

electronics

JUNE • 1950

500-KW BEAM TRIODE CoverRCA's new super-power 5831 uses 48 independent electron optical systems arranged cylindrically to get a half-mega-watt output with 16,000 volts on the plate and only 900 watts grid drive (see .p 120)
PLASTIC-EMBEDDED CIRCUITS, by W. R. Cuming 66Casting of parts within suitable materials simplifies assembly, provides miniaturized and stable plug-in unitsSIMPLIFIED TELEVISION FOR INDUSTRY, by R. C. Webb and J. M. Morgan70Uses RMA sync standards to permit use of broadcast ty receivers as viewers
ALL-PURPOSE PHONOGRAPH NEEDLES, by B. B. Bauer 74
Compromise types that give good performance on slow-speed and high-speed records are describedUHF SWEEP-FREQUENCY OSCILLATOR, by J. E. Ebert and H. A. Finke79
Sweep of 30 mc is provided from 470 to 890 mc , the range of proposed new television allocations
VHF LINKS AT MANILA AIRPORT, by E. D. Rudisuhle and P. B. Patton 82Line-of-sight f-m links in 160 -mc band provide over 150 speech, telegraph, teletype and control circuits between stations
CORRELATION FUNCTION AND COMMUNICATION APPLICATIONS, by Y. Lee, and J. Wiesner 86Electronic correlator utilizes statistics and probability to detect unpredictable messages far below noise level
PRODUCING THE 5820 IMAGE ORTHICON, by R. B. Janes, R. E. Johnson and R. R. Handel 93Describes preparation of high-sensitivity photosurface and multiplier gun
DYNAMOMETER CONTROL SIMULATES ROAD TESTING OF ENGINES, by R. C. Bowers 96Closed-servo electronic system makes dynamometer apply engine loads similar to those of auto accelerating on road1,000-WATT TRAVELING-WAVE TUBE, by Stanley E. Webber100
New 450-mc power amplifier produces power gain of 25 with 20 -percent efficiency
BIFILAR I-F COILS, by S. R. Scheiner 104
Improved noise immunity and economy are provided in television receivers
AUTOMATIC CONTROL OF HIGH-VACUUM SYSTEMS, by J. W. Clark, G. H. Witts 108Indicator lights and meter combine to facilitate readings and control pressure
FREQUENCY DIVISION WITH PHASE-SHIFT OSCILLATORS, by C. R. Schmidt 111
Accurate control of power frequencies from crystal standards is simple and inexpensive using standard components
EFFICIENCY OF MISMATCHED LINES, by H. M. Schlicke 114Nomographs quickly tell how much power actually reaches load through extremely short transmission line
BUSINESS BRIEFS. 60
CROSSTALK
65

TUBES AT WORK.....................118

DONALD G. FINK, Editor; W. W. MacDONALD, Managing Editor; John Markus, Vin Zeluff, A. A. McKenzie, Associate Editors; William P. O'Brien, James D. Fahnestock, Assistant Editors; Ann Mastropolo, Marilyn Wood, Editorial Assistants; Gladys T. Montgomery, Washington Editor; Harry Phillips, Art Director; Eleanor Luke, Art Assistant

KEITH HENNEY, Consulting Editor

H. W. MATEER, Publisher; WALLACE B. BLOOD, Manager; R. S. Quint, Directory Manager; D. H. Miller, James Girdwood, New York; Wm. S. Hodgkinson, New England; Warren W. Shew, Philadelphia; C. D. Wardner, Chicago; J. L. Phillips, Cleveland; J. W. Otterson, San Francisco; Carl W. Dysinger, Los Angeles; Ralph C. Maultsby, Atlanta; Bernard H. Butler, London, England

Contents Copyright 1950, by McGraw-Hill Publishing Company, Inc. All Rights Reserved. McGRAW-HILL PUBLISHING COMPANY, INCORPORATED, JAMES H. McGRAW (1860-1948), Founder - PUBLICATION OFFICE, $99-129$ North Broadway, Albany I, N. Y., U. S. A. EDITORIAL AND EXECUTIVE OFFICES, 330 West 42nd St., New York 18, N. Y., U. S. A.-Member A. B. 'P., Member A. B. C.

Curtis W. McGraw, President; Willard Chevalier, Executive Vice-President; Joseph A. Gerardi, Secretary and Treasurer; Paul Montromery, Senior Vice. President, Publications Divislon; Nelson Bond, Vice.President and Director of Advertising; J. E. Blackburn, Jr., Vice. Presldent and Director of Circulation; Dexter Keezer, Director of Economics Department; Russell F. Anderson, Editor, World News.
ELECTRONICS: June, 1950, Vol. 23; No. G. Published monthly, with an additional issue in June, price 75 c a copy for U, S, and possessions, and Canada; $\$ 1.50$ for atin America; $\$ 2: 00$ for all other foreign countries. Directory issue $\$ 2.00$ Allow at least ten days for change of address. All communications about subscriptions Canadian funds accepted), \$10.00 a year, $\$ 16$. 00 for Subscription rates-United States and possessions, $\$ 6.00$ a year, $\$ 9.00$ for two years. $\$ 12.00$ for three years, Canada years. All other countries $\$ 20.00$ for one year, $\$ 30.00$ for two years, $\$ 40.00$ for three years. Please indicate position and Entered as Second Class matter August 29, 1936, at Post Offce. Aibany, New York, under the act of March 3, 1879. BRANCH OFFICES; 520 North Michigan Avenue, Boston 16; Atlanta 3, Ga.; 1111 Wilshire Blvd, Lo Aldwych House, Aldwych, London, W.C. 2; Washington, D. C. 4 ; Philadelphia 3; Cleveland 15; Detrolt 26; St. Louls 8; Boston 16; Atlanta 3, Ga.; Illi wilshire Blvd., Los Angeles 17; 738-9 Oliver Building, Pittsburgh 22. ELECTRONics is Indexed regularly In The Engineering Index.
 setting
MILLIAMPERES

electrical
 instrument
 -

$$
M A R I O N
$$

RUGGEDIZE

METERS

This amazing new family of Marion ruggedize electrical indrating instruments sets new standards of quality and accuracy in electrical measurement. Marion "Ruggedize" instruments give better performance in any application. Use them with confidence, even where you never before dared use "delicate instruments." They exceed all JAN-I- 6 requirements, are hermetically sealed and completely interchangeable with existing JAN $21 / 2^{\prime \prime}$ and $31 / 2^{\prime \prime}$ types.
Marion Ruggedize instruments perform perfectly under critical conditions of shock, vibration, mechanical stress and strain. Hermetic sealing makes them impervious to weather and climate.

When you want the best in meters for any applycation - from bulldozers to Geiger Counters insist on Marion, the name that means the most in meters.

Send for our booklet on Marion Ruggedized Instruments. Marion Electrical Instrument Company, 401 Canal Street, Manchester, New Hampshire.

MARION MEANS THE MOST IN METERS
Canadian Representative: Astral Electric Company, 14 Danforth Road, Toronto, Ontario, Canada
Export Division: 458 Broadway, New York 13, U.S.A., Cables MORHANEX

MUIRHEAD \& Co. Ltd.

 PRECISION ELECTRICAL INSTRUMENT MAKERS BECKENHAM \cdot KENT \cdot ENGLAND
MUIRHEAD

Telegrams and Cahles: MUIRHEADS ELMERS-END

Specialization is

Specialization-and only specialization-can keep manufacturers abreast of today's resistance needs.

The constantly-growing multitude of resistor applications demands full-time concentration on
resistance products. IRC has concentrated-for 25 years! Result:-The widest line of resistance products
in the industry; parts designed to suit specific circuit requirements in virtually every type of application; unbiased recommendations.

important

IN GIGH Yed AGE APPUEAllons where high resistance and power are required, Type MVX high chnic, high voltage resistors afford exceptional stability. Construction is similar to that of Type $A V$, but distinctive terminal permits mounting through a hole in mounting black of insulating material without terminal interference. Long resistance patt permits use of high voltage on resistor while keeping voltage per unit length of path comparatively low. Check coupen for Catalog G-2.

IN CRITICAL HRGH-FREQUENCY CIRCUITS, Type MP High Frequency Fesistors offer dependable performance and unusual stability. Special resistance film on a steatite ceramic form provides a stable resistor with low inherent inductance and capasity - entirely suitable for broad band RF amplifiers, RF probes, dummy bads for transmitters, television sideband filters, radar pulse equipment, and other circuits involving steep wave fronts. Send coupon for Builetin F-I.

H3W TYPE Q conll. Ol offers many advantages to engineers and purchasing agents. Its modern $15 / h_{6}$ " diameter size features a one-piece dual contactor of thin, high-stress alloy; simplified single-unit collector ring; molded voltoge baffles: and special brass element termiouls that will not loosen of become noisy when bent or soldered. Increased arc of rotation provides same resistance ratio as larger IRC controls. Salt-spray materials are employed. Complete mechanization in manufacture assures absolute uniformity and provides a dependable source of supply for small control requirements. Caipon brings you full de:atls in Catalog A-4.

STANDARD RI-FI* METERS

developed by stoddart FOR THE ARMED FORCES.

AVAILABLE COMMERCIALLY.

VHF!	VLF!
15 MC	14 KC
to	to
400 MC	250 KC
NMA -5	NM -10 A

Commercial equivalent of AN/URM-6. Field intensity measureA new achievement in sensitivityl fied 10 mierovolts-perments, 1 microvolt-per-meter using rod; twoterminal voltmeter using shield. 1 microvolt. Commercial equivalenterminal voltmeter, 98.400 MC . Field Sensitivity as 15.125 MC ; 5 microvalts dipole. Frequency intensity neasurements using range includes FM and TV Bands.

NM - 50A

Commercial equivalent of AN/URM-17. (50 -ohm coaxial input) Sensitivity as two-terminal voltmeter, (50 onts using calibrated 10 microvolts. Field intensity measuremens Band and UHF dipole. Frequency range
color TV Band. Commercial equivalent of A.C. supply optional. Sensity with $1 / 2$ Self-contained batherter, 1 microvolt. Field in ritable loop two-terminal volta 2 microvolts-per-meter,
meter rod antenna, 2 broadcast band, radio range supplied. Includes standard frequencies.
WWV, and communications frequencies
Since 1944 Stoddart RI-FI* instruments have established the Since 1044 stoddaperior quality and unexcelled performance. standard for supe fully comply with test equipment requireThese instruments ments of such radio interferenee AN-1-42, AN-1-27a, AN-1.40 ASA C63.2, 16E4(SHIPS), AN-24a, AN and others. Many of these specificarmance demonstrated in and others. Many of the standards of performance demonsta vised to the stand
stoddart equipment.
*Radio Interference and Field Intensity.
The and reliable instrumentsl illustrated above serve the rugged and rellab or laboratory. Individually calibrated equally well in field or internal standard of reference. for consistent results using inovolts and DB above one microvoll. Meter scales marked ibles measurement of sinusoidalar values. Function selector enables meage, peak or quasi-peak valucted waveforms, givinide means for measuring either conde. Accessories provide means for measorder available. or radiated r.f. volag.

STODDART AIRCRAFT RADIO CO.

6644 SANTA MONICA BLVD., HOLLYWOOD 38, CALIF. Hillside 9294

Precision Attenuation for UHF !
Less than 1.2 VSWR to 3000 MC .
Turret Attenuator:
$0,10,20,30,40,50 \mathrm{DB}$. Accuracy 士. 5 DB . Patents applied for.

AT HOME On and After

 at Willimantic, MAY 1,1950

completes move to New Plant

. . . enters New Era in Quality and Service

After one hundred and twelve years at its Providence locations, the American Screw Company has moved its "know-how" and facilities to its one-floor modern streamlined plant at Willimantic, Connecticut. This building now houses all administrative, engineering, production, purchasing, sales, and research personnel.
Our new plant is completing its "shakedown cruise". .. and is now turning out high-quality American Phillips and Slotted Fasteners in ever-increasing quantities.
Here, the newest and finest of high-production equipment, operated by employees under ideal working conditions, will set a new standard of American service to all fields of industry.

AMERICAN SCREW̉ COMPANY, WILLIMANTIC, CONNECTICUT
Plant at Norristown, Pa.
Warehouses at: Chicago 11: 589 E. Illinois St. Detroit 2: 502 Stephenson Bldg.

LAMINATED PHENOLIC TUBES

 OUTSTANDING AS THE STANDARD FOR QUALITY!COSMALITE known for its many years of Top Performance. CLEVELITE for its ability to meet unusual specifications.
Available in diameters, wall thicknesses, and lengths desired.
These CLEVELAND TUBES combine . . . High Dielectric Strength ... Low Moisture Absorption ... Great Mechanical Strength ... Excellent Machining Properties . . . Low Power Factor . . . and Good Dimensional Stability.

For the best . . . "Call Cleyeland." Samples on request.
*Trade Marks

Ask about

CLEVELAND TUBES

in various types and specifications being used in the Electrical Industry.

CLEVELAND COSMALITE* and CLEVELITE*

STANDARD CORES

. . in a wide range of sizes, shapes and frequencies

CHOKE COIL CORES
Insulated or non-insulated types

IRON SLEEVE CORES

Smaller cores of any standard material provide higher \mathbf{Q}.

SIDE-MOLDED CORES

Out standingly superior for permeability tuning
4 Side molded

MOLDED IRON TRANSFORMER CORES

The ideal core for filter cores in carrierfrequency equipment

CUP CORES

Space savers de luxe. Dozens of shapes and sizes
Permeability... ...Unaffected by operating conditions Gitixpoly IRON GORES

.. and now

 high permeability CERAMIC CORES FOR TELEVISION

Stackpole Ceramag TV flyback transformer cores are half the size of conventional types-assure permeability on the order of 10 to 1 by comparison. Width control types give ratios of from 1 to 8 or more compared with 1-5 for previous high permeability types assuring more positive width control in low voltage areas.

Electronic Components Division

[^0] electrical tape requirements for all insulating, tieing and identifying uses . . . and be confident that with MITCHELL-RAND service and PERMACEL TAPES, your electrical equipment and apparatus will have positive insulation and absolute protection.

PERMACEL ELECTRICAL TAPES have great dielectric and tensile strength, great tear-resistance, maximum adhesive firmness, excellent varnish penetration, etc. . . . their backings and adhesives minimize abrasion and electrolytic corrosion . . . resist oil, water and acids . . . provide elasticity . . . stick at a touch and hold everlastingly.

PERMACEL TAPES have what it takes to insulate, protect, tie and identify . . . and often at lower cost!

It will pay you to test PERMACEL ELECTRICAL TAPES . . . write today on your lefferhead and MITCHELL-RAND will submit samples and descriptive data.

A PARTIAL LIST OF M-R PRODUGTS: FIBERGLAS VARNISHED TUBING. TAPE AND CLOTH - INSULATING PAPERS AND TWINES • CABLE FILLING AND POTHEAD COMPOUNDS - FRICTION TAPE AND SPLICE - TRANSFORMER COMPOUNDS - FIBERGLAS SATURATED SLEEVING. ASBESTOS SLEEVING AND TAPE • VARNISHED CAMBRIC CLOTH AND tape - mica plate, tape, paper, cloth, Tubing - fiberglas braided steeving - cotton tapes, webbings and SLEEVINGS • IMPREGNATED VARNISH TUBING • INSULATED VARNISHES OF ALL TYPES • EXTRUDED PLASTIC TUBING

No. 5 Another Engineer's Problem Solved of a

 Series
SU: ECT: HIGH VOLTAGE. HIGH POWER RF CAPACITORS

 - BO: EN: To design a pacitor rated 25000 V at 12 amperes from 500 to 1700 kilocycles. To cost less than a mica capacitor. To occupy less chassis space and less total volume without loss of efficiency or reliability.

SOLUTION:

 Plasticon Type LS Capacitors rated at 3500 Volts have been available for three years. Using similar design factors, a 1000 mmf . 25 KV Glassmike was constructed. Tests under full power showed a Q of 3000 at 1 megacycle. The temperature rise was $15^{\circ} \mathrm{C}$ at 12 amps . at 500 Kc . This capacitor, LSG102-25, was substituted for a JAN-C-5,CM90 style Mica capacitor in a Commercial Broadcast Transmitter. The LSG102-25 Plasticons have been in operation since last June. The Plasticons are approximately 40% of the cost of the mica capacitors. The base dimension of the mica capacitor is 5 " $\times 66_{2}^{\prime \prime}$; the height is $5 \frac{33^{\prime \prime}}{4}$. The Plasticon LSG102-25 is $1 \frac{3{ }^{\prime \prime}}{8}$ OD x $8^{\prime \prime}$ long.In the near future a complete line of high voltage-high power Plasticon LSGs will be announced. We are now filling orders for LSGs in the following ranges: $3,500 \mathrm{~V}, 7,000 \mathrm{~V}, 10,500 \mathrm{~V}, 14,000 \mathrm{~V}$, $17,000 \mathrm{~V}, 20,000 \mathrm{~V}$ and $25,000 \mathrm{~V}$. Sizes range from $19 / 32^{\prime \prime}$ to $1 \frac{3}{8}{ }^{\prime \prime} \mathrm{O} . \mathrm{D}$. and from $1^{\prime \prime}$ to $8^{\prime \prime}$ in length. The current ratings do not duplicate mica capacitors. In general more parallel and fewer series units are required. Plasticon LSGs are more compact, easier to mount and less expensive.

What is YOUR engineering problem? Your inquiries will receive immediate attention.

We manufacture a standard line of Plasticon Capacitors, Pulse Forming Netuorks and High Voltage Pouer Supplies.

Write for our catalog.

WILGOX ...FIRST CHOICE Of HAWAIIAN AIRLINES

VHF AIR-BORNE COMMUNICATIONS

Hawaiian Airlines selected the WILCOX TYPE 361A COMMUNICATIONS SYSTEM for all aircraft. This consists of a 50 watt transmitter, a high sensitivity receiver, and a compact power supply, each contained in a separate $1 / 2$ ATR chassis. Transmitter and receiver contain frequency selector with provisions for 70 channels... ample for both present and future needs.

VHF GROUND STATION PACKAGED RADIO

Hawaiian Airlines selected the WILCOX TYPE 428A FACTORY PACKAGED STATION for all ground stations. This consists of the WILCOX 406A fixed frequency 50 watt transmitter, the WILCOX 305A fixed frequency receiver, the WILCOX 407A power supply, the WILCOX 614 A VHF antenna, telephone handset, loudspeaker, desk front, typewriter well, and message rack.

DEPENDABLE COMMUNICATIONS FOR THE WORLD'S AIRLINES

During recent months, many of the world's foremost airlines, UNITED, EASTERN, TWA, MID-CONTINENT, BRANIFF, PIONEER, ROBINSON, and WISCONSIN CENTRAL have placed volume orders for similar communications equipment. No greater compliment could be paid to the performance, dependability, and economy of WILCOX equipment than to be "FIRST CHOICE" of this distinguished group.

Write Taday for complete information on the Type 361A VHF Air-borne Communications System and the Type 428 Packaged VHF Ground Station.

Type 428 Packaged VHF Station

$$
\begin{aligned}
& \text { Fealeral } \\
& \text { Announces }
\end{aligned}
$$

A NEW LOMG-IIFE theyision tube High in Light Output!
 Produced with the Newest and Most Advanced Type Equipment in the TV Industry

H ere's the precisely right tube for TV. Here's tube design based on more than forty years' tube manufacturing experience. It's Federal's New-Day Kinescope, introducing a new high in light output and fine performance.

Federal's Kinescope is the new over-all advanced design embodying the ion-trap type electron gun. Magnetically focused, magnetically deflected, delivering the sharpest contrast and picture definition, it assures the user quality-first pictures, quality-first performance. For complete details, write to Dept. K413.

KINESCOPES BY
Federal Perform Better... Last Longer Federal Kinescope Types RECTANGULAR SCREEN: $14^{\prime \prime}, 16^{\prime \prime}, 17 \prime \prime, 19 C^{\prime \prime}$
ROUND SCREEN: $121 / 2^{\prime \prime}, 16$

21/2", $16^{\prime \prime}, 19^{\prime \prime}$

If you need capacitors that will do a "heap big" job in a minimum of space to speed your production-these Sangamo Micas and Buttons are your best bet. Space problems can be easily solved without sacrifice of stability or high quality.
For detailed information on Button Micas write for Catalog No. 830. Sangamo's new Catalog No. 800 gives full information on the whole Sangamo Tribe.

Type RR Miniature Silvered Mica Capacitors

The Sangamo 'Shawnee", Type RR Miniature Silvered Mica Capacitor, is designed and constructed to meet all requirements specified in the tentative JAN-C-5A specification for the CM-15 case size. Exceptionally small, the Sangamo "Shawnee" will measure up to your toughest requirements.

Type M Silvered Mica Button Capacitors

Sangamo Silvered Mica Button Capacitors are available in a wide variety of sizes and styles in capacitance ranges from 10 mmfd . to 7000 mmfd . and meet all requirements of component capacitors for V. H. F. and U. H. F. applications. Sangamo Button Capacitors are fabricated with silvered mica to provide high conductivity. They are completely sealed against humidity, and have a very low temperature coeffcient.

SPRINGFIELD,ILLINOIS

Figure 1
Actual photo of oscillograph trace showing $.01 \mu \mathrm{sec}$ pulse (Ieft) applied direct to CRT plates; (right) through hp-460A.

Figure 2
Typical response curves. Line A, with -hp- 410A VTVM. tine B, into 200 ohm load. Line C, Gaussian curve.

SPECIFICATIONS

Frequency Respanse: High frequency - closely matches Gaussian curve when operating into a 200 ohm resistive load. 3 db point is 140 mc . Low frequency - when operating from a 200 ohm source and .01 blocking condenser, response off 3 db at 3 kc into an open circuit or succeeding amplifier. When operating into a 200 ohm load, off 3 db at 100 kc .

With -hp- 410 A VIVM: $\pm 1 \mathrm{db}, 200 \mathrm{kc}$ to 200 mc .
Gain: Approx. 20 db into 200 ohm load, with tubes of $G_{m} 5,000$ micromhos. (When operating into 200 ohm load.) Gain control has range of 6 db. 5 or more amplifiers may be cascaded.
Output: Approx. 8 r. peak open circuit. Output impedance, 330 ohms.
Input Impedance: 200 ohms.
Delay Characteristics: Approx. $012 \mu \mathrm{sec}$.
Rise Time: Approximately $0026 \mu \mathrm{sec}$ (10% to 90% amplitude). No appreciable overshoot.
Mounting: Relay rack, $51^{\prime \prime} \times 19^{\prime \prime} \times 6^{\prime \prime}$ deep.
Power Supply: 115 v. 50/60 cps, self-contained.

SETTING A NEW STANDARD FOR FAITHFUL PULSE AMPLIFICATION!

> True amplification of very short pulses. Rise time .0026 mi croseconds; 20 db gain; can be cascaded. For oscilloscope, TV, UHF, nuclear or general laboratory work. Increases voltmeter sensitivity 10 times over $\mathbf{2 0 0} \mathbf{m c}$ band.

The new -hp-460A Wide Band Amplifier is the first instrument of its kind to offer you faithful amplification of very short pulses without objectionable ringing or overshoor. The rise time of the amplifier itself is only 0026 microseconds; and its response matches the Gaussian curve (transmission ideal) more closely than any other instrumentyet offered. The exactness with which the new -hp- 460A amplifies very short pulses can be seen in Fig. 1. Left: shows a $.01 \mu \mathrm{sec}$ pulse applied dinect to plates of a 5XP11A cathode ray tube. Right: same pulse after passing through the $-h p-460 \mathrm{~A}$. Note the very short rise time and the absence of ringing or overshoot. Fig. 2, illustrates how closely the - $h p-460 \mathrm{~A}$ conforms to the Gaussian ideal. As many as 5 amplifiers can be cascaded when high gain is necessary.

GENERAL AMPLIFIER

Fig. 2 also illustrates the wide fre-
quency response of this instrument. It offers flat response up to 200 mc when used with the -hp-410A Vacuum Tube Voltmeter. Sensitivity is increased 10 times. The - $h p$ - 460A may also be used as a general purpose laboratory amplifier.

ACCESSORIES

Since the -hp-460A Amplifier operates best at impedances of 200 ohms , - $h p$ - has designed a 200 ohm coaxial system of connectors and cables. These accessories include leads with fittings, panel jacks and plugs, adapters to connect into a 50 ohm Type N system; and a special adapter for use with the $-h p$ - 410A Voltmeter.
Get complete information now/See your nearest -hp-representative or write to factory.

HEWLETT-PACKARD CO.

1936-A Page Mill Road, Palo Alto, California
Export: FRAZAR \& HANSEN, LTD.
301 Clay Street, San Francisco, Calif.; U. S. A. Offices: New York, N. Y.; Los Angeles, Calif.

NEW MANUALLY-OPERATED "STICK" WINDER GETS "ELECTRICAL MANUFACTURING" DESIGN AWARD - UNIVERSAL NO. 108

A fully automatic coil winding machine pays its way only when the runs are long enough to justify the expense of the set-up time required.

Since many coil lot sizes are small, only a portion of the market requirements can be filled economically by the use of automatic machinery.

This situation, together with the obsolete condition of many of the manually-operated winders in the electrical and electronic parts industries created the necessity for developing a manually-operated winder of modern design to supplement the automatic type.

No. 108 COIL WINDER

The No. 108 Coil Winder was developed by the Universal Winding Company to meet the demand for a modern manually-operated machine to wind paper-insulated coils in multiple or "stick" form.

Its design received an Honorable Mention Award in the 11th Annual Product Design competition sponsored by "Electrical Manufacturing."

The objective of Universal engineers was to produce an inte-
grated unit, clean and functional, with labor-saving features which would warrant replacement of present equipment, and with a selling price low enough to be attractive to the predominantly "job shop" type of market characteristic of the ever-changing electrical and electronic parts industries.

No. 108 Coil Winder.
After extensive field surveys and an analysis both of suggestions made by electrical engineers, superintendents and operators, and of their criticisms of existing machinery, our engineers determined upon the basic principles for the 108 Coil Winder that are incorporated in the following outstanding features.

Quick Set-Up A11 machine functions are built around the idea that quick set-up and finger-tip control are the best means of creating savings in the use of skilled labor during machine set-up.

Flexibility The machine can be adjusted quickly to accommodate changing requirements of

Note convenience of controls.
wire size, coil length and diameter.
Accessibility Operationsinvolved in preparing and finishing coils vary from job to job, but access to the coil stick is completely unhampered and all coils are readily processed. Accessibility features are also provided for ease of maintenance and adjustment.

Simplicity Since operators of this type of machine are usually women and may be disturbed by any complexity of controls and adjustments, the simple external appearance of this machine promotes confidence.

Cost Compared with an automatic machine winding the same type of coils, the cost of this machine is very modest, considering its efficiency and the high quality of its construction.

Bed The bed is a single casting, extending the full length of the machine, and is of aluminum to cut down weight. The supporting columns are made of single steel sheets, formed and welded and are braced at the bottom by steel straps which serve as feet. The left-hand one houses the motor and drive mechanism and the right-hand one is a cupboard for the operator's personal belongings.

For free literature on design features, write for "Getting the Most from Coil Winding No. 14."

FOR WINDING COILS IN QUANTITY ACCURATELY AUTOMATICALLY USE UNIVERSAL WINDING MACHINES

For low-level d-c measurements Use these new, triple-purpose

INDICATING AMPLIFIERS

stabilized for zero and gain

Voltage-balance feedback (above) and current-balance feedback stabilize gain ... provide virtual null balance.

> MICROVOLT UNIT
> Catalog No. 9835

SPECIFICATIONS

FULL SCALE RANGES WITH BUILT.IN $4^{\prime \prime}$ METERS 0 to 50 or - 25 to 0 to 1000 or - 500 to +25 Microvalts; scale multipliers: 1,2,4,10, 20,40

MICRO-MICROAMPERE UNIT
Catalog No. 9836

$$
\begin{aligned}
& +500 \text { Micro-Micro- } \\
& \text { amps; scale multipli } \\
& \text { ers: } 1,2,5,10,20,50, \\
& 100,200,500,1000 \text {, }
\end{aligned}
$$ 2000

acCuracy

Of amplifier: $\pm 0.4 \%$
of reading $\pm 0.5 \mathrm{Mi}$ -
crovolt; Of meter: $\pm 1 \%$

Of amplifier: ± 0.5 10 0.8% * of reading ± 20 Micro Microamps; Of meter; $\pm 1 \%$

STABILITY
Zero and Gain stabilized automatically. No trimmer controls required.

* SOURCE RESISTANCE

| Up to 10,000 ohms. 0.1 megohm or more. |
| :--- | :--- | RESPONSE TIME 2 to 3^{*} sec.

2 to 3^{*} sec.

OUTPUT

For full scale input on any range: 10 millivolts at output impedance of 500 ohms for null recorder; 1 volt for 20,000 -ohm external meter.

Front panel fits standard $19^{\prime \prime}$ relay rack.
*Accuracy and Response Time depend on Source Resistance.

These new instruments are not only D-C Indicating Amplifiers but are stable, accurate measuring instruments as well. You can use them in measurements with thermocouples, strain gages, bolometers... bridge and potentiometer circuits . . .ionization, leakage, and phototube currents . . . almost any measurement of extremely small direct current or voltage.

Through a combination of a-c amplification and unique balanced feedback network, zero and gain stability are designed right into the instrument. Trimmer controls are designed out-eliminated.

Actually three instruments in one, these amplifiers can be used as-

Direct-reading instruments . . . At the turn of a scale-multiplier knob, you simply select the range in which you want to work.

Recorder preamplifiers . . . with broad flexibility. For instance, one or two degrees of temperature difference can be spread across an entire Speedomax recorder scale.

Null defectors . . . more sensitive than most reflecting galvanometers, yet with full scale response time of only 2 to 3 seconds. leveling is unnecessary. There's no worry about shock or vibration. At the turn of a range knob, you have available a wide choice of sensitivities. External shunts are not required. And when using non-linear response, not only does the instrument stay on scale at extreme unbalance; sensitivity increases automatically as the null point is approached. For details, write to Leeds \& Northrup Co., 4979 Stenton Ave., Phila. 44, Pa.

One size for all ratings $-3 / 16^{\circ \prime}$ dia. by 7/16" long.
Hyvol K impregnated in humidity-resistant molded thermoplastic cases.
Operating lemperature range from $-15^{\circ} \mathrm{C}$. to $+85^{\circ} \mathrm{C}$. withoul derating.
Power factor less than 1% when measured at or referred to frequency of 1000 cps and ambient temperature of $25^{\circ} \mathrm{C}$.

Insulation resistance of 25,000 megohms or greater, measured at or relerred to temperature of $25^{\circ} \mathrm{C}$. Insulation resistance at $85^{\circ} \mathrm{C}$., 500 megohms or greater.

Very high self-resonant frequency, due to remarkably small length of unit.

Life test: 1000 hours at 1.25 times rated voltage in ambient temperature at $85^{\circ} \mathrm{C}$.

Meets humidity resistance requirements of FMA (REC-118, section 2, paragraph 2.38) for paper tubulars.
Meets RMA beat resistance test at $85^{\circ} \mathrm{C}$. (REC-118, section 2. paragraph 2.39).
In 400 VDC (. 0005 to .003 mid .) and 200 VDC (. 005 and .01 mid .)

Other capacitance and voltage ratings will be made available in near future.

* Trade-mark

a strong, lightweight, LOW-COST tubing

 for your electrical applications
bRANCH OFFICES: NEW YORK 17 - CLEVELAND 14 • CHICAGO 11 - SPARTANBURG, S. C. - SALES OFFICES IN PRINCIPAL CITIES. WEST COAST REPRESENTATIVE: MARWOOD LTD., SAN FRANCISCO 3 - in CANADA: DIAMOND STATE FIbre CO. OF CANADA, LTD., TORONTO B

> Continental = Diamonal

F I B R E
COMPANY

Established 1895 . . Manufacfurers of Laminated Plastics since 1911-NEWAHK 16 • DELAWAHE

Where Temperature Changes affect Circuit Performance...

 these Resistors provide a Solution

SNHO NI TONVASISTV
Globar brand type F resistors can often provide the answer when extremes of temperature present an engineering problem. A typical example is shown by the curves plotted here. In this important control system, a GLOBAR type F resistor is used to compensate for resistance changes due to temperature variations in coils such as generator and motor fields, measuring and control circuits.
The pronounced negative resistancetemperature characteristics of GLOBAR type F resistors makes them particularly useful for stabilizing circuits having a positive temperature coefficient of resistance.

Globar type F resistors have no moving parts to wear out or get out of adjustment. They have a negative temperature coefficient ranging from 1% to 2.2% per degree Centigrade at $25^{\circ} \mathrm{C}$., increasing with their resistivity, and a low voltage coefficient.

- Bulletins contain useful engineering data on globar type F resistors. Copies will be supplied immediately upon request. Write Dept. V-60, The Carborundum Company, globar Division, Niagara Falls, New York.

GLOBAR Ceramic Resistors в GARBCRUNDUM
"Carborundum" and "Globar" are registered trademarks which indicate manufacture by The Carborunaum Company

Fractional hp

MOTORS
concentrated $\mid / /$ power

Type 230 Shaded 2.Pole Motor. For continuous duty without fan cooling. 1/200 to $1 / 50 \mathrm{hp}$ at 3200 rpm . Flat Speed Torque Curve and High Starting and Pull Up Torque are characteristic of all Type 230 Raytheon motors. Efficiency is almost double the value ordinarily obtcined in shaded two-pole motors of this type. Write for Data Bulletin 1000.

"Count on Raytheon to run it." That's what design engineers are saying. They're the men who appreciate the Creative Craftsmanship that goes into Raytheon fractional hp motors. Concentrated power in a small package-dependable performance at the shaftthose are the Key words in Raytheon design and engineering. When you want to run things, FANS, BLOWERS, HEATING EQUIPMENT, appliances or what have you-count on Raytheon motors to do the job. Call on your Raytheon motor representative for consultation on your specific application.

RAYTHEON TYPE 350 SHADED 2-POLE, 3000 rpm MOTOR.

RAYTHEON TYPE 330.5 4-POLE, $1 / 10$ to $1 / 50 \mathrm{hp}$, 1550 rpm MOTOR.

RAYTHEON TYPE 470 SHADED 6-POLE, 1050 rpm INDUCTION MOTOR.

MOTOR DIVISION OF R AYTHEON 4501 So. Western Boulevard Dept. F-24

Why is "dag" Colloidal Graphite best for CRT Exterior Wall Coating?

It's cheaper ...Has better adhesion ...Requires no baking

BLEEDS STATIC FROM CABINETS TOO!

Static charges built up in TV sets-particularly where metal CRT's are used-can be successfully bled off by coating the inside of cabinets with "dag" Dispersion \#194. This reduces picture interference and also precludes shock. Easy to apply by spraying or brushing.

"dag" Dispersion \#194 is a lacquer-base dispersion of microscopically small graphite particles. It is easily applied to CRT surfaces by spraying, and dries very rapidly, enabling tubes to be handled in 2 or 3 minutes. Maximum adhesion is obtained by drying at room temperature for 24 hours, or by forced infra-red drying for $1 / 2$ hour.
"clag" Dispersion \#194 forms a smooth, uniform, conductive black coating on any type glass. Its adhesive properties are so good that it will resist scratching by a thumb nail or soaking in water.

Prominent CRT manufacturers have found "dag" colloidal graphite dispersions satisfactory and usually cheaper for wall coatings . . . for other electronics work, too. Let Acheson Colloids engineers show YOU how these versatile dispersions can solve many and varied electronics problems. Send the coupon NOW for more information.

Heat Sealing Generator

KABAR MANUFACTURING CORP., 1907 White Plains Road, New York 60, N. Y. The Kabar Model No. 2500 High Frequency Generator is a versatile unit for heat sealing vinyl plastic fabrics. Indicative of the high quality of design are the KENYON Transformers used extensively.

The No. 2500 has a power supply of 220 volts, 60 cycles, single phase, output of 3 kw , output frequency of 27.12 megacycles and power consumption of 5.5 kw . Size of the compact unit is $50^{\prime \prime} \times 26^{\prime \prime} \times 18^{\prime \prime}$. Weighs approximately 400 lbs. Sealing cycle is automatically controlled.

The Kabar No. 2500 is but one of many high quality applications that call upon KENYON engineering ability and know-how for transformers that are built for rugged use. Whether it be standard KENYON "T" Line or "specials" custom-built to your requirements, you are always assured of quality, dependability and sound construction.
For over 20 years, leading manufacturers and engineers in all fields specify KENYON Transformers for many industrial, communication, sound and electronic applications. KABAR, too, specifies KENYON for high quality, economy transformers!

Here's the "Q" in Transformers

W's Kenyon Quality

Kenyon
one of the oldest names in transformers, offers you high quality specification transformers cus-tom-built to your requirements - practically at catalog prices! For over 20 years the KENYON " K " has been a sign of skillful engineering, progressive design and sound construction.

KEnYON"Specials" Are Designed Far:

AUTOMATIC CONTROLS AUDIO AMPLIFIERS EXPERIMENTAL LABORATORIES ATOMIC ENERGY EQUIPMENT

Among many others

Consult our engineering staff on any of your "special" problems at no obligation to you. Call or write now for our representative.

Kenyon

"T's"- famous line of high quality, uniform transformers are ready for immediate delivery from stock. Our standard line can save you much time and expense. For a complete story about specific ratings on all transformers, send for your copy of the latest KENYON Catalog edition now!

KENYON TRANSFORMER CO., Inc.
 840 BARRY STREET
 NEW YORK 59, N. Y.

Kinney High Vacuum Pumps are at work in all phases of low pressure processing - in the production of television tubes, titanium, penicillin, electrical condensers, coated camera lenses, dehydrated foods, and scores of other products. Their dependability and high pumping speed have helped bring vacuum out of the laboratory and onto the production line. Kinney Pumps are establishing important records both for length of service and economy of operation. They are virtually a "production must" whenever processes
require fast pump down to low absolute pressures.
Performance is the big reason why Kinney Pumps are so often specified "when vacuum is vital". Perhaps they can help speed YOUR processes or improve YOUR products. Write for Bulletin V-45, describing the complete line of Single Stage and Compound Vacuum Pumps. Kinney Manufacturing Company, 3565 Washington St., Boston 30, Mass. Representatives in New York, Chicago, Cleveland, Houston, New Orleans, Philladelphia, Los Angeles, San Francisco, Seattle.

Foreign Representatives: General Engineering Co. (Radcliffe) Ltd., Station Works, Bury Road, Radcliffe, Lancashire, England . . . Horrocks, Roxburgh Pty., Ltd., Melbourne, C. I. Australia . . W. S. Thomas \& Taylor Pty., Lid., Johannesburg, Union of South Africa... Novelectric, Ltd., Zurich, Switzerland.

KNNEY Vacuum Pumps reduce costly shutdowns!

INDUSTRIAL OSCILLOSCOPE-For tracing cir-

 cuit trouble in electronic-control equipment, this scope is fast, accurate, and dependable. Ideal for checking welding machines, high wave capacitor discharge panels, variable speed motor controls. Set it down anywhere-the case is insulated . . . carry it easily-weighs only 27 pounds . . . use it in many ways-tests both AC and DC.```
< Tests make-and-break
 of relay circuits
* Checks waveforms in
 Thyratron control
\& Max. infut voltage 550
\& Sensitivity 0.15 volts dc/inch; 0.18 volts rms/inch.
```



## IN WELDING OPERATIONS—USE IT TO

* check "hard-starting" ignitrons * observe voltage shapes on rube elements in timing sequence circuits
$\star$ check instantaneous regulation on high current welder supply line
* set "full heat limit odjustment"
* check relays for bounce and high resistance contactors
* check "on" and "off" fime in seam welders
$\star$ check behavior of peokirg transformers
$\star$ check high frequencv-interference switch transients catsed ty omer equipment

INDUSTRIAL TUBE ANALYZER-Which tubes are bad? Don't guess-check them quickly, easily with this Analyzer that pays for itself in the cost of tubes you would normally scrap. Tests Thyratrons and Phanatrons with ratings up to 100 amperes peak current. Can be operated by nontechnical personnel after brief instruction. Backs up the G-E Industrial Oscilloscope to boost your maintenance efficiency, cut your costs.


## GET THIS CATALOG - IT'S FREE!

Contains specifications and price information on instruments shown here as well as other items of G-E electronic test equipment. Write: General Electric Company, Section 460, Electronics Park, Syracuse, New York.


# GENERAL (\%) ELECTRIC 



Today's complex circuits frequently call for the design, development, and production of highly specialized components, sub-assemblies, or instruments which usually fall outside the realm of standard production. Backed by a staff of electronic, electrical, instrument, mechanical, and chemical engineers and fully equipped for both research and development, Shallcross is well organized to handle such assignments. Recent developments for leading manufacturers, public utilities, and military agencies have included:
Potted Wheatstone bridge networks • High-voltage measuring equipment Potted and thermally controlled R.C networks - Precise decades and networks for computer devices . Hermetically-sealed chokes - Calibrating instruments for strain gauge bridges High resistance standards• Critical coil assemblies

# HERMETICALLYSEALED NETWORKS 

## Resistance - Capacitance Bridge • Inductance

To satisfy the exacting requirements of electronic computers, delay lines, tuning circuits, phase shifters, and other devices, Shalleross is fully equipped to design and produce potted networks to meet many critical electrical specifications and space requirements. The unit shown is a hermetically-sealed potted bridge network designed to control a potential of 100 volts to within $\pm 0.1$ volt.

Whether for direct high-voltage measurements or for use as standards in determining the exact voltage of a portion of a high-voltage supply, Shallcross Kilovoltmeter Multipliers combine close accuracy with safety and dependability. The No. 791 Kilovoltmeter Multiplier illustrated here provides a ready means of determining $a-c$ and $d-c$ potentials up to 40,000 volts with outstanding accuracy. Other Shallcross types are ávailable. For details, see Bulletin F.

## HI-MEG HI-VOLTAGE RESISTORS

Special resistance elements hermetically-sealed in ceramic tubes with ferrule type terminals. With composition elements the standard tolerance is $10 \%$ and the temperature cocfficient is $0.04 \%$ per degree $C$. Tolerances as close as $2 \%$ are available. With special wire-wound resistance elements, accuracies of $0.05 \%$ are easily obtained. A standard temperature coefficient of $0.002 \%$ per degree $C$ holds over a wide temperoture range. Three standard sizes offer resistance values from 1000 ohms to over 100 megohms. Write for Bulletin $F$


## MOUYBDENUM PERMALLOX POWDER CORES*

HIGH Q TOROIDS for use in Loading Coils, Filters, Broadband Carrier Systems and Networksfor frequencies up to 200 KC

## COMPLETE LINE OF CORES TO MEET YOUR NEEDS

$\star$ Furnished in four standard permeabilities - 125, 60, 26 and 14.
$\star$ Available in a wide range of sizes to obtain nominal inductances as high as 281 $\mathrm{mh} / 1000$ turns.
$\star$ These toroidal cores are given various types of enamel and varnish finishes, some of which permit winding with heavy Formex insulated wire without supplementary insulation over the core.

- For high $Q$ in a small volume, characterized by low eddy current and hysteresis losses, ARNOLD Moly Permalloy Powder Toraidal - Cores are commercially available to meet high standards of physical : and electrical requirements. They provide constant permeability - over a wide range of flux density. The 125 Mu cores are recom-- mended for use up to $15 \mathrm{kc}, 60 \mathrm{Mu}$ at 10 to $50 \mathrm{kc}, 26 \mathrm{Mu}$ at 30 to 75 kc , : and 14 Mu at 50 to 200 kc . Many of these cores may be furnished : stabilized to provide constant permeability ( $\pm 0.1 \%$ ) over a specific - temperature range.

SUBSIDIARY OF ALLEGHENY LUDLUM STEEL CORPORATION 147 EAST OMTARIO STREET, CHICAGO 11, ILLINOIS

## OHCHITE ... World's Largest Stock of



## Ready for IMMEDIATE Shipment

F
For fast delivery, rely on Ohmite. Stock orders are usually shipped out the same day received. Special orders, too, are scheduled and shipped promptly.

How can Ohmite do it? First, they have developed an efficient, tightly geared order system which short-cuts red tape.

But more important is Ohmite's enormous stock of rheostats, resistors, and tap switches-believed to be the largest and most complete maintained anywhere in the world.

Specify Ohmite for Dependability . . . and PROMPT DELIVERY!

OHMITE MFG. CO. 4818 Flournoy St.

Chicago 44, III.


## Be Right mitat

## Here's Why

You Get? GRAPHITE BRUSH
Assures perfect con. taet with negligible wear on the wire.

## UNIFORM CONTACT PRESSURE <br> Spring steel contact arm forms a long spring which assures uniform contact pressure at all times.

UNIFORM SLIP. RING PRESSURE
Compression spring maintains uniform pres. sure and dectrical contact between slip ring and center lead. Pres. sure here is independent of that at the contact
with
OHMATE
RHEOSTATS

Years of field experience emphasize the underlying soundness of Ohmite rheostat design. These rheostats are constructed entirely of ceramic and metal-contain nothing to char, burn, shrink, or deteriorate. Ceramic parts insulate the shaft and mounting. The resistance winding is permanently locked in place by vitrecus enamel. Every turn is contacted by the smoothly gliding metal-graphite brush, assuring smooth, gradual, close control.

## OHMITE MANUFACTURING CO.

4818 Flournoy St.
Chicago 44, III.
brush.

STOP PREVENTS STRAIN ON CONTACT ARM Stop, keyed to the shaft, limits the rotation of the arm. No torsional strain is imposed on the arm in stopping.

LOCKED-IN WINDING Special alloy resistance wire is wound over a porcelain core. Each turn is firmly loched in vitreous firmly
enamel.
 LOCK WASHER
Bend-up lock washer provides positive assurance against loosening of the assembly nut.

THREE TERMINALS
Ohmite rheostats are provided with three terprovided with hree ter-
minals, so they can be minals, so they can be
used as potentiometers used as potentiometers
(voltage dividers), or to permit alternate rheostat connections.


ENAMEL BOND
Vitreous enamel honds the ceramic core and base together into one integral unit.

Write on Company Letterhead for Catalog and Engineering Manual \#40.

WEAR-RESISTANT BEARING
Brass bushing for the steel shaft provides a wear-resistant, wobblefree bearing.

## Be Right with



RHEOSTATS • RESISTORS • TAP SWITCHES

- The Type 294 is an extremely versatile cathode-ray oscillograph combining high-voltage operation with precise high-frequency circuit design, extending its general-purpose utility to meet the specialized needs of high-speed transient study
Stable operation of the high-gain, wide-band ampli fier of the $Y$ axis over the entire frequency range from 10 cps . to 15 megacycles includes the performance of a signal-delay line built into the $Y$-axis circuit to insure full display of short-duration pulses. An input pulse rise time of $0.01 \mu \mathrm{~s}$. will be reproduced with a rise time not exceeding $0.03 \mu \mathrm{~s}$.
Available undistorted deflection of both symmetri cal signals and unidirectional pulses of either positive
or negative polarity exceeds the usable vertical scan of the cathode-ray tube. A built-in high-voltage unit supplies 12 kv . accelerating potential to the Du Mont Type 5XP- cathode-ray tube; rear-panel selection of a lower potential may be made for increased sensitivity and deflection.
A flexible sweep circuit provides continuously variable driven and recurrent sweeps with sweep cali bration being provided by internal timing markers applied through the Z-axis amplifier.

Permanent records of phenomena studied with the Type 294 may be made with either the Du Mont Type 271-A or 314-A Oscillograph-record Camera

## GENERALSPECJFICATIONAS

Cathode-ray Tube......Du Mont Type 5XP-
Acceleroting potential
$\ldots . . .12,000$ volts
$\ldots, 000$ volts

Y-axis Amplifier
frequency response
10 cps . to 15 megacysies
Sensifivity $\ldots . .0 .15 \mathrm{rms}$ volt $/ \mathrm{in}$. at 7 kv .
.0 .20 rms volt $/ \mathrm{in}$. at 12 ky

Signal Delay . . . . . . . . . . . . . . . . . $0.25 \mu \mathrm{~s}$.

X-axis Amilifier
Frequency response. . . . 2 cps . to 700 kc .
Sensitivity ...... 0.4 rms volt $/ \mathrm{in}$. at 7 kv . 0.5 rms volt $/ \mathrm{in}$. of 12 kv

Rise time . . . . . 0.5 us. from $10 \%$ to $90 \%$
Driven Sweep Range. . . . . 0.1 sec . to $2 \mu$.
Recurrent Sweep Range . . 10 cps . to 150 kc .
Z-axis Amplifier
Polarity selection-3 volts peak to blank trace of normal infensity.

Timing-Marker Intervals
$100 \mu \mathrm{~s} ., 10 \mu \mathrm{~s} ., 1 \mu \mathrm{~s}$.
Trigger Generator
Repetition rate
200 to 3600 p.p.s Output amplitude Output polarity

Physical Specifications
Indicator Unit
$241 / 2^{\prime \prime} \mathrm{d} .-1534^{\prime \prime} \mathrm{h} .-12 \frac{3}{4} 4^{\prime \prime} \mathrm{w} .-62 \mathrm{lbs}$.
Power Supply
$193 / 4^{\prime \prime} \mathrm{d} .-153 / 4^{\prime \prime}$ h. $-12 \frac{3 / 4 \prime \prime}{}$ w. -100 lbs .
(0) ALLEN B, DU MONT LABORATORIES, INC

## announceme... 5 صuNITS

Making available a wider choice of ARMA Induction Motors
Designed specifically for high performance servo applications IYPICAL SPECIFICATIONS


## FEATURES

Low Bearing Friction • Rapid Response to Applied Voltage - Symmetrical Rotor Design - Quiet Operation - High Mechanical Accuracy • Double Ended Shafts.


$\begin{array}{lllllllllllllll}\mathbf{A} & \mathbf{R} & \mathrm{M} & \mathbf{A} & \mathbf{C} & \mathbf{O} & \mathbf{R} & \mathbf{P} & \mathbf{O} & \mathbf{R} & \mathbf{A} & \mathbf{T} & \mathbf{I} & \mathbf{O} & \mathbf{N}\end{array}$<br>254361 h STREET, BROOKLYN 32, N.Y.<br>SUBSIDIARY OF AMERICAN BOSCH CORPORATION

ARMA
PRODUCTS
RELEASED
FOR
PRIVATE
IMDUSTRY



PAECIS10M


## New BRUSH Dual Channel DC Amplifier simplifies current-voltage studies

To measure and record two phenomena simultaneously, Brush introduces the new Model BL-928 Dual Channel Direct Coupled Amplifier for use with the Model BL-202 Dual Channel Magnetic Oscillograph. These Brush instruments, shown above, are being used in the test laboratory of Hertner Electric Company, Cleveland, Ohio to study the characteristics of motor-generators. In this particular test, they are recording generator voltage and field current time-curves for plotting a saturation curve and studying build-up of voltage. This requires only a few minutes ... compared to the hours needed for conventional plotting methods.

These Brush dual-channel instruments can simplify the study of many other variables such as battery characteristics, photo cell outputs, line voltage and current values and electric phenomena having amplitudes of 40 millivolts or more and frequency components from zero to 100 cycles per second. Write for Form 732 which gives further details.

## the Brush development company

3405 Perkins Avenue, Cleveland 14, Ohio, U. S. A.
Canadian Representafives: A. C. Wickman (Canada; Ltd., P. O. Box 9 Station N, Toronto 14, Ontario

## Because of 5 Outstanding Features



The Eimac 4-125A is the heart of modern radio communication systems. Its de-pendability-of-performance has been proved over years of service in many thousand transmitters. It will be to your advantage to consider carefully the economy and circuit simplification the Eimac 4-125A offers.
As an example of Eimac 4-125A performance, two tubes in typical class-C telegraphy or FM telephony operation with less than 5 watts of grid-driving power will handle 1000 watts input; or, two 4-125A's in high-level modulated service will handle 750 watts input.

Take advantage of the engineering experience of America's foremost tetrode manufacturer. . Eimac. Write for complete data on the 4-125A and other equally famous Eimac tetrodes.

> EITEL-McCULLOUGH, INC. San Bruno, California
> Export Agents: Frozar \& Hansen, 301 Clay St., San Francisco, California


# THE STANOARD IN THE FIELD OF HICH POWER 

## OSClllatoris

type 50 series

thate

## MICA TRANSMITTER CAPACITORS

Typical of the many C-D firsts are the type 50 mica capacitors. Only C-D micas can point to a record of dependable service of over forty years. Here's why:

Series mica stack - C-D first to use and patent this construction. Affords uniform vollage gradientl
India-ruby mica-Sheets individually tesīed for uniform thickness and dielectric strength:
special exclusive high melting point low loss flller-Reduces stray field losses; protects against humidity!
Vacuum impregnated assembly-Assures high insulation resistance; low losses; eliminates air voids!
High pressure maintained on stacks - Results in high $Q_{i}$ good capacity stability.
Casp-aluminum end caps-Low-resistonsề, wide-
path, pasitive-contact terminals for series, parallel or series-parallel cannection. Speedy, spaceconserving installations!

Every unit tested under long, continuous overload-Assures maximum reliable service.

Type 50 capacitors are available in all commercial capacity and voltage ratings. For complete description of these and Faradon type transmitter capacitors, write for catalog. CORNELL-DUBILIER ELECTRIC CORPORATION, Dept.K-6-0, South Ploinfield, New Jersey. Other plants in New Bedford, Brookline and Worcester, Mass.; Providence, R. I.; Indionopolis, Ind,, and subsidiary, The Radiart Corp., Cleveland, Ohio. Why...
you now ge胃


## Olle of the assembly lines in our Relay Depariment <br> on these Top Qualify atinma

This special-and separate-department has but one function . . . to process your orders promptly and accurately. Here, stocks of all standard parts are maintained, ready for expert assembly in accordance with your specific requirements. "Engineering Samples" are shipped
within 10 to 14 days after receipt of order (for hermetically sealed relays, allow 10 days more). Quantity shipments can start within 30 to 60 days on schedules to meet your requirements. With high-geared volume production, thousands of these superior components are being delivered quickly.

WHEREVER DEPENDABILITY COMES FIRST: -The men who know insist upon Automatic Electric
Relays and Switches for top quality. Here are a few examples:


CLASS "B" RELAYS - For requirements up to 26 terminals-greater sensitivity, contact pressure, compactness, versatility. And here's dependable long life even under extremely high speed operation. Hermetically sealed, where desired, to maintain highest performance standards.

For help on your control problems, call one of our field engineers, or write for literature. Address AUTOMATIC EIECTRIC SALES CORPORATION, Chicago 7, Illinois. In Callada: Autnmatic Electric (Canada) Ltd., Toronto.


CLASS "S" RELAYS - For aircraft and other applications requiring small size, light weight, and hermetic sealing, if desired. Astonishing power in small space. Unaffected by extreme vibration, temperature changes, high humidity. Supplied with coils up to 10,000 ohms or more.


TYPE 45 ROTARY SWITCHUp to 10 or more bank levels, adaptable to 25 - or 50 -point operation. Speed to 70 steps a second. Simpler .... only one field adjustment. Ford-c service or completely self-contained for a-c service to suit a wide variety of control applications.

SWITCHES
ELELTRII


## IRVINGTON style OW VARNISHED

 FIBERGLASLook to Orwington
for Insulation Leadership
*T.M. Reg. Owens-Corning Fiberglas Corp.
$\|$ \|insulation

## to the problem of

## at LOW cost:

Look to Irvington for the right combination to boost perormance, improve quality, cut cost . ... of your prcducts! Latest in Irvington's line of leadership is Style OW Varnished Fiberglas Class B insulation, which has proved its value in core wrappings, field coils, punchings, similar tough spots.

Irvington Style OW Varnished Fiberglas utilizes a new weaving principle that permits the glass fabric to carry more insulating varnish. Black or yellow, $36^{\prime \prime}$ wide, $.007^{\prime \prime}$ to $.012^{\prime \prime}$ thick, 25 or 50 yds . long, this new insulation may provide the answer to your design problem. Write today for test reports, further details, samples.

## YOU CAN BE SURE.. IF IT'S - Testindhouse



These are just three of the many sizes and types that are made available to you in Westinghouse Portable Instruments - th = most complete matched line in the Industry.
For all your portable instrument requiremost complete matched line in the Industry.
For all your portable instrument requirements, refer to Westinghouse Catalog Section 43-100-ask your nearest Westinghouse Representative.

## Get more for your instrument dollar!

## 1. The most complete matched line

 in the industry ... for every portable requirement.
## 2. Shipments in $\mathbf{1 0}$ days!

Shipments can be made for practically every requirement for portable electrical measuring instruments within 10 days of receipt of order at factory.

## 3. Assured A.S.A. standards.

Every Westinghouse Portable Instrument is designed and built to meet the rigid standards of the American Standards Association.

AND : . . you get the famous Westinghouse controlled quality that assures you of permanently white dials, springs that remain constant for life, magnets that remain stable, low-friction pivots, high overload capacity and uniform scale distribution.

Westinghouse Instrument Specialists are available at all times to assist you
with your electrical measuring problems. Their nationwide experience enables them to solve instrument application problems of all types. Phone, write or wire your nearest representative. For the complete story on portable instruments, ask for C. S. 43-100. Westinghouse Electric Corporation, 95 Orange Street, Newark, N. J.

J-40392

## Specify Westinghouse and be SURE of all three!

## Westinghouse INSTRUMENTS




GUARANTEED
ACCURACY
1 part in 100,000
(.001\%)

## 1 ses



American Time Products, Inc. 580 Fifth Ave., New York 19, N. Y.
Gentlemen:
Please send descriptive folder, No. 212
$\qquad$
Address $\qquad$
City $\qquad$

Time bases, rate indicators, clock systems, chronographs, geo-physical prospecting, control devices and for running small synchronous motors.

## 7 Fatures

1. Bimetallic, temperature-compensated fork, no heating or heat-up time is required.
2. Fork is hermetically sealed, no barometric effects on frequency.
3. Precision type, non-ageing, low coefficient resistors used where advantageous.
4. Non-linear negative feedback for constant amplitude control.
5. No multi-vibrators used.
6. Synchronous clock simplifies checking with time signal.

Specifications
Accuracy-1 part in 100,000 ( $.001 \%$ ).
Temperature coefficient-1 part in $1,000,000$ per degree centigrade (or better).
Outputs-

1. 60 cycles, sine wave, $0-110$ volts at 0 to 10 watts (adjustable).
2. 120 cycle pulses, 30 volts negative.
3. 240 cycle pulses, $\mathbf{3 0}$ volts positive and negative. Pulse duration, 100 micro-seconds.
product of

## AMERICAN TIME PRODUCTS

580 Fifth Avenue
New York 19, N. Y.
Operating under patents of the Western Electric Company


## No Other Porcelain Offers the Superior Advantages of

## ZIRCON PORCELAIN

## in Mectrical, Technical and Mechanical Applications

The increasing number of uses for Zircon Porcelain in a long list of diverse applications focuses interest on the expanding potential of this material. Its excellent combination of properties is widely applied in the low-frequency power field, in high-frequency and ultra-high frequency equipment, and in special installations where effective resistance to thermal shock or high mechanical strength is required at both normal and elevated temperatures.

TAM has pioneered this and many other developments in which Zirconium compounds are used.

Characteristics of Zircon Porcelain

1 Formed by any conventional method.
2 Readily produced in uniform, high quality.
3 Long firing range.
4 One-fire process.
5 High abrasion resistance.)

6 Strong mechanically.
7 Chemical resistance.
8 High thermal conductivity.
9 Thermal shock resistance.
10 Low electrical loss factor.
11 High electrical resistivity and dielectric strength at normal and elevated temperatures.
12 Raw material, of closely controlled properties, readily available from TAM.

## THN <br> PRODUCTS

Hexkifered.
TAM is a registered trademark

# TITANIUM AमIOY MRG. DIVISION NATIONAI LDAD COMPANY <br> Executive and Sales Office: 111 BROADWAY, NEW YORK CITY - General Offices, Works, and Research taboratories: NIAGARA FALLS, N. Y. 

# New Dust-Tight Plug-in Enclosure for CLARE Wiw RELAY To Meet Severe Operating Conditions 

## no matter how you record. .



PRESTO portable tape recorder PT-900
Packs easily into two portable cases, but sets up into comptete broadcast-quality marhine. Three lueads . . . erase, record, reproduce. Scparate recording and monitoring amplifiers. Available in either $15^{\prime \prime} /$ see $\& 71 / 2^{\prime \prime} /$ sec or $71 / 2^{\prime \prime} / \sec \& 33 / 4 / \mathrm{sec}$. Three microphone input.


PRESTO console tape recorder SR-950
The finest studiotype tape recorder available. Operation by push-button control. Three motors, three heads. Frequency response : 30 to $15,000 \mathrm{cps}$ at $15^{\prime \prime} /$ ser. Signal to noise ratio more than 52 db at $1 \frac{1}{2} \%$ distortion. Cabinet designed for rapid maintenance.


## PRESTO precision disc recorder 8-d

Designed for extreme accurary and ease of operation. Available in either rim drive (8-D) or gear drive (8-DG).
Frequeney response 50 to $10,000 \mathrm{rps}$. Heavy overhead cantilever cutting mechanism requires no contact with record. Double motor drive on 8.DG. $331 / 3$ and 78 rpm.


## PRESTO portable disc recorder к-10

Records and plays mierogroove and standard records at $331 / 3 \mathrm{rpm}$ ( 45 rpma available at sliplt additional cost) . Tivo interchangeable piekup arms. 12" turntable accommodates $131 / 4$ " disc. Detachable dynamir speaker, sturdy portable cases. Frequency response: $50-8000$ cyeles.

## PRESTO equipment gives BETTER results

Well-informed engincers read
THE PRESTO RECORDER

## every month

Is your name on our free distribution list?


IN CANADA: Walter I? Downs, Lid., Dominion Square Bldg. Montreal, Canada
M. Simons \& Co., Ine., 25 Warren Street New York, N. Y.

# 2 Waldes Truarc Rings Save Space ...cut costs...Lock entire chuck 



INTERNAL RING: Used instead of a shoulder screw, Truare infernal ring \#5000-37 locks disc over ball loading hole. Saves $1 / 8$ inch in overall diameter. Eliminates tapping. Withstands machine vibration and vibration from impact device within chuck. Used with Truarc pliers, it facilitates assembly and disassembly.


NTERLOCKING RING: Used instead of a locknut, Truarc interlocking ring \#5107-343 lacks handwheel assembly securely on impact sleeve of Jacobs chuck. Saves $7 / 32$ inch in overall length. Eliminates tapping. Chuck's top speed: 5000 RPM; Truarc ring is dynamically balanced to withstand $\$ 0,000$ RPM's. Services easily with a screwdriver.

2 Waldes Truarc Retaining Rings secure the entire mechanism of new spindle nose lathe chuck for Jacobs Mfg. Co., Hartford, Conn. Truarc gives Jacobs a finer, more compact product, and at lower cost than possible with any other fastening device. Wherever you use machined shoulders, nuts, bolts, snap rings, cotter pins, there's a Truarc Ring that does a better job of holding parts together.
Truarc Rings are precision-engineered. Quick and easy to assemble, disassemble. Always circular to give a never-failing grip. They can be used over and over again.
Find out what Truarc Rings can do for you. Send your drawings to Waldes Truarc Engineers for individual attention, without obligation.

1

## 2 TRUARC RINGS GIVE

## 6 BIG ADVANTAGES

- Cut overall length 7/32 in.
- Cut overall diameter $1 / 8 \mathrm{in}$.
- Eliminate cost of tapping
- Withstand up to 50,000 RPM's, give a factor of assurance of 10
- Withstand machine vibration
- Facilitate assembly, disassembly

Waldes Kohinoor, Inc., 47-16 Austel Place Long Island City 1, N. Y.

Please send 28-page Data Book on Waldes Truarc Retaining Rings.

```
```

Name

```
```

```
```

Name

```
```

Title
Company
Business Address
City $\qquad$ Zone $\qquad$ State

## E-062

$\qquad$
$\qquad$


EQUIPMENT: Sorensen equipment ( 400 cycle line voltage regulators, Inverters, Regulated DC supplys, Frequency changers and Phase Adapters) are lightweight, designed for conformity to JAN specifications.

## TEST EQUIPMENT AIDS: Sorensen's

 voltage regulating equipment ( 400 cycle Line Regulators, DC supplys or "Nobatrons") can facilitate the use of test equipment by providing regulated AC or DC power.SORENSEN: offers the Aviation field three principal types of product:

COMPONENTS: Sorensen has a wide range of products which can be used to great advantage in aviation manufacturers' equipment. Chief among these are the 400 cycle variable auto transformers, the Saturable Core reactors and other power components. Equipment units can be designed to meet JAN specifications.

FOSTERITE: In airborne units, Sorensen seals its wound components against humidity by the Fosterite process, a method which adds little to weight or size, and is, therefore, ideal in aircraft electronic design.

## TYPICAL SORENSEN AIRBORNE UNITS



400 CYCLE REGULATOR $\pm 0.5 \%$ regulation; 400 cycles $\pm$ $10 \%$; $5 \%$ distortion; 50 VA to -3 KVA capacities.


NOBATRON
6-12-28-48-125 VDC from 5-350 amperes; regulated $\pm 0.25 \%$; 60 or 400 cycles input.


ELECTRONIC INVERTER Inverters and Frequency changes under development. Specifications on request.


400 CYCLE AUTO TRANSFORMER $0-130$ VA; 400 Cycles 5 and 15 amperes.


DC SUPPLY 0-325 VDC; $0-500$ VDC; $300-1000 \mathrm{DC}$ regulated $\pm 0.5 \%$; 125, 300,500 ma.


SATURABLE CORE REACTOR
For magnetic amplifier circuits. Request data book.

The following literature is available on request: Catalog A 1049 (AC regulators); Catalog B 1049 (Nobatrons and DC supplys);
LITERATURE: Catalog C 1049 (wound components and fosterite); Saturable Core Reactor Technical Data sheets; "Aircraft" issue of "Currently."

manufacturers of ac line regulators, 60 and 400 Cycles; regulated de power sources; electronic INVERTORS; VOLTAGE REFERENCE STANDARD; CUSTOM BUIIT TRANSFORMERS; SATURABLE CORE REACTORS


- If you can, a SORENSEN Electronically controlled, magnetic amplifier regulating circuit can solve it!
Sorensen's new line of Electronic AC Voltage Regulators is the most accurate and most pconomical line of Elec. tronic Voltage Regulators on the market today. Standard specifications offer Accuracy to within $\pm 0.1 \%$ and Distortion as low as $\mathbf{2 \%}$. Load range from zero to full load. All models are temperature Compensated and can be supplied hernetically sealed or fosterited. And the Sorensen line uses less tubes than other electronic type regulators.
- Sorensen Engineers are always at your service to solve unusual problems and give you the benefits of years of experience. Describe your needs and let a Sorensen Engineer suggest a solution. It will save you time and money to try Sorensen first.


Model 500S-low power
Input 95 to 130; distortion 3\%; load 0.500 VA ;
Accuracy $\pm 0.1 \%$ against line
or load; 50-60 cycles

CATALOG A1049 DESCRIBES COMPIETE LINE


I SUB-MINIATURE "CUIDED MISSILES" FILTERS
For security reasons details of this development in miniaturization must be omitted. It can be told, however, that all six channels are contained in a total volume of 18 cubic inches or 3 cubic inches per channel.

A vailable for either 170 or 310 cycles spacing between channels. These filters have received wide acceptance and are extremely popular among manufacturers of carrier telegraph equipment. In addition to the many standard types of tone filters we are supplying, special characteristics can readily be incorporated into designs to suit your application.

3 CRYSTAL ELEMENT CHANNEL FILTERS
These extremely sharp wide band filters employing crystals and toroidal coils, were so compact that they were substituted in Air Force equipment for ordinary I.F. transfomers. Result was tremendous improvement in selectivity and signal to noise ratio. We derived great satisfaction from this achievement.

## TELEMETERING FILTERS

Among the earliest to be employed in the improved telemetering system now in general use. Particular attention has been paid to linearity of phase shift and good transient suppression as well as high interchannel attenuation in order to eliminate distortion in telemetering reception.

## WRITE FOR TECHNICAL INFORMATION

Burnell \& Campany
yonkers 2, New york


ALL INQUIRIES WILL BE PROMPTLY HANDLED

## Unsurpassed!

## ,Jenen <br> Coaxial Speaker <br> 

With its new high frequency driver . . . new high frequency horn . . . new low frequency unit . . . plus the new Jensen Acouscic Lens all skillfully engineered into $a$ coordinated unit, the $\mathrm{H}-510$ gives you reproduction unsurpassed by any integral two-way system regardless of price!

Comparative tests have proved this time after time. Why? Because you instantly recognize the unusually satisfying, smooth, clean high fidelity performance . . . rhe easy-to-livewith quality that makes you know you want to own it now.

Ask for free booklet "Let Music Come to Life" and Data Sheet 152.


JENSEN MANUFACTURING COMPANY DIVISION OF THE MUTER COMPANY
6607 South Laramie Avenue, Chicago 38, Illinois - In Canata: Copper Wirg Droducts, Ltd., 351 Carlaw, Ieromo


- mOLDED TERMINAL BOARDS - Designed to give positive electrical connection without soldering lugs, these sturdy terminal boards are built of molded Textolite ${ }^{\circledR}$ with reinforced pole barriers. Hinged protective covers protect wiring; marking strips are reversible -white on one side, black on the other. Boards are available with 4 to 12 poles; are 2 inches wide, $11 / 4$ inches long. See Bulletin GEA-1497.
- "SWITCHETTES"- Use them in tight places; depend on them for long life. They're available in single- or twocircuit, normally open or normally closed circuits; have momentary or maintaining contacts; are equipped with screw terminals, soldering lugs or quick-
connect lugs. They're corrosion-proof, vibration-resistant, and have low r-f noise output. Ratings up to 10 amps at 230 vac. Size: $11 / 4 \times 1 / 2 \times 1 / 2$. See Bulletin GEA-4888.
- INDICATING LAMPS - You can see from any angle whether these lamps are off or on. Color caps-made from a special translucent compound-are clear, green, red, yellow, white, or blue. Available for 24, $48,125,250$, or 660 volts d-c; $125,220,440$, or 550 volts a-c. Mount on panels up to 2 inches thick. All units include built-in series resistors, to insure long lamp life and eliminate the need for fuses. Size: about 5 inches long. See Bulletin GEA- 3643.


PULSE TRANSFORMERS... MIDGET OR GIANT

A six-inch midget and two-foot giant, both are examples of G.E.'s family of oil-insulated, hermetically sealed pulse transformers. General Electric has built units with peak voltage fatings of from 10 to 100 kv and over, peak power ratings up to 30 megawatts, for pulse durations of from .05 to 20 microseconds and repetition rates up to 10,000 pps. Oil filled units have also been used for lower voltages to minimize internal corona. Typical applications: pulse voltage step-up or stepdown, impedance matching, phase reversing, and transmitter plate-current measurement. What is your requirement? Write, giving complete details, to Power Transformer Sales Division, General Electric Co., Pittsfield, Mass.


## aCCURATE RF MEASUREMENT

100 MA to 300 AMPS
The new, sturdy, and easy-to-read G-E panel instruments are available for measuring r-f from 100 ma or less to 300 amps . R-f meters are usually supplied with internal thermocouples, but for applications where remote location of thermocouple is required, or for measuring extremely high currents (over 20 amps ), external units are available. For complete data on these or other G-E panel instruments for a-c, d-c, or a-f, see Bulletin GEC-368.


Here's a new series of rectifier cells that can help you fit your circuit into a smaller space. These new "Ktype" cells may be used to replace tubes for dualdiode, voltage-doubler, and blocking applications.
The cells are built with a new G-E evaporation process which makes for long life and stable output. Forward resistance and back leakage are low. Standard cells are moisture resistant, special units are hermetically sealed. All have a $\frac{7}{16}$-inch diameter and can be mounted as easily as an ordinary resistor. Circuits: half-wave, center tap, or bridge. Ratings: as high as 40 RMS volts input, 56.5 maximum inverse peak volts at 10 d-c ma. Data in Bulletin GEC-655.

[^1]
# SPECIALLY DESIGNED FOR USE WITH <br>  

## THERMO-REGULATORS

## New ADLAKE No. 5000 Mercury Relay



Because of its amazingly high load-input ratio, the No. 5000 relay operates at 115 volts 60 cycles on only 0.007 ampere-a fraction of the current consumed by any other type of mercury relay!

It is ideally suited for use in electronic tube circuits where the output of the tube is limited. With its low amperage operating the coil, the contacts will handle 5 amperes at the same voltage - and tests indicate the No. 5000's life to be over 30 million operations!

It can be used as a pilot relay operating from a very sensitive thermo-regulator-serves equally well for high and low temperature control-and functions perfectly with either mercury-and-glass or bi-metal regulators.

FOR FULL INFORMATION on this sensational relay, write The Adams \& Westlake Company, 1107 N. Michigan, Elkhart, Indiana. No obligation, of course.

## Every ADLAKE Mercury Relay offers these advantages:

- Hermetically sealed-(dust, dirt, moisture, oxidation and temperature changes con'tinferfere with operation)Silent and chattertess
Requires no mairtenance
Absolutely safe


## Manufacturers of

Hermetically Sealed Mercury Relays for Timing, Load and Control Circuits




Official U. S. Coast Guard Photo

## weithler...

## and the unknown

The perils of the sea can be summed up quite easily as being the Weather and the Unknown-the mystery of hitting something or being hit by something which can't be seen below the surface.
There is little which we at Edo have been able to do about the weather but new, improved electronic equipment, which our engineers and skilled craftsmen have designed and built, is doing much to take the Unknown out of what's below the waves.
Sonar equipment for charting the ocean's bottom with improved accuracy, instruments which show the shape of the harbor floor, and other underwater detection equipment are among the electronic devices being designed and perfected at Edo for added safety at sea.

## SEEING THE SHAPE OF THE OCEAN FLOOR!

The Contour Bottom Scanner developed and manufactured for the U.S. Navy by Edo combines Sonar with a cathode ray tube to give an instantaneous and accurate picture of the shape of a channel or harbor floor both below and to either side of a ship, an instrument of great potential use for navigation in shallow waters.

The C.B.S. is but one of a wide variety of electronic devices developed, perfected and manufactured by Edo's staff of highly qualified electronics engineers who have behind them Edo's TwentyFive years of diversified experience in engineering, precision manufacturing, research and development.

For a complete picture of Edo's activities, you'll enjoy reading our Twenty-Fifth Anniversary booklet. Write to Dept. ES-2, Edo Corporation, College Point, N. Y., for your copy today.



Tour supply of d-c power ranks high among requirements for sig. nal power and continuity. By installing rectifier tubes that serve reliably, you've taken a big step toward peak transmitter output with minimum time off the air. Assure tube reliability by choosing General Electric?
Here are products pre-tested for quality (built of selected materials by the most modern manufacturing methods, with inspection at every stage), and pretested for performance in two important ways: (1) as tubes, after manufacture, (2) as types, by use in broadcast stations from coast to coast, where G-E tubes enjoy a none-better record.

General Electric also brings you constant design improvements. Example:
the straight-side bulbs of the GL- 8008 and GL- 673 give an increased temperature margin of safety, make these tubes easier to handle and install. Example: future heavy AM-FM-TV power requirements are anticipated by new G-E tube developments such as the GL. 5630 ignitron, which will supply direct current in impressively large amounts.

If you build or design transmitters, phone your nearby G-E electronics office for expert counsel on rectifier tubes. If you are a station operator with tube replacements in mind, your G-E tube distributor will be glad to serve you promptly, efficiently, out of ample local stocks. Electronics Department, General Electric Company, Schenectady, 5, New York.

## GENERAL (3) ELECTRIC

| Type | Cathode voltage | Cathode current | Anode peak voltage | Anode peak current | Anode avg current |
| :---: | :---: | :---: | :---: | :---: | :---: |
| GL-866-A | 2.5 v | 5 cmp | 10,000 v | 1 cmp | 0.25 omp |
| GL-8008 | 5 v | 7.5 cmp | $10,000 \mathrm{v}$ | 5 cmp | 1.25 cmp |
| GL-673 | $5 \cdot v$ | 10 cmp | 1,5,000 v | 6 amp | 1.5 cmp |
| GL-869-B | 5 v | 19 amp | 20,000 v | 10 cmp | 2.5 cmp |
| GL-857-B | 5 v | 30 cmp | 22,000 v | 40 cmp | 10 cmp |

Unit switch construction houses precision resistors in insulated


Direct connections-no harness cabling-no shorts.

## Here's why top engineers and technicians use Model 630

 Features like those shown above are what make this popular V.O.M. so outstandingly
dependable in the field. The enclosed switch, for instance, keeps the silvered contact
permanently clean. That's rugged construction that means stronger performance,
longer life. And tests show that the spiral spring index control, after more than
150,000 cycles of switch rotation, has no disruption or appreciable wear! Investigate
this history-making Volt-Ohm-Mil-Ammeter today: 33 ranges, large $51 / 2^{\prime \prime}$ meter. Features like those shown above are what make this popular V.O.M. so outstandingly
dependable in the field. The enclosed switch, for instance, keeps the silvered contacts
permanently clean. That's rugged construction that means stronger performance,
longer life. And tests show that the spiral spring index control، after more than
150,000 cycles of switch rotation, has no disruption or appreciable wear! Investigate
this history-making Volt-Ohm-Mil-Ammeter today: 33 ranges, large $51 / 2^{\prime \prime}$ meter. Features like those shown above are what make this popular V.O.M. so outstanding
dependable in the field. The enclosed switch, for instance, keeps the silvered conta
permanently clean. That's rugged construction that means stronger performance,
longer life. And tests show that the spiral spring index control, after more than
150,000 cycles of switch rotation, has no disruption or appreciable wear! Investigat
this history-making Volt-Ohm-Mil-Ammeter today: 33 ranges, large $51 / 2^{\prime \prime}$ meter. Features like those shown above are what make this popular V.O.M. so outstandin
dependable in the field. The enclosed switch, for instance, keeps the silvered co
permanently clean. That's rugged construction that means stronger performanc
longer life. And tests show that the spiral spring index control, after more than
150,000 cycles of switch rotation, has no disruption or appreciable wear! Investigal
this history-making Volt-Ohm-Mil-Ammeter today: 33 ranges, large $51 / 2^{\prime \prime}$ meter. Features like those shown above are what make this popular V.O.M. so outstandingly
dependable in the field. The enclosed switch, for instance, keeps the silvered contacts
permanently clean. That's rugged construction that means stronger performance,
longer life. And tests show that the spiral spring index control، after more than
150,000 cycles of switch rotation, has no disruption or appreciable wear! Investigate
this history-making Volt-Ohm-Mil-Ammeter today: 33 ranges, large $51 / 2^{\prime \prime}$ meter. Features like those shown above are what make this popular V.O.M. so outstandin
dependable in the field. The enclosed switch, for instance, keeps the silvered co
permanently clean. That's rugged construction that means stronger performanc
longer life. And tests show that the spiral spring index control، after more than
150,000 cycles of switch rotation, has no disruption or appreciable wear! Investigater
this history-making Volt-Ohm-Mil-Ammeter today: 33 ranges, large $51 / 2^{\prime \prime}$ meter.

Easy-to-change standard batteries. Double spiral springs give permanent connection.

ONIY
$\$ 37.50$
at Your distriburor

Triplett


## Checks Transmission Quality

Indicates any type of signal irregularity in 7 -unit or 7.4 -unit code start-stop telegraph circuits. Records distortion on every individual signal pulse as it is received. Can be used to determine condition of signals from transmitting keyboards or regenerative repeaters. Useful in checking operation of receiving printers. Helps assure high transmission quality and continuity by detecting incipient troubles before printing failure occurs.

Time-Saving . . Economical
Saves circuit time by helping to correct error quickly. Saves time of operating, service and maintenance personnel.

## Provides Permanent Record

Records signals permanently on paper chart for detailed analysis, quantitative measurement and future reference or comparison. Permits observation of distortion on working circuits and quick identification of sources of error. Useful in alignment and trouble-shooting.

## Portable . . . Ecisy to Use

Light, simple and compact in design and construction. Can be moved easily from place to place as needed. Easy to connect, easy to operate. No adjustments or complicated conmections requiredjust plug in and turn on.

## d.H.BUNNELL\&Co.

81 Prospect Street, Brooklyn, N.Y., Dept. 15

BUNNELL-akey wordin communications equipment

Research, Engineering, Production and Testing Facilities For Electronic and Communications Equipment.

## the New

PYRAMID
"Humidifiseal"
(TUBULAR PAPER CAPACITOR)


WRITE FOR COMPLETE LIterature
Representatives and Distibutors throughout the U.S.A. ant Canada

## PYRAMID ELECTRIC COMPAAY

155 0xford Street
Paterson, N. J., U.S.A.
telegrams: wux Patersón, N J . CABLE ADDRESS: Pyramidusa

## BUSINESS BRIEFS

By W. W. MacDONALD

Third-Quarter Outlook for American business in general now looks good, and most economists who predicted a healthy first-half earlier this year but refused to stick their necks out further have since extended their optimism through September. In the field of electronics, specifically, things look particularly healthy. Most manufacturers we have talked to recently anticipate good business right through the fourth-quarter.

Auto Radio Business, second only to television in radio industry importance at the moment, is booming. Car manufacturers working into a backlog of orders developed during recent strikes expect to turn out between 6 and $6 \frac{1}{2}$ million automobiles in 1950 if no further shutdowns occur. Return to more normal market conditions in 1951 should support the production of between $4 \frac{1}{2}$ and 5 million new cars.

Shortage of ceramic-and-pow-dered-iron cores that have proven especially efficient in televisionreceiver sweep-circuit coils is currently troubling some set makers. Manufacturers of such cores are increasing production to meet the unexpectedly heavy demand but from where we sit it seems doubtful that they will be able to catch up until Fall at the earliest.

Informal Poll of RMA Directors produces an estimate of $5,350,000$ tv sets in 1950, the high guess about production being $6,500,000$ and the low $4,500,000$. The estimate in a similar poll taken last February was $4,500,000$.

TV Interference caused by oscillator radiation is reduced by the use of RMA-recommended $40-\mathrm{mc}$ i-f in some makes and models now reaching the market.

Three-Color RCA television-pic-ture-tube screen employing triangularly grouped dots of different phosphors is produced by an almost unbelievably accurate
printing technique. And we of the printing business are not easily moved to superlatives concerning color registry.

Television Shipments by RMA members totalled $2,227,973$ in 1949. Here's the breakdown:

| Albany | 27.032 |
| :---: | :---: |
| Albuquerque | 758 |
| Atlanta | 14.242 |
| Raltimore | 62,175 |
| Birmingham | 5,679 |
| Boston. | 143,669 |
| Buffalo | 41,201 |
| Charlotte, N. C | 7,031 |
| Chicago | 230,845 |
| Cincinnati | 73.890 |
| Cleveland | 75,411 |
| Dallas | 14.802 |
| Davenport, Ia | 6.684 |
| Detroit... | 109,307 |
| Frie, Pa | 4,240 |
| Greensboro, N. C | 1,862 |
| Houston | 6, 862 |
| Huntington, W. Va | 2,650 |
| Indianapolis. | 14,270 |
| Jacksonville | 3,160 |
| Kanbas City, Mo | 2.5,076 |
| Itos Angeles. . . | 196,941 |
| Louisville. | 9,250 |
| Memphis | 5,356 |
| Miami. | 6,228 |
| Milwaukee | 34,335 |
| Minneapolis | 29,440 |
| Nashville.. | 342 |
| Newark. | 152,080 |
| New Haven | 29,801 |
| New Orleans | 7,239 |
| New York City | 368,655 |
| Oklahoma City | 8,423 |
| Omaha..... | 10,381 |
| Philadelphis | 206,073 |
| Phoenix... | 2,166 |
| Pittshurgh | 48,958 |
| Portland, Ore | 1,041 |
| Richmond... | 8,753 |
| St. Loulis. | 45,328 |
| St. Petersburg | 284 |
| Salt Iake City | 4,218 |
| San Antonio. | 4,690 |
| San Franciseo | 29,705 |
| Seattle.... | 9,038 |
| Syracuse | 15,937 |
| Toledo | 25,988 |
| Tulsa. | 7.191 |
| Washington, D. C | 57,551 |
| Unallocated' | 31,732 |

Certain printed-circuit techniques now coming into vogue are similar, believe it or not, to a process suggested in 1888 for the marking of tombstones.

Industrial Users of small radio-receiving-type tubes contacted in our continuing study of the need for types having longer life invariably say they are willing to pay more for a substantial improvement. But when it comes to actually laying extra dough on the line there is naturally some quibbling.

Just what is a "substantial improvement?" How much is "more?" Tube makers tell us that refinements run costs up sharply. And the cost problem is further


Not a foot out of step, not a figure out of line. That's uniformity! Karp Products, too, are always "in line," following the most exacting and precise specifications. That means a saving of time and money on your assembly line. "Uniformity" brings greater efficiency into your production.

Our new 70,000 square foot plant has extensive facilities, including an accumulation of dies and jigs which permits us to fabricate at minimum cost, whether your job is a single unit or a large quantity.

Twenty five years' experience has given our craftsmen a "know how" which is reflected in Karp's quality and accuracy. And you can have this service at competitive prices.

Let us quote on your next requirement of metal cabinets, consoles, chassis, and enclosures. Write today for your FREE copy of our illustrated data book.

## KARP METAL PRODUCTS CO., INC.



## SHOCK m VIBRATION NWW

## ECLIPSE-PIONEER


uses

## ank BARRYMOUNTS <br> FOR ASSURED CONTROL of SHOCK and VIBRATION

At high altitudes, the performance of aircraft radar, radio, ignition, and fuel systems depends on pressurization by this Eclipse-Pioneer unit whose sensitive aneroid switch mechanism must be guarded against shock and vibration.

> For this critical task, air-damped BARRYMOUNTS
> were chosen by Eclipse-Pioneer engineers after tests proved they isolate vibration with no snubber contact at any frequency - even at resonance.

The Eclipse-Pioneer unit is shown on a BARRY standard mounting base assembly which permits rapid installation or removal of the pump and control unit.

complicated by the fact that the demand for small industrial tube types is still materially less than for comparable communications types.

Certainly there can be no close comparison of the price of largevolume radio-receiving tubes and smaller-volume longer-life industrial tubes. The economic desirability of the latter has to be judged on the basis of reduced industrial apparatus down-time.

Machlett Labs furnishes the following examples of industrial economies effected by the use of induction heating:

| Commecticut Inshument Mamufacturer |  |  |
| :---: | :---: | :---: |
| Product | Previous Unit Cost | Induction Unit Cost |
| Thermocouple wells, brazed | \$ . 068 | \$ 037 |
| Spring, tempered. | 024 | 007 |
| Well for recorder, soldered | 1.70 | 59 |
| Iever, brazed | 025 | 014 |
| Vat fitting, brazed | 68 | 20 |
| Damping magnet, brazed | 1.18 | 17 |
| Connector, soldered. | 061 | 034 |
| Flange, solderel | 1.36 | 051 |

Wisconsin Gear Manufacturer

| Furnace Heat |  | Induction Heat |  |
| :---: | :---: | :---: | :---: |
| Heat-treat ....... | \$ 53 | Broach clutch | \$1. 06 |
| Grind | 64 | Induction-larden. | 03 |
| Finish clutch. | 11 | Broarh gear. | 13 |
| Heat, press, grind. | 7 | Induction-harden | 13 |
|  | \$2.05 |  | \$1.35 |

Wrashington Hatchet-IIead Manufacturer

| Flame Tempering (per hour) | Induction Tempering (per hour) |
| :---: | :---: |
| Fuel.............. \$.90 | Ossillator power.... \$ . 135 |
| Two men, nlachine. 1.90 | Control power...... 04 |
| Labor, cleaniug. ... . 90 | One man. ......... 1.10 |
| Power, conveyor.... . 04 | Cooling water. .... . 108 |
| Naphtha, cleaning . . 05 | Tube replacement. |
| \$3.79 | \$1.383 |

Electronic Equipment Manufacturer
Torch- Induction- Produc$\begin{array}{cc}\text { Braze Braze } & \text { tion } \\ \text { Unit Cost Unit Cost } \\ \text { Increase }\end{array}$

## Cylinder assembly <br> I'ivot elbow <br> Tube head. <br> Conductor-plug assembly <br> Push-rod assembly <br> Echo-box cap boring

| $\$ .567$ | $\$ .095$ | $605 \%$ |
| :---: | :---: | :---: |
| .190 | .119 | 160 |
| 8.49 | 1.78 | 475 |
| .150 | .086 | 174 |
| .094 | .054 | 174 |
| .035 | .021 | 166 |
| .100 | .074 | 135 |

We're wide open for more examples.

One Unhuman Bridge between the wiggling meter pointer (or squiggling $c-r$ spot) and the printed or punched-card output of a business-type machine is Metrotype Corporation's automatic data recorder, called to our attention as one answer to our Business Briefs plea (March, p60) for something to help man digest the voluminous data being gathered today by electronic measuring and
telemetering gear.
This particular robot takes in voltages (into which most any other quantity can be converted) and uses a step voltmeter to generate a number of pulses proportional to the voltage being measured. From there we go into a myriad of electronic counters, memories, number mixers and suchlike that in the end make an appropriate teletypewriter character sock paper at an appropriate position. Perhaps not quite that simple-the gear fills a tall relay rack-but it works, without human attention or human errors; best of all, results come out in simple arithmetic right in the same room or hundreds of miles away over a two-wire phone line.

Here's one long step in the right direction.

A Friend Of Ours owns a small plant devoted to the repair and installation of marine electrical and electronic equipment and the manufacture of marine telephones. He's looking for an additional line, something not too remote from his business and not too tough to make and sell.

We hear about lots of firms in this position and will be glad to pass along to them the names of readers who have ideas, particularly if design work is fairly well advanced.

Radar will be in use aboard 202 Great Lakes freighters, or 64 percent of the total number, by the end of the year, predicts C. M. Jansky, consultant for the Lake Carriers Association. Some 1,200 radiophones will be in use aboard U. S. and Canadian vessels plying the same waters.

Summer Complaint apparently permeates all strata of society.

While passing through an experimental tube laboratory the other day we noted faint wisps of smoke coming from a transparent hydrogen furnace but, peer as we would, there was no trace of the object being heated. A young lady longingly looking outdoors at the birds, bees and flowers and apparently in charge was questioned and took one startled look.
"My God," she said, "I forgot to put the work in there!"


Gain-Besides obvious advantages in reduction of complexity of principal circuits, capacity and weight of power supplies, etc., additional gain afforded by any link in a closed loop system permits enhanced stability through more feedback; greater system sensitivity and accuracy; less droop and faster response. These advantages may be taken in various combinations.

Standard Sigma Series 6-X contactors will control from one to four circuits each rated 5 Amps at 110 V ac at a differential power sensitivity of 16 milliwatts per pole - power gain, 34000: 1.
Type 6FX2A2A (above) has two double-break normally open switches on each end; with two 12000 ohm windings it operates at 1.6 ma differential current, either way depending on polarity.

Self Balance - In a servo requiring correction in either of two directions, this Sigma relay replaces two conventional relays corresponding to the two directions. In a typical push pull "DC" amplifier circuit it eliminates all concern over magnitude of plate currents at "null." With one of its windings in each plate circuit it responds only to differential current.
Its balanced ormature can assume either of two operated positions (depending on polarity of signal) or a neutral, and it has positive defent in all 3 positions.

Adverse Environment - Combination of an almost perfectly balanced armature and substantial operating forces with rugged box-like structure produces high immunity to shock and vibration. Choice of materials and processes is suitable for service from - $55^{\circ}$ to $-85^{\circ}$ and up to $95 \%$ R.H. Hermetic Sealing is also available.

Speed of Response - Although the unit in question is by no means the fastest of relays, its dynamic efficiency is such that in many circuits it will respond in less than 10 milliseconds. Such response occurs when the coil circuit has relatively high source impedance.

Our general catalog, which describes many other useful types lists a lorge group of available standard coil and contact combinations for the SIGMA SERIES 6 relays.
*See our advertisement in this space, May Issue.
\&

Expectations:

## New Development In Mallory Midgetrol* Minimizes TV Drift!

## THE

15/16" MALLORY MIDGETROL
(Power rutitig $1 / 2$ watt)
Electrical characteristics specially designed for critical applications in television, radio and other circuits. Insulated shafts are knurled for ease in adjustment. Shaft and current. carrying parts provide 1500 volt insulation . . ${ }^{15 / 66^{\prime \prime}}$ diameter saves space. Precision-controlled carbon element provides smooth tapers, quiet operation, accurate resistance values, less drift in television applications.

The Mallory Midgetrol now emthodies a new technique in variable resistor manufacture . . providing precise control of drift under high humidity conditions. It involves a new treatment of the carbon element, assuring uniform dispersion of talcum-fine particles over a special phenolic base with an extremely low factor of moisture absorption. As a result, drift is held within very close limits... well within the requirements for TV picture stability. This feature will, obriously eliminate a troublesome source of field service problems. It is an important addition to the desirable characteristics described al the left.

That's service beyond expectations!
Mallory's electronic component know-how is at your disposal. What Mallory has done for others can be done for you!

Television Tuners, Special Switches, Controls and Resistors

## MALLORY

SERVING INDUSTRY WITH

| Capacitors | Contacts |
| :--- | :--- |
| Controls | Resistors |
| Rectifiers | Vibrators |
| Special | Power |
| Switches | Supplies |
| Resistance Welding | Materials |

P. R. MALLORY \& CO., Inc., INDIANAPOLIS 6, INDIANA

# CROSS <br> TALK 

- CPB . . . A month or two ago (on another network, Proceedings IRE, March, 1950, p 227), we held forth as a guest editorialist concerning the importance of radio engineers in advising the government, placing particular emphasis on the RTPB, JTAC, NTSC type of organization. Since then has come word of the formation by President Truman of the Communications Policy Board (April issue, p 130) which is to undertake a sweeping review of the basic communications needs of the country, and to study the conflicts and inequities which beset the use of the radio spectrum. The five members of the board are the presidents of MIT, Caltech, and West Virginia University (Drs. Killian, DuBridge and Stewart), a former president and current board member of the IRE (Dr. Everitt), and a man thoroughly familiar with military communications requirements (Mr. O'Brien). They are asked to study the use of radio and wire facilities by government and nongovernment agencies and to recommend to the president, by October, 1950, a sound communications policy, in the national and international spheres. Certainly the board members are qualified, by position and experience, to accomplish this enormously important task competently and equitably. Considering the number of special, vested, and highly-vocal interests who have an important stake in the outcome of their deliberations, their task is not to be envied.

Inevitably they will compare the modus operandi of the FCC, which regulates the use of radio by non-
government users (all of which must justify the use at length) with that of the IRAC, which regulates government users (without a comparable justifying procedure). Surely also they must come to grips with the problem of spectrum space reserved for future use but not used at present, the problem of point-to-point channels occupied 50 percent or more of the time with the repetition of call letters, with the general waste of a precious public domain. Many, in fact, are the heads that must be knocked together before the spectrum is equitably and fully put to use. The good wishes of the radio profession go to the CPB.

- LANDLORD . . . The tendency of "the management" to interfere with engineering progress is a common complaint. Now comes an example in reverse.

For years, f-m and tv broadcast engineers have urged that several stations should occupy jointly the best transmitting site in a given locality. Major Armstrong hung six arms on his Alpine f-m tower with this philosophy in mind. This system not only provides strong signals but also maintains the adjacent signal ratio near unity throughout the service area, with benefits to all concerned. But the disinclination of broadcasters to share a good thing with the competition is understandable. So, since 1930 or thereabouts, NBC has been the sole broadcasting occupant of the Empire State tower.

Now all this is changed. WJZTV has moved to Empire State
alongside WNBT. WCBS-TV has announced plans to move, as soon as the new 200-foot antenna tower is ready, as have stations WPIX and WABD. And the Empire State people feel that they may be able to make room for all seven stations now assigned in the New York area.

This is indeed progress. We would like to report that this progressive step could be traced to the impassioned pleas of engineers of the competing networks, and the gracious assent of the NBC engineers. But no. The credit goes to management. Whose management? The owners of the Empire State Building. And what did it? An outsize increase in the rent, gentlemen. That's what did it.

Seriously, all concerned are to be congratulated. By 1951, New York should have by all the odds the best television service, technically speaking, in the world. And there's no patent on the idea. Boston, Philadelphia, Chicago, San Francisco and Los Angeles papers, etc, please copy.

## - TAPE APLENTY . . . Howard

 Chinn's suggestion for recording television transcriptions on magnetic tape (Crosstall, February, 1950) has called forth a masterly analysis of costs by John Boyers of Magnecord. Mr. Boyers' letter (Backtalk, this issue) points out that, on reasonable assumptions, a 15-minute video tape program would require about 37,500 feet of tape, at a list price of $\$ 1,375$ ! Impractical on the face of it but, says Boyers, "I am sure the job will be done before too long."

FIG. 1-(A) Plug-in oscillator for vibrating-wire-type pressure gage used for guidedmissile telemetering application and, in foreground, the component parts embedded therein. (B) Circuit of the ascillator

COnsiderable interest has developed within the electronics industry concerning the embedment of circuits and components in rigid plastic materials. The technique is sometimes referred to as casting.

In brief, it consists of: (1) preparing a mold of the proper size and shape, (2) setting the circuit or component in the mold, (3) pouring a prepared liquid resinous material into the mold, and (4) polymerizing the resin into a rigid solid. The mold is then removed.

Embedment materials with excellent physical and electrical properties are available. For example, it is possible to embed in essentially pure polystyrene, a plastic notable for its electrical properties. Moreover, materials with made-to-order properties may be formulated for specialized applications. Materials may be transparent or opaque. Coloring possibilities are almost unlimited.

Applications for plastic-encased units are increasing rapidly. A few of the benefits derived from embedment are:
(1) Hermetic sealing.
(2) Ruggedization and shockproofing.
(3) Elimination of mountings.
(4) Use of bare point-to-point wiring for rapid circuit assembly.
(5) Miniaturization and utilization of plug-in subassemblies.
(6) Stabilization of electronic operation.

## Suitable Materials

The coating and potting of electrical components in waxes or resinous materials has been done for many years. Often a container is used to hold the component and the potting compound. However, in general the potting compounds of the electrical industry are not suitable for electronic applications. High-frequency, high-impedance circuits require materials of superior electrical properties. Sensitive electronic components can not be subjected to the high temperatures needed to make most potting compounds pourable.

In some instances, embedment has been accomplished by using conventional injection or compressionmolding methods. High temperatures and pressures, however, limit the usefulness of this technique. In addition, the capital outlay for

By WILLIAM R. CUMING<br>Emerson \& Cuming Company Boston, Mass.

equipment has generally confined molding to large-volume units.

For many years, a few concerns have embedded objects in methyl methacrylate (Lucite and Plexiglas) by a low-pressure casting process. This technique has largely been limited to objects used for display purposes. Methyl methacrylate, although unsurpassed for its optical properties, is not particularly good with respect to electrical properties.

In 1947 the National Bureau of Standards announced the development of a casting resin termed NBS Resin. This material had excellent electrical characteristics and was widely used as an embedment medium in electronic laboratories. It is expensive and not plentiful.

In recent years a good deal of work has been done in chemical laboratories on materials which can be polymerized, that is, transformed from the liquid to the solid state by a low-pressure, low-temperature process. In the course of these investigations materials and techniques which permitted casting and polymerization right in the mold were developed.

Polymerization denotes a chemical reaction wherein distinct molecules react with one another to form a larger molecule. For example, styrene, a liquid hydrocarbon, polymerizes to form polystyrene. Styrene is referred to as a monomer (single molecular structure) whereas polystyrene is the resulting polymer. In cases where two distinct chemical compounds enter into a reaction it is often referred to as copolymerization. The latter is the reaction which most commonly-used embedment plastics undergo.

It is well known that certain chemicals catalyze (or hasten) polymerization and copolymerization reactions even when used in very

# Embedded Circuits 

# Casting of component parts within materials suitable for electronic applications eliminates chassis, permits bare point-to-point wiring and provides miniaturized and stable plug-in <br> units. Here is how it is done 

small proportions. The most important of these catalysts are organic peroxides, benzoyl peroxide for example. In addition, other compounds, notably heavy metal salts and tertiary amines, activate the catalyst to give even more rapid polymerization. These compounds have been termed acceierators. Heat may also be applied to speed the reaction. The choice of a catalytic system for a particular application is not a simple matter.
Currently popular embedment compounds are polyesters. Polyesters are the resinous reaction products of organic unsaturated acids and alcohols. They may be used as such for embedment but are most commonly diluted with styrene. A wide range of physical and electrical properties in the copolymerized plastic is achieved by selection of the appropriate polyester or combination of polyesters and the proportion of styrene used. Further modification is possible by the use of fillers and plasticizers. Fillers include mica dust, milled glass filaments and cotton linters. Plasticizers are normally liquid additives, used to increase flexibility, particularly for low-temperature operation.

Polystyrene may be used in embedment applications where the optimum in electrical characteristics is desired. One completely polymerized polystyrene casting resin

Table I-Typical Polystyrene Casting Resin (Stycast)

|  | Dissipation <br> Frequency | Dielectric <br> Constant |
| :---: | :---: | :---: |
|  |  |  |
| 100 cycles | 0.00098 | 2.596 |
| 1 kc | 0.00062 | 2.595 |
| 10 kc | 0.00047 | 2.592 |
| 100 kc | 0.00096 | 2.588 |
| 1 mc | 0.00084 | 2.582 |

has the electrical properties indicated in Table I.

## Characteristics

Dependent upon the application, there are many specific requirements placed on an embedment plastic. The difficulty of combining all of the best characteristics in a single compound is evident. Fortunately all are seldom, if ever, required simultaneously for any single application.

In order to give a general idea of properties which can be expected of a typical unfilled polyester-type resin, Table II is included. Properties refer to only one resin. It is possible to modify them greatly.

A few of the more important properties of embedment plastics are discussed briefly below.

Electrical Properties-Polystyrene is the most satisfactory material with respect to general electrical properties. It is a thermoplastic material and will, therefore, soften at approximately 80 C . It should not be used as an embedment medium at temperatures below - 10 C because of brittleness.

High Temperature-Resins with high polyester content and mineral filler are best suited to high-temperature applications. The polyester resins are thermosetting. They do not flow at high temperatures. Decomposition or degradation of the plastic will, however, result from excessive temperature operation.

The temperature reached at hot spots within an embedment depends upon a number of factors associated with the heat-generating and heattransmission path. Careful physical design of circuitry and use of a high heat-conductivity resin consistent with satisfactory electrical properties are good approaches to this problem.

Mineral-filled polyesters have


FIG. 2-Missile-borne telemetering system employing the technique
been subjected to hot-spot temperatures (at embedded vacuum-tube surfaces) of 300 C for half-hour periods without ill effects. Under prolonged operation hot-spot temperatures should be limited to 160 C. Some embedment compounds now under development indicate that this temperature limit will be raised.
Recent data on resistors embedded in one-inch cubes of resin with thermal conductivity of $2.3 \times$ $10^{-4} \mathrm{gm}$-cal per $\mathrm{cm}^{2}$ per sec per deg $C$ per cm indicates that the surface temperature of the resistors will be 35 to 45 C above the ambient-air temperature when operated at normal rated dissipation. Operating at half rated dissipation will approximately halve the temperature rise.

Low-Temperature Operation The use of plasticizers and reen-forcing-type fillers is effective in permitting operation at low temperatures. Embedments suitably prepared have been taken down to temperatures as low as - 80 C with no adverse effects. These same embedments will withstand operation at least to 110 C .

High Thermal Conductivity High thermal conductivity may be achieved by the use of high-conductivity fillers; even metallic fillers are
possibilities. Achieving good thermal properties is always a compromise with electrical properties. Embedment of cooling fins has also been used effectively.

Thermal Expansion CoefficientThermosetting embedment resins with high mineral-filler content have been prepared to have expansion coefficients below 20 parts per million per degree $C$. It is some-- times desirable to use a resin with the same coefficient as the embedded object. Within limits this may be done by proper blending of the resin mix.

Shrinkage-Shrinkage during copolymerization is roughly 8 percent by volume. The total volumetric change, however, is not effective in causing pressure on the embedded units. This is due to the fact that during copolymerization the density of the resin increases while it is still liquid. At a later point a weak semi-solid gel forms. Shrinkage from this point is only a few percent. The use of polymerized resin dissolved or dispersed in the liquid resin is effective in minimizing shrinkage effects.

Optical Properties-These plastics may be water-white. By the use of selected dyes and pigments opaqueness and colors in infinite variety are obtainable. Identification tabs may be enclosed in transparent units. Lettering may be cast on the surface of an embedment or may be finally engraved or printed.


FIG. 3-Old and new techniques employed in assembling an industrial instrument subassembly, the former shown at ( $A$ ) and (B) and the latter at (C) and (D)

Adhesion-The adhesion to glass, metal or ceramic surfaces depends upon (a) the resin used, (b) the physical configuration of the embedment, and (c) the condition of the surface. Certain resins show excellent adhesion. However, if a resin is selected on the basis of other characteristics, adhesion may usually be accomplished by use of another resin for a priming coat. It is best to have shrinkage take place toward the surface to which adhesion is desired. Rough, clean surfaces are superior to smooth surfaces upon which foreign matter is present.

## Embedment Method

A step-by-step procedure for the embedment of a simple circuit in the resin whose properties are listed in Table II is given below for illustration.

Components are wired together in accordance with a circuit diagram. Maximum use is made of bare point-to-point wiring. Components which dissipate heat are located in such a manner as to minimize heat concentration. In general, miniature components may be used to achieve maximum space saving. A small connector is used for mounting. Upon completion of wiring, and before embedment, the circuit is checked for proper operation.

The mold is made of metal, plaster-of-paris or cardboard.

Normal mold-making principles, such as clearance and taper, are adhered to. A means of supporting the circuit is provided. The inside of the mold is coated with an appropriate parting agent such as silicone oil. The circuit is placed in the mold.

The needed quantity of resin is weighed out. A measured amount of peroxide catalyst is added and stirred in. This will be of the order of one percent of the resin weight. An accelerator may also be added at this time. The prepared resin is poured into the mold. Entrapped air bubbles will rise and can be completely removed by subjecting the unit to vacuum.

The unit is set aside to copolymerize. Placing in an air oven at about 55 C will hasten this process. Rapid copolymerization increases the danger of cracking in the finished unit. In critical situations copolymerization is sometimes accomplished under refrigeration. A final brief oven cure completes the reaction. Removal from the mold, cleaning and polishing (if desired) yields the plastic packaged unit.

## Practical Examples

A few examples will serve to illustrate embedment possibilities.

At Massachusetts Institute of Technology, project Meteor, a guid-ed-missile development, has the problem of miniaturizing and ruggedizing a complex electronics system. Moreover, the system may sustain long periods of inactivity, but must function precisely when called upon. Hermetic sealing is thus a necessity. The use of individual plug-in subassemblies is desirable so that repairs can be made rapidly and accurately.

Figure 1A shows a typical unit. The components which are assembled into the unit are shown below it; the circuit diagram is shown in Fig. 1B. This particular unit is an oscillator for a vibrating-wire-type pressure gage. The finished unit has a volume of approximately one cubic inch.

A missile-borne telemetering system is shown in Fig. 2. The major chassis contains 28 embedded plugin units. These are oscillators, multivibrators and clippers. In the foreground is an embedded matrix


FIG. 4-Precision capacitor made by two methods, the case filled with silica gel, ground cork, paper and wax at (A), and dipped in wax and embedded in plastic within the case at (B)
consisting of 30 germanium diodes and associated components.

Two bleeder embedments are used in high-voltage cathoderay tube power supplies. The embedments were made for Edgerton, Germeshausen and Grier. They consist of eleven 4 -megohm, 2 -watt resistors connected in series, with appropriate taps brought out. The bleeder has 22,000 volts applied across the end terminals and operates continuously with a current of 0.5 mil . The major advantages over conventional construction are space conservation, elimination of possible corona and mounting ease.

The Foxboro Company, manufacturer of precision industrial instruments, seals certain critical networks into metal cans. Figure 3 is a before-and-after photographseries of one such network. At (A) and (B) is the former design. Components are rigidly mounted on a phenolic strip, the strip is mounted on the base of the metal can and is then wired to glass bead terminals which provide external connection.

This network has now been redesigned for embedment and is shown at (C) and (D). A reusable jig supports the terminal leads. The phenolic strip and glass beads are eliminated. The cover of the can serves as the mold for the resin.

## Component Application

Applications for the embedment technique in the component field are indicated by the experience of General Radio. Early experiments indicated that components embedded within a relatively-thin plastic coating were impervious to 100 -percent relative humidity under prolonged exposure. Moreover, the plastic coat presented a hydrophobic (non-
wetting) surface to moisture. Plastic was superior to heavy wax coatings in physical properties. Electrical properties were satisfactory for some of the most exacting applications.

In Fig. 4A is a $100-\mu \mu \mathrm{f}$ mica capacitor. It is made up of multiple layers of selected mica and foil. These are bound together by a brass clamp, with a heavy spring to give the proper degree of pressure preloading. Under standard procedure the component is next mounted in a low-loss phenolic case, surrounded by silica gel and ground cork, covered with paper and sealed with wax.

When applying embedment technique to this capacitor it was found that a light hydrocarbon wax-dip coating prevented liquid resin from entering the mica-foil pile and changing capacitance. A styrenemethacrylate molded case was
chosen since the embedment plastic makes a perfect bond to this material. Experimental work produced a resin formulation and polymerization procedure which added a minimum and constant capacitance to the final product. A large number have been made up for testing under 100-percent relative-humidity conditions. After 1,000 hours no moisture had penetrated the capacitor shown in Fig. 4B.

Completely cast capacitors have been formed. One experimental model is in opaque and the other in clear plastic. Molding methods for this type of unit which would be practical on a production basis are now under investigation.

Plastic embedment of electronic parts is no longer untried. When the process is established and controlled by competent electrical and chemical engineers it is one of electronics' most useful design tools.

## Table II-_Properties of Typical Polyester-Type Embedment Resin (Resin 40)

(Polyester content-65\%, Styrene content-35\%)

| Specific Gravity | 1.24 |
| :---: | :---: |
| Tensile Strength ( psi ). | 9,000 |
| Compressive Strength (psi). | 19,000 |
| Izod Impact, ( $\mathrm{ft-lb/in}$ of notch) | 0.3 |
| Rockwell Hardness (M scale). | 110 |
| Coefficient of Lincar Expansion ( $\mathrm{cm} / \mathrm{cm} / \mathrm{deg} \mathrm{C}$. | $50 \times 10^{-6}$ |
| ASTM Heat Distortion Under Load (deg C).. | 110 |
| Thermal Conductivity (BTU/ft ${ }^{2} / \mathrm{hr} / \mathrm{deg} \mathrm{F} / \mathrm{in}$. | 1.5 |
| Water Resistance (Gain 25 deg C , in 24 hr, in $\%$ | 0.2 |
| Dielectric Constant (at 60 , at 1,000 and $10^{6} \mathrm{cps}$ ) | 3.1 |
| 60 cps | 0.008 |
| Power Factor $\{1,000 \mathrm{cps}$. | 0.005 |
| $10^{6} \mathrm{cps}$. | 0.017 |
| Dielectric Strength (v/mil, $100-\mathrm{mil}$ sample). | 500 |
| Resistivity (ohm-cm). | $10^{12}$ |
| Optical Propertics clear <br> Machineability | hen polymerized excellent |



FIG. 1-Vidicon camera unit contains two miniature tubes and the picture tube

# System uses recently introduced vidicon camera tube. Synchronizing signals follow RMA standards to allow use of commercial-broadcast tv receivers as monitors. Two units contain total of 48 tubes, including vidicon and monitoring scope 

INDUSTRIAL television installations usually employ a multiplicity of camera units and a common cen-trally-located viewer, in contrast to broadcast television where a handful of cameras is used to serve many thousands of receivers. The most logical approach to cutting the cost of industrial television equipment is to reduce the cost of the camera units and to make them usable with commercial broadcast viewing equipment, which has already undergone substantial price reduction.

There are other basic requirements for industrial television equipment besides low cost. It should be compact and light in weight for portability. It should require a minimum of servicing and be capable of dependable operation over long periods of time.

Such a system is described here. A significant reduction in camera cost has been made possible by the recent introduction of the vidicon tube, which was described in ElecTronics last month. ${ }^{1}$ The advantages of this photoconductive
camera tube include operational simplicity, low cost, good resolution, freedom from spurious signals and high light sensitivity.

## Vidicon System

The system consists of a small pickup camera and a master unit. These units are connected by a standard 24-conductor television camera cable, which may be up to 500 feet in length.

The camera shown in Fig. 1 with its cover removed is 10 inches long, $31 / 4$ inches wide, 5 inches high, and weighs approximately 8 pounds. A typical $16-\mathrm{mm}$ lens in a remote focusing mount permits optical focus adjustment by remote control from the front panel of the control unit along with the other camera adjustments.

The vidicon pickup tube can be seen extending inside of the focus-ing-coil-deflection-yoke assembly and the electron-gun alignment coil. The motor and gear assembly for operation of the remote focusing mechanism is located in the rear of
the case and the video amplifier stages extend from the front of the camera toward the rear.

As shown in Fig. 2 the camera has been kept as simple as possible, containing only the pickup tube and those elements intimately connected with it. Scanning currents for both vertical and horizontal deflection coils are sent in over the cable along with the d-c currents for the focusing field and alignment coil as well as the operating potentials for various electrodes in the vidicon. A one-stage video preamplifier followed by a cathode-follower prepare the signals from the target electrode for transmission over the coaxial cable back to the master unit. In order to establish black level it is necessary to blank the target of the vidicon during the scanning return time and this is most conveniently done by applying a positive ten-volt blanking pulse to the cathode. Since a ten-volt pulse on a 52 -ohm line represents a very sizeable current it was found more economical to transmit a one volt


FIG 3-Left-side view of control unit shows video strip and cooling fan


FIG. 4-Right-side view shows frequency-division chain and high-voltage circuits

# For INDUSTRY 

By R, C, WEBB and<br>Professor of Electrical Engineering Iowa state College<br>Ames, Iowa

J. M, MORGAN<br>RCA Laboratories<br>Princeton, New Jersey



Complete industrial television system draws a total of 350 watts
pulse and amplify it in the camera just before application to the vidicon cathode.

Views of each side of the master control unit are shown in Fig. 3 and 4.

In order to operate standard broadcast television receivers from a system of this kind it is necessary to establish substantially the same scanning rates as those used in commercial broadcasting. Certainly it is necessary to transmit an interlaced signal because otherwise the resolution in the vertical direction will drop to approximately 250 lines. It was therefore decided to establish the same scanning rates for the industrial system as those standardized by the RMA for commercial broadcasting, namely 525 lines, 30 frames interlaced.

## Simplified Sync

One of the basic elements of the simplified synchronizing signal generator used in this equipment is an oscillator, which resembles the familiar multivibrator. ${ }^{2}$

This basic oscillator is illustrated in Fig. 5A. Before the plate voltage is applied to the circuit, $C$ is uncharged and the grid of $V_{2}$ is at ground potential. As soon as plate voltage is applied, the grid of $V_{1}$ is raised to some positive potential determined by the series of resistors. The plate resistor of $V_{1}$ is low and consequently a relatively large current can be drawn by that tube down through the common cathode resistance, which raises the cathode of both of the tubes to some positive voltage $E_{F}$. With the cathode of $V_{2}$ highly positive with respect to its grid, the plate current in that tube is cut off and $C$ is free to charge through $R$ toward $\mathrm{B}+$ according to the logarithmic curve shown in Fig. 5B.

If nothing were to prevent it, $C$ would charge up to a value ( $1-$ $1 / \varepsilon)$ of $\mathrm{B}+$ in $R C$ seconds. However, as the potential on the grid of $V_{2}$ increases as $C$ charges, it will reach the shaded region below $E_{K^{\prime}}$ that represents the negative bias range for which $V_{2}$ will be conductive. As
soon as $V_{2}$ begins to conduct, the plate current flowing through its plate resistor lowers the potential of the grid of $V_{1}$ and that tube is quickly biased off. However, since it was largely the heavy current drawn in the left-hand tube that supported the cathode potential at the value $E_{K}$, this potential will now drop to a very low value and the grid of $V_{z}$ will find itself highly positive with respect to its cathode. Capacitor $C$ then discharges through the diode formed by the grid and cathode of $V_{2}$ and the length of time required for the discharge to occur is determined by the value of $C$ and the effective resistance of the diode and the cathode resistor.

Having discharged $C$ to a low value the circuit is ready to restart the cycle. Thus a saw-tooth voltage waveform is available across $C$ and a narrow pulse can be obtained from the plate resistor of $V_{7}$. The exact frequency of oscillation of this circuit depends upon several factors including the value of the plate supply voltage, which is carefully regu-


FIG. 5-Basic oscillator-counter operates at twice horizonal scanning frequency


FIG. 6-Vertical and horizontal sync, scanning and blanking voltages are produced by this frequency-division and pulse-shaping network
lated. It depends primarily upon the values of $R$ and $C$, and the voltage $E_{K}$, and it has been found to be stable enough over long periods of time for this application.

The oscillator is susceptible to being synchronized to external signals. A positive pulse added to the capacitor voltage can precipitate entry into the conduction region periodically, or a negative pulse added to $E_{K}$ or to the left-hand grid will do as well. A circuit of this kind is especially useful in a television synchronizing generator since use can be made of the squaretopped pulse output as well as the nearly ideal saw-tooth wave.

## Frequency Division

The positive pulse out of the master oscillator is added to the capacitor voltage of the next stage below, which is an identical oscillator but set to run free at $1 / 7$ or $1 / 5$ the master frequency, as shown in Fig. 6. In this way the
two oscillators are locked rigidly together and a third can be locked to the second and so on down to any submultiple frequency.

Seven of these oscillators are used in the synchronizing-signal generator. In order to obtain the halfintegral relationship required between the horizontal and vertical scanning rates to produce odd-line interlacing, it is necessary to start with a master oscillator at 31.5 kc , which is double the horizontal rate of 15,750 cycles. Subdivision of the master frequency by the numbers 7, 5,5 and 3 yields the vertical scanning rate of 60 cycles. The vertical blanking pulse is taken from the 60cycle oscillator that is made to have a discharge time approximately 5 percent of the vertical period ( $V$ ) by choice of the time constants governing that oscillator. A sample of the vertical blanking signal is taken through a phase inverter to a phase detector where it is compared to the power-line frequency. The afc signal thus developed is applied to the master oscillator to synchronize it with the power frequency.

The horizontal frequency generator is synchronized at $1 / 2$ the master frequency and is adjusted to produce a horizontal blanking pulse width that is approximately 15 percent of the horizontal period. The saw-tooth output of this stage is also used as a scanning waveform.

Horizontal sync is made from blanking by differentiating the blanking pulse, clipping the leading pulse and sending it through a delay line to produce a front porch of about 2 percent of the horizontal scanning period $H$. The pulse is later amplified and clipped to produce a sync pulse with a steep front edge and a duration of approximately 5 percent $H$. The horizontal sync and blanking pulses are thus similar to the RMA standard waveforms.
The vertical sync pulse, which is quite unorthodox, is produced by allowing the front edge of vertical blanking to key a pulse delay tube into operation. After a time interval, determined by time constants in the delay circuit, the delay tube falls out of its conductive condition having produced a pulse that is a fraction of the length of the vertical blanking period.

This pulse is then differentiated, and the pip corresponding to the trailing edge of the delay pulse used to synchronize a second 60-cycle saw-tooth oscillator. The discharge time or equivalent pulse width from this oscillator is made to be no greater than approximately $\frac{1}{2}$ of the time for one horizontal line in order that a short vertical sync pulse can be slipped in just ahead of one horizontal sync pulse and just after another one in the odd and even fields. Thus 10 tubes have been used to produce all of the waveforms required for the entire system.

The composite waveform is shown in Fig. 7. Although the vertical sync pulse is only about 10 times as long as the horizontal pulse no difficulty has been experienced in tests with commercial receivers in obtaining sufficient vertical sync signal. Furthermore, the signal in an industrial system is always noise free since it will be fed over closed circuits.

The scanning system used is shown in the block diagram of Fig. 8A. A single vertical deflection


FIG. 7-Composite waveform for the industrial television system
amplifier is common to both the monitor kinescope and the camera since the power requirements are small and ordinary cable pairs are satisfactory for transmission out to the camera. The horizontal scanning and second anode voltage supply for the monitoring kinescope are combined in one conventional unit of the type normally used in home receivers.

The horizontal scanning for the camera is quite unconventional, however, since it is necesary to send the current to the camera through several hundred feet of 52 -ohm coaxial cable. The method of accomplishing this can best be understood from Fig. 8B.

The parallel-resonant circuit comprising $C$ and $L$ with $R_{1}$ and $R_{2}$ connected serially in each arm is known to be antiresonant at all frequencies for the singular condition where $R_{\mathrm{t}}=R_{2}=\sqrt{L / C}$. The terminal impedance $Z$, looking into the network is a pure resistance equal to $V L / C$ ohms at all frequencies. Such a constant resistance network as this makes an ideal termination for the transmission line and since it includes the horizontal deflection coil as one element it should be possible to produce any desired current waveform in the coil by impressing the proper voltage waveform upon the line. Ringing of the resonant circuit formed by the deflection coil and any capacitance that may be associated with it is very undesirable in the presence of the impulse waveforms used in television scanning. The condition for critical damping of a resonant circuit requires that the total resistance around the series loop must be at least equal to $2 \sqrt{L / C}$, a condition that coincides exactly with the foregoing.

Synthesis of the required voltage waveform is accomplished as shown in Fig. 8C. The voltage across the inductance during the scanning period must be $L \mathrm{~d} i / \mathrm{d} t$ which for a constant rate of change of current


FIG. 8-Block diagram of scanning circuits. (B) and (C) explain operation


FIG. 9-Video path is similar to that used in broadcast transmitters
is a small constant negative voltage. During retrace time the current change is in the opposite direction and many times faster, hence, the voltage required across the coil is of the form of a positive pulse. The voltage drop $i R_{2}$ across $R_{2}$ due to the saw-tooth current is of saw-tooth waveform as shown. The sum of these two voltages gives the required waveform that must be impressed upon the line to produce the ideal current saw-tooth in the coil.

Perfection of the scanning linearity depends entirely upon the accuracy with which this complex waveform is produced. It was fortunate that both the saw-tooth waveform and its companion pulse were available from the horizontal frequency stage in the synchroniz-ing-signal generator since it was then only necessary to mix the two waveforms with appropriate amplitude adjustment to obtain the required shape.

## Video Amplifier

The video amplifier is almost identical to those used in broadcast equipment. As shown in Fig. 9, the signal goes through two stages of amplification before reaching the conventional high peaker.

Video gain is controlled by varying the screen voltage of the 6AG5's. Black level is established by means of a conventional driven clamp circuit; the clamping pulses are made from horizontal sync. Blanking is inserted in the cathode of the d-c setter and sync signals
are mixed with video in the following stage. The composite signal is then sent to the external 75 -ohm signal lines by means of a cathodefollower output stage. The output signal is polarized with blacks negative and is 2 volts peak to peak.

Signal for the internal kinescope is taken from a sampling resistor in the output stage and fed through a one-stage amplifier to the kinescope grid.

The gain in the kinescope loop is not adjustable and thus the kinescope serves as a rough monitor of the signal level on the outgoing line in addition to its other uses for black level setting, camera focus and beam adjustments, as well as a check on sync generator operation.

The television instrument described could easily be mass produced and sold within the price range of other business machines of comparable size and complexity. It will produce a sharp, steady picture of useful quality, and the pickup tube is sensitive enough to permit use of the equipment under the illumination levels normally encountered in industrial operations.

The authors are indebted to Dr . V. K. Zworykin of the RCA Laboratories for much helpful encouragement and guidance during the development of this project.

## References

(1) Paul K. Weimer, Stanley V. Forgue and Robert $R$, Goodrich, The VidiconPhotoconductive Camera Tube, ElecPhotoconductive
TRONICS, p 70 , May 1950 .
(2) Kurt Schlesinger, Patent No. 2,383,822 (RCA).

Highest fidelity, least noise and longest wear are obtained by using needles having different tip characteristics for slow-speed and for high-speed records. Convenience and less costly associated equipment, however, are creating considerable interest in compromise types, several of which are described here


FIG. 1-Profile of typical 78-rpm groove and standard 2.7 -mil radius needle



Contours of five types of needles in use today. (A) Standard 2.7 -mil radius needle for $78-\mathrm{rpm}$ discs. (B) All-purpose needle with 2 -mil tip radius. (C) All-purpose Unipoint. (D) All-purpose wide-angle needle. (E) Standard l-mil radius needle for fine-groove records

By B, B, bAUER<br>Vice-President and Chief Engineer Shure Brothers, Inc. Chicago, Ill.

AMONG the problems confronting the designer of phonographs as a result of the introduction of $33 \frac{1}{3}$ and $45-\mathrm{rpm}$ records is the need for separate needles for the 78 -rpm and the slow-speed records. For best reproduction it is desirable to use a needle with a 2.7 -mil tip radius ( 1 $\mathrm{mil}=0.001$ inch $)$ for the $78.26-\mathrm{rpm}$ records, and one with a $1-\mathrm{mil}$ tip radius for the $33 \frac{1}{3}$ and $45-\mathrm{rpm}$ records.

The requirement of employing dual-needle pickups, together with the mechanism for placing the proper needle in position, adds to the cost and complexity of the record player. It is not surprising, therefore, that work began on needles that would be capable of playing both the conventional and the fine-groove records when the latter were introduced by Columbia in the spring of 1948.

At this writing, a number of manufacturers are beginning to market phonograph players and record changers employing singleneedle pickups for use with all records. In addition to eliminating the changing of needles, these players use the same low needle force of 7 to 10 grams for all types of records, resulting in further simplicity of operation. It is quite likely, therefore, that a substantial num-
ber of phonographs employing allpurpose needles will make their appearance in the near future. It is the purpose of this paper to review the performance of various commercially available all-purpose needles.
To begin the examination of the problem, it is well to review the relationship which exists between conventional phonograph grooves and needles. In Fig. 1 is shown in cross-section a typical groove and needle of a conventional $78-\mathrm{rpm}$ record. The groove is 6 mils wide; it has a 2.3 -mil bottom radius and sidewalls inclined at 45 deg. ${ }^{1}$ The needle accepted as standard by the RMA has a 45 deg $\pm 5$ deg included angle and a radius of 2.7 mils. The objective generally desired is to allow the needle to be supported by the sidewalls, rather than by the bottom of the groove, as in this manner the needle has a positive engagement with the groove and can be driven laterally without lost motion.

In Fig. 2 is shown in cross-section a typical groove and needle found in $33 \frac{1}{3}$ and $45-\mathrm{rpm}$ records. Data issued by record manufacturers would indicate that the width of the grooves of $33 \frac{1}{3} \mathrm{rpm}$ records should lie between the limits of 2.7 mils and 3.0 mils, and that of $45-$ rpm records between the limits of 2.5 and 3.0 mils. Measurements made by the writer and his associates on a number of fine-groove records selected at random indicate


FIG. 2-Profile of typical fine-groove and standard 1 -mil radius needle


FIG. 3 - Distribution of groove widths of 147 fine-groove records


FIG. 4-( $\bar{A}$ ) 1 -mil radius needle in a modulated fine-groove. (B) 2 -mil needle

# PHONOGRAPH NEEDLES 

that these limits are not being commercially maintained. The bar chart in Fig. 3 shows the distribution of groove widths of 147 finegroove records of all types, selected at random. It is seen that, on the average, unmodulated fine-grooves have a width of 2.7 mils, and a substantial number of fine-groove records have unmodulated grooves only 2 mils wide. As a result of pinch effect, the modulated groove width is narrowed considerably, and upon occasion approaches 1.7 to 1.8 mils.

## Performance Criteria

The evaluation of an all-purpose needle with respect to design problems and the satisfaction to the ultimate user constitute a complicated problem which does not have a single, simple solution.

An important factor to be considered is the quality of reproduction, which is intimately connected with freedom from distortion and surface noise. Low distortion depends upon the ability of a needle to trace a modulated groove accurately and it is determined in part by the radius of the needle at the point of contact with the record. ${ }^{2}$ This can be seen from Fig. 4. This figure depicts two needles placed in a fine-groove, one of the needles having a radius of 1 mil and the other having a radius of 2 mils. The 1-mil needle is shown passing through the crest of a modulated wave having a radius of curvature
somewhat larger than 1 mil. The 1-mil needle will follow this modulation without a discontinuity, as shown in Fig. 4A. A 2 -mil needle placed in the same groove will hit a corner at the crest of the wave, causing a discontinuity accompanied by severe distortion. Therefore, one might conclude that for the best quality reproduction a needle should have the smallest possible radius.

On the other hand, there is also a low limit below which a needle radius cannot be diminished without causing another type of distortion known as skating. This effect is illustrated in Fig. 5. Here is shown a 1 -mil radius needle placed in a $78-\mathrm{rpm}$ groove. The needle is not properly supported and cannot be driven laterally in a positive manner. When playing a modulated groove, such a needle will skate from one sidewall to the other, resulting in distortion and a characteristic swishing type of surface noise.

Another factor which has a great deal of practical importance to the user of a phonograph is needle wear. A small needle point offers less contact area with the surface of the groove than does a large one, resulting in more rapid wear of the needle and the record. When a needle (which is initially a surface of revolution) develops sizeable flats because of wear the result is a substantial loss in fidelity, since the needle is no longer
capable of faithfully following the groove modulations. ${ }^{3}$ It is important to note that the reduction of needle force achieved with lightweight pickups for fine-groove records has been offset by smaller needle area in contact with the groove, and consequently the needle wear problem has not been lessened thereby.

In considering needle contour, one must be especially cautious of needles which are permitted to contact the upper edges, or corners, of the groove. These corners frequently have ridges (or horns) ${ }^{4}$ which cause an increase in surface noise and popping noises when allowed to contact the playback tip. Also, after moderate playing time, the groove edges tend to wear shoulders in the surface of the needle, allowing it to rest partially on the land between the grooves. This results in a considerable increase in distortion. The effect can be minimized by keeping the needle force low and by using long-wear materials for the needle tip.

A third factor has become important as a direct consequence of lower needle forces employed with fine-groove records: the ability of a needle to pull the pickup across the record, that is, its traction, has become substantially lessened, of ten resulting in inability of the pickup to remain in the groove against the forces of pivot friction, side thrust, unbalanced gravity, or the drag of the trip mechanism of the record
changers. Traction force can be measured approximately by applying a lateral force to the side of the pickup (while playing a record) with a spring scale such as the Western Electric relay adjusting scale 70 F until the needle is ejected from the groove. To cancel the effect of side thrust caused by tracking angle ${ }^{5}$, it is necessary to perform this operation both inwardly and outwardly, and to average both readings. Pivot friction must be low to minimize frictional errors.

A small amount of mathematics will suffice to demonstrate that the traction force is equal to the vertical pickup force multiplied by the trigonometric tangent of the angle between the horizontal plane and the tangent line to the needle at the point of contact with the groove. Because of this factor, large-radius needles which rest upon the upper edges of the groove exhibit greatly lowered traction when they are new as compared to small-radius needles.

With these considerations in mind, we may proceed to examine


FIG. 5-Profile of 1 -mil needle placed in a 78 -rpm groove
some of the all-purpose needles commercially available at this time.

## Spherical-Tip Type

One of the earliest all-purpose needles to which consideration was given had a spherical point and a radius selected to lie between the standard 1 -mil and $2.7-\mathrm{mil}$ radii. A large amount of experimental work was done in the Shure laboratories to ascertain the most favorable size of spherical-tip needle for all-purpose use. These tests indicated that sufficiently satisfactory performance for many applications is obtained with a needle having a


FIG. 6-( $A$ ) Profile of 2 -mil radius needle in a fine groove. (B) Profile of needle in 78 -rpm groove
radius maintained closely at 2 mils.
The manner in which this type of needle fits into the two types of grooves is shown in Fig. 6. In the case of a typical fine groove, the needle contacts the upper edges of the groove as seen in Fig. 6A. Because these edges are apt to be damaged by scratching or scuffing, and because of horns, a 2 -mil radius needle reproduces more surface noise than a standard 1 -mil radius needle especially designed for use in fine grooves. A 2-mil needle will cause an increase in distortion in fine-groove records because of the relatively large radius in contact with the modulated groove. This fact becomes especially noticeable on highly modulated inside grooves of $33 \frac{1}{3} \mathrm{rpm}$ records. Likewise, the wear of 2 -mil needles on fine-groove records is considerable. Figure 7 shows a photograph of a 2 -mil os-mium-tip needle which had been played 21 hours on Columbia microgroove records. Under the conditions of test, the shoulders produced by the groove edge allow the needle to rest upon the land, resulting in noticeable distortion. A similar needle having a sapphire tip will last several times as long as the osmium-tip needle before reaching this condition.

Traction of 2 -mil needles on finegroove records is initially rather
low, ranging from approximately 50 percent to 70 percent of needle force (depending upon the exact needle radius and width of the groove). It follows, therefore, that the mechanics of pickup and changer have to be carefully determined to insure reliable operation.

From Fig. 6B, it is seen that in a typical 78 -rpm groove, the 2 -milradius needle rides at, or close to, the bottom of the groove. In actual practice the needle tip presses into the bottom of the groove under the influence of the pickup force, and therefore it exhibits fairly satisfactory engagement with the modulated sidewall. The bottom portion of the groove impresses a greater amount of noise upon a laterally responsive pickup than does the sidewall, resulting in increased surface noise from shellac records. In the instances of records with grooves having large bottom radius, skating is often clearly discernible.

On first thought, it might appear that a needle of this type would not provide satisfactory reproduction. Fortunately, distortion and noise which might be extremely annoying in a wide-range system often become tolerable in a system with a high-frequency cut-off beginning at 3 to 4 kc . It is a well-established fact that the majority of non-technical listeners will accept a substantial attenuation of high-frequency response in order to achieve a comparative freedom from distortion and surface noise. ${ }^{6}$ This object is accomplished in our P81 pickup cartridge, which has been especially designed for use with all-purpose needles, and which has been found


FIG. 7-Photograph of a 2 -mil osmium all-purpose needle after 21 hours of wear on fine-groove records
well suited for use in the home. The frequency response characteristic of this cartridge is shown in Fig. 8.

## The Unipoint Needle

A considerable amount of experimental work has been performed on a special needle having generally conical sidewalls and a truncated tip. This needle has been named the "Unipoint." A typical outline of the needle in relation to the average 78 -rpm groove and the average fine groove is shown in Fig. 9. The engagement of the needle with the average fine groove is shown in Fig. 9A. The needle rides well within the groove and is in contact with the sidewalls, therefore traction is good and noise is low. However, because the radius at the point of contact is greater than that of a 1 -mil radius needle, this needle produces greater distortion than a standard 1 -mil needle (but less than a 2 -mil needle). The profile after 43 hours of wear is shown in Fig. 10. Because of the absence of shoulders, the needle illustrated will still perform tolerably well on fine-groove records, but will exhibit noise and skating on $78-\mathrm{rpm}$ records. A sapphire type will last several times as long as an osmium type.

It is seen in Fig. 9B that the needle is in contact with the sidewalls of the standard groove close to the bottom of the groove. Therefore, an increase in surface noise is inevitable as compared to a standard $2.7-\mathrm{mil}$ spherical point. However, the two-point contact helps to promote a more positive driving by the sidewalls, especially when the
needle presses into the groove as a result of vertical pickup force. On some records where a 2 -mil needle exhibited noticeable skating, very little skating was perceived with a Unipoint.

There is considerable evidence that the needle offers advantages over a 2 -mil radius needle, especially to the user principally concerned with the playing of finegroove records. These advantages are offset by certain disadvantages. Because of its more complicated contour, the needle is not easy to control in production with regard to dimensions. Also, one which is played constantly on fine-groove records becomes less satisfactory with time for use on $78-\mathrm{rpm}$ discs. (The same is also true of 2 -mil radius needles, but to a lesser degree.) One may generalize by saying that a 2 -mil needle favors 78 -rpm records, while the Unipoint favors fine-groove records.

## Wide-Angle Needle

Early cutoff at high frequency is needed when employing a Unipoint needle with $78-\mathrm{rpm}$ records, but it is not essential when playing finegroove records. Satisfactory cutoff may be obtained with an R-C network connected as shown in Fig. 11. The switching circuit for inserting the network for the $78-\mathrm{rpm}$ records may be mechanically coupled to the speed-changing lever of the record changer. In Fig. 11 is shown the frequency response characteristic of our P71 extended-range pickup employing the new needle, with and without the network.

Still another form of all-purpose


FIG. 9-(A) Profile of Unipoint needle in a fine groove. (B) Profile of needle in a 78 -rpm groove
needle was described by J. Reid of the Crosley Corporation at the May, 1949 meeting of the Acoustical Society of America. This needle is shown in profile in Fig. 12, together with the outlines of $78-\mathrm{rpm}$ and fine grooves. Basically it consists of a cone having an included angle of approximately 108 deg to 118 deg and a bottom radius of approximately 1.6 mils. The intention is to choose an angle and tip radius large enough to avoid touching the bottom of $78-\mathrm{rpm}$ grooves. If these conditions are met, the needle is capable of fitting the groove by remaining in contact with the upper edges of grooves of all sizes.

Because of the large radius at


FIG. 8-Response-frequency characteristic of Shure P81 pickup cartridge terminated with 1 megohm, with all-purpose 2 mil radius needle on Auditone record. High. frequency response is attenuated by means of an internal mechanical filter


FIG. 10-Photograph of osmium Unipoint needle after 43 hours of wear on fine-groove records


FIG. 11-Switching circuit for selecting (A) extended frequency range, or (B) early cutoff when using a pickup with a Unipoint needle on fine-groove records and $78-\mathrm{rpm}$ records respectively. Response-frequency characteristic measured on RCA 12-5-31-record
the point of contact with the groove, the tracing distortion is increased, although the effect of this distortion may be diminished on both $78-\mathrm{rpm}$ and fine-groove records by curtailing the upper frequency range of sound reproduction, as with previous needles. Again, attenuation of highs helps to eliminate noise residing at groove edges caused by horns and scuffed records. The advantages claimed by Mr. Reid for this needle are the same as those claimed for the large-radius needle described some years ago ${ }^{7}$.

Because of the wide angle, the traction ability of the needle is diminished. This necessitates reasonable care in the design and adjustment of the tripping mechanism for reliable operation of record changers. Likewise, the ability of the needle to follow the groove modulation is somewhat lessened, necessitating the use of somewhat higher compliance in pickups, or conversely, a greater needle force for proper operation.

Wear data is not available on this needle; however, information furnished by Mr. Reid indicates it has a long life and is rugged and not easily damaged by careless use.

## Design Orientation

Listeners' satisfaction with allpurpose needles is subject to such a degree of variation that definitive conclusions cannot be drawn at the
present time to cover all conditions. However, a number of generalized conclusions can be stated.

In instruments capable of highquality, wide-range reproduction, all-purpose needles offer less fidelity and less listener satisfaction than do the standard $1-\mathrm{mil}$ and $2.7-\mathrm{mil}$ needles. The use of all-purpose needles results in an increase in distortion and surface noise. As stated previously, these effects may be rendered less perceptible by attenuating the high-frequency response of the system. As a general rule, therefore, users of all-purpose needles have found it expedient to employ reproducing systems which have a significant attenuation in the frequency range above aproximately $2 \frac{1}{2}$ to 4 kc . This type of response characteristic does not permit taking advantage of the very


FIG. 12-Wide-angle needle shown with the outlines of a 78 -rpm groove and a fine groove
best quality of reproduction available from fine-groove records; the advantage of simplicity and low cost which is gained, however, is often considered sufficient to warrant the use of such needles in the home. Because the majority of allpurpose pickups have a replaceable needle, the user can readily substitute in its place one of the standard needles if he chooses to build a library of $78-\mathrm{rpm}$ or slow-speed records only.

Since the performance of all-purpose needles is greatly impaired by wear, it is desirable to specify the longest-life tip material available, consistent with cost limitations. The best long-wear metal tips presently available for all-purpose needles are probably useful for 20 to 50 hours of wear-depending upon numerous conditions, including listener's tolerance. Sapphire tips should generally last three to four times longer. All of the wear tests previously mentioned were performed with a vertical needle force equivalent to 7 grams (a ounce) upon the record. All-purpose needles should be employed with the lightest-weight pickups only, and certainly not with needle forces equivalent to more than 10 to 12 grams.

In choosing a pickup and needle system for multi-purpose phonographs, the designer must weigh the elements of fidelity, convenience and cost of the pickup, as well as that of the associated tone arm, record changer, and circuit. The choice of system will further depend upon the buying habits and preferences of the potential group of customers.

## References

(1) The dimensions of the so-called standard groove have not yet been standstandard groove have not yet ${ }^{\text {ardized }}$ by the Radio Manufacturers Assoardized by the Radio Manulacturers Assothe current concensus regarding groove dimensions.
(2) J. A. Pierce and F. V. Hunt, On Distortion in Sound Reproduction from Phonograph Records, Journal of the Acoustical Society of America, 10, p 14, 1938.
(3) B. B. Bauer, Notes on Distortion in Phonograph Reproduction Caused by Needle Wear, Journal of the Acoustical Society of America. 16, p 246, 1945.
(4) Isabel L. Capps, Recording StyIi, Electronic Industries, Nov., 1946.
(5) B. B. Bauer, Tracking Angle in Phonograph Pickups, ELEETRONICS, March, 1945
(6) B. B. Bauer, Crystal Pickup Compensation Circuits, Electronics, Nov., pensa
(7) John D. Reid, A Large Radius Stylus for the Reproduction of Lateral Cut Phonograph Records, Journal of the Acoustical Society of America, 13, p 274, Jan. 1942.


FIG. 1-Basic oscillator circuit and coaxial-line equivalent

## UHF Sweep-Frequency Oscillator

Measurements and tests in the proposed new uhf television band are facilitated by the equipment described. Maximum sweep of 30 mc from 470 to 890 mc , at a rate synchronized with the power line, is provided by a motor-driven capacitor plate rotated at the high-impedance end of a resonant cavity

By JOHN E, EBERT and H, A, FINKE

Polytechnic Research and Development Co., Inc. Broolilyn, New York

IN DEveloping a sweep oscillator for the new uhf television band, a choice exists in attempting to fre-quency-modulate a fundamental oscillator directly or to resort to a mixing method involving either the frequency addition of two lowerfrequency oscillators or subtraction of two higher-frequency oscillators.

An output of the order of several volts across 50 ohms is available using a 6F4 triode as a fundamental oscillator, whereas any simple mixing method using two oscillator tubes will result in a maximum output about 10 to 20 db down from this level. The larger output of the
fundamental-frequency oscillator is useful in many applications. Since the use of a swept fundamentalfrequency oscillator offers much greater ease and simplicity of operation and greater freedom from harmonic output, this type of oscillator is more desirable provided the problem of obtaining satisfactory frequency sweeping does not become too complex.

The sweep oscillator to be described covers a range from 470 to 890 mc with a maximum sweep of at least 30 mc at a rate synchronized with the power line. At least 2 volts across 50 ohms is available
at any frequency within the specified band, and this voltage can be continuously attenuated by a front panel control to a value of 90 decibels below the maximum output.

At any fixed setting of the attenuator, the output does not vary by more than 1.5 db from the average output at that setting over the entire specified frequency band. Leakage from the oscillator has been minimized by use of completely enclosed coaxial line circuits.

The modified Colpitts oscillator circuit shown in Fig. 1A was selected as best suited for the pur-


Magnitude of the frequency sweep is shown automatically througl a panel slot as the oscillator frequency is varied


Closeup of specially shaped capacitor and its motor drive system


A standard rack-and-pinion drive is used on both tuning plunger and attenuator
pose in this television application.
Resonance is obtained between the plate and grid of the 6F4 acorn triode while the plate-tocathode and grid-to-cathode interelectrode capacitances form a wellproportioned capacitive voltagedividing network to complete the Colpitts arrangement. Both the cathode and filament circuits are choked to minimize their shunting effect across the grid-to-cathode interelectrode capacitance.

Since adequate shielding is of great importance, the oscillator was constructed in a self-shielding coaxial line. A coaxial line equivalent of the basic oscillator circuit is shown schematically in Fig. 1B.

A cutaway view showing the mechanical construction of the coaxial line oscillator is shown in Fig. 2.

The main body of the oscillator is made from a single bronze casting. The glass body of the oscillator tube is recessed in an indentation in the center conductor to provide a low-impedance connecting line between the resonant circuit and the tube elements. This low-impedance connecting line is necessary to obtain a satisfactory tuning rate at the high-frequency end of the band.

The coaxial-line section used to choke the filament is chosen in length to offer maximum impedance at the center-band frequency. Sufficiently high impedance is obtained at the band edges to give good performance.

Output power is capacitively coupled from the oscillator tank cir-


Fig. 2-Physical construction of coaxialline oscillator
cuit through a coaxial line connected close to the high-voltage point of the resonator as shown in Fig. 2. The harmonic content at this point is small. The output line is terminated in a 50 -ohm resistor to provide a reasonably well matched output impedance.

The output is attenuated by withdrawing the pickup line from the axis of the resonant cavity. As the center conductor of the output line is withdrawn the coupling is obtained through the intervening section of tubing which acts as a circular waveguide operated below its cutoff frequency.

The rate of attenuation through a waveguide used under these conditions is almost linear and constant over a wide range of frequencies which makes it possible to have a calibrated attenuator control. Typical power output characteristics for the oscillator are shown in Fig. 3.

## Mechanism for Sweeping

Frequency sweeping is accomplished by varying the capacitance between the high-impedance end of the cavity and ground. There are a number of ways of varying this capacitance but the two most straightforward approaches consist of either vibrating a metallic strip in reed-like fashion against the end of the cavity or employing a motor drive to vary the capacitance by rotating a specially shaped capacitor plate. In either case, the motions have to be synchronized with some convenient standard such as the 60 -cycle line so that a sta-


FIG. 3-Power output plotted aqainst frequency for several attenuator settings
tionary picture can be obtained on a viewing oscilloscope.

The vibrating capacitor presents certain problems that involve difficult electronic or electromechanical solutions. A driven reed has a motion that includes harmonic components of the driving frequency. A reed driven by a sine-wave power source should be viewed on an oscilloscope with a sine-wave sweep to preserve the frequency linearity of the base line. A sine sweep, however, requires perfect synchronism so that the return trace may exactly coincide with the forward trace. The presence of mechanical harmonics prevents this.

This problem can be circumvented by electronic means. The reed could be driven with a sawtooth wave form and the return portion of the sine sweep could be blanked, but a solution for the second or rotating approach is simple and direct.
One photograph shows the mechanical arrangement used for the rotational method of sweeping the frequency. A synchronous motor is used to rotate a specially shaped capacitor plate which is sprayed on the face of a plastic disc. The ideal shape of the capacitor plate when a sawtooth sweep is used on the oscilloscope is one that will allow the frequency of the oscillator to vary linearly with angular rotation of the driving motor. The magnitude of the sweep is varied by changing the spacing between the plate and the end of the resonator.
The sweep capacitor spacing is contro'led by the angular rotation


FIG. 4-Frequency sweep versus frequency for several capacitor settings
of an eccentrically mounted circular cam. The cam follower is spring loaded and the front panel control is coupled to the cam through a conventional gear train having a 4 to 1 rotational ratio. This ratio is desirable since the entire cam throw occurs in only 180 degrees of rotation.

The synchronous motor used has the property of locking in on any one of four points on the cycle of the input 60 -cycle power source. Phasing between the similarly locked internal sawtooth sweep on the viewing oscilloscope and the rotating motor can be roughly adjusted to any one of the four motor positions by momentarily breaking the motor circuit and allowing the motor armature to slip one position. Fine adjustment in phase is made with controls on the oscilloscope.

## Dial Details

A curve of the sweep characteristics of the complete oscillator is shown in Fig. 4. This shows that the magnitude of the frequency sweep for a given capacitor plate spacing is not constant over the frequency range. This is corrected through the use of a dial arrangement which automatically shows the magnitude of the frequency sweep as the frequency is varied.

To accomplish this, the dial consists of a chart on which is plotted curves for constant frequency sweep with the tuning plunger position as the ordinate and the angular knob movement, which controls the capacitor spacing, as the abscissa. This chart is viewed through a slot in the panel and is arranged to move past this slot as the oscillator frequency is varied.

A pointer travelling along the slot is mechanically connected to the sweep capacitor. The chart is drawn so that the end of this pointer indicates directly the magnitude of the frequency sweep at any oscillator frequency and at any capacitor plate setting.

Two simple cord and pulley systems are used to drive the pointer and chart in the frequency sweep indicating system. The pointer is connected to the sweep magnitude control and the chart position is coupled to the tuning plunger position.

# VHF LINKS at Manila 

# Line-of-sight f-m linsk in 160 -mc band provide over 150 speech, telegraph, printer and control circuits between new CAA control station and remote transmitting and receiving stations. Details of special circuits are given 

By EDWIN J. RUDISUHLE and PHILIPS B. PATTON

Rivil Radio Engineer<br>Civil Aeronautics Administration Honolulu, Hawaii

Field Engineer

Lenkurt Electric Co
San Carlos. Calif.

Ar Manila International AirPORT, formerly Nichols Field, CAA has designed and is finishing construction of one of the world's most extensive and complete aeronautical communications networks.

From Manila point-to-point and air-ground communications circuits radiate toward Australia, Java, Malay States, French Indo-China, Japan, and the United States. In addition, interisland radio printer and $c-w$ circuits connect Manila with numerous island cities for dissemination of aeronautical and weather information.

For a number of years CAA has been studying the relative dependability and cost of wire-line and radio-control links between the control stations and antenna sites at its overseas communications stations. In the Philippines, new
factors affected the design of the control links. Permanent wire-line facilities in the Manila area were largely devastated during the war, and the risk of service breakdown through landline pilferage made still another strong argument for the use of radio to connect remotely located transmitting and receiving stations with the master control station at the airport.

## Circuit Requirements

The types of control circuits required at Manila are similar to those of all CAA overseas communications stations. Remotely located radio transmitters and receivers must be controllable from the airport to maintain communication with aircraft in flight and with other overseas aeronautical terminals. Weather information must be
gathered and disseminated to aircraft in flight as well as to many fixed points in the area. Information necessary to the operation of the many airlines concerned must be exchanged over six point-to-point radio printer and telegraph circuits out of Manila.

Communication to aircraft in flight uses both c-w telegraph and radiotelephone. Multichannel transmitters and tunable receivers are used. For control circuits pertaining to air-ground communication, circuits are arranged so the operator can make a dial selection of the transmitter frequency desired at any one of seven remote air-ground operating positions. In addition, the operator is provided with control circuits enabling him to voicemodulate or manually key the transmitters. These control functions


FIG. 1-Each arrow represents one of the vhi links used in lieu of wire lines between control station at airport and the two remotely located antenna sites. Numbers and types of carrier-derived channels provided by each link are indicated


FIG. 2-Basic modem circuit that can be used either as a modulator for producing sidebands or as a demodulator

## Airport

are obtained through carrier-derived voice channels. An associated tone-channeling system is used to apply power to the remote transmitters, to deliver transmitter dialing impulses, and to allow manual keying with semiautomatic telegraph keys.

When receiving transmissions from aircraft in flight, the audio output of the remote receivers is transmitted over vhf carrier-derived voice channels which pass frequencies in the range of 200 to $2,800 \mathrm{cps}$. For the c-w output of receivers, a much wider bandwidth must be transmitted so that the operator can receive transmissions from aircraft whose transmitters are slightly off frequency.

A monitoring-modulator control circuit is included to permit simultaneous monitoring of all signals in the output of a communications receiver with a bandwidth of 16 kc and selection of the particular signal required. Control of the beat-frequency oscillator and r-f sensitivity is secured with small reversible motors attached to the receivers. Angular position of the remote shaft is indicated to the operator.

## Carrier Equipment

Point-to-point radio communication is carried over both manual radiotelegraph and frequency-shift radio printer circuits. For printer signals the control circuits provide tone channeling on carrier-derived voice channels which transmit 75 or 150 -wpm impulses between stations. Radio circuits are for duplex, duplex-diplex, and simplex operation. Thirteen operating positions are devoted to point-topoint, weather, and auxiliary printer services.

Control and speech signals are transmitted over line-of-sight distances between radio transmitter and receiver stations and the control station by vhf f-m radio links operating in the $160-\mathrm{mc}$ band. The channels provided by each link are


Demonstrating Lenkurt equipment to group of Philippine Irainees for operating and maintenance duties at Manila CAA installations


Carrier equipment racks for control station of aeronautical communications network
indicated in Fig. 1. The usable modulation frequency range of each vhf link is 300 to $28,000 \mathrm{cps}$, with a r-f power output of 10 watts. Corner reflector antennas are used.

The control station is in its own building at the airport, with wire connections to the airport control tower. The other two stations are in their own buildings at separate remote sites chosen for optimum antenna effectiveness.

Operation of the carrier equipment associated with each radio link is essentially the same for all links. A low-pass high-pass filter divides
the 300 to $28,000-\mathrm{cps}$ modulation band of the radio link into two bands- 300 to 3,000 and 4,000 to 28,000 cps. The lower band is used directly for transmission of voice frequencies. The upper band is for derivation of six carrier voice chanrels which can be used for speech, voice-frequency signaling, or voicefrequency telegraph.

Modulator-demodulators or modems, when used as modulators, combine modulating and limiting actions on the carrier voiee-frequency channels. The same equipment panel can be used as a demod-
ulator. This equipment, when combined with a suitable oscillator, modulates a 0 to $3,000-\mathrm{cps}$ voice band to produce one of these sidebands: 5 to 8 kc -channel 2; 9 to 12 kc-channel $3 ; 13$ to 16 kc -channel $4 ; 17$ to 20 kc --channel 5; 21 to 24 kc-channel 6; 25 to 28 kc -channel 7. For future expansion of the system, additional sidebands as high as 45 to 48 kc can be produced.

The basic modem circuit is shown in Fig. 2. Following a low-pass filter and an attenuation pad, the voice-frequency signal is impressed on one winding of transformer $T_{v F}$. Oscillator voltage is applied between the midpoint of the other winding and the paralleled midpoints of two windings of transformer $T_{I F}$.
The carrier-frequency (oscillator) voltage exceeds the voice-frequency voltage in $T_{V F}$ to such an extent that the carrier voltage always controls the polarity of the combined voltage across varistor $V R$. The audio voltage merely increases or decreases the instantaneous magnitude of the carrier voltage at the audio frequency. When polarity of the carrier voltage is such that $T_{r_{T}}$ is positive with respect to $T_{I F}$, current flows through $V R$ and through both transformers, with the secondary of $T_{r e}$ in series with one primary of $T_{H I}$. When carrier voltage reverses, current flows through the secondary of $T_{V I V}$ in series with the other primary of $T_{H F}$. Thus $V R$ acts as a switch to reverse the $T_{I F F}$ windings at the carrier frequency. In doing this the oscillator current divides at the center tap and flows in opposite directions through the two


Traffic control tower at Manila International Airport, near control station


FIG. 3-Typical universal signal transmitter circuit. In use these are paired to utilize the other sections of the first two tubes
halves of each winding of $T_{t r}$.
The direction of balanced current flow through the transformer windings is controlled by the oscillator, while variation in the amount of unbalanced current flow is controlled by the voice-frequency signal. These unbalanced variations in $T_{H F}$ induce sideband frequencies in the opposite winding in a manner identical to the means of deriving upper and lower sidebands from a conventional balanced modulator circuit utilizing electron tubes. These sideband frequencies are attenuated to proper level in the highfrequency pad and applied to the bandpass filter, through which only the lower sideband passes to the modulation output terminals. This modem output is parallel-connected to other modems and to the highpass side of a line filter.

In service as a demodulator, the action described above is reversed, with the result that voice frequencies are produced from a carrierfrequency sideband.

## Signaling Equipment

All signal pulsing up to 30 cps , except telegraphy, is handled from the sending end by a universal signal transmitter that can provide signaling pulses on either an on-off or differential-level basis under control of an external pulse circuit. One type of transmitter has nine units for 18 signal circuits spaced 120 cps between 420 and $2,460 \mathrm{cps}$, capable of 14 pps . Another transmitter has four units for eight circuits at 240 -cps spacing from 780 to $2,460 \mathrm{cps}$, at 28 pps .

A typical signal transmitter circuit is shown in Fig. 3. One section of dual triode $V T_{\text {f }}$ functions in a stabilized oscillator circuit at the signal frequency. Adjustable regeneration is fed back to the grid from one half of the primary of the oscillator output transformer $T_{1}$ to provide for oscillator level variation.

Diode $V T_{2}$ contributes a rectified negative voltage from the oscillator output as a portion of the oscillator grid bias, thus opposing any change in oscillator output. Another out-put-stability measure is resistor $R_{1}$, which loads the oscillator enough to dissipate several times the power of the used signal. Thus the change in oscillator loading produced by keying represents only a fraction of the total load.

The portion of oscillator output used for signaling is fed in a balanced circuit to the plates of dualdiode $V T_{3}$. Conduction through $V T_{3}$ depends on its cathode bias, which is under control of the local sending loop. Plate and cathode d-c voltages are obtained from voltagedivider networks formed by $R_{2}$ and $R_{3}$ for the plates and $R_{4}$ and $R_{5}$ for the cathodes. These are proportioned so $V T_{3}$ is normally nonconducting. Shorting $R_{5}$ to ground through the sending loop makes $V T_{3}$ continuously conducting. Grounding $R_{5}$ through various amounts of resistance in the sending loop makes $V T_{3}$ conductive for various intermediate portions of each cycle. The effect is to make the output vary in level. When $V T_{3}$ is conducting, signal from the oscillator passes


FIG. 4-Double receiver used for on-off control over a radio link
through transformer $T_{2}$, a variable attenuator and a bandpass sending filter to the line. Thus, depending upon the kind of sending-loop equipment used, the diode can be keyed from of to full on or to various sending levels at very high speeds.

## Receivers

Various types of receivers are associated with the universal transmitter described, depending on the service requirement. For the on-off control of heavy-current circuits such as primary power, a double receiver like that in Fig. 4 is used. This is capable of operating two circuits at a rate not to exceed 1 pps. Up to 18 such circuits can be operated on a single voice channel between 420 and $2,460 \mathrm{cps}$. Input from the voice-frequency circuit goes to the primary of an input transformer whose secondary feeds two bandpass filters, each of which selects one frequency. One of the two frequencies, say $f_{1}$, goes to the grid of triode section $V T_{1}$. The plate of this section is in series with the related output transformer and relay coil. Cathode-bias resistor $R_{1}$ is such as to permit enough d-c to flow in the plate circuit to operate the relay with no signal.

When a signal of proper frequency is received, it is amplified in $V T_{1}$ and appears across the secondary of the output transformer. It is then rectified by one section of $V T_{z}$ and applied through network $R_{2} C_{1}$ and the bandpass filter as a negative bias on the grid of $V T_{1}$. This reduces the $d$-c plate current of $V T_{1}$ and allows the relay to re-


FIG. 5-Differential signal receiver circuit used to control reversible motor over radio link between airpori station and remote station
lease. Both front and back contacts are provided on this relay so it can be connected either normally-open or normally-closed.

For dial control and manual telegraph keying, another type of receiver is used. These units handle pulsing at rates up to 28 pps , depending upon the filters used. The input transformer and bandpass filters are arranged as in Fig. 4 but each filter is followed by a twostage resistance-coupled limiter amplifier using a 6SL7. When an incoming signal is strong enough to drive the grid of the first stage positive, grid-circuit clipping takes place to produce limiting. Amplifier output is rectified by one diode section of a 6 AL 5 , which impresses a negative bias on the grid of a triode output section (half of a 6SN7). This section, a d-c amplifier, receives its plate voltage through the relay coil. Without signal, plate current is high enough to energize the relay. Negative bias created by a received signal drives the output triode to platecurrent cutoff and releases the relay, which thus follows the signal.

## Motor Control

Primarily designed for operation of a reversible motor over a radio control circuit, the differential signal receiver of Fig. 5 is actuated by three discrete signal amplitudes: nominal level, - 10 db from nominal, and no signal. Up to 18 of these motor-control circuits are obtainable between 420 and 2,460 cps at $120-\mathrm{cps}$ spacing.

The received signal is amplified
and fed to separate diode rectifiers $V T_{1}$ and $V T_{2}$ in Fig. 5. The outputs of the rectifiers drive d-c triode amplifiers $V T_{3}$ and $V T_{4}$, which respectively control relays $A$ and $B$. A received signal of proper frequency and above a median level, which is adjustable for relays $A$ and $B$, releases the relays.

When no signal is being received, grid bias on triode sections $V T_{3}$ and $V T_{4}$ is such that plate current flows, operating both relays as shown. With signal high enough to override the bias of either diode, rectification takes place, developing negative grid bias on the corresponding triode section and either reducing or cutting off plate current, depending on the value of the developed bias. Plate current below the range of 2.5 to 4 ma releases the relays. Differential bias adjustment on the two rectifiers causes the two relays to operate at different signal levels.
With power relays and a reversible motor connected as in Fig. 5, either forward, reverse or stationary operation is obtained respectively from nominal, 10 db below nominal, or absence of tone. Serious fading or failure of the radio link will not cause rotation of actuated controls.

Identically geared, reversible a-c motors are used for both indicating and controlling purposes. A special arrangement places $\mathrm{d}-\mathrm{c}$ on the windings when $a-c$ is removed. This brakes the motor rapidly to a standstill and is necessary to keep the lightly loaded indicator motor in step with the heavily loaded controlled motor.


FIG. 1-Time functions used for determining the autocorrelation function of a stationary random process


FIG. 2-Autocorrelation function of random time function that can represent a voltage or current

# Correlation Functions and 

Communication Applications

Arecent advance in communication engineering which has attracted considerable attention is the development of a new communication theory based on the statistical concept of information. Norbert Wiener, in his work entitled "The Extrapolation Interpolation and Smoothing of Stationary Time Series" which first appeared as an NDRC Report in 1942, disclosed his statistical prediction and filtering theory which has served as a starting point for much of the recent work by other investigators.

On the more general problem of control and communication, not only in the machine but the animal as well, Wiener has expounded the theory in his book "Cybernetics." Here the theory of information received a rigorous treatment. Independently, but at about the same time, C. E. Shannon in his papers appearing in the Bell System Technical Journal arrived at essentially the same conclusions concerning the theory of information.

It is not the purpose of this article to delve into information theory or prediction theory or any other portion of the new communication theory. We are primarily
interested in bringing to the attention of the reader certain functions and techniques, arising from the new development, which have proved to be of considerable importance and effectiveness in the solution of a number of problems. Interesting applications of these techniques have been and are being made. These functions enter in one way or another, with varying degree of importance, in the various problems that are subject to the new statistical approach. The functions concerned are known as correlation functions.

## Messages and Noise

Correlation functions are related in a quite natural way to time functions (or time series), which carry information. Instead of plunging into a quantitative and precise definition of an information-carrying function, let us consider qualitatively some of the features of this type of function. For our present purpose this will suffice.

If a time function carries information, and the flow of information is uninterrupted, it is essential that the function be of such a nature that its variations from instant to instant are at least incompletely
predictable as far as the receiver is concerned. For if complete specification of the function by the receiver is possible, it is no longer a message in the true sense of the word and should not be sent over the transmission system in its entirety. For the identification of this particular message only a code number need be transmitted instead of all of its details.

Clearly a message should not be represented by a sinusoidal wave whose past and future are completely determined once its amplitude, phase and frequency are known. When information concerning these quantities is given to the receiver, continuation of the transmission of the sinusoid brings no further information.

A message need not be confined to those derived from spoken or written words. It may be any continual fluctuation, which does not follow a simple law of variation due to the complexity of the actuating mechanism, of a part of a system or the property of such a part carrying information needed for the control of other components in the functioning of the system. Thus the path of an airplane in a fire-control system, temperature


FIG. 3-Time function having random zero crossings following the Poisson distribution law


FIG. 4-Autocorrelation graph for random-width pulses of Fig. 3

# How messages and other continuous information-carrying functions can be described in terms of statistics and probability. Required measurements are easily made with an electronic correlator. Engineering applications described include detector providing $30-\mathrm{db}$ gain for signal that is 15 db below noise level 

By Y. W. LEE and J. B. WIESNER

Research Laboratory of Electronics
Massachusetts Institute of Technology
Cambridge, Massachusetts
changes in an industrial process, impulses in the nervous system and wind gusts on an airplane with automatic control are examples of messages.

When fluctuations cause a disturbance in a system over which a message is being transmitted they are known as noise. Broadly speaking, a noise need not be classified as such because of its sound, for if two messages are sent through a common channel the undesired message at one receiver is a noise to be eliminated while the reverse is true at the other receiver.

In the analysis of messages and noise or in the design of systems for their transmission or elimination, it is reasonable that we consider an ensemble of messages and an ensemble of noise. Generally we are not interested in the properties of a single message and we do not design a system for the transmission of a particular message. Furthermore, certain idealizations have to be made in regard to the fluctuating phenomena that we deal with for the simplification of the analytical work.

One assumption we make is that the time functions are physically of considerable duration so that theo-
retically they extend from the infinite past to the infinite future. Another assumption is that the statistical properties of these functions are invariant under a shift in the time origin. In other words, they are stationary in time. These assumptions are easily justified for a large number of practical situations.

Messages and noise are regarded as stationary random processes and are described and characterized in terms of statistics and probability. A stationary random process is defined in terms of probability distribution functions. For the general case, the definition requires a complete set of joint probability distribution functions together with the simple amplitude distribution. Most of these distribution functions are difficult to determine both theoretically and experimentally. However, this difficulty has not substantially hindered our progress in the application of the new theory. One reason is that in most of the applications we are able to make at present, not all of the distribution functions are necessary. The more important reason is that in these applications direct measurements of distribution functions
are unnecessary. Other characteristics which are dependent upon the distribution functions are actually preferable and readily measured experimentally. We refer, of course, to the correlation functions.

## Autocorrelation

For a large number of physical applications, the most useful characteristic of a stationary random process is its autocorrelation function. One method of expressing this function involves the use of only the first joint distribution function of the process just referred to. Another method of defining this function which avoids the use of the joint distribution function calls for the consideration of a member function of an ensemble, which represents the random process, instead of the entire ensemble. Thus, if $f_{1}(t)$ represents the member function in question, the autocorrelation function is defined as

$$
\begin{equation*}
\varphi_{11}(\tau)=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} f_{1}(t) f_{1}(t+\tau) d t \tag{1}
\end{equation*}
$$

In a general sense the correlation function shows the degree of dependence of one value in a time


FIG. 5-Random distribution of equallength positive and negative pulses. corresponding to tossing a coin heads or tails, and triangular autocorrelation function obtained
series to another at a different time. As indicated by the equation, to obtain a point on the autocorrelation curve for a value of $\tau=\tau_{1}, f_{1}(t)$ which represents a message or a noise as the case may be is given a displacement $\tau_{1}$ for all values of $t$, obtaining $f_{1}\left(t+\tau_{1}\right)$. Then the product $f_{1}(t) f_{1}\left(t+\tau_{1}\right)$ is formed for all $t$. The integral of the product is then taken over the entire duration of the function, which theoretically is infinity, However, practically, a sufficiently long duration is considered and the resulting integral is divided by the duration for the mean value which is represented by $\phi_{11}\left(\tau_{1}\right)$. The steps of operation are indicated in Fig. 1.

From geometric considerations, it is clear that the same value is obtained if the shifting of $f_{1}(t)$ is now done in the other direction. In other words $\phi_{11}\left(\tau_{1}\right)=\phi_{\text {II }}\left(-\tau_{1}\right)$. A continuation of the process determines the whole curve which is even in the variable $\tau$.

A sample autocorrelation curve in this elementary graphical determination is shown in Fig. 2. We observe that the value of $\phi_{11}(\tau)$ at $\tau=0$ is obtained from the mean of the square of the given function and should be a value which cannot be exceeded by any other value of the curve. If the function represents a voltage or a current and a load of one ohm is assumed, the point $\phi_{11}(0)$ gives the mean power of the function.

The expression in Eq. 1 for the autocorrelation function of a member function of a random process is known as a time average for $\phi_{11}(\tau)$. The expression of the autocorrelation function in terms of the first joint distribution, called the ensemble average, is not given here because it is not essential for our purpose in the present discussion. It is sufficient to point out that the
two expressions are equivalent for stationary random processes, according to an important theorem in random processes known as the Ergodic Theorem. In effect the theorem states that the autocorrelation function obtained from a member function - of sufficiently long duration-of a random process is the same as that obtained from the process as a whole. In short, a time average is equivalent to an ensemble average for a stationary random process.

## Crosscorrelation

In a manner similar to the definition of Eq. 1, the crosscorrelation between two functions $f_{1}(t)$ and $f_{2}(t)$ is defined as

$$
\begin{equation*}
\varphi_{12}(\tau)=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} f_{1}(t) f_{2}(t+\tau) d t \tag{2}
\end{equation*}
$$

When the functions $f_{1}(t)$ and $f_{2}(t)$ originate from different sources, as for example speech and resistor noise, we expect their crosscorrelation (obtained on the basis of a long duration $2 T$ ) to be the same for every value of the displacement $\tau$. The crosscorrelation value becomes zero for this case if the mean of either $f_{1}(t)$ or $f_{2}(t)$ is zero.

When the crosscorrelation function for two functions is a constant or zero, the functions are said to be incoherent. This case is common, but there are situations in which $f_{1}(t)$ and $f_{2}(t)$ are dependent though not identical so that their crosscorrelation is a good measure of their coherence.

## Periodic Functions

A point of considerable importance is that the definitions in Eq. 1 and 2 for the autocorrelation and crosscorrelation of stationary random processes may also be applied to periodic functions. Frequently a random process has a hidden periodic component and it becomes important in many practical problems to separate the periodic and random components. The fact that correlation functions are applicable to both types of functions and their operations on them produce results of markedly different characteristics, renders these functions particularly important in problems of this type.

For a periodic function, we need
not consider the ensemble average, and the duration over which the function is considered need be only one complete cycle of the function. Hence Eq. 1 for a periodic function $f_{1}(t)$ reads

$$
\begin{equation*}
\varphi_{11}(\tau)=\frac{1}{T_{1}} \int_{0}^{T_{1}} f_{1}(t) f_{1}(t+\tau) d t \tag{3}
\end{equation*}
$$

and Eq. 2 for periodic functions $f_{1}(t)$ and $f_{2}(t)$ of the same fundamental frequency reads

$$
\begin{equation*}
\varphi_{12}(\tau)=\frac{1}{T_{1}} \int_{0}^{T_{1}} f_{1}(t) f_{2}(t+\tau) d t \tag{4}
\end{equation*}
$$

in which $T_{1}$ is the complete period of $f_{1}(t)$ and $f_{2}(t)$.

Let us put

$$
\begin{equation*}
f_{1}(t)=A_{1} \cos \left(\omega_{i} t+\theta_{1}\right) \tag{5}
\end{equation*}
$$

and evaluate its autocorrelation function. By application of Eq. 3 the autocorrelation function is

$$
\begin{equation*}
\varphi_{11}(\tau)=\frac{A_{1}{ }^{2}}{2} \cos \omega_{1} \tau \tag{6}
\end{equation*}
$$

For the general case of an arbitrary periodic function

$$
\begin{equation*}
f_{1}(t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(n \omega_{1} t+\theta_{n}\right) \tag{7}
\end{equation*}
$$

the autocorrelation function becomes

$$
\begin{equation*}
\varphi_{11}(\tau)=\frac{a_{0}^{2}}{4}+\frac{1}{2} \sum_{n=1}^{\infty} a_{n}^{2} \cos n \omega_{1 T} \tag{8}
\end{equation*}
$$

From these results we obtain the following general properties of the autocorrelation function of a periodic function:
(1) The autocorrelation function is periodic with the period of the given function.
(2) The autocorrelation function is a cosine series dropping all


FIG. 6-Duration-modulated pulses, characterized by equally-spaced leading edges


FIG. 7-Autocorrelation function for duration-modulated pulses
phase angles in the harmonics of the original function.
(3) The amplitudes of the harmonics in the autocorrelation function are obtained from the corresponding harmonic amplitude by squaring and multiplying by the factor $\frac{7}{2}$.

## Random Processes

The actual computation for the autocorrelation function of a random process involves more background material than we have presented here. We shall not attempt any detailed exposition of the process of computation but simply state the results which are known for some idealized cases. The case of the flat-top wave of alternating positive and negative pulses of varying duration as shown in Fig. 3 is interesting. The assumption made in this problem is that the distribution of the zero-crossings follows the Poisson Law which states that if the average number of zero-crossings per second is $k$, the probability $P(n, \tau)$ that there are $n$ zero-crossings in any duration $\tau$ of the wave is given by the formula

$$
\begin{equation*}
P(n, \tau)=\frac{(k \tau)^{n}}{n!} e^{-k \tau} \tag{9}
\end{equation*}
$$

On this basis the autocorrelation function may be shown to have the simple form

$$
\begin{equation*}
\varphi_{11}(\tau)=E^{2} e^{-2 k|\tau|} \tag{10}
\end{equation*}
$$

A graph of this function appears in Fig. 4.

A series of rectangular pulses of the same size appearing consecutively each with equal probability of being positive or negative, as the sketch in Fig. 5A illustrates, may be experimentally formed by the tossing of a coin whose heads indicates a positive pulse and tails a negative one. The autocorrelation function for such a series may be obtained from consideration of probability and has the form of a triangle as Fig. 5B shows. Autocorrelation functions have been found analytically for a number of cases having varying degrees of complexity. Some of these results have been useful in practical application, particularly in problems on noise and interference.

A random process where a hid-
den periodic component exists is found in the transmission of messages by pulse-duration modulation and similar types of pulse-modulation. For the typical pulse-duration modulation signal shown in Fig. 6 the leading edges of the pulses are spaced an interval of $2 \Delta$. For reason of simplicity in computation, let us assume that the pulse duration varies independently between the limits of zero and $\Delta$ with a uniform distribution. With this simplifying condition, we may show that the autocorrelation function is of the form shown in Fig. 7. Separating this function into its periodic and nonperiodic components, we find that they appear as in Fig. 8A and 8B.
Since a periodic function produces a periodic autocorrelation function, we consider that the periodic autocorrelation function of Fig. 8A results from the hidden periodic component in the original pulse-duration modulation wave. The remainder in Fig. 8B, which is nonperiodic, is the result of the random component in the wave. This remarkable property of autocorrelation finds several interesting applications concerning which we shall have a further discussion.

## Wiener's Theorem

A theorem of great importance both theoretically and physically relates the autocorrelation function to the power density spectrum of the random process. This theorem has been given a rigorous treatment by N . Wiener and generally bears his rame. It states that if $\phi_{11}(\omega)$ represents the power density spectrum of a random process whose autocorrelation function is $\phi_{11}(\tau)$ then the following reciprocal relations must hold:

$$
\begin{align*}
\varphi_{11}(\tau) & =\int_{-\infty}^{\infty} \Phi_{11}(\omega) \cos \omega \tau d \omega  \tag{11}\\
\Phi_{11}(\omega) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \varphi_{11}(\tau) \cos \omega \tau d \tau \tag{12}
\end{align*}
$$

In other words, the autocorrelation function and power density spectrum of a stationary random process are determinable one from the other by a Fourier cosine transformation. Let us illustrate one application of this theorem by an example.

Referring to the flat-top wave of Fig. 3, which we regard as representing a voltage fluctuation with a load of one ohm, we wish to know the spectrum of the fluctuating voltage. If only Fourier series and Fourier integral theories for periodic functions and transients are at our disposal, we are not sufficiently equipped to solve a problem of this sort. The reason is simply that these theories, as they stand, are not applicable to functions which are specified in terms of statistics and probability and are not representable by specific analytic expressions giving their precise values for all values of the independent variable. However, the extension of the Fourier


FIG. 8-Periodic and random compo. nents of autocorrelation function for duration-modulated pulses
theories to the harmonic analysis of random processes through the medium of correlation functions has enabled us to obtain a solution to our problem with surprising ease. Thus, applying Wiener's theorem we find that the power density spectrum in watts per radian per second of the fluctuating voltage is, as Eq. 12 states,

$$
\begin{align*}
\Phi_{11}(\omega) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty} E^{2} e-2 k ; \mid \cos \omega \tau d \tau \\
& =\frac{E^{2}}{\pi} \frac{2 k}{4 k^{2}+\omega^{2}} \tag{13}
\end{align*}
$$

In this calculation we have made use of the autocorrelation function in Eq. 10.

## Measurement of Correlation Functions

Due to the fact that every point of a correlation curve should represent the result of a large number of observations made on the random function so as to ensure its close approximation to the true value, the calculation of the correlation curve from experimental data by the
method briefly described in conjunction with Fig. 1 and 2 is often slow and tedious. Various mechanical and electrical devices are being developed in a number of research laboratories for the rapid and accurate determination of correlation curves. One method applying electronic techniques has been in use in the Research Laboratory of Electronics, MIT. The method avoids the difficulties of continuous multiplication required in the defining Eq. 1 for the autocorrelation function by an application of the theory of sampling. In this electronic correlator, the random function as it is fed into the device is sampled at regular intervals as indicated in Fig. 9 so that the values $a_{n}, a_{2}, a_{3}, \ldots$ are obtained.

While this sampling is in progress a second set of values $b_{1}, b_{2}, b_{3}$, ... are taken, each trailing a corresponding value of the first set by a time $\tau_{1}$. The order of taking the samples is as indicated in the figure so that they appear in the order $a_{n}, b_{1} ; a_{2}, b_{2} ; a_{3}, b_{3} ; . .$. From these pairs of values a series of pulses is formed in such a manner that their heights are proportional to the values $a_{1}, a_{2}, a_{3}, \ldots$ and their durations to the values $b_{1}, b_{2}, b_{3}$, . . as shown. An integrating circuit gives a voltage corresponding to the sum of the products of the pairs of sampled values of the random function.

It may be shown that the autocorrelation function at the point $\tau_{1}$ is given by the approximate formula

$$
\begin{equation*}
\left.\varphi_{11}\left(\tau_{1}\right) \cong \frac{K}{N_{n}} \sum_{n=1}^{N} a_{n} b_{n}\right|_{1} \tag{14}
\end{equation*}
$$

where $K$ is a factor of proportionality. Repetition of this process


FIG. 9-Method of sampling a random function at regular intervals with an electronic correlator


FIG. 10-Electronic correlator built at MIT for obtaining complete autocorrelation curve of a random function automatically on recorder at left
for other values of $\tau$ determines the autocorrelation curve. The operations required for obtaining the complete curve are automatic. The correlator is shown in Fig. 10. A sample autocorrelation function for filtered noise is given in Fig. 11.

## Power Spectrums

In connection with the Wiener theorem for autocorrelation functions, we have already shown the effectiveness of spectrum calculation through the medium of correlation. It is generally true that the spectrum of a stationary random process is most readily found by this method if the problem is simple enough for solution. As further examples of spectrum calculation let us point out that the power density spectrum of the random series shown in Fig. 5 is simply the cosine transform of the autocorrelation curve in Fig. 6. Similarly the cosine transform of the nonperiodic autocorrelation curve in Fig. 8B is the power density spectrum of the random component in the pulse-duration modulation wave of Fig. 6.

The spectrums of a large variety of stationary random processes under simplifying conditions are not difficult to determine. These spectrums have been useful in noise
problems. Some nonlinear cases have also been attacked with success. An example of such cases is the spectrum of noise through a rectifier.

On the experimental side, the correlation method of finding a spectrum has also proved its effectiveness. With adequate equipment, experimental determination of a complete correlation curve should be simpler and often more accurate than the determination of a complete spectrum by use of filters.

An example of the experimental evaluation of the spectrum through the correlation process is given in Fig. 12. Here the autocorrelation curve for random noise from a gas tube is obtained by the use of the electronic correlator. The cosine transformation required to produce the spectrum is performed by an electronic differential analyzer developed at MIT.

The fact that it is possible to measure correlation curves for very small and comparatively, very large values of $\tau$ without excessive demands on the size and accuracy in the equipment, means that a nearly complete spectrum curve is not difficult to obtain. On the other hand, if the spectrum is to be obtained from frequency measurements, we may encounter some difficulties at low frequencies because requirements in equipment at these frequencies are not conveniently met.

## Detection

In giving an example on the autocorrelation of a random process, as illustrated in Fig. 6, 7 and 8, we have noted the interesting fact that autocorrelation is capable of separating the periodic and random components in the process. Let us further consider the case of a mixture of random noise $f_{s}(t)$ and a periodic function $f_{s}(t)$. By our assumption that the noise has no periodic component it is obviously true that $f_{s}(t)$ and $f_{s}(t)$ are incoherent. Let the mixture be written as

$$
\begin{equation*}
f_{1}(t)=f_{N}(t)+f_{S}(t) \tag{15}
\end{equation*}
$$

According to Eq. 1, the autocorrelation function of $f_{1}(t)$ is

$$
\begin{align*}
\varphi_{11}(\tau)= & \lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}\left[f_{N}(t)+f_{S}(t)\right] \\
& {\left[f_{N}(t+\tau)+f_{S}(t+\tau)\right] d t } \tag{16}
\end{align*}
$$

which simplifies to

$$
\begin{equation*}
\varphi_{11}(\tau)=\varphi_{N N}(\tau)+\varphi_{S S}(\tau) \tag{17}
\end{equation*}
$$

the crosscorrelation terms having been dropped because of incoherence between $f_{N}(t)$ and $f_{s}(t)$. Our result states that the autocorrelation function of the sum of the noise and periodic function is the sum of their individual autocorrelation functions.

In Fig. 13 we have illustrated the correlation curves for the case of $f_{s}(t)$ being a sinusoid. Let us consider the behavior of the curves at comparatively large values of the variable $\tau$. Theoretically the noise autocorrelation curve approaches the square of the mean value of the noise as $\tau$ becomes large; that is, $\phi_{N x}(\tau)$ is a constant (or zero, if the mean is zero) for large $\tau$. On the other hand, since the autocorrelation function of the sinusoid is another sinusoid, its behavior is the same irrespective of the magnitude of $\tau$.

We see that if autocorrelation is performed on a random noise at reasonably large values of $\tau$, so that in the absence of a periodic wave the result is a constant, the presence of a periodic wave in the noise will result in a periodic curve instead of the constant (or zero). Theoretical considerations show that a periodic wave in random noise, however small, may be detected by this method. However, errors in measurement and finite time of observation set a limit to what we can physically accomplish.

The power of this method in detection has been demonstrated in the laboratory. Reproduced in Fig. 14 is a set of curves obtained from the electronic correlator mentioned earlier for various input signal-tonoise ratios. The comparatively flat portions of the curves are obtained with only random noise at the input. As soon as the sinusoid was introduced into the noise the sinusoidal form of the output became evident. One of the curves in Fig. 14 shows that for an input signal-to-noise ratio of nearly -15 db the output signal-to-noise ratio appears to be about +15 db , so that the net gain is approximately 30 db . In a problem of detection of weak periodic signals in noise a gain of this magni-
tude is definitely an achievement.
The numerical values given here do not indicate practical limits, for still greater improvement in signal-to-noise ratio is possible by lengthening the time of observation and improving the accuracy of the equipment. Furthermore, when the frequency of the periodic signal is known, a local sinusoidal (or some other simple periodic form) voltage of the known frequency may be used for the purpose of crosscorrelating it with the incoming noise and signal mixture. By the application of crosscorrelation an additional substantial gain may be achieved.

In several respects this new method of detection is superior to the use of narrow-band filters. The correlator operates in the time domain to achieve a result that an extremely narrow-band filter could produce in the frequency domain. But while the correlator separates a sinusoid from random noise irrespective of its frequency as long as it is within the bandwidth for which the correlator is designed, a narrow-band filter, as its name implies, does not have this advantage. Because of this and other reasons the search for a periodic signal in random noise by the method of correlation is by far a simpler, more effective and more economical method than filtering.

## Optimum Linear Systems

Correlation functions occupy an important position in the statistical prediction and filter theory of Wiener. The reason for their prominence may be readily traced to the criterion for system design in the theory. Let us illustrate by considering the problem of statistical filtering. In very general terms, the filter problem requires that the instantaneous output of the filter to be designed should be, on the average, as nearly as possible the same as the desired message when the input of the system is the corrupted message. In formulating this problem Wiener takes as a measure of error in the design the mean of the square of the difference between the actual output $f_{0}(t)$ and the desired output which is, in the case of filtering, the message itself $f_{\Perp}(t)$ with possibly a
delay $\alpha$. Therefore the error expression is

$$
\epsilon=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T}\left[f_{0}(t)-f_{M}(t-\alpha)\right]_{(18)}^{2} d t
$$

The output $f_{o}(t)$ is expressible in terms of the system characteristic and the input to the system. The adoption of this measure of error, with the consequential criterion that the design of the best system should reduce the mean-square error to its minimum, introduces into the design problem correlation functions. This fact becomes clear when the mean-square error expression of Eq. 18 is expanded according to the square law and simplified. As a matter of fact, the specific correlation functions required as basic data in the predic-


FIG. 11-Example of autocorrelation function for filtered noise, as recorded by correlator


FIG. 12-Correlation function (A) for noise from a type 884 gas tube, as obtained with electronic correlator, and corresponding power spectrum obtained by making cosine transformation of function with an electronic differential analyzer
tion and filter theory are the autocorrelation function of the input and the crosscorrelation function of the input and the desired output. We shall not go into details here but should emphasize the fact that in the theory of optimum linear systems all input and output functions are completely characterized by their correlation functions, when the design criterion is the least-mean-square-error criterion.

## Impulse Response

The correlator may be used to determine the impulse response of a linear system such as an electrical network or an acoustical transducer. It can be shown that if the network is excited by a white noise source; i.e. one whose spectrum is flat over a frequency range that exceeds the pass band of the device being tested, the crosscorrelation between the input and output is the impulse response of the system, for in general the crosscorrelation between input and output is given by the integral

$$
\begin{equation*}
\varphi_{i 0}(\tau)=\int_{-\infty}^{\infty} h(t) \varphi_{i i}(\tau-t) d t \tag{19}
\end{equation*}
$$

where $h(t)$ is the system response to a unit impulse and $\phi_{i 1}(\tau)$ is the autocorrelation of the input signal. If the input signal is a white noise as assumed, Eq. 19 simply becomes

$$
\begin{equation*}
\boldsymbol{\varphi}_{i 0}(\tau)=h(\tau) \tag{20}
\end{equation*}
$$

This measurement technique has considerable advantage over standard impulse amplitude measurement methods when it is necessary to work against large noise backgrounds, or in cases where it is desired to use small input signals. The system function of the circuit can be obtained by taking the Fourier transform of $\phi_{i 0}(\tau)$ in the manner previously indicated.

It is easy to see physically that the crosscorrelation function should be the impulse response, for if the input signal is really a white noise it consists of a series of independent pulses, and the crosscorrelation measures the relationship between an input pulse and the effect it has on a circuit an arbitrary time $\tau$ later. The impulse response is just the response at any time $\tau$ after $\tau=0$ to an impulse input. The crosscorrelation meas-


FIG. 13-Autocorrelation function of additive mixture of random noise and sine wave


FIG. 14-Experimental results obtained by using electronic correlator to detect pure 8 -kc sine-wave signal at four different levels below that of random noise. Sinusoidal output is clearly evident in each case
ures the average of a large number of such input pulses to form a value for $\phi_{i 0}(\tau)$.

If one is only interested in the amplitude of the system function, it may be obtained from the output autocorrelation. If the input to the system is a white noise the auto-
correlation is the Fourier transform of the amplitude function squared.

## Measuring Crosstalk

In multichannel communication systems it is often desirable to make a measurement of the crosstalk induced from one channel to another. In most systems the amount of crosstalk is dependent not only upon the signals present in the two channels being investigated, but also upon signals in the other circuits of the system. An example of this is the cross-modulation in a frequency-division multiplex system in which several modulated carriers of different frequencies are mixed together and transmitted through the amplifiers of a single radio or wire circuit. Nonlinearity in the amplifier results in intermodulation and distortion products which are a function of the signals in all channels.

Normally it is difficult to load all of the circuits and still measure the effects due to a single channel. However, if each of the channels is fed by an independent noise generator so that the crosscorrelation function taken between any two noise sources is zero, then the amount of noise introduced into a given channel by means of any other channel can be obtained by measuring the crosscorrelation between the input to the offending channel and the output of the circuit being studied. The system can be calibrated by supplying known amounts of the offending channel noise into the circuit being measured. The value of the crosscorrelation obtained under these conditions provides an accurate calibration.

Numerous attempts have been made to measure the information transferred by a linear system. Such measurements have precise meaning when applied to servomechanism systems and radar systems but are often not important as applied to human communication systems, because the properties of the human transducers, eyes and ears, which are left out of the computation, are the governing factors in controlling information rate.

The work covered here has been supported in part by the Signal Corps, the Air Materiel Command and O.N.R.

# Producing <br> The 5820 Image Orthicon 

Many special techniques are involved in the manufacture of the 5820 , with its extremely high sensitivity and its close adherence to the spectral response of the human eye. This paper describes and illustrates the various steps in its production

By R, B. JANES, R. E. JOHNSON, and R. R. HANDEL<br>Tube Department<br>Radio Corporation of America<br>Lancaster, Pennsylvania

THE IMAGE ORTHICON, cornerstone of modern tv broadcasting, has undergone many improvements since its introduction in 1946. Among the important refinements are: better resolution, higher sensitivity and color response more closely matching that of the eye. These trends are illustrated by four models of the image orthicon, known as types 2P23, 5655,5769 , and 5820.

The type 2P23 was introduced in 1946 for remote pickup use. ${ }^{1}$ Since this tube had unheard-of sensitivity, compared to the earlier iconoscopes and standard orthicons, it was widely adopted despite poor resolution and excessive infrared response. The resolution and sensitivity were increased, without change in type number, but the poor tonal rendition in the presence of infrared remained.

A year later, type 5655 was announced for studio use. ${ }^{2}$ The stricter requirements of studio work were met by a new photosurface with less infrared pickup, and by improved signal-to-noise ratio made possible by a new target structure having higher target capacitance. The 5655 was not highly sensitive, however, and illumination of the order of 200 to 300 footcandles (incandescent) or 150-200
footcandles (fluorescent) was needed to provide adequate depth of focus. The improved color rendition was so important, however, that in 1948 type 5769, combining the features of types 2P23 and 5655 , was introduced. This tube covered a wide range of illumination, in addition to good color response and better sensitivity, but greater sensitivity was needed for incandescent light. What was


Type 5820 image orthicon television camera tube


FIG. 1-Comparative spectral responses and overall sensitivities of the four types of image orthicons


FIG. 2-Comparison of 5820 spectral response with that of human eye


FIG. 3-Image section of the 5820. Evaporators are being welded in place


FIG. 4-Image-section glass caps are aluminized in an evaporating system


FIG. 5-The glass target section is cut from a carefully-blown glass bubble
resistivity must be in a fairly narrow range; and its optical quality must be quite good.

The diameter and wall thickness of the tubing are selected for convenience in blowing the desired bubble from which the target section is cut, as shown in Fig. 5. This section is then placed on top of the target ring. After its thickness is checked by a hand spectroscope, the bubble and its ring are placed in a small metal box which, in turn, is placed in an oven held at an elevated temperature.
As the bubble begins to reach proper temperature, it seals itself to the ring and also tightens up so that it is flat. At this point, the box is removed from the oven and allowed to cool. The last step is to remove the excess glass from the outside of the target ring. The target, after being rechecked for thickness and freedom from defects, is ready for mounting in the mesh target assembly.

Figures 6, 7 and 8 show three of the steps in the manufacture of the 50 -mesh copper screen which is mounted close to the glass target. A description of this process is given in a paper ${ }^{4}$ by H. B. Law. The glass master, which is the heart of the process, consists of a glass plate which has been cross ruled with 500 lines per inch. After proper cleaning, the glass master is placed in a sputtering system, as shown in Fig. 6, and a thin layer of metal is sputtered over the entire ruled surface. Sputtering has the advantage over evaporation in that the tightness of the metal coating can be more easily controlled.

The next step is to remove the


FIG 6-Glass master is placed in sputtering system to form 500 -mesh screen
metal from the surface but not from the bottom of the rulings. This part of the process calls for the right type of groove shape in the master, the proper thickness and tightness of the metal coating, and a special material for the rubbing. After the surface metal is removed, the master is placed in a plating bath so that copper will be deposited in the rulings.

Figure 7 shows the master being removed from the plating bath with the mesh completely formed. Figure 8 shows the mesh being removed from the master. After drying the mesh is examined for defects.

The mesh is now ready for mounting close to the glass target. Figure 9 shows the complete meshtarget assembly ready for insertion in a tube.

## Curing Smudge

The solution of one particularly troublesome problem in connection with the mesh-target assembly is of interest. In the early image orthicons an effect which received the name smudge was very troublesome. The smudge showed up mainly in high lights when the camera was picking up a flatly lighted scene. Some areas of the picture would then be lighter or darker than others. If the border between these areas was sharp, this effect could be very troublesome, especially when the camera was panned.
The cause of smudging was finally traced to a difference in contact potential between different parts of the copper mesh on the side which faced the target. This difference in contact potential led to a varia-


FIG. 7-Completed 500 -mesh screen and master being removed from bath
tion in the true potential between the target and mesh in different areas. In the 5820, smudge has been greatly reduced by evaporating a metal such as aluminum onto the target side of the mesh before the mesh and target are assembled together.

Although much of the sensitivity of the image orthicon is due to the high photosensitivity of its photocathode and to the gain at the target, the signal multiplier also is a large contributing factor, especially at low light levels. Figure 10 is a photograph of one of the multiplier wheels with its vanes being assembled into a complete multiplier. Figure 11 shows a complete multiplier gun assembly being checked for possible shorts. The manufacture of multiplier parts requires much care to make sure that the tubes produced have good multiplier gains and are free from defects.

Many groups have contributed to the success of these new tubes. In the Tube Department at Lancaster, the authors wish to acknowledge the help of L. Young, A. D. Cope and J. K. Johnson in the fabrication and processing of the tubes, $A, A$. Rotow for his extensive testing, and C. T. Lattimer for the photographs.

## References

(1) A. Rose, P. K. Weimer, and H. B Law, The Image Orthicon-A Sensitive Television Pickup Tube, Proc. INE, 3t p 424, July 1946 .
(2) R. B. Janes, R. E. Johnson and R S. Moore, Development and Performance of Television Camera Tubes, RCA Review 10, p 191 , June 1949
R. Handel. A. Jew, R. E. Johnson and $R$ R. Handel, A New Image Orthicon, $R C A$ Review, 10, p 586, Dec. 1949.
(4) H. B. Law, A Technique for the Screens, Rev. Sci. Inst., 19, Dec. 1948 .


FIG. 8-Copper mesh is carefully removed from master and then inspected


FIG. 9-Complete mesh-target system ready for insertion in the tube structure


FIG. 10-A multiplier wheell being prepared for assembly in jig shown at left


FIG. 11-Multiplier-gun assemblies are carefully examined ior possible shorls


Amplifier used to provide controlled field current for dyyamometer, employing twelve 807's in parallel

# Dynamometer Control Simulates 

Closed-servo electronic control system for laboratory automotive-engine dynamometer applies loads similar to those of auto accelerating on road. Effects of traffic hazards, wind, weather conditions and road bumps are thus eliminated when checking octane ratings of fuels or studying lubrication and wear during engine cyclic operations

By R. C. BOWERS<br>Shell Development Co.<br>Emeryville, California

The tendency of a gasoline motor fuel to knock or detonate in a multicylinder automotive engine is affected by a number of operating variables, including engine speed, spark advance, cylinder-head temperature, fuel-air mixture ratio, distribution, mixture temperature and mixture density. In typical operation the engine is constantly changing with respect to one or more of these variables, with the result that detonation from a given fuel will vary greatly throughout the operating range. Fuels of vary-
ing hydrocarbon composition differ markedly in their tendency to knock and in the speed at which knock is most prominent.
It becomes exceedingly difficult, therefore, to define the performance of a fuel in an engine under operating conditions. In the past, motor-fuel octane ratings have been based on the motor method ${ }^{1}$ and the research method ${ }^{3}$, using laboratory engines operating at constant speed and fixed conditions. Recently, it has been realized that final automotive fuel ratings must be established on a multicylinder engine operating under road load conditions.

In view of this, it appeared desirable to develop a device for the laboratory automotive-engine dyna-
mometer which could apply loads similar to the automotive engine on the road. It is believed that the accuracy and reproducibility of road-test ratings can be increased by the use of such a device in the laboratory, which eliminates the effects of traffic hazards, wind, variations in ambient air temperature, and road configuration. Although this control was developed primarily for fuel rating work, it may also be useful in fuel and lubricant deposit and wear studies, or other road-test problems where engine cyclic operation is a factor.

## Test Technique

Dynamometer control devices have been built using a prearranged


Electronic control unit used between tachometer generator and dynamometer amplifier


Dynamometer acceleration control

## Road-Testing of Engines

program employing a paper cam and photoelectric pickup ${ }^{3}$, sequence relay system, or punched tapes in a pneumatic system. Essentially they are systems of controlled rheostats in the dynamometer field circuit.

The type of test used in fuel rating on the road involves high-gear acceleration at full throttle from 10 to 70 miles per hour. The acceleration curve of Fig. 1 was taken in a 1941 Chevrolet on a level highway. The torque curve is the load necessary to hold the engine at the speed shown, at full throttle.

Any laboratory device must, then, cause the engine to reproduce both these curves simultaneously, by representing to the dynamometer the inertia and resistance of any weight of car and any body type. The device could thus be used with any engine and any dynamometer to give the proper speed-versustime (acceleration) curve, after setting the correct ratio of inertia and resistance loads. The device must, however, be capable of making successive runs rapidly and must start from any given speed.

The rise from $A$ to $B$ in the
torque curve of Fig. 1 represents the increased load required at the instant the engine is given full throttle. This extremely high rate of application of load was the primary problem in the development of suitable equipment.

Major factors affecting acceleration are: (1) air resistance, which is a function of body design and varies as the square of the speed; (2) rolling resistance, which is a function of highway surface, tires and bearings and varies with speed and mass; (3) inertia, which is a function of mass and varies with acceleration. Summarizing, to a first approximation it can be said that the total resistance affects the ultimate speed to which an automobile can accelerate and the inertia affects the length of time to attain the ultimate speed; also, the resistance load on the engine varies with speed and the inertia load varies with acceleration.

## Closed Servo System Used

The control system developed from these considerations employs a tachometer generator on the test engine crankshaft to provide a


FIG. 1-Acceleration curve of 1941 Chevrolet going from 10 mph to 70 mph in high gear at full throttle on a level highway, and torque curve that electronic control system must produce to simulate this acceleration in laboratory


FIG. 2-Closed-servo electronic control system used with laboratory dynamometer to place controlled loads on auto engine


FIG. 3-Three-channel control unit. Input voltage is obtained from tachometer gen erator on engine, and output drives power amplifier that furnishes dynamometer field current


FIG. 4-Dynamometer amplifier, using 12 identical pentode tubes in parallel to provide an output current that follows the control signal despite high inductance of dynamometer field coils


FIG. 5-Power supply circuits for amplifier and control unit. Filament heating time of 6 X5GT rectifier provides time delay for application of plate voltage to gas rectifier tubes in full-wave bridge arrangement
velocity signal and an electronically obtained first derivative for the acceleration signal. With this general type of arrangement, shown in Fig. 2, it was possible to simultaneously reproduce the actual speed-vs-time and load-vs-speed curves in the laboratory. The device is essentially a closed servosystem in which a speed-sensitive generator on the test engine shaft feeds a signal to the control circuit which drives the amplifier to supply field current for the dynamometer which sets the speed of the test engine. The tachometer generator is a 3 -phase, 4 -pole a-c type which provides a voltage directly proportional to speed. The dynamometer is the eddy-current type in which the power is absorbed as heat from the iron structure by circulating water. Any other type of dynamometer which requires d-c field excitation, such as a resistance-loaded d-c generator, should also be applicable. In this case the d-c field excitation varies with the speed and acceleration of the test engine and is supplied by the dynamometer amplifier. The control circuit converts the $a-c$ tachometer speed signal into a d-c control signal for the dynamometer amplifier.

## Three-Channel Control Circuit

Since the load on a car at any instant is a summation of the velocity or resistance load and the acceleration or inertia load, the control similarly has a velocity and an acceleration channel. These two channels, plus a third error channel, are similar in design. Type 6V6GT tubes are used in a cathode-follower circuit as in Fig. 3 to provide a lowimpedance output for type 6X5GT full-wave rectifier tubes. The rectifier is followed by a $\pi$-section filter to remove ripple. The filter section must be of extremely short time constant to prevent subjecting the signal to appreciable time delays. Small capacitors, low-resistance chokes and high-resistance loading satisfactorily limit the time delay.

The output of the velocity channel is a high-impedance direct voltage proportional to engine speed. Since acceleration is the first derivative of velocity, a voltage representing the acceleration can be obtained by differentiating the
velocity voltage. The output of the derivative circuit of the acceleration channel, consisting of a capacitor and resistor in series, should then be a high-impedance direct voltage proportional to engine acceleration. The error channel provides a high-order derivative signal which actually precedes the acceleration signal, counteracting the slow response of the highly inductive dynamometer field at the start of the acceleration run, enabling the dynamometer torque to approach more closely the ideal response indicated by tine $A-B$ in Fig. 1.

A type 6J5GT tube operating at reduced filament voltage converts the summation of these high-impedance voltages to a low-impedance signal for the dynamometer amplifier. An additional circuit provides negative control bias to the dynamometer amplifier. The diodes load the derivative circuits to prevent their becoming negative and unloading the amplifier when the velocity slope reverses. An output is provided to operate an Esterline-Angus recording milliammeter from the tachometer generator. This instrument automatically plots the speed-vs-time diagram, helpful in adjusting the control.

## Twelve 807's in Parallel

The design of the dynamometer amplifier, which converts the control signal to dynamometer field current, is complicated by the high value of inductance of the dynamometer field winding, approximately 90 henrys. To overcome the effect of this inductance the output (field) current must follow the control signal, whereas amplifer circuits generally produce an output voltage to follow the control signal. A pentode amplifier tube has the required output current characteristic. A high-power amplifier was therefore constructed using twelve type 807 tubes connected in parallel as in Fig. 4. A pilot light in series with each tube indicates failure or abnormal operation.

The power supply circuit, shown in Fig. 5, is a full-wave bridge using four type 3D22 grid-controlled rectifier tubes to deliver 600 volts at 2 amperes unfiltered. This tube was selected for its low-volt-
age, high-current characteristic and the control feature is not used. Filtering is unnecessary in a plate supply for pentodes operating with a well-filtered screen supply. The screen supply uses a 5 V 4 G cathodetype rectifier to delay the application of screen voltage while rectifier and amplifier filaments are heating. A novel time-delay relay, utilizing the filament heating time of a type 6 X 5 GT rectifier tube with a mer-


FIG. 6-Correlation of knock-rating curves obtained on road and with electronic control system in laboratory


FIG. 7-Correlation of ecceleration curves oblained for 1941 Chevrolet club coupe on road and with engine alone in laboratory
cury relay, satisfactorily controls the plate voltage.

## Operating Adjustments

In developing this device, a speed-vs-time (acceleration) curve was first obtained with an automobile on the highway operating at full throttle, the recording milliammeter being operated from a tachometer generator on the distributor shaft.

Adjustments are provided on the control unit to allow the use of any
automotive engine and body style with any dynamometer. The order of these adjustments is as follows: (1) Adjust bias to proper low-speed load with velocity channel set at 50 percent, other channels at zero; (2) adjust velocity channel to limit ultimate speed of engine to proper value; (3) adjust acceleration channel to give proper time duration to acceleration curve; (4) adjust error channel to eliminate rapid acceleration at start of run. Some readjustment of all controls may be necessary. In general, the velocity loading affects the high-speed end and acceleration loading affects the lowspeed end of the curve.

The device was developed to simulate knock testing using the Borderline ${ }^{4}$ method in which the car is accelerated from 10 mph to 70 mph in high gear at full throttle and the speed at which knock dieout occurs is recorded. With this equipment it has been possible to evaluate fuels rapidly in the laboratory using standard road-test procedures. Figure 6 shows the correlation of laboratory and road-test data. Much of the deviation between curves is due to operator judgment in determining when knock dies out, hence the correlation shown can be considered excellent.

Figure 7 is an automatic plot of the acceleration curve. The laboratory curve, as shown, would represent some lighter body style than the club coupe used on the highway for comparison.

The device described has possible further applications. Since the engine with this electronic loading device will always have its correct road load, it is possible by simple variations of throttle position with time to provide any desired type of cyclic operation. Thus it is now possible to simulate stop-and-go city driving in the laboratory.

The author wishes to express appreciation for the cooperation of Shell Oil Company in supplying roadtest data, and in particular to F. B. Rolfson of this company for suggesting the power amplifier circuit.

## References

(1) ASTM Manual, "Engine Test Methods for Rating Fuels', $\mathrm{p} 7,1948$ (2) ASTM Manual, ''Engine Test Meth ods for Rating Fuels', $\mathrm{p} 21,1948$. (3) Joseph Moller, 'SAE'Journal, June $19+1$. (4) "Coordinating Research Council Handbook," p 87, 1946 Edition.


Attenuator at right end of glass envelope suppresses oscillations in 1,000 watt power amplifier

# 1,000-WATT 

## by Stanley e, webber

Research Associate
General Electric Research Laboratory Schenectady, New York

Several papers have been published describing the $t-w$ principle, analyzing performance on a small-signal basis and noise characteristics.

Because of the large bandwidth and high gain characteristics of the traveling-wave tube, it has been considered desirable to investigate its potentialities as a power amplifier in the high frequency bands.

## Description

Preliminary considerations indicated that information about operation of traveling-wave tubes at a power output level of about a kilowatt and frequencies in the $450-$ megacycle region might be useful. As a point of departure a tube was designed for operation at a beam voltage of 4,000 to 5,000 volts and beam current of about one ampere. An efficiency of about 20 percent would be necessary for the desired power output. The computed gain was of the order of 10 db .

A one-inch spiral was formed

[^2]from $\frac{1}{8}$-inch diameter nickel tubing wound $2 \frac{1}{2}$ turns per inch 20 inches long. The electron beam diameter is between $\frac{5}{8}$ and $\frac{3}{4}$ inch for a beam current of one ampere at beam voltages between 2,500 and 5,500 volts and a magnetic field of 1,000 gauss.

Details of tube construction and circuit arrangement are shown in Fig. 1. For operation at the kilowatt level it was thought necessary to provide for water cooling of the spiral. The arrangements for the water-cooled spiral are shown in Fig. 1A.

The r-f energy is coupled to the
spiral from the usual coaxial line through a section of concentric line on the axis of the spiral. The spiral is simply attached directly to this center conductor at its edge. The r-f transition between a 50 ohm coaxial line and the spiral can be made with little reflection at the center frequency, with the bandwidth limited by the choke piston. The electron gun and necessary water connections for the spiral and water-cooled collector are inside of the concentric line sections.

A simplified tube and circuit arrangement can be provided when the spiral is cooled by radiation.


FIG. 1-Construction details of both types of traveling-wave tubes


In the 1,000 -watt tube, both the spiral and collector are cooled by a continuous flow of water

## Traveling-Wave Tube

Water-cooled 450-mc tube used as power amplifier produces power gain in the order of 25 . Efficiency is 20 percent when tube is operated with 5,000 volts at one ampere. High performance is made possible by proper use of attenuation to suppress oscillations

The tube and circuit shown in Fig. 1B have been operated at a power output level of 500 watts. The r-f power is coupled to the spiral by making a right-angle bend in the spiral and bringing the conductor out radially through the glass to become the center conductor of the external coaxial line. This provides a fairly satisfactory broad-band transition as shown by the stand-ing-wave-ratio curve in Fig. 2A.

Further alterations of the circuit geometry at the transition point have reduced the standing-wave ratio to a low value in the 450 megacycle region.

## Attenuation

In order to suppress oscillations and stabilize the tube it is necessary to apply attenuation. This attenuates waves reflected at the output which would cause oscilla-


Radiation-cooled-spiral tube, capable of 500 watts output at 450 mc


Input and output connections are brought out radially from the spiral
tions. Various means of achieving attenuation have been used. Among them are methods where the attenuators are applied uniformly along the length of the tube or concentrated in a short distance near the center of the tube. The material is usually a thin evaporated coating of metal or layer of Aquadag, applied on the inside of the glass in order to be close to the spiral.

Because of a geometry which permits a great radial penetration of the spiral fields it has been found possible to obtain sufficient attenuation by applying a conductive coating to the outside of the glass envelope. This has permitted extensive testing of the effect of the attenuation on the performance of the tube.

Figure 2B shows the variation of attenuation with d-c surface resistivity, a parameter which is proportional to thickness of material. It is observed that there is a point of maximum attenuation at about 1,500 ohms per square for Aquadag and 8 ohms per square for platinum. Also note that the peak attenuation
is less for platinum than for Aquadag.

The dependence of attenuation on frequency is shown in Fig. 2C. The attenuation is maximum in the $400-$ mc to $500-\mathrm{mc}$ region. It has been found that most materials tested have about the same sort of frequency dependence, giving maximum attenuation in the 400 -me region. However, Aquadag has given the most attenuation per unit length.

Direct reflections from the attenuator are an important consideration in determining what sort of attenuation to use. A component of loss suddenly introduced on a uniform transmission system will introduce reflections. Also, in the case of the spiral the finite conductivity of the attenuating film tends to shift the currents and fields from the low-velocity spiral direction to the faster axial direction and thus distort the electromagnetic fields in the attenuating region. Figure 2D shows the standing-wave ratio, as measured by a probe coupled lightly to the spiral, caused by the abrupt transition between the unattenuating region and a region of uniform attenuation. Platinum with a swr around 2.5 is not satisfactory without tapering. Aquadag with a swr of about 1.2 is satisfactory for low-gain tubes. By tapering the Aquadag the standingwave ratio has been reduced to less than 1.05.

The conducting sheet which is used for attenuation has an effect upon the velocity of the wave on the
spiral. If the wave velocity in the attenuating region is materially different from that in the nonattenuating region, then the gain of the tube will be reduced, particularly if the attenuation is small.

The wave velocity in the presence of uniform attenuation has been measured. The schematic shown in Fig. 3A indicates the method used. The frequencies at which the phase of the wave through the tube was changed by $2 \pi$ were determined by the null-point method. From this measurement and the geometry the velocity of the wave is computed.

The result of the measurement of velocity for Aquadar attenuation is presented in Fig. 3B. As the resistivity of the coating is decreased from a high value the wave velocity first decreases as it should simply from the introduction of some loss in the region. Then the velocity begins to increase rapidly to a value which should approach $\mathrm{v} / \mathrm{c}=1$.

This increase is the result of a gradual shift from a wave which follows the spiral towards a direct coaxial mode. In the limit there would be a high velocity wave outside of the attenuator and a slow spiral wave inside. The point of minimum velocity corresponds roughly to the point of maximum attenuation. Thus at the operating point the wave velocity in the attenuating region is reduced by about 10 percent.

## Operational Tests

Experimental work has shown that the most important single


FIG. 2-The high-performance from the $t$-w tubes described resulted from careful study of attenuation and standing-wave characteristics shown above


FIG. 3-Setup for determining velocity of waves on spiral is shown in (A). Curves in (B) show results obtained
factor affecting performance at high power and efficiency has been the attenuator. Initially, tubes had been operated in the conventional manner using center attenuation. Figure 4A shows a typical curve of power output versus power input with saturation power occurring at about 100 watts output and efficiency of the order of eight percent. Wave velocity on the spiral with no space charge is $\mathrm{v} / \mathrm{c}=0.11$, corresponding to a synchronous voltage of about 3,000 volts, while the operating voltage was between 3,700 and 4,100 volts. The variation of tube gain with beam current is illustrated in Fig. 4B. It will be noted that both low-level and highlevel gains increase directly with current in the higher current regions.

In order to determine the effect on performance of the location of the attenuator, tubes were equipped with attenuators which could be moved axially while the tubes were in operation. The results of these experiments are shown in Fig. 4C. As the attenuator was moved toward the input end of the tube, with all other parameters held constant, the power output was observed to increase. The effect was more noticeable at high power input level where the tube was beginning to saturate than at low power input. The saturation power was approximately doubled when the attenuator
was moved from the center of the tube to the input end. Tubes with a short uniform attenuator starting directly at the input end of the spiral have operated satisfactorily with high efficiency and gain.

The second variable of importance is the amount of the attenuation used to stabilize the tube. The effect of this was investigated both by varying the length of the attenuator and also the conductance. The results indicate that any reduction in the amount of the cold attenuation results in an increase in saturation power.

The results of several experiments on several different tubes is shown in Fig. 4D, where saturation power is shown as a function of cold attenuation. Below 25 decibels the tube will oscillate, but at power saturation all of the r-f energy will be found at the driving frequency. In order to determine limiting efficiencies, tubes have been operated with no external attenuation and the amount of power output is correspondingly higher as indicated by the point on the curve at about 400 watts. This represents an electronic efficiency of the order of 25 percent.
It will be noted that attenuation can be decreased by decreasing resistivity of the coating. It was found that decrease in attenuation obtained by increasing thickness resulted in decreased power output and gain. Measurements of wave velocity described above (and indicated in Fig. 3B) show that for this range of attenuation wave velocity is greater than that in the unattenuated region. The decrease in gain in tubes using attenuators with conductivities in this range of values is attributed to this fact that velocities are quite different.

Most of the previously described work has been done with the tube (illustrated in Fig. 1B) with a spiral cooled only by radiation. Current intercepted on the spiral has been of the order of one or two percent with a magnetic field of about 1,000 gauss. This tube has operated satisfactorily at these power levels. The tube with a water-cooled spiral (shown in Fig. 1A) has been used at higher power levels. The gain and efficiency of this structure are not materially different from that
of the uncooled spiral at the same current levels.

Tubes with a water-cooled spiral equipped with an attenuator at the input end have been operated at beam current up to 1.2 amperes. Figure 4 E presents power output at saturation versus beam current and shows that power increases slightly faster than the beam current. Since the beam voltage is increasing slightly simultaneously, the power output increases about in proportion to $d-c$ power in the beam and the electronic efficiency is about constant. Maximum power was 1,200 watts, at which point r-f heating of the glass limited further increase in power.

## Bandwidth

Investigation of the frequency characteristics of the travelingwave tube indicates that the spiral geometry has an important effect on bandwidth. For the particular tube described herein the frequency of maximum gain is about 500 mc and bandwidth about 100 mc within plus or minus $1.5-\mathrm{db}$ variation in output. It is emphasized that this is an electronic bandwidth, measuring the relative coupling between the spiral and the electron beam, and does not include any bandwidth limitations due to the input or output coupling systems. The frequency of maximum gain is not appreciably affected by attenuation or by external circuit but only by spiral geometry.

## Conclusions

It has been demonstrated that the traveling-wave tube operating as a power amplifier at medium power levels can be made to have conversion efficiencies which compare favorably with that of other beam tubes.

Unlike any device which depends upon a resonant structure for interaction with the beam the gain of the traveling-wave tube can be increased without a corresponding decrease in useful bandwidth. The inherent bandwidth is more than adequate for most commercial applications where wide transmission band is required.

The work described in this paper was supported by the Bureau of Ships, U. S. Navy.


FIG. 4-Power output, gain and power saturation curves for the high-power water-cooled traveling-wave tubes under various conditions as derived by experimental methods

# BIFILAR I-F COILS 

By S. R. SCHEINER

Principal Engineer
Bendix Radio Division, Bendix Aviation Corporation
Baltimore, Maryland

BIFILAR COILS as interstage coupling devices in stagger-tuned amplifiers ${ }^{1}$ provide a number of desirable features in addition to those of the conventional coupling system.

A bifilar coil may be defined as a transformer having as close to unity coupling as physically possible. The construction of a typical bifilar coil for use in the television i-f range from 21 to 26 mc is illustrated in Fig. 1. The coil shown is wound on a 0.292 -inch O.D. Bakelite form using No. 30 wire with heavy formvar insulation.

The two windings are formed simultaneously, so that any turn on winding $A$ is adjacent to two turns on winding $B$, thus insuring a high degree of coupling between coils. Measurements indicate a coefficient of coupling of approximately 90 percent. The insulation on the two windings is generally colored differently for convenience in wiring. The bifilar coil is tuned by a single iron core inside the form.

The use of bifilar coils in a typical television i-f system is illustrated in Fig. 2. This circuit represents a low-cost system employing only two i-f amplifier tubes and designed for a $3-\mathrm{db}$ bandwidth of 2.2 mc and a $6-\mathrm{db}$ bandwidth of approximately


FIG. 1-Construction of bifilar coil


FIG. 2—Circuit of staggered two-stage i-f amplifier using bifilar coupling coils
2.65 mc . The three bifilar coils are labeled $T_{1}, T_{2}$ and $T_{3}$ in Fig. 2. The individual tuning frequencies and stage loading are based on the values determined by design formulas for an ideal stagger-tuned triple, and modified as required by practical considerations.

A similar amplifier using singletuned coils and coupling capacitors is shown in Fig. 3.

## Economics

Comparison of Fig. 2 with Fig. 3 indicates that the use of a bifilar coil eliminates the necessity for a coupling capacitor in each stage. The added cost of winding the extra coil and providing the required insulation is approximately one cent. This is several cents less than the cost of an ordinary coupling capacitor, so that an appreciable cost saving is provided by the bifilar coil system.

An r-f choke is employed in Fig. 3 to feed B voltage to the last i-f tube plate, and the tuned-circuit coil is connected from video detector cathode to ground. Here, the resistance in series with the i-f plate must be low to avoid excessive drop in $B$ voltage, and the resistance across the video detector load must be low to maintain diode detector efficiency. In this circuit, the use of a bifilar coil effects a further economy by eliminating the need for the r-f choke.

A second important advantage resulting from the use of bifilar coils is the improved noise immunity because of the low impedance in the i-f grid circuits. In the conventional amplifier illustrated in Fig. 3 , where the d-c grid return is through the load resistor, an appreciable time constant in the grid may result. Noise pulses of sufficient amplitude to draw grid current will develop a charge on the coupling capacitor, and this charge will maintain bias on the tube until it can leak off through the grid resistor.

If bias is developed, the stage gain will be reduced after each noise pulse until the bias returns to normal. Severe noise may be sufficient to drive the tube to cutoff. The effect on the picture is that each noise pulse which modulates the carrier toward the black level is not itself very noticeable, but is followed by a white tail which is very objectionable.

In Fig. 3 the grid of the last i-f stage has a time constant of approximately 3.3 microseconds. The active time for one horizontal line is approximately 53.3 microseconds, so that severe noise would produce noticeable white streaking. When bifilar coils are employed, the grid time constant is virtually zero, so that the effect of noise on the picture is only to produce the black specks caused by noise modulation.

## Improved noise immunity because of low grid time constant and economy in production due to the elimination of several components are achieved by use of bifilar coils between stages of stagger-tuned i-f ampli fiers. Detailed analysis is given



FIG. 3-Circuit of conventional single-tuned staggered stages

In the conventional single-coil system, the last i-f stages are the most susceptible to this effect because of the increased amplitude of noise pulses.

It becomes increasingly more difficult to use a resistor for the d-c grid return as the bandwidth of the amplifier is narrowed. This results from the fact that the individual stage loading, as prescribed by stagger-tuned design formulas, becomes less as the bandwidth is narrowed. Hence, the grid time constant becomes increasingly larger and the noise performance progressively poorer unless a bifilar coil or an additional choke is employed.

A higher i-f frequency would result in a longer grid time constant, since the increased tube transit time loading will necessitate less fixed loading to produce the desired stage bandwidth.

One alternative that might be suggested to reduce the grid time constant is to use a single-tuned coil in the grid circuit and feed B voltage through the loading resistor. This requires higher B voltage and greater power dissipation from the power supply components.

## Comparison of Circuits

It is necessary to show that a tuned bifilar coil, as represented by Fig. 4A, is electrically equivalent
to the single-tuned circuit of Fig. 4B, provided:-

$$
\begin{align*}
L & =\sqrt{L_{1} L_{2}}  \tag{1}\\
C & =\sqrt{\overline{L_{1}}} C_{1}+\sqrt{L_{2}} C_{1}  \tag{2}\\
\frac{1}{L_{1}} & =\frac{1}{\sqrt{\frac{L_{2}}{L_{1}} R_{1}}}+\frac{1}{\sqrt{\frac{L_{1}}{L_{2}} R_{2}}} \tag{3}
\end{align*}
$$

The equivalence of these two circuits can be most easily demonstrated by several successive applications of Thevenin's Theorem. Figure 5A is the same as Fig. 4A redrawn with a constant current generator source of energy added.

If we consider the internal and load circuits to the left and right of terminals 1 and 2 , then the equivalent circuit according to Thevenin's theorem will be as shown in Fig. 5B where

$$
\begin{align*}
& E_{A}=\frac{i_{0}}{j \omega C_{1}}  \tag{4}\\
& Z_{A}=\frac{1}{j \omega C_{1}} \tag{5}
\end{align*}
$$

If we apply Thevenin's theorem to Fig. 5B, the equivalent circuit illustrated in Fig. 5C is obtained, where

$$
\begin{align*}
& E_{B}=\frac{E_{A} R_{3}}{R_{1}+\grave{Z}_{A}}  \tag{6}\\
& Z_{B}=\frac{1}{\frac{1}{R_{1}}+\frac{1}{\dot{Z}_{A}}} \tag{7}
\end{align*}
$$

One more application of Thevenin's theorem results in Fig. 5D, where

$$
\begin{align*}
& E_{c}=\frac{-\mathrm{j} \omega M E_{B}}{\dot{Z}_{B}+\mathrm{j} \omega L_{1}}  \tag{8}\\
& Z_{c}=\frac{\omega^{2} M^{2}}{\dot{Z}_{B}+\mathrm{j} \omega L_{1}}  \tag{9}\\
& e_{2}=\frac{i_{2}}{\frac{1}{R_{2}}+\mathrm{j} \omega C_{2}}  \tag{10}\\
& i_{2}=\frac{E_{c}}{Z_{c}+\mathrm{j} \omega L_{2}+\frac{1}{1 / R_{2}+\mathrm{j} \omega C_{2}}} \tag{11}
\end{align*}
$$

Substitution and simplification will result in Eq. 12 provided $k$, the coefficient of coupling, is set equal to unity so that $M=\sqrt{L_{1} L_{2}}$.

$$
e_{2}=\frac{-i_{\rho}}{\sqrt{\frac{L_{1}}{L_{2}} \frac{1}{R_{1}}+\sqrt{\frac{L_{2}}{L_{1}} \frac{1}{R_{2}}}+\mathrm{j} \omega\left(\sqrt{\frac{\overline{L_{1}}}{L_{2}}} C_{1}+\right.}} \underset{\left.\sqrt{\frac{L_{2}}{L_{1}}} C_{2}\right)+\frac{1}{\mathrm{j} \omega \sqrt{L_{1} L_{2}}}}{ }
$$

But Eq. 12 is recognizable as the equation for the response of a single-tuned circuit with the values set forth as in Eq. 1, 2 and 3.

In other words, a single-tuned circuit whose constants are so defined will be electrically equivalent to the bifilar coupling scheme. Hence, the bifilar coil will have the same selectivity curve as the equivalent single-tuned circuit and can be treated as such in the design of stagger-tuned amplifiers.

For the special case of a 1 to 1 transformer, $L_{1}=L_{2}$, Eq. 12 becomes:

$$
\begin{equation*}
e_{2}=\frac{-i_{o}}{\frac{1}{R_{\mathrm{I}}}+\frac{1}{R_{2}}+\mathrm{j} \omega\left(C_{1}+C_{2}\right)+\frac{1}{\mathrm{j} \omega L}} \tag{13}
\end{equation*}
$$

This is the equation for a singletuned coil of inductance $L=L_{1}=L_{2}$, having the same input and output loading and capacities as the bifilar coil. In other words, a 1 to 1 bifilar coil will produce the same
selectivity curve and the same gain bandwidth factor as a single-tuned coil with the same capacitances and loadings.

If we consider once more the general case where $L_{1}$ is not equal to $L_{2}$, Eq. 12, then it can be shown that by selection of a proper ratio between $L_{1}$ and $L_{2}$, an improvement in gain-bandwidth factor over a single-tuned coil can be obtained provided the circuit input and output capacitances are unequal.

Consider the circuit in Fig. 6 where the coupling is 100 percent. Capacitance $C_{2}$ is greater than $C_{1}$ in the circuit. Let

$$
A=\frac{N_{1}}{N_{2}}=\sqrt{\frac{L_{1}}{L_{2}}}
$$

The stage gain from grid to grid is given by

$$
\begin{equation*}
\text { Gain }=\frac{g_{m} R_{\mathrm{s}}}{A} \tag{14}
\end{equation*}
$$

and the bandwidth by

$$
\begin{equation*}
\Delta f=\frac{1}{2 \pi R_{\mathrm{L}} C_{\mathrm{eq}}}=\frac{1}{2 \pi R_{1}\left(C_{\mathrm{t}}+\frac{C_{2}}{A^{2}}\right)} \tag{15}
\end{equation*}
$$

then

$$
\begin{equation*}
\operatorname{gain} \times \Delta f=\frac{g_{m}}{2 \pi A\left(C_{1}+\frac{C_{2}}{A^{2}}\right)} \tag{16}
\end{equation*}
$$

Equation 16 will be a maximum when

$$
\begin{gather*}
A\left(C_{1}+\frac{C_{2}}{A^{2}}\right) \text { is a minimum which occurs } \\
\text { when } \frac{\mathrm{d}}{\mathrm{~d} A}\left[A\left(C_{1}+\frac{C_{2}}{A^{2}}\right)\right]=0  \tag{17}\\
C_{1}-\frac{C_{2}}{A^{2}}=0  \tag{18}\\
A=\sqrt{\frac{C_{2}}{C_{1}}} \tag{19}
\end{gather*}
$$

That is, maximum gain-bandwidth product will be obtained from such a coupling scheme when the turns ratio of the transformer is set equal to the square root of the capacitance ratio. Substituting this value in Eq. 16,

$$
\begin{equation*}
\text { Max gain } \times \mathrm{BW}=\frac{g_{m}}{2 \pi\left(2 \sqrt{C_{1} C_{2}}\right)} \tag{20}
\end{equation*}
$$

Compare this with the gainbandwidth product for a single coil given by

$$
\begin{equation*}
\text { Gain } \times \mathrm{BW}=\frac{g_{m}}{2 \pi\left(C_{1}+C_{2}\right)} \tag{21}
\end{equation*}
$$

When $C_{1}=C_{2}$, the equations are equivalent and no advantage results from the bifilar coil. But if $C_{1}$ and $C_{2}$ are not equal, a bifilar coil will possess an advantage since $2 \sqrt{C_{3} C_{2}}$ will be less than $C_{1}+C_{2}$.

If $m=C_{2} / C_{1}$, the advantage of a properly designed bifilar transformer over a single coil becomes greater as this capacitance ratio is increased. In an unpublished paper, H. Goldberg has shown the following relationship to exist between $m$, the circuit capacitance ratio and the gain-bandwidth advantage over a single-tuned circuit. These results can easily be checked by Eq. 20 and 21.

|  | Gain-Bandwidth <br> Ratio |
| :---: | :---: |
| 2.0 | 1.060 |
| 2.5 | 1.110 |
| 3.0 | 1.155 |
| 4.0 | 1.250 |
| 5.0 | 1.340 |
| 15.0 | 2.005 |

The above analysis indicates that of two tubes designed to have


FIG. 4-Bifilar coil $A$ is electrical equivalent of single-tuned coil $B$


FIG. 5-Successive applications of Thevenin's theorem shows that singletuned and bifilar-coupled circuits are equivalent
the same figure of merit, the one possessing the greater inequality between input and output capacitances is the better tube, since it is possible by proper design to secure a higher gain-bandwidth product.

## Turns Ratio

In a television i-f amplifier stage, the ratio between input and output capacitance depends primarily on the tube types employed. The capacitances contributed by tube sockets, leads, and coils can be minimized by careful design, but nothing further can be done. Tubes such as the 6CB6 and 6AG5 have a higher ratio of input to output capacitance than the 6AU6, but even their use would not provide a value of $m$ greater than 2 .

An increase in gain of only six percent could be obtained by increasing the turns ratio on the bifilar coil. To wind such a transformer is obviously more difficult and more expensive. Further, as the turns ratio is made larger, it becomes increasingly more difficult to maintain a high degree of coupling between coils. For these reasons, it has generally been found more feasible to use a 1 to 1 bifilar coil for interstage coupling in commercial television receivers.

In the output stage, however, a bifilar coil with a step-up turns ratio provides a very convenient method for transforming the video diode load until the operating $Q$ of the last i-f circuit is correct. Here it is not possible to obtain the optimum value of gain-bandwidth product since the diode load resistor is determined by considerations of video response. If $R_{D}$ represents the diode load resistor, the equivalent loading across the i-f tuned circuit is approximately

$$
\begin{equation*}
R_{\mathrm{eq}}=\frac{R_{D}}{2 \eta} \tag{22}
\end{equation*}
$$

where $r_{i}$ is the efficiency of rectification ${ }^{2}$.

In the circuit of Fig. 2, the diode load resistor, as determined by video design limitations, is 4,700 ohms. A practical value of diode efficiency is 50 percent. Then, by Eq. 22, the loading on the last tuned circuit is equivalent to $4,700 \mathrm{ohms}$. The bandwidth of this circuit, if a 1 to 1 transformer or a single coil
is employed, will be given by

$$
\begin{equation*}
\Delta f=\frac{1}{2 \pi R C_{T}} \tag{23}
\end{equation*}
$$

where $C_{T}=$ total input plus output capacitance, $R=$ total equivalent shunt loading and the gain is given by $g_{\mathrm{m}} R$.

In a typical practical amplifier $C_{r}$ is equal to approximately $10 \mu \mu \mathrm{f}$. Then $\Delta f=3.4 \mathrm{mc}$.

The particular i-f system shown represents a stagger-tuned triple of over-all $3-\mathrm{db}$ bandwidth equal to 2.2 mc . Stagger-tuned design formulas indicate that the broadest individual circuit shall have a $3-\mathrm{db}$ bandwidth of 2.2 mc . The problem is not to obtain maximum gain $\times$ bandwidth, but to devise some means of narrowing the bandwidth from 3.4 mc to 2.2 mc , and then to obtain as much gain as possible with that bandwidth.
In Eq. $23 R$ and $C_{T}$ are the parameters over which we have some control. The most obvious method for narrowing the bandwidth is by adding fixed capacitance. But Eq. 23 and the gain equation show that the effect will be to narrow the bandwidth without increasing the gain.

However, it is possible to narrow the bandwith by some matching device, and increase the gain somewhat at the same time. If a bifilar coil is employed, Eq. 3 indicates that the diode loading resistance is multiplied by $\sqrt{\overline{L_{1} / L_{2}}}$. The tube plate loading is simultaneously reduced by a factor $\sqrt{L / L_{2}}$ but the plate loading resistance is so large that this effect is unimportant.

If the capacitance on the plate side of $T_{3}$ in Fig. 2 equals $8 \mu \mu \mathrm{f}$ and that on the diode side equals $2 \mu \mu \mathrm{f}$, then the equivalent capacitance for Fig. 4B according to Eq. 2 is given by $C=8 N+2 / N$ where $N=\sqrt{L_{1} / L_{2}}$ and by Eq. $31 / R=$ $1 /(4,700 N)$. Therefore

$$
\begin{aligned}
& \begin{aligned}
\Delta f & =\frac{1}{2 \pi \times 4,700 N \times\left(8 N+\frac{2}{N}\right) 10^{-12}} \\
& =2.2 \times 10^{6}
\end{aligned} \\
& N=\sqrt{1.68}=1.30
\end{aligned} \text { That is, if the primary and sec- }
$$



FIG. 6-Circuit with unequal capacitances and coupling of 100 percent

Hence, an increase in gain of 30 percent over that obtainable by adding shunt capacitance is realized through use of a bifilar coil.

The same impedance step-up, and consequent increase in gain, could be obtained by use of a suitable tapped coil or capacitance divider, but the bifilar coil is the simplest and most economical scheme.

## Impedance Transformer

There are several other instances in the design of stagger-tuned i-f amplifiers where the use of a bifilar coil as an impedance transformer is desirable. For example, when the transit time loading of the tube itself becomes almost as large as the desired loading, the bifilar coil provides a simple means of decreasing this loading. One disadvantage of appreciable tube loading is poor noise immunity. Another disadvantage is that this loading varies between tubes, and therefore cannot be relied on to provide uniformity in production.

A bifilar coil enables the tube impedance to be stepped up and the circuit loaded with a close tolerance resistor, assuring uniformity of response. As mentioned previously, a narrow bandwidth and a high i-f frequency both result in the tube loading becoming appreciable. It is even possible in some amplifier design for the tube loading to exceed the desired circuit loading unless some step-up is employed.

Another instance where the circuit loading may exceed the requirec loading dictated by design considerations is the plate loading of a triode mixer. Here again, a bifilar coil of proper turns ratio may be employed to step up the mixer plate impedance, so that a fixed loading resistor can be used to insure circuit stability.

The bifilar type of construction lends itself most readily to a close
wound assembly. Hence, the coil Q obtained is not as high as a spacewound single coil, but Q's of the value of 70 are obtained with no difficulty, and this is sufficient for most applications.

As the turns ratio between windings is increased, the difficulty of obtaining coupling approaching 100 percent is also multiplied. Also, the winding process itself becomes more difficult and expensive. All of the previous derivations were based upon the assumption that 100 percent coupling existed between the coils. If a high degree of coupling is not present, the bifilar coil is no longer equivalent to a single-tuned circuit, so that more than one resonant frequency may result. Coils having a step-up ratio as high as 1.30 to 1 have been tried with no difficulties.
A final limitation of the use of bifilar coils is the fact that they preclude the usual method of neutralization of grid to plate capacitance. Where the i-f is high, and the stage gain and grid to plate capacitance large, it may be necessary to provide neutralization of the grid-toplate capacitance to avoid the dis-symmetry of the response curve resulting from feedback. In an i-f amplifier, this neutralization is usually provided by choice of a proper value of common plate screen bypass capacitor that enables balancing a capacitance bridge which prevents the feedback of output voltage (plate to screen) to the input terminals (grid to ground). Hence, the plate voltage is prevented from coupling back to the grid and the tube grid to plate capacitance is effectively neutralized.

When a bifilar coil is employed, the r-f voltage developed across the bifilar coil primary is effectively shorted across one leg of the bridge by the bifilar secondary and the balance is no longer maintained. In other words, the screen of the tube is effectively grounded by the secondary of the transformer, so that neutralization by this method is impractical.

## References

(1) G. E. Valley, Jr. and H. Wallman, "Vacuum Tube Amplifiers" Ch 4 Mc Graw-Hill Book Co. New York 1948 Graw-Hill Book Co., New Yorks 1948 . ing," Third Edition, p 504, McGraw-Hill Book Co., New York, 1947 .

# Automatic Control of High-Vacuum Systems 

Accessory incorporating new circuits shows order of magnitude of vacuum by light panel and exact pressure by meter when used in conjunction with an ionization gage. Already in use as cyclotron beam-current indicator, the device has other remote-control potentialities

By JOHN W. CLARK* and GLENN H. WITTS<br>Research Division<br>Collins Radio Company Cedar Rapids, Iowa

The ionization gage accessory described here was developed as a fully automatic circuit for measurement and control of highvacuum systems.

After the initial adjustments are made, no attention from the operator is required. The device is particularly suitable for use with large and complex vacuum systems such as those of cyclotrons and other nuclear machines, vacuum furnaces and continuously pumped vacuum tubes. In addition to providing automatic control of all the functions directly associated with the operation of the ionization gage itself, the new circuit provides for interlocking with other circuitry.
*Now with Varian Associates, San Carlos,
Calif.

Pressure indication can be provided at a multiplicity of remote points. The output circuit is powerful enough to drive an ink-writing recorder.

## Pressure Indication

The pressure in the vacuum system is indicated on a large meter, calibrated directly in millimeters of mercury. This meter has an approximately logarithmic scale. It reads from 0 to 10 , giving nearly constant percentage reading accuracy regardless of pointer position. The appropriate multiplier is indicated by the illumination of one of a group of panel lights, engraved with markings running from $\times 10^{-7}$ to $\times 10^{-3}$. The pressure is read by multiplying the meter reading by
the multiplier indicated on the panel light. The front panel of the indicator unit shows the meter with its logarithmic scale and the panel lights with their multipliers.

This method of presentation relieves the operator of the necessity for manipulating a range-switch to obtain his readings. No confusing calculations are required to interpret the readings. The order of magnitude of the pressure is indicated by the multiplier lights. They can be observed from a distance and show immediately whether the vacuum is good or bad.

An automatic scale-changing mechanism acts to adjust the sensitivity of the indicator to keep the meter reading between 6 percent and 100 percent of full scale at all times. This mechanism simultaneously illuminates the panel light bearing the appropriate multiplier.


FIG. 1-Functional diagram of the auto. matic ionization gage circuit


FIG. 2-Automatic scale-changer circuit prevents off-scale operation of the indicating meter without attention from operator


Additional contacts are provided on the range switch for external interlock purposes.

The amplifier that actuates the indicating meter has sufficient power output to drive a number of remote indicating meters (to a total of 500 ohms, 10 ma full scale). The range indicator lights may be multipled, so that complete pressure data are available at the remote points. The ion gage may be turned on and off, or switched from indicate to bake at a remote indicator if desired. Alternatively, one may use a portion of the output of the indicator amplifier to drive an ink-writing device to make a permanent record of prevailing vacuum conditions.

The automatic scale-changing mechanism is particularly well suited for interlock functions involving the control of other apparatus at predetermined pressure ranges. Two banks of contacts are provided on the range switch for this purpose, and are wired to terminal strips at the back of the indicator unit. These switches may be used directly or with supplementary relays either to permit or prevent operation of other apparatus. This arrangement can be set up to operate within any factor of ten (or combination of factors of ten) in pressure. As an example, a vacuum furnace could be so arranged that the heaters cannot be turned on until a pressure of $10^{-4}$ is attained, and will be turned off if the pressure rises to $10^{-2}$.

An auxiliary contact is provided on the power relay. This can be
used to prevent turning other equipmert on when the ion gage is off.
Should the pressure go above $10^{-2}$, the highest value indicated by the meter, the circuit will automatically turn itself off, thus preventing damage to the ion gage as well as to any equipment controlled by the gage circuit. The circuit will also turn itself off if the apparent pressure goes below $6 \times 10^{-8}$. This provision is incorporated since it is most unlikely that the pressure will ever get that low in any system in which this circuit will be used. A complete vacuum failure, or loss of emission in the ion gage, will cause the pressure apparently to go below this value. Since this is an abnormal situation, the circuit is arranged to turn off both itself and associated apparatus.

## Operation

All the voltages and currents applied to the ion gage tube are electronically regulated. Thus, the only operating controls required are the 0 N and orf pushbuttons that control the power unit. For convenience of assembly and installation, the indicator unit with its amplifier, indicator lights and scale changer motor is mounted on the panel. The control unit carrying power supplies, regulating circuits and power relays is mounted on a separate panel. Only the control unit is turned on and off; no power switch is provided on the amplifier unit, which has its own power supply. It is turned off only during prolonged periods out of use. The sensitivity of the amplifier unit is
constant within 2 percent after a 30 -minute warmup. It is independent of line voltage changes between 105 and 120 volts. No zero setting is required of this carriertype amplifier; by the same token it is free from zero drift.

The control unit includes two meters on its front panel. They show respectively the filament current and the grid current in the ionization gage. The grid current is adjusted to a predetermined value to make the indicator readings correct. A knob is provided to adjust the grid current to a value appropriate to the gas being measured. The filament current meter is convenient for maintenance; excessive filament current indicates that the gage tube is inactive and should be replaced.

A switch on the control unit panel switches the instrument from indicate to bake conditions. The switching is accomplished by means of relays to permit control of this function from remote points as required. Indicator lights on the front panel inform the operator when the bake operation is in progress. During bake the grid current meter is removed from the circuit and power is removed from the scale-changer motor. The indicator amplifier is also removed from the circuit, so the indicator reads zero during the bake operation.

Figure 1 shows a block diagram of the instrument, as designed for use with a Western Electric D-79510 or D-79512 ionization gage tube. The reader is referred to Spangenberg ${ }^{1}$ for a discussion of


Motor, gear train and Geneva gear used in the scale-changer, showing interconnection with electronic equipment
the theory of pressure measurement with the ionization gage. The filament, grid and anode voltages for the ionization gage are supplied from the control unit. The grid and anode (ion collector) voltages are regulated by means of voltage regulator tubes. The filament voltage is controlled by a well-known circuit ${ }^{*}$ that adjusts the temperature of the filament to the value required to maintain the emission (grid) current constant at a predetermined value. The power unit thus maintains the sensitivity of the ion gage constant independent of changes in line voltage or filament emissivity.

The current to the ion gage anode is proportional to the pressure when the emission current and electrode voltages are held constant. However, the current corresponding to $10^{-5} \mathrm{~mm} \mathrm{Hg}$ is only 0.01 microampere. A very sensitive d-c amplifier is required to produce such a pressure indication on a rugged meter. This amplifier with its power supply is contained in the indicator unit. It is a carrier-type using a vibrating reed to produce 60 -cycle a-c proportional to the d-c input. This alternating current is amplified by a conventional fourstage amplifier, the output of which is rectified by a second vibrator operated synchronously with the first. The output circuit of this amplifier is capable of handling 10 ma into a 500 -ohm load, and thus can operate any number of indicating or recording meters un to a
total of 500 ohms. Each, of course, must have 10 -ma full-scale sensitivity.

The automatic scale-changing is accomplished by a motor-driven rotary switch. The photograph shows the mechanism. A small split-phase reversible motor drives a Geneva motion through an appropriate gear train. The Geneva wheel is designed to advance the rotary switch one point for a full turn of the driving wheel. The switch itself is standard. One wafer, $S_{2 s}$, is used to control the range indicator lights, while the two others, $S_{3}$ and $S_{4}$, are wired to terminals at the back of the units where they can be used as desired for interlock purposes. The voltage divider on the amplifier input is switched to the appropriate setting by $S_{\text {, }}$. Wafer $S_{: B}$ is wired in series with the off pushbuttons. Its function is to remove power from the unit when the pressure rises above $10^{-2}$ or falls below $6 \times 10^{-8}$.

The schematic diagram, Fig. 2, shows the circuit that controls the scale-changing motor. The output voltage of the amplifior is applied to the two grids of a 12AU7 double triode. The scale-changing relays $K_{3}$ and $K_{\text {are }}$ in the two plate circuits of this tube. The two operating points are independently adjusted by cathode resistors $R_{83}$ and $R_{68}$. Normally $K_{3}$ is operated, $K_{4}$ is not operated and the motor $B_{1}$ is stationary. When the output meter reads full scale, $K_{\text {, }}$ operates
and the motor runs in the direction to increase the attenuation of the input network. The motor continues to run in this direction until an on-scale reading is obtained.

When the indication on the output meter goes below 0.6 (this is 6 percent of full scale), $K_{3}$ releases and causes the motor to run in the opposite direction to increase sensitivity. The motor continues to run in this direction until the reading becomes larger than 0.6.

This simple circuit makes certain that the meter never goes off-scale and never goes below 6 percent of full scale. The meter scale is approximately logarithmic above 10 percent of full scale, giving approximately constant fractional reading accuracy at all parts of the scale.

## Other Applications

The indicator unit described above is essentially a microammeter with one millivolt drop and a maximum full-scale sensitivity of 0.1 microampere. In the indicator unit this microammeter has been calibrated in millimeters of mercury for operator convenience. This same amplifier and scale-changing mechanism, calibrated in microamperes, will measure any direct current between 0.01 microampere and 1 milliampere without any setting of range switches by the operator.

The other features-indication at remote points and interlocking with other circuits, are retained when the instrument is used as a microammeter. These features have proved valuable in connection with cyclotron operation, where this instrument has been used as a beamcurrent indicator.

The writers wish gratefully to acknowledge the support that this project received from W. W. Salisbury, Director of Research. Collins Radio Company, without which it could not have been completed. Also, S. G. McNees contributed considerably to the design and was active in supervising the construction of the first models.

## References

[^3]
# Frequency Division with Phase-Shift Oscillators 

Divisions as high as seven are easily obtained with standard component parts requiring only initial adjustment. Practical circuits described are customarily employed to obtain accurate power frequencies. They find additional use in the lower-frequency stages of frequency standards calibrated at r-f


FIG. 1-Basic divider circuit illustrates importance of couplings

## By CHARLES R. SCHMIDT <br> Analysis Instrument Co. East Paterson, N. J.

THE resistance - capacitance phase-shift oscillator has desirable charactertistics as a frequency divider. When suitably modified, it is possible to obtain relatively large division ratios that are unaffected by tube replacement, component drift due to aging or temperature. The single triode used per division gives it an advantage over conventional multivibrator types. In operating latitude it approaches that of the inductancecapacitance oscillator. ${ }^{1}$ It is advantageous in that the transformers are replaced by resistance-capacitance networks as frequency-determining elements, with a consequent reduction in cost and weight.

Dividers operating from both crystal and tuning-fork oscillator standards have been constructed to give dependable 60-cycle output for motor drive applications. Divisions by five, six and seven were used in these designs. Scale-of-ten divisions in a single stage have also been
used. They require more care in initial alignment because of the restricted locking range.

The resistance-capacitance phaseshift oscillator is particularly applicable in divider chains where the output frequency is below 10 cycles. In this frequency range, other dividing methods are undependable or require components of large size.

The basic phase-shift oscillator used for frequency division is shown in Fig. 1. The circuit is the standard four-section, series-capacitance shunt-resistance type and was favored over the three-section type because less gain is required for oscillation. It is desirable at higher frequencies where the tube output capacitance decreases the stage gain. Departures from the standard oscillator are found in the use of capacitors $C_{1}$ and $C_{2}$ and in the operating point of the tube.

Capacitor $C_{1}$ couples the control frequency, which is some multiple of the output frequency, into the frequency-determining $n$ etwork. This capacitor serves the additional function of dropping the control voltage to a suitable value for proper operation. The magnitude of $C_{1}$ is such that it only slightly affects the frequency of oscillation of either stage.

Output is taken from the plate of the tube through an appropriate coupling capacitor $C_{2}$, either to the grid of the following divider stage, or into the output load resistance. Each stage oscillates with an amplitude of about 60 volts at the de-sign-center supply voltage of 300 volts. The operating point of the tube determined by the plate and cathode resistors is such that strong
harmonics of the oscillating frequency are produced. The controlfrequency vo'tage combines with the harmonic that is nearest in frequency, causing the frequency of the oscillator to change to an exact control frequency submultiple.

A 100-cycle oscillator can be used as a divider of frequencies of 500 , 600 and 700 cycles without modification, because fifth, sixth and seventh harmonics of the fundamental frequency are generated. When locking of the oscillator occurs, the control frequency de-


Two of the frequency dividers described. The upper one is based on 1.800 cycles and the the lower upon 90.72 kc
termines its frequency and the output wave shows a fundamental plus a pronounced harmonic at the control frequency. As the control frequency is varied the phase of this harmonic varies with respect to the fundamental wave. If the control frequency is changed sufficiently the divider will unlock. This effect is noticed in the ouput wave by the harmonic's continually changing phase with respect to the fundamental.

In Fig. 2 the locking range of a 100 -cycle divider is shown as a function both of controlling frequency and magnitude of the capacitance $C_{1}$. In obtaining this data, the controlling frequency voltage was kept constant at 60 volts and applied to $C_{1}$ through a 100,000 -ohm resistor to simulate the driving impedance of the preceding divider stage. The locking range is seen to be generally better for control frequencies that are odd multiples of the oscillator frequency than it is for those that are even multiples. When $C_{1}$ is small little of the control frequency energy is introduced into the oscillator and hence the locking range for a given division is restricted. When $C_{1}$ is made too large so much control frequency is introduced that the divider acts as an amplifier with the control frequency as output.

The locking range curves indicate that for the 100 -cycle output divider a $250-\mu \mu \mathrm{f}$ coupling capacitor from the previous stage will give the widest locking range for divisions by five and six, but a somewhat larger capacitor is required for divisions by seven for optimum operation. The locking range as a function of the phase-shift network resistance is shown in Fig. 3 for a 100 -cycle oscillator. This curve was taken for


FIG. 4-Synchronous motor-control giving frequency division of 30
a division by six and is indicative of the results obtained for other divisions.

In designing a divider stage, the required oscillating frequency of the stage is determined, and the standard formula for the frequency of a four-section phase-shift oscillator is used," making the $R$ of the formula $200,000 \mathrm{ohms}$. In this way the required $C$ is obtained. If the value of $C$ determined in this way is not close to a standard value, a different $R$ above 200,000 ohms can be chosen. Figure 3 shows that the operating range will only be slightly affected by this change of resistance.

It is usually required, when using standard-tolerance components in the phase-shift network that the frequency be adjusted by padding the first resistance in the network (shown as $R_{1}$ in the Fig. 1) to a suitable value. In the models constructed, the phase-shift resistors
and capacitors of a stage are arranged in separate shield cans, indicated by the dotted lines. In practice, the first $150,000-\mathrm{ohm}$ resistor is brought out to a terminal. The padding resistor $R_{1}$ completes the connection to ground.

Using the optimum values as determined by the foregoing, the operation of the divider is independent of supply voltage variations over a wide range. By setting the center of the locking range at the control frequency a supply-voltage variation of from 200 to 400 volts will not cause the divider to unlock. This stability results because the phaseshift oscillator's frequency is only slightly affected by supply voltage. The control voltage required to obtain locking is not critical.

The diagram of Fig. 4 shows a divider designed to give 60 -cycle output controlled by an 1,800 -cycle tuning-fork frequency standard. The first stage divides by six (300-


FIG. 2-Shaded areas indicate the locking range as a function of input coupling and frequency. Supply voltage is 300 v , frequency 100 cycles and resistance $R$ is 200,000 ohms


FIG. 3-Locking range in percent as a function of phase-shift resistance in thousands of ohms. The oscillator frequency used is 100 cycles and division ratio is six-to-one


FIG. 5-Divider system using a 90.72 -kc crystal gives highly accurate 60 -cycle output
cycle oscillator) and the second stage by five ( 60 -cycle oscillator). For a divider of this type, employing two divisions of a low order, standard-tolerance components of the values shown will produce satisfactory lock-in between the oscillators.

In order to insure stable operation despite variations in the oscillator frequencies with time, the frequency of each stage should be adjusted for the center of the control range. In practice, when the incoming 1,800 -cycle frequency is applied to the vertical plates and the output from the plate of the first stage to the horizontal plates of an oscilloscope, a six-loop Lissajous figure is observed. By replacing $R_{1}$ with a resistance box its value can be adjusted so that the divider will unlock for a high value of resistance and also for a low value. A value is then chosen to give the midfrequency between these two drop-out points. By transferring the oscilloscope connections to the next stage, the procedure can be repeated to place the divider in final adjustment.

| Range | Percent | Mid- <br> frequency |
| :---: | :---: | :---: |
| $1,645-1,895$ | 14.1 | 1,770 |
| $1,671-1,947$ | 15.2 | 1,809 |
| $1,669-1,931$ | 14.6 | 1,800 |
| $1,668-1,932$ | 14.6 | 1,800 |
| $1,656-1,932$ | 15.3 | 1,794 |
| $1,694-1,945$ | 13.7 | 1,819 |

This divider gave a control range of 15 percent when operated from a 25 -volt control-frequency input. The
tabulation shows the variation in locking range of the overall divider for six random-choice 12AX7 tubes.

The results indicate that for each tube there is ample latitude for frequency drift of the oscillators around the 1,800 -cycle midfrequency.

A frequency standard with 60cycle output controlled from a 90.72 kc crystal is shown in Fig. 5. Terminal connections, only, to the phase - shift circuit-blocks are shown. The R-C values, division ratios and oscillating frequencies of the dividers are indicated. There is one notable exception in this design. An inductive plate load is used in place of the usual resistive load in the first divider stage. The fundamental frequency of this oscillation is 12,960 cycles with a 90.72 -kilocycle seventh harmonic.

The usual plate-load resistance of 300,000 ohms together with the plate-cathode capacitance of the tube reduces this harmonic to a level where satisfactory locking cannot be obtained. A 100 -millihenry powdered-iron-core inductance provides the necessary high plate impedance together with sufficient peaking effect to insure the high-frequency response of the stage. The use of the inductive plate load requires that the operating point be readjusted. It was done by using a resistance-capacitance plate-decoupling filter and eliminating the cathode resistor. The alignment procedure for this divider is the same as for the pre-
vious one. In operation the overall locking range was 12 percent which is determined by the 7 -to- 1 stage. The voltage limits for satisfactory operation were 200 to 400 volts.

Experience with R-C and L-C oscillators of various types as frequency dividers indicates the following general requirements: a frequency-determining network of appreciable $Q$; a distortion element that produces harmonics; and the combining of the control frequency with the appropriate harmonic and the injection of the resultant into the oscillating circuit. The $Q$ will determine the locking range; the lower the $\mathbf{Q}$ the broader will be that range. Using high-Q oscillating circuits and good distortion elements, stable divisions by as high as 300 -to- 1 are possible in a single stage. ${ }^{8}$

In the divider described in this article, the phase-shift network provides the low-Q frequency-determining element for a broad locking range. The distortion is produced in the tube itself. Control frequency and oscillator harmonic are combined at the grid of the stage. In this way the phase-shift oscillator meets the requirements in an economical way, using a minimum of tubes and components.

## References

(1) E. Norrman, The Inductance-Capacitance Oscillator as a Frequency Divider, Proc. IRE 34, Oct. 1946.
(2) E. L. Ginzton and L. M. Hollingsworth, Phase-Shift Oscillators Proc wort, Ph, Feb. 1941 .
(3) M. Silver and A. Shadowitz, A High Ratio Multivibrator Divider, Federal Telecommunication Laboratories, Inc., Technical Memorandum No. 261, Eeb. 1947.

# Efficiency of MISMATCHED LINES 

Nomographs relate power transfer ratio and efficiency of extremely short transmission line to vswr and attenuation, permitting quick determination of how much power actually reaches the transmitting antenna or other load

ENERGY TRANSFER by short transmission lines is often considered to be very close to 100 percent, on the assumption that the transmission line approximates an ideal non-dissipative line and the voltage standingwave ratio (vswr) approaches 1 .

By H. M. SCHLICKE<br>port Washington, New York

However, this idealization may lead to unanticipated marked differences, even for small deviations from the presumed conditions. If, for example, the load
causes a vswr of 1.5 on a line that has an attenuation of only 0.5 db and if the input impedance of the line is matched to the output impedance of the generator, the efficiency is off 11.4 percent. If the generator output impedance were equalized to the (continued on page 116)


FIG. 1-Combination two-range nomograph for finding third value when any two are known. Use all three scales marked $A$ together for lower ranges of attenuation $a$ and vswr: use scales marked $B$ together similarly for higher ranges
VSWR
$a_{l}$ in db


FIG. 2-Nomograph gives directly (center scale) the gain that can be obtained by matching the generator to the actual input impedance of the line, whereas nomograph of Fig. 1 is for matching generator to characteristic im. pedance of line


## Efficiency of Mismatched Lines (Continued from page 114)

characteristic impedance of the line, the efficiency of the line would drop to 85.9 percent. For measurement purposes, deviations of that magnitude are hardly negligible.

This situation deteriorates rapidly for increasing attenuation $a_{i}$ of the transmission line and for higher vswr. Broadband loads fed over a certain length of transmission line may obtain power only in the order of magnitude of 10 to 50 percent. Electrically short transmitting antennas fed by relatively long transmission lines without matching transformers between antenna and cable may be supplied with far less than 1 percent of the power coupled in the line by the transmitter.

Except for very crude approximations, the efficiency of transmission lines should therefore be calculated and accounted for. The purpose of the accompanying nomographs is to simplify these calculations.

## Definitions

The power transfer factor $\eta^{*}$ holds if the generator output impedance equals the characteristic impedance of the line. With this premise, $\eta^{*}$ is defined as the ratio of the power supplied to a mismatched load to the maximum power the power source can deliver to a matched load including transmission losses.

The actual efficiency $\eta$ of the transmission line is the ratio of the load power to the power supplied to the input terminals of the line, and is independent of generator matching. The line input is identical to maximum generator power capacity, if generator output impedance and line input impedance are matched.

The factor $\eta / \eta^{*}$ indicates the gain obtainable by matching the generator to the actual input impedance of the line, instead of matching to the characteristic impedance.

The vswr, unilaterally denoting the load, is measured at the load.

The attenuation $a_{1}$ is the necessary and sufficient criterion for the transmission line.
It is assumed that the phase angle of the characteristic impedance of the line is negligible, since this condition holds for practically all transmission lines in use for power transfer.

The representation of the antenna in the cotanh diagram, or equivalently in a Smith chart, means that the antenna, or more generally the load, is substituted for by a hypothetical open-circuited transmission line possessing a certain attenuation $\alpha_{a}$, so that vswr $=\operatorname{cotanh} \alpha_{a}$. In this and the following equations the attenuation is measured in nepers.

In terms of $a_{i}$ and $a_{a}$, power transfer factor $\eta^{*}$ and efficiency $\eta$ as defined above are expressible as follows:

$$
\begin{gather*}
\eta^{*}=\frac{2 \sinh 2 a_{a}}{\epsilon^{2 a_{a}}+2 a_{a}}  \tag{1}\\
\eta=\frac{\sinh 22 a_{a}}{\sinh \left(2 a_{l}+2 a_{a}\right)}  \tag{2}\\
\frac{\eta}{\eta^{*}}=\frac{1}{1-\epsilon^{-}\left({ }^{4 a_{a}}+4 a_{l}\right)} \tag{3}
\end{gather*}
$$

## Use of Nomographs

Figure 1 serves to read any one of the three determinants $\eta^{*}, a_{i}$ and vswr, when two of them are known. It should be noted that only the scales with the same letter (A or B) are commensurable.

Figure 2 permits the finding of the multifunctional relation between $\eta$ and $\eta^{*}$.

Though $\eta$ can be determined by multiplying $\eta^{*}$ (Fig. 1) and $\eta / \eta^{*}$ (Fig. 2), Fig. 3 will often be more convenient. The twoletter designations of the center scales indicate the coordinated outer scales.

## Examples

A transmitter with a variable output transformer and a capacity of 100 watts is available. The vswr at the load is 5 . What maximum attenuation $a_{t}$ of the line is tolerable, if 60 watts are re-


FIG. 3-Convenient four-range nomograph for determining efficiency of transmission line directly when attenuation and vswr are known. Use scales only in combinations indicated
quired in the load? Answer: $n$ $=60$ percent, hence from Fig. 3 $a_{\text {max }}=1.15 \mathrm{db}$.

A transmission line of 0.5 db attenuation feeds an antenna represented by vswr $=2$. What is the antenna power relative to the maximum transmitter power, if (1) the transmitter output impedance equals the characteristic impedance of the transmission line, and if (2) line input and generator output are matched impedancewise? Answer: (1) from Fig. $1 \eta^{*}=79.3$ percent; (2) from Fig. 2, $\eta / \eta^{*}$ $=1.1$ and $\eta=87.4$ percent. Note that $\eta$ comes very close to $\eta_{\text {max }}$ $=89.2$ percent, the latter being read from Fig. 1 or Fig. 3 for vswr $=1$.

Under certain conditions the efficiency and power transfer factor seem to be considerably less than the values obtained from the nomographs. This is due to neglecting losses in the transmitter tuning and tank circuits; these losses must be calculated independently as they have no relation to the efficiency of the line itself.


## MALLORY <br> PLATINUM CONTACTS

Platinum, the noble metal, is ideal for electrical contacts where low resistance must be maintained for long periods of time. However, pure platinum lacks hardness. Mallory platinum alloys overcome this by the use of such hardening agents as iridium, ruthenium or palladium. Mallory is fully qualified to recommend the best contact material for your design. Write today.

Hundreds of manufacturers are profiting from continuing contact development work at Mallory... and each new achievement means new savings or improved performance for Mallory customers.
A large producer of thermostats was on the receiving end of a recent Mallory program for improvement in precious metal pointing operations. Investigation proved the value of modifying certain equipment . . . and Mallory made the change. This paid off in savings to the customer to the tune of $\$ 20,000$ a year!
That's results beyond specifications!
Mallory contact know-how is at your disposal. What Mallory has done for others can be done for you.

## Electrical Contacts and Contact Assemblies

MALLORY

## SERVING INDUSTRY WITH

Capacitors
Controls Rectifiers Special Switches Supplies Resistance Welding Materials

## TUBES AT WORK

## Including INDUSTRIAL CONTROL

Edited by VIN ZELUFF

Electrolytic Capacitor Test Set ..... 118
The Front Cover ..... 120
Receiver Circuits for Color Television ..... 120
Circuits of Phonevision System ..... 156
Time Scale for Watches ..... 170

# Electrolytic Capacitor Test Set 

By Ricardo Muniz<br>Division Manager<br>Television Receiver Manufacturing Division Allan B. Dumont Laboratories, Inc<br>East Paterson, N.J

LIfe test runs of electrolytic capacitors with specified values of d-c polarizing voltage and alternating ripple current can be made easily with the setup of Fig. 1, which permits testing up to six different batches independently. Each batch can have its own voltages, and failure of a unit in one batch does not affect the validity of tests for the other five groups.

Interaction between ripple current and polarizing voltage is prevented by using the basic circuit of Fig. 2. An overload relay disconnects the capacitor group safely when one fails during the usual 500 -hour life test. The basic circuit was multiplied by six as in Fig. 1 to check up to six groups of six electrolytics at a time, enough to completely fill the heat oven used.

Ripple current is set at the desired value for a group by switching paper capacitors in or out. Unused capacitors in one group can be paralleled with those in another group calling for larger ripple current, by appropriately setting the master and group transfer switches. Polarizing voltages are changed with patch cords, which also permit applying only d-c polarizing voltages to other elements in the same electrolytic unit. Neon lights are connected across each fused circuit to indicate open fuses, and other pilot lights indicate the circuits that are in operation.

A reset switch, normally closed, permits releasing the overload relay to check if a short is temporary. A standard d-c power supply using five VR-105 regulator tubes in series provides the d-c polarizing voltages. The overload relay is adjusted to operate if direct current increases above the allowable leak-


FIG. 2-Basic circuit used for life-testing electrolytics
age current value of the electrolytics under test. Extra contacts are provided on the relays to discharge both the ripple current-controlling capacitors and the electrolytics under test.

Whereas previously it took about


FIG. I-Test set for making life test runs of up to six groups of electrolytic capacitors, each at different values of a-c ripple current and d-c polarizing voltage that are set up on a jack panel. Temperature oven is used for electrolytic capacitors under test. Paper capacitor banks at top provide various ripple currents needed


Using Kester Flux-Core Solders, Plastic-Rosin and "Resin-Five" Core Solders, will keep your solderers satisfied. Kester flows better - handles easier-faster to use. Kester Solders are made only from newly mined grade A tin and virgin lead.
free technical manual_Send for your copy of Solder and Soldering Technique.

10 hours to set up a test and the entire test was invalidated when even one unit failed, setup time for 36 units now takes only about an hour. Operation is automatic, releasing for other duties the engineer who formerly had to watch constantly to prevent overloads in the power supplies due to shorts. Only an occasional glance at the pilot lamps is now needed.

## Receiver Circuits for Color Television

Receivers demonstrated recently to the FCC in Washington by RCA engineers employed two types of picture tubes; one contained a single electron gun and the other is a three-gun affair.

Both types have the same kind of direct-view color screen. It comprises an orderly array of small, closely spaced, aluminized phosphor dots arranged in triangular groups, each group consisting of a greenemitting dot, a red-emitting dot and a blue-emitting dot. In the laboratory sample tubes used in the

## THE FRONT COVER

Electron heart of the new RCA 5831 is an array of 48 independent unit electron-optical systems arranged cylindrically in the tube. This construction, in effect, concentrates 48 triodes in relatively small space.

Each of the electron-optical systems consists of a filament in a slot in the beam-forming cylinder, grid rods and the copper anode. Electrons leaving the emitting surface of the filament are beamed between a pair of grid rods to the anode by the focusing action of the beam-
 forming cylinder.

Individual filament and grid elements of the unit triodes in the array are tungsten rods 8 inches long, supported at both ends by means of knife-edge V-notch arrangements. A pantagraphic mounting device has flexible spring-loaded fingers to which the filament rods are hooked. This makes each filament strand and grid rod mechanically independent, and allows vertical movement without disturbing the precise alignments and spacings essential to effective electron optics.

The accompanying photograph shows the anode-envelope assembly being lowered into position around the filament rods.


Circuit arrangements for the two types of RCA color picture tubes
demonstrations there are 351,000 such dots, 117,000 of each color.
In the three-gun tri-color kinescope, an apertured mask is interposed between the three guns and the dot-phosphor screen in such a manner that the electrons from any one gun can strike only a singlecolor phosphor no matter which part of the raster is being scanned. The mask is a sheet of metal spaced from the phosphor screen and containing 117,000 holes, or one hole for each of the tri-color-dot groups. This hole is so registered with its associated dot group that the difference in the angle of approach of the three oncoming beams determines the color. Three color signals applied to the three guns produce independent pictures in the three primary colors and the pictures appear to the eye to be superimposed because of the close spacing of the small phosphor dots.

In so far as the color aspects are concerned, this three-gun tri-color kinescope may be utilized in a re-
(Continued on page 150 )


## Early American Gunsmith . . .

Arming the soldiers of "young "America was a formidable task for the new, untried nation. Each musket, the weapon of the day, was laboriously macie by hand... and repaired by hand

It was Eli Whitney, Massachusetts-born Yale graduate, who showed the way to improvement. In 1798, he undertook to supply the U.S. Army with the unheard of quantity of " 10,000 stand of arms" to be delivered within two years-a commission beyond the imagination of the most skilled mechanists of the day. To do this Whitney developed the concept of interchangeable gun parts wherein "the several parts were as readily adapted to each
other as if each had been made for his respective fellow." History shows that Eli Whitney succeeded and from this humble, little-remembered beginning the new era of mass production was underway.

In the electronic, radio, and electrical fields alone, Sprague has done much to arm modern America. Of some 10,000 different component design variations produced each year, many are produced by the millions. But most important, like Whitney's interchangeable weapons, each component of a given type maintains its particular characteristics to an outstandingly high degree of uniformity.

SUBMINIATURE PAPER CAPACITORS, hermetically sealed in metal cases, are a Sprague product developed especially to meet the rigors of military service. A direct result of new techniques, materials, and processes

# THE ELECTRON ART 

Edited by JAMES D. FAHNESTOCK

Permanent-Magnet Electron Microscope ..... 122
Omegatron-A Miniature Cyclotron ..... 122
Bandspreading Resistance-Tuned Oscillators ..... 124
R-F Field Mass Spectrometer ..... 176
Thermal Detector Response To Triangular Pulses ..... 182
Survey of New Techniques ..... 190

## Permanent-Magnet Electron Microscope

The cost of the electron microscope has recently been radically reduced by the development of a permanentmagnet lens system. Heretofore, coils containing thousands of turns of wire, numerous cables and connectors, and a three-tube control circuit including several heavy and costly transformers were required for the electromagnetic electron microscope. Furthermore, the stability of the permanent-magnet lens is far superior to that of its predecessor.

The accompanying photographs illustrate several features of a packaged election microscope using the permanent-magnet type lens system. It stands 30 inches high, weighs 50 pounds, and is capable of a resolving power of 100 Angstrom units with an accelerating potential or 50,000 volts. The image seen directly on the microscope viewing screen represents a magnification of $1,500,3,000$ or 6,000 , depending on the lenses em-


Specimens can be placed in the perma-nent-magnet electron microscope without disturbing the vacuum
ployed. When used in conjunction with photographic enlargement, magnifications up to 50,000 diameters can be obtained.

The knobs extending radially just below the high-voltage gun chamber facilitate positioning of the specimen under observation. Provisions are made for exposing photographic negatives directly. Focusing is controlled by varying


Provisions are made for photographing submicroscopic particles
the accelerator potential, since object distance and magnetic field strength are fixed in this type. Specimens are introduced into the electron beam by a special lock arrangement which preserves the vacuum.

The pumping system, which consists of two pumps in series, can evacuate the column in less than a half hour from a cold start.

The permanent magnet microscope was designed by Dr. J. Reisner, advance development engineer in the Scientific Instruments Engineering department of the Radio Corporation of America.

## Omegatron- <br> A Miniature Cyclotron

Operating on the same fundamental principle as the cyclotron, the recently developed omegatron has aided National Bureau of Standards scientists in making high-precision measurements of


Cutaway drawing of the heart of the omegatron. Difference between applied r-f field and particle cyclotron frequency is inversely proportional to particle rotations before collision with central collector
such electrical quantities as the numerical values of the faraday and the nuclear magneton. The omegatron, because of its high sensitivity, is expected to be helpful in many other branches of the field of measurements, such as gas and vapor analysis, and for the measurement of nuclear packing fractions (the excess of actual mass value over mass number for any isotope) which are of vital importance in atomic physics.

The heart of the omegatron is little larger than a package of cigarettes. The present versions employ a rather bulky electromagnet, but a much smaller permanent magnet would serve as well and make the whole assembly desk-top size.

## Operation

The functioning of the omegatron can be explained in terms of a simple physical law. If a charged particle is moving in a uniform magnetic field it will trace out a circular path. The particle's angular velocity $\omega_{c}$ about the center of the circular path is given by the socalled cyclotron equation $\omega_{0}=$ $e B / M$, where $e / M$ is the charge-tomass ratio of the particle, and $B$ is the magnetic flux density.

In the cyclotron this property

#  <br> SIGNAL GENERATOR TYPE 202-D 

Frequency Range 175-250 mc

The Type 202-D Signal Generator, developed to meet the specialized requirements of engineers working with telemetering receivers and other associated equipment, will be welcomed by many who have long needed a precise and reliable instrument for rapidly evaluating overall system performance.

## SPECIFICATIONS:

RF RANGE: 175-250 megacycles in one range, accurafe to $\pm 0.5 \%$. Main frequency dial also calibrated in 24 equal divisions for use with vernier frequency dial.
VERNIER FREQUENCY DIAL: This dial is divided info approximately 100 equal scale divisions and is coupled to the main frequency dial by a 24:1 gear train. The approximate frequency change per vernier division is 35 kc .
FREQUENCY MODULATION (DEVIATION): The FM deviation is confinuously variable from zero to 240 kc . The modulation meter is calibrated in three FM ranges (1) 0-24 kc., (2) 0-80 kc., and (3) 0-240 kc. deviation.
AMPLITUDE MODULATION: Ufilizing the internal audio oscillator amplitude modulation may be obtained over the range of $0-50 \%$ with meter calibration points of $30 \%$ and $50 \%$. By means of an external audio oscillator the RF carrier may be amplitude modulated to substantially $100 \%$. A front panel jack is provided which permits direct connection of an external modulating voltage source to the final stage for pulse and square wave modulation. Under these conditions the rise time of the modulated carrier is less than 0.25 microseconds and the decay time less than 0.8 microseconds.
MODULATION CONTROLS: Separate potentiometers are provided for confinuous control of FM and AM levels.
MODULATING OSCILLATOR: The internal AF oscillator may be switched to provide either frequency or amplitude modulation.


If may alsc be switched off. Eight fixed frequencies between 50 cycles cnd 15 kilocycles are avoilatle, any one of which may be selected by a rolary lype switheh.
RF OUTPUT VOLTAGE: The RF output voltage is continuously variable aver a range from 0.1 microvalf to 0.2 volts af the ferminals of the output cable. The impedance of the RF output jack, looking ilato the instrument, is 53 ohms resistive.
DISTORTION: FM: The overall FM distortion at 75 kc . is less than $2 \%$ and at 240 kc. less than $10 \%$.
AM: The distartion preseni at the RF output for $30 \%$ amplitude modulation is less than $3 \%$ and for $50 \%$ AM less than 6.5 . At $100 \%$ the disfortion is $12 \%$ o $15 \%$ depending upon the modula\#ing frequency.
SPURIOUS RF OUTPUT: All spurious RF output voltages are at least 25 db . below the desired fundamental. Tota RMS spurious FM from the $\mathbf{6 0}$ cycles power source is down more than 50 db ., with 75 kc . detiation as a reference level.

EXTERNAL MODJLATION REQUIREMENTS:
Frequency Hodulation: The deviction sensitivity is 50 kc . per volt. For exvernal $F M$ the input impedance is 1500 ohms.
Amplitude Modulation: Approximately 45 volts are required for 50\% modulation and 100 volts for $100 \%$ modulation. For external AM the input impedance is 7500 ohms.
Audio Voltage for External Use: There is available at the FM externaf oseitlator binding posts mbout 5 volts a.c. maximum and at the $A M$ external oscillator binding posts, 50 volts maximum
DIMENSIONS AND WEIGHT: Outside cabinet dimensions: $17^{\prime \prime}$ high, $1 \S \frac{1}{2}{ }^{\prime \prime}$ wide, $11 \frac{1}{2}{ }^{\prime \prime}$ deep. Weight: 35 pounds.
PRICE AND DEIIIERY INFORMATION FLIRN\#SHED UPON REQUEST

DESIGNERS AMD MANUFACTURERS OF THE O METER - QX CHECKER FREQUENCY MODULATED SIGNAL GENERATOR - BEAT FREQUENCY GENERATON AND OTHER DIRECT REACING INSTRUMENTS


Close-up view of omegatron. In operation glass tube is lowered between jaws of electromagnet
makes it possible to accelerate charged particles to extremely high velocities. In the omegatron, however, it is used to discriminate between particles of different masses; the heavier particles will have a lower angular velocity. Measurement of $\omega_{c}$ with the aid of accurate frequency standards and measurement of $B$ by means of nuclear resonance methods provide an absolute determination of e/ $M$ in terms of the magnetic field strength and the cyclotron frequency alone.

In addition to the constant and uniform magnetic field, the omegatron employs a radio-frequency electric field applied at right angles to the magnetic field. When the angular frequency of the electric field is $\omega$, a charged particle will revolve in a plane perpendicular to the magnetic field at an angular velocity of $\frac{1}{2}\left(\omega+\omega_{c}\right)$. If the radio frequency differs from the cyclotron frequency, the radius of the ion path will periodically increase and decrease. The radius of the path traced out by the ion is then

$$
R=\frac{K}{\omega-\omega_{c}} \sin \frac{\omega-\omega_{c}}{2} t
$$

where $K$ is a constant that depends in part on the strength of the r-f field and $t$ is time. When the two frequencies are close together, the maximum radius of the path will be larger than when they are more widely separated, and when the frequencies are equal (in resonance) the radius of the path will increase steadily and the ion will spiral out-
ward from the center. A collector placed at a fixed distance from the center of rotation of the ions will give maximum ion current at resonance.

Resonance in the omegatron is quite sharp and can be determined very precisely. The degree of sharpness of this resonance condition is described as the resolution and is defined as the width of the resonance peak at its base (expressed in cycles per second) divided by the center frequency of the peak. Resolution is proportional to the number of revolutions an ion makes before striking the collector. For greatest resolution, the ions must be held in the omegatron as long as possible. A trapping field produced by a positive potential applied to a set of guard rings retards axial loss of the ions. With the aid of this trapping field, ions are held for more than a millisecond so that they have time to complete thousands of revolutions before being collected.

Resolution increases as the r-f voltage is lowered, but the accompanying decrease in ion current at


Omegatron is shown as part of a mass analyzer
the collector places a limit on the attainable resolution. The omegatron has yielded resolutions as high as $1 / 14,000$ at unit atomic mass, with strong indications of still higher resolutions to come. The extreme sensitiveness of the omegatron permits operation with very small samples. A wide range of operating pressures is possible; excellent resonance peaks have been obtained at pressures of the order of $10^{-7}$ millimeters of mercury.

## Bandspreading Resistance-Tuned Oscillators

By Seymour Barkoff<br>Senior Enyineer<br>Emerson Radio and Phonograph Corp. New York, N. Y.

ONE COMMON characteristic of most audio signal generators is the crowding of the calibration markings on the frequency dial toward the upper end of the audio frequency spectrum. Such crowding usually causes difficulty in interpolating frequency readings accurately between dial markings. Occasionally, the need arises for greater accuracy and precision in frequency readings.

It is the purpose of this article to describe a simple means of adding bandspread to a particular laboratory oscillator. Sufficient design information will be included to make the method applicable to other oscillators of the same gen-
eral type, and for any desired frequency ranges.

## Theory

The audio oscillator selected for the job was the Hewlett-Packard Model 200B, which consists of a two-tube audio oscillator and a twotube feedback amplifier. Only the oscillator circuit is dealt with here, since the amplifier circuits are unaffected by the bandspread revision.

The basic circuit of the two-tube oscillator is shown in Fig. 1. The circuit resembles that of a multivibrator, except for the method of feeding grid and cathode of the 6J7 stage. Oscillations take place at a
(Continued on p 172)


2-WAY RADIO'S Greal'eSl VALUE!! TODAY and TOMORROW

## with exclusive SENSICON RECEIVER - NOW AVAILABLE in the Dispatcher.

## PERMANENT VALUE of ADVANCED DESIGN

The Sensicon Circuit with the Permakay Wave Filter, Statomic Oscillator, Differential Squelch, Capacitance Discriminator, and Thermally Balanced Crystal Oven, all exclusive Motorola developments, has advanced the art to permit practicable adjacent channeloperation. Further, it provides the only uncompromised design capable of accepting full modulation on the desired channel, and adaptable to "splitchannel" frequency assignments. With "Instantaneous Deviation Control" of the transmitter carrier plus the broad nose, steep skirt characteristic of the Sensicon Receiver, you have an advanced design combination which will give superior performance now and tomorrow!

## RELIABILITY

Put it in and forget about it! It breezes along with peak performance always. With fixed-tuned, sealed circuits, precision compensated elements, quality components and workmanship-the day of radio tinkering is over! Remember! the Sensicon System is coasting while ordinary systems using fewer tubes are taxed to the false-economy limit!

## UNIVERSAL PACKAGING

Built for quick and easy installation-with full accessibility, bere is the solution to any mounting problem in any type of vehicle. Choice of new all-in-one front model, or trunk mount unit-both are drawer-type with quick lift cover. Both units provide for complete metering and antenna alignment through the covered ports on front-yet the complete housing is closed against dust or other foreign particles.

## ENDURING ECONOMY

A quality communications unit designed to deliver longer sustained service at the lowest operating cost. New single vibrator power supply provides for minimum tube and vibrator replacement.

## FREEDOM FROM OBSOLESCENCE

The growth of land mobile services licensees from 5,000 in 1945 to over 17,000 (over 160,000 transmitters) today indicates that channelsplitting is imminent. With adjustable modulation control, I.D. C., and exclusive exchangeable Permakay filter you have every factor in hand for your future protection.

4545 Augusta Blyd., Chicago 51 - in Conada: Rogers Majestic, Ltd., Toronto
MADE BY THE WORLD LEADERS IN 2WAY MOBILE RADIO BACKED BY 20 YEARS RESEARCH, EXPERIENCE, AND SPECIALIZATION IM MOBILE RADIO

# NEW PRODUCTS 

Edited by WILLIAM P. O'BRIEN

Military Needs Influence Size, Weight and Composition of Components . . . Benefits to TV Service Engineers Seen in Variety of Test Apparatus . . . Thirty Items Available Trade Literature Are Reviewed



## Electron Microscope

Radio Corp. of America, Camden, N. J., Type EMP table-model perma-nent-magnet electron microscope provides useful magnifications up to 50,000 diameters. Because it employs a $50-\mathrm{kv}$ accelerating potential it is effective for studying thick specimens. Using permanent-magnet lenses it needs no stabilization circuits and controls. The unit features a resolving power to 100 angstrom units. Price is $\$ 5,750$ and deliveries will begin in September.


## Selenium Rectifiers

Sarkes Tarzian Inc., 415 N. College Ave., Bloomington, Ind., has announced the Centre-Kooled selen-
ium rectifiers designed for use in radio, television or electronic equipment. The center cooling feature provided by a special spacer between the cells insures lower overall operating temperatures by allowing air to reach the portions of the cells in which the current density is the greatest. Sixteen models are available in the standard line ranging from units rated at 65 ma at 130 volts to units capable of handling 450 ma at 130 volts.


## Sealing-In Machine

Eisler Engineering Co., Inc., 750 South 13th St., Newark 3, N. J. Model 57-8-4-CTL four-head seal-ing-in machine adaptable for sealing the electron gun to the bulb can handle up to 24 -inch diameter video tubes in the range of 90 per hour. It is powered by two motors ( $\frac{1}{2} \mathrm{~h}-\mathrm{p}$ and $\frac{1}{4} \mathrm{~h}-\mathrm{p}$ ) for adjusting independently the index head and head drive respectively. The machine is automatically operated by a reset timer which stops the turret from rotation for a predetermined time which ranges from 0 to 60 seconds.


## Electrostatic Generators

Chatham Electronics Corp., 475 Washington St., Newark 2, N. J., is producing two electrostatic generators of 6 kv and 20 kv , designed to replace cumbersome and short lived batteries as a high-voltage supply for Snooperscopes, Sniperscopes and similar infrared sighting equipment. The unit (illustrated above right, as compared with the older type shown on the left) weighs only 10 pounds, is powered by a spring motor and operates indefinitely. A variable speed governor provides constant speed which results in constant current output rather than constant voltage. Constant voltage output is maintained with a corona discharge regulation tube.


## Adjustable Potentioneter

A. F. Smuckler \& Co., Inc., 202 Tillary St., Brooklyn 1, N. Y. The Vari-Function nonlinear potentiometer comprises a helical resistance and a plurality of taps that can be quickly adjusted to produce or reproduce any desired voltage indication or output as a function of angular displacement. It produces any form of voltage function with better than 0.5 -percent accuracy. Some of its many typical applica-

# another New 

## SUBMINIATURE

## TO PROVIDE YOU WITH

1. High perveance (performance compares favorably with that of the larger 6AL5)
2. Low heater current ( 150 ma .); half as much as the 6AL5
3. Moderate cost

## THE CK5829 TWIN DIODE

RAYTHEON Subminiature Tubes have long been standard throughout the world. More of them are in commercial use than all other makes combined. They assure greater product salubility due to size reduction -greater contenience because they fit standard sockets or can be soldered or welded into the circuit, and because over balf a million are available from stock; over 300 Raytheon Tube Distributors are at your service $>$ greater dependability, backed by unsurpassed technical resources and a dozen years of production and application experience with long-life Subminiature Tubes.


# RAYTHLON MANUFACTURING COMPANY 

SPECIAL TUBE SECTION - Newton 58, Massachusetts
Excellence ine Elechomict SUbminiature tubes - Germanium diodes and triodes - radiation counter tubes - rugged, long life tubes
tions are in guided missiles, radar, electronic computers, and generalapplication laboratory instruments.


## H.V Power Supply

Eltron Inc., 407 North Jackson St., Jackson, Mich. Model 103D-6 hermetically-sealed, miniature, high-voltage power supply was designed for use in military Geigercounter equipment. It operates from a 3 -volt battery and delivers a regulated and filtered output of 900 volts d-c. The unit employs a novel four-pole vibrator used in a selfrectifying voltage-multiplier circuit. Power outputs ranging from a few milliwatts to about three watts can be furnished efficiently at output voltages as high as 2,500 volts.


## Recording Counter

Potter Instrument Co., Inc., 136-56 Roosevelt Ave., Flushing, N. Y., announces the highspeed Teledeltos paper recorder for use with counters and counter-chronographs. The count or time interval normally registered on the electronic counter indicator lamps is transferred to Teledeltos paper at the completion of each measurement and the counter is automatically reset for the next measurement. The recorder illustrated is con-
nected to a $1.6-\mathrm{mc}$ counter-chronograph and was designed for measurements of machine-gun projectile velocity. It will measure and record time intervals with an accuracy of 0.625 : sec at repetition rates up to 25 per second.


## VTVM and Multirange Tester

Precision Apparatus Co., Inc., 92-27 Horace Harding Blwd, Elmhurst, N. Y. Series EV-20 portable vtvm and multirange test set is a complete vtrm-megohmmeter with true zero-center on all vtvm ranges, plus direct-reading h-f scales. It also provides full standard 100 ohms-per-volt functions. The unit affords 48 ranges to 1,200 volts, 2,000 megohms, 12 amperes, +63 db; and d-c vtvm ranges to 12,000 and 30,000 volts when used with the tv superhigh-voltage test probe.


## All-Purpose Scaler

Nuclear Instrument \& Chemical Corp., 229 W. Erie St., Chicago, Ill. The Ultra-Scaler illustrated provides facilities for every type of counting by either automatic or manual methods within one instrument. It incorporates a built-in
timer which may be set for a predetermined length of time and will then turn off the scaling unit automatically. The unit has two inputs, one for Geiger pulses and the other for very small proportional pulses requiring linear amplification. The Higinbotham-type scale of 128 has a resolution time of $2 \mu \mathrm{sec}$. Stabilized high voltage is available up to $2,500 \mathrm{v}$, and a built-in register indicates total number of counts.


## Tele Signal Generator

Sylvania Electric Products, Inc., 500 Fifth Ave., New York 18, N. Y., has announced the type 500 sweep signal generator for servicing f-m and television receivers. Its $\mathrm{f}-\mathrm{m}$ sweep range is from 0 to 600 kc , and television sweep from 0 to 15 mc. Fundamental output frequencies are provided that range from 2 to 230 mc , in four bands. Output is at least 100 mv on all bands controlled by a smooth attenuator.


## Test Transformer

Radio Corp. of America, Harrison, N. J. The WP-25A television Isotap, a combination autotransformer
(Continued on p 192)


The Fountainhead of Modern Tube Development is RCA

# RCA Multiplier Phototubes... for low-level defection and measurement 

The extraordinarily high values of amplification obtainable from RCA Multiplier Phototubes make them particularly applicable to the detection and measurement of low levels of illumination. Coupled with suitable phosphors, these tubes may also be used for detecting and measuring nuclear particle radiation. The secondaryemission multiplier stages employed in these tubes make possible improved signal-to-noise ratio at very low illumination levels.

RCA-5819 with its head-on photocathode of large diameter may be used in scintillation counters for the detection and measurement of nuclear particle radiation, and in other applications involving
low-level, large-area light sources.
RCA-931-A is the preferred type for high-volume, low-cost applications.

RCA-1P21 now has a sixfold improvement in noise input. It is especially desirable for photo-electric spectrometers, astronomical telescopes, and scintillation counters using collimated light beams.

RCA-1P22 is especially useful in colorimetry and spectroscopy requiring the advantages of a panchromatic surface.

RCA-1P28 is intended for specialized industrial and scientific applications such as spectrophotometry, where the measurement of low levels of ultraviolet radiation is involved. Its envelope of special
glass permits transmission of ultraviolet radiation down to a wavelength of 2000 Angstroms.
RCA Application Engineers are ready to assist you in the adaptation of these or any other RCA tube types to commercial electronic equipment. For further information write RCA, Commercial Engineering, Section F42R, Harrison, N. J.


The world's most modern tube plant...
RGA, LANCASTER, PA.

# NEWS OF THE INDUSTRY 

Edited by WILLIAM P. O'BRIEN

Round-the-World Radio Signals in 55 Hops

VERY-LOW-FREQUENCY radio signals traveling completely around the world have now been detected by Jack N. Brown of the National Bureau of Standards. The signals, transmitted from the Naval Radio Station NSS at Annapolis, Maryland, on a frequency of 18 kc with a power of 350 kw , were received at the National Bureau of Standards radio propagation field station at Sterling, Virginia, about 50 miles away. Normal delay time for a round-the-world signal was more than a tenth of a second, and maximum signal intensity was observed at sunset.

The round-the-world signals were received, with the aid of a large loop antenna 150 feet high, on a tuned-radio-frequency receiver. A dual-beam oscilloscope was connected ahead of the detector stage in the receiver so that the actual unrectified r-f envelope was displayed on the 5 -inch screen along
with an 18-kc reference voltage. The delay time of the round-theworld signals was measured by making a moving film record of the oscilloscope screen.

The test signal transmitted from NSS consisted of a series of dots, each dot followed by a quiet period equal in duration to five dots. The test tape was transmitted at normal sending speeds, so that the pulse length of each dot was about 40 milliseconds with a repetition rate of four pulses a second.

During the winter months when these tests were conducted, the delayed signal was visible throughout the entire day. Observations of field intensity over several 24 -hour periods disclosed the striking sunset maximum. A sharp peak in signal strength at $4: 30$ p.m. corresponded to optical sunset at the place of transmission and reception. It is an observed fact that lowfrequency signals are severely at-

## ADVANCED COMPUTER TECHNIQUES



A means for endowing modern computers with a whole new faculty, the ability not only to detect their own mistakes but actually to correct them, has been developed at Bell Telephone Laboratories. The basic concepts underlying the new technique are the direct result of pure mathematical research carried out by Dr. R. W. Hamming (left), Bell Laboratories mathematician. Apparatus incorporating the mathematical discovery has been constructed under the direction of B. D. Holbrook (right), Bell Laboratories switching research engineer
tenuated when their path crosses a sunset zone. Any round-the-world signal must cross a sunset zone except during that portion of the day when the sunset zone is at the transmitter-receiver location. This explains the relatively greater strength of the signals at sunset in the transmitter-receiver location.

Delay times were measured on two different occasions under widely differing ionosphere conditions. Measurements were made first during a severe ionosphere storm, and a second set of measurements were made on a normal day. The average delay time during the storm was $0.1365 \pm 0.0005$ second, but on a normal day the average was 0.1373 $\pm 0.0005$ second. The shorter delay time during a storm may be explained by the slightly lower effective height of the reflecting layer of the ionosphere under the influence of corpuscular bombardment from the sun. In any case the average values indicate a shorter propagation path for l-f signals during an ionosphere storm.

The transmission of radio waves over long distances may be thought of either as the propagation of a guided wave between the concentric spherical surfaces formed by the earth and the ionosphere, or as successive multiple reflections from the earth and the ionosphere. Within the limits of a ray approximation, both pictures yield the same results. For the delay time on a normal day ( 0.1373 sec ) the number of hops corresponding to an ionosphere height of 65 kilometers is 55 for one trip around the earth. The length of each hop is thus 728 kilometers and the angle of takeoff is 8 degrees.

## Cirrier-Current

 Measurements MeelingA meeting is scheduled to be held June 6, 1950 in the offices of the Federal Communications Commission for the purpose of establishing a joint industry-government committee to obtain field intensity measurements of line radiating devices and systems. Six working groups are now engaged in procuring field data.

All interested persons are invited

## Announcing A New GR Standard Signal Generator



THE new General Radio Type 1021-A Standard-Signal Generator operates at frequencies between 50 and 920 Mc with the same convenience and reliability found in other G-R generators in the broadcast frequencies.
Its main use is the determination of radio receiver and circuit characteristics. With an inexpensive diode modulator, television picture modulation can be produced for overall testing of television receivers.

It is a convenient and well-shielded scurce of power for measurements with bridges, impedance comparators, and slotted lines. For these uses internal modulation is provided.

With the new G-R Type 874 line of Coarial Elements, this generator provides a very complete and flexible system for measurenents of voltage, power and standing-wave ratio from 50 to 920 Mc .

## FEATURES

[^4]

Type 1021-82 Oscillafor Unit (250-920 Mc) Two separate oscilators are avalable They are mechanically and electrically in erchangeable, and are sold as separate Inits to con vert the range of one standard iignal generator to that of the other TYPE 1021-P2 U-H-F Oscillator Unit only ( $250-920 \mathrm{Mc}$ ).... $\$ 420.00$ TYPE 1021-P3 V-H-F Oseillator
Unit only ( $50-250 \mathrm{Mc}$ )..... $\$ 400.00$


Pype 1000-P 8 Crystal Diode Modulator An inexpensive, wide-band modulator Zor amplitude modulation of carrier frejuencies between 20 and 1000 Mc Modulation-frequency range is 0 to 5 Mc . $\$ 35.00$
to attend. It is desirable that all participating persons come prepared to present and discuss such data as they may have available. The Commission suggests that all data and reports be furnished with copies for distribution to other persons present. All information received will be carefully considered and future plans projected.

## Nonferromagnetic Synchrotron

SUCCESSFUL operation in its first phase of a new type of atom smasher, which is ultimately expected to produce X-rays of $300,000,000$ volts, was announced recently by Dr. C. G. Suits, vice-president and director of research for General Electric Co. Schenectady, N. Y.

The new machine, known as a nonferromagnetic synchrotron, is being built under the joint sponsorship of the Office of Naval Research and the GE Research Laboratory. It has been operated thus far up to about a million volts and probably it will be in operation at much higher energies before the end of the year. It will be used to study the effects of high-energy radiation,

## MEETINGS

June 1-2: Fourth National Convention and Fifth Midwest Conference of the American Society for Quality Control, Milwaukee Auditorium, Milwaukee, Wisc.

June 12-16: AIEE Summer and Pacific General Meeting, Huntington Hotel, Pasadena, Calif.

June 19-20: 1950 annual conyention of the American Society for Engineering Education, University of Washington, Seattle, Wash.

June 26-30: Annual Meeting and 9th Exhibit of Testing Apparatus and Related Equipment, Hotel Chalfonte-Haddon Hall, Atlantic City, N. J.

June 26-July 22: Summer Electronics Symposium, University of Michigan, Ann Arbor, Mich.

AUG. 27-31: NEDA National Convention and Exhibition,

Cleveland Public Auditorium, Cleveland, Ohio.

AUG. 28-31: APCO National Conference, Hotel Hollenden, Cleveland, Ohio.

Sept. 11-23: URSI Ninth General Assembly, Zurich, Switzerland.

Sept. 13-15: 1950 IRE West Coast Convention and Sixth Annual Pacific Electronic Exhibit, Municipal Auditorium, Long Beach, Calif.

Sept. 18-22: Fifth National Instrument Conference and Exhibit, Memorial Auditorium, Buffalo, N. Y.

Sept. 25-27: National Electronics Conference. Edgewater Beach Hotel, Chicago, Ill.

Ост. 3-5: AIEE District No. 2 Meeting, Lord Baltimore Hotel, Baltimore, Md.
particularly in nuclear research.
The new particle accelerator is of a design that eliminates the huge iron-core electromagnet commonly used in such devices. The

PACIFIC ELECTRONIC EXHIBIT PLANNED


Discussing plans for the 6th annual Pacific Electronic Exhibit to be held in the Municipal Auditorium, Long Beach, Calif., Sept. 13, 14 and 15, 1950, are, left to right: L. W. Howard, general show committee chairman of WCEMA, which sponsors the exhibit; R. L. Sink, chairman of the Los Angeles Section of IRE and L. C. Sigmon. IRE liaison chairman for the exhibit
requisite powerful magnetic fields are produced solely by specially designed coils of wire. These carry heavy currents, and are contained in a steel tank from which air has been exhausted.

First erected in one of the old buildings of the GE Research Laboratory in downtown Schenectady, the new synchrotron is now being installed in its own building at the Laboratory's new quarters at the Knolls, in nearby Niskayuna.
The first operating synchrotron in the United States was completed in 1946 in the GE Research Laboratory. This $80,000,000$-volt machine also was sponsored by the Office of Naval Research. In this synchrotron there is a doughnut-shaped vacuum tube, placed between the poles of an 8 -ton electromagnet. Inside the tube is an electron gun. The electrons fired from it, guided by the magnetic field and accelerated by the increasing magnetic induction, reach energies of several million volts. Their speed is then practically that of light. Up to this point the operation is similar to that of another type of accelerator, the betatron.

In the nonferromagnetic synchrotron there is a cylindrical steel tank
(Continued on page 232)

## How SYIVANIA

## helps to beat

 News-Photo deadlines $\longrightarrow$


EILCTRRONIC DEVICE; RADIO TUBES; TEEEVISION PICTURE TUBES; ELECTRONIC TEST EQUPMENT; FLLORESCent laMps, fixtures, sien tubing, wiring devices; light bulbs; photolamps; television sets

In just 6 minutes, this new Fairchild engraver will turn out a tough, plastic one-column halftone, all ready to go to press.

At the heart of this nachine, a Sylvania Glow Modulator Tube "beats" at the rate of 240 cycles per second to produce a halftone screen on a plastic sheet by means of a red-hot pyramid-shaped stylus.

This Sylvania tube, capable of supplying modulated light output flat to 10,000 cycles, is used in conjunction with a photo cell to scan the picture to be reproduced. The resulting signal consists of a carrier, modulated by a current representing the contrast in picture detail. This signal is amplified, and applied to the hot stylus which engraves the plastic plate.
The many unusual uses of the Sylvania R1130B Glow Modulator Tube are made possible by its ability to produce a pin-point of light which varies linearly with current. For further information and latest catalog sheet covering Sylvania Glow Modulator Tubes, mail the coupon today.

[^5]
## NEW BOOKS

Electron Tube Circuits ..... 134
Theory and Design of Electron Beams. ..... 134
Television Antennas ..... 136
Industrial Electronics ..... 136
The Characteristics of Electrical Discharges in Magnetic Fields ..... 140
Radar Systems and Components ..... 144
Books Received for Review ..... 148

## Electron Tube Circuits

By Samuel Seely. MoGraw-Hill Book Co., New York, 1950, 528 pages, $\$ 6.00$.
A BOOK to cover the field of elec-tron-tube circuits could easily fill a five-foot shelf all by itself. Professor Seely, therefore, has shown admirable restraint in producing a volume that is not only good looking from the standpoint of modern book design and format but which is of very reasonable size. He has done this by dividing the subject into certain broad divisions, by presenting a coordinated account of each division, by giving an analysis of characteristic examples of the use
of tubes and circuits in these divisions, and by avoiding unnecessary details in describing any particular example or by giving too many examples.

The aim is to equip a student with the analytical power to study tube circuits. With such power the problems of design become simple.

About half of the book deals with circuits useful to radio engineers; the rest of the material covers radar, television, pulse communication and electronic control. Since it is not a radio book, there is nothing about radiation or about systems in it. There are 22 chapters and they cover amplifiers, oscil-
lators, rectifiers, modulation and demodulation, relaxation circuits, sweep generators and electronic instruments.
The analytical techniques employed will be the chief interest for an engineer already trained; for the student the book will provide a high-level course; and if either understands the text sufficiently to work the problems correctly, he will be well on his way toward being a most competent electronics engi-neer.-K. H.

## Theory and Design of Electron Beams

By J. R. Pierce, Bell Telephone Laboratories, Inc. D. Van Nostrand Company, Inc., New York, 1949, 197 pages, $\$ 3.50$.

Well-known J. R. Pierce has brought out a new book intended for those students and scientists interested in the behavior of electron beams. Written on the graduate level, it discusses that material on (continued on page 135)

## BACKTALK

# This Department is Operated as an Open Forum Where Readers <br> May Discuss Problems of the Electronics Industry or Comment Upon Articles Which ELECTRONICS Has Published 

## Video on Tape

Dear sirs:
Your editorial comment regarding Howard Chinn's ideas on recording television signals on magnetic tape started me to figuring olit sizes and such.

I find that with the present state of the art the tape would have to be driven at 500 inches per second which is $41_{3}^{2}$ feet. In order to record a fifteen-minute program 37,500 feet of tape would be required, which could be wound on a spool having an outside diameter of 38 inches and a hub diameter of 10 inches. These figures preserve the same ratios as found in the popular seven-inch plastic spool. This spool would be required to revolve at
approximately 950 revolutions per minute when nearly empty of tape. At this speed the rim would be making a speed of nearly two miles per minute.

At 500 inches per second the top frequency which could be reproduced would be about 500 kilocycles. The low end could be carried down to about 500 cycles without excessive equalization in the playback amplifier. For a 500 -cycle low end the equalization required would be approximately 45 decibels. In order to carry the response down to 20 cycles the equalization required would be about 70 decibels.

Basing the design on a quarterinch effective track width a piece of tape two inches wide would be
required for a four-megacycle bandwidth. This all assumes that the problems of signal-to-noise ratio and differential phase shift could be overcome.

Not the least in importance is the cost of a fifteen-minute recording. Basing the computation on a 1,200 foot spool of 0.250 -in.-wide tape costing $\$ 5.50$, the 37,500 feet of two-inch material would come to $\$ 1,375$.

I think it must be obvious that this approach is impractical, but I am sure the job will be done before too long.

John S. Boyers
Chief Engineer Magnecord, inc. Chicago, Ill.

## Let's Settle It

Dear Sirs:
FOR A NUMBER of years you and I and numerous others have been busily engaged in this thing tacitly called electronics, earning our living thereby and creating a myriad of useful and maybe not-so-useful de-
(continued on page 242)
electron beams which lends itself most readily to mathematical analysis, although some attention is also given to experimental techniques. This book fills a definite need because most previous books on electron optics are intended for people whose primary interest is electron microscopes and image tubes and, therefore, include extensive treatments of such topics as aberrations.

Dr. Pierce's book is clearly intended for those concerned with the formation and focusing of electron beams for use in such devices as low-frequency amplifiers, oscillators, and, especially, microwave tubes.

The first part of the book deals with the basic concepts of the properties of electric and magnetic fields, the forces and equations of electron motion, and examples of simple electron motions. These concepts lead to some general relations such as Busch's and Liouville's theorems, trapping of electrons in symmetrical electric and magnetic fields, and index of refraction in electric fields. Special techniques (solution by inspection, rubber model, and tracing of paths) are treated.

The author develops the important paraxial-ray equation and its solution for electric and magnetic lenses. The properties of electric and magnetic lenses are fully discussed and both analytical and numerical solutions are presented for various important basic examples. Final chapters are devoted to the discussion of the Effect of Thermal Velocities, Space Charge in Electron Beams, and Election Guns Utilizing Rectilinear Flow. The reader will also find information on such interesting topics as, for instance, "How Nearly Can The Limiting Current Density be Approached", effect of ions on limiting current density, and cathode-ray tube after-acceleration as affected by thermal velocities.

The book contains numerous illustrations and the reader is of ten given the benefit of the author's experience because comparisons between theory and practice are frequent. All chapters are followed by excellent problems which are so chosen as to bring out certain points and are typical of the prob-

## NOW AVAILABLE!

## RADIO OPERATOR'S LICENSE Q AND A MANUAL

## by Milion Kaufman

This book is a most complete and comprehensive treatment of the subject and should prove especially valuable as a cuick review of essential theory, as well as a refresher for advancement in the field. It lisis all the QUESTIONS and ANSWERS for the FCC examinations. However, the outstanding feature of this volume is its thorough FOLLOW-THROUGH - a carefully simplified discussion of the answer to the techanswer. Useful appendices, which for a complete and absolute understanding of the ic Alarm, not ordinarily available in a book of this type, provide a valuable 'exira, 608 pages, 193 explanatory diagrams.............................................. $\$ 6.00$

## FM TRANSMISSION AND RECEPTION

## by John F. Rider and Seymour D. Uslan <br> Up-to-date - Basic - Complete

For the student who is grooming himself for activity in the electronic ficld. This book covers the subject of frequency modulation thoroughly in a down-to-earih treatment of all types of FM systems employed in television, radio, amateur radio, railroad, ayiation, marine, police, point-to-point and mobile reccivers. Basic theory, transmission, ecention, circuit design and servicing are covered, with mathematies kept to an absolute minimum. Almost all presently used conımercial FM transmitters are described 416 pages, profusely

## INSIDE THE VACUUM TUBE

by John F. Rider

No other book caplains so simply and clearly the theory of the vacuum tube and its operation. In plain langluge-with fascinating pictures and diagrams that really tell a story-you get a solid grounding in theory and a good working knowledge of basic 424 pages, profusety illustrated.
UNDERSTANDING VECTORS AND PHASE IN RADIO
by John F. Rider and Seymour D. Uslan
A Shorthatd Method to Easier Understanding of Radio Theory
Writen for the student and for any man learning, in radio and electronics, who has not iect is developed, until finally its application to cveryday radio problems is dep, the strated. 160 pages, amply illustrated, cloth cover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . \$1.89 paper cover
NEW ... COMING SOON!
TV AND OTHER RECEIVING ANTENNAS (Theory and Practice)
by Arnold B. Bailey
This hook is a rare combination of theory and practice that: 1.-Clearly explains and teaches, 2.-Can be nsed as ataily work reference.
An outstanding book, the like of which has never before been written. And since the author has resolved the mathematics of antenna problems into graphs, charls and tables it clearly explains the theory behind the performance of every type of $30-1000 \mathrm{Mc}$ receiving antenna on the commercial market, leaving the reader with a full understanding of why each hehaves as it docs. Practical in every sense of the word.
More than 500 pages, $6^{\prime \prime} \mathbf{x} 9^{\prime \prime}$, clotb bound. ....................................... $\$ 40$
ENCYCLOPEDIA ON CATHODE-RAY OSCILLOSCOPES AND THEIR USES

The greatest and most complete by RIDER ef al
It is a practical, down-to-eatct encyclopedia about five written on the cathode-ray tube! It is a practical, down-to-earth encyclopedia about five times the size of the old stand-
ard text. Starting with basic theory of cathode-ray tube oneration. it procecds through ard text. Starting with basic theory of cathode-ray tube operation. it proceeds through every field and rescarch activity which employs a cathoderay oscillograph. All scopes produced and sold during the last 10 years, more than 70 different models are described completely-with schematic wiring diagrams. Almost 500.000 words and about 3 . 000 illustrations are incorpolated in more than 900 pages. It is a book which will $81 / 2 \times 11$ inches....
$\$ 9.00$

## TELEVISION INSTALLATION TECHNIQUES

by Samuel L. Marshall
This hook, written by Mr. Marshall, television instructor at the George Westinghouse Vocational High School, is a practical, casy-to-understand tratnent of information nertining to the antennas, transmission lines. receiver adjustments, and above all. the for the installation of a tower, including foundation. Isoth theoretical and practical aspects of every phase of this activity, from the topmost element of the antenna to the ground connection on the recciver terminal bourd, are fully discussed.
VACUUM-TUBE VOLTMETERS
by John F. Rider
Now completely revised, enlarged, and thotoughly up-lodate, this volume explains theory and fiunctions of the different types of vacuuntube voltmeters. A special sec tion is devoted to d-c and $r$-f probes and the concluding chapter discusses the latest conmercial types of vacuum-fube voltmeters, complete with schematic diagrams.

JOHN F. RIDER PUBLISHER, INC.

480 CANAL ST., NEW YORK 13 , N. Y.


by Scott Helt

Research Division Allen B. Du Mont Laboratories -Instructor, Columbia University 700 pages, $6 \times 9,385$ illus., $\$ 7.50$

Here. just off the press, is the first book since the war which covers the entire field of Television from the viewpoint of a practical engineer actually employed in the field. Written by one of the industry's pioneers, it provides a sound knowledge of both theory and actual working practice, particularly as related to Television manufacturing and broadcasting.
Starting with the fundamentals of video transmission, PRACTICAL TELEVISION ENGINEFRING progresses logically and understandably through every phase of its sulject. Far from being a re-hash of old and often outmoded material, it brings you up-to-the-minute details of the latest developnents, trends, problems, data and specific engineering know how.

## COMPLETE—MODERN——AUTHENTIC

Complete coverage of the following subjects makes PRACTICAL TELEVISION ENGINEERING invaluable for all who are associated in any way with TV research, development, sales engineering, broadeasting, study or instruction.
Fundamentals of Picture Transmission Cathode-Ray Tubes
Cathode-Ray Oscillographs
Electron Tubes and Image Pickup
Synchronizing Generators-Timing,
Shaping and Preflection Circuits
The Video Amplifier and Cathode Follower Voltage-regulated Power Supplies Television Receivers
Television Camera Chains
Television Transmitters
Television Broadcasting Techniques Glossary of Terms

## Use coupon today!

Read this book for 10 days AT OUR RISK.


Dept. E-60, Murray Hill Books, Inc.
232 Madison Ave., New York 16, New York D Enclosed flnd $\$ 7.50$ ( $\$ 8.00$ outside U.S.A.) for Hert: or $\square$ send C.O.D. and I will pay dostman this a mount plus postage. In either event, if book is not what I want I may return it within 10

```
chase price.
```

(Cash only outside U.S.A., same return privilege.)
Name ..
Address ..
City, Zone, State

NEW BOOKS
(continued)
lems encountered in the design and application of cathode-ray tubes, magnetrons, electron multipliers and similar devices. There are also frequent footnotes giving references for those wishing more information on specific subjects. The mks system of units is used.
It is to Dr. Pierce's credit that he has written a clear book on an especially difficult subject. The reader will do well, however, to have some background in electron ballistics. The book seems to suffer in organization to some extent, in that the content, although systematically arranged, is not continuous and is often a series of discussions of specific topics. Nevertheless, the book gives promise of becoming a bible in its field, both in the classroom and in the laboratory.--Frank R. Arams, Tube Dept., Radio Corp., of America, Lancaster, Penna.

## Television Antennas

By Donatd A. Nelson. Howard IW. Sams \& Co., Inc., Indiunapolis, Indiana, 1949, 166 pages, paper-covered, $\$ 1.25$.
WAys and means of converting a transmitted television signal to microvolts at the receiver input, to guide service technicians in selection and installation of suitable antennas and accessories for each location. The six chapters cover: Receiving Antenna Principles; Antenna Construction; Commercial Antennas; Antenna Installation; Common Installation Problems. Clearly written and liberally illustrated, it forms an excellent and inexpensive guide for the electronic engineer who chooses to install and adjust his own television antenna. -J.m.

## Industrial Electronics

By Andrew W. Kramer. Pitman Publishing Company, New York, 1949, 311 pages, $\$ 6.00$.

This book is intended for readers who have "a good knowledge of general physics and engineering but who have had very little training or experience in electronics." To a very great extent, this purpose has been achieved, and a reader who has the time and initiative to sit


FREQUENCY MODULATED RADAR
2. Explains what is known today background and special characteristics to operational eechniques
and adparatus used. Corers direcand adparatus used. Corers direcreception, oscillators for genera. ting radio frequency power transmitted, frequency modulators con-
trolling these oscillators, etc. The inematics of simple fire-control is dereloped. Over 100 diagrams and illustrations. By David G. C. 466 pages, $\$ 4.00$.

## ELECTRONICS MANUAL FOR RADIO ENGINEERS

3. Ifere is practical electronics envalue to the radio engineer or maintenance man. Designed to sare you hours of research. these 289 articles patterns, analyses. equations, tables, calculations, predictions. . everything arranged and indexed for quick, fingertip reference. Data on microwaves,
television, circuit theory, antennas, measurements, etc. By Vín Zolufi and John Marcus, Editors, Electronics. 879 bages. $\$ 9.50$.


SEE THEM 10 DAYS FREE


## Federated rosin CORE SOLDER

Look for the orange package . . . the universally popular solder for use in electrical applications where bonding must be secure and free from corrosion.

The flux is in the solder . . . all gou need is heat! Federated Rosin Core Solder is available in 1,5 , and 20 -pound sizes.

It's a Fact. ..


## Ground <br> miniature bearings are obtainable and af NO EXTRA COST

The major development of the decade in anti-friction bearings made possible by

* Production skill and "know-bow."
* The last word in machine tools and equipment.
* Precision grinding spindles of $100,000 \mathrm{rpm}$ and more.


## RESULT:

The smooth performance and accurate geometry of GROUND Bearings is now available in sizes as small as $1 \mathrm{~mm}\left(.040^{\prime \prime}\right)$ bore $\times 1 / 8^{\prime \prime}$ O.D. with the millionths inch refinement of ABEC-7.
"The smaller the bearing the befter it runs."
New Hampshire Mica Ball Bearings, Inc.

5 Main Street - Peterborough, New Hampshire


## Custom Built Dry Bafteries Built to Exacting Industrial and Electronic Requirements

If you need a battery that's completely new, one you've never heard of, or that's no longer available through normal channels, call on Specialty Battery Company. Specialty supplies hard-to-get batteries for every purpose, designs and manufactures dry batteries to your specifications.

## Send For This Free Catalog

Gives complete specifications for industrial, laboratory, instrument and ignition batteries for every possible dry battery requirement.



In Only 1 SECOND!
COMPLETE
AUDIO WAVEFORM ANALYSIS
with the
AP-1 PANORAMIC SONIC ANALYZER


Oscillograph of wave form to be analyzed


Provides the very utmost in speed. simplicity and directness of complex waveform analysis. In only one second the AP-1 automatically separates and measures the frequency and amplitude of wave components between 40 and 20.000 cps . Optimum frequency resolu. tion is maintained throughout the entire frequency range. Measures amplitude of components down to $0.1 \%$.

- Direct Reading
- Logarithmic Frequency Scale
- Linear and Two Decade Log Voltage Scales
- Input voltage range $\mathbf{1 0 , 0 0 0 , 0 0 0 : 1}$

AP-1 is THE answer for practical investigations of waveforms which vary in a random manner or while operating or design constants are changed. If your problem is measurement of harmonics, high frequency vibration, noise, intermodulation, acoustics or other sonic phenomena, investigate the overall advantages offered by AP-1.

Write NOW for complete specifications, price and delivery.

```
 \bullet
```




Bentley, Harris Mfg. Co., Dept. E-40, Conshohocken, Pa.
I am interested in BH " 649 " Fiberglas Tubing and Sleeving. Send samples for production testing of Grade $\qquad$ in sizes as follows

$$
\mathrm{s}_{(\text {size or I.D. })} \text { for } \text { (product) }
$$

peratures of $\qquad$ ${ }^{\circ}$ F. at $\qquad$ volts.

NAME $\qquad$
ADDRESS $\qquad$

## Ballantine's PEAK to PEAK Electronic VOLTMETER



The outstanding waracteristie of the Wodel 30.5 Electronic Voltmeter is its ability to provide absolute indication of transiont or pulse voltages of short duration. Reliable indication of pulses a few mieroseconds wide repeated only 10 times per second is readily obtained with this instrument. The Volmeter is pre-catibuted compart, casy to operate ant observe. Positive and negative peaks are registered over the range of .001 volt to 1000 volts, peak to peak. Decade canges and a logarithmic scale output meter are characteristic features, along with a separately avaitable high gain, wide-band amplifier.

Send for Bullctin No. 1 ?

## BALLAVTILE LABORATORIES, INO.

boonton, new iersey, U. S. A.
down and assimilate the contents of this book can emerge enlightened in the field of electron tubes of all important types, and their application to industrial measurement, production and control problems.

As pointed out by the author in his preface, the basic material for much of this book appeared first in a series of articles on electron tubes published in Power Plant Engineering (of which the author is editor), from 1936 to 1939. As such, it is not recognizable, for many improvements and additions have been made.

The book begins logically with a general picture of the history and basic requirements of electronics in industry. Approximately the first 185 pages deal in generalities of tube characteristics and electron behavior, and the remaining sections cover specific applications.

One particularly obvious disadvantage to the application portion of the book is the absence of values for circuit components and of detailed calibration and installation information. However, wherever possible, the author has referred to the literature where additional information of such nature may be obtained.

It is questionable that this book would be of much value as a reference book. Its components are arranged in a logical teaching order, but for circuit references and engi-neering-level information, it falls slightly short of the mark. It should be, however, a welcome addition to the student's reading list while he is engaged in a course in electron-ics.-J.D.F.

## The Characteristics of Electrical Discharges in Magnetic Fields

National Nuclear Energy Series, Division I, Volume 5, EDited BY A. Guthrie and R. K. Wakerling. McGraw-Hill Book Co., New York, 1949, 376 pages, $\$ 3.50$.
This book presents mainly the experimental results and supporting theory on the characteristics of the arc discharge produced by an electron beam, the arc being subjected to a strong magnetic field and confined in a rather specialized volume;

Fast-moving machines are hard to study under actual working con-
 ditions. But with high speed movies you can slow down fast action to a pace the eye can follow.

With the Kodak High Speed Cam. era you can take pictures of your problem (up to 3200 a second on regular 16 mm movie film). Then you can see the operation clearly -enlarged on the projection screen-slowed down 200 times! You can see the reasons for excessive wear, faulty operation, noise, vibration, or early failure. What you see can point the way to better design, better methods, better performance.

High speed photography is not difficult, and its cost is small compared with the savings it makes possible. For more information, write for the booklet "Magnifying Time" or for loan of the 16 mm demonstration film made with the Kodak High Speed Camera.


EASTMAN KODAK COMPANY, Industrial Phofographic Division, Rochester 4, N. Y.

## High-Speed Movies

## Unress the Dry Battery You Need Is listed in This Free Manual... BURGESS ENGINEERS WILL dESIGN A NEW BATTERY TO MEET YOUR SPECIFICATIONS

ENGINEERING manual


It's all part of the Burgess Service! This complete Engineering Manual lists hundreds of battery types developed by Burgess Engineers to meet new requirements. If the specific battery you need is not among them, the complete Burgess facilities, design, production, and engineering will be placed at your disposal to build the battery you need in any quantity -large or small!

Write for ENGINEERING MANUAL and CHECK SHEET No obligation. By return mail you will receive the FREE Engineering Manual listing the complete line of Burgess Batteries together with specifications; also the Burgess "Check Sheet" on which you may outline your requirements in the event that the battery you need has not already been developed. Address:

## BURGESS BATTERY COMPANY (DEPT. EI) FREEPORT, ILLINOIS



## American

 Beautu ELECTRIC SOLDERING IRONSare sturdily built for the hard usage of industrial service. Have plug type tips and are constructed on the unit system with each vital part, such as heating element, easily removable and replaceable. In 5 sizes, from 50 watts to 550
watts.

TEMPERATURE REGULATING STAND

This is a thermostatically controlled device for the regulation of the temperature of an electric soldering iron. When placed on and connected to this stand, iron may be maintained at working temperature or through adjustment on bottom of stand af low or warm temperatures.


For descriptive liferalore write

## AMERICAN ELECTRICAL HEATER COMPANY DETROIT 2, MICh., U.S. A.



## SAVE THE DIFFERENCE

## with Rectox Selenium Rectifiers

The above graph shows, strikingly, the dollars and cents sawings possible with Rectox Selenium Rectifiers.

The reasoms?
High-voltage cells-24-volt d-c; 33-volt RMS compared to conventional 20 -volt d-c; 26-volt RMS-mean fewer cells per watt output. And since each plate stands more voltage, smaller, lighter stacks result.

An exclusive Westinghouse process of manufacture assures lowest rate of forward aging and constant, uniform cell performance.

Test the Rectox under your own conditions. 'Try a sample. Figure your own savings-in space... in weight... in dollars. Phone or write your local Westinghouse office for details. Westinghouse Electric Corporation, P. O. Box 868, Pittsburgh 30, Pennsylvania. J-21591
*
In a bridge circtrit, botal savings are the product of: the cells sated in series (due to 24 volts $d$-c per cell) times 4 (the mumber of arms in the bridge) times the number of cells in parallel in ezeb bridge arm. For example: A 4-5-3 convection cut to 4-4-3 by use of one fewer cell in series per arm means 1 saved $x 4 \times 3$ or 12 total cells saved.

 Rectifiers \& Chargers for
ALL INDUSTRIES

## with STEEL CABLE

- the small extra first cost of test samples pays off in assurance of efficiency and durability of the finished structure.



## with TRACING CLOTH . . .

 - the small extra first cost of Arkwright Tracing Cloth, over that of tracing paper, repays many times over in the efficiency and durability of valuable drawings.Lines drawn on Arkwright Tracing Cloth stand out with unusual clarity -a clarity that is permanent because Arkwright does not become opaque or brittle with age. Special mechanical processing, plus sturdy uniform threads expertly bonded, protect your investment through years of service. Perishable tracing paper cannot safely promise this.
Arkwright Tracing Cloths are preferred by foresighted drafting departments for every drawing worth keeping for future use. Send for generous samples. Sold by leading drawing material dealers everywhere. Arkwright Finishing Company, Providence, R. I.

[^6]

## ARKWRIGHT TRACINGCLOTHS

AMERICA'S STANDARD FOR OVER 25 YEARS
the principal parameters studied and displayed are type of gas, gas pressure, ion currents, arc currents and voltages and their space distributions, and the magnetic field intensity.

The contents are derived principally from technical reports issued by the Radiation Laboratory of the University of California during the progress of their work. Although these reports were not written with this volume in mind, skillful editing has created a creditable degree of unity and clarity. Three of the chapters were written specifically for this volume, the first aiding considerably the general orientation of the reader to this rather specialized subject.

Workers concerned with the problems of ion production by these means will find a great amount of valuable detailed information, even though the scope of the information is considerably less than the title suggests. This book suggests a number of problems for further investigation, and is therefore of interest to research workers looking for new problems. One of these problems of fundamental interest, to which reference is made throughout the book, is that of high-frequency oscillation of the plasma. The immediate aims of war-time development apparently excluded a study of this phenomenon at that time.

The several introductions to the book merit particular attention because they explain the aims of the National Nuclear Energy Series and the constraints applicable to the publication of such a great volume of material. These explanations allay to a great extent any criticism which might arise from judging this book by all of the conventional standards of technical publications.-WALTER E. Tolles, Airborne Instruments Laboratory, Mineola, New York.

## Radar Systems and Components

By Bell Telephone Laboratories Staff Members. D. Van Nostrand Co., New York, 1949, 1,042 pages, $\$ 7.50$.
Compilation of fifteen papers originally published in the Bell System Technical Journal, arranged in

# $T_{\text {his }}$ s whatet tothes <br> <br> to make good 

 <br> <br> to make good}
electronic equipment . . .


Welding aluminum by the inert arc method. Modern processes that save time and at the same time assure better construction. By these means savings are made and passed on in the form of high quality products.


Checking tolerances on production machined parts. Precision resting at every step of manufacturing to be sure each part meets specifications and will perform at top efficiency in the finished product.


Console Assembly. Skilled workmanship that is assured by having experienced employees, trained to build equipment just one way - the very best.


Taking performance data on an airborne navigation receiver. Final test of the complete product using the latest and best apparatus known. This assures the finest overall performance.

The Collins main plant in Cedar Rapids consists of modern structures containing 240,000 square feet of floor space. It is designed for the most efficient office, engineering and manufacturing operation. The Collins management, organization and facilities are devoted entirely to the de-


## DO YOU KNOW?

 -that a PILOT LIGHT CAN IMPROVE YOUR PRODUCT . . . . add attraction - safety - service?

- what lamp to use
- how to use it
- what it will do
- what it will cost

THIS MAY BE THE ONE Designed for low cost NE-51 Neon

- Built-in Resistor - Patented
- U/L Listed - Rugged

Catalogue Number 521308-997 for 110 or 220 volis.

SAMPLES
for design purpose NO CHARGE
NFW/ Write for the
NE $W_{\text {:"HANDBOOK OF PILOT LIGHTS." }}$
Write us on your design problems.


The DIAL LIGHT COMPANY of AMERICA
Foremost Manufacturer of Pilot Lights. 900 BROADWAY, NEW YORK 3, N. Y. TELEPHONE SPRING 7-1300



For Only \$650.

Never before a value like this new 2-KW bench model "Bombarder" or high frequency induction heater . . . for saving time and money in surface hardening, brazing, soldering, annealing and many other heat treating operations.

Simple . . . Easy to Operate . . .
Economical Standardization of
Unit Makes This New Low Price
Possible
This compact induction heater soves space, yet performs with high efficiency. Operates from 220-volt line. Complete with foot switch and one heoting coil made to customer's requirements. Send samples of work wanted. We will advise time cycle required for your particular job. Cost, complete, only $\$ 650$. Immediate delivery from stock.

Scientific Electric Electronic Heaters are made in the following range of Power: 1-2-3 $1 / 2-5-71 / 2-10-121 / 2-15-18-25$. 40-60-80-100-250KW.


Division of
" S " CORRUGATED QUENCHED gAP CO. 107 Monroe St., Garfield, N. J.

## (2) CAPACITORS

Silicone-the amazing new syntheticmade headlines when General Electric brought it out during the war. It's news again today-for G.E. has now made Silicone bushings and gaskets a standard feature of all its specialty capacitors up through 5000 volts.

This means that your new G-E capacitor is sealed positively, permanently-for maximum life. For Silicone seals by compres-
 sion alone, without the use of contaminating adhesives. It will never shrink, loosen or pull away-it remains elastic at any operating temperature a capacitor will ever meet. Moreover, it is impervious to oils, alkalies and acids, and its dielectric strength is permanently high.

This exclusive G-E feature-with the use of highest grade materials, with strictest quality control and individual testingmake General Electric capacitors finer and more dependable than ever before. Apparatus Dept., General Electric Company, Schenectady 5, N. Y.
 with capacitors $660-\mathrm{va}$ - , or $1500-\mathrm{vd} \mathrm{d}-\mathrm{c}$ and lower.


Silicone gaskets and plastic stand-offs used with capacitors rated $2000-\mathrm{v}$

## d-c and lower. <br> 



Silicone gaskets and porcelain stand-offs used with capacitors rated $2500-\mathrm{v}$ to $5000-\mathrm{v}$ d-c.

 concerns as well as large-as during the years from 1915 to 1940 before Camon Electric emerged as a "large company." Constantly adding to its products, today Cannon Electric ranks at the top of its particular industrial field, producing electric connectors, signal equipment, light specialities, automobile parts, etc. Still, the policy of its management is the same as during the "early days"-quality of product and conscientious service to its numerous direct customers and to thousands more who buy through radio parts jobbers and electrical wholesalers. These principles guide the company toward maintenance of good relations.

Main offices and factory, Cannon Electric Development Company, Division of Cannon Manufacturing Corporation, 3209 Humboldt Street, Los Angeles 31, California. Canadian offices and factory, Camon Electric Co. Ltd., Toronto.

Export: Frazar \& Hansen, San Francisco, Los Angeles and New York.
logical order. A comprehensive 22-page cross-index adds greatly to the reference value by speeding location of desired data. Though the individual articles were originally directed toward radar development, they today have broad application also in the field of microwave transmission and reception.

The opening 55 -page paper, Early Fire-Control Radars For Naval Vessels, covers the first $500-700-\mathrm{mc}$ radar, the CXAS radar and the Mark 1, 2, 3 and 4 radars. The next five papers deal with components, covering magnetrons, pulse modulator tubes, coil pulsers, spark gap switches and TR boxes. Two papers on circuitry follow, covering radar receivers and reflex oscillators. One paper deals with silicon crystal rectifiers, one with tubes for radar i-f amplifiers and one with radar antennas. Next comes a paper on microwave radar testing, followed by three final papers on various aspects of cavities.

All in all, the volume is a real contribution to the reference literature on radar and at the same time a good buy. Even for those who have a file of BSTJ the book is well worth getting, for the time saved in finding a desired topic.-J.m.

## Books Received for Review

TELEVISION SIMPLIFIED. By Milton S. Kiver. D. Van Nostrand Co. Inc, New York, 1950 , third edition, $\$ 6.50$. Chief adintercarrier sound systems and new material on color television.

RADIO OPERATOR'S LICENSE Q \& A MANUAL. By Milton Kaufman. John F . Rider Publisher, Inc., New York, 1949, 608 pages, $\$ 6.00$. Covers FCC questions on $\mathrm{f}-\mathrm{m}$, radio communication, television, fre-quency-shift keying, marine radar and loran.

ELECTRICAL MACHINERY. By Fred A Annett. McGraw-Hill Book Co., New York 1949, Third Edition, 458 pages, $\$ 3.75$. Four entire chapters of new material on elec-
tron tubes and circuits: Electrons and Electron Tubes, Electronic Rectifiers D-C Motor Speed Control; Flame-Failure Protection and Smoke-Density Indicators.

THE PROTECTION OF TRANSMISSION SYSTEMS AGAINST LIGHTNING By Walter W. Lewis. McGraw-Hill Book Co. New York, 1949, 418 pages, $\$ 8.00$. Though dealing specifically with power lines, many of the basic chapters are applicable to lightning problems of radio and television transmitting and receiving antennas.

PRACTICAL TELEVISION SERVICING \& TROUBLE SHOOTING MANUAL Coyne Electrical $\quad \& \quad$ Radio-Television School, Chicago, 1949,400 pages, $\$ 4.25$. and ultra-high frequencies. For servicemen. students and engineers who like to fix their own ty sets.


One of a series of advertisements showing Erie Resistor Custom Molded Plastics used in various industries.

Radio and television manufacturers depend on Erie Resistor for scores of parts in custom molded plastics... . from such basic units as one piece windows and frames to cabinets, dials, gauges, and control knobs. They have learned that Erie combines the beauty of quality molding with the economy of production know-how.



## TUBES AT WORK

(continued from page 120)
ceiver in much the same manner as three single-color picture tubes except that no optical superposing or registration means need be provided and deflection power need be provided for only one deflection yoke.

One experimental receiver demonstrated employed the three-gun tube and high-level sampling of the video signal. This receiver contains 46 tubes and consists essentially of a 27-tube black-and-white television receiver to which have been added 19 tubes for color synchronization, sampling and additional power supplies.

## Single-Gun Tube

Operation of the single-gun kinescope is analogous to the operation of the three-gun tube in that the beam from the single gun is magnetically rotated so that, in effect, it occupies, in time sequence, the three positions of the three guns in the three-gun kinescope. When the beam is in a position corresponding to the green gun of the three-gun kinescope it excites only the green phosphor dots and is at this particular time modulated only by the green component of the video signal. A short time later the beam has been rotated to a position corresponding to the red gun of the three-gun kinescope and is modulated by the red component of the video signal to excite red phosphor dots. A third position similarly produces the blue picture. Sampling is automatically provided by rotating the beam synchronously at sampling frequency.

The experimental receiver employing the single-gun tube utilizes 37 tubes and consists essentially of a 27-tube black-and-white television receiver to which have been added 10 tubes for color synchronization, beam rotation and additional power supplies.

A block diagram of the principles of the circuit arrangement employed in the receiver utilizing the three-gun tri-color kinescope is shown. Video signal from a conventional black-and-white television receiver is applied simultaneously to the three internally-connected control grids of the three-gun kinescope. Another signal, derived


## CARBOLOY COMPANY

 announces
# Special Metals Division to produce C-E ALNICO 

AL of Carboloy Company's experience, technical "know-how", and applicable facilities are being made available for mass production of Alnico permanent magnets. The pioneer in the development of cemented
carbides, Carboloy Company, welcomes this addition to its line of special metals.

It is anticipated that the streamlining and conversion of necessary facilities will be completed at an early date.

$$
100 K \text { to } \mathrm{CA} A B B P 1 \odot Y
$$


from the video amplifier, is used to actuate an automatic color phasing and sampling synchronization circuit which produces a local 3.58 -mc sampling wave. The latter is applied through an amplifier tube and appropriate delay lines to three gating tubes which supply three sampling pulses, differing in phase by 120 degrees at $3.58-\mathrm{mc}$, to the three cathodes of the kinescope. Thus, each gun is turned on in time sequence corresponding to the original sampling process at the transmitter and the beam current from each gun excites only one of the three phosphor colors.

The tuning adjustment in the plate circuit of the $3.58-\mathrm{mc}$ samp-ling-signal amplifier permits fine adjustment of the overall color phasing. However, proper color phasing is essentially determined by permanently installed delay lines which are cut to proper length.

The front-panel operating controls are the same for color as for black-and-white operation. Individual service adjustment controls are provided in the cathode circuits of the three guns to permit initial equalization of the control characteristics of the three guns.

The deflection circuitry is conventional but minor changes in de-flection-tube types have been made to supply additional deflection power occasioned by the increased kinescope second-anode potential of 18 kv . The deflection yoke is of the anastigmatic type and has an internal diameter of two inches to accommodate the converging beams.

## Convergence

Registration in the three-gun tube is accomplished by the proper registration of the masking apertures with their corresponding groups of phosphor dots. Means are also provided to converge the three beams to the same point on the phosphor screen during scanning. This is done for the undeflected beams by a convergence electrode, operated at 9,000 volts, and, when necessary, by small correcting magnets set up initially as a permanent service adjustment when the tube is installed. Because of the essentially flat face of the phosphor screen, simple geometrical considerations show that slightly


Multi-installation of PT6 Magnecorders

The Talk of the Shoms! THE NEW PT-7 SERIES

3 Heads (erase, record, playback for monitoring from tape) in single housing, yet separately alignable, replaceable. New positive drive. 2 speed hysteresis synchronous motor. Pushbutton controls can be remotely operated. Uses 7 " or $10 \frac{1}{2}$ " N.A.B. reels. 3 channel portable amplifier has high-level mixing.


Mlaquecorder for every purpose . . . every purse!


PT63-A to MONITOR YOUR MAGNECORDINGS Three separate heads - erase, record, and playback for monitoring from tape - prevent recording errors. Same high fidelity and flexibility as the Magnecorder PT6-A - the world's most widely used professional tape recorder. New PT63-J Amplifier has separate playback and recording amplifiers to monitor from the tape. Includes 10 watt audio amplifier which also will drive external speaker.


Tlagneco
m


less convergence is desirable as the beam is deflected from center. This dynamic convergence is accomplished by deriving a voltage from vertical and horizontal deflection circuits of the receiver and applying it to the convergence electrode through a capacitor.

An r-f type anode voltage supply provides a potential of 18 kv for the kinescope final anode, 9 kv for the electrostatic converging electrode and approximately 3.5 kv for the parallel-connected first anodes which produce initial electronbeam focus.

## Single-Gun Receiver

A block diagram of the principles of the circuit arrangement employed in the receiver utilizing the single-gun picture tube is also shown. Video signal from the output of the video amplifier of a conventional black-and-white television receiver is applied to the control grid of the single-gun kinescope in the conventional manner. As in the previous receiver, another signal from the video amplifier actuates an automatic color phasing and sampling synchronization circuit which produces a local $3.58-\mathrm{mc}$ signal which is locked in step with the transmitter sampler.

Circular deflection of the beam, which produces sampling automatically, is provided by a small deflection yoke having two sets of coil which are fed with quadrature currents at sampling frequency to produce a rotating field. Service adjustment of color phasing is provided by mechanical positioning of this yoke. The amplitude of the circular deflection is adjusted to produce the proper convergence angle as required by the mask and phosphor-dot screen.

The duration of the sampling period is controlled by a signal having a frequency three times the sampling frequency which is injected into the kinescope cathode circuit. The amplitude and phase of this $10.74-\mathrm{mc}$ signal are determined by the alignment of a filter circuit which utilizes the third harmonic of the circular-deflection driver tube.

As in the receiver for the threegun tube, the front panel controls of the single-gun set are the same

## SPECIFY CORNING

## For Economical, Trouble-Free Design and Assembly

Here is a positive solution to your high frequency inductance problems-Corning Metallized Glass Inductances. For F.M. and television applications, they offer a new standard of quality, versatility and economy.

Corning Metallized Glass Inductances combine specially selected glass forms with fired-on conductors to give remarkably high temperature stability and low loss. This means you are assured of negligible drift characteristics, even under unusual temperature changes. In many instances, the use of stable Corning Metallized Inductances eliminates the need of including additional stabilizing components in the circuit. Being precision made, every Corning inductance of a given type can be duplicated within very close tolerances in any quantity.
Easy and convenient to use, Corning inductances can stand repeated handling during production assembly. They are readily installed by conventional soldering methods or grommet mounting techniques. The tin electroplated surface facilitates soldering and minimizes oxidation. Low initial cost, accuracy, ease of instailation and durability contribute to production economy.

Corning inductances can be designed to fit your most exacting high frequency inductance requirements. They can be obtained as fixed tuned, permeability tuned or permeability tuned induc-tance-trimmer combinations. Uniform variable or double pitch windings are easily supplied. Let Corning engineers help solveyour inductance problems. They will be glad to discuss them with you.

HEREAREAFEW
OF THE UNLIMITED DESIGN POSSIBILITIES


Corning Metallized Inductances are superior in every way for high frequency applications. Their electrical characteristics include low temperature coefficients, high $Q$ and high stability. The smooth glass wall insures noiseless tuning and fine adjusting screws permil rapid and accurate alignment.

## CORNING GLASS WORKS

ELECTRONIC SALES DEPARTMENT Electrical Products Division CORNING, N. Y. Porning meant restearch in Gruss

## Timing Ideas DO SOMETHING! -



That's what this versatile interval timer by Haydon ${ }^{(8)}$ says when its buzzer sounds off. This audible signal - at cycle completion - sounds continuously until manually turned off. The unit is driven by a dependable Haydon synchronous motor; is built to give constant, efficient service over thousands of cycles.

## FEATURES? LOTS OF THEM!

1. Many intervals available with a wide range of motor speeds and minor variations in design. 2. Optional buzzer for audible signal at completion of cycle; sounds continuously until manually turned off.
2. Load contact ratings: 10A, $250 \mathrm{VAC} ; 1 / 2 \mathrm{HP}$, 250 VAC. 4. Unusually compact design; 3-53/64" $\times 2-55 / 64^{\prime \prime} \times 1-25 / 32^{\prime \prime}$. 5. Snap action device for quick break. 6. Operates at peak efficiency in any mounting position. 7. Designed for use in tight spaces.

## ALL HAYDON TIMERS GIVE YOU

these features of the dependable Haydon motor Total enclosure - Very small size - Slow ( 450 rpm) rotor for long life, quiet operation-Controlled lubrication with separate systems for rotor and gear train - Mounting and operation in any position.

```
(T) TRADE MARK REG. U. S. PAT. OFF.
```

For complete design and engineering specifications, write for catalog: Timing Motors No. 322 - Timers No. 323 - Clock Movements No. 324. Yours without obligation.


## HAYDON <br> AT TORRINGTON

## HEADQUARTERS FOR

TIMING

HAYDON Manufacturing Co., Inc.
2430 ELM STREET

TORRINGTON, CONNECTICUT
subsidiary of GENERAL TIME corporation
as those used in a conventional black-and-white receiver. Because a single gun is used in this kinescope, color balance may be achieved by proper deposition of the phosphor dots. The deflection circuitry and deflection yoke are the same as those employed in the three-gun receiver.

The electron gun which is emp'oyed is the same as that used in the projection type 5TP4. Potentials of 18 kv for the final anode and 2.7 kv for the electrostatic focus electrode are derived from the kickback voltage on the horizontal-deflection output transformer just as in conventional black-and-white receivers.

Convergence of the circularly deflected beam is produced by a magnetic lens in the single-gun kinescope instead of the electrostatic method employed in the three-gun version. A coil similar to the focus coil normally employed in conventional black-and-white receivers is used for this purpose. The dynamic convergence variation is likewise applied magnetically in this tube and is introduced by means of a smaller auxiliary coil located near the main convergence coil. As in the previous receiver, the dynamic convergence waveforms are derived from the deflection circuits.

Both tube types are fabricated in 16 -inch metal cones and produce pictures approximately 9 by 12 inches.

## Circuits of Phonevision System

Phonevision is a method of applying secrecy to a television transmission so that the modified signal from a conventional transmitter can be received as a clear, intelligible picture only on a receiver supplied with a correcting signal over a secondary control link.

One method of incorporating secrecy or privacy in a video signal is to modify the original signal by producing a deliberate change in the relation of video and horizontal or vertical synchronizing signals. In this case, a key signal is sent to the television receiver via a second


- There is no variation in quality or high performance characteristics among the million of $\mathbf{H I - Q}$ Components manufactured every month. Strict production control, engineering watchfulness and individual testing of every single unit guarantee that each of them maintains the uniform precision standards for which HI-Q has long been noted. This never failing dependability is just one of many reasons why you will find $\mathbf{H I}-\mathbf{Q}$ Components the best that you can use.

The new HI-Q Datalog is now ready. You are invited to write for a copy.

JOBBERS-ADDRESS: 740 Belleville Ave., New Bedford, Mass.

## Electrical Reactance Corp. <br> FRANKLINVILLE, N. Y.

## VARIAN MICROWAVE ENGINEERING



TWO NEW WAVEGUIDE-OUTPUT REFLEX KLYSTRONS
Varian engineered to tune over the frequency range from 8,100 to 17,500 megacycles. These tubes are designed for transmitter service, for use as local oscillators and bench oscillators as a power source for measurements. The tubes are small, light and sturdily built. Flanges with mica windows bolt directly to the waveguide with a lapped surface to avoid reflections and leakage. Special grid techniques increase efficiency, reduce microphonics. A single screw tuner covers the entire broad tuning range.


Electrical Characteristics

Beam Voltage<br>Beam Current<br>Heater Voltage<br>Heater Current<br>Reflector Voltage<br>Tuning Range<br>Power Output

## X-13

500 volts, max
60 ma, max
6.3 volts
1.1 amp

0 to -1000 volts
$8,100-12,400 \mathrm{mc}$ min
100 milliwatts, min with transformer

X-12
600 volts, max
60 ma, max
6.3 volts
1.1 amp

0 to - 1000 volts
$12,400-17,500 \mathrm{mc}$ min
10 to 100 milliwatts
Mechanical Specifications

Cathode
Clearance dimensions
Welght
Output Flange

Cooling

Mounting position

Typical Operation
Frequency
Beam Voltage
Beam Current
Reflector Voltage
Power Output
Load VSWR
Bandwidth
Temperature
Temperature

Oxide coated, unipotential $31 / 2 \times 21 / 2 \times 21 / 2$ in
6 ounces
Mates with standard flange for $1 \times 1 / 2 \times 0.050 \mathrm{in}$, waveguide
Forced air cooling required ceeding 10 watts Any

Oxide coated unipotential $31 / 2 \times 21 / 2 \times 21 / 2$ in
$31,2 \times 21 / 2$
5 ounces
Mates with standard flange for $0.702 \times 0.391 \times 0.040$ in. waveguide
Forced air cooling required for beam power inputs Any

Not illustrated, X-21 klystron. Five-watt two-cavity oscillator. Weight approximately $41 / 2$ ounces. Specifications upon request. 99 washington st.
associates


Television picture without Phonevision coder
path to inform the set when this change is to occur so that a correction may be made for it.
In the Phonevision system developed by Zenith engineers, the video information is shifted at times with respect to the horizontal synchronizing pulses. The shift introduced amounts to a small percent of the horizontal period. The picture is therefore transmitted in either of two modes in one of which the video information appears normally phased with respect to the horizontal synchronizing pulses, while in the other a phase shift is introduced between the video and horizontal synchronizing pulse.

Change from mode to mode is made at a random sub-field rate. For example, for three or four fields the picture may be transmitted with a phase shift between video and synchronizing signals followed by two fields with normal phase relation. The changing between modes is entirely random and is determined by a noise source so as to give the system secrecy. The resulting scrambled picture with this type of transmission is one in which the image is moving back and forth


Same picture with coder

# SAVES WEIGHT... <br> SAVES SPACE... <br> <br> SAVES WORKING TIME... 

 <br> <br> SAVES WORKING TIME...}
...for compact equipment assemblies
Kodapak Sheet . . . As a laminate or in sheets, it is light, compact, and easy to work with when used as protecting liners in switch and transformer cases. As a laminate, it increases the dielectric strength of paper for motor slots, liners, and other electrical uses. In heavy sheets, it can be used as layer insulation, separators, and protecting covers in coils and transformers. In thin sheets, it has uses as the dielectric in telephone, radio, and ballast-starter equipment.

. . . for compact coil windings
Kodapak Sheet... Makes a smooth, tough, easy-working base for windings. It forms, folds, and stretches easily without kinking... is quick and easy to apply by hand or automatic machine. Completely homogeneous, it is free from conducting particles.

## Rodapalk Sheet

...for efficient insulation 'Kodapok' is a trade-mark

[^7]

## because exclusive "componentmatchingef prevents failures

The sure way to avoid trouble due to resistor failure is to use the resistor with the matched components.
Ward Leonard alone makes-not just assembles-all the components of a resistor. (Wire is drawn to Ward Leonard specifications.) This means that all components are balanced in respect to thermal coefficient of expansion and other factors affecting service life. No loosening, no failure-because all parts react the same to their "environment."
Write for bulletin on Vitrohm Resistors, ward leonard electric co., 31 South Street, Mount Vernod, N. Y. Offices in principal cities of U. S. and Canada.
horizontally at a slow irregular rate, producing an annoying blurred effect.

The change between modes is accomplished during the vertical blank period, thereby giving all circuits adequate time to stabilize. Accompanying one of the two modes of transmission is a key signal which consists merely of a tone of any frequency substantially higher than the field frequency. This key signal is sent via a secondary link to the Phonevision receiver.

At the Phonevision receiver the key information is used to cause circuits to compensate for the phase shift introduced between video and horizontal synchronizing pulses. Therefore, when the video is being sent out, shifted with respect to the horizontal synchronizing pulses, the start of the horizontal sweep in the receiver is correspondingly changed. Absence of the key signal indicates normal phase between the video and the horizontal synchronizing pulses.

## Transmitter

As shown in the block diagram, Fig. 1, a typical transmitter consists of a normal crystal oscillator stage, followed by r-f amplifiers, multipliers and modulator. The studio consists of some type of pickup tube, an iconoscope or equivalent. The heart of the studio gear is the synchronizing signal generator in which the sync pulses, both horizontal and vertical, and blanking pulses, are generated. Vertical sync pulses are supplied to the vertical sweep circuits directly with no change in this portion of the circuit. However, the horizontal sync pulses, instead of being fed directly into horizontal sweep-forming cir-


FIG. 1-Block diagram of typical Phonevision transmitter


# Donít draw itPhotogriaph it! 



## FairchildPolaroid Oscilloscope Camera

Fairchild now offers an inexpensive oscilloscope camera that gives you accurate photographic records of waveshapes in almost as little time as it takes to sketch them from memory. Only one minute after the shutter is snapped, a print is ready to mount in your notebook. This permits you to evaluate oscilloscope "stills" immediately and then proceed with laboratory work.

The 3\% x $4^{1 / 4}$ print is small enough to mount casily in a notebook or on a dala sheet, large enough for accurate evaluation. Each print records two traces to facilitate comparison runs and cut film costs in hallf. Operation is simple - no focusing, no darkroom processing. You just snap the shatter and remove the print from the back of the camera.

The complete Fairchild-Polaroid Oscilloscope Camera consists of a scope adapter to fit any five-inch oscilloscope, a lighi-tight hood with viewing port, and a Poluroid-Land Camera hody with special lens and two-position shift derice.

Write today for complete details and prices on the ready-to-use F -284 Oscilloscope Camera kit including camera,
$31 / 4 \times 41 / 4$ Print is ready to mount on data sheet a minute after the shutter is snapped
carrsing case, and Polaroid film. Fairchild Camera and Instrument Corp., 88-06 Van Wyck Blod., Jamaica 1, N. Y. Distributors: Tektroni.. Inc., Portland, Oregon; Electronic Tube Corp., Philadelphiat, Pa.

## Specifications

Lens - Special $75 \mathrm{~mm} . \mathrm{f} / 2.8$ Wollensak Oscillo-anastigmat.
Shutter - Wollensak Alphax; speeds $1 / 25$ sec. to $1 / 100$ sec., "time," and "bulb."
Fosus - Fixed (approx. 8 in.).
Picture Size $-31 / 4 \times 4^{1 / 4} \mathrm{in}$. (2 images per print; 16 exposures per roll of film).
Image Size - Onehalf reduction of scope image.
Writing Speed—to $1 \mathrm{in} / \mu$ sec at 3000 V accelerating potential; higher speeds at higher voltages.
Dimensions - Camera, $101 / 2 \times 51 / 4 \times 61 / 4$ in.; hood, 11 in. length, $71 / 2 \mathrm{in}$. dia.; adapter, 2 in. width, $6 \frac{5}{8}$ in. max. dia. Weight - Complete, $73 / 4 \mathrm{lb}$.
cuits, pass through a new unit which forms jittered sync pulses, the Phonevision coder.

The output of the iconoscope is fed into a head amplifier in which mixing of video signals, plus the shading signal, is accomplished. The output of the head amplifier is fed into the jittered blank unit after which the signal passes to the mixer where steady blanks are added. At this point, control is also maintained over contrast and background setting. Synchronizing and blank generators also supply the composite sync signal to the video amplifier where the video signal from the iconoscope, plus the blanks, are mixed with the composite sync waveform. The entire composite video signal is then fed to the modulator. Also generated by the Phonevision coder is the key signal which is applied to the secondary control link and distributed to Phonevision subscribers.

## Coder

Figure 2 is a block diagram of a typical coder unit comprising four primary sections as indicated by the dotted lines. In the first section is the random key generator, the heart of the Phonevision system as far as secrecy is concerned. Input to this portion of the unit consists of a normal vertical drive which is fed through an isolation stage and phase control to a blocking oscillator circuit. Combined with


FIG. 2-Setup of stages in the four main sections of the coder unit for the transmitter

## ANTENNA PROBLEM

## FM•TV•MOBILE PORTABLE CUSTOM DESIGNS TO YOUR SPECIFICATIONS

WARD - oldest and most experienced maker of special antennas - has the facilities and know-how to engineer the answer to any special antenna problem. WARD - having developed hundreds and hundreds of special antennas - has more experience in this line than all orhers in the industry combined. Whether your aerial problem involves 1 or 10,000 special antennas, WARD is interested and equipped to help you solve it. Just phone or wire the SPP Dept., Cleveland.

...has these outstanding features:

- Wide voltage range-from . 001 Volt to 100 Volts
- Large, easy-to-read illuminated meter scale
- All readings may be made on only one meter scale
- Frequency range- 10 cycles to 250 kc
- High input impedance; cathode follower input provides effective inpul capacity as low as 6 mmfd
- Decibel range-meter scale 0-20 DB. Multiplier control provides four additional ranges of 20 DB
- $\pm 2 \%$ accuracy over entire frequency range
- Output jack and separate volume control for using Voltmeter as widerange, high-gain amplifier
- High stability circuit with internal regulated power supply to make readings independent of normal power line variations
- Speed and accuracy of measurement assures ease of operation

Write for complete information
Dept. E-2

TUBES AT WORK
the vertical pulse is the output of a noise generator. Combination of these two signals results in a pulse from the blocking oscillator occurring at random but only at the time of the vertical synchronizing signal.

By adjusting the noise signal by means of the limiter, the blocking oscillator can be made to operate between 60 and 20 times per second. Alternate signals from the blocking oscillator produce square-wave control signals by means of a multivibrator. The square wave in turn keys an oscillator operating at the key signal carrier frequency. The output from this oscillator is shaped in an amplifying stage to have a rise time of approximately twothirds of a field period and is then distributed through the secondary control link.

## Camera Drive

The output of the key oscillator is also fed to the second section of the coder which generates the coded horizontal drive used by the cameras, monitors and shading generators. The oscillator signal is combined with the vertical pulse in a gating circuit which in turn determines the points of transition of a single-trip multivibrator.

The vertical pulses out of the gate circuit are positive when the key signal is applied and negative in absence of the key. Application of the positive and negative pulses to one of the control grids of the single-trip multivibrator causes a change in mode of operation at the time of the first vertical pulse present with the key and the first vertical pulse after the key has been turned off.
A normal horizontal drive pulse is fed into the coded horizontal drive generator through a phasing circuit which produces a pulse shifted in phase with respect to the normal horizontal synchronizing pulse. A blocking oscillator triggered by the shifted pulse drives a long line having a delay equal to the time change desired in the video.

An electronic switch chooses either the pulse from the input or from the output of the delay line as directed by the single-trip multivibrator and in this way produces the coded horizontal drive.

The horizontal shift in the video



## Precision Performance makes the difference

The ability of a crystal to maintain its close tolerance and operating efficiency under difficult operating conditions is the real test of quality. Illus. trated above are a few of the many types of CLSTOM BUILT Reeves-Hoffman crystals which have passed the quality test.
Whatever your particular requirements may be, the facilities and persounel at Reeves-Hoffman are available to develop and to mass produce the CLSTOM BUILT crystals you need. Feel free to contact us at any time... send along the details of your circuit.

## REEVES $\frac{\cdot \frac{1}{3}}{3 \mid n}$ HOFFMAN

## CORPORATION

Cherry and North Streets $\bullet$ Carlisle, Penna.
Representatives: NEW YORK - BALTIMORE - BUFFALO - CHICAGO - KANSAS CITY


FIG. 3-A decoder is added to a normal receiver
is obtained by using time normally required for the horizontal blank pulse. This calls for a revised horizontal blanking signal of less width. The new blanks are generated in the third unit of the coder by feeding horizontal pulses from the output of the delay line through an isolation amplifier to a single-trip multivibrator.

Normal vertical blanking signals and the output of the single-trip multivibrator which forms the horizontal blank are mixed in the blanking mixer and then amplified and clipped and made ready for distribution through a cathode follower.

An additional requirement, that of coded blank insertion, is taken care of in the fourth section of the adapter. The output of the coded horizontal drive generator triggers a single-trip multivibrator by means of which coded blanks are obtained. Both polarities of the blank wave form are combined in two tubes having a common load impedance. Video from the camera chain is applied to the blank inserter and mixed with the coded blank.

The second section of the blank inserter adjusts the blank level, maintaining this level approximately at the average video point. After insertion of the coded blank the signal is distributed to the usual mixers through a cathode follower.

## Receiver

A Phonevision receiver circuit, shown in Fig. 3, consists of the normal stages plus a decoder. The video detector is followed by the sync pulse separating circuit. The vertical pulse is separated in normal fashion and actuates the vertical sweep of the picture tube. The separated horizontal sync pulse is

## another M|XIIIT First...



$\square$Pisture tube sizes for television hawe been paced by Du Mont for the past decade. And again it s Du Mont with the rectangular tube in the size the public wants - a rectangular with screen area (150 sq. in.) comparable with the round sixteen-inch tube. There is no need to sacrifice picture size to incorporate the advantages of the rectangular tube. This latest Teletron* leatures the exclusive Du Mont-designed Bent Gun for the sharpest focus and longest life free from ion spot blemishes. For that extra sales appeal, incorporate this newest Du Mont design in your receiver. Write for complete specifications.

GENERAL SPECIFICATIONS . . .
Overall length ...................
Greatest dimension of bulb............ …….............. $185 / 8^{\prime \prime}$
Minimum uselul screen diagonal .....................151/2"
Base .................................................................. 5 pin

Anode voltage
Grid No. 2 voltage
Focusing coil current Recessed small cavity cap 12,000 volts DC 300 volts DC
Grid No. 1 circuit resistance ........ 115 mprox. ma. mC
first with the finest in tV tubes

ALLEN B. DU MONT LABORATORIES, INC. - TUBE DIVISION • CLIFTON, N. J.


In the field of electronics and the electrical goods industry, MOSINEE stands for paper-base processing materials with scientifically controlled chemical and physical properties, high quality standards and dependable uniformity ... with good dielectric strength, high tensile or tear strength; proper softness or stiffness; creped with controlled stretch or flexibility; specified pH for maximum-minimum acidity or alkalinity: accurate caliper, density, liquid repellency or absorbency . . . or other technical characteristics vital to your quality standards and production requirements.

MOSINEE PAPER MILLS COMPANY•MOSINEE, WIS. 



FIG. 4-Stages of the decoder unit at the receiver
fed into a decoder unit. This unit, actuated by the key signal coming over the secondary link to the receiver, applies a correction to the horizontal sync pulse which triggers the horizontal sweep circuit.

A block diagram of a typical decoder unit is shown in Fig. 4. Since the level of the key signal from the control link is approximately 50 millivolts, the decoder is preceded by a stage of gain. A gating circuit combines the key information with the vertical pulse obtained from the television receiver to trigger a square-wave generator. The gating circuit and square-wave generator have the unique property of being able to detect the first vertical pulse in presence of key and the first vertical pulse in absence of key. Thus the square-wave generator will change modes of operation as dictated by the key information and will at the same time be synchronized with the transmitted vertical sync signals. The resulting square wave controls the phase of pulses obtained from the normal horizontal sync circuits of the receiver and thereby controls the drive to the horizontal sweep of the picture tube. Proper amount of phase shift controlled by the key corrects for the phase shift originally inserted in the transmitter by the coder.

A blanking circuit is also provided which is controlled by the coded horizontal pulses and restores the blanking interval to normal width.

## Distribution of Key Signal

The method of distribution of the key or decoding signal in the Phonevision system is to superimpose it upon the regular telephone line of a customer. Since the key signal required needs only about 120 cycles


Simple, dependable on-off switching is a must with many products . . . and generally, the shortest distance between the problem and the solution is a Honeywell Mercury Switch.
Honeywell Mercury Switches are tiny and compact . . . are adaptable to unusual mountings. They operate at low angles . . . have no moving parts . . . are sealed against dust, gas and corrosion. Fouled contact points cannot occur.


The complete line is at your command . . offering greater latitude in product design, with improved performance and trouble-free operation. Write for a copy of new Catalog 1343 for down-to-earth information . . . or call in your local Honeywell engineer for a detailed discussion of a particular application.

MINNEAPOLIS-HONEYWELL REGULATORCO.
INDUSTRIAL DIVISION
4428 Wayne Ave., Philadelphia 44, Pa,
Offices in 73 principal cities of the United States, Canada and throughout the world


Hönè

specify fastenings from
fastening specialists



Slotted or Pbillips bead machine screws, wood screws, stove bolts, lapping screws, special beaded products; nuts, rivets, chaplets, wire forms, screw machine products . . . in steel, stainless steel, copper, brass, bronze, everdur, nickel, nickel silver, monel, alumimum

THE BLAKE \& JOHNSON COMPANY, WATERVILLE 48, CONN.

Please send me your new catalog containing full data on the complete line of Blake \& Johason fastenings.


Title
Company
Address

TUBES AT WORK
of spectrum space, it can be added immediately above the normal voice band. The attenuation at this frequency in the usual telephone subscriber plant is well within the limits required to permit sensing the decoding signal at the customer's home. Frequency separation networks of simple type have been produced to do this with low insertion loss. This is one possible means of extending the decoding signal to the user.

## Time Scale for Watches

A German inventor claims he has developed a new electric-acoustic apparatus enabling watchmakers to set the speed of watches within three minutes, a job which normally takes 24 hours. A control watch and the customer's watch are fastened to microphones which feed their strokes into the headphones of


Speed of watch strokes are checked by $a$ technician
the watchmaker who hears if there is any defect.

As soon as the strokes of the watches coincide, the pointer on the meter scale starts to move. It stops when the strokes coincide again and the watchmaker then can read how many minutes the customer's watch is slow or fast. The instrument was invented and is being made by Alfred Drieselmann of Hamburg - Rahlstedt, Schwerinerstrasse. It costs about $\$ 600$. A girl mechanic is operating the machine shown in the photograph.

## ph <br> P <br> 

## "PRODUCTS OF EXTENSVE PESEARCH

## TRANSFORMERS \& INSTRUMENTS



NO. 1010 CDMPARISOY BRIDGE RAPIC TV PARTS TEST


NO. 1030 LOW FRECUENCY " $Q$ " NDICATOR


NO. II4E NULL DETECTOR AMPLIFIER MO[EEL


NO. 1180 A.C. SLPPLY
. 1 VO_T TO 100 VOLTS AT 60 CYCLES


NO. 1170 D.C. POWER SUPPLY DIRECT CURRENT UP TO 500 MA

## NO. 1110 INCREMENTAL inductance bridge



FOR ACCURATE TESTING DF CONPNIJNICATION AND TELEVISION COMPORENTS UADER LOAD CONDITIONS.

Designed for measuring the inductance of Iron Core components for fequencies mp to 100 CO cycles. Inductors am be measured with superimposed direct current. Ideal instrumen: for manufacturens and users of iron core components for commurications and television.
Accuracy 1\%
Inductance Fange 1 millihenry to 10,000 [fy.
Maximum current 1 Amp DC.
Recommended accessories:
AC Supply \#1180
DC Supply \#11:0
Null Detector $\ddagger=140$ or
Vacuum Tube Voltmeter \& Null Detectrr \#1210


HI FIDELITY 1/2 DB 20-30.000 CYCLES


TOROIDAL INDUCTORS 60 CFS TO I MC.


POWER TZANSFORMERS COMMERこJAL QUALITY


HERMETICA LY SEALED TO MEET MIL-T-27 SPECS.


SUB MIIIIATURE
HERMETI Sf.LLY SEALED TRANSFORMERS

SEND FOR LATEST CATALOG!
FREED TRANSFORMER CO., INC. DEPT. JE 1718-36 WEIRFIELD ST., (RIDGEWOOD) BROOKLYN 27, NEW YORK

## unm RECORDERS

Records are produced by a heated writing stylus in contact with heat sensitive paper. The paper is pulled over a sharp edge in the paper drive mechanism (standard speed $25 \mathrm{~mm} / \mathrm{sec}$., slower available) and the stylus wipes along this edge as it swings, thus producing records in true rectangular coordinates. The writing arm is driven by a D'Arsonval moving coil Galvanometer with an extremely high torque movement ( 200,000 dyne cms per cm deflection).
This recorder assembly may be obtained in bare chassis form, as illustrated ( 51.600 ) with or without built-in timer; or, with the addition controls, and control panel (127); or, with the entire assembly, controls and control pane. enclosed in a mahogany carrying case (127C). Complete catalog available, see below.


## SIIGLE no rectangular COORDINATES PERMANENT RECORDS

## instrument AMP/F|ERS

A general purpose, A.C. operated driver amplifier for use with model 127 Recorder comprising three direct coupled push-pull stages. Maximum sensitivity 50 mv . per cm . minimum sensitivity 50 volts per cm., with four intermediate ranges. Balanced input terminals available wirh impedances of 5 megohms to ground. Complete information in catalog shown below.


## AMPIIIER-RECORDERS

Model shown at right is a single channel unit comprising above Amplifier 126 and Recorder 127, contained in one mahogany carrying case, and designed for use in the industrial field as a direct writing vacuum tube recording voltmeter capable of reproducing any electrical phenomena from the order of a few millivolts to more than 200 volts. More complete data in catalog shown below.


At lower right is a typical "Poly-Viso" multiple channel direct writing Recorder and Amplifier in console. Numerous combinations of this and accessories are available. The Multi-channel Recorder (Model 165) provides for the simultaneous registration of up to four input phenomena, using the same principles and method as for the Recorder Assembly above. In addtion, the "Poly-Viso" Recorder provides a selection of eight paper speeds: $50,25,10,5$, $2.5,1.0,0.5$ and $0.25 \mathrm{~mm} / \mathrm{sec}$, and for the use of 4, 2, or 1 channel recording Permapaper. The Amplifier equipment is housed in a rack which has space for four individual driver amplifiers (electrically identical to model 126, above) and one 4 -channel preamplifier.


For complete catalog giving tables of constants, sizes and weights, illustrations, general description, and prices, address:


Sankorn Recorders and Amplifiers have evolved from those originaly de. signed by Samborn Company for use in electrocardiographs, and haye, by actual practice. proven to have wide apprications in the industrial field as well.

THE ELECTRON ART
(continued from p 124)


FIG. 1-Basic circuit of a well-known resistance-funed oscillator to which bandspreading will be added
frequency at which the 6J7 grid voltage is in phase with the 6F6 plate voltage. The Wien bridge network, $R_{1} C_{1} R_{2} C_{n}$, determines the frequency at which these two voltages are in phase. The frequency is made smoothly variable through the use of a standard type of ganged variable air capacitor for $C_{1}$ and $C_{2}$. Each of these consists of two sections of a four-gang capacitor, with a maximum capacitance of $525 \mu \mu \mathrm{f}$ per section.

Trimmers are used across $C_{1}$ and $C_{z}$ for the purpose of calibration and maintenance of a constant amplitude of oscillation.
In modifying the oscillator, the most desirable method is to remove the original bandswitch, together with the tuning resistors assembled on it, and substitute another switch having the desired number of positions and circuits. The original resistors, or preferably new ones, are then assembled onto the switch together with the extra components for the bandspread ranges. Additional tuning scales may then be placed on the frequency dial, or a new dial substituted.

## Bandspread Computations

In the original tuning circuit of the oscillator, all of the tuning component values are specified in the manufacturer's instruction book except the $\Delta C$ of the tuning capacitor, and the minimum capacitance, $C_{\mathrm{m} 1 \mathrm{n}}$, across $C_{1}$ and $C_{2}$ each when the tuning capacitor is set to the highfrequency end of the dial. The values of $\Delta C$ and $C_{\text {min }}$ are obtainable by simple calculation: $C_{\text {min }}=86$ $\mu \mu \mathrm{f}$ and $\Delta C=1,019 \mu \mu \mathrm{f}$. Values of components for any desired bandspread range may now be readily calculated.

Example: Calculate a tuning cir-

VITROTEX - the "live wire" for

## Glass keeps it "live"

What's the secret of its heat-resistant success?

Just this! Vitrotex*, unlike ordinary magnet wire, is covered with alkali-free, flexible, fibrous glass insulation -bonded with a special, high-temperature varnish. This protects windings against hot
 spots as high as 130 C.... provides high flexibility, excellent heat conductivity and an amazing space factor ... plus high dielectric strength.

The smooth surface of Vitrotex surcessfully resists abrasion, moisture, acids, oils and corrosive vapors . . . and its tightly wound coils provide safer operation in confined areas under high heat.

Contact your nearest Anaconda Sales Office or Distributor for information on Vitrotex and the entire line of Anaconda Magnet Wire. Anaconda Wire \& Cable Company, 25 Broadway, New York 4, New York, or 20 N . Wacker Drive, Chicago 6, Illinois.

# the right wire for the job <br> (B) 



You can't beat the properties of Tefion when you're looking for hf and uhf insulators... and you'll never find more perfectly fabricated Teflon parts than those made by "John Crane".

Tefion insulators combine low dielectric constant, low loss factor, high heat resistance, toughness and resiliency.

As pioneers in the fabrication of Tefion products, we can fill your requirements. Scores of "John Crane" insulating spacers, connectors, beads, etc. are in use throughout the world on installations such as coaxial cables and radar units.
"f you need Teflon insulators, lef "John Crane" solve your problem. Write for full information * John Crane products fabricated from DuPont Teflon are sold under the registered trade name "Chemlon"
grane packing company
1302 CUYLER AVENUE • CHICAGO 13, ILINOIS
affices in all Principal Cities in United Stafes and Conada



FIG. 2-Complete bandspread circuit covering 3 to 5,5 to 7 and 7 to $9-\mathrm{kc}$ ranges in addition to original bands
cuit to produce a range of 3,000 to 5,000 cycles for a complete rotation of the tuning capacitor.

$$
\begin{aligned}
& \frac{f_{\max }}{f_{\min }}=\frac{C_{\min ^{1}}+\Delta C}{C_{\min ^{1}}} \\
& C_{\text {min }_{1}^{1}}=1,529 \mu \mu \mathrm{f}
\end{aligned}
$$

The tuning circuit already contains a $C_{\text {win }}$ of $86 \mu \mu \mathrm{f}$. Therefore, a fixed capacitor of $1,529-86=$ $1,443 \mu \mu \mathrm{f}$ must be added across each two sections of the tuning capacitor.

The tuning resistors are selected to give a frequency of 5,000 cycles with the tuning capacitance at minimum, which is $1,529 \mu \mu \mathrm{f}$.

$$
R=\frac{1}{2 \pi f C}=20,900 \mathrm{ohms}
$$

The complete bandspread circuit including the switching is given in Fig. 2. The values indicated obtain three ranges of 3,000 to $5,000,5,000$ to 7,000 , and 7,000 to 9,000 cycles, with approximately 10 percent overlapping of ranges. All of the fixed resistors and capacitors are mounted directly on the switch, as shown in Fig. 3.

## Selection of Components

Resistors and capacitors for bandspread circuits must be selec-


FIG. 3-All frequency-determining components are mounted on bandswitch



No other available material has the combination of low electrical losses and heatresistance of Du Pont "Teflon" tetrafluroethylene resin.
"Teflon" tape is seeing wider and wider use in such applications as insulation for wire and cable, ground insulation for motors and generators, conductor and layer insulation in transformers and coils. Its power factor is less than 0.0005 and its dielectric constant only 2.0 over the entire spectrum measured to date, 60 cycles to 30,000 megacycles. Its dielectric strength is excellent and is unaffected by temperature changes up to at least $400^{\circ} \mathrm{F}$. The tape gives service up to $500^{\circ} \mathrm{F}$."Teflon"
tape has excellent mechanical strength and pliability . . . at temperatures as low as $-80^{\circ} \mathrm{F}$. In wrapped construction it fits even more tightly as the temperature is raised. It has zero waterabsorption, and is unaffected by outdoor weathering.
"Teflon" is supplied by Du Pont in the standard shapes of rods, tubes, sheets, beading, and tape, and in molding powder, both shredded and granular. WRITE NOW for more data on the properties and electrical uses of "Teflon"!
E. I. du Pont de Nemours \& Co. (Inc.), Plastics Department, Main Sales Offices: 350 Fifth Avenue, New York 1, New York; 7 South Dearborn Street, Chicago 3, Illinois; 840 East 60th Street, Los Angeles 1, Califormia.
(Wire and cables shown above made with "Tofion" Tape by Boston Insulated Wire \& Cable Co., Boston, Mass.)
Tune in to Du Pont "CAVALCADE OF AMERICA," Tuesday nights $-N B C$ coast to coast.



FEDERAL TELEPHONE AND RADIO CORPORATION'S shielded balanced $300-$ OHM Lead-in, lap-wrapped with "ScoteH"

No. 33 Plastic backed Electrical Insulating

## Protect TV lead-ins with this new plastic tape

Happier customers, more customers, fewer trouble-calls when you protect TV lead-ins with "Scotch" No. 33 Electrical Tape. This plastic-backed tape helps protect against snow and ghosts, improves the signal-to-noise ratio.

Try "Scotch" No. 33 Electrical Tape on your next installation Find how this amazing tape can simplify your television and radio work. A letter to us will bring complete information - with no obligation. Write Dept. ES-650.

Quick facts about "SCOTCH" No. 33 Electrical Tape

- THIN CALIPER-only .007 in. thick; makes a neat, tight wrap.
- HIGH DIELECTRIC STRENGTH-over 7,000 volts.
- TOUGH—Abrasion resistant, unaffected by water, acids, alkalies, alcohols, exposure to sunlight, rain, snow, ice.
- STRETCHY-Easy to apply, conforms snugly to uneven surfaces.

TIP—for perfect high-heat insulation try "Scotce" Electrical Tape No. 27 with Glass Cloth backing, thermosetting adhesive.


[^8]ted with care. Particular attention should be paid to their temperature coefficients, for frequency drift due to warmup shows up much more readily on a bandspread than on a compressed scale. For example, a drift of 1 percent at 5,000 cycles will nullify the accuracy of a dial which may have initially been calibrated to an accuracy of 20 cycles.

It has been found most desirable to use wirewound resistors and silver mica capacitors as the tuning elements for the bandspread circuits. The resistors should be wound non-inductively, and of a wire with the lowest possible temperature coefficient. The writer has used resistors made with 331 Alloy, also known by the trade names of Karma and Evenohm. This wire has about the same temperature coefficient as manganin ( 0.00002 per C) but holds it over a wider temperature range than manganin. The silver mica capacitors should likewise have a zero temperature coefficient.

It has been found that at the upper end of the third bandspread range- 9,000 cycles-that the drift over a two-hour period from a cold start is less than 20 cycles, or about 0.2 percent. This should prove satisfactory for most applications.

## R-F Field <br> Mass Spectrometer

A three-stage nonmagnetic mass spectrometer, employing the principle of velocity selection, has been developed at the National Bureau of Standards. In the new spectrometer an r-f field replaces the usual magnetic field. Combining unusually simple operation with small size, light weight, and high sensitivity, the instrument has promising applications in several fields of science and industry.

The nonmagnetic mass spectrometer uses neither bending nor focusing. Ions produced in the ionization chamber travel in parallel paths through the tube, a glass cylinder 8 inches long and 2 inches in diameter. Three sets of three tungsten-wire grids are spaced along the tube to form the three stages. An r-f potential is applied


## Sensitivity

## Plus Dependability!

The new Allied SW relay offers an economical combination of both these important qualities. Here are the facts on this newest relay in the famous Allied line

Bulletin SW gives complete defails. Send for your copy today.

Be sure to send for your copy of Allied's new Relay Guide. It shows 24 small, compact relays with a detailed table of characteristics and specifications.

## SENSITIVITY:

## COIL:

## CONTACTS:

MOUNTING:

DIMENSIONS:

WEIGHT:
WEIGHT HERMETICALLY SEALED: 4.5 ox.

## SPECIAL Sensitivity down to . 003 watts S.P.D.T., or .012

 APPLICATIONS: watts D.P.D.T. Palladium or other precious metal contacts for audio or low voltage circuits, tungsten or alloy contacts for higher current or voltage sircuits. Maximum input 4.0 watts at $20^{\circ} \mathrm{C}$ for $85^{\circ}$ rise.
## MODERN ELECTRONIC DESIGN MEANS PLUG-IN UNIT CONSTRUCTION

With basic elements as units-that plug-in, slide-in, lock-in, break away easily-so that electronic equipment is instantly accessibleready for rapid checks, servicing, and unit replacement.

More and more engineers are finding that plug-in unit construction is the type of design that makes many of the new complex electronic projects feasible to operate and maintain. It's also recognized that plug-in, unit principles make present electronic equipment much more practical for wider general use.


Up to now there has been no one place where components specifically designed for plug-in, unit construction were available. To get this type of construction-it has been necessary for engineers to design and have parts custom made or improvise with standard components in make shift arrangements.
Here at Alden's we are designing and manufacturing components for plug-in unit construction. We are setting up to work with manufacturers on as many of these problems as possible. Very frankly, much of our work is still in the pilot run stage-but, in every instonce-proven in use. If you don't see the answer to your problems here-let us work it out with you.


Back connected chassis-become instantly accessible. Half twist of handles brings chassis into place or ejects-no marater units -miniature and standard sizes.


Rugged color coded back connectors-make and break circuits - provide rapld circult checks. Wide mating tolerances compenture and heavy duty sizes.


Top operated clamps for tubes and plug-in Top operaked minimum of space. Can be
unts. Take
operated in cramped locations. Free foat-ing-orients unit to socket without strainlng or bending pins


Alden Cap Captive Convenience Screws Alden Cap Captive Convenience Screws Assemble easily in production by power Assemble yet any tool or coin services in field.

At last-a base specifically designed for plug-in units.
No more broken bosses, bent pins, "shorted" circuits.


More and more engineers have been unitizing the basic elements of their circuits into compact, easily replaceable plug-in units. Since the conventional octal and tube socket bases have been the only been constantly plagued by the broken been constantly plagued "shorted" circuits caused by these bases.
This suggested an entirely new approach was necessary, so we went to work with some of these engineers. Out of this work the Alden-Noninterchangeable plugin base was developed.
Pins have been made strong and stubby - for long, rugged use. The boss is eliminated entirely. Slight lead of center pins and locating rings with marker in the socket allow quick lining up of plug-in units. Further, this base is supplied with 2 to 11 contacts - in variable pin patterns - so that even where the same number of contacts are used, the pin layout may be varied so only the correct unit will mount in its proper socket. Pin patterns can even be selected to isolate critical voltages or signals.

hught mojection of $\qquad$ 4

pins for quico
rotation to motation to insertion position variable mi patern allows ISMATON Or
antical votiaces


Write today forlaignment inolcaio Let Alden work with you on sour comes Let Alden work with you on your com
ponents for plug-in, unit construction.

Write tor new booklet on "Components for Plug-in Unit Construction"

117 NORTH MAIN ST. BROCKTON 64, MASS.

THE ELECTRON ART
to the middle grid in each stage. An additional grid, with a negative potential applied, follows that final stage and in the absence of $r-f$ potential turns back any electrons that may have arisen anywhere along the tube. Following the final grid is a collector plate whose potential is sufficiently positive to repel all but the desired positive ions.

The distances between grids and between stages are selected very accurately so that for any particular ion mass there will be a single definite frequency of the $r$-f potential which can speed up ions of that


The three-stage nonmagnetic mass spectrometer in experimental operation at the National Bureau of Standards
mass as they pass through each stage. The increased speed of these ions enables them to overcome the opposing potential on the collector while all other kinds of positive ions are turned back. Successive distances between stages must be chosen so that the r-f potential will complete an exactly integral number of cycles during the time it takes for an ion of the desired mass to travel between stages, picking up maximum energy in each stage.

The spectrometer can make use of all the ions that can be made to emerge through a grid several centimeters in diameter, and a new kind of positive ion source has been developed to take advantage of this. A spiral filament delivers an ionizing electron current of 100 milliamperes through a double grid attached at one end of a hollow metal cylinder 3 centimeters deep. At a pressure of $4 \times 10^{-5}$ millimeters of mercury the source delivers a positive ion current of 100 microamperes.

## Applications

By an appropriate change in ion source and reversal of potentials,


Complete engineering facilities are available at Bendix-Pacific to assist you with special applications of these systems.

# NOW <br> you can get cuudiotape <br> in 2500-foot rolls! 

 $101 / 2$-inch aluminum reels. This latest addition to the complete Audiotape line offers you these 5 outstanding advantages:

## 1. Exceptionally Low Cost

2. $4 \%$ More Tape than the usual 2400 -foot roll
3. Absolutely No Splices in the entire roll
4. Uniform Volume-guaranteed not to exceed $\pm 1 / 4 \mathrm{db}$ for the full reel, and $\pm 1 / 2 \mathrm{db}$ from reel to reel
5. A Unique Package (Pat. Pending), specially designed for easier and safer handling and storage

The folding inner container, shown above and at right, permits the tape to be placed onto the turntable of a machine without danger of its slipping from the hub or becoming unwound. It also permits tape to be transferred from turntable to package with equal ease and safety. What's more, the container is so designed that reel flanges can be attached to the hub quickly and easily, without danger of spilling the tape or dropping the sleeve screws. The package protects the tape in storage, too-prevents flattening of the bottom of the roll or damaging of the edges. This same type of package is also used for 5000 -foot rolls of Audiotape.
Ask your dealer to show you the new professional size Audiotape. Or write to us for a free 200 -foot sample reel of the tape and a descriptive sheet on the new container.


Close-up of a completed three-stage nonmagnetic mass spectrometer tube
the spectrometer works well for the study of negative ions, an imstudy of negative ions, an im-
portant feature of the new instrument. Since negative ions are in ment. Since negative ions are in
general much less abundant, when they exist at all, the unusual sensitivity of the r-f field spectrometer
is a great advantage in the study of tivity of the r-f field spectrometer
is a great advantage in the study of negative ions.

In the development of vacuum tubes, as for example power transmitting tubes, such a spectrometer mitting tubes, such a spectrometer
can be very helpful in analyzing gases and vapors that are evolved from the heated electrodes.

Surface reactions form another group of processes for which the new spectrometer can be used, new spectrometer can be used,
separately analyzing the positively or negatively charged components. or negatively charged components.
In gaseous discharges, the instrument can be used for direct analysis of the ions without magnetically disturbing the discharge.

One of the urgent needs of the U. S. Bureau of Mines is an instrument which can be used in the field for the analysis of small percentages of hydrogen in the manufacture of helium. The new spectrometer has already demonstrated adequate sensitivity and resolution for this task, and it can be readily adapted to automatic operation. Similarly, the new instrument could be used for continuous observation of the air in an enclosed space, giving warning of the presence of dangerous components such as hydrogen or chlorine. In addition, an active project is now under way at the National Bureau of Standards to adapt this instrument for use as an extremely sensitive carbon monoxide detector.

The lightness and compactness of the nonmagnetic spectrometer offers
 onmagnetic mass spectrometer tub


* Trade Mark


## AUDIO DEVICES, INC.



Model 446 transmitter operates on 4 crystal-controlled frequencies (plus 2 closely spaced frequencies) in the band 2.5-13.5 Mcs (1.6-2.5 Mcs available). Operates on one frequency at a time; channeling time 2 seconds. Carrier power 350 watts, 11 or A3 AM. Stability $.003 \%$ using $C R-7$ (or HC-6U) crystals. Operates in ambient $0^{\circ}$ to + $45^{\circ} \mathrm{C}$ using mercury rectifiers; $-35^{\circ}$ to $+45^{\circ} \mathrm{C}$ using gas filled rectifiers. Power supply, 200-250 volts, $50 / 60$ cycles, single phase. Conservatively rated, sturdily constructed. Complete technical data on request.

Here's the ideal general-purpose highfrequency transmitter! Model 446... 4-channel, 6 -frequency, medium power, high stability. Suitable for point-topoint or ground-to-air communication. Can be remotely located from operating position. Co-axial fitting to accept frequency shift signals.

Consultants, designers and manufacturers of standard or special electronic, meteorological and communications equipment.

Atom pile by-products
"fly" to help medical research


Radioisotopes were needed by a Boston hospital for patient treatment. Leadshielded box of radioactive iodine (weight, 35 lbs.) picked up by Air Express in Knoxville, Tenn., at 11 A.m., delivered 7:15 P.m. Charge, $\$ 8.60$. Hospitals, like all business, use Air Express regalarly to get supplies from anywhere in hours.


It's easier and more convenient to use the world's fastest shipping service. When shipments are ready, just phone for pick-up. Special door-to-door service included in the low rates.


Shipments keep moving. Air Express goes on every Scheduled Airline flight Frequent schedules. Use dependable experienced Air Express-keep youl business rolling at a profitable clip.

## Only Air Express gives you all these advantages

World's fastest shipping service.
Special door-to-door service at no extra cost.
One-carrier responsibility all the way.
1150 cities served direct by air; air-rail to 18,000 off-airline offices.
Experienced Air Express has handled over 25 million shipments.
Because of these advantages, regular use of Air Express pays. It's your best air shipping buy. For fastest skipoing action, phone Air Express Division, Railway Express Agency. (Many low commodity rates in effect. Investigate.)
a way to settle the question of the chemical composition of the upper atmosphere. This is a problem which is directly related to work in radio propagation and stratospheric flight. Arrangements have been made with the Applied Physics Laboratory of the John Hopkins University to send one of the new spectrometers aloft in a rocket. Before it is mounted in the rocket, the spectrometer tube will be evacuated and sealed; when the rocket has reached maximum altitude, an arm of the tube will be broken open to the rarefield air. The relative densities of atmospheric components will then be telemetered back to the ground for recording.

The nonmagnetic mass spectrometer is now being adapted to the rapid scanning of mass spectra. Present methods permit sweeping twice a second through the mass range from 10 to 50 , displaying the measured mass components directly on the screen of an oscilloscope. The scanning is accomplished by sweeping the ion accelerating voltage from 50 to 250 volts while modulating the r-f potential with a 1,000 cycle signal.

## Thermal Detector Response

 To Triangular PulsesBy Norman Alpert<br>Servo Corporation of America<br>New Hyde Park, New York

The response of thermal detectors to triangular radiation pulses whose duration is 0.1 to 100 times the time constant of the thermal detector is best illustrated graphically. The following presents such information along with a representation of the effect of a 5 -stage $R-C$ coupled amplifier on the output from the thermal detector.

In general, the response to a unit step input of certain thermal detectors can be characterized by a single time constant as follows:

$$
E_{\text {out }}=1-\epsilon-\frac{t}{T}
$$

where $T$ is the thermal detector time constant. Hence the thermal detector can be represented by the equivalent circuit shown in Fig. 1A.

The response to a symmetrical


Provides many times greater resistance control in same panel space as conventional potentiometers!


#### Abstract

IF You are designing or manufacturing any sype of precision venience. utility, range and compactness that can be incorporated into your equipment by using the revolutionary HELIPOT for rheostatpotentiometer control applications... and by using the new dUODIAL rurns-indicating knob described at right.

Briefly, here is the HELIPOT priaciple... whereas a conventional potentiometer consists of a single coil of resistance winding. the HELIPOT has a resistance element many times konger coiled belically into a case which requites no more panel space than the conventional unit. A simple, foolproof guide controls the sliter contact so that it follows the helical path of the resistance winding from end to end as a single knob is rotated. Result... with no increase in panel space requirements, the HELIPOT gives you as much as 12 times* the control surface. You get far greater accuracy, finer setcings, increased rangewith maximum compactness and operating simplacity!


## COMPLETE RANGE OF TYPES AND SIZES

The HELIPOT is available in a complete range of types and sizes to meet a wide variety of control applications

MODEL A: 5 watts, 10 turns, $46^{\prime \prime}$ slide wire length, $11 / 4$ " case dio., resistonces 10 to 50,000 ohms, $3600^{\circ}$ rotation.
MODEL B: 10 wotts, 15 furns, $140^{\prime \prime}$ slide wire length, $31 /{ }^{\prime \prime}$ case dia., resislances 50 to 200,000 ohms, $5400^{\circ}$ solation
MODEL C: 3 wotts, 3 furns, $131 / 2^{\prime \prime}$ slide wire length, $13 / 3^{" c}$ case dia., resistances 5 to 15,000 ohms, $1080^{\circ}$ rotation
MODEL D: 15 watts, 25 turns, $234^{\prime \prime}$ slide wire length, $31 / 4$ cose dia., resistonces 100 to 300,000 ohms, $9000^{\circ}$ rotation.
MODEL E: 20 watts, 40 turns, $373^{\prime \prime}$ slide wire length, $31 / 4$
case dia., resistontes 150 to 500,000 ohms, $14,400^{\circ}$ rotation. Also, the HELiPOT is available in various special designs... with double shaft extensions, in multiple assemblies, integral dual units, etc.

Let us study your potentiometer problems and suggest how the HELIPOT can be used - possibly is already being used by others in your industry - to increase the accuracy, convenience and sim. plicity of modern electronic equipment. No abligation, of course. Write today outlining your problem.
"Data for Model A, $13 / 4$ " dia. Helipot. Other models give even greater control range in $3^{\prime \prime}$ case diantefers.


The inner, or Primary dial of the DUODIAL show's exas angular position of shaft during each revolution. The oulter, or Secondary dial show's number of compleze revolutions made by the Primary dial.

A multi-furn rotational-indicating knob dial for use with the HELIPOT and other multiple turn devices.

The duodial is a unique advancement in knob dial design. It consists essentially of a primary knob dial geared to a concentric curns-indicating secondary diai-and the entire unir is so compact it requires only a $2^{\prime \prime}$ diameter panel space!

The dUODIAL is so designed that-as the primary dial rotares through each complece revolution-the secondary dial moves one division on its scale. Thus, the sccondary dial counts the number of complete revolutions made by the primary dial. When used with the HELIPOT, the DUODIAL registers both the angular position of the slider contact on any given helix as well as the particular helix on which the slider is positioned

Besides its use on the Melipot, the DUODIAL is readily adaptable to other helically wound devires as well as to many conventional gear-driven controls where extra dial length is desired without wasting panel space. It is compact, simple and rugged. It contains only two moving parts, both made entirely of metal. It cannot be damaged through jamming of the driven unit, or by forcing beyond any me. chanical stop. It is not subject to error from backlash of internal gears.

## TWO SIZES—MANY RATIOS

The duodial is now available in two types - the Model " $\mathbf{R}$ " (illustrared above) which is 2 " in diameter, and the new Model "W" which is $\{3 / 4$ " in diameter and is ideal for main control applications. Standard turns-ratios include $10: 1,15: 1,25: 1$ and $40: 1$ (ratio be. (ween primary and secondary dials). Other ratios can be provided on ween primary and secondary dials). Other ratios can be provided on pecial order. The $10: 1$ ratio DUODIAL can be readily employed with devices operating fewer than 10 revolutions and is recommended for the 3 -turn helipot. In all rypes, the primary dial and shaft operate with a $1: 1$ ratio, and all rypes mount directly on a $1 / 4^{\prime \prime}$ round shaft

Send for this
HELIPOT AND DUODIAL CATALOG!
Contains complete data, construction details, elc., on the many sizes and types of HELIPOTS... and on the many unique features of the DUODtAL. Send for your free copy today!

## rw Helipot




THE LOOP TEST
Take an S.S.White shaft 3 feet or more in length. Make a loop and rest the end on a table as shown. Rotate shaft with fingers. Note how easily and smoothly it furns in either direction.
S.S. White remote control flexible shafts are velvety smooth, jump-free and sensitive in operation-because they're engineered and built expressly for the job of remote control. The loop test at left tells the story. Furthermore, these shafts perform for years without attention. They're practically immune from trouble.

In radio, television and electronic equipment design, S.S. White remote control flexible shafts are valuable assets because they make it possible to place both the variable units and their controls in the most desirable locations.

## ASK FOREBULIETIN 4501

It gives engineering data about flexible shafts and tells how to select and apply



FIG. 1-Equivalent circuits for thermal detector $A$ and for detector with lowpass filter $B$
triangular input pulse $\delta T$ seconds wide can be obtained by Laplace Transform methods.

Figure 2A shows normalized curves of $e_{\text {out }}$ vs time with $\delta$ as a parameter. It can be seen that for $\delta$ $\geqq 100$, the output follows the input very closely, while for $\delta \bar{\delta} 0.1$ there is practically no output at all. Furthermore, the time lag for the peak instantaneous output to occur is greater the smaller the pulse width, $\delta$.

## Amplifier Response

The response of a thermal detector and five-stage R-C amplifier (where the amplifier time constant is 10 times the thermal detector time constant, or $a=10$ ) is shown by the normalized curves of $e_{\text {ont }}$ vs time with ò as parameter (Fig. 2B). It can be seen from a comparison of Fig. 2A and 2B that for $\delta=2$, the amplifier faithfully reproduces the pulse output from the thermal detector except for a slight negative undershoot, while for $\delta=20$, the


FIG. 2-Curves show response of thermal detector and five-stage amplifier to symmetrical triangular input pulses


Sylvania's subminiature tubes are one of the secrets that enable SoundScriber to make the world's lightest, most compact dictation instrument. Only 15 lbs., the "Tycoon" covers as little desk space as an ordinary letter. Such concentration of electronic efficiency is typical of the advantages offered by Sylvania's subminiature tubes.

The "Tycoon" also owes much of its reputation for reliability to the Sylvania subminia.
tures that serve it . . . for they are lightweight little wonder-workers that stand up to heavyweight treatment.

In electronics, wherever compactness demands minimum size . . . wherever dependability is wedded to economy . . . you'll find Sylvania subminiatures at work, cutting space, cutting costs, culting servicing requirements and replacement. Write Sylvania Electric Products Inc., Dept. R.2106, Emporium, Pa.

## SYLVANIADELECTRIC

radio fubes; telmision picture fubes; electronic products; electronic iest equipment; fluorescent lamps, fixtures, sign fubing, mirng dences; light bulbs; photolamps; telenion sets

# for JITTERY VOLTAGE CONDITIONS <br> <br> + 2 8 

 <br> <br> +2
8
}

## R <br>  <br> K.V. Ample cen. E. <br> STABILISE



Voltage jitters in power lines are not only a nuisance but presvent proper operation of electrical equipment . . cause faulty test results in laboratory and shop. STABILINE Automatic Voltage Regulators can remedy this undesirable condition; can give you the engineered control that will assure you of constank line voltage when and where it's most needed.


STABILISE TYPE IE (instantaneou s-electronic)
Completely electronic in operation; has no moving parts. Offers instantaneous action, to maintain output voltage to within $\pm 0.1$ volts of nominal for any line voltage variations; to within $\pm 0.15$ volts for any load current change or load power factor change from . 5 lagging to .9 leading. Waveform distortion never exceeds $3 \%$.


## STABILISE TYPE EM

 (Electro -mechanical)For large installations where high efficiency, zero waveform distortion and low cost are important; where instantaneous correction is unnecessary. Delivers constant output voltage regardless of variations in input voltage or load current.

STABILINE Automatic Voltage Regulators are offered in a wide range of ratings, in cabinets or for relay rack mounting. Our new bulletin gives complete details on the STABILINE types IE and EM. Write for a free copy today.

406 MEADOW ST. BRISTOL,

## THE SUPERIOR ELECTRIC co BRISTOL, CONNECTICUT

CONN
powerstai variable transformers - voltbox ac power supplies - stabiline voltage regulators
undershoot attains considerable proportions. When $\hat{\delta}=10$, the magnitude of the peak negative undershoot is almost twice as great as the first positive peak, while for $\delta=20$, the undershoot is three times greater. In addition, the positive overshoot which occurs in the latter case is more than twice the first positive peak.

Inspection of Fig. 2B reveals that o must be between 1 and 20 for reasonable pulse outputs which could be detected above noise.

The value for a was chosen as 10 from considerations of a typical thermal detector time constant of about 10 milliseconds and could asill be attained with a $0.05 \mu \mathrm{f}$ capacitor and a 2 megohm resistor. The use of larger capacitors and resistors to increase the amplifier time constant and thus improve the response to pulses of longer duraton is not recommended because of leakage resistance, grid current and because of their large physical size.

## Summary of Figures

Figure 3 is a resume of Fig. 2A and 2 B to an actual time scale. The pulses are shown in their relative time domains rather than on a normalized basis in order to provide a better insight into the relative effects on the input pulse of the thermal detector and five-stage R-C amplifier.

It should be noted from the curves that for relatively small


FIG. 3-Curves of pulses in relative time domain for detector and amplifier


## Unique Oiling System Prolongs Timing Accuracy

Capillary action in the spaces between each bearing and capillary plate of Telechron Timing Motors draws a specially formulated oil from the reservoir at the bottom of the sealed gear case. This keeps bearings and pivot surfaces constantly covered with a thin coating of oil. Oil creepage along the shafts, pinions and gears maintains complete, continuous lubrication. Brass terminal gear baffles meter the right amount of oil to the terminal shaft bearing ...cutting down bearing wear and making the sealed-in oil supply last for years.

This oiling system is just one of many reasons why all Telechron Timing Motors are instantly, con-
stantly synchronous . . and why designers concerned with splitsecond timing or precise control of lightweight moving parts invariably specify Telechron motors.

If accurate timing enters into your product design, talk things over with a Telechron Application Engineer. Backed up by the experience that makes all electric timing possible (virtually all fre-quency-controlling master clocks in power stations are made by Telechron), he can probably show you how to save time and money by fitting a standard Telechron motor into your product. In the meanwhile, get complete data by mailing the coupon below. Telechron Inc. A General Electric Affiliate.

Telechron Type B Synchronous Motor, for switches, recording-controlling mechanisms and other medium duty controlling purposes. Other models available with lower or higher torques for light or heavy duty applications.


Controlling the timing of heat regulators is typical of the jobs well done by Telechron Type H3 light duty motors.


Most time-stamps and recorders owe their accurate timing to Telechron Type B motors because such ap. plications demand a motor that is instantly, constantly synchronous.


ALL TELECHRON TIMING MOTORS ARE

TELECHRON INC.
40 Union Street
Ashland, Massachusetts

Please send me information on sizes and types of Telechron Synchronous Motors. My possible application is:

| Instruments | $\square$ |
| :--- | :--- |
| Timers | $\square$ |
| Electric Appliances | $\square$ |
| Cost Recorders | $\square$ |
| Advertising, Display Items | $\square$ |
| Juke Boxes | $\square$ |
| Air Conditioning \& Heating |  |

Communications Equipment $\square$ Other (please fill in)

## NAME

COMPANY
ADDRESS
CITY
ZONE
STATE

## STEVENS HERMETICALLY SEALED THERMOSTATS



Specially engineered for precision control of radio and electronic devices, instruments, cameras and other equipment subjected to dust, moisture or corrosive atmospheres, Stevens hermetically sealed thermostats are enclosed in corrosion-resistant metal cans.

Carefully precalibrated in pots simulating your actual service conditions, Stevens* hermetically sealed
 thermostats have a tight, permanent seal that prevents deterioration or sulphiding of contacts. They can also be sealed in helium or other inert gas atmosphere. Terminals are sweat-soldered into inert alloy tubes interfused with inorganic glass insulator bead.
Stevens hermetically sealed thermostats-featuring an electrically independent bi-metal element that eliminates artificial cycling or life-shortening "jitters" -are available in disc types for controlling higherwattage circuits, or in strip types for controlling low-wattage circuits or for use in conjunction with disc thermostats.
To insure the satisfactory performance of your product, specify Stevens hermetically sealed thermostatsthey perform better . . . last longer.

[^9]

Few of these tools have sharp edges. But they are powerful cost cutters. Whenever a telephone craftsman reaches for one, he finds the right tool ready to his hand. There's no time wasted trying to do a complicated job with makeshift equipment.

Most telephone tools are highly specialized. $90 \%$ of dial system tools
were designed by Bell Laboratories. Each saves time in maintenance, installation or construction.

There are tools with lights and mirrors to work deep within relay bays; tools to brush, burnish and polish; tools that vacuum clean-even a tool to weld on new contact points without dismantling a relay. There are gauges to
time dial speeds, others to check spring tension. Some look like a dentist's instruments. Some you have never seen.

Keeping the telephone tool kit abreast of improvements is a continuing job for Bell Telephone Laboratories. It's another example of how the Laboratories help keep the value of your telephone service high, the cost low.

## BELL TELEPHONE LABORATORIES

Working continually to keep your telephone service big in value and low in cost


HIGH PERFORMANCE-power gains up to 30,000 .

LESS MAINTENANCE-no filaments to burn out.

RUGGED CONSTRUCTION—no moving parts.
nO WARMUP TIME
RESPONDS TO SUM OR DIFFERENCE OF SEVERAL SIGNALS

- ALLOWS ELECTRICAL ISOLATION BETWEEN CIRCUITS

STANDARD DESIGN

In one recent opplication a Vickers Standard Magnetic Amplifier was used to maintain the frequency of the output of a $60-\mathrm{cps}$, 1 KVA generator within $\pm 1 \%$. This accuracy was maintained when the load varied from $0 \%$ to $100 \%$ and when the voltage on the $d-c$ drive motor was varied $\pm 10 \%$. The output of a Type AD1-60-160-56 Standard Magnetic Amplificr was rectified and used to control the field of the $d-c$ drive motor. The error signal to the magnetic amplifier was supplied from two tuned circuits.

## OTHER TYPICAL APPLICATIONS:

Speed regulators - Voltage regulators - Servo systemspositioners and indicotors - Hydraulic controls - Control relays Temperature regulators Lamp and furnace controls.

WRITE for your registered sopy of the Vickers Magnetic Amplifier Design Hondbook. Please make request on your letterhead.

## VICKERS ELECTRIC DIVISION $\sqrt{[G 2 B R E} / \mathrm{m}$.

1801 LOCUST STREET - ST. LOUIS 3, MISSOURI
$\mu$ is about 0.1. It should be borne in mind, however, that for several low-pass filters in cascade, the time lag will be correspondingly increased.

## Conclusions

If a triangular radiation pulse is applied to a thermal detector and an associated five-stage R-C coupled amplifier, each stage having a time constant ten times greater than the thermal detector, usable outputs will be obtained provided the pulse width is 1 to 20 times the thermal detector time constant.

In addition, if a low-pass filter is included in the amplifier to increase the signal-to-noise ratio, its time constant should be a maximum of about one-tenth that of the thermal detector, otherwise additional phase lag will be introduced into the system.

## SURVEY OF NEW TECHNIQUES

Nonferrous strip materials like aluminum, brass, copper and stainless steel can be heat treated by induction heating because of a new development explained by Robert M. Baker of Westinghouse. The strip is passed between two opposing laminated pole structures. The field coils are so polarized that at any instant opposing poles have opposite sign and force flux through the strip. The technique, which is called transverse flux induction heating, was described in a paper before a recent meeting of the North Eastern District of the American Institute of Electrical Engineers.

TWO F-M SIGNALS can be simultaneously transmitted on the same frequency and separately received by a new technique called the bisignal system by its inventor, Raymond M. Wilmotte, consulting engineer of Washington, D. C. Instead of differentiating between signals by a frequency separation, as in the present f-m setup, Wilmotte provides two signals of different intensities and separates the signals, without crosstalk, in special receiving equipment.

One of a Series of Messages to the Buyer of Custom Molded Plastics


The original Mrs. Pod, unconcerned about specifications, delivers nature-molded pieces which, to the eye, need only look alike in appearance and size!
"Statistical Quality Control" goes much further. As a special production-improvement factor . . . and with the custom molder's press as its pod, each delivered part must fully comply with each and every required specification! Not only must parts look alike-they must be alike! .. . Size-shape-molding uniformity - precision placement of inserts - together with a multiplicity of inside and outside measurements . . . all, in all ways, must pass rigid tests before passing to the customer.
With "Statistical Quality Control" in force, few parts ever get the chance to develop an inferiority complex. The method raises the standard of an entire output and saves the customer the need and the cost of double inspections.
Whenever you are projecting a part - to be molded of plastic-and one that must toe the specifications line-call in a Consolidated sales engineer. Any one of our quickly reached offices is ready to apply experience, know-how and savings to your custom plastics problem.


Plant \& Executive Offices: 309 CHERRY ST., SCRANTON 2, PA.
Branch Offices and Representatives in New York, Chicago, Detroit, Cleveland, Bridgeport,
Philadelphia - and other principal cities

The system, one of
scientific sampling, is documented by
regular timings, gauge readings, iig
constructions, graph plottings. In the hands of Consolidated's skilled plastics technicians, "S. Q. C." an't help buti insure you the kind of plastics production that makes for a relationship.


Proven BEST, and specified regularly, by leading manufacturers of television, F-M, quality radio and all exacting electronic equipment. For maximum output and minimum rejects. Available in all sizes, solid and stranded. Over 200 color combinations.

PRODUCTION ENGINEERS: Specify "NOFLAME-COR" for absolute uniformity of diameter, permitting clean stripping of insulation without damage to the copper conductor...

## NO NICKING OF CONDUCTORS <br> NO CONSTANT RESETTING OF BLADES

> AVOID LOSSES FROM
> OBLOBBING
> Not being an extruded plastic, eliminates the costly "blobbing" of insulations under soldering heat

## - Flame Resistant

- High Insulation Resistance
- Hear Resistant
- High Dielectric
- Also unaffected by the heat of impregnation therefore, ideal for coil and transformer leads

COMPLETE DATA NNO SAMPLES ON REOUEST "made by engineers for engineers"
CORNISH WIRE COMPANY, Inc.

605 North Michigan Avenue,
Chicogo 11

15 Park Row, New York 7, N. Y.
1237 Public Ledger Bldg. Philadelphio 6

## NEW PRODUCTS

(continued from p 128)
and isolation transformer, is designed to speed up tv receiver service, minimize shock hazards, cut down service returns and prevent damage to shop test equipment. The primary winding has a line-voltage matching switch which is adjustable in 5 -volt steps over the 105 to 130 -v range. The instrument has two output circuits, a 275 voltampere isolation secondary and an autotransformer connection providing 500 volt-amperes.


## Tele Test Set

Oak Ridge Products, 239 E. 127 St., New York 35, N. Y. Model 104 cross-hatch and sweep generator provides a new approach to the problem of servicing sync and sweep failures in a tv receiver. The unit consists of an r-f oscillator section which is calibrated on channels 2 to 5 and a modulator section with a specially designed switching network to provide a variety of frequencies. By turning the selector switch to different positions the serviceman can adjust sync and sweep of the receiver without a test pattern or program on the air.


## Frequency Standard

Bliley Electric Co., Erie, Pa., has announced a frequency standard employing a $100-\mathrm{kc}$ crystal and featuring 24 -hour frequency stability of two parts in 10 million when subjected to line voltage fluctuation of as much as 10 percent. Terminals

## READ WHAT

## G.E.'s New All-Purpose Insulating


J. L. Hughes, owner of the J. L. Hughes Electric Company, Columbus, Ohio, says:
"We have found from test and practical experience that General Electric general-purpose varnish 9574 is tops for our work."


J. Lindborg, owner of AAA Electric Motor Service, Atlanta, Ga., says:
"Our experience has been that this varnish is as good as G.E. claims. It gives a good coat on every type of wire, bakes easily and dries to a tough coating that stands up perfectly in service."

## 

Guy W. Probst, owner of Lockhaven Electric Repair Co., Lockhaven, Pa., says:
"I find that $I$ only use about half as much 1201 Glyptal as a cover coat on 9574 as I had to use over the varnish I had been using, and I get htgher gloss and better bonding."


These statements indicate the success of the new G -E 9574 . If you are looking for an insulating varnish which bakes at low temperatures, penetrates deep coils easily, and requires no special thinner, investigate G-E 957.

* ( $i$-E 9574 gives excellent results on all types of coils except extra-highspeed armatures. It is one of G.E.'s complete line of electrical insulating materials, including wedges, adhesives, cements, compounds, cords and twines, sleeving, wire cnamels, mica, papers and fibers, permafils, tapes, tubing, varnished cloths, and varrishes.

Here's A Bulletin You Should Have! If you haven't yet tried G-E 9574 get in touch with your local G-E Distributor, or write for our new bullet in to Section K3, Chemical Department, General Electric Company, Pittsfield, Massachusetts.

## You, tos, can putyour confidencein

## GENERAL (96) ELECTRIC


are provided for sine wave or harmonic output at both high and low impedance. Power supply is self-contained and the equipment is designed for rack or cabinet mounting. Complete technical literature is available.


Plug-In Hermetic Terminal
The Fusite Corp., Carthage at Hannaford, Cincinnati, Ohio, has introduced an octal-type-key plugin terminal which incorporates tubular steel electrodes interfused with inorganic glass and plugs into a socket without external wiring. It offers 20 electrodes in a single metal dise and is especially suited for the hermetic sealing of relays. Standard sockets for the new terminal are available.


## Remotely Controlled VHF Receiver

Lear Inc., Aircraft Radio Div., 110 Ionia Ave., N. W., Grand Rapids 2, Mich. Model LR-5BR remotely controlled vhf receiver with small cockpit tuning control is available for aircraft owners requiring flexible mounting arrangements. The receiver weighs 3 lb 11 $o z$ and measures $3 \frac{1}{2}$ in. $\times 67 / 16$ in.,

## Inside Information

## on the Inside of a Tube



The public-at-large does not know, as you do, that within nearly every electronic or television tube are other tubes. Or that these other tubes-of metal - can be as troublesome as they are tiny.

To see that they behave properly, the Electronics Division of Superior maintains excellent tubing research facilities, exercises tight control over production and product, helps you think your way out of problems in design and specification.

Superior was one of the early birds in electronics tubing-is always one of the first to come to your aid when you have tubing trouble . . and is definitely a leader in tubing technology.

If you are one of the few electronic tube manufacturers who are not now enjoying all the help Superior can give you, get in touch with us today. Superior Tube Company, 2500 Germantown Avenue, Norristown, Pennsylvania.


Acid House Equipment where material is eleaned and rinsed before bright annealing.


Inspection and Gaging . . . equipment for checking dimensions of Seamless and Lockseam Cathodes.


52,600 Seamless Nickel Cathodes...
standing an end compared with a ruler, and an ordinary pin under a lens.

## Which Is The Better For Your Product . . .

SEAMLESS...? The finest tubes that can be made. In all O.D.'s from $13 / 8^{\prime \prime}$ and lower. Excellent for forming, bending, machining, etc., carbon, alloy, stainless, non-ferrous and glass sealing alloys.

Or LOCKSEAM*. . .? Cathodes produced directly from nickel alloy strip stock by our patented machines. *Available in a wide range of nickel alloys. Round, rectangular, or oval, cut to specified lengths, beaded or plain.


All analyses $.010^{\prime \prime}$ to $\mathrm{s}^{\prime \prime}$ O.D.
Certain analyses ( $035^{\prime \prime}$ max. wall) UP to $13,3^{\prime \prime}$ O.D.

# TOROIDAL COMPONENTS 



## CUSTOM MADE TOROID COILS



## MINIATURE TOROID FILTERS




Specialized design and complet production facilities for your filter requirements. Where space is criti cal, miniature filters with wedding ring toroids and special capacitors Supplied in standard units, or designed to your specification. A min iature band pass filter and curve are shown.

RAPID PRODUCTION DELIVERY. Engineering requirements given special attention. Wire, phone or write complete specifications.

## COMMUNICATION ACCESSORIES Company

HICKMAN MILLS, MISSOURI
$\times 1027 / 32 \mathrm{in}$.; the tuning control weighs 6 oz and measures $17 / 8 \mathrm{in}$. $\times 329 / 32$ in. $\times 31 / 32 \mathrm{in}$.


## Portable Scaler

Berkeley Scientific Co., Richmond, Calif. Model 80 portable, battery-operated scaler is specifically designed to meet the need for accurate determinations of radioactive levels in locations where conventional power supplies are not available or where line transients make conventional scalers unreliable. The instrument consists of a G-M tube and probe, a scale-of-eight electronic counter, a mechanical register and an adjustable, highvoltage battery supply. It has a maximum continuous counting rate of 14,400 counts per minute and will resolve individual pulses at 90 microseconds.


## Subminiature Relays

Potter \& Brumfield MFg. Co., Inc., Princeton, Ind. Series SM subminiature relays are constructed so as to permit use with miniature socket and shield with inner spring. They can be made for use in guided missiles, aircraft applications and many general uses. The relays are offered with coil power ratings up to 1.75 watts and with $\mathrm{d}-\mathrm{c}$ windings

## Here's why <br> this Diffusion Pump Sets the Pace

in Cathode Ray Plants

## HIGHER SPEEDS

 mean better tubes. Note these speeds-consider what they can inean in profits for you. 30 liters $/ \mathrm{sec}$. at $10^{-3} \mathrm{~mm}$.70 liters $/ \mathrm{sec}$ at $10^{-4} \mathrm{~mm}$.
75 liters $/ \mathrm{sec}$.at $10^{-5} \mathrm{~mm}$.
48 liters $/ \mathrm{sec}$. at $10^{-6} \mathrm{~mm}$.

## HIGHER FOREPRESSURE TOLERANCE

reduces mechanical pump maintenance. Downtime of mechanical pumps is far less in a year productive operating periods longer. Mechanical pumps need not be at high efficiency.

High Vacuum Pressures Maximum Forepressure $\begin{array}{ll}10^{-3} \mathrm{~mm} . & 0.300 \mathrm{~mm} \\ 10^{-4} \mathrm{~mm} \\ 10^{-5} \mathrm{~mm} . & 0.275 \mathrm{~mm} \\ 10^{-6} \mathrm{~mm} & 0.260 \mathrm{~mm}\end{array}$ $\begin{array}{ll}10^{-5} \mathrm{~mm} . & 0.260 \mathrm{~mm} . \\ 10^{-6} \mathrm{~mm} . & 0.225 \mathrm{~mm} .\end{array}$
QUICKER COOLING eliminates troublesome valves. With only 2 minutes conling you can open this pump to atmospheric pressure. No need to tie up valuable equipment during long cooling periods ...no need to pay for expensive valves and their maintenance.
IMMEDIATESHIPMENT! For your convenience, adequate stocks of standard National Research Corporation pumps are kept on hand at all times. We can make immediate shipment as required.

## SPECIAL MODELS

are no problem. We gladly fabricate many specials to suit the requirements of different plant designs... in a variety of flanges, foreline lengths, etc.


## Designed for至 Application



90651

## The No. 90651 GRID DIP METER

The No. 90651 MILLEN GRIP DIP METER is compact and completely self contained. The AC power supply is of the "transformer" type. The drum dial has seven calibrated uniform length scales from 1.5 MC to 300 MC plus an arbitrary scale for use with the 4 additional inductors available to extend the range to 220 kc . Internal terminal strip permits battery operation for antenna measurement.

## JAMES MILLEN MFG. CO., INC.

MAIN OFFICE AND FACTORY
MALDEN
MASSACHUSETTS

NEW PRODUCTS
(continued)
from 0.155 to 8,000 ohms. With minimum adjustment they pull in on 3 ma at 75 mw . Ask for bulletin 102.


## Tiny Anto Transformer

United Transformer Co., 150 Varick St., New York 13, N. Y. Type SSO standard audio transformer measures $0.4 \times 0.75 \times 0.56 \mathrm{in}$., and weighs 0.28 oz. Especially suitable for hearing aid, aireraft and all other applications where size and weight are the prime consideration, the transformer is ideal for the military's miniaturization program. Designs are available for all types of low-level applications requiring wide frequency range. All are vacuum impregnated for dependable operation under high humidity conditions.


Pulse Rise Time Indicator Electronic Systems Co., 555 E. Tremont Ave., New York 57, N. Y. Model $632-\mathrm{B}$ pulse rise time indicator is an instrument for the accurate plotting of the rise time of rapidly rising positive voltage pulses. It employs a specially designed delay line of variable length and a rtvm. Controls include an on-off switch, zero set and sensitivity selector, speed and direction

## Webster Electric Model "A" Cartridge



## with Twist

 Mechanism

A complete unit with top performance and absolute minimum of service and installation problems.

The twist mechanism is factory assembled with Model AT cartridge in place, ready for installation in tone arms without adjustment or modification. This completely assembled mit gives positive tracking al all playing speeds. Iligh vertical ant lateral complance eliminate "shating". 'The simple, foolproof Wist mechanism gives positive indexing, eliminating the posisihility of twisting and damagring the leads in the tone arm.
There are no delicate parts to break or get out of order. The Model $\mathbf{A} 7$ with twist mechanism reverses throngh a 180 degree arc for playingeither $331 / 3-45$ or 78 R.P.M. records.

Send for a sample assembly today...try it . . . then note first hand the advanced improvement.

## WEBSTER



ELECTRIC

Webster Electric Company, Racine, Wis. Established 1909
"Where Quality is a Responsibility and Fair Dealing an Obligation"

# Copper Alloy Bulletin 

## PRODUCT IMPROVEMENT EDITION

reporting news and technical developments of copper and copper.base alloys



Push-Pull-Selector switch and section showing copper contact bars. Courtesy The Arrow-Hart \& Hegeman Electric Co., Hartford, Conn.

## Copper, Brass Used for Parts in Push-Pull Selector Switch

Each copper-base alloy has individual characteristics such as electrical conductivity, strength and workability. The design engineer first selects his material from the standpoint of the job to be done by each part. Then, when given a choice, he selects the alloy which may be worked or machined more readily.

A good example of this type of product designing is seen in the rotating cam sectionsof thePush-Pull-Selectorswitch control manufactured by the ArrowHart \& Hegeman Electric Company, Hartford, Conn. A small, compact unit, this switch provides a single point of control for multi-operation machines.

## Electrical Conductivity Solved

Copper, due to its high conductivity and low resistivity, was used in various tempers for all the main pole, current carrying sections such as the movable and stationary contact members. High electrical capacity was thereby allowed in minimum spaces.

The external shunt employed for tie-
ing the poles together, however, is of high brass ( $65 \%$ copper, $35 \%$ zinc), due to its lower cost and the fact that it is an external part where heat dissipation was not a problem. The central driving tuine and several assembly eyelet bushings are also this alloy because of its greater machinability and strength.

## Brass for Low-eurrent Parts

In the low current circuit section, the brass plates to which the contact but-
tons are attached is also of yellow brass. This material has greater electrical resistance than copper and the silver contact buttons are attached more readily by resistance welding.

Silver butt type contacts are also resistance welded to the copper plates in the high-current sections.

## Four Copper-Base Alloys Used in Small Condensers

Many types of copper-base alloys are used for making padder and trimmer condensers for electronic equipment.

In the illustrated condensers, the threaded bushings which take the adjusting screw are screw machine parts of medium-leaded brass rod $(63 \%$ copper, $1: 8 \%$ lead and remainder zinc). This alloy has a lower lead content than the free-machining rod. Machinability is reduced slightly, but it is more ductile, permitting staking of the bushing into the shell.

The thin plates in both types of condenser, blanked from strip, are of yellow brass rolled to a spring temper. However, the top compression plates are of spring temper phosphor bronze. This alloy has excellent fatigue resistance, needed in these units due to continual adjustment.
For the eyelets which are swedged over to hold the plates in place, cartridge brass ( $70 \%$ copper, $30 \%$ zinc) is utilized for its high ductility and good drawing characteristics. All the parts are tinned to facilitate soldering.

The dielectric spacers are of pure mica and the shell, or base, is also of a dielectric material.

Capacity is increased when the dielectric space is decreased. Sinceadjustment is exceptionally fine, the brass bushing provides a smooth-operating bearing surface with the steel adjusting screw.

## BRASS • BRONZE - COPPER • DURONZE - STRIP • ROD • WIRE • TUBING

MILLS IN
BRIDGEPORT, CONNECTICUT INDIANAPOLIS, INDIANA

## In Canada:

Noranda Copper and Brass Limited, Montreal


BRIDGEPORT BRASS COMPANY BRIDGEPORT 2, CONNECTICUT
"Bridigepgt"
Established 1865
District Offices and Ware-
houses in Principal Cities

PACKAGED
Functional Electronics

## S E R V O

 a group of functionally packaged Servo Amplifiers and companion Power Supplies designed to fulfill every need in the control and instrument field, providing the system designer with a facility of proven dependability and maximum performance.

designers amd prooucers of precision electronic devices


NEW PRODUCTS
controls for varying the length of line, and an indicator denoting delay of line. Rise time is $0.005 \mu \mathrm{sec}$ to $0.1 \mu . \mathrm{sec}$ in 20 steps. It is also available in other ranges.


## Radio Receiving Tube Sockets

Sylvania Electric Products, Inc., Warren, Pa. The radio receiving tube sockets illustrated are designed for use with a wide range of miniature and GT-type tube circuit applications. Socket types include T5를 T6 $\frac{1}{2}$ and octal with 7,8 and 9 cad-mium-plated brass contacts; gen-eral-purpose low-loss shielded or unshielded phenolic bases; with or without center shield, and with or without ground lugs on cadmiumplated or hot-tin-finish saddle, for top or bottom chassis mounting.


## Sweep Yoke

General Electric Co., Syracuse, N. Y., has announced a new sweep yoke designed to sweep up to $70-\mathrm{deg}$ picture tubes with high efficiency. When the yoke is used in conjunction with associated sweep components the horizontal sweep system requires only 20 watts of horizontal input from a 250 -volt supply. Horizontal inductance is 18 millihenrys, and vertical inductance, 30 milli-

Speer's graphite anodes were especially developed to meet the severest demands of modern equipment for superior tubes that would withstand extreme shock and distortion under impact. Rugged, long-lasting and dependable, graphite anode tubes offer such Speer plus values as:
.. . Higher Ratings $-200-300 \%$ higher power rating over most metallic anodes.
. . Greater Tube Stability-Because graphite won't warp, maintains its characteristics, warping of other tube elements is eliminated.
. . . Longer Life-Thanks to their lower operating temperatures, graphite anode tubes successfully withstand severest usage.

The demonstrated superiority of graphite anode tubes has made them "must" equip. ment for short wave and FM transmitters, diathermy, oscilators, modulators, rectifiers and similar equipment. For maximum efficiency under all conditions, look for the tube with the grapbite anode.


June, 1950 - ELECTRONICS

## For Extremely Low Insulation Loss Factor MYCALEX 9-Pin and 7-Pin Miniature Tube Sockets and Subminiature Sockets



Enlargement of the new 9 (NOVAL) pin miniature rube socket.

We recently made news by the addition of a 9 pin (NOVAL) miniature tube socket to the MYCALEX line. It has all the electrical characteristics of the widely used MYCALEX 410 and $410 \times 7$ pin tube sockets and fully meets RMA standards.

The NOVAL is injection molded and produced in two qualities to satisfy different requirements.


Above: Complete 9 pin miniature socket. Below: Precision moldings in MYCALEX actual size two views.

MYCALEX 410 for applications requiring close dimensional tolerances. Insulation loss factor of .015 (at 1 MC ) yet compares favorably in price with mica filled phenolics.
MYCALEX 410X for applications where general purpose bakelite was acceptable but with an insulation loss factor of only .083 (at 1 MC). Prices compare with lowest quality insulation materials.


The Model 205 Variplotter, highlighting accuracy, speed, and versatility, brings to industry and laboratory a new tool with a wide field of application. This instrument will present on a 30 -inch square plotting surface a precise graphic representation of one variable as a function of another variable, requiring only that the variables be expressed by $\mathrm{d}-\mathrm{c}$ voltages.

> ACCURACY The static accuracy is.05 percenl of tull scale at $70^{\circ}{ }^{\circ}$. The dynamic acculracy averages .05 percent of full scale plus the static accuracy ar a writing speed of $81 / 2$ inches per second.

SENSITIVITY The standard sensitivity of the Variplotter is fifty millivolts per inch The standara sensitivity of the Variplote.
with other ranges of sensifivity available.

RESPONSE The maximum pen and arm accelerations are 350 and 150 inches per
second squared, respectively. Slewing speeds of both pen and arm are 10 inches per secand.

The Variplotter may be adapted for special use by the addition of accessories selected from our standard line-such as multiple variable conversion kits, low-drift d-c amplifiers, analog computer components; or components designed for your specific need.

YOUR INQUIRIES ARE CORDIALLY INVITED.

## ELECTRONIC ASSOCIATES, INC.

## LONG BRANCH

NEW JERSEY
henrys. It is available with either a laminated, or for higher efficiency, a Ferrite core.


## Heterodyne Voltmeter

Brual \& KJaEr, Naerum, Denmark. Type 2002 beat-frequency voltmeter is a selective tube voltmeter for the measurement of a-c voltages in the $h$-f range. It is specially designed for use in laboratories for measurements on radio receivers, radar i-f circuits, control of signal generators and coax carrier-frequency systems. Frequency range is from 20 kc to 27 mc . Voltage range is from $10 \mu \mathrm{v}$ to 10 v . Accuracy is better than $\pm 0.5 \mathrm{db}$. A specification sheet is available.


## Regulated Voltage Supply

Sola Electric Co., 4633 W. 16th St., Chicago 50, Ill. Type CVL Solavolt is a precision source of regulated voltage with minimum harmonic distortion, designed for use with equipment requiring an adjustable source of constant a-c voltage (from 0 to 130 volts) of undistorted wave shape. Regulation is $\pm 1.0$ percent for line input changes from 95 to 125 v with less than 3 -

# This may be the solution to your D. C. AMPLIFICATION problems 

MICROSEN
Simple in operation, the Microsen D. C. Amplifier is designed to meet the need for stable and accurate amplification. It is compact to provide easy portability and convenient general use, is moderate in cost. The amplifier has many applications in both laboratory and field work. Three different ranges are furnished in a single model. The Microsen Balance, an electro mechanical feedback amplifier, combines the advantages of high torque to current input ratio with rugged, shock-resistant construction. Available models include Voltage, Current and Potentiometer Type Amplifiers, Direct Current Converters, Direct Current Transformers, and Engineered Designs to meet special requirements.


TYPICAL APPLICATIONS OF THE MICROSEN D.C. AMPLIFIER

| Field of Measurement | Input Element | Output Instrument | Application | Design Advantages |
| :---: | :---: | :---: | :---: | :---: |
| Thermometry | Thermocouple | Recorder | Combustion Reseorch Gas Turbine Development Thermocouple Inspection Meteorology Distillation Processes | High Speed Response Accuracy Sensitivity Stability |
| Photometry | Photo Cell | Recorder | Polarimetry <br> Physiology of Blood <br> Fluid Flow \& Turbulence <br> Density | Stability <br> Sensitivity <br> Responsive <br> Accuracy |
| Gas Analysis | Cotalytic <br> Filament <br> Thermocouple | Recorder | Detecting Explosive Mixture Efficiency of Filters Mixture Control | Sensitivity <br> Stability <br> Accuracy <br> High Speed Response |
| Electrical Bridges | Resistors <br> Resistance <br> Elements | Recorder | Resistor Inspection Moisture Detection Conductivity Measurements | Sensitivity <br> Stability <br> Accuracy <br> Fost Response |
|  | Pirani Gauge |  | Vacuum Gauging | Stability |
|  | Strain Gauge |  | Transient Stresses | Accuracy |
| Electronics | Inductance Ionization Thermionic | Recorder | Wave Guide Studies <br> Vacuum Gauging <br> Tube Development | Sensitivity <br> Stability <br> Low Resistance Input |
| Electrolysis | Electrolytic <br> Cells <br> Current Shunt | Recorder | Production Control Electrolytic Plating Electrolytic Process | Isolated Input Stability <br> Accuracy |

In each of the above applications, the Recorder could be replaced with a suitable milliammeter indicator, or the output can be used to actuate automatic control relays or signal devices. Inquiries for modification within the useful scope of the Microsen D. C. Amplifier are invited. If possible, such inquiries should contain complete application specifications.


MICROSEN

## ELECTRICAL INSTRUMENTS

 A product of
## MANNING, MAXWELL \& MOORE, INC. STRATFORD, CONNECTICUT

Mokers of 'Microsen' Electrical and 'American' Industrial instruments, 'Hancock' Valves, 'Asherott' Gauges,
"Consolidated' Sofety and Relief Valves. Builders of 'Shaw-Box' Cranes, 'Budgit' and 'Load lifter' Hoist! and other lifring specialties.

Marning, Maxwell \& Moore, Inc.
250 East Main Street
Stratford, Conn.
We are interested in your Microsen D. C
Amplifier. Please send the bulletin describing Amplifier. Please send the bulletin describing
the instrument to the following oddress:
ame
Position
Company
Street Address
City $\qquad$ State $\qquad$
L

-


## Which Of These Coil Forms Best Fits YOUR Needs?

Coil Forms Only, Or Coils Wound To Your Specifications . . . Cambridge Thermionic will furnish slug tuned coil forms alone or wound with either single layer or pie type windings to fit your needs, in high, medium or low frequencies . . . and in small or large production quantities.

See table below for physical specifications of coil forms.

percent harmonic distortion. Voltage regulation is automatic and maximum response time, 1.5 cycles. Write for technical bulletin CVL140.


## Nuclear Circular Slide Rule

Nuclear Instrument \& Chemical Corp., 229 W. Erie St., Chicago 10, Ill., has announced the Nuclearule, a new type of slide rule, which makes it possible to obtain quickly count rate, statistical error, coincidence loss, activity of sample versus half life, radiation flux after passage through absorbers, and other data. These values are obtained by simple settings of the rule.


## VHF Transmitter

Plessey International Ltd., Ilford, Essex, England. Designed originally to meet airport local control requirements, the type PT. 10 twelve-watt vhf transmitter has a wide field of application wherever a compact fixed-station transmitter with an r-f power output of this order is required. The complete equipment consists of a modulator and an r-f unit, available either desk or rack mounted. Covering the 118 to 132 -mc band the crystal-controlled operational frequency can be varied by insertion of the appropriate crystal. Bandpass circuits in the r-f unit minimize the neces- EQUIPMENT, MEASURING INSTRUMENTS FOR COMMERCIAL AND INDUSTRIAL USE, AND OTHER ELECTRONIC DEVICES - PRO. DUCTS WHERE PRECISION PERFORMANCE LARGELY DEPENDS UPON TIME AS A FACTOR OF CONTROL - KNOW THEY


## RUNNING TIME METERS

Synchronous motor driven. Register automatically and cumulatively total operating or idle time on circuits, machines, systems.


TIME DELAY RELAYS
Provide adiustable or fixed time delay between operation of a control circuit and subsequent opening or closing of a load circuit.


SYNCHRONOUS MOTORS
Permanent magnet type for applications requiring a constant speed at a given frequency. Small size. $30^{\prime \prime}$ ounce torque. Twenty-eight speeds from 60 rpm to $1 / 24 \mathrm{rph}$.

For a wide range of standard timers and controls.. or special adaptations for specific applications..consult R.W. CRAMER CO., Box No. 3, Centerbrook, Conn.



## New, (fircelo box fincer brakt

3 TOOLS IN ONE

1. BOX and PAN BRAKE
2. STANDARD BRAKE
3. BAR FOLDER

for forming triangular, square and rectangular tubes.
our models 6" 12 " $18^{\prime \prime} 24^{\prime \prime}$ Capacity-16 Gauge Steel 3 TOOLS IN ONE

Versafility from the word GO!! One box or 10,000 - can be eco nonically produced with the new Di-Acro Box Finger Brake. The complete box finger bar also serves perfectly for all standard brake operations. An Acute Angle Bar-quickly mountedconverts the brake to a bar folder for locks, seams, hems and sharp angles. The unique Di-Acro Open End Finger forms square or triangular tubes and other similar parts difficult to make. Real machine tool construction. with hardened and precision ground box fingers, assures permanent accuracy in producing duplicated parts. The Box Finger Bar can be easily mounted on all standard Di-Acro Brakes.

## Di-Acro is pronounced "DIE-ACK-RO'"

and Rod Parters also Power Shears and Besary tuning controls and a preset circuit in the modulator unit automatically prevents over-modulation.


## Balance Amplifier

Schaevitz Engineering, Camden 11, N. J. Type 60AD-1 balance amplifier for use with linear variable differential transformers has been announced. The instrument enables the lvat to regulate the power of a motor. It senses the phase condition and magnitude of the lvdt output, amplifies the information and supplies power to operate the motor in the correct direction. The amplifier can operate two phase induction motors rated up to 25 watts, at full power in either direction of rotation in accordance with signals corresponding to a lvdt core motion of as little as 0.0001 inch. It is powered directly from

# PROVIDE DELAYS RANGING FROM I TO I20-SECONDS 

Features: - Compensated for ambient temperature changes from - $40^{\circ}$ to $110^{\circ} \mathrm{F}$... Hermetically sealed; not affected by altitude, moisture or other climate changes . . . Explosion-proof . . . Octal radio base . . . Compact, light, rugged, inexpensive . . . Circuits available: SPST Normally Open;

SPST Normally Closed.
PROBLEM? Send for "Special Problem Sheet"


Amperite REGULATORS are the sim. plest, lightest, cheapest, and most compact method of obtaining current or voltage regulation ... For currents of .060 to 6 Amps. . . . Hermetically sealed; not affected by altitude, ambient temperature, humidity.

Write for 4-page Illustrated Bulletin.
Amperite CO., Inc., 561 Broadway, New York 12, N. Y.
In Canada: Allas Radio Corp., Lid., 560 King St., W. Toronto
the $117-\mathrm{v}$, 60 -cycle, a-c line.


## Spectrum Analyzers

Polytechnic Research and Development Co., Inc., 202 Tillary St., Brooklyn 1, N. Y. A series of microwave spectrum analyzers permits accurate determination of r-f pulse characteristics. Each unit consists of a type 850 power supply, i-f and video unit, together with a demountable r-f unit appropriate

# ThereA "TV Du:." <br> Designed for the Professional Television Technician 



Matched in design.... unmatched anywhere for their advanced engineering features... these new companion units furnish all basic signals essential for the rapid, precision servicing and production testing of television receivers. Flexibility, versatility, and accuracy are outstanding characteristics of each unit individually and in combination.

The RCA WR-59B Television Sweep Generator covers all broadcast television channels on preset selector-switch positions, and in addition features a continuous tuning range from 0.3 to 50 Mc , to accommodate current and future intermediate frequencies. The rf signal is frequencymodulated at the fundamental frequency by a precision-type vibrating capacitor of advanced design. The signal is free from spurious responses and other frequency components often found in harmonic generators and beat-frequency oscillators.

An additional feature of the WR-59B is the inclusion of a blanking circuit which produces a zero-reference line on the cathode-ray tube. This base line aids in determining the amplitude of the signal. The base line is also very useful in aligning FM discriminator circuits, or in checking the exact slope of the frequencyresponse curve of any circuit.
The RCA-39B Television Calibrator features crystal calibrated markers for all TV frequencies and is useful in making linearity adjustments. Included in this one instrument is a crystal-calibrated variablefrequency oscillator, two crystal-con trolled oscillator stages with three crystals supplied, a wide-band modulator stage for internally modulating the output at audio and radio frequencies, and an audio amplifier with speaker. The instrument provides a crystal-controlled $4.5-\mathrm{Mc}$ output for alignment of TV sets employing in tercarrier sound...crystal-controlled markers
4.5 megacycles removed from the main marker, for television rf and if alignment ...and crystal-controlled markers 250 kilocycles removed from the main marker, for sound discriminator alignment.

Additional features are - provision for injection of external marker...internal audio and rf modulation of variablefrequency oscillator... and crystalcalibrated heterodyne frequency meter.

For a complete and modern television alignment setup, your best buy is the WR-3913 Television Calibrator combined with the WR-59B Television Sweep Generator and the new, revolutionary WO57A Oscilloscope matching unit. This "TV Trio" is also available in the WS-17A 3 unit rack.

For complete details on the WR-39B and WR-591, see your RCA Test Equipment Distributor, or write RCA, Commercial Engineering, Section F42Y, Harrison, N. J.

RADIO CORPORATION OF AMERICA TEST EQUIPMENT


NEW PRODUCTS
(continued)
for the particular frequency range of interest. Available units now covered the S-band and X-band regions of the microwave spectrum, with a special combination instrument, type 855 , containing r-f units for both ranges.


## Tin-Content Indicator

Wheelco Instruments Co., Chicago 7, Ill., has released a new portable direct-reading indicator for the determination of the ratio of lead and tin content in solder. It consists essentially of a high-resistance pyrometer and a convenient plugin type sensing unit. Up to 7-percent tin content of lead alloys may be tested in a matter of seconds, thus eliminating time-consuming laboratory tests.


## UHF Frequency Meter

Polytechnic Research \& Development Co., Inc., 202 Tillary St., Brooklyn 1, N. Y. Type 584 tunable frequency meter permits accurate measurement of r-f signals throughout the new uhf television band. Dials are calibrated to read directly in mc. A coaxial-type cavity resonator is employed in which


This transformer stud was made in one piece by cold heading at a much lower cost than would be possible by any other method. Cold working of the metal also produces a stronger part.
Perhaps the cold heading process, in the hands of Scovill's engineers, toolmakers and operators, can help you get better parts at lower cost. Send your sample or blueprint for further information.


New York • Detroit * Wheaton. 111.
Los Angeles - Cleveland * San Francisco

|  | TUBE TESTER <br> SPECIFICATIONS: <br> Tests all tubes including 4,5 8, 7 , Octal, Lock-in. Peanut $\qquad$ $\qquad$ $\qquad$ <br> ages' $\qquad$ $\qquad$ $\qquad$ $\qquad$ $\qquad$ $\qquad$ $\qquad$ <br> cycles A.C. Comes housed in a beautiful hand.rubed cah cabinet complete with portarie cover. $\qquad$ |
| :---: | :---: |
| The New Model 200 AM and FM SIGNAL GENERATOR |  <br> Model TV-30 comes com- <br> Tubes Used : <br> lead and all operating in. structions. <br> lated buffe <br> GSNZ as A.F. Oscillator. <br> Audio Osclllator and pow- |
| SUPERIOR'S NEW MODEL 670 <br> SUPER <br> METER <br>  <br>  <br>  <br>  <br>  <br>  <br>  Ohms to 3 Megohms. INDUCTANCE: 1.75 to 70 Hehries. 35 DECIBELS: -10 to $+18 .+10$ to +38 +30 to +58 The modei 670 comes housed in a rug- ged, crackle-finished steel cabinet complete with iest leads and operating in- structions. Size $51 / 2^{\prime \prime} \times$ $7 t / 2^{\prime \prime} \times 3^{\prime \prime}$. | An Accurate Pocket Size $\underset{\substack{\text { nopol } \\ \text { no }}}{\text { NoL }}$ VOLT-OHM MILLIAMMETER <br> Sensitivity: 1000 ohms oer volt) <br> Features: <br> Compact, measures $31 / s^{\prime \prime} \times 578^{\prime \prime} \times 21 / 4^{\prime \prime}$ Uses latest design $2 \%$ accurate 1 Mil D'Arsonval type meter. Same zero adranges. It is not necessary to readjust when switching from one resistance range to another. This is an important time-saving feature never before included in a V.O.M. in this price range. Housed in round-cornered, molded case. Beautfiul black etched panel. Depressed letters filled with permanent white, insures long life even with constant use. Specincations: 6 A.C. VOLTAGE RANGES. $0-15 / 30 / 150 / 300 / 1500 / 3000$ volts. 6 D.C. VOLTAGE RANGES: $0-71 / 2 / 15 / 75 /$ 4 D.C. CURRENT RANGES: $0-11 / 2 / 15 / 150$ 2 RESISTANCE RANGES: $0-500$ ohms. $0-1$ <br>  |

## GENERAL ELECTRONIC DISTRIBUTING CO.

Dept. EL-6, 98 Park Place, New York 7,
N. Y,

## Another First!



The new Victoreen Model 506 pocket ionization chamber is designed to meet the need for a compact dependable chamber for measurement of radiation in the 100 r range.

Many new features make the 506 unique for measuring hi-intensities. This pocket chamber fulfills basic requirements as it incorporates accurate measurement even with short exposure time-affords a wide energy response from 40 KV and up-offers high dosage with overdosage not affecting its performance and, equally important, the chamber is tamper-proof and cannot be discharged except by using the Model 392 Minometer Charger.

The 506 hi-intensity chamber is shorter than the conventional pocket size and fits an aluminum shell $\frac{1_{2}^{2}}{}{ }^{\prime \prime}$ in diameter and $3 \frac{33^{\prime \prime}}{4}$ overall. It is further identified by color coding the clip end.
the center conductor is adjusted by rotation of the frequency dial so as to vary the resonant frequency continuously from 470 to 950 mc .


## Parabolic Antennas

The Workshop Associates, Inc., Crescent Road, Needham Heights, Mass. Five new parabolic antennas cover the 5,929 to $7,125-\mathrm{mc}$ frequency band. Each is available in two, four, six and eight-ft diameters, and mounts can be had for all types of installations. The antennas have gains up to 44.9 db and can be supplied with complete deicing equipment and junction boxes. Write for the descriptive booklet.


## Field TV Camera Chain

Polarad Electronics Corp., 100 Metropolitan Ave., Brooklyn 11, N. Y. Model CV-2 lightweight versatile field television camera chain incorporates the latest design image orthicon pickup tube, type 5820, which enables it to be used

## PRECISION ATIENUATION to 3000 mc !

*Patents applied for

Inquiries are invited concerning single pads and turrets having other characteristics

VSWR less than 1.2 at all frequencies to 3000 mc .

- Turret Attenuator* featuring "Pull-Turn - Push" action with 0, 10, 20, 30, 40, 50 DB steps.
- Accuracy $\pm .5 \mathrm{DB}$, no correction charts necessary. - 50 ohm coaxial circuit. Type N connectors.


## VULCAN

 ELECTRIC HEATING UNITS

## Coils of Heat

Tubular Electric Heating Units that fit around or clamp to vessels, tanks, pipes, etc., for contact heating of metals, oils, air and water. especially where little space is available and considerable heat is needed.
Can be bent into almost any shape

## STANDARD SIZES

or made to your requirements.

## VULCAN ELECTRIC CO. <br> DANVERS 10, MASS.

Makers of Vulcan Electric Soldering Tools, Electric Solder Pots, Electric Glue Pots, Electric Branding Irons and Electric Heating Units, including the new Vulcan 90
electric operation.

THE LOWEST EVER CAPACITANCE OR ATTENUATION

We are specially organized to handle direct enquiries from overseas and can give
IMMFDIATE DEIIVERIES FOR USA
Billedin Dollars Settlement by your check.
TRANSRADIO LTD
CONTRACTORS TO H.M. GOVERNMENT
chais:Thensend condon.

| LOW AITEN types | $\begin{gathered} \text { IMPED } \\ \text { ONMS } \end{gathered}$ | $\left[\begin{array}{c} \text { ATIEN } \\ \text { dblo } \\ \text { or } 100 \end{array}\right]$ |  | O.D.' |
| :---: | :---: | :---: | :---: | :---: |
| A 1 | 74 | 1.7 | 0.11 | 0.36 |
| A2 | 74 | 1.3 | 0.24 | 0.44 |
| A 34 | 73 | 0.6 | 1.5 | 0.88 |
| $\begin{aligned} & \text { LOW CAPAC } \\ & \text { TYPES } \end{aligned}$ | $\begin{array}{\|c\|} \text { CAPAC } \\ \text { monf/f: } \end{array}$ | $\begin{gathered} \text { IMPED } \\ \text { OHMS } \end{gathered}$ |  | O. ${ }^{\text {² }}$ |
| C 1 | 7.3 | 150 | 2.5 | 0.36 |
| PC 1 | 10.2 | 132 | 3.1 | 0.36 |
| C II | 6.3 | 173 | 3.2 | 0.36 |
| C 2 | 6.3 | 171 | 2.15 | 0.44 |
| C22 | 5.5 | 184 | 2.8 | 0.44 |
| C 3 | 5.4 | 197 | 1.9 | 0.64 |
| C 33 | 4.8 | 220 | 2.4 | 0.64 |
| C44 | 4.1 | 252 | 2.1 | 1.03 |
| * Very Low Capacitance |  |  |  |  |

readily under conditions of poor illumination as well as in bright sunlight. The electronic viewfinder unit plugs in and clamps to the camera unit.


## Angular Accelerometer

Schaevitz Engineering, Crescent Blvd. at Drexel Ave., Camden 11, N. J. Type W accelerometer, an application of the linear variable differential transformer, measures the angular acceleration of any body to which it is fastened. The sensitive element consists of a tors-ionally-suspended beam. spring loaded at each end, with the lydt core mounted on the beam. This torsionally-suspended mass is displaced angularly with respect to the instrument case when the latter is subjected to angular accelerations. The instrument is available in one of three natural frequencies, 6,12 , or 18 cps for the ranges of $\pm 5$, $\pm 10$ and $\pm 30$ radians per sec per sec respectively.


Microwave Signal Generators
Polytechnic Research and Development Co., Inc., 202 Tillary St., Brooklyn 1, N. Y. Types 902 and 903 broadband signal generators cover in two units the frequency range from 3,650 to 10,900


- HIGH-PASS FILTERS
- LOW-PASS FILTERS
- BAND-PASS FILTERS
- BAND SUPPRESSION OR

REJECTION FILTERS

For RF or aydio filtering and line RF suppression ... for harmonic attenuation and teletype communications . . for single side band and telemetering equipment-these and many more are the uses to which B \& W Filters are being applied daily. Time-tested and performance-proved, each of the filters listed above offers you a combination of accuracy and ruggedness that can't be beat in commercial equipment, military equipment . . ANY EQUIPMENT.

That's why if your equipment requires filtersreal filters built for day-in day-out dependability $-\mathrm{B} \& \mathrm{~W}$ is the perfect answer. For details, write today to Barker \& Williamson, Dept. EL-60.

[^10]
## BARKEReWILLIAMSON_IMc.

## STANDARD...



## Stands for Quality

## Low Frequency Crystal Units

A special process has been developed to overcome fragility and give sturdiness to this STANDARD unit. Range-200 to 1200 kc . CT and DT cut. Hermetically sealed and filled with dry nitrogen. Good stability over wide temperature range. Meets government specifications. Write or wire for additional information.

We are in a position to make prompt delivery.

## Standard Piega Company CARLISLE, PA.

How PRICISIOY
PApER rubes protect
your coil windt your coll windings.

How far do
these characteristics of your COIL BASES affect coil quality?

Every engineer knows the answer. Precision coil bases have long proved their reliability in these factors - with light weight and space saving. Made to your specifications of finest dielectric Kraft, Fish Paper, Cellulose Acetate or combinations. Any length, any ID or OD, round, oval, square, rectangular. Ask for new Mandrel list, over 1000 sizes
Send for sample and LOW PRICES.


## DELUXE TERMINALS

FWG. Polystyrene terminal strip for high frequency use. Binding posts take banana plugs at top, grip wires thru hole of bottom. Net 60c
FWH. Molded mica bakelite insulators with serrated bosses grip thinnest panel firmly. Binding posts, same as FWG. Net 664
FWJ. Same insulators as FWH but with jacks. When used with FWF plug no metal is exposed. Net 54c
FWF. Banano plugs in molded mica bakelite. Fits FWG, FWH, FWJ. Leads may be connected thru top or side. Excellent for 300ohm twin lead. Net $70 ¢$
National deluxe insulators and fittings are available for a wide range of uses.

Address export inquiries to Dept. E-650

me. Each employs a tunable coaxial cavity oscillator incorporating a Raytheon type 5721 klystron. Resonant frequency of the oscillator is controlled by a front panel dial reading directly in frequency. Provision is made for $c-w, f-m$ and pulse operation as well as for external modulation.


## Lightning Arrester

The LaPointe-Plascomold Corp., Unionville, Conn. Model RW 204 lightning arrester is designed for use with the four-wire control cable employed with antenna rotators. It is meant to serve dual purposes in that it may also be used for standard 300 -ohm ribbon transmission line. Pin-point contacts in its polystyrene case eliminate the need for wire stripping and installation is accomplished by simply tightening down the cover with two wing nuts.


## TV/F-M Amplifier

SONIC Industries, INC., 221 W. 17th St., New York, N. Y. Model IT4 amplifier is designed to provide high-gain preselection for any tv or f-m receiver, with adequate bandwidth to pass all desired modulating elements and yet with adequate selectivity to reject unwanted off-carrier signals and noise. Balanced input and output circuits provide for minimum noise pickup. Versatility in application has been


BLACK A NBTER, INC. 306 PLEASANT STREET. DHEEDHAM 92. MASS.


AN ELEPHANT'S TRUNK!
While no files exist that prove an elephant ever tested his trunk's strength against a MINES Cable Connector assembly, if one ever does ... other records (details on request) prove, he'll be tackling a tough job.
Molded directly to cable as one-piece Neoprene units MINES electrical connectors are Jerk-proof, Shatter proof and Wear-resistant-Special construction and resilient rubber mounting of pins and spring loaded sockets insure a long life of low contact resistance - and the famous MINES Water-Seal automatically protects connections from dirt, oil or water.
A wide variety of sizes, shapes and pin combinations are available to meet the portable power requirements of TV, FM, AM or PA Circuits. No. 4A093 Male plug illus.

## MINES EQUIPMĖNT-MINESE Division : <br> JOY MANUPAGTURING GOMPANY henry w. olivek bldg. pittseurgh ai, penina.



For On-stage Realism of tone, the Bozak "Kettle Drum" loudspeaker is unmatched in price, unsurpassed in listening pleasure. Critical lis-teners-those interested in complete musical enjoyment, in recording, broadcast monitoring or speech training-agree that the "Kettle Drum" adds new dimensions to high fidelity sound reproduction.

Years of electronic and acoustical research have combined to develop these unprecedented features:
$\Rightarrow$ Bozak "Kettle Drum" 32 " spun steel $\rightarrow$ baffle for true pitch bass

Bozak $12^{\prime \prime}$ free-moving cone woofer $\Rightarrow$ for outstanding, low resonance bass response
Bozak damped-cone dual tweeter for的 distinctly natural treble and broad, smooth response

Response: 40-13,000 cycles with usefui response to 16,000 ; Input: 12 watts, response to 16,000 ; Input: 12 watts,
peaks to 18 watts; Impedance: 8 ohms ; Coverage: $120^{\circ}$ at 10 kc ; Woofer magnet : 22 oz . Aínico V

For all applications demanding highest quality sound reproduction at moderate power levels, hear the Bozak "Kettle Drum', model B-201 (patents pending) at your dealer's, or write

IR. T. BOLAK CO.

90 Montrose Ave. - Buffalo 14, N. Y.
provided for by both 72 -ohm and 300 -ohm input and output matching impedances.


## Tiny Pressure Pickup

Bendix Aviation Corp., Pacific Division, 11600 Sherman Way, North Hollywood, Calif. The new subminiature pressure pickup with a range from 0 to 400 psi is designed for use in the AN/DKT-3 or other $\mathrm{f}-\mathrm{m} / \mathrm{f}-\mathrm{m}$ telemetering systems. Natural frequency is 500 to 2,000 cps with the response time dependent upon the length and diameter of the connecting tubing. Acceleration error is negligible. Weight is 0.32 lb .


## Recording-Tape Splicer

Rason Mfg. Co., 61 Myrtle Ave., Brooklyn, N. Y. The Jiffy Splice is a precision tool for splicing of recording tape with minimum waste. Operation consists in placing the two ends under the clamps overlapping about $\frac{1}{4} \mathrm{in}$. and cutting in the diagonal groove with razor blade or knife. Then one places Scotch tape over the cut and trims by cutting in horizontal grooves

## Literature

Universal Impedance Bridge. Brown Electro-Measurement Corp., 4635 S. E. Hawthorne Blvd., Portland 15 , Oregon, announces a fourpage bulletin on the model 250-B universal impedance bridge for


THE large illustration depicts the improved "Douglas" Fully Automatic Multi-Winder, specially developed for the high-speed production of large quantities of coils with or without paper interleaving. It will produce round, square or rectangular coils up to 6 inches each in length and up to $4 \frac{1}{2}$ inches diameter. As many as twelve smaller coils can be wound simultaneously within the total available winding length of 12 inches at headstock speeds of between 600 and 2,000 revolutions per minute.

Numerous other Coil Winding and Taping Machines are illustrated in our complete Catalogue, a copy of which will be sent to interested executives on application.


THE AUTOMATIC COIL WINDER \& ELECTRICAL EQUIPMENT CO., LTD. WINDER HOUSE • dOUGLAS STREET - LONDON - S.W.l - ENGLAND
Cables: "Autowinda, Sowest, Landon." Code: A.B.C. Sth. Edn.

# Tuning Forks for preasion frequanty contral 

Philamon Laboratories manufactures a complete line of tuning fork resonators to meet your frequency control requirements.
Temperature-compensated and hermetically sealed, the resonators are available in accuracies from 1 part in 3,000 to 1 part in 100,000 , for operation over wide temperature ranges. The resonators may be obtained individually -as a part of compact sub-assemblies-or in completely engineered equipment.

LET US SEMD YOU COMPLETE TECHMICAL DATA

PHILAMON LABORATOHIES 5717 Third Avemue, Brooklyn 20, N. Y.


NEW PRODUCTS
(continued)
measuring resistance, capacitance and inductance. Illustrations, applications, chief features and specifications of the unit described are included. Range of the instrument treated is as follows: resist-ance- 1 milliohm to 11 megohms; capacitance- $1 \mu \mu \mathrm{f}$ to $1,100 \mu \mathrm{f}$; inductance $-1 \mu \mathrm{~h}$ to 1,100 henrys.

Resistor Bulletin. Hardwick-Hindle Inc., Newark 5, N. J. Bulletin 350 describes the construction (ceramic core, uniformly-wound resistance wire and corrosion-resistant terminals) and coating (blue-gray vitreous enamel) of a line of resistors. Illustrations, technical data and information on ordering are given.

Rectangular TV Bulbs. American Structural Products Co., Box 1035, Toledo 1, Ohio, offers a booklet of scale details to enable television tube and set manufacturers to take full advantage of the all-glass television bulbs. The 12 -page book contains scale drawings showing all dimensions of the rectangular bulbs in 14, 16 and 19-in. sizes, and round bulbs in $12 \frac{1}{3}, 16$ and 19 -in. sizes. It illustrates the advantages of rectangular bulbs over round bulbs by comparisons of area, shape and completeness of picture.

VHF Signal Generator. HewlettPackard Co., 395 Page Mill Rd., Palo Alto, Calif. Volume 1, No. 7 of the Journal is an article on the model 608A vhf signal generator which covers the range from 10 to 500 mc . The four-page folder includes a complete description with photographs, diagrams and a table of specifications.

Radioactivity Instruments. Tracerlab Inc., 130 High St., Boston 10, Mass. Catalog B is a 92 -page booklet covering a variety of radioactivity measuring and handling instruments. Units illustrated and described include: scalers, scaler accessories, preamplifier and tube accessories, counting-rate and survey meters, G-M tubes, general

## 3 New JOHNSON Sampling Loops

Now available, three newly designed models of JOHNSON Phase Sampling Loops covering all broadcasting sampling requirements and at sharply reduced prices.


For installations requiring high sensitivity and extreme stability, the 173 -10 adjustable shielded loop (illustrated) is recommended. or less exacting applications and where 173-11-1 and 173-11-2 unshielded loops are $\stackrel{173-1}{ }$

The 173 -10 shielded loop responds only to the magnetic field and provides high accuracy phase sampling, naffected by weathêr conditions. The loop consists of two enamelled and insulated cors securely supported electrostatic shield tubing. Dimensions are: height 6 feet, width 2 feet. Heavy duty insulators support the loop. which may be rotated and locked in position. Entry for the sampling line is provided in the battom pivot shaft.

The unshielded loops offer an economical means of sampling tower currents where the use of the more loop is not warranted. The 173.11 .2 is an insulated, adjustable single turn loop. The 173.11.1 loop is grounded to the tower and the tower member serves as the fourth side of the loop. Sensitivity is adjusted by varying the distance between the tower leg and the outer side of the loop. Construction is of heavily plated steel tub ${ }^{2}$ and all necessary, hardware (io mounting and bonding is furnishe Broadcast net prices of JOHNSON Sampling Loops are:

```
173-10$65.00
173-11-1
30.00
73-11-2
40.00
```

For literature and technical dafa write:
Johnson
formand mane is Erodio
E. F. JOHNSON CO. WASECA, MINN.

## Glass Bushings

NOW AVAILABLE TO MANUFACTURERS OF ELECTRONIC EQUIPMENT


General Electric is now offering to other manufacturers the cast glass bushings it has used so successfully on many types of electrical equipment.

These bushings are cast of stable, low-expansion glass. They are attached directly to the apparatus without gaskets-by soldering, welding or brazing, thus forming a strong, permanent, vacuum-tight seal that eliminates moisture problems and often permits more compact, light-weight design.

Available to meet dry, 60 -cycle flashover values of from 10 to 50 kv , and in current ratings of 25 and 50 amperes (in large sizes to 800 amperes), for single or multi-conductor. If you will send us a sketch and ratings of bushings you are now using, we will furnish you with samples of our standard glass bushings. See them and evaluate their advantages. Or write for our Bulletin GEA-5093, Apparatus Department, General Electric Company, Schenectady, N. Y.



## LET BOWSER MEET YOUR TEST SPECS

Bowser Chambers for testing equipment under simulated environmental conditions meet all Government test specifications. Standard Bowser Units, for example, will perform the tests for High and Low Temperature, Humidity, High Altitude, Mildew Resistance, Sand and Dust, and Explosion Proof tests as required in USAF Spec. No. 41065-B. Special Bowser Units are available to meet other specs such as those set up by A.S.T.M., A.P.I., A.S.A. etc.

Send your testing problems to us. Mail the coupon below NOW!


NEW PRODUCTS
(continued)
equipment, lead shields, industrial instruments and dosage meters. Other topics treated are tagged chemicals, laboratory services, and procedure of service and repair.

Microwave Test Equipment. Polytechnic Research \& Development Co., Inc., 202 Tillary St., Brooklyn 1, N. Y., has issued 19 loose-leaf catalog pages giving technical data and illustrations for its latest line of microwave test equipment. An attached instruction bulletin will enable holders of catalogs to bring them up to date. Also available are a table of contents and a price list.

Low-Loss Switches. Communication Products Co., Inc., Keyport, N. J. The looseleaf perforated bulletin 107 describes models 86 low-power, 88 medium-power and 90 high-voltage high-power switches. Supports for all the switches are low-loss impregnated steatite, and all current and voltage ratings indicated are for 60 cycles. Electrical data and dimensional drawings for each model are given.

Precision Potentiometer. Southwestern Industrial Electronic Co., 2831 Post Oak Road, Houston 19, Texas. Model P-2 precision electronic potentiometer for use on high-impedance electrochemical cells or electronic tubes and circuits is the subject of a recent four-page brochure. Included are essential features, block diagram, applications, specifications and prices.

Capacitor Bulletins. Glenco Corp., Durham Ave., Metuchen, N. J. A 14-page booklet enclosed in a looseleaf folder contains bulletins giving the dielectric constant vs temperature on capacitor bodies K-23, K-17, K-24, K-28, K-31, K-38 and K-45. Also included are dielectric constant and power factor vs temperature figures on capacitor bodies K-85, K-300, K-1500 and K-3300. For the latter two capacitor bodies are found information


June, 1950 - ELECTRONICS

 for Perfect colls

Installation of these inexpensive PAMARCO tensions lowers winding costs because each machine will accommodate more coils at higher winding speeds. In addition to increased production, PAMARCO tensions raise production quclity. Free-running action practically eliminates wire breakage and shorted turns. Simple thumb screw setting quickly adjusts for any wire gauge. No tools or special skill are needed for operation. For complete data call or write.

PAPER MACHINERY \& RESEARCH, INC.

ICIAOAK STREET ROSELLE, NEW JERSEY


## for School and Industrial Laboratories

- A unit designed by Vickers Electric Division to help students and industrial personnel obtain a wider know. ledge of the characteristics and applications of high-per. formance self-saturating magnetic amplifiers.
- All three basic single-phase self-saturating circuits may be studied, and the educational unit con actually be used in operating controls circuits. Gives d-c or a-c output, uses d-c or a-c control power
- Magnetic Amplifier Laboratory Manuals and Magnetic Amplifier Design Bulletins included with each educational unit

1801 LOCUST STREET - ST. LOUIS 3, MISSOURI


The Hathaway SC-16A Six Element Recording Cathode-Ray Oscillograph, designed for recording fast transients and continuous phenomena, brings you new highs in resolution because of its unusually high frequency response and high chart speed. Note these unusual features
FREQUENCY RESPONSE 0 to 200,000 cycles per second - RECORDS up to 1000 ft . long at speeds up to 600 inches per second - RECORDS up to 10 ff . long at speeds up to 6000 inches per second - WRITING SPEED above 100,000 inches per second - SIX ELEMENTS with interchangeable lens stoges for 1, 2, 3, or 6 traces on full width of chart - INTERCHANGEABLE RECORD MAGAZINES for continuous recording or short records of fast transients - PRECISION TIMING tuning fork controlled QUICK-CHANGE TRANSMISSION for 16 record speeds • AUTOMATIC INTENSITY CONTROL • CONTINUOUS SWEEP OSCILLATOR

Investigate the Hathaway SC-16A Recording Cathode-Ray Oscillograph Write for Bulletin 2GIA-G


## TEKTRONTX SQUARE WAVE GENERATOR

Continuously Variable, 25 CPS-1 MC Rise Time, .02 Microseconds

Direct Reading Frequency Meter Versatile Output Circuit
Square wave testing techniques come into wider use as the need for good transient response in wide band amplifiers becomes increasingly important. In order to test the high frequency response it is necessary to have a signal which has a rise and fall at least equal to and preferably faster than the risetime of the amplifier being fested. In addition to a sharp rise and fall, the test signal should be free of over.shoot and other spurious responses. For examination of the low frequency response a square wave signal having flat horizontal portions is needed.


TEKIRONIX TYpe 105 Square Wave Generator Price $\$ 395.00$ f.0.b Porlland, Orégon

The TEKTRONIX Type 105 Square Wave Generator provides a suitable signal for both of the above tests. Its frequency range, extending continuously from 25 cycles to $1 \mathrm{mc} .$, combined with its risetime of .02 microseconds, makes it possible to quickly and accurately test amplifiers, filters, etc., having pass bands from a few cycles to 20 mc .

on dielectric constant vs measuring voltage, dielectric constant vs applied d-c bias voltage and stabilization of room temperature capacity after heating above 120 C .

Marine Communications, Kaar Engineering Co., 2815 Middlefield Road, Palo Alto, Calif. An eightpage folder covers the model D-24 marine radio direction finder, the 100 -watt series 96 medium-frequency radiotelephone, the series $19(20 \mathrm{w})$ and $46(50 \mathrm{w})$ marine, mobile and land station radiotelephone equipment, the series 25 radio receiving equipment and the ES-29, a 100 -fathom echo depth sounder. Description, illustrations and specifications are given.

Beryllium-Copper Wrought Products. The Beryllium Corp., Reading, Pa. Bulletin 12 , which describes alloy, condition and temper and includes tables of mill sizes and properties, will aid in specifying beryllium-copper strip. Data covered includes strip in thicknesses ranging from 0.002 to 0.187 in., inclusive. Similar data for beryllium-copper in rod, bar and wire forms will be found in bulletin 13.

Wired Television. Diamond Power Specialty Corp., Lancaster, Ohio, has available a 16 -page bulletin on the Utiliscope wired television system. Descriptive and illustrated pages show the many applications of the system which enables seeing where looking is impossible. The system treated consists of a camera, power unit and monitor or viewing unit. The whole installation under discussion weighs only 121 pounds.

Induction Resolvers. Reeves Instrument Corp., 215 E. 91st St., New York 28, N. Y. Bulletin RICO-3 shows the theory and application of induction resolvers used to perform trigonometric operations in analog computing devices and control systems. Description, tabulated performance data, circuits and dimensional


The Green Engraver offers great speed and convenience. Quickly cuts up to four lines of letters from $3 / 64^{\prime \prime \prime}$ to $1^{\prime \prime}$ on curved or flat surfaces whether made of metal, plastics or wood... operates by merely tracing master copy-anyone can do an expert job. Special attachments and engineering service available for production work. Just the thing for radio, electronic apparatus and instrument manufacturers.

For quality engraving on

- Panels - Name Plates - Scales
- Dials - Lenses - Molds - Instruments
. also does routing, profiling and three dimensional modeling.
-Price does not include master type and special work holding fixtures.

GREEN
INSTRUMENT CO.
363 Putnam Ave.
Cambridge, Mass.


Socket contacts phosphor bronze, knife-switch type, cadmium plated. Plug contacts hard brass, cadmium plated. 2, 4, 6, 8, 10, and 12 contacts. Plugs and sockets polarized. Long leakage path from terminal, and terminal to ground. Caps and brackets, steel parkerized (rust-proofed). Plug and socket blocks interchangeable in caps and brackets. Terminal connections most accessible. Cap insulated with canvas bakelite.
Write for Jones BULLETIN 500 for full details on line.


## JOB-HIMINEERED



# FAIRCHILD PRECISION POTENTIOMETERS 

## Fairchild Type 748

3-Gang Precision Potentiometer
Here's a custom-built instrument that's typical of Fairchild's johengineered solutions of difficult potentiometer problems. It's a 3 -gang potentiometer with 17 taps per unit, giving 16 sections of ecqual resistance -8 each sicle of center. By utsing resistors of various sizes between tips, almost an infinite number of nonlinear functions can be approximated. For control purposes, each unit can be used as a continuonsly varying switch to fire tubes such as Thyratrons in sequence.

To help you in analyzing your special applications, Fairchild offers you the services of its Potentiometer Sample Laboratory engineers. Write, giving complete details on your requirements, to Dept. O, 88-06 Van Wyck Boulevard, Jamaica 1, N. Y.


INRESCO Resistors are a product of highspeed winding techniques that introduce a new measure of economy in precision wire wound resistors.
They are available for IMMEDIATE DELIVERY, in diversified types that meet practically every circuit requirement of practically every circuit requirement of load, ohmic valion.
ing condition

When planning a new circuit design, investigate the advantage of INRESCO resistors for economy, dependability and permanently fixed characteristics. For complete details, call or write today for your copy of the INRESCO catalog.

Monufacturers ond designers of wire wound resistors-exclusively. Estimates on custom built resistors furnished.
now.....the amazing

## ALTEC $21 B$

miniature microphone for lapel use!


The new Altec 28A Lapel Microphone permanently incorporates the Altec 21B. Its small size makes it practically invisible when clipped to the clothing of the user. Here is a development that offers public speakers and professional people a microphone that is invisible, gives them complete freedom of movement and provides them with quality that was never before available. The 28A is held to the clothing by a jewelry clip and is equipped with 6 ft . of cable.
The 154A Matching Unit is used with the 28A and contains the necessary impedance matching tube. The size of a pack of cigarettes, it is easily carried in the pocket. Equipped with 25 ft . of cable.

Write for full information on this and other models of the Altec 21B microphone.


1161 N. VINE ST., HOLLYWOOD 38, CALIFORNIA 161 SIXTH AVENUE, NEW YORK 13, NEW YORK

Technical Ceramics. American Lava Corp., Chattanooga 5, Tenn. Chart No. 501 gives the mechanical and electrical properties of AlSi-

D-C Breaker Amplifier. ListonFolb, Stamford, Conn., has issued a four-page bulletin on the model 10 breaker-type d-c amplifier, an electronic unit designed to replace highsensitivity galvanometers. Included are a block diagram of the amplifying system and performance and characteristics charts. A price list is also availab'e.

Heterodyne Eliminator. J. L. A. McLaughlin, P. O. Box 529, LaJolla, Calif. A recent bulletin treats the MCL-4 Signal Splitter, an asymmetrical off-frequency inverter-type heterodyne eliminator. The unit described was intended for radio press services, airway ground-station control, or wherever off-frequency interference is likely to mar the reception of the vital radio intelligence.

Vacuum Rectifier. Radio Corp. of America, Harrison, N. J., has published a technical data bulletin on the 6AX5-GT full-wave vacuum rectifier of the heater-cathode type intended for use in a-c operated receivers and automobile receivers. Rating and characteristics charts, dimensional outline and socket connections are given.

Crystal Impedance Meter. Lavoie Laboratories, Inc,, Morganville, N. J. A single sheet is devoted to the model 50 crystal impedance meter for use in laboratories employing piezoelectric frequency-control crystals. Specifications of the unit described include a frequency range of 75 to $1,100 \mathrm{kc}$, an impedance range of 0 to $29,900 \mathrm{ohms}$ and an accuracy of 5.0 percent. -


## SOURCE:

FOR HIGHLY SPECIALIZED APPLICATIONS THE TRANSFORMER
SOURCE IS SPERRY
Vacuum - impregnated, HIPERSIL core, open or cased transformers to meet exacting electrical requirements in any given case size. Special design skills, premium materials, painstaking manufacture of custom units. If you have a transformer problem, consult us immediately.

WRITE FOR SPECIFICATION
FORMS TO FACILITATE NEGOTIATION SERVICE.



This unique pack. aged component is easily built into your apparatus. It has true decimal reading, and simple binary circuit with reliable automatic interpolation. Min. iature size. Moderate price. Immed. ate shipment.

Send for Bulletin DCU-116
Senceler Scientific Campany SIXTH AND MEVIN AVE - RICHMOND, CALIFORNIA

## "Just tell them they CAN'T AFFORD TO USE ANYTHING ELSE . . .

That's Joe Gibbons speaking. We were talking about how to make people realize what a terrific thing this new

## JELLIFF ALLOY 1000 RESISTANCE WIRE

really is, and that's the way he summed it up. And even when you make allowances for a salesman's natural enthusiasm, he's pretty near right. Just look at some of the important data:


Resistivity 1000 ohms/cmf Tensile strength 165,000 psiTC of Resistance 20 ppmCoefficient of Expansion 13.9 ppm-
Corrosion Resistance equal to the best nickel-chromiums-
Winds tast and solders easilyLots more ohms in lots less space.
See what we mean? For the whole story, write for Bulletin 17.


## The SYMBOL of QUALITY for 62 YEARS

WASHERS . . . Standard and Special, Every Type, Material, Purpose, Finish... STAMPINGS of every Description . . . Blanking, Forming, Drawing, Extruding.
Your most dependable source of supply - the world's largest manufacturer of Washers, serving Industry since 1887. Over 22,000 sets of Dies. Submit your blueprints and quantity requirements for estimates.

[^11]
MODEL 84—300-1000 Megacycles

Mag custom-made technical ceramics. It covers 17 of the more frequently used compositions and features a selection chart which simplifies choice of the most useful type for the individual requirement. Included are graphs showing linear thermal expansion, dielectric strength variation with thickness and dielectric strength variation with temperature.

Wire-Wound Resistors. Shallcross Mfg. Co., Collingdale, Pa. Bulletin No. 122 gives full details of the type 265A flat, metal-encased micainsulated, wire-wound power resistors which are specifically designed for business machines and other exacting equipment where the call is for real dependability in minimum size. The resistors described are rated for $7 \frac{1}{2}$ watts in still air and 15 watts when mounted on a metal chassis (at 175 C continuous operating temperature.)

Boom Bracket Kit. Atlas Sound Corp., 1449 39th St., Brooklyn 18, N. Y., has published a one-page catalog release on the US-1 boom bracket kit for microphone support. It illustrates how the setscrew assembly makes it possible to cut down any tubular section so that the support bracket can be custom built to meet a specific requirement.

Nuclear Measurements. Nuclear Instrument and Chemical Corp., 223 W. Erie St., Chicago 10, Ill. Catalog K is a 40 -page booklet covering 32 nuclear scaling, counting, monitoring and detector instruments. Also included are an illustrated description of 36 accessories and special instruments, service information, suggestions for ordering and a price list.

Spectrum Analyzer. Polarad Electronics Corp., 100 Metropoli$\tan$ Ave., Brooklyn 11, N. Y. A single-page bulletin covers the LSA all-band direct-reading spectrum


## Working with Inert Gases?

Lierde HELIUM • NEON ARGON•KRYPTON•XENON

Now available in commercial-size cylinders in addition to glass bulbs. Write for information on sizes, prices, rigid purity tolerances, special rare gas mixłures...

The Linde AIr Products Company
Unit of Union Carbide and Carbon Gorporation
$30^{\circ}$ Eost 42nd Street [1] New York 17. N. Y.
In Conada: Dominion Oxygen Company, limited, foronto
The term "tinde" is o registered trade-mark of The Lindo Air Produets Compony.


AGAIN lead the way to cost-saving and better performance in your products "Diamond H" Snap-Ins . . . toggle switches, convenience outlets, pilot lights and inter-connecting load plugs . have always been tops for performance and for cost-saving on users' assembly lines. Just snap them into their holes, spring clips hold them tight. Wire them up before or after.
NOW . . . NEW IMPROVEMENTS MAKE THEM BETTER THAN EVER!

- All... have wider face areas with wider flanges. Greater over-lap eliminates need for exacting tolerances in porcelainizing or other finishing around ${ }^{24}{ }_{32}{ }^{\prime \prime} \times 1_{32}$ " installation holes.
- Switches . . operate on principle new and exclusive in this application. In "on position, contacts are held together under pressure of spring action to assure positive, unfuiling action. Ratings: 15 and $20 \mathrm{~A}-125$ V.; 10 A. -250 V., A.C. also H.P. ratings.
- Pilots . . . with larger, faceted lenses, give greatest light output of any comparable pilots on the marker. Rated 115 V. or 230 V., A.C.
- Converience Outletand Inter-Connecting Load Plug . . . like adl "Diamond H" products are ruggedly built for long service, in black, white, brown or special color plastic for top appearance in your product.
Write today for complete details on how "Diamond H" Snap-Ins will help you make a better product at lower cost.

[^12]

## Blidey

TYPE
BCS-IA FREQUENCY STANDARD

Strbility better than $2 \times 10^{-7}$ over any 24 hour period

For the first time . . a co ORDIWATION OF AlI DESIGN FEATURES THAT CONTRIBUTE TO HIGH frequency stability.

The right combination and balA FCE OF CIRCUITRY UTILIZIAG A SPECIAL BLILEY CRYSTAL AND TEMPERATURE CONTROL OVEN. A PRICISION REFERENCE INSTRUMENT WITH EXCEPTIONAL QUALIFICATIONS.

## WRITE FOR BULLETIN 40D

## A COMPLETE FREQUENCY STANDARD BY THE MAKERS OF

BLILEY ELECTRIC COMPANY UNION STATION BUILDING ERIE, PA.
analyzer, a laboratory instrument used to provide a visual indication of the frequency distribution of energy in an r-f signal in the range of 10 to $16,520 \mathrm{mc}$. Outstanding features and an illustration of the equipment are given.

Synchronous Timing Motor. The Bristol Motor Co., Old Saybrook, Conn. The Circle B a-c self-starting synchronous timing motor is illustrated and described in a recent four-page folder. Design, construction, lubrication, compactness, dependability and specifications are covered.

Electronics Dictionary. Allied Radio Corp., 833 W. Jackson Blvd., Chicago 7, Ill., has published a 64page dictionary of over 2,500 terms used in television, radio and industrial electronics. Over 125 illustrations and diagrams of components, equipment and electronic circuits are included, as well as an appendix section containing useful radio data. Price is 25 cents to cover handling and mailing costs.

Circuit Control. G. H. Leland Inc., 123 Webster St., Dayton 2, Ohio, has released a four-page bulletin giving a few of the many applications of circuit selectors and stepping relays. The units described feature remote control, rotary-solenoid operation, positive detent action, and self-stepping or external impulsing.

Germanium Crystal Diodes. Kemtron Electron Products Inc., 23 Brown St., Salem, Mass. A recent four-page folder gives performance characteristics, dimensional diagram and chief features of a line of germanium crystal diodes. Specifications for eleven types are included.

Electronic Plotting Board. Electronic Associates, Inc., Long Branch, N. J., has issued a descriptive pamphlet on its model 205 Vari-


Use SILVER GRAPHALLOY
For extraordinary electrical performance

HEE SUPREME BRUSH AND CONTACT MATERIAL

IN BRUSHES

- for high current density
- minimum wear
- low confact drop
- low electrical noise
- self-lubrication


## IN CONTACTS

- for low resistance
- non-welding
character
silver graphalloy is a spe-
cial silver-impregnated graphite
design experience counts -
call on usi


## GRAPHITE METALLIZING CORPORATION <br> TO55 NEPPERHAN AVENUE, YONKEAS 3, NEW YORK




Design engineers and manufacturers in the radio, electrical and electronic fields are finding in LAVITB the precise qualities called for in their specifications. . high compressive and dielectric strength, low moisture absorption and resistance to rot, fomes, acids, and high heat. The exceedingly low loss-factor of LAVITE plus its excellent workability makes it ideal for all high frequency applications.
Complete details on request
D. M. STEWARD MFG. COMPANY sain Office \& Warks: Chattanooga, Temn ideedham, Mass. - Chicago - los Angeles. New York - Philadelphia

## PROCEEDINGS

of the
1949 NATIONAL ELECTRONICS CONFERENCE -CHICAGO-

Now Available

60 Papers on Electronics research and development in this 575-page clothbound volume just off the press.

Mail Your Coupon Now To Obtain Your Copy of This Limited Edition.

National Electronics Conference, Inc. E. 6 852 East 83rd St.
Chicago 19, Illinois
I inclose $\$ 4.00$ (check or money order) for which please send me one (1) copy of the Proceedings of the 1949 National Electronics Conference

Name
Street Address
City
Zone
State.
(Proceedings of previous conferences available upon request)

Try Remler for Service-Tested

Metol-plastic components designed and manufactured to order. Write for quototions specifying electrical and mechonical character. istics. Describe application. No obligation.

## BANANA PINS AND JACKS

- STANDARD TYPES OR SPECIAL ORDERS
- INCORPORATED IN CONNECTORS
- INDUSTRIAL OR JAN SPECIFICATIONS

Standard type-mold insert or rivet shanks; heat treated beryllium copper springs; brass bodies; silver-plated finish. Also incorporated in a wide range of Femler connectors.

Remler Company Ltd. 2101 Bryant St. San Francisco io, Calif.

## Remax <br> Since 1918 pioners in electronics ahd plastics



NEW PRODUCTS
(continued)
plotter which is primarily designed to plot one variable as a function of another variable. Some applications of the instrument described include aeronautics, acoustics, radio, atomic research, materials and industry. Accessories are listed.

Servo Actuators. Lear, Inc., 110 Ionia Ave., N. W., Grand Rapids 2, Mich. Bulletin B-102 gives an eight-page illustrated description of the model 118 series fast-response servo actuators with the Learflux Magnadrive torque amplifier. The units described were originally made for aircraft applications and component parts are ruggedly constructed. Suggested applications and two pages of performance curves are given in the new bulletin.

Educational Magnetic Amplifier. Vickers Electric Division, Vickers Inc., 1815 Locust St., St. Louis 3, Mo. Holders of registered copies of the company's magnetic amplifier design handbook (April ElecTRONICS, $p$ 243) will receive supplementary information on magnetic amplifiers as it becomes available. Latest issue of such data consists of three bulletins on the educational magnetic amplifier for schools and industry. One of the publications now available is a laboratory manual of specifications, instruction notes and experiments.

Electronic Instrumentation. Berkeley Scientific Co., Richmond, Calif. A six-page folder gives a cross-section of a diverse line of instruments now in production or under development. Included are illustrated descriptions of the model 700 decimal counting unit, model 410 industrial counter, model 80 portable, battery-operated scaler, model 554 meter, model 902 doublepulse generator, models 500 and 510 time-interval meters, model 1600 counting-rate computer, the Colman soil moisture unit, models $1000-\mathrm{B}$ and 2000 decimal scalers, model 3500 multichannel scaler and model 3000 hand and foot monitor.


Dept. FA-6 100 East 42nd Street New York 17, N. Y.


Protects Television Sets Against Protects Television Sets Against
Lightning and Static Charges

## JFD SAFE/]/GUARD

Fits Any Type of Twin Lead No. AT102 for Regular Twin Lead No. AT103 for Oval Jumbo Twin Lead No. AT103 Also for Yubular Twin Lead BOTH Models Conform With Fire Underwriters and National Electrical Code Requirements for OUTDODR
 installations.
SIMPLE TO INSTALL arrester should be mounted $\begin{aligned} & \text { For maximum effciency, } \\ & \text { outside window nearest }\end{aligned}$ to $T V$ receiver, with ground wire attached to nearest grounded point. No stripping, cutting or spreading of wires necessary. Supplied complete with 4 ft . Iength of and Strap for Mast or Grounded Pipe Installation.

[^13]
DUAL and SINGLE SPEED HYSTERESIS

## (Synchronous) MOTORS

- No Noise
- No Vibration
- Constant Speed
- Maximum HP
- Minimum Size
- Hunt and Wow Eliminated
- Independent of Load Inertia
- Dependability

| TYPE | HORSEPOWER | RPM | SI2E |
| :---: | :---: | :---: | :---: |
| LH712NaCJ | $\begin{aligned} & 1 / 100 \\ & 1 / 50 \end{aligned}$ | $\begin{aligned} & 900 \\ & 1800 \end{aligned}$ | 37/8" Dia. $\times 4.15 / 16^{\prime \prime}$ |
| LH712MNCJ | $\begin{aligned} & 1 / 50 \\ & 1 / 40 \end{aligned}$ | $\begin{aligned} & 1800 \\ & 3600 \end{aligned}$ | $37 / 8^{\prime \prime}$ Dia. $\times 4.15 / 16^{\prime \prime}$ |
| Lhtzines | 1/50 | 1800 | 3/7" Did. $\times 4.9 / 16^{\prime \prime}$ |
| LH73QCJ | 1/100 | 1800 | 3/9" Dia. $\times 4-1 / 16^{\prime \prime}$ |
| 93HSK-1 | 1/20 | 1800 | 4/9 ${ }^{\prime \prime}$ Dia. $\times 6-1 / 4^{\prime \prime}$ |

- Long Life

The above motors are now standard with many of the country's leading manufacturers of disc, wire and tape recorders.

We are also currently producing a complete llne of forque motors (rewind and reel applications) for general use In recording equipmenf.

## 

## STABLE LOW LEVEL DC MEASUREMENTS

5 MICROVOLTS TO 10 VOLTS
2 MEGOHM INPUT RESISTANCE

A precision converter that makes the AC VTVM direct reading in DC MICRO. VOLTS.


- No zero set
- No Gain Adjust
INDUSTRIAL
CONTROL COMPANY
1462 Undercliff Avenue
New York 52, N. Y.

1462 Undercliff Avenue New York 52, N. Y.


## SMALL PARTS

Filaments, anodes, supports, springs, etc. for electronic tubes. Small wire and flat metal formed parts to your prints for your assemblies. Double pointed pins. Wire straightened and cut diameter up to $1 / 6$ inch. Any length up to 12 feet. LUXON fishing tackle accessories. Inquiries will receive prompt attention.

## ART WIRE AND STAMPING CO.

227 High St.
Newark 2, N. J.


A new concept in multiple trace oscilloscopy made possible by Waterman developed RAYONIC rectangular cathode ray tube, providing for the first time, optional screen characteristics in each channel. S-15-A is a portable twin tube, high sensitivity oscilloscope, with two independent vertical as well as horizontal channels. A "must" for investigation of electronic circuits in industry, school, or laboratory.

Vertical channels: 10 mv rms/inch, with response within -2DB from DC to 200 ke , with pulse rise of $1.8 \mu \mathrm{~s}$. Horizontal channels: Iv rms/inch within - $2 D B$ from $D C$ to 150 kc , with pulse rise of $3 \mu \mathrm{~s}$. Non-frequency discriminating attenuators and gain controls, with internal calibration of traces. Repetitive or trigger time base, with linearization, from $1 / 2 \mathrm{cps}$ to 50 kc , with $\pm$ sync. or trigger. Mu metal shield. Filter graph screen. And a host of other features.

## WATERMAN PROOUCTS CO., INC.

philadelphia 25, pa.
CABLE ADDRESS: PQKETSCOPE
WATERMAN PRODUCTS INCLUDE:
S-10-B GENERAL POCKETSCOPE S-II-A INDUSTRIAL
S.14-A HI-GAIN POCKETSCOPE POCKETSCOPE 5-14-B WIDE BAND POCKETSCOPE 5-21-A LINEAR TIME BASE

Also RAKSCOPES, LINEAR AMPLIFIERS, RAYONIC TUBES and other equipment


NEWS OF THE INDUSTRY
(continued from page 132)
26 inches high and $6 \frac{1}{2}$ feet in diameter, with one-inch thick walls. Inside there are a group of coils for obtaining initial betatron acceleration and subsequent synchrotron operation.

There is no separate doughnut as in the original synchrotron since the entire tank is evacuated and the electrons move in the space between the inner and outer coils. During first operation the vacuum was about a hundred millionth of an atmosphere. This allows enough gas molecules to remain to cause appreciable scattering of the electrons, though it does not prevent operation. As the vacuum is improved, to a billionth of an atmosphere or better, the scattering may be decreased accordingly.

## AIEE Summer and Pacific General Meeting

The 1950 Summer General Meeting of the AIEE has been combined with the Pacific General Meeting usually held in August, to form the 1950 Summer and Pacific General Meeting at the Huntington Hotel, Pasadena, Calif., from June 12 to 16. The tentative technical program, insofar as it is of particular interest to electronic engineers, is as follows:

## Monday, June 12

2:00 P.M.Electronics
An Oscillograph Amplifier Using A Transductor as the Input Stage, by $G$. W. Downs and R. Morrison of William Miller Corp.

A Simple Stabilized D-C Amplifier for Use with Electric Analog Computers, by V. Rriggs of U. S. Naval Ordnance Test Station.
Magnetic Modulators, by $G$. Wennerberw of Tear. Inc.
Recent Trends in the Field of Miniature Flectronic Components, by M. J. AinsWorth of Bendix Aviation Corp.
Filectronics Goes to the Farm, by D Packard of Hewlett-Packard Co.

$$
\text { Tuesday, June } 13
$$

9:30 A.M-Computers-Fentures of the MNA and MADDIDA computers will be covered by several papers.
$2: 00$ P.M.-Applications of Computers to Aircraft Engineering Problems (five papers).

## Wedmestas, Jmene 14

9:30 A.M-Flectronic Communication Svstems for Mine Shafts, by C. M. Marruardt of Combined Metals Reduction Co. A -Particle Acceleration and Detection Cloud Chamber Studies of Cosmic Ravs by C. D. Anderson of Calif. Inst. of Technology
Operation of the 350 Mev Berkeley Synchrotron, by M. Martin of $U$. of Calif. A 500-KV Radio-Frequency Power Supply as a Revatron Injector, hy J. R. Woodvard of $U$. of Calif.
The Kivstron as a Hish-Power source for the Electron Linear Accelerator. by


## BIRTCHER

## Staintiss stea - locking type

## TUBE CLAMPS

## Stainless

Steel


83 VARIATIONS
Where vibration is a problem, Birtcher Locking TUBE CLAMPS offer a foolproof, practical solution. Recommended for all types of tubes and similar plug-in components.

More than three million of these clamps in use.

## FREE CATALOG

Send for samples of Birtcher stainless steel tube clamps and our standard catalog listing tube base types, recommended clamp designs, and price list.

THE BIRTCHER CORPORATION 5087 HUNTINGTON DR. LOS ANGEIES 32

The World's standario o. HOST-LISTEAEDTG magnetic tope REC'MRDER

S.S.White RESISTORS

Of particular interest to all who need resistors with inherent low noise level and good stability in all climates


## STANDARD RANGE

1000 OHMS TO 9 MEGOHMS
Used extensively in commercial equipment including radio, telephone, telegraph, sound pictures, television, etc. Also in a variety of U. S. Navy equipment.
high Value range 10 to 10,000,000 MEGOHMS

This unusual range of high value resistors was developed to meet the needs of scientific and industrial control, measuring and laboratory equipment-and of high voltage applications.

## SEND FOR

BULLETIN 4906
It gives details of both the Standard and High Value resistors, including condimensions, etc Copy with dimensions, etc. Copy with Price List mailed on request.

m'

| DEPT. R 10 EAST 40th ST., NEW YORK 16, N. Y. ELEXIBLE SHAFTS AND ACCESSORIES MOLDED PLASTICS PRODUCTS-MOLDED RESISTORS One of Ancrieai AAAA Indusorial Entotprisea |  |  |  |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |

MACDONALD ELECTRONIC MICROAMMETER

$T_{\text {meters in many applications. Deplace high-sensitivity }}^{\text {His }}$ galvanofrom burnour, and relative insensitivity to shock, it is an ideal instrument for use in balancing resistance bridges, measuring crystal rectufier ourput, photocell, strain-gage, thermocouple, and leadsulphide cell currents, etc. The instrument may also be used as 2 DC pre-amplifier for recorders. When used in this manner, current amplification of 1,000 is available.

SPECIFICATIONS
Sensitivity -
Permissible overload -
1 microampere full scale
50 microvolts full scale
Ranges -
1/4 ampere
Accuracy $- \pm 3 \%$ full scale Time constant - about 6 scconds
Power supaly Power supply - 110 Dimeaisons $-7^{\prime \prime} \times 8^{\circ} \times 912^{\prime \prime}$.
$3,10,30,100$ microamperes Dimenisons $-7^{\prime \prime} \times 8^{\circ} \times 91 / 2$
Price $^{\prime}-\$ 250.00$ F.O.B. Cambridge, Mass.
W. S. MACDONALD CO., INC.
$\begin{array}{cc}33 \text { UNIVFRSITY ROAD } \\ \text { CAMRRIDT: } & \text { \&S } \\ \text { ISSACHUSETTS }\end{array}$
For Precision Washers...For Precisian Stampings...


## WHITEHEAD STAMPING CO.

A preferred source of precision-made WASHERS and STAMPINGS. 46 years of experience and up-to-the-minute facilities, assure highest quality and service.


## Special Features.

- Long Life
- Wide Range of Voltage, Speed and Current Ratings
- Welded Construction
- Shaded Pole Starting
- Capillary Lubrication

Write today for Catalog Sheet Giving Full Information On Standardized A.C. Timing Motors

## 

等越
Now available is a complete new line of standardized A.C. Synchronous Hysteresis Timing Motors by A. W. Haydon. These new motors are of superior design and performance . . . have a high starting and running torque . . . and are extremely quiet in operation. You can effect appreciable savings in motor costs by using these new Haydon Standardized Timing Motors on your product.

HIGH TORQUE OUTPUT


Complete Timers incorporating these motors can be supplied specially designed for volume requirements.

## (A) A.WOHAYDON OMAN

## Simple - Reliable - Economical Potter decimal counter


lIS CUTTER MILL RD., GREAT NECK. N. Y.
Cur
.WON'T SHAKE LOOSE

## GHETEG <br> ONE-PIECE SELF-LOCKING NUTS

The FLEXLOC is one-piece, allmetal . . . has ample tensile and long life. It is a Stop and LockNut that can be reused many times. Its "chuck-like", resilient locking segments lock the FLEXLOC securely in any position on a threaded member. It positively "won't shake loose", yet can be removed easily with a wrench.

Write for Catalog 619, it's full of Information.

STANDARD PRESSED STEEL CO.
JENKINTOWN 10, PA.


## INTERMODULATION UNIT For

DISTORTION TESTING and ANALYSIS at LOW COST
WITH MODEL 162 , using charts like these you can measure and analyze the performance of an amplifier or a complete system at a glance. Significant distortion is shown much more clearly by the intermodulation method than by trying to see directly the distortion of a single frequency wave on an oscilloscope screen.
Use your own audio oscillator and oscilloscope with MODEL 162 to indentify these faults: wrong bias, wrong load impedance, tube unbalance, regeneration, insufficient drive capacity. For the first time phonograph pick-up distortion can be tested at low cost with an intermodulation record.

Curves and pictures in instrucetion book tell how to read intermodulation percentage directly, how to determine harmonic distortion, how to adjust an amplifier for best performance quickly by using the screen images as a guide.


INCORRECT ADJUSTMENT


CORRECT ADJUSTMENT

Experience shows that an amplifier adjusted for low IM will also have low harmonic distortion, but the teverse is not true. Low harmonic distortion does not assure low IM

This unit tests over a wide frequency range and at $1: 1$ or $4: 1$ voltage ratio of the two frequencies. It permits selatrate testing of low and high frequency overload.
It uses basic relation between trotal noteh depth and percent of intermodulation. Using specik screen supplied range.

## TEST FREQUENCIES

Low: Any frequency from 10 to 250 cps. from exter nal oscillator or 60 cps from power line via internal transformer.
High: Any frequency above 2000 cps. from external oscillator.

Price $\$ 88.50$



Whether you require an untreated magnetic coil winding or a series of specially treated vacuum impregnated coils-Dano is set up to serve you with custom made coils to your specifications. Send us samples or specifications with quantity require ments for immediate quotations. - Paper Section - Paper Section

- Acetate Bobbin
- Molded Coils
- Bakelite Bobbin

Coils for High
Temperature
Applications
THE DANO ELECTRIC CO.
MAIN ST., WINSTED, CONN.

7 For AC CURRENT ANYWHERE.... NO MAGIC just use (17)


STANDARD AND HEAVY DUTY INVERTERS


For Inverting D. C. to A.C.


NEWS OF THE INDUSTRY
of Highly Saturable Reactors with Hysof Highly Saturable Banos, Jr., of U. of Calif. 2:00 P.M. Electronic Power Converters Control for Tube Testing, by S. R. Durand of Allis-Chalmers Mfg. Co.
High-Voltage Ignitron Rectifiers, by M. J. Mulhern of GE Co.

Ignitron Pulse Equipment for Particle Accelerators, by C. C. Herskind and J. E. Hudson of GE Co.
A Brief Pictorial Story on the Early Development of the Mercury Arc Rectifier, by W. C. White of GE Co.
Survey of Operation of Mercury Are Rectifiers, by Committee on Electronic Power Converters.

Protection of Electronic Power Converters, by Committee on Electronic Power Converters.

## BUSINESS NEWS

United Geophysics Co. will form a permanent home in $\$ 250,000$ quarters at Pasadena, Calif., for the manufacture of electronic instruments used in the earthshock method of exploring subterranean formations.

Herman H. Smith, Inc., manufacturer of radio hardware, electronic components and television accessories, has moved to new and larger quarters at 436 18th St., Brooklyn, New York.

SONOTONE CORP., manufacturers of hearing aids and other electronic devices, have been licensed by Allen B. Du Mont Laboratories, Inc., to manufacture and sell the Du Mont bent-gun mount to all television tube manufacturers.

Centralab Division of GlobeUnion Inc., Milwaukee, Wisc., has acquired a new $46,000-\mathrm{sq} \mathrm{ft}$ plant in Denville, N. J., for the exclusive production of a full line of ceramic capacitors.

Advance Electric \& Relay Co., manufacturers of relays for general circuit control, electronic, aircraft and marine applications, is now occupying its new 20,000 -sq-ft plant at 2435 No. Naomi St., Burbank, Calif.

John Volkert Metal Stampings, Inc., Queens Village, N. Y., recently passed the $1,500,000$ mark in the production of sets of metal parts for electron guns used in television tubes. This figure represents over one-third of the total number presently produced for tv receivers.

Raythronic Laboratories, Inc., Cincinnati, Ohio, has been formed

## Cassor

 fo qualtiy
## TWIN BEAM OSCILLOSCOPES

compare.

INPUT VS. OUTPUT VOLTAGE VS. CURRENT CAUSE VS. EFFECT

with
twin beams in exact time synchronism plus
accurate voltage and time measurement controls at your fingertips.

IS YOUR WORK TV?


TV horizontal output tube waveform upper trace-grid volts
lower trace-cathode current
STUDY THIS PHOTO-note exact phase comparison given by unique Cossor twin beam tube. . no need for electronic switching with attendant troubles.

Photographed on Cossor Model 1035 with Model 1428 Camera

Cossor simplifies scope photography.
Model 1035 Scope for wide band amplifiers and fast traces.
Model 1049 Scope for $D C$ amplifiers and slow traces.

## both with the <br> COSSOR TWIN BEAM TUBE

Write today for details and demonstration.
ALL MODELS AND COMPLETE
SPARES IN STOCK NEW YORK AND HALIFAX

COSSOR (CANADA) LIMITED
Windsor St., Halifax, Nova Scotia
$\star$
BEAM INSTRUMENTS CORP.
Room 208, 55 W. 42 nd Street,
New York 18, N. Y.


Engineered with eare and precision for the specific needs of Industrial usera and Research Engineers in the field of electrostatic painting, nuclear and rosearch physics, insulation testing, precipdtators, projection television, etc.

- Positive or Negative - All aluminum con
output, as specifled struction
- AC stand.by switch - Foousing voltage
 -red
- Tubes I-5U4, I-


Write for complete information
INDUCTOGRAPH PRODUCTS Dept. A New York 19, N. Y.

## IMPROVED ULTRA-SENSITIVE DC AMPLIFIER



1. This new and improved DC amplifier of the General Motors breaker type offers many advantages in the measurement of $D C$ and low frequency $A C$ voltages in the micro voit and fractional microvolt regions. It is useful for the amplification of low leve thermocouple voltages, infra red detectors, photovoltaic cells and the like. It can be used to replace suspension galvanometer systems.
2. This new amplifier (Model 10) features very high immunity to the effects of AC pickup in the input circuit. The discrimination ratio against 60 cycle pickup is over 1000 It has an improved life breaker. Convenient and accurate coarse and fine gain con
trols, zero position controls and calibration signals are provided.
3. This instrument has a zero stability of better than .005 microvolts per day after warm up. The noise level approaches the limit imposed by the Johnson noise of the external circuit. This amplifier is available for operation with input circuits from recorders. milliammeters and DC reat of the amplifier is sufficient to operate standard recorders, milliammeters and DC relays. For 110 volts, 60 cycle operation.

$$
\text { Price } \$ 580.00
$$

For complete information, write


Division of Atlas Coil Winders, Inc.

DEPT. M STAMFORD
P.O. BOX 1334

CONNECTICUT

## Little-thought-of facts about capacitors

The short time breakdown voltage of a well-made D.C. capacitor is not less than 5 to 6 times the actual working voltage at $20^{\circ}$ -

$$
\begin{aligned}
& \mathbf{E}=5 \times \text { e min } \\
& \mathbf{E}=\text { Breakdown voltage } \\
& \mathbf{e}=\text { Rated d.c. working voltage }
\end{aligned}
$$

INDUSTRIAL CAPACITORS are unvaryingly held to this formula.

Designed for maximum safety factor and the smallest possible volume, INDUSTRIAL CAPACITORS are the most widely used capacitor in industrial applications.

White today for detailed catalog


Sales Offices in All Principal Cities 3243 N. California Ave. Chicago 18, Illinois

# FINANCING PRODUCTION ABROAD ——for Soft-Currency Markets 

A New York firm having considerable non-transferable funds on deposit in Europe, especially Germany, seeks to invest in the manufacture of first-class American products in Germany for export to soft-currency countries.

We are interested in highly technical lines, such as electronics and machinery. Our firm has connections thoughout the world. Correspondence invited from principals only.

Write to Box 6577, Eiectronics
330 W. 42nd St., New York 18, N. Y

## POLARAD LABORATORY

## 20 MC VIDEO AMPLIFIER

Model V

- Flat trequency response from 100 cps to $20 \mathrm{mc} \pm 1.5 \mathrm{db}$.
- Uniform time delay of .02 microseconds.
- Gain of 50 db .
- Frequency compensated high impedance attenuator calibrated in 10 db steps from 0-50.
- Fine attenuator covers a 10 db range.
- Phase Linear with frequency over entire band.

This unit is designed for use as an oscillo scope deflection amplifier for the measurement and viewing of pulses of extremely short duration and rise time, and contains the Video Amplifier Unit, Power Unit and a low Capacity Probe.
> -rout
> Input Impodance: Probe-12 mmf + $470.000 \mathrm{ohms} ;$ Jack- $30 \mathrm{mmf}+470.000$ ohms: Output Impedance 18 mmf
470,000 ohms each side push pull ; Max. Input Volts 500 peak to peak with probe; Max. Output volts 120 volts peak to peak (push pull) Power: 115 volts $50 / 60 \mathrm{cps}$ AC Line Size $191 / 4^{\prime \prime} \times 22^{\prime \prime} \times 14^{3 / 4}$


TELEVISION ENGINEERS and CONSULTANTS to the Nation's Leading Television Stations
to deal in electronic materials and devices and to do research in radio and radar equipment. The firm will bid on government contracts for aeronautical research work.

Centralab Division of GlobeUnion Inc., Milwaukee, Wisc., recently acquired two buildings formerly occupied by the Eclipse Molded Products Co., Milwaukee, and will devote the space exclusively to the manufacture of electronic component parts.

Corning Glass Works, Corning, N. Y., has begun construction of a 300,000 sq-ft-floor-area plant in Albion, Mich., to provide additional manufacturing capacity for television glass requirements.

Air King Products Co., Inc., Brooklyn, N. Y., has acquired 40,000 additional square feet of space in the Kenyon Bldg., Brooklyn, N. Y., to expand production capacity for television receivers.

The Workshop Associates, Inc., Newton Highlands, Mass., has moved to a new building on Crescent Road, Needham Heights, Mass., to accommodate increased


Workshop Associates new building
research and development activities and to provide expanded production facilities for a new television antenna.

## PERSONNEL

Robert A. Starek, formerly commercial engineer for the radio tube division of Sylvania Electric Products, Emporium, Pa., was recently appointed field engineer of the division.

Richard G. Lorraine, at one time engaged in the design and development of the network analyzer and later assigned to work on problems of utilizing atomic energy as a source of power in the production of


## What Makes a Mailing Click?

Advertising men agree . . . the list Is more than half the story. McGraw-Hill Mailing Lists, used by leading manufacturers and induetrial service organizations, direct rous advertising and sales promotional efforts to key purchasing power.

In view of present day difficulties
In maintaining your own mailing linis, this efficient personalized service is particularly important in securing the comprehensive market coverage you need and want. Investigate today.


McGraw-Hill Publishing Co., Inc. UIRECT MAIL DIVISIOK 330 West 42nd Street, New York, 18, N. Y.


KAHLE CUSTOM-BUILDS machines to make the exact tubes you require-from big 20 -inchers to tiny sub-minioture-from laboratory types to those for high-speed production. Kahle puts each unit through exhaustive trial runs in our plant to assure trouble-free operation in yours.

We specialize in cost-cutting productionboosting, labor-saving equipment for complete manufacture of cathode roy tubes, standard, miniature and sub-miniature adio tubes, sub-miniature tubes, flyorescent lamps, photocells, $x$-ray tubas, glass products.
\#1545 Neck Splicing Machine $\rightarrow$
For all types and sizes of cathode ray tubes.
Used in salvage operations-bulb making. Essentially a vertical lathe, with two special chucks. Overall height $5^{\prime}$; overall diameter $3^{\prime} 6^{\prime \prime}$.


## Kahle monnernec co.

1309 Seventh Street, North Bergen, New Jersey

## MEMOTOEXECUTIVES:

## Wondering what REALLY GOES ON in your product?

Like many other progressive manufacturers today, you may be taking a good second look at your own and your competitor's product.

A continuous program of product improvement is effective insurance against competition-and one of the most effective methods of evaluating electrical or mechanical product performance is a Consolidated Measuring and Recording System. It can tell you exactly how your product performs in action, and provides answers to such questions as: Is the product "overengineered?" Is it under-rated? Where and how can costs be cut safely? These answers not only point the way to product improvement, but frequently make possible dramatic cost savings.

Consolidated instruments accomplish this by measuring and accurately recording scores of data points simultaneously, thus giving your engineers one of the most advanced methods of performance evaluation available today:

Consolidated Instruments today are playing a prominent role in leading research laboratories. This instrument "know how" is available to you through our staff of application engineers. For help in recording "hard-toget" dynamic performance data, please write. Our engineers will be glad to call without obligation.

For further information on Consolidated Systems and Oscillographs, send for Bulletin 1500-X13.


Consolidated System D, 8-channel amplifier system using self.generating or carrier-excited pickups, and a Consolidated Multi-channel recording oscillograph. CORPORATION
Analytical Instruments for Science and Industry
620 NO. LAKE AVE.
PASADENA 4, CAIIFORNA

electricity, was recently named head of a new project in the Knolls Atomic Power Laboratory, operated for the AEC as part of the GE Research Laboratory, Schenectady, N. Y.

Norman B. Krim has been promoted from assistant vice-president and manager of the receiving tube division to vice-president in charge of the same division at Raytheon Mfg. Co., Waltham, Mass.

N. B. Krim

R. L. Harding

Robert L. Harding, secretary of the National Telemetering Forum, has been promoted from project engineer to staff engineer of the products division of Bendix Aircraft Corp., South Bend, Ind.

Theodore W. Jarmie, one of the original founders of Electronic Associates, Long Branch, N. J., has joined the Electronic Engineering Co. as resident project engineer at the Naval Air Missile Test Center, Point Mugu, Calif.

John F. Harris, engaged in transformer engineering with the American Transformer Co. for the past 16 vears, recently became chief transformer engineer at Langevin Mfg. Corp., New York, N. Y.

Lawrence Hyland, vice-president in charge of engineering research at Bendix Aviation Corp., was recently awarded the Navy's distinguished public service award for his service to science and to the welfare of the U. S. through his contribution to the early development of radar.
G. Pryor Molloy, formerly associated with RCA, has been named head of the field engineering department, Industrial \& Electronics Division of American Structural Products Co., Columbus, Ohio.

## are businessmen



## COLD-

## BLOODED?

OF COURSE NOT! Literally, their normal body temperature is 98.6 -same as laborers, engineers or any other group of people. And, figuratively, they're no more, or no less, cold-blooded -as a group.

We all know unreasonable generalizations can be dangerously false. Common sense and on-the-job experience show us the value of dealing specifically with ideas, problems-and people.

Let's not make the big-and costly - mistake, then, of generalizing on religious or racial groups. Adopt and carry out these common sense principles:

1. Accept-or reject-people on their individual worth.
2. Don't listen to or spread rumors against a race or a religion.

3. Speak up, wherever we are, against prejudice. Work for understanding.

# - CONTACTS 

FOR THE FIELD OF ELECTRONICS


CEMENTRS<br>FOR THE RADIO INDUSTRY<br>NITROCELLULOSE SYNTHETIC MOISTURE RESISTANT THERMO PLASTIC THERMO SETTING VINYL IN COLOR COIL VARNISH<br>\section*{BARRETT VARNISH CO. 1532 South 50th Court} Cicero 50, III.<br>Write Us for Additional Information

## EL-TRONICS, INC.

Research, development, and manufacture of electronic equipment-a single model to large quantities.
WRITE TODAY FOR FREE RESUME OF OUR PLANT FACILITIES
Specialists in Geiger-Muller equipment
2647-67 N. Howard St. - Phila. 33, Pa. GArfield 5-2026
 Rust-proot zine alloy with GRC's recessed-wing
finger-grip. All commercial fnishes, all popular thread sizes. Special threads or untapped wing GCTMS RIPRODUCER CORP.

IO0 Willow Ave. Now York 54, N. Y.


DOW CORNING CORPORATION MIDLAND, MICHIGAN
Atlanta - Chicago © Cleveland © Dallas Los Angeles New York
In Canada: Fiberglas Canada, Lid., Toronto In England: Albright and Wilson, Lid., London

## SUB-MINIATURE

PRINTED ELECTRONIC CIRCUITS
produced from your schematics or existling electronic equipment, Circuits fired on ceramics or service.

PLASTICS \& ELECTRONICS CO. 272 Northland Ave., Buffalo B, New York


## WELDS

TUNGSTEN-NICKEL-KULGRID-MOLY QUALITY ASSURED BY MODERN EQUIPMENT RIGID INSPECTION AND BEST MATERIALS
NATIONAL ELECTRONICS INC. 628 NORTH STREET
GENEVA, ILLINOIS

vices as well. Yet there is today no good, concise, definition which meets all the usages commonly associated with the term.

While it is true that we have progressed thus far without a complete definition and that no insuperable obstacle to future progress may be interposed by its lack, it would still be a most valuable adjunct to activities dealing with the allocation of research tasks, research funds, scientific personnel and the like in almost any large-scale enterprise including in its scope the art or science of electronics. Its value in that connection is, of course, of secondary importance when compared with the feeling of satisfaction which would accrue to each and every one of us if he were able to point to a definition and say: "That's what I do!"

Consequently, a group of us has studied the available attempts at formulating such a definition and we present, humbly and without setting it up as a finished piece of work, the following version:

Electronics The science and technology dealing with the emission, behavior and effects of electrons in gas-filled or vacuum tubes or with photoelectric, photoconductive, semiconductor or similar devices, and/or the control or production of electric or electromagnetic energy therefrom, (but excluding chemistry and power engineering).
We hope that this definition may be published in your columns with a request to the readers to comment, constructively, on its content. We should like to stress that it is not necessarily a complete nor all-inclusive definition but affirm that at the same time considerable thought has gone to the detailed wording therein so as to try to encompass most of the varied phases of electronics without including extraneous material. We believe that if the suggestions submitted by your readers are collated and combined to form a concise definition and published in ELECTRONICS it would go a long way towards filling this need and may then be considered an authoritative definition.

[^14]
# Professional Services 

# Consulting-Patents—Design—Development—Measurement 

in
Radio, Audio, Industrial Electronic Appliances

AMPLIFIER CORP. of AMERICA
Research, Design, Development
and Manufacturing Engineers
Specializing since 1936 in All Phases of
MAGNETIC TAPE RECORDING FOR
ALL APPLICATIONS
Precision Pegulatad Power Supplies
308-7 Broadway Shaney, Chief
New York 13, N. Y.

CROSBY LABORATORIES
Murray G. Crosby \&f Staff
FM, Communications, TV,
Industrial Electronics,
High-Frequency Heating
Offces, Laboratory \& Model Shop at:
126 Herricks Rd., Mineola, N. Y.
Garden Cíty 7-0284

## EDGERTON, GERMESHAUSEN

 \& GRIER, INC.Consulting Engineers
Research Derelopment and Manufacture
Specialists in High-Speed Photography
160 Brookine Arenue, Boston 15, Mass.


> ERCO RADIO
> LABORATORIES, INC.
> Radio Communications Equipment
> Engineering - Design - Development - Production
> Pioneers in Frequency Shift Telegraph
> Garden City - Long Island - New York

## PAUL GODLEY CO.

Consulting Radio Engineers great notch, n. J.

Est. 1926
Little Falls 4-1000

## HANSON-GORRILL-BRIAN INC.

Product \&f Mfg. Development electrical - electronic hydraclic - mechanical
One Continental Hill
Glen Cove, N. Y.
Glen Cove 4-1922

## WHEN <br> TIME

IS

## SHORT

put the solution of your problems up to a specialized Consultant whose professional card appears on this page. His broad experience may save you months of costly experimentation.

## ELECTRONICS

330 West 42nd St., New York 18, N. Y.

> KENT LABORATORIES, INC.
> Model Work in Metal go Plastics Electro-Mechanical
> Design - Development - Manufacture Precision Mechanical Speciallsts
> 230 Warburton Ave. Hawthorne, N. J.
> Telephone HA wthorne 7-6777

## MEASUREMENTS CORPORATION

Research ${ }^{\circ}$ O Manufacturing Engineer
Harry w. Houck $\begin{gathered}\text { John M. van Beuren } \\ \text { J. Minter }\end{gathered}$ John M. van Beuren
Specialists in the Design and
Development of Electronic Test Instruments Boonton, N. J.

## MICROCIRCUITS COMPANY

Consultation-Development-Manufacture PRINTED CIRCUTT
applications and paints
Conducting, Resistance, and $M$ agnetic
for Experimentation and Production
New Buffalo
Michigan

Eugene Mittelmann, E.E., Ph.D.
Consulting Engineer \&o Physicist
High Frequency Heating-Industrial Electronios Applied Physics and Mathematies
549 W. Washington Blvd. Chicago 6. Ill. State 2-8021

## NIAGARA ELECTRON LABORATORIES <br> CONSULTATION - DESIGN - CONSTRUCTION MFG. THE THERMOCAP RELAY

Specializing in solution of problems of electronic and electro-physical instrumentation for the reproblems also invited. Andover, New York Cable Address: NIATRONLAB

PICKARD AND BURNS, INC.
Consulting Electronic Engineers
Analysis and Eraluation
Research Radio Systems
Research, Development \& Design of Special Electronic Equipment
240 Highland Ave., Needham 94, Mass.

## ALBERT PREISMAN

Consulting Engineer
Television, Pulse Techniques, Video Industrial Anpliancer dustral Appliance
MANAGMATETAfllated with
308-14th St, N W

| SERVO <br> CORPORATION OF AMERICA <br> Consultants on <br> Electronle Control Problems <br> for Industry |  |
| :---: | :---: |
|  |  |
| New Hyde Park | Long Island, N. |

SERVO-TEK PRODUCTS CO., INC.
Servo-Systems - Position Recorders Motor-Integrator Systems
Spectalists in Electronic Motor Speed Control
4 Godwin Avenue
Paterson, N. J.
Tel. ARmory 4-3366 Teletspe PAT 199

## THE TECHNICAL MATERIEL CORPORATION <br> Communications Consultants Systems Engineering <br> General Offices and Liboratory <br> 121 Spencer Place, Mamaroneck, N. Y.

## ANDREW W. VINCENT CONSULTANT <br> Development and Models

Electromagnetic relays \& derices Audio and intercommunication equip. Remote control selection 300 W , High Terrace

Genesee 2648
Rochester. N. Y.

## YARDENY LABORATORIES INC. <br> Research and Development <br> Remote Controls and Electro Chemical Generators of Energy <br> 105 Chambers Street <br> WO 2-3534. 35 <br> New York, N. Y.

## THE

REAL
VALUE
of placing your unusual problem in the hands of a competent consultant is that it eliminates the elements of chance and uncertainty from the problem and provides real facts upon which to base decisions.
SEARCHLIGHT SECTION
(Classified Advertising)

## UNDISPLAYED

—_RATES $\qquad$ DISPLAYED
$\$ 1.20$ a line. Minimum 4 lines. To figure adrance payment count 5 average words as a line.
dividual Employment Wanted rate is one-half of above rate, payable in advance Boanbers-Care of publication New York, Cht Discount of $10 \%$ if full payment is made in advance for 4 consecutive insertions.
:EQUIPMENT
:USED OR RESALE

## disnlar of advelt isements.

he advertising rate is $\$ 10.25$ per inch for all advertising a puring on other than a contract basis. Contract rates quoted on request. An adnertising inch is measured $7 / \mathrm{k}^{\prime \prime}$ retically on Section which lists the names of the manufacturers The fublisher cannot accent advertising in the Searenight Secton mames alesigned to destribe such products.

## CHIEF ENGINEER

## Position Open \$12,000 To \$15,000

nationally hown mannfacturers of highest precision electronic recording
 can relieve our General Nanager by assuming complete responsibility for our enginee ing and production.
WE NEED seasoned electronics engineer with heary theoretical and practical cal devices and the development of advanced electronic circuits. Must have unnstal ingenuity and an exceptionally high degree of mechanical aptitude.

WE OFFER to $\$ 15.000$ and particination in a long tange bonus plan. All replics will he handled complete confidence by the President of our company.

ELECTRONICS
P6566 330 W 42nd St., New York 18, N. Y.

## ELECTRONIC ENGINEERS

Excellent opportunities are offered by one of the leading concerns in the electronic computer field to engineers with development or design experience in video and pulse circuitry or test and maintenance experience in the radar, television, or computer fields.

Send complete resumes and sollary requirements to:

## Personnel Department

## ECKERT-MAUCHLY COMPUTER CORPORATION

3747 Ridge Avenue
Philadelphia 32, Pa.
Subsidiary of Remington Rand Inc.

## SEVERAL ENGINEERS

Needed by contractor for work at Naval Air Missile Test Center, 50 miles northwest of Los Angeles. College Degree and experience essential. Radar, digital computer or general pulse technique experience required.

## ELECTRONIC ENGINEERING CO.

 OF CALIFORNIA.180 South Alvarado Street
Los Angeles 5, California

## ELECTRICAL ENGINEER

## INSTRUMENT FIELD

Opportunity for a young, graduate Electrical Engineer with a strong background in electronics to do application and de velopment engineering on load frequency control and telemetering. Experience in electrical power systems and carrier current desirable. Write giving full particu lars.

## LEEDS \& NORTHRUP CO. 4901 STENTON AVE. PHILA. 44, PA

[^15]WRPLIES (Box Vo.) Address to office nearest you NEW YORK: 330 W. $42 n d$ St. (18)

CHCAGO: 20 N. Wichigan Ave. (11)

## POSITIONS VACANT

WANTED: FLECTROSTATIC Capacior Engi-neer-Fixperienced in design, processing and manufacture of paper dielectric capacitors. Knowedge of noise tilters, metallized paper capacitors, cerannic wapacitols. particulars as to pacitors desirable ELECTRONTCS ENGINEER. Electronics engiELECTRONICS ENGINEER. EIectrably nad some graduale training and who is experienced in electionic circuit and apparatus design and development work. Wanted by smail tut expanding and well-known company spe cializing in precision electronic instruments. L.ocated in New Jersey about 30 miles from Cow york city. Silat of this ad. P-6590, ElecGur er
tronics.

## EMPLOYMENT SERVICE

EALARIFD PERSONNEL, \$3,000-\$25,000. This contidential service. established 1927. is geared to needs of high grade men who seek a change of connection under conditions assuring. if employed. full protection to present position. Send name and address only for delails. Personal consultation invited. Jira TIaven, Conn
(Continned on page 216)

## Positions open for PHYSICISTS SR. ELECTRONIC ENGINEERS

Familiar with ultra high frequency and
micro wave technique
Experience with electronic digital and/or analog computer research and development program
Salaries commensurate with experience and ability. Excellent opportunities for qualified personnel.
C. G. Jones, Personnel Department

GOODYEAR AIRCRAFT CORPORATION Akron 15, Ohio

## ELECTRONIC ENGINEER

Graduate "EE" with four years experience electronics low voliage low frequency development and design work in metal detection.

Give details age, education, experience, reference, availability for work in Los Angeles area. Salary expected.

> P-6585, Electronics

68 Post St., San Francisco 4, Calit

## MANAGEMENT CONSULTING

Established management consultant seeks an engineer with the following qualifications: educational background in electronics including degree and preferably grad uate training. At least 5 years" experience with one or more manufacturers of elec tronic apparatus or components in one or more of these areas: industrial engineer ing, production management, plant engi neering or design and development. Mus be willing to travel. Salary open.

P-65G0, Electronics
520 N. Michigan Ave., Chicago 11, Ill.

## SALESMAN

Calling on RADIO \& TELEVISION Migs. to sell fast movable electronic surplus parts lent opporiunity.

ELECTRONIC SURPLUS BROKERS 3232 Broadway, N. Y. C. 27

## RADAR, COMMUNICATIONS

and SONAR TECHNICIANS WANTED
For Overseas Assignments Technical Qualifications:

1. At least 3 years' practical experience in installation and maintenance.
2. Navy veterans ETM $1 / \mathrm{c}$ or higher.
3. Army veterans TECH/SGT or higher.

## Personal Qualifications:

1. Age, over 22-must pass physical examination.
2. Abbility to assume responsibility.
3. Must stand thorough character investigation.
4. Willing to go overseas for 1 year.

Base pay, bonus, living allowance, vacation add up to $\$ 7.000 .00$ per year. Permanent connection with company possible.

## Apply by Writing to

## A-1, P. O. Box 3414

Philadelphia 22, Pa.
Men qualifed in RADAR, COMMUNICATIONS or SONAR give complete history. Interview will be arranged for successful applicants.

SCIENTISTS AND ENGINEERS Wanted for interesting and professionally challeng.
ing research and advanced development in the fields of microwaves, radar, gyroscopes, servomech. anisms. instrumentation, computers and general日lectronics. Scientific or engineering degree or ex-
tensive technical tensive technical experience required salary com-
mensurate with experience and ability mensurate with experience and ability, Direct in-
quiries to
Mor., Engineering Personnel. Bell Air. craft Corporation, P. O. Box 1, Buffalo 5, N. Y.

## Electranic Engineers

## PROJECT ENGINEERS

Five or more years experience in the design and development, for production, of major components in radio and radar equipment.
ASSISTANT PROJECT ENGINEERS Two or more years experience in the development, for production, of components in radio and radar equipment.

Well equipped laboratories in modern radio plant. . . Excellent opportunity . .. advancement on individual merit.

Baltimore Has Adequate Housing
Send resume to Mr. John Siena:
BENDIX RADIO DIVISION
BENDIX AVIATION CORPORATION
Baltimore 4, Maryland

## Engineering Positions Available MOTOROLA RESEARCH LABORATORIES, PHOENIX, ARIZONA

The new Motorola laboratory building with one acre of floor space devoted to electronic research and development is located in a beautiful residential area adjacent to Arizona Country Club. Housing in surplus supply. Climate ideal.

A limited number of fully qualified engineers and assistants will be added to the staff.
Qualifications:
ENGINEERS: (1) Graduate of accredited enginecring school.
(2) Five or more years of responsibility, charge of commercial research, development, or manufacturing projects.
(3) Specialists in
A. VHF and UHF receiver design
B. Microwave communication pulse circuits
C. UHF, VHF and Microwave antenna design
D. Telemetering and multiplexing
(4) Originality and inventive ability of major importance.

ASSISTANTS: (1) Engineering Graduate
(2) Electronic experience, commercial, hobby or military

Qualified men interested in permanent employment should state education, experience and past salary schedules in first letter. Information confidential. Address

DANIEL E. NOBLE
4545 Augusta Blyd.
Chicago 51, lllinois

## RCA Victor Camden, N. J.

Requires Experienced Electronics Engineers

RCA's steady growth in the field of electronics results in attractive opportunities for electrical and mechanical engineers and physicists. Experienced engineers are finding the "right position" in the wide scope of RCA's activities. Equipment is being developed for the following applications: communications and navigational equipment for the aviation industry, mobile transmitters, microwave relay links, radar systems and components, and ultra high frequency test equipment.

These requirements represent permanent expansion in RCA Victor's Engineering Division at Camden, which will provide excellent opportunities for men of high caliber with appropriate training and experience.

If you meet these specifications, and if you are looking for a career which will open wide the door to the complete expression of your talents in the fields of electronics, write, giving full details to:

[^16]
## SENIOR ELECTRONIC CIRCUIT PHYSICISTS

MINIMUM REQUIREMENTS:

1. M.S. or Ph.D. in Physics or E.E.
2. Not less than five years experience in advanced electronic circuit development with a record of accomplishment giving evidence of an unusual degree of ingenuity and ability in the field.
3. Minimum age 28 years.

## Hughes Aircraft Company <br> Attention: Mr. Jack Harwood CULVER CITY, CALIFORNIA

SEARCHLIGHT SECTION

## (Continued from page ${ }^{244 \text { ) }}$

EMPLOYMENT AGENCY
ELECTRICAL ENGINEERS: Teaching: Power Universities. Atlantic-Pacific. To $\$ 8000$. Give phone, Photo, Qualif. Cline Teachers Agency East Lansing, Mich.

## POSITIONS WANTED

COMMUNICATIONS TECHNICIAN 14 yrs, exp all phases. Design \& Mfr. Comm. \& Elec 9 yrs. Brazil. PW-2220, Electronics
PHYSICIST. VETTEIAAN. Over ten years' actual working experjence (electrical, elec. gas dis charges, electronics, dielectrics, infra-red, magnetic, servo-control. etc.) Testing development, Experienced in planning and completing projects and in directing personnel, also in discussing projects with government agencies for procurement of contracts. Has acted as consultant for government agencies and industry. Has been head of Plysical Dept. of small research organization for past five years. Wishes to doln an
organization which can offer a future comorganization which can offer a future comreliable. Solid scholastic background. PW-6414, Electronics.
M.D.-BIOPHYSICIST. 39. Fully qualified Internist plus a good background, including research experience, in electronics as applied to medicine and biology, biologic effects microwaves, and biologic ultrasonics. Can contribute
biologic and clinical know-how to a team debiologic and clinical know-how to a team de-
veloping medical or biological electronic instrumentation. Qualified in industrial toxicology and aviation medicine. Desires position in electronic industrial establishment where background will be useful in research program and
In industrial medicine. PW-6495, Electronics.

ELECTHICAL ENGINEER B.E.E. M.E.E. Heavy experience Electronic, Magnetic Am-
plifier, and Transistor circuit design develop plifer, and Transistor circuit design developmentation, television desires position with future. PW-6464, Electronics.

COLLEGE GRADUATE Electrical Engineer desires affliation with progressive company Outstanding technical qualifications, some experience pleasant personality, best references

EXPERIENCED TECHNICAL Editor As an editor this man is a pro. As a technician he can hold his own. Highly experienced in pro familiar with mechanical production and print ing processes. Exceptional references. Available ng processes. Exceptional r
now. PW-6535. Electronics.

JR. EXECUTIVE: Opportunity wanted by re sourceful young man combining managerial experience and good business ability with technical background. 15 years experience in
electronics field includes executive position with wholesale electronic distributive position with writing and layout of sound equipment; field radar engineer during war. Some sales background and broad contacis in fleld. Presently employed in Los Angeles area. PV-6555, Elec-
tronics.

## SELLING OPPORTUNITIES WANTED

MANUFACTURERS REPRESENTATIVE, with professional Eng. license, located in Harrisburg, Fenna. covering Pittsburgh, Phila., WashElectronics.

SALES ENGINEER-Annapolis graduate with six years experience desires sales representa tive position with electronic or electrical firm Resume on request. RA-6592, Electronics.

## BUSINESS OPPORTUNITY

washes venetian blinds. Highly profitable. Visit one of 50 successful plants near you. Free Booklet. $\$ 6350.00$ in 24 payments. C. C. Equipment Co., 101 S. 44th St., Phila. 4, Penna

## WANTED

ANYTHING within reason that is wanted in the field served by Electronics can be quickly located through bringing it to the attention because this is the business paper they read.

[^17]
## PHYSICIST

Veteran. Over ten years' actual working experience (electronics, dielectrics, gas discharges, Infra red, magnetic, servo-control, etc.). Testing, devel 0pment, and research (experimental and analytical) Experienced in planning and completing projects and in directing personnet, with government agencies. Has acted as consultant for government agencies and industry.
Has been head of Physical Dept. of small research organization for past flve years. Wishes to join an organization which can ofer a future co liable. Solid scholastic background.

PW-6417, Electronics
330 W. 42 nd St, New York 18, N. Y.

## ELECTROMAGNETIC F <br> \section*{FLOWMETER}

Engineer Available
Thorough background for this device. including Original Experimental and Theoretical Work.

520 N . Michigan Ave., Chicago 11, Ill

## Announcing Formation of New SALES ENGINEERING AGENCY

for Industrial Electronic Components and Instruments covering Upper New York State.
Competen experienced representation with established contacts.
Openings available for a very limited number of lines.

RA-6271, Electronics
330 W. 42 nd St., New York 18, N. Y

Manufacturer offers for sale complete inventory including finished equipment. dies, test enuipment facture television distribution system for a partment bulldings. Oyerates by means of channel ampliffers utilizing 4-6AK5's Der channel which feed coax cable with attenuating take-off at each set. Reason
for sale-other products using full capacity. BO-6385, Electronics 520 North Michigan Ave.. Chicago 11, Ill.

## PATENT AVAILABLE

Unusual Electrical Printing $\bar{T}$ echnique For column printing-potential spoed Is several thousand lines ber nrinute. extremely simple toleprinting circuit and mechanism. Butright sate proferred.

330 w. 42nd $^{\text {B0-659, }}$, New York 18, N. Y.

## $\$ 20,000$ IS LOOKING

for investment in growing business, manu facturing or assembling electronic equipment. especially industrial conirols and and detectional aids; etc.

> 130-6551, Electron

330 W. 42 nd St., New York 18, N. Y.

## CONTRACT

ENGINEERING-MANUFACTURING electronic and electro-mechanical devices - developed to meet your specifications TELETRONICS LABORATORY, Inc. Westbury, L. I., N. Y.-Westbury '7-1028

## "AN" "K" CONNECTORS

What Types Do You Need LARGE QUANTITIES IN STOCK WILGREEN

74 Cortland St. N. Y. 7, N. Y. BA-7-4862

## WESTINGHOUSE MOLYBDENUM STRIP SURPLUS CLOSE-OUT!

Coils of $1^{\text {" }} \times .005^{\prime \prime}$; Quantity: 30 KG. Priced @ $\$ 28$ Per KG FOB Your Plant. Also offer small lots of other similar items.

## J. M. HIRSCH COMPANY 622 Washington Street San Francisco 11, Calif.

## VACUUM EQUIP'T.

- dIFFUSION PUMPS
- FORE PUMPS
- VACUUM GAUGES, etc.

Some Brand New-WRITE FOR LIST
123 W. 64 St., New York 23, N. Y.

## \#104 Universal Coil Winders FOR SALE <br> Two 1946, Unused - Complete with Motors and Accessories <br> MILLER ELECTRIC CO. <br> 32 River St. <br> Pawtucket, R. I.

## WHOLESALE ONLY <br> ELECTRONIC COMPONENTS <br> AIRCRAFT EQUIPMENT <br> HYDRAULICS <br> RADIO \& ELECTRONIC SURPLUS <br> 13933-9 Brush St. Detroit 3, Mich.

## FOR SALE! MAKE OFFER!

Just 300 complete BC-221 Frequency Meters with tubes, crystal, calibration book. Splendid condition. Mail or wire yous offer TODAY, to:

FS-6473, Electronics
330 W. 42 nd St., New York 18, N. Y.

## GIGANTIC SURPLUS EQUIPMENT

 MAIL SALEAmazing Values: Gas engines, farm A-C power plants. farm compressors, weed spray booms, weed AC and DC welders, tools, small engine clutch burglar-fire alarms, etc. We pay frelght. Rush
card for sales catalog.
Burden Sales Co

[^18]= CDMMUNICATIONS EDUIPMENT CDMPANY =

| ubc | INTERPHONE AMPLIFIER RL. 7 <br> Convert to high fidelify phone Amp. or speech Amp. Complete with tubes and dynamotor, for 24 V . DC operation. Used but in good condition. SPECIAL PRICE ........... $\$ 2.29$ |  |  | |
|---|---|---|---|---|
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  | mertran |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
|  |  |  |  |
| Each 15 d |  |  |  |
| 10 \$1.40 |  |  |  |
| $100 \$ 12$ |  |  |  |
|  |  |  |  |
|  | ARC-5PARTS cast |  |  |
| rent | 80 Mtr. Xmitr. Conv. Fuses, iOA, $3 A G . \quad . \quad .04$ Condenser 1 it. $4-3$. <br> .05 $1-15 \mathrm{Mfd}$ <br> $05-01-05$. .59 c <br> 19  <br> Cond., $3 \times 1.05$ <br> Mod. Xfmr. 807 to |  |  |
| ment.curr |  | receiver. 28 V. DC |  |
|  |  |  |  |
| couple ..... 2.79 |  |  |  |
|  |  | es |  |
|  |  | ard broade |  |
|  |  |  |  |
| scope w/Toggle | Xmttr. Rack <br> Shock Mts. <br> Rec. <br> 1.79 |  |  |
|  | $\begin{aligned} & \text { Control Cable } \\ & \text { Modulator, w/Dyn. } 19 \\ & \text { Tubes. New } \end{aligned}$ |  |  |
| + |  |  |  |
|  | Motulator, w/Dyn. ${ }^{\text {K }}$ Tubes. New Parasitic Suppres. 7.95 <br> Parasitic Suppres. <br> sors <br> .10 | lectric driven or manua and change switch. Weigh |  |
|  |  | ${ }^{28}$ Ibs. Size $6^{\prime \prime} \times 7^{2 \times} \times 15^{m}$ Complete dynamotor. (Fair as is is <br> Cond.) . $\$ 19.95$ |  |
|  | sors Prates, Rec. \& 10 |  |  |  |
|  |  |  |  |  |
|  | $190-550$, it of $2-9-9.1 . ~$ 5 <br> -Choke 5634 | $\rightarrow \begin{gathered}\text { RU19/ } \\ \text { GF1 } \\ \text { SCR } 183 \\ \text { or }\end{gathered}$ |  |
|  |  |  |  |  |
|  | Control Box Switeh is |  |  |
|  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |
|  | 12 A THhe |  |  |
|  | 12A6 ${ }_{\text {12SF7 }}$ |  |  |
| 25 | LUGS FOR ARC |  |  |  |
| 1700 |  |  |  |
|  | 6418. 8 Png, Male. . 30 <br> 6577. 8 Png, Fem. . 55 |  |  |
| watt amplifler |  | - ${ }_{1330} \mathrm{kange}^{850}$ |  |
|  | 5577, 6 Png, Male... 30 |  |  |  |
| IB | PLI54, 12 Png, Ma. 45 | Ranue 1330-2040 KC |  |
|  | PLI48A, 3 Png.FEm. . 55 |  |  |
|  |  |  |  |  |
| ${ }_{24}{ }_{2} \mathrm{AK}^{\text {a }}$ |  | H RangeK Range9.05-13.MC |  |
| pin |  | Oval Range 400-600 |  |
|  |  | SGR i83 XMTR <br> TUNING UNITS |  |
|  | $\begin{aligned} & \text { sis, Female Chas- } 10 \\ & \text { sargo- } 3 \text { Png Chas- } \end{aligned}$ |  |  |  |
|  |  |  |  |  |
|  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |
|  |  |  |  |  |




## coax Cable

 ohms RG 23/U, twin coax. 125
ohm imp. armored. $50 / \mathrm{Ft}$.


 armored
Many other cables $\& .50 / \mathrm{Ft}$
\& in stock. Write.

## Catr

7324-Variable Cond .95 7321-Variable Cond 1.95 5032-Variable Cond 1.25 ${ }_{5546-\text { Variable Cond }} 1.95$ $\underset{\text { Assy.. RF }}{\text { 554 }}$ Assy.. RF
5634-Rec. Choke Assy., AF …... 49 6385-Relay Spst. .. 69
MC2IIA—Right Angle Drive

| BC-605 Interphone Amplifie: Easily verted to ideal inter. Communications set for of incel. heme-or wactory. gram |
| :---: |
| MOUNTINGS |
| FT 234 A For 274 N Trans FT 232 A For 274 N Trans |
| FT 229 A For 274 N , |
| FT 225 A For 274 N , |
| BC456 |
| MT 62 For ARC/5, |
| MT $78 /$ ARC5 Control |
| MT 85/ARC5 Junction |
| ${ }_{\text {FTox }}$ |
| MT 80 ARC5 Junction |
| FT 282A P/0 SCR 518A |
| FT 308A P/o PEIIgA |
| MT 167/USAR |
| FT $265 \mathrm{~A} / \mathrm{P} / \mathrm{O}$ BC |
| MT 17/A/U SAR |
| mT |
|  |
| Write for Many Others |



SHOCK MOUNTS

COMPLETE LINE OF RECTIFIERS SEND YOUR SPECS


## COMMUNICATIONS EQUIPMENT CO.



# COMMUNICATIONS EQUIPMENT CDMPANY = 

| $\sqrt{\text { MICROWAVE ANT }}$ |
| :---: |
| RF EQUIPMENT |
| $\downarrow$ |



## R. F. EQUIPMENT

LHTR. LIGHTHOUSE ASSEMBLY. Part of RT-39/
APG 5 \& APG 15 . Receicer and Trans Cavities w/ APG. \& APG
assoc. Tr. Cavity and Type N CPLG. To Revr. Uses
20.t0. 2C43. IB27. Tunalie APX 2400.2700 MCS.
Silvel plated Silver plated $\quad$ HPS................................. HA9.50 TUBE ( 715 B ) Pulser. 714 Nagnetron 417 A Mixer Beacon lighthouse cavity 10 cm with miniature 28 T-128-/APN-19 10 cm . radar Beacon transmitter pack-Pre-Amplifier cavities tyde "M" 7410590 GL , to use silver plated construction..................... $\$ 37.50$ ea RT/32APS 6 A RF HEAD. Compl, with 725A Magnetron magnet pulse xfmr. TRA-ATR 723 A/B local osc, and beacon monnt. pro amplifier. Used but Good AN/APS-15A " $X$ " Band compl. RF head and mod. (local osc \& beacon) 1824 TR plexer, HV supply hlower, pulse ximr. Peak Pwr. Out: 45 kW apx. input: $115,400 \mathrm{cy}$, Modulator puls duration $.5-2$ microsec., apx. 13 KV . PK, Pulse,
with all tubes incl. $715 \mathrm{~B}, 829 \mathrm{~B}$, BKR 73 , two 72 's. with all tubes incl. $715 \mathrm{~B}, 829 \mathrm{~B}, \mathrm{BKR}$ 73, two 72 's.
Complete pkg. S BAND AN/APS2. Complete RF head and modulator, receiver duploxer, blower, etc., and complete pilser. With tubes. used, fair condition................ $\$ 75.00$ ASB- 500 Megacycles Raclar Receiver with two GI 446
lighthouse cavities, new less tulbes............. $\$ 37.50$
10 CM Rec Assy. Less Local OSC. Tube. Consists o mixer stabilizer cavity 30 MC preamp AFC. Inc \#SCR-520 RF Head Compl. with Hard Tube Pulser In Tandem. Compl w/Tubes Mark 4 Radar Console (FD) Compl. "L"' Band RF
Pkg. c/o Magnetron CSC, Pulsel', Revi. H.V. Power Supply. Complete
115 V .60 cy . operation.

PULSE EQUIPMENT
IT MOD. 3 HARD TUBE PULSER: Output Pulso Power 144 KW ( 12 KV at 12 Amp ). Duty Ratio 001 max. pulse duration: $5,1.0,2.0$ microsec. Input 3-72's. $1-73$. New w/Tubes $\cdot . . .$. Micro Sec. Rep. rate 624 to 1348 PDS . Pk pwr. out 35 KW Energy 0.018 Joules. 'Pk power 50 amp .24 KW ( 1200 KW p ); pulse rate 200 PPS 1.5 nicrosec. pulse version of DC Resonance type. Uses two $705-\mathrm{A}$ 's as rectifiers. 115 v. 400 cycle input. New With all tubes APS-10 Low voltage power supply less tubes.... $\$ 18.50$ BC I203B Loran pulse morlulator BC 758A Pulse mollulator
725A nagnetron pulse transformers

|  | MAGNETRONS |  | Ask for Qty. Price |
| :---: | :---: | :---: | :---: |
| Tube | Frq. Range | Pk. Pwr. Output | Price |
| 2 J 27 | 2865-2992 mc. | 275 KW . | $\$ 8.50$ |
| $2 J 31$ | 2820-2860 mc. | 265 KW. | \$25.00 |
| 2 J 21 A | 9345-9405 mc. | 50 KW . | \$25.00 |
| 2 J 22 | 3267-3333 mc. | 265 KW. | \$25.00 |
| 2 J 26 | 2992-3019 mc. | 275 KW . | \$25.00 |
| 2 J 27 | 2965-2992 mc. | 275KW. | \$8.50 |
| 2 J 32 | 2780-2820 mc. | 285 KW . | \$25.00 |
| 2 J 37 |  |  | \$45.00 |
| 2 J 38 Pkg . | $3249-3263 \mathrm{mc}$. | 5 KWW. | \$35.00 |
| 2 J 39 Pkg . | 3267-3333 mc. | 87 KW . | \$35.00 |
| 2 J 40 | 9305-9325 mc. | 10 KW . | \$65.00 |
| 2 J 49 | 9000-9160 mc. | 58 KW . | \$85.00 |
| 2 J 34 |  |  | \$55.00 |
| 2 J 61 | $3000-3100 \mathrm{mc}$. | 35 KW. | \$65.00 |
| 2 J 62 | 2914-3010 mc. | 35 KW . | \$65.00 |
| 3 J 31 | $24,000 \mathrm{mc}$. | 50 KW . | \$55.00 |
| 5 J 30 |  |  | \$39.50 |
| 714AY |  |  | \$25.00 |
| 718DY | 2720-2890 mc. | 250 KW. | \$25.00 |
| 720BY | 2800 mc . | 1000 KW. | \$50.00 |
| 720 CY | 2860 mc . | 1000 KW. | \$50.00 |
| 725-A | 9345-9405 mc. | 50 KW . | \$25.00 |
| 730-A | $9345-¢ 405 \mathrm{mc}$. | 50 KW . | \$25.00 |
| 728 AY, | BY, CY, DY, EY | Y, FY, GY | \$50.00 |
| 700 A | C, D |  | \$50.00 |
| 706 AY, | BY, DY. EY, FY | , GY | \$50.00 |
| Kiystrons. | 23A/3 \$12.50; | 707B | \$20.00 |
|  | W/Cavity 417A \$25.00 | 2K41 | \$95.00 |
|  | AGNETRON | , MAGNETS |  |
| Gauss | Pole Diam. | Spacing | Price |
| $\triangle 850$ | 3 l in . | 5/8 in. | \$12.50 |
| 5200 | $\frac{31}{32} \mathrm{in}$. | $3 / 4 \mathrm{in}$. | \$17.50 |
| 1300 | $1 \%$ in. | 1震 in . | \$12.50 |
| 1860 | $15 / 8$ in. | 11/2 in. | \$14.50 |
| Electroma | nets for magnetro | ons | 24.50 ea. |
| GE Mayn | ts type M7765115 | 15, GI Distance | Between |
| pole fac | variable. 2 \% $^{\prime \prime}$ | (1900 Gauss) to | "(2200 |
| Gauss) | ole Dia. 15/83 ${ }^{\prime \prime}$ Now | ow Part of SCR 58 | \$34.50 |
|  |  | "CW" MAGN | TRONS |
|  |  | QK 623150 | -3375 mc |
|  | 0 | QK 59267 | -2900 mc |
| $60^{\circ}$ | - | QK $61 \quad 2875$ | -3200 mc |
|  | Heco | QK 60280 | -3025 mc |
|  | New, Gu | aranteed | \$65.00 |
| Cos | QK 915 | Faytheon... | \$150.00 |
| FILAM | ENT TRANSF | ORMER |  |
| for above <br> 4A Sec | $\begin{aligned} & 115 \mathrm{~V} / 60 \text { cy Pri; } \\ & 50000 \mathrm{VT} \end{aligned}$ | $\begin{gathered} \text { four } 6.3 \mathrm{~V} / \\ \hline . . \$ 27.50 \end{gathered}$ |  |
| Magnetro inc. w/ | Kit of four QK' ansformer | $\begin{gathered} \text { s } 2675-3375 \\ \cdots \$ 250.00 \end{gathered}$ | $1$ |

## PRECISION CAPACITORS

D-163707:0.4 mfll@1500-vic.—50 to plus 85 des. C .50 D-163035: $0.1 \mathrm{mfd} @ 60 \mathrm{vdc}$. 0 to 品us 65 deg. C. $\$ 2.00$
 -163345: $2.16 \mathrm{mfd} @ 200$ vdc. 0 to plus 55 deg. C $\$ 3.00$ 0-161555:.5 mifil@400 vilc. -50 to plus 85 dej. C $\$ 3.00$ - 161270 : 1 mfd @ 200 vdc. temp comp -40 to $\$ 1.15$ 30 US ARMY SIGNAL CORPS RADIO MASTS

G.E.K.-2745
39.50 G.E.K.-2744-A. 11.5 KV High Voltage. 3.2 KV Low G.E.K. $V$ oltage@ 200 KW oper. ( 270 KW max.) I microsec. or $1 / 4$ microsec. @ 600 PPS . W.E. \#DI66173 Hi-Volt input transformer. W.E. 1 ml pelance ratio
to 2 mc .2 sections parallel connected. potted in ail
$\$ 36.00$
W.E. KS 9800 Input transformer. Winding ratio between terminals $3-5$ and $1-2$ is $1.1: 1$, and between terminals fi-7 and $1-2$ is $2: 1$. Frequency range. $\$ 6.00$ G.E. \#K2731 Repetition Rate: 635 PPS . Pri. Imp: 50 Ohms Sec, 1 mp: 450 Ohns. Pulse Width: 1 Microsec. Pri. Input: 9.5 KV PK. Sec. 2.75 Anip..... $\$ 64.50$ W.E. \#DI6927I Hi Volt input pulse Transformer \$27.50
 G.E. \#K27+8A. Pulse Input. line to magnetron. $\$ 36.00$ \# 9262 Utah Pulse or Blocking Oscillator XFMR Freq.
 Pulse I3I-AWP L-421435........................... $\$ 0.0$
Pulse 13-BW-2F L- 440885 ........................ $\$ 2.25$
RAY-W X-4298F ..................................... $\$ 50.00$ G.E.—K 6324730 ....................................................... $\$ 50.00$

## PULSE NETWORKS

15A-I-400-50: 15 KV , "A" CKT. I microsec. $\$ 400$
G.E. \#6E3-5-2000-50P2T, 6 KV , "E "' circuit, 3 sec
G.E. \#3E (3-84-81C: 8-2-24-405) 50 P 4 T ; 3 KV , ${ }^{4} \mathrm{E}$ ', 810 PPS. 50 ohms imp.: Unit 2. 8 Sections, 2.24 micro-
sec. 405 PPS, 50 ohms inp. 7.5E3 1-200-67P 7.5 KV, "E'" Circuit. I microsec. 200
 7.5E3-3-200-6PT, 7.5 KV, "E" Circuit. 3 microsec.
200 PPS, 67 ohms imp., 3 sections.

## DELAY LINES

D-163169 Delay Line Small quantity available. $\$ 50.00$
D. $168184: .5$ microsec. up to 2000 PPS, 1800 ohm termin
 D-170499:.25/.50/. 75 microsec. 8 KV .50 ohms img
D.165997: 11/4 microsec.


## SONAR

QCU Magneto striction head RCA type CR 273225New - Stainless Steel stramining housings for above | $\$ 18.50$ |
| :--- |
| $\$ 18.00$ | QBG Driver Amplifier, Now...................... $\$ 200.00$ OCU Magneto striction head, coil plate assembly, new $\$ 14.50$

QCQ-2/QCS Magneto striction head coil plate assembly $\underset{\$ 14.50}{ }$
QCQ2 Sonar complete set-Write for details.
QC-RCA maqneto striction head assy, consists of coil. plate. nickle diaphragm plate, millerl steel body un-
assembled Supersonic Oscillator RCA 17-27 Kc. Rec. Driver. Csc. $116 \vee 60$ cy. AC. Designed for use w/200 watt driver.
New less tilies. New less tibibs.
WEA.1 Console. Consists of Rec. Ind. Osc. Remote
training control 200 watt driver amp. $17-27$ ke range
QCQ 2 Console Sub. Sig. Co...................... $\$ 450.00$ QBF Sonar mfg. WE complete console consists of 10.40 ko rec. driver osc. ind. \& control unit, and driver
amplifier. $22-28 \mathrm{kc}$. Write QJA Sonar QBF w/QJA adaptor kits w/cathode ray tube indication. Write
QCQ-2 Sonar Compl. Less Hoist-Write

Complete set for erection of a full flat ton antenna. Of rugged plymold construction telescoping into 3 ter-
foot sections for easy stowage and transportation. A foot sections for easy stowage and transportation, A
perfect set-up for getting out. Supplied complete: 2 complete masts. hardware. shipping crate. Shinping wt. approx. 300 lbs . Sig Coros $\$ 24289-233-\mathrm{A}$.

YO-2 MARKER BEACON EQUIP. Compl, installa.

| I.F.F. I KW Pulsed Output Pkg. Tunable 154-186 me. adj, modulating pulses |  |
| :---: | :---: |
| $4-10$ micro sec. comp. 115 v 60cy ac pwr. | supply. |
| Video output receiver. New w/tubes | \$350.00 |
| Wavemeter for above | . $\$ 75.00$ |
| Dipole Array for above. | \$85.00 |
| BG 800 XMTR. RCVR. Unit Now. | \$55.00 |
| BC 929 Indicator New | \$35.00 |

EQUIPMENT

## = COMMUNICATIONS EQUIPMENT COMPANY =

## RADAR SETS

SCR 663-T3 Sperry searchlight training, aircraft, tracking,
Used $0^{\text {CM }} 360^{\circ}$ horizontal swoep $90^{\circ}$ vert. sweep. Used
APSIS Consists of transmit., mod. rec. ind. ant., 400
cy pwr unit. Iess control loxes \& cable, new. $\$ 400.00$ cy pwr unit. Tess control boxes \& cable, new. $\$ 400.00$
Mark 8 Model 2 Gyro stablo olement designed for use in stabilizing large caliber naval gun....... $\$ 2,500.00$
APS-2 Airborne 10 CM , Major Units Now


## 200 MC COAXIAL PLUMBING

Right Angle Bend
Tigection
$\$ 35.00$
$\$ 55.00$
$\$ 6500$

## X BAND

Cross get. Directional coupler 20rb Mounted on
bend $90^{\circ}$ $90^{\circ}$ H Plane $4^{n}$ Radius Cover to Cover ............ $\$ 8.00$ Directional coupler. UG-40/U take off, 20 DB... $\$ 17.50$ Directional coupler, APS-6, Type "N"' take off, 20 DB,
calibrated Broad Band Directional coupler, type "N", take off.
choke to cover. 23 DB, calibrated. ..................... 180 Directional coupler, APS-31, type "N" take off, 28
DB $\begin{array}{ll}\text { Bi-directional coupler, type "N" take off........ } 22.50 \\ & 12.00\end{array}$ Flexible Section $18^{\mu}$ long.
Straight Sections $21 / 2 \mathrm{ft}$. Iong choke to cover, silver
plated Pressure Test Section with 15 lb . gatige and pressurizBulk Head Feet Through, choke to cover Mitered Elbow, choke to cover or choke to choke. Right Angle Bend $21 / 2^{\prime \prime}$ Radius, choke to cover.
$90^{\circ}$ Twist, $6^{\prime \prime}$ long.
$5^{\circ}$ Twist, $6^{\prime \prime}$ long
$90^{\circ}$ Twist, $5^{\prime \prime}$ long with pressurizing nipple
$15^{\circ}$ Bend $10^{\prime \prime}$, Choke to cover
5 ft . Sections UG-39 to UG-40, silver plated
$180^{\circ}$ Bend, $26^{\prime \prime}$ Choke to cover $21 / 2^{\prime \prime}$ ratius
 WE attenuator 0 to 20 DB , less cards, bell $90^{\text {guide }}$ Bend E Plane is
Rotary Joint, choke to choke
Rotary Joint, cloke to choke with deck mounting
Waveneter-Thermistor MTG Section.
$2 K 25 / 723$ AB Receiver, Local Oscillator Kiystion and Choke Coupling to Trystal Mount, Iris Coupling TR-ATR Duplezer Section for above
723 AB Mixer-Beacon Dual Oscillator Mount $\begin{gathered}8.50 \\ \text { wit }\end{gathered}$ ${ }_{723 A B}^{C r y s i a l}$ Moldel Used Beacon Dual Oscillator Mount Matching Slugs and tunable termination, new. calibraten, $11 / 4 x^{5 / 8^{\prime \prime}}$ guive
$12^{\prime \prime}$ Flexible Section $11 / 4 \times 5 / 8^{\prime \prime}$ guide
Crystal Mount in Wavenuide
So-3 Echo Box. Transmission
dellows.
180 Bend with press
"S", Gurve $18^{\circ}$ " !ong
"SD Curve $6^{\prime \prime}$ long.... 3 . 3.00 APSerence Cayity, I B2 24 TR Trube.
Rransition Transition $1 \times 1 / 2$ to $11 / 4 \times 5{ }^{\prime \prime}, 14^{\prime \prime}$ iong
Receiver Front $n$ nll, complete, $\mathrm{C} / 0$ stron mount. TR-ATR Duplexer Dual 723AB Kiy. 30 MC . Preamplifier, new, with ALLetion, 2 stage
Random Lengths of Waveguide 6 to $18^{\prime \prime}$ tong.... 59.50

## AMICROWAVE

COMPONENTS


COUPLINGS-UGCONNECTORS
UG/I5U
\$. 75 UG 116 Cover \& Coupling Ring

\section*{UG205U} | 75 | UG | 116 | Cover |
| :--- | :--- | :--- | :--- |
| 90 | UG | 117 | Chak |

UG87U
Coupling
UG87U
UG2IU
UG 51 Choke
UG 52 Choke
UG 210 Cover
UG 212 Chok
UGIG7U
UG29U
UG2514
ug86u
UG3+2U
UG85U
UG58U
UG9U ..
UGIOBU

## UG253U

UG 40 U Special for Duplexe
7/8 Coax Female Ring Thd
Inthd Coax Male Fitting thd
X Band Circ. Choke Fiange.
X Band Flat Contact Flange
Thk....................
Thk ... Ring $1 / 4^{\prime \prime}$ Thk $13 / 8$
Contact Ring $1 / 4$
hole
UG 53 U, Cover
UG $54 /$ U, Choke UG $40 /$ U Speci. for UG $65 /$ U, Contact $\begin{array}{ll}\text { Mixer Assy. ...\$.75 UG } \\ \text { UG } & \text { 148/U, Choke } \\ \text { Cho }\end{array}$ UG 40A ....... 1.10 UG $39 / \mathrm{U}$, Contact UG 343 Cover.. 2.35 UG 40/U. Choke.............. UG 344 Choke.. 3.00 Various other types available.


## TEST EQUIPMENT

CG-176/AP Directional coupler $X$ Band, 20 DB nomCG.176/AP Directional coupler $X$ Band, 20 DB non1-
inal, type " $N$ " take of, choke to choke, silver-plated
$\$ 17.50$ $X$ Band $13 / \mathrm{s}^{\prime \prime} \times \mathrm{F} / \mathrm{R}^{\prime \prime}$ absorption type wavemeter, micrometer head, 0000 to 8500 mc . Demornay-Buld C Band " $T$ " gold-plated at
C Band Flap attennator Demornay-Bud type $\$ 339$, x gold-plated $\cdots$................................... $\$ 100.00$ X Band $13 / a^{\prime \prime} \times$ x/a klystron mount with tunable terin$\times$ Band $13 / \mathrm{s}^{\prime \prime} \times 5 / \mathrm{g}^{\prime \prime}$ low power load, gold-plated. $\$ 45.00$ $X$ Band $1 / 8 / 8 \times 5 / 8$ " low power load, gold-plated. $\$ 4.00$
$\times$ Band $1 / 8 \times 1 / 2$ waveguide to type "N" adapter, gold-plated
X Band $11 / 8 \times 1 / 2$ "r, Dehydrator Unit ${ }^{2}$ "PD" Section, golit-plated..... $\$ 55.00$ pressor to 50 lls. Compl. for Radar XSMN. Line. H. Vew Pwr. Supply 15.000 V 30 MA. DC Bridge Rect.
 SO-3 RECEIVER- 30 me. IF, 6 stages $6 A C 7$, 10 me.
Band width inpt. 5.1 mc B. W. per stg., 9.6 volt gain Band width inpt. 5.1 mc B. W. per stg., 9.6 volt gain
per stage as dese. in cli. 13 vol. 23 M i. T. Rad. Lab.
 TUBE (715B) Pulser, 714 Magnetron 417A Mixer all


## MODEL TS-268/U

Test set designed to provide a means of rapid checking of erystal diodes IN21, IN2IA, IN2IB, IN23, IN23A,
iN23B. Operates on I-1/2 volt diry cell battery.
 micrometer head new: Absorption tvpe
$9000-9500$ MCS Transmission $\begin{array}{r}\$ 85.00 \\ \text { type } \\ \$ 92.50\end{array}$
 10 CM ECHO BOX CABV 1 $4 \mathrm{ABA}-1$ of OBU-3, 2890 MC to 3170 niCS direct reading microme $9 \%$ to minus $9 \%$ Type
Rinf prediction scale plus $9 \%$ Rew andl
"N" input. Resonance indicator meter. Nem "N" input. Resonance indicator meter. New and
Comp. w/acess. Box and 10 CM Directional Coun. $101^{\circ} \mathrm{cm}$ hicin assembly consisting of two $5^{\circ}$ dishes with diones feeding single type "N"" output. Includes
UG28/U type "N" "T" junction and type pickup probe, Mfg. cable. New........... $\$ 15.50$
 10 emn
tuning motor Sub Sig $1118 A 0$.
THERMISTER BRIDGE
cm. mfg. W.E. Comblete with meter, interpolation cm.
chart, portable carrying case. 2700 to 2900 Mc. range. Lighthouse tube oscillator with attenuator \& output cuit diaram mput reg. PWr. supply. With $\mathrm{S}_{50.00}$ TS 89/AP Voltage Divider. Ranges $100: 1 / 2$ for 2000 to 2000 v . $10: 1$ for
200 to 2000 v . Input $Z 2000$ ohms. 150 cy to 5 meg ey ......... $\$ 42.50$
ASI4A/AP 10 cm Pick up Dipole
with "N" Calles

10 cm Wavemeter. WE type B 435490 Transmission type. Type N Fittings.
Veeder Root Micrometer dial. Gold Plated $W /$ Calib. Chart P/o Freq.
Meter $\times 66+04 A$. New........ $\$ 99.50$


Type 1600 Haydon Timing Motor- 110 V., 60 cycle, 3.2 w., 4 r.p.m., with brake. Price $\$ 4.00$ each net.
Type 1600 Haydon Timing Motor-1 10 V., 60 cycle, 2.2 w., 1/240 r.p.m. Price $\$ 3.00$ each net.
Type 1600 Haydon Timing Motor 110 V., 60 cycle, 2.3 w., 1 r.p.m.

Price $\$ 2.70$ each net.
Type 1600 Haydon Timing Motor, 110 V., 60 cycle, 2.2 w., l 1/5 r.p.m.

Price $\$ 2.70$ each net.
Type 1600 Haydon Timing Motor 110 V., 60 cycle, 3.5 w., 1 r.p.m. With shift unit for automatic engaging and disengaging of gears.

Price $\$ 3.30$ each net. Trpe 1600 Haydon Timing Motor, 110 V., 60 cycle, 2.2 w., 1/60 r.p.m.

Price $\$ 3.00$ each net.
Eastern Air Devices Type 133 Synchronous Motor 115 V., 400 cycle, 3 phase, 8,000 r.p.m. Price $\$ 8.50$ each net Telcchron Synchronous Motor, Type B3, 115 V., 60 cycle, 2 r.p.m., 4 w.

Price $\$ 5.00$ each net.
Barber-Colman Control Motor, Type AYLC 5091, reversible 24 volts D.C. .7 amps 1 R.P.M., Torque 500 in . Ibs. Contains 2 adjustable limit switches with contacts for position indication. Ideal for use as a remote positioner or a beam or television antenna rotator, will operate on A.C. 60 cycle.

Price $\$ 6.50$ each net.

## SERVO MOTORS

CK 1, Pioneer, 2 phase, 400 cycle. Price $\$ 10.00$ each net. CK 2 Pioneer, 2 phase, 400 cycle. Price $\$ 4.25$ each net.
10047-2-A Pioneer 2 phase, 400 cycle, with $40: 1$ reduction gear.

Price $\$ 7.25$ each net.
FPE-49-6 Diehl, Low-Inertia, 115 V., 60 cycle, 2 phase, 3 amps ., 10 watt, output. Price $\$ 34.50$ each net. FPE-25-16 Diehl Low-Intertia 20 V., 60 cycle, 2 phase, 1600 r.p.m., . 85 amps . Price $\$ 10.00$ each net. CK 2, Pioneer, 2 phase, 400 cycle, with 40:1 reduction gear.

Price $\$ 6.50$ each net. MINNEAPOLIS-HONEYWELL TYPE B Part Na. G303AY, 115 V., 400 cycle, 2 phase, built-in gear reduction, 50 lbs. in torque. Price $\$ 8.50$ each net.

Kollsman Type 776-01 400 cycle 2 phase drag-cup type, fix phase voltage 29 , variable phase 35 V . maximum, frequency 400 cycle.

Price $\$ 10.50$ each net.

## REMOTE INDICATING MAGNESYN COMPASS SET

Pioneer Type AN5730-2 Indicator and AN5730-3 Transmitter 26 V., 400 cycle.
Price $\$ 40.00$ per set new sealed boxes.


Kollsman Remote Indicating Compass Set Transmitter part No. 679-01, indicator part No. 680k-03, 26 V., 400 cycle.

Price $\$ 12.50$ each net

## GYROS

Schwein Free \& Rate Gyro type 45600 Consists of two 28 V. D.C. constant speed gyros. Size $8^{\prime \prime} \times 4.25^{\prime \prime} \times 4.25^{\prime \prime}$
Price $\$ 10.00$ ea. net.


Schwein Free \& Rate Gyro, type 46800. Same as above except later design.
Price $\$ 15.00$ ea. net.
Sperry A5 Directional Gyro, Part No. 400 cycle, 3 phase.

Price $\$ 17.50$ each net Sperry A5 Vertical Gyro, Part No $644841,115 \mathrm{~V} ., 400$ cycle, 3 phase.

Price $\$ 20.00$ each net.
Sperry A5 Amplifier Rack Part No. 644890. Contains Weston Frequency Meter. 350 to 450 cycle and 400 cycle, 0 to 130 voltmeter.

Price $\$ 10.00$ each net.
Sperry A5 Control Unit Part No. 644836. Price $\$ 7.50$ each net. Sperry A5 Azimuth Follow-Up Amplifier Part No. 656030. With tube.

Price $\$ 5.50$ each net.
Pioneer Type 12800-1-D Gyro Servo Unit. 115 V., 400 cycle, 3 phase.

Price $\$ 10.00$ each net.
Norden Type M7 Vertical Gyro. 26 V. D.C. Price $\$ 19.00$ each net. Allen Calculator, Type Cl Bank and Turn Indicator, Part No. 21500, 28 V. D.C. Contains 28 V. D.C. Constant speed gyro.

Price $\$ 10.00$ each net. Type C1 auto-pilot formation stick, part No. Gl080A3. Price $\$ 15.00$ each net.
C. A. A. approved instrument repair dept. No. 3564.

## D.C. MOTORS



5069625, Delco Constant Speed, 27 V. 120 r.p.m. Built-in reduction gears and governor. Price $\$ 3.90$ each net.
A-7155, Delco Constant Speed Shunt Motor, 27 V., 2.4 amps., 3600 r.p.m., $1 / 30$ h.p. Built-in governor

Price $\$ 6.25$ each net C-28P-1A, John Oster Series Motor, 27 V., 0.7 amps., 7000 r.p.m., $1 / 100$ h.p. Price $\$ 3.75$ each net. Jaeger Watch Co. Type 44-K-2 Contactor Motor, Operates on 3 to 4.5 volts D.C. Makes one contact per second Price \$2.00 each net General Electric Type 5BA10AJ52C, 27 V. D. C., 0.65 amps., 14 oz. $n$. torque, 145 r.p.m. Shunt Wound, 4 lead reversible. Price $\$ 5.00$ each net. General Electric Type 5BA10AJ37C, 27 V. D. C., 5 amps., 8 oz ., in. torque, 250 r.p.m. Shunt Wound, 4 leads reversible. Price $\$ 6.50$ each net.

## D.C. ALNICO FIELD MOTORS

5069466, Delco, 27 V., 10,000 r.p.m.

Price $\$ 4.50$ each net.


5069370, Delco, 27 V., 10,000 r.p.m. Price $\$ 6.00$ each net. S. S. FD6-16, Diehl, 27 V., 10,000 r.p.m. Price $\$ 4.50$ each net. S. S. FD6-18, Diehl, 27 V., 10,000 r.p.m. Price $\$ 4.50$ each net. S. S. FD6-21, Diehl, 27 V., 10,000 r.p.m. Price $\$ 4.50$ each net.

## GENERAL ELECTRIC

 D. C. SELSYNS8TJ9-PDN Transmitter, 24 V . Price $\$ 3.75$ each net.
8TJ9-PAB Transmitter 24V
Price $\$ 3.75$ each net. 8DJ11-PCY Indicator, 24 V . Dial marked - $10^{\circ}$ to $+65^{\circ}$
8DJ11-PCY Indicator, 24 V V. Dial Marked 0 to $360^{\circ}$.

Price $\$ 7.50$ each net.
RELAYS
Type B4 28 volts D.C., 200 amps. continuous duty. Electric Auto-Lite Co Part no. WSN400]

Price $\$ 2.50$ each net.
Type B5B, 28 volts D.C., 50 amps ., continuous duty Hart Mfg. Co. Part no. 692R6 Price $\$ 1.85$ each net.
Type B8, 28 volts D. C., 250 amps., in termittent duty Cutler-Hammer. Part no. 604 1 Hi39A Price $\$ 2.50$ each net.

## AMPLIFIER

Pioneer Gyro Flux Gate Amplifier, Type 12076-1-A.

Price $\$ 17.50$ ea. net, with tubes.

## SUPPLIER OF ELEGTRONIG \& AIRGRAFT EQUIPMENT

## INVERTERS

Wincharger Corp. Dynamotor Unit. PE 101-C. Input 13, V.D.C. or 26 V.D.C. D.C. AT, 12.6 or 6.3 amps. Output 400 V.D.C. AT. 135 amps., 800 V.D.C. AT. 02 amps., 9 V.A.C. 80 cycle ot 1.12 omps.

Price $\$ 10.00$ each net.
$153 \mathrm{~F}, \mathrm{Holtzer}$
Cobot Cobot, Input, 24 V.D.C. Output 115 V., 400 cycle, 3 phase, 750 V.A. and
26 V., 400 cycle, 1 phose, 250 V.A. Voltage and frequency regulated also built in radio filter.

Price $\$ 115.00$ each net
149 H , Holtzer Cabot. Input 28 V . of 44 amps. Output 26 V. at 250 V.A., 400 cycle and 115 V . at 500 V.A., 400 cycle. Price $\$ 40.00$ each net. 149F, Holtzer Cabot. Input 28 V . at 36 amps. Output 26 V. ot 250 V.A., 400 cycle and 115 V . of 500 V.A., 400 cycle. Price $\$ 40.00$ each net.
12117, Pioneer. Input 12 V.D.C. Out put 26 V., 400 cycle, 6 V.A.

Price $\$ 22.50$ each net.
12117-2 Pioneer. Input 24 V.D.C. Output 26 V. 400 cycle, 6 V.A.

Price $\$ 20.00$ each net.
12116-2-A Pioneer. Input 24 volts D.C. 5 amps . Output 115 volts 400 cycle single phase 45 watts.

Price $\$ 100.00$ each net
5D21NJ3A General Electric. Input 24 V.D.C. Output 115 V., 400 cycle ot 485 V.A. Price $\$ 12.00$ each net.
PE218, Ballentine. Input 28 V.D.C. at 90 amps. Output $115 \mathrm{~V}, 400$ cycle ot 1.5 K.V.A. Price $\$ 50.00$ each net.

## METERS

Weston Frequency Meter. Model 637, 350 to 450 cycles, 115 volts.

Price $\$ 10.00$ each net. Weston Voltmeter. Model 833, 0 to 130 volts, 400 cycle. Price $\$ 4.00$ each net. Weston Voltmeter. Model 606, Type 204 P, 0 to 30 volts D. C

Price $\$ 4.25$ each net.
Weston Ammeter. Model 506, Type S-61209, 20-0-100 amps. D. C Price $\$ 7.50$ each net with ext. shunt. Weston Ammeter. Type FI, Dwg. No. 116465, 0 to 150 amps D. C.

Price $\$ 6.00$ each net. With ext. shunt $\$ 9.00$ each net. Westinghouse Ammeter. Type 1090D120, 120-0-120 amp. D. C.

Price $\$ 4.50$ each net. Weston Model 545. Type 82PE Indicator. Calibrated 0 to 3000 RPM. $23 / 4^{\prime \prime}$ size. Has built-in rectifier, $270^{\circ}$ meter movement.

Price $\$ 15.00$ each net.

## RECTIFIER POWER SUPPLY

General Electric, input 230 V .60 cycle 3 phase. Output 130 amps at 28 V D.C. Continuous duty, fan cooled, has adjustable input taps. G.E. model No. 6RCl46F3. Size: Height $46^{\prime \prime}$, width $28^{\prime \prime}$, depth $17 \frac{1}{2 \prime \prime}$. Price $\$ 200.00$ each net. New

## PIONEER AUTOSYNS

AY1, 26 V., 400 cycle
Price $\$ 5.50$ each net.
AY14D, 26 V., 400 cycle, new with calibration curve.

Price $\$ 15.00$ each net.
AY20, 26 V., 400 cycle
Price $\$ 7.50$ each net.
AY5 26V., 400 cycle. Has hollow shaft

Price $\$ 7.50$ ea. net

## PRECISION AUTOSYNS

AYIO1D, new with
calibration curve.


PRICE-WRITE OR CALL FOR SPECIAL QUANTITY PRICES AY131D, new with calibration curve. Price $\$ 35.00$ each net. AYI30D, new. Price $\$ 35.00$ each net.

## PIONEER AUTOSYN POSITION INDICATORS

Type 5907-17. Dial graduated 0 to $360^{\circ}$ 26 V., 400 cycle.

Price $\$ 15.50$ each net
Type 6007-39, Dual, Dial graduated 0 to $360^{\circ}, 26 \mathrm{~V}$., 400 cycle

Price $\$ 30.00$ each net
PIONEER TORQUE UNIT
Type 12602-1-A.
Price $\$ 40.00$ each net.


Type 12606-1-A. Price $\$ 40.00$ each net. Type 12627-1-A. Price $\$ 80.00$ each net.

## MAGNETIC AMPLIFIER ASSEMBLY

Piomeer Magnetic Amplifier Assembly Saturable Reactor type output transformer. Designed to supply one phase of 400 cycle servo motor

Price $\$ 8.50$ each net.

## PIONEER TORQUE UNIT

 AMPLIFIERType 12073-1-A, 5 tube amplifier, Magnesyn input, 115 V., 400 cycle.

Price $\$ 17.50$ each net with tubes

ALL PRICES,
GREAT BE.
GREAT NECK, 22 V . per phase ot 1800 r.p.m

Price $\$ 12.00$ eoch net.
J36A, Eastern Air Devices, 02 V . per r.p.m. Price $\$ 9.00$ each net. B-68, Electric Indicator Co., Rotation Indicator, 110 V ., 60 cycle, 1 phase. Price $\$ 14.00$ eoch net. Weston Tachometer Generator (aircraft type) model $752-J 4$ single phase. A.C. output Price $\$ 17.50$ each net.
SINE-COSINE GENERATORS

## (Resolvers)

FPE 43-1, Diehl, 115 V., 400 cycle
Price $\$ 20.00$ eoch net.

## SYNCHROS

1F Special Repeater, 115 V., 400 cycle. Will operate on 60 cycle at reduced voltage.


Price $\$ 15.00$ each net.
7 G Generator, 115 V., 60 cycle
Price $\$ 30.00$ each net.
2J1F3 Selsyn Generator 115 volts, 400 cycle. Price $\$ 5.50$ each net. 2JIM1 Control Transformer 105/63 V., 60 cycle. Price $\$ 20.00$ each net. 2J1G1 Control Transformer, 57.5/57.5 V., 400 cycle. Price $\$ 1.90$ each net. 2J1H1 Selsyn Differential Generator, 57.5/57.5 V., 400 cycle.

Price $\$ 3.25$ each net.
W. E. KS-5950-L2, Size 5 Generator,

115 V., 400 cycle
Price $\$ 4.50$ each net.
5G Generator 115 volts, 60 cycle.
Price $\$ 50.00$ each net.
5G Special, Generator $115 / 90$ V., 400
cycle. Price $\$ 15.50$ each net.
5SF Repeoter, $115 / 90$ V., 400 cycle.
Price $\$ 19.00$ each net.
2J1F1 Selsyn Generator, 115 V., 400 cycle. Price $\$ 3.50$ each net 5SDG Differential Generator $90 / 90 \mathrm{~V}$., 400 cyele. Price $\$ 12.00$ each net. 1CT Control Transformer. 90/55 volts, 60 cycle. Price $\$ 40.00$ each net.

## POSITION TRANSMITTER

Pioneer Type 4550-2-A Position Transmitter, 26 volts 400 cycle, gear ratio 2:1. Price $\$ 15.00$ each net

## NEW YORK'S RADIO TUBE G\& EXCHANGE

|  |  |  |  |  | THIS MONTH'S SPECIALS prices never before $\qquad$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |

Microwave K Band 24000 MC .
rSKI-SE Spectrum Analyzer
K Brand Flap Attenuator

## $X$ Band

TSX-4SE Spectrum Anclyzer
TS 12 Unit 1 USWR Measuring Amplifier, 2 channel
TS 12 Unit 2 Plumbing for above TS13
$X$ band Pulsed Signal Generator
TSI6AA VSWR Measuring Amplifier. Navy type TS 12 Unit 1
TAA-11EL VSWR Measuring Amplifier, Browning
TS 33 X Band Power and Frequency Meter
TS 35 X Band Pulsed Signal Generator TS 36 X Band Power Meter
TS 45 X Band Signal Generator
TS 146 X Band Signal Generator
TS 263 Navy Version of TS 146
X Band Magic T Plumbing
X Band Tunable Crystal Mounts
TVN-8SE MIT Klystron pulse and power Supply

RF 4 Electrically Tuned S Band Echo Box
SC $1277 / 60 A B Q$ S Band Pulsed Signal Generator
PE 102 High Power S Band Signal Generator

## $L$ Band

Hazeltine 1030 Signal Generator 145 to 235 Megacycles
TS 53, 300 to 1000 MC Frequency Meter Measurements Corp. type 84 Standard Signal Generator
TS 47,40 to 400 MC Signal Generator

## Broadcast Wave Bands

162C Rider Chanalyst
Short Wave Adapteur for 162 C
Ferris 22A. Signal Generator
Oscilloscopes
BC 1287 A used in LZ sets
TS 34 Oscilloscopes WE
Supreme 564
Cossor two-beam scope

## Audio Frequencies

RCA Audio Chanalyst
Hewlett Packard


Other test Equipment and Meters TS 15/A Magnet Flux Meter
General Radio V T Voltmeter 728A Calibrator WE 1-147
Hazeltine Pulse \& Sweep Generator
UHF Radio Noise \& Field Strength Meter
Measurements Corp type 58
General Radio 1000 cycles type 213
Limit Bridges
Boonton Standard Inductances
Weston Meters types 430, 429, 741
Model 40 Pyrometer
Rawson, meters 0-10 Microampere 0-2 Millivolt
Motor Generator type MG 215
Made by Onan \& Sons
Input 110 Volt/ 60 Cycles, 1500 Watt
Output 115 Volt 480 Cycles and 28 Volt DC.

Will operate any Airborne Radar from 110 Volt 60 Cycle Line

RADAR Sets \& Parts
APS 3
APS 4
SCR 284
R-111/APR5A Receivers

TS155 S Band Signal Generator
TS3A/AP S Band Power and Frequency Meter

## Reliance Specials

CAPACITORS


SILYER MICA


OIL FILLED
MFID V.D.C. Price


## DIFFERENTIAL 15 V.' 60 Cy <br> $38^{\prime \prime}$ dia. $\times 53 / 8^{\prime \prime}$ long $\$ 2.25 \mathrm{ed}$



Used between two \#C78248's as dampener: Can be converted to 36 RO R1M Motor it 10 minutes.
Conversion shept suppied. (Converted. $\$ 3.00$ )

Mounting Brackets
ounting Brackets
 $25 c$
2

WW PRECISION RESISTORS, $1 \%$ OR BETTER


HAYDON TIMING MOTORS R.P.M., 115 V ., 60 Cycle


## PULSE TRANSFORMERS

 $23: 0$ ohns
$352-7178$ spec. 10,111 Chicano trans. equivalent o 92620
 KS 9800 . 1katio, $1: 1: 1,2: 1$, Freq. range 380 to 520 C .1 P . S D 106173 , W.E. Freq. resp 10 KC to 2 MC ....... \$9.80

CARBON MIKE
T-17-Slightly used, guaranteed, 5 ft cord \& PL $68 . .69 \mathrm{c}$
JONES BARRIER STRIPS


400 Cyc. Use on 24 V . or (Brand New)
FILAMENT TRANSFORMER
Pri., 115 V., 60 Cyc.-Sec. 5 V., 110 A. 6000 volt insula-


FILAMENT TRANSFORMER
Amertran Type WS
FRY. High Voftage Rectifiers. SEC. 5 V , C/T 10 35 KV R.M.S. Test 12 KV D or other ubes. or other wibes.
NEW
OVERSEAS PACKED
$\$ 10.95$ VERSEAS PACKED
872.A Tube. $\$ 1.98$

20.000 Muter 314.1 $20,000 \mathrm{Mut}$ $20,000 \mathrm{~s}$ GR
6,000 $\begin{array}{ll}6,000 & \text { De jur } 260 \\ 6,000 & \text { Muter } 314 \text {. }\end{array}$ 6,000 Muter 314.

5,000 Muter 314. $\begin{array}{llll}5,000 & \text { Muter } & 314.4 \\ 5,000 & \text { GR } & 214.1\end{array}$ | 2,000 | De jur 260 |
| :--- | :--- |
| 1.40 |  |
| 170 |  | 1.70

2.50
.70
.70
.50
1.40
1.70

| 4 WATT |  |  |  | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|
| $500 \Omega$ Cen | ntralab | 48-50 | \$.90 |
| 50 | De jur | 292 | 75 |
| 50 | GR | 301 | 1.10 |
| 25 | GR | 301 | 1.10 |
| 20 | Dejur | 292 | . 75 |
| 12 | GR | 301 | 1.10 |
| 12 WATT |  |  |  |
| 10,000 | Muter | 471A | \$2.00 |
| 10.000 2 | De jur | 271 T | 2.00 | | 100 K GR |  | WATT |  | 433 A | $\$ 4.95$ |
| :--- | :--- | :--- | :--- | :--- | :--- | \(\begin{array}{rlr}10,000 \Omega \& De jur \& 271 \mathrm{~T} <br>

5,000 \& De jur \& 271 \mathrm{~T}\end{array}\)
7 Terminal Bakelite tie point................. 35 for $\$ 1.00$

VERNIER DIAL (From BC-221)
${ }^{8}$ Has $8^{\prime \prime}$ Diam $0-100$ in $360^{\circ}$. Black with stlver marks,

|  | POWER RHEOSTATSSTANDARD BRANDS |  |  |  |  | | |
|---|---|---|---|---|---|---|---|
| $\begin{array}{r} 25 \\ \text { Resist. } \end{array}$ | WATT | 7.5 | WATT |  | $1 / 2{ }^{\prime \prime} 79 \%$ |
|  | Shaft | 5.000 | S.D.* 69 | 1.250 | 1/2", 89 |
| 109 | $\frac{7}{16 \prime \prime}$ " 43 c |  |  | 2,000 | 1/2" 89 |
| 25 | 1/8", 59 | 50 | WATT | 3,500 | $1 / 8{ }^{\prime \prime}{ }^{89}$ |
| 145 | 1/2" ${ }_{\text {with }}{ }^{\text {che }}$ | 8 | S.D* | 150 | WATT |
|  | with switch | ${ }_{20}^{80}$ | S.1)* 7 \% |  | 1/2" $\$ 1.99$ |
|  |  | 90 | 1/2" ${ }^{\prime \prime}$ (99 | er Sl |  |
| UNIVERSAL JOINT <br> 3/16" hole × $3 / 8^{\prime \prime}$ O.D. <br> $11 / 8^{\prime \prime}$ long <br> Steel or Aluminum 504 |  |  |  |  |  |
| 4AG | FUSES |  |  |  | 4AG |
| AMP | $\text { Per } 100$ |  | AMP |  | Per 100 |
| $1 / 10$ |  |  | \$2.00 |
| 1/4 |  | 3.50 |  |  | 3.2 |  | 2.00 |
| 1/2 |  | 3.50 | 10 |  | 2.50 |
|  |  | 2.00 | 15 |  | 2.50 |
| 2 |  | 2.00 | 20 |  | 2.50 |
| 3 |  | 2.00 | 2530 |  | 2.50 |

MICRO AMMETER O-SOO
2" round Basic move. 500 micro amps. Used Guaran
Write for Monthly Bulletin

COAXIAL CABLE RG $8 / \mathrm{U} 52$ OHM $\$ 55.00$ per 1,000 feet

|  | Price per |  | Price per |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Ohn |  |
| RG 5 U | ${ }_{97}^{53.5}$ | \$70.00 | RG 27 | ${ }_{53}^{48}$ | 829.00 50.00 |
| RG $8 / \mathrm{U}$ | 52 | 55.00 | RG 31/ |  | 175.00 |
| RC99/U | 51 | 135.00 | RC 39/U | 72 | 180.00 |
| RG $10 / \mathrm{U}$ | 52 | 125.00 | RG 41/U | ${ }^{67}$ | 575.00 |
| RCil 11. |  |  | RG 5 U |  |  |
| ${ }_{\text {RGG } 13 / \mathrm{U}}$ | $\begin{array}{r}75 \\ 74 \\ \hline 8\end{array}$ | 125000 | ${ }_{\text {RG }}$ | ${ }_{53}^{58}$ | 750.00 60 |
| RG 18 / U | 52 | 450.00 | RG: 57 |  | 100.00 |
| RG $20 / \mathrm{U}$ | 52 | 450.00 | ${ }^{\text {12G }} 58$ | 53 | 50.00 |
| 1RG $22 / \mathrm{U}$ | 95 | 110.00 | R(\% ${ }^{\text {R }}$ |  |  |
| RGG 24 U | 125 | 240.00 | 1 C |  | 50.00 |
| RG: 25 U | 48 | 575.00 | RG77/U |  | 00.00 |

COAXIAL CABLE CONNECTORS


| Mfg | ID | OD | Width | Price |
| :---: | :---: | :---: | :---: | :---: |
| Fafnir ${ }^{\text {N.D. }} 38 \mathrm{~K} 5$ | ${ }^{3 / 1616}$ | ${ }_{7}^{1 / 8^{\prime \prime}}$ | ${ }^{5 / 3} / 32^{\prime \prime}$ | ${ }_{45}^{25}$ |
| Fafnir K | 1/2" | $11 / 8^{\prime \prime}$ | 5/16 ${ }^{\text {* }}$ | ,0 |
| N.D. $5202 \mathrm{Cli3M}$ | $1 / 2^{\prime \prime}$ | $13 / 8{ }^{*}$ | 1/8" | 1.00 |
| Fatnir 7308 W | 37/64" | ${ }^{19} 9$ 9 $16^{\prime \prime}$ | 5/16" | 2.00 500 |
| SKF170645 | ${ }^{3} 11 / 32^{\prime \prime}$ | $8^{\prime \prime} 8^{\prime \prime}$ | 7/16 ${ }^{\text {² }}$ | 1.50 |
| Fafnir 545 | $21 / 16^{*}$ | ${ }^{4} 5 / 8^{\prime \prime}$ | 15/32" | 1.00 |
| NEEDLE BEARINGS |  |  |  |  |
| ${ }^{13108} 1 / 2^{\prime \prime}$ wide |  |  | $13 / 16^{\pi}$ $11 / 22^{*}$ | $30 \%$ $25 \%$ |

SOUND POWERED HANDSET

WALL HANGER - Nary type, for Sound Powered


SELENIUM RECTIFIERS HALF WAV


DELAY NETWORK-ALL $1400 \Omega$
T 11 , Approx. 1.2 micro sec. delay.
Minimum Orders $\$ 3$.......All orders f.o. b, PHILA, PA.

## RELLALLCE Menectanulzact co.

Arch St. Cor. Croskey Phila. 3, Pa. Telephone RIttenhouse 6-4927

# DUTSTANDING VALUES NDW AVAILABLE 

| - AMPLIFIERS | - coils | VERT | - meters | - Resistors | TEST EqU |
| :---: | :---: | :---: | :---: | :---: | :---: |
| an connectors | - cords | - Jacks | - motors | - selsyns | transfo |
| cable | - Crystals | kLYSTRONS | potentiometers | - SCOPE ACCES. | TRANSMIT |
| - capacitors | - delay lines | - Knobs | - power plants | - Shock mounts | TUBES |
| - chokes | - filters | - MAGNETRONS | - power supplies | - SOCKETS | - Wave |
| circuit-b | - fuses | - MAGNETS | - projection lamps | - switches | Wavemeter |
| coax-connectors | - Hands | - MICROPHO | - recorders |  |  |

## RADIO IIAM SHACK broadcasts its sincere thanks to all its old friends and a hearty welcome to new ones.

TO OUR OLD FRIENDS. It is not news that RADIO HAM AHACK is the house of value. They know that our mass purchasing policy of vast quantities of surplus equipment and the maintenance of one of the largest stocks of radio tubes and electronic components in the United States enables us to offer them low, low prices that are difficult to beat anywhere in the world.

TO THE NEW FRIENDS we should like to meet, we extend our services and facllities to bring them the best of equipment at the lowest prices. Deal with us in confidence, secure in the knowledge that our tubes, components and equipment are of standard manufacture, rigidly inspected and securely packed to insure that only first QUALITY, BRAND NEW MERCHAN DISE reaches rou.

Send for our monthly value packed flyer. Your requirements for immediate quotation will receive a prompt reply.
REMINDER-RADIO HAM SHACK is a BIG BUYER of tubes, components and equipment. Submit your surplus stock inventory to us for fast action. No lot too large-none too small.
WIRE: WRITE: today for latest prices. SPECIAL DISCOUNTS for large quantity purchases.
OVERSEAS BROADCAST!! WE SHIP ALL OVER THE WORLDI! SPECIAL HANDLING BY OUR EXPORT DIVISION INSURES SWIFT, CHEAP DELIVERIES TO ALL DESTINATIONS. CORRESPONDENCE IN ALL LANGUAGES. CABLE ADDRESS: HAMSHACK-NEW YORK.

TUBES!!
OA3/YR75\$1.05 OA3/VR755
OB3 $3 /$ VR 90
OC3
OD3/VR155 OB3/VR90
OC3/VR105
OD3/VR150
1B21/
IGL471A 2. 87

RADIO HAM SHACK Inc. 189 GREENWICH STREET . NEW YORK, N. Y.

BRAND NEW! STANDARD BRANDS! NO SECONDS! COMPARE!


| 5 | 3 C 22 | $\$ 39.50$ | $227 \mathrm{~A} / 5 \mathrm{C} 27$ | $\$ 2.69$ |
| :--- | :--- | ---: | :--- | ---: |
| 9 | 3 C 23 | 2.19 | 249 C | 1.49 |
|  | 3 C 24 | 24 G | 35 | 250 R | $3 \mathrm{C} 24 / 24 \mathrm{G}$

$3 \mathrm{C} 30 / 809$
$3 \mathrm{C} 31 / \mathrm{C} 1 \mathrm{~B}$

| OUR JUNE SPECIAL |
| :---: |
| 8 MFD 2000 VOLT |
| DYKANOL |
| $\$ 3.95$ |

$\quad 188$ Washington St., New York 7, N. Y.

## GUARANTEED

SURPLUS

WESTINGHOUSE OVERCURRENT RELAY Push Button Reset. Glass Enclosed. .25-1 Amps Typo MN5.95
5.95

MISCELLANEOUS BARGAINS

| . 02400 volt de tubulars................ 15 for |  |
| :---: | :---: |
|  |  |
| Helneman 25 amplio voit ao ckt breaker. 2 for |  |
|  |  |
|  |  |
| .001 600 volt de pi |  |
| . 006600 volt, pigtail micas. |  |
|  |  |
| 250 mmf variable cond. (me250s)........ ${ }^{\text {a }}$ ( ${ }^{\text {a }}$ |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  |  |
|  | Iver varble 5 to 2.5 mmf 8 for .99 |
|  |  |
|  |  |
| ${ }_{35}^{07} \mathrm{MFD} 1000 \mathrm{l}$ |  |
|  |  |
|  |  |
| 05 MFD 7500 VOC Oit Cond |  |
|  |  |
| Meter Multiplier 2 MEG. $1 / 2$ of $1 \% 2 \mathrm{KV} . . . . . . .1 .49$ |  |
| 50 megohm 35 watt Resistor with nount.... $\$ 1.49$ each; 10 for $\$ 9.90$ |  |
|  |  |
| Meg 10 Watts... .49; 2 Mes 5 Watt........ |  |
| 30 WATT WIRE WOUND RESISTORS hms: $100-2000-2500-3 \mathrm{k}-4 \mathrm{k}-4500-5 \mathrm{k} \cdot 5300$ |  |
|  |  |
|  |  |

20 Watt: I, 5. 50 ohms
50 Watt: $80,100,500 \mathrm{OHms}$
75 Watt: ${ }^{80}, 100,500,10 \mathrm{hms}, 100$ or
70 Watt: 20, 50, $75,120,1800 \mathrm{hms}$
50 Watt: 50,100 Ohms.
WIRE WOUND RESISTORS
5 Watt type AA, 20-25-50-200-470-2500-
4000 oh ms $25-40-84400-470-1325$
10 watt tyne AB. $25-40-84-400-470-1325-\quad . \quad . \quad 15$ ea
$1000-2000-4000$ ohms
20 watt typo DG, $50-70$ - $100-150.300-750$ -
$1000-1500-2500-2700-5000-7500$
$1000-16000-20000-30000$ ohms
. 20 ea.

## MIDGET VARIABLE CONDENSERS

## $5 \mathrm{MMF}(\mathrm{HF}$ (5) Steatito Insulation

$15 \mathrm{MMF}\left(\mathrm{HF}{ }^{15}\right)$
Dual 15 MMF (HF is Di
250 MMF (MC 250 S )
325 MMF

## CERAMICONS

MMF: 1.5, 2, 3. 8, 10, 20, 22, 120, 500...... . 05 өа.

## General Electric Overload Relay. Electrical

 Ro Reset 110 Volts 60 Cycle Breaks at 640 Milliamps but easily artiustable for other currents. Ter-rifo values at only........... $\$ 2.95$

10 for 25.00


MINIATURE HEADPHONES
250 ohms imp. Can be used for sound power Telephones, etc. Typo HS $30 \ldots \ldots \ldots$........ 69 HS 30 With Transformer...... . 99 Hi Imp Transf. alone. .45

GENERAL PURPOSE TRANSFORMERS deal for Bias, Filament, Isolation, Stepdown, etc. $\frac{2}{2}$ amps. Fully cased


ADVANCE
D.P.D.T

ANTENNA RELAY
110 V. 60 cyclo coil Steatle Insulation. Only $\$ 1.95$ each.
W. W. POWER RHEOSTATS

$$
\begin{aligned}
& \begin{aligned}
& 250 \mathrm{hms} 25 \mathrm{~W}_{\text {att }} \\
& 250 \\
& 0 \mathrm{hms} 50 \\
& \text { wat }
\end{aligned} \\
& 300 \mathrm{Ohms} 50 \mathrm{~W} \text { att } \\
& \text { Dual } 2000 \mathrm{hms} 50 \text { watt } \\
& 100 \mathrm{ohm} 100 \text { watt }
\end{aligned}
$$

毋isigitio

Tremendous stocks on hand. Please send equests for quotas. Special quantity disunless rated, balance C. O. D. Minimum unless rated, balance C. O. D. Minimum order $\$ 5.00$.


## PANEL METERS

BRAND.NEW
Govt Surplus
${ }^{2}$ Gruen $0-500$ Mleroamps (Volt Scale)
Weston O-1 MA
GE O.5 MA (Amp Scalo).....

- Wessinghouse MA, Basle,

Simpson 0-20 MA (Amp Scaie)
SUE 0.25 MA
Gruen $0-50 \mathrm{MA}$
Gun 0.50 MA (volt Scaie) Squaro
GE 0-1 Amp RF
mpson 0.2 Amp
$0-4 \mathrm{Amp} \mathrm{RF}$
mp
AC
Wun O-20 Volts DG

- GE O.30 Volts DC ( 1000 ohms/voit)

Triplett $0-300$ Volts $A C$
GE o-25 Volts AC, Linear (0.100 Scale)
Weston 0-200 Microamp Mod 301 Sauare
Smpson $0.1 \mathrm{MA}(0-100$ Scale)
Wostinghouse 0-2 MA MA (Squara)
Wostinghouse 0-20 MA
Triplett 0 O.75 Amps AC
GE 0.15 Volts

- GE 0.15 Amp DC.

Wostinghouss $0-2$ Amos DC
Westinghouse 0.1 MA (Basic) KV Scale
3 Weston 0-1 Volt DC
${ }^{7}$ Simpson $75 \cdot 0.75$ Micro Amp


SCOPE TRANSFORMERS
050 V Pri 110 V 60CY-Hermetically Seated

## SCOPE AND FIL. TRANSFORMERS



PrI. 115 volts, 60 cyeles. Sec. 4400 volts RMS $4.5 \mathrm{MA},$.5 volts CT 3 amps. Fil. Ins. 15 KV RMS test. Hermetically sealed. Has Insulated olate cap for rectiffer. Made by Raytheon. $41 / 2 \times$ $5 \times 51 / 2$

5 for $\$ 22.50$


HIGH CURRENT MICAS Type G4 Ceramic Case $53 / 4^{\circ}$ High, 5" Diameter Tolerance 5\% or Better.

| CAP | Amps | Amps | K V | Price |
| :---: | :---: | :---: | :---: | :---: |
| MFD | 1 Mc | 300 Kc | DC | Each |
| . 08 | 60 | 42 | 4 | \$27.50 |
| 1 | 70 | 50 | 4 | 29.50 |
| 65 | 60 | 42 | B | 24.50 |
| 037 | 45 | 35 | A | 26.50 |
| 02 | 40 | 30 | 9 | 29.50 |
| 02 | 5. | 38 | 10 | 29.50 |
| 0117 | 40 | 27 | 14 | 24.50 |
| 0075 | 39 | 27 | 15 | 24.50 |
| .009 | 40 | 25 | 15 | 29.50 |
| O0978* | 40 | 28 28 28 | 15 15 | 29.50 29.50 |
| "0925 | 23 | 15 | 20 | 29.50 |
| 00315 | 26 | 18 | 20 | 29.50 |
| -0n4 | 30 | 20 | 22 | 33.50 |
| . 0133 | 25 | 16 | 25 | 35.50 |
| 00082 | 1.1 | 8 | 30 | 27.50 |

## TYPE G3 4"' HIGH, 5" DIAMETER

$\begin{array}{lllll}0013 & 15 & 9 & 15 & 14.50\end{array}$
TYPE G2 3"' HIGH 31/2" DIAMETER
$\begin{array}{lccc}00057 & 8 & 4 & 10 \\ \text { Type G1 } & 1 / 2^{\prime \prime} & \text { High } & 2 / 16\end{array}$ DIAMETER
$\begin{array}{llccc}2 & 4 & 2 & 6 & 3.95\end{array}$
SILVER MICA CAPACITORS
MMF: $10.47,50,60,340,750,780,1000$.
.09 ea.
Precision 15 Meg. 1\% Accuracy Resistor, Noninductive, , watt, hermetically sealed in glass 25 ea. 10 for.

Thermal Time Oelay Relay, 15 to 3 seconds, plugs
PRECISION 1\% W.W. RESISTORS

## OIL CONDENSERS

| 42 | med | 440 vac- 6.95 |  | mid $2000 \mathrm{vdc}-6.95$ |
| :---: | :---: | :---: | :---: | :---: |
| 2 | mid | 600 vdc - 39 |  | mfd 4000 vde -4.95 |
| 4 | mid | 600 vde - . 59 |  | mtd $5000 \mathrm{vdc}-4.50$ |
| 6 | mid | $600 \mathrm{vdc}-.79$ | .1/.1 | mfd 7000 vde- 2.25 |
| 3/3 | med | 600 vde- . 79 |  | mfd 6000 vdc- 9.95 |
| 10 | mfd | 600 vde - . 89 |  | mid 7500 vde- 9.25 |
|  | mfd | 1000 vde - . 95 |  | . 01 mfd 12 kv |
| $\stackrel{5}{5}$ | mod | 1000 vde- 1.39 |  | de-5.75 |
| 101 |  | 1000 vde- 1.99 | . 005 | . 01 mid 12 kv |
| 4 |  | 1500 vde -1.25 1500 vde -2.25 |  | fd 12.500 vde- $\mathbf{5 . 5 0}$ |
| 6 | mfd | 1500 vde- 2.95 |  | mfd $18 \mathrm{kv} \mathrm{de-49.55}$ |
| 1 | mid | 2000 vde-1.45 | 1 | mfd $15 \mathrm{kV} \mathrm{dc-15.95}$ |
| 2 | mtd | 2000 vdc-2.25 |  |  |

HIGH VOLTAGE VACUUM CONDENSER
12 MMF 32 KV EIMAC VC $12-32 \ldots \ldots . .$.
FILAMENT TRANSFORMERS
110 Y 60 CY Pri. Cased.

| $0_{5}$ |  |
| :---: | :---: |
| 2.5 Volt 10 Amp. |  |
| ${ }_{5}^{2.5} \mathrm{~V}$ Volt $4 \mathrm{CT}, 6.3 \mathrm{~V}, 3 \mathrm{mp}$ | 4.75 |
| $2.5 \mathrm{VCT} 20 \mathrm{~A}, 2.5 \mathrm{~V}$ CT 2 | 6.95 |

## CHOKE BARGAINS

6 Henry 50 ma 300 ohms.
8 H enry 150 ma 140 ohms
6
1.5 Henry 250 ma 72 mms
6 Hy .400 MA 970 hms.

|  | HEAVY DUTY RHEOSTAT <br> 35 Ohms. 675 Watts Max. with Knob and Hardware .................... $\$ 3.95$ 10 for $\$ 29.50$ |
| :---: | :---: |
| $0$ | FILAMENT TRANSFORMER <br> 6.3 volts at 12 amps. Primary 110 volt 60 cy. Size $31 / 4^{\prime \prime H} \times 27 / 8^{* W} \times$ $3^{\prime \prime} D$. WT $31 / 2$ lbs. As Illustrated. While thoy last. . $\qquad$ |
| $\frac{1}{4-100}$ | SENSITIVE RELAY <br> Breaks at 3 MA. Beautifully Constructed and delicately pivoted. HApprox. 2000 ohms resistance. Housed in dustproof aluminum can. Plugs Into 5 prong socket. HOnly Heat. |

## PLUG IN CAPACITOR


GENERAL ELECTRIC Tyoe PBC Instantaneous OENERAL ELECTRIC Tyo PBC Instantaneous Eloctrical and Manual Reset, 4 PDT, Reset 110 volts
60 Cycles
S7. 95 50 Cyclos


 rice
.18
.26
.26
.46
.50
.55
.35
.65
.75
.80
.90
.45
1.25




Heavy Duty Tap-Switch Ohmite Model 412
Single Pole 6 Positions. Non-Shorting


Mallory Vibropack Transformers 6 Volt Input. Out-

Ohms: $2 \mathrm{~K}, 2500,5 \mathrm{~K}, 8500,95 \mathrm{~K}, 750 \mathrm{~K} \ldots . .25 \mathrm{oa}$ put 300 Volts at 100 MA .
$\$ 2.95$ ea
PEAK ELECTRONICS CO.
188 Washington St., New York 7, N. Y.

Phone CO 7- ${ }_{-6443}^{6486}$
DEPARTMENT EA


| TYPE. | PRICE EA. | TIPE. | PRICE EA. | TYTE. FRICE |  | TYPE. PRI | EA. | TYPE. | PRICE EA. | TYTE. PRI | EA. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 A 4 G | . 95 | $5 J 29$ | 13.45 | $7 \mathrm{Y4}$ | . 90 | 66B4 | . 90 | 705A | 1.55 | 955 | . 55 |
| 01A | . 45 | 5 V 4 G | 1.07 | 9-3 | .45 | 1767/30 | . 90 | 708A ${ }^{\text {r }}$ | 17.50 | 957 | . 45 |
| EL-C 1A | 3.95 | 5 W 4 | . 76 | 10 | . 55 | 70 L 7 | 1.05 | 707 A | 14.00 | 958 | . 55 |
| 1A3 | . 60 | $5 \mathrm{Z3}$ | . 80 | 10 ACORN | . 65 | 71 A | . 1.50 | 7078 | 16.00 3.75 | 968 A | -.55 |
| 145GT | . 65 | 523G | . 75 | 10 ( Y (-25A) | . 55 | CEQT2 | 1.50 .95 | 7084 | 3.75 4.75 | 959 | . 55 |
| C18/3C31 | 4.85 | 6-4 | . 35 | $10 \mathrm{E} / 146$ | . 60 | ${ }_{\text {CYN }}$ C2 | 1. 75 | 710 A | 2.45 | 967 FG17 | 3. 25 |
| 184 P | 1,75 | 6-7 | . 35 | 10 Y (VT-25) | . 65 | RKH72 | 1.75 | 713 A | 1. 50 | 991/NE-16 | . 24 |
| 1821A/G1471A | 2.55 | EL-C6A | 2.00 | $\left.{ }_{12 \mathrm{AB}} 10 \mathrm{~T}-25\right)$ | . 285 | $\stackrel{\text { RkR7 }}{\text { R }}$ | 1.25 | 714 AY | 1.50 | 1005 | . 35 |
| 1822 | 3.40 | 643 | . 80 | ${ }_{12}^{12 A B 6 T}$ | . 26 | ${ }_{75}$ | 1.89 | 715 B | 9.75 | 1007 | 4.50 |
| 1823 | 7.50 | $6 A B$ $64 B ?$ | . 65 | 12 12A 7 | . 80 | 78 | - 55 | T17A | . 85 | 1148 | . 35 |
| ${ }_{1842}^{1832} 5$ | 1.85 5.25 | $64 B 7$ $64 C 7$ | .95 .90 | 12AII7GT | -1. 12 | 75 | . 55 | ${ }_{7} 18 \mathrm{By}$ | 15.00 | 1201 | . 45 |
| 1848 | 9.90 | 6AF6G | . 85 | 12AU7 | . 98 | 78 | . 50 | 718 EY | 15.00 | 1203 | - 55 |
| EL1C | 4.85 | 6AG5 | 1.20 | 12 AX 7 | 1.20 | VR78 | . 65 | 721A | 3.75 | 1203 A | -65 |
| 1C5GT | . 65 | 6ah6 | 1.10 | 12BD6 | 1.20 | 80 | . 45 | 7218 | 3.95 | DG1295 | .55 9.95 |
| 1 C 6 | - 75 | 6ak5 | 1.20 | 12 C 8 | . 50 | FG-81-A | 3. 95 | $7^{722 A B}$ (287A | 9.50 14.95 | 1299/3D6 | 9.95 .45 |
| $1 \mathrm{C7G}$ | . 85 | 6ak6 | . 80 | 12F5GT | . 65 | 83 | -90 | 724A | 14.95 | 1613-SEIECT. 6F6 | . 5.5 |
| 108 GT | . 95 | $6 \mathrm{AL5}$ | . 95 | 12 HB | -40 | 89 Y | . 40 | 725 A | 4.95 | 1616 | 1. 25 |
| 1 E 7 GT | 1. 95 | 6AU6 | . 95 | 12.55 GT | . 40 | VR90 | .65 | 726 A | 12.50 | 1619 | . 35 |
| 154 | . 90 | 6 6al6 | . 81 | ${ }_{12 \mathrm{LS}} 12 \mathrm{GT}$ | . 70 | VT90 (BRITISH) | 2.55 | 72613 | 13.50 | 1824 | 1. 25 |
| 1 H 4 G | . 80 | ${ }_{6 \text { 6 }}^{6} 78$ | - 95 | 12 CJGT | . 75 | VR92 | . 65 | 730A | 9.85 | 1625 | . 35 |
| 1H6G | . 80 | $6 \mathrm{B8}$ | -.95 | 12SA7 | .73 | FG95/ DG1295 | 9.95 | 801 | . 50 | 1626 | . 35 |
| 11/A | . 50 | ${ }_{6 B 8}^{6 B 6}$ | . 98 | 12SC7 | .75 | VT98/REI5 | 14. 95 | 8014 | - 70 | 1629 | - 35 |
| 14C6 | . 75 | 6BA6 | . 95 | 12SF7 | . 60 | 100 k | 2. 75 | 803 | 5. 25 | 1838 | 3.95 .90 |
| 1 LNS | .85 | 6BE6 | . 65 | 12 SG 7 | . 65 | 100 TH | 1. 50 | 804 | 8.98 | 1841/Вк60 | . 85 |
| ${ }_{\text {iP24 }}$ | .75 9.50 | 6 C 4 | . 40 | ${ }_{12 \mathrm{~S} 117}$ | - 40 | 101/837 | 1. 65 | 807 | 6. 1.25 | 1842 | . 50 |
| 1 T 25 GT | 2.50 .85 | 6 CBG | 1.05 | 12S. 77 | - 73 | 102 F | 3. 55 | 808 | 1.65 | 1852 /6AC7 | . 90 |
| 1 R 4 | . 55 | $\mathrm{BC} 21^{\text {che }}$ | 19.25 | ${ }_{12 \mathrm{SK}}^{12 \mathrm{SGF}}$ | . 60 | Fh105 | -9.75 | 809 | 2.50 | 1853/6AB7 | . 95 |
| IS5 | . 70 | 606 | . 50 | 12SL7GT | . 60 | VU-111-S | . 65 | 812 | 2. 96 | 1960 | 1.38 |
| $1 \mathrm{TH}^{4}$ | . 75 | $6 \mathrm{6F5}$ | . 85 | $12 S N 7 \mathrm{GT}$ | 1.10 | 114 B | 1.20 | 813 | 7.85 | 1861/532A | 1.85 |
| 2 23 | 1.05 | ${ }_{6 F G G}$ | -60 | $12 \mathrm{SO7GT}$ | . 60 | 121A | 2.65 | 814 | 3. 76 | 2050 | . 78 |
| 2A7 | . 75 | ${ }_{6} 6 \mathrm{FGG}$ | . 60 | 12S147 | . 60 | 129, | 2. 65 | 815 | 2.85 | 2061 | .75 1.20 |
| $2 \mathrm{AP}^{1}$ | 4.75 | ${ }_{6 G G G}$ | . 80 | 12X825-2AMP. TUNG. | 1.95 | VT 127 (RRITISH) | . 38 | 826 | . 75 | ${ }_{7193}$ | 1.20 |
| 287 | . 75 | 646 | .45 | $12 \mathrm{Z3}$ ( | . 40 | TT127A | 2.95 | 830 B | 3.95 | 8011 NT90. 3RITI | 12. 50 |
| 2822, GL559 | 3.25 | 6.16 | . 90 | $13-1$ | .35 | VR150 | . 50 | 832 A | 7.96 | ${ }_{8012}$ NT90. SRITI | 3. 25 |
| $2 \mathrm{C} 22 / 7193$ | - 35 | 6,J7GT | .70 | 1.447 | . 90 | VT158 ( HK ) | 14.95 | 834 | 5.75 | 8012 | 1.25 |
| 2 C 26 | - 30 | 6 J 8 G | . 95 | $14 \mathrm{H6}$ | . 75 | FG172 | 19.75 | ${ }_{836} 838111 \mathrm{~A}$ | 1.10 | 8013 A | 1.50 |
| 2C26A | - 40 | 6 K 6 GT | . 55 | 1.157 | . 90 | 20.13 | 1.45 | 836 | 1.35 | 8019 | 1.75 |
| 2 C 34 | - 10 | 6 K 7 | . 80 | 1447 | -90 | 211 (VT-4-C) | . 60 | 837 | 1.85 | 8020 | 3. 25 |
| 2 C 44 | 1.25 | 6K7G | . 80 | 1497 | . 90 | 215A( (T5) | 1.20 | 838 | 3.25 | 8025 | 6.75 |
| 2 J 21 | 10.45 | 6 LGG | 1.35 | 14 R 7 | . 90 | CEP220 | 2.00 | 8841 | 2. 9.75 | 9001 | . 65 |
| 2 J 21 A | 11.45 | 6 L 7 | - 5 | 15 E | 1. 50 | 221 A | 1.75 | 8842 | 2.75 .50 | 9002 | . 45 |
| 2 J 22 | 9.85 | 6 N 7 | . 75 | 15R | 1.20 | 2274 | 4.75 1.20 | 843 | 39. 00 | 9003 | -60 |
| $2 \mathrm{2J26}$ | 8.45 12.95 | 6×7/GT | . 75 | 16×879-2AMP. TUNG. | 1. 35 | 2310 | 1. 20 | 885 | 39.00 6.25 | 9004 | . 40 |
| 2 J 31 | 12.95 9.95 | 607 | . 85 | F617/967 | 3.25 | 250 R | 9.00 | 861 | 29.45 | 9006 $/ 8.8$ | $\cdot 40$ |
| 2 J 32 | 12.85 | 6RTG | . 75 | 19 | 1. 20 | 257 A | 3.00 | 864 | . 45 | 38111A/83 | 1.10 |
| 2583 | 18.95 | ESC7 | . 65 | 20-4 BALLAST. | - 15 | 268A | 2.95 | 885 | 2.55 |  |  |
| 2J34 | 17.50 | 6SC7GT | . 70 | $21-2$ BALLAST. | .45 | 2828 | 4.25 | 866-JUNICR. | . 85 |  |  |
| 2 J 37 | 13.85 | 6SF7. | -80 | REI21 | 2. 75 | $287 \times 7224$ | 9. 50 | 866A | 1. 30 | XTAL DIODE |  |
| 2 J 38 | 8. 915 | 6 SF 5 | . 65 | 23 D 4 | 1.45 | 304 TI | 1.75 | 869 | 19.75 | N01 |  |
| 2 J 48 | 12.95 | 6SG7 | -65 | RK24 | 1.75 | 304 TH | 5.75 | 8693 | 27.25 | 1 N 21 | . 65 |
| $2 J 61$ | 24.50 | 6S 117 | . 40 | $\cdots$ | . 85 | 307A | 4.25 | 8724 | 2.45 | 1521A | . 95 |
| 2 J 62 | 14.95 | 6 SH GGT | . 40 | RK25/802 | 2.85 | 316A | . 5.5 | 874 | 1. 95 | 1 N 218 | 1.20 |
| 2 X 2 | . 5.5 | $6 \mathrm{SJ7}$ | . 60 | TT-25-A/10 | - 35 | 3274 | 2.50 | 876 | . 50 | 1522 | . 80 |
| 2Y3G | 1.20 | 6S.j7GT | . 60 | 2525 | . 85 | 350 B | 2. 55 | 878 | 1.95 | 1 N 23 | . 80 |
| 3 A 4 | - 35 | 6Sk7 | . 60 | 258696 | . 55 | 35.1 C | 14.95 | 879, | 3. 50 | 1N23A | . 85 |
| $3 \mathrm{~A} 4 / 47$ | - 45 | 6 SK 7 GT | - 60 | 26 | . 65 | 356888.7031 | 3.95 | 923 (PHOTO) | 1.35 | 1 V 29 | . 85 |
| 387 $3 \mathrm{Ba2}$ | 2.35 | 6SL7GT | -60 | 27 | . 50 | 3714 YT62 | -.95 | 930 | 1.00 | 1 NS 1 (GE) | . 75 |
| 3 B 24 | 1. $\pi$ | 6SN7GT | . 85 | 2807 | - 40 | 3718 | . 85 | 9314 | 3.95 | $1 \mathrm{~N}: 18$ (GE) | - 70 |
| 38P1 | 3. 75 | ${ }_{6 S O}^{6 S 07}$ | . 60 | 30 VT-63 | - 75 | 388 A | 3.95 | 95.4 | . 35 | 1552 ( 6 E ) | 1.00 |
| EL-3C | 3. 95 | ${ }_{\text {6SR }}$ | . 60 | 30 (NOT VT-67) | -75 | 393 A | 4.65 |  |  |  |  |
| 3 C 21 | 5.00 | 6S127GT | . 60 | 33 | . 75 | 3954 | 4.95 +30 |  |  |  |  |
| $3 \mathrm{C} 24 / 24 \mathrm{G}$ | 4.85 | 6SS ${ }^{\text {\% }}$ | . 60 | GL.34 | 1.50 |  | 14.30 |  |  |  |  |
| $3 \mathrm{CSP1-C1B}$ | 4.85 1.05 | 6UJG | . 85 | Rк34/2C34 | . 45 | 134 A | 3.40 |  |  | 1 |  |
| 3 DP 1 | a. 5 | 616 GT | - 76 | 35/51 | -60 | 448A | 1.55 |  |  |  |  |
| 3D6/1299 | . 45 | ${ }_{6 \times 5 \mathrm{~F}} \mathbf{6}$ | . 80 | $35 \mathrm{L66}$, ${ }^{\text {a }}$ | . 73 | 416 B | 1.55 |  |  |  |  |
| 3 FP 7 | 1.85 | 616 G | . 65 | 33250 CT | . 62 | 450 TH | 17.95 |  |  | 45 |  |
| 3 FP 78 | 4.95 | 7-7-11 | . 35 | 96 | . 40 | GI 61514 | 1.90 |  |  |  |  |
| $3 \mathrm{CPP1}$ | 4.50 | $7 \mathrm{A4}$ /XX | . 60 | 37 | . 40 | SS501 | 3. 00 |  |  |  |  |
| 3 HP 7 | 1.00 2.95 | 745 | -80 | 38 | - 40 | 527 | 9. 95 |  |  |  |  |
| 3 Q5 | . 90 | 746 | . 75 | 39/44 | . 05 | Wits30 | 6. 00 | Man | ufactur | Distributo |  |
| 3q5GT | - 90 | $7 \mathrm{7B} 4$ | . 60 | 41 | . 55 | WT.531 | 12.95 |  |  |  |  |
| 3 34 | . 75 | $78 \mathrm{7R6}$ | . 60 | 42 | . 50 | WL532 | 1.85 | and | Amate | : Write |  |
| GA4 | 2. 00 | 7R4 | . 60 | 45 SPEC. | . 50 | $\mathrm{GIF59}^{\text {a }}$ | 3. 75 |  |  |  |  |
| REL5 ${ }^{\text {VT5 }}$ | 14.95 | 7 BP 7 | 4.35 | 46 | . 75 | h1610 | 7.45 | the | rand | Wells El |  |
| 5AP1 | 1.20 3.95 | 7C.1/1203A | . 35 | EF50 | . 45 | HY615 | 1.05 |  |  |  |  |
| EL-C5R | 4.25 | 7 C 5 | -65 | प150 | 1.00 | WI 632A | 8. 75 | troni | ic Cafalo | 500. It's fu |  |
| 5BP1 | 2. 75 | TCi 1201 | -65 | 5016 | 1.00 | 700 | 7.85 |  |  |  |  |
| 5 BP 4 | 3. 95 | $7 \mathrm{7EG}$ \% 1201 | -60 | ${ }_{56}^{501.607}$ | - 615 | 700 O 7000 | 7.95 7.95 | of $T$ | emen | us values |  |
| 5 CP 1 | 3. 75 | 7 F 7 | . 70 | 57 | .45 | 7 COD | 7.95 |  |  |  |  |
| ${ }^{50} 521$ | 24. 75 2.75 | 7117 | - 70 | 68 | . 50 | 7014 | 3.00 | high | estqual | component |  |
| 5 GP 1 | 2.75 | 717 | -70 | RK60/1641 | 1. 65 | 702 A | 2.95 |  |  |  |  |
| 5194 | 4.75 | 7 T 7 | . 90 | $\mathrm{CTS}^{\text {T62 (RRITISH) }}$ | 1. 255 | $7{ }^{7011}$ | 1.75 |  |  |  |  |
| 5.123 | 14.25 |  |  | 65 |  | 7 | 1.7 |  |  |  |  |

## IMMEDIATE DALIVERY <br> LOW PRICES

 GUARANTEEDBROWN TELEPLOTTER RECEIVER

for recording ploted or inally invily inder for recording pioted or writen data from
central molillote board Writes at one
half scale on 18 in chart. Discriminator half scale on 18 in chart. Discriminator input circuit designed to operate unit as
function of two varying R.F. frequencies
varying aloout mean of varying alowt mean of approx. 430 KC .
for her data on request. (Shipping weight
435 bs .) Price $\$ 375.00$

LP-2T-LM Compass Loops

enclosed in graphited zeppelin housing includes mitter
$=$ SA99.
\$14.50 each


Model $791 \times 1 R$ 115 volt 60 eycles Contains a pen balancing metors which writes on rear of a translucent chart. Pen arm position is in terms of 1 wo co-
ordinates supOrlinates sup-
Hlied balancing motor balancing motors tha two
amplifiers. Orig.
 input. (Cuolts 400 cycle 1 phase out. 6.0
$V .1$. (Current manufacture) Prices on
 lbs. Stock =SA-41. Price $\$ \mathbf{1 2 . 5 0}$ each Contral EItectric 5Asi3/X,J3- Input 26
volts DC at 100 annus. Ouiput 115 vols 400 volts IMC at 100 annos. Output 115 volts 400
cycles. 1500 A. 0.8 IPF Stock - SA. 286 Price $\$ 19.50$ each


## SERVO AMPLIFIER



Minneapolis Honeywell
115 v .400 cycle unit. For use with SA-268. Model G403ATCA3. Designed for use with A-C error signal from liridge circuit. Stock \#SA-269A. Price $\$ 8.50$.
MOTOR SPECIALS
G.E. S1BAPIA.J31A and 32A. Dual field re-
versible gear versible gear head shunt wound. 24 v. ©
2.9 amps. 9 rpm. 10 min. time rating. Aircrar spe Magnetic brake. Stock \#SA
298. Sperial Irice $\$ 19.50$ each.

G.E. 5PS56HC18- Split fleld series reversible mo
tor: 60 v d-c at
 5" lg. Ideal for servo ap
plications. Stock \#SA- 273 . rrice $\$ 8.75$ each.


## OSTER PM MOTOR <br> Alinco Field

 27.5 v . d-c Can also be used as rate gen-erator: $\#$ SA- 281 erator: \#SA-281. \$3.75 each


Gyro and llousing Mirror Ansembly. For K-14A sight ing head. Gyro stabilized minror assembly. St oek
\#SA-291. Price $\$ 9.75$ each.

## AC-SERVO MOTORS



## FORD SERVO MOTOR

115 volt 60 crcle two phase ow inertia motor. 15 watts output. BuOrd. 207927. $\$ 19.50$ each

MINNEAPOLIS-HONEYWELL


Type G303AY2CA4 Servo Moto 155 v. 400 cycles. Built in
gear reduction. gear reduction. $50 \mathrm{in} / \mathrm{lb}$.
torque. Stock $=$ SA-268. Price $56 . \pi 5$ each.
SAWTOOTH POTENTIOMETER W.E. KS-15138

Type RL-B-K. 100 olm elehent. Non linear ring gives dion coil foan with CRT dellec brushes 180 degrees opposed taps 180 degrees opposed.
tork + SA- 288 Price $\$ \mathbf{\$ 5 . 5 0}$ Ritork
nach.


400 Cycle Generators Homelite 18A120D28-1 400 cycle out at 1 phase 115 v. 39 amps. Also a d-c out put of 38 v . and 17.9 amps Special at $\$ 1 i 5.00$ each.

G. E. 5ASB31JJ3. 400 cy cles out at 115 rolts 7.2 amps. Ideal for lab, $6^{\prime \prime}$ Ig. $\times 6^{\prime \prime}$ diam. 8000 rpm . Stock
\#SA-292. Price $\$ 79.50$.
 PRECISION AUETOSYN Pioncer Type Au-150 Control sion type. 26 V .
400 ."yle. Stock
\#SA-297. \#SA-29\%: Spe-
Pial
10w

## A-5 Autopilot Indicator

Autosyn Type Pilot Indicator for A-5 Autopilot. 26 v. 400 cycles. Stocls \#SA-299. Price $\$ 19.50$ eatch.

ANTENNA TILT INDICATOR
D-C Selsyn type till indicator G.E. 8DJ29AAK. Price volt each

Prices F.O.B. Paterson
Phone ARmory 4-3366 Teletype PAT. 199
WRITE FOR LISTING

SEARCHLIGHT SECTION


## GUARANTEED <br> BRAND <br> NEW





SEND FOR OUR COMPLETE TUBE LISTING

STANDARD BRANDS ONLY


## TYPE "J" POTENTIOMETERS



UNIVERSAL OUTPUT TRANSFORMER RCA 15 WATT HIGH FIDELITY
PRI- $1000 / 2000 / 4000 / 8000 / 6000$ Ohmis

SEE- $2 / 6 / 550 \mathrm{hms}$
IGNITRONS
GL-415/5550
WL-681/7550
$W \mathrm{~L}-652 / 5551$
$\$ 22.00$

## ROTARY CONVERTER

Janette Type CA-18 F with Filter Assy. Input- 115
VDC VDC. output-110 V 60 cy 1.17 A with spare brushes
and brush-holders...................... $\$ 28.80$

PIONEER SERVO SYSTEM UNITS




$$
\begin{aligned}
& 2 \text { MFD } 12,500 \text { VDC } \\
& \text { INERTEEN TYPE FP }
\end{aligned}
$$ $\$ 23.95$

## SELENIUM RECTIFIERS

HALF-WAVE 130 VDC OUTPUT | $75 \mathrm{MA}-.58$ | $150 \mathrm{MA}-.91$ | $250 \mathrm{MA}-1.21$ |
| ---: | ---: | ---: | ---: |
| $100 \mathrm{MA}-.72$ |  |  |

## SOUND POWERED TELEPHONES

 - WESTINSTRUMENT TYpe A-260-. AUTOMATIC ELECTRIC TYPQ GL-B32BAO These are high quality HEAD AND CHEEST SETS confused with cheaper units now available. Designed to withstand exacting shock, vibration., salt water corrosion, temperature and pressure tosts. ANY SURPLUS EQUIPMEN
TROUBLE SHOOTING MANUALS BC-348 」, $N$, (Includes Schematics)
 KOLLSMAN INSTRUMENT $\begin{array}{ll}\text { Freq. Cycles } \\ \text { Volts-Phase } 1 & 100 \\ 85\end{array}$
 Current-Phase 1-110MA Speed-RPM 2650 $\begin{array}{lll}\text { Input Watts-No Load } 2650 \mathrm{RPM} \mathrm{CW} & \text { Welight } & \mathbf{5 . 5} \\ 5.8\end{array}$ Input Watts-Stalled
 Reversing Time- Second
Moment of Inertia (G. CM. ${ }^{2}$
Will Operate Satisfactorily of 60 Cycles Original Price $\$ 34.50$-Our Price- $\$ 8.22$ ea. $\$ 7{ }^{50} \mathrm{EACH}$ —Lots of 10

SPECIAL! GERMANIUM 69¢ DIODES

## 



MEASUREMENTS CORP. TEST EQUIP. MEAS $7 \times 15: 15 \cdot 25$ and $190-230$ meg., out-
Mut 100.0100 microvolts, modulation 400
p 4950 or 8200 cps s. $90-125 \mathrm{MiC}$ continuously rarially from $1-1000.000$, outplit im-



## Cevery

T-28/APT-1 2-6C4. Now .... $\$ 50.00$ Used .... $\$ 25.00$


 case, wood trunk. .................. $\$ 195.00$


HANDIE-TALKIES BC-6II: No wires to attach basy to nperate. Push button contron to set freanency. Irystal controlled. Transmitter and receiver in same case. Only $51 / 2 \mathrm{lh}$. with hattelies (batteries can be suphlied). Small: $1.1 / 4^{\prime \prime} \times 3 \%^{\prime \prime} \times 5.38^{\prime \prime}$ ".
Aluminum case. With tubes, crystals. Alumirer. 3 . $\mathbf{M C}$. BC-611-F also a arailable.
BC- 21 HC-b11. except aipborne \& revised im1 proved chassis and bottom cover with con nections for external control
$I E-17$ complete Handie Talkio test equip CRC-7 VHF Nary Handie Talkie. 100 156 MC . Prices on request.


1-100 a portable test set for automatic radio compasses Has tollowing features: Test anomatic looy control circuit, Test
lood motor and drwe mochan sm, calibralood motor and driwe machan,sm, calibra-
tion of compass deviation correction. Tust and measurement ondiocuracy sersm mint-
 Orders promptly tilled Prices fob and subjet to change $\$ 59.50$ Orders promptly tilled. Prices fob $L$
$25 \%$ deposit. Minimum order $\$ 500$ quotations given immediate attention

$\mathrm{BC}-1000$ l'ortable battery overated fred.
mod. transmitter and receiver. Used for nod, thansmitter and receiver. Used for voice tranmissint


LAVOIE 105 SM A compact, scif contained, battery powered precision fren
meter prowiding wich and accurate read metel prownug requen ines with at minimum of operating controls Acenracy is. is of 10
and maintaned because of rugged construction. precision barts and fits. The
tuning of the resonator is done by varying the capacity in a totally enclosed high "Q ${ }^{\prime}$ " tuned circuit. The dial ssstem is divided
into 5000 equal divisions. latio is 50 disisions on dial to one turn $360^{\circ}$. This
mitit provides cont mums fruchency cover-

 modulation switch, tuning mechamism
calibration chart. Brand new with 100 k \& calibsation chart. Brand new with book $\&$
probe.

## 

RT-34/APG-5 A 2710 megarycle xmitter



 30. Comes in herneticaly sualed armin in ou \$1:00 1.... Supply and wavemeter


C-I GYRU Yart of ©-1 :utb pitot and can be used to condurt many experiments.

DC input or ras be nerate for short | periods on 110 V At. Will zun 5 ininutes |
| :--- |
| after actuating. $\$ 6.95$ |









JB-70 Junction box cumtains start and stop switch components o phone and speaker
 or inter-connection of receiver $1 \mathrm{BC}-312$ and
342 . transmitter 1 BC (i10, speech ampl BC 342. transmitter lse 6ill, speech amme
614 and speaker LS- spare storage vattery



TS-16 A portable self confaned unit to of altimeter equip. Price on rofuest.


BC-939 Couple's outpat of transmitter to fartint coif continsously bariable, coupling


Write for new catalog. Foreign inquiries invited


BC-605 Interphone Amplifier lasily converted to an ideal intercommunication set for once - home - or factory Original-New $\$ 4.95$ Like New With Schematic) See A
data


## BEAM INDICATORS

## "Rransmiter" Selsvn for aboye

 I $81-3$ "$\qquad$ oth for 2.45 New 3.45
$\begin{array}{cc}\text { oth for } & \mathbf{5 . 2 5} \\ \text { Used } \\ \mathbf{2 . 4 5}\end{array}$

## T85/APTS UHF TRANSMITTER

operating over a frequency range of 30 n to 1400 MCPC with a nominal output of $110 \mathrm{~V} \quad 60$ CPS flament iransformer blower; lecher wire test frequency sel and 8 tubes-1-931A; 2-6AC7; 2-6AG7
$1-6 L 6 G ; 2-829 B ; 1-3 C 2$ (GL522) tor). New in original hox with Operat- $\$ 69.50$
ing Instruction Manual.......

BC 620
Receiver-Transmitter-2 crystal channels -
Plate and Filament......... New $\$ 1.95$
Used 9.95
P' 9 \% Power Supply for above 6-12 volt vi brator type.

Used less tubes
FT 250 Mount for 2.95
New S1 50

## BC 223

Brand new Transmitter with all three tuning carrying case tung unit cases. spare tube less tubes at new low price of....... $\$ 19.95$ uning units are

## Cases at

Cases at .............................................
PE-125-12-volt Vibrator Pack...New \$12.95 Spare parts kit for PE 125 containing 2 tubes. with handle and clasp (BX 41). New \$2.95 RECFIVEIR-Easily Converted for Use in Citizens Band Crystal Controlled Local Os-
cillator. Broad Band pass- 20.7
MC
l F . Complete with 7-6AJ5, 1-12SR7, 2-12S×7, nished........................................ $\mathbf{\$ 7 . 9 5}$


Model 15-Ground ladar training unit com515 MC transmitter; power supply. and pulse generator. Trains operator to detect land air or sea targets and can be adapted to various receiver-inclicator sets operating at 515
MC. New, with instruction manual. . $\$ 225.00$

HEADSETS_MIKES
HS-23 Hi Imp. Headsets HS-30 Hi Imp. Headsets
-21 Carbon Mike
-21 Hi lmp. Carbon Mike

- 45 (or Navy) Lip Mike
or Headse
Send for free 8 -page, illustrated BULLETIN \#103
listing many exceptional values


## ARROW SADDS, Inc.

1712-14 S. Mithigan Ave., Chicrigo 16, IIL PHONE: HArrison 7-9374

All neressary parts and instructions to
convert the above to Ar operation with $\$ 9.2$ additional.


## BC-604 Transmitter FM 20-28 MC

$$
11 \text { and } 15 \text { meters. (an be operated on } 10 \text { mete }
$$

$$
\text { - } 10 \text { channel push buttonerated on } 10 \text { meter }
$$

$$
\begin{aligned}
& \text { Exbes and meler but less dynamotor: } \$ \mathbf{1 2 . 9 5} \\
& \text { Excention }
\end{aligned}
$$

| Crystals-Set of 80 <br> BC-603-Companion receiver to alove with <br> tubes but less dynamotor. Used \$17.50 |
| :---: |
|  |  |
|  |  |

COMMAND (SCR 274 N) EQUIPMENT

| C-453 | $\$ 12.95$ |  |
| :---: | :---: | :---: |
| 13C-454 | 4.95 | \$6.95 |
| BC- 455 | 7.95 |  |
| BC-456 | 1.9\% | 2.9 |
| BC-457 | 5.95 |  |
| BC-458 | 5.95 |  |
| BC-696 (or T19) | 14.95 | 4.95 |
| BC- $450-3$ Receiver Remote Control | . 89 | 1.95 |
| BC-442 |  | 2.95 |
| 3 Receiver Rack | 1.95 |  |
| - Transmitter Rack | 1.50 |  |
| Complete Command set as removed from air craft - 3 receivers - 2 transmitters - Relay |  |  |
| unit-control boxes-mounting racks-plugs -modulator and dynamotors- |  |  |
| crated. . . . . . . . . . . . |  | 4.50 |

## DYNAMOTORS

DM-28-For BC-348 with Mount and


## TEN TUBE SUPERHET RECEIVER

With crystal controlted local oscillato Has proyisions for six crystal channels be tween 108 to 112 MCPS complete with tubes and crystals but less dynamotor New \$7.95

Less Tubes and dynamotor but new $\mathbf{3 . 9 5}$

## HERMETICALLY SEALED CHOKES

10H. 100 M.A.... $59 \mathrm{c} \quad 3.7 \mathrm{H} .145$ M.A.... 59 c 59 1I. 100 M. A. . . $95 \mathrm{c} \quad 10 \mathrm{H} .20 \mathrm{M} . \mathrm{A} . . . .39 \mathrm{c}$ .5x.5x1x1 11 - 4 winding layer wound.
.5 H at 3.56 A 140 ohms

## CONDENSERS

mfd. 4000 VDC. OlL FILIED
9.95
mfd. $6000{ }^{\top} \mathrm{DC}$. OIL FLLLED \& for 10.00 25 mld .15000 YDC. OIL FIE.LND ....... 4.95 00025 mfd .25000 VDC . CIL FITARD .... 2.95 4 mLd .1500 VDC. OIL FILLIED.... 29 . mfd .600 VDC. OIL FILLED......... 2.39 1 mfd .600 VDC. OIL FII.LED . . . . . 5 for 1.04 1x. 1x.1-1200 VDC. OIL FILIJED $50 \mathrm{mmfd}-5 \mathrm{KV}-5$ Amp. Vacuum Cond... $\begin{aligned} 2 \text { for } & 1.19\end{aligned}$

All shipments FOB Chicago. $20 \%$ Deposit required on all orders. Minimum order accepted - $\$$.0. 0 . Illinois residents please add regular

New $\$ 2.95$
New 2.95
1 If at 1.56 A 320 ohms New so.40 les tax to your remittance.

## WANTED

## RESISTORS 

 POTENTIOMETERS single J-dual JJ-triple JJJ made by
## ALLEN BRADLEY CO.

 any wattage
## any ohmage

any tolerance

## WE PAY HIGHEST PRICES

Resistors Other Makes Are Acceptable Too:

# Legri S co., inc. <br> 130 West 102 St., New York, N. Y. Phone: AC ademy 2-0018 

## WANTED

INSULATORS; POLE LINE HARDWARE: GUY STRAND WIRE: COPPERWELD WIRE: WESTERN ELECTRIC TOOLS; SPLICING SLEEVES.

VICTOR-BERNARD INDUSTRIES NE Cor. 22nd \& Lehigh Aves., Phila. 32, Pa.

## WANTED TO BUY

private laboratory wishes To Purchase For Its Own Use High Grade Test Equipment and Basic Radio Components. Replies Held In Confidence.


## Highest Prices Paid

for manufacturers' over-runs and closeouts of electronic parts.

RAMD RADIO CORPORATION 84 Courtlandt Street New York 7, New York Telephone: Co 7-7368

## WANTED <br> RADIO TRANSMITTERS

1 to 3 KW
2 to 16 Mc
Also, modulators and rectifiers for same.

Reply:
W-6618, Flectronics
330 W. 42 nd St., New York 18, N. Y.

## WANTED

Teletypewriters complete, components or parts. Any quantity and condition.

W-6654, Electronics
330 West 42 nd Street, New York 18, N. Y.

## wanted

WESTERN ELECTRIC VACUUM TUBES Types 101F, 102F, 272A, 274A or B, 310A or $B, 311 A, 313 C, 323 A, 328 A, 329 A, 348 A$, Ballast Lamps.
330 W. 42 nd St, New York 18, N. Y.

## TEST EANTED

slate asking price, age and condition in first letter.

330 W .42 nd St., New York 18, N. Y.


## WANTED TO BUY

Large and small quantities of new or used electronic government or manufacturers' surplus tubes and equipment. Highest prices paid. State quantity, condition and best price in first letter.

330 W. 42 nd St., New York 18, N. Y.


Schools
Studios
Experimenters

## TELEVISION CAMERA

Just arrived! Fills a raft of vital TV uses. 350-lines resolution. Easily converted to present R.M.A. standards. Circuits available with cameras. Complete like new.


## 1100-A

FOUR TRANSMITTERS IN ONE
Can be present on 4 bar.ds. Has BFO or extal on each from 1.5 to 10 mcs . Oscillators are all between 1.5 and 5 mcs. 6L6 osc. VR-150 egulator, buffer or doubler is a 6L6 into $3-807$ 's in parallel. 125 watts on phone and 125 watts on cw, modulator has 4 .6L6's in push-pull parallel. Rig has telephone dial on front for selecting any one of 4 transmitters, selecting phone, CW, turning heat. ers on, plate current, or turning everything off. Also has remote control $\mathbf{\$ 2 2 5 0 0}$ but in excellent condition With Remote
SCR-528 FM RECEIVER \& XMTR: Complete with 80 xtals for operation in the $20-27.9$ mes. Powered by operation in the 20-27.9 tals. dynamotors, rack, mike with crysmast base and section. Used but excel. cond.

APS-6 RADAR: Complete. Excellent Condition.


APS 4 RADAR: Complete. Excellent condition.
APS-4 COMPONENTS: Indicators, control boxes, junction boxes, $800-1 \mathrm{C}$ inverters, amplifier boxes, cords and plugs.


VARIAC TRANSTAT AMERTRAN Input 0-115 V., $50-60$ cycle; ouiput 115 V 100 amps. 11.5 Kva, Excellent $\$ 75^{00}$

## COLUMBIA ELECTRONICS Ltd.

524 S. San Pedro St., Los Angeles 13, Cal. Cable Address: COLELECT
$25 \%$ deposit with order. Balance C.o.D. All items subject to prior sale.

## TEST EQUIPMENT



X BAND SPECTRUM ANALYZER $8500-9000 \mathrm{Mc}$ calibrated linear helow cut-oif attenuator, calibrated frequency meter, tuned mixer, 4 i.f.
stages, 3 rideo stages overall gain 125 db., reglastakes, 3 rideo stage
S BAND SPECTRUM ANALYZER 2700-3900 Mc. similar to above.
The above Spectrum Analyzer also available with $S$ and $X$ band tuning units.
K BAND TEST LOAD
. $\$ 20.00$
$X$ BAND POWER. Frequency and SWR Mpasur ing Equipment complete with R.F. source,
X BAND BELOW CUT-OFF WAVE GUIDE ATTENUATOR, with calibrated dial, type N input
 APR-I or APR. 4 RADAR SEARCH RECEIVER, 30 me I.F., 2 me wide
TUNING UNITS FOR APR-I or APR-4 RECEIVERS (can he used with any 30 me amplifler)
TN-19. range $1000-2000 \mathrm{mc}$, turned miner carity
$\$ 150.00$
$1 \times 5-54$. range $2000-4000 \mathrm{mc}$, tuned mixer carity
$\$ 150.00$
30 MC I. F. STRIP AND 110 VOLT 60 cDs POWER SUPPIY, banduidfls in mc, complefe, nesw $\$ 65{ }^{\prime \prime *}$ S-45A/APM-3 SIGNAL GENERATOR 1200 - 060 mc. $110 \mathrm{~V}, 60-800 \mathrm{cds}$

TS. 155A/UP S BAND SIGNAL GENERATOR malsed, calibrated outhut, 110 V, G0 es.. NEW TS-56/AP SLOTTED LINE, slot length $16^{\prime \prime}$, \$robe and meter,
TS-35/AP $X$ BAND SIGNAL GENERATOR Pulsed, calibrated Dower meter. frequency meter, $8700-9500 \mathrm{mc}$
TS-13/AP $X$ BAND SIGNAL GENERATOR, pulsed, calibrated output, $110 \mathrm{~V}, 60$ eveles
$X$ BAND VSWR TEST SET TS $12 / A P$.
with linear amplifier, direct rating $V$ SWR meter sloted wavemide with gear driven travelin probe matched termination and varions adapters. with carrying case, NEW. UNY'IS I AND II are S BAND SIGNAL S BAND SIGNAL GENERATOR CAVITY WITH CUT-OFF ATTENUATOR, $2: 00-2950 \mathrm{mc}, 2 \mathrm{CH}$ HIGH PASS FILTER F 1000 mc and helow F-29/SPR-2, cuts off a me . UPN-I S BAND BEACON RECEIVER-TRANS MITTER ……................ S BAND TEST LOAD TPS-55P/BT, 50 ohms $\$ 8.00$ X BAND TEST LOAD, 50 WATTS ........ $\$ 35.00$ 250 WATT X BAND TEST LOAD, VSWR less tha 1.15 berreen a and 10 KMC.............. . $\$ 150.00$

LAF-1 SIGNAL GENERATOR, $100-600$ me, CW condition, modulation, calibrated outpus, good

GENERAL RADIO PRECISION WAVEMETER curacy $72+A$. range 16 ke to 50 me, $0.25 \%$ arcurack. V.T.V.M. resonance inclimator, commlete GENERAL RADIO SIGMAL GENERATOR good workifg order... GENERATOR 605-B GENERAL RADIO VACUUM TUBE BRIDGE Model 561 D FEERAL RADIO 605.CS. 9 ke to 50 me SIGNAT HEWLETT.PACKARD AUDIO SIGNAL GENER.


TBN-3EV THERMISTOR BRIDGE $S$ BAND THERMISTOR BRIDGE CU-60 ABU, FERRIS MODEL 22A SIGNAL GENERATOR, 85 ke to 25 me. Output. 2 microvolts to 1 volt, FERRIS MODEL 10B SIGNAL GENERATOR, 85 fic to 25 mc , calibrated output, good working STANDARD SIGNAL GENERATOR MEASURE MENTS 65 SIGNAL GENERATOR MEASURE MENTS 65 B . 100 hic to 30 me . $1-2,000.000$ iniero-
rolts, good working order........... $\$ 40 \mathrm{n} .00$


S BAND CRYSTAL MIXER (illustrated), Vari S BAND Mscillator Injection ..................... $\$ 12.5$ thye N connector for the R,F, and local osell lator infut, U.II.F., connector for the I.F. out FIXED variable oscillator injection.......... $\$ 30.00$ FIXED ATTENUATOR PADS, $20 \mathrm{db}+0-2 \mathrm{db}$,
DC $1200 \mathrm{mc}, 50$ ohms, VSWP 1.3 or less, 2 watts WAVEGUIDE BELOW CUT.OFF ATTENUATOR type N connectors, rack and pinion drive, atter uation variable 120 decibels, calibrated 20-120 (d), frequency range $300-2000$ me...... $\$ 32.00$ WAVEGUIDE BELOW CUT-OFF ATTENUATOR, similar to above except upver frequency limit is WAVEGUIDE BELOW CUTOFF ATTENUATOR, same as above except input is matched in range PULSE INPUT TRANSFORMER, Dermalio 50 to 4000 ke impectance ratio 120 to 2350 तhms PULSE TRANSFORMER, 132-AWF. $\$ 3.00$ PULSE TRANSFORMER' GE 68G, 828G-1 TS-IO/AP CALIBRATED DELAY FOR APN.
TS-203/AP CALIBRATED SELSYN...... $\$ 10.00$ UG-27/U TYPE N RIGHT ANGLE ADAPTERS $10^{\prime}$ for $\$ 5.00: 1000$ for $\$ 250.00$ SD-3 SHIPBOARD RADAR, New and complete with lest eatmment.................. $\$ 1050.00$ SQ RADAR, used but in food working order, com-
plete with antenna, control unit........ $\$ 650.00$ SN RADAR SN RADAR, used, good working order, comHYPERSIL CORE CHOKE, 1 Henry, Westing house Ic-422031 or L-t22032, 20 kv .92. second, 50 ohms, 800 म.p.s. .............. \$40.00

Red Bank, N. J.

## BRAND NEW Us, ofovit. GUARANTEED

(h)
 Sperlfy whether shatt required
in for knob or screwdriver type. (Discount to Quantity Users.)

## SELECTOR SWITCHES




LARGE VARIETY AVAILABLE AT GREAT SAVINGS Send your specs and let us quote BIRTCHER TUBE CLAMPS



BATHTUBS


TYPE "J" POTENTIOMETERS

"UHF" Coax Cable CONNECTORS Coax Cable

## Select SURPLUS <br> ELECTRONIC Equipment



## AIRCRAFT

## RADIO TRANSMITTERS

## Type BC-375-E

100 watt output. Frequency range $200-500$ and $1500-12 \mathrm{kc}$., complete, new, with all tuning units, dynamotor, tubes, plugs, etc.
Byand new in original packing. Not removed from aircraft. Orig $\$ 97.50$ inal cost $\$ 1800$.

Navy Model TDE Radio Transmitters Frequency range 300 to $18,000 \mathrm{kc}$.125 watt Erequency output on C. W., 25 watts on phone, for operaoutput on 230 volts D.C. power supply, complete with tubes and ready for operation.
Our information indicates that these units cost Our information indicates. We $\$ 9 \% 100$
the U. S. Navy $\$ 8,000$ ea. 00 fraction of the original price.

BD-72 Field Telephone Switchboards
These sets are sold individually packed in strong, steel-strapped, wooden $\$ 97.50$ up and operate.

## Radiomarine Corporation

Telegraph Transmitter Model ET-8023 D1 Power output 200 watts master-oscillator or crystal controlled in operation. Frequency range 2,000 to $24,000 \mathrm{kc}$, in nine overlapping bands. New, in original export packing. Complete with tubes and typewriter Does not include motor gener
s375.00 ator power supply

## Generating Plants Type PE-197, 5 KW

 Gasoline-engine driven. 120 volts, 60 cycles $A C$ manufactured by Hobart with Hercules 4-cyl inder engine, water cooled, matic starting
## Nayy Model TCS Transmitters-Receivers

 Covering 1.5 to 12 mes. Output 25 watts. Complete with remote control, power supply, an tenna tuning unit' cablis AC and 12 or 24 vol aperation for special leaflet and pricesALL ITEMS ARE OFFERED F.O.B. OUR WARE MUSE AND ARE SUBJECT TO PRIOR SALE IL ITETCS ARE NEW UNUSED SURPLUS UN
 LESS OTHERWISE INDICATED. ASK FOR COM PLETE LISTING ON OTHER DESIRABLE EQUIPMENT. SEPARATE TECHNICAL BULLETINS ON ALL EQUIPMENT AVAILABLE UPON REQUEST.

FRENCH-VAN BREEMS, Inc.
405 Lexington Avenue, New York 17, N. Y.

## ATTENTION FOREIGN BUYERS

## WE HAVE RC52F TRANSMITTERS

completely rebuilt and guaranteed, priced at $\$ 1250.00$. This fine unit is suit able for international CW and phone transmissions, airport traffic control and general commercial use.
WESTON LABORATORIES WESTON 93, MASS.

## R.C.A. Electronic Counters FOR SALE

Two type WF98A and WF99A Complete with all accessories
Springfield Machinery Exchange 20 Belle St.
D.C. MICROAMMETERS
$0-200$ ua $3^{3}$ sq. G.E. DO 50
88.00 $0-100$ ua $3^{\prime \prime}$ sq. G.E. DO 50
R.F. MILLIAMMETERS
 12.00

PORTABLE INSTRUMENTS
single or multi-range
D.C. Microammeters, from 5 ua fulleale Thermo-couple Millammeters,

Precision Electrical Instrument Co. 146 Grand Street New York 13, N. Y.

## For manufacturing radio tubes, electronic used. guaranteed. <br> AMERICAN ELECTRICAL SALES CO. 67 E. 8th St. <br> ELECTRONIC TUBE-MAKING MACHINERY

## N(DTCCEIE YOU OIPEIRATE ANA

 WESTERN ELECTIIC THANSVITTERWe have SPARE METERS from the discontinued Western Electric Transmitter program. If you own or operate any of these units and need spare meters, now is your chance to stock up on them, at only a small fraction of replacement costs. These are scarce items and you won't have another opportunity like it! ACT NOW! LIMITED QUANTITIES! STOCK UP! All units are $71 / 2^{\prime \prime}$ Round, Surface mounting Switchboard Meters, with Black seales.
GENERAL ELECTRIC METERS DC \& RF model DR-2, AC modeI AR-2

ald items arle brand new-surplus-guarANTLED. All materials shipped from stock same day as order received, subject to prior sale.

## MARITIME SWITCHBOARD

 338 Canal St., N. Y. 13, N. Y. Worth 4-8217Orders accepted from rated concerns, public institutions and agencies on open account, others please send $25 \%$ deposit, balance C.O.D or check with order. All prices FOB our warehouse, N.Y.C.



WHIP ANTENNA EQUIPMENT:

 MAST SECTIONS FOR ABOVE BASES: Tubular steel, copper coated, panated, 3 foot sections.
serew-in type. MS 53 can be used to make.
 SECTION BAG BG-56 for carrying 5 masi sections.....50c ea METERS:
 $0-5$ Amp. AC $\mathrm{S}^{\prime \prime}$ Rd. $0-100$ A. Scale
 2.95
3.95
3.95
2.95 METER SWITCH-Pattery Batancing Switch used battery to another Contains Weston $2^{\prime \prime}$ Melem one to
15 De Volts, switeh DPIJT 20 and


## Falr radio sales

132 SOUTH MAIN ST.

## SPECIAL METER BUY!!!

Genuine Weston 506 Movements, New ( $2^{\prime \prime}$ Bolly)
Range 0-1.2 MA with 0-100 Degree Limear White on Black Calibration: Use as Multimeter, Grid Dip Meter. Field Strength Indicator or for Any General Application Re uiring I MA Movement.
Pi'ce- $2.95 \mathrm{~F} .0 . \mathrm{B}$. THE OVFRBROOK COMPAN OVERBROOK 81. MASS.

LIMA, OHIO
DYNAMOTORS:

| Input | t | Stock | Price |
| :---: | :---: | :---: | :---: |
|  | 450 V. 60 MA | DM-9450 |  |
| @ 6 V , DC | 275 V. 50 MA | w/ Blower | \$3.95 |
| 12/24 V. DC | 440 V .200 MA . |  | 3.9. |
|  | 220 V .100 MA . | D- | . 95 |
| 12 v . DC | 330 V .150 MA . | 13D-87 | 5.95 | PERMANENT MAGNET FIELD DYNAMOTORS: $\begin{array}{lllllll}12 \text { or } 24 \mathrm{~V} . \mathrm{DC} & 275 \mathrm{~V} .110 \mathrm{MA} . & \mathrm{USA} / 0516 & \mathbf{3 . 9 5} \\ 12 \text { or } 2.4 \mathrm{~V} & \mathrm{DC} & 500 \mathrm{~V} . & 50 \mathrm{MA} . & \mathrm{USA} / 0515 & \mathbf{2 . 9 5}\end{array}$ (a) 6 V DC 210 V . 50 MA

PM FIELD DYNOMOTOR POWER SUPPLY-COM pletely filtered. Has two PM Dynamotors as listed
directly above.................................. $\$ 5.00$ WRITE TODAY FOR QUOTATION ON OTHER DYNAMOTOR OR INVERTER NEEDS!


GEARED MOTOR
Ideal reversible motor for rotating antennas, displays, etc. (Similar Overall size: $i^{\prime \prime}$ (ong, less shaft
 $1 / 2 /$ threaded. Operates irom 24
rolt DC, 219 A., 9 RRM or 36 volt AC at ${ }^{5}$ lins. torque ver inch
Price
36 Volt Transtormer........... $\$ 5.95$
$\$ 2.95$ RHEOSTAT to conrol speed
30 ohm. 50 Watts GENERATOR-12 Volt 100 Amp , Mfg. by Emerson
 Addres De $\$ 12.9$ Lima, O. - 25\% Deposit on C.O.D. Orders

## AVAILABLE <br> Western Electric 400 D Crystals <br> $\$ .35$ each-3 for $\$ 1.00$ <br> HATRY \& YOUNG <br> 42-44 Cornhill St. Boston 10, Mass.

Lafayette $3-2546$

## NICHROME WIRE

D-H. Enameled. 004 and $005 ; 43+$ and $25+$ ohms per ft. On original spools. New and clean. Ap-

GLASS FLEXOHM RESISTOR 475 Ohmls. 25 Watts $60^{\prime \prime}$ long. New; Color
coded 3 for 1.00 ANTENNA STRAIN INSULATORS Jhan. Type \#107 Grazed rorcelain long.

SIGNAL GENERATORS (AM) Monarch Model \#14. Spot frequency. 11 preset frequencies between $100 \mathrm{K.C}$. and 32 M.C. 400 Cyc a popular generator with many set manufacturWhile They Last! .......... $\$ 17.50$ (Express unly)

MULTIVIBRATOR
Model \#20. Companion unit to Model \#14 Signal Generator. Very good condition with tubes. While
They Last! $\$ 17.50$ (Express Only) TELEPHONE OPERATORS CHEST SET Type W.E. 396A with speaking spout, single head phone and double plug. New original packing.

ANTENNA LOADING UNIT
13C-306. For use with BC-375 Transmitter, Range $200 \mathrm{~K} . \mathrm{C}$. to $500 \mathrm{~K} . \mathrm{C}$. Velvet Vernier Dials. In They Lastl (Express Only)

TUBES (Special)
WL-531 50 K.V. Vacuum. Rectifier (IIW) New Altimeter Scale. Center Anode. New. 986
 3132420 KV V. M.W. Vacuum Rectifier. New. 959 1632 12.6 V. Filament, 6L6.
163425 Vilament, 6SNT. $164+12.6$ V. Filament, Twin Pentode Class SPECIAL
variable condensers
Made by leading manutacturers. Quantities limited. All Ceramic Insulated. New. (See your Local Jobber's catalog for dime

## BUTTERFLY TYPES

Kinimum to Mamixum. Cad. in $90^{\circ}$ rotation. (. 03 soacing with shant lock nut)


SPLIT STATOR TYPES
(C) ER- $50-$-AD. Per sec. Min. $: 5.3$ mmf., Max: $: 50$
 (if) MFAD. (Opposed liotors).............. 11.95

## SINGLE UNITS

C) ZR-100 AS. Screwdriver shaft with lock nut. $144^{\prime \prime}$ hub on end for ganging) Min.: 5.7 mmf . (j) Double bearing. Screvdriver shaft with lock


807 PLATE TUNING ASSEMBLY Consists of a Cardwell 150 mmf . Condenser, Ceramic Beaded Plate Lead, R.F.C. and 002 mifd.
2500 V Vlocking Condenser. (.07 spacing) With
Shaft lock and mounting hardare. New .... $\$ 1.95$

5 GANG, INSULATED ROTORS 15 to 400 mmf . per section. Ceramio shaft isolates Each section shielded. Split end plates. Size:


## MAIN TUNING GANG-_SX-28A

7 section. Ceramic insulation. Fxact replacement.

## PRECISION GANG AND

 DIAL ASSEMBLYAs used in BC-223 Transmitter 3 section, 175: 200 and 250 mmf . Ifigh ratio loaded kear drum dial drive. No slip or back lash. Ideal for test or
measuring equipment. New ................ $\$ 2.75$

## NEON BULBS

G.E. Type NE-48. $1 / 4^{\prime \prime} \mathrm{W}$. Bayonet Base.

UUANTITIES Livitid I Packing Charge of $\$ 1.45$ on Orders Below $\% 2.00$. Minimum Deposit $25 \%$ on C.O.D. Orders. Prices I. 0.1 . Chicago. No Foreign Orders Relow $\$ 50.00$.

## UNITED SURPLUS MATERIALS

312 SOUTH HALSTED ST.

CHICAGO 6, ILLINOIS

## ALVARADIO BARGAINS!

I-100 TEST SET
Contains BC-713A and BC-714A. For ARNZ or buy at this low price. .................. $\$ 595.00$
BC-929 INDICATOR SCOPE
Indicator for APS-2. Can also be used as overmoduation contains 8 tubes: $1-3131 \% 12-6 \mathrm{SNF}^{2}$

$96 Q 1$ AUTOTUNE ASSEMBLY
Complete with notor and frame as used in ARC-1
transmitter. Good used condition. TRANSFORMER BARGAIN 2.5 Volt ct. 10 Amp. Heavy Duts.

WESTON MODEL 426 AC VOLTMETER $0-130$ volts $A C .3^{\prime \prime}$. Bakelite case. Boxed, brand
new. DEJUR DC MILLIAMMETER 0-1000 MA. ${ }^{3 \prime}$ I lrand new. loxed

BC-733D RECEIVER
Ten tulse superhet with crystal controlted local oscillator. Provision for six ersstal channels beween 108-112 Mc. Complete with tubes ${ }^{\text {and }}$
Qrystals, less dynumotor. Tsed. ........ $\$ 4.95$ R89/ARN-5 RECEIVER
Glide path receirer Broad baand pass. Crystal controlled local osecilator, 20.7 Me Mre. Complete
 BC-375 TRANSMITTER 150 Watts Prione or CW. 2 -211 tukes in final. Complete with all tules and one tuning mmint

AN/CRT PORTABLE RESCUE UNIT Portable SOS sea-rescue unit. Approved. $\$ 50.00$ ORDER DIRECT FROM THIS AD Cash with order. $25 \%$ deposit on all COD arders. All orders shipyed by truck or railway express collect.
Prices subject to change. All merchumise subject
ALVARADIO SUPPLY CO.
Dept. L-4, 341 S. Vermont Los Angeles 5, Calif. DUnkirk 8-2211

## SURPLUS EQUIPMENT

Eicore D-401 Cont. Duty Dynamotor 12 V at 9.9 Amp . 440 V at 200 Ma .
P E. 125 AX Vibrated Power Supoly 2 VV at
14 Amp . or 24 V at $71 / 2 \mathrm{Amp}$. 500 V at
 G.E. \#7460330.G4 interlock switch V at 120 oAPI Test set." New
OAP 18 Cest set. Now.
AB - 58 C , Mast 50 (with manual) $) ~$ GR 50 A Wave Meter, New
SCR-522. Good Condition.. Technical Manuals SCR 522 APR-4 Receivers 38.4000 mc . Good Condition RCA model AVA 10 D Crystal 3105 Kc . In factory sealed adj. holder. New
adj. holder New. Now...
Ahove Holder only.
SCR 522 Cable Plugs. New.
BG +128 Oscilloscope. Good Condition
TS.34AP Oscilloscope with accessories and BC $\quad 222$ Transmitter-Receiver. Goail conBC ${ }^{\text {dition }} 1267$ A ransmitter-Receiver 154-186 RAC $105 A$ Power Supply iovi 60 CYY.704.50
69.50

BC 312 Receivers (Patly $\begin{array}{ll}29.50 \\ 29.50\end{array}$ major parts supplied, including eabinets. Complete except resistors and a few conSR 90A Frequency Meter I-60 MC Collins TCS $12 V$ (Complete except Power $80+-\mathrm{C}-\mathrm{S}$ Signal Generator. Good working Measurements Model 78B. Good werking - 14 -

Electronics Lativer. Model 2669 combination AN \& 12 V Vibrator Power Supply.
AN 104A VHF Antenna. New. $30-40$ MC FM Transmitter Mi 783 Complote less Mike. New.............. AC 60 CY
A
Sprague 15 KV .5 m icrosecond Pulse network Good Warking order. Complete Station Link 25
$30-40$
FMTR Mobile Transmitter Receiver
(Good working order. Complete) . .................................... 225 Jefferson Travis Morlel 102 Marine Radio
telenhone 12 V Dynamotor operation. New 195.00

## JOE'S RADIO SHOP

67 S. Pearl St. Bridgeton, N. J.

## GIANT VALUES



HAYDON synchronous motor- 110 Volt $1 / 2$ RPM Brand new $\$ 1.47$ each
Electrolytic Condensers American Condenser Co. NEW Black Bakelite Screw Type 40 mfd 600 v.p. $79 \phi$
Vacuum Capacitors GL-1-L24 100 mmfd 20000 จ. $\$ 4.95$
VC 5050 mmfd 30000 V.P. $\$ 3.95$
VC 2525 mmid 30000 V.P. $\$ 3.95$
Transmitting Micas Type H JAN Sangamo .01 mfd 1200 W.V. 35 ¢ each
Transmitting Micas Type 4.01 mid .600 v. Aerovox 145520 each

Oil Condensers 8 mid .600 v . DC made by Capacitron $65 \$$
Oil Condensers JAN 4mid 600v 58 Oil Condensers 8 mid 660 v A.C. $\$ 3.95$
Daven Attentuator Type TA 1000-2 At tentuation 2DB 7500/3900 Ohm $\$ 3.95$
Weston Elapsed Times Hour Meters Model 691 Type 2 9999-9 115v 60 ¢ \$10.45
H.V. Micas Sangamo Type G3B . 011 mfd. 25000 v. $\$ 12.95$
H.V. Micas Spraque 500 mmid 10000 v . \$5.95
Diodes Crystals Sylvania JAN 1N21B $\$ 1.00$
Germanium Diodes 1N34 $\$ 0.69$
UG Connectors

| UG 9/U | \$ 0.75 |
| :---: | :---: |
| UG 36/U | 10.00 |
| UG $234 / \mathrm{U}$ | 10.00 |
| UG $250 /$ U | 10.00 |
| UG $59 \mathrm{~A} / \mathrm{U}$ | 1.45 |

Turner Microphones Type 9DHI NEW $\$ 8.75$
Tubes in original boxes Nationally Advertised Brands

| 26 | 40¢ | 721 | \$2.95 |
| :---: | :---: | :---: | :---: |
| 56 | 52d | 575A | \$11.95 |
| 27 | $40 ¢$ | CRP-72 | \$1.25 |
| 6X5 GT | 48 ¢ | WL 872-A | \$2.25 |
| 24A | 46 d | 3 B 24 | \$1.45 |
| 12Q7 | 46 | 4B31 | \$10.45 |
| 75 | 50¢ | 1B51 | \$9.75 |
| 654 | \$4.50 | FG 104 | \$12.75 |
| 2050 | 994 | FG 105 | \$9.85 |
| 4 C 35 | \$16.75 | WE 726 A |  |

NO RISK TO YOU
ALL MATERIAL OFFERED BRAND NEW: only a partial list

> LEONARD GREENE
> 360 Tremont St., Boston, Mass. Phone: HAncock 6-4794

## ETVI 380 BANIST FOREVER - D DAYS! NIGHIS! <br> VARIABLE ELECTRIC (PATENTED FILTER) FOR COOL-CLEAN AIR WINTER \& SUMMER

## IBIRND NEDV!



No Dirt-No Dreft-No Noise Continuous Variable Control | Dlug in Like a Radio-No Installation Required |  |
| :--- | :--- |
| DELIVERS 695 | C. F. M) CUBIC | feet per minute in free alr

PERFECT VENTILA-
TION Air filtration TION. Air filtration is assured by use of PATENTED FILTER for DIRT, and POLLEN from outdoors.
Ventilates your room Ventilates your cles room
with COOL, SUMMER or WINTER Enables you to SUBDUE outside NOISES by keeping windows closed and to get the amount of air you want, whether calm or stormy
Easily ADAPTED TO ANY WINDOW without cutting or marring; mounted flush with in: pleasing appearance.

## HOMES <br> OFFICES <br> SCHOOLS

## FACTORIES

Showrooms Cabinet is made
HEAVY STEEL with "BAKED ON" BRONZE HAMMERTONE FINISH. Will blend with a.l home, office, or factory surroundings.


## 220-230 V.A.C.

110 V.D.C.
220-250 V.D.C.
\$59.95
59.95
${ }_{\text {(Plus }} 10 \%$ U. S. Excise Tax)
TERMS: $20 \%$ Deposit, Balance C.O.D., F.O.B.
N. Y. C. Rated firms open a/c net 10 days References; Marine Midland Trust Co. of N. Y

## FREE Send foday for tull color Brochure and specification list.

## BUY NOW ! !

POWER SUPPLY KITS 24 to 28 VDC Filtered
Designed for continuous duty ground operation and bench testing of aircraft equipment, these kits provide a reliable means of obtaining a source of low ripple Full wave bridge Selenium Rectiflers insure instantaneous and efficient opera age is accomplished by transformer primary taps. Ripple is limited to within $2 \%$ of the average DC output by chokeinput filters.

| Kit | Amperes DC | Net Price |
| :--- | :---: | ---: |
| 242 | 2.0 | $\$ 16.39$ |
| 245 | 5.0 | 22.39 |
| 2410 | 10.0 | 47.44 |
| 2420 | 20.0 | $\mathbf{7 9 . 4 4}$ |

Write for descriptice bulletin No. $201^{\circ}$
DC POWER
 peres, untiltered
For wall or bencli mounting. Overall dimen. $9^{\prime \prime} \times 81 / \mathbf{N}^{\prime \prime} \times 81 / 2^{\prime \prime}$ high. Shpg wt. 30 lbs. Tested and guaranteed.... $\$ 36.00$
Filter Kit. $2 \%$ ripple.................. 6.65


DIEHL MOTOR
Fan duty, brushless In-
duction type (no TVI.
115 AD 60
115 VAC 60 cycles 46
watts 1800 RPM. Shaft earings-31/4" diam

RECTIFIER KIT NO. 612

## band 12 VDC at 10 Ampers 10

 current for operation of motors, dynaequipment. Employs full wave Selenium Rectifier and heavy-duty primary tapped transformer. The two output voltages can be used simultaneously and may be adjusted between 6.7-7.5 For 115 VAC 60 cycle input load. schematic diagram and in- $\$ 15.95$
structions. Shpg. wt., 12 bs. $\$ 15.95$


## HI-VOLTAGE!

8 or 16 KV Condenser. Oil .15 MFD- 8000 VDC each
section series for 075 be used in
Brand New..... $\$ 3.25 \mathrm{KV}$.
Lots of 6 Bin orig. box.... \$3.00

Minimum order $\$ 3.00$. No COD's ac-charges-collect, unless accompanied by additional $10 \%$ for parcel post and handling- $15 \%$ west of Rockies.
All prices subject to change without notice house and Delivery F.O.B. house. All merchandise subject to prior sale

WESTERN ELECTRIC
 Shpg. Wit. 15 lbs Quantity limited $\$ 13.95$

## VACUUM CAPACITORS <br> 

EDISON THERMO TIME DELAY RELAY Heater voltage 115 V . Norm. open SPST contacts, 15-30 sec. delay. Contact rating
 ube base.

98c ea.

## D-C PANEL METERS

Attractive, rugged and reasonably accuracy within vane solenoid type with -6 Amperes D-C $0-12$ Amperes D-C
$0-15$ Volts D-C $\mathbf{\$ 2 . 4 9}$ ea.

PILOT LIGHT ASSEMBLIES
 Prices on larger quantities on request

SILVER CERAMIC TRIMMERS $5-20 \mathrm{Mmfd}$ Zero Temp .......24c
$5-20 \mathrm{Mmfd}$ Neg. $300 . . . . .24 e$ $45-25 \mathrm{Mm}$ Neg. 300 . ${ }_{20-125 \mathrm{Mmfd}} \mathrm{Neg} .650$.

## SELENIUM RECTIFIERS

 FOR ALL APPLICATIONSWrite for our Catalog No. 719 which lists Selenium Rectifiers, associated transformers, condensers and filter chokes.


## HEADQUARTERS FOR RESISTORS

$1 / 212$ Watts

## LIFE ELECTRONIC SALES

91 Gold St.
DI 9-4154
N. Y. 7, N. Y.

METER MULTIPLIER
Westinghouse R5, 1 meg., w.w.. nonindluctive $1 / 6$ \% tol. $\$ .90$ earh. 10 for $\$ 7.50$ or 10 multipliers plus a Weston or
Westinghouse 3 , 1 ma. metel....................... $\$ 10.00$ RECTIFIER
 $\$ .60$ each, 10 for $\$ 5.00$, 100 for $\$ 40.00$.

## TUBES:

| $1 \mathrm{B2} 2$ | \$4.25 | 714AY | 3. |
| :---: | :---: | :---: | :---: |
| 1 N 21 | 40 | 71.5A | 7.50 |
| 1 N 23 | 50 | 715 B | 6.50 |
| 2 J 62 | 37.50 | 719A | 9.50 |
| 3B22 | 2.50 | 721 A | 2.75 |
| 50 TL | 9.50 | 722 A | 7.50 |
| 3164 | . 35 | 724 B | 2.50 |
| 388A | 2.75 | 725 A | 8.50 |
| 700 A | 9.75 | 730A | 10.50 |
| 701A | 3.50 | 846 | 47.50 |
| 702A | 2.75 | 872A | 1.75 |
| 703A | 2.75 | C53 | 7.75 |
| 704A | 1.00 | C6A | 8.25 |
| 706 BY | 12.50 | C6.J | 4.75 |
| 706 EY | 12.50 | FG81A |  |
| 707A | 12.50 | WE |  |
| 707 B | 7.00 | 203A |  |
| 708A | 2.75 | VT98 |  |
| 713A | . 75 | (Br.) | 12.50 |

SPECIAL: Rectigon, West inghouse Battery Charge \# $289414 / \mathrm{JAN} 4 \mathrm{~B} 28$. New, $\$ 5.00$.
Immersion heater, Westing house, how surface, 3 heat and 800 watt. $1114^{\prime \prime}$ male pile connection with calrod
 each, 2 for $\$ 10.00$.


VACUUM CAPACITOR: 50 mmfl 32,000 \% d-c. New. Orig.
$\$ 4.50$ each, 4 for $\$ 15.00$.

TRANSTAT, $115 / 220$ v. $50 / 60$ c.
 hitput, $\$ 43.00$ New. Sliginal packing $\$ 30.00$.

NEW RA-38 RECTIFIERS
$15 \mathrm{r} ., 60 \mathrm{cy} .1$ phise input, output $0-15.000$ d-c @ 500 ma . Write for detailed information


CIRCUIT BREAKERS Westinghouse Type "AB" De-ion, 'Thermal Trip Without En closure. 3 volf. 50 amp frame size. Specit 15 anp. 25 amp. or 50 amp rating. New $\$ 3.75$ each, 3 for $\$ 10.00$.


## HERE IT IS!

SIGNIL GENVIRATOK, $15-25$ MC \& $190-$ 2319 . 1 C . measurmments Co-mod. $88 \mathrm{~B}-00$ FKEQ. NTANDNRD, $10 \quad 40 \mathrm{MC}$, James Knight type Fis-544, excellent eondi-
tion SIGNAX GENERNTOR, 2-125 CPS, low frea. linear lime base generator. Dumont FREU FREL. METER, antert $3^{\text {mpeles }}$ fiush Mtg $90-140 \mathrm{~V}$, accuraty $1 / 3$ of $1 \%$. Electrodyna-
 T.Y SLT, iarge screen ( 19 " $\times 25^{\prime \prime}$ ) projec tion typer lavern ype cabinet, originally cost $\$ 1,800.00$ - reconditiuned - excellent 30 KV SUPPLI, reconditioned . . . . $\$ 15.00$ 500 WैATT ham Nmitter........... $\$ 225.00^{5}$ $150 W^{1}$ AT'T ham Smitter. . . . . . . . . $\$ 80.00$ 3 MFD-4000 ${ }^{\text {T }}$ oil Cond, new. ....... $\$ 3.95$ 72 OIIM LINE, for 1 kV perft....... . 144 CHYSTALS, 120 in box, 5675 KC to 8650 KC in 25 KC :tems. FT-243 13.C. $1335 \ldots \$ 4.00$ IU/GF COIL SHTS, receiver \& Nmittel゙

## SELENIUM RECTFIERS

Single phase full wave bridge type $\begin{array}{ll}0-18 \mathrm{~V} . ~ A . C . ~ i n . ~ & 0-36 \\ 0-14 \mathrm{~V} . \mathrm{D} . \mathrm{C} . \text { out. A.C. input }\end{array}$ 5 Amps.....s3.95 5 Amps..... $\$ 7.7 \%$ 10 Amps.... $\$ 7.75$ 10 Amps . . . . $\$ 14.00$ Full wave center tap, 30 Amp......\$14.50 Write for ow low prices on all other types; discounts on quantities.
CHOKE, 7 Amp; 03 Henry ....... $\$ 3.50$
ARC-5 KFCEIVLR, $3-1$ MC less dial $\mathcal{E}$
RLED PLASTIC TUIBING for \#20 wire. 1500 Ft spool.
$\$ 1.15$
TRANSFORMERS
$230 / 450 \mathrm{~V} . .750 \mathrm{KVA}$ also good for 110 V
 $5 \mathrm{~V}-115 \mathrm{AM1}, 115 \mathrm{~V}$. PRT. new..... $\$ 11.95$

## ALGERADIO ELECTRONICS CO.

385 Jackson St.
Hempstead, N. Y.

## ALL BRAND NEW

 ELECTRONIC SURPLUSfrom Army-Navy stockpiles
RA- 10 DA Aircraft Communications Receiver, Bendix Afg., complete with Control Box, plugs, BC-375 E dircratt Transmitter, G. E. mig. Coms
 MN-26 C Manual Direction Finder Receirer, Bendix Mrg. .in an aing tro. ea. $\$ 23.50$ MN-52 H Azimutla Control, Bendix Mfg. RT-7/APN-1 Radar Altimeter Receiver T-85/Ant-5 Tradar Jamming Transmitter ea. $\$ 65.00$ R-23/ARC-5 Command Receiver with Dynamotor BC-461 Reel Control IBox, Veeder-Root Mfy, ea. 95 CD-501 Jattery cable for $\operatorname{sCR}-284$ A...eea. $\$ 2.50$ Angle Drives

C-4/ARN-7 Control isox tor A. D.
DM-53 Dynamotor for I. L. S. .....
211042 B Dynamotor, 12 volt Nayy type....ea iN-84 Feed-thru Insulators, Ifeary Duty
Flexible Housing for wiring, with female coupt lings. fits AN connector 10 ft. length $\$ 1.50$, 2 l Regulator Control Únit, G E model sGBM1A22

Terms: Irjes Net Mos (ficago. $25 \%$ benosit,
balance COD. Send us your regurements.
NORMAN ELECTRONIC SALES
1930 S. Stote St. Telephone DAnube 6-4476 CHICAGO 16, ILLINOIS

## CLOSING OUT

Tulular Condensers Electrolytic Condensers Dil Filled Condensers Mica Condensers Volume Contrals Jewel Light Assemblies Trimmer \& Padder Permeability Tuners Tule Sockets Switches
Spaghetti Tubing Gang Switches
Studs
Fuses
Condensers
Argon Bulbs
Relays
Rectiffers
Coil \& Coil Forms Ceramic Insulators \& Chokes
Terminal Boarls
Matehing Transformers Power Transformers
Cables and other miscellaneous parts.
"Write for fuantity prices on the ahove Equipment"
AMERICAN SALES COMPANY 1811 West 47th Street

Chicago 9, Illinois Yards 7.0656

## TELEVISION TUBE MACMIERY

8-HEAD MACHINE, for button stems. TUBE STEM MACHINES Mid. by Kahle Eng, Co. 4-5-6-7-8 positions with Geneva movements.
HYDROGEN FURNACES Complete with auOmatic controls, $20^{\prime \prime} \times 7^{\prime \prime} \times 4^{\prime \prime}$. Brick-lined, with two Bristol automatic controllers, Brown pyrometers.
EXHAUST MACHINE 32 head, capacity 60 tubes per hour, 60 W . type B174 Sealiex chassis.
VACUUM FIRING EQUIPMENT M\&q. by GE. SEALING \& STEM MACHINE 16 head, mfd. by GE.
EXHAUST MACHINE 16 head, mfd. by GE,
can be converted to standard tube production.
Many other items of good, used glass-working equipment. Please write for details:

## HAYDU BROTHERS

Plainfield,
New Jersey

Experimenters and Inventors Supplies 64 Dey St., New York 7, N. Y.


Sylvania Type \#216 Sig. Generator
For sentral purpoe use on fred mod., amm, mod and TV revrs. Seren bands No K : to 60 MC . Guaranteed hrand new and latest thpe Send tor descriptive literature.

Price $\$ 139.50$

## OIL CONDENSER-New



TYPE "J"" POTS
$\$ .35$
 Ohm


 NEW S. MICA CONDS. mard (OO) 500 . $\$ 7.00$ ner "C". Special, 100 assorted
BATHTUB KIT 10 for $\$ .99$

## SPECIAL

5 -5 mfd-400 rdc Oil Cond,
 suer, for 600 Volt opertation up 10 to degrees $\mathbf{C}$
Beiny used as phwer factor correctinn capacitor

${ }_{0}^{\mathrm{Ohms}}$ 15005

Sliver. R-Rountl Sin
Slaft Ohms
in
$\substack{1 \\ 1 \\ 1 \\ 1 \\ 1}$
1

# "Than <br> Tested-Guaranteed 




RG8/U
RGII/U

| OIL CAPACITORS-NEW! |  |  |  |
| :---: | :---: | :---: | :---: |
| Mfd | Each | Mfd Each | Mfd Each |
| 1000 | wvde | 3000 wvdc | 225vac/630dc |
| .1 | . 39 | 3.98 | 3.3 - $660{ }^{.49}$ |
| . 45 | . 63 | 45 | $230 \mathrm{vac} / 660 \mathrm{dc}$ |
| 1 | . 45 | 5000 wvdc | ${ }_{3}^{5} 30 \mathrm{vac} / 10000 \mathrm{dc}^{90}$ |
| $\stackrel{2}{5}$ | .898 | $\begin{array}{ll}.2 & 2.25 \\ 2 & 9.98\end{array}$ | 330vac/10000dc |
| 1500 | wvdc | 16.00 | 1.5 |
| . 025 | . 59 | 7000 wvdc | 1.75 . 65 |
| . 05 | . 39 | . 002 . 98 | 25 |
| . 1 | 59 | . $0075 \quad 1.29$ | 2.5 ( 85 |
| 2x. 1 | . 78 | . 150.69 | 2.8 .80 |
| . 5 | . 98 | 7500 wvdc | 3 . 85 |
| 75 | 1.03 | .031 .98 | $4 \quad .87$ |
|  | 1.09 | $\begin{array}{ll}05 & 2.29\end{array}$ | 5125.00 |
| 4 5 | 2.39 | ${ }^{1} 12500$ \%wdc | $\begin{array}{ll}12 & 3.69 \\ 15 & 3.98\end{array}$ |
| 5 | 2.49 2.69 | ${ }^{12500}$ vwdc | 15 3.98 <br> 15  |
| 2000 wvdc |  | 15000 wvdc | $40 \quad 7.98$ |
| . 1 | . 89 | . $0016 \quad 4.98$ | $405 \mathrm{vac} / 1200 \mathrm{dc}$ |
| 2x0.1 | 1.08 | 25000 wydc | 1000 cycles |
| 1 | 1.27 | $\begin{array}{r} 4.95 \\ 100025,00 \end{array}$ | $600 \mathrm{vac} / 1800 \mathrm{dc}^{9}$ |
| $\frac{2}{3}$ | 1.98 3.49 | ${ }^{1} \mathrm{AC}$ Rated ${ }^{\text {a }}$ | ${ }_{10}^{600 \mathrm{vaC} / 1800 \mathrm{dc}}{ }^{4.49}$ |
| 4 | 3.98 | Mfd Each | $16 \quad 5.98$ |
| 2500 | wvde | $220 \mathrm{vac} /$ | ${ }_{5}^{660 v a c} / 2000 \mathrm{dc}$ |
| $\frac{.25}{3000}$ | wvdc | 600dC . 39 | 3.95 |
| . 1 | 1.90 | 4 - 55 | 10 - 6.49 |
| . 5 | 2.49 | 5 . 50 | $16 \quad 6.98$ |

## IN 34 CRYSTAL DIODE, 674



## INDEX TO ADVERTISERS

Acheson Colloids Corp.
dams a Westinke Co.
Aeronatutical Comanula Co Ine.
Aerovox Corp
Alien Products Co.
Allied Control Co., Inc
Itec ILansing Corp.
American Cancer Societ
American Nlectrical Heater Co.
American Smeltiner
American Televisiond Kefinlng Co
American Time Products, Inc.
Amperex Electronic Corp.
Amperite Co.
Ampex Electric Corp
Amplitier Cory, of Ameria
Anaconda Wire S Cable Co
Arma Corporation
Irnolal Englneering
Irt Wire \& Stamping Co.
Andak Company.
Indio Devices, Inc
Audio Instrument Co.
Equinte Coil Winder \& Electrical
Automatic Electric Sales Corb.

Billantine Laboratories. Ine
Barker \& Williamson, Inc.
Barrett Varnish Co
Barry Corboration.
Bell Telephome Mf. Co
Brudix Aviation Coralories
Pacific Division ort
Bentley. Harris
Berkeley Scientivic Co. Co
Birteher Corb.
Bink \& Webster. Ine
Blilpe cirantric Co.
soonton
Rowser. Inc.
Bozak Co.. R. T
Bridgeport Brass Co.
Brown Plectro-Measurement Corp
rush Devilopment Co.
Bnmell $\mathcal{E}$ Co., J. H.
Burnall \& Co

Cambridge Thermionic Corp
Camon Elentrie Develonment Co
Capitol Radio Fingineering Institnte
Carbolos Co., Ine.
Carborindum Co.
Cintral Paper Co., Ins
Clare \& Co. Catipring Corp.
Clarostat Mfy. Co. Inc
Clippard Instrament Iab
Coln Cormstrament Laboratory, Ine
Collins Radio Co.
Communith fo, .......
Condenser Products Co.
Consolidated Engineering Corb
Consolidated Molded Products Corj
Continental-Diamond
Cormell-Dubilier Elestric Corp
Corning Glass Works.
Cornish wire Co., Ine
Cossor (Canada). Itd.
Cramer Company, $K$. $\mathbf{W}$.
Cross Company, H.

Dano Fllectric Co
Daven Compans
Dial Iight Co. of America
Dow Corning Corp
Driper-lifarris Co.
M Mont Laboratories, Inc., Allen is
du Jont de Nemours \& Co., E. I 33. $16 \%$ 205

Eastern Air Devices, Inc
Cellun Kodak Co.
Celumose Produets Dis.
Industrial Photographie Div
Eislor corporation
Eitel Mar Enginerring Co., Ine
Electrical
Flertronic Reartance Corp.
Elertronic Associates, Ine.
Electrons, Instrument Co.. Ine

Electro-Voire, Inc.

Falrchild Camera $\&$ Instrument Corp
Federal Telephone $\mathbb{A}$ Itadio Corp. 162 , Fisher Kadio Corp a kidio Corp. .... 16, Freed Transformer Co., Inc.

Emsco Derrick $\underset{\text { Erie }}{\text { Einistor }}$ Corp.

Garrett Co., Inc., G. K.
220

General Elecirie Co.
Chemical Dept.
Electronics Dept
General Nlectronic
General Kadio Co Mhite Metallizing Cor
Green Instrument Co.
Gries Reproducer Corp.

Hart Mfg. Co.
Hathaway Instrument Co
Haydon Company, N. W
Iaydon Mfa. Co., Inc.
Heath Company
Ireilanil Research Corp.
Helipot Corp
Hewlett-Packard Co.
Hexacon Electric C
Howard Industries. Inc

Indiana Steel Prodircts Co
Inductomraph Product
Indusi rial Condenser Corp
Industrial Control Co.
Instrument Resistors Co.
Intermational Resistance Co.
Co.

## Jelliff Mfr. Corp., C. 0. <br> Jensen Manufacturing Co. <br> JFD Vfg. Co, Inc. <br> Johnson Company, E. F. <br> Johnson Company, E. F. Cinch Mrg. Corp. <br> 225

Katie Metil Proctuct
Kante Metal Products Co.. Inc
Kartron, Ind
Kenvon Transformer Co., Ine,
Kester Solder Co.
Klnney Manufacturing Co.

I ambda Electronics Corp.
Lampkin Laboratories, Inc
Leeds \& Northrup Co
Linde Air Prorluets Co.. Unit of Carbide s
Carhon Corn
Iiston-Follo. Div. of Atias Coil Winders,
227
237

Mardonald Co., Inc., W, S
Magnecord Inc,
Magnecord, Inc. .......
... 153
Manning, Maxwell \& Moore, Inc. ...64, 117
Marion Electrical Instrument Co
McGrav-Hill Book Co.
Measurements Corp.
Mierospope \& Lens Co
Millen Mfe. Co.. Inc., James
Industrisil Diverwell Regulator Co.
Minnesota Minine
Mitehell-Kand Insulation. Co.
Mosinee Paper Mills Co.
Motorola
Muirhead \& Co.. Tta.
Murticorf Holifers, Litd.
Myealex Corp. of Amerio

-| 226 |
| :--- |
| 942 |
| 108 |

…, 175

National Research Corb.

| the Audax |  |
| :---: | :---: |
| POL |  |
| OWE single unit |  |
| plays ALL |  |
| your records |  |
| SUPERBLY | . ${ }^{\text {ame }}$ |
| dat less |  |
| than the cost |  |
|  |  |
|  |  |
|  |  |

## AUDAK COMPANY <br> $5005^{\text {th }}$ Ave. ${ }^{2}$ Dept. 2 New York 18 <br> Fine Music Rophoducess Since 1915



Here's great news for engineers in all audio and specialized electronic fields where precise measurements andount importance-
Our newly developed Type EF Electronic Filter when added to any commercial oscilator (with $3 \%$ distortion) will tesul $0.031 \%$ about 30 times less than expensive laboratory units.
$\longrightarrow$ When added to a laboratory oscillator. the new Type EF Electronic Filter will reduce distortion to less than $0.01 \%$, which makes it suitable for significant intermodulation or frequency distortion meas urements.
$\rightarrow$ The new Type "A" Tuned Amplifier. when inserted between a bridge balancing network and its indicator or control, will increase sensitivity of measurement or control by factor of 1000 to 1!
These units are also suitable for a wide variety of super-sensitive phase dis. criminatory control circuits and have many other valuable applications. Write for Complete Description and Prices on 12 Different Models

## Amphitier Cosp. or America

New Hampshire Ball Bearings, Ine. North Amprican Philips Co., Inc Nothelfer Wimling Laboratories

Ohmite Manufacturing Co
O'vil-lwiu Mír. Co.


Radio Corb. of America, $\underset{1 \times 9 .}{ }$ सailway Expross C'o.. Air Express Div Raytheon Mamuracturing Co
Reeves Ifoffmath Corb

Lenssell Electric Co.

| Sanborn Company |  |
| :---: | :---: |
| Sangamo Electrie Co. . .is |  |
| Arientifie Electric. Div. of * | 6 |
|  | 8 |
| Seovill Mfs. Co. | 200 |
| Servomechatism | 31 |
| Shalleross Mre | 63 |
| Wota Elequric Co. | 11 |
|  | 9 |
| Sperialty Isatary Co | 8 |
| Gperer Carbon Co. | 1 |
| Sperry lraducts. Int |  |
| Sprague Flectric. Co. |  |
| Stackpole Carbon Ca. | 10 |
| Standard I'iezo Co. |  |
| Stamdami Pressed Steel Co. |  |
| Staver fo. lma. | 229 |
| Stevelis Mfir. 're. | 22! |
| Steward Mfs. Co.. D. M, co. | 211 |
| Stoddart Mirratit Kadio Co. | 188 |
| Superior Efuctric Co | 195 |
| Superior Tube fo Sumpunant Mfy. | 165 |
| Surpremant Mry | 18 |

rektromix. Int
Tulecturon, Ime

1822

Whomas d Skimner sterl froducts Co
Tit:animm Alloy Mte. Co.
Trabsamdia. Lid. Elactrical Instrument Co.

Union Carbide $A$ Carbon Corbanit
The linde Nii prodieds Co.e
Tnited Tranqformer Co...........spond Cover

Marian Associates
Freder-Root. Inc.
Vickers Flectric Div. Virkers. Inc. . 190, 221
Vietoreen Insirument Co.
Valdan Electric Co.

Wialdes Kohinoor Ince.
Ward Loonarel Eleretr
Ward Prodnets Corb.
Webser Klentric Co
Vehsier Fhertrie Co. .......
Wretinghonse Flectric Corn.
Brite Dental Mife. Co.. S. S.
Whitehand stamping (
Whitnes Wetal Tool
Wilcon Elactrio Co.ig. (o.
Wronght Wanher Mig.
․ 228
416, 41 .
41. $14:$

Zophatr Mills. Inc.

圈

EQUIPMENT
frosed or

WNNTED
Fapipment

## SEARCHLIGHT SECTION

## Classified Advertising)

## EMPLOYMENT

| Positions Vacant | 244, 245 |
| :---: | :---: |
| Selling Opportunities Offered | 244 |
| Positions Wanterl. | 246 |
| Selling Opportunities Wanted | 246 |
|  | 246 |

Selling Ophortunities Wanted............. 246

SIPCI \L SERVICES

Contract Vork.
mesiness opportunirles

## Offered

## ADVERTISERS IN゙DEX

Mgeratio Electronics Co
Ageradio Flectronics
Alvaradio Supply Co.. 366
264
268
American Electrical Sales Co
Americant Sales Co
hrow Sales, finc.
Ben Aureraft Corp....
Blan …........
Breny Felectronics
Columbia Electronies, Letd
Commmications Fiquipment Col. $\mathrm{Co} 47 \mathrm{7} \quad 248.24$


Eckert-Matuchly Computer Corp.......... 24
Electro I mpluse Laboratory........................ 263
Electronic Engineering Co. of Calif...... 24
Electronic Surplus Brokers............244, 24
Electonicraft, Inc.
EP'O
Fair Radio Sales
French-Van Breems. Inc
Goodyear Aircraft Corp.
Greene, Leonard
Hatiy \& Young
Haydu Brothers
Hursches Nircraft Co
Instrument Associates.
Joe's Radio Shop
Klem. Mantue
Lectronic Research Laboratories
Leeds © Northrup
Legnity Electronics, Inc
Life Electronics Sales.
Maritime Switchboarl.
Maritime Swutchboa
Miller Electric Co
Mogull Co. Inc., Alexander
Motorola Resurrch lahoratories, Inc
Neomatic Inc.
Nohle, Daniel $P$.
Nohle, Damiel E.........
Norman Ene Co.
Opad-Green Co
Overbrook Co.
Overbrook Co......
Yeak Electronics Co
Precision Electrical Instrument Co
Radio Corporation of America.
Radio Hani Shack. Snc....
Radio \& Electronic Surplus.
Rand \& Co................
Reliance Merchandizing Co
Servo-Tek Produc:s Co.. Inc
Sonndtronics hachoratories.....
Springfild Mange
Springfield Machinery TAB
Teletronics Lalooratory Inc
United Surpias Materials
Universal General Corp.
V \& H Radio \& Filectronics Supply
Victor-Bematd Industries
Wells Sales linc...
Wilgreen
Zenith Optical Laboratory
ories 269



## ... a major advance in studio-łype image orthicons

A notable product of RCA leadership in tube research and engineering-the new RCA-5826 image orthicon provides important refinements over previous types of television camera tubes for studio use.
The new RCA-5826 combines exceptionally high sensitivity, a resolution capability of better then 500 lines, high signal-to-noise ratio-about twice that of outdoor camera types-and improved gray-scale rendition in the vicinity of the "blacks."

Having the same spectral response as the companion outdoor pickup type RCA-5820-a response closely approaching that of the eye-this new studio camera tube permits portrayal of colors in nearly their true
tone gradation. The use of the RCA-5826 in the studio and the RCA- 5820 outdoors facilitates the combiaation of indoor and outdoor pickups on the same program ... improvements that are automatically extended to every receiver.

## ANOTHER new RCA tube...

...the RCA 6AY5, GT Heater-Cathode Type FullWove Vocuoun Reviger: Designed to operate from a common 6. 太volt beter supply in ac-operated sets or auto receiverk s the same heating time as other heater-cathode types, thus permitting the use of filter capacitors having lower peak voltage ratings than required for filament-type rectifiers.
 Delivers 125 natat 350 volts to a capacitor-input filter.


[^0]:    Transformérs fors Constant Voltege - Fluorescent thghting - Cold Cethode Lighting - Airport Lighting a Sorlos lighting - tuminous Tube Signs
    

[^1]:    General Electric Company, Section A667-6
    Apparatus Department, Schenectady 5, N. Y.
    Please send me the following bulletins:

    | Indicate <br> for <br> reference <br> only | $\square$ | GEA-1497 |
    | :--- | :--- | :--- | Terminal boards

    Name
    Company
    Address.
    City
    State

[^2]:    This article is based on a paper presented by the author at the 1949 National Electronics Conference in Chicago. The conference paper will appear in the N.E.C. Proceedings.

[^3]:    (1) K" R. Spangenberg. "Vacuum Tubes,' IIcGraw-Hill Book Co., Inc., New York, 1948, p 770.
    (2) L. N. Ridenour and C. W. Lampson, Thermionic Control of an Ionization Galige, Rev. Sci, Inst. 8, p 162, May 1937.

[^4]:    - SIMPLICITY, RELIABILITY, CONVENIENCE of a standard broadcast generator. ACCURATE COMPACT • LIGHTWEIGHT


    ## - MODERATELY PRICED

    - BUTTERFLY TUNING CIRCUIT . . no slid:ng contacts ... no noise ... perfectly smooth tuning . . . rugged design with good stab-lity and very low drift
    - REGULATED POWER SUPPLY assures good betercudyne beat note
    - OUTPUT FROM O.5 MICROVOLT TO ONE VOLT with overall accuracy better than $\pm 20 \%$
    - INTERNAL OUTPUT IMPEDANCE 50 ohms
    - LEAKAGE AND RESIDUAL OUTPUT VOLTAGE $b=$ low sensitivity of most receivers
    - INTERNAL 1000-CYCLE AND EXTERNAL AN.PLITUDE MODULATION over audio range, adjustable from 0 to $50 \% \ldots$ incidental fm under 100 parts per million over most of the ranges
    - T-V PICTURE MODULATION ON ALL CHANNEIS from 50 to 920 Mc with NO INCIDENTAL FM, when Type 1000-P6 Crystal-Diode Modulator and source of video signals are used. The power requirements for modulation are so low, video output from a standard T-V receiver can be used
    TYPE 1021-AV V-H-F Standard-Signal Generator (5)-250 Mc)................. $\$ 595.00$ TYPE 1021-AU U-H-F Standard-Signal Generator ( $250-520 \mathrm{Mc}$ ) 615.00

    TYPE 1000-P6 Crystal-Diode Modulator.

[^5]:    Sylvania Electric Products Inc.
    Electronics Division, Dept. E-1 106
    1740 Broadway, New York 19, N. Y
    Please send me latest information about Sylvania Glow Modu lator Tubes.

    Name..
    Company
    Street.
    City.............................................Zone.............State

[^6]:    The Big Six Reasons Why Arkwright Tracing Cloths Excel

    1. Erasures re-ink without feathering.
    2. Prints are always sharp and clean.
    3. Tracings never discolor or go brittle.
    4. No surface oils, soaps or waxes to dry out.
    5. No pinholes or thick threads.
    6. Mechanical processing creates permanent transparency
[^7]:    Cellulose Products Division, Eastman Kodak Company, Rochester 4, N. Y. Sales offises in New York, Chicago. District sales representatives in Cleveland, Philadelphia, Providence. Pacific Coast distributor: Wilson \& Geゃ. Meyer \& Co., San Francisco, Los Angeles, Portland, Seattle. Canatian distributor: Paper Sales, Limited, Yoronto, Montreal.

[^8]:    Made in u. s. A. by Minnesota Mining \& MfG. Co., st. Paul o, Minn.
    also makers of other "Scorch" Brand Pressure-Sensitive Tapes, "Scotch" Sound Recording Tape, "Underseal" Rubberized Coating, "Scotchlite" Reflective Shecting, "Safety-Walk" Non-Slip Surfacing, "3M" Abrasives, " 3 M " Adhesives.

    Generof Export: DUREX ABRASIVES CORP., New Rochelle, N. Y. In Canoda: CANADIAN DUREX ABRASIVES L'TD., Branfford, Ontoria

[^9]:    *Stevens also makes a complete line of semi-sealed and standard bi-metal disc and strip thermostats. Write for data.

[^10]:    * Manufacts $=$ Manufacturing fests

[^11]:    MRODGMTMABEG
    MARUFACTURINGCO.
    2118 S. BAY ST., MILWAUKEE 7, WIS

[^12]:    THE HART MANUFACTURING COMPANY
    202 Bartholomew Ave., Hartford, Conn.

[^13]:    JFD manufacturing co., Inc. 6127 16th Avenue, Brooklyn 4, N. Y. First in Television Antennas \& Accessories

[^14]:    Douglas B. Cruikshank Department of the Army Assistant Chief of Staff

[^15]:    ELECTRONIC ENGINEER Must have M.S., Ih.D. preferred, in E.E. or l'hysice and not less than five years of Dractica circuit experience or pulse electronics. Salary coin tronsiurate with qualilications. Permanent position with medium size. progressive firm in New York area. Give complete details. Our employees have been notified.

    330 W .42 n .6181 , Flectronics

[^16]:    National Recruiting Division Box 600, RCA Victor Division Radio Corporation of America Camden, New Jersey

[^17]:    WE WANT: Manufacturer with new lines to industrial or home user. Northern New Jersey
    WE OFFER: Wide experience industrial
    WE OFFER: electronics, TV, radio, in ercom. ctc. showrooms, outside sales-staff, 5 serv ce cars, labiratories with latest test instrument BREMY ELECTRONICS
    $39+$ East 18th Street,

[^18]:    A service to save you TIME and MONEY by locating your "HARD TO FIND" items and selling your "NON MOVABLE" surplus.
    ATTENTION: We are instructed by our customers to PAY HIGHEST prices for afl kind of CONDENSORS, RESISTORS. VOLUME CONTROLS, etc.

    Don't hestitate to wire or write IMMEDIATELY.
    ELECTRONIC SURPLUS BROKERS
    3232 Broadway, N. Y. C. 27

