

electronics

AUGUST • 1948

PRINTED CIRCUITSCover
Miniature components and wiring fired onto ceramic plate (center-front and rear views) permit simplification ofhearing-aid design (top-front and rear views). Equivalent conventionally wired chassis is shown at lower left forcomparison. Photo by Moni Hans Zielke for Centralab
TELEVISION SHADOWS
Small lamp, placed of proposed transmitter site on relief map, illuminates line-of-sight coverage area
WHAT'S WRONG WITH U. S. FREQUENCY ALLOCATIONS?, by Jeremiah Courtney 73
Former Assistant General Counsel for the FCC stotes his case
CITIZENS BAND TRANSCEIVERS, by William B. Lurie 76
Modified iff transponders fit FCC specifications for Citizens Service
TESTING PHOTOGRAPHIC SHUTTERS, by S. H. Duffield and L. R. Lankes
82
82
A review of the fundamental electronic circuits that have been usedSTEREOPHONIC SOUND
88
Three-channel magnetic-tape recorder is used to prove feasibility of a home system using two loudspeakersTELEVISION RECEIVER INTERMEDIATE FREQUENCIES, by Paul F. G. Holst90
FACSIMILE GOES COMMERCIAL
Summary of the recent FCC authorization, the standards adopted, and the availability of equipmentELECTRONICS IN ASTRONOMY, by Gerald E. Kron.
Survey of existing equipment, and notes about new devices under development 98
REPELLER STORAGE TUBE, by H. Klemperer and J. T. deBettencourt
Operation of storage tube that distinguishes signal from noise is described 104
REDUCING TRANSMISSION BANDWIDTH, by R. S. Bailey and H. E. Singleton 107
PICTURE-MODULATED TELEVISION SIGNAL GENERATOR, by Allan Easton 110
Circuits and performance data of a signal generator for receiver production tests
Circuits and performance data of a signal generator for receiver production tests
CERAMIC DIELECTRIC MATERIALS, by B. H. Marks
New materials, not to be confused with porcelains and steatites, have many potential uses 116
GRAPHICAL POWER-LEVEL COMPUTATIONS, by Daniel C. Nutting
Chart simplifies computation by relating voltage, current, resistance with power 122
BUSINESS BRIEFSCROSSTALK66 ELECTRON ART

71| 128 |
| :--- |
| 132 |NEWS OF THE INDUSTRY.................. 136

NEW BOORS
BACKTALK INDEX TO ADVERTISERS

DONALD G. FINK, Editor; W. W. MacDONALD, Managing Editor; John Markus, Vin Zeluff, Frank H. Rockett A. A. McKenzie, Associate Editors; William P. O'Brien, Assistant Editor; Hal Adams, Jean C. Brons, Elaine Weber, Editorial Assistants; Gladys T. Montgomery, Washington Editor; Harry Phillips, Art Director; Eleanor Luke, Art Assistant; R. S. Quint, Directory Manager; John Chapman, World News Director; Dexter Keezer, Director Economics Department

KEITH HENNEY, Consulting Editor

H. W. MATEER, Publisher; WALLACE B. BLOOD, Manager; D. H. Miller, H. R. Denmead, Jr., New York; Wm. S. Hodgkinson, New England; F. P. Coyle, Warren Shew, Philadelphia; C. D. Wardner, Chicago; J. L. Phillips, Cleveland; J. W. Otterson, San Francisco; Carl WngDysinger, Los Angeles; Ralph C. Maultsby, Atlanta; Paul West, London, England; J. E. Blackburn, Jr., Director of Circulation
 JAMES H. MeGRAW (1860-1948), Founder © PUBLICATION OFFICE A9-129 North Bryedway, MCGRAW-HILL PUBLISHING COMPANY, INCORPORATED,
OFFICES, 330 West 42 nd St., New York 18, N. Y., U. S. A.-Member A. B. P. Membera. B. C.
James H. Mc Graw, Jr., President: Curtis W, McGraw, Vice.President and Treasurer; Eugene Duffield, Executive Assistant for Publications; Nelson Bond. Director of
Advertising: Joseon
ELECTRON, Gerardi. Secretary; and J. EE, Blackburn. Jr. Director of Circulation. ELECTRONıCS. August. 1948 . Vol. 21: No. 8. Published monthiy. With an are of Circulation.
 Subscriotion rates United States and nossessions. S6.00 a yhar, $\$ 9.00$ for two years, $\$ 12.00$ for three years. Chatiada shauld be addressed to the Director of Circulation.

Leading photographers, both amateur and professional, have given this new American Bolex product astonishing acceptance throughout the nation. This proves that they were quick to understand the revolutionary light-gathering Principle of the Directo:'s unique Photosphere; quick to appreciate its beauty and compactness of design, its simplicity of operation and its unexcelled accuracy.

Marion alone was chcsen to engineer and manufacture this superb light measuring instrument because of Marion's recognized reputation for producing trouble-free meters.

Whether a complete product or a component part of your product, Marion "Special Instruments" offer increased sales appeal. This special Marion service can give your product real sales advantages over competition. When you want it engineered to the application and manufactured to quality specifications write, wire or telephone,

THE NAME "MARION" MEANS THE MOST IN METERS
Write for comp'ete information

new betrer : ALAK line prinês

- Here are positive line working prints that are amazingly clear and easy to read. Every detail on the original pencil drawing is reproduced in crisp, dense black lines that stand out in sharp contrast against the white background. It has been the goal of K\&E in developing Heliost, to bring you a better, more dependable line of dry diazo reproduction materials than had ever been made before. To achieve this, K\&E established a new, modern plant for the manufacture of Helios materials exclusively. We not only make the finished products -but we manufacture, to our own exacting standards, the required color-forming components. You see the results whenever you make prints on Helios papers, cloths or films-for their consistently high quality is due to the fact that, from

partners in creating

 start to finish, Helios materials are made with the skill, care and vigilance characteristic of K\&E throughout 81 years of making drafting and reproduction materials and equipment.You can make positive line working prints on black line, blue line or maroon line opaque Helios papers or cloth directly from original drawings, layouts, letters, documents, forms. Or you can save your originals and reproduce positive line working prints directly from positive line intermediate originals on Helios transparent papers, cloth or films. For samples, write Keuffel \& Esser Co., Hoboken, N. J., or ask your K \& E Dealer or K\&E Branch for a demonstration. Remember . . .

SINGLE SIDEBAND RADO SYSTEMS

How single sideband conserves power

THIS IS DOUBLE SIDEBAND

Voice modulation of carrier produces two beat frequen cies-the sum and the difference of carrier and voice freduencies. Transmitter is
called on to produce botl sidebands in addition to carrier. This is inefficient in use of frequency spectrum and wastes power.

THIS IS SINGLE SIDEBAND (carrier reduced)

Une sideband is suppressed by filters and carrier is reduced. Power thus saved is available for remaining sideband. This method of transmission conserves
space in frequency spectrum, requires only a fraction of the power of double sileband, and provides an improvement of 9 db in signal-to-noise ratio.

This system was originated and perfected by Bell Telephone Laboratories and Western Electric

THE RESEARCH that resulted in single sideband started at Bell 'Telephone Latoratories as early as 1915, when speech was first successfully transmitted overseas by radio. To improve the quality of voice reception, Bell scientists began studies of the fundamental nature of voice modulation. They proved that the radio transmit ter was handling two similar versions of the voice (the sum and difference beat frequencies) in addition to the carrier.

Question: Could one of the sidebands be suppressed-thereby increasing efficiency?
For the answer, new tools were needed and were forged by other Bell scientists: a balanced modulator that will reduce the carrier to any desired degree; an electrical

> 1
> BELL TELEPHONE LABORATORIES
> World's largest organization devoted exclusively to research and development in all phases of electrical communications.

. Bell System Voice links with the Wortd

wave filter that could accurately select one sideband and suppress the other; a very stable carrier frequency source and many other devices were originated. This accomplished, first transatlantic test of single sideband radio was carried out January 14, 1923.

1927 marked the entry of single sideband into commercial two-way long-wave radiotelephony, and the development by Bell Laboratories of crystal-controlled oscillators soon made possible its extension to shortwave communications.

Today one single sideband transmitter can simultaneously transmit as many as three separate radiotelephone conversations, using but little more frequency space than would be required for one double sideband voice transmission. Now, single sideband equipmentoriginated and perfected by Bell Laboratories, built by Western Electric - joins the U. S. with practically all major points throughout the world by radiotelephone.

The birth and growth of single sideband

1915. Bell engineers analyze nature of frequency band fed into antenna in voice-modulated transmission.
1916. Bell System makes first commercial application of single sideband, in carrier telephony.
1917. Bell System makes first transatlantic single sideband voice transmission.
1918. Single sideland enters radiotelephony field with opening of long-wave U.S.- England link.
1919. First commercial short-wave transatlantic single sideband radiotelephone circuit opened.
1930-1939. Single sideband service to South America, Honolulu, Paris, Manila.
1941-1945. Single sideband equipment built by Western Electric extensively used by Armed Forces, as well as government agencies.
1945-1948. Many more Western Electric single sideband radio systems put in service throughout the world. the economical, low-power LE System

LATEST development in single sideband is the compact, low-power Western Electric LE Systen. Like the higher-powered LC now in wide use, the new LE is built to Bell System specifications for operation with a minimum of maintenance.
The LE System consists of three self-contained units: transmitter, receiver and control terminal. New electronic speech privacy equipment is incorporated into transmitter and receiver.

With the LE System, the Bell System now makes use of the demonstrated advantages of single sideband in the field of medium-distance radiotelephony.

-QUALITY COUNTS -

LE-T1 Transmitter

LE-R1 Receiver

B4 Control Terminal

LE Single Sideband equipment is distributed outside the U.S., Canada and Newfoundland by Westrex Corp., 111 Eighth Ave., New York, N. Y.

$$
\begin{aligned}
& \text { MesI eII } \\
& \text { Manufacturing unit of the Bell System and the } \\
& \text { nation's largest producer of communications equipment. }
\end{aligned}
$$

These Three ALLIED POWER RELAYS

FROM SINGLE-POLE TO FOUR-POLE TYPIFY ALLIED VERSATILITY

3-POLE \& 4-POLE "PO"' TYPE RELAY

This medium power relay is supplied with contact arrangements up to 4-pole double-throw. Standard silver contacts rated at 15 amperes for 24 volts DC or 110 volts AC non-inductive. Coil rating 2.5 watts up to 112 volts $D C$ and 10.5 volt-amperes up to 230 volts AC. Dimensions: 3 pole $2.1 / 4^{\prime \prime} \times 1.7 / 8^{\prime \prime} \times$ 1-5/8". 4-pole 2-1/4" x $1.7 / 8^{\prime \prime} \times 2-3 / 16^{\prime \prime}$.

Like all Allied Relays, types "AS," "BO" and "PO" may be had hermetically sealed, with choice of standard ocral plug-in base or solder-type terminals.

For complete information on these and other Allied Relays, write for latest Bulletin.

DOUBLE-POLE

 "BO" TYPE RELAYThis all-purpose power relay is supplied with single or double-throw contacts. Molded insulation throughout. Standard silver contacts rated at 15 amperes for 24 volts DC or 110 volts AC non-inductive. Coil rating of 2.5 watts up to 112 volts DC and 4.5 volt-amperes up to 250 volts AC. Dimensions: $1.7 / 8^{\prime \prime} \times 1.13 / 32^{\prime \prime}$ $\times 1.5 / 8^{\prime \prime}$.

SINGLE-POLE

"AS" TYPE RELAY

This small, light-weight power relay is supplied with single or double-throw contacts. Standard silver contacts rated at 5 amperes for 24 volts DC or 110 volts AC non-inductive. Coil rating 1 watt up to 95 volts DC and 3.5 volt-amperes up to 230 volts AC. Dimensions: $1-3 / 8^{\prime \prime} \times 1-5 / 8^{\prime \prime} \times 15 / 16^{\prime \prime}$.

NEW RELAY GUIDE
This new falder shaws 24 small, compact Allied Relays with a carefully detailed table of characteristics and specifications. Write for YOUR free capy taday.

$$
=-\quad \text { ل- }
$$

ALLIED CONTROL COMPANY, ING.

RIM DRIVE DUAL SPEED PHONOMOTORS!

For the NEW 331⁄3 R.P.M. RECORDS

MODEL DR - Deluxe model 4 pole, shaded pole motor designed for use in all high-grade instruments in which the ultimate in performance is desired. Novel speed change mechanism is both simple and positive in operation.

Another Genera! Industries' first. . . low cost, dual speed phonomotors that will play both the new $331 / 3$ R.P. M. and conventional 78 R.P.M. records. Both motors have external speed change cortrol levers . . . both are engineered and built to the same high quality standards which distinguish all phonomotors, recorders and record changer-recorders in the famous GI Smooth Power line.

Complete informatian about this newest development in the phonomotor industry is available upon request. Write or wire today to:

PPOBLEM: HOW TO PRODUCE ANSWER: WESTINGHOUSE

BETTER, FASTER, CHEAPER ELECTRONIC CONTROL

MOT-O-TROL... a wide, stepless speed control for d-c motors from a-c power line

You get complete motor control from a single control station with Westinghouse Mot-O-Trol -a new development that provides a wide, stepless range of speeds for d-c motors operated from alternating current. Mot-O-Trol starts motors. It brings them up to preset speed smoothly and rapidly. It permits wide change of speed at any time. It regulates speed under varying loads. It applies dynamic braking for stopping. It reverses motors. Mot-O-Trol provides precise control in a packaged drive that needs no additional equipment. It can be mounted on or built into machines.

Today, Mot-O-Trol versatility is solving drive problems in nearly every industry. In yours, too, there may be an application where exacting control will step up the efficiency of men and machines. Investigate Mot-O-Trol advantages today. Get all the facts . . . the complete story. Call your nearest Westinghouse representative and ask for booklet B-3256 or write Westinghouse Electric Corporation, P. O. Box 868, Pittsburgh 30, Pennsylvania.

J-60679

Mot-O-Trol cabinet for $\mathbf{1 5} \mathbf{h p}$ drive

CHECK THESE MOT-O-TROL FEATURES

- Smooth, automatic acceleration. Current limit is preset to suit load requirements.
- Finger-fip speed control on one small dial.
- Minimum number of circuits and industrial type components.
- Constant torque-low to base motor speeds.
- Constant horsepower-base to higher speeds.
- Protection against overloads, low voltage and field failure.

STANDARD CALIBRATED

 FREQUENCY RECORDS
10 C.P.S. TO 14,000 C.P.S.

London Gramophone Corporation offers to all technicians associated with the audio-frequency reproduction art, an album set of three, doublesided, $12^{\prime \prime}, 78$ r.p.in. records covering the frequency band of $10 \mathrm{c} . \mathrm{p} . \mathrm{s}$. to $14,000 \mathrm{c} . \mathrm{p} . \mathrm{s}$.

Two records, each covering 10 c.p.s. to 14,000 c.p.s. are "gliding tone" recordings, one of which is cut to the standard "LONDON" recording characteristic while the other employs a flat characteristic from 14,000 c.p.s. to 400 c.p.s., with quoted levels below 400 c.p.s. The third covers 30 c.p.s. to 14,000 c.p.s. in 18 bands of steady toncs. The fullest attention has been paid to accuracy of the stated frequencies and their recording levels; full technical data, with frequency/level curves, is given in the liners of the album.

These discs are manufactured from the standard "LONDON" high (22%) shellac content "mix" which ensures the extremely hard surface essential for hard life and the avoidance of distortion at the higher frequencies, arising from "give" of groove walls when pliable disc material is used.
This album set is ready for immediate delivery, post paid upon receipt of remittance of $\$ 15$ or will be sent C.O.D. for $\$ 15$ plus charges, direct from:-

THE LONDON GRAMOPHONE CORP. Technical Division
16 West 22nd Street, New York 10, N. Y.

THE RCA TV TRIO... for Production and Laborafory use

a complete set-up for the precision alignment of television receivers

- The new RCA Television Calibrator, Sweep Generator, and Cathode Ray Oscilloscope are high-precision instruments incorporating design features which reflect the wide experience of RCA engineers in television. The RCA TV Trio provides a complete set-up for testing and aligning television receivers in the laboratory or in production and quality check positions.

RCA Television Calibrator WR-39A has two crystal oscillators for establishing the calibrator frequency. The marker oscillator operates on fundamental frequencies in all bands, and provides markers at all TV frequencies. An easy-reading scale enables
quick crystal-harmonic identification, and a built-in speaker is pravided for zero-beat indication.

RCA Television Sweep Generator WR-59A covers all broadcast television channels, TV. and FM-if bands. All ranges employ fundamental signals, are pre-set, and can be quickly selected by means of a band switch. Sweeps are provided for both $10.7-\mathrm{Mc}$. and $25.75-\mathrm{Mc}$. if bands and for video channels to 10 Mc . Amplitude variation is less than 1 db . The piston attenuator has a maximum ratio of $20,000 / 1$.

RCA Oscilloscope WO-58A has a flat response from 5 cycles to 2 Mc., with less than 2 per cent tilt and overshoot, and rise time of less than 0.15 microsecoad. It displays all TV sync. signals accurately, and is easily calibrated for use as a peak-to-peak voltmeter. A phase-shift control is provided.
For complete technical data on the RCA Television Trio, see your RCA Test Equipment Distributor, or write RCA, Commercial Engineering, Section HY40, Harrison, N. J.

Centralab reports to

* Centralab Ported Electronic Circuits! "Couplare" consists of a plate load resistor, grid rasiston, plate by-pass capacitor and coupling capacitor. "Filpec" combines two capacians and one resistor into a balanced diode load filter that is lighter and smaller than one ordinary capacitor.

ISimplified wiring and assembly . . . fewer individual components fewer leads to be soldered - these are just a few of the advantages you get with CRL Printed Electronic Circuits! That's why Stewart-W'arner uses then, and that's why you will want to

Electronic Industry

2 Using PEC, new Beltone Hearing Aid is smaller, lighter, combines 45 parts, including capacitors and resistors into one compact chassis.

Let Centralab's complete Radiolmm line take care of your special needs. Wide range of variations: Model " R " - wire wound, 3 watts; or composition type, 1 watt. Model " E " - composition type $1 / 4$ watt. Direct contact, 6 resistance tapers. Model "M" - composition type, $1 / 2$ watt. For complete information, write for Bulletin 697 .

4Centralab's revolutionary, new Slide Switch offers improved AM and FM performance! Flat, harizontal design saves valuable space, allows short leads, convenient location to coils, reduced lead inductances for increased efficiency in low and high
frequencies. Rugged, efficient. W'rite for Bulletin 953 .

5 High quality, long life, dependability - that's the reason more manufacturers are switching to CRL'S Hi-Kap Ceramic Capacitors.

LOOK TO CENTRALAB IN 1948! First in component research that means lower costs for the electronic industry. If you're planning new equipment, let Centralab's sales and engineering service work with you. Get in touch with Centralab!
Centralab

DIVISION OF GLOBE-UNION INC., MILWAUKEE, WIS.

By integrating the Weston "per-cent load" ammeter or wattmeter into the machine, designers now make it easy for operators to secure optimum production from machine tools and other motordriven equipment. This instrument continuously provides operators with the following indications:

MAXIMUM SAFE LOAD... reduces tool breakage.
changing load...indicates need for sharpening or resetting tools, redressing grinding wheels, etc.
overioad ... permits corrections before serious troubles occur.
Installed on milling machines, grinders, polishers, turret lathes, automatics, etc., the "per-cent load" indicator is proving a valuable aid in increasing production . . providing uniformly high quality with fewer rejects . . . assuring longer life from motors and tools.

Consult your nearest Weston representative, or write Weston Electrical Instrument Corp., 618 Frelinghuysen Ave., Newark 5, N. J.

Design engineers already have utilized the SB-1 for over 10,000 control combinations on circuits up to 20 amperes at 600 volts a-c or d-c.
Standard parts and a simple basic design mean longer life and low initial cost. There's a standard SB-1 for most jobs. If a standard can't satisfy, we'll build what you want from standard cams, contacts, and fingers of the basic design.

SB-1

* it's the....control AND TRANSFER SWITEH

A variety of attractive switch handles, and water-tight, dust-tight, oil-immersed, fabricatedmetal, or explosion-proof housings are available to fit your particular installation problems.

Your nearest G-E sales representative will be glad to assist you in the selection of an SB-1. Also, ask him for a copy of GEA-4746 which gives additional information about the SB-1, or write to Apparatus Department, Section 856-6, General Electric Company, Schenectady 5, New York.

These publications will be of value to you. GEA-640B-an interesting picture story on capacitors. GEA-2621 and -4357 on d-c capacitors. GEA-2027 on general a-c capacitors. GEA-2526 and -4655 on ballast capacitors. Write Apparatus Department, General Electric Company, Schenectady 5, N. Y.

T
HE ZE are your capacitors. By and large, they are the result of challenges mace on the dreving boards of your equipment design engineers-challenges that heve led us to new concepts in capacitor development and design.

We have made contributions-the introduc ion of the liquid dielectrics P'yranol and Lectronol, the development of thin
kraft paper and Lectrofilm, and the use of silicone rubber bushings and gaskets-all evidences of our efforts toward smaller size, lower weight, higher quality, and lower-cost capacitors.

But basically these capacitors have been built to meet your needs. We hope sincerely that you will call upon us whenever we can be of assistance.

SERVICE-PROVED COMPONENTS

Available Over Wide Range of Ratings

The extensive experience gained by General Electric in design and manuftecture of electronic components for the Armed forces is availd the to builders of commercial electronic equipments. In many cases the range of available ratings is wider than ever before.

RESONANT REACTORS, OLL-FILLED, HERMETICALLY

SEALED
Resonant-charging reactors, accurately designed and constructed for radar

service. Usually required in ratings of 40 kv and below, 1 ampere and below and 300 henries and below. Higher ratings are being built, and can be considered. When required, smalland medium-size designs can be provided with 3 to 1 range of induct ance adiustment.

PULEE TRANSFORMERS, OIL-FILLED.
HERMETICALLY SEALIBD

Pulse transformers for use with either hardtube or line-type modulators. Available in voltage ratings of 10 kv or above. These units are ideal for radar applications, stepping of or down, impedance matching, phase reversing and plate-current measurements. Also suitable for nuclear physics re-

search work. television and numerous special applications in ond out of the communizations field.

FILAMENT TRANSFORMERS, OIL-FILLED, Filament transformers available with or without tube socket mounted integral with the high-voltage terminal. Low capacitance. Ratings to match any tubes; insulated to practically any required level.

For price and delivery on the above components, write your nearest General Electric Apparatus Office or direct to General Electric Company, Capacitor Sales Divisions, 16-215, Pittsfield, Mass.

The "core" of Electronics G.A.f. Carbonyl Iron Powders
 Used chiefly for cores in high frequency magnetic fields, G. A. \& F. Carbonyl Iron Powders are especially high in iron content, and free from disturbing non-ferrous metals. The individual particles are spherical. Some grades contain agglomerates of several particles. Microphoto above: Grade TH at 350X. Average particles of this grade have a diameter of 5 microns.

Made by exclusive carbonyl process: CO gas and iron ore form liquid iron penta carbonyl. Decomposed by heat into powdered iron, CO gas. Two unique results: chemically pure iron penta carbonyl and spherical iron powder particles. Photo above: Hortonsphere for storing CO under pressure.

2.

I-F and H-F applications of G. A. \& F. Carbonyl Iron Powders include: I-F transformer cores, H.F adjusting cores, AM inductance tuning cores, TV wave trap cores, short-wave transmitter tank coil cores, direction finder loop antenna cores, carrier telephony cores and cups. Photo above: "K-Tran," revolutionary top quality I.F transformer, only possible with cores of G. A. \& F. Carbonyl Iron Powder.

共

ZG. A. \& F. Carbonyl Iron Powder advantages: Low eddy current, residual, hysteresis losses (resulting in higher
Q). Excellent temperature and magnetic stability. Savcurrent, residual, hysteresis losses (resulting in higher
Q). Excellent temperature and magnetic stability. Savings (as against air-cored coils) in volume, weight, wire
length. Graph above: the small permeability change due ings (as against air-cored coils) in volume, weight, wire
length. Graph above: the small permeability change due to temperature of uncompensated toroids of G. A. \& F. Carbonyl Iron Powlers, Grades E, TH and SF.

Ask your core manufacturer about Carbonyl Iron Powders. Or write to:

ANTARA PRODLCTS

444 Madison Avenue
New York 22, N. Y. Department 82
Carbonyl Iron Powders are an Antara ${ }^{(81}$ Product of General Aniline \& Film Corporation

Armco Thin-Gage Electric Steel-a war-born development of Armco Re-search-is making its mark in the development of magnetic cores for television, radar, sonic detection, and many other high-frequency devices.

Whenever applications involve changes in magnetic flux equivalent to frequencies from 400 to as high as $1,000,000$ cycles per second, this steel has five definite advantages:

1. Supplied in coils suitable for
high-speed punching operations or for winding into cores.
2. Skin-effect does not become appreciable at high frequencies because thicknesses as light as 1 or 2 mils are obtainable.
3. Considering the gage and insulation on both sides, the stacking factor is high. Four hundred sheets of . 002 -inch insulated steel make a stack only 1 inch high.
4. Carlite Insulation, formed by a
new surface treatment developed by Armco, effectively insulates each lamination and assures minimum interlamination loss.
5. Hysteresis is unusually low for such thin steel.

Write us for further information pertaining to your specific products. Just address the Armco Steel Corporation, 208 Curtis Street, Middletown, Ohio.

EXPORT: THE ARMCO INTERNATIONAL CORPORATION ARMCO ELECTRICAL STEELS

FOR all products to be made by drawing, stamping and similar sheet metal operations, Revere sheet and strip of copper or brass offer maximum ease of fabrication. Not only are these metals naturally ductile, but they benefit further from the metallurgical skill which Revere has gained in 147 years of experience.

In composition, mechanical properties, grain size, dimensions and finish, you will find Revere metals highly uniform. They enable you to set up economical production methods and adhere to them. They can help you produce better products at faster production rates, with less scrap and fewer rejects.

Revere copper, brass and bronze lend themselves readily to the widest variety of finishing operations-polishing, lacquering, electro-plating. With these superior materials it is easy to
make radio shields and similar products beautiful as well as serviceable.

That is why wise buyers place their orders with Revere for such mill products as-Copper and Copper Alloys: Sheet and Plate, Roll and Strip, Rod and Bar, Tube and Pipe, Extruded Shapes, Forgings-Aluminum Alloys: Tubing, Extruded Shapes, Forgings-Magnesium Alloys: Extruded Shapes, Forgings - Steel: Electric Welded Steel Tube. We solicit your orders for these materials.

[^0]How Beltone uses Centralab's
"Printed Electronic Circuit" to design and manufacture the "world's smallest hearing aid"

Models courtesy of Bellone Herring Aid Co., Chicago

REAR VIEW of Beltone PEC unit is shown above. Note ceramic disc capacitors, "printed" silver leads and resistors (black paths). See below for schematic diagram of entire Prined Electronic Circuit.

*Centralab's "Printed Electronic Circuit"

 - Industry's newest method for improving design and manufacturing efficiency!FOR USE where miniature size is of the utmost importance, nothing has ever been offered to manufacturers of electronic equipment which combines ruggedness, dependability and resistance to humidity and moisture in such a small unit package. 'That's what engineers of the Beltone Hearing Aid Co., Chicago, say about CRL's Printed Electronic Circuit, and that's what you will say when you have seen and tested this amazing new electronic development.

Integral ceramic construction: Each Primed Electronic Circuit is an integral assembly of "Hi-Kap" capacitors and resistors closely bonded to a steatite ceramic plate and mutually connected by means of metallic silver paths "printed" on the base plate. All leads are always the same length, each plate is an exact duplicate of the original or "master".

This outstanding new hearing aid development, illustrated above, was the product of close cooperation between Centralab and Beltone engineers. Working with your engineers, Centralab may be able to fit its Printed Electronic Circwit to your specific needs. Write for complete information, or get in touch with your nearest Centralab Representative.

PLASTICON Plastic Film Oil-Filled CAPACITORS

1. More Economical
2. Smaller-Lighter
3. Better Electrical Characteristics
4. MORE ECONOMICAL

MFD.	VOLTS DC	List Priee PAPER CAPACITOR	List Price PLASTICON AOC	SAVING
10	1000	$\$ 15.18$	$\$ 10.67$	$\$ 4.51$
4	2000	13.67	9.24	4.43
2	3000	22.78	15.40	7.38
1	4000	33.54	27.50	6.04
2	5000	48.73	41.25	7.48
Above are typical examples.				

PLASTICONS sure the result of technological advances. . . cost less to manufacture, give better performance.

2. SMALLER - LIGHTER

MFD.	VOLTS DC	Apprax. Weight		Approx. Cuble Dimensions	
		PAPER CAPACITORS	PLASTICONS	PAPER CAPACITORS	PLASTICONS
10	1000	1.95 lbs .	1.7 lbs.	$31 \mathrm{cu} . \mathrm{in}$.	$30 \mathrm{cu} . \mathrm{in}$.
4	2000	2.0	1.23	31	23
2	3000	2.0	1.21	31	19
1	4000	1.77	. 94	28	19
2	5000	5.2	2.9	70	60

3. BETTER ELECTRICAL CHARACTERISTICS

	Paper Capacitors	Plasticons
Power Factor af $85^{\circ} \mathrm{C}$ 60 cycles	0.7 \%	0.3\%
Resistance of $85^{\circ} \mathrm{C}$ megohms per Mfd.	40	100
Capacitance/Temp. Coefficient 100% at 25°	$\begin{aligned} & -40^{\circ} \mathrm{C}=73 \% \\ & +85^{\circ} \mathrm{C}=97 \% \end{aligned}$	$\begin{array}{r} -40^{\circ} \mathrm{C}=94 \% \\ +85^{\circ} \mathrm{C}=103 \% \\ \hline \end{array}$

PLASTICON CAPACITORS given are Type $A O C$, mineral oil-filled. PLASTICON ASC silicone-filled have better characteristics. Paper Capacitors given are chiorinated diphenyl impregnated.

Making Light Work of a
Light Fixture Winding

One girl winds 18 coils at once... one machine turns out 1600 a day
This girl is winding 18 paper-insulated coils at the same time, and she produces, on this one machine, 1600 coils per 8 -hour day. Each coil-for a fluorescent ballast - contains 1328 turns of No. 28 wire.

The machine is the No. 105 Universal Coil Winding Machine which can handle up to 28 coils in stick form at one time. Paper is injected automatically without retarding winding speed, and the accurate timing eliminates error and rejects. A sensitive counting mechanism stops the machine when
the coil is full. Output is further increased by greater efficiency in luandling completed coil sticks through the group-transfer of wires to a new arbor.

Features for Quality Winding

- Sensitive "strap-type" tensions insure smooth flow of fimest wires.
- Uniform overlap of insulating paper at all coil diameters.
- Double paper supply, straight-edge delivery shelf and V-shaped guide-plates pramote smooth feeding of paper.
- Automatic precision counter assures exact wire-turn control.
Write for Bulletin 105L, Universal Winding Company, P. O. Box 1605, Providence 1, R. I.

> FOR WINDING COILS IN QUANTITY ACCURATELY . . AUTOMATICALLY USE UNIVERSAL WINDING MACHINES

[^1]
Federal's Studio-to-Transmitfer Link for High Fidelity Program Transmission
 Here's the new Federal microwave system to eliminate S-T wire and cable circuits. Combining outstanding fidelity-distortion less than 1% over $50-15,000$ cycles - low noise level, 65 db below 100% modulation - and a $35-$ mile "line of sight" range - this system complies with all applicable FCC regulations for good engineering practice. Link consists of a transmitter, receiver and two standard 6 -foot parabolic reflectors (4- or 8-foot reflectors supplied on request).

ONE OF MANY NEW DEVELOPMENTS BY FEDERAL TELECOMMUNICATION LABORATORIES

TRANSMITTER employs advanced-design direct frequency modulation and crystal-controlled klystron power oscillator. Complete monitoring facilities include frequency and power measurements, aural monitoring, and vacuum tube metering. Designed for mounting on standard $19^{\prime \prime}$ relay rack, it is only $35^{\prime \prime}$ high and $13^{\prime \prime}$ deep.

RECEIVER is a single superheterodyne which utilizes reflex-klystron local oscillator. It features pre-selection to reduce possibility of spurious interference. Relative stability is maintained within 0.01 per cent with automatic frequency control. Metering is provided for all vacuum tube circuits, carrier level, and crystal current. Same mounting and size as transmitter.

FEDERAL'S De Luxe Studio Console combines control of all facilities of an FM transmitter into ons unit -a "nerve center"-cenvenient, fool proof, and handsome in appearance.

FEDERAL'S All-Metal Dummy Anfeman meets the need of the Broadcasting Industry for testing Broadcosting Industry for testing of high power, VHF and micro-
wave (FM and TV) transmitters. Wave (FM and TV) transmitters. Jators-Compact, light, water-cooled -determines RF power accurately.

FEDERAL'S Standard 5KW AM Broadcast Transmitfer assures high fidelity performance and maximum operating efficiency. Nominal output of 5 KW can be transferred instantaneously to 1 KW . neered for maximum life of its elements. A new simplified power supply reduces maintenance to a minimum. Standard operating band.

Federal Telephone and Radio Corporation

Use one alone

or stack em' like hot cakes

I-TE OVAL RESISTORS SAVE SPACE!

When space is limited-as in aviation, sound, or electronics applica-tions-I-T-E Oval Resistors and Oval Resistor Assemblies may be the solution you're looking for.

Specially designed to meet the exacting and changing needs of the electronics industry, these modern, wire-wound power resistors are distinguished by their high unit-area wattage ratios, which are due in part to the heat dissipation qualities of the mounting brackets.

An I-T-E Oval Resistor-or an assembly of I-T-E Oval Unitshas a much higher wattage rating than that of a conventional round resistor of comparable size. You save space and, at the same time, gain the dependable performance of I-T-E quality resistors.

No matter what your resistor problem is-space, exacting service, or dependable performance-be sure to investigate I-T-E Oval Resistors Complete technical information, as well as valuable application data, are contained in the new I-T-E Resistor catalog. Send for it today,

There's an I-T-E Resisfor for Every Purpose \rightarrow

POWER RESISTORS

The Leader In Technical Excellence

I-T.E CIRCUIT BREAKER CO., RESISTOR DIVISION, 19TH H hamilton StREETS, PhILADELPY:IA 30, PA. switchaear - unit substations - automatic reclosing circuit breakers - resistors - special products

PROBLEM-

DEVELOP SILICONE GLASSS

LAMINATE - MUST

WITHSTAND $250^{\circ} \mathrm{C}$
G-E Textolite grade No. 11514 is constructed of glass fabric bonded with a G-E silicone resin. This grade will withstand prolonged exposure to temperatures as high as 250 C and has a low dielectric loss factor. dielectric loss factor.

TEXTOLITE LAMINATED IS SUPPLIED IN FIVE FORMS

FABRICATED PARTS-G.E. has modern fabricating equipment to machine Textolite laminated plastics parts to your own specifications.

SHEETS, TUBES, AND RODS -These standard shapes are available in thousands of sixes. Up-to-date manufacturing methods facilitate quick deliveries.

MOLDED-LAMINATED PARTS-Textolite is custom molded directly to shape. Molded laminated products are among the strongest plastics parts produced.

LOW-PRESSURE MOLDED
PARTS - Extremely large and irregular Textalite shapes are custom molded by the low-pressure laminating process.

POST-FORMEDLAMINATES -Sheets of Textolite laminated plastics are custom formed into simple shapes by this very inexpensive method.

If you are looking for an excellent high-temperature insulation, G-E Textolite grade 11514 is your answer. But there are other grades of Textolite, too ... over fifty in fact, and EACH grade has an INDIVIDUAL COMBINATION of properties. None is exactly alike.

It is this wide selection of materials that really can help you. You can choose a grade which has exactly the right properties to accurately fill your particular requirements. A better product, produced at less cost, is often the result.

Investigate the varied grades of Textolite and the five forms in which it is produced. You'll profit. Plastics Division, Chemical Department, General Electric Company, Pittsfield, Mass.

GET THE COMPLETE STORY!

Send for the new bulletin G-E TEXTOLITE LAMINATED PLASTICS which lists grades,
properties, fabricating instructions and detailed information about the five forms of Textolite. Fill in and mail the coupon below for your free copy.

PLASTICS DIVISION, CHEMICAL DEPARTMENT
 GENERAL ELECTRIC COMPANY (BA-8)

ONE PLASTICS AVE., PITTSFIELD, MASS.
Please send me the new G-E Textolite laminated plastics bulletin.
\qquad
\qquad
\qquad
\qquad

We Make a PERMANENTLY INSULATED Wire, Cable or Cord for Whatever You Make

Appliances, Ranges and Heating Devices

ROCKBESTOS APPLIANCE LEAD AND RANGE WIRE

Aircraft and Aircraft Equipment

BOCKBESTOS FIREW ALL AIRCRAFT WIRE

Conirol Panels, Switchbaards, etc.

Recording Cameras. Calculaters, Motors, etc.

ROCEBESTOS FIREWALL HDOKUP WIRE

Here are four of the 125 permanently insulated wires, cables and cords designed and developed by Rockbestos to protect product performance and give lasting service.

Impregnated felted asbestos insulation is what makes Rockbestos wiring dependable ... permanent under use and abuse.

And dependability makes a good name and repeat sales for your products.

WRITE TODAY - for your copy of the new No. 10-F Catalog, sectioned for easy reference to permanently insulated Apparatus Wires and Cables; Lighting Wires, Power and Control Cables; Switchboard, Appliance, Fixture, Electronic, Aircraft and Magnet Wires.

Rockbestos Products Corp., 462 Nicoll St., New Haven 4, Conn. NEW YORK CLEVELAND DETROIT CHICAGO PITTSBURGH ST. LOUIS LOS ANGELES OAKLAND, CALIF.

THE WIRE WITH PERMANENT INSULATION
 tells only HALF the WARD leadership story

For every radio receiver, there's a Ward Aerial which gets more stations, gets them clearer and more dependably. You'd naturally expect that from Ward, the world's leading mass producer of radio aerials exclusively. But, large as Ward is, this organization always has believed that resting on your laurels invites rust. Especially so in the fast changing FM and television fields. Accordingly, the Ward experimental laboratory constantly is probing the electronic horizon with the fervor of the true scientist. Many aerial developments still to be unveiled would, if revealed today, cause many a raised eyebrow. Tomorrow, these new developments will mean finer performance at lower cost for the radios you build or install. This same technical know-how is available to design and mass produce custom-designed aerials for anyone needing them in quantity. If you have an aerial problem, bring it to Ward. Your inquiries are invited.

THE WARD PRODUCTS CORPORATION 1530 EAST 45 th ST. Cleveland 3, Ohio

rca Cudic Accessories

FOR EVERY STATION NEED-AM•FM•TV

Available now for immediate delivery more than $\mathbf{1 0 0}$ high-quality items to meet your installation requirements

MAIL THIS COUPON FOR YOUR FREE COPY

REPRESENTED HERE are items from broadcasting's most complete line of fine audio accessories. Microphone stands . . . studio warning lights . . . cabinet racks . . . panel-mounted auxiliary units . . . transformers of many kinds. In all, more than 100 different items-with every type of unit you need from large size cabinet racks down to patch cords.

Designed by audio men for audio men, these accessories are built with the professional thoroughness needed to meet the most exacting requirements of broadcast use. Mechanically and electrically, every unit is built to "take it."

For information on RCA's complete line of audio accessories . . . immediately available from stock . . call your RCA Broadcast Sales Engineer, or Dept.36-H, Engineering Products, RCA. Camden, New Jersey.

BROADCAST EOUIPMENT
RADIO CORPORATION of AMERICA
ENGINEERING PRODUCTS DEPARTMENT, CAMDEN,N.A.
In Canada: RCA VIÇTOR Company Limited, Montreal

Precise voltage regulation for testing relays

Spencer Thermostat Company uses Sorensen voltage regulctors to test their Klixon C. 6360

PROTECTS

 motor starting relay. They say, "Sorensen regulotors speed up our testing processes by providing a steady supply of current enabling us to turn out a uniform product."Model 1000 shown provides full protection of your unit ageinst OVER IOAD and OVER VOLTAGE.

Sorensen protects your equipment against over load and over voltage and at the same time provides regulation of $2 / 10$ of 1% with a minimum of wave distortion and wide input ranges. Precision Klixons are themselves assembly line tested with Sorensen regulators. In turn, Klixon units installed in Sorensen equipment provide automatic shut-off of the output in case of over load. In practically all $A C$ and DC units the Heinemann circuit breaker incorporated into Sorensen regulators insures against over voltage.

Write today and arrange to have a Sorensen engineer analyze voltage regulation requirements in your plant. He can select a standard Sorensen unit from 150 VA to 20 KVA to fit your most exacting application.

SORENSEN \& COMPANY, INC. 375 FAIRFIELD AVENUE - STAMFORD, CONNECTICUT The First Line of Standard Elestronic Voltage Regulators

Presto Peak Limiting Amplifier (Type 41A)

DESIGNED to control program peaks, Type 41A removes the cause of overcutting and distortion in recording and over-modulation in broadcasting. Proper degree of peak limiting permits an appreciable increase of the average signal with consequent improvement of signal to noise ratio. Serves simultaneously as a line amplifier; its 60 db gain adequately compensates for line losses due to pads, equalizers, etc.

Type 41A. Chassis construction is for vertical mounting in standard racks. Removable front panel gives access to all circuits. Meter and selector switch indicate amount of limiting taking place and current readings of all tubes.

Type 89 A. Chassis construction is for vertical rack mounting. Removable front panel for easy access to all circuits. Meter and selector switch provide convenient indication of output level at 1000 cps and current readings of all tubes.

> FULL SPECIFICATIONS OF THESE TWO NEW AMPLIFIERS WILL BE SENT ON REQUEST.

Presto Power Amplifier (Type 89A)

For recording, or monitoring use, 89 A is the perfect high fidelity, medium power unit. 25 -watt output, it fills the need for an amplifier between Presto 10 -watt and 60 -watt units. All stages are push-pull and sufficient feedback is provided to produce a low output impedance and general performance of the type 807 tubes which is superior to that of triodes.
($H H_{M} \| T E$ RESSTANCE "KNOW-HOW"

Utuliz This Vallable Source of OLsign Informazion
 Be Roght meHMITE

OHMITE Resisfors Sizes and Types for Every Service

LUG TYPE

Most popular type for general purpose applications. Connected by soldering or bolting to lugs. Protected by vitreous enamel coating.

FERRULE TYPE

Winding termi. nated on metal bands for mounting in standard fuse clips. Provides easy interchangeability without tools.

EDISON BASE TYPE

Mounted in ordinary lamp type screw sockets for easy interchangeability with. out the use of tools.

WIRE LEAD TYPE

Small vitreous enameled resistors which can be connected and supported by their own wire terminals. Maximum size approx. 20 watts.

PRECISION TYPE

Low wattage resist ors of $\pm 1 \%$ or closer tolerance. Made in vacuum impregnated, glass sealed, or vitreous enameled type units.

FLEXIBLE LEAD TYPE

Winding is connected to stranded bare or insulated leads. Used where it is desired to have connecting wires a part of the resistor.

BRACKET TYPE

Have metal end brackets. Live brack. et type is connected by bolting brackets to panel terminals. Dead bracket type has separate lugs.

"CORRIB" TYPE

Has edge-wound, exposed corrugated riblon winding. For low resistances where 100 watts or more must be dissipated in small space.

NONINDUCTIVE

TYPE

For radio frequency circuits where constant resistance and impedance are required. Made in rugged, vitroous-enameled type construction.

Power Loss $=55.5 \varepsilon^{1} \tan \delta \times f x V^{2} \times 10^{-6}$ Watts

IBCON

PORCELAIN

Because they influence efficient and effective operation, low loss characteristics of Zircon Porcelain are most desirable in the manufacture of high frequency equipment. Meeting the requiremenis of the power loss formula, Zircon Porcelain retains its low loss characteristics over a wide range of temperatures and frequencies. This factor is clearly demonstrated in the charts shown.
For applications in the field of radio, radar and other equipment of this nature, it will pay to get more detailed information. Write direct or discuss the use of Zircon Porcelain with one of our qualified field staff.

CHART 1

CHART 2

For quality and service

choose

From our more than 20 years' experience as transformer specialists, come precision transformers of every type-custom-made for YOUR new applications. FERRANTI facilities permit unusual service to each customer, whether large or small, and insure prompt deliveries.

AUDIO TRANSFORMERS POWER TRANSFORMERS HERMETICALLY SEALED WHEN SPECIFIED

We also build power supply units and electronic assemblies to specifications at prices comparable to those of stock assemblies. We invite your inquiries.

- YTenanti Êlectic, Inc.

ALSO FOR MODERN high voltage developments WHERE ZERO CURRENT DRAIN IS imperative

the ferranti electrostatic VOLTMETER

Types available for maximum readings from 150 to 3500 volts. $21 / 2$ in. dial, flush mounting, projecting and portable models. Write for informative literature.

When we build cabinets, housings or enclosures for you, we plan and work with the objective of saving you time, labor and extra operations on your production line.

Karp-constructed units are handsome and streamlined, but their beauty is more than skin deep. The extra value our work affords is a degree of quality, accuracy and precision that will speed up your assembling operations.
You will find all units completely uniform in every detail, all measurements exact, all holes the right size
and cleanly drilled, all openings precisely spaced, all welding skillfully done with finest equipment. As a result, in your assembling, all functional parts, instruments and controls will fit correctly and easily into place. Installation operations will be smooth and speedy. You will encounter no delays for any completion details. This saving of time and labor will cut your costs. Your completed assemblies will have added market value, too. In short, Karp custom craftsmanship will prove less expensive in the long run.

. . . to help you speed production

KARP METAL PRODUCTS CO., ING.
 124-30th STREET, BROOKLYN 32, NEW YORK Crustom Crafitmen in Sheet Metal

Radio-phonograph combinations are often judged by the performance of the record changer. It's important then that the changer match the overall perfection of the instrument.
The Seeburg " S "-a new single-post changer-is designed and built for today's market. For while the Seeburg " S " is moderately priced, it possesses many of the features you expect to find on only the most expensive changers.
Plan now to give your table models and popularly priced consoles important competitive advantages by equipping them with the Seeburg " S ."

FEATURES THAT SPELL IMPORTANT COMPETITIVE ADVANTAGES

- Sturdy, single-post changer
- Modern styling-smari, shieldshaped base
- Lightweight tone arm
- Automatic shut-off after last record is played
- Recessed turntable
- Strong, quiet motor assures constant turntable speed
- Plays twelve 10 -inch or ten 12inch records. May also be set for manual play
- Shock-mounted center spindle for minimum center hole wear of records-record load stacked in horizontal position

Low-Inertia, Quick-Response SERVO Motor Gets VARGLAS Silicone Insulation

Bendix a viation Uses Temperature-Abrasion Tests to Determine Best Sleeving for Automatic Pilot Component

To assure dependable performance throughout all types of operating conditions that aircraft might encounter, Bendix Aviation puts its Automatic Pilot Systems through drastic heat and cold tests as normal production procedure.

Extremes of $300^{\circ} \mathrm{F}$ and $-65^{\circ} \mathrm{F}$ rule out many materials that serve adequately in normal or limitedrange temperature conditions-but in VARGLAS Silicone, Bendix found a sleeving that satisfied their requirements. VARGLAS Silicone retained its insulating and color properties at the high temperatures, and continued pliable and flexible in the very cold tests. Bendix also established that the Silicone material was remarkably resistant to abrasion. Result: VARGLAS Silicone sleeving is used on the leads to the low-inertia motor in the Servo unit.

For tough insulation jobs that defeat ordinary insulation materials-VARGLAS Silicone of ten is the answer. We make a complete line of sleeving and tubing including VARGLAS treated and untreated Lite-Wall Sleevings (ECC-A and ECC-B). Write for our free folder containing working samples of VARGLAS Silicone electrical sleeving and tubing.

[^2]
RIGHT... FOR YOUR NEW ELECTRONIC CIRCUITS

Hill Hill AUDIO

POWER

PLATE AND FILAMENT SUPPLY TRANSFORMERS

For both capacitor and reactor input filter systems. High voltage secondaries provide range of rectified d-c outputs from 260 to 425 voles, 55 to 300 ma . Standard S volt, 2,3 , or 6 -ampere rectifer filament windings and 63 -vole amplifier filament windings, center-tapped, in a convenient range of carrent ratings

Mcunting Type B or C.

FILTER REACTORS

A range of $\mathrm{d}-\mathrm{c}$ ratings from 55 to 300 ma for use with the power transformers above. Inductance values of $15,12,10$ and 8 henaies, d-c resistances of from 385 to 70 ohms. Insulated for 2,500 test volts Mounting Type B or C.

FILAMENT TRANSFORMERS
A useful series with secondaries supplying from 2.5 volts, 5.25 amps. to 11 volts. 10 from 2.5 volts, 2.500 test volts, examps. Insulated forigned for high voltage, cept for units designed rectifier filament supp volts. Latter have bushing-insulated terminals.

Mounting Type B.

PLATE TRANSFORMERS AND REACTORS

Plate transformers with $115 / 230$-volt primaries, in a range of capacities - second aries for supplying from 750 to 3,000 volts (d-c after filter), 250 to 500 ma . Filter chokes with $\mathrm{d}-\mathrm{c}$ ratings to match. Inductance values of 10 or 6 henries. sulated for either 7.500 or 9,000 volts.

Transformers of
SPECIAL DESIGN
form the major part of Chicago Transformers business. To offers yrans special requirements. Cering and your special complete engineering the manufacturing facld. mansformer field. ransomelere range of basic mountA complete range drawn steel cases, ing parts and horizontal is available vertical arackets, etc. - is available frames, brecification
to your specificapes of ransformers Besides the eypes of thas page, CT listed elsew also makes

- Wave Filters

Oscillator Trans.

- Vibrator Transformers
- Television and
- Instrument Trans. Other Special Other Special Purpose

FULL FREQUENCY RANGE
30) to 15,000 CYCLES - Uniform response within $\pm 1 / 2 \mathrm{db}$ over this entire tange. Response within very close himits up tc. 20,000 cycles. Exceptionally low pe centage of distortion at all frequencies.

INPUT TRANSFORMERS

Applications: Line to single or push-pull grids, line bridging to p-p grids. line to line, or interstage. Split and balanced prt mary and secondary windings, center rapped. Power levels up to +30 dom Nickel alloy hum shielding allows oper t.on at levels as low as -70 and
Mounting Type \mathbf{A}.

Mounting Type \mathbf{A}.
TPUT TRANSFORMERS
OUTPUT TRANSFORMERS Applications: Single Plate to Line ($600 /$ - 50 ohms) or push-pull plates to line or roice coil ($16 / 8 / 4$ ohms)
ap to +43 dbm .
Mounting Type A.
DRIVER AND MODULATION TRANS=ORMERS - MODULATION REACTORS matched sets for 250 -watt, $1 \cdot \mathrm{KW}$, and 5. KW transmitters. Response within ± 1 to over the Full Frequency Range. Dis :ortion percentage very low - well within FCC limits. Largest units are mounted in oil-filled cases, constructed of welded steel plate; others in drawn steel cases or in shield-and-frame mountings similar to Plate Transformers

PUBLIC ADORESS RANGE
So to 10.000 CYCLES - Uniform response within $\pm 1 / 2 \mathrm{db}$ over this range. sponse low thansmission losses.

DRIVER TRANSFORMERS
Application: Push-pull plares (20,000 ohms or $5,000 / 10,000$ ohms s) pushpull grids. Primary d-c ratings of 10,25 . and 100 ma .

Mounting Type B or C.
OUTPUT TRANSFORMERS
Application: Push-pull plates $\$ 5.000$ 6,000 , or 10,000 ohms) to Line or voice coil Primary d-c ratings of 80 . 150 . and 200 ma . Have tertiary windings to provide 10% inverse feedback for improved fidelity of output.

Mounting Type B or C.
COMMUNICATIONS RANGE
200 to 3.500 CYCLES - Response variations not exceeding $\pm 1 \mathrm{db}$ over the range of voice frequencies.

INPUT TRANSFORMERS
Applications: $600 / 150-\mathrm{ohm}$ line to single or push pull grids (100,000 ohms) and $125 / 50$-ohm microphone to single or push pull grids (125,000 ohms).

Monnting Type B or C.
OUTPUT TRANSFORMERS
Applications: Single plate (either 5,000 Applications. Single plate (eine voice coil. or 8,000 ohms) to line or $\mathbf{M o u n t i n g ~ T y p e ~} \mathbf{B}$ or .

DRIVER AND MODULATION TRANSFORMERS
Suitable for application in 2
munica \mathbf{B} oume

TRANSFORMERS
AND REACTORS
NOTE THESE FEATURES:

- MATCHED TO NODERM TUBES
- Ratings fill the requiramerts of today's mast-used rexeiring, transmitting, and indestrial tates.
- SEALED IN STEEL - Drswn steel case canstructiors $n 3$ veriations. (Descrip:lons at left keyed to illustra. tions A, B, and C telowl
- CHOIEE OF CONNECTORS - Either solder mugs or RNA color. coded loads avaibatle ir mast units.
- TRUE HIGH FLDELITY - 3 prac. lical ranges of autio transfo-mers.

CERAMICS and STEATITE CORP.

GENERAL OFFICES and PLANT: KEASBEY, NEW JERSEY MAKERS OF STEATITE, TITANATES, ZIRCON PORCELAIN, ALUMINA, LIGHT-DUTY REFRACTORIES, CHEMICAL STONEWARE

The right material for your job . . . right at your fingertips!

How to Save Production Hours and Dollars on Your Electrical Insulating Jobs . . .

One of the surest ways to reduce unit costs on any job is to be right the first time when selecting materials. Continental-Diamond's complete line of high strength electrical insulating materials makes proper product engineering easy.

There are trained C-D technicians on hand at all times to give you personal help in getting bet-DE-4.48

ter, lower-cost applications. To be sure of being right the first time in the selection of materials, call your nearest C-D office whenever the need arises.

C-D HIGH-STRENGTH PLASTICS
DIAMOND FIBRE-Vulcanized Fibre. VULCOID-Resin Impregnated Fibre.
DILECTO-Laminated Thermosetting Plastic. CELORON-Molded High-Strength Plastic. MICABOND-Bonded Mica Splittings.

Crurinental-IIzamond
 FIBRE
 $C O M P A N Y$

Estatlisted 1895. Manufccturers of Laminated Plastics since 1911-NEWA1KH 16 - DELAWARE

RECESSED HEAD SCREWS

OFFER PRODUCTION POTENTIAL ADEQUATE TO MEET ALL INDUSTRY'S NEEDS

23 Fol surcs of supply OR PHILIPS SCREWS

 are represented by the screw manufacturerslisted below. These 25 plants have a production potential of many million screws per 8-hour day. In Canada, Great Britain, Europe, and South America... Phillips Recessed Head Screws are also available from the leading screw manufacturers.

$\int 7$ MAKERS OF PHILLIPS HAND

 DRIVERS AND BITS-plus 46 tool plants which assemble Phillips pointed driver bars into completf drivers, make Philliys Drivers and stores, and industrial supply houses.

LOOK AHEAD when you choose a cross recessed head screw. Whatever the supply situation, at any time, this tremendous capacity makes Phillips Screws constantly available.

Wherever your product is sold and used, there are, and always will be Phillips Drivers
available for disassembly and reassembly.
Remember, unlimited production potential is one of the basic essentials you can't afford to overlook in choosing a cross recessed head screw. With Phillips Screws, you can depend on it. Specify Phillips.

3
 MRRGGIIAS

VARNISHED TUBINGS

SLEEVINGS \& TAPES

*MIRAGLAS-MICA COMBINATIONS
*Woven of Fiberglas Yarn

WOVEN COTTON TAPES, TUBINGS
SLEEVINGS \& CORDS
CLOTHS, ETC.

VARNISHES-WAXES-COMPOUNDS

Kollsman offers additional AC units for remote indication or control applications

SYNCHRONOUS MOTORS - for timing applications where variable

synchronism with constant or variable frequency source. Synchronous power output up to $1 / 100$ H.P.

SYNCHRONOUS DIFFERENTIAL UNITS-electromechanical error detector with mechanical output for use in position or speed control servo systems. Also a torque-producing half speed synchroscope. Small combination unit with two variable frequency synchronous motors and differential gearing. Output: Speed $=\frac{\mathrm{N}_{1}-\mathrm{N}_{2}}{2}$; torque up to $1.0 \mathrm{oz} / \mathrm{in}$.

DRAG CUP MOTORS - miniature 2 -phase motors with high torque/inertia ratio and extremely fast stopping, statting and reversal characteristics. Suitable for many special applications requiring torque of $0.4 \mathrm{oz} / \mathrm{in}$. or less.

MOTOR DRIVEN INDUCTION GENERATORS - combination of a 2-phase, wightorque, low-inerria induction motor and an induction gener-
 ator. Used as a fast reversing servo motor. Available with maximum stall torques of 1.0 (unit shown) to 6.7 (other units) oz/in.

teletorque units -precision built selsyn type units for remote indication. Accurate to ± 1 degree. Actuated by units producing as little as $4 \mathrm{gr} / \mathrm{cm}$ of torque.

GEARED INDUCTION MOTORS-miniature 2-phase servo motors with gear reducer. Desirable moror features: Maximum torque at stall with low wattage input and high torque/
 inertia ratio. Gear reinerta ratio. Gear re-
ducer conservatively tated at $25 \mathrm{oz} / \mathrm{in}$. Maximum torque with gear ratios from $5: 1$ to $75,000: 1$ available.

Because of their high responsiveness and precision, Kollsman Special Purpose Motors are particularly suited to systems requiring extremely accurate remote indication or positive electronic control. The units shown above are only representative of a complete line which includes many similar units in various voltages and frequencies. Among them, the instrumentation or control engineer will find, in many instances, the device that fills his specifications exactly.

Reliable performance, light weight and compact size are characteristics of the entire line. In each unit is to be found the same ingenuity of design and care in manufacture that has for twenty years made Kollsman the outstanding leader in the field of aircraft instrumentation.

For full information on any or all of these Special Purpose Motors, write to: Kollsman Instrument Division, Square D Company, 80-08 45 th Avenue, Elmhurst, N. Y.

Not all of the Adlake Relay line is shown on this page. But whatever your relay need adlake be, there's an Adlake to do the job. Adred and Relays have handled hundmerican industry unusual assignments tamperproof control.

Type 1040-97 Heavy duty load relay

contact normally closed

Type 1045 Quick acting relay with terminal block
designed for use with sensitive thermo regulators

THE AdMS \& NPSthḰ company
 Established 1857 - ELKHART, IND. New York - Chicago

 Manufacturers of Adlake Hermetically Sealed Mercury Relays for

lapp gas-Filled condensers Of NEw design offer HIGHER current ratings in SMALLER unit sizes

The two Lapp Gas-Filled Condensers above are identical in every respect, except that the condenser on the right is fitted for water-cooling, with consequent increase of current rating by 300%. The water-cooling is simply accomplished and carries only a nominal premium in price. All models of the new Lapp condensers offer reduced size (about 70% of previous models). In addition, effective voltage ratings, current ratings, and safety factors have been increased. Current paths are shorter, losses lower. Tuning shaft on variable models at ground potential. Constant capacitance, without regard to temperature change, is provided. Puncture-proof, the Lapp Gas-Filled Condenser is the dependable source of capacitance at high voltages or high currents. Write for Bulletin No. 265 which carries description and specification of the complete range of sizes and models.

№. 8
in a series of advertisements de signed to aid in the selection of electrical insulation. The impor tance of mechanical properties and methods of tensile strength testing are discussed.

STRIKING A BALANCE

Many difficult problems in the design ol electrical equipment are posed be the interplay of electrical and mechanical properties in the performance of insulating materials. Unfortunately, there is no direct correlation between these propertics. High tensile strength, for example. may or may not be accompanied by high dielectric strength (see table below).

Differing mechanical and electrical reactions to service conditions are also noted. For example, while moisture is being driven off during a temperature rise. dielectric strenght of electrical insulation may increase temporarily ${ }^{1}$, and mechanical strength may decrease. In some instances it has been observed that mechanical stresses approathing the elastic limit of the material may reduce the electrical breakdown strength considerably2. In other cases, however, electrical insulation may become extremely weakened and embrittled, yet still per-

LAMICOID SHEETS - AVERAGE VALUES

NEMA Grade	Tensile Strength lbs./sq. in.	Moisture Absorption \% by weight $1^{\prime \prime} \times 3^{\prime \prime} \times 1 / 16^{\prime \prime}$	Dielectric Strength v / m 1/16 to $1 / 8$ th. short time
X	12500	4.0	500
P	8000	3.0	500
XX	8000	1.1	500
XXP	8000	1.3	500
XXX	7000	1.0	470
XXXP	7000	1.0	470
C	9500	3.0	150
CE	8000	1.5	360
L	9000	2.0	150
LE	8500	1.2	360
A	8000	1.25	160
AA	10000	1.5	50

form effectively as a diefectric so long as it remams medhanicalls undisturbed.

Obvioush, there is no casy rule for striking the proper batance belween properties: often combination materials can be selected which bring together good electrical properties of one material with mechanical strength of another. Individual conditions related to fabrication. assembly and service will delemine the choice in each instance.

MECHANICAL STRENGTH TESTS AN AID

Merhanical strength tests, while they seldom duplicate the conditions of service are indispensable in determining which materials or combinations of materials will be best suited for a specific application. It is well to remember, however. that materials react differently to humidity and temperature rise, influencing their response to tensile stress as well as their diclectric strength.

TENSILE STRENGTH TEST ${ }^{3}$

Standard methods have been set up to determine the tensile strength of sheet and plate materials used in electrical insulation. These methods include the standardization of temperature and humidity conditions to which test specimens are subjected before and during lesting.

The testing machine consists of (a) a fixed member carrying one grip, (b) a movable member carrying another grip. (c) grips for holding the sample, which are self-aligning and provide means to prevent slippage. (d) a drive mechanism which impels the movable member at a uniform. controlled velocity. and (c) a load indicator to show total tensile load carried by the test specimen.
Figure illustrates a tension test specimen for sheet insulating materials. Exact specifications according to material types and thick nesses are completely defined in ASTM Designation D299-46. In all cases the length of the reduced section and the radius of curvature are fixed. The $3^{\prime \prime}$ radius of curvature was sclected as sufficiently large to minimize breaks outside the reduced section or at the point of curvature.
Tensile strength is obtained by dividing the total load in pounds required to
pull the sample apart by the area ol cross-section in square inches at the breakage point and is expressed in pounds per square inch.

Test reports include: (1) identifica tion of material: (2) method of preparing test specimen; (3) type of test specimen and dimensions: (4) conditioning of sample; (5) ambient conditions of test: (6) number of specimens tested: (7) speed of testing: (8) mean rate of stressing; (9) mean rate of straining; (10) tensile strength, average value and average deviation: (11) percentage elongation. average value and average deviation; (12) clastic modulus, average value and arerage deviation; (19) date.

Figure 1-Tension test specimen for sheet and plate insulating materials, Type I^{3}.

Properties Important to lo sislation Pefformarce

"MICO" ELECTRICAL INSULATION OFFERS MANY COMBINATIONS OF PROPERTIES

Increased efficiency in manmacture and improved produce performance are determined by the selection of the electricat insulating material which attords the best combination of properties for each specific use. Nica Insulator Company
offers a line of insulating materials whin a wicle valiety of properties in many combinations to meer amy requirements for balanced design. Hustrated below are several applications cmploning well-batanced properties badvanage.

LAMICOID combines excellem labricating properties with good electrical characteristics for his temmall bock. Recanse if can lo easily madined. sawed. drilleet and prined for circuit identification. its use resuls in manuaturing comomy. For serminal emmections that must be sealed against moisture and various lighids, Lamiocoid is oltainable with bonded rubler surface.

MICANITE sheets. slecresand tapce canlo used to grood adamage for such applica-
 fomer. In combination with such carriems as Fiberglas, condenser paper and clobs. the excellem dielectric propertion of mia are sectured with the grod mechanical prop erties of liese obloer materials.

EMPIRE silicone vamished fiberglas porsesics exed dent phasical datacteristics - high tensile strengit, small streteh. llexibility and quod resistance to moisture. most arids. corona, orone and high temperame It will withstand temperatures from $175^{\circ} \mathrm{C}$ ($377^{\circ} \mathrm{F}$) to $250^{\circ} \mathrm{C}$ (do $^{\circ} \mathrm{F}$). These equatities combined with gend dielearic strength provide dependability for wapping cores of amilumess stators, and tamsomers.

Nica Insulator Company has specialized in the development and manufacture of electrical insutating materials lion 55 years. We oller a comptete line to meet all your necels. Bring your problems on dectrical insulation to our Technical Service Department.

(1) cocnMarnar
 SCHENECTADY 1, NEW YORE

Alfanta - Birmingham - Boston - Chicago - Cincinnati - Cleveland. Detraif - Houston
Los Angeles•Milwaukee - New Yark•Philadelphia. Rochester• St. Louls-San Francisca

"IT'S THE BEST YET!"

Yes! We think it's the best yet. We think this transmitter ideal for such applications as Police, Forestry, Airport Traffic Control, Oil Fields, Aerophare, Beacons, Explorations, Public Utilities, Mining, Emergencies and Point-to-Point requirements. It can be controlled either locally or from remote position; either for telephone (A-3) or telegraph (A-1 or A-2) service . . . it is compact, complete and designed for hard service.

Other Equipment made and designed by tero_ com: Models VH-50 and VH-200 transmitters, operating range, 118-165 Mcs. (crystal controlled), power 50 and 200 Wutts respectively; Model 12ACX-2A. 1 Ku. dual channel radio telegraph transmitter for medium and high frequencies (1.6 to 24 Mcs.): Model GM-8 modulator when used with above provides full modulation with a 750 Whatt carrier. Complete Engineering data on Request.

Radiotelegraph or telephone Transmitter output 75 Watts (A-1); 50 Watts (A-2 or A-3) Frequencies 200-500 Kcs. and 1.6-13.5 Mcs. using plug in coils and crystals. A complete compact self-contained unit.

H0del EOTAB

AERONAUTICAL COMMUNICATIONS EQUIPMENT, IMC. 3090 Donelas Road. Miami 33. Florida

[^3] Brasil Hefry Neuman Jr., Ajartado Aereo l3g, Barranquilla, Colombia

A TYPE ATV

LEAD-IN
FOR EVERY NEED

Anaconda offers a complete selection of Type ATV lead-in lines for 75,150 and 300 ohms impedance, unshielded and shielded lines of high impedance. For an electrical and plyysical characteristics bulletin, write to Anaconda Wire and Cable Company. cables.

25 BROADWAY, NEW YORK 4, N. Y.

When electrical equipment must operate in subzero temperatures, it's performance and not pennies that counts in insulation and every other component part. Even at $-50^{\circ} \mathrm{F}$. at 30,000 feet elevation, BH Extra Flexible Fiberglas Sleeving will not crystallize. Will not break down. Retains all of its remarkable flexibility, heat resistance and dielectric strength.
That is why parts suppliers for some of America's great planes come to Bentley, Harris for this remarkable insulation. Read what they say:

Co. B: "The principal reason for using BH Extra Flexible Fiberglas Sleeving is that it does not scorch or burn like ordinary saturated sleeving."
Non-fraying qualities of BH Extra Flexible Fiberglas Sleeving are achieved without use of hardening varnish or lacquer. Stays flexible as string. Will not split or crack when bent. Resists abrasion and wear.

If you require unusual heat resistance - up to 72 $0^{\circ} \mathrm{F}$. - specify BH Special Treated Fiberglas oleeving. Write us today.

Co. A: "BH Extra Flexible Fiberglas Sleeving does not fray, does not break down while in service."

*BH Non-Fraying Fiberglas Sleevings are made by an exclusive Bentey, Harris process (U. S. Pat. No. 2393530). "Fiberglas" is Keg. TM of Owens-Corning Fiberglas Corp.
Bentley, Harris Mffg. Co., Dept. E-25, Conshohocken, Pa.
I am interested in BH Non-Fraying Fiberglas Sleeving for
 (product)
operating at temperatures of \qquad ${ }^{\circ} \mathrm{F}$. at \qquad volts. Send samples so I can see for myself how BH Non-Fraying Fiberglas Sleeving stays flexible as string, will not crack or split when bent.

NAME \qquad COMPANY \qquad
ADDRESS \qquad

- With it-your signal from studio to transmitter now rides on air!

With it - your problems of outages due to weather or rugged terrain are solved! Sleet storms, fires or floods can damage studio to transmitter transmission lines or cables - but not micro-wave transmission from General Electric S-T broadcast system. There are no transmission lines or cables.

With it - you can select the best sites for your station and transmitter with increased assurance of reliable program service!

The new General Electric S-T Link equipment is easily installed and occupies remarkably little studio space, A product of the research and engineering skills assembled at Electronics Park, this system is another General Electric contribution to better broadcasting.
Broadcasters, station managers and engineers will want all the facts.

Your nearest G-E office can give them to you Call there, or write: General Electric Company, Transmitter Division, Electronics Park, Syracuse, New York.

S-T TRANSMITTER
 - Conservatively rated 10 watts output. Con

 able 1 to 10 watts, for maxim- Ramarkably easy installation.
- Single unit. Entire transmiter comfortable indoor conditions. All maintenance done under comforts total input.
- Low power consumprion. 6 without special test equipment.
- Can betuned and adjusted without spering controls im-
- Instant accessibility. All ment doors are open.
mediately at hand when front doors are open.
- Rear doors interlocked for maxies.
- Simple and easy to change tubes.

WHAT THE SYSTEM DOES FOR YOU ...

- Operates in band 920 to 960 MC . This includes the band permanently assigned by FCC for S-T broadcast service.
- Permits you to meet all FCC FM broadcast system requirements.
- Remote controlled over single-pair telephone line.
- Uses standard type "N" RF fittings throughout.
- Provides high fidelity performance:
-Less than 1% distortion from 50 to 15.000 cycles.
- Noise level better than 65 db .
- Frequency response well within $\pm 1 \mathrm{db}$ from 50 to 15,000 cycles.
- Designed for unattended remote operation

fordependable hroadcusting

S-T RECEIVER

- Double-conversion superhetero dyne circuit, fully crystal controlled for maximum long-term troquency stability
Standard receiver tubes through
out. 95 db below I wat
- Sensitivity -95 db below ($\mathbf{~}$ (
(forspecified system perlor 135 watts.
- Total power input only for mount
- Compactly assembled-inch cabinet ing in
All tuning adjustments are made
- All tuning front.

S-T ANTENNAS

- 40-inch reinforced aluminum paraboloid,
with dipole feed. antenna 15.3 db over
- Power gain each antenna 30.6 db . standard dipole. Total gain 10 fll frequency
- Low standing-wave ratio over tullustment. range ($920-960 \mathrm{MC}$) winstruction permits
- Two-clamp mountingle structural member firm attachment to single
or pole.
- Easy to install and aim.
- Fully protected from adverse effects of
icing. for $100 \mathrm{~m} . \mathrm{p}$.h. wind loading.
- Designed for $100 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. wind loading.

Coular FM Antenna-pro ides high power gain with low wind loading. This strong "Doughnut" antenna is avail be 1, 2, 4, 6 and 8 bay models.

ATLANTA 3, GA 187 Spring Street N.W. Walnut 9767
BOSTON I, MASS
140 Federal Street
Hubbard 1800
CHICAGO 54, ILL.
1122 Merchandise Mart Whitehall 3915
CINCINNATI 2, OHIO 215 W . 3rd Street Parkway 3431

DALLAS 2, TEXAS 1801 N. Lamor Street LD 224
DENVER 2, COLO. 650 17th Street Keystone 7171
KANSAS CITY 6, MO. 106 W . 14 th Street Victor 9745

CLEVELAND 4; OHIO
710 Williamson Bldg.
Euclid \& Public Square Superior 6822
LOS ANGELES I4, CALIF Suite 1300-1301
Security Title Insurance BIdg.
530 West Sixth Street Trinity 3417

MINNEAPOLIS 2, MINN
12 Sixth Street
Main 2541
NEW YORK 22, N. Y
570 Lexington Ávenu
Wickersham 2-1311
Wickersham
HILADELPHIA 2, PA.
1405 Locust Street
Main Street
SYRACUSE I, N.Y.-Syracuse 6-441।

SAN FRANCISCO 4, CALI 235 Montgomery Street Douglas 3740 SCHENECTADY, N. Y BIdg. 287, Rm. 209 Schenectady 4-221। SEATTLE 4 WASH SEATTLE 4, WASH. Main 7100
WASHINGTON 5, D. C
806 15th Street N. W. Executive 3600

For fast service call G.E.

GENERAL (3) ELECTRIC

		.15 Amps. D. C.		.22 Amps. D. C.		. 30 Amps. D.C.		.45 Amps. D.C.		. 60 Amps. D.C.	
						$\Rightarrow 18 \pi_{6} k^{\pi} \Rightarrow$ LENGTH BELOWK		0			
Volis	Input	Code No.	Length								
19	24	A181518	17/16	A181518	17/16	P181518					
38	48	A281518	91/8	WA281518	29/16	P281S18	25/16	WP981518	9778	${ }^{\text {O2P1518 }}$	25/16
57 76	78	A381518	211/16	WA381518	33/8	P381S18	3	WP381S18	37/8	Q381518	
76 95	1960	A481S18 A581S18	33	WA4B1S1B	$5^{3 / 16}$	P481S1B P581S1B	$35 / 8$ $4 / 86$	WP481S18 WP581S18	$47 / 8$ $57 / 8$	Q481S18	$35 / 8$ $45 / 8$

Above are listed full
Above are listed full
wave bridge rectiwave bridge recti-
fiers. Ratings are for continuous duty, resistive inductive lood, in an ambient temperature of $35^{\circ} \mathrm{C}$.

Note: For higher valtages and currents other combinations are available. The tabulation above is only a partial list. send specifications for other designs. Address Dept. BS-1.

Specify SELETRON

MINIATURE SELENIUM RECTIFIERS

 For RADIO AND TELEVISION APPLICATIONSThe complete lamily of miniature Seletron Selenium Rectifier is designed for use on a nominal 115 A-C line, to provide direct current for radios, television sets, amplifiers, and other low power applications. Instant starting, small size, Iong life and simplicity of installation are a few of many features of the Seletron Family.
CODE NUMBER 5L1 5M1 5P1 5R1 5Q1 Current Rating 75 ma .100 ma .150 ma .200 ma .250 ma. $\begin{array}{lllll}\text { Plate Height " } 1^{\prime \prime} & 1^{\prime \prime} & 13 / 16^{\prime \prime} & 11 / 2^{\prime \prime} & 11 / 2^{\prime \prime}\end{array}$ $\begin{array}{llllll}\text { Plate Width } & 7 / 8^{\prime \prime} & 1^{\prime \prime} & 13 / 16^{\prime \prime} & 11 / 4^{\prime \prime} & 11 / 2^{\prime \prime}\end{array}$

RुR RADIO RECMPTOR CONIPANY, INc. RR

THE SHERRON ELECTRO-MECHANICAL LABORATORY SERVES IN THE FABRICATION OF MECHANICAL COMPONENTS FOR:

- Mechanical Equipment for Electronoptics

- Special Precision Wave Guides
- Computers
- Vacuum Tube Strucfures
- Precision Tuning Units
- Precision Drive Mechanisms
- Servo Mechanisms

Shown above is a view of the Sherron electromechanical laboratory. Here you will see the finest modern tools. Every machine, every piece of apparafus is a precision instrument. Lathes, iig bores, shapers, heat treating equipment, locators, millers - they're all here. Yes, and the entire gamut of standards, gauges, mechanical measuring instruments . . . We allow no margin for error in any detail of the electronic equipment we make. As a result, the Sherron electro-mechanical laboratory performs a vital function in our complete and coordinated service to manufacturers . . . Why not consult our electro-mechanical engineering group on your "precision electronics" problems?

Sherron elettronics company

1201 FLUSHING AVE. BROOKLYN 6, NEW YORK

INDYANA permanent magnets fit your need like a doctor's prescription-the right material, the right design, the right magnets to do your job best.
When you buy Indiana permanent magnets, you buy product improvement . . new and higher efficiency ... new versatility .. new economy. Today, Indiana magnets are performing operations that were impractical only a few years ago-actually replacing many mechanical and electrical devices-and with less weight, less bulk, lower cost.
For example, certain radar magnets of Alnico originally weighed 14 pounds. Through redesign by Indiana, their size was reduced materially and their weight cut to $31 / 2$ pounds. Both were of identical material; both produced the same energy. The substantial savings in weight and cost were accomplished wholly by a change in design. Consultation with our engineers may result in similar savings for you.

Indiand is the only manufacturer of all types of commercially used permanent magnet alloys. Continuous research and production control assure top quality and uniformity of all your Indiana permanent magnets, regardless of size or quantity. Call on our Special Design Service in solving your problems.

THE INDIANA STEEL
PRODUCERS OF "PACKAGED ENERGY'.
6 NORTH MICHIGAN AVENUE - CHICAGO 2, ill.

PRODUCTS COMPANY

SPECIALISTS IN PERMANENT MAGNETS SINCE 1910

PLANTS: VALPARAISO, INDIANA; CHAUNCEY, WESTCHESTER COUNTY, N.Y.

The NEW "dag" CRT Wall Coating

for all CRT glass envelopes

Here's an entirely new CRT Wall Coating, developed by Acheson Colloids specifically and solely for use on CRT glass envelopes.
"dag" CRT Wall Coating is very easily applied... adheres tenaciously to all types of glass. . . does not yield objectionable by-products on heating.

Prominent cathode-ray tube manufacturers have already found this opaque, electrically conductive "dag"' CRT Wall Coating eminently satisfactory, especially in tubes intended for television reception.

Let Acheson Colloids help you with your CRT wall coating problem. Mail the coupon today for information on this or other electronic applications of "dag" colloidal graphite dispersions.

Give me information on "dag"' colloidal graphite dispersions for:
 Wall coating of CRT's
 Electrostatic shielding
 Corona prevention
 Dry-film lubrication
 Copper oxide rectifier disc coating
 Electrical resistances
 Filament cement

Acheson Colloids Corporation

Port Huron

Michigan

TO HELP YOU PICK THE BEST

Here are a few facts to help you choose the best: In approximately 90% of the new commercial mobile transmitter designs, you will find Hytron instant-heating tubes. Over 2,500,000 Hytron gaseous voltage regulators speak for themselves. Ratings of Hytron vhf tubes are CCS and based on actual equipment performance which you can duplicate. No other transmitting triode can touch the new all-purpose 5514 for economical versatility. Famed for transmitting tubes, Hytron also originated the popular "GT", and is the oldest manufacturer specializing in receiving tubes. You pick the best when you pick Hytron.

HYTRON TRANSMITTING AND SPECIAL PURPOSE TUBES CONTINUOUS COMMERCIAL SERVICE RATINGS

for befter reception, it's also Hytron - GT, G, lock-in, or miniafure.

Simple, sure-fire vfo for $1 \frac{1 / 4}{4}$ or 2 meters. HY-Q 75 kit : unossembled, $\$ 9.95$; assembled, $\$ 11.95$

MYCALEX, a most versatile, low-loss insulation material, possesses unusual characteristics that ideally suit it for use in ultra highfrequency applications. It can be molded, or machined to very close tolerances-it is impervious to water, oil or humidity; has dimen-
sional stability, high dielectric strength and will not carbonize. Metal inserts can be molded into the material giving it an almost endless number of applications in the field of electronics. It is available in the three following types:

MYCALEX 410

This injection-molded form of Mycalex is useful in 4 cases: 1. When shape is too intricate to permit fabrication by machine. 2. When quantities necessitate high production and low cost. 3. When great dimensional stability is essential. (Mycalex 410 can be molded to very close tolerances.) 4. When metal inserts must be incorporated into the insulator. These inserts may be made of any common metal that can withstand temperatures of about $1200^{\circ} \mathrm{F}$ and that has a coefficient of thermal expansion of the order of 100 to 175×10^{7} per degree C. Mycalex metal seals can withstand pressure of 90 psi .

MYCALEX 400

Compression molded for high-frequency applications. Its loss factor is well within requirements for operation in this portion of the electromagnetic spectrum. An outstanding characteristic is the long frequency range over which the loss factor is a minimum. Tropical climates do not impair its electrical and physical properties. It is, therefore, used for insulation in radio transmitters, radio receivers, communication panels, switchboard panels, arc shields in high tension switches, brush holders, relay contact supports, etc. Available in sheets 14 by 18 in .; thickness of $1 / 8$ to 1 in . Rods 18 in . long, diameter $1 / 4$ to 1 in .

MYCALEX K series

Ceramic Capacitor Dielectrics. Many ceramic materials offer low power factor, negligible moisture absorption, high dielectric strength, lack of cold flow, ability to withstand high temperatures. Few, however, include a dielectric constant greater than 7 or 8 at radio frequencies. Few are available with flat surfaces of large dimensions that don't warp, or close tolerances in rods. Mycalex K capacitor dielectrics combine all of them and is available in practically any form. Power factor varies from 0.002 to 0.004 at 1 mc .

MYCALEX FABRICATING SERVICE

Mycalex can be machined to customers' exact specifications in our new plant at Clifton, N. J. This plant is especially tooled for large volume machining of Mycalex in α wide variety of forms. This service offers the following advantages . . . PRECISION WORKMANSHIP: specialized equipment that assures remarkable precision and super-
vision by skilled engineers. REDUCED COSTS: substantial savings effected by efficient performance on a quantity basis. RELIEF TO PLANT BOTTLENECKS. PROMPT DELIVERIES. Consult our engineering staff for advice on the application of Mycalex to your insulating problems.

TYPE CVH, an important newcomer in a famous line -a Sola Constant Voltage Transformer designed for use with equipment that requires a source of undistorted voltage. These new transformers, available in 250,500 and $1,000 \mathrm{VA}$ capacities, provide all of the voltage stabilizing characteristics of the standard Sola Constant Voltage Transformer, with less than 3% harmonic distortion of the output voltage wave.

Since the output voltage wave is essentially sinusoidal, these transformers may be used for the most exacting applications such as general laboratory work, instrument calibration, precision electronic equipment or other equipment having elements which are sensitive to
power frequencies harmonically related to the fundamental.

As in all Sola Constant Voltage Transformers the regulation is automatic and instantaneous. There are no moving parts, no manual adjustments and every unit is self-protecting against short circuit.

Type CVH represents an outstanding advance in automatic voltage regulation and an important contribution to precise electronic equipment.

WRITE FOR THESE BULLETINS

DCVH-136-complete electrical and mechanical characteristics of the new Type CVH Constant Voltage Transformers

DCV-102 - complete engineering handbook and catalog of standard Constant Voltage Transformers available for remedial or built-in applications.

So much of everything you want

 packed into this 10 -inch speaker!

FREQUENCY RANGE: 65 to 10,000 cycles. IMPEDANCE: 4 ohms.
COVERAGE ANGLE: 60°.
POWER CAPACITY: 20 watts continuous.
EFFICIENCY: At distance of 30 feet on the axis, will produce a level of 89.5 db above 10^{-16} watt per sq. cm. at 20 watts, on basis of warble frequency covering range of 500 to 2500 cps .
DIMENSIONS: Diameter 101/4"; depth $31 / 4^{\prime \prime}$.
BAFFLE HOLE DIAMETER: 8-13/16".
WEIGHT: 10 lbs .
ENCLOSURE REQUIRED: $21 / 2$ cubic feet completely enclosed.

The new Western Electric 756A

20 watts capacity
Superb quality of reproduction Compact and simple to install Available for immediate delivery

Before you select any speaker for broadcast monitoring, wired music, program distribution systems or home radios and record players, look at the 756 A and listen to its brilliant tonal quality.

The 756A is just one of a line of new Western Electric speakers with power capacities from 8 watts to 30 watts. Get the full story on all of them from your Graybar representative, or write Graybar Electric Co., 420 Lexington Ave., New York 17, N.Y.

- QUALITY COUNTS -

electronics edition • August 1948

FOR UTMOST CAPACITOR RELIABILITY

FOR those exacting equipment appli cations where reliability is the most important of all considerations, specify Solar's new Type QS series of SOLITE Metallized Paper Capacitors.

These unique immersion and humid-ity-proof tubulars, with their self-healing properties, are encased in tinned non-ferrous shells with glass-to-metal hermetic terminal seals.
Type QS SOLITE capacitors offer the industrial and military electronic designer a hitherto-unknown combination of small size, light weight, and the utmost in reliability and performance. A typical capacitor is shown in the actual size illustration. Rated at .5 mf 200 wvdc, it is only $.40^{\prime \prime}$ in diam. x $1^{\prime \prime}$ long!

Standard capacitance tolerance on Type QS SOLITE capacitors is -10 , $+20 \%$. Standard test voltage is 150 percent of rated d-c working voltage, while maximum power factor is not greater than 1 percent at 60 cycles.

Capacitors rated at 200 wvdc and lower, identified as Type QSL, have a minimum insulation resistance x capacitance product of 500 megohm-microfarads. Capacitors rated at working voltages above 200 volts, identified as Type QSN, are impregnated with mineral oil and have a minimum IR x C product of 1000 megohm-microfarads. The mineral oil impregnation also minimizes capacitance variation with temperature changes.
For further information, write today for full descriptive bulletin.

Solar Manufacturing Corporation 1445 Hudson Blvd., North Bergen, N. J.

SOLAR SOLAR CAPACITORS "Quality Above AII"

BUSINESS BRIEFS

By W. W. MacDONALD

Seasonal Patterns taken for granted before the war but forgotten since then are returning to the business. Next time anyone says business is off ask if they mean by comparison with normal prewar, wartime-boom, or postwar seller's market. Then the statement can be examined in its proper perspective.

Magnetic Amplifiers (p 124, Sept. 1947) are destined to play an important part in the design of industrial control equipment, will eliminate tubes in some instances. Invented by GE's E. F. Alexanderson many years ago, such amplifiers were limited in application by lack of suitable materials. The Japanese developed very efficient materials during the war, and the Germans put them to work. American scientists have since further extended the technique.

Extremely efficient d-c amplifiers were described at a recent symposium in Washington (see p 128 , this issue). So also were lowfrequency a-c types. Several speakers left the distinct impression that it is not at all beyond the range of possibility that core materials may soon be improved to a point permitting use of magnetic amplifiers at audio frequencies and, perhaps, even at radio frequencies.

Sound may be the answer for manufacturers of vacuum cleaners who wish to shake rugs without using a rotating brush or beater. One of our readers who has a patent pending on the application says that 15 to 20 watts of 60 -cycle power fed into a loudspeaker held an inch or so above the floor should do a job, and that even 5 watts will produce visible movement of a rug. He says, furthermore, that if it is properly done the user is not disturbed by the sound.

Name and address on request.
Believe It Or Not, one of the problems bothering meat packers is the fact that when the ground is icy hogs slip and become bruised. The
bruises show up in hams, but not until the hams are cut.

One big packer recently wrote to a company in our field and asked if bruised hams might not be detected by radar, indicating once more the sad fact that while many outsiders still don't know what electronics can and cannot do they are anxious to give us a whack at their business.

If anyone can think of a practical solution we'll be glad to pass it along.

Tele Service, if not installations, will in our opinion soon have to gravitate to retailers. Sets are moving so fast that facilities set up by manufacturers are being severely taxed, and the business has just started. One factoryaffiliated organization alone already has 30 shops, 600 trucks and 1,700 men.
Incidentally, Howard Sams tells us he is receiving quite a few letters out in Indianapolis from appliance distributors, asking for information on the replacement parts business. This is another straw in the wind.

Hams have found a simple way to substitute a 12 -inch cathode-ray tube available in the surplus market at $\$ 7$ to $\$ 10$ for the 7 -inchers built into many television receivers. It seems that if one of the large bottles is operated below 2,500 volts instead of the 6,000 volts for which it was designed the fact that it is a long-persistence type is not too bothersome.

Brilliancy of the picture is not bad. Only a test pattern or other still-life picture exhibits marked hold-over. And all one has to do is to change the tube socket.

All Is Not Serene with respect to television receiver front ends. What with radiation, dead spots due to resonance of unused circuits, and other trick effects, trouble is being experienced in many markets.

Watch for early improvements particularly in switches. And

1) Overall power consumption is under 90 kw .
2) Equipment is of compact design.
3) Power tubes have highly efficient thoriated tungsten filaments.
4) Tube servicing is possible without special tools, equipment, and training.
5) Vacuum tube components are capable of supplying sufficient output without being run at maximum ratings.
6) 50 kw . final is driven directly by the 10 kw . stage.
7) Air cooled. 3, 10 , and 50 kw . stages only require the output of a single blower driven by a I h. p. motor.

And they are made possible because of one component . . . the Eimac multiunit triode, type 3XI2500A3. A pair of these tubes (as grounded grid amplifiers) are capable of providing over 50 kw . of useful output power with but 10 kw . watts of drive. The lineup of $K S B R$ equipment and operational data, below, further illustrates advantages inherent to equipment designed around the $3 \times 12500 \mathrm{~A} 3$.

Analyze the vacuum-tube components in the equipment you consider . . . be sure their design presents the highest advantage to you. The Eimac sales department will gladly furnish names of equipment manufacturers and engineers using Eimac tubes. Phone, write or wire direct.

HERE'S THE KSBR LINE-UP

MULTI UNIT DESIGN IS ANOTHER EIMAC FIRST

on the above Geiger Counter made by Technical Associates, Glendale, California.

TYPE AN, K, P CONNECTORS

on Cathode Ray Recorder (shown with cover removed made by Heiland Instrument Co.. Denver, Colo.

The 64-page Cannon Electric Type K Bulletin completely covers this versatile series of electric connectors, together with accessories in the line. Address Department H-120.
For prices on Type K Connectors, quotations will be made on specific catalog numbers only, and are available from Cannon Electric Representatives located in principal cities of the U.S. A. or direct from the factory.

TYPE K ANGLE 90° PLUG

 Integral Cable Clamp is one of the many styles of K and RK fittings to meet most requirements for electric circuits and mounting locations.
ONE OF THE 190-ODD INSERT ARRANGEMENTS

is the GK-P6 insert which carries three No. 14 and three No. 10 contacts, having $3 / 64^{\prime \prime}$ clearance. The insert diameter is $7 / 8^{\prime \prime}$. No. 14 contacts are rated at 15 amps , and No. 10 at 10 amps.

CONTACTS

all have tinned solder pots in K inserts and are quality-made brass with silver-plate finish to stand wear and

pressure of engagement with low loss factors. The 115 - and 200 -amp. types are removable for soldering.

CADIJOU
 Cevelonment Ompany IN CANADA \& BRITISH EMPIRE:

 CANNON ELECTRIC COMPANY, LTD. TORONTO 13, ONTARIOGLECTBIS

SINCE 1915
3209 HUMBOLDT ST., LOS ANGELES 31, CALIF. WORLD EXPORT (excepting British Empire): FRAZAR \& HANSEN, 301 CLAY STREET SAN FRANCISCO 11, CALIFORNIA
watch the columns of Electronics for the technical dope.

Picture Sizes advertised by some makers of direct-view television receivers cause us to wonder if something has recently gone wrong with our math. When we figure out the area of the largest rectangle having the correct frame dimensions that can be placed within a circle this is what we get:

Tube Diameter	Rectangle
3	$4.3 \mathrm{sq}$. in.
7	23.2
12	48.0
12	69.0
16	108.0
	123.0

Are the copy-writing boys cutting corners, or just where are we wrong?

Reverse English: New York's Hotel Taft is substituting 7 -inch television receivers for some of the 10 -inchers it has been renting, says the larger size is too big for a small room.

Hotels, incidentally, are getting $\$ 2$ to $\$ 3$ extra per day for rooms with television, and one reports that room service in such cases triples while bar and restaurant business declines.

Vehicular Tunnels carrying heavy traffic must be constantly monitored to avoid serious tieups. In the two under the Hudson River between New York and New Jersey cops are stationed every few hundred feet and noise and carbon monoxide make it necessary to relieve them at frequent intervals.

This suggests another possible application for industrial television equipment. Pickup units might be located in tunnels in place of men, and receivers placed at more comfortable control points. John Taylor says RCA has already had an inquiry on the subject.

Laymen are frequently awed by the title "Electronic Engineer." Reminds us of the way we ourselves feel about M.E.'s who design those tricky automatic recordchangers.

Research Laboratory of one of the large companies in our business employs 355 people. Of these, 105 are engaged in pure research hav-
ing no known industrial applications, 140 are working on pure research but of a somewhat specialized nature, 90 are devoting their time to research having a definite industrial endpoint, and 20 are engaged in the conversion of initial equipment designs into practical commercial forms.

McGraw-Hill's World News Bureau reports that in Australia 45 firms make radios but only one makes tubes, and that none yet make f-m or television sets on a commercial scale.

Aussie radio prices are high, three to five times as high as ours for comparable models. Cheapest set retails for $\$ 55$ and is a four-tube a-c model covering broadcast only; five-tube two-band jobs go for about $\$ 120$; a six-tube three-bander sells for $\$ 195$; and an eight-tube allwave phono-combination console lists at $\$ 400$.

Reader N. B. Cook kids us, with good reason, about our plea for a small, cheap, low-power, high-fidelity amplifier design (p 66, May). He says, correctly, that we ourselves have published several good circuits back over the years. We hasten to ask, as originally intended: but who makes one commercially?

Striking Simile is used by an astronomer writing in Electronics this month (p 98) to illustrate the extreme sensitivity of one particular photoelectric device employed when studying the stars. He says it could theoretically measure the light of a candle in England from California.

Hams who have gone in for directional beams will be amused to know that professional designers of f-m and tv antennas, and their salesforces, are just now beginning to wax violent on the subject of driven element, reflector, and director spacing. Thus the wheel turneth . . . back to where many of us cut our eye teeth.

Plaintive Query: Why does music sound so good on certain $\mathrm{f}-\mathrm{m}$ stations, while the announcer sounds like a man talking into a rain barrel?

TRANSFORMERS and REACTORS

Have you a design problem where compacrness is a necessity? In small electronic equipment, such as hearing aid devices and pocket radios, Stancor sub-miniature transformers and reactors fill the need for maximum performance in a minimum of space. Representative types are listed below. Competent Stancor engineers can help you in designing a size and type to meet your specific requirements. Quotations and technical information furaished promptly without obligation.

SUB-MINIATURE OUTPUT TRANSFORMERS

Part Number	Impedance Primary	Rated Pri. L.	Approx. DC Res.		DimensionsH x W x D
			Pri.	Sec.	
HX-202	85,000 ohms	31 hy .	1750 ohms	4.7 ohms	5/8"x ${ }^{3 / 4}{ }^{\prime \prime} x^{3} / 8^{\prime \prime}$
HX-204	100,000 ohms	33 hy .	2450 ohms	4.0 ohms	
HX-207*	100,000 ohms	24 hy .	2500 ohms	3.0 ohms	

On the above units the secondary impedance is 60 ohms and the primary DC rating is 0.5 ma. "This unit bas a nickel alloy core.

SUB-MINIATURE REACTORS

$\begin{aligned} & \text { Part } \\ & \text { Number } \end{aligned}$	Inductance	DC Ma.	DC Res.	Dimensions H. x W x D
HH-100	43 hy.	0.5	3500 ohms	
HH-102	35 hy .	0.5	2000 ohms	$8 / 8{ }^{\prime \prime} x^{3} / x^{5} / 8^{\prime \prime}$
HH-104	60 hy .	0.5	2800 ohms	$7 / 8{ }^{\prime \prime} x^{3 / 4}{ }^{\prime \prime} x^{3 / 8}$

Whether your design calls for audio transformers of the sub-miniature type or power transformers of 5 K VA capacity, Stancor has the ability and facilities to meet your requirements. Streamlined plant facilities and mass production permit faster delivery and lower costs consistent with Stancor quality. Inquiries are invited.

STANDARD TRANSFORMER CORPORATION
3560 ELSTON AVENUE CHICAGO 18, ILIINOIS

Yours for the asking!
Send for the Mallory Capacitor Catalog, which contains useful data on all types of Wallory Capacitors-sizes, clantrical charameristics, test measuremems. mounting hardware.

The moisture of human hands can shorten the life of an electrolytic capacitor. Hands perspire. Perspiration contains salt. That's why workers at Mallory wear rubber gloves when handling electrolytic capacitors. For the same reason the chloride content of raw materials is kept to one-half of one part per million.

Precautions Lead to Longer Life

Due to such precautions, Mallory FP Capacitors can be depended on for longer shelf and service life. Kept free from deteriorating impurities and then carefully and completely sealed in air-tight aluminum cases, they have frequently been used without re-aging after five to six years in stock.

More Capacity in Equivalent Space

Use Mallory FP Capacitors when you need more capacity and voltage in equivalent space. Use them for extreme service when moisture or fungi are present. Wherever you use them, you pay no premium for the assured quality of this Mallory Approved Precision Product.

Buy Mallory Assured Quality at Regular Price Levels

MALLORY
 CAPACITORS
 (ELECTROLYTIC, OIL and WAX)

P. R. MALLORY \& CO ${ }_{2}$ Inc., INDIANAPOLIS 6, INDIANA

CROSS
 TALK

- JTAC . . . The IRE and RMA have announced the formation of the Joint Technical Advisory Committee, a group of eight impartial engineers whose duty shall be to advise government agencies and industrial groups on the wise use and regulation of radio facilities. The JTAC will call on existing IRE and RMA committees, as well as other qualified groups, for detailed study and analysis of the problems presented to it. Having thus come by the information from specialists best fitted to supply it, the JTAC will review the data, resolve conflicts of fact or opinion, and exclude commercial bias before passing its findings to the agency seeking its help. Its first task is to assemble, at the request of the FCC, information on the future utilization of the television frequencies between 475 and 890 mc , in preparation for the September 20th FCC hearing on this subject. Details of its plan of operation will be published in these pages next month.

The new agency was initiated by President Shackelford of the IRE and W. R. G. Baker, Director of the RMA Engineering Department. It differs from similar organizations of the past, such as the National Television System Committee and the Radio Technical Planning Board, in that it will not argue for particular services, but will present and interpret the facts for the benefit of the profession and the public, as a whole. It is no secret that many of the RTPB panels were so violently partisan for particular services that they were, in effect, pressure groups. The JTAC's pressure, if any, will be for the incontrovertible fact and the broadest available interpretation. JTAC has its sights set high. Its responsibility is great, its opportunity wide. It depends on the support of every engineer who can contribute to its findings. Based on such support, JTAC can assist government and industry agencies to avoid repeating the mistakes of the past in setting allocations and standards.

- QRN . . . We note progress in the amelioration of man-made radio interference in some fields, stagnation in others. There is still some argument over the FCC's action in taking jurisdiction over industrial,
scientific and medical devices capable of causing interference, but the clamor daily grows fainter. A recent voluntary action by a manufacturer of germicidal lamps, taken at the instance of the FCC, produced an almost unbelievable improvement. The lamp as originally used caused severe interference with police services at distances as great as three miles. When the design was cleaned up, it failed to interfere with that most vulnerable of all radio devices, a television receiver, when operated at a distance of one foot. Everybody is very happy about that case, the FCC, the police and the manufacturer.

But progress in the field of ignition interference is very spotty. Nowadays, when the price of nearly every car sold includes several hundred dollars for accessories, it would appear feasible to include ignition interference suppression facilities without incurring customer resistance. But, unfortunately, those devices which do the job well sometimes have a perceptible influence on the performance of the engine. So competitive is the automotive field that no manufacturer known to us is willing to install a suppression system as standard initial equipment. That makes it optional with the customer. And that makes for a great deal of uncontrolled interference. Perhaps, when a majority of car owners own television sets, and the serious nature of ignition interference is sufficiently publicized, any slight degradation of engine performance will be accepted as well worth its cost. We hope it comes a lot sooner than that. We predict everybody will be happy on that occasion, too.

- DECISION . . . Along with the editors of the New Yorker, we are impelled to object to the recent Supreme Court decision which refused to abate the sound truck nuisance on the ground that such would be an abridgement of the right of free speech. The right to privacy, the right to select what speech to listen to, and the right to turn the damned thing off, are equally basic rights. The tuning control and the on-off switch on radio receivers are truly democratic institutions. But the self-imposing sound truck leaves no alternative but a quick sprint in the opposite direction.

WHAT'S WRONG WITH

U.S. Frequency Allocations

By JEREMIAH COURTNEY

Courtney, Krieger and Jargensen
Washington, D. C

INCREASING USE of radio, for broadcast and non-broadcast purposes, has served to focus attention on the manner in which frequency allocations are made within the United States.

That this spirit of critical examination represents a healthy development all agree. Any changes that facilitate more productive use of the increasingly valuable natural resource that is our radio spectrum should be welcomed by both government and industry.

Faulty Practices

Chief among the basic faults in present frequency-assignment practices are the following:
(1) The dual system of alloca-

TELEVISION SHADOWS

RELIEF MAP of Los Angeles and vicinity, lighted by a small electric lamp placed on Mt. Lee in Hollywood.

Illuminated areas show probable line-of-sight coverage by α television transmitter in a simple, effective manner.

Photograph by I. L. Bateman, Los Angeles Department of Water \& Power

THE AUTHOR, a practicing attorney, was Assistant General Counsel of the FCC in the period between 1942 and 1946.

Prier to that time, he was associated with Cadwalader, Wickersham \& Taft, New York.
tions pursuant to which the Interdepartment Radio Advisory Committee is empowered to assign frequencies to government radio stations, while the Federal Communications Commission does likewise for non-government stations, both agencies enjoying equal and plenary authority over the entire spectrum.
(2) The practice of IRAC in making frequency assignments on the basis of government-agency statements of frequency need without any or sufficient proof of need, and without recurring independent examination of frequency utilization by such agencies.
(3) The practice of FCC in making frequency assignments on the basis of paper showings of prospective need, not speedily readjusted in the light of actual frequency utilization as thereafter independently determined by the monitoring staff.
(4) The practice of the FCC in assigning blocks of frequencies for
the use of particular services on a national basis, without providing for their use by other services in areas where such frequencies are not used or likely to be used by the service to which they were originally assigned.

IRAC-FCC Relationship

In passing upon the question whether a non-government applicant should be licensed to use certain aeronautical frequencies then in use by a government station, the FCC recently had occasion to remark (FCC Docket 6988, p 363) :

In any event, however, the Commission has the legal authority to assign to the applicant the use of the same frequencies that the C.A.A. is using at New York for reasons that will now be outlined.
"Station WSY is a government owned and operated station and so not required to be licensed by this Commission, its frequencies being assigned by the President as provided in Section 305 (a) of the Communications Act. As we have previously seen, the frequencies of non-government stations are assigned by this Commission (Sec. 303(c)). As a matter of legal theory, neither assignment is controlling on the other, although there are manifest practical difficulties in the way of an assignment by the Commission to a non-government station of a frequency used or intended to be used exclusively by government stations, or by the President to a government station of a frequency used or intended to be used exclusively by non-government stations.
"Mainly to coordinate and regulate
the assignments of frequencies to government stations with those assignments made to non-government stations, the various federal agencies in 1922 voluntarily established the Interdepartment Radio Advisory Committee which the President has used as an advisory body to recommend to him what frequency assignments should be made to government stations. Procedurally, IRAC has been authorized to make interim assignments which are periodically confirmed by Executive Order of the President, each order again conferring authority upon IRAC to rake further interim assignments.
"By mutual agreement between IRAC and the Commission, certain portions of the radio spectrum area are, from time to time, marked for government assignments exclusively, others for non-government assignments exclusively, and still others for the shared ise of both government and non-government stations."
Merely to state the FCC-IRAC relationship is to prove its faults. Each agency, legally, can assign the entire spectrum. With that bludgeon in the hand of each, it is not difficult to understand how they have both agreed that the radio spectrum should be divided equally between the government and industry, as it approximately now is. If each has the power to devour the whole apple, as reasonable men they will agree to split it down the middle.
But should the radio-spectrum apple be split down the middle, half to government and half to industry? There is considerable evidence that it should not, but the question can never be conclusively answered until one agency is given authority over the entire spectrum. Then government frequency needs can be weighed against industry needs on merit and by application of the same standards. Only thus can there be any assurance that the FBI, for example, does not get from IRAC more channels than it needs at the same time the State Police (which are treated as non-government users) get from FCC less channels than they need very badly indeed.

Government Needs

Requests for frequency assignménts presented to IRAC by government users are not subject to
the same examination of need that is made with respect to industry requests presented to FCC.
D. E. Noble of Motorola, and Chairman of Panel 13 of the Radio Technical Planning Board, testified on April 1, 1948 before the House Interstate and Foreign Commerce Committee regarding House Joint Resolution No. 78:

[^4]Why government frequency requests are not subjected to critical IRAC examination of need is indicated by a provision in IRAC bylaws that the Committee shall endeavor to reach unanimous agreement on all questions discussed. Further pressure in that direction is inevitably generated by the fact that IRAC is made up entirely of frequency users (Agriculture, Commerce, Navy, State, Treasury, War, Interior, Justice, FCC, and U. S. Maritime Commission). Thus, if one IRAC member should vote against or attempt to examine into another member's need for requested frequencies the action would be undertaken only with the greatest circumspectness and delicacy, in the certain knowledge that the member so aggrieved would before long be in a position to pass upon the objecting member's own frequency requests. This is stating the case mildly.

Whether or not IRAC accords a critical examination of frequency need to the requests of its members, it is certain that assignments are not based on the same criteria of need as are FCC assignments, made only after periodic overall spectrum review of each industry's needs against those of every existing and meritorious new radio service. The short supply of frequencies now available for industry purposes makes it imperative that government assignments be based on equal needs, with all assignments subject to periodic independent examination to determine the extent of frequency utilization actually obtaining.

Allocation Post-Audit

Although superior to those of IRAC, FCC allocation procedures are themselves subject to improvement in at least two important respects.

While FCC does periodically undertake to revise spectrum allocations in the light of the needs of existing and new radio services, such allocation proceedings are few and far between. In the interim, frequency assignments and uses frequently get out of balance. In the long periods intermediate between general allocation proceedings insufficient effort has in the past been made by FCC to determine the extent to which the frequencies allocated to particular services are actually used by those services.

So far as is known, the monitoring offices of FCC have not often been used for the purpose of determining service frequency utilization. Certainly there has been no announcement regarding such studies. Indeed, it was not until last year (after the American Telephone \& Telegraph Company had introduced, in a proceeding before FCC, charts of frequency utilization studies made in three major cities showing striking discrepancies in channel utilization by the various occupants of the 152 to 162 -mc non-government and 162 to

174-mc government bands) that there was created a Frequency Utilization Section in the FCC's Washington offices' Engineering Department.

The importance of an independent determination of frequency utilization is apparent. For in general allocation proceedings one industry and service is striving against another, not only for presently needed spectrum space but for space for future expansion as well. Frequency allocations have been made by FCC on the basis of paper showings, chart projections of present use, and estimates of future needs which may or may not come into being. This has resulted from time to time in inequities in frequency assignments, as revealed by the acid test of frequency utilization.

For example, in October 1947, two-and-a-half years after the FCC's 1944-45 general allocation proceeding had been completed insofar as frequencies above 25 megacycles were concerned, the railroads had 60 frequencies allocated for their purposes in the 152 to 162 -mc band, and were using the same frequency for land and mobile station use. The taxicab industry had 2 frequencies in that band, using one frequency for land stations and the other for mobile stations, the two frequencies thus constituting a single communications channel. Neither industry had any frequencies outside the 152 to 162 mc band. On the railroads' plethora of 30 channels there were 100 land stations and 900 mobile units operating; on the taxicabs' single communications channel, there were almost 1,000 authorized land stations in operation, employing thousands and thousands of mobile units. In fact the vice-president of one of the leading manufacturers in the non-broadcast radio field testified before FCC (Docket 8658, p 686) :

[^5]equipment business during the past year."

If such inequities in frequency assignments are to be promptly corrected the FCC must be prepared periodically to post-audit the paper showings of frequency need put forward by the various radio services in the light of actual frequency utilization, without waiting for the next distant and time-consuming general allocation hearing.

Flexibility Needed

Not only should frequency assignments be periodically readjusted to comport with frequency utilization, but all assignments should be sufficiently flexible to permit use by another service when not used or likely to be used by the service for which originally assigned.

The present FCC practice is to assign frequencies to services on a national basis. In the railroad-radio service, for example, 60 frequencies have been allocated for that industry's use throughout the country. These frequencies were deemed necessary to provide for railroad communication needs in the congested Chicago terminal, into which 33 different railroads operate. In many areas outside the congested terminals of Chicago, St. Louis, and New York, however, the railroads cannot use or justify the use of 60 frequencies. If frequencies had been assigned on a basis that would permit use by other services in those areas where the railroads cannot conceivably use 60 frequencies it would not have been necessary for the taxicab industry, for example, to long thirst for additional frequencies in California, Texas, Massachusetts, Florida and many other states into which only a few railroads operate.

FCC is, by statute, required to assign radio frequencies in the public interest, convenience and necessity (Communications Act, Sec. 309 (a)). Like so many other agencies administering similar statutes, however, the interest, convenience and necessity considered
is not always that of the public but is often that of the agency or its personnel. This is usually not so much the fault of the agency as the result of limited funds made available for the agency's activities. It would not be convenient for the FCC or its staff to determine how many of the 60 railroad frequencies can be properly used for taxicab dispatching in the states of California, Texas, Massachusetts and Florida without conflicting in any way with railroad-radio communication needs.

The raison d'être of the administrative agency is its capacity for dealing with complex technical problems. No needed frequency should be permitted to go to waste anywhere if the objection to its use is merely the imposition of a workload of minor, or even major, proportions on the FCC's technical staff. Frequencies are too valuable, too much in demand, to die by application of the rule of administrative convenience or the interposition of obstacles in the path of the prospective user by way of complicated showings or expensive and time-consuming hearings.

The Future

In the nature of things there will be considerable delay in placing the radio spectrum under the jurisdiction of one agency, and probably also in IRAC's revision of its standards of frequency need. For that very reason, however, it becomes increasingly important for FCC to see that frequency assignments and use are in balance and that a high degree of flexibility in frequency assignments obtains always, to the end that a single frequency shall not lie fallow in a single community where needed.

That such is not the case today only underlines the need for immediacy of action by the Federal Communications Commission in post-auditing frequency assignments against utilization and in correcting any inflexible frequency service assignment practices which are wasteful of frequencies.

Transmitting and receiving ground-plane antennas and of Mobile 2 unit. Dashboard mounting of handset and send-receive switch provides convenience

Photographed from the antenna site atop the McGraw-Hill Building, this view shows

CITIZENS BAND

Complying with FCC class B specifications, iff transponders are modified to provide useful two-way communication from car to car for moderate distances and over a greater range to a fixed station having greater antenna height

By WILLIAM B. LURIE

W10XEM-W2XRW
Bronxville, New York

THE equipment to be described was developed as type B equipment for the Citizens' Radio Service and has been used by the author and his associates in successful field trials.

Because of the nature of facilities available, and because this project was undertaken on a sparetime basis, it was decided to develop three units, two of which would be mounted in passenger cars, while one would be a-c operated, though easily movable from
point to point. Advantage was taken of readily convertible surplus electronic equipment, namely the iff transponder BC-645, still available at about $\$ 10$. A complete transmitter and receiver can be assembled for less than $\$ 25$.

Class B FCC tolerances are ± 0.4 percent, or $\pm 1.86 \mathrm{mc}$ at $465.0-\mathrm{mc}$ center frequency, and it has been found that the transmitter stability is well within these limits. Once it had been determined that the license requirements would be
met, no great effort was made to establish the inherent drift or instability, but the transmitters have been used repeatedly, often after periods of weeks during which the whole unit rode, not shock-mounted, in the trunk of the author's car, over 60 miles per day at speeds up to 55 miles per hour, at ambient temperatures ranging from -10 F

[^6]
the buildings adjoining Ninth Avenue, left, and Eighth Avenue, right

TRANSCEIVERS

Part IV

 of a seriesELECTRONICS CITIZENS RADIO PROJECT
PART I
Transmitter for the Citizens Radio Service, November 1947.
PART II
Receiver for the Citizens Radio Service, March 1948.
PART III
Antennas for Citizens Radio, May 1948.
PART IV
Citizens Radio Transceivers, August 1948.
PART V
Power Amplifier for the Citizens Transmitter, coming.

to +80 F . Frequency shifts of 0.5 me (about 0.1 percent) were seldom observed.

As shown in the block diagram of Fig. 1, the transmitter consists of a 316 A oscillator in a Lecherline type of oscillator circuit, with a 6V6 modulator and 7F7 preamplifier. No effort was made to select tube types or components carefully; the transmitter has been largely designed around the numerous components used in the BC-645.

The modulator is a conventional
audio amplifier that provides con-stant-current, class A Heising modulation. A sufficiently high modulation level is achieved, although 100 -percent modulation is not obtained. The oscillator plate line is fed through an r-f choke, thereby allowing the voltage node on the oscillator plate line to form where it sees fit. As shown in Fig. 2, the oscillator grid line is returned to ground through a resistor, tapped on the line at what was presumed to be a voltage node. One method
of adjusting the input power to the rated value is to adjust the oscillator grid-leak resistor, thereby varying the plate current at fixed plate voltage.

The oscillator filament circuit can not conveniently be tuned; one side has considerable inductance within the tube, while the other has a small inductance provided in the external lead to the tube before both leads and by-passed to ground. Frequency adjustment is made by moving a dielectric slug between

FIG. 1-Block diagram of stages in mobile and portable transmitters and receivers

FIG. 2-Transmitter circuit requires only addition of the audio stages
the ends of the lines remote from the tube.

It was not found possible to increase the efficiency in the BC-645 beyond 15 percent at 400 volts plate voltage, or about 11 percent at 300 volts. A nominal radiated power of the order of one watt is therefore quoted as representative of the capabilities of the 316 A at ten watts input, and the tantalum anode, with a rated dissipation of thirty watts, requires no cooling.

Receiver

The receiver is a superheterodyne using a $40-\mathrm{mc}$ intermediate frequency, with a 955 local oscillator, a 955 mixer and no r-f amplifier. A 1N34 germanium diode is used as a second detector, its rectified, filtered output being used as avc voltage for the three 7 H 7 i-f tubes. A 7F7 audio amplifier and 6V6 power output stage follow.

The receiver was originally intended for the reception of coded pulses and use of an f-m signal generator revealed that the i-f bandwidth was over three megacycles. Removal of loading resistors
and single-frequency peaking instead of stagger-tuning reduced the i-f bandwidth to about 250 kilocycles.

The local oscillator is a 955 acorn tube in a loaded Lecher-line oscillator similar to the transmitter. The frequency is adjusted by means of a large silver-plated disk brought near the plane of the grid and plate lines, L_{2}, varying their electrical length. A small capacitor provides coupling to the mixer tube; the oscillator voltage appears at the mixer grid along with the signal voltage, which is tapped off a resonant line to which the antenna is direct-coupled.

The 955 mixer tube operates with its cathode grounded, and its plate load, the primary of the first i-f transformer, is returned not only to r-f and i-f ground, but to d-c ground as well. The local oscillator voltage and velocity of electron emission from the mixer tube cathode provide enough voltage for the efficient operation of the mixer. No improvement of signal to noise ratio was observed when added voltage was applied, and so the
mixer was left as originally designed.

As shown on the schematic diagram, Fig. 3, the signal from the antenna is tapped down on a short section of loaded transmission line L_{3}; capacitor C_{1} across the open end is varied to resonate the line. The signal to the mixer is removed from the line at a corresponding point on the conductor opposite the point where the antenna is brought in. Again, coupling was varied in amount, by moving the taps, and inductive coupling to the line was attempted, all with no substantial gain. The original front end, therefore, was restored.

Power Supply

For the a-c portable unit, filament transformers were provided. Since the BC-645 was originally intended for 12 - or 24 -volt operation, the 12 -volt connection was chosen and two 6 -volt windings connected in series. For the 316A, requiring 2.0 volts at 3.65 amperes, a filament transformer in the BC645 was intended for 9 -volt, $80-$ cycle input, 2 -volt output, centertapped to ground. This 9 volts was provided at 60 cycles from ground to the center tap of the second 6volt transformer. The B-supply is conventional and a portion of the B-voltage, obtained from a bleeder, is used for energizing the sealed-in, sensitive send-receive relay, furnished in the basic BC-645, and which switches the main B-supply from receiver to transmitter when keyed.

For the mobile units, dynamotors PE-101C (used with the BC-645 on aircraft) were obtained. This dynamotor requires either 12 or 24 -volt input, with 400 -volt output at 0.135 ampere, 9 volts at 1.1 ampere at 80 cycles, and 400 volts at 0.02 ampere. The latter winding was not used, the 9 -volt winding supplies the 316 A filament transformer, the 135 -milliampere winding used for plate voltage, and the 12 -volt input furnished from a second 6 -volt storage battery in series with the car battery. A switch places the two batteries in series when running the radio equipment, or in parallel for charging both batteries from the car generator when not on the air. The
transmitter-receiver, dynamotor, extra battery, and switch are all mounted on a board which slides onto the upper deck of the trunk compartment of a 1940 Buick convertible coupe,-Mobile 2 station.

Because of excessive dynamotor noise, Mobile 1 unit was rewired for 6 -volt operation of the tube heaters, including a dropping resistor for the 316A filament, a PE1036 - or 12 -volt dynamotor was used on 6 volts, and the second battery was eliminated. This equipment is installed in a 1946 Dodge sedan,-Mobile 1 station. The batteries are also used, with a dropping resistor, for excitation of carbon microphones on the mobile units.

Antennas

Duplicate antennas are used for receiving and transmitting. RG8/U cable with type-N fittings (UG-21/U) was used for Portable 1 and Mobile 2 units, while RG-29 /U cable with type-N fittings (UG-15/U) was used on Mobile 1, to facilitate passage between the trunk door and the car body, leading to the antennas. The antennas on Mobile 1 are surplus $A N / A P Q$ 2 A antennas, quarterwave vertical rods mounted atop a ground plane, the whole unit being attached to the car roof with suction cups, at a height of six feet.

The antennas on Mobile 2 are identical with those on Mobile 1, except that the ground plane is mounted on the trunk compartment
door, as shown, with clearance holes for the cables provided through the trunk door. The antenna height is about four feet.

The antennas for the portable transmitter and receiver are two 5 -element Yagi arrays, each consisting of a folded dipole, one reflector, and three directors, all made of $\frac{1}{8}$-inch silver-plated brass rod. The overall resistance is assumed to be a fair match to the 52-ohm RG-8/U cable feeding each array, and quite sharp patterns have been observed.

Vertical polarization is used throughout, although horizontal polarization with a phased turnstile array was used for some time on one of the mobile units. With an eye toward consistency with the practices of W2XSN, McGrawHill's station in New York, vertical polarization was decided upon.

Tuning Adjustments

The transmitter frequency was adjusted by monitoring the unmodulated radiated power near the antenna with a precision wavemeter such as a Lavoie microwave frequency meter. The method of adjustment chosen consisted of jamming down the limit stops on the relay which controls the position of the dielectric slug in the transmitter oscillator tuned line until the relay arm is tightly held in both directions. Final adjustment consists of adjusting the position of the relay arm and slug
until the transmitter frequency is the required value.

Modulation percentage is increased until noticeable distortion of voice transmission is heard on a nearby receiver. A modulation control is provided for this purpose, and is also convenient for removing all modulation from the carrier when frequency checks and adjustments are made.

The receiver antenna coupling line is tuned to 465 mc , the only circuit in the receiver tuned to this frequency. The local oscillator operates at 425 mc providing a 40 megacycle i-f signal at the mixer tube plate. Three identical 7H7 i-f amplifier stages follow, with cathodes grounded and grids returned to ground through the avc line to furnish the only bias on these tubes. With no applied signal, tube and circuit noise develop about one volt of bias.

Demodulation is done by a 1 N34 germanium diode. The audio signal is amplified in one-half of a 7F7 twin triode, and then in a 6V6 output tube which drives a loudspeaker or telephone handset receiver.

Alignment is accomplished with the top cover off, bottom plate on, by introducing a $40-\mathrm{mc}$ unmodulated signal at the mixer tube grid, and observing, with a vacuum-tube voltmeter, the avc voltage developed across the diode detector load resistor. All i-f transformers are peaked for maximum gain.

An alternative is to apply a

FIG. 3-Receiver portion of the BC-645 after modification for use in the citizens band
$40-\mathrm{mc}$ frequency-modulated signal, preferably over one megacycle wide, and to observe with an oscilloscope the voltage across the load resistor. The i-f transformers are peaked for maximum stable gain and minimum bandwidth. By this method the i-f B-supply voltage may be increased until the receiver is just below the oscillation point.
Bakelite shafts and knobs were added to the two receiver front-end adjustment points to facilitate alignment in the field. Adjustment is done with top and bottom covers in place, by observing the ave voltage with the receiver at any convenient distance from a stable signal source. The local oscillator is set at approximately 425 mc using an absorption wavemeter such as the General Radio butterfly type 1140-A. Next, the antenna coupling line is tuned for maximum ave voltage. The local oscillator is adjusted for maximum signal, after which the antenna line is readjusted, then the local oscillator again, until the maximum stable signal is obtained. This completes the receiver alignment.
Total d-c filament drain for the transmitter and receiver is 6.3 volts at 6.4 amperes. On a-c, the drain is 12.6 volts at 1.5 ampere and 9.1 volts at 1.1 ampere. The Bsupply provides 400 volts, 60 milliamperes receiving, and 65 milliamperes when transmitting.

Field Tests

Two types of tests were conducted: with both stations near ground level, and with one station well above surrounding terrain. In all cases, complete two-way communication was attempted, reducing to one-way communication as the separation between units was increased. In this manner, it was hoped to show up any significant differences between units, in sig-nal-to-noise ratio and ultimate sensitivity, especially in the portable unit, which was often run without avc.

Communication between two mobile units has been the major part, but not the most significant part, of tests to date. The mobile units were built into privately-owned passenger cars, with vertically polarized non-directional antennas

Portable a-c operated unit used on the roof of the McGraw-Hill building in New York for the field tests
six feet above the road on Mobile 1, and four feet on Mobile 2.

First tests at Bronxville, N. Y. were made with the two mobile units separated by about 500 feet and each receiver aligned to each transmitter carrier. Separation of the two cars, maintaining line-ofsight, reduced the signal level until communication became noticeably affected by interception of the beam by cars, trees and buildings. At about 1,200 feet, reliable twoway communication was maintained, with the signal being reduced nearly to the noise level by beam interception.
At distances up to 3,000 feet, occasional two-way contact was possible, with very wide variations of signal strength noted as the moving unit moved, sometimes only 20 to 30 feet, suggesting severe masking by groups of trees, small buildings or unusually large local absorption in the region where the moving receiver happened to be. During this test, both receivers had a bandwidth near one megacycle.

When the receiver bandwidths were narrowed to about 250 kc , a similar test was conducted under the same weather conditions (fair, good visibility). The results were quite similar, with one notable improvement: the ranges for reliable two-way communication and inci-
dental reception were increased to about 2,000 and 5,000 feet, respectively, illustrating the effect of exclusion of the noise contribution from the portion of the received bandwidth not containing the desired signal. Since no further improvement in receiver performance was considered readily achievable, it was decided to make no further changes until a comparison was obtained with performance with one unit elevated above ground.

Ground-to-tower Communication

The a-c portable unit, including antennas, was placed on the roof of a six-story apartment building near which one of the mobile units had operated throughout the mo-bile-to-mobile tests. Due to a faulty component, this test was limited to a one-way trial, with the tower station transmitting and the mobile units receiving. The mobile antennas remained nondirectional, but a 5 -element Yagi array was used for transmitting from the tower. The beamed antenna was so oriented that it would produce a somewhat narrow, flat beam along a fairly straight road leading away from the tower. The height of the fixed antenna was about 90 feet above the surrounding terrain for this test.
Reliable one-way communication

Antennas and mount on the car roof of Mobile 1 station
was obtained at one mile, with startling freedom from rapid fading. The signal strength at a mile was easily several times greater than during mobile-mobile tests at 1,000 feet. At about 6,000 feet, off the beam center by about 30 degrees, no noticeable effect was observed from proximity of trees, low buildings, street car tracks, overhead trolleys, or any of the other factors producing marked effects on mobile-to-mobile communication.

The a-c portable unit was next taken to the Electronics antenna location on the McGraw-Hill Building, and tests were conducted with the Workshop Associates beam antenna used for transmitting, and the usual 5-element Yagi array used for receiving. Both transmitting and receiving antennas for the fixed station were then about 500 feet above the street, and located on 42 nd Street between 8th and 9 th Avenues in New York. These antennas were beamed uptown (north), while the mobile antennas remained nondirectional.

At about one mile distance, each of the three receiver front-ends was aligned, in turn, on the appropriate remote transmitter. Reliable, clear two-way communication was maintained at one mile, in and out of line of sight, on Eighth

Avenue and on Ninth Avenue. At this distance, very little effect was found from interception of the beam by moderately substantial buildings.

No convenient line of sight path over a mile in length and accessible by automobile was available on the island of Manhattan, so no attempt was made to establish the maximum usable range in open country, although tests in this direction are contemplated. Intermittent twoway communication was had at $1 \frac{1}{2}$ miles with marked effect from obscuring by tall and short buildings. Occasional one-way contact at two miles was achieved, but was not at all predictable from one block to the next. Although intermittent fading was found, no rapid fading such as was evident in mobile-tomobile tests was present here.

Conclusions

In the last test, very poor communication was had at 500 feet with the mobile units at the base of the building straight down from the tower. This was not surprising, since, despite the proximity, the tower antennas had quite sharp patterns, with a distinct minimum predicted in a downward direction.

During routine mobile-to-mobile tests in residential areas, absorption in surrounding foliage ap-
peared to cause significant fading, even though the foliage did not cross the line of sight path by several wavelengths. At times, the signal strength at a distance of 300 feet from a transmitter could change by a factor of, perhaps, ten, within a space of ten feet, due to beam interception by trees and wood-frame houses. In general, height of antenna appeared to play an extremely large role in determining range and reliability of communication. Mobile-mobile contact, and therefore walkie-talkie to walkie-talkie contact, can not be expected to be useful beyond a very limited range, with one watt of radiated power, with receivers of the sensitivity of the converted BC-645. The threshhold sensitivity of the $\mathrm{BC}-645$ receiver is about 100 microvolts, according to measurements by Mr. Jerry Minter of Measurements Corporation, Boonton, N. J. Field trials of W2XSN with the equipment described in previous articles by Walter Hollis are expected to take place shortly, yielding data on low-powered crys-tal-controlled transmitters and receivers. In addition, W10XEM will continue tests with the current equipment and other antennas, while medium-powered (25 and 50 watts input) crystal-controlled transmitters and receivers are being developed, also largely from available Government surplus electronic equipment. The development of the 25 -watt input transmitter is under FCC construction permit, call W2XRW.

The author wishes to thank the McGraw-Hill Publishing Company for use of the building and facilities, Paul Havenstein, Jr., John Lanefski and Ervin Steinberg for cooperation in testing and construction, and Joseph Leferson for assistance in frequency checking.

Bibliography

Electronics Sponsors Citizens Radio Project, ELECTRONICS, p 80, Nov. 1947 . W. C. Hollis, Transmitter Nov. 1947.
R. E. Samuelson, Field Tests for Citiens Band, Electronics, p 92, Jan. 1948. wens Band, Hollis, Receiver for the Citizens Radio Service, Electronics, p 80, Mar. 1948.

Howard J. Rowland, Antennas for Citizens Radio, Electronics, p 96, May 1948. John T. Ralph, and H. M. Wood, Operating the BC-645 on $420 \mathrm{Mc}, Q S T$, p $15, \mathrm{Feb}, 1947$.
A. L. Samuel, Extending the Range of the Negative Grid Tube, Jour. Applied Physics, Oct. 1937.

Fig. 1-The Fuller electronic chronometer

FIG. 2-Kelley's shutter tester

FIG. 3-Fundamental circuit of Penther

Testing Photographic Shutters

A review of the basic circuits used in electronic testers. Phototubes, neon lamps, multielement vacuum tubes, cathode-ray tubes, and iconoscopes are variously employed. References include the more significant published articles and also a list of patents

By S. H. DUFFIELD and L, R, LANKES

Development Department
Eastman Kodak Co.
Rochester, N. Y.

THE USE of photography as a medium for producing a permanent record imposes the demand of versatility sufficient to cope with subjects having extreme ranges in brightness, size, and conditions of motion. While a photographic shutter acts merely as a valve, and does not contribute directly to the quality of the recorded image, it may, because of malfunction, result in failure of the process.

From the time when photographic emulsions had sufficient speed to make exposures of a fraction of a second practical, there has been a sustained interest in the whole subject of shutter speeds and

Cinciency, with much thought given to means of evaluating these functions. A great deal of work has been reported on the development of mechanical and electromechanical devices for this purpose dating from as early as 1882. Inasmuch as interest here is centered primarily on the electronic approaches, these other phases are treated in a separate paper. ${ }^{2}$

The low inertia inherent in electronic systems offers several advantages. It permits the use of equipment which is accurate, relatively simple, and easily operated to study all types of shutters as well as flashbulbs. Evolution began in
the flashing-lamp technique for measuring only total-open-time with the incorporation of circuits to establish the points of the time scale automatically without the need of photography or, more specifically, without the use of film. One version by A. B. Fuller ${ }^{2}$ involved the now common interposition of the shutter between a light source and a photocell shown in Fig. 1. Glow lamps were arranged to light in a known sequence and at known intervals by means of a motor-driven commutator through which the necessary starting voltage was distributed. This, in turn, was controlled by the photoelectric

FIG. 4-Block diagram and basic circuit of Merriman and Nichols
detector. Inasmuch as sufficient voltage was always applied to sustain the discharge, once initiated, the lamps lighted during the open period of the shutter would remain so until a manual operation cleared the system. Thus an indication of the approximate total-open-time of the shutter might be had by counting the lighted lamps.

Widespread use is made of many variants of the fundamental scheme of measuring total-open-time as an appraisal of shutters. The measure has been quite usable since shutters are reasonably efficient at low speeds for all diaphragm openings. Also, compensating effects arise through film latitude and the reliance of the user on experience rather than shutter ratings. In addition, it has been difficult to measure any quantity other than total-open-time.

Evolution of Electronic Methods

Electronic systems often employ cathode-ray tubes as the indicating devices, although considerable use is made of equipment employing indicating voltmeters calibrated in terms of average or equivalent exposure. The variety of available
phosphors permits a wide choice in the matter of a short-memory system for immediate visual appraisal or a photographic recording system for subsequent study purposes. In addition, the record is obtained in graphic form (relative shutter opening versus time, and relative flash intensity versus time) on a continuous basis as opposed to the discontinuous basis of early mechanical systems wherein some treatment of the data was necessary to produce the characteristic curve.
J. D. Kelley ${ }^{\text {s }}$ described a photoelectric means of measuring average, or equivalent, open-time by establishing a photoelectric current proportional to shutter opening and using it to store charge in a capacitor. Through a transfer method, comparison is made with that current which measures maximum area of shutter opening. The indicator is, in essence, a vacuumtube voltmeter. The basic circuit is suggested by Fig. 2. The principle of correspondence of mass-lengthtime units is directly satisfied, since the ratio of an electric charge to an electric current has the dimensions of time.

In the application of this system, a figure of merit for shutter speed is obtained only after the manual operation of adjusting a resistor or otherwise balancing circuit branches. During this time, charge is being held in the capacitor and is subject to leakage. C. J. Penther ${ }^{4}$ recognized the shortcomings and suggested improvement by way of some circuit modification to simplify operation and to make the device direct-reading. The basic cir-
cuit modification, for purposes of our discussion here, is indicated in Fig. 3.

It was then a straightforward step to the shutter-tester of Merriman and Nichols ${ }^{5}$ which incorporated a light-chopper and utilized the inherent stability and high gain of an a-c-coupled amplifier to accomplish the same end result. The block diagram and basic circuit of Fig. 4 should suggest the principal variation. One may note the addition of suitable R-C networks to permit choice in the indication of equivalent exposure time or total-open-time. This system represents fairly complete refinement in the application of basic principles.

Oscillograph Methods

Recognition of the advantages of the oscillograph method came very early-at a time when available oscillographs depended on moving elements of the mirror-galvanometer type. However, widespread use and improvement of the method awaited the development of the cathode-ray tube and the coincidental advancement in photosensitive detectors. The need for a system of extremely low inertia in recording and studying transient phenomena in electrical power circuits (for example, lightning discharges) probably resulted in most of the published work along these lines. It would seem that its application to shutter testing must have been obvious concurrently.

Figure 5 is a block diagram indicating the typical use of the cathode-ray oscillograph wherein the vertical deflecting plates are

FIG. 5-A typical oscilloscope system

Fig. 6-Shutter traces on a cro

FIG. 7-Early cathode-ray type tester built by Kelley
coupled to the photoelectric detector through an amplifier. The shutter under test is interposed in the usual way between the phototube and a regulated light source. Thus there is the means of plotting ordinates continuously proportional to relative shutter openings. The abscissas are proportioned to time by means of the horizontal deflecting system which is excited by a triggered single-sweep circuit usually consisting of a gaseous discharge tube associated with R-C components of known time constants.

In application, sufficient low-frequency response must be present in the amplifier used for the vertical deflection system in order to minimize distortion of the trapezoidal type of pulse. Such distortion is suggested by Fig. 6A. Theoretically, a d-c amplifier would be preferred. Where amplifiers having serious limitations in this respect must be employed, a good approach can be made through the modulation of the light source by mechanical choppers, or through crystal, or Kerr-cell techniques at frequencies a few orders higher than that represented by the shutter speed being considered.

Figure 6B shows the characteristic curve of a standard type of shutter as traced by such cro system. A time scale is provided by millisecond modulation pulses. This particular shutter has a fair degree of accuracy at the speed setting under test ($1 / 50 \mathrm{sec}$).

In 1935, Van Liempt and deVriemd ${ }^{7}$ disclosed a shutter-testing
technique employing a high-vacuum cathode-ray tube with associated electronic networks, an oscillograph camera, and a photoelectric detector. Their cathode-ray tube had a single pair of deflecting plates, the time-base being provided by a linear motion of the photographic plate in the camera. A record of time intervals, for measuring purposes, was made by including in the field of view a small neon lamp which flashed at the rate of 100 times per second. The reason for the choice of the camera they used is not apparent, for Van Liempt and deVriemd did recognize the now common approach when they wrote, "If no oscillograph camera is available, one can use a cathode-ray tube having two pairs of deflection plates with a single electrical time deflection. The pattern can then be taken with the usual still camera of large aperture."

In October 1937, J. D. Kelley, ${ }^{8}$ reported the development of Fuller's earlier proposal for employing a cathode-ray tube system as such tubes were becoming available commercially. The advent of tubes with long persistence screens offered a medium with which mod-erate-speed transients could be studied without the need of photographing the trace. Kelley's circuit (with power supply omitted) is given in Fig. 7. He refers also to Williams and Wolfenden ${ }^{\circ}$ who had already described the superposition of a time scale upon the observed pattern. This was accomplished by modulating the grid of
the cathode-ray tube, thereby varying the intensity of the beam in accordance with time pulses of known frequency. The basic scheme thus represented is in general use. Variations appear primarily in differences of mechanical or electronic detail, and improvements in methods of obtaining standard time signals.
The fact that it is possible to modulate the electron-beam in the cathode-ray tube to control the brightness of the trace on the screen, makes it obvious that complementary circuits would be found wherein the spot brightness is suppressed during standby conditions and raised to maximum level during the sweep interval. ${ }^{10,12}$ This feature is now common in oscillographs which incorporate singlesweep circuits.

While others had already recognized the value of nonlinear timebases for certain applications, H. M. Ross ${ }^{12}$ used a logarithmic base and overcame the difficulty and inconvenience of readjustment of the instrument between testing different speed settings of shutters. He pointed out that, in a linear system, it is possible to test only a limited range of speeds. If the horizontal

FIG. 8-The Ross logarithmic circuit

FIG. 9—Testing flash synchronization
sweep is suitable for viewing slow speeds, the pattern for a higher speed will appear unduly cramped and too small to measure properly. Conversely, if the sweep is suitable for viewing high speeds, the curves for slow speeds occupy more than the available screen space. In using an exponential time-base, equal percentage differences appear as equal displacements. Thus, where fixed percentage tolerances are used, they are represented as equal distances along the time base on the screen. A speed range of 20 to 1 is easily handled with no significant loss of accuracy.

In producing a logarithmic time base, a pentode is employed in a feedback circuit as suggested in Fig. 8. Use is made of the fact that the current through the pentode is independent of its plate potential over a wide range. If feedback to the control grid is applied through R_{1}, an exponential voltage decay will be obtained. A simplified analysis is supplied by Ross. At any instant $i=-d q / d t$ $=-\left(C d V_{o}\right) /(d t)$ where i is the current in the capacitor C and q is its charge. The pentode controlgrid voltage V_{0} is given by $V_{0}=$ ($R_{\mathrm{a}} V_{c}$) / $R_{1}+R_{z}$) disregarding the
negative bias required to work on the straight-line portion of the characteristic curve. The current in the pentode (equal to that flowing from the capacitor) may be considered proportional to V_{o}

$$
i=G_{m} V_{\theta}=G_{m} \frac{V_{c} R_{2}}{R_{1}+R_{2}}
$$

Therefore

$$
\begin{array}{ll}
\text { ore } & G_{m} \frac{V_{c} R_{2}}{R_{1}+R_{2}}=-C \frac{d V_{c}}{d t} \\
\text { or } & \frac{d V_{c}}{V_{c}}=\frac{-d t}{K}
\end{array}
$$

from which

$$
V_{c}=V_{0 \in} \frac{-t}{k}
$$

If a high degree of precision is required in the logarithmic scale, the range is limited to about one log cycle (10 to 1) by the necessity of keeping within the straight portion of the tube characteristic. If less precision is acceptable, it is possible to extend onto the toe of the characteristic and thereby obtain much higher ratios. This particular method permits the incorporation of a switch to make the circuit identical with that for providing an ordinary linear time-base by disconnecting R_{1}.

In 1946, C. E. Blake and L. R. Lankes, described their version (here published for the first time) of a cathode-ray tube method taking advantage of the availability
of a tube having twin electron-gun structures. Since the deflection systems are electronically shielded, two different phenomena can be observed concurrently. A common horizontal sweep circuit provides the same time-base for both, thereby permitting a measure of phase differences. For the shuttertesting application, this technique furnishes the means of observing simultaneously the performance of a flashbulb and a shutter. Since there is then no problem in establishing a time-index relation, testing built-in flash synchronizers becomes automatic. Figure 9 shows a record of a shutter at two different speed settings: one with good, the other with poor, flash synchronization. The block diagram of Fig. 10A shows this application, employing two Du Mont type 208 oscilloscopes as complements to the individual sections of the 5 SP 11 tube. Normally this oscilloscope does not provide the choice of a single sweep in the horizontal deflection system. Therefore, the saw-tooth oscillator of one unit was modified by incorporating a diode in the plate circuit of the 6Q5, as shown in the schematic diagram of Fig. 10B. The 6Q5 will now ionize only when its

FIG. 10-Block diagram (A) of the Blake and Lankes system, single-sweep circuit used (B) incorporates an additional diode, and detail of the triggering circuit (C) for flash bulb synchronization measurements
grid receives a positive pulse, since the diode normally holds the plate potential to a value sufficiently low to prevent ionization. A simple circuit for providing the positive pulse (Fig. 5) is used when checking the ordinary between-the-lens shutter. In testing a shutter with built-in flash synchronizer, the shutter is triggered manually and the pulsegenerating circuit of Fig. 10C is used.

The testing of focal-plane shutters, described in American War Standard Z52.65, is cumbersome. The usual attempts to simplify the procedure yield results which, although sufficiently accurate, generally fall short of those expected from a universal laboratory analyzer. These devices commonly employ spot-sampling techniques (at three positions along the path of travel) which are suited to produc-tion-line use. R. F. Redemske ${ }^{18}$ described a versatile instrument which employed this approach. Since this description was published recently, its details will not be given here.

An ideal laboratory device should give a record from which could be determined, element-by-element, the variations in width of slit, equivalent-velocity of slit, and integrated exposure, for all parts of the picture area. While this is essentially a restatement of some of
the objects outlined by Standard Z52.65, it is desirable to obtain the information with the same convenience found in the application of the cathode-ray tube to between-the-lens shutter testers.

The author and two associates, in devising a versatile laboratory analyzer, considered the use of an iconoscope for integrating purposes in testing focal-plane shutters. At the time, the expense of available iconoscopes did not justify such usage, and so a system was evolved which proved to be an acceptable compromise. This compromise will be more easily comprehended against a background of the iconoscope system which will be explained first.

By setting up equipment to establish appropriate factors and control their parameters, the moving slit of the focal-plane shutter under test can be imaged on the mosaic to give a measure of integrated exposure, element-by-element, over the picture area. Figure 11 is a block diagram employing the RCA 5527 iconoscope. The regulated light source uniformly illuminates the shutter along its path. The shutter slit is imaged on the mosaic. In operation, the shutter is released at the setting under test. The horizontal deflection circuit is triggered automatically, the control being common to both icono-

FIG. 11-Iconoscope used for focal-plane shutter testing. Photocell gives indication of slit width: iconoscope gives indication of integrated exposure
scope and cathode-ray tubes. The signal from the iconoscope is fed to the vertical deflection system and a graph is thus plotted of integrated exposure against shutter displacement. The use of the twingun cathode-ray tube permits the separate derivation of a graph of shutter opening (slit-width) versus displacement. This is accomplished by the beam-splitter diverting a portion of the light into a phototube amplifier channel which, in turn, controls the vertical deflection system of the second electron gun. A time scale may be superimposed by feeding Z-signals to either electron gun, or to both guns, as preferred. The diagram includes additional control-details for factors which should not be overlooked. For example, the slitwidth variation curve is made during the travel of the shutter, while the curve for integrated-exposure, by definition, requires some delay. As in the application of the twingun tube to testing between-thelens shutters, a curve for synchronized photoflash may be obtained, in place of the curve for integrated exposure to permit appraisal of flash duration.

The block diagram of Fig. 12A illustrates a system by which Blake, Dixon, and Lankes simulate the mosaic of an iconoscope with its integrating possibilities. As many as 25 of the type 1P42 midget phototubes are employed in a row aligned with the travel of the focalplane shutter slit or its projected image. This array of phototubes controls the means of measuring the time spent by the slit in exposing successive increments of picture area. A separate intensitymeasuring phototube is so disposed to detect variations in slit width. This signal is fed to the vertical deflection system of the cathode-ray tube and appears for periods represented by the transit time of the slit-image over the apertures of the phototube array with the result illustrated by trace A in Fig. 12A. Trace B presupposes the use of the twin-gun tube to show another time scale, a photoflash curve, or both. Integrated exposure of an element of the picture is represented by the area of a rectangular increment of trace A, wherein its altitude is

FIG. 12-A simulated mosaic system employing a multiplicity of small phototubes (A), circuit of the time-metering circuit that works on trailing edge of slit (B), and (C) phototube circuit for measuring slit width
a measure of light intensity and its base is a measure of time for that increment. Thus, the relative amplitudes (altitudes of the rectangles), or deviations in them, reveal changes in slit width; and the bases of the rectangles measure the relative incremental exposure time, or slit velocity. Figure 12B shows the diagram of the circuit to accomplish the time-metering function. This circuit is used to control that of Fig. 12C, which shows the disposition of the slit-measuring phototube.

Variants may be devised to approach more closely an integrating system. One such is suggested in the block diagram of Fig. 13 (this being a modification of the basic idea of Fig. 12A). While the same scheme of operation applies, each phototube now is associated with an isolated storage circuit which is scanned by an electronic, or mechanical, commutator. The appearance of the cathode-ray trace is shown. Appraisal of integrated exposure, increment by increment, is simplified to the point where amplitude alone is a direct indication of the product of intensity and time.

The device described in conjunction with Fig. 12, has been found

FIG. 13-A variation of the simulated mosaic system that uses a twin cathode-ray tube
useful and satisfactory. The integrating possibilities of the variant suggested by Fig. 13, offer more convenience in appraising the results. However, the 5527 iconoscope is a more complete answer to the problem and offers the advantage of relative simplicity in a memory system and associated scanning.

The authors are indebted to many associates whose interest and cooperation aided substantially in developing the ideas herein presented.

References

(1). S. H. Duffield and L. R. Lankes, The Testing of Photographic ShuttersMechanical Systems P. S. A. Journal,

- (i)... 1948. B. Fuller, Electronic Chrono-
meter, U. S. Pat. 1,954,313, 1934 . Shutter Tester U. S. Pat $2,168994,1937$ Tester, C. Senther Timing Device and Method, U. S. Pat. 2,274,158, 1942
(5) W. E. Merriman, et al., Photo(5) W. E. Merriman, et $\begin{gathered}\text { al., Photo- } \\ \text { graphic } \text { Shutter Tester, U. S. Pat. 2,376,- }\end{gathered}$ graphic S
$162,1945$.
(6). Reich an

Inst., Dec
(7). J. A. M V Liempt and J F deVriemd, A. N. . E. deVriemd, A New Method or Exaic Shutter Speeds, Zeitschrift fur Physik, Vol 98, 1935.
(8). J. D. Kelley, An Instrument to Study the Intensity of Transient Light Pulses Jour. of Optical Society, 127 , Yol 28 No. 1, Jan. 1938.
(9). W. C. Williams and J. P. Wolfenden, Wireless Engineer 14, p $315,1937$.
i0). O. S. Puckle, "Time Bases'" (scanning generators), John Wiley \& Sons Inc., Chapman and Hall Ltd., 1943
(11). W. Wilson "The Cathode-Ray Oscillograph in Industry", Chapman and Hall Ltd., 1943.
(12). H. M. Ross, Nonlinear Time Bases for Testing Shutters and CRO Equipment, Private Communication from Research Laboratories, Kodak Ltd., Harron, England, Sept. 1946.
(13). R. F. Redemske, Electronic Shut-ter-Testers, ELECTRONICs, p 128, Feb. 1946.

The experimental three-channel stereophonic drive unit and (inset) the amplifiers and mixer. Three microphones and three loudspeakers complete the system

FIG. 1-Simple system for demonstrating bincural sound

STEREOPHONIC

Magnetic tape carrying three simultaneous channcls gives a striking illusion of presence when played back through properly oriented speakers. Experiments indicate feasibility of two-channel home system in one cabinet

When a person listens directly to an orchestra, an important factor contributing to naturalness of the sound is binaural hearing. The left ear of the listener picks up a sound that is different in amplitude and phase from the sound picked up by the right ear. The two sounds are combined by the human hearing mechanism in such a way that the listener can judge the direction from which the sound comes, and the psychological effect creates a feeling of presence.

To obtain binaural sound reproduction a two-channel system as illustrated in Fig. 1 can be used. Sound is picked up by microphones placed in the ears of a dummy head. Each microphone is connected to corresponding earpieces of a headset. A person listening to sound
through a binaural system has the illusion that the sound originates in the room rather than in the phones. The effect is striking to anyone used to hearing monaural sound from a headset.

Efforts to bring stereophonic sound into practical use have been directed toward entertainment in the theater and concert hall, because of the complexity and cost of such a system. For example, the portable equipment for Fantasia's road show employs eleven 62 -inch racks of amplifiers plus power supplies and other equipment. It is packed in 45 cases weighing an average of 330 pounds per case, and occupies half a standard freight car.
One field so far neglected is that of home entertainment. Stereo-
phonic reproduction for the home brings up a number of problems which are entirely different from those in the concert hall or theater. For one thing, the listening room in a home is much smaller, and the listener is closer to the loudspeakers. With speakers on each side of the room he cannot back away a distance comparable to the distance between speakers; in fact, the seating arrangement is often such that the listener faces the broader wall. Since the listener is free to move about the room to a considerable extent, the stereophonic illusion should be present throughout the room. Acoustics of the room are generally fixed and little can be done about them, so that the home stereophonic reproducer should ideally be adaptable to various

FIG. 2-Block diagram of elements composing three-channel recorder-reproducer

SOUND
shapes and layouts of living rooms.
The economics of a home stereophonic system are also important. A theater sound system can cost many thousands of dollars, and the film for a program of several hours can also be worth several thousand dollars. The home unit, on the other hand, must sell for the price of a. high-grade phonograph combination, or somewhere between $\$ 250$ and $\$ 1,000$. The records should sell for not more than $1 \frac{1}{2}$ to 3 times the present cost of phonograph records for an equivalent playing time.

Experimental Systems

An experimental magnetic-tape recording and playback system recently demonstrated before the New York Section, IRE, by Marvin Camras of Armour Research Foundation, shows promise of approaching most of the economic requirements set forth above. Three channels are provided that are flat within 5 db from 50 to 10,000 cycles. There
is less than 4 percent intermodulation distortion and less than 1 percent harmonic distortion at normal levels. The dynamic range is 60 db between maximum modulation level and noise level. Wow and flutter are less than 0.1 percent. At the normal running speed of 1 foot a second a full reel of quarter-inch tape plays for 20 minutes.

The simplified block diagram of Fig. 2 shows the elements of a three-channel system. In actual practice one set of heads serves for both recording and playback, while the recording amplifiers, with readjusted gain, are used in place of the two sets of three illustrated.

Arrangement of the stereophonic heads is presented in the detail at the bottom of Fig. 2. An erase head extends across the entire width of the tape and clears off all three channels. The recording heads are staggered along the length of the tape to permit mechanical and electrical isolation. At the section where one head is recording on its track, the other two tracks are covered by a keeper made of highpermeability alloy. This arrangement protects tracks 1 and 3 when head 2 is recording, and so on.

Because the same heads are also used for playback, when head 1 is reproducing, the adjacent channels are magnetically short circuited by keepers to prevent crosstalk. The other channels are protected in the same way. Without keepers it has been found that heads are sensitive to recordings on channels as far as 0.125 inch or more from the head, the effect being especially pronounced at low frequencies.

Generally the maximum sound

FIG. 3-Reflective speaker system, showing location of virtual sources
intensity picked up by the different microphones during a rendition will be different, necessitating a method for setting gain as indicated in Fig. 2. A test selection is played by the orchestra and the gain of each channel is set at the maximum point that will not produce overload of the recording at any time. Depending on microphone placement and relative loudness of the different instruments, typical settings might be as shown. On playback the gains of the amplifiers are set in inverse ratio to the recording amplification. Some adjustment from the values given might have to be made to compensate for speaker placement, acoustic conditions, and characteristics of the ear.

Comparisons between two- and three-channel systems indicate that a satisfactory simulation of realism is possible with only two channels. A third microphone that is caused to feed equally into both channels may be placed in any convenient location for soloist or announcer. To the listener, the reproduction of this voice appears to come from its customary center-stage location. The third microphone is not, however, mandatory in a home-recording system because pickup from two program microphones gives the illusion that the performer is in a larger room beyond the walls of the listening enclosure.

It has been found that the more conventional and obvious placement of speakers is, at best, difficult in the ordinary home. With reproducing units oriented as shown in Fig. 3, there is some undesirable attenuation of the high frequencies, but reflections from the walls give the effect of virtual sources located at an appreciable distance outside the room. A single enclosure with two speakers similar to the arrangement of Fig. 3A has been designed to hold the complete dualchannel magnetic-tape recorderreproducer with associated power supplies and amplifiers, as well as a conventional radio-phonograph combination. An artificial center channel can be obtained by having ports in front that open into each of the speaker compartments to give acoustic mixing.-A. A. McK.

Television Receiver

FIG. 1-Assignments in the 20 to $54-\mathrm{mc}$ region capable of causing direct i-f interference

By PAUL F. G. HOLST
Crosley Division, Avco Manufacturing Corp. Cincinnati, Ohio

The intermediate frequencies used in superheterodyne receivers for the reception of the $\mathrm{a}-\mathrm{m}$ and $f-m$ broadcast bands have in recent years become standardized at 455 kc and 10.7 mc respectively.

A recommended RMA standard specifies that the intermediate-sound-carrier frequency for commercial television receivers shall be between 21.25 mc and 21.9 mc . Field experience gained since its adoption has revealed that this choice has severe shortcomings. The data presented here were obtained to determine whether higher frequency i-f bands would be preferable.

The scope of the investigation was limited by two requirements on which there appears to be general agreement. First: The intermedi-iate-frequency bands should be located above 20 mc and below the lowest television channel (channel 2 since the recent deletion by the FCC of channel 1). Second: The local-oscillator frequency should, for channels 2 to 6 inclusive, be located above the desired channel. The latter requirement also determines the oscillator location for channels 7 to 13 inclusive, except for the case where an intercarrier sound system is used.

The principal performance characteristics determined or influenced by the selection of the i-f bands are as follows:
(a) The i-f bands must not coincide with a television channel.
(b) The i-f bands should exclude the standard-frequency broadcasts, amateur, industrial, scientific and medical, and international-broadcast bands.
(c) Harmonics of the intermediate frequencies should fall outside the television channels. (d) The local-oscillator frequencies should fall outside the television and f-m channels.
(e) Cross-modulation between a television signal and another

Table I-Allocations in the Frequency Band 20 to 60 Megacycles

Kilocycles	U. S. Service
$19,985-20,015$	Standard-frequency
	broadcast
$20,015-20,500$	Fixed
$20,500-21,000$	Fixed and mobile
$21,000-21,500$	Amateur
$21,500-21,700$	International Broad-
	cast
$21,700-24,985$	Fixed
$24,985-25,015$	Standard-frequency
$25,015-26,960$	broadcast
$26,960-27,280$	Fixed and mobile
	medical, amateur
$27,280-28,000$	Fixed and mobile
$28,000-29,700$	Amateur
$29,700-29,985$	Fixed and mobile
$29,985-30,015$	Standard-frequency
	broadcast
$30,015-34,985$	Fixed and mobile
$34,985-35,015$	Standard-frequency
$35,015-40,660$	broadcast
Fixed and mobile	
$40,660-40,700$	Industrial, scientific
$40,700-50,000$	and medical
Fixed and mobile	
$50,000-54,000$	Amateur
$54,000-60,000$	Television Channel 2

television signal, as well as signals from other services such as f-m and amateur, should not result in signals within the i-f pass-bands.
(f) The intermediate frequencies should minimize the possibility of harmful spurious responses.
(g) It should be possible to provide adequate selectivity in the selected i-f bands with practical coils.
(h) It should be possible to provide adequate gain in the selected i-f bands with commercial tubes.
In what follows, the frequencies for the r-f pass band are given in terms of the lowest frequency f_{t} of the television channel under consideration, while the frequencies of the i-f pass band are referred to the sound intermediate frequency f_{0}.

If with an intercarrier sound circuit the local oscillator is operated below the desired television channel on channels 7 to 13 inclusive, the sound carrier frequency for these channels, as referred to channels 2 to 6 inclusive, will be $f_{0}+5.50 \mathrm{mc}$, while the limits of the pass band will remain unchanged.

Direct I-F Interference

Within the limitations imposed on this analysis, and considering that the i-f band cannot overlap the lowest television channel, it is evident that the highest frequency which can be considered for the i-f sound carrier is 48.25 mc .

Intermediate Frequencies

Abstract

Recent experience indicates that the $21-\mathrm{mc}$ and 26 -mc intermediate frequencies now widely used in television receivers are too low. An exhaustive study of possibilities in the range from 20 to 50 mc , presented here, shows the superiority of values above 30 mc

To determine the effect of direct i-f interference it is necessary to examine the services located in the band between 20 and 60 mc , as listed in Table I. Referring specifically to the standard frequency band, is should be noted that the rated power in the 20 mc band is 8.5 kw while the 25,30 and $35-\mathrm{mc}$ transmitter rating is only 0.1 kw . These bands are shown on Fig. 1, together with television channel 2.

It will be seen that there is no space in the spectrum below 30 mc where it is possible to locate a $6-\mathrm{mc}$ channel without possible interference from one or more services. However, if the standard-frequency band on 35 mc is not taken into consideration there exists at least one satisfactory band above 30 mc , and since the band from 44 to 50 mc has been turned over to low-power services there are two possible bands, 29.95-35.21 and 41.00-44.25 mc.

The RMA recommended intermediate frequencies encounter interference from the 21.0 to 21.5 mc amateurs, and the 21.5 to 21.7 mc international short wave band may interfere, particularly if the intermediate frequencies are selected in the low end of the recommended band. On the other hand, the industrial, scientific and medical band from 26.960 to 27.280 me may also interfere, particularly if the intermediate frequencies are selected in the high end of the recommended band.

Inferference From I-F Harmonics

To evaluate the interference which may be caused by i-f harmonics coupled into the antenna and r-f circuits, reference should be made to Fig. 2. In this diagram it is assumed that the i-f harmonics
will consist primarily of harmonics of the i-f sound and picture carriers, that is, the frequencies of the interfering signals will be: $S_{n}=$ $n f_{o} \mathrm{me}$ and $P_{n}=n\left(f_{0}+4.5\right) \mathrm{mc}$.

It is possible to draw the following conclusions from this diagram:

FIG. 2-Possibilities of i-f harmonic interference, plotted over the range from 20 to 50 mc . Curves P and S represent picture and sound second harmonic respectively

FIG. 3-Oscillator radiation as a source of interference to television and $\mathrm{f}-\mathrm{m}$ channels. The cross-hatched bars represent other services assigned in the same area as the channel tuned in
(1.) The first harmonics cannot interfere.
(2) None of the 5 lowest harmonics will interfere with channels 7 to 13 inclusive if the sound i-f frequency is below 30.3 mc .
(3) To place the second harmonic of the sound i-f carrier above channel 6 , it will be necessary to increase its value to at least 44 mc .
(4) In general, an increase in the i-f frequencies will tend to remove low-order harmonics from the pass bands and replace them with higher-order harmonics.
(5) It is possible to select intermediate frequencies so that some harmonics fall below 54mc and between 72 to $76-\mathrm{mc}$.

Of particular interest is the i-f sound carrier on a frequency of 32.8 mc , where the only possible interferences are due to the facts that the second harmonic of the i-f sound carrier is located 150 kc below the sound carrier in channel 3 , and that the fifth harmonic of the picture carrier is located 750 kc below the picture carrier on channel 9.

In the intercarrier sound system, when the oscillator is located below the band on channels 7 to 13 inclusive, the interfering harmonics will be $n\left(f_{0}+1.0\right)$ and $n\left(f_{0}+5.5\right) \mathrm{mc}$. Since the shift in frequencies takes place during the operation of the higher channels, no significant changes in the interferences will result.

Oscillator Radiation

To examine what advantages can be gained in suppressing oscillator radiation through the proper selec-
tion of the i-f bands, reference should be made to Fig. 3. On this diagram, the channels which may use a local oscillator frequency falling either in another television channel or within the f-m band, are tabulated on the left side. The location of the local oscillator frequency in relation to the other television channels and the f-m band is plotted for each channel as determined by the sound i-f frequency. The possible interferences are classified by cross-hatching those occurring between channels allocated in the same service areas.

As tabulated below, the possibilities of interference with another television channel decrease rapidly as the i-f sound-carrier frequency is increased.

Table II

I-F Sound (mc)	Interference Television channels	Probable in F-M channels
$20.00-20.25$	5	3
$20.25-92.25$	5	-2
$22.25-2.25$	3	3
$24.25-26.25$	0	3
$26.25-28.25$	0	2
$28.25-30.25$	0	3
$30.25-36.25$	1	3
$36.25-12.25$	0	2
$42.25-18.25$	0	1
$48.25-50.00$	0	0

It will be noted that the RMA recommended standard i-f band is in a very poor location and that complete freedom from interference between television receivers will be obtained if the i-f sound carrier is raised above 24.25 mc . To effect a similar improvement with respect to radiation in the f-m band, the i-f sound carrier should be above 48.25 mc .

If an intercarrier sound circuit is used, with the oscillator operated below the desired channel on channels 7 to 13 inclusive, it can be shown that the numbers pertaining to the seven upper channels are ininterchanged. The possibilities for interference therefore remain unchanged.

Attenuation in a double-tuned circuit inserted between the mixer and the antenna will cause the power of the radiated local oscillator signal to be inversely proportional to the square of the intermediate frequency. Therefore, the selection of a relatively high intermediate frequency will in itself

FIG. 4-Cross-modulation interference between television stations, causing a signal within the i-f band
minimize oscillator radiation.

Cross Modulation

The study of cross-modulation interference is limited to cases where a television transmitter provides one of the two signals which causes the beat frequency. The other signal may be provided by another television transmitter, an f-m transmitter, or an amateur transmitter. In general, it should be taken into account that an increase in the intermediate frequency will increase the attenuation of the interfering signal and minimize cross modulation.

Since the total number of television channels allocated below 300 mc at this time is twelve, it is possible to determine all possible beat frequencies between television stations. The result of such an investigation has been plotted on Fig. 4 for all beat frequencies above 20 and below 50 megacycles. Beats resulting from channels not allocated to the same service area have been marked with a point, while beats resulting from channels
which are allocated to the same service area are marked with a cross. Furthermore, the double beats, that is, beats which result from a picture carrier with another picture carrier and a sound carrier with another sound carrier, have been enclosed within a circle.

In general, it will be seen that the number of probable interferences decreases rapidly with increasing intermediate frequencies. With the recommended RMA i-f band, cross modulation is probable on 10 television channels. However, the i-f sound-carrier frequency need only to be increased above 28.75 mc to reduce the number to 2 . With a sound intermediate frequency above 40.75 mc there is no probability of cross modulation between the television channels.

The 88 to $108 \mathrm{mc} \mathrm{f}-\mathrm{m}$ band is located too far below television channels 7 to 13 inclusive to produce cross-modulation interference. It is therefore only necessary to examine this interference with respect to the lower five channels. The interfering signal f, is above the
desired television channel and cross modulation may interfere with the sound channel if $\left(f_{1}-f_{t}-1.50\right)$ $<f_{\mathrm{o}}<\left(f_{s}-f_{t}-1.00\right.$) or ($f_{s}-$ $\left.f_{t}-6.00\right)<f_{o}<\left(f_{s}-f_{t}-5.50\right)$. Interference to the picture channel may occur if ($f,-f_{1}-7.00$) < $f_{0}<f_{s}-f_{t}-1.50$) or $\left(f_{s}-f_{s}\right.$ $-11.50)<f_{c}<\left(f_{0}-f_{t}-6.00\right)$. The results as calculated from the above formulas are tabulated below :

Table III

I-F Sound (mc)	Cross Modulation Possible to Tel. Ch. Numbers
$20.00-22.40$	$3,4,5,6$
$22.40-24.65$	$2,3,4,5,6$
$24.65-30.65$	$2,3,4,5$
$30.65-40.65$	$2,3,4$
$40.65-16.65$	2,3
$16.65-50.00$	2

The four amateur bands which should be considered in connection with cross modulation are 28.0 29.7, $50.0-54.0,144.0-148.0$ and $220.0-225.0 \mathrm{mc}$. The interfering signal is below the desired television channel and cross modulation may interfere with the sound channel if ($f_{t}-f_{s}+1.0$) $<f_{0}<$ $\left(f_{t}-f_{\mathrm{t}}+1.50\right)\left(f_{\mathrm{t}}-f_{\mathrm{t}}+5.5\right)<$ $f_{0}<\left(f_{1}-f_{2}+6.00\right)$.
while interference to the picture
channel may exist if $\left(f_{t}-f_{t}-\right.$ 4.5) $<f_{0}<\left(f_{t}-f_{t}+1.00\right)\left(f_{t}\right.$ $\left.-f_{t}\right)<f_{0}<\left(f_{t}-f_{t}+5.50\right)$.
The $220-225-\mathrm{mc}$ band is located above the desired television band and the formulas derived for the $\mathrm{f}-\mathrm{m}$ band will apply. The results calculated from the above formulas are tabulated in Table IV. It appears some possibilities for cross modulation cannot be avoided, since the number of possible interferences varies between a minimum of four and a maximum of eight. Interference from the $50-54 \mathrm{mc}$ band may be avoided if the i-f sound carrier is made higher in frequency than 34.00 mc .
It may be seen that a substantial advantage exists only in the extreme high end of the band.

Spurious Responses

Image responses in a superheterodyne receiver may be caused by fundamentals as well as harmonics of the undesired signal and the local oscillator. However, this investigation was limited to consideration of the three most important spurious responses, the first-order image, second-oscillator image (plus) and second-oscillator image (minus).

Table IV-Cross Modulation Between Television and Amateur Bands Resulting in Signal Within I-F Band

I F Sound (Mc)	Amateur Bands and Possible Interferences				Total Number of Possible Interferences
	28.0-29.7	50.0-54.0	144.0-1 18.0	220-225	
20.00-21.50	Ch 2	Ch 4-5	Ch	Ch 10-11	5
21.50-22.00	2	4-5	7	10-11	6
22.00-22.50	\simeq	5	7	10-11	5
22.50-23.50	2	5	7	9-10-11	6
23.50-25.80	2	5-6	7	9-10-11	7
25.80-26.00	2-3	5-6	־	9-10-11	8
26.00-27.50	2-3	5-6	.	9-10	7
27.50-28.00	2-3	5-6	7-8	9-10	8
28.00-28.50	2-3	6	7-8	9-10	7
28.50-31.80	2-3	6	7-8	8-9-10	8
31.80-32.00	2-3-4	6	7-8	8-9-10	9
32.00-33.50	3-4	6	7-8	8-9	7
33.50-34.00	3-4	6	7-8-9	8-9	8
34.00-34.50	3-4		7-8-9	8-9	7
34.50-36.00	3-4	-	7-8-9	7-8-9	8
36.00-38.00	3-4		8-9	7-8-9	-
38.00-39.50	4	-	8-9	7-8	5
39.50-41.80	4	-	8-9-10	7-8	6
41.80-42.00	4-5	-	8-9-10	7-8	7
42.00-44.00	4-5		9-10	7-8	6
44.00-45.50	5	\square	9-10	?	4
45.50-4.7.80	5	-	9-10-11	־	5
47.80-48.00	5-6	-	9-10-11	$\stackrel{\square}{-}$	6
$48.00-50.00$	5-6	-	10-11	7	5

The first-order image spurious response is caused by the fundamentals of the undesired signal and the local oscillator. With the local oscillator placed above the desired television channel, the image of the sound channel may be determined from $\left(f_{t}+2 f_{o}+5.50\right)<f_{s}<\left(f_{t}\right.$ $+2 f_{0}+6.00$), while the image of the picture channel is $\left(f_{t}+2 f_{o}+\right.$ $6.00)<f_{1}<\left(f_{t}+2 f_{0}+11.50\right)$ or the image of the complete television channel is ($f_{t}+2 f_{0}+5.50$) $<f_{\mathrm{s}}<\left(f_{\mathrm{t}}+2 f_{\mathrm{o}}+11.50\right)$.

The image responses for the television channels, as a function of the intermediate sound carrier frequency, are indicated on Fig. 5. It will be observed that no television channel will fall on the image of another television channel, unless the sound i-f carrier frequency is increased above 43.25 mc in which case channels 7 and 8 will fall on the images of channels 5 and 6 respectively. Other possible interfering signals are tabulated in Table V.

Table V

| I-F Sound |
| :---: | :---: | :---: |
| (mo) |\quad| F-M Ch. |
| :---: |
| on the |
| Image of |
| Tel. Ch. |\quad| Amateur
 Ch. on the
 Image of
 Tel. Ch. |
| :---: |
| $20.00-22.75$ |
| $22.75-24.25$ |
| $24.25-25.25$ |
| $25.25-28.25$ |
| $28.25-29.25$ |
| $29.25-30.25$ |
| $30.25-33.25$ |
| $33.25-36.25$ |
| $36.25-38.25$ |
| $38.25-39.25$ |
| $39.25-11.25$ |
| $41.25-14.25$ |
| $41.25-50.00$ |

Considering first the RMA recommended i-f band, the f-m stations located on the image of television channel 2 are probably the most serious objection to the continued use of this band. Insofar as amateurs on the image are concerned, it will be observed that apart from the band from 22.75 to 25.25 mc and the frequency 33.25 mc and 44.25 mc , it will be necessary to go above 44.25 mc in order to avoid the possibility of this type of interference. While a higher intermediate sound carrier may not reduce the number
of possible interferences, it will reduce their magnitude, due to greater attenuation in the antenna and r-f circuits.

If the intercarrier sound system is used, when the local oscillator is placed below channels 7 to 13 , the image response of the sound channel will be ($f_{t}-2 f_{o}-5.50$) $<f_{\text {, }}$ $<\left(f_{t}-2 f_{o}-5.00\right)$, while the image response of the picture channel will be $\left(f_{t}-2 f_{0}-5.00\right)<$ $f_{0}<\left(f_{t}-2 f_{0}+0.5\right)$, or the image of the complete television channel is $\left(f_{t}-2 f_{0}-5.50\right)<f_{0}<\left(f_{\text {; }}\right.$ $\left.-2 f_{0}+0.5\right)$.

Analysis shows that this oscillator arrangement will result in greater possibilities for image interference. If the intermediate sound carrier frequency for the lower channels is selected above 30.25 mc , f-m channels will be found on the image of the higher television channels, while in addition there is the probability of image interference from television stations above 40.25 mc . On the other hand, with the i-f sound carrier placed below 33.25 mc , the 144 to $148-\mathrm{mc}$ amateur band is on the images on one or two of channels 7 to 13 inclusive.

Second-Order Image (Plus)

The second-order images (plus) may be determined as ($2 f_{t}+3 f_{0}+$ $11.25)<f_{s}<\left(2 f_{t}+3 f_{o}+17.25\right)$ and the results are as shown on Fig. 6. It will be observed that such interferences are possible from the higher to the lower channels, but that the possibilities for interferences decrease rapidly as the sound intermediate frequency is increased.

With an intercarrier sound circuit, if the local oscillator for channels 7 to 13 inclusive is located below the desired band, the images may be determined as ($2 f_{t}-f_{0}$ $+0.25)<f_{s}<\left(2 f_{t}-f_{o}+6.25\right)$ and an examination shows that no television channel will fall on the images of television channels 7 to 13 inclusive for the band of second i-f carrier frequencies under consideration.

Second-Order Image (Minus)

Interferences of the second-order (minus) type have been experienced on channel 5 from channel 7
and on channel 6 from channel 10. These images may be determined as $\left(2 f_{t}+f_{0}+5.75\right)<f_{t}<$ (2 $\left.f_{t}+f_{0}+11.75\right)$ with the results shown on Fig. 7. It will be observed that the possibilities for this type of interference vary only slightly when the intermediate sound carrier is varied from 20 to 50 mc .

With an intercarrier sound circuit, when the local oscillator for channels 7 to 13 inclusive is located below the desired band, the images may be determined as ($2 f_{t}-3 f_{0}$ $-5.25)<f_{t}<\left(2 f_{t}-3 f_{t}+0.75\right)$ and examination shows that none of the television channels, 7 to 13 inclusive, will fall on the image of another television channel unless the sound i-f carrier frequency for the lower channels is selected above 42.25 mc .

Selectivity

It is necessary to determine the Q which will be required of the tuned circuits to provide the desired selectivity and shape of response within the pass bands. This information, which is required to

FIG. 5-First-order image responses as a function of the sound intermediate frequency

FIG. 6-Second-order image responses (+)
determine the feasibility of the tuned circuits, may be obtained with sufficient accuracy from the universal selectivity curves shown on Fig. 8 for double-tuned transformers having a coupling factor between 1.0 and 1.25 times the critical coupling factor.

If the sound-intermediate frequency is to be selected among the frequencies from 20 to 50 mc , it is found that the bandwidth required for the picture channel will necessitate that the Q of its tuned circuits must be held to less than 25 . Since this is a readily achieved value, the selectivity of the picture channel imposes no restrictions whatever on the selection of the i-f frequency. However, it has been found difficult to obtain the close coupling required to attain the desired bandwidth with simple doubletuned circuits in the low end of the frequency band under consideration. The use of an intercarrier sound system makes further considerations of the selectivity requirements unnecessary, since the sound i-f selectivity will be independent of the choice.

Using a conventional intermediate frequency sound amplifier, it is assumed that the i-f channel will usually be made somewhat broader than the corresponding circuits used for f-m reception, to overcome the effects of the local oscillator drift. Let it further be assumed that it is desired to place the $10-\mathrm{db}$ attenuation points 400 kc off resonance. It is then possible to tabulate the Q required for various choices of the sound i-f, as follows: .20 mc 30 mc 40 mc 50 mc $\begin{array}{llrrr}n=1.0 & 62 & 94 & 124 & 157\end{array}$ $\begin{array}{lllll}n=1.25 & 69 & 103 & 138 & 172\end{array}$ These requirements approach the practical limits of attainable Q in the extreme high end of the band.

Gain

The selection of the frequencies for the i-f sound and picture bands will, for a given type of tubes operating in a given type of circuit, determine the gain which can be obtained from an i-f stage with a specified bandwidth and shape of response in the pass band. To evaluate the factors involved in this problem, we will determine, for a double-tuned stage, the maximum
gain that can be obtained from the stage if the effects of the grid-plate capacitance are neglected. This figure for the gain is independent of the center frequencies of the tuned circuits and may be calculated from the mutual conductance of the amplifier tube and the capacitive load on the tuned circuits, together with the Q required to produce the desired shape of the i-f response characteristic. In addition the maximum safe gain which can be used without excessive regeneration, must be determined from the mutual conducance of the amplifier tube, the gridplate capacitance of the amplifier tube, and the center frequency of the tuned circuits. If the latter gain is the lower, it will determine the available gain.

The maximum gain of an amplifier stage may be determined from

$$
\left(\frac{Q}{f_{0}}\right) \cdot\binom{g_{m}}{4 \pi C}
$$

where the value of Q / f_{o} may be found from Fig. 8. Theoretical considerations, as well as practical experience, show that the maximum gain which can be obtained safely from an unneutralized i - f stage is $\frac{1}{2} \sqrt{g_{m} x f}$ where g_{m} is the mutual conductance of the amplifier tube and $x f$ is the reactance of the grid-to-plate feedback capacitance.

It is found that the maximum gain in a sound i-f stage with three typical tubes is

$$
\begin{array}{lr}
\text { 6AC7 } & 166 \text { to } 182 \text { times } \\
\text { 6SG7 } & 97 \text { to } 107 \text { times } \\
\text { 6AG5 } & 159 \text { to } 174 \text { times }
\end{array}
$$

The corresponding maximum safe gain is listed below for the three types of tubes:

$f_{\circ}(\mathrm{mc})$	20	30	40	50
6AC7	32.6	26.6	23.0	20.6
6SG7	55.9	45.6	39.5	35.4
6AG5	20.1	16.4	14.2	12.7

These gains represent the maximum that can be used. The available gain per stage in the i-f sound channel is therefore inversely proportional to the square root of its center frequency. However, the difference in gain per stage is not great. Moreover the loss in sound i-f gain is of no importance if an intercarrier sound system is used.

The maximum gain in the picture i-f channel may be determined

Table VI-Summary of Performance Data

			$\begin{aligned} & \text { SELEECTED } \\ & \text { Sound } \quad 32.8 \mathrm{~B}) \\ & \text { Sicture } \quad 37.3 \mathrm{mc} \end{aligned}$	$\begin{aligned} & \text { SELECTED } \\ & \text { I-F BAND (C) } \\ & \text { Sound } \quad 41.2 \mathrm{mo} \\ & \text { Picture } \quad 45.7 \mathrm{mc} \end{aligned}$
	[Gain per stage	Best	Poorer ($0-1.8 \mathrm{db}$ less than A)	$\begin{aligned} & \text { Poorest } \\ & (0-2.9 \mathrm{db} \text { less than } \mathrm{A}) \end{aligned}$
	Selectivity (sound channel)	Satisfactory (Q required, 70)	Satisfactory (Q required, 100)	Satisfactory (O required, 130)
	Harmonic interference	Poorer (3 harmonics fall in television bands)	Better (2 harmonics fall in television bands)	Better (2 harmonics fall in television bands)
	I-F attenuation	Best	Poorer (1 to 8 db less than A)	Poorest (2-24 db less than A)
	Stations on I-F band	Poorer (Diathermy and standard broadcast interference possible)	Better (No diathermy or standard broadcast interference possible)	Better (No diathermy or standard broadcast interference possible)
	Image attenuation	Poorest	Better (3-7 db more tban A)	Best ($5-12 \mathrm{db}$ more than A)
	Stations on image frequency	Poorest by large margin (27 FM stations on image of ch 2. Amateurs on image of ch 7)	Much better than A (No FM on images) (Amateurs on image of ch 5)	Slightly poorer than B (Amateurs on image of ch 2)
	Second oscillator image (plus)	Poorest (Ch 9 on image of ch 2) (Ch 10 on image of ch 3) (Ch 13 on image of ch 4)	Better (Amateurs on image of ch 2)	Best (No amateur or television ch. on image)
	Second oscillator image (minus)	Better (Amateurs on image of $\operatorname{ch} 3$) (Ch 7 on image of ch 5) (Ch 10 on image of ch 6)	Poorest (Amateurs on image of ch 2) (Ch 7 on image of ch 4) (Ch'9 on image of ch 5) (Ch 12 on image of ch 6)	Best (Ch 11 on image of ch 5)
	1 Attenuation	Poorest	Better (4-9 db more than A)	Best ($6-14 \mathrm{db}$ more than A)
	With television stations	Poorest by considerable margin (Probable on 12 tel ch)	Much better than A (Probable on 2 tel ch)	Perfect (Not possible on tel ch)
	With F-M stations	Poorest (Probable on 4 tel ch)	Better (Probable on 3 tel ch)	Best (Probable on 2 tel ch)
	Radiated power	Poorest	Better (3.6 dh less than A)	Best (5.8 db less than A)
	Radiation into tel ch	Poorest by considerable margin (5 probable combinations)	Much better than A (1 probable combination)	Perfect (No possible combination)
	Radiation into F-M band	Better (2 possible combinations)	Poorest (3 possible combinations)	Best (l possible combination)

if we assume that a stage using an over-coupled transformer as shown in Fig. 8 will be used, and that the bandwidth is considered to the point where the loss in gain does not exceed 2 db . Then, for a $4-\mathrm{mc}$ bandwidth, $Q / f_{o}=0.38$ and the gains which may be obtained with the three types of tubes are: 6AC7-20; 6SG7-12; 6AG5-19.5.
For maximum safe gain we find correspondingly:

$f_{o}(\mathrm{mc})$	20	30	40	50
6AC7	30.2	25.3	22.2	20.2
6SG7	52.1	43.5	38.0	34.4
6AG5	18.7	15.6	13.7	12.4

Only in the case of the 6AG5 tube will a reduction in gain be experienced if the i-f band is moved towards the higher frequencies, since the maximum gains previously calculated are controlling in the other two types.

Selection of I-F

If it is decided to exclude amateur, industrial, scientific and medical, as well as international broadcast bands from the i-f pass bands, the lowest choice for an intermediate sound carrier frequency will fall in the band 29.95 to 35.21 mc . In this band 32.8 mc has been
selected as the most desirable intermediate sound carrier frequency. The reasons for this choice are: The direct i-f attenuation and i-f stage gain make it desirable to choose the lowest i-f frequency for which the possibilities for interference are at a minimum. The interference from the second harmonic of the i-f sound carrier and the 144 to $148-\mathrm{mc}$ amateur band are near a minimum at 32.8 mc . This value thercfore complies with the above requirements.

Since the 44 to 50 mc band has been assigned to low-power services, the additional band from 41.00 to 44.25 mc is available as the intermediate sound carrier frequency. On the basis of second harmonic i-f interference a frequency of 41.2 mc is indicated as the intermediate sound carrier frequency.

Comparison of the Performance

The performance provided by an i-f sound carrier frequency of 32.8 mc , as compared to 21.9 mc , shows that four outstanding advantages may be gained through the use of the higher intermediate frequency, as shown in Table VI: (1) There is no diathermic band located within the i-f pass band. (2) There are no f-m stations located on the image of a television channel. (3) The number of television channels which may cross modulate, so that beats are formed within the i-f pass band, has been reduced from 10 to 2. (4) The number of television channels, which may experience interference due to local oscillator radiation, has been reduced from 5 to 1 . The 32.8 mc , i-f sound carrier is superior in 10 out of 15 counts, satisfactory on one count, slightly poorer on 1 count and poorer on 3 counts.

The counts on which the 32.8 mc i-f sound carrier provides the poorer performance are: (1) The maximum safe gain per stage in the i-f sound channel has been reduced by 1.8 db but this loss must be classed as minor. Furthermore, this point has no significance if an intercarrier sound system is used.
(2) The attenuation of direct i-f interference has been reduced by 8 db when tuned to channel 2 . Serious as this loss is, there are however two mitigating factors: First,

FIG. 7-Second order image responses (—)
i-f rejection may be built permanently into the r-f circuits, as the band to be rejected is fixed and outside the desired reception band. Second, there are no high power services in the frequencies of higher i-f band.
(3) The second oscillator image (minus) shows three television channels on the image of three other television channels, as compared to two responses of this kind with the lower intermediate frequencies. However, this shortcoming should to some extent be counteracted by the greater attenuation provided by the higher intermediate frequencies.
(4) There is the possibility of interference due to local oscillator radiation into three f-m channels with the higher intermediate frequencies, as compared to two with the lower intermediate frequencies. This difference, however, is minor and could readily be remedied by proper geographic and frequency station allocation.

The table furnishes corresponding data for the conditions which exist now that the 44 to $50-\mathrm{mc}$ band is allocated to low-power services,

FIG. 8-Universal selectivity curves for critical coupling ($n=1$) and 25 percent above critical ($n=1.25$)
and the $41.2-\mathrm{mc}$ intermediate sound carrier frequency becomes feasible. A sound i-f carrier frequency of 41.2 mc will require that the local oscillator be operated above the desired television channel, since operation below the band will result in f-m stations being on the image of television channels $7,8,9$ and 10.

The performance provided by an i-f sound carrier frequency of 41.2 mc , compared to 32.8 mc and 21.9 mc , as noted in Table VI shows two outstanding advantages: (1) Crossmodulation interference between television channels has been eliminated. (2) Local oscillator radiation into television channels has been eliminated. As compared to 21.9 mc , the 41.2 mc , sound i-f carrier is superior on 11 counts, satisfactory on 1, slightly poorer on 1 and poorer on 2 counts, as enumerated below.

The two counts where the 41.2 me sound i-f carrier is the poorer are: (1) The maximum safe gain per stage in the i-f sound channel has been reduced by 2.9 db and although greater by 1.1 db than the loss with a 32.8 mc i-f sound carrier, it still should be classed as being of minor importance. Furthermore, the use of an intercarrier sound system would make this point of no significance. (2) The attenuation of direct i-f interference when tuned to channel 2 has been reduced by 24 db and 16 db respectively as compared to the attenuation provided by 21.9 and 32.8 me sound i-f carriers. Although this loss is serious, the possibility of fixed traps and the absence of highpower services within the i-f pass band, as already stated, tends to mitigate this loss.

These tables would appear to justify the following conclusions: (1) Regardless of the disposal of television channel 1, an intermediate frequency of 32.8 mc offers much greater freedom from interference than the band from 21.25 to 21.9 mc . Its adoption would not complicate receiver design nor increase cost. (2) Now that the band from 44 to 50 mc is assigned to lowpower services, still greater freedom from interference may be gained by the use of an intermediate sound carrier frequency of 41.2 mc .

Facsimile Goes Commercial

Simplex and multiplex transmissions on f-m broadcast band using 8.2 -inch width at 105 lines per inch are authorized by FCC

Commercial facsimile using f-m broadcast frequencies has been given the high-ball and stands, as of July 15, in a position to gain some financial return for the investment ploughed into its development.

The technique of transmitting exact copies by wire or radio has been used for years and was developed to its present perfection for the armed forces. Other radio services ${ }^{1}$ can and do employ it, but now, for the first time, there is the possibility of general public participation in use of the medium for entertainment, news dissemination, and education.
It would be difficult to assess the competitive position of facsimile with television other than to realize that progress of the one will greatly influence the other. For this reason, probably farm and rural acceptance of facsimile will come first. Urban utilization can be expected in the display field,as in supermarkets and department stores.

The entertainment use of facsimile has recently been predicated on the status of f-m broadcasting which is now settled.

The program material that can be developed for public entertainment and information, the means of insuring financial sponsorship, are far behind the technical accomplishment. While success in the use of this new medium akin both to publishing and radio broadcasting is not the problem of the engineer, the money he receives for further technical improvements will depend directly upon the commercial success.
At the same time commercial programming was authorized, the

FCC set up rules and standards for the service. Although agreement in the industry is by no means unanimous, the FCC decisions are based on a majority opinion of RMA and RTPB and are agreed to be fair and workable.

Both simplex and multiplex transmissions are authorized, but only a total of one hour of simplex (facsimile without sound) may be used from 7 am until midnight. Provided there is no degradation of the aural f-m program below 10,000 cycles, the FCC will authorize three hours multiplex transmission of facsimile and audio. It is further provided that these multiplex transmissions shall not affect the response of receivers that are not used for receiving facsimile. Between the hours of midnight and 7 am either type of program is permitted.

Thus the issue of multiplex, so necessary to a rational use of commercial facsimile, is being gently forced. This pressure is not unreasonable; E. H. Armstrong successfully demonstrated multiplexed f-m in 1934. J. V. L. Hogan feels that by the time equipment manufacturers are ready to go ahead the engineers will have worked out the complete answer to practical multiplex. It is not necessary to degrade $\mathrm{f}-\mathrm{m}$ audio below 15,000 cycles by multiplexing and the f-m service should not be affected. Actually, the biggest engineering problem is degradation of facsimile by audio!

Transmitting equipment for simplex modulation is currently available in limited quantities from General Electric. Most of the output resulting from a half-million dollar contract is already assigned,
but a small overrun was made. Conversion to multiplex can be accomplished for less than $\$ 300$. The last of about 250 receivers worth $\$ 850$ is coming off the line. Designed for simplex, they are easily modified for multiplex. About 50 simplex receivers are in production at J. H. Bunnell, Brooklyn, N. Y.

Alden Products, Brockton, Mass., has a line of broadcast station equipment immediately available as well as recording apparatus. Proponent of a 4.1 -inch standard, as opposed to the 8.2 -inch line authorized by FCC, Alden is tooled up for quick delivery of a small 4-inch recorder that can be quickly attached to any good f-m receiver. Although optimum results will not be obtained for every type of program material, the price of this simple attachment, starting at $\$ 100$, and its availability, may influence public acceptance.

With an eye towards future development of color facsimile ${ }^{2}$, Finch Telecommunications is pushing production of 100 transmitter scanners that can be used for either black and white or color. Production of 5,000 recorders for operation with any $\mathrm{f}-\mathrm{m}$ receiver has been started with deliveries scheduled to begin the middle of August.

All these recorders employ a chemically treated paper now costing about one cent for a page this size. When paper demand attains volume proportions it is reasonable to expect the cost to drop to from half to a quarter of a cent a page. The Finch Colorfax recorder uses plain paper.

At the time of this writing, there are 11 stations throughout the country authorized to engage in experimental facsimile broadcast-ing.-A. A. McK.

References

(1) VHF Link for Press Photos, ElecTRONICS, $p 100$, August 1947 . (2) Color Facs

Electronics in ASTRONOMY

Accurate time-keeping devices, automatic aids to precise tracking of telescopes, and photoelectric photometers play an important part in astronomy. Details of equipment in general use are given, and some new devices under development touched upon

By GERALD E. KRON

Lick Observatory
University of California
Mount IIamilton, Calif.

ASTRONOMY deals with subtle quantities: minute amounts of radiant energy, accurate and delicate motions of massive instruments, and the detection and measurement of minute displacements of spectral lines or photographs of stellar images. Quantities of this type, though small and difficult to measure, must sometimes be measured tens of thousands of times in solving a single astronomical problem. Electronics furnishes at once, in its mastery of the smallest of all discreet particles, the electron, the required delicacy of detection and the means for automatically repeating certain operations rapidly, accurately, and efficiently. It is, thus, no wonder that astronomy is drifting rapidly from pure optical and mechanical methods of measurement and recording toward complicated combinations of optics, mechanics, and electronics, with electronics playing the dominant role in practically all cases where it appears.

A discussion of modern electronic devices as applied to astronomy may be clarified by dividing the devices into three major groups:
(1) Timekeepers (2) Laboratory aids and (3) Photoelectric photometers.

Timekeepers

The use of a simple pendulum as a timekeeper has been known for centuries, and the best modern pen-
dulum clock is simply a refinement of the age-old instrument. A pendulum is a reliable machine; it requires very little energy to keep it going; it requires little or no servicing to keep it in workable condition; and it can easily be made independent of short-duration power failures in its operation. For these reasons, the pendulum clock is still the most accurate timekeeper known for long time intervals. Pendulum clocks, of which the Shortt clock is an excellent example, have been known to make unbroken runs of six to eight years. Pendulum clocks, however, suffer from two defects: they have unpredictable short-period fluctuations, and, because they signal only once per second, careful interpolation must be performed to determine the time of an arbitrarily chosen instant. None of the principal defects of the pendulum clock are found in the electronic crystal clock. However, the crystal clock fails to have good long-interval timekeeping properties owing to the frequency of breakdowns resulting from power failures, and failures of some element of the relatively complex electronic assembly necessary to keep the quartz crystal vibrating. The ideal timekeeping installation therefore has both pendulum and quartz-crystal clocks. Usually three pendulum clocks and five to seven crystal clocks will be found in timekeeping laboratories.

The importance of the quartzcrystal clock as a short-interval timekeeper was first emphasized by the experiments of W. A. Marrison at the Bell Telephone Laboratories in 1929. Marrison demonstrated that time could be kept with a precision of 1 part in 10^{8} over short intervals, 5 parts in 10^{8} over tenhour intervals, and with errors of less than 0.001 second over day-long runs. This degree of precision suggested the possibility of making a most interesting experiment. A. L. Loomis had long been interested in the problems of accurate timekeeping, and he had installed in his private laboratory a battery of three Shortt clocks. Now, pendulum clocks should exhibit a daily cycle of rate variation caused by variation in the force of gravity from the attraction of the moon. In order to demonstrate the existence of this phenomenon one needs a short-interval timekeeper of great accuracy whose rate is not affected by the force of gravity. The electronic crystal-clock was just such a timekeeper. By means of signals sent on special wires to his laboratory from the Bell Laboratories' crystal clocks, Loomis was able to demonstrate the presence of a lunar variation in the rate of his pendulum clocks having the expected halfamplitude of 0.00015 second. In many respects this was one of the most remarkable accomplishments known in the field of timekeeping,

FIG. 1-Circuit of a variable-rate oscillator and power amplifier designed to drive the motor of a 36 -inch refracting telescope. Such equipment is essential to compensate for rotation of the earth while studying a star
and it would have been impossible without the electronic crystal clock.

Astronomers sometimes require clocks for purposes other than that of keeping highly precise time. For example, nearly all telescopes must be mounted in such a way that they can be moved to compensate for the rotation of the earth in order to make possible continuous training of the instrument on an astronomical object. Consequently, most telescopes are mounted so that one of their two axes of motion rotates parallel to the rotational axis of the earth. Such a system of mounting makes possible compensation for the rotation of the earth by rotating the telescope about its parallel axis at constant speed. Thus, a clock is required. The clock, however, must have special properties; it need not be an extremely good timekeeper, but its rate must be capable of convenient adjustment by the observer. The last requirement is caused by the fact that although the rotational speed of the earth is highly constant the rate at which a telescope must be moved to follow a star is not, because of bending of the telescope and mount and because of refractive effects of the earth's atmosphere. The latter effect makes celestial objects appear to rise sooner and set later than they actually do. The most convenient way to compensate for these variations is to provide for adjustment by the observer. The 200 -
inch reflector at Palomar Mountain was fitted with automatic devices for correcting the effects of flexure and refraction at great expense.

The requirements of a telescopedrive clock are best met by electronic equipment. The timing frequency is usually generated by an oscillator of some kind, either electromechanical, capacitance-inductance, or resistance-capacitance. The signal from this oscillator, whose frequency can be controlled over a small range by the observer to give rate control, is then subject to power amplification and is fed to a synchronous motor which drives the telescope. The usual frequency used is approximately 60 cycles per second, and power at this frequency is fed to the small motor, which is geared down to produce the necessary revolution of the telescope axis at about one turn per day. The telescopes at the Lick Observatory are equipped with electronic drives. The 36 -inch Crossley reflector and the 36 -inch refractor have been converted from weight drives, and a 20 -inch telescopic camera was so equipped at the time it was installed in 1939. Figure 1 is a schematic diagram of an oscil-lator-amplifier drive for the 36 -inch refractor. The oscillator is a vari-able-inductance resistance-stabilized L-C, and feeds a final amplifier consisting of six 6L6's in classAB push-pull-parallel. This type of power amplifier is used because of

FIG. 2-Electronic equipment employed to drive a 20 -inch telescopic camera, utilizing an electromechanical oscillator
the cheapness and availability of receiving-type tubes and because danger from high voltages is avoided. The output stage drives a 150th hp Bodine motor, which drives the telescope through a large speed reduction. The output stage will start the motor from a standstill, but a circuit is included which provides for starting the motor from the line when the device is turned on, and for transferring the motor from line to drive circuit as soon as the tubes are warm. The drive has been is use since 1942 , with practically no servicing. It is of interest that the actual amount of power required to drive the 14 ton weight of the moving parts of the telescope is less than a 500 th hp , owing to the slow speed.

Figure 2 shows the drive for the 20 -inch telescopic camera. This drive starts with an electromechanical vibrating-wire oscillator whose signal ultimately drives a pair of FG-57 thyratrons as phase-inverters, necessary to drive the large motor with which the telescope was provided by its makers. The oscillator consists of a vertical metal wire held under tension, carrying a small piece of iron located at its mid-point. Each end of the iron projects into a small coil, one of which is used as a pickup, the other as a driver coil. When the pickup signal is amplified and used to energize the driver the system becomes an oscillator whose frequency may

FIG. 3-Automatic guiding attachment for a 100 -inch telescope, designed in such a manner that light from a star under observation causes correction of tracking errors
be changed by changing the tension in the wire. Tension is regulated from a remote station by varying the current in an electromagnet, whose attraction contributes to the tension. This time standard is capable of considerable precision. It was developed and built by the Warren Telechron Company.

Laboratory Aids

Most astronomical observatories are short of personnel, and are engaged in processing huge amounts of data. Any machine which can help speed the reduction of data is most welcome to the astronomer.

A machine for counting star images on a photographic plate has been placed in service. This problem is relatively simple, however, and less important than the problem of automatically making precision measurements of the positions of stellar images. A machine designed to make such measurements is being developed at the Watson Scientific Laboratories. In this machine, the photographic plate is mounted to move vertically. A photoelectric scanning head is so mounted that it can be moved horizontally by means of a precision screw turned by a servomechanism. Approximate positions of the stars, already stored in a punched-card catalog, may be coupled to the servomechanism for directing the scanning head to the approximate position of a star to be measured. The scanning head then makes a precise setting upon the image by
means of coupling to the servo, automatically interprets the reading, and punches the new position on the card for the particular star.

The problem of automatically measuring the positions of lines on photographs of stellar spectra is being solved at the Lick Observatory. Here an experimental machine has been built which will center a scanning head upon a spectral line and make a record of the position of the line. The screw which moves the plate on which the spectrum has been photographed is driven by a motor at constant speed; when a spectral line enters the field of the scan an electronic circuit operating from the light-sensitive unit in the scanning head picks a point on the line midway between two positions of equal photographic density, and a graduated thimble carried by the lead screw is photographed at the proper instant by a small camera using motion-picture film. The machine then stops and signals the operator that he may start another cycle of operation on another line. One semiskilled operator working with the machine can measure about four times as fast as a skilled operator with a manual measuring machine, with equal or better precision, and with little fatigue.

One of the most tedious of all jobs in an observatory is that of manually guiding a telescope. The telescope-drive clock does most of the work, but it is incapable of taking care of the small guiding errors that result from flexure of the tele-

FIG. 4-Optical and electronic components of the guiding attachment
scope, refraction deviations, and random errors caused by sudden shifting of optical parts. Such errors must be corrected by an observer who sometimes must devote painstaking attention to nothing else for many hours at a time.

The problem of automatic guiding was first tackled over ten years ago at the Washburn Observatory, University of Wisconsin, and was found to be without a fully satisfactory solution, owing to lack of photoelectric devices sufficiently sensitive to give a useful signal from the light of a sufficiently faint star. Recently, a satisfactory solution to the problem has been obtained by Horace Babcock at the Mt. Wilson Observatory by making use of the 1P21 multiplier phototube as the sensitive element. The star image is scanned by a rotating half-disk. A deviation of the position of the image from the axis of rotation is indicated by a sinusoidal signal from the multiplier, the amplitude depending upon the size of the error, and the phase (compared with a standard obtained from a commutator) depending upon the direction of the error. Amplitude and phase information is interpreted by an electronic circuit, and charges proportional to the errors in the two degrees of motion of the telescope are collected in capacitors for about three seconds. Relays already existing as part of the telescope control system are closed after each charge collection, to cause correction of the error. The
error signals are portrayed by an oscilloscope to aid the observer in appraising the performance of the guider. The observer is almost entirely relieved of guiding for certain types of observing, and he may spend most of his time comfortably thinking about his work in a warm room, while the automatic guider does the tedious chores. Figure 3 is a schematic diagram of the principal components of the guider, and Fig. 4 is a picture of the attachments required to make the telescope self-guiding. This guider makes it possible to keep a stellar image at the 250 -foot focus of the huge 100 -inch telescope automatically positioned to within a small fraction of a millimeter.

An astronomical spectrogram is. a photograph of the light of an object such as a star or nebula after the mixed light has been spread out. in wavelength by means of a prism or grating. Such spectrograms contain large amounts of information concerning the properties of the objects, and the taking and analyzing of spectrograms forms a major part of the activities of many observatories. Among the measurements made on spectrograms are those designed to lead to the relative intensities of the light in various wavelengths. The degree of blackening of the photographic plate is, of course, an indication of the brightness of the light which caused it, and one would expect that a simple measurement of the blackening with a photoelectric device would suffice as the desired measurement. This is far from the fact, however. Photographic blackening is not linearly proportional to the incident light brightness; furthermore, the blackening will depend upon subtle things such as variations in photographic emulsions from one plate to another, the conditions of exposure of the plate, and the exact conditions of development. The necessary corrections to change blackening into light intensity can be applied by hand, so to speak, but the problem of treating large numbers of spectrograms in this manner is one of almost unbelievable tediousness.

For many years developmental work has been under way on machines to offer partial or complete
solutions to the problem. This developmental work has culminated in the design and construction of a direct-intensity microphotometer, at the Mt. Wilson Observatory, which gives a complete, general solution and which is undoubtedly one of the best direct-intensity microphotometers ever built. Two photographic plates are mounted in the machine; one plate has the spectrum, the other is a plate from the same package, developed at the same time as the spectrum plate, and in the same developer. The second plate, however, is exposed as a standard in a special spectrograph which gives an imprint with two coordinates, one in wavelength, the other in known intensity. Light from a common source scans both plates alternately, and the two plates, mounted in separate carriages, move continuously in the wavelength direction. As the plates move, the blackening in both is compared by a 931 A multiplier phototube, and the standard plate is moved, by means of a servomechanism, in its intensity direction by an amount sufficient to equalize the blackening in the two plates. This displacement is recorded by means of a pen on a continuously moving strip of paper. The system is a null method with respect to light measurements in the machine itself, and all of the gross peculiar characteristics of the photographic plate are removed by the comparison with the known standard. The curve drawn on paper represents the intensity of the original starlight striking the original plate, which becomes the spectrogram.

Photoelectric Photometers

In astronomical parlance, photoelectric photometry is the direct measurement of the intensity or color of starlight by means of photoelectric methods. The technique has been developed to the point where the systematic and accidental errors of observation are much smaller than those of photometry by any other method. Thus astronomers have made contributions to light measuring techniques.

The difficulty of the problem can be emphasized by considering the amount of energy with which one must work when measuring the
intensity of starlight. A star of 6 th magnitude is of such brightness that it can just be seen with the unaided eye on a dark, moonless night. The eye collects, from a star of this brightness, energy at the rate of 5×10^{-15} watt, a rate so small that it has no ordinary significance. Yet, the astronomer classes a star of 6 th magnitude as a bright star. A 12-inch telescope gathers enough light (3×10^{-13} watt) from a 6th magnitude star to make it an easy object for modern photoelectric photometers, and there is little worry until one wishes to work on stars 100 th as bright, or 11 th magnitude, far too faint to be seen with the unaided eye, yet still not nearly at the limit of detection of the photocell or phototube.

Two types of phototube emission surfaces are in most common use by astronomers, the antimony-cesium ($\mathrm{Sb}-\mathrm{Cs}$), and the cesium-oxide-onsilver (CsO-Ag). The former is the most sensitive detector known for blue light, while the latter is the most sensitive surface known for the near infra-red. The problem of employing phototubes on faint light resolves itself into the problem of measuring the extremely small currents that are generated. The $\mathrm{Sb}-\mathrm{Cs}$ surface will yield a current of about 3.3×10^{-14} ampere from the light of a 6 th-magnitude star gathered by a 12 -inch telescope, while the $\mathrm{CsO}-\mathrm{Ag}$ surface will give about 0.25×10^{-14} ampere from the same light. Photometry with the $\mathrm{Sb}-\mathrm{Cs}$ surface is a relatively simple technical problem if it is employed in the form of a multiplier such as the 1P21 multiplier phototube. In the 1P21, the original photocurrent is multiplied by a factor of about 5 million by successive stages of secondary-emission multiplication; this raises its output to the order of 1.5×10^{-7} ampere, a current large enough to be measured with ease by means of the proper equipment.

The proper equipment can take the form of a good galvanometer connected in the anode circuit of the multiplier. For greater sensitivity, especially if the multiplier is refrigerated to reduce its dark noise level, the galvanometer may be preceded by a low-grid-current cathode-follower stage. A circuit of this type was used recently by
A. E. Whitford in what was perhaps the most remarkable feat of measuring faint radiation ever accomplished. Whitford, employing a 1P21 refrigerated with dry ice, measured the light and color of an 18.2-magnitude extra-galactic nebula with the 100 -inch reflecting telescope. It was estimated that, without the measurement of colors, the limit could have been pushed to 19.0 -magnitude. The current output from the multiplier was 3.5 x 10^{-11} ampere, and the limit of detection was estimated to be 21.1-magnitude, the brightness of a candle in England viewed from California by way of the Atlantic.
The ease with which the multiplier phototube can be used has made it very popular among astronomers. The 1P21 is useful for photometry in the ultraviolet, violet, blue, green, and yellow regions of the spectrum. Valuable as it is, however, the tube has several shortcomings. Most important, the 1P21 is not sensitive to orange, red, and infrared light, and no satisfactory multiplier having such sensitivity is marketed. In addition, the cathode is partly veiled by a wire grid structure, and it is not of the highest attainable quantum efficiency. For photometry in the long wavelengths, and for achievement of the utmost in the measurement of faint radiation, one must therefore resort to a simpler phototube.

The principal difficulty resulting from the use of a conventional phototube for faint light arises from the extremely high impedance of such a tube, about 10^{14} to 10^{18} ohms. It is impossible, by simple methods, to match such high impedances to an amplifier, and a large mismatch wi'l result in a serious loss of sig-nal-to-noise ratio. As a general rule, a convenient indication time for photoelectric work is from ten to thirty seconds. Since the minimum practical input-circuit capacitance for a phototube photometer is about 10^{-11} farad, it follows that the maximum practical amplifier grid resistor is 5×10^{11} ohms, which is much too small for a good match. If the grid resistor is run up to, say 10^{18} ohms to get a much better match, the indication time will rise to values of around 500 seconds or more, much too long for practical
astronomical measurement.
Recent developments have resulted in a practical solution to the problem. The difficulty of the long time-constant has been resolved by neutralizing most of the capacitance by means of positive feedback, using the interelectrode capacitance of the phototube itself to introduce the feedback. By means of this device, the use of loading resistors of from 10^{18} to 5×10^{13} ohms has been found practicable. Continental Electric now also makes a stable phototube in which gas multiplying factors, on faint light, of more than 100 are obtained. A phototube photometer using high-value grid resistors and this gas-multiplying cell has the same theoretical sensitivity as a multiplier-phototube type; in actual practice, gas phototubes have surfaces more sensitive than those found in multipliers. In addition, they have larger and better shaped light-receiving surfaces, greatly simplifying the somewhat difficult problem of receiving the steepangled $\mathrm{f}: 5$ beam from a large reflecting telescope.

A modern photometer consists of a light-receiver containing the multiplier, or the phototube, grid resistor, and low-grid-current amplifying tube. The output from the receiver is amplified by a d-c amplifier sufficiently to give full-scale reading on a high-quality meter on about 25 to 50 -millivolts input. At this gain, the shot-noise of the dark current in the receiver will have an amplitude of from 1 to 10 percent of full scale, sufficient for good resolution, and therefore for maximum sensitivity. It is not impossible to construct a photometer which will give maximum systematic errors resulting from nonlinearity of response of less than 0.1 percent for faint illumination. As a rule, the amplifier is designed to drive a 0 to 1 milliammeter, and thus either a dial-type meter can be used for visual reading and manual recording or a continuously recording meter such as the Ester-line-Angus can be used.

Figure 5 shows the receiver of a of a multiplier-type photometer mounted at the prime focus of the 36 -inch Crossley Reflector of the Lick Observatory. The coaxial
cable is the anode (signal) lead; the other is an 11-conductor plasticinsulated cable which carries the necessary potentials to the secondary electrodes of the multiplier. Potentials for a multiplier are conveniently furnished by the new small dry batteries, such as the Eveready 413; the necessary 930 volts of batteries are contained in a small box measuring $12 \times 9 \times 1 \frac{1}{2}$ inches, fastened to the tube of the telescope. The batteries long outlast their shelf life, inasmuch as no appreciable current is drawn from them, and they will continue to deliver their rated voltage into the minute-current load of the multiplier long after they test dead with a voltmeter.

Figure 6 is a circuit diagram for a d-c amplifier as used with a photoelectric photometer. The lower left-hand portion of the diagram is devoted to the circuit for a phototube receiver, which may be switched into service by means of S_{1}. The portion of the unit enclosed by dotted lines is the phototube light-receiver, and is attached to the telescope. For proper operation, this part of the apparatus must be in a sealed container from which the air has been evacuated. Light is admitted through a small glass window, or through a fogresistant cellophane window in the case of receivers that are refrigerated with dry ice to reduce their dark currents.

The output of the light-receiver goes first to the VX-41 phase inverter and amplifier; this drives the main d-c amplifier. It also furnishes the direct feedback voltage which partly neutralizes input capacitance by injection via the phototube voltage supply. The degree of neutralization is controlled by R_{1}. The capacitor C_{1} limits the bandpass of the feedback amplifier to prevent unwanted high-frequency tube noise from being fed back. Switch S_{2} acts inside the evacuated tank for grounding the input grid, and for selecting either a 10^{12} or a 10^{13} ohm grid resistor, depending upon sensitivity requirements. A multiplier receiver (not shown in the circuit diagram) may also be coupled into the d-c amplifier by means of S_{1}.

The d-c amplifier itself is a bal-

FIG. 5-Multiplier-phototube light-receiver attached to a reflecting telescope
anced inverse-feedback type, with a simple power supply, made possible by the insensitivity of the amplifier to variations in plate voltage. The heaters of the amplifier tubes must be supplied from a constantvoltage transformer, or from a storage battery, unless line voltage is free from variations of more than 2 voits. The input grid current of the 9001 stage is about 5 x 10^{-21} ampere, and the zero drift after proper aging of the tubes is less than 1 millivolt per hour. The amplifier is sufficiently free from microphonics that tubes need not have special mounts, and may be operated on a table on which a manual adding machine is being used, with no zero displacements. All batteries may be of the smallest type, as the largest current drawn from any of them is only 10 microamperes. Gain is controlled by varying the inverse-feedback factor (giving a factor of 10 in steps of 0.25 magnitude), varying load resistors (a factor of 10 for the phototube, 100 for the multiplier) and varying the phototube voltage (another factor of 10 to 100 for the phototube). Thus, for both types of photometric receivers, the gain may be varied with no loss of linearity over factors of greater than 1,000 , equivalent to 7.5 stellar magnitudes. The capacitors C_{2}, C_{3}, and C_{4} establish time-constants of 1.5 seconds for all loading conditions of the multiplier. This gives

FIG. 6-Circuit of astronomical light-receiver and d-c amplifier used for photometry, employing either a conventional gas-phototube or a multiplier-phototube
an indication time of 10 seconds, convenient for most photometry.

The phototube used in the photometer diagrammed is a type CE$25 \mathrm{~A} / \mathrm{B}$ without base. Such phototubes have unusually good insulation and low thermal emission, and it is not uncommon to find samples that have a dark current at 70 F of only 10^{-15} ampere. Those having higher dark currents (up to 10^{-13} ampere) usually have relatively higher infrared sensitivity. They cannot be used without bringing their dark current down by refrigeration with dry ice. When refrigerated, the dark current will be of the order of 10^{-17} ampere.

Within the last two years, a leadsulfide (PbS) photoconductive cell has been brought into service by astronomers. Though the efficiency of this cell is less than that of the CsO-Ag-type phototube in the spectral region where they share sensitivity, the sensitivity of the PbS cell extends much further into the infrared. Some samples show good sensitivity at 30,000 angstrom units, though most extend little beyond 20,000 . Of all detectors of radiation, the lead-sulfide cell is the most sensitive in the region from 12,000 to 25,000 angstroms. It has an abnormally high noise level in the very low frequencies, so it is usually employed in an a-c amplifier circuit in the frequency range from a few hundreds to a few thousands of cycles per second. At the

Yerkes Observatory, the PbS cell has been used in infrared spectrophotometric investigations intended to reveal the composition of the markings and atmospheres of some of the planets. In the hands of A. E. Whitford, the PbS cell has seen through the great dust clouds of the Milky Way, and has indicated the existence and position of the hitherto unseen bright core of the galaxy.

Bibliography

1. L. Loomis, The Precise Measurement of Time, Monthly Notices of the Royal Astronomical Society, 91, p 569, 1931. H. M. Jeffers, The New Driving System of the Crossley Heflector, Publications of the Astronomical Society of the Pacific, 50, p $112,193 \mathrm{~S}$.
S. W. McCuskey and R. M. Scott, A Photoelectric star Counter, Review of Scientific Instruments, 12, p 597, 1941. Self-Recording Direct-Intensity Micropho-Sem-Recording Publications of the Observatory tometer, Publications of the on the University of Michigan, 8, p 45 , 940.
H. W. Babcock, A Photoelectric Guider or Astronomical Telescopes, Astrophysical Journal, 107, p 73, 1948 . Kron, PhotoA.tric Guiding of Astronomical Telescopes, Review of Scientific Instruments, 8, p 78, 1937.
8, Joel Stebbins, The Measurement of the Light of Stars with a Selenium Photometer, with an Application to the Variations of Algol, Astrophysical Journal, 32, 185, 1910.
P A. E Whitford, The Application of a Thermionic Amplifier to the Photometry of Stars, Astrophysical Journal, 76, p 213, 1932.
G. E. Kron, Application of the Multiplier Phototube to Astronomical Photoelectric Photometry
Sinclair Smith, The Limiting Magnitude observable with a Photoelectric Stellar Photometer, Astrophysical Journal, 76, p 286,1932 .

- 8 G. $\mathbf{~ E}$. Kron, An Improvement in the Use of Photoelectric Cells for Stellar Photomof Photoelectric Publications of the Astrophysical Society of the Pacific, 59, p 190, 1947.

Harold L. Johnson, A Theoretical Discussion of the Ultimate Limits of Astronomical Photoelectric Photometers, Astro physical Journal, 107, p 34, 1948.

Oscillograms show (left) repetitive signal accompanied by noise; (right) signal after noise has been removed by storage tube

REPELLER

Storage tubes are the latest development in the cathode-ray tube family ${ }^{1}$. They perform the general function of storing electrical signals, usually written in the form of charges on an insulating plate. After a time delay the tubes retransmit or read out these charges in the form of electrical signals.
A cathode-ray storage tube has been developed that possesses internal memory and is also able to act as a discriminator between periodically recurring and new information. The operating principle, performance and application of this new tube are described.

Storage Plate and Repeller

Internal operation of storage tubes frequently depends on secondary emission. If a solid body is struck by electrons the average number of secondary electrons liberated by each incident primary electron is, for a given material, a function of the beam voltage. The secondary emission coefficient δ is larger than unity only for voltages in a critical range. Thus, if an insulator, acting as storage plate in a tube arranged as in Fig. 1A, is struck by an electron beam of lower than critical voltage, it will be charged to a negative equilibrium close to cathode potential. This equilibrium is reached when the target point is charged to a potential corresponding to the beam velocity. After that potential has been reached the beam is repelled toward the collector; no further

By HANS KLEMPERER and J. T: deBETTENCOURT

Raytheon Manufacturing Company Waltham, Mass.
electrons are accepted by the storage plate.

If the beam velocity is increased beyond the lower critical speed ($\delta>1$) conditions are changed. More electrons leave the bombarded surface than are arriving, and equilibrium therefore is reached at a voltage that is positive with respect to anode or collector. Various current components involved in the action are sketched in Fig. 1B. The incident (primary) electron beam is denoted by i_{1}. The resulting secondary emission is divided into two parts; i_{2} denotes the electrons that leave the spot. for the collector or anode, and i_{3} are those which are emitted but which return to the same spot, thus forming a space charge around it. In addition there is i_{4}, the small leakage current through the target material. Figure 2 shows the equivalent circuit.

If the tube is operated at the condition $\delta=1$, the equilibrium potential of the beam trace on the storage surface is governed by the potential of the collector grid. This configuration is typical for this type of storage tube.

Efficient storage depends largely upon establishing a large difference in potential between the written trace and the surrounding surface.

Negative Bias of Storage Plate

Sensitivity is considerably improved by applying to the storage surface a high negative bias. (Bias potentials have been successfully applied to the Iconoscope in television work ${ }^{2}$). The storage surface can be raised to a negative potential by low-velocity electron bombardment from the front, or more effectively by connecting a conductive backing of the storage plate to an external negative source. If the cathode potential is 1,600 volts negative with respect to ground (collector or second anode), the storage plate or repeller electrode in back if it may be biased to $-1,000$ volts. The beam still hits the storage surface above critical speed, therefore the trace becomes slightly positive with respect to the collector. The potential difference between trace (at equilibrium) and surrounding surface, however, is raised to the order of 1,000 volts. Experiment-

FIG. 1-Arrangement of cathode-ray repeller-type signal storage tube (A) and details of storage plate and electron paths (B)

STORAGE TUBE

Abstract

Principle of operation and characteristics of a memory tube utilizing secondary emission from a bombarded insulator are described. Bias on repeller electrode behind storage plate increases available output. Using tube in receiver improves signal-noise ratio

ally, the repeller bias increases the signal output from microvolts to millivolts.

The action of the repeller is twofold: It increases the potential difference between trace and background; in addition it provides a parallel dielectric path between the storage surface and the collector grid. This, of course, presupposes a free-swinging repeller (high ground impedance). Under proper conditions, this positive signal is by far greater than the negative signal which is caused by direct action of secondaries on the collector.

A negative output signal, as sometimes observed in operation of this tube, indicates that the beam stays on the spot after the equilibrium charge has been reached. At that time displacement currents have subsided, while the secondaries continue to arrive at the collector. Thus, a negative signal is an indication of too high a beam intensity. If the impeller ground impedance is low the positive signal is by-passed to ground and weakened. In this case, positive and negative signals at the collector are
apt to cancel each other and the tube ceases to operate.

Tube as a Cancellation Device

The mechanism has been described by which a positive signal is produced at the collector grid of the repeller storage tube whenever
the charges are written by deflection of the beam or by intensity modulation. The first scan or group of scans writes down the intelligence. Usually, during this writing period the output amplifier is disconnected or gated off. As long as any successive trace is exactly

FIG. 2-Equivalent circuit of storage mechanism; labels of junctures and electron streams correspond to those on Fig. 1B
rescanning the pattern already established there is no change in charge and therefore no output signal. This assumes that the previous trace was written with saturation intensity and no charges have leaked off during the time between scans. Wherever a trace deviates from the preceding pattern there will be a change in charge distribution, and an output signal will show. Therefore, if information is periodically supplied to the storage tube, the tube will automatically compare successive traces and will transfer to the output amplifier only such signals that did not appear previously.

If deflection modulation is used, the writing speed of the beam depends on the amplitude of the input signals. Therefore, with beam current remaining constant the charge density of the trace decreases with rate of amplitude change of the signal. Hence, such parts of the trace that were written at a high speed may not reach equilibrium until after a number of retraces. As a result, differentiation spikes appear in the output. These residual indications are substantially reduced by applying a beam intensifier circuit. A fraction of the input is differentiated, amplified and supplied to the intensity-control electrode of the storage tube, while that part of the signal which goes to the input deflection plates of the storage tube is delayed to compensate for the delay of the differentiated signal in tubes and circuit elements. Due to some imperfections in the tube such as capacitive pickup, inhomogenity of the beam cross section or secondary emission from collector or other elements, some residuals from incompletely cancelled signals are nevertheless always found in the output.

Oscillograms of input and output signals of the repeller storage tube show the effectiveness of this action. The input signal is taken from a fur generator, which is a device that produces moving and stationary signals. The output oscillogram shows the moving signals, passed at a large amplitude, while the stationary signals are almost completely cancelled. The storage tube was operated under
the following conditions: sweep repetition rate: 1,000 per sec, horizontal deflection speed: 0.1 cm per microsecond, beam voltage: $-1,600$ volts referred to second anode (ground), repeller voltage: -900 volts, intensity of writing beam: 8 microamperes, storage plate: lime glass at room temperature.

In this application the amplitude ratios of moving to fixed signal are compared for input and output and sometimes expressed in decibels as the so-called cancellation ratio. For instance, if, for a $100: 1$ ratio of input signals the output amplitudes are equal, the tube is rated as having 40 decibels of cancellation. Cancellations of that order are obtained in the laboratory, but to strive for high cancellation ratio is a little premature at a time when cancellation of actually fixed signals is just one of the many applications of the storage tube.

The tube described so far relies on natural leakage across the storage plate to remove trace charges after usage. Obviously, when the forgetting process depends on leakage through the storage plate no sharp line of distinction can be drawn between new and old information. The output signal of a repeating trace will depend on the time that has passed since its last notation in the same exponential manner as the stored signals disappear. For some applications this is not a serious limitation because the time constant of the storage plate can be adjusted (by choice of material or temperature) to fit the specific needs. However, the tube is more universally useful if it is provided with a memory that is free from leakage and that can be destroyed or wiped out suddenly. Present developments in that direction trend toward holding and destroying charges in storage tubes. ${ }^{3}$

Applications of Storage

The storage tube is applicable to a variety of problems, a few of which will be described by way of illustrations. As a cancellation unit the storage tube can be used to obtain records of nonrepeating transients such as lightning and arc-backs without the need for continuously exposing film. Similarly
the tube can be used to compress or expand the rate of information transmission by reading out stored information at a different speed than information is read in. In this capacity, the tube can be used in communication systems to adapt the rate of incoming information to the capabilities of the transmission channel. Other applications have also been described.*

The repeller storage tube is also applicable as a means to raise periodically recurring weak signals above the noise level, as discussed in connection with the oscillograms. The tube is intensity modulated and the average recording beam intensity is adjusted so that several successive traces are needed to produce saturation of the trace. Because the random noise adds on a power basis while the recurring signal adds on a voltage basis, a theoretical gain of $10^{1 / 2}$ in signal noise ratio is obtained in reading out a trace made for 10 individual recordings. Thus, the storage tube is a useful addition to the cathoderay tube family.

Acknowledgment

This article is based on a development carried out under Air Force contract W28099ac173. The storage tube used in this development was constructed by the Power Tube Division of Raytheon under this contract. The guidance and encouragement of personnel at the Radar Laboratory, Watson Laboratories, Red Bank, N. J., under Ralph Cole, and at Electronics Research Laboratory-AMC, Cambridge, Mass., are gratefully acknowledged.

References

(1) V. K. Zworykin and G. A. Morton, "Television: The Electronics of Image Transmission', John Wiley and Sons, Storage by 1939 ; Secondary McConnell, Video Storage by Secondary Emission from 1947; and Knoll, Z. Techn. Phys., p 467. 1935.'
(2) Kronjager Krawinkel Salow Z. Tech. Phys., p63, 1938, and in Telegraph Funk F'ernschtechnik, p 527, Nov. 1938; a short description of this tube is als
(3) A. V. Haeff, A Memory Tube, ElecTRONICS, p 80, Sept 1947 .
(4) L. Ridenour, "Radar System Engineering', McGraw-Hill Book Co., p 631 , 1948,' also Hall, "Radar Aids to Navigation', McGraw-Hill Book Co., p 253 , 1948.

Transmission Bandwidth

Pulse systems that reduce the transmitted bandwidth are described. Pulse trains for two channels are superimposed and transmitted as one train at half the original rate; then separated at receiver. Reduction obtainable in system is compared to ideal reduction

By ROBERT S. BAILEY and HENRY E, SINGLETON
International Telephone \& Telegraph Corp.
New York, N. Y.

Communication Engineering has recently witnessed a rapid expansion of the theory of intelligence transmission as related to the information content of the message, signal-noise ratio, and bandwidth. The Hartley ${ }^{1}$ law has been revised, especially by Shannon ${ }^{2}$ to the form
$C=W \log _{\boldsymbol{в}}(P+N) / N$
(1)
where C is the transmission capacity of an ideal system, W is the product of the bandwidth and time that is utilized for the transmission, B is a base depending on the pulse coding system (2 for a binary code), P is the average signal power used, and N is the average noise power in the transmission medium. Shannon, ${ }^{3}$ Tuller, ${ }^{4}$ and Gabor ${ }^{5}$ have indicated that transmission systems might be devised in which the transmitted bandwidth would be less than that of the input message.

Bandwidth Reciuction

Equation 1 shows that bandwidth can be traded for either power or signal-noise ratio, the trade being proportional to the logarithm of the signal-noise ratio plus unity. An ideal transmission system utilizing power P_{1} and a bandwidth-time factor W can be altered to transmit a bandwidth $1 / n$ times the original bandwidth in the same time interval provided that a new power P_{2} is utilized and is related to P_{1} and the original noise power N_{1} by

$$
\begin{equation*}
P_{2}=\frac{N_{1}}{n}\left[\left(\frac{P_{1}}{N_{1}}+1\right)^{n}-1\right] \tag{2}
\end{equation*}
$$

where it is assumed that the original noise power is reduced propor-
tionally to the reduction in bandwidth.

Equation 2 shows that bandwidth reduction is relatively expensive of power. However, there are many cases in which the signal-noise ratios are high; for example, short cable systems and certain pulse and frequency-modulation systems. Even the usual point-to-point radio relay systems operate with high signal-noise ratios during a part of each day, and it may be desirable to reduce bandwidths at the expense of signal-noise ratio during such times to accommodate more channels.

Combining Channels

Figure 1 shows the schematic diagram of a simple bandwidth reduction transmission system based on the coding together of a pair of input message signals, called Channel 1 and Channel 2. The coding is accomplished by the TransmitTER in such a way that the same bandwidth is used for transmitting both signals simultaneously as would be required for transmitting either one alone by conventional means. A stage-by-stage description of the circuit operation will show how this result can be done.

The input wave from channel 1 is sampled by Gate 1, driven from one side of the Sampling Multivibrator. This sampling is done at a frequency that is slightly higher than twice the highest frequency present in the message signal. After power and voltage amplification in the Amplifier the sampled
wave is quantized into one of five levels by the QUANTIzER.

The quantizer shown in the circuit consists of a group of four neon lamps arranged so that increasing voltage input to the quantizer fires increasing numbers of lamps, thus delivering increasing voltages to the load R_{3}. The output voltage increases in discrete steps as additional lamps fire. If individual lamps fire at an increment of 40 volts and $R_{2}=R_{3}$, the quantized output to the Delay Gate will be 0 , $20,40,60$, or 80 volts, depending on the amplitude of the input signal. Resistors R_{1} should be much larger than resistor R_{3} in order to obtain sharply quantized signals.

If a greater number of quantizing levels is required to obtain the necessary fidelity of reproduction, the number of levels may be increased by using reiterative sections in the neon-lamp network and providing a correspondingly larger voltage from the driving amplifier. Other quantizers have been described by Meacham and Peterson, ${ }^{*}$ Reeves, ${ }^{2}$ Goodall, ${ }^{8}$ and Rainey. ${ }^{\circ}$

The quantized output charges the input capacitor in the delay gate by an amount proportional to the quantized amplitude of the message signal. However the delay gate does not pass this signal immediately because it is cut off by its bias.

While this sequence of operations has been proceeding, Gate 2 has sampled the signal from Channel 2. The sampled output is inverted in the Equalizing Amplifier and fed

FIG. l-Blocks show basic sequence in combining channels; detailed circuits indicate how operations can be performed
to the other input of the Mixer.
Because the sampling of the two channels is controlled from opposite plates of the multivibrator, the sampled signals will be interleaved in time. The object of this system of modulation is to transmit one pulse instead of two. Therefore the sampling square wave for channel 2 is used to actuate the delay gate at the same time that channel 2 is sampled. The output of the delay gate is then passed to the MultiPLIER, where the signal level is raised to $2 K$ times the level of the channel- 2 signal appearing at the mixer grid, where K is the number of quantizing levels for channel 1 , which is 5 in this case.

An Eraser is provided to remove the charge on the delay-gate capacitor after its signal has been passed to the multiplier. The erasing circuit consists of an amplifier provided with a differentiating input coupling. The square wave from the multivibrator acts through the erasing circuit to produce a very short, high-amplitude, positive pulse on the grid of the delay gate that allows the capacitor to discharge.

The pulse-amplitude modulated trains at the mixer grids are in proper polarity and time relation to be combined into a single pulse train having a repetition frequency equal to that of the sampling multivibrator. In this way the pulse rate required to transmit one channel is made adequate to transmit two or even more channels added into the same train.

A further feature of this system is that, when transmitting a highfidelity signal having frequencies which are twice those capable of being transmitted, the signal can be separated into high and low-frequency portions, the high-frequency portion heterodyned down, and the two resulting portions fed in as channels 1 and 2 . The signal will then be transmitted in half its original bandwidth.

Receiver Separates Channels

The Receiver first amplifies the signal from the line in its Line Amplifier to a level suitable for operating its QUANTIZER, which is the same as the one in the transmitter. The output from the quan-
tizer is passed, with positive polarity, to a Mixer. Simultaneously, an unquantized signal is reduced in the DIVIDER by the same factor used in the multiplier of the transmitter, changed in polarity by the Inverter, and fed to the mixer.

The quantized and the divided signals are subtracted in the mixer, giving the difference signal as the output across its cathode resistor. This signal is that of channel 2 ; the signal for channel 1 is obtained, within the accuracy of quantization, from the inverter cathode. EqualIZing Amplifiers feeding LowPass Filters to remove components of the sampling frequency complete the receiver. However, if the system is used to obtain high fidelity for a single channel that has been separated into two portions, a de-lay-gate synchronized with the incoming pulses is needed to interleave the signals properly, and a heterodyne to translate the highfrequency portion back to its original spectrum.

In the particular encoding method described, one of the pulse signals is transmitted at a higher
power level than the other. This difference leads to widely differing signal-noise ratios for the two channels.

It is assumed that only white noise affects the transmission path. That is, impulse noise is disregarded and only that noise having a uniform amplitude across the frequency spectrum is considered.

Assume that the average noise voltage at the receiver is E_{N}, that the number of quantizing levels is K and that the voltage levels of quantization at the transmitter are E_{1} and E_{2} for the two pulse trains coded together. In other words, the pulse train from the delay gate of the transmitter may have any of the voltage levels $m E_{1}$ where $m=$ $1,2,3,4$, . . K, while the pulse train from channel 2 may be considered to have any of the levels $m E_{o}$ even though this channel is not quantized. Also assume that the gain in the multiplier is exactly $2 K$ so that $E_{1}=2 K E_{2}$.

Signals from the transmitter may be assumed to suffer a transmission loss represented by multiplication by a small factor L.

Under these conditions the receiver will see a composite signal consisting of two levels of quantization $L m E_{2}$ and $2 K L m E_{*}$, and also E_{N}. The respective quantizing steps for the composite signals are then $L E_{2}$ and $2 K L E_{2}$. For both these signals to be recognizable $L E_{0}$ must be greater than E_{N}. If it is only required to recognize the output of the stronger channel (channel 1), the requirement is reduced to $2 K L E_{2}>E_{N}$. That is, with two separate signals encoded at the transmitter into a single pulse train, the signal-noise ratio must be $2 K$ times as great if both channels are to be recognized as if only the stronger channel is required. Expressed in decibels, the signalnoise ratio must be $20 \log _{10} 2 K$ in order to use this particular method of bandwidth reduction. If we assume the noise to remain constant, the transmitter output voltage must be raised $2 K$ times. However, if the signal-noise ratio was higher than required before the bandwidth was reduced, no more power may be needed.

Equation 2 states that, in an ideal transmission system, the
power must be increased by a factor $1+P_{1} / 2 N$ where P_{1} is the original power, in order to halve the band-width-time product. This is a power increase of $20 \log _{10}(1+$ $P_{1} / 2 N$) decibels. The power increase for the actual system just described is considerably greater than that required in the ideal case.

The system of Fig. 1 is more efficient for signals requiring only a few quantized levels insofar as the power-bandwidth trade is concerned. If 30 quantizing levels are required, as for speech, then the signal-noise power ratio must be increased by $30 \mathrm{db} ; 10$ levels would require a $26-d b$ increase, 5 require 20, 3 require 10 , and 2 levels would require only $6-\mathrm{db}$ increase. These increases of signal-noise ratio are, for the most part, capable of realization on nearly all communication circuits without undue cost and may be present part of the time.

Alternative Methods

Other arrangements can be made that accomplish the same result. For example, two conventional and identical pulse-code modulators can be actuated by a common timing generator to insure simultaneous pulse outputs. The output of one modulator is amplified by the factor K and then additively combined with the output of the other modulator. Again the system transmits two channels in a bandwidth normally required for one; as many quantizing levels and as high a fidelity as are required can be used.

If $K=1+e$ where e is any positive number, then, at the receiver, pulses of E_{R} (channel 2) must be distinguished from pulses of $(1+\mathrm{e}) E_{R}$ (channel 1) in order to decode both channels. If E_{N} is the average noise amplitude, then

FIG. 2-Multivibrator acts as quantizer
$e E_{R}>E_{N}$ in order to distinguish signals from noise. If the pem channel was working satisfactorily before the second channel was added, then making $e=1$ should leave the signal-noise ratio the same. Making $e=1$ means doubling the voltage of the pulses from one modulator. Adding the double voltage to the other channel gives transmitted pulses three times the original amplitude, requiring 9 times the peak power ($9.5-\mathrm{db}$ increase). This increase is independent of the number of quantizing levels and hence is more efficient in trading power for bandwidth for large numbers of quantizing levels than the system of Fig. 1.

Other circuit techniques can also be used. When many quantizing levels are required the positive-grid-counting multivibrator of Fig. 2 can be used. ${ }^{10}$ It would be connected into the circuit of Fig. 1 at the points indicated, replacing the gas-tube quantizer. The output of gate 1 frequency modulates the counting multivibrator during the sampling of channel 1 , thus causing an integral number of sharp pulses to be delivered to the capacitor in the delay gate proportionate to the amplitude of the input signal. The counting multivibrator can be made linear over a $6: 1$ frequency range and can be used to quantize as many as 500 levels. Center frequency of the multivibrator is adjusted by the potentiometer.

References

(1) P. V. L. Hartley, Transmitting Information, BSTJ, p 535 , July 1928 .
(2) Bandwidth vs Noise in Communication Systems, Electronics, p 72, Jan. 1948.
(3) C. E. Shannon, Information Theory paper presented at a synnposium betort the National Convention of the IRE. March 24, 1948.
(4) W. G. Tuller, Bandwidth Reduction in Communication Systems, paper presented at the National Convention of the IRE., March 23, 1946. See also Theoretical Requirements for Communication Systems, Electronics, p 138, March 1948. (5) Gabor, New Possibilities in Speech Transmission, JIEE, Section III, Nov 1947.
(6) Meacham and Peterson, An Experimental Multichannel Pulse Code Modula tion System of Toll Quality, BSTJ, p 1, Jan 1948. See also Coded Pulse Modulation Minimizes Noise, Electronics, p 126 Dec 1947.
(7) A. H. Reeves, U. S. Patent 2272070 . assigned to the International Standard Electric Corp.
(8) W. M. Goodall, Telephony and Pulse Code Modulation, BSTJ, p 395, July 1947.
(9) P. M. Rainey, U. S. Patent 1608527, assigned to the Western Electric Co.
(10) S. Bertram, The Degenerative Positive Bias Multivibrator, Proc IRE, p 277. Feb. 1948 .

Picture-Modulated

By allan easton

Senior Development Engineer
Hazeltine Electronics Corp Hazeltine Electronics Corp. Little Neck, New York

THIS paper describes the design features and performance characteristics of a signal generator, uniquely suited for television receiver measurements in that it is capable of providing a signal of known amplitude on one of the twelve commercially allocated channels and is capable of being fully modulated by a standard RMA composite video signal. The pic-ture-modulated generator can be used by television receiver manufacturers far removed from television broadcasting stations to test production receivers with picture signals free from noise, ghosts, and interference.

The block diagram of the generator in Fig. 1 shows the following stages:
(1) A video amplifier section whose function is to amplify a small video signal so that it has sufficient amplitude and proper polarity to operate the modulator. Multiple inputs have been provided to enable rapid selection of any one of three different video signals. The amplifier also provides a mixing channel so that synchronizing signals may be added to one or all of the video waves or two video waves may be added together for a composite display.
(2) The modulator which inserts the video intelligence on the r-f carrier in the approved fashion; that is, zero carrier corresponding to 100 -percent modulation of white signals.
(3) The crystal controlled r-f oscillator which generates an unmodulated signal and precisely determines the picture carrier frequency.
(4) The multiplier chain which multiplies the oscillator frequency up to the actual picture carrier frequency.
(5) The power amplifier to amplify the modulated carrier and

Control panel of the instrument and its power supply
couple to the attenuator.
(6) The mutual inductance attenuator which provides continuously variable output from 6 db below one volt (0.5 volt) to below 120 db below one volt (1 microvolt).
(7) The output matching box which incorporates the terminating resistors and attenuator level-indicating crystal.
(8) The metering circuit, used to measure the rectified attenuator output and calibrate the attenuator.

Simplified circuit diagrams of the picture-modulated generator sections and power supply are shown in Fig. 2 to 6.

Video Circuit

The video sections, $V_{2}, V_{3}, V_{4}, V_{5}$, and V_{6} of Fig. 2 consists fundamentally of two video amplifier stages. The selector switch S_{1} setting determines which of the three first video amplifier stages V_{3}, V_{4}, or V_{5}, are connected through to the second video amplifier stage V_{0}. An additional tube V_{2} is included to enable the adding of synchronizing pulses or an additional video signal to the others, if desired.

The selector switch setting also determines which gain control potentiometer R_{42}, R_{43}, or R_{44}, is effective in altering the transconductance of the sync amplifier, V_{2}. Since each of the four first amplifier
tubes also have individual gain controls, the modulation depth and black level for each video signal can be preset, and pictures switched readily without further adjustment of any operating controls.

The two video stages are compensated by a modification of simple shunt peaking ${ }^{1}$ to insure uniform high-frequency gain to beyond 4.5 mc . The low-frequency response of the amplifier is sufficient to transmit the vertical retrace region of the video wave with less than two-percent droop.

A parallel resonant cathode trap is included in the cathode circuit of V_{6} and is tuned to 4.5 mc to attenuate the $4.5-\mathrm{mc}$ video components which might otherwise appear in the sound channel and would result in undesired interference in the receiver output. The cathode trap causes a discontinuity in the amplitude and phase characteristic of the video amplifier; since this is similar to that introduced at the television transmitter or at the receiver, it produces no unusual distortion.

The type of gain control indicated was chosen with regard to the nature of the video signal desired. Where pulse-type signals, those unaffected by amplitude nonlinearity distortion, are used a screen grid voltage control is specified. This

Television
 Signal Generator

Circuit data and performance characteristics of a signal source for production testing of receivers at points remote from telecasting stations. A mixing pad permits the combination of picture, sound and noise signals to simulate actual conditions
control enables a large range of input signals to be employed. However, with signals where the linearity of the video amplifier must be maintained, the degenerative cathode resistor type of control is indicated. This type of gain control has limited control capabilities because of circuit capacitances and required bandwidth, in this case about 10 db of control.

Maximum gain of video amplifier channels 2 and 3 containing V_{4} and V_{s}, is approximately 23 db (14 times) whereas the maximum gain of the other channels is about 29 db (28 times). Thus for channels 2 and 3 a minimum signal of about 0.4 volt peak to peak is required fully to cut off the modulator tube.

The input impedance of the amplifier channels was made high so that the picture-modulated generator might be connected to a terminated line without causing appreciable loading. This makes easier multiple operation of generators from a single line.

Modulator Circuit

The output of the video amplifier connects to the suppressor grid of the 6AS6 modulator tube $V_{\text {g }}$ shown in Fig. 3. The r-f signal is impressed on the control grid and the modulated energy appears in the plate circuit. The 6AS6 tube is specially designed for mixer or modulator service in that the gridplate transconductance is capable of control by the suppressorcathode potential in a manner which is reproducible from tube to tube. A d-c restorer diode V_{8} connected to the suppressor insures

FIG. 1-Block diagram of picture-modulated generaior

FIG. 2-Video section of the generator

FIG. 3-Modulator and r-f circuits
that the synchronizing signal peaks are held at zero potential as illustrated in Fig. 7.

The video polarity on the suppressor grid of the modulator tube is such that sync tips produce 100 percent carrier, while the white portions of the video waveform cause reduction of the carrier to approximately 7 percent. The d-c restorer serves to clamp the sync tips to zero bias regardless of picture content. Unfortunately, this type of d-c restorer causes some degradation of the synchronizing pulse waveform during the vertical retrace interval. However, the total amount of droop during the vertical retrace interval which is due to the low-frequency characteristic of the video amplifier plus the effect of the d-c restorer diode does not exceed 5 percent.
The modulation linearity of the modulator tube is sufficiently good so that no appreciable compression of white values will occur providing the carrier level is not reduced below about 7 percent of maximum. There is, however, a small amount of clipping of the synchronizing tips by the d-c restorer. Thus a signal which contains approximately 28 percent sync, instead of the usual 25 percent, is needed to produce the standard RMA signal. If separate synchronizing signals are used in conjunction with V_{9}, no difficulty will be experienced. If a composite signal is fed to the video input, the amount of sync in the video waveform should be adjusted at the synchronizing generator.

Frequency Multiplier

The modulator grid is fed from the multiplier chain which develops the required r-f voltage at the pic-
ture carrier frequency. The fre-quency-determining element of the frequency multiplier chain is crystal Y_{1} operating between 7 and 9 me depending upon the channel desired. Tube V_{1} in Fig. 3 is a combined crystal oscillator and frequency multiplier. The control grid, screen grid and cathode are connected as a triode. The plate circuit contains a highly selective, double-tuned transformer, tuned to a harmonic of the crystal oscillator. The circuits shown provide adequate multiplication and adjacent harmonic rejection for a multiplication of at least nine times.

A 6AG5 tube, V_{7}, is used as an additional frequency tripler on the generators which are designed for channels 7-13. For channels 1-6 this stage is used as a buffer.

Approximately one volt of r-f voltage at the picture carrier fre-
quency appears on the modulator grid.

Output Amplifier

The modulator plate connects to a resonant circuit which is one of a stagger-tuned pair. The second circuit is the fixed coil of a mutual inductance attenuator which is resonant near the picture carrier.

The composite r-f transmission characteristic from modulator grid to the output terminals is shown in Fig. 8. for operation on channel 13. The total $3-\mathrm{db}$ bandwidth is about 9 mc .

The picture carrier is situated in such a manner that the upper sidebands are faithfully transmitted whereas the lower sidebands are progressively attenuated. However, for all practical purposes for use with commercial television receivers, the picture-modulated gen-

FIG. 4-Complete power supply circuit for the generator
erator is essentially double sideband. The shape of this transmission characteristic is somewhat modified when the attenuator is set for maximum output but is still satisfactory.

Power amplifier tube V_{10} couples into the mutual inductance attenuator. ${ }^{2}$ A balanced plate circuit with C_{25} forming one of the balance capacitors and the circuit capacitance on the 6AK5 side forming the other, is used. This balanced condition is essential if the output of the attenuator is to be balanced with respect to ground.

Figure 9 shows a cross section of the attenuator indicating the position of the fixed and movable coils. The ratio of the voltage induced in the movable coil at a distance X inches from the fixed coil to that induced at a distance ($X+d / 2$) inches is 16 db . If the diameter of the cylinder is one inch, then the attenuation will be 32 db per inch of travel. Approximately 120 db of attenuation is provided in the attenuator shown.

The movable piston has a gear rack attached to it which is driven by means of a pair of split gears actuated by a shaft from the front panel. The attenuator dial is directly calibrated in db attenuation. A movable zero slider is incorporated to aid in setting the reference point.

Coupling Unit

By means of the output coupling unit, shown at the left of Fig. 5, the balanced signal from the attenuator cable is delivered to the r-f output jack on the front panel. Located in this unit is the Meter Read Switch S_{2} and the circuitry necessary for conducting the d-c measuring voltage of the outputlevel measurement system from the output lead to the output-level metering circuit. In the coupling unit and output head are the circuits for enabling both the r-f output signal and the d-c output-level measuring voltage to be carried by the same output cable.

Output Head

The output head is connected to the R-F OUTPUT Jack on the front panel by a three-foot length of RG-22U balanced twin conductor

FIG. 5-Output coupling unit, left, and the output head circuit

ABOVE
FIG. 7-Waveform at suppressor grid of modulator tube showing the effect of the d-c restorer on sync tips as scene brightness varies

RIGHT
FIG. 6-Output metering circuit
cable. The output head contains a terminating network with the following nominal output impedances: 10 ohms unbalanced to ground, 50 ohms unbalanced to ground, 20 ohms balanced, and 100 ohms balanced. The maximum output voltage across the 100 -ohm output resistance is 0.5 volt rms.

Also located in the output head is a crystal rectifier $C R_{1}$, a 1 N 38 connected in a peak voltmeter circuit with R_{22} and C_{32}. This crystal can be connected by switch S_{3} to either side of the line in the output head to indicate the magnitude of the output voltage. This enables measurement of the actual output voltage under load as well as the open-circuit voltage. "The positive d-c voltage developed across R_{2} is carried by one of the conductors of the output cable to one side of the Meter Read Switch S_{2} of the

coupling unit. When the switch button is depressed the video amplifier is disabled and the d-c measurement voltage is connected to the metering circuit. Thus the attenuator output level is set with no modulation on the carrier, eliminating the possible errors which might be caused by different picture content. The modulator circuits are designed so that eliminating the video signal has a negligible effect on the amplitude of the picture carrier.

Output Level Meter

The output level meter is designed to indicate the output voltage level of the unmodulated r-f carrier. As shown in Fig. 6, it consists of a cathode-coupled, balanced amplifier using a $12 \mathrm{AT} 7, V_{\mathrm{m}}$. One triode section may be called the measuring tube (pins 1, $2 \& 3$) and

TABLE I-Oscillator and Multiplier Frequencies

Channel	Picture Carrier	Crystal Frequency	1st Multiplier	2nd Multiplier
	mc	3) kc		
2	55.25	-, , 208.3	$\times 6$	$\times 1$
3	61.25	8,750.0	$\times 7$	$\times 1$
4	67.25	8,406.3	$\times 8$	$\times 1$
5	77.25	9,656.3	$\times 8$	$\times 1$
6	83.25	9,250.0	$\times 9$	$\times 1$
7	175.25	8,345.3	$\times 7$	$\times 3$
8	181.25	8,630.9	$\times 7$	$\times 3$
9	187.25	8,916.7	$\times 7$	$\times 3$
10	193.25	9,202.1	$\times 7$	$\times 3$
11	199.25	8,302.1	$\times 8$	$\times 3$
12	205.25	8,552.1	$\times 8$	$\times 3$
13	211.2 .5	8,802.1	$\times 8$	$\times 3$

TABLE II-Coil and Alignment Frequencies

Channel	L_{1}	$\begin{gathered} C_{3} \\ \text { and } \\ C_{5} \end{gathered}$	(is	$\begin{array}{r} C_{17} \\ \text { and } \\ C_{18} \end{array}$	C_{25}
	kc	me	me	mic	me
2	9,208.3	55.25	55.25	$5-1$	60
3	8,750.0	61.25	61.25	60	66
4	8,406.3	67.25	67.25	66	72
5	9,656.3	77.25	77.25	76	82
6	9,250.0	83.25	83.25	82	88
7	8,345.3	58.12	175. 25	174	180
8	8,630.9	60.42	181.25	180	186
9	8,916.7	62.12	187.25	186	192
10	9,202.1	61.42	193.25	192	198
11	8,302.1	66.12	199.25	198	20.1
12	8,552.1	68.42	205.25	204	210
13	8,802.]	70.42	211.25	210	216

the second triode the reference tube, (pins 6, 7, 8). With no signal on the measuring tube the Meter ZERO control potentiometer is adjusted until the microammeter reads zero current; in this condition the voltage difference between the two plates is zero.

If a positive d-c voltage is applied to the grid of the measuring tube the current through it will increase, and the current in the reference tube will decrease a corresponding amount. The difference of potential between the two plates is then a measure of the applied grid voltage.

To protect the meter from accidental overload of either polarity two 1 N 34 crystal rectifiers $C R_{2}$ and $C R_{3}$ are connected in a novel manner between the two plate circuits. Crystal $C R_{2}$ is poled so that reverse deflection of the meter is prevented. $C R_{s}$ is poled and biased by means of R_{bs} so that when the meter current exceeds a certain value the crystal tends to prevent a further increase.

Potentiometer R_{55} in Fig. 6 serves only to control the magnitude of the input signal and the sensitivity of the system; hence it
is labeled Meter Calibrate on the panel. The maximum sensitivity is in the order of 0.16 to 0.20 volt for full-scale deflection.

Picture-modulated generators have been designed and constructed for channels 2 to 13 inclusive. Tables 1 and 2 indicate the frequencies involved.

Shielding and Leakage

Great care has been exercised in providing good shielding and r-f filtering to enable the use of picture modulated generators with sensi-

FIG. 8-Composite r-f transmission characteristic
tive receivers. It is possible, as a result, to attenuate completely, so that no trace of a picture signal remains on the most sensitive television receiver which has been available for test. The generators have been tested for r-f leakage through the power cables, chassis openings, and around the covers with sensitive communication receivers and have shown no discernible leakage.

The effective shielding has been accomplished by carefully filtering every power lead which enters or leaves the chassis in several stages. All circuits which carry r-f or have r-f fields have been carefully compartmented.

Another factor which tends toward low radiation and leakage is the absence of a high-level oscillator at the picture carrier frequency. The high-level oscillator operates between 7 and 9 mc and consequently does not affect the television receiver.

Setting Modulation Depth

The setting of the several video signal controls to obtain the standard depth of modulation can

FIG. 9-Construction details of the mutual inductance attenuator
be accomplished by the following procedure. The equipment required in addition to the video source for modulating the picture modulated generator includes a wide band, high-gain oscilloscope, a mechanical buzzer-type interrupter and a crystal rectifier, video detector circuit.

The circuit and an illustration of the type of display are shown in Fig. 10. Here the rectifier circuit is connected across the output terminals of the output head. The output from the detector is connected to the vertical plates of the oscilloscope; the horizontal sweep set to 30 cps and synchronized with the power line.

The interrupter periodically short circuits the output from the detector so as to indicate the zero carrier level of the signal from the generator. The pattern on the oscilloscope appears as shown as a replica of the video modulating waveform with periodic spikes extending down to zero carrier level. In general the spikes will not be synchronous with the video signal and horizontal sweep.

To set modulation depth adjust the video and synchronizing signal gain controls until the video signal plus the sync peaks are equal to about 93 percent of the peak signal observed on the screen of the oscilloscope. The black level adjustment is made by proportioning the relative amounts of sync and video signals.

Overall Performance

The overall amplitude and phase versus frequency characteristic is shown on Fig. 11. The curves were taken with a Hazeltine phase curve tracer. ${ }^{3}$ The swept video was connected at the video input jack and the output signal recovered across a 2,000 -ohm load resistor of a crystal detector connected across the r-f output terminals. In this manner the fidelity of the entire unit including the video, r-f, and coupling circuits can be evaluated.

A resume of the performance specifications is as follows:
Operating frequency range-One channel
Output level- 0.5 v to below $1 \mu \mathrm{v}$ Output impedance- 10 ohms unbalanced; 50 ohms unbalanced; 20
ohms balanced; 100 ohms balanced
Video polarity-black positive
Video input level- 0.4 v to 1.2 v peak to peak
Frequency accuracy- 50 kc of nominal picture carrier
Spurious frequencies-at least 44 db below picture carrier
Attenuator balance-the unbalance to ground between two halves does not exceed 0.5 db
Power drain-110 watts at 117 v 60 cps
Modulation depth-adjustable, zero to about 93 percent

Sound Channel

The instrument has been used with standard RMA signal generators manufactured by RCA and Telequip Corp. In addition to the monoscope, several video patterns have been used, among which are: black and white signal, linearity bar pattern, step wave, camera signals and signals taken off the air by a television receiver.

In normal use of the instrument, an $\mathrm{f}-\mathrm{m}$ signal generator operating on the proper sound carrier frequency is an important accessory. Figure 12 is a circuit diagram of a mixing pad which enables mixing of sound, picture and noise signals to simulate the actual television transmission. The picture input has a crystal rectifier which is used in place of the output coupling box for measurements of picture carrier level. The insertion loss of the system is approximately 9 db .

With receivers using intercarrier sound, a small amount of phase modulation of the picture carrier by the action of the modulator on the tuned circuit in its grid circuit may be observed.

The phase modulation may be reduced by means of input admittance variation compensation. This consists of an unbypassed cathode resistance in the GAS6 cathode. The size varies between 25 and 100 ohms depending on the channel.

Reffrences

(1) F. E. Terman, "Radio Engineers Handbook," McGraw-Hill Book Co., p 413.
(2) D. E. Hartnett and N. P. Case, The Design and Testing of Multirange Receivers, Proc $I R E$, 23, p 578, June 1935 .
(3) B. D. Loughlin, A Phase Curve Tracer for Television, Proc $I R E, 29$, p 107, Mar. 1941.

FIG. 10-Circuit of interrupter for estimating the position of zero carrier level. By adjustment of the gain controls of the generator, the modulation depth and the black level may be set according to RMA and FCC standards. Acceptable setting is shown at (B) and incorrect setting indi. cating excessive sync gain and inadequate video gain is shown at (C)

FIG. 11-Overall amplitude and phase versus frequency characteristic

FIG. 12-Mixing pad for combining an f-m sound signal with the video channel

CERAMIC DIELECTRIC Materials

New materials, not to be confused with porcelains and steatites, have many potential uses. Dielectric constant, dissipation factor, temperature coefficient, volume resistivity and other characteristics that determine their electrical uses are discussed

| Characteristic |
| :---: | :---: | :---: | :---: |\quad Group A \quad Group B \quad Group C

FIG. 1-General characteristics of ceramic dielectrics

FIG. 2-Typical temperature-coefficient curves for Group-A dielectrics

FIG. 3-Dielectric-constant and dissipation characteristics of Group-A materials

By BERT H. MARKS

Product Engineer
Centralab Div. of Globe-Union, Inc. Milwaukee, Wisc.

Within the past decade a series of new dielectric materials has been introduced to the electronic industry in the United States. These materials are commonly known as ceramic dielectrics and are not to be confused with other electrical ceramics such as steatite and porcelain. The latter materials have dielectric constants of the order of five or six; commercially available ceramic capacitors are currently being manufactured from materials having dielectric constants ranging from 30 to 6,000 .
This article describes some of the electrical characteristics of various ceramic dielectrics. Information regarding their usefulness and limitations, and notes on the test methods employed, are included.

General Characteristics

On the basis of electrical characteristics, ceramic dielectrics can be divided into the three groups indicated in Fig. 1. The values shown are typical. Since these are synthetic dielectrics, variations exist between similar materials supplied by different manufacturers. The variations are quantitative.

The materials included in Group

Manufacturing disc-type capacitors using ceramic dielectrics

A are excellent dielectrics. Except for the values of dielectric constant and temperature coefficient, their electrical characteristics are similar to those of other insulators. Introduced in temperature-compensating capacitors, they are now employed in the manufacture of capacitors for almost every circuit application. They have a small dissipation factor and a moderately high dielectric constant. For any fixed set of conditions of temperature and frequency the dielectric constant is essentially fixed, showing no change as a result of aging, temperature cycling (between -55 C and $+85 \mathrm{C})$, mechanical vibration or applied voltage.

Figure 2 shows the variation in K of Group-A materials with temperature. The curves are plotted in the conventional manner, showing capacitance change in parts per million from the value at 25 C versus temperature $\left(\Delta C / C_{25 \text { neg }} \times\right.$ $10^{\circ} \mathrm{vs}$. deg C). From this type of curve it is possible to calculate the temperature coefficient over any desired temperature range. ($T C=$ ($\Delta C / \Delta T C_{25}{ }^{\text {DEG }}$) 10^{6}. It is apparent that temperature coefficient is not a linear characteristic, although the portion of the curve between +25 C
and +85 C closely approximates a straight line. It is the value determined on the basis of measurements at +25 C and +85 C which is taken as the nominal temperature coefficient. These values are indicated on the curves.

Figure 3 shows the changes in the magnitude of the dielectric constant and the dissipation factor of two Group-A materials, over a frequency range of approximately six decades. The overall change is three percent for the NPO (zero temperature coefficient) material and five percent for the N750 material, and is largely confined to the audiofrequency region. Figure 3B is particularly interesting because it shows what appears to be the relaxation point for interfacial polarization of the dielectric. Generally this phenomenon occurs at much lower frequencies. ${ }^{1}$

Temperature coefficient is not independent of frequency, but the data available on this point are not too reliable or complete. Figure 4 shows the approximate relationship between temperature coefficient and frequency. The shape of the curves indicates that in the radio-frequency region the changes are small.

That the losses in a dielectric generally increase with increasing temperature is well known. Figures 5A and 5B show the dissipation factor and insulation resistance of typical samples at various temperatures.

The Group-B materials originally represented an extension in the range of materials available for the manufacture of temperaturecompensating capacitors. They are slightly poorer dielectrics than those discussed above but have larger values of temperature coefficient and higher dielectric constant. Both Group-A and Group-B materials could be classified as titanium-dioxide dielectrics.

Qualitatively, Group-B materials behave the same as the Group-A

FIG. 4-Variation in temperature coefficient with frequency. Group- \bar{A} maferials

FIG. 5-Variation in dissipation factor of NPO and N750 materials with temperature (A) and variation in insulation resistance, values shown in the latier case at 1,000 volts d-c after an electrification time of one minute

Life-test equipment employed in the manufacture of ceramic dielectric capacitors
dielectrics. Figure 6 shows a family of typical temperature-coefficient curves and Fig. 7 shows a plot of the frequency-dielectric constant curve. The changes in dielectric constant with change in frequency are slightly greater than those exhibited by the previously discussed materials.

Group C

The Group-C materials cannot be classified as good dielectrics, but they are, because of their extremely high dielectric constants, very useful. They are currently used in the manufacture of bypass, coupling, blocking and filter capacitors of high-capacitance value and small physical dimensions. The resistivity of the materials is large, but the dissipation factor is quite high, thus limiting their use to applications where the applied voltage has only a small alternating component. Pressed discs (0.250 inch thick) of a material with a dielectric constant of 4,000 withstood the application of 20,000 volts d-c but were punctured by a 60 -cycle alternating voltage of about 7,000 volts peak.

Several peculiarities of behavior are exhibited by the Group-C materials and, upon casual observation, the dielectric constants of the materials appear to vary at random. Investigation has revealed, however, that these variations follow a regular pattern. The dielectric constant of a Group-C material varies with time, with the magnitude of the applied voltage and in a very unusual manner with temperature.

A material common to all Group-C dielectrics is responsible for both the high value of dielectric constant and the unusual variations of this property. The material is barium titanate and its characteristics have been extensively described. ${ }^{2}$ In its pure form it is not useable as a capacitor dielectric. Figure 8 shows the change in the dielectric constant of barium titanate with temperature. It has a high dielectric constant only over a very narrow temperature range and the steep slope of the curve indicates that a pure barium-titanate capacitor would show great changes in capacitance with temperature.

The problem of developing a ca-

FIG. 6-Typical temperature-coefficient curves for Group-B dielectrics

FIG. 7-Dielectric-constant and dissipation characteristics of a Group-B material
pacitor dielectric from this material has been essentially one of broadening the peak of the curve, so that the changes over the work-ing-temperature range are not excessive, and of lowering the temperature at which the peak occurs. Figure 9 shows that this has been accomplished. There is, however, a considerable decrease in the peak value of dielectric constant.

If a sample of a Group-C material is heated to a temperature of +85 C or higher for a few minutes, periodic checks of the dielectric constant after the sample has returned to room temperature show that the dielectric constant decreases with time. Figure 10 shows a semilogarithmic plot of this aging, in terms of capacitance change. The aging appears to continue indefinitely and it is known that the slope of the curve remains the same for more than a year. Each time the sample is heated and cooled it will return to its original high value of dielectric constant and the slope of its aging curve will be the same. At zero time the value of dielectric constant appears to be in-
finite and at infinite time the value of dielectric constant appears to be zero. The slope of the aging curve depends upon the material, and in general it is larger the higher the dielectric constant of the material

The temperature capacitance behavior is very different from that of other dielectrics and cannot be explained in the same manner; however, it is known that, in the region of the peak dielectric constant, there is a change in the crystal structure of the material, and it is this change which appears to be responsible for the changes in dielectric constant. The material will repeat the same behavior during subsequent checks if the time after the heat treatment described above is the same. The height of the peak decreases and its shape sometimes changes with age.

The dielectric constant of Group-C materials also changes with applied voltage and the behavior seems analogous in every respect with ferromagnetic hysteresis phenomena. ${ }^{5}$ Figure 11 gives some information regarding the magnitude of these changes, in terms of capacitance. As in the case of the temperature curve, the magnitude of the change decreases with age. At temperatures above that of the capacitance peak hysteresis it no longer occurs.

Figure 12 shows the frequencydielectric constant cūrve of a material with a dielectric constant of 2,000 . The sample was allowed to age for several days in order that the changes as a result of aging would be negligible.

Measurements Notes

The changes in dielectric constant discussed above are invariably associated with changes in dissipation factor and the latter changes are generally in the same direction as the former; however, these changes have not been studied suffciently to permit a quantitative discussion at this time.

Although the unusual behavior of the Group-C dielectrics makes them undesirable for some conventional circuit applications, these same characteristics may make them valuable in others. The nonlinear resistor is a very useful circuit element. The nonlinear capacitor may
prove to be of equal value
All determinations of dielectric characteristics were made using small circular dises of the dielectric materials. The electrodes were silver paint fired on at high temperatures (approximately 1300 F). Unless otherwise noted, values indicated in the figures are those at a frequency of 1 megacycle at 25 C .

Measurements of capacitances at 1 megacycle and below were made using conventional laboratory capacitance bridges. In the range from 1 megacycle to 30 megacycles a General Radịo Company Type 821-A Impedance Measuring set was employed. Corrections for residual circuit impedances were applied. Various resonant-circuit systems were employed in an attempt to obtain values at higher frequencies, but none of them seemed to yield results as consistent as those obtained at lower frequencies. One of the main difficulties here was obtaining low-capacitance samples of the materials. The standard

FIG. 8-Temperature-dielectric constant curve for barium titanate, where K is 8,000

FIG. 9 - Temperature characteristics of two Group-C materials
capacitors in the various instruments were correlated to each other in order to minimize the variations due to differences between the standards.

Data on dissipation factor and insulation resistance at various temperatures were obtained by immersing the sample in a bath of dry oil of the desired temperature. The procedure was necessary, particularly at low temperatures, to prevent moisture condensation and frost formation on the samples.

The only unusual measuring system was that used to obtain the temperature-coefficient data. Here an oscillator frequency-variation system was employed. The test sample was placed in an oven, and by means of a low-capacitance, low-temperature coefficient feedthrough, it was connected into the tuned circuit of a stable electroncoupled oscillator. Variations in the capacitance of the test sample caused variations in the frequency of the oscillator. The frequency va-

FIG. 10-Aging curve of two Group-C materials, at a test frequency of $1,000 \mathrm{cps}$

FIG. 11 -Voltage characteristics of two Group-C materials

FIG. 12-Dielectric-constant and dissipation characteristics of a Group-C material

Typical tubular ceramic capacitors
riation of the oscillator was measured by beating the oscillator signal against the signal from a frequency standard. A calibrated audio oscillator and comparison oscilloscope were used to measure the beat-note frequency to within 2 or 3 cycles. From the oscillator frequency and the change in frequency, the temperature coefficient was calculated according to the formula

$$
T C_{p p, n}=2 \Delta F C_{r} / F \Delta T C_{x}
$$

where $C_{x}=$ capacitance of the test samples in uuf, $C_{t}=C_{z}+$ additional resonant circuit capacitances, $\Delta T=$ change in temperature in degrees $\mathrm{C}, F=$ frequency in mc, and $\Delta F=$ change in frequency in cycles.

Ceramic Capacitors

A ceramic capacitor in its simplest form consists of a small ceramic disc or rectangular plate with leads soldered to the silver painted electrodes on each surface. This type of capacitor is available commercially. Another style is the concentric tubular capacitor. These capacitors consist of a ceramic tube with electrodes applied to the inner and outer surfaces and leads soldered to the electrodes. Generally ceramic capacitors are not cased but are simply coated with a moisture-resistant lacquer to prevent dirt and moisture accumulation. In some cases, coatings of various phenolic resins are applied or metal or steatite housings used.

Many ceramic capacitors have been developed to meet special requirements. It is possible to obtain special $T C$ curves by using paralleled plates of materials with different $T C$'s and curve shapes, and it is also possible by this means to make a capacitor which shows no measurable change in capacitance with temperature. Capacitors for
use in transmitter tuned circuits are another useful development. These pieces will carry high currents and withstand high voltages but still retain a comparatively small size. High-quality, temper-ature-compensating trimmer capacitors are made from the Group-A materials, and high-voltage filter capacitors for television picture-tube power supplies are one of the most recent uses for the Group-C materials.

Because of their construction, the characteristics of ceramic capacitors do not vary appreciably from those of the dielectric material. This is particularly true at frequencies of the order of 10 megacycles or less. At higher frequencies, the resistance and inductance of the leads and electrodes cause some variations. The resistance of the metal parts will increase approximately as the square root of the frequency. The series inductance of leads and electrodes, though it remains constant, will cause the effective capacitance to vary from the static value by a factor so that

$$
C_{E}=C /\left(1-\omega^{2} L C\right)
$$

where $C=$ the static capacitance, $C_{B}=$ the effective capacitance, and $L=$ series inductance.

As the natural resonant frequency of the capacitor is approached, the dissipation factor and capacitance rise sharply.
The natural resonant frequency of a small-size tubular (0.200 -inch diameter 0.690-inch length) capacitor of $10 \mu \mu \mathrm{f}$ and with $\frac{1}{18}$-inch leads has been calculated to be approximately 600 megacycles, the inductance of the electrodes being 0.004 microhenry and the total lead inductance approximately 0.006 mi crohenry. The natural resonant frequency varies approximately in-
versely as the square root of the capacitance since the inductance of tubular capacitors of the same physical size does not varv appreciably with capacitance.

More uses for the ceramic dielectric materials will no doubt be found as their characteristics become more widely known. Continuing research is almost certain to result in the development of materials with even larger dielectric constants, and though it seems doubtful that an extremely high dielectric constant material with the desirable features of the lower dielectric constant materials will be forthcoming, the new materials should be very useful. Future work in the design and manufacture of ceramic capacitors can be expected to make possible fuller use of both new and existing ceramic materials.

Acknowledgments

The writer wishes to express his thanks to H. R. Laird for his encouragement, assistances, and contributions of data on the behavior of the titanates and to acknowledge the work done by I. W. Schoeninger in the compilation and statistical analysis of voluminous data, the results of tests of ceramic capacitors. Both of these gentlemen are members of the Centralab ceramic engineering group. Mr. Schoeninger is Assistant Chief Ceramic Engineer and Dr. Laird is a physicist.

References

(1) R. F. Field, The Behavior of Di-electrics Over Wide Ranges of Frequency, Temperature, and Humidity. Paper prepared for General Radio Company, Camridge, Mass.
(2) High Dielectric Constant Ceramics, NDRC Div. 14, No. 300, August 1944, Report by Laboratory for Insulation Research of MIT, available from Publication Board, U. S. Department of Commerce.
(3) H. R. Donley, Effect of Field Strength on the Properties of Barium . Strontium Titanate, RCA Review, 8, No. 3, September 1947.

CINCH SOCKETS are standard

PATENT PENDING

No. 56B13345 7/8" Mrg Cenier
No. 56F12865 1" Mrg Center
No. 56F12866 1"Mrg Center with-shield
No. 56G13078 1-5/16" Atg Center
No. 56G13043 1-5/16. Mig Center
Also available in grounded types or
with 8 contacts

The tougher the job... the better!

HERE'S A SOCKET
 THAT REALLY

0
"SINKS ITS TEETH INTO IT"

..it's the new GRIP PIN type socket

 - the locking grip miniature socket for automotive sets. Precision tooled contacts provide high extraction pull out . . supplying maximum tube retentivity, mandatory in automotive set production. Available in any quantity at once.

AVAILABLE AT LEADING ELECTRONIC JOBBERS . . . everywhere

Graphical Power-Level Computations

Chart relating current, voltage, resistance and power in watts or dbm simplifies numerical calculations. Given any two of these parameters, the other two can be found directly from the chart

By DANIEL C. NUTTING

Seattle, Wash

WHERE THE ACCURACY of calculations involving Ohm's laws for power and voltage need not be high the accompanying chart will save time. Typical uses include checking wattage of resistors, choosing dropping and current-limiting resistors, and comparing power levels at points of different impedances in amplifiers and other circuits.

On the log-log chart the horizontal axis represents resistance and the vertical axis represents power. Superimposed on these coordinates is a similar set of $\log -\log$ coordinates drawn at 45 deg with respect to the others. These latter coordinates represent current and voltage.

The chart solves equations of the form $w x=y$ and $x y=z$ (or $w x^{2}=z$ and $y^{2} / w=z$).

Given any two parameters, the other two are located at the intersection of the indicated coordinates. For example, if the measured potential across a 20 ,000 -ohm load resistance is 30 volts, the chart indicates that the load consumes 0.045 watt and draws 1.5 milliamperes.

The auxiliary scale on the right-hand margin of the chart gives the power in terms of decibels with reference to one milliwatt, as is customary in communication measurements.

GRID BIAS CELLS - An exclusive, patented Mallory produet designed to provide dependable and conntant grid hias potential in radio receivers, high gain voltage amplifiers, AVC circuits, hiaring ails and other elee, tronic appliances employing class "A" amplificition. Nominal voltage 40,000 ohme.

Standard or Special

 Mallory Parts are convenient to order, reliable to useElectronic components made by Mallory include standard items, such as jacks, plugs, switches, resistors, capacitors, vibrators and the like-and Mallory exclusives, like the grid bias cells, or the Inductuner \dagger tuming device (not shown) or the 2100 -nultiple push button switch-plus "custom built" parts that Mallory designs and makes for specific uses.

The precision methods of manufacture and inspection practiced at Mallory insure components uriform in performance. That is why Mallory parts are used on so much test and experimental equipment, as well as on production runs.
Catalog 747 describes Mallory's complete service on standard stock components. Your Mallory distributor sells cverything in this catalog. He carries many of the standard items in stock. He can arrange to stock special items in quantities, based on your anticipated requirenents. Refer special designs, or problems requiring design service to the address below.

NO. 2100-MULTIPLE PUSH BUTTON SWITCHES-For making, breaking, or transferring multiple circuits. Available in +108 buttons in both shorting and mon-ahorting ty pes. I'lunar and lattel, lar mechanism provide inter-locking action whereby any depressed button is released
when a second button is pressed.

JACK SWITCHES - J'rames are steel cadmium plate: bushing of nickel plate lrass; contats of fine silver; springs, bickel plate spring brass, Furnished complete with hack knob, nut and waslier.

SC JACKS - SC, I - Phone Jack, equivalent of Simal Corps Jack \#J K-3i-A. Jahes following plugs: Mallory \#75, Wentern Elcetric \#ack

SCA-2B-Microphone Jack, equivalent of Signal Corps Jack \#JK-3.3-A. Designed to take the following plugs: Western Electric \#1om, Signa Curps \#PL-16, \#l'L-69, \#1'L-168.

PLUGS-PHONE AND MICROPHONE

2 -way phons, phags with tie cord anchors, bahelite or shimded nickel shell- 3 -way mierogliella with built-in cable clamps.

TUBES AT WORK

Including INDUSTRIAL CONTROL
 Edited by VIN ZELUFF

STL on 950-mc Band 124
Resistance Deviation Bridge 126
F-M Radiator 150
Polyphase Power Synchroscope 152

STL on 950-me Band

Equipment installed as the studio-to-transmitter link for f-m station WFMI, Portsmouth, N. H., operates on 940.5 megacycles, perhaps the first permanent stl on that frequency. Because Portsmouth is only 50 feet above sea level, the broadcast transmitter is located on Saddleback Mountain, 1,180 feet high and 21 miles distant.

Studio-transmitter link equipment was designed to meet FCC requirements for f-m stations relaying their programs from the studio to transmitter in instances where, for one reason or another, wire lines are not feasible.

The basic exciter unit used in Harvey Radio Laboratories f-m broadcast transmitters has been slightly modified by the manufacturer. This unit utilizes the Phasitron system as shown in the block diagram of Fig. 1. For the stl, the normal crystal frequency of 200 kc is changed to 400 kc since the frequency stability tolerance can still be easily met and one stage of frequency multiplication is eliminated.

FIG. 1--Stages of the exciter unit for f -m stl transmitter

The series of doubler and tripler stages produces an output from this exciter unit at 34 to 36 mc . Conventional circuitry is used with complete metering of all circuits.

The circuit of the power tripler panel is shown in Fig. 2. This contains an 829 B operating class C tripling from $34-36 \mathrm{mc}$ to $102-109$
mc , which drives a pair of 2 C 43 lighthouse triodes in push-pull tripling from $102-109 \mathrm{mc}$ to $306-$ 327 mc . The 829 B stage is a conventional lumped-constant circuit. The input circuit of the second tripler is also a lumped-constant circuit but the plate circuit is tuned by parallel lines.

The input circuit of the third tripler, also a pair of 2 C 43 tubes, is a parallel line circuit and the plate circuit utilizes precision cavities tuned to final frequency.

The final amplifier is a groundedgrid 2C43 lighthouse tube in a tunable cavity circuit, having an output of 5 watts. The filament transformer which supplies all lighthouse tubes is controlled by a Variac and monitored by a voltmeter.

Measurements in the laboratory and in the field show that the transmitter meets the requirements laid down. The tuning range is 920 to 980 mc ; frequency stability is better than the requirement -being 0.001 percent; frequency deviation is $\pm 200 \mathrm{kc}$; $\mathrm{f}-\mathrm{m}$ hum and noise level is better than 70 db below 100 percent modulation; a-m hum and noise level are more than 50 db down; the frequency response of the audio system matches the standard 75-microsecond preemphasis curve to within 1 db from 50 cps to 15 kc ; a-f distortion is less than 0.5 percent between 100 cps and 7.5 kc and less than 1 percent from 50 cps to 100 cps and from 7.5 kc to 15 kc .

A block diagram of the receiver

FIG. 2-Tripler stages are driven by the exciter at 35 mc and provide output on 950 mc

FIG. 3-Block diagram of receiver stages including the multi-stage local oscillator
is shown in Fig. 3. The i-f is 30 mc, requiring local oscillator power at $890-950 \mathrm{mc}$ for reception of $920-980 \mathrm{mc}$. This frequency is obtained by the series of triplers shown.
The oscillator is crystal-controlled, using a temperature-controlled crystal in the vicinity of 3.8 mc . This circuit is provided with a vernier control to allow precise tuning to the transmitter frequency. Conventional frequency multipliers using double-tuned crit-ically-coupled circuits for prevention of spurious radiation follow the crystal oscillator. A lighthouse tube multiplier in a parallel line circuit is used for the 100 to $300-\mathrm{mc}$ tripler and the last tripler is also a lighthouse tube, in a tunable cavity circuit, providing output between 890 and 950 mc .

A control is provided for the d-c filament voltage which is used on the audio stages, the local oscillator, the r-f amplifier, and the mixer.

The r-f amplifier is a groundedgrid lighthouse tube in a tunable cavity circuit. Another lighthouse tube is used for the mixer, and its cavity is mounted just below the r-f stage. Adjustable local oscillator injection is provided into the mixer cavity.

The i-f amplifier is a 4 -stage 30 -
mc amplifier using double-tuned, iron core transformers to provide a bandwith of 600 kc . The amplifier has a flat response characteristic over the bandpass.

Following the i-f, cascaded limiters feed the discriminator. A cathode follower isolates the low impedance de-emphasis circuit from the discriminator, providing loading which does not vary with frequency. A vtvm measures discriminator output, to provide a reading of kilocycles off resonance.

The audio system, shown at the upper right in Fig. 3, consists of a phase inverter followed by two push-pull stages. Triodes are used

Closeup view of the $30-100$ and $100-300 \mathrm{mc}$ tripler stages
throughout for minimum distortion. A precision gain control having 45 steps of 1 db each is used to control the output. Maximum output is +18 vu and is monitored by a vu meter. Balanced $500 / 600$-ohm output is provided. Audio frequency distortion is less than 0.5 percent from 50 cps to 15 kc .

Measurements in the laboratory and in the field show that the receiver is quieted by an RMA quieting signal of 3 microvolts, that its noise figure is 10 db and that the hum and noise level is more than 70 db down. Because of the high frequency stability of the receiver, it is possible to use it as a partial frequency monitor.

Either of two types of antennas are used with the stl. The cornerreflector type has a gain of 12 db and its directivity characteristics are such that at all azimuth angles greater than 30 degrees from the direction of maximum directivity, the power is down 15 db . The paraboloid antenna uses a 72 -inch re-

Cavities and coupling circuits of the r-f portion of the uhf transmitter
flector which provides a gain of 23 db .

The standard corner reflector antennas are intended for use at line-of-sight distances of ten to fifteen miles. For ranges in excess of about twelve miles and up to about twenty-five miles, a paraboloid antenna at one end of the circuit will probably be necessary. For distances greater than twentyfive miles or short paths where not quite line-of-sight conditions exist, two paraboloids are recommended. Maximum distance for reliable operation is about thirty-five miles.

Resistance Deviation Bridge

Joseph C. Frommer Electronic Engineer Cincinnati, Ohio

The instrument to be described was developed following the need for selecting and matching resistors in groups of ± 0.5 percent. It consists of a Wheatstone Bridge containing two built-in equal arms, one pair of terminals for the resistor to be tested and one pair of terminals for any desired resistor to be inserted as a standard of comparison. The bridge is fed by 12 volts of d-c and halance is detected by a vacuumtube voltmeter. The output of the
(continued on p 140)

Now it's permanent magnets for better television reception. The permanent magnet shown above keeps electrons on the beam ... eliminates blurring of the television picture. Once the set has been focused further adjustments are unnecessary. And, the use of a G-E permanent magnet results in greater efficiency since no heat is generated by the Cast Alnico ring magnet.

An outstanding feature of this ring magnet is the very thin wall section developed by G-E process engineers. Heretofore this was possible only with sintered magnets. Better permanent magnets as well as new applications are constantly being developed by G-E engineers.

Perhaps you can improve the efficiency of your product with G-E permanent magnets. General Electric will be glad to work with you to improve your product. Greater flexibility of magnet design is possible with the many G-E permanent magnet materials now available. All are produced under rigid quality control methods. This assures you of receiving magnets of the highest uniform quality for your application.

 MAACSME E O GTHTTABEATL

Clear, sharp television reception with the new G-E Magnetic Focusing Assembly.

The magnetic field set up by the assembly focuses the elec. fron beam on the television screen. The combined effect of the G-E Cast Alnico 6 permanent magnet and a small coil produces this magnetic field axial with the tube neck. The ring magnet supplies the bulk of the mag. netic flux while the coil acts as a vernier adjustment. The punched pole pieces collect the magnetic flux and direct it into a uniform radial pattern.

Outstanding advantages of this new assembly are increased efficiency and compactness. Defocusing due to line voltage fluctuation and warm-up drift is eliminated.

\| METALLURGY DIVISION

I CHEMICAL DEPARTMENT, SECTION CM-8
! GENERAL ELECTRIC COMPANY
1 PITTSFIELD, MASS.
1 Please send me:
\square Bulletin CDM-1, ''G-E Permanent Magnets."
Name
\qquad Title
Company \qquad
Products Mfrd
Address...
City
State
ELECTRIC

THE ELECTRON ART

Edited by FRANK ROCKETT

Improved Material for Magnetic Amplifiers 128
Nonmagnetic Magnetometer 166
Multifrequency Synchronizer 168
Indoor Television Antenna. 173
Industrial Magnetron 175
Survey of New Techniques 175
Improved Material for Magnetic Amplifiers

SUCCESSFUL APPLICATION of magnetic amplifiers ${ }^{1}$ has stimulated investigation of these devices. At a symposium on magnetic materials held in Washington, D. C., June 15, development of a suitable core material, carried out at the Naval Ordnance Laboratory, White Oaks, Md., was described by G. W. Elmen, consultant to the laboratory, and E. A. Gaugler', and E. Both, Squire Signal Lab; A. O. Black, of NOL, described the characteristics of electromagnetic amplifiers that could be obtained with the new core.

Frank Logan, Vickers Electric Div., Vickers Inc., reviewed development of saturable reactors and magnetic amplifiers including an experimental two-stage audio amplifier driven by a single-button carbon microphone and delivering 15 peak watts to a dynamic speaker. Otto Jensen, Rectifier Div., I.T.E. Circuit Breaker Co., showed how highly efficient electromechanical rectifiers could be built using saturable reactors.

The following material is a coordinated summary of the inforEnay

At Naval Ordnance Lab materials are measured to find those best suited for magnetic amplifiera
mation presented in these several papers.

Rectangular Hysteresis Loop

Several methods have been developed to produce materials having substantially rectangular hysteresis loops as shown in Fig. 1. A German process consists of drastic cold reduction followed by annealing in hydrogen at about $1,100 \mathrm{C}$ for two hours and rapid cooling of very pure 50-50 nickeliron alloy. At the Bell Telephone Labs 69 permalloy and some of the perminvars were found to display rectangular loops when cooled in magnetic fields. Mihara, in Japan, recently obtained similar results by cooling very pure silicon steel in a magnetic field.

The technique perfected and adapted to mass production at NOL for producing permenorm 5000-Z is a combination of cold reduction and annealing. Precautions are taken to minimize impurities introduced by both the raw materials and the melting of the alloy, which

Properties of new core material depend on its being annealed under carefully controlled conditions
consists of equal portions of nickel and iron. Melting and casting are done under vacuum, resulting in an oxygen and carbon content below 0.01 percent. The ingots are hot rolled to 0.21 inch, then cold rolled without annealing to below 0.10 inch, resulting in 98 percent reduction. The sheets are slit into the desired tape width (0.014 inch) and finally rolled to a thickness of 0.0012 or 0.002 inch. The tape is then insulated by conventional methods and wound into spiral cores. These cores are heated in pure dry hydrogen to an optimum temperature determined magnetically from samples for each melt. After two hours the cores are rapidly cooled.

To preserve the rectangular characteristics and the sharp knee, the cores should not have air gaps, hence the uncut wound toroidal form. The magnetic field must be uniform over the entire cross section, requiring a narrow annular width relative to the mean radius. After the final heat treatment the cores should not be mechanically strained, therefore they are mounted in forms that support the windings. Because the transient time of reversals of saturation are very short in the applications of these cores, thin tape and high specific resistance are necessary.

Magnetic Amplifiers

Although numerous attempts have in the past been made to develop magnetic amplifiers, these devices have had limited application. With an understanding of

Magnetic amplifiers produce power qains of several thousand per stage, twice that previously possible

A NEW AMPLITUDE MODULATED SIGNAL GENERATOR Type 211-A • Frequency Range 88-140 Megacycles

Output Frequency Crystal Monitored
Amplitude Modulation 0-100\%
Modulation Fidelity $\pm 0.5 \mathrm{db}$ 30 cycles to 11 kilocycles Negligible Spurious FM

SPECIFICATIONS

FREQUENCY RANGE: Master Oscillotor: 88-140 megacycles in one range. Vernier frequency dial has 100 divisions and is coupled to he main funing capacitor through a $120: 1$ gear drive. Each vernier division is equivalent io a 10 kc , chonge in frequency.
Crystal Controlled Frequencies: Either of two crystals 110.100 mc . and 114.900 mc ., occurate to $\pm=0.0035 \%$, may be selected by a s witch for use individually or in combination with the master oscil-
letor fo standardize its output frequency.
AMPLITUDE MODULATION CHARACTERISTICS: Two amplitude modulation ranges, $0-30 \%$ and $0-100 \%$, are provided for Use with the internal oscillator or a low distortion external oscillator. Disortion is 5% or less of 95% amplifude modulation.
Internal Audio Oscilletor: Two modulating frequencies, 400 and
1000 cycles. 1000 eycles.
Modulation Amplifier: The internal modulating amplifer hos the following choracteristics:

Uniform response within $\pm 0.5 \mathrm{db}$. 30 cycles to 11 kc .
Uniform response within $\pm 0.1 \mathrm{db} .90$ cycles to 150 cycles. Uniform response within $\pm=0.1 \mathrm{db} .9500$ cycles to 10.5 kc .
Phose Distortion: (up to 60% omplitude modulation.)
Less than 0.25 degrees af 30 eycles.
Less than 10 degraes at 11 kc .
AUDIO TEST VOLTAGE: This instrument contains a demodulator or detector which supplies to front panel ferminals a portion of the demodulated carrien
SPURIOUS FM: Less than I kc. of 60% AM.
OUTPUT ATTENUATOR: Single ended piston type, adjustable from 0.2 volt to 0.1 microvalt. Oufput impedance as seen looking in af terminals of output calle is $\mathbf{2 6 . 5} \mathbf{~ o h m s}$.

DESIGNERS AND MANUFACTURERS OF THE O METER - OX CHECKER FREQUENCY MODULATED SIGNAL GENERATOR • BEAT FREQUENCE GENERATOR AND OTHER DIRECT READING INSTRUMENTS

The Type 211.A Signal Generator is specifically designed for the testing and calibrating of omin-range radio receiving equipment. It is also well suited for laboratory and development work where a precision type amplitude modulated R.F. signal source is required.
Careful consideration has been given to the location of panel controls with respect to lunctian and degree of use. The main frequency dial is located in the center of the panel, with the vernier dial to the left in close proximity, utilizing the same fiducial for simplicity and ease of operation. Symmetrically locoted to the right of the Irequency dial is the output attenuator dial, direcily calibrated in microvolts. The center panel enclosure embodies those controls which the operator will have the greatest occasion to use, permitting rapid, accurate settings to be made with maximum convenience.
The calibration accuracy of the frequency dial settings is $\pm 0.25 \%$ at any point; however since crystal controlled frequencies are also available within the instrument, zero beats may be obtained from which the output frequency may be standardized to an accuracy of about $\pm 0.025 \%$ by slipping the yernier frequency dial with respect to the main frequency dial. This feature permits the identification and checking of channel frequencies differing by as little as 100 kc .

Write today for complete devails!

BOONTON GADIO

HYSTERESIS LOOP $50 \% \mathrm{Ni}, 50 \%$ Fe ALLOY

ORASTIC COLD REDUCTION, ANNEALEO FOR 2 HOURS AT INDICATED TEMPERATURES

HYSTERESIŚ LOOP OF HIGH PURITY 5.0% Si-Fe COOLED IN A MAGNETIC FIELO OF O. 3 OERSTED

FIG. 1-Hysteresis loops are made rectangular by (A) special annealing which must be done at a critical temperature (B), or by annealing in a magnetic field (C)
the theory of their operation, ${ }^{\text {a }}$ engineers in Europe have produced successful units. ${ }^{4}$ Development of improved magnetic core material opens the possibility that these amplifiers can be used more widely, especially in rugged industrial control equipment that must require little maintenance.

Operation of a magnetic amplifier can be followed from the series of curves shown in Fig. 2; the action is similar to that of a thyratron. Consider a simple reactor having two windings, one carrying the alternating current that is to be controlled, the other carrying the direct control current. With zero control current the reactor presents high impedance at all values of applied alternating voltage so that negligible power is developed in the load. With a slight amount of control current the core is saturated at the peak of the load current cycle; it then presents low impedance and power is momentarily developed across the load.

Hysteresis causes the power pulse to be unsymmetrical. The portion of the cycle during which load current can flow is increased as the control current is increased.

The core size and ampere-turns are so proportioned for the power to be controlled that at zero control current the core does not become saturated and at full control current the core is saturated during the full positive half cycle. To obtain the optimum range of output for a given reactor and control signal the maximum flux density at cutoff is adjusted so that the hysteresis loop is symmetrical and shows a total excursion of flux density just less than twice the saturation flux density of the material. For high power capacity the knee of the hysteresis curve should occur at high density. For high amplification the magnetizing force at the knee should be small. These design requirements can be realized readily with the new core material.

For practical operation two re-
actors, or their magnetic equivalent, are used. The control windings are so arranged that the fundamental component of the a-c induced into them by transformer action cancels, and so that fullwave operation can be obtained. Figure 3 compares the results obtainable with permenorm $5000-\mathrm{Z}$ and standard electrical steel.

Electromechanical Rectifier

Efficient high-current rectifiers are needed in the chemical and transportation industries to convert a-c to d-c. Although mercury arc and similar electronic rectifiers are widely used in this application, mechanical rectifiers have also been used. Figure 4 shows the elements of such a unit. To prevent destructive arcing, commutation should take place at zero phase current. However, a sinusoidal alternating current is changing most rapidly at zero so that it is difficult to time
(continued on p 164)

FIG. 2-Bias current serves to regulate portion of cycle during which reactor permits voltage to develop across load

FIG. 3-Comparison of amplifiers using differently treated cores

Send for new 28 -page data book on Waldes Truarc Retaining Rings

NEW PRODUCTS

Edited by A. A. McKENZIE

> New equipment, components, tubes, testing apparatus and products closely allied to the electronics field. A review of catalogs, handbooks, technical bulletins and other manufacturers' literature

Wide-Range Wattmeter

Anderson-Fluke Engineering Co., Box 815A, Springdale, Conn. Model 101 VAW meter measures volts, amperes and watts over a frequency range of 20 to 200,000 cps. Eight voltage ranges from 0.1 to 300 v and ten current ranges 0.001 to 30 amp . provide power readings from 100 microwatts to 9 kw . Input resistance is 1 megohm

in parallel with 25 micromicrofarads. Powered by 117 volts at 60 cps , the electronically regulated power supply and feedback amplifiers make for stable calibration. Literature is available on request.

Soldering Pencil

Ungar Electric Tool Co., Los Angeles 54, Calif. A new soldering pencil with interchangeable tips operates from socket power and heats to 600 degrees in 90 seconds. The pencil is 7 inches long and has a maximum diameter of 1 inch.

Tape Recorder Heads

Webster Engineering Co., 421 Sinclair Ave., S. E., Cedar Rapids, Iowa. Plug-in magnetic tape recorder heads can be used in any

octal tube socket and are furnished in a variety of coil and impedance arrangements. Both playback and erase heads have steel covers.

Tape Recorder Chassis

Magnephone Division, Amplifier CORP. OF AMERICA, 398-7 Broadway, New York 13, N. Y. The Twin-Trax tape recorder chassis has an attainable frequency response of 50 to 9,000 cycles $\pm 3 \mathrm{db}$. An automatic switch and solenoid instantly reverses direction of tape travel at the end of the reel. Facil-

ities are available for the use of a turntable and phono-pickup for dise record playback, or for copying records onto tape. Twin-channel stereophonic recording for 3dimensional effect is possible.

Remote-Control Amplifier

Brook Electronics Inc., 34 DeHart Place, Elizabeth 2, N. J., has a new remote-control model 10 C 3 amplifier designed essentially for custom-built radiophonographs. The smaller of the two chassis shown contains the preamplifier

stages, input jacks and operating controls. The larger contains the 30 -watt power amplifier and power supply. Frequency response is flat within 0.2 db from 20 to 20,000 cycles.

Miniature Televiser

Pilot Radio Corp., 37-06 ThirtySixth St., Long Island City, N. Y. The Candid-TV home television receiver employs a new 3 -in. cathode ray tube and weighs 15 pounds.

Continuous tuning of all bands with conventional components helps to keep the retail price at $\$ 99.50$.

Soldering Gun

Weller MFg. Co., Easton, Pa. The new 12 -inch soldering gun is designed for particularly long-reach requirements such as telephone

HERE ARE THE ANSWERS TO

Your Questions About TELEVISION!

 answer in a set of four informative bulletins just produced by Raytheon. First released at the recent N. A. B. Convention, their

How Do We Get Started?
What Equipment Do We
For lnitial Operation? For A Small station.
For A Complete litermediate station? What program services can We Offer? Wquipment cost ? How Much Will Equipment $\cos ^{t}$
practical, factual approach to the basic problems of television was hailed alike by executives, engineers and countless others interested in the tremendous possibilities of this new industry.

Write for your copies today. They are yours for the asking - with the compliments of Raytheon, makers of complete equipment for AM, FM and TV stations.

RAYTHEON MANUFACTURING COMPANY

Waltham 54, Massachusetts
Please send me your Bulletins DL-T-804, 805, 806 and 807 on equipment required for new television stations.

Name

Title
Affiliation
Address.
City

multiple maintenance. Dual heat at 100 and 135 watts is provided, with operation on 115 volts at 60 cycles. Like the other models it has five-second heating, built-in transformer, prefocused spotlight and trigger switch.

Sound Level Meter

Hermon Hosmer Scott, Inc., 385 Putnam Ave., Cambridge 39, Mass. Type 410-A sound level meter has a range 34 to 140 db above the ASA

reference level and has standard weighting characteristics. The microphone can be used on an extension cable if desired. Net weight is about 2 pounds.

R-F Oscillator

Technology Instrument Corp., 1058 Main St., Waltham 54, Mass. Type 410-A r-f oscillator is a gen-eral-purpose laboratory instrument and a signal source for r-f bridges. It is provided with output voltmeter and a continuously adjustable level control. Frequency range is 100 kc to 10 mc in six bands. Internal modulation at 1,000 cycles is provided. Output impedance is ap-
proximately 50 ohms. In the May issue of this magazine the manufacturer's name was erroneously given.

Ultrasonic Tester

Sperry Products, INc., 1505 Willow Ave., Hoboken, N. J. Type SR05, a new Supersonic Reflectoscope, is used for nondestructive

testing of metals and other materials for internal defects. The unit measures $14 \times 16 \times 23$ inches, is portable, and weighs about 85 pounds.

Tape Accessory

Inland Sales Inc., 622 N. Monroe St., Spokane 11, Washington. An accessory that improves performance of the Brush Soundmirror, designated Tru Speed Pressure Roller, is available. The illustra-

tion shows method of mounting. The roller can be swung away from the capstan for tape threading but locks in position when the machine is in operation.

Aluminized Steel

Sylvania Electric Products Inc., Emporium, Pa. A new type of aluminized steel provides a surface with heat-radiating properties 85 percent of the perfect black body. It evolves a minimum of gas when

used in the manufacture of vacuum tubes. Finished strip is ductile, has a black finish, and is 0.005 inch thick.

Grid Dip Oscillator

De Vine Laboratory, Madison, N. J. Model 70 Grid dip oscillator covers the range from 2 to 200 megacycles, using 7 coils. Operated

without plate voltage, the unit acts as an absorption type meter with indicating meter. Batteries can be substituted for the a-c power supply unit.

Tape Recorder

Dormitzer Electric \& Mfg. Corp., 782 Commonwealth Ave., Boston, Mass. Three motors are used in a new magnetic tape recorder that

(Continued on p 176)

Ten years ago the first AUDIODISC was manufactured . . . manufactured by a patented precision-machine process, which produced the finest recording dise known.

During this decade AUDIODISCS have been rated first in every field of sound recording . .. racio broadeasting, commercial recording studios, the phonograph record industry, motion picture studios, educational institutions, home recording, research laboratories and governmental agencies. In every country throughout the world, AUCICDISCS are regarded as the true standard of recording quality.

At first the output of AUDIODISES was measured in tens of thousands, then in hundreds of thousands and later in millions per year. Today this highest rate of production is being maintained and the quality is the finest yet achieved.

AUDIODEVICES, INC., 444 Madison Avenue, New York 22, N.Y.

Export Department: Rocke International Corp., 13 E. 40th Street, New York 16, N. Y.
Audiodiscs are manufactured in the U.S.A. under exclusive license from PYRAL, S.A.R.L., Paris

NEWS OF THE INDUSTRY

Edited by JOHN MARKUS

Largest television hookup; low-powered
 $\mathrm{f}-\mathrm{m}$ is authorized by FCC; 65 scientists receive awards; reviews of 12 new books

Commercial Facsimile

Facsimile service on a commercial basis can now be rendered by commercial $\mathrm{f}-\mathrm{m}$ broadcast stations, as a result of a recent FCC decision. Simplex facsimile transmissions
will be limited to one hour between 7:00 a.m. and midnight. Multiplex facsimile may be transmitted for a maximum of three hours during the same period.

The Commission at the same time amended its Engineering Standards to incorporate the following definitions:

The index of cooperation as applied to facsimile broadcasting is the product of the number of lines per inch, the available line length in inches, and the reciprocal of the line-use ratio. (Thus, 105×8.2 $\times 8 / 7=984$)
The term line-use ratio as applied to facsimile broadcasting is the ratio of the available line to the total length of scaning line.
The term available line means the portion of the total length of scanning line that can be used specifically for picture signals.
The term rectilinear scanning means the process of scanning an area in a predeter. mined sequence of narrow straight paral. lel strips. ogarith (to the base 10) of the ratio of incident to be transmitted or reflected light.
The following standards apply to facsimile broadcasting :

1. Rectilinear scanning shall be employed, with scanning spot progressing from left to right and scanned lines pro-

Preferred List of Army-Navy Electron Tubes

	Diodes	Diode Triodes	Triodes	Twin Triodes	Pentodes		Converters	Klystrons	Power Output	Tuning Indi-cators	Rectifiers	Miscellaneous	
					$\mathrm{Re}-$ mote	Sharp						Cathode Ray	$\begin{gathered} \text { Crys- } \\ \text { tals } \end{gathered}$
1.4	1 A 3			3A5	1 T 4	$\begin{aligned} & 1 U 4 \\ & 1 U 5 \end{aligned}$	1R5		$\begin{aligned} & 3 A 4 \\ & 3 S 4 \\ & 3 V 4 \end{aligned}$		${ }_{1}^{1 Z 2}$	2BP1 3DP1A 3JP(1,7,12)	1N21B 1 N23B 1N25
5.0											5U4WG* 5Y3GT	$\begin{aligned} & 5 \mathrm{CP}(1 \mathrm{~A}, 7 \mathrm{~A}, 12) \\ & 5 \mathrm{FP}(\mathrm{~A}, 7 \mathrm{~A}, 14) \\ & 5 \mathrm{JP} \end{aligned}$	
6.3	$\begin{aligned} & 2 \mathrm{~B} 22 \\ & 6 \mathrm{AL} 5 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 6 A T 6 \\ & 6 B F 6 \end{aligned}$	$\begin{aligned} & 2 \mathrm{C40} \\ & 6 \mathrm{C4} 4 \\ & 6 \mathrm{~F} 4 \\ & 6 J 4 \\ & 6 \mathrm{~N} 4 \end{aligned}$	$\begin{aligned} & \text { 2C51 } \\ & \text { 6AS7G } \\ & \text { 6JG } \\ & \text { 6NGGT } \\ & \text { 6SL7W } \\ & \text { 6SN7W } \\ & \text { 12AT7 } \\ & \text { 12AU7 } \\ & \text { 12AX7 } \\ & 5687 \end{aligned}$	$\begin{aligned} & \text { 6BA6 } \\ & \text { 6BD6 } \\ & \text { 6SG7 } \\ & \text { 6SK7 } \\ & 9003 \end{aligned}$	6AC7W 6AG5 6AN6$6 A K 5$ 6AS6 6AU6 6SJ7W* 5656	$\begin{aligned} & * \\ & 6 \mathrm{EBE} 6 \\ & 6 \mathrm{SB} 7 \mathrm{Y} \end{aligned}$	$2 K 22$ $2 K 48$ $2 K 26$ $2 K 50$ $2 K 28$ $2 K 54$ $2 K 29$ $2 K 55$ $2 K 41$ 2 KL	2E30 6AG7 6AK6 6AN5 6AQ5 6B4G 6L6WGA* 6Y6GT 6Y6G	6E5	$\begin{aligned} & 6 \times 4 \\ & 6 \times 5 W^{*} \end{aligned}$	$\begin{aligned} & 7 B P 7 A \\ & 10 \mathrm{KP7} \\ & 12 \mathrm{DP} 7 \mathrm{~A} \end{aligned}$	Phototubes
												Voltage Regulators OA2 OB2 0A3/VR75	$\begin{aligned} & 1 \text { 1P30 } \\ & 1 \text { P37 } \\ & 1 P 39 \\ & 1 P 40 \\ & 927 \end{aligned}$
25	or over								25L6GT		25Z6GT	OD3/VR150	
$\begin{gathered} \hline \text { Only } \\ 28 \text { vol } \\ \text { su } \\ \text { ope } \end{gathered}$	types for Its anode upply eration	26C6				26A6	26D6		26A7GT				

* Where the ruggedized version (W suffix) cannot be procured, a JAN prototype may be used, provided direct interchangeability is assured.

Receiving types are listed in upper section, transmitting types below. This preferred list, dated May 7, 1948, supersedes the previous lists dated Jan. 28, 1947 and Jan. 28, 1948. The purpose of the list is to effect an eventual reduction in the variety of tubes used in Servfce equipment. It is mandatory that all tubes to be used in all future design of new equipments under the furisdiction of the Army laboratories or the Navy department be chosen from this list. Provisions are made for certaln exceptions, however. For permission to use other tubes in Army equipment, write to the Army Laboratory concerned with such equipment; for Navy equipment, write to Electronics Division, Bureau of Ships, Code 930-R, Navy Department, Washington, D. C.

television high voltage FILTER CERAMICON

The newly developed Erie Type 410 Ceramicon provides a new high standard of dependability for high voltage filtering. Retaining the inherent high flashover protection of the original Erie Double-Cup design of the dielectric, extra safety factor has been added by a low-loss molded bakelite case designed to provide longest possible creepage path between terminals.
Specifications: Flash test -22,500 Volts; Life test- 15,000 Volts at $85^{\circ} \mathrm{C}$ for 1,000 hours; Capacity, $500 \mathrm{MMF}, \pm 20 \%$.

9,000 VOLT BY-PASS CERAMICON

This new ceramic dielectric by-pass condenser is rated at $10,000 \mathrm{RMS}$ test and 7 KVA load. Maximum operating temperature is $100^{\circ} \mathrm{C}$. Type 2344 Erie Ceramicon is available in $1,000 \mathrm{MMF}$ capacity. Size approximately $41 / 8^{\prime \prime}$ high.

200 AMP. FEED-THRU BY-PASS CERAMICON

Erie Type 2373 Ceramicon is ideal for power line terminals to by-pass radio frequency currents on industrial heating and similar equipment. Conservatively rated at 1,000 Volts DC. operated with current carrying capacity of 200 Amps. overall length $41 / 2^{\prime \prime}$ Standard capacity ranges, $250 \mathrm{MMF}, 650 \mathrm{MMF}$, 1,000 MMF, and 10,000 MMF.

10,000 VOLT, 20 KVA CERAMICON

This plate-type ceramic condenser combines ratings of 20 KVA and 10,000 Volts DC. with compact size, only $43 / 8^{\prime \prime}$ dial. x $2-5 / 16^{\prime \prime}$ height. With forced air circulation rated load is above 50 KVA at 15 MC. Type 3688 Ceramicon is made in 500 MMF and $1,000 \mathrm{MMF}$ capacities.

MEETINGS

Aug. 20-29: All-Electrical Exposition, Pan-Pacific Audiorim, Los Angeles, Calif
Avg. 24-27: AIEE Pacific General Heeting, Spokane, Mash.
Sept. 4-6: ARRL Convention, Milwauke Auditorimm, Milwaukee.
SEpt. 6-11: lnternational television meeting, with exhibition Sept. 2 tor 15, Swiss Federal Institute of Technology, Zurich. Address inquiries to Serretariat, International Television Meeting, Gloriastrasse 41, Zurich 6, Switzerland.
Sept. 13-17: Third Instrument Conference and Exhibit, Convention llall. Philadelphia, Pa.
Sepr. 20-23: Annual meeting, Associated Police Commmication Of fieers. Inc., Rice Hotel, Homstom

SEPT. 27-Oc:T. l: Third National Plastic Exposition, Grand Central Palace, New York City.
Sepr. 29-Oct. 2: Pacific Electronic Exhibition and lRE west coast Ammal Convention, Bilmore Hotel, Los Angeles, Calif.
Oct. 5-7: AIEE Middle-Eastern District Meeting, Washington, D. C.
Oct. 11-12: FM Association Second Anmual Convention, Sheraton Hotel, Chicago.
Ост. 12-16: Fifth National Chemical Exposition, Coliseum, Chicago, Ill.
Oct. 23-29: Annual convention, American Society for Metals, Benjamin Franklin Hotel, Philadelphia.
Ot.t. 25-28: Annual Fall meeting of
the Institute of Wetals Division, American Institute of Mining and Vetallurgical Engineers, Hotel IIfphia, Philadelphia.
Oct. 25-29: National Metal Exposition, Commercial Museum and Convention lalls, Philadelphia.
Oct. 25-29: Annual Convention, American Welding Society, Belle-vue-Stratford Hotel, Philadelphia
Oст. 25-29: 64th semiannual com vention, Society of Motion Picfure Engineers, Hotel Statler. Washington, D. C.
Oct. 27-28: Annual Convention. Suciety for Non-Destructive Testing. llotel Adelphia, Philadelphia.
Nov. 4-6 National Electronics (ionference, Edgewater Beach Hotel, Chicago.
grassing from lop to bottom of suluject cops
that The stambard index of comperation shall he 984.
3. The ntmmer of scamning lines per 4. The siall bez 360.
11. Neg, of the ratio shall be $7 / 8$, or 5. The 1/ cycle. Il the avalahe or acg. not included divided avabathe scanning line shall be 1.) deg being ree emaal parts, the first 1.) deg. being uspd for transmission at approximately white level, the second 7., deg. for transmission at approximately tramsmission at apmoximatery white for i. An int ar anproximately white level. seconds shatl be available between two passs of subject cons, for the transmis sion of a pagr-sebaration sigmal and/on other servicess, 7 Ampliturie modution of sulbcurriut ball be used.
8. Suboarrier modulation shall normally Fary apmonxmately lmearly with the noltical density of the subject copy.
6. Negative modulation shall he used. i. e., maximum subcarrier amplitude and maximum radio-frequency swing on hak 10. Subearrier noise level shall be maintained at least 30 db below maximum (black) picture modulation level, at the
ratio transmittar inpont.

New Experimental Television Station

Radio frequencies above 500 mc will soon be explored by RCA as a medium for the expansion of television broadeasting. A new experimental station will be installed at the Wardman Park Hotel in Washington, location of NBC's commercial television station WNBW. Simultaneous operation of the two stations on 67 mc and 510 mc will give engineers an opportunity for the first time to compare the service possibilities of uhf frequencies with those of the present lower-hand commercial frequencies.

Transmitting equipment for the
tests has been completed and installation awaits only the FCC authorization. The transmitter will produce an effective radiated power up to 25 kilowatts. With this power engineers can make field strength surveys of a $500-\mathrm{mc}$ broadcast service under all conditions and over all kinds of terrain.

Should the experiments prove these frequencies are practicable for television, a simple adapter can be provided for present television sets to enable them to receive programs broadcast on the higher frequencies.

Station WPIX Tower Completed

Construction of New York City's fourth television station, WPIX, was recently completed with the erection of a 287 -foot tower 36 stories above street level atop the Daily News building.

The television tower has a 10 foot high base section 35 by 58 feet square. The second section is 207 feet high, tapering from 30 feet square to five feet square. Next comes a 28 -foot pylon section 20
(Continued on page 204)

Raising the RCA antenna for felevision station WPIX from street level to the roof of the 36th floor

A General chemical research development

From Elemental Fluorine

SUIFIR

 Hexa:ILORIDE
A STABLEDIELECTRICGAS

dielectric constants

 AT $27.5^{\circ} \mathrm{C}$:| Pressure,
 Pmm | Diel.
 Deviation, δ | Diel.
 Const., ϵ^{\prime} |
| :---: | :---: | :---: |
| 708 | 1.91 | 1.0191 |

Reference
Fuoss, J. Amer. Chem. Soc., 60, 1633 (1938)
COEFFICIENT OF EXPANSION-LIQUID SF ${ }_{6}$:
0.027 (for interval -18.5 to $30^{\circ} \mathrm{C}$)

Reference
Prideaux, J. Chem. Soc., 89, 323.376 (1906)
MEAN DIELECTRIC COEFFICIENTS AND POLARIZATION:

Gas	$\mathrm{E}_{0-1}^{25^{\circ}}$	$\mathrm{E}_{0}^{25^{\circ}}$	$\mathrm{E}^{-80^{\circ}}$	P^{25}
Air	528	528	-	4.31
$\mathrm{~N}_{2}$	538	538	-	4.39
SF_{6}	2049	2026	2018	16.51
SiF_{4}	1702	1690	1681	13.78

$\mathrm{E}_{0-1}^{25^{\circ}}$-values which would be oblained by actual measurement at $25^{\circ} \mathrm{C}$ for a pressure range of $0-1$ atmosphere; actual measurements at slightly different temperature.
$E_{0}^{25^{\circ}}$-limiting values of E al zero pressure if gases were
$\mathrm{E}^{-80^{\circ}}$-limiting values of $-80^{\circ} \mathrm{C}$.
P^{25}-polarization as calculated from
$P=\frac{\epsilon-1}{\epsilon+2} \cdot \frac{m}{d}=0.008155 E_{0}$
Reference
Watson, Rao, and Rama-
swamy, Proc. Roy. Soc.
(London), 431, 558 (1934)

In Sulfur Hexafluoride, General Chemical Research makes another important contribution to fluorine chemistry. This stable dielectric gas was the first commercial chemical produced from elemental fluorine to be offered Industry . . . and is the forerunner of many similarly made fluorine compounds awaiting introduction.

Discovered by Moissan and Lebeau in 1900 as the product of combustion of sulfur in fluorine, it has been found to be remarkably inert and to possess exceptional thermal stability. These characteristics, together with its splendid electrical properties, have led to its present use as a gaseous dielectric in high voltage equipment.

The physical data presented here may suggest other applications worthy of prompt investigation for your products and processes. For commercial quantities, experimental samples, or more detailed technical information, write or phone:

Simple, positive protection for 9 Type Reproducers
 ...Inexpensive ... Easy to Install

Here's how the new Western Electric 706A Guard eliminates the three major causes of damage to 9 Type Reproducers and greatly facilitates their handling.
First, it serves as an automatic latch-type support for the reproducer arm when not in use-taking the place of the armrest from which the arm may be accidentally jarred with damage to the reproducer.
Second, the 706A Guard positively prevents any contact between the reproducer stylus and the felt surface of the turntable and prevents the stylus from riding into the label and drive-hole area of the transcription.
Third, with the 706A Guard it is impossible for the stylus to hit the edge of a 16 -inch transcription.
To place your order, call your local Graybar office or write Graybar Electric, 420 Lexington Ave., New York 17, N. Y.

- QUALITY COUNTS -

distributors: in the u. s. a.-Graybar Electric Company. in Canada and newfoundiand-Northera Electric Company, Ltd.

TUBES AT WORK
(continued from p 126)
vtvm is read on a meter calibrated in \pm percent deviation.

When there is no resistor across the unknown terminals, the percentage deviation is infinite and would cause the pointer to jump off scale. For protection against such abuse between insertion of successive resistors to be tested (without the use of a hand-operated switch that would slow down operation) a relay automatically disconnects the meter whenever the bridge

FIG. 1-Block diagram of instrument for sorting resistors into groups of one percent apart
output exceeds adjustable predetermined limits.

Whenever the unknown terminals are empty, the meter stays in its zero position. If a resistor that falls within the preset limits is inserted, the meter is automatically connected and indicates the percentage deviation from the standard. To have a definite indication of whether the meter is active or not, the dial is lit up by two panel lamps whenever the meter is active. A block diagram of the instrument is given on Fig. 1.

Bridge

The bridge contains two equal ratio arms one of which is tapped and delivers the resistance ratio for full scale calibration. The other two arms are formed by the standard (fastened to a pair of screw terminals) and the unknown X to be inserted under a pair of spring terminals. These terminals consist of

BIG CAPACITY PUMPS ror vacuum

OF ONE-BILLIONTE OF AN ATMOSPEERE

A^{N}MERICAN production is discovering startling ways to use high vacuum. Commercial applications in the broad fields of electronics, metallurgy, physical chemistry and nuclear physics are demanding large capacity pumps and components for fast, large-scale production.

To provide the necessary equipment, DPI's engineering department has developed a wide variety of diffusion pumps of rugged, all-metal construction capable of pumping many thousands of cubic feet per minute without sacrificing low ultimate vacuum achieved by the finest
laboratory apparatus. This line of large-capacity, high-vacuum equipment and the technical knowledge acquired by DPI research men and engineers are available to industries interested in the possibilities of high-vacuum processing - or in improving present high-vacuum installations. Write:

Vacuum Ëgraifmen Division
Distillation Products, Inc.
755 RIDGEROAD WEST - ROCHESTER 13, N. Y.

570 Lexingion Ave.
New York 22, N. Y.
Manufacturers of Molecular Stills and High-Vacuum Equipment; Distillers of Oil-Soluble Vitamins and other Concentraten for Science and lndustry

1,000,000,000 tome!

with these BALLANTINE instruments

ONE BILLION TY ONE-This enomons range of AC: voltages - is easily covered by the Model 300 Voltmeter, Mode] 220 Decade Amplifier and Model $4(12$ Multipliers illustrated above. The ecsuracy is 2% at any point on the meter scale, c ver a frequency range of 10 cycles to 150 silocycles. The Model 300 Voltmeter (AC operated) reads from (01 volt to 100 volts, the Model 220 Amplifier (batters operated) supplies accuratedy standarlized gains of $10 x$ and 160x and the Model $\mathbf{4 0 2}$ Multipliers estend the range of the voltmeter to 1,000 and 10,000 volts full scale.

BALLANTINE LABORATORIES. INC.

slotted phosphor-bronze lips pressing against perpendicular phos-phor-bronze blades that can enter into these slots. The pigtails of resistors are held firmly between the edges of these blades and the flats of the lips. The small contact area between pigtail and the blades pressing down perpendicularly on it assures high contact pressure per unit area and still allows insertion and removal of the resistors with a minimum of effort.

The circuit of the vtym is shown in Fig. 2. It is of the conventional type comprising one pair of preamplifier triodes and one pair of triodes forming a second stage to feed the meter movement. Both stages

FIG. 2-Circuit of vacuum-tube voltmeter used as detector of bridge outpui
are connected as cathode followers. Both positive and negative side of the B supply are stabilized to prevent zero drift or change of sensitivity with variation of line voltage.

The circuit data of the first stage were chosen to assure lowest possible grid leakage. To this effect the plate current is held around 15 mi croamperes and the plate voltage at 34 volts. At this plate voltage the voltage between cathode and grid will assume -2 volts for average tubes and never fall below -1.5 volt, which is a safe value for emission from cathode to grid. The plate voltage is low enough to cause no gas current in properly evacuated tubes.

The second stage is designed to keep the cathode current of each system amply above the 0.5 ma necessary to give full deflection to the meter in either direction. This keeps the working point far from the curvature of the characteristics

You need all these quality factors if you use HERMETCALLY SEALED TRANSFORMERS

Weighing Cores

Winding Coils

Vecuum Impregnation

Induction Soldering to meet your production schedules.
 178 Emmet Street - Newark 5, New Jersey

Immarsion Vacuum Testing

FIG. 3-Stabilizer circuit for low d-c
and insures linearity of response. Accordingly the scale could be calculated and no correction was necessary for increase or decrease of mutual conductance of the triode systems with increase and decrease of plate current within the range of the instrument.

Stabilizing Circuit

The voltage output of a Wheatstone bridge depends only on the applied voltage and on the resistance ratio of its arms but not on the actual resistance if, as is the case with vacuum-tube amplification, no current is drawn from the output.

The instrument gives percentage deviation from any standard without readjustment, if the applied voltage is kept constant. The conventional types of regulated voltage supplies are not suitable for such low voltages, because the cathode of the power tube has to be held at a voltage substantially above the cathode of the preamplifier tube, to permit the plate of this latter to drive the grid of the power tube sufficiently negative. By connecting two conventional systems in series with each other in such a way that their output voltages are subtracted from each other, any low output voltage can be obtained, but such a system involves many components, heavy losses and a relatively high percentage of variation of the small difference voltage even for relatively low percentage variations of the two large voltages

If it's a question
 it's a qual diodes... of cristal

 GERMANIUM

 DIODES?

SSilicon crystal diodes for first detectors in microwave receivers, high level video detectors, microwave instrument use . . . germanium crystal diodes, duo-diodes and varistors for a multitude of AM, FM and television applications ...you'll find them all in the Sylvania line. Keep abreast of Sylvania research on new crystal diode applications. The coupon at right will place you on the mailing list for Sylvania's new series of Engineering News Letters.

Electronics Division, 500 Fifth Avenue, New York 18, N. Y. ELECTRONIC DEVICES; RADIO TUBES; CATHODE RAY TUBES; PHOTOLAMPS: FLUORESCENT LAMPS, FIXTURES, WIRING DEVICES; ELECTRIC LIGHT BULBS

for the answer!
 $\frac{\text { Sylvania }}{\text { answer! }}$

VARISTORS?
1N40
SILICON DIODES?
IN41

Sylvania Electric Products Inc.
Electronics Division, Dept. E-1008
500 Fifth Avenue, New Yark 18, N. Y.

Gentlemen:

Please send me descriptive literature on silicon and germanium crystals and place me on your mailing list for the Sylvania Engineering News Letters.
I am primarily interested in (check one) :

MAIL COUPON FOR FURTHER INFORMATION

as a factor of CONTROL in hadustry

THERMEX opens up new opportunities

 in Plastics Molding... tIMED by CRAMERAlmost instant heating of preforms prior to molding is possible with the Thermex Red Head high frequency dielectric heating unit, a development of The Girdler Corp. for use in the molded plastics industry.

This device produces high frequency heat that originates in the material instead of being applied to it, resulting in a more uniform, stronger product . . . as well as increased production, simplified operations . . . reduced time and unit costs.

The Thermex unit is equipped with a Cramer Running Time Meter and two type TEC Time Delay Relays that control the heating cycle with two distinctly different characteristics and in any selected sequence. Another instance where accurate control, dependable performance are assured by Cramer Timing.
 RELAY

a wioecy used Cramer devic THE SYNCHRONDUS MOTOR

Precision built, this com pact, dependable permo nent magnet type motor is the ideal power plant for time control instruments re quiring constant speed at o given frequency. For com lete information, write fo Bulletin 10A

if the performance of your product DEPENDS ON PRECISION TIMING, CONSULT . . .

FIG. 4-In this detailed circuit of the voltage stabilizer, two stabilized stages are connected in cascade. The resistor in the plate circuit of the 6 L 6 is used to reduce plate dissipation
that are subtracted from each other.
The voltage regulating system of Fig. 3 and Fig. 4 allows regulating of any low output voltage down to zero by the simple means of connecting the grid of the power tube to a voltage divider between the plate of the preamplifier and a substantially negative potential (say -300 volts). Then the grid of the power tube will assume a voltage substantially below the voltage on the plate of the preamplifier and still follow the voltage variations of the former.

Meter Protection

The meter is disconnected by a relay whenever the unknown terminals are empty or if the resistor across them is outside preset limits. This operation could be accomplished by a sensitive relay connected in series with the movement and shorting it out at overcurrents. But such relay would have to operate on very low currents in either direction and it would be hard to have it act quickly enough before the meter would overswing.

To provide for the limit of relay action to be adjustable in either direction of overload, the circuit of Fig. 5 was provided. The bridge output, after it had passed the first cathode follower, is applied to the grids of the 6SL7, amplified and applied to the grids of the 6SN7. In balance both sides of this tube are cut off, the limit of unbalance in which either side will conduct being adjusted by the grid potentiometers. By using a voltage divider circuit similar to that employed in the voltage-stabilizer portion of the instrument it is possible to use d-c amplification with the

PRRMANFNT MAGNETS

As electrical constituents go, permanent magnets are relatively new. They made tremendous advances within the past decade, especially in the communications and aviation industries, and in the general fields of instruments, controls, meters and mechanical holding devices.

Many of these uses were problems that just couldn't be solved until permanent magnet materials were developed to do the job-a work of pioneering to which Arnold contributed a heavy share. Many other applications were those where permanent magnets supplanted older materials because of their inherent ability to save weight, size and production time, as well as greatly improve the performance of the equipment.

To these advantages, Arnold Permanent Magnets add another very important value-standards of quality and uniformity that are unmatched within the industry. Arnold Products are 100% quality-controlled at every step of manufacture. What's more, they're available in all Alnico grades and other types of magnetic materials, in cast or sintered forms, and in any shape, size or degree of finish you need. - Let's get our engineers together on your magnet applica. tions or problems.

ALLEGHENY LUDLUM STEEL CORPORATION
147 East Ontario Street, Chicago 11, Illinois
Specialists and Leaders in the Design, Engineering and Manufacfure of PERMANENT MAGNETS

4
 MOSINEE "More than Paper"

In the field of electronics and the electrical goods industry, MOSINEE stands for paper-base processing materials with scientifically controlled chemical and physical properties, high quality standards and dependable uniformity ... with good dielectric strength, high tensile or tear strength; proper softness or stiffness; creped with controlled stretch or flexibility; specified pH for maximum-minimum acidity or alkalinity; accurate caliper, density, liquid repellency or absorbency . . or other technical characteristics vital to your quality standards and production requirements.

MOSINEE PAPER MILLS COMPANY - MOSINEE, WIS.

second stage having its cathode at a potential below the grid of the first stage.

Limitations and Performance

The range of the instrument is limited at the low end by the current available from the regulated supply and at the high end by the ability of the first tube to work at high grid impedance. The low limit can be transgressed by using an outside battery, if the standard and unknown will both stand the wattage developed in them.

The maximum power appearing in a standard of 100 ohms in case of short circuit across the unknown terminals is 1.44 watt; the maximum power that can be delivered across the unknown terminals if a 100 -ohm resistor is inserted in the standard terminals is 0.36 watt. If the battery voltage is not exactly 12 volts, the full-scale adjustment has

FIG. 5-If the vtvm is overloaded in either direction, one triode of the 6SN7 energizes the relay
to be readjusted and the readings will be as accurate as with the stabilized voltage.

Best use of the instrument can be made for sorting resistors in groups of one-percent apart. In this service 600 pieces per hour can be easily sorted out. One unit has been in continuous use in the Clippard Instrument Laboratories (makers of the instrument) for two years. Readjustment of zero or full-scale adjustment was not necessary for stretches of many weeks. On all instruments shipped not a single complaint or request for re-

Boosting Performance of AC-DC Radifo Receivers

TEMPERATURE CHART (above left) - Note the extreme temperature sensitivity of the GLOBAR Type Fresistors pointed up in the steepness of this typical curve.
FILAMENT CHART (above right) - This chart, illustrating the shock absorbing quality of GLOBAR Type F Resistor, shows how both pilot lights and tubes are protected from the sudden inrush of current when the set is turned on. This protection insures longer life from the tubes; moreover, the tubes retain their original performance characteristics.

THIS wiring diagram illustrates a simple and practical method of building big set performance into conventional AC-DC receivers. The accompanying charrs help explain how this is accomplished with selenium rectifiers and GLOBAR Type \mathbf{F} Resistors. Selenium rectifiers provide a source of low loss DC power and GLOBAR temperature sensitive resistors compensate for the positive resistance-temperature characteristic of radio tubes and pilot light filaments. The high initial resistance of GLOBAR Type F resistors prevents sudden inrush of high currents which shorten tube life and burn out pilot lights, thus insuring continuous maximum tube performance.
Of many benefits reported, five are particularly significant.
1 Protection against premature failure of pilot lights and radio tubes.
2 Undistorted audio output multiplied.
3 Manufacturing and service costs reduced.
4 Wiring circuits simplified.
5 Quality and efficiency of receiver increased.
A good way to check these claims is to run tests in your own plant. We will be glad to supply sample resistors. Merely send us a diagram of your test circuit so we may send you resistors of correct specifications. There is no obligation, of course. We want you to prove to your own satisfaction that the use of GLOBAR resistors and selenium rectifiers will improve receiver performance at lower cost. The Carborundum Company, Globar Division, Niagara Falls, New York.

GLOBAR Ceramic Resistors вy CARBCRUNDUM

"Carborundum" and "Globar" are registered trademarks which indicate manufacture by The Carborundum Company

AND THE SECRET IS SCMM FHENG

Bendix-Scintilla* Electrical Connectors are precision-built to render peak efficiency day-in and day-out even under difficult operating conditions. The use of "Scinflex" dielectric material, a new Bendix-Scintilla development of outstanding stability, makes them vibration-proof, moisture-proof, pressure-tight, and increases flashover and creepage distances. In temperature extremes, from $-67^{\circ} \mathrm{F}$. to $+300^{\circ}$ F., performance is remarkable. Dielectric strength is never less than 300 volts per mil.
The contacts, made of the finest materials, carry maximum currents with the lowest voltage drop known to the industry. Bendix-Scintilla Connectors have fewer parts than any other connector on the market-an exclusive feature that means lower maintenance cost and better performance.
*REG. U.S. PAT. OFF.
Write our Sales Department for detailed information.

- Moisture-proof, Pressure-tight - Radio Quiet - Single-piece Inserts - Vibration-proof - Light Weight © High Arc Resistance Easy Assembly and Disassembly - Less parts than any other Connector Available in all Standard A.N. Contact Configurations

TUBES AT WORK
(continued)
pair or servicing has been obtained.
Patent protection is sought.

F-M Radiator

Power gains ranging from 1.5 to 9 in easy steps can be obtained by using the required number of 14.5 foot sections of the Western Electric 57 A antenna, similar to the Cloverleaf but having three loops instead of four.
The antenna may be used with any number of radiating units from one to 19 , depending on frequency. Half wave or full wave spacing of elements may be employed.

Half wave spacing gives wider vertical beam and also provides increased service area coverage over full wave spacing. Full wave spacing means half as many radiating units with resultant lower costand lower gain.

Mechanical arrangement of the

ANTENNA CURRENT DHAGRAM OF 57 A

Mechanical arrangement and current diagram of the f -m antenna

AUDIO and ULTRASONIC OSCILLATOR with Low Distortion • Uniform Output • Excellent Stability

THIS oscillator was designed to fill the need for a wide range, continuously adjustable instrument for laboratory measurements of gain, distortion, impedance and frequency response at frequencies well above the audio range.

With a single calibrated dial and four push-button-controlled multipliers the Type 1302-A Oscillator covers the range of 10 to 100,000 cycles. Because of its wide frequency range, high stability and flat output this oscillator is particularly suited to taking frequency response characteristics on amplifiers, telephone lines, filters and other such cîrcuit elements.

FEATURES

- WIDE FREQUENCY RANGE - 10 to 100,000 cycles - 180 degree rotation of dial covers the 10 to 100 cycle decade, panel push buttons add in decade steps
- ACCURATE CALIBRATION - adjusted within \pm ($11 / 2 \%+0.2$ cycle)
- LOW DISTORTION - less than 1% at any frequency
- SMALL FREQUENCY DRIFT - less than 1% in first 10 minutes; less than 0.2% per hour thereafter
- FREQUENCY DRIFT CONSTANT PERCENTAGE OF OPERATING FREQUENCY - particularly helpful with bridge measurements at low frequencies
- CONSTANT OUTPUT VOLTAGE - within $\pm 1.0 \mathrm{db}$ over whole range; 20 volts open circuit on 5,000 -ohm output, 10 volts on 600 ohms
- STABILIZED SUPPLY - compensated for transient line voltage surges and average line voltage variations between 105 and 125 (210 and 250) volts
- VARIABLE CONDENSER FREQUENCY CONTROL - avoiding contact difficulties often found in variable resistance control
- TWO SEPARATE OUTPUT CIRCUITS - balanced 600 ohm and unbalanced 5,000 ohm
TYPE 1302-A OSCILLATOR . . . \$365.00

Many of America's new television stations are selecting Andrew equipment because of the efficiency of Andrew's flanged coaxial transmission line and the added advantage of having Andrew consulting engineers install it.
Because each television installation poses its own different, individual problem, those stations selecting Andrew have two big advantages: 1) they obtain transmission line and accessories specially designed for television, and 2) specialized Andrew consulting engineers are available to direct the installation. These engineers have both the special instruments and the experience to engineer all or any part of the construction of a television station. NO OTHER TRANSMISSION LINE MANUFACTURER OFFERS YOU THIS COMPLETE IN. STALLATION SERVICE!
Andrew TV transmission line meets official RMA standards and is specially designed for television. Mechanically, it's held to close television tolerances assuring an essentially "flat" transmission line system.
Fabricated in twenty foot lengths with brass connector flanges silver brazed to the ends, sections can be easily bolted together with only a couple of small wrenches. Flanges are fitted with gaskets so that a completely solderless, gas-tight installation results. Markings on the outer conductor indicate where twenty foot sections may be cut to maintain the characteristic 51.5 ohm impedance.
WANT A TELEVISION STATION DESIGNED AND BUILT-FROM THE GROUND UP? LET ANDREW DO IT!
Write today for full details. Andrew will get you on the air.

Television antenna of WGN-TV - Chicago's
newest and most powerful television station-
shoving Andrew $1.5 / 8^{\prime \prime}$ flanged television trans.

363 EAST 75th STREET CHICAGO 19
transmission lines for am, FM, tV - directional antenha equipment - antenna TUNING UNITS - TOWER LIGHTING EOUIPMENT - CONSULIING ENGINEERING SERVICE

57 A is shown in the drawing. The antenna is fed from the coaxial transmission line at the lower right, and is matched to the transmission line by use of the matching stubs. A conventional balanced-tounbalanced transformer at the base of the antenna connects the coaxial transmission line to the six-wire balanced line. A single end seal for the coaxial line is employed at this point. The six-wire line runs vertically up the inside of the antenna to feed the radiating elements with the polarity as shown in the antenna current diagram.

For half-wave spacing, adjacent radiating units are mounted on alternate legs of the tower to compensate for the phase reversal. As the middle of each radiating element is a neutral point, the radiating elements are firmly attached to the grounded structure members at that point.

The structure is designed to support a television antenna. The television antenna may be fed from transmission lines fastened to the supporting structure members on the inner side of the 57 A where they will not disturb the radiated $\mathrm{f}-\mathrm{m}$ pattern.

Polyphase Power Synchroscope

By E. B. Kurtz and R. H. Burkhardt
The State University of Iowa Iowa City, lowa
The electronic polyphase power synchroscope to be described indicates the state of synchronism of two polyphase power systems. It not only shows the correct moment for closing a switch connecting two generators in parallel or a generator to a power line, but also gives a continuous indication of the relative voltages, frequencies and phase rotations. The application of a cathode-ray tube employing a polyphase deflection system eliminates all moving parts and permits the inspection of all phases simultaneously.

A conventional cro minus sweep circuits may be used for the cath-ode-ray synchroscope by the addition of a polyphase deflection system. Electrostatic plates or magnetic coils are arranged so that

BASIC ELECTRONIC INSTRUMENTS QUICK, ACCURATE OBSERVATIONS Eliminate tedious calculations

THE MEGALYZEIR
Observe simultaneously all signals in any frequency sweep band $30 \mathrm{mc} / \mathrm{s}$ wide within the VFF range of 30 to $300 \mathrm{mc} / \mathrm{s}$. Sensitivity of better than 200 microvolis, permitting operation directly from an May be used to make
May be used to make propagation and coverage studies, analysis of pulsed oscillator spectrums and also as a wide range sweeping oschlator signal source.
Priced-\$895 f. o. b. factory

THE MESMA-MARKEIE SEB.
The only 13 Channel Crystal-Controlled Marker Oscillator for Rapid Accurate Alignment of Television Receivers.
Features: Crysial Accuracy 0.01%. Signa? Dial Operation. Pro Vides a Sound Carrier Frequency for each delevision channel. Meqa-Sweep to visually align the local application employing the channels. It may also be used alone io accomplish for all thirteen pose by using the sound channel and o meter to furnish an indiar tion of discriminator output. Priced_\$195 f. o. b. factory

TIIE MEEGA-SWHEAD
Wide Range Sweeping Oscillator
DISPLAYS PASS BAND. .
FEATURES: Frequency Range- 50 Kilocycles to 500 megacycles and up . Frequency Sweep Adjustable from 30 megacycles to variable attenuator... Low amplitude Modulation while sweoping -less than 0.1 DB per megacycles and Low level output. Sweep voltage outpat for driving oscillo. scope.
Priced-\$395 5. o. b. facfory

Simultanerors Visual Display of Reflected Energy in a frequency band up to 30 mc between 10 to 250 mc and np . Completely elec ronic. No slotied lines, moving parts, bridges, or other frequency sensitive devices. Precision frequency meler. Saves enqinecring tine. Fresents instantly data which would toke hours to tabulate Price- $\$ \$ 95$ f. o. b. factory

THE MEGA-MATEER
Precision variable marker oscillator for use with the Mega-Sweep having a range of 19 to 29 megacycles for the television i.f. band. Crystal oscillator for the FM i.f. band (10.7 mc). Dial provides over 12 inches of calibrated scale length. Accuracy of marker frequency $.25 \%$ of tuld scale.
Price-\$60 f. o. b. factory

THE MEGA-PIPPEIt

By the use of this unit in conjunction with the MEGA-SWEEP or MEGA-MATCH it is possible to quickly and accurately align television receiver I.F. amplifiers. Features: Crystal Accuracy $.01 \%$ Pips at associated picture and sound and adiacent picture and sound carrier trequencies. Pips applied to scope independent of circuit under test-do not disappear when in raps. One plug-in crystal sets Pips in proper R.M.A. I.F. Frequency.
Price-\$150 f. o. b. factory

THE MEGA-PULSEIE

Features: Pulse Width 0.025, 0.05, 0.1, and 0.25 microseconds. Pulse Amplitude 100 volts-at 50 ohm impedance positive or microseconds and greiter pulse pise Fall Time less than 0 al microseconds pro vides a spectrum which will more than cover the present video irequency range. Triggers from an intarnally or externally provided pulse. Variable repetition rate. Output pulse is delayed approvimately 0.25 microseconds to allow observation on an oscilloscope.
Price-\$195 f. o. b. factory

WRITE FOR FULL SPECIFICATIONS
KAY ELECTRIC CO., 25 MAPLE AVE., PINE BROOK, N. J.
Telephone: CAldwell 6-3710

An all-purpose relay, Ward Leonard's 106 Midget is designed for positive contact and long life. Solid floating contact support and compression spring loading assures positive contact with generous wipe usually obtained with individual flexible contact fingers. Normally closed contacts are freefloating for greater reliability. Available in a dozen or more multiple contact arrange-

FIG. 1-Three-phase magnetic deflection system for a three-inch cathode-ray tube
the voltages obtained from the machines to be synchronized cause deflections along as many axes as there are phases. An example of a three-phase magnetic deflection system is illustrated in Fig. 1 and 2. The position of magnetic deflection coils placed around the cathode-ray tube for a three-phase synchroscone is shown in Fig. 3 and 4.

When a single set of deflection coils is used, two connections to the systems to be synchronized, straight and crossed, are possible The straight connection for three phases is shown in Fig. 5.

When the straight connection is used, a circle of variable magnitude is obtained on the screeen. The diameter is determined by the voltages of the two systems and the phase angle between them. When the two systems have slightly different frequencies, the relative phase angle will be continuously changing which will cause the circle diameter to vary at a rate depending upon this difference.

If the voltages are exactly equal and in such phase position as to oppose each other, a circle of zero diameter, or spot, is observed on the screen. If a switch connecting the two systems is closed at this instant, no voltages will be present

FIG. 2-Schematic of three-phase deflection system

There's a Beckman

to simplify YOUR Potentiometer-Rheostat Problems! HELIPOT'S Wide-Range, High-Precision Control
Advantages Available in Many Sizes of Units HA|nO| $\begin{gathered}\text {-the original helical potentiometer- } \\ \text { has proved so popular in modern- }\end{gathered}$ izing and simplifying the control of electronic circuits, that many types and sizes of Helipots have been developed to meet various potentiometer-rheostat problems. Typical production Helipot units include the following ...

MODEL B-Case diameter-3.3"; Number of turns-15; Slide wire length-140 $1 / 2^{\prime \prime}$; Rotation- 5400°; Power rating -10 watts; Resistance ratings -50 to 200.000 ohms.

MODEL A-Case diameter-1.8"; Number of turns-10; Slide wire
 Power rating - 5 watts; Resistance ratings-10 to 50,000 ohms.

MODEL C-Case diameter-l.8"; Number of turns-3; Slide wire length-13.5"; Rotation- 1080°; Power rating- 3 watts; Resistance ratings -5 to 15,000 ohms.

WIDE CHOICE OF DESIGN FEATURES Not only are Helipots available in a wide Not of sizes and ratings, but also can be range of sizes various design features to supplied widual requirements...
meet individual requirements. fhafts, screw.
Available with
H

$$
\begin{aligned}
& \text { Available, etc. } \\
& \text { driver slots, } \\
& \text { can be supplied with shaft extensions at each en derice. }
\end{aligned}
$$

ach end to permit

$$
\begin{aligned}
& \text { driver slots, etc. } \\
& \text { Can be supplied with shaft extenstons other devices. } \\
& \text { Cor or three }
\end{aligned}
$$

coupling to indicating in ganged assembert.

$$
\begin{aligned}
& \text { coupling to } \\
& \text { May be provided in ganged assens. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { May be pperating from a commearity talerances of } 0.1 \% \text { and elve additional taps } \\
& \text { units, all oble with linear be modified to include }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Available } 8 \text { B can be modified } \\
& \text { Models A } 8 \text { pintings. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Models A \& and point on windings. } \\
& \text { at virtually any features. } \\
& . . . \text { and many other special fed best advantages to be gained }
\end{aligned}
$$

many many other spectant advantages to be gained

$$
\begin{aligned}
& \text { Investigate the many in your ele }
\end{aligned}
$$

using the Helipot mor problem!

$$
\begin{aligned}
& \text { using the } \\
& \text { Write outlining your probiem: }
\end{aligned}
$$

SPECIAL MODELS

In addition to the above standard Helipot units, special models in production include...

MODEL D-SSimilar to Modet B. above, but longer and with greater length of slide wire. Case diameter-3.3" ; Number of turns-25; Slide wire length-234"; Rotation-9000 : Power rating-15 watts; Resistance rating. $\mathbf{1 0 0}$ to $\mathbf{3 0 0 , 0 0 0}$ ohms.

MODEL E-Similar to Modet B, but longer and with greater length of slide wire than Model D. Case diameter-3.3"; Number of turns -40; Slide wire tength-373"; Rotation-14,400 ; Power rating - 20 watts; Resistance ratings- 150 to 500,000 ohms.

Send for HELIPOT Liferalure!
ru Helipotcormonamon
1011 MISSION STREET
SOUTH PASADENA 2, CALIFORNIA

COTO-COIL'S 30 years of experience . . a modern plant . . latest equipment and skilled operators make it possible to produce coil windings promptly and efficiently.

If your product calls for coil windings, we can serve you well.

Send Us Your Specifications For

BOBBINS • PAPER INTERLEAVE acetate interleave - cotton interweave TAPED FORM WOUND UNIVERSAL SINGLE OR MULTI-PIE CROSS WOUND

We shall be glad to quote.

COTO-COIL CO., INC.
COIL SPECIALLSTS SINCE 1917
65 Pavilion Ave., Providence 5, R. I.

TUBES AT WORK

FIG. 3-Set of deflection coils mounted on a cathode-ray tube
to cause circulating currents. When the rms voltages of the two systems are not exactly equal, the rms voltage between them will never be zero. The minimum diameter of the circle then indicates the difference of the voltages.

The condition of maximum voltage between the two systems is indicated by a circle of maximum diameter. The voltage at this instant is the sum of the voltages of the two systems and may be determined by measuring the circle diameter which is directly proportional to the applied voltage. If the directions of phase rotation are not the same, a line or narrow ellipse instead of a circle will be indicated on the screen.

The usual straight connection of lamps for indicating synchronism shows a direct relation between the brilliancy of the lamps and the diameter of the circle on the screen. The oscilloscope method gives a better indication for two reasons: First, the action of the oscilloscope is instantaneous, since it is dependent for operation upon the instantaneous value of the voltage rather than upon a heating effect. Second, a small residual circle indicating unequal voltages is easily

FIG. 4-Magnetic coils mounted on an oscilloscope

August, 1948 - ELECTRONICS

Bendíx regulated DYNAMOTORS

MAKE A BIG DIFFERENCE IN RELIABILITY...ECONOMY... WEIGHT

Under the most severe conditions in which your electronic installations are expected to operate, Bendix* regulated dynamotors will deliver dependable, uniform voltage. You can count on them to last longer, too, because they are manufactured with the same painstaking care which has made Bendix Aviation equipment famous for quality all over the world. Before you design, write our engineering department for detailed information on Bendix regulated dynamotors.

Dynamotors - Inverters . Convertors • D.C. Motors . Carbon Pile Voltage Regulators

- Output voltage constant within plus or minus 2.5% at rated load, with as much as $\mathbf{3 0 \%}$ input voltage variation.
- Consistent efficiency of associated equipment under extremes of temperature, humidity, altitude and vibration.

Allows the use of smaller, lighter, less expensive components in design of electronic equipment.

Tube life materially lengthened due to narrow voltage tolerances.

1. WILCO THERMOMETALS (Thermostatic Bimetals) All temperature ranges, deflection rates and electrical resistivities.
2. WILCO ELECTRICAL CONTACTS in silver, platinum, tungsten, sintered powder metals, special alloys. CONTACT ASSEMBLIES include fabricated parts, contacts attached to thermometal or other blades, arms and brackets.
3. WILCO CLAD AND OVERLAID COMPOSITE MATERIALS. Precious metal clad strip, base metal clad strip. INLAY - OVERLAY - CENTERLAY - EDGELAY - RAISELAY. Jacketed Wire, silver on steel, copper, invar and many other combinations. Rolled Gold Plate and Gold Filled Wire.
4. Wilco special alloys. Wilco Ni-Span C* has a constant modulus over a range of temperature from -50° to $+150^{\circ} \mathrm{F}$. Wilco Special Alloys include low and high expanding Ni-Span Alloys . . . also high strength and high conductivity copper alloys.

Whatever your requirements for Wilco Products, Wilco engineers will gladly help you meet them successfully.
*Reg. Trade Mark The International Nickel Co., Inc.

THE H. A. WILSON COMPANY

105 CHESTNUT STREET, NEWARK 5, NEW JERSEY Branch Offices: Chicago, Detroit, Los Angeles, Providence

spechulsts for 34 yeas in the manificture of tharonetats - alectaicai comtacts - phecious metal aimetalic prabuets and special hllors

TUBES AT WORK
(continued)

FIG. 5-The straight connection for three phase
seen on the oscilloscope, while the lamps may be dark even though a small voltage difference exists.

Crossed Connection

The other synchroscope connection which may be used with a single set of coils is the crossed connection shown in Fig. 6. This is equivalent to reversing the phase rotation of one of the systems. A straight line is obtained on the screen with this connection when

FIG. 6-Crossed connection for three phase
the phase rotations are the same and the voltages are equal. The slope of the line is determined by the relative phase position of the incoming voltages and may be made to assume any desired position at the proper instant for synchronizing by proper orientation of the set of coils.

FIG. 7-Deflection using two sets of coils
The sum of the voltages is indicated by the length of the line. Any voltage difference causes a separation of the line into an ellipse which has a width proportional to the difference. If the phase rotations of the systems are not the same, a circle instead of a straight line will be obtained with this connection. Differences in frequency are indicated by rotation of the
 range and a rugged, compact design.

Direct Reading, Direct Control

Carrier frequency in mac may be directly set and read on the large central frequency dial. R-f output from the reflex klystron oscillator is also directly set and directly read, in microvolts or db , on the simplified output dial. No calibration charts or inter polations are necessary. And because the unique coupling device causes oscillator repeller voltage to automatically track frequency changes, no voltage adjustments are necessary during operation. Fven the bolometer circuit is automatically compensated for temperature changes.

C-W, F=M, or Pulsed Outpur

R-f output ranging from 0.1 volt to 0.1 microvolt is available. Output may be continuous or pulsed, or frequency modulated at power supply frequency. Maximum deviation is approximately ± 5 megacycles. Pulse modulation may be supplied from an external source or provided internally. Pulse rate is variable between 40 and 4000 cps, and pulse width ranges from 1 to 10 microseconds. Internal pulsing may be accurately synchronized with either positive or negative external pulses, or external sine
waves. R-f pulse may be delayed 3 to 300 micro-seconds with respect to the external synchronizing pulse. Output trigger pulses are also available. They may be simultaneous with the r-f pulse. Or they may be in advance of the r-t pulse from 3 to 300 micro-seconds

Wide Range, Great Stability

A twist-of-the-wrist precision tunes the - $h p$ Model 616A to any frequency between 1800 and 4000 me . Accuracy of calibration is within $\pm 1 \%$ and stability is of the order of 0.005% per degree centigrade in ambient temperaturc. Line voltage changes of -10% cause frequency changes of less than 0.02%.

Wide Applicability

The -bp- Model 616A UHF Generator is ideal wherever precision ultra-high frequencies are needed for measuring purposes. Some of its many uses include determining of receiver sensitivity, signalnoise or standing-wave ratios, conversion gain, alignment, antenna or transmission line characteristics. The instrument is light and compact, occupying minimum bench space. It is unusually rugged of design for long-term, trouble-free operation. Repairs and replacements, when necessary, are made extremely easy by straight-forward circuit layout and ready accessibility of all components.

The -hp- Model 616A UHF Signal Generator is available for early delivery. Write or wire today for full technical details.

HEWLETT-PACKARD COMPANY

1380 A Page mill Road, Palo Alto, California
Export Agents: FRAZAR AND HANSEN
301 Clay Street, San Francisco 11, California, U.S.A.

Audio Frequency Oscillators
Signal Generators
Vacuum Tube Voltmeters
Noise and Distortion Analyzers Wave Analyzers Frequency Meters Square Wave Generafors Frequency Standards Attenuators Electronic Tachometers

RAYTHEON VOLTAGE STABILIZERS

 Insure Peak Performance At Low CostDon't leave your product's reputation for accuracy and reliability at the mercy of fluctuating line voltage. Raytheon Voltage Stabilizers make it easy - and economical - to build voltage control right into your equipment. New, lighter, more compact models are easy to install, require little space, never need adjustment or maintenance. It costs so little to be sure your product will never fall short of top performance, due to varying power supply. Why not look into it? The New Raytheon line includes a wide choice of performance - engineered standard types - or special models can be custom-built to suit your needs. Get the complete story from "Voltage Stabilizer Headquarters" today.

BUILD THESE ADVANTAGES INTO YOUR EQUIPMENT

- Positive stabilization of output voltage ta within $\pm 1 / 2 \%$.
- Stabilization at any load within rated capacity.
- Quick respanse. Stabi lizes varying input voltage with $1 / 20$ second.
- Entirely automatic. No adjustments. No moving parts. No maintenance. Many designs available with low harmonic distortion of the output voltage wave at any load.
- Single or multiple output voltages.
- Stabilizers can be supplied with frequency compensation.
- Wide range of designs including hermeticallysealed types.

RAYTHEON MANUFACTURING COMPANY

Waltham 54, Massachusetts
Gentlemen: Please send me copy of your new Voltage Stabilizer Bulletin DL-V-304 A.

Name	Position
Company	
Street Address	
City	State

from timbuktu to trinidad

how do you reach the electronic market...

- it's widely varied personnel
- its myriad of industry applications

there's only ONE way

thr electronics

When you analyze the complexity of the electronic marketits world-wide scope-the many industries in which it plays so important a part-the great diversity of people concerned with its many sided applications, it is easy to realize the difficulty of reaching that market efficiently and economically.

It is difficult if not impossible to predetermine the title of the person to whom your product brings an application idea, or even the industry in which it may find use.

Put ELECTRONICS to work digging out your prospects - it reaches into every niche of the market - the known and unknown ones. Don't overlook the more than 80 titles* other thar design engineer who may be interested in your products, and don't forget that ELECTRONICS reaches thousands bearing those 80 odd tisles.
*Ask your local ELECTRONICS representative to show you the complete list of these titles. They and the others that make up the 30,000 subscribers of ELECTRONICS circulation are of the men who either direct or influence the purchase of your product.

ABC

SERVICEMEN . . . Satisfied customers are your best salesmen, and the amazingly improved record reproduction with the LEAR magnetic phonograph pick-up is a sure winner of these customers.
In this variable reluctance pick-up LEAR engineering has developed a "knee action" permanent sapphire stylus that steps over surface noise and actually transforms old style record reproduction into full, rich. mellow tones. It minimizes surface noise and assures full tonal beauty of sound on all installations. Fits practically any pick-up arm without alteration.
This is the reason more servicemen are turning daily to the LEAR magnetic phonograph pick-up as a means of extra profit with assurance of customer satisfaction. Don"I wait! Write today for complete discount price list.

LEAR PRE-AMPLIFIER

To Complete Your Sound Installation

The new improved LEAR pre-amplifier proitles additional amplification when userl with
 directly to old erystal cartringe input. Leads of convenient length are provided for romturtion fith, existing equipment. Two position switwlt permits high fidelity response to recordhiz. Can be furnished with an adapter ti" pronit tast instullation.

FACTORY REPRESENTATIVES - DISTRIBUTORS:

A Jew choice territories are still available for these and other fine LEAR electronic products. IV rite loday, giving full details.

110 lonia Ave. N. W.

FIG. 9A-Production of the circle pattern. At 9B, the straight-line pattern
ing its own current and its own revolving field. If the directions of rotation of the two fields are the same and the frequencies are the same, a resultant revolving field of constant magnitude depending upon the relative phase position is formed. See Fig. 9A.

As the phase position changes, the diameter of the circle changes. If the rotations are opposite, a straight line results. See Figure 9B.

The method using two sets of deflection coils may be explained similarly except that the two fields are produced independently in separate coils and the deflection is a resultant of the two fields.

High intensity continuously operating gas discharge lamps are being studied by Dr. J. N. Aldington at Siemens Ltd. (Lancashire, England). Lamps from 100 to 20,000 watts have been produced for television and photographic studio applications. The lamps have hot tungsten electrodes containing thoria sealed in quartz bulbs and completely water cooled. The arc, established in xenon, although krypton has been used also, gives light of the same quality as sun light. The are current is 100 amperes, giving several hundred amperes per square centimeter of arc section and an efficiency of 25 to 35 lumens per watt.

"NOFLAME-COR" the TELEVISION hookup wire

approved by
Underwriters' Laboratories at

(0) 600 volts

Designed to meet the exacting requirements of television, $F-M$, quality radio, and all electronic applications.

Manufactured in all sizes, solid and stranded. Over 200 color combinations.
Demonstrating anew the Efficiency and Economy of CORNISH WIRES AT WORK.

- Flame Resistant
- Heat Resistant
- High Dielectric - Easy Stripping
- High Insulation Resistance
- Facilitates Positive Soldering
- Also unaffected by the heat of impregnation-therefore, ideal for coil and transformer leads
complete engineering data and samples on request

"made by engineers for engineers"
CORNISH WIRE GOMPANY, inc.

605 North Michigan Avenüe, Chicago 11

15 Park Row, Hew York 7, N.Y.
1237 Public Ledger Bidg., Philadelphia 6
 For Television deflection yokes
These spirally Iaminated paper base, phenolic tubes are obtainable in sizes and with punching and notching that meet each customer's individual needs Quality performance at prices that appeal. OTHER COSMALITE TYPES INCLUDE ...
\#96 Cosmalite for coil forms in all standard broadeast receiving sets. SLF Cosmalite for Permeability Tuners. Spirally wound kraft and fish paper Coil Forms and Condenser Tubes.
Partial List of Radio \& Television Receivers in which COSMALITE is used:

Arvin
Admiral
Belmont
Bendix Radio
Colonial
Farnsworth
General Electric
Howard

Magnavox
Motorola
Sentinel
Stewart Warner
Wells G
Wells Gardner

Inquiries given specialized attention.

 6201 barberton ave. CLEVELAND 2, OHIO - All-Fibre Cans. Combination Metal and Paper Cans - Spirally Wound Tubes and Cores for all Purposes - Plastic and Combination Paper and Plastic Items

THE ELECTRON ART

(continued from p 130)
the commutation accurately enough to avoid destructive arcing in this manner. Furthermore, for efficient rectification of three-phase power, only the phase having the highest voltage at that instant should be operating.

The sequence of contact timing is made such that the next phase is closed just before the conducting one is opened. In this way an opposing circulating current is established through the transformer secondaries and the contact that is to be opened, giving a resultant current of zero at some point in the building up of the circulating current. This action makes it possible to open a phase before it passes through zero and thus to draw current from each phase only during the peak portion of its cycle.

FIG. 4-Elements of three-phase synchronous contacting type rectifier

To prolong the interval of zero current through the contacts, saturable reactors are placed in series with them. As long as the current is high, the reactors are saturated and present low inductances. However, when the current approaches zero in the phase about to be opened, the reactor is no longer saturated; its inductance is then high. Hence during this interval the current is very low. The advantage of permenorm $5000-\mathrm{Z}$ is that the transition from low inductance (saturation) to high inductance is abrupt and complete. There is negligible voltage drop in the commutating reactor during the active portion of the cycle so that efficiencies over 97 percent can be obtained with mechanical rectifiers having capacities of 10,000 amperes at 400 volts d-c.
(1) W. E. Greene, Application of Mag-

Telecasting is now strictly "professional." And in the grand tradition of the theatre, "The Show Must Go On!", regardless.

To that end, Du Mont provides, in addition to the basic studio and transmitting equipment, those final touches for smoothest television pro-gramming-waveform checking and monitoring,
off-the-air reception, sync stretching, picture monitoring, remote sync phasing, low-voltage power supply, and many other functions, in the form of accessory equipment.

Shown above are just a few of the many Du Mont aids to attaining "The First with the Finest in 'Television.'

- Write for descriptive literature.

Oallem b du mont ladoratories. ine.

1 Fist witt the Thiest in Television

While it's "in the

The time to select relays is at the start of circuit design. Frequently, manufacturers save time and money-develop a better product, by consulting Leach during the first stages of their designing. Here's how-
Leach manufactures thousands of types of relays, for thousands of applications. Many are production items which may offer you savings in delivery time and unit cost. Through a slight change in circuit design you may gain the advantages of a standard type, at considerable savings and do a better job.

For your specific requirements, consult the competent staff of Leach electrical engineers. Custom designs are their stock in trade. Remember, for Better Controls through Better Relays, look to Leach. Write today.

LEACEBEGAYCO

THE ELECTRON ART
netic Amplifiers, Electronics, p 124, Sept. 1947; also Electromagnetic Amplifers, ELLECTRONICS, p 100, Jan
(2) G. W. Elmen and A. Gaugler Deverame presented at the Winter Ieneral Mesing of the AIme Pittsburgh Pa., Jan. 1948.
ents p ilex, The Iransductor, Instru ec. 1947; bibliograph (nstruments, p 332, April 1948.
(4) S. E. Tweedy, Magnetic Amplifiers discussion p 168, May 1948.

Nonmagnetic Magnetometer

Field strengths between 100 and 8,000 gauss can be measured to an accuracy of plus or minus two percent with a simple magnetometer using a germanium probe as the sensing element. The probe depends on the Hall effect for its action and gives a direct-reading indication.

If a thin rectangular conductor is oriented perpendicularly to a magnetic field, a current passing between opposite sides of the plate will be made to flow in a curved path, thus producing a potential difference between the two edges of the plate. The magnitude of this potential in volts is $V=R I H / t$ where I is the current in amperes, H the magnetic field strength in gauss, t the thickness of the plate in centimeters, and R is the Hall coefficient in volt-centimeters per ampere-gauss of the plate material. Type N germanium (in which conduction is by electrons, as distinguished from the P type in which conduction is by holes) has the very large Hall coefficient of 8×10^{-3} and a specific resistance of 5.7 ohm-centimeters, both at 25 C . (For comparison, the corresponding values for copper are 5.2×10^{-13} and 1.7×10^{-6}.)

Thin slabs of germanium 0.040 in. thick (0.004 in . for use in very

Probe of direct-reading magnetic field strength meter is germanium slab

Improve YoUR Equipment

 ...Cut Assembly costs ...lou can save money, speed prorou can save increase the effiduction of your equipment by using Stackpole Molded Bakelite Coil Forms as mechanical supports for coil windings. They take less space and require a third fewer soldered connections. Coils may either be wound directly on the forms or wound separately, then slipped over the forms.

. . with STACKPOLE "GA" LOW-VALUE CAPACITORS
 voltage higher, mechanical construc-

 tion far superior. GA Capacitors are sturdily molded. Leads are anchored and tinned. Standard values include c. $68 ; 1.0 ; 1.5 ; 2.2 ; 3.3$ and 4.7 mmfd . -olerances are $\pm 20 \%$. Write for details.When assembly time is considered, Stackpole GA Low Value Capacitors may actually cost less than "gimmicks" formed by twisting insulated wires together-and are many times more efficient. Q is much improved, insulation resistance better, breakdown

Electronic Components Division
CARBON/COMPANY, St. Marys, Pa. STACKPOLE CARBON/COMPANY, St. Marys, Pa. metals which offer a diversity of operating characteristics.
 an ideal electrical contact. The essential electrical properies of the silver alloy are obtained at meristics of the desired base time, the most advantageous engineers feel the most important metal can be utilized. Many absence of a mechanical bond feature of silver-clad is metal. Typical examples of the adbetween silver and base material are found in parts made from vantage of silver-clad mate or nickel silver where spring temper silver on phosphor bronze, this spring to be obtained by work is required in the blade, these laminated metals in any hardening. We can supply silver or beryllium copper may be temper. For special uses, silver or baximum strength and spring formed soft, then hardened toction, where heavy loads are temper. For rugged construcer is generally considered most carried, silver on pure
desirable.

Silver-clad metal is non-corrosive and resistant to organic acids. For food processing equipment and general chemical usage, we have developed new tubing. It may to 20 feet, and on the inside, or outside, or both, in lenand warrants, diameters diameters up to $11 / 2$ inches. 1 d . The precious metal ratio of 2 or more inches could iser surface is hard and free from is closely controlled, the silver.
porosity, and it is economical.

$$
\begin{aligned}
& \text { porosity, and it is econer upon request. } \\
& \text { Any alloy of silver will be furnished upithe Our chemi }
\end{aligned}
$$

Your further investigation is invited. Our chemists, metallurgists, and sales engineers are at your service.

START H

RIGHT
D. E. MAKEPEACE COMPANY

Main Office and Plant, Attleboro, Massachusetts
NEW YORK OFFICE, 30 CHURCH ST. • CHICAGO OFFICE, 55 EAST WASHINGTON $5 T$,
the electron art
narrow gaps), 0.5 in. long and 0.2 in. wide, to which are soldered copper leads, are used as probes. A microammeter is used to indicate the current produced across the probe by the Hall effect. Calibration of the instrument is adjusted by varying the current supplied to the probe. A bucking potential in the detecting circuit is necessary to adjust the zero, and multipliers in the meter circuit can be used to control the range. The starred values of components may have to be adjusted from probe to probe. (G. L. Pearson, Magnetic Field Strength Meter Employing the Hall Effect in Germanium, RSI, p 263 April 1948.)

Multifrequency Synchronizer

By Robert K-F Scal
National Bureau of Standards Washington, D. C.

Pulses repeating at multiples o1 fractions of the input signal frequency are produced by a versatile synchronizing unit that is useful for calibration and measurement in a variety of control and laboratory applications. The unit can be driven by the power line or by an external oscillator at a frequency in the subsonic, sonic or ultrasonic range. For example, the equipment has

FIG. 1-Input and divider portions of synchronizer; second multivibrator is same as first: connections go to correspondingly marked leads of Fig. 2
been used to produce range markers. It delivers an output that can be adjusted in amplitude and made to have a rectangular, square, or impulse waveform.

Straightforward Circuit

The circuit uses only resistance and capacitance, hence there can be no frequency drift as there might be if resonant circuits were used. Triodes are used throughout; almost any type is suitable, but the high-gain dual type is preferable. The circuit values shown here are for a 60 cps input; they are not particularly critical.

Functionally the unit consists of four sections: the input, the multiplier, the divider, and the output. Figure 1 shows the input and divider; Fig. 2 shows the multiplier and output. Although the circuit shown provides five output frequencies (the fundamental, its second and third harmonics, and its second and third subharmonics), the circuit can be extended, or restricted, to any required range.

The input consists of an overdriven amplifier (V1A, V1B and V2A) which converts the input to a rectangular or square wave depending on the adjustment of the

FIG. 2-Leads A, B, C and D come from corresponding leads of Fig. 2. Multipliers (one shown in detail) and output portions of synchronizer are shown here

New! All inclusive!

Astatic has incorporated ceramic elements in two of its most popular product designs-the convertible "Velvet Voice" microphone and the "Quiet Talk" series pickup cartridges. Now moving through Astatic production lines, they are immediately available.

MODEL "QC" PICKUP CARTRIDGE

(1) Transcription quality reproduction. (2) Frequency response unaffected throughout wide temperature range. (3) Unaffected by heat, moisture or dryness. (4) A new level of physical ruggedness. (s) Extended service life free from trouble and diminishing quality of reproduction. (6) Adaptable, without changes, to standard circuits, because impedance is comparable to that of standard crystal cartridges. (7) Needie pressure, 1 oz. (8) Frequency range, 50 to 10,000 c.p.s.

MODEL "VC" MICROPHONE

(i) Available with substantially flat response or rising characteristics in the voice range. (2) Unaffected frequency response, throughout a wide temperature range, suggests use for laboratory applications. (3) Unaffected by heat, moisture or dryness. (4) Amazingly rugged against physical shocks and stresses. (5) Peak service life assured by resistance to both climatic and operational abuses. (6) Comparatively low impedance opens up new fields of application, heretofore limited to costly and heavy units. (7) Frequency response, 30 to 10,000 c.p.s.

Write for prices, specifications

cathode resistor. If a fixed input voltage is used, this resistor can be fixed at the value giving the required waveform. One volt input is sufficient to drive the clipper; if higher voltages are available, fewer stages can be used. The frequencydividing circuit consists of a cath-ode-coupled half-shot multivibrator (V3A and V3B) fed from a differentiating circuit. This multivibrator produces an output of half the frequency of its input. To further divide the synchronizing frequency, the output from this multivibrator is fed through another differentiating circuit to a second multivibrator (V4A and V4B). If, as in this circuit, the output between dividers is to be used, an over-driven amplifier (V2B) should be used between them. When the unit is first put into operation the dividing circuits may need adjusting to assure that they are not triggered by stray pickup. The circuit can be laid out and adjusted so that the tubes need not be shielded, but if the equipment is to be used near apparatus producing strong pulses, shielding from external pickup is essential.

Frequency Multiplier

The novel multiplying circuit shown in Fig. 2 is an alternatepulse inverter that inverts only the positive pulses of a wave train consisting of alternate positive and negative pulses. Pulses shown in Fig. 3 are applied to both grid and cathode of the inverter (V5A), which is effectively self-biased practically to cutoff. A positive input pulse affects the grid, producing a negrative pulse in the plate circuit. A negative pulse affects the cathode, also producing a negative pulse in the plate circuit. The following two stages (V5B and V6A) eliminate positive pulses appearing in the plate circuit and shape the negative pulses. Because a grounded-grid amplifier (V6A) is used in this shaping circuit, the pulses out of it are positive.

To obtain a rectangular or square wave at the multiplied rate, the output pulses can be fed to a multivibrator. If further multiplication is required, the pulse output is fed through a differentiator to another alternate pulse inverter

FIG. 3-Oscillographs show waveforms at critical portions of synchronizer. (A) output of overdriven amplifier, (B) input to alternate pulse inverter, (C) output of alternate pule inverter, and (D) output of shaping amplifier
(V8, V6B, and V9) A buffer and shaping amplifier (V7A and V7B) is advisable if the output from the first multiplier is to be used externally as well as for driving another multiplier. The grid circuit of the output (V7B) is adjusted to give the required wave shape.

As shown here the unit provides

*Here's your supply of N.Y.T

 CIIMPINE:NT:

* TELEVISION POWER TRANSFORMERS
* DEFLECTION COILS
* VERTICAL OUTPUT TRANSFORMERS
* HORIZONTAL BLOCKING OSCILLATOR TRANSFORMERS
* VERTICAL BLOCKING OSCILLATOR TRANS. FORMERS

Available Now!

N.Y.T. facilities are now expanded to supply all types of inductive television components in quantity. Estimates will be supplied promptly on standard units or types wound to your exact specification. In addition to television components, N.Y.T. offers complete manufacturing service on power transformers, chokes, and audio transformers. Mod-
ern plant and winding equipment assures finest quality at low cost. Call or
i write today for information.

* IN ANY QUANTITY!

NEW YORK TRANSFORMER CO.
ALPHAD A W J E R S Y

They're

"Unbrako" Socket Set Screw with Knurled Cup Point.

"Unbrako" Socket Head Stripper Bolt with Knurled Head and Threads.
only one frequency at a time. If several frequencies are to be used, additional switching and output amplifiers can be added to obtain all frequencies simultaneously if desired. The single output amplifier used here consists of an overdriven stage (V10A) to limit the voltages of all frequencies to the same level. The output switch selects rectangular or square waves from the output of this amplifier, or pulses produced by feeding the signal to the cathode follower (V10B) through a differentiator. Additional circuits can be used to improve the waveform if desired.
Spacing of the output pulses from the alternate pulse inverter is the same as the input spacing. If the inverter is used to drive a singleshot multivibrator, it will be necessary to adjust the multivibrator to obtain the required output; for example, to obtain a symmetrical square wave. Although the dividing and multiplying circuits are not sensitive to frequency, the coupling circuits of the multipliers are; they will have to be adjusted if the input frequency is changed. A unit employing an input frequency equal to the highest required frequency and using only dividers is, therefore, more versatile than one using both dividers and multipliers.
Power requirements for the unit are small. The maximum output voltage is dependent on the $\mathrm{B}+$ voltage, which can be from 250 to 300 volts for the 6SL7's or higher if 6SN7's are used. A 5Y3-GT/G or selenium rectifier can be used with a single-section filter. A regulator may be desirable because the output is sensitive to supply voltage. Transients on the $B+$ line may trigger the multivibrators. Therefore, if, as is most likely, an electrolytic filter is used across the output of the power supply, it should be bypassed with either a small paper or mica capacitor to offer low impedance to high frequencies. If an external power supply is used, the capacitors should be across the $\mathrm{B}+$ at the synchronizer to by-pass stray pulses picked up from the supply line, even if it is shielded.
This synchronizer was developed by the author while at Stamford University, Calif., for use with the
the electron art
Stamford University Multifrequency Ionosphere Recorder operated under contract with the Bureau of Standards, Commerce Dept., Washington, D. C.

Indoor Television Antenna

By John H. Newitt
J. H. Newitt \& Associates Development Engineers East Orange, N. J.

Receiving antennas do not readily cover such wide frequency ranges as the television band. By analyzing the operation and limitations of a dipole, the requirements for a wideband antenna can be deduced. From such an analysis a wideband indoor antenna that meets these requirements has been developed.

Characteristics of a Dipole

Most receiving antennas for very high frequencies are based on the dipole. Both the energy induced into a dipole and its terminal impedance are functions of frequency. Furthermore, parasitic elements (reflectors and directors), although they improve the directed sensitivity of the antenna, make it more frequency selective. Such directional arrays are properly used to eliminate ghosts, but are efficient only over a ten-percent frequency range.

To obtain some semblance of wideband response from dipole type antennas, they are resonanted near the middle of the band to be covered and purposely mismatched to the transmission line. Thus, as the efficiency of energy transfer

FIG. 1-Basic components of antenna
 Shallcross

. . . for electrical measurements

YOLTEGE DIVIDER (Decade Potentiomefer) 10,000 shme total. Voltage ratio: 0.001 to 1.0 OHer 3- and C-dial designs, 1,000 to 100000 oams)

Shallcross Manufacturing Co.

Electrical Measurement Specialists Dept. E-88 Colingdale, Pa.

Shallcross Electrical Measuring Instruments are made in many types - from sturdy, inexpensive bridges for school and production use, to fault location bridges, high-voltage test equipment, low-resistance test sets and numerous others.

Write for Bulletin on any type.

AKRA-OHM PRECISION RESISTORS
14 Standard Iypes.
50 available special designs.

PRECISION SWITCHES

350 designs for instruments and high* grade electrical apparatus.

ATTENUATORS \& CONTROLS FOR COMMUNICATION EQUIPMENT

HARDWICK, HINDLE Crinkle Wound

Resistor

0UR CRINKle wound resistors are designed especially for relatively low value of resistance with a high current carrying capacity.

They fall within the classification of bare resistors by NEMA and Underwriters' regulations, permitting operation at a temperature rise of 350 degrees C.

The ribbon of resistance alloy is wound on edge upon the refractory tube-the ends braised to heavy copper terminals. A vitreous enamel covering anchors the turns securely and prevents movement. The result is an unusually large area for heat dissipation.

Units with intermediate taps are available. There are 5 sizes: 155 to 420 watts, from .125 to 20.0 ohms.

Hardwick, Hindle resistors and rheostats offer many exclusive advantages. We ask you to give our engineers an opportunity to discuss your specific requirements.

HARDWICK, HINDLE, INC. Rheostats and Resistors

Subsidiary of
THE NATIONAL LOCK WASHER COMPANY

NEWARK 5, N. J. Established 1886 U. S. A.

portioned and combined, they can be made to present a nearly constant resistive impedance over a wide band.

The principle can be used in an array consisting of receivers of different lengths to improve the sensitivity throughout the entire band, giving a system such as that of Fig. 2. The array presents a low impedance and maintains its sensitivity over a wide range. The impedance matching section was found to improve the performance.

The system is an end-fire array; its high directivity provides discrimination against ghosts. Any number of elements can be used, the directivity increasing with the number of elements. In designing the array, both factors (wave sensitivity and impedance matching) should be given equal attention to obtain optimum results. Several such arrays can be combined to further improve the performance.

Industrial Magnetron

Dielectric heating depends on developing high power at high voltage across the material to be heated. However, the voltage is limited by arcing across the work. Hence continuous power is required for this application. The pulsed magnetron previously described briefly (Electronics, p 194, Dec. 1947) was developed by the British Thomson-Houston Co. for radar, not dielectric heating.

SURVEY OF NEW TECHNIQUES

MULTITRACK RANGE (MTR), developed in Australia as a modification of Gee, simplifies the equipment in an airplane. With hyperbolic tracks, as produced by such systems as Gee, either the navigator or the airborne navigation equipment must perform a computation to convert the indication into a radial track. With MTR the tracks are practically straight radials at distances beyond 10 miles from the master and slave station pair. This pair, operating on 200 mc , are only 10 miles apart. Because pulses are used the system is unaffected by reflections, however, it has two blind regions 180 deg apart.

Designed to produce a square wave of excellent form, this equipment meets the rigid requirements of research and developmental laboratories, industry and educational institutions.

It has a wide fundamental frequency range, is highly stable and may be mounted either in a cabinet or rack.

PULSE CHARACTERISTIC: Rectangular wave output, with a 25% negative pulse.
RISE TIME: Approximately .3 microsecond.
FUNDAMENTAL FREQUENCY RANGE: Six overlapping ranges, to give continuous coverage from 5 to 125,000 cycles.

OUTPUT VOLTAGE: Variable from $0-5$ volts; fixed outputs at 5, 10, 15, 25, 50 and 75 volts.

OUTPUT IMPEDANCE: 100 ohms at 5 volts, approximately 20 ohms/volts at all outputs.

SYNCHRONIZATION: A "sync" input level control is provided.

For complete information on this unit and other G-E Precision Equipments write: General Electric Company, Electronics Park, Syracuse, New York.

$12,000 \mathrm{cps}$ and noise reduction more than 25 db . It has a 10 -watt power output.

Baseline Generator

Globe Products Corp., 870 Maplewood Ave., Bridgeport 5, Conn. The Baseliner is a recently developed device that provides a baseline in

a DYNAMO
 AMONG DYNAMIC MICROPHONES

Here is the microphone in its classa high-output moving-coil dynamic that was designed to outperform... outsmart... outlast even higher priced microphones. The "Sonodyne" features a multi-impedance switch for low, medium, or high impedance-plus a high output of 52 db below 1 volt per dyne per sq. cm. It has a wide range frequency response (up to 10,000 c.p.s.) and semi-directional pickup. Mounted on swivel at rear, can be pointed 90° for non-directional pickup.

The "Sonodyne" is ideal for all general purpose use, including public address, communications, recording, and similar applications.

WIDE RANGE FREQUENCY RESPONSE

(up to 10,000 c.p.s.)

HIGH OUTPUT

(-52 db)
 Switch for LOW, MEDIUM, or HIGH Impedance

visual alignment systems by restoring the cro amplifier to its zero input operating condition for 180 degrees of the modulation cycle.

Signal Gencrator

Boonton Radio Corpo, Boonton, N. J. Type 211-A signal generator is designed for testing and

NEW PRODUCTS
(continued)
calibrating omnirange radio receiving equipment operating in the range from 88 to 140 megacycles. The equipment comprises an r-f assembly, modulator and oscillator, panel and meter, and external dual regulated power supply.

Evaporation Plater

L. L. Constantin \& Co., 253 Crooks Ave., Clifton, N. J. The machine illustrated is used for plating metals and metal fluorides in a

vacuym by evaporation. It finds application in base plating quartz, mica, and ceramics. Production of crystal oscillators to frequency is better than 180 units per hour.

Single-Sideband Selector

General Electric Co., Syracuse, N. Y. Type YRS-1 single-sideband selector was designed to provide improved reception in crowded amateur and communications radio bands without affecting quality of received signal. The device has four pushbuttons, one for dualsideband reception with reinforced carrier, one for normal reception and one for selection of each sideband. It is intended for use with

Kinney Single Stage Pumps are available in 8 sizes with displacements from 13 to 702 cu. ft. per min. Will test to low absolute pressures of 10 microns or better.

Kinney Compound Pumps are available in 2 sizes with displacements of 15 and 46 cu . ft. per min. They regularly maintain low absolute pressures to 0.5 micron or better.

Ask for Catalog V45.

KINNEY MANUFACTURING COMPANY

3565 WASHINGTON ST., BOSTON 30, MASS.

New York - Chicago - Philadelphia - Los Angeles • San Francisco
FOREIGN REPRESENTATIVES
GENERAL ENGINEERJNG CO. (RADCLIFFE) LTD., Station Works, Bury Road, Radeliffe, Lancashire, England
HORROCKS, ROXBURGH PTY., LTD., Melbourne, C. I. Australia
W. S. THOMAS \& TAYLOR PTY., LTD., Johannesburg, Union of South Africa

WE aLSO MAMUFAGTURE LIQUID PUMPS, CLUTCHES AND BITUMINOUS DISTRIBUTORS

any receiver having an intermediate frequency of about 455 kc and operates on 105 to 125 volts, 50 or 60 cycles power at 60 watts.

Voltage Stabilizers

Raytheon MFg. Co., Waltham, Mass., introduces the VR-6000 line of automatic a-c line voltage stabilizers. The units are designed to

stabilize fluctuating voltage to within 0.5 percent. Varying input voltage can be stabilized within 0.05 second. The line can be procured in standard catalog models or custom-engineered designs.

Plastic Tubing

William Brand and Co., 276 Fourth Ave., New York 10, N. Y. A new thermoplastic tubing type

Rel-16-A can be used continuously at 105 C. Porosity has been reduced to a minimum.

Thermal Timer

George Ulanet Co., 414 Market St., Newark 5, N. J., has added a new manual reset thermal timer to its

DEPENDABLE SOURCE for...

We have designed for and supplied the radio industries for many years. Our experience can prove valuable to you whether you require standard parts or specially designed parts to meet definite specifications. Let us cooperate with you.

Deliveries depend on availability of materials

NEW CATALOG YOUR GUIDE TO QUALITY

-
 Send for Your Copy

For heating water, oils, paraffin, chemicals, etc.

VULCAN

ELECTRIC

 IMMERSION HEATING UNITS3
TYPES of FLANGES "Bolt On" Pipe Thread Straight Thread.

Single and three heat with varions metal casings. Complete with gaskets, terminal cover, etc.

A new VULCAN Electric Immersion Heater is especially designed for melting fats, greases and similar compounds.

VULCAN ELECTRIC COMPANY

 DANVERS 10, MASS.Makers of a wide variety of Heating Elements for assembly into manufacturers' own products and of Heating Specialties that use electricity.

REDUCE "DOWN-TIME" LOWER WIRING COSTS, SAFEGUARD PERSONNEL

The advanced design of these sockets and the well known high integrity of Amphenol materials and production can save you thousands of dollars in "down-time." Another economy is the speed and simplicity of installation wiring. And these Amphenol sockets are safe-they guard highly trained workers and valuable tubes, so don't rely on makeshift equipment!

Included in the wide Amphenol industrial tube socket line is the Super Jumbo 4 pin socket for top or bottom mounting. The exclusive Cloverleaf contacts provide four full lines of contact with tube pins to carry heavy current loads. Outstanding in performance they are equally attractive in appearancequality on all counts!

So insist on Amphenol when you buy. Write today for complete and well illustrated specifications.

AMERICAN PHENOLIC CORPORATION

 1830 South 54th Avenue, Chicago 50, Illinois coaxial cables ano connectors - inoustrial connectors. fitimgs and conouit - antennas - radio componemts - plastics for electronics
line of electric heat control products. The unit is activated by a heater element which is wound on the bimetallic strip. Timing range is from 20 seconds to 3 minutes. Suggested applications are standby power plants, process control panels, and the like.

Microwave Generator

Leru Laboratories, Inc., 360 Bleecker St., New York 14, N. Y. Designed for use in schools and training programs the $60-\mathrm{kw}, 3-\mathrm{cm}$ magnetron generator has a switch selection of six different pulse rates.

Also featured is a built-in c-r scope and a selector switch for coding pulses.

Control Console

Allen B. DuMont Laboratories, Inc., 42 Harding Ave., Clifton, N. J. Type TA-129-A television transmitter control console features a 12 -inch picture monitor and power supply, line and frame waveform monitors, station monitor re-

ceiver, visual frequency monitor and all neressary visual and aural meters. It can be adapted for use with any make or model transmitter.

Breadboard Servo

Servomechanisms, Inc., 142 Mineola Boulevard, Mineola, N. Y. The apparatus illustrated allows quick and accurate trials of var ous servo

systems. Shafts, gears. spacers, and other somponents are described and priced in a catalog just issued.

Television Rehearsal

Equipment

Television Projects, Inc., 24 Walnut St., Newark, N. J. Type 148-C television studio rehearsal equipment illustrated comprises camera,

Gamma Radiation Survey Meter Model 247A

A compact portable instrument designed to cover four ranges of gamma radiation intensities, 2.5-25-2500 milliroentgens ($1 / 1000 \mathrm{r}$) per hour. The most sensitiye range approximates that of a Geiger instrument and is inherently more stable. The ionization chamber and meter are hermetically sealed, and the case is watertight. Die castings have been used wherever possible for unusual rugged construction.

Beta and Gamma Survey Meter Model 263A

A portable Geiger-Mueller Counter for extreme sensitivity, capable of detecting individual ionizing particles. The instrument has three full scale ranges of $20.0-2.0-0.2$ milliroentgens per hour measured with gamma radiation from radium.

Victoreen Minometer Model 287

The Minometer provides a prescription for computing daily, the amount of radiation exposure. It consists of a small compact string electrometer and an ionization chamber designed in the shape of a fountain pen to be carried conveniently in a coat pocket. The chamber value is 0.2 r full scale when checked against the calibrated scale in the electrometer.

For twenty years our exclusive business has been the development and design of instruments and components used in the measurement of gamma and x-radiation. We welcome your inquiries on any phase of radiation measurement.

Dept. A.

THE VICTOREEN INSTRUMENT CO.
 5806 hough avenue CLEVELAND 3, OHIO

Supply problems got you all at sea?

Air Express is the fastest service you can buy. Use it regularly to ship and receive supplies, equipment and parts. It solves your snortage problems in a matter of hours.

Air Express shipments go on all flights of the Scheduled Airlines. There's no waiting around with this speedy 24 -hour service. Special pickup and delivery is included at no extra cost, and Air Express rates are low. It pays to standardize on Air Express.

Call on Air Express

Specify Air Express-World's Fastest Shipping Service

- Low rates-special pick-up and delivery in principal U. S. towns and cities at no extra cost.
- Moves on all flights of all Scheduled Airlines.
- Air-rail between 22,000 off-airline offices.

True case history: Dallas motor repair shop regularly gets supplies by Air Express. Keeps equipment rolling. Typical shipment: 6olb. carton of rubber hose picked up in Indianapolis 5 p.m., delivered 9:30 A.m. following day, 7.7 miles. Air Express charge only $\$ 14.71$. Any distance similarly inexpensive. Phone Air Express Division, Railway Express Agency, for fast shipping action.

AIR EXPRESS, A SERVICE OF RAILWAY EXPRESS AGENCY AND THE

studio control console, and all necessary circuits for school demonstration, or program planning use, A brochure is available.

End-Window Counter

Instrument Development LaboRatories, 229 W. Erie St., Chicago 10, Ill. Model D31 Geiger tube has an all-glass envelope with a mica window at the end, and is a symmetrical cylinder either with or without a socket which can be pro-

vided if desired. It has a plateau from 1,100 to 1,300 volts, with a slope of 3 percent per hundred volts.

Mercury Relay

Ebert Engineering \& Mfg. Co., 185-09 Jamaica Ave., Hollis 7, L. I., New York. The three-pole norm-ally-open or normally-closed merc-

ury relay illustrated will handle loads up to 10 hp at 440 v a-c.

Small Volume Control

Clarostat Mfg. Co., Inc., 130 Clinton St., Brooklyn, N. Y. A

These new CTC terminal lugs for quick, easy, neat connections are typical of the broad line in midget, short, turret, double-end and split types... in sizes to meet widely varying needs. They're all strongly made of quality brass, heavily silver plated; yet they're free from surplus metal that would draw heat and slow down soldering. Their tolerances are uniform enough for automatic swaging. And, of course, like all CTC components and hardware, they're guaranteed for materials and workmanship!

CUSTOM SERVICE

Chances are you'll find the terminal lugs you need in the CTC standard line. It's wise to check first. If not, CTC will custom-engineer lugs to your specifications. A discussion of your requirements will not obligate you in any way.

CAMBRIDGE THERMIONIC CORPORATION 437 Concord Avenue, Cambridge 38, Mass,

TEST TV TRANSMISSION

 * and RECEPTION *

New TELEQUIP

SYNC GENERATOR and MONOSCOPE with Monoscope Picture Generator and Distribution Panel
Produces regular pictures used with TV transmitters. Gives synchronizing, driving and blanking signals for testing, research and development work, with monoscope controls and distribution signals for use at various points of testing.
Invaluable to manufacturers of TV receivers and broadcasting units for checking faults not likely to be observed by other methods. Can be used at transmitting stations as auxiliary unit. Available either in combination or as separate units.
Now used exclusively by many leading manufacturers of television equipment.

Send for this illustrated monograph completely describ.
ing the new Telequip Sync Generator and Monoscope.
TELEQUIP RADIO COMPANY
1903 SOUTH WASHTENAW AVENUE
CHICAGO 8, ILLINOIS

ZOPHAR

Materials for potting, dipping or impregnating all types of radio components or all kinds of electrical units. - Tropicalized fungus proofing waxes. - Waterproofing finishes for wire jackets. - Rubber finishes. - Inquiries and problems invited by our engineering and development laboratories.

Zophar Mills, Inc. has been known for its dependable service and uniformity of product since 1846.

ZOPHAR MILLS, Inc.
 ESTABLISMED 1846

117 26th STREET, BROOKLYN 32, N. Y.

CORPORATION
CHERRY ANP NORTH STREETS - CARLISLE, PA.

small compact carbon volume control can be obtained with or without switch. Standard units are available in $0.25,0.5,1.0$ and 2.0 megohm values, with the Z audio taper.

Resonant Relays

Stevens-Arnold Co., 22 Elkins St., South Boston, Mass. The new hermetically-sealed resonant relays are used in low-level circuits where a change in leakage resistance

might be important. They operate only when energized at a predetermined frequency. Catalog 116 gives description and specifications.

VTVM

Hewlett-Packard Co., 395 Page Mill Road, Palo Alto, Calif. Model 400 C vacuum tube voltmeter provides readings from 0.1 millivolt to 300 volts in the frequency range from 20 cycles to 2 megacycles. A special output terminal permits

August, 1948 - ELECTRONICS
use of the new device as a stabilized amplifier. Full details are available.

Pulpit Mike Stand

Spectal Products Co., Silver Spring, Md. A new model portable adjustable microphone stand can be attached to pulpit or table. The top underside of the clamp is felt-

lined and an upright rod, held in position by a thumb screw, is adjustable up to ten inches. The universal joint in the center permits a 2 -foot horizontal boom extension with locking at any angle selected. Price is $\$ 13.95$ list.

Pickup Amplifier

Collins Audio Products Co., Inc., P. O. Box 368, Westfield, N. J. Model 1-A amplifier can be used with a variety of types of magnetic pickup cartridges. It consists of a

PICKERING REPRODUCERS

THE PICKERING MODEL 161 M PICKUP incorporates all of the requirements for the finest possible reproduction of lateral records and transcriptions. It is extremely rugged and absalutely stable, ensuring long trouble-free service with minimum record wear. TECHNICAL SPECIFICATIONS include: Perfectly polished diamond stylus with .0025" radius; other radii available on special orcer at no extra cost $\star \star$ Correctly offset head gives negligible trccking error $\star \star$ Extremely rugged, may be scraped across records or dropped from full height without damage to pickup $\star \star$ Tracking pressure adjusted at factory to 14-18 grams $\star \star$ No measurable effect of temperature, humidity or age $\star \star$ Equalized output level $-60 \mathrm{dbm} \star \star$ Frequency response flat within 1 db from 30 to 15,000 cycles per second $\star \star$ Backtracking will not affect either pickup or record $* *$ Convenient finger grip permits rapid accurate cueing $\star \star$ Optimum combination of counterweight and spring permits excellent performance on warped records $\star \star$ Convenient to mount, occupies least space of any transcription reproducer $\star \star$ No measurable intermodulation or harmonic distortion $\star \star$ Adaptable for turntables from $1^{\prime \prime}$ to $2 \frac{1}{2} \mathbf{2}^{\prime \prime}$ high \star * UNCONDITIONALLY GUARANTEED.

MADE to a tolerance of $\pm 1 \mathrm{db}$, provides five different lateral characteristics to equallze properly all types of records and transcrip tions. It is designed for use with 250 to 600 ohm input circuits at a level of -60 dbm . Hum pickup is less than -120 dbm. The model 161M PICKERING PICKUP with a 163A EQUALIZER is so free from distortion of all kinds that it may be used as a standard for measurement.

THE PICKERING Model 125H EQUALIZER-AMPLIFIER for use with model 120M PICKERING CARTRIDGE REPRODUCER - it compensates for average recording characteristic, raises output voltage to as high as obtainable from erystal piekups, operates from the power supply of amplifier or radio set, soving cost of separate power supply, very simple to install,

$$
\begin{aligned}
& \text { Pickeríng } \\
& \text { \& company, ine. }
\end{aligned}
$$

 PICKUP for high quality reproduction, it fits into any arm which will accommodate a standard cartridge and affords the cleanest and smoothest response ever achieved. Its Frequency Response is $\pm 2 \mathrm{db}, 40 \cdot 10,000 \mathrm{cps}$.. its Waveform Distortion is 1 percent maximum . . . its Output Level is 70 millivolts $\pm 2 \mathrm{db} \ldots$ its Tracking Pressure is 15 grams maximum at 40 and 10,000 cps. NO OTHER
pickup can match the performance OF THE PICKERING MODEL 120M

Western Union's new Telefax Receiver, the Desk-Fax model, is a compact facsimile telegraph sending and receiving system for desk use. Accurate timing is one of the fundamentals of its ingenious operation and the new device is wired for dependable Haydon timing. $A \$ 1600$ series motor is used to drive the scanning stylus from left to right by means of a drum and cord. The synchronous motor operation permits constant speed stylus movement and both sending and receiving units run at the same speed.

Western Union pioneers in communications, Haydon in the science of timing . . . developing devices and motors which make possible progress in all fields of industry. In addition to producing timing motors and a wide range of standard timers, Haydon also specializes in design engineering and production of custom-built timing devices for specific volume applications. Wherever timing is important, Haydon is ready to assist.
Wire or write for a Haydon representative to call. If it's time for timing, it's time for Haydon. An Engineering Data Catalog is available. For quick reference, see Haydon Catalog, Sweet's File.
small metal shield can with an octal-plug base measuring $1 \frac{3}{4} \times 2 \times 2 \frac{1}{2}$ inches in which is wired the complete equalizing circuit including vacuum tube. The unit requires no long cable but may be plugged into a tube socket. Requirements are 0.3 amp at $6.3 \mathrm{v}, 2 \mathrm{ma}$ at 250 v . Output averages 0.5 to 1.0 volt.

Millivolt Meter

Millivac Instruments, Box 3027 , New Haven, Conn. Model MV-17A vacuum tube millivoltmeter for d-c has a magnetic modulator that converts the incoming signal to a 120 -cycle wave that is then ampli-

fied. Lowest range is 0 to 1 millivolt with 6 megohms input impedance. Top range is 0 to 1,000 volts with 60 megohms input impedance. Bulletin II-105 gives details of this equipment that opens up new measurement techniques.

Multiturn Dial

The Helipot Corp., 1011 Mission St., South Pasadena, Calif. The Duodial is a multiturn dial devel-

GENERAL INSTRUMENT CORP.
AND AIR KING PRODUCTS, INC. Join the Manufacturers Served by HOWARD W. SAMS

MORE AND MORE RADIO MANUFACTURERS ASSIGN their service data manual PREPARATION TO THE HOWARD W. SAMS LABORATORIES

The full facilities of the Iaboratories of the Howard W. Sams Manufacturers' Division are available to manufacturers of AM, FM and Television Receivers; Record Changers; Recorders; Intercom units; Power Amplifiers, and kindred electronic equipment, for the preparation and publication of their service data manuals.
The Sams' Service offers you the preparation of complete, accurate, logical service data, relieving your service and engineering divisions of burdensome detail, and effecting significant economies in preparation and printing costs.
Our staff of service engineering specialists are ready to prepare from thorough analysis of the actual equipment, the following data: Text materal, covering construction, operation, installation and service procedure; compilation of parts lists and specifications; clear, accurate schematic diagrams based on the exclusive PHOTOFACT "Standard Notation" system; "exploded" views and full photographic coverage of the product. Production experts supervise the final preparation and publication of data.

NOW SERVING THESE CLIENTS:

We are at present serving a considerable industry group. Service manuals and data have been satisfactorily prepared (with many others in work) for

Brush Development Co.
Colonial Radio Corp.
Crescent Industries
Fmerson Radio \& Phonograph
General Electric Co.
The IMallicrafters Co.
Lear, Inc.
Meissner Mfg. Co.
Milwaukee Stamping Co.
Montgomery Ward \& Co.
Sears Roebuck \& Co.
Telequip Mfg. Co.
V-M Corporation
Wire Recording Corp. of America
Specimens of our work are available on request. You inquiries are invited. Our representative will gladly call on you to explain the entire service. Address your inquiries to our Manufacturers' Division.

HOWARD W. SAMS \& CO., INC.

 Indianapolis 7, IndianaPublishers: PHOTOFACT Folder Sets and Volumes; "Automatic Recorl Changer Serrice Manual": 'Dial Cord Stringing Gulde". 'Radio Receiver Tube Placement Guide"'; "Radio Industry Red Book". Other Volumes in preparation. Complete data on request.

SYNTHETIC SAPPHIRE

Has High Electrical Resistance

Ifinde sunthetic sapphire offers specific advantages for electronic uses. Sapphire maintains these properties at clevated temperatures.

Dielectric Constant
7.5 to 10
T_{e} Point 1,214 der. C. 101,231 der. C
(Temperature at which
resistance becomes 1 mexohm
Melting Point
Thermal Comdurlivity
(ral. sec. ${ }^{-1}$ cmi. ${ }^{-1}$ der. (. ${ }^{-1}$
at 500 decr. (.).
Thermal Expansion Corfficient
(per dog. C.. x 10^{6} at 1,000 deg. (i.)

IFrite for the LIVDE Simblic Sapphire Technical Data Sheet No. A-I.
The Linde Air Products Company
Unit of Union Carbide and Carbon Corporation 30 East 42nd Street एab New York 17, N. Y.

In Canada
Dominion Oxygen Company, Limited, Toronto

y

Over 20 years of fabricating experience

 PNATILFABRILATINE SHEETS, RODS, TUBES. BAKELITE AND FIBRE FABRICATED PARTS. PUNCHING, DRILLING, MILLING AND ENGRAVING

Mail Us Your Prints or Samples for Quotations ELECTRICAL INSULATION CO.,INC.

12 VESTRY ST., NEW YORK 13, N. Y.

 TYPE S12-A OSCILLOGRAPH and the TYPE OA-2 GALVANOMETER are ideal for operation under acceleration or vibration.

The TYPE S12-A OSCILLOGRAPH is a complete instrument with internal governor motor, gear-driven record, timing device, record numbering, automatic record-length control, and record footage indicator. Rigid cast aluminum case has carrying strap, measures only ten inches wide by 18 inches long, and weighs only 35 pounds.
Fully described in Technical Bulletin SP. 167 A
The TYPE OA-2 GALVANOMETER can be supplied in 66 different combinations of sensitivity and natural frequency, for accurate recording up to 6000 cycles per second. The OA-2 is the only galvanometer suitable for use under extreme vibration or acceleration. Fully described in Technical Bulletin SP-156 A
The TYPE MRC-12 STRAIN GAGE CONTROL UNIT is the smallest complete six-channel staticdynamic strain gage amplifier and balancing unit in existence. Complete with carrying strap, batteries, six amplifiers, six balancing boxes, and 2000-cycle oscillator, the MRC-12 weighs only 42 pounds.
Fully described in Technical Bulletin SP-177 A

NEW PRODUCTS
oped for use with helical potentiometers but having other applications as well. It consists of a primary knob-dial geared to a concentric turns-indicating secondary dial and requires a panel space only two inches in diameter.

Predetermined Counters

Potter Instrument Co., Inc., 136-56 Roosevelt Ave., Flushing, N. Y. A new line of multiplesequence counters use four-tube counter decades and are designed to predetermine any number of selected counts occurring in se-

quence. Pictured here is the threesequence unit which will predetermine three different counts that occur in sequence, each of which can be any number from 1 to 10,000 . Output censists of three high-speed mercury-type relays.

Disc Recorder

Rek-O-Kut Co., Inc., 38-01 Queens Boulevard, New York, N. Y. A new 12 -in. dise recorder, illustrated, has a dual speed turntable,

overhead feed mechanism, and selfcontained 8 -in speaker.

Paper Tubulars

Aerovox Corp., New Bedford, Mass. The recent paper tubular capacitors feature new design,

Aerolene impregnant and Duranite casing. The line is moisture-proof and designed for climatic extremes.

Rotary Solenoids

G. H. Leland Inc., 118 Webster St., Dayton 2, Ohio. The Ledex no. 7 and no. 8 rotary solenoids were designed to produce torques of 25 and 50 pound-inches, respectively. A choice of wire sizes from no. 13 to no. 35 represents d-c

operation from 6 to 550 volts. Rectifiers can be supplied, as accessories, for solenoid operation on a-c.

Regenerative Preselector

Babcock Radio Engineering, Inc., 6164 Sepulveda Blvd., Van Nuys, Calif. Model P2A regenerative preselector has a 4 -band range of

There's Food for Thought for You in-

As vital as each expertly drawn plan, is the material which receives, reproduces and preserves it. For this important purpose, the matted fibers of paper cannot compare with the selected, uniform, new cotton fibers woven and bonded into Arkwright Tracing Cloth! Use Arkwright, even for preliminary or one-job drawings that may be urgently needed for future use or reference. That's the safer, thriftier way!

Prove to yourself the extra worth and work ability of Arkwright for all drawings. Send for generous working samples. Arkwright is sold by leading drawing material dealers every where. Arkwright Finishing Co., Providence, R. I.

[^7]

ARKWRIGHT
 TRACING CLOTHS
 AMERICA'S STANDARD FOR OVER 25 YEARS

Now Electrical Impulse Recorting is

 Instantaneous!Yes, Brush oscillographs drow instant pictures of electrical impulses. Eliminate delays and trauble when you want accurate, permanent ink-on paper recordings.

Recordings of strains, pressures and countless electrical phenomena can be made pver a frequency range of D.C. to 100 c.p.s. Today Brush Oscillographs are available in Single, Double and Six Channel models. The magnetic Pen Motor is available separately for incorporation into equipment such as medical, geophysical and other highly specialized designs. Whenever desired, recordings may be stopped for notations on chart-paper.

Brush Model BL-913 D.C Amplifier. Well adapled to the measurement of static or dynamic phenomena such as temperature. lighi, pressures, strains itic.

Write today for detailed bulletin

> DEVELOPMENT COMPANY

$10,11,15$ and 20 meters; and gencral coverage is from 13 to 40 mc . It uses miniature 6AU6, 6J6 and also VR150 tubes. Net price is $\$ 27.50$.

Snap Action Switch
Acro Electric Co., 1316 Superior Ave., Cleveland 14, Ohio. Snap-

action switches rated by Underwriters Labs at $15 \mathrm{amp}, 125$ volts. or $7.5 \mathrm{amp}, 250$ volts a-c are available in two sizes as shown.

D.C Timing Motor

A. W. Haydon Co., Waterbury, Conn. Series 6400 d-c and 11400 a-c time delay relays have a planetary differential and capstan-type clutch mechanism which is designed to drive the switch actuat-

[^8]
saves money
E CONOMY in building television sets is important and the General Electric Focus Coil points the way to imporfant savings in manufacturing.
1 The G-E Focus Coil requires less current - permitting the use of lowerpriced power supplies.
2 It is a combination of the new G-E Alnico 6 permanent magnet and an electro-magnet.
3 It is simple to install. Forming a single assembly with the deflection yoke and centering device, the entire assembly is mounted with one bracket.

4 It is small, compact, light-weight-giving set designers more space to utilize.

When your sets are placed on the market-be sure they're equipped with this little G-E Focus Coil with the four big features.

For complete information on Television Components write: General Electric Company, Electronics Park, Syracuse, N. Y.

I DID IT!"

The hen gives herself a good round of applause every time she lays an egg. And well she might - but she couldn't have done it without that little bit of calcium which forms the shell.

Every time a top engineer sees one of his drawing board dreams breaking a speed or endurance record, he says to himself, "I did it - did it - did it!" - and that does not mean he has laid an egg, either.

But that dream could not have materialized - not good - without that little bit of so-essential Mica. And not real good - if that Mica wasn't Macallen.

MACALLEN MICA

voltage calibrator with ± 5-percent accuracy. Information is also available on the model 49-A 5-inch scope.

Vane Tuner

Modulation Products Co., 509 23 r d St., Union City, N. J. The new $a-m$ and $f-m$ tuning device mounts on the shaft of any tuning capacitor. The unit is supplied

either as a two or three gang vane tuner mounted on an a-m tuning capacitor or as a complete r-f chassis for a-m or f-m design.

Audio Oscillator

General Electric Co., Syracuse, N. Y., has announced the type YGA-4 audio oscillator, developed primarily for the serviceman. A stable bfo circuit enables the unit

to deliver a low distortion output voltage which remains constant within $\pm 1 \mathrm{db}$ over the 50 to 15,000 cycle range.

F-M Tuner

Collins Audio Products Co., Inc., P. O, Box 368, Westfield, N. J. The new f-m tuner includes the 6AL7GT tuning indicator, three i-f stages and two cascade limiters. It

For Inverting D. C. to A. C. . . .
Specially Designed for operating A. C. Radios, Television Sets, Amplifiers, Address Systems, and Radio Test Equipment from D. C. Voltages in Vehicles, Ships, Trains, Planes and in D. C. Districts.

The ADC of the ELECTRONICS I NDUSTRY

TRANSFORMERS

CATALOG TRANSFORMERS . . that meet our catalog tpecifications.
SPECIAL TRANSFORMERS . . . that meet your specifications.

- A wide range of stock transformers is accompanied by an engineering service that offers industry a dependable source of special tramsformers for every requirement. Write for catalog or supply specifications for special transformers.

FILTERS

Engineering to provide any filter that you will need. Manufacturing facilities that assure you dependable production schedules and uniformly dependable filters.

Illustrated band pass filter is typical of the unusual engineered filters that ADC produces for electronics industry. Write ADC for prompt and efficient engineering and production service for filters.

PATCH CORDS and JACK PANELS

ADC patch cords are used as standard by hundreds of broadcast stations over the country. They are preferred for their dependability and quality. Write for catalog.
Jack panels... companion to patch cords. Molded plastic for better insulation. Used where quality and durability are needed. Mount on 19" relay rack. Furnished with jacks assembled or panels only. Write for ADC catalog for complete speci-

fications.

has a 10 -microvolt sensitivity. A total of 11 tubes is included in the compact unit.

Life-Size Television

Cortley Television Corp., 15 W . 27th St., New York 1, N. Y., has developed a new type television receiver capable of throwing a picture varying in size from several

inches up to 6×8 feet onto a screen. Featured are a tilt adjustment for different height screens, a highly regulated power supply and an automatic cutout relay.

Rotary Tap Switch

Eastern Specialty Co., Philadelphia 40, Pa., has developed the new rotary tap switch for intricate circuits. Each section with 7 active positions and one off position is rated at 50 amperes continuous duty, with an overload capacity of

For Proof Beyond Compare

Soldering Flux

Send for Ruby's \$1 Offer

For $\$ 1$ Ruby will send you 1 pint of liquid, one half pound of paste soldering flux and a new booklet on "How to Solder."

Take advantage of this offer now! Send your $\$ 1$ today to-

RUBY CHEMICAL CO.

59 McDOWELL ST. COLUMBUS, OHIO

Rubeffluid

IWCREASED INSULATION BETTER CONWECTIONS JONES BARRIER

 Terminal Strips

Shown: Screw Ter-minals-Screw and Solder Terminals Screw Terminal above, Panel with Solder Terminal below. For every need.
Six series meet every requirement: No. 140, $5-40$ screws; No. 141, 6-32 screws; No. 142, $8-32$ screws; No. 150, 10-32 screws; No. 151. 12-32 screws; No. 152, 1/4-28 screws.
Catalog No. 16 lists completeline. Send for your copy

KEEEP POSTED ON GLECTRON TNBES

Use this convenient coupon for obtaining the RCA tube reference data you need.

RCA, Commercial Engineering,
Section HW-40, Harrison, N. J.
Send me the RCA publications checked below. I am enclosing $\$ \ldots . .$. . to cover cost of the books for which there is a charge.
Name \qquad
Address
City \qquad Zone \qquad State

Designed for Application

The No. 90952
MINIATURE SYNCHROSCOPE
For Field Service
The compact design of the No 90952 , measuring only $71 / 2^{\prime \prime} \times 5 \mathrm{~s} / \mathrm{m}^{\prime \prime}$ $\times 13^{\prime \prime}$, and weighing only 17 lbs ., makes available for the first time a truly designed for application "field service" Synchroscope.

JAMES MULLEN MFG. CO., INC.

MAIN OFFICE AND FACTORY
MAIDEN MASSACHUSETTS

NEW PRODUCTS CA mivesmer (continued)
75 amperes. It is designed so that twelve switch sections may be operated in parallel to handle a maximum current of 600 amperes.

Relay Protection

C. P. Clare \& Co., 4719 W. Sunnyside Ave., Chicago 30, Ill., has developed a dust-tight plug-in re-

lay base and cover for use in plants where dust conditions may affect operation of unprotected relays. Write for complete specifications.

Tester

Radio Corp. of America, Camden, N. J. The new Master Voltohmyst measures capacitance from $5 \mu \mu$ to $1,000 \mu \mathrm{f}$; current from 1μ a to 10 amp; ref voltage at frequencies up

to 250 megacycles; as well as performing other customary measurements expected of the standard test equipment.

Literature

Scientific Instruments. American Instrument Co., Silver Springs, Maryland, has just issued a 274page catalog describing instruments for use in chemical, biolog-
steps
to
HIGHER PRODUCTION and LOWER COST

1. . Wemeltat mem m
2. Choose one of 15

Milford
rivet setting
machines -
offering
unlimited versatility.
3. Select exactly the right semitubular or split rivet or coldheaded from Milford's complete line.
ical, physical, metallurgical, and other laboratories. Available to laboratory workers requesting it on business stationery.

Blowers. Rotron Div., Jenckes Knitting Machine Co., 180 Weeden St., Pawtucket, R. I. Catalog sheets describing a new line of blowers designed for tube cooling and similar uses in radio and electronic equipment.

Shock Mounts. Barry Corp., 179 Sidney St., Cambridge 39, Mass. A 14-page catalog describes the heavy equipment mountings and engineering services available from the company.

Television Antennas. The Workshop Associates, Inc., 66 Needham St., Newton Highlands 61, Mass., has just released two brochures on ways of obtaining optimum television signals in all bands. A new biconical antenna for $f-m$ and television is constructed of corrugated board covered with aluminum foil (for attic installation) and lists at $\$ 19.95$.

Mobile Microphones. ElectroVoice, Inc., Buchanan, Michigan. Bulletin 140 gives helpful information, data and prices on the complete line of carbon, dynamic and differential carbon Mobil-Mikes for aircraft, police, fire, taxi, marine, utility, forestry and similar services.

Resistors and Rheostats. Ward Leonard Electric Co., Mount Vernon, N. Y. Catalog D-130 is a 24-page reference guide fully describing and illustrating a comprehensive line of resistors, rheostats and radio amateur relays. List prices are included.

Equipment Pamphlet. Clark Electronic Laboratories, Palm Springs, Calif. Bulletin 117 is a 12 -page pamphlet treating of selenium rectifier tubes and tanks, acyclic generators and multispeed selenium motor controls.

Antenna Equipment. J. F. D. Manufacturing Co., Inc., 4109-4123 Ft. Hamilton Parkway, Brooklyn 19, N. Y. A 16-page catalog presents

KESTER CORED SOLDER
 pst in Your Industiry

 (Kester Plastic Rosin-Core Solder will speed up all soldering operations.
Have you heard of Kester's Neu' Product "Resin-Five" Cored Solder? It's Non-Corrosive, Non-Conductive yet will speedily solder metals such as brass, zinc, and even nickel-plate. It will pay you to get the facts on this astonishing product.
There is a Kester "Specialized" Flux-Core Solder in strand size, type of flux, and alloy to fit your needs. Consult our Technical Service Department.

Standard For Industry Since 1899

Kester
 SOLDER

KESTER SOLDER COMPANY

4204 Wrightwood Ave., Chicago 39, III.

Factories Also At
Newark, New Jersey - Brantford, Canada

Type 770
Vibration Isolator

Revolutionary new design which utilizes air damping to limit excursion at resonance
Control of

VIBRATION and IMPACT

> . . . with special emphasis on the field of electronics

We offer a complete line of highly engineered Vibration and Impact Isolators for commercial, industrial, and military applications . . . also an Enneering consulting service on special problems.

A letter from you will give us the opportunity to demonstrate how we can help you.

Catalogue on request

NEW PRODUCTS
the Super-Beam line of television and $\mathrm{f}-\mathrm{m}$ antennas which includes over 27 arrays. Also described and illustrated is a wide assortment of accessories, brackets and wire.

Resins and Plastics. Bakelite Corp., 300 Madison Ave., New York 17, N. Y. A handsomely illustrated booklet describes the many forms in which Vinylite resins and plastics are produced and fabricated. The last four pages are devoted to tables for technical assistance.

Flow-Rate Meters. Brooks Rotameter Co., P.O. Box B-53648, Landsdale, Pa. A new catalog describes the full line of rotameters for flowrate measurement and control. Capacity chart, data sheet and dimension prints of each type meter are given.

Timing Motor. The R. W. Cramer Co. Inc., Centerbrook, Conn. Bulletin 10 A is a 4 -page folder dealing with the type SX self-starting synchronous timing motor. This unit is intended for industrial applications in the instrument and control field to fill the gap between the low-torque clock motor and the fractional h-p group. A table on the back page gives a large choice of standard output speeds.

Flexible Tubing. Titefiex, Inc., 410 Frelinghuysen Ave., Newark 5 , N. J., recently published a 24 page catalog illustrating and describing a line of all-metal flexible tubing. Included are specifications for standard fittings and illustrations of typical assemblies with these fittings.

High-Range Ohmmeter. Radio City Products Co., 152 W. 25 St., New York 1, N. Y. Bulletin No. 133 is devoted to the model 450 series high-range ohmmeters. Included are six different units in open face models and in portable types which make resistance measurements of 50 to 1,000 megohms.

Transformer Catalog. Standard Transformer Corp., Dept. S, Elston, Kedzie, and Addison Sts., Chicago 18 , Ill. The 24 -page catalog $140-\mathrm{H}$ lists over 400 stock items

PROMPT DELIVERY!

Stainless Steel MACHINE SCREWS

 and Rivets
© CREWS, nuls, washers, pins Allmetal carries the largest stock in the country of stainless steel fasteners and screw machine parts. Our complete facilities for heading, tapping, drilling, reaming, slotting, turning, stamping, broaching and centerless grinding make possible prompt delivery of specials, too. Write for our free 83-page catalog today.

We also carry:

Cap Screws	Nuts	Taper Pins
Soolts		Tocket Screws Cotter Pins
Washers	Wood Screws	Pipe Fittings

Washers Wood Screws Pipe Fittings
Send for PREE CATALOG Allmetal Screw Products 6b., Inc. 33 Greene Street, Mew, York 13, H. Y.

MIGHTY MITES ©F RECORDING!

recording nempes

For cutting direct on all coated aluminum, paper, or glass base discs. Machine-lapped to insure a mirrorlike finish . . . a clean, quieicut groove.

7 For playback -

TRANSCRIPTION NEEDLE 100% SHADOWGRAPHED

Made to ft the groove cut by the Briliantone Recording Needle. Used by top radio stations and transcription companies.
notes o Bagataw
Famous far Fine Needles Since 1892
For New Catelog and Current Prico Lists, wrlte to: Advertising Dlvision
H. W. ACTON GO., ING. Sole Distributor
370 Seventh Ave., New York 1, N, Y.

PRECISION POTENTIOMETERS

Toroidal and Sinusoidal

For use in computing and analyzing devices; generation of low frequency saw tooth and sine waves: controls for radio and radar equipment; position indicators; servomechanisms; electro medical in. strunents, measuring devices-telemetering; gum fire control where 360° rotation, high precision and low noise levels are essential.

The type RLI4MS sinusoidal potentioneter is illustrated. It is wound 10 a total resistance of 35,400 ohms and provides two voltages proportional to the sine and cosine of the shaft angle. It will generate a sine wave true within $\pm .6 \%$ Overall dimensions are $43 / 8^{\prime \prime}$ diameter x $411 / 32$ long plus shaft extension $1 / 4^{\prime \prime}$ diameter x

Write for Bulletin F-68

THE GAMEWELL COMPANY

Newton Upper Falls 64, Massachusetts

Compact, laboratory styled, bigh, sensitility duction, test, laboratory, school and for promaintenance phases of modern tadio-elec. tronics-cummmanications. modern radio-elec 20,000 Ohms per Volt D.C.

- 1000 Ohms per Volt A.C. VOLTAGE RANGES: 0-3-12-60-300-1200-0-3-12-60-300-1200-
6000 A.C. \& D.C.
CURRENT RANGES: 0.120 microamps 0-1.2-12-120 MA. 0-1.2-12 Amps. D.C.
RESISTANCE RANGES: $0-6000-600 \mathrm{~K}-6 \mathrm{Meg}$ DECIBEL RANGES: From -26 to +70 DB . Complefe with batteries and \$38.75
PLUS superior physical features: $\star 45 / 8^{\prime \prime}$ wide angle meter.
Heavy duty molded bakelite
instrument case size $51 / 2 \times 71 / 8 \times 3^{\prime \prime}$ * Heary gouge, anodized aluminum panel.
\star Rotary Range and Function Selection.
\star Recessed 6000 volt safety jacks.
\star Only ${ }^{\text {two }}$ pin jacks
for all standard ranges.
Ask to see this and other "Prercision" Application Engineered instrumchts. on display at leading radio parts distributors. Write for new, complete 19fs catalog, including drotails of the Precision Eibectronamic tube testing
circuit.

PRECISION APPARATUS CO., Inc. 92-27 Horace Harding Blvd. Elmhurst 10, N. Y.

Export Division, 458 Broadway, New York City, U. S. A. Cables, MCR't ANEX

NEW PRODUCTS
including audio and power transformers and reactors, power packs, rolt adjusters, radio transmitter kits and television components.

Timer and Control Data. Electronic Controls, Inc., 44 Summer Ave., Newark 4, N. J. Several models of timers and switches are covered in a four-page loose-leaf perforated folder. Description, application and technical data for each are given.

Aircraft Instruments. Fredric Flader, Inc., North Tonawanda, New York. Two recent bulletins treat of Teletlight accelerometers and pressure transmitters which are specially designed for use in aircraft and missile applications. Mechanical drawings, principles of operation and prices are included.

Components Catalog. Stackpole Carbon Co., St. Marys, Pa. Catalog RC7 covers a line of electronic components including fixed and variable resistors, iron cores, line and slide switches, choke forms and capacitor units. The publication is replete with illustrations, mechanical diagrams and charts.

Sapphire Gages. Sapphire Products Division, Elgin National Watch Co., Aurora, Ill. A fourpage color circular gives description and prices on sapphire plug gages, ring gages and micrometers. The Tipt-type gage, featuring hardened steel leader, is fully covered.

Carrier System. Lenkurt Electric Co.. 1116 County Road, San Carlos, Calif. Folder CX39A is an eightpage illustrated publication giving a complete treatment of the Type 32 three-channel carrier system. Particular emphasis is laid on filter engineering which gives the system in effect, a fourth channel.

Isotope Chart. General Electric Co., Schenectady 5, N. Y. A new chart giving the latest data concerning isotopes of the chemical elements is being distributed. Printed on heavy paper, 26×50

Acme Electric engineers will cooperate with your engineering department by providing specially designed transformers for power supply and other applications in an effort to improve the reception and reproduction qualities of your sets.

Acme Electric can produce transformers of special characteristics from standard parts which means that our enormous manufacturing facilities and quality controlled production results in buying economies for you.

Send us specifications and application outline.

ACME ELECTRIC CORP.

318 Water St.
Cuba, N. Y.

Acmes.inselectric

inches, it is divided into three overlapping sections for convenience. In the form of a long diagonal checkerboard, each square contains the chemical symbol, atomic weight and other data on the isotope, along with empty spaces to keep the chart up to date. Copies may be had on request.

Wire \& Cable Handbook. Rockbestos Products Corp., New Haven 4, Conn. The new No. 10-F catalog and handbook gives a crosssection of the complete line of more than 125 different heat and flame resistant wires.

Maintenance Catalog. General Cement Mfg. Co., 919 Taylor Ave., Rockford, Ill. Catalog 150 is a 64-page well-illustrated description and price list of a wide variety of chemicals, parts, materials, tools and equipment necessary for the maintenance of radio and electronic equipment.

Klystrons. Sperry Gyroscope Co., Great Neck, New York. A small, simply-written, folder discusses klystrons and their operation and lists many possible applications. The further use of klystrons in industry is advocated.

Battery Replacement Guide. Burgess Battery Co., Dept. RG, Freeport, Ill. The 1948 guide contains the latest replacement battery information, listing over 1600 sets made by 100 radio manufacturers and the correct batteries for each set.

Timing Devices. The A. W. Haydon Co., Waterbury 32, Conn. A new catalog covers a variety of timing motors, relays, switches, and indicators for both a-c and d-c use. Illustrations and specifications are included.

Miniature Bearings. New Hampshire Ball Bearings, Inc., Peterborough, New Hampshire. Technical bulletin No. 48 contains much information on extra-small bearings of several designs. Tolerances, mounting and selection of bearings are treated.
 designed" audio units over twenty years aso, Racon is still making history in this field.

Do not be misled by the fact that speakers and horns of various makes look alike. Under the surface of any Racon unit there are "differences"-small physically but big from the standpoint of Performance!

Whatever the application, you can be sure that these subtle differences-built into Racon units by experienced audio engineers -will give you all-around performance and service of outstanding superiority.

PERMANENT MAGNET HIGH FREQUENCY SPEAKER

An efficient precision built Speaker, to meet the latest requirements for wide range reproduc tion. Designed to cover the frequency band up to 12,000 cycles. Supplied with horn having a low cut-off ot 750 cycles. When used in conjunction with a suitable low frequency speaker and cross over network will give audio reproduction at a new high quality level. Voice coil impedance 15 ohms.

TWO-CELL HIGH FREQUENGY HORN
Latest type of cellular horn with two cells, specially designed for flush mounting in any cabinet, giving distribution angle of 120° horizontal and 60° vertical. Has a $7 / 8-18$ thread throat connection for a Racon standard high frequency unit.

TWO NEW TYPES OF FILTER CROSS-OVER NETWORKS

Completely Enclosed, Easily Mounted

1. A simple capacitive filter network with cross-over at 1500 cycles.
2. Resistive capacitive filter network with a cross-over of

1500 cycles and permitting balancing of high response to low.

NEW SMALL RE-ENTRANT HORNS

Extremely efficient for factory inter-com and paging systems; for sound trucks, R. R. yards and all other industrial installations where high noise levels are prevalent. Watertight, corrosion-proof, easily installed. Two new models-type RE-1 $1 / 2$, complete with Baby Unit, handles 25 watts, covers $300-6000 \mathrm{cps}$, type RE-12, complete with Dwarf Unit, handles 10 watts, has fre. response of 400-800 cps.

Write for catalog describing complete line of
Racon Horns, Speakers, Units, Accessories, etc.
RACON ELECTRIC CO., INC.
52 E. 19th Street, New York 3, N. Y.
BACON

LENKURT KNOWS HOW

MEASUREMENTS CORPORATION mooel 80

STANDARD SIGNAL GENERATOR

MANUFACTURERS OF Standard Signal Generators Pulse Generators fM Signal Generators Square Wave Generators Vacuum Tube Voltmeters UMF Padio Noise $\frac{1}{2}$ Field UMF Radio Nols Meters Strength Merors Capacity Bridges Megohm Meters Phase Sequence Indicator Tolovislon and FM Test Equlpment

2 to 400 MEGACYCLES

MODULATION: Amplitude modulation is continvously variable from 0 to 30%, indicated by a meter on the panel. An internal 400 or 1000 cycle audio oscillator is provided. Modulation may also be applied from an external source. Pulse modulation may be applied to the oscillator from an external source through a special con. nector. Pulses of 1 microsecond can be obtained at higher carrier frequencies.

FREQUENCY ACCURACY $\pm .5 \%$

OUTPUT VOLTAGE

0.1 to 100,000 microvolis

OUTPUT IMPEDANCE 50 ohms

MEASUREMENTS CORPORATION

 BOONTON
†

NEW JERSEY

NEWS OF THE INDUSTRY

(continued from page 138)
inches in diameter, topped by an RCA six-bay batwing antenna.

The entire project, including acoustically isolated studios, was built by the Turner Construction Company for the Daily News.

Convention Coverage
 Via TV

Eighteen television stations from Boston, Mass, to Richmond, Va.the largest video hookup to datecovered the recent Republican and Democratic national conventions. In addition to direct telecast from the scene, television broadcasters filmed the proceedings and flew them to stations in the midwest and west coast where no cable or microwave relay facilities are as yet available for direct transmissions.

To accomplish the feat a general television committee for pooled coverage was created several months ago, composed of personnel from ABC, CBS, DuMont and NBC , to organize the telecasting for all stations situated along the

Sketch shows camera setuo and route followed by television pooled pickup of national political conventions
coaxial cable and microwave relay route of the American Telephone and Telegraph Co. on the eastern seaboard.

Five television cameras were set up, each equipped with a turret of four lenses, making possible 20 different views. The televised images were fed by cable from the cameras to a master control room to the left of the Convention Hall stage, where a producer-director selected for transmission the picture best depicting the proceedings. The selected picture was then routed via

MANUFACTURERS OF MINIATURE TUBE RADIOS AND EQUIPMENT

* Star Miniature Sockes Wiring Plugs for accurale alignment during wiring. Precision cast during wiring. Precision cast
of zine base alloy-pins of of rinc base alloy-pins of \#JE-10 (7 pin).
* Stor Minioture Tube Pin Straighteners (with stainless steel insert) to obtain a perfect fit when the tube is placed in the equip\#JE.13 (7 pin).

Scientifically designed - Pracision mode Immediate Delivery in Any Quantities

\star Star $\begin{gathered}\text { Expansion } \\ \text { Rrouctiso ilic }\end{gathered}$

147 CEDAR STREET, NEW YORK 6, N. Y.
$\star \star \star$ New!
REAR PROJECTION PLASTIC TELEVISION SCREENS

The screen surface consists of a conglomerate arrangement of microscopic plastic crystals that "Pin Point" the projected image providing unexcelled angular viewing with a minimum loss of projected light. It is estimated that there is a loss of approximately 10% of light viewing the image at 45 degrees off center.

Light transmission percentages are controlled to obtain the maximum efficiency of the television optical projection system. The percentage of 80% of transmission has been determined as that providing maximum efficiency. Stock sheets are available from 3×4 feet down. Specify inside able from x leet dions of dimensions of screen desired. If larger sizes are required, they can be made to order.
The special construction of this sereen material permits its use in places where even direct light falls on the screen. The screen is designed to give maximum black and white quality when used with α new 5TP4 Tube.

Net price of Rear Projection \$3.00 Screen, per sq. foot.
25% With Order, Balance C.O.D.
Pioneers in Projection television SPELLMAN TELEVISION CO., INC. 130 WEST 24th STREET • NEW YORK $11, \mathrm{~N} . \mathrm{Y}$.

The Combination of
GRAY TRANSCRIPTION ARM, \#601 4-Position EQUALIZER and SELECTED GE CARTRIDGE :.is receving WIDE ACCLAIM

Developed in collaboration with the
COLUMBIA BROADCASTING SYSTEM for finer lateral reproduction, it is now standard equipment in two major networks.
 stylus and recordings. Adjustable stylus pressure, accommodates all modern cartridges. Ideal for Micro-Groove reproduction. Many other new features. Arm, less cartridge, $\$ 35.00$.

GRAY \#601 EQUALIZER for GE CARTRIDGE
Optimum Performance, Economy of Operation and Quality Workmanship. Matches pickup to microphone channel. Complete, $\$ 42.50$.

> Write for more details (including Gray Selected GE Cartridges with Diamond Styli, and Micro-Groove reproduction).

GRAY RESEARCH \& DEVELOPMENT COMPANY, Inc.
Factory: Hartford, Conn.

NEW PROCESS CUTS COIL WINDING COSTS 4 WAYS

At no extra cost, all Precision tubes are now Di-Formed under heat and pressure. This means 1) Greater strength at no increase in weight. 2) Automatic stacking made possible. 3) Coils need not be formed after winding. 4) Cores can be engineered closer. The saving in wire, labor, extra operations; and the greater coil efficiency can readily be seen. Send for samples of Di-Formed tubes, and new Mandrel List.

PRECISION PAPER TUBE CO.

2041 WEST CHAIRLESTON STREET CHICAGO 4\%. ILL.

 Plant \#2 • 79 Chapel St. • Hartford, Conn.
weighing .l ounce TYPE G64A CRYSTAL UNIT

TYPICAL of the outstanding crystal developments at General Flectric is this miniature-size crystal unit for oscillator frequency control from 6 to 10 mc (conservative rating). Its small size and weight make it an ideal unit for aviation equipment, transmitter output frequency control. receiver local oscillator frequency and many other types of equipment.

Here are a few of the more important features that mean improved equipment through the use of the G604:

- Because of its low capacitance, this unit readily lends itself to "overtone" or "mechanical harmonic" operation
- I.ow terminal capacitance (6 mmfd or less)
- Plated-on electrodes
- Both sides "high"
- Resilient crystal plate mounting to withstand severe mechanical shock
- Crystal plates secured to mounting springs with silver-filled, thermosetting cement, to insure adequate mechanical and electrical bond between plating and springs
- Operating temperature range: $-55^{\circ} \mathrm{C}$ to $+90^{\circ} \mathrm{C}$
- Overall frequency deviation over this range, including initial adjustment in customer's circuit, $\pm .005 \%$
- True hermetic sealing (shell soldered to base)
- CAA approved

Fundamental operation may be extended up to approximately 15 mc , and, by using the "overtone" modes and a suitable circuit, the range may be extended up to 75 mc and higher.
Other crystal units are available for most applications, and for those special cases which present tough problems G.E. will engineer crystals to suit your requirements.

For complete information on crystals write: General Electric Company, Electronics Park, Syracuse, Neu' York.
news of the industry

Special RCA custom-built microphone control and mixing console shown being installed in Philadelphia Convention Hall in the center of the first balcony overlooking the arena. It controls a sound system having an output of approximately 1 kw , one of the world's largest amplifier installations
cable to a network distribution booth to the right of the stage. This booth provided feeds to the individual control rooms of each of the networks on the scene, and also to the control room of the AT\&T from which point they were sent via coaxial cable to the Bell System's terminal on Race St., Philadelphia. From there they were transmitted by coaxial cable to the stations.

In New York City the images were fed via AT\&T microwave to Boston, Mass., via G-E's microwave relay to Schenectady, N. Y., and over DuMont network's relay to New Haven, Conn.

Low-Powered
 Educational F-m

The FCC has proposed to amend its rules and regulations so that low-powered (10 watts or less) educational f-m broadcasting would be authorized in the 88 to 92 mc band now allocated to the noncommercial educational broadcast service. Indications are that such a station could get on the air for an expenditure of a few hundred dollars and could cover distances of from two to five miles.

Licensing of low-power f-m transmitters for school systems is advocated by the U. S. Office of Education. Syracuse and DePauw Universities are applicants for $2 \frac{1}{2}$-watt noncommercial educational $\mathrm{f}-\mathrm{m}$ stations, and other institutions

in BRUSHES
for high current density minimum wear low contact drop low electrical noise self-lubrication

in CONTACTS

for low resistance non-welding character
GRAPHALLOY works whete others won't Specify GRAPHALLOY with ranfidence.
*A special silver-impregnoter graphife

GRAPHIIE METALILING CORPORATION
 1055 NEPPEARAN AYENUE, YONXERS 3, NEW YORX

have expressed interest. Syracuse U. has conducted an experimental station of this nature for the past year, using G-E equipment.

Scientists Decorated

In recognition of outstanding services to the armed forces, the award of the Medal for Merit was bestowed on 65 scientists and engineers of the wartime office of Scientific Research and Development. The following were the recipients:

Leason H. Adams of the Geophysical naboratory, Carnegie Institute of Washof Homer Chistry, University of Illinois 'hemistry, Arlinis of the Department of Henry H. Allen of Franklin Institute Philadelphia: IJuis W. Alvarez of the Department of Physics, University of alif.: Bennetth Archambault of M. W Kellogg Co., New York, N. X.: James G. Baker of Harvard College Observatory Wdward J. Bowles of MIT : John F. Burchard of MIT; John S. Burlew of the renphysical Laboratory, Carnegte Insti3I. Chadwell of Rockefeller MT: Harris N. Chadwell of Rockefeller Foundation, ratoritas, Chicago: Fdwin J. Cohn of Harvard Inliversity: Ralph a Connor of Tniversity of Pennsylvania: Alphonse R Docher of (Iolumbia University: Isee A. louBridgt: of Calif. Inst. of Technology Melville Eastham of General Radin Co. Alexander lillett of Zenith Radio Corp. Raymond H. Ewell of California Research Institute: Horace S. Ford of MIT: William A. Fowler of Calif. Institute of Technolog; : Ivan A. Getting of MIT Lars O. Grondahl of Union Switch \& Siernal Co., Pittsburgh; Paul M. Gross of Duke liniversity; Albert B. Hastings of Harvard; Clarence N. Hickinan of Bell Telephnne Laboratories ; Hoyt C. IIottel University: Walter I_{s}. Hovde of Purdile Tniversity: Walter S. Hunter of Brown Tniversity; Herbert F. Ives of Bell Labs. fay Jeftries of General Electric Co.. PittsIel, Mas., Paril 5 . Keerer of Boston western trinversity. wopard F niping of IT S. Tept of Agriculture Washincton D. C: S. Irving of Agriculture, Washington ric Co. Schenectady. Warren K Lewis of MIT; Alfred I. Loomis of Loomis raboratries, Tuxedo Park, New York: Stanley P. Lovell of Beckwith Mfg. Co. Roston, Mass. : Duncan P. MacTougali. fos Alamos, New Mexico: Max Mason of Calif. Institute of Technology: Robert R. McMath of MrMath-Hulbest Observatory, Tniversity of Michigan : Edward I. Moreland of MIT; William A. Noyss, Tr. of the TTniversity of Rochester: Brian G'Brien of the University of Rochester: Limus C. Pauling of Calif. Institute of Technology; Isidor I. Rahi of Columbia Thiversity: Harold B. Richmond of GenTrniversity of tilinois. Richard R Rof the of the Carnegie Inst Richard R. Roberts of Uniterl Fruit Co Boston Mass. Rruce H. Sas of Calif Tnstitute of Tech Hology : James A. Shanmon of EechSquibb and Snns, N. Y.: Thomas K. Sherwood of MT: Homer W. Smith of the sity: Earl P. Stevenson of Artiur D. Tittle. Tnc., Newton, Mass, : Irvin Stewart of the ITniv. of West Vircinia: Chauncey a. Sults of Genoral Electric Co. Schenecadr. N. F. Fredericiz F. Terman of Stanford Tiniversity: Roger S. Warner. Ir. of the U. S. Atomic Junergy Commission, Washington. D. C.: Alan T. Waterman of the Offire of Naval Fiesearch. ashington, O. C.: Warran Weaver of Rockereler Fonnation Wilhams of tha Battele Memorial Institute. , S . ington, D. C. : Fisear B. Wilson, Jr. of Harvard Tiniversity

In addition to the above named, the Medal for Merit with oak leaf

High Sensitivity . . . Logarithmic AC VOLTMETER 50 MICROVOLTS TO 500 VOLTS
 SELF-CONTAINED

 ALL AC OPERATED UNITAn extremely sensitive am plifier type instrument that serves simultaneously as a voltneeter and high gain amplifier.

Accuracy $\pm 2 \%$ from 1 cycles to 30 kc . $\div 5 \%$ from 30 100 kc

- Input Impedance 1 meg ohm plus 15 uuf sheg capacity.
- Amplifier Gain 40000

Also MODEL 45 WIDE BAND
VOLTMETER
0005 to 500 Volts! Cycles 1600 kc

A feu of the many uses.

- Output indicator for microphones of all types.
Low level phonograph pickups.
Acceleration and other vibration measur-
ing pickups
Instrument Electronics
- Gain and frequency measurements for all types of audio equipment.
- Densitometric measurements in photog raphy and film production.
- Light flux measurements in coniunction with photocells.

The MOST PERFECT AMPLIFIER
 'for Reproducing Fine Music

Hew! Model 10C3-Remote control unit with both highand low-gain inputs for all types of tuners and pickups.

The Brook All-Triode Amplifier is built with only one objective . . . to provide the cleanest possible reproduction of fine music.

It makes use of low-mu triodes throughout - specially-designed trans-formers-and the Brook-patented Auto-matic-Bias-Control circuit which more than doubles efficiency of the output system and at the same time reduces harmonic distortion. The result is an
amplifier flat within 0.2 DB from 20 to 20,000 cycles-with intermodulation and barmonic distortion reduced to negligibility.

Although its "paper performance" surpasses that of any other amplifier, the Brook must really be heard to be fully appreciated. When you hear the Brook alongside other amplifiers -any amplifiers-you are in for an experience that is both surprising and enlightening.

Write today for copy of distortion analysis and Descriptive Bulletin AF-8!

President Truman presents Medal for Merit with oak leaf cluster to James B. Conant (right) and Vannevar Bush (left)
cluster was bestowed upon Vannevar Bush and James B. Conant for their contributions to atomic research.

BUSINESS NEWS

Allen B. DuMont Laboratories, INC. has purchased from WAA a 56 -acre former Wright Aeronautical plant in East Paterson, N. J., and will use it to triple the present 3,000 -per-month television receiver production. The property must be maintained in such a manner that it may be reconverted to its original use within 120 days.
Telectrad Co., New York, N. Y., has been formed to specialize in supplying capacitors to manufacturers and laboratories.

Servo Corp. of America, manufacturers of servomechanisms and computers, have acquired space in the Eric Wedemeyer Building, New Hyde Park, L. I., New York. The newly leased area will house the servomechanisms laboratory and general offices.
Control Engineering Corp., manufacturers of precision electromechanical instruments and control systems, has purchased a $14,000-$ foot modern laboratory building in Canton, Mass.

General Electric Co. will devote its entire receiver building (capable of housing three football fields) at Electronics Park to television set production by the end of the year.

Electron Microscope Society of America has set up a placement service for the mutual benefit of its

Littelfuse Makes Headline News with "In-Line" Fuse Retainer

Littelfuse's latest development: the "inline" fuse retainer for fingertip ease in fusing. Precisely molded of high impact bakelite and designed primarily for low voltage applications: car radios, heaters, spot lights and other automotive trouble spots where a fool-proof easy-to-handle fuse installation is desired. The strongly spring-locked retainer opens with a "push-and-twist" of the finger tips. Inside, the fuse rests against knife-edged, cup contacts that assure greatest degree of contact with lowest voltage drop. Doubled wall thickness at juncture of shoulder and lower body.

F

 created for you by our master designing department. We have 36 years of "know-how" and have created metal products and displays for the top manufacturers.
Write today for descriptive folder.

$$
G_{A M I N}
$$

Sheet Metal Works, Inc. 2645-49 Ciybourn Ave,

Chicago 14, III.

S.S.Whitz
 ARE USED IN THIS
 SUPER-SENSITIVE ULTROHMETER

MOLDED RESISTORS

Aeriteather
Resistors

An S.S.White 100 Megohm Resistor is used as the plate load resistor for the first tube in the D.C. amplifier in this instrument which measures very small d.c. currents and voltages over an extreme range of values. The manufacturer, Beckman Instruments Division of National Technical Laboratories, says of the S.S.White Resistor "it has been very satisfactory" -which checks with the experience of many other electronic equipment manufacturers who use S.S.White Resistors.

Photo courtesy of Mational Technical Laboratories,
WRITE FOR BULLETIN 4505
It gives essential data about S.S. White Resistors including construction, characteristics, dimensions, etc. Copy with price list on request.

S.S.WHITE RESISTORS

are of particular interest to all who need resistors with inherent low noise level and good stability in all climates.

HIGH VALUE RANGE
15 to 1,000,000 MEGOHMS
STANDARD RANGE 1000 OHMS to 10 MEGOHMS

S.S.WHITE

 molled kesistons - plastic specialites - contract plastics molding

KENYON one of the oldest nomes in tons II formers, offers high quality specification transformers custom-built to your requirements. For over 20 years the KENYON "K" has been a sign of skillful engineering, progressive design and sound construction.

1ENY/ now serves many leading companies including: Times Facsimile Corporation, Western Electric Co., General Electric Co., Schulmerich Electronics, Sperry Gyroscope Co., Inc. Yes, electronification of modern industrial machinery and methods has been achieved by KENYON'S engineered, efficient and conservatively rated transformers
For all high quality sound applications, for small transmitters, broadcast units, radar equipment, amplifiers and power supplies - Specify KENYON! Inquire today for information about our JAN ap. proved transformers.

Now - for the first time in any transformer catalog, KENYON'S new modified edition tells the full complete story about specific ratings on all transformers. Our standard line saves you time and expense. Send for the latest edition of our catalog now!

KENYON TRANSFORMER CO, Inc. wo poux swer

with the New

 DI-ACRO ROD PARTERThis newest member of the DI-ACRO "DIE-LESS DUPLICATING" family of Machines brings you accuracy, speed, capacity range and ease of operation fully up to the standards of DI-ACRO Benders, Brakes, Shears. Do you require precision? - The DI-ACRO Rod Parter holds tolerance to $.001^{\prime \prime}$ on duplicated cuts. The ends are square, and roundness is maintained.
Do you want speed? - The Rod Parter exceeds output of other methods with equal accuracy, on rods and bars up to $5 / 8^{\prime \prime}$. Torrington Roller Bearings incorporated in an exclusive multiple leverage arrangement provide remarkable ease of operation in both heavy and light materials.
GEt "diedtess duplicating' catalogi Shows parts produced without die expense by DI-ACRO Benders, Brakes, Shears, Rod I'arters, Notchers, Benders, Brakes, Shears, Rod Sar

Pronounced "DIE-ACK-RO"
QHARRD D'IEIL-IRWIII MFE.CO,
321 EIGHTH AVENUE - LAKE CITY, MINNESOTA

hEAT RESISTANT WIRES FOR EVERY APPLICATION

DESIGN ENGINEERS . . .

Do those new circuit designs present new wire problems?

Then check with Lewis Engineering for an economic solution and fast delivery. For twenty years we've successfully been solving the heat and age resistance wire problems of industry. We don't stock wire-we make it to your specs-for an experimental run or for the production line. If you're designing in the electronic, electrical or appliance field.

W. B. Lodge

R. D. Huntoon

Robert D. Huntoon, assistant chief of the Atomic Physics Division, National Bureau of Standards, has received a distinguished achievement award from the Washington Academy of Sciences for "the advancement of electronics and its application to other sciences and to modern ordnance."

Henry H. Hausner, who during the war developed hermetic seals for electronic equipment, was ap-

FASTER, SIMPLER AUDIO ANALYSIS

with Model AP-1

PANORAMIC SONIC ANALYZER

Reduce time, complexity and cost of making audio measurements with the unusual advantages offered by the Panoramic Sonic Analyzer. By resolving a complex audio wave into a spectrograph showing the frequency distribution and voltage amplitude of the components, Model AP-1 ...

- Eliminates slow point-by-point frequency checks - Provides a quick overall view of the audio spectrum - Enables determination of changes in waveform content while parameters are varied. Furnishes simple presentations for production line testing.

Use Model AP-I for analyzing ...

- Hormonics - Intermodulation - Vibra tion - Noise - Acoustics • Materials

Features... Continuous scanning from 40$20,000 \mathrm{cps}$ in one second - Wide input voltage range - Linear ond log voltage scale - Closely logarithmic frequency scale - Built-in voltage and frequency calibrator - Simple operation.
WRITE for detailed specs, price and delivery.

NEWS OF THE INDUSTRY (continued) pointed a member of the staff of the Metallurgical Research and Development Laboratories of Sylvania Electric Products Inc., Bayside, N. Y.
J. H. Ludwig, formerly with Philco, RCA Victor and Raytheon, is now president and treasurer of the newly formed Control Engineering Corp., Canton, Mass.
W. A. Jones, recently with Raytheon Mfg. Company as project engineer on gyro design, is now vicepresident of Control Engineering Corp., Canton, Mass.

Robert W. Clark, NBC New York television operations supervisor, has been transferred to the same position for the network's Hollywood division.
T. Keith Glennan, director of the Navy's Underwater Sound and Detection laboratory at New London, Conn., in 1942, was recently inducted as president of Case Institute of Technology, Cleveland, Ohio.
A. V. Astin, assistant chief of the Electronics Division, National Bureau of Standards, has been awarded His Majesty's Medal for Service in the Cause of Freedom in recognition of work in England from Sept. 1944 to March 1945 as representative of the National Bureau of Standards and of Division 4, NDRC, involving the use and evaluation of the proximity fuze. As government officials are not permitted to accept foreign decorations, the medal will be held in custody until his retirement.

Winston L. Hole was recently appointed assistant to the director of the Ohio State Research Foundation. He was previously coordinator of engineering development for North American Phillips Co., and served as a technical aide with NDRC.

Samuel Bousky, president of the Cleveland Section of the Instrument Society of America, has joined Horizons Inc., as chief of the physics division. Previously he was employed by Jack \& Heintz Inc., in the development of special electronic instruments for aircraft.

FM TRANSLATOR General Electric Model XFM-1

Translator which was used and enjoyed by tens of thousands of discriminating radio insfeners.
Covers 88.108 mc range, dial 12 inches long, uses guillotine tuning for highest efficiency, high stability. Designed for export, has power inputs for 110 to 250 volts, $50 / 60 \mathrm{cy}$. Used in conjunction with good audio section or separate amplifier will provide best $F M$ listening you ever heard. In attractive nalural wolnut cabinet $-103 / 4^{\prime \prime}$ high $\times 15 \frac{3}{}{ }^{\prime \prime}$ wide $\times 113 /{ }^{\prime \prime}$ deep, complete with 8 tubes. Tropic-proof construction. Quantity limited, no more avoilable. Get your order in while they lastl

Special Price. $\$ 49.50$
TECHMASTER TV KIT

The Same os the
RCA 630TS TV Chassis
Complete kit of parts, including all hordwore, pre-wired ond oligned RCA tront end, condensers, resistors, punched chassis, all tubes including kine, complete manual with service notes, oll RCA $\quad \$ 198.50$ NOTE: All prices are Nat, F.O.B. N.Y.C. and ore sublect to change withoul notice.

103 West 43rd St., New York 18, N. Y.

TECHICAL MANUALS

 CUSTOM DESIGNED

 CUSTOM DESIGNED TO YOUR SPECFICATIONS

 TO YOUR SPECFICATIONS}

Planned, written and illustrated by a select staff . . . experts in creating radia and electronic manuals for civilian \& military use.

When you call upon Boland \& Boyce to create your manuals you are relieved of every detail in their preparation. The entire operotion is taken over and completed by a specialized staff with years of experience in publishing books \& manuals.

First the requirements for your manual are completely surveyed. The working conditions to which they will be put are studied and the operations or equipment described in the manual are thoroughly analyzed. A complete outline is then prepared and submitted for your approval, along with a dummy of the manual as it will appear when finished. Upon your approval the job is completed and delivered with your satisfaction guaranteed.

Boland \& Boyce manuals incorporate only the most modern editorial and illustrative style, Each project is treated with individual ottention in technique of presentation and editorial approach. The Boland \& Boyce military and civilian manuals now in use throughout the world ore our best recommendations.
U. S. Navy
U. S. Signal Corps.

Sylvania Electric Products, Inc.
The National Company Western Electric Co.
Bell Telephone Laboratories
Maguire Industries, Inc.
Allen B. Dumont Laboratories, Inc. General Electric Co.
Mine Safety Appliances Co.
Write or wire Boland \& Boyce today for more information.

BOLAND \& BOYCE INC., PUBLISHERS

[^9] CHICAGO: 228 No. LaSalle St.

NEW BOOKS

Ultrahigh Frequency
 Transmission and Radiation

By Nathan Marchand. John Wiley \& Sons, New York, 1947, 322 pages, $\$ 4.50$.
The basic principles of the radiation and transmission of electromagnetic waves are presented, using a mathematical approach coupled with a detailed analysis of the result. The book should appeal to all engineers, scientists and students for whom mathematics is a useful tool. Partial differential equations are used in many of the basic developments.

Covered in turn are Transmission Lines, Elements of Vector Analysis, Fundamental Electromagnetic Equations, Plane Electromagnetic Waves, Radiation, Antenna Arrays, Wave Guides and Complex Transmission Line Network Analysis. A few problems are appended to each chapter, which will aid in making the book useful as a text.

The final chapter presents some useful ideas on the combination of circuit equations with transmission line networks to a conventional transmission line circuit. Such devices as a balanced shielded loop antenna and conversion transformers are treated with the aid of equations involving Kirchhoff's current law. Some errors in sign in this presentation appear rather generally, but the intent is clear and the results are quite useful.G. B. HOADLEY, Brooklyn Polytechnic Institute.

Fundamental Electronics and Vacuum Tubes

By A. L. Albert, Professor of Communication Engincering, Oregon State College. The MacMillan Company, New York, N. Y., 1947, 510 pages, price $\$ 6.50$.
This is a revised edition of Professor Albert's popular text, which appeared first in 1938. As everyone knows, electronics has moved ahead in the intervening ten years, and this new edition is a response to the changes that have occurred. It has been completely revised and reset. Material on certain aspects of the art which were not very apparent in 1938 has been brought into the

. . . with the Rubicon

WHEATSTONE BRIDGE No. 1080
A high precision instrument well suited for use as a laboratory standard as well as for routine measurements requiring exceptionally high accuracy.

- Wide range - 1 ohm, readable to within 0.0001 ohm, to 100 megohms.
- Five-dial rheosiat usable as separate decade resistance box, $9 \times(1000+100$ $+10+1)+10 x .1$ ohms. Limit of error in resistors of 1 or more ohms 0.02%.
- Plug-controlled ratio arms with resistors from 1 to 10000 ohms - limil of error 0.02% - versatile arrangement permitting numerous interchecks.
- Heavy substantial aged manganiar resistors for high stability.
- Extra-heavy sturdy switches with contact resistance less than 0.001 ohm.
Fully described in Bulletin 100.

. . . with the Rubicon

type b wheatstone bridge
Another of the eighteen bridges listed in Bulletin 100 for nearly every type of resistance measurement . . . from high precision laboratory work to high speed production line inspection jobs. Write for your copy of the new edition of Bulletin 100 today.
RUBICON COMPANY
Electrical Instrument Makers 3757 Ridge Avenue • Philadelphia 32, Pa,

REVOLUTIONARY

 COMPLEX WAVE GENERATORElectronic Generator producing any wave representable by the equation: $e=m_{1} E \cos (2 \pi$ $f t+\alpha)+m_{2} E \cos (2 \pi 2 f t+\beta)$ $+m_{3} E \cos (2 \pi 3 f t+\theta)+m_{4}$ $E \cos (2 \pi 4 f t+\phi)+m_{5}$ $E \cos (2 \pi 5 f t+\gamma)$

Model 57 Price $\$ 495.00$ net f.o.b. Flushing, N. Y.

Designed by

Centro Research Laboratories, Inc.

Mannfactured and sold by:
ALFRED W. BARBER
LABORATORIES
34-04 Francis Lewis Blyd. FLUSHING, N. Y.

Lavite
 STEATITE CERAMIC

Design engineers and manufacturers in the radio, electrical and electronic fields are radio, electrical and electronic fields are
finding in LAVITE the precise qualities called for in their specifications ... high compressive and dielectric strength, Iow moisture absorption and resistance to tot, fumes, acids, and high heat. The exceedingly low loss-factor of LAVITE plus its excellent workability makes it ideal for all high frequency applications.
D. M. STEWARD MFG. COMPANY

Main Office $\&$ Worka: Chattanooga, Tonn. Needham, Moss, - Chicago • Los Angeles New York • Philodelphic

ESSEX EXTRA TEST MAGNET WIRE in this and other exacting applications cannot be excelled

FORT WAYNE 6, INDIANA
Plants: Fort Wayne, Indiana; Detroit, Michigan; Anaheim, California. Warehouses* and Sales Offices: Atlanta, Ga.; "Boston, Mass.; "Chicago, Kansas City, Mo.; "Newark, N.J.; Philadelphia, Pa.; ${ }^{\text {St }}$ t. Louis, Mo.; Cleveland, Ohio; Milwaukee Wis.; San Francisco, Calif.; "Los Angeles, Calif'.

Luxtron* photo cells convert light into elcctricol energy. No external voltage is required to operate meters and meter relays directly from Bradley photo cells, improving control over your processes, reducing your costs. Housed model shown. Many different sizes and shapes, mounted and untmounted
T. M. REG. U. S. PAT. OFF.

Illustrated literature, available on request, shows Bradley's full line of photo cells and copper oxide and selenium rectifiers.
Write for "The Bradley Line"

BRADLEY

LABORATORIES, INC.
82 Meadow St. New Haven 10, Conn.

NEW BOOKS

(continued)
book. A matter of considerable value for use as a text in class or for the man who studies alone is the inclusion of problems and questions at the end of each chapter.

One noteworthy feature of the book is the large size of the illustrations, making them exceptionally easy to see, to read and to understand.

The book is aimed at junior or senior college students taking their first general course in electronics and, therefore, can be adapted to courses preliminary to a more intensive study of communication engineering or power generation and use.-K. H.

Klystron and Microwave Triodes

Edited by D. R. Hamilton, J. K. Knipl and J. B. H. Kuper. Volume 7 of the MIT Radiation Laborutory Series. McGraw-Hill Book Compamy, Inc., New York, N. Y., 1947, 533 peges, $\$ 7.50$.

An advanced theoretical analysis of microwave triodes and klystrons is presented in this volume. Second order effects and an analysis of large-signal conditions are included as well as the more familiar smallsignal first order theories. In order to present this amount of theoretical material, it has been necessary to exclude descriptive material. As a result, the book will be most useful to tube designers and experts in the field and will prove to be difficult reading for the person desiring an introduction to the subject.

The book is divided into three sections. Part I includes an introduction and a thorough treatment of the interaction between electrons and electric fields. This material is basic in character and applies equally well to triodes and klystrons. Triodes are considered specifically in Part II, and the third section on klystrons analyzes these tubes as amplifiers, frequency multipliers and oscillators.

Almost half of the book is devoted to the analysis and discussion of reflex klystron oscillators. Nonideal reflectors, hysteresis effects, output load characteristics, modulation, and noise are considered in this section. The other sections are equally complete in their treatment

drawn as small as $.000010^{\prime \prime}$; Made to your specifications for diameter and resistance . . .

WRITE for list of products.
scmulib colli colir.

- The renown of Imperial as the finest in Tracing Cloth goes back well over half a century. Draftsmen all over the world prefer it for the uniformity of its high transparency and ink-taking surface and the superb quality of its cloth foundation.

Imperial takes erasures readily, without damage. It gives sharp contrasting prints of even the finest lines. Drawings made on Imperial over fifty years ago are still as good as ever, neither brittle nor opaque. If you like a duller surface, for clear, hard pencil lines, try Impurial Pencil Tracing Cloth. it is good for ink as well.

IMPERIAL TRACING CLOTH

SOLD BY LEADING STATIONERY AND DRAW. ING MATERIAL DEALERS EVERYWHERE

PORTABLE Auto
transformer
Pri.: 220V-110V-
One KVA, 5060
\qquad
phase
Sec.: One KVA
Precisian-built far traublefree service. ELECTRICOIL designing and manufarturing skill are available to help meet your specific requirements for top quality special and standord industrial transformers, reactors, coils, of any size, for any opplication. ELECTRICOILTransformers include units from 1 v . to $100,000 \mathrm{v}$., or over; of few Milliomperes or thousands of Amps., for heating, testing, x-ray, rectifiers, signoling, transmitling, television and other applications.

WRITE FOR BULIETIN TR 6

Also POWER RECTIFIERS
for communication, laboratory, and industrial applications.

ELECTRICOIL TRANSFORMER CO.

- INSTANTLY $\begin{gathered}\text { compuration. } \\ \text { direading. No }\end{gathered}$ - ACCURATELY $\begin{gathered}\text { ito a frequency de- } \\ \text { termination of } 0.05 \%\end{gathered}$ - WISUALLY $\begin{gathered}\text { indicator turn } \\ \text { knob. }\end{gathered}$

Used effectively in leading laboratories, such as: Harvard University, Bell Aircraft Corp., and Hamilton Standard Propellers... for measuring natural frequencies or speed of rotating objects, checking or calibrating tachometers, oscillators, impulse generators, similar equipment.
C. G. CONN LTD., DEPT. 812 ELKHART, IND.

417-421 Canal Street
New York 13, N. Y. wAiker $\$-5465$ $+$ ancied 1

CLEARLY THE "NUMBER ONE" LINE IN THE HIGH QUALITY FIELD

Quality-conscious engineers in every field have now found out, in actual use, the remarkable efficiency, the amazing smoothness of frequency response, and the clearly superior performance of the new, improved 1948 Altec Lansing speakers.

This complete, all-pur'pose line, fundamentally re-engineered and incorporating new scientific discoveries result-
ing from original Altec Lansing research, offers the highest obtainable quality now available in the electronic industry.

The clear superiority of Altec Lansing speakers is substantiated by frequency response curves, made on measurement equipment that has earned the approval of conservative, unbiased audio scientists.

> An illustrated brochure, fully describing the 1948 Altec Lansing line, containing frequency response curves for each speaker, will be sent on request. Write to address nearest you.

161 Sixth Avenue,
New York City 13, N. Y.

ALTEC
1161 N. Vine St. Hollywood 38, Calif.

NEW BOOKS
of advanced problems and second order effects. The triode analysis is limited to the small-signal case, but space charge effects, large transit angles and noise are treated in considerable detail. Space charge debunching and large-signal conditions are included in the chapter on electron bunching.

The book will be a valuable addition to the material on microwave tube types. References to outside sources are given more frequently than in some of the other volumes in this series, and the use of cross references has made the book free of repetition.

In some cases the presentation of the material could be improved considerably. For example, the factors included in the input resistance R_{1} of a grid-separation amplifier are not clearly defined when the term is introduced, and mention of the usual low-frequency value of $R_{1}=$ $1 / g_{m}$ occurs eight pages later. The tendency to depend upon equations being self-explanatory makes the book difficult to follow, but the wealth of material which has been included as a result of that editorial policy adds to its usefulness as a reference text.--A. E. Harrison, Princeton University.

Microwave Transmission Design Data

By Theodore Moreno. McGraw-Hill Book Co., New York, N. Y., 1948, 248 pages, $\$ 4.00$
Practical design data for microwave transmission components are presented in this book. The general topics covered are: transmission line theory as applied to microwave components; coaxial lines and flexible cables; wave guides, giving practical design data for structures, bends, tees, transformers, obstacles, windows, and couplings; wave guides filled with dielectric material both completely and partially; and cavity resonators.

This book is a revision and expansion of an earlier Confidential volume of the same name published by Sperry Gyroscope Co. during the war. Although this book is only thirty pages longer than the original volume, it actually contains a much greater proportion of new

Here's a tip from Weller-a Flexitip that is, aftoched to a "longer-reach" Weller Soldering Gun. Form that flexible loop tip into any shape you want and see how it slides around corners, between wiring, into the tightest spots. Even when the job's buried deep, Flexitip and the $8^{\prime \prime}$ Weller Gun will reach it. But that isn't the only advantage of the Weller Soldering Gun. Just check the 6 features and see why it's called the "handful of soldering convenience."
Solderlite and 5 -second heating means hours and dollars saved-your Weller Gun will pay for itself in a few months. And because the transformer is built in- not sepa-rate-the Weller Gun is a complete, compact unit, safer ond easier to use. There's no need to unplug the gun when not in use; heat comes "on' only when the trigger is pulled.
For loboratory and maintenance work, we recommend the efficient $8^{\prime \prime}$ model-DX-8 with dual heat; or $4^{\prime \prime}$ types $S .107$ single heat and D. 207 dual heat. Order from your distributor or write for bulletin direct.

NEW! NEW! NEW! MOTRON

A RADICALLY DIFFERENT NON-HUNTING, D E A D BEAT SERVO MECHANISM

What Motron Does:

A versatile new instrument with almost unlimited cost cutting applications in modern industry.
Motron provides a fast acting torque of 30 to 75 inch pounds which can automatically control countless industrial processes. It takes its input from any indicating device capable of producing a torque of . 0000 ?-. 006 oz. in. (for example an electrical meter movement, pressure gauge, metal bellows, air vane, flow gauge, nylon or silk filament, magnetic compass needles, thermostat, cam, etc.)

Let us analyze your control problems

An automatic control requiring no human supervision . . .

An analysis of your specific problem and complete engineering details will be sent promptly. You are not obligated in any way. Just write to:

Just a few of many applications . . Precise, quick acting, automatic control of: Tension in wire, paper, thread Web press registration Air velocity Oil blending
Changing power factor Wire winding machinery Flame cutting Duplicating lathes

Over 1000 SIzes

Square - Rectangular - Triangular Round and Half-Round

With a wide range of stock arbors... olus the

With a wide range of stock arbors... plus the specialized ability to engineer special tubes ... PARAMOUNT can produce the exact shape and size you need for coil forms or other uses. Hi-Dielectric, Hi-Strength. Kraft, Fish Paper, Red Rope, or any combination, wound on automatic machines. Tolerances plus or minus . $002^{\prime \prime}$. Made to your specifications or engineered for YOU.

Inside Perimeters from .592 to 19.0°

NEW

 DESIGNED TO MEET

 DESIGNED TO MEET

 HIGH STANDARDS

 HIGH STANDARDS

 DEMANDED BY COMPUTER

 DEMANDED BY COMPUTER AND MILITARY APPLICATIONS

 AND MILITARY APPLICATIONS}

HIGH PRECISION 2-inch POTENTIOMETER

Mechanical Specifications

- Precision machined aluminum base and cover $2^{\prime \prime}$ diameter, $1^{\prime \prime}$ depth.
- Precision phosphor bronze bushing.
- Centerless ground stainless steel shaft.
- No set screws.
- Mechanical rotation- 360°.
- Basic design permits use in ganged assemblies.

Electrical Specifications

- Winding-both linear to 0.5% and nonlinear to 1% accuracies.
- Paliney contact to winding; two-brush rotor take-off assembly with precious metal contacts.
- High, uniform resolution provided by our method of winding non-linear resistances.
- Electrical rotation maximum 320°.
- All soldered connections (except sliding contacts).

This general line of precision potentiometers was developed in collaboration with the fire Control Section of the Glenn L. Martin Company

Send us detailed information on your requirements for prompt quotation on large or small quantities.

TECHNOLOGY INSTRUMENT CORPORATION 1058 Main Street, Waltham 54, mass. Midwest Office: Alfred Crossley \& Associates, 549 W . Randolph St., Chicago 6, III STAte 7444
material inasmuch as the illustrations and graphs have been reduced to from one-half to one-quarter size. Although the curves are not as easy to read and in many cases the fine calibration lines have been omitted, they are still adequate. The illustrations themselves have lost nothing in the reduction.

Enough theoretical discussion is included in the new volume to allow the use of the data without a previous background in many of the specialized subjects. In addition to the expansion of theoretical discussion, this latest volume also contains many new and expanded subjects such as equivalent circuits for many configurations, coaxial to wave guide transformers, magic tees, the ring bridge, and an expanded dielectric constant and loss table.

The usefulness of this volume, like its predecessor, lies in the great abundance of curves and equations leading to actual dimensions and construction data for microwave components.-NATHAN MARCHAND.

Ultra and Extreme Short Wave Reception Principles, Operation and Design

By M. J. O. Strutt. D. Von Nostrand Company, Inc., New York, N. Y., 1947, 387 pages, $\$ 7.50$.

THis book contains a comprehensive treatment of receiver problems in the 3 to $30,000-\mathrm{mc}$ range. It assembles in one place descriptions of circuits and phenomena that represent the post-war trend in receiver design and analysis. Because of the large amount of material covered by the volume, the treatment is concise, and it will probably not be very useful as a textbook for the beginner. It is, however, an excellent source book for the practicing engineer.

Each of the seven chapters starts with a brief, but sufficient, review of the pertinent background material, and then proceeds with a thorough application of the principles so established to the specific problem discussed. In general, emphasis is placed upon quantitative results, and extensive use is made of graphical methods for the presentation of data. At appropriate places in the text material,

DIFFERENTIAL PRESSURE TRANSDUCER

Bendix-Pacific Model TTP-4A Transducer is a var-ioble-reluctance diaphragm type sensing instrument designed to meosure different pressures encountered in dirborne vehicles. When used in conjunction with Oscillix Mode TOL-2A or Equivar Thberring System the frequency of oscillation is a function of system, the magnitude of the pressure under measurement.

Ranges 0-5 P.S.1 to 0 - 125 P.S.I.
Accuracy $\pm 20 \%$ of range of measurement Natural frequency 500 C.P.S. to 2000 C.P.S. depending on range
Dimensions $11 / 2^{\prime \prime}$ diameter, $11 / 4^{\prime \prime}$ long
Weight 0.5 pounds
This unit is one of a complete line of telemetering instruments and services available at Bendix-Pacific. Services include instalation and application engineerconsultation Information is available to qualified companies.

TO MEASURE . . TO INDICATE...TO WARN .. . AT A DISTANCE

 or other climate changes . . . Explosion-proof . . Octal radio base . Compact, light, rugged, inexpensive. Circuits available: SPST Normally Open; SPST Normally Closed.

PROBLEM? Send for "Special Problem Sheet" and Bulletin.
AMPERITE REGULATORS

Amperite REGULATORS are the simplest, lightest, cheapest, and most compact method of obtaining current or voltage regulation . . For currents of 060 to 8.0 Amps . .

Hermetically sealed; not affected by altitude, ambient temperature, humidity. Write for 4 -page Illustrated Bulletin.

A mperite Co., 561 Broddway, New York 12 , N. Y.

In Cantada: Atlas Radio Corp., Ltd, 560 King St, W. Toronto

Time to check OANO COILS

For years, production-wise engineers for nationally famous electrical products have repeatedly specified DANO Coils. Any type, any quantity . . . if you want dependable magnetic coil windings . . . now is the time to check DANO.

Every Job Made To Customer Requirements. ALSO TRANSFORMERS MADE TO ORDER

ELECTRIC CO. G3MAIM ST.
"Where Professional Radiomen Study"

Capitol Radio Engineering Institute

An Accredited Technical Institute 16th and Park Rd.. N. W. Washington 10. D. C. Advanced
Home Study and Residence Courses in Practical RadioElectronics and Television. Approved for Veteran Training.

> With Barnstead Water Stills or Demineralizers lor a combination of both) you can be assured of a constant unvarying supply of high resistance water exactly fitted to your needs. Where the use requires only the removal of mineral content. Barnstead 2 -Bed, 4-Bed or Type "R" Upflo Models provide rinse water that leaves no harmful salt residue.

If the requirements demand elimination of organic impurities as well as inorganic, Barnstead Water Stills provide the surest and most economical answer. For such exacting uses as on screens of cathode ray tubes it may be necessary to de-ionize the water first and then distill it - as many leading tube manufacturers do.

$$
\begin{aligned}
& \text { TYPE "SS" } \\
& \text { WATER STILL }
\end{aligned}
$$

In any event, Barnstead Equipment is your safest solution. And remember, only Barnstead offers you both distilling and demineralizing equipment - and are thus able to handle all situations. Put your pure water problems in the hands of a Barnstead Engineer and have a single responsible authority for their solution.
He will be glad to supply recom. mendations for your particular prob. lem without obligation.

Barnstead
 STILL \& STERILIZER CO.

228 Lanesville Terrace, Forest Hills, Boston 31, Mass PURE WATER SPECIALISTS FOR OVER 70 YEARS"

\author{

\begin{abstract}

Abstract

$$
5^{\circ}
$$

\end{abstract}

}

PYRO-

 FERRIC IRON CORES> Since 1933 PYROFERRIC has been the standard source for IRON CORES manufactured to desired permeability, frequency, "Q", resistance and physical strength to fit any circuit.
> PYROFRRIC, with its background of research and experience, will glady consult with you on your IRON CORE requirements.

NEW BOOKS numbers are given that apply to a list of 409 references alphabetically arranged by author's name at the back of the book. This list includes both domestic and foreign publications.

The first chapter is introduced with a review of electromagnetic theory. This theory is then applied to the various propagation phenomena associated with the frequency range considered. The absorption and refraction problems of interest to all communication engineers, and the special reflection problems of the radar engineer, are covered. The chapter concludes with a condensed explanation of amplitude modulation, frequency and phase modulation, and the various types of pulse modulation.

The second chapter considers in detail the characteristics and sources of noise associated with receiver circuits, and the various ways in which the noisiness of a receiver can be expressed. Included are five theorems, called properties by the author, relating to the possibility of reducing noise by feedback.

The third chapter begins with a review of radiation theory applicable to antennas. The author then applies this theory, with a minimum dependence upon mathematics, to single-wire antennas, loops, arrays, and to special types, such as the rhombic and V-shaped antenna. Brief consideration is given to parabolic reflectors and metal lenses. Noise picked up and generated by the antenna is covered. The chapter is concluded with a consideration of the antenna as a circuit to which the receiver must be adjusted for optimum operation.

In the fourth chapter, properties of parallel-wire and coaxial transmission lines, and wave-guides, are discussed and applied to the use of these devices as wave conductors and matching elements. Lumpedconstant resonant circuits and cavities are considered as coupling devices.

The fifth chapter contains an excellent treatment of high-frequency measuring equipment for receiver testing. Of special interest is the section on high-frequency shielding and attenuators. Included are graphs showing the variation of input and output resist-

$60 \mathrm{KW}, 3 \mathrm{~cm}$

MAGNETRON Generator

- Switch selection of six different pulse rates
- Built in Cathode Ray Scope for viewing of pulse shape.
- Selector switch for coding pulses
- Ideal for use in schools and training programs.
LERU LABORATORIES, INC.
360 bleecker st., New york 14, N. Y.
Electronic Development and Design

MULIPIEGAMEING

Fairchild Type 748
10-Gang Linear Potentiometer
The Problem: To raise the function A to various powers up to A^{10}. Space, weight and driving torque to be held to a minimum; accuracy to be better than $\pm .5 \%$.
The Solution: This Fairchild type 748 ganged precision linear potentiometer with output accuracy $\pm .1 \%$.* Torque is reduced to a minimal 5.5 ounceinches for the entire 10 -gang assembly... wiper contacts are in permanent correct alignment on the windings . . backlash is completely eliminated all by mounting the units directly on a single shaft without couplings. *Isolating amplifiers between each consecutive cascaded voltage divider eliminate loading errors.
For complete data on these instruments, precision-engineered for over a million cycles of operation, address Dept. 1, 88-06 Van Wyck Boulevard, Jamaica 1, New York.

SMALL PARTS

Filaments, anodes, supports, aprings, etc. for electronic tubes. Small wire and flat metal formed parts to your prints for your assemblies. Double pointed pins. Whe straightened and cut diameter up to 14 . inch. Any length up to 12 feet. LUXON fishing tackle accessorien. Inquiries will receive prompt attention.

ART WIRE AND STAMPING CO.

227 High St.
Newark 2, N. J.

- MICRO

The Ground Miniature BALL BEARING New Hampshire MICRO Ball Bearing are the only fully ground bearings in the U. S. under $3 / 8^{\prime \prime}$ OD. Radial, Radial-thrust, Self Aligning and Pivot Ball Bearings, 5/32" to $3 / 8^{\prime \prime}$ OD.

Ask for Illustrated Literature.
NEW HAMPSHIRE BALL BEARINGS, INC.
5 MAIN STREET
PETERBOROUGH, NEW HAMPSHIRE

PROBLEM: A prominent rotary press manufacturer required a compact $0-60 \mathrm{KV}$ DC, reversible polarity, power supply.

NEW BOOKS
ances and capacitances of vacuum tubes with frequency.

The input stages of high-frequency receivers are treated in detail in the sixth chapter. The chapter begins with a discussion of the various types of amplifier circuits used, and their inherent noise properties. There follows a consideration of noise-reducing and neutralizing circuit connections. Next, mixer stages are covered and both tube and crystal types are considered. In the local-oscillator section brief treatment is given to triodes, reflex-klystrons, light-house tubes, and magnetrons. Automatic-frequency control is discussed briefly. Brief treatment is also given to special detection methods, such as superregeneration.

The concluding chapter covers the remainder of the receiver and includes the i-f amplifier, second detector, and video or audio stages. This treatment is conventional except in certain parts where special test methods are discussed, such as measuring the microphonic level of a receiver. Frequency modulation, impulse modulation, single-sideband, and radar receivers complete the material of the chapter.

All in all, the book is a valuable and timely contribution to the growing list of publications in its field. It is unfortunate that a companion book is not available covering the problems of transmission in the concise manner that this covers the problems of reception. Martin W. Essigmann, Northcastern University.

FM Transmission and Reception

By John F. Rider and Seymour D. USLAN. Priblished by John F. Rider Publisher, Inc. New York 16, New York, 1948, 409 pages, cloth-bound \$2.70, paper \$1.80.
THis book represents a vast amount of material on f-m transmitters, including most of the commercial broadcast types, as well as examples of those used in amateur and police radio work. Receivers, reactance tubes, limiters, discriminators, locked oscillators and ratio detectors are described in detail.

Antenna systems for transmission and reception are included, as

A FREE SAMPLE MULTIPOT will be sent to any user of helical potentiometers with an average consumption of two or more units per month. Write us on your letterhead giving number of turns (three or ten) and approximate resistance (10 to 150,000 ohms) desired.
FORD ENGINEERING CO.
BOX 55S, STA. B, PASADENA, CALIF.

EISLER
ELECTRICAL \& ELECTRONIC EQUIPMENT
ELECTRONIC TUBE EQUIPMENT

TRANSFORMERS OF ALL TYPES

CHAS. EISLER
EISLER ENGINEERING CO., INC. 751 So. 13th St. (Near Avon Ave.). Newark 3, N. J.

BAACH-NITERNATIONAL
EIGHT HEAD HOT-CUT FLARE MACHINE

Automatic throughout
Can be synchronized with automatic Stem machine.
Cuts off and flares in one operation.
Production 1250 flares per hour. For minipure flares, fluores cent starters, stand ard size lamps, flue rescent and radio tubes.
RANGE OF MACHINE 27 Glass tubing 27 to 45 gauge Length of flares mm. to 80 mm . forms fares up

Net weight, 960 lbs. Gross weight 1450 lbs.

INTERNATIONAL MACHNE WORKS
Manufacturers of High Vacuum Pumps, Auto male Machinery for Incandescent Lamps, Electronic Tubes since 1916.

2027-46TH STREET
north bergen, N. J., U. S. A.
Tel. UNion 3-7412,
Cable Address "Intérmach" North Bergen, N. J.

fULL HOUR CONTINUOUS PLAY with this MAGNETIC TAPE TWIN-TRAX* CHASSIS wit meter' 589^{50}

CHECK THESE EXCLUSIVE FEATURES

- ONE HOUR continuous play on $7^{\prime \prime}$ reel at $71 / 2^{\prime \prime}$ per second tape speed.
Attainable Frequency Response 50 to 9,000 cycles $\pm 3 \mathrm{db}$.
- Cuts tope cost in half. No other recorder matches this economy.
- Easy to thread. Threads directly from one reel to the other.
Heavy Duty Balanced Recording Motor prevents overheating
High traction between capstan and tape. No tape slippage.
Twin Electronic Erase Heads for complete Supersonic or DC erasure.
- Constant tape speed precision drive minimizes flutter and wow.
Can be used for twin-channel 3.dimensional stereo. phonic recording.
No rewinding necessary. Plays continuously during forward and reverse.
Unique design prevents development of eccentricities in capstan drive.
One tape channel can be used for compression-expan sion control,
- No belts to loosen or pulleys to slip. Unbelievably quiet operation.
- Automatic switch and solenoid instantaneously reverse tape travel.
Minor changes in any amplifier permit recording and playback.
- Radio-phono and microphone inputs may be mixed or
faded.

Supplied with 32 page instruction book con.
taming circuit diagrams and construction data your order today for prompt delivery
Amplifier Corp. or America
JY8-7 BROADWAY NEW YORK 13. N. Y.

KIRMAN RELAYS
Reliable • Powerful • Constant
For all types of Automatic Controls, Keying, Antenna Changeover, Burglar Alarms, Closed Circuit Applications.

TELEPHONE, Model A:-Multicontact. Pin Hinge. Complete range of contacts up to 28 Springs. Wide variety of contact materials. Can be provided for slow operate, slow release, or slow acting. $4 \times 1-7 / 32 \times 1-5 / 8^{\prime \prime}$.

PLUS a Complete Line of Sensitive, High Frequency, Midget, and High Voltage Relays, of which the following are only representative:

NEW KURGAN " 24 "

HIGH VOLTAGE Model 16

PRICES UPON APPLICATION . . . Write for Bulletin 108E KURMAN ElECTRIC CO., INC. 35-18 37th St., Long Island City 1, N. Y.

COMPOUNDS

Scientifically compounded for specific applications from waxes, resins, asphalts, pitches, oils, and minerals. Available in wide range of melting points and hardnesses. Special potting compounds are heat conducting and crack resistant at extremely low temperatures. Recommendations, specific data, and samples will be furnished on request.

BIWAX CORPORATION

3445 HOWARD STREET SKOKIE, ILLINOIS

If You Are Having Difficulty Maintaining Your Mailing Lists...

Probably no other organization is as well equipped as McGraw-Hill to solve the complicated problem of list maintenance during this period of unparalleled change in industrial personnel.
McGraw-Hill Mailing Lists cover most major industries. They are compiled from exclusive sources, and are based on hundreds of thousands of mail questionnaires and the reports of a nation-wide field staff. All names are guaranteed accurate within 2%.
When planning your direct mail advertising and sales promotion, consider this unique and economical service in relation to your product. Details on request.
McGraw-Hill Publishing Co., Inc. DIRECT MAIL DIVISION
330 West 42nd Street
New York, 18, New York

AND ELECTRICAL COILS
Over 25 years' experience in the manufacture of specials at cost that compares favorably with standard types. Built-in quality proved by years of actual use.

PROMPT DELIVERIES! cased, $1,2, \& 3$ Phase 15 to 400 Cycles

NEW BOOKS
well as a rather good chapter on servicing f-m receivers and a fairly complete bibliography.

Some of the discussion material is confusing and occasionally terminated with incorrect conclusions. The authors have a particularly rough time trying to prove that phase shift type modulators produce only a deviation in phase but not in frequency of the modulated wave, unless a corrector is included.

The book assumes only a basic working knowledge of radio on the part of its readers, and is well illustrated with wiring diagrams and graphs.-GLENN H. MUSSELMAN, Columbia University.

Introduction to Modern
 Physics

By F. K. Richtmyer, Late Professor of Physics at Cornell University, and E. H. Kennard, Formerly Professor of Physics at Cornell Liniversity, McGraw-Hill Book Company, Inc., New York, N. Y., Fourth Edition, 759 pages, $\$ 6.00$.
F. K. RICHTMYER was a productive experimental physicist, who himself played an important role in advancing the frontiers of his science through those exciting years when classical theories of the atom were forced to give way to the new ideas of Planck, Einstein, Bohr, and Schrodinger. To him the appearance of the initial signs of weakness of the classical theory, the birth, the growth, and the final triumph of the quantum theory were a living drama whose most exciting chapters unfolded before his own watchful eyes and in part through his own experiments. His book "Introduction to Modern Physics" which appeared in 1928 was a stirring account of these developments cast against the background of the history of physics from its earliest beginnings, and built around the central theme that progress is made only when authoritarianism is cast aside and theories are accepted only to the extent that they can be tested in the laboratory.

In the first edition, written by Professor Richtmyer himself, the plot unfolds like a narrative and all subject matter contributes to the central theme in a manner which the author is careful to point out. There are no loose ends, no incom-

POLARAD television Equipment

PICTURE \& WAVE FORM MONITOR

Model M102
FEATURES:
- Resolution greater than -
- $10^{\prime \prime}$ Kinescope and $5^{\prime \prime}$ oscillosicope.
- Bualt-in lisar Generator ford checking linorizonta
- Horizontal and Vertira ${ }^{1}$ 'ulse Cress phaseable over entire Kinescope.
- All controls acessibl
All parts readily cessible 1or quich
- Monitor section occupies 171 "/ " $^{\prime \prime} 19^{\prime \prime}$ panel space and may be mounted at and may be mounted at a remoté puint.
- Vedance. input high im-
- May be operated by either driven bosite pimals.
- Voltage calibrator for Ware Form Monitor.

Specifications

Input impedance of Picture Monitor 100000 ohms. Picture Amplitter: Fiat to 7 Mc Mc $\pm 1 \mathrm{lb}$. Scope Amplifier: Flat to 3 Mc $\pm \pm \mathrm{db}$.
Input Signal: 1 volt peak to peak.

Portable Picture Monitor

FEATURES:

- Resolution 500 lines,
- Migh Impedance Indut.
- Ingged construction.
- Size $9^{\prime \prime}$ - $10^{\prime \prime} \times 20^{\prime \prime}$ woish
- Kinescope removable
from front and all parts
SPECIFICATIONS:

Input impedance 470,000

- Video Amplifier: Flat to - $\mathrm{Mc} \neq 1 \mathrm{lb}$. - Input signal: 1 volt Deak to Deak. - 115 rolts $50 / 60$ cycles. Conplete with tubes.

Dual Portable Picture Monitor

 MODEL 102 MPDThis unit has the same performance and constructional features as the single portable monitor. This unit is
supplied in two carrying cases consisting of a control unit and the dual monitor unit. Fach monitor may be used independently of the other.

/RITIE

9 FERRY STREET, NEW YORK 7, N. Y. Television engineers and consultants to the nation's great television stations.
prehensible gaps in the argument, and few digressions. The book was intended as an introduction to guide and to direct the interests of students into modern physics and to indoctrinate them in its philosophy. It was not a reference book, not an encyclopedia of dry and unrelated factual data. To use a commercial expression, it was written when physics was being taught in a buyer's market.

In view of the success cf Professor Richtmyer's book and its usefulness as a textbook in first year graduate teaching, it is not surprising that some one of his students or associates would attempt to revise it and bring the story up to date, as E. H. Kennard has now done. Had the author lived, he probably would have done this himself, and his revision would undoubtedly have included, as Kennard's revision does, a complete account of the development of the modern quantum theory, an enlarged chapter on nuclear physics and a new chapter on cosmic rays. Admirers of the first edition would probably have preferred that these revisions had taken the form of a sequel in which continuity of thought and interest were preserved, rather than that of an abridged modification which can still be crammed into one course in the curriculum.

Because of the tremendous volume of new material which has been added in the revised edition, adherence to the original style of exposition would have required at least twice the number of pages. It is, therefore, no fault of the author, but rather a characteristic of modern physics, that the new edition resembles a syllabus of important results more than it does an introduction for the uninitiated. -Thomas H. Johnson, Brookhaven National Laboratory.

Loudspeakers: The Why $\&$ How of Good Reproduction
By G. A. Briggs. Published by Warfdale Wireless Warks, Idle, Bradfard, England, 1948, 87 pages, 5/.
Written for domestic high-fidelity addicts, this pithy pamphlet presents the essentials for intelligent

...the Acid-Freetape

many manufacturess have

 prefereded foy yarss-
for coll forms, wrappings, etc.

Made with exacting care, Red Streak Acid-Free tapes and gummed flat sheets are made to conform to the most critical specifications and are uniform throughout. Tests for free acids and alkalines are made by P H method. Available in materials and thicknesses below.

- . 005 Gummed White Flexible Holland
- . 005 Gummed Red Rope
- . 010 Gummed Red Rope
- .002 Gummed Glassine
- . 003 - . 004 - . 005 - . 006 -
. 007 -. 010 Krafí
- .005-.007-.010 Dark Grey Fish

The RIGHT Acid-Free fape for you is

RED STREAK

TheBrown BridgWills, lint

 cos 5. Dearbem
. 57. Loins
a0sa Indell Elva.
SNW FinItasco
3sp Fith Ave.
stamise

CLAROSTAT MFG. CO., Inc. - 285.7 H .6 Etn St., Brooklyn. M. Y

[^10]selection and evaluation of loudspeakers. The author has drawn liberally from books on music, acoustics, and circuits to illustrate points, thus providing the nontechnical reader with highlights from these works and an excellent short bibliography for those wishing to delve deeper into the subject.

The short sections into which the book is divided include material on requirements of quality, frequency response and power, loudspeaker design and performance, loudspeaker and cabinet resonances, types of baffles and their effects, room acoustics, transients, and coupling networks. Representative commercial speakers and housings are shown in an appendix. Many of the points are documented with data obtained by the author in developing loudspeakers. His experience has been that the frequency of bass resonance of good loudspeakers decreases with age.

The author admits that some of his statements are influenced by his opinion, but then what constitutes faithful reproduction is mostly a matter of opinion. Others may take exceptions to some of the statements, especially the experts, but in this reviewer's opinion this booklet accomplishes its objective of informing the critical listener of the technicalities of reproduction. It is a pleasure to see the Doppler effect correctly presented as a trivial problem.-F.H.R.

Essentials of Radio

By Morris Slurzberg and William Osterheld. McGraw-Hill Book Co., Inc., New York, 1948, 806 pages, $\$ 5.00$.
The authors of the long-popular "Electrical Essentials of Radio" have presented here at an intermediate level the principles of operation of the basic circuits and circuit elements used in conventional radio receivers, as essential background knowledge for understanding electronic circuits. Although mathematics is quite definitely used in connection with the explanations, along with vector diagrams and graphs, the extent of use is such that serious students studying radio in a junior college, trade school, or the more technically-inclined high school should be able to

suitable to Volume

Production...it may
pay you to call upon

United-Carr and its
subsidiaries. They
have helped many

* SPEED PRODUCTION
* TURN OUT FINER

FINISHED PRODUCTS

master most of the material. The book is also well suited for independent study at home.

Examples are used liberally throughout the text to illustrate equations and procedures. Each chapter is followed by a bibliography, an average of about fifty questions, and an average of about forty problems. An eighteen-section appendix provides sufficient reference data so that all problems may be solved without resort to other books.

The authors are to be commended for their use of standard ASA symbols throughout, along, with consistent and simplified handling of such abbreviations as a-c, r-f, and avc. A minor deviation occurs in their use of pm rather than $\mathrm{p}-\mathrm{m}$ in connection with dynamic loudspeakers.

This book can well be the answer to McGraw-Hill's long-felt need for a book competitive to Keith Henney's "Principles of Radio" published by Wiley. The scope and treatment are similar, though of course the new book is much the larger of the two. Instructors who like to pick and choose their assignments, in line with personal preferences and for tailoring to the number of classroom hours available, may well prefer the larger book; those who have neither the time nor inclination to do this will undoubtedly still prefer the book that for two decades has been the unchallenged leader in radio textbooks at the intermediate level.-J.M.

Books Received for Review

THE ELECTRON MICROSCOPE. By D. Gabor. Chemical Publishing Co., Brooklyn, N. Y.: American edition, 1948,164 pages, \$4.75. Development, performance and future possibilities of resolution in the electron microscope (For comments on British edition see ELECTRONICS, p 294, Aug. 1946.)
THE THEORY OF MATHEMATICAL MACHINES, By Francis J. Murray, Assoc. Prof. of Mathematics, Columbia University. King's Crown Press, New York, Npiral-bound, $\$ 3.00$. Revision of first edi-spirai-bound, $\$ 3.00$. Revision of first edi1947), with errors corrected, part I ex panded, discussion of trigger circuits in part II altered and augmented, and new chapters on Electronic Digital Computers and on Noise, Accuracy and Stability added to Part III.
DIRECTORY OF ENGINEERING DATA SOURCES. Southeastern Research Institute, Inc., 5009 Peachtree Road, Atlanta, Ga., 63 pages paper-covered, $\$ 2.50$. Names, addresses, price information and other data on four types of information sources: Government Printing Office and federal agencies; universities, colleges and state organizations ; commercial publishers of periodicals and books.

USE G-E MYCALEX INSULATION
 For a FIRM BOND 10 METAL NSERTS

- LOW LOSS fACTOR

- HIGH MECHANICAL STRENGTH

- HIGH ARC RESISTANCE

- HIGH DIELECTRIC STRENGTH

- high heat RESISTANCE

GENERAL 6

RECHARGEABLE - NON-SPILL

 VITAMITE 1 OZ. BATTERIES(Smaller Than 2 Pen-Lights)
IDEAL FOR USE WITH
Miniature And Sub-Miniature Filament Type Tubes for HEARING AIDS, PORTABLE EQUIPMENT, ETC

LARGER MODELS ALSO AVAILABLE
Write for Data and Literature
THE VITAMITE COMPANY
227 West 64th Street New York 23, N. Y.

MINIATURE A.C. GEAR MOTORS 400~60

SPECIFICATIONS
Overall length
4-57/64"
Length of Gearbox only 1-13/32"
Diameter over
motor 1-15/16"
Diameter over
gear box $11 /{ }^{\prime \prime}$
400 CYCLES
42 RPM

APPLICATIONS: Military and Aircraft-Actuafors, Follow-up Devices, Timers, Control Equipment, Automatic Pilots, Radar
Commercial-Ideal for all high quality insîrument, and electronic control work

These new gear head motor units can be supplied in many output speeds, from 3100 RPM down to .2 RPM. The A.C. driving motors are available in a complete line of 115 Volt, $60-$ and $400 \sim$, or variable frequency ($400-1600 \mathrm{Cycles}$) ; up to $1 / 50 \mathrm{H} . \mathrm{P}$. ; Synchronous or Capacitor Induction. Note the small size of typical unit shown above.
Motors are humidity protected, tropicalized, anodized, aluminum construction. All motors are ball bearing, with approved lubricant.
Send us your requirements and ask for descriptive Bulletin on Gear Motors.

EASTERN AIR DEVICES, INC.
 130 Flatbush Avenue
 Brooklyn 17, N. Y.

Absolutely FREE . . . this gigantic, all inclusive radio and electronics Catalog with sets, parts, systems, newest developments. It's practically a power-packed reference library of vital needs and information. Every one of the illustrated 160 pages is crammed with amazing bargains much too good to miss! No matter WHAT your interest in Radio or RadioElectronics, you MUST have this FREE Catalog. Write at ONCE . . . NOW!

FREE ENGINEERING SERVICE

Bring us your problem or question about Radio, TV, or Radio-Electronics. Write to Concord. No charge for this service.

BACKTALK
considerably if a standard frequency, transmitted continuously by a governmental agency such as the Bureau of Standards in much the same manner as they now operate WWV, were used for control. A transmission of this type would be necessary in each center where the Citizens Radio Band were in active use.

Although this standard frequency could be used in several ways, its utility can be illustrated by a single example. To control the transmitter frequency, the receiver associated with it would pick up the standard transmission. This standard would be heterodyned against a local low-frequency crystal oscillator to produce the carrier.

With the problem of frequency stability thus solved, designing equipment for the Citizens Radio Band should be simpler.
M. F. Melvin

Electro-Mechanical Research Dept.
P. R. Mallory de Co, Inc.

Indianapolis, Indicmi

Ruggetron?

DEAR SIRS:
Your article in the April issue on "Rugged Electron Tubes" prompted me to comment on this use of the word "rugged" and its poor relatives "ruggedize," "ruggedized," and "ruggedization."

The latter three do not even appear in an unabridged dictionary and for "rugged" the following meanings are given: Having a rough uneven surface, not smooth, irregular, not neat or well kept, uneven, unkempt, rough with bristles or hair, shaggy, hard, harsh, austere, rude uncivil, fierce and turbulent.

None of these applies to an electron tube. The final meaning given is vigorous, robust, strong, sturdy, hardy; said of health, physique, as in: rugged common sense.

Would not "sturdy" be a better word? As most commonly used, it is defined as: "Characterized by physical strength or force, strong, lusty, robust; also stiff, stout, firm " The verb form "sturdied" is also mentioned as used in Scotland.
"Rugged" as a tube characteristic, however, is probably too well entrenched now to be changed. Each month when I pick up the

Custom Built Equipment

Mechanical-Electrical-Electronic Complete Units. Metal Parts Cabinets, Chassis. Boxes
BUCK ENGINEERING Co., Inc.
34-37 Marcy St. FREEHOLD, N. J.

LOCKING TYPE
 stainless Steet
 TUBE CLAMPS

Send for illustrated catalog and ongineering data THE GEORGE S. THOMPSON CORPORATION South Pasadena, Californía

ELECTRO-CHEMICAL GLASS-BLOWING - Scientific - Vacuum
 - Experimental
 WILLIAM I. FRIOLI
 1208 West Sumner Ave. Indianadolis 44, Ind.

ART-13 POWER SUPPLIES AND

 LOW FREQUENCY OSCILLATORSHigh Power R.F. Amplifiers, Special Equipment.
Quotations on request. Quotations on request.

SPECTRA PRODUCTS
55 Chambers St.
New Y

Your inquiries to advertisers vill have a special value

[^11]
 "KERLS" IN YOUR HAIR? LET US SOLVE YOUR COIL PROBLEM We Manufacture

COILS

FOR AM . FM AND TELEVISION SOLENOIDS and other types Let us quote you. SENS
FOR CATALOG OF STOCK

EAGLE ELECTRONICS, Inc.

Q. Need Solder? A. Buy GARDINER!

Solder the easy way-no fuss, no muss. Use Federated Gardiner Brand ROSIN CORE SOLDER . . the flux is in the solder. For corrosion-free electrical work. Comes in all commercial sizes and quantities

AMERICAN SMELTING AND REFINING COMPANY WHITING, INDIANA (CHICAGO)

MICROMETER

FREQUENCY
METER Checking from $100 \begin{gathered}\text { Checking } \\ \text { Transmitters }\end{gathered}$ within 0.01 per cent
LAMPKIN LABORATORIES, INC Bradenton, Fla., U. S. A.

WE manufacture a complete line of equipment SPOT WELDERS, electric from $1 /$ to 50 KVA
TRANSFORMERS, special and standard types INCAND AC ABC FLUORESCENT TUBE MAKING EOUIPMEETT WET GLANIC EQUIPMENT, vacuum pumps, etc from 100 to GENERAL GIASS NG and cutting machines for laboratory use COLLLEGE GLAASS WORKIN machines and burners
731 So. 13th St. (near Avon Ave.)
Newark. New Jersey

for electronic

designers \& engineers

- D. M. -5 Simplified chemical data on metals used for cathodes.
- E.G.-1 Methods of testing cathodes.
- E. M.-2 Standard Tolerances, Seamless and Lockseam* cathodes.

These specification sheets cover the standard products of the Electronics Division, Superior Tube Co. Nickel Carhodes are produced in Seamless and Lockseam,* round or shaped, in standard sizes or to customer specification.

We will be glad to send these data sheets to you upon request on your company letterhead.

*Superior Tube Company Patents

SUPERIOR TUBE CO.
ELECTRONICS DIVISION 2500 Germantown Avenue Norristown, Pa.
latest issue of Electronics, I expect to find an announcement of the latest tube type-the Ruggetron.
W. C. White

Research Laboratory General Electric Co. Schenectady, New York

Electronism

Dear Sirs:
In Mr. Fleming's letter (BACKTALK, March 1948) he suggests that in electronic patents it is unusual to use the expression "electronic tube" in claims, and that the normal expression is "electronic discharge device."

Both expressions are certainly used before the Canadian Patent Office, and a glance at any group of modern U. S. Patents shows that both seem to be used in Washington as well. Two very recent U. S. patents, Numbers 2,436,398, and 2,436,677 have claims using the expression "electron tube" or "electronic tube." Other expressions are also used: "vacuum tube," U. S. Patent 2,435,579.

It would seem that no particular expression can be described as unusual, among those referred to above.

In my letter criticized by Mr. Fleming (BACKTALK, January 1948) I was not advocating any particular expression to denote a radio tube in a patent claim, but was dealing with quite a different mat-ter--the use of the word "electronism" as denoting the electrical counterpart of "mechanism"-a colorful addition to scientific language.

William R. Meredith
Barrister-at-Lau Ottawa, Canada

Red blood cell counts can be made very quickly by a new technique described recently at the New York Academy of Medicine. The nonconductivity of the red blood cells (erythrocytes) is utilized. Calibrations of conductivity measurements made on an a-c Wheatstone bridge with a Wagner ground against conventional cell counts of a saline solution containing various concentrations of erythrocytes in a standard U-type conductivity cell with platinum electrodes have verified the method.

How to use mathematics
in dealing with frequency
analysis, modulation,
and noise

This book highlights problems associated with the development of television and radar
Here's a "must" for every practicing engineer. It tells how you can use mathematics in solving radio engineering problems associated with the development of television and radar. You're given the everyday facts you need on the radio application of the Fourier series. . . .
Fourier integral analysis... the theory of modulation and the theory of random noise. This new book puts at your fingertips tables of symbols. notations. abbreviations. integrals. ind trigonometric identities charts, Fourier pairs. instrations and examples provide sn easy-tounderstand method of grasping the mathematics involved.

By STANFORD GOLDMAN
Rescarch Associate in Electrical Engineering,
Massachusetts Institute of Technology
\{27 pages, $61 / 4 \times 91 / 2$, illustrated, $\$ 6.00$ THIS well organized handbook enables you not only to understand but to apply sound methods in solving you daily problems. You ll tind of top-notch viaue sum specia signals. a comparison of common channel interference in FM and AM ... explicit data on inphase and quadrature components. \therefore an extensive treatment of detaled coverage of television modulation theory

Practical help on noise problems

Every type of noise is carefully discussed-thermal, contact, breakclown, shot efrect, fircker efrect, etc. Thows how mathematics can do the job more effectively.

A few of the subjects covered

- harmonic analysis
- mathematical phenomeua
- laws of thermodynamics
- interstellar interference
- noise ratings
- saturated amplifiers
- Bernoulli Distribution
- Gaussian Distribution

10 DAYS' FREE EXAMINATION

McGRAW-HILL BOOK CO., 330 W. 42 St., N.Y. 18 Send me Goldman's FREQUENCY ANALYSIS, MODULATION, AND NOISE for 10 daga examination on approval. In 10 days I whll send ${ }^{\text {few }}$ cents postage, or return book postpald. (Postage paid on cash orders.)
Name . .
Address
City and State ..
Company ..
Position ..-8-48

Professional Services

THE BARRY CORPORATION
 Specialists in the Control of InPACT vibration Engineering Development Manufacturing
 179 Sidney $\begin{gathered}\text { Street } \\ \text { Telephones }: ~ E L I o t ~ \\ 0861-0140 \\ \text { Cambridge, Mass. }\end{gathered}$
 noise

 -
H. RUSSELL BROWNELL

Consultant
Specializing in Measurements \& Testing
Instruments \& Techniques - Electrical-Elec tronic-Magnetic
188 West 4th St
Chelsea 2-4208

EDGERTON, GERMESHAUSEN

 \& GRIER, Inc.Consulting Engineers
Research. Derelopment and Manufacture Spectronic and Stroboscopicte in Equipment 155 Massachusetts Arenue. Cambridge 39. Mass.

ELECTRO IMPULSE

 LABORATORYConsulting Physicists
Radio Interference and Noise Meters; Interference Suppression Methods for Ignition Systems and Electrical Devices.
P. Box 250

Red Bank $\underset{6-4247}{\text { Red Bank, New Jerses }}$

ELECTRO-MECHANICAL RESEARCH INC.
Specialized Research and Manufacture
High and Low Frequency Circuit Development
ectronic Measuring and Test Equipment
Sperial Geophysical Equipment
Magnetic Susceptibility Meters
Ridgefield, Conn.

ELECTRODYNE CO.

Electronics Mechanics Optics
RESEARCH AND DEVELOPMENT Cathode ray recorders custom built to your own specifications. Prompt delivery. specialists in psychological and biological instru-
mentation and induslrial problems. anderature a allable on requ
899 Boylston St .
Boston 15. Mass.
Phones Copley $7-0055$

ELECTRONIC ENGINEERING CO. of CALIFORNIA

Radio and Electronic Consulting and Designing.
2008 W. Serenth St.
DRexel 8323
Los Angeles California

ERCO RADIO

 LABORATORIES, INC.
Radio Communications Equipment

 Engineering - Design - Development - Production Pioneers in Frequency Shift Telegraph Garden City - Long Island - New York
Professional Assistance

in solving your most difficult problems in the specialized field of electronic devices is offered by consultants whose cards appear on this page.

FRANKEL \& NELSON

Consultants in Mathematical Physics 7716 Firenze Ave. Los Angeles 46, Calif Granite 6070

GENERAL

INSTRUMENT \& ENGINEERING
consultation research development IN electronics. e.e., physics
100 Barr Building
Washington 6, D.C.

PAUL E. GERST \& CO.
consulting engineers

> Specialists in Electrical Product Design

El. Machinery Apparatus \& Applications
Electronics, Radio Communications
11 So. Desplaines St. Chicago 6, 111 .

GLOBE PRODUCTS CORPORATION

Electronic Division
Specializing in Test Methods and TechniquesMeasurement Equipment-Automatic and Manual -Production and Laboratory types.
P.o. Box \#7 $\quad 870$ Maplewood Ave. \quad Bridgeport, Conn.

PAUL GODLEY CO.

Consulting Radio Engineers great notch, n.J.
Est. 1926
Little Falls - 1000
HANSON-GORRILL-BRIAN INC.
Product \& Mfg. Development ellectrical - Electronic hydraulic - mechanical
One Continental Hill
Glen Cove, N.Y.
Glen Cove 1922

LERU LABORATORIES, INC.

Design and Development of Electronic Equipment for industrial and scientific purposes
Special experience in microwaves, spectrum ana-
lyzers, photo-electric circuits, test equipment, etc. 360 Bleecker Street
New York $14 \quad 360$ Bleecker Street \quad WAthfns 9.4194

GEORGE J. MAKI

Radiotelegraph Consultant
Design \& Application Engineering FSK Systems
Moraga, California

MEASUREMENT ENGINEERING LIMITED
Consultants on Special Equipment for measur. ments and production tests, communications and audio systems.

61 Duke St.
Arnprior, Ont.
Toronto, Ont.
Montreal, Que.

Eugene Mittelmann, E.E., Ph.D.
Consulting Engineer \mathcal{G} Physicist
High Frequency Heating - Industrial Electronics Adplied Physics and Mathematics
548 W. Washington Blva. Chicago 8, Ill. State 8021

THE POINT
 CONSULTING COMPANY

Specialists In
EILECTRICAL ENGINEERING AND
5448 Wilkins Avenue - Pittsburgh 17. Pa,

ALBERT PREISMAN

Consulting Engineer
Telerision, pulse Techniques, Video Amplifiers, Phasing Networks.
Industrisl Appliances A毛llated with MANAGEMENT-TRAINING ASSOCIATES 3308-14th St. . N.W. Washington 10, D. C.

RADIO ENGINEERING COMPANY

Design and Development
R.F. IF, Osc. Colls Stable Oscillator Circult: Test Equipment Frequency Calibration F.M.-A.M. Receivers-High Fidelity Audio Systems COMPLETE LAABORATORY FACILITIES 8 State Street. New York 4. N.Y. Whitehall 4-5266

JOSEPH RAZEK, Ph. D.

Consulting Physicist
Electric and Mechanical Englneering Problems Instruments and Control Derices Specialists in Colorimetry, Spectrophotometry and Laboratory and Shop Facilitie
202 Darby Road Phone Rilltop 6910 Lianerch, I’a.

A. F. SMUCKLER \& CO.

Electronic Engineers
Electronic Product Manufacturing
Contractors to United States Government
338-346 East $\underset{\text { GR amercy }}{23-8151}$ New York 10, N. Y.

SPECTRUM ENGINEERS

Electronic \& Mechanical Designers
540 North 63rd St., Philadelphia 31, Pennsylvanfa GRanite 2-2333; 2-3135

SEARCHLIGHTSECTON

EMPLOYMENT • BUSINESS

UNDISPLAYED RATE:
$\$ 1.20$ a line, minimum 4 lines to figure advance payment count 5 average words as a line.
POSITIONS WANTED (full or part-time salaried individual employment only), $1 / 2$ above rates. rates.

BOX NUMBERS in care of any of our New York, Chicago or San Franciseo offices count 1 line additional in undisplayed ads.

DISCOUNT of 10% if full payment is made undisplayed ads (not including proposals).

DISPLAYED-RATE PER INCH
The advertising rate is $\$ 10.25$ per inch for all advertising appearing on other than a contract basis. Contract rates quoted on requast.
AN ADVERTISING INCH is measured $7 / 8$ inch vertically on one column, 3 columns- 30 inches - to a page.

NEW ADVERTISEMENTS received by 10 A.M. August 2nd will appear in the September issue, subject to limitation of space available.
Are You
An
Experienced
Electronics Engineer
Or
Applied Mathematician

There is a good position for you at RAYTHEON provided you can qualify for development and design work or analytical studies in the fields of radar and general electronic circuits, computers, servo-mechanisms, microwave components and antennas, or radar systems.

In your reply, please give full particulars regarding qualifications, salary expected, age, and family situation.

EMPLOYMENT MANAGER

RAYTHEON MANUFACTURING CO.
Foundry Avenue Waltham, Mass.

TELEVISION ENGINEERS

The Crosley division, Avco Manufacturing Corporation is expanding its television receiver activities on α long term basis creating a few positions for
supervisory and senior engineers.
supervisory and senior engineers.
Requirements: College degrees. Three or more years' experience in television and radar design and development of which at least two years have been spent in advanced or product development of elevision receivers. considered.
Ideal working conditions in well equipped modern laboratories with unlimited opportunities for advancement. Forty hou week, insurance, hospitalization and pen sion plans. Responsibilities and salary based on experience and ability,

Replies (which will be kept confidential) stating age, experience, education and sal ary requirements should be addressed to
Director of Research and Engineering CROSLEY DIVISION
avco manufacturing corporation 1329 Arlington St. Cincinnati 25, Ohio

ELECTRICAL ENGINEER

instrument field

Opportunity for young graduate electrical engineer with a strong background in elec tronics to do application and developmen engineering on scientific electrical measuring instruments. Some experience in elec trical power systems helpful but not Leeds \& Northrup Co. 4901 Stenton Ave. Phila. 44, Pa.

Factory Representative Salesmen
Sell and take orders on St. Louis Electronic Advertising Rohots. Revolutionary new electronic device. Be the representative in
requirements and information write

ST. LOUIS MICROPHONE CO 2726.28 Brentwood Blvd., St. Louis i7. Mo.

REPLIES (Box No.): Address to office nearest you REPLIFS (Box No.): Adaress to office
NEU YORK: 890 W. $42 n d$ St. (18)

CHICAGO:520 N. Michigan Ave. (11)

CIVIL SERVICE

ENGINEERS AND Scientists needed by Navy Department at Washington. The Navy Department is seeking engineers and scientists Washington, D. C. Specific vacancies exist for Aeronautical, Civil, Electrical, Electronics, Industrial, Marine, and Mechanical Engineers and for Mathematicians, Naval Architects, Physicists, and others, with salaries ranging from $\$ 2974.80$ to $\$ 10,330.00$. Applications for the vositions should be made on standard Form 57 , available at any first or secondeclass
Post office, and should be mailed to Code 612 Post Office, and Main Navy Building. 17 th and Constitution Avenue. Washington, D. C.

EMPLOYMENT SERVICES

SALARIED POSITIONS \$3,500-\$35,000. If you are considering a new connection communicate with the undersigned. We offer the origrecognized standing and reputation). The procedure, of highest ethical standards, is individualized to your personal requirements and develops overtures without initiative on your part. Your identity covered and present posifor details. R. W. Bixby Inc., 266 Dun Blds., for details. R.
Buffalo $2, ~ Y . ~$

JXEECUTIVES $\$ 3,000-\$ 25,000$, This reliable service, established 1927, is geared to needs of high grade men who seek a change of connertion under conditions assuring, if employed, full protection to present position. Send name and address only for details. Personal consupE. 241 Orange St., New Haven, Conn.

[^12]
MATHEMATICIANS, ENGINEERS, PHYSICISTS

Men to train in oil exploration for operation of seismograph instruments, computing seismic data, and seismic surveying. Beginning salary-open, for advancement determined on ingenuity and abil ity. Nature of work requires several changes of address each year; work indoors and out, general locations in oil producing states. To apply, write, giving scholastic and employment background; age
nationality, marital status; and include recen snapshot to:
NATIONAL GEOPHYSICAL CO., Inc.
8800 Lemmon Ave. Dallas 9, Texas

WANTED ELECTRONIC ENGINEER

Experienced in development and product design of electro-mechanical precision instruments. Capable of full responsibility for development of timing and control cir cuits, servo mechanism, associated equip ment. Ingenuity, imagination and theoreti cal inclinations suitable for Research Lab work desired. Top salary for qualified person. Send resume to

330 West 42 nd Street, New York 18, N. Y.

To

EMPLOYERS

who advertise

for MEN:

Frequently, when there are many applicants for a position, only the most promising letters are acknowledged. The other applicants never know whether their letters reached a prospective employer or not. These men often become discouraged, will not respond to future advertisements and even question their bona fide character.

Every advertisement printed in the Searchlight Section is duly authorized. You can help keep our readers interested and get better returns to your advertising in this section if you acknowledge each reply-in plain envelopes, if you wish.

Classified Advertising Division

McGraw-Hill Publishing Company, Inc.

POSITION WANTED (Continued from opposite page) PHYSICIST-ELECTRONIC Engineer, 8 years research experience, desires position in mid-
west where a broad background in nuclear west where a broad background in nuclear desired. Top references. PW-5658, Electronics.

BUSINESS OPPORTUNITY

An English Market
Prominent producer of High-Grade Radio and Domestic Appliances is interested in the manufacturer under license (or otherwise) of Well engineered consumer products: those having a high labour/material cost ratio sesses a well developed Sales organization with a unique entry into a large domestic market. Please send fullest details to: The Managing Director, Sobell Industries Limited, Langley Park, Nr. Slough, Bucks., Eng.

AVAILABLE

ELECTRONIC ENGINEER: 10 years experience in research, design, development and supervision with projects. Seeking administrative position. Agores. sive: personable.

330 West 42nd Street, New York 18, N. Y.

Height: (over insulators), $16^{\prime \prime}$. Width: 12". Depth: 4". Net weight: 36 pounds. Shipping weight: 50 pounds.

15,000 V. Working 1 mfd. Capacitor

Nationally Known Brand, Oil-Filled

Priced at a fraction of original cost, these husky capacitors have hundreds of appli-cations-in communications, - in industry, as copacitordischarge spot welders and power-factor correctors, - in the research laboratory.
Only 1200 available,-Act s 15
NEW—SURPLUS Individually packed for overseas shipment.
WIRE-WRITE
or PHONE
(Market 1-4568)

SAN FRANCISCO

 RADIO \& SUPPLY CO.1284 Market St. San Francisco 2, Calif.

ELECTRONIC SPECIALS

-Priced Right-

Switches-15,000V, . 5 Amp., SPDT Motor Driven 110/1/60.
. $\$ 42.50$
RA-38 Power Supplies, 15,000V DC . 5 Amp. Output 110/1/60 Input. 275.00 RA-58 Power Supplies, 15,000V .035A. 140.00

RA-34 Power Supplies Combinations HV \& LV 95.00

SCR-533-T2, Trailer borne radar IFF's.
50 Watt Portable Broadcast Transmitters complete, Turntable, mikes, etc. $\quad 750.00$ Million Items in Stock-Let us know of your needs

VETERANS SALVAGE CO., Inc.

9 KULIK STREET
Phone: PĀssaic 3.6370

SO-7 RADAR SETS

$10-\mathrm{cm}$ Band, 275,000 watts peak pulse watts. Operate on 110v 60 cps AC, 3 KW

Unused, \$1,950.00 F.O.B. Houston

GULF COAST ELECTRONICS
1110 Winbern St. Houston 4
Justin 8-1551

TELEVISION CAMERA EQUIPMENT

Available for immediate delivery: DUMONT Typo
$5027 A$ IMAGE ORTHICON PICK UP HEADS with type 5047A ELECTRONIC VIEW FINDERS, complete with all tuhes,-including 2 P23 Image
Olthicons. orthicans.

CONOSCOPE FILM PICK UP CHAINS \& MONITORS,
Delivery-approximately one month.
WRITE FOR COMPLETE PRICE LIST.
The above used, in excellent operating condition,
f.o.b. N.Y.C. Subject to prior sale.
THE NATIONAL INSTRUMENT CO. FAR ROCKAWAY,

NEW YORK

RADIO CABINETS
 and wood cabinets of all types built to your specifications.
 "Engineered Wood Production"
 THOMAS MANUFACTURING CO. NEENAIH,
 WISCONSIN

WANTED

WANTED

Western Electric Carrier Telephone, Carrier Telegraph Equipment and Components. Filters, repeating coils, transformers, equalizers. Types CF1, CF2, H, C , and other carrier equipment. Telephone and telegraph repeaters.

W-4435, Electronics
330 West 42 nd Street, New York 18, N. Y.

WANTED
 TEST EQUIPMENT

All types of Laboratory Test Equipment, new, used or surplus. Send description to W-4861, Electronlcs
330 West 4 2nd Street, New York 18, N. Y.

(ID)

IN THE COUNTRY
MINIMUM ORDER $\$ 5.00$ QUANTITY PRICES ON REQUEST
 UNLESS RATED

(ID) SEARCHLIGHT SECTION TD

YOUR HEADQUARTERS FOR INDUSTRIAL EQUIPMENT

No. T4106
FILAMENT TRANSFORMER

SEALED 115 V .60 CYC. primary
Sec. No. ${ }^{1}{ }^{6.3}{ }^{6}{ }^{(1)}{ }^{3} \mathrm{Amp}$. Sect. No. 2.5 volts © 2 Amps. $\underset{\substack{\text { Western } \\ \text { insulated } \\ \text { Electrice } \\ \text { D } \\ \text { D }}}{ }$ Spec 181917

scope and 2 x 2 tubes.
$51 \mathrm{~m} m$.

TRANSFORMER
Here is a rugsed transformer built to A Army specs. Hermentionmer built
with Franklyn Terminaly sealed
Hes.

 Weight 10 lbs.
WYur
$\$ 2.49$
PLATE TRANSFORMER 600 V.

Primary 220 or $110 \mathrm{~V} .50 / 80$ cy Sec. 612-0-612 V. © 300 ma-also has 585 V . taps. While they last.
$\$ 9.95$
PLATE TRANSFORMER

220 Volt Primary 50/60 cy
 former designed to take it
\$12.50
PLATE TRANSFORMER
 Sec. 2050 CT e 10 amps Used
in
to bridge circuit,
luis trans-

\$17.95
POWER TRANSFORMER

700 Volts ne transformer-Prl. 117.5

\$2.95

SELSVW MOTORS

CLOSE

OUT

SPECIAL

Synchronous Type
Pair In Series for 110 V . AC.

SYNCHRO—DIFFERENTIAL

Model \# 1943 -C78849-CAL-1 1280 Bendix Aylation

COAX SPECIALS!

R. C. A. 630 T.S.

POWER TRANSFORMER

SMALL POWER
TRANSFORMER
Pri. 115 V b0 cy
Sec. \#1 750 V . CT @ 80 ma $\mathrm{Sec} .=26.3 \mathrm{~V}$. © 5 amps
\$2.95

28 VOLT DE 94 MAMOTOR

TRANSTAT

400 Cycle TRANSTAT

ADLAKE Type 1040-80

No. R-4012 Mercury Time Delay Relay Normally Open, Closes in 5 seconds, Opens in . 3 seconds.
$\$ 8.75$

DUAL RELAY
2 110r 60 cy Relay Mounted on one Prame. l3oth relays double pole. One single
throw. One double throw. Coils can be paralleled of used independently.
$\$ 2.20$ each

No. 1474

KEYING RELAY

Here is a keying relay made to mount in a tube socket. Double pole Double Throw relay-sealed in pacuum 300 ohm coil.
Will follow 100 words \& minute. Stock up now....... \$2.00

PBC GENERAL ELECTRIC

 OVER CURRENT RELAYNo. $R-4010$ Adjus table from 1.5 to 3.0 amperes. 110 volt. 60 eye. Reset
\$24.95

MICRO SWITCH
single pole single throw aircraft type. rugged tor outside use-can be used for stopping beam rota-
tion so as not to foul $\$ 7.25$ up feed line cable.... \$1.25

No. M-462
31/2 INCH "S" METER

Will in give liridge Circuit readings on your surplus receiver or receiver not
equipped with meter. Uses light for Hshting meter $\$ 4.95$

No. M-248
2 $1 / 2 " 0-1$ MIL MOVEMENT
 Bakelite cased meter--27
ohms. Dasic resistance may be used wherever a small 1 mil movement is needed for
$\mathrm{S}-\mathrm{Meter}$ in receiver or basic meter in test equipment. A $\$ 2.95$

20\% DEPOSIT WITH ORDERS
UNLESS RATED

DIgby 9-1132-3-4

SPECIALS!

GUARANTEED BRAND NEW

INVERTERS

12117-4, Pioneer. Input 24 volts D. C. Output 26 volts, 400 cycle

Price $\$ 12.00$ each net.
12117, Pioneer. Input 12 volts D. C. Output 26 volts, 400 cycle.

Price \$15.00 each net.
12123-1-A, Pioneer. Input 24 volts D. C. Output 115 volts, 400 cycle, 3 phase. Voltage and frequency regulated. 100 V . A.

Price $\$ 48.50$ each net.
153F, Holtzer Cabot. Input 24 volts D. C. Output 26 volts, 400 cycle, 250 V. A., and 115 volts, 400 cycle, 3 phase, 750 V . A. Voltage and frequency regulated.

Price $\$ 150.00$ each net.
MG750, Wincharger, PU16. Input 24 volts D. C. Output 115 volts, 400 cycle, 1 phase, 6.5 amps . Voltage and frequency regulated.

Price $\$ 35.00$ each net.
661102, Sperry Phase Adapter. 115 volts, 400 cycle. Used for operating 3 phase equipment from a single phase source.

Price \$12.75 each net.

SINE-COSINE GENERATORS

 (Resolvers)FJE 43-9, Diehl, 115 volts, 400 cycle.
Price $\$ \mathbf{2 0 . 0 0}$ each net.
FPE 43-1, Diehl, 115 volts, 400 cycle.
Price $\$ 20.00$ each net.

D. G. ALNICO FIELD MOTORS

5069230, Delco, 27.5 V., 145 R. P. M. Price $\$ 5.00$ each net.
5069600, Delco, 27.5 V., 250 R. P. M. Price $\$ 4.00$ each net.

5069370, Delco, 27.5 V., 10,000 R. P. M. Price $\$ 4.00$ each net.
5069466, Delco, 27.5 V., 10,000 R. P. M.
Price $\$ 2.00$ each net.
5068571, Delco, 27.5 V., 10,000 R. P. M.
Price $\$ 2.65$ each net.
SS-FD6, Diehl, 27.5 V., 10,000 R. P. M.
Price $\$ 2.65$ each net.
\section*{D. C. SERIES MOTORS}
C-2A-1B, John Oster, 27 V., 7,000 R. P. M. $.7 \mathrm{amps} ., 1 / 100 \mathrm{H}$. P.

Price $\$ 3.75$ each net.
C-28P-1A, John Oster, 27 V., 7,000 R. P. M. $.7 \mathrm{amps} ., 1 / 100 \mathrm{H} . \mathrm{P}$.

Price $\$ 3.75$ each net.

D. C. SHUNT MOTOR

5066665, Delco, Reversible, 27.5 V., 4000 R. P. M. Flange mounted.

Price $\$ 4.50$ each net.

A. C. MOTORS

5069625, Delco, Constant Speed, 27.5 V. A. C. or D. C., 120 R. P. M. Has built-in reduction gears and governor

Price $\$ 4.25$ each net.
5071930, Delco, 115 V., 60 cycle, 7,000 R. P. M.

Price $\$ 3.75$ each net. 36228, Hayden Timing Motor, 115 V., 60 cycle, 1 R. P. M.

Price \$2.75 each net.
Two-phase low-inertia motors, Pioneer, Diehl and Minneapolis-Honeywell.

Price_Call or Write.

INSTRUMENT ASSOCIATES

147-57 41st Avenue
Telephone Independence 3-1919 Write for complete listing!
NOTE OUR NEW ADDRESS AND TELEPHONE NUMBER!

SPECIALS!

GUARANTEED BRAND NEW

SYNCHROS

1F Repeater, 115 volts, 60 cycle.
Price $\$ 30.00$ each net.
1F Special Repeater, 115 volts, 400 cycle. Will operate on 60 cycle at reduced voltage.

Price $\$ 15.00$ each net.
1G Generator, 115 volts, 60 cycle.
Price $\$ 15.00$ each net.
1CT Control Transformer, 115 volts, 60 cycle.
Price $\$ 15.00$ each net.
2J1G1 Control Transformer, 115 volts, 400 cycle.

Price $\$ 2.00$ each net.
5G Generator, 115 volts, 60 cycle.
Price $\$ 25.00$ each net.
5SG Generator, 115 volts, 400 cycle.
Price $\$ 7.50$ each net.

PIONEER AUTOSYNS

AY1, 26 volts, 400 cycle.
Price $\$ 3.50$ each net.
AY20, 26 volts, 400 cycle.
Price $\$ 4.50$ each net.
AY30, 26 volts, 400 cycle.
Price $\$ 10.00$ each net.

PIONEER PRECISION AUTOSYNS

AY101D, new with calibration curve.
Price-Call or Write.
AY131D, new with calibration curve.
Price-Call or Write.

PIONEER TORQUE UNITS
12606-1-A.
12627-1-A.
Price $\$ 22.50$ each net.
Price $\$ 65.00$ each net.

PIONEER TORQUE UNIT AMPLIFIERS

12073-1-A.
Price $\$ 17.50$ each net.

GENERAL ELECTRIC D. C. SELSYNS
 8TJ9-PDN Transmitter, 24 volts.

Price $\$ 3.00$ each net.
8 DJ11-PCY Indicator, 24 volts. Dial marked -10° to $+65^{\circ}$.

Price $\$ 4.00$ each net.
8DJ11-PCY Indicator, 24 volts. Dial marked 0 to 360°.

Price $\$ 6.50$ each net.
Resistor and Rectifier for operation from 110 volts, 60 cycle source.

Price $\$ 1.00$ each net.

RATE GENERATORS

J36A, Eastern Air Devices, 10 to 5000 R. P. M., 02 V. per R. P. M.

Price $\$ 8.50$ each net.
PM2, Electric Indicator Company, . 0175 V. per R. P. M.

Price $\$ 6.00$ each net.
F16, Electric Indicator Company, two-phase, 20 V. per phase at 1800 R. P. M.

Price $\$ 14.00$ each net.

INSTRUMENT ASSOCIATES

RG 22 U. COAX CABLE 50 Foot Length	$33.98 \frac{2}{2} \text { (1) N }$	Hi Volt MICA CONDENSERS $.007-5000 \mathrm{~V}$ - 1.75 $.005-8000 \mathrm{v}-2.25$

1 K.W. POWER SUPPLY KIT $2500-0-2500 \mathrm{~V}$ @ 500 MA

 2000-0-2000 V @ 500 MA (cill-4lllod Xformer from BC610)1-Swinging choke
1-Smoothing choke
1-Fillament Xformer
2-2 Mfd.-3000 v. Condenser
2-872 A Tubes
2—Plate Caps for 872A
2—Sockets for 872A
Special! All parts New!
$\$ 99.50$
STEP DOWN TRANSFORMER PRIMARY 440/220 VOLTS SECONDARY $230 / 115$ VOLTS s14.95 .600 KVA

SELENIUM RECTIFIERS

Full Wave Bridge Type

OIL CONDENSERS NATIONALLY ADVERTISED				BRANDS	
All Ratings, D. C.					
2x. 1 mfd .	600 v	\$0.35	1 mfd .	2000 v	\$0.95
. 25 mfd .	600 v	. 35	3 mfd .	2000 v	2.75
. 5 mfd .	600 v	. 35	4 mfd .	2000 v	3.75
1 mfd .	600 v	. 35	15 mfd .	2000 v	4.95
2 mfd .	600 v	. 35	2 mfd .	2500 v	2.49
4 mfd .	600 v	. 60	1 mfd .	2500 v	1.25
8 mfd .	600 v	1.10	. 25 mfd .	2500 v	1.45
10 mfd .	600 v	1.15	. 5 mfd .	2500 v	1.75
3x. 1 mfd .	1000 v	. 45	. 05 mfd .	3000 v	1.95
. 25 mfd .	1000 v	. 45	. 1 mfd .	3000 v	2.25
1 mfd .	1000 v	. 60	. 25 mfd .	3000 v	2.65
2 mfd .	1000 v	. 70	. 5 mfd .	3000 v	2.85
4 mfd .	1000 v	. 90	1 mfd .	3000 v	3.50
8 mfd .	1000 v	1.95	12 mfd .	3000 v	6.95
10 mfd .	1000v	2.10	2 mfd .	4000 v	5.95
15 mfd .	1000 v	2.25	1 mfd .	5000 v	4.95
20 mfd .	1000 v	2.95	. 1 mfd .	7000 v	2.95
24 mfd .	1500 v	6.95	3 mfd .	4000 v	6.95
. 1 mfd .	1750v	. 89	2 mfd .	3000 v	3.45
. 1 mfd .	2000 v	. 95	2 x .1 mfd .	7000 v	3.25
$\xrightarrow{.25 \mathrm{mfd}}$.	2000 v 2000	1.05	${ }^{.02 \mathrm{mmfd}}$.	12000 v 20000 v	995
. 5 mfd .	2000 v	1.15	. 02 mfd .	20000 v	11.95

HIGH CAPACITY CONDENSERS
$10,000 \mathrm{mrd} .-25$
$2 \times 3500 \mathrm{mfd}-25 \mathrm{WVDC}$
$253500 \mathrm{mfd}-25 \mathrm{VDC}$
$\$ 6.95$
3.45
${ }_{2 \times 1250 \mathrm{mfd}} \mathbf{2 5 0}-10 \mathrm{VDC}$
$1000 \mathrm{mfd} .-15 \mathrm{WWVDC}$
$200 \mathrm{mfd}-35 \mathrm{VDC}$.
$100 \mathrm{mfd}-50 \mathrm{WVDC}$
$4 \times 10 \mathrm{mfd}-400 \mathrm{VDC}$

XMITTER-BC-950A-121 Frequency Range-100-156 Mc Four band-Auro tune-Crystal Controlied, Complete With 2-162

2-832, 1 Ant-Rec. relay switching
Brand New
$\$ 99^{50}$

MOBILE or BOAT
 12 Volt INVERTER
 Input 12 V DC-Output 110 V .60 Cyc .
 125 W. Int.- 100 W. Cont.
 Speciall Brand New
 $\$ 18^{95}$

PERMALLOY SHIELDS for CATHODE RAY TUBES
 $5^{\prime \prime}$ shield

TRANSFORMER-115V, 60 Cy . HI-VOLTAGE INSULATION

3710 v @ ma.; $2 x 2$ 应 @ 3A.
2500 v (15 ms
 2150 v (3) 15 ma

 525-0-525v @ 60 ma.; 925 v @ $10 \mathrm{ma} \cdot \mathrm{i} \mathbf{2} 5 \mathrm{v}$ @3A;6.3v@3.6A;6.3v@2A;6.3V@1A $500-0-500 \mathrm{v}$ @ 25 ma . $262-0-262 \mathrm{v}$ @ 55 ma . 6.3 v @ $1 \mathrm{~A} ; 2 \mathrm{x} 5 \mathrm{v}$ @ 2 A.
 $400-315-0-100-315 \mathrm{v} @ 200 \mathrm{ma} \cdot \mathrm{F}_{2} .5 \mathrm{v}$ @ 2 A ;
$5 \mathrm{v} @ 3 \mathrm{~A} ; 6.3 \mathrm{v} @ 9 \mathrm{~A} ; 6.3 \mathrm{v} ; 9 \mathrm{~A}$.

$350-0-350 \mathrm{v}$ @ $150 \mathrm{ma} . ; 5 \mathrm{v}$ (G) $3 \mathrm{~A} ; 6.3 \mathrm{v}$ (G) 6A; 78v @ 1A.
$350-350 \mathrm{v}$ @ $45 \mathrm{ma} \cdot 675 \mathrm{v}$ @ $5 \mathrm{ma} \cdot \mathrm{i} 1 \mathrm{i} \mathrm{v}$ $350-0-350 \mathrm{v} @ 80 \mathrm{ma} .6 .3 \mathrm{v}$ @ $\mathrm{a}^{2} 6 \mathrm{~A} ; 6.3 \mathrm{v}$ (a)
 (3) 3A; 3x6.3v @ 6A-PRI. 110×220. $350-0-350 \mathrm{v}$ @ $150 \mathrm{ma} . ; 5 \mathrm{v}$ @ 3 A ; 6.3 v (9) $7.5 \mathrm{~A} ; 6.3 \mathrm{v} @ 3 \mathrm{~A} .$.
$350-050 \mathrm{v}$
$340-0-340 \mathrm{v}$ @ 300 ma ; 1540 v @ $5 \mathrm{ma} . .$. $335-0-335 \mathrm{v}$ @ 60 ma ; 5 v @ $3 \mathrm{~A} ; 6.3 \mathrm{v}$ @ 2 A ; 0-13-17-21-23v @ 70 ms -PRI.110/220. $325-0-325 \mathrm{v}$ @ $120 \mathrm{ma} . ; 10 \mathrm{v}$ @ $5 \mathrm{~A} ; 5 \mathrm{v}$ @ 7 A $300-0-300 \mathrm{v}$ @ $65 \mathrm{ma} . ; 2 \mathrm{x} 5 \mathrm{v}$ (a) $2 \mathrm{~A} ; 6.3 \mathrm{v}$ (a)
 @ $5 \mathrm{~A} ; 6.3 \mathrm{~V}$ @ 1 A .

$80-0-80 \mathrm{v}$ (@) 225 ma.; 5 v (a) 2A; 5 v (ac) 4A.
24 v @ 6A.

12.6 v CT @ 10 A ; 11 v CT @ 6.5 A .
6.3 v @ $10 \mathrm{~A} ; 6.3 \mathrm{v} @ 1 \mathrm{~A}$.
6.3 v (9) $1 \mathrm{~A} ; 213 \mathrm{v} @ 2 \mathrm{~A}$
6.3 v @ $211 / 2 \mathrm{~A} ; 6.3 \mathrm{v}$ (a) $2 \mathrm{~A} ; 23 \mathrm{jv}$ (G) $2 \mathrm{~A} . .$.
$5 \mathrm{y} @ 20 \mathrm{~A}$ - primary $110 / 220 \mathrm{v}$.
$410-0-410 \mathrm{v}$ (G) 1060 ma. primary $110 / 220 \mathrm{v}$ $5 \mathrm{v}-190 \mathrm{~A} \ldots . .{ }_{5}{ }^{2} 17.500^{6.3 \mathrm{v}}$ @ 1 A . $5 \mathrm{v}-115 \mathrm{~A} \ldots \ldots 14.95 \quad 8 \mathrm{v}$ CT 1 A .
6.3 v CT @ $3 \ddot{A} ; 5 \mathrm{v} \mathrm{CT}$ @ 4 A

9.95
6.50
7.95
5.50
6.50
7.95
7.95
4.49
4.95
6.50
4.95
4.95
4.95
3.98
7.95
4.99
1.45
5.95
4.95
3.49
3.49
4.95
.98
3.95
3.50
2.95
7.95
3.50
3.45
3.95
9.95
.98
4.95

TELEGRAPH KEY J 37
Fully adjustable, $1 / 3^{\prime \prime}$ silver contacts and 5 ft . rubber cable, with PL-55 plug. Brand New.. 69 each

2 SPEED PLANETARY DRIVE

Fits condensor shaft back of panel, or dial Knob shaft 5 to 1 and 1 to 1 ratios, For any 1/4" shaft.........Special 794 each-2 for $\$ 1.50$

FILTER CHOKES
HI-VOLTAGE INSULATION

550	\$7.95	325 hy (3 ma .	\$3.49
8 hy © 300	3.95	1 hy (1) 800 ma	14.95
25 hy @ 160 ma	3.49	10 hy @ 250 ma .	2.49
12 hy (9) 150 ma	2.25	10 hy (a) 200 ma .	1.98
12 hy (m) 100 ma	1.39	10/20 @ 85 ma .	59
30 hy @ 70 ma	1.39	15 hy @ 125 ma .	1.49
. 05 hy @ 15 amps	7.95	15 hy (a) 100 ma .	. 39
. 1 hy @ 5 amps .	6.95	3 hy @ 50 ma	. 29
4 hy @ 600	5.95	30 hy Dual @ 20 ma .	1.49
200 hy @ 10	3.49	$8 / 30 \mathrm{hy}$ @ 250 ma.	3.50
600 hy (3) 3 ma	3.49	10 hy © 100 ma .	1.29

AL PRICES SUBJECT TO CHANGE WITHOUT NOTIC Mail orders promptly filled All prices F.O.B. New York City. Send money order or check. Shipping charges sent C.O.D. Minimum order $\$ 5.00$. 20\% Deposit required with all orders.

ATTENTION!

INDUSTRIALS - LABS -
SCHOOLS - AMATEURS
Let us quote on components and equipment that you require. We have too many items to be listed on this page. Place your name on our mailing list now for new
catalog.

SENSATIONAL TUBE SALE! XMITTING - RECEIVING - CATHODE RAY - RECTIFIER - SPECIAL PURPOSE BRAND NEW TUBES-STANDARD BRANDS ONLY

ATTENTION!
All Tubes guaranteed, ex cept for open filaments, shorts and broken glass, for which we check before ship-

Please specify how to ship, ie: Parcel Post, Railway
Express, etc.

	MICROWAVE TEST EQUIPMENT W. E. I 138 A. Signal gen- usicillator with attenuator input, reg. 1 Prr. supply. With circuit diagrann ${ }_{550,00}$
	S. 238 GP .10 cm . Echo box with resonance indicator and milcrometer adjust carity. 2700 to 2900 Mcs calibrated $\$ 85.00$
	cm. Wevemeter: 9200 to $11,000 \mathrm{mc}$ transmission
	cm. stabilizer cavity, transmission iype... $\$ 20.00$
	Dirsct reading VSWR meter. Complete with ampli-

PULSE EQUIPMENT
APQ-I3 PULSE MODULATOR. Pulse Width . 5 to 1.1
 KV (12n0 KW ph.) pulse rate 200 I'lis, 1.5 micro-
 with all tubes PULSE NETWORKS
G.E. $\begin{gathered}\text { circuit, } \\ \text { \#2 } \\ 1\end{gathered}$
 tions, ${ }^{.5}$ microsecond, 2000 PPS, 50 ohms im W.E. \# DI66173SE TRANSFORMERS

 W.E. K's 9800 Input transtomer. Winding ratio between terminals $3-5$ and $1-2$ is $1.1: 1$. and between
terminals $6-7$ and $1-2$ is $2: 1$. Frecuency range: $380-1$

 G.E. \# K2748A luulse Input, line to magnetron $\$ 12.00$
 705-A-\$1.95 PULS TUBES

15-

POWER EQUIPMENT

STEP DOWN TRANSFORMER: Pri: $440 / 220 / 110$ nolta PLionTE Size 12"x12"x ${ }^{\prime \prime}$ ${ }_{26^{\prime \prime} \times 29^{\prime \prime} \times 13{ }^{\prime \prime}} 114$ ma, with Fii. Transformer: Pri: 220 n.a.c., 60 c $3 ;$; 0 K

1'late Transformer: Pri: $115 / 230$..a.c., $50-60$ cy. Sec:
21,000 \&. $100 \mathrm{ma} . ~$
145.00

 VOLTAGEREG. Transtat" Ameriran Type "RH" TRANSTAT VOLTAGE REG, $1 i .5$ KTA. o-i
 $\$ 75.00$
.$\$ 15.00$

400 CYCLE TRANSFORMERS

INVERTERS

WATER COOLED TUBES

GL697

MICROWAVE ANTENNAS

AN MPG-I Antenna. Rotary feed type high speed
seanner antemna assembly, including horn, parabolic
 APS-4 3 cm. antenia. Coniplete. $141 / z^{n}$ dish. Cutle feed dipole, directional coupler, all standard $1^{N \prime}$ x $1 /{ }^{1 / 2}$ horizontal and vertical scan. New, complete. $\$ 65.00$ AN/TPS.3. Parabolic dish ryse refector approx. 10 RELAY SYSTEM PARABOLIC REFLECTORS: approx. range: 2000 to tout me. Dimensions: $41 / \mathbf{D}^{\prime} \mathrm{X}$ TOY "JAM" RADAR ROTATING ANTENNA. 10 cm So-13 ANTENNA. $24^{\text {dis.e. dish with fedtack dipole } 300}$ leg. rotation, comptete
vew
New $\$ 75.00$ Used $\$ 45.00$ DBM ANTENNA. Dual, back-to-back parabolas with AN m $/ 128 \mathrm{~A}$ ANTENNA. Two Vertical dipoles working against a square reflector apx. $3^{\prime} \times 4^{\prime}$. Range: $140-$
 Heary duty rugged plywood. Crated in 3 sections with coupling materia
$\$ 40.00$ per se

THE NEWEST THING 1 N
IO-350 MHF
MC. MAGETRON IN TO-350 MC. MAGNETRON IN
GLASS ENVELOPE. NEWN COM
PLETE WITH DATA SHEET \$39.50

${ }_{2}$ Tube	Frg. Range	Pk. Pwr. Out	${ }_{\text {Price }}^{\text {S15.00 }}$
$2{ }^{2} 51.1$	$9345-9405 \mathrm{me}$.	. 50 KW	\$55.00
2 J 22 2326	$3267-3333 \mathrm{me}$. $2992-3019 \mathrm{me}$.	265 KW	\$15.00
$2{ }^{2} 27$	2965-2992 me	275 KW.	\$15.00
$2 \mathrm{J32}$	2780-2820 mc.	285 KW	\$15.00

 coupler with $721-A$ duplexer cavity,
gold pated gold PMated WAVEGiOE SWiTCHING
UNIT, SWitches 1 input to any of 3
 21-A TR CAVITY WITH TUBE Co............ 135.00

 RT. ANGLES for abov R ANALE ROEARY JOINT

 3 CM. PLUMBING
(STD. $1 " \times 1 / 2^{m}$ GUIDEUNLESS
SPECIFIED)

SPECIFIED) OTHERWISE TR CAVITY for 724-A TR tube, transmission or ab-
 ende to cover, with00 WAVEGUIDE SECTION, i2 iong choke to cover. 45 deg. TWist en caviry feeding waveguide section' with SLUG TUNER/ATTENUATOR, W.E.....i.... suld. gold

 ROTARY JOINT, choke to choke, with deck mount S-CURVE WAVEGUDE, \& iong cover to choke. S2.50 3 CM. WAVEGUIDE, $1^{\prime \prime} X$ X ${ }^{\prime \prime}$ II. I. per ft.
CIRCULAR GHOKE FLANGES, solid brass "T" SECTION (TR-ATR) choke to choke, supplied DIRECTIONAL COUPLER CG iaq AMPS-15A on $16^{6 \prime}$ FEEDBACK DIPOLE with 90 deg. twist. $71 / 2 \ldots \ldots \$ 3.50$
'PPI'", ROTATING YOKE TYPE, complete with all with tubes Used with SO radar........... $\$ 100.00$ RT39/APGG-15., Transmittor-receiver. $2200-2700$ mic 30 mc , I. F., all enclosed in corupact pressurized hous-

 CONDENSER DRIVE ASSIY Berates $\$ 2.50$ CONDENSER DRIVE ASS'Y. Rotates any couplerl

 And eapt.
and homing patterns.
complete switching motor
 X" BAND: Compl RF head and modulator, incl. ${ }^{725-A}$ mag
netron \&
klystrons (local osc
two $723 \mathrm{~A} / \mathrm{B}$ klystrons (local osc \& \& beacon),
pl duplexer HV supply, blower, pulse xfmr, 1 . 1
 Complet pkg pew

CERAMIC CAPACITORS

ITORS			
mmp	王5\%	67 mmf	
mmp	5 mmif	100 mmf	
8.5 mmf	土. 5 mmf	115 mmf	
115 mmp	$\underline{+2.5}$		
48 mmit		5100 mmq	
50 mmP	-	18004	

SILVER-MICA BUTTON CAPACITORS

${ }_{500}^{175} \mathrm{mmf}$
$\pm 2.5 \mathrm{mmf}$

MICROWAVE PLUMBING PLUMBING
10 CENTIMETER

Id

1$\mathrm{m}_{\mathrm{c}}^{\mathrm{mf}}$. 10 CENTIMETER
 anged switching motor. Mfg. Ray-721-A TR CAVITY WITH TUBE. Complete with tumANGLES for above
COAX. ROTARY $10 i N T$
ANGLE BEND $15^{\prime \prime}$ L. OA

LABORATORY ACCESSORIES

REACTOR:O1HY, 2.5 amp 1500 r ins "Kenyon" $\$ 3.50$
BROAD BAND S'THRUX themistor mount with type
 \#KS 15138 L01 TYPE CABLE ASS'Y, 3 long, male $\$ 2.50$ PH-SHIFTiNGCAPM180 deg W.E. indifiois KLYSTRON SOCKETS 10 CM. MCNALLY CAVITYTYPE SG. Ea. LINE INSERTION ATTENUATOR, type OAX-1. 20 (amphenol 16S-5) 10 ANTENNA in lucite bail $\$ 2.25$ type "N" fitting
OAJ NAVY TYPE CYTG6ADL, ANTENNA in lucite
ball. With Sperry fiting

$2 \mathrm{~K} 25 / 723 \mathrm{AB}, \mathrm{X}$ band local oscillator mount with

(1) choke coupling to beacon reference cavity; (2) choke coupling to T'R and receiser; (3) Iris coupling with AFC attenuator to antenna wareguide; (4) Radar AFC crystal mount: (5) Recaiver crystal mount; (6) Attenuating slugs. Mitg. DeMornay Budd $\$ 22.50$ TIK/ATR Duplexer section for above......... $\$ 4.00$

SHORT ARM "T" section, with additional choke output on rertical section 1.25 CENTIMEOZER
 FLEXIBLE SECTION 1^{\sim} long choke to choke..... $\$ 3.00$

(ID) SEARCHLIGHT SECTION

SURPLUS NEW EQUPPMENT

AIR CIRCUIT BREAKERS
125 Amp. 500 Volt A.C. G.E. Type AF-1 ${ }^{3}$ pole
 225 Amp. 500 Volt A.C. G.E. Type AF1 ${ }^{3}$, pole

CARBON PILE D.C.
VOLTAGE REGULATOR
20 Amps max, 110 load volt mare 140 lime volts max. Safety Car Heating \& Lighting Co. \#. \#9540

SWITCHBOARD TYPE
CURRENT TRANSFORMER
Westinghouse Type KN Style 1204677 Ratio $500: 5$. 1000 voltmax, 60 cycle dry rype, 15 V.A. with automatic short circuiting derice. © $\$ 18.00$

PORTABLE A.C. VOLTMETER
Weston 433 150/300/600 Volts @
. $\$ 47.50$

PORTABLE D.C. VOLTMETER

Roller Smith Steel Six 0-15\& $0-150$ volts (3) $\$ 21.00$

PORTABLE

CURRENT TRANSFORMER
Weston 461 trpe 4. 5 Amp Secondary, 50. 100, 200 , 250,500 , 01 1.000 Amperes. I'rimary, @ .. $\$ 35.00$

PORTABLE

POTENTIAL TRANSFORMER

VOLTAGE POLARITY
PHASE ROTATION TESTER
Triplett 337 AVP Checks $115.220, \& 440$ line rolts

PORTABLE A.C. AMMETER

PORTABLE A.C. VOLTMETER

COMBINATION OFFER

Weston 528 Ammeter \& Voltmeter Doth for $\$ 21.00$

COMBINATION OFFER

A.C. Voltmeter \& A.C. Ammeter $0-150$ Volt \& 0-30 Amps.
Triplett 331-JP $31 / 2^{\prime \prime}$ lid fl bakelite case. Joth
meters for .. . $\$ 7.95$

RADIO SET SCR 518 HIGH ALTITUDE ALTIMETER
$0-20,000$ ($(30,000$) feet, 515 m.c. 24 volt 300 watts. Complete with 29 tubes and accessories with oplrating instructions and CulsCUIT DIAGRAMS @ $\$ 24.50$

PORTABLE CHRONOMETRIC TACHOMETER
Measures shatt speeds from 10 RPM to 20,000 RPM.
Measures lineal speeds 5 IFM to 10.000 FI M Meets Nayy specs. $1 / 2$ of 1% accuracy. With accessories, In case $5^{\prime \prime} \times 3^{1 / 2^{\prime \prime}} \times 11 / 2^{\prime \prime}$ Idist Price $\$ 75.00$. Net Price $\$ 24.50$

PORTABLE TACHOMETER MULTIPLE RANGE
Continuous Indicating shaft or lineal sumeds from $300-1200, \quad 1000-4000$, \& 3,000 to $12,000 \mathrm{RPM}$. Meets Nary specs 18-T-22 Type 13, Class A. With accessories in case $71 / 8^{\prime \prime} \times 4^{\prime \prime} \times 5^{\prime \prime}$. List Price \$75.00. NET PRICE $\$ 24.50$

BOWL INSULATORS

Clear Glass Corning $=67076$ type C. Flanged how $43 / 8^{\prime \prime}$ h $\times 615 / 16$ O.D. at base with $11 \frac{1 / /^{\prime \prime}}{}$ long lead in pin and brass mounting flange $s 3 / 4^{\prime \prime}$ dia. (a) ... $\$ 6.00$ (100 or more at $\$ 4.50$).

CONE INSULATORS
2 Glazed cones $11 / /^{\prime \prime}$ long $x 134^{\prime \prime}$ dia with stud city. of 40,000 .

STAND OFF INSULATOR
$3^{\prime \prime}$ long glazed with mig screw Qty of 25.000 .

PIGTAIL INSULATOR
For lance poles Qty of 9,000 .

Gasoline Heater

Motorola
Model GN-3-24

An internal combustion thpe heater which will
give $15,000 \quad$ B.T.U. of heat per hour. Ideally give 15,000 B. T. U. of heat per hour. Ideally
suited for use with equipment, farms, boats, bungasuited for use with equidment, farms, boats, bunga-
lows. cabins, trailers, work sheds, darkrooms, mobile equipment, transmitter stations etc, and any place where a quick heat is required in volume. Very economical in operation-tank holds one gallon
of gasoline which is sufficient for 6 hours operation of gasoline which is sufficient for 6 hours operation.

This unit is designed primarily for aircraft installation, $24-28$ volts d.c., but it can be readily adapted for a 115 or 230 volt 60 cycle power supply lyy use of a transformer and rectifier. Simple circuit diagram for adantion to 115 or 230 rolt 60 cycle use
supulied with each unit. Can be used on 32 volt farm or boat systems as is without the installation of addlitional transformers etc. Power consumption approximately 75 to 100 watts.

Takes very little space can be readily stored when not in use-measures approximately 12 long x $91 /{ }^{\prime \prime}$ all accessories. These units are complete with exhaust pipe, $3^{\prime \prime}$ air
duct elbow, control swirch and cord, as illustrated,
and are supplied with Technical Manual and Parts and are supplied with Technical Manual and Parts Catalog.

SIMPLE TO INSTALL-SAFE TO USE-
BRAND NEW-INORIGINAL CARTONS-
Made by Galvin (Motorola) Mfg. Company. Govt. cost approximately $\$ 240.00$.
\$22.50
NET PRICE
Note: Place your order now while these units are available. We may not be able to supply you with these units a few months from now when winter requirements reach their
peak, therefore, we urge you to ANTICIPATE peak, therefore, we urge you to ANTICIPATE
YOUR NEEDS AND PLACE YOUR ORDFRS YOUR
EARLY.

TAQ-10 TRANSMITTER

175-600 KC, 2000 Watts A1, 1000 Watts A2 with spares, 2 motor Lenerator sets 220/ 440 volt 3
phase 60 cycle. 1erfect Coadition-used only phase 60
375 hours.

All items are Surplus-New-Guaranteed. C.O.D.'s not sent accompanied by 25% Deposit. Orders accepted from rated concerns, public institutions, etc, on open account. We carry a complete line of surplus new meters suitable for every requircment, such as portable, panel, switchboard, recording instruments, laboratory standards, etc. Over 50,000 Meters in Stock. We also stock various surplus components, tubes, parts, and accessories and can supply large quantities for manufacturers, exporters, etc. Send for free circular Manufacturers, Exporters, Dealers-We invite your inquiries.

MARITIME SWITCHBOARD

338 Canal Street
Worth 4-8216-7-8-9
New York 13, New York
tell us-TELL OTHERS—SAY YOU SAW IT IN ELECTRONICS!

(4D SEARCHLIGHT SECTION TI

at a fraction of cost
DAVEN AUDIO FREQUENCY
METER Model 837E

Direct reading from $0-30 \mathrm{KC}$ in 4 separate ranges on 6° Weston Model 271 Fan Meter. Built-in volts 60 cyeles, has high input impedance. With pick-up can be used to determine frequency in vibration tester. With suitable mixer can check
devlation of R.F. carrier from standard. Mounts of $83 /{ }^{\circ} \times 19^{\prime \prime}$ rack panel. Complete with tubes. Slightly used but perfect. Only............... $\$ 59.50$

METER SPECIALS

11/2" GE 0-1 MA Basic. $\$ 3.95$
2^{\prime} GE $0-30$ amps. D.C. 2.95
$2^{\prime \prime}$ GE $0-1$ amp RF (internal thermo) 2.95
$2^{\prime \prime}$ GE 0-5 ma (amp scale)......... 1.95
2" GE 0-1.2 ma (0-100 scale). 2.49
$2^{\prime \prime}$ GE 0-1 ma (rolt scale)....... 295
$2^{\prime \prime}$ Gruen 0-3V DC (1000 ohms per $\quad 2.45$
Weston 150-0-150 Microamps. . . . 3.49
$3^{\prime \prime}$ Westinghouse 0-75 amp AC..... 4.95
$3^{\prime \prime}$ Weston -10 to 4 DB......... 5.45
$3^{\prime \prime}$ Westinghouse $0-50$ amps AC.... 4.95
Triplett 0-75 amps AC......... 3.95
WE 0-80 MA DC
2.95

GE 200-0-200 volts DC. 2.95

McClintock 0.1 mar 3.95
Westinghouse $0-2 \mathrm{ma}$ DC...... 3.95
Westinghouse $0-20$ ma DC...... 3.95
GE 0-15 ma DC (square)......... 3.95
Westinghouse 0-150V AC......... 3.95
Westinghouse $0-150$ volts AC
Rectifier type (Linear).
5.95
$3^{\prime \prime}$ WE 0.50 microamps
9.95
$3^{\prime \prime}$ G.E. running time 110 v .60 cy .
$4^{\prime \prime}$ G.E. 0 to 50 Microamps.
7.95

4" GE 1-0-1 ma DC (Blank scale) ... 9.95

WIRE WOUND RESISTORS Standard Make
5 Watt type AA, 20-25-50-200-470.2500.
 10 watt type AB, $25-40-84-400-470.1325$.
$1900-2000-4000$ ohms

$1000-1500-2500-2700-5000-7500$
30 watt type DI, $100-150-2500 \cdot 3000-4500-$
$5300-7500-18000-40000$ ohms
.09 6a.
.15 еа.
.20 ea.
$5300-7500-18000-40000 \mathrm{ohms}$
1% PRECISION RESISTORS
Standard Make
200-2500-5000-8500-10000 hms
$50000-95000$ ohms
.$\$ 39$ ea.
. .49 ea.
$100000-750000-1 \mathrm{meg}$
.89 ea.
S. C. TEST SET-1-114
 cover not shown). Has Weston 0-50 volit A.c. meter circults. cyemplete with iline and test cables.
A bargain at only $\$ 3.95$.
U. H. F. COAX. CONNECTORS UGI2U-831R-83II-39 G2IU-83IAP-83ISP
Large stocks of ${ }^{39}$ ea.
VARIABLE CERAMICON TRIMMERS
1.5 to $7 \mathrm{MMF}-.24$
5 to $20 \mathrm{MMF}=24$
4 to $30 \mathrm{MFF}=24$
7 to 45 MFF .24
10 to $110 \mathrm{MMF}=.39$

"A POWERFUL BABY"

This plate transformer built to rigid Signai Corps spec. Input 18 voits. 25 to 60 cycles. Has 2 sena.
rate
In rate 118 volt arimaries and can be used on 110 or
220 volts. Socondary 800 volts center tapped at 775 mills. Exceptional regulation even when loaded to
$900 \mathrm{mills}!$ Fully cased 4 mtg holes. 37 lbs . net wt. $61 / 2 \times 61 / 2 \times 71 / 8$. Peak value at 7.95 . 10 for $\$ 70.00$

"BRUTE FORCE"

This fully encased choke 6 Henry at 550 mills, 28 ohms dc resistance. Bullt to rigid Signal Corps

FILAMENT TRANSFORMER

Two separate 118 volt, 25 to 60 eycle primaries. Can be used on 110 or 220 volts. Secondary 3 volts
at 15 amps. Built to Signal Corps specs. Fully en cased. $5 \times 41 / 4 \times 55 / 2$. Net wt. 10 ibs. $\$ 3.75$ each.
i0 for $\$ 30.00$.

VERSATILE POWER

These transtormers have many uses-flament, 1 so-
All have 2 separate
25.60 primaries for $110 / 220$ volt
secte $25-60$ cycle operation, Primaries. Can be used In series or parallel.
3 Choices of Socondaries:
Type 504 , 15 volts 500 mills and 6.3 volts 5 amps. Type $502-0.70 .75$ volts 9 mills and 6.3 volts 2 amps. serles)

Your cost any type 10 for $\$ 17.00$
MIDGET VARIABLE BARGAINS

AMERTRAN TRANSTAT

or Stepdown Transformer
$110 / 220$ volts 60 cyclo input.
Output variable plus or minus
10% of 115 volts at 8.5 amps.
Aifferent voltage comminations.
Brand newonly $\$ 12.95$

AMERTRAN VOLTAGE

REGULATOR
$130 / 230$ volts $50 / 60$ eycles input. Output variable

OIL CONDENSER

$15 / .15 \mathrm{mfd} 6000$ $\begin{array}{lll}.1 \\ .15 f d & 7500 & \text { vdc- } 1.95 \\ .15 / .15 & \mathrm{mfd} & 8000 \text { vic } \\ .150\end{array}$
$4 \mathrm{mfd} 8 \mathrm{kv} \mathrm{dc}-19.95$
$4 \mathrm{mfd} 8 \mathrm{kv} \mathrm{dc}-19.95$
$.01 / .01 \mathrm{mfd} \mathrm{12} \mathrm{kv}$
$\mathrm{ddc}-5.75$
$.005 / .01 \mathrm{mfd} 12 \mathrm{dd}_{\mathrm{dv}}^{\mathrm{kv}}-5.50$
$.03 \mathrm{mfd} 16 \mathrm{kv} \mathrm{do}-5.50$
vde-12.95
.75/.35 mfd 8/16
$.1 \mathrm{mfd} 25 \mathrm{kv} \mathrm{do}-17.95$
$.02 \mathrm{mfd} 20 \mathrm{kv} \mathrm{dc}-7.95$
T. P. D. T.

ANTENNA RELAY
10 V . 60 cycle coll Steatits
insulation. 0 nly $\$ 1.95$ each

ELECTROLYTIC CONDENSERS

25 Mfd .25 V.D.C. Tubular.
$50 \mathrm{Mfd} .50 \mathrm{V.D.C}$. Tubular.
50 Mfd .50 V V.D.C. Tubular.

1000 Mfd. 25 V.D.C........
Tremendous stocks on hand. Please send
requests for quotes, Special quantity discounts. Prices t.o.b. N. Y. 20\% with order less rated, balance C.O.D. Minimum order $\$ 3.00$.

MEGOHM METER

Industrial Instruments Model L2AU $110 / 220$ volts 60 cycle input. Direct reading from 0.100000 megohms on $4^{\text {r }}$ metor. Can be extended to 500000 megohm with external supply. Sloolng hardwood cabi. not $155^{\prime \prime} \times 8^{\prime \prime} \times 10^{\prime \prime}$. Brand new with tubes plus running spare parts in. cluding extra tubes. Great value only $\$ 69.95$.

GENERAL RADIO VARIAC

Model 100 Q 2 KVA 18 Amps. Input 115 Volts 60
cycles. 0 .

SPERTI RF

VACUUM SWITCH 9200 volts neak. 8 amps. Used as antenna switch in Collins ART 13.

MISCELLANEOUS SPECIALS

2.11 mmf . Butterfly with ball bearlngs...... \$. 59 G.E. S.P.D.T. Relay 10000 ohm coil............. 59 Heineman Circuit Breaker 5 amp. G.E. Solenoid W/Microswitches 24 V. D.C.. 25 ohms 25 watt Rheostat.
C.H. Bat Handle Switch-D.P.S.T. $1 / 2$ H.P. Veeder Root Counter Trim Commercial Phones (High Imp)..............950 4.50

STEPDOWN TRANSFORMER

HIGH VOLTAGE MICAS

CD. . 001600 W.V. Type 9.
. 19

CD 027600 W.V. Type 9..................... . . 49
CD .00055000 W.V
C.D. . 0022500 W.V. 5000 V.T. type 9....... . . 49
C.D. . 0023500 W.V. 7500 V.T. type $9 \ldots .$.69

Micomold . 0052500 W.V. type 4.
R.C.A. 022000 V. D.C. 10 amp 300 K. C. 95

Sangamo (F2L) . 015 2000V D.C............ 1,50
C.D. (6 H) . 00135000 V. D.C. 1.00
C. D. $(6 \mathrm{H}) .0055000 \mathrm{~V}$. D.C. 11 amp. 1000
R.C.A. . 00022500 W.V. 5000 V.T........... . . 30

CHOKE BARGAINS

WE. 4.3 hy 62042 ohms...................... 4.95
N.Y.T. 8 henry 160 ma, 140 ohms D.C........ 1.39
C.T.C. 1.5 henry 250 ma. 72 ohms.......... . 60
R.C.A. 50 henry, 680 ma . high voltage..... 19.50

POWER PLANT (PE 197)

4 cylinder Hercules Gas driven engine. Output 110 volts 60 cycle, voltage regulated, $5 \mathrm{KW}-6.3 \mathrm{KVA}$ at 80% Pwr. Ftr. Single phase, complete with running spare parts, meter panel, battery, tools, roWeight 1200 lbs. Weight 1200 lbs. Export Packed. Excellent for
emergency power. Brand now............. $\$ 575.00$

Scope Transformer hermetically sealed 1,800 volts, $4 \mathrm{ma}, 6.3$ volts $99 \mathrm{amp} .21 / 2$
volts, $2.5 \mathrm{amps.} 5 \times 31 / 4 \times ,33 / 4 \ldots .25 .95$

4 QUADRANT PHASING CONDENSER

Phone Cortlandt 7-6443
PERK FLECHRONICS CO.
DEPARTMENT EA
188 Washingion SE., New York 7, N. Y. Send for bulletin
"TAB"
Dept. 8E, Six Church Street, New York 6, N. Y., U. S. A. corner church \& liberty sts., room 200

Then

ANTENNA AS23/AP fitting each $\$ \$ 1.98$
ANTENNA
ANTENNA MS49-54 whip 18ft. Igth Rugged ${ }^{\text {low }}$ loss const.
APR4 RCVR RCOF, TNi6, 18. 54 , write Audio 4.50
 IN34 Xtal Diodes NEW \$1.05 @iofor 9.85

INPUT
$0-18 V$
$0-18 V$
$0-18 V$
$0-36 V$
$0-36 V$
$0-36 V$
$0-36 V$
$0-36 V$
$0-64 V$
$0-64 V$
$0-64 V$
$0-64 V$
$0-90 V$
$0-126 V$
$0-135 V$
$0-250 V$
"TAB" OA

RECTIFIERS BRIDGE TYPE

$\begin{array}{ll}0-13 & 1.35 \mathrm{Amp} . \\ 0-13 & 3.25 \mathrm{Amp} . \\ 0-13 & 5 \mathrm{Amp} . \\ 0-13 & 320 \mathrm{ma} . \\ 0-28 & 1.1 \\ 0-28 & 1.1 \mathrm{Amp} . \\ 0-28 & 1.5 \mathrm{Amp} \\ 0-28 & 3.25 \mathrm{Amp} \\ 0-28 & 5 \mathrm{Amp} . \\ 0-50 & 220 \mathrm{ma} . \\ 0-50 & 1.5 \mathrm{Amp} . \\ 0-50 & 3.25 \mathrm{Amp} . \\ 0-60 & 5 \mathrm{Amp} . \\ 0-72 & 150 \mathrm{ma} . \\ 0-110 & 150 \mathrm{ma} . \\ 0-116 & 3.25 \mathrm{Amp} . \\ 0-200 & 40 \mathrm{ma} .\end{array}$

SURPLUS ELECTRONIC MATERIAL

IMMEDIATE SHIPMENT
 beLow is a partial listing from our catalog

TUBES! GUARANTEED!		
${ }^{124}$. 65	${ }_{807}^{860}$
	. ${ }_{\text {. }}^{65}$	$\underbrace{\substack{\text { gra }}}_{\substack{866 A \\ 8524}}$
	.955	
	.35	
		${ }_{\substack{1625 \\ 1625}}^{1629}$
	${ }^{6} 65$	
(ex	${ }^{7} 765$	
	. 9.95	
碄8	. 8.75	
(12468	: ${ }_{\text {: }}^{6}$	Reken
7	: : 65^{5}	
	. 65	,
	${ }_{\text {\% }}^{65}$	
	.75	
	. 6.65	
	4.955	Amperitovoltase
(ent	4.955	
(tay	${ }_{\text {a }}^{65}$	

STANDARD BRAND
PRECISION RESISTORS
Types WW3, WW4, and WW5 Following sizes are in $\mathbf{1} \%$ and $\mathbf{2} \%$ tolerance Price $\$.35$

Following sizes are
5% or better tolerance, Price $\$.15$ 110,000
22,000 70
50

40
35 The following sizes 1% or better. Price $\$.10$

41,808	105.8	4.4
14,460	63.96	4.35
4.285	53.32	4.3
1,123	33.22	3.94
988	23.29	3.5
414.3	13.52	1.563
366.6	13.333	.29
220.4	10.2	.268
147.5	5.1	.25

COAXIAL CABLE

TYPE	ImPEDANCE	Price
RG 6/U	76 Ohnis	\$.071/2/ft.
RG 38/U	550 hms	.071/2/ft.
RG 59/U	73 Ohms	. $051 / 2 / \mathrm{ft}$.
RG 62/U	93 Ohms	. $071 / 2 / \mathrm{ft}$.
RG iflu	48 Ohms	. $071 / 2 / \mathrm{ft}$.

RELAYS
RGA Vacuum Relay, Relay contacts will break 3000 volts and carry io amiveres Soleroid resistance
and
 WESTERN ELECTRIC POLARIZED

RELAY
Tised on ligh sjueed keeving eircuit.
Two bias windings 1500 oluns each; plus one signal winding 100 ohns.
Westeril
Electric
$\#$ D164816. Stock $=4$ C9156

Struthers Dunn S.P.D.T. Relay 36 Volt coil- 20 Relay-D.P.D.T. Heary contacts Coil 6 rolts D. C. 18 ohms 95
 Struthers Dunn \#61BXX104 D.P.S.T. Coil 12 Volts D. C. Contacts 25 amperes at 12 voites $\mathrm{D} . \mathrm{C}$. 95

Allied Control =D0X8 4 Make 4 Break. Heavs Contacts Coill 18 turns $=10$ enamelled wire. Price $\$ 75$

Relay S.P.S.T. WE Co. \#D163781 unit encased in racuum tube shell with octal hase. ${ }^{2}$ pins ternl
for coil two for switch. 2500 ohms 10 V.D.C. for coil, two for switch. 2500 ohms 10 V.D.C.
 cont. rating 1 amp. Switching speed
cycles Allied Control $\#$ BOY-X5 Coil 6 Volts D. C. Contacts D.P.D.T. plus Sl'ST N.C. Heavy contacts

Aircraft-type Starter Relay Teach type | \# $7220-3-24$ |
| :---: | Coll $2 t$ Volts D.C. Res. 132 Ohms. Very Heavy

Contacts Isolantite Relay J.P.P.T. Heary Contacts Coil 100 Weston Mod. 705 Relay-meter type. Requires
 Solenoid reset coil- 400 ohms at 18 rolts D. C Ifimited quantity. Price $\$ 3.95$

TIME DELAY RELAYS
Thermal vacuum type
S. P. S. T. 100 Oits

90 second delay
...................... Price \$. 95
Cramer Time Delay Relay-\#44SP3 N.L, Motor 115 Volts-60 crcles-Two Pole Switch 115 Volts at 10 amps-One circuit closes at 4 seconds,
other circuit closes at 40 seconds. Price only $\$ 4.95$

Last Minute Specials

These are in limited quantity and subject to prior sale

Plate Transformer-Frimary 115 volts, 60 cveles
Secondary 2400 volts C.T., 180 ma. Price $\$ 4.95$ 24 volt Transformer-Primary 115 volts. 60 cycles Secondary $2 \pm$ volts, 50 amperes...... Price $\$ 8.9$ Secontary $21 / 2$ volts C.T., 10 amperes. 1iligh volt-

Model \#29144
Fixed Winding 115 Volts- 60 eycles
Commurator range 103-126 Volts
Moused in shielded "ase $5^{\prime \prime} \times 6^{\prime \prime} \times 6^{* \prime}$
Type RH
Fixed Winding lis Volts- 400 cycies
Commutator range 75-120 Volts
Housed in shielded case $51 / 2^{\prime \prime} \times 6^{\prime \prime} \times 61 / \mathbf{p}^{\prime \prime}$ Price $\$ 1.95$

MALLORY RADIO NOISE FILTERS

Eliminates extremely noisy radio reception due to power line disturbances caused by lights, refrig erators, washing machines, pacuun cleaner Filters out man-made noises in the broadcas Filters out man-made noises in the broadc
short-wave and ultra-high frequency bands. Designed for radios, appliances, and electrical erfuipment consuming up to 1300 watts (12 amperes) at 120 volts AC or DC.
Houserl in a metal case $13 / \mathrm{m}^{\prime \prime} \times 3^{\prime \prime} \times 71 / 2^{\prime \prime}$ complete connectors.
PRICE ONLY $\$ 1.95$

Industrial Type Radio Noise Filter-will handle up

Bendix-model 3937-Generator Filter-50 amps, ${ }^{120}{ }^{n}$ Volts-Housed in shielded containers $8^{\prime \prime} 8^{\prime \prime}$ x Line Noise Filter Unshielded and mounted on a and 140 turn solenoid choke coil... Price only $\$.10$

HIGH FIDELITY

 INPUT TRANSFORMERSFerranti \#4794 Balanced winding, shielded type Description-Turris ratio step-up $2 / 1$ primary in
 Can be used to matcl any single or push-pul
plates to any singie or push-pull grids-oreral
dimensions $24^{\prime \prime} \times 3^{\prime \prime} \times 2^{\prime \prime} \ldots .$. Price $\$ 1.75$

4000-6000 VOLT LOW CURRENT DC SUPPLY

These units have been designed for use with teleision, cathode ray, electron multiplier and other chrrents less than 1 MiLLIAMi'ERE. Brand new completely wired and tested. Ready to operate from 115 volt power line. D.C. Output is filtered. 2000-3000 Volt D.C. Supply similar to ahore, but with lower output roltage. IReady to operate Write for Descriptive Catalog Listing a Large Variety of Electronic Components

(ID) SEARCHLIGHT SECTION (ID

SELENIUM RECTIFIER Bridge Type Input: $36 \mathrm{D} \cdot \mathrm{AC}$

Brand New $\$ 275$

APPROACH INDICATORS

Type ID-24/ARN-9
Brand New $\$ 3.95$

ALTIMETERS

Type AN/APN-1 Complete, brand new in original cartons with instruction books
$\$ 49.50$
KOLLSMAN COMPASSES
Type B-16 Brand new and complete with spare pilot lamp

SOLAR ELIMOSTATS
Line filters, 20 amps. capacity
Brand New \$3.95

INSTRUMENT LAMPS

Mazda \#323
$\$ 10.00$ per Hundred
SOLA VOLTAGE REGULATORS
Cat. No. 30807-Pri. 95-125 V. 60 Cy. Out put 115 V. 2.18 cmps. VA. 250
$\$ 39.50$

RADAR EQUIPMENT

all Brand New Material!
ANTENNA ASSEMBLIES
SO-1 (66AGE)
$\$ 125.00$
SO-3 (NMT-2062)
$\$ 120.00$
50-8 (66AGD)
$\$ 120.00$
TDY (NMT-2062
\$ 95.00

SPARE PARTS

Complete Set SO-3 Tender Spares $\$ 2500.00$
10 CM Flatwise Bend 90° Bronze Elbows
$\$ 20.00$
Complete spare parts in stock for Type SG 1 Radar

ALSO

SO-Radar Repeater Adapters CBM-50AFO, PPI units, SO-ll Modulators, Remote Indi cators, SO Receiver Transmitter Units, Antenna Unit Controls, etc.
Large Stock. All Brand New Material!
RADAR TUBES IN STOCK
Types-4C35, 2J62, 3B24, 3C45, 7BP7

PAN-OSCILLO-RECEIVER
Ideal for laboratory, television and general service work

Model AN/APA 10
Performs work of four units

1. PANORAMIC ADAPTOR: For use with any receiver with I.F. frequency of 405$505 \mathrm{kes} ., 4.75$ to 5.75 mcs ., and $29-31 \mathrm{mcs}$.
2. OSCILLOSCOPE: Visually checks received signals, monitors transmitter output - percentage modulation, carrier wave-shape, etc.
3. SYNCHROSCOPE: External inputs provide synchroscope action.
4. RECEIVER: Three inputs provide facilities for use with convertors to cover wide range of frequencies to $10,000 \mathrm{mcs}$
FEATURES:

* $3^{4 \prime}$ scope tube
* 21 tubes
* Variable sweep $35-40,000 \mathrm{cy}$
*Transformer built in for 110 V .60 cycle operation.
* 2 I.F. stages-double conversion.

2 Video stages in push pull to vertical plates.

* Pentode output audio monitor.
* Multi-Vibrator horizontal sweep (radar type).
* Horizontal sweep amplifiers P. P. to horizontal plates.
Surplus equipment tested and guaranteed in perfect operating condition. We have sold hundreds of these units to leading schools, laboratories, amateur operators all over the world.
\$129.50
(Mail 53.50 for 80 page Technical manual and instruction book)

SOUND	
Prand	POWERED
CHEST SETS	

W. E. TYPE D-168479 MERCURY CONTACT RELAY	
For applications in allspeed swpes of hlghdife hight	
life, high operating speets. Large cur-	
uniform and constant operating char-	
acteristics under adwerse atmospheric conditions. Hermetically-sealed mer-	
Series aiding-5.2 mils. Four page Technical	
Brand New	

MOTOR GENERATORS

Brand new. Built by Allis Chalmers to rigid specifications of the U. S. Navy K.V.A. output I. 250 R.P.M. 3600
K.W. output I. Cont. Duty Ph. Single
P.F. 80 CYcles 60

Volts input 115 D.C. Volts output 120 A.C.
Amps input 14 Amps. output 10.4
Length 26°; width $127 / 8^{\prime \prime}$; height $13^{\prime \prime}$
Compound accumulative A.C. and D.C. covered. Centritugal starter. Splashproo plus or minus five cycles. PRICE \$125.00
Identical Machine, but 230 volts D. C. Input, $\$ 125.00$

Set of Replacement Spare Parts for Either Machine $\$ 29.50$

DYNAMOTORS-500 Watts
Navy Type CAJO-211444
Input: $105-130$ Volts D.C.: 6 amps. Outpu 13 or 26 Volts D.C. $(26 \mathrm{~V}$. at 20 cmps in series or 13 V . at 40 amps . in parallel) Designed for radio use, fully R.F. filtered complete with separate Square D line
switch box.

BRAND NEW \$59.50

SYNCHROS

(Selsyns, Antosyns, etc.)
G. E. types 2J5FB1, 2J5S1. Ford Inst. types SSDG Bendix types 1-1, 11-2, X. CAL. 18300 Electrolux lype XXI Diehl type IV, 78414. Navy ordnance types 5G, 5DG, ÁY101D and many other types in stock.

POSITION TRANSMITTERS

General Electric type 8TJ9 continuously variable potentiometer tapped every 120 degrees with two sliding contacts 180 degrees opposed. 500 ohms resistance each 120 degrees. Used in 24 voli D.C. Selsyn systems.

Brand New \$3.95

G. E. AMPLIDYNES

TYpe 5AM21JJ7, NEW
$\$ 49.50$ TYpe 5AM45DB20, NEW 89.50
G. E. SERVO AMPLIFIERS

Type 2CVICI, New.

PARABOLOIDS

Spun magnesium dishes.
Ideal for microwave experimental work. Dia. $171 / 2^{\prime \prime}$. Depth $4^{\prime \prime}$.
Reinforced perimeter.
Two sets mounting brackets on rear. Open center hole $11 / 2^{\prime \prime} \times 15 / 8^{\prime \prime}$.

Per Pair, Brand New \$8.75

TRANSMITTING EQUIPMENT

B C-325 B Transmitter. Freq. range 1.5 to 18 mes. Output 400 watts C. W. or 50 watts phone. 110 V. 60 cycle, 1 ph . Complete with tubes. Used, but in good operating condition............. $\$ 295.00$ MD1/FRC Modulators. Part of T-4/FRC and T-5/FRC. Complete in enclosed metal racks. Each unit consists of a dual modulator channel, each of 300 watts audio output (2-810's in push-pull). Complete from microphone input jack to modulation transformer output Brand nis for connection to Class "C" final amplifier R.F. stage.
SA-2/FRC Switch Ponels
$\$ 275.00$
$\$ 10.00$

All prices quoted subject to change. 20% deposit on About 20 miles N. of ' N.Y. \mathbf{Y}
5 WAVERLY PLACE

(ID SEARCHLIGHT SECTION TID

BIG TALUES m SURPLUS

G. E. Motor Starting
 Reactors Cycles, 16.8 Am? peres. $15-20 \mathrm{HP}$. Waterproof steel $\begin{array}{ll}\text { case. } 17^{\prime \prime} \times 15^{\prime \prime} \times \\ 10^{\prime \prime} . & \text { Brand New }\end{array}$ In original factory cases.

Gear Reduction Assembly

Incorporates a train of 10 gears arranged so that different ratios can be obtained. Ideal for beam antenna or any device employing speed reducer. Reduction from 2:1 to 40:1 and other ratlos possible $61 / 4^{\prime \prime} L \times 51 / 2^{* W} \times 41 / 4^{*} \mathrm{H}$ Brand New in Original Cases
\$2.79

ALL ITEMS LISTED BELOW ARE "BRAND NEW" UNLESS OTHERWISE SPECIFIED

SYNCHRO'S
Ford Instrument Synchro Generator, 7G, MK111 Arma Corp. Synchro Differential Generator.
 Diehi Synchro Transmitter, Tspe C78414 115 Control Instrument Synchro Motor, Type 5 F MK4
 Volts 60 Cycles...................... Trice $\$ 4.4$, 115 Volts, 60 Cycles.

MOTORS AND GENERATORS
Western Electric Motor. KS8624, 20 YAC. 200

 Univarsal Elactric Shunt Motor, KS5603L02, 28 Volts. . 6 Amps. 5000 RPM.......... Price $\$ 2.00$ Westinghouse Series Motor, 1171391,27 Volts 6.5
Amps. $1 / \mathrm{H}^{\mathrm{H}} \mathrm{HP} 5800$ RPM. Price $\$ 5.00$ Amps. 1/8 HP 5800 RPM............... price $\$ 5.0$ Elinco AC Generator. Type F-16 \quad 2 phase, ${ }^{\text {Volts }}$, 100 RPM. Elinco DC Generator, Type PM-2, 1.75 Volts Der
100 RPM G. E. Permanent Magnet Generator, 5BY9E8, G. E. Motor, Mod. 5BA10AJ18D, 27 Volts 0.7 Amps. $1 \mathrm{oz} / \mathrm{ft}$ torque 110 RPM.... Price $\$ 1.00$ Emerson Electric Motor, Style 1610212 , 24 Voits
$160 \mathrm{oz} / \mathrm{ft} 27 \mathrm{Amps} .100$ RPM.........Price $\$ 8.95$ Electric Specialty Co. AC Motor, Type BF51R, G. E. Motor, Type BC 115 VDC $1 / 6 \mathrm{MP} 1725$ G. EM Motor, Type RCbuilt..............ice $\$ 9.50$
G. E. Series Mound Retor Mod. SPS 56 HC 18 VDC
 G. E. M otor, 230 Volts DC, $6.75 \mathrm{HP}, 1100$ RPM General Industries Phono Motor, 23200, 115 YAC General Industries Phono Motor, 23200, 115/22 VAC, 60 cycle, 0.5 Amps. 80 RPM... Price $\$ 6.35$ Universal Electric Co., 115 VDC, 500 RPM. ${ }_{\text {Price }} \$ 4.50$ G. E. I15 VDC, $1 / 30$ HP, 1750 RPM $\$$ Shunt wound.

INVERTERS AND DYNAMOTORS
PE103 Ballentine Dynamotor, input 6-12 Volts, output 500 Volts, 160 Ma . without filter. 95

PE206 Inverter, input 27 Volts DC, output 80 Volts, 800 Cycle, 500 VA............ Price $\$ 9.95$ PE218 Inverter, input 27 Volts DC. output 115 Dynamotors for SCR-522, input 28 Volts 1DC:
output $13-150-300$ Volts. Rebuilt Like New G. E. Dynamotor, 5D48B8A, Input 14 Volts DC.

MG-132A Inverter,
140 Volts AC,
1.2 Amps.
11.5 Volts DC, output
180

RPM, 100% PF \ldots. . Price $\$ 19.95$

METERS

Bristol Pyromaster Potentiometer Type 440MFI, I15. Volts, 60 Cycles, Range (1-200io Fi. Used
but Guaranteed..................... Price $\$ 125.00$ Hoyt Portable Ammeter, Mod. 515, 0-15 AmG. E. Voltmeter, Mod. AB-13, 0-150 Volts AC,

MAGNETRONS

2J26 2992-3019 nic $275 \mathrm{KW} .$. 2 J 27 2965-2992 me 275 KW. 2J31 2820-2860 me 285 KW . 2 J 61 3000-3100 mc 35 KW. 700 A. B. C. D, West. Elec. 100 KW 720 AY. GY, West. Flec. 1000 KW 728 AY. BY. CY, DY, EY, FY, GY

Price $\$ 10,00$ Price $\$ 10,00$
Price $\$ 10.00$ Price $\$ 15.00$ Price $\$ 25.00$ Price $\$ 25.00$ Price $\$ 25.00$ 300 KW

KLYSTRONS

Westinghouse, Type 417A... Westinghouse, Type 723A/B

TRANSFORMERS
Stepdown Transformer 575/230/115, 60 cycle Westinghouse Transformer Primary 110 Volts. 60 Nestinghouse Transformer Primary 110 Volts. 60
cycle. Secondary 20 Volts, 200 watts Price $\$ 3.95$

BATTERIES
Wattery, 15 amp.-hours

BLOWERS

Redmond Single Blower, Type L, II5 Volts 60 Cycles, single phase 50 CFM...... Price $\$ 14.95$ Redmond Double Blower. Type L, 115 Voits 60
Cycles, single phase 100 CFM....Price $\$ 19.95$ Oster Single Blower, 6 Volts DC, 5000 RPM, Oster Single Blower,
Torrington Blower size $1 / 2 . . ., \ldots .$. . Price $\$ 4.50$

AMPLIDYNES
G. E. Amplidyne, Mod. 5AM45DB20, input 115 Volts, single phase, 60 Cycle 5.0 Amps. output
250 Volts. 0.6 Anps. 150 watt, 3450 RPM, 250 Volts, 0.6 Amps. 150 watt. . 3450 RPM
continuous duty Price $\$ 53.50$ G. E. Amplidyne, Mod. 5AM21,JJ7, input 27 Volts DC, 16 Amps, 4600 RPM, output 60
Volts, 2.5 Amps. 150 watt..... Price $^{6} 9.95$

VOLTAGE REGULATORS
Eclipse Voltage Regulator, Type 1001, set at 115 Eclipse Voltage Regulator, Type 1002, set at 27.7 Volts DCice \$1.7

New 112 Page catalog packed with bargains in equipment. Write for it on your company's letterhead. All prices F.O.B. Boston. Orders accepted from rated concerns on open accounts. Net 30-days.

(ID SEARCHLIGHT SECTION ©

Kollsman Remote Compass Transmitter and Indicator-with Pioneer inverter. 24 v. DC operation. Stock \#SA-22A. Price $\$ 25.00$ each. 14 V . DC system-Stock
\#SA-22B Price $\$ 30.00$ each.

400 Cycle Inverters
Ploneer-12116-2-A, 12116-5-A, 12123-1-A. Holtzer Cabot-MG-149F, MG-149H single phase and MG-153F (3 phase). General enflod Leland-10563 and PE-218

INVERTER-Wincharger PU-7/AP-Input 28 v . DC at 160 amperes. Output 115 v .400 cy (i) 21.6 amps. Voltage and frequency regulated. Cont. duty. Wt. 75 lbs. Stock
\#SA-164. Price $\$ 99.50$ each.

WESTINGHOUSE
FL BLOWER
115 v. $400 \mathrm{cy} .17 \mathrm{c.f.m}$. Includes capacitor. Stock \#SA-144. Price $\$ 6.75$ each.

Stock \#SA-99. Price \$9.50 each.
NULL TYPE SYNCHRO INDICATOR

Precision position indfcator. Uses Bendix size transformer mar tube, transformer, magiceye $0-360^{\circ}$ dial. Ideal for Hams, labs and experimenters. May be used with size 5 generator
SA-43. Stock $\#$ SA-119. SA-43. Stock \#SA-119. Price $\$ 7.95$ each.

PRECISION AUTOSYNS

KOLLSMAN TELETORQUE UNIT 775-01

Use as transmitter or recelver on 26 v .400 cy. or $6-12 v .60$ cycles. $2 \%{ }^{\prime \prime}$ diam. $x 21 / s^{\prime \prime}$ lg. 5/8 shaft ext. with 0.1245 diam. Stock \#SA-57. Price $\$ 3.75$ each.

DC MOTORS

Synchron 10 RPM Timing Motor-24 V . Hanson Mfg. Co. Stock \#SA-110.
Price $\$ 3.75$ each. Price \$3.\%5 each.
G.E. Reversible-5BC26AC134. $1 / 20$ H.P. $24 V$ © 3.4 Amps. Shunt wound. Cont. duty. $41 / y^{\prime \prime}$ diam. $x^{6}{ }^{6} / /^{\prime \prime} 1 g_{j}, 1 \%^{\prime \prime}$ shaft extension, $3 / 8$ " diarn. $21 / 4$ "sq. 1 " condult box mounted on motor. Explosion proof.
Stock \#SA-143. Price $\$ 12.50$ ea.
G.E. 10 RPM-5BA10FJ12- $40 \mathrm{lb} / \mathrm{in} .24$ V. Price $\$ 8.75$ each. Price $\$ 8.75$ each.
Westinghouse - 1171391. 27 V 6.5 amps. serjes. Fan cooled. $3^{\prime \prime}$ diam. $41 / 2^{\prime \prime} 1 \mathrm{~g} . \mathrm{D}^{1 / 3 \mathrm{H}} \mathrm{H} . \mathrm{P}^{2}$. Cont. duty. Stock \#SA-156. Price $\$ 6.75$ ea. DC Timing Motor-Hayden $1 / 2$ rpm. 29 volts, 100 mils . Stock \#SA-157. Price $\$ 3.95 \mathrm{ea}$.
Constant Speed DC Motor-G.E. 5BA 25 MJ 24. 24 V DC 7100 rpm . RC noise filter. Stock \#SA-100. Price $\$ 8.50$ ea.
250 RPM. Delco $5067127-27 \mathrm{~V}$. PM fleld. $11 /{ }^{\prime \prime}$ dlam. X $31 / /^{\prime \prime} 1 \mathrm{g}$.42 tooth $5 / 8 "$ pitch diameter pinion on 0.250 " shaft. Stock \#SA-108. Price $\$ 2.95$ each.

DELCO CONSTANT SPEED MOTOR A-7 155
$1 / 30 \mathrm{hp} .3600 \mathrm{rpm}$. Cont. duty. $23^{\prime \prime}{ }^{\prime \prime}$ diam. x $51 / 2^{\prime \prime}$ lg. is" shaft extension, $5 / 32$ " diam. 4 hole base mounting. Stock \#SA-94. Price $\$ 6.50$ each.

110 RPM MOTOR

C.E. 5BA10AJ18D. 27 V. \# 0.7 amps. 1 oz/ft torque. $18 /{ }^{\prime \prime}$ diam. x $31 / 2 " \mathrm{lg}$. Operates

Include 15 \$
for P.P.
and handling Price
$\$ 2.95$ ea. net

GYROS

Schwien Free and Rate Gyros
C-1 Auto-Pilot Gyros
A-5 Directional Gyro A-5 Vertical Gyro
Westinghouse Rate Gyro Pioneer 12800 Gyro Servo All Prices F.O.B. Paterson, N. J.

Ideal for Ham Beam Position Indicator or industrial uses. 6-12 volta 60 cycles. 5 -inch transmit system.

Phase Shift Capacitor-4 stator single rotor. $0-360^{\circ}$ phase shift.

Servo Motor
Pioneer Type CK-2. $\underset{\text { Fixed phase }}{26}$ cycle.
 var. phase. in. stall
torque. Stock \#SA. 97. Price \$4.75 ea, net.

Size 5
Synchro Generator

Similar to Navy Ordnance type 5G with shaft detail per Army Ordnance Dwg. C-78414. 115 v. 60 cy . Stock \#SA-43.

MAGNESYNS
Pioneer CL-3

6 power Magnesyn.
Use as transmitter or receiver
Use as transmitter or receiver. 26 v. 400 cy or $52 \mathrm{v} .800 \mathrm{cy}$. Stock $\#$ SA-6. Price
$\$ 3.75$ each.

HAM SYNCHRO SPECIAL

W.E. Co. KS-5950-LT.

115 v. 400 cy . or reduced 60 cycle excitation. Stock \#SA-182. Price $\$ 4.75$ each.

Rotating Capacitor Magnavox \#XC-260046-G1 Hi-speed ball bearings.
Silver plated coaxial type capacitor. Use in sweep generator. 5-10 mmf. Stock \#SA-167. Price \$2.75 each.

Micro Wave Antenna
AS-217A/APG-15B. 12 CM dipole and 13 inch parabola housed in 16 DC spinner motor for conical scan. Shipping weight 70 ibs. Stock $=\mathrm{SA}-95$.
Price $\$ 9.50$ each net.

Write or call for complete listing.

4 GODWIN AVE.

Open account shipments to rated concerns,
others may order C.O.D.
PATERSON, N. J.

TELETYPE

THE FOLLOWING MATERIAL IN LIKE NEW CONDITION IS OFFERED SUBJECT TO PRIOR SALE, SECURELY PACKED FOR EXPORT, F.O.B. NEW YORK CITY.

250 Model 15 Teletypewriter set; Page-Receiving and keyboard sending teletypewriter. Standard keyboard, complete with rectifier.
50 Model 19 Teletypewriter set; Page-Receiving, keyboard sending and tape perforating, mounted on metal table with a transmitter-distributor for tape sending. Standard keyboard, complete with rectifier.

Model AN/FGC-1 Teletypewriter set; Voice frequency carrier telegraph equipment for use as a single channel two-tone space diversity radio teletype receiving terminal.
Model 132A2 Teletypewriter Subscriber set; Cabinet-type table with a receiving only typing reperforator with a synchronizing circuit for receiving from α radio channel and α transmitter-distributor for sending to a radio transmitter or other circuit. Typing reperforator has holding-magnet selector. Transmitter-Distributor and typing reperforator supplied with series AC governed motor.
Repeater Package Telephone:, Voice frequency (Single) WE Co. X-61821J.
TG-30 Terminal repeater D. C. telegraph terminal type repeater used for making connections from two path polar or polarential line circuits to neutral type local circuits such as used in teletypewriters.

TG-31 (Intermediate) D. C. Telegraph inter-mediaie-type repeater for retransmitting signals from one polarential line section to another (differential sending only).
Repeater bays: Western Electric Co. type 16A1.

Type CFIA Carrier Telephone Terminal (4 channel).

Type CF2B Carrier Telegraph Terminal (4 channel).

Type CF4 Carrier Telephone Converter.
Type CFC(D) Carrier Telephone Terminal (4 channel plus pilot channel with built in carrier telephone converter for two wire operation).
Type CF5 Carrier Telephone Repeater.
Type CF6A Carrier Telegraph Terminal (2 channel).
Type 255A Relay (14 required per CF2B, 8 required per CF6A).
Type 394A Tube (8 required for CF2B or CF6A).
Ringing Equipment EE-101A Western Electric Co., two 1000/20 cycle ringers for use where 20 cycle signalling cannot be used over line. Operates normally from 110 volt AC supply and has automatic transfer from AC supply to storage batteries.

THE TECHNICAL MATERIEL CORPORATION

Communications Engineers

Cable Address TEPEI NEW YORK.

(T) SEARCHLIGHT SECTION

\section*{Follow the "ARROW" to TOP VALUES! BRAND NEW!

 TUBES

 TUBES
 BRAND NEW!
 | 869B | \$19.95 | 1235 | . 39 | 5BP4 | 2.95 | 1629 | . 39 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 872A | . 95 | 12K8 | . 69 | 5BP1 | 1.39 | 2051 | . 39 |
| 304TL | . 90 | 12SR7 | . 59 | 5FP7 | 1.39 | 9001 | . 49 |
| 2C26A | . 69 | 12AT6 | . 49 | 4AP10 | 1.95 | 9032 | . 49 |
| 1N5GT | . 69 | 832A | 2.95 | 834 | . 49 | 9003 | . 49 |
| 211 | . 69 | 837 | 1.95 | 954 | . 49 | 9004 | . 49 |
| 12SN7 | . 49 | 110 Vac Neon Light | 2.95 .39 | RK34 | . 39 | 9005 | . 49 |
| 12A6 | . 39 | Amperite 10T1... | . 39 | 35W4 | . 39 | 9006 | . 49 |
| 12C8 | . 49 | 839 | 2.95 | 1625 | . 39 | 7193 | . 39 |

Write For Lot Prices!

RECEIVER-TRANSMITTER

BC-620

FM Mobile Transmitter-Receiver operates from 6 volt vibrapack, 20.0 to 27.9 Mc easily converted to 10 -meter freg. 28-29.7 Mc
New $\$ 14.95$

BIAS METER
Brand New
Originally used for measuring roltages and teletype and telephone equipment. Can be used tor measuring DC polt-
ages and bias voltages; alsn checking polarity of DC rolt. ages. Complete with adaptor in metal carrying case quires no batteries for ioperation $\$ 5.95$ ea.

GLIDE PATH RECEIVER R-89/ARN-5
Glide Path Receiver used in the Instru ment Landing System covering the frequency range 332 to 335 mc, complete with the following tubes: 7-6AJ5, 1-12SR7, 2-12SN7, 1-28D7, and including three crys als 6497 KC . 6622KC

BRAND NEW
$\$ 12.95$
In excellent condition. $\$ 6.45$

ANTENNA RELAY UNIT

0-10 Meter weston Thermocouple unit with 50 MMF, 5000 v Vacuum Condenser, and heavy duty re- \$1.95

BRAND NEW SCR-625 MANE DETECTORS

Üsed by Army to detect buried metallic mines. New, complete in original packing container. Worth many times this low price of fole. Shipping Point $\$ 39.95$

TEL. LINE TEST SET TS-27/TSM
Modified Wheatstone Bridge, sensitive galvancmeter. Measures resistance, capacity, conductors and insulation; locates grounds, crosses, shorts; gives exact distance to
opens and shorts. Brand new in portable opens and shorts. Brand new in portable carrying case with test leads, instruction
manual, etc.
$\$ 69.50$ ea

DYNAMOTORS

PE 101 C , Input: $13 / 26 \mathrm{VDC}$ at $12.5 / .6 .3 \mathrm{~A}$ Output: 400 VDC at 135 Ma .800 $V D C$ at 20 Ma
9 VAC at 1.21 A .
\$2.75
DM 33 A, Input: 28 VDC at 1.4 A .
Output: 220 VDC at 80 M
$\$ 3.50$

INVERTER

PE 206-A, Input: 28 VDC at 38 amp
Output: 80 volts at 500 volt-amp 800 cycles
Leland. New, complete with en closed relay, filter, instruction book.
BRAND NEW
\$3.95

EE-8 Portable Field Telephone —Used, Exc. Cond., \$7.95

STANDARD BRAND OIL-FILLED CONDENSER

2 Mfd., 4000 Volts, Brand New $\$ 4.95$ ea.

REMOTE	
POSITION	
INDICATING	
SET	
6-12 V. 60 cucles.	indicator
Indicator	\$4.95
Transmitter	\$2.95
....	\$6.95

SPRAGUE PULSE FORMING NETWORKS

Used in small radar modulators, avaitable in 3 sizes, 67 ohms impedance. 7.5 Kilowatt ${ }_{\mathrm{H}}^{\mathrm{rating}} \mathrm{C}$, ${ }^{\text {pu }}$-601s ${ }_{3}$ per second
$\$ 1.95$
H-601, ${ }_{3}$ micro seconds, $200 \quad 2.95$
H-602, 16 secona 3.95

Plug-In Vacuum Capacitor
50 mmf . designed to work with voltages up to 5000 volts. Will handle 5 amps, standard brand- don't change just plug in condenser-size $\$ 1.19$ All shipments F.O.B. Chicago or Los Angeles. 20% Deposit required on all orders. Minimum order accepted $\$ 5.00$. Dept. EL

ARROW
 SALES,
 Main Office

Downtown Branch 59 West Hubbard Street CHICAGO

1712-14 SOUTH MICHIGAN AVENUE CHICAGO 5, ILLINOIS

North Side Branch 1802 North Humboldt Blyd. CHICAGO

6 Honries at $550 \mathrm{Ma}, 28$ Ohms DC Resistance High
voltage insulation.

FILAMENT TRANSFORMER

Primary $115 / 230$ volt 60 cycle, Secondary 5 volts at
15 Amps., 5000 volt insulation. Swell for 35 T , 75 T .

CS Differential

Dual coll with armature pivoted
between calls All contacts betweenl $\begin{gathered}\text { calls. } \\ \text { normally } \\ \text { open. }\end{gathered} \begin{gathered}\text { All contacts } \\ \text { Operates } \\ 220 \text {. }\end{gathered}$ 250 Volts. 8000 Ohms sach
 VAC. rated Idy amps. for bal.
 anced or bridge typo circuits where $1 /$ mited current or power is available. WIII withstand 12 G vibration up to 60 cycies at
altitude. Speclal low price

WIRE WOUND POTENTIOMETER

100,000 ohm, precislon mado Brand $\$ 1.95$

SUPERIOR POWERSTATS

Variable Transformer for precise Voltage Control, Excellent mechanical construction, design, and durability.

VARIABLE TRANSFORMERS

TYPE 20: 115V. input, 0-135 V. output @ 3.0 amps. 0.4 KVA
TYPE 116: Mounted; 115 V input, 0.135 V . output @ 7.5 amps. 1.0 KVA

PPE 116U: Unmounted; 115 V . input, $0-135 \mathrm{~V}$. out put @ 7.5 amps. 1.0 KVA
TYPE 1126: 115 V . input, $0-135, \mathrm{~V}$. output @ 15.0 amps. 2.0 KVA
TYPE 1226: 230V. input, tapped at 115 V ., 0-270 V. output @ 9.0 amps. 2.4 KVA
TYPE 1156: 115 V . input, $0-135 \mathrm{~V}$. output @ 45.0 amps. 6.1 KVA

If not rated 25% with order,
balance C.O.D. All prices F.O.B. ship to any part of the globe. Write Dept. EL

75 VESEY STREET COrtlandt 7-2612 N. Y.C. 7

SURPLUS

We have in stack, for immediate delivery, the following surplus Laboratory Instruments, fully tested and guaranteed.
General Radio: 107M Varlable Inductors; 222, ${ }^{722 F}$, ${ }^{722 M}$ Precision Variable Con-
 acitance Bridge; 736 A Wave Analyzer; 619 E Heterodyne Detector; 821A Twin-T Bridge; 483C Output Meter.
Measurements: 62 Vacuum Tube Voltme-
Ferris: 18B Signal Generator; 33A, 34A Crystal Calibrators.
Poonton: 120A V.H.F. Circuit Checker: 140A Wide Range BFO; 155A FM Signal
Hewlett-Packard: P-6255B Interpolation Oscillator $510-1000$ \& 1280-2520 CPS.
$\mathbf{L} \& \mathbf{N}: 422$ Precision Resistor; 7655 Portable Indicator and Standard Cell.
Millen: P4E Synchroscopes. High Voltage Power Supplies; SID 353384 VT ReguPower Sower Supplies; TS/5AP Range Calibrator (Sweep Marker Generator); 15154,
D 152213 Modulator Oil Units; TS9/APQ-5

Range Calibrator Modulator; 157A Out put Transformers; Breakdown Testers, put Transformers; Breakdown Testera, Weston: Model 1: 0-300 M.A.; 0-500 Volt D.C., Model 45; 0-75 Volt; $0-300$ Volt; 0-1500 Volt: 0-150 M.A.; 0-300 M.A. D.C.; 785 Industrial Analyzer.
Dumont: 213 Modulation Monitor.
G.E. L. LU Radar Test Equipment.

Distilation Products: Pirani Gauge
Industrial Instruments: RN-1 Wheatstone Bridges; MB8 Megohm Bridge. Lavole: C-200 Harmonic Freq. Gen. (1002000 Mc .)

WRITE FOR COMPLETE PRICE LIST All equipment- F. O.B. Now York City.
THE NATIONAL INSTRUMENT CO.
FAR ROCKAWAY, N. Y.
Cable: NATINSTRU. New York

Special Values

D. Cr MICROAMMETERS

0-100 ua. $4^{\prime \prime}$ sq. G.E. DO 58 ., $\$ 12.00$ same with "Volt-Ohm-M.A." scale. . 12:00
 $0-200$ ua. $41 / 2^{\prime \prime}$ round Weston $643 \ldots 10.00$

R. F. MILLIAMMETERS

$0-100 \mathrm{Ma} .31 /{ }^{\prime \prime}$ "Weston $425 \ldots \ldots . . . \$ 9.00$ 0-10 Ma. $4^{1 / 2}$ " Weston (vacuum) ... 22.00 SHUNTS
150 or 240 Amps-50 Mv-aircraft type $\$ 1.00$ PRECISION ELECTRICAL INSTRUMENT CO. 146 Grand Street New York 13, N. Y.

FOR SALE
 PARALAX SINGLE COMPUTERS

Madel 2CH105-R
85 NEW and in original cartonsShipping weight 85 lbs. Prices on application.
1000 PEII7C POWER UNIT-6 or 12 V Input. Shipping weight- 35 lbs . each. Lots of 100 or more - $\$ 1.25$ each. Write for further details.

CRABTREE'S WHOLESALE RADIO 2608 ROSS AVE. DALLAS 1, TEXAS

Operates on Flashlight batteries, speed depending on the voltage. Fairly strong on 6 volts, full power

12 Volt Battery or Transformer
100 Watt Soldering Iron
$\$ 1.30$

HAYDON SYNCH
to operate switches ete can be had either Rev per can or 1 Rev. per minute at this SPECIAL PRICE
\$3.85

Many other speeds available at $\$ 4.95$

Experimenters and Inventors Supplies 64 Dey St., New York 7, N. Y.

\star WEATHER RESISTANT \star DURABLE
 *LIGHT WEIGHT *FLEXIBLE

Available for Immediate Delivery at the following prices:
$2,000 \mathrm{ft}$. steel reels (individually boxed)
$3,000 \mathrm{ft}$. pay out wooden reels (packed 2 reels per box)
$10,000 \mathrm{ft}$. steel reels.
$20,000 \mathrm{ft}$. steel reels (same wire but single conductor)

Per 1000 ft \$ 8.00
Per 1000 ft . $\$ 7.00$
Per 1000 ft \$ 6.50
Per 1000 ft . $\$ 2.50$

Other Wire Available from Wells

Field wire, No. 18 stranded, 7 strands (4 steel, 3 copper) 2 conductor,
rubber-covered, weather-proof, 500 ft . reels
Aerial Wire, No. 12 Phosphor Bronze, 7 strands No. 20
Aerial wire, No. 18 copper weld, solid, 3000 ft . reels
Single conductor, No. 20 shielded, overall braid, 1000 ft . reels
Single conductor, ANJC 48 No. 20 stranded, glass braid lacquered, 1000 V . insulation, 2000 ft . reels

Per 500 ft . $\$ \mathbf{5 . 0 0}$
Per 1000 ft. $\$ 15.00$
Per 1000 ft. \$ 5.00
Per 1000 ft. $\$ 15.00$
Per $1000 \mathrm{ft} . \$ 10.00$
Single conductor, No. 20 stranded, glass braid lacquered, 3000 V . insulation
(for transmitters) 1000 ft . reels . Per 1000 ft . $\mathbf{\$ 1 2 . 0 0}$
Shielded single conductor microphone wire, rubber covered, 500 ft coil. Per coil $\$ 15.00$

Jobbers Write for Wire Bulletin 110-A
Send Your Wire Requirements to WIREDIVISION
Write for Amafeur Cafalog H-400C

TD SEARCHLIGHT SECTION W

＂G \＆G＂SPECIALS • • for INDUSTRY，RESEARCH，SCHOOLS
terrific value！ 24－V STORAGE BATTERY 24－VAND NEW
BRA－AMP HRS．

BRAND NEW
GE THYRATRON FG－105

mercury rectifier
Sensational Value
individulally boxed
in factory sealed cartons． List Price $\$ 40.00$

Your Cost
$\$ 1795 \quad \begin{gathered}\text { While they } \\ \text { last }\end{gathered}$
Tube of a hundred uses！ One of the lyest ever de－
signed for continuous sery ice and welder control service．Selling a： tar below usual price．the FG－105 has a domestic applications Tetrode trial and rectly heated cathode． 10000 V peak． 10000 Deak incerse．Av．max．curr： 6.4 amps
continuous： 2.4 amps on serine STOCK UP！SAVE PLANTY！ orDER Now！

Please include 25\％Deposit with order－ Balance C．O．D．Minimum order $\$ 3.00$ ．All Shipments F．O．B．Our Warehouse N．Y．C．

DELCO 12 －cell unit． Heavy duty，very rug－ ONIN
SPECLAL， $\$ 16.95$
SPECIAL！ 24 VOLT DELCO 12－CELL STORAGE BATTERY 11 ampere－hours．Few left \＄14．95 Fach ．．．．．．．．．．．．．．．．．．．．．． Nay standard，Hlack 1hubber
Case．M1RAND NEW．$\$ 4.95$
15 AM＇Hours．．．．．．
Willard 6V Starage Battery
Willard $6 V$ Storag
Similar to ahove．

WILLARD 2－VOLT STORAGE BATTERY 20 Ampere－Hours

1－Qt．Battery Electrolyte
 G \＆G RADIO PARTS SERVICE 53 Vesey Street，Dept．E

New York 7，N．Y．

7，000 NEW STORAGE BATTERIES

Plastic and Hard Rubber Containers
waterproof，lead acid type terminals， 6 volts， 15 amp．hrs．， 3 cells， 2 volts each． $1 \frac{1 / 2}{}$ amps．for 10 hrs ．，size $4^{1 / 2^{\prime \prime}}$ width by $41 / 2^{\prime \prime}$ length by $5 \frac{5 / 8^{\prime \prime}}{}$ height． manufactured by Willard and Gould，packed in wood boxes of 9， 12 and 18 each． At $\$ 2.00$ each，f．o．b．Allentown，subject to prior sale．

Sample orders upon request

GOVERNMENT INSPECTED AND APPROVED FOR BENDIX，WESTERN ELECTRIC AND OTHER NATIONALLY KNOWN MANUFACTURERS．


```
MODEL 5053
    DC INPUT
    28V, 1.40AMPS
        CONTINUOUS DUTY RATING WESTERN ELECTRIC KS-5868 LO3
```

 AVAILABLE FOR IMMEDIATE DELIVERY
 Open Account Shipment To Rated Concerns
ALSO IN STOCK IN LARGE QUANTITIES
Others C. O.D
Electrolytics, Capacitors, Micas, Pots, Rheostats, Wire, Trimmers, Special Purpose
Tubes and many other hard to get items. All Nationally Known Brands.
WRITE PHONE VISIT
For Complete Listings and Detailed Information
COMPONENTS SUPPLY COMPANY
168 Washington St. N. Y. 6, N. Y.
Beekman 3 8717-8-9

CHARE REIIAYS
 S．RI3 200 ohms 24 V NO．RI3
SPST 200
N．O．．
R 58
 ALIIED RELAYS
No．RO6 230 ohms 24 v SPDT Dble Br 20 A no． 66 i50 ohms i2v DPST N．O．．．．．．．．．．．．．．．．．．．．． 59 é ea． G．M．Relay No．RI6 240 ohms 24 v 4 PDT 10 A
 TRANSFORMERS \＆CHOKES
Pwr Trans： 1500 v C．T．at
150 ma.
$6.3 \mathrm{v} \quad 2.5 \mathrm{a}$ ． 6.3 v 1.6 a ． 5 v 3a， 115 v 50－60

Fil Trans：6．3v 8a．115v 50－600 pri G．E．．．．．．．．．．．．．．．．$\$ 1.95$ ea．

20hy 15 ma 975 ohms G．E．Herm Sealed $21 / 4^{\prime \prime} \times 17 / \mathbf{c}^{\prime \prime} \times 214^{\prime \prime}, 29 \mathrm{c}$ ea

G．E．JY 17 Current Transformers． 50 to 5 AA .240 400 cy INVERTER 1500 VA $115 v$ ．single phase MSCEI NOOV
PILOT LAMPS 12 v 0.1 A Min Bay Base T T $31 / \mathrm{c}$ BIBRATORS IISV DC to 90 y AC I I5V OAK No．
V6429 $\checkmark 64296$ prong
渞付多 SLUG TUNED R－F \＆ANT COILS CERAMIC FOKM

Ant trans ass＇y MN 26 \＆
ARN－7 Stk $\# 3 C K-1084 C-$

1st RF trans．ass＇y MN 26 \＆

Universal general corp．
365 Canal St．，New York 13 WAlker 5－9642

FOR SALE All or part

12 RCA 160B C．R．Scopes，new，export packed
10 General Radio 724－A Precision Wave meters，new，export packed
Large quantities of Amphenol 83－1AP UHF right angle adapters，AN 3102． 14S－5P and $14 \mathrm{~S}-2$ connectors and Cannon PL－81 connectors
Centralab 50 mmfd threaded ceramic feed thru capacitors and 300 mmf silver button mica disc type feed thru capacitors
1000 lengths of aluminum alloy conduit． flexible shielded with tinned copper braid，ID $1 / 2^{\prime \prime}, 88^{\prime \prime}$ long，male and female couplings
1600 lengths of siranded aluminum flex ible shielding，ID $3 / 4^{\prime \prime}, 7 \mathrm{ft}$ ．long
7000 feet of stranded aluminum flexible shield conduit，ID $3 / 8^{\prime \prime}$
1000 meters， $0-350$ volt， 1000 ohms／volt， $3^{1 / 2 "}$ round Westinghouse NX－35
1000 W．E．703－A U．H．F．tubes
1000 W．E．704－A U．H．F．Diodes

ELECTRO IMPULSE LABORATORY

P．O．Box 250 Red Bank，New Jersey

BRASS SCREWS-NICKEL PLATED-\$

FAMOUS MAKES_-OIL FILLED CAPACITORS_-BRAND NEW

RELIANCE
Merchandizing Company
Arch St. Cor. Croskey, Philadelphia 3, Pa.
Telephone RI ttenhouse 6-4927
MINIMUM $\$ 3$ ORDER

Sold!
"Please discontimue our ad in 'Searchlight' as we have sold the equipment through this advertising."

Can "Searchlight" Serve You?

SPECLALS

13 V. 60 Cyc.. $324^{\prime \prime}$ dia. x $41 / 2^{\prime \prime}$ hody, Used in Pairs for Remote Control
Also 50 V., 50 Cve only $\$ 4.75$ pair

ONLY
\$2. ${ }^{25}$ Each
SELSYN
 DIFFERENTIAL \#C78249 115 V., 60 Cyc. Wsed between two \#C78248
be converted to a dampener. Can be converted to a $3600111{ }^{\prime} M$
Conversion sheet supplied.

Also 50 V., 50 Cyc. $\$ 1.50$ ea,

SHEET METAL MACHINERY

NEW and Used - Brakes - Shears Di-Acro, Pexto, Niagara \& Whitney Equip ment
R. D. BROOKS CO., INC.

361 Atlantic Avo., Boston, Mass.

RADIOMEN'S HEADQUARTERS \#F WORLD WIDE MAIL ORDER SERVICE I!

GENERAL ELECTRIC 150 WATT TRANSMITTER
Cost the Government $\$ 1800.00$ - Cost to You-BRAND NEW— $\$ 67.50$
This is the famous transmitter used in U.S. Army bombers and ground stations, during the war. Its design and
construction have been proved in service, under all kinds of conditions, all orer the world. The entire frequency range
construction have been proved in service, under all kinds of conditions, all over the world. The entire frequency range is covered by means of phug-tuning units which are included. Each tuning has its own oscillator and power amplifier
coils and condensers, and antenna tuning circuits-all designed to operate at top effciency within its particular frequency roils and condensers, and antenna tuning circuits-anl designed to operate at top efficiency within its particular frequency are mounted on the front panel. Ifere are the specifications: FREQUFNCY RANGE: 200 to 500 KC and 1500 to 12,500 KC. (Will onerate 10 and 20 meter band with slight modification), OSCILLAATOR: Self-excited, thermo compensated, and hand calibrated. POWER AMPLIliEIR: Neutralized class "c" stage, using 211 tube, and " cquipped with antenna
coupling circuit which matches practically any length antenna. MODUIATOR; Class "B"-uses two 211 tubes. I OWER SUPPIS: Supplied complete with aynamotor which furnishes 1000 V at 850 MiA . Complete instructions are

dynamotor power supply, seven tuning units, antenna tuning unit and the essential plugs.

BUFFALO RADIO SUPPLY, 219-221 Genesee St., Dept. 6-E BUFFALO 3, N. Y.

CRYSTAL MIXER ASSEMBLY, S band, type N fittings, variable oscillator injection coupling, $\$ 5.00$.
THREADED FEGE THRU CERAMIC CAPACITORS, $60 \mathrm{mmfd}, 1000 \mathrm{v}$ DC, 100 for $\$ 10,00$.

DISC TYPE FEED THRU SILVER BUTTON CAPACITORS, $300 \mathrm{mmfd}, 500 \mathrm{v}$ DC, 100 for $\$ 20.00$.
X $\underset{\text { new. }}{\text { BAND }}$ S.W.R. Test Sets, TS-12/AP,
X BAND POWER METER, TS 36/AP, new.
X BAND WAVE METER, TS 33/AP, new. X BAND POWER LOAD, TS-108/AP, new.

TYPE N CONNECTORS, UG-10, 12, 21, 22, $24,25,27,30,59,83,86,190,201,245$,
and UHF connectors SO $239, \mathrm{PL} 25983$ and UHF connectors $S O 239$, PL 25983 $1 A P$, UG 266, complete with center con-
tacts, immediate delivery.

CRYSTAL MIXER ASSEMBLX, 10 cm , type N fittings.
COMPACT RADAR RECEIVER TRANSMITTER AND INDICATOR, AN/APG$13 \mathrm{~A}, 2400-2700 \mathrm{mc}, 115 \mathrm{v} 400 \mathrm{cps}$, new,
export packed $\$ 125.00$.

COMPLETE MARINE RADAR, Navy SD 3,220 megacycles, 115 v 60 cps . new, ex3,220 megacy
port packed.

RADAR RECEIVER BC 1068-A, 150-230 megacycles, individual tuning for the r.f. stages, band with 4 megacycles, 115 volts, $60 \mathrm{cps}, 14$ tubes, $\$ 45.00$.
TRANSFORMERS, 115 volts 60 cps primaries:
2. 6250,3250 , and 2000 volts, tapped primary, $\$ 14.00$.
2. 6250 volts 80 ma . ungrounded, G. E. $\$ 12.00$.
3. 2 secondaries at 500 volts 5 amps each, wt 210 pounds, $\$ 50.00$.
Pulse Input Transformer, permalloy core, 60 to 4000 kc . impedance ratio 120 to 2350 ohms. $\$ 3.00$.
Pulse Transformer, 132-AWF, \$3.00.
Pulse Transformer, Utah 9280, \$1.00.
Palse Forming Network, $20 \mathrm{kv} ., .92$ microsecond, 50 ohms, $\$ 25,00$.

Varistors WE D171528, D171628, D-161871A. $75 \neq$ ea.
$0-360$ volts, 1000 ohms per volt meter,
Westinghouse $N X 35, \$ 4.50$. Westinghouse NX 35, \$4.50.

ELECTRO IMPULSE LABORATORY

66 Mechanic St., Rea Bank, N. J. Red Bank 6-4247

PORTABLL D. C. AMMETER
HOYT TYPE 515
RANGE 0-15 AMPS

\$3.95
10 for
$\$ 35.00$

Mirrored scale $31 / 2^{\prime \prime}$ long, knife-edge pointer. Molded bakelite case dimensions $41 / 4$ " ${ }^{\prime} 61 / 4$ " $21 / 4^{\prime \prime}$. Snaps in place in black wrinkle-finished steel case $51 / 4^{\prime \prime} \times 6^{\prime \prime} \times 2 \%$ " Furnished with 3 ft . color-coded rubber insulated clip leads.
Basic movement-approximately 12.5 ma . Shunt readily replaced permitting conversion to lower range scale.
Individually packaged in moisture-vaporproof packing.
G.E. type FG-172 Thyratrons. $\$ 16.00$

5FP7 cathode ray tubes. 88
ASB aircraft radar Yagi antenna
(500 MC) $\$ 7.00$
Hydraulic servo controls for remote rotation of ASB antenna (Trans-
mitter and Positioner)-set $\$ 20.00$
Westinghouse hypersil core trans-
former-Pri 115 V $60 \mathrm{cy}, 8 / \mathrm{KVA}$,
Sec $240 / 240$ V. $\$ 11.50$
W.E. low drift crystals mtd in octal
tube shell-4600 KC or 6200 KC .. . 29
Hermetically sealed filter choke-

- 10 H at 400 MA DC......... $\$ 3.85$
RG-62/U RF cable (93 ohm)- $5 \mathrm{bt} / \mathrm{ft}$
$\$ 38.50 / 1000 \mathrm{ft}$ in 5000 ft reels.
WRITE FOR OUR BARGAIN BULLETIN

LECTRONIC RESEARCH LABORATORIES

5832 Hegerman St. Phila. 24, Pa. Phone-Cumberland 8-4737

BRAND NEW ! TS-13 HANDSETS

- Standard size and type.

 Surplus Black Bakelite Low-impedance mike, 3000-ohm receiver. 6-ft cord with two plugs. Brand New. In original factorysealed cartons $\$ 2.85$ ea, net.EIMAC VT-127A TUBES

- Capable of $1-K W$ on 6 meters for a pair. 5\%. 10a. Fil. Platinum Grid. Brand New Original carions. Surplus, $\$ 2.85$ ea. net Brass Filament Clips 25\& pair

25-Watt P-A Re-Entrant

Speakers - Brand New!!

- 9-pound magnet. $13^{\prime \prime}$ bell. $21^{\prime \prime}$ long. UTC line-matching xmfr. 250, 500, 1000 2500 ohms. Our best seller. Few left Surplus Item. Original Cortons. \$21.60.
VACUUM CAPACITORS
- Surplus. Brand New. Original Boxes $17,000$ peak volts up to $50 u)^{\text {p }}$ sizes; 10,000 peak volts for larger sizes. 6uuf. \$2.80; 12unf. \$3.50; 50 unf . \$4.50; 100 ulf . \$7.65; 150uuf. \$11.60; 200uuf. \$14.60; 250uuf $\$ 17.30$.

OFFENBACH \& REIMUS CO.

372 Ellis St., San Francisco 2, Calif Tefephone: ORdway 3-855 1

We 0ifer
 For Immediate Delivery THE FOLLOWING:

5000 Electrolytic Condensers $3000 \mathrm{mfd} .{ }^{3}$ volts metal can $13 / 4$ " $\times 1$ "........... $\$.10$ 1000 Non-Polarized Electrolytic Condensers Cap. ${ }^{20}{ }^{+}{ }^{10}$ mfd. 350 v and ${ }^{+5}{ }^{5} \mathrm{mfd} .(50 \mathrm{v}$, in metal can... $\$.39$ $40+20+10$ @ $450 \mathrm{v}+20$ @ 25 v F.P. 12500 Phone-Radio Switches $\$.10$ 150003 pole 4 position rotary switches $\$.10$ Large quantity assorted screw driver type M \& Tel. Siveen Generator- 100 v, 60 cy supply frequency range 3 band $2-227$ m.c.-Frequency sweep 500 K.C. to
approx. $10 \mathrm{~m} . c$. Net complete. ... $\$ 43.50$

FM. Front End-Range 88-108 m.c. Intermediate frequency can be ordered with either 10.7 or 21.6 m.c. Front end conwith tube. Net $\$ 18.95$
Transformers -100 V 400 cy, Pri. 3 V. 6 amps. Sec. $1^{\prime \prime} \times 11 / 16^{\prime \prime} \times 3 \times " \cdots . .{ }^{\circ} \times .39$ 110 V. 400 cy . pri, 220 v. sec. pri., and 30 M \#44 G.E. and Tungsol Pilot baibs Large quantities of mica condensers in all sizes at low prices
AII Merchandise Guaranteed Write, Wire or Phone
ROLLS RADI0 \& TLLE. MFG. CORP.
115 W. B'WAY. NEW YORK 13, N. Y. BARCLAY: 7-6063

This Instrument was developed by the Boonton Radio Corp, to permit checking at VHF; Capacitance. Inductance and complete Resonant Circuits. Ideal for Television and FM Tuners, Quality control, etc. Four Fr
Immediate delivery.
Catalog price is $\$ 320.00-0 \mathrm{ur}$ price is $\$ 120.00$ f.o.b N.Y.C. In good operating condition, subject to prior sale.
THE NATIONAL INSTRUMENT CO. far rockaway, N. Y.

[^13]
(T) SEARCHLIGHT SECTION TD

STANDARD BRAND PARTS SURPLUS PRICES

Power Rheostats-Pots. With Shafts

25 Watt 15. $25,40,60.2500 \mathrm{ohm}$
Available in screw driver Each $\$ 1.00$ Any $6 \$ 5.00$ A vailable in screw driver adjust
25 Watt
$25,50,60,150$ ohm.

RESISTORS

Power-W. W.

- Hexariversi/

R-1- 10000 ohms- 120 Watts-with mounting Rod and Insulators- 120 K . Individually Boxed
3 for $\$ 00$
Dozen R-2- 8 ohms -30 Watts-with mountings.
 K-4-2500 ohms-25 watts-Dozen $\$ 3.00$

Stepper-12 position | 360° Rotation 24 | VDC |
| :--- | :--- |
| Each. | |

JUMBO-50 WATT 4 PIN SOCKET
New Bulletin off press - write
GREENWICH SALES CO.
59 Cortland St.
New York 7, N. Y.

-RADAR SETS-

MODEL SF1, 10 cm , new. complete with spares. $\$ 1,800.00$
also-Model SL1, 10 cm ; Model APS $/ 3$ and APS $/ 4.3 \mathrm{~cm}$; APR/4-TN/54 Tuning Units.

LERU LABORATORIES, INC.

360 Bleecker St. New York City 14

MICROPHONES

Unbreakable dynamic-adjustable impedance
SOUND ENGINEERS BUY DIRECT
Off the regular list
Off the regular list price
SEND FOR FREE CATALOG
ST. LOUIS MICROPHONE CO.
2728 Brentwood BIvd.

SELENIUM RECTIFIERS AND SPECIALIZED ELECTRONIC COMPONENTS

FULL WAVE BRIDGE TYPES$\begin{array}{ll} \text { Input } \\ 0-18 V A G & \text { Output } \\ 0-13 * V D C \end{array}$		
Type ${ }^{\text {c }}$	Current	Price
B1-500	500 MA	
B1-1	1 AMP.	2.49
${ }_{\text {B1-3 }} \mathbf{8 1 - 1 \times 5}$	1.5 AMP.	${ }_{3}^{2.95}$
B1-5	5 AMP	5.95
${ }^{\text {B1-7X5 }}$	7.5 AMP.	7.95
	10 AMP.	9.95
${ }_{\text {B1-15 }}$	15 AMP.	13.95
- ${ }_{\text {B1-20 }}$	20 AMP .	15.95
B1-30	30 AMP	
B1-40	40 AMP.	27.95
B1-50	50 AMP.	32.95
B1-60	60 AMP:	36.95

Three Phase Bridge Types		
Input Output		
Type ${ }^{\text {t }}$	Current	Price
- $\begin{aligned} & \text { 387-4 } \\ & 3 \\ & 3 \\ & 3\end{aligned}$	${ }_{6}{ }_{6}$ AMP.	$\$ 32.95$ $\mathbf{4 8} 90$
3B7-11	11 AMP.	65.00
${ }_{0}^{\text {In } 234 \mathrm{put}}$		utput
Type +	Current	Price
3B13-4	${ }_{6} 4 \mathrm{AMP}$.	\$86.00
${ }_{3 B 13}{ }^{\text {3 }} 11$	11 AMP.	81.50 110.00

FULL WAVE BRIDGE TYPES		
${ }_{0}^{\text {Input }}$	Output	
Type f	Current	Price
${ }_{\text {B }}{ }^{\text {B3-150 }}$	${ }_{250} 50 \mathrm{MA}$.	
B3-600	600 MA .	3.25
$\operatorname{OBDLAC}_{\text {Input }}$		Put
Type \dagger	Current	Price
B4-1 ${ }^{\text {P2 }}$	1.2 AMP.	87.95
B4-3X5	3.5 AMP.	5.95
${ }_{\text {Input }}$		utput
Troe +	Current	Price
B6-150	150 MA .	${ }_{\$ 1.95}$
${ }_{8}^{86-250}$	250 MA .	2.95
B6-600	600 MA .	5.95
${ }^{86-800} 8$	800 MA .	${ }_{8}^{7.95}$
B6-2	1.2 AMP.	12.95
${ }^{86-3 X 5}$	3.5 AMP.	21.95
${ }_{86-7 \times 5}$	7.5 AMP.	32.95
B6-10	10 AMP.	36.95
		atput
	Current	
${ }^{\text {B13-4 }}$	4 AMP.	\$54.95
B13-10	10 AMP:	69.95

Full Wave Bridge Types		
${ }_{0}^{\text {Input }}$		tput
Type +	Current	Price
B2-150	150 MA .	\$.98
${ }^{\text {B2-220 }}$	320 MA .	${ }_{1}^{1.25}$
B2-450	450 MA .	2.25
B2-600	600 MA .	2.95
B2-1	1 AMP.	3.95
${ }^{82-2}$	2 AMP .	4.95
B2-5	5 AMP.	9.95
B2-6	6 AMP.	10.95
B2-7x 5	7.5 AMP.	13.95
B2-10	10 AMP.	15.95
${ }^{\text {B2 } 215}$	15 AMP.	24.95
- ${ }_{\text {B2-30 }}$	30 AMP.	27.95 36.95

CENTER TAPPED TYPES		
$\underset{12 \rightarrow 0-12 \mathrm{VAC}}{\substack{\text { Inpur }}}$		$\begin{aligned} & \text { Output } \\ & 0-8{ }^{*} \text { VDC } \end{aligned}$
Type ${ }^{\text {+ }}$	Curr	Price
	${ }^{10} 20 \mathrm{AMP}$.	
C1-30	30 AMP.	17.95
$\mathrm{Cl}^{\mathbf{C l}-40}$	40 AM	21.95
$\mathrm{ClO}^{\mathrm{Cl} 1-50}$	50 A	${ }_{34.95}$
C1-120	120 AMP.	46.95

*Select Proper Capacitor From List Shown Below, To Obtain Higher D.C. Voltages Than Indicated.

RECTIFIER TRANSFORMERS All Primaries 115 VAC 50/60 Cycles	
Type ${ }^{4}$	Volts Ampa. Price
- $\times 10018$	
XFIS-12	$\begin{array}{lll}15 & 12 & 3.95\end{array}$
${ }_{\text {T }} \times \mathbf{F} \mathbf{F} 36-5$	$\begin{array}{lll}36 & 2 & 2.95 \\ 38 & 5 & 4.95\end{array}$
TXF36-10	$\begin{array}{lll}36 & 10 & 7.95\end{array}$
TXF36-15	$36 \quad 15011.95$
TXF36-20	$38 \quad 20 \quad 17.95$
All TXF	Types are Tapped

RECTIFIER CHOKES			
Type 4		mps.	
HY2	. 03 Hy	2	\$2.25
HY3	. 03 Hy	3	2.85
HY5	. 02 Hy	5	3.25
HY8X5	. 02 Hy	8.5	7.95
HY10	. 02 Hy	10	9.95
HY12	.125Hy	12	12.95
HY15	.015Hy	15	13.95

VACUUM CAPACITORS Standard Brands			
Type ${ }^{\text {t }}$	Capacity	Voltage	
$\mathrm{Cl}^{\text {C12-20 }}$	${ }^{50} \mathrm{MMFFD}$.	${ }_{20}^{15} \mathrm{KV}$.	\$12.50
C55-20	55 MMFD	20 KV .	13.38
C55-32	${ }^{50} \mathrm{MMFD}$.	${ }_{32}^{32 \mathrm{KV}}$.	14.98 14.96
	嗗	32	

RECTIFIER CAPACITORS			
	${ }^{6000} \mathrm{MFD}$	$10 \mathrm{VDC}$	\$2.49
$\mathrm{CFF-15}^{\text {cher }}$	3600 MFD		1.69 2.95
CF^{-1}	1000 MFD	15 VDC	.98
	2000 MFD	15 VDC	1.69
CF-3	1000 MFD	$25 V D C$	1.69
CF-4	2 X 3500 MFD	$25 V D C$	3.45
CF-5	1500 MFD	30 VDC	2.49
$\mathrm{CF}^{\mathrm{CF}} \mathbf{8}$	4000 MFD	30 VDC	3.25
${ }_{\text {CF-8 }}$	100 MFD	150VDC	
$\mathrm{CF}^{\text {co }}$	500 MFD	200 VDC	${ }^{1.25}$
CF-11	100 MFD	350 VDC	2.25
CF-12	125 MFD	350 VDC	2.49

METERS

TO AYOID SHIPPING ERRORS, KINDLY ORDER BY TYPE \#
ALL PRICES SUBJECT TO CCHANGE WITHOUT NOTICE
It would be impossibie to give a comptete listing of all our rectifier types. Our engineering staff is at your service to hell you work out the application of selenium rectifiers to your siecific problems.
Minimum Order $\$ 3.00 .25 \%$ Dedosil Required on All C.O.D. Shivments. No C.O. nder $\$ 25.00$ Add 10% for Parcel Post Required on All C.O.D. Shipments. No C.O.D. Orders Accepted

OPAD-GREEN COMPANY

71 Warren St. Phone: BEekman 3-7385 New York 7, N. Y.

INSTRUMENTS

Autosyns-G. E. DC Selsyns-Temperature Indica-tors-Pressure Gages-Manifold Pressure Gages-
Weston Sensitrol Relays Actuators
Gyros Liquidometer and G. E. Fuel Gages-APS 4 Radar. Many others. Write for list.
MARINE AND ELECTRIC SUPPLY
Box 201, Point Loma Station. San Diego, Calif.

ELECTRONIC TUBE-MAKING

 MACHINERYFor manufacturing radio tubes, electronic tubes, cathode-ray tubes, lamps. New and used. Reasonably priced, satisfaction guaranteed.
AMERICAN ELECTRICAL SALES CO.
67 E .8 Ch St.
New York,
N.

MEMO TO PRESIDENTS WHO WATCHED THE BAND GO BY!

HERE's one parade that isn't "all over but the shouting" after the band has passed. It's the Payroll Savings Plan for the regular purchase of U.S. Security Bonds by employees.

Though the formal spring campaign to sell Bonds is over, any company can still move forward with the parade. Right now thousands of companies are putting additional push behind their Payroll Savings Plans. Managements of many companies that have not yet participated are now installing the Plan.

It's a "look-ahead"plan, that benefits employec, company, and nation. Every $\$: 3$ invested in Bonds pay $\$ 4$ at maturity. Personnel records in the plants with active P.S.P. programs show improved employee attitudes-evidenced by less absenteeisn and fewer accilents-as the individual's sense of security grows with Bond purchases. And every Security Bond dollar built up in the Treasury retires a dollar of the national debt that is potentially inflationary. It means less bidding-up of prices. Moreover, Bond buyers are better citizens because they have a tangible stake in the nation's future.

It's just as easy to take action now as when the campaign was at its height. Just call your Treasury Department's State Director, Savings Bonds Division, and ask for the material that helps to get a Payroll Plan started or to keep it rolling.

The Treasury Department acknowledges with appreciation the publication of this message by

ELECTRONICS

This is an official U.S. Treasury advertisement prepared under the auspices of the Treasury Department and the Advertising Council.

Acheson Colloids Corp. dome Electric Corp. Acton Co., Ine., II. W. Advance Elec. \& Relay Co Aeronautioal Commanications Equipment, lnc.
Allied Control Co., Inc
Allmetal serew lroducts, Inc
Altee Lunsing Corp.
American D'lenolic Corp.
American smeitiog and fetining co. American Television \mathbb{A} Radio Co. American Time Products, Ine.
American Transformer Co.
Amperite Company
Amplifier Corp. of America
Anaconda wire and cable corp Andrew Corp.
Antara Products biv. Cieneral Aniline Film Corp.
Arkwright Finishing
Armeo Stepl Corb.
Art wire stampingo.
Astatie Corporation
Astatie Corporat
Audak Company Audio ${ }^{\circ}$
Audio Ibevices, Inc.
Avimo, Lta.
Ballantine Laboratories, Inc
Barber Labs, Ilfred in
Barnstead still o sterilizer Co.
Ssarry Corporation
Belden Dfg. Co.
Bendix Aviation Corp.. Pacitiq ibiv
Hendix Aviation Corp.. Red Isank Div.
Bentley, Harris Mifg. (o
IBest IIfg. Co., Ine.
Beta Electrontes Co.
Biwax Corp.
 Boonton Kadio Corp.
Bradley Laboratories, Ind
Brook Electronics, Inc.
Brown-Bridge Mills, lne
Brush Development do.
liuck Engineer
Burnell \& Co.
Barnell \& Co.
Cambridge Thermionic Corp.
Capitol Radio
Carborundum Co.
Carby Mfg. Co., Ine.
Central Sheet Metal Works. Inc
Centralab Div Glabe Unia, In
Chicago Transformer, Div, of Escex
Wire rerp.
Clarostat Mfg. Co., line.
Clarostat Mig. Co., inte.
Cohn Corp., Sigmund
Concord Radio Corporation
Condenser Products Co.
Conn, Ltd., C. G.
Contimental-IDiamond Fibre
Cornell-Dubilier Elestric Corp
Cornish Wire Co., Inc.
Coto-Coil Co., Inc.
Cramer Co., Inc.,
iv.
Cramer Co., Inc., R. I
Cross Co., H
Dano Electric Co.
Distillation Products, Ind
Driver-ifarris co.
Dumont Electric Corporation
Dumont Labs, Inc., Allen 13.
Eastern Air Devices, Inc.
Eisler Enginearing Co
Eitel-McCullough, Iuc
Electrical Insulation Co., Inc
Electrical Reactance Corp.
Electricoil Transformer Co.
Electro Engineering Works.
Electrons, Inc.
Erle Resistor Corporation
Essex Electronics
Essex Wire Corp.
Fairchild Camera \& Instinment Corn.
Federal Tel. \& Radio Corp.
Ferranti Electric, Inc.
Ford Engineering Co
Formica Insulation Co
Frioli. Wm. I.
Gamewell Company, The
General Cement Mife. Co
General ceramica and Steatite Coip.
weneral Chemical Div.. Alled Chem General Electric
Ipparatus Dept.... 16A, 16B, 16C. 16 D (hemical bept.27, 197. 227 Electronies Department.....54. 55. 1\%5

General Industries Co
General kadio Co.
Gray Resench \& Develonment Co..
lne.
Hanfen Mfg. Co., Inc.
Harvey Radio Company, Ine.
Hathaway Hustrument (Co.
Haydon Manufaturing Co., Inc Helipot Corp.
Hewlett-Packard Company
Hexacon Electric Co.
Ifulson Wire Co.
Hytron Radio d liectronics Corp. Imperial Tracing Cloth
Indiana steel I'roducts C
Instrument Electronics
Instrument Resistors Company
Insulation Manutachurers Corp
I-T-E Circuit Breaker Co.
Jensen Dinufacturing Co. Cinch Mito
Co.
Kahle Engineering co.
Karp Metal I'roducts Co., Inc.
Kay Electric Co.
Kenyon Transformer ('o.. Inc.
Kester Solder Co
Keufrel \& Esser Co
Kinney Mfy. Co.
Kollsman Instrument Iniv., Square I)
Kurman Electric Co., Inc
Lampkin Laboratories, lue
Lapl Insilator Co., In
Leach Relay (o
Lear, Inc
Lenkurt Electrie (ro.
Lewis Engineering Co
linde lir l'roducts fó
Litteltuse Ince
London Gramophone corp.
Macalien Cos
Lakepeace Co., D. E. 168

MeGraw-IIill Book Co. $2 \boldsymbol{2}$
Measurements Corporation
Mica Insulator Co.
48.

Miford Rivet $\&$ Machine Co.
Millen Mfg. Co., Inc., James
Mitchell-Rand Insination Co., Inc
Mosinee Paper Milis Co.
Mycalex Corporation of Americat
National Co., Inc. 29
New Hampshire Ball lsearings, Inc.. 281
North American Philips Co., Inc.
Nothelfer Windius Laboratories (a
O'Neill-Irwin Mifg. Co.
Ohmite Mfg. Co.
Panoramic Radio Corp.
Plillips Screw Mirs.
Pickering \& Co Ine
Pickering \& Co., Inc...
Phad Electronics Co.
precision Apparatus C ine..
Precision Paper Tube fo
Presto Recording Corb.
'rogressive Mfg. Co.
Proferric Co.
Quaker City Gear Works, Ine
Racon Electric Co., Inc.
Radio Corp of America. 13, 30. 192
Radio Keceptor Co., Inc. .
Railway Hxpress Agency, Air Ex-
press liviv. 184
Raytheon Mfg. Co.
133. 160

Reeves-Hoffman Corb
Revere Copper \mathbb{B} Brass, Inc
ker Ricostat co.
Robinette Co., W.
Rockbestos Products Corp.
Rubicon Co
Ruby Chemical Co. ...
Sams \& Co., Inc., II. I
cientific Elertric Div. of "S" Corrn"
Eated Quenched Gap Co.
Scintilla Magneto Div.. Bendix
cintilla Mag
Cebirg Corp., J. P
halleross Mfg. Co.
Sherron Electronics Co.
hure Brothers, Inc
Sola Electric Co
Solar Manufacturing Corporation
Sorensen and Co., Ine.
Specialty Battery Co.
ppectra Products
Spellman Television Co., Inc. 20.21

Latest Design
 (ENTIRELY NEW)

SPECIFICATIONS

- Top Tuning
- Solder Terminals
- Suitable for high Temperatures

- Wound to your Electrical Specifications

- $3 / 4$ " $\times 3 / 4$ " $\times 2^{\prime \prime}$ high

Audax

TIURD.RIbBos reprealacers

VERTICAL— Swios 9 LATRRAL—Stuber

other models
for every purpose
The finest performing reproducers-barring none
${ }^{e e}$ The Standard by Which Others Are Judged and Valued"

MUSIC CRITIC AND
REVIEWER OF RECORDS
"My new AUDAX reproduces
better than anything else I have
heard, - anywhere.'

> RADIO STATICN: Our experience with TUNED-RIBBON lateral reproduction campels us to seek improvement in our vertical reproduction as well, by a change to your STUD10-99. Please ship Us one.
A RADIO STATION
"Received the SA-79 AUDAX
units and are very well satisffed
with them. They are much beffer
than anything we have ever
Used."
${ }^{*}$ Can you do us a big favor and
ship duplicate TUNED-RIBBON order Thursday sure? We are your biggest boosters."
"The new AUDAX units have seen hard service, being handled by people who mishandle them, but they keep on delivering."

Meets every requirement

- NO INTER-MODULATION DISTORTION
- Your EARS will easily know the difierence?

What is the life of a "Permanent" needle? Write for Complimentary Pamphlet on this important subject.

AUDAK CDMPANY

500 Fifth Avenue
New York 18
"Creators of Fine Electro-acoustical Apparatus since 1915"

SEARCHLIGHT SECTION (Classified Advertising)
EMPLOYMENT
Positions Vacant. 234
Selling Opportunities Offered................. 234
PPCTAL SERVICES
SPECTAL SERVICES
Contract Work............................ 235

EDUCATIONAI. 235
Books
Offered ...
(Used or Surplus New)
(Used or Sturplus New)
W ANTED
Equipment235

ADVERTISERS INDEX
Anterican Electrical Sales Co., Inc......... 257
Arrow Sales, Inc. 251
Arrow Sales, Inc.
Brooks Inc.. B. D.
Buffalo Radio Supply
Buffor Radio Supply 255
Communications Equipment Co................ 242
Components Supply Company
Crabtree's Wholesale Radio
Crabtree's Wholesale Radio........................... 232
Crosley Division Avco Manufacturing Corp. 234
Dannemiller Assoc., J. R.
Edie Electronics Inc............................... 246
Electro Impulse I.aboratory. 254 , 256
Electro Sales Co. 248
Electronicraft, Inc.
Electronics Research Publ. Co.
G \& G Radio Parts Service. .
Greenwich Sales Co..
Gulf Coast Electronics
Instrument Associates 235
Lectronic Research Laboratories
Leeds \& Northrup Co..
Leeds Radio Co
Leru Laboratories Inc...
Marine \& Electric Supply
Maritime Switchboard.
National Geophysical Company, Inc....... 243
National Instrument Co 235
Niagara Radio Supply Corp 236, 23
Offenbach \& Reimus Co....................... 256
Opad-Green Co.
Peak Electronics Co
Precision Electrical Instrument Co................... 24
Rabinowitz \& Sons, Wm.
$.240,241$
Radio Ham Shack, Inc.
Raytheon Mfg. Co.......
Reliance Merchan
Rolls Radio \& Television Co
Raint Louis Microphone Co.
Saint Louis Microphone Co.234, 257
San Francisco Radio \& Supply Co...
Tab
Technical Material Corp.
Thomas Mfg. Co.
Universal General Corp.
Veterans Salvage Co., Inc.
Wells Sales Inc

Many people realize and take advantage of the fact that "the tough ones go to UTC." Many of these "tough ones," while requiring laboratory precision, are actually production in quantity. To take care of such special requirements, the UTC Laboratories have a special section which develops and produces prodaction test equipment of laboratory accuracy. The few illustrations below indicate some of these tests as applied to a group of units used by one of our customers in one production item of equipment:

The component being checked here is a dual saturable reactor where the test and adjusting conditions necessitate uniformity of the complete slope of the saturation curve. The precision of this equipment permits measuring five widely separated points on the saluration curve with saturating $D C$ controllable to $.5 \%$ and inductance to $.5 \%$.

Servomechanisms and similar apparatus depend, to a considerable degree, on phase ongle speration. The transformer adjusted in this operation requires an accuracy of .05 degrees phase angle calibration under the resonant condition of application. With wide change in voltage and temperare range from -40 to +85 degrees C., the phase angle deviation cannot exceed .2 degree. To effect this type of stability, specific temperature cycling and aging nethods have been developed so that permarent stability is effected.

The hermetic sealing of transformers involves considerable precision in manufacfuring processes and materials. To assure consistent performance, continuous sampling of production is run through fully automatic temperature and humidity cycling apparatus. It is this type of continual production check that brings the bulk of herme-ic sealed transformers to UTC.

This te:t position involves two practical problems in a precision inductor. The unit shown sadjusted to an inductance accuracy of $.3 \%$, with precise (high) Q limits. It is then oriented in its case, using a test setup which simulates the actual final equipment so that minimum inductive coupling will result when installed in the final equipment.

The world's most modern tube plant...

Every minute.. another 10 " kinescope...
 by automatic mass production at RCA, Lancaster

THE STORY OF LANCASTER focuses dramatically on an elaborate array of automatic tube machinery for the mass production of television kinescopes. These intricate machines were conceived, designed, and built by RCA engineers as the answer to the problem of producing the vast quantities of kinescopes, at progressively lower cost, that are so vital to the rapid expansion of television.

Today this highly automatic equipment -unique in the tube manufacturing industry -is turning out better

10 -inch kinescopes at the unprecedented rate of more than one a minute!

Now, in anticipation of television's continued growth, RCA is embarked on a million-dollar expatsion program at Lancaster that will double present kinescope output . . . another step in RCA's continned leadership in the development and manufacture of high quality tubes at low cost.
the fountainhead of modern tube development is rca

[^0]: REVERE
 COPPER AND BRASS INCORPORATED
 Founded by Paul Revere in 1801
 230 Park Avenue, New York 17, N. Y.
 Mills: Baltimore, Md.; Chicago, Ill.; Detroit, Mich.
 Neu Bedford, Mass.; Rome, N. Y.
 Sales Offices in Principal Cities, Distributors Everywhere.

[^1]: HIGHEST GAIN IN THE FIELD WITH FEDERAL'S SQUARE LOOP ANTENNA. In many installations from coast to coast, this design is producing an effective radiated power of as much as twelve times the Kilowatt rating of the FM transmitter. This means new power and new range for better and wider service. Federal's Square Loop Antenna also brings you simplicity of mechanical and electrical design ... greater accessibility for maintenance... no operational tuning . . . maximum lightning protection... immediate delivery and ease of installation.

[^2]: VARFLEX CORPORATION
 308 Jay 5t.
 Rome, N. Y.

[^3]:

[^4]: "An applicant before the Federal Communications Commission must face a weighing of the values and an examination of the factors of public interest, convenience, and necessity before channels are granted.
 "According to a statement by an IRAC spokesman at an FCC engineering conference, when a governmental department requests channels it is presumed that the channels are needed and there is no process of sitting in judgment upon the request, or of weighing the request in relation to other important needs of the non-governmental services operating under the control of the Federal Communications Commission.
 "If IRAC had not been so profligate in its demand for channels, the Federal Communications Commission would have had an easier task in allocating the channels for commercial and city and state use. In the desirable mobile-frequency band between 30 and 220 mc , the federal government assignments exceed the non-federal mobile assignments by a factor of two to one."

[^5]: "One pair of channels assigned to the taxicab industry alone accounted for approximately half of the total 2 -way radiotelephone communications

[^6]: The equipment and tests described here were developed by Mr. Lurie as an independent consultant in cooperation with the Electronics Citizens Radio Project described in November 1947, page 80

[^7]: The Big Six Reasons Why Arkwright Tracing Cloths Excel

 1. Erasures re-ink without feathering.
 2. Prints are always sharp and clean.
 3. Tracings never discolor or go brittle.
 4. No surface oils, soaps or waxes to dry out.
 5. No pinholes or thick threads.
 6. Mechanical processing creates permanent transparency.
[^8]: Canadian Representatives: A. C. Wickman (Canada) Ltd. P. O. Box 9, Station N, Toronto 14

[^9]: Radio Maintenance
 Technical Manuals
 Radio Data Book
 Video Handbook

[^10]: In Canada: CANADIAN MARCONI CO.. Ltd. Montreal. P.Q.. and branches

[^11]: vor yout-the advertiser-and the publisher, if highly this evidence of the publication sou read. Satisfied advertisers enable the publisher
 to secure more advertisers and-more advertisers mean more information on more products or better service-more value- to yore.

[^12]: CHIEF TV Construction Engineers, Xmitter studio (AM-FM-TV) engrs.; Station Mgr.engrs.; Announcer-rech. Toaay- priladelphia Employment Bureau, Box 413, Philadelphia, Pa.

[^13]: COMPUTER CONDENSERS
 LOW RETENTIVITY - LOW TEMPERATURE COEF. I. OMF. PRECISION POLYSTYRENE CONDENSER

 Made by well known Mfg.
 FSS-4879, Electronics
 330 West 42 nd Street, New York 18, N. Y.

