QUCIO Bics.

for High Q inductors...

For Maximum Stability ... Permalloy Dust Toroids

The UTC type HQ permalloy dust toroids are ideal for all audio, carrier and supersonic applications. HQA coils have Q over 100 at 5,000 cycles ... HQB coils Q over 200 at 4,000 cycles... HQC coils Q over 200 at 30 KC . . . HQD coils Q over 200 at 60 KC . The toroid dust core provides very low hum pickup excellent stability with voltage change . . . negligible inductance change with temperature, etc. Precision adiusted to 1% tolerance.

Inductance Value		Type No. HQA-1	Net Price $\$ 7.00$	Inductance Value		Type No.	Nef Price
5	mhy.			70	mhy.	HQB-3	\$16.00
12.5	mhy.	HQA-2	7.00	120	mhy.	HQB-4	17.00
20	mhy.	HQA-3	7.50	. 5	hy.	HQB-5	17.00
30	mhy.	HQA-4	7.50	1	hy.	HQB-6	18.00
50	mhy.	HQA-5	8.00	2	hy.	HQB- 7	19.00
80	mhy.	HQA-6	8.00	3.5	hy.	HQB-8	20.00
125	mhy.	HQA-7	9.00	7.5	hy.	HQB-9	21.00
200	mhy.	HQA-8	9.00	12	hy,	HQB-10	22.00
300	mhy.	HQA-9	10.00	18	hy.	HQB-11	23.00
. 5	hy.	HQA-10	10.00	25	hy.	HQB-12	24.00
. 75	hy.	HQA-11	10.00	1	mhy.	HQC-1	13.00
1.25	hy.	HQA-12	11.00	2.5	mhy.	HQC-2	13.00
2	hy.	HQA-13	11.00	5	mhy.	HQC-3	13.00
3	hy.	HQA-14	13.00	10	mhy.	HQC-4	13.00
5	hy.	HQA-15	14.00	20	mhy.	HQC-5	13.00
7.5	hy.	HQA-16	15.00	. 4	mhy.	HQD-1	15.00
10	hy.	HQA-17	16.00	1	mhy.	HQD-2	15.00
15	hy.	HQA-18	17.00	2.5	mhy.	HQD-3	15.00
10	mhy.	HQB-1	16.00	5	mhy.	HQD-4	15.00
30	mhy,	HQB-2	16.00	15	mhy.	HQD-5	15.00

HQA, C, D $1_{1 \frac{1}{6}}{ }^{\prime \prime}$ Dia. $\times{ }^{1 \frac{3}{16}}{ }^{\prime \prime}$ High

HQB
$25 / 6^{\prime \prime}$ L. $\times 15 / 6^{\prime \prime}$ W. $\times 21 / 2^{\prime \prime} \mathrm{H}$.

UNCASED TOROIDS
(Deduct \$1.50
for uncased units

For Maximum Flexibility... The VIC Variable Inductor

The set screw on VIC units permits positive adjustment of inductance to plus 90% minus 50% from rated value. Revolutionary approach for tuned audio circuits. Q and L vs. screw adjustment for a typical coil are illustrated.

Type	Mean Hys.	List Price	Type	Mean Hys.	List Price
VIC-1	.0085	$\$ 11.00$	VIC-11	.85	$\$ 14.00$
VIC-2	.013	11.00	VIC-12	1.3	14.00
VIC-3	.021	11.00	VIC-13	2.2	14.00
VIC-4	.034	11.00	VIC-14	3.4	14.00
VIC-5	.053	11.00	VIC-15	5.4	16.50
VIC-6	.084	11.00	VIC-16	8.5	16.50
VIC-7	.13	14.00	VIC-17	13	16.50
VIC-8	.21	14.00	VIC-18	21	16.50
VIC-9	.34	14.00	VIC-19	33	16.50
VIC-10	.54	14.00	VIC-20	52	16.50
			VIC-21	83	17.50

JUNE • 1948

AXLE TESTER
Testing locomotive axle in New York Central roundhouse, using Sperry Products, Inc. Supcrsonic Reflectoscope. ErieRailroad, another user, announced savings of over $\$ 75,000$ in one year through replacing axles only when incipientfailures are revealed by this pulse-type ultrasonic instrument
CAR-CARD RADIO 72
Music for the bus passenger provides new advertising revenue for $i-m$ broadcaster and transit company ENGINEERING THE SCHEMATIC DIAGRAM, by James M. Henry and Millett G. Morgan 74
Step-by-step procedure for incorporating maximum readability into intricate diagrams, using APS-3 radar as exampl
LIGHT METER FOR ELECTRIC FLASH LAMPS, by Harold E. Edgerton 78
Battery-operated phototube-amplifier-meter circuit integrates flash of light and indicares correct apertureFACSIMILE MODULATOR TUBE, by J. R. Shonnard82
Phototube has two dynodes and conducts in direction determined dy app,ica voltage
RADIO IN THE MERCHANT MARINE, by John J. Canavan 84
Survey of ship communications from before the Titanic to the present, with a forecast of tuture remasSOLDERING ALUMINUM ALLOYS, by Frank W. Thomas and Eli Simon
90
Bonding of metals is accomplished by vibrating the iron tip at an ultrasonic frequency93Fuel-pump speed and torque is measured without adding external loadFREQUENCY-SCANNING VHF IMPEDANCE METER, by Lester L. Libby
94
Instrument uses principle similar to that of aircraft f - m terrain-clearance indicatorsSOFAR, by W. W. Stifler, Jr., and W. F. Saars. . .98
A sea rescue system depending upon time of arrival of energy from a depth bomb at three hydrophone stationsAN OSCILLOSCOPE CAMERA, by H. E. Hale and H. P. Mansberg102Cathode-ray tube patterns are photographed on film or paper at speeds up to five feet per second
DESIGNING INDUSTRIAL CONTROLLERS BY ANALOG, by George A. Philbrick 108
High-speed analog computer simplifies designing controllers
112
ELECTRON DIFFRACTION FOR FILM AND SURFACE STUDIES, by G. A. DoxeyApplications and equipment for technique similar to x-ray diffraction are described
TECHNIQUE FOR DISTORTION ANALYSIS, by Samuel Sabaroff 114Clipped sine waves received through equipment under test are modificd by circuit response
MULTIVIBRATOR DESIGN BY GRAPHIC METHODS, by A. E. Abbot 118
F-M SERVICE AREAS, by John H. Battison 122
Chart shows approximate distance to $1 \mathrm{mv} / \mathrm{m}$ and $50 \mu v / \mathrm{m}$ contours

DONALD G. FINK, Editor; W. W. MacDONALD, Managing Editor; John Markus, Vin Zeluff, Frank H. Rockett, A. A. McKenzie, Associate Editors; William P. O'Brien, Assistant Editor; Hal Adams, Jean C. Brons, Elaine Weber, Editorial Assistants; Gladys T. Montgomery, Washington Editor; Harry Phillips, Art Director; Eleanor Luke, Art Assistant; R. S. Quint, Directory Manager; John Chapman, World News Director; Dexter Keezer, Director Economics Department

KEITH HENNEY, Consulting Editor

H. W. MATEER, Publisher; WALLACE B. BLOOD, Manager; D. H. Miller, H. R. Denmead, Jr., New York; Wm. S. Hodgkinson, New England; F. P. Coyle, Warren Shew, Philadelphia; C. D. Wardner, Chicago; J. L. Phillips, Cleveland; J. W. Otterson, San Francisco; Carl W. Dysinger, Los Angeles; Ralph C. Maultsby, Atlanta; Paul West, London, England; J. E. Blackburn, Jr., Director of Circulation

[^0]

A NEW PARTNER IN CREATING

oniy an ACTUAL SAMPIE can show you the amazine ugabury of mis NEW TYPE KヶE BLUEPRINT PAPER

SEND FOR YOUR SAMPLE TODAY!

(A) IDEAL AMPLIFIER existing only in theory. Output exactly duplicates input, except for amplification.

(B) AMPLIFIER WITHOUT FEEDBACK. Signal suffers distortion, shown as separate a-c voltage accompanying output signal.

(C) AMPLIFIER WITH STABILIZED FEEDBACK. Sample voltage, containing signal and distortion in same ratio as in output, is fed back in opposing phase to input. Distortion portion is amplified in opposition to distortion arising in amplifier.
$\mathbf{L}_{\text {IKE many other major advances in }}$ electronics, the development of stabilized (negative) feedback was a direct outgrowth of telephone progress. To produce telephone repeaters with the necessary gain stability and low distortion, H. S. Black, of Bell Telephone Laboratories, took a sample voltage of the amplifier output and fed it back into the amplifier in opposing phase. Before-and-after effects are shown in simplified form in the accompanying figures.

How Feedback Reduces Distortion

Signal portion of feedback subtracts from input signal. (In practice, input receives additional amplification to maintain original output voltage.)
Distortion portion, encountering no opposing voltage in input, is amplified in opposition to distortion voltage arising in amplifier. Hence distortion voltage largely cancels itself out - output corresponds closely to input. Noise originating in the amplifier is reduced in a similar way.

How Feedback Stabilizes Gain

The relations of input, output and gain can be shown as follows:

Voltage Gain without Feedback	Total Input	Feedback Voltage (negative)	Net Input (lass foedback)	Output	Overall Gain
1000	10.1	10	.1	100	9.9
500	10.2	10	.2	100	9.8

As shown, the gain of the amplifier stages incorporating feedback can drop 50 percent, with a drop in overall gain of only 1 percent.
Hence gain remains virtually constant, regardless of changes in power supply or performance of components.

Users of all line and power amplifiers and all AM transmitters designed by Bell Laboratories and made by Western Electric benefit by these outstanding advantages of stabilized feedback: greatly reduced distortion and noise; virtually constant gain.

BELL TELEPHONE LABORATORIES

World's largest organization devoted exclusively to research and development in all phases of electrical communications.

IN AMPLIFIERS

Feedback as you want it keeps gain virtually constant in Western Electric Audio Amplifiers - cuts noise and distortion down to a minimum.

IN AM TRANSMITTERS

Feedback designed by Bell Laboratories does away with need for hum suppression circuits - main. tains flat frequency response.

- QUALITY COUNTS -

General elictric fm Tuner

 Engineers rave about it! Musicians acclaim it!

FM reception reaches a new high in fidelity when this new Model XFM-1 is used in conjunction with any radio receiver or amplifier designed for phono operation.
The r - f stage of this translator is unusual in a number of respects. Variable inductance tuning is employed instead of using a conventional tuning capacitor. This design has two distinct advantages. It provides a highly efficient circuit in our range (88 to 108 mc) which would not be possible with the more conventional methods of tuning and provides drift-free frequency stability.

While they last Harvey Special Price

SPECIFICATIONS (These specifications prove beyond doubt that this FM tuner excels... no other FM tuner on the market can compare.)

CABINET:

Beautiful hand-rubbed natural walnut, $103 / /^{\prime \prime}$ high, $11 \frac{1 / 2}{}{ }^{\prime \prime}$ deep, $153 / 4^{\prime \prime}$ wide. Tuning dial is slide-rule type, wide open, with frequencies clearly marked.

ELECTRICAL RATING:

Nominal voltage, 110 at $50-60$ cycles, 65 watts. Has built-in tapped transformer with selector switch for voltages: 110 (103-117); 125 (117-133); 150 (140.160); 200 (185-213); 225 (213-234); 245 (234-260).

OPERATING FREQUENCIES:

88 mc to 108 mc .300 -ohm input for folded dipole an tenna. Also has built-in antenna.

TUBE COMPLEMENT:

R-F amplifier, 6AG5; Oscillator, 6AK5; Converter, 6AK5; 1st 1-F amplifier, 6SG7; 2nd I-F amplifier, 6SV7; Limiter, 6SH7; Discriminator and audio amplifier, 6AQ7GT; Rec. lifier, 5 Y3GT/G; Dial light Mazda No. 44.

The chassis has been tropicalized.

The quantity is limifed and at Harvey's Special Price they won't last long. Get your order in at once to ensure delivery.

Prices are F.O.B. New York City and are subiect to change without notice.

THEORY INTO REALITY

Research and development problems, involving the manufacture of prototypes, are routine Sherron Electronics projects. We offer a comprehensive service ...design, development, consultation on and completion of research, and the manufacturing of working models.

We can assist you by working from an idea, theory, or laboratory design - or manufacturing units from your own completed designs.

In the performance of this service, we have the advantage of expertly staffed, modern electronics and electro-mechanical laboratories. All
the experience, skills and facilities, which Sherron Electronics has been applying to the broad needs of electronics, are also available for the specialized requirements of Nucleonics.

Sherron projects include: Counters, computers, servo mechanisms... Amplifiers, oscillators . . . Power supplies, power regulators . . . Process control, generator control... Parameter measurement, control and production (temperature, flow, radiation) Synchrotron, Betatron, Cyclotron controls and accessories.

Your inquiries are invited.

—of $A C, D C$ or RF outputs in any one circuit, selectively stabilized

 over wide ranges of line and load with the new (~) SORENSEN the CONTROLLER answers tyyical regulation problems the output of a transformer?

0
Can you selectively regulate a number of DC voltages and surrents?

0 Can the CONTROLLER stabilize a generator field to regulate its output?
A
$A_{\text {nswer }}$
RECTIFIER CIRCUIT

Represented in all principal domestic and foreign cities.

The FIRST line of standard ELECTRONIC Voltage Regulators

SOREISEI

TECHNICAL SPECIFICATIONS

The controlled circuit must make available at least one watt of power to the CONTROLLER.
The AC output of the CONTROL.
LER will swing between 85-145 VAC, AUTOMATICALLY adjusting the output of your unit against line and load variations. By referencing this output back to the CONTROLLER you get output regulation.


```
Input voltage range: \(\quad\)\begin{tabular}{l}
\(95-125\) volts AC \\
150 or 60 cycles)
\end{tabular}
Load range: \(\quad\)\begin{tabular}{l}
200 to 2000 VA
\end{tabular}
Regulation accuracy: \(\quad 0.5 \%\) at the controlled point
Write today for more information on the new CONTEOLLER. Arrange to have a Sorensen Engineer analyze voltage regulation requirements in your plant. He can select a Sorensen unit or suggest a special design to fit your unusual application.
Input voltage range: }95-125\mathrm{ volts AC
                                    (50 or 60 cycles)
                                    200 to 2000 VA
                                    0.5% at the controlled point
design to fit your unusual application.
```


with Cojo Famous
 Sealed in Steel Construction

The clean, streamlined appearance and compactness of CT's new Sealed in Steel construction contribute immeasurably to the trim, precision-like effect of any electronic equipment.

In addition, CT Transformers provide "steel wall" protection against atmospheric moisture, efficient magnetic and electro-static shielding, unsurpassed strength and rigidity to withstand shock and vibration, and unusual convenience of mounting.

Two base styles are available for most of the units in this catalog line, one with clearly identified solder lugs in a phenolic terminal board, the other with RMA color coded leads, stripped and tinned for easy soldering.
The design of these new power transformers assures maximum performance with minimum physical size and minimum temperature rise in accordance with RMA standards.
The wide range of carefully selected ratings achieves maximum flexibility of application, close matching with today's preferred types of tubes, and conformance with all industry standards.

Write direct for catalog illustrating, describing and listing the complete line, or contact your nearest radio parts jobber at once.

PLATE AND FILAMENT SUPPLY TRANSFORMERS

Catalog Number	For CAPACITOR INPUT SYSTEMS						
	high VOltage SECONDARY			FILAMENTS			
	$\begin{aligned} & \text { A.C. } \\ & \text { Volts } \end{aligned}$	$\begin{aligned} & \text { D.C. } \\ & \text { Ma. } \end{aligned}$	D.C. Volts Output	$\begin{array}{\|c\|} \text { Rect } \\ \text { Volts } \end{array}$		No. 1 Volts Amps.	No. 2 Volts Amps.
PC. 55	270.0-270	55	260	5	2	6.3 CT 2	
PC. 70	$335 \cdot 0 \cdot 335$	70	320	5	2	6.3CT 3	
PC. 85	330.0.330	85	320	5	2	6.3CT 3	
PC. 105	$345 \cdot 0.345$	105	320	5	2	6.3CT 3.5	
PC-120	375.0.375	120	380	5	3	6.3CT 4	
PC. 150	$370 \cdot 0.370$	150	390	5	3	6.3CT 4	
PC. 200	385-0.385	200	390	5	3	6.3CT 4.5	6.3CT 1

For REACTOR INPUT SYSTEMS						
PR-55	350.0.350 55	260	5	2	$6.3 \mathrm{CT} 2$	
PR. 70	425-0.425 70	320	5	2	$6.3 \mathrm{CT} 3$	
PR-85	440-0.440 85	325	5	2	6.3 CT 3	
PR-105	445-0.445 105	325	5	2	6.3CT 3.5	
PR. 120	500.0-500 120	400	5	3	6.3CT 4	
PR-150	505-0.505 150	400	5	3	6.3CT 4	6.3 ct 1
PR-200	520-0.520 200	410	5	3	6.3CT 4.5	6.3 CT 1
PR. 300	$550-370-75.0$ $-75-370.550$	425	5	6	6.3 CT 5	6.3 CT 1

FILTER REACTORS avile in the Sealed in Steel constructions:
FILTER REACTORS with current ratings to match power tronsformers above. FILAMENT TRANSFORMERS to meet o wide range of modern tube requirements.
AUDIO TRA
AUDIO TRANSFORMERS - Input. Output. Driver, and Modulation-that provide uniformly high fidelity response in three frequency ranges: $30-15,000$
cycles, $50-10,000$ cycles, and $200-3,500$ cycles cycles, 50-10,000 cycles, and 200-3,500 cycles.

CHICAGO TRANSFORMER

DFVISION OF ESSEX WIRE CORPORATION
3.501 ADDISON STREET U CHICAGO 18, ILLINOIS

SPECIALISTS IN RADIO RECEIVING TUEES SINCE 1921

RUDIO NMD ELEETRONICS CORP.

MAIN OFFICE:SALEM.MASSACHUSETTS

Look closely and you'll see where Sentinel engineers have appied Centralab's "Couplate" and "Filpec" in this special small receiver circuit. Result: important savings in production and space.

Made with high dielectric Ceramic-X, both Couplate (above) and Filper (below) assure long life, low internal inductance, positive resistance to humidity and vibration. All units provided with special phenolic coating.

*Centralab's "Printed Electronic Circuit" - Industry's newest method for improving design and manufacturing efficiency! Yes, here is a typical illustration of how Centralab's "Printed Electronic Circuits, have simplified wiring and assembly by 1) reducing number of components required and 2) by reducing number of leads to be soldered! That's why Sentinel Radio Corp., Evanston, III., has adopted CRL's Couplate (printed interstage coupling plate) and CRL's Filpec (printed electronic circuit filter) - and that's why you'll want to sec and test these exciting new electronic developments.

Integral Ceramic Construction: Each Printed Electronic Circuit is an integral assembly of Hi-Kap capacitors and resistors closely bonded to a steatite ceramic plate and mutually connected by means of metallic silver paths "printed" on the base plate.

For complete information about Filper and Couplate as well as other CRL Printed Electronic Circuits, see your nearest Centralab Representative, or write direct.
centralab $=$
Division of GLOBE-UNION INC., Milwaukee

These new instruments are capable of recording and reproducing in graphical form, variable or transient data under conditions of severe shock acceleration up to 75 G's. Sectional unit design enables tape recording to be performed in moving vehicles, aircraft, guided missiles, rockets or other mobile units. Tape is then transferred to data interpretation unit and a graphical record obtained directly. Miniature magnetic recorders weighing less than $11 / 2 \mathrm{lbs}$. or standard complete systems having any number of information channels are available.

Outstanding Features

- ERROR SOURCES ELIMINATED

Conversion of datum to FM signals hefore transfer to tape eliminates possible sources of error.

- high accuracy

Overall data interpretation accuracy is maintained within plus or minus 2 percent.

- WIde signal level Range

Responsive to sensing instrument outputs as lon as 0.3 volts for D:C. and 12 mv for A.C. High level signals are also usable by proper attenuation.

- TIME BASE CHANNEL

Included in all type designs is a time base channel for speed and error compensation.

- FLEXIBLE DESIGN

Equipment adaptable for use with customer's sensing elements or to conform to special instruments, shapes and installation requirements.

Standard Information Channel Magnetic Tape Recorder Mechanism Type MR-6.

PLUS A DATA INTERPRETATION SERVICE

Graphic Channel Data Interpretation Equipment - Type DI-1. Unit provides 1 time base and 6 information channels.

Cook Research Laboratories have established a new service and now maintain a trained staff to render complete data recording and analytical services. This includes the making of permanent graphic recordings of virtually any measurement that can be made in the form of electrical impulses, over a frequency range from D.C. to 100 cps . In addition, a complete mathematical analysis of the data can be made by means of:

> Computing Mecianisms Averages
> Integrations
> Differentiations
> Statistical Analysis

The effect on savings in man hours and increased efficiencies is obvious.

Detailed information on Cook Research data recording equipment and data interpretation service is available upon request. Please phone or write on company letterhead for Bulletin No. MR-B1.

Typical set of sensing instruments and oscillators for building into the magnetic recorder equipment. Sensing instruments can be designed and manufactured to order or standard elements can be adapied to individual requirements.

ELECTRONICS - June, 1948

STANDARDIZATION CONTROLS

Aware from the outset that the commonest disc recording complaint las always been variations from batch to batch, Sounderaft engineers determined to build disc manufacturing equipment that would not be at the mercy of such conventional ills as impurities in lacquer, inaccuracies in raw material handling, and inadequate control of the critical drying air.

To this end Soundcraft has spared no expense to safeguard the precision of each step of its disc manufacturing processes. Electronic pretesting of lacquer batches . . . mechanical re-working of new aluminum bases . . . viscosimeter control of lacquer consistency . . synchronous motor-control of conveyor speed . . . micrometer adjustment of coating thickness . . . automatic removal of even microscopic foreign matter in lacquer . . . electrostatic elimination of minute dust in drying air . . . automatic humidistat and thermostat control of weather-making equipment to assure constant fume absorption of drying air . . . continuous velometer test of air flow . . . all these and dozens of other double checks and inspections have made possible Sounderaft's widespread reputation as "the most consistent disc".

* Watch this space for succeeding ads in this informative series on bow Sound craft discs are made.

No. 6 of a series

$\overline{\text { REEVES }}<\overbrace{\text { cundczal }}$
 10 EAST 52nd STREET - NEW YORK 22, N. Y. u

When the utmost in recording quality is needed, ask for the 'Broadcaster', a master-disc selection in instantaneous sizes al an "extrafare" price.

For work-a-day broadcast-quality recording, the Sounderaft 'Playback' offers superior cutting properties in competiton with other "best-grade" banks.

Sounderaft discs are sold by over 250 radio parts distributors in principle U.S. cities. Foreign sales by Reeves dnternatonal, Inc., 10 East 52nd St., New York 22, N. Y. Cable RLEVINTER.

The 'Broadcaster' The 'Playback' The 'Audition' The 'Maestro'

TYPE CVH, an important newcomer in a famous line -a Sola Constant Voltage Transformer designed for use with equipment that requires a source of undistorted voltage. These new transformers, available in 250,500 and 1,000 VA capacities, provide all of the voltage stabilizing characteristics of the standard Sola Constant Voltage Transformer, with less than 3% harmonic distortion of the output voltage wave.
Since the output voltage wave is essentially sinusoidal, these transformers may be used for the most exacting applications such as general laboratory work, instrument calibration, precision electronic equipment or other equipment having elements which are sensitive to
power frequencies harmonically related to the fundamental.

As in all Sola Constant Voltage Transformers the regulation is automatic and instantaneous. There are no moving parts, no manual adjustments and every unit is self-protecting against short circuit.
Type CVH represents an outstanding advance in automatic voltage regulation and an important contribution to precise electronic equipment.

[^1]
Centralab reports to

Where miniature size is of the utmost importance, nothing else combines ruggedness, dependability, and resistance to humidity and moisture in such a small unit package. That's what Beltone engineers say about Centralab's Printed Electronic Cincuil and

Models conrtesy on 3etsone Hearing Aid Co., Shicago
that's what you will say when you have seen and tested this amazing new electronic development. Working with your engineers, Centralab may he able to fit its Printed Electronic Circuit to your specific needs. Write us today for further information.

2Rear view of Beltone-CRL unit shows integral construction - ceramic disc capacitors, "printed" silver leads and resistors (black paths).

6 Engineers of Sonora Radio and Television Corp., Chicago, use CRL's Couplate ("printed" interstage coupling plate) to improve manufacturing, reduce servicing. Couplate's long life, high efficiency, mechanical strength and resistance to humidity mean rnore dependable performance, simplified production for Sonora Radios.

Electronic Industry

4 Let Centralab's complete Radiohm line take care of your special needs. Wide range of variations: Model "R" - wire wound, 3 watts; or composition type, 1 watt. Model "E" - composition type, $1 / 4$ watt. Direct contact, 6 resistance tapers. Model " M "-composition type, $1 / 2$ watt. For complete information, write for Bulletin 697.

5 For quality and dependability, more and more manufacturers are switching to Centralab's line of ceramic capacitors. Order Bulletin 933.

0 In its new Lever Suitch, Centralab guarantees a minimum life of 50,000 cycles. Reason: an exclusive, new coil spring index. Write for Bulletin 970.

7 Centralab's development of a revolutionary, new Slide Switch promises improved AM and FM performance! Flat, horizontal design saves valuable space, allows short leads, convenient location to coils, reduced lead inductances for increased efficiency in low and high frequencies. Rugged, efficient. Write for Bulletin 953.

LOOK TO CENTRALAB IN 1948! First in component research that means lower costs for the electronic industry. If you're planning new equipment, let Centralab's sales and engineering service work with you. Get in touch with Centralab!
Centralab

DIVISION OF GLOBEUNION INC., MILWAUKEE, WIS.

Type 1040-97 Heavy duty load relay

An ADLAKE Relay for your every need

Not all of the Adlake Relay line is shown on this page. But whatever your relay needs make be, there's an Adlaked hundreds of tough and Relays have handled for American industry unusual assignments for Amerof control. offering dependable Plunger-Type Relays are Adlake Mercury Painst dust, dirt, moisture hermetically sealed Their mercury-to-mercury conand oxidation. Them silent and chatterless, impertact makes them sienting and sticking. They vious to burning, piting no maintenance. are absolutely safe, he befit of our experience Let us give you the benefit of selection. Adin making your Adlake Reatog to The Adams \& dress your request 1107 North Michigan Westlake Compan, Elkhart, Indiana.

THE AJAMS \& NPStaḰ cOMPANY
 ELKHART IND - New York - Chicago

Manufacturers of Adiake
Hermetically Sealed Mercury Relays for Timing, Load and Control Circuits

Type 1101-100 Light duty load relay

contact normally open or normally closed

Type 1110 Relay with terminal block contact normally open or closed; handles 30 amps.

Type 1045 Quick acting relay with terminal block
designed for use with sensitive thermo regulators

contact normally closed

maximum time delay, 20 minutes. For D.C. energization

Type 1101-87
Heavy duty

Type 1200 Double unit relay
contacts normally open or normally closed. For D. C. energization

Wherever your product calls for conversion of A-C to D-C, Federal Selenium Rectifiers can simplify your design problems three ways:
Electrically-because of their inherent high efficiency and lasting characteristics. No power-consuming filaments-less wattage loss-and no time lag. D-C output is delivered instantly on application of $\Lambda-C$ potential.
Mechanically-because of their unusually rugged construction. Designed to withstand shocks and vibration. No fragile internal elements-no moving parts to wear out. Available in a wide range of space-saving, weight-saving designs.
Thermally-because they run cooler, without hot filaments or magnetic core losses. Construction permits highly efficient convection or forced air cooling where desired

Whatever your power conversion requirements, from milliwatts to kilowatts, there's a Federal Selenium Rectifier that will fit into your plans. And every Federal Selenium Rectifier is backed by the research, engineering and production skill of America's oldest and largest manufacturer of selenium rectifiers. Write Federal today for information on your rectifier requirements. Dept. F-813.

Whether your terminal problem in -olves vibration, temperature, hermetic s ealing or ordinary lead termination, GENERAL CERAMICS Steatite Sealex Bushings and Multiple Headers offer important advantages that reduce assembly cos-s and improve product quality. Mounting as a single unit, they can be quickly soldered, welded or sweated to the equipment enclosure and provide perfect termination for one or as many leads as required. GENERAL CERAMICS Sealex Bushings and Multiple Headers are available in many standard sizes and types suitable for most applications. Special types can be supplied on short notice. Hermetic sealing is absolute and each unit is indi-

Pressure tested, shockproof Sealed Leads and Multiple Headers

vidually pressure tested at 50 psi ; all metal parts are hot-tinned for fast soldering. Sealex Bushings are available in sizes from 0.5 to 20 amps with flashover ratings to 40 Kilovolts. Steatite the insulation used in these products has a low loss factor of only 0.7% at 1000 K . C., which recorr mends the use of these terminals at practically any frequency.

WRITE TODAY FOR GATALOG!

 GENERAL CERAMICS engineers will gladly assist in applying Steatite Sealex or will collaborate in developing special iypes for veloping specitions. An informative, fully illustrated catalog covering all General Ceramic insulators, is available free upon request on company letterhead. Write for your copy fodayl

Entirely New! Completely Service-Tested! RAYTHEON Voltage Stabilizers

An Outstanding New Line of High Performance, Space and Weight Saving Models that Make It Easy to Build Enduring Accuracy Into Your Product.

The new Raytheon voltage stabilizers enable you to build voltage stability right into your electrical or electronic equipment. They come to you in neat, compact, easy-to-install packages -ruggedly built and performance-engi-
neered for lifetime satisfaction. Choose your models from a wide range of standard catalog types... or have them custom-engineered to suit your special needs. In either case, count on Raytheon experience and skill to provide the electrical characteristics you want in the most convenient, compact and economical unit.

RAYTHEON
VOLTAGE STABILIZER HEADQUARTERS Since 1927

Build these Advantages Into Your Equipment

- Control of output voltage to within $\pm 1 / 2 \%$.
- Stabilization at any load within rated capacity.
- Many designs with very low harmonic distortion of the output voltage wave at any loud.
- Quick response. Stabilizes varying input voltage within $1 / 20$ second.
- Entirely automatic. No adjustments. No moving parts. No maintenance.
- Wide range of designs including hermetically sealed types.

RAYTHEON MANUFACTURING COMPANY Waltham 54, Massachusetts

Gentlemen: Please send me copy of your new Voltage Stabilizer Bulletin DL-V-304-A.

Name
Position
Company
Street Address \qquad Zone No \qquad
City State

For keeping video operations under controlfrom modest start to mighty operations...

DU MONT MASTER CONTROL

FUNCTIONS...

1. Generation of syn chronizing signals conforming to RMA recommendations.
2. Distribution of sync signals.
3. Push-button selec tion of program sources for use by the transmitter ("on-the-air" signal).
4. Monitoring and distribution of the 'on-the-air" picture signal.
5. Push-button selection of program sources next to be used as "on-the-air" signal (preview signal).
6.. Monitoring and distribution of preview picture signal.
6. Monitoring of "on-the-air' and preview signal waveforms.
7. Stabilization of picture and sync signals from remote program sources.
8. Test monitoring of master control signals for maintenance purposes.
9. Exclusive Du Mont "fully automatic" lap dissolve and fade control-the stand. ard of all Du Mont control equipment.

- Split-second timing -smooth-flowing prcgram continuity that's the assuranc the Du Mont Master Control Line offers television broadcasters.

Multiple-studio live programs, network participation, local remote pickups, films and rehearsals, are selected and integrated at will. The Du Mont Master Control Line consists of groups of integrated equipment capable of performing any desired function of
television broadca三ting in the professional manner ? ong associated with sound broadcasting.

The number of functions incorporated in any one master control "package" depends on the complexity of the telecasting station. Five basic Du Mont master control '"packages" meet the requirements of the smallest to the largest telecasting station. In typical Du Mont manner, you can start as small as you like and grow as large as you like, with Du Mont equipment.
(b) allen s. du mont laboratories

- Aerovox proudly presents a basically new capacitor designed and produced to meet today's more critical requirements.
Duranite capacitors are not to be confused with conventional molded tubulars encased in usual materials. Duranite capacitors are eniirely new-

Aerolene, the new impregnant; the new processing methods; the new Duranite casing-all adding up to an entirely new concept in the capacitor art.

Note some of Duranite's extraordinary features herewith presented! Make comparative tests! You be the judge!

- Literature on request. Samples available to manufacturers. Lẹt us quore on your needs.

TYPICAL DURANITE FEATURES . . .

- Toughesi capacitors ever offered critical manufacturers and users of radio-electronic equipment.
- Positive insurance against froublesome and costly failures in the field.
- Permanent, non-varying, rock-hard casing. Smooth, clean surface. Drop them; bang them; scratch them-no damage.
- Pigtail leads firmly imbedded. Won'i pull out or work loose. Wire breaks before it can
be loosened.
- Really moisture-proof. Thoroughly and permanently sealed.
- Withstand high operating temperaturesno wax ends to melt. Operation from sub zero to over $212^{\circ} \mathrm{F}$. without damage.
- Temperature coefficient of capacitance comparable to wax and oil capacitors.
- Aerolene impregnant eliminates necessity of slocking and using both wax and oil capacitors. One impregnant does work of both.

Results in lower inventories and manufaciuring cosis.

- No deterioration in stock. May be stored in advance of actual use with corresponding economy and convenience.
- Duranite does not dry out. Does not develop cracks or fissures. Stays tightly sealed. - Smaller dimensions than usual paper tubulars.
- Standard marking; color-coding-capacitance, tolerance, voltage. INDUSTRIAL APPLICATIONS

AEROVOX CORPORATION, NEW BEDFORD, MASS., U.S.A.
Sales Offices In All principal Cities. Export: 13 E. 40 th St., New york $16, N$. Y.
Cable: 'arlab' - In Canada: aerovox camada lto., hamition, ont.

GLOBAR TYPE "CX" RESISTORS

Solving Many Resistance Problems

Excellent voltage and temperature characteristics are provided by GLOBAR Type CX Resistors. These characteristics make them especially suited for many applications including Dummy Antenna... Rhombic Antenna Termination... Parasitic current suppression...Voltage dropping devices... Induction and R. F. Heating.
An extremely small voltage and temperature
coefficient together with an ability to carry loads up to 3 watts per square inch of radiating area puts these resistors in a class by themselves. When equipped with special terminals, they can be loaded to 10 watts per square inch. For immediate attention to inquiries write Dept. V-68. The Carborundum Company, GLOBAR Division, Niagara Falls, New York.

RESISTANCE RANGE AND RATING IN WATTS FOR STANDARD SIZES
TABLE I

Part Number	$\begin{aligned} & \text { Rating } \\ & \text { in Watts } \end{aligned}$	Resistance Range*	Overall Length in Inches	Overall Diameter in Inches	Tinned Copper Wire Leads	
					Length	Diameter
997-CX	$1 / 4$	1 ohm to 150 ohms	21/64	7/64	$11 / 8{ }^{\prime \prime}$	$0.016^{\prime \prime}$
763-CX	1/2	1 ohm to 47 ohms	5/8	$7 / 32$	$11 /{ }^{\prime \prime}$	$0.032^{\prime \prime}$
759-CX	1	1 ohm to 33 ohms	$3 / 4$	$1 / 4$	$11 / 2^{\prime \prime}$	0.032"
766-CX	2	1 ohm to 47 ohms	11/8	1/4	$11 / 2^{\prime \prime}$	$0.032^{\prime \prime}$
792-CX	4	1 ohm to 22 ohms	17/8	15/32	$11 / 2^{\prime \prime}$	0.040"
774-CX	6	1 ohm to 33 ohms	25/8	15/32	$11 / 2^{\prime \prime}$	0.040"

*RMA Values only, Tolerances $\pm 10 \%$ and $\pm 20 \%$.
TABLE II

Diameter in inches	Resistance in Ohms per Inch of Length		Length in Inches		RATING
	Minimum	Maximum	Minimum	Maximum	
1/2	0.10	100	2	8	Continuous duty rating is based on 3 watts per square inch of external radiating surfoce.
5/8	0.10	100	2	10	
$3 / 4$	0.10	75	4	18	
1	0.05	50	4	18	

Type "CX" power resistors can be supplied with metallized ends of brass, copper, nickel, monel, aluminum, tinned brass or tinned copper, also with tinned copper wire (No. $14 \mathrm{~B} \& \mathrm{~S}$ Gage) leads, approximately six inches long. Resistance tolerances are limited to $\pm 10 \%$ and $\pm 20 \%$ only.

GLOBAR

 Ceramic Resistors br CARBorundum
"Carborundum" and "Globar" are registered trademarks which indicate manufacture by The Carborundum Company

The specially-designed diode, in combination with the $-b p$ - probe design, makes possible the exceedingly flat frequency response shown graphically in Figure 1.

With this flat frequency response are combined the factors of low input capacity and high input resistance. The variation of these factors with
frequency is shown in Figure 2. The input resistance and reactance are high throughout the entire range of the instrument, and thus measurements are made without appreciable detuning or loading of circuit. Maximum measuring accuracy is assured.

In addition to swiftly, easily, accurately making uhf radio measure-

ments, this $-h p-410 \mathrm{~A}$ is a convenient voltage indicator up to 3000 mc . And it serves equally well as an audio or d-c voltmeter, or an ohmmeter. A-c measurements are made in 6 ranges ...full scale readings 1 to 300 v . D-c full scale readings from 1 to 1000 v in 7 ranges. Input resistance all ranges -100 megohms. As an ohmmeter, the $-h p$ - 410A measures resistances from 0.2 ohms to 500 megohms in 7 ranges.

In short, this -hp-410A Vacuum Tube Voltmeter is ideal for obtaining most important parameters in radio design, manufacture, or servicing. Write today for full details. HewlettPackard Company, 1407E Page Mill Road, Palo Alto, California.

Noise and Disfortion Analyzers Wave Analyzers Frequency Mefers Audio Frequency Ossillators Audio Signal Generators Vacuum Tube Volimeters Amplifiers Power Supplies UHF Signal Generators Aftenuators Square Wave Generators Frequency Standards Electronic Tochometers

A QUIET REYOLUTION IN CAPACITOR DESIGN

THE SMALLESTMOLDED TUBULAR EVER MANUFACTURED!... and rated up to $125^{\circ} \mathrm{C}$!

ACTUAL SIZE
ILLUSTRATION
TYPE 65P

UNIQUE, MINERALFILLED MOLDING MA. TERIAL! . . . Provides unequalled protection against moisture absorption even under conditions of extreme humidity!

A PROVEN PRODUCT NOW IN MASS PRODUCTION!

NEW SPRAGUE MOLDED PROKARS'

 . . . dependable capacitors for sub-miniature assemblies

These new molded Prokars were designed specifically to satisfy stringent military requirements. Types 65P \& 75P are now in mass production and are available in a wide range of capacities - from .00047 mfd . to .15 mfd ! Though higher in price than standard units, they easily justify the term "premium" in performance. Rated for $-50^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ operation, these small but rugged units are ideally suited for any electrical or electronic application in which size, temperature, humidity and physical stress are dominant considerations.

Save Tince and Money..

 Encrease Operating Officiency

TMxICABS
 PHILCO 2-WAY F-M MOBILE RADIOPHONE
COMMUNICATIONS SYSTEMS

+ 8

30 to 44 Mc. and 152 to 162 Mc. Sensational new developments... advanced engineering . . . proven reliabilify...new operating efficiency and economy for F-M Radiophone Communications Systems, permitting clear, crisp, two-way voice communications under all condifions.

PHILCO
 INDUSTRIAL DIVISION PHILADELPHIA 34 • PENNSYIVANIA

Philco Industrial Division Dep't JN2 Tioga and C Sts., Philadelphia 34, Pa. Gentlemen:
Please send meinformation about the new PHILCO F-M Radiophone Communications Systems

NAME

ADDRESS

CITY

Millions of People Changed Our Name

You may think it strange that millions of people could have a voice in changing a company's name, but that is what has happened to The American Rolling Mill Company.

Several years after the company started operations in 1900, it adopted the trademark "Armco" for its special grades of steel. The Armco trademark -composed of the first letter in each word of the company name-has been widely advertised and appears on all the company's products. Many Armco customers identify their use of these special-purpose steels with this familiar trademark.

Through the years-as the original small mill grew into one of the coumtry's great steel companies-our customers, dealers and the public alike have preferred to call the company
"Armco." So, in recognition of this preference, the name of the company has been changed from The American Rolling Mill Company to Armco Steel Corporation.
The change is one of name only. It does not affect Armco management, personnel and long-established policies. It does emphasize more strongly

ARMCO STEEL CORPORATION
the importance of the Armico trademark, and increases its value to those who use Armco Special-Purpose Steels in the things they make.

Alert research and production men who have perfected so many specialpurpose grades of Anmico Steel will continue to improve present steels while developing new ones to help manufacturers build better products for home, farm and industry. Armeo Steel Corporation, Middletown, Ohio.

Expori: The Armco International Corporation.

NOW... The CLARE Type "J" Relay

can be Mounted as Conveniently as a Radio Tuhe! !

Famous Clare Type " $\mathrm{J}^{\prime \prime}$ d-c Relay now available in plug-in type where quick removal or replacement is desirable

Clare Type " J " d -c Relays combine the best features of the conventional telephone type relay with the small size and light weight which modern compact design requires.

Check these outstanding features of Clare Type "J" design which provide hitherto unheard of performance by a small relay:
\star
\star
\star
\star
\star
\vdots
1
i

M^{\prime}YCALEX is द्व Coy's improved insulation - designed to rreet the exacting demands of all types of high-frequency circuits. MYCALEX is unusual in that it possesses a combination of peculiar characteristics that make if ideally suited for insulation in all types of electroniz circuits In tomorrow's designs for communcations and industrial control equipmenf, MYCALEX 410 will be specified more than ever
before because of its... Low dielectric loss. High dielectric strength . High arc resistance - Dimensional stability over wide humidity and temperature changes . Resistance to high temperatures . Mechanical precision. Mechanical strength . Ability to mold metal inserts in place. If you have any insulafion problems, our engineers will be glad to help you in their solutions.

MYCALEX CORP. OF AMERICA

"Owners of "MYCALEX' Patents"
Pront und Generol Offices: Clifton, N. J. Executive Offices: 30 Rockefeller Plazu, New York 20, N. Y.

What's your problem?
 Fine Wire? Tungsten? Molybdenum?

Problem 2

A customer's needs called for a material with a high tensile strength at elevated temperature. He called North American Philips and received elmet Molybdenum which performed to his complete satisfaction... fulfilling every requirement.

Problem 3

MR. MUST B. PLATED, who required metal-clad wire for a specific application, phoned Fine Wire Headquarters. We supplied the base material to provide the physical characteristics desired, and plated it to meet his exacting specifications for special surface qualities.

WHY not call Fine Wire Headquarters when you have a question about fine wire? We can't do the impossible, but we can do lots of things that can bring you the right fine wire for the job.

So-when you have a problem on Fine Wire, Tungsten or Molybdenum -wire, phone or write to North American Philips, makers of NORELCO Fine Wires, and ELMET Tungsten and Molybdenum products.

NORTH AMERICAN PHILIPS COMPANY, INC.
Dept. E-6, 100 East 42nd Street, New York 17, N. Y.
Export Representative • Philips Export Corporation • 100 East 42nd Street, New York 17, N. Y.

You get an extra dividend with every shipmeat of Chmite rheostats or resistors. You get the accumulated experience of the entire Ohmite engineering staff . . . the combined thinking of its many specialists . . . to help you analyze your requirements and select the correct unit to fit your specific application. If circumstances warrant, your equipment may even be sent to our laboratory for further study. Years of experience in building devendable rheostats and resistors and in helping others solve specialized resistance problems is your assuracce that Ohmite "know-how" car. help you. We invite you to suk.nit your problems to us.

Be Right arith OHMITE

RHEOSTATS for every Need Ten Standard Sizes- 25 to 1,000 watts

- You can get a standard Ohmite rheostat for practically any application. The Ohmite line of standard rheostats is the most extensive available. Furthermore, six wattage sizes, in many resistance values, are carried in stock for immediate shipment. Special resistance values, tapered windings, tandem assemblies, and many other variations can be made to order quickly at small extra cost. All models are carefully engineered to give long operating life. All have the distinctive, time-proven Ohmite features - the all-ceramic construction, windings permanently locked in vitreous enamel, and smoothly gliding metal-graphite brush. Whatever your needs, Ohmite engineers can provide a rheostat of unfailing dependability to meet your exact requirements.

How to Select a RHEOSTAT

1 UNIFORM WINDING

It's easy to choose the right uniformly wound rheostat if you have certain basic data. Knowing the resistance required and the maximum current for the circuit (circuit current with rheostat shorted out), the rheostat wattage can be calculated by the formula: $W=I^{2} R$. A standard rheostat, the wattage of which is not less than the calculated value, can then be selected from the Ohmite catalog. If the resistance and maximum current are not known, Ohmite engineers can calculate them from various circuit information you can supply about the application.

2 TAPERED WINDING

In a tapered winding rheostat the winding is made up of two to six sections of diminishing wire sizes. This construction
allows a large resistance change to be "telescoped" into a small part of the winding, thus providing more uniform control and reducing over-all rheostat size.

The design of a tapered rheostat is not as simple as choosing a uniformly wound unit. Taper-wound rheostats can be selected from the standard designs listed in the Ohmite catalog for field control of generators, or Ohmite engineers will be glad to make specific recommendations.

Send for Catalog and Engineering

Manual No. 40

Write for this Ohmite Catalog and Engineering Manual on your letterhead. It contains the complete line plus a wealth of engineering information.

OHMITE MFG. COMPANY
4818 FLOURNOY 5 s.
CHICAGO 44, ILL.

In the streamlined Proctor Toaster it takes a 1 -inch length of BH Fiberglas Sleeving to provide supplementary insulation over the asbestos-covered leads on the built-in heater cord. With BH Fiberglas Sleeving there is no possibility of a partly uncovered braid. . . no threads to break or unravel. This extra margin of safety means trouble-free service.
In every industry, BH Fiberglas Sleeving gets the tough insulation jobs-where high heat, excessive current load or the possibility of insulation breakdown make extra protection a necessity.
Here is the reason. In BH Fiberglas Sleeving, no hardening varnish or lacquer is used. You can
(1) Remarkable flexibility ... BH Sleeving fits snug, spreads to cover knobs or terminals. Will never harden or dry out because no varnish is used;
(2) Non-fraying qualities ...BH Sleeving cuts clean, will not feather. It is treated to retard fraying without the use of varnish;
(3) Lasting performance ... BH Sleeving does not disintegrate even after long use because varnish is not used.

Fope it to yourself-let us send you a sample of Bit Fiberglas Sleeving today. see the difference in:

$$
\begin{aligned}
& \text { BH } \\
& \text { SLEEVINGS }
\end{aligned}
$$

*BH Non-Fraying Fiberglas Sleevings are made by an exclusive Bentley, Harris process (U. S. Pat. No. 2393530). "Fiberglas" is Reg. TM of Owens-Corning Fiberglas Corp.

- - - - - - - - - - - - - - - - - - - - USE COUPON NOW - Bentley, Harris Mfg. Co., Dept. E-23, Conshohocken, Pa.

I am interested in BH Non-Fraying Fiberglas Sleeving for
(product)
operating at temperatures of \qquad ${ }^{\circ} \mathrm{F}$. at \qquad volts. Send samples so I can see for myself how BH Non-Fraying Fiberglas Sleeving stays flexible as string, will not crack or split when bent. NAME \qquad COMPANY \qquad
ADDRESS \qquad
Send samples, pamphlet and prices on other BH Products as follows:
\square Cotton-base Sleeving and Tubing
$\square \underset{\text { Ben-Har Special Treated Fiberglas }}{\square}$ Tubing

HEREIT IS

NEW!

DIFFERENT! BETTER! The ONLY RADIO BATTERY That Has The

OLIN Interlocked Flat Cell

LOOK!

- Each Cell Holds More Power-Producing Chemicals.
- No Waste Space.

Lasts Hours Longer.

- Already Standard Equipment with 12 Radio Manufacturers.

Enlarged Cutaway Section Shows . . EACH CELL INTERLOCKS WITH ITS NEIGHBORforms the playing-heart of your radio

EXCLUSIVE!

- Result of 5 years ${ }^{3}$ Scientific Electronic Research.
- Patented U. S. Pat. No. 2416576.
- Triple-Sealed Against Power Leakage.
- No Binding Tapes.
- No Sealing Wax.
- Greatly reduces Battery Failure ... 91% Less Soldered Connections.

Increase Your Radio Battery Sales This Summer

with the Sensational

Interlocked Flat Cell Battery

The demand for portable radio batteries this summer promises to be the greatest in radio history . . . estimated to be $\$ 52,000,000$.
All over America, portable radio owners will
be customers for this startling new electronic development that gives more hours of listening pleasure . . . yet costs no more.

Available in 2 Brands

WINCHESTER

trade-mark

Make your store headquarters for the OLIN Interlocked Flat Cell Radio Battery.
Fill in coupon below, for descriptive Catalog and get the complete Product and Sales story.

Don't Disappoint Your Customers
They'Il Want...
THE ONLY RADIO BATTERY
That has the OLlat Interlocked
Flat Cell playing-heart

[^2]
For the Industrial and Electronic Market-

Custom built to your specific JOB REQUIREMENTS

Where your specifications call for an extra margin of performance and dependability-that's a job for Federal transformers. For years, Feteral has been designing and producing special transformers to meet the most exacting requirements-for Federal's own radio and electronic equipment, as well as for military and commercial service.

This engineering and production skill is at your service-ready to help solve your toughest transformer problems. Federal will design the right transformer for your circuit enditions, with exactly the right voltage and imperiance ratios, insulation strength, load capacity, and mechanical construction. Available in sizes up to 25 kva.
For prices and data, write Fiederal today, outlining your design requirements. Dept. J113

This FEDERAL transformer helps to MILK COWS ELECTRICALLY

Designed for use in the pulsing circuit of an automatic milking machine, this transtormer, with 115-volt input and 15 volt, 5 -ampere output, provides the right combination of electrical, physical and thermal characteristics to assure optimum performance of the complete equipmenta typical example of a Federal transformer specially designed for a specific job

Federal Telephone and Radio Corporation

Power Loss $=55.5 \varepsilon^{1} \tan \delta \times f \times V^{2} \times 10^{-6}$ Watts

CHART 1

CHART 2

RAM

HLHANBUM aHROX MANURAGHURMNG COMPANY
 EXECUTIVE AND SALES OFFICES
 GENERAL OFFICES AND WORKS

The right material for your job

How to Save 2 Ways with an Engineering Service that Always Gives You Unbiased Recommendations

First, you save production hours and dollars because you can be sure of getting electrical insulating materials that are "right for your jobs." That's because Continental-Diamond makes a complete range of products with the physicals you want. Instead of having only one, two, or three materials to recommend, C-D offers you a choice of five different insulating materials subdivided into grades or combinations of grades to fit your specific applications. Thus, you stand a much better chance of getting the one material that will reduce fabricating costs and improve
 product performance because it's right on the job. Second, you save time and effort because you have a convenient, "one-stop" source for all your electrical insulating needs. To give you fast, complete shipment, large stocks of every C-D product are constantly kept on hand. And, if you request it, trained C-D technicians can give you practical, personal help that can lead to better, lower-cost applications. Save two ways, today. Call or drop us a line for anything you need in the way of top-quality electrical insulating materials.

DE-3-48
BRANCH OFFICES: NEW YORK 17 • CLEVELAND 14 • CHICAGO 11 • SPARTANBURG, S. C. • SALES OFFICES IN PRINCIPAL CITIES WEST COAST REPRESENTATIVE: MARWOOD LTD., SAN FRANCISCO 3 - IN CANADA: DIAMOND STATE FIBRE CO., OF CANADA, LTD., TORONTO 8
S'minnental = Diamond F I B R E C O M P A N Y

RM-251 is a distinguished addition to the Jensen reproducer family. This "decorator-designed" Bass Reflex cabinet utilizes any fifteen inch Jensen loud speaker including the coaxial. Of sufficient size, it makes an ideal base for almost any television or receiver equipment.

|lensen

CUSTOMODE REPRODUCER

Chicago

ERIE TRIMMERS

for easy assembly and dependable performance at reasonable cost

- ERE are six popular ERIE Resistor trimmers, all notable for their fidelity to specifications, their rugged stability, and their straight-line capacity change throughout the total range.

The new miniature style Tubular Trimmers and Styles 554 and 557 open up many design possibilities for added efficiency in chassis layout.

General specifications are given below. Samples will be sent to interested manufacturers on request.

WHEN YOU DESIGN - KEEP

[^3]outstanding advantage offered in IIghiest Quality Potantiometer

GIBBS

 MICRDPDT GUARANTMAS
$\pm 0.1 \%$ ICCLRICI

"Integral Molding" . . . Exclusive Gibbs Engineering Development... Forever Locks Coiled Resistance Element and Terminais into One Integral Unit with Housing . . . Assures Unequalled and Permanent Operational Accuracy.

...and only the

has it!

The coiled resistance element is threaded on the molded core

Resistance element and terminals are one integral part of housing

OTHER IMPORTANT FEATLRES OF GIBBS TEV-TURN MICROPOT

Write Today! For engineering specifications and complete detail folder. Submit any problems to our enginecring staff for recommendations. Units for immediate shipment. - 1,000 to 30,000 ohm range. Special resistance values made to order.

- Resistance output is directly proportional to shaft rotatation through a full 3,600 degrees within $\pm 0.1 \%$: this linearity is carricd right to the counter clockwise stop. In the Gilbs MICROPOT such results are obtained by precision manufacturing and methods.
- I'recision ground, stainless steel, double thread, lead screw guides the rotating contact, guarantees smooth action, low uniform torque
and accurate settings - permanently.
- liotor assembly, supported on two bearings, assures long life and low torque.
- Ends of resistance element soldered to terminals before molding.
- Anti backlash spring in contact guide-assures you positive setting and resetting.
- The $431 / 2^{\prime \prime}$ length of resistance clement gives you a finer resolution.

DEPT. 34 GIMHS Division

tIIE george w. Borf corporation

 Delavare - Wisconsin

The new Webster Electric "Featheride" magnetic cartridge fits universally, from a mechanical standpoint, into practically all tone arms. This will meet your requirements for tone arms you may have on hand. As shown ahove it has all the features for top performance . . . this is a result of sound fundamental design, careful engineering and precision manufacturing methods.

Write today to Webster Electric Co., Racine, Wisconsin for specification sheets and literature showing performance curve and all technical features.

r
\square
 +

GUARANTEED
 ACCURACY

1 part in 100,000
(.001\%)

American Time Products, Inc.,
580 Fifth Ave., New York 19, N. Y.
Gentlemen:
Please send descriptive folder, No. 2121A.

Name.	
Company	
Address...	
City	State

1 ses

Time bases, rate indicators, clock systems, chronographs, geo-physical prospecting, control devices and for running small synchronous motors.

7 catures

1. Bimetallic, temperature-compensated fork, no heating or heat-up time is required.
2. Fork is hermetically sealed, no harometric effects on frequency.
3. Precision type, non-ageing, low coefficient resistors used where advantageous.
4. Non-linear negative feedback for constant amplitude control.
5. No multi-vibrators used.
6. Synchronous clock simplifies checking with time signal.

Specifications

Accuracy-1 part in 100,000 (.001\%).
Temperature coefficient-1 part in $1,000,000$ per degree centigrade (or better).
Outputs-

1. 60 cycles, sine wave, $0-110$ volts at 0 to 10 watts (adjustable).
2. 120 cycle pulses, 30 volts negative.
3. 240 cycle pulses, 30 volts positive and negative. Pulse duration, 100 micro-seconds.
product of

AMERICAN TIME PRODUCTS

 580 Fifth Avenue \mathbf{N}. New York 19, N. Y. Operating under patents of the Western Electric Company available-many types of C-D Quietones which are equally effective on both Radio and video bands. They meet every requirement of manufacturers" cost and production schedules. One of these standard types may remove your product from the list of Radio interference generators. If not, we're ready and waiting-with a modern and complete laboratory and experienced engineers-to design and build a Quietone to meet your specific needs. Your inquiry is cordially invited. Cornell-Dubilier Electric Corporation, Dept. K-6 South Plainfield, New Jersey. Other large plants in New Eedford, Worcester and Brookline, Massachusetts, and Providence, Rhode Island.

CREDENTIALS

of the Newest Member of the Belden Magnet Wire Family

Celenamel magnet wire-newly developed by Belden - is copper wire insulated with a film of cellulose acetate combined under heat with other resinous materials. The film so produced is tough, flexible, continuous, and of high dielectric strength.

Celenamel is practically impervious to the action of hot coal tar as well as petroleum naphthas. The properties are such that Celenamel meets and in some respects exceeds industry standards for oleoresinous enameled magnet wire.

$$
\cdot \quad \cdot
$$

In soldering operations it is unnecessary to remove the Celenamel insulation. Soldering of leads is
accomplished by dipping in a low-temperature leadtin bath or direct application of a soldering iron. A flux of rosin-alcohol should be used.

Celenamel films are produced with insulation additions that have closer and more uniform tolerances than have heretofore been avaullable. The film withstands the usual temperatures encountered during coil impregnation and baking.

$$
\bullet \bullet \bullet
$$

Celenamel insulation possesses very good aging qualities. Celenamel magnet wire produced several years ago still exhibits its original mechanical and electrical properties.

Celenamel is available in sizes 41 and finer.
 OF OUR TOROIDAL COIL PRODUCTS*

KEYBOARD OSGILLATOR
Present day methods of checking the frequency response of Audio Networks in production were so inadequate that it became necessary for our engineers to conceive a radically new methad of accurate frequency selection using the decade principle. The result is our KEYBOARD OSCILLATOR, developes for our own use, which provides instantaneous selection of any audio frequency from 1.00 cycles to 100,000 cycles accurately and without the use of interpolation methods.
We consider this to be one of our finest achievements in modernizing the production of audio filters.

*
TOROIDAL COIL FILEis
Audic Fillers Audio Discriminalors Equalizers and Noise Control Fillers Phase Networks

TC-1 Induclance up to 7.5 Henries
Frea, range 250 to 20,000 cycles
TC-2 Inductance up to 30 Hys Freq, range 100 to 20,000 cycles
TC-3 Ind sctance up to 500 Mhys. Freq. range 5KC to 100KC

COMMUNICATIONS AND SIGNALING Designed specifically for use in industrial electronic equipment, communications and signaling equipment, this General Electric telephone-type relay has a service life measured in many millions of operations. Working from five basic contact arrangements, combinations can be stacked to satisfy intricate circuit switching requirements.

Welded-crossbar palladium contacts, new-type molded insulation and stainless steel bearings contribute to this d-c relay's longevity. Coils rated 1 to 250 volts, 0.1 to 26,000 ohms; contacts 3 amps maximum. Bulletin GEA-4859.

heavy-duty general-purpose Three contact arrangements -spst, dpst, and dpdt-plus four mounting arrangements give the CR2790E real versatility. Mounting arrangements available are the enclosed form shown here, open form, back-connected form for panel mounting, and a plug-in form for use in process control equipment.
Its heavy silver contacts are rated 10 amps continuous at $115 / 230$ volts, 60 cycles; normally open contacts will make and break 45 amps , normally closed contacts 20 amps. Bulletin GEC-257 gives full details.

VENDING MACHINES AND DISPENSERS Designers of coin changers, coinoperated phonographs, drink dispensers, and similar automatic devices will soon be familar with G.E.'s new appliance relay, an inexpensive multi-contact unit. Featuring quiet operation, reliability and compactness, the CR2790G relay is available in ratings of 24 and 115 volts a-c, 24 volts d-c, 5 amps continuous. Bulletin GEA4864.

GENERAL (6LECTRIC

DYNAMOTORS FOR QUICK DELIVERY!

Shopping for fractional-hp dynamotors? General Electric can now supply you on a short-shipment basis! Production has finally caught up on these d-c

to a-c converters for communications service. Standard dynamotors are available in ratings of 200 and 500 voltamperes, 60 cycles, continuous duty. Specials are also available, but on a slightly longer shipment. For more complete information on these fhp equipments, contact your G-E representative or write Fractional-horsepower Motor Div., General Electric Co., Fort Wayne, Indiana:

MORE PULL IN LESS SPACE

You'll find these new, small, allwelded solenoids useful in any application where a straight-line thrust is required ... they're a natural for vending machines. The small unit requires only three cubic inches of space, and develops 0.26 pounds pull at $\frac{1}{2}$-inch stroke; its "hig brother" produces 3.7 pounds at $\frac{3}{4}$-inch stroke.
Brazed-in pole shader increases efflciency, insures quiet operation. Varnishimpregnated coil provides high resistance to shock, splashing water, oil. Check Bulletin GEA-4897.

SHOW IT, THEN THEY'LL KNOW IT

If your organization has an educational program underway, or plans one, ask your G-E representative to show you the Industrial Electronics Training Course. Rated tops in visual training by the nation's industrials, schools and institutions now using it, the complete kit contains twelve half-hour slide films with records, individual lesson guides keyed to the film, and a manual for the course instructor.

Everything from fundamental electronics to up-to-the-minute electronic

production tools are forcefully described and explained in this easy-to-take visual course. Check Bulletin GES-3303.

need something special in CAPACITORS?

Here's a new .0075 -muf, $10-\mathrm{kv}$ d-c capacitor for television, precipitation, and similar electronic equipment requiring filtering in high-voltage power supply. Other capacitances (.0005 to .01 muf) and voltages (3 to 30 kv) can be supplied.
Ceramic container acts as insulator, simplifies mounting, cuts size (volume) to $1 / 5$ th without lowering quality in any
way. Ingenious internal hermetic silicone seal eliminates solder. Pyranol filled. Contact your G-E representative or write Transformer Div., General Electric Co., Pittsfield, Mass., for quotation.

LOOKING FOR

PERMANENT MAGNET DATA?
These two new bulletins are packed full of application and design information to help you build magnets into your electronic equipment. CDM-1 covers "Permanent Magnets"; CDM-2 describes "Cast and Sintered Alnico Magnets." Coupon below will bring this valuable information to your desk quickly. Check it now.

Peessunaly Conoucteo THROUGH THE REVERE MILLS

REVERE PRODUCTS AND SERVICES

BECAUSE OFHC Copper looks like any other copper, Revere takes great pains to identify it throughout processing, to see it is not lost track of or mixed up with other types. The obvious thing is to mark each piece, which is done, but markings are obliterated by operations such as rolling, and so Revere goes to the length of assigning special personnel to follow each lot of OFHC Copper from one operation to another, watching carefully to be sure each load is kept intact.

In addition, Revere takes full cognizance of the fact that OFHC Copper for radio purposes must have special qualities. In making anodes, it must be deep drawn, and for the feather-edge seal, it must be capable of being rolled or machined down to $.002^{\prime \prime} / .010^{\prime \prime}$. By carefully controlling mill processing, grainsize is kept at or below permissible limits. Freedom from oxygen, and from voids, is guaranteed by the method of casting the bars from which we roll the forms required. In addition, there is an operation which results in Revere OFHC Copper being not just commercially free but nearly absolutely free of internal and external defects. This great care in producing copper for radio and radar purposes probably accounts for the fact that Revere is a preferred source of supply.

All Revere Metals are processed with the care and attention required to assure that they meet all metallurgical and physical specifications. Revere supplies mill products in non-ferrous metals and alloys, and also electric welded and lockseam steel tube. An important part of our service to industry is the Revere Technical Advisory Service, which will gladly collaborate with you on specifications and fabrication methods.

REVERE

COPPER AND BRASS INCORPORATED
Founded by Paul Revere in 1801
230 Park Avenue, New York 17, New York
Mills: Baltimore, Md.; Chicago, Ill.: Detroit, Mich.; New Bedford, Mass;; Rome, N. Y.
Sales Offices in Principal Cities, Distributors Everywhere

The new Lapp Gas-Filled Condensers save about 30% of space requirements as compared with previous units. Current paths are only one-third as long, with consequent lower losses. Current ratings, effective voltage ratings and safety factors have been increased. On variable models the tuning shaft is at ground potential, which eliminates need for special insulated tuning shafts. Punc-ture-proof. Constant capacitance without need for "warm-up," Lapp Gas-Filled Condensers are a source of proved dependability for capacitance at high voltages or high currents for radio or industrial electronic circuits. Write for bulletin No. 265.

ELECTBIC "LISE BETS"

 for domestic hot water heaters

When water in municipal systems contains dissolved minerals and chlorine, it becomes a fairly efficient electrolyte.

To avoid electrolytic corrosion which may occur if dissimilar metals are in contact with the water, the Toastmaster Water Heater employs "LIFE BELT" heating elements attached to the outside of the tank. In such an application, the ability of the elements to give long, trouble-free, economical service rests solely upon the quality of the electrical resistance material used. To assure top-level performance for a lifetime, the McGraw Electric Co., maker of the Toastmaster Water Heater, specifies Nichrome.*

The tank of the Toastmaster Heater is further protected by McGraw's new "Iorodic" system of corrosion prevention, whẽre a magnesium
rod anode, immersed in the water, saves the cathodic material of the tank from electrolytic attack.

Thus the manufacturers are able proudly to state: "We guarantee the Toastmaster Electric Water Heater for 10 years, and we deem this to be a conservative commitment. Many water heaters made by this company are still in daily use after several times this length of service, and elements in the old water heaters show little wear and no loss of efficiency."

Profit by the example of the McGraw Electric Co. and specify Nichrome. And remember, Driver-Harris manufactures over 80 alloys designed to fill the numerous requirements of the Electrical and Electronic industries . . fully described in our catalog R-46.

Driver-Harris Company

HARRISON, NEW JERSEY

BRANCHES: Chicago, Detroit, Cleveland, Los Angeles, San Francisco, Seattle
Manufactured and sold in Canada by
The B. GFEENING WIRE COMPANY, LID., Hamilton, Ontorio, Canada

Physical Properties of Insulation

PHYSICAL PROPERTIES OF INSULATION VITAL IN ELECTRICAL EQUIPMENT DESIGN

Dielectric strength values are probably the most useful single criterion of the behavior of electrical insulation for specification, comparison and design purposes.

The belavior of insulating materials under electrical stress is, however, only one of many factors to be considered in its selection. Just as electrical insulation is the only means of isolating electrical circuits. so it provides the only mechanical support for electrical conductors. It is thus the "keystone" which locks equipment elements into proper relative position and supports them, electrically and mechanically. It often requires careful judgment to secure the proper balance of properties in a material for a specific application, since the electrical and mechanical environments may frequently demand performance characteristics which are at variance with each other.

Therefore, the engineer must know not only the electrical properties of an insulating material, but also how it will react physically to high temperatures, vibration, abrasion, compression, slock and tensile stresses in operation and in fabrication and assembly.

Values for the physical properties of electrical insulation, as determined by methods standardized by the American Society for Testing Materials, should be interpreted with the same caution as dielectric strenguh values. For physical characteristics may vary with the thick. ness of the material and its temperature and moisture content.

IMPACT TESTS

ASTM Designation D ${ }_{25} 6-47 \mathrm{~T}$ sets up methods for determining the relative toughmess or resistance to shock of electrical insulating materials. Impact values are indicated by the energy expended by the machine in fracturing a standard sample of material, $1 / 2^{\prime \prime} \times 1 / 2^{\prime \prime}$ square, with a notch approximately . $100^{\prime \prime}$ deep, so that thickness of the sample to the notch is exactly $\mathrm{foo}^{\prime \prime}$.
Two methods are used. Method A employs a Cantilever Beam (Irod Type) Impact Machine in which the specimen

Figure 1-Cantilever Beam (Izod Type) Impact Machine used in testing impact resistance of electrical insulating materials.
is clamped at one end as a cantilever beam (Figure 1). Method B employs a Simple Beam (Charpy Type) Impact Machine which is similar except in the design of the impact head, and in that the test sample is supported at both ends. The pendulum is released from such a height that linear velocity of striking edge at impact is about 11 lps.

Test reports include: (1) specimen size, (2) method of test, (3) conditioning, (4) direction of testing (sheet materials), (5) whether samples were cut lengthwise or crosswise from the sheet, (6) value of energy expended in breaking sample, expressed in $\mathrm{ft}-\mathrm{lb}$ per inch of notch, (7) average thickness of sample and (8) number of such samples broken in each operation of the machine.

LAMICOID SHEETSMINIMUM IMPACT STRENGTH

NEMA Grade		Izod Impact Strength Ft-lb/in. notch (Flatwise) (Edgewise)	
X	(Poper Base)	1.3	0.50
P	(Paper Base)	*	0.50
XX	(Poper Base)	1.0	0.40
XXP	(Poper Base)	*	0.40
XxX	(Poper Base)	0.80	0.35
XXXP	(Paper Base)	*	0.30
C	(Canvas Base)	3.2	2.0
CE	(Canvas Base)	2.3	1.3
L	(linen Bose)	2.5	1.2
LE	(Linen Base)	1.8	1.0
A	(Asbestos Paper Base)	1.8	0.80
AA	(Asbestos Fabric Base)) 3.5	3.0

*Flatwise tests are applicable only to sheets having a thickness of $1 / 2^{\prime \prime}$ or over. No flatwise values given as these grades are not available in thicknesses exceeding $1 / 4^{\prime \prime}$.

Vital in Electical Equimnent Design

MICA PRODUCTS OFFER WIDE RANGE OF PROPERTIES

Mica Insulator Company manufactures a highly diversified line of insulating materials which alford many combinations of physical and electrical properties. Longer life and better
performance have been buile into many different products through careful selection and application ol materials possessing the proper balance of characteristics.

EMPIRE ARMATITE
SLOT INSULATION
tough, lle itble, casily-formed combimations of fabricand paper provides telatively high dielectric strength and more compact finished insulation. It used together with high-itrenght Iamicoid slot wedges and Empire cloth for plase insulation in this wound stator for a squimel age motor. Playsical and dielectric properries complement each other in providing insulation dependability.

POST-FORMING LAMICOID

ideal for deep drawing and forming is used to advantage by RCA as an antema case and insulating part for the 66BX portable radio. In addition to its high dielectric strength and low power factor, this fabricbase laminated phastic has the adsantages of high impact resistalice and compressite strenglh, and is stable whler varying atmos. pheric conditions.

FIBERGLAS-BASE LAMICOID
impregnated wirh Melamine resin, finds wide use where fire are and temperature resistance and high impact strength are important, as in lemmana and pranel boards. slot sticks, pole collars and coil spacers. It possesses very high diclectric strength and very low moisture absorption.

Over 5° years of experience have gone into the development and manufacture of Mica Insulator Company electrical insulation products. The accumulated knowledge of material properties and specialized experience in the problems of electrical insulation application is at your disposal. Consult our Technical Service Deparment on your insulation problems.

Always room for something NEW and BETTER

NEW...
Presto
8D-G
Recorder

Extreme accuracy . . . designed for the finest instantaneous and master recordings. Λ special feature is the direct gear drive with separate motors for $331 / 3$ and for 78.26 rpm . Overhead driven independently of the turntable and has a choice of seven different feed pitches in each direction.

NEW
Presto 92-A Recording Amplifier

Sixty-watt amplifier especially designed for high-fidelity recording. Vertically mounted chassis. Removal of front panel gives access to all circuits. Output stage has four 807's in push-pull parallel. Selector switch and meter provide both output level indicator and plate current readings for all tubes. Response: 20-17,000 cps.

NEW...Directly gear-driven at both $331 / 3$ and 78.26 rpm , with two separate motors, one for each speed. Instantaneous speed selection by turning mercury switch, without damage to mechanism. Speed: Total speed error is zero. Noise: At least 50 db below program. Starting: Table on speed in less than $1 / 8$ revolution at $331 / 3 \mathrm{rpm}$.

NEW . .
Complete portable recording console. Three low-level input channels with mixers, master gain control and variable high and low frequency equalizers. Four fixed characteristics: Flat between 30 and $15,000 \mathrm{cps}$, NAB recording, 78 rpm recording, and playback complementing NAB recording.

For further information about any of this new equipment, write or wire

RECORDING CORPORATION, Paramus, New Jersey Mailing Address: P. O. Box 500, Hackensack, New Jersey

Precision standards are set in the laboratory.

- Accurate performance of your product is limited by the precision of its component parts. It is only through selection of precision components that superior performance can be assured. Hi-Q Ceramic Capacitors, for example, can be held to a minimum tolerance of . 25 MMF. Constant surveillance throughout every stage of manufacture . . . from raw material to finished product . . is responsible for this uniformly high quality of al $\| \mathrm{Hi}-\mathrm{Q}$ components. Specify Hi-Q components . . . your assurance of precision performance.

New Mutual-Don Lee Studios

MUTUAL-DON LEE'S brand new 3 million dollar Hollywood studios serve as the heart of the network's West Coast AM-FM-TV activities. The block-square building is as modern as tomorrow, and its audio facilities are unexcelled anywhere in completeness and flexibility.
The impressive Master Control-custom-built by Western Electric-is one of the world's largest and most complete control centers. It contains equipment for simultaneous multiple dispatching to 10 outgoing networks and 4 recording channels of programs originating in the 12 studios, 3 announce booths, 96 remote pick-up lines and 7 incoming networks. Many extra circuits are provided to handle special requirements and a complete monitor system makes all programs available to managerial, sales, and public rooms. Through the use of pre-set program control with auto-
matic switching, only one master operator is required.
Besides the Master Control equipment, Western Electric supplied for the studios 14 custom audio desks of the three types shown on the opposite page.

The "king size" of this installation is indicated by the number of components in Master Control and the 14 desks: 212 amplifiers, 67 rectifiers, 996 relays and 6,999 jacks, joined by 145,500 feet of wire with 108,074 soldered connections.

Western Electric and Bell Laboratories engineers are experts in the design and construction of custombuilt audio and switching systems for stations of every size-as simple or complex as you require. For details see your Graybar Broadcast Representative, or write to Graybar Electric Company, 420 Lexington Avenue, New York 17, N. Y.

- QUALITY COUNTS -

[^4]
Custom Equipped by Western Electric

STUDIO CONTROL CONSOLES-Eight of these serve the auditoriums and drama studios in the new Mutual-Don Lee headquarters. Each console provides for six nicrophone inputs, a reverberation circuit, two transcription inputs and a remote input channel.

STUDIO-TYPE TRANSCRIPTION CONSOLES
Three of these are used in the smaller studios for handling commentary and round-table discussion programs, disc jockey shows, and the playback of delayed broadcasts with facility for cut-in announcements.

ANNOUNCE-TYPE TRANSCRIPTION CONSOLES

 -Three of these provide facilities in the KHJ network and FM announce booths for fading into and out of programs, giving identification and spot announcements and playing transcribed commercials and recorded fills.
Electric

Mutual-Don Lee's new $\$ 3,000,000$ block-square Hollywood home.

This new folder shows 24 small, compact Allied Relays with a carefully detailed table of characteristics and specifications. Write for YOUR lree copy today.

TYPE

ALLIED RELAY

SENSITIVITY:

9 MILLIWATTS

Supplied with contact ar rangements up to 2 -pole double-throw. Standard silver contacts rated at 1 ampere at 24 volts DC or 110 volts AC non-inductive. Coil rating 9 milliwatts up to 38 volts DC and 0.12 volt-amperes up to 110 volts AC. Dimensions: $13 / 4^{\prime \prime} \times 23 / 8^{\prime \prime} \times 23 / 4^{\prime \prime}$.

FOR A LIMITED POWER SUPPLY OR PRECISE OPERATING CHARACTERISTICS

When the circuit calls for "Q"..

STACKPOLE
 CUPCORES save space e reduce costs improve performance

Stackpole iron powder molded cup cores are ideally suited to save valuable space and to make important contributions to high " Q " circuits. They are compact, efficient; may be mounted close to the chassis or any other metal part.

Stackpole offers a broad range of shapes and types-and, where required, can produce special cup cores to the most exacting specifications. Write for samples. State your specifications and probable quantities required.

The laminated steel core coil requires about three times as much space as the newer powderediron core coil.

Ahove is a still further refinement of the loading coils shown at left. This coil may be wound more casily, and at less cost than the toroid type.
 powdered-iron cup-core type inductors. Imagine the space required if only toroid or lam. inated core coils, as shown in the first illustration, were available.

In W western Union carrier telegraph systems. Stackpole cup cores contrib. systems. Stackpole cus shown above.
ute to the performance show

"Tosted and $A_{\text {proveved" }}$

in Western Union Radio Beam Equipment!

Made by Stackpole to meet rigid requirements of Western Union design, Powdered-Iron Cup Cores are a relatively recent development. Western Union Radio Beam and Carrier Systems Equipment engineers have taken full advantage of the many space and labor-saving possibilities they offer. Since 1942, progressive design improvements resulted in the pictures shown at the left.
Part of a recent Western Union report reads, "Subsequent research work has re-
sulted in a new shell type of core. This form of core possesses marked advantages in that it permits the use of simple coils, wound on a plastic spool, in place of the laboriously wound (toroidal) type previously necessary. . . . The shell type powdered-iron cores also provide substantial improvement in carrier operation due to improved attenuation characteristics. These advantages, together with the reduction in cost, will doubtless result in shell type coils being used extensively."

Get All the Up-fo-Date Information on Stackpole Cup Cores-Write for Bulletin RC-7B

For low resistance, high stability
 in printed circuits...
 Use DU PONT cONDUCTIVE COATINGS

FOR MANY electronic circuits, there is profitable economy in the use of flexible, high conductivity Du Pont Conductive Coatings in place of solder wire connections.
what they are-Du Pont Conductive Coatings are carefully formulated compositions which contain specially prepared silver powder. They are designed to produce a surface of low electrical resistance when applied to metals and to non-conductive materials, such as: glass, porcelain, steatite, plastics, wood, cloth, paper, etc.
HOW THEY ARE USED-By spraying, dipping, brushing or stenciling at approximate paint thicknesses. A troy ounce covers about 3 square feet of material. Conductivity of the coating is only slightly affected by aging or exposure to sulfides. Applied to metal, the conductive coating inhibits rust and maintains inherent surface conductance.

WHERE THEY ARE USED

Printed Circuils - For radios, switchboards, meters, hearing aids, and a variety of equipment now using conventional solder wire connections.
High Voltage Capacitors - For television, FM and AM radios where economy, compactness, light
weight and extreme stability are essential.
Static Shielding-The air-dry type is an efficient, practical replacement for foils and cans.
Electrical Equipment - For printed circuit amplifiers, and couplings.

advantages of Du Pont Conductive Coatings

1 -High conductivity (low resistance).
2-Flexible application-Composition may be formulated in suitable vehicles for desired methods.
3-Fired-on types are not affected by contaminating atmospheres.
4-Elimination of poor connections.
5-Easily applied with simpleeconomical equipment.
6-Assist high-speed production.
Two types of Du Pont Conductive Coatings are available:

Type " F," the fired-on type, specifically designed for bonding metals to ceramic bases.

Type "A," which may be air-dried or baked on, is used chiefly for printed circuits and for electrical shielding by the radio industry.

For further information, clip the coupon below. E. I. du Pont de Nemours \& Co. (Inc.), Electrochemicals Dept., Wilmington 98, Delaware.

Tune in Du Pont "Cavalcade of America." Monday Nights-NBC Coost to Coost

Du Pont Electrochemicals

BETTER THINGS FOR BETTER MVING...THROUGH CHEMISTRY
E. 1. du Pont de Nemours \& Co. (Inc.), Electrochemicals Dept., Wilmington 98, Delaware. Please send me Conducive Con Name

Address

Only a Prosperous America Can Be Free

DURING May 50 million American workers will get from the Congress of the United States a real incentive to work.

This incentive is called a tax cut. Beginning May 1 , the withholding tax on incomes will be reduced, giving everyone a much-needed increase in takehome pay.

But the tax cut will have a far more important effect. It may be literally a life-saver for American employment and production-and, hence, for the stability of the world. It will help to do two things which must be done if our economy is to continue to furnish good jobs and good earnings.

1. It will generate part of the private funds for investment in common stocks - the "risk capital" which we need to sustain prosperity.
2. It will provide part of the incentives necessary to make American business management still more effective.

These two predictions are not advanced as matters of opinion. They are based on facts reported by McGraw-Hill field editors.

These facts show why the reductions in upper bracket income tax rates are most significant for our continued prosperity. For the first time in more than twenty years the tax burden on people who can afford to risk their savings has been lightened. To find out what this will mean to the economy, McGraw-Hill field editors all over the nation asked a group of business executives making $\$ 15,000$ a year or more how they will use the money which the tax cut gives them. Here is what they said:

1. They plan to save - not spend - three-fourths of the money they keep as a result of tax reduction.
2. They plan to invest one-half of these savings in common stocks. If all persons making over $\$ 15,000$ follow this pattern, they will make available about a half billion dollars of risk capital for American industry.

WHAT THE TAX CUT WILL DO

What will upper bracket taxpayers do with their tax savings?

What can business expect as a result?

To answer these questions, McGraw-Hill field editors interviewed a carefully selected sample of business executives earning \$15,000 a year or more. Here, for the first time, are solid facts that show how tax reduction will effect the supply of risk capital and business incentives. These are the results:

1) How much of your tax reduction will you save?
2) How much of your tax savings will you invest in common stocks?
52%
3) Will lower taxes lead you to switch some of your investment in bonds to stocks?

Yes 28%
4) Have you passed up an opportunity to invest in a new business in the last five years because the return after taxes did not justify the risk?

Yes 40%
5) Will lower taxes make you more inclined to take a risk on a new business? Yes 80%
6) Have you turned down the opportunity to take a bigger job in the last five years because taxes would take too much of the additional income offered?
7) Do you know of actual cases of executives who have turned down bigger jobs or more work because of taxes?

Yes 38%
8) Will lower taxes make you more inclined to take on a bigger job or more work?

Yes 59\%
3. They also will switch some of their present savings from bonds and bank accounts to common stocks. This might easily add a billion dollars or more to the supply of risk capital.

The one-half billion dollars of tax savings and the funds switched from other investments into common stocks is not enough to end the shortage of risk capital. But it is a start.

Before passage of the tax law, risk capital had been growing increasingly scarce.

One measure of the scarcity is that last year only four-tenths of 1% of national income went into new common stocks. In 1925, a year of normal prosperity, almost 3% of national income was invested in new common stocks.

Another measure is that between 1940 and 1947 people actually reduced their holdings of corporate stocks and bonds by nearly a billion dollars. During the same period, people salted away almost $\$ 150$ billion in such safe havens as cash, bank deposits, and government bonds.

This drought of risk capital hit us just when we need a vastly increased flow of risk capital to finance the expansion and improvement of our American productive machine. We need risk capital to search for new oil fields and to build new pipelines and refineries. We need capital to expand our over-loaded electric and gas utilities. We need it to finish reequipping our airlines and railroads and bus lines. We need it to modernize our textile production. We need it to keep pace in the magical, booming chemical industries. We need it to launch the new industry of television.

We need capital for all this work and for much more besides. And we must do all this work if we are to keep the United States dynamic and if we are to create new and better jobs.

The tax cut comes just in time. As the last editorial in this series showed, the flow of risk capital must double or triple if we are to avoid a cutback in industrial expansion next year. A major reduction in industrial expansion because of a shortage of risk capital would menace our prosperity. Whenever capital expansion has sagged, the whole economy has sagged. That is the record. That is why every American has a crucial interest in breaking the shortage of risk capital.

The tax reduction now going into effect helps relieve that shortage. In my opinion, we need still
other tax changes to assure enough risk capital for healthy industry and healthy employment.

We should encourage the rapid depreciation and replacement of plants and equipment to keep America efficient.

We should eliminate the double taxation of stockholders' incomes.

We should permit full averaging of good years and bad in calculating income tax payments.

We should cut tax rates again as soon as we can.
The tax cut of 1948 will prime the flow of capital. We must keep it flowing.

The tax cut also encourages our successful men and women to work harder and more effectively.

The McGraw-Hill editors collected some solid facts to show how seriously heavy taxes have discouraged business leaders. Here they are:

1. One out of seven persons the editors questioned said that they had turned down positions with greater responsibilities because heavy taxes would take most of the greater pay that went with the harder job.
2. Six out of ten executives would be more inclined to accept a more responsible job now that taxes will let them keep more of the added pay such a job would bring.

We all have a stake in incentives which make men work harder, especially talented men. The more we each work, the more we all have.

The tax reductions so far made will leave the government more than enough revenue to meet all its expenses, including the proposed defense expenses, and still reduce the national debt. If more defense money becomes necessary, vigorous economy on less essential government expenses will make possible both stronger military defenses and a better tax system. We need both.

Only a prosperous America can be strong enough to remain free - and to help keep the rest of the world free.

President, McGraw-Hill Publishing Company, Inc.

Here's the loudspeaker line that rocketed to stardom!

IN just a few months after deliveries started, the Western Electric line of high-quality, wide range speakers has won a position of undisputed leadership wherever the ultimate in sound reproduction is desired.

All of these speakers combine, to a unique degree, unmatched realism in reproduction with exceptionally small space requirements and ease of installation. With their range of power capacities, you can select just the speaker you want for every sound radiation requirement.

Have you ordered some? Call your local Graybar Broadcast Representative, or write Graybar Electric Co., 420 Lexington Ave., New York 17, N. Y.

156A-10" diractradiator. 20 watis, 65:10,000 cycles.

7288-12" direct radiator. 30 waths, 60-10,000 cycles.

754 TYPE-12" high-efficiency direct rodiators. $60 \cdot 10,000$ cycles; 15 wotts indoor service, 50 wetts outdoor.

Western Electric

electronics edition June 1948

NOW! HIGH-VOLTAGE HIITEMP* SEALDTITE* TELEVISION TUBULARS

Dependable, yet moderately priced high-voltage molded paper capacitors for television receivers are the latest capacitor development to be introduced by Solar.
These new capacitors, latest addition to the famous Solar "Sealdtite" series, are impregnated with mineral oil and molded in Hi-Temp plastic compound for service at ambient temperatures up to $100^{\circ} \mathrm{C}$.
Identified as Solar Type STM, highvoltage Hi -Temp Sealdtites are available in standard voltage rating of from 2000 to 6000 volts.

The use of moisture-proof molded housings makes possible a surprising reduction in capacitor size over conventional cardboard type design. The maximum capacitances available in the $3 / 4^{\prime \prime} \times 21 / 8^{\prime \prime}$ mold size, for example, are as follows: . 035 mf @ 2000 wvdc; $.03 \mathrm{mf} @ 2500 \mathrm{wvdc}$. 02 mf @ 3000 wvdc; . 015 @ 3500 wvdc; $.01 \mathrm{mfc} @$ 4000 wvdc; . 005 @ 4500 wvdc, 5000 wvdc and 6000 wvdc.

Complete listings of standard ratings and sizes are given in Solar Cata\log Bullerin SPD-200. Write for your copy today.

Solar Manufacturing Corporation 1445 Hudson Blvd., North Bergen, N. J.

* Trade Mark

BUSINESS BRIEFS

By W. W. MacDONALD

Biggest Customer for many RMA member-companies in 1947 was Uncle Sam. Here's the way communications equipment sales (exclusive of home receivers) broke down, most of the volume covering transmitters and associated apparatus:
U.S. Govermment..

Broadcast Stations
General Users
$\$ 48,548,676$
Aviation
25:868,781
Marine
9,631,332
Uncle was first by a wide margin on electronic navigation equipment, including radar and sonar:
T.S. Government
$\$ 81,320,45 \mathrm{~J}$
Aviation
$2,823,571$
769743
Marine
769,743
And Uncle bought $\$ 4,601,257$ worth of our laboratory and test equipment.

Movie People, now very conscious of the competition presented by home television, are out of the talking and into the doing stage. paramount recently relayed a spot news event into a New York picture palace, transferred it to a film and ran the film thirty seconds later. The audience, not told about the stunt at the box office, took the program for granted.

Watch for more of this sort of thing, without benefit of cooperation from broadcast stations.

Multiple-Screen Tele, an idea broached some time ago in this column (p 68, March), appears to be taking hold. Commercial installations involving one set and several remotely-operated cathoderay tubes have been made in taverns in the New York area. Adaptation of the scheme to home sets appears certain to follow.

Indoor Tele Antennas are badly needed, thought many dealers attending Televiser's recent show at the Hotel New Yorker. It seems that thousands of apartment-house families are number-one prospects for sets but, for various reasons, see little chance that they can be connected to outdoor or master antenna systems for years to come.

Things that the public want have
a habit of coming true, despite technical difficulties. One possible solution of the indoor tele antenna problem involves a compact directive array positioned to catch signals on the second or third bounce off building walls, in conjunction with a preamplifier. Any other ideas floating around out there?

Major Impression gained at a recent meeting in Philadelphia attended by tube manufacturers and designers of industrial electronic equipment is that it is silly to put a $\$ 1$ tube in a $\$ 1,000$ control attached to a $\$ 10,000$ machine unless the tube is completely suited to the application.

Makers of controls, it seems, are willing and anxious to spend more for tubes that have predictable life, particularly if they can be sure such tubes will be available on a long-term basis.

Miniature Tubes are in such demand that occasional shortages are anticipated. At least one manufacturer is urging equipment designers to play safe by (1) using types available from three or more suppliers, (2) planning chassis layouts readily convertible to octals and, (3) arranging to use miniatures having either of two base layouts.

Prediction by one tube maker is that by 1950 miniatures will represent 60 percent of receiving-type production, metal 20 percent and conventional glass 20 percent.

We Hear That Sperry Gyroscope has just received a contract from the U. S. Coast Guard for 20 loran sets. Some 40 sets were bought back in June of last year. Several aid weather ships to keep on their stations.

Just About Everything is used in the field of electronics. The other day we saw a camera set up to take pictures of oscilloscope

15 WATTS AT 940.5-Mc. with the EIMAC AX150A IEIRODES

FREQUENCY UP 6X, (156.75-Mc. to $940.5-\mathrm{Mc}$.) POWER UP 7X (2 watts to 15 watts)

Here's a STL transmitter that's in operation on the new $950-\mathrm{Mc}$. band, fulfilling all the FCC requirements and powered by Eimac $4 \times 150 \mathrm{~A}$ tetrodes. It's a part of the studio-transmitter-link between the San Eruno studios and the 250 Kw FM transmitter of station KSBR high atop 3849-foot Mt. Diablo some 33 miles away.

The R-F amplifier was specifically designed for the KSBR application by Eimac engineers. It is driven by an REL modulator delivering 2 watts output at 156.7 - Mc. to one Eimac 4X150A in a tripler stage, which in turn drives a single 4X150A in a doubler stage, providing 15 watts useful output at $940.5-\mathrm{Mc}$.
The Eimac $4 \times 150 \mathrm{~A}$ is ideally suited for this application because of its high power gain at relatively low plate voltages, ability as a frequency multiplier without loss of amplification, low grid drive requirements, and a high ratio of transconductance to capacitance. It also has the advantage of being physically smal. and functionally designed for simple installation.
Complete data on the Eimac 4X150A for STL and other UHF applications is available by writing direct.

EITEL-McCULLOUGH, INC.

197 San Mateo Avenue, San Bruno, California

EXPORT AGENTS: Frazar \& Hansen-301 Clay St.-5an Francisco, Calif.

ESENTIAL DATA
KSBR STL TRANSMITTER
REL MODULATOR, MODEL 694
EIMAC 4XI50A, R-F AMPLIFIER

Frequency - - . . - . - - 940.5 Mc .
Frequency Stability - - - - - - . 002%
Audio Frequency Response.
Substantially flat - - - 50 to 15,000 cycles
Distortion - - - - - - - . 5% Max.

Noise Level - To db below 100% modulation
$\pm 100 \mathrm{Kc}$. deviation
Eimac $4 \times 150 \mathrm{~A}$
General Characteristics

Follow the Leoders to

S8-B General Purpose, 12 to 24 elements, for laboratory or field use, quick-change transmission for wide range of record speeds, automatic titling and numbering, automatic record-length control, tuning fork time marker, galvanometer attenuators, governor motor.
(Bulletin SP165)
58.6 General Purpose. 24 to 36 elements, otherwise same as type S8-B. (Bulletin SP165)
S8-D General Purpose, 12 to 24 ele. ments, similar to type S8-B except without automatic controls.
(Bulletin SP175)
S12-A Small Portable, General Purpose, the smallest complete 12-element oscillograph.
(Bulletin SP167)
S6-A Geoophysical. 12 elements.
S6-B Geoophysical. 24 elements.
S14-A Student's Oscillograph. 6 to 12 elements, ultra-simple, low in cost.
(Bulletin SP183)
S15-A Portable Self-Powered. 6 elements, for use where very small size is essential and power is not available.
(Bulletin SP193)
SC16-A Cathode Ray. 6 elements. very high frequency response and writing speed, record speed to 6000 inches per second.
(Bulletin SP 194)
RS9-A Automatic Oscillograph. 12 elements, for switchboard or portable use. for automatic recording of faults or staged system testing, high-speed starting.
(Bulletin SP 196)
WHATEVER YOUR REQUIREMENTS MAY BE THERE IS A
HATHAWAY OSCILLOGRAPH FOR YOU

WRITE FOR
 TECHNICAL BULLETIN

INSTRUMENT COMPANY
1315 SO CLARKSON STREET. DENVER 10. COIORADO
vision receivers 30 percent; radio sets 24 percent; tubes, parts, dry batteries, accessories and miscellaneous products 9 percent; gorernment and industrial business 5 percent.

Stromberg-Carlson's 1947 sales were split three ways: radio 65 percent; telephone 31 percent; sound 4 percent.

Allen B. DuMont manufacturing division sales in 1947 : television receivers $\$ 7,774,000$; cathode-ray tubes $\$ 1,846,000$; cathode-ray oscilloscopes $\$ 1,702,000$ and television transmitters $\$ 517,000$.

Vernier Dial designed by one of our readers (p 68, April) appears to interest quite a few manufacturers looking for new things to make, and we have forwarded their inquiries to the designer. Anyone else out there we can help in a similar manner?

Magnet Wire produced in 1947 totalled 300 million pounds, according to the best estimates we have been able to obtain. About one third of this wire went into electronic apparatus.

Best Argument cathode-ray tube makers have for limitation of the number of television types is the cost reduction that can be obtained by mass production. Many students of the current trend toward lower-priced sets believe that savings that might be achieved by variations in tube design at this time are minor by comparison.

Highest Priced item ever offered by GE for use in the home is a new $\mathrm{a}-\mathrm{m}$ and $\mathrm{f}-\mathrm{m}$ phono-radio and television set listing at $\$ 2,100$.

Government Specs cover over 4,000 tube types.

Norm Krim of Raytheon says it costs at least $\$ 50,000$ to develop a really new tube.

New To Us is an expression heard the other day in a laboratory. We arrived in the middle of an obvious flurry of excitement. Questioned regarding the cause, one of the engineers replied, quite casually, that he thought it was just a "routine emergency."

It's a far cry from smoke signals to electronic communications. And at the heart of electronics lies the coil. We wind coils of great variety for many uses and our 30 years of experience is at your service. Send us your specifications. We

COTO-COIL CO., INC.
COIL SPECIALISTS SINCE 1917
65 Pavilion Ave., Providence 5, R. I.

The proved long shelf life of Mallory Capacitors is a plus value to the man responsible for Inventory

When you buy capacitors it's a relief to hnow that, should your proluction program change, the stock on hand may be held without becoming useless

Yours for the asking!
Everything you want to know about Mallory electrolytic capacitors-tyןes, sizes, electrical characteristics - even data on test measurements and mounting hardware! through deterioration. Mallory Capacitors have proved on many occasions that they can take long periods of storage without loss of efficiency.

We recently tested capacitors for several customers* who had shelved them for up to six years. All proved ready to use without re-iging. Mone took more than seven minutes to reach the leakage limit of new units. All characteristics were within the limits of new-unit inspection.

Such quality is added protection for the man who specifies Mallory Capacitors. Such quality is invarially buiit into Mallory Approved Precision Products.

* Names on request.
buy mallory assured quality at regular price levels

MALLORYcapacitors

 (ELECTROLYTIC, OIL and WAX)P. R. MALLORY \& CO., Inc., INDIANAPOLIS 6, INDIANA

CROSS
 TALK

- INTERCARRIER . . . One of the tempests raging in the television field is that around the intercarrier method of receiving the sound. In this system (see Electronics, Jan. 1947, p 102), the picture and sound carriers are amplified together in the picture i-f amplifier, developing a $4.5-\mathrm{mc}$ beat frequency (the separation of picture and sound carriers) at the picture tube grid. This beat note is frequency modulated by virtue of the $\mathrm{f}-\mathrm{m}$ on the sound carrier and hence may be passed through a limiter, frequency detector and audio amplifier to the loudspeaker. At first this idea sounded attractive principally on the grounds of economy, since no sound i-f amplifier is needed. Soon the economy idea was replaced by recognition of advantages relating to the shortcomings of the local oscillator in a standard receiver. The intercarrier system is highly tolerant of drift, microphonics and hum modulation in the local oscillator, since these affect the carriers in the same degree and hence do not disturb the $4.5-\mathrm{mc}$ beat note. An intercarrier receiver would, in fact, require no fine tuning control.

Then a manufacturer was so brash as to bring out an inexpensive video receiver using the intercarrier system. Brash, because mutterings had been heard from the first that the system would fail if the picture carrier was frequency modulated to any extent by the picture waveform. Then a low pitched ($60-\mathrm{cps}$) rattle which could not be separated from the sound modulation would appear at the loudspeaker. To be sure, interference of this type was soon discovered, particularly when the picture modulation was heavy, but the effect was not pronounced and certainly was tolerable in an inexpensive receiver. At least so it seemed on the low-band stations then on the air.
So the inexpensive sets continued to sell, and the mutterings of the transmitter manufacturers continued to be heard, and action to recommend to the FCC standards which would safeguard against excessively heavy picture modulation continued to be deferred. Then a station on channel 13 opened up in the New York area. This channel, on $210-216 \mathrm{mc}$, was expected to give the most trouble from unavoid-
able frequency-modulation of the picture carrier. But when listening tests were carried out, the intercarrier sets seemed to do as well, or nearly, as on the low band stations. The conventional receivers, for the most part, gave considerably inferior performance, due to hum modulation, microphonics and drift of the local oscillator, in the order named.

Thus often is confidence misplaced. The transmitter men had done better than they thought; the receiver men had done worse. The argument is not over yet. But the inexpensive receivers continue to sell and the recommended standard continues to be deferred. Our guess is that when enough of the intercarrier receivers are sold, the transmitter designers will have to lick incidental frequencymodulation of the picture or lose customers, and the broadcasters will have to monitor modulation or lose a good part of their audience. We don't argue for such de facto engineering, based on sales figures, but we recognize its power.

- DECISION . . . Since we commented in February on the care with which marine radar must be used as an anti-collision device, a Canadian court has ruled, in another case, that the use of radar does not free the master of a vessel from the established rule of the sea, namely that he must operate at such speed as to be able to stop within a distance not greater than one-half the range of visibility. Visibility here means the distance the lookout can see with human, not radar, vision. If this decision establishes a precedent in admiralty law, the utility of radar in the marine field will be sharply restricted. No captain would dare run through fog at high speed with radar guidance if by so doing he placed himself and his owners in the position of being legally responsible for any collision which might occur, regardless of other circumstances. Before the courts can be expected to take a more liberal view, an impressive record of safe operation of radar-equipped vessels must be amassed. That drives the point home: radar is a safety aid only when it is properly installed, adequately maintained and intelligently used.

Loudspeakers above the aisle of this Portland, Oregon trolley bus provide music for riders

Fixed-tuned f-m broadcast receiver for bus radio service

Car-Card Radio

THE BANNS have been proclaimed for an interesting four-way marriage of transportation, f-m radio broadcasting, the riding public, and advertising. Proponents of the scheme claim that all the participants gain.

The Basic Idea

Predicated upon the fundamental premise that riders of a transportation system are captive during the period of their travel, the advertiser can be assured of a measured number of listeners to his sales talk for any given day and time of day. In return, the rider gets free music and news. Bus systems feeling the pinch of increased operating costs will welcome any device that supplements revenue from the sometimes provocative but as yet unvocal "car cards". And the station that keys its programs to the new advertising medium can be expected to reap some additional revenue at a time when f-m broadcasting needs it.

The broad contractual aspects of
the system are simple. The f-m station enters into an agreement with the local transit company that provides exclusive rights for the broadcaster to install receiving equipment in the vehicles. The radio station pays a monthly fee to the transit company for each radioequipped vehicle, in the manner of recompense for car card advertising. Another contract is made between the broadcaster and the organizing agency that provides for purchase of receiving units and all accessories (currently selling for about \$141) and the appointment of the agency as exclusive advertising representative.

Taking the narrow view (the small city bus line) the suggested system of transportation radio looks simple; but ad men thinking in terms of the broad golden field are already causing engineers some worry. For example, interest has already been shown by certain railroads,

While the bus can get along with a normally sensitive, single-channel receiver, the railroad car must be
equipped to pick up weaker signals at greater distance on a receiver that can be tuned from one frequency to another as the train progresses from one service area to another along its route. There is then nothing to insure that the receiver is tuned to the program desired by the sponsor of the service. Length of time that a given station will be heard satisfactorily depends not only upon transmitted power from the antenna but also upon such diverse factors as speed of the train and terrain between the transmitter and the moving receiver.

Planes are a special and more difficult problem.

Programming Problems

Transportation authorities are already discussing contracts that insure a minimum amount of advertising material, both as to length and frequency. Programs can't be all boogie-woogie or all Shostakovitch. The idea of a sports broadcast is enough to make any transportation executive's hair

Table 1-Announcement and Time Rates for 400 Receivers

Announcements								
	1	13	26	52	104	260	500	1,000
Class A (23,000 riders)	Time	Times						
$\begin{aligned} & 7-9 \mathrm{am} \\ & 4-6.30 \mathrm{pm} \end{aligned}$	\$20.00		\$19.00	\$18.00	\$17.00	\$16.00	\$15.00	\$14.00
$\begin{aligned} & \text { Class } \mathrm{B}(8,200 \text { riders }) \\ & 6-7 \mathrm{am} \\ & 9 \mathrm{am}-4 \mathrm{pm} \end{aligned}$	10.00	-	9.50	9.00	8.50	8.00	7.50	7.00
Class C (4,400 riders) $6.30 \mathrm{pm}-$ midnight 12-12 Sunday	6.00		5.70	5.40	5.10	4.80	4.50	4.20
Time Rates								
6.30 pm -midnight								
1/2 hour	40.00	38.00	36.00	34.00	32.00	30.00	-	
1/4 hour	15.00	14.25	13.50	20.40 12.75	19.20 12.00	18.00 11.25		

> Radio programs keyed to a captive listening audience in buses, trolleys, and trains constitute a new advertising medium and source of revenue for the f-m broadcaster
curl. What if the bell rings at the count of nine just as the bus pulls into the terminal! At the same time, the radio station can not afford to key its entire production into a transportation receiving system. There is, of course, the possibility of turning bus receivers on or off with an ultrasonic tone. Broadcasters turn pale when the riders' radio scheme is compared to the Muzak system of music supplied by wire to restaurants and other public places where music is designed, as are the murals or the drapes, as a backdrop for more important activity. The system is no source of revenue if the riders' consciousness is not pricked. And the Federal Communications Commission would undoubtedly view with disfavor a broadcasting system using conventional f-m frequencies to concentrate a narrow type of program material in the manner of point-to-point communication. Quite aside from the strictly legal aspects, the broadcasters realize that concentration on transportation radio to the exclusion of the
greater potential audience would knock the whole business flat on its face.

Because there are inherently few technical problems that can not some how be overcome by competent engineers, the greatest potential impediment to adoption of car-card radio would seem to be the rider himself. Judging from the surveys that have so far been publicized, the public can be expected to lap it up. Better than 95 percent of those queried have indicated that recently broadcast test programs of music and news were not only acceptable but enjoyable. Of 2,626 interviews completed among the riders on five different lines in or near Cincinnati between the hours of 9 am and $6 \mathrm{pm}, 2,514$ indicated enjoyment, 84 did not enjoy the program, and 28 maintained a neutral attitude.
Although the idea of car-card radio is spreading rapidly and negotiations are in progress in a number of cities, the only firm rates available at the time of this writing were furnished by Louis E .

Schaefer of Transit Radio, Inc. for WCTS-FM, Cincinnati, Ohio. This station operates on 101.9 mc (Channel 270) with an effective output power of 12.6 kw . Under a contract with Transit Radio, Inc., there are to be 400 single-frequency $\mathrm{f}-\mathrm{m}$ receivers placed on vehicles of the Cincinnati Street Railway Co., the Covington, Cincinnati and Newport Railway Co., and the Dixie Traction Co. The audience is estimated at 380,000 riders per day. Guaranteed average circulation has been divided into three classes, the rates for which are shown in Table I. Announcements must not exceed 35 words. Three-minute news periods and sports summaries in which the total commercial time must not exceed 50 words is charged for at the announcement rate plus 50 percent. Weather reports and time signals are handled at special rates. The time rates for programs in excess of 3 minutes are covered only in the second Class C category.

Equipment

Under the normal conditions so far encountered, adequate signal has been obtained using a dipole antenna mounted horizontally above the front windshield (so as not to interfere with conveyor-type bus cleaning operations). A 50 -ohm line connects the antenna to the receiver installed under one of the passenger seats.

The receiver itself is a crystalcontrolled, fixed-tuned superheterodyne with eleven miniature tubes. Frequency response is within ± 2 db from 50 to 10,000 cycles, with an audio output of 8 watts. Ordinarily six 6 -inch permanent magnet speakers mounted along the ceiling of each bus are adequate. Two volume controls are provided; one a master that is locked into place at the time of installation; the other a vernier control for adjustment over a $6-\mathrm{db}$ range. Power is supplied from a dynamotor operating from the vehicle's battery. At 12 volts input the drain is less than 8 amperes. The receiver is shock mounted and any component weighing over 5 grams is tightly fastened to a terminal board so as to avoid breakage from vibration or jarring.-A. А. мск.

Engineering the Schematic Diagram

Abstract

Step-by-step procedure for preparing intricate diagrams so that major circuitry stands out clearly, with stages arranged according to mechanical groupings of equipment yet still in logical order. Diagrams for APS-3 radar serve as examples

By JAMES M. HENRY*
Radiotelephone Engineer. New England Telephone and Telegraph Co. Boston, Mass

and

MILLETT G. MORGAN*
 Assistant Dean, Thayer School of Engineering, Dartmouth College Hanover; New Hampshire

TThe ideal schematic diagram should present the features of a circuit in a form which is suitable for ready analysis in the fashion of the flow-of-function outline, exemplified by the organization chart, the production-line flow, the chemi-cal-process diagram and other systematized arrays of information.

Diagramming with lines which show only circuit components and their interconnecting copper wires, without a scheme, produces an impenetrable labyrinth when extended without refinement to modern complex electronic equipment. The scheme is the essence, and effective schematic diagrams should display clearly:
(1) A readily discernible pattern or general framework of the system that stands out boldly from a background of accurate but subordinate detail.
(2) The sequence of events or operations, such that cause is plainly related to effect, and the directions of flow of power, signals, impulses and functions.
(3) The relative importance of components or units.
(4) The roles that individual

[^5]components play in circuit operation.
(5) Certain broad mechanical features of grouping of construction.
(6) The physical points of ready access to the circuits where tests may be applied, measurements made, or results obtained.
(7) The controls as to name, physical position, how the adjustment is made mechanically, how the controls are related to other controls and to the influences they exert.
(8) Copious annotations, including electrical values of components.

Careful planning of a clear, rich schematic calls for the expenditure of time, thought, and ingenuity to achieve clarity and smoothness. It must be sketched again and again, rearranged and sketched over. A good schematic cannot be drawn casually. It must be done by one

FOR SIMPLIFIED MAINTENANCE

Increasing ingenuity in developing electronic devices today demands that a correspondingly high order of skill be devoted to lucid recording of their circuitry.

The techniques described here for enhancing the clarity and value of intricate schematic diagrams were successfully used during the War throughout the Massachusetts Institute of Technology Naval Radar School.

Extra time spent in planning and execution of diagrams for commercial radar, communication and industrial electronic control equipment will more than pay for itself in simplification and speedup of maintenance and servicing
who knows thoroughly the operation and purposes of the equipment.

The Block Diagram

The positions on the paper of all parts of the drawing should conform to a general framework or plan which shows the flow of function. This bare framework is called a block diagram. It should first be sketched out in as ideally simple and straightforward a manner as possible. The flow begins with the primary motivation of the equipment, generally at the left of the sheet. As the activating impulse or signal is carried through successive operations, such as amplification, reshaping, phasing, and the like, heavy black flow lines should be drawn toward the right, passing through these operators or modifiers sketched in as unit-function blocks without regard to their physical locations in the equipment.

By unit-function block is meant a whole circuit operating as a unit, such as an amplifier, multivibrator, or oscillator. The path may branch and proceed through parallel paths or it may be joined by paths of impulses coming in from blocks above or below the main flow. For eye appeal, consecutive order, and readability, the flow should be kept moving in smooth unbroken streams from the cause, on the left, to the effect on the right.

Having sketched an ideally smooth flow, as illustrated by the diagram of an APS-3 radar equipment shown in Fig. 1, it will be recessary to modify this to some

FIG. 1-First draft of block diagram. showing idealized flow of functions for APS-3 radar
extent to conform to the actual physical locations of the unit-function blocks in the equipment.

By moving these blocks up or down it will be possible to collect, in one general group on the sheet, those which are located in the same mechanical unit or box. Such a step is illustrated in Fig. 2. This will require the flow lines to dip downward or upward from the original ideal path. Any rearrangements which result in straighter flow lines or emphasis upon the relative importance of the paths should be used. This will often require related units to be above each other.

The blocks related by physical location are enclosed by a larger dashed outline, boldly drawn, designating the frame, unit, or box which contains them. Within this outline the blocks may be shifted about to preserve straight flow lines and to eliminate as many crossovers of paths as possible. From the schematic viewpoint these outlines may be rectangles, long, short, horizontal, vertical, notched, or otherwise shaped to accommodate blocks, without regard to similarity to the actual box shape in the equipment.

Frequently it is desirable to prepare the entire schematic so that it can be separated into individually complete numbered pages. This arrangement is particularly useful for instruction book or text book purposes. The appropriate section of the entire drawing may also be secured inside covers or doors of the individual apparatus boxes or
cabinets. When the worker studies the overall system schematic drawing, he encounters the same familiar diagram patterns which he finds in the covers of the individual units. To provide this page sectionalization, additional rearrangements of the drawing may be required so that reasonable divisions can be made. In general this is not too difficult once the mechanical grouping of unit-function blocks has been determined.

Figure 3 illustrates a rearrangement of the material of Fig. 2 into four separate quadrants or pages. Helpful general details have been filled in to form the complete block diagram as finally developed. The quadrant or page numbers refer to detailed drawings, one of which is shown in Fig. 4. Note the very close correlation between the patterns of the heavy flow lines on Fig. 3 with
their counterparts on the detailed drawings of Fig. 4. For the reader, this preservation of the pattern simplifies the mental transition from block diagram to individual page. It is also a powerful assistance to the memory.

The Detailed Sheet

The positions of the unit-function blocks having been roughly determined by the layout of the block diagram, it becomes necessary to develop the detail within each block. This detail comprises resistors, capacitors, coils, tubes, etc, whose wiring must fit into the general scheme.

To achieve smoothness, it may be necessary to draw and redraw the circuitry of blocks top for bottom or right for left to conform to the straightforward block diagram. It should always be kept in mind that each block is a subsidiary link in the branching chain-of-function How.

The component resistors, capacitors, and tubes should be so disposed with respect to each other that the circuit behavior and purpose is made clear. This may require readjustment of the block diagram as space requirements become defined. Where voltage divider chains of resistors provide graduated voltages, they should be arranged in the simple straight line or row with the high voltage impressed across the ends. Successively lower-voltage taps come out from it like steps in a ladder. A convenient concept is a potential gradient of the tapping wires:

FIG. 2-Regrouping of unit-function blocks of APS-3 radar diagram to conform to

FIG. 3-Final block diagram of APS-3 radar, with helpful detail filled in. Arrangement in four quadrants permits comparison with the four schematic diagram sheets, one for each quadrant, that are drawn next
highest near the top, lowest toward the bottom.

Bridge circuits should be drawn to look like a bridge. If the plate impedance of a vacuum tube is part of an arm of the bridge, it should be drawn in one of the sides of the diamond and oriented to match. This will immediately assist the reader to understand what the designer expected the tube to do.

When networks might require the application of Thevenin's or Kirchhoff's principles for analysis, the link elements, meshes, and junctions should be drawn to stand slightly apart from other circuits and be arranged so that the appropriate principle is apparent.

Electrical symmetry as exemplified in balanced circuits should be expressed as graphical symmetry. Symmetry of general function should also be so shown where appropriate. It should be emphasized that graphical symmetry should not be employed for the sake of pictorial composition when no such real electrical symmetry exists.

Electrical similitude should be emphasized, when valid, by graphical similitude. A group of R-C chains, selectable by a switch, all similar in principle but differing only in time constant, should be grouped; all pairs of resistors should be placed at the same level and the attitudes of one R-C combination repeated for all. Once the reader has decided what one is for, he can plainly see that all fulfill the same purpose. Such an R-C group should stand apart from other similarly appearing R-C links whose function is not immediately related to them.

Where cables connect one outlined unit to another, the sides of such units should be arranged to be adjacent and the elements so arranged within that the cable can be shown as a family of straight wires, free of cross-overs, running between the units. Some cable wires will carry the chain-of-function flow, standing out boldly and becoming part of the general framework of the diagram.

Too often the simple circuitry of primary power distribution involving on-off switches, fuses, automatic overload cut-outs, interlocks, time delays, gate and battle switches, can become woven into a complex web of advanced wiremanship that would defy Maxwell himself, though he be armed with the finest of volt-ohmmeters. These primary circuits are usually set up sequentially: that is, the one most remote from the main fuses depends upon the functions of numerous devices preceding it. The diagram of this web should be drawn as branching chains of influence flowing across into rungs of a ladder whose rails are the two primary power leads. From the diagram it should be instantly apparent, without wire tracing, which units are controlled by a given switch and which chains of influence would be put out of commission by a blown fuse or open gate switch. The drawing should be deliberately set up so the man with the volt-ohmmeter can see immediately what

FIG. 4-Schematic diagram for upper left quadrant of Fig. 3, as drawn before standardization of symbols by ASA. Use of several weights of letters and lines improves effectiveness and eye appeal, but takes longer to draw
voltage or resistance he might normally expect to encounter in making a measurement at any point.

Designations and Markings

The schematic drawing should carry identification of every resistor, capacitor, tube, and switch. This means a designation (or part) number together with the circuit value or type number. It should make unnecessary the usual frequent and aggravating reference to the parts list.

All pin numbers on all tube sockets should be shown. All jacks, plugs, terminals, fanning strips and cables should carry their designations and actual numbers. All supply voltages should be shown where appropriate.

To eliminate many conventional leads from the drawing, a system of margin coordinates on each numbered page of the drawing makes it practical to show an arrow head on the end of a lead with a simple legend giving the drawing page
number and coordinates where the other end of the lead may be picked up. This is used principally for plate supply voltage leads or similar common sources. Thus, in Fig. 4, drawing 2, the screen supply for the modulator tube has the legend $+1,250 \mathrm{~V}(2-\mathrm{A} 3)$. The 2 refers to the drawing sheet and A3 are the coordinates on drawing 2 where the screen supply source will be found.

Each control for adjustment, calibration or operation should be marked with the name it actually carries on the panel. This name (abbreviated) is usually enclosed in a box to designate that it is so marked.

It is desirable to designate by simple, appropriate symbols whether it is a screw-driver adjustment or a knob and whether it is accessible from the front panel or is within the chassis. Although the drawing examples printed herewith do not show the latter features, extensive and very helpful use was made of such designations in later drawings.

The several weights of letters and lines shown in the accompanyillustrations are the minimum found effective in providing the desired emphasis of flow and subordination of detail.

In the large amount of work done on drawings of this kind it has proved most satisfactory to standardize on $17^{\prime \prime} \times 22^{\prime \prime}$ tracing cloth sheets for original ink drawings. This is a convenient scale for the draftsman and reduces to $8 \frac{1}{2}{ }^{\prime \prime} \times 11^{\prime \prime}$ individual sheets in a 2 to 1 reduction. The examples shown here suffer unavoidably from a reduction somewhat more than this.

The authors wish to acknowledge the inestimable contributions of Richard L. Bliss of the MIT School of Architecture, who learned electronics for the sole purpose of producing the drawings described above and who wrestled with the fatiguing routines of countless redrawings to produce truly engineered schematics.

LIGHT METER for Electric Flash Lamps

Battery-operated phototube-amplifier-meter circuit integrates incident light produced at subject to be photographed by capacitor-energized electric flash lamps. Meter is calibrated to read directly in aperture numbers for correct color or black-and-white exposures

By HAROLD E, EDGERTON
Massachusetts Institute of Technology Cambridge, Mass.

T1 HE photoelectric light-integrating meter described here was developed for measuring the incident light from repeating electricflash photographic light sources that are energized by discharge of a capacitor. The object of most light measurements of this nature is to determine the camera aperture, and for this purpose the meter

FIG, 1-Circuit and characieristic curves of photoelectric light-integrating meter for capacitor-discharge electric flash lamps
can be calibrated to read directly in aperture numbers that will result in properly-exposed photographs for both color and black-and-white film.

The person most interested in the use of this meter is the one who is to take color photographs. He will place the meter at the subject and direct the phototube opening at the main light. A pushbutton will flash the key light or all the lights and the meter will indicate a given reading if the correct camera aperture for the type of film selected has been pre-set on the optical attenuator. The photographer can then adjust the camera aperture to the value indicated by the meter, or modify the distance to the key light to obtain some desired aperture.

As a next step. the fill-in light, background lights and spots can be measured and the light-to-subject spacing arranged so that the ratio of the key light to these others will produce the desired photographic effect.

A further use of the meter is to check the output of electric-flash lighting equipment, by comparing meter readings for standard and unknown lamps and power units. Also, the effectiveness and angular distribution of light from reflectors can be evaluated.

Desig? Data

The measurement of the quantity of light produced by a flash from an electric-flash lamp involves the integration of instantaneous values of light over the duration of the flash. A circuit that accomplishes this under certain conditions is given in Fig. 1A. The measurement of light requires that the phototube current and instantaneous light be proportional, so that $i=K F$, where
K is a constant relating phototube current i and light flux F.

Figure 1B shows the general shape of the volt-ampere characteristics of an RCA Type 929 vacuum phototube with strong illumination. Note that the current and luminous flux can be proportional only for voltages above the knee (point A).

Should the instantaneous variation of luminous flux exceed that corresponding to the knee during a short, intense flash of light, the equation $i=\kappa F$ will not be satisfied and the meter indication will not be a true measure of the integrated light. Gas-filled phototubes cannot be used since, because of the effects of the gas, the current may not be proportional to flux. The curves of Fig. 1B show that about 100 volts is required on this phototube if 36 lumens is the greatest instantaneous illumination that is to be experienced. For 145 lumens, the voltage should be about 200 volts. From this limited number of data it appears that the saturation current is approximately a function of the square of phototube voltage.

A voltage proportional to the integrated light and thereby proportional to exposure is obtained across an integrating capacitor C if the phototube current flows ino the capacitor. The voltage is

$$
\begin{equation*}
e_{\varepsilon}=\frac{1}{C} \int_{0}^{\infty} i d t=\frac{K}{C} \int_{0}^{\infty}{ }^{\infty} d t \tag{1}
\end{equation*}
$$

A vacuum-tube voltmeter with an indicating meter M is used to record the voltage without discharging the capacitor at a rate which interferes with the reading of the meter after the flash. The drift of the indicating meter after a flash reading will depend upon the grid current of the vacuum tube, the leakage current of the phototube,

Light meter is held at position to be taken by subject and is aimed at flash lamp, which is tripped remotely by pushbution on end of cord
and the leakage of the circuit. The size of capacitor C must be increased to such a value that the drift is inappreciable unless some method is provided to adjust the drift, such as grid current compensation.

In the practical design of an integrating light meter the capacitance for an uncompensated circuit is usually about 0.1 uf when the meter drift is limited to less than a full-scale deflection in about 30 seconds.

From the equation $i_{c}=C(d e / d t)$, the time to drift to full scale, if the grid and leakage currents are assumed constant, can be given by $t_{d}=C e_{c} / i_{c}$, where e_{c} is input voltage to produce a full-scale deflection, t_{d} is the time required for the meter to drift from zero to full scale, and i_{c} is the current that causes drift in the integrating capacitor C. Thus the drift time is a function of the grid and leakage currents and the integrating capacitor once an amplifier design has been selected.

The grid current curve of a typical three-electrode vacuum tube appears in Fig. 1C. For most tubes the crossover point X of zero grid current is about -1 volt with respect to the negative end of the cathode. It is inadvisable to oper-
ate on the right-hand side of the crossover point since the grid current increases rapidly due to electrons that arrive at the grid with energy obtained from thermal processes at the cathode. Positive ion currents are responsible for the negative slope of the grid current curve between the points B and C since the number of positive ions is directly a function of the plate current. To the left of point C the plate current is cut off and the tube serves no useful function. Therefore the portion of the characteristic that can be used falls between C and X .

Point C as well as the entire curve depends upon plate voltage. A plate voltage is selected that is as low as possible, but still ample to produce plate current that is several times that of the maximum reading of the meter. The usual practical value of grid bias is well to the left of point X for all operating conditions.
The type 1L4 tube connected as a triode with the screen and plate tied together can be used with 45 volts on the plate, a plate current of 0.5 ma and a grid bias of -1.3 volt. A 200 -microampere meter is used as an indicator. Under this condition the grid current is less than 10^{-8} ampere for selected tubes
that have been aged for two days with 90 volts on the plates.

Self-Bias Connection

Amplifiers with self-bias resistors have voltage calibrations that are relatively independent of the tube constants. This independence of calibration is gained at the expense of sensitivity in the conventional circuit design. However, for this special trpe of amplifier with a floating input capacitor, as used for light measurement, the advantages of self-bias can be gained without a loss of sensitivity. As long as the product of capacitance C and the voltage necessary for full-scale deflection e_{0} is constant, the light necessary for full-scale deflection of the meter and the drift time will not be changed. The drift time is also proportional to the same product.

A suitable design with degeneration by means of a cathode resistor is one that reduces the gain by a factor of five; this is provided by the circuit of Fig. 1. Such a design will decrease the influence of tube characteristics by a factor of about the same value.

Testing the instrument

Should the phototube voltage be less than that required for saturation the meter will read low. A simple test of the meter, with any flashing light source of known duration, is to vary the phototube voltage and record the resultant meter reading. If the meter reading is constant as the voltage is increased, there is ample voltage on the phototube. The limiting phototube voltage can be found by decreasing the phototube voltage until the meters begin to drop.

If a flashtube with a shorter flash is used, but with the same quantity of light, the break will occur at a higher phototube voltage.

Shorrest Allowable Flash

The duration of most flashtubes ranges from 50 to 1,000 microseconds. As a general rule, the duration is longer for the more powerful lamps.

The limiting time of flash can be calculated approximately as follows: Assume that the flash of light is of rectangular form providing F

Complete battery-operated photoelectric light-integrating meter as made by General Radio Co., and cioseup of phototube aperture containing Polaroid attenuator
lumens on the phototube cathode for T seconds duration. The quantity of light is

$$
\begin{equation*}
Q=\int_{0}^{T} F d t=F T \tag{2}
\end{equation*}
$$

or

$$
\begin{equation*}
e_{e}=\frac{1}{C} K F T=\frac{i}{C} T \tag{3}
\end{equation*}
$$

The phototube current is $K F$ amperes, and $i=C e_{\mathrm{e}} / T$. From this it can be seen that the peak current through the phototube is a direct function of the integrating capacitance and the voltage required for full scale on the deflecting meter. Likewise, the required phototube current for full-scale deflection increases inversely with change in duration of the flash. A short flash will require a larger phototube current and a higher phototube voltage if a full-scale reading without error is to result.

A phototube circuit with 100 volts on the 929 phototube and with a peak flux of 36 lumens will produce a photoelectric current of 1.7 ma, as shown by the lower curve of Fig. 1B. With $C=0.1 \mu \mathrm{f}$ and e° $=2.5$ volt (sufficient for a fullscale deflection of a 200 -microampere meter), $T=C e_{c} / i=147$ microseconds, assuming a rectangular pulse of light. The actual pulses of light from electric-flash tubes rise sharply to a peak and then decay with a form resembling an exponential.

With 200 volts on the phototube the current can be about four times greater and the time similarly de-
creases to 36 microseconds. By similar reasoning, a half-scale reading can be made with an 18microsecond pulse with 200 volts on the phototube.

An approximate general expression for the necessary phototube voltage required to give an accurate integration of a rectangular pulse of light of duration T can be obtained if the phototube saturation current i is taken to be a squared function of the phototube voltage E. The expression is $i=$ $A E^{3}$, where A is a constant. This current, when substituted for the integrator capacitor voltage previously given, results in the following expression for the required phototube voltage

$$
\begin{equation*}
E=\sqrt{C e_{c} / A T} \tag{4}
\end{equation*}
$$

As a numerical example, the required voltage calculated for a onemicrosecond flash is 1,150 volts. This might cause a flashover in the phototube. If it is necessary to measure microsecond pulses, a more sensitive amplifier or a smaller integrating capacitor should be used. Such a modification requires a smaller grid current in order to keep the meter drift time at a reasonable value. The phototube voltage becomes 240 if $e_{c}=0.1$ volt and $C=0.1 \mu \mathrm{f}$. These are reasonable values that can be obtained with a two-stage amplifier with grid current compensation.

Some care is required in selecting a suitable integrating capacitor since some capacitors have leakage
and others have absorption effects that are serious. It has been found that polystyrene and mica capacitors have very desirable characteristics. Certain types of oil capacitors can be used with success as integrating elements.

The light-meter calibration is made with a specific phototube (type 929) which is a vacuum-type tube with an S-4 surface. If other types are used, the calibration will not hold. The $\mathrm{S}-4$ surface has a peak sensitivity in the blue portion of the spectrum, at $4,500 \mathrm{~A}$. The sensitivity decreases from this peak to the cutoff value which is in the orange. Very little red light is measured. Thus the meter measures mainly the blue light. This is not a serious disadvantage since most photographic film, even the panchromatic types, also has a sensitivity peak in the blue.

For color photography the flashtubes that are used are mainly filled with xenon gas at high pressure for high-efficiency use. The meter should then be calibrated experimentally with a xenon lamp under conditions that are known to produce a suitable color-photograph result. Fortunately xenon flash-tubes are of about the same color temperature regardless of the energy loading, and therefore the light meter can be used for comparison purposes with success even if only sensitive to blue light.

Figure 1D shows the spectral sensitivity of two types of photoelectric surfaces as well as the
standard eye visibility curve and film response. A different phototube, type 926 (S-3 surface), has a sensitivity curve that covers the entire visual range as well as some of the infrared, but has a lower overall sensitivity than the 929 .
The Corning Glass Works can make on special order a filter composed of two kinds of glass that will correct the 926 phototube spectral characteristic to correspond to the visibility curve. A filter composed of glasses 3304 and 4784 gives a suitable combination. An accurate match can be made to any particular phototube at two wavelengths $(6,400$ and $4,800 \mathrm{~A})$ by adjusting the thickness of the two glasses.

The phototube in the light meter will respond to the light from any kind of light source. However, the meter output cannot be expressed in lumen seconds per square foot unless the spectral distribution is the same as that of the xenon flashtube that is used for calibration. All xenon flashtubes, to a first approximation, have a comparable spectral distribution and therefore the meter readings can be given in terms of lumen seconds.

Maximum Meter Sensitivity

The example given previously ($e_{0}=2.5$ volt, $C=0.1$ uf) will have a maximum reading of the meter corresponding to 36 lumens for 147 microseconds when a phototube voltage of 100 volts is used. This reading corresponds to $36 \times$ $147 \times 10^{-6}=0.0053$ lumen-second with a tungsten source having a color temperature of 2,850 Kelvin. Xenon lamps have an equivalent color temperature of from 6,000 to 9,000 and because of the proportionally greater blue light, require less than half as much visual light in lumen-seconds to produce the equivalent phototube current in the 929 phototube. For this reason a xenon flashtube will produce a fullscale reading of the meter with about 0.0026 lumen-second of incident light.

The projected area of a 929 phototube cathode is about 0.5 square inch, so the phototube cathode has a light density of about 0.005 lumen-second per square inch when used to measure the light
from axenon flashtube. We will now calculate the distance from a standard flashtube that will give this deflection for calibration purposes. A standard FT-214 flashtube (General Electric Co.) flashed from $30 \mu \mathrm{f}$ at 2,000 volts emits some 2,000 lumen-seconds and has an intensity I of 200 horizontal candlepower-seconds with a duration of about 150 microseconds. The number of lumen-seconds per square inch at a distance d in inches is $L=I / d^{2}=0.005$ lumensecond per square inch, from which $d=I / L=200$ inches $=16.7$ feet.

Calibration of the meter can be accomplished directly by this method, using a standard flashtube operated under specified conditions. Thus a full-scale meter reading corresponds to $U=200 / 16.7^{2}=$ 0.715 lumen-seconds per sq ft.

The reading of incident phosage in lumen-seconds per square foot can likewise be calculated from $U=l R M$ lumen-seconds per square foot, where M is the meter reading, R is the polaroid attenuation ratio as read on the front of the meter, and k is a constant of the instrument. The light transmission of the uncrossed Polaroids at the 1 setting of the instrument is about 30 percent and this influences the value of k.

A diffusing dise is shown on the attenuator, which also acts as a calibrator to make the meter directreading in lumen seconds per square foot; for this case k equals 1. With the diffuser removed, the value of k for most instruments is 0.015 with a 200 -microampere meter, with 200 as the full-scale meter reading.
The beam-candlepower-second output of a given flashtube and reflector combination is $k R M d^{2}$ or $U d^{2}$, where d is the meter-lamp distance in feet.

Neutral-density filters can be used to extend the scale range. Thus a $1 / 10$ transmission filter would give a multiplying factor of 10. Neutral-density filters are available in decimal, logarithmic and percentage steps.

The meter has an angular acceptance ratio depending upon the diffusion disc and other factors. With the disc, the meter reading decreases to half value when the
meter is swung 25 degrees from the meter-lamp axis. This angle decreases to 15 or 20 degrees without the diffuser. Any type of diffuser can be used in the filter adapter ring on the instrument.

Determining Camera Apertures

Preliminary experiments show that about 100 incident lumenseconds per square foot (U) are required to expose daylight Kodachrome properly with a CC15 filter at an aperture of $f / 3.5$. The aperture f is then equal to $\sqrt{ } 0.122 U$, where phosage U is in lumen-seconds per sq ft. Values of average incident light U required for various apertures are as follows:

Aperture f	Phosage U
1.0	7.85
1.5	18.5
2.0	32.6
2.5	50.8
3.5	100
4.5	165
5.6	256
6.3	326
8	520
11	986
16	2,080
22	3,940
32	8,380

As an example, suppose the lights are fixed and the meter is to be used to determine the aperture. Guess at an aperture such as $f / 3.5$ and make a reading. If the meter reads 100 , the guess was correct. If it reads 200 , the light is double that needed at $f / 3.5$. Therefore the aperture should be increased one stop to $f / 4.5$. Likewise, if the meter reads 50 , the correct stop is $\mathrm{f} / 2.5$.

Eventually tables of suitable values of incident lumen-seconds per square foot for all types of photographic emulsions and for different flash durations will be available from the film manufacturers.

The meter has an aperture scale on the Polaroid attenuator to read camera aperture directly. The aperture marks have been placed so that they correspond to a meter reading of $U=100$ for the correct lighting condition for the indicated aperture with daylight Kodachrome. These readings require the calibrated diffusing disc on the attenuator that is furnished with the meter. This disc also makes the meter direct-reading in lumenseconds per square foot.

FIG. 1-Basic considerations in design of bridge modulator for fascimile

By J. R, SHONNARD

Times Facsimile Corp. New York, N. \mathbf{Y}.

High resolution facsimile signals are transmitted over existing communication facilities by amplitude-modulated low-frequency carriers. A new type phototube and bridge modulator have been developed that enable light from the facsimile scanner to produce the modulation directly without generating frequencies that have to be eliminated by costly filters. The tube and circuit may simplify other systems in a similar manner.

Facsimile Transmission

Before describing the phototube and its action in the circuit, it is

Facsimile Modulator Tube

best to review the modulation problems that lead to its development. In many communication systems, facsimile being a typical example, the lowest modulation frequency is zero cps, corresponding in this case to a picture area of uniform density. The highest frequency is limited by what can be transmitted by the channel. Modulation currents as such cannot be transmitted over existing facilities because they are essentially interrupted d-c. To transmit them without introducing excessive distortion the channel would have to be polarized from transmitter to recorder thus requiring d-c amplifiers.

The solution to the problem has been to transmit the signal as an amplitude-modulated low-frequency carrier of frequency f_{r}. Under such condition the highest modulating frequency $f_{n^{\prime}}$ is limited to half the carrier frequency, assuming that filters with ideal cutoffs are available. Therefore the highest possible carrier should be used. In practice, the upper frequency limit is determined by the top of the channel passband. The carrier frequency is thus selected near this limit. Only the lower sideband of the amplitude-modulated carrier can then be transmitted, but this is all that is necessary for faithful reproduction and provides an efficient way to use the available channel. The manner in which these frequencies occupy the channel spectrum is shown in Fig. 1A.

The modulation frequencies f_{s} produce lower sideband frequencies f_{s} extending from the carrier f_{c} to the lowest sideband frequency $f_{s}{ }^{\prime}$ $=f_{c}-f_{s^{\prime}}^{\prime}$. When $f_{s^{\prime}}^{\prime}=f_{c} / 2, f_{s^{\prime}}=$
$f_{s \prime}$. If a higher modulation frequency is used the modulation band overlaps the lower sideband producing extraneous frequencies. Under such conditions filters cannot be used to prevent modulation frequencies from reaching the transmission circuit. If $f_{8}{ }^{\prime}=f_{x^{\prime}}$, ideal filters could separate the modulation and sidebands and 50 percent of the transmission band would be used. Actually sufficient guard band must be left between modulation and sideband freçuencies so that realizable filters can be used. If filters that do not have such sharp cutoffs as to introduce transient distortion are employed, the maximum use ratio of the channel is only 30 percent.

Phototube Modulator

The conventional type phototube bridge modulator shown in Fig. 1B produces both the modulation frequencies contained in the impinging light beam and the sideband frequencies of the modulated carrier in its output. The circuit is balanced for reactive and resistive currents. Light on the phototube upsets the resistive balance to produce the modulation.

When the RCA 5652 phototube, which has been designed for this service, is used, the output contains only the modulated carrier and sidebands. The signal can be connected directly to a conventional amplifier that is reasonably flat over its passband; filters are unnecessary. The phototube has two flat cathodes arranged at approximately right angles to each other. When both plates are illuminated, one acts as a cathode and the other as an anode, depending on the polarity of the

Phototube having two plates each acting alternately as cathode and anode simplifies bridge modulator. Because tube conducts alternately in one direction and then in the other, only desired modulated carrier and side bands appear across the output

potential applied between them. If the applied potential is alternating, equal current pulses flow in both directions with equal light on both plates. The average current is then zero. Even a flash of light for the duration of one cycle of the carrier causes equal but opposite pulses to How so that the effective current remains zero up to modulating frequencies of half the carrier frequency. Contrasted to this action, the current flow in a conventional phototube in a modulator circuit is unidirectional.

As used in the modulator, the new phototube is a variable impedance, the two cathodes being connected as an arm of an a-c bridge. Capacitive current is balanced, preferably by an electrode built into the phototube and completely covered with a dielectric. The capacitance between this electrode and one cathode is made approximately equal to the capacitance between cathodes.

For modulation by this tube the bridge circuit can be arranged as in Fig. 1C. If no light reaches the tube and $R_{1}=R_{2}$ and $C_{1}=C_{n}$, there is no voltage output. As reflected light reaches the phototube, conduction takes place in the direction governed by the polarity of the carrier. Both electrodes are photoelectric and therefore act alternately as cathodes and as anodes.

The amplitude of the applied carrier is limited by saturation of the cathode current in this circuit. The phototube operates on the linear portion of its characteristic curve, shown in Fig. 1D, for a given range of light values. In the case of high definition facsimile the maximum light is in the order of $4 \times 10^{-}$
lumens. The elemental area of illumination at the scanning drum is about 5×10^{-5} square inches. The carrier potential applied to the bridge is about 0.7 rms volt. If the bridge is balanced with the light source off, when the light is turned on the output voltage will be undistorted modulated carrier proportional to the instantaneous light intensity reflected from the rotating scanning drum; only carrier and sidebands will be present.

Operating Circuit and Tests

For convenience and ease of adjustment the circuit that is used has balancing controls. In addition, a diffusing plate is placed over the aperture to overcome two difficulties. First, a sharply focused image can cause uneven illumination of the two cathodes and thus produce occasional d-c keying components in the output. Second, the light beam passing through the aperture covers too small an area on the photocathodes for ease of adjustment when balancing the bridge to eliminate the modulation frequencies from the output, unless the optical system is very long. The diffusing plate defocuses the beam without sacrificing resolving power.
In operation, the output voltage varies from a maximum between 0.005 and 0.010 rms volt to a minimum controlled by the noise from the balanced bridge with the light off. The noise level of the bridge and the first stage of the amplifier is equivalent to 25 to 50 microvolts at the grid of the first stage. The load resistor, which also serves as the grid resistor of the first amplifier tube, can be from 1 to 20 megohms depending on the com-
promise that must be made between high sensitivity and stability against humidity, stray fields and input noise. The phototube noise does not seem to be a problem. The useful voltage ratio for light variations is therefore from 40 to 50 db .

When the scanner observes a 1.6 reflection density photographic black, the output rises about 10 db above the noise level. This level determines the minimum useful signal. When the scanner observes a bright white, the output rises an additional 30 to 35 db . However, such a range is beyond the capabilities of an average transmission channel. Therefore, after amplification, the signal is compressed to a range of about 20 db , within the limits of most channels.

Resolving power of any equipment with a given carrier frequency can be determined roughly by reducing the size of print being transmitted until the copy reproduced at the receiver is just illegible, assuming the receiver to be linear above the carrier frequency. A better but more complicated method is to select a type face and size that has a line width greater than is necessary to block light to the phototube. It is then certain that full interruption of the light to the phototube will be produced regardless of scanning velocity. Increasing the scanning velocity at both transmitter and receiver with a given carrier frequency will determine the maximum resolving power, and therefore the maximum usable modulation frequency for a given system. With the new phototube, 50-percent utilization of the channel can be realized and thus good resolution can be obtained.

Radio room of Army transport about 1918. The 5 -kw arc transmitter is at left

Radio in the Merchant Marine

Survey of ship communications for message handling and safety of life at sea. Basic radio law and changing legal requirements are reviewed as background in the evolution of technical equipment to meet specifications. Current trends are analyzed

By JOHN J. CANAVAN

Lieut. Comar. USMS
U. S. Maritime Service Training Station Sheepshead Bay, Brooklyn. A. Y.

Historically, it was the maritime mobile service that first adopted commercial radio communication and demonstrated its value to the world. Radio has maintained a brilliant record in the saving of life and property at sea from a period more than a decade preceding that fateful night in 1912 when the distress call from the stricken Titanic dramatized its usefulness. But in spite of the impetus which this highly successful aprlication gave to the radio industry during its infancy, technical progress in the marine field has been along conservative lines following, rather than leading, shore developments.

[^6]The first shipboard radio installations (circa 1901) utilized the discharge of a large spark coil across a straight gap into a tuned antenna system to radiate energy. A coherer, or rudimentary form of a multiple-point-contact rectifier, connected to an inker was used to record the received signals. Thus, it is to be noted that the first shipboard radio installations employed automatic recording and visual presentation of information! Within a short time the oscillatory discharge of a capacitor across a synchronous or quenched gap. was adopted as an improved method of setting up oscillations in a large antenna system. Radio energy in the form of broad, highly damped waves, usually modulated at a convenient audio frequency, was radiated at frequencies in the order of 100 to 200 kilocycles. The received signal was demodulated by a mag-
netic detector. A significant improvement in receiver effectiveness was realized when the unilateral characteristic of mineral crystals was discovered and applied to signal rectification. Although some voltage gain was obtained from the rather low-Q tuned antenna primary and secondary circuits, the audio component effective in the magnetic-type reproducer was low. Range, even under conditions of moderate signal-to-noise ratio, was restricted and reliability of both receiver and transmitter not always of the highest order.

An improvement in system selectivity, increased range, lower antenna insulation requirements, and better signal note were some of the advantages gained through the introduction of the Poulsen arc type of continuous wave transmitter prior to World War I. The arc oscillator, however, was limited by

Typical shipboard installation of distributed type. Shown from left to right are the main transmitter, coil rack, emergency crystal receiver, intermediate and high-frequency receiver. high-frequency transmitter, and emergency transmitter
an inherent inefficiency to wavelengths longer than 1,000 meters (300 kc) and found its most useful application on wavelengths as high as 18,000 meters (17 kc). Rapid extension of the vacuum-tube oscillator to marine use and unsuitability for radiophone (A3) modulation were the important contributing factors to the eventual obsolescence of the arc transmitter. Nevertheless, standard 2-kw ares remained as supplementary equipment on many ships throughout the 1930's and high-power installations of several hundred kilowatts were used in commercial and government coastal and transoceanic stations for many years.

Although the spark, arc, Alexanderson alternator (for land stations), and vacuum tube were concurrently or successively employed as oscillators during the three deeades ending in 1930, the superiority
of the tube eventually forced its acceptance by the marine industry. Early tube transmitters were usually of the converted spark type; that is, the oscillatory circuit of the shipboard spark equipment was replaced by one or two electron tubes with appropriate changes in circuit and power supply. Primary and secondary tuned circuits were left intact. Either c-w (A1) or tone modulated c-w (A2) emission was provided. Later tube equipments were designed especially for marine use. Some form of masteroscillator power-amplifier lineup furnished a choiee of several working frequencies centering around the two international marine calling frequencies of 143 and 500 kc .

Improvements

During the period 1930-40 the replacement of early v -t transmitters by improved types incorporat-
ing crystal control, and the almost complete disappearance of arc and spark equipment occurred. Tuned-radio-frequency and superheterodyne receivers, designed for exclusive marine application, were adopted as standard. However, many merchant ships did not discard obsolete equipment until the late 1930's.

Other innevations in this decade were: (1) the rapid expansion of high-frequency communication facilities and the production of several types of well-designed marine transmitters for this work; (2) the increasing use of low-powered marine radiotelephone, particularly on the smaller vessels and communications involving safety or ship's business; (3) the mandatory installation of an automatic alarm, capable of giving visual and audible indication of impending distress or safety information, on all merchant

Typical packaged shipboard installation including automatic alarm (with keyer unit), high-frequency transmitter and receiver, inter-mediate-frequency transmitter and receiver, emergency transmitter, antenna switch, and charging panel. Motor senerators are in lower section
ships over 1,600 tons where a continuous radio watch is not feasible; (4) the requirement for a batteryoperated transmitter-receiver unit in motor lifeboats of certain classes of passenger vessels to reduce the hazard involved in ship abandonment.

Perhaps the most outstanding advance during the recent war was the development and production of the packaged shipboard radio station; that is, one unit containing three v-t transmitters, three receivers, automatic alarm, main and emergency power motor-generator sets, and all switching and control circuits. This package could be tisassembled for handling and reassembled aboard the ship. Installation time was reduced from days to hours.

Hand-cranked, portable and semiportable lifeboat transceivers, highfrequency facilities on nearly every U. S. ocean-going vessel, and a keen but discriminating interest in the value of new electronic navigational aids were other evidences that postwar applications of radio in the marine industry would expand.

Thus the modern shipboard installation, the mobile end of the communications loop, is the end product of a 47-year old sporadic evolution and includes most of the technological advances made during the prewar and wartime years.

Sinipboard Radio Station

Every ocean-going passenger vessel and cargo vessel of 1,600 tons or over (certain government vessels and ships of the armed forces excluded) must have, upon leaving any U. S. port, an efficient, properly licensed radio installation in operating condition and manned by competent operators. Similar requirements are enforced by the administrations of other maritime nations. A continuous radio watch must be maintained at all times the vessel is being navigated outside harbors or ports. However, cargo vessels in lieu of additional operators may employ the automatic alarm device to monitor the safety and distress frequency (500 kc) during periods when the operator is off duty .

The minimum prerequisites for an efficient radio installation,
aboard compulsorily equipped vessels, are specifically fixed by law. However, equipment design, provided certain essential performance is assured, is not specified except in cases where the use of obsolete techniques would cause undue interference to other services.

Each shipboard radio station must have: (1) main transmitter and receiver; (2) emergency transmitter and receiver; (3) emergency source of primary power independent of ship supply, capable of 6 hours continuous service; (4) other ancillary equipment contributing to efficiency, such as a clock, and bridge communication. A normal range of 200 miles is required for the main transmitter and 100 miles for the emergency. Although at one time the low-frequency band between 100 and 200 kc carried the larger part of message traffic in the maritime mobile service, today nearly all work is done on medium or high frequencies. Most shipboard stations provide several working frequencies in the band between 350 and 515 kc , inclusive. The international
calling and distress frequency of 500 kc is used to make initial contact. Where supplementary high frequency is installed, it must comply with statutory regulations as to performance and use.

Regulatory performance specifications for marine radio equipment are not difficult to meet. There are, however, special considerations incurred by the stringent conditions of marine service. Ruggedness, compactness, part-replacement accessibility and protection against moisture and spray are some of the essential construction features. Efficient, well-standardized circuitry capable of easy and stable adjustment must be used throughout. Reliability must be of the highest order. It is necessary that operating controls be kept to the minimum consistent with good performance and that such controls be arranged conveniently. Provision for rapid one-control frequency shifting, simplified tuning, A1 or A2 emission at will of operator, use of 110 volts d-c as a primary power supply, or 12 -volt storage batteries as an alternate emergency source, optional use of crystal control on medium and high-frequency transmitters, and a break-in system that will permit the operator to receive during keying intervals are features included in modern marine radio equipment.

Main and Emergency Transmitters

Power output of modern shipboard transmitters ranges from 50 watts for the emergency set to 500 watts for the main, medium-frequency equipment. Average power outputs of 150 to 200 watts are typical. From five to eight working and calling frequencies within the band from 350 to 515 kc are provided. Shifting frequency is accomplished rapidly by a ganged switch and antenna retuning.

The oscillator is conventional and usually has eight pretuned ironcore circuits, or ganged tapped inductances for easy switching. Provision for crystal control on all or any one of the frequencies can be obtained by substitution of appropriate crystal for a removable input capacitor. An alternative mopa lineup uses a self-excited oscillator, buffer, and paralleled-tube power
amplifier. Antenna loading and tuning is accomplished typically by means of a tapped variometer. Plate modulation for A2 emission at 500 to 1,000 cycles originates in the power-supply motor generator which also supplies a high d-c voltage, or a low a-c that is increased and rectified for the plates.

Special precautions are taken to suppress harmonics and parasitics by complete shielding, oscillatoramplifier isolation, and r-f grid isolation. Primary, or some form of grid keying is used for carrier interruption in telegraphy.

Equipment Characteristics

The emergency transmitter, as an independent unit, has an output power of about 50 watts into a standard shipboard antenna, or single-wire (against ground) radiator of approximately one-quarter wavelength, end or center-fed. Antenna characteristics vary between 500 to $1,500 \mu \mu \mathrm{f}$ and 4 to 10 ohms . Modulated c-w (A2 emission) often due to raw a-c on plates, is frequently used. All power for the emergency transmitter is supplied from storage batteries through a motor-generator set of appropriate rating. Some main transmitters are so designed that they may be operated on reduced power from batteries, thus serving as emergency equipment.

Well-designed, rugged, dependable high-frequency transmitting equipment, specially built for shipboard use, is presently available. Power outputs of 150 to 200 watts, choice of A1 or A2 emission, provi-
sion for optional master oscillator or crystal control of eight frequency bands in the region 4.14 to 22.14 mc , are features of this equipment. Additionally, several working frequencies are included in each band. A stability percentage of ± 0.05 for master oscillator, or ± 0.02 for crystal oscillator is readily maintained under widely varying operating conditions. Oscillator circuitry is conventional. However, a form of temperature compensation is used by one manufacturer to insure the stability of a selfexcited type. Convenient, rapid resetting of oscillator and doubler controls is provided for facile operation. Simultaneous cathode or grid-block keying of all tubes, and the use of the beam-power tubes in the power amplifiers is almost standard. For economy it is necessary that the high-frequency and main transmitters use the same motor generator through a suitable switching arrangement which permits alternate, but not simultaneous, operation.

Marine Radio Receiver

The receiver is a vital complement to the shipboard installation. A typical station includes three or four such adjuncts: (1) main receiver for the vlf, 1 -f, and m-f regions; (2) emergency receiver for the medium frequencies; (3) highfrequency receiver. For a standby watch on 500 kc while working on another medium frequency, an additional set is sometimes used.

The main receiver, although of straightforward design and construction, has special features for

Transmitter-receiver used in motor lifeboats carried by passenger vessels
marine radiotelegraph application. The trf type with regenerative detector is standard in the marine medium band. Band switching, or plug-in coils, for substantially continuous coverage from 16 to 600 kc gives considerable versatility. One or two stages of r-f, a regenerative detector, and two stages of audio amplification is a lineup commonly used. Designed primarily for reception of A1 or A2 emission, bandwidth considerations permit high gain and selectivity per stage. Response to modulated signals is still further improved in a receiver of one manufacturer by employing audio transformers peaked in the 500 to $1,000-\mathrm{cps}$ region. A storage battery for heater supply and dry batteries for plates make the main receiver independent of the ship's power line.

The emergency receiver is a crys-tal-rectifier type as required by law. It covers a range from 350 to 515 kc and will respond to A2 or type-B (spark) emission.

Although special high-frequency receivers have been built for shipboard service, they possess few, if any, points of superiority over any standard, high-quality communications set. Generally, they use the superheterodyne principle and are engineered for ruggedness, reliability, and compactness rather than maximum performance and flexibility.

Automatic Alarm

Radio laws of the U. S. require that every ocean-going passenger vessel and every ocean-going cargo vessel of 1,600 tons or over shall maintain a continuous radio watch while at sea. However, cargo vessels, in lieu of additional personnel may use an automatic alarm device during the time operator is not on watch to guard the international distress and safety frequency of 500 kc . The automatic device must be capable of responding exclusively to an international alarm signal consisting of twelve dashes of four seconds length, spaced one second apart. To actuate, a minimum of $500 \mu \mathrm{v}$ at the receiver input is specified. The alarm signal must precede all distress calls and may be used for urgent hydrographic or meteorological broadcasts.

Automatic alarms in use on U. S. ships are of two general types: one employs a superheterodyne receiver with an electronic selector; the other uses a sensitive trf receiver with a square-law detector and mechanical selector. Both instruments give audible indication when a true alarm signal is received and audible or visual notice or both when the alarm becomes inoperative owing to circuit failure or unusual external noise or interference conditions. Variable receiver gain permits a setting of sensitivity within the range 200 to 50,000 $\mu \mathrm{v}$, thus allowing optimum adjustment for prevailing noise conditions. One equipment has auxiliary contacts that key the main transmitter to send out an alarm signal. A very recent development is an alarm responding directly to a specific ship's call letters or to an SOS call, thus expediting more immediate action in emergencies. Very few ships, however, are equipped with this device.

Lifeboat Radio Installation

International regulations make it mandatory that ocean-going passenger vessels maintain a complete radiotelegraph installation in one motor lifeboat where the number

A balloon-supported antenna is used on this lifeboat equipment. When cranked it automatically sends out SOS
of lifeboats exceeds 13 and two such installations where the number exceeds 19 .
The lifeboat transmitter and receiver unit are packaged together and mounted rigidly within a protective housing, usually in the bow. A fixed frequency of 500 kc is determined by a Colpitts oscillator arranged in a self-rectified, fullwave circuit. Modulation at 1,000 or $1,600 \mathrm{cps}$ for A 2 emission is obtained from a dynamotor of $110-$ volt, 500 or 800 -cycle output. The primary source of transmitter plate and all filament power is two 12volt, high capacity storage batteries; receiver plate voltage being furnished by dry batteries. An antenna of approximately 50 feet long, supported on collapsible masts gives a minimum reliable range of 50 miles. Power capacity must be such as to permit continuous operation for 4 hours.

Another type of lifeboat transmitter, an outgrowth of the Gibson Girl unit used in sea-air rescue work during the war, is frequently seen on merchant ships now. This equipment may be portable or semiportable and often incorporates a signalling facility only. Power is supplied by a handcranked generator integral with the equipment. Although the regulations requiring the installation of this device have been suspended, many merchant ships carry one or more as a means of extending the signalling area of a lifeboat.

Marine Radiotelephone

An increase in the convenience and economy in ship-to-shore, shore-to-ship, and intership communication has been effected through the establishment of med-ium-range marine radiotelephone networks. On the ten available frequencies in the 2 -to- 3 mc region a vast amount of information is exchanged. Through complementary coastal harbor stations connection can be made into the land-line telephone system.

Although certain large passenger vessels have complete facilities for long-distance radiotelephone communication open to public correspondence, equipment on most vessels is limited in range to coastal waters within coverage of harbor
stations. Smaller vessels, such as tugs, yachts, fishing boats, pilot boats, or those whose routes do not justify the expense of a radio telegraph station, have found the marine radiotelephone an invaluable aid to piloting or in transacting ship business.
Shipboard radiotelephone equipment, in addition to meeting the standard requirements of ruggedness, compactness, operational simplicity, and weatherproofing has, in its highest development, several features which increase its convenience and effectiveness. Since it is ordinarily installed on the bridge or in a chart room, it is operated by nontechnical personnel.

Crystal control on all frequencies is standard. A change in carrier frequency is accomplished by one switch and antenna retuning. A choice of the method of carrier interruption (for listening-in purposes) can be made by an operator using a button on his handset which can be released for listening, or automatic operation of a Vodas relay actuated by speech air pressure on handset transmitter diaphragm.

The radio receiver allows selection of pretuned, spot frequencies corresponding to transmitter settings. An automatic selective ringer can be installed to permit signalling of an individual ship by transmission of coded impulses from harbor stations. Separate control units for operation of equipment on a preset frequency from a remote shipboard position can be furnished.

The marine radiotelephone is invaluable in cases of distress. The Coast Guard maintains a listening watch on $2,670 \mathrm{kc}$ on the Great Lakes and the coasts.

A postwar development of great significance is the growing popularity of $\mathrm{f}-\mathrm{m}$ radiotelephone in the 157 and $162-\mathrm{mc}$ bands. Use of certain frequencies in this region in conjunction with harbor-approach radar is expected to facilitate movement of traffic in high-density areas.

Basic Radio Law

World-wide regulation of radio communications in the maritime mobile service is based on the

Modern radiotelephone for marine use in pilot or chart room

Articles of the Convention for the Safety of Life at Sea, London, 1929, and the International Telecommunications Convention of Madrid, 1932, with annexed Radio Regulations. Except for the Radio Regulations, the United States is signatory to both these agreements. The recent Telecommunications Conference at Atlantic City, under auspices of the International Telecommunications Union, revised many extant regulations and made certain frequency re-allocations.

Statutory supervision of all communications in the United States is pursued under authority of the Communications Act of 1934 which created the Federal Communications Commission. As amended in 1937, this Act includes provisions of the Safety Convention for ship radiotelegraph stations.

Business Administration

Coincident with the development of marine mobile communications there has been a comparable growth of commercial companies specializing in the administration of the technical, legal, and business aspects of marine radio. In the United States four of the larger radio service companies, Tropical Radio \& Telegraph, Radiomarine Corporation of America, MacKay Radio \& Telegraph, and Globe Wireless, Inc., maintain extensive facilities for servicing and operating radiotelegraph and telegraph stations ashore and afloat.

Many steamship companies maintain their own radio organizations.

Today, for the ships of all na-
tions, there exists a standardized, world-wide, radiotelegraph network made up of many systems but coordinated by the various administrations into a well-integrated, highly cooperative facility. There are few places on the high seas where a merchant ship need remain out of touch with its home port for more than a few hours at a time. However, since there can be no lessening in efforts to improve safety of life and property at sea, expedite ships' business, or improve public convenience in communications, progress in the marine radio field will continue.

Future Trends

Certain trends are already discernible; the next decade should see the following adjuncts widely accepted:
(1) Universal adoption of crystal control on all working frequencies of high and medium-frequency equipment.
(2) Replacement of many dis-tributed-type shipboard radio stations by packaged, one-unit installations.
(3) Widespread use of some form of call-signal and SOS-responder device for supplementary watch-standing on all merchant ships.
(4) Greater use of the marine radiotelephone, particularly the vhf f-m type. Extension of present a-m radiotelephone ranges and use of vhf $\mathrm{f}-\mathrm{m}$ in conjunction with navigational aids.
(5) Increased popularity of highfrequency bands for normal shipradio traffic.
(6) Installation of radio facsimile on many passenger vessels.
(7) Limited use of television for public entertainment on the larger passenger vessels.
(8) Closer coordination of radio communication facilities, on shore and aboard ship, with sea and air safety and rescue work and with radio or electronic navigational systems.

The author wishes to thank the Radiomarine Corporation of America, 75 Varick Street, N. Y., and the MacKay Radio \& Telegraph Co., Inc., Marine Division, 345 Hudson Street, N. Y., for supplying photographs accompanying this article.

Soldering

THe tinning of aluminum alloys presents problems tending to limit applications of soldering. Experiments indicate that some of these problems can be solved by vibrating solder at an ultrasonic rate while applying it to the work. ${ }^{1}$ By this method the oxide coating is disrupted and alloying of the metals occurs before re-oxidation of the aluminum can take place.

The tinning of aluminum and its alloys through the application of magnetostrictive forces to a soldering iron is called sonodizing. Although sonodizing eliminates the use of a flux, if wide enough differences of surface potential exist between the metallic boundaries corrosion susceptibility exists and precautions must be taken commensurate with the conditions of exposure.

Transducer Selection

In order to establish satisfactory procedures for fluxless tinning, it was first necessary to select a vibration generator that could be readily modified to serve as a soldering iron. Selection of suitable equipment required analysis of the characteristics of several types of

FIG. 2-Magnetostriction transducer with solid tinning tip and (right) with brush-type tip

Aluminum Alloys

Work is accomplished experimentally by vibrating the iron tip at an ultrasonic frequency by means of a vacuum-tube driven magnetostriction oscillator, to remove surface oxidation. Method is also applicable to stainless steel, chromium-plated and other hard-to-solder surfaces

By FRANK W, THOMAS and ELI SIMON
Research Engineer Lockheed Aircrist Corp. Chemical Research Engineer
Burbanh, Calijornia

existing generators. The four types considered were: (1) magnetrostriction, (2) electromagnetic, (3) gas, and (4) quartz crystal.

The deciding factor which influenced the selection of the magnetostriction unit was the ease with which the magnetostrictive element could be modified and equipped with a suitable tip. Such a transducer can, in fact, be fabricated so that the vibrating element itself is capable of withstanding direct immersion in molten metals and can be used directly as a soldering iron.

Transducer Characteristics

A magnetostriction generator of the type described by Pierce ${ }^{2}$ has an effective frequency range of 1 to 50 kc . Amplitudes of 0.0001 to approximately 0.001 cm , which is the rupture point of nickel, can be obtained. Power up to 10,000 watts may be used. Less than 15 watts acoustic output is impractical where mechanical vibration is the objective. Transducer efficiency, which is the measure of coil output available as mechanical power or acoustic energy, seldom exceeds 15 percent. Operating temperature of the magnetostrictive tube within the coil is limited by the Curie point of the metal (300 F for Invar), but tip temperature of 800 F can be maintained for short intervals.

Diagram showing setup for tinning aluminum alloys. A switch (not shown) permits paralleling of $4,7.5$ or 15 -ohm amplifier taps

The electromagnetic generator ${ }^{3}$ is simpler and less costly than the magnetostrictor, but it is applicable mainly to low-frequency work with large volumes of fluid on a continu-
ous basis. Similarly, a generator such as the Galton whistle ${ }^{4}$ has some desirable features but it has a transducer efficiency of only 5 percent and is not as readily con-

FIG. 3 - Photomicrograph showing (bottom) alloy, aluminum cladding, and (top) solder
trolled as electronic devices. Again, the quartz-crystal oscillator is suitable for work requiring precise control, but unsuited at present to sudden temperature changes required in fluxless soldering. Fracture of the crystal is likely to occur.

The magnetostriction generator constructed by the authors with the assistance of Richard W. Powell of Lockheed, and Bodine Sound Drive, is pictured in Fig. 1 and has four component parts: (1) four paralleled 50 -watt amplifiers, including an output meter and a switch for selection of various amplifier output taps; (2) a capacitor loading unit; (3) an oscillator tunable from 7 to 70 kc and a magnetostriction unit, the essential components of which include the magnetostrictor coil consisting of a helix of 45 turns of 4 -strand no. 18 Formex-insulated copper wire wound in two layers on a Micarta frame. The coil is $3 \frac{1}{4} \times$ 1 -inches inside diameter and was designed to operate one-half of the metal transducer element, thus freeing the lower half of the nickel tube.

Polarizing Coil

Because magnetostriction is independent of the sense of the magnetic field, a polarizing coil consisting of 950 turns of no. 16 insulated copper wire was required. The solenoid is mounted between two soft iron plates to form a magnetic circuit. The arms of the pole pieces are shielded by wrapping with copper to prevent interaction between the magnetostrictor and polarizing coil.

The nickel tube, supplied by the International Nickel Co., is 9 inches long, 1 inch outside diameter, and has a $1 / 32$-inch wall thickness. Nine longitudinal slots $1 / 32$ inch long were cut in the tube along the
section enclosed in the energizing helix to reduce heating. The soldering tip consists of a 1 -inch stain-less-steel rod, 4 inches long, silver soldered to the end of the nickel tube. A Nichrome heater coil is wound on a tube which maintains a loose sliding fit on the tip so that unnecessary mechanical loading is avoided.

The transducer is pictured in Fig. 2. The oscillator helix is mounted so as to cover one half of the transducer element. Iron arms enclosing the polarizing coil support both units. The magnetostrictor tube is supported at its center of mass in the dural holder shown in Fig. 2. The control equipment is mounted in two separate racks (Fig. 1).

Equipment Operation

To operate the system the poweramplifier, oscillator and polarizercoil circuits are energized. The oscillator is tuned to give maximum vibrational intensity, activating the metal tube at resonance. The capacitance across the magnetostrictor coil is adjusted to give maximum deflection of the ammeter in this circuit. Amplifier impedances are adjusted for maximum output. Power is controlled by adjusting gain on the amplifier bank. Field strength of the polarizer coil is altered to give maximum magnetostrictive effect.

After the circuit is stabilized, the Variac is set to give proper tip temperature and the solder is applied and allowed to flow around the tip and onto the metal to be tinned. The operation produces an intense hissing and chattering noise which can be used by the operator to gage working efficiency. When the work under the tip area reaches the temperature of melting solder, two or three rapid passes of the tip generally produce satisfactory tinning.

As the metal surface does not ordinarily need cleaning, pre-etching or fluxing, corrosion is not a factor in the operation. An ironwire brush tip was found to work well in some instances, with the added advantage that it more readily reaches inaccessible areas, scaled spots and scratches. Goggles and respirator are worn by the operator as the tendency of the

FIG. 4-Tinned dural panels
brush or tip to throw metal constitutes a hazard.

With the apparatus operating at 8 kc , tests have been made on aluminum and its alloys, notably 25ST and 75 ST , as well as stainless steel, chromium-plated surfaces and anodized and dyed aluminum. Typical results are shown in Fig. 3 and 4.

Stainless steel tinned easily when a small amount of cadmium was added to the solder as a wetting agent. The same was true with chromium-plated surfaces. Phenolic strips were metallized with zinc, lead, cadmium and aluminum. Castolin eutectic 19B solder was used. Anodized and dyed aluminum tinned satisfactorily, but required a longer time than bare alloy surfaces. Ferrous metals such as 1010 and 4130 steel do not tin readily, requiring greater energy output and greater solder wettability. Aluminum aircraft-generator cable tips and lugs were tinned and then sweated together, resulting in very low contact-resistance.

Tested applications include the following:

Joining dural tubing - Test samples showed average strength of 3,000 psi. Assembly of dural chassis for electrica units-Flat panels satisfactorily jomed. 0.064-inch and 0.020-inch dural satisfaclory.

Replacement for metal-to-metal adne sives-Indicated success, but not yet thor oughly investigated.
Airfoil smoothing - Scratched and ouged aluminum surfaces satisfactorily filled.
Inodized dural surfaces-Heavily anorlized and dyed dural surfaces were tilned divectly.

Other applications will no doubt be disclosed by continuing experimental tests.

References

[^7]
Rocket-Engine Tester

Photoelectric unit utilizing Polaroid dises to generate sine wave checks speed of fuel pumps operating at $\mathbf{4 0 , 0 0 0} \mathrm{rpm}$ and measures torque required to overcome drag

By A. E. GERSCH
Engineer
Marotta Engineering Co Boonton, New Jersey

ROCKET-POWERED ENGINES of one particular type employ two kinds of fuel. To feed these two propellants to the engine a turbodriven pump having an impeller at each end is used.

A seal is required at each end of the pump-turbine shaft, which is driven at speeds up to $40,000 \mathrm{rpm}$. In order to determine the life of the seals during development it was necessary to measure both speed and torque. This had to be accomplished without adding external torque, and the following description explains how it was done electronically.

Principle of Operation

As shown in the diagram, a rotating Polaroid dise and a stationary Polaroid disc, in combination with a system of light sources, lenses, and phototubes, comprise the sine-wave generator of the test device.

The rotating Polaroid dise is mounted on the pump driveshaft. Directly in front of it two light sources and lenses are mounted on a stationary bracket. In back of the rotating Polaroid disc are the stationary Polaroid disc and two phototubes. These are spaced 90 degrees apart to produce similar electrical phase-shift.

The output of the phototubes is fed to two voltage amplifiers. One of these amplifiers is connected to the X axis of an oscilloscope. The output of the other amplifier is connected to the input of an electronic switch, and the output of the electronic switch is connected to the Y axis of the oscilloscope. To the other input of the electronic switch an audio oscillator is connected.

A circle of 4-inch diameter is
produced on the oscilloscope screen when the audio oscillator is tuned to the frequency of the Polaroid generator. The frequency of the audio oscillator multiplied by thirty gives the revolutions per minute of the shaft when the Polaroid generator provides two cycles per revolution.

Also mounted on the pump driving shaft is an opaque dise with a slit 0.008 inch wide and $\frac{3}{8}{ }^{\prime \prime}$ long, cut on the outer periphery. A light source, lens and phototube system much the same as that used in the Polaroid sine-wave generator is employed. Phototube output is fed through voltage amplifier to the Z axis of the oscilloscope. A dark spot appears on the circle developed by
the Polaroid generator. An identical arrangement is used on the torque end of the shaft. This produces another spot on the circle, superimposed directly upon the first spot.

Method of Measurement

The spot remains true as long as no load is applied on the torque side of the pump. However, when loads are applied this produces an angular displacement of the torque member, which moves the superimposed spot an equivalent angle. The angular displacement is measured between the stationary spot and the moved spot, by placing a polar-coordinate chart in front of the oscilloscope tube.

Block diagram of the rocket-engine pump-seal tester

FIG. 1-Frequency-scanning vhf impedance meter in use, with conventional oscilloscope used as indicator

Frequency-Scanning VHF Impedance Meter

IMPEDANCE MEASUREMENTS can be made at radio frequencies by several methods and techniques, using such instruments as the radio frequency bridge, the slotted line, the Q meter and the combination of a calibrated signal-generator with standardized r-f ammeter, voltmeter or reference impedance. Each of these methods has its own particular type of utility. However, in determining the impedance-versus-frequency curve of a particular device, all require tedious point-by-point measurements.

A new instrument has been developed which provides an instantaneous and visually-presented determination of impedance versus frequency. The design of the instrument is such as to enable it to
handle almost all of the devices encountered by the radio engineer in the design and development of present-day vhf and h-f equipment. The instrument is a frequencyscanning reflection meter designed for operation anywhere in the range from 10 to 250 megacycles. At any frequency within this range it will rapidly scan a bandwidth of up to 30 megacycles. Its output signal, suitable for use with any oscilloscope, is proportional to the amount of energy reffected from the end of a transmission delay line to which the device or system under test has been connected.

Principle of Operation

The instrument, shown in Fig. 1 and 2, embodies a priuciple origi-
nally used in the terrain clearance meter. ${ }^{1}$ It consists essentially of a wide-range sweeping oscillator ${ }^{2}$ which is arranged to propagate a frequency-modulated signal through a transmission system of finite propagation time. This propagation time is such that at any instant the reflected energy received back from the far end of the system will be of a measurably different frequency from that being fed into its input.

The pitch of the beat note produced by combining the incident and reflected waves in an internallycontained detector circuit is proportional to the rate at which the trequency is being varied and to the propagation time of the transmission system. The amplitude of

FIG. 2-Inside view of the instrument

By LESTER L. LIBBY

Chief Engineer
Olumena Laboratories, Inc. Pine Brook, N.J.

FIG. 3-Frequency vs time relationships existing at the beat-note detector

FIG. 4--Amplitude vs time relationships existing at the beat-note detector

Instrument using principle similar to that employed in aircraft f-m terrain-clearance indicators scans bandwidths up to 30 mc in the range between 10 and 250 mc . Details of design are given and the method of operation is described, using termination of an r-f transmission line as an example
the beat note is proportional to the amplitude of the reflected wave.

With reference to Fig. 3 and 4, the conditions which prevail are as follows:
(1) An r-f voltage of amplitude A is linearly frequency-modulated between the limits f_{1} and f_{2} by a sawtooth waveform of period T.
(2) This voltage is applied to a transmission line whose terminating impedance Z_{L} does not equal its characteristic impedance Z_{0}.
(3) The reflected energy due to this inequality is received back at the input after a delay time τ equal to twice the propagation time along the transmission line.

When attenuation in the transmission line is assumed to be negligible and ρ is taken as the trans-
mission-line reflection factor equal to $\left(Z_{L}-Z_{o}\right) /\left(Z_{L}+Z_{0}\right)$ the voltage amplitude of the reflected wave will be ρ times the amplitude of the applied wave. The total frequency excursion Δf of the reflected wave will be the same as that of the applied wave. The frequency of the beat note is given by

$$
\begin{equation*}
F=\frac{\tau}{T}\left(f_{2}-f_{1}\right)=\frac{\tau}{T} \Delta f \tag{1}
\end{equation*}
$$

The beat note exists for a length of time equal to $T-T^{\prime}$, where T^{\prime} is the time of the return sweep. At the end of this time, for the brief interval T^{\prime}, a transient frequency is set up as the applied wave snaps back from f_{2} to f_{1} to repeat the sweeping sequence.

To a first order of magnitude, it is necessary that the beat-note
frequency be such that at least one full cycle of the beat note is completed during the time interval T. As is apparent from Fig. 4, this condition must be fulfilled if a closely sinusoidal beat-note waveform is to be obtained. Therefore

$$
\begin{equation*}
T \geqq 1 / F \tag{2}
\end{equation*}
$$

For the case where $T=1 / F$, substituting for T in Eq. 1 gives

$$
\begin{equation*}
\Delta f=1 / \tau \tag{3}
\end{equation*}
$$

In order, therefore, to secure at least one full cycle of beat note, the total frequency deviation must equal the inverse of the total propagation time outward and back through the transmission line. The amount of frequency excursion during one cycle of beat note will determine the frequency resolution
of a particular reflection measurement.

Description of Instrument

In the instrument, a band-pass audio amplifier with variable gain is used in conjunction with the beat-note detector. This combination results in high sensitivity of measurement of reflected energy. In order to reach the best compromise between high gain, good stability and low susceptibility to disturbance from unwanted signals, the amplifier is designed with a pass band of from 300 to 6,000 cycles per second. The beat-note detector is a silicon-crystal diode and the frequency-sweeping signal generator is an oscillator ${ }^{2}$ plus an auxiliary $2,000-\mathrm{cps}$ sawtooth modulator of the phantastron type. Three fixed lengths of RG-58/U coaxial transmission line are included internally to provide a suitable transmission delay for most of the applications generally encountered. The propagation velocity along this type of line is about 660 feet per microsecond.

The diagram of Fig. 5 shows the essential elements of the frequencyscanning reflection meter. The portion within the dotted line is the oscillator with its normal $60-\mathrm{cps}$ sawtooth frequency modulation applied to the high-level (local) oscillator. The frequency excursion can be adjusted to as high as 30 megacycles or more. The adjustable output of the 2,000 -cps sawtooth modulator is applied to the low-level (signal) oscillator, per-
mitting sweep excursions of up to 5 megacycles. The $60-\mathrm{cps}$ sweep rate is intended for very-high-frequency (30 to 250 megacycles) broadband work, whereas the 2,000 cps sweep rate is designed for highfrequency (10 to 50 megacycles) medium and narrow-band work.

With the various combinations of transmission line lengths included in the instrument, total delay times of $0.2,0.4,0.6,0.8$ and 1.0 microseconds are available. From Eq. 3 the respective sweep widths for obtaining one complete cycle of beat note output are 5.0, $2.5,1.67,1.25$ and 1.0 megacycles. For the condition of two full cycles of beat-note output per sweep, the above sweep widths are doubled; for three full cycles of beat note, the sweep widths are tripled; and so on. This permits operation of the instrument under a wide variety of conditions, using either the high-frequency sweep rate or the low-frequency sweep rate as the individual case may dictate, and patching in suitable lengths of internal or external transmission line as required.

Applications

One typical use of the instrument is described in the following paragraphs.

Suppose it is necessary to evaluate the impedance of a coaxialsleeve broad-band vertical dipole antenna designed for operation in the 50 to 60 megacycle region from 53.5 -ohm coaxial transmission line. The antenna is mounted on an ele-

FIG. 5-Block diagram of the frequency-scanning vhi impedance meter showing lengths of transmission line available within the instrument
vated support about 80 feet from the point at which the test instrument is most conveniently located, and an attached 100 -foot length of $53.5-\mathrm{ohm}$ coaxial cable is brought down to the test location. It is desired to observe visually the reflected energy from this antenna over the frequency range of 40 to 70 megacycles, and this information is desired with a frequency resolution of about 2 megacycles.
The ratio of total sweep width to desired frequency resolution is $30 / 2=15$, so that 15 full cycles of beat-note output per sweep are required. Hence, modifying Eq. 3 for this case.

$$
\begin{equation*}
\Delta f=15(1 / \tau) \tag{4}
\end{equation*}
$$

so that

$$
\begin{equation*}
\tau=15 / 30=0.5 \text { microsecond } \tag{5}
\end{equation*}
$$

The same figure may be arrived at by noting that the 2 -megacycle resolution requirement is equivalent to saying that the applied frequency must shift at the rate of 2 megacycles per beat-note cycle. It then follows directly from Eq. 3 that $\tau=\frac{1}{2}$ microsecond.

A two-way delay of 0.5 microsecond requires a one-way length of solid-dielectric coaxial cable of 166 feet. Since the 100 -foot feeder cable is already available externally, it is only necessary to add a single 66 -foot length of internal cable from that available in the instrument to make up the necessary transmission system. The setup is as follows:

A patching cable is connected between connectors P_{1} and P_{2}. Another patching cable is connected between P_{3} and P_{4}. The feed cable from the antenna is connected to P_{5}. The sweeping output is set up for a center frequency of 55 megacycles, with the $60-\mathrm{cps}$ sawtooth generator set for 30 megacycles of total sweep width (the 2,000-cps sweep is set to zero for this particular application). The $60-\mathrm{cps}$ sawtooth-sweep output terminals are connected to the horizontal sweep input of any commercial oscilloscope, and the output of the band-pass audio amplifier is connected to the vertical input of the oscilloscope.

The visual pattern of the desired data will resemble the sketch of Fig. 6. The 15 complete beat-note cycles, swept every $1 / 60$ of a second ($F=900 \mathrm{cps}$), are modulated by
an envelope whose amplitude represents the amount of reflected energy as a function of instantaneous frequency. As can be seen, the reflected energy approaches zero in the region of 55 megacycles, at which point the antenna impedance closely matches the characteristic impedance of the transmission line. At either extreme of the frequency excursion the reflected energy approaches that which would be obtained if the transmission line were terminated in an open circuit. It is thus possible to tell at a glance just how effectively a given antenna matches its transmission line, and over how wide a frequency band it does so.

Transmission-Line Attenuation

Since attenuation is present to some extent in all practical transmission systems, the amplitude of the reflected voltage wave as received back at the beat-note detector is not strictly equal to ρ times the voltage amplitude of the applied wave, but is $\eta^{3} \rho$ times this amplitude, where η is the voltage attenuation ratio suffered by the wave in traversing the length of the line one way. However, it remains true that the amplitude of the reflected wave received back at the beat note detector is proportional to the magnitude of the reflection factor. For an opencircuited or short-circuited termination of the transmission line the magnitude of ρ is always unity. For an arbitrary terminating impedance it is possible to evaluate the magnitude of the reflection factor, and hence the magnitude of the terminating impedance, by the following procedure:

First, the transmission line to be used is terminated in a short-circuit, corresponding to a reflection factor of amplitude unity, and the amplitude of the resultant beat note is adjusted to any convenient reference value, such as two inches peak-to-peak. Then the arbitrary terminating impedance is connected across the transmission line in place of the short-circuit and the peak-to-peak height of the resultant beat-note wave displayed on the oscilloscope screen is measured. The ratio of the height at any particular frequency to the two-inch refer-
ence height is then the magnitude of the reflection factor at that frequency. The phase angle of the reflection factor may be obtained by comparing the phase of the beatnote wave at any particular frequency to the phase of the two-inch reference wave. With this information, the terminating impedance may then be calculated with the aid of the Smith Chart.

From the above description it is apparent that a knowledge of the transmission-line attenuation is not essential to the operation of the instrument. However, excessive transmission line attenuation is to be avoided since there is a

FIG. 6-TYpical visual presentation of reflected energy on an oscilloscope screen
practical limit even in the most carefully manufactured delay cable or transmission line to the uniformity of characteristic impedance with length. The minute irregularities in Z_{0} which exist cause small reflections to occur early in the line which may completely mask the reflection due to the terminating impedance when the cable attenuation per unit length is high and the line length large. It is fortunate that for vhf applications, where the transmission line attenuation is rather high, it is generally satisfactory to work with frequency resolutions of the order of about three megacycles.

Transmission-line lengths of the order of 100 feet may then be employed without excessive total attenuation. For frequencies below the vhf range the transmission-line attenuation is conveniently low, so that longer lengths may be used to achieve the finer absolute frequency resolution which is usually
desired here. A relative frequency resolution of from 2 percent to 5 percent of the center frequency is satisfactory in most cases. The sum of the lengths of cable contained within the instrument provides a minimum absolute frequency resolution of about one megacycle. For narrower resolutions than this, the addition of a suitable length of external transmission line is required. Similarly, if resolutions of less than about 2 megacycles are desired in the upper portion of the vhf band it will probably be necessary to use a suitable length of lower-loss transmission line than that contained within the instrument.

Operation With Balanced Circuits

For measurement of balanced impedances two methods have proved satisfactory. The first method involves the use of coaxial transmission line in conjunction with a suitable balanced-to-unbalanced transformer to connect the impedance to be measured to the line. The second method makes use of an external length of balanced transmission line of the twin-lead type developed for use with present-day television and $\mathrm{f}-\mathrm{m}$ receivers. This transmission line may be set up in the laboratory by stringing a suitable length back and forth between pegs located on the walls in such positions that the sections of line thus formed are spaced two or three feet from each other. The balanced impedance to be measured may then be connected to one end of this line, while the other end of the line is connected to the coaxial output connector of the instrument.

Tests have shown that this type of balanced transmission line arrangement then acts as its own balanced-to-unbalanced conversion system to a satisfactory degree. Futhermore, tests have also shown that transmission-line impedances of from 50 to 300 ohms may be used without encountering trouble from second-time reflected waves.

References

(1) Lloyd Espenschied and R. C. Newhouse, A Terrain Clearance Indicator, Bell Syst. Tech. Jour., Jan. 1939 .
(2) Wide lRange Sweeping Oscillator, Kay Electric Co. Eng. Staff, Electronics, p 112, August 1947.

SOFAR, from the initial letters of the words SOund Fixing And Ranging, is the code name of a position-determining system. The sound transmissions on which it depends have been heard all the way from Dakar to the Bahamas. The system was designed specifically as a rescue measure in locating castaways at sea or survivors from a ditched plane.

In operation, the castaway drops a bomb weighing 1 to 4 pounds into the water. The bomb has been set to explode at a depth of about three-quarters of a mile. Observers at each of three or more continuously operating receiving stations time the instant of arrival of the peak sound pressure to the nearest tenth of a second. The bomb is then located on one of a family of hyperbolas confocal to a pair of receiving stations. Any two of the three observation points constitutes a pair and the fix, or actual location in terms of latitude and longitude, is the point at which two lines of position cross. The lines of position are generated by the differences in time of arrival of the underwater signal.

The geometry is comparable to that of navigational systems like loran except that the transmitting and receiving stations are interchanged. .ccuracy of a fix is within five miles at a range of 2,000 miles.

Sound Channel Effect

The sofar system is based on a phenomenon in the field of sound physics which was verified experimentally during the war. This phenomenon, which has been called the sound channel effect, is the result of refraction of sound waves by layers of water. Practically speaking, because of these refraction effects, there is a horizontal channel deep down in the ocean through which the sound of an explosion can travel for thousands of miles.

Sound waves, like light waves, are bent as they travel through media in which the velocity of propagation varies. Such refraction, caused by velocity changes in the water, is accountable for the sound channel effect.

In the open sea, the velocity of sound is dependent primarily on

FIG. 1-Graphic explanation of the sound channel effect upon which the sofar system depends

SOFAR

A hyperbolic position-determining system that depends upon propagation of sound from a bomb exploded at a 4,000 -foot depth in the ocean. Accuracy of fixes is within five miles at 2,000 -mile range. Continuous monitoring equipment used to time arrival of impulse is described

By W, W, STIFLER, Jr.
Engineering Research Associates, Inc. Washington, D. C.

and W. F.SAARS

U. S. Navy Underwater Somm Lab. New London, Conn.
temperature and pressure. The velocity decreases with decreasing temperature and increases very slightly with increasing pressure. Generally speaking, temperature decreases with depth. At the same time, the hydrostatic pressure increases. The two effects, therefore, work in opposition. This effect can be seen graphically in Fig. 1, which was prepared from studies of the North Atlantic Ocean by the Woods

Hole Oceanographic Institution.
At depths of less than about 4,000 feet (this critical depth varies from ocean to ocean), the variation in temperature is relatively more important than the change due to pressure variation. Below this depth, there is practically no change in temperature, but because of increasing pressure the velocity increases. The $4,000-\mathrm{ft}$ level, therefore, becomes a stratum

FIG. 2-Experimental sofar receiving station. Recorders and timing equipments are in smaller racks. Center cabinet contains controls, amplifiers and power

FIG. 3-Simplied block diagram of more important elements making up a complete monitoring station
of minimum sound velocity. Sounds originating at this depth are refracted downward from above and upward from below. As a consequence, soúnds are horizontally channeled.

Sounds originating at a depth of $4,000 \mathrm{ft}$ spread horizontally within the sound channel in much the same way in which sounds in air go echoing down a canyon. This phenomenon has a number of rather inter-
esting effects on the characteristic of the sound wave as it is received at some great distance from the source. For example, a sound ray leaving the source at an inclination to the horizontal has a tendency to cross and recross the horizontal layer indefinitely until it is finally attenuated below the ambient noise level.

As a consequence, sound may theoretically travel by an infinite
number of different paths between the source and the receiving pickup -particularly if the separation between sound source and pickup is very great, for example, of the order of several hundred miles. Furthermore, the most direct route, that is, the horizontal path from source to pickup, is also the slowest; because those ray paths inclined from the horizontal lead into strata of higher sound velocity which then bend back some of the rays and produce the phenomenon described above as a crossing and recrossing of the axis of the sound channel.

Multipath Effect

It was found rather early in the series of experiments to determine the nature of sound channel transmission that sounds arriving at the receiving element commence at a low intensity, gradually building up to a loud crescendo with a very sharp cutoff-an effect which has been described as the kettledrum. The cutoff occurs, it is believed, when the sounds which have traveled by the slowest route (and at the same time the route of most nearly constant depth) arrive. The cutoff is so sharp that there is practically no possibility of mistaking it, and the instant at which it occurs can be determined to within 0.1 second. The buildup time of the sound wave received after spreading is about 1.2 seconds per 100 miles. Furthermore, the character of a sound-channel explosion is so distinct that it cannot be confused with stray explosions at other depths.

Design Considerations

Experimental work demonstrated that the primary specifications for sofar monitoring equipment should include:
(1) sensitive response from 30 to 300 cycles;
(2) self-noise of the amplifiers at an absolute minimum;
(3) provision for switching quickly from one hydrophone to another, with, at the same time, some means for introducing a signal generator for equipment calibration and maintenance;
(4) suitable means for indexing actual arrival time of the signal

FIG. 4-Response of the automatic switching unit that turns on recorders when bomb signal starts arriving. The device triggers at 175 cycles

FIG. 5-Response of an amplifier channel incorporating a 500. cycle low-pass filter. Overall noise is 27 db below that of typical amplifier
(to 0.1 second) and means for obtaining chronometer correction by introducing WWV time signals.

In order to expedite delivery of the intial group of monitoring station equipment, it was decided to utilize readily available commercial equipment modified as required, supplementing this with those units which required special design or treatment. Figure 2 is a front view of the three racks which house all the apparatus for each station except the bass reflex speaker used for aural monitoring. This equipment provides integrated receiving, recording and timing units for each network station. The equipment is built to operate continuously, day after day, although the incident that it is designed to note and report to the operator takes only a few seconds and may not occur for months at a time.

Figure 3 is a block diagram of the receiving station. Several hydrophones located in the sound channel are connected by submarine cable (sometimes 12 to 15 miles long) to the hydrophone input receptacles at the top of Rack 1, center of Fig. 2. One hydrophone
is patched into the operating amplifier channel.
The hydrophone amplifier circuits terminate in a system bus, contained in a unit identified as the Chronometer Time Control and Phone Monitor. The functions of this unit are: to act as a distribution center for the amplified signal from the hydrophone to the recording components; to distribute the time indexing pulses from the circuits controlled by the break-circuit chronometer; to separate the 3 -kc tone pulses from the signal when the magnetic tape is reproduced; and to amplify and rectify these 3-ke pulses as a driving source for the paper tape time index relay on reproduction from the magnetic tape.

Recording Data

The recording units, which consist of a dual installation of a graphic sound level recorder and a magnetic tape recorder, are housed in separate cabinets, Rack 2 and Rack 3 (left and right in Fig. 2) cable-connected to the main rack. A time indexing and auto-start, as well as selective input control and
monitoring position were added to the basic graphic recorder. In the magnetic tape recorders the speed was made adjustable from one minute normal to a maximum duration of 2.5 minutes without sacrificing the frequency response below 500 cycles.

The automatic switching unit also is housed in Rack 2. It is the function of this unit to switch on the supply circuit to the graphic level recorder motors and the time indexing control relay when a sound channel shot signal arrives at the monitoring station. Figure 4 shows the response of this unit. It is designed to trigger a 2050 thyratron at 175 cycles. Rack 3 , in addition to its recording units, also contains the break-circuit chronometer which initiates the timing circuit pulses.

Figure 5 shows the response of a typical amplifier unit with a $500-$ cycle low-pass filter incorporated in the circuit. With input energy of the order of a microvolt over a narrow pass band from 30 to 300 cycles, the normal undistorted voltage gain is 107 db . At maximum gain with input terminated in 600

FIG. 6-Slow and fast graphic recordings of bomb signals from 1,050 miles. This record has been made from a replaying of the magnetic tape record. Point of maximum energy is
timed to an accuracy of 0.1 second. The arrival code mark is made by the observing operator when he hears the maximum signal arrive and is chiefly useful in identifying the peak

FIG. 7-Shot arrival time evaluator for two different recorder speeds. The long vertical line is placed over the maximum signal and tenths of seconds read off to the nearest chronometer time mark
ohms the overall self-noise of a typical amplifier channel as measured on a vtvm (terminated in 600 ohms) is 27 db below 1 volt.

In normal operation the equipment listens continuously. One of the magnetic tape recorder units continuously records the sounds picked up by the hydrophone and erases automatically two and a half minutes later.
With the arrival of energy from a sofar bomb, the visual recording equipment is triggered by the buildup of the amplitude of the received signal, and the station operator is alerted by means of a suitable warning device. Inasmuch as the signal comes in rather slowly, building up to a crescendo before the cutoff, the gating circuit is actuated with ample time for the operator to process the shot reception. First he must press the cue switch which breaks the chronometer control circuit, thus providing a secondary timing mark on the visual tape as well as a 3 -kc tone pulse on the magnetic tape recorder. This cue mark, labeled "arrival code" in Fig. 6, enables ready identification of the time to the nearest minute and second.

The operator switches the operating magnetic tape recorder to an inoperative condition. He then turns on the stand-by magnetic tape recorder to record and switches it to the system bus. After restoring the automatic switching unit to stand-by the listening operation of the station continues, and the operator is free to observe the arrival time of the signal just re-
ceived and recorded. Since this signal has also been recorded on the magnetic tape recorder, the operator can play back this recording and reproduce it on the stand-by graphic level recorder in order to obtain another trace of the received signal.

Normal visual tape speed is 5 mm per second. However, on playback from the magnetic recorder, the operator can adjust the paper tape speed of the recorder to 10 mm per sec to increase the resolving power by a factor of two.

Timing Circuit

A standard Navy break-circuit chronometer is connected to each of the d-c amplifiers which actuate recorder paper indexing styli. This chronometer breaks the circuit once each second, except the 59th in every minute. The break-second mark appears clearly on the transcriptions shown in Fig. 6. One of the two amplifiers keys a 3 -kc oscillator which feeds a signal into the magnetic tape recorders, allowing 3 -kc pulses to be recorded on the tape in synchronism with the chronometer.

When the magnetic tape recording is played back to the sound level recorder, the 3 -ke pulses are separated from the signal by a bandpass filter, are rectified and are switehed to the sound level recorder paper indexing stylus. By the use of the code mark, the sound level recorder paper for a particular shot as originally recorded can be lined up with the sound level recorder paper of this same shot as

FIG. 8-Pacilic Ocean Air-Sea Rescue network showing experimental stations in California and the Hawaiian Islands
recorded from the magnetic tape recorder. In this way is afforded an alternate graphic level record of the complete signal, showing the dynamic range. An accurate measure of the time of arrival can be obtained from it. The picture of the shot arrival time evaluator, Fig. 7, shows a typical trace lined up for measurement.

Plans are now well under way for the installation of the first permanent three-station network. The primary responsibility for completing the installation of this network, carrying out the operational tests, and conducting additional sofar research, is being prosecuted by the U. S. Navy Electronics Laboratory in San Diego. One station has been established in Hawaii and tested satisfactorily by means of bombs dropped off the California coast, 2,000 miles distant. The other two will be on the west coast, located in positions suitable for covering the Cali-fornia-Hawaii air routes.

Acknowledgement

Credit for experimental verification of the sound channel effect belongs to the Woods Hole Oceanographic Institution, at Woods Hole, Massachusetts, where Dr. Maurice Ewing was the principal scientist involved in the cooperative enterprise with the U. S. Navy Underwater Sound Laboratory. Among the many who contributed much to this task are J. L. Worzel, J. E. Peoples, R. J. McCurdy, W. S. Latham, W. B. Watkins, and R. F. Maxwell.

Camera mounted on oscilliscope, and electronic film-speed control unit

Example of film acceleration

An Oscilloscope Camera

Continuous recordings of oscilloscope patterns are made on film or paper at speeds from one inch per minute to five feet per second, a range of 3,600 to 1 , using electronic motor control. Either film motion or the oscilloscope sweep can be employed as the time base

MOST oscilloscope pictures are made with cameras designed for general photographic purposes and not particularly suited for recording oscilloscope patterns.

The camera to be described is designed for both still and continuously moving film photography. For still photography of stationary patterns, single transients or data records, a shutter with speeds of 1 second to $1 / 400$ second, plus time and bulb, is provided. This shutter must be kept open when making continuous recordings, so an interlock is provided to prevent any possibility of running the film through with the shutter closed or inadvertently leaving it open while taking a series of still pictures.

For continuous recordings, a speed range of 3,600 to 1 , from 1
inch per minute to 5 feet per second, is provided by means of a specially designed electronic control and a two-speed clutch. The electronic control provides smooth, uniform speed continuously variable by means of a single-dial control from 1 inch per minute to 60 inches per minute, or 1 inch per second to 60 inches per second, depending upon the position of the clutch.

The clutch is shifted by a simple push-pull knob which inserts or removes a $60-\mathrm{to}-1$ gear ratio. It may be operated while the camera is running, so that it is possible to set up for a recording on low speed and shift to high at the desired instant, giving extremely fast acceleration of less than 0.01 second to reach maximum speed.

Many types of mechanical drives
were tried in the development of this camera, including change gears, cone pulleys and variable cone, but it was found that the electronic control not only gave better performance but was cheaper to produce. Furthermore, the electronic control gave a continuously variable speed control which maintains any set speed without fluctuation due to variations in load and line surges. Such precise control is absolutely essential to be sure that any variation in the recorded pattern is due to actual changes in the oscilloscope pattern and not due to fluctuations in film speed.

To give an accurate record of the exact rate of film movement, a small neon lamp is mounted so it will record along the edge of the film when fed suitable voltage.

By H. E. HALE
Technical Advisor
Fairchild Camera and
Instrument Corp.

Jamata, New York

and H. P. MANSBERG
Applications Engineer
Allen B. DuMont
Laboratories
Clifton, New Jersey

When taking still pictures, the film is advanced manually by means of a lever provided with an adjustable stop which permits advance of $\frac{1}{4}$ to double a standard $35-\mathrm{mm}$ frame height (5 to $39-\mathrm{mm}$). However, if it is desired to take a large number of stills in succession the continuous film drive can be used by adjusting it to a speed which will separate successive pictures by the desired amount and by blanking out the screen with Z-axis modulation except during the interval when recording is desired. The blanking signal can be removed by the transient to be recorded, or by a relay or snap-action switch.

The camera is mounted on top of the oscilloscope with a reflecting mirror system in a light-tight housing to bring the scope image up to it. This periscope type of mounting gets the camera out of the operator's way, and provision for simultaneous viewing and recording is easily provided by a port over the lower mirror.

A filter excludes most extraneous light which would affect the film when the port is open for viewing, and a guillotine shutter closes the port entirely at other times. A rubber ring at the lower end of the periscope fits up against the cath-ode-ray tube to exclude all light and at the same time locates the mount accurately so that no focusing is required. The camera is prefocused at the factory.

Data Record

An illuminated data card mounts on the front of the periscope by means of spring clips, when not in use. Handwritten data may be put on the finely ground Lucite surface with an ordinary pencil and removed with a pencil eraser.

The camera uses standard 35mm film or paper, and has an internal capacity of 100 feet, with provision for mounting a 1,000 -foot magazine externally. With the $100-$ foot reels, the camera will operate from 20 seconds at the maximum
speed to 20 hours at the minimum speed; with a 1,000 -foot magazine it will operate from $3 \frac{1}{3}$ minutes to $8 \frac{1}{3}$ days, respectively.
A footage indicator shows the number of feet exposed regardless of whether 100 -foot reels or 1,000 foot magazines are used, or whether the film is advanced manually or by the motor. The camera may be loaded or film removed in daylight.

A coated $\mathrm{f} / 2.8$ lens is supplied as standard equipment but an $\mathrm{f} / 1.5$ lens is optional. With the $\mathrm{f} / 2.8$ lens and accelerating potentials of 3,000 volts on a type 5 CP11A cath-ode-ray tube, writing rates up to 0.8 inch per microsecond can be recorded. With a type 5RP11A tube and 29,000 volts accelerating potential, rates up to 70 inches per microsecond can be recorded. The corresponding writing rates with the $f / 1.5$ lens are 3 and 270 inches per microsecond respectively.

Electronic Control

The circuit used in the electronic speed control of the Oscillo-Record Camera is shown in Fig. 1. A type C1B thyratron supplies the armature voltage to the motor. The control voltage is obtained from a 117Z3 rectifier with an OB2 voltage regulator used to eliminate linevoltage fluctuation effects. Bias voltage is obtained from a selenium rectifier and two other selenium rectifiers supply the motor field. A second OB2 maintains constant bias voltage. Current in the field of the motor is maintained constant with a current-regulating tube. The 117 Z 3 also supplies a time-delay relay which prevents application of power to the thyratron until it has had sufficient time to warm up.

In addition to the d-c applied to the grid of the thyratron to control the speed of the motor, a small amount of a-c is superimposed on it. With the d-c alone, the smallest portion of a cycle during which the thyratron can fire, if it fires at all, is $\frac{1}{4}$ cycle, with a maximum of $\frac{1}{2}$ cycle.

By superimposing a small amount of a-c properly phased it is possible to cause the firing to occur much later in the cycle so that current is passed during only a very

Data record photographed from pencilled note on illuminated card
small fraction of a cycle when the power requirements are low. In this way, in place of the motor receiving a large slug of power followed by several cycles with no power, a small amount of power is supplied to it each cycle. This practically eliminates speed fluctuations which would otherwise cause uneven film speed. It also provides excellent speed control over a much wider range of speed and load conditions than would otherwise be possible.

Methods of Recording

The fundamental recording techniques possible with the camera are: single-frame exposure on stationary film, continuous-motion photography employing the film motion as a time base (which we shall refer to as the first method), and continuous-motion photography employing the oscilloscope sweep as a time base, transversal to the motion of the film (which we shall refer to as the second method).

A paper written in 1944 thoroughly discusses the various factors generally involved in oscilloscope photography. ${ }^{1}$ In this paper, the relationships between the lumi-nescent-spot writing rate, the lens aperture and optical-magnification ratio were derived and methods of calculating exposure were given. A Du Mont camera specifically designed for single-frame exposure photography only has recently been placed on the market. The OscilloRecord Camera also has provision for this type of recording in addi-
tion to its primary use as a continuously moving film camera.

This method of recording can be used for the photography of either highly repetitive phenomena or single-transient phenomena where the duration of the transient is not longer than the longest sweep of the oscilloscope used, unless one wishes to photograph only individual parts of the long transient.

In photographing repetitive phenomena, the camera shutter speed should be set so that it opens for at least the duration, and preferably longer, than the time of one complete cycle of the oscilloscope sweep. The exposure, of course, should be sufficient to obtain useful negative density for the highest writing-rate components of the signal.

To photograph single transients, the camera shutter is best set at bulb or time, opened before the transient occurs, and closed after the transient has disappeared. For this purpose, an oscilloscope having a triggered sweep and automatic beam control is preferred. With such an instrument, the screen of the cathode-ray tube is blank before the transient occurs. When the sweep is initiated by the transient, the trace is blanked in for the duration of the sweep, and there is no fogging of the film by a luminescent spot or line before or after the transient.

When very long exposures are to be used with high-speed panchromatic film, fogging of the film may result due to a very weak glow coming from the heater of the cath-ode-ray tube. The fogging can be prevented by the use of a blue filter in front of the cathode-ray tube screen.

Film Speed Time Base

An example of the method of recording that uses the film travel as a time base is shown at the top in Fig. 2. The two pulses which appear recurrently are seen to have constant spacing, indicating the constant speed of the film. To make such a recording, the signal must appear as a horizontal deflection of the spot on the cathode-ray tube screen since the motion of the film in the Oscillo-Record Camera is vertically upward. This is best
accomplished by reversing the horizontal and vertical deflection plate connections to the tube or by rotating the cathode-ray tube clockwise through 90 degrees. By doing this, rather than just feeding the signal into the X amplifier, the signal may be observed before the recording is started, using the oscilloscope sweep. Then, when all adjustments are made, the sweep is switched off and the camera motor is started.

This method of recording is useful where the signal to be photographed occurs too slowly for an observer to study, even on a longpersistence screen, or when the signal consists of a non-uniform recurrent phenomenon, or if the signal occurs at random.

At the maximum camera speed (60 inches per second), the highest frequency which can be recorded is limited by the resolution of the film and the luminescent spot size. With high-speed film emulsions, such as Eastman Kodak Linograph Ortho and Linagraph Pan, the limit frequency for this method of recording is about 10,000 cycles.

For a particular cathode-ray tube screen, the frequency limit due to persistence, for continuous motion recording, is known as the blurring limit. This limit is approximately 200 kilocycles for a P11 screen and is therefore well above the resolution limit at 60 inches per second. When a time reference is desired, a signal voltage of known frequency may be connected to the small neon bulb in the camera; a narrow time-marker track is then recorded at the edge of the film.

The second method of recording, that of recording the oscilloscope sweep across the width of the film, is illustrated by the bottom trace in Fig 2. The pulses shown are the same as at the top and were obtained by differentiating a sawtooth wave, Both oscillograms were made on the same strip of film by running the film through the camera twice; recording once by the first method, with the beam positioned to one side of the cath-ode-ray tube screen, and then recording by the second method, with the beam positioned to the other side of the screen.

Although the film was run at the same speed in both cases, the distance between pulses at the bottom in Fig. 2 is much greater and. had the signals been more complex, this additional space would have been necessary. As stated previously, it is only necessary to run the film at a rate of speed sufficient to provide some separation of the successive sweeps and the signals imposed thereon. The angle at which the sweep base-line anpears is determined by the ratio of the oscilloscope sweep speed and the film travel speed. When the film speed and sweep speed are equal, the base line records at a 45 -degree angle, and when the sweep speed is much greater than the film speed, the base line is essentially perpendicular to the film length.

The film speed at which the successive sweeps, and the signals imposed on them, are just separated, can be calculated from the formula $S=f_{s} h / 6$
where $S=$ the necessary film speed, $f_{s}=$ the sweep frequency, $h=$ the height of the signal peak appearing on the cathode-ray tube screen.

The factor, $1 / 6$, is the optical-reduction-ratio of the camera lens. In many cases where the signals appear immediately below one another the film can be run slower than S, so that one signal appears
inside the other or interlaces without overlapping (as in Fig. 9).

When the signal being recorded is a sine wave or any other pattern having negative as well as positive amplitudes, and the peaks of the signals on the successive sweeps do not interlace, then h will have to be taken as the peak to peak amplitude. The highest frequency that may be recorded by this method is limited only by the maximum sweep speed available and the maximum photographic writing rate of the oscillograph. (Maximum photographic writing rate is defined as the maximum writing speed of the luminescent spot on the cathode-ray tube screen, which produces a recording density of 0.1 above film fog at an optical object: image ratio of $M=1$ with a lens aperture of $\mathbf{f} / \mathbf{1}$ and with a high sensitivity film emulsion processed in a high contrast developer.)

Occasionally, certain phenomena are observed which have extremely rapid variations at the beginning and then undergo a slow rate of change with a duration many times longer than the initial transient. To record such phenomena completely, with sufficient detail for analysis, it would be necessary to run the film at extremely high speeds. Besides being uneconomical, this procedure would make it

FIG. 1-Circuit of electronic variable-speed-control for the camera motor
difficult to study the latter part of the signal which, since it has a slow rate of change, would be spread over a great length of film.

It may be possible in a few cases, by watching the pattern through the camera's viewing eyepiece, to switch the film speed from high to low by means of the speed-change clutch but this is usually impractical. The second method of con-tinuous-motion recording might then be used, but the continuity of important parts of the phenomenon may be lost due to the many successive sweeps.

For Transients

In a third method of continuousmotion recording, a single drivensweep of the oscilloscope is used to rapidly deflect the spot vertically upward at the start of the phenomena, as the film in the camera moves slowly in the same direction. The signal is impressed horizontally on the spot; at the end of the single sweep the spot is not blanked out but remains in position. The effective speed of the time base during the sweep is equal to the vector sum of the optically-reduced sweep speed and the film speed and, after the sweep, is equal to the film speed alone. Sweep and film speeds should be chosen to provide optimum spread of the rapid transient and the slow rate of change part respectively Only one time-base discontinuity then exists at the end of the sweep travel. Even this discontinuity can be avoided by the use of an exponential sweep rather than a linear sweep. That is, the exponential curve of the sweep rate can be made asymptotic to the film speed. Where a number of highspeed transients occur at random during an otherwise slow rate-ofchange phenomenon, the oscilloscope sweep could be made to trigger off only during the transients and rapidly fly back to the original position to record the slow part. The use of timing markers is mandatory to achieve the proper time perspective when studying the recording.

The effects of a heavy load on the performance of a synchronous motor is shown in Fig. 3 and 4. The oscillograms show the starting current in the motor from the in-

FIG. 2-Top trace-use of film travel as time base. Bottom tracetime base across width of film

FIG. 4-Motor starting current

FIG. 5-Top trace-voltage across fluorescent tube.
Bottom trace-current through circuit

FIG. 6-Oscillator frequency drift

FIG. 7-Output of OB2 with varying load

FIG. 8-Output of Geiger.Muller counter

FIG. 9-Potential of frog sciatic nerve

FIG. 10 -Reverberation of sharp sound in closed room
stant the switch is turned on to the time that the motor has reached its synchronous peed.

Figure 3 is a single-frame photograph and, although the oscillogram provides some indication of the transients that occur, it is not possible to analyze the phenomenon unless a series of pictures of sections of the overall characteristic is taken.

The oscillogram of Fig. 4, made by the first method of continuousmotion recording, clearly shows the heavy starting current and the automatic switching from starter winding to running winding. This switching and subsequent hunting, visible as a modulation of the motor-current amplitude as the motor builds up enough torque to carry the load, can easily be timed.

Timing markers are unnecessary since each current cycle represents $1 / 60$ of a second. Figure 4 shows that the motor switches to the starting winding 4 times in $\frac{1}{2}$ second because of the heavy load. After the last switching occurs, the motor armature hunts for approximately 3 more seconds before stability is reached. The total elapsed time from the instant of switching on the motor to the time of stability is approximately 4 seconds.

Fluorescent Lamp Analysis

Another application of the oscilloscope and continuous-motion camera in the electrical industry is illustrated in Fig. 5. This oscillogram shows the starting voltage and current characteristics of a fluorescent lamp fixture. The simultaneous recording of voltage and current was obtained by the use of a 5SP dual-beam cathode-ray tube. In Fig. 5, the upper trace represents the voltage across the fluorescent tube and the lower trace represents the total current drawn by the fixture. Again, film motion provides the time base.

The two luminescent spots on the tube screen were positioned in a horizontal line to obtain the proper time relationship between voltage and current in the recording. When the switch is turned on, a voltage immediately appears across the tube and a small amount of current is drawn by the entire fixture. The lamp fixture contains the fluorescent tube, a series-inductive ballast, a gas-filled starter containing a bimetal element, and a capacitor which is connected in parallel with the starter and tube. At first the current is limited by the resistance of the starter, the ballast, and the filaments at the end of the fluorescent tube. After approximately 1.4 seconds, (determined from number of 60 -cycle peaks) the voltage across the tube suddenly drops, while the current drawn by the fixture rises to a high value. This is caused by the heated, bimetal starter short-circuiting the capacitor. The current is now limited only by the filaments and the induc-tive-ballast.

The filaments rapidly heat up as the bimetal in the starter cools.

After another $1 / 10$ of a second, the bimetal cools sufficiently to contract and unshort the capacitor. This causes the current through the inductive ballast to drop, and the collapsing magnetic field causes a resonant voltage surge to appear across the capacitor and tube, as indicated by the first voltage surgetransient in the oscillogram.

During the next $\frac{1}{2}$ second, about 5 more voltage transients occur, corresponding to flickers in the tube, until the fluorescent tube finally starts and remains on. The end of the recording shows a constant voltage being maintained across the tube, and the current, which is limited now by the ballast and the resistance of the gas in the tube. The slope of each peak of the voltage characteristic is the result of the charging and discharging of the capacitor during each cycle.
Such a recording provides the lamp manufacturer with an excellent means of evaluating the action of the gaseous starter, the tube characteristics and the optimum constants for the ballast and capacitor. Since the life of a starter and fluorescent tube depends to a great extent on the number of times that starting occurs, it is of advantage to be able to study these transients in detail.

Frequency Drift

A method of recording oscillator drift by time is shown in Fig. 6. The oscillogram was obtained by a variation of the second method of continuous-motion photography. The recurrent sweep of the oscilloscope was locked to a standard frequency and the output of a drifting oscillator was connected to the Zamplifier input. The sweep appears as a line across the film with a portion blanked out by the drifting oscillator signal.

If the oscillator frequency and phase are constant with respect to the standard frequency, the blanking will occur at the same point and appear as a straight path along the length of the recording. Notice how the oscillator drifts rapidly at first and then becomes relatively stable. A frequency-drift record such as this can be extended to over eight days on a $1,000-\mathrm{ft}$. magazine.

The camera provides a means of obtaining voltage time curves of power lines, power supplies, voltage stabilizers and regulators. The output voltage of an OB2 gas regulator tube is shown in Fig. 7. This characteristic was obtained by rapidly varying the load on a regulated supply from 0 to 10 milliamperes. From a curve such as this, the voltage recovery time of a voltage regulator may be determined for either rapid or slow charges in load.

Nuclear Physics

One of the simplest applications of the camera and oscilloscope is to record the output of a particle counter tube. Figure 8 shows an oscillogram of the output pulses of a gamma-ray counter connected to an oscilloscope. The random nature of the pulses and the apparent showers of cosmic rays is recorded. By running the film faster or by using the oscilloscope-sweep recording method, the pulses can be further separated, and the number during any time interval can be counted by using a time-marker track.

Biology and Physiology

Figure 9 is a typical biological recording showing the action potential of a frog's sciatic nerve in response to electrical stimulation at a repetition rate of 100 per second. An electrical-pulse stimulator was used to stimulate the nerve and simultaneously initiate the driven sweep of an oscilloscope at a pulse repetition rate of 100 per second. The film was run at about 3 inches per second, each successive reaction occurring beneath the other. At the start of the recording a portion of the nerve had been dipped into a powerful nerve poison and the reaction of the nerve to the stimuli gradually diminished.

The bottom portion of the recording shows the diminished response caused by poisoning of the nerve. Actually, the entire recording occupied about 100 feet of film so only small portions of the beginning and end are shown. The trailing edge of the stimulating pulse can be seen at the left of each sweep. The recording was obtained at the Columbia Medical Center in New York City with the permission
and kind assistance of Dr. H. Grundfest.

Applied Acoustics

Recently, methods have been tried to teach the deaf to see sounds by sight-reading of patterns on luminescent screens. An extension of this method to record these patterns on photographic paper is an obvious consideration and perhaps this will some day lead to musical libraries for the deaf.

With an oscilloscope and continu-ous-motion camera, acoustics design engineers now have a new means of observing the location and measuring the duration of sound reflections from walls or objects in auditoriums or sound studios. Measurement of reverberation time is one of the difficult problems with which the acoustics designer must cope. ${ }^{2}$ Usually the reverberation time is calculated mathematically by measuring the absorption surfaces of every unit in a room and applying acoustical absorption coefficients to these measurements, including them all in a formula. Some designers make use of tables and nomographs to simplify these calculations. ${ }^{\text {s }}$

A continuous recording showing the reverberations in a closed room caused by a sharp sound impulse is shown in Fig. 10. The complete sound decay is not shown because of lack of space. As applied to the problems of acoustic design the reverberations may be picked up by a very directional microphone, and the recording would then show the amplitude and location of the source of most echos. Proper placement of sound damping materials is then facilitated and an over-all reverberation time recording may be made.

Bibliography

N. Hendry, Photography of Cathode
Ray Tube Traces. Electronic Engineerin!, p 324-326, Jan. 1944.
W. Nethercot, The Recording of High Speed Transient Penomena, Electronic Engineeriny, 369-371, Feb. 1944.

References

[^8]
Designing INDUSTRIAL

Electronic computer is adjusted to simulate an industrial operation and its control. Engineer then manipulates system to determine optimum design. To simplify computer construction and increase speed very fast time scales are used in computing circuits

By GEORGE A. PHILBRICK

George A. Philbrich Researchers, Inc. Boston, Mass.

USE OF ANALOGS makes it possible to experiment readily with devices or phenomena under changes of scale or after transformation of their variables. All models, whether they are the smallscale replicas used by civil engineers, model airplanes in the wind tunnels of aerodynamic engineers, miniature boat hulls in the towing tanks of naval architects, or the equivalent circuits used by acoustical engineers to study microphones, are analogs. Dynamic analogs can be highly complex assemblies such as differential analyzers, abstractions such as mathematics itself, or direct simulations of the process.

The great advantage of analogs as devices for solving engineering problems is that they are simple. Electrical analogs of mechanical, thermal, or other systems can be assembled and adjusted quickly and easily. For example, in designing a pneumatic control, the analogous electrical network of resistors and capacitors of Fig. 1A was built. As a suitable design evolved from experiment a more formal network was constructed. Finally, after experience in the laboratory under many control circumstances, the actual pneumatic control of Fig. 1B was built. Much time and costly machining were saved using the easily modified electrical analogy.

To facilitate making electrical analogies and to perform the broader functions of analog computers in problems dealing with automatic controllers, the Analaut has been developed. It is a flexible electronic instrument for study and demonstration of regulatory systems such as industrial process con-
trols, servomechanisms or position followers, navigational controls, and stabilizers for power plants.

Designing Controllers by Analogs

As long as a process remains in the steady state its analysis is relatively simple. About two decades ago engineers in the process industries, particulary those concerned with instrumentation, became concerned with the dynamic nature of their processes and equipment, especially under automatic operation. Owing to the complexity of such problems, early studies were empirical. Mathematical analyses
and syntheses of idealized systems were made. Hydraulic analogs of thermal systems were built from which transient behavior could be studied readily by direct measurement.

Beginning in 1936 the writer developed a complete computational Automatic Control Analyzer based on interconnected high-speed models of both process equipment and its associated controller, which took the form shown in Fig. 2A. Different masks depicting the processes and controls being studied were superimposed on the panel to facilitate visualizing the system; the in-

FIG. 1-Electrical analog (A) simplifies design of pneumatic coniroller (B)

CONTROLLERS By Analog

strument is still in use. The same basic technique, developed to a higher degree, is employed in the modern instrument shown in Fig. 2B. It is used for designing controls and also for predicting the necessary type of control for a proposed installation and the adjustment for optimum performance of complex systems.

Whereas controllers can be designed by mathematical analysis provided the system is not prohibitively complex or by testing in the completed plant if adjustments to the system can be made safely and economically, it is simpler to represent the closed control-process loop by an analog. The heavy lines of Fig. 3A show the loop whose properties are to be studied; the rest of the diagram shows the elements of
the analog analyzer. The control manipulates the plant input m in recognition of the unbalance u so as to cause the regulated variable v to follow its desired value v^{*}, thus reducing the absolute value of the unbalance u to a minimum near zero, All the variable and parameters in the analog are the counterparts of those in the actual plant.

In the analog computing system, the controller and the plant are represented by electronic model assemblages, a basic circuit of which is shown in Fig. 3B. The essential loop variables are transformed into measurable voltages, each of which can be related to the corresponding plant variable by an appropriate scale factor such as pounds per square inch per volt (to convert to pressure in a pneumatic control).

FIG. 2-Circuits of onalog computer simulate plant and controller

For repesenting the desired value there is a manually adjustable steady component and an optionally inserted variable component for disturbing the system. The flexibility of the instrument permits comparing controlled and uncontrolled responses of the simulated system, studying hysteresis and excursion limit effects, inserting conventional regulating functions with proportional, derivative, integral, and second integral effects, and inserting special features from external circuits. Response of the analog is determined by disturbing it with a recurrent pulse and observing the transient on an oscilloscope. The time scale of the analog is made short so that the loop will have returned to equilibrium before the next pulse and so that the computing elements, especially the capacitors, can be conveniently small. The disturbance can be inserted at any desirable point in the loop.

Usually the variations around the simulated loop are displayed as functions of time on the oscilloscope, with suitable timing markers if necessary. However, by plotting one variable against another parametric plots of great interest can be obtained. Figure 4 shows curves plotted against time, and a parametric curve (for a more complex system) by way of comparing the two types of displays. The parametric method shows the stability and phase relations among significant loop variables.
With such an analog of the process an analog of the appropriate controller can be developed and its suitability observed from the transient response obtained. By manipulating plant or control parameters that are likely to vary during operation, critical conditions can be found and evaluated. With this information the control is practically designed. The fast operating time of the analog permits observing the complete transient response as an adjustment is made, so that a com-
plete study of a system can be completed quickly.

Basic Circuit

For special purposes the analog might be arranged differently than the one described here, but the same basic circuit can be used. Most of the complete analog system is based on conventional electronic techniques and so need not be reviewed. However, it should be pointed out that, of the possible mediums for building analogs, the convenience and flexibility of electronic circuits makes them excellent for experimental purposes. If one stays well above the noise and drift thresholds, there is no practical limit to the precision that can be obtained if the needs justify the effort. At the opposite exreme, tube noise can be employed for random excitations where statistical evaluations are to be made.

Figure 3B shows a useful gen-eral-purpose circuit for use in electronic analogs. Considered as an amplifier, the circuit is directly coupled for handling direct current but can operate to frequencies that are high compared to the fundamental frequency employed in the disturbance. The input impedance as seen from e_{1} is very high. The internal impedance of the circuit is also relatively high so that for reliable results substantially no current can be drawn from the out-

FIG. 3-(A) Block diagram of automatic control computer, and (B) basic circuit of used in the analog computer elements

FIG. 4-Reproduction from oscilloscope tracings show how optimum response of plant can be determined by systematic adjustment of various controller adjustments
put by the load. Thus, because no current can be drawn at the output e_{2}, the circuit is usually followed by another of the same kind.

A fixed source of screen excitation is provided, giving constant gain to zero frequency. The same voltage source provides a reverse current mode of operation in the computing portion of the circuit. Dropping-resistance R is chosen near the average effective d-c plate resistance of the tube. A peculiarity of the circuit is that there are no paths from the tube electrodes to ground other than those through the elements Z_{1} and Z_{2}, thus the currents through these elements are equal and opposite. As the grid voltage approaches cutoff, current circulates through Z_{1} and Z_{2} in that order, making the output e_{2} positive. At the opposite extreme, the current circulates in the reverse direction making e_{2} negative. Because the voltage across Z_{1} follows e_{1}, the output e_{2} is dynamically related to e_{1} in a manner dependent almost entirely on the values of Z_{1} and Z_{2}.

If Z_{1} is purely resistive, the current in Z_{2} corresponds to the input voltage e_{1}. This property is useful in various ways; for example, Z_{2} can be the input terminals of a four-terminal filter, in which case the current into the filter is directly manipulable with no expenditure of input energy.

If Z_{2} is also purely resistive and equal to Z_{1}, reversal of sign or "minus one" operation results. With Z_{1} and Z_{2} replaced by a single linear potentiometer, a distortionless inverting amplifier having a
useful adjustment is obtained. With the tap in the center, the gain or transfer function is nearly unity. Deflection of the tap in one direction gives a transfer or gain of G and an equal deflection in the other direction gives a gain of $1 / G$.

With Z_{1} still purely resistive, if Z_{2} is purely capacitive, the circuit is a reasonably good integrator with a time constant $R_{1} C_{2}$. In the control analog computer for which this circuit was developed, the computing interval is typically four milliseconds, so that the time constant of the integrator can be made long compared to the computing time using components of reasonable size. If the elements are reversed the circuit is a differentiator. In fact there are numerous dynamic characteristics that can be obtained using different combinations of impedances for Z_{1} and Z_{2}. The nominal equation for the circuit is given in Fig. 3B.

In operating the circuit, care must be taken to prevent saturation of the tube or components. For example, a typical fast integrator will integrate to a limit in a millisecond with one volt remaining on the input. However, such a device can be tested and calibrated by applying a square wave of about five volts amplitude to the input, with an additive adjustable d-c bias. 'The bias can be set to bring the effective input level to zero and will keep the output within the limits of saturation. Under these conditions a sharp and straight sawtooth will be produced in the output by a sharp square wave at the input; the amplitude of the output will be dependent

FIG. 5-Control for heat exchanger in this pasteurizing plant was designed by mearis of electrical analogs

FIG. 6-Floating thermometer head on plastic caleñdering roller actuates automatic process controller
on the amplitude of the input, its period, and the time constant of the integrator. Other types of computing networks require other techniques for calibration and adjustment, but this example illustrates the simplicity of the methods.

The combinations possible with this basic circuit provide a powerful general technique for constructing computers and control analogs. Most dynamic conditions can be reproduced with this circuit and combinations of passive networks. For a small project, or for initial experimentation, the basic circuit using batteries is especially appropriate because well-regulated power supplies are unnecessary. As used in the control analog computer, common power supplies and auxiliary switching and calibration circuits are necessarily added to the basic circuit.

Industrial Applications

The first step in using the analog computer for designing an automatic control for an industrial plant or process is to reduce the actual system to its elecrical model. In many processes it is possible to recognize the electrical analogs from the equipment and to compute parameters from known data or by simple tests. Distributed parameters can usually be represented to useful accuracies with a few lumped sections.

As mentioned above, if a direct approach is not feasible the dynamic response of the plant can be determined by introducing a known disturbance at the input or manipulated variable and observing the
disturbance produced at the output or regulated variable. The plant must remain in a sufficiently undisturbed condition, aside from the intentional disturbance, or the measurement must be repeated often enough to eliminate random effects. Where the response depends on the condition of the load or there are other nonlinearities, a series of tests may be necessary. The record of plant response is then duplicated to a much faster time scale on the control computer, with especial attention to duplicating delay and the initial portions of the response. Once the plant response has been provided in the analyzer, the appropriate control can be quickly determined.

Two typical problems illustrate more specifically how the analog method of designing controllers is carried out in practice. Figure 5 shows a portion of a high temperature pasteurizer; the main heat exchanger is at the right and the instrument panel in the near background. Several interlocking controls are included in the plant to assure holding every drop of milk at a maximum temperature for a minimum interval, avoiding overheating. The crucial regulation problem is to control the hot water temperature in the final milk heater stage at a point chosen for its significant relation to the milk temperature by manipulating a steam valve elsewhere in the system. Under manual operation with water replacing the milk to avoid accidents, a record was made of the temperature variations resulting from a sudden known change of the
steam valve. From this information the settings for a proportional derivative-integral control were determined on the analog computer. High performance was obtained from the predicted settings and further adjustments were unnecessary.

In another type of problem the crucial regulated variable was the surface temperature of the central roll of a plastic calender, The temperature was measured electronically by the floating head shown in Fig. 6 and recorded on a self-balancing capacitor bridge instrument. The manipulated variable was steam pressure under control of an auxiliary or cascaded regulator. By making a manual change in the steam pressure, the plant response was obtained on the temperature recorder. The analog of the plant was then set to duplicate this response and several control methods studied. The best type control mechanism thus determined was installed and set to the predicted dynamic adjustments, giving satisfactory control immediately.

Besides providing a design and operating tool in the field of automatic control, this type of analog has also proved useful in instructing plant personnel and as a college lecture room demonstrator and laboratory test set. Acknowledgement is made to the engineers of The Foxboro Company for whom the early developments of these techniques were made, and to Prof. J. A. Hrones of MIT for encouragement in their application to the pedagogy of automatic controls.

Electron Diffraction for

Film and Surface Studies

Crystalline structures of thin films can be determined by diffraction patterns produced when electrons are directed through the material. Surfaces of materials are studied by patterns of reflected electrons. Applications and equipment for the technique are described

By G. A. DOXEY

Special Products Division
General Electric Company Schenectady, N. Y.

Although oxidation of a magnesium disc was not visible. this reflection electron pattern shows the surface presence of magnesium oxide

Aluminum mounted on a Formvar film to give a total thickness less than 500 Angstrom units produced this transmission electron diffraction pattern

TThe electron diffraction instrument is a research tool designed to aid physicists in observing and measuring conditions on surfaces, or in thin layers, of materials such as metals, ceramics, and plastics. In it a beam of electrons is directed at the material being studied and the resulting diffraction pattern is observed visually on a phosphorescent plate or photographic records are made. This pattern consists of rings, the diameters, intensities, and sharpnesses of which indicate composition, orientation, and atomic arrangement of crystalline material.

Types of Applications

The electron diffraction technique is used for investigating corrosion, catalysts, lubricants, surface deposits, pigments for paints, inks, dyes, graphite, and many phases of metallurgy. The diffraction patterns are similar to those produced by x-ray diffraction. The essential difference is that diffraction patterns resulting from reflecting electrons from the test samples indicate conditions only on surfaces of samples, while diffraction patterns from electrons projected through test samples indicate internal conditions of thin films. X-ray diffraction indicates the condition
throughout the entire specimen.
Comparison may be made between electron diffraction patterns obtained by various users of electron diffraction equipment, or with the card index of x-ray diffraction patterns maintained by the American Society for Testing Materials.

The electron diffraction instrument is used in research developing better filaments. It is now generally known that primary and secondary electron emission is a function of the surface conditions. The instrument has been used in the General Electric Research Laboratory in the study of better material for secondary emission. In this case, a magnesium-silver alloy was heated, after which the surface was examined by the electron diffraction instrument and found to be magnesium oxide, which is good for secondary emission.

In studying the cause and prevention of corrosion, it is essential to determine its nature in very early stages. Electron diffraction will detect minute changes and thus will help to identify chemical changes before they are visible under a microscope. By studying corrosion resistance of alloys in different atmospheres, the instrument has aided in selecting the best material for gas-turbine buckets.

Patterns can be observed visually or photographic records can be made

Catalytic action is a surface phenomenon. Electron diffraction photographs reveal the presence of the very thin layer of material responsible for this action. Lubrication is a function of the surface film. Hence the electron diffraction instrument is important in determining good lubricating films and in controlling processes for their production. In addition, it is useful for studying surface changes on bearings and engine cylinder walls.

Method of Operation

The instrument is mounted on a portable table. The major components are an electron gun that produces the electron beam, an apertured anode that accelerates and positions the beam, a magnetic lens for focusing and positioning the beam on the specimen, the specimen chamber with manipulator for
adjusting the position of the specimen, a mechanical shutter for controlling exposures and provided with a fluorescent coating for visual indication of focus, a camera box with fluorescent screen for viewing the diffraction pattern and with space for five 4 by 5 inch photographic plates for recording the pattern, the evacuating system, and the power supply.

Either of two apertured anodes, which are grounded and thus maintained at a positive potential relative to the filament, can be brought into position and adjusted mechanically for proper positioning of the electron beam. One aperture admits a beam of 0.002 -inch diameter, the other 0.008 -inch diameter.

The specimen chamber is about 6.5 inches square by 8 inches deep. Samples are admitted through a door 6 inches in diameter. Three

Elements of electron diffraction instrument show its operating principle
of the faces of the chamber are provided with glass ports 3.5 inches in diameter. These glass windows are interchangeable with metal plates or other accessories. One accessory, a specimen manipulator, is normally mounted on the top port. Another accessory that can be mounted on the front port when required, is an auxiliary electron gun for neutralizing charges that collect on certain specimens.

The specimen, the surface characteristics of which are to be studied, is mounted on the specimen holder. After vacuum has been established and electrons are passing through the apertured anode to form a beam, the operator focuses the beam on the shutter by means of the magnetic lens until, by adjustment of the apertured anode, the unfocused and focused beams coincide. Specimen adjustments are made with the manipulator until a diffraction pattern is obtained on the fluorescent screen. The distance of the specimen from the screen is determined by an accessory telescope, which can be mounted on the specimen chamber.

When a photograph of the pattern that has been focused on the fluorescent screen in the camera box is desired the beam is interrupted by the shutter, A photographic plate is lowered from the upper plate holder by actuating a push button. The shutter is then opened long enough for the exposure. Then the plate is dropped into the lower plate holder by operating another push button.

The evacuating system consists of a mechanical pump and an oil diffusion pump, separately mounted beneath the assembly. A valve seals the chamber from the pumps during specimen changes or loading and unloading of the camera. Vacuum is measured by a thermocouple gage. Time-delay relays prevent premature application of voltage.

The power supply, furnishing accelerating potential to the main electron beam, is adjustable from 20 to 50 kilovolts and is stabilized and ripple-free to better than 0.1 percent. A high-frequency supply furnishes current for the filament of the electron gun. A zero-center instrument indicates any variation of the high potential greater than 0.05 percent.

FIG. 1-Clipped sine wave (A); double clipped sine wave (B); double elipped sine wave showing phase shift (C)

Technique for Distortion Analysis

Modification of clipped sine waves by circuits under observation is displayed on a cathoderay oscilloscope for quick analysis of audio response. Typical patterns are given, and a simple equipment comprising biased crystal rectifiers is described

By SAMUEL SABAROFF*

Barker and Wonsultant
Upper Darby, Pa.

DISTORTION in a linear circuit can be separated into two general categories: nonlinear distortion; and frequency distortion. Nonlinear distortion is caused by impedances that are functions of current or voltage. A sine wave
introduced in such an impedance will be distorted in waveform because of the harmonics generated. These nonlinear impedances are generally resistive, like those encountered in a tube or crystal.

A sine wave introduced in a cir-

FIG. 2-Circuit diagram of α sine wave clipper with output waveforms for various switch positions indicated
cuit containing only reactance will not be distorted in waveform, but may be changed in phase and amplitude. This phase shift and amplitude change may also vary with frequency. Harmonics are not generated in this kind of a circuit, though they may be selectively diminished or accentuated.

Circuits in general have both nonlinear distortion and frequency distortion. The amount and kind of distortion that can be tolerated in a circuit depends on its use. Communication circuits, in which intelligibility is paramount, can have considerable distortion, whereas broadcast circuits should have negligible distortion.

Measurement of Distortion

There are various ways of determining distortion in a circuit in order to indicate its suitability for a particular application. One well-

* Transmitter Engineer Radio Station WCitu, Philadelphia, Pa.

known method utilizes the circuit response to a sine wave. Nonlinear distortion is measured by noting the percentage of harmonics generated in the circuit for various frequencies and amplitudes. The effect of reactance is measured by the variation in gain as the frequency is varied.

The interdependence of the two kinds of distortion is not always
clearly stated. The harmonics generated by nonlinear distortion will be influenced by the frequency characteristic, so that the sine wave analysis is correct only if either the nonlinear, or the frequency distortion is found to be negligible.

The sine wave analysis is of great utility however, in that definite and reproducible quantities
are obtained. In experimental, and developmental work it is sometimes tedious and time consuming.

Standard Waveform Method

A quick and simple qualitative anlysis of a circuit can be made by noting the change in shape of certain standard waveforms. Waveforms with a high harmonic content are particularly suitable for
investigating the effect of frequency distortion in wide-band circuits. One example is the square wave, which is of great utility in the investigation of video circuits. The square wave can be considered to simulate an extreme case of the kind of signal the circuits are required to handle.

Most signals encountered in audio circuits are complex in that they are composed of a fundamental and its harmonics. A test waveform that simulates such a signal, and that has been particularly useful in audio circuit analysis is shown in Fig. 1A. It is a portion of sine wave and is therefore called a clipped sine
wave. Two such clipped sine waves can be placed back to back, as shown in Fig. 1B. This waveform has been termed a double clipped sine wave.

Clipped Sine Wave

One great advantage of the clipped sine wave is in the economy and simplicity of its generator for which the circuit diagram is given in Fig. 2. A sine wave of the proper amplitude, is fed into the unit and clipping is done by means of biased crystal rectifiers.

The frequency range of the driving voltage is determined by the kind of equipment being tested. For high quality circuits, the fre-

FIG. 5-Response of a communications amplifier. Oscillograms at left show effect on clipped sine waves and, at right, on double clipped waves
quency range may be approximately 100 to 10,000 cycles. For communications circuits, it can be 300 to 3,000 cycles. The frequency range need not be continuously variable. For most purposes, the discrete frequencies of 100,300 , $1,000,3,000$, and 10,000 cycles will suffice.

From Fig. 1A it is seen that the clipped sine wave is composed of successive flat portions with sharp corners, interconnected by portions of a sine wave. Analysis of this wave shows it to be the fundamental plus an infinite series of harmonics with the even harmonics predominating.

The flat portion and the sharp corners of the clipped sine wave are similar in shape to a half square wave, and the effect of a circuit on this portion of a clipped sine wave is similar to the effect on the square wave. Square wave experience can therefore be transferred almost intact to analysis with the clipped sine wave.

The asymmetry of the clipped sine wave is of great help in avoiding mistaken analysis due to amplitude saturation. Amplitude saturation is easily noted by a flattening of the peaks of the sine wave portion. Asymmetrical amplitude saturation can be investigated by reversing the polarity of the clipped sine wave. This feature has been useful in the investigation of classB amplifiers. For the analysis, it is sometimes advantageous to reduce the duration of the sine wave portion by decreasing the ratio of driving voltage to back bias.

Double Clipped Sine Wave

The double clipped sine wave is useful in determining phase shift at low frequencies. It is composed of the fundamental and an infinite number of harmonics, with the odd harmonics predominating. This waveform, (Fig. 1B), is seen to be a sine wave with a small step at the points of zero voltage. Phase shift in a circuit is indicated by a vertical displacement of these steps, as shown in Fig. 1C. The approximate phase shift can be calculated from the following formula

$$
\phi=\sin ^{-1}(a / b)
$$

where ϕ is phase shift; a is the vertical displacement of step por-
tions; and b is the peak to peak amplitude.

It is possible of course, to formulate and plot the effect of various circuits on the clipped sine wave and the double clipped sine wave. For qualitative analysis, however, it is practical to illustrate the effect of several typical circuits on these test waveforms by means of oscilloscope displays.

Interstoge Transformer

The frequency characteristic of an inexpensive interstage transformer is shown at the top of Fig. 3. This transformer is essentially flat from 30 to 3,000 cycles, but with a large peak in the response at 8,000 cycles. The effect of this transformer on the clipped sine wave is shown at the left. At 100 cycles, there is sufficient high-frequency response to keep the corners sharp. At 300 cycles, a transient has become evident, becoming larger at 1,000 cycles.

The flat portion of the clipped sine wave is slightly less than a half period. Estimating the number of half waves of the transient on the flat portion and multiplying by two gives the approximate ratio of the transient frequency to the driving frequency. In this case it is estimated to be seven half waves for a 1,000 -cycle half period, giving an approximate frequency of 7,000 cycles for the transient. It is interesting to note the correspondence of the transient frequency to the point of high gain on the frequency characteristic. The 3,000 cycle clipped sine wave indicates that the transient frequency has been more closely approached.

In Fig. 3 at the right are shown the effects of the transformer on the double clipped sine wave. The transient is beginning to be evident on the flat portions at 300 cycles. The 1,000 -cycle wave is appreciably distorted by the transient, and the steps are practically obliterated at 3,000 cycles owing to dropping high-frequency response.

High Quality Amplifier

The graph in Fig. 4 shows the frequency characteristic of a high quality, multistage, resistancecoupled amplifier. This amplifier is essentially flat between 20 and 50,-

FIG. 6-Clipped sine wave with fundamental partially suppressed (A): and with fundamental partially accentuated (B)

000 cycles. The series of oscillograms at the left shows the effects of this amplifier on the clipped sine wave. At 30 cycles, the slope of the flat portion illustrates the effect of phase shift. The sharpness of the corners indicates the presence of higher order harmonics. At 100 cycles, the phase shift has decreased and the high-frequency response is still good. The oscillogram for 300 cycles is a good replica of the clipped sine wave, as it is at 1,000 cycles. At 3,000 cycles the effect of high-frequency attenuation is beginning to make itself felt, while at 10,000 cycles high-frequency cutoff has rounded the corners appreciably. The important feature in this analysis is the gradual change in shape of the clipped sine wave over the frequency range. There are no distinct resonant circuits or sharp discontinuities indicated, nor would they be expected in highquality circuits.

The effect of this amplifier on the double clipped sine wave is shown in the oscillograms at the right. Phase shift, as indicated by the displaced flat portions, is evident at 30 cycles. This characteristic decreases with increasing frequency until it is negligible at 1,000 cycles. At 3,000 cycles the phase shift has reversed direction. Above 3,000 the lack of sufficient high-frequency response tends to obliterate the steps, as shown in the oscillogram for 10,000 cycles.

Figure 5 shows the frequency characteristics of an amplifier used for communication purposes. The response of this amplifier is maxi-
mum at approximately 700 cycles. It is down 1 db at 300 cycles, up 1 db at 700 cycles and down more than 7 db at 3,000 cycles. Zero level is taken at 1,000 cycles.

Communications Amplifier

The oscillograms of the effect of this amplifier on the clipped sine wave are shown at the left in Fig. 5. At 300 cycles, phase shift is indicated by the slope of the flat portion, and the lack of high-frequency response by the blunted corners. The oscillogram for 1,000 cycles shows a rise in gain at somewhat less than 1,000 cycles, and the corners are further obliterated. At 3,000 cycles, the effect of a poor high-frequency response is evident. It is interesting to note in this amplifier also, the lack of any tendency toward transients. The clipped sine wave analysis indicates a broadly resonant circuit, with maximum gain at less than 1,000 cycles, and no significant frequency discontinuities outside the pass band.

To the right are the oscillograms showing the effect of this amplifier on the double clipped sine wave. The large phase shift at 300 cycles is shown by the vertical displacement of the flat portions. These steps are increasingly obliterated by the lack of high-frequency response at 1,000 cycles and 3,000 cycles.

Tuned Circuit at Driving Frequency

The examples just given illus,trate the ordinary use to which one may put the clipped and double clipped sine wave. The effect of a circuit tuned to the fundamental frequency of the clipped sine wave was not clearly exemplified, and is therefore illustrated. Fig. 6A shows the shape of the clipped sine wave with the fundamental partially suppressed, and (B) with the fundamental partially accentuated. The flat portions have now become concave in A and convex as in B.

When the driving frequency is shifted slightly from that of the tuned circuit these convex and concave portions will be displaced to one side. An example of this effect is shown in Fig. 5 (1,000 cycles, at the left) illustrating the effect of a communications circuit on the clipped sine wave.

Multivibrator Design by Graphic Methods

Simple graphic method permits accurate design of free-running multivibrator circuit, eliminating tedious and repeated calculations. Curves are given for commonly used tubes. All phenomena determining circuit operation are taken into account

By A. E. ABBOT

Federal Telecommunication Laboratories, Inc.
New York, N. Y.

THE equation for the semiperiod of the free-running zerobias multivibrator shown in Fig. 1, as derived from its equivalent circuit, is
$\tau_{1}=\left(R_{o 1}+\frac{R_{L} r_{p}}{R_{L}+r_{p}}\right) C_{\mathrm{t}} \ln \left(\frac{E_{b}-E_{m}}{E_{x}}\right)$
where $\tau_{1}=$ semiperiod of multivibrator
$R_{o 1}=$ grid resistance
$R_{L}=$ load resistance
$r_{p}=$ plate resistance
$C_{E}=$ coupling capacitance
$E_{b}=$ plate-supply voltage

FIG. 1-Basic zero-bias free-running multivibrator, equivalent circuit, and typical time and voltage relations at the plates of the fube

FIG. 2-Variation of output voltage with load resistance for tubes commonly used in multivibrator circuits
$E_{m}=$ minimum alternating voltage on the plate
$\boldsymbol{E}_{x}=\underset{E_{b}}{\text { cutoff }}$ voltage corresponding to
The subscript 1 denotes those factors pertaining to tube T_{1}. The various time and voltage relationships in the wave produced are shown also in Fig. 1. In Fig. 2 is given the output voltage E_{0} of the multivibrator in peak-to-peak volts as a function of load resistance.

The buildup time of the multivibrator, τ_{B}, is given on the A scales of the nomograph in Fig. 3. This nomograph is based on

$$
\begin{equation*}
\tau_{B}=4\left(R_{L}+r_{p}\right) C \tag{2}
\end{equation*}
$$

The value of τ_{B} obtained here covers the period required for the voltage wave to reach 98 percent of its peak value.

In Fig. 4 it is assumed that

$$
\begin{equation*}
a=\frac{E_{b}-E_{m}}{E_{x}} \tag{3}
\end{equation*}
$$

and α is plotted in this graph against various values of R_{L} and E_{b}. Figure 4, therefore, gives a value of a that can be multiplied by the time constant to give the semiperiod. Therefore, Eq. 1 reduces to

$$
\begin{equation*}
\tau_{1}=\left[R_{g 1}+\frac{R_{L} r_{p}}{R_{L}+r_{p}}\right] C_{1} a \tag{4}
\end{equation*}
$$

Figure 5 is a period-versus-frequency chart, which is included to facilitate the determination of the whole period τ when the frequency is given. This enables a simple calculation of fractional periods in the case of an unsymmetrical multivibrator (Fig. 1):

$$
\begin{equation*}
\tau=\tau_{1}+\tau_{2} \tag{5}
\end{equation*}
$$

where τ_{1} and τ_{2} are the fractional periods.

In Fig. 6 and 7, it is assumed that

$$
\begin{equation*}
\beta=\frac{R_{L} r_{p}}{R_{L}+r_{p}} \tag{6}
\end{equation*}
$$

Therefore, Eq. 4 further reduces to

$$
\tau_{1}=\left(R_{g \mathbf{1}}+\beta\right) C_{\mathbf{1}} a
$$

In Fig. 6, it is also assumed that

$$
\begin{equation*}
\gamma=\frac{R_{g 1}}{R_{g 1}+\beta} \tag{8}
\end{equation*}
$$

When plotted against R_{g}, the factor γ permits an evaluation of the effect of the load and plate resistances on the grid resistance. For the value of R_{L} selected, if R_{g} is made so high that $\gamma>0.9$, then it can be assumed that $\beta=0$. When $\gamma>0.9$, there is approximately a 10 -percent error in the calculation of τ_{1}; this falls to 5 percent when $\gamma=0.95$.

FIG. 3-Nomograph interrelating the various factors involved in multivibrator construction. The plate resistance value may be taken as 9,300 ohms for 6F8, 6J5, 6SN7, 7A4 12J5 and 12SN7 tubes, as 10 . 000 ohms for the 6C5, and as 7,100 ohms for the 6J6

Equation 7 reduces to a simple equation
$\tau_{1}=R_{q_{1}} C_{1} a$
The B scales of Fig. 3 are a plot of Eq. 9, and enable a simple calculation of the fractional period from the time constant and a.

If the conditions of the problem are such that $\gamma \ll 0.9$ it will be necessary to include the effect of β and use Eq. 7 rather than Eq. 9.

Figure 7 gives the value of β for different load resistances. The r_{p} selected in this calculation is an average value. With a given voltage swing, there will be a maximum deviation of 11 percent between any possible r_{p} and this average value.

Example 1

It is desired to design a multivibrator, using a 6SN7 tube, that will have a peak-to-peak output of 190 volts and will operate at a frequency of 30 kc . The pulse width
required for triggering purposes is 10 microseconds. The plate supply is 250 volts.

Then $E_{0}=250$ volts, $f=30 \mathrm{kc}$, $E_{\circ}=190$ volts peak to peak, and
$\tau_{1}=10$ microseconds.
Step 1 (see Fig. 2) : When $E_{\circ}=$ 190 volts and $E_{b}=250$ volts, $R_{L}=$ 35 kilohms.

Step 2 (see Fig. 4): When R_{L}

FIG. 4-Curves giving value of α in terms of load resistance and plate voltage for several types of tubes

FIG. 5-Time-frequency relationship

FIG. 6-Load resistance curves

FIG. 7-Effect of load resistance
$=35$ kilohms and $E_{b}=250$ volts, $\alpha=2.563$.

Step 3 (see Fig. 5) : When $f=$ $30 \mathrm{kc},==34$ microseconds. Then $\tau_{1}=10 \mathrm{mic}$ roseconds and $=24$ microseconds.

Step 4: When $R_{L}=35$ kilohms and $R_{r_{1}}=R_{\eta_{2}}=0.1$ megohm, $\%=$ 0.93. Then $\beta=0$. Using scales \mathbf{B} of Fig. 3: When $\tau_{1}=10$ microseconds $\tau_{2}=24$ microseconds, and $a=2.563, R_{\rho 1} C_{1}=10 / 2.563=3.9$ microseconds, and $R_{r_{2}} C_{2}=24 / 2.563$ $=9.35$ microseconds.

Step 5: When $R_{91}=0.1$ megohm and $R_{g_{1}} C_{1}=3.9$ microseconds, C_{1} $=40$ upf. When $R_{g=}=0.1$ megohm and $R_{g 2} C_{2}=9.35$ microseconds, $C_{2}=95 \mu \mu \mathrm{f}$.

Step 6 (see Fig. 3, scales A): When $R_{L}=35$ kilohms and $C_{1}=$ $40 \mu \mu \mathrm{f}, \tau_{\mathrm{B}}=7$ microseconds.

A multivibrator was constructed according to the above calculations, with resistor and capacitor values accurate to within 1 percent. Calculated and experimental values of the semiperiod were identical, and E_{0} differed by only 2 volts.

It is desired to improve the buildup time of the multivibrator output in Example 1 at the expense of output voltage. The conditions of the problem remain the same, except that a lower value of R_{L} is selected.

Example 2

Let $R_{L}=10$ kilohms. Then, by consulting the curves in the same order as in Example 1, it is found that $E_{o}=132$ volts, $\alpha=2.205$, $R_{p_{1}}=R_{o 2}=0.1$ megohm, $\gamma=0.93$, $R_{\rho 1} C_{1}=10 / 2.205=4.54$ microseconds, $R_{o 2} C_{2}=24 / 2.205=10.88$ microseconds, $C_{1}=45.4 \mu \mu \mathrm{f}, C_{2}=$ 108.8 w. f, and $\tau_{B}=3.51$ microseconds.

The multivibrator was again con-
structed, using resistor and capacitor values accurate to within 2 percent; results again were in close agreement.

Example 3

It is desired to design a 25 -kilocycle multivibrator with a buildup time of 2 microseconds and a pulse width of 15 microseconds.

Step 1 (see Fig. 3, scales A): When $C=31 \mu$ u.f and $R_{L}=8$ kilohms, $\tau_{n}=2$ microseconds.

Step 2 (see Fig. 2): When $R_{L}=$ 8 kilohms and $E_{a}=250$ volts, E_{o} $=119$ volts.

Step 3 (see Fig. 4): When $R_{L}=$ 8 kilohms and $E_{B}=250$ volts, $\alpha=$ 2.11 .

Step 4 (see Fig. 5) : When $f=$ $25 \mathrm{kc}, \tau=40.1$ microseconds. Then $\tau_{1}=15$ microseconds and $\tau_{2}=25,1$ microseconds.

Step 5 (see Fig. 3, scales B): When $R_{g 1} C_{1}=15 / 2.11=7.11 \mathrm{mi}-$ croseconds, and $C_{1}=31$ uuf $R_{g 1}=$ 0.228 megohm. When $R_{g 2} \mathrm{C}_{2}=$ $25.1 / 2.11=11.9$ microseconds and $R_{p 2}=0.1$ megohm, $C_{2}=120 \mu . \mu$.

Limitations

The results of tests on a multivibrator of this design, using resistors and capacitors accurate to within 2 percent, are interesting because they illustrate one of the limitations of the method. The calculated value of τ_{1} is 15 microseconds, while the measured value of τ_{1} is 13 microseconds. The discrepancy is caused by the low value of coupling capacitance used (31 u. f). At this value, the stray capacitance becomes an appreciable fraction of the total. For extremely accurate results, it would be necessary to subtract the tube and wiring capacitance from the calculated value.

Another solution to the problem
would be to use a smaller value of grid resistance, thus permitting a correspondingly larger coupling capacitance. When a high value of coupling capacitance is used, as in the calculation for τ_{2}, the experimental results are very close to the calculated one.

Another somewhat hidden cause for errors in predicting the semiperiods of a multivibrator is the permanent change in the value of a resistor with temperature. To determine the order of this change, each lead of a $\frac{1}{4}$-watt resistor of 102,600 ohms was heated with a soldering iron for a half minute. The resistor was then cooled and the measured resistance was found to be 148,000 ohms, a change of 45 percent. Each lead of five $\frac{1}{4}$-watt, 0.1 -megohm resistors was then heated for fifteen seconds. The average resistance change, after they had cooled for a long period of time, was 17 percent. Thus, the process of soldering resistors into a circuit may change the value of the resistor permanently and, consequently, affect the semiperiod of the multivibrator.

To evaluate the cause of the discrepancy in Example 3, the following experiment was made: The 31mu.f capacitor was replaced by a variable mica trimmer capacitor, which was adjusted until the semiperiod was exactly 10 microseconds. The capacitance value under these conditions was 27 up. Thus, a 4 $u \mu$ error caused by wiring and tube capacitance is responsible for the 3 -microsecond error in the pulse width.

The results obtained with the new value of capacitance were: τ_{1} $=10$ microseconds, $\tau_{2}=26 \mathrm{micro}-$ seconds, $\tau_{B}=3$ microseconds, and $E_{0}=110$ volts.

N

IN THE "PRINTED ELECTRONIC CIRCUIT"

Centralab's "Ampec" printed circuit amplifier using new Cinch socket.

Another

 Cinch First!
. . . insert contact tails through holes in insulation and bend over - socket is mounted, tube lies horizontal to chassis, solder. ing tails positioned on back of chassis for wiring. These newly designed "self attaching" sockets will revolutionize conventional wir. ing in chassis applications.

Sub Miniature Socket No. 54 A 13124 (Reproduced here twice size)

Co-ordinated with the extensive and exhaustive research of Centralab, CINCH engineering experience now contributes a perfected socket for the "printed electronic circuit." The new subminiature socket takes no additional space... . holds tubes securely in place with high tension contacts of new design . . . permits easy maintenance and replacement of tubes; low loss bakelite provides maximum insulation and minimum high frequency loss. Tube is inserted from either side, the width of the socker equals the length of leads in the tube itself.
Samples and further details on request.

F-M Service Areas

Chart shows approximate distance to $1-\mathrm{mv} / \mathrm{m}$ and $50-\mu_{\mathrm{V}} / \mathrm{m}$ contours for effective radiated powers between 1 and $1,000 \mathrm{kw}$ and transmitting antenna heights from 100 to 3,500 feet above average terrain

BY JOHN H. BATTISON
Allocations Engineer

1 MV PER M CONTOUR IN MILES

THE accompanying chart, based on FCC data, provides a quick means of determining the approximate service areas of a transmitter operating on any channel between 88 and 108 mc . Distance to the 1 mv -per-meter contour (solid lines) is shown by the upper scale and distance to the 50 microvolt-per-meter contour (dashed lines) by the lower scale, for various effective radiated powers and transmitting antenna heights. Receiving antenna height is assumed to be 30 feet above average terrain.

Using the Chart

To determine the distance to the 1 millivolt-per-meter contour with a transmitting antenna height of 2,000 feet and $20-\mathrm{kw}$ of effective radiated power, enter the chart at the left and, at the point where the 20 -kw horizontal line intersects the solid diagonal line labelled $2,000^{\prime}$, read on up(7) scale 57 miles. To determine Wistance to 50 microvolt-perFneter contour follow the same procedure but use the dashed djagonal line labelled $2,000^{\prime}$ and n* read the lower scale.

If coverage is desired at a given distance, with a known transmitting antenna height, the effective radiated power required may be read to the left of the point of intersection of appropriate distance and height lines. Similaply, should it be necessary to determine the transmitting antenna height required to prar vide a certain contour with a given power the chart may be entered from the left and the bottom, and the height read from the appropriate solid or \therefore dashed line.

... IT'S ONLY ONE FEATURE OF THIS COMPACT LOW VOLTAGE MALLORY SWITCH

The inset at the top of this picture shows how the terminals of Mallory 3100 Switches are doubly fastened by a wrap-around method which holds them tight and secure against damage and at the same time provides them with a smoother contact surface.
What the picture cannot show is that the stator is made of low-loss XXX Phenolic especially selected for good insulation properties at high humidities . . that a metal web spaced between the terminal contacts improves non-shorting construction . . . that terminals and stator together provide an excellent solder shield.
Small size, of course, is another distinguishing feature of these 3100 Switches, of which millions have been sold to manufacturers of radios, inter-communication systems and test equipment. The larger model, shown above, is 1 "1/6" in diameter and has 18 position 20° indexing, embracing one to six circuits. The smaller model, with 12 position 30° indexing, embracing one to four circuits, is only $1^{1 / 4^{\prime \prime}}$ in diameter.

ASK FOR
3100 SPECIFICATION SHEETS
Printed on tracing paper to permit blucprinting, these sectional drawings indicate standarl and optional dimensions-make it casy for you to order production samples built to your exact requirements.

For more details, send for Mallory 3100 SW ITCH Engineering Data Folder. A wide range of standard stock types is available through convenient Mallory Distributors.
 \section*{MAllory
 \section*{MAllory

 SWITCHES

 SWITCHES

 (ELECTRONIC, INDUSTRIAL and APPLIANCE)}

 (ELECTRONIC, INDUSTRIAL and APPLIANCE)}
P. R. MALLORY \& CO., Inic., INDIANAPOLIS 6, INDIANA

TUBES AT WORK

Including INDUSTRIAL CONTROL

Edited by VIN ZELUFF
Flying-Spot Video Generator 124
Multiple Baby Sitting. 126
Versatile Power Supply 126
Phase Meter 142
R-F Heating for Cabinets 152
Carrier Shift Check Meter 162

Video signal generator system for slide transparencies, using the RCA Flying Spot tube

Flying-Spot Video Generator

A NEW cathode-ray tube allows television stations to construct a videosignal generator which permits transmission of station call letters and test patterns from interchangeable slide transparencies or opaque surfaces.
The tube, RCA5WP15, furnishes a small, rapidly moving spot of radiant energy (hence the name) for scanning. It has an extremely short persistence phosphor having a large component of its energy emission in the near-ultraviolet region. The persistence of the ultraviolet radiation is so short that the amount of equalization needed in the video amplifier to minimize trailing in the reproduced picture is small and can be supplied by a single network. As a result, circuits and adjustments are relatively simple.

A video-signal generator using the tube would consist essentially of the Flying-Spot tube with associated power supplies, deflection yoke, and scanning circuits; a lens to project the raster on the subject to be scanned; the subject, a slide transparency, motion picture film, or opaque object; a multiplier phototube with associated power supply to intercept the radiation transmitted or reflected by the subject, and convert it into video signals; and a video amplifier.

The tube makes possible unusual video effects, such as double images -one produced by a slide, the other by modulating the beam of the tube. A block diagram of a videosignal generator arranged for use with a slide transparency is shown. For best results, the objective lens should be a high-quality enlarger
type designed for low magnification and preferably corrected for use with ultraviolet radiation.

Suitable filters for absorbing the visible and passing the ultraviolet radiation of the screen are available. The choice of filter is affected by a compromise between the permissible loss of signal output through absorption by the filter and the amount of trailing which can be tolerated, or the extent of equalization needed.

Trailing results from the lag in buildup and decay of output from the screen. As the flying spot moves across a boundary from a light to a dark area of the subject being scanned, the persistence of energy output from the screen results in continued input to the phototube from the light area during the time the dark area is being scanned. Thus, the light area trails into the dark area in the reproduced picture.

Similarly, as the flying spot moves from a dark area to a light area, the lag in buildup of the screen output causes the dark area to trail over into the light area. As a result of these effects, the reproduced picture has an appearance similar to that produced by a signal deficient in high frequencies. It is, therefore, necessary to enhance the high-frequency response of the video amplifier by introducing equalizing networks with suitable time constants. Sufficient equalization should be provided to give the desired square-wave response.

The decay characteristics of most standard phosphors are such as to require considerable equalization provided by networks with different time constants in several stages of the video amplifier. Their relatively long decay generally results in appreciable reduction of the useful signal-to-noise ratio.

The persistence of the P15 phosphor is comparatively so short that less equalization is needed. If used without an ultraviolet filter, less equalization is required than for other standard phosphors but a complex network is nevertheless needed because the decay characteristic is not a simple exponential curve but a curve of a complex function. When used with a filter to pass only the ultraviolet radia-

A quick summons brings the IMC Engineer to your side to give expert consideration and advice on all of your most intricate and stubborn electrical insulation problems. He will serve you well...

1. Assist in selection of best insulating materials for the specific job. (Note well-known, nationally recognized products from which to make selections.)
2. Give instructions as to proper application.
3. Suggest ways to eliminate waste.
4. Speed up and increase your production.

He will welcome your call . . . any time. Phone or wite to us or nearest branch office.

[^9]

MANUFACTURERS CORPORATION

tion, the P15 effectively has a persistence so extremely short that the small amount of equalization needed can be supplied by only one network. As a result, circuits and adjustments are simplified and substantially the same signal-to-noise ratio is obtained, in spite of filter absorption, as will the arrangement using the total radiation from the phosphor.

Resolution of better than 700 lines at the center of the reproduced picture can be produced by the 5WP15. To obtain such resolution in the horizontal direction, it is necessary to use a video amplifier having a band-width of about 10 megacycles.

Soft x-lays are produced when the 5 WP15 is operated with an anode No. 2 voltage above approximately 20,000 volts. These rays can constitute a health hazard unless the tube is adequately shielded. Relatively simple shielding should prove adequate.

Bотн direct and alternating voltages for meter testing are provided by the circuit shown. The a-c output is continuously variable from 0 to 1,200 volts and the maximum d-c output is fixed and regulated at 500 volts. Lower d-c voltages are obtained by means of a variable voltage divider which allows smooth control down to zero volt.

Low ripple was not a factor in the design and only ordinary filtering was used. However, the action of the regulator section and a small amount of feedback resulted in a measured ripple of 0.4 millivolt. Regulation was important and is quite good. After the output was set at 500 volts, it held with no perceptible change, with a line variation from 90 to 125 volts and a load variation of from 0 to 200 milliamperes.

Four 6L6G's, triode connected, are used in parallel as the series regulators, and a $6 \mathrm{SJ7}$ as the amplifier. Resistors in each plate lead of the 6L6's equalize the current distribution, and resistors in each grid lead help stabilize and limit the grid current. A total of 200 ma may

MULTIPLE BABY sITTING

Six chitdren in adjoining student-veteran homes at Camp Shanks are monitored while their parents are out. Major Jean L. Wood and his wife use separate microphones, amplifiers and labeled loudspeakers for each baby channel, with a clock at each microphone to warn if any channel fails

Versatile Power Supply

By William B. Miller Standards Engineer Bardwell af McAlister Inc. Bubank, Califormia
be safely drawn from this combination.

The 6SJ7 control amplifier was considered as an r-f tube and care in wire placement was used to eliminate erratic operation and un-
wanted oscillations. Resistors R_{2} and R_{3} supply the screen voltage and also the keep-alive voltage for the VR150, the current through the latter being about 15 ma with no load on the supply. The divider network across the output supplies the control grid voltage for the 6SJ7 and also feeds the grid any fluctua-
(continued on p 140)

Up to 1,200 volts $a-c$ and 500 volts d-c are available from the power supply

- QUALITY COUNTS -

Western Electric announces a new line of Germanium Crystals! There are five types - all exceptionally compact and sturdy . . . all identical in mechanical dimensions ... and all supplied with pigtails for soldering into circuits. Electrical characteristics have been standardized to meet the requirements of currently known applications.

Western Electric

May be used as power rectifiers at peak inverse voltages up to 115 , and peak forward currents up to 125 ma. By connecting matched units in series or parallel, these values may be increased.

ond da good advantage as second detectors at frequencies to over 60 mc . They have much lower impedance than vacuum tube diodes, and are particularly effective in low-impedance circuits. The 1 N 47 is tested for operation at 100 mc .

SLICERS, LIMITERS AND CLIPPERS

without slicer

WITH SLICER

In the slicer circuit, biased units conduct current through R when critical voltages E_{1} and E_{s} are reached, preventing overswing. In limiters and clippers only one branch need be used, with addition of lowimpedance d-c return path across output terminals or through signal generator.

Unit damps out the oscillation after one-half cycle, producing a single pulse shaped similarly to half of a sine wave. This pulse may be clipped, provided clipper is isolated from pulse-producing tuned circuit to prevent damping out desired half cycle.

Circuit shows d-c restorer applied to a network widely used for coupling successive amplifier stages. The germanium crystal prevents output voltage from swinging below E_{c}; thus negative peak of wave is established at E_{c}.

For complete specifications and application data sheets on Western Electric Germanium Crystals, call your local Graybar Broadcast Representative, or write Graybar Electric Company, 420 Lexington Avenue, New York 17, N. Y.

THE ELECTRON ART

Edited by FRANK ROCKETT

Motion Picture Television Projected from Film. 128
Crystal Diodes in Computers 128
Research Stimulates Electronic Applications 130
Time Expansion of Periodic Waves. 130
Reproducing Hondwriting 180
Capacitor Counting Circuit 182
Survey of New Techniques 190

Motion Picture Television Projected from Film

Experimental television pictures

 of boxing contests were projected onto the 18 by 24 foot screen of the New York City Paramount theater as the event took place. The technique will be used to provide prac-tically simultaneous showings in theaters of local news events. When network facilities become available it may be extended to an intercity basis, independently of television broadcasting networks. The film

Television picture is recorded on 35 mm film, which is then completely processed in 66 seconds, by the equipment that Paramount's vice-president Pcul Raiborn is inspecting

Section of experimental film (not the one shown publicly) shows clarity of picture; note variable density sound track also recorded anto film from audio relayed over some uht
from which the picture is projected can be stored, edited, and reused.

The experimental equipment with which the system was demonstrated in April consisted of a DuMont image orthicon pickup camera, two pairs of 7 kmc microwave RCA relays (to transmit the signal from the Brooklyn Navy Y.M.C.A. to the Manhatten Paramount building via the N. Y. Daily News building), and terminal equipment developed by Paramount engineers. The terminal equipment reproduces the television picture at 30 frames a second and electronically blanks it to permit recording on film at 24 frames a second. The film is completely processed (developed, fixed, washed, and dried-no trouble being encountered from grain or soft geliten), and feed directly into the projector. The process can be operated so fast that a frame is projected 30 seconds after it is exposed. However, at such a rate, sludge tends to collect on the film; a 66 second processing interval has been found most satisfactory.

Because of the extreme sensitivity of the image orthicon (greater than that of film), this technique, in addition to offering quicker projection, is superior to that of using a motion picture camera to obtain news reels under adverse lighting conditions. Not only was the showing experimental in that the terminal equipment had only been completed 10 days before the showing (it was the first time the engineers had seen the picture projected onto the screen of the main theater), it was also experimental in that the audience was not apprised of the showing until it took place; they applauded at the conclusion of the 15 minute showing. The picture was as sharp as direct film news shots and had a remarkably long tonal range.

Crystal Diodes in Computers

Large scale digital computers using many electronic tubes dissipate a great deal of heat. To reduce the amount of heat that must be removed by the air conditioner for the computer, and to reduce the operating power and mechanical size of the computer, germanium

FM SIGNAL GENEIRATOR

Type 202-II -4-216 me.

Additional coverage from $0.4-25 \mathrm{mc}$.

Designed to meet the exacting recuirements set forth by leading FM and television engineers throughout the country, the 202-B FM Signal Generator has found widespread acceptance as the essential laboratory instrument for receiver development and research work.

Frequancy coverage from 54 to 216 megocycles is provided in two ranges, 54 to 108 megecyeles and 108 to 216 megacydes. A front panel modulation meter having two deviation scoles, $0-80$ kilocycies and 0-240 kilocycles, parmits accuraie modulation settings to be made.
Although fundamentally an FM imstrumanil, amiplitude modulation from zero to 50%, with meter calibrations at 30% and 50%, has been incorporated. This AM feature offers increased versatility and provides a means by which simultameows frequency and amplitude modulation may be obtained through the use of an external auctio oscillator.

The internal AF oscillator has eight moelulation frequencies ranging from 50 cycles to 15 kilocycles, any one of which may be conveniently selected by
a rotary type switch for either amplitude or frequency modu!ation.
The calibrated piston type attenuator has a voltage range of from 0.1 microvalt to 0.2 volt and is standarsized by means of a front panel output monitor meter.
The output impedance of the instrument, of the terminals of the R.F. output cable, is $\mathbf{2 6 . 5}$ ohms.

AVAILABLE AS AN ACCESSORY

is the 203-B Univerter, a unity gain frequency converter which, in combination with the 202-B instrument, provides the additional coverage of commonly used intermediate and radio frequencies.
R.F. Range: 0.4 mc . 1025 mc .
R.F. Increment Dial: $\pm 250 \mathrm{kc}$. in 10 kc . increments.
R.F. Output: 0.1 microvolt to 0.1 volt. Also approximately 2 volts maximum (uncalibrated).
or further information write for Catolog E

BOONTONGADIO

BOONTON. Y.J.U.S.A. cypoccecíc
crystal diodes can be used in the switching circuits. When the potential across a diode is negative, it presents a high impedance; when the voltage is positive, it presents a low impedance. Thus the diode constitutes a convenient voltage sensitive switch. Because it consumes power from the control or switching channel, that channel should have low internal impedance. Computers using such switching networks, like that illustrated here, have large capacity but are relatively compact.

High speed computer developed at the Servomechanisms Laboratory of M.I.T. uses germanium diodes, performs arithmetical operations using five-place binary numbers, and indicates solution by neon lamps

Time Expansion of Periodic Waves

By Li-Yen Chen

Transmission Enginees
Ministry of Communication, China

Many methods have been proposed for reducing bandwidth required to transmit a certain message. Preliminary tests conducted at Polytechnic Institute of Brooklyn with a wave-oxpanding system show that periodic waves can be transmitted over less bandwidth than is normally required.

Signal Sampling and Expanding

A periodic wave consists of several identical cercles of a particular waveshape. To transmit this wave all that is needed is to transmit the characteristics of one cycle and knowledge of the rate at which the cycle repeats itself (waveform and frequency). Waveform can be transmitted by gating out a single cycle and elongating it in the time scale. The bandwidth required to transmit the elongated wave is reduced in proportion to the elongation. Furthermore, if the elongation has a predetermined fixed relation to the original wave, the system design incorporates knowledge of the number of cycles to be re-
produced at the receiver for each transmitted cycle, and hence no additional bandwith need be used to convey this information.

An experimental technique for expanding a wave has been developed and tested. Using a $1,000-\mathrm{cps}$ frequency, the wavelength was doubled (frequency halved) and the signal transmitted as a $500-\mathrm{cps}$ frequency. The wave reconstructed at the receiver of the original $1,000-$ cps frequency had practically the waveform of the initial signal. Whereas a technique such as recording the signal at a fast rate and playing it into the transmitter at slow speed produces a similar increase in the time scale, this sampling and expanding method produces the increased time scale without changing the elapsed duration for transmitting the complete signal.

Pulse Methods Perform Expansion

Figure 1 shows the general principle of the expander. Information
(continued on p 170)

Research Stimulates Electronic Applications in Science and Industry

Cathode-ray oscillograph equipment is used to study transients in the high-voltage and insulation research laboraiory

Scientists working on vacuum tubes such as x-ray generators for therapy; an assembled synchrotron doughnut is in foreground

Experiments leading toward physical, biological, medical, and industrial applications of electronics are being conducted at new and extensive laboratories in Staffordshire, England. Included in the
equipment of the English Electric Company's Nelson Laboratories are a three million volt generator for testing transformers, a thirty million electron volt synchrotron that is being developed for the govern-
ment's laboratory at Harwell, and a 140 million volt machine that is planned for cancer research. Electronic laboratories are developing television receivers, industrial controls and scientific instruments.

Lead-In Lines Play an Important Part in Television Reception

The effects of attenuation and impedance mismatch on FM and Television reception are minimized by Anaconda Type ATV* lead-in lines.
The satin-smooth polyethylene insulation of Type ATV line sheds water readily, thus avoiding subsequent impedance discontinuities. This material also has exceptionally high resistance to corrosion. Count on Anaconda to solve your high-frequency transmission problems-with anything from a new-type lead-in line to the latest development in coaxial cables. ${ }^{47330}$ *An Anaconda Trade-Mark

A Type ATV Lead-In for Every Need

Anaconda offers a complete selection of Type ATV Iead-in lines for $75,125,150$ and 300 ohms impedance unshielded and 150 ohms shielded. For an electrical and physical characteristics bulletin, write to Anaconda Wire and Cable Company, 25 Broadway, New York 4, N. Y.

NEW PRODUCTS

Edited by A. A. McKENZIE

New equipment, components, tubes, testing apparatus and products closely allied to the electronics field. A review of catalogs, handbooks, technical bulletins and other manufacturers' literature

Frequency Standard

American Time Products, Inc., 580 Fifth Ave., New York 19, N. Y. Type 2121 A frequency standard is designed to provide an accuracy of one part in 100,000 . Power output is up to 110 volts, 10 watts, at 60 cycles; power input is 110 volts, 45

watts, at 50 to 400 cycles. Net weight of the unit with cabinet is 25 lb .

Wall Speaker Cabinet

Jensen MFg. Co., Chicago 38, 111 . Two new wall mounting enclosures, model H-81 for 8-inch speakers and model J-61 for 6 -inch speakers, have been announced. Pictured here is the model $\mathrm{H}-81$, a bass reflex sector cabinet which may be

mounted singly, in pairs, or in clusters of four around a post to obtain wide-angle distribution of sound.

Barretter Mounts

Sperry Gyroscope Co., Great Neck, N. Y. These instruments are typeN holders for sensitive barretter elements used with suitable wattmeter bridges to measure absolute

microwave power within ± 5 percent accuracy. Maximum average c-w power that can be measured directly is limited to 10 milliwatts. This range can be extended to 100 watts or higher by using a suitable directional coupler or attenuator. Four models are available.

Magnetic Tape Recorder

Amplifier Corp. of America, Magnephone Division, 398-7 Broadway, New York 13, N. Y. Model SP850 high-fidelity magnetic tape recorder is a self-contained unit consisting of tape-pulling mechanism, recording amplifier with ultrasonic

bias and erase oscillator, playback amplifier, monitor amplifier and speaker Bias frequency range is adjustable from 30 to 80 kc with a total recording and playback distortion under 3 percent at 400 cucles.

Sideband Selector

James Millen Mfg. Co., Inc., Malden, Mass. Type 92105 single sideband selector employs the McLaughlin circuit which has two crystals and four tubes. The unit provides advantages of single side-

band reception on all signals rather than only to those with suppressed carrier. The unit is readily connected to any standard communications receiver.

Vacnum Capacitors

Dolinko \& Wilkens, Inc., 101 Hazel St., Paterson 3, N. J., has a new line of high-current vacuum

BUENO

This is the lightweight receiving set, with aerial in the shoulder strap for complete freedom of movement while listening. It contains three RAYTHEON Subminiatures, two 2 E 42 s and one 2E36. Two stages of radio amplification are provided, diode detector with automatic volume control, and a pentode output section connected to the headphones. The set measures $15 / 8 \times$ $41 / 8 \times 51 / 2$ inches and weighs only $11 / 2$ pounds. There is excellent speech tone with ample volume, sensitivity and selectivity between the channels that deliver any one up to seven languages.
Here's How It's Done - The words of the speaker (A) are transmitted to interpreters (B) who are working at microphones. As each interpreter hears the speech he immediately makes the translation in his particular language. All the translations are conveyed to the listeners (C) who select, by dial, the language
they wish to hear.

Why International Business Machines Corporation and other manufacturers of high grade electronic equipment use RAYTHEON Subminiature Tubes.

1. Reduced Product Size... Inereased Product Salability. Raytheon filamentary Subminiatures are flat. Batteries can be tiny because of extremely low filament drain.
2. Plug Into Standard Sockets. All Raytheon Subminiatures can either be soldered in ar plugged into readily available sockets.
3. Raytheon Reliability - the result of unique methods and nine years continuous production of long-life Subminiature Tubes.
4. Readily Avallable From Stock - over half a million on tap at all times. Over 30 types. Standard throughout the world.
5. At Your Local Distributor's-over three hundred - Raytheon Special Purpose Tube Distributors ready to serve you quickly and intelligently.
Write for Data Sheets on Raytheon Subminiature Tubes
RAYTHEON MANUFACTURING COMPANY SPECIAL TUBE SECTION Newton 58, Massachuserts

capacitors rated at 32,000 volts. The units are available in capacitances of $6,12,25,50,75,100$ and 250 micromicrotarads.

Ultrasonic Weld Tester

Sperry Products, Inc., 1505 Willow Ave., Hoboken, N. J. The new angle-beam transmitter illustrated

is used with the Supersonic Reflectoscope to inspect welds. The weld itself will not constitute a reflecting interface, but any voids or inclusions will reflect a part of the energy.

Noise Suppressor

Herman Hosmer Scott, Inc., 385 Putnam Ave., Cambridge, Mass. Type 910-C is the new and improved noise suppressor which functions on the exelusive dynamic-bandpass principle. Compared to previous

models, the new type features improved control circuits, extended frequency range, a continuous suppression control and more flexible remote control facilities.

Strip Selenium Rectifier

Standard Arcturus Corp., 54 Clark St., Newark 4, N. J. The Kotron strip selenium rectifiers

and is completely housed in one cabinet with handset attached. The receiver delivers 2.5 watts of power to the speaker, operation being from a 6 -volt battery with a current consumption of 7.5 amperes. Power output of the transmitter is 5 watts of r-f carrier.

Plug-In Relay

C. P. Clare \& Co., 4719 West Sunnyside Ave., Chicago 30, Ill. Type J small d-c relay is now avail-

able in plug-in type. Overall length of relay and octal-base plug is 3 inches. Independent twin contacts and high current carrying capacity are featured.

Test Insirument

McMurdo Silver Co., Inc., 1249 Main St., Hartford 3, Conn. The model 905 A Sparx is a supersensitive aural dynamic signal tracer with an 18 -watt universal output

(continued on p 194)

Marine Radiotelephone

General Electric Co., Syracuse, N. Y. Type MS-1-A marine radiotelephone offers four-channel operation in the marine 2 to 3 -mc band,

The Voice of America gives to other nations a full and fair picture of American life, aims and policies, plus factual news of the world and the United States,
Broadcast in twenty-three languages, these programs blanket Europe, Latin America and the Far East, with a potential radio audience of more than $150,000,000$ persons.
Of the thirty-two hours of daily broadcast, approximately one-fourth of the time is devoted to
news, one-half to additional comment and informational programs, and the remainder to music and entertainment.
A substantial part of these daily programs is recorded and, due to the excellent quality of these transcriptions, such recorded portions cannot be distinguished from the live transmissions.
Today, as from the beginning, the recorded parts of these broadcasts are on AUDIODISCS.

AUDIO DEVICES, INC., 444 Madison Avenue, New York 22, N.Y.
 Export Department: Rocke International Corp., 13 E. 40th Street, New York 16, N. Y.

Edited by JOHN MARKUS

IRE plans for professional groups; Audio
 Engineering Society launched; new micro-

 wave relay chains; 19 new books reviewedBroadcast Operator License Proposal Amended

In AUGUST 1947 the FCC proposed a change in rules applying to operator licenses for the broadcast service. After considering all available comments and information from interested parties the Commission recently modified its proposal as follows:

A new group of commercial operator licenses, to be known as the Broadcast Operator Group, will be established: (a) limited broadcast operator license; (b) broadcasttechnician operator license; (c) broadcast-engineer operator license.

New examination elements will
be added to presently existing elements 1 through 6, as follows:
(7) Practical Broadcast Operation. Provisions of law, rules and regulations governing the operation of standard and $f-m$ broadcast stations, and procedures involved in normal operation (including minor transmitter adjustments) to insure compliance therewith.
(8) Technical Broadcast Theory and Practice. Intermediate electronics theory and practice as applied to the operation, adjustment and maintenance of standard and f-m broadcast stations, technical regulations, and standards of good

BROADCASTERS SOLVE FLOOD PROBLEM

Radio station WKYW, Louisville, KY., now has a water-borne transmitter near the Ohio Radio station WKYW, Louisville, KY.. now has a

engineering practice regarding the operation of all classes of broadcast stations and of the equipment permitted or required.
(9) Advanced Broadcast Theory and Practice. Advanced technical theory and practice applicable to the operation, adjustment and maintenance of $a-m, f-m$, television and other classes of broadcast stations and associated equipment, including special antenna systems.

Examination requirements for the licenses in the new broadcast operator group will include, in addition to satisfactory ability to understand the English language and to receive and transmit spoken messages in English, the following written examination elements:

Limited broadcast operator li-cense-1, 2, and 7 .

Broadcast technician-operator li-cense-1, 2, 7 and 8.

Broadcast engineer-operator li-cense-1, 2, 7, 8 and 9.

The scope of authority of licenses of the new broadcast operator group will be substantially as follows:

Limited broadcast operator li-cense-Holders of this class of license may operate any standard broadcast station having a maximum licensed power of not more than 1 kw and not employing a directional antenna system, or any f-m broadcast station having a maximum licensed effective radiated power of not more than 1 kw , or any remote pickup or standard broadcast station, provided (1) that one or more holders of a radiotelephone first class operator license, broadcast technician-operator license, or broadcast engineeroperator license is regularly employed on a full-time basis by that station, and (2) that holders of the limited broadcast operator license are prohibited from making any repairs or adjustments beyond the protective interlocks of the radio station transmitter, except in the presence and under the direction of a person holding one of the higher classes of licenses.

Broadcast technician-operator li. cense-Holders of this class of license may operate any class of broadcast station, provided that (1) in the case of a standard broadcast

High Vacuum ...abt

measure it and control it with DPI equipment

TEN years of research, development, design and manufacture of high-vacuum equip. ment have given DPI a rare technical back. ground in the field.

The tangible result of this experience is DPI's wide variety of highly sensitive yet sturdy, trouble free apparatus for making, measuring and controlling high vacuum.
DPI high-vacuum engincering is contributing to the production of television tubes and other electronic devices, to vacuum metallurgy and metal evaporation, hydration, vacuum distillation, atomic energy, and in scores of industries which are just beginning to see in high vacuum a new medium with untold potentialities.
To fit this wide range of applications, DPI has designed and produced more than 35 types and sizes of high-vacuum pumps, and also suitable controls, gauges, valves and accessories.

Seven fine gauges to provide accurate readings of high vacuum are shown on this page. Each has a different range of maximum sensitivity-thus each is best fitted for a particular range of operation.

The accompanying charts indicate the full range of each instrument. The Range of Maximum Sensitivity is indicated by the widest portions of that line.

For equipment to attain high vacuum, to measure it and to control it, look to DPIa pioneer in the field of high vacuum. Your questions will be carefully and promptly answered. Write-

Distillation Products, Inc.

755 Ridge Road West, Rochester 13, N. Y.
570 Lexington Ave., New York 22, N. Y. 135 S. LaSalle St., Chicago 3, III.

[^10]

How to cut
 manufacturing costs

Perhaps your manufacturing costs can be lowered by utilizing G-E Textolite 1834. This low-cost grade of laminated plastics may do your job just as well or maybe even better than more expensive materials you are now using.

And if grade 1834 doesn't meet your requirements, just remember that there are more than fifty other grades of G-E Textolite available. Each of these grades has an INDIVIDUAL COMBINATION of properties. None are exactly alike.

Why not investigate the varied grades of Textolite and the five forms in which it is produced. You'll profit. Plastics Division, Chemical Department, General Electric Company, One Plastics Avenue, Pittsfield, Mass.

GET THE COMPLETE STORY!

Send for the new bulletin G-E TEXTOLITE LAMINATED PLASTICS which lists grades,
properties, fabricating instructions and detailed information about the five forms of Textolite. Fill in and mail the coupon below for your free copy.

PLASTICS DIVISION (BA-6), CHEMICAL DEPARTMENT

GENERAL ELECTRIC COMPANY
ONE PLASTICS AVE., PITTSFIELD, MASS.
Please send me the new G-E Textolite laminated plastics bulletin.
Name \qquad
Firm.
Address.
City
State
GENERAL
40
ELECTRIC

TEXTOLITE LAMINATED IS SUPPLIED IN FIVE FORMS

SHEETS, TUBES, AND RODS -These standard shapes are available in thousands of sizes. Up-to-date manufacturing methods facilitate quick deliveries.

FABRICATED PARTS—G.E. has modern fabricating equipment to machine Textolite laminated plastics parts to your own specifications.

MOLDED-LAMINATED PARTS-Textolite is cusfom molded directly to shape. Molded laminated products are among the strongest plastics parts produced.

LOW-PRESSURE MOLDED PARTS - Extremely large and irregular Textalite shapes are custom molded by the low-pressure laminating process.

POST-FORMEDLAMINATES -Sheets of Textolite laminated plastics are custom formed into simple shapes by this very inexpensive method.
station having a maximum licensed power in excess of 1 kw or using a directional antenna system, or (2) in the case of an f-m broadcast station having a maximum licensed effective radiated power in excess of 1 kw , or (3) in the case of an international, facsimile, or television broadcast station, one or more holders of a broadcast engi-neer-operator license is regularly employed on a full-time basis by that station.

Broadcast engineer-operator li-cense-Holders of this class of license may operate any class of broadcast station.

Audio Society Launched

At a meeting April 13 in New York City attended by over 125 memders, the constitution and bylaws of the Audio Engineering Society were formally adopted. C. J. Lebel, chairman of the meeting, announced that membership was already over 500 and growing steadily.

MEETINGS

June 10-12: Symposium sponsored by Armour Research Foundation and the Physics Department of the Illinois Institute of Technology, at Stevens Hotel, Chicago. Papers and planned discussion will cover instrumentation, techniques and application of electron and light microscopy.
June 2l-25: 51st annual meeting of the American Society for Testing Materials, at Detroit, Michigan.
Juve 21-25: AlEE Summer General Meeting, Mexico City.
July 14-16: International sympo sium on noise. held by the Acoustics Group of the Physical Society and the Roger Institute of British Architects, at the Royal Institute, Portland Place, London, W. I.
Aug. 20-29: All-Electrical Exposition, Pan-Pacific Auditorium, Los Angeles, Calif.

Aug. 24-27: AIEE Pacific General Meeting, Spokane, W'ash.
Sepr. 4-6: ARRL Convention, Milwaukee Auditorium, Milwaukee.
Sept. 13-17: Third Instrument Conference and Exhibit, Convention Hall, Philarlelphia, Pa.
Sept. 27-Oct. 2: Third Nalional Plastic Exposition, Grand Central Palace, New York City.
Sept. 30-Oct. 2: Pacific Electronic Exhibition and IRE west coast Anmal Convention, Bilımore Ho tel, Los Angeles, Calif.
Oct. 5-7: AIEE Middle-Eastern District Meeting, Washington, D. C.
Oct. 11-12: FM Association Second Annual Convention, Sheraton Hoiel, Chicago.
Nov. 4-6: National Electronics Conference, Edgewater Beach Holel, Chicago.

Adoption of the constitution marks the launching of a new national technical society serving the field of electronics. Provisions are made for establishment of local or regional sections when authorized

MECHANICAL HANDS FOR RADIOACTIVE areas

A remote-control manipulator using mechanical hands can perform chemical experiments or operate machine tools in radioactive areas. In actual use the hands would extend over a protective 8 - t wall into the area while operated from an oulside room. General motion of the robot corresponds to that given the handles b_{Y} the remote operator but wrists, rotated electrically by the use of synchros, can be twisted around completely any number of times. The device is used at the Knolls. Atomic Power Laboratory near Schenectady. N. Y., and was developed by John Payne of the Atamic Power Division of the G. E. Research Laboratory
by the Board of Governors of the national society.

The committee entrusted with formulation of the constitution was headed by Harry N. Reizes and composed of Isabel Capps, R. J. Stier, C. R. Sawyer, A. A. Pulley, C. G. Brodhun, D. L. Richter, C. J. McProud, C. J. Lebel, A. Cezar and J. Daniels.

Classes of membership provided for are as follows:
(1) Honorary Members: - A person of outstanding repute and eminence in the science of audio engineering or any of its allied arts, may be elected to honorary membership by the board of governors and thus become entitled to all the rights and privileges of the society.
(2) Fellows: - A member who has rendered conspicuous service, or is recognized to have made valuable contribution to the advancement in or dissemination of knowledge of audio engineering, or the promotion of its application in practice, may be elected a fellow of the society.
(3) Members:-Any person active in audio engineering who has an academic degree, or its equivalent in scientific or professional experience in audio engineering or in a closely related field or art, shall be eligible for election to membership in the society and upon election shall be entitled to all the
(continued on p 227)

OTHER SHALLCROSS PRODUCTS
Akra-Ohm Precision Resistors
Combined Kelvin-
Wheatstone Bridges Fault Location Bridges Kllovolimeters Kilovoltmeter Multipliers
Shallcross Variaten Attenuators Multi-Resistor Standards Portable Power Supplies
Low Resistance Test Sets (Bond Testers) etc.

Tailoring a selector switch to a specific application economically is not a job for engineers who only produce a few types occasionally. Modern switch engineering calls for plenty of "know how." It calls for a background of dozens of standard types from which adaptations can be made. Not the least important, it calls for highly specialized dies, equipment and trained assemblers

All' of which Shallcross offers in fullest measure.

WRITE FOR SPECIFICATION SHEET

Let Shallcross quote on your Selector Switch requirements. Standard types, most of them subject to broad adaptations, cover switches for bridges, decade boxes, transformer tapping, resistor and capacitor paralleling, inductance tapping, television, and many other exacting uses. Ask for Form C-1.

SHALLCROSS MANUFACTURING COMPANY

Dept. E-68, Collingdale, Pa.

TUBES AT WORK
(continued from p 126)
tions in the output voltage. The amplifying action of this tube provides the regulating effect. Any change on the grid of the 6 SJ 7 is amplified and transmitted as bias to the 6L6's, which changes their series resistance in the proper direction to counteract the fluctuation.

By varying P_{t}, the output voltage is brought to the exact value desired. The divider was calculated to put the grid 5 volts above the cathode, or 155 volts; P_{1} has a range of about 50 volts. Potentiometer P_{2} helps in reducing ripple, as it feeds the unregulated voltage to the regulated side and any ripple will be partially cancelled due to the 180 -degree phase difference between the two.

Resistor R_{1} and capacitor C_{1} aid considerably in ripple reduction. A $500,000-$ ohm potentiometer was used for R_{1} and adjusted for minimum ripple voltage. If the supply is used where the load changes rapidly, a $4-\mu \mathrm{f} 600$-volt oil-filled capacitor across the output helps in maintaining regulation.

A-C Output

The change from d-c to a-c is accomplished by means of a 4-pole double-throw relay. When the relay is energized, it disconnects the high-voltage windings from the rectifier tube and makes them available by means of a switch. The Variac, connected to the primaries of one filament transformer and the plate transformer, controls the a-c output. When the switch selects the filament transformer, a-c from 0 to 7.5 volts is available at the terminals. With half of the plate winding switched in, up to 600 volts may be had. With the full winding, 1,200 volts are available; each range being continuously variable. The Variac is turned down whenever a change is made to prevent arcing at the relay contacts.

The resistance network across the output divides the 500 volts d-c into four ranges, each range being approximately a 125 -volt step, depending on the current being drawn. Thus for the first range the voltage is 0 to 125 , the second from 125 to 250 , the third from 250 to 375 and the last from 375 to the full 500 . The arrangement of the

> BENDIX-SCINTILLA the finest ELEETRICAL CONNECTORS money can build or buy!

Bendix-Scintilla* Electrical Connectors are precision-built to render peak efficiency day-in and day-out even under difficult operating conditions. The use of "Scinflex" dielectric material, a new Bendix-Scintilla development of outstanding stability, makes them vibration-proof, moisture-proof, pressure-tight, and increases flashover and creepage distances. In temperature extremes, from $-67^{\circ} \mathrm{F}$. to $+300^{\circ} \mathrm{F}$., performance is remarkable. Dielectric strength is never less than 300 volts per mil.
The contacts, made of the finest materials, carry maximum currents with the lowest voltage drop known to the industry. Bendix-Scintilla Connectors have fewer parts than any other connector on the market-an exclusive feature that means lower ma intenaace cost and better performance.

> U \& pat aff

Frite our Sales Department for detailed information.

- Moisture-proof, Pressure-tighi - Radio Quiel - Single-piece Inserts - Vibration-proof bight Weight © High Arc Resistance Easy Assenably and Disassembly - Less parts than any other Connector

Available in all Standard A.N. Contact Configurations

potentiometers gives a very smooth control between ranges and allows voltages as low as 0.05 to be easily obtained. The two 10,000 -ohm potentiometers are General Radio type 314 A , rated at 8 watts.

Phase Meter

By E. O. Vandeven General Electric Co.
Schenectady. New York
The phase Meter is a device that measures the phase angles of a low or high frequency polyphase voltage supply. Essentially this is accomplished by developing on the screen of a cathode-ray oscilloscope a circular sweep at the polyphase supply frequency. Each phase voltage of the polyphase supply is then separately amplified, clipped, differentiated and again amplified.

In the output of each phase amplifier are pulses which are established in time by their respective phase voltage. These pulses are mixed and applied to the Z -axis amplifier of the oscilloscope to intensity modulate the circular trace, causing a dark or bright spot to appear for each phase voltage. The angular displacement between the spots is then a measure of the angular displacement between corresponding phase voltages. The phase angles can be read by calibrating the oscilloscope screen radially in degrees.

A block diagram of the phase meter is shown in Fig. 1. One phase

FIG. 1-Block diagram of phase detector
of the three-phase supply is applied to a device which shifts the phase by 90 degrees. This is done, since to obtain a circular sweep it is necessary to apply to the horizontal and vertical amplifiers voltages of the same frequency but separated in phase by 90 degrees. The pulse forming and mixing circuits are also indicated.

The phase meter was developed

FEDERAL STANDARD D-C POWER SUPPLIES...

now in stock and ready for quick delivery

Th partment E813.

An IT\&T Associate

KEEPING FEDERAL YEARS AHEAD... is IT\& T's world-wide research and engineering organization, of which the Federal Telecommunication Laboratories, Nutley, N. J., is a unit.

These Federal standard D-C Power Supplies are now available to meet a wide range of industrial and laboratory requirements for both filtered and unfiltered D-C power All Federal D-C Power Supplies are powered by Federal longlife Selenium Rectifiers with no expendable parts that demand frequent replacement. Operation is dependable and economical. Federal D-C Power Supplies are conservatively rated. Heavy duty Selenium Rectifiers are able to withstand momentary overloads . . . provide D-C power immediately without heat-up period . . . operate quietly and efficiently with practically no maintenance. For prices and information on other Federal standard D-C Power Supplies, write De-

RATINGS											
FILTERED						UNFILTERED					
	A-C Input		D-C Ouput				A-C Input		D-C Output		
Code Number	Volts	Phase	Cycles	Volts	Amps.	Code Number	Volts	Phase	Cycles	Volts	Amps.
1 FTR 3093.AS	115	1	60	12	3	6 FTR 3300-DS	115	1	60	2-32	50
2 FTR 3128.BS*	115	1	60	22-30	10	7 ETR 1342-AS	115	1	50/60	6	4
3 FTR 3246-BS	115	1	60	6	10	8 FTR 3341.AS	115	1	50/60	28	5
4 FTR 3138 -BS	115	1	60	12	5	9 FTR 3339-BS	115/230	1	50/60	6.24	18
5 FTR 3185-AS	115	1	60	12	7.5	10 FTR 3340-BS	115	1	50/60	5.70	12
*Filtered and regulated						11 FTR 3352-BS	115	1	50/60	5/10	20/10

Federal Telephone and Radio Corporation

SELENIUM and INTELIN DIVISION, 900 Passaic Ave., East Newark, New Jersey
In Canada: Federal Electric Monufacturing Campany, Lid., Mentreal, P. O: Export Distributors; International Standard Electric Corp. 67 Broad St., N. Y.

A few of the 125 permanertly insulated wires, cables and cords dereioped bi Rochbestos.
róckbestos range and appliance lead wires Available in several types to fit the electrical and mechanical requirements of your product. Solid or stranded copper, nickel or monel conductors insulated with impregnated asbestos only, or a comlination of high-dielectric tapes and impregnated asbestos.

ROCKBESTOS A.V.C. 600 VOLT SWITCHBOARD WIRE 'This wire was designed to make complicated wiring johs permanent. The impregnated felted ashestos wall beneath the flame-proofed cotton braid is heat, flame and moisture resistant and assures fine appearance of boards as it gives on bends to prevent braid-cracking. Sizes 18 to $4 / 0 \mathrm{AWG}$ with solid or stranded conductors in black, gray and colors. Rockbestos A.V.C. Hinge and Bus Cables have the same characteristics.

rockbestos a.v.c. 600 volt motor lead cable Use this apparatus cable for coil comections, motor and transformer leads exposed to overloads or high ambient temperatures. It makes a permanent installation as it is resistant to heat, flame, oil, grease and moisture. Sizes No. 18 AWG to $1,000,000$ (M insulated with two. walls of impregnated ashestos and a highdielectric varnished cambric insert, with a heavy asbestos braid covering.

Wire-Failure in Your Products Can Tie Your Salemen's Hands

The integrity of your company is at stake every time a switch is flicked on one of your products . . . protect your good name with Permanently Insulated ROCKBESTOS WIRES,CABLES and GORDS

Here's the protection you, as well as your customers, get when your products are Rockbestos-wired:

- Permanent insulation with impregnated felted asbestos.
- No rotting, blooming or swelling from oil, grease or corrosive fumes.
- No baking brittle from conductor-heating overloads.
- No destructive and expensive wire-fires.
- No deterioration from age or oxidation.
- Stepped-up current carrying capacity via high heat resistance.
These safety factors can mean the difference between stardom or obscurity for your brand - in terms of goodwill, reduced servicing or replacement. You'll find them in every one of the 125 different slandard Rockbestos constructions.

Get your copy of the new No. 10-F Rockbestos Catalog, sectioned for easy reference . . . write -today-to our nearest district office or direct:
ROCKBESTOS PRODUCTS CORPORATION
460 NICOLL STREET, NEW HAVEN 4, CONN.
$\begin{array}{cccc}\text { NEW YORK } \\ \text { PITTSBURGH } \\ \text { BUFFALO } \\ \text { ST. LOUIS } & \text { CLEVELAND } \\ \text { LOSANGELES } & \text { DETROIT } \\ \text { OAKLAND, CAL. }\end{array}$

FIG. 2-Single-phase to three.phase trans. formation circuit and phase diagram
for work with the 2 H 21 phasitron tube, used to generate crystal-controlled f-m. The phasitron has three-phase r-f applied to the deflector electrodes. A crystal oscillator at approximately 230 kilocycles is the signal source. This single-phase voltage is transformed to three-phase by employing a modified Scott transformer connection.

The single- to three-phase transformation circuit, with the associated phase relationships, is shown in Fig. 2. Amplifier tube V supplies a transformer load, the secondary of which is center tapped. Secondary voltage, $A F$, is shown vectorially on the phase diagram. The $O B$ vector, displaced 90 degrees from $A F$, is obtained by shifting the phase of the primary voltage $D E$ by 90 degrees. Since $D E$ and $A F$ are in phase, vector $O B$ is then 90 degrees from $A F$.

Resistor R is essentially connected from B to E which is part of a tuned circuit. Therefore by detuning the tuned circuit slightly from the resonant point the reactance from B to E can be made to appear inductive. This inductive reactance is in series with C_{1}, and by proper adjustment of these two parameters the voltage $B E$ will be displaced from the supply voltage $D E$ by 90 degrees. By properly establishing the ratio of C_{8} to C_{3}, the point E is selected along the $O B$ vector. Point E is grounded providing a neutral point for the balanced three-phase system.

For the phasitron to operate with minimum distortion it is necessary that the exciter supply phase voltages of equal magnitude and angular displacement. The phase meter was developed to facilitate the ad-

Ward Leonard Resistors stand up under prolonged exposure to high humidity

WHexE

 are even unaffected by thermal shock.Ward Leonard resistors are "Result. Engineered". By modifying a basic design, Ward Leonard can give you the results of a special . . . for the cost of a standard.

Write for Resistor Catalog. Ward Leonard Electric Co., 31 South Street, Mount Vernon, N. Y. Offices in principal cities of U. S. and Canada.

conirrols

resistors - rheostats - relays - Control devices

Geiger-Mieller radiation surver instrument

A portable battery operated instrument for the measurement of radiation intensities-incorporating precise, reliable circuits such as are usually found only in elaborate laboratory apparatus.

OTHER GEIGER-MÜLLER MODELS BY EL-TRONICS:

1 MODEL LS 64 -- Laboratory Counter Set (Scaling type).
2 MODEL RM 4 -- Counting Rate Meter and Counter Set.
3 MODEL LS 1 -- Laboratory Counter Set (slow speedwithout scaling circuits).
4 MODEL DS 7 -- Classroom Demonstration Set.
5 MODEL RA 5 -- Radiation Alarm.
6 MODEL GPG 2 -- Pulse Generator.
We also specialize in: Electronic Capacity Operated Burglar Alarms Radio Transmitters and Receivers of all types-Regulated Power Supplies-Electronic Bridges-Photo-electric Equipment-High Fidelity and High Power Audio Equipment-Electronic and Radio Controlled Counting and Signalling Devices-Variable Frequency Electronic Generators.

We also maintain a special Products Department capable of handling one unit, or hundreds, either manufactured entirely in accordance with your designs, or designed by us and manufactured for your individual requirements or application.

Write for complete descriptive Bulletins on all or any of the above models.

Manufacturers of Specialized Electronic Equipment

justment of the exciter supply for perfect three-phase output.

Circular Sweep

Figure 3 shows the circuit used to obtain circular sweep. The sin-gle-phase, 230 -kc signal feeds a pentode amplifier. The amplifier plate circuit has a tuned transformer which, when resonated, gives a 90 -degree phase shift between primary and secondary. Proper adjustment of the secondary tuning

FIG. 3-Circuit of circular sweep generator
capacitor is accomplished by observing the pattern on the $\mathrm{c}-\mathrm{r}$ tube. When this capacitor, and the horizontal and vertical gains, are correctly set, the result will be a circular trace on the cro screen.
The pentode amplifier is run class A and with an unbypassed cathode resistor. This is to minimize distortion of the voltages applied to the vertical and horizontal amplifiers. The cro amplifiers must also have low distortion, or it will be impossible to obtain perfect circular sweep. Circle size is controlled by R_{1}.

One of the pulse-forming circuits is shown in Fig. 4. Phase voltage is applied to V_{14}, a cathode follower. This tube transforms from highimpedance input to low-impedance output across L_{1}.

Operation

Accuracy of the meter depends more than anything else on the coupling circuit between V_{14} and V_{2}, and the operation of V_{2}. The voltage developed across L_{1} is at least 30 volts rms. Therefore the grid of V_{2} swings from minus 50 volts to 50 volts plus, less the drop across $R_{3} C_{3}$. The tube begins to conduct when the input voltage rises to approximately -4.5 volts. When it

RATINGS
Filament voltage
Filament current
240 amp
Grid-plate transconductance 11,000 micromhos Interelectrode capacitances:

Grid-filament 24 micromicrofarads Grid-plate $\quad 15.7$ micromicrofarads Plate-filament
Type of cooling 0.5 micromicrofarads water and forced air

Plate ratings per tube, Class B fot power fier (video service, synchronizin

Max voltage	$5,000 \mathrm{v}$
Max current	2 amp
Max input	10 kw
Max dissipation	5 kw

* Useful power output, 'typical operation (at 4,000 v and 1.7 amp, band width 5 mc)
lass nditions):
$5,000 \mathrm{v}$
2 amp

5 kw r-f power amplifier (key-down conditions without modulation): Max voltage $6,500 \mathrm{v}$
Max current 2 amp
Max input 12 kw
Max dissipation 5 kw

* Useful power output, typical operation (at 6,000 v and 1.3 amp)
6.4 kw
*Includes power transferred from driver to output of grounded-grid amplifier.

TODAY's better pictures, in many cases, owe a debt for sharpness and quality to the superior signal put on the air by General Electric's great power triode, GL-9C24. Newest transmitters with finer video performance, use GL-9C24's in pushpull for final output over both low and high-band channels.

In FM work, too, this tube has set noteworthy standards. With ratings in frequency and power that are ideal for the job-plus a wholly new design concept which outmodes earlier v-h-f types-the GL-9C24 is an example of detailed planning for efficiency.

When applied in a properly designed grounded-grid amplifier circuit, no neutralization is necessary. Lead inductance is extremely low.

External metal parts are silver. plated, to cut r-f losses and provide better electrical contact sutfaces. Fernico metal-to-glass seals are used throughout . . . this tube is longlived, sturdy!

If you build transmitters and wish to benefit from the proved brilliant performance of Type GL-9C24, your nearby G-E electronics office gladly will give you further details.

If you are a station operator or engineer, needing replacement tubes of any type-FM, television, or AM -see your local General Electric tube distributor or dealer for alert service! Besides showing the way in tube design, G.E. gets tubes to you fastest when you need them. Electronics Department, General Electric Company, Schenectady 5, N. Y.

GENERAL

FIRST AND GREATEST NAME IN ELECTRONICS

Be assured of maximum reception and troublefree operation with Brach FM \& TV antennas. They are recommended for their simpliciry, ease of installation and durability by service-men, installation engineers and dealers. Brach features a complete line, engineered for maximum performance and to meet all individual problems and requirements.

All antenna kits are complete, containing a five foot steel mast, non-corrosive aluminum elements, ample down-lead, all necessary hardware and the Brach Universal Base Mount which permits a 360° rotation of the mast to any position on any type of building after the mount has been secured. Guy wires are also included and give complete protection and stability to the installation.

Brach antennas feature a low standing wave ratio for peak reception and can be obtained to cover all channels from 44 to 216 MC . Each type of antenna has been tested to give a uniform pattern over the frequency range specified.

ATTENTION, USERS OF PRIVATE BRANDS

L. S. Brach Mfg. Corp., experienced in the development and manufacture of all types of receiving antennas, offers engineering and mass production facilities for the design and production of antennas to individual specifications.

SEND FOR CATALOG SHEETS

DEPT. E

BRACH CROSS DIPOLE FOR FM \#345 88.108 MC

bRACM FOLOED DIPOLE $\begin{array}{lll}\text { FOR FM } & \text { \# } 335 & \text { E8.108 MC } \\ \text { FOR TY }\end{array}$ FOR TV \# 337 Accessory ReAector KitAccer FM \#335.R Accessory Refloctor Kit
For $\mathrm{VV} \# 337-\mathrm{R}$
universal
BASE MOUNT

L. S. BRACH MFG. CORP.
 200 cental nve, neware cos.

WORLD'S OLDEST AND LARGEST MANUFACTURERS OF RADIO ANTENNAS AND ACCESSORIES

FIG. 4-Pulse generator for one phase
reaches zero volts, grid current begins to flow, resulting in a voltage drop across the grid resistor.

The output of V_{2} therefore is a pulse whose leading edge is very steep. It is important that this leading edge be definitely established in time with respect to the phase input voltage.

Tube V_{2} is directly coupled to $L_{1,}$, since a blocking capacitor would have a discharge time constant which would develop grid bias on V_{2} and change its operating point with respect to the phase input voltage. Filter $R_{3} C_{3}$ has a time constant which is short compared to the period of one cycle. Thus, as the voltage across L_{1} rises from its peak negative value, V_{z} should begin to conduct at a point determined entirely by its cutoff potential.

If the magnitude of the phase voltage is varied, this point will shift slightly, which is part of the inherent error of the device. If all phase voltages are varied by the same amount however, no net error should result. All operating points will have shifted by the same amount and in the same direction.
C_{+}and $R_{*} L_{*}$ constitute a differentiating circuit, the voltage on V_{3}

KARP METAL PRODUCTS CO., INC.

124-30th Street, Brooklyn 32, New York

 Custom Craftsmon in Sheel Melal
ALPHA TRI-CORE 2mict SOLDER

faster • more economical • more efficient

Alpha Tri-Core rosin-filted solder-with 3 cores instead of 1 -gives you three times the "performance insurance" you get from ordinary solder. The simple facts are: You get more for your money with Al_{p} hat Tri-Core rosin-filled solder - more speed! More operations per pound! More operations per hour! In addition, Tri-Core permits the use of lower-tin-content alloys with superior soldering results to that obtained from ordinary solders with 5.15% more tin. Can you-can any manufacturer-afford to overlook such outright savings these days? Write for samples or trial order and put Alpha through your
 own tests in your own shop. It is the accepted solder by over 70% of electronic equipment manufacturers.

MORE FOR YOUR MONEY WITH ALPHA TRI-CORE ROSIN-FILLED SOLDER

SOLDER SPECIALISTS FOR OVER 58 YEARS

- 3 cores of flux instead of 1-at no extra cost!
- Even distribution of flux throughout . . . no fluxless areas!
- $\mathbf{2 2} \%$ more joints per pound of solder!
- 25% more joints per hour of soldering time!
- No high-resistance joints! No inspection rejects! No returns!
- 99.9% pure, water-white rosin used exclusively!
- No toxic fumes! Preferred by solderers everywhere!
- Absolutely non-corrosive; non-hydroscopic flux residue is glass-like in hardness and non-conductive!

other ALPHA PRODUCTS include TRI-CORE"ENERGIZED"ROSIN-FILLED SOLDER; IRI CORE "LEAK.PRUF" ACID.FILLED SOLDER SOLID SOLDER WIRE; PREFORMS (rosin and acid-flled); BAR SOLDER, ANODES AND FOIL.

ALPHA METALS, INC., 371 HUDSON AVENUE, BROOKIYN 1, NEW YORK

FIG. 5-Phase relations in pulse-forming circuit
grid consisting of narrow positive and negative pulses. Since V_{3} is zero biased, its grid presents low impedance to the positive pulses and high impedance to the negative ones. In the output, positive pulses predominate.

Tube V_{4} is an amplifier-inverter, biased beyond cutoff. The pulses are also narrowed in this stage. Output of V_{4} is applied to V_{5}, a cathode follower. The negative pulses developed across the cathode-follower load impedance cannot be fed to the Z axis input directly. If this were done the cathode-follower loads of all phase circuits would essentially be in parallel. When one cathode follower were pulsing the remaining two would present excessive loading. The result would be insufficient pulse output voltage.

Circuit Isolation

Therefore the second section of V_{5}, is diode connected. Under these circuit conditions, the cathode load impedances of the inoperative cathode followers are isolated from the load impedance of the one that is operating.

Tube V_{18} is diode-connected to form part of a peak-reading voltmeter circuit. The meter is calibrated to read rms phase voltage.

Figure 5 shows the phase relationship between the sine wave input to the phase circuit and the output pulses appearing at the Zaxis input to the cro. The leading edge of each pulse is determined by the cutoff point of the first clipper tube in the corresponding phase circuit.

Other possible uses of the phase

THE RCA WV-84A ULTRA-SENSITIVE DC MICROAMMETER is a battery-operated vacuum-tube instrument capable of measuring currents from 0.001 to 1000 microamperes. The instrument has six ranges and can read currents in either direction by a simple switching operation. Accuracy is $\pm 5 \%$ of full-scale reading in the 0.01 range, $\pm 4 \%$ on all other ranges.

In addition to its usefulness in measuring small currents, the RCA WV-84A may also be employed as an extremely high-resistance voltmeter by the addition of external multipliers, or it may be used for the measurement of very high resistance values.

Measuring solution potential with the RCA WY84A Ultra-Sensitive DC Microammeter.

THE RCA WV-75A HIGH-FREQUENCY VOLTOHMYST employs a push-pull dc vacuum-tube voltmeter circuit that provides excellent linearity and stability. It will measure dc resistances up to 1000 megohms, ac and dc voltages up to 1000 volts. A newly developed diode probe and internal circuit permits readings of both positive and negative peak voltages at frequencies up to 250 Mc .

In addition, the RCA WV-75A possesses all the outstanding characteristics of its well-known predecessor, Type 195-A.
-Using the RCA WV-75A High-Frequency VoltOhmyst for television receiver measurements.

THE RCA WV-73A AUDIO VOLTMETER is a sensitive high-impedance VTVM capable of readings from 0.001 to 1000 ac volts over a range of 20 to 20,000 cycles. Logarithmic scale and overlapping attenuator assure accuracy even when pointer is at either end of scale.

The WV-73A, in combination with a modulated high-frequency generator and rectifying probe, is especially useful in determining characteristics of coaxial cables and slotted lines. Standing-wave ratios can be read in terms of voltage or db ratio, since the meter is equipped with both scales.
Using Audio Voltmeter with rectifying probe to detect standing waves in wave guide.

For complete details, see your RCA Laboratory Measuring Equipment Distributor, or write RCA, Commercial Engineering, Section FY40, Harrison, New Jersey.

Rearons

 why leading manufacturers specify
LEACH
 RELAYS

1 Protect Their Product Reputation 2 Reduce Field Service Costs 3 lasting Dependable Operation 4 Built to Exacting Standards

For nore than tree decades leading manufacturers have specified Leach Relays because Leacb maintains the highest possible standards for materials, engineering, inspection and testing. These high standards assure dependable operation in Leach re'ays, on which leading manafiacturers staize the name of their own products. It is Leach quanity which mears long lasting, trouble free operation. It is these high standards that result in reduced field servicing costs, for the manufactuicer. They knou Leach standards of quality and design engineering assure dependable operation-maintain customer good will.
fOR BETTE CONTROLS THROUGH BETTER RELAYSLook to Leach

- 425

L思C
SOTS AVALON BOULEPAFD - LOS ANGELES, 3 CALIF.
meter principle include the measurement of phase shift through amplifier circuits.

R-F Heating for Cabinets

By Charles Dusenbury

Engineering and Service Department Westinghouse Electric Corp. Atlanta, Georgia
When Gavan Woodcrafter Inc. began the manufacture of radio cabinets, a method was needed that would eliminate human error in gluing, holding and setting. In addition they were limited in time and floor space. The solution was found in radio-frequency heating.

The production line cabinet fabrication set up contains five Westinghous generators, one 5 kw , $5-\mathrm{mc}$ set, two $5 \mathrm{kw}, 15-\mathrm{mc}$ sets, and two $2 \mathrm{kw}, 15-\mathrm{mc}$ sets. Three of these units are equipped with two position switches to permit one jig to be heated while the other is loaded. The other two units are connected directly to the presses. The jigs and presses are constructed of plastic-impregnated wood and cost has been quite low.

With radio-frequency glue line heating and setting, cabinet construction does not rely on nails, cleats, or hand clamps to hold the cabinet together for a long gluesetting period. The various parts are coated with glue, placed in the jig and held for a few seconds during the r-f heating cycle, which sets the glue sufficiently so that they can be removed immediately for finishing. This gives a product without nails, and thus a finer finished cabinet.

The entire process consists of six steps: five gluing and heating operations and the final assembly. In forming the curved front section of the cabinet, two plys of birch or

In this jig, small blocks for the sides of the cabinet are glued and placed in slots having electrodes on each side so that r-f current passes through the glue line

Oil Coolei powerstaTs

000,000 . Aviation by 1952

JANUARY 1, 1948 - "We need a greatly enlarged air force, right now."-President's Air Policy Commission
february 9, 1948 - "U. S. policies must remain continually adjusted to the requirements of total air power."-Air Coordinating Committee

MARCH 1, 1948 - "We must have air power that is supreme. We cannot have less."-Congressional Aviation Policy Board

FORTY BILLION DOLLARS . . . that's the amount of money required to rebuild U.S. air supremacy in the next five years. Our Administration, our Congress, our military and aviation leaders agree that we must do this if America, as the leading world power, is to maintain world peace and order.

Nor can we stop there. We must continue to spend, say our national leaders, $\$ 10$ billion yearly to maintain this air supremacy.

One of America's greatest industries

"The air power we must have presages a vast new indus. try." These are the words of the Congressional Aviation Policy Board. Aviation will again become one of the largest of U.S. industries - larger than the giant automotive industry.

What this will mean to your business

The impact of $\$ 40$ billion of aviation spending will affect every business in this country. Your planning, beginning now, must embrace the effect on your business of the innumerable product and service requirements of aviation.

The sales approach to the Aviation Market

Aviation is one industry, not many. As the Congressional

Board expresses it, "National air power is an entity not fundamentally divisible as a weapon or as a carrier." Air power is the total aviation activity-military, commercial and private. This is the key to your aviation sales job.

How Aviation Week serves your sales requirements

Aviation Week was specifically designed to serve the information needs of all men in the aviation business. Its editors report every important development in the science of aeronautics and assess its effect upon all activities within the industry. Its editors also recognize the need for the greatest possible speed in the communication of aeronautical intelligence.

Aviation men must get all the news-and the meaning of the news-and they must get it fast. Aviation Week is the one aeronautical publication geared to match the need and the speed of aviation.

In the development of your marketing plans to serve this great U.S. industry, we submit Aviation Week as the most powerful single sales influence you could place behind your product.

McGraw-Hill Publishing Co., Inc., 330 West 42nd St., N.Y. 18, N.Y.

Two plys of birch or poplar and one of mahogany are glued together to form the cabinet front. A 5 -kw, 5 -mc Westinghouse generator is used
poplar and one ply of mahogany are used to form a three-ply section. The middle ply is painted with glue and the section placed in the press. Approximately 200 lb per square inch pressure is applied to the ply section and the $5-\mathrm{kw}, 5$-me generator is then applied for a period of 120 seconds.

After the heating cycle, the panel is split into quadrants to form four cabinet front panels. One man applies glue, operates the press, and splits the panels and turns out 100 sections or 400 front panels in an eight-hour day. Production can be increased in the future by the addition of a glue spreader.

Inside Gluing

After the front panels are cut by an automatic saw, stiffening or loudspeaker boards and six small blocks are glued to the inside. This is done by a $2-\mathrm{kw}, 15-\mathrm{mc}$ generator. This unit can be used for a second heating operation while the loading is going on. The second operation is the gluing of two small blocks and a strip on the record changer mounting board. These operations respectively require 30 and 20 seconds heating time and 20 to 30 seconds loading time. The generator is adjusted so that no change is necessary when changing jigs.

The next operation is the gluing of five blocks to each side of the cabinet. Glue is applied and the blocks placed in various slots which have electrodes on each side so that the r-f current passes through

There's a

Bag Full of Savings

in Using GENERAL PLATE Laminated

SIIVER CONIACTS

The outstanding advantage of using General Plate Laminated Silver Contacts is that they give you solid silver performance at a fraction of the cost of solid silver. How-because these contacts give you a silver contact face at the actual point of contact where the precious metal performance is desired. In addition to better electrical conductivity and economy, General Plate Laminated Contacts have a harder contact surface assuring longer life. The base metal adds strength and workability and at the same time makes spot
 welding or soldering more practical.
General Plate Laminated fabricated contacts, buttons, rivets and screw type contacts are available in many types and styles ready for your assemblies. Or if you prefer to fabricate your own parts, you can get General Plate Laminated Metals in sheet with silver bonded on base metal in the following stock-overlay, single or double inlay, edgelay, toplay, etc.
Overcome the high cost of silver by using General Plate Laminated Contacts and Metals. They'll save you many dollars and increase the performance of your products. Write for information and engineering assistance.

GENERAL PLATE DIVISION

of Metals and Conirols Corporation

LOW PRESSURES

 FOR SALEIf you need low absolute pressures in your processing, Kinney High Vacuum Pumps will create and maintain them for you on a production basis. These pumps meet every requirement - both in degree of vacuum and in capacity - for exhausting lamps and tubes, dehydrating foods, producing drugs, sintering alloy metals and performing countless other low pressure operations.

SINGLE STAGE VACUUM PUMP

MODELS VSD AND DVD

Eight pump sizes cover a capacity range from 13 to 702 cu . ft, per min. with motors from $1 / 2$ to 40 hp., respectively. The three smallest sizes are furnished water cooled or air cooled; all larger sizes are furnished water cooled. Single Stage Pumps on a blank test will produce absolute pressure readings of 10 microns ($.01 \mathrm{~mm} . \mathrm{Hg}$.) or lower.

10 MICRONS

COMPOUND VACUUM PUMP

MODEL CVD

Two sizes of Comppound Pumps are available in capacities of 15.2 or 46 cu. ft. per min., with 1 and 3 hp motors. The working mechanism is similar to the Single Stage but the two cylinders are connected in series. Air cooled casing of unique design has special provision for oil sealing and lubricating the working parts. Low absolute pressures to 0.5 micron ($.0005 \mathrm{~mm} . \mathrm{Hg}$.) are regularly maintained.
Ask for Vacuum Pump Bulletin V45.
0.5 MICRON

KINNEY MANUFACTURING COMPANY

3565 WASHINGTON ST., BOSTON 30, MASS.

New York - Chicago • Philodelphia - Los Angeles * San Francisco FOREIGN REPRESENTATIVES
GENERAL ENGINEERING CO (RADCIIFFE) LID., Station Works, Bury Road, Radeliffe, Lancashire, England HORROCKS, ROXBURGH PTY, LTD., Melbourne, C. I. Australia
W. S. IHOMAS \& TAYIOR PIY., LID., Johonnesburg, Union of South Africa

We ALSO MANUFACTURE LIQUID PUMPS, CLUTCHES AND BITUMINOUS DISTRIBUTORS

A loudspeaker mount board and several small blocks are glued simultaneously in about 30 seconds with this jig
the glue line. When the blocks are in position, they are pushed under a press lowered by an air cylinder that applies pressure to the blocks during the heating cycle. A 5 -kw, 15 -mc generator with a time cycle of about 20 seconds completes the operation.

The fifth operation is heating the glue lines of the radio cabinet top. The two curved side pieces and the triangular strengthening pieces plus the front and back pieces are glued on in this case to form a top which is free from nails and is always square. The heating cycle for this operation with a 2 -kw generator is about 45 seconds and the loading cycle is about the same.

Transfer Switch

The plant is laid out so that the parts flow from one operation to the next and eventually end up at the final assembly jigs. Dual presses are used for the final assembly, a transfer switch being mounted on top of the $5-\mathrm{kw}, 15-\mathrm{mc}$ generator. Two cabinets are heated at the same time in about 110 seconds. During this heating time the operators are loading the second two jigs and as soon as the first heating cycle is completed the power is transferred to the second set of jigs so that the generator is utilized about 90 percent of the time.

The cabinet must be kept square

MIDGETAIR VARIABLES - Here are three of the smallest air variables ever produced.
SINGLE TYPE - Available in four models: 1.55 to 5.14 mmf , 1.73 to $8.69 \mathrm{mmf}, 2.15$ to 14.58 mmf , and 2.6 to 19.7 mmf .

TYPE N - When space is limited, yet you need extremely high voltage rating, fine adjustment with uniform voltage breakdown rating throughout the full capacity range, the JOHNSON Type N Neutralizing Condenser is the perfect answer.

DIFFERENTIAL TYPE - Available in four models: 1.84 to 5.58 mmf, 1.98 to $9.30 \mathrm{mmf}, 2.32$ to 14.82 mmf and $2: 67$ to 19.30 mmf . BUTTERFLY TYPE - Available in four models: 1.72 to 3.30 mmf , 2.10 to $5.27 \mathrm{mmf}, 2.72$ to 8.50 mmf , and 3.20 to 11.02 mmf .

Available in three different models. Capacity range in each type is approx. 1.5 mmfd . to 10.5 mmfd ., peak RF breakdown ratings at 2 MC ranges from 8,500 with the NI25 to 14,500 for the N375.

 MOSINEE "More than Pafuer"

In the field of electronics and the electrical goods industry, MOSINEE stands for paper-base processing materials with scientifically controlled chemical and physical propertics, high
quality standards and dependable uniformity... with good dielectric strength, high tensile or tear strength; proper softness or stiffness; creped with controlled stretch or flexibility; specified pH for maximum-minimum acidity or alkalinity: accurate caliper, density, liquid repellency or absorbency . . . or other technical characteristics vital to your quality standards and production requirements.

MOSINEE PAPER MILLS COMPANY•MOSINEE, WIS.

tUBES AT WORK
with pressure applied from side to side and from front to back. Two cams plus an aircraft clamp are used to accomplish this. Two operators or loaders and two assistants who apply the glue and assemble the cabinets can reach the desired production rate, slightly over 350 cabinets each day.

Since these jigs are made of heary material with two sides and the bottom square, the resulting cabinets must be square. This eliminates one of the greatest difficulties of handmade cabinets where a complete jig is not available. An improved method of applying glue has been devised for small parts using a small rubber

Phonoradio cabinet glued together with r-f heating is free of nails and always square
bulb type syringe with a small plastic nozzle. With this, glue can be applied without excess that might cause arcing and lost time in cleanup.

Advantages

When animal glue and nails are used the cabinets must be stacked for a period of probably twentyfour hours before sanding and finishing can be accomplished. This, of course, requires floor space and additional handling, eliminating the possibilities of a production line type of assembly. Furthermore, it requires a considerable outlay for clamps, and the possibility of nails alone not holding the cabinet tight enough during the

IO MEASURE

\author{

- RESISTANCE
}
- INDUCTANCE
- CAPACITANCE
- STORAGE FACTOR
- DISSIPATION FACTOR

IN

ANY LABORATORY

cOMPLETELY self-contained, portable and always set-up for immediate use, this impedance bridge is indispensable in any laboratory where electrical equipment is used. No hastily putting together a circuit, finding an oscillator and a detector and then a power supply . . . they are all here permanently assembled in an accurate instrument . . . always ready to use at any time.

Over the major portion of its ranges this bridge is accurate for the majority of routine measurements in any laboratory. The ranges are:

RESISTANCE: 1 milliohm to 1 megohm
INDUCTANCE: 1 microhenry to 100 henrys
CAPACITANCE: 1 micromicrofarad to 100 microfarads

STORAGE FACTOR (X/R): . 02 to 1000
DISSIPATION FACTOR (R/X): . 002 to 1
The bridge includes built-in standards, batteries, a 1000 -cycle tone source for a-c measurements, a zero-center galvanometer d-c null detector, and terminals for a headset for 1000 cycle detection. Provision is made for use of an external generator for measurements over a wide range from a few cycles to 10 kilocycles. Direct-reading dials add greatly to the ease and rapidity with which measurements can be made.

TYPE 650-A IMPEDANCE BRIDGE
$\$ 240.00$
in Stock for early shipment

IT'S frEE!

Whether

 DAIRY FLOWRATER or DECADE UNITS

FISCHER \& PORTER'S Sanitary Dairy Flowrater measures and controls the flow of liquid tood products such as milk, cream, vegetable oils, vinegar, egg mixes, coffee exvegact, tomato juice and various carbonated beverages. Cannon Electric Type"W" (shown below) connects the indicator-recorder with the Flowrater.

THE HARVEY-WELLS Decade Units are created to save time and expense in the laboratory, school or workshop on DC or low frequency $A C$ electrical circuits, and are new and unique in both design and application. They use the Cannon Electric Laboratory and Switchboard fittings shown below.

Various parts of the cabinet are assembled into one unit in two minutes at this station served by a $5-\mathrm{kw}, 5-\mathrm{mc}$ generator
glue setting period is always present.
The production line layout with radio-frequency heating saves handling and consequently gives a better product at lower cost. The fact that a man cannot apply a great deal of pressure when nailing a cabinet, unless it is in a jig, means that the parts have to be much more accurate when hand assembly and nails are used. However, the final assembly is arranged so that it draws up the material and takes up a great deal of misalignment which could only be tolerated under these conditions. Therefore, the labor required in the cutting operations need not be quite as highly skilled, nor the machines as accurate.

Carrier Shift Check Meter

By J. W. Whitehead Central High School
Leerds, Yorksinire, England
DURING the second World War a requirement arose for a simple and convenient means of checking the setting up of a transmitter working on a carrier-shift teleprinter circuit. Continuous indication of shift was not required. The method adopted is to set a stable oscillator to the transmitter space frequency. The beat frequency obtained between this oscillator and the transmitter when on its mark frequency is then equal to the carrier shift, and by comparing the note thus produced with that generated by a stable audio frequency oscillator set to the required frequency, an

The new C-47 edition, latest general condensed catalog, covers the thirteen major type series, specialties and certain miscellaneous items. Prices are listed on most lines with the exception of the "AN," " K ", " $D P D$ " and "DPB." Address Dept. $F-120$ for a copy.
 SINCE 1915

IN CANADA \& BRITISH EMPIRE: CANNON ELECTRIC COMPANY, LTD. TORONTO 13, ONTARIO

3209 HUMBOLDT ST., LOS ANGELES 31, CALIF. WORLD EXPORT (excepting British Empire):

- frazar \& hansen, zol clay street

SAN FRANCISCO 11, CALIFORNIA
 gets more stations, gets them clearer and more dependably. You'd naturally expect that from Ward, the world's leading mass producer of radio aerials exclusively. But, large as Ward is, this organization always has believed that resting on your laurels invites rust. Especially so in the fast changing FM and television fields. Accordingly, the Ward experimental laboratory constantly is probing the electronic horizon with the fervor of the true scientist. Many aerial developments still to be unveiled would, if revealed today, cause many a raised eyebrow. Tomorrow, these new developments will mean finer performance at lower cost for the radios you build or install. This same technical know-how is available to design and mass produce custom-designed aerials for anyone needing them in quantity. If you have an aerial problem, bring it to Ward. Your inquiries are invited.

WARD

the ward products corporation 1530 EAST 45ih ST.

There is big news in these small packages

Subminiature vacuum tubes which provide an expanding horizon for the development of many new and unique electronic circuit requirements.

VX-41A ELECTROMETER TETRODE

VX-32B TRIODE

vx-21 DIODE

Actual sizes

VX-4IA ELECTROMETER-TETRODE

10 ma . filament current at 1.25 volts
1.5 to 1.1 filament voltage
$10 \cdot 15$ amperes grid current
2,000 hours minimum life test
13 amplification factor
VX-32B TRIODE
10 ma . filament current at 1.25 volts
1.5 to 1.1 filament voltage
10^{-13} amperes grid current
25,000 ohms plate resistance
65 micro mhos transconductance

VX-21 DIODE

10 ma . filament current at 1.25 volts
1.5 to 1.1 filament voltage

3,000 volts inverse peak
10^{14} ohms insulation resistance
600 microampere emission
Data sheets on subminiature tubes, hi-megohm resistors, and our complefe line of radiation measuring instruments available on request.

Department A

THE VICTOREEN INSTRUMENT CO. 5806 HOUGH AVE., CleVELAND 3, OHIO

Constructed in this fashion, the carrier shift check meter fits under a BC-221 frequency meter
indication of the error in the transmitter shift tuning is obtained and can be corrected.

The circuit layout is shown schematically in Fig. 1. It contains three main items-a stable r-f oscillator, a stable a-f oscillator, and the comparison unit or mixer.

A useful, but not essential, source of r-f is an oscillating wavemeter which is provided with a crystal check, such as the U. S. Army frequency meter type BC221. By using this meter as a basis of the scheme, it is possible to provide, at the same time, a convenient check on the transmitter carrier frequency.

For the a-f generator, a cathodetap oscillator was found to be a convenient form, using as a resonant circuit a fixed capacitor and one winding of a transformer. Output is taken from a second winding on the transformer and fed to the mixer unit. An attempt made to carry out the final adjustment by means of $d-c$ through a third winding was unsuccessful, and units are individually tuned by strapping further capacitors across the tuned winding.

The output from the audio oscil-

FIG. 1-Essential stages of a system for checking carrier shift

TEMPERATURE DRIFT
 (and how to avoid it)

T10 GET negligible temperature drift in your I-F transformers, the electrical characteristics of the cores have to he virtually constant throughout the entire use-range of temperature.
But a core can be no more constant-can have no greater temperature stability-than the powder it's made of. That's why it's important to have cores made of G. A. \& F. Carbonyl Iron Powders.

These powders, made by G. A. \& F.'s exclusive, patented carlonyl process, have a unique degree of temperature stability, and in direct comparison tests proved themselves superior to all other magnetic powders.

G. A. \& F. Carbonyl Iron Powders
 for high frequency cores offer these advantages to the electronics industry:

1. When used at radio frequency, G. A. \&F. Carhonyl

PERMEABILITY CHANGE DUE TO TEMPERATURE

(For uncompensated toroid of G. A. \& F. Carbonyl Iron Powders)

(NOTE: Applicable to grades E, TH, and SF)

Iron Powders are generally superior in coefficients of eddy current loss and residual loss. These low losses usually make for high Q.
2. G. A. \&F. Carbonyl Iron Powders are also superior in coefficients of magnetic and temperature stability. 3. In comparison with air-cored coils, G. A. \& F. Carbonyl Iron Powder-cored coils permit considerable savings in volume, weight, and wire-length, along with great increases in inductance and Q.
\Longrightarrow Ask your core manufacturer for information about G.A.\&F. Carbonyl Iron Powders. Or write direct to: Antara I'roducts, 444 Madison Avenue, New York 22, N. Y. Dept. 62.

G.A.\& F. CARBONYL IRON POWDERS

[^11]

Available Now!

* TELEVISION I N.Y.T. facilities are now expanded to
* VERTICAL OUTPUT TRANSFORMERS
* HORIZONTAL BLOCK- ! ING OSCILLATOR TRANSFORMERS
* VERTICAL blocking OSCILLATOR TRANSFORMERS

POWER TRANS- supply all types of inductive television FORMERS i components in quantity. Estimates will \star DEFLECTION i be supplied promptly on standard units or types wound to your exact specification. In addition to television components, N.Y.T. offers complete manufacturing service on power transformers, chokes, and audio transformers. Modern plant and winding equipment assures finest quality at low cost. Call or I write today for information.

* IN ANY QUANTITY!
A L P H A
N E W
J E R S E Y

FIG. 2-Audio oscillator and mixer circuit. The center position of switch S_{1} is the normal position
lator is taken to the grid-filament circuit of the mixer tube, the cathode circuit of which is fed with the audio output from the oscillating frequency meter. This latter tone is generated by heterodyne action within the meter between the space frequency produced by the meter and the carrier shift transmitter on its mark frequency. The audio signal resulting in the plate circuit of the mixer is applied to phones, and the beats heard allow accurate setting of the transmitter mark frequency.

Mixer

For simplicity of construction it was considered desirable to use one tube for the two necessary circuits, and the double triode 6C8G was selected. Each section of this tube has its separate cathode, a fact which allows virtually complete isolation of the two circuits, thus making for enhanced frequency stability of the oscillator.

Referring to Fig. 2, the winding of transformer between terminal 4 and earth is tuned by means of fixed capacitors at C_{1}, strapped across it to produce the desired frequency. The precise values of these capacitors varies from unit to unit, and each must therefore be individually tuned. The scope of the instrument may be increased by providing switch S_{2} to bring in further capacitors C_{2} in parallel with the first bank to secure a second audio frequency. (The two frequencies in use were 850 and 720 cps respectively). Terminal 3 on T_{1} is a tap on the tuned winding taken directly to the cathode of V_{1}, and terminal 4 connects with the grid of this tube via a parallel r-c combination.

Output from the a-f oscillator is

23 Truarc rings permit changeover to centerless grinding savings

"The use of Truarc Retaining Rings permits centerless grinding of pins instead of plungegrinding. This eliminates the problem of taper and reduces the required tensional tolerances of these parts," reports Acme Steel Company of Chicago. 'Furthermore, use of Truarc rings gives the Steelstrapper smoother lines by eliminating unsightly projections. This results in a more streamlined housing, a definite sales advantage."

Making repairs is much easier too, because

Truarc simplifies assembly and disassembly. Truarc rings are precision engineered, may be used over and over again, remain always circular to give a never-failing grip. Wherever you use machined shoulders, nuts, bolts, snap rings, cotter pins-there's a Truarc ring that does a better job of holding parts together. Truarc cuts costs, adds sales advantages. Waldes Truarc engineers will be glad to show how Truarc can help you. Send us your problem.

that is . . going to be . .

H_{E} is in that shell and eventually he is going to hatch out, grow up and be a bird. What kind, we don't know, because we don't know anything about his papa and mamma.

A lot of new things are in the shell right now, on the verge of hatching. Many of them are electrical, requiring various kinds of insulation in fact, because of insulation, right or wrong, they are going to grow up into real big birds, or, they are going to die of the "pip" before they get their feathers.

We said "because of insulation" - and that is what we meant. Of all the items in the assembly, insulation probably represents the least cost and is of the most vital importance.

Mica is insulation. Mica with the right name in front of it is Mica at its best - MACALLEN MICA.

Whatever goes into the shell (or into the product) is going to come out true to kind. These new electrical devices you are hatching are not going to be a bit better than their insulation.

MACALLEN MICA

ALL FORMS, ALL QUANTIIISS - ALL DEPENDABLE

when you think of MICA, think of MACALLEN

THE MACALLEN COMPANY• 16 macallen st, boston 27 , mass.

TUBES AT WORK
taken from T_{1} and applied to the other section of the $6 \mathrm{C} 8 \mathrm{G}, \mathrm{V}_{2}$. The audio output from the frequency meter is applied across the cathode resistor via the capacitance. Across the plate load, therefore, appears the beat note resulting from the superposition of the two audio frequencies, and it is reproduced in the phones which are plugged in at J_{1}.

It was found convenient to tune the frequency meter to zero beat on space without switching off the a-f oscillator, and for this purpose a second jack J_{2} is provided. This jack is connected across the audio input from the frequency meter, and has an additional contact which is arranged to short the grid of the audio oscillator to ground when the jack is in use, thus stopping that tube from oscillating and avoiding the complication of having a continuous additional note in the phones while tuning to zero beat.

It may be possible for an inexperienced operator to obtain an apparent tuning point when the two tones are harmonically related. A three-position nonlocking key is therefore provided to enable the two tones to be heard independently, thus ensuring that they are of exactly the same frequency.

The original prototype was calibrated against a standard tone generator to an accuracy of ± 1 cycle, and this was used as a standard against which further models were checked. During a long period of use the stability of all the models has been good and the results have been eminently satisfactory.

The particular model illustrated in the photographs was designed to fit beneath frequency meters of the U. S. Army type BC-221. This accounts for its somewhat unusual shape.

Radiation indicators are used by Australian Customs authorities to detect thorium in bags of mineralbearing sand exported from the east coast of Australia. The thorium occurs in monazite sands, and exports of mineral sands containing more than a certain proportion of monazite are banned by the Commonwealth Government.

Aerocom's new V.H. frequency AM radiotelephone transmitter is designed and built to operate amid ice and snow or steaming jungles, and what's more, this fine transmitter will give long trouble free efficient service with low maintenance and operating costs. Built in two models VH-200 and VH-50 to meet your communications needs.

Model VH-200

The model illustrated (VH-200) operates on one Crystal Controlled frequency (plus one closely spaced frequency) anywhere in the range 118-132 Mcs. or 132-165 Mcs., A-2 (with accessory unit) or A-3 AM. Nominal carrier power 200 watts up to 132 Mcs ., reduced power up to 165 Mcs. Low temperature operation using gas filled rectifiers. Normal temperature operation using mercury vapor rectifiers. Relative humidity up to 95%. Model VH-50 has similar characteristics except nominal carrier power is 50 watts. Complete technical data on both models on request. Aerocom builds other radiotelegraph and telephone transmitters with accessories, and invites your inquiry if you have a communications problem.

> CONSULTANTS. DESIGNERS AND MANUFACTURERS OF STANDARD OR SPECIAL ELECTRONIC. METEOROLOGICAL AND COMMUNICATIONS EQUIPMENT

DEALERS: Equipeletro Ltda., Caixa Postal 1925, Rio de Janeíro,
Brasil * Henry Neuman Jr., Apartado Aéreo 138, Barranquilla, Colombia

Fishing reel gears must operate smoothly at a speed of 3000 revolutions per minute or more, when a cast is executed. These gears must also withstand the strain of hauling in a fighting fish of unpredictable size and strength, thus rendering a dual purpose: speed and velvety smoothness in one direction-strength and durability in the other.

Instruments and machines have individual gear problems. For over a quarter of a ceutury, Quaker City Gear Works has solved thousands of them and produced millions of gears of every description up to $60^{\prime \prime}$ in diameter for manufacturers in many diversified industries.

Aircraft controls, dental Irills, electric clocks, sauges, indicators, heat controls, machine tools, radar, radios, washing machines and motion picture projectors are but a few of the many conveniences of modern progress which depend upon the heartheat of Quaker City Gears. Your gear problem is our lusiness, our large productive capacity is at your service.

YOUR INQUIRIES WILL RECEIVE PROMPT ATTENTION

The heart of the Outdoorsman Castomatic reel illustrated above is but one of many gear trains developed by our engineers and produced in our fully equipped plant.

1910 N. Front Street, Philadelphia 22, Pa.

THE ELECTRON ART
(continued from p 130)

FIG. 1-Basic wave-expanding technique
of the waveshape of the input periodic wave (A) is stored in the modulated pulses (B). Because of the periodicity of the wave, the pulses in group T_{1} are identical to those in group T_{2}. Only one group need be transmitted without reducing the information that will be conveyed (to a receiver adjusted to the system). Alternate pulse groups are therefore omitted (C) and the remaining pulses rearranged to occupy the entire time scale (D). Demodulation of these rearranged pulses gives the elongated wave (E). The bandwidth occupied by this wave (E) is half that occupied by the original one (A).

The system, comprising an arrangement of relatively common circuits, that accomplishes this novel result is shown in Fig. 2. Pulse position modulation is used to store information of the incoming wave. The repetition rate of the pulses is $10,000-\mathrm{cps}$ so the system is capable of faithfully transmitting frequencies up to $3,500-\mathrm{cps}$.

A square wave of half the frequency of the input wave is obtained by a divider. This square wave gates the pulse-selecting circuit for passing pulses of alternate cycles of the signal wave, giving an intermediate signal of the general form shown in Fig. 1C.

A number of delay circuits are used to convert the pulses to the expanded time scale. The first delay circuit delays its pulse for 150 microseconds, the second circuit delays its pulse for 250 microsec-

YOURS FOR THE ASKING is this compound data book. The latest work of its kind, it is a comprehensive manual containing all the data, facts and figures, physical characteristics, test methods, active formulas and general applications for Mitchell-Rand's extensive line of Compounds, Waxes, etc. It's free upon written request.

Mitchell-Rand, headquarters for electrical insulations, has developed more than 3500 compound and wax formulae
 . . . there is one to fit every known requirement . . . and when special conditions arise Mitchell-Rand will meet the challenge to develop the Wax or Compound formula to meet the particular requirement.

The formula of 1366EX CAPACITOR END SEAL is typical of the detailed data published in this important reference book. 1366EX has unusual characteristics and is one of the latest developed by Mitch-ell-Rand. It embodies the advantageous combination of high cold flow temperature with low viscosity, also good impact strength and good adhesion to cardboard are inherent and desirable qualities.

1366EX

MITCHELL-RAND INSULATION CO. Inc.
 51 MURRAY STREET. COrtIondt $7-9264$. NEWYORK 7, N. Y.

> A PARTIAL LIST OF M-R PRODUCTS: FIBERGLAS VARNISHED TUBING, TAPE AND CIOTH - INSULATING PAPERS AND TWINES • CABLE FILLING AND POTHEAD COMPOUNDS . FRICTION TAPE AND SPLICE TRANSFORMER COM. POUNDS . FIBERGLAS SATURATED SLEEVING. ASBESTOS SLEVING. AND TAPE . VARNISHED CAMBRIC CIOTH AND TAPE - MICA PLATE, TAPE, PAPER, CLOTH, TUBING • FIBERGLAS BRAIDED SLEEVING - COTTON TAPES, WEBBINGS AND SLEEVINGS - IMPREGNATED VARNISH TUBING. INSULATED VARNISHES OF ALL TYPES - EXTRUDED PLASTIC TUBING

HARDWICK, HINDLE

 Resistors

BY maintaining even more rigid standards than ever before in our manufacturing and inspection we offer you exceptional resistors-exceptional in their rugged and dependable performance and long life.

We show here 3 of our standard types-a fixed; an adjustable; and our flat type Blue Ribbon-the first resistor made to depart from the conventional tubular form.

As one of the oldest manufacturers of resistors and rheostats we offer exclusive advantages in many types; and an engineering service that is always at your call. Write us today.

HARDWICK, HINDLE, INC. Rheostats and Resistors

Subsidiary of
THE NATIONAL LOCK WASHER COMPANY
NEWARK 5, N. J.
Established 1886
U. S. A.

Build added appeal into your radio-phonograph combinations with the Model " R " - Seeburg's new record changer.

Combining compactness with quality ... style with performance - the Model " R " offers every convenience essential to the modern console instrument. Beyond dependable, quiet operation, this new mechanism possesses such important convenience features as the automatic
shur-off . . . lightweight tone arm . . . four-position control for automatic play, manual play, record rejection.

Plan now to give your modern instruments every possible sales advantage by equipping them with the new Seeburg Model "R." Seeburg's broad experience in the development and manufacture of changing mechanisms of all kinds is your assurance of satisfaction.

- Synchronized two-post construction permits easy setting for automatic play of either 10 or 12 -inch records.
- Lightweight tone arm and minimum needle pressure for longer record life.
- Automatic shut-off after last record is played.
- Dual trip-closed circle and eccentric.
- Recessed furntable.
- Compact - overall size only $131 / 4 \times 131 / 4$ inches.
- Changer motor assures constant furntable speed.
- Automatically plays twelve 10 -inch or ten 12 -inch records—may also be set for manual play.
- Top section of spindle rotates independently-eliminates objectionable noiseminimizes spindle hole wear.

Write today for detailed information on this equipment.
microseconds instead of the initial 100 microseconds. The modulation displacements of the individual pulses are unaffected.

Because the number of pulses in each group may differ from the norm by ± 1, the time interval between each delayed pulse group may be 200 ± 100 microseconds, and a special method of demodulation is required. The position-modulated pulses are converted to amplitude-modulated pulses by superimposing them on a $10,000-\mathrm{cps}$ triangular wave. A capacitor charging circuit is used to gate and hold a charge corresponding to the amplitude of each pulse. Two charging circuits are used to avoid the gap created by discharging the capacitor. Switching actions of the charging circuits are actuated by two cathode followers controlled by a counter. Each incoming pulse trips the counter, which routes it to one capacitor and discharges the other. The expanded wave is obtained from the output of a lowpass filter.

Special Circuit Techniques

Because most of the circuit elements are conventional, it is unnecessary to describe their details. However, some of the design and adjustment techniques that are peculiar to this particular application should be mentioned.
In the pulse modulator, which is essentially a one-shot multi-vibrator tripped by the negative pulse from a $10,000-\mathrm{cps}$ source, the position of the tail edge of the pulse is position-modulated by the incoming signal, giving a ± 6-microsecond displacement for a ± 2-volt input signal. A differentiating circuit and shaper circuit transform the modulated edge into the leading edge of a pulse. Push-pull output for the bridges of the delay circuits is obtained from a pulse transformer that delivers a 5 microsecond pulse with a peak amplitude of 40 volts.
The pulse delay circuit is also a one-shot multivibrator delivering a pulse a preset interval after being tripped by one. A bridge is connected between each pulse delay circuit and the pulse source. Normally the bridges are balanced so that no pulses can reach the delay

Aclual size of G-E SINTERED ALNICO 5 permanent magnet used in the G-E Electronic Reproducer is shown in red.

NEW ENGINEERING DEVELOPMENT

SINTERED ALNICO 5, General Electric's newest magnetic material, now enables you to design intricate shapes with higher external energy than ever before. The minimum guaranteed available energy is 3,500,000 gauss oersteds for most sizes and shapes. New G-E SINTERED ALNICO 5 possesses tensile properties several times those of CAST ALNICO 5 and can be produced economically in small size parts. You get better surface finish plus closer dimensional tolerances with new G-E SINTERED ALNICO 5.

NEW DESIGNS POSSIBLE

New SINTERED ALNICO 5 has higher external energy than either SINTERED ALNICO 2 or 4. This makes possible new designs heretofore impossible or impractical. It is especially adaptable where small powerful magnets having high magnetic properties are required. Because of their great stability and external energy, SINTERED

PERMANENT MAGNETS

ALNICO 5 magnets can save valuable space in your product. You can usually improve your product by re-designing to use high energy G-E SINTERED ALNICO 5. Typical applications now in production which use G-E SINTERED ALNI. CO 5 include the following: meters, relays, fountain pens, electronic reproducers, and compasses.

ENGINEERING SERVICE

G-E application and development engineers, working closely together, are ready to advise you on new SINTERED ALNICO 5 and other G-E magnetic materials. Our engineers are backed by years of research and the development of thousands of magnetic applications. They will be glad to work with you on your product design. For more information, please mail the coupon shown below.

YOU GET 5 ADVANTAGES

1. Higherexternal energy than eitherSINTERED ALNICO 2 or 4.
2. Tensile properties are several times greater than CAST ALNICO.
3. Excellent surface finish.
4. Close dimensional tolerances.
5. Intricate shapes possible.

METALLURGY DIVISION, Sec
CMEMICAL DEPARTMENT
| GENERAL ELECTRIC COMPANY
PITTSFIELD, MASS.
Please send me:
() Technical Report on new SINTERED ALNICO () Bulletin, CDM-4, "G-E Permanent Magnets."
NAME
TITLE
COMPANY
PRODUCTS MFRD.
ADDRESS
CITY
STATE

ELECTRIC

Dict Tour homo THAT IN 2 MINUTES AN AVERAGE RADIO SPEAKER EXERTS ENOUGH ENERGY TO DRIVE A GOLF BALL OVER 575 YARDS?

$1 \sqrt{ }$ e know it's impossible for a speaker to swing a golf club, but it is true that in just 2 minutes time an average loudspeaker does exert enough energy to drive a golf ball over 575 yards! This means that although OPERADIO builds speakers with the skill and care of a watchmaker. . .these speakers are sturdily con. structed to stand up under heavy, continuous use. OPERADIO speakers are delicately balanced to authentically reproduce the sweetest high notes of a piccolo, yet, carry the tremendous power of a full orchestra crescendo.

ASK FOR OPERADIO SPEAKERS A FULL LINE OF OUTSTANDING SPEAKERS FOR EVERY PURPOSE!
oPERADIO

RADIO REPLACEMENT and PUBLIC ADDRESS SPEAKERS

multivibrators. An incoming wave train initiates the action by producing a pulse that opens (unbarances) the first bridge circuit. The first pulse is thus received and delaved by the first circuit, and 10 microseconds later the bridge to the second delay is opened. The systematic switching continues routing successive pulses to delays in order. The unbalanced condition for each bridge exists for only 180 microseconds; the relay action stops when the incoming signal ceases.

Demodulation of the amplitudemodulated pulse train is compli-

Ten delay circuits with their input bridges and the pulse mixer are on the upper chatsis. Coaxial cables connect to the lower chassis containing the rest of the expertmental system for reducing bandwidth
cate by the variation of the interval between pulse groups. Two charging circuits are used alternately to hold a charge that is proportional to the pulse amplitude. The charging circuits are controlled by square waves 180 degrees out of phase so that only one circuit can operate at a time. The surge of charging current in one circuit ipnites a gas tube that discharges the other circuit. The pulse that controws the charging is delayed 10 microseconds and then passed to a counter to cause the square wave to reverse. The two capacitors of the charging circuits are connected to the grids of two cathode followers having a common load, and thus the capacitor with the larger voltage will control the output. The cathode voltage thus follows the envelope of the amplitude-modulated pulse train; the demodulated signal is obtained from a low-pass filter.

Limitations and Applications

The experimental equipment for

HOW TO USE VIBRATION

to shake the "bugs" out of your product

This MB Vibration-Exciter will do it
for you . . . quickly. . . efficiently!

There are many ways you can put vibration to work for a better product. Use it for quality-control, or inspection, for example. With this MB Exciter, you can shake-test many electrical and mechanical products for defects - right on the production line. Or you can connect it to power-driven assemblies to locate rattles and hums-and their sources.

As an aid to research, this shaker is hard to beat for sheer usefulness. It reproduces vibrational effects of years of use within hours! Shake testing also shows whether operating conditions produce destructive resonance in any part. In every case, the "cure" is then easier, more accurate-and you assure a quieter, safer, longer-lasting product.

Many plants and laboratories are now using the MB Exciter for just such purposes. It pays for itself many times over. Why not write us about your "tough nut"? As vibration specialists, MB can show you how to crack it with this equipment.

PARTIAL TECHNICAL DATA

- Wide frequency range - 3 to 500 cps .
- Output - up to 200 pounds peak value.
- Power - 1500 v.a. maximum, continuous.
- Amplitude - 1 -inch total excursion.
- Waveform-electrodynamic operation produces pure sinusoidal motion.
- Electrical adjustments-for frequency, force and amplitude.
- Smaller sizes available having wider frequency ranges.

IT'S EASIER DESIGNING WITH MB ISOMODE* MOUNTINGS

1. THEY ABSORB VIBRATION EqUALLY WELI IN ALL DIRECTIONS, so they control not only vertical, but troublesome horizontal and rocking motions as well.
2. THEY'RE NON-DIRECTIONAL. With an equal spring rate in all directions, they mount at any angle, giving you extra design freedom.
3. THEY HAVE HIGH LOAD-CAPACITY IN COMPACT SIZES, saving you space and weight.
4. THEY HAVE PLENTY OF RUBBER FOR SOFTNESS, yet are perfectly stable and safely self-snubbing.
Together with the tremendously simplified MB Design Method for positioning them, they offer you performance that makes satisfied customers. Send your vibration problems to ME if you want results. Our engineers are always ready to assist you.

SEND FOR FREE BULLETINS

Bulletin on "Vibration Testing Technique." No. 4-5 provides helpful design information on mountings. Reprint of technical Paper describes Isomode Simplified Design Method. Write Dept. C-5.

EXACTING DEMANDS OF INDUSTRY
for Specified Performance, Quick Delivery

a BETTER TRANSFORMERS!

STANCOR is justifiably proud of its KNOW HOW' ... of its ability to design and deliver transformers made to your most rigid specifications for service, durability and economy. At Stancor early delivery is a by-word and specified performance is a must. Your problems receive individualized attention and you profit by Stancor's wealth of experience and enginecring skill. Let Stancor do the job and be sure!

This Literature Available Upon Request

- ENGINEERING A TRANSFORMER
- transformer catalog no.140h
- TECHNICAL DATA-HEARING AID UNITS

Three invaluable aids to Design Engineers. Literature prepared and written by STANCOR engineers . . . designed to answer many transformer questions.

Our competent and versatile engineering staff is available whenever you need their assistance. W'rite or wire us today.

STANDARD TRANSFORMER CORPORATION

Parallel bars on the underside of the top chassis are used to minimize wiring capacitance to ground. thus improving the pulse response of the circuits. On the lower chassis shielded leads carry pulses to minimize interference
demonstrating the wave expanding principle has many limitations. The repetition rate limits the upper frequency that can be passed, while the number of pulses in a cycle limits the lower frequency. If the repetition rate of modulated pulses per second is r, and the lowest frequency to be transmitted is f_{1}, the maximum number of pulses in a cycle will be $N=r / f_{1}$ (inasmuch as fractions of pulses cannot be realized, the next largest integer value must be used for N). The experimental equipment used only ten delay circuits so that the fundamental frequency of the wave to be expanded could be no lower than $1,000-\mathrm{cps}$. Because the expanding circuit uses pulse position modulation it is subject to some small distortion.

To extend the lower frequency to 100 -cps (the fundamental frequency of the average male voice) so that the technique could be used for telephony, another method of pulse delay that would use fewer tubes would be desirable. To avoid distortion in the delay circuits, am-plitude-modulated instead of posi-tion-modulated pulses might be used. Mercury delay lines might provide the solution. If the terminal equipment can be simplified, this method of transmission is a powerful means of providing more channels on existing wire lines and of solving the problem of frequency congestion in radio transmission.

The Polytechnic Institute of Brooklyn supplied the materials for building the test equipment. The author is also indebted to G. B.

Why are big wire producers using Du Pont NYLON plastic?

"Unsurpassed as a protective jacket for wire,"

say Surprenant Mfg. Co. of Boston, makers of thin-wall color-coded "Spiralon."

"Jacketing of Du Pont NYLON helps us produce a color-coded wire with fungus- and abrasion-resistance, extra smoothness for easier pulling, and many other advantages."

Nrow "Our new 'Spiralon' Jacket wire is available in many thousands of distinct color combinations, making identification easy even in the most complex installations," report Surprenant Manufacturing Company. "It consists of a conductor, color-coded plastic insulation, and a transparent protective jacket of Du Pont nylon. The nylon cover can be applied easily and rapidly. It's extra smooth. It's tough and long lasting. It resists heat, oils, many chemicals, abrasion, and flexing. And nylon helps us produce a wire with smaller diameter and lighter weight. We feel it is unsurpassed as a thin-wall extruded covering."

Know these facts-for profits

Wire, cable and many other electrical products today are better products, because of Du Pont nylon.

This Du Pont plastic can be molded or extruded, and colored to fit specifications. For your own good-don't overlook its remarkable properties. Write for free booklet, " 65 Success Stories of Product Improvement." Filled with helpful facts. Just address: E. I. du Pont de Nemours \& Co. (Inc.), Plastics Dept., Room 146, Arlington, N. J.

Wire has SMALLER DIAMETER, permits more wires in limited area.

Wire is LIGHT IN WEIGHT, and resists heat, oils, water, chemicals, abrasion and flexing.

TUNE $1 N$ Du l'ont's "Cavalcade of America"'-Monday Evenings-NBC coast to coast.

CHECK THESE 7 BASIC FEATURES OF NYLON FOR ELECTRICAL USES

1 Good flexibility
2 High tensile strength
3 Extreme toughness
4 Abrasion resistance
5 Resistance to permanent set
6 Chemical resistance
7 Ability to be molded or extruded . . . colored or in natural color.

BETTER THINGS FOR BETTER LIVING THROUGH CHEMISTRY

Open Blade Snap-Action Swithhes

> Underwriters' Laboratories, Inc. Inspected 15 Amps. 125 Volts or $71 / 2$ Amps. 250 Volts A.C.

Small Single Pole Open Blade

Yes, we repeat-these ACRO Open Blade Switches now carry Underwriters Laboratories, Inc., rating. The exceptionally fast Snap-Action of the patented ACRO Rolling Spring gives you freedom from burning contacts, more positive action and longer life. This switch, already used in hundreds of applications, has been designed to give the large volume user all the advantages of positive Snap-Action at low cost. Furnished with terminals at side or rear. Can be made with
 many variations in operating characteristics as well as form and length of blade.

Large Single Pole Open Blade

The larger single pole Open Blade Switch shown here, carries the same ratings as the small switch, but is of more rugged construction. Built with extra large contacts to assure extraordinary long life on applications where the continuous load is close to the rated load. Also built with the exclusive ACRO Rolling Spring principle for positive action and long, troublefree life. Available with terminals at rear only, as illustrated.

Specifications for Both Models—Main blades of tempered spring steel. Rolling spring of beryllium copper. Contacts of fine silver. Switch locked together by two 6-32 screws. Furnished with either return type or set type action. For quick response, send operating details of your applications.

Hoadley and W. R. MacLean for their advice during the project.

Reproducing Handwriting

By Hugh Lineback Assistant Professor Oklahoma A d M
Stillwater, Okla.

A NOVEL application of the cathoderay oscilloscope is the reproduction of handwriting. Inspiration for the device to be described came from a demonstration at the Naval School, Harvard University. Description of a similar device for writing "LORAN" (Radio News, Feb. 1946) attracted the attention

FIG. 1-Polar plot of handwriting
of a dealer who asked for a unit that would reproduce his letterhead as a novelty display while giving demonstrations of electronic equipment.

To reproduce the letterhead, it was enlarged on rectangular graph paper, using a projector and pantograph. Two hundred and forty points in each word were plotted in polar coordinates on a thirteen-foot circle, using separate tracks for vertical and horizontal components; Fig. 1 shows the result. A photographic transparency of this pattern was made and mounted on a motor shaft. The tracks were scanned by light beams with phototubes receiving the modulated light. The voltages developed by the

FIG. 2-Original and reproduction

Lock-In tubes in Motorola equipment maintain smooth flow of traffic on famous bridge

THE famous San Francisco-Oakland Bay Bridge must be free of stalled cars at all times. A smooth flow of traffic is maintained with the aid of Motorola FM Radiotelephone equipment.
Tow cars, emergency roadside service trucks, electrician trucks, fire units and traffic engineer's sedan constitute the radio fleet. By means of this efficient system, a flow of 70,000 cars per day rolls with minimum delay over the great bridge.

Securely locked in position in the Motorola equipment are Sylvania Loch-In Tubes, depended upon day and night to give superlative service under all conditions!

For full information about Sylvania Lock-Ins see Sylvania Distributors or write Sylvania Electric Products Inc., Radio Tube Division, Emporium, Pa.

> Sylvania ELECTRIC

"Embarrassing is no word for it! The big boss wants prints in an hour. He won't understand that this old tracing is dry and brittle, and hit high C when I tried to pull it out of the cabinet in a hurry. All he'll see will be the patch marks. Wonder why he doesn'tinsiston Arkwright."

Arkwright has a world-wide reputation for staying clear, clean and pliable, year after year ... no ghostproducing spots ... no tear-causing

All Arkwright Tracing Cloths have these 6 important advantages

1. No surface oils, soaps or waxes to dry out, stain and cause brittleness.
2. Erasures re-ink without "feathering" or "creeping".
. Prints are always sharp and clean.
3. No pinholes or thick threads.
4. Tracings never discolor or become brittle.
5. Mechanical processing creates permanent transparency.
brittleness. Special mechanical all-the-way-through processing gives it this ability to laugh off the years. A perfect print was made recently from an 80-year-old tracing on cloth made by the same process now employed by Arkwright.

Why not try Arkwright? See for yourself what a difference there is. Generous working samples free upon request. Arkwright Finishing Company, Providence, R. I.
the electron art
(continued)
phototubes were applied to the two channels of the oscilloscope. Figure 2 shows the original letterhead and the reproduction produced on the oscilloscope. Actually only one word is reproduced at a time so that the letters can be as large as possible on the face of the cathode-ray tube. In use, either word can be selected or they can be made to alternate by an automatic relay.

Capacitor Counting Circuit

By Bradford Howland
U. S. Naval Research Laboratory
(Author now at the Graduate School of Arts and Sciences, Harvard University, Ant Cambridge, Massachusetts)

CONVENTIONAL capacitor counting circuits represent the count by a voltage stored on a capacitor. The circuit to be described operates on this principle but has in addition N stable states of electrical equilibrium and can store the count indefinitely. Because of this property of long time stability the circuit is well adapted to counting random events or at a low rate. A simple form of the circuit using crystal diodes is described.

Essentially the circuit consists of (A) a network of diodes and resistors, the complexity of which determines the number of equilibrium voltages, (B) an impedance sensitive feedback circuit that stabilizes the voltage across the capacitor at any one of the equilibrium voltages determined by the diode network, (C) means for stepping the capacitor voltage up or down one increment for each count, and (D) means for resetting the circuit to zero each time it has counted N events.

Basic Diode Charging Network
Figure 1 shows the basic twoterminal counting circuit composed of diodes, resistors, and batteries arranged for an N of 5 . The resistances are large. Normally current flows from the high bias voltage through them and the bottom row of diodes. When a voltage of the polarity indicated is applied to the terminals of the network, the currents through the resistors will switch successively to the top row of diodes as the applied voltage exceeds the individual voltages to which the lower diodes are connected. This action results in the

These new small, light-weight ac to doc power supply units are especially built for precision work. They have a number of highly desirable features which make them suitable for supplying the high potential necessary for cathode-ray tubes, television camera tubes and radar indicator scopes, electron microscopes, and other jobs where unusually low regulation, light weight, and small size are primary considerations. The unit shown here (Cat. 8317502) will supply 7 kv at 0.1 milliamperes dec output. The regulation does not exceed 3.5% per 0.1 milliamperes load, and 15% at 0.5 milliamperes maximum load. The ripple on the output voltage is less than 1%. This unit is manafacture for 215 volts, 10,000 cycles, atc input. An additional pair of terminals is provided to supply 45 volts $a-c$ when 215 volts are applied to the input terminal This completely self-contained hermetically sealed rectifier will meet Army and Navy specifications both in the matter of design, and as to its ability to withstand mechanical shock and operate continuously for long periods of time. It is designed to operate in ambient temperatures ranging from $-40 C$ to $+60 C$.

INPUT CURRENT TO OSCILLATOR AND OUTPUT VOLTAGE VS. OUTPUT CURRENT TO LOAD

GDNERAL (8\%) BLECTRIC

- Precision stability
- Light weight (8 lb)
- Small size (6 by 6 by 7 in.)
- Selenium elements
- Only one high-voltage terminal exposed
- Filter has low energy storage
- Readily mounted
- Oil filled for strength
- Hermetically sealed
- Can be used as tank circuit of an audio oscillator*
*An unusual feature of this unit is that it may be used as the tank circuit of an audio oscillator. The input ter minals are connected to the plate circuit. The 45 -vol output terminals are connected as the grid feed back The oscillator lube normally used is a obb. The perot ing frequency is 10,000 cycles.

GENERAL ELECTRIC COMPANY
Power Transformer Sales Division, Pittsfield, Mass. Gentlemen:Please submit quotation on
Cat. No. 8317502 rec tifiers, as illustrated.Please submit quotation onrectifier units, similar to
Cat. No. 8317502, designed to meet the attached specifictions.

Name.
Organization
Address
City

Find: The radiation pattern of that antenna on that aircraft in any plane and for either vertical or horizontal polarization.
Solution: With a three-man crew to operate it, our Type 105 Aircraft Antenna Pattern Plotting System can measure and record more than 100 such radiation
 patterns in a routine work. ing day.

This System - with its

TRANSMITTERS (500 to $10,300 \mathrm{Mc}$)
RADIATORS
RECEIVER SYSTEM
RECORDING SYSTEM
SERVOS and MOTOR CONTROLS
MECHANICAL STRUCTURES
is an excellent example of the kind of SYSTEMS DEVELOPMENT WORK
we are staffed, experienced, and equipped to perform for you.
Consult with us on your requirements for

HIGH-QUALITY CUSTOM-BUILT ELECTRONIC DEVICES

Write, wire, or telephone:
 160 OLD COUNTRY ROAD - MINEOLA, N.Y.

Tel. Garden City 6880

FIG. 1-Basic diode stepping circuit
current-voltage characteristic also shown in Fig. 1. This curve is based on measurements made with 1N34 crystal diodes, $470,000-$ ohm resistors, and a bias of -150 volts.

The characteristic of the network, as shown by its response curve, is such that its dynamic or adc resistance, which is the reciprocal of the slope of the characteristic curve, is low near points of transition and high between them. At the transitions the resistance is about 700 ohms, between them it is approximately 50,000 ohms depending on the applied voltage and the back resistance of the diodes. It is this marked variation in ac resistance of the network that is used by auxiliary circuits to stabilize the voltage across the capacitor.

Impedance Sensitive Circuit

The stabilizing circuit responds to changes in dynamic resistance of the network and controls the voltage across a capacitor at or near the value for which the network presents low impedance. One such circuit is shown in Fig. 2. A small r -f voltage is applied to the grid of an amplifier. The cathode of the amplifier tube is connected to ground through a high aec imperance in parallel with the network. If the network presents a low agc impedance, the cathode will be bypassed to ground and a large $\mathrm{r}-\mathrm{f}$ output will be produced at the plate of the tube. If the network aresens a high aec impedance, the cathode degeneration will produce a small ref output at the plate. In general this action is obtained only if the peak-to-peak ref voltage is small enough to limit the voltage swings in the network within one

presenting the NEW "NOFLAME-COR" the TELEVISION hookup wire

by

approved by Underwriters' Laboratories of

90° - 00 VOLTS

This is IT! Tops in hookup wire for television, F-M, quality radio and all exacting electronic applications. Available for immediate delivery in all sizes, solid and stranded, in over 200 color combinations . . ready to demonstrate anew the Efficiency and Economy of CORNISH WIRES AT WORK

- Flame Resistant - Heat Resistant - High Insulation Resistance
- High Dielectric •Easy Stripping •Facilitates Positive Soldering
complete engineering data and samples on request

"mateby engineers for engineers"

605 North Michigan Avenue, Chicago 11

THE ELECTRON ART

FIG. 2-Circuit stabilizes voltage
step of its dynamic characteristic.
The r-f output at the amplifier plate can be calculated by means of the equivalent circuit also shown in Fig. 2. The cathode impedance is Z_{k}. The curve in Fig. 2 shows this variation of plate r-f voltage with voltage applied to the network. This r-f voltage is rectified (by a crystal diode) to give a positive potential that is amplified and fed back to the capacitor to maintain whatever voltage is across it.

To discuss specifically how the stabilization operates, assume that the capacitor is charged to 9.5 volts. Should this potential decrease, the output from the r-f amplifier will increase, the grid of the d-c amplifier will be driven positive, and the voltage across the capacitor will be restored to its initial value. The action is actually quite complex and a minimum capacitance is required to obtain stable equilibrium points. There is, in addition, a stable condition when the capacitor voltage is negative, in which case the d-c amplifier is cut off; this state is not usually used in counting circuits.

Stepping and Reset Circuits

To step the voltage across the capacitor in performing the counting operation, an increment of charge is either added or subtracted; the stabilizing circuit then brings the capacitor voltage to the next equilibrium point. The points of unstable equilibrium on the stabilizing circuit characteristic are the dividing voltages between stable states. To drop the voltage

CRT Wall Coating ... Another use for a "dag" colloidal graphite dispersion!

Courtesy Allen B. DuMont Laboratorics. Inc.

> In Cathode-Ray Tubes, such as the one above, "dag"' CRT Wall Coating-a colloidal graphite dispersion-serves as a conductor and as an accelerating electrode...excludes externat light....and reduces light reflection from the filament.

Because of their unusual properties "dag"" colloidal graphite dispersions are constantly finding new applications in the electronics industry.
Aqueous dispersions of colloidal electric-furnace graphite may be employed to form films which, in addition to being tenaciously adsorbed, possess low coefficients of expansion and friction. They are non-fusible, opaque, chemically inactive, electrically conductive; effective thermal radiators, good conductors of heat, low in photoelectric sensitivity, and capable of acting as gas adsorbers.

Give Acheson Colloids engineers the opportunity to talk with you about your specific problems. Check the coupon and mail.

Acheson Colloids Corporation
 PORT HURON, MICHIGAN

2ex Super-sonicnic and Writra-sonic
 CRY5TALS
 swata

across the capacitor to the next lower stable state the charge must be forcefully reduced to bring the voltage below the adjacent unstable point; to lift the voltage the charge must be increased to bring the voltage above the next unstable point before it will be driven into stability by the control circuit. The volt-

FIG. 3-Complete decade counting circuit
age across the capacitor is most easily stepped down as the drop to trigger the circuit to its next equilibrium is then small.

If the circuit is to count large numbers it must be reset to zero each time it has counted its limit of N pulses. A multivibrator or blocking oscillator that is triggered each time the voltage across the capacitor is stepped beyond its lowest (or highest) equilibrium can restore the circuit to zero. The output from the reset circuit is used to operate another counting circuit.

A complete decade counter using these elements is shown in Fig. 3. The network uses twenty 1 N34

You can Reduce Costs You can Improve Performance with

Where's the manufacturer these days who doesn't need all the competitive and cost advantages he can get? Maybe you have new electrical or mechanical equipment in mind-designs or re-designs that should employ permanent magnets for best results. Maybe you have existing applications that permanent magnets will do better-save you time and money in production, and step up the efficiency of your product.
In either case, let Arnold's engineering service help you to find the answers to your magnet problems. Arnold offers you a fully complete line of permanent magnet materials, produced under 100% quality-control in any size or shape you require, and supplied in any stage from rough shapes to finish-ground and tested units, ready for final assembly. Write direct, or to any Allegheny Ludlum branch office.

THE BBNOLD BNGINEFBING CO.

Subsidiary of ALLEGNENY LUDLUM STEEL CORPORATION
147 East Ontario Street, Chicago 11, Illinois

Specialists and Leaders in the Design, Engineering and Manufacture of PERMANENT MAGNETS

REDUCE "DOWN-TIME" LOWER WIRING COSTS, SAFEGUARD PERSONNEL

INDUSTRIAL SOCKETS
The advanced design of these sockets and the well known high integrity of Amphenol materials and production can save you thousands of dollars in "down-time." Another economy is the speed and simplicity of installation wiring. And these Amphenol sockets are safe-they guard highly trained workers and valuable tubes, so don't rely on makeshift equipment!

Included in the wide Amphenol industrial tube socket line is the Super Jumbo 4 pin socket for top or bottom mounting. The exclusive Cloverleaf contacts provide four full lines of contact with tube pins to carry heavy current loads. Outstanding in performance they are equally attractive in appearancequality on all counts!

So insist on Amphenol when you buy. Write today for complete and well illustrated specifications.

AMERICAN PHENOLIC CORPORATION

1830 South 54th Avenue, Chicago 50, Illinois
coaxial cables ano connectors - industrial connectors, fittings and conduit - antennas - radio components - plastics for electronics
crystal diodes, or 6AL5 vacuum diodes can be used equally well. Taps at 2 -volt intervals along a low-impedance divider determine the ten equilibrium voltages. The number of steps that can be obtained in a single network is limited by the minimum voltage required per step (about 1 volt) and by the safe inverse voltage of the diodes. The control circuits require six triodes (three dual triode tubes). The r-f oscillator can be used in common by several other counting stages.

The oscillator frequency was chosen to make the plate circuit of the r -f amplifier resonate, and in this case is 600 kc . The inductance shunting the network was chosen to resonate with the stray capacitance to assure a high r-f impedance between stable states.

Positive pulses that are to be counted are applied to the storage capacitor through a trigger amplifier. The stored voltage is thus stepped down one 2 -volt increment by each input pulse. The size of the coupling capacitor is not critical. The reset multivibrator is triggered each time the capacitor voltage goes negative. Upon being triggered the multivibrator passes a high current for a predetermined interval that restores the highest equilibrium voltage across the capacitor, limited at this value by the clipping. diode. A positive output pulse from the multivibrator operates succeeding counting decades.

The count is indicated by a highimpedance voltmeter. A manual reset enables the circuit to be cleared. This circuit counts satisfactorily at any rate up to 1,500 events a second, the upper limit being determined by the reset time. The reset time, in turn, depends on the size of the storage capacitor and on the current that can be carried by the reset tube. The circuit of Fig. 3 does not represent an optimum design; it is believed that with further refinement the upper limit of counting speed can be considerably increased.

SURVEY OF NEW TECHNIQUES

InduSTRIAL AND SCIENTIFIC problems dealing with the flow of heat are solved by a specialized calculat-

1. More Economical
2. Smaller-Lighter
3. Better Electrical Characteristics
4. MORE ECONOMICAL

mfo.	voits dc	List Price PAPER CAPACITOR	List Price PLASIICON AOC	saving
10	1000	\$15.18	\$10.67	\$4.51
4	2000	13.67	9.24	4.43
2	3000	22.78	15.40	7.38
1	4000	33.54	27.50	6.04
2	5000	48.73	41.25	7.48
Above are typical examples.				

PLASTICONS are the result of technological advances . . Cost less to manufacture, give better performance.
2. SMALLER - LIGHTER

MFD.	Volts DC	Approx. Weight		Approx. Cubic Dimensions	
		PAPER CAPACITORS	PLASTICONS	PAPER CAPACITORS	PLASTICONS
10	1000	1.95 lbs.	1.7 lbs.	$31 \mathrm{cu} . \mathrm{in}$.	$30 \mathrm{cu} . \mathrm{in}$.
4	2000	2.0	1.23	31	23
2	3000	2.0	1.21	31	19
1	4000	1.77	. 94	28	19
2	5000	5.2	2.9	70	60

3. better electrical characteristics

	Paper Capacitors	Plasticons
Power Factor at $85^{\circ} \mathrm{C}$ 60 cycles	0.7\%	0.3\%
Resistance at $85^{\circ} \mathrm{C}$ megohms per Mfd.	40	100
Capacitunce/Temp. Coefficient 100% at 25	$\begin{aligned} & -40^{\circ} \mathrm{C}=73 \% \\ & +85^{\circ} \mathrm{C}=97 \% \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C}=94 \% \\ & +85^{\circ} \mathrm{C}=103 \% \end{aligned}$
PLASTICON CAPACITORS given PLASTICON ASC silicone-filled Paper Capacitors given are ch	re Type AOC, mi ave better charo rinated dipheny	eral oil-filled. eristics. impregnated.

Condenser Products Company
1375 NORTH BRANCH STREET - CHICAGO 22, ILLINOIS
MANUFACTURERS of GLASSMIKE CAPACITORS and HIGH VOLTAGE POWER SUPPLIES.

(A) The Knurled head of the "Unbrako" Socket Cap Screw makes it slip-proof, fumble-proof and time-saving-even if the fingers and heads are oily ... because it can be screwed-in faster and farther before a wrench becomes necessary.
(B) The Knurled Cup Point of the "Unbrako" Socket Set Screw makes it a perfect SELF-LOCKER—the point digs-in and stays dug, regardless of extreme vibration... it can be used over and over again.
(C) The Knurling of this "Unbrako" Socket Set Screw, as shown, swages the threads so it becomes a most excellent SELF-LOCKER, for use where points such as: flat, dog, cone and oval, which do not lend themselves to knurling, must be used.

All of our knurled "Unbrako' Set Screws are patented and regardless of point they are excellent SELF-LOCKERS-so, if it is imperative that your Set Screws stay set, write us . . . because we can lock most any Set Screw application. Ask for your copy of the "Unbrako" Catalog.

Knurling of Socket Screw s originated with
 "Unbrako" in 1934.

Write us for the name and address of your nearest "Unbrako" Industrial Distributor.

STANDARD PRESSED STEEL CO.

JENKINTOWN, PA. BOX 596
boston - chicago - detroit - indianapolis - st. louis - san francisco
ing machine developed at the Columbia University School of Engineering. The heat and mass flow analyser laboratory consists of extensive resistance-capacitance networks and associated meters and power supplies. Thermal properties of materials are concentrated into individual electrical circuit elements by lumping their electrical analogs. Problems that would be impractically time consuming are solved readily by the machine, and accelerated action is obtained by changing the time scale of the analog. During the six years that the laboratory has been developing, problems dealing with solidification of metal and glass castings, heat losses in furnaces, deicing airplane wings at high altitudes, and heat generated by brakes on trains have been solved. The laboratory, headed by Dr. Victor Paschkis and Prof. C. F. Kayan, is operated as a collsulting agency for industry and also engages in developing general physical data. It is sponsored by a number of industries concerned with heat transfer problems.

High-voltage power supplies, for military infrared detectors, were developed by Dr. Carl Bosch, physiist for the Allgemeine ElektrizitatsGesellschaft, Germany. The rotary electrostatic generator patterned after the well known Wimshurst machines used for classroom demonstration, weighs less than a pound and is 4.5 inches in diameter; it replaces a 20 -pound transformer and vacuum tube power supply, and gives a d-c output of 12,000 volts. The basic design, illustrated in the May 1947 Science Progress (U. S. Dept. of Commerce), can be adapted to power supplies for x-ray, cath-ode-ray, and other high-voltage tubes.

Pencile mark sensing method, developed by International Business Machine Corp., is replacing punched holes in cards for some applications. Conductance provided by a heavily drawn short pencile line across a particular box on a file card is sufficient to actuate the circuit between fine fingers under which the card passes. The pencile mark is simple to make and the sensing permits high speed operation of the accounting machine.

PPemanent cllagnels do it $\mathscr{B e l t o s}$ in.... RADAR MIGGETRONS

Raytheon Type 4J54-59, 200,000 -wott, 5500 -megacycle pulsed magnetron, "packaged" to place the magnet pale pieces directly in the tube, thus soving spoce and permitting use of smaller permanent magnets.

- Micro-wave radar was made practical by operating magnetron tubes in the constant field of permanent magnets. For only with this unchanging magnetic field could frequency stability be obtained. Thus a whole new frequency spectrum was opened up - and a vast new electronic market developed.
Working with Raytheon Manufacturing Company, Waltham, Mass.-producer of more than half of the world's wartime supply of these tubes-our engineers helped design special permanent magnets

for the major portion of Raytheon magnetrons. Some of these mag. nets weigh as much as 50 pounds - in other cases, total weight of the tube-magnet combination is less than two pounds.
OUR SPECIAL DESIGN SERVICE CAN HELP YOU Every day, permanent magnets are supplying the answers to new and different problems in all branches of science and industry. A discussion with our permanent magnet specialists may assist you in new equipment designs-or bring higher efficiency and extra savings in your present products. Write today, Dept. E-6.
I.S.P PPormanent Magnels offer these cenefits
- Maximum energy and uniformity.
- Unwavering, everlasting strength.
- Uninterrupted operation.
- No wiring or electrical current needed.
- No shock hazard.
- No heat produced.
- No operating cost.
- Minimum instollation cost.
- Easily installed in original equipment.
- Complete range of sizes and materials.

THE INDIANA STEEL PRODUCTS COMPANY

PLANTS\{ VALPARAISO, INDIANA

Mare nipilutionis
 Mare
 Effictily

 by using these NEW RACON SPEAKERS and HORN UNITSRight-NEW RADIAL RE-ENTRANT SPEAKER excellent for all types of industrial sound installations, provides superlative and complete 360° speech intelligibility by efficiently over-riding factory high noise levels. Frequency response $300-6000$ cps. Handling capacity 25 watts continuous, 35 w . peak. Has mounting bracket. Size $12^{\prime \prime}$ wide by $125 / /^{\prime \prime}$ high.

Left - NEW SMALL RE-ENTRANT HORNS, extremely efficient for factory inter-com and paging systems; for sound trucks, R. R. yards and all other industrial installations where high noise levels are prevalent. Watertight, corrosion-proof, easily installed. Two new models-type RE-1 1/2, complete with Baby Unit, handles 25 watts, covers $300-6000 \mathrm{cps}$; type RE-12, complete with Dwarf Unit, handles 10 wotts, has freq. response of $400-800 \mathrm{cps}$.

Right-NEW SPECIAL PM HORN UNIT, having Almico V magnet ring completely watertight, housed in a heavy aluminum spinning. Provides extremely high efficiency reproduction with minimum input. Handling capacity 35 watts continuous, 60 w. peak.

To the more than 60 different type and size speakers and horn units that already comprise the RACON line-these new models have been added. There is a RACON speaker and horn unit ideal for every conceivable sound system application. RACON has not only the most complete line, but also has the most preferred line. For over 20 years leading Soundmen have recognized and spcified them because of dependability, efficiency and low-cost. and because the reproducers are trouble proof.

RACON ELECTRIC CO., ING.

52 E. 19th St.,

New York 3, N. Y.

Write for catalog describing RACON'S Line of Horns, Speakers, Units, Accessories, etc.

NEW PRODUCTS

(continued from p 134)
transformer and test speaker which may be used separately. Two panel switches and chart establish any one of 30 desired transformer primary impedances from 325 through 70,000 ohms, single and push-pull.

Television and F-M Receiver

Duval Radio \& Television Corp., 423 Grove Street, Jersey City 2, N. J. Model 15 C is a complete

wired and tested unit, less cabinet. The receiver tunes continuously from 44 to 216 mc and a switch is provided to turn off sweep and high-voltage circuits when f-m reception alone is desired.

Timer

The Arnold Clock Co., 136 W 52 nd St., New York, N. Y. The new precision timer has a singlecircuit double-throw switch with a

capacity of 500 watts and can be used to turn any electrical unit either off or on. The electric switch has positive action that permits predetermined timing at any 15 -minute interval.

Audio Amplification

Langevin Mfg. Corp., 37 W 65th St., New York 23, N. Y. Type 122 is an audio amplifier unit featuring plug-in channel adaptors which
a small rectifier has done its job!

Remember the old days when you used to push your starter button, and hope? Or, maybe, you're still doing it-if you haven't heard about the small charger that helps keep batteries at their peak. But many a car owner is now enjoying new confidence in his car, simply by letting this handy rectifier revive the battery when the car is in the garage. This same rectifier, incidentally, has numerous other applications in recharging 6 -volt batteries.
Designing this rectifier to do its job right-making it small enough to sell easily, large enough to function properly -were engineering problems that came within the scope of General Electric engineers. In fact, General Electric's experience covers all phases of rectifica-
tion problems-from rectifiers the size of an aspirin, to ten-ton rectifiers as big as your garage.

Tell G. E. your problem of d-c supply When rectification problems come up -unusual problems, or even the routine problem of deciding which type of rectifier to use for a job-call on General Electric. Because General Electric makes all three-selenium, copper-oxide, and Tungar*-General Electric engineers can give you an impartial solution. Because G-E engineers know rectifiers for every type of application, they can give you the kind of practical solution you want. For information, write to Section A-ri-63I, General Electric Company, A-ri-63I, General Electri
Bridgeport 2, Connecticut.

Maybe We've Got the Combination to Your Moulded Plastic Job

There's no "Open Sesame" to a new moulding problem. It takes the same old patient hunt for the proper combi-nation-in every function from design and engincering through mould-making, moulding, finishing and the rest.

But there's this bit of magic that still works. Knowing these problems . . . having solved similar puzzles before ... experienced moulders are liable to get there quicker. And with methods that have been tried and proved.

So look a little deeper than the price tag on your moulder's bid. Experience like ours - a reputation like ours - experienced personnel and a complete, self-integrated plant like ours-these things mean we'll quote a fair price on a job you can depend on quality-wise, cost-wise and delivery-wise.

We're interested in your business, if cither compression, transfer or plunger moulding will do the job. May we send a sales engineer?

Kurz-Kasch, Inc.

1425 S. Broadway - Dayton 1, Ohio bRANCH SALES OFFICES: New York, Lexington 2.6677 - Chicago, Harrison 5473 - Derroit, Randolph 5214 . Franklin, Pa., Venango County 186 - Los Angeles, Prospect 7503 - Dallas, Lakeside 1022 - St. Louis, Rosedale 3542 Toronto, Canada, Adelaide 1377.
EXPORT OFFICE5: 89 Broad Street, New York City, Bowling Green 9-7751.

provide it with eight applications. It has an output power of 8 watts with less than 3 -percent total harmonic distortion from 50 to 15,000 cycles. An electrical characteristics chart will be supplied on request.

Counter Chronograph

Potter Instrument Co., Inc., 136-56 Roosevelt Ave., Flushing, N. Y. Model 450 interval timer will measure intervals in steps of 0.625

microsecond, corresponding to a frequency of 1.6 megacycles which is that of the crystal oscillator used as the time base. The instrument registers intervals up to 1 second. Longer periods are recorded by using an external counter.

Oscilloscope Camera

American British Technology, Inc., 57 Park Ave., New York 16, N. Y., distributors for Furzehill Laboratories, Ltd. Type 1684 J oscilloscope camera uses unperforated

I-T-E Oval Resistor Assemblies are especially designed to meet the exacting and changing needs of the fast-growing electronics industry.

They are distinguished by their high unit-area wattage ratio which is due in part to the heat dissipation qualities of the mounting brackets. An oval resistor, or assembly of oval units, has a much higher wattage rating than that of a conventional round resistor of comparable size. This quality enables them to meet the requirements of limited space, and makes them particularly suited to compact aviation, sound, radio, and other modern electronics applications.

Oval Resistor Assemblies are part of I-T-E's complete line of wire-wound Power Resistors. Only the highest grade materials are used in their manufacture, and they are given the same thought in design, the same care in fabrica-ion that the most complicated unit of switchgear receives.

No matter what your resistor problem calls for-compactness, long life, dependability, or exact tolerances-be sure to investigate I-T-E Oval Resistor Assemblies, the modern wire-wound Power Resistors. Complete technical information, as well as valuable application data, is contained in the new I-T-E Resistor catalog. Send for it today.

POWER RESISTORS

The Leader In Technical Excellence

I-T-E Circuit breaker co., resistor division, 19th \& hamilton sts., philadelphia 30, pa.

SWITCHGEAR • UNIT SUBSTATIONS • ISOLATED PHASE BUS STRUCTURES • AUTOMATIC RECLOSING CIRCUIT bREAKERS • RESISTORS • SPECIAL PRODUCTS

wanted ${ }_{\text {maerarmanam }}$

 FOR THE HIGH-QUALITY PROFESSIONAL TYPE Car WIRE RECORDERHIGH FIDELITY

generous discount arrangements for qualified representatives CHECK THESE IMPORTANT FEATURES

- A precision instrument
- Built by experienced engineers
- Full range of high and low tones
- Easy to operate and use
- Hours of uninterrupted performance
- Automatic timer
- Complete range of modols and prices, with and without AM-FM Radio
- Super-fast rewind
- Wire can be used over and over
- Records direct, or from phonograph, radio
- Nationally advertised

Ideal for Radio Stations - Advertising Agencies Auditions - Air Checks - Remote Broadcasts Public Events - Schools 8 Colleges
Dramatic \& Voice Teachers
Language Schools. Courts \& Police, etc.

We have begun a nation-wide campaign of publicity and advertising that will create steady and profitable demand for the LEAR high-fidelity wire recorder. You can share in these sales and profits while calling on your present trade! If you are an independent radio supply salesman -or, if you operate a radio suoply business with a live-wire sales staff-you can make money selling the LEAR High-Fidelity Wire Recorder. We have a most atfractive deal for you now-if you are ready to do a REAL SELIING JOB! No middlemen or distributors - this is a direct factory deal where you get the full discountsl

For complete details, send information about yourself, your organization and your territory TODAY - to Dept. C.

INCORPORATED
110 lonia Ave. N. W., Grand Rapids 2, Mich.
$35-\mathrm{mm}$ film. Equipped with an $\mathrm{f} / 1.9$ lens, the camera can be converted to a continuous film type.

Bidirectional Microphone

Turner Co., Cedar Rapids, Iowa. Model 87 velocity microphone uses a single element ribbon generator

supported in an Alnico V magnet. Response is within plus or minus 5 db from 80 to 10,000 cycles. Level is 62 db below 1 volt per dyne per square centimeter at high impedance. A switch allows use into 50 , 200 , or 500 ohms.

Timing Relay

Ward Leonard Electric Co., Mount Vernon, N. Y., announces development of the Bulletin 362 mo-

tor driven time delay relay with composite connections. The unit is designed for use in control equipment or systems where an adjustable time delay is required for proper remote, automatic or sequential operation.

Lightning Arrester

Radio Corp. of America, Camden, N. J., has developed a lightning

MONEY BACK GUARANTEE We believe units offered for sole by mail order should be sold only on a "Money-Back-If-Not-Satisfied" basis. We carefully check the design, calibration and value of all items advertised by us and unhesitatingly offer all merchandise subject to a return for credit or refund. You, the customer, are the sole judge as to value of the item or items you have purchased.

The Model 88-A COMBINATION SIGNAL GENERATOR AND

SIGNAL TRACER

We're prepared for the demand we know will he created hy this long overdue combination of the two units which have always been used together. The ultimate in signal tracing procedure is achieved by the Model 88, for the use of this model, enables you to use either the broadcast signal itself or the signal injected by the Signal Generator. This is especially useful of course when servicing "dead" or "inter. mittent" receivers. The Model 88 you will find is the greatest timesaver ever provided for by combining a full range Signal Generator and Signal Tracer into one unit the set up time for interconnecting, etc., is entirely eliminated.
Signal Generator Specifications:
\star Frequency Range: 150 Kilocycles to 50 Megacycles.
\star The R.F. Signal Frequency is kept completely constant at all output levels. This is accomplished by use of a special grid loaded circuit which provides a constant load on the oscillatory circuit. A grounded plate oscillator is used for additional frequency stability.
\star Modulation is accomplished by Grid-blocking action which has proven to be equally effective for alignment of amplitude and frequency modulation as well as for television receivers.
\star Positive action attenuator provides effective output control at all times.
\star R.F. is obtainable separately or modulated by the Audio Frequency. Signal Tracer Specifications:
\star Uses the new Sylvania $1 N 34$ Germanium crystal Diode which combined with a resistance-capacity network provides a frequency range of 300 cycles to 50 Megacycles.
*Simple to Operate-Clips directly on to receiver chassis, no tuning controls.
\star Provision is made for insertion of phones of any impedance, a standard Volt.Ohm Milliammeter or Oscilloscope.

The New Model 770—AN ACCURATE POCKET-SIZE VOLT-OHM-MILLIAMMETER

(Sensitivity 1000 Ohms per volt)

Features: - Compact-measures $3-1 / 8^{\prime \prime} \times 5-7 / 8^{\prime \prime} \times 2-1 / 4^{\prime \prime}$ - Uses latest design 2% accurate 1 Mil. D'Arsonval type meter. - Same zero adjustment holds for both resistance ranges. It is not necessary to readjust when switching from one resistance range to another. This is an important time-saving feature never before included in a V. O. M. in this price range. - Housed in round-cornered, molded case. - Beautiful black etched panel. Depressed letters filled with permanent white, insures long-life even with constant use.
(a)

Specifications:
6-A. C. VOLTAGE RANGES:
$0-15 / 30 / 150 / 300 / 1500 / 3000$
6-D. C. VOLTAGE RANGES:

- $71 / 2 / 15 / 75 / 150 / 750 / 1500$
Volts

4-D. C. CURRENT RANGES: O. $11 / 2 / 15 / 150 \mathrm{Ma}$. 0 : $11 / 2 \mathrm{amps}$.

2-RESISTANCE RANGES:
O-500 ohms 0 - 1 Megohm

The Model 770 comes complete with self-contained batteries, test leads and all self-contained batteries,
operating instructions.

20% DEPOSIT REQUIRED ON ALL C.O.D. ORDERS

Simple New Solderlest Couplings

Maintain Constant 51.5 Ohm Impedance
 meets official RMA standards. It also is recommended for $A M$ installations of $5^{\circ} \mathrm{Kw}$ or over.
Fabricated in iwenty foot lengths with brass connector fanges silver brazed to the ends, sections व̛re easily bolted together. A circular synthetic rubber. "O" gasket effecsively seals the line. Frux corrosion and pressure leaks are ovoided. A bullet-shaped device positively connects inner conductors.

Close tolerances are maintained on characteristic im pedance in both line and fittings, assuring.an essentially "flaf" transmission line sysfem.

Mechanically and electrically befter than previous types, this new, line has steatite insulators of exceptionally low loss factor. Both inner and outer conductors of all four sizes are of copper having very high conductivity.
Flanged 45 and 90 degree elbow sections, and a complete line of accessariés and fiftings availabie.
Better be safenthat sorry. Avoid costly post-installation line shanges, Get complefe technical datastanowagineer-

ATtENUATION CURVE

shaws total lass plus 10% derating factar to allow for resistance of ioints and deterioration with time.
Four diameters available: $61 / 6^{\prime \prime}$ $31 / 8^{\prime \prime}-15 / 3^{\prime \prime}$ and $7 / 8^{\prime \prime}$.

363 EAST 75 th STREET • CHICAGO 19
Pioneer Specialists in the Monufacture of a Complete Line of Antenna Equipment

arrester designed to fit into television and $\mathrm{f}-\mathrm{m}$ receiver installations. The device features a new method of attaching the transmission line which avoids cutting and splicing.

Regulated Dynamotor

Bendix Aviation Corp., Red Bank, N. J., introduces a regulated dynamotor which permits constant out-

put with as much as 25 -percent variation in input voltage. The unit is available in various sizes and voltage ratings.

Audio Frequency Meter

Barker \& Williamson, Inc., 237 Fairfield Ave., Upper Darby, Pa. Model 300 audio frequency meter makes direct measurements of unknown audio frequencies up to 30 ,-

OFFER DIMENSIONAL UNIFORMITY INSURED BY CLOSE ENGINEERING CONTROL

ESTABLISHED STANDARDS . . . Every manufacturer of Phillips Cross Recessed Head Screws is supplied with complete engineering and prodiction data which prescribes precise dimensions and tolerances.

CENTRALIZED PRODUCTION TRAINING . . . And, before production is started on Phillips Screws, each plants" supervisory staff puts in an extended training period with Phillips engincers.

engineers' meetings...Standards carefully estab. lished at the very beginning are rigorously maintained through meetings of "Phillips Recessed Head Standards Committee". Engineers from all plants meet to exchange ideas, discuss problems and learn about recent developments.

All these precautions to secure absolute dimensional uniformity are just part of the care taken to produce Phillips Cross Recessed Head Screws that give users all the advantage of a cross recess engineered for practical production.

Speed and ease of driving in production assembly demands that the driver and recess fit smoothly, perfectly, the same way every time, all the time. With Phillips Screws, you can depend on it.
 GET

Wood Screws
American Screw Co. Centrar Screw Co.
Conlinental Screw co. Corbin Screw Div. of American Hdwe. Corp. Elco Tcol \& Screw Core. The H.. M. Harper Co. Lamson \& Sessions Co. Miflord Rivet and Machine Co National Lock Co.
 Russell Burdsall \& Ward Bolt \& Nut Co. Scovill manulacturing Co Seaboard Screw
Shakeprool inc. The Southingiton Hardware Mtg. Co The Steat Company of Canada. Lto. Stering Bolt Co. Stronghold Sciew Products, Inc Wales-Beech Corp. Wolverine Bolt Company

GET THIS NEW BOOKLET of facts that prove the top value, top economy of Phillips Recessed Head Screws, It's free ... use the coupon. Phillips Screw Mfrs., c/o Horton-Noyes Co. 1800 Industrial Trust Bldg. Providence, R. I.

Send me the new booklet - "How to Select Recessed Head Screws for Practical Production Driving".

Name
\qquad

Imitated But Never Equaled THE INTERNATIONALLY FAMOUS MECANITRON HIGH SPEED INK TAPE RECORDER Model MA-126 Series

The model MA-126 series recorder ,represents a complete, self-contained high speed ink tape recording system. The Mecanitron recording head represents a new departure in moving coil design. A lightweight, rugged coil of eight ohms impedance is driven by a special polar, pulse amplifier.

SPECIFICATIONS

MECHANICAL
Watch case construction-entire head may be removed by loosening one thumbscrew. Tape guide arm provides straight line feed and floating action at the penpoint. This member is also instantly removable for cleaning.
Primary and secondary stops adjustable for any desired character width.
Pen and pen bearings instantly removable.
Pen may be cleaned quickly using straight piece of cleaning wire.
Plastifloat bearings used throughout requiring no lubrication.
Plastifloat bearings used throughout requiring no
Natural period of pen linkage well above 1,000 .
Natural period of pen linkage well above 1,000 .
Permanent magnet field requiring
Deep draft non-spilling ink well.
Micrometer barrel tape vernier adjustment.
Micrometer barrel tape vernier adjustment.
Entire head dis-assembled in 30 seconds.
Completely tropicalized.

ELECTRICAL

Output power pulses instantly adjustable for any speed and independent of input signal vollages. Phase reversing power output switch.
Power output tubes draw no current during signal standby periods.
Screen grid control trigger action in DC amplifier circuit.
Automatic noise limiting bias control in full wave rectifier circuit.
Complete automatic volume control.
All circuits voltage regulated.
Standby switch may be controlled by tape puller.
Built in multi-contact relay switch controlled by tape tension allowing standby recorders and/or associated circuits to instantly function upon tape depletion.
Four separate and distinct inputs are available as follows:
a. Tone input: This input accepts any tone signal between 700 and 5,000 cycles at Zero DB or more.
b. Teletype: This input accepts the output from a teletype printer and prints teletype characters on inked tape suitable for retransmission at higher speeds by use of a Mecanitron Scanner.
c. Frequency shift: This input allows operation from the discriminator circuit of any standard
F.M. receiver, or the detector circuit of any standard AM receiver.
d. Contact: This input allows operation of the recorder by means of any standard telegraph key, permitting the production of inked tape for retransmission.
Mecanitron high speed recorders can be obtained in either single or dual units. Dual units are sometimes required to permit operation of a second unit in standby position for instant use, as the tape in the first unit is used up. Instantaneous changeover makes operation possible without breaks. These units may be supplied for rack mounting if desired.

Write for additional information today!

MECANITRON CORPORATION

General Offices: 8 Irvington Street, Boston 16, Mass.
Phone: COmmonwealth 6-2639

Branches: 1011 New Hampshire Avenue, Washington 7, D. C., NAtional 0310 142 Bank Street, Ottawa, Ont., Canada, Phone: Ottawa 5-5590

000 cycles. Six ranges are required for the complete coverage of this spectrum. The meter will operate on any waveform with peak ratios of less than 8 to 1 , and requires a minimum input of 0.5 volt.

Power Relays

Mack Electric Devices, Inc., 30 Glenside Ave., Wyncote, Pa., has developed the Mercu-Tiol power

relays with 3 -coil terminals and featuring a replaceable tube which is hermetically sealed with the contacts, having mercury-to-mercury make and break in inert gas. Contact ratings and coil data may be found in bulletin 410.

Molded Tubular Capacitors

Sprague Electric Co., North Adams, Mass. Available in all popular capacitance values in 200 to 1,600 -

volt types, new phenolic molded tubular capacitors are rated for operation from minus 40 to plus 85 C . They are described in Bulletin 210.

Automatic Washing Unit

Raytheon Mfg. Co., 60 E. 42nd St., New York 17, N. Y. The new automatic washing unit for use on industrial precipitators washes and

Can you deduct $\$ 18.75$ from $\$ 60.00$ and get $\$ 66.25$? Yes. And the way you can do it is mighty important to your company-and to the nation!

You start with $\$ 60$, representing someone's weekly take-home pay. You deduct $\$ 18.75$ for the purchase of a U.S. Savings Bond. That leaves $\$ 41.25$. But $\$ 41.25$ isn't what the worker takes home. He takes home $\$ 41.25$ plus a $\$ 25$ Savings Bond. Total (assuming he holds the Bond till maturity): $\$ 66.25$.

WHAT 19,000 COMPANIES HAVE LEARNED

In the 19,000 companies that are operating the Payroll Savings Plan for the regular purchase of Savings Bonds, employees have been more contented in their jobs-absenteeism has decreased-even accidents have been fewer!
Those are the "company" benefits the Plan provides, in addition to extra security for individual employees.
But the Plan has other, far-reaching benefits of basic im. portance, to both your business and the national economy...

SPREADING THE NATIONAL DEBT helps secure your future

The future of your business is closely dependent upon the future economy of your country. To a major extent, that future depends upon management of the public debt. Distribution of the debt as widely as possible among the people of the nation will result in the greatest good for all:
How that works is clearly and briefly described in the free brochure shown at the right. Request your copy-today-from your State Director of the U.'S. Treasury Department's Savings Bonds Division.

ACTION BY TOP MANAGEMENT NEEDED

The benefits of regular Bond-buying are as important today as ever-but war-time emotional appeals are gone. Sponsorship of the Payroll Savings Plan by a responsible execu, tive in your company is necessary to keep its benefits advertised to your employees.
Banks don't sell Savings Bonds on the "installment plan"- which is the way most workers prcfer te buy them. Such workers want and need the Payroll Savings Plan.
Those are the reasons why it's important to make sure that the Plan is adequately maintained in your company.
The State Director will gladly give you any assistance you wish.

"The National Debt and You,"

a 12-page pocket-size brochure, expresses the views of W. Randolph Burgess, Vice Chairman of the Board of the National City Bank of New York-and of Clarence Francis, Chairman of the Board, General Foods Corporation. Be sure to get your copy from the Treasury Department's State Director, Savings Bonds Division.

The Treasury Department acknowledges with appreciution the publication of this message by

ELECTRONICS

This is an official U.S. Treasury advertisement prepared under the auspices of the Treasury Department and the Advertising Council

Out on a limb because of shortages?

Call on Air Express. It's the best-and fastest-way to get supplies, parts and equipment. This super-speedy service is a round-the-clock proposition, speeding your shipment via Scheduled Airlines-offering you pick-up and delivery at no extra cost.

Air Express rates are surprisingly low. Use its speed regularly to clip whole days off shipping time, and keep your business running in high gear.

Specify Air Express-Worlds Fastest Shipping Service

- Low rates-special pick-up and delivery in principal U.S. towns and cities at no extra cost.
- Moves on all flights of all Scheduled Airlines
- Air-rail between 22,000 off-airline offices.

True case history: Tulsa, Oklahoma, factory regularly gets machine replacement parts by Air Express. Keeps production moving. Typical shipment (25 lbs.) left Milwaukee at $10: 10$ A.m., delivered Tulsa 6:40 p.m. same day. 655 miles, Air Express charge $\$ 5.37$. Any distance similarly inexpensive Phone local Air Express Division, Railway Express Agency, for fast shipping action.
 scheduled AIRLINES of the U.S.

dries all ionizers and collector plates, reapplies the adhesive and shuts off automatically. Units are available in two sizes: 1,200 to $1,500 \mathrm{cfm}$ and 1,800 to $2,250 \mathrm{cfm}$.

Battery Chargers

Richardson-Allen Corp., 15 West 20th St., New York, N. Y., has introduced a new line of small, light,

portable battery chargers. Each unit features a direct-reading meter, circuit-breaker protection and selenium rectification. They operate on 110 volts, 50 to 70 cycle a-c current.

Adjustable-Speed Control

Reliance Electric \& Engineering Co., Cleveland, Ohio. An electronic excitation control system has been designed for closely controlled speed regulation. Functionally it is comparable to a 2 -circuit, motor operated rheostat with a servomechanism, preset speed device controlling the output voltage

These important books are the first available of the Massachusetts Institute of Technology Radiation Laboratory Series. The Series, containing in all 27 titles and index, was written and edited principally by members of the Radiation Laboratory

RADAR SYSTEM

ENGINEERING

Vol. 1. Edited by L. N. RIDENOUR, Professor of Physics, Univ. of Penn., 408
pages, over 300 illus, 8750 pages, over 300 illus., $\$ 7.50$
This volume outlines general principles of considerations. It describes the componenta of a radar set from the design engineer's standpoint and outlines the problems encountered. Moving target indication and radio transmission of data to remote indicators are carefully explained, including de-

RADAR AIDS TO NAVIGATION

Vol. 2. Edited by John S. HALL, Assoc.
herst College. 389 pages, illus., $\$ 5.00$ Describes the advantages and limitations of the use of radar in navigation and pllotage. In addition to full treatment of airborne, shipborne, and landbased radar, this book contains descriptions of many other navigation devices which give a more comit emphasizes the practical application of modern aids for sifety and accuracy in navigation.

RADAR BEACONS

Vol. 3. Edited by ARTHUR ROBERTS, Assoc. Professor of Physics, State Univ. of lowa.
409 pages, illus $\$ 6.00$ 409 pages, illus., $\$ 6.00$
This comprises a survey of the design and cons and their use in radar responder beafication. Information on practical aspects -installation, operation, and maintenanceis included. It describes various types of beacons and interrogators and shows how each is employed in communication naviga-
LORAN
Vol. 4. J. A. PIERCE, Research Fellow, Cruft Laboratory, Harvard; A. A. McKENZIE, WOODWARD, Research Fellow, Cruft Laboratory, Harvard. 468 pages, illus. $\$ 6.00$
A complete account of the design and use of the long-range pulse mavigation system known as Loran, both in its orlginal form and as sky-wave synchronlzed Loran. SecLoran frequencies and on methods for the computation and preparation of Loran navigational charts.

PULSE GENERATORS

Vol. 5. G. M. GLASOE, Rensselaer Poly-
 Johns Hopkins Univ., 737 pages, $\$ 9.00$ The theoretical and practical aspects of the in the range of 100 watts to 20 megawatts and pulse durations from .03 to 10 micro seconds are considered, covering pulse formation, the effect of circuit parameters on the pulse shape, pulse power, average power, power transfer, and circult efficlency.

KLYSTRONS AND

MICROWAVE TRIODES

Vol. 7. Edited by D. R. HAMILTON, Princeton Univ.i J. K. KNIPP, Iowa State College; and J. B. H. KÚPER, Brookhaven National Laboratory. 534 pages, illus.,
$\$ 7.50$ \$7.50
An authoritative discussion of low power microwave triodes, klystrons, and their per-
formance as local oscillators, slgnal generaformance as local oscillators, slgnal generaexplaing fully the theory behind the use of klystrons and triodes as mixers, ampll Ters, osclllators, and frequency multipllers. Two-cavity and reflex klygtrons and phaner
maintained during the war for electronic research. This outstanding addition to the literature of the field covers advances in radar workmakes these available to all fields concerned with the new electronicscommunication, television, biological and physical sciences and the many industries in which electronics is becoming increasingly important.

TECHNIQUE OF
 MICROWAVE MEASUREMENTS

Vol. 11. Edited by C. G. MONTGOMERY, Associafe Professor of Physics, Yale'
University. 937 pages, illes. 10.00 This book describes in detail the procedure for measuring the properties of microwaves and the circuits in which they are used. A full description of the measurable quantities of microwaves provides sound groundwork for the later chapters which deal with poses and the means at microwave frequencies. Methods for measuring wave lengths, impedance, frequency, and attenuation are fully described.
MICROWAVE DUPLEXERS
Vol. 14. Edited by L. D. SMULLEN and C. G. MONTGOMERY, Professor o Phys-
ics, Yale Univ.. 437 pages, illus., $\$ 6.50$ An analysis of the problems of using a aingle antenna for problemiving of anding translevel properties of TR and It discusses lowthe methods for their design. The high-level operation is explained in detail with a description of the properties of the gases used in the tubes. Circuits used for duplez-
CRYSTAL RECTIFIERS
Vol. 15. Edited by H. C. TORREY and C. A illus., 6 Rutgers Univ. 440 pages,
The characteristics and use of the sllicon and germanium point-contact rectiflers used as microwave converters and for other cir-
cuit applications. Treatment of the theory cuit applications. Treatment of the theory of semiconductors, of the semiconductorrectifiers, and of noise generation by crystals is followed by engineering information on the production and use of practical crystal types. Low-level detectors, high inverse voltage crystals and crystals with negative $1-1$ conductance are discussed in detail.

MICROWAVE MIXERS

Vol. 16. By R. V. POUND, Junior Fellow, Sociefy of Fellows, Harvard. 381 pages, illus., $\$ 5.50$
A spectalized treatment of the microwave discussing of very high-frequency recelvers, their relative various receiving systems and practical mfxers are carefully described, showing how to malntaln constant absolute stabilize constant frequiliator and how to tween transmitter and local oscillator.

MICROWAVE RECEIVERS

Vol. 23. Edited by S. N. VAN VORHIS, Assoc. Professor of Physics, Univ. of Rochester. 611 pages, illus., $\$ 8.00$ This book treats together all the elementa making up a wide-band recelver, describlas individual circult types-the assembly, test. ing, and maintenance of microwave recelvers. It includes analyses of actual receivers whlch contain examples of important circuit combinations.

THEORY OF

SERVOMECHANISMS

Vol. 25. Edited by H. M. JAMES, Purdue Univ.; N. B. NICHOLS, Taylor Instrument Co.; and R. S. PHILLIPS, Univ. of Outllnes the standard 375 pages, anisms design, showing applicatlon of current techniques, and providing an introduction to a new technique. It covers irequency response design considerations-tramafor locl, attenuation vg. log-frequency plote, and phase-angle vs. log-frequency plote-nd explains the later method which dopends upon minimization of rms error with which the mechanism produces a desired result in the presence of electrical noise and other disturbances.

COMPUTING MECHANISMS

AND LINKAGES

Vol. 27. Edited by

discussion of computing mechanism and a detailed study of bar linkages in computers. It includes a full account of novel methods for the design of bar linkagem serving as generators of functions of one and two independent variables, and describes the design of bar linkage multipliers.

SEE

 THESE BOOKS 10 DAYS FREEMeGRAW-HILL BOOK CO., Inc., 330 W. 42d St., NYC 18 Send me the volumes of the Radiation Laboratory Series Indicated by the numbers I have enclrcled below for 10 days examination on approval. In 10 days I will remit the price of the books I desire to keep plus a rew ents paid on cash orders-Same return privilege.)
$11^{1} 14^{2} 15^{3} 16^{4} \quad 23{ }^{4} \quad 25{ }^{5}$

Name ..
Address
City and State
Company
Position (For Canadian price, write McGraw-Hill Co. of Canada Lid.a
12 Richmond St. E., Toronto 1.)

POWER REQUIREMENTS: $\mathbf{1 0 5 - 1 2 5}$ volt, 60 -cycle commercial power. Power input 350 watts maximum.
OUTPUT POWER: $250-450$ volts d-c (either negative or positive terminal may be grounded as desired). 300 milliamperes maximum.
IMPEDANCE: Approximately 2 ohms at 30 cycles sec. Decreases with increasing frequency.
RIPPLE: Less than (.005) volts, peak to peak.
LOAD REGULATION: Less than 1 percent change in output voltage from no load to full load.

POWER REQUIREMENTS: 105-125 volts, 60 -cycle commercial power. Power input, approximately 375 watts.
OUTPUT POWER: $\mathbf{2 5 0 - 4 0 0}$ volts d-c, 200 milliamperes individually from two separate supplies, or $250-400$ volts d-c, 400 milliamperes from both supplies when operated in parallel.
RIPPLE AND NOISE: Less than 0.020 volt rms.
LOAD REGULATION: One percent or less change in output voltage from no load to full load, or for line voltage variation from 105 to 125 volts.

POWER REQUIREMENTS: $105-125$ volts, 60 cycle commercial power. Power consumption approximately 800 watts at full load.
D-C OUTPUT: 0.125 ampere from 160 to 1500 volts output.
RIPPLE: Maximum 0.05 volt (peak to peak value).
LOAD REGULATION: 0.15 percent or less change in output voltage from no load to full load at any power line voltage and output voltage within rating.
LINE REGULATION: Less than 0.015 percent output voltage change per volt change in line voltage over specified range.
IMPEDANCE: Less than 10 ohms at 1500 volts and less than 2 ohms at 160 volts output.

These G-E Regulated Power Supplies provide a quick, reliable source of constant d-c voltage. Clean, economical and space-saving, they eliminate the need for expensive batteries that require continuous care, and will prove an indispensable aid in lah. oratory and production work.
\qquad

TYPE YPD-2
Range 250-450 Volts

TYPE PS-4 (Dual Regulated) Range 250-400 Volts

TYPE YPD-4 Range 160-1500 Volts

of a constant potential rotating exciter. A single-phase half-wave rectifier with a back rectifier is recommended for use with the unit. Output voltage can be varied from 0 to 230 volts.

Light Soldering Iron

hexacon Electric Co., 130 W. Clay Ave., Roselle Park, N. J. The new soldering iron weighs only $5 \frac{1}{2}$ ounces less cord, and requires no

transformer for operation, It works from any regular 110 or 220 -volt line circuit a-c or d-c. Designated as catalog No. 30 H , list price is $\$ 5.00$.

Television Capacitors

Cornell-Dubilier Electric Corp., South Plainfield, N. J. The DSTH television capacitors are oil-impreg-

June, 1948 - ELECTRONICS For additional information concerning these units and other precision equipment write: General Electric Company, Electronics Park, Syracuse, New York.
nated and wax-filled. Size range is from $\frac{1}{2}$-inch diameter by $2 \frac{1}{x}$-inch length up to $118 \times 4_{4}^{3}$ inches; d-c voltage from 3,000 to 6,000 .

Sound Projector

Atlas Sound Corp., 1443 39th St., Brooklyn 18, N. Y. This stand and mounting fixture permit the illus-

trated sound projector to be easily directed in any vertical or horizontal angle and permanently locked in the desired position. A complete catalog description is available on request.

Portable Microammeter

Radio Corp. of America, Camden, N. J. Type WV-84A is an ultrasensitive, portable, battery-oper-

for RADIO and TEEEVISION REEEVEESS

punched, threaded or grooved to meet individual specifications with nominal tooling costs.

These spirally laminated paper base phenolic coil forms and tubes give exceptional performances with the added advantage of lower material costs.

Note: We also have available numerous stock punching dies.

Partial list of
Radio and Television Receivers
in which Cosmalite is used:

ADMIRAL

ARVIN
BELMONT
BENDIX RADIO COLONIAL
FARNSWORTH
GENERAL ELECTRIC HOWARD
MAGNAVOX
MOTOROLA SENTINEL
STEWART WARNER WARWICK
WELLS GARDNER ZENITH

Your inquiry will receive immediate and intelligent attention.

Ask also about other Cosmalite types . . . \#96 COSMALITE for coil forms in all standard broadcast receiving sets. SLF COSMALITE for permeability tuners. COSMALITE deflection yoke shells, cores and rings.

Spirally wound kraft and fish paper Coil Forms and Condenser Tubes.

dependability

 reduces soldering costs!
LABORATORY CONTROLLED

I

L-ー- 米Watch the work flow when Kester Plastic Rosin-Core Solders are applied to your soldering operations. Kester Cored Solders are made to rigid specifications and can be depended upon to give uniform results every time. There is a Kester "Specialized" Flux-Core Solder in strand size, type of flux, and alloy to fit your needs. Consult our Technical Service Department on any soldering problem.

KESTER SOLDER COMPANY

4204 Wrightwood A venue, Chicago 39, Illinois
Factories also at
Nework, New Jersey - Brantford, Canada
ated microammeter for measuring $\mathrm{d}-\mathrm{c}$ currents ranging from 0.001 to 1,000 microamperes. The instrument can also be used as a highrange ohmmeter when connected to a suitable power supply.

Antenna Conversion

J. F. D. Manufacturing Co., Inc., 4109-4123 Ft. Hamilton Parkway, Brooklyn 19, N. Y. A new line of $\mathrm{f}-\mathrm{m}$ and television antennas with

conversion kits has been assembled. In all there are 22 different types ranging from the single straight dipole to the double-stacked folded dipole with high-frequency lobes, as illustrated. The line covers the 44 to $216-\mathrm{mc}$ range, channels 1 to 13 and f-m bands.

Tap Switch Rectifier

Richardson-Allen Corp., 15 West 20th St., New York, N. Y., announces a new series of selenium

rectifiers with 36 -position tap switch controls. The units are standard up to $27-\mathrm{kw}$ capacity.

Auto-Radio Vibrators

American Television \& Radio Co., 300 E. Fourth St., St. Paul 1, Minn., announces a complete line

of auto-radio vibrators designed for use in standard vibrator-operated auto and household radio receivers. The new line, featuring ceramic stack spacers, is covered in the recently released Vibrator Guide which is available free of charge.

Television Transformers

Hillburn Electronic Products Co., 1 Worth St., New York 13, N. Y. Series ZV video and sound trans-

formers are stagger tuned, have a 4 -mc bandwidth, with sound rejection of 150 to 1 and adjacent channel rejection of 100 to 1 .

Miniature Socket

Cinch MFg. Corp., 2335 W. Van Buren St., Chicago 12, Ill. A new type miniature socket features a contact construction which insures continuous and consistent mainte-

Dependable, accurate timing is a key factor in precision appliance components . . . assuring reliable operation and minimum maintenance. Tuttle and Kift's revolutionary Infinite Control for electric ranges is but one of the many contributions to new appliance developments made possible by Haydon timing devices. A synchronous Haydon motor with a shaft speed of one rpm drives an eccentric cam against four spring contact arms which make and break contact with a second set of parallel arms. The gap between each pair of contacts is easily adjusted by external knobs, varying from 3% to 100% the portion of each cam revolution during the period of contact . . . providing infinite control of heat through control of watts-hours output. Haydon is equipped to provide manufacturers of appliances and machinery with timing units ranging from synchronous motors to complete timers and controls. Haydon will be pleased to furnish a detailed Engineering and Design Catalog - to submit a design or quotation on specific requirements; either from the factory or at your desk.

WRITE 2406 ELM STREET, TORRINGTON, CONNECTICUT HAYDON

MANUFACTURING COMPANY, ING TORRINGTON

SUBSIDIARY OF GENERAL TIME INSTRUMENTS CORPORATION

PIPE COUPLINGS

ELECTRICALLY HEATED PRESSURE HEADS

CONTINUOUS FILM RECORIDING CAMERAS

AND EQUIPMENT FOR CATHODE RAY

OSCHLDGRAPHI. ETC.

We undertake the Design, Development and Manufacture of any type of Optical-Mechanical -Electrical Instrument. Including Cameras for special purposes.

Avimo Limited, Taunton, England \cdot Telepbone Taunton 3634

KEGP POSTED ON GLEGRON TUBES

Use this convenient coupon for obtaining the RCA tube reference data you need.

```
RCA, Commercial Engineering,
    Section FW-40, Harrison, N. J.
    Send me the RCA publications checked below. I
    am enclosing $........ to cover cost of the books
    for which there is a charge.
    Name
    Address
    City
```

\qquad

```
Quick-Reference Charf, Miniature Tubes (Free). [A] HB-3 Tube Handbook ( \(\$ 10.00\) )*. [ B ]
RC-I 5 Receiving Tube Manual ( 35 cents). [C]
Receiving Tubes for AM, FM and Television Broadcast ( 10 cents). [D]
```

```Radiotron Designers Handbook (\$1.25). [ E ]
Quick Selection Guide, Non-Receiving Types (Free). [F]
```

```Power and Gas Tubes for Radio and Industry ( 10 cents). [G]
Phototubes, Cathode-Ray and Special Types (10 cents). [H]
RCA Preferred Types List (Free). [1]
Headliners for Hams (Free). [J]
*Price applies to U. S. and possessions anly.
```


tuEf DEPARTMENT

RADIO CORPORATION OF AMERICA
NAEASON.N. 2 .

nance of critical dimensions and holding tension of the contact. It is available in 1 -inch and $1^{\frac{5}{16}}$-inch mounting centers, plain or shielded, and in grounded types with seven or eight contacts.

Professional Recorder

Robinson Recording LaboratoriEs, 2022 Sansom St., Philadelphia 3 , Pa., introduce the new lathe type recorder for professional work in radio stations and recording stu-

dios. Wow factor is reduced to 0.01 percent by use of a new belt drive and dynamically balanced components. The unit also features a ground thread feed screw which eliminates the feed screw pattern.

Loudspeaker

Radio-Music Corp., Port Chester, N. Y. The new Hyper-Mag loudspeaker features a parabolic projector and frequency range from 50

for demonstrating and testing auto radios

New Models . . . Designed for Testing and Operating Auto Radios and D. C. Electrical Apparatus from 110 Volt A. C. Lines. Equipped with Meter, Voltage Control, and Selenium Rectifier, Assuring Noiseless, Interference-Free Operation, and Extreme Long Life and Reliability.

Do you have complete data
on the revolutionary new HELIPOT-the helical
potentiometer-rheastat that provides many times greater
control accuracy at no increase in panel space?. . . or on the equally unique dUODIAL that greatly simplifies turns-indicating appications? If yau are designing or manufacturing any type of precision electronic equipment, you should have this helpful catalag in your reference files...

$1400 / 1 / 5$ - the precision consuruction features found in the HEDIPOT... the cemerless ground and polished stainless steel shafts-the double hearings that maintain rigit shaft alignment - the positive liding contact assembly-and many other unique features.

If Penstrate 6 describes and gives full dimensional and electrical data on the many types of HELIPOTS that are available . . from 3 turn, $1 \frac{112}{20}$ diameter sizes to 40 turn, $3^{\prime \prime}$ diameter sizes 5 ohms to 500,000 ohms. . . 3 watts to 20 watts. Also Dual and Drum Potentiomelers.

It Describes

and illustrates the various special afninot designs available-double shaft extensions, multiple assemblies, integral dual units, etc.

$14 G$ - full details on the DUODIAL-the new type turns-indicating dial that is ideal for use with the HELIPOT as well as with many other multiple-turn devices both electrical and mechonical.

If you use precision electronic components in your equipment and do not have a copy of this helplal Helipot Bulletin in your files, write today for your free copr.

THE H EİDOt CORPORATION, 1011 MISSION ST. SOUTH PASADENA 2, CALIF.

NEW PRODUCTS
to over 10,000 cycles at low distortion. It is fully described in Bulletin HS-1.

Sweep Signal Generator

Electronic Corp. of America, 170 53 rd St., Brooklyn 32, N. Y. New York, N. Y. An f-m and television signal generator featuring a sweep

width of 500 kc to approximately 10 mc with a 60 -cycle horizontal sweep output, has a frequency range of 2 to 227 mc in three bands. Price is $\$ 34.95$ complete.

Testing Multimeter

M. C. Miller, 1142 Emerson Ave., W. Englewood, N. J. Model No. 5 is a multi-combination meter designed for electrolysis and corro-

sion investigations and cathodic protection testing both in field and laboratory. It provides all of the instrumentation required to cover the wide range of d-c current and potential measurements necessary in this field. The unit weighs about 23 pounds.

Synchronizing Generator

Allen B. Du Mont Laboratories, Inc., 42 Harding Ave., Clifton, N. J. Type 5030-A is a portable

television synchronizing generator useful for testing transmitters, experimental development and laboratory work. Only a-c power is required. Half-line driving pulses are provided for using differential delay techniques necessary for long camera cable hookups. The instrument weighs about 50 lb .

Synchronizing Speed Control

Reliance Electric \& Engineering Co., Cleveland, Ohio. The Short Stroke Dancer Roll Control is designed for synchronizing the speed

of independently driven machines used in paper finishing, rubber extrusion and other continuous process operations. The unit has been designed for 230 volt d-c service and a maximum current of 2 amperes.

Audio Amplifiers

Setchell Carlson, Inc., 2233 University Ave., Saint Paul 4, Minnesota. Model PA722 master amplifier and model B422 booster are illustrated. As many as ten boosters can be used, each one providing its own 25 -watt output with separate gain control. The booster units are

HIGHEIDELITY

\$ Profit and Exquisite Record Reproduction...

JOBBERS . . . SERVICEMEN . . . turn service calls into profitable sales with ease. This new LEAR Reluctance PickUp transforms "flat" old-fashioned sound into full-toned modern reproduction!
This new, improved High-Fidelity Reluctance Pick-Up is LEAR engineered to excel in quality of performance . . and priced for your profit. Replaces millions of old style crystal pick-ups now in use! Jewel stylus eliminates needle changing - holds surface noise to a bare minimum. It performs a miracle of modernization - assures full tonal beauty of sound wherever installed.
List this "hot" seller in your catalog! Service men who feature the new LEAR Magnetic Pick-up will pick up extra profits every day! Cash-in now-write for complete discount price list today!

To complete your LEAR Sound Service: New, Improved LEAR PRE-AMFLIFIER, List Price- $\$ 9.90$ To provide additional amplification with use of MP-103 LEAR Magnetic Pick-up. Can be connected directly to old crystal cartridge input. high voltage and filament wires proswitch permits high-fidelity response to finest quality recordings.
No. PA. 103 (not shown here)-LEAR Tone Arm Assembly No. PA.
with MP-103 Mot Mnown here)-LEAR Variable Reluctance Pick-Up Cartridge, List Price $\$ 15.50$.
Designed for hiph-fidelity reprod
Designed for high-fidelity reproduction of 10 " and 12 " recor-
dings. Spring counter-balance provides "feather touch" dings. Spring counter-balance provides feather touch reduces record wear to a minimum. Handsomely finished in brown metallic.

Factory Representatives-Distributors: A few choice
territories are still available for these and other
fine LEAR Electronic Products. Write today
giving full details.

No. A-172

See your radio parts distributor or electrical whole. saler. Or write direct for bulletin.

WELLER Mfg. Co. 806 Packer St. - Easton, Pa.

5 SECOND HEATING

adjustable tip

BULTIN SPOTLIGHT

IONG REACH

detecting a Small leak STOPPED A FLOOD IN HOLLAND

Veeco LEAK DETECTOR

What ar idit pari falurt you in or goupman
 VESCO MASS SPECTROMETER
 LEAK DETECTOR

Makes BIG profits by finding small leaks

The Veeco finds small holes, locates them accurately. Highly sensitive vacuum and pressure testing finds small leaks in industrial equipment and finished products. Quick, dependable. Now successfully used for testing: electronic tubes, glass-to-metal seals, hermetically sealed systems, condensers, and scores of other products. Simple operation. Literature LD-35 upon request.
*Manufactured under license of the University of Minnesota
VACUUM-ELECTRONIC ENGINERING CO. 316 37th STREET - BROOKLYN 32, N. Y.

mechanically attached to the base of the amplifier by means of concealed tiebolts.

Ganss Meter

General Electric Co., Schenectady 5 , N. Y. The new direct-reading yauss meter, with a probe diameter

of 0.052 inch, permits measurement of flux in small-gap magnets of standard or irregular shape. Also available is a triple kit combining three meters of different ratings in a single carrying case. Ask for bulletin GEC-238.

Literature

\qquad

Laboratory Instruments. Technology Instrument Corp., 1058 Main St., Waltham 54, Mass. A new bulletin describes and illustrates types $410-\mathrm{A}$ r-f oscillator and 310-A Z-Angle meter. Specifications and simplified circuit diagrams are included.

Snap-Action Switches. Micro Switch, Freeport, Ill. Microtips, the first issue of a new publication, promises to tell in following
issues how plant engineers and electrical maintenance men are using snap-action switches. The pamphlet is punched for a standard 3 -ring binder so that each copy may be filed for ready reference.

Magnetic Iron Powders. C. K. Williams \& Co., Metallurgical and Electronic Division, 2001 Lynch St., East St. Louis, Ill., offers a brochure filled with data and a price list on a variety of IRN magnetic iron powders. Also available is the condensation of an article on the effective permeability of h-f iron cores.

Terminals. Shakeproof Inc., Division of Illinois Tool Works, 2501 North Keeler Ave., Chicago 39, Ill. Catalog A-S-51 contains dimensional data and general information to simplify selection and specification of proper wiring terminals for designers and draftsmen of radios and electrical devices. Working drawings of each part are included.

Crystal Units. Standard Piezo Co., P. O. Box 164, Carlisle, Pa. Eleven types of crystal units are pictured in a 4-page folder. Chief features are outlined and ordering information is given.

Miniature Speed Changers. Metron Instrument Co., 432 Lincoln St., Denver 9, Colorado. Bulletin No. 100 shows three types of miniature speed changers with a table giving all of the standard integral ratios. Power is transmitted either way for ratios below 230 to 1.

Coaxial Frequency Meter. Frequency Standards Corp., 237 Lafayette St., New York 12, N. Y. A loose-leaf perforated folder points out the prominent features of model 315A frequency meter which covers the 300 to $1500-\mathrm{mc}$ range in four overlapping bands

Portable Wire Recorder. Precision Audio Products, Inc., 1133 Broadway, New York 10, N. Y. Two sides of a single sheet show

FLEXIBLE SHAFT CONTROL IS AS GOOD AS YOU REQUIRE

You can get any degree of fidelity and sensitivity you need with S. S. White remote control flexible shafts.

Bear in mind, these shafts were developed specifically for control service. They have the necessary physical properties to provide a quality of control that satisfies the requirements of most applications. Its simply a matter of correct shaft selection and application.

Close-up of flexible shaft connec tion to a variable resistor through simple worm gearing. With ar rangements like this you can get
smooth. accurate tingertip control.

Where vernier accuracy is essential, it is readily obtained by connecting the shaft to control and controlled members through simple gearing.

GET FULL DETAILS IN THIS 260-PAGE FLEXIBLE SHAFT HANDBOOK

We'll gladly send you a copy. free, if you write for it on your business letterhead and mention your position.

Also manufacturers of high grade cotion and silk covered wircs, cotton and silk covcrings over enamel coated wires, and all constructions of Litz wires. A varicty of coverings made to customers' specifications, or to requirements determined by our engineers. Complete design and engincering facilitics are at your disposal; details and quotations on request.

Leakporoof

ENAMELED MAGNET WIRE

A product, resulting from many years of research in the field of fine wire manufacture, that meets the most rigid requirements of radio and ignition coils.
A new coating methad gives a smooth, permanently - adherent enameling, and mercury-process tests guarantee perfect uniformity. Great flexibility and tensile strength assure perfect laying, even at high winding speeds. If you want reduction in coil dimensions without sacrificing electrical values, or seek a uniform, leakproof wire that will deliver extro years of service, this Hudson Wire product is the answer

Studio 2uality AMPLIFIERS

WITH CUSTOM-BUILT FEATURES

Design of Bardwell \& McAlister's New Commercial Amplifiers embodies the principles which have been proven in custom-built units developed in the Motion Picture Industry, where quality is requisite. Fully licensed.

Write today for informative catalog \& Technical data. Dealer inquiries invited.

ELECTRONIC DIVISION

 BARDWELL \& McALISTER, INC.BOX 1310, HOLLYWOOD 28, CALIFORNIA
the outstanding features and technical specifications of the Wiremaster, a portable wire recorder. Frequency range is from 40 to $10,000 \mathrm{cps}$ and the unit has separate listening and recording volume controls.

Laboratory Monitor. Tracerlab, Inc., 55 Oliver St., Boston 10 , Mass. Model SU-3 was developed for use as a routine contamination monitor in radioactivity laboratories. Bulletin No. 9 gives a 12page description of the instrument complete with diagrams.

Vacuum Melting. National Research Corp., 70 Memorial Drive, Cambridge 42, Mass. The new brochure on high-vacuum furnaces outlines equipment for metallurgical melting and casting in the micron pressure range. Components are sketched and described, and a bibliography is included.

Sound Reproduction. Terminal Radio Corp., 85 Cortlandt St., New York 7, N. Y. Amplifiers, microphones, loudspeakers, and wire recording equipment are described and illustrated in an eight-page catalog. Prices for individual items are listed.

Receiving Tube Reference. Radio Corp. of America, Harrison, N. J. The latest edition, form $1275-\mathrm{D}$, is a compact and informative booklet on receiving tubes for television, $\mathrm{f}-\mathrm{m}$ and standard broadcast. Price is ten cents.

Sound Recorder. Sound Apparatus Co., 233 Broadway, New York 7, N. Y. Literature is now available on the newly designed model HPL high speed recorder and requests for the bulletin "Sound Advances" will be promptly filled.

Portable C-R Scope. Tektronix, Inc., 1516 S. E. Seventh Ave., Portland 14, Oregon. A recent 4-page folder on the type 511 cathode-ray oscilloscope gives a general description of the portable unit along with a thorough treatment of its vertical and horizontal de-

NEW DEVELOPMENTS IN VACUUM CAPACITORS

By
United Electronics Company

When the older types of vacuum condensers were designed, the sole conception of advantage was to attain a voltage breakdown characteristic higher than could be accomplished with condensers of the same physical size with air or other substance as dielectric.
The limitations of the old types of vacuum capacitors resulted principally from high R.F. losses and a high temperature co-efficient. This caused considerable capacitance drift, and the added heat losses in the glass envelope led to external voltage breakdown or internal breakdown due to the liberation of gas. Actual seal puncture in these early type vacuum capacitors was also a frequent cause of failure. Extraneous inductance was caused by the use of conventional ferrous metal rod seals and copper strand leads soldered to the terminal caps, in the old type of construction. The higher the frequency and R.F. power, the more these limitations were accentuated.
Outstanding features of UNITED vacuum capacitors are the employment of large copper elements and large periphery glass to copper seals, and end caps as illustrated. This construction results in a low temperature co-efficient, low R.F. losses and low inherent inductance. End flanges as well as terminals are gold plated to prevent corrosion.

Type designations of UNITED vacuum capacitors symbolize their capacitance ratings and their maximum current and voltage ratingsthus:

C	A	P
=		
Capacitance	Amperes	Potential
(50 uuf)	(60)	(35 KV)

The 5 types listed below are designed for peak working voltage of 35 KV .

PRESENT SIZES AND RATINGS

Type	Capacitance uuf	Maximum Current	Peak	Overall Dimensions	
			R. F. Voltage	Length	Width
CAP-25/30/35	25	30 amps.	35 KV	61/2"	21/2"
CAP-50/80'35	50	60 amps.	35 KV	-	*
CAP-75/60/35	75	60 amps .	35 KV	\checkmark	"
CAP-100/60/35	100	60 amps .	35 KV	4	"
CAP-250/60/35	250	60 amps .	35 KV	«	$3^{\prime \prime}$

Contact terminal diameter $13 / 16$; length $23 / 32$; standard capacitance tolerance $\pm 2 \%$; can be furnished in precision tolerance $\pm 1 \%$ at increased cost.

UNITED vacuum capacitors have OFHC copper elements for high RF conductivity. Low temperature coefficients and noninductive characteristics make these units desirable for high power, high frequency applications where space, minimum drift and freedom from breakdown are important considerations.

Write for a copy of our latest catalog on Transmitting Tubes featuring the Patented Isolated Getter Trap and Complete data on Vacuum Capacitors.

UNITED ELECTRONICS CO.

42 Spring Street

Newark 2, New Jersey

Application

the no. 92105
SSSR
Single Sideband Selector
We announce the No. 92105 Single Sideband Selector, see April QST for technical details, which permits single sideband selection with your present receiver! Produced in co-operation and under exclusive U.S. patent license (2,364,863 and others) with the J.L.A. McLaughlin Research Laboratories.

JAMES MILLEN MFG. CO., INC.

MAIN OFFICE AND FACTORY
MALDEN
MASSACHUSETTS

flection systems. Characteristics and other pertinent data are covered.

Components. Hugh H. Eby, Inc., 4741 Stenton Ave., Philadelphia, Pa., announces publication of a 48-page loose-leaf catalog showing a complete line of components. Pertinent dimensions of sockets, plugs, connectors, jacks, terminal strips and a wide variety of binding posts in many models and sizes are given.

Microwave Supplies. The Waveguide Mfg. \& Equipment Co., Inc., 125 E. 23rd St., New York 10, N. Y. A recently issued catalog illustrates and describes a variety of microwave test equipment, assemblies and components.

Service Manual. Clarostat Mfg. Co., Inc., 130 Clinton St., Brooklyn 2, N. Y. The new 127-page manual is a compilation of all standard type radios in current use, based on a survey by leading compilers of service data. Price is 50 cents per copy.

Precision Switches. Micro Switch Corp., P. O. Box 561, Freeport, Ill. Temporary data sheet 41 gives characteristics, diagrams and prices of skeleton switches. Also available is a loose-leaf descriptive sheet showing a switch in actual operation.

Electronic Timers. Radio Corp. of America, Harrison, N. J. Application Note AN-131 describes the use of type 2D21 or 2050 thyratrons in electronic timer circuits.

Television Antenna System. Workshop Associates, Inc., 66 Needham St., Newton Highlands 61, Mass. Television reception by means of multiple antennas and a coaxial selector switch is the latest practical slant on a difficult problem. Literature is now available.

Cathode-Ray Equipment. Allen B. DuMont Laboratories, Inc., Clifton, N. J. The Oscillographer is a bi-monthly loose-leaf perforated publication with information on different types of c-r tubes, polar-

Radio Parts...

in quantities
suitable to Volume

Production...it may
pay you to call upon
the Design Engineers
of United-Carr and its

They have helped many
manufacturers

* CUT COSTS

* SPEED PRODUCTION
\star TURN OUT FINER FINISHED PRODUCTS

MAKERS OF
FASTENERS

FASTER, SIMPLER AUDIO ANALYSIS with Model AP-1

PANORAMIC SONIC ANALYZER

Reduce time, complexity and cost of making audio measurements with the unusual advantages offered by the Panoramic Sonic Analyzer. By resolving a complex audio wave into a spectrograph showing the frequency distribution and voltage amplitude of the componenis, Model AP-1...

- Eliminates slow point-by-point frequency checks - Provides a quisk overall view of the audio spectrum - Enables determination of changes in waveform content while parameters are varied . Furnishes simple presentations for production line testing.

Panoramic Sonic Spectrograph of 750 cps square wave.

Use Model AP-1 for analyxing . . . - Harmonics - Intermodulation . Vibration • Noise * Acoustics • Materials

Feafures... Continuous scanning from 40$20,000 \mathrm{cps}$ in one second . Wide input voltage range . Linear and log voltage scale - Closely logarithmic frequency scale - Builtin voltage and frequency calibrator - Simple operation.

WRITE for defailed specs, price and dedivery.

Amperite MICROPHONES

The ultimate in microphone quality, the new Amperite Velocity has proven in actual practice to give the high. est type of reproduction in Broadcasting, Recording, and Public Address.
The major disadvantage of pre-war velocities has been eliminated-namely "boominess" on close talking.
(3) Shout right into the new $A m p e r i t e ~ V e l o c i t y — o r ~$ stand 2 feet away-the quality of reproduction is always excellent.

- Harmonic distortion is less than 1% (Note: best studio diaphragm mike is 500% higher).
- Practically no angle discrimination 120° front and back. (Best studio diaphragm micro-phones-discrimination 800% higher).

- One Amperite Velocity Microphone will pick up an entire symphony orchestra. STUDIO VELOCITY, finest in quality; ideal for broadcasting and Recording.
Models R80H, R80L. List $\$ 80.00$ There is an Amperite Microphone for every requirement.
WRITEFORILLUSTRATED 4-PAGE FOLDER giving full information and prices.

AMPERITE Velocity Microphones for Public Address Models RBHG, RBLG List \$42.00

"Kontak" Mikes Model $A K H$, list $\$ 12.00$ Hodel KKH, list $\$ 18.00$

In Canada: Atlas Radlo Corp. 560 King St. W
Toronto, Ont.
hEAT KESISTANT WIRIS FOR EVERY ÁPPLICATION

have you a

Wire Problem?

If it concerns heat and age resistance, we're specialists and have been for twenty years. Whether it is dropping excessive voltages-maintaining higher than ambient temperatures in equip-ment-high current conductors-heating element leads in crystal temperature control ovens - if it's got to be tough to continually withstand wear and tear ...
heating units heating elements RESISTANCE LINE CORD

THERMOCOUPLE WIRE

ASBESTOS LEAD
\& FIXTURE WIRE
INSULATED
RESISTANCE WIRE
FIBERGLAS
INSULATED WIRE
WIRE TO ANY
SPECIFICATIONS

Semis can give you the anseuer

Send your electronic control, communications or appliance wiring specifications for a recommended solution by our engineers. for a trial order or a carload consulf

Type 785
Standard MTS Size Aircraft Mounting Rack with revolutionary air-damped vibration isolators

VIBRATION and IMPACT

. . . uith special emphasis on the field of electronics

We offer a complete line of highly engineered Vihration and Impact isolators for commercial, industrial and military applications . . . also an Engineering consulting service on special problems.

A letter from you will give us the opportunity to demonstrille how we can help yon.

Catalogue on request

IS YOUR PROBLEM Murind Mifinulit ONE OF THESE?

then COUNT on aPOTTER
 High-Speed Predetermined ELEGTRONIC countis

For appraisal of your counting, timing or control problem, address inquiries to Dept. 6-J. Potter Instrument Company. 136-56 Roosevelt
Ave.. Flushing. New York.

QUANTITY-Pills, buttons, bottle caps, hard. ware, etc., can be counted and butched in precise predetermined quantities at speeds up
to 15,000 per minute. Important sovings in labor and overages are assured by the speed ond accuracy of the Potter Electronic Counter. Count Detectors far any product ore available.

LENGTH - Wire or strip material can be auto matically sheored or morked in precise prede termined lengths of high rotes of speed, and if required, outomatically stacked in predeter. mined quantities. Practically ony definition of measurement can be oblained.

TIME-Time intervals con be easily measured or generoted with extremely high occuracy through the use of Porter Counter Chronograph Interval Timers. Registration of measurement is retained until reset. Accuracy of one part in $1.600,000$ can be provided.

CAM SEQUENCE-Since the electronic counters can be arranged to predetermine ony sequence of selected counts, they con be readily and advantageously substifuted patterns, chains and other systems of timing control. Contral by obsolute count as. sures high occuracy, faster operating speed since thete are no moving parts to wear.
 FREQUENCY-Potter Electronic Counters provide an exact rotio of division which is maintained even though the input frequency
is voried. if the innout frequency is stopped is voried. If the input frequency is stopped
the output olso stops. Frequencies can be measured or generated with high precision.
Square waves of variable frequency, pulse. Square waves of variable frequency, pulse.
width and number can be easily generated.

REVOLUTION-Through electromagnetic or photoelectric pickup, shaft rotation con be acphotoelectric pickup, shaft ratalion con be ac.
curately counted or timed without physical contact. Fractional pazts of a revolution can be measured or used ta control outomatic machine processes os a function of predeter mined counts.

NEW PRODUCTS
coordinate indicators, h-v power supplies, oscillographs and like equipment.

Speakers. Altec Lansing Corp., 250 W. 57th St., New York 19, N. Y., gives response curves and data on four of its outstanding speaker designs in a recently issued 6 -page folder.

Synthetic Sapphire. Sapphire Products Division, Elgin National Watch Co., Aurora, III, An 8-page pamphlet explains the uses and properties of synthetic sapphire in industry.

Wire Recorder. Electronic Sound Engineering Co., 4344 Armitage Ave., Chicago 39, Ill., has a brochure describing the Polyphonic Sound recorder model PS179. Frequency range of the system is 30 to 15,000 cycles.

Metal-Backed Screen. General Electric Co., Syracuse, N. Y. A new 10-inch metal-backed direct-view television picture tube that gives better pictures at more normal ambient light levels has recently been announced.

Communications Equipment. Browning Laboratories, Inc., Winchester, Mass. A 4-page brochure describes the line of tuners, frequency meters, capacitance alarm, and other devices.

Instrument Catalog. Electro-Tech Equipment Co., 117 Lafayette St., New York 13, N. Y. Catalog 48 illustrates and describes a line of instruments of many manufacturers from A battery eliminators to Wheatstone bridges in 65 pages.

Carbon-Graphite. Stackpole Carbon Co., St. Marys, Pa. Tube anodes, battery carbons, ground rods, electrical contacts, and spectrographite are among the many carbon products discussed in a new 44-page booklet.

Measuring Frequency. General Radio Co., 275 Massachusetts Ave., Cambridge 39, Mass. Volume XXII No. 9 of the Experimenter
describes the type 1141-A audiofrequency meter as well as the 1231-B amplifier and null detector. Illustrations, schematic diagrams and characteristic curves of both units are also shown.

Miniature Iron. Television, Inc., New Rochelle, N. Y. The Soldetron miniature soldering copper operates from a storage battery or 6volt transformer and is described in a sheet recently issued.

Plastic Bulletin. Fabri-Form Co., 100 Seneca St., Byesville, Ohio. Some of the newest ways to use plastics are shown in a new 12 page bulletin. Over fifty drawings and photographs illustrate detailed parts in a manner that is simple to the layman.

H-F Conductor. Titeflex, Inc., 591 Frelinghuysen Ave., Newark 5, N. J. Water-cooled, flexible leads for use in conducting high-frequency currents are described in a folder just issued. List prices are included.

Timing Motors and Devices. Haydon Mfg. Co., Torrington, Conn. Of value to engineers and designers is the 16 -page, 2 -color catalog No. 320 on synchronous timing motors, timing devices and clock movements.

Miniature Tubes. Tung-Sol Lamp Works Inc., Newark 4, N. J. Actual sizes, advantages and applications of a line of miniature electron tubes are discussed in a six-page pamphlet.

Molded Metal Products. Keystone Carbon Co., 1935 State St., Saint Marys, Pa. A four-page circular covers powder metallurgy parts, motor and generator brushes, and negative temperature coefficient resistance units. Various types of each line are illustrated.

Radio and Recorder Catalog. Hoffman Radio Corp., Los Angeles, Calif., has published a 16-page catalog of its 1948 line. The brochure, specially featuring the

Models

TRANSFORMERS

- Research
- Models
- Testing

STEEL when a steel company engineer was presented with a problem of testing steel with an application of variable frequency, an oscillator output impedance as low as 0.01 ohms was required over a wide Frequency range.

Through the aid of ADC engineers and the use of special ADC designed transformers a regular oscillator was equipped to perform the test satisfactorily with great savings in time and money to the steel company. Remember ADC as a transformer source for unusual and difficult assignments as well as for high quality and dependable production transformers.

COMMUNICATIONS To-

day a large utility company has a satisfactory communication system between its central location and its mobile units because ADC engineers worked out technical transformer applications for the maker of a power line carrier telephone. From model stage to production this company depended upon the skill of ADC transformer design and production. You, too, will find ADC helpful in all unusual model work as well as production.

ENGINEERING The development of a computer to check the muzzle velocity of a cannon with greater accuracy required many special transformer applications. This iob is typical of scores of development tasks presented to ADC engineers from university laboratories, communication developments, guided missile programs and developmental engineers everywhere. ADC supplies transformer "know how" with excellent transformer production to assure you a reliable source of dependable transformers.

ZOPHAR

Waxes,

Compounds and Emulsions Materials for potting; dipping or impregnating all types of radio components or all kinds of electrical units. - Tropicalized fungus proofing waxes. - Waterproofing finishes for wire jackets. - Rubber finishes. - Inquiries and problems invited by our engineering and development laboratories.

Zophar Mills, Inc. has been known for its dependable service and uniformity of product since 1846.

ZOPHAR MILLS, Inc. ESTABLISHED 1846

117 26th STREET, BROOKLYN, 32 N. Y.

Self-Contained to 6000 V 5 Megs, $600 \mathrm{MA},+70 \mathrm{DB}$, with full sixe
$3^{\prime \prime}$ Rectangular Meter
Series 40 Compete with ohm-
meter battefies and test leads. $\underset{\substack{\text { Net } \\ \text { Price }}}{\$ 2475}$

In custom molded carrying case, Series 40 is ideally dimensioned and engineered as a portable, compact test set to withstand hard usage as imposed by the maintenance engineer, production inspector, trouble-shooter, etc.
Series 40 offers features and components as incorporated in "Precision's" larger test sets, including: Rotary Selection -1% shunts and multipliers - heavy duty insulated pin jocks Large numeralled, easy reading meter.

ALL RANGES are SELF-CONTAINED. NO EXTERNAI BATTERIES
OR MULTIPLIERS ARE REQUIRED.

* 6 A.C.-D.C. \& Output Voltage Ranges:
all at 1000 ohms per volt.
* 4 D.C. Current Ranges: 0-6-6-60-600 MA * 3 Resistance Ranges: self-contained batteries. $0-5000-500,000$ and 0.5 megohms
* 6 Decibel Ranges from -22 to +70
* Full Size 3" Rectangular Meter:

400 microamperes $\pm 2 \%$ accuracy

* 1% Wirewound \& Metallized Resistors * Only 2 Pin Jacks serve all standard functions * Recessed 6000 volt safety jack.
* Anodized, etched aluminum panel:
resistant to moisture and wear
See this new "I'recision'. Test set now on display at all leading radio barts and pquipment distributors. or write direetly Por the "recision 1948 catatog describing The complete precision line of atang electronic Test A.M., F.MI. and Tu

PRECISION
 APPARATUS CO., Inc.
 92-27 Horace Harding Blvd. Elonhursf 10, N. Y.

Export Division: 458 Broadway, N. Y. City, U.S.A. Cables: MORHANEX

Wirecord and Musicord, is spiral bound, profusely illustrated and printed in three colors.

Pins and Leads. The Bead Chain Mfg. Co., Mountain Grove and State Streets, Bridgeport 5, Conn. Multiswage contact pins are constructed with a hole through the entire length to facilitate threading lead wires. The contact pins are used for radio tubes, panelmounted terminals, jacks, and leads for miniature and other radio tubes.

Insulating Material. General Ceramics and Steatite Corp., Keasbey, N. J. Catalog 3000 shows various methods of producing steatite insulators. Different types and shapes are discussed with mechanical drawings given throughout.

Test Instruments. General Electronic Distributing Co., 98 Park Place, New York 7, N. Y. Several models of tube and set testers, volt-ohm-milliammeters, signal generators and tracers are described in an 8-page catalog. Specifications and price of each are given.

Phase-Shift Modulator. Radio Engineering Laboratories, Inc., 35-54 36th St., Long Island City 1, N. Y. Bulletin 5030 contains a description of characteristics, functions and technical specifications of the Serrasoid phase-shift modulator for f-m broadcasting.

Metered Variable Transformers. Standard Electrical Products Co., 400 Linden Ave., Dayton 3, Ohio. A four-page folder describes a new line of Adjust-A-Volt metered variable transformers, including isolated primary transformers with secondary voltages of 0 to 140 volts and autotransformers with the same output voltage.

Radio Service Encyclopedia. P. R. Mallory \& Co., Inc., Indianapolis, Ind. The sixth edition of this reference book of useful service information contains 25 percent more listings than the fifth edi-

A.C. and D.C.

SIGNAL ENGINEERING offers a new series of small, rugged, general purpose Multiple Arm Relays adaptable to a wide variety of circuit arrangements.

OUTSTANDING FEATURES:

Mounting area minimized. Vertical balanced armature. Interchangeable unit contact pile-ups. Unusually high contact pressures. Shock and vibration resistant. Four styles of assemblies:

1. Relays only.
2. Octal base and removable dust cover.
3. Octal base and hermetically sealed cover.
4. Header type container, hermetically sealed.

Series 61 Octal Base
(removable dust cover)

RELAYS - SIGNALS - CODE CALL (Interior) FIRE ALARM DEVICES and SYSTEMS for Controlling Electrical Equipment
Write for Bulletin 50-6 containing complete engineering data.

154 WES'1 144 h St., NEW YORK 11, N. ${ }^{\circ}$.

STANDARD SIGNAL GENERATOR

Individually Calibrated Scale

OUTPUT: Continuously variable, 1 microvolt to 2.2 volts.
OUTPUT IMPEDANCE: 5 ohms to .2 volt, rising to 15 ohms at 2.2 volts.

MODULATION: From zero to 100%. 400 cycles, 1000 cycles and provision for external modulation. Built-in, low distortion modulating amplifier.
POWER SUPPLY: 117 volts, 60 cycles, AC.
DIMENSIONS: $11^{\prime \prime}$ high, $20^{\prime \prime}$ long, $101 / 4^{\prime \prime}$ deep, overall.
WEIGHT: Approximately 50 lbs.
Catalog on request
MEASUREMENTS BOONTON

CORPORATION
NEW JERSEY

MANUFACTURERS OF Standard Signal Generators

> Pulse Generators

FM Signal Generators
Square Wave Generators
Vacuum Tube Voltmaters
UHF Radio Noise \& Field Strength Meters Capacity Bridges Megohm Meters
Phase Sequence Inditators
Television and FM Tast Equipment

A NEW OSCILLOSCOPE WITH EQUAL HIGH GAIN D.C. AMPLIFIERS ON BOTH X \& Y DEFLECTION PLATES.
\star Frequency range on both plates from 0 to $3 \mathrm{Mc} / \mathrm{s} ; 3 \mathrm{db}$ loss at 3 Mc / s; sensitivity 17 mV per inch rms.
\star Application for industrial, radio, radar, television, medical and general use.
\star Delivery ex-stock; spares available.

THE NEW D.C.

F URZEHILL 1684 D

OSCILLOSCOPE

Among recent purchasers of the Furzehill 1684D 'scope are:
University of California-National Advisory Committee for AeronauticsBritish Broadcasting Corporation - Metropolitan Vickers Ltd. - National Physical Laboratory, Teddington-Phillips Petroleum Company-Standard Telephones and Cables-St. Bartholomew's Hospital-University of New York.

Prices and all details on request from:

AMERICAN BRITISH TECHNOLOGY, INC.

 57 Park Avenue, New York 16, N. Y.Canadian Agents:
SHEPPARD LABORATORIES, LTD., 104 Sparks St., Ottawa, Canada

SPECIALTY BATTERY GOMPANY
 A SUBSIDIARY OF THE RAYO.VAC RAY-O-VAC COMPANY
 MADISON 4, WISCONSIN

tion. A reference to Rider's Manual, volume and page number for each receiver, is shown. The encyclopedia is available at a net price of $\$ 2.00$.

Revolving Antenna. Kings Electronics, 372 Classon Ave., Brooklyn 5, N. Y. A looseleaf-perforated folder gives the chief features and prices of several models of Roto Beam dipole rotating antennas for the elimination of ghosts and weak stations in television reception. Typical installations are shown.

Loud Speakers. Magnavox Co., Fort Wayne 4, Ind., has just issued a complete compilation of all pertinent engineering data with illustrations and dimensional information covering all current models of loudspeakers available to manufacturers.

Oscillograph Photography. Fairchild Camera and Instrument Corp., 88-06 Van Wyck Blvd., Jamaica 1, N. Y. The Oscillo-Record camera is designed for recording cathode-ray oscillograph images. A complete description along with specifications, accessories and catalog listings can be found in a recent 12 -page booklet.

Connecting Devices. Howard B. Jones Div., 2460 W. George St., Chicago 18, Ill. Catalog 16 lists various types of electrical connecting devices together with photographs and sketches of the products to facilitate ordering.

Resistors. Precision Resistor Co., 336 Badger Ave., Newark 8, N. J., has issued a 4 -page bulletin setting forth a variety of inductive and noninductive resistors. The latest catalog covering wirewound resistors in full detail may be had on request.

Remote Control. Eclipse-Pioneer Div., Bendix Aviation Corp., Teterboro, N. J. An 8-page bulletin $711-21$ illustrates a remote torque control system. The control comprises a transmitting synchro, amplifier, and the torque unit.

When PLASTIC
 PARTS Must Be

Precision-Fabricated

Depend on SILLCOCKS-MILLER

As pioneers in fabricating plas. tics to close tolerances since 1910, Sillcocks-Miller engineers offer complete facilities to improve products and develop new ideas.

This organization of specialists is recognized throughout the industry for skill in producing special parts or products from plastic sheet material. When specifications call for precision and uniform production, it will pay you to look to Sillcocks-Miller for quality and service at a price that's right.

Write for illustrated booklet

Complete facilitios for culting, printing. stamping, cementing, milling,turning,blanking, drilling, drawing, forming, laminating and assembling.

The SILLCOCKS-MILLER CO.
10. West Perkar Aveñue Mapiewood. New lerser

Use LINDE Synthetic Sapphire At Points of Wear

Linde synthetic sapphire offers definite advantages for small parts at points of wear. Sapphire is hard - takes and retains a high
 polish. These properties show why.

1. Hardness (Knoop) 1,525 to 2,000
2. Melting L'oint - 2,030 des. C.
3. Unicrystalline Structure
4. Chemical Resistance . All acids 5. Coefficient of Friction . . 0.140 (ring bearing againsthighcarhon steel pivot)

Write for the Linde Synthetic Sapphire Technical Data Sheet No. 3. It may suggest further uses where you have problems of small parts wear.

The Linde Air Products Company Unit of Union Carbide and Carbon Corporation 30 East 42nd Street ITS New York 17, N. Y. In Canada: Dominion Oxygen Company, Limited, Toronto

The word "Linde" is a trade-mark of The Linde Air Products Company

FOR THE FIRST TIME IN THE U. S.

GROUND Ball Bearings under 3/8" 0 . D .

New Hampshire MICRO Ball Bearings are ground, on all ten functional surfaces.

Radial

Radial-thrust Self-aligning Pivot

Chrame steel
Stainless steel
Beryllium copper
Bulletin on Request

NEW HAMPSHIRE BALL BEARINGS, INC. Peterborough., N. H., U. S. A.

crystal controlled audio friouency stamdaros

- Frequencies 1.0000 to $\mathbf{2 0 , 0 0 0}$ cycles per second.
- Sine wave outputs over 40 cycles.

Our Audio Frequency Standards possess all of the stability inherent to the quartz controlled oscillator plus special performance features exclusive to our patents and manufacturing skill developed in many years of experience. Unit illustrated is one of our many designs. Our service includes design and adaptation of special units for various applications ... custom built in small quantities or produced for large orders on a production basis. Write for information.

"NOT ON MY PAYROLL...

 BUT WORKING FOR ME!"Railway Express is part of everyone's business, always ready to go to work for you just where and when you need it, whether you use its nationwide shipping facilities daily or only occasionally.

Now available to Railway Express -and to your business-are 500 new, high-speed, passenger trainequipped cars. New motor vehicles, too, are part of the constructive Railway Express effort to offer you better service.

These and other improvements take time-and money. Add to them today's higher maintenance and operating costs and you will see the necessity for adequate rates which are helping to make Railway Express America's high standard shipping service.

RAILWAY EXPRESS

. Maintains 23,000 offices (there's one near your factory, office or home) ... Uses 10,000 passenger trains daily.. Has 18,000 motor vehicles in its pick-up and delivery services...Offers extra-fasf Air Express with direct service to 1,078 cities and towns.

NATION-WIDE RAIL-AIR SERVICE

NEWS OF THE INDUSTRY
(continued from p 139)
rights and privileges of the society.
(4) Associates:-Any person interested in the objectives of the audio engineering society shall be eligible to election to associate membership in the society and shall upon election become entitled to all the rights and privileges of the society, except the right to vote or to hold office or chairmanship of standing committees However, associates of record at the institution of the society shall have the right to vote as long as membership shall be continuous and maintained.
(5) Student Members:-A student interested in audio engineering and enrolled in a recognized school, college or university may apply for student membership in the society. Upon election, however, a student member shall not be eligible to vote or for membership on committees except in his local student chapter.
(6) Sustuininy Members:-Any person, corporation or organization annually contributing substantially to the Society shall be eligible for election to sustaining membership in the society.

Regular meetings will be held on the second Tuesday of each month except during July and August, with an annual meeting each October. The annual dues shall be as follows: honorary member, none; fellow, $\$ 7.50$; member, $\$ 7.50$; associale member, $\$ 6.00$; student, $\$ 3.00$.

IRE Plans Group System

Two types of professional groups will soon be formed within the IRE: (1) vertical-illustrated by the broadcast engineering group and (2) horizontal-as in the audio, video and acoustic group. Each group will elect a chairman, vicechairman and executive committee, to look after its own interests.

Other groups are anticipated to provide a further integration of the vastly expanded fields of communications and electronics into areas of special technical interests. An individual group can be instituted by petition from 25 or more members of the Institute. Each group may activate its own committees, special conferences, and meetings, and may expect to take charge of one or more programs at

- specified by the big names

 for the TOUGH JOBS!* MINNEAPOLIS HONEYWELL
* RADIO CORP. OF AMERICA
\star STROMBERG-CARLSON
\star WESTERN ELECTRIC \star WESTINGHOUSE
- EMERSON
* KAISER
* BENDIX
\star SPERRY, etc.

HEXACON ELECTRIC CO. CLAY ave.. ROSELLE PARK, NEW JERSEY

BUILT SPECIFICALLY for YOU!

Featuring Greater Accuracy Lower Cost

Precise, Durable Movements
Peak performance-as planned by YOUR engineers-is assured when EDM meters are used. Our meters are custom engineered to your specifications - precisely built by craftsmen and carefully
 checked before being shipped.

What about cost? Let us assure you it is very modèt. You don't have to purchase in production quantities to enjoy the savings, either!

What about service? It is fast, economical. Just send us your specifications-you'll get delivery when and where you want it.

Just tell us what you want-EDM crcíntsmen will produce it quickly and at modest cost.

May we hear from you soon?

ELECTRIC DESIGN \& MFG. CORP.

BURLINGTON, IOWA

METERS

EDM
sessions of National and Regional conventions, as well as provide for limited distribution of papers of special interest. Correspondence regarding the formation of groups should be addressed to L. G. Cumming, technical secretary of the IRE, 1 East 79th St., New York City.

Coffin Awards Bestowed

Six Members of General Electric's Electronics Department have received the Charles A. Coffin award, highest honor bestowed by the company, for outstanding work during 1946 and 1947 on transmitting and broadcasting developments. The recipients are as follows:

William F. Goetter, Ross A. Lash and Henry P. Thomas of the transmitter division at Syracuse, N. Y., for their efforts in the design and

W. F. Goetter

H. P. Thomas

R. P. Watson

R. A. Lash

R. B. Dome

K. C. DeWalt development of a new line of f-m broadcast transmitters.

Robert B. Dome of the receiver division at Syracuse, N. Y., in

PARABOLIC ANTENNAS

for

- FM and $A M$ Studio-to-Transmitter Link
- Television and Facsimile Relay Work
- Multi-channel Point-to-Point Relay
- Research and Development Laboratories

The Workshop can supply parabolic antennas in a wide range of types, sizes and focal lengths, plus a completc production and engineering service on this type of antenna.
Workshop test equipment and measurcments for the determination of antenna characteristics is outstanding in the industry. These facilities, coupled with the wartime experience of its engineers on high frequency antennas, assure exceptional performance.
PARABOLAS - Precision-formed aluminum reflectors. Can be supplied separately, if desired. moUntings - Various types of aluminum reinforced mountings can be supplied with all antennas.
R. F. COMPONENTS - Precisions machined and heavily silver plated. Critical elements protected by low-loss plastic radome.
PATTERN AND IMPEDANCE DATA - A series of claboratc measurements of both patiern and impedance are made to adjust the settings for optimum performance. Pattern and impedance data is supplied with each antenna.
POLARIZATION - Either vertical or horizontal polarization can be obtained easily by a simple adjustment at the rear of the rellector. SPECIAL ANTENNAS - Parabolas can be perforated to eliminate wind resistance or sectioned to produce a specified antenna pattern. OTHER ANTENNAS - FM and television receiving antennas. A complete line of amatcur antenna equipment.

Prices on Request

The Workshop invites your inquiry on any type of high frequency antenna problem no obligation. Write, or phone Boston, BIGelow 3330.
the WORKSHOP ASSOCIATES, Inc.
64 NEEDHAM STREET
Newton Highlands, Massachusetts

PRECISION POTENTIOMETERS

Toroidal and Sinusoidal

For use in computing and analyzing devices; generation of low frequency saw tooth and sine waves; controls for radio and radar equipment; position indicators; servomechanisms; electro medical in struments, measuring devices-telemetering; gun fire control where 360° rotation, ligh precision and low noise levels are essential.
The type RL14MS sinusoidal potentiometer is illustrated. It is wound to a total resistance of $35,400 \mathrm{ohms}$ and provides two voltages proportional to the sine and cosine of the shaft angle. It will generate a sine wave true within $\frac{-1}{43} \%$. Overall dimensions are $43 / 8^{\prime \prime}$ diameter x $411 / 32$ long plus shaft extension $1 / 4$ " diameter x 1 $1 / 4$ " long.

Write for Bulletin F-68

THE GAMEWELL COMPANY

Newton Upper Falls 64, Massachusetts

Inside Perimeters from .592" to 19" With specialized experience and automatic equipment, PARAMOUNT produces a wide range of spiral wound paper tubes to meet every need ... from $1 / 2^{\circ}$ to 30° long, from .592" to $19^{\prime \prime}$ inside perimeter, including many odd sizes of square and rectangular tubes. Used by leading manufacturers. Hi-Dielectric, Hi-Strength. Kraft, Fish Paper, Red Rope, or any combination, wound on automatic machines. Tolerances plus or minus . $002^{\prime \prime}$. Made to your specifications or engineered for YOU.

Paramount PAPER TUBE CORP.

616 LAFAYETTE ST., FORT WAYNE 2, IND.
Manufacturers of Paper Tubing for the Electrical Industry

Selenium

Copper Sulphide quirements, Benwood-Linze offers you a quarter century of development and research experience in the field of metallic rectifiers and their application.

Tell us your problems. Consult us without obligation.

Manufacturers of Selenium and Copper Sulphide rectifiers, rectifier-transformer assemblies and AC-DC power supply units for every requirement.

THE BENWOOD-LINZE CO.

Division of the Sperry Corporation
1815 Locust St.
St. Louis 3, Mo.
Long Distance Telephone CEntral 5830

OFF PRESS!

THE NEW JAMES KNIGHTS CRYSTAL CATALOG

You'll want a copy of the new James Knights catalog of "Stabilized" crystals. It contains photos and specifications of many new crystals, crystal ovens, holders, including new filter crystals with standard RMA pigtails. If your distributor cannot supply you, write for your free copy direct.

The JAWES KNIGHTS CO. SANDWICH, ILLINOIS

Socket contacts phosphor bronze, knife-switch type, cadmium plated. Plug contacts hard brass, cadmium plated. $2,4,6,8,10$, and 12 contacts Plugs and sockets polarized. Long leakage path from terminal, and terminal to ground. Caps and brackets, steel parkerized (rust-proofed). Plug and socket blocks interchangeable in caps and brackets. Terminal connections most accessible. Cap insulated with canvas bakelite.
Write for Jones BULLETIN 500 for full details on line.
HOWARD B. JODES DIVISION
2460 W. GEORGE ST.
CHICAGO 18 ILI.

RESEARCH, DEVELOPMENT AND LOW COST PRODUCTION OF

SUPERIOR TUBE COMPANY ELECTRONICS DIVISION

2500 Germantown Ave. NORRISTOWN, PA.

NEWS OF THE INDUSTRY
recognition of his invention of a new circuit system for communications equipment

Robert P. Watson and F. M. Bailey of the tube division at Schenectady, N. Y., a joint award for work in developing the phasitron.

Kenneth C. DeWalt of the tube division, for transmitter-tube production accomplishments, especially in connection with the Manhattan District

Marine VHF Service

THE FCC has announced its decision to establish a vhf radiotelephone maritime mobile service on a regular basis for the operational and business needs of ships. In this connection, class 2 experimental applications have already been granted for certain land radiotelephone stations and associated stations aboard tugboats. These are of an interim character prior to the formulation of rules for the regular service. Further interim grants will be made to eligible applicants, but will not be for use on a common carrier basis. Common carrier experimentation can continue on the one duplex channel now being used.

New Technical Society

FORMATION of a new technical organization, the Standards Enginerring Society, was recently announced. Its purpose is to remove barriers that tend to isolate various fields of engineering. Members may be any type of engineer-mechanical, industrial, electrical-so long as their work is concerned with standardization.

Stanley Zwerling of the ArmyNavy Electronics and Electrical Standards Agency, Eatontown, N. J., was elected president, and serves on the steering committee along with Harold R. Terhune of RCA Victor, George Burnett of Sperry Gyroscope Co., P. K. McElroy of General Radio Co., and Karl Geiges of the Underwriters' Laboratories, Inc.

Due to present lack of office space, membership is now limited to the several thousand doing standards work in or near New York. A bulletin, to be published after each bi-monthly meeting, will be avail-
 ing care Red Streak Acid-Free tapes and gummed flat sheets are made to con. form to the most critical specifications and are uniform throughout. Tests for free acids and alkalines are made by P H method. Available in materials and thicknesses below. Write for your Red Streak samples.
-. 005 Red Gummed Fish

- . 005 Gummed White Flexible Holland
- 005 Gummed Red Rope
- . 002 Gummed Glassine
-. .003-.004-.005-.006-.010 Kraft
-.005-.007-.010 Dark Grey Fish
The RIGHT Acid-Free tape for you

ThBrombridgQWills, 1 na

420 Market St.
Statre 2416 First St.

SINE WAVE CLIPPER

Speeds Accurate Analysis of Audio Circuits! Simplifies Selection of Components! Saves Valuable Time!

Abstract

Here's an instrument that will do most of the jobs usually assigned to a square wave generator costing about 10 times as much! The B\&W Sine Wave Clipper provides a test signal particularly useful in examining the transient and frequency response of audio circuits. Designed to be driven by an audio oscillator, the clipper provides a clipped sine wavehence the name "Sine Wave Clipper!"' Used in engineering work, repair work, or with equipment under development, it will quickly pay for itself many times over.

Write for complete information

B.ATKER \& WIILIMSOL,IMc.
 Dept. E-68-237 Fairfield Avenue
 Upper Darby, Pa.

Designed for those who demand the highest possible fidelity in radio reception, the Collins FM-AM Tuner utilizes the most advanced engineering principles and finest in component parts. Two separate and distinct tuners are used having only the audio and power supply common to both. This 17 -tube quality tuner features voltage stabilization; and a specially developed tuning eye in the F.M. circuit. A full line of accessories is available for the Collins Tuner.

Write today for full details.
COLLINS Audio Products Co., Inc.
P. 0. B0X 368 • WESTFFELD, N. J. • WE-2-4390
able to anyone interested, and the society's president anticipates formation of similar groups throughout the country.

New Microwave Chains

THE FCC HAS authorized the American Telephone and Telegraph Co. to construct two experimental microwave relay chains-one between Chicago and Milwaukee and the other linking Detroit and To-ledo-to provide common carrier service including television transmission. Equipment and services proposed are similar to those now in effect in the New York-Boston microwave chain. Construction is to be completed by June 15,1949 at an estimated cost of $\$ 1,400,000$.

Name NEC Officers

The National Electronics ConFERENCE, INC., which will hold its annual technical forum Nov. 4, 5 and 6 at the Edgewater Beach Hotel, Chicago, Ill., has named W. C. White of General Electric Co., Schenectady, N. Y., as chairman of the board of directors for 1948.

Other officers elected are:
President-E. O. Neubauer of Illinois Bell Telephone Co.
Executive vice-president-G. H. Fett of the U. of Illinois.
Secretary-R. R. Buss of Northwestern Technological Institute.
Treasurer-O. D. Westerberg of Comnonwealth Edison Co.
Vice-president in charge of arrange-ments-Karl Kramer of Jensen Mfg. Co. Vice-president in charge of programH. A. Leedy of Armour Research Foundaion.
Vice-president in charge of publicity L. G. Killian of Cook Research Laboratories.

- Ace-president in charge of publication -A. H. Wing of
M. Chairman of exhibits committee-J. A Al. Lyon of Northwestern Technologica
Institute.
Chairman of hotels committee-R. K
Metcalf of Illinois Bell Telephone Co.

Oak Ridge to Have

Graduate School

A GRADUATE engineering practice school for training in atomic energy plant work will be established in July at Oak Ridge, Tenn., by the Massachusetts Institute of Technology. The production plants of the Atomic Energy Commission at Oak Ridge will be utilized in the work. These include the gaseous diffusion and electromagnetic plants and the Oak Ridge National Laboratory.

Courses (five months each) will be open only to United States citi-

ELECTRICAL \& ELECTRONIC EQUIPMENT ELECTRONIC TUBE EQUIPMENT

36 HEAD RADIO TUBE EXHAUSTING MACHINE

We Make Co Make Equipment For The Manufacture Of IncandesOf incandesRadio and Electranic Tubes.
TRANSFORMERS OF ALL TYPES

SIZES $1 / 4$ to 250 KVA SPOT WELDERS OF ALL TYPES FOR ALL PURPOSES SIZES $1 / 4$ to 250 KVA Butt Weiders - Gun Welders Are Weiders Neon Sign Units Fluorescent Tube
Manufacturing Equipment
CHAS. EISLER
EISLER ENGINEERING CO., INC. 781 80. 13th St. (Noar Avon Ave.), Nowark 3. N. J.

SJUWhite RESISTORS

Of particular interest to all who need

"Alelleather"

 resistors with inherent low noise level and good stability in all climates

STANDARD RANGE
1000 OHMS TO 10 MEGOHMS Used extensively in commercial equipment including radio, telephone, telegraph, sound pictures, television, etc. Also in a variety of U. S. Navy equip-
ment.

HIGH VALUE RANGE

15 to 1,000,000 MEGOHMS
This unusual range of high value resistors was developed to meet the needs of scientific and industrial control, measuring and laboratory equipment-and of high voltage applications.

SEND FOR

 BULLETIN 4505
S.S.WHITE

mut s. мmm towat meac co. INDUSTRIAL

It gives details of both the Standard and High Value resistors including construction, characteristics dimensions, etc. Copy, with Price List mailed on request. DIVISION
 small cuting and grimping tools. spicial botmula suigfis
 One of America's AAAA Industrial Enterprises

\star Here's a "must" for every well-equipped lab, plant, school, service shop, ship, etc. Solves resistance problems under actual working conditions. No calculations. No guesswork. No extensive experimentation. Instead, just insert in circuit, adjust decade knobs until best results are attained, then read correct resistance value right off dials!

Covers resistance range of 1 ohm to 999,999 ohms.

Each decade dissipates up to 225 watts. Greenohms (wire-wound cement-coated power resistors) used throughout. Glassinsulated wiring.
Six decade switches. Direct-reading in ohms. Maximum current per decade: 5, 1.5, .5, . $15, .05$ and .005 amp .

Frosted-gray metal case. Etched black-and-aluminum panel. Dual binding post terminals for left and right hand duty.
Grille at bottom and louvres at side and top for adequate ventilation.
13" long; $81 / 2^{\prime \prime}$ deep; $53 / 4^{\prime \prime}$ high, 11 lbs.

CLAROSTAT MFG. CO., Inc. • 285.7 H. 6 th St., Brookiyn, N. Y.

[^12]NEWS OF THE INDUSTRY
(continued)
zens who are graduate students of the MIT engineering departments and who have been cleared by the Atomic Energy Commission. No compensation will be paid students, but academic credit will be given for work done. The major objective will be to help prepare graduate engineers for responsible posts in the atomic energy field.

BUSINESS NEWS

Supreme, Inc., Greenwood, Miss., a new corporation, has acquired the manufacturing rights, facilities and assets of the Supreme Instruments Corp., manufacturers of test equipment and meters, and will soon occupy its new air-conditioned plant.

Yankee Network's new WNAC-TV-FM transmitter is under construction in Medford, Mass. Both the television and f-m antemas will

Architect's sketch of WNAC-TV-FM Transmitter building
be mounted on the same pole atop a $467-\mathrm{ft}$ tower. Effective radiated power of the television antenna will be 32.7 kw .

Locke Incorporated is the new name for the Locke Insulator Corporation of Baltimore, Md. Having enlarged its design and development engineering staffs, the company will produce all types of ceramics and hardware for the electronic field.

Philco Corp. will design and produce fixed-station and mobile radiotelephone facilities for 21 cities throughout New England and New York, for rental by the U-Dryvit Auto Rental Co., Inc., Cambridge, Mass. along with its vehicles. At present, U-Dryvit operates a 100 -

What type of

STAINLESS FRSTENER do you need?

Prompt delivery from the largest stock in the nation!

Screws ... nuts . . . washers ... pins... Allmetal carries the largest stock in the country of stainless steel fasteners and screw machine parts. We also have facilities for heading, tapping, drilling, reaming, slotting, turning, stamping, broaching and centerless grinding . . . and we work not only with stainless and monel, but also with duralumin, aluminum, brass, bronze, or any other non-corrosive metal. All parts produced to close tolerances. Write for our catalog today. Allmetal Screw Products Co., 33 Greene St.s New York,

Send for FREE CATALOG

AL工METE SCREW PRODUCTS CO.

33 Greene Street, New Yorls 13

SPreIflists in STAINLESS FASTENERS

unit system in the Boston area under FCC limited common carrier radiotelephone authorization.

Emeloid Co., Inc., makers of plastic products such as radio dials, electronic parts and name plates,

New Emeloid plant
recently moved to a new $40,000-\mathrm{sq}$ ft plant in Hillside, N. J.

Lindberg Engineering Co. of Chicago, Ill., manufacturers of industrial heat treating and melting furnaces, has acquired the assets of the Electronics Division of Illinois Tool Works, and will continue to produce and sell h-f induction and dielectric heating equipment.

The Hays Corp., Michigan City, Ind., has added a new building to its manufacturing plant to provide for production of industrial electronic control instruments.

Standard Arcturus Corp. recently moved to a new plant in Newark, N. J., thus increasing plant capacity for tube development and

New Arcturus plant at 54 Clark St. in Newark
production and providing expansion space for its affiliates.

Rowe Engineering Corp., Chicago, III., is the newly formed organization of the Rowe Radio Research Laboratory Co. Rowe Radio will continue to operate simultaneously until completion of several govern-

From 10VA to 300
KVA Dry-Type Only,
Both Open and Encased, 1, 2, \& 3 Phase 25 to 400 Cycles.

CUSTOM-BUILT TRANSFORMERS

AND ELECTRICAL COILS

Over 25 years' experience in the manufacture of specials at cost that compares favorably with standard types. Built-in quality proved by years of actual use.

PROMPT DELIVERIES!
ELFER WINDING LABORATORIES
9 ALbERMARLE AVE., TRENTON 3, N. J.

To radio enthusiasts, the name Raytheon on tubes means quality, service and performance. In making the 1006/ck 1006 gas-filled rectifier, shown below, Raytheon specifies 2 Speer graphite anodes because of their unvarying high quality.

For all radio and electronic uses Speer Carbon Company produces graphite anodes of high thermal conductivity and emissivity. These characteristics enable them to radiate a maximum amount of heat from a given area and make it possible for tubes to handle up to three times as much input power as those with metal anodes. Cool operation of Speer graphite anodes assures longer tube life and efficiency of adjacent tube parts. Speer anodes perform excellently in stationary, mobile or portable equipment.

LOOK FOR GRAPHITE ANODES WHEN YOU‘RE LOOKING FOR BETTER TUBES

CAREON COMPANY \qquad
ST. MARYS, PENNA.
Chicago - Cleveland - detroit - milwauke - new york - pittseurgh

1161 N. VINEST., HOLLYWOOD 38 • 250 W. 57 th ST., NEW YORK 19

Lefr-Altec Lansing ti.40t Signal Generator contains 2 independent resistance. copacity sine wave oscillators. Weight: 34 lbs . Dimensions: $121 / 4 \mathrm{H} \times 19 \mathrm{~W}$ $\times 81 / 2 \mathrm{D}$.
RIGHT - Allec Lansing il402 Intermadulation Ana lyzer. Weight: 45 lbs . Di mensions: $121 / 4 \mathrm{H} \times 19 \mathrm{~W}$ $\times 91 / 2 \mathrm{D}$.

ALTEC LANSING INTERMODULATION ANALYZER A VALUABLE MULTI-PURPOSE INSTRUMENT

Letters received by Altec Lansing demonstrate impressively that the Altec Lansing TI 402 Intermodulation Analyzer used with the Altec Lansing TI 401 Signal Generator, has become an indispensable tool to:
(1) broadeasting station engi. neers, for the measurement and correction of intermodulation distortion in radio transmit. distortion in rado transmion ers, for analyzing distortion in speech imput equipment, for routine checking of speech input equipment; for building special equipment for broadcast purposes, such as echo devices, filters, line equalizers, system equalizers, sound effects, etc.: (2) recording studio engineers,
for checking cutter head per formance and playback heads, amplifiers, compression devices, equalizers, etc.
(3) film recording engineers, for ${ }^{\circ}$ optimum film recording, processing, and reproducing; and
(4) sound research laboratory engineera, for making progres sive checks in the design and development of new electronic apparatus.
The many-sided usefulness of Altec Lansing Intermodulation test equipment is evidenced by the fact that over 200 firms, in all branches of the electronic industry, have purchased this equipment. Among users are: U. S. Department of State, International Broadcasting Di-

Vision, and other government departments; WOF Recording Studios; and other major recording compantes; Rudolph Wurlitzer Company; radio stations throughout the U . S.; motion picture producing companies; leading manufacturers of radios, radio-phonographs, electrical instruments, sound reproducing equipment and reption picture theatre sound motion picture theatre sound systems; and many others.
Complete engineering duta on Altec Linsing Intermodilation Test Equipment are available, and will be sent on request. Use adiress nearest you: 250 West 5Jth St., Veu York 19, or 1161 N . Fine St., Hollywood 38 . Write to Dept. IT 3.

IF YOU WANT TO BE SURE...

 your plastic part is right for the job,You can't do better than call on

Watertown service is a Complete Custom Service from formulating molding materials to the final buffing, polishing and assembly, In addition, Watertown's modern laboratory service keeps a careful check, step by step, on the progress of each job, thus insuring the customer an absolute minimum of costly rejects. Send us a drawing or a blueprint, or call in the Watertown representative in your vicinity. Sales offices are located in Cleveland, Chicago, Detroit, Milwaukee and New York.

Watertown with its 33 years of plastic molding experience.

NEWS OF THE INDUSTRY (continued) ment contracts. The new organization specializes in consulting engineering and design and development projects covering electronics and nucleonics.

Western Electric Co, will erect a new building covering an area equal to four entire city blocks in New York City to consolidate its headquarters organization.

Eckert-Mauchly Computer Corp. has moved to new and larger quarters in the Spring Garden Building, Broad and Spring Garden Sts., Philadelphia, Pa.

Radio Corp. of America recently began construction of a new building at its Lancaster plant as part

Artist's sketch of RCA's expanded tube plant at Lancaster, Pa.
of a million-dollar expansion program to increase c-r television picture tube production.

Gray Research and Development Co. Inc., makers of recording and transcription equipment, have moved to a larger factory in Hartford, Conn., to expand manufacturing facilities.

Spellman Television Inc., manufacturers of $30-\mathrm{kv} \mathrm{h}-\mathrm{v}$ power supplies and other projection television components, have moved to larger quarters at 130 W .24 th St., New York City.

United Television Mfg. Corp., Boston, Mass., has been established to build home, restaurant and hotel television receivers.

Arnold B. Bailey Corp., Scotch Plains, N. J., has announced the Bailey f-m transmitter which uses a highly stable f-m crystal operating at frequencies up to the limit

A Valpey Specialty:
To Meet Your Needs in ALL

ULTRASONIC Applications

Special Cut Crystals from 50 KC . to 30 MC .

With or without silvered electrodes. Dimensions to your specifications. Write for liferature and prices

Holliston, Massachusetts Craftsmanship in Crystals Since 1931

160 VaLUE-PACKED Pages
Write for FRFE copy of this great, bew Concord Catalog vision and Test Equipment. Thoustnds of itums latest 1948 prices she new LOWER prices on imestghatly Radio sETA, PHONO-RADIOA, RLCOIKD

 listings of all well-known, standird, dependable limes of Tadio paris and equipment $: 212,014$ ATISFIESD CUSguarter century at CONCOKD the customer hats been the Alost important Person in the world. This established reputation for Customer sitis raction is the reason Radio Men (the bxperts Who Knows keed coming hack 10 (OONCORD for every radio and eherrome nerd At CONor your money will be chearfully refunded. Write for Catalog Now-Please address Dent. 166.

For Visual Display of Reflected Energy

The
MEGAMATCH

DISPLAYS MIS-MATCH over wide frequency range

- 10 to 250 MC and up. Complete television and FM coverage.
- Completely electronic. No slotted lines, moving parts, bridges, or other frequency sensitive devices such as directional couplers.
- Precision frequency meter.
- Saves engineering time--Visual display presents instantly data which would take hours to tabulate.
- Can be adapted for balanced lines.

Completely Electronic

This unique instrument presents a visual display of REFLECTED energy over any band up to 30 MC. By the use of the MEGAMATCH it is possible to instantly observe and measure mismatches. Thus this instrument will check transmission lines, antennas, input and output impedance of amplifiers, converters, transforfers, etc.

Price: $\$ 695$ F.O.B. FACTORY

KAY ELECTRIC CO.
25 Maple Ave.
Pine Brook, N. J.

SUPERIOR POWERSTATS

For precise Voltage Control-the "Superior" line of variable transformers stands at the top of the list. It is "Superior" in perform ance - "Superior" in mechanical construction - "Superior" in design and durability.

VARIABLE TRANSFORMERS

TYPE 20: 115V. input, 0-135 V. output @ 3.0 amps. 0.4 KVA

TYPE 116: Mounted; 115V input, 0-135 V. output @ 75 amps. 1.0 KVA
TYPE 116U: Unmounted; 115V. input, 0-135 V. output @ 7.5 amps. 1.0 KVA
TYPE 1126: 115V. input, 0-135 V. output @ 15.0 amps. 2.0 KVA
TYPE 1226: 230V. input, tapped at 115 V ., $0-270 \mathrm{~V}$. output @ 9.0 amps. 2.4 KVA
TYPE 1156: 115V. input, 0-135 V. output @ 45.0 amps. 6.1 KVA

If not rated 25% with order balance C.O.D. All prices F,O.B our warehouse New York. We ship to any part of the globe. Write Dept. EL
118.00

75 VESEY STREET COrtlandt 7-2612 N. Y. C. 7

A CDMPLLETE LINE DF MOLIDEID-IICDN CDIRES

Whatever your requirements in iron-powder parts,
 Lenkurt can supply Trancors with outstanding operating characteristics. A complete lime of low-cost standard cores and assemblies with and withont inserts. For special needs-including complete filter assemblies-a competent staff of engineers is at your隹

LENKURT ELECTRIC CO.

 SAN CARLOS, CALIF.
LENEUIT KNOWS HOW

Bardwell \& McAlister's new line of Commercial Amplifiers answers the great demand of sound engineers for commercial amplifiers embodying the principles used in "custom-built" units which have been successful in the sound equipment of the motion picture industry. These principles result in high fidelity reproduction at any setting of volume controls up to full rated output with less than 4% distortion, versatility of application, case of operation and the longer life found only in Bardwell \& McAlister Studio Quality Amplification Systems. Manufactured by Union Craftsmen and fully licensed.

Write for our sound equipment catalog and technical bulletins. Dealer inquiries invited.

ELECTRONIC DIVISION

 BARDWELL \& McALISTER, INC.

BOX 1310, HOLLYWOOD 28, CALIFORNIA
of crystals now available. This newly formed concern will specialize in development of electronic communication equipment.

Garstang-May Co., Indianapolis, Ind., representatives of radio and electrical manufacturers, was recently formed by the former president and general manager and the vice-president in charge of manufacturing, respectively, of Electronic Laboratories.

Westinghouse Electric Corp. has purchased additional manufacturing facilities at Hahntown, near Irwin, Pa. The new plant, with $125,000 \mathrm{sq} \mathrm{ft}$ of floor space, will be occupied by the mica-processing section of the transportation and generator division.

Western Society of Engineers moved to new headquarters at 84 East Randolph St., Chicago, Ill.

PERSONNEL

Melville Eastham, chief engineer of General Radio Co., Cambridge, Mass., recently received the New England Award for outstanding professional contributions to the industry, given annually by the Engineering Societies of New England, Inc. He founded General Radio in 1915, was its president until 1944. and was responsible for the development of Loran at MIT.

J. Howard Dellinger, chief of the Central Radio Propagation Laboratory of the National Bureau of Standards, recently retired after 40 years of government service. He initiated radio research at the

SIMPLIFY PHOTO CELL CONTROL

Luxtron* photo cells convert light into cle ctrical energy. No external voltage is required to operate meters and meter relays directly from Bradley photo cclls, improving control over your processes, reducing your costs. Housed model shown. Many different sizes and shapes, mounted and unmounted
*T. M. REG. U. S. PAT. OFF

Illustrated literature, available on request, shows Bradley's full line of photo cells and copper oxide and selenium rectifiers.
Write for "The Bradley Line"

BRAD LE Y

LABORATORIES, INC.
 32. Meadow St. New Haven 10, Conn.

NEWS OF THE INDUSTRY
(continued)
Bureau in 1911 and discovered the simultaneous occurrence of solar eruptions and radio fadeouts, since called the Dellinger Effect. In the advisory field he organized the Interdepartmental Radio Advisory Committee which assigns all radio frequencies used by Federal agencies.

Marcus A. Acheson was appointed chief engineer for the radio tube division of Sylvania Electric Products Inc. He has been with the company since 1934 and during the war he directed the Sylvania development of proximity fuze tubes for the Navy Bureat of Ordnance.

M. A. Acheson

A. C. De Napoli
A. C. De Napoli, previously with Western Electric Company and Films, Inc., has been named chief engineer of SoundScriber Corp., New Haven, Conn., manufacture's of electronic disc dictating equipment.

ANTHONY WRIGHT, recently appointed chief television engineer of The Magnavox Company, previously held the same position at RCA Victor.

Norman Wunderlich is now vicepresident and divisional chief of Lear Radio, Inc., Chicago, Ill.

Maxwell K. Goldstein, at one time head of NRL's radio direction finder activity, recently joined the staff of the research division of the Office of Naval Research as electronics consultant.

Kenneth V. Curtis, application engineer in Raytheon's marine department since 1945 , has been

ELECTRICAL MEASUREMENTS In Laboratory, Plant or Field

- to supplement your Rulicon filen,

NEW INSTRUMENTS NEW TECHNICAL DATA

BULLETIN 100

"Resistance Standards and Resistance Bridges"

Included are complele descriptions of Rubicon Standard Resistors (Bureau of Standards and Reichsanstalt Types), Standard Shunts, Decade Resistance Boxes, Unmounted Decade Resistors, Wheatstone Bridges (laboratory and portable), Mueller Resistance Thermometer Bridge, Kelvin Bridges (laboratory and portable), and Limit Bridges (for production testing).

BULLETIN 270

"Potentiometers"

Concise, factual information on Rubicon Type B High Precision Potentiometer, Type C Microvolt Potentiometers (single and double), Type D Microvolt Potentiometers, Portable Precision Potentiometers, Type S Sludents' Potentiome. ter. Temperature-Calibrated Potentiometers, Brooks Model 7 Deflection Potentiometer, and accessories including volt boxes, standard cells, keys and batteries.

RUBICON COMPANY

Electrical Instrument Makers
3757 Ridge Avenue Philadelphia 32, Pa.
For your convenienco, fill out and send this coupon todayl

RUBICON COMPANY

3757 Ridge Avenue - Philadelphia 32, Pa.
Pleose send Bulletin $100 \square$ Bulletin $270 \square$
Name.
Organization.
Address.

POTENTIOMETER
PERFORMANCE
THAT EXCEEDS SPECIFICATIONS

Fairchild
Precision Linear Potentiomeler
Specifications covering Fairchild Type 748 Linear Potentiometers guarantee a service life of more than $1,000,000$ cycles at 30 rpm and linearity of $.1 \%$-yet laboratory tests have revealed a service life of several million cycles at 100 rpm with the original linearity tolerance increasing to only $.15 \%$!

This amazing performance stems from Fairchild's exclusive design and precisionized skills that provide just the right contact materials, the right resistance wire-and the exact adjustment of wiper arm pressure.
For further information on the only precision potentiometers that offer a service life of over $1,000,000$ cycles with sustained accuracy address: Dept. J, 88.06 Van Wyck Boulevard, Jamaica 1, New York.

for new CONSOLE INSTALLATION

named product manager of the commercial products division at Raytheon Mfg. Co., Waltham, Mass. From 1943 to 1945 he was in the radar design section of the Bureau of Ships, USN.

Frank G. Marble has been appointed sales manager of the Kay Electric Co., of Pine Brook, N. J. He was recently in charge of instrumentation activities at Pratt and Whitney Aircraft. During the war he was associated with the Bell Telephone Laboratories in connection with radar activities.

F. G. Marble

R. K. MeClintock
R. K. McClintock was named assistant to the chief engineer at Sylvania Electric's radio tube division. He has been with the company since 1936 and was instrumental in the development of the proximity fuze.
R. E. MATHES, previously associated with RCA Laboratories, with radar countermeasures in the Bu reau of Ships, and until recently chief engineer of Finch Telecommunications, is now chief engineer at Gray Research and Development Co., Inc., Elmsford, New York.

Noel L. Keefer, for the last 12 years chief installation and service engineer on the Pacific Coast for General Electric Co., has been appointed chief engineer of KMGM, Metro-Goldwyn-Mayer's f-m station in Los Angeles.

William H. Lyon, former service engineer, has been appointed service manager at SoundScriber Corp. During the war he was an associate engineer in the Interior Communications Section of the Bureau of Ships.

BAACH-INTERNATIONAL compound HIGH VACUUM PUMP

This high vacuum pump is widely known and used extensively in the manufacture of electric lamps, radio tubes, fluorescent lamps, for laboratory work and for many industrial applications where high vocuum, plus rapid exhousting are essential requirements in processes of manufacturing.
In free air capacities ranging from 1 cubic foot to 50 cubic feet per minute.
Readings on all sizes guaranteed 0.50 microns or better.

Operates quietly. Prompt deliveries Write for detalls.

INTERNATIONAL MACHNE WORKS

Manufacturer of Baach-Intornatlonal Hot Cut Flare machine.

2027 - 46th STREET HORTH BERGEN, N. J., U.S.A. Tel. UNion 3-7412
Cable Addreas "INTERMACH" North Bersen, N. J

Caride

STEATITE GERAMIC

Properties and Characteristics of Our LAVITE S1-5 Steatite Ceramic Body

 Deassity
Hardess (mohr scale)096 lbs. per cubic inch Soltening temperature \because
 Design engineers and manufacturers in the radio, elecrical and electronic fields are finding in LAVITE the precise qualities called for in their specifications . . . high compressive and dielectric strength, low moisture absorption and resistance to rot, fumes, acids, and high heat. The exceedingly low loss-factor of LAVITE plus its excellent workability makes it ideal for all high frequency applications.

D. M. STEWARD MFG. COMPANY
 Moin Offige \& Works; Chottanooga, Tenn. Ncedham, Mass. - Chicago • Los Angeles New York - Philadeiphia

NEW BOOKS

Hearing Aids

By H. Davis, S. S. Stevens, R. H. Nichols, Jr., C. V. Hudgrns, R. J. Marquis, G. E. Peterson and D. A. Ross. Harvard University Press, Cambridge, Mass., 1947, 197 pages, $\$ 2.00$.
THis book describes work done at Harvard University during the war on the adaptation of hearing aids to individual users. The work had two original objectives: (1) the determination of frequency-response patterns in a hearing aid which would give best performance for people with various types of hearing loss and (2) the development of rapid and reliable methods for testing hard-of-hearing people.

The principal item of physical equipment used in the research was a "master hearing aid", which consisted of a laboratory-type microphone, amplifier, receiver, and controls.

The method of testing was concerned primarily with the intelligibility of speech as determined by the use of word lists. Tone quality and ease of listening were not considered in the merit rating.

The tests were conducted on a group of eighteen hard-of-hearing men and women with hearing losses ranging from moderate to severe.

The articulation tests on the word lists were conducted both to determine types of frequency patterms as related to hearing losses shown in audiograms for different individuals and also to determine desirable loudness and methods for limiting loudness.

The principal conclusion drawn on the first of these items is that practically all hard-of-hearing persons can be properly fitted with either a flat frequency response or with a response which has a simple and uniform rise with increasing frequency.

With regard to the second item it was concluded that it is desirable to limit maximum loudness for any individual and that this limiting may best be done by compression amplification, although peak clipping is also acceptable.

This report is a valuable summary of specific work done in the hearing aid field by a group of scientists. The validity of its general conclusions is impaired by the

Now ...

the "Slipstick" Wavemeter*

The Decimeter Slipstick fills a real need for the first timeit gives quick frequency readings on oscillators, receivers or transmitters.

- Enormous range, 90.3000 MC
- Rapid direct-reading scale
- 2% accuracy or better
- Sturdy construction
- High-Q polished silver finish
$\$ 16^{50}$
Remember . . .
DM-240-A Oscillator for 2400 MC receivers and transmitters

Decimeter Decals on your equipment for professional appearance
\checkmark Silver-Q flux for perfect radio soldering

* for further information write for Bulletin Il-C
small number of different persons tested and the fact that the criteria is based solely on articulation without regard to satisfactorily pleasing tone quality. The latter item is of great importance since experience shows that hard-of-hearing people will not wear a hearing aid continuously if the tone quality is annoying, no matter how good the articulation may be.

The danger of generalization on the basis of only eighteen users as well as on the somewhat questionable standard of articulation only is illustrated by data taken from the files of the Sonotone Corporation. From these records we have examined one thousand successive audiograms without selection and have compared them with the fittings on instruments which were found to give best longtime results. These data show that 48 percent of the one thousand individuals were fitted with frequency characteristics lying within the range of the Harvard recommendations; 52 percent were better fitted by frequency patterns lying outside the recommendations of the Harvard report.

The excessive emphasis given to this one generalization with regard to frequency fitting and the undue publicity given to this statement tend to discredit an otherwise worthwhile report on a valuable study of hearing aid problems.L. Grant Hector anJ Fred W. Kranz, Sonotome Corp., Elmsford, N. Y.

Palent Notes for Enginecrs

Published by RCA Review, RCA Laboratories Division, Radio Corporation of America, Princeton, N. J., 1947, 151 pages, $\$ 2.50$.
While published primarily for use within the RCA organization, the contents of this book will appeal to all engineers, scientists, and attorneys who have to deal with patent matters. Many of the questions which naturally arise in the minds of technical people will be found answered within its pages.

The original manuscript was prepared by C. D. Tusks, director of RCA's patent department, but the book also draws upon other members of the patent group.

Within the eight major chapters will be found explanations of what constitutes an invention, what can

Phototubes are doing all sorts of important industrial jols, in all types of industries . . . speeding up production . . saving time and labor. Due to our pioneering and intensive rescarch in this field, we are especially well equipped, not only to supply you with the phototubes you need, but to advise you on how to use them efficiently.

Without obligation, send for our special phototube brochure and any information you need.

The NEW Barnstead UPFLO DEMINERALIZERS far Purer Water at Lomer Cast

THE newly developed principle used in these UPFLO Models plus the use of improved synthetic resins represents a notable gain in Barnstead's 70 year record of making purer water available to industry at an ever lower cost. The raw water flows UP through the resins which results in greater efficiency and entirely new simplicity of operation. Completely -liminates the need for backwashing. Valve operations are reduced and regeneration time cut nearly in half.
These compact, efficient, cost-saving units remove all metals such as sodium, potassium, calcium, magnesium, iron, copper, etc., as well as sulfates, carbonates, bi carbonates, chlorides, etc. Constructed of Stainless Steel. Flow rates from 3 to 100 Gallons per hour. Other Barnstead demineralizers up to 1,000 gallons per hour.
Send for Bulletin 117 for full details

Pictured above is Model FR.2. FourPictured above is Model Fr.2. Four
bed Double.action Upflo Type with bed foubleaction pfio Type with

228 Lanesville Terrace Forest Hills, Boston 31, Mass.

TECHNCAL MANUALS

CUSTOM DESICNED to Your Specifications

Planned, written and illustrated by a select staff . . . experts in creating radio and electronic manuals for civilian \& military use.

When you call upon Boland \& Boyce to create your manuals you are relieved of every detail in their preparation. The entire operation is taken over and completed by a specialized staff with years of experience in publishing books \& manuals.

First the requirements for your manual are completely surveyed. The working conditions to which they will be put are studied and the operations or equipment described in the manual are thoroughly analyzed. A complete outline is then prepared and submitted for your approval, along with a dummy of the manual os it will appear when finished. Upon your approval the job is completed and delivered with your satisfaction guaranteed.

Boland \& Boyce manuals incorporate only the most modern editorial and illustrative style. Each project is treated with individual attention in technique of presentation and editorial approach. The Boland \& Boyce military and civilian manuals now in use throughout the world are our best recommendations.
U. S. Navy
U. S. Signal Carps.

Sylvania Electric Products, Inc. The National Company Western Electric Co. Bell Telephone Laboratories Maguire Industries, Inc.
Allen B. Dumont Laboratories, Inc. General Electric Co. Mine Safety Appliances Co.
Write or wire Boland \& Boyce today for more information.

[^13][^14]be patented, how to keep appropriate records of one's technical work that may lead to a patent application, the preparation of the application, its amendments, the whole question of interference, and finally, the ownership, use, and licensing of patents.

Copious examples from the patent literature point up the discussion, making the book more effective as a working tool and more interesting, even to one who may never make an invention. The entire technique of carrying matters through from the original concept to the use of an issued patent is covered.-K.H.

Radio Engineering

By Frederick Emmons Terman. McGraw-Hill Book Co., New York, 1947, Third Edition, 969 pages, $\$ 7.00$. "Electrical circuits and vacuum tubes behave according to exact laws, which in the main are simple and easily understood, and which can be used to predict the performance of radio circuits and radio apparatus with the same certainty and accuracy that the performance of other types of electrical equipment, such as transformers, motors, and transmission lines, is analyzed. It is this ability to reduce a problem to quantitative relations that predict with accuracy the performance to be expected or explain the results already obtained that represents a real mastery of the subject such as the radio engineer is expected to possess." So reads a portion of the Preface to the First Edition. That it appears some fifteen years later in a much expanded Third Edition may be a hoary tradition of the publisher's routine, but it is none the less alive and, one suspects, a reaffirmation of the author's creed.

For all his uncompromising approach to the fact that there can be no royal road, nor primrose path either, to engineering, Professor Terman has managed to keep the presentation of information in his books clear and simple, so that "Terman says ..." has become a natural preamble in classroom or laboratory. Although his scholastic attainments have brought him the title of Dean of the School of Engineering at Stanford University, he is probably better known as past

NEW LINE OF GENERAL ELECTRIC TELEVISION COMPONENTS

Featuring

FOCUS DEFLECTION ASSEMBLY

- PM-EM Focus Coil using G-E Alnico 5
- Compact Unit Assembly
- Minimum Focusing Current Required
- Simple Mounting

HORIZONTAL OUTPUT TRANSFORMER

- Molded Coils
- High Efficiency
- Avoids Corona Effect

ION TRAP

- Permanent Magnet
- Easily Adjusted
- Small and Compact in Size
- Cushioned-Secure Clip Mounting

For complete information on Television Components write: General Electric Company, Electronics Department, Electronics Park, Syracuse, N. Y.

168-G4

GENERAL (6) ELECTRIC

For manufacturers, laboratories and every user of
 CAPACITORS

TELECTRAD

can give you fast, special service on your requirements.

Check these advantages:

- Prompl delivery from big stock
- All types, makes, voltages, capacities and tolerances
- Your inquiry will receive our prompt and courteous attention
- New price list on request

Foreign inquiries invited. We continue to export to all countries.

TELECTRAD

3232 Broadway, New York 27, N. Y.
 desire for your product at the point of sale. Any size, shape or design can be created for you by our master designing department. We have 36 years of "know-how" and have created metal products and displays for the top manufacturers. Write today for descriptive folder.

PROFIT IN A COLL?

Yes . . . if it's the right coil
The right coil, free from defects, tested by capable inspectors, and properly manufactured to fit each job specification is the DANO COIL. Engineers know that Dano quality means profit in a coil.

Every job made to individual specification. TRANSFORMERS MADE TO ORDER

ELECTRIC CO. Winstedinst.

If You Are Having Difficulty Maintaining Your Mailing Lists

Probably no other organization is as well equipped as McGraw-Hill to solve the complicated problem of list maintenance during this period of unparalleled change in industrial personnel.
McGraw-Hill Mailing Lists cover most major industries. They are compiled from exclusive sources, and are based on hundreds of thousands of mail questionnames are guaranteed accurate within 2%.

When planning your direct mail advertisinq and sales promotion, consider this unique and economical service in relation to your product. Details on request
McGraw-Hill Publishing Co., Inc. DIRECT MAIL DIVISION
330 West 42nd Street
Now York, 18. New York

Gothard Rotary Converters are designed to deliver out. puts of 90% Power Factor. Standard output voltages vary 8 to 15% from no load to full load. No starting equipment is required up to 500 VA. Input voltages from 6 to 230 V DC. Output 110 to 1000 VA at 60 cycles, 90 to 800 VA at 50 cycles.

PROMPT DELIVERY IN ALL MODELS

Ask for literature on Gothard Dynamotors, Converters, Motor Generators and Generators.

POLARAD LABORATORY Equiement

for studio • laborafory • manufacturer

- Flat frequency response from 100 cps to $20 \mathrm{mc} . \pm 1.5 \mathrm{db}$.
- Uniform time delay of .02 microseconds.
- Gain of 50 db .
- Frequency compensated high impedance attenuator calibrated in 10 db steps from 0-50.
- Fine attenuator covers a 10 db range.
- Phase Linear with frequency over entire band.

This unit is designed for use as an oscilloscope deflection amplifier for the measurement and viewing of pulses of extremely short duration and rise time, and contains the Video Amplifier Unit, Power Unit and a Low Capacity Probe.

20 MC VIDEO AMPLIFIER

Input Impedance; Probe- $12 \mathrm{mmf}+$ | 470,000 ohms: Jack- $30 \mathrm{mmf}+470,000$ |
| :--- |
| ohms; Output Impedance $18 \mathrm{mmf}+$ | 470,000 ohms each site push pult; Max, input Volts 500 peak to peak with probe: Max. Output Volts 120 volts peak to peak (push pull):

Power: 115 volts $50 / 60 \mathrm{eps} A G$ Line; Size—i $91 / 4^{\prime \prime} \times 22^{\prime \prime} \times 143 / 4^{\prime \prime}$.

9 FERRY STREET NEW YORK 7, N. Y.

TELEVISION ENGINEERS and CONSULTANTS TO THE NATICNS LEADING TELEVISION STATIONS

NEW PRODUCTS (continued)
president of the Institute of Radio Engineers. No mere pedant, he served his country with distinction at the MIT Radiation Laboratory, from whence he moved his group to found the Radio Research Laboratory at Harvard.

We are dealing here with a college text that will not necessarily please everyone. It is not a handbook with a quick answer for the man who suddenly wishes to know all about a new electronic aid to navigation, nor is it a loose-leaf booklet into which one slips dope sheets on the latest equipment for the production of frequency modulation.

The text as a whole has been brought up-to-date by the inclusion at appropriate points of such information as that on klystrons, magnetrons, lighthouse and traveling wave tubes. In addition, a completely new chapter has been added that describes circuits with distributed constants and serves to orient the reader on microwave phenomena. It would be hopeless to attempt a complete catalog of contents and additions, particularly since there are already at least 105,000 readers who are familiar with the general philosophy and presentation of the original work.

Fifty-odd pages of questions from the separate chapters have been collected at the back of the volume where they are more conveniently found than in earlier editions.-A.A.мск.

Microwave Mixers

Volume 16 of the MIT Radiation Laboratory Series, By Robert V. Pound. McGraw-Hill Book Co., New York, 1948, 381 payes, $\$ 5.50$.
THE present state of the art in microwave mixer circuits and components is well covered in this volume. Although the microwave superheterodyne receiver and crystal rectifiers are themselves subjects of other volumes in the series, sufficient introductory material is presented here to permit the reader to study microwave nixers and their use without recourse to the other volumes.

Because of their wide usage, crystal mixers are the major topic of this text. Simple, multiple-function and balanced mixers are considered. The local oscillator is con-

NEXW BOOKS
(continued)
sidered not only with regard to noise generation but to frequency control as well. A chapter by Eric Durand discusses various local oscillator frequency stabilization methods, including constant frequency difference and constant absolute frequency schemes.

The completeness of the text, its use of but lack of dependence on mathematics, the large number of practical design problems considered and the detailed drawings and data presented make this text very useful. Anyone desiring to know more about this field of microwave techniques would do well to read this book.-Joseph KauFman, $N a$ tional Radio Institute, Washington, $D . C$.

Techniques in
 Experimental Electronics

By C. H. Bachman, Associate Professor of Physics, Syracuse University. John Wiley \& Sons, New York, 1948, 252 pages, $\$ 3.50$.
In this short book the author, formerly with G-E, describes the equipment and methods used in laboratory vacuum systems, especially with electronic discharge devices. Liberal comparisons and evaluations of the methods discussed make the book a useful guide; practice is stressed rather' than theory.

About the first two-thirds of the book is devoted to vacuum systems: pumps, traps, baffles, gages, valves and controlled leaks, demountable joints, glass blowing, leak detection, glass systems, and metal systems. The last third of the book discusses electronics: cathodes and sources of charged particles, control, and assembly and processing in the laboratory. Two chapters, one on controls and gadgets and one on hints and techniques, contain many suggestions based on experience that can save others the need for learning the hard way.

As a comprehensive discussion of the subject, the book is especially valuable for the specific mentions of materials and equipment that have proved suitable under various conditions. The treatment is well adapted to the needs of the beginning experimenter concerned with simple vacuum and electronic problems, such as the graduate student. It should be supplemented with

HIGH preforanance

Designed for home recording, paging system, public address and amateur work. Unusually smooth response, exceptionally high level. High quality crystal. Light in weight and natural to hold. Hangs on hook when not in use. Baked brown enamel finish. List $\$ 12.85$.

CONDENSED SPECIFICATIONS

- Response: $\pm 5 \mathrm{db}$ from $50-7000$
c.p.s.
- Level: $\quad 54 \mathrm{db}$ below 1 volt/dyne/sq.cm.
- Cable: 7 ft attached,
- Dimensions: $\frac{61 / 4^{\prime \prime} \text { long } \times 1^{\prime \prime} \text { thick } x}{21 / 8^{\prime \prime} \text { wide. }}$
- Weight: 8 oz.

Licensed under patents of the Brush Development Co.

Mictaphonee ar tuanen
For complete information write THE TURNER COMPANY 905 17th Street N. E. Cedar Rapids, lowa

THE complete family of miniature Seletron Selenium Rectifiers provide direct current for radios, television sets, amplifiers, and other low power applications.

Instant starting, small size, long life and simplicity of installation are a few of many features of the Seletron Family.

Under all service conditions they have established a record for dependability. Accepted and recommended by leading engineers and manufacturers.

CODE NUMBER	511	$5 \mathrm{M1}$	5P1	5R1	501
Current Rating	75 ma .	100 mo .	150 ma .	200 mo .	250 mo .
Plate Height	\%"		$13 / 16^{\prime \prime}$		
Plate Width	7/8"	$1^{\prime \prime}$	$13 / 16^{\prime \prime}$	$11 / 4{ }^{\prime \prime}$	11/2"

Write for booklet. Address Dept. ES-2
4 Seletronk

[^15]
TEST TV TRANSMISSION RECEPTION

New TELEQUIP

SYNC GENERATOR and MONOSCOPE

with

 Monoscope Picture Generator and Distribution PanelProduces regular pictures used with TV transmitters. Gives synchronizing, driving and blanking signals for testing, research and development work, with monoscope controls and distribution signals for use at various point's of testing.
invaluable to manufacturers of TV receivers and broadcasting units for checking faults not likely to be observed by other methods. Can
 be used at transmitting stations as auxiliary unit. Available either in combination or as separate units.
Now used exclusively by many leading manufacfurers of television equipment.

Send for this illustrated monograph completely describ
ing the new Telequip Sync Generotor and Manoscope
TELEQUIP RADIO COMPANY
1903 ᄃOUTH WASHTENAW AVENUE
CHICAGO 8, ILLINOIS

works on the theory of gases and electronics, naturally. The book is a utilitarian mànual.-F.H.R.

Crystal Rectifiers

Vol. 15 of the MIT Radiation Laboratory Series, Edited BY Heniy C. Torrey and Charles A. Whitmer. McGraw-Hill Book Company, New, York, 1948, 443 pages, $\$ 7.50$.
EARLY in the development of microwave radar it was found that the old familiar crystal rectifier, in suitably modernized form, offered considerable promise as a highsensitivity mixer crystal. With further development, improvement in sensitivity, stability and ruggedness resulted in a reliable component, superior in performance to any vacuum tube, which was universally used in microwave radar mixers. It is not surprising, therefore, that an appreciable percentage of the total research and development effort of the microwave radar program was devoted to crystal rectifiers.

The MIT Radiation Laboratory not only carried out a broad research program in all aspects of the crystal rectifier but also coordinated the simultaneous research programs of many university and industrial laboratories. The purpose of the book is "to present the fund of knowledge on crystal rectifiers that accumulated during the course of World War II".

Although the main application was that of mixer crystals, the low level video rectifier for microwave beacon systems was of considerable importance. Crystals were also widely used in laboratory measurements, particularly for wavemeter resonance indication and relative power measurements.

After a discussion of the properties of semi-conductors from the present theories of the solid state, a summary is given of the most recent theories applicable to the semi-conductor point-contact rectifier. A major portion of the book is devoted to the crystal converter and includes thorough treatment of the crystal characteristics of conversion loss, noise, r-f and i-f, impedances and burnout properties. The remainder of the book is devoted to special types including the video detector crystals. Representative manufacturing techniques are given for the various

WASHERS AND METAL STAMPINGS

TO YOUR SPECIFICATIONS
Special alloys, carbon steel, any finish. SEND FOR CATALOG

THE Duadriga manufacturina to

Inc. 1894
221A W. Grand Ave.
Chicago 10, III.

LINEAR ACCELEROMETER

The Bendix Madel TTG-1A Linear Accelerometer is one unit of a complefe line of variable-reluctance sensing instruments designed for use in the Bendix Pacific Subminiature Telemetering System.

Minimum range: 6 G Weight: 0.6 lb .
Maximum range: 100 G Dimensions: $1 / 2^{\prime \prime}$
$\begin{array}{cl}\text { Natural frequency: } & \text { diam. } \\ 40 \text { c.p.s.minimum } & \text { lang }\end{array}$
The manufacture and supply of sensing instruments and telemetering components is one phase of a complete telemetering facility available at Ben dix. Pacific. Services include installala data reduction and engineering consultation. Additional informa tion on the Linear Accelerometer or other teleme tering units is available upon request from qualified companies.

TO MEASURE . . TO INDICATE . . TO WARN . . ATA DISTANCE

USE G-E MYCALEX INSULATION

SORHIGH HEAT RESISTANGE

Plus these 5 .

- HIGH
arC resistance

- firm BOND TO METAL INSERTS
- Low Loss factor

GENERAL (3) ELECTRIC

CDMPOUNDS

Sclentifleally compounded for speclfic applicatlons from waxes, resins, asphatts. pitches, oils, and minerals. Avalable in wide range of melting points and hardnesses. Special potting compounds are heat conducting and crack resistant at extremely low temperatures. Recommendations, specifle data. and samples will be firnished on request.

	finf
IMPRECNATING	SEALING
radio coits	condensers
ratisformer coits	batteries
innition colls	switch base terminals
wire coverings	socket terminals
naper tubes and forms	light fixtures
porous coramics	POTTING
	Radio Transformers
DIPPING	Light Units
Coils	Loading Coils
Transformers	Condensers
Condensers	

3445 HOWARD STREET SKOKIE, ILLINOIS

PAMARCO DE-REELING TENSION

PAmARCO rensions are the perfect answer to lower coil winding costs!
\star IINGER-TIP TENSION CONTROL * operator makes own adiustments

* MO TOOLS OR ACCESSORIES NEEDED

$$
\begin{aligned}
& \text { shopit cut to } \\
& P_{\text {SiAFETCI }} \text { colls! }
\end{aligned}
$$

* HTS ALL COIL WINDERS

The free-sunning action of the PAMARCO tension practically eliminates defective coils. Their compact size permits more simunates defect. 'e coils. Their compact size permits more adjustments for any gauge wire with simple thumbscrew.

Write Dept. E-1 for Literature Today
PAPER MACHINERY \& RESEARCH INC. 1014 OAK STREET - ROSELLE, NEW JERSEY

The WOST PERRECT AMPLIFIER

Hecu! Model 10C3-Remote control unit with both highand low-gan inputs for all
amplifier flat within 0.2 DB from 20 to 20,000 cycles-with intermodulation and barmonic distortion reduced to negligibility.

Although its "paper performance" surpasses that of any other amplifier, the Brook must really be heard to be fully appreciated. When you hear the Brook alongside other amplifiers-any amplifiers-you are in for an experience that is both surprising and enlightening.

Write today for copy of distortion analysis and Descriptive Bulletin AF-8!

The Brook All-Triode Amplifier is built with only one objective . . . to provide the cleanest possible reproduction of fine music.

It makes use of low-mu triodes throughout - specially-designed trans-formers-and the Brook-patented Auto-matic-Bias-Control circuit which more than doubles efficiency of the output system and at the same time reduces harmonic distortion. The result is an

crystal types as well as a discussion of the various measurement techniques. This includes both laboratory methods for comprehensive measurements and detailed descriptions of standardized test equipment for production testing of crystals for the most important frequency bands.

Probably the most outstanding development in this field was the discovery during the war by Benzar, of Purdue University, of the high-inverse-voltage germanium rectifier. Although developed too late for application during the war, this rectifier has already attained considerable commercial importance in communication and electronic equipment.

Summarizing as it does the entire field of crystal rectifier development during the war, this authoritative book may be highly recommended to physicists interested in the theory of semi-conductors and point-contact rectifiers and to microwave and communication engineers interested in the properties and applications of crystal recti-fie:s.-H. Heins, Sylvania Electric Products Inc.

Books Received for Review

DICTIONARY OF GERMAN ELECTRI (AL SYMBOLS. Office of Technical Sers ces, Department of Commerce, Wrashing Approximately 1,200 symbols used to de signate components of German communi cation systems, each identified according to conventional American designation. Includes symbols for swithes, relays, tulues, radar components, etc.

MODERN COLLEGE PHYSICS. By Har vey E. White. D. Van Nostrand Co., Inc New York, N. Y., 1948 , 802 pages. $\$ 5.00$ Designed for use as standard required one-year college physics course. The en tire last पuarter of the book is devoter clear physics as whe book is intentionally clear physics. The book is intentionally divider into many chapters so instructors can piel ant choose.

MODIGRN PHYSICS. By G. E. M. Jaun cey. D. Yan Nostrand Co., Inc, New York, N. Y., 1948 , third edition, 561 pages $\$ 6.00$. Intermediate between first-yea course in college physics and advanced undergraduate physics courses. Revisions serve chiefly to cover advances made plysics since publication of the second
edition in 1937 .

UNITED STATES NAVY SYNCHROS Description and Operation. Ordnance Pamphlet No. 1303. 15 Dec. 194, avail able from superintendent of Documents Government Printing Office, 18 , $7: 130$? 25. 50 cents 166 pages. Paper-covered price 50 cents, 166 pages, Paper-covered manual intended for techmicians who called Selsyns by G-E, Teletorque bs Kollsman and Autosyn by Bendix. Cover:s fundamentals, motors and generators, a

Littelfuse Makes Headline News with "In-Line" Fuse Retainer

Littelfuse's latest development: the "inline" fuse retainer for fingertip ease in fusing. Precisely molded of high impact bakelite and designed primarily for low voltage applications: car radios, heaters, spot lights and other automotive trouble spots, where a fool-proof easy-to-handle fuse installation is desired. The strongly spring-locked retainer opens with a "push-and-twist" of the finger tips. Inside, the fuse rests against knife-edged, cup contacts that assure greatest degree of contact with lowest voltage drop. Doubled wall thickness at juncture of shoulder and lower body.

IF
LITtELFUSE
Sncorporated
 switches. circuit breareas . fuses. mountingis and accessories

Filaments, anodes, supports, springw, etc for electronic tubes. Small wire and fla metal formed parts to your prints for your assemblies. Double pointed pins. Wire straightened and cut diameter up to inch. Any length up to 12 feet.
LUXON fishing tackle accessorien.
Inquiries will receive prompt attention
RRT WIRE AND STAMPING CO.
227 High St.
Newark 2. N. 1

MODEEL 2B 0.45 Actual size illustrated

RECHARGEABLE - NON-SPILL VITAMITE 1 OZ. BATTERIES (Smaller Than 2 Pen-Lights)

IDEAL FOR USE WITH

Miniature And Sub-Miniature Filament Type Tubes for HEARING AIDS, PORTABLE EQUIPMENT, ETC.

larger models also available Write for Data and Literature

THE VITAMITE COMPANY
227 West 64th Street
New York 23, N. Y

High Sensitivity . . . Logarithmic AC VOLTMETER 50 MICROVOLTS TO 500 VOLTS
 SELF-CONTAINED
 MODEL 47 VOLTMETER

ALL AC OPERATED UNIT
An extremely sensitive amplifier type instrument that serves simultaneously as a voltmeter and high gain omplifier.

- Accuracy $\pm 2 \%$ from 15 cycles to 30 kc . $\pm 5 \%$ from 30 ke. to 100 kc .
- Input Impedance 1 megohm plus 15 uuf. shunt capacity.
Amplifier Gain 40000

Also MODEL 45 WIDE BAND VOLTMETER 0005 to 500 Volts! 5 Cycles 1600 kc .

A few of the many uses:

- Output indicator for microphones of all - Gain and frequency measurements for all types.
- Lypes. level phonograph pickups.
- Acceleration and other vibration measur-
ing pickups
- Sound level measurements.
- Densitometric measurements in photog-
raphy and film production.
- Light flux measurements in conjunction with photocells.

Instrument Electronics

42-17A Douglaston Porkway DOUGLASTON, L. I., N. Y.

special nails • rivets • screws • made to your order

HASSALL cold-heading may solve your immediate special part problem .Special nails, rivets and threaded parts made in diameters from $1 / 32^{\prime \prime}$ to $3 / 8^{\prime \prime}$ - lengths up to $7^{\prime \prime}$.. . Rivets $3 / 32^{\prime \prime}$ diameter and smaller a specialty .Variety of metals, finishes and secondary operations... Economy, quality and quick delivery in large or small quantities... Tell us what you need

We will answer promptly, ask for free catalog. 3-color Decimal Equivalents Wall Chart free on request.

150 Clay Street Brooklyn 22, N.Y.
Mannfacturers of Cold-Headed Specialties-Established 1850

NEW BOOKS
(continued)
complete Synchro system, Synchro differential, control transformer, use of capaci tors, fusing, characteristies of standard synchros, standard connections, zeroin: synchros, lubrication, troubleshooting, il1terior communication units, step by step systems, and converters.

FREQUENCY MODULATION, Volume I. Published by RCA Review, Princeton. N. J., 1948, 515 pages, $\$ 2.50$. Reprints oi papers by RCA authors covering the period 1936-1947, in four sections: General; Transmission; Reception; Miscellaneous. Additional papers are included in summary form or are listed in the bibliography at the end of the book Cloth-bound.

FLEMENTARY RADIO SERVICING. By William R. Welman. D. Van Nostrand Co., Inc., New York, N. Y., 1947, 260 pages, $\$ 3.00$. Troubleshooting and repair, for vocational school students and others who have already studied radio and mastered some of the principles of receiver construction. Forty job sheets at ends of chapters give step-by-step instructions for carrying out laboratory experments No mathematics, and minimum theory.

THE LOG LOG SLIDE RULE. Written and published by Edward C. Taylor, Woodstock, Vermont, 24 -page booklet, $\$ 1.00$. Advanced instruction pamphlet telling how to use the log log rule for solving practical problems in which exponentials, natural logarithms, decimal powers and hyperbolic functions have to be evaluated numerically.

ELECTIRIC RESISTANCE WELDING. Published by IIarold S. Card, 850 Euclid Ave., Cleveland 14, Ohio, 22 pages, $\$ 1.00$. Nearly 650 articles published in 49 magazines from 1936 to June 1947 are listed chronologically by publication. An index pro vides al subject key to the bibliography.

TABLES OF SPHEIRICAL RESSEL FUNC TIONS VOL. 11. Mathematical Tables Project, National Bureau of Standards. Co lımbia University Press, New Yiork, $19+7$ 3:8 pages, 87.50 . This volume extends the range for $\pm \nu$ from $29 / 2$ to $61 / 2$, Vol. I having covered the range from $1 / 2$ to $27 / 2$ for the Spherical Bessel Function $(\pi / 2 x)^{1 / 2} \mathrm{~J} \nu(x)$.

DISSOCIATION ENERGIES AND SPHC TRA OF DIATOMIC MOLECULES. B! A. G. Gaydon. John Wiley \& Sons, lic. New York, 1947,239 pages, $\$ 5.00$. American edition of a British book covering this aspect of molecular snectroscopy. Final chapter gives numerical data for abolt 250 diatomic molecules. Llectron abac methods are covered in chapter VII.

BRITISH RADIO COMPONENTS. Radio Component Manufacturers' Federation, '22 Surrey St., Strand, London W.C2, England, 1947, 184 pages, 21 shillings. Addresses of members, achievements of British radio ndustry, classified index of British man racturers and list of trade names.

STANDARDS ON RADIO RECEIVERSMethods of Testing Frequency-Modulaion Broadcast Receivers. The Institute of Radio Engineers. New York 21, N. Y., fin, pages, 0 cents. secver to repr't realing with a-meres desioned to on erate at carriel frequencies between $\$ 8$ and 10 s mc.

RADIO DA'IA BOOK. By W. W. Boyce and J. J. Poche Boland and Boyce, Inc., $\$ 500$. Handbook format, presenting 200 pages of basic circuits without values of pages of basic circuits without values of components, a hundred pages on test antennes, sound systems and sound recording. Tube data fills 325 pages; the remaining 263 pages cover formulas, graphs, tables, symbols, codes, 64 pages of complete circuit diagrams of radio equipment with values, an abridged dictionary of terms, and a glossary of radio books.

${ }^{8} \mathrm{ET}_{4}$ B
 hich voltage POWER SUPPLIES

PROBLEM: A compact adjustable 100 KV Power Supply was needed for the deflector amperes
Output Voltage: $0-100$ kilovolts DC, positive grounded.
Output Current: 1.2 milliamperes of 100 KV.
Circuit: Voltage quadrupler.
Size: 23" cubed
Oil Requirements: 65 gallons

Power Supplies up to 200,000 volts DC regulated or unregulated, built to specifications. Compactness, low cost and rapid delivery featured.
Submit your high voltage power supply requirements to us for a prompt bid on price and delivery.

Other BETA Products ncludo:

KILOVOLTMETERS: Up to 50 KV at 50,000 ohms per volt. 20 ua drain.

PORTABLE POWER SUPPLIES: Adjusttable from 0 to 30 KV DC. Regulated and unregulated units available.
ELECTRONIC MICROAMMETERS: 0.01 μ a full-scale to $100 \mu \mathrm{a}$ full-scale in 5 decade ranges. Cannot be damaged by overload.

ELECTRONIC RHEOSTATS: Resistance continuously variable from above 100,000 megohms to below 100,000 ohms. Good for voltages up to 15 KV .

Send for descriptive literature.
Sales Engineers throughout the country are at your service to discuss our products more thoroughly with you.

Backtalk

This department is operatcd as an open form where our readers may discuss prohlems of the electronies industry or comment upon articles which ELECTRONICS has published.

Phantastron Decimal

Dear Sirs:
In Table 2 of the article in the April issue of Electronics on phantastrons, all the values of delay in microseconds should be divided by ten; that is, 50 instead of 500,250 instead of 2500 , etc. This inadvertent misplacement of a decimal point would be somewhat embarrassing if a person built a phantastron using the values of the table and expected a delay ten times longer than they would get.

The values in the first column are for a circuit which worked. However, for circuits which have a small value of maximum delay time, the circuit is somewhat critical since the value of the grid condenser C_{0}, is beginning to approach the value which one might expect for stray capacitance in a badly laid-out circuit.

Matthew T. Lebenbaum Engineer
Airborne Instrument Laborutorlt Mineola, New Yorli

Audio Noise Reduction

Dear Sirs:
Harry F. Olson's statement (Electronics, Dec. 1947, p 120) that he separates signal and noise on the basis of amplitude is misleading.

It is true that the system he describes will discriminate against any amplitude below a certain threshhold level-but only when said amplitude is present alone (or with other sufficiently small amplitudes).

If a small noise voltage below the threshhold level and a signal voltage of such a magnitude as to make the sum of the signal voltage plus the noise voltage greater than the

Only $\$ 975$
Never before a value like this $31 / 2 \mathrm{KW}$ bombarder or high frequency induction heater for saving time and money in surface hardening, brazing, soldering, annealing and many other heat treating operations. Is

Portable . . . mounted on four rubber

 coasters. Width 141/2"; depth 27'; height $421 / 2^{\prime \prime}$; weigh: $300 \#$.Operates from 220 volt linc. Complete with foot switch and one heating coil made to customer's requirements. Send samples of work wanted. We will advise time cycle required for your particular job. Cost complete, only $\$ 975$. Immediate delivery.

Scëntific Electric Electronic Heaters are made in the following ranges of power: 1-2-3-5-71/2-10-121/2-15-18-25-40-60-80-100-250. KW.

Division of
" $£$ " CORRUGATED QUENCHED GAP CO.
105-119 Monroe St. Garfield, N. J.
 synthetic rubber jacket.

Maveficex

offer these Outstanding Advantages in microwave transmission:

- Lower attenuation loss

- Excellent impedance match
- Extreme flexibility without loss of efficiency

WAVEFLEX, the flexible waveguide made by Titeflex, Inc., affords designers all of the advantages of standard rigid waveguides plus the added feature of flexibility.

You can preserve costly transmission
energy and at the same time take advan. lage of flexible tubing construction by specifying WAVEFLEX flexible waveguides. Write for literature today.
titeflex, INC, 410 Frelinghuysen Ave., Nework 5, N. J.

Lighter, Stronger COILS

ARE MADE WITH PRECISION BOBBINS

More wire can be wound to give stronger magnetic field; or less wire of larger gauge to reduce resistance. Bobbin cores are spirally wound and heat treated under compression for greater strength with less weight. Insulation strips are unnecessary, permitting closer winding. Flanges are designed in three types for maximum winding orea. PRECISION makes DIFORMED PAPER tubes any length, any ID of OD.
WRITE FOR SAMPLES

2041 W. CHARLESTON ST., PLANT NO. 2, 79 CHAPEL ST., HARTFORD, CONN.
threshhold level are simultaneously present, no separation of signal and noise will occur.

The statement that if the threshhold level "corresponds to the maximum amplitude of the noise, the noise will not be reproduced" is accordingly incorrect, except under special conditions not usually attained.

There can be no improvement in signal to noise ratio by use of the system he describes except during intervals when the sum of the signal plus the noise is less than the threshhold level-which is of course a trivial consideration.

Henry E. Singleton
New York, N. Y.

Rebuttal

DEAR SIRS:
I am glad that Henry E. Singleton has called attention to some parts of my paper that were not clear because it provides me with an opportunity for additional explanation and clarification.

It is impossible in a discussion or in an article describing the system to present the complete theory of electronics involved and all the characteristics of speech and music which conspire to make the system effective in reducing noise. Since the elements of sound reproduction, such as, for example, time-frequency distribution of the components in speech and music, masking of noise by tones, threshold and ambient noise, integrating characteristics of the ear, are known to those interested in sound reproduction, it appeared superfluous to present these in the article. Rather I tried to present the physical action of the system.

Of the above characteristics, there is one outstanding one, namely, the transient nature of speech and music that makes it possible to reduce noise by threshold system. If the frequency range is divided into octave frequency bands, it will be found that, in general, there are relatively long intervals in which there is no signal amplitude. However, the noise is always present.

Under these conditions, in the threshold noise reducing system,

MICROMETER

FREQUENCY
METER
m

ELECTRON TUBE MACHINERY OF ALL TYPES STANDARD AND SPECIAL DESIGN

We specialize in Equipment and Methods for the manufacture of RADIO TUBES
CATHODERAY TUBES FLUORESCENT LAMPS INCANDESCENT LAMPS PEON TUBES PHOTO CELLS GLASS PRODUCTS
Production or Laboratory Basi
Kahle ENGINEERING CO.
1309 SEVENTH STREET
NORTH BERGEN, N. J., U. S. A.

ZECTRO ENGWERTIG WORTS
 Specializing in High Voltage Filam Electronic Projects Prompt Deliveries

MANUFACTURER

Microwave components and assomblies, all frequen cies: waveguide chokes, flanges; straight sections; bends; twists: test equipment: adapters. Cable con-
nectors and adapters. Cable assemblies. nectors and adapters. Cable assemblies, Coaxial
lines. To government or your specifications.

SELECTAR INDUSTRIES INC
401 East 138 th Street. New York 54, \dot{N}.

Make it a HABIT . . . to check this page-EACH ISSUE
THIS CONTACTS SECTION supplements other advortising in this issue with these additional to etwient and economical operation in the fleld on

WE manuiacture a complete line of equipment SROT WFInDERS, electrio from 34 to 50 KVA
$\underset{\text { WELDERS }}{\text { AC ABC }}$ THANSFOIMERS, sDeclal and siandard tydes
from 100 to INCANDFSCENT LAMP manufacturing equipmen
FLGORESCFNT TUBFMAKING EQ1 IPMENT
FLECTRONIC EQUIPMENT racuum pumps, etc. 400 Amps WET GLASS SLICING and cutting machines for iaboratory use GENERAL GLASS working machines and burners
COLLEGE GLASS WORKING units for st udents and laboratory 731 Sn. 13th St. EISLER ENGINEERING CO.

Nowark. New Jersey

Custom Built Equipment

Mechanical-Electrical-Electronic
Complete Units. Metal Parts Cabinets, Chassis, Boxes
BUCK ENGINEERING Co., Inc
34-37 Marcy St.
FREEHOLD.

SODERING
BRAZING \& WELDING
6751 BRYN MAWR AVE.

GARDINER
 BRAND

Federated Gardiner Brand ROSIN CORE SOLDER is scientifically alloyed from the purcst metals, resulting in a precise composition which will give strong, corrosion-free bonds in all elcetrical work. Comes in P lb and 5 lb . spools.

AMERICAN

SMELTING AND REFINING CO. WHITING, INDIANA (CHICAGO)

Professional SERVICES

Consulting - Patents - Design — Development - Measurements
in

Radio, Audio, Industrial Electronic Appliances

THE BARRY CORPORATION
 Specialists in the Control of NOISF.
 Engineering Derelopment
 Manufacturing

H. RUSSELL BROWNELL

Consultant
Sprializing in Measurements \& Testing
nsimuments \& Tecluinues - EIectrical - Fier
nsiruments \& Tecluiques - Flectrical - Flee ronic - Mannetic
188 West th St. Nev York 14, N. Y.
Chelsea 2-4208

EDGERTON, GERMESHAUSEN

 \& GRIER, Inc.Cinsulting Engineers
Research. Drelomment and wamuacture
of Elect onic and Stroboscopid. Fimiminent
55 Massachusetts Avemue, Cambridge 39. Mass.

STANLEY D. EILENBERGER

Consulting Engincer industrial, klectionics Design- Development-Models
Complete Lathoratory and Shon Facilities
Wenosha, Wis. ${ }^{6300-13-27 t h}$ Ave.

ELECTRO IMPULSE LABORATORY Consulting Physicists Radio Interference and Noise Meters: Interference suluression Nethods for Ignition systems and Electrical bevices. P.O. 130 X 250 Red Bank, New Jersey
ELECTRO-MECHANICAL RESEARCH INC. Specialized Research and Manujacture IIfin and Iow Frequency Circuit Deyelopment Flectronic Measuring and I'est Hquipment Outieal and Infra-Red Studies Magnetic Susceptibility Meter's \qquad Ridgefield, Conn.

ELECTRODYNE CO.

Electronics Mechanics Optics RESEARCH AND DEVELOPMENT Cathode ray recorders custom built to your own Sipecitications. 1rompt delivery. biological instru welltation ind industrial problems
Literalure available on request. B99 Boylston St.

Phones: Conley 7 -0055

ELECTRONIC ENGINEERING

 CO. of CALIFORNIARadio and IElectronic Consulting and Designiag.

GENERAL

INSTRUMENT \& ENGINEERING
consultation research dhyelopment IN
ELECTIRONICN, E.E., PHYSICS
100 Barr lablding Washington 6, D.C.

PAUL E. GERST \& CO.

consulideng bivginemer Snecialists ing
Electrical product Design Hachinery Apparatus \& Applications Appliances. Hi-krequencies Apparath
Ehectronics, Radio Communications
1 So. Desplaines St. Chicago 6, 111

GLOBE PRODUCTS CORPORATION

Rleotronic Division
Specializing in Test Methods and Techni!ues Development and Design of Dlectronic Test and Deasurement Fatipment-Automatic and Manua一roduction and Ealoratary topes.
P. O. Mox \#7

PAUL GODLEY CO

Consulting Radio Enginecrs great notch, n. J.

Est. 1926
rittle Falls 4-1000

HANSON-GORRILL-BRIAN INC.

Product © Mfg. Development

 electrical - hiectironic hydratulic - mechanicalOne Continental Hill
Glen Core, N. Y. Gien Cove 1922

LERU LABORATORIES, INC.
Design and Development of Electronic Equid-
ment for industrial and scientific purposes
Special experience in microwaves, spectrum analyzers, photo-electric circuits, test equipment, etc. 360 Bleecker Street
New York $14 \quad 360$ Bleecker Street Watkins $9-4194$

GEORGE J. MAKI
Radiotelegraph Consultant
Design \& Application Engineering FSK Systems
Moraga, California

MEASUREMENT ENGINEERING LIMITED

Consultants on Special Equiument for measurements and production tests, communications and audio systems.
${ }_{6}$ Duke St. Arnmior. Ont
Toronto. Ont.

Eugene Mitteİmann, E.E., Ph.D.
Consulting Engineer \& Ihysicist High Frequency Heating - Industrial Electronics Applied Physics and Mathematics
519 W. Washington Blva. Chicago 6. Ill.
State 8021

THE POINT

 CONSULTING COMPANYSpecialists In
elfctrical inginferiva and hlectronits
5448 Wilkins A venue - Pittshurgh $17, \mathrm{~Pa}$.

$$
\begin{aligned}
& \text { Avenue } \overline{\text { Pu }} \text { Phtitsh } \\
& \text { Phone }
\end{aligned}
$$

ALBERT PREISMAN
 Consulting Enginecr
 Television. pulse Technigues, Video Amplifiers, Phasing Net works. Miplifierst Phasing Nencor Industrial Apdiances
 MANAGEMENT-TRALANING ASSOCLATES 3308-14th St., N.W. Washington 10, D. C.

RADIO ENGINEERING COMPANY

Design and Development
R.F. IF, Osc. Colls Stable Oscillator Circuits Test Eluipment Instrumentation
Measurements
COMPLETE LABOIRATORY FACILITLES
8 State Street, New York 4, N.Y. Whitehall 4-5266

JOSEPH RAZEK, Ph. D.

Consulting Physicist litectric and Mechanical Engineering Problems Jinstruments and Control Derices aering Flectronics Specialists in Colorimetry. Spectrophotometry and Industrial Color Control

A. F. SMUCKLER \& CO.

Electronic Engineers
Flectronic Product Manufacturing
Contractors to United States Government
338-346 East 23 rdi St. New York 10, N. Y.

TELEREGISTER LABORATORIES

Development - Design
Studies and Investigation
Automatic Data Handling Storage Coded Pulse Technique
157 Chambers Street, New York City

Yardeny engineering co.

CONSULTATIONS AND APPLICATIONS in connection with
YARDENY REMOTE CONTROL SYSTEMS (WIRE - WIRELESS)
105 Clambers Street 2,3535
WOrth 2-3534, 3535

BACKTALK

(continued)
when there is no signal, the noise will not be reproduced. Furthermore, when the noise and signal are of small amplitude there will be a reduction in noise. This is certainly separation of noise and signal on the basis of amplitude. Obviously, when the amplitude is several times the noise level the reduction is small. However, under the latter conditions, the signal masks the noise and noise reduction is not necessary. It may be mentioned in passing, that none of the existing noise-reducing systems are capable of reducing noise under full signal operation.
The effective noise reduction, in the frequency bands in which the nonlinear elements are employed, is 10 to 15 decibels depending upon the program material. With speech, piano and other impulsive sounds, the higher value is obtained, while in the case of popular music the lower value is obtained. All those who have developed or operated and heard this type of noise-reducing system are of the opinion that the noise reduction is quite outstanding rather than trivial.

Harry F. Olson
Rudio Corporution of America RCA Laboratories Division rinceton, N.J.

Stagger Tuning

Dear Sir

I wish to disclaim responsibility for the captions accompanying the diagrams in my article "Stagger-Tuned Amplifier Design" in the May 1948 Electronics. In particular, Fig. 4 and 6 are interchanged, the numerical values in the caption of Fig. 2 are erroneous, and the word "flat" must be omitted in the phrase "flat staggered-pair" of the caption to Fig. 5.

Henry Wallman
Massachusetts Institute of Technology Cambrilye 39, Massachuselts

Anchored at sea off Ambrose Channel, N. J., the pilot ship New Jersey is equipped with a television receiver. Installation required a special antenna and a converter to change the ship's d-c to a-c. Reception is better than on land. Occasional fading is corrected by a slight change in the ship's direction ather than by antenna adjustment.

SEARCHLIGHT SECTION EMLOOMNNT : "OPPORTUNITIES" : EQUPMNT BUSNESS: OPPORTUNITIES" : Wiad of Reatele
 $\$ 1.20$ a line. Minimum 4 lines. To figure adrance payment count 5 average words as a line
 Positions Wanted (full or part time salarled employment only) advance. advance
 Box Numbers-Care of publication New York, Chicago or San Francisco offices count as 1 line. RATES
 DISPLAYED
 Discount of 10% if full payment is made in adrance
 for 4 consecutive ingertions
 individual Spaces with border rules for prominent
 The advertising rate is $\$ 9.00$ per inch for ell
 advertising appearing on other than a contract
 basis. Contract rates quated on request. An advertising inch is measured $7{ }^{\prime \prime}$ vertically on
 n advertising inch is measured $7 /{ }^{1 / 2}$ vertically on subject to limitations of space available.

Cibins (box No.): Address to office nearest you NLUV Y ORK: 830 w. $42 n d$ St. (18) HICAGO: 520 N. Michigan Ave. (11)
SAY FRANCISOO: 68 lost St (1)

POSITIONS VACANT

EJECTRONIC DISIGN Engineer-Boston lirm activity detection and measurentsent for Odioexrellent oppoltunity for high ralibre design engineer. Write full details P-4607, Elecdromics.
PRODUCTION EAGINEER-Boston firm manmacturing electrolic radioactivity instru merts has opening for qualified men expluyenced in engineering production models from prototype designs. Position also entails re sponsibility for component and production Electronics. Write full details P-4608
ELECTRICAL ENGINEER with good theoreti cal backglound for independent research and opment for industrial client comprises Deve!motors, industrial electric and electronic controls, apparatus and devices. In reply slan education. age, experience, and salary require, All replies held confidential. P-4825. Electronies.
LEVELOPMENT ENGINEER-New product development engineer for electrical mechani cal devices for middlewest manufacturer. Mini mun of 5 years experience and good recon salary desired. P-4808, Electronies letails and

POSITIONS VACANT

PROJECT ENGINEER-Tlectronic engineer with practical background in television is re
quired by small television manufacturer to ac as project engineer on television distribution systems. Metropolitan New Jersey. P-4835 Electronics.
MALE-PRODUCTION Engineer, familiar with vacuum tube production, preferably having chemical experience. $P 4870$, Electronics.

EMPLOYMENT SERVICES

SALARIED POSITIONS $\$ 3,500-\$ 35,000$. If you are considering a new connection communj cale with the undersigned. We offer the orig recognized standing and reputation) years procedure of highest ethical standards is The vidualized, to your personal requirements and develops overtures without intiative on your part, Your identity covered and present posiBixby Inc., 278 Dun Fldg., Buffalo 2, N. Y. W.

MANUFACTURER'S AGENTS WANTED

Largest West Coast manufacturer of dials, name Good volume proposition for men now calling on wide variety of industries. New luminescent lin has litile or no competition

AW-4781, Electronics
621 South Hope St., Los Angeles 14, Calif.

WANTED COMPUTER ENGINEER

Nationally known organization seeks experienced engineer to assist in construction and operation of large scale electronic digital computers. This is permanent position with operating company. To conserve your time and ours, letter should include complete summary of personal and professional data, including management and business background, religion, dependents, salary requirements and references. This is an outstanding opportunity for qualified man.

P-4784, Electronics,
520 North Michigon Ave., Chicago 11, III.

GLASS ENGINEER

A progressive New England Radio Tube Mfg. Company is in need of a glass engineer for development work. This man must have considerable industrial experience in general glass work. Must be familiar with modern practises of metal to glass seals.
\mathbf{P}-4865, Electronics
330 West 42 nd Street, New York 18, N. Y.

WEST COAST

Development Engineering

Highly interesting, essential projects in the fields of audio-video circuits; magnetic circuits; electronic, mechanical, and optical apparatus. Openings for creative electronic engineers with several years of reOpportunity with experience. opment and manufacturing oressive deve the San Frananufacturing organization in Reply in detail giving.
ence, and salary requirame exper
BERKELEY SCIENTIFIC COMPANY
Sixth and Nevin Ave., Richmond, California

Wanted

PHYSICISTS

\star RADAR ENGINEERS
\star SYSTEMS ENGINEERS
ELECTRONIC ENGINEERS

To enable us to carry out our long-term engineering program on missiles, radar, communications, etc., we must add a considerable number of qualified graduate engineers with electronic, research design and/or development experience to our staff. Please furnish complete resume of education, experience and salary expected to: Personnel Manager

BENDIX RADIO DIVISION
Bendix Aviation Corporation Baltimore 4, Maryland

ENGINEERS

PROGRESSIVE ELECTRONIC RESEARCH ANL DEVELOPMENT COMPANY

has several openings for Senior Electronic
Engineers of superior ability, with experience in design and development. Excellent opportunities for top flight men. Send complete resumes and salary requirements to:

Personnel Department

MELPAR, INC.
452 SWANN aVENUE, ALEXANDRIA, VIRGINIA

RADAR ENGINEERS

Exceptional opportunity in SOUTHERN CALIFORNIA
for engineers with creative design experience in RADAR and associated electronic and mechanical equipment. Attractive working conditions, first-rate plant facilities, salary commensurate with ability. State availability, salary expected, and complete details of experience.

Reply to
Personnel Manager Gilfillan bros., INC. 1815 Venice Blvd., Los Angeles 6, Calif.

WANTED
 AUDIO ENGINEER

Experienced in manufacture and test of radio loudspeakers, audio transformers and coils. Write details of education experience and personal history. State salary requirements.

BEST MANUFACTURING CO., INC. 1200 GROVE STREET, IRVINGTON, N.J.

ELECTRONIC MAJOR

Offering recent graduate interested in electronic digital computers, permanent well-paying position. Submit letter detailing experience, personal data, education and salary.

```
P-4i8:, Electronies
```

520 North Michigan Ave., Chicago 11. Ill.

WANTED

MATHEMATICIANS, ENGINEERS, PHYSICISTS

Men to train in oil exploration for operation of seismograph instruments. computing seismic data, and seismic surveying. Beqinning salary-open, depending upon backgrolind: excelient opportunit or allvancement deter milled on ingenuity changes of
ity. Nature of work requires several changes arldress fach year: work indoors and out; general ocations in oil producing states. To apply, write. giving scholastic and employment background; age,
nationality, marital status: and include recent snapshot to:
NATIONAL GEOPHYSICAL CO., Inc. 8800 Lemmon Ave. Dallas 9. Texas

EMPLOYMENT SERVICE

 (Continned from batge zis) FXECUTIVES $\$ 3,000-\$ 2,000$ This reliable of high grade mern who seek a change of connection under conditions assuring, if employed, full protection to present position. Send name and address only for details. Personal consultation invited. Jira Thaser sennings. DrptE , 241 Orange St., New Haven, Conn C, 241 Orange St., New Haven, Conn. Clldif TV Construction Ensineers, ぶmilter studio (AM-FN-TV) engrs.; Station Mer. Mmployment Bureau, Box 4 43 , Philadelphia, Han

POSITIONS WANTED

CORNELL GRAD. 21, Math, and Physics ma jor; electronic design and development ex perience; some sales exper.; active radio ham desires permanent connection with elecromic firm in N. Y. C. area. PW-4707, Electronics. TELEVISION ENG.-Grad. Physicist-6 years experience as research eng., familiar with all phases of the art. Also nuclear instrumentation, administrative experience. Desire position where know-how and initiative are
'ELEVISION DEVELOPMENT in Canada? Senior Engineer requires position of respon-
sibility. Fifteen years television development in important position with tevision development mxperienced Radar Project engineer. PW4751 , Electronics.
ENGINEER, GRADUATE mechanical, auto-mobile-aircraft. Age 44, vet. Knowledge
English, French, German jerience industrial, railroad, roal, years extratic tields, public relations, radio. P. O. Box 273, G. P. O. New York 1, N. Y. ELECTRONIC ENGINEER desires position in Taboratory reputable compans making industrial electronic equipment or as sales experience. PW 4883. Ten yr. development

SALES ENGINEER or EXECUTIVE ASSISTANT

Successful E.E. invites inquiries from firms having need for addition to sales engineer ing staff or administrative assistant to top executive. Background of research, design and supervision in electronics and instru mentation in automotive and aircraft in Capable of handlinged missile projects ing, production, inspection and personnel Young: aggressive; personable.

SA-4867, Electronics
330 West 42 nd Street, New York 18, N. Y.

for Sale
 Electronic Manufacturing Plant

Transformers-Amplifiers-assembly
Real bargain for quick sale.
BO-3525, Electronfes
330 West 42 nd Street. New York 18. N. Y.

RADIO CABINETS

and wood cabinets of all types built to your specifications.
"Engineered Wood Production"
THOMAS MANUFACTURING CO. NEENAH,

WISCONSIN

SAVE RESEARCH TIME BY CONSULTING

These Indispensoble References: ELECTRONIC ENGINEERING MASTER INDEX ELECTRONIC ENGINEERING PATENT INDEX Descriptive Literature on Request ELECTRONICS RESEARCH PUBL. CO.,

THE LOG LOG SLIDE RULE

 A new and complete Instruction book with decimal lations. Invaluable for those using exponentcu infequently,[^16]
MICROWAVE

Surplus test equipment and misc. components for microwave frequencies. We have waveguide sections, crystal holders, matched leads, attenuators, wavemeters, directional couplers, rotating joints, antennas, bends, twisis, flex. waveguide duplexer sections, coax. to waveguide adapters, sand loads, tube mounts, waveguide conns., coaxial conns., and other components. Also: Signal generators, receivers, scopes, pulse trans., tubes, magnetrons, complete radar systems, etc.

SEND FOR COMPLETE
illustrated catalog

MICROWAVE EQUIPMENT CO.

Offices and Showroom now located at 397 bLOOMFIELD AVENUE VERONA, NEW JERSEY Verona 8-0633

OSCILLOSCOPES SYNCROSCOPES

Complete repair service for all types of scopes LERU LABORATORIES, INC. 360 Bleecker St., N. Y. 14. WA-9-4194

FOR SALE:

Three used Du Mont Mark Orthicon Cameras, complete with full complement-including used Orthicon pick-up tubes. This equipment is ideal for use in schools for instruction purposes, and serves as the nucleus about which a complete camera chain can be constructed. The cameras are priced at $\$ 1,500.00$ each, f. o. b. New York, subject to prior sale.

Address: SCOTt helt, Chief Engineer DU MONT TELEVISION NETWORK 515 Madison Ave., New York 22, N. Y.

FOR SALE

Broadcast Transmitter

Western Electric Type D-87737 1000-watt

 broadcast transmitter modified for highfidelity fidelity. Being used darily on 1330 kc .
Available about Jun dirlol

WBBR, Staten Island 2, N. Y.

COMMUNICRTIONS RECEIVERS
 Aion, alignment, image rejection measurements factory specifications or better. Calibrawork guaranteed. Workmanship you can measure, to bighest standards. All service Authorized Hallicrafters and Nate.
 WINTERS RADIO LABORATORY
 11 Warren Street
 New York 7, N Y.
 Cortlandt 7-1361

WANTED

WESTERN ELECTRIC VACUUM TUBES

 373A, 374A, 393A, 394A, 121 A Ballast Lamps. W-4493, Electronics,
330 West 42 nd Street, New York 18, N, Y.

WANTED

Type 101B 1000/20 cycle ringers manuiactured by Federal. Type J68602 Ringer-oscillators manufactured by Western Electric.

W-4471, Electronics,
330 West 42 nd Street, New York 18, N. Y.

WANTED

TEST EQUIPMENT

Here is an opportunity to convert your idle Laboratory Equipment into eash.
Send description Send description to

W-4861, Electronics
330 West 42 nd Street, New Yoris 18. N. Y.

WANTED

All type of surplus oil filter and bathtub condensers of G. E.f. Aerovox, C-D and Solar manufacture. Give detailed spand cations, condition and quantities avalable. Will buy complete lots if price is right

W-4009, Electronics
330 West 42 nd Stieet, New York 18, N. Y

WANTED

Western Electric Carrier Telephone, Carrier Telegraph Equipment and Components. Filters, repeating coils, transformers, equalizers. Types CF1, CF2, H, C, and other carrier equipment. Telephone and telegraph repeaters.

W-4435, Electronics
330 West 42 nd Street, New York 18, N. Y.

WANTED APR 4 Coils and Receivers

TN 16, TN 17, TN 18, TN 19 and TN 54.
Microwave equipment and all electronic parts in any quantity
W-4821, Electronics
330 West 42nd Street, New York 18, N. Y.

Multiple Range Continuous Indicating

PORTABLE TACHOMETER

This unit is of the centritugal mechanical type and is hesigned to show THE SHEN1) OK THEE NAENE IN SPLED of Chat revolving shaft or surtace. No shop or other mechan re quired.

Three ranges in
ranges in F.P.M.
Low Range.
Lov Kange
1.200 (Each hivision equals 10 R P. P .) Mertium Range $1,000-$ equals 20 R.J.M.) High Range $3.000-$ 12.000 (Each division equals 100
R.P.M.) R.1'M.)

Large open dial $4^{\prime \prime}$ dianeter.
Ruggedly constructed for heavy duty serv ice.
1-reripheral kubler wheel 1 ft . in
pircumfernce
Ball wearing and oilless bearings
quire no lubricationl whatsoever.

Gear shit for selecting low, medium and high ranges.
Greatest accuracy-neets, Nasy speci-
tications 18-T-22. Type 13 , Class A Complete with the following accessor jes: J—Steel tip. - Conical linbler tip metal mounted

1-Nubber lincid metal cone tip

1-Extension Rod

- Small size convex rubber tip, metal monnted
- Onerating inatruction

Made by Jones Motrola, Stamford, Con necticut. Comes complete in thlue velvet lined carymgrase; ispolus-New-Guaranteed.

Your Cost $\$ 24.50$ fob N. Y.

HIGH ALTITUDE ALTIMETER

 Radio Set SCR-518This item consist of a complete set of apparatus for installation on aireraft for use in determining the height above the tervain. The nominal range of the equipment is from 0 to 20,0100 feet, lut is in operative to an altitude of ammoximately $30: 000$ feet. The complete set of main components when pruipurd with tules and fuses, with calle inter enmpordions, will antenna arrays, and primary connections. conmetions, properly maule, constitutes a complete and operatice cumimuent. All necessary a complete and and voltages. other hime the source of powe erated within the equipment. The sore is an aireraft d-c sumply 2810.6 volts. Th total porver consumed is anproximately 30 Operates at approximately 515 Megacycle.
The set cousists of 8 major separate componen items. Receiver, Transmitter, Power unit. In dicator, Control Box \& Junction box.
This ellimment comes complete with antemiae, comecting cords. frackets, connertors and 29 tubes as supplied by the manufacturer. Brand New-in orimal cans yade by RCA-gort cost abpori-
 matrenions is ClmeUlt diagrams
Cut he used as is, for use as an allimeter, or for adapration to ratar fo marine use, protective or police systems. television etc.
The many valualle parts in this set alone are vell woith many times this low price of Only $\$ 24.50$ Shipping weight approxinately 150 lbs fo. fo.
(For detailed particulars of individual components (For cetaikertisement in the May 1948 issue of sec our andertion

Manufacturers and Exporters:
Carr yon use these items"
We have quantities of thase umits anal
ofter: then to you al at active prices.

PRECISION RESISTORS

1\% tecuracy, wire Wound --Non Inductive
$1.0 \mathrm{Meg} 1.0 \mathrm{~K} . \mathrm{V}$.
$1.0 \mathrm{Meg} 1.0 \mathrm{~K} . \mathrm{Y}$
1.5 Meg 1.5 K .3
1.5 Meg 1.5 K. H
$3.5 \mathrm{Meg} 1.5 \mathrm{~K} . \mathrm{y}$
$2.5 \mathrm{Meg} 2.5 \mathrm{~K} . \mathrm{V}$
2.5 Meg $2.5 \mathrm{IX} . \mathrm{V}$.
$3.5 \mathrm{Meg} 3.5 \mathrm{~K} \mathrm{~V} . \mathrm{V}$
$4.0 \mathrm{Meg} 9.0 \mathrm{~K} . \mathrm{V}$
$20.0 \mathrm{Merg} 20.0 \mathrm{~K} . \mathrm{V}$
20.0 Meg 20.0 K. V.

TERMINAL BOARDS

Terminal Connections $314^{\prime \prime} \mathbf{I}_{4} \times 2^{\prime \prime}$ W $\times 1 / 2^{\prime \prime} \mathrm{JI}$ with cover, G.E.
Terminal Connections $47 / a^{\prime \prime} \mathrm{J}$, $\times 2^{\prime \prime}$ W $\times 13 / \mathrm{m}^{\prime \prime}$] cover. G.F
Terminal Connections $51 / 2^{\prime \prime} \mathrm{L}_{1} \times 2^{\prime \prime}$ W $\times 1^{1 / 2^{\prime \prime}} \mathrm{H}$

THERMAL CIRCUIT BREAKER

D. C. MILLIAMMETERS

MINIATURE MILLIAMMETER

500

 MI myt, Black weale caliblated - 1 to +1.25 Mid G.E. DW-51 j00 MV myt, se cal 0.50. Ma 50 MA woston $50621 /$ "as $^{\prime \prime}$ "11

RADIO FREQUENCY AMMETERS

A. C. AMMETERS
 D. C. AMMETERS

 $2000^{\text {A }}$ We "若" "d f1 bale case

D. C. MICROAMMETERS

150 Microampere McClintock No. 2001 approx 740 oluns resistance black scale $21 / 2^{\prime \prime}$ rd fl hake $\$ 3.50$ D.C MICROAMMETER O-ZOO UA MOVenent EOU ohms resistance x, x Recranglar case knife edge,oue olinus. Caption Insulation Trest Sas. MICROAMPERE UNOAMPED MOVEMENT W.H. JIX-35 scale calibrater $0-25$ watts a sut fi lake case
Supplied with paper voma scale.

A. C. VOLTMETERS

D. C. VOLTMETERS
 15 bale case, Giv505 21 " ind il bake case

SPECIAL METERS

Simpson, 25 SIGNAL STREXGTI " S" METER 3/2" ruld bale case. Use this on the mate cricur of wur revereer to show the relative strength of
meoning signals. Sc. callibrated-6 to 100 Dl
 above 1 mucrovolt. 5 . MA
transilucent se. for internal se. sillumination from reat of meter. ConD. with socket. lamp and leads, For further details refer 10 Ratio Ama.
tenurs Handolk ECIBEL METER DECIBEL METER -Westinglouse RC 35 - 10 to

unless accompanied by 250 Deposif. Orders accepted from rated concems, pub Al institutions, ctc., on open account. We carry a complete line of surplus new meters suitable for every requirement, such surplus companel, switchboard, recording instruments, laboratory standards, efc. for manufacturcrs, exporters, etc. Send for free circular Manufacturponents, tubes, parts, and accessories and can supply

MARITIME SWITCHBOARD

338 Canal Street

(id SEARCHLIGHT SECTION ID

'VIBROTEST'
RESISTANCE AND VOLTAGE TESTER
 test potential) 0-2000 Ohms
Voltage Range $\begin{aligned} & 150-300-600 \\ & 150-300-600 \\ & \text { Volts } \\ & \\ & \end{aligned}$
 cells. Lairge 4 " mater and knipe pilde poiner inlest learls de instructions in metal carrying case. Asmoiated Hesearch lue Model \# 204. Net Price $\$ 60.00$ f.o.b. N. Y.

WESTON MODEL 311
PORTABLE
POTENTIAL TRANSFORMER
To be used to extend the range of any presision
Maximum potential ratio of 1500 and 750 voles to
150 Taxilum
1 Vormal potential ratio of 1150 and 575 volts to
Frequency rating from $25-125$ cycles. Maximum

 cover. loek and rarrying strapl. List Price $\$ 247.50$
Net Price $\$ 90.00$ F. O.B

WESTON MODEL 461-4 PORTABLE
CURRENT TRANSFORMER
This unit can he used with any precision 5
Ambrres A.C. Meter to extend the ranges of the meter to 50 . 100 . 200 te 250 , 500 the ranges of the A.c Aecuracy within $1 / 4$ of 1%, Normal Secondpern timy Inserter primary for most 200 . 250 . 5010 and hollo Anvperes; Dinsuluted for hise nin) to 2500 List Price $\$ 98.00$ Net Price $\$ 35.00$ f.o.b. N. Y.

PANEL METER
COMBINATION OFFER
 30 Ampere A.C. Meter. Triplett 391-11 31/2" I.d. nl. bakelite casse.

MULTI-RANGE PORTABLE A.C. VOLTMETER

Weston Model 433, $150 /: 30 \mathrm{~m} / \mathrm{GH}$ rolts

Hhage Polarity Phase Rotation Tester, Tiplet 337 AVP, Checks 115, 220 and 140 line voltage ing, etc., Indicates whether A.C. or D.C. and bolarity of D.C. : Checks phase rolation to deter-

mille direction of rotation of motors operam of controls, etc.; Consists of a $3^{\prime \prime}$ siflare meter and a smatl polarized vane morement jn a small | handy: sized case. Complete witli $36^{\prime \prime}$ leads with1 |
| :--- |
| test provls. @ |

Portable (Chronometric) TACHOMETER

- Can lie used for speeds up to 20,000 R.P.M.

Can be used for lineal speed measulements to 10,000 F.P.M.
Irleally suited for testing the speeds of motors, particularly of rractional horse power, generators, turbines, centricugals, fans, etc
 Unequalled Readability 2" Open face clialeach division on large dial equals 10 R. C. 11 : - Greatest Accuracy-meets Navy specifications -Guaranteed to be within $1 / 2$ of - Results of test reacling remain

- rusi button for automatic resetting
- Complete with the following accessories

1 -large pointed rubber tip
二Larye hoblow rubler tip

- O Operating restructions

1-Temperature Correction chart
The combination of the above features will give ing. the R.P.M. of sliafts or the lineal speeds surfaces without any accessories or liming of any kind. Each unit comes complete in a red elvet lined carrying case $5^{\prime \prime} x^{31 / 2 " x}$. $1 / 2^{\prime \prime}$ (ease

Your Cost $\$ 24.50$ fob, N. Y.

CODE TRAINING SET AN/GSC-TI

Made by T. R. McElroy. Bnston C. atio Volt, $1: 0$ rexcle. An excellent unit for schools or chats for mate training. This unit is designen for whe of telegraph code to stulents where eath
 through a blinker or an andible signal hnougin a montoring speaker. Jhas volume control, raria-
ble frequencs oscinatol, a phone jacki for a

monituring heatset, bitelt and tonte control rotary switch for selscring the operating voltase Complete with spare fuses, power cord and hatiory adapter: 10 telsgraph keys with lut line vach

WESTON MODEL 528
PORTABLE A. C. VOLTMETER
DUAL RANGE 0.15 ard 0. 150 Volts for use on any requence from 25 to 1 dis cycles. Complete with leats. This voltmetel, with the that ching nootet Ammeter ahowe mahes an ideal patr of text meters
for any mechanic to carry around in his tool box.

ONLY $\$ 9.50$

COMBINATION OFFER: 5% Volt metew- 528 ABmerm-BOTH FOR $\$ 21.00$

All items are Surplus-New-Guaranteed. C.O.D.'s not sent unless accompanied by 25% Deposit. Orders accepted from rated concerns, pub lic institutions, etc., on open occount. We carry a complete line of surplus new meters suitable for every requirement such as portable panel, switchboard, recording instruments, laboratory standards, etc. Over 50000 Meters in Stock. We also stock various surplus com ponents, tubes, parts, and aceessories and can supply large quantities for manufacturers, exporters, etc. Send for frce circular Manufacturers, Exporters, Dealers-We invite inquries.

MARITIME SWITCHBOARD

338 Canal Street
Worth 4-8216-7-8-9
New York 13, New York
TELL US-TELL OTHERS—SAY YOU SAW IT IN ELECTRONICS!

(ID SEARCHLIGHT SECTIOII TD

GENERAL ELEC. SOLENOID

No. R-4242 115 V. 60 Cyc. Type CR 9503 . 209F Complete with Armature $\$ 1.25$ eacl

SPECIALS

$-\quad \mathrm{OF}$ THE MONTH

GENERAL ELEC. SOLENOID

No. 1R-4243 120 V. 60 Cyc. Type CR 9503-208L Complefe with Armature $\$ 1.0 \mathrm{mench}$

PBC GENERAL ELECTRIC OVERCURRENT RELAY

No. R-4010 No. R-4
Adijus lable from 1.5 to 3.0 $\begin{array}{cc}\text { amperes. } \\ \text { volt. } & 60 \\ \text { cyc. }\end{array}$ Reset. $\$ \mathbf{\$ 4 . 9 5}$
 stock up on spares at this price-and you fellows who plan to build a kilowatt rig in the near future-here is a golden opportunity to still get in on this "all time new low price."
This is a single tube easy to drive for full kw power with 3000 r . plate, actually 4-75 T's in one envelope.
"Filaments checked before shipment"

This unit rovers 540 Ke . to 9050 Kc . C. W. or fone. tlesigned for Dynamotor Operation. Power supply Sedarate Ant. Tuning units covering the
following freanencies.
$540-1500 \mathrm{Kc}$.
$1500-3000 \mathrm{Kc}$.
$3000-9050 \mathrm{Kc}$.
Tube line.up as follows: RF Osc. 6LG-RF Amo. 814-Alldio-6SL7 Pre AnIp. into. 6 L 6 driver and side tone amolifier with pair of $6 L 6$ niodulators,
screen nsfillator tilhe, regnlated with $\vee R \quad 150$ tube Als circuits are metered. $101 / 2^{\prime \prime}$ high, $121 / 4^{\prime \prime}$ deep, $211 / 2^{\prime \prime}$ long. Shipping FOR QUICK SALE-COMPLETE.... $\$ 49.50$

SUPPLY

FOR QUICK SALE-COMPLETE.... ${ }^{\text {HI-VOLTAGE POWER }}$

TRANSMITTER BUY OF 1948 MODEL ATD AIRCRAFT

TRANSMITTER

Hi \& Low Voltage Rectiffer Power Supgly Model C F T-20169 formerly used with the DAQ Direc-
 sween aniplifier, voltage regulated from 110 v . 60 cy AC. source.
Power Supply can be usell to power a television
receiver or nerfect nower supply for an Oscilloseope receiver or nerfect nower supply for an oscilloseone,
or General Lab. use. U it is mounted in a cabi. or Get with all controls including pilot lights \& switches on front panel. Wi. adprox. $\mathbf{\$ 2 9 . 9 5}$ LIMITED QUALITY
spectill ${ }^{5} 1.98$

MASTER OSCILLATOR MI-19427-B

This unit was huilt for R.C.A. Add a flal-beromes a ramplete transmitter with signal shifter. Perfect for Television sweep circlilits for fleld or station use or wherever 300 v . COMPLETE (less tubes)
$\$ 225.00$

TECHNICAL SUMMARY

ELECTRICAL CHARACTERISTICS 2 to 20 megacycles
Output Frequency
Output Lever, Buffer-Anplifier...... Sufficient to trive an RCA-807 Modulation Frequency650 cycles an RCA-807 Frequency Deviation (naximuni) ± 500 cycles
 Power Supply 230 volts, $50 / 60$ cycles Oscillator Filament current Filament Voltaye........... ampere d-c Amplifier and Tone Generator Filament Voltage UBE COMPLEMEN Buffer-Amplifier Tone Generator (
 Dimensions., Height, 66910 in.: Width, 22 in.: Denth, $171 / 8 \mathrm{in}$.
Frequency Chang YPICAL PERFORMANCE DATA \quad Frequency Change Line voltage change \pm in per rent...................0005 ner cent Relative humiditu change of 1 per cent over the range of
30 to 95 at a dry linls tempriature of 110 degrecs $F_{0.0003}$ uer cent Drift from cold start, first reationg taken within 10.0003 ner eminute after Drift from cold s Frequency deviation at the end of the first hour

FILAMENT TRANSFORMER - Hermetically sealed 115 v . 60 cyc. primary-sec. \#1-6.3
(@) 3 amp . ser. $\# 22.5$ volts @ @ 3 amp. Ser. \#2
2 anips. Western Electric
D ${ }_{\text {spoc. }}^{2}$ anids. Wetistern Electric ligh voltage inverse peaks-
designelt to liuht scone tube designed to light scope tube
and 2×2 tube Stock $=T 4106-$ and 2×2 tube Stock $=T 4106-$
$51 / 4^{\prime \prime}$ high $\times 23 / 4^{\prime \prime} \times 41 / 3^{\prime \prime} \$ 3.95$

No. R-4013 Double Pole Double Throw 115 Volts 60 cyc. Coil 5 amp. contacts. $\$ 2.65$

MAGNETIC DEFLECTION YOKES for Television or large scope applicationsfor use in RCA TRK- 120 and similar television receivers
Catalog \# Deflection Horizontal vertical Overali

 DY-4L $40^{\circ} \quad 1.5 \mathrm{mh}$. 75

FIXED FERRUL TYPE CONDENSER

No. C-2614 Size $51 / 4^{\prime \prime}$ long $x x^{3 / 4}$ in Diameter 800 MaF (0) 8 K. $\mathrm{F} . \dot{\mathrm{D}} . \mathrm{C}$. $\$ 1.49$ erch

SCOPE or TELEVISION TRANSFORMER Western 2500 Volts @ 4 MA. Hermetically seated with ceramic terminals out bottom. prims, 115 v . 10 cycs . Stock $\# \mathrm{~T} 4105$
$-51 / 4^{\prime \prime} \mathrm{high} \times 35 \times 41 / 2^{\prime \prime} \$ 6.95$

Now is OPPORTUNITY TO BUY TUBES

AT "UNHEARD OF" LOW PRICES LARGEST STOCK IN THE COUNTRY

ALL BRAND NEW -- STANDARD BRANDS Minimum order 55.00 QUANTITY PRICES ON REQUEST

IF YOU DON'T SEE WHAT YOU WANT LET US KNOW YOUR REQUIREMENTS
(All Tube Types in Stock Now - Subject to Prior Sale)

Trpe	Price	Type	Price	Type	Price								
Of4 ${ }^{\text {Of }}$	1.06 .50	2)36	1.10	${ }_{6}^{6+5}$	60	787	$\begin{array}{r} .72 \end{array}$	14 R 7	$.88$	84/6Z4		872 A .	Price
OY4	. 88	3 3 4	. 72	${ }_{6}{ }_{6} \mathrm{~F}_{6} 6$. 72	7E5 ${ }^{\mathbf{7}} \mathbf{1 2 0 1}$	1.06 .72	14147	1.06		.72	874.	1.95
01-A	50	3.18 GT	1.92	${ }^{6} 57$	1.06	7 C 7	88	14×7	1.06	89 V	1.72	8876	4.95
OZ4	88	3AP1	2.95	$6 \mathrm{F8G}$	1.06	7EP4	17.95	$15 \mathrm{AP4}$	110.00	99 X	1.56	884 902	4.98 4.95
1 A3	72	3 B 7	1.06	${ }^{6} 66 \mathrm{G}$. 88	7 F 7	. 88	15E	1.50	100 TH	12.95	920	
1 A 4	1.28	3 B 22	4.95	6H6	60	7 FS	1.06		1.06	114A.	12.69 .69	950	2.95
1A4P	1.28	3 B 23	4.95	6H6GT	60	7 G 7	1.06	20	1.56	117LフG'T	1.28	954	1.06
1.45 G	1.28	31824	1.95	$6 J 4$	3.95	7GP4	19.40	20 AP 4	270.00	11717GT	1.28	955	. 49
${ }_{1 \times 6}{ }^{\text {A5G }}$	1.88 1.06	3825	.98 2.95	6.55	54	${ }_{7}{ }^{7} 7$. 1.88	22	1.28	117N7GT.	1.28	956	. 75
${ }_{1}^{1 A 6}{ }^{\text {A }}$	1.06	$3 \mathrm{3P1}$	2.95 1.28	${ }_{6}^{6 J 5 G T}$.54 1.06	7 7 7.	1.06	23114	. 49	117P7GT.	1.28	957	. 49
1AB5	1.06	3 C 24	1.69	$6 \mathrm{6J} 7$	1.72	71.7	1.06	2314.	.98	11723	. 72	958 9 ${ }^{959}$. 69
184	1.28	3116	89	6.17 GT	72	7N7	. 88	24G	69	120A.	12.95	991	. 59
${ }_{187}^{185} 25 S$	1.06	3 E 29	2.95	6.18 G	1.06	707	72	2546	1.06	121 A	2.65	1613	. 95
1 B 25 A	4.72 4.95	$3 \mathrm{LF4}$	1.06	6K5GT	88	7 R 7	88	25A7CT	88	20513	4.50	1614	1.75
1827	4.95	305 GT	. 88	$6 \mathrm{6K7}$ 6T	.64	${ }_{7}^{7} \mathbf{7} 7$	1.06	$25 \mathrm{C6G}$	1.06	211	. 98	1616	1.39
11338	4.95	354	72	6 K 8	. 88	7 W 7	1.06	${ }_{25 Y 5}$	1.28	${ }_{217} 15$	3.00	1619	.29
$1 \mathrm{C5G}$. 88	4-65 A	14.50	61.56	. $8 \times$	7×7	1.06	2525	. 54	250 R	7.95	1624	
$1 \mathrm{C6}$	1.06	4-125A	27.50	6 L 6	1.29	$7 \mathrm{Y4}$.72	2526	72	250111	19.50	1625	49
$1 \mathrm{1O7G}$ GT	1.06	4-250A	37.50	6L6G	1.06	724	. 72	26	59	252A	4.95	1626	49
1107 G	1.06	${ }_{5 B P 4}$	1.49 4.95	$6 \mathrm{6N7}^{7}$. 88	10 BP 4	34.95	27	54	259 A	4.95	1627	7.95
108GT	1.28	5 CP 1	3.95	$6 \mathrm{~N}^{6} \mathrm{GT}$	-88	$10 \mathrm{HP4}$	42.5	${ }_{30} 81$	75	304 TL	1.98	1629	59
1 IEFGP	1.56	5FP7	3.95	6P5GT	. 88	10 Y	. 69	31	88	310	4.25	1851	. 95
	1.28	5.1 P 1	9.95	605 G	. 98	12A6	89	32	1.06	316A	. 89	2050	1.25
$1{ }^{1} 54$. 88	5 F 4 GY	1.29	606G,6T7C.	1.06	12.17	1.06	32L7GT	1.28	350 B	4.95	2051	49
1 F 6.	1.28	5 TP 4	20.00	6 R 7	. 82	${ }_{12 A H 7 G T}$	72	33	1.0\%,	394A	4.50	5514.	3.95
$1 \mathrm{G4GT}$. 88	$5 \mathrm{S4G}$	2.54	6 S 7	88	12AT6...	59	35 51	1.06	${ }^{4174}$ A	19.95	5516	5.95
1 H 4 GT	88	5 V 4 G	. 88	$658 G 1$. 88	$12 \times 1 \mathrm{U}$	72	3545	. 72	531	44.50	7193	10.00
1 H 4 G	.72	5 W 4	.88	6SA7GT	. 59	12AU7	88	3516 GT	. 59	701 A	4.95	8005	- 4.39
$1 \mathrm{H6G}$	1.60	5X4GT	-60	6SC7	72	$1213 A^{6}$	72	35 W 4	46	703A	7.50	8011	2.95
1.16 G	1.06	5 Y 4 G .	. 50	6SF5	. 72	$12 \mathrm{BE6}$	72	35 Y 4	. 88	705A	2.95	8012.	4.95
11.4	. 72	$5 \mathrm{Z3}$. 60	6 SF 7	. 72	1219 P7	14.95	3574 GT	. 50	709 A	24.95	8016	1.95
1LA4	1.06	524	. 88	${ }_{6} \mathbf{6 S G} 7$	72	12F5GT	14.59	$35 \mathrm{Z5GT}$.46	713A	1.95	8025	
$1 \mathrm{LA6}$	1.06	6.43	1.06	${ }_{6} \mathbf{6 S H 7}$	72	$12 \mathrm{H6}$.59	36.	. 8	71513	19.95	9001	$\begin{array}{r}3.95 \\ \hline .89\end{array}$
$11 . \mathrm{C5}$	1.06 1.06	${ }_{6}{ }^{\text {AF6 }}$	1.56	${ }^{6 S J 7}$. 54	12.5 GT	. 54	37	. 59	717 A	1.65	9002	.69
$1 \mathrm{LC6}$	1.04	$6{ }^{6} 7$	72	${ }^{6 S L T G T}$. 88	12.19	60.72	38	. 72	721 A	3.95	9003	. 49
1 LE3	1.06	6 68	72	6SN7GT	. 88	12 K 7 GT	60.09	41	. 59	725 AB		9004	49
ILD5	1.06	6A135/6N5	88	$6 \mathrm{SO7}$. 54	12 K 8	88	42	. 59	750 Ti	49.50	9006	48
1 LN5	1.06	${ }^{6 A 137}$	1.06	6SR7	. 59	1207GT	. 59	43	. 59	800	2.25	CEO72	1.95
1 N 5 G	1.06	${ }_{6 A C 5 G T}$	8x	${ }_{6} 6 \mathbf{S S 7}$. 72	12547	. 59	45	. 59	801 A	1.10	CK1005	1.39
1 P 22	11.50	6.157 G	1.06	${ }_{6 T 7}{ }^{657}$. 1.8	$12 \mathrm{SC7}$. 72	4575 GT	. 59	802	2.95	CK1006	. 69
1 P5GT	. 88	GAF6G	. 88	615	1.72	12 SF 7	72	46	888	803	8.95	EF50	. 79
105 GT	88	6 6F8	88	6U6GT	.72	12 SG 7	.72	49	88	807	1.25	FM-1000	1.95
$1{ }^{1} 4$	1.06	6.1G5	1.06	6U7	. 59	12SH7	. 72	50	1.56	808	2.95	GL434.	4.95
1TSGT	. 88	${ }_{6} 6.15$	1.06 .99	W6GGT	1.06	${ }^{12 S .17}$	72	5045	. 88	809	1.95	GL,446A	2.60
144	. 72	6AK5	".99	6V7G.	. 72	12 SL 7 CT	88	5085.	. 72	810	7.95	HF100	3.95
1 1-V	. 8	GAK6	. 88	6W7G	. 88	12SN7GT	88	50×6	59	811	1.95	HY69	2.95
1.	. 72	6.415.	. 72	6×4	. 54	12 SO	59	50 Y 6 GT	. 59	${ }_{812} 12$	2.95	HY75	1.25
2.15	1.06 .72	${ }_{6 A 1,7 G T}$	1.06	6x5.	. 54	12 SR 7	. 72	53	. 88	813.	5.95	HYE1148	1.25
246	. 88	${ }_{6}{ }_{6} 106$. 72	${ }_{6}^{6 Y 6 G}$. 88	12×3	98	55	72	814	5.95	RK12	1.95
2 A 7	88	6 ± 16	.70	$67 Y 5 \mathrm{G}$	1.72	14 A 4	88	56	. 59	815	2.50	RK22	4.95
2AP1	2.95	6 AU6	72	7A4	72	14 A 4	1. 06	57	72	826	1.25	RK60	. 79
$2 \mathrm{H7}$. 88	6134 G	1.06	745	72	$14{ }^{1} 7$		58		8839 B	4.95	RKR72	3.50
2 C 22	. 69	6B6G	. 72	7 A 6	. 72	14 B 6	. 88	${ }^{7} \mathrm{~L}$ - 7 GT	1.56	8332 A	5.25	$\mathrm{RK73}^{\text {R }}$	9.95
2 C 26 A	75	$6 \mathrm{B7}$	1.06	$7 \wedge 7$. 72	14137	1.10	71-A		${ }_{833} \mathbf{8 3}$ A	2.95 39.50		
2 C 44	98	$6 \mathrm{B8}$	1.06	7A8	. 72	$14 \mathrm{B8}$. 88	75	. 59	836 ${ }^{83}$	1.15	V70)	6.95
${ }_{2}^{2 C 40}$	2.60	${ }_{6}^{6 H A 6}$. 72	7AE7	. 72	14C5	88	75 TL	2.95	837	2.50	vR75.	. 98
${ }_{2}{ }_{2} \mathrm{C4} 44$	2.60 1.75	6HE6 $68 G 6$.72 2.40		. 72	14 C 7	.888	76	. 59	838	4.95	VR78.	. 75
2D21	1.69	${ }_{6} \mathbf{C 4}$	2.40 .60	7115	. 72	14F, 7	. 72	77	. 59	841	. 69	VR90.	. 75
2 E 5	. 88	6 C 5	. 60	7 B 7	.72	141:7	.88	78	. 88	845	.69 4.95	VR105 VR150	. 75
${ }_{2} \mathbf{2 F 2 2}$	1.50	6C6	72	7138	. 72	14117	1.06	80	. 42	860	3.00	-T127A	3.00
${ }^{2 \mathrm{E} 24}$	4.37 3.95	${ }_{6}^{6 C 8 G}$	1.06	713 P 7	2.95	1457	1.04	81	1.28	861	50.00	VU111..	1.50
2 E 30	2.25	6176	.65 .60	7 C 5	1.06	$14{ }^{1} 7$	1.06	82	. 88	864	. 69	WE532A	4.95
2.51351	4.95	6E5	. 72	7C6.......	. 72	14 S 7	1.88	83 V	. 88	8668	.89 .95	7.225	1.95

20\% DEPOSIT WITH ORDERS UNLESS RATED

NEW YORK 6, N. Y.
 $320 \mathrm{~V} \& 375 \mathrm{VCT} / 110 \mathrm{ma} .5 \mathrm{~V} / 3 \mathrm{~A} .2 .5 \mathrm{~V} / 3.25 \mathrm{~A}$ b.0. $1350 \mathrm{VCT} / 150 \mathrm{ma} .6 .3 \mathrm{~V} / 5 \mathrm{~L} .5 \mathrm{~V} / 2 \mathrm{~A}$ 540VCr\& $1250 \mathrm{~V} / 250 \mathrm{ma}$ \$4.95@ $500 \mathrm{VCT} / 60 \mathrm{ma}, 6.3 \mathrm{~V} / 4 \mathrm{~A}$ Hmtclly Cased
$100 \mathrm{VCT} / 212 \mathrm{mai} \$ 5.95 ; 10 \mathrm{~V} / 8 \mathrm{~A} / 2 \mathrm{~K}$ $1100 \mathrm{VCT} / 212 \mathrm{mia} 85.95 ; 10 \mathrm{~V} / 8 \mathrm{~A} / 12 \mathrm{KV}$
$5 \mathrm{~V} / 115 \mathrm{Amp} \$ 10.05: 2.5 \mathrm{~V} / 10 \mathrm{~A} / 10 \mathrm{KV}$
 8i2As COMBNITIOY TRASS sockets S66A COMBINATION Tubes sorliets.X Xormer $570 \mathrm{VCT} / 180 \mathrm{ma} .5 \mathrm{~V} / 3 \mathrm{~A}$. $12 \mathrm{~V} / 4 \mathrm{~A}$ CSI) $510 \mathrm{VCT} / 125 \mathrm{ma} .5 \mathrm{~V} / 2 \mathrm{~A} .6 \mathrm{~V} / 4 \mathrm{~A}$ CSD TRLPLFTT TUBE CIIECKER TRANSI 220 to 440 V -or -110 to $220 \mathrm{~V} / 250 \mathrm{Watt}$ AUYO TRANSF $6 \mathrm{~V} / 2 \mathrm{~A}, 150 \mathrm{~V} / 16 \mathrm{~A} .3 \overline{\mathrm{~J}} / 1.2 \mathrm{C}$ SEL BECT TR/115/(GNe.42,5V/2A Transt's 880 VCT $/ 125 m a .6 .3 \mathrm{~V} / 2 \mathrm{~A} .6 .3 \mathrm{~V} / 3 \mathrm{~A} \& 5 \mathrm{~V} / 3 \mathrm{~A}$ delivers 6.3VCT/4Adelivers6.3YCT/6.8Amp 6.3VCT/.7A HV insltd 2Xeurrent $330 \mathrm{VCT} / 10 \mathrm{ma}$ \& $33 \mathrm{VYCT} / 10$
${ }_{5} \mathbf{V} / 60 \mathrm{Amp}$ KENYON HY inslt
we PPAnput\&PPdriver transfs Givg/805 $90-80-70 \mathrm{~V} / 2 \mathrm{Amp}$ GE LISN
$80-80-70 / 110 \mathrm{AmD}$. $540 \mathrm{VCT} / 21 \mathrm{ma} .5 \mathrm{~S} / 3 \mathrm{~A} .5 \mathrm{~V} / 3 \mathrm{AL}$ 6.3V/IA, $6.3 \mathrm{~V} / .6 \mathrm{~A}$ TSN CASED 2 X safety $2.5 \mathrm{~V} / 4$ กAmp GL inslun 25 KV b800V or V.C.T/IAmp/17KVinsith.208to251V
mpt
3400 V
ind
or V.C.T/1Amp/17K vinslun 107to126V
115 or $200 \mathrm{~V} / 10 \mathrm{Aml} / 2 \mathrm{~K} 11$ TT Lis $11 \overline{0}$ or $230 \mathrm{~V} / 8 \mathrm{Amp} / 1.8 \mathrm{KW}$ AUTOTRANSF
 FV/6.5Amp/36KY jnsitn \& socket UX $75 \mathrm{VCT} / 6.5 \mathrm{~A}, 6.3 \mathrm{VCT} / 3 \mathrm{BA}$
$700 \mathrm{VCI} / 150 \mathrm{ma} .10 \mathrm{~V} / 3.25 \mathrm{~A} .2 .51 / 10 \mathrm{~A}$ \&
$6.3 \mathrm{CT} / 2 \mathrm{~A}, 5 \mathrm{~V} / 3 \mathrm{~A} .1 \mathrm{~V}$ insitd CASED $1100 \mathrm{YCT} / 1.0 \mathrm{ma} .6 .3 \mathrm{~V} / 3 \mathrm{~A} .5 \mathrm{~N} / 3 \mathrm{~A}$ ty ins
 $1000 \mathrm{CT} / 200 \mathrm{ma}$ anv hias. $6.3 \mathrm{~V} / 5 \mathrm{~A} .5 \mathrm{~V} / \mathrm{GA}$.

- $5 \mathrm{~V} / 12 \mathrm{~A} / \mathrm{HV} 4.95$; $4 \times 6.3 \mathrm{~V} / 4 \mathrm{~A} \& 3 \mathrm{~N} 5 \mathrm{~V} / 4 \mathrm{~A}$ $10 \mathrm{VCT} / 10 \mathrm{~A} / 220 \mathrm{Vin}$ or $5 \mathrm{VCT} / 10 \mathrm{~A} / 110 \mathrm{Vin}$ $10 \mathrm{VCT} / 10 \mathrm{~A} .12 \mathrm{VCT} / . \mathrm{i}-3 \times 6 \mathrm{~V} / 1 \mathrm{l} .2 \times 6 \mathrm{~V} / 2 \mathrm{~A}$ $3 \times 5 \mathrm{~V} / 3 \mathrm{~A}, 2.5 \mathrm{~V} / 1.75 \mathrm{~A}, 6.4 \mathrm{~V} / 12 \mathrm{~A} .6 .4 \mathrm{~V} / 10 \mathrm{~A}$ 6.3V $/ 3 \mathrm{~A} .5 \mathrm{~V} / 4 \mathrm{I} .5 \mathrm{~V} / 8 \mathrm{~A}$ HV insltr 14 for $20 \mathrm{~V} / 12 \mathrm{~A} / 220 \mathrm{~V}$ or $7 \mathrm{or} 10 \mathrm{~V} / 12 \mathrm{~A} / 110 \mathrm{~V}$ in

 $1400 \mathrm{VCT} / 300 \mathrm{max}$. $\mathrm{FVCT} / 4 \mathrm{~A} .2 .5 \mathrm{~V} / 3 \mathrm{~A} .5 \mathrm{~V} / 4 \mathrm{~A}$
 ${ }^{6.3 V / 2 A .5 V / 2 A}$ CASFAD HVinslto
 Uniersal Vibrator Transf $6,12,24,115 \mathrm{VDCd}$
$115 \& 230 \mathrm{VAC} / 50-60 \mathrm{c}, 420 \mathrm{CT} / 2.5 \mathrm{ma} .6 \mathrm{~V} / 3 \mathrm{a}$
 $2240 \mathrm{VCT} / 50 \mathrm{mma}$, Pri105to $250 \mathrm{~V} / 50-60 \mathrm{cy}$ inpt \&
$2.5 \mathrm{~V} / 10 \mathrm{~A} .12 \mathrm{~V} / 4.5 \mathrm{~A} .10 \mathrm{~V} / 2.5 \mathrm{~A} \$ 24.95 @ 2$ for 1250V/250ma \$5.2.3
$750 \mathrm{VCT} / 37 \mathrm{mma} \&$ Tap 500 V wnde 2.5VCT/15A ind $210-250 \mathrm{~V} /$ / Vins Collins $250 \mathcal{C L C}^{\circ} / 60 \mathrm{ma} .6 .3 \mathrm{~V} / 1.5 \mathrm{~A}$ Small

CHOKES

13.5Hy/1Amp/42ohn/17K Vins $15-29 \mathrm{H} y / 150 \mathrm{ma}$ Swinging Cased
$12 \mathrm{Hy} / 300 \mathrm{ma} \$ 3.85: 3 \mathrm{H} y / 40 \mathrm{ma}$
 8Hy 150 ma new UTC crekd Bklte T.B
 $2 \times 3 \mathrm{Hy} / 300 \mathrm{ma}$ \$1.49: $5 \mathrm{Hy} / 100 \mathrm{ma}$
$0.51 \mathrm{yy} / 100 \mathrm{ma} / 4 \mathrm{for} 9 \mathrm{sc}: 50 \mathrm{~Hz} / 125 \mathrm{~m}$
$8 \mathrm{Hy} / 100 \mathrm{ma} / \mathrm{\$ 1.10} ; 12 \mathrm{H}_{5} / 275 \mathrm{ma}$
$815 / 125 \mathrm{ma}$ HVins $81.69: 51 \mathrm{H}_{5} / 100 \mathrm{ma}$
${ }_{2 \times 3} \times \mathrm{Hy} / 300 \mathrm{ma} \$ 1.44 ; 51 \mathrm{y} / 100 \mathrm{ma} \ldots$
$12 \mathrm{H}, / 200 \mathrm{ma} \$ 2.95: 2 \times 121 \mathrm{Iy} / 150 \mathrm{n}$
$.35 \mathrm{H} y / 2.5 \mathrm{~A} \$ 2.95 ; 10 \mathrm{Hy} / 125 \mathrm{ma} \mathrm{a}$
$10 \mathrm{Hy} / 45 \mathrm{ma}, 3$ for $\$ 1.49 ; 12 \mathrm{Hy} / 60 \mathrm{n}$

HV SCOIPE CHOKE 12Hy/85ma
OUNCEI PTATE DMP 300 HY
OUNCER ITLATE MMP 300 HS

 PULSE TRANSF GE TLLEVISION BTO.

 AUDIO DAND PASS FILTFR 60.90ג150cys CCised \& Shitelded \$2.25 each @

That's A Buy

CW3 reve \& COIIS 5. 1 tolome's NEW.

HMMMNLUND SUPERPRO \& FWR SUI USED GOMPIIC RECORIER \& MO TOR NEG
IPNI ALIMMETER less Tubes LN
BC156 MODUTATIOR less tubescdyn LN* SCR2F/ARC5 CONTROL BOX LN*

SC:2 HADAR RCVR \& INDCTR 175-225nc's TAJ NIVY NXTRR 175 -600kc/500 Watt
 ${ }_{B C G O}$ RCVR \& SMTR \& DTAM'R LN*** 395.00 COLLIN ART13 SPFREM AMPIAFIER parts to convert to peak clipper\&data VOLTAGE REGUTATOR NEV RAYTHEO RHEM/60cy. Outpt $115 \mathrm{~V} / 60 \mathrm{wit}$ \checkmark RLGGLATOR SAME $198-2+2 \operatorname{Vinpt} / 50-60 \mathrm{cy}$ DYNMTR 28 Vin/olt $540 \mathrm{~V} / 250 \mathrm{ma}$ used

 D YM MTR $28 \mathrm{Vin} /$ out $250 \mathrm{~V} / \mathrm{t} 0 \mathrm{ma}$
WRENCHES EIECTRICAL HARDENED $9 / 33^{\prime \prime}$
$\& 11 / 32 ; 15 / 644^{\prime \prime} 4^{\prime \prime}$ OPEN END @ 2062 for

HiPOWER VARIABLE ANTENNA MATCHING NETWORK \#1001A BRAND NEW 1500 to 7000 KC
IKW-RF easily Cunverted to hi freas, PiNetwork
adiustalle indoutpi. CASED
$5^{\prime \prime} \times 15^{\circ} \times 20^{\prime \prime}$ Reluy Rack

 Airport. Brinaticast \& Amateur stations.

SAMEE UNIT LEES ANTUNXA COIL includes Housing. YAR CONDSR RF meter, insulators. dials
TVCHMnnual. NEW.

90.00
2.95

AIRCRAFT INSTHUMIENTS USED LN
 PIONELR TRANSMITMER MAGNESYN
WESTOS LAER COMPASS 602 MIETER WESTON LAEL COMPASS 602 MFTER COMP RES MARK VIII

compiss mark ix kollsman
TEMPERAATURE DUAL $120^{\circ} \mathrm{C}$ THERMO
TEMI'LRATURE CARIURETOR OHANAIR WESTON 606 RESIST THERMOATJR
TEMP. OIL $608 / 0-110^{\circ} \mathrm{C}$ Resist 1 TTR .
TEMT. CYE HEAD 0-350 ${ }^{\circ} \mathrm{C}$ THERMO. TEMP IEESLSANCE THERMOMETER NES
TON -50to $+150^{\circ} \mathrm{C} / 1 \& \& 2+\mathrm{DC} / \mathrm{DYNA}$ MOMTR $-50 t 0+150^{\circ} \mathrm{C} / 12 \& 2+V$ DC/DYNA
AMMETER 240Amps/50MY/GE
FURL GALS 1 SD AUTOSYN DUAL $3500151 \times 1 / 2$
IND TACH 4500 RT M $/ 8 \mathrm{D} .113 \mathrm{M} / \mathrm{AL}$
IND ASSM $1000011 \times 1 / 656$ KOLLSMA PRESSURE DUAL 2 Ehbs ANS
PRESSURE 20001 ls AC-E/4
1RESEURE 20011s USGCO
 PRESSURE D-10/10-in" MRRCURY GA LIQUID LFVEL TRAXSMITEER NEW.
 ND DIRTECTON \& RLMOTE IND NLW.... 17.95
 ORDER F.O.B. N.Y.C. ADD SHIPPING CHARGES
$\& 25 \%$ DEPOSIT. CTABOGRAM. WO $2-7230$.

RECTIFIERS BRIDGE TYPE

RECTIFIERS BRIDGE TYPE PRICE			
$\begin{aligned} & \text { INPUTT } \\ & 0 \text { I8V } \end{aligned}$	OUTPUT	CURRENT 1.35 Amp	$\begin{array}{r} \text { PRICE } \\ \$ 2.25 \end{array}$
018 V	0-14	5 Amp	4.85
0-36V	(1)28	320ma	1.39
$0_{0-36 \mathrm{~V}}$	0-28	1.5 Amp	2.89
$0-36 \mathrm{~V}$	0-28	5amp	7.50
0-64V	054	220 ma	3.49
0 0-64V	0-54	samp	16.95
$0-90 \mathrm{~V}$	0-80	150 ma	2.85
-	- $\begin{aligned} & 0-116 \\ & 0-110\end{aligned}$	${ }^{3}$	2.95
$0-144 \mathrm{~V}$	0-125	150mit	2.85
$0-350 \mathrm{~V}$	0300	40ma	

FULL WAVE CENTER TAP

6511VCT HALF WAVE TYPES*

$0.28 V$	$0-12$	150 ma	.59
0.72.	$0-36$	300 ma	.98
$0-130 \mathrm{~V}$	$0-1 \mathrm{CoV}$	100 ma	1.98
$0-216 \mathrm{~V}$	$0-144$	75 ma	1.75

*USE WITH CAPACITOR any vDC at 2xoutmat. CAPACITORS

CAPACITORS OIL RATED WVDC

	1.50
3.3mfi/225VAC	
d	
$4 \mathrm{mfi} / 500 \mathrm{VDC} \times 16$	
1mide/2:50VDC 995	
225mid/25K	
lmading	
mid/fony ${ }^{\text {antars/ }}$	
$05 \mathrm{mfld} / 600 \mathrm{~V}$	
niv $\$ 2.25$: 1 mida/3600	
$\mathrm{fl} / 5000 \mathrm{~V}$ \$2.2.5: $\mathrm{Imfd} / 3600$	

MICA CONDENSERS RATED						
600 W.0001	VDC. ra	cd in M	ro Capa			
		. 000 55		. 0012	004	
. 0002		. 00188		.003	. 006	
. 00036					. 008	
${ }_{.01}^{\text {EACH }}$	30!@	10 for $\$ 2.50$				
	@ 45	. 026	(a) 92 ¢	. 04	@ 1.60	
. 015	(abist	. 03	(as 1.00	. 65	@ 51.90	
. 02	(a)76	. 039	© $\$ 1.20$			
1200WVDC R		ted in.	IrD Capa	cits		
		004	@ 64.	. 01	@ 81.12	
${ }^{.00025}$	@28t	. 0151	(a)70 ${ }^{\text {d }}$	013	(c) 81.20	
	250 WVDC Rat		. 0062	(a70d	03	(a>1.80
			ted \ln)	IFD Capa	cit.	
00045	(136i	. 0025	@ 90 ¢	. 005	@ 51.32	
00082002	@ 55	. 0039	(Q) 1.26	. 006	@ 31.38	
	(ay90	. 0104	@S1.26	. 01	@. ${ }^{\text {1.64 }}$	
0022	@ 006	. 0043	@-51.26	. 015	(181.78	
3000 WVDC 12		ted in ${ }^{\text {a }}$	1 FD Cap	cits		
.00005	@ 54 c	. 0001	@ ${ }^{\text {¢ }}$.0007	(6)90	
. 005	@, 81.45					

3500 WVDC Rated in IFD Capaeits
602 @ 1.60 .003 @ 81.20
nounvDC Rated in MFD Capacity
$.01003 @(52.25 .00025 @ 82.70$ @ 0152.71 $.00009 @$ @.2.70
00015 @ $\$ 2.70$
8000WVDC .OIMFD@s14.0m
10000 WVDC 003 @ $\$ 12.00$. 0015 @ 813.00 10000 WVDC 25 MMF @9Rt...... 10 for 7.5 C TAB' for JAN l'ARTS \& 10 of aticis

 WE 35to55Watt PM DRIVEI \$11 15 . 2 f WE DNNAIC, ME SI NCHISO INBLE AUTOSYN TYPE 5 DIFHEMENTMLL LN* VIBRAPACK GYDC/425V/10ma $115-230 \mathrm{~V} / 50-60 \mathrm{CH}$ Onget $0.4 \mathrm{Amy} / 1151 \mathrm{DC}$.
 D YNMTR DM4in $2 \times 24 \mathrm{~V} / 220 / 10 \operatorname{mas} 40 \mathrm{~V} /$

BCH2 OSCHINSCOPE NLW
APN RECVIVER \& OSCILLOSCOPF

(ID SEARCHLIGHT SECTION

bIG SAVINGS at ELECTRO SALES CO.

Deviation Alarm System

Consisting of one Ford instrument syncro motor, operating of 115 volts, 60 cycles, single phase, and one Ford Syncro Generator Mark IV, used in conjunction with three 115 volt relays and one 110 volts, A.C. buzzer. Comes completely connected and mounted on a cast iron frame.

$$
\begin{array}{ccc}
\text { Brand } \\
\text { NUW } & \text { VALUE }
\end{array} \$ 175
$$

Winco Dynamotor

Manufactured by the Windcharger Corp. Specifications: Input Voltage; 18 Volts, D.C. Output Voltage; 450 V. - 150 MA fan cooled, ball bearings. Has short extended staff to permit use as motor. Length - $91 / 4^{\prime \prime}$; Width - $4^{\prime \prime}$. Base mounting.

Western Electric Filter Assembly

\#159988

Complete filter network contained in a single wellshielded unit measuring $61 / 2^{\prime \prime}$ long, $33 / 4^{\prime \prime}$ wide, $17 / 8^{\prime \prime}$ deep. A dual section low pass filter with high Q components. The responsc is flat from .175-1500 CPS. This network has a "Q" of 65 at 1000 CPS with 600 OHM output impedance. The 05 DC resistance is 1.56 ohms. $95 C$ General Electric Amplidyne

BRAND NEW!

MODEL 5AM49AB3
INPUT: 440 volts, $3 \phi, 60$ cycles, 1 ampere
OUTPUT: 250 volts, 1.5 amps .375 watts, cont. operation, 40 c.-Temp. Rise. 3450 RPM.

Special Price \$53.50
SPRAGUE PULSE FORMING NETWORK

Size of Cose, Exclusive of High Tension Insulators, $8 \times 4 \times 4$ Inches

Consists of Chokes \& Condensers 15,000 Volts Oil-Filled 19 Micro-Sec.
$\$ 4.95$

STANDARD BRAND
 RHEOSTATS

Cansist of four 13" "plates, circular contacts, 100 ohms and 8-2 ampercs, connceted in series and assembled for bock of board mounting or can be employed for floor or table operation.
BRAND NEW. Packed in individual cartons. These rhcostats were made
$\$ 19.75_{\text {each }}$

New 112 Page Catalog

—listing scores of bargains. Write for

MODEL 5AM45DB20
INPUT: 115 volts, $1 \phi, 60$ cycles, 5 amps. OUTPUT: 250 volts, 6 amp. 150 watts, cont. duty, 40 C.-Temp. Rise 3450 RPM.

Special Price $\$ 53.50$

Direct Current Fans

by Westinghouse. These fans are the standard $12^{\prime \prime}$ type for desk or wall mounting.
The wall type is illustrated
These fans are
 not new but have been reconditioned by us with new cords and connectors. Fully guaranteed to be perfect.

$$
\begin{aligned}
& \text { SPECIAL } \\
& \text { PRICE }
\end{aligned}
$$

Hollow Capacitors

Made by leading manufacturers. Rated of 1.0 Mfd. 120 Volts, DC 100 for $\$ 1.75$

Battery Chargers

BRAND NEW! Compoct unit plugs into any wall socket operating at 110 Volts, 60 cycles and supplies 6 Volts, 6 amperes. Has handle for carrying and cord and insulated battery clips. Complete, guaranteed. Dimensions $71 / 2^{\prime \prime} \times \quad$ x
$41 / 2^{\prime \prime}$ by $43 / 4^{\prime \prime}$ Special $41 / 2^{\prime \prime}$ by $43 / 4^{\prime \prime}$. Special

(id SEARCHLIGHT SECTION

SURPLUS SAVINGS at ELECTRO SALES CO.

Rebuilt like new. Two separate units coupled together on a common bed plate. MARINE TYPE with voltage regulator and frequency controller. Operable at 110 volts DC and supplying 110 volts AC. single phase, 60 cycles, 500 va.
SPECIAL PRICE
\$65
Same unit as above with 32 volt.
s54

Complete Motor and Pump Assembly

Operating at 21 Volts, DC 70 amperes. Can be used on 32 Volt systems with resistance bank. Motor rated at $1 / 4$ HP. Can be used for pumping water or oil. Orig. inal cost to government was over $\$ 150.00$. We have a limited quantity of these units, sold on a money-back $\$ \mathbf{1 9 . 5 0}$ basis. Special.

Motor Rated 21/2 HP

Operative at 440 Volts, 3 phase. 60 cycles. Can be reconnected for operation on 220 v, 60 cy. 3 ph. 1750 RPM. Double Shaft. Ball Bearings. Marine Duty, 30 minutes. A sturdy motor for any application, at a never before offered price. Brand New! Fully guaranteed. Orig $\$ \mathbf{2 8 . 5 0}$
inal cases.

Bosch Magnetos

with Pump Assembly, completely enclosed. Brand New! Original cartons. $\$ 7.85$
Special $1 . ~$

General Electric Motors

Flange Mounted. Rated $1 / 20 \mathrm{HP}$ operative at 60 volts, DC. Shaft is $3 / 16^{\prime \prime}$, $1^{\prime \prime}$ long. Model 5PS56HCl8. SPECIAL \$2.85

G. E. Rebuilt Rotary Converters,

Input: 110 Volts, DC; Output: 70 Volts, AC. single phase, 60 cycles. 100 Watts $\$ 4.40$ Special

NEW 112 Page Catalog

Packed from cover to cover with thousands of amazing values in a $\$ 500,000$ stock. Distribution must be limited to requests on company letterheads. Address Dept. E. 6

"TRANSTATS"Amertran Voitage Regultaror (Variable Transformer)

11.5 KVA; Fixed Winding; 115 Volts; Commutator Range 0-115 Volts, Maximum Amperage 100. Can be reconnected for 230 volts with maximum amperage of 50. Blueprint of connections supplied.

BRAND NEW, in original factory cases

Raytheon Recticharger

The output voltage of the Ray. theon Charger is 48 Volts at 3 amp. This charger has con. trol for increas. ing or decreas. ing the trickle chargerate. Will charge up to 23 cells at one time. Can also be used as a battery eliminator and for operation of sig. nalling equipment.
A Voltmeter-reading from 0 to 100 Volts, DC indicates the charging Voltage. Completely mounied and wired for operation in a gray firished sheet steel cabinet measuring $11^{\prime \prime} \times 17^{\prime \prime} \times 211 / 4^{\prime \prime}$. Each unit is brand new and packed for export in cases $16 \times 18 \times 30$. Weight when packed 236 pounds. Spec. W-3826.
NEW! $\begin{gathered}\text { Specially } \\ \text { Priced }\end{gathered}$
$\$ 33$
HELIPOTS, Model A
Case diameter 1.8": Number of turns 10: slide Wire Length $461 / 2^{\prime \prime}$; Rotation 3600 Degrees: Power rating 5 Watts: Resistance rating 20,000 ohms.
SPECIAL PRICE
$\$ 4^{.50}$

Resistor Assembly

National Brand Manufacturer. 150 amperes, 0.088 ohms, 13.2 volts, $25^{\prime \prime}$ long, $9^{\prime \prime}$ wide and $12^{\prime \prime}$ high.
OUR SPECIAL PRICE \qquad $\$ 3.89$

Janette Type CSI3F Rotary Converters

BRAND NEW! Input: 12 volts, DC Output 110 volts. single phase, 60 cycles; .212 KVA, 85% P.F. Ball Bearings. With filter for use on radio equipment.
SPECIAL
$\$ 57$

Brand New! 1 KVA.
460-230
230-115
19

All prices F.O.B. Boston. Orders accepted from rated concerns on open account. Net 30 days.

ELECTRO SALES COMPANY
 Dept. E.-6,
 110 PEARL STREET,
 BOSTON 10, MASS.

(id) SEARCHLIGHT SECTION (ID

SURPLUS BARGAINS!

WESTON MODEL 271
Large Fan Shaped Microammeter
 Microammeter
Another of the fa-
mous Westonl fall slaped line. Very large scale $5.8^{\prime \prime}$ long. These meters were General Radio specicial mirrored scale and knife edge point. er. Accuracy 1 . (1-690 Microamps Coil Res: 250 Olin $\$ 12.50$
$\$ 100.00$
TRANSTATS—3 K. V. A.
 Type RH Input: 115
V. 10%. Output: 115 V. Max. Amps: 26 A Made as a line vol age corrector 10%
input vollage or be connected to give ${ }_{20 \%}^{20 \%}$ of in minus also be reconnected to be used as an isolated type stepdown with variable secondary. InNo. Output: $0-30$ volts at 30 Amps

A Real Buy at
$\$ 78.00$
(same type. but. 25 KVA. Input: 103-126 V. Output: 115 Price $\$ 6.50$
STEPDOWN TRANSFORMER

Made by General Electric. Heavy duty stepdown erable overdesion. Iteal for rectifier applications, low voltage heating, gen-
eral laboratory use, etc. eral laboratory use, etc.
Open frame type.

Input: 115 Volts-60 Cycles Ontput: is Volts (at full load) (apacity: 180 V. A.

Your Cost \$3.75
Quantity prices available
HEAVY DUTY STEPDOWN TRANSFORMERS
Input: 115 V . (with 8 taps in primary).
Output: from 16 to 10.5 V . (in 8 sieps).
Capacity: 1.25 KVA - Sec. Amps: 100 .
Size: $13^{\prime \prime} \times 10^{\prime \prime} \times 5^{\prime \prime}$. Anprox. Weight: 30 Lbs.
Your Cost
10 for
$\$ 12.50$
$\$ 100.00$
POWER TRANSFORMER
Pri- $-140 / 220$ V 60 Cy Sec- $-125 / 115 / 105 \mathrm{~V}$
Rating $.8 \mathrm{KVA} R C A$ Open construction. Rating 8 KVA RCA Open construction.
Bracket mounted, pri\& see terminal boards Bracket mounted, pri \& see te minal board
Orerall dimensions: 5% "H x $71 /{ }^{1 / 2} \mathrm{~W} \times 8^{\prime \prime} \mathrm{D}$. Mounting dimensions: $67 / 8^{\prime \prime} \times 57 / 8^{\prime \prime}$. Price
$\$ 12.50$
STRUTHERS-DUNN RELAYS
D.P.S.T., Normally open, 115 V .60 Cycle, A.C. coil, 30 Amp contacts, fibre lase with ${ }^{4}$ holes $23 / 4^{\prime \prime}$ H.
A Real buy At

OHMITE POWER TAP SWITCH Non-shorting, Model 319. Cat. $=312-10,25$ Amps Ac" sions: ${ }^{3} 14$, Diam. $\times 31 / 4$ " Deep.

HEINEMAN CIRCUIT BREAKER

A. C. VOLT-AMMETER SET

Westinghouse RA-37-4" Sa. 0-300 Volts AC With Potential Transformer for 600 Volt Range
Westinghouse RA-37-4" Sq. 0 -5 Amps AC.
estinghouse RA-3i-4" Sq. $0-5$ Amps AC. Scale: 75/150 Amps A.C. Transformer

PORTABLE

A. C. AMMETER WESTON \#528 Double range ammeter. Amps. Amps and 0-15 Amps. Two of the very
useful ranges for your useful ranges for your
Lab. or shop. Complete Lab. or sholv. Compleate in genuine leath
Your Price
$\$ 12.25$

D. C. AMPS \& MILLS

0-1 Ma ロ" G.E. DW41.......... $\$ 2.95$

0-1 Ma $2^{\prime \prime \prime}$ Weston 506 3.75 $0-\frac{2}{2}$ Ma $2^{\prime \prime}$ Sun 1AP525-525 0_{0}^{0-5} Ma $2^{\prime \prime}$ Weston 506 with metal case
 2.85
1.85
1.95

```
2.195
``` O-34 Ma \(z^{\prime \prime}\) G.E. DW41


 \(0-15\) Ma \(3^{\prime \prime}\) W'esthse \(\mathrm{NX}^{2}-35\) 2.95 \(0-10\) A. (scale: \(15 / 150 / 300\)) 4.50
 105
30-0-30 A. \(3^{\prime \prime}\) Simpson 25 4.50

(fl. bake Type TD-50 MV)
(with ext. shunt)
A same as ahove 2.25
\(0-300\) A same as ahove

\section*{D. C. VOLTS}

0-15 \. 2" Westhse BX-33
2.75
- Black scale)
 2.95 2.95
\begin{tabular}{|c|}
\hline \multirow[t]{3}{*}{} \\
\hline \\
\hline \\
\hline
\end{tabular}

A. C. VOLTS
\(0-10\) V. \(2^{\prime \prime}\) G.F. ATV-42
\(0-10\) V. \(3^{\prime \prime}\) G.E. AD 25
\(0-150\) V. \(2^{\prime \prime}\) Simpson 155
\(\$ 2.95\)
0-150 V. 2" Simpson 155 …........................95 \(0-150\) (metal case)
4.50

\section*{A. C. AMPS}
\(\begin{array}{ll}0-1.5 & \mathrm{~A} .2^{\prime \prime} \text { Weston } 507 \\ 0-3 \text { (RF) } \\ \text { Westhse }\end{array}\) \(\$ 3.50\)
3.95
\(0-30\) A. \(3^{\prime \prime}\) Triplett (meta1) .
\(0-5\) A i" sq. Triplett 431 A .
2.95

6.75

All meters are white scale flush bakelite case unless otherwise specified.

\section*{HEAVY DUTY} RHEOSTAT
\(10 \underset{9.2}{\mathrm{ohms}}\) - 9.2 Amps Ams tapered) \(9.24^{\prime \prime}\) (No Complete with han die and legs for rea of panel nounting. Your Cost . . \$5.95

\section*{SELENIUM RECTIFIER STACK}

New - Manufactured only 3 Months Ago
Full Wave Bridge. Input Max.
Output 18 V @
@C. continuous duty.

A Real Buy at \(\$ 7.85\)

\section*{RECTIFIER TUBES}

6 Amp. (Tungar type) for battery chargers. Your Cost rectifiers, ete. \(\$ 1.50\)
(minimum order of 10 tubes)
RHEOSTAT, OHMITE MOD. N, 300 Watts, 150 Ohms, 1,41 Max. Amps, \(6^{\prime \prime}\) Diam., Weight \(23 / 4\) libs., without knob.
Price. . \(\$ 5.25\)

RHEOSTAT, OHMITE MOD. R,
500 Watts. 250 Ohms, Tapered, \(2.5-.51 \mathrm{Amp}\), 8 \(^{\prime \prime}\) Diam., Weight 4 ibs., Without knob. \(\$ 7.50\) Price

SELENIUM RECTIFIERS
Full Wave Bridge
Approximate Rating
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|c|}{Approximate Rating} \\
\hline \begin{tabular}{l}
Federal \\
Type
\end{tabular} & Inpur Max. & Output & Amps. & Price \\
\hline 10 BBCV 1 & \({ }_{36}^{18} \mathrm{~V}\). & 14 V . & 5 & 8.98
1.50 \\
\hline \({ }^{1082 C V 11}\) & \({ }_{48} 86\) & 36 V . & . 5 & 2.75 \\
\hline \(5 \mathrm{5R2AV1}\) & 36 V & \({ }_{28}^{28} \mathrm{~V}\). & 1. & -4.25 \\
\hline 11BAEAM & 120 V . & 100 V & 1.6 & 11.95 \\
\hline \(9 \mathrm{DOf12R}\) & 150 V . & 115 V . & 1.6 & 14.50 \\
\hline
\end{tabular}

\section*{CAPACITORS}
\begin{tabular}{|c|c|c|c|}
\hline Cap. & Voits & Helsht Welght Leagth & ce \\
\hline \({ }_{10}{ }^{\text {Mfd. }}\) & \({ }_{1000}\) & & \$1.85 \\
\hline 4 & 1000 & \(5-7 / 8 \times 2-3 / 4 \times 1-1 / 4^{*}\) & 85
.50 \\
\hline 1 & 1000
500 & \(2^{*}{ }^{-5 / 8 \times 1 / 4} \times 4^{*} \times 1-1 / 16^{*}\) & . 25 \\
\hline . 25 & 1000 & \(1-1 / 2 \times 1^{*} \times 3 / 4^{\circ}\) & 25 \\
\hline
\end{tabular}

\section*{CAPACITORS}

\section*{FREQUENCY METER}

Range 350-450 Cycles, Weston 637, air-

> craft type Complete
\(\$ 4.95\)
All meters are white scale flush bakelite case unless otherwise specified.

ALL PRICES INDICATED ARE FOB, OUR WAREHOUSE, NEW YORK, N. Y.
Shipments Transportation Charges Collect Will Be Made Via Railway Express Unless Sufficient Postage Is Included, Or Other Instructions Issued. We Will Refund Excess Postage In Stamps.

\section*{POWERTRON Electrical Equipment Co.}

\section*{(ID) SEARCHLIGHT SECTION}

\section*{SPECIALIZED ELECTRONIC MATERIAL HIGH QUALITY•LOW PRICE•IMMEDIATE SHIPMENT}

\section*{TRANSTAT VOLTAGE REGULATORS}

Manufactured by Amertran, three Models are available

Model \#TH 21/2B
Kixed Winding 230/130
Hax umper range \(0-260\) volts, . 65 KVA
Model \#29144
Price \(\$ 19.95\)
Fixed Winding 115 Volls- 60 excles
Commutators range 103-126 Volts
Jloused in shieliled case \(5^{\prime \prime} \times 6^{\prime \prime} \times 6^{\prime \prime}\)
Price \(\$ 6.95\)
Type RH
Fixed Winding 115 Voits- 400 cyeles
Commutator range 75-120 Volts
Housed in Slielded case \(54 / 2^{\prime \prime} \times 6^{\prime \prime} \times 61 / 2^{\prime \prime}\) Price \(\$ 1.95\)

\section*{RELAYS}

Allied Control \#306D35 D.P.D.T. Coil 26 Volts D.C. Contaets 10 amps. A.C. at \(115 \begin{aligned} & \text { Volits } \\ & \text { Price } \$.95\end{aligned}\) Allied Control 4 BOY-X5 Coil 6 Volts ID.C. Contacts 1B.P.D.T. plus SJ'S' N゙.C. Heary contacts Aircraft-type Starter Relay I ermetically sealed coil 12 V'olts 18 ohms. Very heavy contacts \(\begin{gathered}\text { Price } \$.75\end{gathered}\) Aircraft-Type Starter Relay Leach type \# \(2200-3-24\) Coil 24 Volts D.C. TRes. 132 Ohms. Very Heary
Contacts Price \(\$.75\) Isolantite Relay D.1'TI.T. Heary Contacts Coil 100 ohms. 12 Volts D.C. Price \$. 75 Weston Mod. 705 Relay-meter tspe. Reduires rontacts. Coil resistance approximately 50 olims Nolenoid reset coil-400 apms at 18 vrits \(\$ 3.9\)
Price Bros Co. Miniature tupe TB-302 Sis'l \({ }^{\prime}\) phlis Dot'I N. 0 . Isolantile spacers Coil 300 olims. 24
rolts D.C. \(\$.95\)
 G.M. Relay D.P. I.T. plis S.P.S.T. Normatly open

 Allied \# F 3 B 60 . miniature type 26 wolts Double F'ole, Double throw, isolantite suarer Price \(\$.95\) Clare \(\# 814680-\) Niniature, 300 ohms, 24 volts DC
Iour I'ole-two throws. Price \(\$.95\) Leach \#t054, (oil 260 ohms, 24 volts DC Heavy
contats. two pole single throw. . . . Price 95 RCA Vacuum Relay, Relay contanis will break 30 on 240 olims. 24 volts Dimperes Soldennid resivame temar relay Price \(\$.95\) Glare \#818062-2 Pole single throw. Miniature 10 bolts 0 C or 20 volts AC . Will me....price \(\$.95\)

\section*{RELAYS}

Telephone Type Relay \# Di61984 Dual Contacts Six - 24 Volte D.C. Telephone Type Relay \#Diz2809y Dhal Contacts

 Relays Allen liradley Bulletim- 810 Mametic Orerloat Relay Dashpot trpe 28 umps continuons
 Allen Bradley Bulletin-810 Magnetic Overload Relas Dashpot type .15 amps . continuous adiustable range . \(095-.29\) amps. D.C. Tesistance 300 nhms
S.P.S.T. N.C. 600 Volts Jax.Price \(\$ 1.25\)
estern Electric stepping Selector Relay \#86522 20 position inclicating suiteh. Coil resistance 20 . 000 ohms \(\$ 6.25\) Struthers Dunn S.P.D.T. Relay 36 Volt coil 20
ma. Contacts 2 amps at 175 V.a.C. ...Price \(\$.95\) Relay D. P. D.T. Heary contacts Coil 6 volts D.C.
18 ohms Price \(\$.95\) Leach type 1154 D.P.S.T. Heary contarts Coil 50
Volts \(50 / 60\) ercles
Leach type \(1054-32\) D.P.S.T. Heary contar's Coil
32 volit D.C. 635 ohins. Price \(\$.75\) Struthers Dunn \#6ilsxX104 D.P.S.T. Coil 12
Volts D.C. Contacts 25 amperes at 12 Volts I).C. Volts D.C. Contacts 25 amperes at 12 Vrice \(\$.95\)
4llied Control \#DOX8 \({ }^{4}\) Make 4 Break. Heary Contacts Coil 18 turns \# 10 enamelled wrire Prices .75

Relay S.P.S.T. WE Co. \#D103781 unit encased in for coil, two for suith, octal base, 2500 ohim 10 V.D.C. Operating current 4.3 ma. release current 2.5 ma. Cont. rating 1 amp. Switching speed \(11 p\). 10 . 206 Switchboard Relay, WE Co. \#D164816 \(\begin{gathered}\text { P windings } \\ \text { Price } \$ 2.05\end{gathered}\)

\section*{TIME DELAY RELAYS}

\section*{Thermal vacuum type}
S. P. S. T. 100 ohm coil

90 second delay
 other amps-One circuit closes al 4 seronds.

\section*{400 CYCLE TRANSFORMERS}

Brand New, Surplus, Standard Manufacturers

Filament-lrimaty 115 Volts 400 eycles, Semor-
 Scope Transformers - Trimary 115 Volts 400
 Price \(\$ 2.15\)

HIGH FIDELITY INPUT TRANSFORMERS
 factance 133 Lenrys \(\pm 1\) DTs fio-famm cirles (can be used to match any single or push-pull

TUBES
(New surplus priced for quick sale)
\begin{tabular}{|c|c|c|c|}
\hline Type & Price & Type & Price \\
\hline 2C46 & 4.95 & 954 & . 45 \\
\hline 2155 & 9.75 & 957 & . 45 \\
\hline 3B24 & . 55 & 9002 & . 35 \\
\hline 3B25 & . 55 & 9003 & . 18 \\
\hline \({ }^{3} \mathbf{C} 23\) & 2.45 & 9006 & . 35 \\
\hline 4 B 27 & 2.95 & 50 & 1.25 \\
\hline 5021 & 9.95 & Vr90 & . 75 \\
\hline \(4 \mathrm{C33}\) & 2.95 & VR105 & . 75 \\
\hline 6 AC7 & . 65 & 162 6 & . 65 \\
\hline \({ }_{6}{ }^{5}\) & . 60 & 1629 & . 25 \\
\hline \({ }^{6} 58\) & . 95 & IR1 & . 65 \\
\hline \({ }_{6}^{6} \mathrm{H} 6\) & . 45 & 1631 & . 65 \\
\hline 6 S 17 & . 45 & 1632 & . 25 \\
\hline \({ }_{6 Y 6}\) & .if & 1633 & . 65 \\
\hline 23 D - & . 35 & 16.44 & 1.25 \\
\hline 45 & . 55 & 7193 & . 45 \\
\hline R1660 & 2.95 & 866 A & . 95 \\
\hline \(\checkmark \mathrm{V} 78\) & . 45 & 2807 & . 45 \\
\hline HY/IAB & . 45 & 724 B & 1.95 \\
\hline 350B & 4.95 & \(3 \mathrm{FP7}\) & . 95 \\
\hline 388 A & 4.95 & 5FP7 & . 95 \\
\hline 394A & 2.95 & RK72 & . 75 \\
\hline 801 & § . 45 & RK.73 & . 45 \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Sylvania 3 D \(6 / / 299\) GE VUlll10EII6}} & . 75 \\
\hline & & & . 45 \\
\hline \multicolumn{3}{|l|}{GE VUlll10EI46 Raytheoll CK1005} & . 85 \\
\hline
\end{tabular}

\section*{RADIO NOISE FILTERS}

These line noise filters are available in large quantiries and mriced for quick sale..
Mallory NF 12-6EG-Ioused in a bathtub trpe container and rated at 7 amps. 50 polts I). S .
Solder lug terminalsprice \(\$.35\) Mallory NFT-3A-lloused in silver-plated rectangiz lar case \({ }^{4}\) Mallory NT Mallory NF7.- Honsed in rectanqual "ase \(3^{\prime \prime}\). 12 ampares. \(3 \overline{0}\) V.D.C. Price \(\$.95\)
 General E case \(41 /{ }^{\prime \prime}\) "tric Noise Fiter-Honsed in square 50 volts by \(3^{\prime \prime}\) high. Rated at 200 amperes at Mallory NF2-1-100 anmps, 35 nits-lloused in terminals …...............................ice serew Solar Elim-D.Stat-Type EA \(105-50\) anins at ro
Volts- \(\$.95\) Tyme EA 10 ? Roth units a Bentlix-model 3937-Ceneratr.......Price \$.95 Bendix-model 3937-Generator Filter-5 - amps,
 Lite Noise Filter-Unshielderd and momest on it Conckists of thitho for use on resular power lines turts solenoid whoke coil........Price only \(\$.10\)

\section*{4000-6000 VOLT LOW CURRENT DC SUPPLY}
rision, cathode my, fletron multiplier ambl the types of equinnent reulifing high woltage with currents up to 1 miliampere. S'rand new cont115 volt power line. D.C. output is fltered.
\(2000-3000\) Volt D.C. Price Complete \(\$ 12.50\) but with lower output coltate similar to above from 115 Volt power line. Price Complete \(\$ 7.95\)

\title{
EDLIE ELECTRONICS, INC.
}

\section*{(ID) SEARCHLIGHT SECTION (ID}

\section*{3 CM. PLUMBING \\ (Standard \(\mathrm{I}^{\prime \prime} \times 1 / \mathbf{2}^{\prime \prime}\) guide untess \\ otherwise specified)}

TR cavity for \(724-\) A Th tube, transmission or \({ }^{\text {and }}\),
 (lioke to cover, with 180 deg . bend of \(21 / 2\) ". rad. Rotary joint with siotted section and type "N " Waveguide section, '12" long choke to cover, 45 deg. Wavit de \(21 / 2^{\prime \prime}\) radium, 90 deg. bend. \(\$ 4.50\)
thabilizer cavity feelling waveguide section, with Slug Tuner attenuator, W,E. guide, pold TR/ATR Duplexer section with wavemeter iris CG/APS-3, straight waveguite section. 10 choke Right angle elbow. \(51 / 2^{\prime \prime}\) choke to cover, \(21 / 2^{\prime \prime}\) radius. wist 90 deg. \(\mathrm{f}^{\prime \prime \prime}\) choke to cover......... Waveguide sections
choke flange Waveguide, 00 des. bend \(\mathbf{E}\) plane, \(18^{\prime \prime}\) long. .. \(\$ 4.00\) Rotary joint, "hoke thoke... with deok mount-S-curve wavequide, 8 long cover to choke. \(\$ 2.50\) 3 cm . waveguide, \(11 / 8^{7} \mathrm{x}\) 1/2" ID \(1 / 16^{\prime \prime}\) wall per Circular choke fanges, solld brass.......... 55 Directional coupler cor 124 APs-15A on 16 sec Fedback dipole with 90 deg. twist. \(71 / 2^{\prime \prime} \ldots . .53 .50\) Wavegulde to Type 10 Coax Allator mount with (1) choke coupling to hearon reference cavity: coupling with AFC attenluator to antenna wavecelver crystal mount: (6) Attenuating slugs. T1R/ATR Duplexer section for above....... \$4.00 Short Arm "T"" section, With additional choke
output on rertical section.................... \(\$ 4.00\)

\subsection*{1.25 CENTIMETER}

RADAR SETS
RC 145 IFF SET. Consists of BC 1267 xmtr-repr,
remote antenna
controller and inticator I-221, power supply RA \(105-\mathrm{A}, 1 \mathrm{kw}\), pulse oscillator

\begin{tabular}{|c|c|c|}
\hline STANDARD BRAND CONDENSER 1 MFD 600 VOLTS DC 152 IN BOX & & HASH FILTER CHOKES FOR MERCURY VAPOR TUBES CARRIES 500 MA LOAD 59c pr.-2 pr. \(\$ 1.00\) \\
\hline
\end{tabular}

\section*{STEP DOWN TRANSFORMER}

PRIMARY 440/220 VOLTS SECONDARY \(230 / 115\) VOLTS 600 KVA
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{SELENIUM RECTIFIERS} \\
\hline \multicolumn{4}{|c|}{Full Wave Bridge} \\
\hline 1NPUT & & OU'1 & \\
\hline up to 18v AC & up to & \(12 \mathrm{v} 1) \mathrm{C}\) & 1 Amp. 1.95 \\
\hline up to 18 v AC & up 10 & \(12 v\) DC & 5 Anup. 4.45 \\
\hline up to 18 vaC & up 10 & 12 v IC & 10 Amp. 7.45 \\
\hline up to 18 vaC & (1). to & 12v DC & 15 Amp. 9.95 \\
\hline up to 18v AC & up to & 12v DC & 30 Amp 14.95 \\
\hline up to 36 vaC & up to & 28v DC & 1 Amp. 3.45 \\
\hline up to 36 v AC & up to & 28v DC & 5 Amp. 7.45 \\
\hline up to 36 v AC & up to & \(28 v\) DC & 10 Amp 12.45 \\
\hline up to 36v AC & up to & 28v DC & 1.5 Amp. 18.95 \\
\hline up to 54 y AC & up 10 & 36v DC & 25 Amp. 98 \\
\hline up to 11.5 v AC & up to & 100 v 1)C & 2.5 Amp. 2.95 \\
\hline up to 115 v AC & up to & 100v IDC & . 6 Amp 6.95 \\
\hline up to 115 v AC & up to & 100 v DC & 5 Ampl 19.95 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{OIL CONDENSERS} \\
\hline \multicolumn{4}{|r|}{NATIONALLY ADVERTISED} & \multicolumn{2}{|l|}{BRANDS} \\
\hline \multicolumn{6}{|c|}{Alf Ratings, D. C.} \\
\hline 2x. 1 mfd & 600 v & \$0.35 & 1 mifd & 2000 y & \$0.95 \\
\hline .25 mfd & 600 v & . 35 & Binfd. & 20400 v & 2.75 \\
\hline . 5 mfd & 600 v & . 35 & 4 mfd . & 20100 v & 3.75 \\
\hline 1 mfd & 600 v & . 35 & 15 mid . & 20160 v & 4.95 \\
\hline 2 mfd & 600 y & . 35 & 2 mfd . & 2500 y & 2.49 \\
\hline 4 mfd & 6000 y & . 60 & . \({ }^{\text {binfal. }}\) & 25010 v & 1.25 \\
\hline 8mid & 6000 & 1.10 & . 25 mfil. & 2500 v & 1.45 \\
\hline 10 mfd & \({ }^{6} \mathrm{COH} \mathrm{H}\) & 1.15 & . mfd . & 2500 y & 1.75 \\
\hline 3 x .1 mfd & 1000 y & . 45 & . 05 m nfd . & 3000\% & 1.95 \\
\hline 25 mfd & 1000 V & . 45 & . 1 mfd . & 3 HOO & 2.25 \\
\hline 1 mfd & 1000 V & . 610 & . 25 mfd . & 300 my & 2.65 \\
\hline 2 mfd & 1000 v & . 70 & . 5 mfd . & 3000 v & 2.85 \\
\hline 4 mfd & 1000 v & . 90 & 1 mfd . & 3000 v & 3.50 \\
\hline 8 mfd & \(100 \%\) & 1.95 & 12 mfd . & 30100 v & 6.95 \\
\hline 10 mfd & 1000 v & 2.10 & 2 mfd . & 4000 v & 5.95 \\
\hline 15 mfd & 1000 v & 2.25 & 1 mfd . & 5000 v & 4.95 \\
\hline 20 mfd & 1000 v & 2.95 & . 1 mfd . & 7 H 10 v & 2.95 \\
\hline 24 mfd & 1500 v & 6.95 & 3 mfd . & 4000 y & 6.95 \\
\hline .25 mfd & \(2000 / \mathrm{v}\) & 1.05 & 2 mfd . & 3000 v & 3.45 \\
\hline . 5 mfd & 2000 v & 1.15 & 2 x .1 mfd . & 700 mv & 3.25 \\
\hline
\end{tabular}

\section*{HIGH CAPACITY CONDENSERS}
\(2 \times 3500 \mathrm{mfd}-25 \mathrm{WVVDC}\)
\(1000 \mathrm{mtd}-15 \mathrm{WVDC}\)
100 mfd - 50 WVDC
\(4 \times 10 \mathrm{mfd}-400 \mathrm{VDC}\)

R5/ARN-7 RADIO COMPASS RECEIVER
Three bands 200 to 1750 K.C. Complete with 17 tubes required. This set is ideal for conversion to home broalcast Receiver, addition to ham shack,
elc. A Receiver that would be hard to pick up at this wice.
Only \$31.95-NEW
USED-\$17.95

TRANSFORMER- 115 V. 60 CYC.
HI-VOLTAGE INSULATION
3710 v @ 10 ma
3710 v @ \(10 \mathrm{ma} . ; 2 \times 21 / 2 \mathrm{v}\) @ 3A.
2500 v @ 15 ma .1 @ 2500 v @ \(4 \mathrm{ma} .21 / 2 \mathrm{~A}\) @. 2 v @ 1 amp
2150 v @ 15 ma \(2150 \mathrm{v} @ 15 \mathrm{ma}\)
1750 v @ \(4 \mathrm{ma}-6.3 \mathrm{v}\) @ 3 A (@) \(150 \mathrm{ma} . ; 6.3 \mathrm{v}\) 1600 v @ 4 ma.; 700v CT @ 150 ma ; 6.3 v
1200vC1 @ 400 ma. \(10 \mathrm{vC} \mathrm{C}^{\prime}\) @ \(10 \mathrm{~A} \ldots .\).
5A CI © 150 ma.; 5v @ \(3 \mathrm{~A} ; 2 \times 6.3 \mathrm{v}\) @
\(525-0-525 \mathrm{v}\) @ \(60 \mathrm{ma} \cdot \mathrm{j} 925 \mathrm{v}\) @ 10 n 1 a ; \(2 \times 5 \mathrm{v}\)
 @ 2A
500-0-500v@25 ma.; 262-0-262v@ 55 ma .;

400-0-400)v (a) 200 ma ; 5 v @ 3 A
\(350-0-375 v\) @ 400 ma .
\(350-0-350 \mathrm{v}\) @ \(150 \mathrm{ma}: 5 \mathrm{v}\) @ \(3 \mathrm{~A} ; 6.3 \mathrm{v}\) @
6A; 78 v @ 1 A 350-(0)-350v @ \(45 \mathrm{ma} ; 675 \mathrm{v}\) @ \(5 \mathrm{ma} ; 21 / 2 \mathrm{v}\) \(350-1)-350 \mathrm{v}\) @ \(80 \mathrm{ma} ; 6.3 \mathrm{v}\) @ . \(6 \mathrm{~A} ; 6.3 \mathrm{v}\) @ \(3.75 \mathrm{~A} ; 2 \mathrm{x} 5 \mathrm{v}\) @ 3 A ;
\(385-0-385-550 \mathrm{v}\)
385-0-385-550v @200 ma, 21\%v@ \(2 \mathrm{~A} ; 5 \mathrm{v}\)
\(350-0-350 \mathrm{v}\) @ 150 ma ; 5 v (a) \(3 \mathrm{~A} \cdot 6.3 \mathrm{v}\) (3) \(7.5 \mathrm{~A} ; 6.3 \mathrm{v} @ 3 \mathrm{~A}\).
\(350-0-350 \mathrm{v} @ 35 \mathrm{~m}\)
\(34(1-0-340 \mathrm{v} @ 300 \mathrm{ma}\)
335-0-335v@60ma ; 1540v@ 5 ma
0-13-17-21-23v @. 70 ma , \(3 \mathrm{PA} ; 6.3 \mathrm{v}\) @ 2 A \(325-0-325 \mathrm{v}\) @120 ma.; 10v @ 5A; 5v @ 7A \(3011-0-300 \mathrm{v}\) @ 65 ma.; 2 x 5 v @ \(2 \mathrm{~A} ; 6.3 \mathrm{v}\) @
250-0-250v @ 100 ma ; \(2 \times 6.3 \mathrm{v}\) (@) \(4 \mathrm{~A} ; 6.3 \mathrm{v}\) 120-0-120v@50 Ma.
80-0-80v@225 ma.; 5 v @ 2 A ; 5 v @ 4 A
24v @ 6A
13.5 vCT @ 3.25 A

3x10.3v@7A; CT
\(12.6 v \mathrm{CT}\) @ \(10 \mathrm{~A} ; 11 \mathrm{v}\) CT 6.5A
\(6.3 v\) @ \(10 \mathrm{~A} ; 6.3 \mathrm{v} @ 1 \mathrm{~A}\).
6.3 v a \(1 \mathrm{~A} \cdot 21 / \mathrm{v}\) (a)
6.3 v (a, 2116A; 6.3v @ \(2 \mathrm{~A} ; 212 \mathrm{v}\) @ 2 A
\(6.3 v\) (a \(25 A ; 6.3 v @ 3 A ; 5 v @ 12 A ; 6.3 v\)
CT \((a) 9 \mathrm{~A}\) \(5 \mathrm{v}-190.1 \ldots \ldots 17.50 \quad 6.3 \mathrm{v}\) @ 1 A

\(6.3 v\) CT@ \(3 A^{(} ; 5 v \mathrm{C}^{\prime} @ 4 \mathrm{~A}\).

FILTER CHOKES
HI-VOLTAGE INSULATION
\begin{tabular}{|c|c|c|c|}
\hline 10 hy @ 400 ma & \$4.95 & 325 hy © 3 ma & \$3.49 \\
\hline 8 hy @ 300ma & 3.95 & 1 hy @ 800 ma & 14.95 \\
\hline 25 hy @ 160 ma & 3.49 & 10 hy @ 250 ma & 2.49 \\
\hline 12 hy @ 150 ma & 2.25 & 10 hy @ 200 ma & 1.98 \\
\hline 12 hy © 100 ma & 1.39 & 10/20@85 ma. & 1.59 \\
\hline 30 hy @ 70 ma . & 1.39 & 15 l ¢ @ \(125 \mathrm{ma} . .\). & 1.49 \\
\hline .)5 hy (3) 15 amps . & 7.95 & 15 hy @ 100 ma & 1.39 \\
\hline .1 hy @ 5 amps & 6.95 & 3 hy (1) 50 ma . & . 29 \\
\hline \(4 \mathrm{hy}^{(a, 600 ~ m a}\) & 5.95 & 30 hy 1)ual @ 20 ma & 1.49 \\
\hline 20 hy @ 10 ma & 3.49 & 8/30 hy @ 250 ma. & 3.50 \\
\hline 60 hy @ 3 mit & 3.44 & 10 hy @ 100 m & 1.29 \\
\hline
\end{tabular}

\section*{ATTENTION:}

INDUSTRIALS - LABS : SCHOOLS - AMATEURS
Let us quote on components and equipment that you require. We have too many ifems to be listed on this page. Place your name on our mailing list now for new
catalog. catalog.

\section*{(ID) SEARCHLIGHT SECTION ©}

\section*{RELIANGE SPECIALS}

UNIVERSAL JOINT ALUMINUM
\(11 / a^{\prime \prime} \lg \times 1 / 2^{m} 00\)
\(1 / 4^{11} 1035\) ¢

HELINCE
Inerchandizing Compongy f.o.b. Arch St. Cor. Croskey, Philadelphia 3, Pa.
PHILA., PA.

\author{
Telephone RIttenhouse 6-4927
}

MINIMUM
MINIMUM \$3ORIDEIR

\section*{HIGH PRECISION 100 KC CRYSTALS}

Price \(\$ 3.95\) each (No C. O. D.'s. Please include \({ }^{25 c}\) Brand New Surplus it sithoit 1/10 (aov't. cost. An icleit
l'requency Standard for AmiaFrequency Standard for AmaExc.
 \(80^{\circ}\) c. (. 0015) 10 G Vibration
Test. Calibrated at \(30^{\circ}\) chr. Brand
New. Mounted in Sealed Cases New. Mo
as Slown.

Also large stock of other types of Synchros as follows:
5B, 5G, 5SF, 5SDG, 5DG, 6DG, 7G, C78414, C78863, 2J5FBI, CAL 18300, C78411, AYlold, etc.

400 CYCLE INVERTERS
Pioneer type 12123-1-A. Input: \(24 \mathrm{~V} . \mathrm{DC}\). 12 amps. New .

\section*{G. E. AMPLIDYNES}

Type 5AM21JIT
Type 5AM4DR20 Price 49.50
Price 89.50

PANORAMIC ADAPTER
TYPE AN/APA-10
antal 21 tules inclurfing ?" spope tube. Convertad anleed in genleet onerating combition. \(\mathbf{\$ 9 7 . 5 0}\)
VOLTAGE
REGULATOR
CHASSIS
 Output:

\section*{12010 rolts D. C. at 1.5 MA}
 cathocle ray tithe socket, resistance arnatithe fler, two focus controls. an intensily control antil 6.k.5 winserter cirmit
inanl new. Complice
.\(\$ 13.75\)

AN/APA-10
ER TRANSFORMER As used in Prower J'ack De-
seriberl Aljove \(\$ 1.75\)
 Brand New War Surplus Machines buitt by Alli
Clialners Ca. to U. S. Navy Suecifications. Input: \(115 y\). \(13 . \mathrm{C}\) at 14 amps, 3600 rum. Ontput 120 V. A.C., 60 CY , 1 ph. at 10.4 amps.. 1000 Watts rinnly enclosed. Centrifugal stanter. proctuency acljustable to loarl. Price \(\$ \mathbf{9 7 . 5 0}\). Same marhine but for 230 V . 1.c. imput. Frice 125.00. Spare parts kit With extrat brushes, brushchine, \(\quad \$ 29.50\).

\section*{(id SEARCHLIGHT SECTION}

Rama sume PEAK ELECTRONICS CO.
Industrials Schools - Labs

3 METER BARGAINS FOR THIS MONTH \(\$ 2.95\) EACH
10 FOR \$24.75
- 2" GE 0-1 Amp RF
(Internal Thermo)
- 2" GE 0-30 Amps DC
(Internal shunt)
- 2" Sun 0-1 MA

Basic (Volt Scale)

\section*{METER SPECIALS}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{11/2' GE 0-1 MA Basic \$3.95} \\
\hline \(2^{\prime \prime} \mathrm{GE}^{\prime \prime} 0-5 \mathrm{ma}\) (amp scale) & \\
\hline \(2^{\prime \prime}\) GE 0-1.2 mo (0-100 scale). & 2.49 \\
\hline \(2^{\prime \prime}\) Weston type \(5070-120 \mathrm{ma}\) RF. & 4.95 \\
\hline \(2^{\prime \prime}\) GE 0-1 ma (volt scale) & \\
\hline 2" Gruen \(\begin{gathered}\text { volt }) \\ \text { (3V DC (} 1000 \text { ohms per }\end{gathered}\) & 2.45 \\
\hline \(2^{\prime \prime}\) Weston 150-0-150 Microamps & \\
\hline \(3^{\prime \prime}\) Westinghouse 0-75 amp AC & 4.95 \\
\hline \(3^{\prime \prime}\) Weston-10 to 14 DB & 5.45 \\
\hline 3'' Weston-10 to +14 DB & 5.95 \\
\hline \(3^{\prime \prime}\) Westinghouse 0-50 amps & 5 \\
\hline 3'1 Triplett \(0-75\) amps AC & 95 \\
\hline \(3^{\prime \prime}\) WE 0-80 ma DC & 2.95 \\
\hline \(3^{\prime \prime}\) GE 200-0-200 volts DC & 2.95 \\
\hline \(3^{\prime \prime}\) McClintock 0.1 ma & 5 \\
\hline 3" Westinghouse 0-2 ma DC & 3.95 \\
\hline \(3^{\prime \prime}\) Westinghouse 0-20 ma DC & \\
\hline \(3^{\prime \prime}\) GE 0-15 ma DC (square) & 3.95 \\
\hline \(3^{\prime \prime}\) Westinghouse 0-150V AC & 3.95 \\
\hline \(3^{\prime \prime}\) Westinghouse \(0-150\) volts \(A C\) Rectifier type (Linear) & 5. \\
\hline 3" WE 0-50 microamps & 9.9 \\
\hline \(3^{\prime \prime}\) GE Running Time Meter & 7.95 \\
\hline \(4^{\prime \prime}\) GE 1-0-1 ma DC (Blank scale) & 3.95 \\
\hline
\end{tabular}

WIRE WOUND RESISTORS
Standard Make

5 watt type AA, 20-25-50-200-470-2500.
5 Watt ohms
10 watt type AB . \(25-40-84-100-470-1325\) - \(1900-2000-4000\) ohms
20 watt 0.4000 ohms
watt type DG, \(50-70-100-150-300-750\)
\(1000-1500-2500-2700-5000-7500\) \(10000-16000-20000-30000\) ohns
30 watt type DI, 100-150-2500-3000-4500-
30 watt type DI, \(100-150-2500\)
\(5300-7500-18000-40000\) ohms
.24 са.
\(1 \%\) PRECISION RESISTORS
Standard Make
200-2500-5000-8500-10000 ohms
\(50000-95000\) ohms
.39 ea.
100000-750000-1 meg.
.89 ea.
S. C. TEST SET-1-114
in portable waod case \(6^{\prime \prime}\)

U. H. F. COAX. CONNECTORS

UGI2U-83IR-83IJ-UG2IU-831AP-83ISP
Large stocks of Coax, ant| \(A / N\) connectors.

VARIABLE CERAMICON TRIMMERS
1.5 to 7 MMF M .24
5 to \(20 \mathrm{MMF}=24\)
4 to 30 MFF .24
7 to \(45 \mathrm{MMF}-24\)
cover not shown). Has
Weston \(0-150\) volt A.C. weter 60 cycle, 2 switch. ing circuits. complet A bargain at only \(\$ 3.95\)

DAVEN AUDIO FREQUENCY METER Model 837 E

Direct reading from 0.30 KC in 4 separate ranges voltage regulated dower supply operates from lis volts 60 cycles, has hiah inputt impedance. With pick-up can le used to determine frequency in
vibration tester. With suitable mixer can check vibration tester. With suitable mixer can check
deviation of R.F. carrier from standard. Mounts

\section*{MEGOHM METER}

Industrial Instruments Model L2AU \(110 / 220\) volts 60 cycle input. Oirect reading from 0.100000 megohms on \(4^{\prime \prime}\) meter. Can lie extenterl to 500000 megohms with external strobly. Sloping hardwood cabinet \(15 \times 88^{\prime \prime} \times 10^{\prime \prime}\). Brand new with tuhes plus running spare parts includinu extra tubes. Great value only \(\$ 69.95\)

MIDGET VARIABLE BARGAINS
Hammarlund MC 250S 250 mmf
Hammerlund MC 320 S 320 nmmf
Bual MC 913 Oual 35 mmf . D.S.
Hanmarlunt HF 1515 mmf
National TMS 150 mimf...
"A CLOSEOUT" AMERTRAN TRANSTAT or Stepdown Transformer \(10 / 220\) valts 60 cycio input. Output variable plus or minus \(10 \%\) of 115 volts at 8.5 amps. Also can be connected to give Brand new … . . only \(\$ 12.95\) Limited Quan.

AMERTRAN VOLTAGE REGULATOR \(130 / 230\) volts \(50 / 60\) cycles input. Output variable from 0-260 volts. 1.3 KVA , single phase. Used but good

\section*{OIL CONDENSER}
\begin{tabular}{|c|c|c|c|c|}
\hline 11 & & 250 & vac- . 85 & 5 mifd 6000 \\
\hline 1 & mfd & 150 & vac-. .49 & vic- 1.95 \\
\hline 1 & nifd & 600 & vilc- .29 & 75000 vdc-1.95 \\
\hline 2 & mifd & 600 & vilc.- . 39 & .15/.15 mfd 8000 vilc \({ }^{\text {a }}\) \\
\hline 4 & mfd & 600 & vic- 59 & \\
\hline \[
\begin{aligned}
& 3 / 3 \\
& 10
\end{aligned}
\] & mifd & 600
600 & vde- 79.79 & \\
\hline 14 & mifal & 600 & vide-1.35 & \(\mathrm{tc}-5.75\) \\
\hline 2 & mfil & 1000 & vde- 7.79 & .005/.01 mfd 12 kv 50 \\
\hline 15 & \(\mathrm{mffd}_{\mathrm{mfd}}\) & 1000
1000 & vic- .95 & . 03 mfil \(16 \mathrm{kv} \mathrm{dc}-5.75\) \\
\hline 2 & mfd & 1500 & vde-1.25 & . \(65 \mathrm{mfd} \mathrm{12,500}\) \\
\hline 1 & mfd & 2000 & vde -1.45 & \\
\hline 2 & mfu & 4000 & vilc-5.50 & 75/.35 kv -12.95 \\
\hline 3 & mfd & 3000 & vic-3.95 & . \(1 \mathrm{mfd} 25 \mathrm{kv} \mathrm{dc}-17.50\) \\
\hline 1 & mfd & 5000 & vde-4.50 & . \(02 \mathrm{mfd} 20 \mathrm{kv} \mathrm{dc-7.95}\) \\
\hline
\end{tabular}
\begin{tabular}{c}
SPERTI RF \\
VACUUM SWITCH \\
9200 volts peak. 8 amps. Used as \\
antenna switch in Collins ART 13. \\
BRANO new....................75 \\
\hline
\end{tabular}

\section*{MISCELLANEOUS SPECIALS}
 Heinenran Circuit Breaker 5 amp. 110 V . A.C.
G.E. Solenoid W/Microswitches 21 V. D.C. G.E. Solenoid W/Microsw Microswitch 10 amps. (Interiock)
C. H. Bat Handle Switch-D.P.S.T. \(1 / 2\) H.P. veeder Root Counter 4 Quadrant Phasing Condenser

Tremendous stocks on hand. Please send requests for quotes. Special quantity discounts. Prices f.ob. N Y. \(20 \%\) with order less rated, balance C.O.D. Minimum order \(\$ 3.00\).

\section*{"A POWERFUL BABY"} This plate transformer built to rigid Slonal Corps
spec. input \(1 / 8\) volts, 25 to 60 cycles. Has 2 sepaate 118 volt primaries and can be used on 110 or 220 volts. Secondary 800 volts center tanped at 775 mills. Excentional regulation even when loaded to \(61 / 2 \times 61 / 2 \times 71 / \mathrm{Q}\). Peak value at 7.95 io for \(\$ 70.00\)

\section*{"BRUTE FORCE"}

This fully encased choke 6 Henry at 550 mills. 28 ahms dc resistance. Built to rigid Signal Corps specs. Net weight 16 ibs. \(51 / 8 \times 41 / 4 \times 5 \frac{1}{6}\). A great buy at \(\$ 4.95\) each. 10 for \(\$ 40.00\).

\section*{FILAMENT TRANSFORMER}

Two separate 118 volt, 25 to 60 eycie primaries.
Can be used on 110 or 220 voits. secondary 5 volts at 15 amps. Built to Signal Corps specs. Fully en\({ }_{10}\) cased. for 530.00 .

\section*{VERSATILE POWER}

These transformers have many uses-flament, isolation, stendown, bias, etc.
All have 2 separate orimaries for \(110 / 220\) volt \(25-60\) cycle operation. Primaries. Can be used in series ar darallef.
3 Choices of Secondaries
Type \(504-115\) volts 250 mills and 6.3 valts 5 amps. Type 505 - 115 valts 500 mills and 6.3 volts 2 amps. Type \(502-0.70-75\) wolts at 1.5 amos.
Fully encased-4 mig. holes. \(51 / 6 \times 41 / 4 \times 51 / 8\).
Your cost any type 10 for \(\$ 17.00\). 100 for \(\$ 150.00\)

\section*{STEPDOWN TRANSFORMER}

\section*{HIGH VOLTAGE MICAS}
CO . \(001600 \mathrm{~W} . \mathrm{V}\)

co . \(01600 \mathrm{~W} . \mathrm{V}\)
CD .027600 W.V
co . \(00055000 \mathrm{~W} . \mathrm{V}\)
C.O. 0022500 W.V. 5000 V.T. type 9 C.O. 0023500 W.V. 7500 V.T. type 9 Micamold . 0052500 W.V. type 4. Solar 00510 KV . D.C. 11 amp. 3000 K.C C.O. 0066 KV . O.C. 20 amp 400 K.C R.C.A. 022000 V. D.C. 10 amp. 300 K.C Sangamo (F2L) .015 2000V. D.C. C.D. (i'H) . \(0013 \mathbf{5 0 0 0 V}\). D.C C. D. \((6 \mathrm{H}) .0055000 \mathrm{~V}\). D.C. 11 amp. 1000 A.C.A. . 00022500 W.V. 5000 V.T.

\section*{CHOKE BARGAINS}
WE 4.3 hy 62042 ohms................ 4.95
N.Y.T. 8 henry 160 ma. 140 ohms D.C....... 1.39
C.T.C. 1.5 henry 250 ma. 72 ohms.......... -60 C.T.C. 1.5 henry 250 ma . \(72 \mathrm{hms} .\).

\section*{POWER PLANT (PE 197)} 4 cylincler Hercules Gas driven engine. Output 110
volts 60 cycles, voltage regulated, \(5 \mathrm{KW}-6.3 \mathrm{KVA}\) at
\(80 \%\) Pwr. Ftr. Single phase, complete with run. \(80 \%\) Pw. Ftr. Single phase, complete with run-
ning spare parts, nieter panel, battery, tools, rening spare parts, nieter danel, battery, tools, remote cable. elc. Weight 1200 lbs. Export Packed. Excellent for
emergency power. Brand new............. \(\$ 575.00\)

Scope Transformer hermetically sealed 1,800 volts, \(4 \mathrm{ma}, 6.3\) volts, .9 amp. \(21 / 2\) volts, 2.5 amps ., \(5 \times 31 / 4 \times 33 / 4 \ldots \$ 5.95\)

FEDERAL SELENIUM RECTIFIER

\section*{SYNCHROS}

\section*{NAVY TYPES}

1G, 1CT, 5G, 5CT, 5DG, 5SG, 5SF, 5HSF, and others.
Pioneer Autosyns-AY-1, AY-14, AY 20, AY-30, AY-54, AY-101D, 851, etc.
Kollsman-775-01
G. E. - 2JIFI, 2JlGI, 2JIHI, 2J5HAl, 2J5FBl, 2J6F3, etc.

Size 5 Synchro Generator
Similar to Navy Ordnance type 5G with shaft detail per Army Ordnance Dwg. C-78414. 115 y. 60 cy . Stock \#SA-43. Price \(\$ 9.50\) ea.

\section*{NULL TYPE SYNCHRO INDICATOR}

Precision position in dicator. Uses Bendix size 5 Selsyn, recti fier tube, transformer, magic eye tube and illuminated \(360^{\circ}\) dial. Ideal for Hams, labs and experimenters. Use with SA-43 Synchro listed above. Stock \#SA-119. Price \(\$ 6.95\) each.

Minneapolis - Honeywell Stabilized Aerial Camera Mount. Complete with amplifier, inverter, and carrying case. Stock \#SA-9. Price \$125.00 ea.
DC Selsyn System- 24 V . DC trans mitter and indicator. Indicator calibrated for flap position. \(360^{\circ}\) dial easily added. Stock \#SA-129. Price \(\$ 9.50\) per system.
Pioneer Magnetic Amplifier Assembly. Saturable core type output transformer. 400 cycle. Operates from plates of 6 SN 7 to supply 1 phase of servo motor. Stock \#SA-44. Price \$8.75 ea.

Idle for Ham Beam Position Indicator or industrial uses. \(6-12\) volts 60 cycles. 5 -inch indicator with \(0-360^{\circ}\) dial. Heavy duty transmitter. Stock \#SA115. Price \(\$ 9.95\) per system.

Pioneer-CK-2 and 10047-2-A for 400 cycles.
Diehl-FP-25-3, FPE-25-11 (CDA211052) and ZP-105-8 (CDA-211377) for 60 cycles.

\section*{400 Cycle Motors}
E.A.D. J33. 115 V. 3 phase. Synchronous. \(8000 \mathrm{rpm} .2^{\prime \prime} \times 3^{\prime \prime}\). Stock \#SA59. Price \(\$ 6.75\) ea.
E.A.D.J-72B. \(115^{\circ} \mathrm{V} .2\) phase induction motor. 4700 rpm . Stock \#SA140. Price \(\$ 9.75\) ea.

Westinghouse Type FL Blower 115 V. 400 cy . 17 C.F.M. Includes capacitor.

Stock \#SA-144 Price \(\$ 6.75\) ea.

\section*{DC MOTORS}

John Oster. Series wound. 27 V. 7,000 rpm. 1/100 H.P. Stock \#SA. 30. Price \(\$ 2.75\) ea.
Westinghouse 1171391. 27 V. 6.5 amps. Series-fan cooled. 3" diam. \(41 / 2^{\prime \prime} \mathrm{lg} .1 / 8\) H.P. Cont. Duty. Stock \#SA-156. Price \(\$ 6.75\) ea.
Delco 5069370. 27.5 V. Alnico field. \(10,000 \mathrm{rpm}\). Similar to \(\mathrm{S}-65\) but has straight shaft extension. Stock \#SA16. Price \(\$ 4.75\) ea.

DC Timing Motor-Haydon \(1 / 2\) rpm. 29 volts, 100 mills. Stock \#SA- 157. Price \(\$ 3.75\) each
Constant Speed D.C. Motor-G. E 5BA25MJ24. 24 V. D.C. 7100 rpm RC noise filter. Stock \#SA-100. Price \(\$ 8.50 \mathrm{ea}\).
G.E. 5BC26AC134. 1/20 H.P. Cont Duty. Reversible. 24 V @ 3.4 amps Explosion proof housing. \(41 / 2^{\prime \prime}\) diam \(\times 61 / 2^{\prime \prime} \mathrm{lg} .3 / 8^{\prime \prime}\) shaft, \(13 / 4^{\prime \prime} \mathrm{lg}\). Stock \#SA-143. Price \$12.50 ea.

\section*{110 RPM Aircraft Motor} G.E. 5BA10AJ18D. 27 V.@ 0.7 amps. \(1 \mathrm{oz} / \mathrm{ft}\) torque. \(13 / 8^{\prime \prime}\) diam. \(\times\) \(" 1 / 2^{\prime \prime} \mathrm{lg}\). Operates on \(A C\) or DC. Stock \#SA-98. Price \$2.95 ea.

Include \(15 \not \subset\) for P.P. and handling.
ALl prices f. O. B. Clifton, N. J.

Pioneer - \(12116-5-\mathrm{A}, \quad 12117-2-\mathrm{A}\), 12123-I-A.
Holtzer Cabot-MG-149F, MG-149H, MG-153F.
General Electric-5D21NJ3A.
Leland-10563, PE-2 18.
Wincharger-PU-7/AP.
Radio Compass Loop LP-21-LM. Stock \#SA-99. Price \(\$ 9.50\) ea.
Phase Shift Capacitor-4 stator single rotor. 0-360 phase shift. Stock \#SA114. Price \(\$ 4.75\) ea.

Magnesyn-Pioneer CL-3. 6 power. Transmitter or receiver. Stock \#SA-6. Price \(\$ 3.75\) ea.

\section*{ACUATOR}

Foote Bros. 10801 1/6th H.P. 24 V. @ 11.5 amps. 5 inch linear travel. Limit Switches.
Stock \#SA-161. Price \$12.50 ea.

\section*{60 CYCLE AC MOTORS}
G.E. Reversible. \(1 / 150\) H.P. Shunt wound. 40 volts 5000 rpm . Split field. Stock \#SA-18. Price \(\$ 4.75\) ea.
Stock \#SA-19. Similar to above but not split field. Price \(\$ 2.75\) ea.
Barber-Colman. 0.001 H.P. wound shaded pole type. Reversible by relay or s.p.d.t. switch. Stock \#SA-27. Price \(\$ 3.75\) ea.
Timing Motor-Haydon 1 rpm. 115 V. A.C. Stock \#SA-133. Price \(\$ 2.85\) each.

\section*{AMPLIDYNES}

G.E.

Aircraft
5AM31-
NJ18A.
Input 27
V.D.C.@44 amps. Output 60 V. DC@8.8 amps. max. 530 watts. Stock \# SA-111. Price \$14.50 ea. 60 cy . G. E. Amplidyne-5AM45-DB15. Input 115 v . Output 250 v . DC at 0.6 amps. Cont. Duty. Stock \#SA147.

Write or call for
complete listing.

ARmory 4-2677
Open account shipments to rated concerns,
others may order C.O.D.
CLIFTON, N. J.

\section*{(i) SEARCHLIGHT SECTION}

\section*{RADIOMEN'S HEADQUARTERS Y大亏 WORLD WIDE MAIL ORDER SERVIGE ! !}

GENERAL ELECTRIC 150 WATT TRANSMITTER
Cost the Government \(\$ 1800.00\) - Cost to You- BRAND NEW- \(\$ 67.50\) This is the famous transmitter used in U.S. Army bomhers and ground stations, during the war. Its design and
construction have been proved in serice, under all kinds of conditions, all over the world. The entire frequency range is corered by means of plug-tuning mits which are included. Fach tuning has its own oscillator and power amplifer coils and condensers, and antema tuning circuits-an de-15ned to operate at top efficiency within is

 tube, and equipped with antenna coupling circuit which matches practically any length antenna. MODULATOR, MA. Complete instructions are furnished to operate set from 110V AC. SIZE: \(211 / 1 \times 23 \times 914\) ". Total shipping wgt. 200 libs.,

IR1655. An 11 tube crystal controlled superhet receiver for
\(24-2 S V\) DC overation. Beautiful chassis and cabinet. Uses latest tube typus including 7 miniature 6AJ5's.
schematic sumplied. Only a few arailable at \(\$ 14.95\).

\section*{1948 MODEL OUTBOARD MOTOR AT DEALER WHOLESALE PRICE!!}

Powerful celuxe win cylinder outboard motor win antomitic starter (no fumbling for a lope), a positive cooling unbreak quick starts as well as smooth, efficient operation at slowect tiolling speed or with the thrattle mine outstanding features are provided. such as corrosion resistant aluminum alloy castings, to protect the engine and give
the unit a sleek, streamlined aupearance: jardened alloy steel The unit, a sleek, streamlined appearance; lardened a, pertertly connecting rods with roller healings, and a rugged, pertectly Ontboard Boating Club of America. Net weight-52 1b. Gross shipping weight including free steel storage stand-100 lb. For a limited time we ane selling this motor, which is produced by the
world's second largest maker of outhourds to sell for more than \(\$ 30.00\) above onr price-for only \(\$ 139.00\), brand new, FOB Buffalo.

BC-221 FREQUENCX METERS with calibrating Crystal and calibration charts. A precision frequency standard that is useful for innumerable applications for laboratory technician, service man, amateur, and experimenter at the give away price of only \(\$ 36.95\).

GENERAL ELECTRIC RT-1248 15-TUBE TRANSMITTER-RECEIVER

 for mas mo or motil use the dinam
for the set is only \(\$ 15.00\) addulional

\section*{AT LAST YOU CAN AFFORD A LABORA} TORY STANDARD MICROVOLTER

\section*{The fanious Measurements Corp. Model 78E, 5 Tube Laboratory Standari}
 is ayailable in perfect condition for 25 to 60 cycles, 115 V AC operation.
Until novr this is the sort of ton-flight lab equipment that diseriminating Until now this is the sort of ton-flight lat equipment that diserminating Worth every cent the manuffacturer asks. lutt
whild our limited supuly lasts for only \(\$ 79.95\).
Such companies as Admital Corp. and John Meck, Inc, have ordered from us and rejeated many times on these 78 generators for use in thei abs and production line lesting. Uses \(1,9002,1-7 \mathrm{Y} 4,1-\mathrm{V} R 150-30,1-7 \mathrm{C} 7\), and \(1-7 \mathrm{C} 5\) tubes. Output enn-
fintuons s variabla from 0 to 100000 Hicrovolts. innouss) variable from 0 to 100,000 Hicrovolts.

78 E
Standard Signal Genera-
50 to 70 Mc. lated 50 to 70 Nic. \({ }^{70}\) Unmodu.

Auto Radio Dealers! Attention! Nationally advertised brand of 1948 car radio which Will fit practically any car anc every pockelbook. Six
tule superheterodyne with three gang condenser and \(61 / 2 "\) speaker. \(\$ 32.20\) for sampl
eich, in lots of two or more.
Aere is an item that no serviceman who repairs auto ridios should
hatter eliminator that sumplies peltectly filtered
6 VDC at 14 amps. from 110 AC \(\$ 36.00\)

\section*{1948 MODEL MUTUAL CONDUCTANCE TUBE TESTER} No possibility of good tubes reading "lBad" or bad tubes reading "Good" as on dynamic conductance testers or other ordinary emission testers. Attractive panel and case equal to any on the market in appearance. . Large
Calibrated micromho scale as well as a Bad-Good scale. Front panel fuse. . Individual sockets for all tube base
 tested regardless of location of elements on tube base. . Indicates gas content and detects shorts or opens on each individual section of all loctal, octal and miniature tubes inctuding cold cathode, magic eye and voltage regulator tubes as well as all ballast resistors. Name of the nationally known manufacturer withheld hecause of special price offer. Model "C"-Sloping front counter case...............

DO NOT ASSORT TO MAKE QUANTITY
Cable Address: BUFRAD
vinimum order s3.00- IIt prices subject to change-25\% deposit with COD orters.

\section*{BUFFALO RADIO SUPPLY, 219-221 Genesee St, Dept. 6-E BUFFALO 3, N. Y.}

\section*{BRAND NEW EQUIPMENT}

\section*{Available for Immediate Delivery}

Pioneer Torque Units Types 12602-1-A, 12606-1-A and 12627-1-A.
Pioneer Torque Unit Amplifiers Type 12073-1-A.
Pioneer Autosyn Motors Types AY1, AY5, AY6, AY10, AY14, AY20, AY21, AY27, AY 30, AY 38 and AY 54.
Pioneer Precision Autosyn Type AY101D.
Pioneer Magnesyn Indicator Type 13318, dial graduated 0 to \(360^{\circ}\), 26 volts 400 cycle.
Pioneer Autosyn Single Indicators Type 5907-17, dial graduated 0 to \(360^{\circ}, 26\) volts 400 cycle.
Pioneer Autosyn Dual Indicators Type 6007, dial graduated 0 to \(360^{\circ}\) and other ranges, 26 volts 400 cycle.
Pioneer Two-Phase Low-Inertia Servo Motors Types CK1, CK2 and CK5, 400 cycle.
Diehl Two-Phase Low-Inertia Servo Motors Types CDA211052, 75 volts 60 cycle and FP-25-2 and FP-25-3, 20 volts 60 cycle. Will also operate on 115 volts 400 cycle.
Eastern Air Devices Permanent Magnet Generators Type J36A, 10 to 5000 RPM, .02 volts per revolution.
Eastern Air Devices Synchronous Motors Type J33, 115 volts 400 cycle, 3 phase.
Inverters_Three-Phase 400 cycle. Pioneer Type 12121 and 12123 and Holtzer Cabot Type 153F.
Inverters-Single-Phase 400 cycle. Pioneer Types 12116 and 12117. Holtzer Cabot Types 149F and 149H. General Electric Type 5D21-NJ3A. Wincharger Type MG750 PU/16 and Winco Type MG2500 PU-7.
Delco Permanent Magnet Field Motors Types 5069370, 5069466, 5069600, 5069230, 5067125 and Diehl Type SS-FD6-16.
Weston Frequency Meters Model No. 637, 350 to 450 cycle.
Synchros-Sizes 1F, 1CT, 5G and 5SG.
Pioneer and Kollsman Remote Indicating Magnesyn Compass Sets with or without 12 or 24 volt input 400 cycle inverters.
Gyros-Schwein Rate Types 45600D and 46800, Pioneer Servo Unit Type 12800-1-D, Sperry A4 and A5 units, Norden and Minneapolis Honeywell units.

\section*{WRITE FOR OUR COMPLETE LISTING!}

\section*{INSTHUMENT ASSDCIATES}

\section*{Sales \\ Bulletin}

\title{
Desirable Select Surplus Items of Electronic Equipment—New, Unused
}
\begin{tabular}{|c|c|c|c|}
\hline 1TEM & QUANTITY & DESCRIPTION U & UNIT PRICE \\
\hline ol & 17 & Link Radio Transmitter-Receiver Type 50-UFS, 50 watt frequencymdoulated complete transmitting and receiving main station, freduency range \(30-44 \mathrm{mcs}\). Includes transmitter, one \(12-\mathrm{UF}\) receiver, local control and deluxe desk cabinet, and Link Remote Control Unit. Primary power source \(100-125\) and 220 volts A.C. \(50 / 60\) cycles & \$475.00 \\
\hline o2 & 46 & Radio transmitters-receivers for airport traffic control purposes, ship-toshore communications, etc., type AN/FRC-1, output 150 watts, frequency range 1.5 mc to \(12.5 \mathrm{mc}(200-25\) meters). Primary power source \(90-120\) volts or \(200-230\) volts \(50 / 60\) cycle AC, Emission A1, A2, A3 ... & \$ \(\$ 575.00\) \\
\hline o3 & 6 & Radar ships' units Type SF, complele with all components & \$1,480.00 \\
\hline 04 & 1 & QCT Sonar Unit & \$2,400.00 \\
\hline 05 & 1 & Navy model transmitter for radio telegraphy, Type TAJ-19. Power out put 500 watts-Emission CW and MCW. Frequency range 175-600 kes. Manufactured by General Electric. & \$1,950.00 \\
\hline 06 & 36 & R5/ARN-7 Radio Compasses. & \$125.00 \\
\hline 07 \({ }^{\circ}\) & 29 & BD-72 Field Telephone Switchboards. & \$67.50 \\
\hline o8 & 9 & Army Type PE-197 Gasoline Engine Driven Electric Generat or, out put 5 KW at 120 volts, 60 cycles, single phase. Engine: Hercules 4 cylinder water cooled automatic starting. Generator: manulactured by Hobart Bros. Complete with approximately 150 ft . of power cable, 150 ft . of remote control cable, spare parts and tools. & f \\
\hline o9 & 6 & Army Type E-3 Gasoline Engine Driven Electric Generator, output 3 KW at 110 volts, 60 cycles, single phase. Engine: Hercules 4 cylinder or Onan 2 cylinder water cooled with magneto ignition. Generator: manufactured by D. W. Onan \& Sons. Complete with spare parts and tools. & \(\begin{array}{ll}\text { r } & \\ r & \\ \text { d } & \\ \\ \\ \end{array}\) \\
\hline \multicolumn{4}{|c|}{PRICE ARE F. O. B. OUR WAREHOUSE - QUOTATIONS SUBJECT TO PRIOR SALE Export packing where necessary extra at cost} \\
\hline \multicolumn{4}{|l|}{\multirow[b]{2}{*}{630 FIFTH AVENUE NEW YORK 20, N. Y., U. S.A.}} \\
\hline & & & \\
\hline
\end{tabular}

CABLEADDRESS, FREXVAN,N.Y.
Electranie Enguncering Exports

\section*{"ARROW" leads with Better Buys!}

\section*{BRAND NEW! \\ \\ TUBES \\ \\ TUBES \\ BRAND NEW!}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 2 J 32 & \$19.95 & 304TL & \$1.95 & 832A & \$2.95 & 5BP4 & \$1.95 \\
\hline 869B & 19.95 & 2C26A & 69 c & 837 & 1.95 & 5BP1 & 1.39 \\
\hline 872A & 95c & 841 & 59 c & 838 & 2.95 & 5CP1 & 1.39 \\
\hline 6G6 & 79 c & 6AK5 & 69 c & 839 & 2.95 & 5 FP 7 & 1.39 \\
\hline 1N5GT & 69c & 10Y & 49c & 12BE6 & 49c & 9001 & 49c \\
\hline 6AT6 & 69c & 12A6 & 39c & 12SF7 & 49c & 9002 & 49c \\
\hline \(6 \mathrm{H6}\) & 49c & 12 C 8 & 49c & 864 & 49c & 9003 & 49c \\
\hline 6 J 5 & 49c & 12H6 & 39c & 954 & 49c & 9004 & 49c \\
\hline 6 J 6 & 49c & 12 J 5 & 39c & RK34 & 39c & 9005 & 49c \\
\hline 6SJ7 & 59c & 12K8 & 69c & 35W4 & 39c & 9006 & 49c \\
\hline 6SF7 & 39c & 12SJ7 & 59c & 1625 & 39c & 7193 & 39c \\
\hline 5R4 & 59c & 12SR7 & 59c & 1629 & 39c & 110 VAC Neon & \\
\hline 36 & .. 39c & 12AT6 & 49c & 2051 & - 39c & Light & 39c \\
\hline & & & & & & Amperite 10T1 & 39c \\
\hline
\end{tabular}

Write for lot prices!

BIAS METER

\section*{Brand New}

Oripinally
voltages
and
tele mpe voltages and teletype and
telephone equipment. Can be used for measuring DC voltages and bise voltages; also
checking polarity of DC roltchecking polarity of DC voliages. Complete with adaptor
plug and schematic. Enclosed in metal carrying case. Re-
quires no batteries por quires no batteries care Roper
tion

\section*{GLIDE PATH RECEIVER}

R-89/ARN-5
Glide Path Receiver used in the Instrument Landing System covering the frequency range 332 to 335 mc ; complete with the following tubes: 7-6AJ5, 1-12SR7, 2-12SN7, 1-28D7, and including three crys. tals \(6497 \mathrm{KC}, 6522 \mathrm{KC}\).

> BRAND NEW \$9.95
> In excellent condition..... \(\$ 6.45\)

\section*{ANTENNA RELAY UNIT}

0-10 Meter Weston Thermocouple unit with 50 MMF, 5000 v Vacuum Condenser, and heavy duty re- 1 lay........................... 1.95

WAVE METERS Freq. range: 22 to 30 meg.
\(\left.\begin{array}{l}\text { Freq. range: } 37 \text { to } 53 \mathrm{meg} . \\ \text { Freq. range: } 155 \text { to } 230 \mathrm{meg} .\end{array}\right\} \gg 5\)
AC operated, complete with carrying case and magic eye for tuning indicator, vernier tuning dial.

\section*{DYNAMOTORS}

PE 101C, Input: \(13 / 26 \mathrm{VDC}\) at \(12.5 / 6.3 \mathrm{~A}\). Output: 400 VDC at 135 Ma. ,
800 VDC at 20 Ma .
9 VAC at \(1.21 \mathrm{~A} . \ldots . . \mathrm{\$} \mathbf{2 . 9 5}\)
DM 53 A , Input: 28 VDC at 1.4 A .
Output: 220 VDC at 80 Ma
\(\$ 3.50\)

\section*{INVERTER}

PE 206-A.
Input: 28 VDC at 38 amp .
Output: 80 volis at 500 volt
amp. 800 cycles.
Leland. New, complete with
enclosed re
BRAND NEW \$3.95
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{OIL-FILLED CONDENSER} \\
\hline 25 MFD at 15,000
VDC & \$4.95 \\
\hline
\end{tabular}

\section*{SPRAGUE PULSE}

FORMING NETWORKS
Used in small radar modulators, avallable in 3 sizes, 67 ohms modulators, avallable watt rating.
H-603, one micro second, 200 \$1.95 pulses per second.............. H-601, 3 micro seconds, 200 punses per second............. 2.95 H.602, 16 micro seconds, \(60 \quad 3.95\)
pulses per second...........

Plug-In Vacuum Capacitor 50 mmf . designed to work with voltages up to 5000 volts. Will handle 5 the flnal when switching bands. just plug in condenser-size
\(13 / 4 \times 11 /\) BRAND NEW.. \(\$ 1.19\)

All Shipments F.O.B. Chicago. Minimum order \(\$ 5.00\). \(20 \%\) deposit on all orders. DEPT. EL.

\section*{ARROW SALES, ING.}

SOUTH SIDE BRANCH
8310 SOUTH HALSTED ST.

59 WEST HUBBARD ST., CHICAGO 10, ILL.
Telephone SUPerior 5575

NORTH SIDE BRANCH 1802 NORTH HUMBOLDT BLVD:

\section*{(II) SEARCHLIGH SECTION}

\section*{}

FOR MARINE, AVIATION AND COMMERCIAL USE

SCR-536 HANDY-TALKIES

We have just a fery hundred of these populat
Handy-Talkies, atrd thev won't last long ath ar Handy-Talkies, atrat they won't last long. All are crystals (receiving and transmitting) and batterits. sil are in lop operating condition. and presel at withous olar eing trequencies ranging from 3.5 to
6.1 me. Ne will supply units with matche tre PRICE, EACH \(\$ 50.00\)
Extra Set Batteries (A\&B) \$3.00

\section*{5-Meter Walkie-Talkie}

Model BC-322 Transceir er: simple, popular com
munieations unit. Frem ranse \(52-65\) me. Use only two tubes, tylues crestal in a crystal ciali bralor circnit. ifange 5 to 150 miles, clepeading nipon location and altitude
Onerates from sinsle hat tery block (not suy plied) ava lable trom
mfr,, or other smuces. Supritied of wither relestopes antelina and handset. al PRICE, EACH
\$24.95

\section*{FREQUENCY} METER
TS-69/AP
Frequency range 400 me to 1,000 me. con cracklefinishedmetal case, dim: \(6^{\prime \prime} \times 6^{\prime \prime} x\) \(22^{\prime \prime}\), contains varialle
length coax resonat. length coax resonat ing cavity with erystal rectiflers and \(0-\)
200 micromametel. Veeder-Root counter and calibration charts insureextreme precision. Telescopic antenna, and coax line probe, with meal carrying case for enNew Equipment.
COMPLETE, EACH
\(\$ 42.50\)

50 WATT RADIOTELEPHONE; MODEL ATD
Designed for airplane installation. 4 chamels. conser atively rated at 50 watts ourpu1, Al. A2. and 13 . Instant selection of any one frequency In 3 hands, 540 to 1500,1500 to 30100 and 30011
to 9050 kc Complete with 24 to 28 s.d.c. dyna-

 \(\$ 110.00\)

32 VDC 110 AC CONVERTER

Ncfic. by Fato Engineering, for Marine or farm inbuilt for continuous duty. Rubber shock mounting on dilter case. With complege inpht and output pilterhint will overate efficiently ont loarls up to 300
PRICE, EACH
\$39.95 Quantities, 10 or more, Each \(\$ 34.95\)

\section*{RADAR EQUIPMENT}

 Complete with all spares and accessories.
EACH
 "xcellmit condition but less tubes. EACH. SI 50.00 Mod Yiser Suphy Cnic onlo (transmitter) Will tuhes. Good condition. PRICE EACH...SI50.00

\section*{RADIO TRANSMITTERS}

Immediate Delivery from Stock

 \(4-872\) A and \(2-866\) tubes, in callinet \(24^{\prime \prime} x 30^{\prime \prime} x 4^{1 / 4}\)
high. Operates from 110 or 220 volts, \(50-600\) cycles. 1-phase AC Driving Iower required, \(70-125\), watts. New, with tubes. COMPLETE, 100 W.A2, \& A3
 unbes, in excellent condition. Price, each \(\$ 700.00\)
\(\mathrm{BC}+47,300 \mathrm{~W}\). Al 2-Channel Transmifter.
 il, includes llf sections. Dower sumplies, and conates from \(110 / 220 \mathrm{~V} / 1 / 50-60 \mathrm{C}\) AC. I ith tubts Model \(600-\mathrm{B}, 600\) Watt Radiotelephone transmifter, mitcl. by Temeo for the Nasy (shove station)
binfl watts on plone, KW ('W :
 olveration. Includes separate Remote Control ani Sipeech Amplifier unit. Operatoss from 220 volis
i-phase. \(50-60\) cycles AC. With tul)es-no spans lice TCl: 10 -channels instantly avalable by dal-tele
 Operates trom 110 wolts, 1 -phase. \(50-60\) eveles AC
Complete with all syares tuhes, capacitors, remple operating ninnt, handsets, efc. Fxccllemi
remdition. 1'ticed way below cost at...... \(\$ 600.00\)

\section*{X'MTTNG X'FORMERS CHOKES, ETC.}

Inea Heavy Current Plate X'former has tanper primary tondtry center-tapped. Output 3001
 dition, PRICE EACH
Amertran Filter Choke. Type w, 0.04 hemmes at 2.1
 PRICE EACH
Adlake Time-Delay Relay. Model \(902-\mathrm{z} 2-\mathrm{f}\). 220
 EACH Time-Delay Relay, Type \(1040-65-4.95\) volts 50 -(i) eycles AC, normally omint operate min

All Prices F.O.B. N.Y.C. All Material Offered Subject to Prior Sale. Prices Quoted Supersede Previous Advertised Prices, and Effective Until Next Issue Only

TELEMARINE COMMUNICATIONS COMPANY
Phone—Watkins 4-7021
533 W. 24th St., N. Y. 11, N. Y.

SIGNAL GENERATOR for the range of 1000-4000 megacycles, used by producer of the APR-4 tuning units, uses a \(1000-\) 3000 megacycle cavity i 2 C 40 below cutoff attenuator, crystal and 50 microcoaxial wavemeter, sine wave modulation, 115 v. 60 cps .
HARMONIC GENERATOR, good output in range of 300 to 2000 megacycles. uses 000-1000 mic butterily, 703 A que. and distorter crystals, waveguide below cul
off attenuator, used, 110 ¢ 60 cps.

TEST SET TS-278/AP. for AN/APS 13. synchronized, delayed pulse signal generator, 400-430 megacyeles, calibrated waveguide belov cutof attenuator. syn-
chronized marker generator, 115 y 60 chs. new and complete.
TUNING UNITS for AlPR-4 and APR-1 receivers. TN-19 975-2100 me and TN-54

WIVE ANMYZER, General Radio type 633-A.

RANGE HXTEASION FIITER, Gen Rallio 732-P1.
SIGNAL. GENERATOR, G.R. 605 B , good working order
SIGNAK, GENEKATOR MEISU1BEMENTS 78 B and Ferris 18 B . good working

X BAND S.l.. . Test Sets, TS-12/AP,
X BAND POWER METER, TS \(36 / A P\),
X BANID WAVE METER, TS \(33 /\) AJ', new, X BAND POWER L.O MD, 'TS-108/AP, new. S) XOHROSCOPE, TS-34/AP.

TYIE N CONNECTORS, UG-10, 12, 21,22, \(24,25,-27,30,59,83,86,190,201,245\). and UHF connectors So 239 , PLA 25983 tactis, immediate delivery.
CRYSTAI, MIXER ASSEAIBLY, 10 cm. type \(N\) fittings.

COMPICT RMINR RICCEIVER TRANSMITTER AND INDICATOR. AN/APG13A, 2400-2700 me, 115 v 400 cms , new. export packed \$125.00.

RADAl: TRANAMITTER. BC 947-A, 10
COMPIUTE M NKINE RADAR. Navy SU 3,220 megacycles, 115 v 60 cps. new. ex port packerl.

COMILLETE 10 CM KADAK SFTS, SL- 1 and se.
RADAR RECEIVER BC 1068 -A, \(150-230\) megacycles individual tuning for the volts. 60 ens, \(1 \ddagger\) tubes, \$45.04.

MARINE RECEIVER MICKAY 128-AW MCIRINE RECEIVEIR ARB-1, \(15-600 \mathrm{kc}\), s50.00.
TKANSFOLEMERS. 115 volts 60 cus prim.
1. 7500 volts 35 ma, ungrounded "ho

7500 volts 35
darsen, \(\$ \mathbf{1 5 . 0 0}\).
2. 6250 volts 80 ma, ungrounded, G. F sit. OH .
3. 2 secondaries at 500 volts 5 amps each, wt 210 pounds, \(\$ 50.00\).
lulse Input Transformer, permalloy core. 50 to 4000 kc impedance ratio 120 to 2350 ohms. \$3.00.
Fulse Transformer, Westinghouse 145届W1", \(\$ 3.01\).

Magnetron 3.131, \$17.00.

\section*{ELECTRO IMPULSE LABORATORY}

66 Mechanic St.. Red Bank. N. J. Red Bank 6-4247

\section*{(1) SEARCHLIGHT SECTION}

CO-AX CONNECTORS

VOLUME CONTROLS

MICROSWITCHES

You realize substantial savings on production runs when you specify Wells components. We maintain enormous stocks of a wide variety of parts of assured quality.

For specifications and prices, check the listings in which you are interested and mail the coupon. A wire or phone call will produce immediate information on any specific components.

\section*{(id SEARCHLIGHT SECTION T}

Each unit contains two \(3 / 4^{\prime \prime}\) sq. erystals differing in frequency by \(455 \mathrm{k} . \mathrm{c}\). The following combinations are avail. able:

\section*{Kilocycles}

Kilocycles
(1183.0 and 1638.0) (4242.5 and 4697.5) (2030.0 and 2485.0) (4287.5 and 4742.5) (2172.0 and 2627.0) (4310.0 and 4765.0) (2407.0 and 2862.0) (4360.0 and 4815.0) (2457.0 and 2912.0) (4435.0 and 4890.0) (2481.0 and 2936.0) (4702.5 and 5157.5) (2530.0 and 2985.0) (4713.0 and 5168.0) (2539.0 and 2994.0) (4930.0 and 5385.0) (2560.0 and 3015.0) (45.35 .0 and 5390.0) (2562.5 and 3017.5) (4975.0 and 5430.0) (2915.0 and 3370.0) (5080.0 and 5535.0) (2945.0 and 3400.0) (5217.0 and 5672.0) (3820.0 and 4275.0) (5235.0 and 5690.0) (3860.0 and 4315.0) (5490.0 and 5945.0) (4002.5 and 4457.5) (5835.0 and 6290.0) (4175.0 and 4630.0) (6485.0 and 6940.0) (4205.0 and 4660.0) (6515.0 and 6970.0)

All above units are brand new, individually packed with frequencies marked on containers and with manufacturer's inspection tags attached. Quantities available to large users.

\footnotetext{
All prices quoted are F.O.B. Tuckahoc, N. Y. (About 20 miles north of New York City). All merchandise guar antced. smmediate delivery subjec
}

\section*{ELECTRONICRAFT, INC.}

5 Waverly Place, Tuckahoe 7, N. Y. Phone Tuckahoe 3-0044

\section*{INDUSTRIAL \& ELECTRONIC} ROWER SUPPLY EQUIPMENT

\section*{TRANSFORMERS}

T.la3-Voltage regula Lor Transtat. American Transfomer Co. suec.
 \(\operatorname{limt}_{10.155} 11.5\) V. \(50 / 60\) esce. \(\begin{array}{lllll}0.115 & V & 100 & \text { amp/s or } \\ 4.30 & \mathrm{~V}, 50 & \text { amps. } & \$ 75.00\end{array}\) 290
Net Wt. 134
\(05^{\prime \prime}\)
Whe \(25^{\prime \prime}\) W" x \(166^{\prime \prime}\) D x \(171 /{ }^{\prime \prime}\) T-101-Plate Transformer, Amertran Spec. 29108. Primary 115 V. 60 cyc. 10.4 KVA. Secondary 17600 V. . 520 amps. 35 KVA test. \(8800 / 8800 \mathrm{~V}\) W/center tap grounded (specify) \(\$ 65.00\) Net Wt. 500 lbs. Dim, \(19^{\prime \prime} \mathrm{W} \times 151 / 2^{\prime \prime} \mathrm{D} \times 41^{\prime \prime}\) H.O.A.

T. 102 - Filament Tiansformer. American Transformer Co. Sbec. 29106. Type WS . \(050 \mathrm{KVA}, ~ 50 / \mathrm{kit}\) cyc. Single phase, 35 KVA test, 12 KV D.C. operating. 1'rimary 115 V, secondaty \(5 \mathrm{t} ., 10 \mathrm{amps}\) witl integral standotr insulator and socket for 250 T', \(371,8 i 2.5563\), etc. reetifler tubes \(\$ 12.50\) Net VVt. \(153 / 4\) lbs. Dim. \(61 / 2^{\prime \prime}\) W \(x\)
\(6^{\prime \prime} \mathrm{D} \times 12^{\prime \prime} 11.0\) A. CHOKE COIL
R-106-Amertran Disc. Type. Specification No. 29107. Line volts 15,000 V. D.C., Ripple frequency 120,149 ohms resistance, .020 D. C. amps at 900 henrys \(48 \%\) ripple, .52 amps D.C. at 25 henrys \(48 \%\) ripple \(\$ 42.00\) New Wt. 280 lbs. Dim. 17" Wx12' Dx311/2" H.O.A.

\section*{CAPACITORS}

Nationally advertised brands. CapaciNationally \(\mathbf{2 5 , 0 0 0}\) V. D.C. \(\$ 36.00\) Net Wt 65 lbs. Dim. \(141 / 2^{\prime \prime} W \times 81 / 2^{\prime \prime}\) Net Wt 65
Dx15" H. O. A

\section*{RELAY}

RC-117-Westinghouse Time Delay Current Relay

\section*{METERS}

M-140AB-Weston Model 4i6- \(3^{\prime \prime}\) A.C. Ammeter. M-140AB - Weston Nodel 4i6-3-120 amms. flash mounting, with \(40 / 1\) current lians. Net Wt. 3 lis.
M-I 43AB-Weston Kilowoltmete-3". Monel :301 20 KV . @ 1000 ohms ber wht. Hhsh type calibrated for steel panel mounting, with 20 meg. 20 KV Weston resistor complete with clins and stamoth Net Wt. 41 lhs .

HEATERS
H-149 Chrmolox strip heaters. \(300 \mathrm{~W} ., 115 \mathrm{~V}\) \(\left(1 / 4 \times 11 / 2 \times 12^{\prime \prime}\right)\)

\footnotetext{
All merchandise in "as new', condition. Add approximately \(20 \%\) to net weights for estimated shipping weights. Terms are \(30 \%\) with order, alance G.O.D. All prices fo.b. Los Angeles Warehouse.
Write for additional detailed information on any discounts.
}

GRAIN of WHEAT LAMPS
 shotograph 3 times actual lamp from base As big as the "B", in our name Mazda G.E. 323 3v. . 19 A Used Gor illuminating Meters. Compass Dials, and Airplano Great for Models, Doll House Dozen 5 -5 'as

Operates on Flashlight batteries, speed depending on the valtage. Fairly strong on 6 volts, full power and speed on 27 volts. Designed to be used in bombsights, automatic pilots, etc., 250 \& 5.00
RPM. FEW MORE af

NOUS TIMING
HAYDON SYNCHRONOUS TIMING MOTOR
 to operate switches, efc. can be hod either 1 Rev. per hour or 1 Rev. per minute at this SPECIAL
\(\$ 3.85\)
Many other speeds available at \(\$ 4.95\)

Experimenters and Inventors Supplies 64 Dey St., New York 7, N. Y.

\section*{BRAND NEW} TS-13 HANDSETS
- Standard size and type. Surplus Black Bakelite. Low-impedance mike, 3000 -ohm receiver. 6-ft. cord with two plugs.
Brand New. In original factorysealed cartons \(\$ 2.85\) ea, net.

\section*{EIMAC VT-127A TUBES}
- Capable of \(1-\mathrm{KW}\) on 6 meters for a pair. 5v. 10a. Fil. Platinum Grid. Brand New. Original cartons. Surplus. \(\$ 2.85\) ea, net. Brass Filament Clips \(25 ¢\) pair.

\section*{25-Watt P-A Re-Entrant}

Speakers - Brand New!!
- 9-pound magnet. \(13^{\prime \prime}\) bell. 21" long 250 line-matching xmir. 250, 500, 1000 2500 ohms. Our best seller. Few le
VACUUM CAPACITORS
- Surplus. Brand New. Original Boxes. 17,000 peak volts up to 50 unf sizes; 10,000 peak volts for larger sizes. Guuf. \(\$ 2.80\) 150ut \$11.60; 200uuf \$14.60; 250uuf 150 u.
\(\$ 17.30\).

\section*{OFFENBACH \& REIMUS CO. \\ 372 Ellis St., San Francisco 2, Calif.} Telephone: ORdway 3-8551

\section*{SHEET METAL MACHINERY \\ NEW and Used - Brakes - Shear}

Forming Rolla - Folderi - Punchas -Di-Acro, Pexto, Niagara \& Whitney Equipment.
R. B. BROOKS CO., INC.

361 Atlantlo Ava., Boston, Mase.

\section*{SHESYN MOTORS}

\section*{JUST \\ ARRIVED}

115 Volt AC 60 cycle. Synchronous transmitters \(51 / 2^{\prime \prime}\) high, \(31 / 2^{\prime \prime}\) Dia. New. Wt. 5 lbs. Each. Can be used to turn small beam antennas, or as indicators only Cost Govt. \(\$ 65.00\). Special per pair
\(\$ 5.95\)
If not rated \(25 \%\) with order. halance C.O.D. All prices F.O.B. Oill warehouse New York. No orcler under \$2.00. We ship to any part of the globe

LEED5
75 Vesey Street
Dept. ES6
CO rtlandt 7-2612 New York City 7

\begin{tabular}{|lll|}
\hline & & \\
\hline & \\
Input \\
O-18VAC
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline & \multicolumn{2}{|r|}{O \({ }_{\text {Output }}\)} \\
\hline & Current & Price \\
\hline B3-150
13
13 & 150 MA . & 81.25 \\
\hline 13,250
\(133-600\) & 250 MA . & \({ }_{3}^{1.95}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \[
\begin{aligned}
& \text { Input } \\
& 0-72 \mathrm{VAC}
\end{aligned}
\] & \multicolumn{2}{|r|}{\begin{tabular}{l}
Output \\
0-54*VDC
\end{tabular}} \\
\hline Type & Current & Price \\
\hline B4-1×2 & 1.2 AMP. & \$7.95 \\
\hline B4-3X5 & 3.5 AMP. & 15.95 \\
\hline B4-5 & 5 AMP . & 17.95 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \[
\operatorname{loz}_{234 \mathrm{~V}, \mathrm{C}}
\] & \multicolumn{2}{|r|}{- Output} \\
\hline Type \({ }^{\text {a }}\) & Current & Price \\
\hline B13-4 & 4 AMP. & \$54.95 \\
\hline B13-7N5 & 7.5 AMP . & 63.95 \\
\hline B13-10 & 10 AMP. & 69.95 \\
\hline
\end{tabular}

THREE PHASE BRIDGE TYPES Input 0-126VAC Output 0-130*VDC Type \(38,-4\)
\(3 B 7-6\)
\(3 B 7-11\) Input 0-234VAC Typer
3B13-4 \(3813-4\)
\(3813-6\)
3813 3B13-11 \(\qquad\) Output 0-250 Price
\(\$ 32.95\)
48.90
65.00

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|c|}{RECTIFIER CAPACITORS} \\
\hline \(\mathrm{CFF-1}_{\mathrm{CF}-2}\) & 1000 MFD . & 15 V.D.C. & 8.98 \\
\hline \(\mathrm{CF}^{\mathrm{CF}}\) & 1000 MFD , & 25 V.D.C. & 1.69 \\
\hline \(\mathrm{CFF}^{\text {c- }}\) & \(2 \times 3510 \mathrm{MFD}\). & 25 V.D.C. & 3.45 \\
\hline \({ }_{\text {CF-5 }}\) & 1500 MFP. & 30 V.D.C. & 2.49
3.25 \\
\hline CF-7 & 3000 M FP : & 35 V.D.C. & 3.25 \\
\hline \({ }_{\text {CFF-8 }}\) & 100 MFD . & 50 V.D.C. & 98 \\
\hline \(\mathrm{CFF}_{\mathrm{CH}-10}\) & 500 MFD . & \({ }_{200}^{150}\) V.D.C. & 1. \({ }_{3} .29\) \\
\hline \(\mathrm{CFF}^{\text {Cl }}\) & 100 MIFD & 350 Y.p.C. & 2.25 \\
\hline CP-12 & 125 MFD. & 350 V.D.C. & 2.49 \\
\hline
\end{tabular}

\section*{RECTIFIER CHOKES}

HY2 . 03 Hen. at 2Amp. 82.25 HY3 . 03 Hen. at 3Amp. 2.95 HY5 . 02 Hen. at 5Amp. 3.25 HY12 . 125 Hen . at 12 Amp . 12.95
\begin{tabular}{|c|}
\hline \multirow[b]{8}{*}{} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline METERS \\
\hline 0-50) Amu, D.C. Weston \\
\hline \\
\hline \({ }^{0-1} 4506\) Mr \(^{2 *}\) D.C. Weston Case. \\
\hline 0-8 V.A.C. G.E. \(31 /{ }^{\prime \prime}\) \% Rd . \(\$ 3.95\) \\
\hline
\end{tabular}

ALL PRICES SUBJECT TO CHANGE WITHOUT NOTICE
It would be impossible to give a complete listing of all our rectifer types. Our engineering staff is at your
service to help you work out the application of selenium rectifiers to your specific oreblems.
 Under \(\$ 25.00\). Add \(10 \%\) 1or Parcel Post.
71 Warren St.
Dept. 3
New York 7. N. Y. Phone: BEekman 3-7385

\section*{13,000 NEW STORAGE BATTERIES}

\section*{Plastic and Hard Rubber Containers}
waterproof, lead acid type terminals, 6 volts, 15 amp. hrs., 3 cells, 2 volts each, \(1 \frac{1}{2}\) amps. for 10 hrs., size \(4 \frac{1}{2}\) " width by \(4 \frac{1}{2}\) " length by \(5 \frac{5^{\prime \prime}}{3^{\prime \prime}}\) height, manufactured by Willard and Gould, packed in wood boxes of 9,12 , and 18 each. At \(\$ 2.00\) each, f.o.b. Allentown, subject to prior sale.

Sample orders upon request

\section*{ELECTRONIC TUBE-MAKING} MACHINERY
For manufacturing radio rubes, electronic tubes, cathode-ray tubes, lamps. New and uked. Reasonably priced, satisfaction guaranread.

AMERICAN ELECTRICAL SALES CO.
67 E. 8th St.
New York, N. Y.

\section*{(ID) SEARCMLTGHT SEGTION}

\section*{SURPLUS PRICES SLASHED}

POLIAHERS. Motor onerating at 220-360 , rated \(2 \mathrm{HP}, 3450 \mathrm{Rl}\), 1 on portable base with cord and flexible shafi. For grinding. polishing, bufting or any number of uses. Too large for home use. Rehuilt bike new ant fully gumanteed SPECIAL, ea, S98.50
13RAND NEW NOTOKS rated at 6.75 HP operative at 230 Volts, DC 1100 RPM, Ball Bearings. Has flange and base. Cost to Hovernment - \$1072.00. each. Original cases. SPECIAL, ea. stifi.is
HLECTUIC SPECIALTY ROTIRY CONIERTERS, 140 va. Operates at 110 Volis, DC delivering 110 Volts, AC, 500 cycles. Rebuilt, \(\$ 29.50\)

GENERAL HENCTKIC MOTOR STNKTING REACTORS \(=11 \mathrm{E}\) (RIOPCE1 MOdel CR9195 Rated: 440 Volts, 3 Phase, 60 cycles, 16.8 amperes. \(15-20\) HP. Contained in a heavy waterproof case of pressed 3RAND NEW in oririmal factory cases. Exceptional value at so.90

HLINCO AC GENERITOIS TYI'E FLG Termanent magnet. 'Two pole. Two phase, 1.3 rolis per 100 R.P.M. \(2 \frac{1 / 4}{}{ }^{\prime \prime}\) in dianmeter \(3^{\prime \prime}\) long with \(y^{\prime \prime}\) " shatit. Used as a sell synchronous motor in servo applicalions and as a capacitor slart and run molor. 60 cycles. SIPGCIAL \(\mathbf{8 8 . 3 5}\)
\begin{tabular}{c|c}
12 for \(\$ 1\). & NEW \\
\(\cdots \ldots .95\) & 112 Page \\
\hdashline\(\$ 1.9 \%\) & Catalog
\end{tabular}

Packed from cover to cover with thousands of amazing values in a \(\$ 500\), 000 stock. Distribution must be limited to requests on company lefterheads. Address Dept. E. 5 Boston 10, Mass.

\section*{NEW 112 Page Catalog}
\(\$ 13.50\)
\(\$ 23.85\) . \(\$.98\) S 21.90 .756 .95 c \(\$ 65\). \(\$ 4\). 98 c
3 nc .

\section*{f Foot Tinsel Cords, Rublier Covered}
;1/2 KV I Transformers, 460-230/230-115. New
El Inverters 12vDC/110vAC- \(\mathbf{1 5 0}\) Watts, 60 CPS
Transtats, 400 eyc. 115/92-115 126 va.
Antenna Kit BG176
Raythenn . 5 KVA Trans, \(410 / 105 / 115 / 125\) El Inveriers, Rebuilt. \(110 \mathrm{DC} / 1!0 \mathrm{~A}\) (250 w. 60 CPS
W-L Rherstat, 32 ohms, 2.5 amp. \(6^{"}\) Plate Johnson Tube Sorket 122-234
4?" Flexible Shaft Assembiy
Vestinghouse 1 KVA Trame \(60 / 230-230 / 115\)
West. 11/2 KV1 Trans. 460-230/230-11
Airwound Trans. Coils 4.5-5.7 A1C Fixed
Airwound Trans. Coils 5. \(7-8.0\) MC Adj. Link.
Condnetor Tinsel Card 10 it . long \(\mathrm{v} / \mathrm{coml}\) Penn 10 KV Trans. \(110 / 220\) Two windings
Nine brop Anmumeiators
Hakelite Rodr \(7 / 16^{\prime \prime} \times 1 / 2^{\prime \prime} .371 / 2^{\prime \prime} 10\) ag
Wicugand Strip Healors, 300 watis, 115 volts Universal Conplings. elbow type, \(21 / 2{ }^{\prime \prime} I s x\) 3/8" hore \(D\)

\section*{ELECTRO SALES COMPANY \\ Dept. E-6, 110 Pearl St. \\ Boston 10, Mass.}

\(\$ 3.95\)
10 for \(\$ 35.00\)

\section*{PORTABLE D. C. AMMETER}

\author{
HOYT TYPE 515 \\ RANGE 0—15 AMPS
}

Mirrored scale \(31 / 2^{\prime \prime}\) long, knife-edge pointer. Molded bakelite case dimensions \(41 / 4^{\prime \prime} \times 51 / 4^{\prime \prime} \times 21 / 4^{\prime \prime}\). Snaps in place in black wrinkle-finished steel case \(51 / 4^{\prime \prime} \times 6^{\prime \prime} \times 23 / 8^{\prime \prime}\). Furnished with 3 ft . color-coded rubber insulated clip leads,
Basic movement-approximately 12.5 ma . Shunt readily replaced permitting conversion to lower range scale

Individually packaged in moisture-vaporproof packing.

\section*{Lectronic Research Laboratories}

5832 Hegerman St.
Philadelphia 24, Pa.
Phone--Cumberland 8-4737

FOR SALE
All or part
12 RCA 160B C.R. Scopes; new, export packed
10 General Radio 724-A Precision Wavemeters, new, export packed
Large quantities of Amphenol 83-1AP UHF right angle adapters, AN 3102 14S-5P and 14S-2 connectors and Cannon PL-81 connectors.
Centralab 50 mmfd threaded ceramic feed thru capacitors and 300 mmfd silver button mica disc type feed thru capacitors.
1000 lengths of aluminum alloy conduit, flexible shielded with tinned copper braid, ID \(1 / 2^{\prime \prime}, 88^{\prime \prime}\) long, male and female couplings
1600 lengths of stranded aluminum flexible shielding. ID \(3 / 4^{\prime \prime}, 7 \mathrm{ft}\). long
7000 feet of stranded aluminum flexible shield conduit, ID \(3 / 8^{\prime \prime}\)
1000 meters, \(0-350\) volt, 1000 ohms/volt. \(31 / 2^{\prime \prime}\) round Westinghouse NX-35

\section*{ELECTRO IMPULSE LABORATORY}
P. O. Box 250 Red Bank, New Jersey

ew FEDERATED Branch ALLENTOWN, PA.
With complately stocked warehouse and show.
roons, featuring all standard lirands in Radio, Electronic Parts. \& Equipment. IF YOU'RE Federated Purchaser|mc. Allentown, Penna. PHONE: Allentown 3.74

\section*{SIGNAL GENERATORS}

We are able to supply for immediate delivery two measurement model 84 Microwave Signal Generators (\(300-1000 \mathrm{Mc}\).). These units are fully guaranteed. 40\% Discount. Subject prior sale.

VILLAGE RADIO EQUIPMENT CO. 201 West 16 5t.
N. Y. City

\section*{(id SEARCHLIGHT SECTION Ti}

\section*{SUPER VALUES from MID-AIERICA!}

\section*{Stromberg Carlson DYNATENNA}

\section*{PERMEABILITY TUNER} Build a really HOT 5 or 6-tube AC-DC super her receiver! coils: regular 455 KC intermediate f equency. MA \(\mathbf{~ M 1 6 7}\)
 Order MA

\section*{SPECIAL AUDIO TRANSFORMERS}

Exceptionally high -quality universal output transformer fo push-pullor parallel tubes to 6 - 8 ohms voice coil. \(122^{\prime \prime}\) color coded leads. ton on chassis or speaker Complete withinstruc-
tons for matching tube impedances. MA -1205 Hermetically sealed 200 ohm
C ingle to 50,000 ohm arid. Users
Single microphone transformer, voice coil output for 5016
lineto-grid, etc \(25 / 50\) \(\times 1 / 2 \times 11 / 2^{\circ}\). MA -1262 69C mounting centers. 49 C

\section*{Heavy Duty Noise Filters}

Rated on 10 ampss , 115 -volt AC. Measures only \(1^{*} \times 1\) "/ "square. where line noises must be kept at a minimum. Na- \(\mathbf{7 9 q}\)
tonally known manufacturer. MA-2164...
Filter for mobile power supplies. Rated 10 amps, \(6-30 \mathrm{VDC}\) Has additional 2 mfd. 100 VDC condenser. \(2^{\prime \prime}\) high, 594
\(2^{\circ}\) square. MA-2165. . .

\section*{SPEAKER SPECIALS} All with Heavy ALNICO 5 Slugs
3 \(1 / 2\) " PM MA -2062 . . \(\$ 1.39\) 4x6 Oval PM MA -2187 \$1.39 5" PM MA -2071 . . \(\$ 1.39\) 6" PM MA-2189 . . . \(\$ 1.95\)

\footnotetext{
ORDER FROM THIS AD!
Quantities are limited, so get your order in now! Minimum Get on MID-AMERICA's mailing list to receive BIG BAR GAIN BULLETINS that list latest, greatest buys in radio
MID*AMERICA CO. Inc.
2412 S: Michigan Avenue
Chicago 16, Ill.
}

We specialize in ADF, ILS, Marker Beacons, and all Aircraft Radio Equipment, Components, Parts, and Accessories. All inquiries promptly and intelligently answered.
"Tull many a gone of purest hay verona" In ARICO'S wrothowe croon be scow.

Postpaid anywhere in the U.S. No C.O.D.'s
For 12-volt Localizer operation use as is.
For 12 -volt ARC -5 or \(274-\mathrm{N}\) Receiver operation merely change existing saddle on 24-v dynamotor. NO TAPPING OR DRILLIING NECESSARY.

\section*{Ainctalt Radio Industries, Inc. \\ 101 Dixwell Ave. New Haven, Conn.}

\section*{<compat>ᄂ<compat>ᅳ<compat>ᄂ HIGH FREQUENCY HEATERS — Induction and Dielectric}

Limited Stock of surplus units immediately available at GREATLY REDUCED PRICES

Manufacturer's stock units-unused. Available in standard ratings of 1,3 , and 25 kw output. These are high quality dielectric and induction heaters, made by one of the country's leading manufacturers of electronic equipment. A real opportunity for big savings. Write for full particulars today, specifying type of equipment desired-induction or dielectric. Address:

FS-4743, Electronics
330 West 42 nd Street, New York 18, N. Y.

\section*{LABORATORY EQUIPMENT}

Are you tired of standing in line, and waiting for delivery of New Equipment? If so, why not try us. We have in stock for immediate delivery the following surplus Laboratory Instruments. Fully tested and guaranteed. We number among our clients many of the best known Colleges, Industrial Organizations, and Research Laboratorics in the U.S. A. and Canada.

General Ratio: 10 an Vablable Inturcors; \(^{2}\) \(222,722 \mathrm{~F}, 722 \mathrm{M}, 722 \mathrm{NQ}\) krecision ariable Condensers; F522A Slecial Signal Genera-
 meters; 726A VTVM; \(316 \mathrm{~B}, 740 \mathrm{BG}\) Capaciance Bridges: 736A Ware Analyzer; 6191心 Heterodvne Delector; \(\quad\) torion Meter; 821 A Twin-T Bridge; 916 A R.F. Bridge; 483 C Oulput Meter; bitiA Jnductance Bridge; \(804 \mathrm{~A}, 80 \mathrm{t} \mathrm{C}\) Sis Gens. Meamurements: 71 Square \(W\) Wa Ge GeraMensurements: Sig. Gen. (\(300-1000 \mathrm{Mc}\).) ; 78 FM Sig. Gen
Ferris: 18B, 18C, 18F, 22D Signal Generaherrs, \(33 \mathrm{~A}, 34 \mathrm{~A}\) Crystal Calibrators;
Boonton: 120A V.H.F. Circuit Checker; Boonton: 120A V.H.F Circuit FM ecker;
140 Wide Range Bro; 155 FM Signal Generator: Range BrO, L55A FA Hewkett-Parkart
Standard Brand: 4221, 4222, 4223 PreciStandard Brand: 4221,4222 , 2223 Preci-
sion Resistors; 4270 Percent Limit Bridge 7655 Portable Indicalor and Standard Cell;
Browning; Millen: P4ts Synchroscopes RCA: NI 18:玉0 Microwave Signal Gen (800-1200 Mc.)
Western Electric: D 151512 3" Synchroscopes: RA 90t High Voltage Rectifier; plies; TS 5AP Range Calibrator (Sweep

Marker Generatur): 151754, D 152213 Mudulator Oil Unit; Tsy/APQ-5 Ranye Calibrator Modnlator; 157A Outbut Trans Weston: Model 1:0-300 M. A.; 0-500 Volt D.C.. 150 M 0 M -15 ludustrial Analyuer: Homont: 185 A blectronic Syitch; 213 Modulation Monitor.
Hendix: Sweep Marker Generator, 1, 2, 10 , Mic
(i.E.: LU Kadar Test Equipment

Dimillation lrodncts: Pirani Gauges 0-20 ATcrons, \(0-0.75 \mathrm{MM}\);
fodnstrial Instruments: RN-1 Wheatstone Bridges
Shalleross: 621 H limit Bridge
Lavoir: C-200 Harmonic Freq. Gen. (100 2000 Mc.
Millen: \(\mathbf{3 0 5 0 5}\) sec. Frequency standard Sent for complete PRICE LIST.
All equipment-F. O.B. New York City. Subject: To prior sale.
THE NATIONAL INSTRUMENT CO.
HAR, ROCKIWIY, N. Y.
Cable: NATINSTRU, New York

\section*{BRAND NEW! DELCO ConstantSpeedMotor}

Type 5069625, 120 R.P.M. Has built in reduction gearing and governor. Operates on 27 volts AC or DC. Size-overall length \(4 \frac{1}{2} 2^{\prime \prime}\) by \(138^{\prime \prime}\) in diameter. Weight 7.5 ounces. Price \(\$ 4.25\) each net.

\section*{SPERRY PHASE ADAPTER}

Sperry Part No. 661102. Used to oper ate 115 volt 400 cycle 3 phase equipment from a single phase source. Maximum 3 phase load 50 watts. Price \(\$ 12.75\) each net.

INSTRUMENT ASSOCIATES
40-37 172nd St., Flushing, L. I., N. Y.
Telephone Flushing 7-8718

A LEOTONE "SPECIAL"! PORTABLE D.C. AMMETER

0-15 Amperes Unbeatable ot This Price!
Hoyt type 515.
 \({ }_{\text {ror }}\) braled \({ }^{31 / 4}\) mirlaboratory ara racy. Knife-edge pointer: 75 scale divisions. Mov. ing coil D'Arson val 50 mv move. ment. For Labora tory, Radio-Electronics, Electrical work Complete with 36 " clip type leads. "In black wrinkle finish metal case (\(61 / 4^{\prime \prime} \times\) \(53 / 8^{\prime \prime} \times 238^{\prime \prime}\)) with hinged lid.

GUARANTEED BRAND NEW \(\$ \mathbf{5}^{95}\) While they last-Only 6 for \(\$ 30.00\) \(20 \%\) Devosit on C.O.D.'s. Get on our mailing list-Always Something New.

LEOTONE RADIO CO.
65 Dey \(5 t\)
New York City, N. Y.

SO.3 RADAR
Complete set Tender Spares for SO-3 (39 boxes) consisting of Motor Alternator \#211095; Spark Gap \#10322: Modulator \#50AEM; Mounting Base \#10250: Rectifier Power Unit \#20247: Radar Transmitter-Receiver \#43ACD: Radar Receiver \#46ADA; Plan Position Indicator \#55ADQ: Antenna Assembly \#66AGF: Antenna Assembly Cradle \#10187; Antenna Assembly Tripod \#10248: Resonance Chamber \#14AAT: Accessory Control Unit \#22AEE; Power Factor Correction Unit \#482424; Volt age Regulator \#20248; Bearing Contro Unit \#23AEJ: Mounting Rack \#10252: Mounting and Interconnecting Material and large quantity of spare parts in cluding: capacitors, tubes, resistors transformers, switches, voltage regula tors, plugs, panels, fuses, sockets, cables, etc.
All brand new War Surplus in original cases. Gov't acquisition cost \(\$ 40\), 945.00. Our price f.o.b. Tuckahoe, New York and subject to prior sale
\(\$ 2,500.00\)
ELECTRONICRAFT, Inc.
5 Waverly Place, Tuckahoe 7, N. Y Phone: Tuckahoe 3-0044

\section*{Special Values \\ D. C. MICROAMMETERS}
 same with "Volt-Ohm-M.A." scale... 12.00 \(0-100\) ua. \(41 / 2\),", round Wresion \(643 . .12 .06\) 200 ua. 41/2" round Weston 643.. 10.00
R. F. MILLIAMMETERS

0-100 Ma. \(31 / 2^{\prime \prime}\) Weston 425 \(\$ 9\). 0-120 Ma. 2 \(4 / 2^{\prime \prime}\) Weston 5u7 -10 Ma. \(41 /{ }^{\prime \prime}\) Weston (vacuum) - 22.010 SHUNTS
150 or \(240 \mathrm{Amps}-50 \mathrm{Mv}\)-aircrafl type \(\$ 1.00\) PRECISION ELECTRICAL INSTRUMENT CO. 146 Grand Street New York 13, N. Y.

\section*{INVERTERS}

Output 1500 Watts- 120 Volts
Input. 115 V. Direct Curxent, 20 Vinssis 2 H Ontput. 120 V. Alternating Current, 15 Ainps, I \(\phi\) 60 Cycle. Unit Construction-D. C. Motor anil
A. C. Gen, in one frame. With Ward Jeonard A. C. Gen, in one frame,

New Equipment-Boxed for Export
Special Price \(\$ 98.00\) Each F.O.B. L.A., CALIF

Sound Proof Telephone Hoods
For Quiet Telephone Service in Noisy Locations
Value \(\$ 36.00\). Close out Price \(\$ 6.50\) F.O.B. L.A.
Value \(\$ 36.00\). Close out Price \(\$ 6.50\).
Cal.
O'KEEFE \& MERRITT CO. 3700 E. Olympic Blva., L.A., Cal.

\section*{INDEX TO ADVERTISERS}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Achenan Colloiels C} \\
\hline \multicolumn{2}{|l|}{Eco Elertric Co.} \\
\hline dsums athl Went & \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{ment, Inc.} \\
\hline arovox Corpora & \\
\hline \multicolumn{2}{|l|}{Alrborne Instrument Laboratory . 18} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Almmetal serew Produrtm Co........ 23}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Allance Mfg. Co.}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Alpha Metals, Inc.}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{American British Technolowy, Enc.... 22} \\
\hline \multicolumn{2}{|l|}{American Phenolic Corb. 19} \\
\hline American Smelting \& Ketining pany & \\
\hline \multicolumn{2}{|l|}{American Television \& Radio Co.} \\
\hline American Time Productim, Itic. & \\
\hline \multicolumn{2}{|l|}{Amperite Company} \\
\hline \multicolumn{2}{|l|}{Anaconda Wire \& Cable Co} \\
\hline \multicolumn{2}{|l|}{Andrew Corpornilon} \\
\hline Arkwright Finishing & \\
\hline \multicolumn{2}{|l|}{Armico steel Corp.} \\
\hline \multicolumn{2}{|l|}{Arnold Engineering Co.} \\
\hline Art Wire Stamphar Co & \\
\hline \multicolumn{2}{|l|}{Astatio Corporation} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Audio Development Co. ?}} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Audio Devices, Inc.}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Aviution Weektat, 1} \\
\hline
\end{tabular}

Cannon Electric Developmont Cor Capitol Radio Lingineering Inmitute (nrmoruniom Co.
Central lamer Co.. Inc
Contral Sheet Metai Vorks. Inc.
Centralab, IDiv. Glohe-Uition. Inc.
 chire Corp.
Clinch Manufucturing Corp
Clarestat Mif. Co. Ci
Claventat Mfg. Co., Inc.
Container Co.
Cohn Corp., Sikmernd.
Collins Audio Products Co.., Ine
Concord Kadio Corporation
Condenser Iroducts Co.
Continental Diamond Fibre Co
Continental Electrie Co.
Cook Research Laboratories....... iz,
Cornefl-Dubilier blectric Corp
Cornish Wire co.
Coto-Coil Co. Ine.
Cross Co., II.

Damo Elactric Co.
Duven Company
betimeter, Inc.
Distllation Produ
Driver-Harris Co.
Dumont Electric Corporation
lumont Laboratories, Inc., Nilin is
du lont de Nemours d Co. (Inc.).
Planties Ibept.

Lisler Enginfering Co.

age 87
80

Hamen Mif. Co., Ime
Hariwiek, limale, Ine
Harsey Ridio Compaity, Ine
Iassall, Inte, John.
Hathaway Instrument ('o.
Havion Danufacturing Co., Ine
felipot Corporation
Hewlett-l'ackaral Company
Hexacon D,lectric Co.
Hudson Wire Co
Hytron Hadio E Electronies Corb
Giamtwell Compnny, The
derneral Anilime Film Corp
eneral Cement Difg. Co.
frneral Ceramicmand Nteatite Corio
Apmaratus llept.
Appliance s. Merch 18 . 49 ,
Chemical Dept. Dept is8 붕
Elertronias Department 14: 1 as,
central filetronic Distributing Co.
eneral Plata Div., Metals and Con-
troles Corp.
anmal Tadio Co.
irmplit Mrg. Co.
161
246

Imperian Trachar Cloth
ndinan Sterl I'rodaets Co.
nstrument Flectronics
ustrument kewistors Company
Inculation Manufacturers Cori
I-T-E Circuit Rreaker Co.

Jensen Hanufucturing Co
Johnsort Co.. E. F
lonew Div., howard B.. Cinch ifg.
Co.

Liable Engineering Co. Gutat
Kirb Mrtal Iroductn Co.. Iuk
Ka, Electric Co.
Kas Elactric Co.
enter volder Cormer Co., Inc
Keuffel \& Enser Co
Kinney Manufeturing Co.
Kuights Co.. James
Kurz-líasch, Inc.

Lampkin Laboratories
Laps lunulator Co.. Ine. Leach Kelay Co. Lear. Inc.
Leeds Radio Compang
enkirt iblectric Co.
Condis Enginerring Co.
IIttelfinse. Inc.

Macallen Co.
Madory \& Co., Ine, IP, it
12...in. 1:3

IIS Manufarturing Co.. Inc:
ledraw-llill Book Co
Measirementa Corporitión
Mica Insulator Co.
Millun Af\&. Co., Iue., Jimes
51,
Mitehell-Rand Insulation (10., Inc.
Mosinee Paper Mille Co
Mycalex Corporation of Inioricia 30 160

\(\underset{\text { LENTIRELY NEW) }}{\text { Latest }}\)

\section*{SPECIFICATIONS}

\section*{- Top Tuning}
- Solder Terminals
- Suitable for high Temperatures

\section*{- Wound to your Electrical Specifications}
- \(3 / 4^{\prime \prime} \times 3 / 4\) " \(\times 2^{\prime \prime}\) high

\section*{Audtar \\ Trade Mark \\ \\ reprodacers}

Model SA - 73
(Special STUDIO arm not shown)

\section*{"The}

\section*{Standard by Which Others Are Judged and Valued"}

Any "permanent point"-diamond, sapphire or metal-will maintain its original shape for only a limited number of plays, after which it progressively crodes the record grooveshence the importance of being able to change needles at will.**

TUNED-RIBBON models are especially designod to permit easy stylus replacement-on the spot
Wide range alone does mot insure quality reproduclion. Two singers may produce identical high tones, yet-one may lu pleasing, the other not at all. Additional essential factors musi be satisfied - and the mosi crucial of these factors is "Viliratory Momentum".
- Linear 50 cyc. to over 10 k.e.
- Point Pressure about 24 grams
- Gemuine Sapphire Stylus

EASILY REPLACED BY USER
- Ontput about - 30 alb.
- Yibratory Momentum very low
- NO Frontal Oscitlation
** Write for complimentary pitmphlet on this vital sulyject.

\section*{AUDAE CDMPANY \\ 500 Fifth Avenue \\ New York 18, N. Y.}
"Creators of Fine ElectronicAcoustical Apparatus since 1915"

\section*{INDEX TO ADVERTISERS}
1PKOFESSION.IL SERVICES 256
\begin{tabular}{|c|c|}
\hline & Page \\
\hline Watertown Mfy. Co., The & 236 \\
\hline Wroster Electric Co. & 43 \\
\hline Wriler Mify. Co. & 214 \\
\hline Wentern Electric Co... I, & 127 \\
\hline \(W\) hite Dental Mifg. (oo.. & 23:3 \\
\hline Whitelerad stamping Co. & 241 \\
\hline Workhlop Asmorialics. Ine & \(2: 9\) \\
\hline
\end{tabular}
Zaphat Mills, Ine. aid
\begin{tabular}{|c|c|}
\hline Pamoramia Kadia Corp. & 219 \\
\hline Jinprr Machinery * Researeht. Inc & 249 \\
\hline & 229 \\
\hline 1'liden Industrial lbivision & 27 \\
\hline I隹illips Neres Mris. & 201 \\
\hline Ioblarad Electronics (\%o. & 246 \\
\hline Potter Instrument Co., Inc. & 220 \\
\hline Precision Apparatus Co., Ine. & 222 \\
\hline Prectsion Paper Tube Co. & 254 \\
\hline 1'resto Recarding Corp. & 56 \\
\hline Progressive llfy. Co. . & 223 \\
\hline lerofuric Co... & 245 \\
\hline Qumdrigit Mta. Co. & 243 \\
\hline (quaker City Game Wurks, lur. & 1711 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline 11 & . 194 \\
\hline Radio Corp. of lim & \\
\hline Radio Recuptor Co.. Inc & 247 \\
\hline Raniluay Express Arency & \\
\hline Kailvay Express Imeney, & Lxprose \\
\hline Div & \\
\hline Kaytheon Mig. & 1, 133 \\
\hline Kreves-lloffman Corp. & 18 \\
\hline Reeves somnderift Corp. & \\
\hline Kesere Copper \({ }^{\text {d }}\) (Brass. & \\
\hline Rra Rheorsiat co. & 5 \\
\hline Kockbestos I'roducts Corp. & 144 \\
\hline ubicon Compa & \\
\hline
\end{tabular}

Neifutific Vhectrir Div. ol "s'" Corru-
riated quenched kiap ('o......... 253

Selfolrar 250
Shathross Mig. Co.
Signal Ensimering \(\&\) Mre. Co.
sillaneks-Niller Co.
Sola EAmatric Co.
Hola Limetric co. 225
Solar Mandiacturing
Sperialty 1Battery Co
Sperr Carhon Compans

Staclipole Carhon Co.
standard Creturus Corb
Standard Dreturus Corb.
stamdard Pressed sterl
Standard Pressed sted Co.
standard Trandormer Corb

Suprrior Eleatric Co.
Superior Tube Compan
Svivania lelectric IPodncts. Inc.

Tech Laboratorion, Im
rerli Lat
Telectrad
Telectrad
Trleguip
Radio Co.....
Titaminm Alloy Dfty. Co.
Titerlex. Inc.
Turner Co.
.'.'.

Union Carbide and Carbon Corb.
Unitud-Carr Fistencr Corporation
Unidal EIedtronies Co.
22.5

United Transformer Corb.
Inside Front Cove
Universal Microphorne Co.

Vacumm-Thectronic Engineering Co.. 214
Vativy Crystals
Virtorern instrument
Vitamite Company
Vulata Electriac Co.

\footnotetext{
Wahdes liohinoor, Ine.
Walter Co., S
Ward Loonard bilac. Co.
Ward Prodiots Corporntionii
}

SEARCHLICHT SECTION (Clussified Advertising)
IVMPLOYMEN'厂
Positions Vacant. . .
Selling Opp. Offered.
Selling Opp. Offere
Positions Wanted.
Positions wanted...
Selling Opp. Wanted.
Employnment Services
Contract Work.
Repairing ork.
EDUCairing
Books
BUSINE
Oficred OPTORTUNTTIES
EQUJPMENT
(Used or Surplus. New)
(Used or Surplus. New)
W.INTED

Equipment
.259-286

ADVER FISFRS 1NDEX
Aircraft Radio Industries, Inc.
American Electrical Sales Co., Inc
Arrow Sales, Inc.
Bendix Aviation Cort
Best Manufacturing Co., Iuc
Blan
rooks, Inc., B D.
Clinato Radio
Communications Equipment Co
Edlie Electronies Inc.

Electro Siles Co. 266. 267. 284
Electronicraft, Inc.
Federatted Purchaser Inc
Federated Purchaser Inc
Gilfillan Bros., Inc.
Held, Scott
ustrument Associates.............................. 259
Klein, Mantuel....
Lectronic Research Laboratories
Leeds Radio Co.
Leotone Rarlio Company
Leru Laboratories, Inc. 286
Maritime Switchboard 260,261
Melpar Inc................
..... 255
National Geophysical Company. Inc....... 258
National Geophysical Compaliy. Inc.
National Instrument Co
O'Keefe \& Mervitt Company
Opad-Brecn Co.
Peak Electronics Co
Pope Co., Edker
Powertron Electrical Equinment Co.
Precision Electrical Instrument Co.
Rabinowitz \& Sons, Wim.
Radio Ham Shack, Inc. .
Reliance Merchandising Co.
Servo-Tek Products Co., Inc
Tah, Mr. Edward C
Taylor, Mr. Eduard C........
Themarine Commmancat
Thomas Mivg. Co. Corsal General Corb
Village Radio Equipment Company
WBBR
Wells, Sales Inc
Wells, Sales Inc
Vinters Ratio Laboratory.

ATTENUATION BOX

DECADE VOLTAGE DIVIDER
RATIO ARM BOX

TRANSMISSION MEASURING SET
OUTPUT METER
ELECTRONIC FREQUENCY METER

VOLUME LEVEL INDICATOR

POWER OUTPUT METER DECADE RESISTANCE EOX

\section*{MEASURING, TESTING AND CONTROL EQUIPMENT}

These DAVEN instruments are the "trusted aides" of audio communications and general electronic engineers the world over. Each type of equipnent is suilt to the highest standards of precision and durability, and is available in a wide selection of standard models.

Many other test sets and control units, specially designed by DAVEN, ore in long service with America's key radio stations, leading sound recording studios, and the Armed Forres.

Full details gladly furnished upon request. Write to . . THE DAVEN COMPANY, 191 Central Ave., Newark 4, N. 1

Mackan \(1 / 7 \rightarrow 84\) - radio in Merchant Marine RCA offers Equipment Manufacturers a Nation-wide Service on

SALES AND ENGINEERING SPECIALISTS

J. T. WILSON Applisotion

J. WACHTEL Applicotian
Engineering

W H. WARREN Application
Engineering
- These RCA Tube Department specialists devote all of their time exclusively to the problems and requirements of radio and electronic equipment manufacturers. Whether it be on tubes, parts, or test equipment, they're ready to help when and ubere you want them.

For your convenience, RCA maintains completely equipped application engineering laboratories at Harrin
son, N. J., Lancaster, Pa., and Chicago, Ill.-and sales offices at Harrison, Chicago, and Los Angeles. A call to the office nearest you will bring prompt service . . . or, write to RCA, Equipment Sales, Section FR40, Harrison, N. J., for the same prompt attention.

The Fountainhead of Modern Tube Development is RCA```

[^0]: Contents Copyright 1948, by McGraw-Hill Publishing Company, Inc. All Rights Rescrved. MCGRAW-HILL, PUBL SHING COMPANY, INCORPORATED,
 JAMES H. McGRAW (1860-1948), FOunder JAMES H. McGRAW (1860-1948), Founder PMEBLICATION OFFICE $99-129$ Rights Rescrved. MCGRAW-HILL PUBL SHING COMPANY, INCORPORATED, OFFICES, 330 West 42 nd 5 ., New York 18, N. Y., U S. A. - Member A. B. P. Momber A. B. C.
 Ele President; Joseph A Gerardi, Secretary; and A, E. Blackurn. J.i Vioe-President for circulation operations.
 Subscription rates-United States and possessions. $\$ 6.0$ a y varr, $\$ 9.00$ for two years, $\$ 12.00$ for

[^1]: Transformers for: Constant Voltage - Cold Cathode Lighting * Airport Lighting - Series Lighting . Fluorescent Lighting - Luminous Tube Sigrs Oil Burner Ignition - X-Ray - Power • Controls - Signal-Systems • efc. - SOLA ELECTRIC COMPANY, 4633 W. 16 th Street, Chicage 50 , Illinole
 Agmufactured under licemse by, ENDURANCE ELECTRIC CO. Concord West. N. S. W., Australia - ADVANCE COMtONENTS LTD., Walthamstow, E., England UCOA RADIO S.A., Buenos Aires, Argentina * M. C. B.*\&-VERITABLE ALTER, Courbevoie (Seine). France

[^2]: Olin Industries, Inc.
 Electrical Division
 New Haven, Conn.
 Dept. C
 Mail me at once Descriptive Catalog \square Bond-Olin or \square Winchester-Olin. (Check brand desired.)

 NAME.
 ADDRESS
 CITY
 STATE

[^3]: ALLIANCEMANUFACTURING COMPANY OMLLIANCE, OHIO Export Department: 401 Broadway, New York 13, N. Y., U. S. A.

[^4]: distributors: in the U, S. A.-Graybar Electric Company. in Canada and new foundland -Northern Electric Company, Ltd.

[^5]: * Formerly with Massachusetts Institute of Technology Naval Radar School.

[^6]: Views expressed in this article are the author's and do not necessarily represent those of the U. S. Maritime Service.

[^7]: (1) W. S. Barwick, U. S. Patent 2,397,400.
 (2) G. W. Pierce, Magnetostriction Oscillators, Proc. Amer. Acad. Boston, $63,1,1928$. Froc. Amer. Acad. Roston, (3) E. W. Flosdorf, L. A. Chic Activation in and M. W. Malisoff, Sonic Activation in Chemical Systems, Jour. Amer. Chem Soc., 58, 1069 , 1938 . "Colloid Chemistry, Vol. $\overline{\text { b. }}$ " Reinhold Pub. Co., 1944.

[^8]: (1) R. Feldt, Photographing Patterns on Cathode Ray Tubes, Llectronics, Feb 1944.
 (2) Phillip M. Morse, "Vibrations and Sound," McGraw-Hill Book Co.
 (3) R. C. Coile, Reverberation Time Nomographs, ELECTRONICS, p 142, Apr 1947.

[^9]: IMC PRODUCTS: Macallen Mica Products-Vartex Varnished Cloth and Tapes-Varslot Combination Slot Insulation -Fiberglas Electrical Insu-Iation-Manning Insulation Papers and Pressboards-H. \& V. Insulating Papers-Dow Corning Silicones-Dieffex Varnished Tubing and Sat-Papers-Dow Corning Silicones-Dieffex Varnished Tubings and Sati-
 rated Sleevings- National Hard Fibre and Fishpaper- Pheonolte Bakerated Sleevings- National Hard Fibre and Fishpaper-Pheonolite Bake-
 lite- Permocel Adhesive Tapes - Asbestos Woven Topes and Sleevings - Inmanco Cotton Tapes, Webbings, and Sleevings - Pedigree Insulating Varnishes- Wedgie Brand Wood Wedges.

[^10]: Manufacturers of Molecular Stills and High. Vacuum Equipment; Distillers of Oil.Soluble Vitaming and Other Concentrates for Science and Industry

[^11]: An Antara ${ }^{\circledR}$ Product of Ceneral Aniline \& Film Corporation

[^12]: In Canada: CANADIAN MARCONI CO., Ltd. Montreal, P.Q., and branches

[^13]: BOLAND \& BOYCE INC., PUBLISHERS

[^14]: Rodio Maintenance
 Technical Manuals
 Manual Division M-3

[^15]: (RP RADIO ROCNPIDR CDNIPANY; INC (2) 251 WEST 19TH STREET, NEW YORK 11 N. $\%$.

[^16]: PRICE $\$ 1.00$
 EDWARD C. TAYLOR Woodstock, Vermont

