

For Perfected Large-Size

 Home Proiection- PROTELCAAM at compact and is only $10 \%=1$ longHERE'S THE OPPORTUNITY THAT MANUFACTURERS OF TELEVISION RECEIVERS HAVE BEEN AWAITING! 10 SIGNIFICANT FEATURES

- 1 Flat $1 \mathrm{a}^{\prime \prime} \times 12$ non-reflecting picture - proviches latigueless viowiug from
- less tham 5 fed and upward!
- 2 Vide-angle visibility - square
- corneris
- 3 True photographic black and whito
- picture yuality-no discoloration.
- 4 Compact unit-suitable for table
- moodel cabinets.
- 5 Long-life, low-cost picture tube

6 Manufacturers cam most ecommai- cally extend the ir product range into projection television by adapting their $10^{\prime \prime}$ E.S chatssis for use with PROTELGRAM
7 Easy to service
8 High contrast ratio and broad gray tone range
9 Simple optical adjustment system. 10 Quality built after more than 10 years of development.

NORELCO FROTELGRAMI consists of a projection tube, an optical box with focus and deflection cribls, ind a 25 kv regulated high-voltage supply unit, making possible lage-size home projection. More than ten years of exhanstive rescarch resulted in this ideal system for reproducing aprojected pictire. The optical components are designed to produce parfected projection for a $16^{\prime \prime}$: $12^{\prime \prime}$ image. the optimum picture size for steady, distant observation and also for proper viewing at less than 5 feet.

electronics

DECEMBER • 1948

PHOTOELECTRIC CUTTING MACHINE CoverMotor-driven tracer of Air Reduction Sales Company unit tonsw inrricaie outline of paper tempate on tab'e whi'eoxyacetylene torches cut paper-mill pulp beaters in quadruplicate from three-quarter-inch low-carbon plate at PaperCalmenson Company plant in St. Paul. For technical det ...s sce p 122
SELLING RESEARCH IDEAS, by Waldo H. Kliever 68
Ideas born of research must be promoted and pushed to overcome man's inherent opposition to chenge
TELEVISION STATION COSTS, by William Foss
TELEVISION STATION COSTS, by William Foss 72 72
A budget plan for small stations, showing orderly additions to plant and equipment during normal growth
Differential relay in monitor circuit stops oscillator when frequency drifts outside of FCC-allocated band
FREQUENCY STABILIZATION OF DIATHERMY UNITS, by Carl K. Gieringer
FREQUENCY STABILIZATION OF DIATHERMY UNITS, by Carl K. Gieringer 78
VERSATILE TONE CONTROL, by William B. Lurie 81
Multiple R-C networks and cathode-resistor taps are switched simultaneously to give 121 different response curves
POWER AMPLIFIER FOR THE CITIZENS TRANSMITTER, by Walter C. Hollis 84
Complete construction details for increasing power of ELECTRONICS transmitter
PRECISION INTERVAL TIMER, by Sidney Wald
Intervals from 0.01 to 100 seconds are provided by novel discharge circui83
TELEVISION REMOTE VIEWERS, by Vin Zeluff 90
Two independent picture units and a slave unit for home receivers
CERAMIC PHONOGRAPH PICKUP, by L. Grant Hector and H. W. Koren 94
A phonograph pickup designed to utilize the properties of synthetic piezoelectric material
NEW SYNTHETIC PIEZOELECTRIC MATERIAL, by G. N. Howatt, J. W. Crownover and A. Drametz 97
Induced piczoelectric properties and production of barium titanate
HIGH-VOLTAGE SUPPLIES FOR G-M COUNTERS, by Alexander Thomas 100
Portable 900 -volt d-c power supply using neon-controlled oscillator is described
CARRIER-FREQUENCY VOLTMETER, by Paul Byrne 104
Strength of signals received over power lines, telephone lines and cables is indicated in db
MULTiCHANNEL RADIO TELEMETERING FOR ROCKETS, by Gene H. Meiton 106
Electronic system developed for use in Acrobee high-altitude projectiles
DESIGN OF L-P RECORDS 110
Considerations, as presented at New York IRE section meeting, that led to development of microgroove records
HUM REDUCTION, by Arthur F. Dickerson112Circuit design data for mitigating the general problem in all kinds of electronic apparatusMELTING-POINT CHART, by K. H. McPhee118
Metals, alloys and ceramics commonly used in electron tubes are covered
ANNUAL INDEX, VOLUME 21277

DONALD G, FINK, Editor; W. W. MacDONALD, Managing Editor; John Markus, Vin Zeluff, Frank H. Rockett, A. A. McKenzie, Associate Editors; William P. O'Brien, Assistant Editor; Hal Adams, Editorial Assistant; Gladys T. Montgomery, Washington Editor; Harry Phillips, Art Direcior; Elcanor Luke, Art Assistant; R. S. Quint, Directory Manager; John Chapman, World News Director; Dexter Keczer, Director Economics Department

KEITH HENNEY, Consulting Editor

H. W. MATEER, Publisher; WALLACE B. BLOOD, Manager, D. H. Miller, H. R. Denmead, Jr., New York; Wm. S. Hodgkinson, New England; F. P. Coyle, Warren W. Shew, Philadelphia; C. D. Wardner, Chicago; J. L. Phillips, Cleveland; J. W. Otterson, San Francisco; Carl W. Dysinger, Los Angeles; Ralph C. Maultsby, Atlanta; Paul West, London, England; J. E. Blackburn, Jr., Director of Circulation

Contents Copyright 1948 by McGraw-Hill Publishing Company, Inc. All Rights Reserved. McGRAW-hILL PUBLISHING COMPANY, INCORPORATED, JAMES H. McGRAW (1860-1948), Founder - PUBLICATION OFFICE '99-129 North Broadway, Albany 1, N. Y., U. S. A. EDITORIAL AND EXECUTIVE ÓFFICES, 330 West 42nd St., New' York 18, N. Y., U. S. A.-Member A. B. P. Member A. B. C.
James. H. McGraw, Jr., President; Curtis W. McGraw, Vice-President and Treasurer; Eugen Duffield, Executive Assistant for Publications; Nelson Bond, Director of
 ELECTRONICS. December. 1948. Vol. 21 No. Lhould be addressed to the Director of Circulation. Subscription rates-United States and possessions, $\$ 6.00$ a year, $\$ 9.00$ two years, 312.00 for three years. Canada (Canadian shids accepted) $\$ 7.00$ a year, $\$ 11.00$ for two years, $\$ 11.00$ for three ycars. Latin American countries $\$ 10.00$ for one year, $\$ 16.00$ for two years. $\$ 20.00$ for three years.
tund

MARION

In designing their superb wire recorder for office and studio recording, Webster-Chicago needed a special meter-type, volume-level indicator for accurate input control. Ruggedness and accuracy were basic requirements. Because Marion has long been noted for fool-proof, trouble-free electrical meters and instruments, it was natural for Webster-Chicago to turn to Marion for this important component.

Marion soon developed a small, specially designed, panel-mounting type of meter for the amazing Webster-Chicago Wire Recorder. In doing so Marion played a vital part in helping Webster-Chicago record the human voice and other sounds on a wire.

When you have a problem that concerns electrical measuring or indicating, we invite you to turn to Marion. We have a long record of success in helping others. And, because we know the name "Marion" means the "most" in meters, we believe we can help you too.
THE NAME "MARION" MEANS THE MOST IN METERS

NOTICE

PHOTACT is a K K ${ }^{+E}$ TRADEMARK

PHOTACT is a K\&E trademark that is registered in the United States Patent Office. It is the name given by KEUFFEL \& ESSER CO., for the partners in creating $\begin{gathered}\text { potaction } \\ \text { of their } \\ \text { nater }\end{gathered}$ customers, to certain papers and cloths and a developer and a fixer for making reproductions. The name PHOTACT may be properly used only in connection with genuine K\&E products.

KEUFFEL \& ESSER CO. EST. 1867

NEW YORK • HOBOKEN, N. J.
CHICAGO • ST. LOUIS • DETROIT • SAN FRANCISCO LOS ANGELES • MONTREAL
Drafting, Reproduction, Surveying
Equipment and Materials
Slide Rules Measuring Tapes

STEPPING-STONES TO PROGRESS IN MARINE RADIOTELEPHONY

The first ship-fo-shore radiotelephone communications were established almost 30 years ago between land stations at Green Harbor, Mass., and Deal Beach, N. J., and the steamers "Ontario" and "Gloucester," operating between Boston ond Baltimore.

The "Leviathan" was the first ship to handle radiotelephone messages as a public service to and from land telephones.

This selector set made it possible to dial ships at sea, and eliminated the need for constant monitoring by loudspeaker or headphones.

T'S COMMONPLACE TODAY to pick up a telephone on shipboard and talk to a business associate on land. But little more than 30 years ago, this was just a dream.
Back in 1915, the spoken voice could travel to far places only by wire. Then telephone scientists developed the radiotelephone, and soon the spoken word was winging its way across the ocean. A further use of this new magic was soon proposed: could not the human voice be sent from shore to ships at sea?
Soon sub-chasers and other small Nayy craft were talking to each other over equipment designed by Bell engineers. And in experiments starting in 1919, the men on two coastwise steamers talked through land stations to land telephones of the Bell System.

These early experiments covered fairly short distances. But in the meantime, telephone calls across the Atlantic by radio had become an ordinary occurence. So ... why not 'phone calls to ships way out in mid-Atlantic?

Of course, long-distance ship-to-shore radiotelephony brought up problems of varying distances and directions-problems not encountered in point-to-point transmission. Bell Telephone Laboratories solved these problems with the design of the "Leviathan's" equipment. For the first time, longrange marine radiotelephony became a reality.

Later, Bell Laboratories scientists developed selective ringing, which made it possible to dial particular ships at sea. The basic elements of practical marine radiotelephony had now been developed.

links the ship and the shore

IN ADDITION TO producing radiotelephone equipment for the largest ocean liners, Western Electric for many years manufactured the 224, 226 and 227 type sets, which brought the benefits of radiotelephone facilities to coastwise vessels and small craft.

These sets provided power capacities ranging up to 100 watts. As the Bell System had tremendously expanded its chain of harbor stations, coastal craft were normally near a shore station. Hence these capacities were ample to maintain contact with land.

There still existed, however, no equipment specifically designed for tankers, freighters and smaller passenger ships plying the ocean lanes. This need has been filled by the introduction of the Western Electric 248A.

This new equipment provides 250 watts of transmitted radio frequency carrier power, resulting in greatly increased range. Provision is made for transmission and reception on the frequencies of the high-seas shore stations (as well as on the coastal harbor and ship-to-ship channels). Because of these two features, a ship equipped with the 248 A , at practically any point on world trade routes, can establish contact with a land station.
The 248A combines this advantage with the compactness and simplicity of operation essential on smaller ships.

THE NEWEST IN MARINE RADIOTELEPHONE EQUIPMENT

Left: Main cabinet of 248A mounting transmitter and three receivers.
Above: Remote control unit.

The long experience of Bell Laboratories and Western Electric in design and manufacture of marine radiotelephone equipment has culminated in the 248A-compoct, powerful, simple to operate.

A single cabinet houses the transmitter and three receivers. Each of the three receivers can be tuned to any one of 10 pre-set frequencies; the transmitter to any one of 30 . Transfer from one frequency to another is accomplished simply by turning knobs on the remote control panel.

Because three receivers are used, it is possible for the ship to monitor simultaneously on three different channels. The set is designed to permit easy installation of selective equipment to allow dialing the ship from shore stations.

MIRAGLAS

WOVEN TAPES, TUBINGS SLEEVINGS \& CORDS CLOTHS, ETC.

* miraglas-mica combinations

VARNISHED TUBINGS

 SLEEVINGS \& TAPES- COTTON TAPES \& SLEEVINGS
- VarNISHES-WAXES-COMPOUNDS
*Woven of fiberglas Yarn

MITCHELL-RAND INSULATION CO. Inc.
 51 MURRAY STREET • COrtlandt 7-9264 . NEW YORK 7, N. Y.

filtered by filtron 8oeing Strolacruiser

Boeing $\times 8-47$ Strotojet

filtered by filtron Republic F-84 Thunderjet

FILTERED BY FILTRON
McDonnell FH.l Phantom Jet

FILTERED BY FILTRON . . . These planes, and others - that form "America's Mighty Armada," are equipped with electrical components which are FILTERED BY FILTRON... Some with as many as 27 FILTRONS per plane... These planes represent America's most advanced engineering and design and FILTRONS represent the most advanced engineering and design of radio noise filters. FILTRONS are vital components not only in aircraft equipment, but wherever radio interference must be suppressed . . . FILTRON will design the RIGHT filter for your circuit conditions - and to meet your delivery requirements. All measurements are made in our new, modern, specially designed shielded Radio Noise Suppression Laboratory.

MEANS DEPENDABILITY • LIGHTER WEIGHT • QUALITY • STRICT ADHERENCE TO SPECIFICATIONS

filtereo by filtron North Americon Aviation F-86 Jet

filtered by filtron North Americon Aviotion FJ-1 Jet

FILIERED BY FILTRON North American Aviation B-4S Jet

FILTERED BY FILTRON Foirchild C.119A Pocker

filtered by filtron
Boeing B.SO Superfortress

RADIO NOISE FILTERS FOR:
Electric Motors
Electric Generators
Electronic Controls
Electronic Equipment
Fluorescent Lights Oil Burners
Signal Systems Business Machines Electric Appliances Electronic Signs Electronic Heating Equipment

Shielded Spherical-Seat Terminalfiltron - designed for continuous high attenuation from 150 ke to well above 200 mc

2.5 amp fitron for 50 V.D.C. operafion size $13 / 4^{\prime \prime} \times 1 / 4^{\prime \prime} \times \%$

Centralab reports to

Madels courrery of the Microtone Co.
T
Hearing aids are smaller and lighter. Hearing aid performance is better . . . absolutely unaffected by moisture and humidity. Centralab's amazing Printed Electionic Circuit is an importarat reason and the Microtone hearing aid is important proof. When

Microtone engincers switched to Filpec, herc's what they found. Filpec cuts down size and weight by reducing the number of components needed ... increases production by climinating many assembling operations. For all the facts, write for Bulletin 976.

Model 1 Radiohm (left), and ten Filpecs molded into a single amplifying unit (right) hislp Microtone build smaller, more etficient hearing aids.

6
Contralath's Filper is designed for use as a balanced diote lead filter, combines up to three major components into one tiny unit, lighter and smaller than one ordinary capacior. Capacitor values available from 50 to 200 mmf . Resitor values from 5 ohras to 5 megohins. For complete information, write for Bulletin 976 .

Electronic Industry

4Greatstepforward in switchingis CRL's New Rotai') Coil and Cam Index Suithb. Its coil spring gives you smoother action, positive indexing, longer life.

5
To CRL's kine of high çuality ceramic capacitors, these miniature disc Hi Kaps have been added. Combine reliability, capacity. Order Bulletin 933.

Wide range of variations in CRL's Model " M^{\prime} Radiohm simplifies production and inventory. Bulletin 697-A illustrates convenience, versatility!

7Centralab's development of a revolutionary, new Slide Switch promises impraved AM and FM performance! Flat, horizontal design saves valuable space, allows short leads, convenient location to coils, reduced lead inductances for increased efficiency in low and high frequencies. Rugged, efficient. Write for Bulletin 953.

8
CRL's Couplate consists of a plate lead resistor, grid resistor, plate by pass capacitor and coupling capacitor. W'rite for Bulletin 943

LOOK TO CENTRALAB IN 1949! First in component research that means lower costs for the electronic industry. If you're planning new equipment, let Centralab's sales and engineering service work with you. Get in touch with Centralab!

Centralab

DIVISION OF GLOBE-UNION INC., MILWAUKEE, WIS.

IT PAST TO LOOK A COSOS PERPARTI NOT PRCE PER POUNO!

TTHERE'S certainly nothing complicated-looking about the small stamped channel section of . $042^{\prime \prime}$ gauge copper shown in the accompanying illustration. And that's what makes this story all the more interesting.

It is told by Mr. T. J. Newman, Manager of the Meter Devices Company, Canton, Ohio.
"Even a relatively simple application can cause trouble," says Mr. Newman, "a lot of trouble-if you are not using exactly the right metal for the particular job.
"In our case the problem centered around this small stamped channel, originally made of electrolytic copper with a Rockwell B $35 / 45$. The part is bolted to a porcelain base and mounted on the test panel in a standard electric meter box. Used on the service box for test purposes, it allows the connection of a small feed-in wire off the main lines to supply the potential coils in the meter.
"Sounds simple enough. Yet complicated trouble came quickly. It started with cracks in the bends. And that resulted in a high percentage of rejections, along with expensively close inspection.
"It was then that we called in the Revere Technical Advisory Service. Acting on their recommendation, we exactingly tested potential taps made of OFHC Copper with Rockwell B 49/50. Results were so satisfactory that we placed a considerable production order.
"In doing so we frankly paid a premium for OFHC.

But that premium is much more than offset by our saving in scrap and the all-around reduction in costs. Our potential taps now have no more cracks in the bends-there are no rejections whatever-and expensive inspection has been eliminated."

Thus the Meter Devices Company has learned, by its own exacting tests, that the premium purchase of OFHC Copper is a real economy. Once again it is proved that the real guide to economy is the cost of the finished part, not the price per pound of the metal of which it is made.

This progressive company is only one of the many modern industrial organizations that have profited by calling in the Revere Technical Advisory Service. Perhaps you would profit too. We suggest that you ask the nearest Revere Sales Office for more information.

$35 \rightarrow 2$

COPPER AND BRASS INCORPORATED

Founded by Paul Revere in 1801

230 Park Avenue, New York 17, New York
Mills: Baltimore, Md.; Chicago, Ill.; Detroit, Mich.; New Bedford, Mass.; Rome, N. Y. - Sales Offices in Principal Cities, Distributors Everywhere

SPECIALISTS IN RADIO RECEIVING TUBES SINCE 1921.

NOW AVAILABLE FOR YOUR COMMERCIAL APPLICATIONS

CAPACITOR

NETWORS
 PULSE-FORMING

Developed by General Electric and proven by the thousands in the war, these compact units are now available for any commercial use. They find application in radar and industrial equipment where the normal capacitor discharge shape is not suitable and where an impulse having a definite energy content and duration is required. The network consists of one or more equal capacitor sections and the same number of inductance coil sections. Both capacitors and coils are hermetically sealed in the same metal container. Networks are treated with top quality mineral oil to provide stability of capacitance characteristics over a wide range of ambient temperatures. Sizes from which you can make your selection range from a $0.5 \cdot \mathrm{kw}$ output rating to $4500-\mathrm{kw}$. Write for bulletin GEA-4996.

General Electric's new line of $3 \frac{1}{2}$-inch thin panel instruments will save space and add to the appearance of your panels. They're dust-proof, moisture resistant, and vibrations normally encountered in aircraft and moving vehicles have no adverse effects. Especially designed for better readability, the scale divisions stand out by themselves. Lance-type pointers and new-style numbers mean faster reading. Available in square and round shapes, depth behind the panel is only 0.99 inches. Construction is of the internal-pivot type, with alnico magnets for high torque, good damping, and quick response. Check bulletin GEA-5102.

Easy-action hinged covers protect contzol wiring, help give your product a neat appearance. Hook-ups are easy with the hard-gripping connectors. Simply strip the wire end, screw down the connector on the bare wire. Blocks are durable, too. constructed of strong Textolite with reinforced barriers between poles to insure against breakage. Marking strips are reversible-white on one side, black on the other. These terminal boards are available with 4 to 12 poles, 2 inches wide, $1 / 4$ inches high. Send for bulletin GEA-1497C.

This latest addition to G.E.'s line of automatic voltage stahilizers comes in $15-25$-, and 50 -va ratings. Output is 115 volts, 60 cycles. The small size of the unit makes it particularly applicable
to shallow-depth installations in many types of equipment. You may have a job for this unit which will give you automatically stabilized output voltage at a low cost. There are no moving parts, no adjustments to make; long service is assured. Check bulletin GEA- 36341 for more information about this and other G-E voltage stabilizers.

LOOKING FOR

Switchettes* are designed for applications which recuire a manually operated electric switch in a limited space. Though small, these switchettes are lightening fast in action and are built to withstand severe service. A wide variety of forms and terminal arrangements makes them particularly useful where special circuit arrangements are necessary. Switchette shown above has one normally open and one normally closed
circuit, transferable when button is depressed. Check bulletin GEA-4888.

* Switchette is General Electric's trade name for these small snap switches.

Here's a fractional-horsepower fan motor suitable for many uses because of its compact design, low servicing reguirements, and extreme quietness. Long, dependable operation is assured by sturdy, totally enclosed construction. These Type KSP unit-bearing motors are of shaded pole type design with low starting torque characteristics especially applicable to fans. A continuous oil circulation system furnishes good lubrication. You can use simple, hubless, low-cost blades with the special mounting arrangement. Write for bulletin GEC-2 19.

Insulation Resistance Another Factor in

the last in a series of advertisements based on dielectric theory, testing and application, aesigned to aid in selecting electrical insulating materials. Insulation resistance and meth. ods of testing are discussed.

Electrical insulation is. by definition. a material of such low conductivity that current fow through it is negtigible for pracical purposes. Whether a material is suited for insulation depends (among other things) upon the anount of leakage curment allowable in a specific application.

Measurements of leakage curents are usually expressed as "insulation resistance": the ration of de voltage actoss two electrodes. in contact with or embededed in the specimen, to the total current between them.

Resistance measurements are useful in comparing different materials as electrical insulation. Also. in testing sperimens of the same material, they often show the presence of impurities. moisture or imperfections that are clillicult to measure directly.

Two leakage current paths are usually considered: one through the body of the material. the other through a thin film of moisture or other semiconducting substance deposited on the surface.

Insulation resistance is thus dependent upon botin the wolume and surface resistivities of the material as well as electrode configuration. Volume resistivity is the ratio of potential gradient in volts per centimeter, parallel to the current flow in the material, to current density in amperes per stuare centimeter: surface resistivity is the ratio of potential gradien in volts per unit distance parallel on current flow along its surface io current in amperes per mit of surfare. Resistance measurements vary widely with temperature. humidity, voltage and time of con-
ditioming. factors than must. therefore. be closely controlled in testing. Wide allowances on measured values should be set in using insulation resistance as at basis for specification.

TEST FOR
 INSULATION RESISTANCE

For separating insulation resistance to approximate surface and volume resistance, grateded mercury electrodes of the tepe shown in Figure : are used. Sedifonal : ipparalus consists of a source of de potential. a gatwameter. suiable hums. a calibrating ossistace, reversing swiohes and kers.

The resistances ate determined by the deflection method. Galvanometer deflections across the unknown resistance and the standard resistance are noted succosively. The muknown resistance is then equal to the value of the standard resistance mulapilied by the ratio of the deflection tor the calibating resistance to the deflection for the unk nown resistance. also by the shum ratio.

By this method. we measure (1) the over-all insulation resistance with the guard electrode attached to the lunguarded electrode, and (2) the volume resistance. which is the resistance beween the guarded and unguarded electrodes when the guard electrode is maintaned at abon the sane potemtat as the guarded electrode. This circuit arangemen (see Figure 2) insures that only the current fiow through the guarded electrode registers on the gatsamometer. Surface resistance is calculated from these measurements.

With volume and surface resistance known. we an calculate the respective resistivities from the following formulac:

Figure 1-Arrangement of mercury electrodes used in testing insulation resistance of flat, solid materials,

$$
\text { volume resistivity }=\frac{R . I}{1}
$$

when $\mathrm{R}=$ volume resistance
$\lambda=$ area of guarded electrode
$1=$ average thichness of sample surface resistivity $=\frac{R^{\prime} \mathrm{c}}{\mathrm{L}}$
when $R^{\prime}=$ surface resistance
$\mathrm{c}=$ average circumberence of the guarded electrode and of the imner edge of the guard elecroole
$\mathrm{L}=$ distance between the electrodes
The report inclucles: a) oncrall insulation resistance in olms. b) wolume resistivity in ohtu-cm. mits. () surface resistivity in oluns. d) Cemiguade cemperature e) perentage relative humidity. 1) time of exposire to that homidity, g) voltage used. and hi) Iype of electrodes.

Figure 2-Diagram of connections for determination of insulation resistance.

Selecting Electicial Insulation Materials

A COMPLETE LINE OF INSULATION, BACKED BY YEARS OF RESEARCH AND PRACTICAL EXPERIENCE

In concluding this series-which has touched only the more important aspects of dielectic theory and application-we insite your inquiries for techmical service on insulating problens and in the selection of insulation materials.

Mica Insulator Comprany has, for yon years, specialized in
the development and manufacture of electrical insulating materials. Our complete line offers a wide selection to meet specific requirements for increased efficiency of electrical equipment performance. Our Technial Service Department will gladly bring their experience to bear on your problems.

SEND FOR CONVENIENTLY BOUND COPY OF THE COMPLETE SERIES

This convenient folder, in regular desk-file size, has been prepared in response to many requests. It contains reprints of all ten of the technical advertisements on dielectric theory, testing and application.

Designed to help you in the selection and application of electrical insulating materials, this series contains basic information you will want to keep handy. It treats the forlowing subjects:

1. Short-Tince Diclectric Strength Test
2. Step-by-Step Dielectric Strength Test
3. Three Theories of Dielectric Breakdown
f. Effects of Temperature and Moisture on Dielectric Brakdown
4. Eflects of Freguency and Time on Dielectric Breakdown
5. Effects of (;eometry of Flectrodes and Ambient Medium on Delectric Breakelown
6. Phesical Testing: Impact Tests
7. Tensile Strength Test
8. Compressive and Flexural Strength Tests
9. Foreting for Insulation Resistance

Write today for your copy of this useful reference folder. Simply ask for Folder E .

INSULATION

Atlanta - Birmingham - Boston - Chicago - Cincinnati - Cleveland - Detroit * Houston Los Angeles • Milwaukee - Now York * Philadelphia * Rochester - St. Lovis • San Francisco

迆践 FOR MODERN CIRCUIT DESIGNS

The Chicago Transformer New Equipment Line

Chicago Transformer's New Equipment Line fills an urgent need in the electronics fields for transformers designed exclusively to fit up-to-date circuit requirements. Here's why . . .

1. Voltage and Current Ratings of C.T. New Equipment Power Transformers have been selected to conform closely to the plate and filament loads of the tubes most widely used today. These units are conservatively rated . . . will deliver their full output with temperature rise well within RMArecommended standards.
2. Line and Voice Coil Impedances of C.T. New Equipment Audio Transformers fit the accepted industry practice of standardized 600 and 150 -ohm line impedances; 16,8 , and 4 -ohm speakers.
3. High Fidelity at Full Rated Output. Frequency response within $\pm 1 / 2 \mathrm{db}$ for virtually all output and input transformers, within $\pm 1 \mathrm{db}$ for all driver and modulation transformers, is guaranteed. Recommended frequency ranges fit three fields of general use -30 to 15,000 cycles, 50 to 10,000 cycles, and 200 to 3,500 cycles.
Add to these features the sleek, modern appearance and compactness of C.T.'s outstanding drawn steel case constructions - in two alternate base styles as illustrated-and you have the reasons why this is the only transformer line of its kind!

WRITE FOR CATALOG TODAY

EXPERIMENTAL

CHICAGO TRANSFORMER

DIVISION OF ESSEX WIRE CORPORATION

3501 ADDISON STREET. CHICAGO 18, ILLINOIS

(HM\|TE Resistance"Know-How"

OHMIT

Let Ohmite Help Solve Your Resistance Problems

0hmite Resistance "Know-How" represents the combined thinking of our entire staff of resistance specialists. Remember . . . it's available to you for the asking . . . to help solve your rheostat and resistor problems . . . to analyze your requirements and saggest the correct units to fit your specific application.
Years of experience in building dependable rheostats and resistors, in helping others solve specialized resistance problems, is your assurance that Ohmite "Know-IIow" can help you. We invite you to submit your problems to us.

() HMUTE Close Control RHHOSHATS

... Available with

 many additional featuresOn this page are shown some of the many forms in which standard Ohmite rheostats can be furnished. All models have the distinctive, time-proved features of Ohmite design. They are all-ceramic in construction-ccramic parts insulate the shaft and mounting, and the resistance winding is permanently locked in place by vitreous enamel. Smoothly-gliding, metalgraphite brush provides contact with every turn of the resistance winding. Ohmite rheostats are known for their smooth, gradual, close control and their long, trouble-frec life.
Write for Catalog and Enginecring Manual No. 40, on your letterhead. It contains information on the complete Ohmite line, plus a wealth of helpful engincering information.

OHMITE MANUFACTURING COMPANY
4818 Flournoy Street - Chicago 44, Illinois

in TAB:E MOUNTING CAGES
Used to prevent me: chanical injury to the rheostat or human contact with electrically "live" parts. Tablctop monming, ventilated enclosures.
with TOGGLE SWITCH and EXTRA LUG Permits Jual with of rheostald and indr. pendent rircuits. Rhero. stat winding is terminated at an extra lug located where the switel opens.

So FLEXIBLE that it can be twisted, bent, wrapped, tied in knots . . . without cracking or peeling.

So TOUGH that severe use will not destroy its dielectric property 7000 volts.

So HEAT-RESISTANT that it will withstand high temperatures and can be after-treated in baking and varnishing operations.

Makers of
Electrical Insulating
Tubing and Sleeving

Made in standard colors, in a wide range of sizes. It is available in coils-so that you can cut the exact lengths you need, without waste.

And . . . this is a premium tubing at a reasonable price. Send coupon for free sample and full information.

For the best "look-in" on television

 programming and transmission . . . they are installing DU HONT LARGESCREEU Picture Monitiors

START AS SMALL AS YOU WISH, WITH THE DU MONT

TYPE $510812^{\prime \prime}$ PICTURE MONITOR
\checkmark Used in combination with companion unit, Eype 5112-B Low Voltage Power Supply.
\checkmark Produces a comfortablesized image on $12^{\prime \prime}$ picture tube for program monitoring of picture content.
\checkmark Operates from standard black negative composite pieture signal with evel in the range of 0.5 to 2.5 volts peak to-peak. 1000 ohm inpul impedance.
\checkmark A 75 -ohm input terminal is provided and is inserted
across input terminal by means of toggle switch at rear.
\checkmark Type s108.C fitted with $13^{3} 8^{\prime \prime} \times 17 / 8^{\prime \prime}$ panel fitting into control consoles.
\checkmark Type 5108-D fitted with standard $14^{\prime \prime} \times 19^{\prime \prime}$ relay rack panel.
\checkmark Overall dimensions, less panel: $12.11 / 16^{\prime \prime}$ h. $\times 161 / 4^{\prime \prime}$ w. x $183 / 4^{\prime \prime}$ d. Weight, 50 lbs.

Resolution exceeds that of usual commercial equipment.

TYPE 2116 20" PICTURE MONITOR

\checkmark Du Moni Geflection system for better-than-usual focus.
Ficture light output from 20" picture tube operated irom
15 KV 15 KV supply. An excellent image thoroughly excellent even in lighted enioyed an lighted room.
ture. Exce 450 lines
\checkmark High voltage automatically removed should horizontal sweep fail, in order to protect picture tube.
\checkmark Monitor operates from a
composile signal on a 75 -ohm line with a level between. 5 and 2.5 peak-to-peak voltage.
\checkmark Foolproof. Front panel carries brightness and contrast controls. At rear are the and other ocTyaly adjusted zontrols.
\checkmark Type 2116 A includes a 10 nch high-fidelity speaker in asled with beffle and grille assembly.
Overall dimensions: 38" h $\times 22^{\prime \prime}$ w. $\times 30^{\prime \prime} \mathrm{d}$. Weign h

- Superlative rendition - that accounts for the growing popularity of Du Mont large-screen picture monitors.

Two models: Type 5108, 12 -inch tube, 72 -square-inch screen. Type $2116,20-$ inch tube, 215 -square-inch screen. The direct-view images are brilliant, sharp, and pleasingly contrasty yet retain the full range of all the half-tone values so
necessary for pictorial beauty
The 12 -inch model in combination with Type 5112-B Low Voltage Power Supply unit, is intended primarily for control functions. The 20 -inch giant image monitor is ideal for use on a dolly in the studio, for visual cueing of actors and studio personnel during a performance. It may alsc be placed in
the lobby, in the studio manager's office, in other executive cffices, and in clients' rooms.

For superlative monitoring, as in every other TV function from camera to transmitter and again to receiver, make it DU MONT for "The First with the Finest in Television."

Details on request. Submit your telecasting plans for that Du Mont "know-how" guidance.

allen b. du mont laboratories, inc.

 }

ALLEN B. DU MONT LABORATORIES, INC. - TELEVISION EQUIPMENT DIVISION, 42 HARDING AVE., CLIFTON. N. J. • DU MONT NETWORK AND STATION WABD, 515 MADISON AVE.. NEW YORK 22, N. Y. - DU MONT'S JOHN WANAMAKER TELEVISION STLDIOS, WANAMAKER PLACE, NEW YORK 3, N. Y. - STATION WTTG. WASHINGTON, D. C. - HOME OFFICES AND PLANTS. PASSAIC. N. J.

With the introduction of this new lire of air variables, JOHNSON brings you many important design advantages never before available.

Outstanding of these is the uie of perfected ceramic soldering which assures absolute - and permanent - rigidity and strength, absolute - and permanent maintenance of capacities!

There are no eyelets, nuts or screws to work loose, causing stator wobble and Huctuations in capacity. JOHNSON ceramic soldering leaves a bond which is stronger than the rugged steatite end plates themselves. There's nothing to come loose, because the stator terminals, mounting posts and rotor bearings are ceramic soldered!

Silent operation on the highest frequencies is assured with a split sleeve tension bearing that also prevents fluctuations in capacity.

These new variables are ideal for peak efficiency even under the severest conditions, such as portable - nobile operation. They are available in .030" and .080" spacings

Two sets of stator contacts are provided for connecting components to either side of condenser without appreciably increasing inductance of the circuit. New bright alloy plating is used. It has high corrosion resistance, is easily soldered and possesses lower electrical resistance than other common platings.

These variables are available lor all types of communications equipment having tuned circuits operating as high as 500 mc .

Features

1. Ceramic soldered for stability and strength
2. Soldered plate construction, heavy .020" plates, new bright alloy plating
3. Beryllium copper contact spring, siver plated
4. Steatite end plates
t. Long creepage paths
5. Low minimum capacity - maximum tuning range
6. Small size - end plate only $13 / 8$ " square
7. Split sleeve rotor bearings - no wobble to shaft

Other capacities and spacings available on special order.

C

single section variables .030" Spacin

	Cap. Per Section	Length
Cat. No.	Max. Min.	Behind Pane
167-101	$11 \quad 2.8$	15/16
167-162	$27 \quad 3.5$	1-9/64
167-103	51 4.6	1-7/16
167.104	$75 \quad 5.7$	1-3/4
167-151	$99 \quad 6.8$	2-7/32
167.152	20211.6	3.33/64
Also	Available In .080"	ng

©
DUAL SECTION VARIABLES

.030" Spacing		
Cat. No.	Cap. Per Section	Length
167-501	$27 \quad 3.5$	1.13/16
167.5112	$51 \quad 4.6$	2.27/64
167.503	$99 \quad 6.8$	3.5/8
	vailable In .080"	

\odot
DIFFERENTIAL VARIABLES
. $030^{\prime \prime}$ Spacing

	Cap. Per Section	Length	
Cat. No.	Max.	Min.	Behind Panel
167.301	11	2.8	$15 / 16$
167.302	27	3.5	$1.9 / 64$
167.303	51	4.6	$1-7 / 16$

	Cap. Per Section	Length
Cat. No.	Max. Min.	Behind Panel
167-201	10.52 .8	1-3/64
167-2 12	$26 \quad 4.3$	1-7/16
167-203	51 6.5	1-15/16
Also	Available In . 080 "	

Write For NEW JOHNSON 167 VARIABLE CATALOG

... looks like a Carbonyl Iron Powder year. Estimates show that practically all Television sets. and most of the Radio sets made in 1949 will contain cores made of Carhonyl Iron Powders. There must be a reason. Ask your coil winder. Ask your core maker. Ask any good designer ...

G. A. \& F. CARBONYL IRON POWDERS
An Antara ${ }^{\circledR}$ Product of General Aniline \& Film Corporation 444 Madison Avenue, New York 22, New York:

Built for dependable performance．．．

I－T．E wire－wound Oval Power Resistors－

Abstract

Modern resistors designed for modern applications．．．I－T－E Oval Resistor Assemblies ．．specially suited for installations where space is limited，such as in aviation．sound，radio．and other electronics appli－ cations．I－T－E＂Ovals＂are distinguished by their high unit－area wattage ratios，which are due in part to the heat dissipation qualities of the mounting brackets．An I－T－E Oval Resistor－or an assembly of oval units－has a much higher wattage rating than that of a conventional round resistor of comparable size．

And I－T－E Resistors are better－built for a longer life of dependable per－ formance．Bases are best non－hygroscopic ceramics ．．resistance wires are purest obtainable ．．．resistances are uniformly wound．mechanically tied，and silver－soldered at high heat for permanent．solid connections． No matter what your resistor problem calls for－compactness，long life， dependability，or exact tolerances－be sure to investigate I－T－E Oval Resistors，the modern wire－wound Power Resistors．Complete technical information，as well as valuable application data，is contained in the new I－T－E Resistor catalog．Send for it today．

There＇s an I－T－E Resisfor for Every Purpose \rightarrow

	I－T－E OVAL RESISTORS			
Type	Watts	Length	Maximum Recommended Resistance	Mounting Centers
108 Oral	30	1／4＂	10000	$2^{\prime \prime}$
200 Oval	40	$2{ }^{\prime \prime}$	15000	$23 / 4{ }^{\prime \prime}$
316 Oval	55	31／2＂	25000	41／4＂
424 Oval	65	43／4＇	35000	$51 / 2^{\prime \prime}$
600 Oval．	75	$6^{\prime \prime}$	50000	$63 / 4^{\prime \prime}$

The Leader In Technical Excellence
I－T－E CIRCUIT breaker co．，resistor division，19th \＆hamilton streets，philadelphia 30，pa．
SWITCHGEAR－UNIT SUBSIATIOAS－ISOLATED PHASE BUS STRUCTURES • AUTOMATIC RECLOSING CIRCUIT BREAKERS－RESISIORS • SPECIAL PRODUCTS

A ccurate measurements are fundamental to the clectronic industry.
-hp- precision instruments are basic tools for obtaining these measurements swiftly, surely and easily.

-hp. 400C Vocuum Tube Volimeter
W'ide range, 20 cps to 2 mc .12 ranges, 0.001 ' to 300 v , flat response. 10 megohms input impedance.

-hp-415A Standing Wave Indicator
300 cps to 2000 cps . For use with bolometer or crystal rectificr Previewed here for the first time.

-hp. 404 A Battery-Operated Voltmeter
Light, compact, portable vacuum tube voltmeter. No ac power needed. 2 to 50,000 cps. 11 ranges, 0.003 to 300 r .

For brief details of these and other $h p$-precision instruments, see following pages. For complete specifications, write direct to factory.

$h p$ MEASURING SPEED AND ACCURACY

-hp-Model 200 C Resistance Tuned Oscillator

-hp-Mpdel 206A
Audia Signal Generator

-hp-Model 330s Disfertion hoolrter

 UHF Signal Gemartio.

FUNCTION	MODEL	frequency	Characteristics
HARDWARE	10		Binding Past
	14		Flexible caupler, ceramic insulated; permits mis, alignment of $1 / 32^{\prime \prime}$ and/ar 5°
LOW FREQUENCY STANDARDS	100A	$100 \mathrm{kc}, 10 \mathrm{kc}, 1 \mathrm{kc}, 100 \mathrm{cps}$	Accuracy 3 cps per me per degree Centigrade
	100B	$100 \mathrm{kc}, 10 \mathrm{kc}, 1 \mathrm{kc}, 100 \mathrm{cps}$	Temperature controlled; accuracy 0.001\%
FREQUENCY DIVIDER	110	100 to 10 cps	Controlled by 100A or 100B. Multipliers also available up to 1 me
	200A	35 to $35,000 \mathrm{cps}$	Output 1 watt into 500 ohms; 1% distortion
	200B	20 to 20,000 cps	Output 1 watt inta 500 ahms; 1\% distortion
	200C	20 to 200,000 cps	Output 10 volts into 1,000 ohms; 1\% distortion
	200D	$71070,000 \mathrm{cps}$	Output 10 volts into 1,000 ohms; 1% distortion
RESISTANCE-TUNED OSCILLATORS	200H	60 to 600,000 cps	Output 10 mw into a 100 ohm lood; 3% total distortion
	200 I	$6108,000 \mathrm{cps}$	Frequency setting closer than 1%; output 10 volts into 1,000 ohms; 1\% distortian
	2018	20 to 20,000 cps	Output 3 walts at 1% and 1 wott at $1 / 2 \%$ distartion into 600 ohms
	202B	$1 / 2$ to $50,000 \mathrm{cps}$	For low frequency studies. Output 10 valts into 1,000 ohms; 1% distortion
	202D	2 10 $70,000 \mathrm{cps}$	Output 10 volts into 1,000 ohms; 2% distortion
	204A	2 to $20,000 \mathrm{cps}$	Portable, battery-operated; output 5.0 volts to 10,000 ohm load; 1\% distortion
AUDIO SIGNAL GENERATORS	205A	20 to 20,000 cps	Output 5 watts, 1% distortion into impedances of $50,200,600,5,000$ ohms. Output VTVM and 110 db attenuator, 1 db steps
	205AG	20 to 20,000 cps	Same as 205A, plus separate VTVM for complete gain measurements
	205AH	1 ta 100 kc	Outpus 5 watts, 3% distortion into $50,200,500$, 5,000 ohm impedances. Output VTVM and 110 db attenuator, 1 db steps
	206A	$201020,000 \mathrm{cps}$	Output +15 dbm with less than 0.1% distartion into 50, 150, 600 ohm impedances. Output VTVM and 111 db attenuator in 0.1 db steps
SQUARE WAVE GENERATOR	210 A	20 to $10,000 \mathrm{cps}$	Output 50 volts peak to peak; 1,000 ohm internal impedance; 70 db attenuator, 5 db steps
WAVE ANALYZER	300A	30 to $16,000 \mathrm{cps}$	Variable selectivity; measurement range 1 mv to 500 volts; 5% accuracy

HEWLEIT-PACKARD

THROUGHOUT THE ELECTRONIC FIELD

Wherever There's a CORE and COIL Choose |ERRANIT| Power and
 Z్ష్ర్|l Audio Transformers Chokes • Filters

"COUPLATE" is made of high dielectric CeramicX to give long life, low internal inductance, positive resistance to humidity and vibration. A circuit diagram of CRL's Corplate is shown below.

*Centralab's "Printed Electronic Circuit" - Industry's newest method for improving design and manufacturing efficiency!

Imagine the time, the space, the material you save by using one unit instead of six. That's just what Centralab's amazing pentode "Couplate" is doing for Admiral Radio Corporation, Chicago. This complete interstage coupling circuit combines three resistors and three capacitors into one tiny, dependable P.E.C. unit. "Couplate" saves time for Admizal by eliminating many assembling operations. It saves space and material by reducing the number of components needed. What's more it improves performance by minimizing the chance of broken or loose connections.
Integral Ceramic Consiruction: Each Printed Electranitic Circuit is an integral assembly of "Hi-Kap" capacitors and resistors closely bonded to a steatite ceramic plate and mutually connected by means of metallic silver paths "printed" on the base plate.

You'll want to see and test this exciting new electronic development. For complete information about Couplate, as well as other CRL Printed Electronic Circuits, see your nearest Centralab Representative, or write for Bulletin 999.
Centralab Division of GLOBE-INION INC., Milwaukee

The NEW "dag" CRT Wall Coating

for all CRT glass envelopes

Here's an entirely new CRT Wall Coating, developed by Acheson Colloids specifically and solely for use on CRT glass envelopes.
"dag"' CRT Wall Coating is very easily applied. . . adheres tenaciously to all types of glass... does not yield objectionable by-products on heating.

Prominent cathode-ray tube manufacturers have already found this opaque, electrically conductive "dag"' CRT Wall Coating eminently satisfactory, especially in tubes intended for television reception.

Let Acheson Colloids help you with your CRT wall coating problem. Mail the coupon today for information on this or other electronic applications of "dag"' colloidal graphite dispersions.

Give me information on "dag", colloidal	
graphite dispersions for:	
Wall coating of CRT's	\square
Electrostatic shielding	\square
Corona prevention	\square
Dry-film lubrication	\square
Copper oxide rectifier disc cocting	\square
Electrical resistances	\square
Filament cement	\square
	MM.5

Acheson Colloids Corporation

Port Huron

HI-Q components are uniformly superior because of rigid quality control throughout all stages of manufacture. Final individual inspection insures their conformance to electrical and physical specifications. When you specify $\mathbf{H I}-\mathbf{Q}$ components, you can be sure they meet your most stringent requirements for precision, dependability, compactness and uniformity. Write for complete information and engincering data.

HI-Q DISK CAPACITORS

BPI) Where space is a factor and the plysical shape is more adaptable than tubular unit try these $H_{1}-Q$ Disk Capacitors. Another example of accurate dependable miniaturization, this high dielectric hy-pass, blocking or coupling Ho-Q Disk Capacitor has many applications. Available in three standard capacities. Type BPI)-5: .005 mfl .guir. min.Tye RPD-10: .01 mfll. guar. min. Type BPD-1.5: .0015 mfl guar. min.
Illustration at right is actual size.

G.P. By the use of our new Body 11,5 minf to 33.000 mmf capracity ranges are now available which will cover the majority of your by-passing problems. These HI_{G} Miniature G. P. Tubulars also provide closer coupling of Ieads thus insuring minimum inductance and highest self resonant frequencies.
Illustration at left is actual size.

Hı-Q MINIATURE G.P.TUBULARS

MACHLETT TUBE USERS GET MORE LIFE; BETTER VALUE

BECAUSE OF MACHLETT EXPERIENCE, SKILL AND "SINCERITY OF SERVICE"

- For over a half century Machlett Laboratories has pioneered and made notable contributions to the development of the electron tube art.
Today, through its modern plant, development laboratories and skilled personnel, it provides the best in tubes and service for Broadcasting and Industrial uses. No matter what your purpose - Broadcasting, Communication or Industrial elec-tronics-you will find a Machlett tube to fill your needsand fill them well. And, no less important than the tube itself, Machlett Service - valued by tube users for more than 50 years - will give you a new sense of value to apply to your tube procurement problem.
If you want better value - more satisfaction-try MACHLETT.
Note To Broadcasters: Machlett Laboratories now produce for the Western Electric Company its line of high power transmitting tubes-so well known and respected by all broadcasting engineers. Made by Machlett Laboratories, in close collaboration with Bell Telephone Laboratories, these tubes will continue to set the highest standard of performance in broadcast service. These tubes are distributed exclusively for the Western Electric Company by the Graybar Electric Company in the U.S.A. and by the Northern Electric Company in Canada and Newfoundland.
This new combination of Western Electric Company and Machlett Labora. tories, two of the pioneers in the electron tube field is your best assurance of progress and performance in the further development of better tubes to fill your needs.

3-Phase Regulation

MODEL	LOAD VOLT-AMPERES	*REGULATION
ACCURACY		

Extra Heavy Loads

MODEL	LOAD RANGE VOLT-AMPERES	REGULATION ACCURACY
$5,000^{\mp}$	$500-5,000$	0.5%
$10,000^{\mp}$	$1000-10,000$	0.5%
$15,000^{\mp}$	$1500-15,000$	0.5%

General Application

MODEL	LOAD RANGE VOLT-AMPERES	*REGULATION ACCURACY
150	25.150	0.5%
250	25.250	0.2%
500	50.500	0.5%
1000	$100-1000$	0.2%
2000	$200-2000$	0.2%

SUHHSID

The First Line of standard electronic AC Voltage Regulators and Nobatrons

GENERAL SPECIFICATIONS:

- Harmonic distortion max. 5 \% basic, 2% " 5 " models
- Input voltage range 95-125: 220-240 volts (-2 models)
- Output adiustable bet. 110-120: 220-240 (-2 models)
- Recovery time: 6 cycles: ${ }^{\mp}(9$ cycles)
- Input frequency range: $\mathbf{5 0}$ to $\mathbf{6 5}$ cycles
- Power factor range: down to 0.7 P.F.
- Ambient temperature range: $-50^{\circ} \mathrm{C}$ to $+50^{\circ} \mathrm{C}$

All AC Regulators \& Nobairons may be used with no load.
*Models available with increased regulation accuracy.
Special Mode/s designed to meet your unusual applications.
Write for the new Sorensen catalog. It contains complete specifications on standard Voltage Regulators, Nobatrons, Increvolts, Transformers, DC Power Supplies, Saturable Core Reactors and Meter Calibrators.

 STAMFORD
 CONNECTICUT

Represented in ail principol cities.

To SURVIVE America Must Have Better Tools

IN THE past twenty years the United States has failed to provide its workers with enough new tools and equipment.

To most Americans this statement will come as a shock - or will be doubted. We are quite complacent about our industrial equipment, for easily understood reasons.

Throughout the '30s we heard continuously the propaganda line that the United States had become a "mature economy." The job of equipping America with industrial plants and tools was said to be largely done.

Now, knowing that industry is spending billions to expand and rebuild its plants, many people assume that the result must be a first-class industrial system.

A further powerful inducement to complacency is the vastly worse industrial condition of most of the rest of the world. When Americans look abroad in almost any direction they see shattered plants and equipment. A natural reaction is that we are sitting pretty.

That is a dangerous reaction. Between depression and war, we have failed to build the tools and equipment we need. This condition is dangerous for three reasons:

1. From bitter experience we know that national security depends first and foremost on the capacity and readiness of our industrial equipment.

All of our plans for stabilizing prosperity assume a world at peace. The greatest menace to peace would be an unarmed America, unable or unwilling to keep herself strong and ready for defense - strong in spirit, in resources and in the all-important industrial plant and equipment.
2. Whether Americans live well-or badly depends directly on the kind and quality of tools used by American workmen.

This is true for all workers, and for every worker-from a garage mechanic and his wrenches to a steel mill gang and its rolling equipment. In a monumental study of "America's Needs and Resources" the Twentieth Century Fund found this fact: The improvement in the real income of the American people has more consistently followed the amount of power used in industry than anything else. What the workman worked with determined, more than any other factor, the size of his pay envelope, and what it would buy.
3. Our success in stabilizing prosperity will depend largely on what we do about building new tools and equipment.

About 30% of our industrial workers are employed in producing tools and equipment. Steady employment for them is essential to our over-all prosperity.

How far have we fallen behind in providing new plants and equipment?

Estimates vary. Here is one rough estimate: If we had built new industrial facilities during 1930-48 at the rate we did in the prosperous ' 20 s, we would have spent at least $\$ 100$ billion more than actually we did.
To get a better and more complete measure of this deficit, McGraw-Hill is undertaking a survey of American Business' Needs for New Plant and Equipment.

Businessmen all over the nation are being asked to answer questions like this: How much
money would you need to put your plant in first class condition? How much are you planning to spend for new plant and equipment? Where do you expect to raise the money? The results will be reported later in this editorial series. Already the survey shows we have fallen many billions of dollars behind.

Some shortcomings are apparent to everyone. They are revealed in a lot of rickety transportation facilities and in rundown buildings.

Many other deficiencies do not come into general view. They are, for example, the antiquated machines in our plants. Of the privately-owned machine tools in use in 1945 - when the last census of metalworking equipment was made by american machinist - 54% were more than 10 years old. Their average age is higher today.

It is true that in recent years we have hit new highs in total national production. But we have done so by putting far more people to work than ever worked before . . . and by driving equipment to the limit of its waning endurance, sometimes beyond. It has not been done primarily in what is by all odds the best way to increase pro-duction-to use more and better and more modern tools and equipment.

Haven't we overcome much of this twenty-

 year deficit by rushing to build new plants since the end of the war?
No. For two clear-cut reasons:

1. The accumulated shortage is tremendous. The total of about $\$ 40$ billion, which has been spent for industrial plant and equipment since VJ-Day, has not wiped it out.
2. Some key industries have had difficulty in getting the facilities they need. Take steel, for example - the industry that turns out our most basic industrial material. Its needs for new equipment are measured in billions of dollars. To pay for that equipment, it should have risk capital money which people are willing to invest with a risk of losing for the sake of gain. For steel is an up-and-down industry. Earnings on its common stocks inevitably share both ways in those ups-and-downs.

Since the war, steel, in common with most of industry, has been unable to market new common stock successfully. Its outstanding stock is now selling for only about one-half the current net worth of the industry's present assets. With investors willing to pay only 50 cents on the dollar for its facilities, the industry can not readily sell stock to pay for new plant and equipment -at higher prices even than the old.

Why can't steel - and other industries - attract people who are willing to risk their money retooling America?

The full answer to that serious question must be left to future editorials in this series, for it involves many things . . . tax reform . . . mobilization of small savings . . . a new respect for corporate profits.

This first editorial seeks simply to emphasize two fundamentals:

First, our standard of living improves with the quality of our industrial equipment.

Second, American industry and American workmen badly need billions of dollars worth of better equipment now.

The American people must understand that not only our continued prosperity but also our security as a nation depends upon giving American industry more and better equipment.
"Give usthe tools." This was Winston Churchill's cry for help to win the war. Only if we give American industry new and better tools will we have a chance to win abiding prosperity at home and good order abroad.

President, McGraw-Hill Publishing Company, Inc.

[^0]
"Clocked" in Record Time

No. 102's at Five Star Company increase production by synchronizing output on basis of time required for manual operations

Experience of the Five Star Company, West Chesire, Conn., shows how one manufacturer can profit from use of Universal Coil Winding Machines.

This company, manufacturing a variety of coils, uses the No. 102 Winders shown below to produce coils for electric clocks, winding six coils at a time from unrolling spools of No. 38 enameled wire.

Relay coils, ringer coils and switch coils are other bobbin-type coils wound on this machine which permits synchronization of winding time on the various heads with handling time per coil.

Coil size is accurately controlled by an elec-
trically-operated counter which automatically stops each head upon completion of the coil. Steel-strap control of tension makes it possible to handle even the finest wires.

Other Universal Coil Winders in this plant are the No. 104 which winds paper-insulated coils and the No. 96 which winds cotton-interwoven coils for business machines.

Write for bulletins on Unversal Coil Winders -No. 84, lattice-type; No. 96, layer-wound; No. 98, gutter-wound; No. 102, spool-wound, noninsulated; Nos. 104 and 105 paper-insulated, in stick form.

UNIVERSAL WINDING COMPANY, Dept. L, P. O. Box 1605, Providence 1, R. I.

EXPERIENCE PLUS COOPERATION DOES IT!

T here's a lot of satisfaction in working with radio engineers who know exactly what they need to get top efficiency from the transmitter. To their specifications Blaw-Knox applies an experience in antenna tower building that dates back to the days of "wireless" . . . Together we get results that reflect credit on our structural designers and the station's technical experts . . . If your plans call for more effective coverage or directional changes we would welcome an engineering interview at your convenience.

BLAW-KNOX DIVISION
OF BLAW-KNOX COMPANY
FARMERS BANK BUILDING PITTSBURGH 22, PA.

PHOTO ENGRAVING

For the Protection of Our Customers

This preamplifier phasing control section of a medium power, low distortion restricted band audio-amplifier employed in a new printing plate engraving system couldn't operate satisfactorily on availabie line voltages. Robert H. Rigby Corp., solved the problem with a "built-in" Sola Constant Voltage Transformerr.

Unstable voltages varied the light. output essential for satisfactory operation of this precision instrument. High voltages burned out the light source, "Built-in" Sola Constant Voltage Transformbizs now provide a constant source of light and enable R.S. Wilder Company to guarantee the life of the lamps.

The H. C. Schildmeier Co.says, ${ }^{\circ}$ We have found the Sola Constant Volitage Transformer to be the solution to many of our troubles, by maintaining a constant output voltage to actuate a unit that is direct meter reading" ... a Sola CV transformer is a built-in component of every Seal Line Balancer produced by this company.

SOLA HANDBOOK BULLETIN DCV-102

A complete, and authoritative treatise on voltage regulation. Write for your copy.

Tronsformers for: Constant Voltege - Cold Cathode Lighting - Airport Lighting - Series Lighting - Flyorescent Lighting - Luminous Tube Slans Oil Burner Ignition - X-Ray • Power - Controls • Signal Systems - etc. - SOLA ELECTRIC COMPANY, 4633 W. 16th Street, Chleago 50, Illinóls
Manufactured under license by: ENDL RANCE EI.ECTRIC CO., Concord West, N. S. W., Australia - ADVANCE COMPONENTS LTD., Walthamstow, E., Englad UCOA RADIO S.A., Buenos Aires, Argentina - M. C. B. \& VERITABLE ALTER. Courbevoic (Seine). France

now in stock and ready for quick delivery

TThese Federal standard D-C Power Supplies are now available to meet a wide range of industrial and laboratory requirements for both filtered and unfiltered D-C power. All Federal D-C Power Supplies are powered by Federal longlife Selenium Rectifiers with no expendable parts that demand frequent replacement. Operation is dependable and economical. Federal D-C Power Supplies are conservatively rated. Heavy duty Selenium Rectifiers are able to withstand momentary overloads . . . provide D-C power immediately without heat-up period . . operate quietly and efficiently with practically no maintenance. For prices and information on other Federal standard D-C Power Supplies, write Department E-313.

RATINGS											
FILTERED						UNFILTERED					
	A-C Inpul		D.C Output				A-C Inpul		D.C Output		
Code Number	Volts	Phose	Cysles	Volis	Amps.	Code Number	Volis	Phase	Cycles	Voits	Amps.
FTR 3093-AS	115	1	60	12	3	FTR 3300-DS	115	1.	60	2-32	50
FTR 3128-BS*	115	1	60	22-30	10	FTR 1342-AS	115	1	50/60	6	4
FIR 3246-BS	115	1	60	6	10	FTR 3341-AS	115	1	50/60	28	5
FTR 3138-BS	115	1	60	12	5	FTR 3339-BS	115/230	:	50/60	6-24	18
FTR 3185-AS	115	1	60	12	7.5	FTR 3340-BS	115	1	50/60	5-70	12
*Filtered and regulated						FTR 3352-BS	115	1	50/60	5/10	20/10

Your customers will never think of this wire

..AND THAT'S GOOD!

When your product is internally wired with Rockbestos wire, cable or cord, your customers will probably never see the wire at all. Most likely, they'll never even give it a thought. There's no reason why they should. For Rockbestos' impregnated asbestos insulation is permanent. It won't bake brittle, crack or flow under high temperatures or conductor-heating overloads. It won't carry or support flame. It won't rot or swell from exposure to grease, oil or fumes. And, because of all of these things that it won't do, Rockbestos wire will make your product's name synonymous with dependable performance - will help bring new customers in and old customers back. Write for your copy of Catalog No. 10-F . . today.

TAKE YOUR PICK

G-E Textolite grade No. 11500 was developed to reduce insulation maintenance costs on heavy-duty motors. However, it isn't the only grade of Textolite manufactured. There are more than fifty grades available, and EACH has an INDIVIDUAL COMBINATION of properties.

Some grades excell in heat resistance, some in dielectric strength, others in loss factor. And you need this large assortment to select from if you want to produce your products in the most economical and satisfactory way.

Then, too, these many grades of Textolite are supplied in five different forms. Again you get a choice which can pay you dividends in many ways. Plastics Division, Chemical Department, General Electric Co., Pittsfield, Mass.

GET THE COMPLETE STORY!
Send for the new bulletin G-E TEXTOLITE LAMINATED PLASTICS which lists grades,
properties, fabricating instructions and detailed information about the five forms of Textolite. Fill in and mail the coupon below for your free copy.

PLASTICS DIVISION, CHEMICAL DEPARTMENT

GENERAL ELECTRIC COMPANY (BA-12)
ONE PLASTICS AVE., PITTSFIELD, MASS.
Please send me the new G-E Textolite laminated plastics bulletin. Name

Firm
Address
City
State
GENERAL

AS THAFVISION VOMTAGDS

HIGHER-VOLTAGE ELECTROLYIICS
Many types of Aerovox electrolytics are available to meet the severe-service conditions encountered in television equipment. Especially where temperatures of $85^{\circ} \mathrm{C}$ may be reached in hour-atter-hour use. The Type AF twist-prong base electrolytic here shown is fypical of the Aerovox trend towards higher voltages.

HIGHER-VOLTAGE OIL TUBULARS
Popular Type - 89 midget-can oil tubulars. Ratings increased from 2500 to 6000 v . D.C.W. Capacitances to $.1^{*}$. Higher voltage units with special terminals to provide necessary creepage distance without in: creasing diameter or length. Oil-impregnated paper section. Hermetically-sealed
can. Insulated jacket.

> Center radial mounting strap.

Write for descriptive listings.

- Component performance can make or break this new television industry. Greater capacitor safety factors become imperative. And that is where these new Aerovox capacitors blaze the trail.
Now standard types, they are typical of how Aerovox application engineering anticipates circuit and operational requirements. Yes, regardless of your voltage, temperature and other severe-service conditions, Aerovox can deliver capacitors that will stand the gaff.
- Send us your capacitance problems for engineering collaboration. Let us quote on your capacitance requirements.

FOR RADIO-ELECTRONIC AND INDUSTRIAL APPLICATIONS

MEROVOX CORPORATION, NEW BEDFORD, MASS., U.S.A.
Sales orfices in hli Primgipal-cimes export: 13 E. 40 th St., New York 16 , N. Y.
Cable: ARLAB' In Crisiaz AERDVOX CAMAOA LTO., HAMILTON, ONT.

FASTEN FASTER with American Phillips Screws . . . the way plywood panels are fastened to trailer frames . . . with power drivers. One man takes only 32 minutes to drive 522 screws! That's 50% faster than slotted screws, with half the labor. And there are no corners too close . . no angles too awkward. No costly accidents to workers or their work.

SELL FASTER. . . Buyers of all types of products are learning to recognize this "high sign" of quality construction . . . the American Phillips Screw with the universal cross-recess. Just tell them the whole story of American Phillips strength and vibration-resistance ... and watch sales pick up speed! Write.

The 5655 has three sections: (1) Image, (2) Scanning, (3) Multiplier. The image section contains a semi-transparent photocathode on the inside of the tacs plate, and on this the scene televised is focused by an optical lens system. This causes the photocathode to emit a stream of electrons from each illuminated area (propontional to the light striking the area), and nated area (propontional to the light striking the area), and
these arefocused an one side of the "target" where they produce a charge pa-tern. The opposite side of the target is duce a charge pa-rern. he opposite side of the rarget is in the scanning section. Electrons from the gun are turned back at the target forming a return beam which has been amplitude af the target forming a revurn beam which has been amplitud modulated by deposition of the electrons at the target, in correspond to hichigtts of the whose more posirive areas plier section the plier section, the reaurn beam is directed to a -stage ampine (using secondary amission to emplify electron beam signais). to drive the first stage of the viceo amplifier.

This is the RCA Image Crthicon 5655-super sensitive sye of the television camern. De,eloped priniarily for studia use and applictions employing trififial illumination, it is sereral thes more imnsitive to light at low levels than the fostest motion picture film

Only $15 \mathrm{~V}_{4}^{\prime \prime}$ long, it has over 150 precision-made paits, theny assembled unde microscopes.

These parts must remain unmagnetized by the strong magnetic fields of the focusing and deflection coils that surrcund the tuhe. Magnetized, they would produce fields of theit own, and prevent proper operation.

When the parts are assembled, the glass housing of the tube is sealed. Temperature of the glass during sealing operatio is is reised to over $1600^{\circ} \mathrm{F}$., temperature of the parts to as much as 900°.

Under these conditions of manufacture, the alloy used must not orly be entisely non-magnetic but possess high resistance :o heat and ozidation. The only alloy that most sat sactorily meets these specifications is Nichrome V. That is why 95% of the metal parts in the RCA Image Orthicon 5655 are made of Nichrome V

Driver-Harris manufactures over 85 alloys for the Electronic and Eecritical fields. These are distinguished for giving excepticnally efficient, long and economical service-most part cularly where requirements are unusually towigh. So send us your specifications As with the Imipge Orthic of, it it mos' probotle o D.H elloy will best solve your mannufacturime problemst

Driver-Harris Company HARRISON, NEW JERSEY

BUILT TO MEET YOUR PROCESS REQUIREMENTS

We design, engineer, fabricate and install special High Vacuum process equipment.

In the High Vacuum field National Research Corporation offers you unified, under-one-roof control and responsibility. We not only build equipment, but also undertake development work for others in fields where the unique experience and ability of our own Research Division can be used to your advantage.

If you plan to profit from your own High Vacuum process developments-if you require assistance in developing your processes-you should become acquainted with the National Research Corporation, 70 Memorial Drive,
 Cambridge 42, Massachusetts.

Truarc inverted rings align shafts, save 20 minutes . . . ${ }^{\text {S }} 100 \mathrm{per}$ unit

Production savings and sales advantages result from redesign with four Truarc rings

```
Eliminote two drilling, two tapping operations, and
    the fabrication of two collars and four pins.
- Eliminate two sef screws.
- Cut dis-assembly, re-assembly time 75%.
- Make for closer tolerances.
- Make drive shaft self-aligning: operation by user
    greatly simplified.
- Make more delicate adjustments easier for user.
Streamline entire unit.
TOTAL OVERALL SAVINGS, per unit . . . $1.00
```


Like the Skyview Camera Company of Olmsted Falls, Ohio, re-design with Truarc and you will cut costs and improve your product too. Wherever you use machined collars, nuts, bolts, snap rings, cotter pins
-there's a Truarc ring that does a better job of holding parts together. All Waldes Truarc retaining rings are precision engineered, easy to assemble and dis-assemble, retain circularity always to give you a never-failing grip. They can be used over and over again. Send us your problem. Waldes Truarc engineers will be glad to show how Truarc can help you.

TMERE'S PROFIT FOR YOU IN

THE TIME AND MONEY-SAVING QUALITIES OF

PERMANENT MAGNETS

Several avenues of profit are open to you in Arnold Permanent Magnets. You can improve the performance and overall efficiency of equipment. You can increase production speed, and in many cases reduce both weight and size. And most important, you can maintain these advantages over any length of production run or period of time, because Arnold Permanent Magnets are completely quality-controlled through every step of manufac-ture-from the design board to final test and assembly. You'll find them unvaryingly uniform and reliable in every magnetic and physical sense.

It's our job to help you discover and then fully attain these benefits. Arnold Products are available in all Alnico grades and other types of magnetic materials-in cast or sintered forms, and in any size or shape required. Our engineers are at your command-check with our Chicago headquarters, or with any Allegheny Ludlum branch office.

THE AIRNOID ENGINEERING CO.
 Subsidiary of ALLEGHENY LUDLUM STEEL CORPORATION
 147 East Ontario Street, Chicago 11, Illinois
 Specialists and Leaders in the Design, Engineering and Manufacture of PERMANENT MAGNETS

Defientely in the Pieture

Feed-Thru Ceramicons
3-1,000 MMF

Bulton Mico Condensers 15-6,000 MMF

$15 \mathrm{KV}-.0005 \mathrm{mfd}$. Filter Condenser

Plate Ceramicon 005 and $.01 \mathrm{~m}^{\text {d }}$.

Stand-Off Ceramicons 1 -2,500 MMF

Cinch-Erie Plexicon Tube Socket with 1,000 MMF built in by-pass condensers

Custom Injection Molded Coil and Transformer Forms

Tubular Trimmer 5-5.0 and 1-8 MMF

Tvision receivers have been given careful attention by Erie Resistor engineers in designing condensers for these applications.

The components illustrated above have been correctly designed for efficient operation at high frequencies. The condensers have low series inductance and incorporate specially designed terminals and mounting arrangements. Of special interest is the high voltage Erie Double Cup condenser for power supply
filtering circuits. Rated at 15 KV and having a capacity of .0005 mfd . these units are unusually compact and economical. Plastic coil and transformer forms are custom injection molded to customer's specifications.

We will be glad to send you technical data and samples on any of the condensers shown above. Our engineers are at your service to develop special ceramic or mica condensers for television applications.

[^1]

Cunim AM-FM \& TV TRANSMITTERS are equipped with Adlake Relays

Raytheon Manufacturing Company's am, fM and TV transmitters, including the famous "RF-3" 3-KW FM, "RA-5" 5-KW AM and the new "RTV-500" 500 watt TV and "RTV-5" 5000 watt TV equipment employ Adlake Relays for control.
Silent and chatterless, Adlake Mercury Plunger Type Relays are an integral part of these streamlined transmitters which produce high fidelity modulation with a low noise level.
Besides silent operation, Adlake Relays bring these advantages to any job where relays are used:

> - Hermetically sealed contact mechanism is impervious to dust, dirt and moisture.
> - Liquid mercury-to-mercury contact prevents burning, pitting and sticking.
> - Adlake design armors relays against outside vibration or impact; they are usable on either stationary or fixed equipment.

Whatever your relay needs are, there's an Adlake Relay to do the job. You'll like our free, illustrated folder giving full details. Write for it today to: The Adams \& Westlake Company, 1107 N: Michigan, Elkhart, Indiana.

THE

Adams \& Westlake COMPANY

Est. 1857 - ELKHART, INDIANA - New York • Chicago
Manufacturers of Adlake Hermetically Sealed Mercury
Relays for Timing, Load and Control Circuits

(Above) Relay panel in Raytheon's RF-3A 3-KW FM AMPLIFIER (shown below)

The right material for your job . . . right at your fingertips!

How to Save Production Hours and Dollars on Your Electrical Insulating Jobs . . .

One of the surest ways to reduce unit costs on any job is to be right the first time when selecting materials. Continental-Diamond's complete line of high strength electrical insulating materials makes proper product engineering easy.

There are trained C-D technicians on hand at all times to give you personal help in getting bet-

ter, lower-cost applications. To be sure of being right the first time in the selection of materials, call your nearest C-D office whenever the need arises
C.D HIGH-STRENGTH PLASTICS

DIAMOND FIBRE-Vulcanized Fibre.
VULCOID-Resin Impregnated Fibre.
DILECTO-Laminated Thermosetting Plastic. CELORON-Molded High-Strength Plastic. MICABOND-Bondec Mica Splittings.

BRANCH OFFICES: NEW YORK 17 - CLEVELAND 14 • CHICAGO 11 - SPARTANBURG, S. C. - SALES OFFICES IN PRINCIPAL CITIES WEST COAST REPRESENTATIVE: MARWOOD LTD., SAN FRANCISCO 3 - IN CANADA: DIAMOND STATE FIBRE CO., OF CANADA, LTD., TORONTO 8
(irmlinentral - I) irunerurl
F I B R E
COMPANY

FOR ELECTRONIC APPICATION

USE
 AMERTRAN all the way

IN manufacturing, specialization is as important as it is in medicine or any of the other professions. Since the founding of this organization, we have specialized in the development and manufacture of trans. formers and allied components. Whether your requirements are for large liquidimmersed units or small dry-type transformers, special designs made in our job shop or conventional designs manufactured on our mass production lines, Amertran engineering, experience, and adequate production facilities are at your disposal.
For electronic transformers, Amertran all the way!

AMERTRAN " K " LINE-A ino of oudio ond power transformers and reactors available for mass production requirements. Amertran has the production facility to maintain production schedules.

MODULATION TRANSFORMERS AND REACTORS - Suppied in mathed units for every sizo of transmifter.

"W" DRY TYPE TRANSMITTER COMPONENTS-
Economical self-cooled transformers and reactors - for better rectifier construction and operation.

HERMETICALLY SEALED TRANSFORMERS-

 Highly resistant to moisture, shock, pressure and femperafure variation.

Either tiquid-immersed or compound filled. Liquidimmersed type for high voltages reduces size and weight, with lower corona effect.

Faster, Cheaper

Control

OCFOR THE JOB THAT DEMANDS PRECISE CONTROL OF DRIVE SPEEDS

The textile industry supplies an excellent example of how Westinghouse Electronic Controls are helping to speed production of better products at lower cost.

The industry's trend toward high-speed, high-quality production runs developed a need for closer control of warper drives. The answer was found in Westinghouse Electronic Warper Drive—an adaptation of Mot-O-Trol -which applied the precision of electronics to maintain the rigid but necessarily gentle control over yarn tension and speed.

Many of Mot-O-Trol's unique features contributed to its ability to handle this tough control job. Its ability to provide a wide, stepless range of speed control for d-c motors from alternating-current sources; its ability to start motors, to bring them up to a preset speed smoothly and rapidly, to permit wide changes of speed at any time, to regulate speed under varying loads, to apply dynamic braking for timed stopping, to reverse the motor when necessary.

All of these remarkable Mot-O-Trol functions, plus many others, are the products of electronics. In which of them do you spot an opportunity to boost the effciency of your men and machines . . . to produce faster, better and cheaper? For complete details ask for booklet B-3256. Call your Westinghouse representative or write to Westinghouse Electric Corporation, P. O. Box 868, Pittsburgh 30, Pennsylvania.

Mot-O-Trol provides precise control in a packaged drive that needs no additional equipment. It can be mounted on or built into machines.

A DEPENDABLE NAME IN PLASTICS

INSUROK is a registered trade-mark of The Richardson Company.

When it comes to serving industry through plastics, the names of Richardson and INSUROK command respect and attention in high places.

To our old friends, we offer assurance that past high standards of quality and materials and skilled workmanship will be zealously protected.

To new prospects, we offer an invitationlet us prove our claim that Richardson experience, talents and facilities can mean worthwhile benefits for you in meeting your plastics requirements.

[^2]
WE CAN help you with

Capacitors!

Our experience-in engineering, designing, and building performance into energy-storage and discharge capacitors-may provide just the help you are looking for.

Do you make discharge welding or photographic flash-tube equipment? Radar equipment? Flash beacons, aircraft signalling, or similar devices? Or research tools, from spectroscopes to cyclotrons? We have furnished a large proportion of the capacitors used for all of these applications.

Unusual applications, too-like those listcd below -are a specialty with us. Whatever your problem, let our engincers give you a hand. Apparatus Dept., General Electric Company, Schenectady 5, N. Y.

NEED SQUARE WAVES? Pulse-forming networks can provide them. Networks are used where the normal capacitor discharge wave shape is not suitable and where an impulse must lave definite energy content and duration. The Type E network, produced by General Electric, consists of capacitor and coil sections, adjusted to close tolerances, and hermetically sealed in single metal containers. Built by the thousands for radar, they are now available for commercial use.

OR DO YOU WANT TO TAKE A PICTURE? A maker of flashtube photographic equipment wanted a lighter capacitor for his portable sets. Our designers went to work and came up with just what he desired-and one which he could use, also, for his studio equipment at a considerable saving in priee. (In case yon're interested, this capacitor is rated 14 muf, weighs $21 / 213$, and delivers 43.5 watt-seronds uith 1000 hour service life or is urult-seconds at too hovirs. 1 sed in pairs, they replace a $2 s$ muf-studio capacitor, save in rost too.)

GENERAL (86) ELECTRIC

RADIO • TELEVISION • INDUSTRIAL

Fixed and Variable Resistors • Iron Cores (All standard and special types) - Switches (inexpensive line, slide and rotary-action types) - Sintered Alnico II Permanent Magnets . . . and hundreds of molded iron powder, metal, carbon and graphite products.

> Electronic Components Division

STACKPOLECARBONCOMPANY•ST.MARYS, PA.

the latest great contribution to modern AM broadcasting

The $21 \mathrm{~B} / 21 \mathrm{~L}$ is the finest $5 / 10$ kilowatt AM broadcast transmitter of which Collins engineering and manufacturing skills are capable. No compromise has been made for reasons of economy. Without deviation, our purpose has been to achieve the highest possible quality regardless of cost.

Yet the 21B/21L is competitively priced.

When furnished as the Collins 21 B , this is a five kilowatt transmitter with provision for instantaneous reduction of power to 1,000 watts. It is designed to permit full 100% modulation of the carrier at frequencies between 30 and 10,000 cycles per second. The audio frequency response is constant, plus or minus 1.5 db , within this range.

Featured are utmost reliability, with fine components, conservatively rated; vertical chassis construction, and easy accessibility of components and wiring; precise motor tuning with eye-level metering throughout; adequate air cooling; dependable personnel and circuit protection.

The 21 B may be converted to become the ten kilowatt 21 L by inserting an additional power tube in
a socket already installed, and making a few simple additions in the exciter and power amplifier cabinets. The 10 kw 21 L (pictured above) may be purchased initially.

If you are contemplating the replacement of obsolescent 5 or 10 kw transmitter equipment, or the building of a new station of either of these powers, the very efficient, completely modern Collins 21B/21L should be your first consideration. We will welcome your inquiry for further information.

COLLINS RADIO COMPANY, Cedar Rapids, lowa

Youre
 sure

WHEN IT'S 100\% PRESTO

Pictured here is an all-Presto single channel recording system. Above is the block diagram, worked out for this equipment by Presto engineers.

WHEN YOU NEED recording or transcription equipment you can't go wrong if you make the complete system 100% Presto.
For Presto is the world's foremost manufacturer of recording and transcription equipment and discs. And Presto's experience with countless installations, including all the big ones, will aid you in achieving greater efficiency and trouble-free operation.

The recorder is the 8 DG with direct gear drive. The amplifiers are the $39-\mathrm{B}$ three channel preanp, the 41-A limiter, the $92-\mathrm{A} 60$ watt recording amplifier, and the 89-A monitor.

Multiple channel installations consist of as many duplications of the basic channel as are needed with the addition of switch or patching facilities. When you think of recording, think of Presto.

Paramus, New Jersey
Mailing Address: P.O. Box 500, Hackensack, N. J.
In Canada: Walter P. Downs, Ltd., Dommion Sq. Bldg., Montraal

WHEN THIS NEW

WAS BORN

Indiana's experience brings Better Designs, Lower Costs

Indiana-world's largest exclusive producer of permanent magnets-is the only manufacturer furnishing all commercial grades of permanent magnet alloys. Most commonly used are:

CAST:

Alnico I, II, III, IV, V, VI, and XII; Indalloy; Cunico; Cobalt.
SINTERED:
Alnico II, IV, V; Indalloy; Vectolite. DUCTILE:

Cunico; Cunife I and II; Silmanal. FORMED:

Chrome; Cobalt; Tungsten.
Ask for free Book No. 4-E12-our nex permanent magnet engineering manual. A note on your company letterhead will bring a copy to your desk.

40 YEARS OF BETTER PERMANENT MAGNETS

\star

Recently our engineers, working with those of King-Seeley Corp., helped design an entirely new permanent magnet for a greatly improved speedometer. This Indiana magnet, made of Cunife, weighs one third less than the previous magnet, yet has 30% more energy. It reduces bearing load by 50%, and is 750% more stable-is far more resistant to shock, temperature change, stray magnetic fields. And it costs less.

WE MAY HAVE YOUR ANSWER, TOO

For four decades, the pace-setting design techniques at Indiana have made possible new and better permanent magnets. This "packaged energy" improves performance, adds new functions, saves money in countless different products ... as mechanical force in holding and separating devices . . . for changing electrical energy to mechanical motion and vice versa... for changing the apparent characteristics of materials. Indiana offers you the experience and know-how of more than 30,000 different applications. Let's get our engineers together on your problem. Write today.

SPECIALISTS IN PERMANENT MAGNETS SINCE 1908 PLANTS: VALPARAISO, INDIANA - CHAUNCEY, N. Y.

FM TRANSLATOR General Electric Model XFM-I

of the old G.E. J.F.M-90
Transiafor which was used and enjoyed by tens of thousands of dlseriminating radio listeners.

Covers 88-108 mc range, diol 12 inches long, uses guillotine funing for highest efficiency, high stobility. Designed for ex: port, hos power inputs for 110 to 250 volts, $50 / 60 \mathrm{cy}$. Used in conjunction with good audio section or seporole omplifler will provide best FM listening you ever heord. In ottroctive naturol walnut cabinet - $103 / 4^{\prime \prime}$ high $\times 153 / 4^{\prime \prime}$ wide $\times 113 /{ }^{\prime \prime}$ deep. complete with 8 tubes. Tropic-proof con. struction. Quanfity limited.
Special Price. $\$ 49.50$
TECHMASTER TV KIT
 and aligned RCA frant end, condensers, resistors, punched chassis, oll tubes including kine, complete manual with service notes, oll RCA.......................... $\$ 198.50$

MICROGROOVE

Harvey hos everything in microgroove equipment: motors; pickups; GE and Picker. ing cortridges, both sapphire and diamond; Coltron sopphire; Astotic duol $331 / 3$. 78 crystol arm; Livingstion universol arm, elc. Write to Horvey for oll your wonts in LP.microgroove.

All prices Net, F.O.B., N.Y.C.
Subject to Change Without Notice

Ri:1) Co Colpill lils
103 West 43rd 5t., New York 18, N. Y.

BUSINESS BRIEFS

By W. W. MacDONALD

More About Mobilization: Since last month (Nov., p 64) we have learned that no less than four plans for further mobilizing the electronics industry in preparation for a possible war are being studied in Washington. Two of them, one apparently favored by the military and the other by a majority within the industry, appear to clash in basic principles.

The first envisions placement of contingent contracts involving performance of all the paper-work connected with planning but stopping short of actual additional production. It places the major planning responsibility upon industry but retains the power for direction and policing of the job within government circles. It visualizes use of a great many manufacturers as prime contractors rather than subcontractors.

The second plan revolves around the placement of leaderoperation contracts for pilot quantities of needed military equipment. It places the major planning responsibility upon government but suggests that contracts be distributed by a civilian member of the industry. It favors initial use of some 40 or 50 companies as prime contractors, with other manufacturers serving as subcontractors.

From where we sit it looks like the answer is somewhere between two imperfect plans, both of which have their good and bad points.

It appears unlikely that any plan calling upon manufacturers to do a lot of paper work in peacetime for peanuts will be conducive to action. Some more effective method of sharing the planning load should be possible without appointing either an industry or a government czar. And any proposed limitation of the number of manufacturers who would work directly for government could not be expected to meet with enthusiasm on the banks of the Potomac.

Our leg-men down in the nation's capitol think there will be two and possibly three committees
at work on a compromise before long and so . . . still more on the subject later.

Major Users of industrial electronic indicating, recording and automatic control devices are the petroleum, chemical and public utility industries, in about this order. These three are so receptive, in fact, that we suspect our field is to some extent neglecting others ultimately destined to be as important, or more important, from the standpoint of potential business.

Automatic Electronic Control of batching operations is a job at which electronics shines in many industries. Next major trend, we think, may be automatic control of continuous operations, to which industry must lean more and more in the interest of lowered production costs.

Speaking Of Industrial Gear, Brown Instrument's George Muschamp uses a neat adjective to distinguish highly precise electronic indicating, recording and automatic control apparatus from the simpler mechanical and electrical variety. He calls it "sophisticated" apparatus.

Temporary Tough Sledding for f-m broadcast interests hinted at last month in this column (p 65) has led the FM Association to suggest to the FCC that when holders of construction permits surrender them for one reason or another they should not be permitted to reapply within two years. The Association, realizing that a snowball increases in size only when it continues to roll, wants people to push or get out of the way for those who will.

Speaking Of F-M, Dean Wisleder of Westinghouse has written us an interesting letter in which he says: "So far as $f-m$ is concerned, I would warn anyone who tries to sound a death knell that

EIMAC VVC $\mathbf{8 0 - 2 0}$ in an ultra-compact 4-250A | KW Amplifior.

Consider the advantages
Variable Vacuum Capacitors become the essential component in modern circuitry.

- Extremely compact size reduces equipment bulk. Type VVC 60-20 is less than one-sixth the size of air-dielectric capacitors with similar ratings.

- Structural rigidity eliminates electromechanical vibration.
- Low-torque tuning mechanism.
- Unaffected by dusty or humid atmospheres. Ideal for industrial application.

Capacitance variation is linear with shaft rotation.

- Low temperature coefficient. Negligible change in capacitance due to temperature variance. (.004 mmfd. per degree cent.)

Eimac variable vacuum capacitors are immediately avalable. Ir addition to the type VVC $60-20$ illustrated here, there are types VVC 2 60-20 and VVC4 60-20.

	Capacity	R-F Peak Voltage	MaximumRMS Cuprent
VVC 60-20	10.60 mmf .	20-KV	40 amp .
VYC2-60-20 Parallol Split-stator	20.120 mmf . 5.30 mmf .	$\begin{aligned} & 20-\mathrm{KV} \\ & 40-\mathrm{KV} \end{aligned}$	$\begin{aligned} & 80 \text { amp. } \\ & 40 \text { amp. } \end{aligned}$
VYC4-60-20 Parallol Split-stator	$\begin{aligned} & 40-240 \mathrm{mmf} \text {. } \\ & 10-60 \mathrm{mmf} . \end{aligned}$	$\begin{aligned} & 20 . \mathrm{KV} \\ & 40-\mathrm{KV} \end{aligned}$	$\begin{aligned} & 160 \mathrm{amp} . \\ & 80 \mathrm{amp} . \end{aligned}$

EITEL-MCCULLOUGH, INC.

206 San Mateo Ave., San Bruno, California
Export Agents: Frazar \& Hansen, 301 Clay St., San Francisco, Californid

it is merely overexpanded for the moment. There are several reasons why it will come through with flying colors.
"People will buy $f-m$ and a-m receivers because of vanity if nothing else. In summer daytime, f-m actually renders service at 100 to 150 miles from transmitters where a-m stations are ineffective. Most a-m broadcasters must offer their client $f-m$ too in order to keep up with their competition."

Down in Birmingham an electroencephalograph, or brain-wave recorder, is reported to be picking up programs from local radio stations. Retaliation, no doubt, for the strain placed upon the machine by patients seeking relief from the effects of quiz programs.

C-R Tube Bottleneck may still be present in the television picture next spring but glassmakers are now keenly aware of the market waiting just around the corner and are busting a gut to serve tubemakers. Kimble Glass division of Owens-Illinois tells us, for example, that two years of progress have been telescoped into six months. Machine methods are taking the place of hand work, and 90 percent of the firm's 600 employees have had special training in such methods for the production of 10 and $12 \frac{1}{2}$-inch envelopes.

We've Commented several times on the television installation and servicing problem, and stuck our neck out to the extent of saying that there will come a day in the not-too-distant future when dealers and servicemen will have to do most of it if sales are to keep up with demand. Now we are reminded by a reader that if and when this day comes the flat annual charge idea will probably go out the window.

At This Writing there are 70 brands of television receivers on the market. Statistics concerning the types of sets offered by manufacturers do not necessarily indicate what types the public will buy, and this fact should be carefully noted, but they are of some market significance so we offer
them here for what they're worth.
Models offered by the 70 com panies total 185, broken down as follows:

44%	table
35	console
10	commercial
4	kit
2	custom

List prices average $\$ 673$, ranging from $\$ 59.50$ (kit) to $\$ 2,495$.

A check on optical systems indicates that of the 185 models 88 percent employ direct-view, 10 percent projection and 2 percent mirror-reflected image systems. With respect to c-r tube sizes:

Total number of tubes in the average model offered is 29 , with 11 the smallest and 48 the largest.
Some 51 percent contain no a-m, $\mathrm{f}-\mathrm{m}$ or $\mathrm{s}-\mathrm{w}$ broadcast radio tuners. Of the 185 models:

Record players are included in 72 percent.

Of the available models:

62%	tune
24	13
24	12
6	8
2	11
2	7
2	6
2	5

Two Straws In The Wind within this issue of Electronics indicate that we may be entering an era in which research is made to pay for itself more rapidly than in the past. The first is Waldo Kliever's significant suggestion for selling research ideas to management, sales and production (p 68). The second is the knowledge that Sonotone paid much of the freight on further research in connection with piezoelectric barium titanate by quickly going into production on phonograph pickups (p 94) made of the new ceramic.

Story Of The Month: The trouble with salesmen, says an engineer who has evidently tried without success to put over a technical point, is that when you tell them something it goes in one head and out the other.

Common Carrier Terminal Chassis

Subscriber Coupling Unit

Subscriber Terminal Equipment

The Western Electric M1 Power Line Carrier Telephone System permits telephone service in thousands of farm houses having electric power service but no telephone wire line connections. It will help raise living standards in many rural areas.

Sigma Relays are used for three functions in this equipment, two of which are unusually exacting. By careful cooperative study of each application Sigma was able to work out solutions using highly refined but none the less conventional sensitive relays of standard Sigma design - available at comparatively low cost.

From vending machines to V Bombs specialized relay design plus facility at solving problems involving circuit, relay and function enable Sigma to render valuable service.

SIGMA RELAY TYPES

A.C. - D.C. - POLAR

SENSITIVE - PRECISION - KEYING SINGLE OR MULTIPLE CIRCUIT From 68\$ to $\$ 25.00$ each!

For the past ten years Mallory FP Capacitors have set new standards of dependability. Now new improvements make them more reliable than ever.
(1) New design anode tabs cannot break from vibration.
(2) Ample air space retained for gas expansion at elevated temperatures.
(3) New, staking method betuceen anode and tab permits higher discharge currents.
(4) Improved high surge separator material better at high temperatures.
(5) Unique processing improvements provide still better performance at $85^{\circ} \mathrm{C}$. No voltage derating required by Mallory FP capacitors at this temperature. (Including the 450 V rating.)
(6) Louer tab to terminal contact resistance for sensitive circuits.
(7) Extra heavy rubber seal for high temperature and ripple conditions with venting feature preserved.
(8) Heavier cathode tab for better tab to ring weld, lower resistance and more rugged mechanical construction.
(9) Special etched cathode (all voltuges) reduces loss of cupacity under high ripple conditions, lowers $R F$ impedance and remarkably reduces intersection coupling.
(10) Increased Fl anode ratio of 12 to 1 at 450 V and 15 to I at $150 V$ provides better design factors.

Still cost no more. Mallory FP capacitors have given exceptional performance at prices comparable to ordinary capacitors. These new improvements have all been accomplished withont extra cost to the user.

Yours for the asking!
Send for the Mallory Capacitor Catalog, which contains useful data on all types of Mallory Ca-pacitors-sizes, electrical characteristics, test measurements, mounting hardware.

MALLOR $_{\text {capacitors }}^{\text {mannan }}$
(ELECTROLYTIC, OIL and WAX)

P. R. MALLORY \& CO., Inc., INDIANAPOLIS 6, INDIANA

ELECTRONICS....DONALD G. FINK....Editor....DECEMBER, 1948

CROSS
 talk

- TELAUTO . . . The question of the bandwidth required to transmit intelligence at a given rate is, to judge by its many appearances in this column, a subject on which we're hipped. At any event we were much taken by Bill Tuller's discourse on the weather map and the telautograph, given at a recent communication symposium in Washington. It is customary to transmit weather maps by facsimile, using the familiar line-at-a-time scanning process. But this system ignores the evident fact that the map of the United States stays reasonably constant from day to day. What changes is the position of the isobar contours and associated symbols. Recognizing this fact, we might send the basic map through the mails and employ a telautograph (the gadget commonly seen in stores, banks and railroad stations which transmits handwriting by an electrically-actuated pen) to transmit, handwriting-fashion, the contours and symbols. The facsimile scanning system needs a bandwidth of several hundred cycles. The telautograph, freed from the necessity of transmitting anything but the essential information superimposed on the map, needs a bandwidth of only 15 cycles to do the job at the same speed. Tuller's point is that a transmission system set up to take account of the special characteristics of the information to be transmitted may be much more efficient than one which ignores said characteristics.

A logical extension of this philosophy applies to television. The background of many television scenes remains unchanged for considerable periods, and need not be changed in less time than, say, a quarter of a second. Suppose then that the background could be transmitted separately from the central subject matter. If a storage screen were available to retain the background it could be transmitted at a slow rate, that is, in a narrow band. The major part of the video band might then be reserved for depicting the smaller area comprising the central subject of the scene and the detail of this subject would be correspondingly enhanced. The detail of
the background, being sent at a slow rate, could readily be made to match the hign value possessed by the central subject. This proposal is easily stated, much more difficult to achieve in practice, and its application is limited to scenes having separately delineated subjects and backgrounds. But in the long run it may prove to be a practical method of enhancing the detail of television images.

- BROAD . . . Progress in the design of broadband amplifiers for television, radar and pulse communication is so rapid that, for a change, the engineers are ahead of the demand. When electronic television came along in the early thirties, the tubes of the day permitted amplifying a band no wider than a few megacycles. Then came radar; in 1945 it was news that an amplifier having a bandwidth of 20 megacycles had been achieved. Now comes a new technique, called "distributed amplification" or "wave amplification". Several tubes are used in each stage, the capacitance of each tube being isolated in a separate section of a filter. In this way the output currents of the tubes are added while their capacitances are separated, and a wholly new order of bandwidth becomes possible. In one such amplifier, a bandwidth of 200 mc . with $9-\mathrm{db}$ gain, is achieved in an amplifier using seven 6AK5 tubes in a single stage. Further progress must, in all likelihood, wait until someone finds a use for what is now available.
It is indeed encouraging when the techniques thus outstrip the applications. It gives the system engineers something to think about: a $200-\mathrm{mc}$ amplifier can transmit at one crack all the signals in the prewar frequency spectrum, all point-to-point, marine, mobile services, all standard broadcast, f-m, facsimile, all television, navigation, and amateur signals. Looked at another way, a $200-\mathrm{mc}$ bandwidth can transmit messages at the rate of over a billion words per hour, or a ten word telegram once a day to every man, woman and child on earth. The amplifier exists. Any takers?

Here is an article that is definitely not technical. ELECTRONICS, a technical magazine, is nevertheless proud to present it.

The subject is important to everyone in every manufacturing industry. In a new and fast-changing industry like electronics, a continuing supply of new products is particularly essential. Here, however, as in so many other fields, the lifeline of idea-flow from research through production is being throttled at dozens of points.

The author tells what you can do about it in your own plant.
-THE EDITORS

Selling Research Ideas

An idea born of research is useless unless pushed and passed on by those who come after, right through production of the resulting new or better product. Idea promotion requires convincing facts, good research reports, working models, repeated follow-ups and frequent research-design-sales meetings

By WALDO H. KLIEVER
Director of Research
Minncapolis-Honeywell Regulator Co. Minneapolis, Minn.

THERE ARE THOSE who would say that after research people have done their work it is up to management or someone else to see that its results are used. That would be lovely if it would work. I well remember thinking, when starting out in the business of research, that when something good was developed there would be no doubt about anyone being interested in it. How innocent!

After working on a number of problems I found that while I could develop what appeared to be good workable devices to satisfy the problems that had been assigned to me, everything seemed to end at that point. I would show the working models and everyone would say "How nice" or "That's wonderful," but that was all.

Even the people who had asked for the developments had in the interim become interested in other things and were not inclined to do anything about it.

There I was as helpless as the distinguished visitor trying to make a phone call from the insane
asylum. After failing sadly to get results, he said in desperation to the operator, "Do you know who I am ?" and she sweetly replied, "No, but I know where you are."

Something had to be done. In talking with others and doing considerable reading on the subject, it became obvious that the problem was not unique with me. One man ${ }^{1}$ confirms this as follows: "The research director's job, therefore, is not done when the product has been invented, designed, and proven in theory. He has to sell it, just as much as if he were a private inventor."

The Basic Problem

It is here that we bump into the thing called human nature. People are inclined to be interested in their own ideas; accepting someone else's ideas requires considerable effort, and there is also perhaps a little strain on individual pride. They have inertia; they don't want to be bothered. Whether it is for these or other reasons, it is generally conceded that one of the most
difficult things in the world to sell is an idea.

And so we come face to face with the sales problem in research. Some people say this should be the function of top management. For this reason those who direct research are often included in top management or in meetings with management when decisions about new products are made. However, the director of research, the vice-president in charge of engineering, or someone in a similar position who is very close to the research work must still present the new ideas in such a way that they will appear sufficiently attractive financially and otherwise to promote the necessary interest. He must close the gap between the technical facts and their business significance.

The fact that any management maintains a research organization is evidence that it is interested in new ideas, but it is the right and duty of management to question

[^3]

Regular idea-evaluation meetings are one requirement for acceptance of good new ideas. In this typical Minneapolis Honeywell research department meeting are, left to right: Glen Seidel, administrative engineer: Raymond O. Anderson,
coordinator of research: Waldo H. Kliever, director of research; John E. Haines, vice-president; John W. Magoffin, market research department; George Muschamp, vice-president in charge of engineering of Brown Instrument Division
these ideas and to require proof that they are economically sound.

In looking for solutions to this research-sales problem, one must go all the way back to the origin of the ideas. An idea originally suggested by those who will have to carry on with its future-an idea that fills a real need that is appreciated by everyone-will be accepted much more readily than an idea which enters a compietely new field or replaces devices that have not been a source of extensive troubles.

New ideas may come from the customer, the sales department, managemert, the design engineering department, the research department, as by-products of work on other probiems in research, and from inventors outside of the engineering and research departments.

It is helpful later, when the results of a project are considered for production, if those concerned with passing on it at that time are in at the early stages, provided not too much is promised at that fime. However, the research department
should have the right to carry on some investigations, especially those of a preliminary survey nature, without requiring extensive outside approval. Then, as the idea progresses, it should be reviewed more carefully in the light of technical feasibility, cost and marketability. Ideas that prove unpromising should be eliminated as early as a reliable decision can be made.

The complete path of a good idea may be as follows: (1) Basic research; (2) applied research or development; (3) design engineering; (4) engineering test; (5) methods engineering; (6) production; (7) sales. That is a long and devious route involving many different people, and it is not surprising that it involves transfer problems.

Attitudes to be Recognized

Even the basic attitudes of various groups toward problems will differ. For example, in basic research the objective is information, while in applied research the objective is new products. Companies
differ widely in the amount of basic research they do. Ideas often originate from basic research done in other organizations, including universities. Many companies sponsor basic research in universities or research foundations.

Basic research is very important, but this present study will be more concerned with selling the products of applied research. Applied research has been described ${ }^{2}$ as follows: "The pursuit of a planned program toward a definite practical objective-a preconceived end-result. It takes the results of fundamental or exploratory research and tries to apply them to a specific process, material, or device."

In the design engineering group the objective is still new products, but with more thought to how the new product can be manufactured and made to work reliably under field conditions. The research man is an optimist who takes ideas that everyone says are impossible of execution and shows how they can be made to work. The design engineer is a pessimist who takes ideas

Research reports should be attractive and sifled for easy reading. This means doublespaced typing, liberal use of subheads and a convenient table of contents as in this annual report. Note use of special printed stationery and spiral binding
that everyone feels are ready for production and finds the bugs which might cause later serious difficulties. This division of responsibilities has been defined ${ }^{3}$ as follows: "The research man, if he is to be worth anything, must be able to find the grain of gold in the pan of gravel; the development engineer must be able to see the fly in the ointment. These attitudesthe one trained to look for what's wrong, the other to see the valuable features of a compicte failuremake engineering and researeh complementary to each other, but also miles apart."

What about the attitude of the sales people toward new developments? They will want to know what the device does for the eustomer and how it compares with competition in performance and price. Don't bother them with telling how it works or how it is made.

For convincing management of the worth of the idea, dollar signs must be used, along with other pertinent information.

This diversity of methods of approách is necessary in the selling of research ideas. Know your people.

Quoting again," "There is no part of research more important than sales, and this means, in order of increasing importance, a good article, proper preparation of sales presentation, full knowledge of the financial situation of your customer, knowledge of the peculiaritit's of the personality of those to whom you sell, and most of all, personal contacts."

Transferring Ideas

Having reviewed a research project after preliminary survey, with due regard for marketability of the end products, the project people in applied research proceed with the serious business of producing the best solutions to the problem. Here we must be careful, in our zeal for results, not to restrict the necessary freedom of the people in research.

In general, the research departments will not come up with the kind of device expected; if they do, it is probably a sign that the research was not very thorough. Also. if the research department is alert there may be several possible by-products from the investigation
which often are more important than the original objective. The freedom in applied research, however, is always tempered by the feeling that research is a serious responsibility and that there are general objectives to be kept in mind.

Another characteristic of good research people must be considered. A good research man will always see additional ways to make improvements on ideas and he will insist that he should have a little more time to study this or that, until the development goes on and on without end. When to transfer an idea from research into production design probably constitutes one of the most important problems in research management. Expressed another way, it is the problem of determining the state of perfection which should be required before transfer to the development team.

One procedure is to let the research man continue in his endless quest, with the director of research or the company management reviewing the work periodically. When any development has progressed to a point where it offers sufficient improvement over equipment in current use or in a new field to justify it, and when the device developed appears to be workable and saleable, the available information is extracted from research for conversion into production. We do not wait for the final perfect design, but of ten allow the research to continue on the same problem so that in one or two years we can obtain from it further improvements in products. It is much easier to justify spending money on further work on a project after it is bringing returns.

Requirements for Selling

When the director of research has selected an item to be considered for production he faces the two-fold problem of convincing management and sales that the new product should be manufactured and informing and convincing the production design engineering people that the work done in research is a good basis for the design of a product.

In the sale of research products,
as with other sales work, cersain aids are essential:
(1) Basic facts. This is the most important requirement on the list. It includes not only information about what the device is and what it can do, including test results, but in the final form will also have to include a market analysis, along with cost estimates for manufacture and for design and tooling. The research department may or may not be responsible for the latter, but must certainly be interested to see that such information is available.
(2) Research reports. These should include illustrations, diagrams and complete well-organized information and technical data. Reports are also a useful adjunct to laboratory records, especially in connection with projects not contemplated for immediate production, and they help to clarify the thinking of the research people who write them. It is worth while to make these reports attractive and styled for easy reading. We have a business manager in the research department who makes it his business to see that the reports are written and are complete and comprehensible.
(3) Models. We strongly believe in making up working models because they help to convince skeptical people, especially the design engineers, that something usable is being presented, and make the idea more interesting and understandable. Models also help the research people, in that they give the concrete objective of producing a working model.
(4) Meetings. Most people are overburdened these days with conferences and meetings, but there still is a useful place for them. We believe that in getting together the interested parties and discussing a new product when it leaves research much can be gained. Many questions will be answered and mutual interest stimulated. The meeting may also point up channels for further research which are required or worthwhile.
(5) Field applications. The research department will usually be called upon to try out the idea on various problems in the field. Some of this type of work is good for the
education of research people, for better knowledge of the product and for promoting confidence in the research work. In general, much of this application work in research should be avoided because it can easily grow to demand a considerable part of research time. Besides, it provides a good means of acquainting the production design engineering department with the problem if the application work can be done there.

One thought which must permeate all of the above sales methods is "Be specific". If possible, do not propose three ways for solving a problem and leave it to someone else to make the choice. The research department can generally inform themselves sufficiently well to be in the best position for recommending a definite solution. If research has not progressed to this point, it is better to study the matter further before making the sales presentation. This principle is probably not much different here than it is in any sales work.

Follow-Up

Having presented a new idea and obtained approval for production design, along with work priority assignments by the sales department and the design department where necessary, one could easily feel that now the research department can forget the matter. Such is far from being true. In most cases the matter would die quickly if so neglected, or in any case would take routes which have been shown in research to be blind alleys.

Nobody Likes a Change

"The greatest durability contest in the world is getting a new idea into any factory. It is well if the management understands this and will constitute itself the sales department for the research organization. Otherwise, the hard-boiled men in the factory will put research men out of business in a fortnight.
"When we present a new idea to people, their first instinctive reaction is against it. Nobody likes a change. That is the one great thing you must understand in the psychology of re-search."-Charles F. Kettering

It is never possible to put all the information learned in research on paper. Experience has shown that a close collaboration and followup is needed for a long time after the transfer of an item from research to design. However, during this period the research department will have to be tolerant of changes in the ideas and in the device. Designers are creative workers also and will contribute ideas of their own. If this is not permitted, life becomes uninteresting and unpleasant for them and you wouldn't want that to happen. Unless research people have good reasons to argue with designers that one of the design proposals will lead to trouble, such modifications should be allowed. In general, the changes will be for the better. Incorporating many people's ideas into a product seems to lead to the best end result.

This brings us to some general considerations in the relationship of research with other departments in the company. The marketing of product ideas becomes much easier if the research department is well acquainted with the problems of salesmen, the problems of designers, the problems of field sales people and the problems of management. This might be called personnel relations work by research. It involves a helpful attitude toward other people's problems, rather than competition with these people. It involves instilling in contacts with others a feeling of confidence, rather than a spirit of jealousy or excessive pride.

If these interdepartmental contacts are properly handled, the research department and the director of research will find that others in the company are regularly coming to them with problems. Such contact is not only a helpful condition in guiding research work, but the spirit of it is a necessity for bringing research to that successful goal which includes actual products going out to benefit humanity.

References

(1) J. R. Bichowsky, Industrial Research, Chemical Publishing Co., New York, N. Y., p 56-57.
(2) C. C.'Furnas, Research in Industry, The Macmillan Co., New York, N. Y, p 7 , (3) J. R. Bichowsky, Industrial Research, Chemical Publishing Co., New York, N. Y., p 28.

TELEVISION STATION COSTS

Plans are suggested for a small station to which additional plant and facilities can be added in normal process of growth. Building costs are estimated and figures are given for equipment, beginning with bare essentials. Details show how to realize a maximum return for the investment

By WILLIAM FOSS
Consulting Engineer.
Washington, D. C.

T1 HE installation and operation of a well-equipped television station today runs into astronomical figures when compared with the cost of construction and operation of standard broadcasting stations In the early twenties there were many stations aetually put on the
air for sums so ridiculously low as to seem unbelievable. The writer actually constructed several such stations at costs under $\$ 10,000$, this expenditure being the maximum sum that the owners invested. These same stations and many others like them are now operating

Table I-Initial Studio Equipment Costs

Table II—Costs Including Control Equipment

Remote equipuent.		
Projection room.		31,803
Studio lighting.		3,500
Control room- 1 monitor, synch power supplies		
Equipment. .	\$32,000	
Installation	5,000	
Total.		$\begin{array}{r} 37,000 \\ S 129,053 \end{array}$

successfully, are affiliated with national networks, and have in many instances brought returns to their owners in sums of seven figures.

The television story is entirely different. Construction costs can not be met for less than $\$ 100,000$ and this sum represents a station such as a small town community could support. This size station would be limited by its incomplete equipment to very few hours of service per week and would probably have no studio. It would depend on mobile pickup equipment to televise sports and civic events, with possible additional programs from networks that are now fast growing, and from the projection of films.

In the design of suitable studio and projection facilities for television stations we face problems far more complicated and considerably more costly than those at standard broadcast stations. It is not unusual for a broadcast station to be able to find any number of buildings in average cities that can be made to accommodate the working force and supply studio space without the removal of a single partition. In television broadcasting, however, it is usually necessary either to build a new structure from the ground up or to perform a major operation in

Complete 500-watt television transmitter and control console
the remodeling of an existing building at a cost which is comparatively high.

High Ceiling Necessary

The reason that remodeling a building for studio facilities is usually necessary lies in the fact that the ceiling must be high enough to provide room for a special lighting system which, of course, is not necessary in standard broadcast work. Since a television station consists of two complete and separate transmitters, namely, one for the transmission of the picture (the so-called video plant) and the other a conventional f-m plant, it is also necessary to treat the studio to obtain the proper acoustic effects.

The trend at present seems to indicate that television studios will not be built to accommodate large crowds of spectators since the emphasis is on the pictures being transmitted and these can be seen on adequate monitors or on outside television receivers. The arrangement is advantageous from the financial standpoint because it eliminates the necessity of supplying a finished show place to the public. This article will not attempt to supply in accurate detail either the fin-
ished plans of studios or the exact costs to be met. It is, rather, the intention of the writer to present such plans and costs in general that will stimulate in the mind of the reader ideas necessary to develop concrete plans that fit each individual case.

Tables of costs for equipment alone which will be supplied here-
after indicate the importance of designing in order to make every possible piece of equipment carry its share of the financial load. From these tables it will be noted that a properly equipped pickup truck will cost in excess of $\$ 49,000$. If, for instance, a station is able initially to use the equipment in the truck both for the televising of remote events and for live programs at the studio location, a considerable saving can be made by designing a building so that the truck can be backed up to the studio and the equipment used in the studio with the truck functioning as the control room.

Truck Studio Control

Figure 1 shows such a plan. This plan represents a building so arranged that the shop on the first floor (A) can be used as a garage for the truck, in addition to functioning as a scene dock for props and scenery and a repair shop for general repair and maintenance work. It will also accommodate the truck when used as a control room, the truck being backed up to a large window in the studio when so used. The minimum investment necessary to give continuous service will be that necessary to equip a truck for handling remote programs and for equipping a projection room where films, slides, and other pictures can be televised.

The investment just mentioned

Typical nigh! baseban pickup. Note that remote cameras are semi-permanently mounted on parapet

Table III—Equipment Costs with Studio and Control

Remote equipment .	\$19,750
Projection roons.	31,803
Control room.	37,000
Studio	37,000
Video and audio equipment	\$32,895
Lighting.......	3,500
Treatment.	5,000
Installation	4,000
Total.	45,395 $.8163,948$
\cdots	

does not include the transmitter, antenna, and their associated apparatus nor does it include a master control room where the dispatching, distribution, and main control of the program can be centralized. The transmitters and antennas will be discussed later. In lieu of this control room, simple switching devices may be designed and operated at the transmitter location, or they may be installed at the projection room location.

Table I indicates the equipment costs for the plan shown in Fig. 1, showing the projection room and truck but not including the control room and not including the transmitter and its related equipment.

Figure 1B shows the second floor plan of the same building. The film projection room is so designed that when the studio is to be equipped with its own apparatus a control room then can be built in. In case the whole operation is a consolidated one, the transmitter may also be installed in this presently available space.
Table II also indicates equipment costs for the plan shown in Fig. 1. In this instance the control room is equipped to dispatch and coordinate the operation of the remote equipment, the projection room, and network terminal facilities. However, the cost of equipping the studio is not shown in this table. Studio lighting will be necessary provided a room such as shown in Fig. 1 is used in conjunction with the equipment from a truck. A rough estimate of lighting costs may be obtained by using the cost figures $\$ 4.00$ to $\$ 4.50$ per square foot of studio floor space. A pipe-work grid should be installed on the ceiling for the purpose of hanging the overhead fixtures. This grid should be made up in squares, each
grid not larger than seven feet. Table III indicates equipment costs for the plan shown in Fig. 1 when the studio is so equipped as to operate from the control room,
permitting the use of the remote equipment purely for pickup.

The main drawback with the first plan above described lies in the fact that when the station first goes into operation, the mobile equipment is tied up whenever a live program from the studio is necessary. A further drawback becomes immediately evident when the first studio is equipped. While the building of control equipment into the studio does free the mobile equipment to pick up programs for which it was primarily designed, station operators are still faced with a further serious drawback. This lies in the fact that adjacent or contiguous live

FIG. 1-First (A) and second floor plans (B) for initial construction of a small station
programs cannot be put on from the studio and it will therefore be necessary either to broadcast programs from the projection room or from the mobile equipment while studio scenery is being changed. If the studio is large enough to accommodate more than one scene at a time, the scene may be set up before the series of broadcasts starts and the cameras and associated apparatus may be moved to pick up each scene in succession. However, no scenes can be changed while the studio is on the air because of the noise caused in making such changes.

Figure 2A shows a first floor plan
for the expansion of the same building to accommodate two studios and Fig. 2B shows the second floor plan of this enlarged building. In this plan two completely equipped studios with a master control have been provided in addition to the projection room which is necessary for the station operation from the start. In addition, the shop has been increased in size to accommodate props and scenery to be used in the two studios. The turntable shown installed in Studio A will be discussed separately.

Table IV indicates equipment costs for the plan shown in Fig. 2.

Referring to the total cost as
shown in Table III, it is seen that the cost of equipping a second studio will be an additional $\$ 45,395$ or a total of $\$ 209,343$. This additional investment will furnish a second studio and give the station the necessary flexibility which will

Table IV-Equipment Costs for Plan in Fig. 2

Remote equipment.	\$49,750
Projection room	31,803
Control room.	37,000
Studio A	45,395
Studio B	45,395
Total	\$209,343

FIG. 2-The minimum station shown in Fig. 1, to which has been added additional studio space and more elaborate master control equipment
finally be needed to carry on continuous live programs.

The turntable mentioned above and indicated in Fig. 2 is important to this discussion for two reasons, -first, to create a substantial saving when one studio alone is used; and second, to add additional flexibility resulting in increased facility in the station operation.

The cost of such a table when electrically driven varies from approximately $\$ 8,000$ for a table 25 feet in diameter to approximately $\$ 11,000$ for a 40 -foot table. The wings or partitions segregating the table into three parts may be swung to vary the size of the settings or may be completely removed from the table when a rotating set is desired. The table is planned to be mounted flush with the floor of the studio and so designed that it can be loaded unevenly with a maximum loading of about 50 pounds per square foot.

This plan calls for a shop and scene dock behind the studio in which the main body of the table is located so that work can be done on the sets on the shop side of the table while televising is proceeding in the studio. If the table is to be installed in the studio before the second studio is built, a certain amount of flexibility can be expected with a construction saving of from $\$ 30,000$ to $\$ 40,000$, depending upon the size of the table.

Most manufacturers currently design and construct transmitters of only two sizes, namely the 500 -w

Table V-Transmitting Station Costs

	500-W Transmitter		5.000-W Transmitter Channels Channels	
	Channels	Channels		
	2-6	-13	2-6	7-13
Transmitter	26,500	31,000	82,165	88,200
Spare tubes and parts	3,000	4,000	8,045	9,288
Sural monitor.	1,600	2,000	1.980	2,000
\checkmark isual frequency monitor	675	675	675	, 675
Picture demodulator	650	650	650	650
Waveform demodulator	900	900	900	900
Power supply.	36.5	365	365	365
Adinpter kits.	$\xrightarrow{0}$	20	20	20
laack cabinet	390	390	390	390
Antenna ...	12,000	13,000	12,000	13,000
'Tower, 100 ft	$\cdots, 000$	2,000	2,000	2,000
Transmission line. - lines ft .	500	500	2,000	2,000
Transmitter house	3,500	3,500	7,500	7,500
'Tower lighting	800	800	800	${ }^{8} 800$
Labor....	8,000	8,000	12,000	12,000
Total Contingencies 10%	60,900 6,090	70,800 7	131,490	139,788
Contingencies 10% Grand total.	$\begin{array}{r} 6,090 \\ 66,990 \end{array}$		13,149 144,639	$\begin{array}{r} 13,979 \\ 153,767 \end{array}$

Table VI-Test Equipment List and Costs

Equipment	Remote	Studio	Transmitter
5-in. oscilloscope	\$19.i.00	\$195.00	\$195.00
3 -in. oscilloscope.		550.00	550.00
Square-wave generator		225.00	225.00
Voltohmeter - ${ }^{\text {a }}$ Cesistance bridge	39.50	59.50	59.50
II-v multiplier.	18.75	18.50	39.50 18.75
Audio oscillator.		500.00	18.75 500.00
Distortion and noise analyzer		575.00	500.00 575.00
Video sweep generator		1,000.00	
Wavemeter...		$1,00.00$	38.00
V-t voltmeter	1.50 .00	150.00	150.00
Tube tester................		59.50	59.50
5-in. oscilloscope (Tektronix type) Total.	8169-5	795.00	795.00

or so-called community transmitter and the 5 -kw or metropolitan type. The transmitter may be installed either at the site of the studios or at a remote location which affords the

Typical small-studio control room with audio controls at left, video at right. The program director sits at the desk
radiation system a more favorable location for the purposes of propagating the wave.

Since television channels are located in the very-high-frequency band, the radiated signal is subject to shadowing by obstacles between transmitter and receiver. It is usually necessary, therefore, to take into consideration the possibility of shadows and reflections when selecting a site for the transmitter proper. Simply stated, if you can see it, you can hear it, although service may be rendered beyond the line of sight under some conditions.

Transmitter Costs

In Table V the costs of the transmitters and associated equipment have been set up. This table is approximately correct except that no consideration for the cost of land has been given.

It will be noted that both types of transmitters designed for channels

Mobile field unit that can double as initial control room for the small station. One camera and 7,000 -me relay equipment are mounted on the roof

2 to 6 are less expensive than those designed for channels 7 to 13 . Since the band including channels 2 and 6 represents frequencies from 54 to 88 mc and the band including channels 7 to 13 includes frequencies from 174 to 216 mc it is evident that tube design as well as transmitter design and construction is more expensive at the higher frequencies.

Relay Links

Where the transmitter and studio are situated at remote locations and also in cases where the remote equipment is functioning at sites away from the studio, it is present, general practice to connect these units with relay circuits. Equipment has been developed and is operating successfully on several microwave channels. Notable in this category are circuits on approximately $2,000,4,000$, and 7,000 me.

Since the equipment constructed for the higher frequencies can be manufactured in more compact fashion its high degree of portabi!ity renders it best for remote pickup work. The $7,000-\mathrm{mc}$ equipment is therefore most popular to serve as a truck-to-studio link while in many instances the lower frequencies have been used between studio and transmitter. For the purposes of this paper, an approximate price
of $\$ 10,000$ for each complete link, consisting of a transmitter at the originating point and a receiver at the incoming terminal, has been used.

Testing Equipment

A certair. amount of test equipment with every television installation is an actual must. Operating crews cannot be expected to maintain the apparatus nor can they do the necessary trouble shooting without an adequate complement of this equipment. As stated above, the transmitter is often located at a different site from the studio and the remote equipment needs maintenance and repairs when in the operating location. Table VI lists equipment of this type.

The foregoing indicates the approximate equipment costs that a prospective television station builder may expect to meet but does not include the price of real property either at the studio or that necessary on which to construct the transmitter. It has been estimated, however, that the cost of constructing a building such as that shown in the plans illustrated above will be in the neighborhood of $\$ 66,000$ for the first stage of construction and an additional $\$ 59,000$ for the finished building.

The approximate costs have been
so tabulated, however, that any combination of equipments can be correlated and the resulting costs obtained from the tables. For instance, it is evident that the type of station which can be most inexpensively constructed is one which is equipped to receive network programs only. Thus, by referring to Table II, the control-room item shows an equipment cost of $\$ 32,000$ with an installation cost of $\$ 5,000$, bringing the total to $\$ 37,000$ and from Table V a $500-\mathrm{w}$ transmitter operating on channels $2,3,4,5$; or 6 will cost approximately $\$ 66,900$. If the transmitter and control room are located in the same building, the owner should then be able to construct a station for approximately $\$ 103,990$ and with the additional test equipment shown in Table VI, an additional $\$ 3,205$ will complete the station.

If, however, the prospective owner is considering a well-equipped station with two studios, projection room and remote equipment, Table IV furnishes figures showing a total cost of $\$ 209,343$. Table V for a 5 -kw transmitter operating on channels $7,8,9,10,11,12$, or 13 shows a total of $\$ 153,767$. Such a station will probably be so constructed that the transmitter and studios at different locations and the remote equipment will be supplied with radio relay links, two such circuits costing approximately $\$ 20,000$.

In addition to the items stated above, test equipment in the amount of approximately $\$ 7,500$ will be needed, bringing the total expenditure for equipment installed to approximately $\$ 390,610$. Some few organizations have already gone well beyond this amount in constructing stations but in this paper it has been the intention of the writer to point the way for the beginning of such an operation in a comparatively modest way rather than to describe the more elaborate procedures of the larger companies.

The writer wishes to thank the personnel of the following organizations for their assistance in compiling the data herein: Radio Corp. of America, General Electric Co. Allen B. DuMont Labs., Inc., Television Associates and Lester V. Johnson Associates.

Frequency Stabilization

Rear view of Liebel-Flarsheim model SW. 227 short-wave diathermy unit having FCC type approval. Single tube minimizes maintenance problems. At lower left of sube is plug-in monitor unit

Phantom view of Wavemaster monitor unit, showing differential relay and coil of resonant circuit

PRIOR to the establishment of frequency allocations for shortwave diathermy units, frequencies anywhere in the range from aoout 10 to 60 mc were used by various manufacturers, depending on the type of applicator furnished. Since the therapeutic benefit is due to heat alone, all frequencies are equally effective in the treatment of tissue.

To suppress wasteful use of the frequency spectrum, three bands were assigned by the FCC for medical apparatus, in conformance with those adopted by the International Radiocommunications Conference, as follows:
Band Center Tolerance

	Freq.	
$13.5532-13.5667 \mathrm{mc}$	13.56 mc	6.75 kc
$26.9573-27.2827 \mathrm{mc}$	27.12 mc	162.7 kc
$40.6597-40.7003 \mathrm{mc}$	40.68 mc	20.3

Although there is no limit to the amount of radiation permitted within these bands, harmonic radiation must not exceed 25 microvolts per meter at 1,000 feet.
The $13.56-\mathrm{mc}$ band serves adequately for pads and inductive applicators, but is generally unsatisfactory for air-spaced plate applicators because the associated high reactance requires excessive pa-tient-circuit voltages. The 27.12-

By CARL K. GIERINGER

Chief Engineer
The Liebel-Flarsheim Co. Cincinnati, Ohio
mc band effectively operates all known types of applicators. The 40.68 -mc band is usually unsatisfactory for inductive applicators because of excessive turn-to-turn voltages and resulting high dielectric loss, but is satisfactory for pads and spaced plates.

The wider frequency tolerance of the 27.12 -mc band permits the design of simple self-excited oscillator circuits, obviating the complications and maintenance problems involved in crystal-controlled circuits.

Frequency-Shift Problems

The frequency stability of a selfexcited diathermy oscillator circuit is affected by five major factors: (1) mechanical vibration or displacement o_{\sim}^{F} frequency-determining parts and components; (2) replacement of tubes; (3) replacement of parts; (4) frequency drift due to heating of oscillator circuit components; (5) frequency shifts due to patient-circuit loading and tuning.

Mechanical factors can be elimi-
nated by building strong and sturdy circuit components and fastening them rigidly.

Changes due to tube replacement can be minimized by using a high tank capacitance so that variations in tube interelectrode capacitance will produce only snall frequency changes. Here a limit is quickly reached due to the inefficiency of high- Q tank circuits, hence under the best practical conditions it is reasonable to expect up to a $50-\mathrm{kc}$ shift in either direction due to interchange of tubes of identical make. When tubes of different manufacturers are interchanged, at least three times this shift is sometimes experienced.

Frequency shifts due to circuit heating can run as high as 150 kc , but by proper design this can be limited to 20 kc .

Patient-circuit loading is the bugaboo of all short-wave diathermy design. Applicator and patient-circuit impedances may range from 5 ohms to 150 ohms of resistance and from $+j 2,000$ ohms to $-j 2,000$ ohms of reactance. Variable coupling is therefore necessary to couple a patient circuit efficiently to an oscillator. A coupling for a

of Diathermy Units

Abstract

Analysis of problems involved in building medical diathermy units that stay in FCCallocated frequency band despite movements of patient or replacement of tube, and design of plug-in monitor that stops oscillator and sounds a buzzer when frequency drifts beyond predetermined acceptable limits for any reason

5-ohm load will not transfer enough power for higher-resistance loads; on the other hand, if the coupling is set for the high-resistance load and a low-resistance load is connected, frequency shifts will occur.

Example of Suitable Design

The short-wave diathermy circuit in Fig. 1 was designed to meet all of the above requirements. It employs a single type UE468 oscillator tube operating on 27.12 mc with a power output of 300 watts. Use of one tube minimizes circuit complications and service factors by eliminating such matters as tube balance, excitation adjustments and balance, neutralization, and improper lineup of driver or power amplifier stages.

The Q of the tank circuit on full load is 90 . The maximum frequency shift due to patient-circuit loading is $\pm 50 \mathrm{kc}$ ($\Delta f=$ tank efficiency multiplied by $f / 4 Q$). This holds for the condition of critical coupling, which just loads the circuit to rated full load with the patient circuit tuned to resonance.
The single-ended tank circuit permits use of a high tank capacitance, giving a high ratio of tank capacitance to tube electrode capacitance. This in turn tends to minimize frequency change with interchange of tubes having otherwise tolerable interelectrode capacitance variations.

The output of the generator is adjusted primarily by the variable coupling control. The maximum possible coupling is designed to the critical value corresponding to the highest patient-circuit resistance to
be treated under normal conditions.
The parallel-tuned output circuit, controlled by the tuning capacitor, gives ample tuning range to resonate all types of applicators. Since the main switch is embodied in the coupling control, the operator automatically increases the coupling control from zero coupling each time the unit is turned on. The output of the unit is metered by measuring the difference between the plate and grid currents, to indicate true power independent of patient-circuit tuning for any given load condition.

Frequency shift due to thermal drift is controlled by a bimetallic
temperature compensator. The thermal shift is held to 20 kc , with the greater portion of this shift occurring during the first two minutes of operation. The generator operates well within the FCC limits if the initial frequency is set correctly and the output control is not advanced to a position which grossly overcouples the patient circuit to the oscillator. Incorrect operation is only possible when the output circuit is not tuned to resonance.

Trimmer C_{2} is used to adjust the frequency of the oscillator over a range of $\pm 200 \mathrm{kc}$ from the center frequency. This range is adequate

FIG. 1-Basic circuit of short-wave diathermy unit operating in 27.12-me band and using monitor circuit to stop the oscillator and sound a buzzer when frequency drifts beyond legal limits
to compensate for frequency variations due to change of tubes or other components and mechanical instability.

Frequency Monitor

A monitor circuit insures that the unit will always operate within the band. It consists essentially of a thermally and mechanically stable high-Q resonant circuit which operates a sensitive relay through a rectifier tube. When the circuit is excited the relay completes the cathode circuit of the oscillator.

When the oscillator frequency deviates more than a predetermined amount from 27.12 mc , the voltage across the monitor circuit decreases to the point where the relay opens, interrupting the cathode circuit of the oscillator. At the same time a low-voltage buzzer is energized, notifying the operator immediately of the condition. The monitor circuit (covered in U. S. patent application) is set to allow operation in a band of $\pm 100 \mathrm{kc}$; this is well within the FCC type approval limit of 70 percent of allocated channel width.

The uppermost curve in Fig. 2 illustrates the response of a simple resonant circuit energizing a relay through a rectifier to monitor a frequency band for various values of deviation from the frequency to which the circuit is tuned, expressed in effective resonant-circuit

Q values. When the frequency deviates so that resonant-circuit response falls below the control level the relay will become deenergized. Such a method of control requires that the relay contacts be bridged by an auxiliary switch momentarily in order to start oscillations.

The lower solid curve in Fig. 2 shows that a 15 -percent reduction in r-f excitation results in a 17 -percent reduction in the pass band. This weakness of the simple system can be overcome by the use of a differential relay. One winding is connected to the resonant circuit, and the other winding is connected through a rectifier to a voltage proportional to the high-frequency exciting voltage of the resonant circuit, as in the monitor circuit of Fig. 1. These two windings are connected so their electromagnetic fluxes are adding in the magnetic circuit operating the relay armature.

The dotted curves in Fig. 2 illustrate the characteristics of such a differential circuit. A 15-percent reduction in excitation voltage here results in only a 7 -percent change in frequency band width at the differential relay control level.

Operation of Circuit

When the main power switch in Fig. 1 is turned from off to HOLD, the oscillator tube and the rectifier

FIG. 3-Intensity of radiation of shortwave diathermy on various harmonics when center frequency is 27.32 mc . Unit represented here is well within legal maximum of 25 microvolts per meter at 1,000

[^4]in the monitor circuit warm up. Plate power is not, however, applied to the oscillator tube. During the brief period that the power switch is turned from the HoLD position to the on position an auxiliary switch momentarily applies plate power to the oscillator tube. Oscillations start immediately, and if the frequency is within the operating band the monitor differential relay contacts close and hold the plate power on. If the oscillator frequency is outside the limits, the monitor relay will not hold the plate power on and a buzzer will operate.

Trimmer C_{2} is adjusted by determining the low and high-frequency limits of the monitor and setting the trimmer at a point midway between these two limits. This is normally done after allowing the unit to warm up for two minutes, thus automatically compensating for the frequency shift due to initial heating.

Harmonic Radiation

The reduction of harmonic radiation of short-wave diathermy machines to limits prescribed by FCC allocations requires application of standard methods of shielding and filtering. In actual test it was found that a $40-$ millivolt $135-\mathrm{mc}$ signal applied to the plate applicators would produce a field intensity equal to 25 microvolts per meter at 1,000 feet. This illustrates the degree of suppression required. Even though the actual signal voltage received by the field intensity meter decreases with the higher harmonics, the field intensity, as computed by the induced signal voltage and divided by effective length of the antenna, tends to stay high because the effective length of the antenna decreases directly with wavelength.

Harmonic tests are conducted preferably on open terrain. Field intensity meter readings are taken either 100 or 500 feet distant from the diathermy unit. The diathermy unit is mounted on a rotatable platform which is turned 360 degrees during a given reading. Maximum signals are recorded. The unit is connected to a gasoline-powered a-c generator and is tested with applicators under all conditions. Figure 3 shows typical results of tests performed on production units.

FIG. 2-Solid-line curves give character. istics of simple frequency monitor circuit, while dotted-line curves show how effect of reduction in r-f excitation of diathermy unit is minimized by using differential control in monitor circuit

"

FIG. 1-Typical R-C networks used in tone control for boosting and attenuating audio signals. Taps on attenuation network provide halt the indicated effect

Versatile Tone Control

Abstract

Treble and bass frequencies are independently hoosted or attenuated in steps to provide 121 different response curve combinations for reproduction of speech or music. Gain at 500 -cycle crossover is automatically held constant by switching in cathode followers

THe TONF CONTROL described here originated largely with a desire to compensate for the limitations of recording technicques. With it, treble frequencies can be boosted or suppressed. and bass frequencies can be similalry treated independently, all in small steps.

The bass and treble controls each provide sharp rise or fall starting at 500 cycles or any other crossover frequency chosen. Bass control produces no substantial effect above crossover, and treble control produces no substantial effect below. The rising or falling slope is adjustable in steps of one db per octave up to a maximum of 5 to 7 db per octave. The overall volume level at the crossover frequency is unchanged by applying any bass or treble compensation, or by applying both simultaneously. All frequencydetermining components are resistances or capacitances. All curves flatten off above 10 kc and below 25 cycles.

R-C Networks

Selective frequency boost is achieved by attenuating one group of frequencies and readjusting the overall level with flat amplifiers. The basic R-C networks used for this

By WILLIAM b. LURIE
Machlett Laboratories, Inc. Smingdale, Conu.

purpose are shown in Fig. 1 , along with the networks used primarily for attenuation.
Treble boost (Fig.1A) is obtained with a bass attenuation network having a gradual drop near the crossover and a sharp flattening off at the lower fresuencies. When this curve is slid up the frequency axis until the sharp bend reaches the crossover frequency, it becomes treble boost.
Treble attenuation (Fig. 1B) gives an abrupt drop near the crossover frequency and a smooth flattening off at higher frequencies.

Bass boost (Fig .1 C) is obtained with a treble attenuation network having a gradual drop near the crossover and a sharp flattening off at the higher frequencies. When this curve is in effect slid along the frequency axis until the sharp bend occurs at the crossover frequency, it becomes bass boost.

Bass attenuation (Fig. 1D) gives an abrupt drop near the crossover frequency and a smooth flattening off at lower frequencies.

Any desired crossover frequencr ma" be achieved by selection of resistance and capacitance values for the R-C networks. For example, doubling all indicated resistance values without changing the capacitances will shift the entire curve toward lower frequencies by a factor of two. Doubling all capacitances produces the same effect, while decreasing resistances or capacitances or both shifts the curve bodily toward higher frequencies.

The impedance any network presents may be altered by a factor N, without altering the frequency response curve, by multiplying all resistance values by N and at the same time dividing all capacitances by N.

Complete Circuit

The final tone control circuit is shown in Fig. 2, along with the response curve combinations obtainable and the control switch settings for each. Sirce all the required compensation eannot satisfactorily be provided in variable form in one network section, composite networks consisting of three such sections in tandem or cascade are used for bass and treble attenuation,
with provisions for tapping the composite network at the desired points.

The succeeding sections in any one network increase in impedance by a factor of four or five each time, so that succeeding sections do not furnish loading which would alter the frequency response characteristics of preceding sections.

Because of the nature of the basic bass boost section, the building up of a network from several such sections would add many bulky components. Instead, therefore, a switching arrangement was developed wherein three sections of 1.4 , 2.8 , and $2.8-\mathrm{db}$ boost per octave were combined successively to give in turn 1.4, 2.8, 4.2, 5.6, and 7-db boost per octave. The same system is employed for treble boost, and the network sections again increase in impedance as they are added.

Two six-pole eleven-position
switches are required. The five positions of boost and the five positions of attenuation are wired to one switch for each frequency range, along with a neutral position in which no bass or treble alteration occurs. Continuous control is not provided, but small enough steps make the action gradual as the switches are rotated.

The overall result, then, is to have one switch for bass, giving from 7 db of boost per octave to 5 db of suppression per octave in ten steps, and one switch for treble, giving from $\overline{\mathrm{o}}-\mathrm{db}$ boost per octave to 6 db reduction per octave in ten steps, with no interaction between controls. The words per octave here refer to the number of octaves displacement from 500 cyc ces.

In order to achieve a constant volume level at the crossover frequencr, a stepping gain control was added, ganged to the bass and treble
switches, in the cathode circuits of two cathode followers. In this way, the proper amount of input signal is chosen for each position of the selector switch in order that the gain at 500 cycles may remain constant. In practice, this is easily achieveable within one db if care is taken in selecting components.

Cathode Followers

The cathode followers serve the main purpose of transforming a high-impedance input signal down to a low impedance so that the networks may begin at low impedance and build up as described. It has been found that stray coupling between high-impedance networks can seriously alter the ideal frequency response curves. With capacitance values all larger than 400 micromicrofarads, a small unintended coupling capacitance (on a switch wafer, for example) will not pro-

FIG. 2-Complete tone control system. When inserted in an audio amplifier, its overall gain is zero at the 500 -cycle crossover frequency. The inset tables give the positions of the contact arms of the two six-pole eleven-position control switches to provide the indicated bass and treble control curves. Treble curves were taken with bass control at B6 (neutral), and bass curves with treble control at T6
duce a noticeable effect on the tone.
Amplification must be provided (not necessarily within the tone control) in order to re-establish the original volume level. At the same time, it is advisable to amplify and then again translorm down to low impedance between the bass and treble controls. This serves the added purposes of isolating the bass and treble components electrically and keeping either from operating at too low a voltage level. All these networks are bound to have insertion loss at any frequency, and a total of 40 db of attenuation at 60 or 120 cycles (as provided by bass suppression and treble hoost, before re-establishment of the 500 -cycle level) could push the signal into the heater-to-cathode hum roltage level.

Amplifier Design

Choice of tubes for this tone control prored somewhat rexing. The 6SL7 twin high-mu triode would have been most conrenient, but even a 6SL7W proved to be usually too microphonic, and always too rich in hum introduced through the heater circuit. The 6SN7 does not have enough gain; the 6SC7 has only one external cathode lead. The 6SF5 high-mu triode was found to be arailable and free from hum in a sufficient number, and so this type was decided upon.

In the amplifier stages, cathode resistors were left unbypassed to make the neutral amplification curve as flat as possible, at the sacrifice of some gain. A total of 12 db more of gain may be obtained by suitable bypassing of these two resistors. All plate supply circuits must be decoupled as shown, and all blocking capacitors must be large enough so that low frequencies are not attenuated.

The input signal level must be low enough so that. after boosting, neither the bass nor the treble signal will overload either level-restoring amplifier. A gain control is therefore provided directly at the input to the tone control. This is not intencled as a main gain control for the entire control and program amplifier combination, but as an auxiliary which may be set according to the maximum level of the incoming signal.

In commercial recording, com-

FIG. 3-Methed used for tesiing individual R.C networks and complete tone control system
pression takes place before the mechanical limitations of recording techniques produce their tone-modifying elfects. Therefore, the tone control should be used before a volume expander. This also lessens the danger of overloading the amplifiers in the tone control.

Construction and Testing

All part: were selected, using a resistance bridge and a capacitance bridge, from stock in RMA sizes and stock capacitors. In many cases resistance values were changed slightly from nominal values shown in order to achiere a smooth consistent family of curves.

Assembly may be along lines conventional for low-level audio circuits. Compactness was achieved by wiring virtually all the resistors and capacitors on the two switches before installing the switches on the chassie. The tone control with its two switches, four tubes, a spare seiected 6SF5 tube and a 3 -tube a-m tuner were assembled on a 9×11-inch chassis, the audio amplifier and power supply being remote.

Checking Response Curves

A testing method was evolved for this type of work, which eliminated disturbing effects due to such factors as voltmeter frequency response, loading, signal generator variations, and distortion. As shown in Fig. 3, an audio oscillator with load resistor was fed to the input of the tone control, across which an electronic voltmeter was placed. The linear db scale on the Ballantine voltmeters simplified measurements since all data could be obtained directly in decibels and plotted immediately; any odd points
could be immediately investigated.
Each network was tested individually, after which the entire tone control was tested as a unit.

The output from the last 6SF5 was transformed down to low impedance in an auxiliary cathode follower (6 J 5) and another voltmeter was placed across the cathode follower cathode resistor. The oscillator was set for 500 cycles, its output set for midscale (10 db) on the imput monitor meter, and the input gain control adjusted for midscale (10 db) on the output meter, on the 1 volt scale.

Precautions

Any change in oscillator output as frequency wat changed was eliminated by always adjusting the oscillator output control so that the imput meter read 10 db . A series of measurements was taken by setting the frefuency, setting the oscillator output, and recording the output reading in db as the treble or bass control was varied throughout its range. The tone control net effect is the output reading in db minus 10.

Great care must be taken in planning this type of measurement since it is easy to overlook a cable lumped capacitance, which will change heyond recognition an otherwise desirable curve. It is also advisable to monitor, on a good oscilloscope or harmonic aralyzer, the andio output from the tone control, to avoid recording false readings due to overloading and consequent waveform distortion.

The author wishes to express appreciation to Dr. Hugh F. Gingerich. to whom credit for the basic network design is due.

Power Āmplifier

for the Citizens Transmitter

Construction details and circuitry of a two-stage power amplifier for use in conjunction with the transmitter described in November 1947 Electrovics. Simplified design of cavity resonators and mounts permits duplication of the unit with the use of hand tools only. No machining is necessary

By WALTER C. HOLLIS

Jroject Ensfineer

Part V

THE UNIT illustrated is designed to be added to the Electronics Citizens transmitter to provide the higher power needed for covering greater distance and more reliable communication. With it, the quar-ter-watt output of the mobile transmitter is increased to 10 watts, a
total gain of 16 db . Although intended primarily for fixed station operation, where a conventionai $115-$ rolt power line is available, the input requirements are sufficiently low as to permit mobile operation from a vibrator or dynamotor power supply.

The power amplifier consists of two stages of class-C grounded-grid amplification employing type 2C43 tubes. The complete circuit diagram is shown in Fig. 1.

The first stage is operated single ended and is driven through a
type-N panel jack, J_{1}. Loop L_{1} is a short length of tubing which approximately resonates out the grid-to-cathode capacitance of V_{1}. A wire shielded within the tubing provides one connection for the heater voltage and the other is returned to ground through an internal connection in V_{1}. Capacitors C_{1} and C_{2} are button mica types that maintain both filament connections and the three cathode d-c connections at the same r-f potential. The cathode r-f connection is provided through a built-in capacitor between the shell and cathode of the 2C43. Cathode resistor R_{1} develops the required grid bias and serves as overload protection for the tube in case of drive failure.

Coupling

The output tank circuit is of the transmission-line type and consists of a length of short-circuited transmission line, L_{2}, resonating with the yrid-to-plate capacitance of V_{1}, and a variable capacitor, C_{4}, located part way up the line. The resonant circuit thus formed is shunt fed through a pi filter consisting of C_{3}, C_{5} and the inductance of the length of wire connecting these capacitors. Output from the first stage is fed to the second stage by means of an adjustable tap on L_{2} through a length of transmission line, T_{1}.

The second stage consists of two 2 C 43 tubes, V_{3} and V_{3}, operated in push-pull. Tubing L_{3} and L_{4} are similar to and serve the same purpose as L_{1}. Capacitors C_{8}, C_{7}, C_{8} and C_{0} have the same function as C_{1} and

FIG. 1-Complete circuit of the two stages of the power amplifier
C_{2}. Resistors R_{2} and R_{3} provide grid bias and overload protection. The cathodes of V_{2} and V_{3} are driven by the output of V_{1} through transmission line T_{5}. Amplifier V_{2} is driven directly and V_{3} is driven through an additional half-wave line, T_{ϱ}, which serves as a phase inverter. This is one form of the balance-to-unbalance transformer (balun).

The output tank circuit consists of a length of short-circuited parallel transmission line, L_{i}, resonated by the grid-to-plate capacitance of V_{2} and V_{3} and a butterfly capacitor located part way up the line. The resonant circuit thus formed is shunt fed through pi filters consisting of $C_{11}, C_{12}, C_{13}, C_{14}$ and their respective connecting leads. The output of this stage is coupled out through J_{2} by means of coupling loop L_{8}.

Construction Details

As shown in the accompanying photographs, the two stages of amplification are assembled within a sheet-metal shield box $7 \frac{5}{18} \times 6{ }_{18}^{18} \mathrm{x}$ $4{ }_{16}$ inches, consisting of two Lshaped flanged parts and two covers.
The shield box is divided into four compartments by three partitions. One compartment each is used for the input cathode circuit of V_{1}, output resonant circuit of V_{1}, input cathode circuits of V_{2} and V_{3}, and output resonant circuit of V_{2} and V_{3}. All parts for the shield box are made of $1 / 32$-inch sheet brass and held together by 4-40 binding-head screws.

The layouts for the two L-shaped flanged parts are shown in detail

FIG. 2-Layout of two L-shaped shields that form the metal cabinet. All dimensions are given in inches

FIG. 3-Ground-plane partitions

Single-ended input stage at right uses components at left and mounts with output stage to form the metal cabinet
in Fig. 2. Two partitions, which serve as ground planes, are shown in Fig. 3. The smaller partition, which shields the input of the first stage from the input of the second stage, is shown in Fig. 4. The two line assemblies are detailed in Fig. 5 and 6. Figure 5 shows assembly details of the input amplifier line

FIG. 4-Small partition to separate the stages

FIG. 5-Resonarat-line assembly of input amplifier
assembly. Figure 6 omits these details as they were identical. Assembly is done exclusively with soft solder. Details of the covers are shown in Fig. 7. "rwo are required and screening is soldered over each opening on the inside surface. After all parts for the box are made, tapped holes on the flanges are spotted from the covers. Figure 8 shows all other details.

The gricl fingers shown in Fig. 8 are centered and soft soldered oveithe holes in the ground planes (Fig. 3). Thes should be soldered on the side opposite the flange with the fingers protruding. Fingers similar to these may be purchased from James Millen Mfg. Co. as part No.
33446. Only the middle size is used. After all metal parts are made, they may be silver plated for improved conductivity, as was done with the model.

Assembly

All metal parts are held together by 4-40 screvs and lock-washers. In addition to the parts called for in Figures 1 io 8, the following are required: four feed-through terminals, such as Vitroseal Corp. Terminal No. 1901-9LHT; about 18 inches of shielded wire, such as Precision Tubings's No. 20 (10/30) wire in silver-plated copper shields, 0.1495 O.D. $x 0.011$ wall thickness; three Millen trpe 33008 steatite

FIG. 6-Outpui amplitier resznant-lire cssembly as shown pictorially at top of following page

Components and shields of the push-pull output stage, left, form the assembled unit at right, half of the cabinet
octal sockets; six 6-822 fillister head screws. 1 inches long; about 18 inches RG-5/U casle; and one UG-18/T plug.

The shielded wire is soldered to the chassis and cathode moint as shown in the photographs to form $L_{1}, L_{\text {, and }} L_{1}$, respectively. The inner wire supplies the filaments of V_{1}, I_{1}, and Y Fikment and cathode connections are made through an octal socket.

The cathode bypass capacitors and bias resistor are mounted on the socket as shown in the photographs. The suter rim of each button mica capacitor is soldered to terminals $B, 5$. and 8 of the socket and one is stacked above the other. The lug of the lower capacitor is soldered to terminal 2 , which is connected to terminal 1. providing a ground return to the shell of the 2 C 43 . The lug of the upper capacitor solders to terminal 7 which connects to the filament lead. The bias

FIG. 7-Copr recreening is soldered over the o,enires of the covers

FiG. 8 Small parts recuired are plate caps, grid fingers. supports, spacers, tuning clips and cathode mounts
resistors span terminals 1 and 5 .
The resonant lines are assembled as shown in Fig. 5. The GE 1422 supports are secured to the brass tubing by means of 4-40 set screws. The purpose of the support is to take all stress ofl the fragile bution nica capacitors. The rest of the assembly is readily completed by referring to the photographs.

The balun, T_{2}, is an 8 -inch length of $\mathrm{RG}-5 / \mathrm{U}$ cable with the inner conductors soldered to the cathode mounts of Γ_{a} and $V_{: 3}$. One side of the outer shield is connected to the shield of transmission line T_{1}. The inner conductor of T_{1} also terminates on the cathode mount of V_{5} Line T^{\prime} is a 6 -inch length of RG-5/U cable terminated in a CG-18/じ plug.

The first stage showed a power gain of 10 db with a driving power of watt. and all output of 2.5 watts. The plate input was 22 ma at 500 volts. The second stage showed a gain of 6 db with an output of 10 wates. The input was 30 watts, rie'ding a plate efficiency of 33 percent. If lower power is desired, the first stage may be used alone.

EIILhogifaphy

Fllewthice smonors Citizens Radio
 W. C. H. $1 \mathrm{li} \mathrm{s}, \mathrm{T}$ ansuitter for the Citizens Ratio, Sersive. Rilecthonics, p 84, 중 $194=$
IV. E. Sa nuxtsum. Field Tests for Citizell binll. Etictrovics, p !2, Jan. $19+8$. I. C. Hoili:-, Receiver fort the Citizens Rarlon Sewine diectron!cs, p 80. Mar. 1:14.
Howard J Rewlud Antemas ior Citizens Radie, Butctrovics, 1196. May 1948. Willian E. Iture Citizents Band Trans-

Complete timer chassis. The relay is mounted anderneath

By SIDNEY WALD

Aviation Equipment Engineering
MC'\& Victor Division Camalen. New Jersey

AWIDE variety of modern industrial jobs require accurate timing. Control of current duration in welding and timing of exposure in high-frequency heating and photographic enlargement are but a few possible applications.

Electronically operated timing circuits almost universally employ a combination of resistance and capacitance, wherein the measured interval is the time required for the capacitor to reach some predetermined voltage. While the relationship between the charge or discharge time and $R C$ product is predictable and accurate the practical embodiment of this statement usually results in the introduction of other circuit variables such as tube electrode potentials, aging and loss of calibration through tube replacement.
The electronic timer to be de scribed eliminates these sources of error while retaining simplicity.

The formula which governs the discharge of a capacitance through a resistance is

$$
v=V_{0 \epsilon^{-t / R C}}
$$

where $v=$ voltage across the capacitor after time t seconds
$V_{0}=$ initial voltage across the capacitor
$C=$ capactance in $\mu \mathrm{f}$
$R=$ resistanee in megohns
$\epsilon=2.715$
If we permit the capacitor to dis-

Precision Interval Timer

High accuracy of timing intervals from 0.01 to 100 seconds for industrial control applications is provided by permitting a capacitor to discharge through a voltage source of reversed polarity

charge to the point where $v=$ $(1 / n) V_{0}$ we have

$$
\begin{aligned}
& \frac{1}{n}\left(I_{n}\right)=l_{n \epsilon-t} R C \\
& \text { or } \epsilon^{-t} / R C=1 / n
\end{aligned}
$$

Thus for a given R and C it always takes the same time to discharge the capacitor to a given fraction of the initial voltage. Note that this time is independent of the value of V_{0}.

Modified Circuit

By the simple expedient of discharging the capacitor through a voltage source of reversed polarity, it is possible to make $v=0$ when the ratio $1 / n=1 / 2$. This type of discharge is shown in Fig. 1. Making use of these facts in Eq. 1 results in the following

$$
\begin{align*}
& \epsilon^{-t / R C}=1 / 2 \tag{2}\\
& \log \epsilon 1 / 2=-t / R C \\
& \text { from which } 1=0.603 R C \tag{:3}
\end{align*}
$$

Thus, after $0.693 R C$ second, the voltage across the capacitor will be zero regardless of the initial voltage V_{0}.

In the circuit of Fig. 2, a miniature thyratron fires when its grid voltage passes through zero. A relay in the plate circuit pulls in and either energizes or interrupts a load circuit, depending on the contact arrangement. To repeat the cycle, the thyratron plate current is momentarily interrupted. This action permits the negative grid to regain control, holding off conduction until the capacitor discharge curve again passes through zero.
When the device is first connected
to the a-c line, the $4-$ ef timing capacitor, C_{t}, is in a discharged state and consequently the thyratron fires as soon as the plate voltage derived from the 6AL5 power supply builds up. This action causes the plate circuit relay to pull in and C_{t} charges to 200 volts negative, with respect to the cathode of the 2D21. The grid of the latter, being permanently connected to C_{1}, likewise goes 200 volts negative. The thyratron remains in a conducting state, since one property of gas-filled tubes is the loss of control by the grid once the gas ionizes.
The circuit is now ready for the initiation of a timing cycle. It is accomplished by momentarily interrupting the continuity of the plate circuit. When the toggle switch marked Recycle is thrown to either position, the plate circuit is interrupted for a period equal to the transit time of the switch element. For the ordinary toggle switch, this may amount to a few milliseconds.

The tube is thus extinguished, the relay is de-energized and the highly negative grid regains control. At the same time, the normally closed contacts on the relay change the circuit so that the timing capacitor starts to discharge through the decade resistor (marked $\times 1$ and $\times 10$) and through the power supply. The action of the discharge circuit is clearly shown in Fig. 1.

When the potential across the capacitor reaches about 2 volts, the thyratron fires and the relay pulls in and remains that way until the

FIG. 1-Discharge of RC circuit

FIG. 2-Stable timer circuit provides intervals repetitive to 0.75 -percent accuracy
circuit is again recycled. If a load, such as photographic enlarging lamp is connected in series with the a-c line and another pair of normally closed contacts on the relay, the light will go on for the precise period of time determined by the setting of the resistor decade switches.

Accuracy

The accuracy of the timing interval which may be obtained with this circuit depends on two principal factors, slope of the discharge curve near the firing potential of the thyratron and tolerance of the timing resistors and capacitor. Both of these are not only controllable but highly stable.

The value of the slope of the discharge curve at the firing point can be shown to be $V_{0} / R C$ volts per second where V_{0} is initial voltage across the capacitor, R is given in megohms and C in microfarads.

To ascertain the timing error due to variation in firing potential of the tube, assume a maximum grid voltage drift of plus or minus 1 volt.

For a timing interval of $1 \mathrm{sec}-$ ond, $R C=1 / 0.693$ or $1.44 ; V_{\mathrm{o}} / R C$ $=200 / 1.44=139$ rolts per second.

A more useful concept is the number of seconds per volt. Thus, $1 / 139=0.0072$ second per volt. For the assumed variation in firing potential, we have a timing error of ± 0.0072 second. Since we were considering an interval of one second, this is equivalent to an error of ± 0.72 percent.

For a timing interval of 100 sec-
onds, we have an inverse rate of 0.72 second per volt and again the error is $\frac{0 . \pi 2 \times 100}{100}= \pm 0.72$ percent.

This shows that regardless of the timing interval, the percent error due to small variations in critical grid potential is fixed and, for most purposes, insignificant.

Resistance and capacitance tolerances affect the accuracy of timing directly since the measured interval is directly proportional to $R C$. If we consider equal tolerances on the capacitance and resistance, then the timed interval $t=k R(1 \pm p) C$ ($1 \pm p$) where $p=$ percent tolerance and $k=0.693$. This leads to the relationship, $t=k[R C \pm R C$ $\left.(2 p)+R C p^{2}\right]$.

For tolerances up to 10 percent, the second order term may be disregarded with the result that the resulting interval is in error by double the percent tolerance on either R or C. Thus, to insure one-percent accuracy, one must use half-percent resistors and capacitor.

An interesting case of cancellation occurs when the tolerance of one component is on the high side and that of the other component is equally on the low side. Then $t=$ $k R C\left(1-p^{2}\right)=k\left[R C-R C p^{2}\right\rfloor$.

For example, if the resistance is 10 percent high and the capacitance 10 percent low, the product error is 1 percent low. For 20 -percent components, the timing error would be on the low side by only 4 percent.

The present design will give elec-
tronically timed intervals which are repetitive t_{0} an accuracy of at least 0.75 percent and absolute within about 5 percent, from 1 second to 110 seconds in 1 -second increments. By making use of the relationship, $t=0.693 R C$ and using suitable values of R and C, it is possible to extend the timing range considerably below and somewhat above that given. The plate circuit relay operate time limits the shortest possible timing operation. With ordinary relays, it is possible to go down to 0.01 second. There are two limiting conditions for measuring long intervals. One is the necessity for extremeiy large $R C$ values and the other the need for a steep discharge curve at the firing point.

Maximum Time Interval

With 400 volts on the plate of the 2D21, a $10-\mathrm{ff}$ timing capacitor and a discharge resistance of 43.3 megohms, a maximum of 5 minutes might be successfully attained. It is believed, however, that a mechanical timer of some type would be inherently more suitable for such comparatively long intervals. The difficulties involved in procuring and maintaining extremely high stable $R C$ are well known and in spite of recent advances in insulation and hermetic sealing techniques, it is well to avoid such circuitry wherever possible.

Credit is due J. S. Russo, also of Aviation Equipment Engineering, who was instrumental in the development of this electronic timer.

Television REMOTE VIEWERS

By VIM Zeluff
Associate Editor
HimCTIONICS

THE ADVENT of television has brought unusual desires to many set owners like the author. One of these, the desire for a larger screen, has not been found too important after the first year of operation. More confning have been the limitations imposed by having only one picture tube in the home. This tends to involve constant attendance in the living room when duty, homework, mealtime and other activities require presence in other rooms away from the picture tube.

In answer to this second desire, three different remote viewers have been devised to provide video programs in other rooms. These viewers permit occasional monitoring of the evening programs while engaged in other tasks and also permit a large number of people to be entertained in several groups of convenient size. Having two or more screens for larger groups eliminates the confusion of assembling all available chairs in one room.

Independent Seven-Inch Viewer

The television receiver itself contains a seven-inen tube requiring electrostatic focus and deflection. For the first remote viewer, similar video and deflection circuits were assembled to form the unit shown in the block diagram of Fig. 1. This unit is an independent viewer that requires only a video signal of about two volts for picture operation. It contains cathode-coupled multivibrators for both vertical and horizontal oscillators, deflection amplifiers, a sync separator and, in the interests of economy, a singlestage video amplifier. For the same reason, d-c restoration is accom-

Independent viewer for attachment to video amplifier of any receiver. A second chassis, not shown, contains the low-voltage power supply, audio amplifier and loudspeaker

FIG. 1-Independert remote viewer contains its own sync-separation and deflection oscillators and is fed from the cathode of the video amplifier stace o! any receiver
plished by utilizing the current through the grid resistor of the video amplifier tube.

A!l unterminated coaxial cable is used to carry the video signal to the remote viewers. A cathode follower was installed at the receiver for feeding the video signal at low output impedance to the cable.

It was considered desirable to investigate the possible design of simpler remote viewers. Here sim-
plification of cireuit connections and minimizing of changes in the receiver were indicated.

Design Simplification

Elimination of the extra tube for the cathode follower was desirable and found feasible. This was accomplished by inserting a 500-ohm resistor in the cathode circuit of the receiver's videt amplifier and feeding the voltage developed

Cathode loading of a video amplifier stage in a receiver permits feeding two different types of picture-tube repeaters. By the same method, a third type, a simple slave repeater, can be fed from one of the viewers or from a receiver having electrostatic deflection

Complete slave viewer and audio channel. The electrostatic independent viewer or the receiver is used as a master unit

Ten-inch independent viewer constructed on a prepunched chassis. Only the video cable and audio line are needed for operation of this unil
across it to the remote viewers. The normal plate load circuit of the video amplifier was left unchanged. The final circuit is shown in Fig. 2. Only slight loss of video voltage to the receiver picture tube resulted from the dual output loading, and this was readily compensated by adjustment of the i-f gain control used as a contrast control.

The video signal has been fed through various types of cable, in-
cluding RG8U, RG59U, micrcphone cable and even 300 -ohm flat transmission line. All of the shielded types proved satisfactory in lengths up to 100 feet. Distances greater than this would not risually be encountered in the average home and would probably require a terminated line to eliminate standing waves at the highest frequency.

The independent viewer can be connected to any receiver at a point
where a positive video signal of the proper voltage is available. If it is necessary to use a negative signal, the input can be made to the cathode of the remote's video stage.

The circuits of several receiver models available show an unbypassed cathode resistor in one of the video amplifier stages. From this point, these sets can be connected to remotes with only a possible addition of a signal divider if the rideo level is too high.

The first remote viewer included its own sound channel, using the simple infercarrier system, for demodulating the $\mathrm{f}-\mathrm{m}$ signal produced at 4.5 megacycles by the transmitter. This required four tubes and was found to be an unnecessary luxury. A single audio stage is used in the viewers illustrated. Each of these is fed by an audio line from the receiver.

An alternative would be to eliminate the audio tube and connect loudspeaker voice coils to the audio line with low-impedance pads for individual control of audio level at each viewer. The system shown was adopted because of simplicity in circuit arrangement, as well as because it allows any remote viewer. to be operated at a higher sound level than the receiver.

The picture controls of the independent viewer are essentially the same as those in a conventional receiver. Width, height, brightness, focus, vertical and horizontal frequency and centering controls are provided. Sufficient variation of contrast is provided by a 100 -ohm rheostat in the cathode circuit of the video amplifier.

Simplified Seven-Inch Viewer

Cathode loading suggested a means of designing a slave remote unit in which there would be no

FIG. 3-Complete circuit of slave viewer. Three 35 -foot sections of RG59U carry the video signal and vertical and horizontal deflection voltages. A separate line carries the audio signal
need for a sync separator, vertical oscillator or horizontal oscillator. The complete circuit of a slave remote is shown in Fig. 3.

The two 6SN7 tubes are operated as two-tube paraphrase vertical and horizontal deflection amplifiers feeding the appropriate plates of the cathode-ray tube. Sawtooth pulses for the two amplifiers are supplied from the cathode circuits of the deflection amplifiers

FIG. 2-Low-impedance output for re. mote viewers is obtained from the cathode load resistor of the video amplifier
in the receiver (or from the independent master remote).

The values shown in the schematic provide a raster whose corners just touch the periphery of the cathode-ray tube screen in the slave remote when the width and height controls of the master unit are adjusted for that condition. Different types of picture tubes that operate at higher or lower voltage would require slightly different sweep voltages to fill the screen. To minimize changes in the original receiver, it is best to vary only the values of components in the slave unit. In operation, the size of the slave picture varies directly with change in size of the master unit.

Four controls are provided on the front panel of the slave viewer. These are focus, contrast, brightness and audio gain. The vertical and horizontal centering controls are mounted at the rear of the chassis.
Figure 4 shows the connections of the cables to the deflection amplifiers in the receiver. Most com-
mercial receivers have similar circuit arrangements of the deflection amplifiers. The cathode circuit of the first vertical amplifier usually contains a resistor that can be utilized as the load feed to the remote amplifier.

Usually the horizontal amplifier has the tube cathodes grounded, and a resistor is inserted as the cathode load. The values shown were found optimum for the par-

FIG. 4-Changes in receiver circuits to provide sawtooth output for the deflection circuits in the slave viewer
ticular receiver; others that use 6 SL 7 tubes will probably require a different value.

In some receiver designs, the second tube of the paraphase may have a cathode resistor which can be used without change. Since this tube is handling the opposite phase of the first, the slave viewer would then produce a mirror image of the picture. Reversing the deflection plate connections to the coupling capacitors of the slave unit will then give the proper image at the remote.

Deluxe Ten-Inch Viewer

It was felt that a larger and perhaps brighter picture unit was the next step. This need was quite adequately met by the General Electric 10 FP 4 picture tube, and an inde-
pendent electromagnetic remote viewer using it was constructed. The circuit of this unit is shown in Fig. 5.

The blocking oscillator transformers and focus and deflection coils are RCA components and their circuits are the ones recommended for these parts, although the tube line-up is different from that employed in the RCA receivers.

Like the independent seven-inch viewer, the ten-inch remote contains a single-stage combined video amplifier and d-c restorer. Sync pulses are taken from the video cable by the 6SK7 sync separator at the left in the schematic diagram. Some misgriving was felt initially at the use of this simple grid-leak biased pentode circuit, but it has proven quite satisfactory.

The focus coil is arranged in the positive low-voltage line for convenience in mounting the filter capacitors. The plate current requirement of all tubes in the viewer is 150 milliamperes.

If the audio stage (not shown) is omitted, the values of the resistors shunting the focus coil may need to be changed and a bleeder resistor may be necessary in the power supply to keep the current through the coil sufficient for focusing.

Damping resistor R can be composed of a nixed resistor of 5,000 ohms and a rheostat of 3,000 ohms. Less than 5,000 ohms causes the picture to fold back on itself at the left side. A value upward from 5,000 ohms controls trace linearity of the left side of the picture.

FIG. 5-Complete circuit of ten-inch independent remote viewer with electromagnetic deflection and focus

By L. GRANT HECTOR

Vice President and Director
Research and Engineering

and
 H. W. KOREN

Senior Engineer Physical-Chemical Section Sonotone Research Laboratory Sonotone Corporation, Elmsford, N. Y

Several years ago, an investigation was begun in these laboratories of newly developed high dielectric materials. Potential use in capacitors for hearing aids was envisioned. As a result of this study it was predicted that some of the materials might show piezodielectric properties while under the influence of a direct-current polarizing field. The junior author, with the assistance of Joseph Crownover, then with this company, made an experimental study of the prediction. This work disclosed that such piezodielectric properties did exist and, furthermore, that permanent polarization remained, giving some of these materials permanent piezoelectric properties.

The application of such materials to numerous types of transducers such as microphones, vibration and pressure detectors, frequency-control units, modulation units and phonograph pickups was at once indicated. A project covering these and other related items of development was started. To make this project self-supporting it was decided to exploit the use of the material in a phonograph pickup cartridge at the start. A part of the general research was concerned with an investigation of various materials which showed the piezoelectric property from the point of view of picking out a material that represented the best combination of sensitivity, freedom from temperature variation and ease of handling. The material finally chosen was barium titanate in the form of a ceramic.

Properties of Barium Titanate

The property of permanent piezoelectricity for the materials studied occurs at temperatures below the Curie point. The Curie point corresponds to a maximum point in the dielectric properties of the material,

To test each cartridge, it is placed on a vibrating platform which is driven in frequency across the audio spectrum. Oscilloscope and meter show pickup response

Ceramic

For the case of pure barium titanate this temperature is approximately 120 C . Sensitivity of the material shows negligibie change between -70 and +70 C . The material is also independent of humidity effects. In addition to these properties of permanence, the material also lends itself to a sym. metrical construction which contributes to the flatness of frequency response of a transducer. This property, in combination with pe:manence under varying conditions of temperature and moistrure, makes it an ideal material for use in phonograph pickups.

Pickup Characteristics

A phonograph pickup cartridge was developed which gives a nominal output of 0.75 : volt at 1,000
cycles per second on a standard test record. The construction is such as to permit this pickup to be made for the low-cost market in spite of its excellence in performance and durability, The standard cartridge originally produced carries a permanent sapphire needle with a tip of 0.0027 -inch radius. The compliance of the device is sufficiently hisl to pernit a tracking weight of onl: 22 grams for use on $78-\mathrm{rpm}$ vecords. IThis cartridge has been used in large quantities in phonographs marketed by Sears Roebuck $\&$ Company for considerably mare then a veay under the trade name Suntronic. Pickups are marketed directly by the Sonotone Corporation under the trade name Titone.)

The ceramic material is cut in narrow strips, the sides of which

Parts of the ceramic pickup for 78 -rpm records are shown in their order of assembly. The sensitive element of the pickup is formed by the two ceramic strips that are soldered to the armature. Terminal strips and cashions hold it in shell

Phonograph Pickup

Two synthetic barium titanate slats are monnted between three electrodes and then made piezoelectric by applying high voltage to form a pickup that is unaffected by humidity or normal temperatures. The artificial piezoelectric is generally applicable as a transducer
are covered with a silver frit. Two such pieces are faitened by soldering to the opposite sides of a thin metal armature. One end of the armature is clamped in the case. forming a hinge. To the other end is soldered a small metal arm carrying the sapphire needle. Plastic pads on either side of the assembly act as lateral dampers and control the compliance. Practically, there is an optimum thickness of the barium titanate ceramic which is a compromise between a thin strip for high capacitance, high compliance
and low maxs on the one hand and a thick strip for ease in handling and freedom from dielectric breakdown because of effects of surface rougliness during polarizing on the other hand. Theoretically, thin strips would be best as there would then be more strain energy stored in them to produce the piezoelectric voltage.

Compliance, Inertia and Damping

At low frequencies, compliance (the reciprocal of stiffness and the mechanical analog of capacitance)
is of primary importance. The ratio of the distance from the center of effective force of the plastic dampers to the hinge and from the needie tip to the hinge forms a step-down lever so that large motions at small force (high compliance) on the needle produce less motion but large force (low compliance) on the ceramic element. This arrangement is necessary, the compliance of the titanate structure being too low to drive directly.

In designing a pickup, one wants a high needlepoint compliance for

Frequency response of pickup for 78 -rpm records is substantially flat at low frequencies despite smalk size of sensitive element because of its high dielectric constant
tracking at low frequencies, but in general the higher the compliance, the lower the sensitivity. The needle is therefore mounted on a short extension to give a reasonably high compliance. This extension is also used to give very high vertical compliance to provide freedom from surface noise and to lessen vertical shock. The proportioning of inertia (inductance), compliance (capacitance) and damping (resistance) is such as to give good transient response, which is required for clear reproduction of speech and music.

High-frequency response is provided by coupling the $7,000-\mathrm{cps}$ needle-arm mode with that of the lowest mode of the system, which occurs at $2,000 \mathrm{cps}$. The provision of sufficient damping in the plastic pads smooths the resonances due to these modes to provide the response shown in the diagram.

Of great importance for proper tracking at high frequencies is the value of the effective mass of the pickup at the needle point. This mass is measured rather than calculated because of the many uncertainties and assumptions required in a system of distributed parameters. The measurement is made by observing the deviation in frequency, produced by the loading introduced by the pickup needle, of a reed driven electromagnetically. An inertia of four milligrams was measured at $10,000 \mathrm{cps}$.

The production pickup for 78 rpm records, tested on the $1,000-\mathrm{cps}$ band of a standard test record, gives an open circuit output of 0.75 volt; it has a lateral compliance of $0.5 \times 10^{-6} \mathrm{~cm}$ per dyne or better. The active material in the pickup has an effective dielectric constant
of 1,200 , giving a total internal electrical capacitance of about 900 upf. The internal generator voltage is directly proportional to the needle excursion amplitude plus a lift above $5,000 \mathrm{cps}$ due to the effect described above. For nominal performance the pickup should work into a load resistance of one megohm.

A pickup for microgroove records, with a 0.001 -inch radius needle tip and a tracking weight of 6 grams using the same materials, develops 0.25 volt at $1,000 \mathrm{cps}$ on a standard test record. This 33 훙 rpm pickup has a compliance of $0.75 \times 10^{-8} \mathrm{~cm}$ per dyne. Models have also been made of a dual cartridge for playing both 78 and $33^{1}-$ rpm records.

Manufacture of the Pickup

In describing the design and response of the pickup, its general construction was outlined. The accompanying labeled parts-view photograph indicates the construction of the pickup for 78 -rpm records. The barium titanate used in the sensitive element is in the same class as that used commercially in ceramic capacitors, although the purer it is the better. Strips for the cartridge are cut from silverfrit coated sheets and soldersweated onto the metal support. The metal wets the ceramic at high temperature and, in cooling, contracts more than it, thus putting the ceramic strips under longitudinal compression. The titanate is brittle, but by thus placing it under precompression, the assembled element can be handled safely during production and is negligibly subject to damage from rough handling in use.

The ceramic is then polarin applying high voltages to trodes. Polarization takes a-raction of an hour, the exact time de pending on the voltage used. ever, some combinations of \sim materials are very sluggish, even taking days to polarize.) Inasmuch as the barium titanate breaks aown above approximately 100 volts per mil the charging voltage is limited by breakdown, although for rapid production the highest safe voltage is desirable.

After the units are polarized, they are tested for sensitivity. The pickup is then assembled and finally tested for response. In some production items a sampling technique can be used to test for quality, especially if a limited number of variables affect the final performance. However, in such production items as pickups where overall response is a function of every variable in the unit, sampling is inadequate; quality control must be maintained by checking each unit for its response. Efficient operation of the production line depends, in part, on a practically automatic means of testing each assembled pickup.

Barium titanate ceramic is a polycrystalline aggregate with a high dielectric constant. Other well known materials with comparable piezoelectric properties are.Rochelle salt and ammonium dihydrogen phosphate. These latter materials are used in the form of single crystals. It would not ordinarily be expected that strong piezoelectric properties would be observed in polycrystalline aggregates of random orientation. The fact that a strong effect is observed in barium titanate ceramic may be explained on the assumption that the material exists in the form of tran-sitional-type crystals intermediate between the ionic and valence types. It appears to be possible in this type of structure to orient the domains by means of an applied polarizing field.

The project in which the above work was accomplished is now being expanded to include a study of piezoelectric properties of single crystals of barium titanate and in their potential applications to other transducer problems.

To obtain dense, nonporous slabs of barium titanate from which highly sensitive synthetic piezoelectrics cen be made, the temperature of this special kiln in which the material is fired is held constant to one part in a thousand

New Synthetic Piezoelectric Material

Pure barium titanate, fired into a ceramic, can have piezoelectric properties induced into it permanently by applying a direct-current polarizing field. The design considerations for transflucer elements made with the synthetic material, its properties and production are described

By G. N. HOWATT, JOSEPH W. CROWNOVER and ABRAHAM DRAMETZ
 Viep Jrosidfat Jirretor wheserreh Resprerph bingineer

BARIUM TITANATE has been studied extensively recentiy because of its high dielectric constant and piezoelectric properties.' It is a heterogeneous, candomly oriented polycrystalline, dense ceramic.

While ihis material has been used for several years as a high constant dielectric, in recent months it has attracted considerable attention for use in such piezoelectric transducers as microphones and phonograph pickups. In both these applications, a double-slabbed element is strained in benter fashion so that a mechanical lever advantage is gained. This article describes the bases of these appli-
cations and the method for making the material piezoelectric".

Size of Transducer

In fabricating transducer elements of the size used in micro-
phones and phonograph pickups, two ceramic sheets of the desired size are ظonded together, such as by so!dering, after which leads are attached. These barium titanate ceramic e ements, after being sub-

APPLICATION AND MATERIAL

The preceding article described the application of a new material to phonograph pickups. This article describes the material itself in greater detail. Together, they tell an interesting story.

Barium titanate, studied during the war, was found to have a remarkably high dielectric constant so it was produced as a substitute tor mica in capacitors. Later a way was found to make it piezoelectric.

With the resumption of peace-time research, the properties of this material were further studied, and ultimate use in transducers of many kinds seems likely,
jected to high electric fields, exhibit induced piezoelectric properties.

The thickness to which the ceramic is extruded is determined by the practical optimum thickness of the transducer element, which has been found to be 0.010 inch, a compromise of low compliance on the one hand and voltage breakdown strength due to corona on the other hand. That such elements can have good frequency response is illustrated in Fig. 1A. Here the calculated midband and low-frequency responses are given for several microphone elements feeding through a 400 -p. f cable to a 5 -megohm load. The curves, calculated on the basis of the equivalert circuit included in Fig. 1A, are given for elements of five different widths, indicated by their capacitances.

Changing the width of the element has two effects upon the response. First, an increase in width decreases the longitudinal stresses in the material and hence the midband response is decreased. Secondly, increasing the width of the element has the effect of increasing the series capacitance and thus increasing the flatness of response at the low frequencies. To illustrate this point, note that the 1.600 -p.p. f unit has the smoothest overall response, going down to half power (0.7 volt) at 17 cps . But this flatness is qained at the sacrifice of the midband level.

If the width of the unit is too small, not only is the low-frequency response sacrificed, but the midband response drops as well. This is illustrated by the curve of the $200-$ f unit in Fig. 1A. In Fig. 2 the midband response of an element is plotted as a function of its capacitance (width) for several cable loadin""s. From these graphs, we can expect the 400 -נ, f element to give the best results.

While the curver of Fig. 1A and Fig. 2 are calculated, actual tests of the frequency-response characteristics on microphone and Glennite pickup elements in Astatic housings have been made and the results, as indicated in Fig. 1B and 1 C , are comparable.

Induced Piezoelectricity

The ceramic is made piezoelectric, after it is fabricated into the
transducer element, by applying a polarizing potential.

The limiting factor on the usable charging potential is the dielectric strength of the titanate material. The breakdown voltage was found to be approximately 100 volts per mil, but when corona is completely eliminated, breakdown strengths approximating 200 volts per mil are obtained. A much smaller charging potential is capable of producing almost the same degree of polarization when exerted over a longer period.

The time delay for polarization to take place and the saturation can be understood from the nature of the polarizing action. Initially, individual cubic crystals are twinned within themselves (optical axes of different domains of a crystal are at 90 degrees to each other). When the polarizing potential is applied, the domains of one orientation grow gradually at the expense of the others so that, finally, the crystal approaches a single domain. This growth of one domain and shrinkage of the other can be seen with a microscope, using polarized light. Because in polycrystalline ceramic materials the orientation of some crystals may not favor the growth of one domain at the expense of the other, not all the crystals will contribute to the overall piezoelectric effect. It is interesting to observe that a single crystal of barium titanate that has been polarized has a sensitivity one order higher than does Rochelle salt.

Figure 3A shows the dielectric constant and $\tan \delta$ of the material versus temperature. It will be noted that the dielectric constant is quite uniform through the normal temperature range. Figure 3B shows the piezoelectric modulus (sensitivity) over the temperature range from -60 to +140 C . There is a drop in sensitivity at low temperature (not shown) due to the lowering of the dielectric constant. The piezoelectric effect is lost if the material is heated above the Curie point, represented by the peak in the dielectric constant shown in Fig. 3A. The peak occurs at about $248 \mathrm{~F},(120 \mathrm{C})$, therefore the maximum practical operating temperature has been found to be

FIG. 1-(A) Capacitance of ceramic element affects theoretical frequency response, but if the optimum thickness and area of ceramic are used, the measured responses of pickups (B) and microphones (C) made from it are uniform

FIE. 2-For maximum midband response, the capacitance of the piezoelectric ceramic element should be made equal to that of its connecting cable

212 F , which leaves some margin.
The manner in which the relative piezoelectric sensitivity is affected by charging time is shown in Fig. 4 for a bender-type element at various charging potential gradients. The sensitivity of elements is easily determined by observing its hysteresis loop on an oscilloscope. ${ }^{3}$

Physics of the Phenomena

No complete theory has been advanced to explain the phenomenon of an induced piezoelectric effect. However, there does appear to be a close resemblance between the ability to produce the magnetic effects in ferromagnetic substances and these phenomena; that is, there exists small regions in which dipoles can be oriented in the same direc-

FIG. 3-Characieristies of piezoelectric ceramic are (A) dielectric constant, loss tangent and (B) sensitivity. Another type of ceramic shows nonlinear capacitance effects (C) illusirating the versatility of these new materials

FIG. 4-Saturaied polarization is seached sooner with higher potential gradients, but even small voltages polarize the material ultimately
tion under the influence of strong electric fields and these regions retain an electric moment alter the externally applied field is removed.
Like all piezoelectrics, electrical charges can be generated in the sensitized barium titanate on the application of mechanical stress. However, the features which distinguish the piezoelectric ceramic material from the natural piezoelectrics are: (1) the piezoelectric effect is induced, (2) oriented cuts of the piezoelectric ceramic are not required because the material is polycrystalline and random in distribution, while in the normally accepted material, oriented cuts of single crystals are used, (3) the induced piezoelectric effect can be removed and reinduced
repeatedly with no discernible deterioration of the material, (4) oppositely sensitized adjoining regions may lie within a single strip of ceramic, and (5) it does not absorb moisture.

The piezoelectric effect, due to hydrostatic pressure, has been measured and found to be on the order of $100 \quad 10^{-5}$ esu per dyne.

If this geatral phenomenon exhibited by the material can be considered as conforming to properties of certain piezoelectric materials. it means that the piezoelectric ceramic material will exhibit primary prroelectric effects. This would place a limitation on the use of barium titanate in high power mechano-electric transducers, because application of high alternating potentials would heat the ceramic, possibly above its Curie temperature, in which event the induced piezoelectric effect would be lost. However, it can be used for low-powered devices, such as tweeters.

Producing the Ceramic

As in all ceramics, control of the composition of the raw material is highly important. However, for piezoelectric purposes this alone is insufficient. Several steps must be taken to remedy slight variations of impurities in the raw material. The necessity of processing barium titanate into thin sheets has called for a new ceramic method.

The raw materials are intimately blended by severe agitation and grinding with the rehicles and binders. The mixed suspension is then placed under vacuum to eliminate entrapped gases. which tend to lower the density and dielectric strength of materials made by typical methods.

The treated suspension is next spread evenly on a moving belt where it is dried and then removed in sheet form resembling paper. The sheets are then punched to a convenient size and are placed on highly pure ceramic tile for firing.

Firing of the ware is a step where extreme control must be maintained to obtain high-quality ceramics of uniform characteristics economically. It has been found necessary to design and build a special tumnel kiln where tempera-
tures between 2,400 and $2,500 \mathrm{~F}$ can be maintained within $\pm 3 \mathrm{~F}$.

The fired ware is then silver coated using ceramic fired-on silver. Control at this point must be maintained to apply the correct electrode thickness properly. Ceramic sheets are then cut by an abrasive wheel into the sizes required for piezoelectric appications.

It is well fo note that this process can be adapted to the fabrication of capacitors and other dielectrics. Sheets from 0.003 to 0.020 inch thick can be processed up to 16 square inches in area.

An additional ceramic of considerable interest, which is not piezoelectric at room temperature, is one having a high voltage coefficient of capacitance: Fig. 3C gives its capacitance versus voltage as well as its capacitance versus temperature. This ceramic material could facilitate the construction of a sweep-frequencr generator. The frequencs of an oscillator can be changed by applying biasing voltages to the ceramic capacitor. It has been found that a varying biasing potential can be conveniently used to modulate an oscillator. An inexpensive sweep-frequency generator for television testing purposes could be easily made with it. Thus it can be anticipated that ceramics will play an increasingly important mart in the electronic induatre:

References

(1) Shephird Roberts, Dielectric and Piowelectric Properties of Barium Titanate, Phys, Req.. p 800, June 1947. Observed anonalous polarization effects in harium titanate at temperatures below the Culie point are attributed to hysteresis and remannoice. it temperatures greatly below the "irie point, no anomalies are observed.
(2) G. Howatt, R. B. Breckenridge and J. ir Browniow, Falirication of Thin Cerami. Sheets for Calacitors, Jour. Am. Crrmir Soc., P 237 Aug. 1 , 1947. Apparatus procedure and results of extruding, drying and firing thin sheets of barium titamate are clescribed.
(8) Alexasuder de Bretteville. Jr., Oscillngraph Sudy of Dielceric Properties of Barium Titanate, Jour. of Am. Ceramic vor. p 303. Nov. $19+6$. See also Sawyer and Tower. Phys. Rew.. p 269, 35. 1930 .
(4) H. T. Donley, Barium Titanate and Barium Strontium 'litanate Resonetors, $R^{2} C 1$ Reviris. 218, June, 1948 . From measurements of polarized ceramies vibrating as tesonators normally to the directiom of polirization and radio-frequency fields. it is fonnd that these ceramies have Q's of about 80 and higher, and large emperature criffficients of frequency of a sout one part in $\div 00$ per degree C at room temperature.
(3) B. F. Bauer, Piezoelectric Ce ramis. Fniq. Dept. Radio News. P 3, Aus. 1948 . Comparisons are made of Rochelle salt, ammonium phosphate and larium titanate and of pickups made from them. A further comparison of piezoelectrics was griven by Hans Jaffe, Properties of Filectromechanical Ce

Discusses several types and their adaptability to portable applications. Describes system found to be best suited for such applications and gives curves showing typical operation under normal operating conditions

By ALEXANDER THOMAS

Tracerlab, Inc
Bostom, Mass.

DURING the past decade, a number of battery-operated lightweight power supplies for use with Geiger-Muller counters operating between 800 and 1,500 volts have been described, and data on their performance characteristics have been recorded. Where light weight has been the prime consideration, as for example, in cosmic-ray measuring equipment sent aloft in balloons, specially designed batteries are often required. These are of such small size that they are usually exhausted in the few hours required for a test.

For applications involving field service work, it is desirable that standard batteries be used. They must be light in weight but capable of supplying the equipment for several hours per day with intermittent use over a period of several months.

Metering

For all work with power supplies for G-M tubes, it is usually desirable to have a direct and fairly accurate indication of the voltage. In this way, the voltage may be checked with the data supplied by the manufacturer to insure that the operating point of the tube is on the Geiger platean or level portion of the counter characteristic.

One of the simplest ways to obtain accurate voltage indication is to insert a sensitive meter in series with an accurately known bleeder resistance across the high-voltage output. With a high-voltage source of low internal resistance, such as a battery, the resistance and the meter may be switched out of the cir-

FIG. 1-Circuit of portable 900 -volt power supply with adjustable output voltage
cuit except when the voltage is measured. With sources of high internal resistance, such as in portable electronic $h-v$ supplies, the load regulation is poor and the bleeder should be in the circuit at all times during operation. The meter, however, when not being used as a voltage indicator, may be switched for use elsewhere in the apparatus, as, for example, for indicating the integrated counting rate in an amplifier circuit from the G-XI tube.
For the sake of ruggedness, a meter drawing 50 , a a full scale appears to be desirable. With highvoltage sources of high internal resistance, the use of a 50 - мa meter is also preferable to a 20 -! a meter because of the improvement in regulation with variable G-M tube loads.
The need for metering the high voltage and its consequent ramifications, particularly when used in circuits of high internal resistance, presents a further problem, the efficiency of power transformation. In the sense that the bleeder power is useful, in that it makes possible
a necessary voltage indication, the output power may now be considered the sum of the power dissipated in the bleeder, meter, and G-M tube circuit. The power expended in the meter and G-M tube circuit is regligible compared with the power dissipated in the bleeder. A bleeder current of 50 ua at 1,500 volts represents a power output of 75 milliwatts, a requirement which has a direct bearing on the battery size for the desired life. It also points to the need for good power transformation efficiency.

For example, suppose that four midget 67 -volt batteries, each weighing 12 oz ., are arranged in series-parallel to deliver 135 volts at 2.5 ma for a desired useful life of 325 hours. Suppose that at this battery input a voltage-multiplying circuit has been found that will deliver 50 at at 1,500 volts. The efficiency or ratio of power output to power input is 22.2 percent. If the efficiency were 44.4 percent, the battery weight could be reduced from 3 lb to $1 \frac{1}{2} \mathrm{lb}$.

Midget batteries are now available up to 300 volts (Eveready No. 433). A high-voltage supply consisting of a multiple of 300 -volt units has much in its favor. The units are fairly compact and extremely simple to install. The life is essentially the shelf life when used with normal G-M counter currents of less than 1 ga. Even when counting at a rate of 250,000 counts per minute, the current drawn by a small G-M tube is seldom more than 3 , ua, which is still a negligible drain. Because of the low internal resistance, the metering may be done intermittently; hence there is no metering drain during operation. Disadvantages include lack of voltage variability, changes in voltage with battery age, and higher weight and replacement cost than that of some electronic circuit substitutes.

Charged Capacitors

Instead of using batteries, the possibility of storing a charge in a capacitor might be considered. Prior to taking the equipment into the field, a capacitor is charged to the desired operating voltage. Suppose that the total load and leakage current is 1 u.a and the permissible voltage drop over 3 hours anticipated field use is 100 volts, and the G-M tube has a useful p'ateau 100 volts wide. The required capacitance is the ratio of change in charge to change in voltage ΔV. Then $C=$ $i t / \Delta V$ where i is the current and t is the time. Substituting the values from the above example, a capacity of approximately $108 \mu \mathrm{f}$ is required.

A single voltage unit might be arranged to charge a number of capacitors in parallel and discharge them in series, thus building up the voltage to the desired value. The best method proposed has been to connect the capacitors in series, and charge each one successively by switching the battery voltage with a pair of commutators mounted on a rotating shaft. The shaft may be spring driven or motor driven. Because of the inevitable losses in
switching, the resulting voltage is not an integral multiple of the battery voltage and will, of course, vary as the battery ages. This calls for voltage metering. By suitable choice of shaft speed, number of commutator sections, and capacitor values, the percent ripple and the internal resistance can be made low and the metering circuit may be removed except when a voltage reading is required.

If a battery-powered electric motor is used to drive the commutator shaft, the problem of the weight of this battery in reation to its useful life enters in. The smallest electric motor is rated at $1 / 2,000 \mathrm{~h}-\mathrm{p}$ or 373 milliwatts. The battery supplying this motor for 325 hours intermittent service weighs almost 3 lb .

For sake of comparison with other systems, the efficiency is computed when the voltage is being metered (when there is appreciable output power). Assuming a power transformation factor for the voltage-multiplying circuit of 75 percent, and as before, that the device is supplying 50 ra at 1,500 volts, the efficiency will be 15.85 percent.

At 900 -volt operation, the efficiency is only 6.6 percent. The difficulty of adjusting the voltage and the relatively high power requirements of the motor make this system a doubtful solution to the problem.

Vibrators

Considerable interest is being shown among commercial and governmental agencies in the development of small high-voltage low-power devices employing mechanically vibrating reeds. These vibrator:s normally operate from a battery supplying $1 \frac{1}{2}$ to 6 volts. The high voltage is obtained by the rapid collapse of the magnetic field produced in a transformer supplied by the same battery. The voltage is readily control'ed by a series variable resistor in the low impedance side of the transformer.

One type of vibrator supply is reported to deliver $50 \mu \mathrm{a}$ at 1,100 volts with an input drain of 250 ma at 3 volts. A battery delivering this inpat intermittently for 325 hours weighs 5 lb 10 oz . The power transformation efficiency is 7.34 percent.

Vibrator-type power supplies for

TABLE I-Comparison of Portable High-Voltage Power Supplies

Type	Limitations for Pertable Use
Straight Battery Operation (Using Eveready 300 -volt midget batteries)	No voltage variability. Voltage changes with battery age. Heavy. Replarement cost high
Charged Capacitor (Large capacitor charged to desired voltage prior to taking equipment into field)	Leakage current causes voltage to drop between time charged and time when unit is used. Large capacitor needed (over $100 \mu \mathrm{f}$). Bulky. expensive, and amoying to charge before use
Capacitors in Series (Charging capacitors in parallel with low voltages and discharging them in series for desired liagh voltage)	A motor-driven switching system is required, with accompanying motor power requirements. Low efficiency at desired voltage. Discharge voltage depends on condition of charging battery. Switching losses
Vibrators (Vibrating reed causes periodic collapse of magnetic field in (ransformer)	Heavy low-voltage battery. Low power tramsformation efficiency for high. voltage low-power applications. Bulky
R.F Power Supply (High frequency feeding into step-up transformer)	Transformer losses. Low overall efficiency

automobiles have an efficiency between 60 and 75 percent. Unless the efficiency of the high-voltage lowpower types can be made 15 percent or more, metered power supplies of light weight and relatively long battery life are not very practical by this method.

R-F Power Supplies

High-voltage r-f power supplies for cathode-ray tubes have been in use for some years and it is natural to consider the applicability of this type for portable G-M counters. Again the efficiency is the prime consideration.

In the r-f type of power supply, a feedback oscillator drives the primary plate coil closely coupled to a larger secondary coil.

A commercial coil unit was tried in a circuit employing a $1 U 4$ oscillator and a CK1013AX cold-cathode rectifier. It became apparent that the rectifier did not perform properly in the frequency ranges tested, 80 to 400 kc . A filamentary type rectifier, a type 1654 , performed satisfactorily, but the best B-battery efficiency secured was only 13.4 percent. A coil combination made from commercially available chokes gave approximately the same efficiency.

The chief source of loss occurs in the secondary winding. In order to keep the losses in the secondary small, the equivalent parallel resist-
ance of the secondary at resonance must be large compared with the load resistance. As the output load is to be 30 megohms, the secondary must have at least this resistance. Quoting from an article by $0 . \mathrm{H}$. Schade (see bibliography), ". . . secondary circuits of such high impedance are too expensive and large for practical use."

If a sawtooth voltage is applied to the grid of a vacuum tube in the plate circuit of which there is a high inductance choke, the rapid changes in plate current induce large voltages across the winding in the choke. This induced fluctuating voltage may be rectified and smoothed to provide high d-c voltages.
As an alternative, a cold-cathode grid-controlled thyratron is arranged so that the RC -derived voltage periodically gains control and cuts off the plate current. This would have the great advantage of requiring no filament battery supply. Unfortunately, experiments with a CK1089 tube indicated that stable oscillations could not be secured with less than about 500 milliwatts input.

A blocking type of audio oscillator was also tried, using the secondary of the transformer in the plate circuit and the primary as tickler feedback in the grid circuit. The efficiency of this sustem was relatively low.

FIG. 2-Effect of battery aqing on output voltage for two settings of output adjustmen

Another way to generate a suitable sawtooth voltage is by means of a multivibrator. A pair of vacuum tubes, resistance and capacitance intercoupled, operate in a free-running flip-flop arrangement and the voltage developed in the output circuit of one tube drives the amplifier. Subminiature tubes of low power drain are excellent.

Neon-Controlled Oscillator

A very simple method which provides slightly better overall efilciency than the multivibrator is to use a neon bulb supplied through a resistor from the B-battery supply and shunted by a suitable capacitor. The sawtooth is generated by the voltage rise across the capacitor and sudden drop when this voltage reaches the ionization potential of the gas.

The proper choice of iron-core choke in the plate circuit is usually found by trial and error. Commercially available interstage audio transformers are often used with primary and secondary connected in series aiding. There is a marked difference in the performance of units supplied by different manufacturers, even among units whose design characteristics for their originally intended purpose are the same.

A rectifier capable of withstanding at least 2,000 inverse peak volts is desirable. In the unit to be described, the CK1013AX cold-cathode gas rectifier is efficient and has the advantage that no filament battery is needed. Voltage is supplied to the starter electrode through a 10 megohm resistor.

Where voltages over a wide range are required, a convenient control is to use a series variable resistor in the screen grid circuit of the output tube. In this way, variable voltages can be obtained at maximum efficiency.

A number of experimental circuits emploving a neon-controlled oscillator operating at audio frequencies and driving a 1 U 4 or 1 T : were tried. For obtaining 1,500 volts or more, about 200 volts plate supply is required in addition to the 50 ma at 1.4 volts drawn by the filament. At 1.500 volts, an overall power transformation efficiency of 22 to 23 percent is normal. At
lower output voltages, the filament power drain is a larger factor and consequently the overall efficiency is less.

900-Volt Power Supply

Figure 1 is the circuit used for a 900 -volt supply and on which the performance curves of Fig. 2 and 3 are plotted. In this case, the objective was a single-control con-stant-voltage supply that could be compared for cost and weight with three 300 -volt batteries. The control is necessary in order to adjust for the slow drop in voltage over the useful life of the two midget 67 -volt plate and neon supply batteries.

The frequency is determined by the time constant of the RC combination in the neon supply circuit, by the particular characteristics of the plate-circuit choke, and to a lesser extent by the supply voltage. The choke is a UTC $0-5$ hearing-aid transformer with primary and secondary connected in series. The NE-2 neon bulb may be replaced by a NE-51, which is a based type of identical characteristics. In operation, the neon bulb glows sufficiently to act as a pilot light. Its characteristics do not appear to change with use. A half dozen NE-2 and a couple of NE-51 bulbs have been tried in the circuit with inappreciable differences in response.

In order to keep the battery drain over its useful life at about 1.1 ma or less, the output voltage control was placed in the plate circuit and the values of the screen dropping resistor and by-pass capacitor were adjusted until satisfactory operation was secured. The effect of battery aging on the output voltage at two settings of the variable resistor is plotted in Fig. 2. The introduction of resistance in the plate circuit decreases the efficiency of the circuit when a new battery is inserted. As the batteries age, the setting is adranced and the efficiency increases, permitting operation at 900 volts output over a fairly wide range in battery voltage. The overall power transformation efficiency at the 900 -volt operating point when the batteries are new is 13.2 percent. For expended batteries (decreased to 97

FIG. 3-Curves showing effect of load current and filament voltage on voltage output
volts), the overall efficiency is 17.0 percent.

Fig. 3A shows the output voltage regulation as a function of the external load, as would be produced by a G-MI tube operating at high counting rates. This would be considered adequate for a G-M tube having a normal flat-plateau characteristic. If the $G-M$ tube does not have a flat platean. the voltage is returned to the proper operating potential by adjusting the resistance in the plate circuit. Such readjustment would be necessary only at counting rates of several hundred thousand counts per minute.

Battery-Aging Effects

The effect of changing filament coltage on output voltage is given in Fig. 3B. The data recorded was taken at 135 volts battery supply. At 105 volts battery supply, the curve is similar with very little change in output voltage as the filament battery decays from 1.5 to 0.8 volt.

A $0.04-$-.f capacitor was selected for convenient physical size and low cost as output smoothing capacitor: With the circuit delivering 900 volts the ripple is 0.3 volt.
The weight of all the components of Fig. 1 including batteries is 2.1 lb . Three 300 -volt batteries weigh 2.8 lb . The two $67 \frac{1}{2}$-volt batteries in the circuit may be used as low-current plate supply in associated amplifier circuits fed from the G-M tube. With a 900 -volt battery pack, an additional low-voltage battery is required for the pulseamplifying and recording circuits, adding another 0.7 lb to the weight of the battery pack system. The total cost of components is very nearly the same as the cost of a 900 -volt battery pack. On the other hand, the battery replacement cost for the neon-oscillator circuit is
about one quarter of the total replacement cost for the battery pack system.

Available literature on 672 -volt midget battery characteristics indicates that the circuit of Fig. 1 should operate 300 hours at 6 hours per day intermittent use before the batteries must be replaced. The mint was tested continuously for 126 hours at 900 volts output without failure.

The high peak voltage which appears across the plate of the output tube suggests the possibility of early tuise breakdown. A circuit similar to Fig. 1, but using the miniature type 1 U 4 tube and higher plato and screen voltage, delivered 1.900 volts output for several hours without evidence of voltage breakdown. Nevertheless, with a d-c voltage source, three type 1 U 4 , with plate and screen connected together and tested at grid bias sufficient to limit the current to 1.0 ma , broke down between 1,500 and 1,700 volts. Apparently, the tubes withstand higher instantaneous voltages than would be indicated by tests made under static conditions.

In conclusion, the author wishes to extend his grateful acknowledgment to R. P. Ghelardi for his helpful counsel and encouragement during the course of this investigation.

Bipliography

W. (C. Anderson, A Direct Current Voltage Multiplier. Fiev. Sci. Instr, $\boldsymbol{i}, \mathrm{p} 243$. 1035
R. D. Juntonn. A portable HV Supply, Rer. Soi. Inst.. 10 , p 176. 1039.
J. Tiarry. i Rogulated Battery Operated Iligh Voltage Supply, Rer. Sci. Instr.. 1?, p 136, 194
II. V. Nhr and W. H. Pickering, A I, ipht Wright High Voltage Supply for Gieiger (comtors, Rev. Sci. Instr., 12, D 143. 1941 .
O. II. Schade, Radio Freguency Operated IIV Eupplits for Cathode Ray Tubes, Frac. $I h^{\prime \prime}$. 31, p 15N. 1943.
Is. W. Williams. A Simple Battery Operated Power Supply, Rev. Sci. Insm., 17, р $296,1!3+3$.
J. F. Bonner, Alpha and Beta Ray Countwre Atomic Hnergy Commission Publicrtion 11DDC-967, declassified May 2八. 1947

Carrier-Frequency VOLTMETER

Strength of signals received over power lines, telephone lines and cables in the range hetween 20 and 500 kc is directly indicated in db, using a fixed-gain double-superheterodyne receiver. A built-in calibration oscillator is provided

FIG. l-Functional block diagram

By PAUL BYRNE

c'hief Engineer
Sirval blectronic corporatian
Jelmant, California

THE carrier-frequency voltmeter to be described was developed primarily for making measurements on power lines, telephone lines and cables in the region between 20 and 500 kc . The specifications to which the instrument performs are based on the requirements of the Pacific Gas and

FIG. 2-Complete circuit diagram of the instrument

The carrier-frequency voltmeter

Electric Company. Special features were suggested by engineers of the Bell Telephone System.

The instrument is essentialiy a fixed-gain doable-superheterodyne radio receivel covering the required frequency range. The d-c output of the final detector operates a microammeter calibrated in ab. A variable attenuator, connected between the input terminals and the first grid, provides a wide range of measurable voltages. An injection oscillator, in effect a signal qenerator, is included to facilitate calibration.

Circuit Details

Referring to the block diagram of Fig. 1 and the complete sehematic of Fig. 2, the input filter is of the bandpass variety. The atteruator consists of a wire-womed section and a carbon-resistor section. and operates in $10-\mathrm{db}$ steps.

The variable-frequency oscillator beats with incoming signals in the carrier-frequency range and produces a $1,500-\mathrm{ke}$ signai at the input of an adjustable-gain i-f amplifier. Temperature stabilization of the vfo is accomplished by means of a variable capacitor consisting of two fixed plates ahout $\frac{1}{4}$ inch by $1 \frac{1}{2}$ inches in size and an intermediate movable plate operated by a $2 \frac{1}{2}-t u r n$ spiral of thermostatic bimetal. The output of the $1,500-\mathrm{kc}$ amplifer combines in a second detector with

Internal construction of the instrument
that of a 1,675 -ke crystal oscillator fo produce a $175-\mathrm{kc}$ signal which is fed to a fixed-gain i-f amplifier. Output of the $17 \overline{0}-\mathrm{kc}$ amplifier groes to a third detector. The audio output of this detector drives an a-f amplifer operating a headset used for monitoring. The d-c output of the third detector operates the indicatirg meter, which is a $0-200 \mathrm{mi}$ croammeter.

The injection oscillator delivers 0.77 volt (0 db) to the input circuit of the instrument, operating at 100 ke. A switch permits the output of the injection-oscillator monitoring diode to be read on the indicating meter for calibration purposes. Adequate signal input is provided
so frequency calibration of harmonic points above 100 kc on the dial can be checked from the injection oscillator.

Performan=e Characteristics

The carrier-frequency voltmeter will handle from 77 microvolts to 77 vo'ts at the input. or 80 db below to 40 db above zero level (1 milliwatt into 600 ohms). Selectivity characteristics are approximately 6 db down at 1 kc off resonance, 18 db down at 3 kc off resonance and 40 db down at 7 kc off resonance.

Input impedance is 10.000 ohms in the rejection band, and approximately 20,000 chms in the pass band.

Multichannel Radio

Developed to transmit cosmic ray and other high-altitude data, the Aerohee telemetering system combines a high degree of flexibility and package design with light weight and small volume. Uses special circuits for transmitting voltage and pressure data

RECENTLY publicized work in high-altitude research has been highlighted by the development of the 3,000 -mile-per-hour Aerobee sounding rocket. In order to collect data for high-altitude studies, a telemetering system with a high degree of flexibility, light weight, and small volume was needed.

One purpose of the Aerobee program is to measure cosmic rays at high altitudes, using Geiger tubes as the primary end instruments. These tubes feed scaling-down and thyratron circuits, the outputs of which consists of negative pulses of short duration and random timing. The telemetering system must then transmit these pulses as faithfully as possible and record them as a function of the cosmic rays.

FIG. 1 -Block diagram of ground-station equipment which receives and records telemetered information

By GENE H. MELTOH
Applied Physics Laboratory The Juhns Hopkins University Sitver Spring. Maryland

Additional requirements imposed upon the system include measurements of several different pressures in the missile, and a variety of d-c voltages, both positive and negative.

The Telemetering System

The basic telemetering system now being used is of the frequencrdivision type, utilizing six audio subcarrier bands whose oscillators are frequency-modulated by end instruments actuated by the intelligence to be transmitted. Frequency response for the bands is approximatels 60 cps and is presently limited by the response time of the recording galvanometers used,

A method of measuring higher frequency components lies in the use of a multivibrator oscillating at 50 kc , which is frequencer-modulated by the signal voltage. Response of this unit is good to 10 kc . The output of this oscillator modulates the radio transmitter directly and, for recording, a 50 -kc discriminator is employed, the output driving a re-cording-camera-type oscilloscope. Frequency and amplitude may be read from the film obtained from this method.

The subcarrier oscillators are designed to be used in any band and give a varying frequency output as a function of the input intelligence. The simplest type of oscillator, for measuring pressures, utilizes an iron-core coil whose inductance is varied by a mu-metal slug attached
to a flexible diaphragm to which the varying pressure is applied, Other types of oscillators are more complex in order to measure such variables as temperature, voltage and strains, but all perform in the same manner to give a frequency-modulated audio signal.

The outputs of the oscillators are adjusted to proper level, mixed together through an isolating network, and the complex voltage is applied to the grid of a reactance tube in an f-m transmitter, giving direct frequency modulation.

The sround station equipment for recording the transmitted signal consists of an f-m receiver, a set of audio discriminators, and a multichannel recording oscillograph. The receiver detects and demodulates the transmitted signal in normal $\mathrm{f}-\mathrm{m}$ fashion, and the complex audio output is applied to a set of filters in the audio discriminators. These filters are of the band-pass type tuned to cover the respective subcarrier bands and have substantially flat-topped response inside the band, with steep skirts at each end. Each filter output is then passed through limiter and clipper stages and is fed to a tuned audio discriminator whose output is linear with frequency. A cathodecoupled push-pull power output stage drives a string in the oscillograph for the actual photographic record. A block diagram of the ground station equipment is shown in Fig. 1. Auxiliary equipment in the ground station includes a large disc-recorder for simultaneous recording and interpolation oscillators for calibrating the audio discriminators.

Telemetering for Rockets

FIG. 2 -Back view of audio case showing commutating switch and valtage-controlled oscillator. This unit weighs about 5 pounčs

FIG 3 -Front view of r-f portion of the telemetering transmitter

The Aerobee telemetering system, as supplied to the user group, is broken down into two parts: the audio case and the r-f transmitter. These units are mounted separately in the missile and are connected by a cable.

The audio case is of aluminum construction, occupies a volume of 281 cubic inches and has a maximum weight of five pourds. The use of commutation and switching of oscillators incruases the amount of data which may be transmitted and a maximum of tourteen oseillators is provided for in the unit. A complete audio unit is shown in Fig. 2.

The transmitter is also of aluminum construction, has a volume of 60 cubic inches and weighs $1 \frac{1}{2} \mathrm{lb}$ including cover and mounting plate. Figure 3 shows a front view of the transmitter. Excitation of the missile is employed to radiate the r-f signal and is accomplished by means of an insulated spike mounted in the nose. A slug-tuned loading coil couples the spike to the transmitter through a coax cable.

Power for telemetering is supplied from the missile power supply system, consisting of 28 volts of
storage battery driving a bank of dynamotors, with three allotted to telemetering. These dynamotors furnish approximately 220 volts at 60 ma , although one may give as high as 400 volts to supply the transmitter final stage. Filament supply is taken from an 8-volt tap on the main battery and is adjusted to b volts by a resistor.

Aucio Chassis

Three types of alldio systems have been produced to date, with different eleetrical requirements for
each one. Figure 4 shows the block diagram of the unit used in renent tests. Provision for the separation relay and commutating switch is included in all types and may be left out if not needed for the particular application at hanc.

Two basic types of subcarrier oscillators are used: the TOL-1A inductance oscillator for pressure measurements, and the TOE-1A voltage-controlled oscillator for voltage measurements, including cosmic pulses. These units are dimensioned in a multiple system of

FIG. 4. -Block diagram of audio case used in recent Aerobee flights
lengths, the TOE- 1 A being twice as long as the TOL-1A. Since both oscillators are the same width, two TOL-1A oscillators occupy the same space as one TOE-1A and these units may be interchanged in this fashion. A total of 10 TOE- 1 A oscillators may be used or 8 type TOL1 A oscillators in combination with 6 TOE-1A oscillators to give 14 channels of information. The vertical mounting panel in the case is drilled and tapped in universal fashion in order to take a variety of the two oscillators. Replacement or addition of oscillators on either side of the panel is readily accomplished in a short time.

The inductance-oscillator circuit for pressure measurements utilizes a single tube, the subminiature type 6 K 4 . The pressure gauge forms the inductance of the tank circuit of the oscillator, a change in pressure

FIG. 5-Schematic diagram of sub-carrier oscillator with variable inductance end instrument
varying the spacing of a mu-metal pad with respect to the iron-core coil. The gauge is mounted remotely from the oscillator unit and the two are connected together by a threewire cable. Band selection is accomplished by tuning to the desired frequency by means of mica capacitors connected across the gauge coil and mounted in the oscillator unit. Current drain for the oscillator is approximately 3 ma at 108 rolts while filament drain is 150 ma at 6 volts. The circuit is shown in Fig. 5.

The TOE-1A voltage-controlled oscillator is a four-section phaseshift oscillator using three tubes. The resistance of one leg of the phase-shift network is supplied by a modulator tube, which has its plate resistance varied by the voltage under measurement applied to the modulator grid. A miniature triode, the 6 C 4 , is used for the modulator; a subminiature 828 A pentode is used for the oscillator stage, and a 6 K 4 functions as a cathode follower.
Since the cosmic-ray instrumentation output is in the form of negative pulses, the TOE-1A oscillator operates over the range from zero to -10 volts. With zero input to the modulator, the oscillator frequency is at the top end of the band. For the -10 volt condition, the frequency shifts downward to the low end of the band, giving a total change of 15 percent in frequency. Pulsing of the oscillator is straightforward and has given very good results.

FIG. 6-Circuit diagram for voltage-controlled oscillator

In addition to the cosmic-ray pulse service, the TOE-1A has also been used to telemeter the operation of the emergency fuel cut-off receiver in the missile by measuring the limiter-grid voltage and the output thyratron grid and cathode voltages.

Modulation sensitivity is a constant percentage function for all bands, the zero to -10 range giving full bandwidth in each case. Sensitivity in cycles per volt varies from 35 cycles per volt on band 1 to 200 cycles per volt on band 6. The circuit diagram is given in Fig. 6. B+ current drain for the oscillator is 3.5 to 4 ma at 108 volts and $\mathrm{A}+$ drain is 450 ma at 6 volts. Band selection is carried out by installing four mica capacitors in the phaseshift network and tuning to exact frequency with a small mica capacitor in parallel with the input capacitor of the network.

Two separate regulated B voltage supplies, with OB-2 miniature regulator tubes, are used in the audio case. These tubes are fed from separate dynamotors whose output voltage may vary over a wide range, due to load conditions or drop in primary battery voltage. All oscillators operate at a common value of 108 volts and may be interchanged from one supply to the other, with no change in calibration, and with good stability.

Provision for extra data beyond the normal six channels is accomplished in two ways: commutation, and channel switching by means of a relay. For commutation, a motordriven cam-type switch using a maximum of four Acro snap-action switches is used to switch outputs of the oscillators at a rate of approximately four samples per second. A long cam-section gives an identifying mark for the record.

The relay switching system serves to substitute oscillators during flight and is applied in regard to booster action. Booster pressure is measured until separation, at which time the relay coil, normally energized, is de-energized by a pull-out plug on the booster. The booster pressure oscillators are turned off while another set is turned on. By
grouping outputs and switching with the 3 -pole, double-throw relay normally used, any desired oscil-lator-time sequence may be obtained.

Output voltages from all oscillators are fed to a terminal board where each voltage is adjusted to proper level by means of individual voltage dividers. Provision is made for commutating at the same board as well as grouping of outputs for the separation relay.

Connections to the audio case are accommodated by three plugs mounted on one end of the case. The largest, a $19-\mathrm{pin}$ AN connector, connects all end instruments to their oscillators. The second plug, a $10-$ pin AN connector, supplies all power and control circuits, while the third, a 5 -pin connector, connects the r-f transmitter to the case and furnishes power and audio input to the transmitter.

The Transmitter

The f-m transmitter (Fig. 3) is a multistage unit with a reactancemodulated oscillator, a frequencydoubler stage, and a 2E26 tetrode final amplifier. Miniature tubes are used in the low-power stages, and are readily replaced in case of failure.

The low-power stages are supplied with 200 volts with a current drain of approximately 40 ma , while the B voltage for the final amplifier may be 250 to 400 volts supplied from a separate dynamotor. Current drain varies between 50 and 85 ma between the above limits. Total filament drain is 1.4 amp at 6 volts.

Deviation of the transmitter is set at $\pm 65 \mathrm{kc}$ for 1 volt rms input to the reactance tube grid and harmonic distortion is less than 2 percent for this condition.

Tuning is accomplished by means of silver-plated slugs in all coils except the final amplifier, eliminating the need for variable capacitors. Tuning of the transmitter is conventional and straightforward. A low impedance link and coax cable couple the output to the missile nose-spike.

To facilitate rapid production of complete systems for future use,

FIG. 7-Telemetering record from recent firing at Almagordo. Missile near peak of trajectory
emphasis was placed on simplicity of design. The units are produced in two definite phases. In the first, the units are assembled in large numbers and held in stock for future use. Separate calibration curves are supplied with each audio unit and they are used in the final phase, the calibration of the basic units.

Results of Firings

The first round, fired in November, 1947, reached an altitude of approximately 200,000 feet. It was found necessary to cut off the rocket motor during flight since the missile drifted out of the prescribed trajectory limits. An emergency cutoff receiver in the missile, triggered from the ground, was telemetered and the record proved of value in determining the point of cutoff, as well as operation of the receiver during the critical part of flight.

The second round, fired March 5, 1948, proved even more successful. This missile attained an altitude of 78 miles and a wealth of useful cos-mic-ray data was obtained from the telemetering records. Four channels of intelligence were devoted to cosmic rays, one to missile aspect, and the sixth was commutated to
telemeter four rocket motor pressure functions. All channels functioned without failure and signal strength from the missile held up well during the flight despite the fact that the r-f transmitter had low voltage applied to the final amplifier stage and was giving less than 5 watts output. A portion of the record of this flight, recorded at Almagordo station some 43 miles from the firing tower, is shown in Fig. 7.

The third round, fired in April, 1948, was designed to measure the magnetic feld of the earth and reached the same altitude as round number 2. Data channels were similar to those in round number 2 , with magnetometer output voltages substituted for cosmic-rays. Telemetering was successful for some 326 seconds of flight.

The telemetering unit described in this article was designed by the writer using the basic Applied Physics Laboratory subminiature $\mathrm{f}-\mathrm{m} / \mathrm{f}-\mathrm{m}$ system developed by the Telemetering Group at The Johns Hopkins University. At present, the production of the Aerobee telemetering equipment is being done by the Pacific Division of Bendix Aviation Corporation.

T1 HE EARLY orthoacoustic phonographs depended on the driving power of the turntable motor to produce the sound. The motor turned the record, the groove of which vibrated the needle, and the needle in turn drove the diaphragn in the throat of the horn. The grooves had to be rugged and the pickup stylus large in order to produce a loud acoustic output. Under these conditions the record had to be turned at high speed to provide sufficient frequency range.
Because the industry has developed high-gain electronic amplifiers, dynamic loudspeakers and sensitive phonograph pickups to the point where they are reliable consumer goods, it is no longer necessary to use a record designed to produce sound directly. Groove deviation need be only great enough to maintain the signal sufficiently above the surface noise; the stylus tip need only be large enough to provide tracking for low-compliance low-inertia electrical pickup cartridges. The analyses of these considerations, on which the longplaying record (Electronics, p 86, Sept. 1948) was designed, were presented in a paper by Peter C. Goldmark and René Sneprangers of Columbia Broadcasting System and William S. Bachman of Columbia Records before the New York Section of the IRE in September. Here is a discussion of the highlights of the paper; it will be published in its entirety in the Proc. IRE.

Design Factors Evaluated

The public's familiarity with phonograph records makes it desirable to solve the problem of providing uninterrupted music reproduction by using records as the basic medium. A study of the playing time for classical compositions shows the average to be about 40 minutes. Thus, if a record were to accommodate 20 minutes of plaving time on a side, it would accommodate most compositions. One record would then replace an album of several and therefore save the consumer money and storage space, as well as 90 percent in total weight. For these reasons, the possibility of producing a long-playing record seemed desirable.

To evaluate the various types of records, their inherent properties are compared to the frequency-amplitude spectrum they have to accommodate

> Design of L-P RECORDS

From geometric considerations, the maximum playing time was found to be obtained if the inside recording diameter was half the outside diameter. To use a smalle. inside diameter would require a higher rate of revolution (to maintain the same minimum linear velocity at the innermost groove), thus decreasing the playing time. A larger inside diameter, reducing the number of grooves, would decrease the playing time more than the permissible decrease in record speed would increase it.

With a 12 -inch record. the outside recording diameter of which is 11.5 inches, the inside diameter would thus be 5.5 inches. Although at this point the design of the record might be achieved by finding the linear velocity and the tip radius of the stylus necessary to reproduce the required high frequency, it is simpler to arbitrarily decide on a turntable speed (linear. velocity). As low a speed as possible is desirable, but too low a speed would create serious problems of rumble. Because so much experience has been gained with transcription equipment operating
at $33^{\frac{1}{3}} \mathrm{rpm}$, this speed was chosen. At this speed, 230 grooves per inch are necessary to provide 20 minutes of playing time; the nearest practical value is 224 grooves per inch. The peak groove displacement for 224 grooves per inch is thus 0.0009 inch and the linear velocity of the innermost groove is about 9.6 inches per second.

The wide frequency response of frequency-modulated broadcasting and of professional wire recorders suggests that improvements in the frequency range of records are also in order. To meet this requirement, a frequency range from 30 to above $10,000 \mathrm{cps}$ is desirable.

Relative Performance

By way of evaluating the longplaying record having these characteristics, its performance was compared to that of conventional $78-\mathrm{rpm}$ records and transcriptions. To establish an analytical basis for comparison, the condition where the radius of the reproducing stylus and the minimum radius of curvature of the recorded wave are equal was arbitrarily chosen as the limiting condition, and the corre-

A needle tip of one-mil radius, a tracking weight of about 6 grams and 224 grooves per inch characterize pressings that san contain from 30 to above 10.000 cps

> Choice of groove width and spacing of long-playing records is based on considerations of playing time of classical compositions. minimum linear velocity, tracking, maximum deviation, and cost
sponding frequency termed the limiting frequency. This condition is reached when $f_{L}=V / 2 \pi\left(R_{r \mu P} D\right)^{2}=$ where f_{L} is the limiting frequency, V^{r} is the linear veacity, $R_{F F F}$ is the effective radius of the reproducing stylus, and D is the groove deviation. This equation shows that, if the deviation is very small, the limiting frequencr can be very high.

The limiting frecuencies for the three types of records are tabulated on the accompanying diagram. If the frequency is queater than the limiting value, the deviation for equal radius of needle tip and groove modulation mast be made less than maximum. This consideration establishes a usable deviation as a function of frequency.

The percent usable deviation for tr.e inside groove of the three types of records is also shown in the diagram as a function of frequency. Full deviation is 0.002 inch for 78 rpe recores, 0.0011 inch for transcriptions and 0.0009 inch for L-P records; inside groove diameters are respertively 4.8 and 9.6 inches.

Anothe: way to evaluate the records is on the basis of the harmonic
distortion produced in tracing the grooves. Because of the symmetry of this tracing error, there wili be ne, second harmonic distortion. However, there will be third sarmonic distortion. In this way it is found that, for the inside groove and at any given frequency, the relative tracing distortions at maxinum deviation of the systems are $T_{\bar{\sigma}} / T_{L, r}=5.3 \overline{0}$ and $T_{T R} / T_{L P}=1.91$. Thus the tracing distortion of L-P records is about a fifth that of 78 -rpm records and about half that of transcriptions. Were it not that the maximum dispacement of the groove was rarely required at high frequencies (above the limiting frequency). the tracing distortion from all three recording systems would be excessive.

These inherent limitations of the recordiner systems, to be indicative of their practical abilities to accommodate actual program material, need to be evaluated in terms of the amplitude-frequency content of the recorded material. The diagram shows the most probable energy distribution curve for a 75 -piece orchestra as determined by Fletcher. The recording characteristic of the

L-P record is also shown, together with the NAB recording characteristic for comparison. (The L-P characteristic has a slight bass lift to reduce rumble and hum level.) The most probable recording velocity distributions can be obtained by adding ordinates (in $d b$) of the two curves. The resultant curve shows that the most probable ampditudes lie below the maximum limits determined by the limiting sequency and usable deviation for all three types of recording. However, L-P records lie further from the required curve than the others and can be expected to have less distortion.

Phonograph Pickups

As indicated earlier, the possibility of using the L-P recording system depends on technological development of pickups that require very low driving force at their styli and have high sensitivity. The use of Vinylite as the record base reduces the surface noise so that even with the small recorded rroove deviations the ignal-noise ratio is acceptable. The use of lightweight pickups further improves this ratio so that a dynamic range of 45 db with an acceptable background noise level is obtained.

The development of suitable pickups was a part of the overall program. The needle radius should be 0.001 inch plus or minus 10 percent. A downward tracking force not exceeding 6 grams is desirable. The theoretical compliance, measured at the point of the stylus, for low-frequency tracking of $78-\mathrm{rpm}$ records with this low tracking force is $0.87 \times 10^{-6} \mathrm{~cm}$ per dyne and, for T,-P records, it is $0.39 \times 10^{-8} \mathrm{~cm}$ per dyne.

Crystal cartridges producing about 0.5 volt rms at reference frequency and level can be built within these limitations. It was also found that r-f modulation pickups (like Cobra) and variable-reluctance type pickups (like GE) are also suitable for design as L-P pickups. The rapidity with which suitable pickups have been developed commercially verifies the basic assumption that the art has progressed to the point that this new approach to recording is justified.-F.H.R.

Intensive investigation of problem results in useful circuit design data for minimizing hum from alternating magnetic fields, electrical leakage, input circuit wiring and heatercathode leakage current

By ARTHUR F. DICKERSON

Electronics Department
Gencral Electric Company
encrat Electric Compan
Syracusc, New Yorh

Sources of hum fall into two broad classifications: hum arising from causes external to the tube which act either upon the tube or upon the components of the circuit, and hum arising within the tube as a result of its characteristics. The first classification covers hum from alternating magnetic and electrostatic fields and from leakage and stray capacitances in the circuit wiring, while the second includes heater-to-cathode leakage and the action of the heater field within the tube.

The most common sources of alternating magnetic fields are transformers and chokes. There are also fields surrounding the wires carrying the heater current and the a-c primary supply, but these fields are extremely small by

FIG. 1-Stray flux pattern for transform. er with E-type core laminations
comparison. The intensity of the field in air at a distance of one inch from a single wire carrying one ampere is in the order of 0.08 gauss, while the stray flux from transformers may be more than a hundred times greater than this value.

The amount of stray flux for a specific transformer is determined by the design of the core and is practically constant over the normal load range. It is difficult to assign a general value to the magnitude of stray flux since it is dependent 'argely upon the quality of the transformer. However, the order of magnitude for average-quality transformers is 5 to 10 gauss at a distance of two inches from the core in the active portion of the flux pattern.

FIG. 2-Tube with concentric rype construction

Figure 1 shows the flux pattern for a transformer with E-type core laminations. This pattern is quite similar to that of an air-core coil, except for modification due to the iron core of the transformer. The pattern is represented as if the transformer were suspended in air. The presence of a chassis of magnetic material will have little effect upon the portion of the field which is two inches or more above the chassis, but the field in the region of the chassis will be extended due to the lower reluctance path. Some advantage may be gained in this respect by the use of verticalmounting transformers in preference to the half-shell types of construction.

The flux concentration point at which the major portion of the flux leaves and enters the core is located at the ends of the core segment on which the winding is made. This point is further from the chassis in the vertical-mounting transformers, thus reducing the extension of the field. The directional properties of the stray flux are also more farorable in transformers of the vertical-mounting type than in transformers of the half-shell type regardless of the material used in the chassis.

Hum In Receivers

An alternating magnetic field was applied to each tube of three different receivers, which ranged from communications types to commercial five-tube table models and

Common Sources of Hum and Their Solutions

Cause of llum	Maximum Hum Level at Grid	Solutions
Modulation of plate current by stray flux from power transformer		Proper orientation of tube with respect to power transformer
Glass pentode	2.00 mv	Selection of proper size
Glass triode	0.30 mv	plate load resistance. (See
Metal pentode	0.10 mv	text)
Metal triode	0.02 mv	
Heater-to-grid leakage across socket	10 to $15 \mu \mathrm{v}$ for each megohm of grid resistance and each volt rms of heater above ground	Use of double-ended tubes. Adjustable ground position on secondary of filament. transformer
Leakage or induced voltages in closed loops of the input circuit	Up to $75 \mu \mathrm{v}$	Use of double-conductor input cable as shown in Fig. 5
Heater-cathode leakage	Currents of 0.04 to 1.0 microampere	Adequate bypassing of cathode for power frequency. Use of low eathode impedances

included both f-m and a-m reception. The antenna was disconnected and the gain control advanced all the way. The field intensity was then increased until the hum level became audible above the noise. This was repeated individually for each tube in the set.

It was found that in most cases a field of 50 gauss rms would produce audible hum when applied to the r-f amplifier, converter, i-f amplifiers, or the first audio stage. The power-output stage, and the detector or discriminator stage in circuits employing separate tubes for detector and first audio were not affected by fields as high as 150 gauss rms.

Since it has been shown that a representative figure for escape flux from a power transformer is 5 to 10 gauss, it would seem that the tube itself offers no particular problem as to hum. In many cases this may be true. However, the value of 5 to 10 gauss was given for a distance of two inches from the core of the transformer, and the field intensity increases inversely as the square of the distance from the transformer. The fields in the immediate vicinity of the transformer are therefore quite high, and placement of critical tubes in this region should be avoided.

In addition, the final measurements in the test outlined were made aurally, and the hum components, both 60 and 120 cycles, were less audible than the higherfrequency noise which was used as
a reference. In the fields of audio work this is a legitimate criterion, but in measurement and control equipment the hum must be considered on the basis of its rms value.

A considerable amount of data has been taken on several different tube types under varying field intensities and circuit conditions. A few representative figures may be quoted for general guidance. An arbitrary unit (microvolts-pergauss referred to the grid) has been selected since it takes into account the gain of the tube under test as well as the strength of the field, and in addition is more easily referred to the signal level at which the tube is expected to operate.

The hum level of the pentodetype amplifier does not increase linearly with an increase of field intensity, but varies at a rate somewhere between the first and second power of the field intensity, depending upon the reference level of the magnetic field. Thus, for glass-type pentodes, a hum level of about 250 microvolts-per-gauss (referred to the grid) may be expected at field intensities of around 45 gauss, while at 5 gauss the figure drops to around 20 microvolts-pergauss. Values for comparable metal-type pentodes are in the order of 5 microvolts-per-gauss and increase only slightly between 5 and 45 gauss due to shielding effect of the metal envelope. Triode types show hum levels of around 30 microvolts-per-gauss at 45 gauss,
and 7 microvolts-per-gauss at 5 gauss.

The orientation of the tube elements in a magnetic field determines largely the influence that the field will have upon the output of the tube. A tube of concentric-type construction is shown in a cutaway view in Fig. 2. A major portion of the electron stream can be considered bidirectional along a line which is perpendicular to the plane of the grid side rod supports at the cathode. The magnetic field will deflect the electron stream a maximum when the flux is perpendicular to the path of the electrons. These maximums occur when the flux vector is coaxial to the tube, or when perpendicular to the tube axis and in the plane of the grid side rods. As a general rule, metal tubes and glass tubes which have nonmagnetic side rods show a maximum in the direction normal to the tube axis, while those with magnetic side rods have a maximum in the axial direction, the difference between the two conditions being in the order of 6 to 10 decibels in voltage. Example:

Axial Flux Hum	Normal Flux Hum
Voltage at	Voltage at
Plate of Tube	Plate of Tube
6SJ7GT. 1.5	0.5
6SJ7 ... 0.02	0.04

The minimum hum condition for all types occurs when the flux vector is perpendicular to the tube axis and normal to the plane of the grid side rods. The minimum is down 30 to 40 decibels from the maximum in glass types and 10 to 20 decibels in metal types, the difference arising from the distortion of the field in the metal type which prevents a sharp minimum.

Since the minimum occurs only

FIG. 3-Equivalent circuit for a tube operating in a magnetic field with no signal on the grid
when the flux is directed perpendicular to the tube axis, rotation of the tube socket is not effective in removing hum when the flux vector is parallel to the tube axis. It is possible to rate a transformer on the basis of the direction of stray flux vectors in the area adjacent to the transformer, normally occupied by tubes. In this respect the vertical-mounting transformer is superior to the half-shell type, since more of its flux is perpendicular to the usual tube mounting axis in the space occupied by the tube elements.

If a tube is operated in an alternating magnetic field, the hum output is a function of the strength of the field, the constants and voltages of the circuit, and the characteristics of the tube. Consider a tube operating in a magnetic field without a signal on the grid. The equivalent circuit is shown in Fig. 3. The effect of the field

FIG. 4-Variation of hum with gain in a typical pentode amplifier
upon the tube may be considered as a change in the static plate resistance of the tube. The sign is shown as positive since only in comparatively rare tube designs is the static plate resistance decreased by application of the magnetic field. In this circuit: $R_{L}=$ load resistance, $R_{b}=$ static plate resistance, $\Delta R_{b}=$ change in static plate resistance at peak flux, $E_{b b}=$ d-c plate supply voltage, $E_{b}=$ static plate voltage, $E_{0 c}=$ peak-to-peak hum output voltage and $I_{b}=$ static plate current.

Let the subscript 1 refer to
normal operation (that is, operation in the absence of a magnetic field) and subscript 2 refer to operation at peak flux value. Then:

$$
\begin{align*}
E_{a c} & =\left(I_{b 1}-I_{b y}\right) R_{l} \tag{1}\\
I_{b 1} & =\frac{E_{b b}}{R_{L}+R_{b}} \tag{2}\\
I_{b 2} & =\frac{E_{b b}}{R_{L}+R_{b}+\Delta R_{b}} \tag{3}
\end{align*}
$$

Substituting Eq. 2 and 3 in Eq. 1

$$
\begin{align*}
E_{a c} & =\left(\frac{E_{b b}}{R_{L}+R_{b}}-\frac{E_{b b}}{R_{L}+R_{b}+\Delta R_{b}}\right) R_{L} \\
& =\frac{E_{b b} R_{L} \Delta R_{b}}{\left(R_{L}+R_{b}\right)\left(R_{L}+R_{b}+\Delta R_{b}\right)} \\
E_{b 1} & =\frac{E_{b b} R_{b}}{R_{b}+R_{L}} \tag{6}\\
\Delta R_{b} & =K R_{b} \tag{7}
\end{align*}
$$

where K is a function of static plate voltage and flux density.

Substituting Eq. 6 and 7 in Eq. 5

$$
\begin{equation*}
E_{a c}=\frac{K E_{b 1} R_{L}}{R_{b}+R_{L}+K R_{b}} \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
K R_{b} \ll\left(R_{b}+R_{L}\right) \tag{9}
\end{equation*}
$$

Eq. 8 may be written

$$
\begin{equation*}
E_{a c}=K \frac{\left(E_{b 1} R_{L}\right)}{\left(R_{b}+R_{L}\right)} \tag{10}
\end{equation*}
$$

Experiment has indicated that K is a function of $1 / E_{b}$ within the normal limits of E_{b} encountered in a resistance-coupled amplifier. If the peak value of flux remains constant, for a specific tube:
$K E_{b}=a$ constant
Then
$E_{a c}=\frac{R_{L}}{\left(R_{L}+R_{b}\right)} \times$ a constant
If the tube is a triode, the static
plate resistance R_{b} is fairly constant for different values of R_{L}, and in addition R_{t} is usually much larger than R_{u}. Equation 12 indicates that if this is the case, $\boldsymbol{E}_{a c}$ is reasonably independent of the circuit values.

In the case of a pentode, R_{b} decreases with an increase of R_{L} and since R_{b} and R_{L} are of the same order of magnitude:

$$
\begin{align*}
& L_{a c} \text { is a function of } \\
& \qquad \frac{R_{L}}{\left(R_{L}+R_{b}\right)} \times \text { a comstant } \tag{13}
\end{align*}
$$

It will be noted that this expression for hum output voltage is quite similar to the familiar formula for output signal voltage:

$$
\begin{equation*}
R_{u}^{\gamma}=\frac{\mu E_{\eta} R_{I}}{R_{L}+R_{p}} \tag{14}
\end{equation*}
$$

in which case,E_{*} represents the constant. The major difference is that R_{b} in the hum formula is static plate resistance, E_{N} / I_{b}, while R_{p} in the signal-voltage formula is $d y$ namic plate resistance.

It has been shown that in the usual application for triodes (R_{L} » R_{b} or R_{p}) the output hum level is relatively independent of the plate load resistance, as is also the gain. Hence, for triodes, the hum level referred to the grid is constant for a given value of flux.

In pentodes, $R_{\text {b }}$ varies inversely with R_{t}, and R_{a} remains practically constant over the flat portion of the plate characteristics. Thus, if R_{b} is increased, assuming R_{L} and R_{p} of like magnitude, the gain in-

FIG. 5-Actual and equivalent input circuits for single and double-conductor shielded input cable. Reduced hum is achieved with double-conductor cable
creases by an amount less than the increase in R_{L}, but the hum output increases directly as $R_{s .}$. The hum level referred to the grid of a pentode increases, therefore, with an increase of the plate load resistance as demonstrated in Fig. 4.

The output from metal types was approximately 40 decibels down in voltage from that of glass types. The placement of a close-fitting iron shield over the glass tube reduces its hum to within 2 or 3 decibels of the metal type.

The wave form of hum output for the metal type is for the most part fundamental, with a sma!l amount of second harmonic, while for the glass type it is second harmonic with varying amounts of higherorder even harmonics. This represents an advantage for the metal type when viewed from an audibilty standpoint, since a 120 -cycle note is much more readily heard than a $60-$ cycle note. A 60-cycle note, to sound as loud as a 120 -cycle note, must be about 3 decibels greater in power.

Electrical Leakage

The leakage impedance between socket pins contributes hum to stages with a-c heaters to a degree dependent upon grid-circuit impedance, pin placement, socket material and heater-to-grid capacitance. Consider a voltage divider made up of the leakage impedance from heater to grid pin ($Z_{\text {leakage }}$) and the impedance from the grid to ground ($Z_{y \text { rid }}$). The voltage which appears across this divider is determined by the wiring of the heaters, and the portion of this voltage which appears at the grid is determined by the ratio of grid-circuit impedance to leakage impedance. Since normal $Z_{\text {grid }}$ is much smaller

FIG. 6-Typical waveforms of heatercathode current

FIG. 7-Basic ratio-detector circuit

FIG. 8-Variations of $\mathrm{C}_{H K}$ may cause hum through frequency modulation of local oscillator
than $Z_{\text {feuknge, }}$, the voltage at the grid is almost directly a function of the grid-circuit impedance and inversely a function of the leakage impedance.

Isolantite-type sockets have the highest leakage impedance, which is a.most entirely capacitive reactance. Next best are polystyrene, mica-filled Bakelite and black Bakelite, in that order, with varying amounts of resistive components. Since the leakage impedance iss predominantly capacitive even in the worst sockets, the eiimination of harmonics in the heater supply is of great importance. The leakage impedance decreases for the higher-order harmonics. In addition, the gain of the stage is usually greater. Thus a sine-wave heater voltage appears as a sine-wave output at the plate, but a complex wave at the heater is reproduced with greater harmonic content at the plate. Representative values of hum to be expected from this source are 10 to 15 microvolts at the grid for each volt of heater potential above ground with a 1megohm grid impedance.

When one pin of the heater is grounded there is a single source of leakage voltage, which arrives at
the grid leading the heater voltage by 90 degrees. When the heater is above ground in a series string, the leakage from both pins arrives inphase at the grid. However, if the heater is operated from the secondary of a power transformer with the center-tap grounded, the leakage from the two pins arrives at the grid out-of-phase, but with different magnitudes. This partial bucking effect may be utilized completely by grounding the heaters through the center tap of a potentiometer with the outside arms connected to the heater supply, and then adjusting the ground tap for cancellation of the two leakage voltages.

Double-ended tubes such as the 6J7 offer a distinct advantage in the problems of hum from leakage since their grid connections are well removed from the heaters. As an example, the 6 J 7 has one-tenth the hum of the 6SJ7 in this respect.

Input-Circuit Wiring

Careful attention to the wiring of input circuits will frequently reduce the hum of low-level amplifiers. Figure 5 shows the equivalent circuits for single and double-conductor shielded input cable. Units C_{1} and C_{2} are leakage capacitances to the a-c line in the amplifier and in the auxiliary equipment. For the single-conductor cable a closed circuit is made which has a portion of the grid-return lead in the loop. This closed circuit may act either as an electrical-leakage path or as a magnetic loop, depending largely upon the line connections and the size of the leakage capacitances.

The resistivity of ordinary shield braid over a single conductor is roughly 0.003 ohm per foot. Capacitors C_{1} and C_{2} then must be rather large to produce an appreciable voltage drop along the shield. However, in the case of a grounded line, C_{2} becomes a direct connection and C_{1} may be as high as 0.1 microfarad due to the line-isolation capacitors in certain types of equipment. With a grounded 115 -volt line, 0.1 -microfarad leakage will produce 50 microvolts across three feet of shield.

Frequently the leakage path of
C_{1} and C_{2} is shorted out by a ground strap between the two chassis or some other direct connection. In this case the closed circuit acts as a magnetic loop subject to the stray flux of the equipment. Hum levels as high as 75 microvolts at the grid have been encountered in tests from this source.

The use of two-conductor shielded cable as shown isolates the input circuit from any closed loop which the shield may make with auxiliary equipment, and thereby prevents a voltage drop which may appear along the shield from being reflected through the pickup impedance to the grid. This principle can also be appplied to the use of ground straps.

The careful e!imination of all closed loops in the grounding connections will frequently reduce the hum level of the equipment. Ground connections inside the chassis follow the same pattern, so that the cathode-grounding point and the ground end of the grid circuit should always be connected at the same point on the chassis and should be independent of other circuits, except at the chassis point.

Sources Within the Tube

-The heater is the only tube element intentionally carrying alternating current at the power frequency. The heater for indirectly-heated-cathode types is coated with a ceramic-like material to insulate it from the cathode sleeve which encloses it. Of several possible ways for alternating current exciting the heater to act upon the other elements and cause hum, the most important and probably the only one that causes noticeable hum in receiving tubes is leakage current between heater and cathode. Modulation of the plate current by the alternating field of the heater is negligible in modern receiving tubes.

Extensive work is being done to establish the nature of heatercathode leakage current but the information is not yet complete. It may be stated that the current is due mainly to a combination of three phenomena: capacitive coupling between heater and cathode, direct (more or less resistive) leakage between them and emission

FIG. 9-Heater and cathode arranged to be at same r-f potential, thus reducing hum due to variations of $C_{H /}$
from the cathode and the heater. Three frequently occurring waveforms of heater-cathode leakage current are shown in Fig. 6 and these indicate that this current is rich in harmonic content.

If the cathode is grounded, current will not affect operation. The same holds for an adequately by-passed-cathode-resistance condition. However, there are numerous cases such as cathode followers, phase inverters, and detectors where the heater-cathode leakage current will cause a voltage drop across the cathode resistance if the heater is returned to ground. To present satisfactory design data it is necessary to consider this current.

The heater-cathode impedance is so large when compared with the normally used cathode resistance that the current source may be considered as a constant-current generator. In tubes which are manufactured with an aim to minimizing heater-cathode leakage, current of 0.04 microampere is common where the heater voltage is 6.3 volts rms and where the cathode is returned to one end of the heater through a resistance. In some types such as output tubes, where hum requirements are less severe, this current may be as high as 1.0 microampere. Fortunately the degenerative action of an unbypassed cathode resistance tends to lessen the effect of the leakage current.

A frequently used circuit in f-m sets is the ratio detector. The schematic circuit is given in Fig. 7. The ground is connected either at point X or at point Y. The former is called a balanced ratio detector. The hum due to heater-cathode leakage current is 3 or 4 times greater with a balanced circuit than with the unbalanced circuit ob-

FIG. 10-Tuned-grid tuned-plate oscillator with grounded cathode to minimize effect of variations in C
tained when point Y is grounded. The hum increases, of course, with increased resistance| values. Also, the larger the resistances, the greater the difference between the balanced and the unbalanced circuit. This is due to the loading effect of the diodes.

The increased use of the higherfrequency television and f-m bands has presented an unusual problem of hum arising in the local oscillator. Figure 8 shows a circuit diagram of a typical high-frequency local oscillator. The a-c heater supply causes the heater-to-cathode capacitance, $C_{H K}$, to vary at the power frequency. This arises from either thermal variations of the heater insulation or from mechanical vibration of the heater, possibly from a combination of the two.

Since the heater-to-cathode capacitance appears in series with the grid-to-cathode capacitance, $C_{\sigma K}$, across a portion of the grid tank, any repeating variation of $C_{H K}$ will cause the oscillator frequency to vary. At the higher frequencies the capacitance in the grid tank is extremely small so that a small change of $C_{n \kappa}$ will vary the oscillator frequency enough to produce an f-m signal in the i-f strip. It has been estimated that a heater-cathode capacitance change of one part in two million in television channel 13 will produce audible hum at the loudspeaker.

Figures 9 and 10 show two methods for minimizing hum from this source. In Fig. 9 the heater and cathode of the oscillator tube are operated at the same r-f potential. This method has proved satisfactory up to 200 mc . The tunedgrid tuned-plate circuit of Fig. 10 enables the cathode to be operated at ground potential.

Many uses suggest themselves on sight. The space saved by this new, lloV AC receptacle ... the materials in component parts... CINCH'S quarter of a century of experience in making exacting standard sockets for Electronics . . . recommend itand insure satisfaction.
CINCH solder coated contacts for easy soldering, high dielectric bakelite-a dependable, durable space saving receptacle for innumerable purposes. Obtainable in alignment of from one to six or more. Compact, it is $11-2^{\prime \prime}$ long, $9-16^{\prime \prime}$ wide, and firmly holds the standard blade plug. It is Underwriters approved, and designed for sub or top mounting. Write for samples and further detail.
available at leading electronic jobbers everywhere

Melting-Point Chart

Metals, alloys and ceramics commonly used in electron tubes are covered. Critical temperatures are given in degrees Fahrenheit and centigrade

Collins Radio C'ompany, Cedar Rapids, Iowa

The melting point chart is a thermometer-type graph upon which are placed the melting points of metals, alloys and ceramics most commonly used in electron tubes.

A linear scale representing degrees F is located on the left side of the central thermometer. A linear scale representing degrees C is located on the right side of the thermometer. Any line drawn through the thermometer, normal to its length, designates a C reading and the F equivalent. Above $2,000 \mathrm{C}$, the scale is condensed.

Pure metals are shown opposite their respective melting points on the right side of the thermometer. Ceramic materials and metal alloys are similarly shown on the left.

The melting temperature shown for ceramic bodies is that temperature above which no crystalline phase normally exists. No attempt has been made to indicate their progressive softening characteristic.

Uses

When a specific material is being considered for use because of desirable electrical, chemical or other properties, the melting point is easily obtained. Conversely, where the temperature range within which materials must work is known suitab'e ones can be quickly selected.

Fabrication techniques may employ soldering, brazins, or welding, and the most suitable method for a particular material is frequently determined from the chart. Similarly, where sequential heating operations are planned it is useful.

The chart also facilitates rapid conversion between F and C scales.

The Mallory Inductuner* tunes in the telecast clearly and keeps it in line

Freguency drifi-which in television means a gradual hur and weakening of the picture, and resalis in irritaleal calls for the service man-is one of the prohlems that Mallory recognized in the early days of television.
Scts equipped with the Mallory Inductuner enable the user to overcome drift, or bring in a clear-tut image from any new transmitting station, by simple fingertip tuning. The set owner enjoys television in full, wilhout inconvenience or costly adjustments.
Let Mallory engineers help you work the Inductuner into your circuit. Write for information today.

* Regishered iralemarle of I'. R. Mallory \& Co., Inc. Jor Jutuctance taning devices cocervel by Mallory-H'arepitents.
unina device that relinhility, simpticity of uperation und uniform reception. Currenty it is heing ineorpornted in telmision receiving equipment as a practical effiriem means of tuning the emtire TI and FM range of th through 216 Ale. In addition, the Inductumer offers anusual possithilities in the lest equipntent, "manour and experimental fieids.

THE MALLORY INDUCTUNER
is ar 3 coil, naidalm inductance -

MALLORY CAPACITORS SWITCHES . . RESISTORS... RECTIFIERS VIBRAPACK* POWER SUPPLIES...FILTERS
 *Reg. U.S. Pat. Off APPROVED PRECISION PRODUCTS

P. R. MALlory \& CO., Inc., INDIANAPOLIS 6, INDIANA

TUBES AT WORK

Including INDUSTRIAL CONTROL

Edited by VIN ZELUFF

British Valves at Work 120
Graphical Iron Core Design 136
Remote Control for Radio Tuning 148
Protection for TV Antennas 154
Servo Physical Tester 156
Airliner Television 158

Inside base of an antenna switching tower showing one of six stacked switching arms. The remotely controlled motor is mounted in the large box in the center

British Valves at Work
McGraw-Hill World News

With a frequency accuracy of one part in a million and occasional effective radiated power output of $1,500 \mathrm{kw}$ from six transmitters, the BBC transmitting station at Skelton, England, incorporates many ingenious and effective methods for band and antenna switching. The station operates on the short-wave bands and it was constructed specifically for the purpose of transmitting to European countries, Latin America and certain parts of the Pacific.

These transmissions are radiated in some thirty-six languages, and the service continues through day and night, changing frequencies and directions as demanded by conditions of propagation and location of areas to be served. The station was built during the war and de-
signed to ensure reliable transmissions despite enemy jamming efforts.

In all, there are 51 antenna arrays strung between 31 masts
ranging in height from 200 to 350 feet. The remote antenna switching system is perhaps the most interesting feature of the station. Any one of the six transmitters may be connected between a certain number of arrays, thus enabling the output of a transmitter to be beamed to any part of the world.

A picture of one of the giant multipole switches is shown. These towers are forty feet high and built in six levels, each being connected to a certain transmitter. The switching arm is controlled by an electric motor. The antenna arrays are in the form of stacked horizontal arrays.

The master oscillators are not crystal controlled, but excellent stability is possible through the use of double temperature control where the temperature inside the frequency determining unit is controlled and the temperature of the room housing the unit is also constant. The oscillators operate at comparatively low frequencies and the frequency is multiplied in harmonic generators with a switching arrangement for optimum flexibility.

Another ingenious design feature is the mounting of tuned circuits on trucks. These units are wheeled into the rear of the transmitter cabinet, and contact is made by spring-loaded copper blades of generous area.

The audio driver delivers 1,200 watts to the class B modulators and each of the latter can dissipate up to 75 kilowatts on its anode. Each tube takes 2.5 amperes of grid current on drive peaks. The modulation transformer carries up to 20

One of the forty-foot rotary switches used in the BBC's Skelton station for antenna switching. Ecch of the six decks contains a switch

IMC PRODUCTS: Macallen Mica Products-Varfex Varnished Cloth and Tapns-Varslot Combination Slot Insulatian-Fiberglas Electrical Insulation-Manning Insulating Papers and Press-boards-H. \& V. Insulating Papers-Dow Carning silicones-Dieflex Varnished Tubings and Saturated Sleevings - National Hard Fibre and Fishpaper-Phenolife Bakelite-Permacel Adhesive Tapes - Asbestos Woven Tapes and Sleevings - Inmanco Cotton Tapes, Webbings, and Sleevings-Pedigree Insulating VarnishesWeágie Brand Wood Wedges.
The IMC Engineer offers two services to help you solve electrical assembly problems:

1. A complete line of nationally advertised insulating materials.
2. Expert advice and engineering service on the best application of these materials.

Whatever your insulation problem, call in your nearby IMC Engineer. He is trained in the application of electrical insulation, and can usually suggest an answer from his experience and the complete line of products he represents. Every one of these products is superior in quality and designed for full satisfaction in application and service.

INSULATION

MANUFACTURERS CORPORATION

*CHICAGO 6 565 West Wash ington Blvd.
MILWAUKEE 2 312 Eost Wisconsin Avenue

*CIEVELAND 14 1231 Superior Ave., N. E. DAYTON 2 1315 Mutuol Home Building

DETROIT 2: 15 Lowrence Avenue
*Local Stocks Availoble
Representotives in:
MINNEAPOUS 3: 1208 Hormon Ploce PEORIA 5: 101 Heinz Court

THE FRONT COVER

DESIGNS as intricately curved as that at the right can be produced in a single operation with the Air Reduction Sales Co. photoelectric cutting machine shown below and on the front cover.

A silhouette or outline drawing of the desired shape is placed on the table at the left in the photo, under the photoslestric tracing head. An optical unit in the head projects a small spot of light downward on the pattern, and phototubes responding to the reflected light drive a steering motor that keeps the spot positioned half on the black line and half on the white paper whi'e traveling around the pattern at the desired cutting speed. The oxyacetylene cutting torches on the other end of the pantagraph bar cut the desired pattern from the sheet of boiler plate or other material under the torches.

The number of torches used can be varied at will. Three are shown in use, cutting out large washers, while four are in operation on the front-cover setup for cutting paper-mill pulp beaters from ${ }^{4}$-inch low-carbon plate 4 ft wide and 8 ft long.

There are no limitations to the variety of designs that may be cut with electronically controlled tracing equipment. Cutting accuracy is greater than with manually guided or automatic mechanical tracing spindles, and the low cost of paper patterns permits economical operation even on orders for single pieces. Paper patterns are easily stored, in contrast to storage problems for the carefully machined metal templates otherwise needed.
The electronic tracing device contains two phototubes, an amplifier tube, a lamp, associated circuit components and optical lenses, and three motors that control movement of the head-the steering motor, the tracer driving motor and a motor that raises or lowers the head in response to a manually operated switch. The tracing wheel controls the direction of movement of the head but does not track over the outline of the template except where it may intersect the outline.

Changing tubes is a touchy proposition when those involved cost about $\$ 5,000$. Tubes are wheeled into position and low. ered s'owly into their sockets by truck mechanistm
amperes peak current in the primary at a peak voltage of over 7,000 . The modulation choke has an inductance of about 13 henrys at 14 amperes.

The final stage is a class C pushpull stage using two water-cooled tubes in a balanced bridge circuit. The filaments of these tubes carry 460 amperes at 32 volts, and their anodes are capable of dissipating 150 kw with voltages around 20,000 . The tubes are 3 ft 6 in . high and they are wheeled in and out of the transmitter on special trolleys for safety in handling and ease of replacement.

Each transmitter is controlled from a small metal desk where the engineer may fire up his transmitter from a cold start and keep constant check on its effinient operation. Complete monitoring equipment is, of course, provided.

Power for the station is obtained from the Electricity Authority at $11 \mathrm{kv}, 3$-phase, 50 cps . Also, three 500-kw diesel-engine-driven alternators are available for emergency operation.

For some 22 hours a day, a radiated power of $1,500 \mathrm{kw}$ is sent out. to Europe and Asia, while from. other beam networks services are transmitted to North America, Central and South America at night, and to the Fleet in the Pacific. The longest circuit on which direct transmission is achieved with ex-
(continued on p 136)

For the finest sound, just pick from this line...

THE ELECTRON ART
 Edited by FRANK ROCKETT

Tube Maps Magnetic Fields. 124
Radome Design Limitations. .
Series Overmodulation . 126
Transitron Oscillator Tube . 166
Survey of New Techniques. 172

Tube Maps Magnetic Fields

Paths of magnetic lines of flux can be traced with a mercury vapor diode having a perforated tantalum (or other nonmagnetic) anode and a coaxial cathode. With an anode potential of 10 to 15 volts (approximately the ionization potential of the mercury) and a cathode current of about 10 ma (although operation is satisfactory over a wide current

FIG. I-Gas diode shows magnetic lines in flux; diameters of electron beams are least in regions of highest flux
range), the electrons are focused into tight helical beams whose axes follow the magnetic flux paths even in fields as weak as 0.01 weber per square meter. Ionization of the vapor along the paths makes them visible.

The action of the tube, which is being studied by S. J. Tetenbaum under the direction of Prof. S. G. Lutz at New York University, can be seen from Fig. 1. Electrons from the cathode are accelerated toward the anode. Because of the magnetic field, on!y those electrons whose initial trajectories are nearly tangential to the magnetic flux continue undeflected through the perforations in the anode. The low radial velocities of these electrons enables the magnetic field to confine them to tight helical beams whose axes follow the magnetic flux paths quite accurately. The only cumulative distortion is a slight drift in the direction of the curvature axis of the field; it is minimized by the low electron velocity.

FIG. 2 -Successive exposures with tube in various positions about a magnetron magnet (pole faces and shunt removed) show its field configuration: room lights, off during exposures, were turned on later to photograph magnet

The tube can be used to delineate leakages about magnetic structures or as a means of visually demonstrating the patterns of magnetic fields. By successively exposing a photographic film in a darkened room as the tube is moved about a magnet, the field can be mapped, as in Fig. 2. A paper describing this tube in greater detail was presented at the National Electronics Conference, Nov. 1948.

Radone Design Limitations

Housings for aircraft radar and radio antennas are often made of low-pressire molded plastic. The two conflicting requirements for the contours of these laminated structures, that they do not interfere (1) with the airfoil design of the airplane or (2) with the focusing of the radar beam, make their design and fabrication difficult. As pointed out by F. H. Behrens of the Air Materiel Command before a seminar of The Society of The Plastics Industry in June at Washington, D. C., the services and industries working on these problems have developed means for reconciling them to some extent.

Classification of Radomes

Radomes can be classified into types according to the constructional means used to minimize distortion of the radar beam. The radome' absorbs appreciable power from the radiated field and also distorts it by reflection, refraction and diffraction. The radome may reflect sufficient energy back into the antenna to cause signal instability. At most radio frequencies the antenna housing is sufficiently thin compared to a wavelength to cause no distortion. However, at microwaves the thickness of the radome is comparable to a wavelength so that reflected and refracted energy from the inner and outer surfaces are not in a phase relation to produce cancellation.

There are four principal wall constructions in use: (1) thin wall, (2) thick wall, (3) double wall, and (4) sandwich. The sandwich construction is the most extensively used.

Thin walled construction is used

FM-AM SIGNAL GENERATOR

Type 202-B • 54-216 megacycles

In January, 1946, at the I. R. E. National Convention in New York City, a preliminary engineering model of the type 202-A FM-AM Signal Generator was displayed for the first time. Many well known FM and television engineers, invited to comment frankly on performance specifications, suggested refinements and features whicin they believed would be most desirable in the finished design.
Utilizing this valuable information, Boonton Radio Corporation's engineers worked another full year before they were ready tc place their approval on the final design-the type 202-B FM-AM Signal Generator,
The advantages of this essential instrument were recognized
immediately. Since its enthusiastic reception, the 202-B has increased in popularity and today it is generally accepted as the acknowledged standard of FM-AM signal generator performance. Practically every well known radio manufacturing concern is now placing increasing numbers of this versatile instrument in full time use, assisting their engineers and research staffs to design and produce better, lower cost radio and television receiving equipment.
If you have an FM or television instrument requirement, let us acquaint you with full particulars and technical data concerning the Type 202-B FM-AM Signal Generctor. Write for Catalog F .

BOONTON RADIO

Utility of airborne radar depends on the, equipment having a suitable window through which to transmit its beam. Four types of radomes are commonly used to provide this window, but making them transparent and streamlined is difficult
at radio and longer microwave frequencies at which the wall thickness can be made small compared to a wavelength in the radome material. Such walls made thin enough for use at microwaves are structurally too weak for use in high-speed aircraft. At lower frequencies, where they can be made sufficiently thick for strength, thin walled housings are very satisfactory.

Structurally, the thick walled housings are similar to the thin walled types, but the thickness is made at multiples of a half wavelength in the dielectric so the reflections are neutralized. Because of the shape of the radome, the waves do not pass through all portions of the material at the same angle, so the thickness is a compromise or must be made variable. This type of wall is usually used at shorter microwaves; at longer wavelengths this construction gives an excessively heavy housing.

The double walled radome consists of two thin walls, one within the other, and accurately spaced to neutralize reflections by ribs that also increase its strength. Because of the poor strength and diffraction around the ribs, this type is little used.

The sandwich construction consists of two thin walls, one within
the other as in the double walled type, but spaced and fully stabilized by a low density core material bonded between the thin skins. This arrangement neutralizes reflections and provides tremendous strength with low weight.

Streamlining and Transmission

Unless the radome is sufficiently streamlined it produces intolerable drag on a modern aircraft. Unless it presents sufficient undistorted transmission to the radar beam, the radome limits the accuracy of the radar equipment. Thus streamlining is limited by the critical angle of incidence at which the radar waves will pass through the wall. The relative orientation of the rays and the sloping surface of the radome establish this angle. The upper limiting angle of incidence is a function of the dielectric properties of the material used for the radome and of the wall configuration to which it is designed. In general, the lower the dielectric constant and the loss factor, the greater the freedom in streamlining.

A detailed study can be conducted to good accuracy to determine the angles of incidence and polarizing directions throughout the radome, thereby providing design data for grading the wall thickness. By this means an efficient, streamlined radome can be designed, but its final performance depends on the tolerance to which it can be molded.

Fabrication Limitations

Fabrication of radomes is beset by many problems and several improvements are necessary such as: (1) harder finishes that are less subject to erosion by rain, (2) close control of outline, thickness and uniformity of material, (3) elimination of lap joints in window areas of critical types of radomes, (4) fabrication of controlled graded thicknesses, and (5) elimination of hand tailoring of the core in various types of sandwich radomes.

The properties of laminated resins used for radomes need improvement also so that they will bond more strongly to glass fiber, withstand elevated temperature,
have greater mechanical strength, lower dielectric constant and loss factor, and be sufficiently viscous so that voids will not form between laminations. Most current development is directed to improving sandwich domes. Voids are avoided by premolding skins which are then accurately supported during sandwich fabrication by molds. The core is introduced by heating a prepared foaming batter.

In conclusion, the speaker stated that the future of airborne radar depends to a great extent on satisfactory solution of these problems. (Ed. Note: see also Part II of "Radar Scanners and Radomes" by W. M. Cady, M. B. Karelitz, and L. A. Turner, vol 26, MIT Radiation Lab. Series, McGraw-Hill, 1948.)

Series Overmodulation

By Robert E. Baird
Chief Engineer, KWSC Pullman, Wash.
Amplitude modulation in excess of 100 percent can be produced with a series modulator without creating sideband splatter. Several methods have been described for accomplishing such overmodulation (for example: Overmodulation Without Sideband Splatter, O. G. Villard, Jl., Electronics, p 90, Jan. 1947) and for exceeding 100 percent modulation on positive peaks without exceeding it on negative peaks. Broadcast stations in some localities overmodulate within the fivepercent differential allowed by the FCC by slightly unbalancing their class-B linear amplifier. The simple method that is to be described here rounds the negative peaks so that overmodulation cannot occur on them even though over 200 percent modulation may be produced on positive peaks. In this way the break in the carrier that would cause sideband splatter is avoided.

Modulator Tube is Variable Resistor

Series modulation has considerable merit in itself because there are no reactances in the modulator. All that is needed is the proper tube and a power supply giving a little more than twice the rated voltage of the r-f amplifier. Figure 1A
(Continued on D 160)

What we mean by...

RIGID QUALITY CONTROL

A DEFINITION OF SHERRON METHODS IN THE BUILDING OF CUSTOM MADE ELECTRONICS PROJECTS

HERE IN THE SHERRON electronics laboratory we initiate our design and development procedures. Every detail of a project's embryonic phase is explored by thoroughly seasoned physicists, engineers and technicians. Here the pattern for the finished product is accurately defined to assure trouble-free performance.

THE SHERRON electro-mechanical laboratory serves in the fabrication of mechanical components for . . computers, vacuum tube structures, mechanical equipment for electronoptics, special precision wave guides, precision tuning units, precision drive mechanisms, servo mechanisms. Staffed by graduate mechanical engineers, equipped with the newest precision machines and tools, this laboratory is invaluable in closing up the margin for error in the electronic equipment we manufacture.

RECENT SHERRON PROJECTS INCLUDE

COMMUNICATIONS

- Trans-Receivers for various uses
- Television - FM - AM Transmitters
- Navigational Devices, including Homing Equipment, Radar, etc.
- Micro-wave techniques and Radio Relay Links
- Ample Test Equipment to assure successful operation of above

ELECTRONIC CONTROL EQUIPMENT FOR

- Drone Aircraft Guided Missiles
- High Gain Amplifiers
- Computers and Calculators
- Servo Equipment
- Velocity Propagation measurement
- Test Equipment including In. strumentation for above

VACUUM TUBE CIRCUIT DEVELOPMENT

- New applications for existing vacuum tubes
- Precision test equipment for vacuum tubes

CONTROL OF MEASURING DEVICES

- Flow indicators
- Sorting, Counting
- Measurement of chemical titrations
- Surface strains, stresses, etc.

INSTRUMENTATION

- Bridge measurements
- Null detectors
- Vacuum fube voltmeterammeters
- Multi-wave shape generators

TELEVISION

- Television Signal Synthesizer Sync Generators
- Monoscope
- Shapers - Timers
- Wide band oscilloscopes
- Air monitors
- Field intensity equipment
- Television test equipment

NEW PRODUCTS

Edited by A. A. McKENZIE

Abstract

New equipment, components, tubes, testing apparatus and products closely allied to the electronics field. A review of catalogs, handbooks, technical bulletins and other manufacturers' literature

Ceramic Pickup

Sonotone Corp., Elmsford, N. Y. Titone ceramic pickups for 78 and long-playing records use synthetic barium titanate piezoelectric elements. The pickup for $78-\mathrm{rpm}$ records has a 0.0027 -inch radius needle tip, requires a tracking weight of 22 grams , has a lateral compliance of $0.5 \times 10^{-6} \mathrm{~cm}$ per dyne or better, and delivers an open-circuit output of 0.75 volt at $1,000 \mathrm{cps}$. The pickup for L-P records has a 0.001 -inch radius needle tip, requires a tracking weight of

only 6 grams, has a lateral complitance of $0.75 \times 10^{-6} \mathrm{~cm}$ per dyne, and delivers 0.25 volt at $1,000 \mathrm{cps}$ on a test record. Both pickups have permanent sapphire needles and wide frequency responses. Mounting and electrical adapters are available so that the cartridge can be used in standard tone arms.

Supermidget Relay

Potter and Brumfield Mfg. Co., 549 W. Washington Blvd., Chicago, Ill. A new type of miniature relay weighing only 0.33 ounce eliminates all nonfunctional parts. The core parts are formed to act as currentcarrying elements and contacts, one part providing the armature and movable-contact arm while another

part is extended to provide a stationary contact arm and mounting. Another stationary contact can be mounted on the insulating bakelite front of the coil form with two screws. Contacts are heavy silver plating applied directly to the iron magnetic parts. They are rated for 100 milliamperes $d-c$ at 50 volts for maximum life. Coils are wound to any desired resistance up to a maximum of $1,600 \mathrm{ohms}$.

Television Signal Standard

Measurements Corp., Boonton, N. J. Model 90 television standard signal generator has a master oscillator, buffer, and modulated power amplifier. Output circuits are overcoupled to permit modulation frequencies up to 5 megacycles. Carrier range is continuously vari-

able from 20 to 250 megacycles. Video modulation operating from a standard RMA composite signal has a bandwidth of 4 mc at 3 db . A mutual-inductance balanced attenuator is provided.

F-M Monitor

Graybar Electric Co., 420 Lexington Ave., New York 17, N. Y. The Western Electric model 5A f-m frequency and modulation monitor provides continuous indication of center-frequency error, percentage of modulation, a visible alarm for

overmodulation, program monitor, and noise detector for measurement of transmitter a-m noise. Extension meters can be added. Write for brochure WECO-T2437.

Coils and Springs

Webster Spring Corp., 97 South 5th St., Brooklyn 11, N. Y. The coils and springs illustrated indicate the scope of the company's

manufacturing possibilities. In addition, solenoids and i-f transformers can be furnished on order in small or large quantities.

Submidget Switches

General Control Co., 1200 Soldiers Field Road, Boston 34, Mass. New lever switches have shielding between switch assemblies and single-hole mounting or two sets of four holes on standard

WHY IT'S TO YOUR ADVANTAGE TO STANDARDIZE ON RAYTHEON SUBMINIATURE TUBES

For Special Purpose Applications

Raythean Filamintory Sutiminiaturns increase the solability of your product by decrsasing its kize. They are flat, Barterias can be limle inuteed of big because of extrsmely low filoment drain.

Raythean Subminisfures plug intry standard sockeis, (over one and a holf milion in use), or can be soldered or welded into the sircuit.

Raytheon Tubes ore readily available from stock. Over half a million of the fubes described on this page ore ovailable ai ol t ime?. They are standard thr nughout the w जrid - more ore in use
today than all Other makes comsined I
Raytheori ofters you umsurpasied application engineering servict, bazked by nint years of production and oppication experience.

NEW - Write for Socket and Mounting Notes for Flat Press Subminiature Tubes.

RAYTHEON MANUFACTURING COMPANY
SPECIAL TURE SECTION
Newion 58, Massachusefts
suzminiature tubes special purpose tuaber monómave tuars

centers. Total depth of the frame behind the panel is $2 \frac{1}{2}$ inches to $221 / 32$ inches depending upon the contact arrangement.

Bus Receiver

General Electric Co., Syracuse, N. Y. The f-m fixed-tuned receiver shown is used in buses or other vehicles that are a part of the pro-gramming-advertising combination sometimes known as "car-card radio". Crystal controlled at the fre-

quency of the desired station, the receiver operates from the bus battery, is connected to four or eight speakers, and is used with a dipole mounted externally over the driver's seat.

Basic Oscilloscopes

James Millen Mfg. Co., Inc., Malden, Mass. The three models of rack panel oscilloscopes have been designed as basic units to which

other units, such as sweep circuits, pulse generators, and amplifiers can be added for any laboratory or industrial use. Models 90902, 90903, and 90905 use two-, three,- and fiveinch tubes, respectively.

Small Wet Cell

The Vitamite Co., 227 West 64th St., New York 23, N. Y. A new rechargeable nonspial wet-cell battery model 2A-3.00 weighs six ounces. lt has a four-ampere capacity and

has been designed to operate under low-temperature and low-pressure conditions.

Microwave Calorimeter

De Mornay Budd Inc., 475 Grand Concourse, New York 51, N. Y. Measurement of absolute r-f power in a series of frequency bands between 2,600 and 26,500 megacycles

is now possible. Accuracy of 2 watts at average power readings of 100 to 500 watts is attained by the calorimetric principle.

Educational F-M

General Electric Co., Syracuse, N. Y. A new f-m broadcast transmitter type BT-11-B operates in the 88 -to-108-megacycle range, but is designed for a power output of ten watts or less for noncommercial

educational work. Coverage ranges from 5 to 10 miles depending upon the installation. The unit employs a Phasitron modulator, has 21 tubes, and weighs 280 pounds.

Standing-Wave Meter

Kay Electric Co., Pine Brook, N. J. The modified Megamatch displays reflected energy in bandwidths of 30 mc anywhere between

10 and 500 mec , and can be used for most work up to $1,000 \mathrm{mc}$. Price of tre noodified unit, which uses a special coaxial detector and delay line, is $\$ 895$ f.o.b.

Multiple Recorder

Leens and Northrup Co., 4934 Stenton Ave., Philadelphia 44, Pa. A new Speedomax recorder automatically logs as many as 160 separate thermocouple temperatures in succession at a rate of 4

(continued on p 178)

Now audiodisć lacquer

 provides permanent resistance to bumidityExcessive humidity has long been one of the industry's major problems-both to the manufacturer and to the recordist. Humid conditions in factories have frequently held up production and caused excessive spoilage. Also, discs which have absorbed too much moisture make poor recording. The noise level increases progressively while recording and the cut gets greyer and greyer.

Air conditioning has been tried by several producers, but this does not prevent moisture absorption during transportation and storage. The real solution lies in the formulation of a lacquer which will provide permanent resistance to humidity. This has now been successfully accomplished by our research laboratory. Here are the facts:

1. The lmphoved Audiodisc Formueation has eliminated ali production difficulties due to excessive humidity. Daring the past summer no trouble was encountered, even with humidity as high as 90%.
2. Countless Tests in our "weather roum" have proved the new Audiodiscs to be remarkably resistant to moisture absorption. Dises subjected to a temperature of 90° at 80% to 90% humidity for many weeks show no increase in noise level while recording. Ordinary discs, under the same conditians, show a noisc level increase of from 15 to 25 dl . The most conclusive proof of all, however, has come from the field-for during the past summer, one of the most humid on record, our customers have repurted no diffisulties in recording or reproduction due to humid conditions.
3. Tilis "Weatuer-Proof" Feature has been achieved without any basic change in our lacquer formulation. Recordists will therefore consinue to note the outstanding qualities in recording, playlack and processing which have made for Andiodisc leadership.

This improved humidity-resistant lacquer is now used on all Audiodiscs. It is your assurance of finer. all-weather recording -with the same consistent, uniform quality which has characterized Aumomses for a decade.
*Reg. U. S. Pat. Off.

Audiodiscs are manufactured in the U.S.A. under exclusive license from P $\nmid R A L, S . A . R . L .$, Paris.

Audio Devices, Inc., 444 Madison Ave., N.Ỳ.C.

Export Dept: Rocke International, 13 East 40th Street, New York 16, N. Y.

they sheak for
 Themselues audiodises

NEWS OF THE INDUSTRY
Edited by WILLIAM P. O'BRIEN

Magnetic recording standards; train
television demonstrated; FCC abandons operator license changes

Park Strollers View World Series

Baseball fans unable to get into the ball park view opening game of World Series over RCA television sets installed by that company on Boston Common. Telecast was from WBZ-TV, Brighton, Mass., with microwave relay and coaxial cable providing feed from the master receiver atop the Ritz Carlton Hotel

ONE of the largest group installations of television sets ever made brought the recent World Series to an estimated 100,000 viewers on Boston Common. Over one hundred RCA Victor 721TS receivers with 52 -sq-in. screens were set up by RCA Service Company technicians.

For this mass installation of sets, a special receiver was installed atop the Ritz Carlton Hotel to pick up the telecast from WBZ-TV and feed a microwave transmitter that beamed the program directly to the control tent on the Common. A five-foot-diameter parabolic reflector on the hotel roof was aimed at a similar dishpan atop the control tent to provide ghost-free and interfer-ence-free transmission to the sets at the tent. The signal was con-
verted back to a standard television signal and fed through a total of three miles of coaxial cable to the 100 individual sets.

Each set was mounted on a $7 \frac{1}{2}-1 \mathrm{t}$ stand with a special shadow box to cut down sunlight, so that as many as a hundred people at a time were able to sit and stand in front of each set and view the game satisfactorily despite full daylight.

Ultrafax Progress Report

The present status of a new technique for transmitting enormous quantities of written, printed, or drawn material in an extremely. short time was demonstrated by Radio Corporation of America at
the Library of Congress, Washington, D. C., on October 21, 1948. The system shown consists of a somewhat unconventional scanning device employing a flying-spot cath-ode-ray tube and a photomultiplier tube, a 7,000-megacycle relay link, and a projection kinescope at the receiving end to expose a $16-\mathrm{mm}$ moving film. The experimental transmitter uses a $35-\mathrm{mm}$ film on which is recorded the desired intelligence. An important feature of the system is the rapid development of the film at the receiver. For demonstration purposes a small unit built by Eastman Kodak was used that moved the exposed film through a hot developing bath, delivering a dry positive film, suitable for viewing, in 40 seconds. Already deve oped but not demonstrated is a three-channel machine for printing up enlarged paper copies of the received messages.

To date, the photographic aspect of the system lags somewhat behind the electronic equipment which is essentially simpler and represents the refinements of known techniques. However, certain developments, such as a flying-spot scanner with a narrow beam have been essential. The radio transmission speed was pointed up by the transmission of the whole of the book, "Gone with the Wind" page by page, in two minutes and twenty-one seconds. Photographing the pages and reprinting them at the receiver would take substantially longer.

The functioning of the system on

Donald S. Bond, RCA Laboratories, Ultrafax project engineer threads film to be transmitted between the flying-spot scanner (left) and the photomultiplier tube (in lighttight box beneath his left hand)
 permanent, hermetic seal that eliminates moisture problems and often permits more compact, light-weight design.

The best woy to evaluote these gloss bushings for copacitors, modulator tronsformers, and other electronic equipment, is to see them. If you will send us o sketch ond ratings of bushings you are now using, we will furnish you with somples of one or more of our stondard gloss bushings. Or write for Bulletin GEA-5093 which contains complete listings of our stondard designs, ollowing you to select the particular bushing you require. Power Tronsformer Sales Division, Guneral Electric Co., 16-215 Pitfsfield, Moss.

General Electric is now offering to other marufacturers the glass bushings that it has used so successfully on capacitors, rectifiers, modulator and instrument transformers, and other electrical equipment. These bushings are cast of an exceptionally stable, tow-expansion glass. Metal hardware is a special nickel-alloy steel, fused to the glass in casting. Bushings are attached directly to the apparatus without gaskets by soldering, welding or brazing the metal bushing flange to the metal case.

The resulting joint between bushing and equipment is permanent, vacuum-tight, and of high mechanical strength. It is especially desirable for equipment subject to vibration, shock, fungus growth or severe changes in temperature. These glass bushings are currently available to meet dry, $60-\mathrm{cycle}$, flashover values of from 10 to 50 kv , and in current ratings of 25 and 50 amperes (large sizes up to 800 amperes). They may be single or multi-conductor and can be provided with a top flange to permit mounting tube sockets directly on the bushings. Diameters range from $15 / 8$ to $33 / 8$ inches and weights from $21 / 2$ oz. to 4 lb .
an economic basis is predicated upon the establishment of nationwide microwave relay links also necessary for television. It was suggested that transatlantic service might begin soon if government services could maintain a chain of relay airplanes, spaced about every 200 miles between North America and Europe.

Although the reproductions obtained at the receiver were reasonably good, it has been pointed out that greater clarity and a goal of "a million words a minute" will only be possible using bandwidths of 10 megacycles as compared with the five-megacycle width employed for demonstration purposes.

Magnetic Recording Standards

ANNOUNCEMENT of a proposal of three recording speeds for magnetic tape was recently made by the National Association of Broadcasters' Recording and Reproducing Standards Committee. The group's proposal involves adoption of a primary-standard magnetic tape speed of 15 inches per second for a frequency response of 50 to 15,000 cycles, a secondary standard of 7.5

MEETINGS

Nov. 29-DEc. 1: Conference on electronic instrumentation in nucleonics and medicine, sponsored by IRE and AIEE, Engineering Societies Building, New York City.
Nov. 29-Dec. 4: 18th National Exposition of Power and Me chanical Engineering, Grand Central Palace, New York.
Dec. 10-11: Southwestern IRE Conference, Baker Hotel, Dallas, Texas.
JaN. 10-12: Symposium on high-frequency measurements, held by Instruments and

Measurements Committee jointly with the IRE and National Bureau of Standards, at Washington, D. C.
March 7-10: IRE annual convention, Hotel Commodore and Grand Central Palace, New York City.
April 11-15: Sixth Western Metal Congress and Exposition, Shrine Auditorium, Los Angeles, Calif.
May 16-20: Radio Parts Industry Trade Show and RMA Silver Anniversary Convention, Hotel Stevens, Chicago.
inches per second, for a frequency response of 50 to 7,500 cycles and a supplemental standard of 30 inches per second for all wide-range standards. The latter essentially corresponds to the European standard 77 mm (30.318 inches) established by the German magnetophone.

The committee also agreed that the minimum playing time per reel should be 33 minutes. Maximum permissible noise level was set at 40 db below peak signal level. Zero db level was set at 2-percent distortion.

It is expected that the standards will be ready for submission to the

NAB board of directors for final adoption at the regularly scheduled November meeting.

Industry to Present Views to FCC

The RMA has appointed a committee to confer with FCC Chairman Coy, and to offer the RMA's assistance in expediting an FCC decision in the matter of the recent temporary frceze on television station applications.

The committce consists. of president Max Balcom; W, R. G. Baker, director of $i:: 2$ RMA Engineering Department and vice-president of GE; H. C. Bonig, vice-president of Zenith Radio Corp.; Allen B. DuMont, president of Allen B. DuMont Laboratories, Inc.; Frank W. Folsom, executive vice-president of RC4 Victor; Paul V. Galvin, president of Motorola Inc.; and L. F. Hardy, vice-president of Philco Corp.

Radio Network for Farmers

AN F-M network with no wires whatsoever, known as the Rural Radio Network Inc., has been established by ten farm organizations to serve about 118,000 farms in New York State. Stations are linked together only by direct radio pickup of each other's programs. Stations now on the air, with frequency assignments and distance to the adjacent station they feed or
(Continued on p 217)

IN THE TRANSMITTER, a Type 1N34 SYLVANIA GERMANIUM DIODE rectifies the audio modulating voltage, to provide a variable d-c bias for automatic gain control. Use of such a circuit helps prevent over-modulation while maintaining a high average audio level. The result -voices of the train crews are transmitted clearly, evenly.

IN THE RECEIVER, another SYLVANIA GERMANIUM DIODE, Type 1N34, provides a delayed noise-gate action which suppresses undesired noise interference in the receiver output. Hence, only signals of usable amplitude will actuate the squelch circuits and the receiver is kept essentially silent in the absence of a carrier.

IMPROVE PERFORMANCE OF FARNSWORTH VHF RAILROAD COMMUNICATIONS EQUIPMENT!

U_{s}the per plify its design, reduce its size and weight. Technical literature is available to help you start your planning.

GET THE FACTS ON TV USES TOO:

TUBES AT WORK
(continued from p 122)

Band and frequency changing is expedited by the use of mobile tank circuits. A rail system guides trucks accurately to their contacts in the transmitler cabinet
celient results at the receiving end is 14,000 miles using a $100-\mathrm{kw}$ channel, the full output of one transmitter. The average shutdown time since the station was commissioned in 10.13 has been less than 0.04 percent.

Graphical Iron Core Reactor Design

By Morton R. Whitman Engrineering Department Thordarson Electric Manufacturing Chacaso, Illinois

Reactor designers are usually plagued by the mutually hostile requirements of speed and an optimum balance of the parameters involved in the design of reactors which carry both direct and alternating currents.

An optimum balance means the use of readily availaole parts and standard production techniques, a minimum of material in construction, low operating noise level and good thermal and insulation characteristics.

The principal difficulty in this problem arises from the nonlinearity of the magnetic material used in core structures. This makes impossible the derivation of an explicit formula which could give accurately say, the size and weight of a specified reactor. The purpose

Aircraft Relay Requires this Sleewing

Aircraft receiving and transmitting sets must operate constantly and without interruption in varying climatic temperatures, and must be able to withstand engine vibration. Burden of this performance falls upon the relay units within the sets.

BH Extra Flexible Fiberglas Sleeving is used on Automatic Electric Manufacturing Company's R-30 relay unit because it meets a specific insulation requirement fully and completely.
Here is what the Automatic Electric engineers found:
"In the R-30 relay, BH Extra Flexible Fiberglas Sleeving-fungacide treated-insulates the jump wires which are soldered to a stationaty terminal
strip on one end and the moveable armaturemounted terminal strip on the other end. Flexibility is essential. Stiffening of the sleeving would tend to put a drag on the armature and thus vary the pull-in and drop-out. BH Sleeving is not only flexible, but also stays flexible when subject to climatic changes in temperature."
BH Extra Flexible Fiberglas Sleeving remains flexible as string because no hardening varnish or lacquer is used in its manufacture. It is heat resistant to $1200^{\circ} \mathrm{F}$. if required. Cuts without fraying and won't deteriorate. Use it in your plant, in your product.
SLEEVUGS

* 1 H H Non-Fraying Fiberglas Sleevings are made by an exclusive Bentley. Harris process (L'. S. Pat. No. 2393530). "Fiberglas" is keg, TM of Owens-Corning Fiberglas Corp

Bentley, Harris Mfg. Co., Dept. E-29, Conshohocken, Pa.
I am interested in BH Non-Fraying Fiberglas Sleeving for \qquad (product) uperating at temperatures of \qquad ${ }^{\circ} \mathrm{F}$. at \qquad volts. Send samples so I can see for myself how BH Non-Fraying Fiberglas Sleeving stays flexible as string, will not crack or split when bent.

NAME \qquad COMPANY \qquad
ADDRESS

Send samples, pamphlet and prices on other BH Products as follows:
\square Cotron-hase Sleeving and TubingBen-Har Special Treated Fiberglas Tubing

ZOPHAR

ZOPHAR
Waxes, compounds and Emulsions

Materials for potfing, dipping or impregnating all types of radio components or all kinds of electrical units. - Tropicalized fungus proofing waxes. Waterproofing finishes for wire jackets. - Rubber finishes. - Inquiries and problems invited by our engineering and development laboratories.

Zophar Mills, lne. has been known for its dependable service and uniformity of product since 1846 .

ZOPHAR MILLS, Inc. ESTABLISHED 1846

117 26th STREET, BROOKLYN 32, N. Y.

FOR A SINGLE CHARGE!
If you're familiar with this nationwide shipping service, you know that dealing with RAILWAY EXPRESS is a time-saving, business-like arrangement, with a single charge covering everything. This charge includes pickup and delivery service in all cities and principal towns, double receipts, and fast transportation by railroad or scheduled airline under one responsible carrier. Your shipments move quickly between your business or home and a city nearby or clear across the continent...
Best of all, you know that RAILWAY EXPRESS is part of your own community life, a dependable neighbor you can call upon anytime for your kind of transportation.

THE NATION'S

SHIPPING SERVICE

NATION-WIDE RAIL-AIR SERVICE

Designed for a wide variety of laboratory measurements, especially those where high sensitivity and a long scale arc are required. Electrostatically and magnetically shielded, Model 622 is ideally suited for precise measurements of potential and current at the very low energy levels frequently encountered in nuclear physics, electronics and electro-chemical research. Microammeters, milliammeters, millivoltmeters and voltmeters are available in single' and multi-range D-C types; milliammeters and voltmeters in thermo and rectifier types for RF and A-C.

Complete information on Model 622 is available from your nearest Weston representative, or by writing... Weston Electrical Instrument Corporation 618 Frelinghuysen Avenue, Newark 5, N. J.

COMPLETE MONITORING EQUIPMENT By 《

for TV

 and FM TRANSMITTERS

FIG. 1-Alignment chart which may be altered to give actual design figues by reference to data on an arbitrarily selected prototype unit and appropriate vertical displacement of vertical axes
here is to suggest empirical techniques for doing these things.

Model theory offers a useful approach to this problem. It generalizes the results obtained on a sample and makes possible, in effect, the extrapolation of the data so obtained. The precision of data obtained in this way depends on how accurately a unit holds to scale with this sample, or prototype. Nevertheless, even if the scale factor is omitted from consideration, the results are significant from a design point of view.

An important result of the kind discussed is the relation: weight equals $k L I^{2}$ where weight is that of either core iron or total core and coil weight (adjustment of the constant k can be performed to suit one requirement or the other since in a line of geometrically similar reactors the winding weight will be a relatively fixed percentage of total core and coil weight) ; L is the inductance, and I is the direct current in the winding. An alignment chart is presented in Fig. 1 to expedite use of this relationship. The chart is not intended to give actual design figures but can be made to do so by reference to the data on an arbitrarily selected prototype unit and appropriate vertical displacement of the axes. Greatest accuracy can be secured by choosing as prototype

Have you received your copy?

It's packed full of helpful informa. tion for engineers and designers. You'll find the resistor, rieostat, relay or control device you need quick$l y$ in this new Ward Leonard complete line catalog.

If you have not yet received your complimentary copy, write on your company letterhead, and we will see that it is forwarded to you immedi. ately.

Simply address Ward Leonard Electric Co., 31 South St., Mount Vernon, N. Y. Offices in principal cities of U. S. and Canada.

WHERE

special nails • rivets • screws • made to your order

HASSALL cold-heading may solve your immediate special part problem ...Special nails, rivets and threaded parts made in diameters from $1 / 32^{\prime \prime}$ to $3 / 8^{\prime \prime}$ - lengths up to $7^{\prime \prime}$... Rivets $3 / 32^{\prime \prime}$ diameter and smaller a specialty ...Variety of metals, finishes and secondary operations . . Economy, quality and quick delivery in large or small quantities...Tell us what you need
 ...We will answer promptly. ask for free catalog. 3 -color Decimal Equivalents Wall Chart free on request.

JHM HASMLI MN: 150 Clay Street

Manufacturers of Cold-Headed Specialties-Established 1850

ESTABいSHED 18SO

- The renown of Imperial as the finest in Tracing Cloth goes back well over half a century. Draftsmen all over the world prefer it for the uniformity of its high transparency and ink-taking surface and the superb quality of its cloth foundation.

Imperial takes erasures readily, without damage. It gives sharp contrasting prints of even the finest lines. Drawings made on Imperial over fifty years ago are still as good as ever, neither brittle nor opaque.

If you like a duller surface, for clear, hard pencil lines, try Imperial Pencil Tracing Cloth. it is good for ink as well.

IMPERIAL TRACING CLOTH

SOLD BY LEADING STATIONERY AND DRAWING MATERIAL DEALERS EVERYWHERE

This beats a magic carpet!

Air Express can bring you supplies and equipment from any U.S. point-overnight. And that's better than oldstyle magic! Air Express is the fastest way you can find to ship or receive. No delays, because shipments go on every flight of the Scheduled Airlines.

What's more you get special door-to-door service at no extra cost. With low Air Express rates, you can use this fastest service as a regular procedure. Let Air Express keep your business running fast-and smoothly.

Specify Air Express-World's Fastest Shipping Service

FIG. 2-Design curve for finding weight of a single reactor unit from the reactor time constant, L / R
a unit somewhere in the desired range of size and weight.

A second relation gives the weight in terms of the time constant, L / R, of the reactor. Here, R is the simple ohmic resistance of the winding $-L / R$ equals $K W^{2} / 3$. The form of this equation makes graphical representation very simple. Measurements of the time constant and the weigh't on a single unit are used as the co-ordinates of a point on log-log paper. A straight line drawn through this point with a slope equal to $\frac{2}{3}$ completes the graph. A typical curve is shown in Fig. 2.

The curves must be used with caution since generally they are valid only when conditions of similarity to the prototype are maintained. Varying insulation requirements, cooling considerations and other considerations introduce error. Nevertheless, the curves are useful for estimating purposes and for reducing the number of steps in the preliminaries to actual design.

Filter reactors for use with polyphase rectifier systems operate at considerably lower excitation levels than corresponding single-phase systems for the same output voltage. Since permeability is an increasing function of the excitation up to some maximum characteristic of the material used, the polyphase filter reactor will in general be different from the single-phase unit. The difference will not be so large, however, that the charts will not be of some use for both.

An illustration of the use of the curves will be given here. Assume we wish to design a reactor of 5 henrys at $1 \mathrm{amp} \mathrm{d}-\mathrm{c}$. The insula-

WILL SWITCH 1250 WATTS WITH AN INPUT OF I WATT!

This new CLARE Type "JMS" Relay is a sensitive relay for switching heavy a-c loads with small d-c controlling currents ... as high as 1250 watts can be switched with a 1 -watt input.
It combines the outstanding features of the larger CLARE Type "CMS" Relay with the small size and light weight of the CLARE Type "J" Relay and employs a new-type Micro precision switch of unusual efficiency and compact design.
The CLARE Type "JMS" Relay is especially suitable to locations subject to sudden jolts, constant vibration or tilting. It may be provided with either one or two Micro snap-action s witches, or with one switch and a pileup of twin-contact springs. For installations where quick renoval or replacement may be desirable, it may be fitted and wired to a standard radio type plug.
This new relay is a development of CLARE's unceasing effort to keep pace with every industrial relay requirement. Our engincers and sales representatives are constantly at your service to provide just the relay to meet your specific need.
For full information on the CLARE Type "JMS" Relay, look up the CLARE office in your classified telephone directory ... or write for Bulletin 102 to C. P. Clare, 4719 West Sunnyside Avenue, Chicago 30, Illinois. In Canada: Canadian Line Materials Ltd., Toronto 13. Cable Address CLARELAY.

CLARERELAYS
First in the Industrial Field

ULTRA SENSITIVE D. C. AMPLIFIER

An Electronic
Replacement
For Sensitive Galvanometer Systems

The Model 53 Breaker-type D.C. Amplifier was devcloped for the measurement of d.c. and low frefuency a.c. voltage in the microvolt and fractional microvolt region. It is compact. portable, and makes an excellent replacement for the suspension galvanometer. The output of the amplifier is sufficient to operate standard meters and recording devices directly. It has been employed for the amplification of infra-red detectors, thermocouples, voltaic photocells, and the like, botts in research and industrial applications.

Among the advantages of this amplifier are the following:

1. Noise level that approaches the theoretical limit imposed by Johnson noise.
2. Extremely low zero drift (less than $.005 \mu \mathrm{~V}$ after warmup).
3. Freedom from the effects of vibration such as found in moving velicles.
4. Response characteristics permitting overall amplification flat from 0 to 10 cycles per second.
5. Reliability, as demonstrated by units which have been in continuous operation for several years.

THE PERKIn- ELIMER CORPORATION

GLENBROOK • CONNECTICUT

For Complete Information Write Dept. 50.

$I_{\text {you need }}^{f}$

Radio Parts...

suitable to Volume

Production...it may
pay you to call upon

United-Carr and its
subsidiaries. They
have helped many

* SPEED PRODUCTION
* TURN OUT FINER

FINISHED PRODUCTS

UNHLED-CARR

FASTANTBR Coxp.

CAMBRIDGE 42, MASSAGHUSETTS
makers of fasteners

or complete silence-with controlled, constant d-c voltage

Trained hands expect a pipe organ to respond immediately to any demand from complete silence to a powerful crescendo. To meet these demands, hundreds of magnets and solenoids must have controlled d-c voltage on tap at all times.

In a growing number of installations, General Electric selenium rectifiers specially designed and built for pipe organs - are supplying the smooth, constant voltage this application calls for Over the full load range, these rectifier units give instant response - operate silently - at low cost.
*Trade-mark Reg. U. S. Pat, Off.

Tell G.E. your problem of d-c supply When you strike an unusual rectification problem - or even when the routine problem of deciding which type of rectifier is best for your purpose - call on General Electric for an answer. Because General Electric makes all three - selenium, copper oxide, and Tungar* - General Electric engineers can give you ar impartial solution. Because G-E engineers know rectifiers - from the postage stamp size to ten-ton monsters - they can give you the kind of practical solu tion you want. For information, write to A8-1231, General Electric Company, Bridgeport 2, Connecticut.

G.E. makes all three G.E. makes all . Coper Oxide
selenium Tungar Rectifiers五

GENERAL (3) ELECTRIC

While it's "in the

The time to select relays is at the start of circuit design. Frequently, manufacturers save time and money-develop a better product, by consulting Leach during the first stages of their designing. Here's how-

Leach manufactures thousands of types of relays, for thousands of applications. Many are production items which may offer you savings in delivery time and unir cost. Through a slight change in circuit design you may gain the advantages of a standard type, at considerable savings and do a better job.

For your specific requirements, consult the competent staff of Leach electrical engineers. Custom designs are their stock in trade. Remember, for Better Controls through Better Relays, look to Leach. Write roday.

LEACER RELAYCO

5915 AVALON BOULEVARD, $*$ LOS ANGELES 3, CALIF.
tion level, excitation and thermal characteristics will be neglected to illustrate the technique.

From Fig. 1, the weight will be 47 pounds. From Fig. 2 the time constant will be 0.46 . Hence, the nominal resistance will be $5 / 0.46$ or approximately 11 ohms. On the basis of the information now available the required lamination size is readily determined.
A square center leg cross-section will give minimum length of turn for the winding for a given crosssection area so that using minimum copper weight as a criterion the lamination size may be picked out from a table of lamination sizes and weights per square stack, Since the resistance is known, the number of turns in the winding may be readily determined in terms of the mean length of turn for the core size chosen. The design may then be refined by consideration of the factors which have been omitted up to this point. In most instances only relatively slight changes will be required.

Remote Control for
Radio Tuning

By S. Wald

Aviation Equipment Engineering
Engineering Products Department Radio Corporation of America Camden, New Jersey
A noticeable trend in architecture and planning for modern homes is the increased use of built-in broadcast receivers. Their popularity has encouraged the author to investigate the possibilities of remote tuning devices and their application to standard broadcast receivers. The unit discussed in subsequent text and illustrated in the accompanying diagrams has been found to be highly effective, providing for both push-button and continuous remote tuning.

The schematic of the system is shown in Fig. 1. Alternating plate and grid voltages are applied to two miniature thyratrons in a pushpull circuit. The voltage between grid and cathode of each tube lags the corresponding plate voltage by approximately 115 degrees. Thus, each tube fires during a little less than one-half of the positive plate voltage excursion.

The induction motor working

Better Tubes-Longer Life-Increased Production through DPI HIGH-VACUUM ENGINEERING
 TOUR present rotary exhaust machines can be completely automatic in operation, yielding incrased production for any size tube.

Converted to DPI vacuum equipment, your machines will have a fractionating oil diffusion pump and a small mechanical pump ander each separate port. Iubes are rough pumped through automatic solenoid valves.

Protective devices with automatic controls will seal off the pumps and isolate the trouble in case of faulty tubes. Seal-off pressure will reach 5 x $10^{-6} \mathrm{~mm}$ of mercury before getter is flashed.

DPI-engineered rotary exhaust machines produce cleaner tubes faster, by continuous pumping throughout the cycle-eliminate large backing pumps and rotary slide valve.

For full information, write-

570 Lexington Ave.
New York 22, N. Y.

135 So. La Salle St.
Chicago 3, Illinois

[^5]

HIGH VACUUM PUMPS

Kinney High Vacuum Pumps are performing modern-day miracles in industrial production. Already they have greatly improved countless products and have made possible many spectacular new developments. Further miracles continue to unfold almost daily. Kinney Pumps are playing a vital part in producing pharmaceuticals, dehydrating foods, coating lenses, sintering metals, exhausting lamps and tubes, and performing many other low pressure operations. The high pumping speed, long life, and dependability of Kinney High Vacuum Pumps have indeed put vacuum processing on a full production basis. Investigate the new possibilitiesand increased profits, too-in low pressure processing with Kinney High Vacuum Pumps.

Write for Bulletin V-45

KINNEY SINGLE STAGE PUMP. 8 sizes with displacements from 13 to 702 cu.ft. per min. for low absolute pressures to 10 microns or better. Also Compound Pumps in 2 sizes (15 and $46 \mathrm{cu} . \mathrm{ff}$. per min. displacements) for low absolute pressures to and below 0.5 micron.

KINNEY MANUFACTURING COMPANY

3565 WASHINGTON ST., BOSTON 30, MASS.
NEW YORK - CHICAGO - PHILADELPHIA • LOS ANGELES • SAN FRANCISCO FOREIGN REPRESENTATIVES
General Engineering Co. (Radcliffe) Ltd., Station Works, Bury Road, Radcliffe, Lancashire, England Horrocks, Roxburgh Piy., Lid., Melbourne, C. 1. Australia
W. S. Thomas \& Taylor Pyy., Ltd., Johannesburg, Union of South Africa Novelectric, Lid., Zurich, Switzerland

WE ALSO MANUFACTURE LIQUID PUMPS, CLUTCHES AND BITUMINOUS DISTRIBUTORS

FIG. 1-Schematic diagram for remote tuning device using miniature thyratrons. Resistor R_{1} is adjusted for no motor rotation with points A and B shorted
winding being connected in the midtap of the transformer secondary receives two 65-degree duration pulses for each cycle of a-c power. This is equivalent to a direct-current with a superimposed 120 -cycle voltage. Since the other motor winding is excited from the line at 60 cycles, no rotation results.

If we now consider an unbalanced condition of the input bridge consisting of the two $50,000-\mathrm{ohm}$ potentiometers, an error voltage in phase with the plate voltage will be impressed equally and in phase on both grids. The resulting grid voltage will cause one tube to increase its angle of plate current flow while the other will decrease.

The current passing through the motor winding now has a strong 60 cycle component and, depending on the phase relation of this component with respect to the fixed line excitation, the rotor will turn in one direction or the other. If the potentiometer bridge connected to the input is sufficiently unbalanced, it is possible for one tube to be completely cut off while the other is conducting over 180 degress.

The function of the $2-\mu \mathrm{f}$ capacitor connected in paralle] with one of the motor windings is to improve the 60 -cycle power factor of the motor so that the output torque for moderate error voltages is increased while the volt-ampere load on the transformer is reduced. The 2 -נf capacitor connected in series with the a-c line and the exciting winding produces 90 -degree phaseshift for induction motor action.

While the d-c in one of the motor

Federal

 SQUARE DEAL foc Designers

Another FEDERAL achievement for better designed and better operating equipment.

MMore watts per cubic inch in your cabinet space... made possible by Federal's 26 -volt RMS square and rectangular Selenium Rectifier plates. By materially reducing the number of plates required for a given output, this important advance in the art of Selenium Rectifier design and manufacture offers engineers and designers new opportunities for savings in space and weight. Now greater power - with the efficiency and dependability inherent in Federal
out sacrificing compactness
This is just one more example of Federal's leadership in Selenium Rectifier development. When you specify Federal Selenium Rectifier stacks, whether square, rectangular or round, you can be sure that Federal will help you see the job through. Our engineers are interested in every application, and are always ready to give you the benefit of more than a decade of Selenium Rectifier experience. For information, write to Department E-213

Selenium Rectifiers-may be had with-

KEEPING FEDERAL YEARS AHEAD is HT \& ' world wide research arid engineering organization, of which the Federal Telecammunication Loboratories, Nutley, N. J., is a unit.

In Canada: Federal Eleciric Manufacturing Company, Ltd., Mantreal, P. Q.
Export Distributars: Internotional Standard Electric Corp. 67 Broad St., N. Y

C.T.C. Custom-Engineers
 The Solution To

a tricky beed-thrup problem

Feeding an R. F. potential through the wall of a cavity oscillator presented many difficulties. Not only was space at a premium, but extreme changes in humidity, temperature and other service conditions had to be met.

THE ANSWER

C.T.C. 1795B Insulated Feed-Thru Terminals fulfilled every requirement. Design-features like these show you why: Rugged construction that withstands loosening under vibration or shock . . . approved phenolic insulating material, JAN type LTS-E-4 . . . brass bushings, cadmium plated. . . brass thruterminals, silver plated for casy soldering.

SPECIFICATIONS

The 1795B mounts in a $1 / 4^{\prime \prime}$ hole, and has an over-all length of approximately $7 / 8^{\prime \prime}$. C.T.C. Feed-Thru Terminals are available in additional sizes. The 1795A is similar to the 1795B, but with an over-all length of $1^{\prime \prime}$. Also similar in design and function are X1771A and X17713, but larger in size and mounting in a $3 / 8^{\prime \prime}$ hole. Breakdown voltages, at 60 cycles R.M.S., are:
1795A...3800V X1771A... S200V 1795B . . 3200V X1771B . . . 6000V Catalog No. 200 contains details of C.T.C. standard electric and electronic components, together with full information on our customengineering service. Write for it today.

Custom on Standaid The Guaranteed Componens

CAMBRIDGE THERMIONIC CORPORATION
437 Concard Avenue, Cambridge 38, Mass.

FIG. 2-The continuous tuning potentiometer is calibrated in frequency. The switching may be accomplished by a multi-position rotary switch or a bank of push-buttons
windings causes increased heating, it is nevertheless beneficial. The superposition of a continuous current converts the shape of the induction motor speed-torque curves so that the rotor speed is easily controllable by the stator voltage, and it provides a damping or anti-hunt torque proportional to the angular velocity of the rotor, thus preventing overshooting and the resulting continuous mechanical oscillation known as hunting.

The fixed a-c grid bias is made as low as possible without causing the grid to lose control, and the phase angle is made to approach 90 de grees. A single R-C network is used to supply this grid bias at a phase angle close to optimum value from the heater winding on the transformer.

Using a radio receiver with the servo-device incorporating a 15watt Holtzer-Cabot gear head induction motor to drive the 4 -gang tuning capacitor, the unit was capable of resetting to within 1,000 cycles at $1,000 \mathrm{ke}$.

The physical and electrical requirements for potentiometers suitable for use in the control and fol-low-up circuits are not severe. The

Operate accurately over wide Temperature Range

The steep negative curve of Globar Type F Resistors points up their sensitivity over a range from $-50^{\circ} \mathrm{C}$, to $100^{\circ} \mathrm{C}$. Actually this range can be extended beyond $150^{\circ} \mathrm{C}$. This pronounced and important characteristic of Globar Type F Resistors makes them particularly useful for stabilizing circuits possessing a positive temperatare coefficient of resistance. Functioning electrically, Globar Resistors have no mechanical parts to get out of adjustment. They retain their inherent characteristica over long periods of time. They may be used on A.C. or D.C. circuits. Ty picai applications are
RADIO CIRCUITS - Type F Resistors eliminate the high initial inrush of current, preventing pilot light burnouts and insuring long tube life performance characteristics

RESISTANCE THERMOMETER-Type

 F Resistors are ideal for Remote Control and Indication of TemperaturesMOTOR GENERATORS-Globar Type F Resistors serve as voltage regulators by compensating for the positive tem-perature-resistance of copper field coils.
ELECTRIC METERS - Globar Type F Resistors provide automatic temperature corrections. To do the job most efficiently for which they are intended, Globar Resistors are designed to meet the specific needs of each application. This means that complete information on your circuit must be supplied. Globar Resistors can be made to specifications in a hurry. Samples sent on request. Dept. V-128, The Carborundum Company, Globar Division, Niagara Falls, N. Y.

GLOBAR Ceramic Resistors by CARBORUNDUM

1 BILLION to ONE!

SPECIFICATIONS

BALLANTINE MODEL 300 ELECTRONIC VOLTMETER

RANGE: . 001 to 100 Volts, r.m.s (. 00001 to 10,000 Volts, with ace cescories)

ACCURACY: $\pm 2 \%$ al any point on the scale.

FREQUENCY: 10 cycles to 150,000 cycles.

STABILITY: Permanent calibrationunaffected by variation in line valtage, tubes, etc.

METER: Logarithmic Voltage scale and uniform decibe! sca!e

AC OPERATION: Wal operate on $105-$ 125 Volts, 50-60 cycles. (Battery operated models also avai able)

MODEL 220 DECADE AMPLIFIER

MDDEL 402 MULTIPLER

$$
\begin{gathered}
\text { volt } \\
\text { since } 1935 \\
\text { the only votimeiter } \\
\text { fecturing a simplified } \\
\text { LOGARITHMIC } \\
\text { SCALE }
\end{gathered}
$$

unit used for the continuous tuning function should be a wire-wound, high resolution potentiometer having at least 5 to 7 turns of wire per degree of rotation. Ireset potentiometers are employed for rapid chamnel selection. In the circuit shown, one potentiometer per station is required.

The components contained in the control box consist of a number of preset potentiometers. a rotary switch or bank of push-buttons and a continuous tuning potentiometer which is calibrated in frequency. The circuit is shown in Fig. 2. In operation. one adjusts each potentiometer for each station. Thereafter, whenever the switch connects a particular potentiometer in the circuit. the gang capacitor in the radio receiver cinasis is rotated to its correct position for station selection.

Protection For TV Antennas

NBC Enginters have enclosed in Plexiglas housings the microwave antennas mounted high on the Empire State and RCA Buildings in New York. These plexiglas igloos house five-foot parabolas which pick up television signals from baseball parks and arenas, or from mobile units elsewhere in the metropolitan area. Video cables then carry the signals to transmitters of television stations.

Primary purpose of the new housings is to shield the parabolic antennas from high winds and the destructive cascades of ice which plunge down in winter from the 300 -foot tower above.

For strength, the dome-shaped

BAMAVTINE LABORATORIISS, IIC. BOONTON, NEW JERSEY, U.S. A.

MODEL 300 ELECTRONIC VOLTMETER
switching in decade steps. There is but one seale to radd for all ranges. Output jack and output ranges. Output jack ant output
control are provided so that the voltmeter can be used as a hiohgain stable amplifier.

Aecessories include Model 220 Decade Amplifier, which supplies standardized gatins of low and 100x. and the Model 402 Multipliers which supply additional ranges of 1.000 and 10.000 Volts.
The Model 300 Voltmeter is a valuable tool for mosasurements in commmonication and "weak current" enqimerring. Its unusual sensitivity, arcoracy and stability make it ideal for work in the athdio. carrier. and supersonic ranges. Logarithmic meter indication assures umiform accuracy of reading over the whole scale while permitting range

Descriptice Bulletin vo. 12 Arailable

The Pictures Arrive in

Over ATV Lead-In Lines

LeAd-in lives play an important part in television and FM reception. To be sure of the best per-
 formance of your set. specify ATV lines for your set.

The effects of attenuation and inpedance mismatch on FM and Television reception are minimized by Anaconda Type ATV lead-in lines.

The satin-smooth polyethylene insulation of Type ATV line sheds water readily, thus avoiding subsequent impedance discontinuities. This material also has exceptionally high resistance to corrosion. Count on Anaconda to solve your highfrequency transmission problems-with anything from a new-type lead-in line to the latest developopment in coaxial cables.

25 Broadway, New York 4, N. Y.

ANNOUNCING A GOMPLETE LINE OF ASTATIG LONG-PLAYING PICKUPS and CARTRIDGES that includes JUST WHAT YoUre Looking for!

- Want a two-in-one pickup that plays both LP and 78 RPM Records with the simple switching of cartridges . . . so simple that a child can make the change in a few seconds? Or, perhaps you are looking for comparable reproduction quality, with more emphasis on economy? Regardless of whether your requirements point to cartridges employing ceramic elements or magnetic-type units . . . whether you prefer permanent or replaceable needles, metal, sapphire or diamond . . . whether cost is first or secondary . . . whatever the conditions to be met -there now is a unit of Astatic precision engineering and construction that will exactly fill the bill. Space permits mention here of only a few. Why not write for new brochure, giving complete information, illustrations, on the Astatic Long-Playing Equipment Line?

Astatic Crystel Devices Manufactured Under Brush Development Co. Patents

FL-33 CRYSTAL PICKUP-Incom parable reproduction, utility and convenience. Employs LP-33 Crys. al Cartridge for LP Records and L.P-78 Crystal Cartridge for 78 RPM Records. Change cartridges in a second, like slipping modern foun tain pen from its cap. nothing else o do. Special anti-resonance base mounting.
FLT-33 CRYSTAL TRANSCRIPTION PICKUP-Like the FL- 33 Arm, plays either LP or 78 RPM Transcriptions with the LP. 33 and LP- 78 Cartridges Anti-resonance base and arm-res are adjustable to desired height Five-gram needle pressure and per fect tracking assured by revolution ary hinged division of arm. Two toned black and satin chrome finish
FLT-TR CRYSTAL TRANSCRIPIION ARM-The same fine instrument as the FLT-33, except for 2.4 mill tipradius needle necessary for lateral broadcast transcriptions. Employs the LP.TR Cartridge, instantly replaceable with LP. 33 or LP. 78 Cartridges.
510-QT-33 CRYSTAL PICKUP Short mounting centers, gracefully curved lines and moderately offset head make this the ideal pickup for a host of applications. Famous "QT" Series Cartridge with replaceable, one mill tip-radius, precious metal or sapphire needle.
510-MI-2M-33 MAGNETO-INDUC. TION PICKUP-Same as $510-\mathrm{QT}-33$. except for revolutionary MagnetoInduction Cartridge. Consistent service and adverse climatic conditions are no threat to the stability and troublefree operation of this magnetic type unit.
400-QT-33 CRYSTAL IRANSCRIPIION PICKUP - Graceful, slender. lined beauty of professional pick. ups. Employs QT Cartridge with replaceable precious metal or sap. phire needle. Flawless reproduction at lower cost.
400-MI-2M-33 MAGNETO-INDUC. TION TRANSCRIPTION PICKUPIdentical to 400 QT-33. excepl for Magneto-Induction Cartridge.
tops are reinforced with an extra thickness of the acrylic at their crowns, where the ice might strike a direct blow. Except for this limited area, the curved shape of the structures guarantees that they will receive at worst a glancing blow.

First of their kind to be tested in actual use, these housings are made of shatter-resistant Plexiglas 1 -inch thick. Plexiglas was chosen because it passed microwaves without perceptible distortion; it was easily formed to exact curvature and dimensions; although light in weight, it combined great shatterresistance with inherent resiliency; it was virtually impervious to extremes of weather and continued exposure to sunlight; and finally, its transparency allowed quick inspection of the apparatus within, and simplified visual aiming of the antennas. Components are rubbergasketed and assembled with stainless steel bolts.

A door in each structure gives access to the microwave equipment, which may be rotated and swiveled to permit accurate aiming at the point of program origin. To prevent development of excessive heat in the summer, or freezing condensation in cold weather, each housing has its own "air-conditioning" treatment. Forced air, which may be heated electrically in winter, enters through a floor register and is exhausted through hinged louvers in the side of the platform on which each antenna is mounted.

Servo Physical Tester

BASED ON PRINCIPLES used in wartime gun computers and rate setters, a servo-mechanical physical tester for plastics has been developed at MIT. It has a steel arm which pulls plastic test specimens with a force equal to that of an elevator car. This tremendous force is controlled automatically by mechanisms of featherweight sensitivity.

The tester, a product of the Society of The Plastics Industry's research program, was designed primarily for the observation of mechanical properties of plastics

When you specify seamless tubing-whether it's for instrument pointers, Bourdon gauges, metalshielded wire, mechanical pencils, or any one of a number of products-here, at Precision, accuracy is our watch-word. Inside diameter, outside diameter, wall thickness - all dimensions are held to close tolerances, often exceeding those specified. In this way the over-all accuracy you want in your finished products is consistently carried out in our part of their manufacture.
Sizes of Precision Tubing cover a range of outside diameters from $0.500^{\prime \prime}$, to $0.010^{\prime \prime}$, with wall thicknesses down to $0.0015^{\prime \prime}$. Available in aluminum alloys, brass, copper, nickel, monel, or other non-ferrous alloys-each length of Precision Tubing can be preformed to the shape you specify . . . ready on good delivery.

When Presision Counts-Count on Precision

THE ELECTRON ART
(continued from p 126)

FIG. 1-(A) Conventional series modulatòr and (B) series modulator with auxiliary tube to suppress negative peaks
shows the basic circuit. The modulator operates like a class-A audio amplifier in that the grid never swings positive. In action, the modulator tube behaves as a variable resistance (with half the supply voltage across it when no audio signal is applied) in series with the modulated r-f amplifier. The variation in resistance acts at audio frequency, approaching zero resistance on positive peaks so that the full power supply voltage (twice the rated voltage of the r-f amplifier) appears across the modulated stage. On negative peaks, cutoff is approached (or reached) so that the tube impedance approaches (or reaches) infinite resistance.

Modified Power Supplies

In practice it is found that, because the tube is not absolutely linear, it needs considerably more than half the power supply voltage across it in order to stay in the linear portion of its characteristic and still achieve 100 -percent modulation on positive peaks without distortion. As much as 20 percent of the power supply voltage may still be across the modulator tube when 100 -percent undistorted positive peaks are being handled by the modulated tube. (This remaining voltage could be considerably reduced by designing a tube for the purpose. The 6AS7G might prove very good in a low power modulator.)
By using several tubes in parallel,

4 problems 4 answers

You, as a Communications Engineer, will be interested in the four Aerocom products illustrated below. They are designed and built to solve your communications problem. They are the result of engineering knowledge and experience gained during 18 years of manufacturing communications equipment for more than 200 installations throughout the world.

[^6]Weatherproof Low Frequency antenna Tuner. Sturdily constructed; using heavy aluminum sheet and rustless hardware. Ample ventilation provided. yet insect and vermin proof. Suitable for $1-2 \mathrm{kw}$ carrier, $200-415 \mathrm{kcs}$; coupling coil matches either coaxial or 2 wire line. Illustration shows cabinet with pro-

AUTOMATIC KEYER provides continuous or interrupted identification signals for beacon or acrophare service. Small, compact ($6.5 / 8^{\prime \prime} \times 9^{\prime \prime} \times 7^{\prime \prime}$) and fully enclosed, this keyer will give long trouble-free service. Two synchronized cams, which can be milled to your specifications, provide several keyer combinations. Motor .- 105/115v-50/60 cy.

1
I
I
METEOROLOGICAL INSTRUMENTS .- Acrocom's group assemblies; anemometer and wind direction indicator on mast for outside installation, and reading instruments in cabinet or standard rack panel, give constant and reliable weather information. Instruments available: wind direction, wind speed, Kollsman station barometer (altimeter), 24 hour clock, or any combination thereof. Mast assembly may be remotely located from instruments.

it is possible to make a slight change in the circuit that, with proper adjustment, will enable it to accentuate positive peaks and suppress negative peaks. In the circuit of Fig. 1B the grid of the auxiliary tube is shown connected to a tap across the audio input. Although there may be sufficient signal to cut off the primary tube on negative peaks, the auxiliary tube will still be conductive and hence the resistance of the modulator will not reach infinity and 100 -percent modulation on the negative peaks is not attained. If in addition the static voltage drop across the modulator is increased from E to $2 E$, it will be possible to furnish $3 E$ to the modulated stage on positive peaks, or 200 percent modulation. Under this condition the tap for the auxiliary tube is adjusted so that its grid does not quite reach cutoff on negative peaks, thus 100 -percent negative modulation will not be exceeded. Proper adjustment of the tap can be determined with an oscilloscope as shown in Fig. 2.

As is expected, the foregoing procedure introduces some distortion. However, for speech it is not objectionable at 150 percent modulation and does not interfere with the intelligibility at even 200 -percent peak positive modulation.

Experimental Equipment

To demonstrate the feasibility of the method, a transmitter using type 10 tubes and having series modulation was modified for the purpose. With conventional 100 percent modulation, 400 volts appeared across the r-f stage and about 600 across the modulator. On 200 -percent modulation with suppressed negative peak, about 250 volts appeared across the r-f stage and 750 across the modulator. The ideal values for these respective conditions would be $500-500$ and 333-667.

More detailed data were obtained from a transmitter having a singleended 304 TL r-f stage and 304TL's in the modulator. Transformer coupling into the modulator tubes was found necessary to provide a low-impedance d-c grid return. Although a power supply capable of providing nine times the unmodulated carrier power on positive

Kollsman offers additional AC units for remote indication or control applications

SYNCHRONOUS MOTORS - for timing applications where variable loads stay in exact

synchronism with corstant or variable frequency source. Synchronous power output up to $1 / 100$ H.P.

SYNCHRONOUS DIFFERENTIAL UNITS-clectromechanical croor detector with mechanical output for use in position or specd control servo systems. Also a torque-producing
half speed syrchroscope. Sinall comhination unit with two varbatle frequency synchonous rootors and differential gearing. Output: Speed $=\frac{N_{1}-X_{2}}{2}$; torque up to $1.0 \mathrm{oz} / \mathrm{in}$.

DRAG CUP MOTORS - miniature 2-phase motors with high torque/incrtia ratio and extremely fast stopping. sturting and reversal charateristics. Suitable for many special applications requiring torque of $0.7 \mathrm{oz} / \mathrm{in}$. or less.

MOTOR DRIVEN INDUCTION GENERATORS - combination of a 2-phase. hightorque low-incria induction motor and an induction gener-
 ator. Used as a fast reversing servo motor. Available with maximum stall torques of 1.0 (unit shown) to 6.7 (other units) oz/in.

teletornue units -precision built selsyn type units for remote indication. Accurate to ± 1 degree. Actuated by units producing as little as $4 \mathrm{gr} / \mathrm{cm}$ of torque.
geared induction MOTORS-miniature 2-phase servo motors with gear reducer. Desirable motor fatures: Maximum torque at stall with low wattage input and nigh torque
 inerta rato. Gear reducer conscrvatively rated at 35 om, in. Maximum corque with gear ratios from $5: 1$ to $75,000: 1$ available.

Because of their high responsiveness and precision, Kollsman Special Purpose Motors are particularly suited to systems requiring extremely accurate remote indication or positive electronic control. The units shown above are only representative of a complete line which includes many similar units in various soltages and frequencies. Among them, the instrumentation or control engincer will find, in many instances, the device that fills his specifications exactly.

Reliable perfomance, iight weight and compact size are characteristics of the entire line. In each unit is to be found the same ingenuity of design and care in manufacture that has for twenty years made Kollsman the outstanding leader in the field of aircraft instrumentation.

For full intormation on any or all of these Special Purpose Motors, write to: Kollsman Instrument Division, Square D Company, 80-64 45th Avenue, Elmhurst, N. Y.

Tride Aldanatage

It is triply to your advantage to rely on WILCO for electrical contacts, thermostatic bimetals and contact assemblies.

FIRST . . . WILCO offers you a wide range of electrical contacts in silver, tungsten, platinum, sintered powdered metals and in alloys and combinations of these - in solid and composite studs, rivets, screws and steel-backs.

SECOND . . . the facilities of THE H. A. WILSON COMPANY permit you to secure both electrical contacts and thermostatic bimetal from a single source for use as parts of the same device . . contact assemblies designed and manufactured under one roof . . . combining the superfine quality of WILCO contact materials and WILCO thermometal to meet the highest performance standards.
THIRD . . . you obtain the cooperation of the WILCO Sales and Engineering Departments . . . who are thoroughly familiar with both electrical contact and thermometal application . . . and thoroughly equipped to help you achieve your objectives of reduced costs, improved performance or new product development. Whatever your requirements for contacts or contact assemblies, WILCO engineers will gladly help you meet them successfully.
WILCO PRODUCTS INCLUDE: THERMOSTATIC BIMETALS: All temperature ranges, deflection rates and electrical resistivities. ELECTRICAL CONTACTS: Silver, Platinum, Tungsten, Alloys, Sintered Powdered Metal. SILVER CLAD STEEL: For industrial use. NI-SPAN C* Constant Modulus Alloy; also low and high expanding Ni -Span Alloys. JACKETED WIRE: Silver on Steel, Copper, Invar and many other combinations. SPECIAL ALLOYS: including high conductivity, high strength, Copper Alloys. ROLLED GOLD PLATE AND GOLD FILLED WIRE.
*Reg. Trade Mark, The International Nickel Co., Inc.

THE H. A. WILSON COMPANY
105 CHESTNUT STREET, NEWARK 5, NEW JERSEY
Branch Offices: Chicago, Detroit, Los Angeles, Providence

SPECIALISTS FOR 34 years in the manufacture of thermometals - flectaical contacts - precious metal bimetallig products and special allors

FIG. 2-(A) Conventional 100 -percent modulation, (B) unsuppressed 200 -percent modulation, and (C) 200 -percent modulation with auxiliary tube adjusted to limit nega. tive peaks
peaks may seem excessive, the fact that this power need be provided only on such peaks means that, in practice, the filter capacitors can be relied upon to supply the peaks; the power transformer and filter chokes need be but little larger than for a conventional modulator. The heavier the modulation, the smaller the power dissipated in the modulator tubes. Thus considerable increase in peak power is made possible with negligible increase in power supply. In addition, because series modulation is used, a heavy modulation transformer and speech amplifiers are omitted; a voltage amplifier is

MODULATOR CHARACTERISTICS

This new automatic voltage stabilizer supplies a constant 115 volts

We want to get in touch with any manufacturer whose product will operate better if supplied from a stabilized voltage source.

General Electric has recently announced three new automatic voltage stabilizers that provide steady, dependable output voltages, despite varying input voltages. Rated 15,25 , and 50 voltamperes, these stabilizers are instantaneous (recovery time: 3 cycles), entirely automatic, and have no moving parts. They deliver 115 volts output (上 one per cent for fixed, unity power factor loads) with the input voltage varying from 95 to 1.30 volts.

These units will operate continuously at no load
or short circuit without damage to themselves. They will limit the short circuit current to approximately twice normal full load current. Dimensions are $9^{1 / 2} \times 3^{1 / 8} \times 2^{11 / 32^{\prime \prime}}$ high-making possible shallow depth installations. Other standard G-E stabilizers are available in ratings from 100 to 5000 va.

Drop us a line if you see a possibility for these new automatic voltage stabilizers in your product. Please give us all the information you can-and if possible, a circuit diagram or description of the load, so that we can help you in evaluating the application. Simply address your nearest G-E Apparatus Sales Office or Apparatus Department, General Electric Company, Schenectady 5, N. Y.

MODEL 90

MEASUREMENTS CORPORATION
TELEVSION STANDARD SIGNAL GENERATOR

SPECIFICATIONS:

- CARRIER FREQUENCY

RANGE: Continuously variable from 20 to 250 megacycles, in eight ranges. ACCURACY: Crysial frequency standard permits setting to $.01 \%$. Dial scale may be set to 0.1%.
SIABILITY: Warm-up drift less than . 05%. LEAKAGE: Less than 10 microvolts.

- MODULATION

Continuously variable from zero to 100%. ENVELOPE: Sinusoidal, or composite television. Bandwidth to 3 db is 4 Mc . Rise time from 10% to 90% modulation 0.15 microsecond. Overshoot less than 5%. Slope less than 5% on 60 cycle square wave.
INPUT IMPEDANCE: 75 ohms $\pm 10 \%$ (RMA Standard).
INPUT LEVEL: 1.5 volts peak to peak minimum level for 100% modulation. Black negative polarity.
MODULATION PERCENTAGE: Zero to 110%; plate modulation,

- OUTPUT

LEVEL: Continuously variable from 0.3 microvolf to 0.1 volt balanced to ground (measured at 100% modulation level). IMPEDANCE: (a) 107 ohms line to line (balanced).
(b) 53.5 ohms line to ground (unbalanced)
(c) Suitable pads may be employed to alter these impedances.

- DIMENSIONS

OVERALL: Height—583/4"; Width— 281/4"; Depih—251/2".
WEIGHT: Model 90-302 pounds. External Voltage Regulator 92 pounds. POWER SUPPLY: 117 volts, 60 cycles.

THE FIRST COMMERCIAL WIDE-BAND, WIDE-RANGE SIGNAL GEMERATOR EVER TO BE DEVELOPED

The Model 90 employs a master oscillafor, buffer amplifier and modulated power amplifier. The push-pull buffer eliminates incidental frequency modulation.
Features: A self-contained crystal calibrator and individually calibrated dial scales permit

MANUFACTURERS OF Standard Signal Generators Pulse Generators FM Signal Generators Square Wave Generators Vacuum Tube Voltmeters UHF Radio Noise \& Field UHF Radionth Meters Capacity Bridges Megonm Meters Phase Sequence Indicators Television and FM Test Equipment
frequency settings to a high degree of accuracy. A built-in video modulator with manual or automatic $d c$ inserter, designed to operate from a standard RMA composite signal. Continuous monitoring is provided by built-in oscilloscope.
This signal generator meets the most exacting standards required for high definition television use.

ADDITIONAL DATA ON REQUEST

MEASUREMENTS \uparrow CORPORATION BOONTON NEW JERSEY

THE ELECTRON ART
sufficient to drive the modulator The modulator is as shown in Fig. 2A. The accompanying tabulation gives data taken with it for two conditions: (1) two 304TL's in parallel, one having reduced audio excitation, and (2) three 304TL's in parallel, again with one having reduced excitation.

Although this method of suppressing the negative peak so that amplitude modulation in excess of 100 percent can be obtained without sideband sp'atter may not be desirable for high-power transmitters, it is economical for some uses of low-power transmitters. For example, using this method, the watthours at the increased voltage, with appropriate batteries, obtainable from such portable equipnient as that used by the forestry fire wardens can be increased without increasing the weight of the equipment.

Transitron Oscillator Tube

A SPECIALLY-DESIGNED TETRODE or a standard pentode can be operated with the second grid acting as the anode of an oscillator and the plate acting as an electron reflector; the potential of the reflector controls the transit time and hence the frequency of oscillation, as described by Jerome Kurshan in a paper entitled The Transitron, An Experimental A.F.C. Tube, presented before the National Electronics Conference in November and published in the RCA Review for December.

Used as the local oscillator in an $\mathrm{f}-\mathrm{m}$ receiver ($88-108 \mathrm{mc}$) with automatic-frequency control, an experimental tube showed a sensitivity of 100 kc per volt, thus counteracting warmup drift at the highfrequency end of the band by a factor of 4.5. Tests of commercial miniature tubes in the accompanying circuit showed that the 6BE6 with its third (r-f signal) grid as reflector and biased to at least 20 volts negative was one of the strongest oscillators. The 9001 gave the greatest control sensitivity, but oscillated very weakly; the 6AK5 performed most reliably but had low control sensitivity. A special Transitrol tube was built

CUT THE HIGH COST OF COILS with Belden CELENAMEL*

You can cut your fine-wire coil production time very substantially because Belden Celenamel* has eliminated the need for a stripping operation.

You save money, too, because you eliminate the greatest cause of rejections.

NO STRIPPING NECESSARY! It is unnecessary to remove the Celenamel* insulation, in soldering operations. Simply dip the leads in a lead-tin bath at 600 F to 700 F or apply soldering iron directly.

Available in sizes 39 and finer.

* Trade-Mark Registered.

Celenamel* magnet wire - a copper wire insulated with a film of cellulose acetate combined under heat with other resinous materials. The film so produced is sough, flexible, continuous, and of high dielectric strength. The insulation additions produced with Celenamel* have close and uniform tolerances.

HARDWICK, HINDLE

 Rheostats

WE Show here 3 of our standard types of rheostats(1) type 2462 F , a most compact 10 watt model which fits into exceptionally small space (only $3 / 4$ inch from back of panel); (2) our rugged iype M 25 watt rheostat which offers exceptional heat dissipation for size; and (3) the widely used line-type B 50 through $F 500$-available in 50 , $100,150,300$ and 500 watts, all designed with massive winding core, exceptionally rugged terminal screws and other exclusive advantages.

As one of the oldest manufacturers of rheostats and resistors we ask you to consult with our engineers about your specific requirements.

HARDWICK, HINDLE, inc.

 Rheosiats and ResistorsSubsidiary of

TEE NATIONAL LOCK WASHER COMPANY

NEVARK 5, N. J. Established 1886 U. S. A.

Viewed from any angle rewed from wards finer metal cabinets

Cabinet
for ship.to-shore transmitter and receiver

No matter how you look at it, you'll find many reasons why Karp-built cabinets, housings and enclosures will add value to completed equipment assemblies.

We will follow your designs with fidelity, or our design specialists can suggest design ideas which will enhance appearance, achieve ruggedness, save space or weight. Our work insures uniformity and accuracywhich mean production economy both in the fabricasion and in your own assembling operations.

At your service is our staff's combined "know-how" gained in 23 years of specialization. Our tool and die
department is so complete that we often save customers special die costs. We make our own dies and do all our own finishing. We do all kinds of welding-including spot-welding of aluminum with electronic timing controls.

It's the hard-to-do type of craftsmanship that brings out the best in our trained minds and skilled hands. We invite your inquiries on any sheet metal fabrication.

Any Metal • Any Gauge - Any Size
Any Quantity • Any Finish

KARA METAL PRODUCTS CO., INC.

Custom Craftsmen in Sheet Metal

Would INSTANTANEOUS

 recording of electrical phenomena from D. C. to 100 c.p.s. help in your research?It's a fact - permanent, instantaneous ink-on-paper recordings by Brush Oscillographs make their use almost unlimited!

Accurate recordings of voltages, pressures. radiation intensity and countless other phenomena can be made over a frequency range of D.C. to 100 c.p.s. Either A.C. or D.C. signals can be measured
Whenever desired, recordings may be stopped for notations on chart-paper.

Investigate Brush measuring devices before you buy . . . they offer more for your money.
Why not have a Brush representative call? At no obligation. of course.

Just call or write - today - you'll find it worth a few seconds' time!

Light-duty motor, type H3. Torque rating .018 pound-inch at 3.6 rpm . at 60 cycles.

Medium-duty motor, type H5. Torque rating from .20 pound-inch at 6 rph . to .50 pound-inch at 1 or 2 rph . at 60 cycles.

For accurate long-life instruments
PICK TELECHRON MOTORS

Count on a Telechron synchronous electric motor for the absolute accuracy and dependability so vital in automatic timing, switching, control and recording instruments. These self-starting motors are engineered and precision-built for long, continuous service in an almost limitless range of industrial applications.

Because they operate in perfect synchronism with any commercial frequency, they have to be accurate
can't run faster or slower. The replaceable, high-speed rotor unit is sealed in to keep out dust, and lubricated by Telechron's exclusive oiling system for long life. Fields are mounted externally for easy service and lower operciting temperatures.

Telechron motors are available in many different types, torque ratings and terminal-shaft speeds. Torque ratings are conservative. Motors are available for all standard commercial frequencies.

These motors give you the advantages of the longest engineering and manufacturing experience in the field. They're built by the largest producer of synchronous electric timing motors for over 25 years. Every one is Underwriters Laboratories approved. Telechron application engineers are always glad to discuss your special requirements. Address Motor Advisory Service, Dept. M, Telechron Inc., Ashland, Massachusetts.

Telechron motors are meeting the need for greater accuracy and dependability in many industrial applications. They include:

Timing	Signaling
Controlling	Fixed Process
Metering	Controlling
Recording	Measuring
Switching	Gaging
Cycling	Regulation
Operatioas	Communications

Type lM9 instrument movement. Designed especially for chart drives but adaptable to most instruments. Terminal shaft speeds from one revolution in 15 minutes to 1 in 30 days. Terminal shaft rotation counterclockwise.
ype IM9 instrument movement

Type 1 M8 synchronous movement. Small, compact movement for light-duty applications. Terminal shaft speeds from 12 rph. to one revolution in 24 hours. Terminal shaft rotation clackwise.

Medium-duty motor, type B. Torque rating of various models from .015 pound-inch at 60 rpm . at 60 cycles to .375 pound-inch at 1 rpm.

 MOSINEE "More than Parkei"

In the field of electronics and the electrical goods industry, MOSINEE stands for paper-base processing materials with scientifically controlled chemical and physical propertics, high quality standards and dependable uniformity... with good dielectric strength, high tensile or tear strength; proper softness or stiffness; creped with controlled stretch or flexibility; specified pH for maximum-minimum acidity or alkalinity: accurate caliper, density, liquid repellency or absorbency . . or other technical characteristics vital to your quality standards and production requirements.

MOSINEE PAPER MILLS COMPANY - MOSINEE, WIS.

ground, which requires that the cathode also be at r-f ground to avoid reflector current due to electrons that would be emitted at the negative peaks of cathode voltage.

SURVEY OF NEW TECHNIQUES

Miniaturization of airborne equipment is now being carried on by the Air Materiel Command at Wright Field, Patterson. Ohio with the objective of reducing electronic gear to 20 percent of its present size, but without impairing performance. By redesigning tubes to subminiature size, the same characteristics are being obtained in 80 -percent less space for amplifiers, 90 -percent less space for rectifiers. The size and weight of transformers has been reduced to a third their present values.

In addition to these and other reductions in sizes of components, the compactness of the assembled equipment contributes to the reduction in overall bulk.

Printed radio circuit techniques are used to minimize the sizes of low-level circuits; cooling, using liquid Freon, enables parts in highlevel circuits to be grouped more compactly and at the same time protects the equipment from atmospheric effects (fungus and oxidation) and reduces the possibility of bumouts so that the equipment will outlast conventional gear. The need for more electronic equipment in modern high-speed aircraft and the reduced space for such equipment makes this miniaturization necessary for expanded applications of electronics in aviation.

A new hearing aid A-battery extends the life of such subminiature batteries to 80 hours (4.25 amperehours under ASA test). Hearing aid A-batteries using two pen-sized flashlight cells gave 8 hours service and have been improved so that they give 24 hours service. Although the new National Carbon Co. unit is the size of these dual pen-cell batteries (A on accompanying graph) used in single-unit hearing aicls, it has the life of the larger cell (see B on graph) which are used in old-style hearing aids having

TOBOIDAL COLLS DESGITED
APPLICATIOIIS

side band sup. Extremely sharp side band either pression filter. low or high pass.
Size: $2 \frac{1}{2} \times 4 \times 2 \frac{1}{2}$.

Wide band sharp cutoff band pass. Size: $2 \times 31 / 2 \times 65 / 8$.
 Tone channel filter for extremely high crossover attenuation requi ment. Size: $2 \frac{1}{2}$

Burnell \& Company
YoNKERS 2, NEW YORK cable adoress "burnell"

Comparison of two Erbetieries commonly used in hearing aids (A) and (B) with new cell (C)
separate battery packs. The new cell (C) uses oxygen from the air as its depolarizer, thus enabling the chemical content to be devoted to electrolyte, giving larger power output per weight and volume than do other batteries. It consists of (1) two oxygen-absorbing carbon strips (positive electrode) bonded to (2) a perforated metal strip and molded into (3) a plastic case having air vents and into which is poured (4) a ge'-paste that immobilizes (5) the alkaline electrolyte in the center of which is inserted (6) a sheet of zinc (negative electrode) that will be completely consumed at the end of the cell's life. The action of these six parts of the battery is effectively the burning of the zinc electrode in the oxygen of the air. The vents in the plastic case are sealed with a vinyl tape until the battery is placed in operation so that the shelf life of the sealed cell is very long. It is rated for use at 20 to 80 ma (ampere-hour capacity is little affected by the rate of drain within these limits.) Terminal voltage into a 20 -ohm load is practically constant (75 percent of life) at about 1.06 volts.

A plastic base for printed circuits is being used by Telex, Inc., Minneapolis, manufacturer of hearing aids. The chief adrantages in using plastic bases are lightness, flexibility, durability, and moisture resistance. Conductors and resistors are etched into the surface of the plastic by the silk-screen process and then the circuit is hermetically sealed. The new printed circuit used a 0.025 inch thick piece of polystyrene (Styron) which

AMERICAN PHENOLIC CORPORATION
 1830 SOUTH 54 TH AVENUE, CHICAGO 50, ILLINOIS COAXIAL CABLES AND CONNECTORS - INDUSTRIAL GONNECTORS, FITTINGS AND CONDUIT • ANTENNAS • RADIO COMPONENTS • PLASTIC FOR ELECTRONICS

largest hydrodectric development in the

 world . . employs WESTINGHOUSE INSTRUMENTSWestinghouse instrument specialists are oralable in the field for consultation on your instrument problegis. Call your nearest Westinghouse office, or write W'estinghouse Electric Corporation, P. O. Box 868, Pittsburgh 30, Pennsylvanta.

Send for booklet B-2209-A, Communicat ${ }^{\circ}$ n Instrument Booklet B-3283, or Switchboard Instrument Bookiet 13-3.363.

The Coordinated Design and Styling of Westinghouse instruments contribute greatly to the space-saving arrangement and excellent appearance of this installation.

For such complex and exacting instrument applications, reliability is a "must". Every part of Westinghouse instruments is completely designed and manufactured by Westinghouse to insure proper relation with all other parts. This undivided responsibility and attention to all details assures you of unfailing performance.

What are YOUR electrical measuring problems?

Would they include-reliable performance . . styling . . . size . . . readability . . . or different types of service . . portable . . switchboard . . . panel . . . recording? The vast lines of Westinghouse electrical measuring instruments provide you with the answers to all of these problems. Every Westinghouse instrument is backed up by more than 60 years of skill, "know-how", and experience in every field of industry.

Westinghouse Instruments Also Provide You With

- Dials that stay white under Springs that remain conall conditions.
- Magnets that stay permanent. stant for life.
- Quick delivery of more different ratings and types.
- Complete Nationwide Service.

you can be SURE... IF IT's Westinghouse

PR10ity wire DE-REELING TENSIONS

PPOOF OF MMIIGE! PEPFOSMI

. . . IN THE NEW YORK TRANSFORMER CO., INC. WINDING DEPT., PAMARCO DE-REELING TENSIONS REDUCE WINDING COSTS AND REJECTS*

PAMARCO tensions are the low-cost answer to lower coil winding costs. The free-running action of the PAMARCO tension practically eliminates wire breakage, shorted turns; allows higher winding speeds. Their compact size permits many more simultaneous coil winds on any machine. Simple thumb screw adjustment makes it possible for the operator to rapidly adjust for any gauge wire ...no tools or special skill are required.

PAPER MACHINERY \& RESEARCH, INC. 1014 OAK STREET • ROSELLE • NEW JERSEY
measures 14% inches in length by 1^{52} inches wide. The one-piece Telex " 99 " hearing aid circuit using this polystyrene base weighs 5 ounces including batteries, while the plastic base itself weighs only验 of an ounce.

Radiations similar to cosmic rays will be generated by the $1,000,000$,000 electron-volt accelerator to be completed in 1951 at Stanford University, Calif. The prototype elec. tron accelerator (Electronics, F 144, Nov. 1947) was 12 feet long and produced 6 mev . The full-scale wave guide accelerator, being developed under direction of Dr. W. W. Hansen, will be 160 feet long.

Sensitivity of the zeus ionization chamber circuit can be increased by using a new subminiature tube having a maximum grid current rating of 2×10^{-13} amperes. The tube's filament, rated at 1.25 volts and 10 ma , is designed for operation directly from a dry cell. The new CK571AX tube has a slightly higher mutual conductance and gain than the CK5697/CK570AX, which was originally designed for the zeus circuit (see Electronics, p 182, Nov. 1947 and p 196, Jan. 1948), and can therefore be used in this circuit. This new Raytheon tube can be employed in various portable instruments for measuring radioactivity.

Magnetic pole face shims for the synchrocyclotron now being built by the Carnegie Institute of Technology are radically different from conventional design. In addition to the series of steps usually machined into the profiles of pole tips, deep concentric grooves are being milled near their edges. As a result, the new design extends the useful radius of the magnet to 96.5 percent of the actual shim radius (compared to 85 to 90 percent heretofore possible). In this way the 150 -ton cyclotron will be able to produce $400-\mathrm{mev}$ particles with only 160 -ton pole pieces having 141.65 -inch, $30-$ ton shims. (Existing machines in the same energy class require from 2,000 to 4,000 tons of steel.) The design constituted the thesis of M. H. Foss, for which he was awarded his doctorate last June.

NEW ELECTROLYTICS fully dependable TO 450 VOLTS AT $\mathbf{8 5}^{\circ} \mathrm{C}$

for TELEVISION'S exacting applications

Designed for dependable operation up to 450 volts at $85^{\circ} \mathrm{C}$. these new Sprague electrolytics are a good match for television's severest capacitor assignments. An extremely high stability characteristic is assured, even after extended shelf life, thanks to a special Sprague processing technique. Greatly increased manufacturing facilities are now available.
Your inquiries concerning these new units are invited.

SPRAGUE ELEGTRIC COMPANY • NORTH ADAMS, MASS.

We place our 31 years of experience at your service, plus unexcelled facilities for producing the coils you're looking for.

> We'd Like To Quote Oni

BOBBINS • PAPER INTERLEAVE acetate interleave•cotton interweave TAPED FORM WOUND UNIVERSAL SINGLE OR MULTI-PIE CROSS WOUND

We welcome the hard to please

COTO-COIL CO., INC.

 COIL SPECIALISTS SINCE 191765 Pavilion Ave., Providence 5, R. I.

NEW PRODUCTS

(continued from p 130)
seconds per point. ln case of trouble thermocouples can be cut out in banks of 20 at a time. When a temperature reaches a preset limit an alarm sounds.

Subminiature Tube
Raytieon MFg. Co., Newton, Mass., has added type CK571AX electrometer tube to its subminiature line. The filament is designed to be operated directly from an ordinary battery cell and draws 10 ma at nominal rating of 1.25 volts.

Besides its applications in the 2tube zeus circuit it may be used in single tube circuits, and is particularly useful in radioactivity measuring instruments.

Tape Recording Head

The Indiana Steel Products Co., 6 N. Michigan Ave., Chicago 2, Ill. Model TD-704 magnetic tape recording head, used for both recording and playback, is designed for high-impedance circuits and gives best results with a track 0.2 inch

Complete terminal equipment occupies a double cabinet 7^{\prime} wide $\times 2^{\prime \prime} 4^{\prime \prime}$ deep $\times 6^{\prime} 6^{\prime \prime}$ high, and aerials may be up to 100^{\prime} from the main equipment. Write for our Bulletin No. 511 which gives further lacs and tigures.

W here the installation of wires cables is hazardous or uneconomical, Standard Time-sharing Multiplex provides a thoroughly reliable telephone trunk system, easy to install and maintain. Each equipment deals with up to 24 channels, handling any kind of A.F. traffic in the 300-3400 c/s range, including teleprinter and automatic telephone signals. Timesharing Multiplex ensures low crosstalk and noise levels, and fading does not affect speech levels. An UHF carrier is used and the normal line-of-sight range (approx. 35 miles) may be extended by automatic repeaters.

Standard Telephones and Cables Limited Radio Division

OAKLEIGH
ROAD,
NEW
SOUTHGATE,
LONDON.
N. 11 ,
ENGLAND

TRAMSFORMER CANS STOCKED IN STANDARD SIZES

Let us save you die costs on all stock size transformer cans, , and make IMMEDIATE DELIVERY. We carry a full range of sizes and can supply with or without covers. List of stock sizes and prints will be furnished upon request.

We are also equipped to fabricate special sizes and shapes (round, square and rectangular) of transformer cans to your own specifications. Tell us your requirements and we will be glad to submit estimates.

Impartaut: All Craft Transformer Cans are drawn in one piece.

CONTACT CRAFT FOR TRANSFORMER CANS 3949 W. Schubert Ave., Chicago. Stainles Steel Specialists
wide. Using tape with a coercive force of 300 oersteds at a speed of $7 \frac{1}{2}$ inches per second, operating bias level at 40 kc is 1.7 ma and the audio signal current for standard recording level is 0.15 ma .

Tone Generator

Radio Corp. of America, Camden, N. J. Type WA-26A portable tone generator is designed for use in broadcasting studios in equalizing

remote te'ephone lines. The circuit is an R-C type allowing selection of ten frequencies from 50 to 15,000 cps. Output is metered and calibrated in dbm.

High-Voltage Generator

High Voltage Engineering Corp., 7 University Road, Cambridge, Mass., announces the model L Van de Graaff high-voltage generator which provides adjustable constant potential up to 250,000 volts. A voltmeter reads terminal

Have the facts at your fingertips

 When you write for your ref: erence folder, let us kriow if our Field Engineering can be of assistance at this time.

With this compact folder, you can obtain information on TAMCO products readily. When you want approximate physical properties, a chemical analysis, or commercial applications of specific productsclear concise charts provide them at a glance. That's why you will want this helpful booklet whether you are interested in TAM ceramic, chemical or metallurgical products. Address your request to our New York City office.
More detailed information on Titanium or Zirconium products is available also upon request. These date have been compiled to meet the demand for authentic information on these products from the source most closely identified with their development. It may prove advantageous to discuss certain problems and applications with our sales engineers.

TAM and TAMCO are registered trademarks

Western Union's new Telefax Receiver, the Desk-Fax model, is a compact facsimile telegraph sending and receiving system for desk use. Accurate timing is one of the fundamentals of its ingenious operation and the new device is wired for dependable Haydon timing. A \#1600 series motor is used to drive the scanning stylus from left to right by means of a drum and cord. The synchronous motor operation permits constant speed stylus movement and both sending and receiving units run at the same speed.

Western Union pioneers in communications, Haydon in the science of timing . . . developing devices and motors which make possible progress in all fields of industry. In addition to producing timing motors and a wide range of standard timers, Haydon also specializes in design engineering and production of custom-built timing devices for specific volume applications. Wherever timing is important, Haydon is ready to assist.

Wire or write for a Haydon representative to call. If it's time for timing, it's time for Haydon. An Engineering Data Catalog is available. For quick reference, see Haydon Catalog, Sweet's File.

WRITE 2412 ELM STREET, TORRINGTON, CONNECTICUT HAYDON

YOUR PRODUCTS
voltage directly and a polarity reversing switch permits selection of either positive or negative voltage. The unit will operate from any 115volt, 60 -cycle, single-phase circuit fused for 20 amperes.

Motor-Starting Relay

Potter \& Brumfield Sales Co., 549 W. Washington Blvd., Chicago 6, Ill. The MS4A, a $3 \mathrm{~h}-\mathrm{p}$ motorstarting relay, is fitted with large silver cadmium oxide contacts for

high current loads. It is available with 800 -ohm winding for 115 -volt 50 to 60 -cycle motors or with 2,100 ohm coil for 230 -volt 50 to 60 cycle motors.

Recording Sound Analyzer

Sound Apparatus Co., 233 Broadway, New York 7, N. Y. Frequency analysis of a complex wave from 25 to 750 cps is recorded on a 4 -inch wide calibrated scale by the FR and $\mathrm{FR}-1$ recorders in conjunction with the General Radio $760-\mathrm{A}$ sound analyzer. Full scale

THAFY BOTMHAVEIT

From the large power stacks to the miniature units for radio and television, Seletron uniformity and precision methods of manufacture insures user satisfaction. Efficientdependable, durable under the severest service conditions.

Furnished in a wide variety of voltages and currents to meet the individual requirements.

Write today for catalog. Address Dept, ES-12 251 WEST 19TH STREET. NEW YORK 11, N. Y.

HOW TO INSULATE

MAGNET WIRE

To insulate magnet wire so that it will give long, dependable, satisfactory service, all you have to do is to purchase the finest silks, cottons, nylons, glass and celanese. Wrap these insulations in precise layers around a metal core drawn to tolerances of specified exactness and you have a really high grade magnet wire.
At Wheeler Insulated Wire Company, in Bridgeport, we've been doing this since 1905. Users of Wheeler Insulated Wire products have come to recognize our magnet wire as being of good basic design and engineering, made by skilled workmen and subject to rigid inspection. They know these qualities are to be found in every pound of magnet wire they purchase from us.
The Wheeler Insulated Wire Company can place at your disposal a staff of experienced wire engineers. Let us help you with your wire problems. There's no obligation for this service. Write today for complete information.

the Wheeler insulated wire co., inc.

DIVISION OF THE SPERRY CORPORATION
1012 WASHINGTON AVENUE
BRIDGEPORT 4, CONNECTICUT

NEW PRODUCTS
(continued)
width is calibrated linearly in equal $20,40,60$ or $80-\mathrm{db}$ divisions. The recorder is separately usable as a sound, power, or voltage level recorder.

Anti-Feedback Anıplifier

David Bogen Co., Inc., 663 Broadway, New York City. The HX50 amplifier incorporates the new antifeedback control, making microphone placement less critical. A dual tone corrector controls bass and treble ranges. Bass control is

from -20 to +20 db at 60 cycles. Treble control of +20 to -20 db at 10,000 cycles is also provided. The unit has three microphone channels and one phone input.

Geiger Counter

Nuclear Instrument \& Chemical Corp. (formerly Instrument Development Labs., Inc.) 223 West Erie St., Chicago 10, Ill. Model D-46 Q-gas Geiger counter uses a formulated gas for detection of soft ioniz-

ing radiation like that from C^{14} or S^{*}. Anode potential used is 1,450 volts. The pulse output will operate a scaling unit with an input sensitivity of 0.25 volt.

Voltage Regulators

Sorensen \& Co., Inc., 375 Fairfield Ave., Stamford, Conn. The new type 5 and 10 -kva voltage regulators are available in either 115 or 230 -volt models. Regulation ac-

KAY ELECTRIC COMPANY

TO SERVICE PRESENT AND FUTURE T-V SETS

THE MEGA-LINE OF INSTRUMENTS COVERS ALL CHANNELS

Think that statement over before you spend even a few dollars for any sweeping oscillator . . .

With any Mega-Sweep you can cover any proposed frequency ... When any future channel, even above 500 megacycles, is added you will not have to fuss around with special adjustments or added equipment . . . or buy new equipment . . . The MEGA-SWEEP covers it with ease and accuracy ...

THE MEGA-SWEEP

Wide Range Sweeping Oscillator
DISPLAYS PASS BAND
.. Features: Frequency Range- 50 kilocycles to 500 megacycles and up to 1000 mc ... Frequency Sweep Adjustable from 30 megacycles to 30 kilocycles throughout the complete spectrum while Continuously variable attenaror $\mathrm{sweeping-less} \mathrm{than} 0.1$ DB per megacycle... Precision wavemeter. High and Low level output. Sweep voltage output for driving oscilloscope.

Price $\$ 395.00$ f. a. b. factory

THE MEGA-MARKER SR

For Rapid and Accurate Alignment of Television Receivers. The MEGA-MARKER SR, provides a precise source of frequencies (accuracy 01%) one at the sound carrier in each of the twelve television channels.
MEGA-MARKER SR. can also be used alone for the alignment of the local scillator for all twelve channels.
The single-dial control gives a rapid and efficient means of frequency selection.

The MEGA-MARKER SR. facilitates the alignment of the r. f. channels in the same manner that the MEGA-PIPPER and MEGA-MARKER facilitate the i. i. alignment.
MISC. 117 volt 60 cycle Size $8 \times 16 \times 8$ Weight 15 pound.
Price $\$ 195.00$ \&. o. b. factory

THE MEGA-MARKER

Precision variable marker oscillator having a range of either 19 to 29 or 29 to 39 megacycles for the television 1 . 1 . band. Crystal oscillator for the alignment of intercarrier i. f. and discriminator (4.5 mc).
A large easily read dial provides over 12 inches of calibrated scale length. Thus it may be read to accuracies of 0.02 megacycles.
Included in the MEGA-MARKER is a crystal oscillator which provides accu rate check points.
The MEGA-MARKER is a valuable accessory for television applications of the MEGA-SWEEP and MEGA-MATCH.
For a high order of stability the regulated power supply of the MEGASWEEP or the MEGA-MATCH is used.

Weight 5 lbs. size $7 \times 10 \times 6$
Price $\$ 60.00$ f. o. b. factory

THE MEGA-PIPPER

The MEGA-PIPPER is a new production and service alignment instrument. By the use of this unit in conjunction with the MEGA-SWEEP or MEGA-MATCH it is possible to quickly and accurately align television i. f. amplifiers.
The MEGA-PIPPER gives four precise crystal positioned pips. These pips stablish the picture and sound $\mathrm{i}_{\text {. }}$ f. carrier points, and also the adiacen channel carrier points. Thus the MEGA-PIPPER is an instrument which will save many hours of time spent in alignment.
Inasmuch as the pips are fed directly into an oscilloscope, the pips are visible at all times, even in the traps where the highest precision is desired. Self contained power supply.
Weight 15 lbs.
Size $6 \times 16 \times 8$
Price $\$ 150$ f. o. b. factory
WRITE FOR FULL SPECIFICATIONS
kay electric co., 25 maple avenue, pine brook, N. J.
Also Manufacturers of the Megalyzer, Mega-Match and Mega-Pulser.

Instruments and machines have individual gear problems. For over a quarter of a century, Quaker City Gear Works has solved thousands of them and produced millions of gears of every description up to $60^{\prime \prime}$ in diameter for manufacturers in many diversified industries.
Aircraft controls, dental drills, electric clocks, gauges, indicators, heat controls, machine tools, radar, radios, washing machines and motion picture projectors are but a few of the many conveniences of modern progress which depend upon the heartbeat of Quaker City Gears. Your gear problem is our business, our large productive capacity is at your service.

YOUR INQUIRIES WILL RECEIVE PROMPT ATTENTION

The heart of the Outdoorsman Castomatic reel illustrated above is but one of many gear trains developed by our engineers and produced in our fully equipped plant.
> uaker City Gear Works
> 1910 N. Front Street, Philadelphia 22, Pa.

curacy is 0.5 percent. Line frequency changes between 50 and 60 cycles do not affect output voltage or performance of either regulator. For further information ask for catalog S-348.

Loudspeaker Unit

Tarrytown Metalcraft Corp., 82 Chestnut St., Tarrytown, N. Y. The Han-D-Vox speaker unit is available in both indoor and outdoor models for theatre installations. Enclosed in a cast-aluminum case,

it contains a 4 -inch permanentmagnet speaker and a constant-impedance sound control or L-pad whereby line impedance is matched and maintained.

Code Machine

Ultraijyne Electronics, Oswego, Oregon. Designed for radio telegraph instruction, the radio code machine RCM-1 sends at speeds between 4 and 80 words per minute. The many available types of tape serve particular functions of instruction, and although the overall

increased brightness....it's

DU MONT
 HigherotaqueOsesilloroplyy
 (4) Optical magnification by projection

 lenses such as Du Mont Type 2542. Al-The basis is the Type 5RP-A Cath-ode-ray Tube operating at an accelerating potential up to 29,000 volts maximum. This achieves: (1) Greatly increased brighiness; (2) Observation or recording of traces hitherto invisible; (3) Vastly increased writing rates even better than 400 inches per microsecond;
though deflection sensitivities are slightly less than those of low-voltage cathode-ray iubes, high-voltage oscillographs produce smaller spot size and higher brigh:ness, thereby presenting a finer, betfer resolved trace.

And here's the Du Mont selection of high-voltage oscillographs:

Type 281-A: Devoid of internal deflection amplifiers, there are no trequency response limitations within the ratings of its Type 5RP-A tube. Phenomena have been recorded photographically With writing speeds of 85 inches per microsecond. Type 286-A). photographic writing Du Mont over 400 inches per microseciting speeds of amined. Recommended whicrosend may be exneedsare extremended when oscillographic for standard commercial ined or too advanced celerating potential as equipment. An ac. available with the Types 281-A and volts is combination.
WRITING RATES TO
ABOVE 400 IN./MSEC.

10 CPS to 10 MC

Type 280: A precision time-measuring oscillograph with range of 10 cps 1010 mc . Sweep speeds as high as 0.25 mic 位econd/in. are available. Duration oi any portion of signal measured on 0.25 micro second/in. sweep to an accuracy of ± 0.01 microsecond. Intervals greater than 5 microseconds read on calibrated dial to accuracy of ± 0.1 microsecond. Ready application to precise measurement of duration of waveform of various components in the composite television signal. Accelerating potential adjustable from 7,000 to 12,000 volts. Recordable writing rates up to 63 inches per microsecond, with commercially available equipment.

Type 250-H: Covers range from d-c to 200 kc . Potentials containing both $d-c$ and a-c components may be examined. Many special features for general usage include: linear time-base of unusual flexibility; automatic beam control on driven sweeps; internal calibrator of signal amplitude. This is ating potential of cillograph with maximum acce rate of approximately 13,000 volls. Recordable writhen
40 inches per microsecond.
40 inches per microsecond.

Type 248-A: Frequency range of 20 cps to 5 mc . Specifically intended for investigation of pulses containing high-frequency components of recurrent contransient nature. For this purpose it recurrent or necessary characteristics. purpose it provides these sweeps; short-durationics: High-frequency recurrent ers; signal delay net driven sweeps; timing markto 14,000 volts at recordable writing potentials up mately 69 inches writing rate of approxi.

20 CPS-5 MC

D-C to 200 KC

- literature on request

speed of a tape may be 5 wpm , the characters are keyed individually at between 15 and 20 wpm . Brochures are available.

Tele and F-M Antenna

Tricraft Products Co., 1535 N. Ashland Ave., Chicago, Ill. Model $500 \mathrm{f}-\mathrm{m}$ and television antenna

shown weighs only $2 \frac{1}{2}$ pounds and is provided with 300 -ohm line to the receiver.

Carrying Case

Radio Corp. of America. Harrison, N. J. Especially designed for transporting test and measuring equipment, the new carrying case

Another IntroducingAnother Plasticon Development

 HIVOLT POWER SUPPLIES

PS-30

PS 10

PS. 5

PS-2, PS-1

HiVolt Supplies are self-contained in hermetically sealed metal containers. They are designed to transform low voltage AC to high voltage-low current $D C$.

PS-30-30,000 VDC; 1 Ma.; dimen. $7^{* *} \times$ 7" x $7^{\prime \prime}$
PS-10-10,000 VDC; 2 Ma.; dimen. 33,4" $\times 49 / 16^{\prime \prime} \times 8^{\prime \prime}$
PS-5-5,000 VDC; 5 Ma.; dimen. $33 / 4^{\prime \prime} \times$ $49 / 16^{\prime \prime} \times 6^{\prime \prime}$
PS-2-2400 VDC; 5 Ma.; dimen. $33 / 4^{\prime \prime} \times$ $33 / 16^{\prime \prime} \times 51 / 2^{\prime \prime}$
PS-1-2400 VDC-Capacitor 1oad; dimen. $33 / 4^{\prime \prime} \times 33 / 16^{\prime \prime} \times 51 / 2^{\prime \prime}$

High Voltage-Low Current DC Power Supplies

 forTelevision - Radiation Counters - Photoflash Devices-Electrostatic Precipitators -Spectographic Analysers-Oscilloscopes, etc.

W rite for descriptive literature

Plasticon Capacitors, Pulse Forming Networks and HiVolt Power Supplies are available at all leading jobbers.

WG-274 is an aid to a-m, $f-m$ and television servicing. Extra storage compartment at right provides space for test leads, adaptors, probes and other accessories. List price is $\$ 16.95$.

Wiring Connector

Ark-Les Switch Corp., 55 Water St., Watertown 72, Mass., has developed a new disconnect terminal designed to speed the wiring of electrical equipment. A flat blade staked to the connecting wire snaps

into a rigid receptacle in which it is retained by spring pressure. The unit features low contact resistance. The terminal assembly illustrated lists at a rating of 20 amperes, $125-250$ volts a-c.

Electric Motor

Mission Electric Mfg. Co., 132 West Colorado Blvd., Pasadena, Calif. The new electric motor with 0.005 -horsepower rating has an

rpm rating of 5,000 to 20,000 under load and 10,000 to 40,000 free speed. The unit weighs less than 11 ounces.

Photocounter

Potter Instrument Co., Inc., 13656 Roosevelt Ave., Flushing, N. Y. Model 310 photoelectric counter can be used at rates up to 6,000 per minute. Last digit of the number is registered on neon glow lamps and the rest of the digits are indi-

An Important Statement

by

MYCALEX
CORPORATION OF AMERICA
As illustrated on the opposite page, PHILCO uses Mycalex 410 (glass bonded mica) molded parts in its television receiver tuner - to avoid frequency drift of tuned circuits.
Your attention is also called to the Mycalex 410 advertisement which appeared on pages 54 and 55 of the October 1948 issue of Electronics.

Constant research, improved technics, advances in the art, new, modern plant expansion, improved engineering, more efficient manufacturing equipmentnow permit us to make available in increased quantities-Mycalex 410-molded-at prices comparable to other less efficient molded insulations.

MYCALEX 410 is now priced to meet rigid economy requirements

Any interest evidenced on your part in Mycalex products and services-will receive the prompt, courteous and intelligent attention of a competent Mycalex sales engineer. He will receive the fullest backing and cooperation from other factory executives - to serve you promptly - with a quality product and at an economical and fair price.

缹
 Components which are contributing an es－ sential service in the progress of radiation instrumentation．

10 mil－filament subminiature tubes

The new 1B85 Thyrode is a thin rib re－enforced aluminum self－quenched，beta－gamma counter tube operating at 900 volts．Wall thickness $30 \mathrm{mg} / \mathrm{sq} . \mathrm{cm}$ ．

RMA TYPE 1B67 has been assigned to the standard laboratory mica window self－quenched，beta thyrode which oper－ dates at 1200 volts．Window thickness 2.0 to $2.6 \mathrm{mg} / \mathrm{sq} . \mathrm{cm}$ ．Other thicknesses on request．
1B67／VG－10A
The new 1B87 sub－miniature Thyrode is designed to operate at 900 volts with a plateau greater than 100 volts and a nominal background counting rate of 12 counts per minute．

$\mathrm{Hi}-\mathrm{Meg}$ resistors

$\mathrm{Hi}-\mathrm{Meg}$
Hi－meg resistors vacuum sealed，from 10^{8} ohms to 10^{13} ohms measured to within 1% accuracy are a symbol of re－ liability in all ion chamber radiation measuring instrument and electrometer circuits．

Victoreen

5806 HOUGH AVENUE路竞

cate on the mechanical register： that accommodates up to seven digits．The complete system is priced at $\$ 185$ ．

Ultra－High－Speed Relay

Stevens－Arnold Inc．， 22 Elkins St．，South Boston 27，Mass．The Millisec relay，formerly spat，is now made 4 pole，double throw，her－ metrically sealed．It will operate as

fast as $\frac{1}{3}$ millisecond and has a life expectancy of 22 to 100 million operations．Contact rating is 110 volts dec， 0.5 ampere．

Dimmers

Superior Electric Co．，Bristol， Conn．Switchboard dimmers for use in theaters and television studios are available in the form of continuously variable autotrans－ formers．Two types are provided

Mo GRAW-HILL DiREM MAll LSt sEmvice

MAILING LISTS

THAT

WORK

MeGraw-Hull Industrial Mail-

 Ing Lists aro a direct route to today's purchase-controlling executives and technlclans in practically overy maJor industry.These names are of particular value now when most manufacturers are experiencing constanlly increaling difticulty in malntaining their own liste.

Probably no other organization is as well equipped as McGraw-Hill to solve the complicated problem of list maintenance during this period of unparalleled changes in industrial personnel. These lists are compiled from ex. clusive sources, based on hundreds of thousends of mail questionnaires and the reports of a nation-wide field staff, and are maintained an a twenty-four hour basis.

Investigate their tromondous possibilities in relation to your own product or service. Your specifications are our guide in recommending the particular McGraw-Eill Liste that best cover your market. When planning your industrial advertising and sales promotional activitles, ask for more facts or, better atill. write today. No obllgation, of course.

McGraw-Hill Publishing Co., Inc.

DIRECT
MAIL DIVISION

sse WEST 42nd STREET NEW YORE 18, N. $\mathbf{7}$.

There's good reason why this is the world's most popular high sensitivity volt. ohm-milliammeter. In every part, from smallest component to overall design, no competing instrument can show superiority. It outsells because it outranks every similar instrument. And in the Simpson patented Roll Top safety case, shown here, it brings you important and exclusive protection and consenience.

Sub-Panel Assembly -Strong, Simple, Accessible

The ruggedness, the simplicity of design, and the consequent occessibil. ity of components are hown here. Molded of sub-panel provides sepa. rote pockets for resistors. This separation makes for orderly assembly, highest orderly assembly, highest and added insulation for preventing shorts. All con. preventingshorts. All con: nections are short and direct. Cable wiring is eliminated. Each battery has its own compariment, again int

High voltage probe (25,000 valis) for TV, radar, x -ray and other high and other high
voltage tests, voltage restil. able.

The New Simpson 5wifch Mechanism. You will find no other switch mechonism on the market like this Simpson switch swith is built of molded bakelite discs. Unusually sturdy contaris, of heavy stomped brass, silver-plated for superior conductivite are molded permanently into each disc. They can conductivie loose, never get out of position. When the discs never come coase, ne the complete switch, these contacts are cre assembled agcinst dust. Danger of shorts is autamafically self-enclosed As switch is rotated from range to range, the contact is always positive and unvarying.
coniact is all-and-spring mechanism positions the switch at the selested range by a 3-point pressure. Switch is thus held selected ronge yet smoothly re-positions to each new range. This mechonism is also self-enclosed against dust in a bakelite housing.

RANGES

20,000 Ohms per Volt D.C., 1,000 Ohms per Volt A.C.
Valts: A.C. and D.C.2 2.5, 10, 50, 250, 1000, 5000
Output: 2.5, 10, 50, 250, 1000
Milliamperes, D.C.: $10,100,500$
Microamperes, D.C.: 100
Amperes, D.C.: 10
Decibels (5 ranges): -10 to +52 D.B.
Ohins: $0-2000$ (12 ohms conter), $0-200,000$ (1200 ohms center),
0.20 megohms (120,000 ohms center).

Model 260 , Sizer $51 / 4^{\prime \prime} \times 7^{\prime \prime} \times 31 / 8{ }^{\prime \prime}$.
Model 260 in Roll Top Safety Case, as shown.

Both complete with test leads and 32 -page Operator's Manual
Ask your jobber or write for complete descriptive liferature.

SIMPSON ELECTRIC COMPANY

5200-5218 W. Kinzie St., Chicago 44, 111.
In Canada: Bach.Simpson, Itd., London, Ont.

VIBRATIONLESS

 Capacitor Type Induction Motors

Here is a capacitor type motor that is precision built for quiet, smooth performance - accurate bearing alignment... perfect rigidity. The Cyclohm 29 Size is the outstanding value in motors for recording, tape pulling, facsimile work and many other jobs. Available in non-synchronous, and two types of synchronous - reluctance torque and hysteresis torque. Capacitor can be used either on or alongside motor. Ball bearings or sleeve bearings. $1 / 100$ to $1 / 10$ horsepower; various speeds, voltages and frequencies available. Write today for complete information.

CYCLOHM MOTOR CORPORATION

 DIVISION HOWARD INDUSTRIES, INC. 5-17 46th Road, Long Island City 1, N. Y.

WHEN: DABE

IS A FACTOR

STANDARD'S

 CRYSTAL Type 20 is the answer
it meets $\pm .005 \%$ stability over -55° to $+90^{\circ} \mathrm{C}$. range. ... it is hermetically sealed in dry nitrogen. : of its proven consistent superiority in stability and activity ... of its low price.
Let us wend you our FREE cala\log showing the STANDARD line of frequency conlrol units. For your super-somic and ultra-somic crystals, you can rely on STANDARD.

STANDARD PIEZO CO.
 Office of Development Labotatories

CARLISLE, PENNA

NEW PRODUCTS
(continued)
with output range from 0 to 1,700 watts and also 0 to 4,600 watts. Group control is conventionally arranged with coupling to a common shaft.

Echo Depth Sounder

Kaar Engineering Co., Middlefield Road, Palo Alto, Calif. The ES-29 electronic echo depth sounder has

an indicator scale calibrated to 100 fathoms plus, and a power drain of about 30 watts. It is available for input vol sages of $6,12,32$ and 110 volts d-c. The unit uses an ultrasonic transducer of the inboard crystal type which both transmits and receives ultrasonic waves.

Voltage Stabilizer
Raytheon Mfg. Co., Waltham, Mass. The VR-6000 miniature 5watt stabilizer operates at an input

voltage of 95 to 130 volts \mathbf{a}-c, 60 cycles, single phase. Output is 120 volts stabilized to ± 0.5 percent.

Transformer Assembly
Spellman Television Co., Inc., 130 W. 24th St., New York 11, N. Y., has developed a high-voltage corona shielded, tuned transformer assembly which includes an octal socket

FOUND! a WAY tO CUT PRODUCTION COSTS 25\% AND STILL IMPROVE QUALITY

 FOR OVER 58 YEARS

SOLDER

Three cores for the price of one! Speedier action! More operations per pound of solder! Test after test in radio plants has proved that Alpha TriCore is more efficient and more economical than conventional solders. Our engineers will be glad to demonstrate these dollar-saving features in your plant. There is no obligation; just call on us.

CHECK THESE FEATURES

Alpha TRI-CORE ROSIN-FILLED Solder

* 99.9 \% pure, water-white rosin used exclusively!
\star Non-activated! No rejects due to corrosion!
* Adapted to your production needs: an American solder designed for American production; manufactured and stored here ready for delivery!
\star No foxic, obnoxious fumes!
* 25% more joints per hour per pound of solder!
* Cut your solder cost with Tri-Core's - 5 to 15% less tin and still get better results than possible with other solders using more tin.
* Tri-Core available in diameters as large as $1 / 4^{\prime \prime}$, and heavier-down to $.020^{\prime \prime}$ and finer.

other ALPHA PRODUCTS include: TRI-CORE"ENERGIZED"ROSIN-FILLED SOLDER; TRI-CORE "LEAK-PRUF" ACID-FILLED SOLDER, SOLID SOLDER WIRE; PREFORMS (rosin and acid-filled): BAR SOLDER. ANODES AND FOIL.

QUANTITATIVE MEASUREMENTS ON HIGH IMPEDANCE CIRCUITS

Acme Electric engineers will cooperate with your engineering department by providing specially designed transformers for power supply and other applications in an effort to improve the reception and reproduction qualities of your sets.

Acme Electric can produce transformers of special characteristics from standard parts which means that our enormous manufacturing facilities and quality controlled production results in buying economies for you.

Send us specifications and application outline.

ACME ELECTRIC CORP.

3112 WATER ST.
CUBA, N. Y.

for use with 1B3-8016 trpe tube. Adjustable filament voltage allows the tube to be used for voltages from 1 kv to 20 kv . The unit is designed to operate in conjunction with r-f step-up coils of approximately 200 -ke frequency.

Voltage Stabilizer

Raytheon Manufacturing Co.. Waltham, Mass. A new model in the VR-6000 line of voltage stabilizers is hermetica!ly sealed and oilfilled. Power rating is 15 watts.

The unit provides 115 volts stabilized to plus or minus 1 percent for inputs of 95 to 125 volts in the frequency range 57 to 63 cycles.

Oscillator Improvement

Kay Electric Co., Maple Ave., Pine Brook, N. J., has added tone
 may resemble a Racon horn or speaker in outward appearance. But close examination of a Racon unit reveals internal differences-refinement of design, better mechanical construction, sturdier materials and other special features that represent ADVANCED ENGINEERING. It is these exclusive features that give you superior perfarmance in any Racon unit. Higher efficiency oैver wider ranges. Freedom from distortion. Uninterrupted service. The long life that protects your investment.
1 -RACON-RE-ENTRANT TRUMPET RE35. Designed to deliver highly concentrated sound over long distances. Air column $31 / 2^{\prime}$. Inside tone orm aluminum castings; bell, heavy aluminum spinnings; center reflecting section, RACON PATENTED ACOUSTIC MATERIAL to prevent resonant effects. Ruggedly built. Length $16^{\prime \prime}$, bell diam. 18". Swivel ratchet or U bracket mounting.

NOW FURNISHED WITH WATERPROOF CASING
All units may now be had with heavy spun aluminum cases, forming a hermetically sealed, watertight housing for outdoor use, at slight extra cost.

Write for Catolog of
complete Racon Line
RACON ELECTRIC CO., INC.
52 E, 19th Street New York, N. Y.
metal or plastic diaphragms. Voice coil impedance on all units: 15 ohms. Special ohmages on request.

The greatest innovation in attaching
terminals to wires is now available to the industry . . . "Pre-sol dered" TANDEM TERMINALS! Made in various sizes and types. these remarkable, production-proved terminals (supplied on reels) can be applied at rates up to 1200 per hour by a new Terminal Attaching Machine that cuts off, clinches and solders terminals in one instantaneous operation. Handling of loose terminals, solder and flux are eliminated to reduce costs and boost production on long runs. Standard types avoilable. Send for detailed information, enclose sample of wire and terminal now used.

Far ardinary runs in moderate quantity we cantinue ta praduce

SEPARATE TERMINALS for ELECTRIC WIRES

We also make SMALL METAL STAMPINGS Exact to Customer's Prints. Modern Plant and Equipment. Moderate Die Charges. Precision Work. Prompt Service.

PATION-Mac CUYER COMPANY 17 Virginia Avenue, Providence, R.I.

- WILKOR WC-type wirewound resistors are fully ceramic insulated and engineered to withstand tremendous overloads, as well as either high or low temperatures. In use by manufacturers of radio, television and other electronic instruments.

Auailable in...
$1 / 2$ to 10 watt sizes, 1-10,000 ohms.

7n 7olerances of...

 $1 \%, 21 / 2 \%, 5 \%$, $10 \%, 20 \%$.\star
WILKOR Ceramic Resistors
assure you greater . . .
DURABILITY
ACCURACY
STABILITY
COMPACTNESS
RELIABILITY

\star

Write for specificatian sheet.
Samples available for quantity users.

WILKOR PRODUCTS, inc. 3835 WEST 150TH STREET CLEVELAND 11, OHIO

Manufacturers of
C.andine RESISTORS
modulation to the Mega-Marker Sr. oscillator for television testing. The modulation may be switched on or off. By its use, the local oscillator may be aligned by using only the Mega-Marker Sr. and the television sound channel and loudspeaker.

Single-Bearing Motor

Electro-Engineering Products Co., INC., 4824 W. Kinzie St., Chicago 44, Ill., has developed a single bearing motor to provide accurate lineup in air gap. It is

of the four-pole type with a no-load speed of 1700 rpm and a full-load speed of 1550 rpm . The unit is designed for such applications as wire recorders, turntables and fans.

Fuse Protection

The Cleveland Container Co.. 6201 Barberton Ave., Cleveland 2, Ohio. The Cosmalite enclosing tube for the indicating secondary fuse

illustrated protects the fuse chamber, fuse link, and all operating parts.

Binary Scaler

General Electric Co., Sytacuse, N. Y. Model 4SN1A1 binary scaler, designed for use in nucleonic and computer applications, counts electrical impulses at speeds up to 200 kc in either binary or decade operation. A 5 to 20 -volt negative input pulse of 1 microsecond dura-

AN ENTIRELY NEW

 Dependable AUTOMATIC DEHYDRATOR

Now, for the first time, here is an automatic dehydrator that operates at line pressure! This means, (1) longer life, and (2) less maintenance and replacement cost than any other automatic dehydrator.

Longer life because the compressor diaphragm operates at only $1 / 3$ the pressure used in comparable units, vastly increasing the life of this vulnerable key part.

Reduced maintenance and replacement costs because new low pressure design eliminates many components.

Operation is completely automatic. Dehydrator delivers dry air to line when pressure drops to 10 PSI and stops when pressure reaches 15 PSI. After a total of 4 hours' running time on intermittent operation, the dry air supply is turned off and reactivation begins, continuing for 2 consecutive hours. Absorbed moisture is driven off as steam. Indicators show at a glance which operation the dehydrator is currently performing.

Output is $11 / 4$ cubic feet per minute, enough to serve 700 feet of $61 / s^{\prime \prime}$ line; 2500 feet of $31 / 8^{\prime \prime}$ line; 10,000 feet of $15 / \mathrm{s}^{\prime \prime}$ line or 40,000 feet of $7 / \mathrm{s}^{\prime \prime}$ line. Installation is simple, requiring only a few moments.

Important! Not only is this new differently designed Andrew Automatic Dehydrator completely reliable, but it is available at a surprisingly low price.

363 E. 75th STREET, CHICAGO 19
Eastern Office:
421 Seventh Avenue, New York City

ANDREW CORPORAIION, 363 E. 75th 51., Chicago 19 Please send me Bulletin 85 describing the now Type 1900 Andrew Autamatic Dehydratar.

TRANSIENT

 EVENTS ARRESTEDThe first Avimo Oscillograph Recorder was a specially built Camera designed to provide Records of Cathode Ray Traces to a scale which permitted accurate measurement, side by side on continuous film, so that precise relationships could be determined.
Success in this specialised field led to demands for Cameras to record other kinds of transient events, so that within the Avimo range listed below there are, to-day, Instruments to meet nearly any requirement of the Research or Laboratory worker.
The wide experience gained in the course of this development is at your disposal and Avimo engineers will be glad to submit suggestions if you will state your-
problem.

GROUP	FUNCTION
A. Continuous Recording.	For recording oscillograph traces on 35 mm . or 70 mm film.
B. Single Shot.	For use where phenomena are constant.
C. Combined Continuous and Single Shot.	Provides the functions of Groups A or B as desired.
D. Drum.	For high-speed drum recording of high-frequency phenomena on 35 mm . film.
E. Multi-Channel Recorders.	With built-in Cathode Ray Tubes for continuous recording of up to 15 traces.
F. Instrumentation Cine.	Provides a pictorial record of several variants over a period of time.

There is no reasonable limit to the film speeds which may be provided and recorders of Groups A, B C \& D may be used in conjunction with any standard oscillograph.

- W/VITO

AVIMO LIMITED TAUNTON (SOM.), ENG.

tion and 0.1 minimum rise time will produce an oucput pulse of 50 volts, peak to peak. Resolution time is 5 microseconds and output impedance is 27,000 ohms.

Tube Tester

Hickok Electrical Instrument Co., 10527 Dupont Ave., Cleveland 8, Ohio. Model 533 DM display

tube tester is a dynamic mutual conductance type. Flexibility is provided by a system of selector switches.

Small Blower

Globe Industries, Inc., 125 Sunrise Place, Dayton 7, Ohio. The MB-1 blower unit comprises a $0.01-\mathrm{hp}$ aircraft-type d-c motor with centrifugal impeller. At rated voltage, the unit will produce 20 cubic feet per minute. The unit operates at $11,000 \mathrm{rpm}$ with an in-

Eliminate time-consuming manual solder operations in your assembly processes. Pre-formed rings, washers, discs, pellets, squares, etc., complete with flux, save time, trim labor costs, insure cleaner, more uniform, sturdier bonds. We meet your specifications in the widest variety of solder alloys. Consult with us on any solder or brazing problem.
(Literature on Request).

Soldering Specialties

Dept. C, Summit, N. J.

high accuracy plus!

MAX. RES: 1.5 Megahm (331 Allay) 1.0 Megahm (Nichrame) 30,000 Ohms (Manganin)
BODY SIZE: $1 " \mathrm{lg}$. by $9 / 16^{\prime \prime}$ diam
TOLERANCE: STANDARD 1% (TO $1 / 10 \%$ at Slight Ex. Ha Cas 1)
TYPE CX Y/2 WATT

BODY SIZE: 5/8" Ig by $9 / 16^{\prime \prime}$ diam TOLERANCE: STANDARD 1% (TO 1/10\% ohm to 1.5 megohm. Conservative ratings assure maximum long life; trouble free service. Write for cata-APPLICATION-DESIGNEO RESISTORS

For Instrumentation and other critical applications

IN-RES-CO wire wound resistors are engineered for the manufacturer maintaining a reputation of top quality and performane in his equipment. They cover a full range from 1 watt to 10° watts and .01

INSTRUMENT RESISTORS CO., 1056 COMMERCE AVE., UNION, N. J.

SAVE

- MATERIALS - MAN-HOURS - MONEY
with the . . .

Select exactly the right semitubular, split rivet, or coldheoded fastener from Milford's complete line. You'll find it Al|l pays in every way!

Then use the right rivet setting machine for your application. One of Milford's 15 basic machines is sure to solve your particular problem . . . and slash your produc. fion costs!

WRITE TO DEPT. D

HIVAT
254 Huntingdon Street PHILADELPHIA 33, PENN.

put of 14.5 watts. A fan unit is also available separately. Motor can be used as part of a vibrator unit in a stall wayuing system for planes.

Phono Amplifier

Bell Sound Systems, Inc., Columbus 7, Ohio. Model 2122 high-fidelity radio-phono amplifier has four input circuits, built-in preamplifier for each of two magnetic pickup

inputs, as well as bass and treble boost. Peak power output is 15 watts. Response is essentially flat from 30 to 15,000 cycles. Send for sheet Lit 4849-2A.

Precision Switch

Unimax Switch Division of The W. L. Maxson Corp., 460 W. 34th St., New York 1, N. Y. Type DMX universal precision switch has spst silver contacts capable of handling

 treatment.
The all-around (in the groove and out) "windability" of

ESSEX WIRE CORP.

FORT WAYNE G, INDIANA ESSEX EXTRA TEST MAGNET WIRE in this and other exacting applications cannot be excelled

Plants: Anaheim, Calif; Detroit, Mich.; Fort Wayne, Ind. Warehouse's* and Sales Offices: "Atlanta, Ga.;" Boston, Mass.; 'Chicago, Illinois; Cleveland, Ohio; Dallas, Texas; Dayton, Ohio; Detroit, Mich.: "Kansas City, Mo.;"Los Angeles, Calif; Milwaukee, Wis;" Newark, N.J; PhiladelPhia, Pa.;'Portland, Oreg.: St. Louis, Missouri; "San Diego, Calif.; "San Francisco, Californiá

in BRUSHES

for high current density minimum wear \langle low contact drop low electrical noise self-lubricotion

in CONTACTS

for low resistonce तnon-welding character
GRAPHALLOY works where dhers won't Specify GRAPHALLOY with confidence.
*A special silver-impregnated graphlte

GRAPHITE METALLIZING CORPORATION
 TO55 NEPPEAHAN AVENUE, YONKERS 3, NEW YORK

10 amperes at 125 volts, either a-c or d-c. It features a focused-flux alnico magnet, a ceramic baffle chamber and an arc-resistant molding on base and cover.

Precision Pot

Technology Instrument Corf., 1058 Main St., Waltham, Mass. The new 2-in. potentiometer illustrated

has a linearity of 0.2 percent and has a maximum electrical rotation of 320 degrees. Designed particularly for computer and similar applications, the units are available only on special order.

Welding Water Control

Robotron Corp., 56 Manchester, Highland Park (Detroit) 3, Michigan. The Robotector model 22B01A

protects an idle welding transformer from excessive condensation and acts as a simple fail-safe electronic circuit. Further details are given in a catalog sheet.

Metal Locator

Fisher Research Laboratory, Inc., Palo Alto, Calif. The new MScope conveyor belt locator detects metal objects as small as a dime on conveyor belts and automatically interrupts the power circuit to stop the line. The unit pictured will accommodate a belt 2 ft

with STEEL - the small extra first cost of test samples pays off in assurance of efficiency and durability of the finished product.

with TRACING CLOTH. .
The small extra first cost of Arkwright Tracing Cloth, over that of tracing. paper, repays many times over in the efficiency and durability of valuable drawings.

Your investment in Arkwright Tracing Cloth is a trifling sum, compared to its returns in drawings kept permanently sharp and repeatedly useful!

Foresighted drafting departments regularly specify fine-woven, expertly bonded Arkwright, rather than perishable tracing paper, for every drawing worth keeping for possible future use.

Read the Big Six Reasous why Arkwright Tracing Cloth eases work, improves jobs, resists wear and time. Then send for generous samples and prove this superiority on your drawing board. Sold by leading drawing material dealers everywhere. Arkwright Finishing Company, Providence. R. I.

PREE catalog of famous
National precision components, parts, and communication receivers.

WRITE TODAY TO

61 Sherman St. Malden, Mass.

wide with a load 2 ft . high. Loop antennas can be adjusted for different heights and widths.

Hand Hearing Aid
Dictograpi Products, 580 Fifth Ave., New York, N. Y. The Hearette is a hand-held type of hearing aid that is intended both for people

with slight hearing loss and those with normal hearing who may wish to use a selective system in auditoriums or other places where noise level is high.

Kilovoltmeter

Beta Electronics Co., 1762 Third Ave., New York 29, N. Y. Series 121 multirange kilovoltmeters have full-scale range of 15 and 30 , and

For Inverting D. C. to A. C. . . .
Specially Designed for operating A. C. Radios, Television Sets, Amplifiers, Address Systems, and Radio Test Equipment from D. C. Voltages in Vehicles, Ships, Trains, Planes and in D. C. Districts.

VULCAN

ELECTRIC BRANDING IRONS

STAMP EASILY AND PERMANENTLY

Company names, trademarks, initials, serial numbers, or any design on wood, leather, rubber or plastic

For furniture, tires, moveable equipment such as shovels and ladders, wooden shipping cases, tool handles, and hundreds of other articles whose permanent identication is desirable.

SEND SPECIFICATIONS FOR QUOTATION

By the Makers of Vulcan Electric Soldering Tools,
VULCAN ELECTRIC COMPANY DANVERS, 10, MASS.

Makers of Vulcan Electric Soldering Tools, Vulean Electric Solder Pots and Glue Pots and e wide variety of Heating Elements for assembly into manufacterers own products and of Heating Specialties that use electricity.

4 new volumes in the M.I.T. RADIATION LABORATORY SERIES

COMPONENTS HANDBOOK
Vol. 17. Edited by John F. Blackburn, M.I.T.
613 pages, illustrated, $\$ 8.00$
This book codifies information on the properties and characteristics of most electronic components. The first part lists fixed components such as wires cables, resistors, etc. the second deals with electromechanical devices and the third section is devoted to vacmum tubes and cathode ray tubes.

VACUUM TUBE AMPLIFIERS

Vol, 18. Edited by George E. Valley, Jr. M.I.T.; and Henry Wallman, M.I.T. 733 pages, illustrated, $\$ 10.00$
Here is a complete analysis of important types of amplifiers together with their design principles and constructional techniques, The amplifiers discussed provide speeial characteristics such as very high gain, large bandwilth, or precise response

WAVEFORMS

VoI. 19. Edited by Britton Chance, F. F MacNichol, University of Penn.; F. C. Williams, Manchester University; V. W. Hughes, Columbia University; and D. Sayre, Ala bama Polytechnic Institute. 776 pages. illus trated, $\$ 10.00$
A detailed description of the generation and use of precisely controlled voltages and currents, introducing methorls of wave shaping by linear circuit elements and negative feedlack amplifiers The properties of vacunm tuhes as non-linear cir cuit elements and their application to waveform manipulation are presented in retail.

ELECTRONIC TIME MEASUREMENTS

Vol. 20. Edited by Britton Chance and E. F. MacNichol, University of Penn.; and R. I. Hulsizer, M.I.T. 528 pages, $\$ 7.00$
This book operse with a surver of precision ranging circuits depending upon both manual and automatic control. The second part deals with cirenits using supersonic delay eloments for cancellation of recurrent waveforms, and the third section presents precision methods for data transmission emploving pulse timing techniques.

SEE THEM 10 DAYS FREE

- - - MAIL COUPON TODAY - - -

McGRAW-HILL BOOK CO., INC.,
330 W. 42nd St., N. Y. C. 18
Send me the volumes of the M.I.t. RADIATION LABO RATORY SERIES indicated by the numbers encircled below for 10 days exanination on appropal. In 10 days 1 will remit the price of the books I keep. plus a few cents dostafe, and return unwanted books postpaid.
$\begin{array}{llll}17 & 18 & 19 & 20\end{array}$
Name
Address
City
one......... State.
Company
Position
1.12.48

Pr
*Save! We pay mailing costs it you send cash with order. same return privileke. 客memon , -

NEW PRODUCTS
25 and 50 kilovolts at 50,000 and 25,000 ohms per volt. Applications include nuclear research, electrostatic precipitation measurements, flocking or abrasive techniques and television.

Molded Capacitors

Sprague Electric Co., North Adams, Mass. Prokar capacitors operate continuously at high temp-

eratures without deterioration owing to a new plastic impregnant. Rated for service between minus 50 and plus 125 C , the new units are described in bulletin 211.

F-M and A-M Tuner

Browning Laboratories, Inc., 742 Main St., Winchester, Mass. The instrument type f-m and a-m tuner model RJ-20 comprises two independent tuners with a common audio amplifier. The f-m section has 32 db of quieting with a 10

microvolt signal. The a-m section has a variable-width i-f from 8 to 18 kilocycles adjustable from the front panel. Audio output is at 20,000 ohms.

Audio Transformers

Standard Transformers Corp., Elston, Kedzie \& Addison Streets, Chicago 18, Ill. The HF and WF series of high-fidelity audio transformers have frequency responses plus or minus 1 db from 20 to 20 ,-

FOR LOW COST

MICROPHONE

Performance

BX Crystal-Atractive brown enamel finish. 7 ft attached cabe. Level: 52 db below 1 volt/
dyne $/ \mathrm{sq} . \mathrm{cm}$. Response: 50.6000 dyne/sq.cm.Response:50.6000
c.p.s. List . . . $\$ 10.85$

BD Dynamic-Same appearance as BX. Equipped with high level dynamic circuit. Level: 52 db below 1 volt/dyne/sq. cm. at higi impedance. Response: 50 6000 c.p.s. Available in 50.200 500 ohms. or high impedance. 7 ft . attached cable. List $\$ 15.75$

TURNER
 Ohallengers

Model CX - CD Crystal or Dynamic

CX Crystal-Satin chrome finish with 7 fr . quick-change removable cable set.Level: 52 db below able cable set. Level:s
$1 \mathrm{volt} / \mathrm{dyne}$ sq. cm : Response: 50-7000 c.ps. List . \$16.25

CD Dynamic-Same style and finish as CX. High quality magnets in dyamiccircuit. Level: 52 db below 1 volt/dyne/sq. cm. at high impedance. Response: $50-$ 7000 c.p.s. Available in 50.200 , 500 ohms, or high impedance. With 7 ft. removable cable set.
List $\$ 19.50$

Popularly priced TURNER Challengers offer style, quality, and performance features usually found in microphones selling at twice their low cost. They are Turner Engineered with substantially flat response and give clear cut results on both voice and music pickups.

Crystal models are designed with shock-proof mounting, barometric compensator, moisture sealed crystal, and windgag to prevent blasting. Dynamic models are built to give dependable service indoors or out. You can rely on TURNER Challengers for satisfactory performance in recording, public address, sound system, and amateur work - they are fully guaranteed. Write for complete microphone literature.

THETURNER COMPANY

BY TURNER

Licensed under U. S. patents of the American Telephone and Telegraph Company, and Western Llectric Company, Incorporated. Crystals licensed under patents of the Brush Development Company.

SELFLOCKERS...

THBRLD

Reg. U, S. Pat. Off.

SOCKET SET SCREWS

WITH THE

 KNURLED CUUP POINTThe KNURLED cup point of this popular "Unbrako" Socket Set Screw makes it a Self-Locker . . . because the keen edges of the counter-clock-wise KNURLS positively prevent creep, regurdless of the most chattering vibration. A racl fastener, if ever there was one . . . it positively wan't shake loose! Sizes from \#4 to $1-1 / 2^{\prime \prime}$ diameter, in a full range of lengths.

Knurling of Socket Screws originated with "Unbra'so" in 1934.
Write us for the name and address of your nearest "Unbrako" Industrial Distibibitor and for your copy of t\%e "Unbrako" Catalog.
OVER 45 YEARS $1 N$ BUSINESS
"HALLOWELL" KEY KIT

KITS: PATS. PEND
You can't tighten or loosen you can't tighten or lookrn socket screws without a hex our No. 25 or No. 50 'Hallowell" IIollow Handle Key Kit which contains most all hex-socket bits.

STANDARD PRESSED STIEL CO.

JENKINTOWN, PENNSYLVANIA. BOX 596
CHICAGO • DETROIT • INDIANAPOLIS • ST. LOUIS • SAN FRANCISCO

Nou yan can have :DYYAMIG NOISE SUPPRESSION with Your Present Radio-phonograph or Amplifier

These 3 simple steps add realism to your music reproduction.

1. Plug in the "Little Wonder" *Dynamic Noise Suppressor between your pick-up and amplifier.
2. Plug in the socket adapter to the powertube socket.
3. Insert the matched low-needle-talk pick-up in your pick-up arm.
That's all that is necessary to reduce background noise with negligible loss of depth and brilliance . . . giving you a gratifying sense of "presence" in your music reproduction. COMPLETE SUPPRESSOR . . . including tubes, matched pick-up, remote control, cables, adapters, instructions... $\$ 82.50$ list.

- Remote control mounts any where - Separate gates . . . for high-and low-frequency noise suppression - Two-inductor type high-frequency gate circuit
- Two separate control rectifiers
- Compact . . $7 \times 33 / 4 \times 43 / 4$ inches

The "Little Wonder" realizes the full capabilities of your present equipment; can be used, with suitable pick-up, on the new, long-playing records, too. For full specifications, write Dept. EL. Or, even better, hear a demonstration at your distributor's.

${ }_{\text {me }}$ ECONOMY

LABOR ENGINEERING SPACE asaly installed, General Electric Diodes are space-saving . . . provide outstanding advantages over other rectifiers in many applications.

These advantages can be quickly translated into dollars saved in production and improved equipment operation. The features listed helow are only a few of the reasons for the rapid increase in the use of G-E Germaniuni Diodes.

- Welded Contact - The welding of the platinum whisker to the germanium pellet improves electrical stability. Neither mechanical shock nor vibration affect it. Operation may be conducted at higher than ordinary temperatures since no filler, such as wax, is required to hold the poine in place.
- Plastic Shell-More economical than previous metal type and yet it retains mechanical ruggedness.
Use of plastic gives a lower lead-tolead capacitance, permitting its use in circuits of very high frequency.
- Small Size-Requires no more space in circuit than an ordinary $1 / 4$ watt resistor.
- No Heater Connections-Eliminates hum sometimes associated with vactum type rectifiers.
- Easy Installation - Insulated shell and only two ieads to connect.
- Quick Recovery-Returns to normal quickly after sudden applications of excessive voltage when not accompanied by excessive current, providing the solurce of high voltage is removed at once.
- Low Shunt Capacitance

Five types of (j-E Gernaniun: 1)iodes are availahle to meet practically all requirements. For complete information write: General Electric Company, Electronics Park, Syrachsc, Netc York.

000 cycles, and plus or minus 2 db from 30 to 20,000 cycles respectively. Hum pickup, leakage reactance, as well as harmonic and intermodulation distortion have been reduced to a minimum.

Electromanometer

Sanborn Co., 39 Osborn St., Cambridge, Mass. The electric manometer illustrated is used for graphic registration of rapidly

fluctuating pressures as well as steady pressures. Standard ranges are 0 -to- 1 mm of mercury to 0 -to400 mm . Negative and mean pressures can also be measured.

Carbon Resistors

International Resistance Co., 401 N. Broad St., Philadelphia, Pa. The new type deposited carbon resistors, DCF for applications up to 1 watt, and DCH for applications up to 2 watts, are made by depositing pure crystalline carbon film on specially compounded ceramic rods. They are available in 1,2 and 5 percent tolerances. Resistance ranges are: type DCF, 200 ohms to 5 megohms; type DCH, 500 ohms

Each specially designed and produced by us to give exceptional performance, and at a saving in cost to this country's leading manufacturers of radio and television receivers.

Your specifications as to punching, threading, notching and grooving are followed with the most exacting care. Ask about our many stock punching dies available to you.

Are you familiar with our \#96 COSMALITE for coil forms in all standard broadcast receiving sets; SLF COSMALITE for permeability tuners: COSMALITE deflection yoke shells, cores and rings?

Spirally wound kraft and fish pa. per Coil Forms and Condenser Tubes.
*Reg. U. S. Pat. Off.
Th CIEYELAND CONTAINER C. 6201 BARBERTON AVE. CLEVELAND 2, OHIO - All-Fibre Cans. Combination Metal and Paper Cans - Spirally Wound Tubes ond Cores for oll Purposes - Plastic ond Combinotion Paper ond Plostic Items

CLEARLY THE "NUMBER ONE" LINE IN THE HIGH QUALITY FIELD

Quality-conscious engineers in every field have now found out, in actual use, the remarkable efficiency, the amazing smoothness of frequency response, and the clearly superior performance of the new, in:proved 1948 Altec Lansing speakers.

This complete, all-purpose line, fundamentally re-engineered and incorporating new scientific discoveries result-
ing from original Altec Lansing research, offers the highest obtainable quality now available in the electronic industry.

The clear superiority of Altec Lansing speakers is substantiated by frequency response curves, made on measurement equipment that has earned the approval of conservative, unbiased audio scientists.

An illustrated brochure, fully describing the 1948 Altec Lansing line, containing freguency response curves for each speaker, will be sent on request. Write to address nearest you.

MODEL 204A REGULATED
 POWER R SUPPLY

0-500 VOLTS D.C. AT

 300 MA. WITH POSITIVE OR NEGATIVE GROUNDThe Model 204 A Regulated Power Supply will provide from $0-500$ volts of well regulated and well filtered D.C. The output voltage is continuously variable without switching and either positive or negative side may be grounded.

SPECIFICATIONS:

OUTPUT VOLTAGE

High Voltage: 0-500 Volts D.C. continuously variable (Without switching). Current: 300 Ma .
Low A.C. Voltage: B.3 Volts A.C. at B amps. center-tapped, unregulated

REGULATION

Within 1% for voltage between $30-500$ volte, from no load to full load.
Within 1% for line voltage variations from 105 to 125 volts at full load current for any voltage botween $30-500$ volis and within 2% at 10 volts.

hum voltage

Within 10 Millivolts at any voltage or load within ratings.
LINE INPUT
105-125 Volts A.C. 50-60 cycles.
OUTPUT TERMINATIONS
High and low voltage outputs available from Front and rear of unit. Positive or negative terminal of high voltage output may be grounded as desired.

Detalled specifications will be forwarded upon reques without obligation.

ELECTRONIC MEASUREMENTS COMPANY
R E D
B A N K
N E W
J ER S E Y

SMALLEST PAPER CAPACITOR . MOISTUREPROOF

Proof of the pudding is in the eating.

TINYMITES

are the largest selling miniafure paper capacitors in the world.

- Good for $100^{\circ} \mathrm{C}$
- Leads CANNOT pull out
- CAP.from . 0001 to 2 MFD from 100 volts

ELECTRIC CORP. MFR'S OF
CAPACITORS FOR EVERY RIQUIREMENT
308 DYCKMAN ST., NEW YORK. N. Y.
to 20 megohms. See technical bulletin B-4 for further data.

Literature

Carrier Systems. Lenkurt Electric Co., 1113 County Road, San Carlos, Calif. Form CX42 is a 12-page booklet providing a comprehensive illustrated listing of carrier telephone and telegraph systems. Also included is a description of signaling equipment and test apparatus for system maintenance.

Sound Services. Reeves Sound Studios, Inc., 304 E. 44th St., New York 17, N. Y. A recent brochure describes and illustrates the wide variety of sound recording facilities, experience and technical knowledge available for turning out films or disc production.

Nuclear Charts. Westinghouse Electric Corp., Box 1017, Pittsburgh 30, Pa., has prepared six lithographed wall charts in two colors illustrating the important areas of nuclear physics. Measuring 25 by 36 inches and made of heavy stock, the charts are accompanied by a 32 -page book of supplementary information. Complete set may be purchased at the above address for $\$ 1.00$.

Classroom Radio. Radio Manufacturers Association, 1317 F St., N. W., Washington 4, D. C. The present thinking of radio manufacturers and educators specializing in audio education is summarized in a recent booklet. Contents cover utilization, teaching with radio, considerations for purchase and technical considerations.

Electronic Controls. Wheelco Instruments Co., 847 W. Harrison St., Chicago 7, Ill. Bulletin Z6500 contains an illustrated and de-

KESTER CORED SOLDER
 gst in Youn Industry
 fst in Your Industry

In these days of high labor costs, it is of the utmost importance to maintain peak efficiency in your production and maintenance operations. Kester Cored Solders will speed up all soldering jobs.

A Complete Technical Service

If you have a specific problem in your soldering operations, take advantage of the facilities of Kester's Technical Department. It costs you nothing.

PRECISION POTENTIOMETERS

Toroidal and Sinusoidal

For use in computing and analyz. ing devices; generation of low frequency saw tooth and sine waves; controls for radio and radar equipment; position indicators; servomechanisms; electro medical instruments, measuring devices-telemetering; gun fire control where 360° rotation, high precision and low noise levels are essential.
The type RLI4MS sinusoidal potentiometer is illustrated. It is wound to a total resistance of 35,400 ohms and provides two voltages proportional to the sine and cosine of the shaft angle. It will generate a sine wave true within $\pm .6 \%$. Overall dimensions are $4 \frac{3^{\prime \prime}}{}{ }^{\prime \prime}$ diameter x $411 / 32$ long plus shaft extension $\}^{\prime \prime}$ diameter x $1 \frac{1}{3}$ long.

THE GAMEWELL COMPANY

Newton Upper Falls 64, Massachusetts

STANDARDIZED READR-TO-USE METAL EQUIPMENT

 ADAPTABLE FOR EVERY REQUIREMENTPar-Metal Equipment offers many features, including functional streamlined design, rugged construction, beautiful finish . . . plus ADAPTABILITY. Eliminate need for special made-to-order units on many jobs.

Engineers and manufacturers will effect economies with Par-Metal Products, which are available for every type of job from a small receiver to a deluxe broadcast fransmitter.
Professional techniques and years of specialization are reflected in the high quality of Par-Metal. .

CABINETS • CHASSIS PANELS. RACKS

Write far Catalag

POLARAD TELEVISION

SYNCHRONIZING GENERATOR
Model PT 101—Television

FEATURES

- Huilt-in $3^{\text {m }}$ oscilloscope with synchronized sweeps for - Juilt-in oscinoscope with synchronzed sweeps for - Synchronized marker system for checking pulse width - and rise time. - Extrenie stability, insured by deriving all pulses from Means for checking synclironizing pulses in odd and even fields.

SPECIFICATIONS

525 line, int prlocad, 60 fields, 30 frames, RMA Synchronizing puises held to tolerance specitied in tho NlaTl'B
report of $184 \overline{5}$. Ontput l'ulses ; Synchronizing. Video report of $184 \overline{5}$. Output lutses; synchronizing, Video
IBlankink. Camera Hanting. Iorizontal Driving. Vertical Blanking, Camera hlanking, Horizontal Driving, Yertical
Jriting julses. 5 solts arross 100 ohm termination. hual output jacks. 115 volts $50 / 60$ cps. Complete with tubes.

TELEVISION

 MONOSCOPE SIGNAL SOURCE
Model PT 102

- Composite Video Signal - Wide Band Video Ampli-- Dual outputs for feeding - two 75 or 100 lines Black posifive or Black - Black positive or Black - Resolution greater than 600 Jines
INPUT: Vertical and Horlzontal Dryping and Kinescode
Blanking Pulses. OUTPUT: Composite VIdeo Nighal, 3 vol 1 t s_{5}
100 ohm line 115 volts $50 / 60$ cps. Complete with tubes and Including high and low voltage
units.

$$
\bullet
$$

9 FERRY STREET NEW YORK 7, N. Y.

Television engineers and consuitants to
the nation's great television stations.

NEW PRODUCTS
scriptive listing of standard instrument models including indicators, controllers, recorders, and combustion safeguards. A separate price list is also available.
Precision Switches. Unimax Switch Division of the W. L. Maxson Corp., 460 W. 34th St., New York 1, N. Y. A 20 -page booklet on precision switches provides engineering data on force and movement specifications, dimensions and electrical ratings.
High-Voltage Supply. Instrument Development Laboratories, 223233 West Erie St., Chicago 10, Ill. A single sheet illustrates and gives technical data on the model 1090 high-voltage supply which delivers 0 to $\pm 5,000$ volts continuously variable, for ionization measurements and other low drain applications. Output voltage variation is less than 0.1 percent for a line voltage change of 95 to 130 volts.

Instrumentation System. Automatic Temperature Control Co., Inc., 5212 Pulaski Ave., Philadelphia $44, \mathrm{~Pa}$. Detailed engineering and application data on the Atcotran instrument system for electrically measuring mechanical motions or displacements may be found in the 8-page catalog R-10.

Shipboard Radar. Radiomarine Corp. of America, 75 Varick St., New York 13, N. Y. Booklet MS-15 completely describes and illustrates the CR-101 radar designed for commercial shipping. Dimensional digrams and specifications are given.

Ham Inductors. E. F. Johnson Co., Waseca, Minn. Now available is a new catalog dealing with airwound ham inductors and plug-in swinging link assemblies. Instructions are provided which enable the amateur to select the correct coil and link for individual application.

Dry-Type Transformers. Lindberg Engineering Co., 2444 West Hubbard St., Chicago 12, Ill., recently released bulletin 1110 which gives applications, design and construction of a standard line of dry-type transformers, and also covers types for special applications.

Do youl have This IIeplifil Helipot Duodial Catalog?

Do you have complete data

on the revolutionary new helipor-the helical
potentiometer-rheostat that provides many times greater
control accuracy at no increase in panel space?... or on the equally
unique dUODIAL that greatly simplifies turns-indicating applications? If you are
designing or manufacturing any type of precision electronic equipment, you should have this helpful catalog in your reference files...

/4081/7/5 - the precision construction features found in the Helipot... the centerless ground and polished stainless stecl shaftsthe double bearings that maintain rigid shaft alignment-the positive sliding contact assembly-and many other unique features.
It IIICNStrates - dasibes ond give ton dimensional and electrical data on the many types of HELIPOTS that are available... from 3 turn, $1^{1 / 2^{\prime \prime}}$ diameter sizes to 40 turn, $3^{\prime \prime}$ ciameter sizes . . . 5 ohms to 500,000 ohms . . . 3 watts to 20 watts. Also Dual and Drum Potentioneters.

It Describes- mad illastrass the arious spe. cial uelurot designs available-douhle shaft extensions, multiple assemblies, integral dual units, etc.

 turns-indicating dial that is ideal for use, with the HELIPOT as well as with many other multiple-turn devices, both electrical and mecnanical.
If you use precision electronic components in your equipment and do not have a copy of this helpfut Helipot Bulletin in your files, write today for your free copy.
\section*{ihe Helipot corporation, 1011 MISSION ST. SOUTH pasadena 2, CaLIF.}

LOCKED IN
 TO STAY!

CURTIS TYPE "K"

 LOCK-IN TERMINAL BLOCKSCurtis Type " K " Lock-In Terminal Blocks -factory-assembled from 1 to 18 term-inals-assure dependable "lug security". Solder-type spade lugs are rigidly held in position when binder screws are tightened. No danger of terminals pulling or dropping out of position . . . yet any terminal may be easily and quickly removed by loosening screw. Screws insulated to ground.

CURTIS DEVELOPMENT \& MFG. CO.

5 North Crawminal Block Sales
orth Crawford Ave, Chicago 24, Illinois
Factory-Milwaukee 10, Wisconsin
Factary-Milwaukee 10, Wisconsin

An Engineer's DrEAM COME TRUE!

When you hear the Neweomb "Red Knob" record condition campensator for the first time, we are sure yau'll agree it's really a "Dream Come True." These iwa great Newcamb Amplifiers with the "Magic Red Knab" do wonders in eliminating needle scratch and record distartian while retaining the maximum natural brilliance.
Of course, it's not only this remarkably effective scratch control that gives you the extreme quality achieved by these two amplifiers. Their measured per. formance is superb. In every respect, they represent the ultimate in technical perfection, and in addition, there's a listening quality that even performance curves do not tell. That's why we ask you to be sure and hear these two Red Knob Amplifiers before you buy. Both have built in Pre-Amplification for G.E. or similar variable reluctance type pickups, plus inputs for AM-FM radio and crystal pickups, and the finest of tone controls.

Both are individually, and completely, custom tested to insure each unit will be "Laboratory Perfect." A "Certificate of Performance" accompanies each amplifier. Look for it. It is your assurance of individual perfection.

See your Newcomb Distributor or write for detailed specifications.

LIST PRICE $\$ 139.50$

NEWS OF THE INDUSTRY

Studio-to-transmitter microwave antenna which beams programs from Ithaca studio to Connecticut Hill transmitter site for rebroadcast over Rural Radio Network
receive from, are: WSLB, Ogdensburg on 106.1 mc , and 75 miles from WVBN, Turin, on 107.7 mc and 72 miles from WVCV, Cherry Valley on 101.9 mc and 56 miles from WVCN, De Ruyter on 105.1 mc .

Each station in the net has a 250-watt GE f-m broadcast transmitter with effective radiated power of 1,300 watts. A trailer is used extensively for on the spot broadcasts, thus making any pasture in the state a broadcast point. This jeep-drawn unit has a 50 watt transmitter operating on 152.75 mc , either from an a-c line or its own 3 -kw gas engine-driven generator. A 40-foot collapsible antenna on the trailer provides dependable relaying up to 50 miles to the nearest RRN station, where the remote pickup is picked up and rebroadcast for the network.

Headquarters for the statewide chain are at Ithaca, N. Y. From this point a GE studio-to-transmitter link operating on 940.5 mc beams programs to a transmitter

Engineers adjust antennas of Nemo trailer used by Rural Radio Network for remote pickups. The program is broadcast from here on 152.75 mc to the nearest RRN station

announcing

Featuring . . .

HERMETICALLY SEALED COMPONENTS

for long life.

DIRECT READING DECIMAL DECADE SYSTEM . . . Scale of 100 or Scale of 1000 . . . Incorporating the famous positive, reliable, foolproof, Higinbotham scaling circuit.

INDICATES TOTAL COUNT UP TO 999,999 or 9,999,999 BEFORE RECYCLING . . . Direct reading of total count without multiplication, addition or mathematics of any kind.

STYLED TO OCCUPY MINAMUM SPACE ON THE LABORATORY
TABLE . . ONLY $11^{\prime \prime}$ wide $9^{\prime \prime}$ high . . . $18^{\prime \prime}$ deep.
SEND FOR DESCRIPTIVE BUZLETIN NO. 485

geiger müller integrating rate meter attachment

Án accessory for use with scaing sets
A complete Self-Contained Unit Direct Reading

Four Full Scale Ranges of 5, 50, 500 and 5000 Pulses Per Second.

Built-In Loudspeaker For Aural Monitoring of Operation.

Provision for 5 M. A. Pen Recorder.

MODEL SA4
(complete with tubes)
PRICE $\$ \mathbf{2 4 0}$.

A modern fully equipped plant of 15,000 square feet devoted to the manufacture of Geiger Müller apparatus.

Manufacturers of Geiger Muller counter apparatus for nearly 14 years.

2647-67 N. HOWARD STREET, PHILADELPHIA 33, PA.

GRAY TRANSCRIPTION ARMS and EQUALIZERS

The GRAY TRANSCRIPTION ARM 103-LP, with Selected GE Variable Reductance Cartridge with 1 mil Diamond 'Stylus, has been especially designed for use with the new LP Micro-Groove Records. Due to such features as adjustable stylus pressure, frictionless motion, self-leveling base and the accommodation of any standard cartridge, arm obsolescence is precluded. Arm, with 1 mil Diamond Stylus Cartridge, $\$ 77.95$.
The GRAY \#601 4-position EQUALIZER for GE Cartridge, finest performance and workmanship, ideal response curves. Adopted by radio networks. Matches pickup to microphone channel. Complete, $\$ 49.50$.

Inquiries invited for development and manufacturing.

GRAY RESEARCH \& DEVELOPMENT COMPANY, Inc.
HARTFORD 1, CONN.

Double coil electro-magnets provide increased power for extra high contact pressures, insuring positive contact under vibration conditions.
Actuating rod of special molded composition floats in ball and cup end bearings. Armature provided with oilite bearings, with stainless steel pin, insuring mechanical life of several million operations.
Contact arm construction provides wiping action in both transmit and receive positions.

Bullefin Co upon request

When the "heart" of the tube is a Speer Graphite Anode, you are sure of these advantages:

- $200-300 \%$ higher power rating over most metallic anodes.
- Greater tube stability - Speer anodes keep their original characteristics; will not warp, even over the 200 megacycle range.
- Because they operate at lower temperatures, graphite anodes outlast metallic anodes, even when usage is severe and continual.
Graphite anode tubes are widely used for diathermy, ultra-high frequency, short wave and FM transmitters; for motor control, electrostatic precipitation, resistance welding, electronic heating, counting and sorting. When you buy tubes, ask for the one with the graphite "heart."

(744592

-Sperr $\begin{aligned} & \text { CARBON COMPANY } \\ & \text { St. MARYS, PENNA. }\end{aligned}$

NEWS OF THE INDUSTRY
(continued)
site at Connecticut Hill, $9 \frac{1}{2}$ miles southwest. There the programs are put on the air and picked up simultaneously by master receivers at other stations, for immediate rebroadcast on their own channels. Each station can also originate programs for pickup by others in the network.

Certificates of Merit

At ceremonies held in several regions recently, presidential certificates of merit were awarded as testimonials for outstanding service in technological research and development during World War II,

The following were the recipients:

Henry B. Abajian of L. H, Terpening Co.; George W. Bailey of the IRE; Wilmer I. Barrow of Sperry Gyroscope Co.; Marold H. Beverage of RCA; K. C. Black of Aircraft Radio Corp. ; Hendrik W. Bode at Aircratt Radph Hown of Bell Labs. ; Herbert and Bragg of NDRC: Menri Busignies of Federal Teleconmminication baboratories: John F. Byrne and F. C. Cahill of AlL: Howard A. Chinn of CBS ; F. S. Cooper of Haskins Laboratories; Inc.; W. F. If Havidson of Consolidated Edison Co: H. D. Doolittle of Machlett Lahoratories : O. S. Duffendack of Philins Laboratories, Inc.; John N. Dyer of AII, ; Donald G. Fink, editor-in-chief, Elictronics, E. G. Fubini of AIL; Raymond L. Garman of General Precision Equipment Corp.; B. L. Havens of Watson Scientific Computing L, aboratory ; L. Grant Hector of Sonotone 'orp.; William II. Martin of Bell Itahs: James H. Moore of AT\&T; Haraden Pratt of American Cable and Radio Corp. ; J. C. Schelleng of Bell Labs; William P. Short of Federal Telecommunication Lalioratories: Hector R. Skifter of AIL; Ernst Weber of Polytechnic Institute of Brooklyn; Browder J. Thompson (posthumously), Vladimir K. Zworykin, Loren IF. Jones and Hugh M. Spencer of RCA.

Australian Mobile F-M

First installations of mobile f-m equipment for public works and police authorities in Australia were recently completed by Amalgamated Wireless (Australasia) Ltd. and Philips' Australian branch plant. Regular f-m entertainment programs, however, are at least a year away.

Train Television

A SUCCESSFUL demonstration of television reception aboard a moving train was made during the recent World Series by Bendix Radio Division of Bendix Aviation and the Baltimore and Ohio Railroad, along the Washington-New York route. Only when the train
a HeJM MITHET

backed by

experience

intermational

 instruments
INCORPORATED

The fine quality midget meters formerly manufactured by the MB Manufacturing Company are now being produced by International Instruments, Inc., - a new name for the established line of midget meters of unexcelled accuracy.
Improvements in design have been effected under International Instruments' modern engineering methods. Production has been increased without loss of precision. Now International Instruments can provide prompt delivery of a complete line of improved midget electrical panel meters, ranging from $1^{\prime \prime}$ to $1^{1 / 2 \prime}$ in diameter, combining with small size the same ruggedness and accuracy of the larger panel meters.
Production quantities or sample orders are available for practically every use where small size and minimum weight are prime factors. Our engineers will gladly work on adapting International midget electrical instruments to your requirements.
Write now for our new midget meter folder complete with specifications.

international instruments

INCORPORATED
331 EAST ST. NEW HAVEN 11, CONN.

Z-ANGLE METER'S

Accuracy - Speed - Simplicity PLEASES LANGEVIN ENGINEERS

> THE Z-ANGLE METER is a modern, selfcontained instrument for making quick, and PHASE ANGLE of audio frequencies.

Write today for Bulletins on the Z-Angle Meter. R-F Z-Angle Meter, R-F Oscillator and Precision Variable Resisfors.

AUDIO ENGINEERS:

Note This Report From Langevin

"The Langevin Manufacturing Corporation Development Laboratories finds the Z-Angle Meter extremely useful in the determination of transformer impedances. In the manufacture of amplifiers it is often necessary to determine the impedances existing within amplifier stages. Heretofore. these determinations have involved a long drawn out test procedure. The Z-Angle Meter, however, allows readings to be made accurately and quickly."

Their engineers say, ". . . the plate impedance of a resistance coupled triode tube can be determined by taking a reading with the Z-Angle Meter at the output terminals and then extracting the unknown from the mathematical formula for the impedances in parallel. This is only one of the many uses we have found for this instrument."

Since 1933 PYROFERRIC has been the standard source for IRON CORES manufactured to desired permeability, frequency, "Q", resistance and physical strength . . . to fit any circuit.
PYROFERRIC, with its background of research and experience, will gladly consult with you on your IRON CORE requirements.

$\square \square \square 621$ EAST 216 STREET, NEW YORK 67, N. Y.

CLAROSTAT MFG. CO., Inc., Dover, N. H.
In Canada: CANADIAN MARCONI CO.. Lid. Montreal, P.Q. and branches

Special antenna mounted atop roof of train for television reception must not extend more than $153 / 4$ inches because of railroad's clearance pattern. Larger por. tion is used for the 54 to 88 -mc bard; smaller antenna is for 174 to 216 mc
passed under bridges or steel structures or was out of range of tran:mitters was there any indication that the receiver was operating under unusual circumstances.

A special antenna known as a ram's horn doublet was mounted atop the car. The a-c power necessary for the set's operation was obtained by using a standard Bendix train radio inverter.

RMA Mobilization Plan

To SPREAD the military preparedness production load broadly throughout the radio industry, the RMA industry mobilization policy committee has presented a plan to the Munitions Board. Aim of the plan is to create as many prime contractors as possible and get the industry as a whole back into govermment business. The new committee has as its chairman Fred R. Lack of Western Electric Co.

Included in the detailed recommendations is the proposal that the government appoint a four-man committee consisting of three military officers and a representative of industry to properly coordinate and channel current procurement. It was also recommended that the government appoint an industry advisory committee to act as consultants and technical advisors to the forlo-man procurement committee.

Radiation Detection Display

 INSTRUMENTS FOR radiation detection in the industrial, medical and biological applications of nuclear
Ist line performance Proved in ADC 2na $^{\text {ad }}$ Line Transformer

An ADC 115A (Industrial Series) impedance matching transformer, picked at random from stock, was submitted to tests to compare its performance with that of other makes of 1 st line transformers. Here are the results. Compare performance of the ADC transformer with that of other makes.'

FREQUENCY RESPONSE

It may be noted that altho the permeability of magnetic materials drops at low flux densities, the ADC transformer has sufficient reserve inductance to allow for this even at low power levels. At 40 db below maximum power level it exceeds the response guarantee. Insertion loss at $1,000 \mathrm{cps}$ was 0.75 db -

LONGITUDINAL BALANCE

The most common interference voltages encountered in telephone line transmission are longitudinal; that is, the induced voltages in both wires are in phase with respect to ground. These can be removed from the signal voltage only by means of a well balanced line transformer. Illustration " A " shows the test circuit used to measure the degree of removal of these interference voltages. Level reduction on the ADC 115A transformer was 67 db at 100 cps and 56 db at $10,000 \mathrm{cps}$.

MANUFACTURERS, JOBEERS:

 Write today for cotolog of ADC -lectronic components or for information on units engineered to your requirements.

ADC for your engiCONSULT ADC for your engineered transformer where positive neered specifications require poss you ing spests. ADC's policy asstrials and pesulfts. AD avallable moterialk very
the finest avip to give you the ver the finest workmins to give you th. workmanship
best electronic components your requiremenis.

> ADC QUALITY PLUS TRANSFORMERS TRANSFORMERS FO AM Finest tronsformer made. For and and FM broadcast stations $1 / 2 \mathrm{db} 30$ recording stud 15,000 cps.

Uudio Development $\mathcal{C} 0$.
2835 13th AVE. S., MINNEAPOLIS 7, MINN. "Gualio Develops the Finest"

nint PILOT LIGHT ASSEMBLIES

 Telephone-SPring 71320

With specialized experience and automatic equipment, PARAMOUNT produces a wide range of spiral wound paper tubes to meet every need ... from $1 / 2^{\circ}$ to 30° long, from $.592^{\circ}$ to 19° inside perimeter, includ. ing many odd sizes of square and rectangular tubes. Used by leading manufacturers. Hi-Dielectric, Hi-Strength. Kraft, Fish Paper, Red Rope, or any combination, wound on automatic machines. Tolerances plus or minus . 002". Made to your specifi. cations or engineered for YOU.

Paramount
 PAPER TUBE CORP.

616 LAFAYETTE ST., FORT WAYNE 2, IND. Manufacturers of Paper Tubing for the Electrical Industry

All-Channel Antenna

MEGACYCLES

Directivity 60 mc . $\begin{gathered}\text { Horizontal } \\ \text { Directivity } 190\end{gathered}$
It's simpler, lower in cost, easier to erect. has oversize elements and the famous ad. justable V dipole design which permits adjustment in both horizontal and vertical planes. Covers all 12 channels. List $\$ 20$. Send for test chart, full details and jobber discount.
PRHMAX PRODUCTS
DIVISION CHISHOLM-RYDER CO., INC.
4902 Highland Ave., Niagara Falls, N. Y.

Larrite
 STEATITE CERAMIC

Design engineers and manufacturers in the radio, electrical and electronic fields are finding in LAVITE the precise qualities called for in their specifications . . . high compressive and dielectric strength, low moisture absorption and resistance to rot fumes, acids, and high heat. The exceedingly low loss-factor of LAVITE plus its excellent workability makes it ideal for al high frequency applications.

> Complete details on request

D. M. STEWARD MFG. COMPANY

Main Office \& Works: Chattanooga, Tonn. Needham, Mass. • Chicago • Los Angeles New York • Philadelphia

NEWS OF THE INDUSTRY
energy are being given a comprehensive display at a conference on electronic instrumentation in nucleonics and medicine in New York, November 29 through December 1. The Atomic Energy Commision's exhibit will include 22 types of basic instruments manufactured by 20 commercial companies.

The purpose of the conference is to show the problems facing utilization of atomic energy and the need for cooperation among electronic engineers, physical scientists and medical doctors. Over twenty papers are being presented by various authorities in the atomic energy research and development field.

South American Television

Transmitting Equipment for South America's first television station was recently sold by General Electric Co. to Cesar Ladeira, one of the founders of Radio Televisao do Brazil. Television service, expected to be functioning within a year, will be operated in collaboration with Radio Mayrink Veiga, PRA-9, of Rio de Janeiro.

The transmitter will have 5 -kw power rating, which will make it comparable in strength to stations operating now in the U. S. The system will operate on American standards of 525 lines, 30 frames and 60 fields in black and white.

The laboratory includes a highvoltage section, a pilot plant, a chemical and metallurgical area, and a photo-technical department.

Technical Information Committee

A Special Committee on Technical Information has been formed by Vannevar Bush, chairman of the Research and Development Board, to promote effective exchange of research and development information among the departments of the National Military Establishment. Detlev W. Bronk, president of Johns Hopkins University, is chairman of the new group. Other members include: John E. Burchard, Dean of Humanities, MIT; Herman Henkle, director of the

DESIGNED FOR ONE SPECIFIC PURPOSE-

TYPE
 YNA-4

INDUSTRTAL OSCILLOSCOPE

Check-Measure - Test - with the G-E Industrial Oscillo scope.
The following partial list of uses will indicate its importance where ever electrical apparatus is employed.

For checking welding equipment, testing photo-electric circuits, checking performance of relay contacts, performance of high power rectifier tubes, measuring voltage and current relationship in motors, performance of commutators, checking audio oscillators - the YNA- 4 Industrial Oscilloscope performs all these important checking and testing functions most efficiently.

D-C Amplifiers for Horizontal and Vertical Deflection-Give a true trace combining both the $A C$ and $1 X C$ components important for industrial purposes which is not possible with the ordinary oscilloscope used in radio work.

Completely Insulated Case-Since the entire unit is insulated, it may be operated as high as 550 volts above ground. Instrument may be placed on metal working surfaces, machinery, and other advantageous working spots even when connected to ungrounded ciscuits.
Internal Calibrating Voltages-The YNA-4 provides internal calibrating voltages of known value to enable the operator to set the defection sensitivity of the oscilloscope. Functions as a vacuum tube voltmeere permitting $A C$ and $D C$ voltage measurements without a voltmeter.

Flexible input Circuits-Vertical Amplifier - varied inputs are available to accommodate a wide rangz of voltages and circuit requirements. This oscilloscope may be used to
examine voltages from 1.0 volt to 500 volts and its input impedance may be switched from 1 megohm to 10 megohms or to open grid.

Horizontal Amphfier-direct coupled input rerminals are provided or the built-in sweep senerator may be used for hormontal deflection. This generator may be synchronized with the power line, the vertical amplifier or with an external source.

Wide Sweep Frequency Range-The YNA-if has been designed so that the operator can observe separate cycles over a wide band of frequencies. A minimum sweep rate of 10 cycles has been established as desirable for industrial operationsthis has been incorporated in YNA-4.

> For complete information on the YNA Oscilloscope Industrial precision and motather equipments wriasuring Gcineral Electrite Codayto: Compuny, Electronits Park, Sypurul

High Sensitivity . . . Logarithmic AC VOLTMETER 50 MICROVOLTS TO 500 VOLTS

SELF-CONTAINED ALL AC OPERATED UNIT

An extremely sensitive amplifier type instrument that serves simultaneously as a voltmeter and high gain amplifier.

- Accuracy $\pm 2 \%$ from 15 cycles to 30 kc . $\pm 5 \%$ from 30 kc . to 100 kc .
- Input Impedance 1 megohm plus is uuf. shunt capacity.
- Amplifier Gain 40000

Also MODEL 45 WIDE BAND VOLTMETER
. 0005 to 500 Volts! 5 Cycles 1600 kc .

A few of the many uses:
Output indicator for microphones of all Gain and frequency measurements for als types.
Low level phonograph pickups.
Acceleration and other vibration measuring pickups.
-Sound level measurements.
types of audio equipment.

- Densitometric measurements in phatog raphy ond film production.
- Light flux measurements in conjunction with photocells.

Write for Complete Information
Instrument Electronics
42-17A Douglaston Parkway DOUGLASTON, L. l., N. Y.

CHECK THESE FEATURES

Two continuously variable B supplies, from 0 to 300 volts at currents up to 120 ma .
One continuously variable C supply, from minus 50 to plus 50 volts at 5 ma .

One heater supply, 6.3 volts A. C. at 5 amperes.
Power requirements: 105 to 125 volts, 50 to 60 cycles.
Two 5 Y 3 rectifiers, two 6 Y 6 control tubes.
Length $16^{\prime \prime}$, height $8^{\prime \prime}$, depth $83 / 4^{\prime \prime}$. Wgt. 28 lbs.

MULTIPLE SUPPLY

ADVANTAGES

four commonly used voltages from a single compoct unit.
B supplies cannot be burned out even if terminals are shorted.
Control circuit eliminates the use of heavy duty power potential dividers.
Complete voltage control from the front panel. All connections made to sturdy front panel binding posts.
Voltages are isolated from the chassis.

The Kepco Multiple Power Supply is now widely used in schools and industrial laboratories.

For complete details Address Dept. K-E
Kepco Laboratories, Inc.

149-14 41st Avenue Fiushing, N. Y.

EISLER
ELECTRICAL \& ELECTRONIC EQUIPMENT
ELECTRONIC TUBE EQUIPMENT

36 HEAD RADIO TUBE MACHINE

We Make Complete Equipment For The Manufacture Of Incandescent Lamps Radio and Elec
tronic Tubes,
TRANSFORMERS OF ALL TYPES

SIZES $1 / 4$ to 250 KVA SPOT WELDERS OF ALL TYPES
FOR ALI PURPOSES
SIZES $1 / 4$ to 250 KVA Butt Welders - Gan Weldera Arc Welders
Neon Sign Units Fluorescent Tebe Manufacturing Equipment

CHAS. EISLER
EISLER ENGINEERING CO., INC.
73I 80, 13th 8t. (Near Aven Avo.), Nowark 3, N. J.

The Latest News of Science NowYours in One Big Magazine!

Now at last you can keep up with the new inventions and discoveries of science that affect you and your industry. Every month Science Illustrated is filled with new advances in vital fields... Electricity, Construction, Aviation, Atomic Energy, Radio, Synthetics, Mining, Chemistry, Electronics, Home Appliances, etc.
Science Illustrated shows you new products and designs and explains why, when and how they were made. Every monthly issue is packed with 30 complete, authentic articles and 140 photographs, diagrams.

ORDER NOW AND SAVE \$4!
You can order 36 big issues of Science Illustrated (3 full years) for ONLY $\$ 5$! This special rate saves you $\$ 4$ over the one-year price. We'll start your subscription with the big new issue now on the press-if you order within 10 days!

MAIL THIS ORDER FORM TODAY!

John Crerar Library; Lt. Col. F. L. Walker, Jr., Army; Capt. W. H. Leahy, Navy; and Col. Bernard A. Schriever, Air Force. Norman T. Ball is executive director.

No Change in Operator License Rules

Last Year's Proposal to provide for three classes of radio operator licenses has been abandoned by the FCC. The Commission finds no justification for the proposed rules or for any substantial changes in present rules, provided that qualifying examinations are kept up to date in relation to developments in the broadcast radio art through appropriate periodic revisions.

British TV System to Stay

To Prevent the Sets now in use from becoming obsolete, the British Broadcasting Corporation's television advisory committee has advised the Postmaster General to make no technical changes which would involve a change in the present television system.

The London television station will continue to operate for a number of years on the present 405 -line system. The same system is being adopted for the Midlands station and is proposed for other British stations. Freguencies for vision and sound will be in the neighborhood of 60 mc . Alternative radio and cable links are being provided to make television available to more of the population.

BUSINESS NEWS

Radio Corp. of america and its subsidiaries have been granted a license under the radar development patents owned by Raytheon Mfg. Co., Waltham, Mass.

Nuclear Instrument Chemical Corp. is the new name of Instrument Development Laboratories, Inc., Chicago, Ill. Products include instruments for nuclear and radioactivity measurement.

Ransburg Electro-Coating Corp., Indianapolis, Ind., has available a

REEVES 裉 HOFFMAN

 methods came in. The modern assembly line in large production plants is in itself so dramatically arresting a spectacle that the "feeder lines", of which there are hundreds in every volume industry, are lost sight of. Just as mighty rivers exist only because of the less majestic tributaries, so the production line is dependent upon sources of supply so unvarying in flow and quality, that every part is ready and right to "fall into place" with mechanical precision and constant supply. Our production line has been standardized to a degree of uniformity attainable only through long-time development of machines, controls and skilled workmen.

MACALLEN MICA

A product developed for big business through serving the needs and keeping the pace of big business. Obviously best to help small business grow bigger.

MACALLEN MICA

ALL FORMS, ALL QUANTITIES - ALL DEPENDABLE

when you think of MICA, think of MACALLEN

NEWS OF THE INDUSTRY (continued)
$16-\mathrm{mm}$ film covering their electrostatic detearing and spray finishing processes.

Clarostat MFg. Co., Inc., has moved from Brooklyn, N. Y., to a block-long plant in Dover, N. H., providing over $250,000 \mathrm{sq} \mathrm{ft}$ of floor space to expand operations and add various radio-electronic specialties to its line.

Western Electric Co., Inc., rerently opened a new plant on a $50-$ acre tract two miles east of Allentown, Pa., for the manufacture of tubes and other precision electronic

Administration building (left) and manufacturing building of Western Electric's Allentown plant
equipment. Cost of the plant, which will employ about 2,500 people, is estimated at over $\$ 10,000,000$.

Mekelek, Inc., Highland Mills, N. Y., was recently organized for the production of electronic devices, particularly sound apparatus.

World Industries, Inc., Dayton, Ohio, has been incorporated to manufacture electronic and other products and to operate research and development laboratories.

Lennox Industries, Inc., Cleveland, Ohio, has been incorporated for the manufacture of electronic devices.

Fairchild Recording Equipment Corp., New York, N. Y., was recently formed to combine the manufacture and sale of a new magnetic tape recorder with Fairchild Camera and Instrument Corporation's line of recording and sound equipment.

Stromberg-Carlson Co. recently broke ground atop Pinnacle Hill, Rochester, N. Y., for television station WHTM. The tower will also be able to support two f-m' antennas

For Proof Beyond Compare

Try

RUBYFLUID

Soldering Flux

Send for Ruby's \$1 Offer
For Sl Ruby will send you 1 pint of liquid, one half pound of paste soldcring flux and a new booklet on "How to Solder.

Take arvantage of this offer now!
Send your \$l teday to-

RUBY CHEMICAL CO

BIRTCHER

STAiNLESS STEEL - LOCKING TYPE

TUBE CLAMPS
 Stainless
 Steel

83 VARIATIONS

Where vibration is a problem, Birtcher Locking TUBE CLAMPS offer a foolproof, practical solution. Recommended for all types of tubes and similar plug-in components.

More than three million of the se clamps in use.

fREE CATALOG

Send for somples of Birtcher stoinless steel tube clomps and our stondord cotolog listing tube bose types, recommended clomp designs, ond price list.

THE BIRTCHER CORPORATION 5087 HUNTINGTON DR. LOS ANGELES 32

MANUFACTURERS Please Observe:

SYNCHRON Timing Motors are Patented

These active patents apply to SYNCHRON Motors, printed on every motor which leaves our factory:

$1,864,650$	$2,237,959$	$2,283,363$
$2,128,141$	$2,237,960$	$2,295,786$
$2,128,142$	$2,237,961$	$2,304,688$
$2,143,653$	$2,237,962$	$2,305,963$
$2,155,266$	$2,256,711$	$2,323,035$
$2,202,693$	$2,274,957$	$2,349,620$
$2,219,388$	$2,289,495$	
$2,237,958$	$2,298,373$	

May we suggest that if you need timing motors, let us build them for you. We make them in large quantities-at prices difficult to duplicate-and you can avoid costly patent litigation and development expense. Catalog and engineering data on SYNCHRON Timing Motors, Time Machines, and Clock Movements will be mailed promptly on request.

HANSEN MANUFACTURING CO., INC.
PRINCETON 10, INDIANA

Estoblished 1907-A Pioneer In Synchronous Motors

The new Photo-electronic Counter was designed for industrial applications in which mechanical counters do not count accurately or wear rayidly hecause of counting speed. Ont of the well-known Potter electronic counter decades is used to scale down the operating speed of a reliable electromechanical register. In the Mode! 3l0, the photo-electric eye is located inside the cabinet and the light enters through a small window at the rear. In the Morle! 312. the photo-electric "eye" is housed separately for remote counting. Small objects as well as closely spaced parts can be acwidth of he heam is only $1 / 4$ inch, and does not require complete, interruption for actuation Another version the Model 311 uses an electromachect pick un coil for coumtine shaft rotation without coninct

For complete literoture or consul. totion on high speed counting, timing and control problems call

POTTER INSTRUMENT COMPANY 136-56 ROOSEVELT AVENUE. FLUSHING. NEW YORK

Designed for Application

The No. 90711

Variable Frequency Oscillator The No. 90711 is a complete transmitter control unit with 6SK7 temperature-compensated, electron coupled oscillator of excentional stability and low drift, a 6 SK 7
broad-band buffer or frequency doubler, a 6 A67 tuned amplifier which tracks with the oscillator tuning. and a regulated power supply. Outputsufficient to drive an 807 is available on 160,80 and 40 meters and reduced output is available on 20 meters. Close frevernier control arm at the right of the dial. Since the output is isolated from the oscillator by two stages, zero frequency shift occurs when the output load is yaried from open unusually solidly built so that no frequency shift occurs due to vilbation. The keying is clean and free from all annoying chirp, quick drift, jump, and similar difficulties often oscillators.

JAMES MILLEN MFG. CO., INC.

MAIN OFFICE AND FACTORY

MALDEN MASSACHUSETTS

NEWS OF THE INDUSTRY
and two more television antennas. Since Rochester is allotted three channels it is expected that future licensees will take advantage of Stromberg-Carlson's offer to share the tower, so that residents may angle their receiver antennas at one location for a choice of three programs.

Lectrohm, Inc., Chicago, Ill., has moved to larger quarters at 5939 Archer Ave. in that city, to increase

New Lectrohm plant
production of vitreous enamel resistors and electric solder pots.

General Electric Research Laboratory has built its fourth betatron, a 50 -million volt device for producing high-energy x-rays for use in cancer treatment.

PERSONNEL

Leland J. Haworth, associated with the Brookhaven National Laboratory since August 1947, has been promoted from acting clirector to director of this atomic research center. During the war he served with the MIT Radiation Laboratory in radar development.

Newbern Smith, a member of the National Bureau of Standards staff since 1935, has been appointed chief of the NBS Central Radio Propagation Laboratory.

Harold P. Knauss has resigned as director of research and development at the Mound Laboratory, Miamisburg, Ohio, to become head of the department of physics at the University of Connecticut. During the war he worked on submarine detection at Harvard Underwater Sound Lab and at Submarine Signal Co.

Timothy E. Shea, after 28 years with Western Electric's engineer-

1. Resistance Testing

For high speed testing of resistors, coils, heater elements and similar products in production quantities where costs must be minimized. Designed for use by non-skilled operators, they are capable of checking as many as 2000 items per hour. Ranges from 1 ohm to 10 megohms. Simple and sturdy, these instruments will withstand hard usage for many years. Described in Bulletin 100.

2. Shorted-Turn Testing

For detecting shorted turns or opens in coil windings of nearly every variety. Speeds of 2000 items per hour easily attained with non-skilled personnel. Will readily detect a single shorted turn of No. 44 copper wire. Operation at 60 cycles assures substantial freedom from capacity effects. Simple and sturdy for long service under hard usage. By detecting defective windings at negligible cost before assembly into completed units, these instruments greatly increase production efficiency and contribute to product quality. Described in Bulletin 109. \star Other Rubican Products:

Wheatstone, Kelvin and Mueller Bridges; Potentiometers for precise measurement of DC voltages; Galvanameters; Photo-electric Colorimeters;SanfordBennett High H Permeameters; Magnetometers for intercomparing permanent magnets. Literature on request.

RIIBICON COMPANY

Electrical Instrument Makers 3757 Ridge Avenue - Plitadelphia 32, Pa.

MORE and MORE MANUFACTURERS ARE USING HILLBURN Quality VIDEO and SOUND TRANSFORMERS and COMPONENTS

Over 200,000 Hillburn Video and Sound Transformers are now in use in more than 35,000 sets throughout the country.

- Hor. linearity coils
- Video peaking coils
- Size controls
- 4.5 mc INTERCARRIER coil components
- 4.5 mc Sound coils
- 4.5 mc Ratio detector
- A.F.C. Coils
- Transformers and components both stock and to specification.

Send for Descriptive Literature

HILLBURN

ELECTRONIC PRODUCTS CO.
55 Nossau Ave. Brooklyn 22, N. Y.

BETA HIGH VOLTAGE POWER SUPPLIES

PROBLEM: A group of research physicists associated with a major photographic equipment supply manufacturing company required a 0-40 KV DC reversible polarity power supply. Low ripple was essential.

BETA

MAJOR SPECIFICATIONS
Input: 115 volts, $50 / 60$ cycles; 200 voit-amperes. Output: $0-40 \mathrm{KV}$ DC; Variac controlled. Either posifive or negative polarity as desired.
Output Current: More than 200 ua at 40 KV Less than 1% ripple.
Size: $22^{\prime \prime} \times 16^{\prime \prime} \times 48^{\prime \prime}$
Insulation: Air insulation throughout.

[^7]

FOR TELETYPE RECEPTION

Converts any receiver with B. F.O. into teletype operation. Has dual input and combining feature for diversity reception. Audio frequency type. Dual channel ganged discriminator. Provided with demodulator facilities for CW-ICW. Over 60 DB limiting and special discrimination for maximum signal to noise rafio. Tolerates receiver or transmitter frequency drifts of ± 400 cycles in 850 cycle FS pleration available with linear output for facsimile.

NEW and novel tuning and monitoring feature on $2^{\prime \prime}$ scope allows tuning of signal either in standby or while keying, which makes tune up a matter of seconds.

FOR OTHER FREQUENCY SHIFT TERMINAL EQUIPMENT SEE OUR ADVERTISEMENT PAGE \#190-191 ELECTRONICS BUYERS GUIDE.

> NOATHIERAN BADIO C'OMPA9]
> lncorforated
> 143-145 WEST 22nd ST. NEW YORK 11, N, Y,

- From the laboratories and factory of RCA which have produced the speaker equipment now used in some of the world's largest and finest theatres, auditoriums, and studios comes a NEW Console Reproducer - the LC- 4 B. This unit combines the exceptional frequency characteristics of a unique, low distortion, low frequency speaker and a brilliant, high efficiency, horn type tweeter in a functionally designed cabinet with natural or walnut finish. You can now realize the full tonal range, richness, and color of FM Radio and wide range recordings at a new low price.

SPECIFICATIONS LC-4B Frequency range 60 to 13,000 cycles Sensitivity 94 db (Measured with IMV signal at 4 ft .) Impedance 7.5 ohm Power Handling Capacity 10 wafts. Weight 44 lb Suggested list LC-4B, Complete $\$ 163.50$

SPECIFICATIONS LC.4A Frequency range 75 to 13,000 cycles Sensitivity 97 db (Measured with IMV signal at 4 ft .) lmpedance 7.5 ohms Power Handling Capacity 20 watts. Weight 44 lbs. 5uggested list LC.4A, Complete $\$ 161.00$

In Conedu: ICA VICTOR Cempanr Limised, Montreal

> New Design Vibration Isolator with Air Damping

BARKYMOUNT TYPE 770 INSTRUMENT VIBRATION ISOLATOR
Revolutionary new design utilizing air damping to limit excursion at resonance. Metalie non-linear springs give constant resonant frequencies throughout a two to one load range. Unaffected by high or low temperatures. For all types of light weight instruments and other applications where a high degree of isolation is required.

Catalog Number Num	(toad Range
770-2	1102
770-3	$1 \frac{1}{\frac{1}{2} \text { to } 3}$
770-4	2 10 4 ${ }^{\frac{1}{2}}$
770-6	3106

Similar type available in Jarger sizes

BARRYMOUNTS Control

 VIBRATION and IMPACTStandard Barrymqunts are available for all sizes of mechanical, electrical, and electronic instruments in commercial industrial, and military appli-cations-also an exgineering consulting service on special problems.

SEND FOR BARRY CATALOG

If you haven't sent for the New Barry Catalog, be sure to fill out the coupon below for your Free copy of this 16 page booklet.

Name.
Co.........
Street.................................... .
City.................. State
THE BARRY CORPORATION formerly L. N. BARRY CO., INC. 177 SIDNEY STREET CAMBRIDGE, MASS.
news of the industry
(continued)
ing departmeñt and Bell Telephone Laboratories, and most recently assistant engineer of manufacture for Western Electric Co., has been elected president and a director of the Teletype Corp. Early in his career he developed filters and networks used for transatlantic radio, earrier telephony and television. He holds the Medal for Merit and is author of "Transmission Networks and Wave Filters."

T. E. Shea

T. M. Liimatainen

Toivo M. Limmatainen, formerly associated with Sylvania Electric Products Co., has been appointed to the staff of the Electron Tube Laboratory, National Bureau of Standards, to work on the engineering and development of microwave tubes.

Sydney Cramer, former:y television development engineer with GE, has joined Paramount Pictures television group in the same capacity.

Rodney D. (Hipp, previously with NBC, has been promoted from assistant chief engineer to director of engineering for the DuMont television network.
H. U. Hjermstad, former vicepresident in charge of manufactiring and engineering at Federal Enterprises, Inc., has been appointed assistant to the president of Sola Electric Co., Chicago, Ill.
G. Lester Jones, formeriy associated with automatic pilot development at Sperry Goroscope Co. and prior to that, chief engineer of Sperry Products Co., was recently appointed chief engineer of Lear, Inc., Grand Rapids, Michigan.

Howard R. Boyle, formerly affiliated with Sylvania Electric Products and Sperry Gyroscope Co., has been appointed chief engineer of the key station of the Far East

sickilli celik colit.

46 EOLD DL, WAN DORL shice

BAACH-NTERNATIONAL

Dimensians $24^{\prime \prime} \times 24^{\prime \prime} \times 72^{\prime \prime}$ high

EICHT HEAD HOT-CUT FLARE MACHINE

Automatic throughout.
Can be synchronized with automatic Stem machine.
Cuts off and flares in one operation.
Production 1250 flares per hour. For miniature flares, fluorescent star lamps, fluo ard size lamps, fluorescen
tubes.
RANGE OF MACHINE Glass tubing 27 to 45 gauge
Length of flares
5 mm . to 80 mm .
Forms flores up to 47 mm. diam.
Net weight, 960 lbs. 1450 lbs.
ITternational machne works
Manufacturers of High Vacuum Pumps, Automotic Machinery for Incondescent Lamps, Electronic Tubes since 1916.

2027 - 46TH STREET
NORTH BERGEN, N. J., U. S. A.
Tel. UNion 3-7412,
Cable Address 'Ilntermach" North Bergen, N. J.

for EVERYONE interested in
TELEVISION - RADIO - ELECTRONICS SOUNO SYSTEMS - INDUSTRIAL EQUIPMENT EVERYTHING in stondard brand equipmentl
Professianals! Radio Hamsl Television Enthusiasts! Beginnersl Oldtimersl Amateurs! Hobbyists! Here's one book that's a MUST for youl Our FREE 148 page entalog jammed with over 20.000 different items. The smallest part to the mast complete industrial cystem fram one dependable source!
24-HR. MAIL ORDER SERYICE ONE YEAR TO PAY
3 GREAT STORES: Uptown of 115 West 45th St. and Downtown ot 212 Fulton St. in NEW YORK 323 W . Madison St. in the heart of CHICAGO MAIL ORDER DIVISIONS: 242 W. 55 th St., N. Y. 19

Tektronix Announces...

THE TYPE 512

Tekfronix Type 512 Cathode Ray Oscilloscope Outstanding Type 512 Features

- Sweep and verlical amplifiers are P.P. ond direct coupled throughout.
- Verlical amplifier band width $3 \mathrm{mc} ., 75$ volts to 0.25 voll sensitivity; 1 mc . from 0.25 volt to .0075 volt sensitivily.
- DC Amplifier stability is achieved by operating heaters of first two stages from an electronically regulated DC supply.
- Revolutionary carrier type blanking circuir DIRECT COUPLED OSCILLOSCOPE Sensitivity 7.5 Millivolts per $\mathbf{C m}$. AC or DC • Accurate Time and Amplifude Calibration - Wide Band Video Amplifiers. - Delayed Trigger Output The Tektronix Type 512 Oscilloscope is a truly NEW quantitative measuring instrument.
The cambination of $D C$ amplifiers and single, recurrent or triggered sweeps ranging from 3 seconds to 30 microseconds is of particular interest to geo-physical, mechanical and biological research groups.
A continuously variable vertical sensitivity range of 10,000 to $1 \quad 7.5$ millivalts to 75 volts per cm.) is provided by a single switch plus fill-in potentiometer.
overcoming deficiencies of capacity coupling for long blanking pulses.
- Delayed trigger pulse, variable over entire length of sweep, ovailable at froni panel.
- Sweep time calibration accuracy 5%. Conveniently read directly from dial, obviating need for timing markers.
- Any 20% of sweep may be expanded 5 fimes for delailed signal study.
- All DC voltoges, including accelerating potential, electranically regulated against line

Price $\$ 950$ f. o.b. Portland

Your inquiry will bring more detailed information and name of the nearest Field Engineering Representative.
voltage changes.

Phone, EAst 6197

 Cables, TEKTRONIX712 S. E. Hawthorne Blvd.
Portland 14, Oregon

Amperite REGULATORS are the simplest, lightest, cheapest, and most compact method of obtaining current or voltage regulation . . For currents of .060 to 8.0 Amps . . Hermetically sealed; not affected by altitude, ambient temperature, humidity.

\qquad

 NEW! FEATHER WEIGHT

 NEW! FEATHER WEIGHT PAIPTM SOLDERING IRON PAIPTM SOLDERING IRON

}
 weight is hardly noticeable. When you pick it up, when you work with it, you'll know why HEXACON calls it FEATHER WEIGHT. It's the perfect iron for long, delicate work where fatigue works against quality. It can work for you-improving and speeding production. More comfortable and practical than a pencil iron. No transformer required. Price only $\$ 5.00$.

EIECTRONIC COUNTERS TO MEET YOUR SPECIFICATIONS

BASIC DECADE COUNTER
To meet your specifications, basic decade counters ore combined with electronic switching circuits by us to provide counters and timers for factory and laboratory.

FEATURES

Over 150,000 counts per second. Elapsed time measured to less than 7 Micro Seconds. Decimal indication of count. Number of decades specified. Ouput signals switchable to any count.

These o

These and many other feotures ore available at a price comparing favorably with stock counters. Send us your counting or timing problem for quotation.

Production Control Equipment Engineered and
Constructed to the Customer's Satisfaction.
Iechnitrol
Engineering

7uc
3212 MARKET ST. PHILA. 4, PENNA.

NEWS OF THE INDUSTRY (continued) Network of the Armed Forces Radio Service in Tokyo, Japan.

William L. Everitt, head of the University of Illinois department of electrical engineering since 1944 , will become dean of the University's college of engineering and director of its engineering experiment station in September, 1949.
Joshua Sieger, engineering chief of Great Britain's wartime radar program, has been appointed director of research and development of Freed Radio Corp., New York City.

J. Sieger

W. H. Bennett

Willard H. Bennett, former director of physical and applied research at the Institute of Textile Technology, was recently named head of the Physical Electronics Section of the Atomic and Molecular Physics Division, National Bureau of Standards. He will engage in basic research on cathode emission processes and the physical properties of negative atomic ions.
Randall McGavock Robertson, formerly research associate of the Norton Co., and associated during the war with the MIT Radiation Laboratory airborne radar group, has been appointed acting director of the Physical Sciences Division of the Office of Naval Research.

Charles S. Rich, formerly secretary of the AIEE technical program committee, has been named editor of the Institute's official publications, Electrical Engineering and Transactions, to succeed G. Ross Henninger who recently resigned.
A. K. Wright, chief radio engineer of the Tungsol Lamp Works, Inc., Bloomfield, N. J., was recently appointed a member of the Joint Electron Tube Engineering Council.

Robert Finlay, wartime procurement engineering counsel for the

- TYPE F, contact type, and TYPE FI, with insulated heater, available in ranges of 1.2 milliamperes and over.
- TYPE M, contact type, 25 MV output, constructed in ranges of 100 milliamperes and over.
- TYPE U, with insulated heater, for measurements at ultra-high frequencies, made in ranges of 3 milliamperes and over. Streamlined to make convenient use in coaxial cables or fittings possible.
- TYPE R, for radiant energy measurements.

Write Department VE for latest informative bulletins

> FIELD ELECTRICAL INSTRUMENT COMPANY

109 E. 184 ST. - NEW YORK 53, N. Y.

SIMCO-PRECISION for laboratory and industry Sidward Model 3-A MILLIOFMMETER

ENGINEERED TO MEET THE MOST

 EXACTING REQUIREMENTSResistances can be read as low as $1 / 1000$ of an ohm and as high as 2 ohms on a linear scale calibrated directly in milliohms.
Readings simplified by evenly divided scale of 100 equal divisions and two overlapping ranges $0-200$ and $0-2000$ milliohms full scale deflection.
The lead resistance problem is eliminated. A breaker relay protects meter from damage. Housed in a portable, rugged, hardwood case, $93 / 4^{\prime \prime} \times 6^{\prime \prime} \times 41 / 2^{\prime \prime}$.

A SIMPLE, ACCURATE ond
DEPENDABLE INSTRUMENT
Write for additional information
SIDWARD MFG. CO., INC.
126 Liberty Street New York 6, N. Y.

- Indications are spectrographic-fre quency versus valtage
- Quick overall views of the 40-20,000 cps spectrum are provided once per second
- Tedious, point by point frequency checks are eliminated
- Observations of random changes in energy distribution are possible
- Chances of missing components are removed
- Operation is simple
- Voltage amplitude ratios as high as $1000: 1$ are measureable

Write NOW for complete technical data, price and delivery.

New Possibilities In AF ANALYSIS

with Model AP-1 PANORAMIC SONIC ANALYZER

Model AP- 1 assures faster, simpler audio analysis by automutically separating the components of complex audio waves and simultaneously measuring their frequency and amplitude.
Whether your problem is investigation of harmonics, intermodulation, transmission characteristics, high frequency vibration, noise or acoustics, it will pay to look into the unusual advantages offered by the Panoramic Sonic Analyzer.

TOROIDS_Cased and Uncased

0Ulosc-tolerance toroids from $3 / 4 \mathrm{in}$. od up. Wound to the rigid requirements of Lenkurt Carrier Systems, they can be made accurate within 0.1 per cent. Available to specifications with cmphasis on magnetic and temperature stability.

Made with two balanced windings, tapped or umtapped, impregnated or not, as required. Also available with close-coupled secondaries for impedance-matching applications. Write for further data:

Lenkurt knows how

NEWS OF THE INDUSTRY
(continued)
Hallicrafters Co. in Washington, has opened a consultant's office in Ridgewood, N. J., to serve as liaison between electronics manufacturers and government agencies.

EdWin F. Dillaby, formerly with Hytron Radio \& Electronics Corp., was recently appointed chief engineer in charge of the newly formed Tube Division of Tracerlab, Inc., Boston, Mass.

E. F. Dillaby
F. W. Walker

Frank W. Walker, formerly national president of the Associated Police Communications Officers and vice-chairman of Panel 13 of the RTPB, was appointed radio communication engineer in the state of Michigan by Motorola, Inc.

Ralfigit J. Wise, Telefax research engineer for Western Union Telegraph Co., has been awarded the 1948 I.ongstreth Medal from the Franklin Institute for his development of a dry electrosensitive recording blank.

Ralpir A. Krause, senior engineer consultant to Brookhaven National Laboratory, N. Y. and formerly assistant to the president of Raytheon MIfg. Co., has been named director of research at Stanford Research Institute, Stanford University, Calif.

Jay C. Fonda, former engineering consultant, has joined the Morris F. Taylor Co., manufacturers' representatives, as sales engineer.
D. Gordon Clifford, one of the development engineers who worked on the klystron and formerly chief engineer of Industrial \& Commerce Electronics, is now field engineer at Lenkurt Electric Co., San Carlos, Calif., manufacturers of carrier telephone and telegraph eguipment.

\section*{TUBULAR PARTS | fink |
| :---: |
| fin |} ELECTRONICS INDUSTRY

Anodes and Grid Cylinders for television and cathode ray tube gun structures. are a Supcrior specialty that is now a standard for the electronics indusiry.

Parts illustrated are:

1. Tube rolled on one end-.520" O.D. x $.500^{\prime \prime}$ I.D. x $1.378^{\prime \prime}$ long, rolled to . $500^{\prime \prime}$ diameter used as an onodo in television tube gun structure. Superior Print ET-28, Part 3.
2. Tube rolled on both ends-.500" I.D. x $.010^{\prime \prime}$ wall $\times .590^{\prime \prime}$ long, relled on both ends to $.590^{\prime \prime}$ diameter-used in rectifier tubes. Superior Print ET-10, Part 1.
3. Tube with inverted roll on one end$.520^{\prime \prime}$ O.D. x . $500^{\prime \prime}$ I.D. $\times 1.850^{\prime \prime}$ long. cylinder for use in television tube gun structures. Superior Print ET-36, Part 1.
4. Expanded and rolled end tube- $.500^{\prime \prime}$ I.D. $\times .012^{\prime \prime}$ wall $\times 2.600^{\prime \prime}$ long, after expanding one end to $760^{\prime \prime}$ diameter, and rolling same end to $.915^{\prime \prime}$-used as focusing elec. trode in television tube gun structure. Superior Print ET-9, Part 1 .
Tubular parts, also available in straight and angle cuts, can be produced to your specification or to standard Superior design.

We invite your inquiry for further information.

SUPERIOR TUBE CO. ELECTRONICS DIVISION

2500 Germantown Avenue
Norristown, Pa.

PRECISION

HASN'T "SQUARED THE CIRCLE" BUTHAS "SQUARED THE BOW"
producing

DI-FORMED PAPER TUBES

at no extra cost!
Precision DI-FORMED Paper Tubes have made a most important improvement throughout coil industry. Now ALL coil manufacturers and users can take advantoge of the opportunity to obtain Precision DI-FORMED square and rectongular paper tubes for coil bases, ot no extra cost!
Results: greater strength-automatic stacking-elimination of coil forming ofter winding-closer engineering of coils, soving wire. Precision chorocteristics, spiral winding, better insulation, spoce and weight saving are improved. Tubes also made round, ovol, any shope.
Write for samples-also new Mandrel List. Many new sizes.

2041 W. Charleston St.,
Chicago 47, III.
PLANT NO. 2
79 CHAPEL ST., HARTFORD, CONN.

CDMPOUNIDS

Soientifically componinded for specific applications from waxes, resins. anplatts, pitches, oils, and minerals. Nailable in wide range of melting points and hardnesses. Sperial poting compounds are hent condncting and rrack resistant at extremely low temperatures. Recommendations, specific data, and samples will be furnished on reguest.

for	
IMPREGNATING	SEALING
ratio coils	condensers
transformer coils	batteries
lgnition coils wire coverings	switch base terminals
paper tubes and forms	Sight fixtures
porous cerantics	
	POTTING
DIPPING	Radio Transformers
Coils	Light Units
Condenscrs	Condensers

bIWAX CORPORATION

3445 HOWARD STREET SKOK!E, ILLINOIS

DANO plus KNOW - How
 bring you COIL PERFECTION

Our Engineering Department is at your service.
Samples cheerfully analyzed without obligation. transformens Mada To Order

Not just any coil but the exact coil winding you need, skillfully made to your exact requirements. The dependability and service behind our name are your assurance of perfect coil performance.

ELECTRIC (O. Winsted, CONA.

DUAL SPEED HYSTERESIS

Synchronous

Motors

- NO NOISE
- NO VIBRATION
- HUNT and "WOW" ELIMINATED
- INDEPENDENT of LOAD INERTIA

Applications:
 Disc, wire and film recorders
 Sound cameras and projectors
 Facsimile equipment
 Television equipmeat
 Timing devices
 Stroboscopic work
 Teletype equipment

We con furnish on quontity orders COMBINATIONS of ony twa of the following speeds:

$$
\begin{aligned}
& 600 \text { R.P.M. } \\
& 900 \\
& 1200 \\
& \text { R.P.P.M. } \\
& 1800 \\
& \text { R.P.M. } \\
& 3600 \\
& \text { R.P.M. }
\end{aligned}
$$

Instantly reversible with D.P.D.T. switch! H.P. ratings $1 / 150$ to $1 / 30$ depending on speed combination selected. Round Erame, Resilient Mount, Rigid Bose.
The hysteresis design of these new Synchronous Motors lowers noise and vibration level to a fraction of that normally present in conventional salient pole construction. Unaffected by lood inertio.

These Hysteresis Motors are now standard equipment on many high quality Recorders.

What are your requirements?
for the BEST in reception and performance use

"NOFIAME-COR"

the
TELEVISION hook-up wire
by

approved by Underwriters' Laboratories ot

90°centigade 600 volts

- Flame Resistant
- Heat Resistant
- High Insulation Resistance
- Facilitates Positive Soldering
- High Dielectric
- Easy Stripping
- Also unaffected by the heat of impregnation-therefore, ideal for coil and transformer leads

Chosen after exhaustive tests by leading manufacturers of television, F-M, quality radio and all exacting electronic applications. Available for immediate delivery in all sizes, solid and stranded, in over 200 color combinations . . . ready to demonstrate anew the Efficiency and Economy of
CORNISH WIRES AT WORK.
Engineering Data and Samples on Request

"made by engineers for engineers"
CORNISH WIRE COMPANY, Inc.
15 Park Row New York 1, N. Y.

NEW BOOKS

Frequency Analysis, Modulation, and Noise

By Stanford Goldman. McGrawHill Book Co., New York, 1948, 434 pages, $\$ 6.00$.

THIS B00K is unique in that three virtually unrelated fields are under study. The first, frequency analysis, is obviously stimulated by the author's dissatisfaction with the brevity it usually receives in texts designed to present a variety of mathematical methods at the engineer's level. A total of 140 pages is devoted to the subject; the basic Fourier transforms, in series and integral form, are developed in swift, palatable form, and much attention is given to simplifications which result from various types of symmetry. In addition, a variety of problems is treated to illustrate applications of the Fourier technique, most noteworthy perhaps being those that deal with detail and bandpass requirements in television and pulse receivers.

The portion on modulation is much shorter than the other two, and accordingly not as comprehensive. Instead of attempting a swift course through the entire present status of the art, the author has chosen to organize and expand special items which so far have been treated only in periodical literature. For example, the technique of resolving an arbitrary sideband distribution into symmetrical and antisymmetrical components is treated in some detail, while on the other hand little is said about the means for generating or detecting various modulation types, or about such topics as single sideband, suppressed carrier, and pulsed code.

The final section on noise constitutes the greatest portion of the book, and meets a need long felt by communications engineers who, concerned with noise problems, must refer to the scattered publications of Nyquist, North, Ferris, Schottky and many others. In this book the fundamental contributions of these workers are integrated into a broad, coherent presentation. In an introductory chapter, the author chooses to outline the several types of noise, state the formulas which

bbradey

RECTIFIERS

SELENIUM POWER RECTIFIERS

Bradley selenium power rectifiers are rugged and compact. Square plates afford maximum of rating to space factor. Conservatively rated up to thousands of amperes. Shown: SE11W24F, full-wave bridge, rated at 110 volts A.C., 5 amperes D.C.

PHOTO CELLS

 SIMPLIFY PHOTO CELL CONTROL

Luxtron* photo cells convert light into electrical energy. No external voltage is required to operate meters and meter relays directly from Bradley photo cells, improving control over your processes, reducing your costs. Housed model shown. Many different sizes and shapes, mounted and unmounted.
*t. M. REG U. S. pat, off.

Our engineers will select or develop rectifiers or photo cells to meet your needs exactly. Write for BRADLEY LINE showing basic models.

FM OR TV TRANSMITTERS

Meosures SWR ond RF Power MM 205 series Specifi. cations
cations
Fequency range 40 to
220 MCS
power range more than 25 KW
mpedance (205) 51.5 0 hms (206) 720 hms Connectors Standard flallges for $31 / 8^{\prime \prime}$ line
 Acctracy $\pm 4 \%$

Micro-Match gives you direct reading of SWR and power -providing at-a-glance assurance of the proper functioning of the complete RF portion of your transmitter and of your antenna system and transmission lines. Price complete $\$ 200$. Micro-Match models available for operation at 500 KC to 400 MCS , and power levels of 2 to 50,000 watts.

Write for complete descriptive literature.

M. C. JONES ELECTRONICS COMPANY

BRISTOL, CONNECTICUT
Distributed outside continental U.S.A. by RCA International Division Radio Corporation of Amarica.

IPC HIGH VOLTAGE RESISTORS
 FOR TELEVISION - TEST EQUIPMENT • NUCLEAR RESEARCH
 These stable resistors are made in many sizes from one inch to $181 / 2$ inches long, for voltage as high os 125 KV . Power ratings range from one watt up to 90 watts. Resistances can be furnished up to one million megohms. RPC High Voltage Resistors are used by leading manufacturers, instrument makers, universities and laboratories.
 RESISTANCE PRODUCTS CO.
 714 RACE STREET
 HARRISBURG, PA.

Also Manufacturers of High Quality Precision Resistors and High Quality Frequency Resistors

SMALL PARTS

Filaments, anodes, supports, apringa, etc. for electronic tubes. Small wire and flat metal formed parts to your prints for your assemblies. Double pointed pins. Wire straightened and cut diameter up to $1 / 8$-inch. Any length up to 12 feet.
LUXON firhing tackle accessories.
Inquiries will receive prompt attention.

ART WIRE AND STAMPING CO.

227 High St.
Newark 2, N. J.

MANUFACTURERS:

QUICKER!

MORE ACCURATE!
TELEVIISION SET Alignment \& Adjustment TCAPRECISION E 2000

BAR \& DOT GENERATOR

A precise means for adjusting horizontal and vertical sweep linearity of television receivers when used in conjunction with Standard Synchronizing Signal and Monoscope Generator or other pattern or picture signal generator. Requires only $51 / 4^{\prime \prime}$ of standard rack space. Five convenient push-buttons allow instantaneous selection of: - Standard blanking - Vertical bars only - Horizontal bars only - Vertical and horizontal bars - Complete dot pattern. Has phasing control for adjustment of vertical bar position. Self contained regulated power supply.

CRYSTAL CONTROLLED MULTI-FREQUENCY GENERATOR

A 10 frequency, 400 eps modulated crystal controlled oscillator, ideal for production line adjustment of stagger tuned I.F. amplifiers in television sets. Available with crystals sanging from 4.5 to 40 mc . provided to exact frequency and in sequence specified by customer. Each frequency is immediately selectable by means of a push button. Output attenuator range . 5 ∇ to 500 microvalts. Self contained regulated power supply.
Write for bulletins $2000 \& 1900$

Over 25 years' experience in the manufacture of specials at cost that compares favorably with standard types. Built-in quality proved by years of actual use.

From 10VA to 300 KVA Dry-Type Only, Botho Open and Encased, 1, 2,"\&y3 Phase 15 to 400 Cycles.

图

NOTHELFER WINDING LABORATORIES
9 ALbERMARLE AVE., TRENTON 3, N. J.

Automatic Frequency Control

on DC to AC CONVERTERS

AVAILABLE IN 22 TYPES ANO 3 FRAME SIZES BY

Gothard

DC to AC Rotary Converters having Automatic Frequency Control are now being offered in all models. Input voltages from 6 to 230 V DC ; output: 110 to 1000 VA at 60 cycles, 90° to 800 VA at 50 cycles.

SPECIALLY DESIGNED for Television Sets, AC Radios, Radio-Phonographs and Recorders. For use where the power source is direct current: such as ships, vehicles, trains, office buildings, and urban DC areas.

GOTHARD Manufacturing Co.
 2114 Clear Lake Ave.
 Export Division: 25 Warren St. New York 7, N. Y.

apply, and show via many examples and circuits how to calculate such things as total noise, noise figure and sensitivity. In the remaining three chapters the noise formulas are derived in a unified and straightforward manner; the necessary fundamentals of probability and statistics are first established, and from these the well-known noise formulas are developed.

In addition to the many problems which are used to illustrate techniques and applications, the book contains extensive reference to pertinent literature and publica-tions.-John F. Mcallister, Jr., Specialty Division, General Electric Co., Syracuse, N. Y.

Electronic Musical
 Instruments

By S. K. Lewer, I'ublished by Electronic Engineering, 28 Essea St., London, W. C. 2, E'rgland, 1948, 101 pages paper bound, $3 / 6$ net.
This is one of the series of Technical Monographs published in England. Like others of this series, it comprehensively covers its subject. Following a general introduction discussing the factors influencing musical reproduction and the distinction between synthetic and natural sources of music, the author discusses in order: acoustics of music, classification of instruments, electrostatic, electromagnetic and photoelectric tone generators, and finally amplifiers and tone control circuits.

Although the basic principles of most of the more successful instruments in the field are described, no detailed circuits with values are given. For the true electronic experimenter, the lack of values is no drawback and the focus of attention on principles is a decided advantage. However, for the home experimenter and musician with only a passing acquaintance with electronics, the lack of complete circuits with values is a decided disadvantage. The copious list of literature mitigates this shortcoming somewhat.

The book is a highly worthwhile contribution to the literature. Not since B. F. Miessner's comprehensive review of types of electronic

RAWSON ELECTROSTATIC VOLTMETERS

Now available to 35,000 VOLTS Measure true R.M.S. values on A.C., no waveform or frequency eirfors.

NO POWER CONSUMPTION
Leakage resistance greater than one million megohms. These meters may be used to measure.

STATIC ELECTRICITY

Ideal for measuring high voltage power deaplies with zero current drain. Rugqed, trell-damped movement. All elements sur. rounded by metal shielding for accuracy and safety.

Write for new bulletin
RAWSON ELECTRICAL INSTRUMENT COMPANY 111 POTTER ST. CAMBRIDGE, MASS. Representatives
Chicago - New York City - Los Angeles

Littelfuse Makes Headline News with "In-Line" Fuse Retainer

Littelfuse's latest development: the "inline" fuse retainer for fingertip ease in fusing. Precisely molded of high impact bakelite and designed primarily for low voltage applications: car radios, heaters, spot lights and other automotive trouble spots where a fool-proof easy-to-handle fuse installation is desired. The strongly spring-locked retainer openg with a "push-and-twist" of the finger tips. Inside, the fuse rests against knife-edged, cup contacts that eseure greatest degree of contact with lowest voltage drop. Doubled wall thickness at juncture of shoulder and lower body.

Save tuning diente!

the SLIPSTICK
WAVEMETER
measures any frequen-
cy ($90-3000 \mathrm{MC}$) in
less than ten
seconds

The Decimeter Slipstick fills a real need for the first time... it gives quick frequency readings on oscillators, receivers, or transmitters.

VITAMITE

Among unusual properties are excellent operation under low temperature and low pressure conditions

4 Ampere Hour Capacity $61 / 2 \mathrm{oz}$. weight
Other models-one $\mathbf{0 z}$. to one lb .
Write for data and literature

RECHARGEABLE - NON-SPILL STORAGE BATTERIES

Model 243.00

Size $13 / 16^{\prime \prime} \times 33 / 16^{\prime \prime} \times 17 / 16^{\prime \prime}$ High

THE VITAMITE COMPANY

227 West 64th St.

New York 23, N. Y.

SOLDERING IS A CINCH

No matter how much you know about soldering, there's always a trick that will make it easier. This litile 20-page pocket goide is crammed full of such time-andtrouble savers.

Without wasting words, it eovers the whole soldering operation-points out DO's and DON'I's-refreshes your memory on difficult points-suggests methods that help you work faster. Yet there's no lard studying, no tough technical talk. Every word is plain everyday English and every point is made clear by easy-to-understand illustrations.
Get this handy Soldering Guide today, and keep it on your beneli for ready ref. erence. It's a real handbook of professional soldering-not a catalog. Just mail the coupon with 10c cash or stamps and we-ll send your eopy at once.

806 Packer Street, Easton, Penna.

Weller Mig. Co., Easton, Pa.

Enclosed find ten cents (10 C) for which please send my copy of the Weller "Soldering Tips".
\square I am olso interested in the new Weller Soldering Guns. Please send Catalog Bulletin.

Name
City \quad State

NEW BOOKS
musical instruments (Proc, IRE, p 1427, Nov. 1936) has there been a survey of this specialized field. In coordinating the principles on which the modern instruments operate, the author has epitomized the experience of the past decade and placed in the hands of the qualified designer the basic knowledge he needs to be able to build on the shoulders of others.-F. H. R.

Books Received for Review

MATHEMATICS-OIIR GIREAT HERITAGE Edited loy W. L. Schailf. Harper $\&$ Brothers, New York, 1048,201 pages, \$3.bo. Essays by various authous, lawely nontechnical, chosen to amphasize minns
esteem for mathematics imm mathematiesteem for mathematics
cians through the ages.

FIVNAMFNTAIS OF ETADCTRICAI, FNGINEERING. By V. P. Hessler and John J. Carey. McGraw-Hill Book Co., New York, 1948, 241 pages, \$3.50. Written to bridge the transition for college students from science courses in the physics department to design courses in the engineering department. this book on circuits. maclines and electronics emphasi\%es the that of basic relations, that is, whether they are observed facts, definitions, de-
rivations or generalizations.
A.S.T.M. STANDARDS ON NONMTHAT, IJC MATERTALS. 1947 supplement to part III-B. Published by American Socioty for Testing Materials, 1016 Race St., Phila. 3, Pa., 305 pages, paner cover, \$4.0n. Aew and revised standards on elec. trical insulation, plastics, rubber, paper. shipping containers and adhesives, ac cepted since appearance of the 1046 Book of Standards. Inclurles revised tentative specifications for natural hlock mica and mica films suitable for capacitor and re rised tentative tests for power factor and dielectric constant of electrical insulating
materials.

POWIDFIN METALLTERGY By Pilul Sclwarzkopf. The Macmillan Co., New York. X. Y., 1947, 3.66 pages. \$8.00. Five Ghaptars on powder processing methorls, electric contactucts (including one on eretric contact materials and one on magnetic materials), three chapters on plement Includes literitum recent developments technical diary material and unrestricter presentation of experience resulting fried author's thirty years in the field of powrier metallurgy.

BASIC MATHEMATICS FOR RADIO. By George F. Maedel. Prentice-Hall, Ine.. New York, 1948,339 pages, $\$ 4.7 \%$ Arithnetic, algebra, geometry and ralio mathematics. A revision of "Mathematics for Radio and Communication," with new title.

FITNDAMENTAL PRINCIPLES OF IONOSPHERIC TRANSMISSION. Troduced by The Inter-Service Ionosphere Bureau at the Great Baddow Research Labora. tories of the Marconi Wireless Telegraph Co., Ltd., Published by His Majesty's Stationery Office, London, York House, Kingsva, . $2,134,82$ pages, paper bound, 1s. 6 d . Originally written 1943, mostly bequaint Millington of the Marconi Co., to accuaint engineers with radio propagation problenss, this monograph has been brollght up to date and made generally available as a comprehensive qualitative
summary of the subject summary of the subject.

RADTO INDISTRY RET BOOK, Compiled and published by Howard W. Sams \& Co., Inc., Indianapolis, Ind., 1948. 448 pages, paper cover, \$3.95. Reference book giving replacement parts data for 1938 to 1948 radio receivers. Specific model numbers of correct replacentent parts availahle from various nianufacturers are

KNOW TAE JRUE FACTS OF OPERATION AT HIGH FREQUENCY with CW-AM-FM-TV TRAMSMITTERS

USE
 TERMALINE DIRECT-READING RF WATTMETERS

Frequency .
Power Rating
Impedance .
30 to 500 MC To 2500 Wafts Accuracy . . Within 5% of full scale

MODEL 61
POWER RATING 80 Watts
Standard Ranges. . . . 0-15 \& 0-60 W
(Dual) $\quad 0-20 \& 0-80 \mathrm{~W}$
Special Ranges 0-1 \& 0-2 $1 / 2 \mathrm{~W}$ $0-21 / 2 \& 0-10 \mathrm{~W}$ $0-1 \& 0-5 \mathrm{~W}$ $0-1 \& 0-10 \mathrm{~W}$ 0-2 \& 0-20 W

MODEL 67

POWER RATING
Standard Ranges
(Triple) 0-25, 0-100, 0-500 Watts
MODEL 67C (water-cooled)
POWER RATING
. 2500 Watts
Single, Dual or Triple ranges to order.
BIRD
4) ELECTRONIC CORPORATION 1800 E. 38" ST., CLEVELAND 14, OHIO

Ropresented on tho West Coast by: NEELY ENTERPRISES
7422 Melrose Blvd., Hollywood 46, Calif.
Instrumentation for Coaxial Transmission

Engineers and Designers who insist on dependable components have adapted ADVANCE RELAYS into their control circuits. They are specifying ADVANCE products, and are submitting their relay problems to us. Our expanded engineering and plant facilities, plus the recog. nized dependability of advance relays, make it possible for us to offer the most complete line of relays for light, intermediate and heavy duty applications. Proved and Improved relay performance through ENGINEERED adaptability.

Follow the Engineers

ADVANCE ELECTRIC \& RELAYCO.

Has High Electrical Resistance

Linde synthetic sapphire offers specific advantages for electronic uses. Sapphire maintains these properties at elevated temperatures.

Write for the Lindes Synthetic Sapphire Technical Data Siheet No. A-1. The Linde Air Products Company

Unit of Union Carbide and Carbon Corporation 30 East 42nd Street Wh New York 17, N. Y. In Canada:
Dominion Oxygen Company, Limited, Toronto
The word "Linde" is a trale-mark of The Linde Air Producta Company

Rear View STABILINE Type IE
The Superior Electric STABILINE Automatic Voltage Regulator acts as a sentry - always "on duty" to maintain a constant voltage to electrical apparatus. Type IE, an all-electronic regulator, acts instantancously to keep delivered voltage to within $=0.1$ volts of the preset value, regardless of line variations. STABILINE Type IE will hold the output to within ± 0.15 volts for any load current change or load power factor change from lagging .5 to leading .). Waveform distortion never exceeds 3 percent - a negligible error not recognized in instrument readings.
Bulletin 547 gives you information on this and other Superior Electric voltage control equipment. W'rite for your copy today.

the

SUPERIOR ELECTRIC

COMPANY

412 MEADOW STREET BRISTOL, CONN.

NEW BOOKS

listed for eacl set. Gives tube complement, type of dial light, and correct replacements for electrolytic capacitors, output and power transformers, batteries, i-f coils, phono cartridges, loudspeakers, controls, and vibrators, pius Photofact Set number in which the circuit appears.

PRACTICAL DISC RECORDING
Richard H. Dort Ryd Inc., New York, N. Y., 1948 , Gernsback Library No. 39, 96 páges, paper cover, $\$.75$. Compositlon of blanks, design features of motor, turntable, feed, cutter, stylus, and amplifier, equalization problenis, recording procedures, playback, duplication, possible troubles, and glossary.
RADIO AT ULTRA-HIGH FREQUENCLES, Volume II (1940-1947). Published by RCA Keview, Princeton, N. J., 1948, 485 pages, $\$ 2.50$. Eighth volunie in KCA Technical Book Series and second on radio at higher frequencies. Presents papers by RCA authors on antennas and transmission lines, propagation, reception, radio relays, microwaves, measurements and components, and navigational aids, along With a biblography and sunmaries of all papers in the predecessor Volume I now out of print.
ELECTRIC EYE CIRCUITS AND RELAYS By A. Edelman, chief engineer, Photobell Co. Published by Eiby Specialty Sales Co., New York, N. Y., 36 pages, 1948, paper-bound, $\$ 1.00$. Principles of photoelectric detectors, optical systems, amplifiers, power supplies and relays are presented for technicians. Typical circuits are shown, along with suggestions for maintenance

ELECTRON-OPTICS. By Dr. Paul Hatschek, American Photographic Pub. Co., Boston, Mass., 1948, 2nd ed., 183 pages, \$3.50. This translation from the German (originally published in 1937) has had two additional chapters added, one on electron nicroscopes at the time of translation (1y44) and another on nuclear accelerators and radar with the publication of this second edition. Primarily for laymen and electrical engineers who have not specialized in electronics, this book deseribes electron lenses, television tubus and how electron optics is used in anplifiers

UNDERSTANDING TELEVISION. By Orrin L. Dunlap, Jr. Greenberg: Publisher, New York, 1448,128 pages, $\$ 2.50$. History, process of seeing by television, What television performers should know, questions and answers, glossary, bibliogten for the layman. Liberally illustrated.

RADIO AND TELEVISION LAW. By Harry P. Warner Matthew Bender \& Co., 149 Broadway, New York, N. Y., 1948, Reference book on radio broadcasting inReference book on radio broadcasting industry's legal and regulatory structure, explaning the law in plain language and history of an $\mathrm{a}-\mathrm{m}, \mathrm{f}-\mathrm{m}$ and and cechnical history of an a-m, f-m and television station with the FCC on through or the apphe air and receiving a regular license on the what can and can't be uroadest Covers fer and assignment of proadcast, transregulations, probable of licenses, network munications Act, control of radio advertising, and many related topics.

CATIONAL
ELECTRICAI
SAFETY CODE. National Bureau of Standards Handbook H30, issued March 1948408 pages, $\$ 1.25$ from Superintendent of Documents, U. S. Government Printing Oftice Washington, G. C. Contains first tive parts of fifth edition of code as approved by ASA ; part 6 is now being revised. The five parts cover mandatory revised. The visory (should) and desirable (recommended) practices for electrical supply stations, electric supply and communication lines, electric utilization equipment electric equipment and lines, and radio installations.

RADIO COMPONENTS HANDBOOK. Written and published by the staff of Technical Advertising A by ine staft of ham, Pa., 211 pages, $\$ 1.50$. Intended to bridge gap between formal textbook and general handbook. Covers design, application and specification of each type of component in turn, plus an opening chapter on general design problems. Sponsorship by The Foster Transformer Co.. The Magnavox Co. and Ward Leonard Electric co. makes the low price on this book possible.

TECHNCAL MANUALS

CUSTOM DESIGNED TO YOUR SPECIFICATIONS

Planned, written and illustrated by a select staff . . . experts in creating radio and electronic manuals for civilian $\&$ military use.

When you call upon Boland \& Boyce to create your manuals you are relieved of every detail in their preparation. The entire operation is taken over and completed by a specialized staff with years of experience in publishing books \& manuals.
First the requirements for your manual are completely surveyed. The working conditions to which they will be put are studied and the operations or equipment described in the manual are thoroughly analyzed. A complete outline is then prepared and submitted for your approval, along with a dummy of the manual as it will appear when finished. Upon your approval the job is completed and delivered with your satisfaction guaranteed.
Boland \& Boyce manuals incorporate only the most modern editorial and illustrative style. Each project is treated with individual attention in technique of presentation and editorial approach. The Boland \& Boyce military and civilian manuals now in use throughout the world are our best recommendations.
U. S. Navy
U. S. Signal Corps.

Sylvania Electric Products, Inc.
The National Company
Western Electric Co.
Bell Telephone Laboratories
Maguire Industries, Inc.
Allen B. Dumont Laboratories, Inc. General Electric Co.
Mine Safety Appliances Co.
Write or wire Boland \& Boyce today for more Information.

BOLAND \& BOYCE INC., PUBLISHERS

Radio Maintenance Technical Manuals Manual Montelair, N. J. CHICAGO: 228 No. LaSalle St.

> the onty broad banded, HIGH GAIN, STACKED ARRAY ON THE MARKET

Abstract

Many times more sensitive for TV reception in fringe areas and poor signal locations, the WARD TVS-6 STACKED ARRAY achieves maximum forward gain by stacking two high gain folded dipoles and reflectors with effective $1 / 2$ wave spacing rather than the ordinary $1 / 8$ or $1 / 4$ wave which materially reduces sensitivity. THE ONLY STACKED ARRAY ON THE MARKET THAT IS BROAD BANDED, it will give excellent results with MANY CHANNELS where others are too selective. The advanced engineering and PRE. ASSEMBLED design of the WARD TVS-6 is only one of the reasons why WARD is the largest exclusive manufacturer of antennas in the world. See any leading parts distributor or write for catalog.

THE WARD PRODUCTS CORPORATION
 1523 E. 45TH STREET, CLEVELAND 3, OHIO.

Backtalk

This department is operated as an open forum in which our readers may discuss problems of the electronics industry or comment upon articles that ELECTRONICS has published.

Half-Wit

Dear Sirs:
We have read with interest in Crosstalk of September 1948 Electronics your suggestion on Semicons as a name for devices employing a semiconducting material in the solid state, through which flows a current capable of being varied by external physical influences.

But please, we beg you, do not launch that word Semicon. We in Europe have to rely on U. S.-made words for new principles and appliances in the field of radio and electronics. Generally, we have no choice but to take over the new words.
If you know that the word "con" in French means a half-wit, you will probably understand our pains and troubles.
P. H. Brans

De Radio Remue Antwerp, Belgium

Transiluctors

Dear Sirs:
Because of communication difficulties, the galley proof corrections for our paper Transductor Fundamentals (p 88, Sept. 1948) apparently arrived too late to be made.

One error concerns the simplified transductor symbols. The svmbol is intended to replace the whole transductor in all its elements. In redrawing the diagram of the elementary current-controlled rectifier, two such symbols have been used where one is sufficient. The arrow indicating selfexcitation should be used both when a self-excitation winding and simplified self-excitation are used. Arrowa on control windings indicate the direction of the self-excitation. the winding direction being the same.

The diagram of the avostat recti-

USE STABILINE ELECTROMECHAN-

 ICAL VOLTAGE REGULATORSIn the plant - as in the laboratory - constant voltage is a necessity. It can be maintained to large industrial loads by using STABILINE (Electromechanical) Automatic Voltage Regulators.
These units feature zero waveform distortion; complete insensitivity to magnitude and power factor of load; no effect on system power factor; no critical adjustments; high efficiency; adjustable output voltage. Available for a wide range of applications in 115, 208, 230, 440 volt, single and three phase ratings; capacities to 100 KVA . Write Today for Full Details

THE

SUPERIOR ELECTRIC
 412 MEADOW STREET BRISTOL, CONN.

106 cost-saving ways to use electronics

Down-to-earth course trains your personnel to apply them in your plant

To get the most out of electronic equipment, your personnel must thoroughly understand its fundamentals, advantages, and limitations. To help you with this training problem, General Electric has prepared a complete, easy-to-take visual course in industrial electronics.

Here's what the G-E electronics

 training course offers-1. A 146 -page instructor's manual, designed to give your employees a practical understanding of the fundamentals of electronics...tell thom how they're applied in modern industry. It enables a nember of your organization to conduct the 12 -lesson course.
2. Twelve Slidefilm Lessons each with its own record. The lessons are phrased in non-technical language
devoted to specific applications.
3. Twelve Review Boohlets, illustrated, for reference and home study.

Free inspection offer -

Once you've seen the scope of this fact-packed course. We know you'll be convinced it will pay off for you So, examine the instructor's manual without obligution. After vou've seen it, you will want to order the complete course which is offered at cost. only $\$ 120.00$.

GENERAL (96) ELECTRIC

BACKTALK (continued)
fier circuit is drawn with symbols understood in another way, and the resu't is rather confusing. If the symbols are understood as described above, the diagrams will be simpler.

Equation 3 should read
$i=(E / R) \cos \phi[\sin (\alpha-\phi)-$
$\left.\sin \left(\alpha_{0}-\phi\right) \exp -\cot \phi\left(\alpha-\alpha_{0}\right)\right]$
In the middle of the third column on p 92 is the statement: "and flows in branches 1 A and 2 A of the rectifier . . ." A glance at Fig. 5A shows that it is actually branches 1B and 2A.

Equation 11 should read

$$
\tau=\frac{2 L_{S}}{\overline{R_{S}}}=N_{S} \frac{\phi_{2}-\phi_{1}}{R_{S} \Delta I_{S}}=
$$

S. E. Hedstroem
L. F. Borg

ASEA Luduriku
Sweden

Insert One Zero

Dear Sirs:
IN MY wide-band phase shifter article in the May, 1948 ElecTRONICS, the lower of the two capacitors immediately adjacent to the input transformer in Fig. 3 on p 84 should be labelled 0.000892 instead of 0.00892 . The mistake, I am sorry to say, is mine.

The circuit is the example given by Dome in his December, 1946 Electronics article, referenced in mine, and it is hoped that anyone undertaking serious work with these networks will refer to the Dome article.

Oswald G. Villard, jr.
Department of Electrical Finsinerring
Stanford TTuireresity

PERSONAL RADAR

Radar helps keep farmer Lester Phister in formed of weather conditions that will affect the cultivation of his 5,000 acres at El Paso, Illinois

When PLASTIC PARTS Must Be

 Precision - Fabricated
Depend on

SILLCOCKS-MILLER

As pioneers in fabricating plastics to close tolerances since 1910, Sillcocks-Miller engineers offer complete facilities to improve products and develop new ideas.

This organization of specialists is recognized throughout the industry for skill in producing special parts or products from plastic sheet material. When specifications call for precision and uniform production, it will pay you to look to Sillcocks-Miller for quality and service at a price that's right.

Write for illus-
trated booklet
Complete focilities for cutting, peinting. stomping, cementing. milling, furring, blanking, drillina, drawing, ing, drilina, drawing,
forming. Iaminoting ond ossembling.

- CONTACTS

FOR THE FIELD OF ELECTRONICS

ELECTRON TUBE MACHINERY OF ALL TYPES

STANDARD AND SPECIAL DESIGN
We specialize in Equipment and Methods for the manufacture of RADIO TUBES CATHODE RAY TUBES FLUORESCENT LAMPS INCANDESCENT LAMPS NEON TUBES PHOTO CELLS
X-RAY TUBES
GLASS PRODUCTS
Production or Laboratory Basis

Kahle ENGINEERING CO.
1309 SEVENTH STREET
NORTH BERGEN, N. J., U. S. A.

Yealoantex
metals division

GARDINER
 BRAND

ROSIN CORE SOLDER

Federated Gardiner Brand ROSIN CORE SOLDER is scientifically alloyed from the purest metals, resulting in a precise composition which will give strong, corrosionfree bonds in all electrical work. Comes in 1 lb . and 5 lb . spools.

AMERICAN SMELTING AND REFINING COMPANY WHITING, INDIANA (CHICAGO)

WE manufacture a complete line of equipment

 SPOT WFIADERS, electric from $1 / 4$ to 50 KVATRANSFORMERS, special and standard types TRANSFORMERS, special and standard types AC ABC INCANDESCENT LAMP Mannfacturing equipment from 100 to
FIJJRFSUENT TUIF MAKLNG FQUIPMENT WETCTRONIC EQUIPMENT, vacuum pumps, etc. GENFRAL GLASS working machines and burners
COIILEGE GIASS WORKING units for students and laboratory 731 So. 13th St. (near Avon Ave.)

LOCKING TYPE stainless steol

TUBE CLAMPS

8ind for lltustrated catalog and ongineering data THE GEORGE S. THOMPSON CORPORATION South Pasadena, California

CTKO ENGINERING WORKS

 Specializing in High Voltage Filamen alectronic Proiests Plate Transformers for Electronic Priveries
Prompt Delice

EL-TRONICS, INC.

Research, development, and manufacture of electronic equipment-a single model to large quantities.
Specialists in Geiger-Muller equipment 2647-67 N. Howard 5t., Phila. 33, Pa. Garfield 5-2026

Amtenna Colls, Grid Clips, Dial Cord Springa and Precision Springs of all types pertalning to Radlo and Tolovision.

Your Inquiries Invited
HEBSTER SPRING CORPORATION 97 South 5th Street EV. 7-3224 Brooklyn II, N. Y.

MICROMETER

 FREQUENCY Cheoking within 0.01 per oont
LAMPKIN LABORATORIES, INC. Bradenton, Fla., U. S. A.

PROFESSIONAL SERVICES

Consulting — Patents - Design — Development — Measurements in

Radio, Audio, Industrial Electronic Appliances

THE BARRY CORPORATION
 VIBRATION Specialists on the Control of NOISE
 Enginecrina Development Manufacturing
 179 Sidncy $\begin{gathered}\text { Street } \\ \text { Telephone: } \\ \text { ELIot } \\ 0861-0140 \\ \text { Canbridge, Mass. }\end{gathered}$
 H. RUSSELL BROWNELL Consultant
 Specializing in Masurements \& Testing Instruments \& Techniques - Electrical - Elec ronic Magnetic
 188 West 4th St. Chelsea $\begin{gathered}\text { New York 14, N. Y. }\end{gathered}$

CANOGA CORPORATION

Electronic Enginecrs
Radar, Iulse Techniques. NIT1 Systems, Pulse and Television lecelvers, Vipuo Amplifiers, Test Equipment, Microwave Antenpa Applications, Electronic Controls, and Microware E(upment. 14315 Bessemer St Van FACILITIES 14315 Bessenter STate $5-9722$ Nan Nus, Calif́. STate 5-9722

CROSBY LABORATORIES

MLREAY G. CBOSHY \& STAFE Specializing in FM, Communications E TV
offices, Laborators \& Model Shop at: 126 Old Country lad. Garden City 7-02S4 Mineola, N. Y.

EDGERTON, GERMESHAUSEN

 \& GRIER, Inc.
Consulting Engineers

Research. Development and Manufacture
of Electronic and St pobscopic Equipmen
155 Massachusetts Arenue, Cambridge 39, Mass.

ELECTRO IMPULSE

 LABORATORYConsulting Physicist
Radio Interference and Noise Meters; Interference Suppression Methods for Ignition Systems and

ELECTRONIC ENGINEERING CO. of CALIFORNIA
Radio and Flectronic Consulting and Desigying.

2008 W. Seventh St.
Los Angeles Callfornia
$Y^{\text {OUR card here builds prestige for }}$ you and helps to make your name familiar in the field. The cost is extremely small in proportion to its value as a business aid.

ERCO RADIO

 LABORATORIES, INC.Radio Communications Equipment Eagineering - Desira - Development - Production Pioneers in lirequency Shift Telegraph
Garden City - Long Island - New York

FRANKEL \& NELSON

Consultants in Mathematical Physics
7716 Firenze Ave Los Angeles 46, Calif.
Granite 6970

GENERAL

INSTRUMENT \& ENGINEERING

consilltation hesearch development in
hiectionics, e. e., physics
100 Barr Building
Washington 6, D. C.

PAUL GODLEY CO.

Consulting Radio Enginecrs great notch, n. J.

List. 1926
Little Falls 4-1000

HANSON-GORRILL-BRIAN INC.

Product ©f Mfg. Development ELLE(THICA - ELECTRONIC hydradid - mechanical
One Continental Hill
Gilen Cove, N . Y .
Glen Cove 1922

LERU LABORATORIES, INC.

Design and Development of Fleetronic Equidment for industrial and scientific purdoses
Special experience \ln nilcrowaves, spectrum ana lyzers, photo-electric circuits, test equipment, etc. 360 Bleecker Street
New York 14 \qquad Watkins 9-4194

MEASUREMENT ENGINEERING LIMITED
Consultants on Special Equipment for measuremeats and production tests, communications and audio systems.
61 Duke St.
Arnulior, Ont. 2235 Addington Ave
Montreal, Que

Eugene Mittelmann, E.E., Ph.D.
Consulting Enginerr $犬$ Physicist
High Frequency 1 feating - Industrial Electronics Applied 1'hysies and Mathematies
549 W. Washington Blvd.
Chieago 6, Ill.
State 2-8021

ALBERT PREISMAN

Consulting Enginecr
Television. l'ulse Techniques, Video andilifrs, I'hasing Net works.
-
MANAGEMENAf-TlitidiNing associaters 3308-14th St., N.W. Washington 10, D.C.

PAUL ROSENBERG ASSOCIATES

Consulting Physicists
Main office; Woolworth lluilding. New York 7, N. Y
Cable Address Telephone
PIYSICIST Worth 2-1939
Laboratory: 21 Park Ilace, Sew York 7, N. Y,

A. F. SMUCKLER \& CO.

Electronic Engineers
Flectronic Product Manufacturing
Contractors to United States Government
338-346 East $\underset{\text { Gltamercy }}{23 \text { rid }}{ }_{5-8151}^{\text {New }}$ York 10. N. Y.
Glamercy $5-8151$

SPECTRUM ENGINEERS

Flectronic \& Mcehanical Designers
540 North 63rd St., Philadelphia 31. Pennsylvania GRanite 2-2333: 2-3135

YARDENY LABORATORIES, INC.

Rescarch and Deqelopment
Remote Controls and Electro Chemical Generators of Finergy
105 Chambers Street
wo 2-3534, 35
New York, N. Y.

THE
REAL
V ALUE
of placing your unusual problem in the bands of a competent consultant is that it eliminates the elements of chance and uncertainty from the problem and provides real facts upon which to base decisions.

POSITION VACANT

DESIGN AND Development Engineer to take charge of engineering and development of receiving antennae and associated equipment. D.H.F. experiAnswer giving age and qualifications to $P 6825$, Electronics.

SELLING OPPORTUNITIES OFFERED

MANUFACTUIRER HIGII class rarnished fabric tubiugs wants representatives in the electronic, radio line. I IW -6674, Electronics.
BACKGROUND ; BS in EE or equivalent. Experience with television receivers or other hi-frequeney circuits, contacts with television manifac turers, broadcasters und TV service organizations useful. Age 28-38. Duties: Calling on customers and potential eustomers to discuss hi-frequency tes equipment appincations. cquipment operation. Surveys of customer renction and determination of market needs. Re-muneration-salary plus commission. TerritoryNew York City, Long Island, Northern New Jersey. Write resume of background and salury needs to Sales Manager, Kay Electric Company, Maple Avenuc, Fine brook, New Jerscy.

EMPLOYMENT SERVICES

SALARIED POSITIONS $\$ 3,500-\$ 35,000$. If you are considering a new connection communicate with the undersigned. We offer the orig-
inal personal employment service (38 years inal personal employment service (38 years recognized standins and reputation). The procedure, of highest ethical standards, is individualized to your personal requirements and
develops overtures without initiative on your develops overtures without initiative on your
part. Your identity covered and present posipart. Your identity covered and present posifor details. Ik. W. Bixby Inc., 266 Dun Bldg., Buffalo $2, \mathrm{~N}$. \mathbf{Y}.
EXECUTIVES $\$ 3,000-\$ 25,000$. This relfable service, established 1927, is seared to needs of high grade men who seek a change of connection under conditions assuring, if employed, full protection to present position. Send name and address only ior detals. Personal consul 241 Orange St., New Haven, Conn.

POSITIONS WANTED

PROFESSOR OF electronics and communication desires position in research or teaching, advanced degree. I'W-6655, Electronics.

CHEMIST--EXPERIENCED in development of metal finishing, processes, resins, plastics, plating adhesives and conductive coatings for radio and electronic equipnient. New York area PW 6856, Electronics.
EXECUTIV゙E ASSISTANT: experienced in mangement and purchasing varied electronic and physics laboratory equipment. Degree in business administration plus wide technical training. PW 6817, Electronjcs.
MECHANICAL ENGINEER, B.S., M.S. Heavy electrical and electronic background includ ing servomechanisms, control motors and microwave components. Machine design experience covers precision instruments and guided missiles. Considerahle manufact. and
machine shop exp. PW 7007 , Electronics.

BUSINESS OPPORTUNITY

The Technical Director
and owner of well known British firm manufacturing electrical measuring and testing equipment, seeks to contact active U.S. business man with a view to opening works in U.S.A. It is intended to produce equipment which is not already on the U. S. market. In the first instance please reply stating experi ence in the fleld and amount of capital avail
able. In 6544 , Electronics.

CALIFORNIA

Manufacturers Representative
Has capacity for two more products in the electro. mechanical fleld. An established sales and engi. neering service of unusual quality.
H. G. WEIGHTMAN

1820 Ving Street,
Berkeley 9, Calif.

SALES MANAGER

Available
Graduate E. E. Experience in organizing and administrating national sales organization, Successyelopment work with Government, Military, manufacturers, wholesalers, and communications indus. try.

330 West 42nd St.. New York 18, N. Y.

ENGINEERS

PROGRESSIVE ELECTRONIC RESEARCH AND DEVELOPMENT COMPANY
has several openings for Senior Electronic Engineers of superior ability, with experience in design and development. Excellent opportunities for top flight men. Send complete resumes and salary requirements to:

Personnel Department

MELPAR, INC.
 452 SWANN AVENUE, ALEXANDRIA, VIRGINIA

Mathematicians, Engineers, Physicists

Men to traln in olf exploration for operation of seismograph instruments, computing seismic data, and seismic surveying. Beopinning salary $\$ 250.00$ to $\$ 300.00$ per month dopendent on backpround. ox Ingenuity and abillty. Nature of work requilres soveral changes of address each year: work indoors and out; deneral location in oll producing ocations.
To apply write giving scholastic and employment backpround, age, nationality, marifal status, and NATIONAL GEOPH
NATIONAL GEOPHYSICAL CO., INC.
8800 Lemmon Ave. Dallas 9, Texas

wanted
 RADIO AND TELEVISION ENGINEERS

The RCA Industry Service Laboratory (formerly License Laboratory), New York, has positions open for ongineers having qualifications for development and consultation work. Good technical education and some experience required. Interesting work, broadening experience, and wide contacts. Write fully to
DIRECTOR, INDUSTRY
SERVICE LABORATORY
RCA LABORATORIES DIVISION
711 Fifth Avenue, New York 22, N. Y.

ELECTRONIC ENGINEERS

 PHYSICISTS"A leading Electronics Compony in Los Angeles, California offers permanent employment to persons experienced in advanced reseorch ond development. State qualifications fully."

P 6606 Electronics
68 Post St., San Francisco 4, Calif.

ENGINEERS

 ELECTRONIC MECHANICAL ELECTROMECHANICALSmall progressive company offers excellent opportunities in electronic digital computer field to engineers with research, development, or design experience on video and pulse circuits, computers, servo-mechanisms, high-speed printers, or smalt intricate mechanical and electrical instruments.
Write full details of education, experience, and salary requirements to the

Chief Engineer

Ecker-Mauchly Computer Corporation

Broad and Spring Garden Streets Philadelphia 23, Pa.

ELECTRONIC ENGINEERS
Bendix Radio Division
Baltimore, Maryland
manufacturer of
RADIO AND RADAR EQUIPMENT
requires:

PROJECT ENGINEERS

Five or more years experience in the design and development, for production, of major components in radio and radar equipment.

ASSISTANT PROJECT ENGINEERS

Two or more years experience in the development, for production, of components in radio and radar equipment. Capable of designing components under supervision of project engineer.

Well equipped laboratories in modern radio plant . . . Excellent opportunity . . . advancement on individual merit.

Baltimore Has Adequate Housing

Arrangements will be made to contact personally all applicants who submit satisfactory resumes. Send resume to Mr. John Siena, Department 69:

BENDIX RADIO DIVISION BENDIX AVIATION CORPORATION Baltimore 4, Maryland

WESTINGHOUSE RESEARCH

Openings in Pittsburgh
ENGINEER having three or more years experience in radar or television for work on television systems and television receiver research.
ENGINEER or PHYSICIST with experience in underwater acoustics.
PH.D. PHYSICIST with background for working on solid state problems. ENGINEER or PHYSICIST for work on magnetic circuits and materials, ELECTRONIC ENGINEER to work on advanced circuit design problems.
ENGINEER OR PHYSICIST with three centimeter wave guide experience.

For application address Manager, Technical Employment WESTINGHOUSE ELECTRIC CORP. 306-4th Ave., Pittsburgh, Pennsylvania

PROJECT ENGINEERS

Real opportunities exist for Graduuate Engineers with design and development experience in any of the following: Airplane Stability and control, Servomechanisms, radar, microwave techniques, microwave antenna design, communications equipment, electron optics, pulse transformers, fractional h.p. metors.
Send complete resume to employment office.

> SPERRY GYROSCOPE CO.
> Division of the Sperry Corp. GREAT NECK, LNG ISLAND

SOUND ENGINEER

For large radio and television manufacturer in Chicago area. Experience in loud speaker design, audio circuits, ond acoustics necessary. write giving full particulars. write giving full particulars.

520 North Michigan Ave., Chicago 11, I11.

ENGINEERS

The rapid expansion of television has opened up a number of good jobs in our concern-offering permanency, good pay. and liberal employee benefits.

The following positions must be filled in the immediate future:-
DEVELOPMENT CHEMIST - Several years experience in preparation and investigation of materials and processes on receiving and cathode ray tubes. This work is primarily of a laboratory nature but knowledge of manufacturing techniques would be valuable.

MANUFACTURING ENGINEERS (Sev. eral)-At least 3 year's experience in manufacturing processes and shrinkage control on receiving or cathode ray tubes.

SENIOR TUBE DESIGN ENGINEER5 years' experience designing receiving type tubes. Prefer man well acquainted with miniature tubes.

JUNIOR ENGINEERS (Several) Young graduates; bright, ambitious. One for design training, one for production training.

Apply now in writing to Personnel Director
TUNG-SOL LAMP WORKS Inc.
200 Bloomfield Ave., Bloomfield, N. J.

research \& development ENGINEERS

Wanted for advonced research and development. Should have extensive experience on analysis of electronic systems in the fields of microwaves, missiles, radar, servomechanisms, communications, navigational devices. Outstanding ability in E. E. or Physics required.
Please furnish complete resume, salary requirements and availability to: Chief Engineer,

W. L. MAXSON CORPORATION
 460 WEST 34TH STREET
 NEW YORK, NEW YORK

SENIOR
 ENGINEER

with outstanding academic and practical experience and executive ability in the field of cathode ray tube display and indicators for radar systems, wanted by long types of projection systems and present types of service equipment desirable. Write, giving resume of education, experience, age and salary.

FREED RADIO CORPORATION
 200 Hudson St., New York, N. Y.

[^8]
WANTED Rectifier Engineer

Young, graduate electrical engineer with recent dry disc rectifier experience. Excellent opportunity for man qualified to assume responsibility. Send qualifications resume to:

P-6964, Electronic
330 West 42nd Street, New York 18, N. Y.

AVAILABLE

Production facilities for electronic wiring, assembly, metal work and fabrication mality wortmanship. Prompt deliveries SPECTRA PRODUCTS 155 Chambers st. New York 7, N. Y. BARCLAY 7.7369

TELEVISION CAMERAS

Available for immediate delivery. DUMONT TYPe 5027-A IMAGE ORTHICON PICKUP HEADS, with type 5047-A ELEC TRONIC VIEW FINDERS, complete with all tubes,-including 2 P 23 Image Orthicons. ERTAR 90 MM. I 3.5 Lens
Factory Reconditioned-Perfect Condition f.o.b. N.Y.C. Subject to prior sale

WRITE FOR COMPLETE INFORMATION
THE NATIONAL INSTRUMENT COMPANY far rockaway

NEW YORK

WANTED

W. E. Carrier Telephone and Carrier Telegraph Equipment and components. Filters, repeating Coils, Transformers, Equalizers. Type CF1, CF2, H, C, and other carrier equipment, telephone and telegraph repeaters.

W-6660, Electronics 330 West 42 nd St., New York 18, N. Y.

WANTED
WESTERN ELECTRIC VACUUM TUBES
Types 101F, 102F, 272A, 274A or B, 310 or B, 311A, 313C, 323A, 328A, 329A, 348A 349A, 352A, 373A, 374A, 393A, 394A, 121A Ballast Lamps.
330 West 42 nd St., New York 18. N. Y.

WANTED

Teletypewriters complete, components or parts. Any quantity and condition

W-665 4 , Electronics
330 West 42 nd St. New York 18, N. Y.

WANTED, AIRCRAFT RADIOS

AN/ART-13, BC-348, RTA-1B, AN/APN9. R5A/ARN-7. AN/ARC-1, AN/ARC-3, SCR-718, LC-788-C, I-152, MN-26-C, Teat condition and best price first letter.

HI-MU ELECTRONICS BOX 105, NEW HAVEN, CONN.

You'll Need 10

35 Watt Driver Unit Orig. Govt. Cost $\$ 40.00$

8 ohm voice coil will handle up to $5 S$ wetts $\$ 595$ ea.

Buit to the higheat atandards of electrical an mechanical tolerances to insure peal efficienc. and perfect alignment for sreater efficiency. breakown prod metal type. Completely imperveplaces climatic changes and corrosion chmel FULL FREUENCY RESPONSE
The moat rugxed unit ever bull, shock.
Tweeter with your Wooter or as a ariver
with your own projector. Outdoora or in.

SEND POSTCARD FOR OUR LATEST BULLETIN

TELEVISION SCOOP

Wave Trap
\& Booster
Clarifies picture, in creases signal strength helps eliminate ghosts and all external pic ure interference. Simply hook up in series with I. V. antenna. No power supply required Housed in beautiful slack Crac
steel case.

Size: $31 / 2^{\prime \prime} \times 41 / 2^{\prime \prime} \times 31 / 2^{\prime \prime}$ with large 3 Black Plastic Rotary Dial.

$\$ 1995$ ea.

4 for $\$ 75.00$

MAKES AN EXCELLENT

D. C. GENERATOR

GENERAL ELECTRIC AMPLIDYNES manufactured FOR

U. S. Air Forces

$\$ 495$

Shaft app. $1^{\prime \prime}$ Dia. $1 / 2^{\prime \prime}$ Air cooled by re movable fan. Unit measures $113 / 4^{\prime \prime} \times 51 / 2^{\prime \prime}$ Brand New in Sealed Cartons

WIRE
15,000 Feet

\#18-7 strand Black Plastic Vinelite, O. D. $1 / 00^{\circ}$. This Wire has over ernment Cost $\$ 270$ use ernment Cost $\$ 270.00$. Just think-you can get wire at the unheard of price of unheard
$\$ 2495$

All Prices F.O.B. N. Y. C. -20% deposit, Bal. C.O.D.

MANUEL KLEIN ${ }^{2}$ coranuor seref NEW YORK 7, N. Y.

- EXPERT DIAGNOSIS and TREATMENT -

for Ailing Communication and Television Receivers and Transmitters by TRAINED SKILLED TECHNICIANS
When trouble comes and your receiver acts up, don't blame sun spots . . . let factory trained experts check your set's health
HALLICRAFTERS NATIONAL
HAMMARLUND PIERSON
COLLINS
RME

Complete realipnment-Bandspread Calibration-Sensitivity Measurmments-Image Rejection Ratios-
Authorized Collins, Hallicratter
Service National and RME

WINTERS RADIO LABORATORY

11 WARREN STREET
Cortland 7-1361
New York 7, N. Y

SAVE RESEARCH TIME BY CONSULTING The Indispensasle Bibliographical Reference ELECTRONIC ENGINEERING MASTER IMDEX
Descriptive Literature on Request ELECTRONICS RESEARCH PUBL. CO.
and wood cabinets of all types built to your specifications.
"Engineered Wond Producion"
THDMAS MANUFACTURING CO.
NEENAH.

A) MU/Laaf Sw 31/2" DPNO\&NC/15A $1 / /^{\prime \prime}$ @... $\$.98$ C) MCROSWITCH PIunger SPDTDT

COMPLETE TELEVISION POWER SUPPLY Kit IHI Voltage $5000 \mathrm{VDC} / 5 \mathrm{ma}$
 sackets \& Rect tube 5U4G\&3124 \& filter condensers D303184 "TAR" SPFECIIT................24.95
 TRANSFORMERS $115 \mathrm{~V} / 60 \mathrm{Cy}$. Input

 2.in 40Amb GF Insltn 9RKY...................

 7กnVCT 15 Ama $10 \mathrm{~V} / 3.25 \mathrm{~A}$. 2 SV 10 A \& BVCT/2A, $5 v / 3 A$. HV insitid riand

 mer Fler \& UTC can he ysert 600 ohm line to grid or Mike or 5 nn ohm line or Tow
 CHOKES
$13.51 \mathrm{v} / \mathrm{A} \mathrm{Amp} / 420 \mathrm{hm} / 17 \mathrm{KVinsl}$
548.00
$12 \mathrm{Ity} / 3 \mathrm{Bn} \mathrm{ma} \$ 3.95: 3 \mathrm{Hy} / 4 \mathrm{mma}$.
3 tor $\quad \begin{array}{r}2.95 \\ 1.00\end{array}$
 $50 \mathrm{IIV} / 125 \mathrm{ma}$ Ssd
$8 \mathrm{Hy} / 100 \mathrm{ma} / \mathrm{S}$ I $10 ; 12 \mathrm{Iy} / 275 \mathrm{ma}$

dist cap wrs ity term, ceramio core
B) SICKLES $85 \mathrm{MH} / 250 \mathrm{Hhms} / \mathrm{Ce}$ comic form

D) $5 \times 1 \Gamma / 3,3$ ma, pi wound.

II) Mash Chinkes for Mercury VapmrRect @ $\mathbf{2 5 e}$. 5 /98e

KIT 866A's \& XFORMER

Input $115 \mathrm{YAC} / 50-60$ cys, outpt 2.5
VOT/10 Arips 10 KV insulation and
JOHNSON sockets \& TUBES.
SPECIAL

FREE! Get on the "TAB" Bargain Sheet Mailing List. Write Now. Specialists in Precision RESISTORS Ren Resistors Write for

"N0	MFGRS	CHOICE,	Wo	ship types	toc
. 116	182	889		2700	14440
42	199	697		2850	14460
${ }_{607}$		700		2860	14500
7	216.4	733 750		2900	15000
1.3	220	850		3000	15500
1:75	220.4	806		3290	17000
2.5	225	854		3384	17500
3.	230	900		3500	18000
3.83	235	910		3509	18380
4	240	917		3700	18500
${ }_{5}^{4} .35$	245.4	946		3730	18800
5.025	260	978		3780	19000
	271	1030		4200	20000
6.25	275	1056		4280	20520
7	280	1060		4300	21000
78.5	288	11100		4314	21500
7.9	299	1150		4444	22500
8	300	1155		4500	22990
10	310	1162		4720	23000
10.38	311.5	1175		4750	23150
10.48 11.25	-320	1200		4850	${ }_{2} 23325$
12	340	1250		4900	24000
13.52	350	1260		\%000	24600
14.2	$3{ }^{366.6}$	1322		5100	25000
14.5	370	1350		5210	25200
15	375	1355		5235	25400
16	380	1400		5200	26 fion
${ }_{17}^{16.37}$	390	1495		5500	27500
20	410	1510		5730	29500 29000
21	414.3	1518		5910	29900
25	418.8	1800		6000	30000
268	425	1640		6140	31000
30 37	428.9	1646		${ }_{6200}$	335000
37 48	427	1650		6309	35000
50	4.5	1670		8495	37000 38140
51.78	452	1710		6840	38500
55	470	1740		6990	39500
60	475	1770		7000	40000
63 68	478	1800		7500	43000
71.4	480 487	1818 1830		7700 7930	47000
74	500	1865		8000	48880
75 80	520	1900		8250	49000
88.4	540	1910		85010	50000
89.8	540 550	1980		8700 8992	52000 54000
9	575	2000		9000	56000
${ }^{95}$	580	2045		944%	воопо
101	607	2085		${ }_{9710}$	${ }_{6} 61430$
105	612	2145		10000	84000
105.7	62.5	2160		10430	15000
${ }_{113}^{107}$	633	2195		10.50	68000
120	641	2250		110000	70000 72000
12.2	649	2300		11400	75000
125 147.5	650 657	2400		${ }_{11690}^{11500}$	\$0000
150	${ }_{665}$	2463		12000	¢0000
160	669	2485		12 finm	91000
170	${ }_{675}^{670}$	2490 2500		13220 13500	95000

AROVE SIEES EACH 30\& @. TEN FOR $\$ 2.50$

 ABOVF, SIZES EACH 75t..... TEN FOR $\$ 6.5$

 200R

VARIABLE CONDENSERS

 R) HUAL 75 mmp per Sect $/ 1000 \mathrm{Y}$ gad/HF
 Acle 11 condbexsers $511 \mathrm{mmt} / 7.000$ FACLM CONDSRS $100 \mathrm{mmf} / 5000$

Test Instrument Specials!
Pocket roM-18 ranges Volts AC DC Ohms leads 13.90
Now Tube Tester, tests all modern types w/chart 20.90
New Tube Tester, esests all modern tropes w/ch
Write or lifo on above instruments.

(2)

SPECIALS! Popular Items
 MICA CONDENSERS

Fis. Mfd	WVide Fach	Fis. Mfa	WVIDC	
${ }^{1}$. 0002	$500 \quad \$ 0.20$	11.00		
D . 00013	600 (20	E. 00	2500	98
E. . 000	${ }_{2}^{2500}$ (35	${ }^{\text {E }}$. 00682	1200	40
. 000047	2500 600 .35 80	${ }_{\mathrm{D}} \mathrm{D} .0008$		
${ }_{\mathrm{D}}$. 0008	$1200 \quad .25$	E 01	500	. 25
D . 001	$500 \quad .20$	D . 01	600	30
I) .001	750 . 20	T) . 01	1200	60
E. 0012	600	E. 01	1200	
D . 002	1200 . 30	1) . 01	2500	1.25
E. 002	2500 . 75	${ }_{\text {IT }}{ }^{\text {F }} .01$	2500	1.25
¢	600 600	${ }_{\text {E }}$ E. 015	${ }_{2510}$. 30
E. 0035	2500 . 75	E. 02	600	. 45
.0039	2500 .85	D . 026	50	65
F ${ }_{\text {D }} .004 .3$	2510 800 105 .30	(${ }_{\text {D }} \quad .03$		98
. 005	6 ¢0	E :03	1200	1.45
D . 00.5	$1200 \quad .40$	E. 033	600	1.10
F. 005	2500	F. 033	1200	1.90
$\underset{\mathrm{E}}{ } \cdot 005$	310081.25	D . 043	600	65
F. 0051	1200 . 35	05		0
F') G.E. Interlock Safety Swith d5n(in 2for. G) BARTLER S'TRIl'S-Tones. Amphenol, etc. All types \&size-sperits: Write for prices				
1) CoUN				
(4) ${ }^{2}$				
		Nhw, rea.		

HEINEMAN MAGNETIC BKRS.

Collins Art-13 Speech
Amplifier

 RELAYS-FAMOUS MAKES AUTOMATIC RA74 Remote Control Reset Stepping

 LEACH 115yAC/DPDT/10Ampcontacts.

(i) SEARCHLIGHT SECTION T

MICROWAVE PLUMBING

 10 CentimeterMAGNETRON TO WAVEGUIDE Coupler with 721 S.A

 ${ }_{721-A}^{\text {complete }}$ TR C̈

 with male II Iomedell

 IOCM ENO FITE POLYRODS. un lood them Assemby, with crystal niount, pick-
 SHORTRIGHTMNGIE beñid, with pressurizing nifople R1GID COAX to fex coax connector..............50
STUB.SUPPORTED RIGID COAX.
gold

 MAGNETRON COUPLING to Mi/n rigid coar, with
 Short right angle bend............................... $\$ 8.0$
Rotating joint, with deck mounting.
ligid coax slotted section CU-60/Al'............... $\$ 5$. 1Rigid coax slotted section CU-60/Al'

STD. I" $\times 1$ CM. PLUMBING
THERMISTOR: DPECIFIE90-for mtg. in "' X ' Mancl

12" SECTION ${ }^{45}$ deg twisi 90 deg. bend.

WAVEGUIDE SECTION, CGO............... $\$ 15.50$ choke to cover, with 180 deg. bend of $21 y_{2}^{\prime 2}$ rad. at ROTARY joint with sloted section and type an .

 TR/ATR DúdipiEXXEX section with iris flange.... s6.50

 ROTARY JOINT, choke to to choke., with deck mo S-CURVE WAVEGUIDE, $8^{n \prime}$ long corer to choke.
 $T_{\text {Wall }}^{\text {Wall }}$ givminum
APS-15 DUPLEXER SECTION uSing ii 3 id CIRCULAR CHOKEE FLANGES. Bolid brass SQ F FLANGES, flat brass.

APS-10 MIXER 2 K25/723AB. X band local nscillator mount with (1) choke coupling to beacon reference carity; (2) choke coupling toreceiver; (3) Iris coupling with AFC attenuator to antennal waveruide: (4, Padar ArC crystal nating slugs. Mifg. DeMornay. Budlic...... $\$ 22.50$ TR/ATR Duplexer section for above. $\$ 8.00$

TRANSMISSION LINE PRESS. GAUGE $\$ 3.50$
5.00
5.50 MOUNTING SECTION for AbsorD. Wayeme........00

1.25 CENTIMETER

MITRED ELBOW cover to cover.
TR/ATR EECTION choke to cover........
FLEXIBLE SECTION $1^{1 / 2}$ chole to chokc.
KBAND IRotary joint. KBAND liotary joint
.54 .00 ADAPTER, rd. cover to $1 . .$. co...... S55.00

RADAR SETS

RC 145 IFF SET, Consists of ISC 1267 xmer-revr, remote antenna controller and indicator I-221, power
supply
154
$105-1$ $154-186 \mathrm{mc}$. Operates from $117 \mathrm{~F} ., 60 \mathrm{cy}$. New. SN RADAR-GE, low power, 5 and 25 miles ranges. band. Fxtremely compact. ideal for demonstration

 708 magnetron. Thyratron modulator. varialhe pulse
rate.
Connplete
set rate. Complete set including spare parts tubes
rareguide and fitings. Send for price and additional RBSTPL. 1 infing RADAR RCVR. Sperry.
. $\$ 85.00$

MICROWAVE GENERATORS

CUBE	FRQ. RANGE PK.	PWR. OUT	PR
析	2820-2860 me.		
21	9345-9405 me.	5	\$25.00
26		260 h	
27	2960-2 2 ¢	275	
	$2780-2820 \mathrm{mc}$	285 kW .	\$25.00
$2 J 38$ Pkg.	$324 y-3263$ me		525
2 J 38 Pkg	3267-3333 m	87 kW	\$25
2555	9345-9.40s ma	50 h	\$25.00
	3000-3100	35 KW .	\$65
${ }_{3}^{2 J 31}$		${ }_{50}^{35 \mathrm{~kW}}$.	
			535.00
720 BY	2800 mс.	1000 KW .	850
	$9345-9405 \mathrm{~m}$		
ystro	23A/B \$1		

 TUNABLE PKGD "CW M' MAGNETRONS

 .5 .95
.53 .00
.31 .65
.52 .50
.51 .00
.82 .85
.$\$ 2.00$

THERMISTORS—W.E.

 ${ }_{\text {RGG }}^{18}$ 18/U. 52 ohm COAX CABLE
12G 23/U. twin coax, 1285 ohnm imp.............. $\$.51 / 4 t$.
$5.50 / t \mathrm{t}$. , starting voltage pif $\mathbf{K V}$ cable. Corona
s.50/ft.

$\mathbf{5 . 7 5}$
$\mathbf{s i} .20$
$\$ 1.00$
$\$ 1.25$
$\$ 8$

MISCELLANEOUS

I'II', ROTATING YUKE TYPE. Complete with all necessary oscillator uircuits, Cle tube $511^{\prime} \%$. conulese
with tube SPERRY KLYSTRON TUNER Mod, $12 \ldots \ldots \ldots$. Si. 20
 KLYSTRON SOCKETS for 2.23 A.B. and simullar thpes
 (amphenol $16 \mathrm{~S}-5$)

MICROWAVE ANTENNÖS

AN MPG-1 Antenna. Rotary feed type high speed

 seallector, Lhess internal meineluding horn parabolic APS-4 $\mathbf{3}$ cnu. antena.......................... $\$ 250.00$
 A liorizontal and vertical scan. New, complete.. $\$ 6.100$ diam. Extremely lightweight construction. New, in
 rectangle new $\$ 85.00$
 deg. rotation. complete with drive motor and belss.n.
New. DBM ANTENNA. Dual, back-to-back paraboias with
dipoles. FTreq. coverage $1,000-4,500$ me. No drive

 AS 125/APR Cone type receiving antenina, 1000 to 3200 $140-600$ MC. CCONE ©........................... $\$ 4.50$
sectional
steel

AN/APS. $15 A$. X. Band compl. RF head and moduklystrons (local osc. \& beacon), 1224 TR , rcrr-ampl duplexer, HV supply, blower, pulse xtmr. Peak Pwr putse duration apx. 1nput: 115, 400 cy . Modulator
 APS-15B. Complete pkg. as above, less modulator BANO AN/APS-2. Complete RF head and modu lator, including magnetron and magnet, ${ }^{417-A}$ mixer, pulser. With' tubbes, used, fair condition...... $\mathbf{5 7 5 . 0 0}$ using 2527 magnetron oscillator, 250 KW peak 707-13 receirer-mixer $\$ 150.00$ Modulator-motor-alternator unit for above...... 75.00
Receiver-rectifler power unit for above........ $\mathbf{2 5 . 0 0}$ Rotating entenns with parabolic reflector for above. New

PULSE EQUIPMENT

aps. 10 modulator deck, Complete, less tubes

 KV. 3 PULSE MODULATOR. Pk. power 50 amp. 24 KV (1200 KW PK), pulse rate
sec; pulse line impedance 50 ohms. Circuit serive
ite charging version ors. 115 v. 400 cycle input. New
7050
A.
 Power: 144 KW (12 KV at 12 amp). Duty Ratio 001 max. Pulse duration: . 5, 1.0. 2.0 microsec.
 fixerd mod pulse suppresslon mulse, sliding modulating pulse. blanking roitage, marker purse, sweep voltages, calibration voitages, fi. voitages. Operate $115 \mathrm{rac}, 50-60 \mathrm{cy}$. Sliding pulss rariable in pbase up
to 2500 m microsec. Ampitucle of suppression pulse acliustable between $10 \mathrm{and} 35 \nabla$. and width rariable betteen the limits of 10 nilcrosec. or less to 1800
nicrosec. or more at a recurrence rate between 200 and 300 cps. Provides various types of voltage pulse nutputs for modulation of a signal generator such as
$\mathrm{GR} \# \$ 041$ or 804 C . New................... $\$ 125.00$

PULSE NETWORKS

G. E. \#25F5-1-350-50P2TT $25 \mathrm{KV},{ }^{5}$ sections, "F" clrCuite 1 nicroseconi pulse longth, 350 Prs, 50 ohms

PULSE TRANSFORMERS

W.E. $\# 0166173$ III Wolt input transformer, W.E. Im-
 w. ${ }^{\text {in }}$ K 11 . 9800 in inut 12.00 tween terminals $3-5$ and $1-2$ is $1.1: 1$, and between
terminals $6-7$ and $1-2$ is $2: 1$. Frequency range: $320-$

 G.E. K2450A. Will recclee 13 KV . microsecond pulse on pril. secondary delivers 14 KV . Peak power G. E. \#K2748A Pulse Input, line to Magnetron....S12.00 Uitah Pulse or Rlocking Oscillator Transsormer. Freq.
limits $790-810$ cy-3 winding
turns
latio

30 MC I.F. STRIP

Orerall kain: 25 db or more
Bandewidth: 4 plus or minus .4 mc (3) 3 db down.

.$\$ 17.50$
ALL MERCHANDISE GUARANTEED. MAIL ORDERS PROMPTLY FILLED. ALL PRICES, F.O.B. NEW OR CHECK ONLY. SHIPPING CHARGES SENT C.O.D. RATED
CONCERNS SEND P. O. Prices Subject to Change Without Notice
COMMUNICATIONS EQUIPMENT CO. 131-E Liberty St., New York, N. Y. Cable "Comsupo" Ph. Digby 9-4124, Mr. Chas. Rosen

INVERTER PE 218

Input: 27.5 V DC, 90 AMPS
Output: 115 V, AC, 400 CY, 13 AMPS
1500 Volt-Amperes 9 PF
New. Original Packing.
.$\$ 49.95$

POWER EQUIPMENT

STEP DOWN TRANSFORMER: Pri. $440 / 220 / 110$ roles

 Fil Trans. KS8 5 amps.

OIL CONDENSER

1 mfd .10 KVDC
06 mfd .14 KV 191
KVDC
25 F 585 G 2.

10 mfd . 1000 vic. ${ }^{\mathrm{ra}}$
3×10 mfd. delta connected synchro-capacitor. $\$ 1.79$ 11 mdd. 6000 vde. 25 F 599 Ci 2.

400 CYCLE XFARS
352-7070: Pri: 118 y, $440 \mathrm{cs} . \operatorname{Sec}: 2.5 \mathrm{~F}_{5} 2.5 \mathrm{amp} ; 2.5$

 FIL XFMR: Pri: 115 v, 400 cy Sec: 6.3 r. 9 amp
 INSTRUCTION MANUALS

VIBRATORS

Mal. Type G629-C,
Madiaart VR2, 6 v. DC. 6 -pin special

$\$ 1.00$ each.

HEADSETS

Dynamic Mike and Headset Combination. A hlgh qual-

 R.F. COILS 3C4016-7, RF coil Ass's. $30-40 \mathrm{mc}$, for rerr FMCR-13y 2C5395-1306/C3, Antenna Coil, 3.8 to 6.5 mc , iron $\begin{gathered}\text { Sore } \\ \text { for } 139\end{gathered}$
 phasing box. For radio beacon equipnent lic ${ }_{\$ 1}^{1.25}$

 $2 \mathrm{C} 5003 \mathrm{~A} / \mathrm{C8}$. 11 F osc. coil, bands A, B, C, licrr BC

 MISCELLANEOUS
A-10 and A-20 OXYGENMASKS.............. $\$ 1.50$
 TRANSFORMERS for Collins ARTi3 Transmitters. HEADSET. WE FibA. with dual plug patch cord BC 733-D LOCALIZER RECEIVER, with 8 crystals
New

PULSE TRANSFORMER GE \#7766489
1.5MC. I.F. TRANSFORMERS

CONTROL BOX 1 BC 321 (22656)
6. SECTION GERAMIC CAPACITOR, $10-460 \mathrm{mmP}$

 ANTENNA, AN/104-A, for RC $\operatorname{RCR} 523$. ANWER SWITCH. 4 Dos. 60 amps, 600 vac. Arrow

 CABLE ASSEMBLY, 45 Dr. 102' L. Tlephone type WE \#DI66039...OETECOB: © Underwater detector
 ARC-3 Airhorne radio series replacement relays. Types
 AMERTYPE RECORDING FILM, 50 ft. lengthis Indi-

Scope, with all tubes.
Part of SCR521 and ASE FApt. 176 MC. operation,
receives bi-loherl receives bi-lobed seareh and homing patterns.
complcte with tules and antenna switching motor

HEINEMANN CIRCUIT BREAKERS

AM $1614-50$

50 amps. 28 vic $\$ 1.65$
00 atmps, 28 rite $\$ 1.65$

MICROPHONE ELEMENTS

 Element for microphone T-24. 30 ohim resistance $\$.95 \mathrm{ea}$.
 AUUDIO TRANSFORMERS

30^{\prime} SIGNAL CORPS RADIO MASTS Complete set for the erection of a full flat top antenna.
Of rugged piymod construction telescoping into 3 ten-foot sections far easy stowage and transportation. A perfect set-up tor getting out. Supplied complete: 2 complete masts, hardware. shipping crate. Ship.
ping wt. approx. 300 lbs . Sig. Corps $\# 2 A 289-223-\mathrm{A}$.

WIRE WOUND POTENTIOMETERS	
20,000 ohms. $10 \mathrm{gm}, 8 \mathrm{ma}$. 95
5,000 ohms, 10%, 8 watt	
Dual 250 ohms, ${ }^{\text {\% }} 5$	¢ 98
50 ohms, 25 watt.	
1000 ohnls, 50 watt, mod	\$.98
	\$3.25

	GREAT TUBE VALUES				
	5	7 C 4			
1 H 5	55		${ }_{72}$		
	69		. 60	86	15
${ }_{2} 1 \mathrm{~T} 4$.	69	12	35		
2 C 22	. 69	$12 \mathrm{K8Y}$			
$2 \mathrm{~J} 21-$	25.00	12 SF 7	49		
2 2 22	25.00	${ }_{1512}{ }^{\text {SR }}$	72		
2 J 27	25.00		75		
2.	25.00	30 (Spec).	70		
2	25.00 25.00	45 (Spec.).	59		
	25.00	35/5	99	801	
2	25.00 55	211	5		
2X2/87	5.0		8.80		
314	65	26	20.00		.
24		255	19.50		
$3 \mathrm{3C30}$	70		90.00		
P1	$\begin{array}{r}3.59 \\ \hline\end{array}$	53	45.00		
$3 \mathrm{3D21}$	1.54	559	4.00	${ }_{G L}$	75.00
${ }^{\text {31PP1 }}$	2.23		90.00	GL	75.00 75.00
$3 \mathrm{FP7}$	1.20	703	00	ML	
369	$\begin{array}{r}3.50 \\ \hline 8 \\ \hline 8\end{array}$		75		
5 BPi	1.20			8	
58P8	4.	714	15.00		
5 FP 7	3.50	${ }_{72}$	52.00		
${ }_{5} 5 \mathbf{5 P 2}$	8.00 39	${ }_{721}{ }^{\text {a }}$	3.60	VR $1310 .$.	.
${ }^{\text {c }}$	39.50 1.00	${ }_{724 \mathrm{~B}}^{723-\mathrm{A}}$	12.50 1.75	VR	1.25
	8			VU 1	1.00
	2.400	726	15.00		1.00
	1.55	800	2.25		75
${ }_{6 S}^{6 L 6}$	1.00	${ }_{80}^{80}$	1.10 9.85	W	5.00
L7....	1.00	815	5		

TYPE 1619 POWER PENTODES

 MFRS. PRICES ON REQUEST

PRECISION CAPACITORS

 D. $163707: .0 .4$ mfd (3) 1500 vdc. -50 to plus 85 des

 D.161555: A mfd © 400 vde, -50 to plus 85

CROSS POINTER INDICATOR

nual n-200 microamp. movement in 3^{n} case. Each

 movement brousht out to 6 -term. Receptacle at rear.Originally used in IIS equipment. New...... $\$ 5.50$

SCR 610 11-10 METER
PORTABLE/MOBILE XMTR-RCVR.
SCR 610 mortable transmitter-receiver, 27 to 38.9 me. crystal controlled, using FM for efficient operation.

HEADSET PLUGS and JACKS PL-68 PL-54
 JK-26 AVALLABLE IN MFR'S. QUANTITIES

6-VOLT RELAY PANELS

Comes complete with relays mounted on bakelite panel $1-$ With 25 terminals

COMMUNICATIONS EQUIPMENT CO.
 131-"E" LIBERTY ST., NEW YORK, N. Y. DIGBY 9-4125

SURPLUS NEWEQUIPMENT

$\underset{45,000}{\text { Quantity }}$

TOGGLE SWITCHES

Amp 12" Yol Catler Hanmer type is-9A 2 hole metg.
10,000 DPDT with center out position Cutier Hanmer type C-
3700 Bat handle, haminous thD,
Bat handle, liminous tij single hole mete.

MICROSWITCHES

Quantity
S1NC 10 Amp 125 volt, 5 amp 200 rolt Microswitch CorD. type z, WZLQ1-023A3S
$\%{ }^{\text {w }}$ single hole mounting 2500 SPNO 10 Amp 125 volt. Wale Corp. tive 2, YZ RQ1-023A38 0 SINC 10 hmp ruounting Microswiteh Corp. iype WZ-RQ1-023A38 SPN() 10 AntD 125 volt 5 Amp 250 rol Microswiteh Corp. type YZETRQT in ex Dlosion proof case
1000 SINO 10 amp 125 volt 5 nmp 250 rol Microswitch Cord, tspe YZE-7RQ2TN in
explosion proof calse with roller arm
(limit switch)

CIRCUIT BREAKERS

Quantity
5000
Amp Single Pole
C6363-C-5-J
"Clixon," Single Pole
${ }_{15}$ Amp. Single Pole C6363-L-5-z Siencer
0015 Amp 120 Volt Double Pole
0 Amp 125 Volt singi Curse

SPECIAL METERS

FREQUENCY METER JBT 30-F Dual Range covers frequency ranges from 48 -52 cycles \& 115 volt. $3 夕^{\prime \prime \prime}$ Id flush metal case....... a $\$ 5.95$ REQUENCY METER Range 350 to 450 cecles 115 volt A.C. iron core dynamometer ivpe
 Aircraft style mi........................... $5+95$ F REQUENCY METER 50 to 70 cacles, Westinghouse UY $5^{1 / 2}{ }^{" 1}$ Squate Proj. mid case: Accuracy
within 1%, electric dynamometer type morement : Comp with ext. reactor........@ $\$ 45.00$ house HY $5 y_{2}^{\sim}$ scluare proj. mid case accurac within 1% Electice Dnamometer type move Ment: Comp. With ext reactor............ $\$ 39.50$ ates on 230 rolt 60 recle. A bake case © 1 per o. C. MILLIAMMETER, Weston 271 fan type, 600-0-600 R.P.M......................... $\$ 12.50$ D, 6 MW in 600 ohms $21 / 2^{*}$ Rd fl haliee CECIBEL MIETER, - 10 to plus 6 Weston $301-21$ DECIBEL METER. - 10 to plus 6 Westinghous zero $\mathrm{DB}^{2 / 2} 1.89 \mathrm{f}^{\text {rd }}$ bake case $6 \mathrm{M} . \mathrm{W} .600$ ohms RECTIFIER TYPE MiLLIAMMETER, Weston Model 545 . typo $81.4^{\prime \prime}$ Aircraft type, full se.
1.1 MA AC. 940 UA D.C. mvt., 0 ohms re
 SIGNAL STRENGTH "S G ohms, 5 MA SimpRECTIFIER TYPE MICROAMMETER, HICkOE $2^{\prime \prime}$ Ring mtd. met case 700 UA D.C. RECTIFIER TŸPE MiCROAMMETER, SOO G.E. cal Plate/3119 RECTIFIER TYPE MICROAMMETER,

TACHOMETER $\quad 0-20.000$
 lk.1'M. Mlult. Lange, Cont. Indicating Jone MOLTOLQ NSULATION TESTER $0-20$, \& $0-200$ Meqohms,
 100 Watt power con uinjtion, operates $24-28$ Volt with inst. for use on 110 volt A.C. Galsin (Motorola) MRE CO.
CURRENT TRANSFORMER............... $\$ 22.54$
Wortile. Weston 461-4, 5 M ${ }^{1 / 4}{ }^{\circ} \mathrm{A}$ Acc. $0-2$ A.C. AMMETE

CODE TRAINNG SET for visual \& audible groul
code practice McElroy Mt. Co., $\Lambda V / \mathrm{SCC}-1$. HI. FREQ. RECEIVER BC-1161-A, HI. FREQ. TRANS. ${ }^{115}$ VC-1160-A tubes. ele. With blower, rariac, s hV meter, 10

 lio volt load max. Safety Car Heat d Light
Cat. $\quad 29540$ type siout............(a) $\$ 65.00$ AIR CIR. BREAKER 125 Amp 500 Volt 3 Pole BOWL INSULATOR, clear Rlass, Corning $=67076$
 TACH. GENERATOR, three phase, G.E.- Model ACROSS THE LiNE STARTER man. ojer. Cutle
 MICRAFFWITCH S.P.N.C. io Amp ion volt, 10 for 8.00 V.A.CIR. BREAKER D.P.S.T 15 Amp 120
EV. CURR. RELAY $12-15$ \# Oj2 REV.CURR. RELAY 12-15 Volt 200 AnM L. N. TERM. BO
 DUAL RANGE VOLTMETER $0-15,0-1500^{(4)}$ Vol A.C., Weston 52R W. case © leads.....e $\$ 9.50$

 Ansj A.C. Triplett $31 / 2^{\prime \prime}$ Rd. meters.
Hotlin for. 57.95
,C. VOLTMETER, portable, $0-300$ V.. R.S. Steel

 D.C. AMMETER, nort. $0-25$ A, G.E. DP-9. selt D.C. AMMETER, Dort. 50 M. Mi................ PX-4
sc. cal $1 \cup 00,2000,4000$ Amp, lcss shunts VOLT OHM MILLIAMMETER, port. @ $\begin{gathered}\text { @ } \\ \text { West } \\ \$ 17.00 \\ \text { w. } \\ \$ 17.00\end{gathered}$

PANEL METERS

$0-20$ DC MICRO WESTON $30131 / 2{ }^{1 / 2}$ IRD SPECIAL

 -150 DC Mició Gi $21 / 2$ ind 1L SC..... 56.50

 -500 DC M1CRO SIMPSON 21/2" RD SD SIDC

 $0-1$ DC MA GE 3% RD BL SC SPEC SC $\$ 3.0$ $0-1$ DC MLA MC CTINTTOCK $3^{\prime \prime}$ SQ 65 OHMS $\$ 4.50$
SP. 50
.53 .50
 $0-14$ nc Mi litek 3% RD 70 oIms w

 $0-10$ DC MA HICK $21 / 2^{\prime \prime}$ RD MET CS SPEC

$$
\begin{aligned}
& 0-200 \text { DC MA TliP } 21 / 2 w^{2} \text { RD } \\
& 0-200 \text { DC MA WDOM }
\end{aligned}
$$

$$
\begin{aligned}
& 0-200 \text { DC MA MARION } 31 / k^{*} \text { RI } \\
& 0-200 \text { DC MA SIMP } 3 \underline{R D}
\end{aligned}
$$

STAMVE$i{ }^{1}$ N3
$0-1.5 \mathrm{D}$
0.75
$0-15$
0.30
0 R V,
RD
RF MT

MFT| sit 4100 |
| :---: |
| sin |

$0-200$
SIITcs. $\$ 2$
no MV Si
BC CA0.3001GF $23{ }^{2} \mathrm{~m}$
$\underset{\substack{\text { Ti.57 } \\ 0.53}}{ }$
$\begin{array}{ll}n-1 & R F \\ 0-1 & R F \\ 0-1 & R F \\ 0-1 & R F\end{array}$ 1 BL
SC
T CS

$0-2.5 \mathrm{RF}$ A MC CLINTOCK $3122_{2}^{\prime \prime} \mathrm{R}$

10 RT A WESTON $425.31 /{ }^{2} \ldots \ldots \ldots$
20 RN
20

All Items are Surplus-New-Guaranteed, C.O.D.'s not sent unless accompanied by 25% Deposit. is only a partial listing of the many items we have in stock. Send for frce circular,
MARITIME SWITCHBOARD

We also have in stock various surplus components,
atle for every requirenent, such as portable, panel

OVER 50,000 METERS IN STOCK

We also have in stork various surplus components,
thbes, cotle keying and recording units, code training tubes, code keying and recording units, code training sets, tachometcrs, analyzers, tube testers, converters
precision resistors, current transformers, transmitters receivers, condensers, and other electronic units, parts

STANCOR FILAMENT TRANSFORMER NO. 242. Heavy duty Stancor No. ST355 supplies 5 V of 6 Amps, 5 V of 3 Amps and 5 V ot 3 Amps from 220 V 60 Cy . primary Cased type. Ship. $\$ 150$
Wgt. 7 lbs.
 G.E. THYRATRON TRANSFORMER NO. 243. New G.E. Transformer sup-
plies 2.5 V af 100 KVA has 3 KV inplies 2.5 V af 100 KVA, has 3 KV in-
sulation 100 V 60 cy . primary. Ship$\operatorname{ping}_{\text {pach. }}$ Wgt. 13 lbs.
$\$ 9.50$
RCA SATURABLE REACTOR TRANSFORMER NO. 246. New RCA No. CRV30531 AC
current 750 MA DC current 2 Amperes
Rated 1.75 henries. Ship-
ping wgt. 4 lbs. Each......... \$1.00
12.6V POWER TRANSFORMER

No. 247. New cased $110 \vee 60 \mathrm{cy}$ Power Transformer. Supplies 440 VCT . at $60 \mathrm{MA}, 6.3 \mathrm{~V}$ at 2 A . and 12.6 V at
1 Amp. Excellent for militory sets. Shipping Wght. 6 lbs. Each.
$\$ 1.95$
RCA INPUT TRANSFORMER
NO. 248. Heavy duty RCA No CRV30529. Input has primaries 600 to 200
and 25 ohms secondary 250,000 ohms and 25 ohms secondary 250,000 ohms C.T. Shipping Wgt.

REPLACEMENT POWER TRANSFORMER NO. 251. Excellent value transformers made by one of largest transmary supplies 746 V Ct at 150 MA 5 V at 4 A and 6.3 V of 4.5 Amps . Shipping Wgt.
$\$ 2.95$
FEDERAL POWER TRANSFORMER NO. 252. New cosed 110 V 60 cy Power Transformer. Supplies 480 V Ci
of 50 MA and 6.3 V ot 2.1 Amps. A at 50 MA and 6.3 V ot 2.1 Amps. A
beautiful transformer . Ship. beautiful transformer.
ping W gt. 4 lbs. Each
$\$ 1.50$

HEAVY DUTY 6-12-24 VOLT VIBRATOR
 NO. 253. A husky vibrator used on army transmifter. 220 cycle with contocts for type, has many industrial applications. Ship. Wgt. 3 lbs.
4 CHANNEL
PUSH BUTTON TUNER
NO. 254. Permeability tuner from BC 728 containing RF, first detectar, and oscillator coils. Covers 2 to 5 MC .
Complete circuit diogram furnished. Shipping Wgt.
2 lbs. Each.
\$2.50
CONDENSER SPECIAL
NO. 255. An ideal oil filled power supply filter used in army 16 tube 600 V D.c. rating. Shipping $\$ 1.50$

Wgt. 3 lbs. Each | 600 V D.C. rating. Shipping $\$ 1.50$ |
| :--- |
| Wgt. 3 lbs. Each |

5TANDARD BRAND
TELEVISION CONDENSER No. 256, 05 MFD at 7500 y , rating. Excellent Television Coupling Conenser with mounting bracket.
denser
Shipping Wgt. Shipping Wgt.
3 lbs. each

4

 Unit, has 2.5, 2.5 and 5 MFD all at
B 746 TUNING UNIT

 WO. 257. Plug in transmitter tuning unit from ormy Walkie Talkie. Contains antenno and tank cails, funing condenser, tals. Ideal transmitter foundation. Shipping Wgt. \$1.00 1 Ib. Eoch (Same as obove except trans-mitter crystal in 80 meter amamitter crystal in 80 meter oma-
teur bond............
$\mathbf{\$ 2} .50$ each) T30 THROAT MICROPHONE NO. 258. Makes excellent contact microphone for musical instrument ar vibration pick-up. Shipping Wgt. 1 lb... Extension cord with \$1.00 each Extension cord with switch for
above

BRAND NEW

ASTROGRAPH

No. 259. The cose of his unit makes the finest tool and service kit ever designed. Plywood construction, $14 \times$ $\begin{array}{ll}11 \times 10^{\prime \prime} & \text { high, with } 8 \\ \text { cover } \\ \text { compartments }\end{array}$ covered compartments
in the bottom for repair in the bortom for repair
parts, leather handle, steel reinforced covers, hinged lid. Also excel-
 ent os case for radio phonograph, movie projector, camera, shell case, fishing kit, picnic kit, etc. The astrograph itself, (which cost the government $\$ 125.00$) makes on excellent contact printer, and can be used for o
foundation for enlarger, strip mop holder, etc. She case alone worth twice the

AN27/ARN5 ANTENNA
NO. 260. Standard blind landing antenna system. $\$ 9.50 \begin{aligned} & \text { Brand new in original } \\ & \text { crate. ship. } W \text { gt. } \\ & 14\end{aligned}$

ASII4/APT ANTENNA SYSTEM

NO. 261. New blode

type antenna complete
$\$ 7.50$
with case assembly,
in original carton.
in original carton. Shipping Wgt. 9 lbs.
AS115/APT ANTENNA SYSTEM

5

 $\$ 7.50$No. 262. New blade type antenna complete with case assembly, in original carton. Ship. Wgr. 11 lbs. AT38A/APT RADAR ANTENNA NO. 263. New radar dome type ontenna with mounting base and con.. nections, in original cor-
ton. Ship. Wgt. 11 lbs... $\mathbf{\$ 1 4 0}$

ANIO4A BLADE ANTENNA

$\$ 1.50$

 NO. 264. Standard blade antenno used on many military fighting plones with coaxial connection at base. Shipping Wgt. 3 lbs.BENDIX MTSIC TRANSMITTER CONTROL BOX NO. 23S. Contains channel switch, switch, power switch and inditators for Bendix aircraft trans- $\$ 5.50$
mitters. Ship. Wgt. 3 lbs. $\$ 5.50$

BC 670B REMOTE CONTROL BOX NO. 265. Motar starting control box has starting and stopping switch, indicator, cable and plug. Wooden case. Ship.
$\mathbf{W g t .} 6 \mathrm{Ibs}$. Each....... $\$ 1.95$ bK 22 RELAY ASSEMBLY
NO. 266. Used on SCR 269
Radio Compasses. Contains stepping and control relays - Junction box of aluminum. Brand new. Ship.
$\mathbf{W g t} .7 \mathrm{lbs}$. Each

HEINEMANN CIRCUIT BREAKER

 NO. 267. Heavy duty type 7 Amp. 24 Volt D.C. Many uses around
shop. Shipping $\$ 1.00$ CUTLER HAMMER

MOTOR FIELD CONTROL

NO. 285. Rated 10 ohms. 3.2 Amps. Maximum. $61 / 2^{\prime \prime}$ diameter with knob regulate generator output voltage. Shipping. Wgt.
5 lbs. Each
\$2.50

PENN THERMO RELAY
NO. 268. Thermo Relay with a range of 45 to 100 complete withsion bulb. Ship-
$\$ 3.50$
B \& W 11 to 14 MC TANK COIL
(8) what NO. 281. Plug in type used on
BC 610 Transmitter. New, origina! cartons. Shipping
Wat. 2 lbs. Each $\$ 1.50$

DM 64A 12 VOLT DYNAMOTOR NO. 269. Input 12 V of 5 Amps. Output 275 Volt 150 MA . New. Shipping Wgt.
$\$ 5.50$
DM 32A COMMAND SET DYNAMOTOR NO. 270. Port of 274 N Command Reof 60 MA . Shipping of 60 MA . Shipping
Wgt .4 lbs . Eoch......
$\$ 5.50$
 Wgt. 4 lbs. Eoch...

DM 2112 VOLT DYNAMOTOR

NO. 271. Used in Army BC 312 Communication Receiver. Input 12 Volts at 3.3 Amps. Output 235 cartons. Shipping Wgt. \$5.50
PE94C SCR 522 POWER SUPPLY NO. 272. Complete dynamotor power supply for the SCR 522, operates from 28 Volts. Complete with ton. Shipping Wgt.
34 $\mathbf{8 . 7 5}$

PE101C BC645 POWER SUPPLY
NO. 273. Complete power supply for BC 645. Operates from 12 or
24 Volts. Supplies both AC and DC required. Shipping
Wgt. 13 Ibs. Each
$\$ 3.95$
DM 3512 VOLT DYNAMOTOR
NO. 274. New inpyt 12 Volt at 18.7 Amperes. Supplies 675 V at 275 MA or $1 / 2$ above voltage from 6 volts. Excelient for auto use. Ship-
ping W gt. 11 lbs. Each..... $\mathbf{\$ 7 . 5 0}$

PE 86 DYNAMOTOR
NO. 214. A popular 28 Volt receiver dynamotor used on present ot 60 MA . Shipping $\$ 5.50$ Wgl. 4 lbs . Each
$\$ 5.50$
GN 58 HAND GENERATOR
NO. 275. Makes excellent home lighting plant, operated by wind propeller, waterfall, gas engine, or hand crank. Reduction gear allows full output at slow speed; supplies 6 volts at 2.45 amp., 425 volts at .115 amp. New Add
postage for 28 ibs. Each $\$ 7.95$ Handies for GN 58

GN 58
Connecting cord for GN 58
with plugs CD1086......... $\$ 1.50$ each
COLIINS AUTOTUNE CONTROL HEAD NO. 278. Brand new controls used on the ART/13, 100 Watt, Transmitter. Types 7, 8,10 , and 11 availoble. Get a spare while available Shipping Wgt. 3 lbs. Price any type (mention when
ordering). Each
MC 432 VHF ANTENNA LOADING UNIT NO. 279. Contains 2 pole, 5 position rotary switch with silver ceramic motching VHF Jransmitter to AN109 antenno with 50 ohm line. Many useful parts. Shipping
Wgt. 2 lbs. Each $\mathbf{\$ 1 . 5 0}$

148 OUTDOOR TELEGRAPH KEY

300 MA SELENIU, M RECTIFIERS
NO 209 R Rated 300 MA at 36
 NO. 209. Rated 300 MA at 36
Volts, complete with mounting
 DUAL SELENIUM RECTIFIER NO. 283. Two units mounted on single bracket, each section rated 15 V . at $1 / 2$ Amp. Shipping
Wg . 1 lb . 2 for $\$ 1.00$
$\underset{\substack{\text { all } \\ \text { LARGEST } \\ \text { all } \\ \text { new-Standard brands } \\ \hline}}{\square}$

(ALL TUBE TYPES IN STOCK NOW—SUBJECT TO PRIOR SALE—PRICES SUBJECT TO CHANGE WITHOUT NOTICE)

NEW GUARANTEED SURPLUS

AUTOSYNS

Pioneer
AY－1，AY－14，AT－20 AY－30，AT－54，

A「゙101D．
etc．

Prices on Request

SYNCHROS

Navy Types
1G，1F，1CT，5G，5F，5CT 5DG， $5 \mathrm{HCT}, 5 \mathrm{SF}, 5 \mathrm{HSF}$ ，

Prices on request

SELSYN SPECIAL

W．E．バS－2950－I．2 Size 5.115 v． 400 cycles．Use on re－ duced 60 cycles． Stock \＃SA－189． Price $\$ 3.75$ each

Kollsman
775－01 Selsyn

Ideal for Ham use as transmitter or re ceiver． $6-12$ volts 60 cycles． 26 volts 400 cycles．Stock Fricess．an each

Phase Shift Capucitor－ 4 stators single rotor $0-360^{\circ}$ phase shift．（Use in complex wave sinthesis．）Stock

DYNAMOTOR

1）－101． 27 v．DC in＠ 1.5 ：H11s．DC output 285 r． ＝SA－187．Price $\$ 1.50$ each．amps．Stock

RATE

GENERATORS
Elineo PM－2 Une to DC per 100 rpm Fs 52000 rmin．Stock EHINCO F－16． 2 Phase AC． 1.3 v ．AC per 100 rpm ． 60 cy ．output at 1800 rpin ．Stock －SA－193．Price $\$ 12.50$ etich．

SWEEP GENERATOR CAPACITOR

Hi－speed bearings．Split stator．Silver plated co axial type． $6-10 \mathrm{mmf}$ ．

Stock \＃SA－167．Price $\$ 2.75$ each．

INVERTER

IIoltarer Cibot MG－153－Input 28 volts DC at 52 amps．Output three phase 115 volts ond output of 26 volts 400 cycles at 250 Stock Coltage and frequency egulated．

Price $\$ 99.50$ each
Latand（1）－93－（102：is）－Input 2.9 rolts DC at 60 amps．Output 115 volts three phase output voliace of 2 i volts 400 creles at on V．A．Voltage ind frequency reculated Desiened fur use with various atopilots． Stock $=$ S．S－209．\quad Price $\$ 79.50$ each

SPERKY PHASE DD．APTOR－G61102 pors tno cy（sed por tharating Stock $=$ SA－194．Price si．fis rirli．

Quotations on request for

 the following inverters．General ELeetrie sAS131JJ11A－（PL－218）
 Woral Flectric 5D21N，33 Holtzer Cabot IGG－199 Wincharker PUZ／AP
Wincharger MG－
Pionerer 19183－1A Pioneer 12117－2 Pioneer 12117－5

ALSO IN STOCK

SINUSOIDAL POTENTIOMETERS SINE COSINE GENERATORS （Diehl Types FJE－43－9 and FPE－43－1） PIONEER TORQUE UNITS KOLLSMAN COMPASS SYSTEMS AIRCRAFT TACHOMETER SYSTEMS AMPLIDYNES－MAGNESYNS DC SERVO MOTORS SERVO AMPLIFIERS GYROS－AUTOPILOTS

LP－21－LM Compass Loops

Stock $=$ SA A -99 ．
Price $\$ 9.50$ each．

G．E． 10 RPM DC Motor 5BA 10 FJ 12

Output 40 lb ．in at 10 rpm .24 V ． $@ 1.1$ a mps
Series－wound． wire reversible．
Frame is common wire．） Ideal for relay servo－systems．Stock \＃SA． 17．Price $\$ 8.75$ each．

$13 /{ }^{\prime \prime}$ Diam．x $33 / 4$ L＂Spline shaft．C．W＇ rotation．Stock \pm SA－46．Price $\$ 3.75$ each．

Blower Assembly MX－215／APG

Jolin Oster C－2P－1L
28 V．DC． 7000 RPM． $1 / 100$ H．P．\＃2 L－R Price $\$ 4.00$ each

BEAM

 ROTATOR1 rpm． 12 v．DC or 40 60 cy．operation．Re－ versible． $3^{1 / 2 "}$ aiam． $5^{\prime \prime}$ lg． $1 / 2^{\prime \prime}$ diam．spline shaft．Ideal for Ham or television antennas．Stock \＃SA－185． Irice s！

Symeliron 10 RI＇M Timing Motor－ 24 V DC．Stock $=$ SA－110．Irice \＄3．75 euch

AC SERVO MOTORS

Pioneer－CK－ 2 and $10047-2 \mathrm{~A}$ for 400 cy Cinlisman－ 7 ib－01 for 400 cycles． 400 cy tind $\angle P-105-14$－3．FPE－25－11（CDA

Prices on Request
110 RPM MOTOR
G．E．5BA 10.1 SD， $27 \mathrm{~V}^{\prime}$ ．＠ $0.7 \mathrm{amps}, 1 \mathrm{oz} / \mathrm{ft}$ torciue 1 ＂哏＂Siam．x $31 / 2 "$ Ig．Operates on

Jnclude 156 for F^{2} ．P handling Price \＄2．95 ea．net

TWX Pat－199．
Wrife for complete listing， or call ARmory 4－3366

4 Godwin Ave．

(i) SEARCHLIGHT SECTION

 Outpnet: 48 am$\underset{\text { peres regulat }}{\text { DC }}$ peres regulatCharges 23 t 24 cell hattery or may be used dirert as
battery eliminator.
The Raytheon Recticharger is designed to
supply current supplycurrent
at constant at constant
voltage to any load within its addition to supply current to a storage battery connected across its load, of suffibattery connected across its
cient amount to maintain full charge. The cient amount to battery is to supply surge current due to sudden changes in load and to supply current above the rating of the
Recticharger for temporiry overload, and Recticharger for temporary overload, and to act as a "stand-by' source of pow
event of commercial power failure.

BRAND NEW
$\$ 69.50$

400 CYCLE SERVO AMPLIFIER
G. E. True ?('Vic'

Brand New
$\$ 29.50$

TRANSTAT VOLTAGE REGULATOR

Max KVA Output

Single Phase.

 Fixed Winding. \qquad $10-60$ Cycles
11.5
$50-115$ ind Commutator Range $\xrightarrow[0-115 \text { Volts }]{\mathbf{o}}$ Max. Amperage With reconnection for 220 Operation: Max Amperage
This Transtat has wide application to confrol temperature, motor speed, illumination, rectifier output, filament supply, vollage compensation, instrund laboratory tion, and general testing and laboratory
use. Net weight (bxclusive $8^{\prime \prime}$ shaft extension) Braud New . $\$ 75.00$

$$
\begin{array}{|c}
\text { LINEAR SAWTOOTH } \\
\text { POTENTIONETER } \\
\text { W.E. No. KS 15138 }
\end{array}
$$

GE BATTERY CHARGER

Input. $115 \mathrm{~V}, 60$ Outpnit. Charges 54 cell battery at from 1 to
pere rate
Complete with Bpare fan and fuses. Brand new in original packing cases. Sing wt. approx pos lbs.
The model 6 RC $89 \mathrm{~F}^{2} \mathrm{Copper}$ Oxide Battery Charger consists of a transformer a secondary reac ide rectifying element, a ventilating fan, control circuits and auxiliary equipment necessary for proper operation. Transformer tapped for taps for adjusting charging rate.
BRAND NEW $\$ 149.50$

MERCURY CONTACT RELAY

Western Electric D-168479

For applieations in all types of high speed switching devices.
Ifing service life, high operating spectis. Iarge current and voltLong kervice lite, high operating speeds. Large current and volt-
abe handling capaeity, uniform and constant operating characagis handling capaeity, unitorm and constant operating charac-
ieristics under adverse atmospherie conditions. Iermeticallytaledi mercury-wetted contacts in gas-filled glass envelope. Free from moisture, dirt, corrosion and atnospheric pressure. Single 1000 hours life at 60 operations per second. Two coils of 700 ohmis, and 3300 ohms. Operating current, coils series aiding- 6.6 milis. Release current. coils
Tecinical Data on request.
Brand New in Original Cartons, $\$ 4.75$

DYNAMOTORS— 500 Watt
 Navy Type CAJO-211444

Input: 105-130 Volts D.C., 6 cmps. Output 13 or 26 Volts D.C. (26 V. at 20 amps. in series of 13 V . at 40 amps. in parallel). Designed ior radio use, fully R.F. filtered, complete with separate Square D line switch box.
BRAND NEW \$59.50

RADAR ANTENNAS

 SO-1 $(10 \mathrm{~cm}$.SO-13
TDY TDY (10 cm.) Radar Repeater A idapters $\$ 95.00$ tro! units with P P P units, TransmitterReceiver units, etc. for SO Radar.
All Brand New Equipment.

ACME HI-VOLT TRANSFORMERS
Primary: 115 V.i. 60 cycles.
Secondary: 8000 V., C.T., 800 V.A. Brand new in sealed cans. . . $\$ 27.50$

MOTOR GENERATORS

Brand New War Surplus Machines Built by Allis Chalmers Co. to U. S. Navy Specifications.
Input: 115 V. D.C. at 14 amps., 3600 rpm. Output: 120V A.C., 60 CY. 1 ph. at 10.4 amps. 1000 Watts continuous duty. Ball bearings.
Splashproof. Fully enclosed. Centrifugal starter.
Frequency adjustable to locd.
Length 26'; Width 127/8'; Height $13^{\prime \prime}$.
Price \$97.50
Same machine but tor 230V. D. C. input.
Same
Price teed. Immediate delivery subject to prior sale.

Prices FOB, Tuckahoe, N. Y.
Subject to Change Without Notice. 20\% With Order on C.O.D. Shipments.

5 WAVERLY PLACE

FT
ELECTRONICRAFT
PHONE—TUCKAHOE 3-0044

TUCKAHOE 7, NEW YORK

RELIANCE Wishes its many friends a VER Y MERR Y CHRISTMAS

FILAMENT TRANSFORMER WESTINGHOUSE \#6D4298 Tested at 34,000 volts
Pri. 115 V. A.C., Sec. 5V @ 6.5 Amp. ONLY
$\$ 8.50$

CHOKES

400 MA. 12 Henry 90 Ohms, 6,000 V.D.C. Test

MINIMUM ORDER 83

RELLANCE menechanuzzace co.

Arch St. Cor. Croskey, Philadelphia 3, Pa.

Telephone RIttenhouse 6-4927

SWITCHES

(iE switchette CR 1070 C 123, SPST, N.C
. $\$.20$ Micro switeh, BZ 2RE, SPDT, amall pin Micro switch, YZ RQ1, SPST N.O., pushi fut $\$ 4$ V $5 \%, 10$ for $\$ 4$ U. S. Instrument Corp, SPDT...35c, 10 for $\$ 3$ ceptional quality, dual wiping heavy silver contacts, $21 / 2^{\prime \prime} \times 27 / \mathbf{c}^{\prime \prime} \times 11 / 2^{\prime \prime}$ deen. Single dinary wafer switch be confused with orAltitude limit switch $S A 1 \mathbb{A} / A R X-1$ completely Oak encosed 2 pole 11 position............... $\$ 1.00$ non-shorting 60 H\&If, 6 pole double throw, 10 ampere ${ }^{125}$

free catalog

Write today for your copy of our listings of thousands of surplus bargains.

RADIO TUBES

NEW！STANDARD BRANDS！

1 K．W．POWER SUPPLY KIT
2500－0－2500 Volts＠ 500 MA
2000－0－2000 Volts＠500 MA
（oll－fllled Xformer from BC610）\＄39．95
1－Swinging choke
1－Smoothing choke
1－Filament Xformer
1—Filament Xformer ．．．．．．．．．．． 9.95
2－2 Mfd．， 3000 v．Condensers，ea 3.45 7.95

2—872A Tubes
2—Plate Caps for 872A
2－Sockets for 872A
2－Hash Filter Chokes
All parts New！Reduced to
\＄79：50 each
each
each
0

SELENIUM RECTIFIERS

Full Wave Bridge Type

INPUT

 up to 18 v AC $u p$ to $18 v$ AC up to 18 v AC up to 18 vaCup to
18 vaC up to 18v AC up to 18 v AC up to 36 v AC up to 36 V AC up to 36 V AC up to $115 v$ AC up to $115 v$ AC up to 115 v AC

OUTPUT

up to	12 DC	3／2 Amp．	\＄0．98
up to	12v DC	1 Amp．	1.95
up to	12 v DC	5 Amp．	4.45
up to	$12 v$ DC	10 Amp．	7.45
up to	$12 v$ DC	15 Amp．	9.95
up to	12v DC	30 Amp ．	14.95
up to	$28 v$ DC	1 Amp．	3.45
up to	$28 v$ DC	5 Amp．	7.45
up to	$28 v$ DC	10 Amp．	12.45
up to	$28 v$ DC	15 Amp．	18.95
up to	100v DC	． 25 Amp．	2.95
up to	$100 v$ DC	． 6 Amp．	6.95
up t	100v DC	5 Amp．	19.95
up to	100v DC	3 Amp．	12.95

OIL CONDENSERS NATIONALLY ADVERTISED				BRANDS	
All Ratings D．C．					
2 x .1 mfd ．	600v	\＄0．35	1 mfd ．	2000v	\＄0．95
． 25 mfd ．	600 v	． 35	2 mid ．	2000v	1.75
． 5 mfd ．	600v	． 35	4 mfd ．	2000 v	3.75
1 mfd ．	600 v	． 35	15 mfd ．	2000v	4.95
2 mfd ．	600 v	． 35	4 mfd ．	2500 v	3.98
4 mfd ．	600 v	． 60	2mfd．	2500 v	2.49
8 mfd ．	600 v	1.10	.1 mfd ．	2500v	1.25
10 mfd ．	$600 v$	1.15	25 mfd ．	2500 v	1.45
3 x .1 mfd ．	1000v	． 45	． 5 mfd ．	2500 v	1.75
.25 mfd ．	1000 v	． 45	05 mfd ．	3000 v	1.95
1 mfd ．	1000 v	． 60	.1 mfd ．	3000 v	2.25
2 mfd ．	1000v	． 70	． 25 mfd ．	3000v	2.65
4 mfd ．	1000 v	． 90	1 mfd ．	3000 v	3.50
8 mfd ．	1000 v	1.95	12 mfd ．	3000v	6.95
10 mfd ．	1000 v	2.10	2 mfd ．	4000v	5.95
15 mfd ．	1000 v	2.25	1 mfd ．	5000 v	4.95
20 mfd ．	1000v	2.95	． 1 mfd ．	7000 v	2.95
24 mfd ．	1500 v	6.95	3mfd．	4000v	6.95
． 1 mfd ．	1750 v	． 89	2mfd．	3000v	3.45
． 1 mfd ．	2000v	． 95	2x．1mfd．	7000v	3.25
.25 mfd ．	2000 v	1.05	． 02 mfd ．	12000v	9.95
． 5 mfd ．	2000 v	1.15	．02mfd．	20000 v	11.95

HIGH CAPACITY CONDENSERS
$10,000 \mathrm{mfd} .-25$ WVDC． $2 \times 3500 \mathrm{mfd} .-25 \mathrm{~W}$
$2500 \mathrm{mfd} .-3$ VDC．
$2 \times 1250 \mathrm{mfd}$ ．-10 VDC
$1000 \mathrm{mid}-15$ WVDC
100 mfd ． $\mathbf{2 0} 50 \mathrm{WVDC}$
$4 \pi 10 \mathrm{mfd} .400$ VDC．
4000 mfd － 18 WVDC
$4000 \mathrm{mfd} .-25$ WVDC．
FILTER CHOKES
HI－VOLTAGE INSULATION
8 hy＠ $550 \mathrm{ma} . . .$. ．$\$ 7.95$ 325 hy © 3 ma．
8 hy＠ 300 ma ．
25 hy （3） 160 ma ．
30 hy （a） 70 ma ．
.05 hy（G） 15 amps． $1 \mathrm{hy}(5$ amps．． 200 hy （4） 10 ma 600 hy （4） 3 ma ． 065 hy a 2.5 A ．

\＄7．95	325 hy（a） 3 ma ．
3.95	$1 \mathrm{hy} \mathrm{(G)} 800 \mathrm{ma}$ ．
3.49	10 hy @ 250 ma
2.25	$10 \mathrm{hy} \mathrm{a} 200 \mathrm{ma} . .$.
1.39	10／20 ¢ $85 \mathrm{ma} .$.
7.95	15 hy 잉 $125 \mathrm{ma} . .$.
6.95	15 hy ＠ $100 \mathrm{ma} . .$.
5.95	3 by （ $50 \mathrm{ma} . . .$.
3.49	30 hy Dual（3） 20 ma ．
3.49	8／30 hy（6） 250 ma.
2.49	$10 \mathrm{hy} \mathrm{©} 100 \mathrm{ma} . .$.

500 WATT POWER SUPPLY KIT （Ideal for BC－191 \＆BC－375E）
 1—Transformer－Pri： $105 / 250 \mathrm{~V}$
 60 cyc in 5 v Steps
 Sec： $1120-0-1120 v @ 500 \mathrm{MA}$
 21／2v Cl ＠ 10 AMry （2） $21 / 2$ AMPS ＠． 025 AMPS．．．$\$ 32.50$
 2－Filter Chokes＠$\$ 7.95$ ea．．． 2－Condensers 3 Mfd 2000v
 DC＠$\$ 4.45 \mathrm{ea}$ ．
 15.90

 2－Sockets＠$\$.20$ ea．．
 Extra Special Buy
 \＄49．50

TRANSFORMER－115 V． 60 Cy HI－VOLTAGE INSULATION

 $25-0-525 \mathrm{v}$＠ 60 ma ； 925 v （a） 10 ma ．； $2 \times 5 \mathrm{v}$
 $500-0-500 \mathrm{v}$＠ 25 ma ； $262-0-262 \mathrm{v}$ © 55 ma；6．3v＠ $1 \mathrm{~A} ; 2 \times 5 \mathrm{v} @ 2 \mathrm{~A}$.
$450-0-450$＠ 300 ma ，140－0－140＠ 100 ma
36 v ＠ $1 \mathrm{~A}, 6.3 \mathrm{v}$（G） $5 \mathrm{~A}, 5 \mathrm{v}$＠ $3 \mathrm{~A}, 110 / 220$ Dual．Pri．
425－0－425＠ 200 ma ．150－0－150＠ 100 mar ；40v（ $12 \mathrm{~A} ; 6.3 \mathrm{v}$（G）5A； 5 v （4）3A；110／ Dual Pri．tapped．
$400-315-0-100-315 \mathrm{v}$＠ 200 ma .2 .5 v ＠ 2 A
5 v ＠3A； 6.3 v ＠9A；6．3v；9A

 385－0－385－550v＠6A－PR＇I．110／220．．．
350－0－350v＠ 150 ma ； 5 v ＠ $3 \mathrm{~A} ; 6.3 \mathrm{v}$＠
7．5A；6．3V＠ 3 A
$340-0-340 \mathrm{v}$＠ 300 ma .1540 v ＠ 5 ma ．
$335-0-335 \mathrm{v}$（G） 60 ma .5 v © $3 \mathrm{~A} ; 6.3 \mathrm{v}$＠ 2 A ；
$0-13-17-21-23 v$＠ 70 ma ．－PRI． $110 / 220$

 $250-0-250 \mathrm{v}$＠ 100 ma ； $2 x 6.3 \mathrm{v}$＠4A； 6.3 v ＠ $5 \mathrm{~A} ; 6.3 \mathrm{v}$＠ 1 A .130 © $40 \mathrm{ma} \cdot \mathrm{B} .3 \mathrm{v}$（a 3．5A； 6.3 v ＠ 1 A
1500 O
 24 V （10）6A．
13.5 V CT＠ 3.25 A

$3 x 6.3 v$＠ $1 \mathrm{~A} ; 2 x 6.3 \mathrm{v}$＠ $2 \mathrm{~A} ; 10 \mathrm{v}$ CT © 10 A ；

6.3 v ＠ 1 A ； $21 / 2 \mathrm{v}$＠ 2 M ．
5 v （al 20 A i Dual 110v PRI
$5 v$＠ $20 A ; D u a 1110 v$ PRI $21 / 2 \mathrm{v}$＠ $2 \mathrm{~A} . .$.

6.3 V CT（0）3A； $5 v \mathrm{CT}$（4）4A……．．．．．．．． 4

All Tubes guar： anteed，except for open fila．

 glass，for which wee check before
 we chick shipmrr Please
 Please specify． how to ship．

[^9]
SHIN
 Brand New and Fully Guaranteed

SYNCHROS

If Special Repeater, 115 volts, 400 cy cle. Will operate on 60 cycle at reduced voltoge.-Price $\$ 15.00$ each net.
ICT Control Tronsformer, $90 / 55$ volts, 60 cycle.-Price $\$ 22.50$ each net.
2 JIGl Control Tronsformer, 57.5/57.5 volts, 400 cycle.-Price $\$ 2.00$ each net.
$211 \mathrm{H1}$ Selsyn Differential Generator, 57.5/57.5 voits, 400 cycle.-Price $\$ 3.25$ each net.
5G Generator, 115 volts, 60 cycle.Price $\$ 25.00$ each net.
W. E. KS-5950-L2, Size 5 Generator, 115 volts, 400 cycle.-Price $\$ 3.50$ each net.
Size 5 Generator, Army Ordnance Drawing No. C-78414, 115 volts, 60 cycle.-Price $\$ 14.00$ each net.

PIONEER AUTOSYNS

AYI, 26 volts, 400 cycle.--Price $\$ 4.00$ each net.
AY20, 26 volts, 400 cycle.-Price $\$ 5.50$ each net.
AY30, 26 volts, 400 cycle.-Price $\$ 10.00$ each net.
AY31, 26 volts, 400 cycle. Shaft extends from both ends.-Price $\$ 10.00$ each net.
AY38, 26 volts, 400 cycle. Shaft extends from both ends.-Price $\$ \mathbf{1 0 . 0 0}$ each net.

PIONEER PRECISION AUTOSYNS

AYIOID, new with colibration curve. PRICE-WRITE OR CALL FOR SPECIAL QUANTITY PRICES
AY131D, new with calibration curve. -Price $\$ 35.00$ each net.

GENERAL ELECTRIC D. C. SELSYNS 8TJ9-PDN Transmitter, 24 volts.Price $\$ 3.00$ each net.
8DJll-PCY Indicator, 24 volts. Dial marked -10° to $+65^{\circ}$. - Price $\$ 4.00$ each net.
8DJ11-PCY Indicator, 24 volts. Dial marked 0 to 360°.—Price $\$ 6.50$ each net.

PIONEER TORQUE UNITS

Type 12602-1-A.-Price $\$ 30.00$ each net.
Type 12606-1-A.—Price $\$ 35.00$ each net.
Type 12627-1-A.—Price $\$ 70.00$ each net.

PIONEER TORQUE UNIT AMPLIFIER Type 12073-1-A.-Price $\$ 17.50$ each net.

RATE GENERATORS

PM2, Electric Indicator Company, .0175 V. per R. P. M.-Price $\$ 7.25$ each net.
F16, Electric Indicotor Company, two phose, 22 V . per phose ot 1800 R. P. M.-Price $\$ 12.00$ each net.

B-68, Electric Indicator Company, Drag Cup, 110 volts, 60 cycle, one phase. -Price $\$ 14.00$ each net.

INVERTERS

12117-4, Pioneer. Input 24 volts D. C. Output 26 volts, 400 cycle.-Price $\$ 15.00$ each net.
12117, Pioneer. input 12 volts D. C. Output 26 volts, 400 cycle.-Price $\$ 15.00$ each net.
12123-1-A, Pioneer. Input 24 volts D. C. Output 115 volts, 400 cycle, 3 phase. Voltage ond frequency regulated. 100 V . A.—Price $\$ 75.00$ each net.
153F, Holtzer Cobot. Input 24 volts D. C. Output 26 volts, 400 cycle, 250 V . A., and 115 volts, 400 cycle, 3 phase, 750 V . A. Voltage and frequency regulated.-Price $\$ 150.00$ each net.
WG750, Winchorger, PU16. Input 24 volts D. C. Output 115 volts, 400 cycle, 1 phase, 6.5 amps . Voltage and frequency regulated.-Price $\$ 35.00$ each net.
149 H , Hoitzer Cabot. Input 28 volts at 44 amps . Output 26 volts at 250 V . A. 400 cycle and 115 volts at 500 V. A. 400 cycle.-Price $\$ 39.00$ each net.
149F, Holtzer Cabot. Input 28 volts at 36 amps. Output 26 volts at 250 V. A. 400 cycle and 115 volts at 500 V. A. 400 cycle.-Price $\$ 29.00$ each net.

SPERRY PHASE ADAPTER

Type 661102, 115 volts, 400 cycle. Used for operating 3 phase equipment from a single phase source.Price $\$ 6.50$ each net.

SINE-COSINE GENERATORS

(Resolvers)

FJE 43-9, Diehl, 115 volts, 400 cycle. -Price $\$ 20.00$ each net.

D. C. ALNICO FIELD MOTORS

5067127, Delco, 27 V., 250 R. P. M.Price $\$ 2.90$ each net.
5069600 , Delco, 27 V., 250 R. P. M.Price $\$ 4.00$ each net.
5069466 , Delco, 27 V., 10,000 R. P. M. -Price $\$ 3.00$ each net.
WRITE FOR COMPLETE LISTINGS

D. C. MOTORS

5069625 , Delco Constant Speed, 27 volts, 120 R. P. M. Built-in reduction gears ond governor.—Price $\$ 4.25$ each net.
A-7155, Delco Constont Speed Shunt Motor, 27 volts, 2.4 omps., 3600 R. P. M., 1/30 H. P. Built-in gov-ernor.-Price $\$ 6.25$ each net.
5BA10J18D, General Electric, 27 volts, 0.7 amps., 110 R. P. M.-Price $\$ 2.90$ each net.
5066665, Delco Shunt Motor 27 volts, 4000 R. P. M. Reversible, flonge mounted.-Price $\$ 4.50$ each net.
C-28P-1A, John Oster Shunt Motor, 27 volts, 0.7 amps., 7000 R. P. M. $1 / 100 \mathrm{H}$. P.-Price $\$ 3.75$ each net.

A. C. MOTORS

5071930 Delco, 115 volts, 60 cycle 7000 R. P. M.-Price $\$ 4.50$ each net.
36228, Hoyden Timing Motor, 115 voits, 60 cycle, 1 R. P. M.-Price $\$ 2.85$ each net.

SERVO MOTORS

CK1, Pioneer, 2 phase, 400 cycle.Price $\$ 10.00$ each net.
CK2, Pioneer, 2 phase, 400 cycle. Price $\$ 4.50$ each net.
FPE-25-11, Diehl, Low-Inertia, 75 to 115 V., 60 cycle, 2 phase.-Price $\$ 16.00$ each net.
FP-25-2, Diehl, Low-Inertia 20 volts, 60 cycle, 2 phose.-Price $\$ 9.00$ each net.
FP-25-3, Diehl, Low-Inertia 20 volts, 60 cycle, 2 phase.-Price $\$ 9.00$ each net.

GYROS

Schwein Free \& Rate Gyro type 45600. Consists of two 28 volt D. C. constant speed gyros. Size $8^{\prime \prime} \times 4.25^{\prime \prime}$ $\times 4.25^{\prime \prime}$.-Price $\$ 10.00$ each net.
Schwein Free \& Rate Gyro, type 46800. Same as above except later design. Price $\$ 11.00$ each net.
Sperry A5 Directional Gyro Part No. 656029,115 volts 400 cycle, 3 phase.-Price $\$ 17.50$ each net.
Sperry AS Vertical Gyro. Part No. 644841 , 115 volts 400 cycle 3 phase.-Price $\$ 20.00$ each net.
Sperry A5 Amplifier Rack Part No. 644890. Contains Weston Frequency Meter. 350 to 450 cycle and 400 cy cle, 0 to 130 voltmeter.-Price $\$ 10.00$ each net.
Sperry A5 Control Unit Part No. 644836 .-Price $\$ 7.50$ each net.
Sperry A5 Azimuth Follow-Up Amplifier Part No. 656030. With tube -Price $\$ 5.50$ each net.
Pioneer Type 12800-1-D Gyro Servo Unit. 115 volts 400 cycle, 3 phase. -Price $\$ 15.00$ each net.
Norden Type M7 Vertical Gyro. 26 volts D. C.—Price $\$ 20.00$ each net.
Norden Type M7 Servo Motor. 26 volts D. C. Price $\$ 20.00$ each net.

INSTRUMENT ASSOCIATES

147.57 41st AVENUE

(ID) SEARCHLIGHT SECTION ID

STANDARD D. C. POTENTIOMETER TYPE-MICROMAX

L \& N INDICATORS - CONTROLLERS - RECORDERS

Rebuilt . . . Thoroughly re-conditioned . . . Mechanically, electrically checked and adjusted . . . Instruments shipped ready to put into actual use.

Model S INDICATING $\&$ RECORDING CONTROLLER

Single Point - Curve Drairing, Continuous Line One set adjusttacts 115 V AC MotorFlush mounted metal case Gasketed door.
 $\begin{array}{lll}2000 \\ 2000^{\circ} & \mathrm{FF} \mathrm{C} / \mathrm{A} / \mathrm{A}\end{array} \$ 210.00-1000$

Model S——RECORDER-CONTROLLER H.C.L. Contacts-115 V. AC motor Extra set on-ofr contacts. Range $0-1500^{\circ} \mathrm{FC} \mathrm{C} / \mathrm{A}$
 RECORDING CONTROLLER

Single Point-Curve ous Line Chart speed-one revolu-speed-one revoluOne set Adjustable High \& Low Contacts 115 V ACMO-tor-Flush mounted metal case Gasket-
ed door. RANGES: $0-800^{\circ} \mathrm{F}$ C/A, $700-$
$1400^{\circ} \mathrm{F}$ I/C, $200-$ $\$ 175.00$

> | $1400^{\circ} \mathrm{F}$ |
| :---: |
| $\ldots \ldots \ldots$. |

$\frac{2000^{\circ} \mathrm{C} / \mathrm{A} \ldots \ldots \ldots \ldots \ldots \ldots \ldots}{\text { Model SINDICATING } \&}$

RECOKDING CONTHOLIER

Single Point-Curve Drawing. Continuous Line Two Thermocouple terminal board-Two sets of High-Common-Low contacts for control$C / A, 0-1800^{\circ} \mathrm{F} C / A \$ 210.00$

Model C SINGLE POINT CONTROLLER
 Non Indicating, Non Recording, Open type External relay, High Common-Low Contacts for controlling, 115 V AC motor, Metal case, gasketed door, flush
mount. RANGES: mount. RANGES: O-

$\frac{\mathrm{FC} \text { C/A, } 800-2000^{\circ} \mathrm{F} \text { C/A........... } \$ 135.00}{\text { MODEL S—RECORDER }}$
with alarm feature using relay \& cam operated contacts. Can be used as on-off con115 .

Model S-RECORDER-CONTROLLER
Single Pen-2 Thermocouples-2 sets H.C.L.

SURPLUS BARGAINS

SELENIUM RECTIFIERS
New-Fresh Stock-Not over 6 mos. old. Full wave bridge... single phase. . resistive inductive load ㄷ..
conservative design.

	R.M.S.	Max. D.C. Output at $35^{\circ} \mathrm{C}$		Price
5B-1.	.. 24.			
5B-1	24	18 V (3) 5.2		6.73
10B-1	24	18 V (3) 10		
18-1	24	19 V (2) 1.6		4.04
168-1	24.	19 V (3) 18		16.40
24B-1.	.24.	18 V (13)24		23.
-2	48	37 V (2) 1.2	A.	7.21
$3 \mathrm{~B}-2$	48	37 V (3) 3.1	A	9.6
5B-2		. 37 V (1) 5.2		13.3
108-2	48	37 V (4)10		17.1
168-2		37 V (9) 16		30.
$24 \mathrm{~B}-2$	8	37 V (3) 24		44.67
$5 \mathrm{~B}-6$	144	110 V (3) 5.2		35.70
2B-6	144	112 V ¢ 2.4		21.86
18		114 V (3) 1.2		17.34
2B-7	168	131 V (2) 2.4		25.51
1B-7	168	133 V (13) 1.2		68
5B-7		133 V (23) 5.2		41.10

RECTIFIER TRANSFORMERS
PRI-105/110/115/120 V.-50/60
sEC-18V @ $2.5 \mathrm{Amps}4$ lbs.... 18 V @ 2.5 Amps......
18 V Ampa.....
18 V @ 10 Amps..... 18 V @ 10 Amps....
18 V @ 25 Amps.... 18 V @ 50 Amps....
18 (a) 50 Amps. 30 lbs...... 14.95

$\begin{array}{llll}36 \mathrm{~V} \text { @ } 10 & \text { Amps....... } 20 & \text { lbs....... } 10.95 \\ 36 \mathrm{~V} \text { @ } 25 & \text { Ampt...... } 30 & \text { lbs } 22.50\end{array}$
PRI-115 Volts-50/60 Cycles
Open Frame Construction
sEC- $135 / 145 / 155 / 185 \mathrm{~V}$ @ .5 Ampe 5 lbs . $\$ 5.25$ $135 / 145 / 155 / 165 \mathrm{~V}$ @ 1.5 Amps 15 lbe. 7.95 $135 / 145 / 155 / 165 \mathrm{~V}$ @ 2.5 Amps 25 lbs .13 .50 $135 / 145 / 155 / 165 \mathrm{~V}$ @ 5 Amos 35 lbs. 24.50
HIGH VOLTAGE CAPACITORS
1 MFD 20 KV DC $18^{\text {r }} \times 1313^{\prime \prime} \times 5^{\prime \prime}$.
 Cap. ${ }^{\prime \prime}$ dila. $x 7^{\circ}{ }^{\circ}$ high.............................. 12.50 Cap. Volts Helght Width Length Price

HEINEMAN CIRCUIT BREAKER

 35 Amp, 120 V AC, Curve 2, CAT, AM $1510 \mathrm{R}-35$ 1.5 Amp. 117.5 V AC. Instant Trip...... $\$ 1.75$

WESTON Model 622—New!

D.C. Portables... $1 / 2$ of 1% accuracy . . . High sensitivity Moulded bakelite case... A famous instrument at a real low price.

WHSE PORTABLE GALVANOMETER

Type PX-12-7 M.A. movement, special scale, solid
connecting terminals, conconnecting terminals, contains a volt internal ce moved for conversion to DC AMMETERS \& VOLTMETERS, with leather case \& canvas carrying strap.

A buy at $\$ \mathbf{4 . 9 5}$
GE TYPE DO 50 DC AMMETER

 SPECIAL SCALE, CAN BE USED
EXT. SHUNT FORANY RANGE
BAKELITE CASE

Price.
10 for $\$ 27.50$
GE TYPE DO 50 DC VOLTMETER
3 VOLTS FULL SCALE, 100 OHMS $1 V$, SPE-
CIAL SCALE, SAMEDIMENSIONSAS ABOVE, BAKELITECASE

Price 10 for $\$ 27.50$

MICROVOLTER-FERRIS Model 20B

.2 to 100,000 microvolts output, continuously variable. operates on $115 \mathrm{~V}, 60$ cycle AC from 455 K . C . to 22 M.C. . .. with or without 400 cycle 30% modulation . . . frequency may be varied $\pm 2 \%$ by scre wdriver adjustment.
$\$ 10000$

GE STEPDOWN TRANSFORMER
PRI $115 / 230 \mathrm{~V} 60$ cycles.
SEC 32V. Rating. 5 KVA isolat. duty.
Your Price
$\$ 7.50$
STEPDOWN TRANSFORMER—SPECIAL
Made by GE . . . heavy duty . . . considerable over-design . open frame ideal for rectifier application...size 3 化" $\times 3$ 化" $\times 4$
SEC-15 V (10 12 amps. . a buy at.... $\$ 3.75$ SEC-15 V. © 18 amps $\ldots .$. a buy at.... $\$ 3.75$

POWER TRANSFORMER
Pri.-440/220 V 60 Cy Sec-125/115/105 V. Rating 8 KVA RCA Open construction. Bracket mounted, pri sec terminal board. Overall dimensions: $5 \% \%^{\prime \prime} \mathrm{H}$. $\times 7 \frac{1 \% / 2}{}{ }^{\prime \prime}$ W. $\times 8^{\prime \prime} \mathrm{D}$ Mounting Dimensions $6 \% / 8{ }^{\prime \prime} \times 5 \% / 8 "$.
Price
$\$ 12.50$
TRANSTAT-3 K.V.A.

Type RH Input: 115 V , Max. Amps: 26 A. Made as a line voltage corrector 10% of input voltage, or can be connected to give plus 20% or minus 20% of input. Can also be reconnected to be used as an isolated type stepach Output: $0-30$ able secondary.

A Real Buy at. $\$ 18.00$
(Same type but 25 KVA. Input: 103-126 V. Output: 115 V.-2.17 A.)

Price \$6.50

RHEOSTAT			
Ohms	Amps	Size-Diam.	$\underset{\text { Price }}{ } \mathbf{\$ 2 . 5 0}$
$.87$			$\begin{array}{r}1.75 \\ \hline 1.95\end{array}$
$\stackrel{10}{22}$	9.2 ${ }^{\text {4.3-3.1 }}$	${ }^{14 *}$	6.90
30	1.7- 7	2315	1.50
32	${ }_{1}{ }^{1} .4$	31/20	4.95 2.50
50	1.11	${ }^{\prime}$	2.50
. 75	3.5	${ }^{6}$	7.50 2.95
100	1.25	${ }^{11 / 4} 0$	$\begin{array}{r}2.95 \\ 7 \\ \hline\end{array}$
250	2.5- . 51	6^{6}	7.50

STRUTHERS-DUNN RELAYS

D.P.S.T., Normally open, $115 \mathrm{~V}, 60 \mathrm{Cycle}$, AC coil, 30 Amp. contacts, fibre base with ${ }^{4}$ holes for mounting. Dimensions, $4 / 2$
3%
3

ALL PRICES INDICATED ARE FOB OUR WAREHOUSE NYC. SHIPMENTS WILL BE MADE VIA RAILWAY EXPRESS UNLESS SUFFICIENT POSTAGE IS INCLUDED OR OTHER INSTRUCTIONS ISSUED. WE WILL REFUND EXCESS POSTAGE IN STAMPS.

POWERTRON Electrical Equipment Co.
 117 LAFAYETTE STREET
 Phone: WOrth 4-8610

BIG YALUES m SURPLUS

Inter-Communication Sets Manufactured by Dictograph

 teledhone, household electric current, or radio any two rooms set un fn ans two rooms lout
wish. being limlength of the wire you use. ited nier-Congmunication
 BRAND NEW, Pair $\$ 9.95$

Cotrell System PRECIPITATOR ink and fints of bery large sereen for vont moumt as "Substation Transfornker" 13.200 Volts, 3
phase, 60 es. Sec. $110 / 220 \mathrm{~V}, 75 \mathrm{KVA}$, original
"'0st $\$ 7,000$.
Like New price $\$ 775$.

MOTORS

General Electric Motors: TYpe 18288: 6\% H1P: no
 Ijearings. Brand seve in orighal faciory cases.

G. E. Motor Starting

Type 11 k 280602

 case. $17^{\circ} \times 15^{\circ} \mathrm{x}$
10°. 13 rand New in original factory $\$ 9.90$

General Electric

Automatic COMPENSATOR

"TRANSTATS" ${ }^{\substack{\text { Ameftron } \\ \text { votitge }}}$ Voltage
Regulator

$11.5 \mathrm{KVA}: 50 / 60$ cy. Commitator lange $0-115 \mathrm{~V}$.
Ahx. Amp. 100 . Can be recomnected for 230 volts alax. Amp. 100 . Can be recommerted for 230 volts
BRAND NEW

MOTOR GENERATORS

Built by Allis Chalnıers to
U. S. Navy Specifications
 III. 4 Amperes. With resistive control of iontage out. wht and frequency built-in and with Centrifugal automatic controller built-in, permitting lnesstart npera$\$ 100$

OUTDOOR TRANSFORMERS

\$120
Sitme machine for 230 Volts.

DUST COLLECTORS

Thist machines, manuractured by the Torit Dtfg.
 220/440-3-60, 3475 R1PM, and the entire imit is homsed in a heavy steel case with lourres fir dust
intare.

price $\$ 100$.

TRANSFORMERS

West, Dist. Trans: Brand Now (ommplete with oil
 Pennsylvania Air-Cooled Transformers 10 KVA: New. Inshated wimfinks, 2n0/110 Volts. lrand Westinghouse Air.Cooled Transformers-igiv/230. 230/115 volts, $11 / 2$ KVA, Type Jli, Hrand $\$ 21.90$
Westinghouse Transformers- $460 / 2 ; 30-230 / 115$ volts,
I KVA. Sir Cooled. Tyoe Jll. 13 rand Now... $\$ 17$

CONTINENTAL MOTOR GENERATOR SETS

f1/2 KVA: 1800 Speerl, Tall Bcarings. Input: 220 Volts, Di, Output: I's Folts, Ar, single finase, field rherstat and push button station. Rebuilt-some os new PRICE
$\$ 490$
Bendix Autosyn, Type AT-101-1): Input: 26 Volts, single the too cre, tis mils, 36 watt 0, Can be drain of 7 m mils and . watts. Ford Instrument Synchro Genorators, Twle 5G:

 thore comecterd tokether work perfectly on 60 cyc. GE Selsyn 2JIFI: same as alove hut operates on
 inntor. 91 volts per plase. 2.5 watts, 2 pole. Stall Winf RPM1.

General Electric Type IRT

 3 PHASE INDUCTION VOLTAGE REGULATORPRICE $\$ 83.50$

INVERTERS

Electronic Laboratories Inverters; Type 262; 250 watts, maximum: 110 voles, 1PC, input to deliver 110 Volts, AC, 00 evcles, Brand New but $\mathrm{Ehop}-$ ART Inverters: 6 Volts DC to dellver 110 volts AC: 85 watts, maximum. brand new $\because . .$. ATR Inverters; 6 Volts DC to deliver 110 Volts, AC; 85 watts maximum, Brand New, Price sition

Westinghouse Watthour Meters
True Cs, $2+0 y^{\prime} / 00 \mathrm{cs} / 1$ ph 15 Amp., 3 Wire $\$ 12.50$ Type Cs, $1: 20 \mathrm{~V} / 60 \mathrm{cy} / \mathrm{l} \mathrm{ph} 15 \mathrm{Amp.}$,2 Wire, $\begin{gathered}\$ 12.50 \\ \text { new } \\ \$ 9.50\end{gathered}$ Type ('. $120 \mathrm{~V} / 60 \mathrm{cy} / 1 \mathrm{ph} 15 \mathrm{Amp}$.2 Wire, $\begin{aligned} & \text { new } \\ & \$ 9.50\end{aligned}$
Ford Instrument Synchro Generator, \mathbf{Z} G, MK111 Arma Coro. Synchro Differential Grice $\$ 16.50$ Arma Corp. Synchro Difrerential Generator, Diehl Synchro Transmitter, Type Ci8414 115 Volts Western Electric Motor, kS8i24, 20 VAC, 200 Cps,

 Volts. if Amps. 5000 R1 MPrice $\$ 2.00$ Elinco AC Generator, Mrpe 1 . 10 in phase, 1.3 Volts

 Emerson Electric Motor, Style 1010212 Price 24 Volts G. E. Pormanent Magnet Generator. 160 . Price $\$ 8,95$
 G. E, Amplidyne, Mol. JADlisilizo, input 115 250 Volts, 0.6 Amps. 150 watt, 3450 Rhio orput
tinuous tins tinuous duty Amps. 150 watt, 3450 R1'M, con-

IMPOSSIBLE TO LIST ALL OF OUR ITEMS AND COMPONENTS. TELL US YOUR NEEDS.
All prices F.O.B. Boston. Orders accepted from rated concerns on open accounts. Net 30 days.

Dept. E-12, 110 Pearl Street, Boston 10, Mass.

(Ti) SEARCHLIGHT SECTION TiP

HIGH VOLTAGE MICA CAPACITORS * *

** All ratings "working-voltage.

High current.

MEGOHM METER
Industrial I nstruments
Model
$2 A U$
Mod input. Direct reading from meter. Can be extended $4^{\prime \prime}$ to 500000 be extended with external sunply. Sloping hardwood Cabinet $15^{\prime \prime} \times 8^{\prime \prime} \times 10^{\prime \prime}$. Blus new with tubes parts running spare tubes. Great value only $\$ 69.95$.

SPERTI RF
VACUUM SWITCH
9200 volts peak. 8 amps. Used as
antenna switch in Coilins ART
BRAND new....... 11.75
BR

U. H. F. COAX. CONNECTORS
 UG12U-831R-UG21U-831AP-

8315P.39 ea.
Precision 15 Meg. 1% Accuracy Resistor.
Nontinductive
watt in glass .39c each; 10 for $\$ 3.50$.

MIDGET VARIABLE BARGAINS

 $\begin{array}{ll}\text { Hammerlund MC } \\ \text { Hammerlund } & \text { MC } \\ \text { 320S }\end{array}{ }_{320}^{250} \mathrm{mmir}$. Hammerlund APC 100100 mmif . Bud MC $913 \quad 35 \mathrm{mmin}$. Per Section Hammeriund HF 15015 mmf
H. V. VARIABLES

[^10]WE BC 1091A-Radar RF unit-with magnetron. atc., in pressurized tank

50 MICROAMP METER

This is the exact meter utilized in the General Electric model YMW-1A LabType Unimeter.

50 Microamps Movement $+2 \%$
2500 Ohms Resistance $+2 \%$
Knife-Edge Pointer
Uncrowded Multi-Range Scale
Uncrowded Multi-Range Scale
$4 \times 41 / 2^{\prime \prime}$ Black Bakelite Case
50 Microamp scale available at 25 c additional

BRAND NEW only $\$ 9.75$ ea.

METER SPECIALS

2", GE 0-30 amps, D. C
2", GE 0-1 amp RF (internal thermo)
2', $^{\prime \prime}$ GE 0.5 ma (amp scale)

2", Gruen O-3V DC (1000 ohms-voit)
$2^{\prime \prime}$, GE O-30V DC (1000 ohms-volt)
${ }^{2}$ ". Weston $150-0-150$ Microamp
$3^{\prime \prime}$ Westinghouse 0-50 amps. AC
, Triplett $0-75$ amps. AC
, WE 0-80 ma DC
$3^{\prime \prime}$ GE 200-0-200 volts DC
$3^{3 \prime}$. WeClintock 0-1 ma. ${ }^{\text {ma }}$
$3^{\prime \prime}$ Westinghouse $0-20 \mathrm{ma}$ DC
$3^{\prime \prime}$ GE $0-15 \mathrm{ma} \mathrm{DC}$ (square)
$3^{\prime \prime}$ Westinghouse $0-150 \mathrm{~V}$ AC
2.95
2.95
1.95
2.49
2.95
2.45
2.95
2.95
3.49
4.95
3.95
2.95
2.95
3.95
3.95
3.95
3.95
3.95

WESTINGHOUSE

RUNNING TIME METER
$0-99,999.9$ hours. $3^{3} 1 /{ }^{\prime \prime}$
quare Bakelite Case. 110 V 60 Cycle. Brand New. . 7.95
voltage Regulated Power Supply-Input 110 v. 60 ey. Delivers 150 v. DC-Well filtored (3 chokes).
uses VR 150 and 6×5. Has extra 6.3 v. winding.
 Swell for coils. ireq.
tubed but food.
W. W. POWER RHEOSTATS

25 Ohms 25 Watt.
300 hms 50 Watt
50 hmms 50 Watt
50 hmss 50 Watt
150 ohmis 50 Watt
150
Dual 200
0
AN/APT-2 AIRCRAFT RADAR

JAMMER
425.750 mes. Contains 10 tubes: (2)-703A (2)$6 A C 7{ }^{807}$ (2)-6AG7- (2) $5 R+G Y$ (1) -2×2 (1) 931 A Unit has blower motor and
400 cycle Dwr suply com${ }_{\text {plete }}^{400}$ cycle with ${ }^{\text {PWr }}$ all $\begin{gathered}\text { supply } \\ \text { tubes } \\ \text { comt. } \\ \text { etc. }\end{gathered}$ BRAND NEW.. $\$ 19.95$ each

PHASE SHIFT CAPACITOR

1-196-B SIGNAL GENERATOR $\mathbf{1 7 5 - 2 2 0} \mathbf{M c s}$. With Tube and Carrying CASE, $\$ 5.95$.

STEPDOWN TRANSFORMER

WIRE WOUND RESISTORS

5 Watt type AA. 20-25-50-200-470-2500-

10 watt type AB, 25-40-87-400-470-1325
$1900-2000.4000$ oh ms
$20.70 \cdot 100-150.300-750$
20 watt type DG. $500-70-100-1$
10000-16000-20000-30000 ohms
30 watt type $\mathrm{DI} .100-150-2500 \cdot 3000 \cdot 4500-$
$5300-7500-18000 \cdot 40000$ ohms
1 \% PRECISION RESISTORS
200-2500-5000-8500-10000 ohms S. 3 ${ }_{100000-750000-1}$

HIGH VOLTAGE—HIGH CURRENT PLATE
 A $\quad \begin{gathered}\text { windings. Buitt to rigid } \\ \text { Navy specs by Amertran. }\end{gathered}$ Nayy specs by Amertran.
Suitable for broadcast transmitters, induction heating.
$10^{\prime \prime} \times z^{\prime \prime}$ etc.
s.w.t.
Size
$1250^{\prime \prime}$
Ibs.
 $\$ 67.50$ each

MEDIUM CURRENT PLATE
As illustrated above. $1500-0-1500$ volts at 600 ma 78 lbs. ${ }^{\text {Pri. }}$..................................... $\$ 32.50$

DAVEN AUDIO FREQUENCY METER

Direct readings from $\mathbf{0 - 3 0} \mathrm{KC}$ in 4 separate ranges on $6^{\prime \prime}$ Weston Model 271 Fan Meter. Built in voltage regulated powar supply operates from 115 volts 60 cycles, has high input impedance. With pick-up can be used to determine frequency in vibration tester. W th suitable mixer can check deviation of
R.F. carrier from standard. Mounts of $83 / 4^{* *} \times 19^{*}$ rack nantl. Complete with tubes. Slightly used but perfect. Only $\$ 59.50$ CWI 60 AAG range calibrator and power supply,
book, cables, etc. 29.50

VARIABLE CERAMICONS

AMERTRAN 500 VOLT PLATE 1000 volt ct at 300 ma. Pri. 110 v. 60 cy. $6^{\prime \prime} \times 51 /{ }^{\prime \prime} \times$

FILAMENT TRANSFORMER

6. ${ }^{6.3}$.

AMERTRAN FILAMENT TRANS.

SOLA CONSTANT VOLTAGE
Transformer, Input 95 to 130 output 115 v. 350 VA.
.9 amps...$~$
RECTIFIER FILAMENT
Trans. 2.5 V 10 A Pri. 110 v. 60 cy. H.V. Insula-
tion. Cased ..
"A POWERFUL BABY"'
This plate tranisformer built to rigid Signal Corps spec. Input 118 volts. 25 to 60 cycles. Has 2 separate 118 volt primaries and can be used on 110 or milfs. Exceptional regulation even when loaded to 900 mills! Fully cased-4 mitg holes. 37 Ibs, net wt.
$61 / 2 \times 61 / 2 \times 7 \%$. Peak value at 7.95 . 10 for $\$ 70.00$

FILAMENT TRANSFORMER

Two separate 118 volt. 25 to 60 cycle primaries. Can be used on ilt or 220 volts. Secons. Fully encased. $5 \times 41 / 4 \times 5{ }^{\prime} \frac{1}{8}$. Net wt. 10 lls . $\$ 3.75$ each, 10 for $\$ 30.00$.

VERSATILE POWER

These transformers have many uses-filament, isolation, stepdown, bias. etc. Alt have 2 separate primarios for $110 / 220$ volt $25-60$ cycle onera

${ }_{3}{ }^{\text {or parallel. }}$ Choices of Secondaries:

Type 501 - 115 volts 500 mills and 6.3 voits 5 amps. Type 505-115 volts 900 mills and 6.3 volts 2 amps. Type 502-0.70-75 volts at 2.5 as 阴. ($35-37 \mathrm{v}$. in series).
 Your cost any type. 10 for $\$ 17.00$

PEAK ELECTRONICS CO.

188 Washington St., New York 7, N. Y.

(ID SEARCHLIGHT SECTION

STYLE "AA"

STYLE "D"

SPECIAL LOW PRICES FOR IMMEDIATE SALE AND DELIVERY
We have literally hundreds of thousands of these top quality standard type transmitting mica condensers in stock for immediate delivery at a fraction of their original cost. Every condenser is brand new and carries the name of a fine nationally known manufacturer.
Despite the unusually low prices, these mica condensers, like all Wells Components, are fully guaranteed. Be sure to order sufficient quantities for your requirements.

$\begin{aligned} & \text { Cap } \\ & \text { Mfd } \end{aligned}$	Wrkg. Volt.	Price Each	$\begin{gathered} \text { Cap } \\ \text { Mf } \end{gathered}$	Wrkg. Volt.	Price Each	$\begin{aligned} & \text { Cap } \\ & \text { Mfd } \end{aligned}$	Wrkg. Volt.	Price Each	$\begin{gathered} \text { Cap } \\ \text { M } \mathrm{fd} \end{gathered}$	Wrkg. Volt.	Price Each
STYLE "AA" CONDENSERS			$\begin{aligned} & .01 \\ & .01 \end{aligned}$	2500	1.60	. 005	1250	. 45	. 001	600	Each .
. 04	1000	\$3.50	. 0125	6000	1.95 2.00	. 00051	600 2500	. 35	. 0012	600	. 30
. 02	3000	4.50	. 02	3000	1.70	. 0051	2500 1200	. 65	. 0015	1200	. 35
. 002	35000	15.00	. 025	2500	1.60	. 0055	$\stackrel{1200}{ }$. 45	. 0018	1200	. 35
STYLE "A" CONDENSERS			. 047	2500	1.75	. 00556	1200	. 65	. 002	2500	. 40
			STYLE "C" CONDENSERS			. 006	2500	. 65	. 002	1200	. 35
25 MMFD	10,000	\$1.65				. 006	1200	. 45	. 0022	2500	. 25
			. 000005	2500	\$0.40	. 0068	1200	. 55	. 0022	1200	. 40
STYLE "B' CONDENSERS			. 00005	2500	. 40	. 007	500	. 35	. 0022	600	- 25
			. 0001	2500	. 40	. 008	1200	. 45	. 0024	1200	. 25
. 00000425	5000	\$0.80	. 0001	1250	. 35	009	600	. 50	. 0025	2500	. 40
	3000	. 75	. 0001	600	. 25	. 01	2500	. 60	0025	1200	. 30
. 000003	1140 3000	. 75	. 000015	2500	. 40	. 01	1250	. 45	. 0027	1200	. 30
. 00004	3000	. 75	. .0000175	12500	. 35	. 015	1250	. 50	. 003	1200 2000	. 30
. 00009	3000	. 75	. 0000175	1500	. 35	. 015	600	. 35	. 00375	1000	40
. 000091	3000	. 80	. 0002	2500	. 40	. 0175	1200	. 55	. 0039	1200	. 40
. 000107	3500	. 85	. 0002	1500	. 35	. 02	2500	. 65	. 004	2500	. 40
. 0001	3000	. 85	. 0002	600	. 25	. 02	1250	. 45	. 004	1200	. 35
. 00015	6000	1.15	. 00022	2500	. 45	. 02	600	. 35	. 004	600	. 25
. 000015	5000	1.05	. 00022	1250	. 35	. 025	1250	. 55	. 0044	600	. 25
. 00001	5000	. 85	. 00024	2500	. 45	. 03	1200	. 50	. 0043	1200	. 35
. 000175	3000	1.05	. 00025	2500	. 45	. 04	1200	. 55	. 0045	600	. 30
. 0002	1430 AC	1.00	. 00025	1200	. 35	. 04	1000	. 45	. 0047	2500	. 40
. 0002	5000	1.05	. 0003	2500	. 45	. 04	600	. 35	. 0047	1200	. 30
. 000022	5000	1.05	. 00039	2500	. 50	-047	1200	. 50	. 005	2500	. 40
. 00025	5000	1.10	. 0004	2500	. 45	. 047	600	. 40	. 005	1250	. 30
. 00003	3000	. 95	. 0004	1200	. 35	. 056	1000	. 55	. 005	600	. 25
. 00004	5000	1.10	. 0005	2500	. 45	. 067	1000	. 50	. 0051	1200	. 35
. 0004	5000	.95 1.10	. 000051	2500 2500	. 55	. 09	500 1000	. 40	. 00051	${ }^{600}$. 30
. 00047	3000	1.00	. 000575	1500	. 60	. 09	600	. 45	. 00556	1200 600	. 35
. 0005	3000	1.00	. 0006	1250	. 45	1	1000	. 60	. 006	1200	. 35
. 0005	5000	1.15	. 0007	1250	. 45	. 1	600	. 45	. 006	600	. 25
. 000056	5000 3000	1.15	. 00008	1250	. 45	STYLE	CON		. 0068	1200	. 35
. 00056	5000	1.15	. 000085	1000 1200	. 45	STYL	600		. 007	600	. 30
. 000625	3000	1.05	. 0001	2500	. 50	. 000004	600 1250	\$0.20	. 008	1200	.35
. 0007	3000	1.05	. 001	1200	. 40	. 00001	1250 600	. 25	. 009	600 600	.30 .30
. 00075	5000	1.15	. 001	600	. 35	. 00015	1200	25	. 01	1250	. 40
. 0008	5000	1.15	. 0011	2500	. 55	. 00015	600	. 20	. 01	600	. 30
. 000095	3000 5000	1.00 1.15	. 0012	1250	. 50	. 000175	1000	. 30	. 01	2500	. 50
. 001	4500	1.25	. 0015	1200	. 45	. 00002	1200 600	. 25	. 015	1250	. 40
. 001	3000	1.15	. 0018	1200	. 50	. 000025	600 2500	. 30	. 015	600 600	.30
. 001	5000	1.30	. 002	1200	. 45	. 00025	1200	. 25	. 0175	600	40
. 00125	2000	1.10	. 002	2500	. 55	. 00025	600	. 20	. 02	2500	. 50
. 00011	5000	1.35	. 0022	2500	. 60	. 0004	2500	. 35	. 02	1200	:35
. 0015	5000	1.40	. 00224	1200	. 45	. 00004	1250	. 25	. 02	600	. 25
. 0018	2000	1.10	. 0025	1250	. 50	. 0005	1200	. 35	. 022	1200	. 35
. 002	3000	1.10	. 0027	1250	. 55	. 0005	600	. 20	. 025	1600	. 35
. 002	5000	1.40	. 00275	1200	. 60	. 00051	2500	. 35	. 03	1200	. 35
. 002	6000	1.75	. 003	1200	. 55	. 00052	2000	. 35	. 033	1200	. 35
. 0024	5000	1.15 1.50	. 000375	2500	. 60	. 00055	2500	. 40	. 04	1000	. 35
. 003	3000	1.60	. 00375	1000	. 65	. 000056	1200	. 35	. 047	600	30
. 003	5000	1.70	. 0039	1250	. 55	. 00006	1200	. 25	. 047	1200	. 30
. 0004	3000	1.50	. 004	2500	. 60	. 0006	600	. 20	. 056	1000	. 35
. 005	2500	1.40	. 004	1250	. 45	. 00065	500	. 25	. 06	1000	. 40
. 005	5000	1.70	. 0043	2500	. 65	. 0007	600	. 25	. 073	500	. 30
${ }^{.0056}$	3000 3500	1.30 1.45	. 0045	1000	. 45	. 0008	1000	. 35	. 09	1000	. 45
. 0068	3000	1.40	. 0046	1250	. 45	. 00085	1200	${ }^{.35}$. 09	${ }^{600}$. 35
. 008	3000	1.45	. 005	2500	. 60	. 001	1250	. 35	. 1	1000	. 35

This is only a partial listing. Write or wire for information on types not shown and for receiving set micas and silver misas.

We advise distributors to order immediately from this ad. Our standard jobber arrangement applies.

Manufacturers and Distributors: Write for our complete Mica Condenser Listing No. 103A.

SURPLUS ELECTRONICS - CLEARANCE SALE!!!

RADAR
 TREMENDOUS ASSORTMENT Hundreds of major radar components, mostly for navy types, includes power transformers, wave-guides, plumbing of all sorts, magnetrons, cavity chambers, echo boxes, connectors, antennas. Complete SF and SF-1 spares in original factory cases. quirements.

	FREQUENCY METER TS-69/AP Frequency range 400 mc to 1, tho mc, continuous Ideal for labs, schools or for hams experiment ing with edict for civilcrackle finishen meta case, dim: viable lengll coas resonatime cavity with crystal rectifler and 0-20! microam meter, Vecder-Root counter and calibration charts insure extreme tennia, and coax line prolse, with metal carry ment New eruipment
	COMPLETE, EACH $\$ 42.50$

REGULAR STACK SPECIALS!
5-Meter Walkie-Talkie Model Bi-322 Transceiver; simple, popular communications unit. Fret., ringe 5265 mc . Uses only two tules, typess 33 and calibrator circuit. Ranges to 50 miles . decantrator circuit. Range. to ates from single batiory block (not supplied avalable from miry or other temna, batery. Exceltent condition.
PRICE, EACH Telescoping
Antenna for above
$\$ 2.00$
DECK ENTRANCE INSULATORS Bowl and Flange Type
Manutactured by OHIO BRASS CO for Army and Nary use Has heavy galvanized metal hange $87 /{ }^{7 / \text { diameter. porce- }}$
lain bowl set in rubber gaskets, top bell is 6. $4^{\prime \prime}$ in diameter. Brass teed-thru rol 11/2 hell ath thange is $41 / 2$ ". Indivitually NEW, price each
$\$ 2.75$
spare porcelain bowl, only, each \$.75
32 VDC 110 AC CONVERTER
Mfd. by Kato Enginerring, for marine or and ruggedly built for continuous duty Rubber shock mounting on filter case, vith complete input ind output iiltering
Output 110 volts. 60 cycles AC. 225 KVA hut will onerate efficiently on loads up to 00 watts. New units only
PRICE, EACH
$\$ 39.95$
Quantities, 10 or more, each. \$32.00 AMPLIDYNE MG SET
MOTOR $110 / 220,60$ C.A.C.
For Automatic or Remote control of heavy
 G8: Navy tye rG-21ABU Gencrator derated at $3_{4} H P$ RPM-172. Includes capacitor for starting, and instructions for tion can be removed. and entire assembly shortoned to make valuahle $\$ / 3$ H.P. AC
motor. Quantity sufficient to warrant this motor. Qua
PRICE, EACH
$\$ 60.00$

DAK—DIRECTION FINDERS, with AUTOMATIC BEARING INDICATORS. The DAK is a highly engineered shift DF receiver, and this particular model includes an automatic bearing indicator, with stand and operator's seat pedestal, that produces a sharp figure 8 pattern on a large scope tube which is calibrated in degrees. An immediate indication of the direction of the received signal is thereby obtained; eliminating calculation, loop rotation and the possibility of human error in determining exact aural nult paint. the follow, 7-DAK Radio for 5 complete DAK installations plus major component spares, are available: -DAK Radio Receivers, 7-Crossed LooD Assemblies, 5-Sense Antenna Assemblies, (minus Bases), 5-Automatior) Bearing Indicators complete with mounting tables and ganiomets, 5 -Meta chairs (aperatia for mounting table, 6 -Junction Boxes, 9 -Boxes of spares, 20 Reels (250 feet each) of Coaxia cable for Loop to Receiver connection.
PRICE, For COMPLETE LOT
$\$ 3,000.00$

RADIO TRANSMITTERS, RECEIVERS

Immediate Delivery from Stock

RADIO TRANSMITTER T-4/FRC, ${ }^{400}$ Watts Output, Fret. Range 2 to 18 Mc. Operates Prom
 EACH 500.00 RADIOTRANSMITTER T-5/FRC, G00 Watts Out-
 EACH ROWER RECTIFIER PP-I/FRC. Operates frour POWER RECTIFIER PP-IFRC,
$2: 20$
sace
 units, at wilable). rour Aralable, all Sews
 BG-325 Transmitter, 400 W - AI, 100 W.- 12 and A3. 1.5 to 1 s.0 me. M.O. or X'tal control on 6 frequencies. Operates fromill
$220 / 1 / 60 c$. AC. With tubes in excellent condition. PRICE, EACH $\mathbf{\$ 0 0 . 0 0}$
TCR-Radiomarine Transmitter, 125 watts (conservative) A1, A2, \& A3 For slip or shore station radio telephony: Gilanhels in 2 to 3 me band controlled by RF, modulator and power supply (for 110 of $2.11(50 / 60$ cycles AC) in one cabinet. mote control box. EACH $\mathbf{\$ 5 0 0 . 0 0}$ BC-319-A Transmitter. ('W only 300 watts output. Fred. range 4.0 to 13.4 inc. Oper cellent condition. Less tubes. PRICE, EACH
$\$ 300.00$
W'ilcox, 9fi-200. 2-KW RF serction. Iarge cabine with complete RF Pud conad PA shage. Almost nell. hut lacks PA ind uct ivalathle, but can be built. Luess lubes PRICE
$\$ 500.00$ IEC. $8023 / \mathrm{HF}$ Ship Transmitter. 200 walts ullut, $A 1$ and A d. Frepl. range 4.0 to 20 inc. Operates from mur set thot suppled). With tubes, but no audio receiver. $\mathbf{5 0 . 0 0}$ MACKIV SHID THANSNHTTERS. The following Mackay ship-ratio types are 10t-M. 147-M. Some new, most in excellent condition. Write for prices.
IINK FM Tranmmitter Receiver, $\mathbf{7 0 - 1 4 0}$ MC. Model 1498 D : 50 watts output. wall
eiver and 14 V. D.C. power supply, handset. Dim: $34^{\prime \prime} \times 21^{\prime \prime} \times 11^{\prime \prime}$. NEW CONDITION. Complete with tubes, crystals, speial telesconc antenna, instruction book. quoted above does NOTICE: Price quo lude crating or packing. Prife for pack whether export or domestic packing is desired.
BC-620 FM Transmitter-Receiver. Mobile or portable unit main part of SCR-510. Fut and lubes and complete crystals hut less accessories or power supply (op supply). Export packed.
PRICE EICH …................... $\$ 50.00$ BC-603, 604. 683. 684, Transmitters. Re eivers. Main components of SCR-508 28, and 608. 628 FM mobile installations. Price New BC-603 supplied.
K1. Whes BC. $\begin{aligned} & \text { dyna } \\ & \text { sio.00 }\end{aligned}$ PNICE. Used
330.0

PRICE, New BC-604 Transmitter, w/dy BC ubes EXCH BC-684 Transmitter, New w/dynamotor BD-is Switchboards: 12 -position field wit chboards. New and complete, $\mathbf{\$ 6 0 . 0 0}$ SB-23/(GTA-2. Large Airport Switehboard With separate power supply (SB-14/6T) operates from 110 V . AC, 50-60 cycles, to charge telephone batteries and operate switelthoard. Both in handsome meta cabinets. approx. ho hish, wo wa PRICD. New eqp
PRICE. per Switchboard and Power Sup-

MISCELLANEOUS SPECIALS

APQ2 Transmitter, only, with tubes. A1. most Xew Fach $\$ 37.50$ SN-APQ5 Synchronizer, with tubes. $\mathbf{~ A 1}$ -TA-12P t-Channel Aircraft Transmitters, less dynamolor and accessorips. hatellent condition. EACH. $\mathbf{S 4 0 . 0 0}$ NOTICE: Price quoted above does not include crating or packing. Price for packing will be quoted upon specification as to whether export or domestic-packing is desired.

NEW, COMPLETE 10 W. HAND GENERATORS

FOR MARK II. Delivers 162.0 volts at .06 amps , and 3.1 volts at .3 amps , completely voltage - regulated and filtered. NEW units, export packed four to the case, with seat pedestals, cranks, carrying bags, cords. Complete, in 1-case. FOUR, for $\$ 30.00$

PARTS FOR EVERY LABORATORY AND FOR THE SMALL MFGR.

FREE

RECTIFIER OFFER

\#1-This is a full ware bridged selen115 to 130 A.C.
Continuous
duty Output 15 milliani peres at 25 volt peres at 25 rolt.
drop. Less than 25
volt drop if less volt drop if less
current is drawn.
For instruments. For instruments,
relays, etc. One of
each $\$ 10$. these wlll be sent free with each $\$ 10$. ordered
leaving 2400 to sell at 39 c each.

Adjustable to within $1^{\circ} \mathrm{F}$ in range $135^{\circ} \mathrm{F}$, to $185^{\circ} \mathrm{F}$. with seale and knob. Contacts 110 volt. Good for heating wax, compound, in tanks also
oven control. etc.--Quantity in stock: 114 i . Priced at 59 c . eit

TERMINAL
STRIP, 6 TERMINAL

5 x $1^{\prime \prime}$ by $1^{\prime \prime}$ high overall. hard black bakelite mould-
ed, 8 a 32 brass stuls, 12
heary lockwashers. Heavy or light Wring. IIounts flat, insulated for 5000%. 14 bakelite
finger sevarate wires finger separate wires to each
terminal allowing wires to enter either sicle without danger of shorting. Suitable for transmitters, indus. equip. may he aut shorter

\#99A-1600 Mrd. 12 volt: Quantity: 1032: Fery Special at 49 c each.

BRAND NEW NAVY SURPLUS 14 INCH RHEOSTATS

Any voltage up to 600 volts- 9.2 amperes continuous duty - i0 OHBE - EXTRA continuous dut. - 10 LON SHAFT. Can be banked in series
LON or parallea.
\#92A- Fxtra cost feature is linear ampere rating. Every section down to one ohm is wound for same current as the whole Rheostat- 9.2 ampere to 9.2 am pere, no drop. Price- $\$ 5.45$ ea.

\#85-G. E. THYRITE K-522332 (M)
Digmeter 3 in . Thickness $1 / 8 \mathrm{in}$. Hole $1 / 2$ Good voltage regulator, 3rd harmonic gencrator.
Current: at 18 volts: 10 ma . at 23 volts 5 ma . at 18 volts: 10 ma . at 23 volts
20 ma at 29 volts: 40 ma at 36 volts. Rating: 3 watts maximum in air. Quantity: 2.348-Priced at 25 c each.
Ve hare sold these at $\$ 1$. right along
\#82-G. E. THYRITE K-8396832-I. Diameter $17 /{ }^{\prime \prime}$. Thickness $1 / /^{\prime \prime}$. Hole $1 /{ }^{\prime \prime}{ }^{\prime \prime}$. Good voltage regulator, rd harmonic Generator

10 ma at 21 rolts
20 ma at at 28 volts
Rating $11 / 2$ watt maximum in air. . 15 c ea.
\#80-EDISON FIXED THERMOSTAT Hermetically sealed: Explosion proot. 135 above 135 degrees. Sealed in glass. One ampere contacts. Fine for flre alarm system. Another 29c. bargain. Lists for over
$\$ 3.00$. Quantity in stock: 364.

\#12-CARBON PILE VOLTAGE REGULATOR supplied with 30 watt, 50 ohm slide wire adjustable resistor;
the roltage regulator has an the roltage regulator has an
eren $181 / 2$ volt output with a rariable input of irom 21 to 30 volts D.C. The cotl and upper bed niake a very EFFICIENT magnetizer if sup-
plied 80 to 100 volt D.C. and an efficient DEMAGNFTIZER on 110 A.C. The regulator can be disassembled for the
above purvose in less than above purpose in less than 1 ${ }_{a}^{m i n u t e}$ Small magnetic be chuck. Quantity in stic chuck.Special price for both regula-
tor and resistor 89 c

$\begin{aligned} & \text { \#4-300 OHM WIR } \\ & \text { WOUND } \\ & \text { POTENTIOMETER } \end{aligned}$
deep 1 " shaft above threads.
near.
uantity
ce 22c, 5 are
he 200
S

SELENIUM RECTIFIER FULL-WAVE BRIDGE Up to 90 volt A.C. input, 20
plate, output, $150 \mathrm{~m}, \mathrm{a}$. continuous duty. Special \$1.35 each. Only 280 arailable

```
#76-60 DEGREE
    FAHRENHEIT
    THERMOSTAT
```

Fixed thermostat. Closes at 60 degrees and opens at 65 degrees. 10 ampere contacts.
Snad action. Made by Klixon. Snap action. Made by Klixon.
Fxcellent for auto heater ol Quantity in stock: 2.000 .
trol. Quat -We are closing these out at 22c. each. less quantity dis-
counts.

\#79A-HEATER VULCAN D5

IRing $2^{\prime \prime}$ O.D. $1^{\prime \prime}$ I.D. $1^{\prime \prime}$ thick, pully IRing $2^{\prime \prime} O . D .1^{\prime \prime}$ I.D. $1^{\prime \prime}$ thick, fully
armored, with upstanding porcelain bushine insulators $1 /{ }^{n}$ " hing porcelain terminal leads. 35 W .55 V ; designed for two in series on iloV. Excelleat for small componnd heaters, wax
heaters, small enough to hold and
pour from pour from, Liquid-proof design small installed in any pot or ladle in stock; 2,332. Priced at 10c. each.

NON-INDUCTIVE RESISTORS

Quan.	Value	ERRULE Wattage	Length	Price
157	$2 \mathrm{Ohms}$	15	Length	Price
170	10 Ohms	15	$21{ }^{\text {2 }}$	\$.15
42	10 Ohms	120	95.	4
34	15 Ohms	120	$98{ }^{\circ}$. 45
360	25 Ohms	15	$21 /{ }^{\prime \prime}$.15
624	40 Ohms	20	3°	.20
58	150 Ohms	120	95.	.45
16	500 Ohms	15	215*	16
112	500 Ohms	90	74\%	. 40
204	800 Ohms	120	95.	4
132	1000 Ohms	15	23.	45
160	2000 Ohms	15	23%	15
112	4000 Ohms	20	3	. 20
256	9000 Ohms	35	432	. 25

 FERRULE

| 880 | 1.3 Ohms Type CX | 8^{\prime} | .45 |
| :--- | :--- | :--- | :--- | :--- |
| 656 | 18 Ohms Type A | $23 /$ | .15 |

DONGAN Navy Type Ignition TRANSFORMER

This is a 115 watt enclosed job with a 460 volt primary Can you adapt it 5000 volt at 20 ma .

Special \$2.45 each

FAMOUS ROBSON-BURGESS CONDENSER TESTER AND CIRCUIT CHECKER

Attractively cased item for use on 110 A.C. or D.C. consisting of 125 volt full-wave bridged rectifler. re.
sistor switch and neon light with six foot line-cord and sistor switch and neon tlght with six foot line-cord and
plug and test leads. This is one of the best inexpensive plug and test leads. This is one of the best inexpensive
condenser testers. because it actually puts D.C. current into the condenser.

Regularly $\$ 7.95$.
Original cartons.
 York. 20% deposit on C.O.D. orders.

RADIOMEN'S HEADQUARTERS
 WORLD WIDE MAIL ORDER SERVICE ! !

BUFFALO RADIO SUPPLY, ONE OF AMERICA'S LARGEST ELECTRONIC DISTRIBUTORS, IS IN A POSITION TO SUPPLY MOST OF THE REQUIREMENTS OF FOREIGN PURCHASES, DIRECTLY FROM ITS GIGANTIC STOCKS OR THOSE OF ITS AFFILIATES. EXPORT INQUIRIES ARE SOLICITED BOTH FROM EXPORT HOUSES AND FROM FOREIGN GOVT. PURCHASING COMMISSIONS HERE AND AbROAD. EXPENSE CAN bE REDUCED AND REQUIREMENTS FILLED WITH A MINIMUM OF DELAY BY CONTACTING BUFFALO RADIO SUPPLY INITIALLY.

 $\$ 49.95$

No possibility of good tubes reading "Bad" or bad tubes reading "Good" as on dynamic conductance testers or other ordinary enission testers. Attractive panel and case equal to any on the market in appearance . Large 412 "
 tubes to be testerl refardless of location of elements on tube base. . Indicates gas content and detects shorts or opens on each individual section of all loctal, octal and miniature tubes including cold cathode. nagic eye and voltage regulator tubes ins
conductance testers or other
Model "C",-Sloping front counter case.
Model "p"-Handsome hand-rubbed portable case

GENERAL ELECTRIC 150 WATT TRANSMITTER

 Cost the Government $\$ 1800$ - Cost to You-BRAND NEW-100.00 This is the famous transmitter used in U.S. Army bombers and ground stations, during the war. Its design and construction hate been proved in sersice, hinder all kinds of conditions. atuning unit has its own oscillator and power is covered by means of pluger, and antenna tuming circuits-ail designed to operate at own effiliency and pithin jts particular frequency range. Transmitter and accessories are finished in black crackle, and the milliammeter, volt meter, and RF ammeter are mounted on the front panel. IIere are the specifications: FIREQUENCY IRANGE: 200 to
500 KC and 1500 to 12500 KC . Will operate on 10 and 20 neter bands with sifight modification for which dlagrams are 500 KC and 1500 to $12,500 \mathrm{KC}$. (Will operate on 10 and 20 neter hands with sight modification for which dlagrams are ized class 'G", stage, using 211 tube and equipped with antenna coupling circuit which matches practically any length

SCR-274N COMMAND SET

The greatest radio equipment value in history
A mountain of valuable equipment that includes 3 receivers that use plug-in coils, and that consequently can be changed to any frequencies desired without conversion. Also included are two Tuning Control Boxes; 1 Antenna Coupling Box; four 28 V . Dynamotors (easily converted to 110 V . operation); two 40 -Watt Transmitters including crystals, and Preamplifier and Modulator. 29 tubes supplied in all. Only a limited quantity available, so get your order in fast. Removed from unused aircraft and in guaranteed electrical condition. A super value at $\$ 34.95$, including crank type tuning knobs for receivers.

HEAT GUN

Streandined pistol gip heat gun in vivid reil housing, that ctelivers a powertul 20 cultic Ft. per minute blast of hot air at 160 Fartri hoit. Ordinary blowers have small fan notors, but this has a life-
time-lubricated AC-DC notor of the rugged vacuum cleaner tyme. that produces a lurricane of either hot or cotl air. Perfect tor
hlowing out dirt or dust from radin rhasis, drying out ignition
 radiatwis or water pibes, etc. Warning:-Keep this away irow
your wifter or she will be using it to dry her hair because wh will do
it in half the time of her ordmary hair dryer, to say nothing of her

GENERAL ELECTRIC 15-TUBE TRANSMITTER-RECEIVER SET

 eetric 316, as inal. Reeriver uses 10 tubes in-
 externai efruipment when actuated hy a receivelid signal from a similar set elsewher. Originally designed
 unit for 110 AC , using any supply capable of tU0 IDC at 135 MA . The idical unit for use in mobile or
stationary serviee in the Citizen's Jhadio Telephone lland where ho license ir necessary. Instructions and stationary service in the citizen's kadio Telephone liand where ro lieense ive necessary. Instructions and
diagrams supplicd for runnitg the RT -1248 transmitter on either code or rolve in AM or FM transmission or recention, for use as a nolulie public address system, on so to 110 . Mc, as an FMI broadcast receiver,
as a Facsinilie transmitter or receiver, as an Anatcur Telerision transititr or receiver for remote conas a Facsinilie transmiter or receiver, as an Amatcur Telerision transmitter or receiver tor renote con-
trol relay hookups. for Geiger-Mueller counter applications. Order our RT 048 for only $\$ 29.95$, or two for $\$ \$ 3.90$. If desired for marine or mobile use the dynanotor which will work on cither 12 or 24 V DC and

Our PE 109 32-Volt Direct Current Power Plant

This power plant consists of a gasoline engine that is direct coupled to a 2000 watt 32 Volt LC generator. This unit is ideal for use in
locations that are not serviced by coninercial nower or to run locations that are not serviced by commercial power or to run
nany of the surplus items that require $24-32$ volts DC for their many of the surplus items that require $24-32$ volts $D C$ for their
operation. The price of our $\mathrm{PE}=109$ power plant tested and in good condition is only $\$ 799.95 \mathrm{~F}$. O . R. Buffalo, or we can supply in strictly
 "as is" condition for $\$ 58.95$ F. O. B. New York City. These latter are exactly as recened, in heavy steel-strapped gove. cases. and we are unable to determine if are some of the samie that we have brought to Buffalo for repair if necessary and tastits We do not recommend gambling on the "as is'" condition except for quantity purchasers. We can also supply a converter that will supply 110 v AC from the above unit or from any 32 V DC source for $\$ 12.95$.

COMPRESSED AIR INSTANTLY, Anywhere!!

Portable Air Compressor and storage tank.
lugkedly built of best materials using lifeRuggedly built of best materials using life-
time lubricated ball-bearing on connecting rorl and oil impregnated main bearing on shaft. Unusual desisn forever eliminates valve trouble, the most common fault in
air conpressors. PATENTED unique air air compressors. PATENTED unlque air intake system increases efficiency tre-
mendously over other compressors so that air output is mueh greater than that from larger coinpressors powered by heavier motors. Will deliver approximately 3500 ch. inches of air per minute at maintained
pressure of 30 lbs., or will inflate a 90 lb . truck tire truck tire in less than one although finger-tip adjustment allorrs setting of output pressure at any value, which will automatically be maintalned Works from any $1 / 4 \mathrm{HiP}$. motor. Useful for spraying paints or
lacuuers, disinfectants, insecticides, annealing or brazing with lacuuers, disinfectants, insecticides, annealing or brazing with natural gas. inflating tires, etc. Price $\$ 14.50$ postage prepaid
anywhere in the U. \mathbb{S}. Eficient, conipletely adjustable syphon type spray gun complete with 12 it. of 100 ib. tested hose at ailable for only $\$ 7.75$ with pint container, also prepaid. 25% regulred on all C.O.D. orders. Send for free catalogs of radlo
parts and surplus itenis.

brand NEW

bC-2R1 FREQUENCY METERS with calibrating Crystal and calibration charts. A precision frequency standard that is use tul for innumerable applica tions for laboratory technician service man, amateur, and ex perintenter at the give away

\$10.95 Takes All Three BIG BARGAINS

1. ALUMINUM GEAR BOX $18 \times 8 \times 7$ that contains two powertul electrlc motors and two matched gear trains, 62
gears in all varying in size from $1 / 2$ to 4 inches in diamgears in all varying in size from to to inches in dian-
 lirand new onal FASCINATING, AMAZING SELSYNS. nected together work perfectly on 110 . VAC. Any rotation of the shaft of one selsyn and all others connected to it following unerringly as if the units were connectedirection, by shafting instead of wires. This is true whether you twist the shaft of the master unit a fraction of a revolution or niany revolutions. Useful for indicating the direction of weather vanes, rotating directional antennas, or controlling innumerable overations from a dis-
tance. Complete with diagram and instructions. l'er matched pair

2. HOME WORKSHOP AT BARGAIN PRICE. Accurate and precise ${ }^{2}$ speed guaranteed hohby lathe, the essential machine for the home workshop. Sturdy enough for light
production work or factory standly service. Supplied with ${ }_{56}{ }^{\prime \prime}$ of belting for connecting to any available electric motor or power take-off, such as on a jeep or tractor. Also incraded in this unbelievable offer are such accessories as a $1 / /^{\prime \prime}$ drill chuck with specially hardened tool steel jaws, a 4^{*} electric furnace high speed grinding wheel; a cotton buf-
fing wheel with a large supply of buffing compound, and a $4^{\prime \prime}$ steel wire seratch brish. Your cost $\$ 6,00$. Sole export agent. Distulbutor inulifies invited.

All sales final and no returns unless otherwise specified in ad of item. Right reserved to change prices and specifications at any time.

BUFFALO RADIO SUPPLY, 219-221 Genesee St., Dept. 6-E BUFFALO 3, N. Y.

(T) SEARCHLIGHT SECTION TiP

SELDNIUM RDCTIFIDRS

AND SPECIALIZED ELECTRONIC COMPONENTS

THIS MONTH'S SPECIALS!! VACUUM CAPACITOR
 TRANSFORMER

50 MMFD.
20 KV .
$\$ 4^{95}$

OIL CAPACITOR

. 125 MFD.
27 KV.DC.
With mounting brackers

HIGH CURRENT AMERTRAN
5.1 Voits at 190 Amps. Primary 105/125 Volts

Can easily deliver 250 Amps. Insulation 35 Kr . Test. Approx. Shipping weight 75 lbs.

Full Wave Bridge Types		
Input		put
0-36VAC		*VDC
Typef	Current	Price
B2-150	150 MA .	\$.98
B2-220	220 MA .	1.25
B2-300	300 MA .	1.50
B2-450	450 MA .	2.25
B2-600	600 MA .	2.95
B2-1	1 AMP .	3.95
B2-2	2 AMP.	4.95
B2-3	3 AMP.	6.95
B2-5	5 AMP.	9.95
B2-6	6 AMP .	10.95
B2-7X5	7.5 AMP .	13.95
B2-10	10 A MP.	15.95
B2-15	15 AMP.	24.95
B2-20	20 AMP.	27.95
B2-30	30 AMP .	36.95

Select Proper Capacitor From List Shown Below, to Obtain Higher D.C. Voltages Than Indicated

RECTIFIER MOUNTING BRACKETS For Types B1 through B6, and Type C1......... . $\$.35$ per set For Types B13.. . 80 per set For Types 3B... 1.20 perset					RECTIFIER CAPACITORS				
					$\begin{aligned} & \text { CF-13 } \\ & \text { CF-14 } \\ & \text { CF-15 } \end{aligned}$	$\begin{aligned} & 6000 \mathrm{MFD} \\ & 3000 \mathrm{MFD} \\ & 6000 \mathrm{MFD} \end{aligned}$	10 VDC		
					12 VDC		1.69		
							12 VDC	2.95	
Rectifier Transform	RECTIFIER CHOKES					CF-2	2000 MFD	15 VDC	.98 1.69
					CF-3	1000 MFD	25 VDC	1.69	
All Primaries 115 VAC 50/60 Cycles	Type	Amps. Price			$\mathrm{CFF}^{\text {C-4 }}$	2N3500 MFD	$25 V D C$	3.45	
					$\mathrm{CF}_{\mathrm{CF}-5}$	10000 MFD	$25 V$ DC	4.95	
Type Volts Amps. Price	HY2	. 03 Hy	2	\$2.25	CF-6	4000 MFD	30 VDC	2.49	
XF'15-12 15 12	HY3	. 03 Hy	3	2.9	CF-7	3000 MFD	35 VDC		
$\begin{array}{llll}\text { TXF36-2 } & 36 & 2 & 3.95\end{array}$	HY5	. 02 Hy		2.9	CF-8	100 MFD	50 VDC	. 98	
TXF36-5 36 5 $\quad \mathbf{4 . 9 5}$	HY8X5 5.02 Hy		5	3.25	CF19	500 MFD	500 VDC	1.95	
TXF36-1036 10			8.5	7.95	CF-16	2000 MFD	50 VDC	3.25	
TXF36-1536 $\quad 15$ 11.95	HY10 . 02 Hy		10		CF-17	50 MFD	150 VDC	. 59	
$\begin{array}{llll}\text { TXF36-20 } 36 & 20 & 17.95\end{array}$					CF-9	200 MFD	150 VDC	1.69	
All TXF Types are Tapped to Dellver 32, 34, 36 Volte.	HY12HY15	.125Hy		12.95 13.95	CF-10	500 MFD 100 MFD	$150 V D C$ 350 VDC	3.25 2.25	
		.015Hy			CF-12	125 MFD	350 V DC		

ELECTROLYTIC CAPACITORS		
		Lots
$100 \mathrm{MFD} \quad 50 \mathrm{VDC}$	\$2.20	\$19.00
40 MFD 150 VDC	1.80	17.50
50 MPD 150 VDC	2.00	18.50
8-8-20 MFD 350.150 VDC	4.70	43.00
*20-20 M FD 400,250 VDC	4.50	38.00
10 MFD 4.450 VDC	2.50	20.00
15 MIFD 450 VDC	2.50	20.00
15-15 MFD 450 VDC	3.00	22.00
40 MFD 450 V ¢ 4 ¢	4.20	36.00

METERS	
O-15 MA.D.C. Weston $\$ 5062^{\prime \prime}$ Rd	\$2.95
O-30 A.D.C. Weston Whunt $21 / 2^{\prime \prime}$ Rd., aircraft type	
O-50 A.D.C. Weston $\$ 30133 \chi^{\prime \prime} \mathrm{Rd.}$,	5.50
O-60 A.D.C. West., w. shunt, $21 / 2{ }^{\prime \prime}$ Rd., aircraft	
O-120. A.D.C. West. w, shunt, 2 bs Rd., aircraft	3.25
O-8V.A.C. G.E. 3 \% Round	4.95
O-30 V.D.C. West. $21 / 2^{\prime \prime}$ Rd., aircraft type	2.95 2.95

To avoid shipping errors, kindly order by type \#. All prices subject to change without notice
ATTENTION ! ! !
INOUSTRIALS, EXPORTERS, SCHOOLS
Our engov'T AGENCIES, LABORATORIES
the application staf is at yourserice to facilitate
quirements.
Write for quantity discount on company letterhead. Minimum order $\$ 3.00$. No C.O.D.'s under $\$ 25.00$. 25% deposit on C.O.D. Add 10\% for Parcel Post and handling. Terms: Net 10 days to rated concerns only.

Orders Promptly Filled From Our Stocks

MARINE EQUIPMENT

 Field Telephone Sets> EE-108 Sound powered fleld telephone sets in leather carrying cases with ringer. Equivalent insize andshape to Fili- but is sound powered instead of battery operated. Brand new in original packing. Can be used on ships, oil fields, farms, schools, sugar and rubber plantations \& etc.

8511 RMCA darine Broadcast recejver 80 kc to 550 kc 5 Mc to 22 Mc 10 watt output 16 tubes with spare parts
N'ew. TRC-109B Western Electric small craft Transcetyer 2000 Kc t 03500 Kc 10 watt output 12 colt operation New in original packing with spares. Price $\$ 195.00$ each 12SAZ Mackay Marine recelver 15 Kc to 650 Kc 110 AC-DC 6 Volt Battery operTDE Nory Jransmitters 300 kc to 18000 kc complete with tubes and M. (i. with output of 125 llatis A-1, A-2, 35 Watts
phone 230 Volt DC overation. Original packing new with spares.

1'rice $\$ 795.00$ rit-
Other items Bludworth Binnacle and Standard Arrow direction tinders.

All material is offered subject to prior sale, F.O.B. our warehouse. Terms: Cash.

EASTERN RADIO SALES
150 Broodway New York 7, N. Y. Worth 4-2176

BOONTON 120A VHF CIRCUIT CHECKER

This instrument was developed by the Boonton Radio Corp. to permit checking at VHF: Capaci-
tance. Inductance and complete Resonant Circuits Ideal for Television and FM Tuners, Quality control, etc. Thee Frequency Ranges. Available for immediate delivery.
Catalog price is $\$ 320.00-$ Our price is $\$ 150.00$ f.o.b. N.Y.C. Reconditioned, in good operating condition,
subject to prior sale. subject to prior sale.
THE NATIONAL INSTRUMENT CO. FAR ROCKAWAY, N. Y.

FOR SALE

1—ELECTRA VOICE 1000 watt MODU LATOR using l-(807), 3-(845), 2(250TH), with plate supplies 4-(866A), 2-(866A).
1 -ELECTRA VOICE AUDIO AMPLIFIER 2-(6J5), 2-(2A3), 2-(100TH) with bias and plate supplies

- ELECTRA VOICE AUDIO AMPLIFIER 7 tubes with P.P. 807 output.
All above is INDUSTRIAL equipment.
LEA ELECTRIC EQUIPMENT CO.
359 West Chicago Ave., Chicago, Ill

COMMUNICATION DEVICES CO. offers
 CLEAN EIECTRONIC SURPLUS!

F.M. Point-To-Point RADIO LINK

Our large stocks of SCR-528 (20.027.9 Mc) transmitters and receivers are complete with all components and accessories export packed for immediate delivery, weight 163 lbs. Write for our bulletin describing its minute completeness?

Complete WALKIE-TaLKIES
 Model MAB

Range 2.3 to 4.5 Mc , complete with seven tubes, two xtals, mike, headset, case, antenna, and accessories. Clean, and complete with export packed batteries.

Quantities available.

A few left
 tDE TRANsmITTER

An all-band ($300-18,100 \mathrm{kcs}$) two section transmitter in one steel cabinet complete with tubes and M.G. with outputs of 125 wotts A.1, A-2; 35 watts 'phone. In 115 or 230 Volt DC models. Tested, clean, and complete.

OTHER TRANSMITTERS—

High power RCA and Press Wireless medium frequency transmitters. Quantities of VHF low power transmitters. ALL NEW!

AISO FROM OUR CATALOGUE-

Model SL Radar, NEW; Radio Direc tion Finders complete; Gibson Girls export packed complete; Brand new $6 \& 12$ volt vibrapacks; Various type whip antennas; 220/110 Stepdown transformers all ratings.

WHIP ANTENNAS

AN-131-A, has threaded base, $10^{\prime} 6^{\prime \prime}$ long, folds into 8 interconnected sections for stowing. NEW, each. . \$1.49

Offerings subject to prior sale. Catalog on request.

COMMUNICATION DEVICES CO.
2331 Twelfth Avenue ot 133 rd St. New York 27, N. Y.
Cable: Communidev Tel: WA-6-6606, 7

APR-1 RADAR SEARCH RECEIVER, range $300-4000 \mathrm{mc}$, similar to APR-4 Receiver, 110 volts, 60 cps .
TUNING UNITS TN-19, $1000-2000 \mathrm{mc}$. TUNING UNITS TN-54, 2000-4000 mc.
10 Cm OSCILLATOR BC-1096-B with 30 me pre IF amplifier 1078 B . klystron power supply and 417-A klystron, 110 v . 60 cps , new in transit-case, p/o SCR 584 . $\$ 125.00$

10 Cm TEST LOAD TPS-55 PB/T. $\$ 5.00$
S BAND RECEIVER TRANSMITTER RT-72/UPN-I, less tubes, for battery operation $\$ 100.00$
X BAND VSWR TEST SET TS.12/AP, complete with linear amplifier, direct reading VSWR meter, slotted wave guide with gear driven traveling probe, matched termination and various adapters, with carrying case, new.
X BAND PICK-UP HORN AT-48/UP, with coaxial fitting $\$ 5.00$
X BAND POWER LOAD TS-108/AP, new . $\$ 25.00$

MICROWAVE TEST CABLE, 15^{\prime} RG-9U cable with UG-24U connectors. 15 feet long $\$ 4.008$ feet long. ... $\$ 3.50$

LOSSY CABLE, 10 db at 3300 megacycles, type N connectors. $\$ 3.50$

TYPE N CONNECTORS AND ADAPTERS, UG-10, 12, 21, 22, 24, 25, 27, 29, 30, $58,59,83,86,167,190,201,245$ and UHF Connectors SO-239, PL-259, 83, IAP, UG-266, complete with center contacts, immediate delivery.

RADAR JAMMER, T-26/APT-2, 435-715 megacycles, 110 volts, 400 cps , new, complete with antenna.. $\$ 40.00$

COMPLETE SQ RADAR, $10 \mathrm{~cm}, 300$ yards minimum, max. $3,15,45$ miles. A, B, or P.P. I. presentation, $90-130$ volts, 60 cps .

SD-3 SHIPBOARD RADAR EQUIPMENT, complete with all accessories, operates on 115 volts, 60 cps , new.

SA-1 RADAR TRANSMITTER, Receiver and Indicator, 115 volts, 60 cps , new.

RADAR RECEIVER BC 1068-A, $150-200$ megacycles, individual tuning for the r.f. stages, band widths 4 megacycles, 115 volts, $60 \mathrm{cps}, 14$ tubes........ $\$ 45.00$

GENERAL RADIO PRECISION WAVEMETER, type 724 A , range 16 kc to 50 megacycles. 0.25% accuracy, V.T.V.M. resonance indicator, complete with accessories and carrying case, new. . $\$ \mathbf{1 7 5 . 0 0}$

125/APR ANTENNA \qquad $\$ 5.00$

TS 10/AP for APN-1 $\$ 40.00$ TS 102/AP CALIBRATOR. .$\$ 75.00$ TS 203/AP CALIBRATED SELSYN. $\$ 13.00$ TEST SET I-178 CALIBRATOR.... $\$ 75.00$ TEST SET IE-21-A, for SCR-518A. . $\$ 75.00$ TEST SET IE-19-A, for SCR-522 . $\$ \mathbf{1 7 5 . 0 0}$ TELEFONE TEST SET EE-65-F.... $\mathbf{\$ 3 0 . 0 0}$ SYNCHRONIZER W.E. BCIO43B... $\$ 75.00$ SYNCHRONIZER W.E. BCII55-A. . $\$ 50.00$

MODULATOR W.E. BC748-A, $10 \mathrm{kw}, 1.3$ microseconds, 750-850 PPS, new, less tubes
. . $\$ 25.00$
TRANSMITTER RECEIVER BC800M, new . $\$ 30.00$

MODULATOR BC 1007-A. $\$ 75.00$
RECTIFIER-POWER UNIT, $110 \mathrm{v}, 400 \mathrm{cps}$, PP-4/APQ-2 $\$ 15.00$

HI VOLTAGE SUPPLY, RA-90-A, 110 v , $400 \mathrm{cps} . .$. G0-9 TRANSMITTER, less tubes. . $\mathbf{\$ 1 0 0 . 0 0}$

TRANSMITTER BC-AR-230, new, less coils
W.E. NETWORKS, D-162630, D-162629, D-161637, D-162634. $\$ 1.00$ each.
G.E. DELAY LINE, 4 microseconds 1000 ohms, O-2 mc $\$ 4.00$

TRANSFORMERS, 115 volts, 60 cps primaries: 1. 6250,3250 and 2000 volts, tapped primary $\$ 14.00$ 2. 6250 volts 80 ma, ungrounded, G.E. $\$ 12.00$ 3. 2 secondaries at 500 volts 5 amps each, wt 210 pounds.
.$\$ 50.00$
PULSE INPUT TRANSFORMER, permalloy core, 50 to 4000 kc impedance ratio 120 to 2350 ohms. $\$ 3.00$

PULSE TRANSFORMER, Utah $9280 . \$ 1.50$
VARISTORS WE DI71528, DI71628, D16187I-A. 75 c each.
$0-350$ volts, 1000 ohms per volt meter, Westinghouse NX-35............. $\$ 4.50$

GERMAN LABORATORY RECEIVER, range $80-485 \mathrm{mc}$ covered in tour bands, AM \& FM, precision 100 mc oscillator for frequency calibration, 220 volts, 60 cps, complete with $110-220$ volt transformer.

ELECTRO IMPULSE LABORATORY

66 Mechanic St.,
Red Bank, N. J. Red Bank 6-4247

LIFE LLLCTRONIC SALES
91 Gold St., N. Y. 7, N. Y. Tel: DI gby 9-4154

Now! HIT BACK.. at HIGH PRICES the SENCO way!

Our policy of quantity buying, low overhead, cash sales-ellminating all unnecessary expenses that add to your priceyou. Just check these parts and convince ymartest way!
 SPEAKER Specials
 Nobody but SENCO has these top-quality, precisi prices.
 $\left(\begin{array}{c}(3) \\ (2)\end{array}\right.$
 ${ }_{3}^{3 \prime \prime}$ P.M. -68 oz Alnico
 each ©n
 $O_{1}^{21} 0_{1}^{2}$
 Dnamic 680 ohms field with 6 V 6
 Jynamic 680 ohims held with 6 V. 6
 3.95 compl. 6.95 5.95 compl .
 FOR THIS MONTH ONLY!
 No doubt about it-here's op of the finest speaker made. You're in for a pleasant surprise when see the name. So don't delay-order today!
 $12^{\prime \prime}$ P. M. ALNICO V...Only $\$ 3.95$
 Nationally Advertised
 ASTATIC CRYSTAL MIKE Here's the buy of a lifetime! Microphone comes complete with 7 feet mike cablo, spring cahie pro- tector. PL 55 Plug and interlock-
 Only $\$ 3.95$ Complete

 WHILE THEY LAST! 205! Thyratron Gas-Tetrode Tube
 Only 49c Each
 WESTERN ELECTRIC THERMISTOR
 No. D-163903
 $\$ 1.00$
 OIL FILLER CONDENSERS
 Standard Brand Upright Type. Stand-off Insulator:;
 | | Stand-off Insulator:\% | | | |
| :---: | :---: | :---: | :---: | :---: |
| 4 | Mfd. | 600 | VDC. | c |
| 6 | Mfd. | 600 | VDC. | 699 |
| 7 | Mfd. | 600 | VDC. | 74c |
| 8 | Mid. | 600 | VDC. | 796 |
| | Mfd. | 600 | | 89 c |

 CRYSTAL HAND MIKE Just take a look at this price and you'll see why the "SENCO WAY", is the sroartest way! Mides are famous. nationally advertised cable and standard plug.
 Only $\$ 4.95$ Complete
 Amazing CARTRIDGE Value
 Fresh stock of brand new
 cartridges. Order now to be sure you get all you
 need.
 N7 Webster Crystal Cartridge.
 PN88 Shure Crystal Cartridge.
 MINIMUM ORDER \$1
 When Ordering-Send $25 t^{\circ}$ o deposit for all C.O.lf Shipments Inclurle sufftcyent postage-exess win shipped ex.

Dept. T, 71 West Broadway 3 New York 7, N. Y. BEEKMAN 3-6498

ET-8023D1-200 watt's ship transmitter, $2.0-24.0 \mathrm{mcs}$. Mrd by Radiomarine Corp. of America. NEW in original cases w/ installation materlal and set of spare tubes.
136A-Mackay ship transmitter, 40 watts $\mathrm{Cw}, 5.5-22$ mes. Supplled complete w/110 both m / g and XMTR. NEW, packed, $\$ 115$ per set. ET-4332B-RCA 250
ET-4332B-RCA 250 watts radio telephone, 350 watts $\mathrm{cw}, 2.0-20.0 \mathrm{mcs}$. OpCELLENT. One only at $\$ 825.00$.
INSULATORS-Standofts, Feedth Strains. We have tens of thousands in stock. Please advise size and quantity desired.
TBK- 500 watts cw Navy transmitter,
$2.0-20.0 \mathrm{mcs}$
MARINE EQUIPMENT-NAVAI \& COMMERCIAL
Partial Listing

TAJ - 500 watts cw Navy transmitter, TBL
TBL-350 watts cw, 50 watts phone, 175. 600 kcs and $2.0-18.1 \mathrm{mcs}$.
Each of the above supplied
Each of the above supplied with 115 or 230 vdc motor generator and magnetic controller. TBL has speech input eqpt. ConUnderwater Sound Rea

Consists of a buoy-shaped wadel NAA welded container fitted with omnidirectional electrosonic transducer. Inside are batteries, oscillator-amplifier, vibrator power supply, timer and self-destroying device, which can be removed if desired. Beacon emits 5 watts audio at 10 to 20
kes at chosen code for 48 hours. NEW, kes at chosen code for 48 hours. NEW,
original packing. SPECIMI INTRODUCTORY OFFER. bronze base and cap at $\$ 1.00$ each.

AIRCRAFT EQUIPMENT

Portial Listing
ASB- $5-515$ Mes. Airborne Radar. Brand New early search and homing sets, including transmitter, indicator switching unit, rectifier power unit, control unit.
etc. Mfr, Bendix.
Z A-Blind Landing Eqpt. $90-100 \mathrm{Mcs}$., complete, new with test oscillators and
spares for same.

CRYSTALS-2000-3500 Kcs, mounted in rugged 2-prong FT-171-B holder: dis$\$ 1.75$ parh.
FT-270-D_Federal 300 Watt cw transmitter; 110 Volts A.C. operation $3.0-20.0$

METER MULTIPLIERS - PRECISION RESISTORS. 20,000 volts, 20 megohms. Accurary $\pm 0.5 \%$. New, in original packing. Standard Brands. Manufacturer's current fist is more than $\$ 240.00$! Our YPE O
TYPE O—Reversible magnetic starters, 1 to 2 hp., $110,220,440 \mathrm{~V}$. AC. Mfr. West-
inghouse. Your requests for quotations are invited
All material is offered subject to prior sale, f.o.b. our warehouse. Terms: Cash
 \section*{\section*{COMPASS COMMUNICATIONS CO.
 \section*{\section*{COMPASS COMMUNICATIONS CO.

 37 Montgomery Street

 37 Montgomery Street

 Phone: Delaware 2-4656

 Phone: Delaware 2-4656

 Jersey City 2, N. J.

 Jersey City 2, N. J.

 -}

 -}

MN-26-Rendix Radio Compasses-Com-APS-4-Junction boxes, J-84. Brand new in original packing.
GP-7 transmitter complete w/6 plug-in tuning units covering range of $350-9050$
kcs, emission A_{1}, A_{2}, A_{3}
$85-125$
watts. kcs, emission $A_{1}, A_{2}, A_{3}, 85-125$
Mfr. Westinghouse. Condition: Brand New.
Motor Generators-Input: $11 \overline{5}$ Volts de at $6.3 \mathrm{amps}, 1750 \mathrm{rpm}$. Output: 27 Volts dc at 9.3 amps (underrated), cont. duty.
Mfr: Century. condition: Excellent, unMit: Century, condition: Excellent, un-
used. Appearance: used. \$12.50.
Rotary Convertors-Mfr: Pincor. DC input: 115 Volts at 4.8 amps AC output:
$220 / 1 / 50$ at 1.52 amps P.F. 90 . NEW. Westinghouse Ammeters-100-0-100 amps Circular, type EX, style WG 42719-1, With about 10 ft of lead wire less 50 mv shunt. NEW. $\$ 9.50$ ea.
TDY Radar jammer - Power Oscillator only; 110 V AC, 60 c . Brand new, less only; 110 V AC, 60 c. Brand new, les
tubes at $\$ 95.00$ ea.

We carry an extensive stock of marine and aircraft electronic accessories

ELECTRONIC SPECIALS

RA -34 power supplies- $0-1000 \mathrm{~V}-350 \mathrm{MA}-$ 12 V 2 A DC- $12 \mathrm{~V} 14 \mathrm{~A} \mathrm{AC}-110 / 220$ inpurt RA-38 power supplies- $0-15000 \mathrm{~V}-500 \mathrm{MA}$ -cont. var. 110 V input........... $\$ 275.00$ RA-58 power supplies- $0-15000 \mathrm{~V}-35 \mathrm{MA}-$ witehes for above- $15000 \mathrm{~V}-1.5 \mathrm{Amp}$. O filled 110 V AC. drive. $15 \$ 42.50$ Relays- $6 \mathrm{~V} \mathrm{DC}-5 \mathrm{PST} \& 5 \mathrm{PDT}-120$ ohms
-2200 turns $\$ 1.25$
 Relays-Allied-DPDT-24V DC-.....9.95 Type BJ................................ $\$.95$ Relays-Leach type-DPDT Antennae-
110 V DC $\ldots . ~$ Condensers-WED168574-16MFD-120V AC—400V DC $\$ 2.75$
Condensers- $1.5 \mathrm{MFD}-25,000 \mathrm{~V}$-Steel case Condensers-3X .2MFD-4000V $\$ 2.75$

Transformers-Modulation Reactors- 2500 $\mathrm{V}-12000 / 7500$ SEC. $\$ 72.50$ Transformers - Pri. 110/220/1/60-Sec. Laboratory Spccial-WF K 5850 I Precision Potentiometer-AC Motor drive with BC-968-A-Radar Trainers. Use with BC403 scope to simulate actual plane Complete line supersonic components. QBD nur specialty. Meters- $0-3.00 \mathrm{~V}$ DC-1 mil movement-
Sun- $21 / 2^{\prime \prime}$

Lots of 100-ea. $\$ 1.80$
Band Pass Nilters-300-1155-1620-2270 or 3180 center frequency-1 db at plus or Thousands of items of transformers, con. densers, resistors, coils, tubes, insulalion, selsyns, motors, fatis, relays, meters, sockets, television components. speakers, transtats, test equipment, anknow your needs. Prompt service.

Do you have any surplus electronics for sale? Highest prices paid.
Money back guarantee on defective material. Subject to prior sale.

Veterans Salvage Co. Inc.

9 Kulik St.
Passaic 3-6370
Clifton, N. J.

Sensational Value in AC-DC POCKET TESTER

TERRIFIC VALUE-

 PORTABLE ELECTRIC DRILL (Sold at less than established
factory price so we cannot factory price so we cannot
mention brand name.) meniy $\$ 20.95$ equipped $1 / 4^{\text {" }}$ Jacobs Geared Chuck and
Key. Koy. an intermittent dut
Not an drill, but a full size rugged Most convenient type switch. natural grip handle, and balance like a six-shooter. Precision cut gears-turbine
type cooling blower-extra long brushes.
No stalling under hearlest No stalling under heavlest
pressure because of powerful 110 Volt AC-DC motor and
multiple ball thrust multiple ball thrust bearing. lifetime-lubricating Chrysler Oilite type.
Made for toughest year-in and year-out service in Plant or on construction jobs. of a lifetime of trouble-free use. 25% deposit on C.O.D.'s. Full refund if retirned
prepaid within flve days. prepaid within flve days.

BUFFALO RADIO SUPPLY

219-221 Genesee St.
Dept. S1, BUFFALO 3, N. Y.

GENERAL ELECTRIC FG-172 THYRATRONS

Brand new in original cartons This tube is used in many industrial controls and is specially priced of $\$ 14.80$ each $\$ 10.00$ each in lots of 10

RADAR ANTENNAS

 ASA dual 6 celament Yagi (400 MC) with
indraulic servo trans. and recvr. for reMN/AP control

WESTINGHOUSE HYPERSIL TRANSFORMERS

 lbs. $\$ 10.00$ each in iots of 10ea. $\$ 11.50$ Pri II5V60cy tapped. Sec 5V @30A ELINCO PM-2 Hate Generator ELINCO PM-2 Tate Generator
EAD J-36 Rate Generator.... .$\$ 3.32$ FILTER CHOKE-Hermetically sealed 10 H W. E. Sound powered Hand Set. $\$ 3.85$ W. E. Sound rowered Chest Set................. $\$ 14.88$

TUBES AT SENSATIONALLY LOW PRICES
WRITE FOR LATEST BARGAIN BULLETIN

LECTRONIC RESEARCH LABORATORIES 1021-23 Callowhill St., Phila. 23, Pa.
 Telephones: MArket 7-6590 and 6591

[^11]
(T) SEARCHLIGHT SECTION T

Brand New - SURPLUS MATERIAL - Unused DECEMBER SPECIALS

Frequency Meter Model 372
Vibrating Reed Type. Range $48-62$ cycles. PRICE $\$ 6.95$ Television Masks-Soft white Rubber for 10" tubes. Fits snugly over tube face and has $6^{\prime \prime} \times 8^{\prime \prime}$ opening. PRICE $\$.75$ each 9" Television Tubes-New GE Type MW22-2. Electromagnetic Deflection. White Screen 5 KV . 2nd Anode voltage.

PRICE $\$ 13.95$
Watt-Hour Totalizer. GE Type MD-3 120 Volts, 60 cycle, 2 Cir., 3 W. PRICE $\$ 24.95$ Germaninm Crystals IN21 PRICE $\$.59$ Remote Control Receiver AN/CRW-2. Brand new-complete with following tubes: 3-6SL7, 1-6SN7, 1-6SG7, 1-6J5. For 28 Volt Operation.

PRICE $\$ 5.95$
Television Transformer. Pri. 115 Volts 60 Cycles. Sec. 2500 Volts @ 2 ma. 6.3 Volts @ .6A. 2.5 Volts @ 1.75A.

PRICE \$3.85
Magnet Wire on small spools $1 / 8-1 / 4 \mathrm{lb}$. in sizes \#22 through \# $44 . \quad$ Price $\$.25$ per spool

RELAYS

all brand new and shipped in their original packing.
C1020-G.M. RELAY D.P.D.T. plus S.P.S.T. Normally open coil 30 ohms 6 V. D.C.

PRICE $\$.45$ C1036-STRUTHERS DUNN \#61BXX104 D.P.S.T. Coil 12 Volts D.C. Contacts 25 Amperes at 12 Volts D.C. PRICE $\$.45$ C1014-AIRCRAFT-TYPE STARTER RELAY. Hermetically sealed coil 12 Volts 18 ohms. Very heavy contacts. PRICE $\$.45$ C1015-AIRCRAFT-TYPE STARTER RELAY Leach type \#7220.

RELAYS (Con't)

3-24 Coil 24 Volts D.C. Res. 132 Ohms. Very Heavy Contacts. PRICE $\$.45$ C1023-LEACH \#1054, coil 260 ohms, 24 volts D.C. Heavy contacts, two pole single throw. PRICE \$. 45 C1032-STRUTHERS DUNN S.P.D.T. RELAY 36 Volt coil20 ma . Contacts 2 amps. at 115 V . A.C. PRICE \$. 45

WIRE! WIRE! At Giveaway Prices

Thousands and thousands of feet available of various types and sizes.

	LITE, AEROGLAS TON BRAIDED
Size	Price
22	\$3.75/M
18	${ }^{4.5} 5 / \mathrm{M}$
16	$5.75 / \mathrm{M}$
10	7.75/M
SHIELDED	
Size	Pric
28	\$20.00/M
22	12.00/M

ROCKBESTOS

Size	
27	
28	Price $\$ 2.25 / \mathrm{M}$ 28
$2025 / \mathrm{M}$	

Write for Latest Catalog Listing Thousands of Relays, Resistors, Condensers, Switches, Etc.

EDLIE ELECTRONICS, INC.

of WHEAT LAMPS

Used for illuminating meters, compass diais, airplane instruments, etc. Soldering iron removes amp from base to use in models, doll houses, miniature trains, Xmas trees, etc.

Photo, 3 times actual size. Glass Bulb $1 / \mathrm{s}^{\prime \prime} \times 3 / \mathrm{m}^{\prime \prime}$ Either type $\$ 1.50$ daz. $\$ 75.00$ per M .
ALNICO FIELD MOTOR

Operates on Flashlight batteries, speed depending and speed on 27 volts. Designed to be used in bombsights, automatic pilots, etc., 250 . $\$ 5.00$
RPM. FEW MORE AT.............. RPM. FEW M ORE AT $\$ 5.00$
Anewly Written (1948) Book on Photoelectric tubes
 HAYDGN or TELECHRON
SYNCHRONOUS MOTOR operate switches, itc. I Rev per minuta at this SPECIAL PRICE $\$ 3.85$ Many other speeds available at $\$ 5.25$ up

Experimenters and Inventors Supplies 64 Dey St., New York 7, N. Y.

DECEMBER SPECIALS

IDIH/Al'N 1 ALTIMETER INDICATOR, West
 Tested o K . TF19A Test set for "iccii "irande Talkies"

1HATTER1 ('HALGER, G.F\% Tungar 6RB6B17, 12 battery 12 umps., 24 battery 6 amps. New B. TTTERY CHARGER, Allen Unitron 2 U. S. $6-65$ volts, $6-12$ amps. New \$49.50

RECTIFIER, General Flectric, 230 volts, 3 phase output 28 V.D.c'. at 130 amps. Heal Electroplating supply etc. Used Fxcellent Tested $0 . \mathrm{K} . \$ 200.00$ DYNAMOTOR. ${ }^{2}$ PH DYNAMOTOR, 1'E94 for SCli522..... New $\$ \mathbf{N} .95$ INVERTER. Winco JRU16/AI $28 V . D . C . ~ h i m u t, ~$
115 V.A.C. at 6.5 amps. 400 cycle output. . New

TERMS: F. O. B. Pasadena, 25 \% deposit required on C. O. D.

PHOTOCON SALES
1060 N. ALLEN AVE.,
PASADENA 7, CALIFORNIA

BRAND NEW
 Lisgigit. GUARANTEED

OIL CONDENSERS
Famous Makes All BrandsGUARANTEED NEW—Most with ceramic pillar ins.
1 Mff-3000 vdew 2.5 Mrd-3500 dew $1.0 \mathrm{Mfd}-500 \mathrm{vdew}$ $1.0 \mathrm{Mfd}-600 \mathrm{vdcw}$ 2.0 Mfd- 400 velcw . $0 \mathrm{Mrd}-600 \mathrm{vdcw}$ 4.0 $\mathrm{Mrd}-500 \mathrm{vd} \mathrm{Cw}$ 4.0 Mrd-600wdew 6.0 Mfd- 400 vdew $.0 \mathrm{Mfd}-600 \mathrm{vdcw}$ $10.0 \mathrm{Mrd}-600 \mathrm{rdcw}$ ${ }_{10}^{17.0} \mathbf{1 0} \mathrm{Mrd}$-600wdes 15.0 Mfd- 100 ondew $4-4-4 \mathrm{Mf}$ - 40 (10
REPRODUCER Stromberg-Carlson
$\# 7494$ made by TCA \#74494 made by RCA
25 W output all proof, unir. matchin! transformer
cosp
response

${ }^{2}$

30 AMPERE RELAY OPST Leach type 6104 coil 250 vide 500 -hims res rated 30a-110rac or $20 \mathrm{a}-220 \mathrm{vac}$: 6
 height

Special Prices To Quantity Users?

SELECTOR SWITCH
-pole 11-position 6-deck Mallory \#1361 Li, adijustale stop non-shorting bakelite wafers, complete with knob............. $\$ 1.49$

5

VOLTMETER test Leads $60^{\prime \prime}$ rubber covered red \& black leads equiuped with red \& black banana plugs and ret ct black rubber jack-

2- $-=$
LEVER SWITCH

Th d OPOT 10-anmp. standart heavy duty ontacts-Mossman \#H101 momennary lever action. norm nen and

POWER RHEOSTAT
500 -watt 80 -ohm Ohmite reous cramelect. 0861 vit\#5105. Mrtg. for panels up to $11 /{ }^{\prime \prime \prime}$ "th.

Hundreds of Other Items in Stock SEND FOR FREE BULLETIN.

TERMS: 20\% cash with orderbalance COD
FOB our warehouse NYC.
Rated firms open account NO ORDERS UNDER $\$ 5.00$ PLEASE All Merchondise Subject To Prior Sale.

ALEXANDER MOGULL CO., INC.

161 Washington St., N. Y. 6, N. Y. WOrth 4-0865

VILLAGE RADIO EQUPPMENT CO. Announces a New Service THE TEST EQUPMENT EXCHANGE

PURCHASING AGENTS: Do you require an item of TEST EQUIPMENT presently unavailable? Do you have equipment surplus to your present operations? LIST YOUR RE QUIREMENTS and SURPLUS with us to effect an advantageous exchange or purchose. Write for Full Details

VILLAGE RADIO EQUIPMENT CO. 201 West 16 St., New York 11, N. Y

BARGAIN BUYS

RADAR SETS
APR/1 with tuning unit, $\$ 150.00$-also available- 3 cm types.
APS $/ 3$ and APS/ 4 complete.
TUNING UNITS.
TN/54 for APR/4-\$125.00 (New)

METER:
$3^{\prime \prime}-0-150 \%$ DC (10 ma movement) $\$ 2.50$ Minimum order $\$ 5.00$; F.O.B. New Yark Write for listings of other surplus bargains
LERU LABORATORIES, inc.
360 Bleecker St. New York 14, N. Y.

D. C. MICROAMMETERS

0-100 ua. 4" sq. G.E. DO 58 \$12.00 $\begin{array}{lll}0-100 & \text { ua } 41 / 2 " \text { round Weston } 643 \cdots 14.00 \\ 0-50 & \text { wa } 41 / 2 \text { round Weston } 643 \cdots 15.00\end{array}$ $0-200$ ua $3^{\prime \prime 2}$ sq. G.E. DO 50 . $643 \ldots 5.00$

R. F. MILLIAMMETERS
$0-100 \mathrm{Ma} 31 / 2 \prime$, r . Weston 425 $\$ 11.00$ $0-120$ Ma $21 /{ }^{\prime \prime}$, r. Weston $507 \ldots .$.

A. C. VOLTMETERS
$0-300$ v $31 /{ }^{1 / 2}$ r. Weston $476 \ldots . .$. . . . $\$ 8.00$
Precision Electrical Instrument Co. 146 Grand Street New York 13, N. \dot{Y}.

WESTERN EIECTRIC TRANSMITTER

TYPE T-112-B

- Freq. range 2 to 18 MC .
- Power Output: 800 w. A1, 400 w. A2 A3.
- Telephone dial channel selector.
- Input: 220/3/60.

This equipment is packed in 8 cases and includes 2 cases of spares. Export crated, F.O.B. N.Y.C. subject to prior sale.

AIRCRAFT RadIO INDUSTRIES, INC. 101 Dixwell Ave., New Haven, Conn.

Values at greenwich

WESTERN ELECTRIC TELEPHONE CORO.
 Code I) 166001 -lentith $19^{\circ} 6^{\prime \prime}$. 4 Conductor

 CORD-CO 1252 - $36^{\prime \prime}-3$ cond. Mubber w/ $50 c$ RETICLE LAMPS-MAZOA S42-12-10 Fi-e. 20 c GENERAL ELECTRIC OC Selsyn Tramsmit 20 TIMING MECHANISM from Lendix or Westinghouse Washing Machine. Complete with GEcle 45 second stcps. New-each.......... $\$ 5.00$ Switch Model 1 PR-67-13-New each......... $\$ 3.00$
CARBON MIKE-I-635A Class AI Beli-New. $\$ 3.00$

New Bulletin off press - write
GREENWICH SALES CO.
59 Cortland St. . . New York 7, N. Y.

Index to electronics Volume x xi

January to December issues, inclusive, 1948
Cumulative Index (April 1930—December 1944) available at 75 cents

McGraw-Hill Publishing Company

330 West 42nd St., New York City, 18

Acoustic measurements untler water G. F. Breitwieser in studio design, G. M. Nixon.ms in stuaio design, 86 Mas Acoustic well sounder (TAWi.....p 150, Spt Acoustics, see also under sound or particular aspects or equipment Acceleration and strain measurements
plane
on
TEA
 Cetrone Aircraft speed measurement, C. S. Franklin
Alarm, electronic lightning (TAW) Alignment, baseline for visual systems A May Amplifiers, see under particular type Ampliturle and phase modulation, Amplitude selective amplifier, C. ©. Analo computer Sevmour Frost. Analog computer, Seymour Frost.p Korn Antenna, indoor television,... Newitt
Antenna, lens for broadband micro......................... Antenna, lens for broadband micro-
waves, W. E. Kock............
 Antenna for f-m broadcasting with circular polarization, C. E. Smith
and R. Fouty Antennas, P. Kearse.............. F
Antennas for citizens railo. Antennas for citizens railio, H. J.
Rowland..........................$~$ Rowland
Astronomical applications of elec Atronics, G. E. Kron...................... Attenuator, piston, chart for, R. E.
Lafferty
Automntic ighting switch ${ }^{\text {. }}$. Allomntie lighting switch, C. C Automatic limit bridge fior produc tion testing, R. D. Campbell and E.J. Totah......................... v) $0, \mathrm{Jan}$ 120, Nov

Baby sitting, multiple (TAW)....p
Balancer for truck wheel, S. R. Win ters, Bandwith vs. noise in communica.
 Bandwidth reduction, R. S. Balley Baseline for visual alignment sys Baseline for visual alignment systems, ${ }^{\text {Beat frequency tone generator with }}$ (Whe tuning, J. W. Whitehead.p R-C tuning, J. W. Whitehead.p Slaymaker and W. F. Meeker...p Blind sound flashlight, Victor TwerBolometer amplifier, $\underset{H}{ }$ D. King John Taylor and W. H. Faulkner
 Jaeschke under particular........p 92, Apı Bridge, see under particular type
Bridge-balanced amplifers, Y. Broadband lens antenna for micro
waves, W. E. Kock Waves, W. E. Kock........................... Broadcast-station r-f bridge, Fred Broadcasting internationally, J. H. Battison \quad Button for elevator signal (TA $\dot{\text { w }}$. Button for elevator signal (TAWi). p 150 No Buyers Guide................Mid-Month, June additions and corrections.......p 244, Oct

Cable design, h-f, K. H. Zimmer
 and H. P. Mansberg...............p Camera shutter (TEA)............p Sear .. Capacitor counting circuil., Bradfor Capacitor counting circuit. Bradford
Howland Capactors and selenium rectifiers 182 , Jun F. Parmly and E. Sherich......p 146, May Capacitors, characterlstics of oil im pregnated, Burgess Dempster..p 168, May

Capacitors, oil impregnated (TEA)

Car-Card radio, A. A. ArcK...... Carrier-frequency voltmeter, Pau Byrne
Carrier shift check meter. J. . W Cathode-ray long-persistence screen Fisher Cathode-ray numeroscope printer, H . W. Fuller Marks
Ceramic phonograph pickup, i.. ${ }_{G}$ Hectro and H. W. Koren.......p Ceramics, properties of electrome chanical, Hans Jaffe.....i............ nated capacitors, Burgess Demp ster line loss, J. M. Hollywood.....p Chart for filter ripple, C. K. Hooper Chart for piston attenuator, R. ${ }^{\text {E }}$. Lafferty
Chart shows $\mathrm{f}-\mathrm{m}$ coverage. J . H Battison
Chemical comparison specded by
Circuit, see under particular type Circuit, see under particular type casting, C. E. Smith and R. A
 Citizens band, field tests. R. E. Sam citizens band transceiver, w. \quad. Lurie \quad adio................................ Citizens radio antennas, H. J. Row Citlzens radio service receiver, w. Citizens transmitter power amplifier Walter Hollis seph Albin
Clock control ($\mathrm{T} \dot{A} \mathbf{W}$)
Common carrier radio
servi limited, A. A. McK...
Communication by time expanded wave, Li-Yen Chen....................
 (TEA) Communication systems, bandwidth vs. noise, D.G. F........................
Compact analog computer, Seymou Frost
 tem, H. G. Boyle and E. B. Doli. Compensation, low-frequency, for Composite amplitude and phase modulation, O. G. Villard, Jr...p Computer, compact analog, Seymour Frost integrators, G. A. Korn........p Computer, elements of d-c analog Computer, selective sequence digita
Computer switching circuits, C. ${ }_{\mathrm{H}}^{\mathrm{H}}$. Page ..
Computers, signed by analog, G. A. Philbrick Computers use crystal diodes (TEA
Construction of shielded room in p
fleld, C. C. Pine...................... control or under particular type of Controllers designed by analog, G. A. Philbrick
Converters for television power
(TAW) Counter circuits for television, Allan Easton and P. H. Odessey....p Counter, predetermined for process control, R.J. Blume............ K Counters, high-speed N-scale, T. K
Sharpless ford Howland, capacitor. Brad. Counting with plug-in scaler for in Crossover network. P. W. Klipsch.p. 9 p . 90 . Jov
affect of modulation on transmission efficiency (TEA) magnetic leakage, F. Levi....p 178, Apr
stectromagnetic amplifiers（TEA）
Eitectron diffraction for film abi sur－
face studies，（G．A．Doxey．．．．．．． field patterns（TEA）．．．．．．．．．．．p Electron paths plotted，$\underset{P}{ } . \dot{J}$ ．Selsin
Electron－ray tube，polarity response for，M．L．Greenough．．．．．．．．．．．． Flectronic circuit has logarithmic response，A．W．Nohe．．．．．．．．．．．． Electronic fuse（TA Whtning alarm（TAW） Electronic organ T．H Long pis，May Electronic preservation of food，
 Electronic timer，S ． \mathbf{H} ．Frase．．．．．p 136，Apr Electronics in astronomy，G．${ }_{\text {E }}$ ． Kron
Electronics Park report．．．
Electronics simulates sense of smell，
W．C．White and ．T．S．Hickey．．．${ }^{\text {H }} 1$
Elements of $\mathrm{d}-\mathrm{c}$ analog computers，
Elements of d－c analog computer
 Weiller ${ }^{\text {nderes }}$ materials，P ．G
Enkine analyzer，airborne．${ }^{\text {Cetrone }}$ ．${ }^{\text {C }} \mathbf{C}$ ． ingine tester，rocket，A．E．Gersch
Engineering the schematio diagram Eriscope camera tube G．Morgan．．D
Extending linear range of reactance modulators，Fritiz Brunner．．．．p

Facsimile goes commercial，A．A McK．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． Shonnard
 （TAW）．．．．．132，Ian （TAW）．．．．．．．．．．．．132，Jan
w crystals control many channels，
W．R．Hedeman，Jr．．．．．．．．．．．．．${ }^{\text {D }}$
Field Samuelson
Filaments，designing thorialed tung－
Filmand surfare studies by elecin
Filins heated dielectrically，T．${ }^{\text {D }}$ C．

namic noise suppressor，I ，
$M y$

Find shells in lumber（TAIW）il
Flash lamp light meter，H．E．ER Fluorescen
Fluorescent lamps increasing efti Fluorosenpe（Tmage amplifier（TAW
Flying spot video generator（TAlf）
Food preservation，Wolfgang Huber
Fremodyne f－m rectivers，A，A Frequenes allocations，what＇s wrone With，Jeremiah Courtney …．．． Frequency changers．©．E．Bowlus Frequency－scanning vif impedance
$\underset{\text { mrenuency stabilization of diathermp }}{\text { men }}$
units．Carl Gieringer．
$\mathbf{F}_{\mathrm{F}-\mathrm{m}}$ ，ferries use（TAW）
$F-m$ and television receiving anten frm broadcasting uses circular po p larization，C．E．Smith and R．A F－m circuit used in railroad radios
 －m radiator（ixiö）．．．．．．．．．．．．．．．．．．83．Tan F－m receiver squelch circults， C ． W F－m serrasoid modulator，J．\quad ． R ．Day
F－m transnatter performance meas urements．H．P．Thomas and L．M F－meeds
areas．J．H．Battison p4．Feb
Fuel gage，variable－capacitance for 122 ，Tun alrcraft（TAW）．．．．．．．．．．．．．．．p 15n，Feh

Gage see under particular type
Gasoline，road－testing．R．R．Proc－ tor ．．．．．．．．．．．．．．．．．．．．．．．．．83，Nov Graphical determinat particular type harmonic distortion，R．W．Wercent Graphical iron core reactor design 170，Tly Repin 136，Dec raphical method for designing mul Graphical pnwer－level computa 119，Jun tions，D，C．Nutting．．．．．．．．．．．．．．．
p 98，Aug
Grid－dip oscillator（TAW）．．．．．．．．p 143，J1s Guded missiles tracked photo－ 1．Dorsey and D．L．Ewing．．．．p 92，Jly

Handwriting reproduced，High Line－

back …．．．．．．．．．．．．．．．．．．．．．．．．．．．．180，Jun Hardening by induction reduces
blade cost（TAW）．．．．．．．．．．．．．．．．． 134 ，Apr Harmonic distortion determined graphically，R．W．Buchheim．．．p 1；0，Jly leating by r－f for cabinets，Charles Dusenbury Heating，see under dielectric，
tion or other specific type
ermetically sealed components．
W．J．Leiss，G．R．Moltrup，J．H． Slaton and A．H．Waynick．
ligh－altitude tube Nicholas Anton
nigh－frequency cable design， K．＇．H．$^{\text {and }}$ Zimmermann High－frequency crystal voltmeier B．F．Tyson ．．．．．．．．．．．．．．．．．．．．． B Sharpless Daubendick \quad igh－speed revolu．．．．．．．．．．．．．．．．．．．．． High－speed revolution counter，A． 13 High voltage supplies for counters，Alexander Thomas．．． Hum in pentodes，Inre Zakarias．．． 1 Hum reduction，Arthur Dickerson 1）112．Dec

Image amplifier，fluoroscope（TAW

mage storage tube（TEA）．．．．．．p ${ }^{\text {p }}$ mpedance meter for vhif，i．．L mproved material for masnetic an plifiers（TEA）．．．．．．．．．．．．．．．．．．．p mproving perrormanerin wat nereasing effiency of fluorescen lamps（TEA）．．．．．．．．．．．．．．．．．．． Indicator，nonlinear for vacuuin gage，R．S．Mackay ．．．．．．．．．．．．．p ndicator tube，polarity response for，M．L．Greenough．．．．．．．．．．．．．
ndoor
television antenna， ndoor television antenna，J．In nduction hardening reduces blade ${ }^{131}$ ，Aus cost（TAW）．．．．．．．．．．．．．．．．．．．．．．．134，Am Industrial applications of radio－ activity，M．Blau and J．R．Car ndustrial controliers designed ioy analog，G．A．Philbrick．．．．．．．．． Industrial magnetron（＇IFA）．．．．．p
Industrial tubes（TFA） Industrial tubes（TFA）
Input circuits，differential，＂．．．．． E ． suckling
 Instrument．see aiso under particu－ lat type
nstrument for intermodulation measurements，George Daniel．．
nsulators that can amplify（TEA） Insulators that can amplify（TEA） integrators，design of d－c electronic G．A．Korn．．．．．．．．．．．．．．．．．．．．．．．．．．．． factors，S．W．Seeley．．．．．．．．．．． Intermediate frequencies for tele vision receivers，P．F．G．Holst．．．D
Intermodulation measuring instru ment，George Daniel．．．．．．．．．．．．${ }_{\text {P }}^{\text {P }}$ ，
 nverter regulator for 400 cycles．
C．H．Helber．．．．．．．．．．．．．．p IRF ${ }_{\mathrm{D}}$ national convention－1948， 132．Mar 168，Mar 78，Jun 3．Feh 14f，TIM 124．Tun 74．Mar 83，Jan 73，Aug 126．Mar 94，Tun 78．Dee 118，Nov 103． Spt 130．Oct 150．Aug 98，Apr 72，Oct

84．Feb

Laboratory for television receivers， F．R．Norton．．．．．．．．．．．．．．．．．．．．86，Mar Lamps，increasing
filorescent（TEA $)$
effiency of
of
 Lathe，feed control for（TAW）．．p 133．Jan Lens antenna．W．E．Kosh generator．R．G．Roush and Ferdinand Hamburger，Jr．
Lipht meter for electric fiash Light meter， $\begin{gathered}\text { Fiderwater（TAWín）}\end{gathered}$ Light，surveylng with pulsed，w．W． Hansen
Limit hridge for production test－ ing．R．D．Campbell and E．T．
Limited common carrier radio serv ice．A．A．McK．．．．．．．．．．．．．．．．．．． sine－operated ph meter，i．S．An Tinuid fiow measured by weight D．B．Kendall．．．．．．．．．．．．．．．．．．．．．${ }^{\mathrm{p}}$ Logarithmic response from elec
tronic circuit．A．W．Nolle．．．． tronic circuit，A．W．Nolle．．．．．． Loss chart for mismatched transmis
sion lines．J．M．Hollywond．．．．p Londspeaker dividing networks
is，A以
108．Jun
146，Hy －

28，Aug
140，Nov
138，Feh
140，Feb
162，Apr
173．Aug

17气，Aug
186．Fer
sf，Apr

134，Mar 140，Apr
24，May
72，Jly
30，Aug 134，Mar 70，Nov $90, \mathrm{Nov}$ 72，May
72. Spt

108，Apr 100 ，Nov
low－distortion crossover nelwork．
P．W．Klipsch ．．．．．．．．．．．．．．．．．．．．．．．．．．． Low－frequency compensation for Lowfrequency oscillator，J．F．
Keithley........................$~$ 98，N゙oy Keithley ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 108．spt
E．K．Stodola and Henry Lisman
Lumber，find metal shells in（TAW） p， $93, \mathrm{May}$ p 150 ， 1 lan

Magnet alloys， E ．M．Underhill．．${ }^{\text {M }}$ ）
Magnetic amplifler material（TEA）
122， 3 an
Magnetic amplifier material（TEA）
agnetic amplifiers，see also trans－
ducirrs amplifiers and saturable
reactors，F ．G ．Logan．．．．．．．．．．．p
Magnetic field patterns shown by
electron microscope（TEA）．．．p
Iagnetic leakage evaluated with
an electrolytic tank，F．Levi．．．．p 178，Apr
Hagnetometer，airhorne（ine（TEA）
Magnetometer，nonmagnetic（IEA）Aug
 Tagnetron spectrometer， $\mathrm{r}-\mathrm{i}$（TEA）．．．p． 124 Nov Teasurements，see under particu lar type
Measuring liquid flow by weight．
D．13．Kendall．．．．．．．．．．．．．．．．．．．．．．
Measuring r－f power with a thermo－
pile，G ．P ．Walker．．．．．．．．．．．．．．．．．

Gilson
Melting－point chart，
K．．M．MePhee
Merchant marine radio，J．．J．Cana－
vetan shells found in lumber（TAiv＇）
p 150，Jan
Metal detector for cows（TAW）．．p 19s，May
Metal picture tube（TAVJ．．．．．p 15．Oct
Wetal picture tube（TAWy．．．．．．．．
Meter，see under partirular type
：Iriophone calibrator，D．II．Has－
Iicrophone calibrator，D．H．Has－
tin ．．．Nov
－Iicrowave detector（TFA）．．．．．．．．．．．．．．．．．．．．．．spt Hicrowave lens antenna for broad－ 108 ，Ap ric＂owave television relay N．Y．－114，Jan Moston，J．M．．．．．．．．．．．．．．．．．．．．．．．．．．． Miller f－m circuit and itg use in
railroad radios，P ．L．Bargellini railroad radios，P ．L．Bargellini
is＇nateh loss chart for transmission 130，Oct
lines，J．M．Hollywood．．．．．．．．．．．．．．
I．ssilus tracked photographically

Mobile bus radio，A．A．MrK．
Mobile selective calling， E.
robile selective calling，$E . H^{\prime}$ B．．Jun
Whartelink While television receivers（TAX＇）
Molulation，see also under particu． 120 ，spt
lar type composite amplitude
Lodulation，composite amplitude
and phase， 0 ．G．Villard，Jr．．p 86 ，Nov and phase，effect of transmission efficiency（TEA）o．．．．．．．．．．．．．．．．．．．．．．．．．．
Todulator，wide－devtation react－
ance，H．D．Helfrich，Jr．．．．．．p 180 ，
Modulators，extending linear range
maf reactance．Frit Brunner．Ap
of reactance．Frit Mrunner．．．．．p 134，May from film（TEA）．．．．．．．．．．．．．．．． Iotor control thyration circuit，
J．R Devoy ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．Apr Motor speed control，iv．N．Tuttle
Multichannel radio telemetering 106 ，Feb

K－F Scal．．synchronizer，R ．
Multiple hahy sitting（TAW）．．．．．n 126．Jun
Iultivibrator design by graphic
methods，A．E．Abbot．．．．．．．．．．．p 118，Jun

Navigation system．sonic．S．R ．
Rich and A．H．Rosen．．．．．．．．．．92，Nov Networks，see under particular type ew Grand Central studios of WCRS－TV，A．B．Chamberlain
New synthetic piezoelectric mate－ ral，Glen Howatt ．．．．．．．．．．．．．．．．．．． control．J．R．Devoy．．．．．．．．．．．． White
Voise generator for recelver meas urements．P ．G．sulzer．．．．．．．．． Noise in communication systems．
roise in vacuum phototubes at high
current levels， F ．Morrison
Noise suppressor filter characteris－
tics．L．G．McCranken．．．．．．．．．．．．．．．． onlinear indicator for vacuum Nonmagnetic magnetometer（TFA）
Null temperature bridge．E ．P 166，Aug
 Numerscope for rathode－ray print－ J．Y．－Boston microwave television relay T Microwave tele． 114 Jan

80，Ily
97．Dec

11a，
，Nar
96，Jly
72，Jan
26，Nov 14．Apr 40，Feb

98，Feb

Oll drill braking with thyratrons,
R. L. Jaeschke..................... Oil-impregnated capacitor char 32. Apr acteristics, Burgess Dempster..p
Oil-impregnated capacitors (TEA) Optimum conditions for an $R-C$ 172, Jly oscillator, H. A. Whale........p 176, Feb Organ, T, H. Long..............p 117, May
Oscillator, grid-dip
Oscillat. Oscillator, low-frequency, Oscillator, optimum conditions for 108 , Spt an R-C, H. A. Whale...........p 178 , Feb Oscillators, stabilizing frequency of reflex, G. G. Bruch. H. P. Mansberg $\ldots \ldots . .$. Reyner

70, Feb

Paclaged servomechanism, W. C Parallel-T network design curves, Dawkins Espy............................... ard and Edmund Osterkand....p Permanent Underhill
PH meter, H. S. Anker.
stgn, R. N. Close and circuit de-
 Pliase and amplitude modulation, O. G. Villard, Jr

Phase-control circuits, J. C. May,
H. J. Reich and J. G. Skalnik Phase inverter, directly cmupled, F . Johnson
Phase meter, E. O. Vandeven
Phonograph pickup. ceraraic,
Hector and H. W. Koren
Hector and H. Koren....... tesing, J. C. Tellier and J. F Fisher
Photograplic shutter testing, S. S . H . Duffield and L. R. Lankes......
Photographic tracking of guided missiles. L. M. Biberman, S. E.
Dorsey
and
D Plotometry in television engineering, Phototube amplifie
Phototube amplifier for measuring
 Phototube noise at high currents,
 Hector and H, W. Koren......p. Picture-modulated television signal Penerator, Alan Easton...........p Piezoelectric ceramic properties, Piston attenuator chart, \mathbf{R}. E. Lapflotting electron paths, P. J. Sel Plug-in scaler for industrial count ing, C. H. Brown.......................
Polarity response for tuning eye tubes, M. L. Greenough.........p Polyphase power synchroscope, E. B.
Kurts and R. H, Burkhardt Kurts and R, H, Burkhardt. ...p Potential gradient measurements, Potential gradient measurements,
R. E. Belin...................................
Power amplifier for Power amplifier for the citizens Power converters for television Power-level computations, Nutting line data for the world Power measurement with a therPower measurement
mopile. G. P, Walker................
Power supply, versatile, ler. supplies for G-M counters Alexander Thomas............... Precise measurement of aircraft Precision circuit printing, Cifion Precision circuit printing, Clifton
Tuttle
Precision interval timer....................... Precision interval timer, Sidney Predetermined counter for process control. R. J. Blume... Woifgang
Preservation of food, Woligen Printing circuits precisely. Clifton
 Process control, predeterminer
counter for, R, Production testing. automatic limit bridge for, R. D. Campbell and E. J. Totah.............................. Part I, D. E. Kerr..............
 Propagation research (TEA)....
Properties of Projection television system, $\underset{H}{ }$, ${ }^{\prime}$ Boyle and E. B. Doll.......... Prospects for unf television............. R-C oscillator, optimum condition -C oscillator, optimum conditions
for, H. A. Whale.................... 17s, Feb

R-C tuning of beat frequency tone R-F bridge for broadcast stations, Fred Schumann and Charles R-F heating for cabinets, charles
 Radar, surveying with pulsed light, W. W. Hansen.

Radio in the merchant marine, J . J . Radioactivity, industrial applica Radio control circuits for steppin Radio control circuits or stepping West control for water works Rad $\begin{aligned} & \text { Radiofrequency mass spectrometer }\end{aligned}$ Radio-frequency mass spectrometer Radio propagation research (TEA) Radiosonde potential gradient meas Railroad radios use miller $\mathrm{f}-\mathrm{m}$ cir
 Rat-catcher (TAW).................. E. K, Stodola and Henry Lisman

Reactance modulator, wide-deviation, H. D. Helfrich, Jr.p Reactance modulators, extending Reactors, saturable, and magnetic Reactors, saturable, and magnetic 4, May Receivers, see under particular type
Receiver for the citizens radio serv ice, W. C. Hollis................... 80, Mar Recording spectrometer (TBA). D
Recordings for the home, D. G. F.
Records, design of 1-p, F. H. R. ...p ${ }^{\text {p }}$ 86, Spt Records, design of $1-\mathrm{p}, \mathrm{F} . \mathrm{H} . \mathrm{R}$, ${ }^{\text {Rep }}$,
Rectifiers, selenium, and capacitor, F. Parmly and E. Sherich......p 146, May Rectifiers, see under particular type Reducing hum in pentodes, Imre Zakarias170, Nov Reducing transmission bandwidth,
R. S. Bailey and H. E. Singleton
Reflex oscillators, stabilizing fre- 107 , Aug quency of G. G. Bruck.............. 170, Feb Ragulator for $400-c y c l e$ inverter Relay analyzer, E. \dot{L}.. Deeter.....pp 90 . Nov Relay analyzer, E. Limproving performance of millivatt, Gene Halpern.........p Remote control for radio tuning
 Lineback handwriting, High 180 , Jun Research ideas, selling, Waido Research stimulates electronic applications (TEA)
Reslstance deviation bridge........... Frommer
Resistance materiais....................................... Resistor tester, A. W. Daubendick Revolution counter, A. B, Kaufman Ripple chart, C. K. Hooper.....p
Road-testing gasoline, R. R. Proc-Road-testing gasoline, R. R. Proc
tor Rocket-engine tester, A. E. Gersch
Rugged electron tubes, I. L. Cher Rugged electron tubes, I. L. Cher
rick
Repeller storage tube. ${ }^{\mathbf{H}}$. Klem perer and J. T. deBettencourt..p 104, Aug

Saturable reactors and magnetic amplifiers, F. G. Logan...................
Scaler, plug-in for
 Schematic diagram engineering Selective calling, E. H. Morgan. Selective calling, E. H. B. Barte
link
Selec................................. Selective sequence digital computer Selenium rectifiers for television re reivers, George Eannarino.....p Selenium rectifiers and capacitors F. Parmly and F. Sherich.......
Selling research ideas, Waldo Kliever Semiconductors. sintered, F. H
 Sense of smpll simulated, W. C Sensitive transiucer (TAW).......... Serrasold $1-m$ modulator, J. R. Day Servomechanism, packaged. W. C Rorvomechanism stabilization, Don ald MacDonald \ldots. . ${ }^{\text {M }}$.
shlelded room construction, Pine. room construction, melbeln
Shoran for surveying, w. F. KroemShuffer, elertronic. for camera
(TTFA)
Shutter testing S. H . Duffeid and
 Chutter timer, Hurbert Sear........p148. Aug

Simplified single-sideband reception, Ningle-sldeband, Jr................. ${ }^{\text {G }}$ Rosentreter
Ringle-sideband
converter (TAMW) Single-sideband crystal filters, P. Taylor \quad Tingle-sideband reception simplifer Single-sideband reception simplifler
O. G. Villard, Jr........................... Single-signal single-sideband adap tor, E. W. Rosentreter............... Sintered
Skiatron development and applica
 White and J. S. Hickey.......p. Sofar, W. W. Stifer, Jr., and W. F. Soldering aluminum alloys, F. W
 and A. H. Rosen.................... Snund, see also under acoustics or particular aspects or equipmen Sound, stereophonic, A. A. McK..p
Sound flashlight for the blind
 Sounder for wells (TAW)ifp
Space-charge tetrode amplifiers Norman Pickering
Spectrometer (TEA)
......................... Spectrometer (TEA) Speed control for small a-c moto. Speed measurement of alrcraft, C. S Franklin wing for control ampil fier, R. T. Squire.................p Spring transducers (TEA)
Squelch circuits for
f-m Squelch circuits for $\mathrm{f}-\mathrm{m}$
$\mathrm{C} . \mathrm{W}$. Carnahan......................... C. W. Carnahan.... of refex oscil lators, G. G. Bruck...............p Stabilizing servomechanisms, Don Stagger-tuned amplifier design Henry Wallman
Stepping switches, radio control for C. J. Dorr and H. M. West....p Stereophonic sound, A. A. McK...p STL on $950-\mathrm{mc}$ band (TAW).... F GeBettencourt

82, May 124, Jly 156, Jly 16, Oct 82, May 124, Jly 138, Jan 174, Mar 00, Mar 98, Jun 90, Jun 92 , Nov

88, Aug

96, Mar 140, Mar 106, Feb 72, Feb 128, May
$168, \mathrm{Nov}$ 98, Apr 170, Feb Storms located by direction finder W. J. Kessler and H. L. Knowles train and acceleration measurements on laboratory airplane Studio design, acoustic problems, G. M. Nixon.............................
Studio-transmitter ink of Studio-transmitter link of $950-\mathrm{m}$
(TAW) Studios at Grand Central of WCBS Superregenerative circuit applications, Harry Stockman Sunerregenerator design, Alan Hazel-
tine. D. Richman and B. D. Loughlin
unerregenerative
detector
theory.
 W. E. Bradley \quad radar (TEA) \quad 品
Superregenerative
Surface and fllm studios by electron difraction. G. A. Doxey........p 112. Jun Survev of new techniques (TFA) . 195 . Jan p 190, Feh: n 190, Mar: p 186. Apr: p Aus: p 178. Sept; p 200. Oct; $p 178$ Nov: p oon. Dec
Surveving by choran, W. F. Kroemmelbein with pulsed-light radar W.W. Hanson.........p 76. Jly Witch, atitomatic lighting, C. C.
Smith Switches see under particular type Switching circuits. C, H, Page...p
Svatems. see under particular types synchronizer, multifrequency, R. K-F. Scal,if8, Aug Kurtz and R. H. Burkhardt...p 152. Auk sunchrostrob timer. W. R. Bers.p 196. Oct Synthetin piezoelectric material Glen Howatt

Technique for distortion analysis Samuel Sabaroft Telemetering for rockets, multichan-

 Telovision antenna, indoor, in
Newitt $\ldots \ldots \ldots \ldots \ldots$
Television camera tube, Boyd France
Television, design of counter circuits or, Allan Easton and P. H, May elavision engineering photometry. D. W. Epstein 110, 'Tly (TAW).p 152. Feb Television fiying spot generator (TAW) fro.............................. 124, Tun Telovision intercarrier A. Dobel.p 76, Spt Television intercarrler sound design
factors, $S . W$. Seeley.............p 72, Jly Television monitors dangerous on- ${ }^{\text {a }}$. J.

	tion (

Television picture signal generator,
 (TAW) picture tube of metal Television program chain, $2,000-\mathrm{mc}$
 screen from film (TEA)........p Television projection system, \dot{H}. . ${ }^{\mathbf{G}}$. Boyle and E. B. Doll...........p Television, prospects for uhf....pp Norton
Television receiver intermediate fre Television receivers, mobile (TAW)
Television recelvers, selenium recti-
flers for, George Eannarino...P

$\underset{\text { Belevision }}{\text { Boston }}$ M..
Television service areas, J. H. Bat
Television " station costs, Willam
Foss ...
Television synchronizing signal gen
Television transcriptions, T. T . Goldsmith, Jr. Harry Milholland.... Television transmitter design trends, D.G.F.

Television underwater, C. \dot{L}. Engle
Television video interference (TAW)
Temperature bridge, E. L. Deeter. p^{p} Temperature coefficients in electronic Tests, see under partiçular type. ${ }^{\text {p }}$
Testing long-persistence screens,
J. C. Tellier and J, F. Fisher..p
Testing photographic shutters, S.

Duffield and L. R. Jankes.p
Testing, see also under particular equipment or property
Tetrode space-charge amplifiers,
Norman Plckering Theorman Plackering requirements for comThunication systems (TEA)....p G. P. Walker........................
Thickness gage for moving sheets, Thickness gage, ultras nic, portable. N. G. Branson. Thickness gage, x-ray (TAWシ)........ Thickness indicator, ultrasonic, BenThoriated tungsten filament design, Thyratron braking for oil driling rigs, R. L. Jaeschke................ J. R. Devoy.

Thyratron frequency changers, o............... Thyowlus and P. T. Nims............ Skalnik May, H, J. Reich and J. G. Time delay, phantastron circuit debaum. Close and M. T. Leben Time expansion of periodic waves,
 Timer, sidney Waid.............................. Timer for camera shutter, hubert Timer for watches. R . S. Mackay, Timer, synchrostrob ${ }^{\text {and }} \mathbf{\text { R }}$. Berg. p 160 , Feh Timer, synchrostrob, W. R. Berg.p 196, Oct. Tone generator with R-C tuning Tracking Wulded missiles photo. 30 , May graphically, I.. M. Biberman, S. E. Dorsey and D. L. Ewing........
Transcelver for citizens band, Transcelver for citizens band,' W. B.
 Transducer (TAw'
Transducer (TAW)
plifiers
plor, see also magnetic amstroem and L. F. Borg, and F.F.R.
Transmission bandwidth reduction,
R. S. Bailey and H. E. Singleton
Transmission efficiency, effect of 107 , Aug modulation on (TEA),.........p 136, Jan chart for, J. M. Hollywood....p 130. Jan Transmitters, see under particular
Trigger circuit, phototube-operated, Jruckn Degelman 134, Jan Truck-wheel balancer, S. $\dot{\text { R }}$. Winters Tube, see under particular type
Tubes designed for industry (TEA) Tungsten flament design, H, ${ }^{\text {J. }} 172$, Apr Dalley Turntable tesing..................................... Jan Pappenfus and G. L. Sansbury.p 108, Mar

10 , Aug 152 , Oct 152, Spt 94, Feb 28, Jun 72, Apr
68, Nov 86. Mar 90, Aug $120, \mathrm{Spt}$ 134, Feb 118, Nov 114, Jan 90, Dec 122, Oct 72, Dec 110, Oct 68, Oct 76, Jan 78, Feb $142, \mathrm{Spt}$ 117. Jan 24. Feb 82, Aug 96, Mar 138, Mar 180, Mar 90, May 88, Jan 76, Nov 107, Jan 92, Apr $16, \mathrm{Apr}$ 26. Mar 107, Jly 00, Apr 130 , Jun 136. Apr
88, Dec 148, Nov

92, Jly 76, Aug 86, Spt 88. Spt

68, Spt

Abbot, A. E., Multivibrator design
Albing Jraphic method 118, June
 Anker, H. S., Line-operated pH
 195, Apr

Balley R. S. and H.
Reducing
transmission Singleton, width Aug Baird, R. E., Series overmodulation
Baker, David, Design of a narial 126, Dec communication station $\ldots \ldots . . \mathrm{p}^{\mathrm{c}} 110$, Nov Baracket, A. J., Television synchroBargellini, P. L. The Milier $\mathrm{f}_{\mathrm{i}} \mathrm{p}$ 110, Oct circuit and its use in rallroad radios 130 , Oct calling 103, Nov
 brator $\because \dot{J} . \dot{H} . \dot{\mathrm{F}}$-M Service Areas 106. Nov Battison, J. H., International broad- p. June casting 70 v Begrs. J . Hele service areas.p 122, Oct Telephone dial testerp 128. Apr
UItrasonic blind guidance, Frank Slaymaker and W. F. Meeker..p 76, May Ultrasonic soldering, F. W. Thomas
and Eli Simon. Ultrasonic thickness gage, portable, Ultrasonic thickness indicator, Ben sen Carin f........................... Underwater acoustlc measurements, G. F. Breitwieser..............p 120. Nov Underwater light meter (TAW).p 132, Jan Underwater television, C. L. Engle man
p 78. Feb

Vacuum, see under special aspects o vacuum

Vacuum furnace control, F. F. Davis
Vacuum gage indicator, R. S. Mack- 1 , May kay 140, Feb Vacuum tube, see under particular Varias of tube
gage (TAW)....... alrcraft fue Versatile power supply, $\mathbf{W} . \dot{\mathbf{B}} . \mathrm{Miller}^{155}, \mathrm{Feb}$ Versatile tone control, William Lurie 126 , Jun Very short wave propagation-Part Very short wave propagation-............................ Very short wave propagation-Part 1 , Jan Vhi frequency-scanuing impedance Mheter, L. L. Libby.................... 94 , Jun Stodola and Henry Lisman.....p 93. May Vhf shielded room construction,
 Video interference (TAW)..........p 142. Spt Visual alignment baseline, E. E. A Visual examination of crystal modes 154 , Spt
 Polmeter for carrier frequencies Voltmeter, crystal for $\mathrm{h}-\mathrm{f}, \ldots \mathrm{B} . \mathrm{F}$. 104 , Dec Voltmeter, peak-to-peak, F. F_{H}. Shep 150, Mar Voltmeter, peak-to-peak, F. H. Shep ard and Edmund Osterland....p 101, Oct

Watch timer, R. S. Mackay, Jr. and
Water works, radio control..................... 160 , Feb Water works, radio control for 152 , Jan avemeter design, G. E. Feiker and
 What's wrong with \dot{U}. S. frequency 150 , spt allocations, Jeremiah Vourtney.p 75 , Aup Wide-revation reactance modulator,
H. D. Helfrich, Jr.................. 120 , Apr Viring sprayed for control amplifier
R. T. Squler............................ 128 , May Words come and go, w. C White. .p 72 , Mar World power line data (Staff).ip 132, Apr © W. meter for turntable testing,
bury. Pappenrus and G. L. Sans-

X-ray speeds chemical comparisons
 X-ray thickness gage (TAW)....p I54. Mar

AUTHOR'S INDEX

Eannarino, G., Selenlum rectifiers for
television recelvers 134. Feb television signal generator.....n 110. Aug Easton, Allan and P. H. Odessey. Design of counter circuits for television 120, May Edgerton. H. E., Light meter for
electric flash lamps................ 78 , June Electric flash lamps.................
 Epstein. D. W., Photometry in tele-
vision englneeringp 110, July

Belin, R. E., Radiosonde potential gradient measurements.......p 184 , Jan
Berg. W. R., The synchrostrob timer Berg, W. R., The synchrostrob timer 196 , Oct Biberman, L. M., S. E. Dorsey, and . L. Ewing, Photographic track Blau, M. and J. R. Carlin, Industrial applications of radioactivity.....p forg, Lrocess F and Sven-Eric Hed org, L. F. and Sven-Eric Hed
stroem, Transductor fundamental
Bowlus, O. E., and Paul T. Nims , Boyle, H. G. and E. B. Doll, Compact Boyle, H. G. and E. B. Dolstion television system....p 72, Apr Bradey, W. E., Superregenerative detection theory $\ldots \ldots \mathrm{p}$
Branson, thickness gage \dot{F}................. 88, Jan Breitwieser, G. F., Puised under water acoustic measurements..-p 120, Nov Brown, C. H.. Plug-in scaler for Bruck, G. G., Stabilizing frequency 90 , July Bink G. Brunner, Fritz Extending linear 170, Feb range of reactance modulators.p 134, May Buchheim, R. W., Graphical deter mination of percent harmonic dis
 Polyphase power synchroscope.p 152, Aug Byrne, Paul, Carrier-frequency volt meter p 104, Dec

Campbell, R. D. and E. J. Totah, Automatic limit bridge for produc Canavan, J. j... Radio in the mer Chant marine io.............p
 Carlin. J. R. and M. Blau, Industrial Carnahan, C. of radionctivity....ip for f-m receivers etrone, \downarrow. C., Airborne engine
 92, July
78, Apr
88, Feb
88, Sept
Mar Sep Chen, Li-Yen, Time expansion periodic waves …................130, June Cherrick, I. L., Rugged electron
 Deslgn of phantastron time delay circuits of phantastron time delay 100 , Apr ourtney. Jeremiah, What's wrong
with U. S. frequency allocations.p 73 , Aug

Dalley, H. J., Designing thorlated tungsten
Danlel,
Glaments........................... modulation mensurements. interDaubendick, A. W., High-speed re Davis, F. F., Vacuum furnace contro Day, J. R., Serrasold 1-m modulator
deBettencourt, J. T. and Hans Klemperer, Repeller
 program chain 94 , Deeter, E. L., Dynamic relay analyzDeeter, "...................................... Jull temperare Degelman, \cdots................................. 180, May Dempster, Burgess, Characterion ${ }^{\text {trigge }}$ 134, Jan of some oll impregnated capacitos Devoy, J. R., New thyratron circult 168 , May for motor control …..........p 116, Apr Dickerson, A. F. Hum reduction. D 112, Dec projection television syetem. ${ }^{\text {p }}$ 72, Apr Dorr, C. J. and H. M. West. Reiay control circuits for stepping switches 158 , Jan Dorsey, S. E., D. L. Ewing, and L. M. Biberman. Photographic track-
Ing of guided misiles
Doxe........... film and surpace studles 112 Duffield. S. H. and L. R. Lankes. Desting photographic shutters. R-F briage ior broancast stations. D 83. Apr Dusenbury, Charles, R-f heating for
cabinets

Espy, Dawkins, Design curves for parallel-T network.............p 114, July Ewing, D. L., L. M. Bibrrman, and ing of guided missiles............p 92 July

Faulkner, W. H. Jr.. D. D. King and
John Taylor, Bolometer amplifierp 116 , Feb Feiker, G. E. and H. R. Meahl, Di-
rect-reading wavemeter design. p 103, Mar
Fink, D. G., Bandwidth vs noise in communication systems
vision ${ }^{\text {Gind }}$ Design tremds in teleFink, D. G., IRE national convention Fink, D. G., Prospects for uhi tele pre 72, May 68 Nov Fink, D. G., Transcription recordings
 transistor-a crystal triode.....p Fisher, J. F. and J. C. Tellier, TestFoss long-persistence screens....p Foss, William, Television station Fouty, R. A. and C. E. Smith, Circular polarization in $\mathbf{1 - m}$ broadcast-
France, Boyd, The eriscope camera Franklin, C. .. Franklin, C. S., Precise measurement of aircraft speed
Frase, S. H., Electronic timer.....p
Frommer,
tion bridge $\ldots . .$. Resistance deviation bridge C.. Resistance deviacomputer . Compact analog Fuller. H. 'W... Numeroscope................. cathode-ray printingp 98, Feb

Gams, T. C., Dielectric heating of Gersch, A. E., Rocket-enge.......................... Gieringer, C. K., Frequeney stabliza tion of diathermy units.............p Gilson, W. E., Medical stimulus cir-
cults

99, July

Greenough, M. L., Polarity response
from tuning eye tubes $\ldots p$ from tuning eye tubesp 162, Apr

Hale, H. E. and H. P. Mansberg, An Hascilloscope camera 1 ance of milliwatt relays.p 140, Nov Ramburger, Ferdinand Jr., and R. G. Roush, Light-fiash gererator...p 100 , Nov
Hansel, P. G., Instant-reading diHansel, $P_{\text {. }}$ G., Instant-reading diHansen, w. w.. Surveying with 86, Apr pulsed-light radar ${ }^{\text {Hausner, }} \mathrm{H}$. H., Sintered................ 76, July ductors . H. H., Sintered semicon-
 B. D. Loughlín, Superregenerator

Head, J. W., Thickness gage for ${ }^{\text {ded }}$. Sept
 Hector, L G. and H. W. Koren. Ceramic phonograph plckup.....p
Hedeman, W. R. Jr., Rew crystals control many channets crystals 94, Dec Hedstroem, Sven-Eric And i...p 118 , Mar Borg, Transductor ivndamentals
Helber, C. A., Regulator for $400^{p} 88$, Sept
 reactance modulator $\cdots \cdots \cdots \cdot \mathrm{p}^{2} 120$, Apr Henry, E. A., Baseline for visual Henry, J. M. and M. G. Morgan 154 , Sept Engineering the schematic dia
 Electronics simulate genge of Hollis, $\underset{\text { w. . C. . . Power amplifier for }}{ }$ fo................. Mar the cltizens transmitter p Hollis, W. C., Receiver for the Hollywood, J. M. Mismatch ${ }^{\text {ci.p }}$ 80, Mar ahart for transmission lines....p 130, Jan Holst, P. F. G., Television receiver 130 , Jan intermediate frequencies........p 90, Aug Hooper, C. K., Filter ripple chart.p 132, Mar Howatt, Glen, New synthetic plezoelectric material capacitor count 97, Dec Howland, Bradford, Capacitor count
ing circuit Huber, wircuit Electronic preservation 182, June Huber, W., Electronic preservation of food M4, Mar

Jaeschke, R. L., Thyratron braking for oil drilling rigs.p mechanical ceramics. Johnson. E., Directly coupled phase inverter 188, Mar

Kaufman, A. B., High-speed revoluKearse, G. P., F-M and television' re. Keiving antennas Low-f lator \because ㄹ...... Measuring liquid fiow 10 B , Sep Kendall, D. B., Measuring liquid fiow by welght................................... Propagation of very May ghort waves-Part I, p 124, Jan

 King, D. D., John Taylor and W. H. 106 , May Faulkner, Jr., Bolometer amplifier debut Klemperer, Hans, and J. T. deBut Kllever, Waldo, Selling research Klipseh, \ddot{P}. W. Low-distortion crossKover network H. W. and i..................... Ceramic phonograph pickup....p Korn, G. A., Design of d-c electronic
 Korn, T. S., Dynamic sound repro-
 Direction finder for locating
 Kock, for microwaves..........p Korn G A Elements of $\dot{d}-\mathrm{c}$ analp 108, Apr computers Apr Kroemmelbein, "W.'........................ Kurveying. . Ele........................... 112, Mar
 Kurtz, E. B, and R. H. Burkhardt Polyphase power synchroscope.p

116, Feb 04, Aug 68. Dec

152, Aug

Lafferty, R. E., Piston attenuator

Jr, Telephone dial tester.....p
Testing , R. and S . H. Dumeld,
Lebenbaum, M. T., and R. N. Close,
Design of phantastron time delay
circuits . \dot{M}. 100 , Ap
 F-M transmitter performance
 metically sealed components. Levi, F., Magnetic leakage evaluated with an electrolytic tank.........
Libby, L. L. Frequency-scanning vhf impedance meterp Lineback, Hugh, Reproducing hand Lismiting \quad................................... 180, June Lisman, Henry and E. K. Stodola
Low-impedance reactances for p 93 , Ma
Long, T. H., Electronic organ...p 117, May magnetic amplifiersp 104, Oct Loughlin, B. D., D. Richman and Alan Hazeltine, Superregenerator
 Lurie, W. B., Citizens band tran Lurie, W. B., Versatile tone control

9, Sept 156, Oct eivers $\because \cdot$ Ver. Aug 81, Dec

Mackay, R. S., Nonlinear Indicator
 Watch timer.......................... Mansberg, H. P. and H. E. Hale, An oscilloscope camera Marks, B. H., Ceramic dielectric
 Markus, John,
wave television relay.....................
Markus. John, Editors report on Markus, John, Editors report on 114, Jan
 Skalnik, Thyratron phase-control
 istics for the dynamic nolse sup medonald, Donald, Stabilizing servo McDonalisms Mckenzie, A. A., Car-card radio...p 72, June McKenzie, A. A., Facsimile goes
 ceivers... McKenzle, A. A., Limited common Carrier radio service.................... Sterenhonic sound McKenzie, A. A., Stereophonic sound
McPhee, K. H., Melting-point chart Meahl, H. R. and G. E. Felker, Dl-rect-reading wavelneter design.p 103, Mar Meeker, W. F. and F. H. Slaymaker, Inlind guidance by ultrasonics. p 76, May Melton. G. H., Multi-channel radio telemetering for rockets.... Gip 106, Dec Milholland. Harry and T. T. Goldsmith, Jr., Television transcrip- 6 , Oct

Miller, W. B., Versatile power supply
Itrup 126, June Slaton Gnd A. W. J. Waynick, J. Hermetically sealed components....p Morgan, M. G. and J. M. Henry, Engineering the schematic dia$\underset{\text { gram }}{\text { grason, }} \mathbf{R}$.................................... phototubes at $h i g h$ current levels

Newitt, J. H., Indoor television an
 tron frequency ehangersp 126, Mar Nixon G. M., Acoustic probiems in studio design $\ldots \ldots$.............................
Nolle. A. W., logarithmic reaporise............p 166, 太ept Norton, F. R., Televiston receiver laboratory .; Graphical power-level 86, Miar utting, D. C., Graphical power-level
computations computations 122, Aug

Odessey, P. F. and Allan Ematon Design of Counter circults for tele 120 , May Osterland, Edmund and"F. H. Shepp 101, Oct

Page, C. H., Digital computer
Pappenfus W and G L San 110. Sept Pappentus, E. W., and G. L. Sans
testing F_{M}... Parmly, F. and E. Sherich, Capaci- 108 , Mar tors and selenium rectiffers....p 146, May Philbrick. G. A., Designing industrial controllers by analog...........p 108, June Pickering, N., Space-charge tetrode
 Pine, C. C.. Construction of shielded Proctor, R. R., Road-testing gasoline 83, Nov

Reich, H. J., J. C. May, and J. G circuitsp 107, July circuits
Reyner, J. H. . Direct-coupled oscillo $^{\text {D }}$ scope ... 102, July Rockett, $\dot{\mathrm{F}}$. $\dot{\mathbf{H}}$. . Dealgn of $1-\mathrm{p}$ rec
 Rich, s. \dot{R}. and \dot{A}. \dot{H}. Rosen, Sonic navigation system
Richman, D. Alan Hazeline and
B Richman, D., Alan Hazeltine and B
D. Loughlin, Superregenerator design 99, Sept Rively, C. M., Phototube amplifie Robinette, W. C., A packaged servo mechanism
mockett F. H. and D. G. Gink, The Rockett, F. H. and D. G. Fink, The Jan transitor-
Rosen, A. crystal triode.......
. and
S. Rich, Sonic navigation systemp 92, Nov Rosentreter, E. W.. Single-signa single-sldeband adaptor $\ldots \ldots$....... 124, July Roush, R. G. and Ferdinand Ham
burger, Jr., Light-fiash generator 100 . Nov
Rowland, H. J., Antennas for cltizens radio

Saars. W. F. and W. W. Stifler, Jr.
 Sabaroff, Samuel, Technique for dis-
tortion analysis114, June Samuelson. R. E. Field tests for citizens band w....p 92, Jan Sansbury, G. L. and E. W. Pappen testingp 108, Mar

 Schlesinger, Kurt Low irequency compensation for amplifiers....p 103, Feb Schuller. E. R., Design of loudspeak er dividing networks . Wuke, $\mathrm{R}_{\mathrm{p}} \mathrm{F}$ 124, Feb Schumann, F and
bridge for broadcast stations...p 83, Apr Sear, Hubert, Camera shutter time Sear, Hubert. Camera shutter timer 148 , Nov Seeley, S. W., Design factors for Seeiey, S. W., Design factors for 72, July Selgin, P. J., Plotting electron path Sharpless. T. K., High-speed N-scale 124 , Sept
 Shepard, F. H., J \bar{r}. and Hamund Osterland, Peak-to-peak voltmeter 101 , Oct Sherich, E. and F. Parmly. Capaci-

Fairchild Recording Equipment Corporation has been newly formed to concentrate on the specialized requirements of the Radio Broadcast and Record Industries. Our mission? To shatter another rumor: That top-quality sound recording equipment has to be expensive. We intend to produce the same outstanding line of dis' recording instruments - formerly made by Fairchild Camera and Instrument Corporation - to sell at lower prices!

What makes price reductions possible? An organization of specialists concentrating on sound recording alone . . . to speed the development of new equipment ... to handle special problems speedily and inexpensively . . . to effect more efficient production methods . . . to effectively reduce selling costs.

What's in store for the furure? Plenty! The new Fairchild Magnetic Tape Recorder is the first of a number of new sound recording instruments to be developed through skilled and visionary research. Keep your eyes-and your ears-on Fairchild Recording Equipment. Interesting developments are in the making!

NEW LOW PRICE $\$ 485$

Fairchild Transcription Turntables are now available for immediate delivery.

Advantages of Fairchild's

COMPLETE

REPRODUCING SYSTEMS

Fairchild Transcription Turntable equipped with Transcription Arm and the new 6 -position Pream-plifier-EQUAlizer delivers wide range, distortion-free performance that will delight the ears of the most critical engineer.
\checkmark Perfectly balanced channel from pickup 10 high level input.
\checkmark Signal from turntable at line level.
\checkmark Equalization for any pickup.
\checkmark Use of two or more pickups with single equalizer.
\checkmark No low level hum problems.
\checkmark Greater signal-to-noise ratio.

\checkmark Synchronous direct drive operation.
\checkmark Visible stylus for easy cuing.
\checkmark Provision for monitoring cuing.
\checkmark New rugged trouble-free pickup reproducer.
\checkmark Economy - the elimination of one preamplifier and extra equalizers . . . the prevention of equalizer obsolescence.
All Fairchild sound equipment units -including Studio and Portable Disk Recorders and Unitized Amplifier Sys-tems-are available for immediate delivery. Write for complete details: 88-06 Van Wyck Boulevard, Jamaica 1, N. Y.

Shonnard, J. R., Facsimile modu Simor tube 82, June Simon, Eli and F. ${ }^{\text {w. }}$. Thomas, Soldering aluminum alloys.....p 90, June Singleton, H, E. and R. S. Bailey, leducing transmission bandwidth
skalnik, J. G., J. C. May, and H. J. 107 , Aug Skalnik, J. G., J. C. May, and H. J. cuich, Thratron phase-control ctr- \quad, July
 trip, and A. H. Waynick, Her Slaymaker, F. H. and W. F. Meeker, Ijind guidance by ulivasonics..p 76 , May Smith. C. C., Automatic lighting
 lat polarization in $f-m$ broad-
 Sirbel, A, D. Television front ends.p 76, Sept stitler, W'. WV. Jr. and W. F. Saars, sumey, C. I., Temperature co.................... 98 , June fients in electronic circuits...p Sulents. R. T., Sprayed wiring for control amplifierp128, May Stockman, H., Superregenerative
 Luw-impedance reactances Lisman,
*uckling. E. F., Differertial input 93 , May surking. E. E., Differertial input sul\%*r. F". G.. Yoise generator for re- 186 , Feb
 96, July

Jitylor. John. D. D. King and W. H
Faulkner, Jr., Bolometer amplifier
Taslor. P, K Sinele-sideband p 116, Feb lat filters Oct Thmmas. Alexander, High voltage sumplies for G-M counters.... 100 . Dec
Thomas. F. W. and Eli Nimon, Sol-
 Thmmas, H. P., and I. M. Leeds. F-M
trinsmitter performance measuretrinsmitter performance measure-
ments
 Automatic limit bridge for production testingp 110, Jan Tuttle. Clifton, Precision circuit 110 , Jan printing................................ 190, Oct
 small a-c motors ©.................... 106, Feb ryson. B. F., High-frequency crystal 156, Nov ysoltmeter High-irequency crystal voltmeter 150, Mar

Underhill, E. M., Permanent magnet
alloys
122, Jan

Vandeven. E. O.. Phase meter
Villard, O. G. Jr., Connogite ...p 14 tude and phase modulation ampliVillard, O. G. Jr., Simplifled single
sideband reception
142. June

82, May

Wald, Sieiney, Precision interval
walder S.".................................... Dec tuning 148 .
 with a thermoplle.................. 180, Mar Vallman. Henry, Stagger-tuned am- 100 , May plifier design May Faynick, A. H., w. J. Leass. G. R.
Moltrup, J. H. Saton. Hermetically
sealed components
Veiller, P. G., End resistance mate- 80 , Nov Whate, iI:. A.. Optimum conditip 172, May for $\mathrm{r}-\mathrm{e}$ oscillator $\ldots \ldots \ldots \ldots . \mathrm{p}^{2} 178$, Feb White. w. C., New words come and 178 , Feb

Filertronics simulates sense of
smell 100 , Mar tone generaior with rat iningency Whitchead. J. W., Carrier shift 130 , May check meter 162, June reactor desion core Wilkenhauser, G Development and 136, Dec inplications of the skiatron....p 174, Mar Winters, S. R., Truck-wheel balancer ${ }^{\text {p }}$ 134, Apr
coudin. Myron and Nicholas Anton Mith altiturle tube 95. Apr Yu. Y. P.. Bridge-balanced ampli- 111 , May

Zalkarias Imre. Reducing humi in Zeluff, Vin, Television remote viewer
Zimmermann. K. H., High-frequency ${ }^{\text {p }} 90$, Dee cable design

INDEX TO ADVERTISERS

Acheson Colloids Corporation

Aerovox Corporation
Allen Co., Inc., It. Is.
Allied Control Compariy, In
Apha Metals, Inc.
Alted Iansing Corporation
Amerlan Phenolic Corporation
Ameriran Srrew Company
American Television \& Radio Co
American Time Products, Inc.
Amarisat Transformer Company
Amperite Company
Anaconda Wire and Cable" Co..
Andrew Corporation
Arkwright Finishing Company
Arnold Enginecring Compans
Art Wire and Stamping Connpany
Astatic Corparation
Audio Developm
Nudio Development Contany
Avimo Limited
Ibapr Company, N. S.
Baliantine laboratories, Inc
Ifarnstciat Still \& Stcrilizar (0)
Belden Manufacturing (ompany
Inell Telebione Laboratorid
lbentley, ilarrin mig. Co.
Breta Flectronirs compans
Itiril Electronic Corp.
Birtcher Corp.
Inwax Corporation
Blaw-knox Company . indishers
Holam and Boyer, ine..
Ibonton Radio Corporation.
IGonnton Radio Corporation
Ifrush Development Company
IBrek Engineering Co., Ine.
Burnell and Company
Cambridge Thermionic Corp.
Cannon meatric Development Co., Garbortundum Company
C'entralab, Div. Globe-Vinion. Inf.. 8.8 ,
Chicaco Trinsformer, Div. of Esoex Wire Corp.
Clnch Manufacturing corp..
Clare and Co., C, I'.
Claveland Container Cing, Inc.
Cohn Corporation Ciempan
Collins Radio Company
Condenser Iroducts Compais
Continental-Diamond Flbre (co
Cornelt-Dimblier Fiedric ('orp.
Cornisit Wire Company, Ine.
Coto-Coil Company, Inc.
Craft Manufacturing Company
Cross Co.. II.
Curtis Developinent \& Mife. Co.
Cyclohm Motor Corporatl
Dano Flectric Company
Declmeter, Incorporated
Dlal Light Company of Americi Ibriver-Hitris Company
I mimont Electrie Corporation
Dir Mont Laboratories. Inc.. Nifen B. 18. Durst Manufacturing Company
Gasterit Air Devices. Inc.
Hasterit Air Devires. Inc.
Fitel-Ncrullough, Iuc. Five
Pelectrical Instilation Co., Inc
Flectrical Reactance (lorip.
Flectro Eingineering Works.
Flectronic Measurements Co
Flectrons, Inc.
El-Tronics, Incorporated
Erie Reaistor Corporation
Fairchild Camera and Instrument Corp
Falrchild Recording Equipnient Corp. Federal Telephone $\underset{\text { Ferrantl }}{ }$ Flectric. Inc
Fiplal Electrical Instrui
Filtron fompany, Ine.
Gamewell Company
General Aniline \& Filim Carp
Gemerat Cement Mrf. Co.
Apparatus Dept.... 12. 13. 57, 133, 165
Chemieal Dent. . . Construction M
Electronics Dept
General Radio Company
Gothard Manufacturing cin
Graphite Metulliang Corp
ariy Research and Development Co
IInnsen Mif. Company, Inc.
Iardwidk. Tirtale. Inc.
IIarvay Radio Company, Ine
IIassall. Inc.0.John.
Iathaway Instrmment Company
Ilelizot Corporation
IHewiett-rpakard Company
IIexaron Electric Compans

IIIIlburn Electronic Products Co
Hudson tire Conipany
,
Imperial Tracing Cloth
Indiana Steel 1 rodict
instrument Electronics C.........
Insulation Manufacturers Corp..
Intermational Instruments, Inc.
Intermational Machine Works
lnternational Resistance Co.
-T-r. Circnit Brenker
Jensen Manufacturing Co.
Johnson Company, E. F. . Cinc........ \quad I.
Jones Dis., Howard B., Cinch llfs.
Corp.
Kable Eugines Co.n
Karp Metal Erombets Co., Inc.
Kitheretric Co.
Keithey mantriments
Kер"я Laboratorises, In*
Kester Solder Company
Keuffel and Essor ('ompan
Kinnes Manufacturing (ompan.
Lioltsman Instrument llis.. Square i) Company
sampkin laboratories, Itw.
Leach Kelay Compans
Lenkurt Filectric Compans.
Lewis Enginearing Conifans.
Linair Air Products Co.
Lititelfuse, Inc.
Mavallen Company
Machatet Laboratories, Inc.
Hakeperce Company, I). E...; ";
Mallory and Company, Inc., I'. IK.
Marion ideciricatinill ISook Company
Mensurenuenta corporation
Mima
Milford kivet and Machine co
Millen Mitg. Cu., Inc.., Jamers
Mit chell-Rand Inolifition (co, Inc
Mosinee I'aper Mills Combails
Myentex Corp. of America
Nationsal Company, Inc.
National Research Corp.
Vew York Transfornter (o)
Newark Electric Compans
Newark Electric Compuns:
30.
(f6. 16
208, 16
I4.

Newromb Iudio I'roducts co.....
North Antripan Philigs (o.
Inside Fromt Cover
Northera Radio co.. Ine
1893
9.38
98

I'aper Marhinery \& Research.
Par-Wetal Products Corb......
Daramount Daper Tube Corp.
Pation-Mactiager fompany
lenn Rivet nnd Machine
Prakin-EAmer Corporation
polarad EAMdronics Company
Preribion Apparatus co.. Ince.
ircreision faper Trise Co.
Procision Tulze Company
I'remax Iroducts, Div. (Chishenlin-isyder
(in, Inc.
Iresto Recording Corporation
Progressive \boldsymbol{H} fe. Cominnis
Psroferric Company
Gnaker City Gear Works. Iuc
190. 19

206

Racon Electric Company. Inr.
. 19%
landio Receptor Compung, Ium. Izarik (over
Rallway Express Compuny 138
Rallway Express Company, Lir Express Div.

Rawson Electrical Instrument Co.
Kastheon Manufacturing coo.
Ressistance Products compan
lkevere Copper and Ibrass. Inc
Rix Rheostat Co.
Ritharison Comprins
kiwkbestos Products (cory.
Ruhicon Compary
Ruby Chemioal Co
Nciontific Electric. Div. of "s" Corru-
Grott Ineornoratedi. Hermon liosimer
Shallaross Mamuficturing (Co.
Sherron Elertronices onmpan
Niliward Iity. Consmans. Itw
Siemal Encinerring and Mfe. C
Silleocks-Miller Compuny
Simpsan Electric (impans
Solat Electrie Compans
Nolar Elactric Corboration
soldering siocriatidis
Soreuscuand Combany. Iur. Sperialty Ibattory Company
-pprer cartion compa
Stackpole Carloon Company
stackiole Carion company itandard Arcturas corporation
st:andard Piezo (compans:
St:andard Pressed Steel Co.
Ntipndaril Talenhomes if cables. Idt
Steward Manufacturing (o., D. M...

HIGH SEMSITIVITY

PRECISION Series 866

DUAL-SENSITIVITY

Push-butionoperated, panel mounted, Wide-Range AC-DC Test Set with fullview 9" meter \& Remote Selector Unit. 5000 and 1000 OHMS PER VOLT D.C.

1000 OHMS PER VOLT A.C. Indispensable to the well equipped, electronics service-maintenance laboratory and classroom.

The extra-large $9^{\prime \prime}$ meter and re-mote-control selector unit afford unparalleled visibility and operational efficiency.

SPECIFICATIONS

$\star 8$ D.C. VOLTAGE RANGES:
5000 and 1000 ohms per vol * 8 A.C. VOLTAGE and OUTPUT RANGES;

0-3-6-12-60-300-600-1200-6000 volts * 8 D.C. CURRENT RANGES:

0-3-1.2-3-30-300-600 M.A.
0-1.2-12 Amperes

- 6 RESISTANCE RANGES

self-contained to 20 Megohms $0 \cdot 2000-20,000-200,000 \mathrm{ohms}$ 0-2-20-200 Megohms * $9^{\prime \prime} 200$ microamp. METER: 2% accuracy * 1% Wire-wound \& Metallized Hesistors * All standard measurements
at only two polarized tip jacks. * 6000 volt safety jacks.

866 (illustrated) In standard panel mount, size $19^{\prime \prime} \times 121 / 4^{\prime \prime}$ with rear dust cover $6^{\prime \prime}$ deep. Complete with high voltage tes leads and ohmmeter batteries.

NET PRICE \$71.65
See the Precision line of electronic test instruments at all leading radio equipment distributors or write directly for complete 1948 catalog

PRECISION
 APPARATUS CO., Inc.
 92-27 Horace Harding Blvd. Elmherst 10, N. Y.

Export Division, 458 Broadway, New York City, U.S. A. Cables, MORHANEX

"The Standard by Which Others ire Judged and Valucd"
We have said this often, and we shall repeat it many times because of its importance to YOU the listener:-It is futile to buy the most modern records, if you do not give them the very BEST pick-up to bring out their built-in excellence!
There is so much in present-day discs, that even a mediocre pick-up is bound to bring something out of them. However, to obtain the fullest results of which these discs are capable, they must be reproduced with the finest reproducer for that purpose-the AUDAX TUNED-RIBBON reproducer-operating with the extremely low point-pressure and stylus-point required.
Remember, two singers may both be able to hit "high C" . . . yet, one will please the ear-the other not at all. There is much more than mere WIDE. RANGE to quality reproduction. AUDAX reproducers deliver not merely WIDE-RANGE, but also all vital factors essential to highest quality of musical performance and unequalled EAR-ACCEPTABILITY.
"Permanent" points*, whether sapphire, diamond or metal, keep their original shape for only a limited number of plays . . . then they progressively destroy record grooves. TUNED-RIBBON models permit easy stylus changing-by the owner himself . . . very important!
*Write for complimentary pamphlet on the life of permanent needles

AUDAK COMPANY

500 Fifth Avenue
New York 18

"Creators of Fine Electro-acoustical Apparatus since 1915"

Superior Electric Company 24:	
Technitro	En
Technoiogy Instrument Corp.	
TEL Instrument Company	
Telechron	
Thomison Corp., George s............ ${ }^{248}$	
Tur	
United Transformer Company Invile Hack Cover	
Victore	nstrument Company......... ${ }^{192}$
Vitamite	Company ${ }^{39}$
Vulcan Electric Company...............	
Waldes	
Western Electric Company.......in, 5, 123	
	House Electric Cory
Weston Electrical Instmment Corp...... 138	
Wilcox Electric Company................ 14	
Wopson Company, H.	
N	
SEARCHLIGHI SECTIO (Classified Advertising)	
Positions Wanted	
Employment Services	
Rebuilding ..	
(Used	or Surplus New)
WANTED	
American Electrical Sales C	
Bendix Aviation Corp.	
Brooks Inc., R. D.......................... 276	
Conmmunications Devices ${ }^{\text {B71 }}$	
Communications $\begin{aligned} & \text { Equipment } \\ & \text { Compass Communications Co. Co.....252, } \\ & \text { Con }\end{aligned}$	
Eastern Radio Sales.	
Eckert-Ma	
Edlie Elec	ectronics Inc.. 275
Electro Impulse Laboratory............. 271	
Electronics Research Publ. Co............. ${ }^{249}$	
Freed Radio Corp. 248	
Heatly Company254, 255	
Instrument Associates 26.	
Klein. Manuel 272	
Lea Electric Equipment Co............... ${ }^{274}$	
Leru L.aboratories Inc.................... 276	
Life Electronics Sales................... 272	
Maxson Corp., W. L. 2248	
Mogull Company Inc., Alexander.......... 276	
Niagara Radio Supply Corp............. 257	
Opad-Green Co.	
Photocon Sales Division................. 275	
Powertron Electrical Equip. Co.......... 263	
Radio Corporation of America........... 247	
Raytheon Manufacturing Co............. 272	
Servo-Tek Products Co., Inc.............. ${ }^{258}$	
Telemarine Communications Co. 267	
Tung-Sol Lamp Works Inc.................. 248	
Universal General Corp....................... 272 Veterans Salvage Co., Inc.................... . 274	
Village Radio Equip. Co......................... 276	
Weiglitman, H. G. Wells Sales Inc. Westinglouse Electric Corp.................. 248 Winters Radio Lab.	

COMPONENTS FOR EVERY APPICATION

HERE ARE power tubes, phototubes, and c-r tubes to serve the major requirements of equipment manufacturers for a long time to come. The tubes listed are those you can depend on now, and for your future designs.

These RCA types are especially recommended because their wide-spread application permits production to be concentrated on fewer types. Such longer manufacturing runs reduce costs-lead to improved quality and greater uniformity. Resultant benefits are shared alike by the equipment manufacturer and his customers.

RCA Application Engineers are ready to suggest suitable tube types for your design requirements. For further information write RCA, Commercial Engineering, Section LR-40, Harrison, N. J.

THE FOUNTAINHEAD OF MODERN TUBE DEVELOPMENT IS RCA

Preferred List of RCA Non-Receiving Types			
CATHODE-RAY TUBES AND CAMERA TUBES			
Kinescopes (Proiection) STP4 (Directly Viewed) 7DP4 7JP4 10BP4	Camera Types 5527 22_{23} 5655 	Oscillograph Yyes $28 P 1$ $3 K P 1$ SUP1	Monoscope 2F21
PHOTOTUBES			
Gas Types Vacuum Types Multiplier	$\begin{aligned} & 1 P 41 . \\ & 922 \\ & 931-A \end{aligned}$	$\begin{aligned} & 921 \\ & 929 \end{aligned}$	927930
GAS TUBES			
Thyratrons Ignitrons Rectifiers Voltage Regula	2021 3022 5550 5551 3825 673 8008 ors $0 A 2$	$\begin{array}{cc} 884 & 2050 \\ 5552 & 5553 \\ 816 & 857 \cdot \mathrm{~B} \\ \text { OC3/VR105 } & 003 \end{array}$	$\begin{array}{ll} 5563 & \\ 866-A & 869 . B \\ 3 / \text { VR150 } & \end{array}$
POWER AMPLIFIERS AND OSCILLATORS			
$\begin{gathered} \text { (Air.Cooled) } \\ 811 \\ 812 \cdot \mathrm{~A} \\ 826 \\ 833 . \mathrm{A} \\ 8000 \\ 8005 \\ 8025 \cdot \mathrm{~A} \end{gathered}$	TRIODES(Forced-Air-Cooled)6C247C249C229C25889R-A892-R55885592		$\begin{gathered} \text { (Water-Cooled) } \\ 9 \text { C21 } \\ 9 C 27 \\ 889-A \\ 892 \end{gathered}$
tetrodes		beam tubes	PENTODES
(Air-Cooled) 4-125A/4D21	$\underset{8 D 21}{(\text { Water-Cooled) }}$	(Air-Cooled) $2 E 24$ $2 E 26$ 807 813 815 828 $829-8$ $832-A$	$\begin{gathered} (\text { Air-Cooled) } \\ 802 \end{gathered}$

The world's most modern tube plant ...
RCA, Lancaster, Pa .
ce

[^0]: \star THIS EDITORIAL, and a series to follow, will be devoted to a single problem - how to provide American industry with the equipment needed to improve that envy of the world, the American standard of living. No more important problem confronts us today. Upon our wisdom in handling it depends not only the degree of our prosperity, but also our security as a nation.

[^1]: *"Ceramicon" is a registered trade name and refers to ceramic dielectric condensers manufactured by Erie Resistor Corp.

[^2]: The

[^3]: This paper was presented at the 1948 Vational Electronics Conference in Chicago.

[^4]: feet

[^5]: Manutacturers of Molecular Stills and High-Vacuum Equipment; Distillers of Oil-Soluble Vitamins and Other Concentrates for Science and Industry

[^6]: I

[^7]: Power Supplies up to 200,000 volts DC. reguPower Supplies up to 200,014 vols specifications. Compactness. low cost and rapid delivery fompactness, supply requirements to us for a prompt bid on price and delivery.
 Other BETA products include:
 KILOVOLTMETERS up to 50 KV . ELECTRONIC MICROAMMETERS SUPPLIES. full-scale.

 Send for descriptive literature
 Field engineers throughout the country are at your service to discuss our products more thoroughly with you.

[^8]: SCIENTISTS AND ENGINEERS
 Wanted for interesting and professionally challengtng research and adranced development in the flelds of microwaves, radar, grroscopes, servomechanisms. Instrumentation, computers and general electronics. Sclentinc or engineering degrees required. Salary commensurate with experiance and ability. Inquirles to Mgr. Engineering Personnal.
 P. O. Box AIRCRAFT CORPORATION
 P. O. Box 1

[^9]: All Prices Subject to Change Without Notice All merchandise guaranteed．Mail orders promptly filled．All prices f．O．B．New York City．Send money order or check．Shipping charges sent C．O．D．Minimum order $\$ 5.00$ ． 20\％Deposit required with all orders．

[^10]: 150 MMF $\quad .5$ Spacing.
 75 MMF 3 Spacing
 250 per section

[^11]: WANTED
 3-AN/APR-4 RECEIVERS; 3-TN-17, 3-TN-54; 2—TN-16; 2—TN-18; 2—TN19: TUNING UNITS.

 W-6937, Flectronies
 330 West 42 nd St., New York 18, New York

