characteristics of antennas are uniquely determined by the near-field phase and amplitude of the radiated signal. Improved
methods of determining these parameters have been sorely needed for some time. The machine described herein not only gives accurate information concerning fields but it also presents it in such a way as to be of maximum utility.

Output from the device is in the form of a pair of pictures of the electromagnetic waves as they exist in a plane section through space. One of these pictures is of the phase of the waves and is very much like a
photograph of a series of water ripples in a still pond. The other picture, of the wave amplitude, is essentially a contour map of the magnitude of the waves and is read the same as an ordinary geographical contour map.

These graphical representations are not only of inestimable value to the antenna designer in the detailed analysis of antenna aberrations but are also of great value in providing a quick, accurate mental picture of

FIG. 1-Manual phase measurement

FIG. 2-Cutaway illustration of automatic phase-front plotter

Wave-Front Plotter

the modi operandi of various complex antennas and microwave systems. As an educational tool and an aid to clearer mental concepts of the complexities of electromagnetic propagation, the device has many times proven its worth.

The study of propagation by this technique, where the detailed complexities of refraction, diffraction and reflection can be readily observed, has proven to be particularly fruitful. Even in very complex problems where carefully chosen mathematical approximations and assumed electromagnetic fields are necessary, the available pictures have often saved many laborious hours of computation.

Phase-Front Measurement

The method most commonly employed for phase-front measurements depends upon combining with
the pickup probe signal a reference signal of the same frequency and from the same source, whose relative phase and amplitude can be varied independently. These signals are then combined in a phase detector and, keeping the amplitude constant, the phase of the reference signal is varied until the resultant amplitude is minimum. Changes in the phase of the test signal will necessitate equal changes in phase of the reference signal to maintain this minimum.

This method of adjustment of a reference phase for a minimum resultant amplitude is adequately sensitive in practice only if the amplitudes of the test signal and the reference signal are approximately equal. Inasmuch as the amplitude of the test signal will vary over a wide range as the probe is moved through the field, it is necessary to
perform continuously a compensating adjustment of the relative amplitude of the test and reference signals. This is a slow and laborious measurement process. Even with provisions for making such an amplitude adjustment, a method of measurement which depends on the adjustment of some variable for a minimum output reading is not entirely satisfactory. This is because small changes in the controlled variable produce only second-order changes in the output when in the neighborhood of a minimum.

In any practical measurement program, it would be necessary to measure the phase and plot several hundred points before a detailed examination of the wave front could be made. As it takes several minutes to make each individual measurement, it can be seen that this method is much too slow and labori-

FIG. 3-Block diagram of the plotter system

FIG. 4-Operation of comb-type amplitude filter

FIG. 5-Block diagram of automatic amplitude-contour-plotter system
ous to be practical in any extensive analysis. There exists a definite need for some form of automatic phase recorder which will automatically perform all necessary balancing and intercomparing functions.
It was the desire of the authors to design and construct equipment
that would automatically detect and plot, over a comparatively large area, the phase fronts in a microwave field. It was desired to accomplish these measurements not only in the free-space field but also within solid dielectrics, by scanning close to the surface of the dielectric and utilizing the known relation of
the leakage field to the internal field to effectively plot the wave form as it appears within the dielectric. ${ }^{1}$

Automatic Phase Plotting

Phase plotters of the scanning variety were first described by Iams. ${ }^{2}$ While his instrument incorporated most of the basic features of an automatic phase-plotting device, it was a rough experimental model and left a lot to be desired in really usable, accurate and automatic phase plotting. The probe scanned the detection space in a circular arc and moved sinusoidally in time, causing a darkening of the chart paper towards the edges of the plot. The basic limitation was, however, the phase comparison mechanism itself. This was sensitive to amplitude fluctuations and would plot phase accurately only over a small range of relative amplitudes.

Since the design and construction of our equipment, another plotter of the scanning variety has been described by Kock. ${ }^{3}$ His device used a modulated neon lamp as the stylus and a camera as the recording mechanism. This instrument, however, has the same basic limitation as the Iams plotter in that it is sensitive to amplitude variations.

Referring again to the manual method of measurement, let us examine its essential features as shown in Fig. 1 and consider them in the light of possible adaptation to automatic recording. The r-f source supplies two channels, one passing through the r-f attenuator, the antenna under test and then the pickup probe, while the other passes through the r-f phase changer. These two signals are then combined and detected, with the resultant output indicated on a meter. The r-f phase shifter, which usually consists of a matched slotted line or some other form of line stretcher, can produce known phase changes of the reference signal by motion of the probe along the slot. Thus, any phase change in the test section can be balanced out by means of the phase changer in the reference channel.

Although simple in principle, this type of phase measurement requires a precision matched phase changer and is very sensitive to changes in
relative amplitude between the two signals. If the phase changer produces an amplitude variation or if, conversely, the attenuator produces a phase shift when the amplitude is varied, it will be extremely difficult to make an accurate measurement. Some commonly used attenuators have as much as $30-\mathrm{deg}$ phase shift for a $10-\mathrm{db}$ amplitude change.

Phase-Measurement Methods

The methods of phase measurement which are adaptable to automatic recording can roughly be divided into methods which accomplish the phase comparison at the r-f test frequency and methods which use heterodyning to make all phase comparisons at a constant lower frequency. Several variations of the former method were investigated and subsequently eliminated for one reason or another. One such system utilized a waveguide magic tee as a phase detector with probe and reference signal inputs. This resulted in the same disadvantages as the Iams and Kock plotters in that it worked comparatively well over a small range of amplitude but when the probe signal fell below the reference signal level, the stronger reference signal made complete phase cancellation at the magic tee detector output impossible.

In order to overcome this limitation, which is basic to several methods, it would be necessary to maintain constant r-f input to the detector. This presupposes a compensating attenuator without insertion phase shift or else with some means for correcting the varying phase shift introduced as constant amplitude is maintained.

In order to overcome the necessity for amplitude compensation and complexity in circuitry at the r-f test frequency, it was decided to use a heterodyne system where amplitude limiting could be accomplished in both channels.

Circuit Design

Figure 2 shows a cutaway view of the automatic plotter finally evolved. Fig. 3 shows the block diagram of the system. The signal picked up by the probe as it scans back and forth in front of the antenna is introduced into a flat-type hybrid matching section of stan-
dard size waveguide. From there it is propagated through three waveguide arms and rotary joints. These are necessary to allow for the scan of the probe without utilizing coaxial cable which produces large phase discrepancies when flexed. The rotary joints were, in fact, completely redesigned to introduce no detectable phase shift due to their rotation. The output of the third rotary joint along with the reference signal from the transmitter are fed into their respective inputs in a flat-type hybrid doublebalanced mixer which utilizes a single local oscillator tube to preserve phase coherence.

The two outputs from the mixer, at an i-f value of 30 mc , are fed into two high-gain i-f amplifiers. These amplifiers have a negligible phase shift over a $40-\mathrm{db}$ input variation and are maintained under identical conditions. At the amplifier outputs there are two signals, one constant and the other varying in amplitude. In order to eliminate the phase errors or the necessity for complex balancing systems imposed by variations in amplitude mentioned previously, two stages of limiting were introduced at the output of each i-f strip. The limiter outputs are constant and equal in amplitude over a $40-\mathrm{db}$ input range and vary only in phase as the probe scans. These two signals are then applied to a $30-\mathrm{mc}$ phase comparator which consists of a single diode phase detector. The output of this comparator depends on the phase relation of the two input signals with zero output when the inputs are 180 deg out of phase.

Inasmuch as an a-c high-frequency voltage is necessary for marking the electrosensitive chart paper used, the d-c comparator output is used to modulate the $20-\mathrm{kc}$ oscillator output, which is amplified and applied to the paper by means of a stylus. The pickup probes utilized are three in number: E-field vertical and E-field horizontal polarization and horizontal H -field. The probes consist of a miniature coaxial line (0.033 -in. outer-conductor diameter) which is encased in a $\frac{1}{8}$-in. diameter rod. At the pickup end there is a series of dielectric loaded decoupling chokes to prevent currents from being set up along
the surface of the rod. At the opposite end of the probe, there is a standard type N connector.

After reviewing the characteristics of other types of phase-measuring and phase-plotting devices and after studying the various types of micro-wave fields to be investigated and the type of information required, minimum specifications for a phase-measuring device were evolved. The scan should be linear in time and space. The scanned area should not be less than 30 by 36 in . The device should give a quantitative picture of the entire r-f field in the region of interest. The recorded information should be of such accuracy that it can be used for careful qualitative analysis and design. The device should plot amplitude in the near-field region.

Drive System

With a 30 by $36-\mathrm{in}$. scan it is possible to plot over a comparatively large area, which is especially advantageous when using this equipment to investigate wide-aperture antenna systems such as lenses, linear arrays and pillboxes. The linear time scan readily eliminates the darkening of chart paper at the edges of the plot. The linear space scan has proven invaluable in scanning close to antennas such as linear arrays and diffraction gratings, rather than approaching only at one point as was the case when the scanning probe moved along a circular path.

To meet the above specifications, a special chain drive with a chain guide pin was designed for the probe and stylus scan. This unique method gives a linear scan over the distance between the vertical centers of the two-chain sprockets which is also the width of the chart paper and when driven with a con-stant-speed motor produces a scan which is linear in time and space. With each scan of the probe, the chart table and chart are so geared to the probe drive that they roll and move away from the antenna under test approximately one sixty-fourth of an inch. In this way, over a length of chart paper there is a series of closely spaced parallel lines simulating a television-type scan.

As first envisioned, this equipment was only intended for the
measurement of r-f phase. However, upon completing the phasecomparison mechanism it was decided to adapt this equipment to plot amplitude contours in the near-field region. In this way, the fields can be probed and the amplitude distribution plotted about the focal regions of lenses and reflectors. To calculate the fields in this near-field region is a complex mathematical problem. Furthermore, little has been done in the past in making precise experimental measurements because of the difficult measurement procedure necessary. Amplitude contour plots supplemented by phase plots made with the equipment described give a fairly complete picture of the near field which can be readily correlated with standard far-field radiation patterns.

As the plotting table and the scanning mechanism were readily adaptable to power contour plotting, this extension of the equipment was primarily a problem in new circuitry.

The major problem in producing amplitude-contour plotting is in obtaining the output necessary for such a device to operate. This is accomplished by feeding the $a-m$ signal through a comb-type amplitude filter which produces an output only when the input signal is at a series of prescribed amplitude levels. Several types of such filters were studied before the cathode-ray type was finally evolved and used. Referring to Fig. 4, this filter operates as follows: The detected signal is applied to the vertical deflection plates of a crt in such a way that the vertical deflection is proportional to the logarithm of the input signal. At the same time, a 20 -ke intensity modulation is applied to the electron beam. The face of the crt is covered by an opaque mask containing a series of regularly spaced slit openings. The light output from these openings is detected by a multiplier phototube, amplified and then applied to the marking stylus which burns amplitude contour lines into the paper corresponding to the amplitude levels passed by the slit apertures in the mask. Thus, a continuously varying input is characterized by a series of discontinuous pulses corresponding to prescribed amplitude levels.

FIG. 6-Amplitude and phase plot of two point sources

Figure 5 shows the block diagram of the amplitude plotting system. The transmitter signal is modulated at 5,000 cycles and detected at the output of the pickup probe. The detected signal is then amplified and introduced into a narrow-band 5,000-cycle filter. After passing through a logarithmic amplifier, it is rectified and applied to the plates of a crt which is intensity-modulated at 20 kc .

The comb-filter mask is placed over the screen of the crt. In practice, this mask consists of narrow pieces of black photographic tape placed on the face of the tube. As the level of the rectified input to the oscilloscope varies and the spot on the screen passes a slit in the mask, the photomultiplier tube is energized. The output from the phototube is amplified to the potential necessary to mark the paper and is applied to the stylus.

The amplitude plots produced by this method are a series of amplitude contour lines, the number depending on the number of apertures in the filter mask. The levels can be calibrated in order that a contour line will appear for every specified decibel level.

Figure 6 shows a combination of amplitude contours and phase plots of two point sources spaced approximately five wavelengths apart. How-
ever, either one plot or the other is actually obtained from the machine at any one time. In the amplitude section, the left half, the lobe structure can be seen and correspondingly whenever a null appears between lobes a phase discontinuity is present in the phase plots of the right half.

Applications

As an example of the use of the machine described above, in the study and analysis of the operation of antenna systems, the plots from a few simple antennas are presented. The plots of the radiation from two point sources, shown in Fig. 6, are typical of the results to be expected from the machine and give a good idea of the average resolution obtained with the equipment in its present form. Modifications now under way are expected to improve the resolution to a marked degree. As can be seen in the amplitude half of the plot, the near-field amplitude pattern of the two point sources is remarkable in that the far-field radiation characteristics with the many lobed patterns are so readily apparent even in the comparatively near-field region. The deep nulls of the amplitude pattern are characterized in the phase half of the plot by sudden 180-deg phase discontinuities.

Phase plot of a polyrod antenna

Amplitude plot of a polyrod antenna

It should also be noted that incomplete nulls are represented in the phase pattern by smaller discontinuities. For shallow nulls a mere ripple appears in the phase front.

The phase pattern of the polyrod antenna shows the characteristic flattening of the wave caused by the phase retardation of energy in and around the polyrod itself with respect to the free-space propagation. The particular polyrod illustrated was so designed that only a comparatively modest amount of energy was radiated from the rod itself, while a large portion of the energy is transmitted to the end of the rod where it is radiated as if from a point source.

The interference of these two radiated signals produces the characteristic hyperbolic interference pattern seen in the figure. This is easily verified from the amplitude plot of this antenna which indicates small radiation along the rod (note rapid lateral amplitude taper) and thus demonstrates the guiding action of the rod. The greater portion of the energy emanates from the end section of the rod and radiates. The phenomenon of isolated amplitude islands is readily apparent.
The phase plot of a typical end fire type metal-clad dielectric antenna is included in Fig. 7. By photographing the phase plot along with

FIG. 7-Phase-front conlours of a metal-clad dielectric antenna
a drawing of the antenna, a complete pictorial representation of the phase structure and end-fire characteristics of such an antenna system can readily be seen.

The phase-front plotter, as described, is a valuable piece of laboratory equipment for antenna research work. When various types of discontinuities are introduced in solid dielectrics and the probe is scanned close to the surface of the dielectric, the effects of these discontinuities are clearly shown in the plots. In addition, various microwave optical experiments and measurements heretofore impossible or very difficult to conduct are made practical by use of this equipment. Lenses, prisms, multiple-
sources and shadow problems are only a few of those which can be completely investigated using the combination phase and amplitude features of the plotter.

The flat-type hybrid used in the equipment design is a development of Dr. Riblet, Microwave Development Laboratories, Waltham, Mass., and the method of amplitude plotting used herein was first suggested and experimentally verified by Walter Rotman.

References

[^6]
Specifications for

THE National Television System Committee released on Nov. 26 the text of 22 technical specifications which describe the compatible color television signal to be field tested over stations in New York, Philadelphia, Washington, Syracuse and Chicago.

The specifications were unanimously approved by the NTSC as the best basis for conducting field tests but have no other significance at this time. Upon the conclusion of the tests, the specifications, modified if necessary in accordance with the results of the tests, are expected to be finally approved by the NTSC and may then be offered to the FCC as proposed standards for compatible color television.

The specifications are divided in two groups. The first consists of nine items summarizing the FCC standards for black-and-white transmission as presently authorized for commercial stations.

The second group consists of 13 specifications related to the transmission of color values.

Reports of participation in the field tests by technical personnel are solicited and should be sent to W. R. G. Baker, NTSC Chairman, care of General Electric Co., Syracuse, New York.

The full text of the test specifications follows:

Group I (Summary of FCC Standards)

1. The image is scanned at uniform velocities from left to right and from top to bottom at 525 lines per frame, 60 fields per second, interlaced 2 to 1.
2. The aspect ratio of the image is 4 units horizontally and $\mathbf{3}$ units vertically,
3. Therblack level is fixed at 75 percent (± 2.5 percent) of the peak amplitude of the carrier envelope. The maximum white (brightness) level is not more than 15 percent of the peak carrier amplitude.
4. The horizontal and vertical synchronizing pulses are those specified in Appendix I of the FCC

FIG. l-Delay characteristic of network for compensation of phase distortion associated with cut-off in receiver. Relative time delay versus frequency characteristic of radiated envelope is to be held within +30 percent and - 0 percent. Ordinate scale may be multiplied by a factor of 1.0 to 1.5

FIG. 2-Color synchronizing signal. This waveform is that which exists at the studio before transmission over limited bandwidth circuits. The burst follows each horizontal pulse. It is omitted following the equalizing pulse and during the broad vertical pulse. Vertical blanking is 0.07 to 0.08 of the vertical scanning period

Standards of Good Engineering Practice Concerning Television Broadcasting Stations (for black-and-white transmissions, dated Dec. 19,1945 as amended Oct. 19, 1950), modified to provide the color synchronizing signal described in specification 21 (Group II).
5. An increase in initial light intensity corresponds to a decrease in the amplitude of the carrier envelope (negative modulation).
6. The television channel occupies a total width of 6 mc . Vestigialsideband amplitude - modulation
transmission is used for the picture signal in accordance with Appendix II of the FCC Standards of Good Engineering Practice.
7. The sound transmission is by frequency modulation, with maximum deviation ± 25 kilocycles, and with preemphasis in accordance with a 75 -microsecond time constant.
8. The radiated signals are horizontally polarized.
9. The power of the aural-signal transmitter is not less than 50 percent nor more than 150 percent of

Color TV Field Tests

NTSC releases 22 specifications descriptive of the compatible color signal to be used in forthcoming tests in five cities, urges participation of all interested industry organizations and technical personnel. Signal employs constant-luminance sampling, color phase alternation, and a color subcarrier frequency of 3.898125 mc
the peak power of the visual-signal transmitter.

Group II (Supplementary)

10. The color signal has the following composition

$$
\begin{aligned}
& \begin{aligned}
& E_{m}=E_{y}^{\prime}{ }_{y}+\frac{1}{1.14}\left[\frac{1}{1.78}\left(E_{B}^{\prime}-E_{y}^{\prime}\right) \sin \omega t\right. \\
&\left.+\left(E_{R}^{\prime}-E_{y}^{\prime}\right) \sin \left(\omega t \pm 90^{\circ}\right)\right] \\
& \text { where } \\
& E_{y}^{\prime}=0.59 E_{G}^{\prime}+0.30 E_{R}^{\prime}+0.11 E_{B}^{\prime}
\end{aligned}
\end{aligned}
$$

In this expression the symbols have the following significance:
E_{m} is the total video voltage, corresponding to the scanning of a particular picture element, applied to the modulator of the picture transmitter.
E_{y}^{\prime} is the gamma-corrected voltage of the monochrome (black-andwhite) portion of the color signal, corresponding to the given picture element. This signal carries all of the luminance information.

Gamma-corrected voltages E_{G}^{\prime}, $E^{\prime}{ }_{R}$, and E_{B}^{\prime} correspond to the green, red and blue signals intended for the color picture tube, during the scanning of the given picture element. Value ω is 2π times the frequency of the color carrier. The phase reference of this frequency is such that the color synchronizing signal (see specification 21 below) corresponds to an amplitude-modulated signal of the form $\cos \omega t$, where t is the time.

The plus or minus sign near the end of the expression indicates that the phase of this component is alternately advanced and retarded by 90 degrees on successive scanning fields with respect to the stationary color phase alternation axis, (see specification 20 below).

The portion of the expression be-
tween brackets represents the color subcarrier signal which carries the chromatic information.

It is recommended that field-test receivers incorporate a reserve of $10-\mathrm{db}$ gain in the chromatic channel over the gain required by the above expression.
11. The primary colors referred to by $E^{\prime}{ }_{R}, E^{\prime}{ }_{G}$, and $E^{\prime}{ }_{B}$ have the following chromaticities in the ICI system of specification :

		x	y
Red (R)	\ldots	\ldots	0.67
Green (G)	\ldots	0.3	0.21
Blue (B)	\ldots	0.	0.14
	0.71		
	0.08		

12. The color signal is so proportioned that when the color subcarrier vanishes, the chromaticity reproduced corresponds to illuminant C ($x=0.310, y=0.316$)
13. Gamma correction is such that the desired pictorial result is obtained on a display device having a transfer gradient (gamma exponent) of 2.75 . However, the equipment used is capable of an overall transfer gradient of unity. The voltages $E^{\prime}{ }_{v}, E^{\prime}{ }_{R}, E^{\prime}{ }_{g}$ and E_{B}^{\prime} in the expression in specification 10 refer to gamma-corrected signals.
14. The color subcarrier frequency is $3.898125 \mathrm{mc} \pm 0.001$ percent, with a maximum rate of change not to exceed $\frac{1}{3}$ cps per sec.
15. The horizontal scanning frequency is $2 / 495$ times the color subcarrier frequency. This corresponds to $15,750 \mathrm{cps}$.
16. The bandwidth assigned to the monochrome signal E_{y}^{\prime} is in accordance with the FCC standard for black-and-white transmissions.
17. The bandwidth assigned prior to modulation to the chromatic signals $\left(E^{\prime}{ }_{B}-E_{y}^{\prime}\right)$ and ($E_{R}^{\prime}-E^{\prime}{ }_{y}$) is not less than 1 mc at $6-\mathrm{db}$ attenuation. A gradual cutoff characteristic
is required to be used.
18. The bandwidth assigned to the modulated color subcarrier extends to at least 1 mc at $6-\mathrm{db}$ attenuation below the color subcarrier frequency and to at least 0.4 mc at $6-\mathrm{db}$ attenuation above the color subcarrier frequency.
19. To assure that all the components of the color signal shall coincide in time at the second detector of the receiver, delay compensation is used such that a sinewave, introduced at the transmitter color-signal input terminals, produces a radiated envelope having a relative time delay-vs-frequency characteristic within +30 percent and -0 percent of that specified in Fig. 13 of RMA report TS 1.2-3005-A (Figure 1 herewith), except that the ordinate scale may be multiplied by a factor of 1.0 to 1.5 .
20. The color phase alternation implied by the (\pm) sign in specification 10 is such that the color subcarrier phasor representing ($E_{{ }_{k}^{\prime}}-$ $E^{\prime}{ }_{y}$) shall lead the phasor representing ($E^{\prime}{ }_{B}-E_{y}^{\prime}$) during the scanning field following the vertical sync pulse in diagram (1) of Appendix I of the FCC Standards of Good Engineering Practice Concerning Television Broadcasting Stations, Dec. 19, 1945, and shall lag following the vertical sync pulse shown in diagram (2) of that Appendix. The stationary axis of the color phase alternation corresponds to the ($E^{\prime}{ }_{B}-E^{\prime}{ }_{y}$) phasor.
21. The color synchronizing signal is that shown in Fig. 2. This signal corresponds to amplitude modulation of a continuous sinewave of frequency $\omega / 2 \pi$.
22. Signals outside the assigned channel shall have a level at least 60 db below the peak visual signal amplitude.

FIG. 1-Circuit diagram showing interconnection of two banks of the distributed-line amplifier. The tubes are all type 4X150A. matched by groups for high and low emission

SHORT-PULSE

Twelve-tube distributed-line amplifier uses three cascaded banks of four 4X150A power tetrodes. Novel circuit layout using standard parts has bandwidth from 1 mc to 100 mc and produces voltage gain of 40 db for oscilloscope presentation of 1 -volt pulses

By GEORGE F. MYERS
Naval Research Laboratory

Washington, D. C.

THE distributed-line amplification principle can be successfully used for the amplification of short pulses in the order of 10 millimicroseconds using conventional tubes. For pulses considerably shorter than this, conventional tubes no longer satisfy circuit requirements. The amplifier to be described is designed to handle a 15 millimicrosecond pulse, taking it from the one-volt level to one sufficient for oscilloscope presentation. The oscilloscope itself is an experimental model capable of showing pulses in the order of 5 millimicroseconds with negligible jitter.

Design Considerations

The selection of a tube for this circuit is limited to a rather small field since circuit requirements call for a wide frequency response, tetrode or pentode construction,
high transconductance, high-current capabilities, low input and output capacitances, and if possible, double-ended construction. The 4X150A power tetrode was selected as having a sufficient number of these qualifications. Its high input capacitance is offset by its good transconductance figure and its high-current capabilities. As a double-ended tube, it is free from oscillation problems.

It was decided to use one tube model throughout in this amplifier for the sake of simplicity in power supply requirements and to standardize construction. The selection of this tube then resulted in an arrangement of three banks in cascade, with four tubes per bank.

The schematic form of two of these banks in cascade is shown in Fig. 1. Plate and grid lines are constructed with basic pi-section,
constant-k, low-pass filter units. A fundamental property of this type of unit is the manner in which its impedance varies with frequency. It is nearly constant over the lower portion of the pass-band (square root of L / C) and rises sharply at the upper end of the pass-band, approaching infinity as the frequency approaches cutoff, for the lossless condition. Thus the gain of the amplifier will rise with the impedance of the filter sections used in the line construction as the cutoff frequency of these lines is approached. This is the origin of the expression "rising gain characteristic" associated with this type of amplifier. Rather than trying to offset this impedance variation and the accompanying phase nonlinearity in the upper region of the passband, the line pass-band is arbitrarily chosen as 1.5 times the

Comparison between 0.015 -microsecond pulse directly viewed (left) and delayed and amplified (right), showing how little it is distorted in the amplifier

AMPLIfiers

desired useful bandwidth. The end result is a better impedance match and a more linear phase response over the useful bandwidth.

As is indicated in Fig. 1, grid and plate capacitances are used unpadded as the intermediate shunt arms of the line filters. Filter theory indicates that for a given bandwidth, the magnitude of the
line impedance is an inverse function of the shunt-arm capacitance, hence the unpadded plate and grid values of capacitance used will result in maximum impedance possible for the two lines. Since the plate capacitance is smaller, its line impedance will be larger than the grid line. These maximum values of impedance will result in maxi-
mum gain per bank. There are three possibilities for cascading when starting out with unequal impedances.

Coupling Systems

The first, transformer action, is ruled out because of the frequency bandwidth, but it can be seen that this ideal method of cascading would result in a voltage loss proportional to the square root of the ratio of the two unequal impedances. The second method would be to reduce the impedance of the plate line to that of the grid line, resulting in a loss in voltage directly proportional to the ratio of the two impedances before reduction. The third and best method in this case is purposely mismatching the two impedances. This results in a voltage less than the ideal transformer method but greater than the equalimpedance method.

No m-derived matching sections or half-sections were employed in the line construction and terminations. The manufacturer's tolerances for this tube are such that little can be gained by the use of such sections unless trimming of these capacitances is employed. Although amplifier performance could be improved by this method it operates successfully without matching. This permits greater

Screen-block construction (left) uses insulated chunk of metal above chassis as bypass for screen supply. Underside of block (right) shows positive ground on some tube pins and short projection of grid pin in center

Four-tube bank with one tube removed to show pin connections. Three banks stacked vertically constitute complete amplifier
freedom in standard construction and tube replacement.

The bias-control voltages for all three banks are developed in a common regulated negative supply. Each bank has a separate bleeder circuit that supplies a variable negative bias voltage to each grid line through the terminating resistor. Because groups of four tubes must operate with the same bias voltage, it was found advisable to group all new tubes on initial test into two classes, high-emission and lowemission tubes, using only likeclassified tubes in any one bank. This helps to limit the current spread among tubes in a bank.

Equipment Layout

One of the construction features of this amplifier is the screen-block construction illustrated, used to form a low-inductance tube socket. Advantage is taken of the fact that this tube has a ring contact for the screen-grid element between the base and plate end of the tube. A solid block of metal $\frac{3}{8}$-inch thick is insulated from the chassis in such a way as to form a good high-frequency bypass capacitance for the screen-supply voltage at which the block is maintained. The tubes are then inserted in spring mounts placed through this block. Contact is made to the plate of the tube by
soldering the coils to small projecting lugs on a close-fitting sleeve placed over the plate finning.

The base pins of the tube project into small holes in the $\frac{1}{\mathrm{~h}}$-inch brass chassis. Pins to be grounded fit into small spring clips soldered to the edge of the close-fitting hole, while clearance is given the other pins. Clearance for the ungrounded filament pin is such that contact can

Table I-Specifications

Bandwidth	1 mc to 100 mc
Voltage Gain	40 db
Output Voltage	± 160 volts
Input Impedance	100 ohms
Output Impedance	250 ohms

be made to this pin by means of a small clip.

The grid pin in the center has sufficient clearance to prevent excessive capacitance coupling to the chassis. This is the only other pin on the base to be contacted and again this is done by means of a small spring clip.

Grid coils are space-wound on $\frac{7}{3}$-inch polystyrene tubing, 8 turns to the inch, while plate coils are spacewound on a-inch polystyrene rod, 12 turns to the inch. Plate coils are purposely given a different distributed capacitance figure by geometrical design to help offset the rising
gain characteristic of this amplifier.
The reverse-termination resistor assembly illustrated makes use of the high-frequency bypass properties of a large plate of metal insulated from the chassis. This plate is maintained at $B+$ supply potential. To this plate is added capacitance for the purpose of broad-banding its bypass properties and on this plate is mounted the standoff bracket for the reverse-termination carbon-film resistor. This resistor affords a good match to the line over the useful bandwidth of the amplifier and if air-cooled will dissipate 200 watts when conducting the plate current to the tubes. This dissipation is avoided by winding a single-layer helix of No. 27 enameled wire on the outside of this carbon resistor from one end to the other and connecting the winding electrically in parallel with it. This provides a good low-resistance path for the direct current supplied the tubes and does not materially affect the frequency response of the amplifier above 500 kc . The range of pulses considered is amplified as well with this shunt-fed method as with the direct method of supplying d-c to the tubes.

Bank Arrangement

A standard four-tube bank, with one tube removed for display pur-
poses, is shown in the photograph. In operation, the banks are stacked in a vertical plane and a two-inch hole is left in the chassis near the base of the plate resistor standoff to permit feeding the output of one plate line into the input of the next grid line. The signal order is down the first or bottom bank, back in the next bank up, and down the top bank to the output end. Four such banks have been operated successfully in cascade for test purposes, while standard operation of three banks has continued over a period of months. It was found advisable, when cascading, to stagger the line cutoff frequency of any one bank 5 mc above or below the cutoff frequency of the preceding bank, to prevent the rise in gain peak occurring near cutoff from cascading sufficiently to cause oscillation.

Amplifier Performance

The phase response for an amplifier of this type is indicated in Fig. 2. This property is difficult to determine over such a broad band of frequencies so the alternate method of calculating the response is chosen. By taking the deviation per section from linear phase response and multiplying it by the number of sections in the signal path, an overall phase deviation figure is arrived at. This method of phase analysis stresses two points-keep the number of sections in the signal path low and keep the ratio of useful bandwidth to line bandwidth low.

The response of this amplifier to a 15 -millimicrosecond pulse is illustrated. By feeding signals to both deflecting plates of the oscilloscope and suitably delaying the signal to one of these plates, both the input and the output pulse of the amplifier under test are shown on one trace. The delayed pulse to the amplifier was attenuated sufficiently to give the amplifier output pulse the proper voltage for comparison with the input shape. With this 15 -millimicrosecond pulse, it can be shown that the amplifier distorts the pulse less than does fifty feet of 90 -ohm coaxial cable.

The general specifications are listed in Table I. Undistorted output voltages of 160 volts, both positive and negative, are possible with this combination of twelve tubes, with an input signal in the order of two volts. Operation level of 200 milliamperes per tube proved successful, giving a total current of approximately 2.5 amperes at 400 volts for the amplifier. Tube failures were rather frequent until care was taken to insure that filament operation did not exceed 6 volts. After this, only occasional failures weve recorded, chiefly during the first hour of the life of the tube. Bias control proved to be an effective means of gain control over a limited range, while variation of the supply voltage for gain control purposes was ruled out owing to the tetrode design of the tube. The main precaution used in the operation of this amplifier, as

Reverse-termination resistor assembly uses capacitor mounting as one plate of bypass capacitor to chassis
previously mentioned, was the grouping of tubes into high-current and low-current classes, with the separation of the banks into these classes for the purpose of tube replacements.

Amplifier Limitations

Consideration was given to the maximum bandwidth possibilities of this circuit with the 4 X 150 A tube. Input conductance tests indicate an upper bandwidth limit around 350 mc . In this region the tube input begins to look inductive and can no longer be used as a capacitance shunt-arm without com-

FIG. 2-Phase shift per section of the constanf-k filter
pensating circuits. One breadboard model was tested out to 250 mc with moderate gain, amplifying 5 -millimicrosecond pulses. For the best frequency response curve with this circuit and tube combination, there is an optimum cutoff frequency if gain is not the chief consideration. At around 280 mc , the input conductance losses tend to offset the rising gain characteristics of this circuit, and a relatively flat frequency response curve will be achieved with this cutoff.

The writer wishes to express his appreciation to I. W. Fuller, who through diligence and care has eliminated many errors and contradictions from this paper.

Reference

(1) Edward L. Ginzton, william R Hewlett, John H. Jasberg and Jerre D Noe, Distributed Amplification, Stanford University Microwave Laboratory Report.

UHF Receiving Antennas

Field tests of wide variety of antennas for 470 to 890 mc uhf television band reveal that the five types shown here are outstanding in performance yet low in cost.

All work into 300 -ohm line

By E. O. JOHNSON and J. D. CALLAGHAN

Advanced Development Section RCA Victor, Camden, N.J.

RCA Service Company
Gloucester, N.J

FAN DIPOLE, simplest of all uht receiving antennas, requires only two triangles of metal supported by an insulating bar. Dipoles are set in metal frame for stacking which with proper phasing gives greatly increased gain. Bandwidth is excellent. Stacking narrows vertical directivity but does not affect horizontal directivity. Fourstack unit uses two two-stack units connected by twin-lead

CORNER REFLECTOR having 90 -degree included angle, using fan-dipole element also folded at 90 degrees, gives ultimate in gain for its compact size. It should be one of best fringe-area uhi antennas, being truly unidirectional in both horizontal and vertical planes. Negligibly small unwanted lobes minimize reflection and multipath troubles. On all gain curves here, 0 db reference is gain of thin half-wave dipole adjusted to resonance at each frequency and matched into 300 ohms

Type of Transmission Line	Loss in db per 100 feet					
	100 mc		500 mc		$1,000 \mathrm{mc}$	
	Dry	Wet	Dry	Wet	Dry	Wet
Standard 300-Ohm Flat Lin	1.2	7.3	3.2	20.0	5.0	30.0
Tubular 300-Ohm Line. .	1.1	2.5	3.0	6.8	4.6	10.0
RG 59/U Coaxial Cable	3.7	...	9.6		14.5	
RG 11/U Coaxial Cable	1.9		5.2		7.8	

UHF Receiving Antennas (continued from page 132)

RHOMBICS more than several wavelengths on a leg proved highly suecessiful in uhf field tests when adjusted and terminated for unidirectional operation. Gain is adequately high for fringe areas. Major forward lobe is quite narrow and decreases with frequency as shown. Major vertical lobe, not shown, is about three times as broad as corresponding hori-
zontal lobe. Minor side and back lobes may give trouble in severe cases of reflection or multipath reception. Stacking two of these rhombics 12 inches apart increases gain 2 db across entire band and increases vertical directivity but does not affect horizontal directivity. Rising gain characteristic with frequency is desirable

12									
10									

STACKED V antenna uses same rods as standard dipole cut for channe. 2 and thus contains about same amount of metal as simple vhf dipole and reflector. Efficiency is good considering simplicity of construction and ease of mounting on existing masis. Gain is high enough for medium and weak signal areas and increases desirably with frequency to overcome propaga-
tion and transmission-line losses that increase with frequency. Bandwidth is excellent, but directivity pattern shows lobes that restrict use to areas reasonably free of reflections. Chief trouble with regular vhi antennas on uhf is large number of such secondary lobes and fact that major lobe is usually off the antenna axis

YAGI antennas give more gain for size and weight than any other type of uhi antennc, if close dimensional tolerances are held during construction. Unit shown is 6 -element widespaced type with 28 -inch overall length. Though gain shown is adequate for most weak-signal areas, stacking gives still higher qains. Peak gain is obtained only on one channel, but

fotal of 7 uhf channels can be covered with sacrifice of only $3-\mathrm{db}$ gain at ends of pass band. Helical and slot-type antennas also adapt readily to uhf use. A balun is used for matching to coax and also gives lightning protection if its shell is adequately grounded. Standard lightning arresters have excessive losses at uhf

$\stackrel{\text { In }}{\text { Electrical }}$
 Contact
 Assemblies

MALLORY Assembly Engineering can mean three-way savings for you

No matter what your contact assembly needs may be, Mallory can do the whole job for you-from design and material selection ... to fabrication and finishing of parts . . to final assembly.
Mallory assembly engineering is backed by 25 years of research and practical experience and takes pride in...

- Design of more than 5000 different types of contacts.
- Development of many special alloys . . . and brazing techniques.
- Leadership in the development and practical application of powder metallurgy.
- Design and production of all types of switches.

With this specialized electrical and metallurgical engineering experience working for you, you save three ways-in better performance . . in reduced costs \ldots and in relief from the design, handling, scheduling and inventory control problems involved in assembling your own contact units.

EXPECT MORE...GET MORE FROM MALLORY

An example of Mallory contact assembly engineering is a tungsten contact assembly for an outboard motor magneto which had to withstand the impact of millions of cycles . . . resist salt water corrosion . . . maintain constant shape and uniform spring action... and hold the precise tolerances despite temperature and humidity changes.

Mallory engineers produced the right answer at the right price-a contact assembly that is doing an outstanding job. You can expect the same kind of results when you turn your contact assembly work over to Mallory.

In Canada, made and sold by Johnson Matthey \& Mallory Ltd., 110 Industry St., Toronto 15, Ontario
Electrical Contacts and Contact Assemblies
SERVING INDUSTRY WITH
Electromechanical Products
Resistors \quad Suitches
TV Tuners \quad Vibrators
Electrochemical Products
Capacitors \quad Rectifiers
Mercury Dry Batteries
Metallurgical Products
Centacts ${ }^{\text {Special }}$ Melals
Velding Mulerials

TUBES AT WORK

Including INDUSTRIAL CONTROL

Edited by RONALD K. JURGEN

1,000-Cycle Warning Device 136
Ground-Transmitter Klystron for Air Navigation 136
Submerged Repeaters for Telegraph Cables 164
Automatic Steering for Outboard Motorboats 172
F-M Performance Measurement Form 192
Tunable Selector-Rejecter for Audio Amplifiers 196

1,000-Cycle Warning Device

> By PhiliP Whitney
> Chief Engineer
> Stations WINC and WRFL Whelester, $V a$.

This Easily Constructed monitoring device has proven foolproof and positive in action, supplying two types of warning signals, a loud 1,000 -cycle tone and a loud bell or brilliant warning light. The latter two are optional but it is recommended that they be included especially in an application where the operator or announcer must concentrate on other duties. The parts for the unit are easily obtainable receiver parts and two surplus tuned audio circuits from the Hammarlund Fleet-Control units.

The input is arranged to bridge a 600 -ohm line with no appreciable attenuation. The input coupling transformer is a common, interstage receiver audio transformer
with a 2,700 -ohm resistor in each leg. The high-mu triodes were used because of the simplicity of the design and conservation of parts by avoiding the necessity of supplying screen voltages.

A 6SF5 was also chosen instead of a gas-type tube for the relaycontrol tube first because once the gas tube has been ionized, it must be reset; secondly because the highmu triode is much less critical and more stable with line-voltage fluctuations and last because there are only three types of tubes used in the complete unit, thus cutting down inventories at the station.

It will be necessary to add either a one-uf capacitor or two $0.5-\mu \mathrm{f}$ capacitors to each capacitor which is contained in the original audio tuned circuit. This was designed to operate at about 6,000 cycles but it will operate very well at 1,000

FIG. 1-Schematic of the 1,000 -cycle warning device for bridging network program lines
cycles with the added capacitance. The two stages of tuned audio resonate very sharply at 1,000 cycles and feed two resistance-coupled audio stages which drive a small speaker and also supply the voltage which is rectified by the 1N34 crystal. This voltage is applied to an integrating network. At the levels commonly encountered on network lines, the capacitor will be charged to the required voltage to make the relay control tube pull the relay in after from 6 to 10 seconds.

The relay can operate a common doorbell from a separate transformer source or from the heater supply of the warning unit. It can also apply voltage to a brilliant warning light which will attract attention at the operating position. Very little can be heard from the speaker during regular programs, but it will supply plenty of audio when a 1,000 -cycle tone is applied. The sensitive relay used in this particular installation is an 8,000 -ohm plate relay also salvaged from the Hammarlund Fleet-Control surplus equipment. To avoid trouble, a 120 ma transformer was used, as the equipment is left running night and day and it generally pays to have a power transformer that will not overheat over long periods of time.

Different values may be chosen for the integrater to give a longer delay time before sounding the warning, if desired, and a wirewound variable resistor may be used in the cathode of the relay control tube (about 20,000 ohms) to afford a closer control of the time element. After constructing the equipment and adjusting it with an audio oscillator, it was installed and the local telephone company called. They obligingly fed a 1,000 -cycle tone at program level while the final touch-up adjustments were made.

Ground-Transmitter

Klystron for Air Navigation
By Vincent Learned
Engineering Department Head Electronic Tubes
Sperry Guroscope Co.
Great Neck
DEVELOPMENT of a klystron tube for the responder-type of ground transmitters for air navigation systems is described. This tube is for the $9,300-\mathrm{mc}$ frequency region with

FAST

KESTER FLUX-CORE SOLDER

FAST . . . FASTER . . . FASTEST

FAST . . . Kester Plastic Rosin-Core, the old reliable, always does a fast job.
FASTER . . . Step up the tempo with Kester "Resin-Five" and still retain flux stability.
FASTEST . . . For high-speed soldering, unbelievable flux mobility. You'll want Kester " 44 " Resin-Core the newest of all Core Solders.
W

Over 100,000 types Kester Flux-Core Solder available

Free Technical Manual-write for your copy of "SOLDER and Soldering Technique."

KESTER SOLDER
power output between 5 and 20 kw at high duty cycles.

The unique requirement for the tube is the operation under variable duty-cycle conditions at high maximum power output. This requires satisfactory performance from zero to full maximum-rated-power output with no mechanical tuning readjustment. The tube is an amplifier tube so that master-oscillator techniques can be used to achieve high-frequency stability with a full variation in duty cycle.

SAX-22 Development

At $9,300 \mathrm{mc}$, the maximum aver-age-power-output capability of gridded klystron tubes is limited to approximately 50 w because of grid heating. By employing a very small diameter beam the use of grids may be avoided, thus removing a major limitation on power output. The SAX-22 was developed for a peak power of 7.5 kw with an average power output of over 200 w in the $9,300-\mathrm{mc}$ frequency range. Other characteristics are given in Table I.

As shown in Fig. 1, the tube is mounted on a permanent magnet which supplies the field necessary for control of the beam. The assembly weighs approximately $6 \frac{1}{2}$ pounds with an overall length of 10 in . The tube has waveguide input and output which is designed to operate into a matched it by $1-\mathrm{in}$. waveguide transmission line. Adequate cooling fins are provided for dissipating the large average power. A compensator is provided on the tuning mechanism to hold the cavities on frequency for a wide range of body temperature. Typical characteris-

ANTENNA TEST LABORATORY

Antenna laboratory of the Boeing Airplane Company housed at right and tower at left on which model airplane is mounted for tests. Radio waves beamed from horn atop laboratory are received by model antennas inside model airplane. Signals thus received are conveyed back to laboratory by shielded cable for strength measurement as airplane is rotated
tics are shown in Table I.
The drawing below shows the cross-section details of the internal construction. The electron gun produces a highly convergent beam which enters an axial magnetic field through a hole in the input pole piece and traverses the input gap, the drift tube and the output gap. The input gap velocity-modulates the beam which becomes densitymodulated while moving down the drift tube. The output cavity extracts the fundamental r-f components of current in the beam and delivers part of it to the useful load.

Cross-sectional view of $9,300-\mathrm{mc}$ klystron

The three separate functions that have to be performed by any microwave tube are performed in this klystron by three separate and distinct parts of the tube. The beam formation is done in the absence of any r-f fields in the cathode region. The r-f interaction takes place in the central region only, where very little beam collection need occur. The third function, the collection of the spent beam, is then performed by the collector at any desired power density. This allows each section to perform its function in an optimum manner.
The cavities are coupled to the waveguides through inductive coupling irises. Flexible diaphragms mounted in the sides of the cavities provide a means of tuning. The waveguide coupling connections terminate in a flanged structure which carries a ceramic window sealed to a matching alloy frame. To keep the cavity resonators from mistuning under a variable duty cycle, the dissipation must be kept as small as possible, the internal temperature rise minimized and compensation employed for the wide range of temperatures.
(Continued on page 156)
. . . JUST OFF PRESS comes this Sprague Catalog 21 with complete details on paper dielectric capacitors designed to meet Joint Army-Navy Specification JAN-C-25. Comprehensive data on sizes, characteristics, ratings, performance and other factors makes the new catalog invaluable to users of JAN paper capacitor types. Copies are available on letter. head request.

Over and beyond JAN specifications, Sprague has developed many new ways to reduce size and weight and to improve the high-temperature performance of capacitors and other electronic components. In effecr, these are "Super-JAN" components-fully approved via JAN deviations to equipment manufacturers and widely used in critical military applications. At the right are four examples of units that Sprague can supply where equipment engineering progress calls for components that exceed JAN requirements.

COMPARISON-TYPICAL SUPER-JAN VERSUS JAN UNITS
Metal-Cased Tubular Paper Capacitor, 8oth Leads Insulated from Case

PIONEERS IN ELECTRIC AND ELECTRONIC DEVELOPMENT NORT
A A D

THE ELECTRON ART

Edited by JAMES D. FAHNESTOCK

Magnetic Amplifier Voltage Regulator 140
Special Tubes for Broad-Band Amplifiers 142
An Electronic Pneumotachograph 208
Radioactive Current Source 212
Transmission-Line Tubes 214
New British Tube for High-Speed Photos. 218
Super-Speed Tape Puller for Computer Memory 222

Magnetic Amplifier Voltage Regulator

Many vacuum-tube voltage regulators have been described in the literature, with varying degrees of regulation and complexity. The following is a description of a tubeless device capable of regulating at 160 to 400 volts within 0.5 percent for load currents from 0 to 500 ma (with line voltage constant), and within 0.5 percent for ± 10-percent change in line voltage and load currents of 0 to 300 ma . This performance is available for ambient temperatures from 0 to 55 C . The regulator is virtually indestructable and its life is almost indefinite.

Figure 1 shows a cross section view of the magnetic amplifier designed specifically for this application. The amplifier was found to have an average power gain of the order of 10^{6} with a loald resistance of 10 ohms at a power level of 0.5 to 360 watts. Figure 2 shows the transfer characteristic curves for the magnetic amplifier used.

In Fig. 3 is shown the complete

FIG. 1-Construction of magnetic amplifier used in voltage regulator

FIG. 2-Transfer characteristic of magnetic amplifier
circuit diagram of the regulator, with power transformer and bridge rectifier. The error detector and reference quantity are incorporated in a single parallel circuit (enclosed in dashed lines), containing a linear resistance in series with one d-c control coil (1,000 turns) and a nonlinear resistance composed of six thyrites in parallel, in series with a second oppositely-connected d-c control coil (5,000 turns). At approximately 140 volts across this network, the two control coils are contributing approximately the same ampere turns, but in opposite senses. The resultant is that required for the optimum quiescent operating point. If the output voltage rises, the ampere turns in the control coil with the nonlinear resistance (W_{2}) rise very fast, while the ampere turns in the linear

Magnetic amplifier used in voltage regulator circuit
resistance winding (W_{1}) rise linearly. The result is a negative increase (decrease) in total d-c ampere turns. Hence the reactance of the a-c winding in the primary circuit of the power transformer increases, the primary voltage is decreased, and the output voltage returns to the desired value. A drop in output voltage will have the opposite effect.

Different values of output voltage may be obtained by adjusting R_{1}. The value of this control is simply set to make up the difference between the output voltage and the operating point of the nonlinear device which, in this case, is 140 volts.

A third control winding (100 turns) in series with the load is so oriented on the magnetic amplifier that changes in load current cause changes in primary voltage to the transformer for further regulation.

Figure 4 shows the remarkable regulating performance obtained with the magnetic amplifier supply. Regulation data taken on the three units constructed were found to

FIG. 3-Circuit diagram of magnetic amplifier voltage regulator

SIGNAL GENERATOR

FOR OMNI-RANGE RECEIVERS

Type 2II-A - Frequency Range 88-140 Megacycles

Output Frequency Crystal Monitored
Amplitude Modulation 0-100\%
Modulation Fidelity $\pm 0.5 \mathrm{db}$ 30 cycles to 11 kilocycles
Negligible Spurious FM

SPECIFICATIONS

FREQUENCY RANGE: Master Oscillator: $88-140$ megacycles in one range. Vernier frequency dial has 100 divisions and is coupled to division is equivalent to a 10 kig a $120: 1$ gear drive. Each vernier division is equivalent to a 10 kc . change in frequency.
Crystal Controlled Frequencies: Either of two crysials 110.100 mc .
and 114.900 mc ., accurate to ± 0.00350, may be selected by and 114.900 mc ., accurate to $\pm 0.0035 \%$, may be selecled by a switch for use individually or in combination with the master- oscillaior to standardize its output frequency.
AMPLITUDE MODULATION CHARACTERISTICS: Two omplitude modulation ranges, $0-30 \%$ and 0 - 100%, are provided for use with he internal ascillator or a low distortion external oscillator. Disortion is 5% or less af 95% amplitude modulation.
Internal Audio Oscillator: Two modulating freqúencies, 400 and 1000 cycles.
Modulation Amplifier: The internal modulating amplifier has the following characteristics:

Uniform response within $\pm 0.5 \mathrm{db} .30$ cycles to 11 kc .
Uniform response within $\pm 0.1 \mathrm{db}$. 90 cycles to 150 eycles.
Uniform response within $\pm 0.1 \mathrm{db} .9500$ cycles ta 10.5 ke.
Uniform response within $\pm 0.1 \mathrm{db} .9500$ eycles ta 10.5 kc .
Phase Distortion: (up to 60% amplitude modulation.)
Less than 0.25 degrees at 30 cyeles.
Less than 10 degrees at 11 ke .
AUDIO TEST VOLTAGE: This instrument contains a demodulator or detector which supplies to front panel terminals a portion of the demodulated carrier.
SPURIOUS FM: Less than $1 / k c$. at 60% AM.
OUTPUT ATIENUATOR: Single ended piston type, adjustable from 0.2 volt to 0.1 microvolt. Output impedance as seen looking in at terminals of output cable is $\mathbf{2 6 . 5}$ ohms.

DESIGNERS AND MANUFACTURERS OF THE Q METER - OX CHECKER FREQUENCY MODULATED SIGNAL GENERATOR : BEAT FREQUENCY GENERATOR AND, OTHER DIRECT READING INSTRUMENTS

The Type 211-A Signal Generator is specifically designed for the testing and calibrating of omni-range radio receiving equipment. It is also well suited for laboratory and development work where a precision type amplitude modulated R. F. signal source is required.

Careful consideration has been given to the location of panel controls with respect to function and degree of use. The main frequency dial is located in the center of the panel, with the vernier dial to the left in close proximity, utilizing the same fiducial for simplicity and ease of operation. Symmetrically located to the right of the frequency dial is the output attenuator dial, directly calibrated in microvolts. The center panel enclosure embodies those controls which the operator will have the greatest occasion to use, permitting rapid, accurate settings to be made with maximum convenience.

The calibration accuracy of the frequency dial settings is $\pm 0.25 \%$ at any point; however since crysłal controlled frequencies are also available within the instrument, zero beats may be obtained from which the output frequency may be standardized to an accuracy of about $\pm 0.025 \%$ by slipping the vernier frequency dial with respect to the main frequency dicl. This feature permits the identification and checking of channel frequencies differing by as little as 100 kc .

Write today for complete details!

BOONTON GADIO

вооктон-N.U.U.SA veporatior

FIG. 4-Constant-line-voltage curves show requlation of output for varying output current values
coincide within a small fraction of a percent over the entire range of line voltage (0 to 135 volts) and load current (0 to 500 ma) covered.

This article is based on the United States Atomic Energy Com-

Complete magnetic amplifier chassis includes necessary transformers, fuses, rectifiers, capacitors meters and controls
mission report AECD-2851 entitled, "Magnetic Amplifier Voltage Regulator" by John L. Wolff, Jr., of the Westinghouse Electric Corporation, Atomic Power Division, Pittsburgh, Pennsylvania.

Five Million Million Million Mile DX

Radio waves emanating from the great nebula in Andromeda have been measured successfully at Manchester University Physical Laboratories, Jodrell Bank Experimental Station, Cheshire, England. Using the equipment shown in the accompanying photographs, British scientists have succeeded in detecting the minute amounts of r-f power (of the order of micro-micro-micromicrowatts) that left these stars more than 750,000 years ago.

These radio stars do not coincide with any of the bright visual stars and cannot therefore be viewed with an ordinary telescope, however powerful.

Inside view shows screen where sigaals from outer space are displayed

Special Tubes

For Broad-Band Amplifiers

ImPROVED broad-band amplifier performance can be derived through the use of a line of special tubes recently developed for the Bell System. These tubes have higher ratios of transconductance to capacitance, brought about mainly by a new grid employing many turns of very fine wire. Gain-bandwidth products about twice that of the 6AK5 have been obtained, with transconductance values up to 45,000 micromhos.
The feedback amplifiers in which these tubes are used will transmit an 8 -mc band, which can be used for 1,800 telephone channels or 600 telephone channels and one television channel.

The remarkable features of this line of tubes are obtained by reducing spacings to the limit of mounting ability. The present state of the art permits a spacing of 0.0025 inch. To keep shunt capacitance low, wire size is reduced to the limit set by wire manufacturing facilities. Tungsten is used for its high tensile strength. Figure 1 gives a graphic comparison of spacing and wire-size dimensions employed.

In fabricating the grid structures, special techniques are used. Because of the small size of the grid wires, a rigid frame must be used, as shown in Fig. 2. It is necesssary to have the wires straight and tight so the grid will present a flat uniform control surface to the cathode.
(continued on page 204)

Receiving antenna on $120 . \mathrm{ft}$ tilted pole is positioned at focus of 220 -ft parabolic reflector made of fine wires

British persion of moon radar is built on World War II searchlight base. Smaller type is shown at right, while in background may be seen meteor radar antennas. Location is Jodrell Bank Experimental Station, Cheshire, England

new Silic-O-Netic TIME DELAY RELAY

LOOK at the qualifications the new SILIC-O-NETIC Time Delay Relay has for your requirements. Even with its small size, it's a load carrier in itself . . . in most cases eliminating the need for an auxiliary relay. The time element which is hermetically sealed has only one moving part . . . forever free of dirt, dust and moisture.

SMALL SIZE LOW COST

 ABSOLUTE DEPENDABILITYThe SILIC-O-NETIC Time Delay Relay employs silicones . . . operates dependably on a hydraulic-magnetic principle regardless of position or frequency of operation. This relay is ovailable with timings up to four minutes. It has a service life measured in many millions of operafions yet Heinemann high production techniques make it available to you at LOW COST.

COMPLETE DATA and graphic illustrations of the SILIC-O-NETIC operating principle; forms, models and timings available are included in Bulletin 5001.

A copy will gladly be sent to you upon request.

 EIECTRIC COMPANY

97 Plum Street
Trenton 2, N. J.

NEW PRODUCTS

Edited by WILLIAM P. O'BRIEN

Lab and Industrial Apparatus Production Continues High . . . Miniaturization of Components Maintains Pace . . . Thirty-Four Manufacturers' Catalogs Are Discussed

Pocket Oscillograph

Consolidated Engineering Corp., 300 N. Sierra Madre Villa, Pasadena 8, Calif. Up to nine sources of data representing vibration, pressure, velocity, strain or other phenomena, either static or dynamic, can record simultaneously on the new $5 \times 5 \times 8$-in. recording oscillograph, type $5-118$. Operating from a 28 -v d-c power source, the compact instrument is ideally suited to mobile testing programs where space and weight saving are important. Developed originally for a missile-testing program, the midget oscillograph produces dynamic test records $3 \frac{1}{2} \mathrm{in}$. wide and up to 40 ft long on which the nine separate phenomena can be measured with respect both to time and to each other.

Scanning System

Minneapolis-Honeywell Regulator Co., Brown Instruments Div., Wayne \& Windrim Ave., Philadelphia 44, Pa., has developed an elec-
tronic scanning system designed to automatically and continuously monitor up to 270 separate processing temperature points. The system, which records only temperatures deviating beyond a preset limit, includes an audible alarm that permits immediate correction of excess temperatures, and replaces the cost and use of several instruments and time-taking logging operations and maintenance. It is especially applicable for steam generating stations and in the manufacture of synthetic fibers and yarns where the temperature of feed material supplying spinerettes must be maintained at specific levels to eliminate costly defects in the product. Illustrated is the control unit.

Tiny Capacitor

Vitramon, Inc., Stepney, Conn., has added a new style capacitor to its series. The unit, shown on the right in the photograph, has an overall length of 0.4 in . and a maximum cross-section dimension of 0.2 in . being equivalent in size to a JAN CC20 capacitor. Designated as type 49 , it is available up to $51 \mu \mu \mathrm{f}$ at 500 volts $\mathrm{d}-\mathrm{c}$ working and to 110 $u \mu \mathrm{f}$ at 250 volts. Included in the photograph are also the company's four stock sizes of capacitors which are supplied with ± 5 percent or $\pm 0.25 \mu \mu \mathrm{f}$ tolerance from 0.5 muf through $1,000 \mu \mu \mathrm{f}$. Operating
temperatures of all are -55 C through 200 C .

Coaxial R-F Switch

Transco Products, Inc., 12210 Nebraska Ave., Los Angeles, Calif. A new compact single-pole, 4-position coaxial r-f switch for applications at radar frequencies, has a frequency range up to $11,000 \mathrm{mc}$ and vswr of less than 1.5 to 1 . Insertion loss is less than 0.5 db throughout operating range, and attenuation between unused connectors is 50 db minimum. Power handling capabilities are equal to improved type N connectors. Motor-driven actuator rating is 24 to $28 \mathrm{v} \mathrm{d}-\mathrm{c}$. Various models are available for aircraft applications.

Acoustical Lens

James B. Lansing Sound, Inc., Los Angeles, Calif., is producing model 175 DLH full acoustical lens for loudspeaker use which distributes a

there are more RAYTHEON SUBMINIATURES
in world-wide use than all other makes combined

For Tubes You Can Trust To Meet

Your Requirements And More

RAYTHEON RELIABLE

 Cathode Type SUBMINIATURE TUBES
CK6148

R. F. Pentode
$\mathrm{E}_{\mathrm{f}}=6.3 \mathrm{~V} . \mathrm{I}_{\mathrm{f}}=200 \mathrm{~mA}$. Noise output 50 mV . max.

These new Raytheon Reliable Subminiature tubes resulting from five years of continuous production of their prototypes are designed to meet the stringent requirements of vital military equipments. In addition to the rigid ratings for shock, fatigue, centrifugal acceleration, 5000 hour life, and heater cycle life, particular attention has been paid in the design and manufacture of these tubes to permit $200^{\circ} \mathrm{C}$ ambient temperature operation and lower noise output ratings as indicated under each type.

For complete mechanical and electrical data on these new RAYTHEON types, ask for the new Raytheon reliable Subminiature Tube Catalog E .
$\mathrm{E}_{\mathrm{b}}=200 \mathrm{~V}$. max.
$\mathrm{E}_{\mathrm{c} 2}=150 \mathrm{~V}$. max.
\quad CK6149
Medium Mu Triode
$\mathrm{E}_{\mathrm{f}}=6.3 \mathrm{~V} . \mathrm{I}_{\mathrm{f}}=200 \mathrm{~mA}$
Noise output 25 mV . max.
$\mathrm{E}_{\mathrm{b}}=275 \mathrm{~V}$. max.

CK6150

R. F. Pentode-Mixer
$\mathrm{E}_{\mathrm{f}}=6.3 \mathrm{~V} . \mathrm{I}_{\mathrm{f}}=200 \mathrm{~mA}$
Noise output 100 mV . max. $\mathrm{E}_{\mathrm{b}}=200 \mathrm{~V}$. max. $\mathrm{E}_{\mathrm{c} 2}=155 \mathrm{~V}$. max.

CK6151

High Mu Triode
$\mathrm{E}_{\mathrm{f}}=6.3 \mathrm{~V} . \mathrm{I}_{\mathrm{f}}=200 \mathrm{~mA}$
Noise output 25 mV . max. $\mathrm{E}_{\mathrm{b}}=275 \mathrm{~V}$. max.

CK6152

Low Mu Triode
$\mathrm{E}_{\mathrm{f}}=6.3 \mathrm{~V} . \mathrm{I}_{\mathrm{f}}=200 \mathrm{~mA}$
Noise output 25 mV . max.
$\mathrm{E}_{\mathrm{b}}=250 \mathrm{~V}$. max.

RAYTHEON MANUFAGTURING GOMPANY

RECEIVING TUBE DIVISION - NEWTON 58, MASSACHUSETTS

For Temperature Ranges rrom 500 r. to -85:

Varglas Silicone Electrical Insulating Tubing and Sleeving

 Lead Wire and Tying CordVARGLAS SILICONE is a sensational new electrical insulating sleeving and tubing developed by our laboratory and pilot plant during the last war. It is a product which combines Varglas and Silicone to bring revolutionary possibilities to electrical insulation.
VARGLAS SILICONE is efficient under a wide temperature range . . to $500^{\circ} \mathrm{F}$. or more in some applications, yet remains completely flexible at - $85^{\circ} \mathrm{F}$. It has excellent resistance to moisture; is flame resistant and self-extinguishing.

VARCLAS SILICONE, pioneered by VAFFLEX CORPORATION is the first and only Class H insulation with these features:

1. VARGLAS - Continuous filament Fiberglas - o moisture and fungus proof material which will not burn and is chemically inert - strong and flexible at high and low temperatures.
2. NORMALIZING - Removes binder and organic inclusions from the Fiberglas -improves electrical qualities and allows uniform impregnation.
3. SILICONE HIGH TEMPERATURE RESIN - Which has a natural affinity for the Fiberglas, renders it abrasion-resistant, flexible and non-fraying.

VARFLEX CORPORATION

 , manufacturers of electrical insulating tubing and sleeying, are insulation specialists. If you require special insulation, write us about your problems. We will gladly quote on your individual requirements or NEMA specifications. We have a complete line of sleeving and tubing, based on Fiberglas, cotton, and extruded plastics.
uniform sound wave over the entire audio spectrum. It smoothes out the high frequencies and gives them a mellowness unlike the multicellular horn that performs well at some frequencies but beams or distributes poorly at others. The new lens is not sensitive to frequency because the bandwidth is wider than the audio spectrum with which it is used.

Deposited Carbon Resistors

Phaostron Co., 151 Pasadena Ave., South Pasadena, Calif. The Carbohm, a deposited carbon resistor, is suitable for high-frequency applications, particularly where high resistance is needed, or power dissipations up to 2 w are required. The resistors are also applicable to electronic equipment that is subject to extremes of temperature. Carbohms come hermetically sealed in glass or in humidity-impervious casing. They are available with a threaded stud or tapped hole terminal, as well as the axial lead pictured.

Cavity Resonators

Motorola Inc., 4545 W. Augusta Blvd., Chicago 51, Ill., has developed a precision selector cavity resonator designed to eliminate radio and tv
interference caused by spurious and harmonic radiations of base station 2 -way radio transmitter equipment. The cavities, intended for the $30-48 \mathrm{mc}, 72-76 \mathrm{mc}, 122-132$ mc and $132-180 \mathrm{mc}$ communications band are temperature compensated for optimum performance over wide temperature ranges. Mechanical design and element dimensions are proportioned for optimum impedance match and a low vswr. Each unit has an input and output impedance of 50-72 ohms with a 250 watt maximum power rating.

ULF Oscillator

Krohn-Hite Instrument Co., 580 Massachusetts Ave., Cambridge, Mass., announces model 400-A ulf oscillator that simultaneotsly provides both sine and square-wave voltages at any frequency between 0.009 and $1,100 \mathrm{cps}$. An R-C bridge sine-wave oscillator circuit is employed with special circuitry to eliminate tuning and switching transients. Other features are low hum and distortion, excellent amplitude constancy over the entire frequency range, a single scale logarithmic dial with a vernier tuning control and low input power. It is especially useful for design and test of servomechanisms, geophysical and seismological instruments and feedback amplifiers. Dimensions are $12 \times 7 \times 8 \mathrm{in}$. and price is $\$ 350.00$.

Gain Set

The Daven Co., 191 Central Ave., Newark, N. J., has available the
type 12A transmission measuring or gain set, an a-c operated, rackmounted instrument designed for the measurement of voice transmission systems. Source output and receive input are 600 -ohm balanced circuits, provided with d-c blocking capacitors so that the equipment will not interfere with the normal operation of modern dial systems. The oscillator consists of a $1,000-$ cycle low distortion feedback type R-C oscillator, buffer and associated power amplifier. The output level is +10 to -35 db adjustable in $1-\mathrm{db}$ steps. The receive section consists of a high-gain, wide-range amplifier whose range is variable from +20 to -60 db , full scale meter reading, in steps of 10 db .

Step-Motor Counter

General Electric Co., Schenectady 5, N. Y., has developed a stepmotor impulse counter to provide 100-percent accuracy up to 60 counts per sec. Designed to cover counting ranges above those possible with electromechanical counters and below those in which scalers are normally required, the device has a counting range which makes it especially useful in highspeed production counting. The unit consists of a step motor with a resetting type register, and a power supply enclosed in a steel case. The step motor and register assembly are mounted on the power supply enclosure, which contains an electronic switch and a h-v supply capable of supplying the power requirements of a phototube preamplifier. Overall dimensions of the (Continued on page 226)

cusdifodises* For more than 12 years, Audiodiscs have consistently set the standards for the finest professional performance in instantaneous and master disc recording. Their flawless perfection, wide-range frequency response, extremely low surface noise at all diameters and complete freedom from humidity effects are just a few of the reasons why Audiodiscs are first choice with professional recordists from coast to coast. They know from long experience that they can depend on Audio for the consistent, uniform quality that is so essential in modern sound recording work.
cudiotape* Wherever professional-quality magnetic recordings are made, the trend is to Audiotape. That's because Audiotape is made by audio engineers for audio engineers - with the right combination of properties for finest performance in any tape recorder. Produced on Audio's highly specialized precision coating machines, Audiotape has achieved unequalled uniformity of output - plus maximum output with minimum distortion at practical bias range. What's more, it's less sensitive to bias changes, has no audible low-frequency modulation noise, and is guaranteed splice-free in both 1250 and 2500 ft . sizes, plastic base. In every respect, Audiotape meets the exacting standards of quality and performance which have characterized Audiodiscs for more than a decade.

audiot ${ }^{11}$ *

 vantages of finest cic recording to motion picture and TV applications. Available in 16 mm , $171 / 2 \mathrm{~mm}$ and 35 mm sizes.audiopoints ${ }^{*}$ are preci. sion matched recording and reproducing styli available in types and sizes to meet the precise requirements for every phase of disc recording work.

AUDIO DEVICES, Inc.

444 MADISON AVE., NEW YORK 22, N. Y.

Export Dept.: 13 East 40th St., New York 16, N. Y, Cables "ARLAB"
Audiodiscs are manufactured in the U.S.A. under
exclusive license from PYRAL. S. A.R.L., Paris

NEWS OF THE INDUSTRY

Edited by WILLIAM P. O'BRIEN

Low-Power CAA Omniranges Tested

The CAA is experimenting with two low-power omniranges-the TVOR and the LVOR. The former uses a 50 -w transmitter rather than the 200 -w transmitter of the standard VOR and operates without customary standby equipment. It is a relatively low-cost omnirange for terminal use where an instrument landing system is not economically justified. It will permit approaches to airports under the same minimum ceilings and low visibility conditions as low-frequency aids now used.

One TVOR has been installed at the Oklahoma City Airport and another is in the process of being tested at the National Airport in Washington. The one at Oklahoma has the antenna situated on a counterpoise 12 feet in diameter placed on top of the transmitter building. This building is 8 feet square; the standard VOR building is about 16 by 28 feet. The receiver in the aircraft is the same for the standard and the baby omni. A primary function of the standard VOR is to furnish enroute navigation aids; an auxiliary function is furnishing of approach guidance to the airport. The second function requires a special location. The baby omni
makes this second function its primary one. It can also be used as a gap filler in the enroute navigational system. The TVOR is now being tested for use in connection with departure procedures and radar vectoring.

The LVOR, the other low-power omnirange, has a $50-\mathrm{w}$ transmitter and also standby transmitting equipment. It is housed in the same type building as the standard VOR. One such facility is being installed at the airport in Toledo, Ohio.
Both baby omniranges are in the experimental stages, although LVOR is not so far advanced as TVOR. Whether or not it is advisable to go into a big LVOR program has not been decided. The CAA has no desire to become involved in complicated frequency allocations problems, and such a program might lead to this.

The components in TVOR and LVOR are substantially the same. All test facilities utilize a new type antenna that provides an improved cone over the station. This antenna can be used on all VOR's and other facilities. It narrows the cone from 90 deg to about 20 deg .

The cost of the TVOR runs about $\$ 35,000$, the LVOR about

Baby VOR (vhf omnirange) in experimental use at National Airport, Washington, D. C.rfor approach guidance. Monitor antenna is at left
$\$ 78,000$, and the VOR, $\$ 93,000$. This is the complete facility including structural cost, engineering equipment and installation. It does not, however, include distance measuring equipment. When available, DME will be installed at VOR and LVOR at an additional $\$ 22,000$ cost.

TV Freeze Study
 Group Named

A double-barreled study by members of the television industry to determine the effect on the national economy and the mobilization program of the lifting or continuing of the tv freeze on station construction was recently announced by the RTMA. Dr. W. R. G. Baker, chairman of the RTMA Television Committee, named a task force to study and report on the effect on materials and manpower if the freeze is lifted and the effect on the tv industry if construction of additional stations is not permitted.
Members of the task force are: William H. Chaffee of Philco Corp., chairman; Keeton Arnett of Allen B. DuMont Laboratories Inc.; Edwin D. Foster of RCA and C. W. Michaels of General Electric Co.

Reliability Group Set Up by RDB

A clearing house has been set up recently in the Research and Development Board of the Department of Defense to collect and disseminate information on reliability of electronic equipment.

This information, furnished to laboratories engaged in government work, is expected to result in mort reliable performance of electronic equipment with a minimum of maintenance.

For example, a contractor with security clearance, who is doing government business with laboratories, can receive the RDB information by requesting it from the Service with which he is dealing. Assume X is working on a guided missile contract and he is having trouble with reliability of his electronic equipment. He can go to the Service where he has his contract and request further technical information. The Service in turn will

TELEVISION LEAD-N WIRES

COMMUNICATION WIRES and CABLES

COAXIAL CABLE

INSTRUMENT WIRES

WIRES and CABLES TO SPECIFICATION

*Solid Colors or Spiral Marking

Our new catalog is a complete guide to plastic insulated wire and cable for every purpose. Write for a copy of this impor tant data compilation for your files today.

Everythingim wiving

More and more - engineers, designers, production men and purchasing officials have come to regard Plasticord and Plasticote Wires and Cables by Chester as the standard of comparison. This is because every inch of these dependable insulated conductors is made to conform to exacting quality controls that assure long service life, and performance as specified by the factory. That's the reason electrical men, everywhere, look for the Chester trademark when they're looking for the best!

CHESTER CABLE CORP
 C HEST ER, NE W YOOR K

get it from the new clearing house. The Research and Development Board does not distribute material directly to the contractor.
M. Barry Carlton of the RDB secretariat, and Albert F. Murray, radio and television consultant to RDB, have been named Coordinators of Reliability and will head the group. Members include representatives of the Munitions Board, the Office of the Joint Chiefs of Staff, the Army, Navy and Air Force as well as RDB.

According to RDB officials, improvement in reliability must include the following steps which lead eventually to use of equipment in the field: military characteristics, experimental models, specifications, manufacturing control procedures, service tests, final inspection, packaging and shipping, storage, installation, operational use and maintenance.

New Awards

John H. Nelson, radiowave analyst of RCA Communications, Inc., who last April disclosed evidence of direct relationship between magnetic storms on earth and the position of planes in the solar system, recently received the first merit award of the Foundation for the Study of Cycles. The award, in recognition of Nelson's "notable service in the radio propagation field," was presented by George Baekeland, chairman of the committee of the Foundation and vice-president of the Bakelite Corp.

Another first of its kind is the David Sarnoff Gold Medal Award, presented to Otto H. Schade of the RCA Tube Department, for outstanding technical achievements in the field of television and motion pictures. The medal was presented by the Society of Motion Picture and Television Engineers at a luncheon opening the society's 70th semiannual convention at the Hol-lywood-Roosevelt Hotel recently,

Engineer Training Program

A training program aimed at meeting ever-growing needs for engineers with experience in all phases

MEETINGS

Jan. 7-8: AIEE Conference on Electronic Instrumentation in Nucleonics and Medicine, Hotel Statler, New York, N. Y.

Jan. 21-25: AIEE Winter General Meeting, Hotel Statler, New York, N. Y.
MARCH 3-6: 1952 IRE National Convention, Waldorf-Astoria Hotel and Grand Central Palace, New York, N. Y.
March 31-April 4: Thirtieth Annual NARTB Convention, Stevens Hotel, Chicago, Ill.
May 16-17: Fourth Southwestern IRE Conference and Ra-
dio Engineering Show, Rice Hotel, Houston, Texas.
June 23-27: AIEE Summer General Meeting, Hotel Nicollet, Minneapolis, Minn.

Aug. 27-29: Eighth Annual Pacific Electronic Exhibit, Municipal Auditorium, Long Beach, Calif.
Sept. 8-12: National Instrument Conference and Exhibit, Hotel Cleveland, Cleveland, Ohio.
Oct. 27-29: 1952 Radio Fall Meeting, sponsored by IRE and RTMA, Hotel Syracuse, Syracuse, N. Y.
of electronic tube manufacturing is under way at major plants of the General Electric Company's Tube Department. The two-part program is meant to provide, first, a pool of engineers with a broad knowledge of tube manufacturing from which the department can draw men for engineering and supervisory positions, and second, a group of creative engineers who can help GE push forward with a program of mechanization of tube production.

Fifteen young engineers have already been picked for rotating assignments in GE tube plants in Schenectady, Syracuse and Buffalo, N. Y., and Owensboro, Ky. Trainees will be selected primarily from graduates of GE's test engineering program and from the ranks of engineering school graduates who are recommended for their special maturity and ability. All will start with a short indoctrination period in factory engineering, followed by about six months of actual shop experience.

Upon completion of the course those selected for general supervisory training will then be given assignments as functional working leaders and foremen in several fields for from one to two years.

Trainees picked as equipment development specialists will receive further assignments in tool design, methods-planning and specific equipment projects, working with the Electronics Division's Equip-
ment Development Works in Schenectady, N. Y.

Electronic Flight
 Simulator Announced

Future F-86D Sabre jet pilots will "shoot down" their first enemy planes without actually seeing the enemy or even leaving the ground. It's all a matter of electronics in the latest device for pre-combat training of Air Force fighter pilots.

This latest step in pilot training was revealed with successful completion of tests of the F-86D Sabre flight simulator at the Engineering and Research Corp., Riverdale, Maryland, plant, where the new earthbound trainer was designed and built under contract from North American Aviation, Inc., designer and manufacturer of the swept-wing Sabres.

Named the Sabre Flightronic by ERCO, it is the first fighter allweather simulator delivered to the Air Force. Its delivery also marks the first time that a simulator has been put into training use concurrently with the beginning of quantity production of a new plane.

The new simulator, a $35,000-$ pound package of metal, wiring, electronic tubes, radar scopes and servomechanisms, is also the first to combine the simulation of two planes-the one being flown and
(Continued on page 286)

For Engineers... YOUR CAREER OPPORTUNITY of A LIFETME...at RCA-NOW!

I.F you are facing a big question: "What is the best move I can make to further my career?"we believe you will find the answer on this page.

Today, as never before, RCA is engaged in far-reaching electronic developments that have created a need for career men of talent. This means you have the chance of a lifetime to make a permanent connection with RCA in a position offering you the opportunity of a successful career in the field of your choice. Here is what RCA offers.

Wide Choice of Projects

Unusual opportunities await qualified electronic, electrical and MECHANICAL ENGINEERS . . . PHYSICISTS . . . METALLLURGISTS . . . PHYSICAL CHEMISTS. . . GLASS TECHNOL-oGISTS-in research, development,
design and application, also in technical sales. Qualified engineers have the opportunity to choose the area of activity they like best.

POSITIONS OPEN
IN THE FOLLOWING FIELDS:
TELEVISION DEVELOPMENT-
Receivers, Transmitters and Studio Equipment
ELECTRON TUBE DEVELOPMENTReceiving, Transmitting, Cathode-Ray, Phototubes and Magnetrons TRANSFORMER and COIL DESIGN COMMUNICATIONS-

Microwave, Mobile Aviation, Specialized Military Systems

RADAR-

Circuitry, Antenna Design, Computer, Servo-Systems, Information Display Systems
COMPUTER DEVELOPMENT and DESIGN Digital and Analog Computers, Magnetic Recording, Pulse Circuitry, Storage Components, Systems Design
NAVIGATIONAL AIDS
TECHNICAL SALES
ELECTRONIC EQUIPMENT FIELD SERVICE

If you qualify for any of the positions listed above, write us for a personal interview-include a complete resumé of your education and experience. Write to:
Mr. Robert E. McQuiston, Specialized Employment Division, Dept. 46A. Radio Corporation of America, 30 Rockefeller Plaza, New York 20, N. Y.

Good Living Conditions. You have a choice of residential locations offering suburban-convenience or quiet, countryside living. Good shopping facilities, schools, churches, medical services and modern hospitals are close by. Excellent opportunities for graduate study.

Position Security. These are not temporary positions. Activities are focused not only on the long-range national derense program, but also on a diversified line of products tor commercial use. You and your tamily are protected by Company-paid hospital, surgical, accident, sickness, and life insurance. A modern retirement program helps provide ror your ruture.

Professional status. RCA engineers enjoy the highest professional recognition among their colleagues. You work in close collaboration with scientists and engineers who are distinguished in the industry. You receive recognition for your accomplishments.

Laboratory Facilities. At RCA, unexcelled laboratory resources and advanced technical apparatus are available. You have unlimited papportunities for the complete expression of your talents in the fields of electronics.

Rapid Advancement. Opportunities at RCA are exceptional, tor you to move ahead in the career of zour choice. You can advance to high-level and supervisory positions which are filled trom RCA's engineering staft. Salaries, determined on the experience and ability of individual applicants, are reviewed at reg ular intervals tor increases on a merit basis.

RADIO CORPORATION OF AMERICA

Guthman coil quality

comfolled from

 ra'w materials to finished comporments!
NEW BOOKS

Time Bases

By O. S. Puckle. John Wiley \& Sons, Inc., New York, 1951, Second Edition, 387 pages, $\$ 5.00$.
IN ESSENCE this book is the same as the first edition with an attempt to bring to light the newer developments in time bases and some of their more diversified uses such as counting and frequency division. To this end a wealth of material has been added, including a new chapter on Miller time bases and a considerable enlargement on linearization of the trace and push-pull deflection.

Many sundry circuits and tabulations that cannot be conveniently worked into the main body of the book make up the appendices. Among the most useful information

RELEASED THIS MONTH

An Introduction to Acoustics; R. H. Randall: Addison-Wesley Press; $\$ 6.00$.

Basic Electrotechnics; B. L. Goodlet: Longmans, Green and Co.; \$4.00.

Broadcast Operator's Handbook; H. E. Ennes; John F. Rider Publisher: 2nd edition: $\$ 5.40$

Materials Technology for Electron Tubes; W. H. Kohl; Reinhold: $\$ 10.00$.
is a technique outlined under "Aids to Rapid Determination of the Shaping Effects of a Network" in which it is shown that almost all useful waveforms can be broken down into a series of step functions of either amplitude or velocity.

This book was well thought out and equally well edited with a minimum of errors, the most outstanding being the loose use of the words "blocking oscillator" which seems to be used wherever a transformer is used as an integral part of a time base generator.

In dealing with the actual production of time bases, the book is quite complete from the earliest neon time base down to more modern Miller capacitance time bases with their many embodiments. With
(Continued on page 302)

BIRTCHER TUBE CLAMPS

Hold Tubes in Sockets under all Vibration, Impact and Climatic Conditions

You can't shake, pull or rotate a tube out of place when it's secured by a Birtcher Tube Clamp. The tube is there to stay. Made of Stainless Steel, the Birtcher Tube Clamp is impervious to wear and weather

BIRTCHER TUBE CLAMPS can be used in the most confined spaces of any compact electronic device. Added stray capacity is kept at a minimum. Weight of tube clamp is negligible.

Millions of Birtcher Tube Clamps are in use in all parts of the world. They're recommended for all types of tubes: glass or metal-chassis or sub-chassis mounted.

THERE'S A BIRTCHER TUBE CLAMP FOR EVERY STANDARD AND miniature tube!

Write for samples, catalogue and price lists.

THE BIRTCHER CORPORATION
 4371 Valley Blvd.
 Los Angeles 32, Cailif.

edwin i. guthman \& co., inc. I5 s. throop st. chicago 7. . CH 3-1600

New rider

for a fast, familiar track

SINCE 1945, DPi has been supplying manufacturers of television picture tubes with inline exhaust systems. Even with the largest tubes this fast-production race track has been giving the high vacuum that means sharperfocus beams, longer, more reliable life.

For the first time, DPi offers to makers of large power tubes, high-frequency oscillators, and x-ray tubes this system converted to their use. With the same trouble-free efficiency, capable of producing ultimate vacuums below $1 \times 10^{-6} \mathrm{~mm}$ Hg , and affording the same fast production pace, it will evacuate your tubes on
a continuous instead of a batch basis. And the system is adaptable to running a variety of tubes at once.

If you already have a DPi inline sysrem and would like to consider conversion, or are interested in a new system, talk it over with our engineers. We're ready to help you meet your problem, whether it involves a single unit or the design of a complete exhaust system for a tube factory. Just write Distillation Products Industries, Vacuum Equipment Department, 727 Ridge Road West, Rochester 3, N. Y. (Division of Eastman Kodak Company).

[^7]
Backtalk

This department is operated as an open forum where our readers may discuss problems of the electronics industry or comment upon articles which ELECTRONICS has published.

More Information

Dear Sirs:
Having noted the unfortunate experience of the Mount Wilson and Palomar Observatories as described by Mr. William A. Baum in "Backtalk" (October, 1951, p 154), I would like to point out that some steps have already been taken to provide more complete information on electronic parts to designers of equipment.

For the past several months, a program has been sponsored by the Navy Bureau of Ships at Southwest Research Institute to produce a parts index which will contain detailed design and performance features of miniature electronic parts. The Bureau and the Institute recognized that this publication will expedite the choice of suitable parts, thereby reducing the amount of valuable engineering time now wasted in this phase of equipment design.

The aim is to produce an index which is as useful as tube handbooks are presently-with all data shown in standard forms, frequent revisions as necessary, and eventually complete information on capacitors, resistors, small motors, transformers, batteries, etc. The original scope of the program was outlined in a microfilm catalog of miniature parts prepared by the Bureau.

The index is also intended to serve as a guide in the establishment of procurement specifications or the extension of existing ones, since it will indicate actually achievable performance. The program can be most successful if continued cooperation is received from

[^8]
2 KW VACUUM TUBE BOMBARDER OR INDUCTION HEATING UNIT

For Only $\$ 650$.

Never before a value like this new 2-KW bench model "Bombarder" or high frequency induction heater . . . for saving time and maney in surface hardening, brazing, soldering, annealing and many other heat treating operations.

Simple . . . Easy to Operate . . .
Economical Standardization of Unit Makes This New Low Price Possible.
This compact induction heater saves space, yet performs with high efficiency Operates from 220 -volt line. Complete with foot switch and one heoting coil made to customer's requirements. Send samples of work wanted. We will advise time cycle required for your particular job. Cost, complete, only $\$ 650$. Immediate delivery from stock.
Scientific Electric Electronic Heaters are made in the following ranges of Power: 1-2-31/2-5-71/2-10-121/2-15-18-25-40-60. 80-100-250KW.

Division of
" S " corrugated quenched gap co.
107 Monroe St., Garfield, N. J.

Look at this large, laminated plastic part. It is 19" long with two concentric diameters of $131 / 2^{\prime \prime}$ and $91 / 2^{\prime \prime}$ connected by a flat ring. Think of the cost of molds for making such a piece-and then consider the fact that only a few such parts are required. The cost would be prohibitive.

It is on problems like this that Continental-Diamond's knowledge of plastics and their fabrication pays off for you. C-D engineers took two Dilecto tubes of the required diameters and wall thicknesses and then cut a ring from a sheet of Dilecto to just fit the O.D. of the smaller tube and the I.D. of the larger.

These three parts were then literally "welded" together into a strong, low cost part. The material used to do the "welding" is one of the compounds developed by C-D in their vast experience of fabricating parts of Fibre, Vulcoid, Celoron, Micabond, Dilecto and combinations of all of them.

If you have a problem-or a standard application for plastics, it will pay you to check with your nearest C-D office.

DE-5-51
BRANCH OFFICES: NEW YORK 17 • CLEVELAND 14 • CHICAGO 11 • SPARTANBURG, S. C. - SALES OFFICES IN PRINCIPAL CITIES WEST COAST REPRESENTATIVE: MARWOOD LTD., SAN FRANCISCO 3 - IN CANADA: DIAMOND STATE FIBRE CO. OF CANADA, LTD., TORCNTO 8
Sontincontal = Drimiinund F I B R E C O M P A N Y

Designed for Application

Mu Metal Shields

The James Millen Mfg. Co. Inc. has for many years specialized in the production of magnetic metal cathode ray tube shields for the entire electronics industry, supplying magnetic metal shields to manufacturing companies, laboratories and research organizations. Stock shields are immediately available for all of the more popular sizes and types of cathode ray tubes as well as bezels for $2^{\prime \prime}, 3^{\prime \prime}$ and $5^{\prime \prime}$ size tubes.

Many production problems, however, make desirable special shields designed in conjunction with the specialized requirement of the basic apparatus. Herewith, are illustrated a number of such custom built shields. Our custom design and fabrication department is at the service of our customers for the development and manufacture of magnetic metal shields of either nicoloi or mumetal for such specialized applications.

JAMES MILLEN $\left\{\frac{\pi n}{M}\right\}$ MFG. CO., INC. mali ofice $\frac{1}{2}$
 MALDEN, MASSACHUSETTS, U.S.A.

New CBS-HYTRON 12B4

New 9-pin miniature; high-perveance, low-mu triode with $6 / 12$-voit heater for parallel or series connection. 12B4 is designed specifically for vertical amplifers with limited primary B supply voltages. Delivers adequate vertical sweep power in proper circuit to sweep any 70° rectangular picture tube. Characteristics of 12B4 are simila to those of 6 W 6 GT , but 12B4 .. for same input .. supplies substantially more sweep power. 12B4, because of special design and processing, is also virtually free from grid emission

New CBS-HYTRON 12BY7

New 9-pin miniature; very-hightransconductance pentode amplifier. As video amplifier in highquality receivers, gives extended gray scale. In low-cost receivers, 12BY7 provides adequate voltage amplification for wide-band video amplifiers with primary B voltages as low as 135 volts.
Within its power capabilities, 12BY7 gives gains equal to those of 6AG7. High ratio of transconductance to interelectrode capacitances makes 12BY7 useful as video i-f or pulse amplifier for radar. High grid-to-screen transconductance suits 12BY7 (within
 its power handling capabilities) for class C harmonic oscillators.

Which of these CBS-HYTRON ORIGINALS

 can you use?

New CBS-HYTRON 5Y3WGT

New "ruggedized," fullwave filamentary -type rectifier with electrical rectifier with electrical characteristics equivalent to those of 5Y3GT ...but 5Y3WGT is specially designed for equipment subject to high impact and shock.

New CBS - HYTRON $12 A 4$
New high-perveance, medium-mu, 9 -pin miniature triode for use as vertical amplifier, class vertical amplifier, class distortion audio output distortion audio output
amplifier in push pull.

Write for Complete Data Today

HYTRON RADIO \& ELECTRONICS CO.
Salem, Massachusetts
Please rush me full specifications for the new CBS-Hytron types I have checked:

(please print)
Street
City and State

New CBS - HYTRON

 12BZ7New high-mu, 9-pin miniature dual triode for high-gain audio for high-gain audio amplifiers, gating circuits, synch sepa

QUALITY OSCILLATOR

518

Model M-2 Oscillator Is Your Answer

The unique SIE oscillator circuis which has no lower limit to its possible frequency of oscillation is responsible for the excellent low frequency performance of the Model M-2 and other SIE oscillators.

SPECIFICATIONS

Range: 1 cps to $120,000 \mathrm{cps}$
Calibration: within $11 / 2 \%$ plus $1 / 10$ cycle
Output circuits: 20 volts or 20 millamps and 1 volt at 300 ohms constant impedance
Amplitude stability: Plus or minus $1 / 2 \mathrm{db}$ UNDESIRED VOLTAGES
Power Supply Noise: Less than 1/100\% of output signal
Power Line Surge: Less than $1 / 10 \%$ of output signal
Harmonic Distortion: Less than 2/10\% from 20 cps to $15,000 \mathrm{cps}$. Less than 1% at all other frequencies
Microphonic Noise: Less than 1/100\% of output signal

SOUTHWESTERN INDUSTRIAL ELECTRONICS GO.

2831 POST OAK ROAD
HOUSTON 19, TEXAS

Every pound of idle non-ierrous metal you have is needed to help the non-ferrous smelting and refining industry keep production up to rising demand.

You know that smelters exist by buying scrap metal, refining it scientifically and selling it to you as a raw material fit to fabricate almost any non-terrous product.
Unfortunately, non-ferrous scrap inventories are alarmingly low. Smelters that normally maintain inventories of several months are now down to a day-to-day basis. Shutdowns are threatened.

One way we can maintain desired levels of both military and civilian production is for you to survey your plant and turn in your non-ferrous scrap now.

You do have the scrap. It's everywhere, not just in the form of production scrap, but also in the form of idle metal: obsolete machines and tools, idle electrical equipment, no-longer-usable automobile radiators, gears, pulleys, valves, pipe, fittings, pump parts, old bushings and bearings... in fact anything made of copper, brass, aluminum, magnesium, lead, zinc, tin, and their alloys. We must have this ille metal to keep the furnaces running.

To help yourself get the metals you need, talk to your dealer or other regular outlet about prompt disposition of your scrap.

Fedenated Metals Division

AMERICAN SMELTING AND REFINING COMPANY - 120 BROADWAY, NEW YORK 5, N. Y.

(A) B-4 Booster Pump. Takes over at forepressures up to 1 mm . Handles large amounts of gas in range from $1-30$ microns. Ideal for roughing or backing manifolds to speed up exhaust cycles or as prime pump on aluminizing equipment or wherever high speeds are required.
(B) Alphatron* Leak Detector and Control Unit for Gas Filling. The latest high speed rotary exhaust equipment demands split second vacuum control. The Alphatron Controller responds to pressure changes in about two tenths of a second. It is used to close off leaky tubes on a station with only a two second cycle. Instantaneous, accurate pressure response makes it a natural for gas filling where accuracy of fill pressure is important or where valuable gases are used.
(C) Gas Free High Purity Metals. Copper, nickel, cobalt, and iron. Special melts on request. Ingot weights up to 600 pounds.
(D) Alphatron* Vacuum Gauge. Instantaneous response with accurate gauging from 1 micron to 10 mm . A rugged metal ionization type gauge for industrial usage. Can be adapted for recording and controlling.
(E) B-1 Booster Pump. Specially designed for rotary exhaust units in miniature and subminiature tube production.
(F) Type 710 Thermocouple-lonization Gauge Control. One control with two thermocouple gauges (1 - 1000 mi crons) and one ionization gauge (10^{-3} mm . to $10^{-8} \mathrm{~mm} . \mathrm{Hg}$ range). Automatic input regulation and protective circuit.
(G) Type 701 Thermocouple Gauge Control. A light, portable instrument for vacuum testing in range $1-1000 \mathrm{mi}$ crons - compact and rugged.
(H) H-4-P Purifying Diffusion Pump. Similar to $\mathrm{H}-2-\mathrm{P}$ but with speeds of over 300 liters/sec from 10^{-3} to $10^{-5} \mathrm{~mm} . \mathrm{Hg}$ range.
(I) H-2-P Purifying Diffusion Pump. Over 50 liters $/ \mathrm{sec}$ in $10^{-3} \mathrm{~mm}$. to $10^{-6} \mathrm{~mm}$. range. Operates against forepressures as high as 0.300 mm . Blank-off 2×10^{-7} mm. Hg. For exhausting cathode ray tubes and magnetrons, and aluminizing operations on automatic equipment.
(J) Vacuum Seals. For introducing motion, power, gases, or connecting gauges.
(K) Standard Vacuum Furnace. A versatile packaged unit for many metallurgical operations under high vacuum or inert atmospheres. Temperatures to $2000^{\circ} \mathrm{C}$. Useful for degassing tube parts, production of germanium crystals, research and production of improved metals for tube parts, as well as general high vacuum metallurgical research work.

(L) Narcoil Diffusion Pump Fluids. Three different oils fulfilling industrial and scientific workers' requirements.

- Tube Dollies. Special NRC manifolds, dollies, and vacuum systems designed and built for electronic industry to increase production and lower costs.

with a COMPLETE LINE of
 HIGH VACUUM EQUIPMENT for the ELECTRONIC INDUSTRY

You may be using one or two of our products without realizing that at this one source you have available such a full line of high vacuum equipment.

You will find a unique quality in most of these products. They were created to "ideal" specifications drawn up by manufacturers who, in many cases, never dreamed we could fulfill their exacting requirements. The products are meeting these requirements day after day on production lines.

Let us supply all your high vacuum equip. ment needs. You will gain the benefits of a single source of supply plus the high standards of performance designed into National Research products. Write us for further details. National Research Corporation, Memorial Drive, Cambridge, Mass.

[^9]

Each crystal is enclosed in a cylindrical oven which holds the crystal temperature to within $1 / 100$ of a degree.

At the A. T. \& T. building at 195 Broadway, New York, passersby set watches by the world's most accurate public clock, which is controlled by the master standard.

4 Front of the new frequency-time standard at Bell Telephone Laboratories. In the rear there are 600 electron tubes and 25,000 soldered connections. Room temperature is maintained within two degrees.

The controlling quartz crystal vibrates in vacuum at 100,000 cycles per second. The standard is powered by storage batteries, with steam turbo-generator standing by, just in case of emergency.

A vibrating crystal keeps master time

Ever since Galileo watched a lamp swinging in the Cathedral of Pisa three centuries ago, steady vibration has provided the practical measure of time. In the $1920 s$ Bell Laboratories physicists proved that the quartz crystal oscillators they had developed to control electrical vibration frequency in your telephone system could pace out time more accurately than ever before.

The Laboratories' latest master standard keeps an electric current vibrating at a frequency that varies only one part in a billion, keeping time to one tenthousandth second a day.

Through secondary standards, a master oscillator governs the carrier
frequencies of the Bell System's ship-to-shore, overseas and mobile radiotelephone services, the coaxial and Radio-Reluy systems which transmit hundreds of simultaneous conversations, or television. In the northeastern states, it keeps electric clocks on time through check signals supplied to electric light and power companies.

The new standard also provides an independent reference for time measurements made by the U. S. Naval Observatory and the National Bureau of Standards. Thus, world science benefits from a Laboratories development originally aimed at producing more and better telephone service.

BELL TELEPHONE LABORATORIES

FIG. 3-Power output and efficiency versus beam voltage
cavity along the beam, to increase the gain of the tube greatly. Other tube developments indicate that it should be possible to obtain 7.5 kw output with 3 to 5 watts drive power. Klystron frequency multipliers and a pulse amplifier are available for driving the SAX-22 at the 300 -watt-drive power level.

Submerged Repeaters for Telegraph Cables

A new repeater, designed for transoceanic cable use, has been designed by the Western Union Telegraph Company. The first permanent installation was made recently in the 1 HM-BR cable, extending from Hammel, Rockaway Beach, New York, to Bay Roberts, Newfoundland. This repeater is located more than 100 nautical miles from Hammel in a depth of about 250 fathoms. Before installation of the repeater, the cable operated at a maximum speed of 83 wpm . It

Two views of the repeater switch. The switch is sealed in a steel cylinder

A CHALLENGE TO YOU

Convair awarded U. S. Air Force contract to develop the airframe for the first Nuclear-powered airplane. Opportunities available in:

NUCLEAR PHYSICS	AERODYNAMICS	SERVO MECHANISMS
THERMODYNAMICS	ELECTRONICS	APPLIED MECHANICS
ANALYICAL and	DYNAMICS	WEIGHTS CONTROL
PHYSICAL CHEMISTRY	AEROPHYSICS	ELECTRICAL, MECHANICAL
EQUIPMENT DESIGN	STRUCTURES	and STRUCTURAL TESTING

-structural alrframe design and drafting-

EXCELLENT WORKING CONDITIONS

Travel and moving allowance for those who qualify-group insurance including hospitalization for employees and fam-ilies-retirement plan-recreational activities for employees and families-modern air-conditioned plant-opportunity for "in plant" graduate and undergraduate study-desirable work schedule.

GOOD LIVING IN FORT WORTH

A city for family life-50 parks-lakes-excellent schools-big time baseball, football, basketball, golf, rodeo-ice arenaopera and concertsgood year round climate —no smoke-Western Hospitality.

TYPE 2001-2, BASIC UNIT
Frequencies 200 to 2500 cycles. Dividers and Multipliers available for lower and higher frequencies. Miniaturized and JAN construction. Output, 6 volts.

TYPE 2005, UTILITY UNIT
Consists of Type 2001-2 and booster to provide 10 watts at 110 V at precision frequencies from 50 to 500 cycles at input power frequencies of 50 to 500 cycles, 45 watts.

TYPE 2121-A, LAB. STANDARD
Outputs, 60 cycle, $0-110$ Volts, 10 Watts; 120-240 cycle impulses. Input, 50-400 cycles, 45 Watts.

THE basis of these frequency standards is an electronic fork which is temperature-compensated and hermetically sealed against humidity and barometric pressure.

Type 2001-2 and similar units are available independently. Complete instruments of our manufacture are used extensively by industry and the armed forces where unvarying, dependable high precision is required, such as for bombsights and fire control.

WHATEVER YOUR FREQUENCY PRORLEMS, DUR ENGINEERS ARE READY TO COOPERATE. PLEASE REQUEST DETAILS IBY TYPE NUMEER.

TYPE 2111, POWER UNIT 50 Watt output. 0.110-220V at 60 cycles, or any frequency 50 to 1000 cycles. Input, $50-100$ cycles, 275 watts.

WIDELY USEID

 IN SUCH FIELIDS AS:Aviation Astronomy Ballistics
High-Speed Photography
Viscosity Measurement Nuclear Physics Telemetering Radiation Counting Fluid Flow Chemical Reaction Navigation School Laboratories Industrial Research Labs. Accurate Speed Control

General Electric can show you how to make wider use of JAN-C-25 capacitors

From years of experience in manufacturing paper-dielectric capacitors, General Electric can show you how to make wider use of your JAN capacitors.

These capacitors are used in thousands of applications -primarily d-c at rated voltages and temperatures. However, most JAN units can be operated at other voltages and under widely varying conditions.

For example, actual life tests have shown that a General Electric 1 muf. CP 70 unit rated for a minimum life of 10,000 hours at 1000 v . d-c and 40 C or 700 v . d -c and 85 C , can also be used at:

Higher voltages- 1380 v . d-c at 85 C for 500 hours. 1300 v . d-c at 85 C for 1000 hours.
Higher lemperatures-105 at 525 v . d-c for 500 hours. AC voltages - 440 volts, 60 or 400 cycles with normal JAN-C-25 derating.
General Electric has similar data for most of its JAN units, showing how each may be operated under a variety of conditions. For information on how these standard G-E capacitors may be applied in your circuits, consult your Apparatus Sales Office, or write to Specialty Capacitor Sales, General Electric Company, Hudson Falls, N. Y.

MEET EL GATO

El Gato is a wildcat. He has even more than
nine lives. So do LEWIS and
KAUFMAN electron tubes.

That's why the LOS GATOS brand and the cat identify long-lived transmitter, rectifier, and power tubes for JAN-1A and industrial uses.
When you buy electron tubes, look for this brand.

is expected now that a speed of 250 wpm will be obtained.

The repeater is made up of a 3stage push-pull R-C coupled amplifier with input and output transformers. Preceding the transformer is a simple tuned signal-shaping network. All stages use Western Electric type $310-\mathrm{A}$ tubes. Two tubes are connected in parallel and operated as triodes in each side of the output stages. Theoretical output undistorted is 0.25 watt. The output transformer circuit reduces the net output to a little less than 0.25 watt.

Lowering the repeater chassis into its case

Included in the repeater is a switch used to disconnect the repeater and join the cable through for operation without repeater or for cable testing purposes and to disconnect the regular amplifier in the event of failure and connect the spare amplifier. Two complete amplifiers are included in the repeater.

It is planned to install repeaters in depths of 200 to 1,200 fathoms or more or at hydrostatic pressures up to $3,000 \mathrm{psi}$. To withstand the large pressures, the repeater is filled with oil and a pressure equalizer automatically adjusts the internal pressure to the external pressure within a few psi. The most important element of the equalizer is a flexible, corrosion-resistant metal

$C D$ elapestite leader IN A.C. MOTOR CAPACTTORS!

Year after year, more motor manufacturers use more
Cornell-Dubilier A.C. motor capacitors than any other. The reason: a great record of trouble-free service in the freld! Filled with C-D's world-famous Dykanol, and
conservatively rated for extra dependability. Dept. K-12, Cornell-Dubilier Electric Corp., South Plainfield, N. J.
. SUB= MINIATURE TUBE SOCKETS

- LOW LOSS FACTOR OF .015 al 1 MC.
- INSULATION RESISTANCE (min.) 50,000 Megohms
- ARC RESISTANCE, ASTM SECS. 250+
- OPERATING TEMPERATURE $135^{\circ} \mathrm{C}$ llimitation due to contact metal)
- Q-value at $40^{\circ} \mathrm{C}-50 \%$ RH-not less than 1000
- Q-value at $40^{\circ} \mathrm{C}-90 \%$ RH min.not less than 333

WRITE FOR DATA SHEETS

Mycalex 8-Pin Sub-Miniature Tube Sockets are fully described in the new Data Sheets. Other catalogs are available on Mycalex insulation for every electronic or electrical application.

Mycalex Corporation of America

Owners of 'MYCALEX' Pafents and Trade-Marks Executive Offices: $\mathbf{3 0}$ ROCKEFELLER PLAZA, NEW YORK 20 - Plant \& General Offices: CLIFTON, N.J.

SPECIFICATIONS • MODEL 207

Sealed-in-glass
Arc quenching atmosphere
Precision timing - Final adjustment made after sealing by patented feature Neight: $1 / 2$ oz. (approx.) Diameter: $3 /{ }^{\prime \prime \prime}$ (approx.)
Height: 21/4" maximum (seated)

Standard Heater Voltagas: $115 \mathrm{v}, 27.5 \mathrm{v}, 6.3 \mathrm{v}$
Contact Ratings: 2.5 amps @ 125 vac. $1.0 \mathrm{mp} @ 125 \mathrm{v}$ dc.
Ambient Compensation: -60 to $+85^{\circ} \mathrm{C}$
Nominal Heater Input: 2 watts

Mounting: Miniature Button 7-pin
Range of Delay Periods: 5 secs. to 120 secs.

OTHER INSTRUMENT DIVISION PRODUCTS
Sealed Thermostats
Sensitive Relays
Temperature Monitors
Electrical Resistance Bulbs
a NEW Miniature by EDISON

Edison announces its new Model 207 Miniature Thermal Relay - designed to meet the need for a space-saving time-delay relay.

Into the design and development of this sealed-in-glass miniature, EdISON has applied the experience of over 20 years in the thermal engineering field and has built into it many of the quality features of the widely-used Edison Model 501 Thermal Relay. In numerous applications the two relays have similar operating characteristics.

Pilot production started in December 1951. For free bulletin, just clip coupon and mail.

I N C ORPORATED Instrument Division - West Orange, N. J.

To: Instrument Division, Thomas A. Edison, Inc. 63 Lakeside Avenue, West Orange, New Jersey

We may have an application for your Miniature Thermal Relay to

Please send E2 bulletin to:
Name and title
Company
Address.

DO YOU MAKE

FE A路 I 5

If so, you'll be well repaid by getting the facts on a special group of Pure Ferric Oxides, developed by Williams and manufactured especially for this purpose.

Williams Ferric Oxides analyze better than $99 \% \mathrm{Fe}_{2} \mathrm{O}_{3}$. They contain a minimum of impurities. They are available in a broad range of particle sizes and shapes. Among them, we're certain you'll find one that's "just right" for your requirements. The proper application of Ferric Oxides to the manufacture of Ferrites is our specialty. So write today, stating your requirements. We'Il gladly send samples for test. Chances are good that our Ferric Oxide "Know How" can save you considerable time and money. Address Department 25, C. K. Williams \& Co., Easton, Pennsylvania.

C. K. WILLIAMS \& CO.

Easton, Pa. - East St. Louis, III. Emeryville, Cal.

SLANT your REQUIREMENTS TO [f] FOR MINIATURE silf Ill

This ICA plant-brand new inside and out -contains the most modern and complete facilities available any where in the world for the exclusive production of Miniature Slip-Ring and Commutator Assemblies to precision standards. It is now in full scale production to meet your requirements in the fastest possible time at the lowest possible cost.

ICA Assemblies are produced under exclusive license by Electro Tec Corporation. They are manufactured by molding plastic blanks around the wire leads, then machining these blanks to the exact size and shape required, after which hard silver rings are electro-plated into the machined grooves. Final machining produces a one-piece assembly of extreme accuracy and free from the accumulated errors common in fabricated assemblies.
Before placing an order for assemblies of any other type, check with ICA on price and quality. Our new facilities offer exceptional advantages which should not be overlooked. Our engineering staff is at your service at all times for consultation.

you specify the properties...in Lamicoid ${ }^{\circledR}$

High Dielectric Strength Low Power Factor Heat Resistance
Low Moisture Absorption
High Impact Resistance
Dimensional Stability
Light Weight
Tensile Strength
Resistance to Abrasion

Essential characteristics are "built-into" Lamicoid to meet the needs of your application-mechanical, structural and/or insulating. Because Lamicoid-a thermosetting plastic laminate - is made with fillers such as glass, nylon, fabric, paper, etc. with a variety of resins, many combinations of properties are possible.

Lamicoid is used for tube socket supports, coil forms, dials, name-plates, panels, antenna parts and many other applications. For example, in combination with synthetic rubber it is used for end seals of electrolytic capac-
itors to keep out moisture and provide a non-corrosive scal.

Take advantage of Lamicoid's versatility to give your product peak efficiency. Lamicoid can be supplied in standard sheets, rods and tubes or fabricated into parts to your specification. We will be glad to apply the knowledge gained through 58 years of experience in developing and producing electrical insulating materials to your problem. Send your blueprint and specification today for a prompt quotation.

saves work-and cost of hooking them up

It used to take 25 conventional resistors, $113 / 4 \times 1 \frac{1}{8} \mathrm{in}$., spaced on $21 / 2 \mathrm{in}$. centers, to keep the power company happy.

Ward Leonard worked out the problem with a single Edgeohm resistor, 19 in. long - saving all that space, weight, mounting and wiring.
Here's the application: a $40 \cdot \mathrm{kw}$ radio transmitter, operating from a 50 kva transformer, made by a large transmitter manufacturer. Problem: limiting inrush current to avoid a severe voltage drop (objected to by the power company) and a strain on the line contactor.

This single Edgeohm unit is rated for continuous duty at 2200 watts, and when used for a 15 -second interval, will dissipate 6400 watts!

Another example of Ward Leonard "Result Engineer. ing', providing the desired result at a saving! ward leonard electric co., 31 South Street, Mount Vernon, N. Y. Offices in principal cities of U. S. and Canada.

WARD LEONARD ELEGTRIC GOMPANY
 R cunc- E mymuad Contal Since 188 P KESISIORS - RHIOSIAIS - RGLAYS - CONIROL DFVICPS

FIG. 1-Direction-sensing mechanism of experimental model
turn to the course, after once being thrown off it, can be realized only through the use of some form of servo-system. A continuous-type control, as is applied in larger automatic steering systems, might conceivably be utilized in the outboard motorboat, but an on-off or relaytype control has the advantage of simplicity and low power consumption. This paper deals with such a relay-type automatic steering system.

To describe the action of the control, a cycle of operations is followed through. Assume that the boat is exactly on its course and that the rudder is in one of its two stable positions wherein it is steering the boat gradually to the right. After the boat has turned a few degrees to the right, the rudder is changed into its other stable position, that of steering gradually to the left. Then, when the boat has turned through the course line, and a few degrees to the left, the rudder is returned to the first-mentioned position. Again the boat moves back toward the course line and the process repeats itself. Thus, the boat follows a slightly zig-zagging path around the true course set for it. On first thought, this sort of control would seem rather impractical but the system was thoroughly tested and found to operate very well.

The apparatus comprising the system may be divided into two general sections: the electronic portion and the mechanical portion. The electronic portion consists of the direction-sensing organ and a suitable amplifier, the over-all function being to translate the information of whether the craft is headed

What happened to the time?

A lot of things are scarce these days.
Steel. Aluminum. Machine tools. Raw materials. So scarce, in fact, that Uncle Sam has them on a priority list.
But in American industries today, the scarcest commodity of all is ...time!

With military orders urgent, with complex new weapons in the making, time is the key word of our defense program.

But there's one way a manufacturer can get a "priority" on time.

He can ship his parts and products via Air Express-the service that gets top priority of all commercial shipping services!

Air Express is first off the loading platform...first on the planes...first to arrive at destinations anywhere in the 48 states!

Whatever your business, you can profit from the regular use of Air Express. Here's why:

IT'S FASTEST - Air Express gets top priority of all commercial shipping services - gives the fastest, most complete door-to-door pick-up and delivery service in all cities and principal towns at no extra cost.
it's dependable - Air Express provides one-carrier responsibility all the way
and gets a receipt upon delivery.
it'S Profitable - Air Express service costs less than you think, gives you many profit-making opportunities.

For more facts, call Air Express Division of Railway Express Agency.

VIDEO DISTRIBUTION AMPLIFIER

TYPE 1311

TYPE 1311 Video Distribution Amplifier is specifically designed to distribute video or synchronizing signals to several outlets. Thus, five separate equipments can be fed from a single synchronizing signal generator and monoscope combination.

The high degree of isolation between each output and each input circuit prevents interaction, even in the event of a short circuit at any one of the output lines.

Type 1311 is also commonly used to distribute picture signals from TV studios to a number of different locations.

SPECIFICATIONS

1nPUT IMPEDANCE: High impedance, for bridging 75 ohm coaxial lines.
output impedance: To match 75 ohm lines.
input voltage: 2 Volts peak to peak.
voltage gain each channel: . Adjustable from 0.9 to 1.1.
OUTPUT POLARITY: Same as, or opposite of, in
number of channels: 5 separate channels.
FREQUENCY RESPONSE: Pass 60 cycle square wave undistorted. No overshoot on 100 KC square wave Down 3 DB @ 11 MC. Down 6 DB @ 13 MC .
CONNECTORS: Both the input and output circuits use PL-259 coaxial line connectors which are not supplied.
POWER SUPPLY: 105-125 Volts, 60 cycle, single phase, 250 watts.
FINISH: Natural sandblasted aluminum.
WEIGHT: Amplifier: 17 lbs. net.
Amplifier: 17 lbs net.
Power Supply: 35 lbs. net.
PRICE: $\$ 550.00$ F.O.B. Plant (including power supply as illustrated).

Complete specifications available on request.

ELECTRONIC DEVELOPMENT, ENGINEERING and PRODUCTION:

Our reputation for producing top quality precision electronic equipment qualifics us as a reliable and capable subcontractor for manufacturers currently holding primary defense orders. Inquiries will be given our immediate attention.

Titeflex

has the experience in

WAVEGUIDES COMPOHENTS ASSEMBLIES

Regardless of the types of waveguides and components you require, Titeflex can supply them. We manufacture rigid and flexible guides, combinations of the two, and any required component parts. As an A-N approved source, our engineering and testing facilities are always available for the development of new designs. Write us.

SEND FOR THIS NEW Bulletin

Contains complete wave. guide specifications, including materials, dimensions and recommended operating ranges for all types.
 Controls that set them off and direct their flight. Guardian relaysstepping switches-contactor units-solenoids-multi-contact switches are the basic components of communications, bombing and firing equipment, of control stick switches, control wheels and myriad Guardian developments for the military. Certain basic Guardian control components are still available for peacetime products. Write.

AN-3320-1 D.C.

AN-3324-I D. C.

Series 595 D.C.

Series 610 A.C.-615 D.C.

A.N. Connęctor Plug Hermetic Seal Container

Series 695 D.C.

Gef Guardian's New HERMETICALLY SEALED RELAY CATALOG Now!
GUARDIAN (G)ELECTRIC
a complete time of retars struing ameritan industay

100 db . attenuation from 0.15 to $10,000 \mathrm{mc}$. (or higher on special order)

ACE ENCHNEERING and MACHINE CO., INC.
Tolephone: REgent 9.1019
Philadelphia 40, Pa.

3644 N . Iawrence St.

above the horizon - ir's Eicor's electronamic team

EXCITER REGULATOR alternating current the power necessary to give vision to the far-reaching, far-searching eyes of your aircraft's radar and its associate equipment. You can be assured of the flight-reliability of these units. Designed to rigid and exacting AN Specifications, the Eicor 8 Kva Alternator and Exciter Regulator have proven their dependability of performance over thousands of operational flying hours. The Eicor 8 Kva Alternator will generate $115 / 208$ valts,
three phase, or 115 volts, single phase, at frequencies of 380-1000 cycles and over a speed range of $3800-10,000 \mathrm{rpm}$. Sensitive voltage regulation and field excitation for the alternator is supplied by its team-mate, the Eicor electronic Exciter Regulator. This Exciter Regulator can also be used in any power circuit, for exciration supply, having a range rating characteristic output of 0.5 to 5.5 amperes $D C$ and 14.0 to 170.0 volts D.C.

Leading the way in electronic controls for aircraft power conversion equipment

NOW THERE ARE 3

They do everything you want!

 They make tough jobs easy!
for TV. . Broadcasting . . . Recording . . . PA
... for wide range high fidelity response . . . for fixed position or man-in-motion . . . for ruggedness and versatility . . . for exclusive Acoustalloy diaphragm . . . for popproof pick-up indoors and outdoors

You see . . . and hear . . . the E-V SlimTrim on network and local telecasts and broadcasts. You find it in studios and on remote hook-ups. You find it on important PA jobs, too. And you know it's there because it has met the most exacting tests...because it serves so superbly in every way for voice and music. First in dynamic, it has features only Electro-Voice can provide. 3 models meet every need!

> Ask your E-V Distributor or Send for Full Facts Now!

for telecasting-broadcasting

"655"-Response 40-15,000 c.p.s., $\pm 2.5 \mathrm{~d}$. Power rating -53 . Omnidirectional. Changeable low impedance. Removable swivel.

List $\$ 200$
"654"-Response 50-14,000 c.p.s., substantially flat. Power rating -55. Omnidirectional. $50-250$ ohm impedance selector. Swivel head. List $\$ 90$
for public address
"636"-Response 60-13,000 c.p.s. substantially flat. Power rating -55 . Omnidirectional. High or low imped. ance. Swivel head. List $\$ 65$

401 CARROLL ST. - BUCHANAN, MICHIGAN
Export: 13 E. 40 th St., N.Y. 16, U.S.A. Cables: Arlab

ENGINEERS DESIGNERS PHYSICISTS

T
THE Aerophysics \& Atomic Energy Research Division of North American Aviation, Inc., offers unparalleled opportunities in Research, Development.
Design and Test work in the fields of Long Range Guided Missiles, Automatic Flight and Fire Control Equipment and Atomic Energy. Well-qualified engineers, designers and physicists urgently needed for all phases of work in

Supersonic Aerodynamics,
Preliminary Design \& Analysis,
Electronics,
Electro-Mechanical Devices, Instrumentation, Flight Test, Navigation Equipment,

Controls,

Servos,
Rocket Motors,
Propulsion Systems,
Thermodynamics.
Airframe Design,
Stress \& Structures.

Salaries Commensurate with training \& experience.

Excellent working conditions.
Finest facilities and equipment.
Outstanding opportunities
for advancement.
Write now-Give complete resume of education, background and experience

PERSONNEL DEPT.
aEROPHYSICS \& ATOMIC ENERGY RESEARCH DIVIISON

NORTH AMERICAN AVIATION

 INC.12214 LAKEWOOD BLVD. DOWNEY, CALIFORNIA

BUDTHIM BGITR

WITH

Lock Washers

Multiple tapered-twisted teeth bite deeply to resist vibration loosening - lock

 even tighter as vibration increases!

INTERNAL

COUNTERSUNK

EXTERNAL-INTERNAL

A size and type to meet your specific fastening need!

DIVISION OF ILLINOIS TOOL WORKS St. Charles Road, Elgin, llinois
In Canoda, Canada lllinois Tools Lid., Toronto, Ont.

Here SHAKEPROOF Lock Washers are used to lock glove compartment assembly fastenings tight . . . positive protection against vibration loosening and the abuse of frequent slamming.

This refrigerator door latch mechanism is carefully adjusted for proper closing action. SHAKEPROOF Lock Washers hold the fastenings tight and prevent shiffing of the assembly in service.

This application is typical of the extensive use of SHAKEPROOF Lock Washers in electrical and electronic assemblies of all kinds, protecting vital fastenings against loosening and assuring efficient electrical grounding.

Use of the proven taut-suspension principle assures light weight, minimum size, and low cost for these new SLallcross Type 1951 galvanometer movements. To m nimize weight and simplify construction the coil system is suspended on sturdy rod supports instead of a leavy phenolic base. Mounting dimensions are standard and the units are supplied in sensitivities of $0.5-1 .-2$ and 4 microamperes per mm . scale division.

SERIES 316

SERIES 315
$\times 35$, new Shallcross Series 315 galvanometer is ideally suited for field, laboratory or production use where low cost and portability are important factors. Where large current variations are encountered, the Shallcross 316 Series with built-in Ayrton shunt switch provides greater versatility. Both types utilize the new Shallcross Type 1951 galvanometer movement. Write for bulletin L-26 to: SHALLCROSS MANUFACTURING COMPANY, Collingdale, Pa.

FIG. 3-Simplifisd diagram of experimental model
artificial light is trained on the dial and a phototube is situated so as to receive light reflected from the dial. The assembly is placed in a lighttight housing which can be rotated to change the course. As with Fig. 1, the on-course condition is illustrated. Again, it is obvious that as the boat veers to the right of its course, more light will reach the phototube; to the left, less.

The amplifier must have adequate gain and power capability to operate a relay satisfactorily from the signals generated by the phototube. The relay must be sufficiently rugged to handle the current drawn by the steering motor. Presumably, it might consist of a very sensitive relay driven directly by the phototube current, perhaps coupled to the more rugged relay. Figure 3 shows the single-stage amplifier circuit employed in the experimental model. For the more versatile sense organ, with the low light levels at which it operates, two stages of amplification may be necessary. In any case, it can be seen that the greater the gain, the smaller the angle subtended by the boat between pull-in and drop-out of the relay, with resultant less wide zigzag of the boat. In addition, some form of control of gain or bias is needed to set the points at which the relay responds.

It is almost a necessity that the steering motor be operable from a single six-volt automotive-type battery or, better still, an even smaller power source. It must be geared to a device which transmits lateral movement to the steering lever of the outboard motor, to the right when the steering motor is run in one direction and to the left when the steering motor is reversed. This

5 OTHYEAR OF CERAMIC LEADERSHIP

american lava corporation

CHATTANOOGA 5, TENNESSEE

difficult antenna problems are made easy

through Ward's 25 years of

 Antenna Engineering ExperienceIllustrated here is an antenna designed by Ward for Harvey-Wells Electronics.
The problem involved designing a collapsible antenna, for a test-set signal generator, usable in either horizontal or vertical position, without adjusting the equipment.
The answer is a Ward-designed antenna-with a swivel mount, permitting the antenna to be quickly swung from horizontal to vertical position. By the use of seven sections, the $3311^{\prime \prime \prime}$ antenna telescopes into $61 / 2^{\prime \prime}$ long with $.500^{\prime \prime}$ maximum O.D. Full hard brass tubing, chrome plated, is used throughout. A stainless steel ball tops the antenna tip for easy extending or collapsing the unit.
With Ward-you get top engineering plus facilities for producing one to thousands of units.
Why don' \dagger you save valuable time and expense by having Ward make your hard antenna problems easy!

IN CANADA: ATLAS RADIO CORPORATION LTD. Toronto, Ont.

WORld'S largest and oldest exclusive manufacturer of antennas

NOW

a really high-powered
RADIO
ENGINEERING library

Special Offer on This Complete Up-to-Date Set

Save \$4.00! These fine engineering books would cost a total of $\$ 40.50$ at our regular single-copy prices, if you bought them one or two at a time. Under this offer you can have the whole set at once and we'll pass along the sating in handiling in a special low Librafy of only $\$ 36.50$. In addition you may spread this over several installment payments as shown in the coupon below. Take adrantage of these convenient terms to add these helpful books to gour working library right away.

5 volumes, 3,921 pages,

2,770 illustrations
Eastman's Fundamentals of Vacuum Tubes, 3rd $E d$.
Terman's Radio Engineering, 3 rd Ed.
Everitt's Communication Engineering, 2nd Ed. Hund's Hige-Frequency Measurements, 2nd Ed, Henney's Radio Engineering Handboor, 4th Ed.

What this library gives you

These books cover circuit phenomena, tube theory, networks, messurements, and other subjects-give spechalized treatments of all flelds of practical destgn and application. They are books of recognized position in the ilteraturebooks you will refer to and be referred to often. If you are a practical designer, researcher, or engineer in any field based on radio, you need these books for the help they give in hundreds of problems throughout the whole field of radio engineering.

10 DAYS' FREE EXAMINATION

Good ideas for electronic circuitry sometimes run afoul of connector problems. Maybe existing connector units won't hold air pressure gradients, won't stand the heat, aren't rugged enough for the job. Or maybe it's a question of altitude, or under-water application. But if you can sketch the circuit, we'll take it from there. We've engineered so many special connectors, solved so many "impossible" problems, that whatever the requirements are, we can usually provide the answer.

WRITE TODAY for specific information, or send us your sketches. We'll forward recommendations promptly.

BREETE Special CONNECTORS

BREEZE CORPORATIONS, INC.

41 South Sixth Street

Lightweight actuators for any requirement.

Flexible conduit and ignition assemblies.

Job engineered, weldeddiaphragm bellows.

Removable pins in Breeze connectors speed soldering, save time, trouble. Pins snap back into block.

TIMERS FOR STANDARD

AND SPECIAL APPLICATIONS

TIME DELAY RELAYS

5900 SERIES provides time delay or interval timing ranging up to 10 minutes for applications such as protecting power tubes, or timing portions of a complete cycle of operations.

INTERVAL TIMERS

8006 SERIES provides rugged, heavy-duty interval timers for general, commercial, industrial and appliance applications. Construction is simple providing for long life at low cost.

HAYDON AT TORRINGTON

HEADQUARTERS FOR
 TIMING

ELAPSED TIME INDICATORS
5700 SERIES motors are made with cyclometer type counters for simple, compact and accurate metering of elapsed time. Applicable either as inexpensive components or with existing equipment.

REPEAT CYCLE TIMERS

5800 SERIES afford flexibility and are adaptable for timing problems requiring continuous complete cycling, or single cycle operation initiated by an external circuit. Also available for D.C. applications.

For complete Design and Engineering Specifications on these and other Timers write for Catalog No. 323.

HAYDON Manufacłuring Co., Inc.
SUBSIDIARY OF GENERAL TIME CORPORATION
2425 ELM STREET TORRINGTON, CONNECTICUT

TUBES AT WORK
lateral movement must be fairly rapid, taking only a few seconds at most. The end-positions of the steering lever must be easily adjustable, because a larger amount of control is necessary when heading into or across a heavier swell than when riding with the swell or in calmer waters. To conserve power, limit switches should be installed so that the steering motor will cease to draw current after each lateral movement of the steering lever. Figure 3 shows this connection. The capacitors are for arc suppression. In the interests of safety, it is of utmost importance that provision be made for swift assumption of full manual control at any instant.

For the experimental model, an aircraft antenna reel assembly was obtained, a war-surplus item. The motor is designed to operate on 28 v but after removal of the clutchbrake spring, it runs on 6 v at a usable speed and with sufficient torque for the purpose. Movement of the reel-spool is limited to a halfturn by the installation of stops and limit switches. These are engaged by a projection attached to the under-side of the reel-spool. It is necessary to pad the stops with rub-

FIG. 4-Mechanical connection to outboard motor as used in first model

CORDITIS-FREE CORDS BY...

Belden

Starting January 1952
 NUCLEONICS
 takes on new dimensions
 to match the
 new dimensions of the industry

NUCLEONICS really takes on new dimensions with the January 1952 issue . . . not only in size, but of far greater importance . . . in scope. NUCLEONICS pioneered with the industry, has grown with it, and will continue to pace its progress, thus earning by service the right to use the title "first in the field" acquired through early establishment and recognition for the accuracy and excellence of its editorial content.

Beginning with the first issue of ' 52 NUCLEONICS goes to the regular printed page size of seven by ten inches.

unexplored new markets

The new dimensions of nuclear science mean vast, new and totally. unexplored markets. Huge as expenditures are today (7 to 8 billion Gov. dollars) tomorrow promises to be even greater.

While most of the dollars spent come from government, general industry is the prime sub-contractor (of the 75.100 thousand in nuclear work, only 5 thousand work directly for the $\AA . E . C$. .). As time goes on, it is this industry group with its wisdom and foresight that will take up the industrial, scientific and medical aspects of nuclear science. Therein lies the profitable promise of tomorrow - a market enriched and enlarged - the scope of which no one can rightly gauge. Fantastic though it might sound, its potentials are boundless.

plan NOW to sell those markets

Now is the time to stake your claim in this market. It is rich in prospects, pregnant with possibilities. Alert manufacturers can quickly carve their niche in this industry - and with their name and products established and recognized, they can grow with the industry as it expands.

To reach this market and all its purchasing influences effectively, there is only one accepted advertising medium in which to tell your products story . . .

For further information on the scope of the nuclear market, con. sult any NUCLEONICS representative for additional data. Complete data on the new enlarged NUCLEONICS is also available from him or write direct to our New York office.

NUCLEONICS

A McGraw-Hill Publication

The Nonmelfing Sticone Insulating and Waterproofing Compound that is stable from- 70° to over $400^{\circ} \mathrm{F}$.

Dow Carning 4 applied by brushing to AN connector receptacle of pilot : ;ock box prevents interference caused by moisture at this critical junction in aircraft communications system.

Dow Corning 4 applied by brushing to AN coninector on V. H. F. Transmitter/Receiver excludes moisture ocross properly mated pin and socket connections.

Arrows show where Dow Corning 4 is used on variable inductonce rollers in o CollinsTo lubricote minimize resistance and reduce leakage losses.

Photos courtesy Braniff Infernational Airways.
More waterrepellent than paraffin, Dow Corning 4 Silicone Compound is highly resistant to oxygen, oxone and deterioration caused by corona discharge.
Plode Factact for your copy of our new booklet on Dow Corning 4 Compound. Address Department BD.

MIDLAND, MICHIGAN

EASY TO TAKE...EASY TO READ with the Fairchild-Polaroid ${ }^{\circledR}$ Oscilloscope Camera

ELECTRONIC CONTROL GIVES

INFINITE SPEED VARIATION

with the Fairchild Oscillo-Record Camera
Por both still and continuous-motion recording on $35-\mathrm{mm}$ film or paper, the Fairchild Oscillo-Record Camera is ideal. Continuously variable speed control is provided through electronic regulation. There are no belts or pulleys. Film is sprocket-driven so there is no slippage. Top-of-scope mountting eliminates need for tripod and keeps scope controls easily accessible. There is provision for three film lengths100,400 , or 1000 feet.

Fairchild's adaptation of the Polaroid-Land camera gives you more than just a fast photographic print of an oscilloscope image. The print is exactly half-size for easy measurement of values, especially when a grid is used. And you see the image exactly as it appears on the scope-not reversed. Each $3^{1 \frac{1}{4}}$ x $4^{\frac{1}{4}}$ print records two images.

Moreover, it takes only two minutes (less, if you're fast) to set up the camera, snap the shutter, and pull the tab. Then you wait one minute more and remove the finished print. It's as simple as $1-2-3$. No focusing, no special training required.

Full information about the Fairchild-Polaroid and Fairchild Oscillo-Record Cameras is available on request. Write today to Fairchild Camera and Instrument Corporation,*88-06 Van Wyck Boulevard, Jamaica 1, New York, Department 120-17A.

CAMERAS

ber. Otherwise, the gears bind.
Figure 4 shows the connection to the steering lever. The extender bar is hinged to the adjustable steering lever clamp and slotted in its forward section. The bar receives the lateral component of the half-turn of the reel-spool by the engagement of its slot with a stud on the spool. Gravity holds the bar against the stud. The stud mount on the surface of the spool is provided with tapped holes at various distances from the center for adjustment of the end-positions of the steering lever. The safety-feature of immediate manual control is brought about by simply lifting the extender bar off of the stud.

The author wishes to express his appreciation for the assistance rendered him in the construction of the experimental model by the men in the electronic and machine shops of the Ballistics Division, Naval Ordnance Test Station.

F-M Performance Measurement Form

By James H. Greenwood
Chief Engineer
Station WCAE, WCAE-WM Pittsburgh, $P a$

The FCC Rules governing f-m broadcasting stations require annual measurements of performance; distortion, frequency response and noise level. These measurements are to be plotted on suitable graphs. It is also required that the measurements show compliance with the Standards of Good Engineering Practice.

In order to assure the compliance mentioned, it is convenient to plot on the same graph with the measured response, the tolerances allowed. If adjustments are required, numerous graphs may be made on each of which the same tolerance ranges are plotted. To simplify the problem it is convenient to print special forms which include the tolerance ranges. These forms at the same time provide a business-like presentation of the final measurements.

A copy of one of these forms is shown in Fig. 1. Frequency response is required to be measured with modulation of 100,50 and 25 percent. While maintaining the modulation at the specified level, the in-

15 DIMENSIONS

He checks

8 RADII 7 ANGLES
in ONE operation
and accessories, you can measure all sorts of complex parts, large or small. Changes in specifications generally require nothing more than a corresponding change on the chart.

So overwhelmingly has industry turned to optical gaging that production of the Kodak Contour Projector, Model 3, the outstanding instrument for this method, has been greatly accelerated. Deliveries are rapid, and the cost of projector, fixture, chart-gages, and accessories usually comes below corresponding sets of mechanical gages. To get an idea of the large labor savings that the Kodak Contour Projector can bring to your inspection problems, get in touch with Eastman Kodak Company, Industrial Optical Sales Division, Rochester 4, N. Y.

To check this part completely and accurately by usual methods, you might need as many as two dozen or more different gages-and you still wouldn't be sure all corners were sharp, all angles and radii exact. There's a much faster, more accurate way to do the job completely, one that requires no mechanical gages that can lose accuracy through wear.
On the Kodak Contour Projector, Model 3, you just slip the part into a holding fixture and compare its magnified image with a "chart-gage" over the bright screen. Every detail shown on the drawing is quickly and directly compared against the part itself, to close tolerances and in one operation. Little training or experience is required.
The part we show here is a relatively simple one for an optical comparator. With proper fixtures, charts,

If you want to check precision spur and helical gears in action, write for information about Kodak Conju-Gage Instrumentation.

Quient Forty million

Selechron motors at work!
wherever Accuracy, Dependability and Long Life are vital

T Coday, in instruments and other devices, more than forty million Telechron synchronous motors are at work . . . quietly serving the nation's imlustries,
laboratories and homes in a thousand different ways.
As accurate as current itself, the Telechron motor has a rotor so light that
it is perfectly synchronized with AC impulses. It responds immediately and reaches full speed in a fraction of a second, giving the accuracy that is so essential to sensitive instruments.
In motion, the rotor virtually floats in its own rotating magnetic field.
It's a fact that the rotor shaft bearing of a Telechron motor has never
worn out as long as lubrication-which is drawn from a reservoir
by capillary action-is constantly maintained. This action furnishes a continuous flow of lubricant to gears, pinions and shalts.
For complete specifications on the full line of Telchhron motors, write for booklet IS-120.
Telochron Department, Coneral Electric Company, 41 Homer Atenue, Ashland, Mass.

Type B3 Motor - For medium-duty switching, controlling and recordingcontrolling, such as time switches, business machines, time stamps, system clocks for public buildings, household door chimes and recording instruments.

Type C5 Molor-For heavy-duty timing, switching and controlling such as traffic controls, airfield landing lights, tower clocks and instrumentation. Sturdy gear train construction.

Bring your spring problems to us and be assured of unusual assistance and guaranteed satisfaction . . . for Lewis is geared to design and manufacture springs, coils and wireforms quickly, economically and dependably.

Lewis offers:

- Experienced design and engineering personnel
- Extensive modern focilities
- Unique manufacturing methods
- Skilled production workers
- Veteran salles engineering representatives

Call, wire or write to have a Lewis Spring Engineer help you check your requirements, without obligation.

LEWIS SPRING \& MANUFACTURING CO. 2656 W. NORTH AVE., CHICAGO 47, ILL.

FIG. 1-Sample of periormarice measurement form
put level is determined for different frequencies. The graph of frequency response is therefore a plot of frequency versus input level. Three plots are made, one for each modulation level.

Since the difference between 100 and 50 -percent modulation and between 50 and 25 -percent modulation is 6 db , the tolerance ranges have been plotted $6-\mathrm{db}$ apart. The illustrated graph has plotted on it a typical series of measurements.

Only one graph is used for plotting distortion at the various levels of modulation since the tolerances are the same. Different colors or shapes are used to indicate the measured points at the different modulation levels. Identification of the colors used should be included on the graph.

Space should also be provided on the graph (not shown) to list the type and make of measuring equipment used. In addition, it is advisable to attach to the graph a copy of the detailed instructions which were followed by the measuring personnel. These instructions will of necessity be different for various stations. They not only serve as description of the measurement technique but also assure that the measurements are made in the same manner by all personnel and are therefore always comparable.

Tunable Selector-Rejecter for Audio Amplifiers

BAND-PASS or band-reject selectivity may be added to existing audio amplifiers without having to alter their circuit by the method to be

COMPANY
ANNOUNCES THEMANUFACTURE OF THE

"CARB-OHM"

A DEPOSITED CARBON RESISTOR

By license arrangements with Western Electric Company, Incorporated

avallable HERMETIGALLY SEALED

An AGASTAT Time Delay Relay for every requirement

AGASTAT is small and efficient. Furnished to operate in any position although designed for vertical mounting. Time delay range from .1 second to 5 or more minutes. Descriptive literature on request.

For further information, write or wire

- The Teletronics Model PC-100 Pulse Generator - and Calibrator was designed as an accessory
- for general use with triggered oscilloscopes.
- However, the variety of waveforms generated
- and the flexibility of operation provided make
- it a valuable instrument for many other pur-
- poses.
-••••••••••••••••••• - The Pulse Calibrator produces two rectangular - pulses of short duration whose amplitudes and - polarities can be independently controlled. - Their repetition frequency and the time inter-- val between them are also adjustable. Accurate - marker pulses and square-waves are generated - for making both time and amplitude measure-- ments. The unit can be synchronized from an - external source or it may be operated self-- synchronous in which case a pulse for synchro-
- nizing other equipment is generated.

Since the introduction of Waterman RAYONIC 3MP1 Tube for miniaturized Oscilloscopes, Waterman has developed a rectangular Tube for multi-trace oscilloscopy. Identified as the Waterman RAYONIC 3SP P_{t} it is available in P1, P2, $P 7$ and P11 screen phosphors. The face of the Tube is $1 \frac{1}{2 \prime \prime} \times 3^{\prime \prime}$ and the over-all length is $91 / 3^{\prime \prime}$. Its unique design permits two 3SP Tubes to occupy the same space as a single $3^{\prime \prime}$ round tube, a feature which is utilized in the S-15-A TWIN-TUBE POCKETSCOPE. On a standard 19" relay rack, it is possible to mount up to ten 3SP lubes with sufficient clearances for rack requirements. Thus 3SP RAYONIC lube is ideal for multi-trace oscilloscopic work.

Maximum 2nd anode voltage 2750 volts .. Satisfactory operation can be achieved at 600 volts... Vertical deflection factor 52 to 70 volts DC per inch per kilovolt . . Horizontal deflection factor 73 to 99 volts DC per inch per kilovolt... Grid cut-off voltage 2.8 to 6.7% of 2 nd anode potential... Focusing voltage 16.5 to 31% of 2 nd anode voltage.. Heater 6.3 V at .6 amp ... Twelve pin small shell duodecal base... Tube can be mounted in any position... 3SPI JAN approved.

Wateman provers con, INC.
PHILADELPHIA 25, PA. Cable address: poketscope
WATERMAN PRODUCTS INCLUDE: 3JPI \& 3JPT JAN RAYONIC CR TUBES 3JP2 \& 3JPII RAYONIC CR TUBES 3MP7 \& 3MPII RAYONIC CR TUBES 3RP1, 2, 7, II RAYONIC CR TUBES

Also POCKETSCOPES,
PULSESCOPES, RAKSCOPES
and other equipment

...look to GLASS BY CORNING

In selecting a material for electronic applications, the dielectric constant must not only be exact, it must be the same in every duplicate part. That's why so many manufacturers turn to glass by Corning.

In the hands of Corning technicians, glass can be made with as widely varying dielectric constants as the above figures indicate. And every piece will be exactly the same.
Accurately controlled dielectric constant is just one of the properties Corning can
build into your electronic glass components. Whether you need low loss and power factors, controlled transparency, proper sealing characteristics, or corrosion resistance, glass by Corning may well be your answer.

Our research and engineering staffs are ready to help you solve your problems. Just let us know what you have in mind, or write for Bulletin B-88-Glass In The Design Of Electrical Products-Corning Glass Works, Dept. E-1, Corning, N. Y.

CORNING GLASS WORKS, CORNING,N. Y. ELECTRONIC SALES DEPARTMENT-ELECTRICAL PRODUCTS DIVISION

FIXED RESISTORS

Small, light, molded carbon units fully insulated and moisture-protected by phenolic sleeves. $1 / 2-, 1$ - and 2 -watt types in all ranges.

VARIABLE RESISTORS

Types, sizes and ranges for volume control, tone control, potentiometer and other applications from 500 ohms to 5 megohms. Also concentric shaft dual controls and many special types.

IRON CORES

Largest assortment including side-molded types for permeability tuning, iron cores for choke coils, sleeve cores, threaded cores, cup cores and dozens of conventional types in various grades.

CERAMAG ${ }^{\text {® }}$ (non-ferrous) CORES

A pioneer in producing satisfactory ferrite cores in production quantities, Stackpole offers a complete line of television types plus full facilities for developing suitable units for military and other uses.

LINE AND SLIDE SWITCHES

20 standard, inexpensive designs including 3 -ampere types are ideally suited to instruments, toys, appliances, radios and other electrical equipment.

MOLDED COIL FORMS
Low in cost-permit smaller coils-pave the way for simplified equipment assembly with point-to-point wiring and an absolute minimum of soldered connections.

GA "GIMMICK" CAPACITORS
Cheaper to use than twist-wire "gimmicks"and offer far greater stability, higher Q, better insulation resistance, higher breakdown voltage and greater mechanical strength.

WRITEFOR CATALOG Ask for Electronic Component Catalog RC-8 (Note: Stackpole components are sold only to manufacturers of original equipment-not for replacements.)

Electronic Components Division

STACKPOLECARBON COMPANY St. Marys, Pa.
described in this article.
If the band-pass peak or the frequency of the null can be made continuously tunable without greatly affecting the amount of rejection or the amplification at resonance, the circuit will be more convenient to use. This is true because the frequency to be rejected or selected is not always known in advance. Another desirable feature is to be able to tune over as wide a frequency range as possible without the necesity for band-switching.

The R-C coupled circuit shown in Fig. 1 may be connected to a lowlevel stage of an audio amplifier simply by attaching a wire to the plate pin of one tube and making an a-c ground connection.

FIG. 1-Method of connecting the selective circuit to the amplifier

Since audio amplifiers are more or less standardized in design, the logical place to connect an external source of selectivity is between the plate pin of the last voltage amplifier and ground. Connection to a tube involved in a negative feedback loop is not desirable since the expected selective response will not result. In this case, it would be better to choose a lower-level stage outside the feedback loop.

Perfect rejection of a particular frequency may be obtained with the circuit. A Q of around two or three is suggested for general use and a maximum level of the order of 20 volts rms is a good operating point for the external circuit.

The material in this article was abstracted from page 726 of The Review of Scientific Instruments for October, 1951. The original article by O. G. Villard, Jr., was entitled "A Tunable Shunt SelectorRejector for Audio Amplifiers".

FIRE CONTROL RANGE SERVO

SPEED COMPUTER

We call it mechatronics*
as a symbol for Servomechanisms',
Inc., technique for the multiple and interchangeable use of standard, functionally packaged, servo components in varied electronic and electro-mechanical systems. mechatronics fulfills the urgent need for:

- Spatial Adaptability
- Instant Maintainability
- Training Simplicity
- Ease of Assembly
-Trademark
 Behind its striking power lie incredibly precise instruments and fire control devices. Here, at the heart of a modern warship's might, you're likely to find Micro precision ground ball bearings - tiny miniatures in sizes as small as $1 / 8^{\prime \prime}$ O.D. and with certain tolerances held to within 25 millionths of an inch.

In America, only Micro makes such bearings. Because they are fully ground they assure trueness of dimensions, higher capacity and lower friction than is possible by other methods. Yet Micro bearings actually cost less.

If extreme refinement in size, weight and efficiency are your objectives, investigate the advantages offered by Micro bearings.

Write today for Technical Bulletin No. 50

New Hampshire

5 Main Street, Peterborough, N.H. assured in each Ampex recorder by high manufacturing standards and complete lest of each machine before shipment. It all adds up to one sure factAmpex quickly pays for itself out of savings from lower operating costs and added dependability. Wrin

Main Streat, Pelart

Complete Specifications on Request Shown is the time proven Model 300 Console. Throughout the field of professional oudio recording this machine is the recognized recording
leader.

-built for durability trouble-free operation

- designed for standard and special applications

BALLANTINE

 STILL THE FINEST in
ELECTRONIC VOLTMETERS

Ballantine pioneered circuitry and manufacturing integrity assures the maximum in

SENSITIVITY•ACCURACY•STABILITY

- All models have a single easy-to-read logarithmic voltage scale and a uniform DB scale.
- The logarithmic scale assures the same accuracy at all points on the scale.
- Multipliers, decade amplifiers and shunts also available to extend range and usefulness of voltmeters.
- Each model may also be used as a wide-band amplifier.

MODEL	FREQUENCY RANGE	VOLTAGE RANGE	INPUT IMPEDANCE	ACCURACY	PRICE
300	10 to 150,000 cycles	1 millivalt to 100 volts	$1 / 2$ meg. shunted by 30 mm ds.	2% up to 100 KC 3% above 100 KC	\$210.
302 B Battery Operated	2 to 150,000 cycles	100 microvolts to 100 volts	2 megs. shunted by 8 mmfds . on high ranges and 15 mmfds . on low ranges	3% from 5 to 100,000 cycles; 5% elsewhere	\$225.
304	30 eycles to 5.5 megacycles	1 millivolt to 100 volts except below 5 KC where max. range is 1 volt	1 meg. shunted by 9 mmfds . on fow ranges. 4 mmfds. on highest range	3% except 5% for 'requencies under' 100 cycles and cuer 3 megacycles and for voltages over 1 volt	\$235.
305	Measures peak valves of pulses as short as 3 micro. seconds witha repetition rate as low as 20 per sec. Also measures peak valves for sine waves from 10 to 150,000 cps.	1 millivolt to 1000 volts Peak to Peak	Same as Model302B	3% on sine waves 5% on pulses	\$280.
310 A	10 cycles to 2 megacycles	100 microvolts to 100 volts	Same as Model 302 B	3% below 1 MC 5% above 1 MC	\$235.

For further information, write for catalog.

THE ELECTRON ART
(continued from p 142)

FIG. 1-Close spacing and small grid wire size provide improved transconductance to capacitance ratio

The tension must be high to minimize microphonic effects and shortcircuit hazards. The wires are wound under a tension of somewhat more than half the breaking strength. There are about 300 wires, altogether, on a single grid, each under a tension of the order of 10 grams, so the total load is about 3,000 grams, or about 7 lbs . Figure 3 shows the construction of the tube, which is conventional except for the frame grid.

The molybdenum frame is fabricated by welding the cross straps to the side rods. After winding, the grid wires are secured to the side rods by spraying the contacting areas with a powdered glass suspension and heat treating. A thin layer of gold is plated onto the grid to inhibit emission of electrons.

The broad-band tubes described have been designed in such a way

FIG. 2-We!ded grid frame structure permits use of finer wire with closer spacing

THERE'S A LOT OF VACUUM IN THIS LITTLE PUMP!

Look at Kinney Vacuum Pump Model CVM 3153. It's small, yes - only about a foot high. It weighs only 70 lbs . complete with its $1 / 4 \mathrm{HP}$ motor.

PRECISION POIENTIOMETERS

Type RL-270:

Wedding ring type . . . five sizes charted below. Gamewell Potentiometers are precision instruments in every respect. They feature close limits in electrical characteristics and mechanical construction, low electrical noise, low torque, and long life. All types operate ot $-55^{\circ} \mathrm{C}$. to $+55^{\circ} \mathrm{C}$., 95% relative humidity ot altitudes up to $50,000 \mathrm{ff}$. Non-linear windings are available.

CONDENSED SPECIFICATIONS Diameter (in.)
Rating (watts).
Worque, max. (oz. in.)
Mounting: 3
Mounting: 3 holes $1 / 8^{*}$ deep
Max. resistance (ohms) $\pm 10 \%$
Min. resistance (ohms) $\pm 10 \%$
Min. resistance (ohms) $\pm 10 \%$
Max. userul angle (deg.)
Min. resolution (\%)
Linearity (\%)

RL-272	RL-270	RL-271	RL-275	RL 277
5	3	2	$15 / 8$	$11 / 4$
12	6	3	2	1.5
1	1	1	$1 / 2$	$1 / 2$
15	6	3	2	1
$48-32$	$\# 8-32$	$\# 8-32$	$46-32$	$\# 4-40$
3.250	1.750	1.250	1.000	1.000
500,000	275,000	160,000	105,000	64,000
460	250	150	105	80
$35 \pm \pm 1 / 2$	$356 \pm 1 / 2$	$354 \pm 1 / 2$	$352 \pm 1 / 2$	$350 \pm 1 / 2$
0.05	0.08	0.15	0.2	0.25
0.01	0.015	0.025	0.04	0.05
± 0.10	$\pm 0,10$	± 0.15	± 0.25	± 0.30

Standard Shaft: single end, $8 / 4$ "extension; specify if otherwise.
Double ended shaft special; specify diameter and length
Multiple sections can be ganged, add 8 有" to the overall length for each additional section
Terminals will be positioned on the circumference as required for taps and winding angle.
Expected life of all types over $\$, 000,000$ cycles.
FOR COMPLETE DETAILS SEND FOR BULLETIN F-68-A

FIVE INCH

OSCILLOSCOPE T-601-B

- Y AMPLIFIER

10 mv . rms/in.-3db 2 cy .12 Mc .

- X AMPLIFIER
$250 \mathrm{mv}, \mathrm{rms} / \mathrm{in}$. -3 db 2 cy . to 250 Kc . - Z INPUT
1.5V. visible for marking
- RECURRENT SWEEP

10 eycles to 100 Kc .

- TRIGGERED SWEEP
$10 \mu \mathrm{~s}$. to $10^{5} \mu \mathrm{~s}$.
- INTERNAL CALIBRATOR

Measures 10 mv . to 500 v . P-P

- PROBE

10 mmf .2 megohms

- Phaseable 60 cy. Sweep \& Sync.
- \$449.50 FOB N. Y. C.

The TEC model T.601-B Is a general purpose high quallty cathode ray oscilloscope with all the features requisito to orade components and top engineering design, the T-601-B is widaly used In the country's top laboratories.

"Bridgepgrt" MILLS IN BRIDGEPORT, CONN. AND INDIANAPOLIS, IND. - IN CANADA: NORANDA COPPER AND BRASS LIMITED, MONTREAL

Joining Copper-Base Alloys

Soldering, brazing and welding are three common methods of joining copper and its alloys both on the production line and in the maintenance shop.

In the three methods there are four prerequisites in obtaining the strongest bond possible:

1. Clean surfaces, both mechanical and chemical.
2. A good flux
3. Close contact between the parts to be joined.
4. Correct temperature.

Cleaning

All oil, grease and other foreign matter, and oxides if present, should be removed. Visual inspection cannot be used to detect this oxide. Either a file or grinding will remove the oxide to get to the base metal. On production basis usually a bright dip is used. In some plants this is done as parts are

[^10]needed on the assembly line to prevent oxidation prior to use.

Although there are acid-base fluxes which may be used to remove the oxides more readily, they are not normally accepted in production work as all of the flux must be removed promptly after soldering or brazing to prevent future corrosion of the metal.

Fluxes

With the exception of the acid-base fluxes mentioned above, the main purpose of a flux is to cover the parts with a film which will exclude air during the soldering or brazing operation since oxidation is speeded up when heat is applied. The fluxes should melt well below the melting point of the solder to protect the surface while being heated to soldering or brazing temperature.

Resin or borax are generally selected since they are considered non-corrosive and it is not necessary to remove them after joining. Sal-ammoniac and zinc chloride are also used but they must be removed after the joining is completed to prevent corrosive attack. In brazing, calcined borax and boric acid in powdered form are quite commonly used.

There are many proprietary fluxes on the market which are available for soldering and
brazing and in many cases are superior.

Hold Work Closely

As solder and brazing metal flows through capillary action, it is important that the parts being joined be held closely together. Too large a space between the parts will prevent the molten bonding material from flowing and sealing tightly over the entire area. A good example of this is where corners of rectangular boxes are being soldered or brazed. It is often necessary to use a tight jig or clamp to insure intimate contact between the parts.

Correct Temperafure

The parts being joined should be heated slightly above the melting point of the solder or brazing material. When using a soldering iron, care should be taken to insure that the copper tip of the iron is heavy enough to maintain sufficient heat to carry out the operation. When using a flame in soldering, care should be taken not to overheat the metal as oxides would form too rapidly and the flux would be burned off and the metal softened to too great a degree.

In brazing or "hard soldering" a gas-air or gas-oxygen flame is normally used, although with care oxyacetylene torches can be employed since higher temperatures are needed than in soldering. Red heat is needed for this type of joining. Again, too high a heat on the part will burn off the flux and cause the metal to oxidize thereby weakening the bond. The flame used should be a reducing one (excess of fuel in the fuel-to-air ratio) or a neutral one.

In furnace brazing a reducing atmosphere is also helpful to prevent oxidation and to remove any oxide which might be left on the metal.
(7755)

48 West 48th St, New York 19, N. Y. - 212 Fulton Street, New York 7, N. Y. Phone: Clrcle 6-4060 - Teletype: N. Y. 1-1299 dependable service is the foundation of our businiss

Tretel Mulowis cret Nem

IV coss minac GUIDE

Yours for the Asking!

--Clip and Mail Coupon Today!- -
Hudson Radio \& Television Corp.
48 West 48th St., N. Y. 19, N. Y.

This handy guide will save you money ond endless hours of catolog searching. It features Comparative Cross-Reference Charts fof JAN Type Components... their Commercial |Equivalents and the equivalent stock numbers of leading manufacturers of electronic parts jand equipment. I's yours FREE

LARGE STOCKS OF FULLY APPROVED

 JAN Type Components... 1... and all standard makes of electranic equip. I ment always on hand for prompt delivery andat lowest possible cost to yau.
() Please send FREE copy of JAN CROSS-
REFERENCE GUIDE and all odditional cross-reference charts as released.

Name \qquad Tille
Company
Address
City
Zone \qquad State \qquad

FIG. 3-Structure is rigidly supported from stem which eliminates distortion when bulb is placed over the mount
that they can be manufactured on a production line that differs very little from ordinary tube lines. Moderate cost is therefore assured. Table I shows a comparison between one of the broad-band tubes and the familiar 6AK5.

TABLE 1 -Broad-Band Performance Comparison

	6AK5	435 A
Plate Current	7.5	25 ma
Screen Current	2.5	8 ma
Transconductance	5,000	$28,000 \mu \mathrm{mhos}$
Input Cap.	3.9	$15.2 \mu \mu \mathrm{f}$
Output Cap.	2.85	$3.3 \mu \mu \mathrm{f}$
Center Freq.	60	4 mc
Useful B-W	5	8 mc
Voltage Amp.	15	30 db
Eq. Noise Res.	1,770	210 ohms

This article is based on a paper presented at the 1951 National Electronics Conference in Chicago, by G. T. Ford and E. J. Walsh of the Electronic Apparatus Development Department of the Bell Telephone Laboratories.

An Electronic Pneumotachograph

Many difficulties arise in determining respiratory volumes and rates by conventional means. The equipment to be described does the job by means of measuring a small change in capacitance brought about by the breathing of an animal or human being.

The detecting unit used is a modified orifice meter instrument detector which relies on a compres-

Now the famous silent Servel refrigerator operates on electricity. In the new refrigerator, a simple electric heating element provides heat for operating this absorption-type system. Just plug it in, and the new Servel goes to work . . . provides the soundless performance for which it is famous.

Since cold is obtained without a single moving part by means of heat applied to the system, the small heating element is the vital part of the new Servel. Every operation of the refrigeration cycle, indeed, depends upon the heater unit staying on the job.

Because of this, Servel has adopted heating elements made with Nichrome-the electrical resistance alloy that is the very heart of quality appliances everywhere. Remarkably resistant to high heat and corrosion, and able to retain its physical and electrical properties despite thermal shock resulting from intermittent operation day in and day out, Nichrome assures Servel of efficient operation and a lifetime of dependable service.

Whatever your requirements for electrical resistance material, it will profit you to consult with us. In addition to worldfamous Nichrome and Nichrome V, we produce over 80 alloys to meet the varied needs of the electrical and electronic fields. Although strategic materials and the alloys we make from them are on strict allocation at the present time, we'll be pleased to serve you to the best of our ability.

Driver-Harris Company
 HARRISON, NEW JERSEY

BRANCHES: Chicago, Detroit, Cleveland, Los Angeles, San Francisco
In Canada: The B. Greening WIre Company, ltd., Hamilton, Ontaria, Canada

FIG. 1-Circuit of $\mathrm{f}-\mathrm{m}$ oscillator and amplifier for telemetering respiratory information
sion of air on the face of a fine mesh screen to produce a local increase in pressure relative to the effluent side of the screen. The region of elevated pressure produces an increase in pressure within the orifices of the side tubes which are connected to a detector coupling. When air flow is reversed, there is a concomitant drop in pressure to less than ambient. A fine copper mesh is caused to deflect in accordance with pressure changes, and its deflection is converted into capacitance variations which in turn modulate the output of an f-m oscillator, the circuit of which is shown in Fig. 1A.

The buffer amplifier (Fig. 1B) is almost a necessity on ambulatory patients, since changing position with respect to large metallic objects would cause a misleading change in frequency if the antenna were connected directly to the oscillator. The oscillator alone weighs 430 grams complete. When assembled with the buffer amplifier the volume doubles and the weight is 780 grams. Figure 2 shows the oscillator, without buffer amplifier, and the pressure actuated capacitor.

In operation, respiratory changes cause the carrier frequency to shift about 0.01 percent during normal breathing. The f-m tuner unit used to pick up the signals is specially designed to have a linear output with respect to changes in input frequency, and limiting reduces effects of amplitude variations.

This development is described in considerably more detail in an un-

PROBLEM:

How to Prevent Contact Sticking in a Vacuum Tube GENERAL PLATE:

Provided the Solution with a Composite Metal Combination

A leading manufacturer of tadio and industrial tubes and electronic equipment was faced with a problem of finding the right metal for use as a sliding contact in vacuum tutes.
Copper provided a mechanical problem because it tended to gall.
Molybdenum was ideal but was too thick to form and too costly to machine out of solid material.
The problem was presented to General Plate whose engineers quickly found the solution by bonding two metalsainto one . . . a thin layer of molybdenum (.005") to a thicker layer of cupro-nickel (.060 ${ }^{\prime \prime}$).
The result was a General Plate Composite Material that was easily fabricated, gave the performance of solid molybdenuth reduced costs considerably.
No matter what your problems, it will pay you to check with General Plate. Their vast experience in combining precious to base metals or base to base metals can overcome your problems. . . often reduce costs.

General Plate Products include - Precious to base metal laminations . . . Base metal laminations . . . Alcuplate (copper and Aluminum)... Silver solders... Laminated contacts, buttons, rivets . . . Platinum-fabrication-refining . . . Age-hardening Manganese Alloy 720.

Have You a Composite Metal Problem? General Plate can solve it for you

GENERAL PLATE

Division of Metals \& Controls Corporation 31 forest street, attleboro, mass.

You'll get it with

Corry-Jamestown Housings Too !

The old sailor could tell you that a "perfect fit" is no accident. It's the result of painstaking craftsmanship and the ability to work to close tolerances. Here at Corry-Jamestown we know the value of working with care and precision in electronics equipment, too. You can count on us for large or limited quantity production of housings with apertures that register perfectly every time. It's part of the quality you can rely on when you call on Corry-Jamestown.

We have a large force of highly skilled craftsmen and engineers . . a completely equipped tool room to make the precise dies and tools we need to meet your specifications ... a wide variety of shears, presses and brakes automatic welding equipment . . . and modern plating, painting and finishing equipment. - Why not let Corry-Jamestown solve your housing problem? Just drop us a line on your needs and we'll give you complete and specific information on how we can help.

CORRY-JAMESTOWN MFG. CORP.
CORRY, PENNSYLVANIA

FIG. 2-The oscillator alone weighs 430 grams
classified report entitled, "A New Pneumotachograph and its Application to a Study of Human and Canine Respiration" written by Paul E. Morrow of the University of Rochester Atomic Energy Project.

Radioactive Current Source

Radioactivity can be used as a source of electric energy (at low levels) through the use of an "atomic battery" recently developed by the Ohmart Company of Cincinnati, Ohio. The conversion of radioactive energy to electrical energy is obtained by a cell made of two dissimilar materials separated by a filling gas, as shown in Fig. 1. When the cell is connected to a cur-rent-measuring device and the filling gas is forcibly ionized by exposure to nuclear radiation, the positive ions formed in the gas are attracted to the noble electrode and the electrons are attracted to the active electrode, owing to the difference in work function of the two electrodes, resulting in a generation of an electrical current.
The cell is primarily intended for use in measuring nuclear radiation, but the principle involved can

FIG. 1-Drawing shows components of battery with radioactive energy source

Illustrations approximately actual size.

Temperature Compensating DISK Capacitors

Capacity range from 475 mmf on the DI-6 N1400 material down to .3 mmf on the DI- 1 size with tolerances of $\pm 5 \%$ or greater. Conservatively rated for working voltage at 500 volts DC and flash tested at 1500 volts DC . Insulation resistance at 100 volts is well over 10,000 megohms. Electrodes are fired directly to the low loss dielectric and are coated with a non-hydroscopic phenolic for protection against moisture and high humidities. Conform to RTMA Class 1 ceramic capacitors.

Extended Temperature Compensating DISK Capacitors

Produced from a recently developed group of extended coefficient ceramics, this type of $\mathrm{Hı}$-Q Disk permits a much wider temperature compensating range than was possible on the formerly available normal linear temperature coefficient ceramics. Specifically developed for applications requiring a very large gradient of capacity versus temperature. These new HI-Q Disks exhibit relatively higher dielectric constants permitting capacities in the range intermediate between the high \mathbf{K} and linear or normal group of ceramics. The Q (a minimum of 250 at 1 megacycle) is somewhat lower than the Class 1 ceramics. It has, therefore, not been classified by RTMA as Class 1 . However, characteristics are superior to by-pass Class 2 ceramics.

ALL HI-Q DISK CAPACITORS				
COME IN THESE SIX SIZES				
Type	Dlameter	Lead Width	Thickness	
DI-1	$5 / 16^{\prime \prime}$ Max.	$3 / 16^{\prime \prime} \pm 1 / 16^{\prime \prime}$	$5 / 32^{\prime \prime}$ Max.	
DI-2	$3 / 8^{\prime \prime}$ Max.	$1 / 4^{\prime \prime} \pm 1 / 16^{\prime \prime}$	$5 / 32^{\prime \prime}$ Max.	
DI-3	$7 / 16^{\prime \prime}$ Max.	$1 / 4^{\prime \prime} \pm 10^{\prime \prime}$	$5 / 32^{\prime \prime}$ Max.	
DI-4	$19 / 32^{\prime \prime}$ Max.	$1 / 4^{\prime \prime} \pm 1 / 8^{\prime \prime \prime}$	$5 / 32^{\prime \prime}$ Max.	
DI-5	$11 / 16^{\prime \prime}$ Max.	$3 / 8^{\prime \prime} \pm 1 / 8^{\prime \prime}$	$5 / 32^{\prime \prime}$ Max.	
DI-6	$3 / 4^{\prime \prime}$ Max.	$3 / 8^{\prime \prime} \pm 1 / 8^{\prime \prime}$	$5 / 32^{\prime \prime}$ Max.	

Companion Lines to the Popular HI-Q By-pass DISK Capacitors

The widely used HI-Q By-pass Disks are fixed ceramie dielectric capacitors which meet RTMA Class 2 specifications. They are available in the complete capacity range of from .3 mmf to $30,000 \mathrm{mmf}$. Standard tolerances of 5% thru 20% where applicable can be furnished.

Write for Engineering Bulletin Giving Details of all HI-Q DISK Capacitors

[^11]
for Uninterrupted Communications across OCEANS and CONTINENTS...

Whether your problem is uninterrupted communication halfway around the world . . . or only 100 miles . . . ANDREW offers you (1) a world-wide reputation of reliability and (2) the convenience of obtaining all necessary equipment from one dependable source.

- Receiver Coupling Unit efficiently distributes the output of one antenna among as many as 10 receivers. Interaction between receivers is held to negligible levels. Power gain is approximately unity (0 db) over the entire range of operation. A 4-channel unit is also available.
- Rhombic Receiving Antenna Kit contains in one "package" everything you need for an antenna except poles.
- Transmitting antennas available on special order.
- Rhombic Antenna Coupling Transformer is a broad band, low loss unit which matches the balanced impedance of the rhombic to the unbalanced impedance of a coaxial line.
- Transmitting Rhombic Tuning Units for single or multiple frequencies are available on special order.

For Rapid, Frequent Changes in COAXIAL CIRCUITS...

- (a) Coaxial Patch Panel has 24 jacks. Fits $19^{\prime \prime}$ relay rack. Facilitates switching coaxial circuits.
- (b) ANDREW Coaxial Jacks and Plugs are simple to install. No soldering through a window. Just remove one screw, slide the sections apart and solder.

WORLD'S LARGEST ANTENNA EQUIPMENT SPECIALISTS transmission lines for am.fm.ty - antennas - directional antenha equipment antenna tuhing ohits - tower lighting equipment

Commercial gammometer that operates on atomic battery principle
also be used for corrosion measurement, analysis of alloys, gas analysis and measurement of vacuum, pressure and temperature. According to Ohmart physicists, the atomic battery is not likely to result in a new source of electrical power for mankind since the amounts of energy so far obtainable in this way were so small. As an example, a battery capable of lighting a 100 -watt electric lamp would be a 36 -inch cube. However, such a cell would still be delivering current after 20,000 years. The photograph above shows a gammometer that operates on the principle described above.

Transmission-Line Tubes

Chain amplifiers accomplish amplification over greatly increased frequency range by distributing a stage of amplification among a number of tubes rather than attempting to concentrate it in a single tube. A series of special tubes has been proposed that will make possible the use of the chainamplifier principle with a single tube. The tubes are best described as "homogenized" chain-amplifiers, wherein completely uniform distribution of amplification makes possible increases in gain and decreases in over-all size and power requirements and eliminates the intrinsic bandwidth limitations that exist for

FIG. 1-Drawing showing configuration of flve-element transmission line tube for broad-band amplifier applications

Official U. S. Navy Pbotc

going down... but not out

Below periscope level, subs used to grope in the dark, little able to push an effective attack or to strike with accuracy at enemy vessels.

The dark depths were for hiding, not attacking.
Now sonar has changed this. Modern subs of the United States Navy, equipped with newly perfected under water detection devices can locate the enemy at great distances and press home attacks from below periscope depth.

Much of this change in submarine tactics can be traced to the electronic laboratories of the Edo Corporation where new types of sonar have been developed to make possible greater range and accuracy.

Edo has become not only a leader in the design and development of many new sonar devices but also is a major supplier of equipments which help make our Navy's fighting ships and subs the best equipped in the world.

EDO SONAR HELPS GEOLOGICAL SURVEY
The high power and extreme accuracy of latest depth sounding equipment developed by Edo, has been put to work by the Department of Interior in locating bed rock under deep deposits of sand and silt. The use of this method, first tried in Chicago harbor, and later in the Bay of Fundy, promises to eliminate the costly and time-consuming process of drilling test borings to determine how deep through sand and silt foundations must be driven to provide solid footing on bed rock for dams, piers, and breakwaters.

Over a quarter of a century of experience in the aviation, marine and electronic. fields are behind the recent electronic developments which have established Edo as a leader in the whole field of sonar development. If you haven't received your copy of the book describing Edo's first quarter of a century, write to Department $1-\mathrm{M}$, Edo Corp oration, College Point, L. I., New York.

.ffrom "On The Spot"..to ON YOUR DIAL! *

MORE FEATURES PI7 occammodotos $101 / 2^{\prime \prime}$ reels and offers 3 heads, positive tim. shown in console is conailable for shown portable or rack moun)
"My daddy flies a jet plane over Korea!" . . . Magnecorders "stationed" in southern Japan perfectly recorded these brave, young words for Americans at home to hear! Easy portability and dependable high fidelity moke Magnecorders known to Americans serving at home and abroad.

At KRLC, Lewiston, Idaho, Magnecorders bring the same precision and professional quality into the recording room. On an air base or in the studio you can handle "remotes" or delayed programs with complete assurance when you use Magnecorders, the first choice of radio men everywhere.

GREATER FLEXIBILITY
In rock or console, or in its really partable cases, the Magnecorder will suit every purpose. PT6 is available with 3 speeds ($33 / 4^{\prime \prime}$,
$71 / 2^{\prime \prime}, 15^{\prime \prime}$) if preferred.

HIGHER FIDELITY Lifelike tone quality, low distortion. meet N.A.B. standards - and at o mount affers 3 heads shown in rack and play back to monitor from the and play bock ro monitor from th tape while recording.

3
 Maquecord,

360 North Michigan Avenue
Chicago 1, Illinois, Dept. EB-1
Send me latest catalog of Magnecord equipment.
\qquad

Ciry..Zone..............Stote

[^12]the Electron art
single-tube and chain-amplifier stages.

A sketch of a simple structure combining uniformly distributed vacuum-tube transconductance with uniformly distributed isolating inductance is shown in Fig. 1. This five-element version might be described as a very long pentode with connections provided at both ends and with a helical plate rather than the conventional cylinder. The distributed transconductance is that between the grid helix and the plate helix and the isolating inductances are merely the self-inductances of those electrodes.

Theoretical studies made of this tube configuration, on the basis of five-wire transmission-line theory, reveal that interaction between lines within the tube can be responsible for useful amplification. The new type of amplification has been named "transmission-line buildup" to distinguish between it, chainamplifier buildup, and a third type of possible amplification called vacuum-tube buildup.
One of the many possible configurations of transmission-line tubes is shown in mock-up form in Fig. 2. The grid coil form is composed of a number of ceramic beads, which are aligned and connected to each other coaxially by means of smaller ceramic dowels (not visible). Thin micas are sandwiched between adjacent beads, and the cathode is strung lengthwise through small, accurately-punched holes near the periphery of the mica discs and welded to electrodes sealed to the end discs.
After the grid is wound around the form shown in Fig. 2, the gridcathode assembly is inserted in the

EIG. 2-Laboratory mockup shows enlarged model of grid-cathode structure proposed for use in transmission-line tubes. Grid will be wound helically around ceramic form shown

IF YOU USE powdered-iron cores, one of these popular types will most likely solve your inductor problems. If you use powdered-iron cylindrical cores, toroids, potcores, or cup-cores, Lenkurt offers you an economical source of precision-made parts for quick delivery. POPULAR DIAMETERS are supplied from stock dies. These include: Cylindrical cores with or without inserts from 0.195 to 3.375 inches; toroids from 0.800 to 3.375 inches; pot-cores from 0.930 to 3.375 inches; and cup-cores of 0.590 and 0.937 inches. Lineal dimensions can be made to meet most specifications.

ALL SIZES AND TYPES are available in a wide range of powdered-iron materials to suit your requirements. Write for details or a quotation on your needs.

San Carlos 1, California

screen cylinder. This assembly is then enclosed in a ceramic cylinder around which the plate helix is wound.
In describing the proposed line of tubes at the 1951 National Electronics Conference in Chicago, Vernon J. Fowler, Research Assistant at the University of Illinois listed the following advantages:

The principal improvement over other amplifiers is simply that the transmission-line tube can be designed for higher impedance levels and consequently for higher gains per unit length. The maximum impedance level that can be accommodated by other components, such as transmission lines and couplings, transducers, detectors and antennas, determines the amount of gain that can be realized in practice. Additional improvement may be possible if suitable wide-band impedance transformers can be developed; except for noise level considerations it should be feasible to withstand considerable loss in such transformers, since such losses are readily made up in the transmis-sion-line tube at its increased impedance level.

A second improvement is the elimination of an intrinsic upper bound on the band-width. However, since other limitations, such as electron transit-time effects and wave-guide effects, impose physical limitations at slightly higher frequencies than the usual band-width indices, this improvement may not always be very great.

A third potential advantage lies in the bilateral feature of trans-mission-line buildup. If the multiwire impedance matching techniques that have been developed can be proved workable, transmis-sion-line tubes may have important future applications as broad-band bilateral repeaters.

New British Tube For High-Speed Photos

A NEW TYPE of image converter tube capable of photographing phenomena occurring at one-hundred millionth of a second was shown by Mullard Electronic Products Ltd. at the National Radio Exhibition in England. The introduction of a grid enables the

[^13]TYPE 1652-AM RESISTAMCE LIMIT bRIDGE (Cabinet Model) \$365 TYPE 1652-AR RESISTANCE LIMIT BRIDGE (Relay Rack Model). . 365
\qquad SIGNAL GENERATORS - OSCILLATORS WAVE ANALYZES - DISTORTION METERS

There's More to a Good Filter Than Meets the Eye!

All of these 66 parts are from a single B\&W Toroidal-coil type discriminator only $13 / 4^{\prime \prime}$ square by $31 / 2^{\prime \prime}$ long exclusive of terminals!

Throughout, the job is one calling for precision components plus a wealth of engineering "know how" in producing and assembling them for maximum performance and effectiveness.

Like all other B \& W Special Components, the one illustrated here was designed and produced for a specific application-in this instance a critical military use.

FILTERS

In addition to "tailor-made" discriminators, B \& W offers a complete line of performanceproved filters including highpass, low-pass, band-pass and band suppression types.

TOROIDS

B \& W Toroidal Coils of various styles and sizes are available in a wide range of inductance values in open, shielded, potted and hermetically sealed types.
tube to act as an ultra-high-speed camera shutter. The main application of the tube to date has been the study of the rate of burning of explosives, but other uses are expected to be found.

The optical image is focused onto the photocathode. The resulting electrons are accelerated toward a luminescent screen where they form a visible image. Shutter action is obtained by pulsing the accelerating voltage, the picture appearing on the screen for the duration of the voltage pulse.

A number of problems is encountered in the application of these tubes to high-speed photography. The cesium/oxide-silver photocathode shows little sensitivity to the wavelengths of light suitable for single-shot photographic work

New Mullard image converter highspeed photography tube
(4,200 Angstroms). In the Mullard tube, the photocathode is made of cesium/antimony, which has a high sensitivity in the blue region of the spectrum, which is most suitable to high-speed photographic work. A green luminescent willemite screen is normally used, giving a picture of approximately $4 \frac{1}{2}$ inches in diameter. The diameter of the photocathode is approximately $1 \frac{1}{8}$ inches so the tube provides image magnification of four times.
During the development of the tube it was found necessary to devise a special technique to make cesium/antimony cathodes with very low resistance in the order of a few hundreds of ohms per unit square as compared with megohms in the case of normal semitransparent cesium/antimony photocathodes as used in photomultipliers and supericonoscopes. These pho-

Sobe yowr Hermetic Seal Problems

 WITH

STEATITE OFFERS:

EASY ASSEMBLY

 SUPERIOR STRENGTH NON-DETERIORATION permanent sealing RESISTANCE TO HEAT EXTREMELY LOW-LOSS
pecify General Ceramics and Steatite for complete dependability in critical applications

General Ceramics low-loss Steatite sealed leads feature superior mechanical strength that insures permanent, positive hermetic sealing under practically any operating condition. Immune to severe thermal shock, they are easily soft-soldered to closures without developing the strains that are an incipient cause of trouble in many other types of leads. There are no rubber or plastic gaskets to deteriorate. Resistance to mechanical shock and vibration is excellent. The types shown are standard and can be supplied promptly from stock. For complete information on these and for consultation on custom-made terminals to your specification, phone, call or write today.

CERAMICS and STEATITE CORP.

ENERAL OFFICES AD PLANT: KEASBEY, NEW JERSEY

DESCRIPTION: The Berkeley Model 903 Double Pulse Generator is a general-purpose laboratory instrument that produces either single or paired pulses. Pulses are individually variable in width, amplitude, and spacing. Pulse polarity is individually selectable. Separate connectors provide impedance levels of 50 or 1,000 ohms for each pulse output.

SPECIFICATIONS

- PULSE DIMENSIONS: Positive or negative as shown below

- REPETITION RATE: Internally or externally controlled, 1 to 1,000 cycles. Push button single cycle.
- CALIBRATION ACCURACY: Separation dial, $\pm 5 \%$ over entire range.
- INPUT POWER: 105 to 125 volts, 60 cycles, 90 watt.
- DIMENSIONS: $141 / 4^{\prime \prime} \times 93 / 4^{\prime \prime} \times 103 / 4^{\prime \prime}$; panel, $8^{\prime \prime} \times 13^{\prime \prime}$.
- NET WEIGHT: $181 / 4 \mathrm{lbs}$.
- PRICE: \$440 F. O.B. factory.

TYPICAL APPLICATIONS: Checking characteristics of highresolution electronic circuits, gates, switches, wide-band amplifier, measurement of resolution time of counting circuits, etc.

COMPLETE INFORMATION is yours for the asking; please request Bulletin 903-E.

Berkeley suentific cappostion

2200 WRIGHT AYENUE RICHMOND, CALIFORNIA
tocathodes have an average sensitivity of 20 microamperes per lumen to tungsten light at $2,700 \mathrm{~K}$.
The screens used can resolve 50 lines per millimeter and the light can be efficiently recorded on highspeed orthochromatic or panchromatic emulsions.

The tubes are normally operated at $6-\mathrm{kv}$ anode voltage and $3-\mathrm{kv}$ screen voltage. The cathode of the tube is pulsed with a 60 -volt signal. For certain applications, scanning is employed with writing speeds of 60,000 meters per second and a resolution of 1,600 lines across the field of $3 \frac{1}{\frac{1}{2}}$ inches diameter. In high-speed moving film work, exposures can be recorded at a rate of 200,000 frames per second or faster.

Super-Speed Tape Puller For Computer Memory

HigH-SPEED starting, stopping and reversing with notable mechanical simplicity are features of a new magnetic tape handling machine recently developed at the National Bureau of Standards for use with the SEAC computer.

Using two large tanks for storing tape eliminates need for high-mass reels. These tanks hold 1,200 feet of tape and are just wide enough to

Fast starting and stopping are made possible by elimination of heavy reels. Tape lies loosely in two tanks (one behind the other) just wide enough to clear tape

"Net result no net!"

Chrome plate sparkling - baked enamel finish shining - all snugly packed in special cartons and ready to go-20,000 car heaters. The last of the lot - at a good profit, too! Production costs had been cut to the bone. Bill Johnson was proud of that record, and of the net he would show at the end of the month. Then . . . back came some belated field test reports on a trial shipment. The new electrical insulation on the switch leads, that had cost a few cents less, wouldn't take the heat and vibration, and was cracking off. Unpack - replace insulation - repack - on 20,000 car heaters. Net result - no net!

Often it's little failures that chain react into big losses. Protect your products with BH Extra Flexible Fiberglas Sleeving - permanently flexible insulation.

Specifically designed for low voltage circuits where high heat resistance and flexibility are vital factors, BH Ex-Flex is also important as supplementary
insulation. Made without hardening varnish or lacquer it is permanently non-stiffening and retains its flexibility from $-67^{\circ} \mathrm{F}$ to $1200^{\circ} \mathrm{F}$, with color retention up to $300^{\circ} \mathrm{F}$. It is noncombustible. The easy-to-handle tubular shape provides maximum speed and convenience in installation. Patented braid treatment further reinforced by a special saturant allows BH Ex-Flex to be cut in short lengths, spread to cover knobs and terminals, yet prevents fraying or raveling.
BH Extra Flexible Fiberglas Sleeving is one of a family of BH insulations, each designed to meet particular conditions in service. Give us a few facts about your requirements - product, temperatures, voltages. We will furnish production samples for testing.

Address Dept. E-1

Bentley, Harris Manufacturing Co. Conshohocken, Pa.

$$
\begin{aligned}
& \text { BH Giberches } \\
& \text { SLEEVLNG S }
\end{aligned}
$$

*BH Non-Fraying Fiberglas Sleerings are made by an exclusive Bentley, Harris process (U. S. Pat. No. 2393a30). "Fiberglas" is Reg. TM of Owens-Corning Fiberglas Cord.

The value leaders in

clock-radios are the

brands equipped, with

 SESSIONS TIMERS

One of two continuously running rollers against which tape is pressed when movement in that direction is desired. This technique provides very fast acceleration
clear the tape, thus the tape is stored in loose folds without folding or turning.

In the new system, the magnetic tape rests lightly on two smoothsurfaced rollers that rotate continuously but in opposite direction. Between these two rollers the tape passes through magnetic heads for recording, pickup, and erase. When either of two control solenoids is energized, a low-inertia rubbercovered roller presses the tape against one of the smooth rollers. This quickly starts the tape moving in the desired direction.

Electrostatic Charge

Several problems have been encountered in developing the tape memory mechanism. For example, the tape tends to acquire an electrostatic charge as it passes through the drive mechanism. This can become quite troublesome at higher speeds, causing the tape to cling to the walls of the tank as soon as it leaves the drive mechanism. If the charge is strong enough, the tape may continue to stick at the top of the tank until it backs up into the mechanism and is damaged by a sharp fold. At present this problem is being taken care of by ionizing the air where the tape leaves the drive unit using strips of alphaemitting polonium. The ideal solution would be to make the tape sufficiently conductive so that a charge could not collect. Experiment indicates that base material having a resistance of not more than a few megohms per unit square should be satisfactory.

... if electronic components such as tubular capacitors are your problem

Other electronic components also built in quantity to your most exacting specifications for stability in service

COMPLETE SYSTEM or SEPARATE COMPONENTS
Sanborn equipment th $^{\text {s }}$ available as complete 1 -, 2 -, or 4 -channel systems ready for use, or as separate instruments (Amplifiers, Preamplifiers, and Recorders), to be combined or integrated by the user with other equipment.

2

NO INK
Permanent records are produced with heated stylus on heat responsive, continuous plastic coated chart paper. Elimination of ink permits, among many advantages, use of the recorder in any position, at any angle, and at high altitudes.

RECTILINEAR RECORDS

Records are in true rectangular coordinates (with negligible tangent error), permitting more accurate correlation when two or more channels are used simultaneously.
high torque movement
The writing arm is driven by a D'Arsonval moving coil galvanometer with an extremely high torque movement (200,000 dyne cms per cm deflection). Sensitivity $10 \mathrm{~m} . \mathrm{a} . / \mathrm{cm}$ deflection.

5

WIDE CHOICE OF PAPER SPEEDS AND RECORDING CHANNELS
Basic choice of $1-, 2$-, or 4 -channel models. Single channel standard speed $25 \mathrm{~mm} / \mathrm{sec}$., slower speeds available. Two channels, 10 speeds - 5 and $0.5,10$ and 1,25 and $2.5,50$ and 5 , 100 and $10 \mathrm{~mm} / \mathrm{sec}$. Four channel, eight speeds - $50,25,10$, $5,2.5,1.0,0.5$, and $0.25 \mathrm{~mm} / \mathrm{sec}$.

CODE \& TIME MARKINGS

All models provide a means of inserting timing pips in the record once each second independently of the paper drive, and code markings at will.

INTERCHANGEABILITY
Ready interchangeability of Amplifiers and Preamplifiers in all Sanborn systems permits a wide variety of recording combinations.

NEW PRODUCTS

(continued from p 146)
counter are $13 \times 11 \times 7 \mathrm{in}$. It weighs approximately 12 lb and operates on $115 \mathrm{v}, 60$ cycles.

Tiny Panel Mount Switch

The Sessions Clock Co., Tyniswitch Div., Forestville, Conn. Model PM Tyniswitch is a miniature panel mount type measuring only $1 \frac{5}{8} \times \frac{7}{18} \times \frac{3}{4} \mathrm{in}$. and weighing approximately 17 grams. It provides precision snap action, long life and high rating at low cost. The new model is UL rated at 15 amperes at 125 v a-c and $7 \frac{1}{2}$ amperes at 250 v a-c. Movement differential is 0.010 max. Operating force required is 7 to 11 oz and release force is 2 to 3 oz. It provides the following circuits: spst either normally open or normally closed and spdt.

Subminiature Sliprings

NaEr Corp., 631 S. Sepulveda Blvd., West Los Angeles 49, Calif., has developed a line of subminiature sliprings that are fabricated in a special mold which eliminates shrinking, swelling and temperature effects. They feature flexible leads, specially developed insulation which protects against breakdown

		DIAMETER	YARDS PER IB.	TENSIUE STRENGTH
- exceptional	EC9-1-u	. $009^{\prime \prime}$	3,620	15
	EC9-2-U	.026"	702	80
high fensile	EC9-3-U	.034"	418	135
strength	EC9-4-U	.052"	209	220
	EC9-5-U,	.076"	103	330
	EC9-6-U	.083"	87	420
- resistance to	EC9-7-U	.095"	65	510
moisture, oils,	EC9-8-U	.119"	43	725
corrosive fumes,	EC9-10-U	.149"	28	940
	EC9-1-N	. $0105^{\prime \prime}$	3,240	14
	EC9-2-N	.032"	638	62
- will not rot,	EC9-3-N	.039"	387	105
stretch or shrink	EC9-4-N	. $0682^{\prime \prime}$	193	180
	EC9-5-N	.084"	98	295
	EC9-6-N	.094"	84	340
- not affected	EC9-7-N EC9-8-N	. $110^{\prime \prime}$	61 42	440 540
by fungus	EC9-10-N	. 165 "	27	750

Manufacturers of electrical apparatus and appliances, repair and maintenance departments and rewind shops will find MIRAGLAS* CORDS ideal wherever a high quality binder twine or high strength tension member is required for: banding field and armature coils . . . wrapping string bands on small armatures . . . protecting front of commutator V-ring . . . reset strings . . . tying slot insulation . . . binding on V-ring extension . . . filling in winding coils . . . lashing ends of coils in large motors and generators-and when wax-treated for assembling and tying wire harnesses, etc.

- MIRAGLAS* CORDS are made by plying fine, strong, flexible fiberglas (filaments of glass). Available either treated or untreated. Treatments: oil, neoprene or wax.

For MIRAGLAS* CORDS as for all other ElECTRICAL INSULATIONS you can depend upon MITCHELLRAND "Electrical Insulation Headquarters" since 1889.

MITCHELL-RAND INSULATION CO., INC.

51 MURRAY STREET COFtlandf゙ $7-9264$ NEW YORK 7. N. Y.

* PARTIAL LIST OF M-R PRODUCTS: FIBERGLAS VARNISHED TUBING, TAPE AND CLOTH - INSULATING PAPERS aND TWINES - CABLE FILLJNG AND POTHEAD COMPOUNDS • FRICTION TAPE AND SPLICE - TRANSFORMER COM-- POUNDS. FIBERGLAS SATURATED SLEEVING. ASBESTOS SLEEVING AND TAPE, VARNISHED CAMBRIC CIOTH AND TAPE : MICA PLATE, TAPE, PAPER, CLOTH, TUBING - FIBERGLAS BRAIDED SLEEVING - COTTON TAPES, WEBBINGS AND SLEEVINGS - IMPREGNATED VARNISH TUBING - INSULATING VARNISHES OF ALL TYPES•EXTRUDED PLASTIC TUBING

JENNINGS TYPE U Capacitor

Other requirements essential for this Type MW Westinghouse Transmitting Unit which Jennings Capacitors helped to solve: A Capacitor of small physical size. High valtage capabilities. Wide frequency range. High efficiency and long, trouble-free life under all climatic conditions.
The Jennings Flexible Type U Capacitor is used in two capacities, from 60 to 300 mmfds . in the lower frequency ranges and from 10 to 150 mmfds . in the higher frequency ranges.

Another problem was solved by using the Jennings Type ATCS neutralizing capacitor in the final stage. This miniature unit has a range of 10 to 120 mmfds . plus the wide safety factor needed in this transmitter.
WIDE RANGE TUNING
Simplified by the use of Write us for information regarding your own Capacitor problem. Literature mailed on request
to 1,000 volts and highly polished silver rings to reduce torque friction to an absolute minimum. The rings are rhodium plated to reduce wear and retain their luster and range in diameters from 0.062 to 0.250 . These tiny sliprings are highly desirable for gyros, computers, guided missiles, aircraft and many other electronic applications.

Miniature Magnetic Head

Computer Research Corp., 3348 W.

 El Segundo Blvd., Hawthorne, Calif. Model HA102 miniature magnetic head was developed to provide higher component density in magnetic memory storage systems. The new head is only $\frac{3}{8} \mathrm{in}$. in diameter and 1 in . long. It operates at frequencies up to 120 kc , having 13.8 mh total inductance and 11 ohms of d-c resistance and is stable over wide temperature ranges. It requires only 50 ma of writing current and produces 0.4 volt of playback voltage from center tap to one end.

Microwave Switch

C. H. Luhrs \& Co., 297 Hudson St., Hackensack, N. J., has developed a microwave switch for use at X-band. Repeated operation of the

For measurements of line terminations USE THE MEGA-MATCH-Model UHF

WITH A BUILT-IN MEGA-SWEEP

 reflection coefficient vs. frequency over 30 mc . band

TWO INSTRUMENTS IN ONE:-

1. Impedance Match Indicator

Displays: Reflection coefficient vs. frequency over 30 mc . band.

Frequency Range: $10-1000 \mathrm{mcs}$.
Resolution: One sine wave of beat note:per mc . at low end, per 2.5 mcs . in intermediate range, per 5.0 mcs . at high freqency end.

Sensitivity: Reflection coefficients between 0.01 and 0.1 depending on frequency. Sensitivity can be improved by use of external audio filters and attenuators.

2. Wide Range Sweeping Oscillator

Frequency Range: 50 kcs . to 1000 mcs .
Sweep Widths: At least 30 mc . max.
Sweep Rate: Synchronized to power line but can be operated asynchronously to display amplifier hum.
Output: 100 mv . max, at 50 ohms.
Frequency Measurement: By calibrated coaxial wavemeter.

Available separately as:
The Mega-Sweep . . . $\$ 395.00$
The Calibrated Mega-Sweep $\$ 425.00$

UHF Mega-match complete but without indicator oscilloscope
$\$ 895.00$
F.O.B. factory

Where it's a matter of protecting a maker's reputation for quality performance . . . of unquestioned dependability on the battlefield or in the community-engineers don't gamble. They specify precision-made, per-formance-tested cores by MOLDITE.

NATIDNAL

switch is accomplished in accordance with the following schedule:
(1) With no voltage impressed upon the coil terminals, maximum attenuation is achieved. (2) Voltage is applied to coil terminals to achieve minimum attenuation. (3) Voltage is removed from coil terminals. Attenuation does not rise to the fully maximum value until a small reversed voltage is applied; the maximum attenuation figure is then again realized. Weight of the switch is 6 oz ; length, $1 \frac{13}{} \mathrm{in}$. ; maximum attenuation, 40 db ; minimum attenuation, 1 db ; d-c power required for operation, 6 watts.

Dual-Concentric Control

Clarostat MFg. Co., Inc., Dover, N. H. Adaptation of a proven design for locking shafts at a desired setting is now available on a dualconcentric control. Use of this construction will allow the replacement of two panel units requiring locked semipermanent settings. It is a dual-concentric unit where concentric operating shafts and tapered jam nuts are used for locking the individual controls at any desired settings. This type control requires one-half the panel space of two single units.

F-M/A-M Tuner

Collins Audio Products Co., P. 0. Box 368, Westfield, N. J. Type 45-S

PERFORMANCE

+ STABILITY TYPE 517 OSCILLOSCOPE

RISETIME - . 007 usec, or less ($10 \%-90 \%$) SWEEP RANGE-. $01 \mu s e c / c m$ to $20 \mu s e c / c m$ SENSITIVITY-. $1 \mathrm{v} / \mathrm{cm}$
ACCELERATING POTENTIAL - 24 kv
The Tektronix Type 517 Cathode Ray Oscilloscope has been enthusiastically accepted by research and development laboratories throughout the country. A partial explanation of this response can be given in terms of the remarkable operational stability of this instrument.

In order that usable, meaningful information can be obtained in the range of operation of the TYPE 517, it is necessary that a high degree of stability be designed into the circuits.
As an illustration, the photographs reproduced below show a .045 usec pulse, initial rise time .001 usec, recurring at a rate of 5cps. The sweep is being triggered by each pulse, and is operating at a rate of $0.01 \mathrm{usec} / \mathrm{cm}$. The photograph on the left is a continuous exposure over a twelve hour period during which the line voltage varied between 115 v and 125 v . The photograph on the right is a five minute exposure taken immediately after the long exposure.

Factors contributing to the excellent performance and stability of the Type 517 are:
Use of highest quality components.
Electronic regulation of indicator heaters, CRT gun voltage, and other critical voltages against both load and line changes.
Five stages of distributed vertical amplification.

A triggered, hard-tube bootstrap-type sweep circuit.
Adequate forced ventilation of both indicator and power supply units.
TEKTRONIX TYPE 517 CATHODE RAY OSCILLOSCOPE, $\$ 3500$ F.O.B. Portland, Oregon TEMTMOMNTMEPO.Box 831, Portland 7, Oregon
ATwater 6357
Cables: Tektronix

MASTERS OF MARKING - Since 1911
Markem methods, machines, type and inks have been marking the products of industry for forty years. Markem machines can mark up to many thousands of pieces per hour. They make clear, durable imprints on flat, curved or irregular surfaces of paint, paper, wood, glass, metal, leather, plastic, rubber, fabric, composition and pressure sensitive tapes. No special skill is needed for their operation. Legend and color of imprint may be quickly and easily changed.

MAKE YOUR MARK WITH MARKEM

When your products need marking for Identification, Control or Market - ask Markem. Submit your problem, together with a sample of the item to be marked. Markem Machine Company, Keene 5, New Hampshire.

Bardwell \& McAlister's Line of Television Lights

 TV SPOTS. omimes tor temation Studios and StagesDrawing upon their sixteen years of experience in the production of studio lights used by the motion picture industry, Bardwell \& McAlister, Inc. now offers a complete new line of lights especially designed and engineered for TV stage and studio lighting.

Paint with Light

Painting with light is the ability to control the light source, in order to emphasize the necessary highlights and the all-important shadows. Only through controlled light can the scene or subject be given the desired brilliance, beauty and third dimensional effects.

Our Specialists...

are always ready to assist and advise your engineering staff, so that your studios and stages will be fully equipped to properly "Paint with Light." Write for complete specifications and prices of these TV SPOTS. Address Dept. 68.

BA DDME P MCA OTED 2950 ONTARIO STREET BURBANK, CALIFORNIA

f-m/a-m tuner has available two output impedances: 500 ohms through an output transformer and high impedance directly off the plate of the 6 J 5 through a coupling capacitor. The tuner also has an $\mathrm{f}-\mathrm{m}$ squelch available. When higher sensitivity is required the squelch may be switched out allowing full sensitivity of between 5 and $10 \mu \mathrm{v}$. Electrical characteristics are as follows: power source, 110 v a-c, 60 cycles; power consumption, 125 w ; f-m sensitivity, $10 \mu \mathrm{v}$ average; a-m sensitivity, $80 \mu \mathrm{v}$ average; i-f bandwidth (f-m), 150 kc ; image ratio (f-m), 1,500 to 1 ; i-f (f-m), 10.7 mc ; antenna input, 300 ohms ; frequency response of audio, 50 to 15 kc plus tone control variation of 10 db up or down. Price of the unit is $\$ 295.50$.

Miniature Relay

The Hart Mfg. Co., Hartford, Conn. The Diamond-H aircrafttype hermetically sealed miniature relays are 4-pole double-throw units that are designed to meet the requirements of USAF specification MIL-R-5757 and exceed several standard requirements by significant margins. The relays give operational shock resistance in excess of 50 g , and will not drop out until voltages of 7 or less are reached. Designed for operation in temperatures ranging from -65 C to +200 C , they have given satisfactory test results over a much wider span. Transit time is approximately one millisecond. Insulation resistance is in excess of 500 megohms. Contact ratings are 2 amperes, $28 \mathrm{v}, \mathrm{d}-\mathrm{c} ; 2$ amperes, 115 v a-c including 400 cycle; inductive, noniuductive and motor loading.

Synchroscope

Browning Laboratories, Inc., 750 Main St., Winchester, Mass. Model

Making little ones out of big ones ...

Many a design problem has been simplified by the Westinghouse ability to reduce transformer size and weight.
Here, for example, is a case where a transformer was required to work in a voltage-doubler circuit at 18,000 volts. The old model created a space problem.

First step in redesigning, Westinghouse engineers applied a smaller, lighter Hipersil ${ }^{\circledR}$ Core. That, plus improved insulation, made it possible to reduce coil size and spacing. Then a wet-process porcelain cap, with integral tube sockets, eliminated the need for stand-off insulators. The net result was an over-all reduction of 30% in both size and weight of the completed power unit... with a great big bonus: The saving to the equipment assembler in installation
costs alone made the new design highly profitable, because it was no longer necessary to wire tube sockets.

Savings like this are available to you, too. If size, weight, performance, or quantity production have any bearing on your transformer problem, call your Westinghouse representative, or write Westinghouse Electric Corporation, Specialty Transformer Department, Sharon, Pennsylvania.
J. 70610

rou car es SURE....if ris Westinghouse

MAXIMUM PROTECTION for Electronic Equipment. Lord Mountings, of Course!

HERE ARE A FEW LORD MOUNTINGS DESIGNEDFOR ELECTRONIC INSTALLATION

burbank, Callfornia
joe B. Hartley
George E. Behlmer 233 South Third Street ROckwell 9-2151 CHarleston 6.7481
dayton 2, OHIO
W. Webster Daliton

MIchigan 8871

Lord engineers are best prepared to mount your electronic equipment correctly. They have developed thousands of mountings for specific conditions to deliver maximum protection against shock and vibration.

You can draw from this reservoir of proved mountings with greatest economy and speed.

However, if your electronic equipment demands a specially designed mounting, Lord engineers will work with you to develop the most efficient and economical mounting you can buy.

Take advantage of Lord Engineering "know-how" and modern production facilities.

For immediate consultation call or write-

CHICAGO 11, ILLINOIS Robert T. Daily
Kenneth L. Hanson
Perry C. Goodspeed, Jr.
520 N. Michigan Ave. MIchigan 2-6010
DETROIT 2, MICHIGAN Everett C. Vallin
7310 Woodward Ave. Thinity 5-8239

DALLAS, TEXAS
Bruce O. Todd
1613 Tower Petroleum Building
PRospect 7996
NEW YORK 16, NEW YORK
Vincent Ellis
Jack M. Weaver
280 Madison Avenue MUrray Hill 5-4477

PHILADELPHIA 7, PENNSYIVANIA

LORD MANUFACTURING COMPANY - ERIE, PA -

P4-EX synchroscope is designed for those applications requiring a triggered sweep. An internal trigger generator with continuous adjustment from 50 to $5,000 \mathrm{pps}$ enables the scope to be used as a timing source. The triggered sweep is continuously variable and calibrated from 1.0μ sec per in. to $25,000 \mu \mathrm{sec}$ per in. Output triggers may be phased from 500 usec before the sweep to 500 .sec following the start of the sweep. A vertical amplifier with a flat response from 5 cycles to 5 mc makes the unit useful for examination of various pulse waveforms. The P4-EX uses a 5 -in. c-r tube and is housed in a compact steel cabinet $14 \frac{1}{2}$ in. high, 10 in . wide and $16 \frac{3}{3} \mathrm{in}$. deep. Weight is 50 lb .

Airborne Audio Amplifiers

Gertsch Products, Inc., Los Angeles, Calif., has started production on its airborne audio amplifiers models AA-1A and AA-1B. The assembly includes $\frac{1}{2}$ ATR rack with shock mount and has 20 watts output with controlled response. The amplifiers were developed primarily for p -a and entertainment use aboard aircraft. Both models include variable frequency response by means of a 4 -position filter (for noise suppression) ; remotely operated level control; and dual input circuits. Model 1A weighs 20 lb and No. 1B, 23 lb . Distortion is less than 5 percent at 20 w ; input level, zero db across $600 \mathrm{ohms}, 1 \mathrm{mw}$; input impedance, 600 ohms. Input circuits are (a) $600-\mathrm{ohm}$ line and (b) $600-\mathrm{ohm}$ carbon microphone

TOP

PERFORMANCE

and every other microwave frequency

The WORKSHOP was the first manufacturer to bring out a complete line of parabolic antennas. Today these antennas are recognized as the top performers for all microwave frequencies. This is the result of years of specialization on all types of high-
frequency antennas in laboratories with the finest research and test equipment. Normally, we can meet your requirements with our standard equipment but for special applications, reflectors can be supplied in a wide range of sizes and focal lengths.

Series 7000 Includes Models 6075, 6725 and 7275

	Model 6075			Model 6725			Model 7275		
Frequency Range	5925 to 6175 Mcs.			6525 to 6875 Mcs.			7125 to 7425 Mcs.		
Reflector Size	$48^{\prime \prime}$	$72^{\prime \prime}$	96"	48*	72"	96	$48^{\prime \prime}$	$72^{\prime \prime}$	$96^{\prime \prime}$
$\left.\begin{array}{r}\text { Gain (db, approx., } \\ \text { over isotropic radiator) }\end{array}\right\}$	34.4	37.5	40.4	35.0	38.5	40.8	36.0	39.4	42.0
Half Power Angles (H plane)	$2.86{ }^{\circ}$	1.92°	1.32°	2.50°	$1.74{ }^{\circ}$	1.32°	$2.42{ }^{\circ}$	1.61°	$1.21{ }^{\circ}$
(E plane)	$3.24{ }^{\circ}$	$2.04{ }^{\circ}$	1.47°	2.78°	1.94°	1.47°	2.70°	$1.81{ }^{\circ}$	$1.36{ }^{\circ}$

Input Impedance
VSWR
Power Rating
Polarization
Side Lobes
Input Connection

Dish and Feed Heaters

52 ohms nominal
1.3 to 1 or better

1 kw. continuous
Either vertical or horizontal available at time of installation.
25 db down or better
UG-343/U choke flange filting for RG-50/U $\left(3 / 4^{\prime \prime} \times 11 / 2^{\prime \prime}\right)$ pressurized waveguide. Standard fitting. Special feeds and fittings on special orders only.
Available for all models. The dish heater capacities range from 400 to 4000 watts. The feed heater draws 20 watts.

Write for Parabolic Antenna Catalog

DIVISION OF THE GABRIEL COMPANY
Specialists in High-Frequency Antennas
135 Crescent Road, Needham Heights 94, Massachusetts

OTHER STANDARD MODELS

| MODEL | FREQUENCY | GAIN* | | |
| ---: | :---: | :---: | :---: | :---: | :---: |
| NO. | HALF POWER ANGLE | | | |
| (MCS.) | (DB.) | E Plane ${ }^{*}$ | H Plone | |
| 940 | 920.940 | $19.0-28.0$ | $19.75^{\circ}-7.8^{\circ}$ | $17.75^{\circ}{ }^{\circ} 6.9^{\circ}$ |
| 2000 | $1700-2300$ | $27.0-34.5$ | $10.28^{\circ}-3.65^{\circ}$ | $9.2^{\circ}-3.25^{\circ}$ |

*Gain and Half Power Angles are dependent on size and
frequency of parabolas, $-4,6,8$ or 10 foot diameter.

FREE SUDE RULI-This pocket size slide rule quickly computes diameter. wavelength, angle and gain for porabolic antennas. Reverse side earries FCC frequency allocations, conversion tables ond other data. Write for your copy.

with filtered current supply; output impedance is $50-100-500$ ohms.

TV Picture Tubes

Allen B. DuMont Laboratories, Inc., Clifton, N. J., has available two new all-glass $21-\mathrm{in}$. rectangular tv picture tubes. Both employ a bulb that results in a picture area of 242 sq in., with screen face made of filter-glass for minimizing reflections and improving contrast. Type $21 E P 4 A$ employs the bent gun for electromagnetic focusing. A singlemagnet ion trap is used. Type 21 KP 4 A is one of the Selfocus Teletrons requiring no focus controls or circuitry. It provides absolute focus at all times. The latter type may be used as a replacement for either elect: nagnetic or electrostatic foc isinn, type tubes.

Induction Heater

General Electric Co., Schenectady 5, N. Y., has announced an improved $20-\mathrm{kw}$ induction heater featuring a nonventilated, dustproof NEMA type 12 enclosure, and designed for use in high-speed annealing, brazing, hardening and soldering. Type HM-20L1 heater, for short-run production of a wide variety of parts, has variable power adjustment from 0 to 100 percent by means of a rheostat. For longrun, higher-production applications that do not have rapid cycling, type HM-20L2 heater (without variable power adjustment) is recommended. Units are available for operation on 230,460 , or 550 -volt,

Now. ..an NWW Junior Voliohmys?

 ...the WV-77A
For all regular

 measurements and specialized measurements as illustrated. as signal voliage on plate of of tube.

Check these

 importantfeatures...
\checkmark Accurate laboratory calibration.
\checkmark Meter electronically protected against burn-out.
\checkmark Metal case shielding . . . extra stability in rf fields.
\checkmark Sturdy 200-microampere meter movement.
\checkmark Carbon-film 1% multiplier resistors... dependability plus.
\checkmark Zero-center scale . . . for discriminator alignment.
\checkmark Frequency response flat from 30 cps to approximately 3 Mc .
\checkmark High ac input resistance for greater accuracy.
\checkmark Constant dc input resistance ... 11 megohms on all scales.
\checkmark Negative feedback circuits for greater over-all stability.
\checkmark Ohms cable always positive... for quick leakage measurements of electrolytic capacitors.
\checkmark Polarity reverse switch . . . eliminates cable switching.
$\checkmark \pm 3 \%$ over-all accuracy on \pm dc scales, and $\pm 5 \%$ on ac and -dc scales.

Available from your RCA Test Equipment Distributor

MEASURES RESISTANCE ... such os leakags in coupling copacitor up to 1000 megohms.

such as leakags in coupling

An all-electronic ac-operated vacuum-tube volt-ohmmeter by RCA ONLY \$47.50.

Includes DC probe, AC direct probe and cable, ground lead, and alligator clip.

The RCA WV-77A VoltOhmyst* provides the extra features you have tried to find in an inexpensive VTVM. Using the famous VoltOhmyst electronic bridge circuit, 200-microampere meter movement, and carbon-film multiplier resistors, the WV-77A incorporates features you would expect to find only in more expensive instruments. Sturdily bailt ... calibrated against laboratory standards . . . and backed by a 12 -month warranty .. . the WV.77A has the durability, versatility, and accuracy to please discriminating customers such as service technicians, engineers, amateurs, and military personnel.
As a DC Voltmeter it measures dc from 0.05 volt to 1200 volts in five ranges. Uses 1 -megohm resistor in isolating probe; probe has less than 2 -uuf input capacitance. Has 11-megohm input; useful for measuring highresistance circuits such as oscillator, discriminator, and avc.
As an AC Voltmeter it measures ac from 0.1 volt to 1200 volts rms in five ranges.

Uses high-impedance diode tube as signal rectifier. Frequency range is more than adequate for measurement of power line, audio, and ultra-sonic frequencies.

As a wide-range Ohmmeter the WV-77A measures resistance from 0.2 ohm to 1 billion ohms in five ranges. Requires only 1.5 -volt battery as burn-out protection in measuring such low-power elements as battery-type tube filaments.

The all-new RCA WV-77A VoltOhmyst comes completely equipped with probes and cables as illustrated. For complete details, see your RCA Test Equipment Distributor today ... or write to RCA, Commercial Engineering, Section 42AX, Harrison, N. J.

Accessories Available on Order

The WG-289 High-Voltage Probe and WG206 Multiplier Resistor extend the dc range of the WV-77A to 50,000 volts.
The WG-264 Crystal-Diode Probe extends frequency range of the WV-77A to 250 Mc .

RADIO CORPORATION OF AMERICA
test equipment

Courtesy Apnok Co., Warsaw, Ind.

HERE'S an "on-the-spot" answer to the problem of providing equipment with a combination of push-pull and rotary control. As the illustration shows, with only a single S.S.White flexible shaft, the light can be swung the full 360° arc and tilted up or down simply by turning the control knob or by pushing it in or pulling it out.

The same idea can be used on a wide variety of electronic equipment containing parts which must be regulated from more or less remote points. Not only do S.S.White flexible shafts offer considerable advantages in terms of simplicity and economy, but they also give more freedom in locating the coupled parts where desired.

SEND FOR THIS FREE BULLETIN

Bulletin 5008 has essential facts and data on flexible shafts and shows how to select and apply them.

Western District Office - Times Building, Long Beach, California
three-phase, 60-cycle power supply. Weight is approximately $3,600 \mathrm{lb}$.

Resistors

Cinema Engineering Co., Burbank, Calif., has added BW resistors to its resistor line. The entire series is provided with soldered lugs and have entire range sizes from single section chapron-wound to a 4 -section resistor and multi-pi winding in the larger BW-1B type. Resistance values are 1 ohm to 1 megohm. Wattage rating varies from 0.25 to 1 watt. They are available in a variety of resistance wire alloys and impregnation treatments.

Oscilloscynchroscopes

Browning Laboratories, Inc., 750 Main St., Winchester, Mass., announces models ON-5A and ON-5X oscillosynchroscopes, each featuring a sweep system that may be operated in either triggered or recurrent fashion with direct-reading panel calibrations of sweep speed. Sweep writing rates are continuously variable from $1.0 \mu \mathrm{sec}$ per in. to $25,000 \mu \mathrm{sec}$ per in. Vertical amplifiers are flat within $\pm 3 \mathrm{db}$ from 5 cycles to 5 mc . Horizontal bandwidth is from d-c to 500 kc. A vertical deflection calibration source of 0 to 2,0 to 20 and 0 to 200 volts provides a convenient means

Many units, such as timers, transmitters, vending mechanisms, and similar devices require the adoption of small open gear trains for intermittent duty.
Beaver Gear Works is equipped to make these trains to any degree of accuracy required. Beaver Gear engineers, knowing what is expected, and qualified to assist in details of fine-pitch gear applications, can advise you as to what will work best under various conditions and can specify the correct desiga.
Consult us on your gear problems.

for determining amplitude of vertical input voltages.

A-C Voltage Regulator

Sorensen \& Co., Inc., 375 Fairfield Ave., Stamford, Conn., Model 1001 a-c voltage regulator has a regulation accuracy of ± 0.01 percent. Input is 95 to 130 v a-c, single phase, $55-65$ cycles; output voltage is adjustable from 110 to 120 v a-c. Accuracy is guaranteed at room temperature, for a resistive load, an input variation of ± 10 percent, and over a two-to-one load change. The unit contains only four vacuum tubes and no relays. All tube filament voltages are regulated for long dependable life.

Limit Switch

General Control Co., 1202 Soldiers Field Road, Boston 34, Mass., has developed the switch illustrated for use in applications requiring a compact, lightweight, long-life limit switch. As a direct-acting switch it has no inherent bounce. Mechanical lost motion, which would delay contact operation, is eliminated because instantaneous contact is made at the same fixed point of repetitive plunger travel. The centrally-located plunger permits easier cam design and acts directly on the long contact spring to insure contact transfer with maxi-

NON-INSULATED COILS WOUND AT 5000 RPM

WINDING STARTS INSTANTLY WITHOUT DANGer of wire breakage with the overend tension. The first turn can be started tightly against the spool or bobbin head, improving 'lay".

WIRE BREAKAGE DETECTOR is optional equipment for stopping arbor promptly when wire breaks or runs out. This relieves operator of having to watch wire spool continually and prevents counting of turns when wire is not being wound.

UNIVERSAL WINDING COMPANY

P. O. Box 1605, Providence 1, R. I.

READILY-ADJUSTABLE TRAVERSE MECHANISM permits winding any length of coil from $1 / 16$ in. to $213 / 16 \mathrm{in}$. without changing cams. A single setting applies to all the winding heads.

Write for Bullerin 102-H

For winding coils in quantity accurately....automatically use Universal Winding Machines

Many Industrial Products Star Here

,

MOSITES makes fibres work for indestry

mum spring pressure. Contact arrangement is spdt, spring return. It will handle up to 20 amperes, 125 volts a-c, noninductive.

R-F Interference Filter

The Filtron Co., Inc., 131-05 Fowler St., Flushing, N. Y., announces production of a new 15 -ampere, 28 -volt d-c, r-f interference filter. The unit is hermetically sealed, with AN connectors, and features high attenuation from 150 kc to 400 mc . It is specially designed for aircraft applications.

Mobile Converters

Mallard MFg. Co., 6025 North Keystone Ave., Chicago 30, Ill. Types $10 \mathrm{~N}, 20 \mathrm{~N}$ and 75 N converters, providing improved mobile operation on the amateur bands indicated by the model numbers, utilize 6AB4 oscillators which function efficiently even with low battery voltages common during subfreezing temperature periods. Model 10-20 converter provides operation on both the 10 and 20 meter bands and is available with or without built-in noise limiter. Band switching is accomplished with a new two-position sliding switch board that permits ex-

A compact, lightweight, wideband oscillograph...

- field maintenance of microwave, radar, and pulsed systems.
- setting up relay links, transmission line terminations, mobile communication systems, etc.
- testing airborne equipment, as well as testing mobile ground equipment.
- trouble-shooting and maintaining electronic computers, television, telemetering, and associated circuits.

The Du Mont Type 334-A is a small, highly portable, wideband oscillograph intended for general field engineering and maintenance.

Utilizes Type 2APl-A cathode-ray tube with a magnifier, and calibrated scale with variable illumination. Produces a trace of high resolution.

Both driven and recurrent sweeps are provided in three ranges from 50 to 50,000 cycles per second for recurrent sweeps, and from 280 to 5μ seconds duration for driven sweeps.

Inputs include a high-impedance input with three attenuator positions; a low-impedance position; and a $1 / 2-\mu$ second delay line terminated by a 10 -step attenuator with a total of 20 db attenu: ation in 2 db steps, plus a fine gain control. Deflection factor of vertical amplifier at full gain is $0.3 \mathrm{p}-\mathrm{p}$ volt/inch with frequency response of amplifier within 30% from 40 cycles to 2.5 MC . Pulse response, 0.14μ second.
Weight: less than 30 lbs . Overall dimensions (including eyeshade): only $8^{\prime \prime} \times 9^{\prime \prime} \times 21^{\prime \prime}$. Operates from power source of $115 \pm$ 10 volts at any frequency between 50 and 1200 cycles per second.

In addition to sturdy metal carrying case, Type 334-A is supplied with two probe assemblies, two 10 -foot coaxial patching cords, and 15 -foot power cord.

FULL RANGE HERTITIT HERMETICALY SEALED UNITS

NYT hermetically sealed transformers are available in all standard sizes to meet MIL.T- 27 specifications, and especially designed constructions for a wide variety of military as well as civilian applications. Designed and built to meet the most exacting specifications. Production facilities for quantity production of all sizes.

the HORNET

HORNET transformers, pioneered by NYT, are of open type construc. tion, utilizing Class H insulating materials. Approximately onefourth the size and weight of comparable Class A units. Filament and plate supply transformers and chokes. Units can be designed for ambients up to 190 deg . C., altitudes up to 60,000 feet; power ratings from 2 VA to 5 KVA .

POWER, AUDIO, FILAMENT and PLATE TRANSFORMERS REACTORS • FILTERS • CHOKES TV•RADIO • ELECTRONICS

Engineering and development facilities

NEW YORK TRANSFORMER CQ. ING。
 ALPHA, NEW JERSEY

tremely short leads, thus assuring high efficiency for two-band operation. Descriptive literature is available.

Slug-Tuned Coil Form

Cambridge Thermionic Corp., 437 Concord Ave., Cambridge 38, Mass. Type LS-8 slug-tuned coil form features silver-plated phosphor bronze clip terminals which cannot loosen. Height is $23 / 32$ in.; maximum diameter, $\frac{1}{2}$ in. Coil form is of grade L-5 silicone-impregnated ceramic. The slug is provided with a spring lock. All metallic parts except clips are cadmium plated. The unit is supplied complete with slug and all mounting hardware.

Milliampere Stabilizer
North American Philips Co., 750 S. Fulton Ava, Mt. Vernon, N. Y. A new Norelco MA stabilizer is designed specifically to hold tube

Precision Electro-Mechanical Equipment

 ...for All Industries

ATLIS OFFERS COMPLETE ENGINEERING, PRODUCTION AND ASSEMBLING FACILITIES

Take an intricate electro-mechanical procuct in the pilot stage . . ."iron out the kinks". . mass produce it . . . and assemble it with finest precision. Thaf's the service Atlas "Precisioneers" offer American Industry. Extra hands to speed the output of vitall! needed products that must be subcontracted.

Atlas has an engineering and development staff capable of desigring for mass production. Stilled craftsmen of the high speed machine tools, precision grinders, gear cutters and stamping presses.

Experienced and exacting operafors are on eve-y assembly line to assure precision finished assemblies.

Ailas "Precisioneers" are master craftsmen of every step of the way in producing fine precision electrc-mechanical assemblies - all services under one roof, under one responsibility. Whether you need a sub-contractor to mass produce assemblies for you or a source of supply for precision parts, Atlas offers you complete facilfies. Speed your production - write for "Precisioneers For Industry."

When you buy for broadcast you want the best ... and Altec makes the best micromhones foevery phase of broadcasting and telecasting Altec microphones are outstanding for evey day use and will exseed ever the most exacting requir ments when called upon for sjecial obs If you are not alreaty 有miliar with these eyceptional microphones, expose yourself to their undeniable advantages.

For quality, the omnidirectional 21B has no peer. In video, if the mike musi be shown the 218 will be vir; tually invisible. Quality, ruggedness, small size and eyeappeal nake the 21 B cutstanding above all others.

The 63 " "saltshaker" has long been popular for general studio and tield use. For ruggedness and quality at moderate price there is no better.

9356 Santa Monica Boulevard, Beverly Hills, Calformia 61 Sixth Avenue, New York 13, New Yort
current constant at any given setting when used in conjunction with the company's water-cooled x-ray diffraction equipment. For work where extremely constant x-ray tube current is important, the unit will be of great benefit since it has three ranges; 0.5 to $2 \mathrm{ma}, 7$ to 25 ma and 25 to 50 ra. The three stages are easily selected by means of a three-position lever switch mounted on the end of the stabilizer chassis. Safety circuits are employed which protect the x-ray tube filament from excessive heating and at the same time permit the regulator to be turned on by the main power switch. The stabilizer holds to within 0.1 percent any irregularities in the x-ray tube filament current due to such things as change in contact resistance or change in filament characteristics due to heat.

Kilovoltmeter:

Beta Electric Corp., 333 E. 103rd St., New York 29, N. Y., announces the series 111 kilovoltmeters, medium precision units for measuring high voltage d-c up to $200,000 \mathrm{v}$. They consist of a separate multiplier case and meter cabinet. The meter multiplier is immersed in a large mass of nonhygroscopic wax, enclosed in a Bakelite cylinder. The wax renders the multiplier insensitive to changes of ambient atmospheric conditions. Guaranteed accuracy is 4 percent of full scale over the entire range of the instruments. This includes the 1 -percent yearly variations due to ambient conditions. Sensitivity of the $50-\mathrm{kv}$ unit is 20,000 ohms per volt; for the

TEST FOR FORWARD VOLTAGE DROP (AEOVE) REQUIRES ONLY VARIABLE A-C SUPPLY, A-C VOLTMETER AND D-C AMMETER

Easy comparison tests show G:F rectifier quality

TESTS FOR LIFE of high-voltage, G-E selenium rectifiers made on convection-cooled and forced ventilation racks (above) indicafe that forward resistance increases less than 6% after 10,000 hours operation.

Make these tests yourself-and you'll keep your product out in front with G-E selenium rectifiers

Most engineers know that metallic rectifiers don't follow Ohm's law. But tests for rectifier quality and operating characteristics are easy to make. General Electric invites you to make these tests, and compare $\mathrm{G}-\mathrm{E}$ selenium rectifiers with any others on the market today. You'll find G-E rectifiers outstanding in these four important qualifications. LOWER FORWARD RESISTANCE. This means higher output and cooler opera-tion-plus lower costs in circuit components and design.
LESS BACK LEAKAGE. For higher efficiency, as well as higher output and cooler operation.
COOLER OPERATION. Due to both of the above characteristics; because there's less heat to dissipate, less ventilation is required.
LONGER LIFE. Expected life at rated output: over 60,000 hours!

For details on comparison tests of selenium rectifiers, write for Bulletin GEA-5524 ta Section 461-19, General Electric Co., Schenectady 5, N. Y., or arrange for test details and sample units through an authorized G-E agent or your nearest G-E office.

GENERAL
 ELECTRIC

Test, Grade, or Match Resistors

Just place the "unknown" resistance across the terminals of this precision, production Clippard tester. Even unskilled operators can process up to 17 resistors (of all types) per minute. Working to an accuracy of better than $\pm 1 \%$ through the entire range of 100 ohms to 100 megohms, the PR- 5 is a companion instrument to the famous PC-4 Automatic Capacitance Comparator. With it, radio, electrical, resistor manufacturers and large part jobbers save time and money and assure unerring accuracy of inspection.

Completely self-contained, the PR-5 requires no outside attachments other
than the Standard Resistor against which unknowns are checked. Operates on 110 Volt- 60 Cycle AC. Range: 100 ohms to 100 megohms; reads deviation from standard on any of three scales: -5% to $+5 \%,-25 \%$ to $+30 \%$ or -50% to $+100 \%$. Size: $18^{\prime \prime} \times 12^{\prime \prime} \times 12^{\prime \prime}$. Weight: approx. 32 lbs. For complete details, write for Catalog Sheet 1-E.

Clippard

INSTRUMENT LABORATORY INC.
1125 Bank Street - Cincinnati 14, Ohio

150 and $200-\mathrm{kv}$ units, 10,000 ohms per volt.

Precision Resistors

Shallcross MFg. Co., Collingdale, Pa., has announced a line of miniature hermetically-sealed resistors with solder lug terminals and designed to meet the requirements of JAN-R-93, characteristic A, style RB11. Known as Akra-ohm type 1180, the resistors are only $19 / 32$ in. long $\times \frac{1}{2} \mathrm{in}$. diameter and are rated 0.25 watt at 250 v . Resistance values up to $0.1,0.3$ or 0.4 megohm may be obtained depending on the alloy wire used for the noninductive winding. This and other types are fully described in bulletin $\mathrm{R}-3 \mathrm{~b}$.

External Phasing

Potentiometer
De Jur-Amsco Corp., 45-01 Northern Blvd., Long Island City, N. Y., has added the C-200 series to its line of precision potentiometers, designed and engineered for precision instrument, computer and military applications. These units are available singly or ganged up to any number, and still maintain the same degree of mechanical and electrical accuracy in any combination of both linear and nonlinear resistance windings. Mechanical rotation is 360 deg continuous and electrical rotation 320 deg ± 1 deg. Resistance range is 10 to 200,000 ohms

 best - news for you in years. The industrial problem of soldering aluminum and other metals that form refractory oxides has at last been overcome in a practical, omercal form by the use of ultrasonics.

The new soldering equipment developed in the Mullard Research Laboratories destroys oxide film by ultrasonic cavitation and provides a "clean" metallic surface.
The equipment comprises a small electronic amplifier for supplying the ultrasonic power, and a soldering gun.

gun, make the operation simple.

No flux is needed and standard soft solders can be used. Unskilled workers can operate the equipment with absolute ease and safety. And, since the ultrasonic frequency employed is inaudible to the human ear, there is no discomfort to the operator.

Here is the practical solution to the tinning of aluminum and its alloys.

You can learn more about the Mullard Ultrasonic Soldering Equipment by mailing the coupon.

Deliveries can now be made impmediately from stock.

In 8 seconds after the alarm box lever has been pulled, the Quaker City's new fire reporting system receives alarms from 3200 local boxes and dispatches them to the proper fire house and its alternates. Designed by Philadelphia Electrical Bureau engineers, this intricate installation-the most modern of its kind in the world-uses 432 standard Struthers-Dunn relays. Since July 1949, these relays have been in constant service and not one has required adjustment, cleaning or service of any kind.

STRUTHERS-DINN Re,, 348 RELAY TYPES

Struthers-dunn, INC., 150 N. 13th ST., Philadelphia 7, Pa.

BAITIMORE•BOSTON• EUFFALO•CHARLOTTE•CHICAGO GINCINNATI CIEVELAND - DALLAS DETROIT•KANSASCITY GOS ANGELES MINNEAPOIIS MONTREAL NEW ORLEANS NEW YORK P PITTSBUROH ST. LOUIS• SAN FRANCISCO SEAYTLE - SYRACUSE - TORONTO
up to ± 1 percent. Linearity accuracy is up to ± 0.25 percent. The potentiometer is rated at 4 watts. Operational life is $1,000,000$ cycles dependent on rating.

TV Autotransformer

RAM Electronics Sales Co., 7 South Buckhout St., Irvington-onHudson, N. Y. Type XO54 replacement and conversion tv autotransformer requires less driving power than a true transformer and yet provides ample high voltage and sweep for tube sizes up to 21 in . rectangular. In sets using selen-ium-rectifier voltage doubler circuits with 250 volts $B+$ supply, the XO54 produces 13.5 kv with a boost voltage of 430 v ; with standard power supplies, it produces 15 kv with a boost voltage of 500 v . The unit has excellent regulation and linearity and needs no special coils. Its new high-permeability ferrite core combined with special windings results in good efficiency.

Channel Converter

Technical Appliance Corp., Sherburne, N. Y., has designed a channel converter for use with the Tacoplex antenna distribution system. It beats the higher channel

REGULATION: $1 / 2 \%$ for both line (105-125 volts) and load variations. REGULATION BIAS SUPPLIES: 10 millivolts for line $105-125$ volts. $1 / 2 \%$ for load at 150 volts.
RIPPLE: 5 millivolts RMS.

VOLTS	CURRENT	MODEL	VOLTS	CURRENT	MODEL
$\begin{aligned} & 100-325 \\ & 0-150 \text { Bias } \\ & 6.3 \text { AC.CT. } \end{aligned}$	$0-150 \mathrm{Ma}$. $0-5 \mathrm{Ma}$. 10 Amp .	131	$\begin{aligned} & 0.500 \\ & 0.150 \text { Bias } \\ & 6.3 \mathrm{AC} . \mathrm{CT} . \end{aligned}$	$\begin{aligned} & 0-300 \mathrm{Ma} . \\ & 0-5 \mathrm{Ma.} \\ & 10 \mathrm{Amp} . \end{aligned}$	615
$\begin{aligned} & 200-500 \\ & 6.3 \mathrm{AC} . \mathrm{CT} . \end{aligned}$	$0-200 \mathrm{Ma}$. 6 Amp.	245	$\begin{array}{ll} \# 1 & 0.600 \\ \# 2 & 0.600 \end{array}$	0-200 Ma. 0.200 Ma .	800
$0-300$ $0-150$ Bias 6.3 AC.CT.	$\begin{aligned} & 0.150 \mathrm{Ma} \\ & 0.5 \mathrm{Ma} . \\ & 5 \mathrm{Amp} . \end{aligned}$	315	$\text { \#4 } \quad 6.3 \text { AC.CT. }$	10 Amp.	
			$\begin{aligned} & \hline 0.600 \\ & 0.150 \text { Bias } \\ & 6.3 \text { AC.CT. } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 0-200 Ma. } \\ & 0.5 \mathrm{Ma} . \\ & 10 \mathrm{Amp} . \end{aligned}$	815
$\begin{aligned} & 0-500 \\ & 6.3 \mathrm{AC.CT} . \end{aligned}$	$0-300 \mathrm{Ma}$. 10 Amp .	500R			
$\begin{array}{ll} \# 1 & 200-500 \\ \# 2 & 200-500 \\ \# 3 & 6.3 \text { AC.CT. } \\ \# 4 & 6.3 \text { AC.CT. } \end{array}$	$\begin{aligned} & 0-200 \mathrm{Ma} . \\ & 0-200 \mathrm{Ma} . \\ & 6 \text { Amp. } \\ & 6 \text { Amp. } \end{aligned}$	510	0.1000 -Ripple 10 mv . 6.3 AC.CT.	$0-50 \mathrm{Ma}$. 10 Amp .	1020
			$0-1200$-Ripple 10 mv . 6.3 AC.CT.	$0-20 \mathrm{Ma}$. 10 Amp .	1220
			200-1000-Ripple 20 mv . $0-500 \mathrm{Ma}$.		1250
$0-500$ 0.150 Bias 6.3 AC.CT.	$\begin{aligned} & 0-200 \mathrm{Ma} \\ & 0-5 \mathrm{Ma} . \\ & 10 \mathrm{Amp} . \end{aligned}$	515	$0-1000-$ Ripple 20 mv .	0.500 Ma .	1350
			Specify your voltage and current requirements. Regulation available $.5 \%, .1 \%, .01 \%$.		SPECIAL
\#1 $0-500$ $\# 2$ $0-500$ $\# 3$ 6.3 AC.CT. $\# 4$ 6.3 AC.CT.	$0-200 \mathrm{Ma}$. $0-200 \mathrm{Ma}$. 10 Amp. 10 Amp.	600			SERIES
			*All AC Voltages are unregulated. All units are metered except Models 131 and 315 .		

All units designed for relay rack mounting or bench use.

The Kepco Voltage Regulated Power Supplies are conservatively rated. The regulation specified for each unit is available under all line and load conditions, within the range of the instrument. Write for specifications.

P P
C. 0

LABORATORIES, INC.
KfEPCO

We're sorry, but we think it's only fair to tell possible new customers our Standing Room Only sign must be changed to Sold Right Out!

The design and production facilities of our microwave department are now taken over by the increasing requirements of our present customers. Because of our responsibility to them, this situation may continue quite a while.

We are sorry to say this because we enjoy making new friends. But we feel that we should tell those who might be interested in our engineering and manufacturing facilities, that for some time we may not be able to serve them.

Any change in the situation will be announced in this publication.
signals down to a low-band open channel. For example, if channel 13 is operating in a region where the only other channel is 4 , the channel converter located at the antenna station converts the signal to channel 2 and transmits that signal through the cables. The receiver operator tunes his receiver to channel 2 to pick up the channel 13 signal. The converting is done by means of a crystal oscillator so that there is no drift in the frequency.

Open-Wire Transmission Line

JFD MFg. Co., 6101 Sixteenth Ave., Brooklyn 4, N. Y., has developed the Super-Gain open-wire transmission line made of copper wire with a steel core and insulated by sturdy low-loss polystyrene spacers. It delivers $\frac{7}{6}$ the decibel loss of regular 300 -ohm twinex lead-ins. Excellent for long-line set-ups, it has a 400 lb. breaking point tensile strength. It is being packed on spools in three lengths: 100,250 and 500 ft .

SWR \& R-F Power Meters
M. C. Jones Electronics Co., 96 North Main St., Bristol, Conn., announces a new line of small, portable r-f power and swr meters. Model MM700 series Micro Match operates at power levels of 0.1 to 1,200 watts over the frequency range of 30 to 200 mc . The instrument weighs less than 2 pounds and requires no external source of power. It is desiged for use in making laboratory measurements

and for monitoring both transmitter and antenna performance in the field.

R-F Interference Suppression Filter

The Filitron Co., Inc., 131-05 Fowler St., Flushing, N. Y., has introduced a smaller and lighter 3 -ampere 125 -volt a-c, 400 -cycle subminiature r-f interference suppression filter. It features high attenuation and is hermetically sealed with glass solder sealed terminals. The unit is designed for 100 C operation.

Portable Radiophone

Motorola Inc., 4545 W. Augusta Blvd., Chicago 51, Ill. A new version of the Handie-Talkie portable f -m radiophone incorporates an adjustable squelch that reduces the annoyance of tube and circuit noises normally encountered in an f-m receiver in the absence of a signal. The squelch control, mounted on the power-supply chassis, provides a normal operating range of nosquelch up to 25 to $50-\mathrm{db}$ noise reduction. The portables are available with either wet or dry cell power supplies for operation in

[^14]
The SELENIUM RECTIFIER DIVISION of

 Federal Telephone and Radio Corporation Offers its Outstanding Engineering and Manufacturing Facilities to
GOVERNMENT CONTRACTORS

Consult us for your Aircraft, Ground and Naval Requirements

Federal has years of experience

in meeting military specifications
T
$\mathrm{T}_{\text {HE Selenium Rectifier Division of Federal-the nation's headquarters }}$ for selenium rectifiers-is ready to serve you with start-to-finish production of power supplies, battery chargers, voltage regulators, engine starters, cathodic protection and other units-compact, rugged, quiet, dependable power equipments designed for any DC output.

Federal knows selenium rectifiers. Federal has unmatched power conversion experience ... an experience backed by years of successfully meeting the rigid requirements of contracts for military equipments. And Federal has the capacity to deliver your orders-when you want them!

Mail us your specifications today! Write to Dept. E-813.

Heavy-duty Federal Selenium Rectifier

FTR 3146-BS Aircraft Power Supply

DESIGNED
AND AND BUILT BY federal

FIR 3141-CS-03
Clip-in Voltage Regulator

Federal Telephone and Radio Corporation

C. T.C.'s Nylon-Phenolic Terminal Retainers Mean More Advantages ... More Uses... Than Ever Before

In making available ceramic coil forms with nylon-phenolic terminal retaining rings, C.T.C. now enables you to extend your use of these components considerably. The use of nylon-phenolic in no way impairs the moisture and fungus resistant qualities of the coil form assemblies. The nylon rings also provide many new benefits. For example:

In addition, the use of nylon-phenolic rings results in an increase in Q, giving improved performance over metallic rings. All materials and finishes meet exacting government specifications. Available with LST, LS5, LS6 coil forms.

SPECIAL CONSULTING SERVICE

C.T.C.'s experienced component engineers are at your service - without cost to help you secure exactly the righl components. When standard parts are unsuitable they will design special units, working closely with you for economical, satisfactory results.

Call on the C.T.C. Consulting Service at any time. Just write to Cambridge Thermionic Corporation, 437 Concord Avenue, Cambridge 38, Massachusetts. West Coast stocks maintained by E. V. Roberts, 5014 Venice Blvd., Los Angeles and 988 Market Street, San Francisco, Cal.
custom or standard... the guaranteed components
either the 25 to $50-\mathrm{mc}$ or the 152 to 174 -me bands.

Miniature Thyratron

General Electric Co., Syracuse, N. Y. Type GL-5727 miniature thyratron tube is built for long-life use in mobile and aircraft control circuits. A four-electrode inert-gas-filled unit with negative control characteristics, it is suitable for use in relay and grid-controlled rectifier applications. The tube will operate at temperatures ranging from -75 C to +90 C . It has a high degree of mechanical strength, low grid-anode capacitance and very low grid currant. It is rated for 100-ma average plate current.

VTVM

Electronic Measurements Corp., 280 Lafayette St., New York 12, N. Y. Model 106 vacuum-tube voltmeter is specially designed for field alignment of radio and tv sets, is completely electronic on all functions and ranges and has five a-c/d-c and ohms ranges. Featuring a $1 \frac{1}{2}-v$ range for both a-c and d-c volts, the instrument is housed in a molded Bakelite case that measures

MOST ECONOMICAL TOWER

microwave COMMUNICATIONS
TV and FM
R.ADAR

THE LAPQIATEPPLASCOMOLD COAPOAATION
Windsor Locks, Connecticut

NEW PRODUCTS
$7 \frac{1}{4} \times 5 \frac{1}{4} \times 2 \frac{7}{8} \mathrm{in}$. with a net weight of 3 lb . Price is $\$ 35.90$.

Rotary Selector Switch

United States Instrument Corp., 409 Broad St., Summit, N. J., recently announced a revised line of type JA rotary selector switches designed for applications requiring a large number of contact points with multiple decks and manufactured to meet government specifications. Each deck is self-contained, self-aligning, easily removed and replaced as required. The " O " ring seal on both shaft and mounting bushing allows watertight mounting of each switch. A catalog sheet giving general specifications is available.

Servo Amplifier

Industrial Control Co., 26-02 Fourth St., Long Island City 2, N. Y. Model $410-\mathrm{B}$ is a 60 -cycle servo amplifier designed to drive a motor with 5 -watt output. In it the three factors of the servo loop (gain, damping and carrier phase) are controlled by slotted shaft potentiometers. This insures that a stock unit can be used in a large number of different applications without requiring additional plugin packages or assemblies. Specifi-

WHICH COIL FITS YOUR NEEDS?

COIL FORMS WOUND

 TO YOUR SPECIFICATIONSC.T.C. will furnish slug tuned coils with either single layer or pie type windings to fit your needs. Small or large production quantities. Coil forms also available.
For military contracts: the materials, methods and processes used in C.T.C. products meet all applicable government specifications.

Coil Form	SEND COMPLETE SPECIFICATIONS FOR SPECIALLY WOUND COILS				
	COIL FORM SPECIFICATIONS				
	Material	Mounting Stud Thread Size	$\begin{aligned} & \text { Form } \\ & \text { O.D. } \end{aligned}$	Maunted O.A. Height	
LST ${ }^{\circ}$	Ceramic$\text { L- } 5$	8-32	3/19"	19/20 ${ }^{\prime \prime}$	
LS6	Ceramic L-5	10-32*	$1 / 4^{\prime \prime}$	27/6"	
LS5	CeramicL-5	1/4-28*	3/8"	1818	
LS8(not shawn)Ceramic		1/4-28	1/2'	${ }^{23} 36{ }^{\prime \prime}$	
LSM	Paper	8-32	$1 / 4^{\prime \prime}$	27/89 ${ }^{\prime \prime}$	
	Phenolic				
	Phenolic				
ᄂS3		1/4-28	$3 / 17$	$11 / 9^{\prime \prime}$	
	Paper				
LS4†	Phenolic	1/4-28	$1 / 2^{\prime \prime}$	$2^{\prime \prime}$	

*These types provided with spring locks for slugs \dagger Fixed lugs. All others have adjustable ring terminals. LST, LS5, LS6 also available with fixed terminals secured by Nyion collars.
${ }^{\circ}$ LSTL same as LST but with slug locking spring. All ceramic forms are silicone impregnated. Maunt ing Studs of all forms are cadmium plated.

custom or standard the guaranteed components

CAMBRIDGE THERMIONIC CORPORATION

437 Concord Ave., Cambridge 38, Mass. West Coast Stack Maintained By: E. V. Roberts, 5014
Venice Bivd., Los Angeles, and 938 Market Street, San Francisco, California.

\star To better serve Arizona，we are pleased to announce the opening of our Phoenix office， 32 West Jefferson Street，under the direction of William R．Saxson，Field Engineer．

我 ELY ENTERPRISES
 electronic manufacturers representatives

MAIN OFFICE：HOLLYWOOD 7422 Melrose Avenue
ALBUQUERQUE
SAN FRANCISCO
SACRAMENTO
107 So．Washington St．
2830 Gary Blvd．
309 Ochsner Bldg．

5800

ELECTROMETER TETRODE
The 5800 is a low flamen power，subminiature tetrode designed specifically for electrometer applications． The envelope has been ape． cially treated for low leakage and the emission has been stabilized for DC amplifier
 applications．
Filament Volt an CACTERISTICS
Filament Current
MAXIMUM RATINGS
Filament Voltage

Average Cathode Current． $500 \mu \mathrm{a}$
TYPICAL OPERATION

Plate Voltage
Grid Voltage（gi）．
Accelerator Grid Voltage
Control Grid Voltage $\left(\mathrm{g}_{2}\right)$
Control Grid Voltage
Amplification Factor
$+4.5 v$

Amplification Factor
$+3.4 v$

Plate Current．．．．．．．．．
is μ mhos
Accelerator Grid Current
12μ
Control Grid Current．
$10-15 \mathrm{map}$

5803

ELECTROMETER TRIODE A subminiature triode to sup－ element the 5800 tetrode． the same high quality con－ into both these tubes．This tube is useful in one－stage circuits to drive a micro． ammeter or a micro－relay．

CHARACTERISTICS

Filament Voltage（AC－DC）
Filament Voltage
Filament Current
MAXIMUM RATINGS
Filament Voltage．
1.5 v

Plate Voltage．．．．．．．．．．．．．．．．．．．．．．．．． 500 ．
Average Cathode Current．．．．．．．．．．．．．．．．．．．
TYPICAL OPERATION
 Grid Current．

HI－MEG RESISTORS

Victoreen＇s Hi－Meg Resistors have been developed for use where stability，accuracy，and high humidity operation are of prime consideration．The resistor element is vacuum sealed in a glass envelope．The and the resistor has been aged to prevent drift．

CHARACTERISTICS

＊Higher resistance or closer tolerances are available on special request．

BETTER COMPONENTS

MAKE

BETTER INSTRUMENTS

Victoreen Instrument

Components Division
3800 Perkins Ave．
cations are as follows: maximum gain, 1,000 ; phase variable from +20 to -140 deg ; internal pickup below 3 mv rms; moderate power supply requirements.

Marine Radio Transmitter

Radiomarine Corp. of America, 74 Varick St., New York 13, N. Y. Model ET-8019E 200-watt highfrequency radiotelegraph transmitter employs crystal frequency control, using the new type R-6 crystals, permitting greater stability and minimum tolerances. It is designed to cover a continuous frequency range or from 2 to 22.4 mc . Provision is made for a maximum of 10 crystals, although 25 output frequencies may be obtained from only 6 crystals.

Signal Generator

Radio City Products Co., Inc., 152 W. 25th St., New York, N. Y., has announced the new wide-range model 706A signal generator. The instrument provides high stability and accuracy in continuous coverage of 150 kc to 220 mc . This is accomplished in 8 ranges, 6 being

your special wiring problem...

The wiring in any electronic device is of vital importance. When complexity of design calls for exacting cable requirements, let Rome Cable give you a hand.

Rome's engineering staff, skilled in electronics and backed by competent research, can develop for you the type of cable construction most exactly suited to your particular requirement. Rome's manufacturing facilities are sufficiently diversified to produce exactly the type of cable you need. Rome's step-by-step control of quality assures you of uniformity and dependability of performance. Take advantage of Rome Cable's experience, as so many others have done.

In addition, Rome Cable manufactures a complete line of standard Underwriters' approved, as well as military type radio and television hook-up wires utilizing both rubber and thermoplastics. So, whatever your wire or cable requirements, look to Rome for dependable quality. For descriptive literature, mail the coupon below today!

Copper wire mill products are a Controlled Material under N.P.A. Controlled Materials Plan . . . USE YOUR CMP ALLOTMENT.

- COSTS

ROME CABLE CORPORATION

Dept. E-1, Rome, N. Y.
Please send me information on Electronic Wiring.
\qquad
Company .
Address..--

City...-...-......................

ROME CABLE CORPORATION ROME, NEW YORK and TORRANCE, CALIFORNIA

S.SUhite mouped RESISTORS

Of particular interest to all who need resistors with inherent low noise level and good stability in all climates

STANDARD RANGE

1000 OHMS TO 9 MEGOHMS
Used extensively in commercial equipment including radio, telephone, telegraph, sound pietures, television, etc equipment.

High Value range 10 to 10,000,000 MEGOHMS

This unusual range of high value resistors was developed to meet the needs of scientific and industrial control, measuring and laboratory equipment - and of high voltage applications.

SEND FOR

BULLETIN 4906
It gives detaiks of both the Standard and High Value resistors, including construction, characteristics, dimensions, etc. Copy with price List mailed on request.
 Dept. R, 10 East 40th St. NEW YORK 16, N. Y.
Western District Office - Times Building, Long Beach, California

CORNER OF COMMERCIAL STREET, WORCESTER, MASSACHUSETTS
fundamental frequencies covering through 55 mc . Accuracy is maintained within 1 percent of calibration. Stability and constancy of calibration is assured by special electron-coupled circuit design, permeability adjusted coils and airtrimmer capacitors.

Air Flow Switch

The Henry G. Dietz Co., 12-16 Astoria Blvd., Long Island City 2, N. Y., has announced the Catalog 113 vane-type pressure air flow switch for use in forced air cooling of electronic equipment. It is designed to operate a control relay to guard against tube failure in the event of blower failure or air-passage obstruction. It will operate on a minimum static pressure of 0.2 in . water gage. Electrical ratings of 5 amperes at 250 volts a-c are Underwriters' Laboratories approved. The extreme sensitivity is made possible by the use of a vane traveling in a duct which actuates a sensitive snap-action switch.

Picture Tube Checker

National Union Radio Corp., Orange, N. J., has available a portable cheoker for tv picture tubes that uses a beam current test which is proportional to the light output capability of the tube. It provides also for continuity and short checking of the electron gun. The unit checks all magnetically-deflected tubes both electrostatically and magnetically focused, and all electrostatically-deflected tubes. A detailed description of the c-r tube checker may be found in a recently:

DIRECT-COUPLED

AMPLIFIER

No. 8100 direct coupled amplifier has a voltage amplification of 13,000 with a maximum oulpul of 70 volts. Frequency response from d.c. to 10,000 cps. is flat within 10%. Input impedance is 2 megohms; output impedance is 150 ohms. Input may range from 0.1 mv . to 100 volis. Stability is better than 0.1 mv . per thirty minutes, or 0.5 mv . per day. Attenuator is stepped for factors from 1 to 1000.

OSCILLOGRAPH
 AMPLIFIER

No. 8121 special amplifier has a time constant of 1 second, an exponential response to a square wave at high goin, input impedance of 1 megohm, and input form 0.1 mv .101000 volts. At low gain, No. 8121 becomes a DC amplifier with a valtage gain of 100 and an input of $10 \mathrm{mv} . / \mathrm{mm}$.

HIGH-GAINAMPLIFIER
No. 8130 amplifier, has a voltage gain of $1,000,000$ and includes a built-in pre-amplifier. Frequency response is from 1 to 200 eps. Input may range from 10 microvalts to 100 millivolts. This amplifier is particularly suited for Biological studies.
Many other types of recording and amplifier circuits are available and special equipment can be assembled to meet particular specifications.

AEROCOM MEANS TROUBLE-FREE SERVICE! From Ground To Air or Point to Point

- Specifically designed to meet the growing need for a U. H. F. in sulating material thats low in cost.
- Meets JAN-P-77 and MIL-P-77A specifications
- Withstands high temperature due to its thermosetting nature.
- Has outstanding electrical properties.
- Has low specific gravity - is strong and rigid with unusually high compressive and tensile strengths.
- Has excellent impact strength and hardness allowing its use under highly abusive conditions
- Its dimensional stability and un usual chemical ineriness allow its use where other materials fail.
- Readily machinable to extremely close tolerances.
- Available as centerless ground rods in any diameter up to l". Also cast in larger diameter rods and sheets.
Write today for technical bal letins and samples. Our engineer. ing staft is always of your disposal.

Manufacturers of Non-3trip wire, High Tempera ture Electrical Tubing and other extruded plaselc
products.
THE REX CORPORATION
65 LANDSDOWNE STREET
CAMBRIDGE 39, MASS.
published catalog sheet. Price of the unit described therein is $\$ 28.75$ net.

Metal Cabinets

Insuline Corp. of America, 36-02 35th Ave., Long Island City 1, N. Y., has announced a new line of small utility metal cabinets featuring removable front and back covers. Especially intended for amplifiers, monitors, test sets, control units and miniature receivers and transmitters, the cabinets range in size from $4 \times 2 \times 4$ in. to $12 \times 11 \times 8$ in., and are available in aluminum or steel. Covers are fastened by means of self-tapping screws which are included.

Vacuum Leak Locator

Radio Corp. of America, Camden, N. J., has introduced the type EMV-7 hydrogen-sensitive, ionization type leak locator, designed as a portable factory and laboratory device for detecting and locating tiny leaks during the manufacture of electron tubes or any device that can be evacuated. The instrument, weighing 31 lb , is capable of detecting leaks as small as 1×10^{-8} litermicrons of hydrogen per second. It measures $13 \frac{3}{} \frac{\mathrm{in}}{} \mathrm{in}$. high, 15 in . wide

MAGNECORD

ADDS A NEW DIMENSION TO RECORDING

Now - in "sound" research, Magnecord offers you the new Binaural Tape Recorder for greater product improvement. This simultaneous-dual-channel recorder provides realistic industrial recording never before obtainable. It permits the engineer to experience binaurally the recorded sound "all around him," and makes possible the selection of one sound from many. The dual channel will also permit him to record a time signal concurrently with the test.

For greater fidelity, precision and selectivity -
in laboratory, field tests, or office conferences - use the new Binaural Magnecorder!

TMaquecord, we. high fioslity thpe recorders for industay

Used by more engineers than alfother professionál tape recorders combined

Write for NEW CATALOG
MAGNECORD, INC., DEPT. EA-1
360 N. Michigan Avenue, Chicago 1, Illinois
Send me further information on Magnecord rape recordinga for industrial 'Sound' Research

Nome.
Company
Address.
City \qquad
\qquad
\qquad

Regulated HIGH VOLTAGE SUPPLY

Continuously variable 300 - 2500 Volts D.C. 0-1 Milliampere

- Line Stabilization: $\pm .001 \%$ change in output for a $\pm 1 \%$ change in line Voltage (100 UA Load).
- Load Stabilization: $\pm .5 \%$ change in output for 1 MA at 2000 Volts or .5 MA at 2500 Volts.
- Ripple: Less than . 1 Volt.
 \section*{\section*{PRICE
 \section*{\section*{PRICE

 s 175^{00}}

 s 175^{00}}

WRITE FOR
BULLETIN VS—202

Bullein vs
huclear research corporation

2563 GRAYS FERRY AVENUE P PHILADELPHIA 43, PA.

PERFORMANCE TESTED TRANEFORMERS DESIGMED FOR YOUR HEEDS

QUALITY PRODUCTS PRODUCEDIN QUANTITY ACME ELECTRIC CORPORATION 311 WATER STREET CUBA, N. Y

Acme tin Electric

The components of high altitude airborne radar installations must be extremely accurate because a given voltage jumps a longer distance in the stratosphere where the armospheric pressure is lower. The focus coil, shown below, goes around the neck of the Cathode Ray Tube and focuses the beam. The nature of its use demands that it meet the most exacting electrical and physical specifications.

When you need electrical coils, why not take advantage of 34 years of experience, engineering competence, and modern production facilities. Coto coils are built for you, to your specifications.

COTO-COIL CO..nc

COIL SPECIALISTS SINCE 1917 65 PAVILION AVE PROVIDENCE 5. R.I

NEW PRODUCTS (continued)
and 11 in . deep overall, and operates from a 105-125 volt, 60-cycle, a-c line.

Servo Motors

Ford Instrument Co., 31-10 Thomson Ave., Long Island City, N. Y., is now producing a complete line of low-inertia servo motors with highvoltage control windings that eliminate the need for transformers in servo amplifiers. Available in $\frac{1}{2}, 1 \frac{1}{2}$, 5 and 10 -watt sizes, the motors also have close-coupled windings for feedback purposes. Of particular significance is the space and weight saving resulting from the elimination of the transformer. A descriptive brochure is available upon request.

TV Picture Straightener

Glaser-Steers Corp., 2 Main St., Belleville 9, N. J., has introduced a magnet assembly for correcting a pin-cushioning effect caused by the deflection yoke and the curvature of the tube face. From one to four of these assemblies are used, depending upon the amount of distortion. The units are mounted on the conical section of the tube forward of the deflection yoke. The device is especially effective when used
 by $3 / 4$ " high, these diminutive capacitors provide the answers to many problems encountered in the design of compact radio frequency equipment.

JOHNSON Miniature Air Variables are available in three types: single section, differential and butterfly. Ideally suited for portable, mobile and airborne equipment thru the VHF range of frequencies, they are designed and constructed with features that assure reliable performance throughout long service life.

Prapuce

- Low inductance - Soldered plates assembled with precision tools o Splt sleave bearings o Beryllium copper tension spring cortact for permanant alignment, constant torque and low inharent nsise obibarential and butterfly types electrically symmetrical - Excelan vibration characteristic due to low ineria - Steatitce insulation impregnated with DC-200 - Metal patis bress, nickel plated e Single hole mounting bushing thesaded $1 / 432$ with fots to prevent turning $0316^{\prime \prime}$ shaft slotiec for screw driver adjustment - Plate spesing .017" O Peak valtage ratingr 1250

JOHNSON Catalog 701
oure for the asking, describes this miniature tine as wall as other JOMNSON Variablo
Cendensers.
JCANSON Minial 3 re Aif
Yaricoles are available in
prodection quenti-ies with
teatures such es: 1 . Lectirg
bearing. 2. Whe 180° sios
§. Various shaft extersionk.
4. Ci $35^{\prime \prime}$ sposing oferirg
copatities up to 30 mmfl.
ミ. Migh torque.
We would the pleased 0
quote on your special requir)-
menti.

SINGLE

1. $7 / 84$

	Max.	mmf. Min.	Plates	
SM11	5.0	1.5	5	$1.7 / 64$
9M11	8.7	1.8	9	$1-7 / 32$
15M11	14.2	2.3	15	$1.13 / 32$
20M11	19.6	2.7	21	$1.37 / 64$
	DIFFERENTIAL			
SMA11	5.0	1.5	7	$1.7 / 84$
9MA11	8.7	1.8	13	$1.7 / 32$
15MA11	14.2	2.3	22	$1.13 / 32$
19MA11	19.6	2.7	31	$1.37 / 64$
		BUTTERFLY		
3MB11	3.1	1.5	7	$1.7 / 64$
5MB11	5.1	1.8	13	$1.7 / 32$
9MB11	8.0	2.2	22	$1.13 / 32$
11MB11	10.8	2.7	31	$1.37 / 64$

EFFPDOHNSQNGO.

Bowser High Altitude Test Chambers furnish complete yet compact facilities for the testing of aircraft instruments and equipment at any and all altitudes. Included in the chamber are provisions for testing under wide conditions of temperature ranging from $+200^{\circ} \mathrm{F}$. 10 $-150^{\circ} \mathrm{F}$., as well as relative humidity from 20% to 95%. Bowser Test Units produce conditions within the limits called for in all Government environ. mental testing specifications.
Bowser makes the only complete line of testing facilities including Sand and Dust, Explosion, High and Low Temperature, Fungus, efc. Units ore available from small self-contained laboratory sixes to large prefobricated walk-in rooms. Our Engineering staff is always ready for consultation. Take advantage of Bowser's long uninterrupted experience, the broodest in its field.

CHECK AND MALI TODAY

BOWSER TECH. REFRIG., Terryville, Conn.
Send information an test equipment checked: \square High Temperoture \square Fungus Resistance Low Temperature \square Rain and Sunshin Low Yemperat Roind Temperature Shock \square Sand and Dust Humidity \square Immersion \square Wolk-In Rooms $\quad \square$ Explosion Proof

Name Vapor Tight

Company

Street
City
BOWSER
technical refrigeration
DIVISION BOWSER INC
TERRYVILLE CONN

NEED SPECIFIC COILS?

be specific CALL DANO!

- Form Wound
- Paper Section
- Acetate Bobbin
- Molded Coils
- Bakelite Bobbin
- Cotton Interweave
- Coils for High Temperature Applications

ALSO,
TRANSFORMERS
MADE TO ORDER

From simple electrical coil winding to specially treated coils, Dano can supply the exact coils you need to do your exact job. That's why experienced engineers with an eye toward uninterrupted production specify Dano coils.

WASHERS-ALL KINDS

W ASHER SPECIA LISTS for nearly half-a-century. Dies in stock will produce most sizes. Big runs made with automatic presses. An economical, accurate, and highly reliable source for washers, also all kinds of metal stampings. HAVE WHITEHEAD'S CATALOG ON FILE; write for it.
beveled
CUP D-HOLE RETAINER LOCK SPACERS SPACERS
SPRING TENSION SPRING TENSIO SOUARE HOL STAR LOC HRUST TONGUE

COMPANY

1691 W. LAFAYETTE
-
DETROIT 16, MICH.
with the cylindrical faced tube. Adjustment is easily made by varying the distance from the magnet to the tube axis.

Miniature Ceramic Capacitors

Erie Resistor Corp., Erie, Pa., has announced a new line of miniaturized tubular ceramic capacitors, the GP3 Ceramicons. They employ a high dielectric constant ceramic material with which capacitance values as high as $0.002 \mu \mathrm{f}$ are available on a basic $\frac{1}{8} \times \frac{3}{8} \mathrm{in}$. long tube, and $0.005 \mu \mathrm{f}$ on $\mathrm{a} \frac{1}{8} \times \frac{\mathrm{s}}{} \mathrm{in}$. long tube. Available on special order since 1949 they are now made in volume production quantities. The units are flash tested at $1,500 \mathrm{v}$ d-c and are designed to withstand 700 v d-c life test at 85 C for 1,000 hours. Standard capacitance tolerance is +80 percent, -20 percent and power factor is 2.5 percent maximum.

Sealed Panel Instrument

Weston Electrical Instrument Corp., 641 Frelinghuysen Ave., Newark 5, N. J. Model $13292 \frac{1}{2}$-in d-c and a-c rectifier-type panel instrument has a scale of 3.7 in . over a $250-\mathrm{deg}$ deflection. The six mounting holes provided permit tight sealing of the instrument to the panel. The instrument is magneti-

5 GREAT STOCK-PILES, STRATEGICALIY LOCATED. OFFER UNSURPASSED
SOURCL To INDO SUPIY ELECTRONTS ELECTRONICS USERS

The only service of its kind with these nation-voide ONE-SOURCE advantages:

SUPPLY:

Innumerable in-stock electronic materials for immediate shipment; thousands of manufactured items available from any part of the country, quickly, conveniently.

SERVICE:

The right component ... at the right time! Immediate delivery from pre-assembled stocks. Expeditious locations in prime manufacturing areas in U.S.

RESEARCH:

Experienced staffs offer information about new products, new techniques, new economies. Advice on availability, substitutes or interchangeability of parts freely given.

SAVINGS:

Buy 1 unit or thousands Reduce warehousing Lower insurance Decrease depreciation costs

White for "Mr. FED",
Federated's house organ, containing latest JAN
news, availability reports, etc. Send us the names of your engineers, dep't, heads on your letterhead and we'll include them on our mailing list.

1952 OFFICIAL OF THE RADIO.

TELETYPE: NY1-2859 (New York, N. Y.) • LA-572 (Los Angeles, Cal.) • AN-22 (Allentown, Pa.)

THIS LIGHTWEIGHT, COMPACT RELAY CAN HANDLE POWER LOADS USUALLY DEMANDING LARGER, HEAVIER UNITS

Tiny ... but powerful! This general-purpose relay meets rigid aircraft requirements, and also has wide industrial application. Coils are normally rated at 2.5 watts d. c., or 3 watts, 60 cycle a.c., for voltages up to 230 volts d.c. or 440 volts a.c. Maximum standard contact combination, double-pole double-throw others on request. Contact rating, 15 amps-at 115 volts a.c. non-inductive or 32 volts d.c. Weight, 4 oz . Size, $1-7 / 8^{\prime \prime}$ high, $1-5 / 8^{\prime \prime}$ wide, $1-13 / 32^{\prime \prime}$ deep.

WRITE FOR
CATALOG R-10

KEEP THE LINES OPEN

Keep the pipe line flowing
Even though the cold wind's blowing And rest assured the oil will run
If your pipes and lines are protected by Lewis heating cable.
Nickel Chrome conductor and special insulation good to $500^{\circ} \mathrm{F}$.

Write us about your problem
heating units
heating element
RESISTANCE LINE CORD
THERMOCOUPLE WIRE
asbestos lead \& FIXTURE WIRE insulated RESISTANCE WIRE

FIBERGLAS INSULATED WIRE
WIRE TO ANY SPELIFICATIONS

Send your electronic control, communications or appliance wiring specifications for a recommended solution by our engineers. FOR A TRIAL ORDER OR A CARLOAD consult

PHYSICISTS

And
SENIOR RESEARCH ENGINEERS

POSTIIONS NOW OPEN

Senior Engineers and Physicists having outstanding academic background and experience in the fields of:

- Microwave Techniques
- Moving Target Indication
- Servomechanisms
- Applied Physics
- Gyroscopic Equipment
- Optical Equipment
- Computers
- Pulse Techniques
- Radar
- Fire Control
- Circuit Analysis
- Autopilot Design
- Applied Mathematics
- Electronic Subminiaturization
- Instrument Design
- Automatic Production Equipment
- Test Equipment
- Electronic Design
- Flight Test Instrumentation
are offered excellent working conditions and opportunities for advancement in our Aerophysics Laboratory. Salaries are commensurate with ability, experience and background. Send information as to age, education, experience and work preference to:
north american aviation, inc. Aerophysics Laboratory
Box No. K-4, 12214 S. Lakewood Blyd. DOWNEY, CALIFORNIA

NEW PRODUCTS
(continued)
cally shielded; has a zero corrector in the base, or rear; and the accuracy rating on d-c is 2 percent.

Moisture Meter

Tagliabue Instruments Div., Weston Electrical Instrument Corp., 614 Frelinghuysen Ave., Newark 5, N. J. Model 8008 Moisturonic moisture meter, a portable instrument featuring an overall range of from 2,000 ohms to 20,000 megohms, measures the moisture content of lumber, wood, plaster, and many other materials of varying textures and consistencies. The instrument is available in two forms: one with a scale calibrated for use with lumber, wood and plaster and the other with linear graduations for use with materials for which no calibrations have been determined. Both versions are available as either battery operated for use anywhere, or are furnished to operate on $115 \mathrm{v}, 60$ cycles a-c.

Literature

D-C Winding-Insulation Tester. General Electric Co., Schenectady 5, N. Y. Bulletin GEC-794 describes a d-c winding insulation tester for testing d-c armatures, series field coils and low-impedance a-c stator coils. Illustrations of the unit, its chief advantages, operating instructions and specifications are given.

Audio Amplifier. Waveforms, Inc., 333 Sixth Ave., New York 14, N. Y. A recent four-page folder de-

CONCENTRATE!

- on the one line that does every job! \mathfrak{B}

YOUR REQUIREMENT:
high-voltage insulation

TAPES:
P-30 Heavy-Duty Vinyl Insulating P-25 Clear Acetate Film P-25 1 Orange-Yellow Acetate Film P-241 Acetate Cloth Film
NONCORROSIVENESS P-24 White Acerate Cloth P-242 Colored Acetate Cloth
HEAVY-DUTY HOLDING P-20 Cotton Cloth
QUICK AND POSITIVE ANCHORING. P- 27 Yellow Flatback Paper P-23 Black Flatback Paper
SNUG CONFORMANCE. P-29 Electrician Vinyl Insulating P- 22 Black Crepe Paper P-28 Yellow Crepe Paper
P-201 H. C. (Heat Curing) Cotton Cloth
high heat-resistance
P-201 H. C. (Heat Curing) Cotton Cloth

All PERMACEL Electrical Tapes have special solvent resistance and high baking stability characteristics which permit greater safety tolerances in production.
And PERMACEL gives you complete service. From supplying technical men to working out your particular tape problems...to making tapes to your order. So concentrate on PERMACEL and simplify your work.

INDUSTRIAL TAPE CORPORATION NEW BRUNSWICK, N. J.

Makers of Texcel $\left({ }^{8}\right)$ Cellophane Tape, and a complete line of pressure-sensitive tapes for industry.

scribes and illustrates the A-20-5 ultrahigh fidelity remote-control audio amplifier, featuring a continuously variable treble cutoff filter. Chief features and applications, photographs and characteristics charts are shown. Technical specifications are included.

Instrumentation Bulletin. Berkeley Scientific Corp., Richmond, Calif., has issued an 8-page bulletin illustrating and describing a cross-section of a complete line of standard instruments. Included are electronic counters, events-per-unit-time meters, time interval meters, preset counters, auxiliary electronic devices, nuclear scalers, count rate meters, counting rate computers, hand and foot monitors and single or double pulse generators.

Servomechanism Techniques. Min-neapolis-Honeywell Regulator Co., Brown Instruments Division, Wayne and Windrim Ave., Philadelphia 44, Pa. Practical applications of servomechanism techniques to a process control problem are described in a 20-page bulle-tin-ISA paper No. 51-8-2. The paper reviews progress in analysis of automatic control problems and illustrates a new technique exemplified by solutions to a typical flow control problem.

H-F Generators. Bogue Electric Mfg. Co., 50 Iowa Ave., Paterson 3, N. J., recently issued bulletin 440 dealing with 400 -cycle power supplies designed for operation of all types of high-speed machine tools, testing of precision electronic equipment, testing and proving radar and aircraft equipment, operation of high-frequency motors, marine and aircraft power supplies, high-quality laboratory power supplies and many other uses. A line of 400 -cycle generators and motor generator sets, available from $100-\mathrm{w}$ output to $600-\mathrm{kw}$ output, either single or three phase, is described.

Ultralow-Torque Potentiometers. Electro-Mec Laboratory, 19 Murray St., New York 7, N. Y., has published a 4-page folder for loose-leaf binding, describing and

The Bendix TXV-11 VHF Telemetering Transmitter, now in production, meets the following specifications:
Temperature Stability: Carrier drift less than $\pm .02 \%$ from $-40^{\circ} \mathrm{C}$. $10+70^{\circ} \mathrm{C}$.
Vibration: Maximum noise is less than an equivalent carrier deviation of $\pm 0.25 \mathrm{kc}$ when subject to a sinusoidal vibration 20 to 300 sps at 10 g in any plane.
Acceleration Error: Negligible to 75 g along 3 major axes. Power Output: 2 watts (nominal)
Output Impedance: 52 ohms (nominal)
Modulator Input Impedance: 470 K ohms and 60 mmf .
Modulation Index (b): 1.8 at .3 v rms .
Distortion: Less than 1.5\% total harmonic distortion for any frequency between 2300 cps and 70 ks at a modulation index of 1.8 .
Heater Supply: $6.3 \mathrm{v} \pm 10 \%$ at 1.2 A
Plate Supply: 200 v at 80 ma .
Screen Supply: 150 v at 15 ma .
Size: $2^{13 / 16 \times 35 / 8 \times 111 / 16}$
Weight: 0.9 lb .

Write the factory for complete engineering data
to MEASURE..TO WARN. .TO INDICATE. ATADISTANCE

Plastic Metals has long been a supplier of special property metal powders for a wide variety of applications in the field of electronics. Among these applications have been powders for permanent magnets, permeability tuning cores, fly-back transformer cores, cathode-ray tube deflection yokes, radar and sonar items, and silicon steel lamination substitutes.

With 17 years of experience in metal powder development and production, Plastic Metals is prepared to cooperate in any problem requiring special selection or combining for unusual characteristics.

Our Research staff is ready to consult with you on problems relating to:

1. the development and production of cores, magnets and other electronic parts requiring metal powder having special, designed-for-the-job properties.
2. the use of metal powder parts for structural or mechanical applications.
3. the substitution of iron powder parts for items difficult or impossible to obtain because of current material shortages or restrictions.

We stand ready to serve you now, or later when such problems may occur.
illustrating the type 1305 precision ultralow-torque potentiometers that are designed for use as transmitters in indicating or control (servo) circuits. The units described are used to convert small mechanical movements of very low force into equivalent voltages, the high electrical output usually being sufficient without further amplification. Complete technical specifications are included.

Subfractional H-P Motors. Air Marine Motors, Inc., 2183 Jackson Ave., Seaford, L. I., N. Y., has available a pamphlet covering subfractional horsepower motors, their end applications and selection. The publication was prepared with an eye toward discussing the problems pertaining to design and use of subfractional $h-p$ motors in as complete a manner as possible without being too technical to reach and educate personnel unfamiliar with the more important aspects of problems in the rotary equipment field.

TV Picture Tubes. National Union Radio Corp., Orange, N. J., has available two data sheets dealing with the 21EP4A magneticallyfocused magnetically-deflected and the 21 FP 4 A electrostatically focused magnetically deflected tv picture tubes. Data given include general characteristics, maximum ratings, typical operation, maximum circuit values and mechanical information.

C-D Communication Equipment. General Electric Co., Syracuse, N. Y., has issued a folder containing eight technical data sheets on two-way f-m radio communication equipment for civil defense. Illustrated descriptions and specifications are included for remote dispatch units, a variety of station combinations, model 204 mobilecombination, a selective dispatching system and two types of civi defense receivers. Other technical data sheets may be added to the folder as they are published.

Vibration Discriminator. Lion Mfg., Inc., P. O. Box 1348, Columbus, Ohio. The model AFS-101 vibration discriminator discussed

wrt SIGNAL GENERATORS by AIRCRAFT RADIO Corporation

TYPE H-14 108-132 MEGACYCLES
Standard signal source for complete testing of VHF airborne omnirange and localizer receivers in aircraft or on the bench is ARC's Type H-14 Signal Generator. It checks up to 24 omni courses, omni course sensitivity, to-from and flag-alarm operation, left-center-right on 90/150 cycle and phase-localizers, and all necessary quantitative bench tests. Permits quick, accurate, check-out of aircraft just before take-off. For ramp checks RF output 1 volt into 52 ohm line; for bench checks, $0-10,000$ microvolts. AF output available for bench maintenance and trouble shooting.
Price $\$ 885.00$ net, f.o.b. Boonton, N. J.
Type H-1 2 VHF Signal Generator $900-2100 \mathrm{mc}$ - source of cw or pulse amplitude-modulated RF. Power level 0 to -120 dbm . Internal pulse circuits with controls for width, delay, and rate, and provision for external pulsing. Frequency calibration better than 1%. Built to Navy specs for research, production testing. Equal to Military TS-419/U.
Price: $\$ 1,950.00$ net f.o.b. Boonton, N. J.

Dependable Electronic Equipment Since 1928

Most Veratilie winomg machnse for LABORATORY and PRODUCTION USE!

CMyPORL .COMPARISON WILL SHOW THAT THE MODEL W is:
 - mone RUGGED
 - thare CONVENIENT - easy to set up PRICED RIGHT!

Most versatile of all models is our Model W which is widely used in schools and laboratories. With a few simple accessories this machine will wind virtually every coil used in the electrical and electronics industries. Write for detailed listing and description.

Coil Winding Eguipment Co. OYSTER BAY, LONG ISLAND

the NEW S.8 Oscillograph

Here, in a versatile instrument of advanced design, are all the things you need for complete oscillographic recording. The Hathaway Type S-8 Oscillograph, which has long been the standard of oscillographic recording, has been improved to meet the rapidly expanding demands of modern research. Whether your measurement problems are simple or complex, the NEW Type S-8 Oscillograph has the inherent capabilities necessary to measure vibration, pressure, acceleration, and strain with new ease and accuracy.

The newest features include:

QUICK-CHANGE TRANSMISSION fully enclosed with gears running in oil to provide instantaneous selection of 16 record speeds over the range of 120:1
CHART TRAVEL INDICATOR provides continuous indication of chart motion. Operator knows instantly by flashing lamp if anything should happen to interfere with chart motion FULL-RESILIENT MOUNTING FOR MOTOR AND TRANSMISSION isolates all possible vibration and makes possible the use of modern super-sensitive galvanometers
NEW GALVANOMETER STAGE accommodates all Hathaway galvanometer for recording milliamperes, microamperes, or watts
NEW RECORD-LENGTH CONTROL AND NUMBERING SYSTEM designed for long, trouble-free service under all kinds of ambient conditions
All the other valuable features are retained, such as PRECISION TUNING-FORK.CONTROLLED TIMING SYSTEM produces either 1/10-second or 1/100-second time lines across sheet
WIDE RANGE OF GALVANOMETER TYPES AND CHARACTERISTICS provide for almost any recording requirements. Natural frequencies to $10,000 \mathrm{cps}$. Sensitivities to $50,000 \mathrm{~mm}$ per ma, single and palyphase watts
DAYLIGHT LOADING AND UNLOADING RECORDS TO 200 FT. IN LENGTH, width to 10 inches
SIMULTANEOUS VIEWING AND RECORDING
AUTOMATIC BRILLIANCY CONTROL

12 TO 92 ELEMENTS

Whatever your needs may be, investigate the NEW Type S-8 Oscillograph and its 170 types of galvanometers - the most versatile equipment in existence for general-purpase applications.

WRITE FOR BULLETIN 2BI-A-G

Hathaway
 INSTRUMENT COMPANY.

1315 SO. CLARKSON STREET DENVER 10. COLORADO.
in a recent circular is part of the company's new line of vibration analyzing equipment. Complete technical specifications of the unit and its accessories, as well as an illustrated description are included. Prices, terms and warranty information are also given.

Engineering Information Service. Sylvania Electric Products Inc., 1740 Broadway, New York 19, N. Y. The first issue of a new engineering information service bulletin contains articles on (1) a $500-\mathrm{mc}$ noise generator for uhf tv which uses a type 5722 noise diode, and (2) the type 300 oscilloscope calibrating standard. This engineering information service will come in the form of a periodic release suitable for binding and preserving for future use as a reference medium.

Time Delay Relay. Heinemann Electric Co., Trenton 2, N. J. Bulletin 5001 deals with the Silic-ONetic time delay relay, a hermetically sealed time element for small size, low cost and absolute dependability. Illustrations, chief features, operating characteristics, general specifications and ordering information are given.

Precision Potentiometers. DeJurAmsco Corp., 45-01 Northern Blvd., Long Island City 1, N. Y. Catalog E-L covers a complete line of series L-400 precision wirewound potentiometers. Complete specifications are furnished in four pages for these small-size, highly accurate potentiometers showing a wide variety of applications for single and multipleganged units.

Industrial Retaining Rings. Industrial Retaining Ring Ce., 8 W . Sidney Ave., Mount Vernon, N. Y., has available a bulletin dealing with its industrial retaining rings that are stacked for modern dispensing and speedy application. The rings described are made from carbon spring steel, heat-treated to exacting specifications, and provide shoulders on grooved, circular shafts. Included with the bulletin is an engineering specifi-

HLLECTRONIC ENGINERS

WHO WE ARE:
As a result of our recent affilation with the Westinghouse Airbrake Co., we are entering a new and accelerated expansion program directed toward per manent growth in the industrial electronics field.

WHAT WE OFFER:
To qualified, competent engineers, we offer truly permanent positions at salaries that rank among the highest in the industry. Additional compensation is paid for the extended work week.

WHERE WE ARE:
We are located just outside Washing. ton, D. C. away from the hustle and bustle, yet close enough for you to enjoy all the advantages the nation's capital offers. Suburban housing in northern Virginia is available only a few minutes away from where we are located.

HERE'S ALL YOU DO:
If you have experience in any of the fields listed below, you owe it to yourself to investigate career opportunities here. Of course, all replies will be strictly confidential.

Computers Radar Beacons Telemetering Sub-Miniaturization Microwave Receivers Microwave Transmitfers Millimicrosecond Pulse Circuits Research in Underwater Sound Systems

Send resumes to: PERSONNEL DIRECTOR

MELPAR, INC.

452 Swann Ave. Alexandria, Va.

steatite, ceramic \& lava insulators

for electrical

 and electronic applicationsCustom-mcIded, extruded or machined to close tolerance to meet your exact specifications. Prompt delivery at low cost on large or small orders. Over half a century of service is your guarantee of complete satisfaction.

FIND JUT TODAY. Illustrated bulletin with complete technlcal data will be sent on request.
M. KIRCHBERGER \& COMPANY, INC.

1423 37th St., Brooklyn 18, New York GEdney 6-1144 West Coast Representative:
S. Siegel, 1145 So. La Cienaga Blvd., Los Angeles 35, Calif

cation data sheet showing shaft size, ring dimensions and groove dimensions for the entire line.

Phono Pickup. Lindberg Instrument Co., 830 Folger Ave., Berkeley 10, Calif., has available a pamphlet introducing Fluid Sound, a new phono pickup using fluiddamping and fluid-coupling. The pickup described does not require the stylus to do the work of generating the output voltage and is almost entirely free from hum piekup. Dimensional drawings and technical data are included.

Induction Heating. Westinghouse Electric Corp., Box 2099, Pittsburgh 30, Pa., has available the 12-page booklet B-4782 that presents case histories of how induction heating has increased production 50 to 2,000 percent, reduced space up to 90 percent and cut production costs. Modern induction heating apparatus - generators and work handling equip-ment-are described as machine tools for hardening, heating, annealing or joining metals in mass or batch quantities.

Control Instruments. Assembly Products, Inc., Chagrin Falls, Ohio. Catalog No. 1A contains twelve bulletins dealing with a line of pyrometer controls and contact meter relays for operation and process controls. Technical data, illustrations, ordering information and price lists are given. Also included are a list of users and an extra bulletin on the model 351-5 millivoltmeter for checking thermocouple controls and the model 1654-A Simplytrol oven thermomenter.

Carbon and Graphite Products. National Carbon Co., A Division of Union Carbide and Carbon Corp., 30 E 42nd St., New York 17, N. Y. Products made in carbon and graphite in grades from porous to impervious for applications in the chemical and process, metallurgical, mechanical and electrical fields are fully described in the 20 -page catalog section S-5005. Principal features of the products described are: resistance

PICKERING

 SOLENOIDS

For DC Circuits

Pickering engineering service is available for special applications where Pickering standard Solenoids do not apply.

For details and literature address Department N PICKERING \& CO., INC. Manufacturers of world-famous electro-magnetic phonograph cartridges and audio equipment. Oceanside, L. I., New Vork
LABctanicaury regulated
POWORATORY SUPPLIES

MEGOHMS MEGOHMS MEG Cheaper by the dozen with MEGOHMS MEGOHMS MEGOHMS MEGOHMS MEGOHMS

JELLIFF ALLOY 1000 RESISTANCE WIRE

This new material packs 1000 ohms cmf- 48% more than the widely-used nickel-chromium alloys. And what's more, there's no loss of other important physical and electrical properties. High tensile strength-excellent solderability-TC of Resistance is $20-\mathrm{EMF}$ vs Copper +7 micro-volts -Coefficient of Expansion 13.9-remarkable Surface-Corrosion Resistance -and many more vital characteristics make ALLOY 1000 a money-making prestige-building component of compact, precision resistors. For complete data, get Bulletin 17

HERE'S HOW OTHERS DO IT

POWRARM cuts costs by increasing every worker's productivity. It gives the worker a powerful third hand to hold work while two hands produce. That's why POWRARM works on the most efficient assembly lines in America today, and belongs on yours. Write us about your production "headache" . . . we'll show you how POWRARM can cure it.
Write For Catalog 101 E
32 informative pages, FREE
 \title{

STANDARD
 \title{ \section*{STANDARD

 Radidid Interfefenence and $7 i e d d$ netesity

 Radidid Interfefenence and $7 i e d d$ netesity MEASURING EQUIPMENT MEASURING EQUIPMENT Complete Frequency Coverage -- 14 kc to 1000 mc !

NM-IOA VLF

14kc to 250kc
Commercial Equivalent of AN/URM-6.
Very low frequencies.

HF NM - 20A

150kc to 25 mc

Commercial Equivalent of AN/PRM-I. Self-contained batteries. A.C. supply optional. Includes standard broadcast band, radio range, WWV, and communications frequencies.

NMA - 5A VHF

15 mc to 400 mc

Commercial Equivalent of TS-587/U.
Frequency range includes FM and TV Bands.

UHF NM - 50A
375 mc to 1000 mc
Commercial Equivalent of AN/URM-17. Frequency range includes Citizens Band and UHF color TV Band.

These instruments comply with test equipment requirements of such radio interference specifications as JAN-I-225a, ASA C63.2, 16E4(SHIPS), AN-I-24a, AN-I-42, AN-I-27a MIL-I-6722 and others.

STODDART AIRCRAFT RADIO CO.
6644 SANTA MONICA BLVD., HOLLYWOOD 38, CALIFORNIA
Hillside 9294

to practically all corrosive chemicals, high heat transfer of graphite products and low heat transfer of carbon products, ease of machining and fabrication, resistance to severe thermal shock, low thermal expansion, strength maintained with no deformation at high temperatures and good electrical conductivity.

Magnetic Recording. Audio Devices, Inc., 444 Madison Ave., New York 22, N. Y., has available a booklet written by its vice-president, C. J. Lebel, entitled "Fundamentals of Magnetic Recording." Its 50 -odd pages include such topics as: a brief history, tape vs wire, magnetic recording method, magnetic relations, bias, erasing, output, frequency response, distortion and noise, modulation noise, tape construction, hints on selecting a tape recorder, maintenance, recording time for various tape speeds and reel sizes, and technical data on Audiotape.

Station Planning. Allen B. DuMont Laboratories, Inc., Clifton, N. J., has published a booklet on station planning, a complete step-by-step outline directed to management and station engineers which fully explains the facilities and function of all equipment necessary to the normal operation of a well-integrated ty station. Equipment layouts suggested provide for future expansion of these facilities. Easy-to-understand renderings along with exploded views and systematic floor plan arrangements follow the text graphically. As the reader goes through the booklet he finds a complete breakdown for each equipment complement explaining the actual equipment pieces and approximate costs of the various units incorporated in that group. The booklets will be forwarded directly to all tv managers and station engineers requesting copies on their company letterheads.

Precision-Regulated Power Supply. Pedersen Electronics, Lafayette, Calif. A single-page bulletin covers the model 300 precisionregulated power supply that fea-

TEFLON MAGNET WIRE

FOR HIGHEST TEMPERATURE APPLICATIONS

Warren Wire Company is now producing in quantity
Teflon insulated Magnet wire.
SIZES-14 through 4%
Single, Heavy, Triple and
Quadruple thickness, NEMA STANDAIBS

We invite inquiries where requirements call for:
small SPACE RACTOR
HIGHEST ABRASION RESISTANCE
FLEXIBLLITY AND ADIIERENCE:
DIELECTRIC STRENGTH
RESISTANCE TO CHEMICALS
and it will withstand temperatures of 250 centigrade.

WARREN WIRE COMPANY,

SCOPE DOLLY

Model 1
Convenient Height and Viewing Angle
Adjustable to Hold Portable Scopes Ball Bearing Swivel Rubber Tired Casters Lightweight Aluminum Construction Recommended by Laboratories Wherever Used
$\$ 35.00$ rob Loulsvile, ky.
Formerly manufactured by UNIQUE DEVICES Now manufactured and sold by

TECHNCCAL SERVICE CORPORATION
3116 Michigan Drive Louisville 5, Kentucky

SIGNAL ENGINEERING HERMETICALLY

RELAYS SEALED

Meet AN Standards or Armed Services Applications

Compact, multiple contact... vibration and shock proof. Built to meet rigid specifications and severe operating conditions.
Unique pile up arrangement reduces over-all space compared with conventional relays.

Write for Bulletin MTR-6
Engineering Representatives in Principal Cities

DETACH AND MAIL COUPON BELOW

ECLIPSE-PIONEER Announces the New Line of PYGMY SYNCIIEOS

Eclipse-Pioneer has added a tiny new member to its great family of famous Autosyn* synchros. It's the new AY-500 series, a precision-built pygmy weighing only $13 / 4 \mathrm{oz}$. while scaling only $1.278^{\prime \prime}$ long and $.937^{\prime \prime}$ in diameter (the same diameter, incidentally, as a twenty-five cent piece). Its accuracy and dependability are assured, thanks to Eclipse-Pioneer's 17 years of experience and leadership in the development of high precision synchros for aircraft, marine and industrial applications. For more detailed information on the AY-500 and other E-PAutosyns, such as the remarkably accurate AY- 200 series (guaranteed accuracy to within 15 minutes on all production units), please write direct to Eclipse-Pioneer, Teterboro, N. J.

- reg. trade mark bendix aviation corporation
look for the PIONEER mark of guality reg. u.s. pat. off.

Typical Performance Characteristics

	One AY-201-3 Driving		One AY-500-3 Driving
	$\begin{gathered} \text { One AY-500-3 } \\ \text { Conirol Transformer } \end{gathered}$	Two AY-500-3 Control Transformer	\qquad
INPUT			
Voltage	26-volts, single-phase	26 -volts, single-phase	26 -volts, single-phase
Frequency	400 cycles	400 cycles	400 cycles
Current	88 milliamperes	110 milliamperes	55 milliamperes
Power	0.8 watts	1.2 watts	0.9 watts
Impedance	$105+\mathrm{j} 280$ ohms	$100+\mathrm{j} 220$ ohms	$290+\mathrm{j} 370$ ohms
OUTPUT			
Voltage Max. (rotor output)	17.9 volts	16.2 volts	14.1 volts
Voltage at null	40 millivolts	40 millivolts	40 millivolts
Sensitivity	310 millivolts/degree	280 millivolts/degree	245 millivolts/degree
Voltage phase shift	23 degrees	26 degrees	44 degrees
System accuracy (max. possible spread)	0.6 degrees	0.6 degrees	0.75 degrees

Other E-P precision components for servo mechanism and compuling equipment:
Servo motors and systems - rate generators e gyros e stabilization equipment e turbine power supplies e remote indicatingtransmitting systems and special purpose electron tubes.

Por detailed information, write to Dept. C
ECLIPSE-PIONEER DIVISION of
TETERBORO, NEW JERSEY

Expert Sales: Bendix International Division, 72 Pith Avenve, New York 11, N. Y.
tures low source impedance, utmost stability under a wide variety of load conditions, minimum ripple and negligible drift. Operating data, specifications, size, weight and prices are included.

Pure Ferric Oxides. C. K. Williams \& Co., Easton, Pa., has available a data sheet on the properties of the three most popular pure red iron oxides. Actually, the company has 10 different grades but the three described will cover 98 percent of the application. Particle size, physical properties and chemical analysis are given.

Electronic Contour Follower. General Electric Co., Schenectady 5, N. Y. has announced a new fourpage bulletin on electronic contour follower systems for machining irregularly shaped parts. The publication, designated as GEA-5660, covers one-, two- and three-dimension tracer control systems for use on lathes, boring mills, milling machines, drilling machines and the like. Employing many photographs and diagrams it gives a brief description of each of the systems, its components, features and operation.

Measuring Instruments. Dawe Instruments Ltd., 130 Uxbridge Road, Hanwell, London W.7., England, has issued a 6-page illustrated brochure summarizing a wide range of electronic measuring equipment manufacturing. Technical data are given for instruments for the radio and communications laboratory, as well as instruments for industrial and photographic applications.

Time Delays. Diaphlex, Div. of Cook Electric Co., 2700 North Southport Ave., Chicago 14, Ill., has published a 12 -page booklet dealing with a wide line of Tarrytron time delays. Illustrations, dimensional drawings and technical specifications for each are included. Ordering information is made easy.

Miniature Wire and Cable. Tensolite Insulated Wire Co., Inc., Tarrytown, N. Y. Engineering and manufacturing facilities for miniature insulated stranded wires and tin-

AND MOVEMENTS.

Ideal as a built-in component of other instru-ments-with the sensitivity and ruggedness that is especielly desirable for Colorimetry, Densitometry, and yarious other measurements. Unit includes mirror movement, magnet and zero correction knob. Choice of 4 standard models. Write us about your application and requiraments *

60 M

laborituries-Ia
4336 N. Know Ave.
Chicago 41, III.

IN CANADA: COSSOR (Canada) LIMITED 301 Windsor St., Holifax, N. S.

PERFORMANCE Not Size

 IS WHAT COUNTS

PROTECTS

Against Lighfning Hazards
No. AT 105
for ribbon-type and oval jumbo iwin lead.
${ }^{5}{ }^{25}$
ONIY JFD Lightning Arresters affer you these
exclusive patented features

1. Strain-relief Retaining Lip prevents pulling or straining of lead against contact points.
2. You actually see positive contact made with lead-in wire
3. No wire stripping or cutting

Write for Form No. 84 showing the damoge lightning con do to a Television Installation.

JFD
 mamufactuang co., Imc.

WINCHESTER ELECTRONICS, INCORPORATED

NEW MINIATURE CONNECTORS

... for Airborne Electronic Equipment designed and

 manufactured by

Winchester Electronics, Inc.

Recent designs for electronic equipment in aircraft and guided missiles have required progressive miniaturization of electronic components. The above miniaturization of electronic components. The above supplied to meet this need. We have given special censideration to the following features:

1. Shell Enclosure - Die cast aluminum olloy.
2. Light Weight - Total for plug and receptacle 1.5 oz .
3. Small Size - Maximum diameter $1^{\prime \prime}$. Total length O.A. 17%.
4. Right Angle Cable Entry - For use in limited space.
5. Pressure Tight - Inserts, contacts and cable en. try, individually sealed with neoprene " O " rings or special gaskets.
6. Contacts-Five for \#20 A.W.G. and two for \#18 A.W.G. wire.
7. Finish - Olive drab, iridite.

Other contact arrangements and shell designs will be avallable soon-Write our Engineering Dedartment for complete detalls.

CPRM5-2P
(Pin Contacts
CPRM5-2S

These connectors also employ standard Winchester Electronles features: 1. MONOBLOC* construction. 2. Molded Melamine (mineral filled) inserts. 3. Precision machined pin and socket contacts, silver plated with gold flash over. *Trade Mark.

Let us help you with your difficult connector problems. Adilise us of your special requirements.

CINGHESTER ELEGTRONIGS INCORPORATED

GLENBROOK, CONN., U.S.A.

FOR YOUR

STAINLESS STEEL FASTENERS...

EXTRUDED

TEFLON

INSULATED
COAXIAL CABLE
BY
ROCKBESTOS
FOR
HIGH-FREQUENCY
CIRCUITS

Because of Teflon's very stable electrical and chemical properties over a wide range of temperatures $\left(-320^{\circ} \mathrm{F}\right.$ to $+550^{\circ} \mathrm{F}$), it is widely used in UHF transmission lines in jet planes and in various airborne communications systems, radar and radio equipment.

Extruded Teflon coaxial cable - extruded Teflon rod now available from Rockbestos. Get in touch with your nearest Rockbestos representative or write direct for information.

ROCKBESTOS

PRODUCTS CORPORATION
NEW HAVEN 4, CONN.
Specialists in High Temperature Wires and Cables Since 1918

[^15]sels, including a wide variety of wire and cable constructions, are discussed in a recent folder. Product classifications and engineering data are given. Four sheets of technical information on standard Tensolite flexible wires and cable are included.

Gas Dust Analyzer. MinneapolisHoneywell Regulator Co., Brown Instruments Division, Wayne and Windrim Ave., Philadelphia 44, Pa. Instrumentation Data Sheet No. 10.14-6 gives an illustrated technical description of a gas dust analyzer that operates with an Electronic potentiometer to provide continuous record of dust content. Operation and application data are included.

Mechanical Interlock. Simonds Machine Co., Inc., Southbridge, Mass. The many improved features of the new Linemaster Lektro-Lek switch are fully described in a recently issued bulletin. The mechanical interlock described which works on the seesaw principle with selective circuits, prevents both circuits from being operative at the same time; its single cord receptacle eliminates costly harness assemblies and alk wiring connections are made internally. The device treated is particularly suited for sound transmission equipment such as wire or dise recorders, raising and lowering of appliances and intercommunication systems.

Pocket-Size Test Instrument. Pyramid Instrument Corp., 49 Howard St., New York 13, N. Y. Case histories of electricians, maintenance men, service men, engineers, and production and test personnel who do their servicing with the aid of an Amprobe Snap-around volt ammeter have been gathered into the 16 -page manual No. 504 . Eleven case histories in the booklet illustrate as many different uses. A working drawing of the Amprobe with its specifications and mechanical dimensions is shown.

Sonometer. Electro Products Laboratories, Inc., 4501 Ravenswood Ave., Chicago 40, Ill., has issued a single-sheet bulletin on the model 4100 sonometer, an instrument

MICO

Precision Apparatus TOROID COIL WINDERS

Wide-range, laboratory-type machines available for winding samples and small production runs of toroid coils. Production machines built to meet specific requirements.
MICO INSTRUMENT CO. 76E Trowbridge St., Cambridge, Mass.

The flawless workmanship, superb operational features and the unsurpassed performance of the distinguished Newcomb amplifiers, excite the admiration of even the most case-hardened engineer. Judged by the most critical stan. dards they more than measure up to your fondest expectations. The brand you can most confidently recommeńd, or use in your own installations. .. the in dustry's most complete sound line.

Dept. L, 6824 Lexington, Hollywood, Calif. AMPLIFIERS, SYETEMS, RACK EOUIPMENT,
TRANSCRIPTION PLAYERS, PHONOGRAPHS:

Use "IMPROVED" Silver-facing for speed, quality, durability!

We are equipped to render rapid, dependable service in brazing silver to your pre-shaped contact parts.

Consult us also for any problem concerning wire, sheet or tubing where a composite material, i.e. silver-copper, gold-nickel, copper-iron, etc., is desired.

Your inquiries will be appreciated and replied to promptly.
 incorporated 1898
Dept. 1-A 775 Eddy Street, Providence 5, Rhode Island

the wordd' foughest transformers must "take" this torture, before they take on your tough jobs...

MIL-T-27 transformers are really rugged the complete line that meets military specifications

chicago MIL-T-27 Transformers win their spurs in every conceivable "torture chamber" test. Two hundred and forty-seven cycles of alternating heat and cold for over 2400 hours fail to break the seal or cause failure of these rugged chicago units expressly designed for military and special applications. chicago's unique bushing design and construction, and exclusive process of bonding steel base covers in seamless drawn-steel cases by deep-seal solderinginsure perfect sealing, complete dependability and continuous service under the most adverse conditions. Your electronic parts distributor can supply the complete range of chicago MIL-T-27 Transformers: Power, Bias, Filament, Filter, Audio. These stock transformers may be incorporated in your equipment with full assurance that they will completely meet all MIL-T-27 specifications.

CHICAGO TRANSFORMER

 dIVISION OF ESSEX WIRE CORPORATION3501 ADDISON STREET CHICAGO IB, ILLINOIS

```
3501 ADDISON STREET
CHICAGO
```

SEND FOE FREE CATALOG Have the full details on CHICAGO'S New- Equipment Line-covering all MIL-T-27 units as well as famous Sealed-in-steel transformers geored to today's circuit require. ments. Write for your free copy of this valuable catalog today, or ges
it from your distributor.

\qquad

I it contains 21 major group classifications (based on the U.S. census breakdown), 175 detailed industry classifications, and approximately 1,500 distinct and specific uses for industrial tape. A variety of tape numbers, widths and applications for communications equipment and related products, radio and radar equipment and tv equipment are listed.

7 or:

RF SHIELDING RADAR REFLECTION MASSIVE SURFACE CONDUCTIVITY

Investigate
II. SWIFT \& SONS metallized textiles

For further information write.

M. SWIFT \& SONS
Engineering Department 10 Love Lane Hartford 1, Conn.

FOR HIGH-SPEED INDUSTRIAL SOLDERING

Use G-E

Calrod* Soldering Irons
HERE'S WHY THEY ARE PREFERRED BY...
PRODUCTION MEN ... because they are built tough for long, continuous production line soldering. With calorized or ironclad tips, they stay clean, solder fast and can be easily disassembled.
MANAGEMENT MEN... (.E.E irons last longer and need less service. Exhaustive tests by some of the world's largest soldering iron users show that G-E irons save them money. MAINTENANCE MEN . . . because superior features, like the cord-strain insulator which withstands a pull of 35 pounds, makes far less maintenance necessary. When it's occasionally necessary, the dependable G-E cartridge heater slips right out for servicingjust pull a pin.
FOR FREE BULLETIN, GEA-4519, ask your nearby G-E distributor, or write to: Sect. 720-66, General Electric Co., Schenectady, New York.
*Registered Trademark

GENERAL
 ELECTRIC

The largest commercially available equipment for shake testing according to military specifications is now in service at Sperry Gyroscope Company. Developed by Calidyne to deliver a force output of 2500 pounds at frequencies up to 500 cycles per second, this electrodynamic shaker, with its associated power supply and control system, is the latest addition to Calidyne's complete line of equipment for vibration studies.

Further original Calidyne developments in the field of vibration investigation include other electro-dynamic shakers, vibration pick-ups, couplers, vibration standards, vibration meters, and calibrators for accelerometers and vibration pickups. Each of these was produced to satisfy a recognized need in vibration research and the advanced thinking they demonstrate has earned their extensive use in diverse fields of engincering.
When you need sure knowledge of vibration and its effects, you need Calidyne apparatus. Write for your free copy of data sheet EBG-521.

Model \#530
ALSO AVAILABLE
Model \#520: 80 to 325 V . at 150 mo . Model \#540: 80 to 375 V . at 450 mc . Model \#550: 0 to 5 KV at 300 ma (unreg ulated)

76 STAGE STREET

MANSON LABORATORIES
STAMFORD, CONN.

AT RADIO SHACK: AMPEX MODEL 307R,6 MODEL $302 C$ MODEL 300C,S,R MODEL 400A

Also avallable from RADIO SHACK: Ampex recorders in 1 to 14 tracks using $1 / 4^{\prime \prime}$ to I' $^{\prime \prime}$ tape - for telemetering and other industrial scientific and professional use. Write for prices and details.

is YOUR ORDERS AT FILLED NOW ON:

CHICAGO TELEPHONE SUPPLY variable wirewound resistors meeting all specs in JAN-R-19 . . VICTOREENN radiation instruments counter tubes. hi-meg resistors, counter and subminiature tubes . .. J-B-T vibrating reed frequency meters, switches . . VECTOR socket-turrets . . CHICAGO hermetically sealed MIL.T. 27 transformers, reactors, pulse and new equipment transformers ... MICRO SWITCH precise snap-action switches USECO ferminal lugs, standoffs... POTTERBRUMFIELD relays .. . SIMPSON instruments ELECTRONS INC. rectifier tubes SUPERIOR variable voltage controls ... and the products of RCA, G-E, Raytheon, Sylvania, Amperite, Belden, Minnesota Mining, UTC, Aerovox, Cornell-Dubilier, Erie, Mallory, Amphenol, Cinch-Jones, Ohmite, Burgess, Sola, Eby, ICA and 200 others!
Rodio Shock's 29 yeors of experience as America's leading distributor of industrial electronic parts is yours for the asking! Radio Shack has the plant, the personnel, the control systems. AND the inventory to serve you faster, better, more reliably.

FREE!
YOUR ENGINEERING AND PURCHASING MEN NEED \rightarrow the rado Shack catalog!
| YOUR NamE \qquad
I company \qquad I $\|^{\text {STREE }}$ \| CITY \qquad WE NEED RADIO SHACK I

RADIO SHACK CORPORATION
 167 Washington St, Boston 8, Mass:

There's a $\sqrt{7}$ Potentiometer for every application

by the academic officers and the RCA education committee.

IRE Elections and Awards

AT an IRE board of directors meeting held in November election of the following officers and directors was announced :

President, 1952-Donald B. Sinclair of General Radio Co., Cambridge, Mass.

Vice-president, 1952-Harold L. Kirke of the British Broádcasting Co., London, England.

Directors-at-large, 1952-1954 John D. Ryder of the University of Illinois, Urbana, IIl.; and Ernst Weber of Polytechnic Institute of Brooklyn, Brooklyn, N. Y.

Regional directors, 1952-1953: Region 1-Glenn H. Browning of Browning Lab. Inc., Winchester, Mass.; Region 3-Irving Wolff of RCA Laboratories Div., Princeton, N. J.; Region 5-Alois W. Graf of Chicago, Ill.; Region 7-Karl Spangenberg of Stanford University, Stanford, Calif.

The following IRE awards were also made at the board meeting:

Morris Liebmann Memorial Prize, 1952-William Shockley of Bell Telephone Laboratories, Murray Hill, N. J.

Browder J. Thompson Memorial Prize, $1952-\mathrm{H} . \mathrm{W}$. Welch, Jr. of University of Michigan, Ann Arbor, Mich.

Vladimir K. Zworykin Television Prize Award, 1952 -B. D. Loughlin of Hazeltine Electronics Corp., Little Neck, N. Y.

Editor's Award 1952-Jerome Freedman of Watson Lab., Griffiss A.F.B., Rome, N. Y.

NOL's New Cold Roll Mill

The New Sendzimir cold roll mill, which produces extra-thin tapes used in pulse transformers, magnetic amplifiers, radar equipment and other high-frequency operations, is now in use at the Naval Ordnance Laboratory, White Oak, Md.

The mill, capable of rolling metals to a thinness of a few tenths of a thousandth of an inch, was built at a cost of $\$ 75,000$. It was installed in the spring of 1951. Work on control

> Hundreds of standard JONES TERMINAL PANELS Complete equipment for SPECIALS

Several pages of Jones Catalog No. 17 illustrate standard and special

Send your specifications for prompt
 panels we are constantly producing. Latest special equipment enables us promptly to produce practically any panel required. Send print or description forprices, without obligation. Hundreds of standard terminal strips also listed. Send for Catalog with engineering drawings data.

JONES MEANS
Proven QUALITY

Permits study of all three basic single phase self-safurafing circuits

- For Industrial Laboratories - Schools.
- Can astually be used in operating controls circuits.
- Gives d-c or a-c output... uses d-c or a-c control power.

Designed by Vickers Electric Division to help industrial personnel and students obtain a wider knowledge of the characteristics and applications of high-performance self-saturating magnetic amplifiers.

> Complete with Magnetic Amplifier Laboratory Manuals and Magnetic Amplifier Design Kandbooks.

Write for literature and price.

VICKERS ELECTRIC DIVISION

```
1801 LOCUST STREET•ST. LOUIS 3, MISSOURI
```

$$
\begin{array}{cc}
\text { Sub-miniature } & \begin{array}{c}
\text { IN-RES-CO } \\
\text { AND } \\
\text { W-I5 \& S S } 30 \\
\text { wRE WOUND } \\
\text { RESISTORS }
\end{array} \\
\text { moisture-proof }
\end{array}
$$

THE ECONOMICAL SO:UTION where moisture proof resistive elements of comparatively smal size are required for commercial applications. Type $\mathrm{S}-15$ is $3 / 8^{\prime \prime}$ long by ${ }^{1} / \mathrm{A}^{\prime \prime}$ diam. eter; type $\mathrm{S}-30$ measures $3 / 4^{\circ}$ by $1 / 4^{\prime \prime}$ diameter Both types are moisture proof and capable of high per*ormance over long periods of continaous service. IN-RES-CO Resistors for every ondnance or civilian requirement are available at a cost that solves circuit design problems both performancew.se and cost-wise Check up now, on the complete line of IN-RES-CO quality wire wound resistors

We offer our proved ability to produce bermetically-sealed transformers to JAN-T-27 or M1L-T-27 government specifications. Prompt delivery, efficient engineering techniques and modern production

facilities which include conveyorized assembly lines make "GTC" worthy of your consideration.

Our new plant is selfcontained with complete metal-working and toolmaking facilities. We invite inquiries from prime and sub-contractors.
There is a "GTC" representative in your territory

GENERAL TRANSFORMER COMPANY

serving industry since 1928
18240 Harwood Avenue, Homewood, Illinois
(Suburb of Chicago)
adjustments and electrical circuits continued through the summer under the direction of engineers from Armzen Co., designers and engineers for Tadensz Sendzimir, inventor of the mill, and GE engineers who built complicated electrical controls.
The first test run gave a thinness of 0.0005 in . with magnetic alloys which were rolled from 0.05 beginning thickness. Chief advantage of the new mill, in addition to the very fine gage achieved, is the fact that it will handle wider strips of magnetic alloys than will the mill previously used.

There are only four other such mills in operation in the U.S. at present. They are located at Westinghouse, General Electric, The Hamilton Watch Co. and North Amerjcan Phillips.

Government Appointments

LoNg experienced in the electronics field, George W. Henyan of Sohenectady, manager of General Electric Industriai and Transmitting Tube operations for the past three years, has accepted a temporary appointment as chief of the components branch of the National Production Authority's Electronics Division. A veteran of 33 years with General Electric, he will make his headquarters in Washington.

Another recent appointment is that of Leslie E. Neville, at one time editor of McGraw-Hill's Aviation Magazine, to director of the Department of Defense's newly organized Armed Services Technical Information Agency. ASTIA will be responsible for collecting, cataloging and storing scientific and technical information from all available sources. It will also provide a scientific and technical bibliographic service to military agencies and their contractors.

Franklin Lamb, vice-chairman of the board of Tele King Corp., New York, and a member of the Electronics Board of National Production Authority, has been appointed assistant to the Director of Defense Mobilization.

Robert McCurdy, associated with the National Production Authority since March 1951, has been ap-

- Electronics manveacturens LABORATORIES UHIVERSITIES . . . BROADCASTERS

We don't sell surplus, but we can offer equal values with new merchandise. Send for list of our lines Let us place your name on our mailing list and place our name on your mailing list to receive your requests for bids.

Address: Industrial Dept

DeMAMBRO Radio Supply Co., Inc.

"New England's Largest Electronics Distributor"

1111 COMMONWEALTH AVE. BOSTON 15, MASS.
Telephone STodium 2-i342
BRANCH OFFICES
Providence, R. I., 90 Broadway
Worcester, Mass., 222 Summer St.
Manchester, N. H., 1308 Elm St.

Fasi. sugged, convement-ana inexpensive. The Green Engraver is tops tor low-cost pertormance -rips oul precision work on metal, plastics or wood . cuts tour lines of letters trom $3 / 64^{\prime \prime}$ to 1 " on curved or flat suriaces . operates by tracing....makes anyone an expert engraves panels, name plates, scales, dials, molds. lenses and instruments. (Also widely used tor routing, protiling and three dimen sional modeling.) Electric etching attachment avalable.
Sperint ottochments and engineering service available tor production work

FREE-foct-packed folder. Send for yours, today

 CREEN INSTRUMENT COMPANY363 PUTNAM AVENUE
CAMBRIDGE, MASS.

Kahle

SPECIALISTS IN HIGH-SPEED

electron tube machinery

Kahle's 40 years of experience eliminate trial orders and experimental set-ups. Standard toolings for all tube manufacturing eventualities already have been tested and approved. This means that Kahle can assemble machines for everything from sub-miniature to largest TV picrure tubes to your exact specitications . . . at lower costs!

\#1375 SUB-MINIATURE SEALING MACHINE (12-HEAD). Also for hearing aid tubes. Kahle Standard Dual motor drive. Indexing by barrel cam and rollers. Heads have self-centering bulb holders.

Machinery for all types of electron tubes and related gloss products.

Consultotions invited. Write today for our new cotalog with complete details.

1309 Seventh St., North Bergen, N.J.

LOW HABMOMIC COMTENT permanent macnet ALTEPMATOR

Originally designed and manufactured to operate into EAD synchronous motors in precision test equipment. Will meet all military specifications-high and low ambient temperature, humidity, altitude, dust, tropicalization, vibration and corrosion.

SPECIFICATIONS

Output 7 volts and 30 cycles, at 1800 RPM. Extremely low harmonic distortion, continuous duty, ball bearings.

This alternator may be modified to meet your individual requirements in 1,2 or 3 phase for wide voltage ranges at required frequencies.

[^16]

Hairline Leakers Are Eliminated in these cathode-ray tube parts and crystal cartridge components for glass-to-metal sealing. Standard Volkert items, formed to close tolerances from Allegheny HC-4 Sealmet and Kovar.

Volkert can offer you Precision...Volume...Low Cost in your Stamped Metals

A pioneer in the application of stamping and forming techniques to electronic components, Volkert is well equipped to help you solve unusual parts problems when difficult-to-form materials are involved.

For other difficult glass-sealing applications, Volkert can furnish you with engineering help ...design necessary dies, no matter how complex...mass produce high-quality parts.

Write today for your copy of the 16-page brochure, "3-Way Facilities for Precision Stampings." It tells how Volkert can serve you with facilities for design engineering, tooling and production - all combined under a single roof.

JOHN VOLKERT METAL STAMPINGS, INC.
222-34 96th Avenue, Queens Village 8, New York
Volliert
PRECISION STAMPINGS

NEWS OF THE INDUSTRY
pointed deputy director of the Scientific and Technical Equipment Division of NPA.

Norman L. Winter, chief sales engineer for Sperry Gyroscope Co., Great Neck, N. Y., has been appointed chairman of the Navigation Technical Group of the Research and Development Board, Department of Defense.

Lauriston S. Taylor has been promoted from assistant chief to chief of the Atomic and Radiation Physics Division of the National Bureau of Standards, and Coordinator of Atomic Energy Commission Projects at NBS.

WMIT (F-M) Reopens

The highest radio station in the eastern United States is again on the air 18 hours a day. WMIT, located on Clingman's Dome, Mount Mitchell, N. C., is the world's most powerful $f-m$ station by virtue of its effective radiated power of 300 kw.

The pioneer station, off the air since early 1950 , has new owners, a new 8-bay doughnut antenna array, and a new $50-\mathrm{kw}$ Symmetron-type final amplifier (described on p 68, May 1949 Electronics).

New REA power lines and transformers, already installed, will allow the station to increase its erp to 325 kw , not feasible while using diesel power plants at the transmitter.

The top of the antenna pole is 6,773 feet above mean sea level, but because of the generally high level of the surrounding terrain within a radius of ten miles, its height is figured as 3,076 feet by FCC. A 100foot fabricated tower is surmounted by the 80 -foot pole carrying the doughnut elements and their deicers. These are of a new type tuned with stubs rather than capacitors and are adjusted for optimum operation in fog. Clearweather or icing conditions throw them out of resonance but with a negligible standing-wave ratio.
Preliminary surveys of reception show that signals are far above predicted values. At High Point, N. C., on the 50 -microvolt contour, the actual signal is in the order of 1,200 microvolts. A station in Myrtle

（2）Tell us your wire problems and requirements．Our ro－ search，engineering and pro－ duction facilities are at your disposal．Let us quote！
（С）Specify the electrical properties，flex－ ibility，tensile strength，laying speed， uniformity and other characteristics you must have．Our Hudson and Winsted Di－ visions will meet and maintain your spe－ cifications．
Yes，＂Fine Wire Made Finer！＂That＇s why Hudson－Winsted fine wires are the first choice of electrical，radio－TV and elec． tronic manufacturers whose products are noted for reliability and long life．
custom drawn custom insulated custom spooled．．． to your most exacting requirements

fine wire made finer

general offices：ossining，n．y．（©）winsted division，winsted，conn．

TUNGSTEN LEADS
 BASES AND CAPS
 SPOT WELDERS COMPLETE ASSEMBLIES

－THE ENGINEERING CO． NOW IN PRODUCTION HYDROGEN THYRA－ TRON TUBE bASE．
－precision manufac－ TURE OF METAL PARTS

Manufacturing Component Parts for Electronic Tubes Since 1923.

Tungsten Leads are important factors of the tube． High quality leads make quality tubes．Engineering Co．makes the finest leads．No leakage or breakage
when you buy our leads．Parts when you buy our leads．Parts
made to customers specification．

Quality tubes depends on quality bases and caps．We make all types including also an all glazed cer－ amic base．

Our engineers will be happy to help you with any of your problems．

Send Us Your Prints for Quotations．
THE ENGINEERING CO．
Daniel Kondakjian．
27 WRIGHT STREET－NEWARK 5，N．J

Little thought－of facts about capacitors

The short the brectrdown voltage of a vell－made D．C． sapacitor is not lean than 5 to thme the actual workine voltage at 20°－

$$
\begin{aligned}
& \mathbf{E}=\mathbf{5} \times \text { min } \\
& \mathbf{E}=\text { Breckdown voltage } \\
& \mathbf{e} \text { Rated d.e vorting voltaqe }
\end{aligned}
$$

INDUSTBLAL CAPACTTORS are unvaringly held to thil formula．
Designed for maximum safoty and the smallest posisible Tolume，INDUSTRLIL CAPACITOR年 are the mont videly aned eapacitoz in industrial application．

```
WRITE TODAY FOR DETALED CATALOO
```

INDUSTRIAL CONDENSER CORP．

Salos Othlices Im
All Princlpal Cition All Principal ctila Chicogo 18，Illinels

NEW! type Rxz COMPARATOR

MAKES HIGH SPEED CIRCUIT COMPARISON OF

 COMPONENTS EITHER RESSTIVE, REACTIVE OR IN COMPLEX EILCTRONIC CHASSIS, ASSEMBLIES, SUB-ASSEMBLIES AND/OR COMBINATION - CHECKS AgAINST STANDARD CHASSIS

Reduces Inspection Time Up fo 75\% -Semi-Skilled Personnel Can Operate

This instrument is used to compare a fully assembled chassis, no matter how complex the circuitry, against an identical chassis that has been found satisfactory by the usual testing methods and thus is standard. The deviation, in percent, of the circuit under test as compared to the
standard circuit is indicated on a calibrated dial. In the hands of semi-skilled personnel, the RXZ Comparator becomes a valuable instrument for fast troubleshooting as well as test and inspection - reduces inspection time to one-fourth of your present time.

PINPOINTS CIRCUIT TROUBIE

A switching system is incorporated in the RXZ Comparator by which abnormal deviations are pinpointed in the chassis under test. Besides means for sequential checking of a multiplicity of directly com-
pared circuits in rapid order, means is incorporated for specific trouble-shooting by point-to-point impedance measurement. A wide range ohmmeter is included for individual component analysis.

NEWS OF THE INDUSTRY
Beach, S. C., about 250 miles away, is programmed exclusively by signals from WMIT since the quality is superior to that obtained from existing telephone lines in the region.

Programs broadcast from WMIT are received by microwave link from the studios in Charlotte, N. C.

Expansion for Military Production

The General Electric Company's Electronics Division at Electronics Park recently announced that it will use two buildings and part of a third at Bridgeport, Conn., for the design and manufacture of military electronic equipment. Floor area to be devoted to the new production will total $150,000 \mathrm{sq} \mathrm{ft}$. Employment at the three locations is expected to reach 1,000 people by next fall. Several types of electronic equipment, including radar, will be manufactured in Bridgeport for the armed services.

Other expansions recently noted are as follows:

The Electronic Engineering Co. of California has moved to a new building at 176 South Alvarado St., Los Angeles. The new structure provides three times the size of former quarters. The company, active in the field of guided missile instrumentation, owes much of its growth to the awarding of additional armed services contracts.

Computer Research Corp., manufacturer of a ferroresonant flipflop that has wide application in the

Computer Research Corp.'s new building
guided missile and telemetering fields, has moved to 3348 W . El Segundo Blvd., Hawthorne, Calif., increasing available plant space approximately eight times.

Bendix Aviation Corp. has purchased the Utica, N. Y., plant of the Continental Can Co., Inc., to facili-

A flexible shield that snugly fits afl miniature tubes because it compertsates for all variations in tube dimensions. Mini-Shields are made for both T5 $1 / 2$ and T6 $1 / 2$ bulb tubes. Send for calalog sheet.

THS E II?

World-wide recognition for this outstanding line of electric soldering irons -

- specified by the big names - for the TOUGH JOBS!

WESTERN ELECTRIC, BENDIX, MINNEAPOLIS HONEYWELL RADIO CORP. OF AMERICA, STROMBERG CARLSON, SPERRY, WESTINGHOUSE, EMERSON, KAISER, etc.

PLUG OR SCREW IIPS 40 to 700 Walts
L $1 /{ }^{\prime \prime}$ to $1 \frac{1}{4}$ " Tip Dia. follow the leoders and you'll
specify HExACON They' specify HEXACON! They'Il eff. ciently solve your soldering
problems. Write for liferafure.

Here's the famous HATCHET

These irons feature better balanie for reduced operator fatigue. E鲁 ciency is stepped up, and qualay of work is improved. The ideal on for inaccessible and intricet jobs.

HEXACON ELECTRIC CO.
130 W. CLAY AVE, ROSELLE PARK, I. J;

AIR SPACED ARTICUIATED R.F.CABLES

THE LOWEST EVER CAPACITANCE OR ATTENUATION

We are specially onganizedtohondle direct enquiries from overseas and
 Billed in dollars Settlement by your chech.

TRANSRADIO LTD
COMTRACTOAS TO HM. COVERNMINT. 138A GROMWIL ROAD. LONDON SW. 7 ENCLAND CAELES: RRAMSAAD LONDON:

100 Metropolitan Ave.
Brooklyn 11, N. Y

CONSTANT RESISTANCE HIGH POWER RATING

 TERMALINE COAXIAL LOAD RESISTORS51.5 ohms DC to $4000 \mathrm{mc}-5$ watts to 2500 watts

The constant resistance (Low VSWR) of the TERMALINE resistor make it the ideal dummy load and standard resistor at UHF and VHF. Design is such that normal reactance is put to work producing a pure resistance over an extremely wide frequency range. Acting as a bottomless pit" for RF energy, thousands of TERMALINE units are in daily use with high frequency transmitters.

SIX MODELS AVAILABLE

Very handy in lab and production test. At signal generator levels and below 5 watts, this is the last werd for low Y $S W R$.

1800 EAST 38TH ST. CLEVELAND 14, OHIO West Coast: nEELY ENTERPRISES HOLIYWDOD 46, CAL.

Four exclusives are yours with the Northern Radio FREQUENCY SHIFT CONVERTER -utmost simplicity of operation, precision tuning, highest quality performance, and smallest size in the industry.
For single and diversity FS receiving systems, this dual channel unit converts mark and space tones into DC pulses, and drives teleprinters and other recorders directly. Its unique $2^{\prime \prime}$ oscilloscope provides the industry's most meaningful tuning pattern for precise receiver adjustment-during initial setup and while keying. Its specially designed limiter and discriminator afford an exceptionally high degree of performance. Polar or neutral autput is available. Keying speeds up to 600 w.p.m. It's only $19^{\prime \prime}$ wide $\times 7^{\prime \prime}$ high $\times 15^{\prime \prime}$ deep.

This unit may also be used as a make and break CW or ICW demodulator.
See the specifications on this outstanding model in the 1951 Electronics Buyers Guide. For complete dato on the precision-buith Northern Rodio line, write todoy for your free latest Catalog E-1.

> NORTRIERAS RADLO COMTPANY, inc.
> 143-145 West 22nd Street - New York 11, N. Y.

Pace-Setters in Quality Communication Equipment
tate expanded production of precision equipment required by the military services.

Electronic Positions Available

Holloman Air Force Base, near Alamagordo, New Mexico, has openings for positions in electronic engineering and physics. Openings also include numerous positions as electronic scientists, physicists, mathematicians, electronic laboratory technicians, radar technicians, telemetering technicians and others.

Applicants with education and experience in these fields are urged to submit Application for Federal Employment, Standard Form 57, to the Civilian Personnel Office, Holloman AFB , New Mexico. This application form can be obtained from most first or second-class postoffices or from U.S. Civil Service Commission.

BUSINESS NEWS

Magnecord, Inc., Chicago, Ill., manufacturers of high-fidelity professional tape recorders, have formed a new corporation, Magnecord International Ltd., to handle all the company's business outside of the Western Hemisphere.

Varian Associates of San Carlos, Calif., developers and manufacturers of electronic products, have leased approximately ten acres of Stanford University land. Construction of a $30,000-\mathrm{sq} \mathrm{ft}$ milliondollar research and development laboratory is expected to start early in 1952 and be completed within one year.

Astron Corp., East Newark, N. J., has consummated a long-term lease for additional space which virtually doubles production facilities for its capacitors and r-f interference filters.

Lindberg Instrument Co., Berkeley, Calif., has moved to larger headquarters in that city to begin full mass production of Fluid Sound, a new phonograph pickup cartridge that applies the princi-

Civil Defense RADIO ANTENNA

Mobile operations in $1 \frac{1 / 4,2}{}$ and 6 meters are working surprisingly well with low mobile power-particularly with Premax low-cost VHF Antennas. Illustrated are two roof-top jobs, the one at left requiring a single $1 / 2^{\prime \prime}$ hole for one-man installation. The one at the right utilizes suction cup mounting re* quiring no holes and yel is always available for service.

Write for Bulletin and prices.

PRHMAX PRODUCTS DIVISION CHISHOLMAYDER CO. INC

5201 Highland Ave. Niagara Falls, N. Y.

Here are complete descriptions of 78 Lab-Bilt Batteries of industrial and hard. to-get types. Specification Sheet en. ables you to order batteries especially designed to your own requirements. No order is too small. Specialty makes and ships FRESH Lab-Bilt Batteries without delay. Get this new catalog today.
AND IGNITION
SPECIALTY BAZTERY COMPANY Eevo.ver RAYO.VAC surideary MADISON IOS WISCONSIN

"JUST RIGHT" HARDNESS . . . SURFACE FINISHED FOR SLIP RINGS AND COMMUTATOR BARS

NEY \#90 Alloy, overcomes many of the disadvantages of coin silver when used in slip ring and commutator bar applications. Actually a modification of coin silver, NEY \#90 is subjected to a carefully controlled processing that produces a uniform hardness of 120-130 Brinell which has been found best for slip ring type applications. Since performance is also markedly influenced by surface condition, especially when brush pressure must be low, NEY \#90 Alloy rings are given a specially developed finish that greatly reduces wear and electrical noise. NEY \# 90 Alloy is available in seamless tubing in all sizes up to $4^{\prime \prime}$ O. D., also in the form of plate, rod, wire and fabricated parts.

Write for your copy of new Ney Data Book, "NEY PRECIOUS METALS FOR NON-CORROSIVE WEAR-RESISTANT PARTS." (Bulletin R-12)

THE I. M. NEY GONIPANY, 179 Elm Street, Hartford 1, Comecticut

 sperialisis in pheghous metal metalluhgy sinie 1812.

Silver-plated, spring alloy, pre-formed finger stock especially suited for electrical "weather-stripping" for TVIproofing cabinet access doors, etc. Also ideal for making coaxially constructed tube connections and many other uses. Available in $17 / 32^{\prime \prime}, 31 / 32^{\prime \prime}$, and $17 / 8$ " widths.

- Write for new Eimac Catalogue Summary showing Eimac fubes and other accessories.

EITEL-MCCULLOUGH, INC. San Bruno California

POPULAR NATIONAL DIALS

For years, National dials have been the popular choice of amateurs, experimenters and commercial users because of their smooth, velvety action, easily. read scales, and quality construction.

Many dials, like the N and $A C N$ dials shown, can be specially calibrated or supplied with blank scales for commercial application. Write for drawings and prices.

Address export inquiries to Export Div, Dept. E-152

POTTER INSTRUMENT COMPANY 115 CUTTER MILL RD., GREAT NECK, NEW YORK

PRECISION-BUILT CHOPPERS
 YOU CAN DEPEND ON!

made by AIRPAX pioneers in the field!

J. B. Ferguson

A. W. Friend

Albert W. Friend, formerly a member of the research staff of RCA Laboratories at Princaton, N. J., was recently appointed director of engineering for the Daystrom Instrument Division of Daystrom, Inc., Elizabeth, N. J.

William A. Edson has been promoted from professor of electrical engineering to director of the school of electrical engineering at Georgia Institute of Technology, Atlanta, Ga.

Sol Levine, associated with Edo Corp., College Point, N. Y., for the past five years, was recently appointed chief engineer of the company's electronics division
E. G. SHOWER, formerly a member of the technical staff of Bell Tele-

COMMERCIAL 100

VACUUM TUBE *AGING RACK

TYPE 242
Any Standard VOLTAGE
Any Standard LOAD

Any TUBE ELEMENT

* Complies with Service aging requirements for reliability testing vacuum tubes.
- Power supplies regulated and con:inuously variable.
- 500 to 1000 watts for both filament and plate power.
- Bias voltage 0 to 75 volts at 0 to 50 mils.
- Flexible patching permits changing tube types in banks of ten in less than 2 minutes per bank.
- Safe for continuous operation. Furnished with reliable production type sockets.

PENNSYLVANIA TESTING LABORATORY Doylestown, Pa.

> ELECTRONIC GLASS WORKING EQUIPMENT for RADIO, TELEVISION TUBES, INCANDESCENT LAMPS, GLASS LATHES for TELEVISION TUBE REPAIR. We make Transformers, Spot and Wire Butt Welders, Wire Cutting Machines and 500 other items, indispensable in your production. Eisler Engineers are constantly developing New Equipment. If you prefer your own designs, let us build them for you. Write to Charles Eisler who has served The Industry over 30 years.

SUPERIOR STEATITE AND CERAMIG

INSULATORS FOR THE ELECTRONICS INDUSTRY,

SEND PRINTS FOR QUOTATIONS TODAY.

Custom-made to your specifications. Low-loss factor; dense, high mechanical strength. We are equipped to serve you quickly and efficiently.

Sunturn
 STEATITE \& CERAMIC CORP.

32-49 GALE AVENUE, LONG ISLAND CITY 1, N. Y. West Coast Representative: S. Siegel, 1145 So. La Cienaga Blvd., Los Angeles 35, Calif.
phone Laboratories, has joined the staff of Radio Receptor Co., Inc., Brooklyn, N. Y., as chief engineer Qf its newly formed germanium division.

Carl F. Miller, inventor of the Loktal radio receiving tube that locks in its socket, has been named manager of Westinghouse receiving tube development and design engineering.

Murray Weinstein, former consulting engineer in the electronics industry, is now associated with Regal Electronics Corp., New York, N. Y.

Palmer M. Craig has been promoted from director of engineering in the electronics division of the engineering department to vice-president-engineering for the television and radio division of Philco Corp., Philadelphia, Pa.
Harold R. Terhune, formerly vicepresident of the Mycalex Tube Socket Corp., Clifton, N. J., was recently appointed administrative engineer at Federal Telecommunication Laboratories, Inc., Nutley, N. J.

H. R. Terhune

W. R. MacGregor

Wallace R. MacGregor, formerly on the FCC staff as common-carrier engineer, has joined Lenkurt Electric Sales Co. as manager of government sales for carrier telephone and telegraph systems.
W. L. Parkinson of General Electric Co. has been named chairman of the RTMA Service Committee.
W. A. Lauder, chief engineer of Unimax Switch Division of The W. L. Maxson Corp., New York, N. Y., has been elected chairman of the Precision Snap-Acting Switch Section of the National Electrical Manufacturers Association.

BURSTEIN-APPLEBEE CO.

NEW INVENTION! most ravournowner DEVELOPMENT

 in ALUMINUM FABRICATION ‘THE MULLARD UITRASONIC SOLDERING IRON"NO FLUX IS REQUIRED . . . In this new technique developed by the Mullard Electronic Research Laboratories the hard oxide skin is temporarily destroyed by passing ultrasonic energy through the molten solder. Equipment consists of a strong, portable power unit supplying either a soldering iron or a solder bath for dip tinning small components. There are no controls other than a main switch on the power unit and a trigger switch on the iron.

Write For Free Particulars TODAY

(Direct Factory Distributors for MULLARD LTD.)
EAGLE ENGINEERING CO., 1139 So. Wabash Ave., CHICAGO 5

Developed and produced for manufacturers of electronic components and other electrical units.

Specifications and samples available on request.
Information relative to your problem or application will enable us to make suggestions and recommendations.
BIWAX CORPORATION ${ }^{\text {3ats }}$ Howaro strett SKOKIE, ILLINOIS

Try Remler for Service-Tested "Hard-to-Get" Components

Custom Componento

 Metal-plastic components designed and manufactured to order. Write for quotations specifying electrical and mechanical sharacteristics. Describe application. No obligation.
PLUGS \& CONNECTORS

BANANA PIN TYPES...JAN SPECIFICATIONS
Multi-contact connectors and mating chassis counterparts. Melamine or alkyd insulation; steel or brass nickel-plated shells. Banana springs are heat treated beryllium copper. Unexcelled low resistance contact. Highest quality ... good for thousands of connects and disconnects.
Special Connectors to Order-Miniatures; water tight and pressure proof types to JAN specifications.
Remler Company Ltd, 2101 Bryant St. San Francisco 10, Callf.

Remlor

Laboratory and portable test instruments, panel and switchboard instruments, pyrometers and associated equipment, transformers, rectifiers, controls, timers, counters, thermostats, solenoids, etc.

Thousands of standard and special items by Simpson, Sensitive Research, Biddle, Superior Electric, Struthers Dunn, Weston, Micro-Switch and others

Complete laboratory service to solve your special instrument problems.

KEEP UP-TO.DATE
Write today for the
electro-tech catalog and the electro-tech monthly PURCHASING GUIDE

ELECTRO-TECH

EQUIPMENT COMPANY, Dept. E 308 Canal Street, New York 13, N. Y.

NEW BOOKS

(Continued from page 152)
the exception of saw-tooth generators and some notes on the cath-ode-ray tube there is little directly applicable to modern television deflection systems.

This is an ambitious attempt to incorporate in one volume a complete reference on time bases and their applications. As a result, one may not find adequate coverage on his particular problem. He will, however, find a wealth of background material and ample references.

Because of the ever-increasing use of time bases this book is almost certain to find an even greater acceptance than the widely used first edition.

R. F. Casey,

Development Engineering Section, nstrument Division, Allen B. Du. Mont Laboratories, Inc.

Television Principles

By Robert B. Dome. McGraw-Hill Book Company, New York, 1951, 291 pages, $\$ 5.50$.

An easily followed introductory text, on the engineering level, to the problems of television transmission and reception. As each of the successive portions of the complete television system is taken up, a discussion of the relevant theoretical principles is given. This discussion is followed immediately by the practical considerations encountered in the application of the principles and by problems for the student to solve. The range of the topics treated is broad enough to insure that any engineer who has gone through the text carefully will have had an effective introduction to the problems of the television art.

From the point of view of its use as a reference book, a sort of handbook of television engineering, the book is less satisfactory. The very plan of organization which is successful in making the book a readily "followed introductory textbook requires the presence of large amounts of expository material. It also tends to distribute through the body of the book information which should preferably be kept together if the book were primarily intended for reference purposes. For example, the FCC Standards of Good

Engineering Practice are distributed in a number of places throughout the book rather than being in a single place for convenient reference.
A. V. Loughren,

Director of Research, Hazeltine Corp.

The Earth's Magnetism

By Sydney Chapman. Methuen's Monographs on Physical Subjects, John Wiley \& Sons, Inc., New York, 1951, 127 pages, $\$ 1.50$.
THis pocket-size monograph is a revision of the one published in June 1936, and contains "a brief but fairly broad account of our present knowledge of the earth's magnetic field and its changes." Written by one of the foremost authorities, this book can be recommended as an excellent summary of an introduction to the subject, which the reader can supplement, if he so desires, by-eference to the published works mentioned on page 117 of the monograph.

The book is largely descriptive, but also includes some theoretical material on the nature and causes of the earth's magnetic field and its variations. The book covers the main magnetic field of the earth and its variations-annual, secular and sunspot-cycle variations, solar quiet-day variations, lunar daily variations, and variations during magnetic storms-together with the relationships between magnetic disturbances and solar phenomena.

The new material which has been added since the first edition includes notes on the initiation of a magnetic storm and the ring current, the association of magnetic effects and sudden ionospheric disturbances, the recurrence tendency of weak and moderate storms, the association of great storms with solar outbursts, correlation with cosmic rays and ionospheric phenomena, the magnetic field anomalies at Huancayo, and an idealized picture of the portion of the disturbance field due to external causes. A number of sections have been rewritten to bring them into agreement with current theories, such as the theory of the origin of the solar quiet-day variations.

The mathematical development is

FOR YOUR PANEL
a Novel and unlque circuit indicator DESIGNED FOR NE-5I NEON LaMp For 110 or 220 volt circuits The required resistor is an integral part of this assembly -"built-in."

RUGGED • DEPENDABLE LOW IN COST

PATENTED: No. 2,421,321
Cat. No. $521308-997$

WILL YOU TRY A SAMPLE?

'Write on your company letterhead. We will act at once.
No charge, of course.
SEND FOR THE 192 PAGE handBOok of pILOT LIGhTS
Among our thousands of Pilot Light Assemblies there is one which will fit your special conditions. Many are especially made and approved for military use. We pride ourselves on prompt deliveries-any quantity.
ASK FOR OUR APPLICATION ENGINEERING SERVICE
Foremost Manufacturer of Pilot Lights
The DIAL LIGHT COMPANY of AMERICA
900 BROADWAY, NEW YORK 3, N. Y. SPRING 7.1300

 dissipation; aluminum frame; aluminum winding core and graphite brushes. The exceptionally high resistances are possible because of new developments in material and design. The linear and non-linear windings are available in both models and can be combined in any combination in dual units.

LINEAR and NON-LINEAR

DeJUR
MODEL
241-D

GENERAL SPECITICATIONS

$\begin{array}{\|c\|} \hline \text { MOD } \\ \text { NO. } \end{array}$	Wat	$\begin{array}{\|c\|c\|} \hline \text { RANGE-OHMS } \\ \text { Min } \\ \text { Max } \end{array}$	ROTAIION Mech tlec	WIPE	$\begin{aligned} & \text { STD. } \\ & \text { DIA. } \end{aligned}$	Depsh	
241	50	2-75,000	$300^{\circ} \quad 270^{\circ}$	To	23/8	11/2"	702
45	25	2-50,000	$300^{\circ} \quad 27$	Top	$13 /$	$11 /$	

REQUEST CATALOG E-1-2

AMSCO CORPORATION
45-OT NORTHERN BOULEVARD, L. I. C. 1, N. Y.

- Forcibly ejects fluid compounds . . not a gravity dispenser.
- Thermostatically controlled heat . maximum temperature $450^{\circ} \mathrm{F}$.
- $2 / 3$ Second per ejection motor driven, clutch actuated.
- Variable discharge . . . speed of ejection changed in 2 seconds without tools.
- Reduces unit costs . . . saves material, reduces rejects . . . no skilled operator required.
- Adaptable to any production techni que . . . easily installed.
The Robinson Metering Pump has a wide variety of applications and, therefore, may be instrumental in solving some of your problems. Write us for further in formation.

dELAY LINE NETWORKS

> Our facilities are organized for design, development and production of delay lines in any quantities.

Your standards are observed in the design stage, prototype development and throughout the entire production run. We meet all JAN specifications when required. Our design assures you maximum engineering efficiency in a minimum space.

touched only briefly, and only passing reference made to the aurora, earth currents, or the importance of radio research in the study of the earth's magnetism. The book is well and clearly written and can well serve as an introduction to the subject for the layman as well as a pocket reference book for the more experienced person.-NEWBERN SMITH, Chief, Central Radio Propagation Laboratory, National Bureau of Standards.

The High Pressure Mercury Vapor Discharge

By W. Elenbaas. North-Holland Publishing Contpany, Amsterdan; Interscience Publishers Inc., New York, 1951, 173 pages, $\$ 4.00$.

THis book from the pen of one of the outstanding workers in the field of high-pressure vapor discharges, W. Elenbaas of the Philips Laboratories, Eindhoven, Holland, should be of great interest to scientists, engineers and others who are concerned with research and development or application of high-pressure lamps. Since the use of highpressure vapor lamps for general illumination as well as for ultraviolet irradiation processes has been expanding very rapidly in the last several years, and promises to continue to do so in the foreseeable future, the appearance of this book is especially timely and welcome.

The author limits his book to high-pressure discharge phenomena in mercury vapor only. Most of the theory, however, applies to other high-pressure discharges as well. Temperature equilibr um in the are has been assumed as a general principle. The excitation of atoms and electrons is then governed by Boltzmann's Law, i.e., the laws of thermodynamics, and the concentration of electrons and positive ions is then deternined by the Saha equation. Based on these two equations the theoretical treatment yields results which are in general in excellent agreement with observation.

The book is divided into ten chapters. The first one deals with the history, definition and the mechanism of the high-pressure mercury vapor discharge. The second, third and fourth chapters dis-

TRIED and PROVEN THE WORLD OVER

LETTINE MODEL 240 TRANSMITTER WITH MOBILE CONNECTIONS AND A.C. POWER MOBILE
SUPPLY

This outstanding transmitter has been acclaimed a great performer throughout the world. It is excellent for fixed station, portable or mobile operation.
The 240 is $\alpha 40$ watt transmitter for $C W$ and plate modulated Phone operation, operating on any frequency from 1.8 to 30 mc .; complete with self contained 115 volt A.C. power supply. mobile connections, meter, ($8 \times 14 \times 8$) cabinet and tubes: 6V6 osc., 807 final, 6SJ7 crystal mike cmp., 6N7 phase inverter, 2 6L6's mod., 5U4G rect, Weight 30 los. 90 day guarantee. Also used on 160 to 10 meter Amateur bands PRICE: less coils and crystal.
$\$ 76.55$ Coils for any one freq. from 1.8 to $\mathbf{3 . 5} \mathbf{m c}$. $\$ 3.60$ Coils for any one freq, from 3.5 to $30 \mathrm{mc} . \mathbf{\$ 2 . 9 1}$ Send order to:
LETTINE RADIO MFG. CO,
62 Berkley St.
Valley Stream, N. Y.

NEW HERMES, Inc. - 13-19 University Place, New York 3, N. Y. CANADA: 359 St. James St., Montreal

814 II DIRECT RECORDING INSTRUMENTATION

Wrife for Bulletin R 1052
RAHM INSTRUMENTS, INC. 12 West rooadway - NEW York 7, N. y.
oscillographs and amplifiens unsurpassed for

- Amplitude Linearity
- Wide Band Frequency Response
- Rugged and Practical Construction for Field and Mobile Operation
- Heat Sensitive Recording Medium of wide dynamic range

RECORDER AND AMPLIFIER COMBINATIONS

- 1, 2, 4, or 6 channel recorders driven by a selection of DC, high gain $A C$ or combination AC/DC amplifiers
- Rack mounted, mobile units are available

Resilient... Conductive...Compressible... Cohesive

From closures for cabinets to gaskets for waveguide couplings, Metex Electronic Shielding assures lasting metal-to-metal contact to prevent leakage, without the need for costly machining to secure precise surface-to-sulface contacts. Metal wire - knitted, not woven or braided - gives Metex Electronic Strips and Gaskets that combination of conduc-
tivity and resiliency which makes them so effective and economical for shielding.

For a more detailed picture of the scope of utility of Metex Electronic Products, write for free copy of "Metex Electronic Weather Strips." Or outline your specific shielding problem-it will receive immediate attention.

METAL TEXTILE CORPORATION
KNITYERS OF WIRE MESH FOR MORE THAN A QUARTER CENTURY

641 East First Avenue
Roselle, N. J.
cuss the elementary theory and the temperature of the discharge and its distribution within it. Chapter five is devoted to the interesting problem of convection in the highpressure vapor discharge. Other factors affecting the discharge, such as longitudinal and transverse magnetic fields and the addition of rare gases and vapors of other metals, are treated in chapter six. Compact are sources, which are becoming increasingly important, are briefly referred to in chapter seven. The spectrum of the radiation emitted by high-pressure lamps is treated quantitatively and qualitatively in chapter eight.

The remaining two chapters deal with miscellaneous subjects, as for example the electrodes, modulation and dimensioning of lamps and a discussion of the equilibrium state.

Extensive use is made of mathematics to explain the physical phenomena and interpret measurements of radiation characteristics and other observations associated with high-pressure discharges. To the reader who is sufficiently equipped to follow the mathematical treatment, the results obtained are most illuminating and satisfying. To the average engineer who may be insufficiently trained in mathematics, some of the most interesting and important chapters could perhaps be made better accessible by placing more emphasis on the physical phenomena and the fundamental processes underlying them. This is by no means meant as a criticism of this excellent book, but rather as a suggestion for consideration in future editions.
J. H. Laub,

Vice-President,
Hanovia Chemical \& Mfg. Co.

Electronics

By Jacob Millman and Samuel Seely. McGraw-Hill Book Co., Inc., New York, 1951, second edition, 598 pages, \$7.25.
In general, the content and philosophy of the first edition have been retained in this second edition. The approach is fundamentally theoretical, and the information presented provides a thorough foundation for specialized work in any branch of electronics.

It should be emphasized that the
book is primarily intended to furnish theory, and not practical fundamentals. Little is presented that would benefit the practicing circuit designer directly. Studied alone, the book would leave the reader knowing much about electron phenomena, but his ability to apply his knowledge in the practical sense would be limited.

As a text for a basic college level course in the physical concepts of electronics (for which the book is intended), "Electronics" is as good, or probably a bit better, than most. After being used as a text for such a course, it fits into an engineer's library as a reference source.

The two chapters on audio amplifiers in the first edition have been omitted from the second. This is not too great a sacrifice, since audio amplifiers are well treated in the books that normally would be purchased subsequently for more advanced and specialized study.
-J. D. F.

Fundamentals of Atomic Physics

By Saul Dushman. McGraw-Hill Book Company, New York, 1951, 294 pages, \$5.50.
The material of this volume was originally intended as an aid to a group of high school teachers of science in enlarging their "grasp of new developments in the physical sciences". Inasmuch as somewhat more than one third of the book is devoted to nuclear physics, including a 43-page chapter on particle accelerators, it would seem that "A B'rief Survey of Modern Physics" might be a more fit title than the one used.

Many subjects are treated in this small volume, most of them necessarily with extreme brevity. Examples are the first chapter, correctly entitled "A Brief History of Physics", in which little more than a listing of scientists and their accomplishments can be given, and the second, "Mathematical Introduction", in which algebraic and trigonometric functions, differential and integral calculus, as well as partial differential equations, are discussed in 22 pages. It seems un-

to bring you finer PRECISION COIL BOBBINS

Never-ending Laboratory Control of all materials assures you of Precision Bobbins that are lighter in weight, yet up to 20% stronger-better insulated bobbins that have more resistance to moisture and greater heat dissipation qualities. Increased coil winding space is a feature, tov. Bobbins made round, square, rectangular; any ID. OD, length; of dielectric Kraft, Fish Paper, Cellulose Acetate or combinations.

PRECISION 2041 W . CHARLESTON ST., CHICAGO 47, ILL
Plant \#2: 79 Chapel St., Hartford, Conn. Plant \#2: 79 Chapel St., Hartford, Con
Also Mifs. of Precision Paper Tubes Also Mfrs. of Precision Paper Tubes

HEILAND GALVANOMETERS

of high current and voltage sensitivity are the heart of Heiland recorders.

Heiland galvanometers are available in natural frequencies ranging from 32 cycles per second to 4700 cycles per second. All galvanometers are electromag. netically damped with exception of those having natural frequencies above 450 cycles per second; these are fluid damped. Permanent magnet assemblies are available for mounting 2, 6, and 12 Heiland galvanometers.

For further information on Heiland Galvanometers, Multi-Channel Oscillograph Recorders or Associate equipment, write or wire...

PHASE ANGLE PROBLEMS?

Acme is producing filters with less than 5° total phase shift variation over a lemperature range of -55 to +85 C . These filters solved a problem in a computer system and also effected a sub. stantial reduction in size and weight.
They exemplify the exceedingly close phase shift tolerances Acme can hold when required. Variation between in. dividual filters can be held to less than one degree.
Do you have a phase angle problem that may be solved with an Acme filter?

300 No. Lake Ave., Pasadena 4, Calif. Formerly Acme Metol Die, Inc.
Wave Filters - Delay Lines - Magnetic Amplifiers - Special Trans. lormms \& Chokes - Toroidal. Universal \& Solenoid Wound Inductors

MICRDDIAL

TEN TURN-COUNTING DIAL

Mierodial is composed of two concentrically mounted dials. . . one for counting Increments of each turn and the other for counting turns. The ineemental dial has 100 equal divisions and is altached rigidly to the shati m there is no backlosh. Thus the contact fosifion is indicated to an indexed oceuracy of 1 part in 1000. Rotation is continuous in either direction. There are no stops on the Mieredial assembly.

COMPACT... Microdial has same O.D. as Micropot . . . requires no more pand space.
clear reading Forced fosreading tests showed only $\mathbf{1 / 2 0}$ h as nany errors with Mierodial open wincow as with next most legible dial. Iurn counter distinguishas betwesn 0 end 10 turn readings, and accelerates to avoid confusion on readings near integral turns. Precise readings are node from larger dial with maximum ssparation of graduations and wide engle visibility.
CONVENIENT . . . delivered completely assembled with dials syndironized. Easily mounted in a. few seconds. All diais may be locked.

Mictodial . . .turn-counting dial, pimarily designed for use on Mierapot ten turn linear potentiometers... . use on any multiturn derice horing ten turns of less

BORG EQUIPMENT DIVISION JANESVILLE• WISCONSIN

- SyNCRO TYPE MOUnt
- limear output - functional output

Giannini, standard with the leaders, develops this small ballbearing patentiometer with a variety of unique features to meet the latest computer requirements. Runout and concentricity within .001 in. Total resistance up to 100,000 ohms, torque less than 0.2 inch ounces.

For details on this andother instruments wrife: G. M. GIANNINI \& CO., INC. PASADENA I, CALIFORNIA

THE GEDRGE W. BORG CORPDRATION

WHAT MAKES A MAILING CLICK?

Advertising men agree . . . the list is more than half the story. McGraw-Hill Mailing Lists, used by leading manufacturers and industrial service organizations, direct your advertising and sales promotional efforts to key purchasing power.

In view of present day difficulties in maintaining your own mailing lists, this efficient personalized service is particularly important in securing the comprehensive market coverage you need and want. Investigate today.
McGraw-Hill Publishing Co., Inc. DIRECT MAIL DIVISION

CAT. No. 375
Three section slide, progressive action type. Can lock in closed and extended positions or any other combination of positions. Tripping mechanism controls unlocking.

Grant's Engineering and Research Departments are available for consultation on individual requirements.
GRANT PULLEY \& HARDWARE CO. 31-85 Whitestone Parkway, Flushing, L. I.
be useful for a student majoring in physics. However, it will serve very well as a review of modern developments for those already in possession of a general knowledge of physics, such as teachers of science or engineers.-D. J. Hughes, Brookhaven National Laboratory, Upton, Long Island, New York.

THUMBNAIL REVIEWS

THEORY AND DESIGN OF VALVE OSCILLATORS. Second Edition. By H. A. Thomas. Chapman \& Hall Litd., 37 Essex St. W.C.2, London, 1951,317 pages, 36 s . Expansion of 1939 edition with flve new chapters on uhf oscillators, velocity-modulated oscillators, magnetron oscillators, R-C oscillators and crystal oscillators.

THE PREPARATION OF PROGRAMS FOR AN ELECTRONIC DIGITAL COMPUTER. By Maurice V. Wilkes, David J, Wheeler and Stanley Gill. Addison-Wesley Press, Inc, Cambridge, Mass.i 1951,169 pages, $\$ 5.00$. Procedure for building up a library of subroutines for carrying out standard mathematical processes on a machine such as the machine feasible for problems requiring only a few hours of computing time. Covers types of machimes, order codes, binary-decimal conversions, checking facilities, types of subroutines, proofreading of programs, tape punching, examples and specifications.

COLOR TELEVISION By Edward M. Noll. Paul H. Wendel Pub. Co., Indianapolis, Ind., 1951,45 pages, $\$ 1.00$. Papercover booklet giving fundamentals of various proposed systems, imtended as practical proper servisen都
HERBERT H. DOW. By Murray Campbell and Harrison Hatton. Appleton-Cen-tury-Crofts, 1 me., New York, 1951,168 pages, $\$ 3.50$ An account of one man's share in the founding and building of The Dow Chemical Company.

ANALYSIS AND DESIGN OF TRANSI,ATOR CHALNS. By H. Ziebolz. Askania Regulator Co., Chicago, Ill., Second Edi-1-285 pages text. Vol. 2- 392 diagrams). $\$ 6.00$ per set. Intended to diagrams), swistematic approach to the classification of mechanical, hydraulic, electric and electronic devices and thereby permit development of a number of alternate nossible solutions to measurement and control prohlems.

200 MILES UP. By J. Gordon Vaeth, U. S. Navy Special Devices Center, ONR. The Ronald Press Co., New York, 1951, 207 pages, \$4.50. History of upper air research with rockets and balloons, principles of rocket flight, V- 2 operations at on hite Sands, and declassified information sounding rockets Intended as nontech notal but accurat summary of recent research accur

CLEAR WRITING FOR EASY READING. By Norman G. Shidle. McGrawHill Book Co., New York, 1951, 176 pages, $\$ 3.00$. Emphasis is on clear and simple writing using short sentences and short
words. Fxamples and specific instrucWords
tions are largely and specific instructions are largely slanted toward engineers and technical writers.

CIVIL DEFENSE IN MODERN WAR. By Augustin M. Prentiss. Brigadier General, U. S. Army (Retired) McGraw-Hil $\$ 6.00$. Text dealing with methods of pro tecting civil population and industrial tecting civil population and industrial chernical warfare. Includes recommendations on communications for civil defense.

BACKTALK

(continued from poge 154)
all manufacturers of parts so that the Institute receives information as requested.

Suggestions as to the information and format which would be most useful for each category of miniature parts will be welcomed from interested potential users of this index. They may be sent either to Mr. William A. Mussen, Supervisor Electronics Laboratory, Southwest Research Institute, or to Mr. Wasyl Zaricki, Code 839, Bureau of Ships.

Paul M. Erlandson
Southwest Research Institute
San Antonio, Texas

Audio Damping

Dear Sirs:
An article entitled "Audio Amplifier Damping" by Robert M. Mitchell in the September 1951 Electronics (p 128) has provoked the thought that the term "damping factor" (D), conventionally defined by the author as the ratio of load impedance to generator impedance is an inept and somewhat misleading term. According to this definition, decreasing amplifier output resistance results in increasing damping factors with no limit applying. Since increasing the damping factor does not result in increasing the damping in the same proportion, erroneous conclusions as to the significance of damping factor might be made by people not having an understanding of the technical factors involved. For example, if in two amplifiers of otherwise equal specifications, one had a damping factor of 20 and the other a damping factor of 30 , it is not apparent to the uninitiated that the difference in damping would be insignificant.

The necessity of keeping the output impedance of amplifiers low in comparison to the impedance of the speaker has been recognized ever since the advent of the tetrode and pentode output tubes. This reduction of output impedance is most easily obtained by the use of negative feedback. It is easy to achieve damping factors of the order of 10 with either triodes or tetrodes (or

its rpc

 FOR
HIGH VOLTAGE RESISTORS

Stable, dependable resistors made in sizes from one inch to $18 \frac{1}{2}$

 inches long. Power Rating 1 watt to 90 watts. Resistance values to 100,000 megohms. Designed for easy mounting on a panel or stand-off insulator. Can be assembled to make tapped combinations. Matched pair resistors with 2% accuracy available for high voltage instrumentation. rpc High Voltage Resistors are used in quantity by leading Manufacturers, Instrument Makers, Universities and Laboratories.also manufacturers of high quality precision wire wound resistors, high frequency resistors and high megohm resistors. write today for catalog.

roc resistance products co.

CONDUCTIVE MATERIALS: Copper, Silver, Steel, Bronze, Brass, Nickel, Aluminum.
PLATING: Copper, Silver, Nickel. Aluminum, INSULATING BASES.
cone, Polyester, Polystyrene, Polyethy Silicone, Polyester, Polystyrene, Polyethylene,
OPERATIONS PERFORMED:
cate piercing, Plating Die Stamping, Intri cate Piercing, Plating, Iniection Molding

For additional information, write to PRINTED CIRCUIT DEPT

Supplier of PLASTIC PRODUCTS to
The Radio and Electronic fields since 1919
ELIZABETH 2-1944-1945-1946
N. Y. C., RECTOR 2.8554-8555

15 Years' Experience in MOLDED PLASTICS

. . . and the Trained Minds that go with it!

AUBURN offers you a background of 75 years' continuous operation in the molded plastic field, plus the experience, skill and specialized talents that go with it - for the asking.

AUBURN salesmen are an example of what experience teaches. They are sales engineers, not agents, experienced in both design and production . . . qualified for technical discussion with your design and engineering personnel.

Every Modern Molding Method

AUBURN molds any plastic material by every modern method-Compression, Injection, Transfer, Extrusion, Automatic Rotary, and Reinforced (Fiberglas) Plastic molding.

Dependable Subcontractor

Approved for production of classified material, AUBURN is a dependable subcontractor. Complete tool and die making facilities are maintained, with a highly skilled staff long experienced in the problems of mold design and volume production methods.

For the complete story of AUBURN, write for illustrated booklet.

Auburn Bution Works, inc.
'550 MeMaster Street, Auburn, New York
Founded in 1876
Telephone 3.5370
pentodes) with uncomplicated and stable circuit arrangements. This practice is so general as to be incontrovertible.

The point of interest now rises as to how far this increase of damping factor should go without becoming absurd. It is our contention that increasing the damping factor beyond the order of 10 (for sake of the damping factor alone*) is not warranted from an engineering standpoint. This can most clearly be shown by redefining damping factor in such a way as to make more apparent its practical significance.

FIG. 1-Equivalent circuits showing audio amplifier damping

For this purpose it seems as though an electrical-damping figure of merit \varnothing defined as

$$
\phi=\frac{R_{L}+R_{g}}{R_{L}}
$$

would provide a clearer understanding of the situation. This choice is not purely arbitrary but represents a figure as nearly in line with the actual principle of electrical speaker damping as possible. To see why this is so, let us review briefly the effect of the output impedance on the speaker.

Speaker damping is necessary because the moving parts of the reproducer (the voice coil) constitute the elements of a mechanically resonant system. This system is

[^17]
distributors

for 30 years

of radio and electronic components for

all your needs

NEW YORK 13, N.Y.

100 Sixth Avenue
WAlker 5 -8883
NEWARK 2, N. J.
24 Central Avenue
MArket 2-1661
BOSTON 10, MASS.
110 Federal Street
HUbbard 2.7850

atayerte 100 Sixth ave

FOR CUSTOM RADIO AND TV COMPONENTS
Custorn assemble your own high fidelity phono-radio-television ensemble. All famous name components at lowest prices. Send for Free hi-ficatalog to Dept. E.

TUBULAR RIVETS

LOW COST - HIGH QUALITY Rustproot zinc alloy, die cast to close tolerances. Not headed! All commercial finishes.
$1 / 16^{\prime \prime}$ to $9 / 64^{\prime \prime}$ dia.; to $5 / 16^{\prime \prime}$ long. Prompt delivery. Specials to order. Write for samples, prices.
GRIES REPRODUGER GORP.
100 Willow Ave., New York 54 - MO. 5-7400

ELECTROLYTIC CONDENSERS

1ST RATE EUROPEAN FACTORY forced to seek a market in the Dollar Area would accept Orders for Electrolytic Condensers (Aluminum Can, cardboard jacket), any value, ot the rate of $\mathbf{2 5 . 0 0 0}$ to 50.000 per month, commencing January 1952. WRITE:

FS-2145, Electronic
330 W .42 St. New York 36, N. T.

Shorted Turn Indicator

 for unrounted colls MODEL 101C BULLETIN 42 HUNTINGTON BEACH, CALIF.KARTRON
IMPORTED AUTOMATIC GRIDLATHES
Precision made
Good delivery $\quad \begin{gathered}\text { Reasonably priced } \\ \text { Fully guaranteed }\end{gathered}$ Basic American design with postwar improvements. Built by old established European manufacturer of radio tulbes. Winds igrids for all types of receving factor to you. For information and prices: BOX 245, Syosset, L. I., N. Y.

WALKIE-RECORDALL STE ming Remp BATTERY

 Cont nis, ph. Ment, indexed recording, ap to Ars., only 3 c hr. Instantaneous, permanent playback. Picks up sound up to 60 ft Records conferences, lecwalking, riding or flying. Records in closed briefcase with "hidden mike"! Write for Detalled Literature.MILES REPRODUCER CO., INC.
a12 RROADWAY Dep't E-I NEW YORK 3, N. Y.

This CONTACTS Section

aupplementa other advertising in thle lssue with these additional announcements of products essential to efincient tenance. Make a hablt of checking thin page, each issue.

COIL PROBLEMS?

Use Allied Control's complete engineering, design and production facilities for electrical coils of all types.

CONTROL COMPANY, INC.
2 EAST END AVENUE
NEW YORK 21, N. Y.
Telephone: BUtterfield 8-74D3

DIRECTRON

 Selenium Power RectifiersFROM 8 VOLTS TO 208 VOLTS SINGLE PHASE OR 3 PHASE HALF-WAVE OR FULL-WAVE CENTER-TAP OR BRIDGE ONE AMP. TO 1,000 AMPS.

Most items carried in stock for immediate delivery. Rectifiers made to your specs48 hour service
Moisture proof, fungus proof or commercial finishes.
CUSTOM RECTIFIER SERVICE THE SANFORD MILLER CO.
SOLE EXPORT REPRESENTATION AND DOMESTIC SALES

ELECTRONICS CORP.
136 Liberty Street
N. Y. 6, N. Y.

REctor 2-2563

ELECTRONIC AND ELECTRICAL APPLIANCES - ELECTRONIC PROTOTYPES

Brubaker Manufacturing Company-mé

9151 Exposition Drive - Los Angeles 34, California - TExas 0-5313

Abstract

EXAMPLE: Working with the Nurth Electric Manufacturing Co., Galion, Ohio, we developed a new miniature hermetically sealed relay 10 meet exacting military requirements. Features include an 8 -terminal sealed header $600^{\prime \prime}$ O.D. and a new design balanced armature relay, sealed in a $\frac{7}{8}^{\prime \prime} \times \frac{7^{\prime \prime}}{8} \times \frac{7 \prime \prime}{8 \prime}$ drawn aluminum can. The entire unit may be panel mounted from either the top or bottom. The unit can be furnished either with a dry air fill or vacuum-pumped and pressure filled with dry nitrogen.

HAVING HEADER TROUBLES?
We make all types of Sealed Headers. ranging from simple 2 - and 3 -electrode, crystal holder bases, and standard octal headers, to 14 - and 16 -terminal headers for sealed Transformer and Relay applications. (Also a variety of special-design headers and ter. minals.) Write for catalog and quotes.

THE HERMASEAL COMPANY, Inc.
Elkhart 9, Indiana

HIGH VACUUM .- FASTER PUMPING .- QUIET OPRRATION are the outstanding characteristics of the LARGE CAPACITY TWO-STAGE DUO-SEAL VACUUM PUMP

FREE AIR CAPACITY 300 Liters Per Minute high Vacuum - 0.1 MICRON GUARANTEED

FAST PUMPING at all Pressures

QUIET RUNNING

COMPACT
Size $26 \times 14 \frac{1}{2} \times 181 / 2$ inches
Complete
$\$ 515.00$

Welch, large capacity, two-stage duosfal pump.
Although the guaranteed vacuum is stated as $1 / 10$ Micron, most of the tests produced a vacuum of $3 / 100$ Micron. Free Air capacity 300 liters per minute (5 liters per second). operates quietly with a minimum of vibration. A built in urap prevents the oil from baching side of pump. Oil level shown in convenient indicator window at all times. Convenient oil drain permits oil change without dismantling system.

- WRITE FOR COMPLETE CIRCULAR GIVING RESULTS OF TEST -

damped acoustically by air, mechanically by friction, and electrically by the amplifier. When the speaker has been electrically excited by signals having frequency components in the vicinity of the mechanical resonance, the resulting vibration may persist after the electrical signal has ceased. This has been called "hangover effect". In the condition where the speaker cone is vibrating after the signal from the amplifier has ceased we may replace the conventional output circuit representation of Fig. 1A by Fig 1B in which the kinetic energy stored in the vibrating system causes a voltage to be generated in the voice coil $\left(e_{v}\right)$.

Note that for both cases the electrical damping is provided by R_{o} in series with R_{L}. As R_{g} is reduced by feedback or other means, the total electrical damping resistance approaches R_{L} as an asymptote. Unless a means could be devised of making $R_{, \prime}$ negative, the damping resistance

FIG. 2-Curve showing relationshlp beiween gain reduction factor and elec. trical damping figure of merit
can never become less than R_{L}. This is why reduction of the amplifier output impedance beyond the point where it is small compared to R_{L} (corresponding to a large damping factor) runs into the law of diminishing returns. It can be seen that the hereby proposed term of "electrical damping figure of merit" approaches unity as a limit as amplifier impedance decreases, where unity could be considered the normalized speaker impedance.

In Fig. 2, Mitchell's Fig. 5 has been translated to the one of gain reduction factor versus electrical damping factor of merit. Compar-

Professional Services

Consulting—Patents—Design—Development—Measurement in
Radio, Audio, Industrial Electronic Appliances

CROSBY LABORATORIES, INC.

Murray G. Crosby E Staff Radio - Electronic Engineering Research \& Development FM, Communications, TY
Offices, Laboratory \& Model Shod at: 126 Herricks Ifd., Mineola, N. Y. Garden Clty 7-881

DUBROW DEVELOPMENT CO.
 Design — Development - Mfr. Quality Electronic Equipment
 347 High St.
 Burlington, N. J.
 Burlington 3 -0446

EDGERTON, GERMESHAUSEN \& GRIER, INC.
Consulting Engineers
Research, Development and Manufacture

160 Brookline Avenue, Boston 15, Mass.

ERCO RADIO
LABORATORIES, INC.
Radio Communications Equidment
Engineering - Design - Derelopment - Production Pioneers in Frequency Shift Telegraph
Garden City - Long Island - New York

HERMAN LEWIS GORDON

Registered Patent Attorney
Patent Investigations and Opinions
Warner Bulding,
Washington 4, D. C

HANSON-GORRILL-BRIAN INC.

products \& Mfg. Development blectrical - Electronic hydravide - mechanical
Oue Continental Hill Glen Cove, N. Y
Glen Cove 4-1922

R. W. HODGSON

RESFARCH \& DEVELOPMENT ENGINEER SPECIALIZING IN FLECTRONICS NUCIEONICS, ins mand Cybernetics
Oftice-6600 texington Ave, Hollywood 38, Calif. GLadstone 9680

Professional Assistance

in solving your most difficult problems in the speciolized field of electranic devices is offered by consultants whose cards appear on this page.

HOGAN LABORATORIES, INC.
Applied Rescarch, Development, Engineering Est. 1929 . Exceptionaly competent staff.
Flectronics, Opylics, Meethanisms. Facsimile Communication, Filectro-sensitive recording media, Instrumentation.
155 Perry Street. New York 11 CHelsea 2-7855

MEASUREMENTS CORPORATION

Research \& Manufacturing Engineers
Harry W. Houck John M. van Bearen Jerry B. Minter specialists in the Design and
Developmenti of Flectronic Te.t Instruments

Eugene Mittelmann, E.E., Ph.D. Consulting Engineer E Pbysicist
High Frequency Heating-Industrial Electronics
Adodied Physics and Mathematics Adplied Physics and Mathematics
549 W . Washington Blvd. Chlcago 6. Ill. State 2-8021 \qquad

NIAGARA ELECTRON LABORATORIES

 consultation - design - construction MIG. THE THEIGMORAM RELAY YSDedalizing in solution of problems of electronic and electro-Dhysical instrumentation for the re-
search or analytical latoratory. Industrial plant problens also lnvited.
Andover, New York Cable Address: Niatroniab

PICKARD AND BURNS, INC.

Consulling Electronic Engineers Analysis and Eraluation of Radio Systems
Research, Derelopment and Design
of Syecial Electronic Eupuipment
240 Highland Are., Needham 94. Mass.

JOSEPH RACKER COMPANY
 Radar Consulrants E Editors
 Technical Manuals IResearch and Development
 ``` W0rth

\begin{array}{c}{\mathrm{ New }}
{\mathrm{ W-1463}}```}

\section*{RESDEL ENGINEERING}

MSSILV: GUIDANCE, electrontc research, development, and mannfacturing.

INFRALED 1 UCCEIVERS
MAGNFIIIC AMPLIFIFRS
2309 Riverside Dr. Los Anseles 39. Calif. NOrmandy 6809

SKINNER, HARLAN AND IRELAND, INC.
Consulting Engineers
Speciallzing in Magnetic Materials and Their Application
Oftice and Laboratory Indianapolis 7, Indiana

\section*{THE TECHNICAL \\ MATERIEL CORPORATION}

Commanications Consultanis
Systems Engineering
General Offices and Laboratory
121 Spencer Place, Mamaroneck, N. Y.

\section*{FREDERICK P. WARRICK}

Engineering Consultant
Development \& Manufacture of High Speed Moving Film Cameras for Oscillography \& Stroboscoplo Photography.
1960 Graefteld Road Birmingham, Michisan

\section*{WHEELER LABORATORIES, INC. Radio and Electronics \\ Consulting-Research-Development R-F Circuits-Lines-Antemnas Microwave Components-Test Fquipment Great Neck, N. Y. Great Neck 2-7806}

\footnotetext{
YARDNEY LABORATORIES, INC.
Research.Design-Development
Electro-Chemical Generators of Energy
105 Chambers Stieet
WOTth-2-3534, 35, 36
New York 7, N . Y.
}

\section*{THE OFFNER DYNOGRAPH}

Here's a direct writing, high speed oscillograph with microvolt d-c sensitivity-made completely drifi-free through an exclusive chopper type amplifier. Now you can obtain a precise record of transient variables -some formerly recorded only by photographic means-at about 100 times the speed of other recorders with comparable sensitivity.

Remember-only the Offner Dynograph gives you all of these features:

Pen Deflection Linearity of \(1 \%\) with pen response of \(1 / 120\) th second.

Sensitivity of 150 microvolts d-c per centimeter of pen deflection.
No extra equipment needed with reluctance type pick-ups.
True differential input obtained through special transformer coupling.
Yes, if your need is for accurate, high speed, simultaneous recording of transients in the operation of various equipmentinvestigate the Offner Dynograph-write today for Bulletin L-311-see the complete specifications and construction details of the Dynograph.

\section*{OFFNER ELECTRONICS INC.}

5320 N. Kedzie Avenue
Chicago 25, Illinois

\section*{NEW PULSE GENERATOR features}

Pulse Height: 0-50 v. continuously variable, positive or negative polarity.
Pulse Width: 0.07 to \(7 \mu \mathrm{~s}\). continuously variable.
Repetition Frequency: 50-5000 cycles, controlled from an internal or external oscillator.
Output Impedance: 75 ohms or less.
Pulse Shape: \(0.02 \mu \mathrm{~s}\). rise and fall times. Top flat within \(2 \%\)
Synch Out: 50 v . into 200 ohms, \(1 \mu \mathrm{~s}\). wide, \(0.1 \mu \mathrm{~s}\). rise time.
Pulse Phosing: Output pulse can be delayed \(100 \mu \mathrm{~s}\). or advanced \(10 \mu \mathrm{~s}\). with respect to the synch output.

Other laboratory pulse generators also available.
For full details write for Bulletin PG-50
76 STAGE
STREET
MANSON LABORATORIES
STAMFORD
ing the two curves it is seen that in Fig. 5 of Mitchell's article, the curve might well have been captioned "Note lack of superiority of triodes" instead of "Note superiority of triodes"

Cyrus J. Creveling William A. White

Washingion, D. C.

\section*{Proper Credit}

Dear Sirs:
I would appreciate very much your printing the following in Backtalk of the next available issue: "The article entitled 'Strain-Testing Railroad Bridges', appearing in the September, 1951 issue of Electronics, is based on a thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Civil Engineering at Purdue University."
A. D. M. Lewis

Instructor in Structural Engineering
Purdue University

\section*{Electronics Quiz}

Below is shown a quiz problem submitted by John J. Antul of the Transducer Corporation of America. The correct solution for this problem, as furnished by the author, will be published in next month's Electronics.

Given the amplifier shown in the circuit diagram, with an open-loop gain of \(A\) at an

angle of thirty degrees leading. Introducing feedback \(2 R\) as shown, what is the maximum value of \(\left|e_{0}\right| /\left|e_{i n}\right|\) ?
A payment of five dollars is made for each problem published in this department. Readers are encouraged to send in their pet brain teasers for consideration. Correct answers must accompany problems.

\section*{A CHALLENGE} to Outstanding ENGINEERS PHYSICISTS DESIGNERS
POSITIONS with SCOPE and IMAGINATION NOW OPEN
Minimum Requirements for
ENGINEERS and PHYSICISTS Four yearie experience in advanced research and development on Radar Systems, Computers, Wave Guide and Antennas, Fire Control, Moving Target Indication, Servomechanisms, Pulse Techniques, Gyroscopic Equipmen! and Reloted Fields.
Minimum Requirements for
DESIGN ENGINEERS
Background-experionce in design of Light Machinery, Radar Systems, Computers, Machinery, Radar Systems, Computers, Moving Target, Gyrascopic Equipment and related fields.

Please send resume and salary requirements to:

\section*{The W. L. MAXSON CORPORATION}

460 W. 34th St., NEW YORK I, N. Y.

REPLIDS (Bom No.): Addrese to offce neareat you NEW YORK: 350 W. 48nd 8t. (36)

OHICAGO: B20 N. Michigan 400. (11)
SAN FRANOISCO: 68 Post \(8 t\). (i)

\section*{POSITION VACANT}

PRODUCTION MANAGER familiar with design and production techniques for assembling and wiring on precision electronic test equipment wanted by small but well-known and steadlly growing manufacturer located in Northern New Jersey about thirty miles form and expertence. P-2733, Fingineering Nowa Record.

\section*{EMPLOYMENT SERVICE}

SALARIED PERSONNEL, \(3,000-825,000\). This conflential aervice ontabllshed 1920, is geared to needs of high grade men who seek a change
of connection under conditions assuring, if emaployed, full protection to present position. Send name and address only for detalls. Personal consultation invited. Jira Thayer Jenninga Dept. L, 241 Orange st., New Haven, Conn.

\section*{POSITIONS WANTED}

ELECTRRICAL ENGINEER B.S.E.E. and ence. Age 25 . Married. PW-2684, Electronic.

ELECTRONICS ENGINRER, B.S.E.E. Untversity of Michigan. Navy ETM. Four yeara postwar experience in desien and dovelopment for production of electronica components and equipment. Desire poaition in Desisn, Development, Production or Adminiatrative Entineering. Prefer New York area. PW-2596, Hlectronics.

\section*{PATENTS}

Reglistered Consult A. John Michel. tronics. 15 Park Row, New York 38, N. Y . Tel CO-7-9034.

CONSULT: Z. H. POLACHEK, Reg. Patent Attorney, 1234 Broadway, New

Convair (Consolidated Vultee Aircraft Corporation) is now accepting applications for these following positions in its modern, progressive Engineering Department.

WORKING FACTS: You get iwo holidays a week of Convair - overtime accomplished in 5-day week. Aftractive salary ranges. An "engineers" engineering department . . . with stimulating, competent associates... and interesting, challenging, essential, long-range projects of a wide variety including - commercial aircraft, military aircraft, missiles, engineering research and electronic development. Excellent patent royalty arrangements. Top-notch retirement plan - better than-average life and health insurance. Complete progress-salary review for eoch person twice yearly. Opportunity for continuing engineering education.

LIVING FACTS: San Diego, with its wonderful residential areas, offers you ond your family incomporable living. Ideal climate - cool, clean, dry. Mountains, desert, Mexico, Hollywood, Los Angeles, Pacific Ocean, beaches and bay only hours or minutes away. It offers you a new woy of life... pleasant, refreshing, happy.

If you qualify; you will receive generous travel allowances: SEND COUPON for free booklets and complete information.

\section*{Wanted}

\section*{ENGINEERS}

AND SCIENTISTS

Unusual opportunlties for outstanding and experienced men.
These top positions involve preliminary and production design in advanced military aircraft and special weapons, including guided missiles.

Immediate positions include:
Weight-control engineers
Electronic project engineers
Electronic instrumentation engineers
Radar enginears
Flight test engineers
Stress engineers
Aero- and thermodynamicists
Servo-mechanisis
Power plant installation designern Structural designers
Electro-mechanical designers
Electrical Installation designers
Excellent location in Southern California, Generous allowance for travel expenses.

Write today for complete Information on these essential. long-ferm positions. Please include resume of your experience \& training. Address inquiry to Director of Engineering.

NORTHROP AIRCRAFT, INC.
1009 E. Broadway
Hawthorne (Los Angeles County) California

\section*{PHYSICIITS} and ElLETRONIC ENGINEERS

Both junior and senior engineers as well as administrative personnel with technical background are needed for employment with expanding research and development organization specializing in Instrumentation, Radio Telemetering, Missile Guidance, Telemetering Data Treatment and special electro-mechanical devices. New laboratory facilities located in research center. Corporation has five year history and is operating on pre-Korean contracts.

Replies held in strictest confidence.

Please send complete resumes to:

\section*{apPIIED SCIENCE CORPORATION} OF PRINCETON
Post Office Box 44
Princeton, New Jersey

\section*{Engineers}

\section*{choose your area of specialization at \\ Minneapolis-Honeywell}

Minneapolis-Honeywell Regulator Company, the leader in the field of automatic controls and instrumentation, is presently engaged in research and design work in the areas listed below in both the aeronautical and general engineering divisions. Much of this work borders closely on so-called "pure" or "basic" research.
If you as an engineer are primarily concerned with any of these fields of work; if you have the proper background; and if you are interested in becoming associated with a stable progressive firm, please let us hear from you.
- electronics
- servo-mechanisms
- hydraulics
- electro-magnetics
- heat transfer
- vacuum tubes
- gyros
- relays
- computors
- electro-mechanical devices
- semi-conductors
- bearings
- electrical contact phenomena

Excellent opportunities for advancement in an expanding organization. Promotions granted on basis of merit. Salaries commensurate with background. Address reply to:

\section*{R. WAGNER}

Minneapolis-Honeywell Regulator Company
2753 Fourth Avenue South Minneapolis, Minnesota

Honeyiwell
Finst in Controls

\title{
ATOMIC WEAPONS INSTALLATION NEEDS ELECTRONIC ENGINEERS
}

Two to ten years' experience in research, design, development or test. Patent history desirable but not necessary. A variety of positions open for men with Bachelor's or advanced degree qualified in one or more of the following fields:
- RELAYS
- TELEMETERING
- PULSE CIRCUITS
- UHF TECHNIQUES
- SERVO-MECHANISMS
- INSTRUMENTATION
- QUALITY CONTROL
- LOW POWER APPLICATION
- TEST EQUIPMENT RELATING TO ABOVE FIELDS

\section*{TECHNICAL WRITERS}

Experienced in preparation \& publication of standards, electronic \& mechanical technical manuals. Engineering background necessary.

\section*{JOB ANALYSTS} Mechanical \& electrical engineers experienced
in job evaluation \& other wage administration activities.

\section*{PHYSICISTS}

With pure physies background.

\section*{STANDARDS ENGINEERS}

Experienced in writing specifications, in liaison work, and in correlating design in-
formation to accepted standards. Aircraft information to accepted standards. Aircraft industry experience desirable.

These are PERMANENT POSITIONS with Sandia Corporation in Albuquerque, New Mexico. The Laboratory is operated by Sandia Corporation, a subsidiary of Western Electric Company, under contract with the ATOMIC ENERGY COMMISSION. This laboratory offers good working conditions and liberal employee benefits, including paid vacations, sick leave,
and a retirement plan.

Albuquerque, center of a metropolitan orea of 150,000 , is located in the Rio Grande Valley, one mile above sea level. The "Heart of at the foot of the Sandia Mountains, which at the foot of the Sandia Mountains, which
rise to 11,000 feet. Climate is sunny, mild and dry the year round. No housing shortage in Albuquerque.

MAKE APPLICATION TO Professional Employment

\section*{SANDIA CORPORATION}

SANDIA BASE
ALBUQUERQUE, N. M.

\section*{ENGINEERING WITH A FUTURE}

\section*{RESEARCH • DEVELOPMENT•DESIGN}

The continued and steady growth of established research and development projects has opened a number of unusual opportunities for outstanding and experienced men.

\section*{ENGINEERS • SCIENTISTS • PHYSICISTS}
positions are available in our organization for qualified personnel in the following fields:
\begin{tabular}{ll}
Circuit Analysis & Aerodynamics \\
Microwaves & Applied Mathematics \\
Analog Computers & Physics \\
Servomechanisms & Flight Test \\
DYnamics & Design
\end{tabular}

Openings exist at several levels, and inquiries from recent graduates are also invited. Salaries are based on education, ability, and experience. Liberal salary, vacation, insurance, and retirement plans are yours if you qualify.

If you are interested in a secure future in these experimental fields, write and give full details to Mr. C. G. Jones, Salary Personnel Department.

Akron 15. Ohio

\section*{WANTED} SALES REPRESENTATION

\section*{ELECTRONIC ENGINEERS}

Degree in Electrical Engineering Plus Maintenance or Repair Experience on SCR-584 Radar

ELECTRONIC ENGINEERING COMPANY OF CALIFGRNI
180 SO. ALVARADO STREET LOS ANGELES, CALIFORNIA

Capehart
needs outstanding RESEARCH PHYSICISTS SR. ELECTRONIC ENGINEERS SR. MECHANICAL ENGINEERS ENGINEERING PHYSICISTS CIRCUIT ENGINEERS MICROWAVE ENGINEERS TELEVISION ENGINEERS VACUUM TUBE ENGINEERS TEST EQUIPMENT ENGINEERS FIELD ENGINEERS ELECTRONIC TECHNICIANS
with advanced academic training and several years' experience for

\section*{RESEARCH AND DEVELOPMENT}
in Radar, Servos, Computers, Receivers, Solid State Physics, Image Converters, Pulse and Timing Techniques, Special Purpose Tubes, Networks and Systems Design, Light and Electron Optics, Storage-Type Tubes, Photo-Electric Pickup Tubes, and Related Test Equipment.

Our Long Range Programs and Steady Growth Assure Permanent Employment ot Excellent Salaries for Competent and Qualified Personnel.

Interested Persons are Invited to Submit Detailed Resumes of Experience and Education with Salary Requirements and Availability Date to:

The Employment Department

> CAPEHART-FARNSWORTH CORPORATION

FORT WAYNE,
dNDIANA

\section*{Engineers}

Physicists

\section*{Chemists}

\section*{Metallurgists}

\section*{A Reminder from GENERAL ELECTRIC}

Tremendous material resources ... the stimulation of highly creative work . . . long-range security and professional recognition . . these are but a few of the assets General Electric offers you in unusual positions now available in:
Advanced Development, Design, Field Service and Technical Writing.

If you nave a Baehelor'g or Advanced
Degree in mieotrical or Mechanical FngiDegree in Foteotrical or Mechanical PhygiChemisiry and experience in the kloctronics Industry, you can expand you training and experlence to the fulleit in openings in connection with :

> MILITARY RADIO \& RADAR MOBILE COMMUNICATION MULTIPLEX MICROWAVE COMMUNICATIONS ELECTRONIC COMPONENTS TELEVISION, TUBES and ANTENNAS.

Please send resume to: THCHNICAL PERRSONINBL EILECTRONICS PARK

\section*{GENERAL (3) ELECTRIC} Syracuse, New York

\section*{TECHNICAL WRITERS}

The Signal Corps Center at Fort Monmouth, New Jersey, has a need for lech. tions, electronlcs and associated flelds.
Current needs are at several professional levels, ranging from trainee positions, grade GS-5 to senior writer, grade GS-11. 5940 and alaries ramotional opportunitles are offered.
These technical writers and editors will write, edit, and revise technical and sciontific manuscripts, hand books, pamphlets, circulars, instruction books, otc. on radio, radar, electronics, communication, sound anging and position finding equipment, bat units of the United States Army.
Applications may be obtained from Ist and 2nd Class Post Offices. Mail to:

Civilian Personnel Division SIGNAL CORPS CENTER AND FORT MONMOUTH Fort Monmouth, N. J.

\section*{ENGINEERS}
and

\section*{PHYSICISTS}

Work in Challening Design and Development Fields Combining the Benefits of Essential Work with Security and Rapid Professional Advancement. Enjoy, among other Benefits:
- Overtime (5-day week)
- Company-Paid Insurance
- Periodic Merit Reviaws
- Excellent Compensation

IMMEDIATE OPENINGS EXIST FOR MEN EXPERIENCED IN THE FIELDS OF
- GYROSCOPICS
- analog computers
- FIRE CONTROL SYSTEMS
- SERVO mechanisms
- instrument design
- CONTROL CIRCUITS

Reply by sending complete resume to
TECHNICAL PERSONNEL OFFICE
ARMA CORP.
254 36th St. Brooklyn 32, N. Y.

\section*{FIELD REPRESENTATIVE}

\section*{for}

WEST COAST NUCLEAR INSTRUMENT MANUFACTURER

We want a Sales Engineer to contact principal users of nuclear instruments. This man will spend approximately \(80 \%\) of this time traveling throughout the United States and Canada. He will receive a straight salary plus all traveling expenses and an opportunity to grow with a progressive organization in a new industry.
A strong background in nuclear lnstrumentation is required, plus an ability to organize own time and activities. A keen interest in people and challenging situations is essential. ales experience is desirable, but not necessary.
This is not a war baby! if you are building for the future and have the necessary qualificotions, please send your complete work history, along with a resume of your formal education, plus a recent photograph to:

PERSONNTEL MANAGER
BERKELEY SCIENTIFIC CORP. 2200 Wright Ave. Kichmond, Cellf.

\section*{PHYSICISTS - MATHEMATICIANS ENGINEERS - DESIGN DRAFTSMEN}

\section*{There is a future for you at Workshop!}

We are building a new antenna laboratory-the finest in the world and need people who are interested in a company that has a commercial future. Permanent openings are available now for research and development in these interesting fields: televisionmobile communications-broadcasting-aircraft-microwave-radar-and other high frequency cmtenna fields.

14 you have experience with antenna, \(R F\), antenna rotator or servo mechanlsm designs
- a degree in physics, mathematics, electrical or mechanical engineering
WRITE TODAY TO:
Paul Hines, Director of Engineering
THE WORKSHOP ASSOCIATES

135 CRESCENT ROAD
Division of The Gabriei Company
NEEDHAM HEIGHTS, MASS.

\section*{LOUD SPEAKER} ENGINEER WANTED

With several years' development and acoustic measurement experience. Position now open with large Eastern Manuturer. All replies will be held confidential.

P-2653, Electronics
330 W. 42nd St., New York 36, N. Y.

\section*{LABORATORY INSTRUMENTATION MAN}

Responslble positlon for instrumentation man, proferably a chemical ongineer with strong leaning toward Instrumentation invelvins maintenanco, dosign, and selection of electronle and other Instru. ments requlred by chemical researoh groups. Position requlres a more practical than theoretical man having good gadgeteering sense. Practical knowledge of hlgh and low voltage electrical clr cuits is desirabio. Location Anniston, Alabama.
Please state qualifications and salary requiremonts In lefter addressed to: R. F. McCoole. Tochnical Porsonnol Manager,

\section*{MONSANTO CHEMICAL COMPANY}

ST. LOUIS 4, MISSOURI

\section*{PHYSICISTS \\ ELECTRONIC ENGINEERS \\ ELECTRONIC SCIENTISTS \\ MECHANICAL ENGINEERS}

The Signal Corps Engineering Labora The Signal Corps Engineering Nabora sey, have a number of attractive opening: for physicists, electronic scientists, olec tronic engineers, and mechanical engineers in the research and development, design modification and testing of electronic equipment in the fields of radio and wire communications, radiological detection, meteorlogical instruments, facsimile, tele vision, photography, and communications
ystems.
Current vacancies are at nearly all professional levels ranging from trainee positions for engineers and physicists just out of college to project and staff positions requiring considerable background of accomplishment in the technical field. The Signal Corps Engineering Laboratories of to \(\$ 8360\) an unusual ranging from \(\$ 3410\) research or developmentade in choice of good opportunity to develop individual ideas.
Signal Corps Engineers and scientists have at their command the most complete and finest laboratory equipment and lacil ities available anywhere and opportunities to progress professionally are virtually un limited.
Applications may be obtained from 1st and 2nd Class Post Offices. Mail to:
Civilian Personnel Division
SIGNAL CORPS CENTER AND FORT MONMOUTH
Fort Monmouth, N. J.

\section*{SALES ENGINEER}

Manufacturer's representative requilres salasman wall engineering knowledge of electronic parts to New York area. State educational background and business experionce and starting salary desired.

330 W. 42 St., New York 36 , N. Y.

\section*{WANTED \\ COMPETENT ELECTRONIC TUBE DESIGN ENGINEER}
with knowledge of radio tube design and production. Excellent position for qualified man.

\section*{P-2583, Electronics}

330 W. 42nd St., New York 36. N. Y.

\section*{LOCKHEED}

\section*{has a great fułure}
-make it yours!

There's a great future waiting for you in Southern California-helping create the planes of the future in Lockheed's long-range dévelopment program. Lockheed is building planes for defense, planes for the world's airlines. You are needed to help carry on this program-a program that offers you not just a job, but a future!

Lockheed also offers you: Increased salary rates, generous travel allowances, a chance to live in Southern California, and many other benefits only a company like Lockheed can provide.

\section*{REQUIREMENTS:}

Design experience in aircraft electrical installation, circuit layout and systems analysis; experience in radio and radar circuit design and installations, as applied to aircraft.

NOTE TO ENGINEERS WITH FAMILIES:
Housing conditions are excellent in the Los Angeles area. More than 35,000 rental units are available. Thousands of homes have been built since the war; huge tracts are under construction now. You will find the school system as good-from kindergarten to college.
Send today for free, illustrated brochure describing life and work at Lockheed in Southern California. Use handy coupon below.

\section*{M. V. Mattson, Employment Manager Dept EL-12}

\section*{LOCKHEED}

AIRCRAFT CORPORATION, Burbank, California

Please send me your brochure describing life and work at Lockheed.

My name

My occupation

Why achers

My city and state

\section*{LOOKING AHEAD?}

If you're a top performer in the field of physics, electronic engineering or design, and you're looking for a career as well as a wellpaid position, it will pay you to investigate the excellent opportunity we offer.

BASIC QUALIFICATIONS: Minj mum of four year's experience in advanced research or development related to:
- PULSE CIRCUITS
- COMPUTERS
- NUCLEAR INSTRUMENTS
- MINIATURIZATION

ILLUSTRATED BROCHURE on request. Please write (giving summary of your education and experience, plus salary requirements) to:

THE BERKELEY SCIENTIFIC CORP. 2200 Wright Avenue RICHMOND, CALIFORNIA

\section*{ENGINEER}
mechanical or electrical

\section*{SYLVANIA}

Needs in Its PRODUCT DEVELOPMENT LABORATORIES In KEW GARDENS, L. I.
a mechanical or electrical engineer to work on problems relating to shock and vibra tions in the field of vacuum tubes and electronic devices. B S in EE or ME and \(\alpha\) minimum of 5 years experience, some of it on vacuum tubes, essential.

This opening offers opportunity to contribute to the growth of a steadily expand ing company. Please send complete resume to:

Manager of Personnel
DEPT. K-1
SYLVANIA
ELECTRIC PRODUCTS, INC. 40-22 Lowrence St.
Flushing, New York

\section*{ELECTRONIC ENGINEERS}

Opportunities with Tracerlab, Inc. are ovailable for Electronic Engineers, qualified by design experience on DC and wide band amplifiers, low power pulse circuitry, computers, telemetering or allied fields.

Tracerlab, Ine. monufactures instruments of all types for the fast growing field of radioactivity. Tracerlab, as one of the foremost leaders in this field, has much to offer its employees concerning security and opportunity for advancement.

Men who have had complete responsibility for design of complex electronic instruments in a manufacturing organization with supervision of Junior Engineers and Technicians are invited to write, giving o detailed outline of training and experience. Correspondence will be confidential. Selected applicants will be asked to come to Boston at our expense for an interview.

Industrial Relations Department

\section*{TRACERLAB, INC.}

130 High Street Boston 10, Moss.

\section*{POSITIONS OPEN}

Location
KANSAS CITY, MO.

\section*{Electronic \& Mechanical Engineers}

ELECTRONIC ENGINEERS: Must have considerable development experience in radio transmit-
ting and receiving equipment. Ability to fill position of Senior Project Bagineer a requisite.
MECHANICAL ENGINEER: Must have development experience in mechsnical desiga of elec
tronic or similar prectse equipment. Practical and theoretical knowledge of materials, finishes, sheet metal, and machine shop desikn are basic requirements. Position is one of considerable responsibility
SALARY: ODEn.
These positions are permanent.
Write stating educational and professional history direct to:

Jay V. Wilcox, President
WILCOX ELECTRIC COMPANY, INC.
1400 Chestnut St. Kansas City 1, Mo
Dependable communications since 1931

\section*{ELECTRONICS}

PROJECT MGR.-Special Devices and Instrumen*
tation Research \(\$ 12,000\) tation Research \(\$ 12,000\)
PROAECT ENGRS,-Sonar, Servos. Propulsion. PROJECT ENGRS, -Sonar, Servos, Propulsion,
Guided Missiles, Fire Control, Radar, Camersis Thermodynemics atC
PATENT ATTORNEY-Electronics.......... HIGH
GROUP LEADERS-Electro-Mechanical derices.
PATENT ATTORNEY-Electronics.......... HIGH
GROUP LEADERS-Electro-Mechanics devices. GROUP LEADERS-Electro-Mechanical derices, mentation. Computers \(57500-2500\) RESEARCH ENGRS-Magnetic Derices, Circuit \& \& MATH.-LOGICIANS: Digital Comp....... \(\$ 6600\) up

\section*{SEND DUPLICATE RESUMES FRANKLIN}

225 S. 15 th St.
Philo. 2, Pa.

\section*{ENGINEER WANTED} BOSTON AREA

We are seeking an engineer who has shown ingenuity in the field of small electro-mechanical devices, switches, relays and the like, and who is able to analyze electronic circuits in which they are used.
The man who can satisfactorily demonstrate his ability to us will qualify for the position of assistant chief engineer in our firm. Formal education is not important to us, but ingenuity is.

The man we want has a strong conviction that his future lies in a company of one hundred employees or less where his work will be seen and will be appreciated.
Our company, located in Boston, is well established and preeminent in its field. Our employees know of this advertisement. If you think you qualify, please telephone our advertising agency, Hancock 6-3565, who will ar. range for an interview with our chief engineer, or write
```

P-2689, Electronics

```

330 W. 42 St., New York 36, N. Y.

\section*{WANTED MANUFACTURER'S REPRESENTATIVES}

Territories Open in the Entire South, Midwest and ports of lowa, Mich. and Ohio.
Prominent New York electronic manufacturer wants representatives now contacting manufacturers and laboratories to sell \(5^{\prime \prime}\) wide-band high-gain oscilloscope in the \(\$ 400\) cless.
Please write full details of lines now handled, area covered and other pertinent facts.

RW 2621 EIUECTRONICS
330 W. 42 nd St., Now York 36, N. X.

\section*{MILITARY TRAINING INSTRUCTORS}

The Signal School located at Fort Mon mouth. New Jersey, has a number of attractive civlian openings for military training instructors in communications and electronics, such as theory of olectricity. mobile and fixed station radio, microwave radio relay, repeater cma corrior, radar, and motion picture techniques.
Current vacancies are at all lovels ranging from trainee positions grade GS-5 to senior instructors grade GS-S. Atracetive salaries ranging from \(\$ 3410\) to \(\$ 5030\) and good promotional opportunlties are offered

These civilian instructors will train officer and onlisted military porsonnel in the theory, installation, repair, mainlenance and and associated equipmen bove.
Applicants hired as trainees will be given an accelerated training course in leaching techniques. Those who satiafactorily complete this training may be promoted progressively to senior instructor positions grade GS-9 within ito 12 months.
Applications may be obtained from 1st and 2nd Class Post Otfices. Mall to:

Civilian Personnel Division
SIGNAL CORPS CENTER AND FORT MONMOUTH
Fort Manmouth, N. J.
 employs about 700 people on vital research work in all branches of caronautical science. We are gradually expanding our scientific staff, and have several perma nent positions open for:

ELECTRONICS ENGINEERS PHYSICISTS
MECHANICAL ENGINEERS AERODYNAMICISTS AERONAUTICAL ENGINEERS CHEMICAL ENGINEERS in such fields as: GUIDED MISSILES RADAR RESEARCH BASIC AND APPLIED PHYSICS ELECTRONIC COMPUTERS SYSTEMS ANALYSIS AIRCRAFT PRECISION INSTRUMENTATION WIND TUNNEL RESEARCH FLIGHT RESEARCH
DEVELOPMENT ENGINEERING HEAT TRANSFER THERMODYNAMICS

Minimum requirement is a B.S. Advanced
Minimum requiren better but experience back up the degree is really best. We back up the degree is really best. We vantages here (for example our gelt sponsored internal research policy) should be of particular interest to men with intelligence, ingenuity, and initiative. Send us your resume; all inquiries are strictly confidential. Promising candidates will be invited to Buffalo for interviews at Laboratory expense.

> CORNELL AERONAUTICAL LABORATORY, INC.
> P. O. Box 235 Buffalo 21, New York

\section*{AC SPARK PLUG DIVISION} of
GENERAL MOTORS CORPORATION

PRECISION INSTRUMENT PLANT
Positions now available for highest caliber personnel in the field of airborne automatic electro-mechanical control equipment.
MECHANICAL DESICN ENGINEERS ELECTRONIC ENGINEERS SERVO ENGINEERS ELECTRONIC DESIGNERS MECHANICAL DESIGNERS

New and expanding division of an established firm with 20 years of successful experience in the instrument field. Work involved deals with the manufacture and development of highly complex equipment of the most advanced type.

Write or Apply
AC Spark Plug Division GENERAL MOTORS CORPORATION 1925 E. Kenilworth Place Milwaukee 2, Wisconsin

\section*{radio test} Engineers and TECHNICIANS
for alignment, test and trouble-shooting of complicated radio equipment. These jobs require thorough theoretical knowledge and extensive experience in practical radio. Pay is excellent (many technicians earn up to \(\$ 120.00\) a week), working conditions are of the finest, opportunities for advancement are good, and you'll like the employee benefits. Write for an interview or send resume of qualifications to B. V. Mayrhauser.

THE TURNER COMPANY
909 17th St. N. E.
Cedar Rapids, Iowa

\section*{METERS}
 1 ma DC Fan typo-4" scale (rom. from equlot) 3.95

OIL-FILLED 35 KV AND 50 KV ISOLATION TRANSFORMERS
Pri. 460 V 60 oy. Se0. 115 VV 200 VA insulated for 50 KV
 Pri KV DC-G. E. Form ElR-29* \(\times 121 / 2^{*} \mathrm{O}\) S \(\$ 25.00\)

\section*{VOLTAGE DIVIDER}
G.E. Cat. 8248886 G-1 and \(9001934 \mathrm{G}-1\) 17.246,400 orims \(35 \mathrm{kV} 70: 1\) ratlo wlre wound shielded oil.
nilled \(40^{\circ} \mathrm{H} \times 1 \mathrm{~m}^{\circ} \mathrm{D}\).
\(2 \phi\) LOW INERTIA SERVO MOTORS KOLLSMAN TYpe \(937.0240-85 / 68 \mathrm{~V}\) 100 cy 5 watts

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{MFD} & \multicolumn{5}{|l|}{OIL FILLED CONDENSERS} \\
\hline & vdc & Price & MPD & vDC & Price \\
\hline & 400 & 5.55 & .1-. 3 & 2000 & . 95 \\
\hline 5-5 & 400 & 1.65 & \({ }^{25}\) & 2000 & 1.50 \\
\hline 2 & 600
600 & . 69 & \({ }_{1}\) & 2000
3000 & 1.30 \\
\hline 2 & \({ }_{600 \mathrm{R}} \mathrm{d}\) & . 69 & & 2000 & 8.95 \\
\hline & 600 & 1.65 & \({ }^{1-1}\) & 2500 & 3.85 \\
\hline 4 & \({ }_{600}^{600} \mathrm{R}^{6} \mathrm{~d}\) & 1.65 & \({ }^{32}\) & 2500
3000 & 15.80 \\
\hline 6 & 600 & 1.85 & . 03 & 4000 & 1.25 \\
\hline \({ }_{8}^{8} 8\) & \({ }_{600}^{600}\) 'd & 1.85 & 3 x & 4000 & 2.95 \\
\hline -4-4 & 600 & 2.50 & & 5000 & 2.50 \\
\hline - & 600 & 2.50 & 1 & 5000 & 4.88 \\
\hline 1 & 1000 & . 69 & .01-.03 & \({ }^{6000}\) / & 1.65 \\
\hline \(\frac{2}{2}\) & \({ }^{1000}{ }^{1000}\) 'd & 95 & 1 & \({ }_{7500}^{7000}{ }^{\text {d }}\) & 1.78 \\
\hline 3.5-. 5 & 1000 & 1.85 & 1 & 7500 & 12.50 \\
\hline & 1000 & 1.95 & & 12 KV & 8.70 \\
\hline 8 & 1000 & 3.25 & -05 & 16KV & 4.95 \\
\hline 1 & 1200 & . 85 & . 275 & 16KV & 8.95 \\
\hline \({ }^{1-1-1}\) & \({ }_{1500}\) & 1.85 & 10 & \({ }_{330 \mathrm{VAC}}^{29 \mathrm{~V}}\) & 19.95
3.95 \\
\hline . 5 & 1500 & 1.25 & 5 & 40VAC & 3.10 \\
\hline & 1500 & 2.93 & 7 & 660 VAC
660 VAC & 4.25
4.50 \\
\hline
\end{tabular}

\section*{HIGH VOLTAGE TRANSFORMERS}
G.E.-PrI. 113 V 60 oy. Sec. \(6250 \mathrm{~V} 80 \mathrm{MA}-12.5 \mathrm{KV}\)

 MA Hermetlcally sealed

CRYSTAL DIODES

\section*{ANTENNAS}

AT- 38A/APT (70 to 400MC)
 AN-65A (P/0 SCR-521),
AN-66A (P/O SCR-521),

ASB Yail-D ouble stacked 6 eleme ASB Yagi二Doubse stacked 6 efement......... 12.70

WESTINGHOUSE HYPERSIL
TRANSFORMER
PRI-1I5V. 60CY \(3 / 4\) KVA SEC \#1-240V - 1.56A SEC \#2 - \(240 \mathrm{~V} \cdot 1.36 \mathrm{~A}\) WT. 30 LBS.
\(\$ 14.50\)

\section*{EACH}

\section*{GENERATORS}
- Eellpso-Plonese typo 716-3A (Navy Model NEA-3A)

\footnotetext{
Terms \(20 \%\) cash with order, balance C. O. D. unless rated. All prices not F.O.B. our warehouse, Phila., Penna., subject to change without notice.
}

\section*{3 PHASE INVERTERS \\ Voltage and Frequency Regulated Eelipse Pioneer Type 12121A}

DC Input-24 Volts 18 Amps
AC Output-I 15 Volts 1.25 Amps 3 Phase 12,000 RPM \({ }^{0.7}\) P. F \(_{6}{ }^{\circ} \mathrm{C}\) Tomp. Riso Brand New

\section*{TEST EQUIPMENT}

\section*{MISCELLANEOUS EQUIPMENT}

Amparex 1898 Gamma Counter........... 9.87 (9 a 37.00
 ATR Inverter indicator R.7/APS. 2 Receiver R.78/APS. Is Recelver
FL-8 1020 ovele filter FL-8 1020 oyele fitter.....
RM-29 remote contral unit
RM-14 romote control unit RTA-18 \(12 / 24 \vee\) dynamotor
BC-1206-CM2 Recelver Console CY-230/MPG-1 Radar Complete. T-9/APQ-2 loss tubes.....
RCA AVR-15 Beacon Rec RCA AVR-15 Bsacon Recvr........................... 18 TBY Trans-Recvr 800 cy amp AC (used).... 20 VAC 800 cy
 Navy SD. 3 kadar complote........................ 1200.00
Navy DP. 14 Direction Flnder complete...... 385.00

\section*{TYPE "J" POTENTIOMETERS}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{\[
\begin{aligned}
& \text { Reais. } \\
& 60 \\
& 60 \\
& 100
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { Shaft } \\
& \text { SS } \\
& 9 / 16^{\circ}
\end{aligned}
\]} & \multirow[t]{3}{*}{\[
\left\lvert\, \begin{aligned}
& \text { Reais. } \\
& 5 K \\
& 5 \mathbf{K}
\end{aligned}\right.
\]} & \multirow[t]{3}{*}{Shaft
\(1 / 4^{r}\)
\(3 / 8^{*}\)} & Roals. \({ }^{\text {N }}\) Shaft \\
\hline & & & & 50K \\
\hline & & & & 50K \({ }^{\text {P }} 1 / 2^{\circ}\) \\
\hline & & 5K & \(1 / 2^{\prime \prime}\) & 100K 76 \\
\hline 200 & SS & 10 K & & 150K? \({ }^{\text {c }}\) / \({ }^{\prime \prime}\) \\
\hline 250 & 1/8* & 10 K & 3/8' & 200K 3/8 \\
\hline 500 & SS & 10K & 1/2' & 250 K SS \\
\hline 500 & 5/16* & 15K & SS & \(250 \mathrm{~K} 3 / 4{ }^{\prime \prime}\) \\
\hline 500 & 1/2* & 15K & 1/2' & \(250 \mathrm{~K} 3 / 8^{\prime}\) \\
\hline 500 & \(5 / 8^{\circ}\) & 20 K & SS & 500 K SS \\
\hline 650 & 1/2" & 25K & SS & \(500 \mathrm{~K}!1 / 4 *\) \\
\hline 1 K & SS & 25 K & 1/4' & 500K' \(7 / 16^{\circ}\) \\
\hline 2 K & 3/8 \({ }^{\circ}\) & 30K & \({ }_{8 S} 1 / 8^{\circ}\) & 1 Meg SS \\
\hline 2500 & SS & \({ }_{50 \mathrm{~K}}{ }^{\text {L }}\) & \[
\begin{aligned}
& \mathbf{S S} \\
& \mathbf{S S}
\end{aligned}
\] & 2.5 Meg SS \\
\hline \multirow[t]{2}{*}{5 K} & SS & 50 K & 1/4 & 5 \\
\hline & \multicolumn{2}{|l|}{DUAL "JJ" P} & \multicolumn{2}{|l|}{POTENTIOMETERS} \\
\hline 50 & SS & 500 & 38 & 1 Mof SS \\
\hline 100 & SS & 15 & Ss & 2.5 Meg 'SS \\
\hline 250 & SS & 2500 & SS & 5 Meg SS \\
\hline 330 & SS & 10 K & SS & 1K/25K 3/8* \\
\hline & TRIPLE & EJJ P & POTENTIO & METERS \\
\hline \multicolumn{5}{|l|}{\(100 \mathrm{~K} / 100 \mathrm{~K} / 100 \mathrm{~K}-2 / \mathrm{s}^{\prime \prime} 20 \mathrm{~K} / 150 \mathrm{~K} / 15 \mathrm{~K}-\mathrm{m} / 8^{\prime \prime}\)} \\
\hline
\end{tabular}

\section*{SOUND POWERED TELEPHONES}
U. S. NAVY TYPE M HEAD AND CHEST SETS ANY TYPE GLS32BAO \(\$ 14.88\) EACH
TS. 10 Typo Handsets
.58 .92 ea.

\section*{F. W. BRIDGE SELENIUM RECTIFIERS}

\section*{PULSE TRANSFORMERS}
\begin{tabular}{|c|c|}
\hline UTAM \(\begin{aligned} & 9262 \\ & 9278 \\ & 9260\end{aligned}\) & U"AM \(\begin{aligned} & 9318 \\ & 9340 \\ & 9350\end{aligned}\) \\
\hline G.E. 68G-627 & Westinghouse 232. \\
\hline G.E. 68 G 828 & WestInghouse 232-BW-2 \\
\hline G.E. 68G829G1 & AN/APN 4 Block Owo. \\
\hline G.E. \(80 \mathrm{G13}\) & Philico 352.7149 \\
\hline G.E. K-2469A & Philco 352-7150 \\
\hline G.E. K-2744B & Philico 352.7071 \\
\hline AN/APN-9 (901756-501) & Phlloo 352-7178 \\
\hline AN/APN-9 (901756.502) & Raytheon UX-7350 \\
\hline AN/APN -9 (352-7250) & W.E. D-161310 \\
\hline AN/APN-9 (352.7251) & W.E. D-163247 \\
\hline Westinghause 132.AW & W.E. D-163325 \\
\hline Westinghouse 139 DW 2 F & W.E. D. 164661 \\
\hline Westinghous 187A W2F & W.E. KS.9563 \\
\hline
\end{tabular}

Swoops any reoelver through its tuning range and
permanently records frequency and time of recolved permanently reoords frequency and timo of recelved signals on paper ohart. Power \(\operatorname{lnput}\)-(motor) 27 V
DC
1.5 A , and (recorder) \(80 / 115 \mathrm{~V}\) AC 60.2500 cy 135 w .
Originatly designed to record gulse or sine-wave
modulatod signals recelved by AN-APR-1, AN/APR. modulatod signals recelved by AN-APR-1, AN/APR-
2. AN-APR-4, AN/APR-5. BC.348, S-27, SX-28. 2. AN-APR-4, AN/APR-5. BC.348. S.27. SX=28.

\section*{SPRAGUE PULSE NETWORKS}

 7.5 E4-16-60-67P, 7.5 KV. "E" Clrcult 4 seetione.
16 microsec. 60 PPS.
O7 ohms Imepd. \(\$ 8.25\) 15 E4-91. 400 - 50 P. 15 KV . "E" olreult . 91 microsec. 15.A-1-400-50P, 15 KV , "A" Circuit, i miorozec,
400 PPS, 50 ohms 1 mped 37.50

\title{
LECTRONIC RESEARCH
}
\begin{tabular}{l}
GUARANTEED \\
BRAND \\
NEW
\end{tabular}
STANDARD
BRANDS
ONLY
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline Recelv & & 6AF6G... & 1.19
1.19 & \[
\begin{aligned}
& 6 S 5 \\
& 6 S T
\end{aligned}
\] & \[
\begin{array}{r}
.99 \\
1.25
\end{array}
\] & \[
\begin{aligned}
& 14 R 7 \\
& 14 W 7
\end{aligned}
\] & 1.29
1.29 & \[
\begin{array}{ll}
\text { 5BP4. . . } & 5.75 \\
{ }_{5}^{5 C P 1} & 4.95
\end{array}
\] & \[
\begin{array}{ll}
2050 \ldots & 1.80 \\
2051 \ldots & 1.15
\end{array}
\] & EL.5B.| 8.95 & \[
\begin{aligned}
& \text { WE-257A } \\
& \mathbf{W E}-271 \mathbf{A}
\end{aligned}
\] & 3.77
6.75 & \[
\begin{aligned}
& 805 \\
& 806
\end{aligned}
\] & \[
\begin{array}{r}
4.50 \\
24.50
\end{array}
\] \\
\hline OOA. & 1.50 & 6 A & 1.59 & \({ }_{6} \mathrm{~T}^{\text {P }}\) (& 1.09 & 14X7 & 1.29 & 5СP7.... 7.95 & 5545...... 32.50 & 4B24... \(\quad 1.75\) & WE-275A & 6.75
6.95 & 807 & 24.70 \\
\hline 01 & 1.67 & 6 A & 1.56 & 6 T 8 & 1.28 & 19 & 89 & 5FP7. ... 2.85 & & \(4 \mathrm{B25}\). & WE-283A & 4.25 & 808 & 2.65 \\
\hline OZ & .74 & 6A & 2.50 & 6U5 & 1.19 & 19 T & 1.16 & 5HP1.... 5.75 & Transmitting & EL-6CF 8.95 & WE-285A & 5.57 & 809 & 2.40 \\
\hline OZ4A & . 90 & 6 KK5 & 1.85 & 6U7 & 88 & 22 & 1.16 & \({ }_{5}^{5 H P 4} \ldots . .5 .75\) & \& Special & 4E27.... 17.25 & WE-286A & 7.90 & 810 & 10.95 \\
\hline 1 A 3 & 99 & 6AK5w. & 3.05 & 6V6 & 1.60 & 24A & . 179 & \({ }^{5 J P 1} \ldots . . .26 .50\) & Purpose Tubes & \(4.336150 .00\) & WE-294A & 5.75 & 811 & 3.60 \\
\hline 1A5GT & 72 & 6 AK6. & . 99 & 6V6G & 89 & \(25 A 6\) & 1.16 & \({ }^{5 J P 2} \ldots . . .26 .50\) & & \(4 . J 38\). & WE-301A & 5.95 & 813 & 9.50 \\
\hline 1 A6. & . 99 & 6AL5 & . 69 & 6V6GT & . 72 & \({ }_{2525}\) 25G & . 89 & & OA2 \(\mathbf{1 1 . 6 9}^{\text {O }}\) & 4J50 375.00 & 304TH. . & 15.00 & 814 & 3.95 \\
\hline 1A7GT. & 1.10 & 6 6L5 & 2.90 & 6W4GGT & . 72 & 25. & 79 & 5LP1..... 19.75 & OH2 \({ }^{\text {OH }}\) 1.51 & 4J52 \(\quad \begin{aligned} & \text { 400.00 } \\ & \text { 5 } 21.50\end{aligned}\) & 304T & 15.00
5.50 & 815 & \begin{tabular}{l}
2.75 \\
\hline 1.45
\end{tabular} \\
\hline 1835GT \({ }^{\text {P }}\) & .99 & 6Ag & . 89 & \(6 \times 4\) & 59 & 27 & . 69 & 5MP1.... 10.65 & Ob3..... 1.29 & 5J23 24.50 & WE-309A & 6.45 & 826 & 1.45 \\
\hline 1B4P... & 1.17 & 6AS & 3.65 & 6X5GT & . 59 & 28. & 1.35 & 7BP1.... 8.75 & \(\mathrm{OC3}^{\text {O }}\). 1.20 & 5J29..... 18.50 & WE-310A & 7.50 & 828 & 13.48 \\
\hline 1C5GT & . 99 & 6AS7G & 4.53 & 6Y6G. & 1.19 & & . 72 & & OD3.... 1.15 & \({ }^{6-813} \ldots . .\). & WE-313C & 4.15 & 829 & 9.95 \\
\hline 1 C 6 & . 69 & 6AT6 & . 63 & 6ZY5G. & . 89 & 30 Sp & . 48 & 7BP12... 14.95 & & \({ }_{6 \text { 6AR0 }}\). . . 3.35 & 316 A & . 89 & 829 A & 14.50 \\
\hline 1 C 7 & . 69 & GAU6 & . 63 & 7A5 & 1.88 & & . 92 & \({ }_{7 C P 14 . . .}{ }^{74.95}\) & & & W27A & 4.25
9.75 & 829 & 14.50 \\
\hline 1 D 5 G & . 69 & 6AV6 & 1.60 & \(7 \mathrm{7A} 7\) & . 89 & 32L\% & 1.29 & \({ }_{9}{ }^{\text {GPP7. . . . }} 12.85\) & 1B24 \({ }^{\text {c }}\) & 6J4. . . . 7.9 & WE & 85.00 & 832 & 3.95
7.95 \\
\hline 1D8G\% & 1.17 & 635 & 1.20 & 7 A 8 & . 89 & 33 & . 99 & 9LP7.... 9.95 & West) 12.95 & 7-7-11... 1.19 & WE-346A & 2.75 & 832 A & 9.95 \\
\hline 1E5GP. & 1.17 & 687 & 1.19 & 7AD7 & 1.44 & 34 & 9 & 10BP4... 18.50 & 1824 & 10T1 88 & 3501 & 4.95 & 836. & 3.50 \\
\hline 1 F 4. & . 69 & 6B8 & . 99 & 7AH7 & 1.08 & & 9 & & (Sylv). 18.95 & \(10 Y\)..... . 45 & 354 C & 19.50 & 837 & 1.58 \\
\hline \(1 F 5 \mathrm{G}\) & . 69 & 6B8G & . 85 & 7 7 4 & . 89 & 35A & .89 & 12GP7 \(\ldots\).. 16.50 & 1827.... 19.75 & 15R..... \(\begin{array}{r}2.35 \\ 15 \mathrm{P}\end{array}\) & WE-356B & 5.45 & 838 & 3.25 \\
\hline 1G4GT & . 69 & 6BA65 & .72 & \(7 \mathrm{7B6}\) & . 89 & \({ }^{35 L} 6 \mathrm{G}\) & . 89 & 12HP7... 16.50 & 1829. . . . 2.90 & REL-21.. 2.25 & 371 & 4.75
.95 & 841 & . 59 \\
\hline 1G6GGT & . 69 & \(6 \mathrm{6BE} 6\) & . 72 & \({ }_{7} 78\) & . 89 & 35 W 4 & . 55 & 902PI.... 9.95 & 1632.... 3.95 & 24G 1.85 & 371 B & 95 & 845 & 5.75 \\
\hline 1H4G & . 89 & 6BF5 & 1.10 & 788 & . 89 & 35 Y 4 & 89 & 905.... . . 4.45 & 11335 ... 12.50 & RK-25... 3.82 & 388A & 2.95 & 849 & 29.50 \\
\hline 1H5G' & . 74 & 6BG6G & 1.92 & \({ }_{7} \mathbf{C} 4\) & . 69 & 3524GT & . 69 & & 1836.... 12.50 & FG-3 & WE-399A & 4.70 & 851 & 67.00 \\
\hline 1H6G. & . 99 & 6BH6 & . 99 & 7C5 & +89 & \({ }_{36} \mathbf{3 5} 5 \mathrm{GT}\) & . 69 & Photo Cells & \(1842 \ldots .\).
\(1 H 20.80\)
88 & \begin{tabular}{l}
5558... 6.75 \\
\hline \(\mathbf{K}-34\)
\end{tabular} & 417A & 16.95 & 852 & 22.60 \\
\hline 1H6GT & 1.10 & 6BQ6GT. & 1.26 & \({ }^{7} \mathbf{7} \mathbf{C} 5\) & 1.08 & & . 69 & 1P23.... . \$4.10 & 1521...... 9.50 & RKT-34. . . \(\quad \mathbf{4 . 9 5}\) & 446 & 17.50
1.95 & 860 & 4.95 \\
\hline 1366 & 1.10 & \({ }_{6}{ }^{6} \mathrm{C} 5\) & . 65 & & 1.79 & 38 & . 69 & 1P24..... 1.27 & 122...... 3.75 & 35 T (Ion gauge) & \(446 \times\) & 1.95 & 864 & 4.39 \\
\hline 1 L 4 & . 74 & 6CB6 & . 89 & 7E7 & 1.06 & 39 & . 59 & \(918 \ldots . .1 .65\) & \(21322 \ldots . .20\) & 5.95 & 446 B & 2.25 & 865 & 1.28 \\
\hline \(1 \mathrm{LA4}\) & 1.10 & 6G6. & . 88 & 7 F 7 & 1.09 & 41 & . 89 & 1.95 & 2C21 75 & 35TG.... 4.95 & 450T & 42.50 & 866A & 1.48 \\
\hline \(1 \mathrm{LA6}\) & 1.10 & 6C8G & 1.35 & 7 F 8 & 1.59 & 42 & . 89 & \(923 . \cdots .{ }^{1.35}\) & \({ }_{2} \mathrm{C} 22 \ldots . .75\) & REL-36.. \({ }^{\text {RK }}\). 78 & 450 T & 42.50 & 869 B & 35.00 \\
\hline 1LB4 & 1.10 & 6CD6 & 2.40 & 7G7 & 1.32 & 43 & 9 & 927. 1.85 & 2C26... 49 & & 451 & 1.39 & 872A & 2.95 \\
\hline \(1 \mathrm{LC5}\) & . 99 & 6D6 & . 88 & H7 & & 457 & 79 & \({ }^{93145} \ldots .\). & \(2 \mathrm{C34}\)... \({ }^{49}\) & & 471 & & 874 & 1.45 \\
\hline \(1 \mathrm{LC6}\) & 1.10 & 6D8 & . 99 & 7 K & 1.32 & 45 & -99 & 1645.... . 1.95 & \(2 \mathrm{C} 39 . \cdots{ }^{22.00}\) & & 1821 & 2.75 & & 1.60 \\
\hline 1 LD 5 & 1.10 & 6E5 & 1.10 & \(7 \mathrm{7L}\) & 1.32 & 4 & . 99 & Thyratrons \& & \(2 \mathrm{C40}\). . . 88.95 & RK-59... \({ }^{2} \mathbf{2 . 4 4}\) & 503A & 12.50 & & 1.85 \\
\hline 1 LE 3 & 1.10 & \({ }_{6}^{6 F 5}\) & . 89 & 7N7 & 1.09 & 48 & 1.60 & Innitrons & \(2 \mathrm{C42}\). . . 26.50 & RK-60... 1.95 & 506A & 1.47 & 955 & . 49 \\
\hline 1 LN & 1.91 & 6 & . 99 & 707 & . 99 & 50 & 1.41 & & 2C43 . . . 22.50 & VT-62(Br) 1.15 & 507AX & 1.47 & 956 & .49 \\
\hline IN5GT. & .93 & 6F7 & 1.05 & \(7 \mathrm{S7}\) & 1.32 & 50 A & 1.09 & OA4G... \$1.32 & 2C44... 1.50 & RK-63... 22.50 & 527 & 12.25 & 957 & . 49 \\
\hline 1N6G. & .97 & 6F8G & 1.60 & \({ }^{7} \mathbf{V} 7\) & 1.32 & 50 & 88 & EL-G1A.. \({ }^{\text {2 }}\).75 & \({ }_{2}{ }^{\text {C451 }} \ldots \ldots\). 29.50 & RK-69... \({ }^{\mathbf{R}} \mathbf{1 . 2 5}\) & & 17.20 & 958 A & . 69 \\
\hline 1P5GT. . & . 99 & 6G6 & 1.06 & \({ }_{7}{ }^{\text {Y }}\) & 1.32 & & . 79 & 2A4G..... \({ }^{1.25}\) & 2E52..... 5.75 & 1.32 & 53 & 8.25 & & 1.50 \\
\hline 1R4..... & . 69 & \({ }^{6} \mathbf{6 H 6}\) & .83 & 724 & . 89 & 50Y6GT & . 92 & 2C33..... 4.95 & 2E24..... 4.10 & VR-75 \({ }^{\text {/ }}\) & WL-5 & 15.00 & 1003 & 90 \\
\hline 1 R 5 & . 89 & 6.55 & . 75 & 10 & . 45 & 53 & . 95 & 2D21.... 1.80 & 2J21A ... 9.95 & OA3 ... 1.51 & 559 & 2.20 & CK-1 & 79 \\
\hline 154. & .93 & 6 6 5 G & . 64 & 12A & . 79 & & \(\cdot 99\) & \(3 \mathrm{C23} \cdot{ }^{\text {3 }}\), 9.95 & 2J22.... 9.95 & 75T... 5.80 & 561 & 3.50 & 1201 & 1.20 \\
\hline 1 S 5. & . 93 & 6J5GT & 64 & 12 A 6. & . 89 & BK55 & . 42 & \({ }^{3} \mathrm{C} 31\) & 2J26.... 26.50 & VR-78... . 64 & HY6 & . 49 & 1203 & . 69 \\
\hline 1 T 4 & . 93 & 6.56 & 1.19 & 12A6G & . 79 & L55 & . 32 & C1B... 3.95 & 2J27.... 24.50 & VR-90/ & WL670A & 8.70 & 1291 & . 69 \\
\hline 1T5GT & . 99 & 637 & . 99 & 12 A 7 & 1.16 & 56 & . 69 & \({ }^{3 C 45} \ldots{ }^{17.50}\) & 2.J31.... 39.50 & OB3... 1.29 & 700 A & 24.50 & 1294 & . 69 \\
\hline \(1 \mathrm{U4}\) & . 93 & 637 & .79 & 12A8G & 1.89
1.32 & 58 & 89 & & \begin{tabular}{l}
2J32. . . . \\
2.533 .50 \\
\hline 29.50
\end{tabular} & T-98 \({ }^{\text {PR }}\), . 115.00 & \({ }^{7008}\) & 24.50 & 1299 & . 69 \\
\hline 1 U 5 & . 81 & \({ }_{6}^{6 J 8 G}\) & 1.28 & 12AH7 & 1.32 & & 1.24 & 5C22..... \({ }^{\text {ELS }}\) 53.45 & 2J34..... 39.59 & & & 24.50
24.50 & 161 & 2.25 \\
\hline 1 V 2 & .88
1.20 & \(6 \mathrm{6K5}\) & . 99 & 12A & 1.15 & 70 L 7 家T. & 1.52 & \({ }^{\text {C6, }}\), \(\ldots . .58 .45\) & 2J34..... \({ }^{359.50}\) & & 70 & 24.50
2.95 & 1612 & 2.70 \\
\hline \[
\frac{1 \mathbf{X 2}}{2 \mathbf{A 3}}
\] & 1.20
1.28 & \[
6 \mathrm{~K}
\] & . 88 & 12AU6 & 1.79 & 714...... & . 79 & FG-17/5557 5.25 & 2J37..... 13.70 & 100TH... 10.25 & \({ }_{702}{ }^{\text {a }}\) & 4.25 & 1614 & 2.00 \\
\hline 2 As 5 & . 79 & 6K7 & . 88 & 12AU7 & . 95 & 75 & . 89 & FG-33... 17.50 & 2338..... 17.50 & WE-101D 1.65 & 703A & 6.95 & 1616 & 1.07 \\
\hline 2A7 & . 89 & 6 K 8 & 1.22 & 12AV6 & . 63 & & . 69 & FG-41 . . . 122.50 & 2J39.... . 49.50 & WE-101F 3.62 & 704A & . 95 & 1619 & . 39 \\
\hline 2 B 7 & . 79 & 6K8G7 & 96 & 12AX7 & 1.08 & & . 69 & \({ }^{\text {FG67 }}\), \({ }^{\text {c. }} 14.80\) & & VR-105/ & 705A & 2.75 & 1622 & 2.30 \\
\hline 2 E 5. & .94 & 6L5 & 1.06 & 12BA & .72 & & . 89 & \begin{tabular}{l}
FG-8iA. \\
\hline 91.95 \\
\hline 8.85
\end{tabular} & 2J41.... 175.00 & WEC3.. 1.20 & 706 A & 45.00 & 1624 & 1.95 \\
\hline 2 X 2 & . 89 & 6L6 & 2.13 & 12BA7 & & & 85 & F1-95\% 7.85 & 2J48..... 27.50 & WE-113A 1.32 & 706BY & 45.00 & 1625 & . 45 \\
\hline 2X2A & 1.85 & 6L6G & 1.95 & 12 BE & . 89 & 80 & 1.41 & FG-95, 250 & 2J49.... 65.00 & \(\mathrm{FF-123A}^{\text {We-117A }}\) & 706 CY & 45.00 & 1626 & +39 \\
\hline 314 & .65 & \({ }_{6} 6\) & 1.75 & 12F5 & . 79 & & 1.19 & FG-104 \({ }^{\text {/ }}\) & 2JB51... 2.50 & \(\begin{array}{ll}\text { F-123A } & 8.95 \\ \text { WE-124A } & 3.80\end{array}\) & \({ }_{706 \mathrm{G}}\) & 45.00 & 1629 & . 39 \\
\hline 3A5. & 1.85 & \[
6 \mathrm{~L} 72
\] & 1.95 & 12 H & . 69 & & 1.59 & 5561... 24.60 & 0 & F-127A. 22.50 & 707A & 9.95 & 1631 & 1.38 \\
\hline 3B7. & . 69 & 6N7 & 1.44 & 12.J5GT & . 69 & 83 V & 1.45 & FG-105. . 19.50 & 2J56.... 150.00 & VT-127A 3.60 & 707B & 22.50 & 1636 & 3.10 \\
\hline 3 C 6 & 1.15 & 6N7 & 1.20 & 12 K 8. & . 99 & \(84 / 6\) & . 79 & FG-166.. 95.00 & 2J61.... 45.20 & AB-150.. 12.50 & 708A & 4.85 & 1638 & . 70 \\
\hline 3D6 & . 69 & 6P5GT & . 96 & 1207G & . 89 & 85 & . 75 & FG-172.. 39.50 & 2K23 37.50 & VR-150/ 1.15 & 709 A & 4.87 & 1641 & 1.95 \\
\hline \(3 \mathrm{LF4}\) & 1.10 & 60 & . 89 & 12 SA 7 & . 89 & \({ }^{89} \mathrm{Y}\) & . 1.85 & \(\begin{array}{lrr}\text { FG-178. } & 14.50 \\ \mathrm{RX}-233 \mathrm{~A} & 4.95\end{array}\) & 2K25.... 33.50 & \begin{tabular}{rrr}
OD3... \\
F-190. & 12.15 \\
\hline
\end{tabular} & \({ }_{713} 71\) & 1.70 & 1642 & .75 \\
\hline 304 & 1.93 & 6 & & & & 117L & 1.88 & & 2K26.... . 135.00 & HF-200.. 16.50 & 714 & \(\mathbf{1 . 4 5}\) & 165 & 1.17 \\
\hline \(3 \mathrm{3O5}\) & 1.10
.93 & & 1.06 & 12SF5GT & . 79 & 117P7GT & 1.89 & \(5552 \ldots 94.50\) & 2K28.... 34.50 & 203A . . 7.40 & 715 A & 6.95 & & 1.90 \\
\hline 3 V 4 & . 93 & 6S7G & . 99 & 12SF7 & . 79 & 11723.... & . 74 & FG-271/ & 2K29.... 26.00 & 203B.... 6.33 & 715 B & 12.75 & 5611 & 5.00 \\
\hline 5 AZ & . 69 & 6SA7 & . 99 & \({ }^{12 S G 7}\) & . 89 & 11726GT & .97
159 & 59551...62.50 & 2K33.... 295.00 & \({ }^{204 A} . . .49 .50\) & 715 C & 26.50 & 5654 & 5.85 \\
\hline \(5 T 4\) & 1.92 & \({ }^{6 S A 7 G T}\). & . 89 & \({ }^{12 S 5 H 7}\) & -89 & F & 1.59 & 393A . . . 6.785 & 2K45.... 145.00 & CE205... 1.85 & 717A & 1.47 & UX-6 & .65 \\
\hline 5 5 4 G & 1.69 & \({ }_{6 S C}^{6 S 7}\) & 1.20 & 12SJ7GT & . 89 & Cathode & Ray & GL-415\% \({ }^{\text {\% }}\) & 2K54.... . 135.00 & 211... \({ }^{\text {.75 }}\) & 718 & 45.00 & 8005 & .75
5.95 \\
\hline 5 W 4 & . 82 & 6SC7GT. & 1.05 & 12SK7 & . 81 & Tub & & \(5550 \ldots 39.50\) & 2K55.... 135.00 & WE-211D 12.50 & WE-719A & 26.50 & 8011 & . 87 \\
\hline \(5 \times\) & . 87 & 6SD7GT. & 1.10 & 12SL7GT & 1.03 & & & KU-610.. 12.50 & 2X2A.... 1.85 & WE-211E 12.50 & 720DY.. & 75.00 & 8012. & 2.60 \\
\hline \(5 Y 3 G T\) & .59 & 6SF5 & . 83 & 12SN7GT & . 99 & 2AP1 & \$9.75 & KU-623. . 39.50 & 3B22 & 212E..... 42.50 & 721A & 4.90 & 8013 & 2.75 \\
\hline \(5 \mathrm{Y4G}\) & .75 & 6SF5GT. & . 80 & 12SO7GT & . 79 & 2A & 10.75 & \(\begin{array}{lll}\text { KU628... } & 22.25 \\ K U S 634 . & 39.50\end{array}\) & EL-1C. 2.95 & WE-215A . 24 & 723A & 9.95 & 8013 A & 4.90 \\
\hline 523. & .87 & 6SF7 & & 12X3.... & 1.19 & 3A & 10.25 & WL-652i \({ }^{\text {W }}\) & 3B23.... 4.75 & 221A.... 1.95 & \({ }_{7244} 7\) & 16.95 & 8020 & 29.50 \\
\hline 6 A3 & 1.29 & \({ }^{6 S H} \mathbf{S H}\) & . 99 & \(12 \mathrm{Z3}\). & . 89 & 3BP1 & 7.95 & 5551... 62.50 & 3B24.... 5.25 & 227A/ & 724B & 3.22 & 8025 & 6.95 \\
\hline 6 A 4 & 1.35 & 6SH7GT. & . 99 & 14A4 & 1.32 & 3CP1 & 2.25 & WL-654/ & 3B24W... 7.95 & 5C27... 4.60 & 725A & 8.95 & 9001 & . 75 \\
\hline 646 & 1.17 & \({ }_{6} \mathbf{S J} 7\). & . 89 & 14A7 & 1.09 & \({ }^{3 D}{ }^{\text {dPP }}\) & 4.85 & W59..... 82.00 & \(3 \mathrm{B25} \ldots . . .4 .50\) & WE-231D 2.25 & 726A & 8.50 & 9002 & 1.50 \\
\hline 6 A7 & 1.05 & 6SJ7GT.. & . 89 & 1486 & 1.09 & 3DP1. & 4.95 & WL-677... 39.50 & 3B26.... 3.75 & 232CH... 240.00 & \({ }^{7268}\) & 29.50 & 9003 & \\
\hline \(6 \mathrm{AB4}\) & . 99 & 6SK7 & 89 & 14 C 5 & 1.29 & 3FP7 & 2.95 & WL-681/ \({ }^{\text {W }}\) & 3B27.... 3.95 & WE-244A 5.20 & 731 A & 25.45 & 9004 & . 75 \\
\hline \({ }_{6 A C 5}{ }^{\text {a }}\) & 1.35 & 6SL7GT. & 1.05 & 14C7 & 1.15 & 3GP1 & 4.95 & 5550... 39.50 & \(3 \mathrm{C} 24 . . .1 .85\) & WE-245A 2.35 & WL-787. & 9.80 & 9005 & 1.95 \\
\hline \(6 \mathrm{AC7}\) & 1.45 & 6SN7GT. & 89 & 14E7 & 1.29 & 3HP7 & 4.91 & 722 A . . . 3.75 & 3D21A... 1.98 & WE-249B 3.50 & 788Y & 1.40 & 9006 & \\
\hline 6AC7W & 3.25 & 6SN7WGT & 2.30 & 14F7 & 1.09 & 4AP10 & 4.75 & \(884 . . .\). & 3E29.... 14.50 & WE-249C \(\quad 3.50\) & 800 & 1.88 & & 35 \\
\hline 6AD6G & . 98 & & . 75 & 14 AF & 1.15 & \({ }_{5 A}{ }^{\text {5AP }}\) & 5.95 & \(885{ }^{165}\).90 & \(3 \mathrm{3} 31 . \cdots .95 .00\) & WE-252A 5.65 & 801 & 48 & 18904 & 3.79
3.79 \\
\hline AD7 & 1.39 & 6SO7GT. & . 75 & 14 J 7. & 1.29 & 5 BPP & 4.75 & \(1665 \cdots\) & 4-125A ... 29.50 & & 803 & 3.87 & 189049 & 3.79 \\
\hline & . 89 & 6SR7 & . 81 & 14N7 & 1.29 & 5BP1.... & 5.75 & 1904.... . 13.95 & 4A1. . . . 1.18 & WE-254A 5.90 & 804 & 8.95 & 199698 & 2.69 \\
\hline
\end{tabular}

\section*{SYNCHROS}

ARMY ORDNANCE, NAVY ORDNANCE AND COMMERCIAL
SIZE \(1,3,5,6,7\) and 8 GENERATORS, MOTORS, CONTROL TRANSFORMERS, DIFFERENTIAL GENERATORS AND
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & & & & & & \\
\hline \[
\begin{aligned}
& \text { AY-101D } \\
& \text { AY-120D }
\end{aligned}
\] & \[
\begin{aligned}
& \text { 1G } \\
& 5 \mathrm{~B}
\end{aligned}
\] & \[
\begin{aligned}
& 5 F \\
& 5 G
\end{aligned}
\] & \[
\begin{aligned}
& 70 \mathrm{FG} \\
& 7 \mathrm{l}
\end{aligned}
\] & & \[
\mathrm{C}-56701
\] & C-78249
C-78410 & C-78254
C-78670 \\
\hline AY-130D & 5CT & 5 N & A & \({ }_{2} 1151\) & C-69405-2 & C-78411 & \\
\hline ICT & \({ }_{5}^{50}\) & \({ }_{6}^{60} 6\) & \(\stackrel{\text { B }}{\text { M }}\) & \({ }_{2}^{2 J 1 G 1}\) & C-69406-1 & C.78415 & \\
\hline 1 F & 5DG & 6G & M & 2 \({ }^{\text {dinl }}\) & & & \\
\hline
\end{tabular}

Terms \(20 \%\) cash with order, balance C. O. D. unless rated. All prices net F.O.B. our ware-
house, Phila., Penna., subject to change with-
LECTRONIC RESEARCH LABORATORIES
715-19 ARCH ST.
PHILA. 6, PA.

\title{
SUPERIOR VALUES HROM AMERICA'S LARGEST ELECTRICAL CONVERSION HOUSE
}

CENTURY MOTOR GENERATOR SETS 7.5 KVA: 230 Volts, DC to 115 Volls, AC, single
phase, 60 cycles. Complete with automatic controller and push button slation.....
KATO ROTARY

\section*{KATO ROTARY
CONVERTERS}

Type 1205A Model 26KA64 Input: 24 VDC 28 A .1800 RPM. Output i 116 VAC 1 pact and ruggedly built for pont. duty oper. Filtered.
shock mounted. New \(\$ 00.00\)

\section*{HP. GAS ENGINE \\ New 1 HP. GAS ENGINE}

Alr cooled lightwelght aluminum construcbullt, covered by manufacturer's warranty I cylinder, 2 cycle................ \(\mathbf{\$ 2 9 . 0 0}\) Marathon Generators can be used with above
englne, have output of 110 Volta AC. \(1 \phi 60\) engine, have output of 110 Volts AC. 1860
cy. 300 Wats, rebuit, self-exc. Price Century Repulion Induction Motor, type RS, \(1 / 6 \mathrm{HP}, 110\) or 220 Volts, 1 \& 1750 RPM, rebullt General Eiectic, iod motor, Type sion \({ }^{1 / 20}\) HP, B.B., 110 , volts, 7 amps. 日h. wdg.

ESCO DC/DC Motor Generator Units
Operate at 220 Volts, DC to dellver 110 Volts, 3.6 amperes. Two of these units can be used
on 220 VDC Bpecial Price …….....................18.50 GENERAL ELECTRIC DC/AC MG SETS Four Bearing Marine Units: \({ }^{26}\) HP \(\mathbf{D C o u p l e d}\) to alternator \(18.75 \mathrm{KVA} ; 80 \%\) PF; 1800 RPM . Output: 115 Volts, AC. Single Ph;

PINCOR ROTARY CONVERTERS 300 VA; Filtered; Brand Now. Input: 115
VDC. 4.2 Amp. Output: 220 VAC, 1.36 Amp. VDC. 4 Amp 2 Output: 220 VAC, 1.36 Amp
SPECLAL PRIGE
MARATHON MOTOR GENERATORS Input at 110 VDC Output 110 VAC,
60
cy.
500
V regulator and frequency controller. Rebullt
 300 VA Output WESTÖHOUSE MÖOORO
\#1171198-1.4 Horse Power 21 Volt, 70 Amps. 1800 RPM Pump mounting on each
 nator; excitation 2 Volts; operating at or delivering 110 volts, 3 phase. 60 cycles at 1800
apeed; no name plate, but lab tests deter-

JANETTE ROTARY CONVERTERS 110 VA. Input: 110 VDC; Output: 110 YAC, single phase, 60 cycles; 3600 speed. With
filter for elimination of radio interference. Rellably Rebulit. Special Price.........819.9 TAPE WINDERS
These tape winders conslat of a motor operaAve at 110 With D.C., 6 amperes; 1800 speed. the unit and which can be employed for a multitude of purposes, alone or with the gear reduction box to which it is connected. Motor
is shunt wound and the speed thereof is conis shunt wound and the speed thereor 18 con-
trolled by a built-in rheostat. This makes an trolled by a built-in rheostat. This make an
invaluable laboratory unit. Special Price \(\$ 10.99\)
G. E. ROTARY CONVERTERS

Dynamotor Model 6D46AB8 78 Volts, 110 Volts, AC input to deliver

\(\$ 0.95\)

\section*{G. E. OIL FILLED}

OUTDOOR TRANSFORMERS
Brand New. 3 KVA; Type Hs 3000/5200Y-116/230. Also 6000/ \(10,400 \mathrm{Y}-115 / 230\). Brand New. Either type Special \(\$ 44.00\)

WE CAN FURNISH M.G. SETS OF ANY SPECIFICATIONS FOR ANY APPLICATION. SEND US YOUR REQUIREMENTS.

GE LOW VOLTAGE MG SETS. Motor: 1 HP. \(220 / 440-3-60\) direct conn. to Gen. 500 watts, 18-28 VDC. With control panel including ield
rheo. ammeter and voltmeter. PRICE \(\$ 150.00\) ALLIS-CHALMERS MG SETS. Inpat: 230 VDC. 7 amp. 3600 RPM, BB, Output: 116 VDC, \(1.25 \mathrm{KVA}, 1 \phi, 60\) cyc. Centrifugal automatic
controller permits line-start operation. Fully
enc Rebuit like new. Price......... 85.00 GE LOW FREQ. MG SETB Motor: 230 VDC 3 HP. 860 RPM 12 emp. Direct conn. to Alternator: 110 Volts, \(1 \phi, 15\) cycles. 21.8 amp. 2.4
amp. self. exc. Price................. \(\$ 385.00\) DC GRINDERS. Mado by US Motors. 230 VDC, 1 HP. 1760 RPM. Double shaft. With thermal overload protection and awitch. Re-
built. Latest atyle...................... \(\$ 34.50\) built. Latest style........................... 854.50 Nowark Transformers, \(3.2 \mathrm{KVA} .650 / 110\) Volts.
PRICE G. E. Autotransformers. 500 VA. \(110-220\) Volts, for wall mounting. PRICE NEW \$17.35 Raytheon Transformers. 760 VA. Pri: \(220 / 440\) Sec: 110. PRICE. .
LV MOTOR GE GENERATOR Motor: \(550 / 3 /\) \({ }_{15}^{60,}{ }^{25} \mathrm{KW}\) Genirect connected to \(27 \mathrm{~V}, 650\) gmps. LV ESCO DC MOTOR
7
HP, 1800 RPM, BB. Price.
. SELSYN MOTORS GE MODEL 5MJ365AK1 RFM \(1200 / 400\), primary stator \(440 / 3 / 60\), 3 KVA, 16 A, secondary rotar 93.5 V, 54.5 . A,
32.8 FT.L8. Price...................... 885.00 LV MG SET GE Motor: \(110 / 220 / 1 / 60\), \% HP, direct connected to Generator 12 V . 27 a anpp,
Price...........................\(~\)
125.00 ESCO IV CONVERTER Pri. 32 VDC, 8 A, Sec. 110/1/60, 150 W, 1800 RPM. Price..... \(\$ 58.50\) GE HV MG SET Motor: \(220 / 440 / 3 / 60\), direct connected to Dr Gen. 8000 \(\$ 875.00\) LV GE MG SET Motor: \(220 / 440 / 3 / 60,1 \mathrm{HP}\), 1800 RPM, direct connected to DC Gen., 24 V , 18 A, complete with rheostat and voltmeter
 VOLTAGE REGULATOH GE, MOTOR CONTROL Cat. \#837625, Type AIRS, 668 KVA indoor gervice. voltase controlled by motor
\(110 / 1 / 60,1 / 40 \mathrm{HP}\). Price............ \(\$ 39.50\) WELDING TYPE TRANSFOKMERS Pri. 440 Price cycles, Sec. \(8 / 10 / 12\) V, 10,000 Watts. KIMBLE MG SETS 2 Bear. B.B., 220/3/60 to
500 VDC, 2 amps. Prlce............. \(\$ 16.00 .00\) ESCO DC/AC MG SETS Motor: 12 HP. 230 VDC, 31 amps., div. connected to Alternator: 440 V. 3 phase. 60 cycles, brand new.

WESTINGHOUSE M-G UNITS
\(1 \quad \begin{aligned} & \text { sisting of a re- } \\ & \text { pulsion-induction }\end{aligned}\) motor, type \({ }_{25}^{2 \mathrm{EF}}\); \(110 / 280\) volte, single phase. tinuous duty. The generator has a rating of .08 KW . 40 volts, \({ }^{2}\) amperes, D. C. Compound winding, type FK. Rebullt like new

\section*{ESCO CONVERTERS}
 Rebullt like new. Input: 86 VDC 2.85 amp .3600 R.P.M. Output 116 VAC, 2.18 amp . 50 P.F. Ball Bearings. Base for table or aide mounting. Special 89.80
GENERAL ELECTRIC 8 KW High Voltage Generators; Rebullt like new, double commutator type each rated at 4000 Volta, DC, 2.6 amperes; can be connected in \(\begin{aligned} & \text { beries to give } \\ & \text { g }\end{aligned}\) 8000 Volts, DC at 2.5 amperes or 4000 volts mperea in parallel. Separately excited. Unit welgh about KUBLMAN OIL COOLED TRANSFORMERS, 11, CIAL PRICE \(\$ 32\). B0

Janette Rotary Converters. 12 volta \(D C\) to deliver 110 volte, AC. Rated: 212 VA. With radio filter.
Special Price . . . \(\$ 72.00\) Speclal Serlee Motors; no name plates, \(1 / 4\) HP operate at elther 110 Volts DC or AC: /h shait. Reconditione
RAYTHEON FARIABLE VOLTAGE TRANSRAMMEER. Primary: 820 volts, 8 phase with ontput by selector snap switch giving voltage outpute from 140 to 220. Brand new. 85.00 Price ….................................. CONWESTINGHOUSE TRANSFOKMERR transformer with multi-taps. The transiormer with tap switch alone is worth more than the pecial price.
Esco AO Motors: bullt-1n magnettc brake for quick reversing. Double shaf, barine duty: 440-3.60. Brand new in original cases. \(\$ 37.50\) EsCO DC/AC MG SETS. Motor: 116 Volts, 1 , HP line start; bullt in voltage regulator, fre quency control, flitered; ldeal for television radar or any application requiring constan voltage and frequency. Brand New....... \(\$ 120.00\) Watthour Meters. \(110 / 110\) Volt DC operation.
 \(10 \mathrm{amp} .8 .8515 \mathrm{amp} . \$ 5.0025 \mathrm{amp} . \mathrm{an}^{86.00}\) PF, \(110 \mathrm{VAC}, 1 \phi, 60\) cyc. 1800 RPM . 日ep. exc. DC Manual Controllers, mis. by Marconl Co. of England. Enc. type. For starting duty of 24 VDC Motors, rated at 7 HP . A really hard-
PIONEER DYNAMOTOR. Type PS250. Input: 12 VDC, 4.9 amp. Output: 350 VDC, .100 amp. brand new. Price............................ 100 , BRITISH DC/AC MG UNITS. Operate at \(100 /\)
 Price \(\$ 48.50\) With fleld rheostat for 60 cyc. output. s........... 50.00 G.E. 3 PH. TRANBFORMERS. 8 KVA, \(418 /\) 429/440 Pri. 140 volts, 3 ph . Sec. Price. 448.50 GE Relays: 110 VAC- 10 Amp. \(60 / 60\) cy. In ateel case \(6 \times 6\) x 6 .2...................... generators in one unit. 3600 RPM. Dellvere 1200 V. 450 V. . 25 a. and 115 V. 1.3 \(\mathrm{amp}^{12 \mathrm{mp}}\) G. E. Motor Starting Reactors Type ilikg840G2: Rated at 440 . 8 Ph. 60 Cy. 18 necessary with this unlt to make a \(15-20 \mathrm{HP}\) compensato starter. Useful for anJ purpose requiring
three phase choke. SPECIAL PRICE. \(\$ 25.00\)

GAS-DRIVEN GENERATORS
\begin{tabular}{|c|c|c|c|}
\hline Mfdr. & Cap. & vol & Price \\
\hline Atreo & 2500 W & 115/230/1/60 & \$395 NEW \\
\hline Alirco & \({ }_{500}^{5 \mathrm{KW}}\) & \(115 / 1 / 60\) & \({ }_{\$ 550} 120\) NEW \\
\hline Duplex & \(7{ }^{\text {S }}\) S \({ }^{\text {KW }}\) & \(125 / 1 / 60\)
\(110 / 60\) & \$690 \\
\hline Contin. & 3 KVA & 110/3/60 & 375 \\
\hline
\end{tabular}
H.V. M.G. BET -5 Hp. \(220 / 440 \mathrm{~V}\) motor direct
oupled to 2000 VDC. 2 KW generator. . PRICE 8275.
GE AIR-COOLED TRANSFORMERS
New. cat. 61 G29 \(460 / 230-230 / 115 \quad 1\) KVA. \(\$ 33.50\)

IF IT'S FROM ONE FREQUENCY TO ANOTHER; FROM DC TO AC OR AC TO DC,
IF IT'S FROM ONE VOLTAGE TO ANOTHER, THEN CALL ON US.
Established in 1922
WILLIAM I HORLICK COMPANY
Tel. HAncock 6-2480
409 ATLANTIC AVE.
BOSTON 10, MASSACHUSETTS

\section*{HIGH FREQUENCY M-G SETS AND AMPLIDYNES FROM AMERICA'S LARGEST ELECTRICAL CONVERSION HOUSE}

\section*{HIGH FREQUENCY CONVERSION EQUIPMENT}

QENERAL ELECTRIC HF MG SETS. Motor 120 VDC BB unit. Price VAC, 1 6.1050 ल. 2 KVA. 2 Bear. ONAN 400 CYCLE MG BET. Motor: 220 V . \(3 \phi, 60\) cy, KVA. 115 to self-excited alternator wingle putpit of 4 brand with voltage regulator connected. Componenta all PEII8 Units; Operate at 28 VDC, 100 Amp. Output:
115 VAC, \(1 \%, 400\) CPS, 1500 VA. Fith fiter sygtem
 THREE PHASE 400 CYCLE SET8. Consist of motor ator made by Holtzer-Cabot' with output of 500 VA. 15 VAC. \(3 \varnothing .400\) cycles
BOGUE THREE PHASE MG SETS. Constst of Motor operative at \(220 / 440-3-60\), Self-exo. Alternator with
 KATO 400 Cyole \(3 \phi\). Conslsts of Synchronous motor,
 5 KVA BRITISH MG SETS. Motor: \(71 / 2 \mathrm{HP}\). \(220-3-60\) Volts, 1 \(\phi, 400\) cycles.................. IPRICE, \(\$ 975.00\) BRITISH DC/AC MG SETS. Input 230 VDC.
180 VAC, \(1 \phi\).
500
Cyo. 5 KVA. 50 KVA MG SETS. Mfg. by GE. Consist of Motor: with output of 50 KVA ; 115 volts. single ph. 400 CPS . complete with auxiliary exciter MG set. fleld rheostat HIGH FREQ. UNIT. Motor: 24 VDC 50 amp. Alterhator: 17 VAC, \(1300-1600\) cro. sed. exc. at 24 VDC Tamper \& Equ.
H.F. MOTOR GENERATOR, G.E. Model 5LYI26A4. Motor: \({ }^{115}\) VDC direct connected to Generator \(24-32\)
VDC. 78 amps., and to alternator 120VAC, 720 cycles. ELECTRIC SPECIALTY FREQUENCY CHANGERS Type BFS52/BFRS354 Input: 220 Volts, 8 Ph. 60 cy CYo. 5000 VAtput: 3000 Watts. Brand New. Compact GPECLAL PRICR \(\$ 160.00\) ONAN 800 CYCLE MG UNIT. Employing 5 F.P. Mot or operative at \(220 / 440\) Volts, \(3 \phi{ }^{6} 60 \mathrm{CF} \nabla\) belted
to self-exc. generator With output of 1.5 KVA . 115 Volts, single ph 800 CPS, and secondary output of
500 Watts 28.5 VDC 17.5 Amperes. PRICE... \(\$ 289.00\) ECLIPSE 800 CYCLE GENERATORS. FTange mounting With spline shaft. Output is 115 VAC 10.4 Amp.
\(90 \%\) P.F.
800
Cycles,
V. of 28.5 VDC, b0 Amperes. Selp excited.
Price .. 39.00
BRITISH MADE 500 GYCLE MG SETS. Motor: 230
Volts, \(3 \mathrm{PH}-50\) Cycles. Alternator: 5 K W. 180 Volts, 27.8 Amp .500 Cycles. Excltation- 110 VDC . When used at 80 Cyole current, Output is 600 cycles, 220 WINCHARGER PU-7/AP; Input: 28 FDC. 160 Ampe
Output: 115 FAC. gingle ph. 2500 V.A. 400 C.P.S. Froquency and roltage resulation builit-in. 887.00 WESTINGHOUSE HIGH FREQUENCY UNITS. InDut: 115 Volts, D,C. 2.7 Amps, Output: 14.4 Volts. obtalned with built-in controller on and of unit. GE DUAL OUTPUT MG SETS. Consist of Motor
 9 separate units mounted on common bed plate 4 mD .
WESTINGHOUSE 180 CYCLE ALTERNATORS. 750 R. P.M. sparately excited at 110 VDC. C.P.S. 8000 general electric high faequency unit Operating at \(440-3-60\). 75 mmp . Output. 70 Volts, 8 ph
148 cyo. 220 Watts, 1.8 smperes. An ideal unlt for experimental work or for oderation of equipment BENDIX.ECLIPSE B00 CYCLE AERO UNIT. Inmit C.P.S. Complete filter \(\begin{aligned} & \text { Output: } 118 \text { V. } 10.5 \text { Amp. } 80 \\ & \text { Pstem mounted thereon. }\end{aligned}\) Price ... \(\$ 22.50\) INVERTER UNIT PE206A. Input: 27.5 VDC. \({ }^{28}\)
amp. Output: 80 Volts, BIngie ph. 800 CPS. 500 VA. Price … ... \(\$ 19.00\)
 ELECTRIC SPECIALTY HIGH FREQUENCY CONR.P.M. Ball Bearings. Secondary; 350 Folts, 1500
cycles. 75 amps. 275 Y. Single Ph. Built-in \({ }^{\text {Pre- }}\)
\begin{tabular}{|l|l|l}
BENDIX POWER MG SET. Conststs of G.E. 2 \\
ReD-Ind MP
\end{tabular}

 LOUIS.ALLIS 3 UNIT MG SET. Consists of 5 HP mator operstive at \(220 / 440-3-60\) directly coupled to
alternstor with output of 115 rolts. 1 ph., 400 oyc. and alternator with output of 115 rolts. 1 ph .400 oyc and
with excter unit all mounted on steel base. Prtce.
LOUIS ALLIS FREQUENCY CHANGER SETS. 2200 RPM. \(306 / 220\) Volts \(35 / 35\) Amps. 2 ph. \(500 / 360\) C.FP. S. Price \(\$ 1050.00\)
 We can supply these units for 400 crcie output and with further information 3 phase, wye output Write for CONTINENTAL DC/AC SET. Motor: \(1.5 \mathrm{HP}, 230\) VDC, 3440 RPM. Output: 120 VAC. 6.6 amps., 8 KW .
800 cyc. 1 ph., blso output of 14 VDC, 4 amps., Modei CO21637. Compact 2 -bear, unlts. Completely rebnillt. WINCHARGER Input: 28 volts, 60 amp. Output: 115 volts, 6.5 amp .
\(400 \mathrm{cyc} ., 1\) ph. Brand new. Price............. \(\$ 69.50\) HOLTZER-CABOT MG 22I. Compact 2 bear, units for low current 400 cyc. ODerates at 32 VDC, 8.5 amp
Output: 110 volts. 1.0 amp. 100 ph., 100 patts 400 ezc
 HOLTZER-CABOT MG 218. Oparates at 115 VDC. 2.3
amp. Wth same output. AS MO 221. LELAND INVERTER TYPE MG 4A. DC Input: 27.5 volts, 38 amp. 8000 RPM OM Output: 115 volts, 1 ph.
400 cy. 500 VA. Like new and fully gurrnteed \({ }^{400}\) cya., 500 VA. Like new and fully guranteed.
 rolt 3.135 amp. Output: 115 rolts, 485 VA. 1 ph. \({ }^{400}{ }^{400}\)
cyc. Price \(\$ 3.50\) ESCO DUAL FREQUENCY UNITS. Motor operates at 20 VDC, \({ }^{10}\) amperes Delivers 70 Volts at 120
Cycies or 200 Volts at 720 Cycles. Price...... \(\$ 95.00\) GE MG UNITS. Hotor: 110 Voits, D.C. 31.5 Ampares. In a single compart unit with output of 120 Volts 20.8
Amp. slngle ph. 800 eycles. Like New. Price... \(\$ 95.00\) CROCKER-WHEELER 500 CYCLE SET. Operate at 110 Volts, D.C. 29.6 Amps Output: 120 Volts. single
ph. 500 cyoles 2.5 KW. Price................. \(\$ 146.95\) HOLTZER-CABOT TYPE CAJ-21II68 MG UNITS. Compact 2 bear. opprative at 115 rolts \({ }_{1}{ }^{1} \mathrm{Dh}, 60\) oyc. also 24 VDC at 5 amp. Brand new. Price...... \(\$ 3\). \({ }^{2}\). 000 NORMAND ELEC. CO. (BRITISH MFG. \()\) MG UNIT.
Motor: 220 VDC, 8.8 amD., 2 HP, 4200 RPM, directly conneoted to \(H\). F. alternator with outpit of \(1400-2800\) ayo. 1200 watts. Exo. 24 VDC. Price. \(\$ 70.00\) MARCON 1 MG UNIT. \({ }^{\text {M }}\) K KW, operates at 110 VDC to deliver 110 VAC, 300 cre., supplied with fleld rheo-
stat for variable frequency output. Price. PIONEER MG UNIT. Input: 115 VDC, 8.4 amp fleld rheostat for variable frequency output. ESCO MG UNIT Operative 00 ESCO MG UNIT. Operative at 120 VDC, 25 Amp. \({ }^{4}\)
HP. Dellvers 115 VAC, 1 ph., 1050 cyc., 2 KW . An excentionally fine machine for laboratory use. Can be used with ineld rheostat for frequencies up to 8000
 With fleld rhenstat for frequency outputs up to 800
cyc. Price \(\$ 69.50\) HOLTZER-CABOT M G UNIT. Operates at 115 VDC 8.2 mmp. to deliver 55 VAC. 6 amp. 195 cyo. 9 ph.,
1950 RPM with fleld rheostat for frequencles up to
400 oge. 3 ph. Price.

HOLTZER-CABOT MG UNIT. Motor: 120 VDC, 5
 BRITISH ALTERATORS. 1.5 KVA., 230 Volts, \({ }^{1}\) d ONAN 400 CYCLE MG SET. Motor: 5 HP. \(220 / 3 / 60\). self excited Fith secondary output of 26 voits DC 200 ME SET Mor: \(71 / \mathrm{F}\) D osera Ive an \(400 / 440\) V 30 c. Motor: 80 H. H . operaalternator with output of 4 KVA 115 Voles. single ph. 400 C.P.S. Alternator 18 self-exoited with secondary
output of 14 VDC 40 Amp. With Voltage Ramilator
built-in. Prlce G.E. MG SET MODEL 5LY56AB5A. Motor: 1.1 HP 250 VDC, 4 smp. Generator: 600 watte, 125 VAC 4.8
amp., 500 cyc., 1 ph. Price................. \(\$ 89.50\) GENERAL ELECTRIC 400 CYCLE UNITS. Operate at 26 VDC 100 Armp. Output: 115 VAC \(1 \Phi .400\) CPS.
1500 W.A. With filer system bulit-in. Price...\(\$ 29.50\) MARCONI MG UNITS. Oparative at 110 FDC to
deliver 500 VAC. 6 amp 3 K .W. 240 creles. delirer 500 VAC. \({ }^{6}\) amp. 3 K.W. 240 cycles. Ea-
tending shaft perits driving complete unit to obtain
dual self-exclted generator. Prlce........... 589.00 CROCKER-WHEELER 500 CYCLE MG SET. Compact 2 bearing Unlt. Operative at 120 VDC, 7.3 amps,
Outpu: 250 Volts. 5 amp. 500 cycles. Rebullit
\begin{tabular}{|c|}
\hline \multirow[t]{11}{*}{\begin{tabular}{l}
MG SETS \\
Motor: Type CS, Fr. 204, 208 iv, 3 mh. 60 ora, \({ }^{4}\) 125 VDC. 2.8 smp. . 35 KW . Gen. (2) \(250 \mathrm{VDC}\). 2 amp. sed. exc 3 , volts. The 3 units are contained in one housing. Brand new. was generators have similiar characteristic ar an completely enclosed with rubber gaskets on the enclosing covers, which
\end{tabular}} \\
\hline \\
\hline
\end{tabular}

\section*{GEN. ELECTRIC AMPLIDYNES}

 Model 5AM49AB30; Input: 440 Volts. 3 phase 00 cyc 1 amp. output: 115 Volts, D.C. 3.25 amp. 3400 AR8.00 Model 5 AM3INJI8A: Input: \({ }^{27}\) VDC. 44 amp. 8300
RPM. Output: 60 VDC, 8.8 amp. 830 wstts.... \(\$ 12.95\) Model 5 AM78AB19; Input: 82 VDC. 60 amp. \& \(\mathbf{E P}\). Wat RPM: OutDut: 250 Volts, D.C. 3 amperes; \({ }^{750}\) Model 5AM45DB26; InDut: 440 V. \(3 \phi .60\) cyc. Output:

 Model 5AM78AB47; Input: 440 V . 3 d . 60 cyo. Output 250 VDC, 3 amp. With control generator direct conn. on \({ }^{\text {anp. }}\)

 G.E. Amplldyne Generator Model AM701. 25 KW .125 amps. 200 volts, 1785 RPM, special duty cycle. \({ }^{20150}\) G.E. AMPLIDYNE GENERATOR Model SAM628A 460 volts, 33 amps., 1700 RPM......... RRICEA \(\$ 70.0\) IP motor in center directly connected to 212 vol 80 amp generators. Will deliver 24 volts at 160 amp
 GENERAL ELECTRIC Tyoe B Flange Motor for holsting duty. \(6 \%\) H. P. separately excited. Marlne Pity,
Brand new, original cases: 235 Volts. DC. 1100 RPM: WINCHARGER WIND GENERATOR. 18 rolts, 850 watts, complete with sil nttings Including propeller.
Excelient for battery charging. Price.... (New) 70.00 GARDNER DRY TRANSFORMER. 3.42 KVA. 230/115 RAYTHEON VOLTAGE STABILIZER (CONSTANT
 RAYTHEON CONSTANT VOLTAGE TRANSFORMER \(\mathrm{F}_{\mathrm{K}} \mathrm{KVA}\). Input \(180-269\) volts. Output \(220-230\) volits ACME AIR-COOLED TRANSFORMER. PrImary:
volts
Secon Aolts, Secondary: 14,840 volts with C.T. 3 phase, \({ }^{\text {fin }}\)
YoPS, 18.2 KVA, brand new. PTrce............. 390.00 ALLIS.CHALMERS MG UNIT. 94 KVA, Input 24
 50 CYCLE FREQUENCY CHANGER Motor: 15 HP
 LV DG MOTOR GENERATOR SET. Motor: \(220 / 440\) 3/60, difrect connected to DC Esco generator 20 V. 100
amps., 1750 RPM. 15 KVA GENERAL ELECTRIG TRANSFORMER.
 HV MOTOR GENERATOR SET. Motor: \(220 / 440 / 3 / 60\) PRICE
```

WE CAN SUPPLY MOTOR-GENERATOR
SETS TO ANY FREQUENCY SPECIFICA
ONS AND FOR ANY APPLICATION.
CONSULT OUR ENGINEERING DEPARTMENT

```

IF IT'S FROM ONE FREQUENCY TO ANOTHER; FROM DC TO AC OR AC TO DC,
IF IT'S FROM ONE VOLTAGE TO ANOTHER, THEN CALL ON US. IF IT'S FROM ONE VOLTAGE TO ANOTHER, THEN CALL ON US.
Established in 1922 WILLAM I HORLEK COMPANY Tel. Hancock 6-2480 409 ATLANTIC AVE. BOSTON 10, MASSACHUSETTS

\section*{POTENTIOMETERS}
 POTENTIOMETERS \(\$ 22.50\) Cat. Resistance Taps Funct

 CHOKE. Conservatively rated 165
\(\mathrm{MA} .5:\) Henries 160 ohm do .2
 (39 cents

TURRET LUGS For making \(\begin{gathered}\text { mounting } \\ \text { Swaging tools } \\ \text { for eards. } \\ \text { different }\end{gathered}\) style \(\$ 3\).
For varlous thickness boards add \(\begin{array}{ll}\mathrm{A}-1 / 32^{*} \\ \mathrm{~B}-1 / 16^{*} & \mathrm{C}-3 / 33^{\prime} \\ \mathrm{D}-1 / 8^{\prime \prime}\end{array}\)

RG8/UCOAXIAL CABLE, poly. 1200 ft reels \(14 \%\) per foot. Less at 16 éper foot.

\(\square\) 6 de
16 dc
居

\section*{}会

Widely Known for Fair Dealing and Good Service
HAROLD H. POWELL
2104 MARKET STREET PHILADELPHIA 3, PENNA. PHONE LOcust 7-5285

OIL FILLED CAPACITORS
\begin{tabular}{|c|c|c|c|}
\hline Mfd. & Volt & Size & Price \\
\hline . 02 & 600 & BT \(1 \times 1-3 / 4 \times 3 / 4 \mathrm{CD}\) side. & 5.95 \\
\hline 1 & 300 ac & 5/8* \({ }^{\text {dia }}\) w mtg strap tub.... & . 45 \\
\hline . 1 & 400 & tubular watrap type NHJ..... & . 30 \\
\hline . 1 & 660 & BT side \(1 \times 1-3 / 4 \times 3 / 4\) Aero. & . 95 \\
\hline . 1 & 7500 & PO12 1/4* dia \(\times 5^{\circ}\) high, bkt. & 4.95 \\
\hline .1-. 1 & 400 & BT top \(1-3 / 4 \times 7 / 8 \times 3 / 4 \mathrm{CD}\). & . 60 \\
\hline .1-1 & 660 & BT side Fent. & . 75 \\
\hline . 25 & 600 & \(15 / 8 \times 11 / 4 \times 5 / 8 \mathrm{invertm}\) m. & . 95 \\
\hline . 25 & 600 & BT bottom lug aero. & . 95 \\
\hline . 25 & 600 & OM625 with bkt. & . 95 \\
\hline . 25 & 600 & BT top terminal. & . 95 \\
\hline . 5 & 400 & BT top terminal cd & . 60 \\
\hline . 5 & 600 & \(2 \times 3 / 4 \times 11 / 4\) upright mtg.. & . 95 \\
\hline . 5 & 400 & BT CP50B1DE504KK...... & . 95 \\
\hline . \(5-.5\) & 400 & \(21 / 2 \times 11 / 4 \times 5 / 8\) inverted aero & 1.60 \\
\hline 1 & 500 & 23 F 207 invert channel. & . 95 \\
\hline 1 & 500 & 23F206 upright channel. & . 95 \\
\hline 1 & 600 & CP68B1EF105V. & . 95 \\
\hline
\end{tabular} \(1-1 / 2 \times 7 / 8\). side term type 630 Bathtub. \(1-3 / 16\) eq \(\geq 2-3 / 8\) high top term
BTideterm \(2 \times 2 \times 1-1 / 8 \mathrm{~cd} .\). \(1-3 / 8^{\prime \prime}\) rd \(\geq 3-3 / 8^{\prime \prime}\) high 610 M Oilmite RAL300 invert.,
Fittermite 2-3/4" \(8 \mathrm{gq} 3-3\) /

\section*{PULSE FORMING DELAY LINE 15-E4-91-400\({ }^{50 \mathrm{P}} \mathrm{H}_{2}\) Sprague \#S92-5245. \(4 \times 5 \mathrm{x} 7 \mathrm{inch}\) oil flled
 \\ TINY \\ 10 AMPERE FILTER 60 db att. 15 to 30 Mcs. Permal.
loy core.
D 170738}

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{COAXIAL CONNECTORS} \\
\hline Type & Price \\
\hline UG9/U & \$1.20 \\
\hline UG10/U & 1.20 \\
\hline UG12/U & 1.20 \\
\hline UG13/U & 1.20 \\
\hline UG18B/U & 1.95 \\
\hline UG21/U & 1.20 \\
\hline U G22/U & 1.30 \\
\hline U G23/U & 1.50 \\
\hline UG24/U & 1.30 \\
\hline UG25/U & 1.25 \\
\hline UG27/U & 1.30 \\
\hline UG29/U & 2.15 \\
\hline U G30/U & 2.50 \\
\hline UG58/ & ..\(_{25}\) \\
\hline U G85/U & 2.25 \\
\hline U G87/U & 1.50 \\
\hline UG88/U & 1.50 \\
\hline UG971U & 4.00 \\
\hline UG97A/U & 4.20 \\
\hline U G98/U & 2.25 \\
\hline UGI04/ & 1.80 \\
\hline UG105/U & 1.50 \\
\hline UG106/
UG107/U & .10
3.50 \\
\hline UG131/ & 4.50 \\
\hline UGI67/U & 2.00 \\
\hline UG173/U & .43 \\
\hline UG175/U & .17 \\
\hline UG176/U & .17 \\
\hline J-201 & 4.50 \\
\hline UG203/U & . 85 \\
\hline UG224/U & 1.45 \\
\hline S0.239 & . 40 \\
\hline S0239 Y & 60 \\
\hline UG245/U & 2.95 \\
\hline UG255/U & 2.25 \\
\hline PL258 & . 95 \\
\hline PL259A & . 55 \\
\hline UG260/U & 1.50 \\
\hline U G262/U & 1.50 \\
\hline UG274/U & 4.50 \\
\hline PL274 & 1.35 \\
\hline UG275/U
U G290/U & 4.50
1.80 \\
\hline U G296/U & 3.75 \\
\hline UG306/U & 3.50 \\
\hline UG335/U & 3.75 \\
\hline UG342/U & 2.25 \\
\hline M359 & . 35 \\
\hline 49547 & 1.20 \\
\hline U G422/U & 3.25 \\
\hline
\end{tabular}
\begin{tabular}{|cc|}
\hline HIGH & \\
VOLTAGE & GLASS \\
METAL & \\
SEAL & \\
T0q each. & \(\$ 7.50\) \\
per 100. & \(\$ 65\) \\
\hline
\end{tabular}

WIREWOUND
 COMPLETE \(\underset{\text { PAGE }}{\text { NEXT }} \longrightarrow\)

26 CONDUCTOR CABLE made un by Western Fliectric in 50 foot lengths with S324CCT connectors \(\pm 22\) standard and rubber covered. Although the O.D. is only \(9 / 16\) iacket............ \(\$ 9.95\) POWER SUPPLY, PE20tA, Radlart to operate from 12 volts DC to
supply plate \& screen \& DC fila-
ment polts to telephone repeater ment roits to telephone repeator
EE99 \& TY14. Saled in orlg-
inal packing cases with spare inal packing cases with spare re
brator. cable, schematic. etc.
 Model 1485 , 26 VDC input. 115 volts, 60 cy.
complete watts output.
With
NSB
vi-

\begin{tabular}{lr}
\multicolumn{1}{c}{ AN CAPS } & \\
\(9760-8\) & \(\$.50\) \\
\(9760-10\) & .50 \\
\(9760-10 \mathrm{P}\) & .50 \\
\(9760-12\) & .50 \\
\(9760-14 \mathrm{G}\) & .50 \\
9760.14 & .50 \\
\(9760-16\) & .55 \\
\(9760-18\) & .55 \\
\(9760-18 \mathrm{G}\) & .60 \\
\(9760-20\) & .60 \\
\(9760-22\) & .65 \\
9760.22 G & \\
\hline \(9760-28\) & \\
\hline
\end{tabular}

NOTE: PRICES ON THIS PAGE ARE NET

\section*{AN CONNECTORS-dISCOUNT: \(50 \%\) Phenolic, \(40 \%\) MELAMINE}

\title{
RELAYS
}

This list represents only a small part of more than a million relays in our stock-one of the worid's largest. All relays are standard, brand new in original packing, and fully guaranteed by Relay Sales.
Send us your relay requirements. If the items are in stock we can make immediate delivery at substantial savings in cost to you.

SHORT TELEPHONE RELAYS
\begin{tabular}{|c|c|c|c|c|}
\hline STK. No. & voltage & ohmage & contacts & unit price \\
\hline R. 635 & 12 VDC & 100 & 16818 & \$1.35 \\
\hline R-308 & 12 VDC & 100 & 2 C (3) 4 Amps & 1.85 \\
\hline R-343 & 12 VDC & 100 & & 2.00 \\
\hline R-826 & 12 VDC & 150 & 2C, 18 & 1.55 \\
\hline R-770 & 24 VDC & 150 & 1a/10 Amps & 1.45 \\
\hline R-368 & 8/12 VDC & 200 & 18 & 1.40 \\
\hline R-771 & \({ }^{24} \mathrm{VDC}\) & 200 & 1A/10 Amps & 1.45 \\
\hline R-603 & 18/24 VDC & 400 & 2 A & 1.55 \\
\hline R-575 & 24 VDC & 500 & 2 C & 2.40 \\
\hline R-764 & 48 VDC & 1000 & 1C\&2A & 2.00 \\
\hline R-417 & 5.5 ma & 5800 & 2 C & 2.50 \\
\hline R-563 & 60/120 VDC & 7500 & \({ }_{1}{ }^{\text {A }}\) & 2/3.10 \\
\hline R-213 & \(5 / 8\) VAC 60 Cy . & & 2A & 2.50 \\
\hline R-801 & 115 VAC & & NONE & 1.45 \\
\hline R-589 & 12 VDC & 125 & 2 A & 1.30 \\
\hline R-113 & 12 VDC & 150 & \(4{ }^{4}\) & 1.55 \\
\hline R-689 & 12/24 VDC & 255 & 1 C & 1.55 \\
\hline R-799 & 24 VDC & 500 & NONE & 1.00 \\
\hline R-115 & 24 VDC & 500 & 1 C & 1.70 \\
\hline R-110 & 24/32 VDC & 3500 & 1 C & 2/3.45 \\
\hline R-121 & 150 VDC & 5000 & 2A81C & 2.05 \\
\hline R-122 & 150 VDC & 5000 & 2C/Octal Base & 2.50 \\
\hline R-634 & 150/250 VDC & 6000 & 1 A\&1B & 2.45 \\
\hline R-369 & 8/12 VDC & 150 & \(2 \mathrm{~A}, 2 \mathrm{~B}\) & 1.60 \\
\hline R-908 & 6 VDC & 15 & 4 A (a) 4 Amps & 1.50 \\
\hline R-800 & 12 VDC & 150 & 2 C 11 A & 1.55 \\
\hline R-537 & 12/24 VDC & 150 & 2 C 81 B & 2.00 \\
\hline R-750
R. 367 & 24 VDC & 400 & IA & 1.60 \\
\hline R-367
R .335 & 10/16 VDC & 195 & 2 C & 2.50 \\
\hline R-335
R-366 & 20/30 VDC & 700 & 2A, IC & 2.00 \\
\hline R-366 & \(30 / 120\) VDC & 4850 & 1 C & 2.50 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline STK. NO. & voliage & DHMAGE & CONTACTS UNI & NIT PRICE \\
\hline R-806 & 115 VAC & 900 & 1A & \$2.05 \\
\hline R-161 & 6 VDC & 10 & 2B\&1A & 1.10 \\
\hline R-873 & 6 VDC & 12 & 3C-3A MICALEX & 3.00 \\
\hline R-305 & 12 VDC & 50 & 2A Split Cerm. & 1.35 \\
\hline R-360 & 24 VDC & 200 & 1 C & 1.50 \\
\hline R-484 & 24 VDC & 200 & 2A, 1C & 1.35 \\
\hline R-337 & 24/48 VDC & 1200 & 1A, 28 Split & 2.65 \\
\hline R-101 & 24 VDC & 1300 & 2 A , & 2.50 \\
\hline R-868 & 30/162 VDC & 3300 & 1 C & 1.90 \\
\hline R-365 & 52/162 VDC & 3300 & 46 & 3.95 \\
\hline R-518 & 85/125 VDC & 6500 & 16 & 3.60 \\
\hline R-918 & 52/228 VDC & 6500 & 1 C & 3.60 \\
\hline R-852 & 52/228 VDC & 6500 & 16.1A & 3.00 \\
\hline R-341 & 75/228 VDC & 6500 & 4C (a) 4 Amps & 3.65 \\
\hline R-633 & 180/350 VDC & 10,000 & 1 C (a) 5 Amps & 2.90 \\
\hline R-344 & 12/300 VDC & 11,300 & \(3 \mathrm{~A}, 1 \mathrm{~B}\) & 2.45 \\
\hline R-332 & 100/350 VDC & 40,000 & 2A & 3.50 \\
\hline R-664 & 110 VAC & & 2B\&1A/OCT.SOCKET & 2.45 \\
\hline R-667 & 6 VOC & . 75 & 1B/10AMP. IA/3AMP. & P. 1.45 \\
\hline R-632 & 6 VDC & 12 & 5A\&lC & - 3.25 \\
\hline R-154 & 6/12 VDC & 200 & 1 A & 1.50 \\
\hline R-517 & 12 VDC & 250 & 2A & 1.50 \\
\hline R-116 & 85 VDC & 3000 & 18 & 3.05 \\
\hline R-631 & 100/125 VDC & 3300 & 2A & 1.90 \\
\hline R-545 & 110/250 VDC & 7000 & 1 C & 2.40 \\
\hline R-124 & 300 VDC & 12,000 & 1 A & 1.55 \\
\hline R-511 & 24 VDC & 200 & W/MICRO N.O. & 3.05 \\
\hline R-160 & 6 VDC & 12 & 3C\&3A & 3.00 \\
\hline R-851 & 52/228 VDC & 6500 & 1C, 1A & 3.00 \\
\hline R-591 & 6 VDC & 40 & 1B\&1C & 1.35 \\
\hline R-155 & 12 VDC & 100 & 4 A \& 4 B & 1.45 \\
\hline R-520 & 200/300 VDC & 14,000 & 2 C & 3.45 \\
\hline R-159 & 6 VDC & 50 & 2A & 1.35 \\
\hline R-158 & 6 VDC & 50 & 4A Cerm. & 1.85 \\
\hline R-381 & \(6 / 8\) VDC & 100 & 1A Split & 2.50 \\
\hline R-382 & 6/12 VDC & 200 & 1 B Split & 2.50 \\
\hline R-153 & 12 VDC & 200 & 1C\&1A & 1.55 \\
\hline R-304 & 12 VOC & 200 & 4A Split Cerm. & 2.50 \\
\hline R-383 & \(6 / 12 \mathrm{VDC}\) & 500 & 1 A Split & 2.50 \\
\hline R-385 & \(6 / 12\) VDC & 500 & 18 Split & 2.50 \\
\hline R-384 & 6/12 VDC & 500 & 3 S Splif & 3.00 \\
\hline R-576 & 12 VDC & 200 & 2A & 2.50 \\
\hline R-316 & 24 VDC & 200 & 1 C & 1.50 \\
\hline
\end{tabular}

\section*{OTHER RELAY TYPES IN STOCK}
\begin{tabular}{ll}
- Keying Relays & - Voltage Regulators \\
- Rotary Relays & - Differential Relays \\
- Contactors & - Sealed Relays \\
- Midget Relays & - Special Relays
\end{tabular}

Manufacfurers and Disfribufors: Write for the new Relay Sales Catalog.

Telephone
SEeley 8-4146

833 W. CHICAGO AVE., DEPT. SL, CHICAGO 22, ILL.

NOTE: We have developed special facilities for keying our stock to manufacturers part numbers or Armed forces stock number. For quickest possible service, please request quotations by these numbers.

\section*{DISCOUNTS AND SAVINGS OF-40-60\%}

\section*{24-72 HOUR DELIVERY CONNECTOR}

INSERTS AVAILABLE AT THIS TIME
ITEMS IN ITALICS HAVE BEEN RECENTLY ADDED TO OUR INVENTORY
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 8S-1P & 16S.4S & 18-15S & 20.10S & 22-9S & 24-7P & 28-7P & 32-3S & 36-10P \\
\hline 8S-1S & 16S.5P & 18-16P & 20-11P & 22.10P & 24-7S & 28-7S & 32-5P & 36-10S \\
\hline 10S-2P & 16S.5S & 18-16S & 20.11S & 22-10S & 24-9P & 28-8P & 32-5S & 36-11P \\
\hline 10S-2S & 16S-6P & 18-17P & 20-12P & 22-11P & 24-9S & 28.8S & 32-6P & 36.11 S \\
\hline 10SL-3P & 16S.6S & 18-17S & 20-13P & 22-11S & 24.10P & 28-9P & 32-65 & \(36-12 P\) \\
\hline 10SL-3S & 16S-8P & 18-18P & 20-13S & 22-12P & 24-10S & 28-9S & 32-7P & 36-12S \\
\hline 10SL-4P & 16S-8S & 18-18S & 20-14P & 22-12S & 24-11P & 28-10P & 32-7S & 36-14P \\
\hline 10SL-4S & 16-15P & 18-20P & 20-14S & 22-13P & 24-11S & 28-10S & 32-8P & 36-14S \\
\hline 10SL-656P & 16.15S & 18-20S & 20-15P & 22-13S & 24-12P & 28-11P & 32-8S & 36-15P \\
\hline 10SL-656S & 16-16P & 18-22P & 20-15S & 22-14P & 24-12S & 28-11S & 32-9P & 36-15S \\
\hline 12S-1P & 16-16S & 18-22S & 20.16P & 22-14S & 24-15P & 28-12P & 32-9S & 36-16P \\
\hline 12S-1S & 16-2P & 18-23P & 20.16S & 22-15P & 24-15S & 28-12S & 32-1.0P & 36-16S \\
\hline 12S-2P & 16.7P & 18-23S & 20.17P & 22-15S & 24.16P & 28-13P & 32-10S & \(36.17 P\) \\
\hline 12S-2S & 16.7S & 18-24P & 20-17S & 22-16P & 24-16S & 28-13S & 32-13P & 36.17S \\
\hline 12S-3P & 16-9P & 18.24 S & 20-19S & 22-16S & 24-18P & 28-14S & 32-13S & 36-18P \\
\hline 12S-3S & 16-9S & 18-25P & 20-20P & 22-17P & 24-18S & 28-15P & 32-14P & 36-18S \\
\hline 12S-4P & 16-10P & 18-25S & 20-20S & 22-17S & 24-19P & 28-15S & 32-14S & 36-19S \\
\hline 12S-4S & 16.10S & 18-26P & 20-22S & 22-18P & 24-19S & 28-16P & 32-16P & 36-20P \\
\hline 12-5P & 16.11P & 18-26S & 20-23P & 22-18S & 24-20P & 28-16S & 32-16S & 36.21P \\
\hline 12-5S & 16-11S & 18-27P & 20-23S & 22-19P & 24-20S & 28-17P & 32-18P & 36-21S \\
\hline 12S-6P & 16-12P & 18-27S & 20-24P & 22-19S & 24-21P & 28-17S & 32.185 & 36-646P \\
\hline 12S-6S & 16-12S & 18-28P & 20-24S & 22-20P & 24-21S & 28-18P & 32-19P & 36.697P \\
\hline 14S-1P & 16.13P & 18-28S & 20-25P & 22-20S & 24-24P & 28-18S & 32-19S & 36-697S \\
\hline 14S-15 & 16-13S & 18-29P & 20-25S & 22-21S & 24-24S & 28-19P & 32-20P & 36-799P \\
\hline 14S-2P & 18-1P & 18-29S & 20-26P & 22-22P & 24-25P & 28-19S & 32-20S & 36-799S \\
\hline 14S-2S & 18-1S & 18-30P & 20-26S & 22-22S & 24-25S & 28-20P & 32-101P & 40-1P \\
\hline 14S-4P & 18-2P & 18.30S & 20-27P & 22-23S & 24-26P & 28-20S & \(32-101 \mathrm{~S}\) & 40-15 \\
\hline 14S-4S & 18-2S & 18-31P & 20-27S & 22-24P & 24-26S & 28-21P & 32-102P & 40-2P \\
\hline 14S.5P & 18-3P & 18-31S & 20-28S & 22-24S & 24-28P & 28-21S & 32-102S & 40-6P \\
\hline 14S-5S & 18-3S & 20-1P & 20-28P & 22-27P & 24-28S & 28-22S & 32-722P & 40-8P \\
\hline 14S-6P & 18.4P & 20-15 & 20-29P & 22-27S & 24-684P & 28-684P & 32-722S & 40-9P \\
\hline 14S-6S & 18-4S & 20-2P & 20-29S & 22-30P & -24-684S & 28-684S & 32.810 P & 40-95 \\
\hline 145-7P & 18-5P & 20-2S & 20-30P & 22-30S & 24-691P & 28-693P & 32.810 S & \(40.11 P\) \\
\hline 14S.7S & 18-5S & 20.3P & 20-30S & 22-32P & 24-691S & 28-693S & \(32-811 \mathrm{P}\) & 40.115 \\
\hline 14S-9P & 18-6P & 20-3S & 22-1P & 22-32S & 24-710P & 28-695P & \(32-8115\) & 40.13P \\
\hline 14S-9S & 18-6S & 20-4P & 22.1S & 22-36P & 24-710S & 28-695S & \(36.1 P\) & 44-1P \\
\hline 14S-10P & 18-8P & 20-4S & 22-2P & 22-36S & 24-835P & 28-702P & 36-15 & 44-15 \\
\hline 14S-10S & 18-8S & 20-5P & 22-2S & 24-1P & 28-1P & 28-702S & 36-2P & 44-2P \\
\hline 14S-11P & 18-9P & 20-5S & 22-3P & 24-1S & 28-15 & 28-745P & 36-2S & 44.2S \\
\hline 14S-11S & 18-9S & 20.6 P & 22-3S & 24-2P & 28.2P & 28-745S & 36-3P & 44.4P \\
\hline 14S.12P & 18-10P & 20-6S & 22-4P & 24-2S & 28-2S & 28-840P & 36-3S & 44-4S \\
\hline 14S-12S & 18-10S & 20-7P & 22-4S & 24.3P & 28-3P & 28-840S & 36-6P & 44-5P \\
\hline 14-3P & 18-11P & 20-75 & 22-5P & 24-35 & 28-3S & 28-852P & 36-6S & 44-5S \\
\hline 14-3S & 18-11S & 20-8P & 22-5S & 24.4P & 28-4P & 28-852S & 36-7P & 44-6P \\
\hline 16S-1P & 18-12P & 20-8S & 22-6P & 24-4S & 28-4S & \(32.1 P\) & 36.7 S & 44-6S \\
\hline \(16 \mathrm{~S}-1 \mathrm{~S}\) & 18-12S & 20-8S & 22-6S & 24.5P & 28-5P & 32-1S & 36-8P & 44-9S \\
\hline 16S-3P & 18-13P & 20-9P & 22.8P & 24-5S & 28-5S & 32-2P & 36-8S & 48-1P \\
\hline 16S-3S & 18.13S & 20-9S & 22-8S & 24-6P & 28-6P & 32-2S & 36-9P & 48-15 \\
\hline 16S-4P & 18-15P & 20-10P & 22-9P & 24-6S & 28-6S & 32-3P & 36-9S & 48-3S \\
\hline
\end{tabular}

3108-B

AN 3108-A

AN 3106

AN 3101

AN 3100

AN 3057

PURCHASING AGENTS: MAKE USE OF OUR TRANSMITTING AND RECEIVING TUBE DEPARTMENT K-RK-PL CONNECTORS

\section*{WE SPECIALIZE IN PROMPT DELIVERY}

SPECIAL ATTENTION GIVEN TO "DO" ORDERS

\title{
WILGREEN INDUSTRIES
}

\author{
99 MURRAY ST., N. Y. 7, N. Y.
} TELS. WORTH 2-7423-4-5
NEW PHONES WORTH 4-2490-1-2 324 CANAL ST., N. Y. C., 13, N. Y. • WAlker 5 -9642
}

\title{
lin

\title{
lin \\ Over 300,000 RELAYS in our Vast Stook-
}

\section*{SEE OUR PREVIOUS ADS FOR LISTINGS}

VOLTAGE REGULATOR

Amertron Tronstat
90 to 130 V. \(50-60 \mathrm{cyc}, 17.5\) Amps, \#T282 \(\$ 17.50\) 103 to 126 V. \(50-60\) cyc. 2.17 Amps, \#T283 \$9.95 W. E. D122855, 92 to 115 V. 400 cyc, 5.5 Amps, \#T281 \(\$ 6.75-10\) for \(\$ 60.00\)

\subsection*{2.5 AMP H.D. FILTER REACTOR}

Amertran Type PBN 0.5 Hy , at \(2.5 \mathrm{~A}, 2.3 \mathrm{Ohm}\), 2.5 KV insul, \(51 / 2 \times 7 \times 8^{\prime \prime}\) overall. Heavy Shield, \#T284
. \(\$ 12.95\)

\section*{SERVO OUTPUT XFMRS}

PP6L6 to Servo Mechanism with \(10 \%\) FeedBack Winding. Mu-Metal Core. Shielded \#T285
PP6V6 \& 6SN7 (Dual Unit) to Servo Mechan-
ism with \(10 \%\) Feed-Back Winding.
Mu-Metal Core. Shielded. \#T286 \$3.95

\section*{AUDIO XFMRS}

Multiple Line \& Voice Coil to Multiple Line \& Voice Coil. Good Fidelity. Kenyon S20130. Shielded. \#T287
\(\$ 2.25\)
Input Line to Single or P.P. Grids, 500 -ohm C.T. Primary. Overall Ratio I:13.7, Kenyon 213089-1. Shielded. \#T288 \(\$ 2.25\)

Multiple Line or Mike to Single Grid. 300-ohm C.T. Primary. Overall Ratio \(600: 1\). Kenyon 213307-2. Shielded. \#T289. \(\$ 2.25\)
P.P. INTERSTAGE. Single or P.P. Plates to P.P. Grids. Ratio 1:1.2. Hi-Fidelity. Stancor 87AI5. Shielded. \#T112............... \(\$ 2.50\)

\section*{120 CYCLE FILTER}

Input Impedance: 1000 ohm, Output Impedance: 1000 ohm, Kenyon 213104-1. Shielded. \#T289
\(\$ 3.95\)

\section*{SWINGING CHOKES}

5 to \(30 \mathrm{Hys}, 125 \mathrm{Ma}, 200 \mathrm{Ohm}_{4}\) S.C. Stock \#4G1668C/RI. 2000V Test, Shielded. \#Till \(\$ 3.49\) 5 to \(20 \mathrm{Hgs}, 300 \mathrm{Ma}, 90\) Ohm, 2000 V Test, Shielded, \#T290

\section*{SHOCKMOUNTS}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Series & Mfgr & 16 & E & Series & Mrgr & L6 & Es \\
\hline 100 & Lord & 1 & . 10 & 200 & Lord & 35 & . 38 \\
\hline 100 & Lord & 2 & . 10 & 200 & Lord & 45 & . 45 \\
\hline 100 & Lord & 4 & . 12 & 200PH & Lord & 6 & . 35 \\
\hline 100 & Lord & 8 & . 15 & 200 PH & Lord & 10 & . 35 \\
\hline 170 & Lord & 9 & . 18 & 200 PH & Lord & 12 & . 38 \\
\hline 150 & Lord & 8 & . 20 & 250PH & Lord & 15 & . 40 \\
\hline 150 & Lord & 10 & . 20 & 250PH & Lord & 45 & .4n \\
\hline 150 & G'year & 25 & 25 & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{OTHER MOUNTS}} \\
\hline 150 PH & Lord & 4 & . 25 & & & & \\
\hline 150 PH & d & 6 & . 25 & \multicolumn{4}{|l|}{V \(\times 1021\) Harris 2 oz .10} \\
\hline 200 & Lord & 10 & . 28 & 3/4* Di & Lord 2 & & . 10 \\
\hline 200 & Lord & 20 & . 30 & 279 Seri & \$ 250 L & & 1.00 \\
\hline 200 & Lnrd & 25 & . 35 & C2030 B & arty & & 1.00 \\
\hline
\end{tabular}

MICROSWITCHES 10 Amp 125 V
\begin{tabular}{llll}
Type & Action & Actuator & E. \\
YZ2R5 & SPST n.o. & Pin & .58 \\
BZ2R5 & SPDT & Pln & .69 \\
V312 & SPST n.o. & Wire & .69 \\
WZ3RTC & SPST n.c. & P1n & .59 \\
APR201 & SPST no. & Plunger & .79 \\
WZR21 & SPST n.c. & Plunger & .79 \\
WZE7RQNT & SPST n.c. & Plunger & 1.50 \\
& \multicolumn{3}{c}{ Enclosed Type" }
\end{tabular}
\begin{tabular}{lcl}
& ACRO SWITCHES \\
2MC31A & SPSTn.c. & Pin \\
2MD21A & SPDT 6A & Pin \\
2MD31A & SPDT & PIn \\
XC72L & SPST n.c. & Lea!
\end{tabular}

OTHER SENSITIVE SWITCHES
C-H 89:1K524 DPST n.o. Plunger.
MuSwlten DGBP32 SPST n.o. Plunger.

TOGGLE \& PUSH SWITCHES
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { Mfgr. } \& . \\
\text { Contacts } \\
\text { No. }
\end{gathered}
\]} & Deseript \({ }^{\text {n }}\) & Amps \\
\hline SPST \({ }^{1}\) & Carling & Small Toggi. & \(3 \mathrm{~A}, 110 \mathrm{~V}\) \\
\hline SPST & A, H\& H & Toggle & A. 250 V \\
\hline SPST & C-HB5A & Alrcraft & 35 A 24 V \\
\hline SPDT & C.HB9A & A ireroft & 35A. 4 V \\
\hline SPDT & A, H\& \({ }^{\text {a }}\) & Toggle & \(3 \mathrm{~A}, 123 \mathrm{~V}\) \\
\hline DPST & A, H\&H & Toggle & \(3 \mathrm{~A}, 125 \mathrm{~V}\) \\
\hline 18* & A. \(\mathrm{H} \% \mathrm{H}\) & Momentary & 5A, 125V \\
\hline 18* & T\&MCo. & Push & 3A, 125V \\
\hline \(1 \mathrm{~A}^{\text {® }}\) & Squere D & Pugh & 15A, 24V \\
\hline
\end{tabular}

\section*{GLASS TO METAL SEALS HIGH-VOLTAGE FEED THRU}

Many types and sizes. Send us your blue. ? print or sample for our quote. Our prices are a fraction of urigiral factory cost.

\footnotetext{

}

5
\begin{tabular}{lrr|llr}
Mra. & FVDC & Ea & Mfd. & WVDC & Ea \\
\(2 \times 0.1\) & 7000 & 1.69 & 190 & 2000 & 1.85 \\
0.2 & 5000 & 2.25 & 1.5 & 330 AC & .89 \\
0.25 & 4000 & 1.95 & 5 & 25 & .49 \\
0.75 & 1000 & .69 & 7 & 600 & 1.45 \\
1.0 & 400 & .30 & \(3 \times 8\) & 5 & 1.95 \\
1.0 & 600 & .65 & 17.5 & 330 AC & 3.25 \\
1.0 & 1500 & 1.49 & Fillerette & 50 V 3 A & .59
\end{tabular}

\section*{ROTARY RATCHET RELAYS}

Ledex D.C. Impulse operated mechanisms rotate in 30 steps. Ratchet mechanism has \(1 / 4^{\prime \prime}\) shaft with flats for standard switch wafers.
\#33 Mechànism only, 24V. 200 ohm, \#R597......... \(\$ 1.50\) \#76-2945 Mechanism \& Ratchet \& \(3^{\prime \prime}\) long shaft, \(6 \mathrm{~V}, 1 / 2\)
ohm, \#R598 \(\$ 3.50\)
\#75-3576 Mechanism \& Ratchet \& 4" long shaft, \(6 \mathrm{~V}, 1 / 2\) ohm, \#R599............. \(\$ 3.75\) \#25 Mechanism Only, 12V, 4.5 ohm, \#R824 \#26 Mechanisn. Only, 6V, 2 ohm, \#R825 \(\begin{array}{r}\$ 1.50\end{array}\) Miniature Mechanism Only, 12V, 35 ohm, \#R826 . \(\$ 1.50\) Miniature Mechanism Only, 6V, 10 ohm, \#R827

\section*{YOUR RELAY HEADQUARTERS}

\section*{LARGE STOCKS OF}
\begin{tabular}{|c|c|c|}
\hline AN Connectors & Controls & Relays \\
\hline APC'3 & Crystals & Resistors \\
\hline Binding Posts & Filters & Servo Xfmes. \\
\hline Cable & Fuses & Shock-Mounts \\
\hline Capacitors & Hardware & Sockets \\
\hline Ceramicons & fron Core Slugs & Spaghetti \\
\hline Ceramios & Knobs & Swltches \\
\hline Chokes & Potentiometers & Transformers \\
\hline Circuit Breakerz & (sine-cosine) & Tubes \\
\hline Coils & Pulse Ximis. & And Others \\
\hline
\end{tabular}

INGRAHAM 8 RPM Fully Enclosed. \(\$ 1.95\) TELECHRON 3.6 RPM.................... 2.50 GILBERT With Gear Train for 6 RPDay. . 1.95 GILBERT 60 RPM (I RPS) 1.75

\section*{OIL FILLED CAPACITORS}

BATHTUBS
\begin{tabular}{llll|llll}
Mfd. & WVDC Term & Ea & Mfd. & WVDC & Term & E. \\
\(2 \times 0.1\) & 600 & Bot. & .35 & \(2 \times 0.64\) & 600 & Side & .45 \\
\(3 \times 0.1\) & 600 & Bot. & .40 & 1.0 & 400 & Side & .55 \\
0.8 & \(440 A C\) & Side & .40 & \(2 \times 1.0\) & 600 & (2)Side & .65 \\
0.25 & 600 & Top & .40 & 2.0 & 600 & Bot. & .65 \\
0.5 & 600 & Bot. & .45 & 4.0 & 50 & (1)Side & .65 \\
0.5 & 600 & Top & .48 & 100 & 25 & (2)Side & .65 \\
0.5 & 400 & Side & .45 & 50 & 25 & (1)Side & .30
\end{tabular}

CHANNEL
\begin{tabular}{llll|llll}
Mfd.I WVDC Term & Ea & Mfd. & WVDC Term & Ea \\
0.015 & 600 & Top & .28 & \(2 \times 0.5\) & 200 & (2) Bot. & .35 \\
\(2 \times 0.1\) & 600 & Bot. & .35 & 0.5 & 400 & Bol. & .40 \\
\(3 \times 0.1\) & 400 & Bot. & .40 & 0.5 & 600 & Bot. & .48 \\
\(3 \times 0.1\) & 800 & \(80 t\). & .45 & 1.0 & 400 & Bot. & .48 \\
\(2 \times 0.25\) & 800 & (2)Bot. & .48 & 1.0 & 400 & Top & .48
\end{tabular}

RECTANGULAR

EEDS FOR IMMEDIATE QUOTE. WRITE US YOUR NEEDS FOR MM.
ALL RPGS F.O.B. OUR PLANT. MIV. ORDER \(\$ 5.00\).

WANTED！WANTED！ MILITARY TEST SETS \＆EQUIPMENT
 BC equipment and parta，Aleo quantity．WRITE，WIRE OR CAIUBES，any

\section*{HRTHA美}

Coaxdal Rel
 Ryma Plate Relay 8000 ohim spit：
 \(15 \mathrm{HY} \mathrm{S}_{800} \mathrm{MA}^{6} \mathrm{ChOL}\)

\section*{TUBESHE BRAND NEW！STANDARD BRANDS！NO SECONDS！COMPARE！TURESD！}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline OAS／VR75 & & & & & & & & \\
\hline & & & & & & & & \\
\hline & cick & \({ }^{250 R}\) & & \({ }_{8014}^{8013}\) & & & & \\
\hline 1824 \({ }^{1824}\) & \({ }^{3} 18{ }^{3} 181\) & \({ }_{2744}^{25074} \ldots . .21\) & & & & ：929 & 6SU7cTY： 2.15 & \\
\hline & & 27 & & & ．735 & & & \\
\hline \({ }^{1829} 1832 . . .9 .75\) & \({ }_{3 E 29}^{31 A}, \cdots: 1^{1}\) & & & & & & & 硡 \\
\hline & 3FP7 & \({ }^{28}\) & & \({ }_{\text {900 }}^{9004}\) & & & & \\
\hline & \({ }_{4.651}^{36 P^{7}}\) & & & & & ：996 & 1.35 & \\
\hline & & & & & & & & \\
\hline \(1{ }^{1} 29\) & & & & & & & & \\
\hline 1N23A & & & & & 18729 & & 7． 75 & \\
\hline \(1 N 26\)
\(1 N 27\) & & 3281 \(3814 .:{ }^{\text {a }}\) & & CK505AX： & & & & \\
\hline & & 退 & & CK507AX： & & & & \\
\hline & & & & CK512AX： & & & & \\
\hline & \({ }_{4}{ }^{2} 27\) & & & & \％ 73 & & & 332 \\
\hline \({ }_{2} \mathrm{C}_{2} 11 / \mathrm{rik} 3 \mathrm{~s}\) & & & \({ }_{86} 8\) & － & \({ }^{73}\) & \({ }_{99}\) & & \\
\hline & \({ }_{5}^{\text {SAP4 }}\) & & & & \({ }_{10669} 180 \cdot:\) ： 73 & \({ }_{68}\) & 785 & 35／5 \\
\hline RK84 & \({ }^{\text {58P4 }}\) & \({ }_{4180}^{434}\) A \(:\) ：\(:\) 4： & 8780 & & 89 & & & \\
\hline 12：89 & & & \({ }_{88}^{88}\) & & \({ }_{\text {1 }}^{10} 9\) & 5 & & \\
\hline 1．49 & & & & & \％38 & & & \\
\hline ， & cici & & － & FG32 \({ }_{\text {FSb }}\) & & & & \\
\hline \({ }_{2}^{2 E_{2}^{2}}\) & \({ }_{5}^{5 J P 4}\) & & & & 8 & 5 & & \\
\hline & & & & & 88 & 9 & & \\
\hline & & 78 & \({ }_{927}^{823} \quad .: 3:\) ：\({ }^{1: 05}\) & \({ }^{\text {P }}\) & 85 & 8 & 7N7 \(7:\) ：\(:\) ： 988 & \\
\hline & & 70 & & \({ }_{\text {F }}\) & \({ }_{95} 9\) & & \({ }_{7}^{70}\) & \\
\hline & & & & 5 & \({ }_{79} 89\) & & 78 & \\
\hline & \({ }_{8 \mathrm{BF}+}\) & 70667 \({ }_{7}\) & O5 & HF125 & ：73 & 8 & & \\
\hline & \({ }_{781}^{6 \times 1}\) & & 5 & & －93 & 1.5 & & \\
\hline & & & \({ }^{9}\) & & 5 & өп80т ．．．．79 & & \\
\hline & & & & & & & 2A7 \(\cdot\) ：．： 1.05 & \\
\hline & \({ }_{\text {QLP1 }}\) & 9．75 & \(1818 . . .9\) ． 98 & & 72 & \({ }^{1.20}\) & & \({ }_{50} 5\) \\
\hline & \(1{ }_{10}^{108 P 4}\) & \({ }_{717}^{15 \mathrm{C}}\) ：\(:\) ： 29.95 & & RK25 \({ }^{\text {RK2 }}\) & 1：185 & \({ }_{6}^{6}\) & & \\
\hline & \({ }_{12 \mathrm{DP7}}^{12 \mathrm{Cl}}\) ：\(: 16\) 16．95 & & & RK & 1：25 & & 25 & \\
\hline & & & & & 2 & & ． 15 & \\
\hline \({ }_{2 J 61}^{2 J 81}\) & & & 1.29 & & \({ }^{217}{ }^{\text {217 }}\) & & \({ }_{12 \mathrm{~B}}^{12 \mathrm{~A}}\) & \\
\hline \({ }_{2 \times 25}^{25}\) & & & & & & & & \\
\hline & & & 1633 \(16::\) ： 75 & & 5 & & & \\
\hline \({ }^{2 \mathrm{~K} 29} 8\) & \({ }_{2}^{23 D} 4\) & & & & 98 & & － & \\
\hline & & \({ }_{801}^{801}\). & & VR788 & 31284 & & 12 L & \\
\hline & & \({ }_{804}^{803}\) & & & \({ }^{3}\) & & 12 & \\
\hline & ， 6 & \({ }_{805}^{804} \ldots: 3.94 .98\) & \({ }_{1685}^{1855} .: .2 .81 .45\) & VT127A \({ }^{\text {V }}\) & & & \({ }^{1247}{ }^{124}\) & \\
\hline & & \({ }_{807}^{806}\) & & & & & & \({ }_{89}^{85} \times 1\). \\
\hline & & ci．23 & lill 1861 & & & & 128 & 5 \\
\hline & & 2．45 & 1．45 & WL530 & 5W4 ：\(:::^{1}\) ：\({ }^{12}\) & & \({ }_{12877}^{12897}\) & \\
\hline & \({ }_{2154}^{2121} \times . . .49 .50\) & & 5870
8005 & & & （88K7 & 12857 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
 \\
AN／ARR－2X RECEIVER \\
Secret Transmission Recelver tor reception of double
modulated carrier．Will recelve 235.258 mes signal modulated carrier．Whll recelve 235.238 mea signal． \\

\end{tabular} & \begin{tabular}{l}
 \\
flexible shafting available \\
HRU－2電 28 2000W Gagollne Generator \\
RG－BU Coaxlal Cable．Per Thougand feet \\
 \\
RCA Scund Powered Chest \＆Headsets．Pair \(\cdots\) ．． 2129.50 \\
Tralling Wire Antennà Feed Tube \\
Gonlometer for sCR277 Direction Finde \\
HS－30 Headsets
FT +154 （BC－348 ghocin Mount） \\
HS－33 Headseta \\
BC．608 Automatic Keyer for sicisiz2 \\
EC1284 Lghthouse Tube Preamplifier
APA－ 17 D．F．Antenney \(300 \cdot 1000 \mathrm{MC}\) \\
BC－O98 Interphone Amplifier \\
ART－13 Loading Condenser in \\
P8－27／ARNS Anterina \\
SA－1／ATN． 1 \\
RM－29 R RA－ 17 Inalcator \\
RA－300 FM Exclter \\
A－55 Dummy Antenna \\
BC－1365 Co
FL－ 8 Fiter \\
FL－S Filter lese＂Cabien \\
3C－18D GSA P Gun Camera Computer，comy rete． \\

\end{tabular} & \begin{tabular}{l}
TS3／AP s－Band Freq \＆Power Meter． \\
TS10／APN Aitlmeter Teat Set，Ex． \\
TS11／AP． \\
TS12／AP V．S．W．R．Test Set for X．Rand． \\
ts13／AP XA Band Sig Gen Pwr \＆Freq Mtr． \\
TS14／AP SA Band sig Gen． \\
TS15／AP Flux Meter．
TS16／AP Altimeter
Test \\
TS19／APQS Range Callbrator． \\
TS23／APN Test set for SCR7 18 Altimeter． \\
TS32／TRC－1 \(70-100\) mes Slg gen used to check ANTRAC \\
Equipment． \\
TS33／AP X－Band Freq，Meter． \\
TS34／AP Synchroscope． \\
Ts35／AP X－Band Sig Gen Pwr Mtr Freq Mtr． \\
TS36／AP X－Band Power Meter． \\
TS4s／ap \(X\)－Band lig Gen． \\
TS47／APR SIE Gen \(40-500 \mathrm{Mcs}\) ． \\
TSG1／AP B．Band Echo Box ．．．．．．．．．．．．．．\(\$ 140.00\) \\
TS62／AP X－Band Echo Box． \\
Tg67／Ap I．L．S．Test Set． \\
TS69／AP Frea，Mitr \(\mathbf{3 0 0 - 1 0 0 0}\) mes ．．．．．．．．．． 372.50 \\
TS102／AP Range Callbrator． \\
TS110／AP Echo Box． \\
TS111／AP B－Band Freq．Meter． \\
TS126／AP 8ynchroscope． \\
TS15S／UP 8．Band sig Gen Pwr Mtr Freq．Mtr． \\
TS164／AR A．C．Version of BC221． \\
TS170／ARN I．L．S．Test Set．
TS174／AP Freq．Mtr．
\(40-4\) \\
TS174／AP Freq．Mtr． \(40-400 \mathrm{Mcs} \$ 385.00\)
TS175／AP Freq．Mtr． \(300-1000 \mathrm{mcs}\). TS184／AP
T\＄189／AP \\
T\＄226／AP \(300 \cdot 1000 \mathrm{mce}\) Pwr Mtr． \\
TS268／AP Xtal Dlode Test Set． \\
BC－221 Frequency Meter． \\
\(1 \mathrm{E} \cdot 19\) Test Set for scris22．
1 E .36 Test Set for SCR522．
\end{tabular} \\
\hline \begin{tabular}{l}
SO－13 S－BAND MARINE RADAR \\
Compact Sea Search Radar for small veasels．P．P．I．
indication is provided．Complete in original casea with indication 18 provided．Complete in original
complete setg of apires． \(\mathbb{E x c o l l e n t}\) condition．
\end{tabular} & \begin{tabular}{l}
AN／ARC－1 TRANS／REC． \\
 craft or Arcraft around．Complete ith shock Mount \\

\end{tabular} & \begin{tabular}{l}
AN／TPS－3 PORTABLE RADAR \\
Ltghtwelght Portable Search Radar for detection of alr． craft，in the frequency range of 800 MCS．Power inputs installation．Excellent condition．
\end{tabular} \\
\hline
\end{tabular}

\section*{RADIO HAM SHACK Inc． 189 GREENWICH STREET}

SPECIALISTS IN FRACTIONAL HORSE POWER MOTOR SPEED CONTROL

\section*{A LEADING SUPD}
TELECHRON SYNCHRONOUS MOTOR, Type B3, 110 V., 60 Cy., 4 W., 2 RPM. \(\mathbf{P R I C E} \$ 5.00\) EA. TELECHRON SYNCHRONOUS MOTOR Type BC, 110 V., 60 Cy., 6 W., 60 RPM.
PRICE \$4.00 EA EASTERN AIR DEVICES, Type J33, Synchronous, 115 V., 400 Cy., 3 , 8000 RPM.
PRICE \$15.00 EA

\section*{HAYDON TIMING MOTORS 110 V., 60 CY.}
Type 1600 , 2.2 W., \(4 / 5\) RPM. PRICE \(\$ 3.00\) EA TYPE 1600, 2.2 W., \(1 / 240\) RPM
PRICE \(\$ 3.00\) EA.
TYPE 1600, 2.3 W., 1 RPM. PRICE \(\$ 3.00\) EA TYPE 1600, 2.2 W., 1-1/5 RPM. PRICE \(\$ 3.00\) EA TYPE 1600, 3.5 W., 1 RPM. With shift unit automafic engaging and disengaging shaft. PRICE \$3.75 EA.
TYPE 1600, 2.2 W., 1/60 RPM. PRICE \$3.00 EA

\section*{SERVO MOTORS}
CK1, PIONEER, \(2 \phi 400\) Cy. PRICE \(\$ 10.00\) EA. CK2, PIONEER, \(2 \phi, 400\) Cy. PRICE \(\$ 14.00\) EA CK2, PIONEER, \(2 \phi, 400\) Cy., with 40:1 reduction ged PIONEER, 2 PRICE \(\$ 15.50\) EA 10047-2-A, PIONEER, \(2 \phi, 400\) Cy., with 40:1 reduction gear. PRICE \(\$ 10.00\) EA
MINNEAPOLIS HONEYWELL Type B, Part No. G303AY, 115 V., 400 Cy., \(2 \phi\), built-in reduction gear, 50 lbs. in torque. \(\mathrm{PRICE} \$ 10.00\) EA.
MINNEAPOLIS HONEYWELL Amplifier Type motor PR'ICE \(\$ 10.00\) WA WITH TUBES

\section*{REMOTE INDICATING COMPASSES \\ 26 V., 400 CY.}
PIONEER TYPE AN5730-2 İndicator and AN5730-3 Transmitter. PRICE \(\$ 40.00\) PER SET KOLLSMAN TYPE 680K-03 Indicator and 679 01 Transmitter. PRICE \$15.00 PER SET

\section*{D C MOTORS}
JAEGER WATCH CO. TYPE 44K-2 Contactor Motor, 3 to 4.5 V. Makes one contact pe GENERAL ELECTRIC TYPE 5BA10AJ37, 27 V \(0.5 \mathrm{amps} ., 8 \mathrm{oz}\). in torque, 250 RPM
PRICE \(\$ 10.00\) EA.
BARBER-COLMAN CONTROL MOTOR, TYPe AYLC 5091, 27 V., 0.7 Amps., 1 RPM. Contains 2 ad. limit switches. 500 in. Ibs. torque.
WHITE RODGERS ELECTRIC CO., TYpe 6905 No. 3 , 12 V., 1.3 Amps., \(11 / 2\) RPM, torque 75 in. Íbs. PRICE \(\$ 10.50 \mathrm{EA}\).

\section*{ENGINE HOUR METER}
John W. Hobbs Model MI-277. Records run-
ning time up 1000 hours. 20 to 30 volts D.C. ning time up 1000 hours. 20 to 30 volts D.C PRICE \(\$ 15.50\) EA.

\section*{OF ELEGTRONIC \& AIRCRAFT EQUIPMENT}
 \(\left\{\begin{array}{r}T Y \\ T Y\end{array}\right.\)
Y. 5907-17. Dial graduated 0 to \(360^{\circ}, 26\) §TYPE 6007.39. Dual Dial graduated 0 to 360*, 26 V., 400 Cy . PRICE \(\$ 50.00\) EA.' TYPE 4550-2-A Transmitter, 26 V. 400 Cy 2:1 gear ratio. PRICE \(\$ 20.00\) EA

\section*{VOLTAGE REGULATORS}
 outpur 18.25 at 5 Amps. PRICE \(\$ 6.50\) EA. WESTERN ELECTRIC TRANSTAT VOLTAGE REGULATOR Spec. No. \(\mathbf{N}\). \(\mathbf{~ K . 1 2 2 8 5 5 , ~ O L o a d ~}\) adjustable from 92 to 115 V .

PRICE \(\$ 10.50\) EA.

\section*{RATE OR TACHOMETER GENERATORS}

EASTERN AIR DEVICES J36A, 02 V. D.C. per
RPM. Max. speed 5000 RPM
PRICE \$17.50 EA.
ELECTRIC INDICATOR CO. TYPE B68 Rotation Indicator, 110 V., 60 Cy., \(1 \phi\)

GENERAL ELECTRIC TACHOMETER TOR TYPE AN5O TACHOMETER GENERA TOR TYPE AN5531-1. Variable frequency,
GENIERAL ELECTRIC TACHOMETER GENERA TOR TYPE AN5531-2. Variable frequency \(3 \phi\) outpuf.

PRICE \(\$ 30.00\) EA
ALL PRICES
F. O. B. GREAT NECK N. Y.

\section*{SYNCHROS}

IF SPECIAL REPEATER, 115 V. 400 Cy . PRICE \(\$ 20.00\) EA. 400 Cy . PRICE \(\$ 10.00\) EA. PRICE \(\$ 10.00\) EA. 2J1G1 CONTROL TRANSFORMER, \(57.5 / 57.5\) V., 400 Cy .

PRICE \(\$ 10.00\) EA.
JIF1 GENERATOR, 115 V., 400 Cy.
PRICE \(\$ 10.00\) EA.
J1H1 DIFFERENTIAL GENERATOR 57.5/57.5 Y., 400 Cy. PRICE \(\$ 10.00\) EA. SDG DIFFERENTIAL GENERATOR, 90/90 V., 400 Cy . PRICE \(\$ 20.00\) EA
G GENERATOR, 115 V., 60 Cy .
PRICE \$50.00 EA.
W. E. KS-5950-L2 Size 5G, 115 V, 400 Cy. PRICE \(\$ 10.00\) EA.
D C ALNICO FIELD MOTORS
DIEHL TYPE S.S. FD6-23, 27 V., 10,000 RPM. PRICE \(\$ 10.00\) EA. DELCO TYPE 5069466, 27 V., 10,000 RPM. PRICE \$15.00 EA DELCO TYPE 5069370, 27 V., 10,000 RPM. PRICE \$15.00 EA DELCO TYPE 5072400, 27 V., 10,000 RPM.

\section*{BLOWER ASSEMBLIES}

JOHN OSTER TYPE MX215/APG, 28 V. D.C. 7,000 RPM, 1/100 H.P. PRICE \(\$ 10.00\) NESTINGHOUSE TYPE FL, 115 V., 400 Cy., 6,700 RPM, Airflow 17 '́C.F.M.

PRICE \(\$ 10.00\) EA.
DELCO TYPE 5068571 Motor and Blower Assembly, R.M. Motor, 27 V., 10,000 RPM.

\section*{GENERAL ELECTRIC D C SELSYNS}

TJ9-PAB, TRANSMITTER, 24 V . PRICE \$4.50 EA. DJII-PCY, INDICATOR, 24 V. Dial marked \(-10^{\circ}\) to \(+65^{\circ}\). 24 V . Dial DJ11-PCY, INDICATOR, 24 V . Dial marked 0 to \(360^{\circ}\).

\section*{RECTIFIER POWER SUPPLY}
ammett Electric Mfg. Co., Model SPS-130 Input Voltage AC 208 or 230,60 cycle, 3 phase, 21 amps. Output 28 Voits, 130 amps, continuous duty. \(37^{\prime \prime}\) high, \(221 / 2^{\prime \prime}\) wide, \(21^{\prime \prime}\) deep. Contains DC Volt meter, DC amp meter and 8 point tap switch for variable output voltage. Brand new. Price \(\$ 350.00\).

\section*{MISCELLANEOUS}

PERRY A5 CONTROL UNIT, Part No. 644836. PRICE \(\$ 7.50\) EA.
SPERRY A5 AZIMUTH FOLLOW-UP AMPLIFIER, Part No. 656030, with tubes.

PRICE \$5.50 EA.
PERRY A5 DIRECTIONAL GYRO, Part No 656029, 115 V., \(400 \mathrm{Cy}, 3\) \$.

PRICE \(\$ 25.00\) EA
PIONEER TYPE 12800-1 GYRO SERVO UNIT. 115 V., 400 Cy., \(3 \phi . \quad\) PRICE \(\$ 20.00\) EA. ALLEN CALCULATOR TYPE C1 TURN \& BANK INDICATOR, Part No. 21500,28 V. D.C. PRICE \$15.00 EA. YPE C1 AUTO-PILOT FORMATION STICK, Part No. G1080A3. PRICE \$15.00 EA. PIONEER GYRO FLUX GATE AMPLIFIER Type 12076-1-A, 115 V., 400 Cy. PRICE \(\$ 40.00\) EA.

\section*{NEWYORKS RADIO TUBE EXCHANGE}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline TYPE & PRICE & TYPE & PRICE \\
\hline OA2 & 52.00 & 2 J 27. & 29.95 & 5BP1 & 6.95 & 310A & 7.95 & 722A & 3.95 & 861 & 39.50 \\
\hline OA3 & 1.50 & 2)31 & 29.95 & 5BP4 & 6.95 & 311 A & 7.95 & 723A/ & 17.95 & 866A & 1.79 \\
\hline OB2. & 2.00 & \(2 J 32\). & 69.95 & 5CP1 & 6.95 & 312A & 3.95 & 724A. & 4.95 & 869B. & 37.50 \\
\hline \({ }^{0} \mathrm{C} 3\) & 1.75 & \(2 J 36\) & 105.00 & 5D21 & 27.50 & 323A & 25.00 & 724B. & 6.95 & 872A & 3.95 \\
\hline OD3 & 1.50 & \(2 J 38\) & 17.95 & \(5 \mathrm{JP1}\). & 27.50 & 327A & 3.95 & 725A. & 9.95 & 878. & 1.95 \\
\hline (1A & 4.95 & 2) 42 & 150.00 & 5JP2. & 19.50 & 388A & 9.95 & 726A. & 6.95 & 884. & 1.95 \\
\hline C1B. & 6.95 & \(2 J 49\). & 109.00 & \(5 \mathrm{JP4}\) & 27.50 & 350A & 7.95 & 726B. & 56.00 & 885. & 1.75 \\
\hline 1B21 A & 2.75 & \(2 J 50\). & 69.50 & 6C21 & 29.50 & 350B. & 5.95 & 726C & 69.00 & 889R & 199.50 \\
\hline \(1 \mathrm{B22}\) & 3.95 & 2 l 61. & 75.00 & C6A. & 3.95 & 357A & 20.00 & 728A & 27.00 & 914. & 75.00 \\
\hline 1 B23 & 9.95 & 2 J 62. & 75.00 & C6). & 10.95 & 368AS & 6.95 & 730A. & 28.95 & 931 A & 6.95 \\
\hline \(1 \mathrm{B24}\) & 17.95 & 2 K 25 & 47.50 & 7BP7 & 7.95 & 371B. & 2.95 & 801 A & 1.00 & 954. & . 35 \\
\hline 1 B26 & 2.95 & 2K28 & 37.50 & 7DP4 & 10.00 & 385A & 4.95 & 802.. & 4.25 & 955 & . 55 \\
\hline 1 B27. & 19.50 & 2K29 & 27.50 & 12AP4 & 55.00 & 388A & 2.95 & 803. & 7.95 & 956 & . 69 \\
\hline 1832. & 4.10 & 2K45 & 149.50 & 15E... & 2.95 & 394A & 7.95 & 804. & 13.50 & 957. & . 29 \\
\hline 1 B 38 & 33.00 & 2V3G & 2.10 & 15R & 2.95 & MX408U.. & . 75 & 805 & 5.95 & 958A & . 69 \\
\hline 1 B42 & 19.95 & 3B24.. & 5.50 & NE16. & . 95 & 417A.... & 27.95 & 806 & 25.00 & 959 & 1.69 \\
\hline \(1 \mathrm{B56}\) & 49.95 & \(3 \mathrm{B24W}\) & 7.50 & FG17. & 6.95 & 434A & 19.95 & 807 & 1.69 & 991. & .65
.35 \\
\hline 1 B60. & 69.95 & EL3C. & 5.95 & FG17 & 6.95 & 446A & 1.95 & 808 & 3.50 & E1148. & . 35 \\
\hline 1N21 & 1.35 & 3C24. & 1.95 & RX81 & 3.95 & 450TH & 45.00 & 809. & 2.45 & 1280. & 1.95 \\
\hline 1N21A & 1.75 & 3C31 & 5.95 & 35T. & 4.95 & 450TL & 45.00 & 810 & 11.00 & 1611. & 1.95 \\
\hline 1N21B & 4.25 & 3DP1A & 10.95 & 45 Special. & . 35 & 464A & 9.95 & 811 & 3.15 & 1613. & 1.38 \\
\hline 1N29. & 1.75 & 3E29. & 15.50 & RK39.... & 2.95 & 471A & 9.75 & 813 & 8.95 & 1616. & 2.95 \\
\hline 1 N23 & 2. & SN4. & 5.50 & VT52 & . 35 & 527. & 15.00 & 814. & 3.95 & 1619. & 8.89 \\
\hline 1N23A & 3.75 & 4A1 & 1.75 & RK72 & 1.95 & WL530 & 7.50 & 815. & 3.50 & 1622. & 2.75 \\
\hline 1N23B & 6.00 & 4826 & 10.95 & RK73 & 1.95 & WL531. & 22.50 & 816 & 1.45
19 & 1624. & 2.00 \\
\hline 1 N 26 & 8.00 & 4C27 & 25.00 & 100TH & 9.00 & 700A/D. & 25.00 & 889.. & 12.95 & 1695. & 2.45
1.85 \\
\hline 1N27. & 5.00 & 4C28 & 35.00 & FG105 & 9.00
19.00 & 701A... & 7.50 & 829A & 13.95 & 1851. & 1.85
185 \\
\hline 1N48. & 170 & 4E27 & 17.50 & FG105 & 19.00 & 703A & 6.95 & 829B. & 15.95 & 2050 & 1.85 \\
\hline 1521. & 6.95 & 4125 & 199.00 & F123A. & 8.95 & 705A & 3.95 & 830B & 11.50 & 2051. & 1.80 \\
\hline 2822 & 4.95 & \(4 \longdiv { 2 6 }\) & 199.00 & \(\bigcirc \subset 口\) - & 8.95 & 707A & 17.95 & 832 & 7.95 & 8012. & 4.95 \\
\hline \(2 \mathrm{B26}\) & 3.75 & 4J27. & 197.10 & 211.. & . 95 & 707B. & 27.00 & 832A & 9.95 & 8013. & 2.95 \\
\hline 2C34. & . 35 & 4J31. & 15.00 & 217 C & 18.00 & 714A & 7.95 & 833 A & 49.95
795 & 88013 8 & 5.95
3.50 \\
\hline 2C40. & 20.00 & 4J? & 199.00 & 249C & 10.00 & 715A. & 7.95 & 834
836 & 7.95
4.95 & 8020 & 3.90
6.95 \\
\hline 2C43. & 27.00 & 4J33 & 199.00 & 249 C & 4.95 & 715B. & 18.00 & & 4.95
2.95 & 9001 & 1.75 \\
\hline 2C44. & . 90 & 4J37 & 199.00 & 250TL & 19.95 & 715C & 25.00 & 838 & 6.95 & 9002. & 1.50 \\
\hline 2D21 & 1.75 & 4J38. & 89.00 & 274B & 3.00 & 717A & 1.95 & 845 & 5.59 & 9003. & 1.75 \\
\hline 2E22. & 3.75 & 4J39. & 199.00 & 304TH & 15.00 & 718AY/EY & 48.50 & 849 & 52.50 & 9004. & 1.75 \\
\hline 2E30. & 2.75 & 4J41 & 199.00 & 304TL & 14.50 & 719A. & 29.50 & 851 & 80.50 & 9005. & 1.90 \\
\hline 2 J 26. & 27.75 & C5B & 3.95 & 307A. & 4.95 & 721 A. & 3.95 & 860 & 4.95 & 9006 & . 35 \\
\hline \multicolumn{12}{|c|}{This Month's Special 4C28 \$ Minimum Order \(\$ 25.00\)} \\
\hline
\end{tabular}

\section*{ATTENTION PURCHASING AGENTS AND BUSINESS MANAGERS}

WE PURCHASE COMPLETE INVENTORIES AND ELECTRONIC PARTS AND TUBES FOR CASH.
CAN WE HELP YOU TO OBTAIN URGENTLY NEEDED ELECTRONIC MATERIALS? OUR ORGANIZATION IS DEDICATED TO SERVE THE ELECTRONIC FIELD.

YOU CAN REACH US ON TWX NYI-3235

\section*{TEST EQUIPMENT}

ATTENTION PURCHASING AGENTS AND business managers
WE BUY-WE SELL-WE EXCHANGE-WILL MATTER HOW SMALL OR LARGE -TURM YOUP OYERSTOCKEG. ITEMS INTO GIRCULATION

\section*{Test Equipment}

Microwave K Band 24,000 MC TSKI-SE Spectrum Anolyzer

\section*{\(X\) Band \(10,000 \mathrm{MC}\)}

TS 12 Unit 1 USWR Measuring Amplifier, 2 channel
TS 12 Unit 2 Plumbing for above
TS \(33 \times\) Band Power and Frequency Meter TS \(35 \times\) Band Pulsed Signal Generator
TS 36 X Band Power Meter
TS 146 X Band Signal Generator
TS 62, TS 102, TS 168
X Band Tunable Crystal Mounts
TVN \#3EV Brldge Cy 94

\section*{\(S\) Band 3000 MC}

TS 102, TS 270
TS 125. TS 155, TS 127
RF 4 Electrically Tuned S Band Echo Box BC 1277,60ABQ S Band Pulsed Signal Generator
PE 102 High Power S Band Signal Generator
1. Bond

Hazeltine 1030 Signa, Generator 145 to 235 Megacycles

\section*{Audio Frequencies}

RCA Audio Chonalyst

\section*{Broadcast Wave Bands}

162C Rider Chanolyst
Short Wove Adapter for 162C TS 174 Signal Generator

\section*{Oscilloscopes}

\section*{BC 1287A used \\ APA10, APA28}
in LZ sets
TS 34 Oscil-
Supreme 564
TS 126
Other Test Equipment and Meters
TS 15/A Magnet Flux Metet
General Radio V T Voltmeter 728A
Calibrator WE 1-147
General Radio 1000 cycles type 213
Limit Bridges
Boonton Standord instructions
Model 40 Pyrometer
Rawe: \(n\), meters 0.10 Mieroampere 0.2 Millivolt
RADAR Sets \& Parts
APS 3-AFS 4-R-111/APRJA
Prices Subject to Change

\section*{COMMUNICATIONS EQUIPMENT CO.}

\section*{10 CM RESEARCH EQUIPMENT}

COAXIAL WAVEMETER, W.M. Transmisition tspe, using type
 2C40 Trans. Cavities w/assoc. Tr. Carlty and Type \(\mathbb{N}\) CPLG. To Rectr BEACON LIGHTHOUSEE catity 100 cm . Mfg. Bernard Rice................ \(\mathbf{5 4 9 9 5 0}\) MAGNETRON TO WAVEGUIDE Coupler with 721A Duplexer Cavity. pold

 M21A \({ }^{\text {TR }}\) BOX complete with tube and tuning plunkers................. \(\$ 12.50\) TS 268 CRYSTAL CHECKER . \({ }^{29}\) SPR-2 FILTERS, type WAVEGUIDE TO \%/" RIGID COAX BDOORKNOB" ADAPTEX CHOKF AN/APRSA 10 om antennz eculpment consisting of two 10 cm wareguide sec-

 ASI4A/AP-SOCM Plck up Dipole with No Cabies.
coax. wavemeter, McNally Kisstron Carity Regitid

7/8" RIGID COAX—3/8" I. C.
RIGHT ANGLE BEND. With flexible coax output pickup loop..俭
 RY. ANGLE BEND \(15^{\prime \prime}\) L. OA \(\$ 8.00\)
\(\$ 3.00\)
\(\$ 3.50\)
\(\$ 5.00\)
\(\$ 3.50\)
54.50
\(\$ 4.25\)
\(\$ 16.50\)
\(\$ 14.00\)

\section*{3 CM Research Equipment \(1^{\prime \prime} \times 1 / 2^{\prime \prime}\) Waveguide}
 Rotating Jolnts supplled elther whth or whthout deck mounting. With TVG4n
ffanges
 6.3V. 5 Amp. Includes magnetron mig. and blower. Requltres sc 45 and TS \({ }^{2} 28824\) Crystal chacker

Pressure Gauge Sectlon 15 lb . gauge and press nlpple
Pressure Gaug
Pressure Gauge. 15 lbs.

Elrstren with Dual Oscillator, Mount. (Back to back) with crystal mount. tunabie termination Directonal Coupler. UG-40 Tivike on 20 DB
\(2 K 25 / 723\) AB Recelver local osccllator Klystron Mount. complete with TR-ATR Duplexer sectlon choke coupling to TR
CU 105/APS 31 Direction Coupler \(25^{\circ} \mathrm{DB}\)
723 AB M I xer - Beacon dusl Osc. Mnt. w/xtal holder
Wavequide Section \(12^{\prime \prime}\) long choke to cover 45 deg. twist \& \(21 / z^{2}\) radius. Twist 90 deg. \({ }^{5}\). choke to cover w/Dress nipple.
Wavegulde Sectlons 2\% ft. Iong wilper plated with choke fiange
Rotary Joint choke to choke with deck mounting
U cm mitred elbow " F " Dlane unplated.
UG 49 chokes
90 degree eltows "Fip, or "H" plane \(21 / 2\) " radius
90 degree twist \(6 \%\) long
 APS-4 Under Belly Assembly, less tubes. IRE

\section*{11/4" \(\times 5 / 8^{\prime \prime}\) WAVEGUIDE}

Bit Oir-Coupler WG outnut calthrated-25 dis nominal.
Mitred Ellow Hane JGG1-UG52
\(6^{6 \prime}\) St. sect. Thote to choke
.
.817 .50
512.00
510

53.50
10

\subsection*{1.25 CM RESEARCH EQUIPMENT}

COMPLETE 24.000 MC RF HEAO. Including 2 K 33 Klystron. 3.131 Mampatrnn
 Low Power Load..

 APS. 34 Rotating Joint Right Angle Bend \(\mathbf{F}\) or H Piane, specify combination of couplings desired \(\$ 22.00\) 4.
Mitred End E or How, cover to to corer. TR-ATR-Section, Choke to corer.
FIISxible Sectlon, \(1^{\prime \prime}\) cholke to choke
"S" Curve Choke to corer
Adapter, round to square cover
\(90^{\circ}\) Twist \(\quad\) Band Diroctional Coupler

\section*{PULSE EQUIPMENT}

MIT, MOD 3 hard tube pulser: Output Pulse Power 144 KW (1a Ky

 APQ \({ }^{\text {New }}\)
 pulse rate 200 PPS, 1.5 microsec. pulse line impedance 50 ohms. Croult
 APS-IC MODULLATOR DECK. COMplete. Iess tuber.

\section*{PULSE NETWORKS}

15A-1-400-50: 15 KV. "AB" CETT. 1 microsee 400 PPs, 50 ohms imp.. \(\$ 42.50\)
 G.E. \#3E (3-84-810) (8-2.24-405) 50P4T: 3KV '敢, CKT Dual Unit; Unit \({ }^{1}\)

 sections

\section*{PULSE TRANSFORMERS}
 G.E. NW A.
 is \(1.1: 1\), and between terminals \(6-7\) and \(1-2\) is \(2: 1\). Frequency range: 380. 6.00 W.E. सD169271 HI Volt in in puise transiormer...................................50 ers 14 KV . Pat recalve 13 KV iv micro-second pulse on prl. secondary deliv G.E. K2748A. Pullse Input llne to magnetron

Ray UX
Ray UX
\(8442-\) Pulse Onitput Pri.
5V,
PHILCO \#352-7i500, 352.-725i.

\section*{MICROWAVE TEST EQUIPMENT \\ \\ X BAND POWER METER} \\ \\ X BAND POWER METER}

Consists of thermistor mount and bridge. microammeter, rough attenuator. X-Band Waveguide thruout por Do measurements anywhere in the 9000 MC band

BROADBAND TEST OSCILLATOR
Freq. coverage \(50-3000 \mathrm{MC}\) By direct calibration and interpolation anti-
backlash gear drive; conpact. Dortable. Operates from any 115 V source or
battery source. New, with all tubes..............................425.00
\begin{tabular}{|c|c|c|c|}
\hline TS 56A/AP & I-158 & TS 47/APR & TS 250/APN \\
\hline CW60-ABM & 1-222 & TS 36/AP & \\
\hline LU-1 & 1-185 & TS 12 UNIT 2 & I-203-A \\
\hline LU-3 & TS 268/U & O. METER & TS 11/AP \\
\hline CS60-ABW & TS 102/AP & TS 226 & BC 438 \\
\hline
\end{tabular}

SEND FOR FURTHER INFORMATION AND PRICES
RADAR INDICATORS
ID6/APN-4 LORAN INDICATOR
Uses 5CP1. Includes all indicator circultry and controls assoclated with Loran BC 929 INDICATÖR
 lobe-switching motor, 8 tubes. New. in origtnal Rases R78APS.is Indicator console. \(5 \mathrm{AFP7}\) PTP, 2 AP 1 Iocal ocope. Includes recetrer behind meters - also 30 MC IF Strip.. \(\mathbf{5 1 7 5 . 0 0}\)
 amplifier with 2 tubes, linear potentio meter, mounting rack and misor. \(\$ 35.00\)

\section*{SO-7 RADAR}

Complete surface search Truck-Port. able \(10 \mathrm{C} . \mathrm{M}\). Radar with Plan Posi. tion Indleator. Operating from 115 V 60 Cy . AC. Write for drice and infor mation.

\section*{RADAR SETS}

APS-2, Alrborne, 10 CM, Masor Unlts, Neww
APS-15, Alrborne. 3 \({ }^{3}\) CM, Compl.
Arborne, \({ }^{2}\) CM, Major APS. 5 , Altr, Alrborne, 3 CM, Major SD-4, submarine, 2 no MC. Compl. SE, Shiphrarm. 10 CM , Compl., New SF'-1, Shilporoard. \({ }^{10}\) CM, Compl.:. New
SJ.I, Submarine, 10 CM, Compl., Used 1 Shithord in Cu SN: ' Portable, 10 CM, Compl, U'sed SD, Portable, 10 CM CompL Used
SO-1. Shiphoard, 10 CM , Compl. Used
SO.7. Portable, 10 CM Assaut
So

ID-11/APQ-13
 tion ……............
\(12^{\prime \prime}\) (12GP7) PMI Indicator console. Complete table ass' y , with all indi-
 cases ……............ 535
IFF Set. Includes all parts
1 each Radio Recelver BC -647-B
1 each Control Box
\(\mathrm{BC}-648-\mathbf{A}\)
1. each 50amp. Fuse
2
each
15
amp.
Fuse

2 each 28 volt lamp
Brand news metrion Book
THERMISTORS

MAGNETRONS
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\xrightarrow[\text { Tube }]{\text { MAGNET }}\)}} \\
\hline & \\
\hline 2127 & 3131 \\
\hline 2311 & 5130 \\
\hline 2J21-A & 718 DY \\
\hline 2122 & 720BY \\
\hline 2126 & 725-A \\
\hline 2132 & \(730 . \mathrm{A}\) \\
\hline \({ }_{2} 1338 \mathrm{Pkg}\). & QK 62 \\
\hline 2139 Pkg . & QK 59 \\
\hline 2149
2161 & QK60 \\
\hline 700 A . & \\
\hline
\end{tabular}

\title{
CONDENSERS
}

\section*{and ELECTRONIC COMPONENTS-IMMEDIATE DELIVERY}

\section*{OIL CONDENSER SPECIAL \\ 10 mfd.—600 V. \$ \\ \$ 89 \\ Three term, bat. mntg. channel type. Dims. \(33 / 4^{\prime \prime} \times 31 / 2^{\prime \prime} \times 2\) ". Two 5 mid. sections rated 400 V at 72 deg. " C ". 1800 V test. Mests commercial specs. for 600 V . operation up to 40 degs. " C ". Ideal for filter or power factor application where ruggedness and durability are paramount. Carton of 24 \\ weight 42 lbs . \\ \(\$.79\)}
\begin{tabular}{|c|c|c|c|c|c|}
\hline MFD & voltage & Price & MFD & voltage & Price \\
\hline .004-.905-.01 & 10 KV & 53.75 & & 3000 V & \\
\hline . 012 & \({ }^{25} \mathrm{KV}\) & 15.90 & 2 & 4000 V & \({ }^{4.69}\) \\
\hline .02 \(075-.075\) & \({ }^{20} 5 \mathrm{KV}\) & 14.90
7.90 & 2 & 5000 V & 10.95 \\
\hline .085-.075 & \({ }_{12} \mathbf{7} .5\) K KV & 10.90 & \({ }^{2-2}\) & \({ }^{12.5}{ }^{\text {K K }}\) V & 33.95 \\
\hline . 1 & 1500 V & . 59 & 2-2 & 600 V & 1.20 \\
\hline . 1 & 2500 V & 1.20 & \({ }_{3}^{3}\) & \({ }_{4000}^{600} \mathrm{~V}\) & 59 \\
\hline 1 & 3000 V & 1.75 & 3-3 & \({ }^{4000} \mathbf{V}\) & 6.95 \\
\hline 1 & \({ }^{7500} \mathbf{V}\) & 1.95 & \({ }_{\text {3-3-3 }}\) & \({ }_{400}^{150} \mathrm{~V}\) & . 75 \\
\hline 1 & 7500 V & 4.25 & 3.75 & 1000 V & \\
\hline .1- & \({ }^{7500} \mathrm{~V}\) & 6.25 & & \({ }_{400} \mathrm{~V}\) & 1.85 \\
\hline 1 & \({ }^{10} 15 \mathrm{KV}\) & 8.95 & 4 & 600 V & 1.25 \\
\hline 1 & \({ }_{25} 5 \mathrm{KV}\) & 215.95 & \({ }_{4}^{4}\) TLAAD & \({ }_{6000}^{600}\) & 1.40 \\
\hline .15-. 15 & 8000 V & 1.95 & & \({ }_{1000} 000\) & \({ }_{2}^{1.55}\) \\
\hline . 25 & \({ }_{600}^{10} \mathrm{KV}\) & 10.95 & 4 & 1500 V & 2.69 \\
\hline . 25 & 6000
2000 & 1.25 & 4 & 2000 V & 4.25 \\
\hline . 25 & 3000 V & 2.25 & 4 & 2500 Y
3000 V & 4.95 \\
\hline . 25 & 6000 V & 1.75 & & \({ }_{4000}\) & 7.95 \\
\hline . 25 & 18 KV & 15.95 & 4-4 & \({ }_{1000}\) & 2.95 \\
\hline . 25 & 20 KV & 19.95 & & & 2.49 \\
\hline . 25 & 32.5 KV & 31.95 & & \({ }_{660} \mathbf{V A C}\) & 1.75 \\
\hline \({ }^{4}\) & 10 KV & 12.95 & 5 & \(600 \mathrm{~V}^{\text {che }}\) & 1.25 \\
\hline . 5 & \({ }_{500}^{400 \mathrm{~V}}\) & & & 10 KV & 41.50 \\
\hline . 5 & 1000 V & . 65 & \({ }_{\text {5-5 }}\) & 400 V & . 89 \\
\hline . 5 & 1500 V & 1.02 & \({ }_{6}\) & 600 V & 1.49 \\
\hline . 5 & 2000 V & 1.39 & 6 & 600 V & 1.35 \\
\hline s 5 & 3000 V & 2.69 & 6 & \({ }^{330}{ }^{\text {P }}\) & 2.49 \\
\hline \({ }^{-5}\) & 25 KV & 45.50 & 6 & 1500 V & 2.49 \\
\hline . 5 -5-. 5 & \({ }_{6000} 200 \mathrm{~V}\) & . 69 & 6 & 2000 V & 3.95 \\
\hline & 400 V & . 45 & 7 & 600 V & 45 \\
\hline & 500 V & . 65 & 7 & 800 V & 1.90 \\
\hline & 600 V & . 65 & \({ }_{8}^{7}\) & \({ }_{5000} \mathbf{V}\) & 3.15 \\
\hline \[
\frac{1}{1}
\] & 1000
1500 & . 97 & 8 & 6000 & 1.35
1.98 \\
\hline & \({ }_{2000} 500 \mathrm{~V}\) & 1.95 & \({ }_{8}^{8}\) & 660 VAC & 4.75 \\
\hline & 2500 V & 2.25 & 8 & 1000 V & 3.55 \\
\hline 1
1
1 & 3000 \(\begin{aligned} & 3000 \\ & 5000\end{aligned}\) & 3.50 & \({ }_{8-8}^{8}\) & \({ }_{600}^{2000}\) & 4.95
1.75 \\
\hline 1 & 5000 6 & 4.65 & & & \\
\hline 1 & 15 KV & 25.95 & 10 & 400 V & . 89 \\
\hline \[
1
\] & \({ }^{20} \mathrm{KV}\) & 55.95 & & & \\
\hline & 600 V & .59-. 79 & 10 & 600 V & 1.29-2.50 \\
\hline \({ }_{2}^{2}\) TLA & & & & & \\
\hline & 1000 V & .95-1.45 & 10 & 1000 V & 4.55 \\
\hline \({ }_{2}^{2}\) Tla & 15000 V & 1.65 & 12 TLAD & \({ }_{1000} \mathbf{V}\) & \({ }^{6} .85\) \\
\hline 2 & 2000 V & 2.80 & 15 & 1000 V & 5.35 \\
\hline 2 & 2500 V & 63.39 & 24 & 1500 V & 8.50 \\
\hline
\end{tabular}

BATHTUB CONDS.
\begin{tabular}{|c|c|c|c|c|c|}
\hline MFD & Volfage & Price & MFD & Volfage & Price \\
\hline .05-. 05 & 600 V & . 30 & . 3 & 400 V & . 24 \\
\hline . 1 & 600 V & . 39 & . 5 & 400 V & . 40 \\
\hline . 1 & 1000 V & . 45 & . 5 & 600 V & .32-.45 \\
\hline . \(1-.1\) & 1000 V & . 51 & .5-.5 & 600 V & . 58 \\
\hline .1-. 1 & 600 V & . 39 & 1 & 300 V & . 30 \\
\hline . 2 & 1000 & .19 & 1 & 400 V & . 48 \\
\hline . 25 & 600 V & .41 & 1 & 600 V & . 56 \\
\hline .25-. 25 & 600 V & .45 & 2 & 400 V & . 68 \\
\hline . 25 & 1000 V & . 45 & 2 & 600 V & . 91 \\
\hline \multicolumn{6}{|l|}{SPECIAL BATHTUB KIT..... \(15 @ \$ 1.00\)} \\
\hline
\end{tabular}

\section*{MICA CONDENSERS}
\(5,6,8,10,15,25,30,34,39,50,70,75,100\),
\(140,150,185,200,230,240,250,30,350,100\) \(400,470,500,510,600,650,700,750,100\), \(1200,1250,1400,1500,2000,2200,2400,3000\), \(3300,3700,3900,4000,4700,5000,5100,6000\),
\(6200,6500,7900,7950,7960,8000\) \& 9100 monf.

PRICE SCHEDULE

\section*{5 to 750 mmid
2000 to 5100 mmidd 1000 to 1500 mmfd
6000 to 8000 mmfd \\ Special Mica Kit-100 @ \(\$ 3.50\) \\ SILVER MICA CONDENSERS}
\(7,24,25,33,50,60,75,95,100,120,150,170\),
\(200,270,300,330,390,400,450,500,750\), \(200,270,300,330,390,400,450,500,250\),
\(800,1000,1400,1450,1700, ~ 2500\) mumd,

PRICE SCHEDULE
7 to 95 mmfd.
1000 to 1700 mmfd.
1000 to 1700 mafd
100 to 800 mmfd
2500 to 800 mmfd . 16 i6
SPECIAL S.MICA KIT-100 @ \$6.50
CERAMICON CONDS.
10,56 en 100 mard ©05
MOLDED PAPER CONDS.
(W.E.)

\(\qquad\)
COAX CONNEGTORS \begin{tabular}{ll|lr}
\(83-1 R\) & .50 & \(83-1 T\) & \(\$ 1.30\) \\
\(83-1 A P\) & .22 & \(83-1 S P\) & 50 \\
\(83-1 \mathrm{IS}\) & .69 & \(83-18 P N\) & .52
\end{tabular}
\begin{tabular}{l}
Coax assembiy RG-59/W-6 in leagth. \\
connected with 83 18PN, \(83-1 \mathrm{~J}\) and \\
Amphenol \(\# 8-\mathrm{M}\) \\
Connector. \\
Less \(83-1 \mathrm{~J}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{TYPE "AB'\% POTS} \\
\hline OHMS & Shaft & \multicolumn{2}{|l|}{OHMS Shaft} \\
\hline & \[
1 / 83
\] & 15000 & \\
\hline 601 & \[
1 / 8 \mathrm{LS}
\] & 200001 & 4 \(81 / 818\) \\
\hline 1501 & 1/4 3 & 25000
3000 & \% 1/8 8 \\
\hline 500 & 3/8 \& \(1 / 8 \mathrm{~S}\) & 40000 & \\
\hline 1000 & 1/88 & 50000 & 8 \(1 / 88\) \\
\hline 1500 & \(1 / 48\) des & 50000 & \\
\hline 20001 & 1/8 LS \({ }^{\text {c }}\) 3/8S & 100000
150000 & \\
\hline 3000 & 1/8 Ls & 200000 & \\
\hline 6000 & 1/4 & 250000 & LS, 9/16 \\
\hline 5000
10000 & & 00 & \\
\hline \[
\begin{aligned}
& 10000 \\
& 10000
\end{aligned}
\] & & (2 terms. & 3 \& 1/8 LS \\
\hline \multicolumn{4}{|r|}{DUAL "AB" POTS-\$2.75} \\
\hline OHMS & 5 SHAFT & OHms & SHAFT \\
\hline 1500 & 5/16 & 20K & \\
\hline 1-5 mo & - \(1 / 2^{\circ}\) & 1 meg & \[
1 / 2
\] \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{New Toggle Sws, Jan Style} \\
\hline Type & \({ }_{\text {Jan }}\) & Price & Jan & \\
\hline DPDT & ST52N & . 89 & Stisig & \\
\hline DPDT & ST52P & .94 & ST & \\
\hline \multicolumn{5}{|l|}{All SWS. 15A. 125 VAC} \\
\hline \multicolumn{5}{|l|}{5-23 Spec. Qua. Discounta.} \\
\hline \multicolumn{5}{|c|}{Toggle Sw. Special} \\
\hline DPST & \multicolumn{4}{|l|}{\multirow[t]{2}{*}{AH\& \(3 / 8^{\circ}\) buabing, Bat Hand. AH\&H \(1^{\circ}\) buabing, Bat Hand.}} \\
\hline DPDT & & & & \\
\hline SPST & \multicolumn{4}{|l|}{\(\mathrm{C}^{\text {C- }}\) H \(88800 \mathrm{~K} 4 / 16^{\circ}\) bushing} \\
\hline & \multicolumn{4}{|l|}{3A. 250 VAC \({ }^{\text {3/8 }} 8^{\circ}\) bushing} \\
\hline
\end{tabular}

TRANS. MICA CONDS. MFD WVDC Prlé| MFD WVDC Price
\begin{tabular}{|c|c|c|c|c|c|}
\hline . 01 & 600 V & . 33 & -0003 & 6000 V & . \\
\hline . 01 & 1200 V & . 55 & -004 & 2500 V & \\
\hline . 0125 & 6000 V & 7.50 & -005 & 1200 V & \\
\hline . 02 & 2000 V & . 90 & -0001 & 3000 V & \\
\hline . 03 & 600 V & .49 & -0002 & 5000 V & 1 \\
\hline . 001 & 8000 V & 3.60 & . 00025 & 1200 V & \\
\hline . 001 & 2500 V & . 40 & . 0006 & 5000 V & 1.3 \\
\hline . 0024 & 5000 V & 1.55 & & & \\
\hline
\end{tabular}

\section*{RELAYS}

3PST Sters Dunn \# 1CXX 100 DPDT Sters Dunn \# 1X5X 103 115 V. 6A. Conts........ \(\$ 2.69\)

Range 150-225 MC—Bat. operation with precision velvet vernjer dial, tuning charts, 0-500 D.C. mleroammeter, dlode. Triode and plug-in antenna. Contalned in black aluminum car-
rying case \(121 / 2 \times 88 / 4 \times 18.95\)

HOX 159
Long Branch 6-5192
DAKIURST, N.J.

\section*{Niagara - ONE OF AMERICA'S GREAT RADIO STORES}

\author{
"An" Connectors, Large Variety in Stock at Tremendous Savings Quoiation Requests Invited.
}

еАсн \(\$ 4.50\) in original packing. Very special.

\section*{BRAND NEW HEINEMANN CIRCUIT BREAKERS}
\begin{tabular}{lrrr}
Amps & Volts & \multicolumn{3}{c}{ Part No. } & \\
7 & 24 D.C. & AM1510M-7 & \\
10 & 40 D.C. & P-0322 & 1.49 \\
.280 & 24 D.C. & PAM-1510RWM0220 & Each \\
.010 & 24 D.C. & B-20C-2886 & \\
40 & 24 D.C. & AM1510RWM.40 & \\
7.5 & 24 D.C. & & T-128 \\
\(8-25\) & 230 A.C. & (Dual) & 0322 \\
& & &
\end{tabular}

\section*{famous make \\ SELENIUM \\ RECTIFIERS}

All first quality, guaranteed brand new fresh factory stock. Buy now while still available. All 130 V .
\begin{tabular}{ccr}
D.C. MA. & \begin{tabular}{c}
SINGLY \\
EACH
\end{tabular} & \begin{tabular}{r}
LOTSOF \\
E5
\end{tabular} \\
75 & .66 & .63 \\
100 & .78 & .75 \\
150 & .96 & 1.92 \\
200 & 1.17 & 1.27 \\
250 & 1.35 & 1.42 \\
275 & 1.65 & 1.55 \\
300 & 1.89 & 1.75 \\
350 & 2.15 & 2.01 \\
400 & 2.54 & 2.43 \\
450 & 2.64 & 2.52
\end{tabular}

Special Application. Stacks Made To Your Specs. Write for Quotation.
~nnnenn
"CIF" TYPE
FERRULE RESISTORS
LARGE SELECTION AT LOW PRICES. SEND US YOUR QUOTATION REQUEST TODAY!

Model 10A
The most versatile test instrument offered to the electronic industry in years. A superb instrument, designed by engineers with years of "knowhow". Intended for use in laboratories where preci-

sion is of paramount importance. Ruggedly built for dependable use on production line or general servicing.
- 28 Non-skip resistance and voltage ranges.
- Negative feed-back and patented bridge circuit for high stability.
- Measures R.M.S. and perk to peak voltages of complex wave forms.
- Zero center for discriminator and bias indications and any galvanometer applications.
- 250 Mc . coverage with the probes FURNISHED (At no extra charge).
- High-impedance frequency compensated attenuator.
- Automatic differentiation between A.C. and D.C. allowing A.C. to be read with a D.C. component and vice verso.

MODEL IOA DELTA V.T.V.M. with all probes and leads. Further information available upon applica- \$69.95

\section*{ATTENTION!} Industrial Buyers
Niagara can supply your entire requirements in the electronic field. We are large scale suppliers of tubes, parts and equipment. Our large adequate inventory of standard lines of merchandise as well as surplus materials, enables us to serve you promptly.
You are invited to send us your quotation requests. Urgent orders will be shipped immediately upon receipt of order via phone, mail or wire.
Please address all inquiries to;
Mr. J. J. Garrettson
Industrial and Wholesale Div.

\section*{T23/ARC-5 TRANSMITTER}

FAMOUS AIRCRAFT TRANSMITTER. COMPANION TO ABOVE RECEIVER.

A desirable VHF transmitter with turret switching coils for all stages. Uses the following tubes; 1625 Osc., 1625 Tripler, 832 Tripler, 832 Final amplifier. Range; 100 to 156 Mcs. Four crystal channels are provided.
Brand new with all tubes;
less crystals.
\$39.95

SPECIAL! FREE! with purchase of either of above two items, one copy of Volume 2 "Surplus Radio Conversion Manual" (Reg. price \(\$ 2.50\). This book contains full information and circuit diagrams of both the ARC 5/R-28 receiver and T23/ARC-5 transmitter.

\section*{SYNCHRO-SELSYNS}
all brand new

Machine aluminum housing and case. Bakelite end cap with coded screw terminals. \(1 / 4^{\prime \prime}\) shaft.

C-78249 Cal. 11280 Synchro Differential 100 V. 60 Cycle. Price \(\$ 3.75\) C. 78473 Cal. 13920 Repeater type \(X X\)
50 V. 50 Cycle. Price 3.75

C-78411 Cal. 11925 Transmitter 50 V.
50 Cycle. Price.
3.75

The below listed type is similar to above, but contained in a solid machined bronze housing. 5 leads 5 ft . long, of color coded fiber glass insulation are provided.
C-56776-1 Ca-4460A-4 Repeater type II-5 110 V. 50 Cycle. Price. .\(\$ 7.50\)

\section*{Reliance Speciald}

TIMING MOTOR
8 RPM 115 F 60 cyc E. Ingraham Co.

\section*{GEAR ASSORTMENT}

VERNIER DIAL or DRUM (From BC-221) DIAL- \(2 \%{ }^{\circ}\) dia \(0-100\) in \(360^{\circ}\). Black with allver marizs.
Has thumblock DRUM \(0-50\) in \(180^{\circ}\). Black with siver Has thumblock DRUM— 0 - 50 in \(1800^{\circ}\). Black with diver

SOUND POWER HANDSET
Brand New!
Includes 6 ft . cord.-No batteries or externsl power source used \(\begin{array}{r}\$ 17.60 \text { pr }\end{array}\)

Chest Set
With 24 Ft. Cord

Variac-General Radio
100 W removed from equipment \(\mathbf{\$ 1 0 . 0 0}\)
400 CYCLE INVERTERS
Leeland Electrle Co.
\#10800 In: \(25-28\) V.D.C. \({ }^{82}\) A. 8000 R.P.M. Out: 115 V.
\(380-500\) Cyc. 1 phase, 1500 V.A. 90 PF............. \(\$ 24.95\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{3AG FUSES} \\
\hline AMP & Per 100 & AMP & Per 100 & AMP & Per 100 \\
\hline & . \(\$ 4.00\) & 1/ & \$4.00 & & \$3.00 \\
\hline & & & & & \\
\hline & 4.00 & & 3.00 & & 3.0 \\
\hline
\end{tabular}

DELAY NETWORK—ALL \(1400 \Omega\)

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{BEARINGS} \\
\hline Mis. No. & ID & OD & Thickaos & Price \\
\hline MRCS028-1 & \(51 / 2\) & \(6^{6} 1 /{ }^{\circ}\) & \({ }^{1}\) & \$3.50 \\
\hline Timion 37625 & \(5{ }^{5}\) 5/84 & \({ }_{6} 181 / 4\) & \(9 / 16\) & 3.50 \\
\hline MRE-7021-200 & \(41 / 8\) & \(59 / 32\) & 23/64 & 2.95 \\
\hline & \({ }_{2} 1118\) & \({ }_{2}^{2} 8 / 8\) & 1/4\% & 1.75 \\
\hline MRC \(106 \mathrm{M1}\) & \(113 / 64\) & \(27 / 16\) & 25/64 & 1.6 \\
\hline Federsils \({ }^{\text {Norma }}\) & \(11 / 8\) & \({ }_{2} 11 / 2\) & 8/8 & 1.75 \\
\hline Fafnir B \(541{ }^{1}\) & \(11 / 16\) & \(11 / 2\) & 9/82 & \\
\hline Hoover \({ }^{7203}\) & \(5 / 8\) & \(19 / 16\) & \(7 / 16\) & \\
\hline SCHATZ & 3/4 & \(18 / 4\) & 7/16 & 1.0 \\
\hline \(\mathrm{NS}^{52022-\mathrm{Cl}} 3 \mathrm{M}\) & \(1 / 2\) & \(18 / 8\) & \(13 / 8\) & 1.00 \\
\hline Normas 3R & 318 & 7/32 & 11/82 & \\
\hline MRC 39 Ri & 11/32 & \(11 / 82\) & 516 & \\
\hline NDCW 8008 & \(5 / 16\) & & 13/82 & 45 \\
\hline MRC 38 R3 & 5/16 & 65/64 & 9/82 & 45 \\
\hline
\end{tabular}

NEEDLE BEARINGS
TORRINGTON B108 \(1 /{ }^{\prime \prime}\) wide \(58^{\prime \prime} 13 / 10^{\prime \prime} \quad 304\)
Brand New METERS-Guaranteed
1010 ma. D.C. \(316^{*}\)... 9.951 0-80 Amp. D.C. \(2 \frac{1}{6}{ }^{\prime \prime}\). . \(\$ 2.25\)
SELENIUM RECTIFIERS
Full Wave 200 MA 115 F.
Half Wave 100 MA
SPAGHETTI SLEEVING-assortment- 99 feet..... 11.0 TYPE "J" POTENTIOMETERS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 60 & SD & 1500 & 8D & 5000 & 3/8* & 70K & SD \\
\hline 100 & SD & 2000 & SD & 10K & 3/8* & 80K & SD \\
\hline 150 & SD & 2000 & gD* & 10 K & SD: & 100K & 3/8 \\
\hline 800 & BD & 2000 & 3/8 & 15K & \(1 / 4^{*}\) & 200K & 8D \({ }^{\text {* }}\) \\
\hline 400 & 3/8 & 2500 & 1/2* & \({ }_{25}{ }^{15}\) & \({ }^{18} 8^{\circ}\) & 200K & 3/8 \\
\hline 500 & 3/8 & 2500 & SD & 25 K & BD. & 250 K & 8D* \\
\hline 1000 & 8D. & 3000 & 3/8 & 30 K & 8D: & 250 K & 3/8* \\
\hline 1000 & 8/8 & 4000 & 3/8 & 60K & 8D* & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{1 Meg BD}} \\
\hline \multicolumn{6}{|l|}{- Split locking bushing} & & \\
\hline
\end{tabular}

JONES BARRIER STRIPS
\begin{tabular}{|c|c|c|c|c|c|}
\hline Type & Price & Type & Price & Type & rice \\
\hline 2-140Y & \$0.13 & 4-141W & \$0.24 & - 141 W & \$0.64 \\
\hline 3-140\%/6 & . 19 & 5-141 & .26 & \(9-141 \mathrm{Y}\) & . 64 \\
\hline 6-140 & . 25 & 5-141/4W & . 37 & \({ }^{7-142}\) & . 21 \\
\hline 10-140\% W & . 53 & \({ }^{7-141} 14 \mathrm{~kW}\) & . 49 & 12-142 & . 72 \\
\hline \(3-141 \%\) W & . 24 & 8-1413W & . 58 & 2-150 & . 3 \\
\hline 3-141w & . 24 & 10-140W & .53 & 3-150 & \\
\hline
\end{tabular}

TIME DELAY RELAY
Eagle Signal Corp., Molino, Illinois
21 second recycllige time spring return -Mloro-switch contact, 10 A
long as power is applied . Fully Cas on as ONLY.

\section*{AN CONNECTORS}

IMMEDIATE SERVICE PHONE! WIRE! WRITE! YOUR NEEDS

\section*{COAXIAL CABLE CONNECTORS}

\begin{tabular}{|c|c|c|c|c|c|}
\hline 83-1AC & \$0.42 & & \$1.10 & 0 & 32.3 \\
\hline 83-1AP & 30 & 83-22R & . 68 & UC 58/0 & 63 \\
\hline 83-1F & 1.30 & 83-22SP & 1.15 & UG 60/U & 45 \\
\hline 83-1H & . 10 & UG 13/U & 1.75 & UG 85/U & 1.75
1.60 \\
\hline 83-1J & . 80 & UG 21/U & 1.20 & UG \(88 / 0\) & 1.60 \\
\hline 83-1R & .40 & UG 218/ 0 & 1.45 & UG 167/0 & 2.05 \\
\hline 83-15P & . 60 & UG 23B/O & 1.65 & UG 175/0 & . 15 \\
\hline 83-1SPN & . 60 & UG 22/U & 1.30 & UG \(176 / \mathrm{U}\) & 1.60 \\
\hline 83-168 & .15 & UG 24/U & 1.30 & UG 260/U & 1.60
1.60 \\
\hline 83-185 & . 15 & UG 25/U & 1.25 & UG 281/U & 77 \\
\hline \(83-24 P\) & 2.00 & UG 27/0 & 1.30 & UG 290/U & 1.60 \\
\hline 83-2R & 1.30 & UG 30/0 & 2.50 & UG 499/U & 1.25 \\
\hline UQ 255 & & 2.45 & UG 50 & & . 2 \\
\hline
\end{tabular}
\begin{tabular}{ll|ll}
U \\
\(\mathrm{U} 224 / \mathrm{U}\) & 1.40 & \(\mathrm{OQ} 306 / \mathrm{U}\) & 2.95
\end{tabular}

\section*{DIFFERENTIAL. \\ 115 V. 60 Cyc. \(\$ 3.95\) e. \((\sim)\binom{\) (}{ \# 78249}} \(35 / 8^{*}\) dia. \(\times 5 \%{ }^{\circ}\) long
Used between two \#C7824's as dampener. Can be converted to 3600 RPM Motor in 10 minuten . CoaMersion sheet supplied. Bonverteding Bracket - Belsyns, and differentials shown above................. 38 f palr
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|c|}{2J1G1 SELSYNS} \\
\hline \multicolumn{9}{|c|}{POSTAGE STAMP MICAS} \\
\hline mamt & mant & mmf & mmi & mmf & mmi & mid & mid & mfd \\
\hline & 23 & 50 & & 180 & 470 & 800 & . 001625 & . 0044 \\
\hline & & & & 220 & 500 & & . 002 & . 0058 \\
\hline & 25 & 56
60 & 100 & 240 & 510 & \({ }^{910}\) & . 0027 & . 0062 \\
\hline 10 & 30 & 62 & 120 & 300 & 580 & . 0011 & . 0088 & . 0068 \\
\hline 15 & 39 & 68 & & 350 & \({ }_{6}^{600}\) & . 0012 & . 0035 & . 0082 \\
\hline & 40 & 70 & 150 & 390 & 650 & . 0018 & . 0086 & \\
\hline 20 & 43 & 75 & 160 & 400 & 680 & . 00138 & . 0038 & \\
\hline 22 & 47 & 80 & 175 & 480 & 750 & . 0015 & . 004 & \\
\hline \multicolumn{9}{|c|}{Price Schedule} \\
\hline \multicolumn{9}{|l|}{\multirow[t]{4}{*}{\begin{tabular}{l}
8.2 mmf to 910 mmf . \\
.001 mid to 001625 . \\
.002 mdd to .0082 mid .
\end{tabular}}} \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & 28. \\
\hline \multicolumn{9}{|c|}{SILVER MICAS} \\
\hline mimf & mmi & mmf & mmi & mmf & mmp & mfd & mid & mid \\
\hline & 39 & & 150 & 270 & 430 & 700 & . 0026 & . 005 \\
\hline & 40 & & 155 & & & 800 & . 0027 & . 0051 \\
\hline 18 & 47 & 100 & 170 & 325 & 470 & 876 & . 00282 & . 0056 \\
\hline 20 & & 110 & 180 & 350 & 500 & . 0011 & . 002828 & . 006 \\
\hline 22 & 51 & & 208 & 360 & 510 & . 0013 & . 003 & . 0088 \\
\hline \(2 \pm\) & 60 & 120 & 225 & 370 & 525 & . 0015 & . 0083 & . 0082 \\
\hline 24 & 62 & 125 & 240 & 390 & 560 & . 0016 & . 0038 & \\
\hline 27 & 88 & 130 & 250 & 400 & 570 & . 0022 & . 0039 & \\
\hline 30 & 68 & 135 & 260 & 410 & 680 & . 0023 & . 004 & \\
\hline \multicolumn{9}{|c|}{Price Schedulo} \\
\hline \multicolumn{9}{|l|}{\multirow[t]{2}{*}{10 mmf to 900 mfd . .0011 mfd to .0023 mfd}} \\
\hline & & & & & & & & \\
\hline \multicolumn{9}{|l|}{} \\
\hline
\end{tabular}

\section*{PULSE TRANSFORMERS}

\section*{UTAH-9278}

WESTHERN FHLECTUIC-D186173,
KS8696. KS9365. KS9565. KS9800,
K89862. K \(\$ 13161\) GENERAL ELAECTRIC-K2731 80-G-5
JEFFERSON FMECTRIC-C-12A-1318

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{PRECISION} & \multicolumn{4}{|l|}{RESISTORS-1/4 WATT-30} \\
\hline 10.48 & 12.32 & 14.88 & 62.84 & 147.6 & 0 \\
\hline 10.84 & 13.02 & 15.8 & 79.81 & 220.4 & 93 \\
\hline 11.25 & 13.52 & 16. & 105.8 & 301.8 & \\
\hline 11.74 & 13.89 & 32 & 128.8 & 386.6 & \[
\begin{aligned}
& 80.148 \\
& 80.148
\end{aligned}
\] \\
\hline
\end{tabular}

PRECISION RESISTORS- \(1 / 2\) WATT- \(35 \%\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline ;25 & 15 & 87 & 389 & 3,095 & 12,000 & 0 \\
\hline :334 & 18.75 & 97.8 & 397 & H.000 & 14,825 & 33.800 \\
\hline 44 & 25 & 125 & 400 & 4,101 & 15,000 & \\
\hline :602 & 34.75 & 147.5 & 723.1 & 4.285 & 15,750 & \\
\hline . 657 & 44.73 & 148.7 & 855 & 4.300 & 15,785 & 47.700 \\
\hline 627 & 45 & 178 & 970 & & 15.000 & \\
\hline 2.04 & 48 & 180 & 1,264 & 6,714 & 18,700 & 47,000 \\
\hline 3.25 & 52 & 210 & 1,375 & [5,900 & 17,000 & 59.000 \\
\hline 3.7 & 56.1 & 220 & 1,400 & 6.500 & 19,860 & 56,000 \\
\hline 5.24 & 60 & 285 & 1,400 & 7,000 & 20,150 & 59,000 \\
\hline 5.26 & 61 & 240 & 1,500 & 7.300 & 21,300 & 59,905 \\
\hline 5.89 & 65 & 260 & 2,250 & 8.00 & 25.000 & 68,000 \\
\hline 10.58 & 66 & 270 & 2,500 & 8,80 & 26.067 & 0,012 \\
\hline \({ }_{13}^{11.15}\) & 66.6 & 288 & 2,600
3,400 & 8. & 30,000
32,700 & 190,000 \\
\hline 13.8 & 75 & 298.3 & 3,427 & 110,000 & 32,88 & 180,000 \\
\hline
\end{tabular}

PRECISION RESISTORS- 1 WATT- 45

1 MEGOHM 1 WATT \(1 \%-\$ 1.50-5 \%-60 \%\)
PRECISION RESISTORS-2 WATT-75
\begin{tabular}{llllll}
4,385 & 5,000 & 6,000 & 10,000 & 18,017 & 28,000
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|}
\hline & & OIL & ILLED & & \\
\hline MFD & V.D.C. & Prios & MFD & V.D.C. & Price \\
\hline . 1 & 25,000 & 25.95 & 1 & 1.500 & 1.5 \\
\hline .25 & 20,000 & 19.98 & 8 & 1,000 & 1.5 \\
\hline .15-.15 & 8.000 & 2.75 & 2 & 1,000 & 1. \\
\hline . 03 & 7,600 & 1.6 & 1.02 & 1,000 & \\
\hline .1-. 1 & 7,000 & 1.98 & 1 & 1,000 & \\
\hline . 1.18 & 7,000 & 1.85 & 7 & 8800 & 1.98 \\
\hline .02-. 08 & 7.000 & 1.40 & 10 & 800
600 & 2.6 \\
\hline . \(03-.03\) & 8.000 & 1.35 & 8-8 & 600 & 1.6 \\
\hline .01-.08 & 6,000 & 1.35 & \% & 600 & 2.05 \\
\hline 2 & 4,000 & 4.95 & 7 & 600 & 1.78 \\
\hline . \(8 \times .2\) & 4,000 & 2.50 & 1 & 600 & 1.63 \\
\hline .106 & 4.000 & 2.25 & 4x 8 & 600 & 1.95 \\
\hline . 1 & 8.500 & 1:95 & 2 & 600 & 6 \\
\hline .25 & 3,000 & 2.25 & 2 E 2 & 000 & 1.5 \\
\hline 8 & 3,000 & 4.95 & 8 & 500 & . \\
\hline 3 & 2,000 & 3.75 & & & \\
\hline .5-. 1 & 2,000 & 1.95 & & & \\
\hline . 8 & 2,000 & 1.95 & & & \\
\hline .1-1-1 & 2.000 & 1.65 & & & \\
\hline . 02 & 2.000 & . 7 & & & \\
\hline \[
\frac{4}{2}
\] & 1,800
1,600 & 2.95
1.79 & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \multicolumn{4}{|l|}{OIL FILLED A.C. CONDENSORS} & \\
\hline M FD & V.A.C. & Price & MPD & V.A.C. & Price \\
\hline . 2 & 750 & 5.69 & 30 & 380 & \$6.50 \\
\hline 8 & 680 & 4.95 & 25 & 820 & 5.95 \\
\hline 8 & 680 & 4.95 & 20 & 880 & 5.50 \\
\hline 4 & 660 & 4.25 & 15 & 180 & 4.50 \\
\hline 2 & 660 & 3.25 & 10 & 320 & 3.95 \\
\hline 1 & 660 & 2.35 & 4 & 830 & 1.95 \\
\hline 15 & 440 & 4.95 & 8 & 830 & 1.25 \\
\hline 8 & 440 & 3.50 & 2.5 & 830 & .98 \\
\hline \({ }_{5}^{5}-8\) & 440 & 3.95 & 2 & 830 & . 65 \\
\hline 4.4 & 375 & 2.15 & 10 & 220 & 2.95 \\
\hline 1N34 & tal Drode & & & & 704 \\
\hline
\end{tabular}

300 Twin Lead.081/2 per ft. \(\$ 18.95\) per M
Dynamotor DM 33A..................................3.75 08
Choken: 30 Hy, 8MA @....S1.29; 6Hy. 8MA 78
Powerting 25 A 150 V. A.C.

Bocket ... 88.5
\(\frac{\text { new. Includes tubes, dynamotor, shook mis.... } \$ 125,00}{\text { Mike connector Amphenol } 80-81 \text { Interchangeeble with }}\)
\(\frac{\text { Amphenol } 80-\mathrm{M} \text { cad plated...........................26s }}{\text { MTnimum Orders } \$ 3 \ldots \text { All orders f.o.b. PHILA, PA. }}\)

\section*{RELIANCE merchavozunc co.}

Arch St. Cor. Croskey Phila. 3, Pa. Telephone RIttenhouse 6-4927

\section*{SEARCHLIGHT SECTION}

\section*{Buy TOP Radio-Electronic Values!}

Select your requirements ofAIR TRIMMER CONDENSERS
From one of the largest sources of supply in the country. APC's, Butterfly's \& other types. All available in large quantities. Write quantity prices.

9-62 mmfd per section. 6-34 mmfd sections in series. Double ceramic end plates, and bearings. \(1 /{ }^{\prime \prime}\) diam. shaft, \(5 / 16^{\prime \prime}\)
long. 065 Plate spacing end plates \(1-\frac{8}{8} /\) long. 065 Plate spacing end plates \(1-8 / 8{ }^{\wedge}\)
square. Stock
\(\begin{array}{llll}\text { Stock } & \text { FIG. } 1 & \text { Price } & \text { Each } \\ \text { No. } 5076-A & \text { \& }\end{array}\)
\(4-22 \mathrm{mmfd}\) per section. \(3-12 \mathrm{mmfd}\) sections in series. Single ceramic end plate 1-条" square. 1/4" diam. x \(1 / /^{\prime \prime}\) long shaft \(\begin{array}{ccc}\text { Stock } \\ \text { No. } 5077-\mathrm{A} & \text { FIG. } 2 & \text { Price }\end{array}\)
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{TOGGLE SWITCHES} \\
\hline \[
\begin{aligned}
& \text { STOCK } \\
& \text { NO. }
\end{aligned}
\] & MFG. & ACTION & RATING & PRICE \\
\hline 5443A & H\& H & S.P.D.T. & 6A-125V & 35، 6 \\
\hline 5281A & Carling & S.P.S.T. & 10A-125V & 394 \\
\hline 5444 A \% & . \(\mathrm{C}-\mathrm{H}\) (B6B) & S.P.S.T. & 5A-125V & 25. \\
\hline \multicolumn{5}{|c|}{OTHER TYPES AVAILAB} \\
\hline
\end{tabular}

\footnotetext{
OIL FILLED CONDENSERS
045 MFD-16,000 Volt Vitamin " \(Q\) ". One Ceramic Insulated Screw Terminal \(1 / 4{ }^{3 / x}\) \(3 \frac{1 / 2 " \times 48 / 4 \text { " High Can. }}{6}\) " Stock No. 5399A.
\$4.95
Standard Brand. MFR. Name on Request
}

TTITS: \(\begin{aligned} & \text { Open Account to rated or acceptable reference accounts. Others Pre-payment or } 25 \% \\ & \text { deposit with order, balance } C .0 \text {. D. Price F.0.B. Chicago and subject to change without }\end{aligned}\) deposit with order, balance C.O. D. Pri
notice. Merchandise subject prior sale.

\section*{Ridal(1) Surp)(INS Cuy) \({ }^{732 \text { south shorman stroet }}\) pas corp. Phone: HArrison 7.5923}
hatry \& Young of mass. INC. NEW 5 STORY ELECTRONIC SALES CENTER IN BOSTON -To YOU This Means Greater, Better Supply in Radio, and Electronic Parts!

\section*{GERMANIUM DIODES}

We carry a complete line of diodes available for immediate delivery
\begin{tabular}{|c|c|c|c|}
\hline 1N48 & . 75 & 1N65 & . 72 \\
\hline 1N48 & 2.49 & 1N72 & 4.20 \\
\hline 1N51 & . 48 & 1N73 & 9.05 \\
\hline IN52 & 1.53 & 1N74 & 14.25 \\
\hline 1N52 & 4.05 & 1N69 & 1.23 \\
\hline 1N63 & 3.30 & 1N70 & 3.15 \\
\hline 1 N63 & 7.65 & G5A or G6 & 2.25 \\
\hline 1N75 & 2.85 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{TRANSISTORS
\[
S X-4 A
\]}} \\
\hline 1N75 & 6.66 & & \\
\hline IN64 & . 66 & Z-2 & 17.40 \\
\hline
\end{tabular}

\section*{We carry all Nationally Advertised Brands of Radio and Electronic Parts.}

Tubes and Equipment.
TRY US
FOR YOUR NEEDS

\section*{RESISTORS}
\(1 / 2-1\) - 2 w 5-10\% Tol.
All standard brands Immediate Delivery

Complete stock of J and JLU pots for immediate delivery.

A Few of Our Many Specials. SHIELDED SCOPE TRANSFORMER
Pri-115V
\(\mathrm{Sec}-2400-6 \mathrm{MA}\)
\(6.8-1 A\)
\(6.8-1 A\)
@1.95
\(\begin{array}{ll}3 & 3 / h^{\prime} \\ \end{array}\)

Amphenol 80 C connectors.... . . \(\$.12\) ed.
MICA CONDENSORS
\begin{tabular}{|c|c|c|c|}
\hline MMF & TOL. & CASE & PRICE \\
\hline 68 & \(5 \%\) & CM19 & \(\$ 12\) a 100 \\
\hline 150 & \(5 \%\) & CM19 & \$12 a 100 \\
\hline 390 & 10\% & CM19 & \$6 a 100 \\
\hline 470 & 10\% & CM19 & \$6 a 100 \\
\hline 220 & 10\% & CM20 & \$6 a 100 \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{GR 371A Pot 2000 ohms \(15 \mathrm{~W}\). . \(\$ 1.25\) GR 214 Pot 1000 ohms \(10 \mathrm{~W} S 1.25\)}} \\
\hline & & & \\
\hline
\end{tabular}

Westinghouse NA-35 \(3^{\prime \prime \prime}\)
round zero- 150 V A.C. \(\$ 5.95\)

Hermetically sealed-low power audio transformer
Primary 600 ohms at zero MADC Secondary 6 ohms at same
.95
.01-100V
molded paper waxed diffed capacitors \(\$.05\)

Hi-Q Induct. choke \(1 / 2\) mil. rating \(\$.99\)

Jan 832 A
\(\$ 6.95\)

\section*{WRITE, PHONE or WIRE Your Needs AT ONCE}
\(\left[\begin{array}{c}\text { TELEPHONE } \\ \text { BEekman } \\ 3-5780\end{array}\right]\)

Prices quoted on request; simply state type and quantities required. All inquiries receive PROMPT ATTENTION. Industrial needs served ACCURATELY and EFFICIENTLY.

ELECTRONIC, TELEVISION \& RADIO COMPONENTS

\section*{ALEXANDER MOGULL COMPANY}

\author{
WO rth 4-0865
}

Our new address 50 W. Broadway, N. Y. 7, N. Y.

\section*{HARD TO GET ITEMS}
- Radio Transmitters Receivers Phone CW, MCW. Frequency range 1.5 to 12.5 mcs. Model AN/FRC-1. Output approxi mately 250 watts.
- TDE Navy model radio transmitters with 230 volts, D.C. power supply, com plete with tubes, ready for operation New.
- SF Ships' radar units complete with all components.
- TCS, Collins type Navy and mobile type transmitters-receivers complete with re microphone, for 110 volt AC or 24 volt D.C. Refinished, checked out and quaranteed for operation.
- ET-8023-D1 Radiomarine Corporation telegraph transmitters.
- BC-348 - BC-312 unconverted receivers for 24 and 12 volt operation. Checked out, oxcellent, guaranteed.
- BC-221 A.K. Frequency meters with modulation.
- BC-221 Frequency meters without modulation.
- TS-174-U Frequency meter with modulation 20-250 mes.
- LM-15 Frequency meters (Nayy version of BC-221 A.K.) with modulation and A.C. power supply.
- I-100A Test sets for SCR-269.
- Telephone or power line insulators, glass Hemingray No. 40, heary duty.
- W-110 B Army field telephone wire.
- RC-58-B Army Tape Facsimile transmit-ters-receivers.
- Link radio transmitters-receivers 1498 including remote control and antenna, reconditioned.
- Link-50 UFS transmitters, receivers including remote control and antenna. New.
- BD-72 army field telephone switchboards, twelve lines. Feconditioned, like new.
- BD-71 army field telephone switchboards, six lines. Reconditioned, like new.
- Army Field Telephones, Type EE8. Excellent.

WE HAVE OUR OWN MANUFACTURING AND LABORATORY FACILITIES AND INSPECT AND GUARANTEE ALL
ITEMS BEFORE SHIPMENT.

COMPLETE TECHNICAL DETAILS AVAILABLE. QUANTITIES AND PRICES WILL BE SENT UPON REQUEST.

SPECIAL ATTENTION GIVEN TO ALL EXPORT ORDERS-LICENSE APPLICA-

\section*{French--an Breems Inc.}

375 Fairfield Avenue
Stamford, Connecticut
Telephone 48-9231

\section*{SCR 300}

WALKIE-TALKIE normal range 3 miles or WALK E-TALKIE normal range 3 miles or more depending on 0 operation 40.0 to 48.0 . Brand new. Complete.

R-4/ARR-2 RECEIVER
34-58 mcs. Brand new. COMPLETE WITH RACK AND CONTROL BOX.

\section*{AN/CRT-3}

EMERGENCY RADIO TRANSMITTER. T-74/ CRT-3 DUAL FREQUENCY OPERATED TRANSMITTER. Operates on both 8280 kc. and 500 kc . Power output \(21 / 2 \mathrm{~W}\). on 500 kc and 2 W . on 8280 Kc . BRAND NEW. COMPLETE WITH PARACHUTE, KITES, LAMP, BALLOON and GENERATOR,

\section*{TEST EQUIPMENT \\ Complete Line!}

Signal Generator 804-C DuMont 224-A Oscilloscope 1.77 Hickok Tube Checker 1-208 FM Signal Generator RPC Model 644 Multimeter Ferris Microvolter Mod. 18-C
IE-36 (New) TS 100/AP

I-122
TS-102A/A
1-212
TS-126
1-222 TS-127/U
TS-3/AP TS-170/ARN-5
TS-5/AP TS-175/UP
TS-10B/APN TS-182/UP
TS-19/APQ-5 TS-184A/AP
TS-24A/APR-2
TS-34/AP
TS-36/AP
TS-204/AP TS-250/APN TS-61/AP UPM-1

TS-62/AP
SL-1 Slotted (Complete) Range Calibrator 1-146

MODULATOR UNIT BC-1203-A
With Coupling Heads BC--1201 \& BC-1202
RC-184 IFF EQUIPMENT
Complete. Brand new.
APS-4 Complete Radar Mark 16 Complete Radar

APS-6 Complete
RECEIVERS
APR-4 RECEIVERS APR-5
\begin{tabular}{l}
SCR-720 \\
Equipment
\end{tabular} MG-19A New
HS-38 \& HS-33 \(\quad\) Mrand new.
MK-20A/UP
Brand new. Individually boxed.

\section*{TELEVISION CAMERA}

350 line resolution. Easily converted to present RMA standards. Circuits available with camera. Complete, like new.

SEE COLUMBIA ELECTRONICS AD ON PAGE 364

\section*{TEST EQUIPMENT}

\section*{HI-POWER DUMMY LOADS}

X Band, \(114^{\prime \prime} \times 3 / 8^{\prime \prime}\) guide, choke or plain flange, dissipates 350 watte average power continuously in still air, VSWh less than 1.15 between 7 and 10 EMC. weight 51/2 pounds.
X Band, \(1 / 2^{\prime \prime} \times 1^{\prime \prime}\) guide, choke flange, dissipates 250 Watts average power continuously in still air, VSWR less than 1.15 between \(8.2 \times 12.4\) KMC, woight \(31 / 4\) pounds.
X Band, \(11 / 4^{\prime \prime} \times 5 / 0^{\prime \prime}\) guide, plain flange, dissipates 200 watts arerage power continuously in still air, VSWR less than 1.15 between 7-10 KMC, welght \(31 / 4\) pounds.
X Band, \(11 / 4 \times 5 /{ }^{\circ \prime \prime}\) guide, plain flange, dissipates 150 watts average power continuously in still air, weight 2 pounds 4 ounces.
S Band, \(11 / 2^{\prime \prime} \times 3^{\prime \prime}\) guide dissipates 1,200 watts average power in still air, VSWR less than 1.15 between 2.5 to 3.7 KMC , choke flange, weight 13 pounds.
TS-30, X Band Power Meter, measures 1 milliwatt to 1 watt of X Band average power for \(5 / 8^{\prime \prime} \times 11 / 4^{\prime \prime}\) wave guide,- \(\$ 200.00\).
TS-155 S Band Signal Generator and Power Meter.
X Band Frequency Meter, 8,500 to 9,600 megacycles, direct reading within 25 megacycles: within 4 megacycles with correction chart. Transmission type for \(1 / 5^{11} \times 11 / 4^{\prime \prime}\) wave guide.
X Band Power and Frequency Meter for 8,500 to 9,600 megacycles measures 1 to 1.000 milliwatts average power. The frequency meter is direct reading within 25 megacycles and within 4 megacycles with correction chart; commercial equivaleat of TS-230 B/AP.
TS-33/AP X Band Frequency Meter, 8.700 to 9,500 megacycles, \(\mathbf{\$ 1 5 0 . 0 0}\).
TS-62/AP X Band Echo Box,- \(\$ 150.00\).
TS-110/AP S Band Echo Box,-\$150.00.
TS-89 Voltage Divider, \(\$ 30.00\).
TS-12/AP (Unit 2) X Band slotted line with adapters and probes- \(\$ 175.00\).

\section*{TS-100 Synchroscope}

T-85/APT-5, \(300-1,600\) megacycles Noise Modulated Transmitter, 40 watte C. W.
Waveguide Below Cut-Off Attenuator L 101-A, U. H. F. Connectors at each end. calibration \(30-100 \mathrm{db},-\$ 25.00\).
Amplifier Strip AM-SSA/SPR-2 contains I. F. amplifier, delector, video cmplifior, pulse stretcher and audio amplifier and Rectifier Power Unit PP-155A/SPR-2 bandwidth 10 megacycles, center frequency 30 megacycles, sensitivity 50 microvolis for 10 milliwatts output. Power supply \(80 / 115 \mathrm{~V}\) ac, \(60-2,600 \mathrm{cps} 1.3\) amps. Send for schematic- \(\$ 65.00\) less tubes.

Tuning Units for APR-4 Receiver
TN 16 30. 80 megacycles TN 18 300-1.000 megacycles TN 17 80-300 megacycles TN 19 1,000-2.200 megacycles

TN 54 2,200.4,000 megacycles
\(\underset{62 \text { White Street }}{\text { ELECTRO }} \underset{\text { Red Bank } 6-0404}{\text { MPU }} \underset{\text { Red Bank, N. J. }}{\text { I }}\)

\section*{ant}

Accredited WESTINGHOUSE Distributor and Clearing House Extraordinary FOR THE BIG THINGS and the *VITAL LITTLE THINGS in ELECTRONIC COMPONENTS \& EQUIPMENT

\section*{We Buy!}

We Sell!
We Serve!

Solves your production problems

Solves your distribution problems

Send for our bulletins

Accessories Adapters Ammeters Amplifiers
* BearingsAeronautical
*Bearings-Industrial
*Bearings-Precision
*Cable-R G Capacitors Chokes-Filter
*Circuit Breakers Communication Systems Condensors * Connectors-U G Crystals

Diodes DynaMotors

Electrolytics Equipment-Precision Filters Formvarwire

GaugesFrequency Meter Geiger Counters Generators

Intercoms
Micas Motors

Oscilloscopes
* \(\mathbf{P}\) otentiometers Types J-JJ—JJJ

Radar Sets
Relays
*Resistors-(JAN)
Rheostats
Selenium Plates
Speakers
*Switches-C H
*Switches-Toggle-ST
*Tubes-J A N
Tubes-Industrial
Wire-Aeronautical SRIR
Wire-Hook up
Wire-Magnet

GO RIGHt to the source...
Your answer in a matter of minutes!

THE ONECALL CLEARING HOUSE
Immediate Action! MU

6-4164
19 WEST 26th STREET - NEW YORK 10, N. Y.

OIL CONDENSERS
2 MFD. 5000 VDC

\(\frac{\$ 12.95}{6 \text { MFD. } 600 \text { VDC }}\) CP 70 BIFF 605 K \(\frac{\text { with Brackets. } \$ 1.69}{100 \text { MFD. } 1500 \text { VDC }}\) \$27.50 BATHTUB CONDENSORS CP53BIFF504K
.5MFD-600V. . \(\$.64\) .5MFD-600V. . \(\$.64\) STANDARD BRAND IN N ERTEEN
CAPACITORS 3MFD 8000 VDC size \(12^{\prime \prime} \times 4^{\prime \prime} \times 12^{\prime \prime} . . \$ 35\) each

\section*{HAYDON SYNCHRONOUS MOTOR}

110 V.A.C.
1/2 R.P.M.
3.6 Watts
\(\$ 2.47\) each

2.2 watt l-120 RPM........ \(\$ 1.68\) each Minimum order 5 pieces on synchronous motors

WESTON WATTMETER Model 641 0-4
KW 250 V.. \(\$ 23.85\)

Rheostat Type J 150 Ohm 50 Watt \#5381 \(\qquad\) \(\$ 2.15\) each

RHEOSTAT Type K 100 Watt \(25 \underset{\$ 3}{\mathrm{Ohm}}\) \(\$ 3.78\)

RHEOSTAT Type H 25 Watt 15 Ohm \(\$ 1.65\)

LINE CORD AC manufactured by G.E. molded rubber plug, 12' lengths.
\(\$ 25\) per 100 pcs.

Amplifier Navy Model CM 21103 for Syncro equipment, completely new with following tubes 2-6L6, 16SK7, 1-6F6, 16H6, 1-5U4 made by Bendix..... \(\$ 24.95\)

UG Connectors UG 352U ….. \(\$ 6.00\) each UG 9/U 95 each
3-1SP 40 each

Relays, mid. by Sigma 12 volts DC, S.P.D.T. size \(21 / 4^{\prime \prime} \times 158^{\prime \prime} \ldots . . \$.77\) each

\section*{BUS FUSES}

INDUSTRIAL-TUBES-RECEIVING
Relays and other Electronic material are available. Send us your inquiries.

\section*{No Risk to You}

All Material Offered Brand New
LEONARD GREENE
381 Tremont St. Boston, Mass.
Phone HAncock 6-4794

SURPLUS ELECTRONIC SPECIALISTS
We invite your inquiries.
Write for our latest listings.
NORMAN ELECTRONIC SALES
1930 S. State St. \(\qquad\)

Jonuary, 1952 - ELECTRONICS

\section*{NH}

\section*{\& ELECTRONICS SUPPL} Compare These Surplus Bargains!
\begin{tabular}{|c|}
\hline Wide \(\times 21 / 6^{\prime \prime}\) deep. Shipping wt. 6 -lbs. \\
\hline \\
\hline Her - \\
\hline Sowatt modulation transformer, \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}

WANTED-WE PAY TOP DOLLAR FOR: All Types AIRCRAFT, RADAR, RADIO SETS, COMPONENTS, DYNA MRT 13 , AC Asso Test Equipment, Etc. Prompt Replies to all Inquiries!

BC442 ANTENNA RELAY. Contains 50 MmPd , 500 molt vacuum condenser and o to 10 amp
RF meter. With Antenna transfer switch, trans-
mitt to receive. Brand new. \(\$ 3.95\) mitt to receive. Brand new.\$3.95 \(2.95^{*}\)
 WARNING BELL. 24 -volt, \(3^{\text {n }}\) diameter, Shipping
 DC output. 13rand new................ \(\$ 19.50^{*}\) AS-65 ANTENNA. APR-2A. Complete with 7 BCII45A CONTROL BOX. Part of SCR-729. Brand CD318A CoRD for connecting Thront Mike. Has IK48, PLA8 Plugs and SW141 V SWlteh. SI.95*
NON-INDUCTIVERESISTORS. IRC type MPM 100 -watts. All brand new, \(181 / 2\)-inches long
complete with lug terminals. Available in quantity in 95,72 and 120 ohms.......... \(\$ 3.00\) ea. RC266 RADAR ANTENNA. Part of SCR-717
Brand now, crated and ready to ship. Approx MGU. J49F INSERTOR. Brand new......... \(\$ 74.50^{\circ}\) ATTENTION PURCHASING AGENTS: \(\mathbf{W}\) We have thousands of items in stock not listed here. Send
us your requirements and we'll reply promptly

\section*{EXPORT INQUIRIES INVITED} We carry an unusually large stock of Airline Equipment, Test Equipment, Radar Sets, etc. mation. Wur furnish immediate answers to all inquiries. Write today?

\section*{THE BEST IN ELECTRONIC SURPLUS \\ AVAILABLE FROM OUR STOCK FOR IMMEDIATE DELIVERY}

\section*{TRANSMITTERS}

T4/FRC, with Modulator
PP-1/FRC, Power Sunply.
RCA-ET 4332 and 4336
TDE, TBK, 8010, 8003, for Ships.
BC-319, BC-604, BC-684, etc
Heater, 2.5 KW Converted to R. F Heater, 2.5 K K output. Frea. range
10.7 to 14.4 mc Consists of 2 cabinet units; Oscillator unit uses two
823 R tubes forced air-coollng \(827 R\) tubes forced aircoollng;
Power supply uses six 872 A rectifiers, with riy uses six 872 A rectifiers, with requisite meters a nd re-
lay controls. Operates from 230 or 460 V \(50-60\) cycles, 3 phase A.C. TSI 500 W . Simuitaneo. \(\$ 1,400.0\) Range ant Telephone Transmitter Frequency 200-400 KC. Mfd. for CAC-707, 50 Watt AM Transmitter. Freq. 110 to 130 MC, Xtal Control. Operation- 110 V .60 cycles AC. TDQ Transmitters, \(100-156\) MC, 4 watts AM output. Reconditioned MANY OTHERS:

\section*{TRANS-RECEIVERS}

\section*{THY, MAB (Walkie-Talkles), SCR} S09 \& 510, SCR-511, SCR \(609 \& 610\) with 12/24/230 DCOM 110\% TCS Power Supplles, SCR-508/528/608/ 628.

Jefferson Travis, Model 350-A Transmitter-Receiver, 50 W . out put, 1.5 to \(12.0 \mathrm{mc}, 5\) channels oper-ation- 1 VFO and 4 X'tal-both Transmitter and receiver. Power Supply operates from either AC/240 cycles. With Ant. Loading Coil unit, handset, key, \& instruction book. Complete.

\section*{AUDIO SOUND}

Beachmaster 250 W.: Western Ellec. 12V.) Mobile; RCA MI-2817-E Amplifier. 1,000 Watts (\(2-500\) watt Channels) ; W.E. Speaker Units D173246 (25-30 Watts) and D. able quantity available, see illus.

TEST EQPT.
BC-221, 1-222-A Signal Generator, brator, for 115 V . 60 cycles TU-56, TU-57, TS-45, TS-143, 1 -148. TS-305, TS-143/CPM - 1 Synsehro-

\section*{RADAR}

SCR-545-A, Complete in Trailer Trucks, with or without 25 KVA MaskK \({ }^{\text {Gas }}\) Trainlng Radar, for Mankols, training.
Shang Radar, for
Hondreds of radar components, plumbing, magnets, tubes, transformers, etc.

\section*{RECEIVERS}

RBM, RBS, BC-224, DZ-2 Direc-tion-Finders with Loops, SCR-206 sCR-291 Indicators and Accessor CRV-46136, 100 to 1500 KC, part of \(\underset{\mathrm{R}-89 / \mathrm{ARN}-5 \mathrm{~A}}{\mathrm{D}} \mathrm{Glide}\)-Path Recelver, with crystals. NEW. Model 2B-3, Aircraft Honing Adapters, with plugs and accesso-
ries. New Eqpt.

\section*{SPECIALS}

Wilcox 36A Rectifier-Power Supply, for 3 KW modulated transmitter. Designed for use with 4 or more 96 C 3 KW Transmitters and 50 A Modulator. New. UADIOSONDE AN/AMQ-1, Meteorological Balloon ransmitter wh seli-contained instruments. New Units, with slide-rule temperature evaluators and supplementary eqpt. also available. Type AN/FMQ-1. ge Converter Tubes, with matching Bausch \& SOUNDPOWERED HEAD-CHEST SETS, RCA-M2V.2454-B, all New, export-packed. 110 V . AC KATO Converters, NEW, good 115 V . DC to 115 V . AC., 60 cyoles, Motor-Generators. 500 Watts output; mid. by Esco, and Holtear-Cabot RC-103 Renio CR-508/608/528/628/510/610 Transmitter-Receivers, ment 40 mc . Complete, export-packed, NEW equip
TE-54A \& TE-58A Cable Vulcanizing Units.
AT-49/A1PR-4 Antennas
General Electric Voltage Regulator \& Power Supply, Model 3GVD14B3, Output 750 volts up to 100 ma complete power supply using 8 tubes, with selector witch for regulating or non-regulating. Operates with operational data Ad NiOW units, less tubes. Tuned Filter Chokes, 120 cps , 40 H ., D.C. res. 410 hms, with 0.177 mfd (\(600 \mathrm{w} . \mathrm{v}\).) capacitor, N . \(\mathbf{Y}\) Trangf type T-OD-8035. New. Hermetically sealed
 Amertran Fliter Chokes, type W, 0.04 Henries at 2.4 amps,
Screw
Plug Heating
Rl Metal encased, 150 W . 110 volts. \(5 \% /{ }^{\prime \prime}\) long, \(1 \%\) ", "CB, EW EACH. amps/5,000 V. or \(100 \mathrm{amps} / 2,500 \mathrm{~V}\). grd. Y. New Units. WRITE FOR PRICE.
BD-72 Swltchboards, Excellent Condition
Dynamotor DM-28, for BC- 348 Recelver. Ne. \(\$ 55.00\)
 viveling and quick return. New units. EACH \(\$ 4.95\) T-9/APQ-2 Radio Transmitters. Noise-modistated Tamming Tranmitter, using. Electron-Multipller Photocell. For Jamming certaln types radar eqpt Nev unused transmitters only, with Electron-Multi-
 Supply, for operation from \(110 \mathrm{~V} .60 \mathrm{Cycles} A C\) wer storage batteriess. Each in individual metal cabinet.
NEWW. Price, Each Set
Ending Eclipse Ploneer Type C-14 Magneingn Unit. Per W. E. Spec., KS-5899-L01 excitation 26 volts 400 C.P.S. current drawn 200 to 500 MA . Shapt locking arrange-
ment overall dim. \(21 / 3 /{ }^{\prime \prime}\) da. \(23 / 4 \prime\) long. \(812^{\prime \prime} \times 2.562^{\prime \prime}\) Mtg. centers, NEW UnIts. Price, EACH..... \(\mathrm{SV}^{2 / 50}\) Deck Entrance Insulators, bow and fange type. bell. Top bell \(6-4 / 4^{\prime \prime}\) dag. x \(11^{\prime \prime}\); brass feed-thru rod. very high voltage insulation. 'Individually packed in cartons, all NEW. 12 FOR.......... 824.00 SCR-584 Sector Scan Units. Unused EACH: QBE-8 Control Rectifiers, Type CBM-20223. Unused EACH

Unused. Less \(\$ 27.50\) EACH Radio Transmitters. Unused. Less tubes. Reversible \(1 / 2\) HP Aircraft Motor, GE Model 5BA50ture. Wt Approx. 300 available, at \(\$ 10.00\) Each
Standard Brand Capacitors. Type 18F75, 150 Mrd ., Large quantity avallable All NEW, packaged capacitors, Capacitor-Trantor
Capacitor-Transsormer, GE Model 69-G-210, 132/200 units. packaged. Overload Relay, GE type CR-5882-C1G,
Low Pressure Switches, GF type 29270100 J Radar Fil. Transf. WE. Spec D-122882 J. NEW \(30 \mathrm{Kva}, \mathrm{Pr}\), - \(115 \mathrm{~V} ., 50 / 70\) cycles, Operating max
 amps., \#3 5 V . at 20 amps. New Units, cased. Remote Antenna Drive KM-s5, Hand-crank driven assembly, With illuminated azlmuth scale, couples shaft and permits remote control or fex pild dive waoden chests. Pressure Axial Flow Firction Aircraft-High Pressure Axial Flow Model \(4581 \mathrm{~A} \mathrm{D}^{24} \mathrm{~A}\) DE, capacity 20 cm , \(1 / 16 \mathrm{HP}\). Model 4b81A2A Purchasing Agents! We have thousands of oll condensers, transmitting micas. resistors, transformers, transmitting tubes, etc. Check with us for any EXTRA-SPECIAL packed 25 to each carton \({ }^{\text {G72-A Rectifer Tubes }}\) packed 25 to each carton, NEW, original cartons.
25 for \(\$ 75.00\), while they last.
WRITE FOR PRICES. ALL MATERIAL SUBJECT TO PRIOR SALE.

\section*{TELEMARINE COMMUNICATIONS COMPANY}

CABLE ADDRESS:
TELEMARINE, N. Y. \(\begin{gathered}\text { Phone- } \\ \text { LOngacre }\end{gathered}{ }^{4.4490}\)
LOngacre 4.4490

\section*{HARD TO GET ITEMS! WE HAVE THEM!}

DYNAMOTERS \& INVERTERS
\begin{tabular}{|c|c|c|c|}
\hline TYPE & \[
\begin{aligned}
& \text { INPUTT } \\
& \text { VOLTR }
\end{aligned}
\] & OUTPUT & MILLS \\
\hline & DC
14 & \({ }_{235}\) & \\
\hline ARG-11029 & \({ }^{28}\) & 250 & \\
\hline \({ }^{3412}\) & 12/24 & 225/440 & 100/200 \\
\hline DM & 14 & 240 & 80 \\
\hline
\end{tabular}

\section*{MOTOR-ALTERNATOR}

\section*{SAS121TJZ}

Onput 2 120才 800 Cycles 1 Phas
```

    MOTOR GENERATOR
    PU-7/AP
Output-115Y AC 21.6 Amps
400 Cycles 1 Phase

```

BLOWERS
24 V DC \(1 / 100 \mathrm{hp}-7000 \mathrm{RPM}\)

\section*{MOTORS}
\({ }_{24 \mathrm{~V}}^{24 \mathrm{VC}} \mathrm{DC}-6000 \mathrm{RPM}\) RTAH .003 HP 24 V DC- 300 RPM -Excel
2J1G1-Selsyns
POWER SUPPLYS
\begin{tabular}{c}
Al wrth Cut Cords \\
Complete with tubes and \\
vibrators
\end{tabular}
PE 97A PE 120A

Aloo many other sizes and ail slze bathtub conAleo
densers.

\section*{CIRCUIT BREAKERS}

24 Volts DC . 220 AMPS
115 Volts AC is AMMP
24 Volts DC 150 AMPS
T. V. HIGH VOLTAGE CONDENSER \(\$ 00\) MMF-10,000 Volts
POWDERED IRON TUNING SLUGS. ALS SIZES.
CONTROL BOXES
CAY-23219
J-17/ARC5
J. B/ ARC
BV 422
CRY 2356

FERRULE TYPE RESISTORS
ర్రు

Also many other sizes

\section*{ALTITUDE GAIN CONTROLS \#55586}

Contains 140 K ohm \(1 / 2\) watt. Type J. Pot Control 9 couple matically varies with altitude.

\section*{GYRO CONTROL}

Contains a motor driven gyroscope friction plate silverstat and resistors. The gyro motor is a 115 V 240 efcle 3 phase 1400 RPM Induction motor.

GYRO MOTOR GENERATOR
Is a 115 Volt 60 cycle 3 phase 3400 RPM motor driving a DC generator with 2 fields. The output of the generator is from 0 to 35 volts. The polarity of the output voltage depends upon which
recelives the greater excitation. The magntude of the output volt is determined by the net excltation of the fleld.
SERVOMOTOR-24V DC
SHUNTWOUND

\section*{Gear box for above equipment}

A-Di66173 W.E. Video Transformer Frequenoy response 10 KC to 2 MC Impedance ratio 50 to 900 ohms; 7-7/32 bigh \(\times 5: 3 / 4^{7}\) dia.

BUD MIDGET CONDENSERS
\(\begin{array}{lllll}\text { Cat. } & \text { Cap. } & \text { Ser } & \text { Sect. } \\ \text { No. } & \text { Max. } \\ \text { Mln. }\end{array}\)
913
329
N. c. 800-NATIONAL NEUTRALIZING CONDENSER

\section*{STEP-DOWN LINE CORD}

For operation of 110 volt AC-DC radio sets from 220 volts AC-DC. Supplied complete with plug and cord.

CHROMALOX AND VULCAN HEATER ELEMENTS
\begin{tabular}{ccccc}
& & & \\
Wiats & Volts & Dia. & Length & Mts. \\
450 & 115 & \(3 / 4\) & \(73 / 4\) & C \\
280 & 115 & \(3 / 4\) & \(75 / 8\) & V \\
175 & 115 & \(3 / 4\) & \(75 / 8\) & C \\
175 & 115 & \(3 / 4\) & \(75 / 8\) & C \\
350 & 115 & \(3 / 4\) & 6 & \(6 / 8\) \\
315 & 115 & \(3 / 4\) & 7 & V \\
200 & 115 & \(3 / 4\) & \(75 / 8\) & V \\
300 & 115 & \(3 / 4\) & 7 & \(5 / 8\) \\
250 & 110 V & \(3 / 4\) & \(78 / 8\) & V \\
& & & &
\end{tabular}

\section*{ADEL CLAMPS-ALL SIZES}

We carry thousands of other items not listed here
COILS - RELAYS - GEARS - SPRINGS - SCREWS - WASHERS - EYELET
LUGS
GENERAL SURPLUS TRADING
75 Duane St., Dept. E, New York 7, N. Y
Worth 2
8836
6498
535

TERMINALS - TUBING - RIVETS - PINS • BRACKETS • WIRE • CABLE SW.

Eby bakelite Binding Posts....................... 2.12
 W.L. 100 watt fixed. 1000 ohm Resistor Arrow-H \& \(H_{4}\) DPDT Toggle Swltch.......... .65
C/H Off center, SPDT Toggle Swleh....... .35 ANTENNA ROTATOR or DOOR OPENER
Geared down 24v. universal motor with
transformer 5750 3 Wire Rubber Cable tor Above........... Ft. . \(031 / 2\) GE Argon Glow Lamps....................... 4 for 1.00 100 for \(\$ 20.00\)

64 Dey St., New York 7, N, Y.

\section*{TELEPHONE RELAYS}

Large Stock of
CLARE, TYPES C, D E E
COOKE, AUTOMATIC-ELECTRIC
ALL TYPES of COILS and PILE-UPS
Sond Us Your Specs. for Our Quote
CLARE TYPE C SENSITIVE TELEPHONE RELAYS
\begin{tabular}{|c|c|c|c|c|}
\hline & Coll & Contacts & WIII Close At & Price \\
\hline 1) & 6500 ohm: & 1 C & 2.8 MA & \$2.75 ea \\
\hline 2) & 5500 ohm: & 1A-1C & 3.2 MA & 2.75 es. \\
\hline 3) & 6500 ohms & 3A & 4.0 MA & 3.00 ea. \\
\hline 4) & 5500 ohm: & 3A-18 & 4.0 MA & 3.40 ea. \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
CLARE TYPE G SENSJTIVE HALF-TELEPHONE \\
RELAYS
\end{tabular}} \\
\hline 1) & 6500 ohme & \(2 A\) & 5 MA & \$2.50 ea. \\
\hline & 5800 ohms & 3 A & 5 MA & 2.50 en. \\
\hline 3) & 5800 ohms & 2B-1C & 5 ma & 2.50 ea. \\
\hline 4) & 4800 ohms & 1A-2C & 6 Ma & 2.50 ea. \\
\hline 5) & 3600 ohm: & 1 C & 6 MA & 2.00 ea. \\
\hline
\end{tabular}

All above Relays may be uned for onntinuous duty operation on 110V. D.C.

Legend (A) Normally open set of contacts. (B) Normally closed set of contacts. (C) Siagle pole donble throw set of contacto.
Slgma Type 5F Low Voltage Sensittive Relays, Has two colls each coil 70 OHMS one volt DC. Fnclosed in Dust Cover. Colls may be connected in serles or parallel or independently. Contacts are SPST normally closed, but can easily be changed to S.P.D.T........... \(\$ 3.75\) ea. Sigma \(5 F\) Rolays same as above but without Dust Cover. Has S.P.D.T. contacts. Price .\(\$ 3.00\) ea.

Chase
Electronic Supply Co. 222 Fulton St.
New York 7, N. Y. HOHis 4-5033
Dlaby \(4-3088\)

\section*{SCARCE BUYS!}

CRYSTAL OVEN-FTT-46, BC-46 with 3808.3 \& 3845.83 xtals. STD. \& Bliley.
METER-Freq. \(350-450\) cy. \(90-140\) v. \(1 / 3\) of \(1 \%\) Acc. For aircraft shop, etc. New.... 29.0
 SIG. GEN.-2-125 CPS DUMONT \(215 . . .\).
SIG. GEN.-BC. 423200 MC radio Mod....
RECEIVER-Aro \(53-6\) MC, no dinl \& RECEIVER-Arc 5 3-6 MC, no dial \& Dr.

XMITTER-REC-BC-645A, new.
 door on top Blk. crackle, new...... DPDT- 10 amps.
TUBING-Surprenant red plastic \(1.00 \mathrm{M} / \mathrm{M}\) TV WIRE-Good quality. 1000 ft spool... 720 HM -Twin-line \(7 / 21\) w/re, 1 KW 95 OHM- 2 wire shielded co-ax. \(3 \mathrm{MFD}-4000 \mathrm{~V}\) - oil cond. to prand CF/RU COIL SETS-for Rec, \& XImitter. Can be used on \({ }^{6}\) V. New. \(12 / 24 \mathrm{~V} . \quad 500 \mathrm{~V} . .\). get up to 100 ma . on \(6 / 12\) V.
RESIS.-10,000 ohm. 120 watt Ind. boxed. CABLE-225 Amp. lug each end. 11 ft . Lg, CABLE-7 \& 9 cond. \(10-20 \mathrm{pt}\) LE. Shided Flastic stop-nuts. Moulded bakelite. Di...
INSULATOR-Denk entrance tyoe \({ }^{\prime \prime}\) INSULATOR-Denk entrance type \(9^{\prime \prime}\) Dia. oin male chassis mounting type.

\section*{TRANSFORMERS}

ALGERADIO ELECTRONICS CO.
385 Jackson St.
Hempstead, N. Y.

\section*{SURPLUS EQUIPMENT}

POWER RHEOSTATS

Standard Brands: 5 Ohms; \(100 \mathrm{Watt} ;\)
Ohms; 100 Watt; 1.0 amps 100

Boxed, Brand New with Kinob \(\$ 2.50\) each-or\(\$ 25.00\) per Doz.

\section*{ALNICO FIELD MOTORS}
(Approx. size overall
 Delco-Type 5069230 : \({ }^{27.5}\). 145 RPM \(\$ 19.95\) ea..\(~\) Delco-Type 5069600: 27.5 Volts; DC; 250
G. E. MOTOR AMPLIDYNE

Mod. 5AM45DB15. Input: 115 volts, fingle phase. 60 eycle, 4.5 amp. Output: 250 volts

\section*{SINE-COSINE GENERATORS}
(Resolvers)
Diehl Type FJE-43-9 (Single Phase Rotor). Two stator windings \(90^{\circ}\) apart, provides two outputs equal to the sine and cosine of the angular rotor displacement. Input
voltage 115 volts, 400 cycle...... \(\$ 25.00\) ea. Diehl Type FPFS-43-1 same as FJE-43-9 except it supplies maximum stator voltage of 220 volte with 115 volts applied to rotor.

\section*{PIONEER TORQUE UNITS}

TYPE 12604-3-A: Contains CR5 Motor coupled to output thaft through 125:1 gear reduction train. Output shaft coupled output shaft to follow-up Autosyn is \(15: 1\)
TYPE 12606-1-A: Same as 12604-3-A except it has a \(30: 1\) ratio between output
shaft and follow-up Autosyn.... 870.00 ea. TYPG 12602-1-A: Same as 12606-1-A except It has base mounting type cover for

\section*{PIONEER AUTOSYNS}

AY-1...... 26 Volt- 400 Cycle....... 84.85 AY27D 28 Voit-. 400 825.50 AY30D-26 Volt-400 cyc. 825.95 ea. AY38D-26 volt- 400 cyc., shaift extends oth ends \(\$ 19.95\) ea.

SERVO MOTOR 10047 -

\section*{400 CYCLE MOTORS}

AIRESEARCH: 115V: 400 CPS; SIngle phase; 6500 RPM ; 1.4 amp ; Torque 4.8 in . OZ ; HP RER ATR DEVicies TYPE JM6B:

\section*{INVERTERS}

PE 218 LELAND ELECTRIC
Qutput: 115 VAG; Single Phase; PF 99; 3807500 cycle: 1500 VA. INPUT: \(25-28\)
VDC 92 amps: 800 RPM. Exc. Volts 27.5 RDC; 92 amps: 8000 RPM, Exc. Volts 27.5 MG 153 HOLTEER-CABOT mput: 24 V. DG, 52 amps: Output: 115 volta- 400 cycles, \({ }^{3}\)-phase, 750 VA , and 26 guency regulated............... 895.00 ean Otput: 115 VAC-A PIONELER Otput: 115 VAC; 400 eyc; single phase; 45 amp Input: 24 VDC 55 amp .900 .00 ea. Output! 115 VAC 400 ELECTRIO
 1mp. 880.00 ea. Ontput: 1848 UEGANOM ELECTMIO Ontput: 115 VAC; 400 Cycle; 3 3-phase; 175 CiA; 80 PF . Input: 27.5 DC; 12.6 2mp;
dealsmed for autosyn single tube ampline tains magnetic amplifier assembly. With tube . \(\$ 24.50\) ea
400 Cycle; with 40-1 Reduction Gear \(\$ 10.00\) ea.

TACHOMETER GENERATOR
Ploneer Instrument. Used with Kollsman Mark V Indicator
Tachometer Indicator and Generator (above)

\section*{SENSITIVE ALTIMETERS}

Ploneer Part \#1566-2K-A Sensitive altimeters. \(0-35,00\) ft. range callbrated In setting adjustment. No hook-up required. \$12.95 ea

\section*{420 CYCLE GENERATOR}

General Electric \#5AB324A7\% 116 Volts, ing ie phase, \(7.6 \mathrm{KVA}, 340 \mathrm{rpm}\), equipped with triple V-belt pulley, Cycle and voltage may be varied by
varylng speed. Price.......... \(\$ 675.00\)

\section*{SMALL DC MOTORS}
(Approx. size... 4" long x \(14^{\text {" }}\) dia. General Electrlc-Type 5BA10AJ37: 27 Volts, \(\mathrm{DC} ;{ }^{5}\) amps, 8 oz. Inches torque:
250 RPM; shunt wound; 4 leads; reversible a. \(\$ 12.50 \mathrm{em}\). G. E. Type 5BA \(10 \mathrm{FJ} 215,24\) volts DC, 77 Gmp. 30 lbs. in. torque, 4 RPM. \(\$ 15.00\) er. Volts. DC;. 65 amp amp 14 oz. Anches torque 145 RPM : shunt wound; 4 leads; reversible MICROPOSITIONER
Barber Colman AYLZ 2133-I Polarized tlve; Alnico P.M. Polarized field. 24 V contacts; \(5 \mathrm{amps} ; 28 \mathrm{~V}\). Used for remote positioning, synchronizing, control, etc.
PIONEER GYRO FLUX GATE AMPLIFIER Type 12076-1-A, complete with tubes PIONEER TOROUE UNIT AMPLFIER PIONEER TOR

\section*{SYNCHROS}

IF Special Repeater (\(115 \mathrm{~V}-400\) Cycle \(\$ 15.00\) ea. 2J1F's Generator (\(115 \mathrm{~V}-400 \mathrm{cyc}\)) . \(\$ 7.50\) ea. 5CT Control Transformer; 90-50 Yolt: 60 5F Motor (\(115 / 90\) volt- 60 cyc.). . \(\$ 00.00\) ea. 69 Generator (\(115 / 90\) volt- 60 cyc .) \(\mathbf{\$ 5 0 . 0 0} \mathrm{ea}\). ssDG Differential Generator (\(90 / 90\) volts sDG Differential Generator \(90 / 90\) volts 60 cycle 550.00 ea.

\section*{METERS}

AMMETER: DC; \({ }^{2 \prime \prime}\) 100-0-100, complete external shunt.................65.95 ea. AC Volt, Westinghouse, Type NA-35-3FREQUENCY, \(57-63\) cycles per second, 125 volta, mfg. Aero. mod. 7007 . 3 -inch round
8.96 en.

please enclose full amount with order
EQUIPMENT FULLY GUARANTEED ALL PRICES F.O.B. PASADENA UNLESS OTHERWISE SPECIFIED

SEARCHLIGHT SECTION

OUR EXPORT DEPARTMENT AVAILABLE FOR SPECIAL SERVICE TO OVERSEAS CUSTOMERS

\title{
COMPASS
} COMMUNICATIONS COMPANY 393 GREENWICH STREET NEW YORK 13, N. Y.

BEekman 3-6510 CABLE ADDRESS: COMPRADIO

WE MAINTAIN OUR OWN FULLY EQUIPPED TESTING LABORATORY IN THE SAME BUILDING AS OUR MAIN WAREHOUSE TO TEST ANY ITEM WE SELL
- RADAR

MARINE, GROUND \& AIRBORNE AN/APS-2
APS
A
APS \begin{tabular}{c}
APS \\
APS \\
AP \\
\hline
\end{tabular}
APS.
APS-13
APS-15

\section*{- BEACONS}

AN/CPN-6. 3 cm.
AN/CPN -8.10 cm.
Y) and YG for shiphoard use
- LORAN

AN/APN-4 and AN/APN. 9
- TELEPHONE EQUIPMENT

Portable and Stationary Switchboards and Supplies B0-71, six-ling portable switchboard
BD-72, twolve-llne portable switehboard
- CONVERSION EQUIPMENT -MOTOR GENERATORS -CONVERTORS -DYNAMOTORS -INVERTORS -INVERTORS
-POWER SUPLIES
-RECTIFIERS
- TEST EQUIPMENT

\section*{SELECTED EQUIPMENT}

TCS-Collins mfd. Navy radiotelephones for shipboard and mobile use. complete with all accessories for operation from \(12,24,110,230\) volts d.c. and
1100 or 220 volts a.c.
TDE-Navy or commercial marine transmitters, complete, 110 \& 220 volts darind a.o phete, Navy high frequency transmitter. \(2-20\) mcs;
TBK watts output. Supplied completo with \(\mathrm{m} / \mathrm{g}\) and 500 watts output. Supplied complete with \(\mathrm{m} / \mathrm{g}\) and
starter for d.c. or a.c. operation.
TBL- Wayy all-wave transmitter: CW and phone. Supplied complete with \(\mathrm{m} / \mathrm{g}\) and
starter for d.c. or a.c. operation,
AAJ-Nary intermediate freq fransmitter, \(175-550\)
fise. 500 wats output. kes: 500 watts output. Supplied complete with \(\mathrm{m} / \mathrm{g}\)
and starter tor a.c. or d.c. Operation. SCR-284-the famous mobile and ground station for fleld use. Lasge quantity of complete sets available.
MAG-10 cm . portable link radar transmitter re-MAG-10
celvers. \(\underset{\text { 6-volt operation. }}{ }\)

\section*{TRANSMITTING STATIONS}

1 KW-200-500 kes, complete with 440 volt, 3 ph . 800 W - (400 watt phone) Western Electric 10 -channel. \begin{tabular}{l}
800 W - (400 watt phone) Westerm Electric 10 -channel \\
automatio dial selection, \(2.0-200 \mathrm{mcs}\). With 200 \\
\hline
\end{tabular} auth 1 ph, 50-600, power supply SAME TRANS
volt,
MITTER AS USED ON S.S. "UMHN MARY" -Brand Now. Prlce \(\$ 4,000.00\).
1 KW -FM Broadcast station, complete with monitor, all tubes. antenna and
\(\$ 1,500.00-\mathrm{at}\) location, \(\star\) All equipment new or reconditioned, checked

\section*{- TUBES}

New, Standard Brands Only -MAGNETRONS -KLYSTRONS -transmitting
and other Special Purpose Tubes This is a sample listing. Write for prices.
\begin{tabular}{|c|c|c|c|c|}
\hline 723A/B & & \$24.50 & 2126. & \$25.00 \\
\hline 2K25 & & 37.50 & 2127. & 25.00 \\
\hline 2K26 & & 150.00 & 2131. & 25.00 \\
\hline 2K28 & & 35.00 & 2132. & 47.50 \\
\hline 2K29 & & 27.50 & 2536 & 100.00 \\
\hline 2K41 & & 95.00 & \(2 J 38\). & 20.00 \\
\hline 2 K 45 & & 150.00 & \(2 J 39\). & 20.00 \\
\hline 2 K 54 & & 150.00 & 2542 & 135.00 \\
\hline 2K55 & & 150.00 & 2550 & 75.00 \\
\hline 707B & & 25.00 & 2 J 61. & 75.00 \\
\hline 715 C & & 32.50 & 2162 & 75.00 \\
\hline 724B & & 5.00 & 4552 & 335.00 \\
\hline 8298 & & 15.00 & 5523. & 25.00 \\
\hline 304 TH & & 13.00 & 5.26. & 100.00 \\
\hline 304 TL. & & 13.00 & & \\
\hline & Special: & 889R. & & \\
\hline
\end{tabular} 5CP1...
12DP7
We gUarantee everything we sell

\section*{brand New standard brand tubes}

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
A.C. VOLTMETERS \\
D. C. MILLIAMMETERS \\
15 Westinghouse \(31 / 2^{\prime \prime}\) rd \(\qquad\) (a) \(\$ 5.50\) \\
1, McClintock \\
. \(3^{\text {n }}\) square. \\
(1) \(\$ 6.00\)
\end{tabular}} \\
\hline 15 General Electric \(21 / 2{ }^{\prime \prime}\) rd. 800 cyclee...... \(\$ 3.95\) & \\
\hline 40 W & \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{}} \\
\hline & \\
\hline & \\
\hline & \\
\hline & \\
\hline 300 Triplett \(21 / 2 / 2\) rd metal....................@ \(\$ 6.00\) & \\
\hline & \\
\hline \multicolumn{2}{|l|}{(150, Triplett, \(2^{\prime \prime}\) square, bl. scale............ © \(\$ 3.95\)} \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline & 200, Simpson, 31/2 ra,.......................@ \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline 25 Simpson 312" rd........................@ © \(\$ 8.40\) & \\
\hline \multicolumn{2}{|l|}{} \\
\hline 200 Simpson \(31 / z^{\prime \prime} \mathrm{rd}\). 5 Amp less transf...(3) ** \(\$ 8.10\) & 500, General Electric, \(21 / 2 \mathrm{md}\) remetal case.....a \(\$ 3.95\) \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
50 Simpson \(31 /{ }^{\prime \prime}\) rd. 2000 ohms............@ * \(\$ 11.85\) \\
100 Weston \(64341 / 2^{\prime \prime}\) rd. approx. 1500 ohms. . \(\$ \$ 21.00\) \\
1000, Electel, \(312^{* \prime}\) rd. scale " \(100 \times 10^{\circ}\)..... (8) \(\$ 3.50\)
\end{tabular}}} \\
\hline & \\
\hline 200 Simpson \(31 / 2^{*}\) rd. 1000 Ohms..........(G) " \(\$ 9.60\) & \\
\hline \multicolumn{2}{|l|}{1, General Electric, \(31 / 2\) "rd...................... \(\$ 5.50\)} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{4}{*}{}} \\
\hline & \\
\hline & \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline 5, Weston, \(31 /{ }^{*}\) rd. \(\$ 8.50\) & \\
\hline \multicolumn{2}{|l|}{} \\
\hline & \\
\hline \multicolumn{2}{|l|}{3, Westinghouse, 31/2" rd..................@ \(\$ 6.50\) 30, Gruen, \(21 / 4\) rd. metal case............... . . \({ }^{\text {a }}\) 3,58} \\
\hline 3, Weston, \(31,8^{\prime \prime}\) rd. with ext. couplo........@ \(\$ 9.50\) & \\
\hline \multicolumn{2}{|l|}{} \\
\hline 5. General Electric, \(31 / 2^{\prime \prime}\) "rd, \(\$ 7.50\) & 300, Simpson. \(31 / 2^{\prime \prime}\) rd..................@ \({ }^{\text {a }}\) - \(\$ 8.85\) \\
\hline \multicolumn{2}{|l|}{} \\
\hline 8, Goneral Electric, 23/2" rd..................@ \({ }^{\text {8 }} 5.50\) & \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{} \\
\hline & \\
\hline
\end{tabular}

We specialize in electrical instruments. Over 75,000 meters in stock. Send for our latest circular showing our complete line of surplus-New-Guaranteed meters.

MARITIME SWITCHBOARD
INSTRUMENTS-ACCESSORIES 338 Canal St., N. Y, 13, N. Y. Worth 4-8217

Orders accepted from rated concerns, publio institutions and agencles on open account, others please send \(25 \%\) deposit, baiance C.O.D. or cheelk with order. All prices FOB our warehouse, N.Y.C.

6B8 60
6B8G . 55

6J8G 65
6L7G 65
6S7G 60
6U7G 50
12A6 .50

PLEASE WRITE FOR UP-TO-DATE SPECIAL PURPOSE TUBE LIST WITH NEW LOW PRIC ALL LISTINGS ARE QUALITY GUARANTEED. INQUIRIES REGARDING THESE AND OTHER AND JOBBERS

\section*{T. R. LDWENTHAL CO.} ELECTRONIC COMPONENTS Technical Radio Since 1919

1205 WEST SHERWIN AVENUE, CHICAGO 26, ILLINOIS PHONE: ROGERS PARK 4.0784

\section*{American \& Canadian enquiries to our Agents:}

\section*{POLAS MERCANTILE}

\author{
115 Broadway \\ New York, 6 \\ Telephone: Rector 2-8595
}

ALL OTHER ENQUIRIES
TO LONDON

Leading Exporters and Stockists of all types of Radio Receiving and Transmitting Tubes. Current Pro-
 duction of main British Factories. Ex-Government Surplus, American, Canadian and British Tubes in Original Brands. Suppliers to Foreign Governments, Airlines, etc.

\section*{HALL ELEGTRIC 4 D 89, сhariotif st. Lowdon,wa. \\ Phones:MUSEUM 966I (5 lines)
Cables:HALLECTRIC. LONDON}

\section*{RADAR SEARCH RECEIVER ARD-2}

WIII measure RF signals from 80 to 3000 MCS and pulse rates from 50 to 8000 cycles. It can also locate transmitted signal sources by visual and aural indicators.
EQUIPMENT: Conslsts of the following: I AN-
TENNA-DETECTOR (CMD-G6AFH) has variablo TENNA-DETECTOR (CMD-G6AFH) has variablo
lenpth antennas (2), dlode detoctor, and silver platad tuning stub with callibrated scale:
AMPLIFIER (CMD-50ADC) has thres stage pulso amplifier, a trigger circult, a pulse rate counter clrcult and audlo amplifier, visual signal Indicator and a rectifier power supply which is pperative on 115 Volts AC, single phase, at 60 to
2400 cycle current regulated; TOR (CMD-60ABG) has cavity frequency of 400 cycies with selectlon of four pulse repetition rates. With the above are included all cables with fittings. accessorles, and shock mounted rack, a steel chest
with complete spare parts and \(200 \%\) additional tubes and 2 technical manuals. Gross welght 113 pounds.

BRAND NEW! ORIGINAL PACKING Price, each. \(\$ 225.00\)

\section*{\(\star \star \star\)}

AVT/R/A OR 110/220 AC
Mrged by RCA, 6-10 Watts phone and CW 12 V D.C. NEW \& COMPLETE with power supply, mike, key \& antenna.
\[
\begin{gathered}
\star \star \star \\
\text { TCS } \star \text { Collins } \\
18 \text { Q Transmitter } \\
\text { and Receiver }
\end{gathered}
\]

Freq. 1.6 to 12.0 mes with all cables, tele key, microphone, antenna loading box Remote control unit optional. Input 12 or \(110 / 220\) va.c. models with appropriate

\section*{\(\star \star \star\)}

5 WATT, Model JT-52
by Jefferson-Travis, 2 channel, crystal controlled recvr-transmitter, built-in speaker, hand microphone, 6 Volt DC power supply, cabliet, complete less xtals. New orig inal cartons. In dealer quantities.

Maintenance spare parts for most of the
units on this page. units on this page.

Other Choice Selected Trangmitters Receivers and Combinations. Handy-Talkies, Walkie-Talkles Portable Radars Atso Available.

Pictorial Ifstings an request

\section*{TIME DELAY}

RELAYS 115060 cy ndjustable 10 sec to 2 mlnutes

 *3PDT RELAY 24 vde 250 ohms Clare Tyde K. \$1.5S -SYNCHRO MOTOR IF SPECIAL \(115 / 90{ }^{400} 40\) cy \(\$ 11.95\) - 150 LATION XFORMER, 40 watts prim. 115 V BOcy

 :MINISHIELDS \(13 \%,+8680,19 / 4\), +88en
 etc. 1 SPARE PARTS, LINK SFRX-w, MN
 :AN/TPN-2 SPARE PARTS, MARK 11 Redarar spare parts. - DUSTCOVERS For JK34 etc; Alumlnumhand les (panel)
 :S8T octal \& other Bockets, MTCAS. BATHTUBS, oils - 183.95 KC KTALS: \(1,000 \mathrm{KO}\) (\#MCQ), 7.000 KC, *SMALLAMOUNTS MANY OTHER ITEMS. INQUIRIES

EMPIRE ELECTRONICS CO. Box 41, Mldwood Station Brooklyn 30. N. Y

\section*{TEST EQUIPMENT}
\begin{tabular}{|c|c|c|c|c|}
\hline TS-3 & TS-61 & TS-146 & BC-1277 & W-1158 \\
\hline TS-6 & TS-62 & TS-153 & CLQ-60 & \\
\hline TS-10 & TS-74 & TS-159 & D-il| 50637 & TRANS. \\
\hline TS-14 & TS-76 & TS-203 & T-143 & APQ-2 \\
\hline TS-15 & TS-91 & TS-20. & 1-198 & APT-1-2-5-5A \\
\hline TS-16 & TS.92 & TS. 218 & 1-203A & ARQ-8 \\
\hline TS-19 & TS-98 & TS-226 & 1-208 & ART-2-7 \\
\hline TS-24 & TS-100 & TS-268 & 1-272 & AXT-2 \\
\hline TS-26
TS-27 & TS-102 & APA-11 & 1-223 & TPS-2 \\
\hline TS-27 & TS-111
TS-118 & \({ }^{\text {BC- }} \mathrm{BC-325}\) & \({ }_{\text {LM- }}^{\text {LM }}\)-15 & \\
\hline \({ }_{\text {TS }}\) TS 35 & TS-118 & BC-633 & LS. 1 & RECYRS: \\
\hline TS.36 & TS-125 & BC-90\% & LW-1 & APM-9 \\
\hline TS-45 & TS-127 & \({ }_{\text {BC- }}^{\text {BC-978 }}\) & OAP-1 & ARN-8 \\
\hline TS-59 & TS-131 & BC-1236 & OAV-1 & ARQ-8 \\
\hline
\end{tabular}

RECEIVERS CPN-3 RA 10 DB TPS-2 RT-48ATPX-1 COMMUNICATIONS, BEACON, LORAN, IFF AND RADAR SCR-7178; APS-(2)(3)(4)(15); APQ-13

MAGNETRONS POWER UNITS ANTENNAE INDICATORS TURBO AMPLIFIERS CONTROL AND JUNCTION BOXES, Etc.

New and Enlarged Space and Facilities
LERU LABORATORIES, INC.
Black Oak Ridge Rd. and Jackson Ave.
Wayne, N. J.
R. F. D. \#1, Paterson, N. I.

Telephone: Terhune 5-2765
N. Y. C. Telephone: Oregon 5-3525

\section*{Specialists in Test Equipment}

This month we feature the 3 CM fayorites, TS. 12 and 13 . The TS- 12 being a complete SWVR set in two parts Including a slotted line detector and ampliffer, while the TS-1
signal as its companion pulsed or \(\mathbf{C W}\) power over the range of \(9305-9445 \mathrm{MC} / \mathrm{sec}\). Builit In pulsing elrcuits permit triggered or self synchronous operation while direct reading of power may be had from a temperature compensated thermlister bridge. A callbrated attenuator and voltage regulated power source make this an outstanding piece of laboratory erfulpment.
Other pleces available include:
TS-1ARR
TS-3A/AP
TS-8A/U
TS-10A/APN-1
TS-11/AP
TS-12
TS-13
TS-15B/AP
TS-16/APN
TS
TS-27/TS
TS-32A/TRC-1 TS-33/AP TS-34A/AP TS-35/AP TS-36/AP TS-24/APM-3
TS-46/AP
TS-47/APR
TS56/AP
TS.61/AP
TS-62/AP
TS-69/AP
TS-76/APM TS. \(76 / \mathrm{APM}-3\) TS-87/AP
TS-89/AP
TS-96/TPS-1
TS-98/AP
TS-100/AP
TS.102/AP
TS-108/AP
TS.110/AP TS-111/CP TS-117/GP TS-118/AP
TS-125/AP
Cable: WESLAB
\begin{tabular}{l|l}
TS-127/U & \\
TS-131/AP & IE-21/A \\
TS-144TRC-6 & IE-36/C \\
TS-153 & IF-12/C \\
TS-155A/AP & IS-185 \\
TS-170/ARN-5 & AN-PNS-1 \\
TS-173/UR & BC-221(\\
TS-174/U & BC-376 \\
TS-175/U & BC-638 \\
TS-184/AP & BC-906/D \\
TS-197/CPM-4 & BC-949/A \\
TS-203/AP & BC-1060/A \\
TS-204/AP & BC-1066/A \\
TS-220/TPM & BC-1201/A \\
TS-226A & BC-1203 \\
TS-233/TPN-2 & BC-1236/A \\
TS-251TPN & BC-1255/A
\end{tabular}

Tel. Boston: WE 5-4500

\section*{Westan Laboratarise Weston 93. Mass.}

\section*{Last of the HI WATTERS!}

RADIO TRANSMITTER
BC-375-E, Complete Equipment, has Dynamotor, Tuning Units, all tubes, etc.
very large quantity
150 watts - Made by General Electric Company
Write or telephone for prices.
OTHER GOV'T SURPLUS SPECIALS ANTENNA KNIFE-SWITCH SW-225. Square D

HEADSET ADAPTER MC-385-C. Matches hi to low imp. for HS-33 or HS-38. Has jack for PL-55.
Sig. C. \#4AK085C. NEW cond. Boxed ...ea. 654 CONTROL UNIT RM-23. Permits patching 6 radic
 CONTROL UNIT RM-25. P/O SCR-561, -572. 642. Sic C. \#2Cote 25. OYNAMOTOR PE-94. D-C in, 28 V.: D-C out V., 10 ma. A. \(/ 0\) SCR-522. Sig. C. \(\# 3 H 1894 \mathrm{C}\) Good used cond. F.O.B. Kingman, Ariz..es, \(\$ 6.95\) WRITING STANDS MC-308-B. Holds tape for writing. P/o Facslmile Fapt. RC-58, Slg. C.
\#6M2200B. NHW cond. Ideal for memos., skeds. tc. ... \(\$ 1.98\) CORD CD-605. Two \(61 / 2 \mathrm{ft}\). tinsel conductors. eyeCONNEGTORS: 4106-P, W/AN-3054-24. (Rumsen). AN-3102-22-10p. Amphenol. .1. 3054-24. (Rumsen),
 JAGK BOX BG-1366. Packard-Rell \#873-DAY-44. Has jacks for PL-55, PL-68 olugs; wafer switch; 2
polnter knobs: \(11-\) pin plug/jack sssembly \(w /\) silverpointer knobs: 11-pin plug/jack assembly w/silverplated banana plugs: 200 K ohm pot. In metal case. II-PIN PLUG/JAGK ASSEMBLY. P/o Jack Box OIL-FILLED DUAL CAPACITOR \(305-1614 \mathrm{M}\). \# 956374 . Capacities 0.1 - \& \(0.5-\mathrm{mf} . / 2,000 \mathrm{~V}\). D. C Can \(2^{\prime \prime}\) sq. \(x^{2} 24^{\prime \prime}\) high: has screw terminals on NOISE FILTER NFI-I. Mfr: P. R. Mallory Co. Has bathtub oil capacitors; carrles up to 100 amps. I eqpt.) Sig. C. \#3Z1891-60.5. NEW. boxed ea. 69 . A-N Switches, Mfr: Cutler-Hammer, Inc. AN-AN-3022-11 (C-1I \#8215-K4: B-21). S.P. Pa, D.T. Momentary one side. norm, open; 5A., 125 V. or Both above switches have bat handies luminous tips, screw connections,
Minimum sale \(\$ 2.00\); sublect prior sale; F.O.B. N.Y.C.; \(20 \%\) with order, balance C.O.D.

COMPONENTS SUPPLY CO.
61 E Washington St., N. Y. 6, N. Y. BEekman 3-8717

\section*{TUBE REBUILDING}

Large Transmitting and Power types Economical - Guaranteed FREELAND PRODUCTS CO.
700 DRYADES ST., N. O., LA.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline SAVE ON & 10: \(=\) & BRAN & D NEW & 15: 5 & GUARANT & EED & 3 & \\
\hline OA2, \({ }_{\text {O }}\) & & & 5R4GY..... \$2.25 & RK47....... 54.95 & & & & \$.4.99 \\
\hline OA3/VR75.: \({ }_{\text {OASG..... }} \mathbf{1 . 3 5}\) & & 4E35......... 34.00
4827.50 & 6AN5...... \({ }^{\mathbf{5}} \mathbf{5 . 9 5}\) & RFK48A..... 8.95 & 45074....... \({ }^{130.00}\) & \({ }_{809}^{808 ~} 2.95\) & 1616 & . 90 \\
\hline & & \({ }^{4} 421 . \cdots119 .50\) & & & WL530.... 19.95 & \(\begin{array}{ll}810 \ldots \ldots . . & 9.50 \\ 811\end{array}\) & 16192 & 1.30 \\
\hline & 2J26........ \({ }_{\text {219, }}^{19}\) & 4 \(422149 .149 .50\) & \({ }_{6 \times 21}^{6 C ~} 17.50\) & RKR73 \({ }_{\text {VT127 }}\) & 700A/B/D... \({ }^{162.50} \mathbf{1 6}\) & 813.......... 8.50 & 1625 & . 4.5 \\
\hline OD33VR150: \({ }^{\text {O }}\) & & 4 \(4261149 .50\) & & VT127A \(\ldots . . .{ }^{14.95}\) & 7034......... \({ }_{1}^{4.95}\) & & 1629 & . 39 \\
\hline & & 41427......... 149.50 & 654....... & 201 C
2034 & \({ }_{7668 \mathrm{Y}}^{7054}\)....... 129.50 & \({ }_{8308}^{8298 ~}{ }^{12} .25\) & 1632. & . 89 \\
\hline 1823....... 8.985 & \({ }^{2 J 34} 31 . \ldots \ldots . .2{ }^{29.50}\) & (1) \(4129 \ldots159 .159 .50\) & 6Sticity... \({ }^{2} \mathbf{2 . 9 5}\) & 211.......... \({ }^{203} .75\) & & & 2050. & \begin{tabular}{l}
1.75 \\
1.50 \\
\hline
\end{tabular} \\
\hline & 2J36....... \({ }^{87.50}\) & \({ }^{4330 \ldots2 .2989 .50}\) & & & \({ }_{706 \mathrm{GY}}^{706 \mathrm{C}}\)...... 47.50 & \({ }_{833 \mathrm{~A}) ~}^{83.50}\) & 5611. & \\
\hline 1832......... \({ }^{3.75}\) & & \({ }^{4} 4332 \ldots \ldots \ldots .{ }^{89} 89.50\) & YOUR SURPL & US WANTED & \({ }_{7078}^{7078 ~} 11.95\) & \begin{tabular}{l}
\(836 \ldots\). \\
837 \\
83.75 \\
\hline 1.49
\end{tabular} & & \begin{tabular}{l}
4.50 \\
3.30 \\
\hline
\end{tabular} \\
\hline 1835....... \({ }^{129.50}\) & & & We Pay Hig & hest Prices! & & 838......... \({ }^{1.495}\) & 5654 & \begin{tabular}{l}
3.00 \\
\hline
\end{tabular} \\
\hline & \({ }_{2 K 25}^{2 K 22} \ldots0{ }^{\text {29.95 }}\) & \({ }^{4135} 452899 .50\) & & & \(\begin{array}{lll}\text { 714AY } & . . . & 5.00 \\ 7158 \\ 8.95\end{array}\) & \({ }^{855} \ldots \ldots \ldots . .{ }^{851.95}\) & 5676 & 6.00
3.35 \\
\hline \(\mathrm{iN23}^{\text {N }}\) N...... 1.49 & \(2 \mathrm{2k28} \ldots{ }^{33.95}\) & & \(7_{787}^{784 ~}{ }^{15.79} 5\) & 217C........ \({ }^{\text {250R.75 }}\) & 715 C (......... \({ }^{\text {22.50 }}\) & & 5702 & \({ }^{3.50}\) \\
\hline \begin{tabular}{ll}
1N23A..... \\
1N23B & 2.75 \\
\hline 1.50
\end{tabular} & 2K39........ \({ }_{\text {3AP1. }} 9.50\) & 4X500A \({ }^{85.00}\) & \({ }^{7 C 23}6{ }^{65.00}\) & 304TH.
304TL & & \({ }_{8724 . \ldots}^{860} \cdot 11.00\) & 5751 & \\
\hline 1N38........ 1.50 & & 58P4....... 4.50 & 747........ 6.89 & 3047L....... 4.95 & 722A \({ }_{121.95}^{14.95}\) & (874.......: & 5814
8005 & 5.00
\begin{tabular}{l}
5.00 \\
4.95 \\
\hline
\end{tabular} \(\mathbf{4 . 9 5}\) \\
\hline 1N54.......: \({ }_{\text {1N55 }}^{\text {1 }}\). 89 & & & 1246......... \({ }_{\text {129 }}\). 69 & 316A......... \({ }_{\text {327A }}{ }^{\text {. } 59}\) & 723A/B..... \({ }^{14.50}\) & 884, 8 \%....... 1.75 & 8012 & \begin{tabular}{l}
2.50 \\
\hline
\end{tabular} \\
\hline 1N56,........ 8.89 & \({ }^{3 \mathrm{3C} 23 ~} 4.95\) & \({ }_{\text {5021, }}^{50} 5\) & & 350A…….. 6.95 & 725A........ \(\begin{gathered}5.50 \\ 59\end{gathered}\) & & \({ }^{80}\) & \begin{tabular}{l}
4.95 \\
1.75 \\
\hline
\end{tabular} \\
\hline & \({ }_{3 C 33}^{3 C 24 ~}{ }^{13.95}\) & & 158.......... \({ }^{\text {158 }}\). 45 & & 7268......... 25.00 & 927,......... 1.50 & 9002 & 1.50 \\
\hline & & 5GP1....... \({ }^{4} 4.95\) & & & \begin{tabular}{|cc}
726 C \\
803
\end{tabular} & & \({ }_{9}^{9003}\) & \\
\hline \({ }_{2 \times 40}\) C........, \({ }_{16.00}\) & & & 32L7GT..... . 99 & 446A........ 1.25 & 805.......... 3.75 & 956.......... 49 & 9005 & 1.50 \\
\hline All Prices F.O.B. without notice. & Los Angeles, subjec Minimum order \(\$ 3\). & ct to change .00. & & & 1000's of o requirement & ther types in stock s. & k. Send us & \\
\hline
\end{tabular}

\section*{WIRE-CABLE}

CORDAGE
CO-122 3 conductor each \#22 AWG neoprene facket 550' lengths
CO-127 ingle \#14
AWG braided and tinned copper bratd shield
\(\mathrm{CO}-221\)
\(350^{\prime}\) twisted pair \(\# 16\) AWG shielded type s.t \(350^{\prime}\) lengths

MULTI-CONDUCTOR
7 conductor AWG \(14 \quad 2\) condnctor AWG 18
19 conductor AWG 16 \(\frac{14}{2}\) conductor AWG if \(\begin{array}{rrr}19 \\ 7 \text { conductor AWG } 16 \\ \text { conductor AWG } 16 & 14 \text { condnetor AWG } 16 \\ 2 \text { conductor AWG }\end{array}\)

ARMOUR
DKIA-23 FRIA-4 GLIA-26
SINGLE CONDUCTOR AWG 10 Shielded cable with terminal lug each end \(100^{\prime}\)
and \(150^{\prime}\) lengths WIRE
AWG 18 copperweld AWG 20 tinned copper AWG 12 bare copper
AWG 22 with nylon core plastic insulation

CRYSTAL HOLDERS-ELECTRODES
 ENTERING INSULATOR
Iorcelain flanged bowl with brass rod and fittings \({ }_{6-5 / 16^{\prime \prime}}^{\text {and }}\) OD at base. New.. \(\$ 4.50\) each \({ }^{43 / 6^{\prime \prime} \text { High }}\) B-5/1. \(\$.9 \mathrm{D}\) at hase. New.. \(\$ 4.50\) each. Spar
Bow \(\$.90\)

EQUIPMENT
Natkie-Talkies 2.3-4.6 MC
MN-26Y' Bendix Compass Receiver
HC-325 Transmitter
RDF Receiver Equipment. \(200-550 \mathrm{KC}\) Fixed
Tuned
tube list

MICROWAVE TEST EQUIPMENT 10 CM echo box CABV 14ABA- 1 of OBU-3, frequency range 2890 MC- 3170 MCS. Direct reading micrometer
head. Ring prediction scale plus \(9 \%\) to minus \(9 \%\). Type " N " input. Resonance indicator meter. With accessories and 10 CM directional coupler. Brand New. TWIN CHART GRAPH RECORDER Este-line Angus Twin Chart Recorder Model AWT-N Scal3: \(2.5-0-2.5 \mathrm{MA}\) DC \({ }^{\prime \prime} 3^{\prime \prime}-6^{\prime \prime}-12^{\prime \prime}\). Minute: \(\%{ }^{\prime \prime}\) Symehronous clo
Syncaronous clock on each unit and chronograph pens.
Ccmplete. Brand New. BATHTUB-OIL-FILLED-MICA CONDENSERS POTENTIOMETERS

\section*{RALE Calagur-}

COMET

\section*{ATTENTION INDUSTRIAL USERS!!!}

We have large stocks of the following items and we invite your inquiries,

Amphenol Connectors Allen-Bradley Potentiometers
A M P Terminals
Burndy Hylugs
T \& B "Sta-Kon" Terminals Dialco Panel Light Assemblies Superior Powerstats
Ferrule Type Resistors
Relays, Transformers and Chokes
Synchros
Tube Sockets
Hardware
Contactors
Magnet Wire \& Hook-up Wire
Vacuum Condensers
Gas-filled Condensers

Oil-filled Capacitors
High-voltage Mica Capacitors High-voltage Oil-filled Capacitors Mica \& Silver Mica Capacitors Tubes
Switchboard Meters
Crystal Diodes
Interlock Switches
Key Switches
Type FP Capacitors
Type G Capacitors
Fiberglass Yarn
Contactors \& Contactor Coils
T \& B "Wedge-On" Terminals, Glass-enclosed Relays
Welding Rod; including Type 347
Tube Crocks

We invite inquiries regarding items not listed above.
Replies will be made to your inquiries within twenty-four hours after they are received by us.
Key Electronics Division
1801 North Longwood Street
Balfimore 16, Maryland

\section*{MOTOR GENERATOR SET}
. 7 KVA GE Model \#5LY77AD-6
90 VDC input to 115 VAC 60 Cye
1 ph output 3600 RPM NEW
\$67.50 each

\section*{MOTORS}

DIEHL Pilot Motor \#802077 SSFDE-14-2 24 VDC \(1 \frac{1}{2}{ }^{\prime \prime}\) D X \(2 \frac{1}{2}\) "L Shaft \(4^{\prime \prime}\) X \(1^{\prime \prime}\). Reversible Approx 10,000 RPM. . \(\$ 3.95 \mathrm{ea}\). HUGHES Motor Small Powerful Reversible 24 VDC Knurled Shaft Approx. 10,000 RPM. Mfg by Hughes Aircraft Co. \(\$ 2.95\) ea. MERKLE-KOFF 110 VAC 60 Cyc 3600 RPM Heavy Duty 2 \(\frac{1}{2}^{\prime \prime}\) X \(2 \frac{1^{\prime \prime}}{}{ }^{\prime \prime} \times 1 \frac{1^{\prime \prime}}{2}\) Shaft亶" X 量"

\section*{TELEPHONE RELAYSCLARE}

3300 ohms 2 N.O. 1 N.C...... . \(\$ 1.35\) ea. 4 ohms 1 N.O.................. 1.35 ea. Double Coil 12 or 24 VDC 240 ohms each coil. Contacts 3 make \& 2 break \(\$ 1.25\) ea.

\section*{HART SOLENOID}

24 VDC 200 Amp SPST 80 ohms Res.

\section*{ACRO SWITCH}

SPST N.C. with long leaf...... \(\$ 30\) ea.
```

We carry a full line of Electronic Equipment All Prices shown f.O.B. New York

```

B \& B DISTRIBUTORS
222 Fulton Street New York 7, N. Y. REctor-2-0432

SELENTUM RECTIFIER - Full wave bridge, G.E. model 6R5FB3, up to 54 V. AC. 150 Mill. Cont. Duty, 12-1" plates 1500 ea. avallable.
Eastern Air Device J50 Centrifugal Blower, 115 volt 60 eycles 0.1 kmp .1 PH 10 C.F.M. Continuous duty 1.0 M.F.D. Capacitor atart with Capacitor \$10.75; without Capacitor . \(\$ 10.25\)

Eastern Air Device J50E Dual Centrifugal Blower, 115 volt 60 cycles 0.1 emp .1 PH 20 C.F.M. Continuous duty 1.0 M.F.D. Capacitor atart with Capacitor \$18.78; without Capacitor 818.28

Miniature lamp T11/4. 8 volt .19 amp . Atrplane Indicator, Amb. Cta.
10 for 81.00 100 for 88.50

As Automatic pllot Directional Gyro made by SPERRY'S Part \# 856029.
AMMETER, 150/300 dual range Triplet 341A \(31 / 2^{\prime \prime}\) rectanglar flush bakellte 5 amp Movement (a) \(\$ 4.95\) with external current transformer for 150 amp Oniy \(\$ 7.50\)

Square D Circuit Breakers Push Type AN3161-35 35 amp . (1) 30 volt D.C.

Square D Bat Handle Circuit Breaker Type ANs 160-15 30 volt (10 amp. 2mp. each

SEND FOR FREE BULLETIN
DIgby 0 -2188-9
A. Cottone \& Company

Electronic Mechanical \& Optical Components
336-340 CANAL ST., NEW YORK 13, N. Y. ALL PRICES F.O.B. N. Y. CITY

Type A- \(300 \mathrm{mmf}-100\) for \(\$ 20.00\)
Type B— \(\mathbf{3 0 0} \mathbf{~ m m f}-100\) for \(\$ 20.00\)
Type C- 55 mmf - 100 for \(\$ 10.00\)

\section*{ELECTRO IMPULSE LABORATORY}

62 White St. Red Bank, N. J.

\section*{ELECTRONIC TUBE-MAKING MACHINERY}

For manufacturing radio tubes, electronic tubes, cathode-ray tubes, lamps. New and used. Reasonably priced, satisfaction guaranteed.
67 A 8 Eh
67 E. 8th St.

\section*{PHITICIN SALLES}

1062 N. Allen Ave. SYcamore 4-7156 Pasadena 7, Calif.

RYan 1-8271
WRITE FOR OUR LATEST 24 PAGE SURPLUS SALES CATALOG
WE WILL BUY YOUR NEW OR CLEAN USED ELECTRONIC SURPLUS: ARC-I ARC-3, BC-224, BC-348, BC.312, BC-342, TS.12, TS.13, TS-23, TS-34, TS-35, TE-19A, 1.222, SCR-522, TS-100, 1-100, or any BC,

I, IE, TS, APR.

\footnotetext{
WREATE FOR PRICES. APE4, APRSA. TS-34, B04CS2, BC-348, ART-13, TS-12, ARC-1, APN-9, BC-610, TCS, \(304 \mathrm{TL}, 889 \mathrm{R}\).

Weston 769 Electronlo Analyzer
Weston 779 Analyzer LIKE NEW \begin{tabular}{l}
LIK \\
\(\$ 200.00\) \\
100.00 \\
\hline
\end{tabular} APN-1 Attimeter Indicator \(0-1 \mathrm{ma}\). shunt. \({ }_{\text {HE36A }}^{250^{\circ}}\) dital \({ }_{1}^{1 \text { R3BA }}\) Test Sets for SCR-522
TS100/AP Oscliloscope.
DuMont 241 Oscillograph
DuMont 208 Oscillograph ..EXC. \({ }_{225}^{2500}\) cel hColk Frequency Meters xtal. tubes. \(\quad 99.50\)

 Drafting Machine single gcale \(10^{\circ}\) fulerum

Recelver-Indicator R-65/APMo Complete
400.00

\section*{TS-148/UP, Large Qucatity BC-348's, TS-12, TS-13, TS-100, ID59/APA-11 Indicator.}

Write for Prices. NOTE: One of the largest and most complete elec-
tronic surplus stockg in the country. We have thousands of tubes. capactors, plugs., accessortes. transmads ors rubes. capacitors, pluks, accessories.
trest equipment, etc. Bend
us your requirements.
TERMS: Prices F.O.B. Pasadena, California. \(25 \%\) on all C.O.D. orders. Callfornians odd 3\% Sales Tax. Prices subject to change wlthout notice.
}

\section*{COMMERCIAL BUYERS HANDSETS and HEADSETS}

\section*{AVAILABLE FROM STOCK:}
\begin{tabular}{cccc}
TS-9 & TS-13 & H-22 & P-20 \\
TS-10 & TS-14 & H-23 & HS-18 \\
TS-11 & TS-15 & F-3 & HS-30 \\
WESTERN & ENGINEERS LTD. & ELK & GROVE, CALIF. \\
BOX 5
\end{tabular}

Slx-Pole Double Throw Alliod \# BN-IBD. 39 has 10 AMPERE CONTACTS 2800 ohm coll operatas
 Struthers-Dunmillisv, AC Coll Micalex Base \& Cross-
arm D.P.D.T. we contacts conservatively rated 6
 D.P.D.T. ets. Ceramio insulation 120 \(\$ 3.95\) Other Specs as Above............................ \(\$.95\) Leach Relay \# 1024 -A 3 Pole N.O. 100 ohm ooil op-
 G.E. Relay FCR 2791-BiO9P30- 10, P.D.T. ohm ooll operates on 8 mills DC......................... \(\$ 1.95\) Allied \({ }^{\text {F }} 80635\) D.P.D.T. is imp. ots. 24 v . do 230

RADIO DEVELOPMENT EO SALES CO

\section*{SURPLUS COMPONENTS}

Potentiometers-Carbon \(\&\) wire wound
Tubular condensers-tooth-pick types Standard Brands-large quantities

Hesistors-1/2, 1, 2 watt Wide range of values
TRANSFORMERS-Modulation-power-line
Write for Listings

\section*{J. ZIED}

132 S. 11 th St. Phile. 7. Pa. PEnnypacker 5-9146

\section*{REAL VALUES!}

\section*{CATHODE RAY TUBES}
 16DP4-\$19.95 16JP4-\$19.95

\author{
\begin{tabular}{ll}
\hline T85/APT-S & TS126 \\
BC638 & TS131 \\
BC1287 & TS159 \\
\(8 C 1077\) & TS170 \\
\(183 G\) & TS184 \\
\(186 A\) & TS551 \\
1114 & TA-2J24 \\
1135 & R132/TPS10 \\
1183 & R18/APN4 \\
1185 & R70/APS3 \\
1187 & AS18/APS15 \\
1198 & RC213 \\
IE36A & RT34/APS13 \\
extra meters also & available \\
TS10APN & RT28/APG4X \\
MD4/APS2 & RT19/ARC4 \\
MD5/APS3 & RT48/TPX \\
MD22/UPN2 & RT73/UPN \\
MD38/APQ13 & RT10/APS3 \\
TS16APN & AN/APT4 \\
TS27/TSM & APS4 \\
TS61 & TS51 \\
TS89 & TS69 \\
TS92 & PPICES \\
& UPON \\
\end{tabular}
}

All kInds of dynamotors and Inverters in stockwrite Today!

We carry a complete stock of electronic equipment.
A copy of our now bulletin is avallable upon request,

Shipments FOB warehouse. \(\mathbf{2 0} \%\) Deposit on or ders. MInimum order \(\$ 5.00\). Illinols residents, add regular sales tax to remittance. Prices sublect to shange without notice.

SCF 625
FAMOUS ARMY MINE DETECTORS for prospectors - miners - oll
companies-plumbers-etc. companies-plumbers-etc.-etc.,-etc.
This undt is belng offered now at a considerable reduction
Recentily advertised at
\(\$ 79: 50\)
it it is now quailable in the same brand carrying case (less battories) \({ }^{\text {carrs }}\)
```

WHILE THEY LAST

```

USED,
LIKE NÉW
\$39.50

\section*{SCR 508 EQUIPMENT}
BC 605 Amplifier \(\mathrm{L} / \mathrm{dyn}\)
BC 60 C
Control Bon
FT 237 Mounting
DM 34, Dynamotor
DM 33, Dynamotor
DM 35, Dynamotor.
DM 3. Dynamotor.........
Crystals, set of 80 ...

RA 52-RECTIFIER
A transtat controlled rectifler to produce high voltage DC 50 watts. Metered high voltage (\(0-15 \mathrm{KV}\)) and volts DC at currect (\(0-20 \mathrm{MA}\)). New......................... \(\$ 44.50\)

\section*{Small Lot Sale ARMY \& AR FORCE Surplus Radio \& Electronic's}

JANUARY 15, 1952
Due to our inabjlity to procure sufficient merchandise for continued operation, we are liquidating our entire stock of surplus consisting of approximately

\section*{300 tons of equipment!}

Inspection dates January 12 th to January 15th at 1 PM-when Bids will be opened.
Further particulars may be had by calling Mr. Strickland, Jacksonville, Fla. Phone 3-0410 or Mr. Stephens at Jacksonville Beach, Fla. Phone 5-4893. Call either at Jacksonville 3-8686 daytime.

\section*{EAST COAST RADIO CO.}

IMESON AIRPORT JACKSONVILLE, FLA.

\section*{- SELENIUM REGTIFIERS}

Full-Wave Brldge Types
\begin{tabular}{|c|c|c|c|c|}
\hline Current & 18/14 & 36/28 & 54/40 & 110/100 \\
\hline \begin{tabular}{l}
(cont.) \\
1 Amp.
\end{tabular} & Volts & Volts & Voits & Volte \\
\hline 2 Amps. & \$2.40 & 3.75 & \$6.95 & \$10.50 \\
\hline 4 Ampt. & 3.85 & 7.00 & 9.00 & 13.00 \\
\hline & & & & (2. A.) \\
\hline 6 Amps. & 5.65 & 9.00 & & 19.00 \\
\hline 10 Amps. & 6.95 & 10.95 & & 48.00 \\
\hline 12 Amps. & 8.50 & 14.00 & & 58.00 \\
\hline 20 Amps. & 13.25 & 20.50 & & \\
\hline 24 Amps. & 14.00 & 26.00 & & \\
\hline 30 Amps. & 19.00 & 30.00 & & \\
\hline 36 Amps. & 25.50 & 35.00 & & \\
\hline
\end{tabular}

All our Rectifiers are now \& Guaranteed one year. We manufacture special types of rectifiers and rectifier supplies to your specs . . FAST DEIVERY.
LOW PRICES.
- NEW, SELENIUM RECTIFIERS,

TRANSFORMERS
 Sec: 18, 24, and 36 volts. \(\left\{\begin{array}{l}12 \text { amps. } 14.75 \\ 24 \text { amps. } 33.75\end{array}\right.\)

Designed for bridge or center-tap use. These
transformers are not surplus, but are made
to our specs by a leading m'fr.
- 110 V . pri.-36V. 50 amp second XFMR Special. . . \(\$ 39.95\)
- 110 V. Selenium Rectifier Specials
\(1 / 2\) wave.... \(65 \mathrm{ma} .\). . only 59 ea
\(1 / 2\) wave. . . . 450 ma. . . . only \(\$ 1.65 \mathrm{ea}\) ea.
- Carter, 6 V. Dynamotors, in orig. Factory Cartons.-400 VDC @ 375 ma

List Price \$71.40-Special \$28.00
QUALITY, TESTED TUBES
"Standard Brands-Fully Guaranteed"
New and guaranteed in stock now, many others not prices. Submit your requirements on any types for our quotation, Call us on WESTINGHOUSE In.
0a2. 2100 12ar7
\begin{tabular}{|c|c|c|c|c|c|}
\hline \(00^{2}\) & & & & & \\
\hline & 65 & & & & \\
\hline \({ }_{1} \mathbf{0 2 4} 22\) & 2.25 & & 3.00 & & \\
\hline & 8.00 & & 1.25 & & \\
\hline & & & 1.25 & & \\
\hline & 15.00 & & & 87 & \\
\hline 1 & 4.00 & 10 & 1.25 & & \\
\hline \({ }_{1}{ }^{1} 218\) & 3.50 & 102-L & & & \\
\hline \({ }_{1}{ }^{2} 23\) & 1.45 & 104-D & 1.25 & & \\
\hline \(\mathbf{1 N 2 3}^{\text {2 }}\) & & 21 & . 65 & 958- & \\
\hline \({ }^{1}{ }^{1}\) & 4.00 & & 4.00 & 1613 & \\
\hline 1N34 & & \({ }_{275-A(W}^{27-B(W}\) & & & \\
\hline 2 C 40 & 5.75 & 310-A \({ }^{\text {W }}\) & 6.5 & & \\
\hline 2 E 24 & . 75 & 31 & 7.50 & 1629 & \\
\hline 2 L 26 & 3.75
3 & 359 B WE) & 1.25 & & \\
\hline \(2 \mathrm{2E30}\) & 2.35 & 359-B/WE & 2.50 & & \\
\hline \({ }_{2132}^{2161}\) & 35.00
35.50 & 373-A WE & & & \\
\hline 2425 & \({ }^{37.50}\) & 387-A W & 2.50 & & \\
\hline \({ }_{3} 21481\) & 17 & \({ }^{400} \mathbf{A}\) (W & 2.50 & & \\
\hline \({ }^{3} 124\) (& 10.75 & 403-B/559 & 3.2 & 990 & \\
\hline 3BP1. & \({ }^{7} .25\) & \({ }_{5}^{408-A}\) (WE) & 3.25 & 9005 & \\
\hline \({ }_{3 C 23}\) & 10.00
9.75 & & & & \\
\hline \({ }^{30} 3012\) & 5.95 & & & & \\
\hline & 24.90 & & & & \\
\hline \({ }_{5 F P}\) & 1.95 & & 7.95 & & 4. \\
\hline \({ }_{5}^{51 P 1}\) & 22.50
15.75 & 71 & 1.00 & FG & \\
\hline \({ }_{5} 5 \times 4.5\) & 1.10 & & 9.00 & RK-34.. & \\
\hline & 1.50 & & 22.95
14.00 & RK-47 & \\
\hline 684 & 1.25 & & .95 & & \\
\hline & . 95 & & 5 & & \\
\hline & & 813 & & VR-105 & \\
\hline 15-E & & 814 (G.E.) & & & \\
\hline
\end{tabular}
"NOTE: COLLEGES, UNIVERSITIES, INSTITU. TIONS, OR ANY SMALL QUANTITIES-SUBMIT DE. TAILED LIST FOR OUR CASH OFFER."
- RG 59/U-73 OHM. CO-AX. CABLE. . . \(\$ 55.00 / \mathrm{M}\) FT.
Revr. The AR-11, 35 Watt Transmltter and Superhot Revr Complete with 110 and/or 220 . A.C. Owr (orig. cost \(\$ 550.00\))-Ten Sets in Stock. Write for price and further Information. See our Dec.
- ART-1-Compact, Now, Alrcraft 3105 KC . Trant. mitter-6"x \(\mathbf{6}^{6}-\) Completo................... \(\$ 25.00\) Terms: FOB NYC- \(25 \%\) Dencot \(\$ 75.00\) send full remittance to save COD warges send full remittance to save COD charges-Rated
Firms (D.\&B.) Net 10 davs - All merchandise guaranteed. Wherever possible, extend D.O.

Phone: REctor 2-2563
Cable: Barrylect, N. Y.

:
ELELTROMILS [ORP
136 Liberty Street
New York 6, N. Y.

\title{
COMMERCIAL BUYERS TUBES
}

\author{
AVAILABLE FROM STOCK:
}
\begin{tabular}{|c|c|c|c|c|}
\hline 1 A3 & 6 AK5 & 6SH7 & \(2 \mathrm{C40}\) & 803 \\
\hline 1 L4 & \(6 A Q 5\) & 6SJ7 & 2 E 22 & 807 \\
\hline 1 R4 & 6C5 & 6SK7 & 3 A 4 & 814 \\
\hline 1 R5 & \(6 F 6\) & 6SL7GT & 3 BP 1 & 829B \\
\hline 155 & 6H6 & 6SN7GT & 3C24 & 833A \\
\hline 1 14 & \(6 J 5\) & 6V6GT & 4 C 35 & 866A \\
\hline 354 & \(6 J 6\) & 6X5GT & 5D21 & 959 \\
\hline 5U4G & \(6 \mathrm{K7}\) & 6Y6G & 6.4 & 1624 \\
\hline 5Y3GT & 6 L 6 & \(12 \mathrm{AX7}\) & 100TH & 5528/ \\
\hline 5 Z 3 & 6L6GA & 12SG7 & 250TH & C6L \\
\hline 6 A7 & \(6 \mathrm{L7}\) & 41 & 304TL & 8012 \\
\hline 6 AC7 & 6 Q7 & 42 & 394A & RK-60 \\
\hline 6AG5 & 6SC7 & 78 & 450TH & VR-90 \\
\hline 6AG7 & 6SF5 & 80 & 723A/B & WE6AK5 \\
\hline \begin{tabular}{l}
WESTERN \\
BOX 5
\end{tabular} & ENGINE & LTD. & ELK GR & \begin{tabular}{l}
VE, CALIF. \\
TEL: 129 J
\end{tabular} \\
\hline
\end{tabular}

\section*{TUBE SPECIALS}

\section*{STANDARD BRANDS}
\begin{tabular}{lr|lr|lr}
1B3 & \(\$ 1.35\) & 6AQ5 & .80 & 6SN7 & 1.09 \\
1LN5 & .95 & 6AT6 & .70 & 6SU7GTY \\
1N21B & 3.50 & 6AU6 & .79 & & 2.50 \\
1N23B & 4.00 & 6AV6 & .60 & 6V6GT & .89 \\
2A3 & 1.45 & 6BA6 & .79 & \(12 A 6\) & .70 \\
5U4 & .79 & 6BG6E & 1.89 & \(12 A T 7\) & 1.19 \\
5V4 & 1.20 & 6BQ6 & 1.59 & \(12 A U 7\) & 1.19 \\
5Z4 & 1.20 & 6C4 & .85 & \(12 A X 7\) & .95 \\
5Z3 & .85 & 6CD6 & 2.25 & \(12 A Y 7\) & 4.50 \\
6AB5/ & & 6H6M & .85 & \(12 B A 6\) & .69 \\
6N5 & 1.25 & 6J7GT & .80 & 12 BE6 & .69 \\
6AC7 & 1.29 & 6K6 & .75 & \(12 H 6\) & .59 \\
6AG5 & .90 & 6N7M & 1.20 & 12 GGT & .65 \\
6AG7 & 1.65 & 6R6 & 1.50 & \(12 S K 7 G T\) & .79 \\
6AK5 & 1.20 & 6SH7 & .95 & \(25 W 4\) & .90 \\
6AK6 & 1.10 & 6SC7 & 1.25 & 59 & 1.50 \\
6AL5 & .79 & 6SL7 & 1.10 & \(89 Y\) & .75 \\
& & & & &
\end{tabular}

Many more types in stock. Write for quotations.
\begin{tabular}{lr|lr|lr}
2C40 & 9.50 & 304TH & 12.49 & 884 & 1.70 \\
2C51 & 5.95 & 350 B & 5.50 & 931 A & 6.75 \\
2E25 & 5.95 & 394 A & 5.50 & CK1005 & .79 \\
2D21 & 1.65 & 446A & 1.95 & 1655 & 2.95 \\
2K29 & 21.95 & 450TH & 36.95 & 2051 & 1.65 \\
3B24 & 5.35 & 715B & 9.50 & 5663 & 2.45 \\
6J4 & 6.75 & 721A & 3.45 & 5670 & 5.95 \\
T20 & 2.25 & 723A/B & 13.95 & 5749 & 4.95 \\
TUF20 & 3.95 & 807 & 1.45 & 5814 & 4.95 \\
TZ20 & 2.25 & 807 \\
TZ40 & 3.25 & 837 & 1.75 & 8025 & 5.75 \\
CK70 & 4.95 & 809 & 2.25 & 9001 & 1.75 \\
RK73 & 1.50 & 829 B & 13.95 & 9002 & 1.50 \\
T200 & 16.95 & 832 A & 11.95 & 9003 & 1.75 \\
304TL & 12.49 & \(866 A\) & 1.30 & 9005 & 1.75
\end{tabular}

All tubes are subject to prior sale. \(20 \%\) deposit anything in electronics.
(WE ARE SPECIALISTS IN JAN TUBES)

\section*{Nat Adelman}

168 Washington St. New York 6, N. Y. CO 7-6091

\footnotetext{
FOR SALE
Beryllium Copper Strip
\(0062(+-.0005) \times 5^{\prime \prime} \times 60^{\prime}\) No. 1-B \& S Hard 700\# Available
GLOBE TRADING COMPANY
1815 Franklin Street Detroit 7, Michigan
}

\section*{BUUY WITH RONFIDENCE}

New - Electronic Materials • Guaranteed
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{4}{|l|}{RELAY SPECIALS} \\
\hline Type & Coll & Contacts & Features & Price \\
\hline Sigma is & 65 (2) & SPDT & 2-24 VDC & \$2.4 \\
\hline Sigma \({ }^{\text {f }}\) & 65 (2) & SPDT & CASED & 3.45 \\
\hline Sigma \({ }^{\text {f }}\) & 5000 (2) & SPDT & 1 tor ma pla & 4.75 \\
\hline Leach 1077BF & 160 & DPDT & CERAMIC & 45 \\
\hline Leach P-3 & 1280 & SPDT & 15 ma submi & in. 85 \\
\hline G.E. & 2000 & SPDT & 4 ma plugin & 2.95 \\
\hline Clare SK-5032 & 32 & DPDT & 6 VDC plugin & n 3.45 \\
\hline W. E KS-9665 & 2000 & 1A, 113, IC & 9 ma & 4.45 \\
\hline A-B B5 & 100 & SP solenoid & 50 A 24 V & 1.85 \\
\hline A-B B6B & 65 & SPST & 100 A 24 V & 2.95 \\
\hline Hart B5 & 100 & SP solenoid & 50 A 12-24 V & 1.95 \\
\hline Allied BOD 35 & 200 & 4 PDT & 10 A cont. & 3.25 \\
\hline Allied DO9D 28 & 14 & 3PDT & 6 VDC & 2.15 \\
\hline GM 13016 & 200 & 4 PDT & 10 A cot. & 3.75 \\
\hline GM & 5000 (2) & 4PDT & 8 maplate & \\
\hline Edison 19756R & 2000 40- & -65 sec & & \\
\hline
\end{tabular} 1 RPM 10 V 60 TD. SP NO 208 V plugin 1.75 \begin{tabular}{l}
1 RPM 110 V 60 cy \\
MOTOR HIGH GEAI TORQUE RATIO \\
\hline
\end{tabular}

OIL CAPACITORS
FACTORY CLEAN CONDITION
CHANNELS-YAB CP69, YAT CP67. WAB CP65, BATHTUBS-side. top, hottom term. CP53. CP54. GP55 \& special CA numbers. . Voltages: 50 Single Dual Triple Units - Voltages: 50 \(100,200,400,{ }^{6} 60,1000,1500\).
Most items in large mfg . quantities, properly Most items in large Mfg . quantities, properly
packaged. See our Adv. in Oct. Electronics, pg 376, for partia listing. If vour requirements are not shown check \(\frac{\text { with us as now items arrive daily. }}{\text { COAXIAL R F CONNECTORS }}\) DELIVERY STOCK R NEW MERCHANDISE

 UG-58A/U 1.20 UG-260/U 1.20 PL-274 1.20 SPECIAL ONE DAY SHIPMENT SERVICE ON ALL EL-MENCO PRODUCTS AT TRADE DISCOUNTS
MICAS-CM-15. CM-20, CM-25, CM-30, CM-35,
 Ceramic Cocial kits. Types CC. CCD, CCDN Paper Tubular CP Type Capacitors. 200, 400, 600, 1000 volt units.
Large stocks on hand allow same day dellvery as too small or too larine. No surplus. No orde

ELECTRONIC SPECIALTY SUPPLY CO.
56 Lispenard St. Barclay 7.2684 New York 13, N. Y

\section*{ENTIRE ELECTRONIC LAB}

SIGNAL GENERATORS, QMETER, BRIDGES LATHE, MILLER, SHEARS, ETC. ENTIRE LOT ONLY, NO INDIVIDUAL UNITS. LIST AVAIL. ABLE.'

\section*{}

Look!Been Searching for Any of These? New And Used Electronics Equipment

RECEIVERS
BC-453 Range Band \(\$ 22.50\)
BC-454 3-6 MC
BC-455 6.9 MC \(\quad 8.50\)
BC-433G Compass \(\quad 22.50\)

BC-357 Marker Beacon 22.50

BC.733D Localizer 24.50
```

Dynamotors-All New
DM-32A _ 8.50 PE-86 . 5.00
DM-33A _-.8.50 PE-94C .5.00

```
BC-347 Interphone Amplifier -
 New
 \$ 2.95
BC-2 12 Interphone Amplifier -
 New -․-.--------- 3.50
BC-442 Antenna Relay............ 3.75
BC-929 Scope Indicator-New 18.00
BC-450 3 Rec. Control Box -
 New
CD 307 Extension Cord-New
AT-2A/APN-2 Antenna-New4.50
AN-104A Antenna - New
LC-98 Type Cert. Jack Box25.00
LC-99 Type Cert. Intercom.
Box .------- -
\[
12.50
\]
AM-5A/APS-4 Control Box
Less Tubes
AS-69/APT Antenna - New.-.--
AT-39A/APT Antenna -
\[
\text { New .an } 6.25
\]

\section*{DAVE RUWPH CO. \\ P. O. Box 4178 \\ FORT WORTH 6, TEXAS}

\section*{PANEL METERS}

LARGE STOCKS-GUARANTEED ACCURACY COMPLETE WESTON and

CHECK AMERICAN FIRST
For LOW Prices and SPEEDY Service
Att. Mr. P. A. Att. Mr. Engineer LAB AT YOUR SERVICE:
Complete CONVERSION Facilities, Special SAILÉ, SPecial DESIGN, CALIBRATION,
SPECIAL OFFERINGS PANEL METERS
W.

DEJUR \(\quad 2^{2}\) RD \(\quad 0-500\) Microamp D.C. 5.95
G.E.SSON \(\quad 2^{2}\) RD \(0-300\) Mil D.C. 4.95

WESTON Lid 2 "SQ \(0-500\) Mil R.F. 4.45
WESTHS \(3^{\circ} \mathrm{SQ} 0-200 \mathrm{MilDC} 6.95\)
SPECIAL OFFERING-LAB TEST EQUIP-
GEN. RDIO B.F.O.No. 716
Hoops Conductivity
FERING-PORTABLE LAB
\(801 \%\) Mirror Scale 6 Ranges
3.V. 15 V. 150 V. D. C. 24. SENSITIVE RESEARCH, G. E.,
Westinghouse Lab. Standards
Inquiries promptly Answered
AMERICAN ELECTRONICS
29 So. Park Ave., Rockville Center, L. I., N. Y RO 6.0207

\section*{STEVE-EL IS your RELIABLE source for SPECIAL PURPOSE \& TRANSMITTING TUBES}

\section*{All tubes are standard brands and fully guaranteed!}

OUR NEW BARGAIN CATALOG IS OFF THE PRESS! Your copy is waiting-Send postcard today!

Terms: 20\% cash with order, balance C.O.D. Prices F.O

Dept. EL-1 61 Reade St., N. Y. 7, N. Y.
COrtlandt 7-0086

VISIT OUR NEW STORE

\section*{HIGH FREQUENCY EQUIPMENT}

Holtzer-Cabot MG set, \(800 \mathrm{VA}, 3\) phase. 400 cycies. 115 V . Self-excited. Belt-driren by 2 HP motor \(220 \mathrm{~V},{ }^{3}\) ph. 60 cy. with voltage regulator \(\&\) Ballantine MG set. NEW IKVA single-phase, 400 cycle alternator. 115 V . Separately excited. Beltdriven by 2 HP motor, 220 V . 3 ph., 60 cy . With
voltage regulator \& variable speed sheave. \(\$ 250.00\) Nowton MG set. \(31 / 2 \mathrm{KVA}\), single-phase, 400 cycle. Belt-dripen by \(71 / 2 \mathrm{HP}\) motor, \(220 \mathrm{~V}, 3\) ph., 60 cy .
With voltage regulator \(\&\) variable speed sheave \(\$ 795.00\) Pioneer'-Gen-E self-exciterl alternator, 115 V , singlo.
phase, 400 cycle, 1.25 amps. Belt-driven by 220 V single-ph., 60 cy. synch. motor. With voltage regulator \& variable speed sheave. Frequency Continental DC to AC 800 cycle MG set. Motor: ohase and 14 V DC Raytheon Voltage Stabilizer, Spec, \#W-5799. Input: \(225 \mathrm{~V} \pm 10 \%\). 8.7 amps. 60 cy. single ph.
Output: \(\quad 11.0 / 11.0 / 220 \mathrm{~V}\). 1620 watts. \({ }^{\text {PF }} 100\) American Plate Transformer. Type OISC, 10.4 KVA cont. 60 cy ., single ph. Add. polarity. \% IZ. \(75^{\circ} \mathrm{C}-4.0\). Indoor service. PTimary volts 115 , Sec -
ondary volts 17,600 . With retard coil. . . \(\$ 50.00\) \({ }^{10}\) ASSORTED CIRCUIT BREAKERS-G.E.,
\(\begin{array}{ll}1 \text { unit }-15 \mathrm{amp} . & 1 \text { unit }-50 \mathrm{amp} . \\ 2 \text { units- } 25 \mathrm{amp} . & 3 \\ 2 \text { units }-100 \mathrm{amp} . \\ 2 \text { units- } 35 \text { amp. } & 1 \text { unit }-200 \mathrm{amp} .\end{array}\) 2 units- 35 amp. \(\quad 1\) unit -200 amp. Price for lot \(\$ 100.00\)
EDWARD WOLF COMPANY 360 Norfolk St. Dorchester 24, Mass.
GEneva 6-6278

\section*{FOR SALE}

1 REL Model 600 FM Broadcast Modulation and Fraquency Monitor
 Los Angeles 28 KMPC

California
\begin{tabular}{|c|c|c|}
\hline 1 & 11 & 0F引 Bi \\
\hline D 401 & BD77 & Dy22 \\
\hline DAIA & BD69 \({ }^{\text {B }}\) & \({ }_{\text {DA1F }}\) \\
\hline \(\mathrm{Dm}^{\text {m }}\) & BDAR93 & SP175 \\
\hline \(\mathrm{Dm}^{28}\) & PE73 & M L4520 \\
\hline & PE86 & DA7A \\
\hline \({ }_{\text {D }}{ }^{\text {m }} 34\) & Pe94 & 651 \\
\hline DM36 & DM19 & D101 \\
\hline Dm37 & PE55 & Dy82 \\
\hline Dm53 & M 3420 & DA3A \\
\hline
\end{tabular}

And other numbers. (Send us the numbers nced. All types of DC miotors, Generators. Wanted DM32-35-36-40-41-42.43-53 Dynamotors.
State quantity. condition \& price. Need BC620-788 State quantity, condition \& price. Ne日d BC620-788
SCR 522 . Units and component Parts also ART-13 syutipment.

VETS. DIST. CO.
3613. Western Pky., Louisville 12, Ky. Cy. 8904

\section*{WE HAVE LARGE \\ QUANTITIES OF}

Metropoutan Overseas Suppiy
manufacturers and distributors aras OF ELECTRONIC PRODUCTS

ORPORATION CHELSEA 3-1105

\section*{DEPENDABILITY IN ELECTRONICS}

WE ARE NATIONAL DISTRIBUTORS OF PARTS, TUBES AND EQUIPMENT. WE SOLICIT INQUIRIES FROM ORGANIZATIONS WHO APPRECIATE INTELLIGENT SERVICE AND HONEST PRICES, PARTICULARLY AT THESE CRITICAL TIMES.

\section*{NORMAN RADIO DISTRIBUTORS: NC.}

\section*{WESTINGHOUSE HIPERSIL CORES}

Quantity Gauge Width Uuild Window Window \(\begin{array}{llllll}\text { Quantity Gauge } & \text { Width } & 11,365 & .003 & 11 / 8 & 1 / 2\end{array} \quad 7 / 16 \quad 3\) \(\begin{array}{llllll}3,741 & .003 & 7 / 8 & 3 / 8 & 7 / 16 & 3\end{array}\)

Available for immediate delivery
RAYTHEON MFG. CO.
Surplus Sales Dept. Waltham, Mass
Tel. Waltham 5-5860—Ext. 2

\section*{Portable Instruments}

Molded Bakelite case \(7^{\prime \prime} \times 41 / 2^{\prime \prime} \times 3^{\prime \prime}\) D.C. MICROAMMETERS
5..10.. 50 microcrmperes

THERMOCOUPLE MILLIAMMETERS
1,5.5. 10 milliamperes
THERMOCOUPLE VOLTMETERS
5 to 500 volts
Available in multiple range
combinations
Precision Electrical Instrument Co.
146 Grand Street New York 13, N. Y.

\section*{WANTED}

Your Surplus laboratory Equipment, Tubes and Parts

Particularly items of good qualityBoonton, Ferris, L\&N, G-R, etc. Also MILITARY SURPLUS Items, wuch as ARC-1, ARC-3, ART-13, APR-1, APRA, APR-5A, BC-348, etc. Transmitters, Receivora and components; TS-34 and other "TS." particularly for the Microwave region; also all kinds of quantity stocks of tubes, mefers, spare parts and wise. SELL NOW during this period of temporary shortage, ob tain top price and aid the defense effort.

\section*{FOUCATIOMA IISTITUTIONS}

We buy for cash, or will trade for equipment you need
We specialize in reconditioning and assembling complete sets of equipment for use in the nation's laboratories and facfories. We can, for instance, supply complote APR-4 RECEIVING EQUIPMENT, with continuous coverage of the frequenc range

ENGINEERING ASSOCIATES
434 Patterson Road Dayton 9, Ohio

\section*{GET OUR PRICE for your}

RADIO 8. AIRCRAFT EQUIPT!
We'll go the limit to buy your parts or equipment Send us a description of the type and condition of equipment you have-tell us your top dollar asking priee and be pleasantly surdrised at the fast action you'll get 1
341 s. Vermont Ave., Los Angeles 5, Calif.

\section*{WILL BUY}

TESTING CHAMBERS
Approx. 9 cu. tt. plus or minus. Cold and Hot minus \(65^{\circ} \mathrm{F}\). to plus \(125^{\circ} \mathrm{F}\). with controls Indicators preferred.

PHONE - WIRE - WRITE
kINGS COUNTY MACHINERY EXCHANGE
408 Atlantic Avenue, Brooklyn 17, N. Y. Deptr "E"

\section*{WANTED}

WE NEED YOUR SURPLUS ELECTRONIC COMPONENTS OR EQUIPMENT
WE PAY TOP \(\$ \$ \$ \$ \$\) FOR:
Hadio Compozents Wire \& Cable
Instruments Selsyns or Relays
Tubes
Equipment
Receivera
Receivers
Television
Components
Selsynz or
Synchros
Autosyns
Motors or Generators

Components Air Cooled
available sond your listing of materials available or place our name on your mailing list to receive any listings you may issue.

TECHNICAL MATERIALS COMPANY
104 Pearl Street Boston 10, Mass.

\section*{WANTED}

PARTS
\begin{tabular}{cc}
HEADSET & HANDSET \\
BANDS & BODIES \\
UNITS & CAPS \\
CORDS & UNITS
\end{tabular}

WESTERN ENGINEERS LTD,
Box 5
Elk Grove, Calif.

\section*{AARON \\ ELECTRONIC SALES}
moved to new quarters:

\section*{6025 MT. ELLIOTT} DETROIT, MICH.

\section*{Tel: WA Inut 1-8481}

Try us for hard-to-get electronic test equipment, transmitters, receivers, etc.

> We BUY and SELL all types of electronics

\section*{WANTED}

DYNAMOTORS , SELYOUR SPARE SURPLUS EQUIPMENT
Ploase rend list stating TEST EQUIPMENT
No Quantity Too Small or Too Larbel
C \& H SALES COMPANY
BOX 356.SE EAST PASADENA STATION PASADENA B, CALIFORNIA

\section*{columbla electronics Tid.}

\section*{EQUIPMENT} WANTED!

We want to buy all types of surplus electronic equipment. We are one of the largest buyers in U. S. We buy more because we give every seller top prices and a fair deal. TELL US WHAT YOU HAVE. USE COUPON BELOW-AND MAIL TODAY!
\begin{tabular}{l|l|l|l}
\hline Use following numbers to indicate conditions: \(N-1\), brand new; \(N-2\), used, like new; \(N-3\), used. \\
\hline ITEM & CONDITION & PRICE WANTED \\
\hline
\end{tabular}

\footnotetext{
To: COLUMBIA ELECTRONICS LTD., 524 5. San Pedro St., Los Angolea 13, Calif.
}

Nome
Addrass
SEE COLUMBIA ELECTRONICS AD ON PAGE 349

\section*{WANTED}

Absolute top cash prices paid for new or surplus special purpose tubes and X'tal diodas. The following are urgently needed immediately! Any quantity, 1 to 3000.
2K25/723A/B: 393A: 1Q26: 1S21: 2K39: 3C22: 3C45: 4C35: 4152: 5C22: 5R4: 6AN5: 6AS7: 6J4: 6L6M: 83: 502A: 726BC: 575A: 810: 2050: 5651: 5670: 569(2)(3): 5751. And many others.
If you hove any merchandise thut you think we would be interested in; write AT ONCE, enclosing FULL DETAILS, TO:

\section*{MICROWAVE}

ATTN: JOS. ANZINO
642 East 230 St., Bnx. 66, New Yurk

\section*{WANTED}

Sweep Radar Assembly Heavy type English design type 3107

Sweep Radar Beacon (English design) type Eureka II

Same as above (American type) AN:PPN2 Eureka II

\section*{HUBERT J. BURKE}

4949 Washington Ave. Little Ferry, N. J.

\section*{G.E. HEAT UNIT}

Cap. 20 K.W.
Hi-Frequency Induction Model 4F20 for 3/60/220 Like New (1948) with work Table 2 positions.

Price . . . \(\$ 7,500-F . O . B\). Bklyn.
KINGS COUNTY MACHINERY EXCHANGE
408 Atlantic Ave., Brooklyn 17, N. Y. Dept. "E"——Phone: TRiangle 5-5237

\section*{FOR SALE ELECTRICAL STEEL}

We can offer about \(26,000 \#\) of Hi Grade Strip-. \(005 \times 123 / 8\) " "Hipersil" 31/4\% Transformer grade - In Coils weighing about 900\# each-Material new and prime bul outside wrap weather discolored.

\section*{GLOBE TRADING COMPANY}

1815 Franklin Detroit 7, Michigan Phone-WOodward 1-8277

\section*{WHOLESALE ONLY \\ ELECTRONIC COMPONENTS AIRCRAFT EQUIPMENT HYDRAULICS \\ RADIO \& ELECTRONIC SURPLUS 13933-9 Brush St. Detrolt 3, Mich. Phone Townsend 9-340s}

Wholesale Dealers in government surplus
- electronic components,
- units, wire, etc.

LAPIROW BROS.
1649 Hoffner St. Cincinnatl 23, Ohio

\section*{WANTED}

Any quantity of C6J or CI6J. Electronlc Tubes
 \({ }_{S}^{2402-\mathrm{SB}}\).
State quantities avallable and beat price for each
size. Reply to Box Number ize. Reply to Box Number

330 W. 42 -8t., New York \(18, \mathrm{~N}\). Y.

\section*{LAST CALL! Surplus New DIVERSIM}

Receiving Equipment
ALSO BC 223AX TRANSMITTERS 330 W. 42 St., New York 18, N. Y.

Sell Your Surplus to Gould Green
We buy and gell every type of electronle materlel. including war surplus. Let us submit our bids for
Your surplug nnventory; large or small quantities.
When you buy from us you gave plenty - here are a fewtot our bargains1-14.030 dha., Yellow Kester

 \(?\) 10
100

 CARBON (CUIVNOSITIUN). RESISTORS; we have we may have the sizes \& wattages you need; price, \(1 / 2 w, \$ \$ 24.75\) per M for \(10 \%\). ONE
wate, price, \(\$ 35.50\) per M for \(10 \%\) tolerance. TUBULAR CUPFDENSORS STANDARD BRANDS; 01 ,
 sizes-wrlte for prices. spalicited; many gizes \& some colors in stock; We'll match your samples; price, \$10 per M. MS Write for free sample; BRD BRAND; UU0S ©

 prong, MMiature 7 -prong sockets; \(\$ 38.00\) per
per M. Minterong \(\$ 38.75\) per M.
Mich on "edge" with Witcm; a water type mounted on "eedge'" with X three price, \(\$ 8.50\) per C. Sample free.
 binking as a warming slignal intermittentiy A

 rocaled swi price, \$is.uU ea.

 RRUOF WASHERS \& TERMINALS are avaliable in surplus 10ts; aiso, sp
Inquirits moilcited.
YNAMOTOR: Elicor, large, wt. abt. 50 lbs. Brand

 orizes also; ea. JAN TUBES; bulk packed; war burplus; 78

\(\qquad\) BSG7 RAA M
OAET
BAC7 Kenrad \(\qquad\) RADIO AND TV TUBES; bulk and orlg. boxes (see

 TUBE CARTONS: white, folding with flap:oo per c.

 Mamp; \({ }^{15}\) candle Pr.; 6-8 V.; slngle contact; sample; cartons of \(400 ;\) price. 400 for \(\$ 5.00\)
BULB; screw base (pilot); 8 V.; round bulb \(\% /{ }^{\prime}\) " BULB; screw base (pilot); 6 V.; round bulb k/8,
dla., \(1 / \%\) long jap; price \(\$ 20.00\) per M.
 gee the mise. beiore paying for it sp.
SELL US YOUR SURPLUS
GOULD GREEN, 252 Greenwich St. N. Y.C. 7
\[
\begin{gathered}
\text { CONDENSERS } \\
\text { OUR SPECIALTY } \\
\text { OIL FILLED \& TRANSMITTHG MICA TYPES } \\
\text { All Values and Voltage Ratings } \\
\text { We Invite Your lnquiries } \\
\text { TECHNICAL RADIO PARTS CO. } \\
557 \text { McDonald Ave., Brooklyn 18, N. Y. }
\end{gathered}
\]

\section*{FOR QUICK ACTION \\ Any Kind of Electronic Equipment Bought or Sold \\ ELECTRONIC SURPLUS BROKERS \\ 148 Chambers st., new york \\ We BUY froi f rou \\ We SELL for fou \\ RECTOR 2-1591}

\section*{NOW IN STOCK}

WESTON SENSITROL RELAYS MOdel 705, KS7996. Calibrated \({ }^{13-19}\) V. .

 pen circuit from 0 to 3 minutes, calibrated in second intervals. Will handle 10 amps or more

CALCULOGRAPHS. These units compute CALCULSEd time to 30 minutes in minutes and seconds, and print this elapsed time as well as time of day on a card (For example a card may show "start 9:55. AM" "Eapssed time 18 minutes, 51 seconds be than at the same time. Originally used may be run at the same thoe. calls. Dhal type
0 log long distance telephone
 movement \(\dddot{\text { With } 20 \mathrm{~V}} \mathrm{~A}\) © cycle Movement.

PIONEER TORQUE UNITS 12604-3-A.
ENDIX AMPLIFER 12077-1-A
SELSYNS, IF, 1CT, \(1 \mathrm{SF}, 5 \mathrm{FF}, 5 \mathrm{G}, \mathrm{SSF}\) Write for prices
BEACHMASTER 250 Watt Audio Amplifter with bank of 935 watt speakers, cables, mike. new \(\$ 395.0\) BEACHMASTEEAMPLIFIERS are available as originally delivered to the Navy, With 1500
Watt gas engine driven generator
 new

SUPERSONIC MODULATOR MFgd by Doolittlfor Nary Air Drawing \# 68326-1. contalns 11 tubes. 10 relays etc. for operation on 12 V Cases dirty. very clean inside. Navy air. Drawing \# 69245-1 Contains
10 relays etc. for oporation on 12 V Cases dirty, dirty, very clean inside.
Laboratory PRECISION REGULATED REC. TIFIER Type CZC-20AAQ. Input 110 V AC 60 cycle, output adjustable from 250 to 500

 ET-8012-1)-230/MG24 BEARING DEVIATION INDICATOR TYD CBM-
 C-348, RECEIVERS, Reconditioned..... . \$150:vu BL RECEIVERS Upergte on 110 v AC 60 Cycies frequency range 15 Ko to 600 Kc . Reconditioned. RMCA AR-8600X AUTO ALARM RECEIVER Complete, like new ABLEAOAR with ali tubes, antenna otor cases, less antenna screen \& tripod... \(\$ 300.04\) -1 RADAR Brand new with complete spares, S0-1 or S0-8 RADAR, Fully reconditioned, overeas Dacke

ANTENNA SLEWING MOTORS For \(80-8\) radar \(242.50-110\) Vibe for \(\$ 42.50-1519 .95\)

ALLEN-BRADLEY Tyw B-200 starting relny TRANSFORMER \(230-460 \mathrm{~V}\) VU Cy in, 7.5 V 27 A out, weight 7 lbs. \(\$ 3.00\) eas. Special too for \(\$ 125.00\) operating RCA \& Automatic Electric (large Head-

> TDE PRIMARY SHIP TRANSMITTERS, If band \(3001500 \mathrm{Kcs.0} \mathrm{H}, \mathrm{F}\). band \(1500-18100\) Kcs, CW MCW \& Phone. With Internal M. G. for 115 VDC or 250 VDC. Fully reconditioned.

115 VDC or 250 VDC. Fully reconditioned. \(\$ 600.00\)
MARINE TRANSMITTERS
Mackay \(108-\mathrm{C} 5.5\) to 17 Mcs
Mackay \(128-\mathrm{A}\)
5.5 to 17 Mcs
Mackay \(147 . \mathrm{M} 375\) to 500 Kcs
RMCA 8010325 to 500 Kcs
RMCA-8019 with 110 VAC power supply TCP, TCS, TAY, and many others
Write for quotations on your requirements
115 VLCC, New................................. \(\$ 15.0\) All prices FOB Oakiand, Calif., subject to change
without notice. Terms \(20 \%\) cash with order, balance COD.
EMMONS RADIO SUPPLY CO.
405 10th St.
Oakland, Calis.
Phone TWinoaks 3-9103

\section*{SEARCHLIGHT SECTION}

\section*{ELECTRO-THE BEST FOR ELECTRONIC SURPLUS}

Amertran "TRANSTATS"

Voltage Regulator 11.5 KVA \(50 / 60 \mathrm{cy}\). Commutator range \(0-115 \mathrm{y}\). Max.
Amps. 100 Reconnection dia
gram gram available for 230 v . 50
A operation

\section*{SUPERIOR POWERSTATS}

Type 1156, Output 0-135V, \(60 \mathrm{cy}, 45 \mathrm{~A}, 6.1 \mathrm{KVA}\) Type 1256, Output \(0-270 \mathrm{~V}, 60 \mathrm{cy}, 28 \mathrm{~A}, 7.5 \mathrm{KVA}\) Type 1256-2P, Output \(0-270 \mathrm{~V}, 60 \mathrm{cy}, 56 \mathrm{~A}, 15.1 \mathrm{KVA}\) Type 1126-3Y, Output \(0-270 \mathrm{~V}, 15 \mathrm{~A}, 60 \mathrm{cy}, 7.0 \mathrm{KVA}\)
 Transtat . 25 KVA. Fixed winding i151/1/00. Commu-
tator range 103-126 V. Max AMPS. 2.17..... 59.45

\section*{MOTORS AND GENERATORS}

Elec Spec Type IAI, Spec 32159D, 24VDC. 15A. Pump Eñ Type i454ME., 24VDC 95A, 4000 RPM Holtzer caiot Type Rв

 \(501+z e r\)
\(H\)
\(H\)

 Alliance fype 2207, 27.5VDC, \(7500 \mathrm{RPM}, 1 / 100 \mathrm{HP}\) Oster Type C-2BP-IA, \(27.5 \mathrm{VDC}, 7000 \mathrm{RPM}, 1 / 100 \mathrm{HP}\)

 G. E. Mod 5 BAioA 400 ; 24 VDC , io oz/in tornue.
140 RPM

G.E. \#2JIHI Selysen Generator
G. E. \#2J1F3 Selysen Generator

Bendix MkI Mod. 3 Step by Step Motor.
Pioneer Autosyn AY-20
Pioneer Autosyn AY-14G

Pioneer Autosyn AY-270 W.
pionear Autosyn AY-5901
Bendix Synchro Generator \(1 \mathbf{1 G}\)
G. E. Selysen 2JD55JB1, 60 cy

Diohi Control Mtr. FPE-25.ii.
Modulator MD.7/ARC5 Rogers Switching Motor, Type 25, Ref
 \(1 / 3 \mathrm{HP}\)........er w/G.E. mtr, 230VAC \(50 / 60 \mathrm{cy}\) EAD Blower \& Mtr, \(115 \mathrm{VAC} 400 \mathrm{cy} \mathrm{110CFM}\). \(\$ 14.95\) Hual Output 100 CFM (LiN). .
 West inghouse Blower \& Mtr, Tyo FL, \(115 V A C\) 400cy, 6700 RIM . \({ }^{50 \mathrm{CFM}} \mathrm{F}\). Amith Modol 69 C 60cy 50CFM
Oster Blower \& Mir, Type C-2P.iL, \(28 \mathrm{VDC}, 1 / 100 \mathrm{HP}\) Delco Motor, A-7iss, 27vDC @2.4A 1/30HP Elec Ind Mit, Type \(203,115 \mathrm{VAC}, 60 \mathrm{cy}\) 1ph, 0.45 F 1800RPM 1/75HP EP \(5220,115 \mathrm{VAC}, 60\) cy \(1 \mathrm{Dh}, 3400\)

 phase, var. plasise \(49 \mathrm{~V}, 40: 1\) gear reduction.... 510.95
Pionecr \(10047-2 A\) Servo Motor, 2 ph. 400 cy , w/40:1 roW. E. Sine wave motor Generator, \(\mathbf{K} \mathbf{S}\) - \(5913 L 02\) Mtr 115 V 600y 1 ph \(1 / 50 \mathrm{hp} 1: 25\) RPM; Generator Pioneer Gen-E-Motor, input isvioc: output 450
 Output 500VDC © 0.065 A Hower drive speed 2140

 0.175 A, Gutput \(300 \mathrm{VDCC} @ 0.040 \mathrm{~A} . \ldots53 .95\) PU.16/AP Inverters, Input 28VDC 60A; Output 115 y PU-7/AP Inverters, Input 28 Yic \(\mathbf{i} 60\) A; Output 15 V PE218 Inverters, Input 28VDC 100 A. output 1250

\section*{HIGH VOLTAGE CAPACITORS}
\#18F269 rated dual 60 Mrd @ 3000 VDC. \(\ldots . .565 .00\) \#PFD-40244G Paper rated 70 Mfd © 4000 VDC \(\$ 37.50\) \#19F210 rated 0.1 Mfd @ 6000 VDC, max ampss 204-60020 Pader rated 2.0 Mtd @ 6000 VDC. \(\$ 27.50\) Inerteen Tppe FL rated Dusl 0.275 Mfd © 7500

 \#2C-21B1 Paper rated Dual 0.5 MPd @ 9300
YDC Inerteen type FL rated 1.0 Mfd @ \(10.000 \mathrm{VDC} \$ 37.5\)
 FA7548, oil filled, rated Dual 0.25 mid © 6000 \#TK120065-1 1aper rated 0.65 Mid (93 12.50 YDC
 \# \(14 \mathrm{FF64}\) rated 0.25 Mfd @ 20.000 VDC . \#TK20005 Prader rated 0.5 Mrd @ 20.000 VDC \#14F103 rated 0.5 Mfd @ 25,000 VDC.

\section*{TRANSFORMERS}
 5A, 13.5 KV ins.

 A1. Pri 4500 Ohms, Sec \(85000 \mathrm{hms} . \ldots, . .51 .65\)
 2A, Sec. \#4: 6.3V @ 1A.
 \({ }_{26}^{150 \mathrm{~W}}\). Pri lnd: 14 H @ 0.022 ADC : Sec Ind

 Volts 100 Watts ouiput. pri: 990 ohims, seo: 51.65

\section*{HEAVY DUTY TRANSFORMERS}

\section*{Moloney Elec. \#RELI 0383 . Pri: 115/230V, 50/60cy; Sec: 21000 Volts @ 10200 MA . Of Filled. \(161 /{ }^{\prime \prime}\) W}

 \(1365 / 1300 / 1235 \mathrm{~V}\) (1) \(0.539 / 0.555 / 0.595 \mathrm{~A}\). \(0.735 \mathrm{~K} \$ 29.50\)

MINE DETECTOR SCR 625
ferrous) to a depth of approx. 0 ft. Find ous) to a depth of approx. of lakes, lo cate underground piping, treasure, me complete with inst. book. \(\$ 65.00\). Used

\section*{ELAPSED TIME METERS}

Mfd. by R. W. Cramer Co. Type RT-2H. 0. 10,000 hours by tenths. Model \(8 K T Y D 33,0-10,000\) hirs. by
 enths. 115 V ., 60 cy .
GP-7 Radio Xmtr, Complete w/6 Tuning Units \& Compacessories. Freq. Range: 350 -9050 Kcs. Tube (2) 1616 and a full sot of spares. 100 w output:

GIBSON GIRL POWER SUPPLY
Complete power plant, with automatic distress signa Gear train. Model 39075-1 Dynamotor rated \(28 V \mathrm{VD}\) © 1 15A. Output 300VDC @ 0.04A Sockets, Dlugs
 G.E. Cooper Hewitt Lamps, Type HTS.
 Murdock Elloc. KE-Switch, Cat. \#A394, Double
 bakelite on channel uprights. Complete \(w / 3\) test
 \(0-30 / 150 \mathrm{ADC}\). Three knife switches DPST for test of \(20 / 115\) or 230 V supply. Each line fused. Re aind bank \(\$ 49.9\) Resistor Bank \#cr-9133-7iligio Consists of mbon-wound
 CVH. Pri: 190-250 Volts, 60 cy 1 ph ; Sec: 230 Volt Sola Constant Voitago Trans. Type 4. Pri: 95-135V Thordarson Modulation Trans. Type Ti4i 420 A . Pr

\section*{CHOKES AND REACTORS}
O.E. \#7475694 rated 10H @ 0.65 ADC . 2 KV test \({ }^{2} 2.50\) Raytheon UX-9114A rated 0.100 H © \(1.4 \mathrm{ADC}, 1780\) Raytheon vX-9116 rated 0.03011 @ 2.0ADC, 1780
 G.E. \#7479964 rated dual 50 H @ 0.025 ADC each

 TVay Theon \# Ẅx 5148 Bual. Each section rated 1.751 @ \(0.25 \mathrm{ADC}, 42\) Oims DC res. each sec., 1780 TV G.E. Type K, Form FR. Rated 175.8 H @ 0.0672 ADC
 14KV ins. The Eict. class : Swing, 7.5 K Vins. ins. 6 H @ 145 ADC .24 H . 0.145 A C . 120 cy ripple. \(\mathbf{\$ 9} 9.95\)
 Amertran Ppe W. CTass: Audio. Rated iim en

\section*{PULSE NETWORKS AND}

\section*{TRANSFORMERS}

Sbrague \#7.5-F4-16-60-67-P. \({ }^{7.5 K V}\), '"E"' Circuit, - 77.95

 icrosec 1000 PPS 50 Ohms Imped. 5 gec-
 3 sections, 0.5 Microsec. 20.1 \(\$ 29.95\)
 secto, 15-400-50T 15 KV ' \(\mathrm{E}^{\prime}\) ' Circuit Sprague \#15-EA-0.91-400-50P. 15 KV , "E"' Circuit.
sections, 0.91 Microsec. 400 PPS, 50 Ohms 1mped. Fast \#15-E5-1.33-700-50P2T. 15 KV , ' E ". Circuit. W.F. \#D-163330 Network Assy, 3 retard coils \& \({ }^{2} 3\) W.F. \#D-16330 in oll filled rect. case, 330 ONms, 1 Micro-

\title{
ELECT \\ Dept. E1 \\ 110 PEARL STREET \\ BOSTON 10, MASS. \\ Llberty 2-7890
}

\section*{ELECTRO-THE BEST FOR ELECTRONIC SURPLUS}

\section*{WIRE-WOUND RESISTORS}
5. Watts, Fixed. Your Chofce of Following: 2, 5, \({ }^{8}\) 5 Watts, Fixed, 5 K Ohns
10 Wats, Fixed. Your Choice: \(1,22,25,60,75\)
\(110,400,2500,5000,7500,12 \mathrm{~K}\) Ohms.... .19 110, atts, \(2500,5000,7500,12 \mathrm{~K}\) Ohms, \(25,60,15,196\)
10, Watts. Fixed. Your Choice: \(4000,6000,85000\)
 10 Waats. Adjustable Your Cholce: 1, 15, 20,
Ohms
10 Watts, Milti-Tapped. Choice: 80CT, 90 CT, 50
 12 Watts, Fixed Iracket, 5 , ink ohin
16 Watts, Fixer Bracket, 12 K Ohms
20 Watts, Fixed. Choice: \(0.3,2,3.53,5,10,12,15\) \(75.500,5000,7000\). \(15 \mathrm{~K}, 20 \mathrm{~K}\) Ohms............... 25 20 Watts, Adjustahle. Choice: 6 or 25 ohms.
20 Watts, Multi-Tanped. Choice: 3 \& \(25,2.5\)
\({ }_{25}\) Ohms Watts, Fixed. Chnice \(4,10,15,36,45,50,444\) \(640,750,1000,16 M 0.2900,9000.40 \mathrm{~K}, 100 \mathrm{~K}\) O hms 29
25 Watts, Fixed, 500 Ohms... \({ }_{25}\) Watts. Adjustahle. Choice: 15, 115.1350 ohms 35 25 Watts, Multi-Tapped. Choice: \(0.5 \mathrm{CT}, 4000\) \& 11 F 40 Watts. Fixed. Choles: \(20,5000,100 \mathrm{~K}\) Ohms. 40 5000. 24 K Ohms.
5000. 24 K Ohms.. 0.16 oh

Type 200.2-29: A to \(\mathrm{B}-12.8\) Ohms, \(D\) to \(\mathrm{M}-1.67 \mathrm{Ohms}\). \(C\) to \(\mathrm{M}-3 \mathrm{kn} \mathrm{Ohm}\)

Type \(2000-40:\) A to \(\mathrm{B}-14300\) Ohms, C to \(\mathrm{D}-14300\) Ohms \(\pm 0.5 \%\)
Type 2000-58: A to M-100K Ohms \(\pm 0.2 \%\), A to \(\mathrm{M}-100 \mathrm{~K}\) Ohms \(\pm 0.2 \%\), D to \(\mathrm{M}-22670\) ohms \(\pm 0.1 \%\)
Ty \(200171:\) A to \(\mathrm{R}-798300\) Ohms. C to D- 850000 Ohms \(\pm 1 \%\)
Type 2000-72: A to \(B=0.320 \mathrm{hms}\), c to \(D-1.200 \mathrm{Hms} \pm 5 \%\)
Type 2000-Fif: A to \(\mathrm{BB}-8333\) Ohms. F to \(\mathrm{C}-667\) Ohms, C to \(\mathrm{D}-417\) Ohms \(\pm 0.2 \%\)
Trpe 2000-82: A to \(\mathrm{B}-817 \mathrm{~K}\) Ohms, B to \(\mathrm{C}-36600\) Ohms. C to \(\mathrm{D}-81700 \mathrm{Ohms} \pm 0.1 \%\)
Trpe 2000-85: A to B-786K Ohms. B to C-831500 Ohms \(\pm 0.5 \%\)
Type \(2000-148:\) A to \(\mathrm{B}-133440\) Ohms, C to \(\mathrm{D}-118336 \mathrm{Ohms} \pm 0.1 \%\)

Trpe \(2000-15 \mathrm{~B}: \mathrm{A}\) to \(\mathrm{B}-133440\) Ohms, B to \(\mathrm{C}-1030 \mathrm{~K}\) Ohms, C to \(\mathrm{D}-70974 \mathrm{Ohms} \pm 0.1 \%\)

\section*{EQUIPMENT SPECIALS}

CBMerter \& Range Plan Position Indicator Tyn tuhes and parts. (LN) Radar equip. Complete with AS-5/APS-2 Antenna Unit. Complete with motor R-31/APS-2E Indicator Unit. Complete with metrers TCE-1 Radin Transmitter Fquip. Xmer-Rertiffr Unit Tutw CAY-52151 "/ olug-in tuning units. 350 t Goare Plue-in Units for above Xmtrs (Liv) \$39.95 Radar Transmitter-Converter Trpe CBM-43ABT \(0 / n\)
SF Radar panin. Complete (TAN)............ \(\$ 69.50\)
 M300 Inserts for HS3OU Headsets........ \$4.00/e
 T17 Shire Micronhones w/Dlug. (LN) Ifs 30 Headsets w/o transformer
T45 Tip-MIcrophones
T2r Chest Scts with hearphones (LNN)
TBY Transmitter-Receiver. 28-80MC Complet \(\$ 4.95\) Transmitter RC-AB200. Less tuning units \& tubes PE112A Power Rectlfier with divnamotor \(\$ 3.95\)
\(\$ 3.95\)
\((T N)\) PCAN Mits \(\begin{aligned} & 1 / 95 \\ & \$ 4.95\end{aligned}\) RC-AN-429 Recelver w/tubes less tining units \begin{tabular}{c}
(TTN) \\
\(\$ 3.95\) \\
\hline
\end{tabular} BC-AS-229 Receiver w/tules less tuning units (L) N) Westinghouse Negative Srquence Filter Stple N6:36586
for type HOS relay. 3 phase output. \(5 \mathrm{amps} 50 /\) fincy. Westchse Ground Fault Phase Selectnr Relay Type
IOSS Style N636585, Westinghouse TS Relay Stvle IIQS.St vle N636585, Westinghouse T"S Relay Stvle
 G11A Solenoid. Mfd by Maknavox Co 24 VDC .95 C
 JI7/ARC-5. Junction Boxes, 28VDC (LN) \$1.25 RT-7/AINI Radio Xmtr \& Receiver w/tubes (INN) Raytheon Line Voltage Regulator type CRP 301407
Pri: \(92-138\) Volts \(57-63\) evcles. 15 Amps. 1ph: \(\mathbf{S e c}\) 115 VOlts \(7.15 \mathrm{Amps} .0 .82 \mathrm{KVA}, 96 \% \mathrm{PF}, 31{ }^{\prime \prime} \mathrm{H}\) TP-890D McEiroy Tape Puller w/I 55 V 60cy motor BC604D Xmtr w/meter, tubes, and erystals (INN) AM-6/APA-1 Video Test Set.................... \(\$ 14.95\)

 Back Box BC-136G................. 394 Daven Scuncl Attenuators, Type 3501 , ladder net-
wort. linear, \(30 / 30\) Ohms imped. 2DB attenuation. Wextinchnige whthour Veters Type Cs. 120 v fincy Westinchnilse Wuthour Meters Type Cs. 120 V fincy

\section*{RELAYS}
 \(\underset{S i m r l}{ }\)
truthers-Dunn ADBT8, 6 VAC DPST. 30 A Allied FX-31A. 6VDC, SPDT. 2 A

\section*{ARMM \#5SR84712, 6VDC. SPST-NO 5 AA}

\section*{Allif RORD29. 6VTPC 3PDT, 15A}

\section*{} Aute Mec. R45P. 24VAC, GPST-NC \& SPSST-
Anto Flec, R-3n. \(20-30 V D C\) 3RST-NO DPD G. C. CR2791-B108C20. I-24VDC DPTT 10A. Leark 1054ARW, 22-30VDC, DPDT \& SPST-NO, Henrv \#1010 Min., 24VDC, SpsT-NC, vouble b
Alued BO13D35, 24 VDC, SPST-NO, doule Allied FA6ni526, Min, 24VIM, DPTVT, 3i G. F. CR2791-G1 DNF2. 24 VDC, DPDT G. M, \#13013. 24 VDC . SPDT fouble hreak. 15A G. F. CR2701-D101F3. 24VDC, DPDT, 10A. G. E. E55837, 24VDC, SPST-NO, double brea Sperty F142n248, 24VDC, DPST-NO, 2A

\section*{G. F. CR2791-1310FR, \(24 \mathrm{VDC}, \mathrm{DPDT}\). 15 A
G.} Alled RO15D \(35,24 \mathrm{VDC}\), SPITT. double break
Allied BRAD35. 24 VDC, DPDT, 10 A .
tllen Bradley X 95545 , Type B6B, 24 VDC Sig Allen Bradley X89309. Type 16 B , 24 VDC, SPST Allied BoX48. 24 VDC, SPST, double break:.
double make No rouble break, 15A............ \(\$ 9.95\) min. W-L Type Ns3, \(115 \mathrm{VAC}, 60 \mathrm{cy} ., 3 \mathrm{SST}-\mathrm{No}\) \& SPST-
 Struthers-Dunn 1BXX54, 115 VAC, 60cy. DPST-NO W-L \#4sG6297 \(115 V A C\) G0cy, DPST-NO, \(25 A . . \$ 7.50\)
 Fser, 'Typen so1, lisvic-TC, SPST-NO, Thermal, Struthers-Dunn Ti-474A, Thermal, in5v, bocy, SpDT Struthers-Dum Thermal, PVA3, ilsv. 80cy, SPST NO, 1 min

\section*{CIRCUIT BREAKERS}

HDC 0.220 Amperes apist Heineman Trpe CB-193T3, 110 V 60cy. 1.25 Amperes, Heineman \#CB193RC \(20 \mathrm{C} 3534,115 \mathrm{VAC} 60 \mathrm{cy}, 4 \mathrm{Am}\) peres. Curve 1, DPST. \({ }^{\text {Westinghouse, } 115 V A C}\) 60cy, is Amperes DPST
 Westinghonse \#WEP-390IC, 125VAC 60cy, 15 Heineman Type 0322-M15, 24VDC, 15 Aniperes
 Ailams Electric Thermag, 120VAC 60cy, 15 Amperer, Adams Electrio Thermas, 120 vAc 6nev, 20 Amperes. Westinghoise \(\# 112 i \mathrm{~F} .125 \mathrm{VAC} 60 \mathrm{cy} .20\) Amneres.
SPST (LN) Arams Flectric Thermag. 120VAC 60cy. 25 Amperes, Heineman \#032g, 230 VAC 6ncy, 25 Amperes Curve
A. DPST Heineman \#0111, \(115 \mathrm{VAC} 60 \mathrm{cy}, 30\) Amperes G.E. Type AF-1, \(230 \mathrm{VAC} 60 \mathrm{cy}, 35\) Amperes DPST (f.F. Tyde AF-1. 230VAC 60cy, 50 Amperes \(\$ 17 \mathbf{S T}\) Heineman \#n322, 115 VAC 60 cy .50 Amperes
IN-2000, SPST G.E. Type AF-1, 125-250vTDC, 70 Amperes

INSULATED TUBING
\begin{tabular}{|c|c|c|c|c|c|}
\hline Size & I.D. \(.0156^{\prime \prime}\) & Color & & \[
\operatorname{Per} 100^{\prime}
\] & Per M' \\
\hline & . 0156 & Brack & Extr. Plas. & \$1.75 & \$ 5.40 \\
\hline 20 & . 034 & Black & Var. Cam. & 1.75 & 13.50 \\
\hline 20 & . 034 & Yellow & Tri. Sat. Glass & + 3.75 & 32.50 \\
\hline 20 & . 034 & Brown & Tri. Sat. Glass & - 3.75 & 32.50 \\
\hline 14 & . 072 & Black & Var. Cam. & 2.10 & 17.50 \\
\hline 12 & . 089 & Black & Sat. Glass & 1.10 & 7.00 \\
\hline 12 & . 089 & Orange & Extr. Glass & 4.75 & 42.50 \\
\hline 12 & . 089 & Oranpe & Var. Cam. & 2.20 & 18.00 \\
\hline 12 & . 089 & Black & Var. Cam. & 2.20 & 18.00 \\
\hline 11 & . 101 & Black & Extr. Plas. & 1.10 & 7.00 \\
\hline 11 & .101 & Black & Var. Cam. & 2.55 & 21.50 \\
\hline 11 & . 101 & Black & Sat. Glass & 5.00 & 46.00 \\
\hline 11 & . 101 & Yellow & Sat. Glass & 5.00 & 46.00 \\
\hline 11 & . 101 & Yellow & Dbl. Sat. Glass & 3.50 & 60.00 \\
\hline 10 & . 112 & Black & Var. Cam. & 2.75 & 23.50 \\
\hline 9 & . 124 & Black & Var. Cam. & 3.00 & 26.00 \\
\hline 8 & . 141 & Black & Var. Cam. & 3.15 & 27.50 \\
\hline 8 & . 141 & Black & Extr. Plap. & 1.40 & 10.00 \\
\hline 8 & 141 & Clear & Extr. Plas. & 1.40 & 10.00 \\
\hline 8 & . 141 & Yellow & Cel. Extr. & 3.15 & 27.50 \\
\hline 7 & . 158 & Black & Var. Cam. & 3.45 & 30.50 \\
\hline 6 & . 178 & Black & Sat. Glass & 6.15 & 57.50 \\
\hline 6 & 178 & Clear & Extr. Plas. & 1.65 & 12.50 \\
\hline 6 & . 178 & Orange & Var. Cam, & 3.80 & 34.00 \\
\hline 6 & 178 & White & Extr. Plas. & 1.65 & 12.50 \\
\hline 6 & . 178 & Black & Var. Cam. & 3.80 & 34.00 \\
\hline 5 & . 198 & Black & Var. Cam. & 4.10 & 37.00 \\
\hline 5 & . 198 & Black & Extr. Plas. & 1.85 & 14.50 \\
\hline 5 & . 198 & White & Extr. Plas. & 1.85 & 14.50 \\
\hline 4 & . 224 & Clear & Extr. Plas. & 2.00 & 16.00 \\
\hline 4 & . 224 & Black & Sat. Glass & 7.00 & 64.00 \\
\hline 3 & . 249 & Black & Extr. Plan. & 2.25 & 18.50 \\
\hline 3 & 249 & Black & Tri. Sat. V. C. & 5.25 & 48.50 \\
\hline 3 & . 249 & White & Extr. Plas. & 2.25 & 18.50 \\
\hline 3 & . 249 & Black & Sat. Glass & 6.55 & 61.50 \\
\hline 2 & . 278 & Clear & Extr. Plas. & 2.65 & 22.50 \\
\hline 2 & . 278 & Black & Var. Cam. & 5.15 & 47.50 \\
\hline 1 & . 299 & Clear & Extr. Plas. & 3.00 & 26.00 \\
\hline \(5 / 16^{\prime \prime}\) & . 3125 & Clear & Extr Plas. & 3.10 & 27.08 \\
\hline 5/16" & . 3125 & Black & Neo. Hose & 10.00 & \\
\hline 0 & . 347 & Yollow & Var. Cam. & 6.60 & 62.00 \\
\hline & . 347 & Black & Var. Cam. & 6.60 & 6200 \\
\hline 3/8" & . 375 & Black & Dh. Sat. V. C. & . 8.90 & 81.00 \\
\hline 3/8" & . 375 & Black & Extr. Plas. & 3.60 & 32.00 \\
\hline \(3 / 8{ }^{\prime \prime}\) & . 375 & Yellow & Var. Cam. & 8.00 & 76.00 \\
\hline 3/8" & . 375 & Black & Sat. Glass & 8.90 & 85.00 \\
\hline 3/8* & . 375 & Black & Var. Cam. & 3.60 & 32.00 \\
\hline 7/16* & . 438 & Black & Extr. Plas. & 4.00 & 36.00 \\
\hline 7/16" & . 438 & White & Extr. Plas. & 4.00 & 36.00 \\
\hline 15/32* & .469 & Clear & Extr. Plas. & 4.50 & 41.00 \\
\hline 1/2" & . 500 & Black & Extr. Plas. & 5.00 & 46.00 \\
\hline 5/3" & . 625 & Clear & Extr. Plar. & 6.85 & 64.00 \\
\hline 11/16 \({ }^{\prime \prime}\) & . 688 & Black & Extr. Plas. & 8.75 & \\
\hline 3/4* & . 750 & Clear & Extr. Plas. & 9.50 & \\
\hline 13/16 \({ }^{\prime \prime}\) & . 813 & Clear & Extr. Plas. & 10.00 & \\
\hline \(7 /{ }^{\circ}\) & . 875 & Black & Extr. Plas. & 12.50 & \\
\hline \(7 / 8{ }^{\prime \prime}\) & . 875 & Clear & Extr. Plar. & 12.50 & \%\% \\
\hline \({ }^{\prime \prime}\) & 1.000 & Clenr & Extr. Plas. & 15.00 & \\
\hline \[
1_{1-1 / R^{\prime \prime}}
\] & 1.000 & Black & Extr. Plas. & 15.00 & \\
\hline 1-1/8" & 1.125 & Biack
Clear & Extr. Plas- & 17.50 & \\
\hline 1-1/4* & 1.250 & Black & Extr. Plas. & 20.00 & \\
\hline SIBLE & TO & & OF OUR & ITEMS & AND \\
\hline
\end{tabular}

Prices F.O.B

ROS a
e
3
, Mass.

\section*{SEARCHLIGHT SECTION}

\subsection*{11.49}

END EQUIPMENT BUYS US Navy Verslon EC645 Ideal Clit-
zens Band Conversion. NEW, less
tubes

Less Handsect (TS-E)
R9/APA Rective Tubes, ASIS
TG10 Code Unit. Less Tubes \& Cab.

AR CLPR K/t Amp. New, Less Tubes 9.95

ALIGNMENT TOOLS
Ideal NO.LOSS Alignment St. Screwdrlver
TL150, Iong Insulated Shaft. Sure-Grin
 Feeler Gauge for Retay, Teleohone \& Tele-
type contact. 8 Detachable sizes....98c

\section*{MERCURY THERMO REGULATOR}

LINE FILTERS

\section*{6 VOLT INPUT
CARTER GENEMOTORS
Bay Brand New}

We Speclalize 1 In Rectificriers and Power
Supplies to Your Specifications. IMMEDIATE DELIVERIES

Money Back auarantee
(Cost of Mdse Ony) \({ }^{\text {OS }}\)
Min. Order

ony. Pries sublect to
Change WIthout Notice.
Phone: Worth \(2-7230\).

\section*{INDEX TO ADVERTISERS}

Ace Fingineering \& Machine Co., Inc.
Acme Electric Corp.
Aeromautical Communications Equip ment, Inc.
treraft Radio Corporation
Airpax Products Company.
Alden Products Co
Alien-Bradley Co.
Allied Control Company, Inc
Allied Radlo Corn.
Allmetal Screw Products Company Inc.
Almo Radio Co.
Altec Lansing Corporation
American Gas Accumulator Company merican Lava Corp
American Phenolic Corporation
merican Relay \& Controls, Inc......... Federated Metals Div.
American Television \& Radio Co.
American Time Products, Inc
Amper Electric Corporation
Anchor Metai Company
Antara Chemicals, Div, of General Dye stnff Corp.
trma Corporation
Arnold Fingineering Co
Arrow Electronics Inc
Atlas Metal Stamplng Company
Auburn Button Works, Inc.
Audio Devlces, Ino.

Ballantine Laboratories, Inc
Bardwell \& McAliste
Barker \& Williamson, Inc
Barry Corporation
Barry Electronics corp.
Beaver Gear Works, Inc.
Belden Mannfacturing Co.
Bell Telephone Laboratories
Eclinse-Pioneer Division.
Cclipse-Pioneer
Pacifle Division
Bentley, Harris Manaficturing Co
Berkeley Scientific Corporation
Bird Electronic Corp
Birtcher Corporation
Biwax Corporation
Bliley Electric Company
Podnar Industries, Inc...
Ronnton Radio Corporation
Borg Corporation, George W.
Bowser, Inc.
Brepze Corporations, Inc.
Bridgeport Brass Co
Brabaker Mfg. Co.
Burgess Battery Company
Rurnell and Company
Burstein-Applebee Co
Bursmann Mfg. Co. .

Calidyne Company
Cannon Elertric Co
Centralab, Dlv. Globe-Union, inc...ii, 12, \({ }^{2}\)
Chase Brass \& Copper, Sub. of Kennecott Copper

Chicago Telephone supply Corp...... 56
Coro.
Cinch Manufacturing Corp.
Clarostat Mfg. Co., Inc..
Cleveland Contalner Company
Clippard Instrument Laboratory Inc.
Cohn Corporation, Sigmund.
Coil Winding Equipment
Condenser Products Company
Consolldated Vultee Alrcraft Corp
Contlnental-Diamond Fibre Company
Cornell-Dubllier Electric Corp.
Corning Glass Works.
Corry-Iamestown Mfg. Corp
Conto-Coll Co., Inc.
Crose Co., H. .
aggle Engineering Co
Eastern Air Devlecs © Eastman Kodak Company, industria
Optical Sales Div.
din Company, Inc
Edison, Incorporated, Thomas A.
Edo Corporation
Eisier Engineering Company, Inc ... 300, 313
Elter-McCullough, Inc.
Electrical Industries, Inc.
Electrical Reactance Corp.
El-Tronics, Inc.

Electro-Tech Equipment Co
ectro-Voice, Inc
Electronic Systems Co
Embassy Engineering Co
Emeloid Co., Inc.
Engineering Co.
Erle Resistor Corporation
81 193

Fairchild Camera \& 191 Federal Telephone \& Radio Eorporation 255
Ferleration Freneals Des Sindicats Na
tionanx De L'Industrie Radioelectrique.48A Fidelity Chemical Products Corp......... 285 Frequercy Standards Corporation.......... 301

Improved Sesmless Wire Company
283
Indistrial Condenser Corp.
Industrial Tape Corp
Instrument Cornoration of America Instroment Resistors Company International Nielsel Company, Inc... 280 Irvington Varnlsh \& Insulator Company. 33

JFD Manufacturing Co., Tnc. 281 Jeffers Electronics, inc. .
Jennings Radio Manufacturing Co
Johnson Co E. F. Jones Div., Howard B., Clnch Mfg, Corp. 289

\section*{BASE, RARE AND PRECIOUS METALS AND ALLOYS}

SMALL UNITS
SMALL SIZES
Close tolerances
Nickel alloy, filament wire and ribbon: flat, grooved, crowned.

Grid wire electroplated.
Alloys for special requirements, bare or enamelled.

Further details upon request.

\section*{SECON}

\section*{METALS CORPORATION}

228 East 45th Street, New York 17, N. Y. MUrray Hill 7.1594

\section*{Activated Rosin-Core SOLDER}

\section*{The SHURFLO Rosin: Speeds up solder flow} \(25 \%\). Spreads as much as \(30 \%\) further than ordinary rosin. Has superior wetting and oxideremoving action. Is non-corrosive, non-conductive, safe. Gives no unpleasant odor. Does not carbonize.
Specially designed for all electronic needs. Makes perfect joints to common and difficult metals. \(30 \%\) more economical to use. Supplied in \(1,5,20 \mathrm{lb}\). spools-gauges are fine as \(0.020^{\prime \prime}\).

SEND NOW for generous FREE SAMPLE

\section*{and Catalog e-1}

\section*{SEARCHLIGHT SECTION}

3 Selenium Power Supply
o to \(12 \mathrm{VDC} / 2\) Amp. Vari-
abie DC abie pC supply, Amp. Vari-
completely byilt and and.
\(115 \mathrm{y} / 60\) cy. Useable IAB
supply flament supply flay. Useable LAB
Ing, battery charging. Modat.
railroad model
includes voitage ralliroad includes voltage
or speed control and center
off reversing sw. Ideal for \({ }^{2 \times 10}\) B? SOLDERING IRON GUN SENSATIONAL YALUE, Ilght-
welght heavy duty soldering
gun, with removable allo

\section*{"TAB' That's A Buy}

Not a Life otd Lamp. Rfictr \& \({ }^{\text {pck }} 15\);
cord \(/ 1000\) Se fash every
7 sec 7sec. Truedaylitecolor. Usa-
be al cameras oper 11 SAC
wolte Type AC4O \(\$ 41.98\)
Batlery opr. Inct AC40\&BP2 Bll accssrs for KODAK\&COMPUR shutters,
COMplete Write for Complete "riniFitirie, Data glane sllutters \& accessories. WE BUY

\({ }^{9} \mathbf{8 5 7}{ }^{\$ 5}\) NEW NE Corps Lamp
\$dvtsd
\(\mathbf{3 6} .00\)
14.98
 Unexcelled for iop PROBE TUBE
sensitive submtnlature VHF testing. Uitra. K9/8". Fiement and probt at tip Low pwi
htr. Brand New, \(w /\) data VR92 25 ; 5 for \(\$ 1\)

MERCURY THERMO REGULATOR
 Pt Control, or Mren. Fire Mrev., Freeze
Brand Now. Indinid. Boxed Tempata \& \(\&\) ckt
SPECIAL.
 OAR
OA

Lambeta Electronics Corporation Lampkin Laboratories, Inc.
aPointe-Plascomolit Corp. (Vee-id-xi) Lapp Insulator Co., Ine
Leeds \& Northrup Co. ' Coinnany
Lenk
Lettine Radio Mrg. Co.
Lewis Enyineering Co.
Lewis K Kaufmair, Inc
Lewis Spring \& Manufacturing Co
Lord Manufacturing Company
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & , 135 \\
\hline \multicolumn{2}{|l|}{Manson Laborntories287,} \\
\hline Markem Machine Company & \\
\hline \multicolumn{2}{|l|}{Mis Manufacturing Company, Inc....... 18} \\
\hline Marion Electrical Instrnme & \\
\hline \multicolumn{2}{|l|}{MeGraw-Hill Book Co... 9, 186} \\
\hline Melpar, Inc. & 275 \\
\hline Mepco, Inc. & 68 \\
\hline \multicolumn{2}{|l|}{Metal Textile Corporation 306} \\
\hline Metals \& Control Corp., Gi*neral & Plate \\
\hline \multicolumn{2}{|l|}{Div. 211} \\
\hline Methode Manufacturing Corp & 276 \\
\hline \multicolumn{2}{|l|}{Mica Insulator Companyin 175} \\
\hline Mico Instrument & \\
\hline \multicolumn{2}{|l|}{Micro Switeh, Div. of Minnenpolis-Honeywell Regulator Co.} \\
\hline Miles Reproducer Co., Inc & 313 \\
\hline Millen Mfg. Co., Inc.. Jan & 15\% \\
\hline Miller Companv. J. & 3 \\
\hline Milo Radio \({ }^{\text {d }}\) EJectronic & \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Minneapolis-Honeywell Regulator Co.. \\
Industrial Livision
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{Mitchell-Rand Insulation Co., Inc....... 227} \\
\hline Mosinee Pajer Mills Company & 242 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Muirhead \& Co., Ltd.}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Mycalex Corporation of Ampriea. 170} \\
\hline \multicolumn{2}{|l|}{National Company, Inc. 298} \\
\hline National Moldite Compan & \\
\hline \multicolumn{2}{|l|}{National Radiator Company,} \\
\hline Plastic Metals D & 272 \\
\hline \multicolumn{2}{|l|}{National Research Corporation......162, 163} \\
\hline & 258 \\
\hline \multicolumn{2}{|l|}{Neo-Sil Corporation 39} \\
\hline Newcomb Audio Protucts & 283 \\
\hline \multicolumn{2}{|l|}{New Hampshire Ball Bearings, Inc. 202} \\
\hline New Hermes, Inc & 305 \\
\hline \multicolumn{2}{|l|}{New York Transformer Co., Inf \(\mathbf{2 4}^{\prime \prime}\)} \\
\hline & 297 \\
\hline \multicolumn{2}{|l|}{North American Aviation, inc 182. 268} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline Nuclear Research Corporation & 264 \\
\hline \multicolumn{2}{|l|}{Nucleonics} \\
\hline \multicolumn{2}{|l|}{Numberail Stamp \& Tool Co............ 293} \\
\hline \multicolumn{2}{|l|}{Offner Electronics, Inc. 316} \\
\hline \multicolumn{2}{|l|}{Panoramic Radio Products, Inc. 28\%} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Pennsylvania Teating Laborntory 299}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Phaostron Company . 107} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Polarad Electronics Corp.... 295} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Potter Instrument Co., Inc 298
Precision Apparatus
372}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Precision Paper Tube Co........... . 307} \\
\hline \multicolumn{2}{|l|}{Premax Products, Div. Chisholm-} \\
\hline \multicolumn{2}{|l|}{} \\
\hline
\end{tabular}

Sanborn Company
elentific
Quenched Gap Co.
cintilla Magneto Diviston of Bendix - 1
Aviation cor
ealtron Company
Secon Metals Corporation
servomechanisms, Inc.
Shasions Clock Company, Timer Div

A complete and self-contained Electronic Instrument. Incorporates a TRUE BEAM CURRENT Test Circuit. Checks overall electron-gun pertormance for proportionate picture brightness. Additional tests for accelerating anodes and deflection piate elements
The Precision CR-30 should not be confused with mere adapters connecting to ordinary receiving tube testers Which were never designed to meet the very special. ized needs of cr tube checkig. Sor similar devices of limited technical merit and which do not check all CR tubes or all tube elements.

GENERAL AND TECHNICAL SPECIFICATIONS
* Tests All Modern Cathode Ray Tubes. Tests All CR Tube Elements: Not just a limited few
* Free-Point 14 Lever Element Selection System, independent of multiple base pin and floating elemen terminations, for Short, Leakage and Quality Tests.
* True Beam Current Test Circuit checks all CR Tubes with Electron-gun in operation. It is the Electron Beam (and NOT total cathode emission) which traces the pattern on the face of the CR tube. The significance of the above rests in the fact that Beam Current. (and picture brightness) is primarily associated with the condition of the center of the cathode surface and not the overal
cathode area. * Voltage Regulated, Bridge Type VTVM affords super. sensitive tube quality indications and positive check of low current anodes and deflection plates
t Micro-Line Voltage Adjustment Meter-monitored at filament supply
\(\rightarrow\) Accuracy of test circuits closely maintained by use of factory adjusted internal calibrating controls; plastic insulated, telephone type cabled wiring; highest qual ity, conservatively rated components
* Built In, High Speed, Roller Tube Chart.
* Test Circuits Transformer Isolated from Power Line * \(45 / 8^{\prime \prime}\) Full Vision Meter with scale-plate especially designed for CR tube testing requirements.
SERIES CR-30-In hardwood, tapered portable case Tete with standard 12 pin tube cable and universal CR Tube Test Cable
Shipping Weight: 22 lbs \(\qquad\) Net Price: \(\$ \mathbf{\$ 9 . 7 5}\) Sce the new CR- 30 on display of leading electronic
equipment distributors. Place your arders now to assure carliest possible delivery.

\section*{Precision Apparatus Co., Inc. 92-27 HORACE HARDING 8LVO. ELMHURST 10, N. Y}

\footnotetext{

}

Bendix Aviation Corp.................................. 322
Brooks Co...................
Burke, Hubert J
320,328

Capehart-Farnsworth Corp.
B. D. .
- 352
\& H Sales Co. Corp..................................... 320
Chase Electronics Supply Co
Columbia Electronics, Ltd
Comet Electronic Sales Co...
Communication Devices.
Communications Equipment Co..
Components Supply Co.
Convair Ae.........................
353,364

Technleal Service Corporation
Technleal Service Corporation
Tektronix, Inc.
Tel-Instrument Company, Inc
Teletroules Laboratory, Ine.
Television Equipment Corp
Terpening Company, L. II
Titeflex, In
Triplett Glectrleai instrument Co
Tung-Sol Flectric, Ine
Cottone \& Co., A
Credda, Inc
........................... 350
East Coast Radio Co............................ 361
Edite Electronics Inc............................. 342
Electro Sales Co Laboratory . 646 , 36
Electronic Engineering Co. of Calif..
Electronic Expediters
Electronic Spec. Supply Co 362
Electronic Surplus Brokers. 365
Electronicraft, Inc.
Emmons Radio Supply Co........................... 3 . 5
Empire Electronics Co.
Engineering Associate
Forest Sales Co., Inc.
Franklin Employment Se......................... 364
Franklin Employment Service, The.......... 322
Freeland Products Co...
French-van Breems, Inc. 348
General Electric Company...................... 320
General Motors Corp. AC Spark Plug Div. 323
General Surplus Trading..................... 352
Genera Trading Co.................................. 362,365
Goodyear Aircraft Corp. 319
Green, Gould.
. 365
. 350
Greene, Leonard. 350
Hall Electric, Ltd. 364
Harniar Co The
326
327
327
Horlick Co., William I. 326, 327
Instruments Associates........... 337
Instruments Associates. 358

Kings County Machinery Exchange. \(352,364,365\)
K M P C.
Lectronic Research Laboratories.
24, 325
Leru Laboratories Inc.
Liberty Electronics, Inc
Lockheed Aircraft Corp.
Maritime International Co.
Maritime Switchboard.
Maxson Corp., The W. L
Metropolitan Overseas Supply Corp........ 363
Microwave Equipment Supply Co.......... 364
Minneapolis-Honeywell 318
Mogull Co., Inc., Alexander. 348
Monmouth Radio Laboratories 340
Monsanto Chemical Co........
Niagara Radio Supply Co
Norman Electronic Sales.
Norman Radio Distributors, Inc........... 350
Northrop Aircraft Inc.......... 363
Photocon Sales
. 360
P I Electronics..................................... 328
Powell, Harold H. 328,363
Precision Electrical instrument Co.......... 360
Radio Development \& Sales Co........... 360

Radio Surplus Corp................................... 344
Radio Surplus Corp.. 363
Relay Sales. 331
Reliance Merchandising Co 343
Reliance Merchandising Co................... 343
Sandia Corp...
362
319
SEARCHLIGHT SECTION
(Classified Advertising)
EMPLOYMENT
Positions Vacant......................... 317
Selling Opportunities Offered...319, 321, 322
Positions Wanted..
317
317

EQUIPMENT
(Used or Surplus New)
324-368, 370
WANTED
Equipment364, 365

\section*{ADVERTISERS INDEX}

\section*{Aaron Electronic Sales}

364
Adelnan, Nat.............................. . . 362
Algeradio Electronics Co. 360
American Electrical Sales Co............... . 360
Applied Science Corp. of Princeton. 318
Applied Science Corp of Pruceton......... 318
Arma Corporation
Avnet Electronic Supply Co
Avnet Electronic Suppl
\begin{tabular}{l}
320 \\
361 \\
\hline
\end{tabular}

B \& B Distributors.

\section*{You Can Depend on}

\section*{RF Attenuation Network}

This equipment is an exclusive Daven development. It is a moderately priced attenuator incorporated in an RF Attenuation Box to insert accurate losses from D.C. to 225 MC . The unit has many applications where attenuation of UHF is desired, since it can be utilized as an all-purpose laboratory and test instrument.

\section*{SPECIFICATIONS:}

ZERO INSERTION LOSS OVER ENTIRE FREQUENCY RANGE. FREQUENCY RANGE: Zero to 225 MC.
IMPEDANCE ACCURACY: Within \(\pm 5 \%\) over frequency range.
ATIENUATION ACCURACY: \(\pm 5 \%\) over frequency range CONNECTORS: Receptacles are supplied. Cable plugs if required, will be supplied at a slight additional cost. When ordering, specify which type connector is desired-either Series "BNC" (UG-185/U) or Series "N" (UG-58/U).
CIRCUIT: Constant input and output impedance lunbalanced). Zero initial loss.
RESISTOR ACCURACY: \(\pm 2 \%\) at D.C.

\section*{Carrier Frequency Decade Attenuator} variety of instruments for the electronics industry, the development of its attenuators has grown apace. Much of the testing equipment used by Daven to guide them in the manufacturing of attenuators has been developed by Daven's own engineering specialists. As a result, Daven attenuators have become the standard of the industry, by which all other similar equipment is measured. Shown and described here are two of the newest units that are typical of the vast Daven line of attenuators. Your inquiry for specific information to apply to your own particular problems is invited. Let Daven furnish you with completely detailed catalog data.

\section*{Another PCA First...the RCA-6146 New beam power tube for VHF transmitters}

Specifically designed for VHF transmitter applications, the new RCA-6146 features lowcost, small size, unusual ruggedness, and high power sensitivity. It can deliver an outpur of 35 watts at 175 Mc under ICAS conditions, with a plate voltage of 400 V ., and a plate current of 150 ma. Adequate driving power can be obtained from a \(5763,2 \mathrm{E} 26\), or another 6146, depending upon the circuit design requirements.
The RCA-6146 employs a rugged buttonstem construction with short internal leads, and an octal base with short metal sleeve which shields the input to the tube so completely that no other external shielding is re-
quired. Input and output circuits are well separated by bringing the plate lead out at the top of the bulb. Base pin connections permit three connections to the cathode, to provide good rf grounding.
For complete technical data on the RCA. 6146 and RCA-6159, write RCA, Commercial Engineering, Section 42AR, Harrison, N . J., or your nearest RCA field office.

FIELD OFFICES: (East) Humboldt \(5 \cdot 3900,415 \mathrm{~S}\). 5th St., Harrison, N. J. (Midwest) Whitehall \(4-2900,589\) E. Illinois St., Chicago, Ill. (West) Madison 9-3671, 420 S. San Pedro St., Los Angeles, Calif.

\section*{Another new RCA łube}

The RCA 6159, identical with the 6146 except for its heater rating of 26.5 volts, 0.3 amperes, is designed for VHF service in aircraft application.

The Fountainhead of Modern Tube Development is RCA```

[^0]: Photographs through courlesy of
 Baird Associates, Cambridge, Mass.

[^1]: Bussmann Mfg. Co.
 University of Jefferson,
 St. Louis 7, Mo
 (Division of MeGraw Electric Co.)

 Please send me bulletin SFB containing complete facts an BUSS small dimension fuses and fuse holders.
 \qquad
 \qquad
 \qquad
 City A Zane \qquad \rightarrow BI_RC-152
 Company -

 State

[^2]: -PATENTS PENDING

[^3]: 67 Wall Sireel, New York 5, N. Y.

[^4]: PYRAMID ELECTRIC COMPANY 1445 Hudson Boulevard North Bergen, N. J., U. S. A.
 telegrams wux North Bergen. N. J. Cabte address Pyiamidusa

[^5]: (1) Frank G. Kear and O. B. Hanson, Television Totem Pole, ELectronics, p66, Feb. 1951.
 (2) L. J. Wolf. Triplex Antenna for Television and $F-M$, Electronics, $p 88$, July 47 .
 (3) Phillip H. Smith, Improved Transmission Line Calculator, Exectrontes, p 130, Jan. 1944.

[^6]: (1) Harley Iams, A Method of Simulating Propagation Problems, Proc. IRE, 38 , p 543 , May 1950.
 (2) Harley Iams, Phase-Front Plotter for Centimeter Waves, RCA Review, 8. p 270, June 1947.
 Sound Waves Kock, Photographing Sound Waves, Bell Laboratories Record, 28, p 304, July 1950.

[^7]: BLILEY ELECTRIC COMPANY UNION STATION BUILDING ERIE, PENNSYLVANIA

[^8]: (Continued on page 311)

[^9]: Seventy Memorial Drive, Cambridge, Massacbusetts

[^10]: Illustration shows crystal mixer made from copper base alloy components are silver soldered together

[^11]: > $\mathrm{H}-\mathrm{C}$
 *Trade Mark Registered, U. S. Patent Office

 SALES OfFICES: New York, Philadelphio, Detroit, Chicago, Los Angeles

[^12]:

[^13]: stroboscopes . valiacs . sound.level meters

[^14]: DESIGNERS AND MANUFACTURERS OF GOVERNOR-CONTROLLED, SELF-SYNCHRONOUS, DRAG-CUP, DC AND AC TACHOMETER, SHUNT, SERIES, COMPOUND, PERMANENT-MAGNET, SPLITFIELD, SEPARATELY EXCITED, UNIVERSAL, INDUCTION, RELUC. TANCE, HYSTERESIS, DC \& AC SERVO, REELMOTOR, TOTALLYENCLOSED, AC DYNAMICALLY BRAKED, STABILIZED HYSTERESIS, MULTIPLE-SPEED, PRECISION FRACTIONAL HORSE-POWER MOTORS AND GENERATORS.

[^15]: New York • Cleveland - Detroit - Chicago - Pittsburgh - St. Louis
 Los Angeles - Oakland, California - New Orleans - Seattle

[^16]: GISTERH AIR DEVICES, inc.
 585 DEAN STREET - BROOKLYN 17, N. Y.

[^17]: * The increase of feedback for the purpose of reducing distortion or increasing the bandwidth may cause increase of damping factor to a greater order as a concomitant result.

