electronics

CONSOLE FOR DUBBING

A $M \subset G^{\prime} R A W$ HILLEUELICATION

electronics

NOVEMBER • 1947

CONSOLE FOR DUBBING Cover
Control console for mixing up to nine sound channels to make the final sound-on-film track at Reeves Sound Laboratories, New York (see p 142)
ELECTRONICS SPONSORS CITIZENS RADIO PROJECT 80
Announcing a program designed to test the potentialities of the 460 to 470 -me band
TRANSMITTER FOR THE CITIZENS RADIO SERVICE, by Walter C. Hollis 84
Simple low-power f-m unit meets FCC Class-A specifications for 460 to $470-\mathrm{mc}$ band
MEASURING PRESSURES OF INDUSTRIAL EXPLOSIONS, by N. T. Thompson and E. W. Cousins 90
Pressure-time diagram is photographed on c-r screen, using capacitance pickup with 10,000-cps bridge
F-M CHAIN BROADCASTING 94
Prewar program distribution techniques are rediscovered as a means of making money for f-m broadcasters
TEMPERATURE CONTROL FOR OCTANE TESTS, by Pierre J. Malraison 99
Circuit operates up to 250 times per minute to maintain constant gas-air temperature for test engine
INTERCONNECTING FACILITIES FOR TELEVISION BROADCASTNG, by W. E. Bloecker. 102
Television facilities will provide local pickup circuits and nationwide networks
ELECTRONIC COMPUTER FOR PRINTING CONTROL, by John Ludwig 108
Electronic-hydraulic control system triples speed of a multicolor printing press
RECORDING SKY-WAVE SIGNALS FROM BROADCAST STATIONS, by W. B. Smith 112
Cycler circuit blacks in area under curve on strip chart for quick analysis by electronic scanner
ELECTROMECHANICAL D-C AMPLIFIER, by C. G Roper and J. F. Engelberger. 117
Combining a vacuum-tube oseillator and a mechanical system provides a high-gain stable d-e amplifier
SIMPLIFIED MICROWAVE AFC-Part I, by F. A. Jenks 120
Motor and electronic circuits combine to give 200 -kc control of 3,000 -mc carrier for unattended relay station
RECORDER AND TIMER FOR SHORT INTERVALS, by Warren Bliss 126
Interval-defining pulses gate 4 -mc oscillator to drive counter indicating up to $16 \mu \mathrm{sec}$ in 0.25 usec steps
PRODUCING TUBE CURVES ON AN OSCILLOSCOPE, by Henry E. Webking 128Circuit automatically changes grid voltage after each trace to produce family of curvesVOLTMETER LOADING, by R. E. Lafferty.132
Nomograph gives true voltage in high-impedance circuit after two readings with ordinary low-sensitivity voltmeter
DESIGN OF MERCURY DELAY LINES, by T. K. Sharpless 134
Ultrasonic delay lines can store information indefinitely by a recirculation technique

BUSINESS BRIEFS	74	ELECTRON ART	144	NEW BOOKS	267
CROSSTALK	79	NEW PRODUCTS	148	BACKTALK	270
tubes at work.	140	NEWS OF THE INDUSTRY	152	INDEX TO ADVERTISERS	

DONALD G. FINK, Editor; W. W. MacDONALD, Managing Edifor; John Markus, Vin Zeluff, Frank Rocketf, A. A. McKenzie, Associate Editors; William P. O'Brien, E. M. Rips, Assistont Editors; Hal Adams, Jean C. Brons, Editorial Assistants; Gladys T. Mont gomery, Washington Editor; Harry Phillips, Art Director; Eleanor Luke, Art Assistant; R. S. Quint, Directory Manager; John Chapman, World News Director; Dexter Keezer, Director Economics Department

KEITH HENNEY, Consulting Editor

H. W. Mateer, Publisher; Wallace b. Blood, Manager; D. H. Miller, H. R. Denmead, Jr., New York; Wm. S. Hodgkinson, New England; F. P. Coyle, Warren Shew, Philadelphia; C. D. Wardner, Chicago; E. J. Smith, Cleveland; J. W. Otterson, San Francisco; Roy N. Phelan, Los Angeles; Ralph C. Maultsby, Atlanta; Paul West, London, England; J. E. Blackburn, Jr., Director of Circulation

Contents Copyright, 1947, by McGraw-Hill Publishing Company, Inc. AII Rights Reserved. McGRAW-HILL PUBLISHING COMPANY, INCORPORATED JAMES H. MCGRAW, Founder and Honorary Chairman P PUBLICATION OFFICE 99.129 North Broadway, Albany I, N. Y., U. S. A. EDITORIAL AND EXECUTVE OFFICES 330 West 42 nd St., New York 18, N. Y., U. S. A.-Member A. B. P. Member A. B. C.

James H. McGraw, Jr., President; Curtis W. McGraw, Senior Vice-President and Treasurer; Nelson Bond, Director of Advertlising; Eugene Duffeld, Editorial Assistant to the President; Joseph A. Gerardi, Secretary; and J. E. Blackburn, Jr., Vice-prosident for ciroulation operations.
ELECTRONICS, November, 1947, Vol. 20- No. II. Published mionthly, with an additional issube in June, price 75c a copy. Directory Issue $\$ 2.00$. Allow at least ten days for chanpe of address. All'communications about subscriptions should be addressed to the Director of Circulation.
 two years, $\$ 14.00$ for thre years. Pant American countries $\$ 10.00$ for one year, $\$ 16$. 00 for two years, $\$ 20.00$ for three years. All other countrios $\$ 15.00$ for, one year, $\$ 30.00$
for three years. Please indicate position and company connection on ali subscription or ders. Entered as Second Class matter August 29, 1936, at Post Oeflice, Albany, New York, under the Act of March 3, 1879 . BRANCH OFFICES: 520

SENSITIVE LOW-POWER RELAYS in a newly improved design FOR USE ON AC AND DC

Engineering superiority in every mechanical and electrical detail makes StruthersDunn Type 112 Relays far and away "tops" for sensitivity and durability for low-power operation on the order of a few milliwatts - A "fool-proof" micrometer adjustment assures exceptionally reliable setting of the contact spring - All parts are of low-inertia, quick-acting design - Contacts are easy to adjust and stay "put" once adjusted - Coils are well insulated and vacuum impregnated - These new relays are built throughout for easier installation, higher sensitivity, longer life • Available in single-pole double-throw and double-pole double-throw contact combinations.

Write for Data Bulletin 112.

STRUTHERS-DUN
 STRUTHERS-DUNN, Inc., 150 No. 13th St., Phila. 7, Pa.

ATLANTA•BALTIMORE•BOSTON•BUFFALO•CHICAGO•CINCINNATI•CLEVELAND•DALLAS DENVER. DETROIT. HARTFORD.INDIANAPOLIS•LOS ANGELES•MINNEAPOLIS•MONTREAL NEW YORK•PITTSBURGH•ST.LOUIS.SAN FRANCISCO• SEATTLE•SYRACUSE•TORONTO
"The impossible takes a little longer"...this is one way of saying that the draftsman lets no out-worn conceptions restrict his creative ideas. Yet without his specialized technique for expressing ideas on paper, the designs he creates could scarcely be turned into substance. As the draftsman relies on his own hands and eyes, he calls likewise on his drafting instruments to serve him functionally. So integral a part of his technique do they become, they are virtually his partners in creating.

For 80 years Keuffel \& Esser draffing equipment and materials have been partners, in this sense, in creating the greatness of America, in making possible our fleets of ships, our skyscrapers, our overwhelming weight of armor on the battlefield. . . So universally is $K \& E$ equipment used, it is self-evident that every engineering project of any magnitude has been completed with the help of $K \& E$. Could you wish any surer guidance than this in the selection of your own "drafting pariners"?

Because of their balance, smooth action and responsiveness to your hand, you will find that using MINUSA* Drawing Instruments is almost as natural as

partners in creating

 breathing. Their legs are round and tapered, without the harsh feel of sharp corners. Joints are firm, snugly fitted, and satin-smooth in operation. Yet these instruments are strong and durable, for their precision will outlast years of continuous use. For complete data on MINUSA* Drawing Instruments, write on your letterhead to Keuffel \& Esser Co., Hoboken, N. J.

Retiobility

El-Menco Capacitors contribute a great deal to the quality performance of your electronic product. In addition to being reliable in performance, El -Menco is reliable in delivery service.

Availabilify

You get as many El-Menco capacitors as you need ... when you need them. Improved production techniques are your assurance of that.

We who design and make El-Menco Capacitors are proud of the reputation of dependability and quality that our products have earned. The use of El-Menco Capacitors throughout the electronic industry is an indisputable testimonial in behalf of their superiority.

MANUFACTURERS

Our silver mica department is now producing silvered mica films for all electronic applications. Send us your specifications.

> JOBBERS AND DISTRIBUTORS
> ARCO ELECTRONIC

135 Liberty St.;
New York, N. Y.
is Sole Agent for El-Menco Products in United States and Canada

THE ELECTRO MOTIVE MFG. CO., Inc., Willimantic, Connecticut

El-Menco stands ready to serve you in any emergency . . . just as El-Menco served in the recent national emergency, World War II. Our staff will assist you in solving any prob. lem you may have.

Write on firm letterhead for catalog and samples.

You get these 3 FM Watchmen in Western Electric transmitters only

frequency watchman

All Western Electric FM transmitters are kept constantly on their assigned frequencies by the Frequency Watch-man-a simple, fool-proof, automatic device sensitive to the slightest frequency deviation. With this watchman on guard, stability of the transmitter 18 governed by the stability of a low temperature coefficient crystal, which varies less than 25 cycles per million in the temperature range of from 40° to $130^{\circ} \mathrm{F}$.

POWER AND IMPEDANCE WATCHMAN
The new RF Wattmeter and Impedance Monitor is available exclusively in Western Electric FM transmitters. It makes possible - for the first time-accurate, direct indication of the actual R. F. power in kilowatts fed into your antenna system-plus a simple method of measuring standing wave ratio under full power output. Supplied as standard equipmeat with all transmitters of 3 kw and up.

ARC-BACK WATCHMAN
Permits realization of the full life of each rectifier tube. By indicating exactly which tube has reached the end of its reliable service life, this watchman makes it possible to replace a worn out or faulty tube with the preheated spare and be back on the air -with assurance-in a few seconds.

FOR FURTHER DETAILS about the 3 FM Watchmen and Western Electric's new line of FM transmitters, call your local Graybar Broadcast Representative, or write Graybar Electric Company, 420 Lexington Ave., New York 18, N. Y.

Western Electric
 - QUALITY COUNTS -

Smaller in size than the APC and lighter in weight, the MAPC embodies all the features which made the Hammarlund APC an outstanding leader. Improvements in manufacturing technique and years of knowhow have produced a variable capacitor of superior mechanical construction and electrical design.

The MAPC 75 weighs fifty percent less and is fifty percent smaller than the equivalent APC. The MAPC is so small that it can be used in place of a compression type trimmer with a resulting increase in circuit stability and efficiency. Low minimum capacities make possible a wide tuning range.

THE HAMMARLUND MFG. CO., INC., 460 W. 34 TH ST., NEW YORK 1, N. Y. MANUFACTURERS OF PRECISION COMMUNICATIONS EQUIPMENT

Simplijing
 Complicatal Piercing

Operations...

EADING menufacturers find it fast, 5imple, accurate, and economical to use Whistler adjustable dies for the tough jobs. Cornplicated patterns can be set up quickly. It's easy tc change hole arrangements too... without waiting and at no extra die cost. New HU-50 units, that pierce at 90° angle, can be used in conjunction with standard perforating equipment. Fewer press cperations are necessary.
Savings, through continued re-use of the same dies in dfferent arrangements on many jobs, are nost important.
Whistler adjusiable dies can be used in practically every type press. Standard sizes of punches and dies up to $3^{\prime \prime}$ are available in a harry. Only a few days are necessary to get special stapes made to order.

S. B. WHISTLER \& SONS, INC. 746 Military Road Buffalo 17, N. Y.

,HU-5C Perforating unit used in corjuction with standard Whistler adjustable dies on the same job.

Fon mare detaile on this modern way to speed production and save money, write for your copies of the Whistler catalogs.

They Lick Humidity and Vibration at High Frequencies

 STACKPOLE Polytite TRIMMER ELECTRODE CORES
Abstract

Placed in fitted metal sleeves, Stack pole Polytite Trimmer Electrode Core Forms serve as variable capacitors that assure honest-to-goodness capacity stability in high-frequency circuits where humidity and vibration must be considered. The molded Polytite has a high dielectric constant. Cores are moisture repellent and carry a heavy dielectric coating that establishes a path of high leakage resistance between the electrodes. Since these electrode surfaces have short, symmetrical current paths, the inductance may be kept low enough for use in the 200 -megacycle range. Standard types provide easy capacity adjustment with a maximum from 20 to 40 mmf ., depending on the size.

Write for Stackpole Polytise Trimmer Data Bulletin
STACKPOLECARBONCOMPANY Electronic Components Division - St. Marys, Pa.

A typical application using two Polytite Trimmer Electrode Capacitors in o circuit where band-spread tuning is desired. Various bands may be covered by the switching of colls and preadjusted trimmers.

the HITTLE differences

make the

B) 6 difference

Pigs ain't pigs, we say. There are differences even within the litter. Sometimes they're visible, but often you can only tell the result of good breeding by checking the result.

It's the same with our Amperex 892. There is one of those little differences in the grid arm. It's much easier to assemble

skill, Amperex skill, to turn that feather-edged seal from the solid. But that Amperex skill in manufacture, plus Amperex skill in design, produces a grid arm that offers the best operating conditions for both DC and RF . . . just another of the many little differences that make a big difference in the design and construction of the many, many types of tubes that comprise the extensive Amperex line.

25 WASHINGTON STREET, BROOKLYN 1, N. Y In Conodo and Newfoundland: Rogers Majestic Limited 11.19 Brentcliffe Rood. Leoside, Toronto, Ontorio, Conodo

Wilco Thermometals

The versatile Wilco Line includes 29 WILCO THERMOMETALS which help manufacturing customers meet all conditions of bimetal application... all applications where response to temperature is required.

In Wilco's versatile line are Wilco Thermometals (Thermostatic Bimetals) that "bend" to your will . . . that precisely meet your requirements. Wilco Thermometals are designed for a wide variety of uses including Temperature Indication . . . Temperature Control . . . Temperature Compensation . . . and Sequence Control.

CHARACTERISTICS—Wilco Thermometals cover temperature ranges of maximum resistance from 50° to $800^{\circ} \mathrm{F}$. . . useful deflection from minus 100° to plus $1000^{\circ} \mathrm{F} \ldots$ and include a wide range of electrical resistances.

PERFORMANCE - Wilco Thermometals give precision performance in hundred of applications, including Circuit Breakers, Furnace Controls, Flatirons, Safety Pilots, Electric Blankets, Carburetors, Cigarette

Lighters, Fluorescent Light Starters and Automatic Toasters.
AVAILABILITY - Wilco Thermometals are supplied in all shapes, including strip, straight cantilever blades, Ushapes, spirals and helices ... or as parts of assemblies with shafts, studs, brackets, contacts, braids or springs. Whatever your requirements for Wilco Thermometals, Wilco engineers will gladly help you.

WILCO PRODUCTS INCLUDE:

THERMOSTATIC BIMETAL - All fempero-
ture ranges, deflection rates and electrical resistivities.
CONTACTS Silver-Platinum-Tungsten-AlloysSintered Powder Metal.

SILVER CLAD STEEL

JACKETED WIRE - Silver on Steel, Copper, Invar or other combinations requested.
ROLLED GOLD PLATE AND WIRE NI-SPAN C*New Constant Modulus Alloy SPECIAL MATERIALS
*Reg. Trade Mark The International Nickei Co.. Ine.

105 CHESTNUT ST. - NEWARK 5, NEW IERSEY - Branch Offices: Chicago, Detroit, Los Angeles, Providence

specialists for 33 years in the manufacture of thermometals - electrical contacts - precious metal bimetallic products

UTBE COILS FOR USE WITH STANDARD

R. M. A. $420-420 \mathrm{mmf}$ VARIABLE CONDENSERS

Watch the operatcr manipulate quickly the switcies and knobs of this new Hytron eloctronic curve tracer. Likə magic, graduatec harizontcl and ver-ical scales flash onto the screan, and he calibrates them in desired units by adjusing the rarker pips. Effortlessly, he traces the three basic cha:acteristics curves $, \mathrm{E}_{\mathrm{b}}-\mathrm{J}_{\mathrm{b}}, \mathrm{E}_{\mathrm{t}}-\mathrm{I}_{\mathrm{c}}, \mathrm{E}_{\mathrm{b}}-\mathrm{I}_{-2}$)-for a quick check or a pho: graphic record. No slow tabulating ard plotting cf dozens of meter readings.

Because the gric po-ential is applied in a monentary, narrow pulse (monitored by the smaller 'scope), the cu-ves include the positive grid region so impoztant in analyzing transmitting tubes. Anc-her advantage, missed with rccghly plotted curves, is that the slightest eccentricities in the cu-ves are apparent. Improjer tube geometry, for example, is immediately detectable.

A maze of triyger, paase-inverter, and sweep circuits, synchronizing pulse generators, electronic switches, and regulated power supplies - the curve tracer's principle of operation is simple. Microseond puising, electronic switching, and persistency of the osciloscoje screen do the tict. What does this fanc, gadget mear to you? Better, more unform Hytron tubes, because design and prcduct on cortrol are easier, bきtter. The new Hytron curve tracer is eno:her step forward to give you the best in tubes.

SPECIALISTS IN RADIO RECEIVING TUBES SINCE 1921

MAIN OFFICE: SALEM, MASSACHUSEITS

Announcing "Filpee"

 Centralab's new and revolutionary"printed electronic circuit" filter!

"Filpec" gives you integral construction! Made with high dielectric Ceramic-X, Centralab's Filpec assures long life, low internal inductance, resistance to humidity and vibration. Actual Filpec dimensions: $17 / 32^{\prime \prime}$ long, $9 / 32^{\prime \prime}$ wide, $7 / 4{ }^{\prime \prime}$ thick.

"Filpec" gives you fleribility! Schematic diagram above shows typical Filpec application as a balanced diode load filter. Filper can be designed for you to meet a wide sange of filter applications.

"Filpec" combines up to three major components into one tiny filter unit! Small, lightweight, Filpec reduces soldered connections 50%, saves space, cuts inventory, :s highly adapable to a variety of circuits. Capacitor values are arailable on Fi.pec from 50 to 200 mmf . Resistor values from 5 ohms to 5 megohms.

HERE IT IS - Centralab's newest application of its famous "printed electronic circuit" (PEC)! Illustrated on this page is a typical example - a brand new balanced diode load filter, lighter in weight, smaller in size than one ordinary capacitor! Think of what that offers you in higher circuit efficiency, more dependable performance as well as a reduction of line operations in set and equipment manufacturing! For complete information, send for Bulletin 976.
Ratings: Capacity values (C_{1} and C_{2} equal) : 50 to 200 mmf . Capacity tolerance: $-20 \%+50 \%$ over 100 mmf ., $\pm 20 \%$ below 100 mmf . Resistance values: 5 ohms to 5 meg.
ohms. Resistance rating: $1 / 5$ watt. 400
WVDC. Flash test: 800 VDC.

RCA TK-20A FILM CAMERA .- as outstanding for film programming as the RCA imagz-orthicon field and studio cameras have proved for "live" pick-up work. Only one of these cameras is required for a complete, versatile film and slide setup.

New RCA

* for use with one 16 mm or one 35 mm RCA television film projector
* for use with a 16 mm and a $\mathbf{3 5 m m}$ projector

VIDEO CONSOLE - composed of studio and film camera controls, a master monitor, and switching, lap-dissolve, and fading facilities for selecting the camera pick-up desired. "Building-block" design assures a compact, unified appearance... permits adding extra units at any time.

* for continuous shows with two projectors of either size

* for two film projectors and a slide projector

IT IS NOW POSSIBLE to use two film projectors and a slide projector with just one film camera and to switch instantly from one to another without moring the camera.
Versatility in the RCA TK-20A is achieved through the use of a unique mirror system (see diagram at left). By this means, slide projector images may be shown in conjunction with motion picture films for special effects . . or used separately for station identification, announcements, commercials, etc. Consecutive movie shorts or continuous multireel shows are handled with equal ease.
The camera includes a sensitive RCA pick-up tube, blanking and deflection amplifiers, and a sixstage video preamplifier. Resolution is excellent.
A separate control unit and master monitor, and two regulated power supplies (rack-mounted) complete the film-camera chain.
Only initial settings need be made at the camera; all other adjustments are made at the monitor and control units which normally become part of your video console.
Complete specifications and description of the TK-20A Film Camera are now available. Write Dept. 30-K, RCA, Camden, N. J.

INSTRUMENTS FOR ELEGTRONIG MANTENANGE

WESTON Electronic Avalyzer-Model 769. Incorporating: 1. A conv-ntional Volt-Ohm-Milliammete= with self-contaiced power source. 2. A highimpedance electronic. Volt-Ohmmeter using 115 vol:, fic syole power 3. A stable, probe-type, Vacunm Tube Voltmete, for use to 300 megacycles.

WESTON Multi-Purpose

TUBECHECKER - Model 798. This universal tubechecker offers within one instrument provision for testing: l. Receiving tubes. 2. Voltage regulator tubes. 3 . Light duty thyratron tubes such as 2A4-6D4-884-885-2051. Scale is calibrated "Good-Bad" as well as in mutual conductance readings.

Direct Reading Insulation Tesher -Model 799.
Compact, one-hand-operated insulation tester with .l to 10,000 megohm range, using a test potential less than 50 volts d -c. Indicates: l. Insulation properties. 2. Leakage resistance. 3. Conductivity of insulating materials, 4. Leakage due to moisture absorption.

These portable Westons are specifically designed for expediting electronic maintenance . . . for doing the job better-faster. All are engineered and built in the strictest traditions of Weston accuracy and dependability. For further details see your local WESTON representative, or write...Weston Electrical Instrument Corporation, 618 Frelinghuysen Avenue, Newark 5, New Jersey.

WESTON

- lnstruments

Plastics where plastics belong for resistance to corrosion and wear An unusual combination of mechanical, electrical,

Handling a wide variety of materials, this application seriously tests corrosion and wear resistant qualities. Synthane stoutly resists the attack of many corrosive solutions and opposes the scrubbing action of pulp and small solids.

If you have an application for which Synthane seems the answer, let us know about it-before you design if possible. We are eager to help you choose the right job for plastics and the right plastics for the job. Write for our complete plastics catalog today! Synthane Corporation, 6 River Road, Oaks, Penna.
where Synthane belongs

THE MORE YOU KNOW ABOUT THIS PLASIC TU:IT:O THE MORE YOU'LL WANT TO USE IT

SOME QUICK FACTS ABOUT SYNTHANE RODS AND TUBES

Diameters: Rod $-1 / \mathrm{g}^{\prime \prime}$ to $4^{\prime \prime}$ O.D. (Larger diameters turned from sheet material.) Tubing- $1 / 8^{\prime \prime}$ to $22^{\prime \prime}$ I.D., O.D. to specifications. (Molded tubing to $4^{\prime \prime}$ O.D. only.)
lengths: $18^{\prime \prime}$ and $36^{\prime \prime}$, longer on order
Colors: Natural (tan) or black
Finishes: Ground, buffed or varnished
For diameter or wall thickness polerances, standards of quality for tensite and compressive strength, dielectric strength, density, percent of moisture absorption, power factor and dielectric constont, write for descriptive Iubing Folder.

DESIRABLE PROPERTIES OF SYNTHANE TUBES

Non-metallic

Light Weight $11 / 2$ the weight
of aluminum)
Structurally strong
Moisture Resistant
Thermosetting

Low Coefficient of Exponsion Corrosion Resistant Excellent Electrical Insulator Hard, abrasion resistant Resilient
Sound and Vibration Absarbing Easy to machine

Once it is learned how many properties are combined in Synthane - what sizes, and grades are available, and how easy Synthane is to machine, many new, profitable, uses for Synthane tubing and rods pop up quichly. Here, in a light weight non-metal that is an excellent electrical insulator, are all the characteristics for making thousands of products better, faster or more economicully.

Synthane's plant capacity assures you a steady flow of top-quality rods and tubes or close-tolerance parts fabricated from these versatile materials.

Why not find out for yourself how Symthane rods and (u)ing can help you? The coupon below will quickly lring you a copy of the Synthane Tuling Folder complete with tables of characteristics. Send for it today!

SYNTHANE CORPORATION, 6 RIVER ROAD, OAKS, PENNSYLVANIA

Please send me the Synthane Tubing Folder by return mail.
Name
Company
Title.
In addition t" round tules, Symhane produces a

Address
CityZone \qquad State
 wide variety of irregular shapes by tube-making processes. ... round with squure or hexagonal centers, square, rectangular, channel, owal . . and from a broad range of basic luminating materials-puper, fabric, asbestos, glass. The standard round tubing is ahouys a little more economical to use, hat if your needs call for an irregular shaped section, it will pav you to inquire about Sivmhune's diversified line of rods and tubes.

Representatives in ALL Principal Cities

EXTEND THE USEFULNESS

of YOUR OSCILLOGRAPH

SCREEN CHARACTERISTICS AT A GLANCE . . .
The following types of tluorescent screens are available in Du Mont cathode-ray fubes:

PI: Medium persistence green. High visual efficiency. For general-purpose visual oscillographic and indicating applications.
P2: Long persistence blue.green thorescence and yellow.green per. sistence. Long persistence at high writing rates. Short-interval excitation.
P4: Medium persistence white for television images.
P5: Extremely short persistence blue for photographic recording on highspeed moving tilm. Persisfonce time
for energy drop to 50% is 5 microseconds. Available on special order.
P7: Blue fluorescence and yellow phosphorescence. Long persistence ai slow and intermediate writing rates. For tiltering out initial "tlash" and for high build-up of intensity under repeated excitation, this screen may be used with Du Mont Type 216-J Filter.
PII: Short persistence blue. For recording high writing rates. Persist. ence time for energy drop to 50% is 10 microseconds. (

There's a screen for every oscillographic purpose. But only Du Mont makes all types of screens. By having that extra Du Mont tube with the right screen available, you can cover a wider range of applications more quickly and realize far greater value from your oscillograph, simply by switching tubes.

As a time-, trouble- and money-saver, that extra, dependable, high-quality Du Mont tube should be on hand when you need it. So why not buy it now while you're thinking about it?

And when replacing cathode-ray tubes, always remember that Du Mont tubes are made to RMA specifications and therefore fit any standard oscillograph.
-Use the right screen for the right job. Descriptive data on request.

FOR THE HICHEST EFFICIENCY IN FIBROUS INSULATION

USE ROGERS FABRICATING SERVICE

HERE'S WHAT ROGERS OFFERS

- Alert, imaginative, expert design assistance.
- Complete die-making facilities.
- Rapid, accurate and economical fabricating
- Versatile line of tough, adaptable fibrous materials, backed by research and by manufacturing skills developed over a period of 115 years.

ROGERS fabricates fibrous insulation to meet your most rigid specifications. Rogers fabrications are accurate, made to simplify assembly and afford maximum protection. Design assistance, complete die-making and fabricating facilities are at your command. Write for the Rogers Exhibit. It tells the complete story about our fabricating service.

PLEASE ADDRESS 107 MILL ST.
Investigate the DUROIDS, new fibrous structural materials that are firm, yet flexible and shatterproof.

ROGERS CORPORATION

MANCHESTER - CONNECTICUT

AFTER YEARS IN COLUMBIA RECORDS' FLLES

"Master safety disc No. I5B - an AUDIODISC - recorded December 12, 1939, was taken from our files and played back on September 12, 1947. This test showed that after almost eight years the recorded qualify was still excellent and there was no measurable increase in surface noise. Surface noise of a new cut, made on this disc at the same date in 1947, was no different from the original cut."

This is the brief, factual report by Columbia recording engi-
neers on a test made to measure the lasting qualities of ALIDIO. DISCS. In the photograph the two large bands show the orchestral recording made in 1939. Close to these are the unmodulated grooves cut this year.

One more convincing prool of a most important claim "AUDIODISCS do no deterionate with age either before or affer recording, and there is ns increase in surface noise from the time of recording to playback or processing-whether it be a few days or many years."

AUDIO DEVICES, INC., 444 Madison Avenue, New Yerk 22, N.Y.

Export Department: Rocke International Corp., 13 E. 40th Street, New York 16, N. Y. *reg u s pat. off Audiodiscs are manufactured in the U.S.A. under exclusive license from PYRAL, S.A.R.L., Paris

HIGH RELIABILITY at HIGH VOLTAGES

Check these advantages

 of SUPEREX*High Voltage Capacitors LONG life
bullt for the application
Low Voltage Stress Uniform Winding Tension Extra wide tabs for positive contact to sections
Carefully placed internal connections
Voltage Barriers
NON-FLAMMABLE, NON-EXPLO: SIVE SYNTHETIC IMPREGNANT
HIGH INSULATION RESISTANCE
STABLE CHARACTERISTICS

The dependability that is a "must" in high-voltage capacitors comes from long-time experience in design and construction. Solar SUPEREX Units are outstanding in this field today.
Standard capacitors are available in ratings up to 100,000 volts in all-welded hermetically-sealed heavy steel cases with oversized porcelain bushings. Capacitors rated up to 150,000 volts are obtainable in tubular phenolic cases with leak-proof seals.
If you have any special problems in the field of high-voltage capacitors, a Solar field engineer will gladly discuss them with you. Write today.
(4) 3303
solar manufacturing corporation 1445 HUDSON BOULEVARD, NORTH BERGEN, N. J.
Plants af: Chicago, Ill., North Bergen and Bayonne, N. J.

GOLAR CAPAGITORS "Quality Above AII"

Now all Precision square and rectangular paper tubes and coil bases are DI-FORMED as a standard process. And you now get these DI-FORMED tubes at no extra cost.

> Use these New Precision DI-FORMED Coil Bases to save money -speed production and increase efficiency of your equipment-because DI-FORMED coil bases have greater strength; permit automatic stacking; eliminate forming coils after winding; and cores can be engineered closer, saving wire.

Write for new Mandrel List (many new sizes now!) and ask for samples of Precison DI-FORMED Tubes - to your specifications.

PRECISION PAPERTUBECOMPANY
2041 West charleston street Chicago 47, illinois

FOR TOP UH-P PMRFORMANCE

General Electric's new GL-5648 transmitting

 tube - a forced-air-cooled rriode of ultracompact lighthouse design-LEADS in microwave applications such as:
FM-AND-TMHBVISION STUDIO-TRANSMITTBRIINRS

COMMERCTAY RADAR

PLATE OR CATHODE-PULSED MIRCUITS

2,500 mc frequency at max ratings

ch 5648

ELECTRICAL

HERE is the most modernly engineered transmitting tube of medium power to operate in the ultra-high range. Type GL5648 will perform at frequencies up to $2,500 \mathrm{mc}$ under full plate input, assuming proper adjustment of heater voltage to compensate for cathode back-heating.

The tube finds primary application in oscillator service, and as a grounded-grid power amplifier. Also, Type GL-5648 is directly suited to plate or cathode pulsing. Maximum ratings for this service now are being determined prior to definitive release.

Design follows the successful lighthouse-tube principles of par-allel-plane electrodes that are
closely spaced, plus a coaxial-contact structure meeting the needs of concentric-line circuits. Internal shielding is highly developed, so that the tube is especially useful in grid-separation-type circuits.

Cylindrical terminal contacts, wide in area and silver-plated, provide low-inductance current paths and reduce r-f losses. The tube is sturdy, compact in outline, and small in dimensions, requiring minimum space to mount.

Additional data on the GL- 5648 gladly will be supplied on request, and G-E tube engineers are at your service to consult with you as to applications. Address Electronics Department, General Electric Company, Schenectady 5, N. Y.

Cathode voltage 6.3 v current
trode capacitances (with shields): Grid-cathode 6.5 6.50 mmfd (with cathode hot) $\quad 8.50 \mathrm{mmfd}$
Grid-plate 8.50 mmfd Cathode-plate 0.035 (max) mmfd Amplification factor
Transconductance 17000 micromhos Frequency at max ratings (with proper heater-voltage adjustment) $\quad 2,500$ imc Type of cooling forced air

Max Ratings (absolute values), Class C Telegraphy

D-c plate voltage	$1,000 \mathrm{v}$
D-c grid voltage	-150 v
D-c cathode current	100 ma
D-c grid current	50 ma
Grid dissipation	1.5 w
Plate input	100 w
\quad dissipation	100 w

Ratings for Typical Operation (as gridseparation oscillator at 500 mc), Class C Telegraphy
D-c plate voltage
$1,000 \mathrm{v}$
D-c grid voltage
$-48 \mathrm{v}$
D-c plate current
D-c grid current (approx)
Plate input
8
8 ma
dissipation
power output
$1,000 \mathrm{v}$ -150 v 00 ma 50 ma
1.5 w 100 w
100 w

type of cooling forced airInterelectrode capacitances (with shields):
6.3 V

$50 w$
$25 w$
25 w
 v

GENERAL ELECTRIC

When you need insulators in a hurry, phone us for die pressed AlSiMog. Air shipments put us as close as if we were in your own back yard

American Lava has the largest battery of presses in the industry and can now handle a limited number
of rush orcers. We make our own dies and that also saves a lot of time. Die pressing is usually the fastest and most econonical way to produce steatite ceramic insulators of fine quality. Try us when you want to break that bottleneck of ceramic insulators.

New... FERRANTI ELECTROSTATIC VOLTMETERS FOR AC AND DC MEASUREMENTS

ZERO CURRENT CONSUMPTION•READING FROM 20 to 25,000 VOLTS • AC OR DC UP TO 3,500 VOLTS SELF-CONTAINED • OVER-VOLTAGE PROTECTION• $21 / 2 \mathrm{in}$. DIALS • SINGLE, DUAL AND TRIPLE RANGES - MAGNETIC DAMPING • PRECISION BUILT, ACCURATE - THOROUGHLY RELIABLE•

A Praduct of aice 65 years of Jerranti cufzerience

FERRANTI ELECTRIC INC., 30 ROCKEFELLER PLAZA, NEW YORK 20, N. Y.

FROM ORANGE SQUEEZERS

PWC flexible cords and cables stand up to punishment like no old-fashioned cord you've ever used, like no other cord you can buy.

For PWC flexible cords - ST, SJT, SVT and POT - are insulated and sheathed with PWC plastic, the last word in modern insulation. Made by the world's leading exclusive manufacturer of plastic insulated wire and cable, non-aging, non-combustible PWC flex-
ible cords shrug off moisture, abrasion, oil, grease, acids and alkalis. They won't crack, fray or rot. Just try to kink them!

Leading manufacturers of electrical tools, major and small appliances, conveyors and other electrical products have standardized on PWC cords for original equipment. They are available on reels or as cord sets with molded-on plugs, receptacles or grommets, either standard or special.

Experience shows that PWC cords and cord sets more than pay their way in freedom from maintenance costs and replacement over long, hard service.

You'll get outstanding performance in every PWC product you buy - from building wire, apparatus wire, or power cable to special purpose wires and cables.
Let us quote you prices and delivery dates today.

ULTRA-HIGH-FREQUENCY CABLES
RADIO HOOK-UP WIRE

REVERE FREF-CUTTING COPPER ROD INCREASES ELECTRONIC PRODUCIION

SINCE its recent introduction, Revere FreeCutting Copper has decisively proved its great value for the precision manufacture of copper parts. Uses include certain tube elements requiring both great dimensional precision, and exceptional finish. It is also being used for switch gear, high-capacity plug connectors and in similar applications requiring copper to be machined with great accuracy and smoothness. This copper may also be cold-upset to a considerable deformation, and may be hot forged.
Revere Free-Cutting Copper is oxygenfree, high conductivity, and contains a small amount of tellurium, which, plus special processing in the Revere mills, greatly increases machining speeds, makes possible
closer tolerances and much smoother finish. Thus production is increased, costs are cut, rejects lessened. The material's one important limitation is that it does not make a vacuum-tight seal with glass. In all other electronic applications this special-quality material offers great advantages. Write Revere for details.

REVERE

COPPER AND BRASS INCORPORATED

Founded by Paul Revere in 1801

230 Park Avenue, New York 17, New York Mills: Baltimore, Md.; Chicago, Ill.; Detroit. Mich.; New Bedford, Mass.; Rome, N. Y.-Sales Offices in Principal Cities, Distrabutors Everyubere.

CUSTOMERS REPORT:

"This material seems to machinc much better than our previous hard copper bar; it cuts off smoothly, takes a very nice thread, and does not clog the die." (Electrical parts.)
"Increased feed from $1 \cdot 1 / 2^{\text {"" }}$ to $6^{4 "}$ per minute and do five at one time instead of two." (Switch parts.)
"Spindle speed increased from 924 to 1161 RPM and feed from $.0065^{" 1}$ to $.0105^{\prime \prime}$ per spindle revolution. This resulted in a decrease in the time required to produce the part from .0063 hours to .0036 hours. Material was capable of faster machine speeds but machine was turning over at its maximum. Chips cleared tools freely, operator did not have to remove by hand." (Disconnect studs.)

Duo-Cone Speaker

The RCA LC-1A speaker is expressly designed for monitoring FM programs and high-fidelity recordings in broadcast stations. Its response is exceptionally free from distortion-over the full FM range. Read these highlights:
Uniform response, 50 to 15,000 cycles. Audio measurements prove RCA's new speaker free from resonant peaks, harmonic and transient distortion . . . at all rusable volume levels.

120 degrees radiation at 15,000 cycles! The LC-1A is unique in its ability to project a wide cone of radiation through a constant angle of 120 degrees. And frequency response is uniform throughout! Advantages: It eliminates the familiar sharp peak of high-frequency response usually present in other systems. And exact location of the LC-1A in control or listening rooms is not critical.
Remarkably smooth crossover-response. Both cones are mounted on the same axis and
have the same flare angle to place their surfaces in line. Thus the possibility of undesirable interference between H-F and L-F units over the crossover range eliminated.

Controlled "re ll-off" at 5 and 10 kc . Because of the LC-1A's exceptional high-frequency response, the surface noise and high-frequency distortion present in many recordings is accentuated. Therefore, a panel-mounted switch is provided to control and restrict the LC-1A's high-frequency range for this type of program material (see response curve).

Two fine bass-reflex cabinets (optional) are designed to match the LC-1A speaker. One is finished in the familiar RCA two-tone gray for control-room use. The other . . . in bleached walnut, is suitable for executive offices and modern surroundings.

For prices and further details on the LC-1A speaker . . . now in production, write Dept. 30-K
details of rca dUO-CONE DESIGN

Two individually actuated cones are mounted on the same axis and flare angle, with a specially designed heavy Alnico magnet of high flux density. The high-frequency unit is a $23 / 8^{\prime \prime}$ cone with an exceptionally lowmass aluminum voice
 coil. This cone follows out the shallow angle of the larger cone to radiate a pattern at full power over an area of 120 degrees at 15,000 cycles! The low-frequency unit has a massive $15^{\prime \prime}$ diaphragm with a high-mass voice coil of large diameter. Its resonant frequency, only 35 cycles with true bass response at all volume levels.

EROADCAST EQUIPMENT
 Inc．，are used in a wide variety of applications－ unit heaters，home freezers，laboratory water baths， to mention only a few．The insulation is constantly subjected to（1）heat up to $700^{\circ} \mathrm{F}$ ．，（2）cold as low as $-120^{\circ} \mathrm{F}$ ．，（3）extreme vibration，（4）fric－ tion，（5）bending，and（6）abrasion．

Over a year ago，Fenwal engineers specified Bentley，Harris Fiberglas Sleeving．Here is what they have found：
＂Comparative tests made against similar insu－ lation proved BH Fiberglas Sleeving was best suited for our use．In actual use，this Sleeving with－ stands abrasion，friction and bending without split－ ting or cracking．The non－fraying qualities and resistance to extreme temperatures are outstanding．＂

Daily use by America＇s leading manufacturers

> BH iberglas: SLEEVINGS
＊BH Non－Fraying Fiberglas Sleevings are made by an exclusive Bentley，Harris process（U．S．Pat．No．2393530）．＂Fiberglas＂is Reg．TM of Owens－Corning Fiberglas Corp，
－ーーー－ーーーーーーーーーーーーーーーーーー USE COUPON NOW
Bentley，Harris Mfg．Co．，Dept．E－16，Conshohocken，Pa．
1 am interested in BH Non－Fraying Fiberglas Sleeving for
（product）
operating at temperatures of $\ldots{ }^{\circ} \mathrm{F}$ ．at \qquad volts．Send samples so I can see for myself how BH Non－Fraying Fiberglas Sleeving stays flexible as string，will nut crack or split when bent

NAME \qquad COMPANY \qquad
ADDRESS

Send samples，pamphlet and prices on other BH Products as follows：
\square Cotton－base Sleeving and Tubing
\square Ben－Har Special Treated Fiherglas Tubing

RELAKS OF ADAPTABHTY

Thousands of specifications are filled by the complete line of Allied Relays-seven of which are grouped around the Allied emblem of engineering leadership.
Allied Control engineers pioneered the design of relays from signal circuits to 75 ampere contacts, coils from 12 milliwatts to $31 / 2$ watts to give the smallest mounting area and accessible wiring facilities.
*Type "BOHO" is D.P.D.T. relay sealed with standard octal plug. Contact rating of 5 to 10 amperes and coil capacity of 115 v . D.C. at 2.5 watts and 220 volts; 25 and 60 cycles at 4.5 volt-amperes.
"Type " $C N$ " is S.P.S.T. doubie break relay with 50 ampere contacts and coil capacity of 115 V . D.C. at 3.5 watts and 220 volts; 60 cycles at 10.5 volt-amperes.
"Type " $B N$ " is 6 P.D.T. relay with 15 ampere contacts and coil capacity of 115 v . D.C. at 3.5 watts (not available
in A.C.).
*Type " B '" is S.P.D.T. relay with 2 ampere contacts and coil capacity of 25 v . D.C. at 50 milliwatts (net available in A.C.)
*Type "BO" is D.P.D.T. relay with 15 ampere contacts and coil capacity of 115 v . D.C. at 2.5 walts and 220 volts; 25 and 60 cycles at 4.5 volt-amperes.
"Type " F " is S.P.D.T. with 2 ampere contacts and coil capacity of 85 v . D. C. at 1.5 watts (not available in A.C.).
*Type "SK" from S.P.S.T. up to 4 P.D.T. with 1 ampere contacts and coil capacity of 60 v . D.C. at 750 milliwatts (for 4 P.D.T. relay) not available in A.C.
Allied Control representatives are located throughout the United States. A short note to our home office will give you the name of our nearest representative.

Centralab reports to

 NOVEMBER 1947Rigid test standards assure dependable
performance, long
life of every
Centralab control!

1
100% electrical test for continuity and "shorts" completes Centralab's program of tests for each control before it is shipped. This includes testing for resistance at various degrees of rotation, taper, noise, mechanical dimensions, etc. It's the
reason why Centralab controls assure you accurate ratings, precision workmanship, trouble-free installation, long field service life - above and beyond your specification requirements. But that's not all

2
CRL's complete Radiohm line offers wide range of variations for special needs: Model " R " - wire wound, 3 ratts; or composition type, 1 watt. Model " E " composition type, $1 / 4$ watt. Direct contact, 6 resistance tapers. Model " M " composition type, $1 / 2$ watt. Write for Bulletin 697.

3
Here's Centralab's newest control for miniature receivers, amplifiers. No big. ger than a dime, high quality performance is assured.

Electronic Industry

4
CRL Hi-Vo-Kaps combine high voltage and small size for television applications. For use as filter and bypass capacitors in video amplifiers.

5 Revolutionary, CRL Ler'er Switch features exclusive coil spring design Guaranteed minimum life of 50,000 cycles. Write for Bulletin 970 .

7 The recognized dependability and high quality of Centralab's ceramic capacitor line is now available in quantities for quick delivery.

θ
First commercial application of the "printed circuit", CRL's new Couplate offers a First commercial application of the printed circuit an integral assembly of $H i-K a p$
complete interstage coupling circuit consisting of an in capacitors and resistors closely bonded to a steatite ceramic plate and mutually connected by metallic silver paths "printed" on the base plate.

Look to Centralab in 1947! First in component research that means lower costs for electronic industry. If you're planning new equipment, let Centralab's sales and engineering service work with you. Get in touch with Centralab!

Centralab

DIVISION OF GLOBE-UNION INC., MILWAUKEE, WIS.

DU MONT announces the new

SPECIFICATIONS...

Wide range of film speeds (3600 to l) - from l inch per minute to 5 feet per second.

Instantaneous change from low. to high-speed recording.

Calibrated electronic speed control (in./min. and in./sec.)

Quickly detached to free oscillograph, or for use with other oscillographs،
Fixed-focus $1 / 2.8$ or $1 / 1.5$ lens for medium. or high-speed recording.
Capacity of 100 feet of 35 mm . film or paper; provision for 1000 feet if required. Film lootage indicator.
Operates independently of ambient light. Simultaneous viewing and recording of trace.
Self-illustrated data card for labeling given "takes" directly on film. Pro. vision for timing markers.

Applicable to ALL

5-inch cathode-

 ray oscillographs!To meet the need for permanent records of complex phenomena, Du Mont proudly presents a camera capable of photographing all types of traces - high or low frequency; periodic or aperiodic; con-tinuous-motion or single-image; and for time intervals up to 200 hours.

The new Du Mont Type 314 Oscil lograph-Record Camera* provides all users of cathode-ray oscillographs with a useful, simple, practical re-
cording means. It opens the way for precise quantitative measurements. It permits direct comparisons of traces recorded at different times un der varying conditions.

For maximum convenience, the mounting, operation and dismounting of this camera are reduced to simplest terms consistent with the requirements and practices of the widest range of oscillograph users.
rManufactured for Du Mont by Fairchild Camera and Instrument Co.

Descriptive literature on request.

but only One unit to handle

THE WASHER IS HELD ON BY THE ROLLED thread and IS free TO ROTATE!

save money with
s

DRIVING IS EASIER, FASTER. SEMS ARE PERFECT FOR HARD TO REACH PLACES

NO DROPPED OR WASTED WASHERS
ASSEMBLY MOVES SMOOTHLY

SEMS ELIMINATE COSTLY HAND
ASSEMBLY; SAVE TIME AND LABOR!

ANY OF THESE MANUFACTURERS WILL SEND YOU THE SEMS DATA BOOK, FREE!

Russell, Burdsall \& Ward Bolt \& Nut Co . Port Chester, N. Y. Scovill Manufacturing C . Waterville Division Waterville, Conn. Shakeproof Inc.
Division of Illinois Tool Works Chicago, Illinois
Steel Co. of Canada, Ltd. Hamilton, Ont., Can.

Stronghold Screw Products Inc, Chicago, III.
American Screw Co. Providence, R. I. Butcher \& Hart Manufacturing $\mathbf{C} 0$. Toledo 7, Ohio
Canada Illinois Tools, Ltd. Toronito, Ont., Canada Central Screw Co. Chicago, ill.

Chandler Products Corp.
Cleveland, Ohio
Continental Screw Co. New Bedford, Mass.
Corbin Screw Division
The American Hardware Corp. New Britain, Conn.
Eaton Manufacturing Co.
Reliance Division Massillon, Ohio

The Lamson \& Sessions $\mathbf{C} 0$. Cleveland, Ohio National Lock Co. Rockford, Illinois
The National Screw \& Mfg. Co. Cleveland, Ohio
New England Screw Co. Keene, N. H.
Pheoll Manufacturing Co. Chicago, Illinois

THERE'S A SHAKEPROOF LOCK RNASHER

you get the famous SHAKEPROOF triple-Action performance

STRUT ACTION

Each tapered-fwisted tooth bites into both surfaces, setting up a strut-actior which resists all backward movement of nut or screw.

LINE BITE

The exclusive design of the tape-ed-twisted teeth assures a substantial line bite at initial contact, immediately producing a positive lock.

SPRING TENSION

As vibration begins, the spring tension of the teeth forces them to bite desper, maintaining an absolutely tight lock.

No matter what your fastening problem may be . . . oversize or elongated holes, hardened or soft materials, large or delicate parts . . . there is a Shakeproof Lock Washer designed to make your fastenings secure against vibration . . . to do your job at peak efficiency. And no matter what size or type you choose for your application, every Shakeproof Lock Washer incorporates the exclusive triple-action Shakeproof taperedtwisted teeth that actually bite deeper, hold tighter as vibration increases.

Shakeproof Field Engineers can be of great service to you in selecting the right size and type of standard washer, and their knowledge is especially helpful in the selection of one or more of Shakeproof's hundreds of specials that provide even greater fastening performance for specific problems than the standard types. When you meet fastening problems let a Shakeproof engineer meet you! A phone or written request will bring him to your plant! Call today.

> 5HRKPRイ́RFınc. fastening ffeadquarters"
> Plants at Chicago and Elgin, Illinois - In Canada: Canada Illinois Tools LId., Toronto, Ontario

At Station WBRC, Birmingham, Alabama

THIS FEDERAL TUBE

 Stayed on the
for more than 20,000 HOURS!

FEDERAL'S F-891R AM broadcast tubes have established an outstanding service record at Station WBRC-for Mr. G. P. Hamann, chief engineer, reports that "these tubes all have a life in excess of 20,000 hours"! That's well over three years of actual operation -and it's meant substantial savings in tube replacement costs.

In major AM stations from coast to coast, Federal broadcast tubes have won the confidence of engineers and operators-by consistently setting the standards of performance, tube life, and operating economy. The F-891R modulator tube, and the corresponding F-892R power amplifier, are two forced-air-cooled triodes which have proved extremely satisfactory for small and medium-sized AM broadcast stations. Water-cooled types of equivalent rating, the F-891 and F-892, are also available.

If you want top performance like this, specify Federal broadcast tubes. For their long life and permanence of characteristics is the cumulative result of more than 38 years of research and manufacturing experience-continual pioneering in new ways to build better tubes. For complete technical data on these AM tubes, write to Federal today-Dept. K713.

Milken "Designed for Application" components are different! As a designer and manufacturer for many years of complex electronic and communication equipment, we are our own best customer for component parts. Consequently, we have to perform an outstanding job of designing and manufacturing such parts in order to satisfy our own applications. Our parts are "different", also, because os symbolized by the "Gear wheel" of our registered trade mark, they are designed by mechanical engineers working in close c.ooperatron with our electronic circuit group. Below are illustrated a typical half dozen of the thousand-odd items we manufacture.

Illustrated above, left to right; Top row: The No. 80075 cathode roy tube Bezel, the No. 04000 series of adjustable shaft angle, center drive zariable transmitting condensers and the No. $\mathbf{7 4 0 0 1}$ permeability tuned shielded plug-in coil form. Bottom row: The No. 36011 snap lock multiple finger contact plate caps, the 5 mall panel dials and finally the Ceramic insulated plate caps.

JAMES MILLEN MFG. CO., INC.

SALES OFFICES

IN ALL
PRINCIPAL CITIES

MAIN OFFICE AND FACTORY

MAIDEN
 MASSACHUSETTS

CANADIAN SALES
ASTRAL ELECTRIC $\mathbf{C O}$. SCARBORO BLUFFS (TORONTO)

The Alliance Powr-Pakt Model hs Mater is for 110 volls, 60 cycle operalion. Here is and thit in weight ture power piani so company desisas calling for

- Light weight, compact, interchangeable power sources . . . small motors that can be mass produced at low cost are in rapidly growing demand! And Alliance has a "Head Start" in making millions of small electric motors.
more "rallored power." The Model MS fills the growing ine motion an 3 compod motors 10 incrase ands producta" utility fealures in thous moters are mass producue. Alliance Powr-Pokt moters are meth variallons with dasign te They can be bull and operatig condilions... meot special load and opom less than $1 / 400 \mathrm{~h}$ where molors raled ino. are required.

MAN ATURE MOTO S THAT MAKE 'EM MOUE

- Alliance phonomotors drive most of the turntables, record changers and recorders for the radio-phonograph industry. And Alliance Powr-Pakt Motors rated from less than 1-400th h. p. up to 1-20th h. p. will drive fan blades, motion displays, projectors and actuate switches and controls!
- Write today . . . find out how Alliance Motors can help to drive your products to market!

WHEN YOU DESIGN-KEEP
 MOTORS IN MIND

New and up-to-date, yet embodying all the quality, precision engineering and outstanding construction features for which Chicago Transformers have long been recognized. Ratings have been skilfully selected by men who know the latest trends in circuit design. They provide maximum flexibility in application and close matching with today's most widely used tubes. Audio transformers have $600 / 150$-ohm impedances and contribute to product performance which not only meets but surpasses RMA and FCC standards for high quality reproduction, uniform frequency response over the required ranges, and freedom from distortion. Power transformers meet or surpass RMA standards for temperature rise and insulation test voltages. Combined in the power series are filter reactors with conveniently matched D.C. current ratings. Transformers and reactors are mounted in drawn steel cases in three variations of CT's famous "Sealed In Steel" construction. This provides protection against atmospheric moisture, efficient magnetic and electro-static shielding, strength and rigidity to withstand shock and vibration, convenience in mounting. compactness, and clean, streamlined appearance.

The dielectric of the Lapp condenser is an inert gas, non-deteriorating and puncture proof. After years of service, the condenser retains the same margin of security it had when installed in the circuit. Also, it offers lower loss than solid-dielectric units, with corresponding economy of power. Not needing to "warm up," it provides constant capacitance under temperature variation. Variable, adjustable and fived capacitance units are available, in current ratings up to 500 amperes R.M.S., and voltage ratings up to 60 kv peak. Fixed units have been made with capacitance up to $\mathbf{6 0 , 0 0 0} \mathrm{mm}$., variable and adjustable units up to $16,000 \mathrm{mmf}$.

Presto Presents Something New in Recording Amplifiers...

The new Presto $92-\mathrm{A}$ is a $50-$ watt amplifier designed specifically for recording work. It answers the need for an amplifier of exceptional quality and performance, and includes a number of outstanding features thoroughly proved in operation:

1 Selector switch and meter provide both output level indicator (not for "riding gain") and plate current readings for all tubes.

- 2 Chassis is vertically mounted. Removal of the front panel gives access to all circuits without removing amplifier from rack.

3 The output stage has four 807's in push-pull parallel with an unusual amount of feedback.Thisproduces ample peak power with low distortion and an extremely low internal output impedance for best performance from magnetic cutting heads.

Push buttons selectany of these recording characteristics: flat, 20-17,000 cps, 78 rpm , standard NAB lateral, NAB vertical all within an accuracy of ± 1 db. Distortion is only $11 / 2 \%^{-}$at full output.

RECORDING CORPORATION
248 WEST 55TH STREET, NEW YORK 19, N. Y.
Walter P. Downs, Ltit., in Canada
FREE! Presto will send you free of charge a complete bibliography and digest of all technical and engineering articles on disc recording published since 1921. Send us a post card today.

from

TIBBETTS INDUSTRIES

\star A SQUARE HEARING AID MICROPHONE \star AN ENTIRELY NEW HEARING AID RECEIVER

Now even smaller, better hearing aids are possible!
Here they are! - two new, infinitely better hearing aid components from Tibbetts, makers of the famous HA-30 Monobar-Diabow Hearing Aid Microphone. Thousands used in hearing aids all over the world. The results of long research. the HS-41 Microphone and HAR-6 Receiver are the smallest for their output on the market. Look at these outstanding performance features:

Model HS-41 SQUARE Microphone

An important improvement in hearing aid mikes.

Model HAR-6 illustroted
$11 / 2$ times ocfual size

- Only I $1 / 32^{\prime \prime}$ square, $.210^{\prime \prime}$ thick overall.
- Case bottom recessed to save space.
- Output at 1000 cps : minus $49-\mathrm{Db}$ - volt/dyne/ cm^{2}.
- Grilled protective cover.
- Features Tibbetts exclusive Monobar-Diabow Crystal Element.

Model HAR-6 Crystal Hearing Aid Receiver

- Exceptionally sensitive (see chart)
- Smallest, lightest receiver for output available.
- Flesh-pink color case.
- Features Tibbetts exclusive Monobar-Diabow Crystal Element.

Compare for Sensitivity!
 Compare for Size!

The chart* and shadowgraph show the HAR-6 compared with Receiver " X " for sensitivity and size - proof of the superiority of this new Tibbetts Product!

RECEIVER " X "---------
(ACTUAL SIZE)
*The curves shown are from our actual laboratory tests. The input to the receivers was held constant at 5 volts. The pressure output of the receiver was measured with a 2 cc cavity artificial ear with ear tip. 0 Db reference is 1 dyne/ cm^{2}.

Find out more about the performance and size advantages of these new Tibbetts Products. Write today for detailed information.

More and more manufacturers of receiving sets are adopting AIRLOOPS as standard for their loop antenna and cabinet back requirements . . . this increase in demand permits manufacturing economies which are going right back to AIRLOOP users, in the form of NEW LOW PRICES . . . competitively AIRLOOPS are the lowest cost loop antenna and cabinet back and more important AIRLOOPS incorporate many superior features which in themselves improve set performance . . . no set builder can afford to overlook the significance of the AIRLOOP.
... FRANKLIN AIRLOOPS are flat sheets of copper die-stamped into perfect super sensitive loops . . . are air dielectric throughout . . . are lower in cost . . . are back panel and loop in one unit . . . have high uniform " Q " over entire band . . . have low distributed capacity ... have 27% greater effective loop area . . . have electrical and mechanical stability . . . increase set sensitivity . . . eliminate individual loop adjustment . . . eliminate haywire.

dag colloidal graphite

 scores on Problems

These are but a few of many problems for which "dag'" colloidal graphite is often the only practical answer. Any problem requiring a slippery dry solid lubricanf which conducts heat and electricity and resists extremes of temperature; which is truly colloidal in size and therefore capable of capillary penetration; which is chemically inert and anticorrosive, opaque and gas-absorbent, is a problem for the "dag" feam of properties to chailenge.

The scope of "dag" colloidal graphite is widened by its numerous carriers. Water, petroleum and castor oil, alcohol and glycerine, are some of the 18 available dispersions. Acheson technicians work constantly on new applications for the attack on specific industrial problems.

Your problem may be on old victim of "dag" colloidal graphite's versatility. Better see literature below. If yours is a new problem, better see Acheson engineers, and get the "dag" colloidal graphite feam on your side.

ACHESON COLLOIDS CORPORATION, Port Huron, Michigan

 ... with Rall 7op Safety Case

At 20,000 ohms per volt, this instrument is far more sensitive than any other instrument even approach. ing its price and quality. Unequalled for high sensitivity testing in radio and television servicing and in industrial applications.

- Model 260 permanently fastened in Roll Top Case.
- Heavily molded case with Bakelite roll front.
- Flick of finger opens or closes it.
- Leads compartment beneath instrument.
- Protects instrument from damage.

```
Model 260-Size 51/4" }\times\mp@subsup{7}{}{\prime\prime}\times31/\mp@subsup{8}{}{\prime\prime Both complete with test leads
```


The Ranges

INSTRUMENTSITHAT STAY ACCURATE

KENYON T-LINE ADDITIONS For Amateur and Industrial Use!

KEN-O-TAP UNIVERSAL, DRIVER TRANSFORMERS

500 Ohm Line to any Class 8 Grids
Primary to Secondary Ratio Variable from 1:13.3 to 1:.7

Type	Power Roting	Case No.	Weight	List Price
T-261	7 Watts	3 A	$23 / 4 \mathrm{lbs}$	$\$ 9.70$
$\mathrm{~T}-262$	18 Watts	4 A	$51 / 4 \mathrm{lbs}$	13.20

Any Line or Single or Push Pull Plates to Class B Grids Primary to $1 / 2$ Secondary Ratio Variable from $7.0: 1$ to $1: 9.0$

Type	Audio Rating	Case M Size	Max. Pri. D.C.	Max. Sec. D.C.	Weight	List Price
T-264	7 Waits	3A	100 MA	100 MA	23/4 lbs.	\$ 9.95
T. 263	18 Watts	4 A	200 MA	200 MA	$53 / 4 \mathrm{lbs}$.	15.25
FILAMENT TRANSFORMERS						
Primary 115 Volts, 50 to 60 Cycles						
Type	Sec. Rating		Insul. Test	Case No.	Weight	List Price
T.393	$5 / 5.1 / 5.25$ V. - 26 ACT		2000 V.	5A	$91 / 2 \mathrm{lbs}$.	\$17.30
T-394	$5 / 5.1 / 5.25$ V. - 32 ACT		2000 V .	5A	101/2 lbs.	18.65
T-395	6.3 V. -20 ACT		2000 V .	5A	9 lbs .	15.30
T-396	6.3 V. -30 ACT		2000 V.	51/2A	12 lbs .	21.00
T-397	$6.3 \mathrm{~V}-12 \mathrm{ACT}$		2000 V.	4 A	$53 / 4$ lbs.	10.90

PLATE TRANSFORMERS

Primary 115 Volt, 50 to 60 Cycles

Type	Primary Conn.	Secondary Volts		A.C.	M.A. D.C.	Case No.	Weight
	High	3000	$3400-0-3400$	400	10 A	List Price	
	Low	2500	$2840-0-2840$	500		lbs.	$\$ 110.00$
T-674	Hign	3000	$3400-0-3400$	800	Special	135 lbs.	155.00
	Low	2500	$2840-0-2840$	1000	End Castings		

REACTORS

| Type | Inductance At
 Rated D.C. | Rated
 D.C. MA. | D.C.
 Resistance | Insul. Test | Case No. | Weight | List Price |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T-180 | 10 | 500 MA. | 60 | 7000 V. | 8 A | $261 / 4 \mathrm{lbs}$. | $\$ 43.00$ |
| T-181 | 5 | 1000 MA. | 18 | 7000 V. | 9 A | 50 lbs. | 63.00 |
| T-530 | $6 / 20$ | $500 / 50 \mathrm{MA}$. | 60 | 7000 V. | 8 A | $261 / 4 \mathrm{lbs}$. | 43.00 |
| T-531 | $3 / 10$ | $1000 / 100 \mathrm{MA}$. | 18 | 7000 V. | 9 A | 50 lbs. | 63.00 |

KEN-O-TAP MODULATION TRANSFORMERS

Type	Audio W. Pri.	Class C W. Sec.	$\begin{aligned} & \text { Max. } \\ & \text { Pri. D.C. } \end{aligned}$	Max. Sec. D.C.	Max. D.C Voltage	Primary Range Ohms	Sec. Range Ohms	Case No.	Weight	List Price
T-441	125	250	250 MA.	250 MA .	1500	2000-20000	200-20000	6 A	$151 / 2 \mathrm{lbs}$.	\$25.20
T-442	600	1200	400 MA .	400 MA .	3000	500-18000	200-19000	9 A	45 lbs.	67.50

YOUR INQUIRIES ARE INVITED. WRITE TODAY FOR FURTHER DETAILS.

THE HALLICRAFTERS SX-43 RECEIVER is being hailed as another great advancement in communications equipment. We're glad of the part we have contributed to its success by fabricating a cabinet worthy to house this superior apparatus.
You can be sure there's a reason when manufacturers of exacting standards come 1000 miles and more for cabinets, housings and en-
closures by Karp The big reason is that Karpconstructed cabinets not only enhance the appearance and market value of equipment, but afford real long-run economy as well. Karp cabinets are so painstakingly, so uniformly constructed that they save you time and money by their ease of assembly in your plant. Show us your blueprints. Get our quotations. Write for new brochure.

Any Metal * Any Gauge * Any Specification * Any Quantity * Any Finish

KARP METAL PRODUCTS CO., INC.

Askilled archer responds to the smooth, speedy cast of a fine yew bow. So does the professional draftsman respond to the smooth, easy performance of TYPHONITE ELDORADO leads. You'll learn the joy of a job well done with

DIXON'S TYPHONITE
 ELDDDAD

10,000 VOLT TELEVISION POWER SUPPLY CERAMICON

Type 401 Erie Ceramicon is a compact ceramic condenser with 10,000 Volt DC. rating. Extremely simple design employs one piece body, .860' OD x $5 / 8^{\prime \prime}$ long, 500 MMF minimum capacity, unit already has proven ideal for television power supply filter condensers. Also made in 20 and 51 MMF capacity ranges.

200 AMP. FEED-THRU BY-PASS CERAMICON

Erie Type 2373 Ceramicon is ideal for power line terminals to by-pass radio frequency currents on industrial heating and similar equipment. Conservatively rated at 1,000 Volts DC. operated with current carrying sapacity of 200 Amps. overall length 41 ${ }_{2}^{\prime \prime}$ Standard capacity ranges, $250 \mathrm{MMF}, 650 \mathrm{MMF}$ 1,000 MMF, and 10,000 MMF.

10,000 VOLT, 20 KVA CERAMICQN
This plate-type ceramic condenser combines ratings of 20 KVA and 10,000 Volts DC. with compact size, only $43 / 8^{\prime \prime}$ dia. x $2-5 / 16^{\prime \prime}$ height, With forced air circulation rateg Qoad is above 50 KVA at 15 MC. Type 3688 Ceramicon is made in 500 MMF and 1,000 MMF capacities.

* Ceramicon is the registered trade name of silvered
ceramic condensers made by Erie Resistor Corporation

Siamese Twin Resistor minn SAVES 40\% IN TELEVISION SET ASSEMBLY COST

WARD LEONARD ELECTRIC CO. Where Basic Designs in Elective Controls

In a television receiver circuit, two power wound resistors were needed, but the space for mounting them was hard to find.
So Ward Leonard suggested: instead of two separate resistors, each requiring individual mounting and installation, let's make a single Vitrohm unit with two electrically independent resistance windings.
This unit is mounted just like any single resistor.
RESULT: less space needed . . . assembly cost cut 40% !

for your productes
 faster assembly... or better performance put the problem through
 \section*{- esult - Ingincering}

As this case shows, it often happens that by a slight modification of a basic design or by use of a certain manufacturing method, Ward Leonard can give you the exact result you need-without the extra cost of a special design.

Blue means "Result-Engineering" in resistors, rheostats, relays and other electric controls. The distinctive blue identifies Ward Leonard "Result- Engineering"

FREE BULLETINS on "ResultEngineered" Resistors. (Please request on business letterhead, mentioning your title.) ward leonard electric co., Mount Vernon, New York. Offices in principal cities of U. S. and Canada.

Before you decide to "make the best" of a "standard" component, or pay a premium for a "special", submit the problem to Ward Leonard. At no obligation, see if "Result-Engineering" can't work out the solution for you.

Electrical Contact Material for Bar or Disc Confacts

Our contact material is available in bi-metallic form . . . palladium, platinum or silver, pure or alloyed, bonded to nickel or nickel silver ... or in solid form of any precious metal or alloy.

We are prepared to-
. . . supply this material for your own attaching
. . . attach the contact material to arms supplied by you

- . provide complete assemblies of arms with contact material attached
Our new bar contacts result in a great saving of precious metals with assured contact area equal to the width of the bar, with larger mislocation tolerances, and with marked economy in attaching. But whether bar or disc, these contacts are permanently welded with a weld strength of 25 to 35 pounds where thickness of blade permits, and they can be positioned within .005 on length and .010 transverse.

The electrical conductivity and life of a welded contact greatly exceeds that of the mechanically applied type because it is fused . . . permanently bonded to the arm, not dependent upon mechanical pressure for electrical contact between arm and contact.

One of our sales engineers will be pleased to assist you in comparing the costs of our materials and methods of application with conventional types.

BAR CONTACT TAPE ... under license arrangement with Western Electric Company, Ine.

The Sperry Klystron Tube to generate ultra-high-frequency microwaves . . .

The Sperry Klystron Signal Source to "power" them . .

The Sperry Microline to test and measure them . . .

These Sperry products equip the research or development engineer with every essential for development or design in the microwave field.

The Sperry Klystron Tube has already opened up new vistas in
navigation, aviation, medicine, radio, telephone, telegraph and other major applications. It is ready for many new local oscillator or high power uses.

The Sperry Microline includes practically every type of instrument for quick precision measurements in the microwave frequency bands.

This Sperry service - beginning with a source of microwave energy, the Klystron, and following through with every facility for measuring microwaves - opens up almost unlimited possibilities for industry.

We will be glad to supply complete information.

Sperry Gyroscope Company, Inc.

IEXECNINE OFFICES: GREAT meck, new york - dilision of the splrry corporation new yobk - cleveland . new orleans . los angeles . san fraidisco - seattle

You may build the best appliance of its kind on the market - but if it sets up local radio interference-you'll havetough sledding against today's keen competition. Your customers are demanding radio noise-free performance in the electrical equipment they buy.

The answer, of course, is to equip your products with C-D Quietones. Why Quietones? First, becausc-they're the bestengineered noise filters - second, because they guard your product's reputation by
giving long trouble-free service - third, because they're designed and built to meet manufacturers' specific needs - efficiently and economically.

Speed up sales - build prestige - boost profits with C-D Quietones. Your inquiries are invited. Cornell-Dubilier Electric Corporation, Dept. K-11, South Plainficld, New Jersey. Other large plants in New Bedford, Brookline and Worcester, Mass., and Providence, Rhode Island.

THE ABNOTD ENGINEFRING CO.

Subsidiary of ALLEGMENY LUDLUM STEEL CORPORATION
 147 East Ontario Street, Chicago 11, Illinois

SATURATED SLEEVING ${ }^{+}$

IF IT'S TURBO-IT SAFEGUARDS!

TURBO Soluraled Sleeving i: prailoble in various colors in sizzs from $.032^{\prime \prime} 10.224^{\prime \prime}$ ASTM standard inside diometer in slronds or continuous coils. It is recommended for oll gen. erol opplications thol do not require unusually high dielectric strength. Dielectric breakdown is $1=00 \mathrm{~V}$, per A.S.T.M. lest. TURBO Solurated sleeving is o slow burning insulation.

...an all-purpose insulation with all-round advantages!

Always Dependable!

SELENIUM RECTIFIERS ...Built on Aluminum

LARGE OR SMALL WE BUILD THEM ALL				
Code no.	circuit	MAX. R.M.S. INPUT VOLTS	OUTPUT VOLIS	OUTPUT AMPS.
	1 Phase Center Tap	24	8	. 220
B2B1S1B	1 Phase Bridge	48	36	. 30
CSBISIB	1 Phase Bridge	120	90	. 6
Dicisib	1 Phase Center Tap	24	8	1.6
E2BISIB	1 Phase Bridge	48	35	2.4
F7B1SIB	1 Phase Bridge	168	120	4.0
G2B1S1B	1 Phase Bridge	48	35	6.0
HIBISIB	1 Phase Bridge	24	17	10.0
FHIC3SIB	1 Phase Center Tap, Fan Cooled	24	6	60.0
FHIHA9SIB	3 Phase Half Wave, Fan Cooled	13.8	9	250.0
The above ratings for $35^{\circ} \mathrm{C}$ ambient continuous duly resistive inductive load.				
Other combinations manufactured to meet your requirements.				

For AC.DC conversion where minimum maintenance costs and maximum efficiency are required, circuit designers write SELETRON into their specifications . . . right at the start!

These advanced type selenium rectifiers built on aluminum are engineered for long life, minimum weight, compactness and maximum heat dissipation. Ten standard sizes of discs provide outputs ranging from 50 milliamps to thousands of amperes. Arrangement of discs in infinite series and parallel combinations makes possible stacks to meet specific requirements for voltage and current.

Consultation with our engineers on any problem is invited. Their services and advice are yours without any obligation. Write TODAY for our informative bulletin on SELETRON Selenium Rectifiers and for the SELETRON application data sheet.

Address Dept. 5-49
SELETRON DIVISION
RD

BADID BECEPTDE CD.,Inc.
 Since 1922 in Radio and Electronics

251 WEST 19ih STREET
NEW YORK 11, N. Y.

FOR RADIO APPLICATIONS . . .

Flexibility is the outstanding advantage of the new Fairchild Unitized Amplifier System. It includes 13 basic components which can be assembled in an endless number of combinations to meet the standard, special and changing recording requirements of schools, broadcasting and the professional recording industry. Related units are simply plugged in or cabled together. It's that easy . . . that quick!

Fairchild's Unitized Amplifier System now makes it practical and economical to build highly individualized audio systems to satisfy all of the varied and changing requirements of the individual recording engineer. Further, the flexibility of the Fairchild system permits the units to be rearranged or the system to be expanded at will without obsoleting a single component.

Fairchild's 13 basic components have been especially designed by recording engineers to meet the specific requirements of the various types of recording systems.
Unit 620 - Power Amplifier
Unit 621 - Microphone Preamplifie
Unit 622 - Pickup Preamplifier
Equalizer
Unit 623 - Line Amplifier
Unit 624 - Output'Switch Panel
Unit 625 - Input Switch Panel

Unit 626 - NAB Equalizer Unit 627 - Variable Equalizer Unit 628 - Diameter Equalizer Unit 629 - Mixer Unit 630 - VI Panel Unit 631 - Bridging Device Unit 632 - Auxiliary Power Supply

Study the typical setups shown on this page. Then set down your own requirements . . . select the basic units you'll need... assemble them for convenient panel board operation . . . or let us do it for you. How will your specific amplifier system perform? Professionally! Like all Fairchild Sound Equipment - it keeps the original sound alive. Precisionized mechanical and electronic skill is the precise reason.

Want more details? Address: 88-06 Van Wyck Boulevard, Jamaica 1, New York.

Single Channel Systems: far recording from a microphone or record or playing back from a pickup.

Multiple Channel Systems: for recording simultaneously through multiple input channels in conjunction with a mixer.

Dual Recarding Chanmels: for tecording simultaneously on two machines through dual channels with separate variable equalizers.

[^0]
Collins

Eritl for Continnous Poriormance

Operating reliability and efficiency are your assurance of economical operation. In Collins FM transmitters each stage has been carefully designed for maximum efficiency. The requirements of every component were determined and generous safety factors allowed. You can depend on a Collins transmitter to give you continuous efficient performance.

Lasting Ecomomy

The 10 kw 734 A (shown above) consists of three basic units-a model 731A 250 watt exciter unit, a 3 kw intermediate amplifier, and a 10 kw grounded grid amplifier. The economy of thorough engineering is apparent both in the moderate initial cost and in the low operating expense. Each stage functions with high efficiency, thus a minimum number of stages is required. Only 33 tubes are utilized in the entire transmitter, with only ten different tube types.

Low maintenance costs are assured by the use of highest quality components operated conservatively.

Advameed Chicuit Design

Frequency stability is within $\pm 250 \mathrm{cps}$. All circuits are metered. Exciter, intermediate amplifier and power amplifier stages utilize motor tuning. Forced air ventilation is provided for each cabinet. The vertical chassis can be tilted forward for servicing the rear side. Fuseless circuit protection is provided in both a-c and d-c power channels.

Distortion is less than 1.5% at 100% modulation over the range of $50-15,000 \mathrm{cps}$. The frequency response is flat within 1.0 db over the same range.

Twenty-five or fifty kw operation is accomplished simply by adding amplifier bays. Write us for a complete, descriptive bulletin giving detailed information.
NATIONAL RADIO WEEK, OCTOBER 26-NOVEMBER 1

FOR THE BEST IN FM, IT'S...

COLLINS RADIO COMPANY, Cedar Rapids, Iowa

11 West 42nd Streef, Now York 18, N. Y.
458 South Spring Street, Los Angeles 13, California

RF HEATING TUBES DESIGNED and PROCESSED ESPECIALLY FOR rF HEATING PURPOSES

To Machlett Laboratories the tube needs of the RF heating industry have been a challenge - no less than they have been a source of deep concern to the industry itself. The electronic heating industry has now grown to such importance as to require - and merit - the best the electron tube industry can produce... and here the "best" must mean tubes designed and processed especially for its needs, not "hand-me-downs," no matter how high in quality, from communications or other fields.

For this reason...

MACHLETT LABORATORIES
 we Priviloged to Amounce

> their initial step in a planned program
> to provide the RF heating industry for the first time with a line of tubes designed, processed, and serviced exclusively
> for its use

Machlett Laboratories' announcement several months ago of RF Heating Tube Types ML-5604 and ML-5619 constituted the first tangible recognition by the tube industry of the special requirements of the electronic heating field. These tubes, featuring above all else an unquestioned ability to handle - without penalty to life or performance - the most severe load mis-matching and the unusual physical conditions inherent in industrial service, marked the beginning of a new concept of service to this growing industry. Unmatched in mechanical ruggedness, they embody materially
heavier sections, sturdier grid, cathode and terminal construction, and principles of tube design and processing which assure better performance and longer life.

These same principles are now embodied in five new tubes-ML-5658, ML-5666, ML-5667, ML-5668 and ML-5669. Thus there is now available-for the first time-for both initial installation and for replacement, for all induction and dielectric heating purposes from 5 to 50 KW , a selection of tubes, each of which is custom-made for the job it has to do.

AN IMPROVED WATER JACKET FOR BETTER TUBE PERFORMANCE

Machlett's new water jacket, available for all Machlett RF Heating Tube types, em* bodies the first fundamental improvement in water jackets since their initial use with electron tubes. With this new jacket, it is simple to remove a tube and replace another in less than five seconds. No tools are needed; simply a twist of the wrist and the jacket is open, another twist and it is sealed - without danger to the tube, without leakage, without trial and error-a perfect seal every time.

Machlett RF Heating Tubes will be supplied - where desired - with scientificallydesigned terminal connectors affixed to the tubes at the factory. Flexible leads will be permanently attached in lengths to meet cquipment manufacturers' requirements.

To the RF Heating Equipment manufacturer these Machlett electron tubes and accessories will provide the first real freedom from "tube worries" and assure user satisfaction. They will contribute to demonstrating the effectiveness and coonomy of electronic heating. Priced only slightly higher than the standard communication tubes generally sold for this purpose, they will prove lowest in cost through better performance and materially longer life.

MACHLETT LABORATORIES, INC.

Springdale, Connecticut

ML-5619 RF HEATING TRIODE, water cooled with autamatic seal jacket, or for forced-air cooling (ML-5604).
Maximum Input $\quad 32.5 \mathrm{KW}$
Maximum Plate
Dissipation (ML-5619) 20 KW
Moximum Piate
Dissipation (ML-5604) 10 KW

ML-5667 FORCED-AIR COOLED
TRIODE, available for water cooling ML-5666, with automatic seal jacket.
Maximum Input 20 KW
Maximum Plate
Dissipation (MI-5667) 7.5 KW
Moximum Plate
Dissipation (Me-5666) 12.5 KW (Will replace Types 889A and 889RA without equipment modificalions)

ML-565B RF HEATING TRIODE Maximurr Input $\quad 60 \mathrm{KW}$ Maximur: Plate Dissipation. 20 KW
(Will replace Type 880 without equipment madificaticnst
Automatic seol wuter jocket as shown.

MI-566E WATER-COOLED RF HEATING TRIODE, available with automatic seal jacket.
Maximum Input
.28 KW
Maximum Plate Dissipation. 20 KW (Will replace Types 892 and 892 R [by ML-56i9] without equipment modifications)

Write for complete lechnical date on this new line of tubes and accessories. A Machlett A.pplication Engineer will gladly visit you at your request.

50 Years of Electron Tube Experience

"II Isn't Sunta Claus, Kiddies" but Brand and Baby both Benefit

4-WINGED DRIVER CANTT SITP OUT OF PHILIPS TAPERED RECESS
... when AMERICAN PHILLIPS SCREWS Speed Assembly - Make Sturdier, Smarter TOYS

N THE PLANT-It's a Xmas Bonus in time-savings (up to $\mathbf{5 0 \%}$) for toy manufacturers who cash in on the super fastening speed of American Phillips Screws. Automatically straight to drive, non-slipping, they can't harm product or personnel. Screws can't be fumbled, time can't be lost, heads can't be burred. Whether you make miniature trains or real ones, sofas or stoves, radios or refrigerators-output and savings go wip when American Phillips Screws go in!
IN THE SHOWROOM Toys (or whatever you make) have both a "can take it" and "take me with you" look! For children and grown-ups, there's the safety, non-snagging feature. American Phillips Screws join your sales promotion staff, make your product sturdy, eye and buy-appealing. And more and more buyers know it!

AMERICAN SCREW COMPANY, PROVIDENCE I, RHODE ISLAND Chicago If: 589 E. lilinois 5t.

Detroit 2: 502 Stephenson Building

What cooking in a "JET"

...FOR FM AND TELEVISION

Designed and developed by General Electric, these new nine-pin miniatures are keyed to the requirements of advanced FM and Television receiving sets scheduled for early production by radio manufacturers.

Mulfi-unif design permits increased flexibilify of circuit application, broadening the useful: ness of the fubes. In size-seated height 115/16 inches-they are true miniatures, with the advantage which this brings to the electronic designer who must pack maximum receiver performance into minimum compass.

Pin-to-pin spacing is the same as with sevent pin fypes-made passible by a slight jncrease in base diameter. Both electrically and in length of service life, these fine new miniature tubes give performance which is convincing proof of their modern, efficient design and precision methods of manufacture.

Cơmplefê des̃crị̣̂̂ive data is availablè to radio builders and circuit designers interested in applying G.E.'s new nine-pin miniatures to sets now on their boards. Also, G-E fube engineers will be glad to coope-ate personally in selecting the right tubes for your commercial. receiver or other electronic unit in the planning stage. Wire or write Electronics Dapartment, General Electric Company, Schenectady 5, N. Y.

678

High-pervearce triple-dioge triode with $6.3-\mathrm{v}, 450$-ma heater. For use as a radio defecior and oudio amslifier in FM and Television' reseivers.

1978

High-pervearse iriple-diodetriode, with $18.9-\mathrm{y}, 150-\mathrm{ma}$ heater, For FM and Televisioñ service as a radio detector ond' oudio amplifier:

12:17

Highh-trönsconductance double thiode. Used primarlly as a conyarlet in EM.gnd Television Yecetiver áppl cations. Cente? popped heater paermits usé of the fube either in $a \cdot c / d i s$ recejvers or in receivers with a 6.3 \% heoter supply.

12:.U7

Generôl-pupase double triode lits octal-series prototype is the 6SN7-GTI. Center-tapped heater allows use either in a-c/d-c recelwers or in sets with a $6.3-\mathrm{v}$ heater súpply. Chief applications are as a multi-vibrator and for special service in Television recoivers ond industriat control panels.

Nine-Pun Miniationes

RECEIVER APPLICATIONS

CHARACTERISTICS AND TYPICAL OPERATION

For bolh rubes: ove diode eurrent, Diode untrs

BASING DIAGRAM
TrPES 12ATT AND I2AUY

Proof of G-E fube-design leadership is this great new series of nine-pin miniatures! The dealer who handles General Electric tubes, the radio service-man who installs them, both know that their G-E product marches to the quickstep of today's electronic progress. With G-E tubes
you may PROFIT by servicing the now AM, FM, and Television receivers which te public today is buying in increasing volume. Stay well ahead of your competition by insalling and selling General Electric radio tubes-design leaders in the electronic-tube field!

GENERAL

FIRSTAND GREATEST NAMEINELECTFONICS
The FSR Receiver, the FSL Limiter and the FSK Keyer are the three units comprising this eqvipment and the use of multiple FSR's and FSL's makes passible space or frequency diversity or both.
Please write our Sales Engineering Department for FSDR baoklet.

HERE IS THE LATEST

IN MODERN TELEGRAPHIC COMMUNICATIONS

NATIONAL'S FREQUENCY SHIFT DIVERSITY RECEIVING EQUIPMENT
 Ratinami

After two years of actual field operation, the National Company presents receiving equipment for a most modern and dependable system of telegraphic communications.

Airlines, shipping lines, oil companies and other industrial organizations requiring a communications network essentially free from interruptions can now secure a thoroughly dependable system that will save time, money and man-hours.

This equipment, providing reception in the 2 to 20 mc range, is especially suitable for teletypewriter operations but may also be employed with other types of terminal equipment.

> Tantioncil Company, Inc.

> Dept. Ro. 10 Malden, Thass.

Gives you Solid SILVER CONDUCTIVITY plus SPRINGINESS of Beryllium Copper

Here's the General Plate Laminated Metal that you have been waiting for . . . General Plate Silver on Beryllium Copper. This laminated combination gives you the good conductivity of silver... which was lacking where only Beryllium Copper was used... plus the springiness of beryllium copper.
General Plate Laminated Silver and Beryllium Copper is available in combinations of silver on one side or both sides . . . or silver between two layers of beryllium copper (centerlay).

From tiny switch blades to heavy strips... General Plate Laminated Silver and Beryllium Copper will give you better performance plus long life. Investigate this new metal combination, today. Write for information.

If you aren't getting the sort of performance that builds product acceptance and repeat sales, it may pay you to look into the "I.Q." of the wire you are now using. Insulation that isn'l designed to withstand extremes in operating and usage conditions does more than cancel good-will-it skyrockets costs through expensive repairs and replacements.

For a high "l.(p." on evervthing that insures dependable performance under severe conditions wire with Rockbestos wires, cables and cords. They are permanertl!, insulated to prevent failure:

- They won't bake dry. crack or flow under high operating or ambient temperalures.
- 'They won't bloom or rot if exposed to grease, oil or destructive cotrosive fumes or vapors.
- They give you greater current carroing capacity through high resistance to heal.
- They won't ignite under ares or provide paths for Hame.
- They won't bake out under conductor-heatimg overtoads.
- 'They won't deteriorate under exposure to oxidation.

Rockbestos insulation quality gives you these reputalionprotecting values in 125 permanently insmated wires, cables and cords - designed for use in appliances, cranes, elechronic devices. locomotives, motors, radios, ranges, theostats and hundreds of other products. Use them to keep customers satisfied and indrease sales. Write for information, recommendations, samples or engineering assistance.

Rockbestos Products Corp., 453 Nicoll St., New Haven 4, Conn.
 ROCKBESTOS RESEARCH

 Solves Difficult Wiring ProblemsA leve of the los5 permamently imsulated mirres. cobles and curds deceloped by Rombloestos.

rockbestos all-asbestos appliance leao wire

Available in xareral types In fit the: elecertieat and med clamical rewimiratnents of your prodach sulid ar st randed

 colors.

ROCKBESTOS A.V.C. 600 VOLT SWITCHBOARO WIRE
This wire was desizund to mahe complicated wiring jothes

 resistant and assures fine apparane of harals an it gives

 have the sime characteristios.

ROCKBESTOS A.V.C. 600 VOLT MOTOR LEAO CABLE
Use thix apparathe rathl. for coil womedtionts, motor and Iransformer leads expsisel to owayloads or high ambiepl Itmperatures. It makew a promanent installatiom ats it
 of impregnated astesten and a highodiduotric varnished cambric insert, wilh : heaty asimestus loatid coverimg.

BUFFAl.O
ST: LOUIS

CIIVPIAND
IUS ANGELES

GAKIAND

The specially-designed diode, in combination with the -hp-probe design, makes possible the exceedingly flat frequency response shown graphically in Figure 1.

With this flat frequency response are combined the factors of low input capacity and high input resistance. The variation of these factors with
frequency is shown in Figure 2. The input resistance and reactance are high throughout the entire range of the instrument, and thus measurements are made without appreciable detuning or loading of circuit. Maximum measuring accuracy is assured.

In addition to swiftly, easily, accurately making uhf radio measure-

ments, this $-h p-410 \mathrm{~A}$ is a convenient voltage indicator up to 3000 mc . And it serves equally well as an audio or d-c voltmeter, or an ohmmeter. A-c measurements are made in 6 ranges ...full scale readings 1 to 300 v . D-c full scale readings from 1 to 1000 v in 7 ranges. Input resistance all ranges -100 megohms. As an ohmmeter, the -hp-410A measures resistances from 0.2 ohms to 500 megohms in 7 ranges.

In short, this -hp-410A Vacuum Tube Voltmeter is ideal for obtaining most important parameters in radio design, manufacture, or servicing. Write today for full details. HewlettPackard Company, 1407E Page Mill Road, Palo Alto, California.

Noise and Disfortion Analyzers Wave Analyzers Frequency Meters Audio Frequency Oscillators Audio Signal Generators Vacuum Tube Voltmeters Amplifiers Power Supplies UHFSignal Generafors Atfenuators Square Wave Generators Frequency Standards Electronic Tachometers

 friendly service men. Me and the other Federated service boys have worked with metals for quite a while now and... we know our stuff. What's more, we're ready to prove it to you any time you run into a metal problem, big or little.

Federated is a right large outfit first in the whole non-ferrous field and they're anxious to have us service men roll up our sleeves and help you out whenever you ask.

Remember, boys, for service ... for anything in the non-ferrous metals line, call Federated first. Our offices are all over the country.

I'll be seeing you and talking to you again pretty soon. So long for now.

a New ERA IN TUB

The FIRST truly practical, all-purpose PHENOLIC

One standard type for ALL conditions of use.

Pioneers of Electrical and Electronic Progress

ULLAR CAPACCTORS

Highly heat - and moisture - resistant

Non-inflammable

Conservatively rated for $-40^{\circ} \mathrm{C}$. to $+85^{\circ} \mathrm{C}$. operation

Small in size
Mechanically rugged

- MOLDED paper tubulars

After more than four years of intensive research, plus one of the largest retooling programs in its history, Sprague announces a complete line of phenolic-molded paper tubular capacitors that offer far-reaching advantages for a long list of products ranging from home or auto radios and electrical appliances to military equipment. Their
unique phenolic sealed construction assures maximum dependability even under extremes of heat, humidity and physical stress. Thus they have virtually universal application in modern equipment. In most cases the new Molded Tubulars are smaller and in no instance are they larger than ordinary Sprague paper tubular capacitors of equal rating.

Write for Sprague Capacitor Engineering Bulletin 210.

CAPACITORS

STANDARD GRADE for maximum flexibility, has little varnish and is recommended for high temperatures where dielectric strength is not a factor.

DOUBLE SATURATED has all qualities of the STANDARD GRADE but with additional coats of varnish to bring the dielectric rating up to 1500 volts.

TRIPLE STRENGTM is built up with coats of

 especially flexible insulation varnish for dielectric ratings up to $\mathbf{2 5 0 0}$ volts and is particularly suited where assembly operations include the possibility of rough handling.

IMPREGNATED is the Optimum in Superiority for high gloss, non-hydroscopic, resistance to high temperatures, oils, acids, etc. IMPREGNATED has a dielectric rating beyond 7000 volts and is un. equalled for Long Life Under Most Severe Conditions. Write for Samples.

FOR USERS OF COTTON YARN VARNISHED TUBINGS The Mitchell-Rand MIRAC and HYGRADE Varnished Tubings of long staple fiber yarn are comparable to Fiberglas Tubings in dielectric ratings, tensile strength, flexibility and long life. Wrife For Samples.

Write today for your free copy of the M-R WALL CHART with its engineering tables, electrical symbols, carrying capacities of conductors, dielectric averages, thicknesses of insulating materials, tubing sizes, tap drills, etc.

MITCHELL-RAND INSULATION CO. Inc.
 SI MURRAY STREET • COrilandP 7-9264 • NEW YORK 7. N. Y.

A PARTIAL LIST OF M-R PRODUCTS: FIBERGLAS VARNISHED TUBING, TAPE AND CLOTH - INSULATING PAPERS AND TWINES - CABLE FILING AND POTHEAD COMPOUNDS - FRICTION TAPE AND SPLICE - TRANSFORMER COMPOUNDS - FIBERELAS SATURATED SLEEVING - ASBESTOS SLEEVING AND TAPE • VARNISHED CAMBRIC CLOTH AND TAPE - MICA PLATE, TAPE, PAPER, CLOTH, TUBING - FIBERGLAS BRAIDED SLEEVING - COTTON TAPES, WEBBINGS AND SLEEVINGS • IMPREGNATED VARNISH TUBING - INSULATED VARNISHES OF ALL TYPES • EXTRUDED PLASTIC TUBING

How do Western Electric Thermistors function?

When the temperature of thermistors (thermal resistors made of semi-conducting metallic oxides) goes up, their resistance goes down-when their temperature goes down, their resistance goes up. This one characteristic enables you to use simpler, more economical circuits with thermistors than are possible with conventional components.

Thermistors can provide greater accuracy and dependability in an almost untold number of applications where temperature plays a part in the operation of your products or processes. Below are some suggested applications for the many types of thermistors now available. For further details, call your Graybar Representative, or send the coupon below.

CHEMICAL AND FOOD PROCESSING

Local and Remote Temperature Indication
Detector in Infrared Spectrometry
Automatic Temperature Control
Refrigeration
Refrigeration Control
Pyrometry
Temperature Compensation
Calorimetry
Infrared Spectrophotometry

communications

Automatic Gain Regulators
Volume Limiters
Overload Protectors
Compressors and Expanders
Compressors and
Power Indicators
Ambient Temperature Compensation
Amplitude Stabilized Oscillators
Voltage Regulators
Switching Devices
Remote Controlled Resistances
Time Delay Devices
Negative Resistances
Transmission Networks

TRANSPORT

Engine Temperature Measurement and Control
Cabin Temperature Control
Meteorological Equipment
Flow Meters
Test Equipment
Switching and Signalling Devices
Differential Temperature Controllers
Fire Protection and Safety Devices

HOUSING AND HOUSEHOLD APPLIANCES

Air Conditioning Systems
Automatic Room Temperature Control
Fire Protection Devices
Automatic Switches
Gas Detectors
Furnace Controls
Oven Temperature Control
Refrigeration Control
Thermal Insulation Testing
MANUFACTURING OPERATIONS
Quality Control
Temperature Measurement and Contro
Fire Protection Devices
Pyrometry
Automatic Switching and Time Delay Device
Soltage Regulators
Surge Suppressors
Anemometry
Vacuum Gauge
Flow Meters
Differential Temperature Controllers

MINING AND METALURGY

Fire Protection and Safety Devices
Gas Detectors
Local and Remote Temperature Measure ment and Control
Pyrometry
Quality Contro
Calorimetry
Time Delay Devices
Geological Surveys

PuBlic utilities

Voltage Regulation
Switching Devices
Time Delay Device
Power Indicators
Temperature Compensation of Instruments
Temperature Gas Detectors
Gas Detecto
Pyrometry
Pyrometry
Flow Meters

Tungsten, molybdenum, silver, platinum, palladium and alloys of these metals. Callifex Thermostatic BiMetals; Callinite Facing Material Bulletins on request.

another coating problem solved!

it's elementary...

when you use Callite heating elements to coat metals or plastics
Leading metallizers have discovered that Callite tungsten or molybdenum heating elements provide the simplest, quickest and most economical solution to their specific problem of coating materials by the vacuum evaporization process. Electrically heated, the filaments evaporate the coating metal in pellets or wound on heater - and spread a smooth, uniform coat . . . often in a matter of seconds.

Let our many years of varied field experience help you, too, improve your metallizing operations. Skilled Callite engineers will gladly design special filaments - "tailor-made" to your specifications; to fit your current equipment; or to meet your production cost schcdules. Prompt deliveries of all types. Callite Tungsten Corporation, 544 Thirty-ninth Street, Union City, New Jersey. Branch Offices: Chicago, Illinois; Cleveland, Ohio.

WHILE WE DELAY

Russia Drives for the Atlantic

IN THE STRUGGLE to keep western Europe west of the Iron Curtain it is later than you think. Unless the United States quickly mobilizes its own and other nations' resources, World War II will be lost as World War I was lost - by no economic follow-through.

Millions of people in western Europe, living in cold homes or no homes at all, face another winter of near starvation. Some countries are absolutely without dollars to buy abroad the food and fuel they need for survival. Others slide toward that desperate state.
In this welter of misery Russia grasps for dominion over all Europe. Everywhere, as cold and hunger deepen and as men begin to doubt America's determination to help, Russia turns on the pressure. In France the Communists drive to overthrow the Government. In Italy they do likewise. In Greece Russia kills the United Nations investigating commission. In Trieste Tito elbows us out of the way. In Germany and Austria the Soviet commanders alternately stymie and flout the Allied governments.

FACED WITH this bloodless attack, the leaders of western Europe and of the United States have not covered themselves with glory.

Look, for example, at what the sixteen European countries participating in the Paris meetings on the Marshall "plan" first proposed to the United States as a catalog of their needs. In the main it was simply an adding up-to $\$ 30$ billion - of what the various countries thought they needed to keep going in the same old way at the same old stands. There was no real start on plans for the mutual aid by European states which is the essence of a successful recovery program... no real start on plans to knock down the barriers which divide European trade into hopelessly inadequate little pockets...no real plans to clean up currencies which deteriorate so fast nobody wants to work for them. In fact no plans to make people want to work.
Meanwhile, what have our leaders offered? Not much more than one fine commencement speech by

General Marshall, outlining a good idea, and a couple of carloads of statistics, with more to come.
Not even a beginning has been made on the most crucial part of any European aid program that of explaining to the American people what their part must be and why. It is true that not all the reports of all the statistical committees have been completed. They never will be. But it is also true that the broad outlines of what the United States must do to save Europe are already clear. And it is not simply to provide more dollars, although $\$ 12$ to $\$ 16$ billion more - the cost of 6 or 8 weeks fighting in World War II - may be required.
A far more basic requirement is leadership which will lift Europe out of the slough of despair and get recovery rolling. Without that leadership more billions for Europe will buy us nothing but more bitterness and remorse on both sides of the Atlantic.

WHAT ARE the ingredients of that leadership? Here are a few:

1. A bi-partisan program for European recovery.

It should be so thoroughly understood and so overwhelmingly supported by both parties that playing politics with it will be like selling military secrets to the enemy.
Truman and Vandenberg have failed miserably to develop and explain a complete program - one in which Europe and America can have full confidence. Nor have Taft and Dewey and other candidates for high office pledged that politics will stop at our shoreline. These men must speak out. To date Herbert Hoover alone has had the courage and vision to state a program.
2. A mobilization of American food supplies.

We must assure people at home and abroad that our crops, cut down by drought and heat, will be stretched to cover minimum European needs (with whatever help we can muster from other nations) without forcing still higher food prices here.
Some food experts are comfortably confident that the stretching can be done. But
meatless and wheatless days, higher extraction of flour from wheat and similar voluntary conservation moves would make it surer. And they would demonstrate that a free country can mobilize itself to meet a very serious crisis.

3. An understanding that relief is one problem and recovery another.

Both problems must be solved. Relief emergencies must be met, some of them at once. But they must not black out the longer task of recovery. Italy illustrates the point. Italy, particularly the south, is flat broke. Help is needed right now to keep people from dying in the streets. But we must eventually do more than keep the Italian people alive. We must help them get back to useful work so that they can stand on their own feet.
4. A steady insistence on results - which means that Europe must find a way to make its people want to work.

In the U.S.S.R. they have a way to get things done. It is to liquidate those who do not work. In the U.S.A. we have a way to get things done. It is to create incentives to make people want to work. Western Europe, notably France and Britain, has fallen between two stools. It has socialized away the incentives, and it does not yet, thank heaven, enslave the laggards. We should make it crystal clear that we have no designs on the national "sovereignty" of others. But we should make it equally clear that we insist that those countries which receive our aid work hard enough to get results. To this end continued aid should be on an installment plan, each installment conditional on getting results. Otherwise more billions can easily disappear down the drain.

5. Insistence on all-out self-aid by European countries.

That is the constructive core of the Marshall idea - to help Europe to help itself. In his brilliant "Report on Germany" and how to get it "off the backs of the American taxpayer," Lewis H. Brown, Johns-Manville Chairman, shows how the export of only 10 million tons of coal a year from Britain to western Europe would speed industrial recovery of the Ruhr immeasurably. There are countless other cases where effort in one European country - or a group of countries
-will break a big industrial bottleneck in another. We should insist that everything possible be done to see they are broken.
6. An agreement with Britain and France giving us authority in western Germany equal to our responsibility.

Britain is shifting to us most of the financial burden she has been carrying in the German occupation. Less directly we shall also be carrying much of the French occupation load too. We must have authority in the economic field commensurate with our responsibilities. Otherwise the management of western Germany can poison Anglo-American and Anglo-French relations in addition to wasting resources we could use to promote general European recovery.

It is truly said in the scriptures that the Lord loveth a cheerful giver. But it is not recorded anywhere that anyone, including the recipient, loves a soft-headed giver. Hence as a capstone any program of aid for Europe should have machinery assuring that only what is needed is sent; that what is sent does the job for which it is sent; and that arrangements are made for the recipients to pay back whatever they can.

THE AMERICAN PEOPLE should be told clearly by their leaders that there is no assurance that the best possible program of economic aid for Europe will do the job. The time is very late.

In France and Italy, as our help falters, the Communists right now are provoking strikes which will make the people's suffering more acute. They hope, of course, to overthrow the governments in both those countries and to seize control. If Communist dictatorships are clamped on France and Italy this fall, Russia and her satellites will have advanced to the Atlantic. The Iron Curtain will have moved 500 miles west - toward us.

Americans should be clearly told, therefore, that not to undertake an immediate program for the recovery of Europe is to bring closer the greatest possible national disaster - World War III.

President, McGraw-Hill Publishing Company, Inc.

Less spage! LOWER GOST:

That's why these "midget" thyratirons stand ace-high with equipment designers

MEtal Type GL-502-A and glass Type GL-546 have proved their efficiency in scores of applications such as the industrial circuits shown at the right. Designers can fit one or more of these thyratrons into an ultra-compact control panel, with knowledge that despite their small dimensions, the tubes will deliver a high rated performance .. . Because they are made in quantities by the most precise modern methods, the price is low -a prime advantage to the equipment builder seeking business in a competitive market... Where compactness is important but not the first need, Type GL-502-A often is preferred because of self-shielding
qualities due to the metal envelope, plus a larger current capacity. This tube will replace the GL-2050, yet is only half the latter's size . . If space available must be figured down to the fraction of an inch, Type GL-546 (with a seated height of $1 \frac{1}{4}$ inches, and a diameter of $3 / 4$ inches) usually is selected... G-E tube en gineers will be glad to work closely with you in choosing the right thyratron for any control or other circuit. For this counsel, or for further facts about the GL-502-A and GL-546, phone or write your nearby G-E electronics office or General Electric Company, Electronics Department, Schenectady 5, New York.

CHARACTERISTICS

Max over-all height
Max over-all diameter No. of electrodes Cathode voltage
current, approx
heating time, typical
Peak voltage drop, typical
Average anode to control-grid capacitance Ambient temperature limits

GL-502-A
2 19/32 inches
$15 / 16$ inches
4
6.3 v
0.0 amp 10 seconds 11 v 0.2 mmfd -55 to +90 C

GL-546
$11 / 2$ inches $3 / 4$ inch 4
6.3 V
0.15 cmp 10 seconds
11 v
0.1 mmfd
-55 to +90 C
(Tubes ate shown actua size)

	GL-502-A	GL-546
	2 19/32 inches	$11 / 2$ inches
	$15 / 16$ inches	$3 / 4$ inch
	4	4
	6.3 V	6.3 V
	0.6 amp	0.15 amp
	10 seconds	10 seconds
	11 v	11 v
id capacitance	0.2 mmfd	0.1 mmfd
	-55 to +90 C	-55 to +

MAXIMUM RATINGS

Peak anode voltage, inverse forward
Anode current, instantaneous average
Time of averaging anode current

$1,200 \mathrm{v}$	500 v
650 v	500 v
1 amp	100 ma
105 ma	20 ma
30 seconds	15 seconds

GENERAL

THYRATRCM CIRCUIT FOR TEMPERA-URE

 CONTROL JSING A SATURABLE REAC-ORThe above circrats are exampies of possimlr tube appiications and ter description asd illustras iep of them does not convey to the purchaser of tubes any license under patent rights of General Electric Company.

> Elim-O.Sraf* filters FOR SCREEN-ROOMS, ELECTRONIC HEATERS, AND SIMILAR USES

Solar Type EB series Elim-O-Stat radio interference filters are intended for heavyduty service in 1,2 and 3 phase circuits and equipment drawing from 5 to 200 amperes, 250 V a-c/ 600 V d-c. Voltage drop is negligible.

Type EB filter assemblies have a noise elimination range of from 150 Kc to 250 Mc covering all frequencies used for radio communication and entertainment, as well as commercial television. Most efficient in eliminating line-conducted radio interference when connected immediately adjacent to motors, generators, electric elevators, diathermy machines, X-ray apparatus, electronic heating equipment and other devices generating radio noise, they are also highly effective when connected at the power service entrance to remove noise entering via electric power distribution circuits.

When placed in electrical circuits entering radio screen-rooms, these Elim-O-Stat assemblies provide noise-free power within.
Type EB series Elim-O-Stats are furnished in standard Underwriters' approved heavy cadmium-plated steel surface cabinets. Individual filter units in each assembly are housed in hermetically sealed, corrosionresistant metal containers.

Bulletins SFI-160 and SFI-161 give complete data on these units. Write for your copies today. Solar Manufacturing Corporation, 1445 Hudson Blvd., North Bergen, N. J. Plants at: Chicago, Ili., Bayonne and North Bergen, N. J.
\star T.M. Reg. U.S. Pat. Off.

BUSINESS BRIEFS

By W. W. MacDONALD

"Electronics will dominate the next 50 years in astronomy as much as photography dominated in the past 50 years," says Otto Struve of Chicago University's Yerkes Observatory.

We Understand that IRE has already sold all exhibit space on the first floor of New York's Grand Central Palace, where the March show will be held. Space is still available on the balcony.

Superregeneration has been taken down from the commercial shelf, dusted off and once more put to work, notably in certain inexpensive f-m tuners. Not too much is known about the theory of superregenerative circuits but some studies were made during the war. ElecTRONICS is at present endeavoring to pry data loose for early publication.

Hearing Aids in use in the United States total between 500,000 and 600,000 . About 125,000. were sold in 1946 and at this writing it looks like sales will reach 200 ,000 in 1947.

We hesitate to estimate the size of the potential market owing to wide differences of opinion in the industry regarding the number of hard-of-hearing and how many of these can be helped by hearing aids. It appears likely, however, that the popularity of single-unit models will result in a substantial increase in business during 1948.

Licenses covering some 700 patents in the radio receiver, electrical phonograph, and television receiver fields have been offered all set manufacturers by Philco.

Commercial Radar installations aboard American vessels were estimated earlier this year (p 82, April) as totalling 85. We have no later figures covering the output of the entire industry but the picture is obviously changing rapidly. RCA reports the installation of 81 equipments operating on 3.2 cm
since January. Some 40 of these are aboard American ships.

Machine Tool Show exhibits featured more electronic accessories than in previous years. Motor control devices employing tubes were everywhere in evidence. Electronically controlled chucking grinders and sizing mechanisms were shown. Conversations with people attending the show also disclosed that machine manufacturers were perfecting electronically controlled hosiery knitting machines, blind gaging devices and other devices soon to be described elsewhere in Electronics.

Teaneck, N. J. Dogcatcher receives tipoffs concerning stray canines in his car from the local police radio station.

Commercial Broadcast Picture for the continental United States, as of August 1, 1947, is as follows:

Breakdown of the 1,266 licensed a-m stations listed above:

[^1]Minimum Cost of equipment required for a modest start in telecasting (500-watt video transmitter and 250 -watt audio transmitter) is $\$ 89,000$, according to Du Mont's Herb Taylor.

Underscored by FCC chairman Denny in a speech before the NAB were two statements of particular significance to new applicants for a-m station licenses. Denny said (1) that applicants should be sure they

OUTPUT 3 Kw.

with 14 watts drive

 Workhorse for recently announcommunications and largest of Einaced type 4-1000a industry, the High power-gain radiation cooled powesently the times, fit the capabilities, on thewer tetrodes. power output tube to applications order of 230 power output with low driving ions requiring high The tube has been the abuse of the ruggedly designed to withstand normal overload most severe application and ab. tube design provid Eimac "know how" of vac aball economy of opes long life expectancy vacuum input and output circuion. Virtual isolation overplifying associated circuits has been isolation of the tance leads. Eimated circuit design. Short leved, simplate leads, Eimac's non-emittin. Short, low-inducHigh efficien a high degree of ting grids, and rugged vhf, above lly may be maintained ional stability. erating well wo. Mc. As an extained well into the ful output within ratings, have provid two tubes opAs a As a functional accessory, a unique socket design to assist in adequate cooling is available. Illustrated below is the complete unit and a diagram indicating around the envelope past the terminals, base seals, pyrex glass chimney is included to plate seal. The
woch socket.

Valtage Current -
Grid-Screen Amplification Factor (Average) 7.2 Direct Interelectrode Capacitances (Averaqe) Grid-Plate (without shielding, base grounded)
Input

$$
\text { Uniout - } 7.6 \text { wufd }
$$

$$
\text { ransconductance } i_{1}=300 \mathrm{ma.} \mathrm{E}_{i}=
$$

$$
\left.2500 \mathrm{v} \quad E_{1}=500 \mathrm{v}\right) \quad-10,000 \text { umhos }
$$

RADIO FREQUENCY POWER AMPLIFIER
AND OSCILLATOR

Class-C Telegraphy
(Key-down conditions, per tube)
MAXIMUM RATINGS D.C Plate Voltage
D-C Screen Voltage D-C Screen Voltage
D.C Grid Voltage. D.C Plate Current Plate Dissipation Screen Dissipation Grid Dissipation TYPICAL OPERATION (Frequencies below 40 MC .)

D.C Plate Voltage D.C Screen Voltage D.C Plate Current D-C Screen Current D.C Grid Current. Screen Dissipation Grid Dissipation Peak R-F Grid Input Volfage (approx.) Driving Power (approx.) Plate Power Input Plate Power Output
6000 Volts
500 Volts
-200 Volts
681 ma
141 ma
41 ma
71 Watts
6.1 Watts
348 Volts
14.3 Watts
4086 Watts
746 Watts
3340 Watts

Follow the Leaders to

Export Agents: Frazar \& Hansen 301 Clay Street. San Francisco, 11, California

EITEL-McCULLOUGH, Inc., 185 San Mateo Avenue, San Bruno, California

Design engineers recognize that peak frequency precision depends greatly on close correlation between crystals and their associated oscillator circuits. In the region above 20 mc it is equally true that circuit design can make a significant difference in drive secured from the oscillator stage. Complete uniformity of construction and careful control of component tolerances assumes extreme importance.

Bliley is now prepared to design and build packaged oscillators for precision VHF applications between 20 mc and 200 mc . Consistent performance of overtone crystals and maintenance of operating tolerances to
$\pm .005 \%$ or better over wide temperature ranges is assured by consideration of all significant factors in a package of this kind. The result is a precise frequency source that has sufficient power to meet design ratings.

One possible form of packaged oscillator is shown in the picture. Space requirements in the equipment will determine whether a subchassis or plug-in unit is most desirable. Bliley, with over fifteen years experience in frequency control applications, is exceptionally qualified to assume responsibility for the complete frequency package from conception to delivery.

This custom-service is limited, at present, to applications involving production quantities. Inquiries, giving detailed performance specifications, are invited.
bliley electric company union station building - erie, pennsylvania
are well enough financed to pay the bills until revenue from sponsored programs takes up the load and (2) that the chance of commercial success is twice as good in towns having no competitive station.

Size And Cost of average existing broadcast transmitter build= ings, determined by Western Electric in a 610 -station survey, is as follows:

POWER (watts)	SERVICE	TYPE*	$\underset{(\mathrm{cuft})}{\mathrm{SIZE}}$	COST
250	a-m or f-m	tr	5,300	\$3,700
250	8-m or f-m	tr and stu	19,100	13,200
1,000	a-m or f-m	tr	7,200	6,800
1,000	a-m or f-m	or and stu	21,000	15,300
3,000	f-m	tr	17,600	10,700
3,000	f-m	tr and stu	30,500	36,500
5,000	a-m	tr	20,600	17,000
10,000	f-m	tr	30,800	22,700
10,000	$\mathrm{f}-\mathrm{m}$	tr and stu	51,000	48,300
50,000	a-m	$t r$	57,600	40,800
50,000	f-m	tr	39,100	43,200
* tr - transmitter building only. tr and stu combination transmitter building and studios.				

Today's construction costs would, of course, be considerably higher than the averages shown, since these cover construction over the period between 1930 and 1947.

Rooftop Rents asked by owners of tall buildings are a matter of concern to many prospective operators of vhf and uhf transmitters. The concern is particularly acute among people who wish to operate point-to-point communications, com-mon-carrier, and relay services which must necessarily function at low cost.

Realtors would do well to carefully study space and facility requirements before quoting. Services such as those mentioned frequently require just a small corner for equipment, need little power and service, can often utilize existing structures for antenna support, and generally leave the lion's share of the rooftop available for $\mathrm{f}-\mathrm{m}$ and television broadcast station rental.

Technical Dictation throws inexperienced stenographers for a loss. One of the boys on the editorial staff of Electronics was momentarily puzzled the other day by a letter dealing with steam power tubes.

We hear that a mid-western manufacturer is perfecting a protective system for large industrial plants. Watchmen carry con-
cealed radio transmitters operating around 150 mc . When trouble is encountered the transmitters go into action, a neon lamp on the panel of a centrally located receiver flashes a warning and the watchman's code number is indicated by a tape recorder.
"Radio Tube Design is largely a matter of compromise," says Hytron's Vin Ulrich. "The manufacturer who hits upon the most satisfactory combination of compromises is the one who has the most widely accepted tube types for given applications."

Small Boat Owners tune from one a-m broadcast station to another, hoping against hope that something resembling a complete weather forecast will be appended to news programs. Stations located near water could make a lot of friends by more regularly including wind direction and velocity.

Coast Guard stations operating near 2,600 kc transmit weather forecasts two or three times a day but hesitate to increase the frequency of this service because dissemination of such information is officially the business of the Weather Bureau. Many yachtsmen wish the matter of appropriations could be arranged to permit closer ${ }^{-}$ cooperation between the two government agencies. More power and personnel for Coast Guard stations would also pay dividends in safety at sea.

Step In Right Direction is General Instrument's recently inaugurated $\$ 500,000$ research and engineering program designed to reduce the cost of major components used by television receiver manufacturers.

Unnoticed by most of the men who attended the recent NAB convention at Atlantic City, the aircraft beacon on top of one of the several antenna towers on display in the exhibit hall put out not only conventional flashes but also an occasional group of most unconventional code words. It seems that the boys running the exhibit got a little bored, rigged up an extra set of cams and switched them in when things began to pall.

Ward Leonard is one of many reputable manufacturers of fine quality timers, time delay relays and electrical control apparatus, whe depend upon the versatility and adaptability of the Haydon synchronous motors in the design of superior products.
The time delay relay illustrated is designed primarily for such industrial applications as delayed timing for preheating electronic tube filaments before applying voltage and sequence timing in motor controllers. The Haydon 1600 motor provides almost instantaneous self-recycling on breaking the pilot circuit through means of a magnetic shift; chaice of standard motor speeds make possible a wide range of adjustable time delay periods and the built-in one-way friction prevents damage to motor on return travel of the cam.
Take time to talk time with Haydon engineers on this and other applications. A fully illustrated Engineering Data Catalog is yours for the asking.

WRITE HAYDON, 2400 ELM STREET, TORRINGTON, CONN. HAYDON

FOR quite a rumber of years now Elkonite has been the standard contact material for heary-duty circuit interrupring equipment. A Mallory-dereloped material, Elkonite has been famous for its hardness and electrical conductivit!-for its resistance to stiching, to erosion by arcing, to mechanical wear and impact.

Now this same material-fabricated differently and somewhat changed in com-position-is available for applications in the light duty field: applications like small relays, mechanical breakers, thermal breakers and similar equipment where silver alloys have heretofore been used.
It has an advantage over silver in that it is less subject to sticking and has a ligher
hardmos. It is superior 10 most non-silver allovs in its improved finished and uniform contour, which reguires no madhining. Ard it is lower in cost than standard Elhonite-available in smaller sizes, too. On the other hand, it will mot resist extremely heavy arcing, as standard Elkonite will.

If you need a contact material where the maximum physical properties of true Elhonite are not reguired, yet where silver does not meet the specifications, here is something to investigate. 'These new grades of Elhomite are arailatile in standard rivets and projection welding blanks-or can be used in special contacts made to your order. Write for more information.

MALLORY CONTACTS \& CONTACT ASSEMBLIES

The only volume of its tind in the world, this Mallory Comact Date Book contains everything vou want to know about contuct design, construction, applica, tion and materials. Free to engineers who write on company letterhead. $\$ 2.50$ to others.

[^2]
CROSS
 TALK

Now comes word from the Wallingford, Connecticut, municipal plant, inside the range of New York stations, that owners of television sets connected to this system must pay $\$ 2.50$ for the first five kilowatthours they buy each month. This is roughly $\$ 2.00$ extra per month, or 24 dollars a year, over and above what would be charged for the same juice if the television set were absent. This rate increase is based on the same recommendations, and subject to the same objections, as the Norwich case to which we have previously alluded with some feeing.

We are happy to note that the Radio Manufacturers Association, prompted by our outburst, has dug into the facts, intending to combat the forces of evil. The power consumptions and power factors of 15 models of television sets made by eight manufacturers have been listed. The power consumption ranges from 215 to 550 watts, with 328 watts as average. The power factor ranges from 89 to 95 percent, with 92.5 percent as average. The power factor figures are particularly interesting and show that the public utility does not have to install large capacity for wattless current. Moreover, the Wallingford company informs us that the peak load on their system occurs between 11 and 12 in the morning, during the spring and summer months from April to October. In the winter, from October to April, it occurs from 4 to 6 in the evening. These hours do not coincide with hours of television programs, except possibly from 4 to 5 pm in winter.

Why then, must owners of television sets pay 24 dollars a year, not for electric power, but for the privilege of being connected. This is more than half the national average electricity bill ($\$ 42.90$ in 1946). It looks powerful fishy to us. Worse, it looks like charging what the traffic would bear. One ray of hope: The Wallingford authorities say they are merely experimenting with this rate, and are in contact with set owners to find out just what additional demand is placed on their system. We are sure that the facts will not support this charge, and we hope the RMA will make good use of its facts.

electronics
 Sponsors

Announcing a program of research, underwritten by the publishers of Electronics, to develop equipment and test the potentialities of the Citizens Radio Service. First equipment, a transmitter meeting FCC specifications, is described in this issue

THE EDITORS OF ELECTRONICS are happy to announce a series of articles, beginning in this issue, on equipment specifically developed for the Citizens Radio Service, operating in the band between 460 and 470 megacycles and ultimately intended
for use by the general public for private communication. The first item of equipment, a four-tube crys-tal-controlled $\mathrm{f}-\mathrm{m}$ transmitter, is described on pages 84 to 89 . Succeeding issues will describe a highsensitivity f-m superheterodyne

Walter Hollis, who designed Citizens Radio Service equipment for ELECTRONICS, testing transmitter at Boonton
receiver, a power amplifier for the transmitter, high-gain non-directional antennas, and will relate the results of comprehensive tests of this equipment in the field.

The Citizens Radio project, the costs of which have been underwritten by McGraw-Hill as a service to the industry, is intended to reveal the potentialities of the new band for public use and to offer equipment designs suitable for production by individuals or commercial organizations. This program, which marks a new departure in technical publishing practice, was undertaken by the editors of Electronics early in 1947 after discussions with Commissioner Ewell K. Jett, sponsor of the Citizens Radio Service in the FCC.

Citizens Service Slow to Start

The 460 to $470-\mathrm{mc}$ band was first proposed by the FCC before the end of the war, in May 1945, and was made an official part of the allocation table in June 1946. When the band was first announced, engineering opinion on it was generally pessimistic. While all agreed with the basic philosophy of providing a band for the general public, most observers doubted the wisdom of choosing a frequency band as high as 460 to $470-\mathrm{mc}$ for the purpose. But since lower frequencies were already occupied by existing services of higher priority, the allocation stood as originally proposed. In the intervening two and one half years no equipment has been made available commercially for this band.

The reason for the inactivity was not lack of interest, since a sizable

Citizens Radio Project

Commissioner Jett Hopes ELECTRONICS Project Will Speed Citizens Radio

Shortly before the end of the war, the Federal Communications Commission announced a proposed allocation of the band $460-470$ megacycles for a citizens radio service. Intended for use by the general public for private or personal communication, the new band is available to any citizen who agrees to abide by the law, with no technical license requirements. To serve such a purpose, equipment for the new band would have to be simple and virtually foolproof. In June, 1947, the Commission issued tentative specifications for the equipment and announced a plan for type approval which will assure the adequacy of the equipment before it is offered to the public.

The proposal has received widespread approval in the industry. But engineers have found it difficult to design equipment for the band which would meet the necessary specifications, particularly with
respect to frequency stability. It has appeared that some time might elapse before the citizens radio service would become a practical reality.

It is, therefore, most reassuring to know that the Editors of ELECTRONICS have underwritten a comprehensive program to develop and test equipment for this important new service. It is my sincere hope that this program, in which the industry is invited to participate, will reveal the full potentialities of the new service and that the public will be able to make full use of the facilities in the near future. It is to be emphasized that type approval by the FCC will be necessary before large-scale production of any particular design of equipment begins.

(signed) E. K. JETT
Commissioner Federal Communications Commission

market for such equipment has been predicted by equipment manufacturers from the very start. The reason was rather a difficult technical problem. Stated briefly, engineers found it next to impossible to generate adequate amounts of power at the 460 to $470-\mathrm{mc}$ frequency with equipment simple enough, and foolproof enough, to serve the non-technical public in portable and mobile service.

It was feared by many that interference would prove, even within a 10 -megacycle band, insuperable if radiating receivers and non-stable transmitters were used in any number in heavily populated areas. Secondly, the industry has been unwilling to offer equipment for the Citizens Service until more was known about its adequacy for different uses. The 460 to $470-\mathrm{mc}$ band
has quasi-optical properties under normal conditions, so communication might prove impossible unless line-of-sight paths were maintained between units. While such a restriction might prove acceptable on farms in the Plains States, it would certainly prove a hindrance in builtup cities, suburbs, and in rolling or mountainous country.

Survey Conducted by Editors

A survey conducted by the editors in 1946, among manufacturers known to be interested in the Citizens Service, revealed practically no activity beyond laboratory measurements on self-excited and superregenerative units, all of which seemed inadequate. It looked as though the new service might go begging. Shortly thereafter the staff of Electronics resolved to set
up a development project, to see whether technical and operational answers to the unsolved problems might be found. Encouraged by Commissioner Jett to proceed, the following plan was put in action:

An appropriation of funds was set up to underwrite the costs of parts and materials, engineers' and technicians' time, and application for an experimental license was made to the FCC. A search was then instituted to find a project engineer familiar with the problems of stable transmitters and receivers at these frequencies, who would be willing to undertake the project on his own time. This search was rewarded in the person of Walter C. Hollis, an engineer on the staff of the Sperry Gyroscope Company. Mr. Hollis, who has published an article in Electronics ${ }^{1}$
on the design of tuned-line resonators suitable for this band, agreed to design and supervise the construction of suitable equipment.

Sperry was not involved in the project but was asked whether there was any objection to Mr. Hollis undertaking the assignment, provided all activity was confined to out-of-office hours, and graciously gave assent. The equipment is, accordingly, a personal development of Mr. Hollis. All rights in the design have been relinquished by him, as well as by the publishers of Electronics, and are hereby placed in the public domain. Any person or organization who desires to copy the designs or equipment may do so for any private or commercial purpose.*

When the project was well underway, the FCC announced tentative equipment specifications which would have to be met before type approval would be given to equipment or transmitting licenses issued. These specifications did much to remove the atmosphere of uncertainty surrounding the engineering problem. On May 20th, the FCC issued an experimental station construction permit, under the call W2XSN, to the McGrawHill Publishing Company to cover the development and testing of the equipment.

By mid-September the initial item of equipment, the transmitter previously mentioned, had been completed and subject to an equipment test in the field, where it performed satisfactorily, as outlined in later paragraphs. Accordingly, the editors were encouraged to announce the program and proceed with publication of technical details.

Purpose of Program

In announcing the program, the editors wish to emphasize that its purpose is developmental and experimental. Many (in fact, most) of the questions concerning the Citizens Service remain unanswered at this stage, particularly those relating to performance of the equip-

[^3]ment in the field. Within the limits of its resources, the staff intends to test the system and to report the results objectively, good or bad, in coming issues. But the full potentialities of the service can be recognized only after an extensive test, conducted by many groups in different parts of the country and under different conditions.

To make possible the widest use of the designs, a primary objective of the program has been to use standard and conventional components throughout, and to eliminate entirely the need for specially machined cavities and other diffi-cult-to-construct items. Cost figures will be published as the program proceeds. At the moment it appears that the investment in parts and materials, for a complete $465-\mathrm{mc}$ crystal-controlled transmit-ter-receiver (without power amplifier) including power supply will be under one hundred dollars at current net prices.
Although the aim has been simplicity and inexpensive construction, the equipment has been required to meet the more strict of the two proposed FCC frequency tolerances and to meet standards of good engineering practice throughout.

FCC Specifications

Since the equipment under development was designed to meet FCC regulations, it is pertinent to state the proposed FCC specifications In accordance with FCC Public Notice 8387, issued June 27, 1947, it is proposed to divide the citizens band into three regions. The central region extends from 462 to 468 mc , within which any approved equipment may be used, including equipment of poor frequency stability (Class B stations, ± 0.4 per cent). The other two regions are the band edges from $460-462 \mathrm{mc}$ and $468-470 \mathrm{mc}$, within which only equipment having excellent frequency stability (Class A stations, 0.02 percent) may be used. The 460 to $462-\mathrm{mc}$ region is restricted to equipment operating at fixed locations; the other regions are for fixed, mobile, or portable operation.

Modulation may be of the amplitude, phase, or frequency type, and all sidebands are to be confined within a $200-\mathrm{kc}$ band. Transmission
may be by c-w radiotelegraphy, radiotelephone, or facsimile. The input plate power to the final stage must be limited to 50 watts in the band-edge regions and 10 watts in the central region. Spurious radiations from the transmitter must be eliminated or reduced in accordance with good engineering practice, and in any event shall not cause interference to receivers of good engineering design tuned outside the 460 to $470-\mathrm{mc}$ band.

When a manufacturer intends to produce 100 or more units of a given type, he may submit a typical production equipment to the FCC for type-approval tests. If the equipment meets FCC requirements it will be awarded a type-approval certificate and thereafter transmitting licenses may be issued to applicants owning such equipments. If less than 100 units are to be manufactured, type-approval tests will not normally be conducted but full information on the unit may be forwarded to the Commission which may, at its discretion, decide to test a sample in accordance with the standard type tests.

Choice of Basic Design

In developing the Electronics Citizens Radio equipment, it was decided to construct initially an equipment which would meet the Class A specifications, that is, 0.02 percent frequency tolerance. This choice was dictated by two factors: first, such equipment can be used for any purpose, anywhere in the band; second, the specifications could be met by a straightforward engineering approach using crystal control, whereas the Class B design might require an extensive investigation into non-crystal-controlled stable oscillators. As the program proceeds, it is hoped that a suitable Class B design, consuming the minimum amount of space, weight, and power, and taking advantage of the 0.4 percent frequency tolerance, will be evolved.

Since the 0.02 percent tolerance virtually demands crystal control, it was decided to produce the simplest possible crystal-controlled transmitter, using conventional miniature tubes, tuned circuits, and simple square cavities. All metalworking would be confined to that
possible with a drill press (or, in a pinch, a portable electric drill), an ordinary vise, and usual small tools. The estimate of primary power required was 50 watts, so it was decided to build the equipment for mobile use in vehicles having a sixvolt storage battery, or for fixed station operation.

The r-f power-output specification was broken down into three categories. The initial transmitter would have a power output less than one watt (the actual unit produced one-quarter watt at carrier frequency, as measured by a Bird wattmeter) and would be suitable for short-range operation. A power amplifier, employing standard components, would increase the power output to about 3 watts. A more complicated power amplifier, employing a lighthouse tube and requiring some skill in machining cavities, would permit operation at the maximum permissible level of 50 watts input to the final stage.

Frequency modulation (actually phase modulation plus frequency multiplication) was decided upon for the following reasons: A simple phase-modulation network is available which uses a germanium crystal and will provide about $15-\mathrm{kc}$ deviation after multiplication from a $4.3-\mathrm{mc}$ crystal frequency to the $465-\mathrm{mc}$ carrier frequency. This modulation system is simpler and consumes less power and tubes than the corresponding amplitude modulator. The power efficiency of the final stage is higher when $f-m$ is used. Finally, the signal-to-noise performance of the system as a whole, and consequently the range of coverage, is superior on f-m provided a high modulation-index is used and the receiver is built for high sensitivity. Both of the latter requirements are met in the design.

Basic Transmitter

The first equipment, the basic transmitter described in detail in the following pages, follows the plan just outlined in all respects. It employs but four tubes, produces a crystal-controlled carrier at 465 mc with 0.25 -watt output power. All the tubes are standard miniature types mounted in standard sockets. Ordinary tuned circuits are used up to the final stage,
at which point two resonators, (actually loaded sections of coaxial line, built in square shape) are introduced. A frequency multiplication of 108 times is achieved in three tubes, two of which are double triodes.

The transmitter is designed as one of three units of similar size, all of which will be mounted in a single container in the completed transmitter-receiver. The other two units are receiver, and power-supply control-switching unit.

Equipment Test

The basic transmitter was subjected to a test in the field at Boonton, N. J., on September 10, 1947. The assistance of Jerry Minter of the Measurements Corporation, in measuring the field strengths and providing test facilities, is much appreciated. In the test, two quar-ter-wave ground-plane vertical antennas were used, one mounted on the top of an automobile, the other placed on the laboratory roof at an elevation of 15 feet. The transmitter was operated from the car. The transmitter power supply, a vibrator power pack, was supplied from the car battery at 6.4 volts and produced 135 volts on the plates of the tubes. A carbon-button microphone and microphone amplifier, mounted on the power supply chassis, fed audio voltage at 5 volts level to the phase-modulation network of the transmitter proper. The transmitter was placed on the front seat of the car. During six hours of testing, including driving over rough country roads, the transmitter remained in adjustment and gave no trouble whatever.

To measure field strengths, an AN/APR-4 search receiver with self-contained signal-strength meter was employed. This produced a $30-\mathrm{mc}$ carrier (the intermediate frequency) which was detected by a Hallicrafters model S-27 f-m/ a-m receiver and fed to a loudspeaker. The input signal to the APR-4 receiver (picked up by the ground-plane antenna on the roof) was compared by the substitution method with the output from a Measurements Corporation model 84 uhf signal generator. A matching stub was used to secure a proper match to the antenna.

The following results were obtained: An input signal of 200 microvolts was developed when the transmitter antenna was located at 25 feet. This is lower than would be expected from a radiated power of 0.25 watt, which is the output measured in the laboratory. The loss probably is accounted for by a mismatch between the transmitter and its radiator. The signal strength decreased as the inverse first power of the distance (when line of sight prevailed) out to a distance of 1600 feet (approximately one-third mile.) No longer line-of-sight path was available at this location. Complete quieting of the receiver occurred, with consequent full intelligibility of the speech modulation at a receiver input of 8 microvolts, and bare intelligibility was achieved with 4 microvolts input.

Although this test was not intended to show any propagation effects, some incidental observations were made which indicate factors to be studied at length when propagration tests are begun. It was found that foliage produced a pronounced shielding effect, so much so in fact that communication could not be maintained beyond one-half mile since heavy foliage intervened along the roads available at the Boonton location. In one quantitative test of this effect, it was found that a single row of small birch and poplar trees about 50 feet from the transmitter, then located 1500 feet from the receiver, introduced an attenuation of two-to-one in voltage.

The tests revealed that the transmitter would survive rough usage without loss of adjustment, and showed that in-the-clear transmission paths up to one-third mile could be covered adequately with the equipment putting out substantially less than its full output. However, even with a properly matched antenna, it was clear that higher power (available from the power amplifier scheduled for test in the near future) would be required for full coverage at greater distances, particularly if obstructions and foliage intervened. These matters will be investigated in tests to be conducted in future weeks. -D.G.F.

[^4] D) 130 , May 1047 .

Top view of transmitter. Output of 4.3 -mc crystal (lower right) is multiplied 108 times in three tubes to 465 mc. Final stage, a 6 J 4 triode (left), produces one-quarter watt output

TRANSMITTER for the Citizens Radio Service

Simple low-power f-m unit, using conventional tubes and components, meets FCC Class-A specifications for 460 to $470-\mathrm{mc}$ band. Phase modulation and crystal control produce stable quarter-watt output in unit designed as part of portable-mobile equipment for general public

THE equipment described in this article was constructed as part of the Electronics Citizens Radio Project. The purpose of this project, as well as the philosophy underlying the design of the equipment and results of initial tests, are stated elsewhere in this issue (p80). The present treatment is intended to provide sufficient discussion of the electrical and mechanical details of the transmitter to permit its construction and adjustment by those readers who may wish to copy it for their own use.

The transmitter is a direct crys-tal-controlled unit employing four tubes and a phase-modulation net-
work. The power output of the final stage is one-quarter watt at the center frequency of the citizens band, 465 mc . This power level is small. and is admittedly not sufficient to permit full utilization of the citizens band when obstructions intervene in the transmission path. However, a surprisingly large range can be covered in direct line-ofsight with this power output. A line-of-sight path of 25 miles (transmitting and receiving antennas elevated 100 feet or higher) can be covered with a power output of only 11.5 milliwatts, using dipole antennas, with a receiver noise figure of 10 db and a carrier-to-noise
ratio of 10 db . This computation is based on the well known relation which gives the attenuation between half-wave dipole antennas in free space:

Attenuation $=10 \log _{10} \frac{64 \pi^{2} r^{2}}{9 \lambda^{2}} \mathrm{db}$
where the distance r between transmitter and receiver and the wavelength λ are in the same units, e.g. meters. It is expected (although tests have not yet been completed at maximum range) that the transmitter described will cover a 25 mile line-of-sight path with $20-\mathrm{db}$ carrier-to-noise ratio.

The phase modulation network,

By

WALTER C. HOLLIS
Radio Enoineer, Sperry Gyroscope

Boltom view, showing interior of resonators and coupling loops. Conventional coile are used up to 116 mc

Part I

of a Series

Side view, showing enclosed quarter-wave-line resonators at input and output of final stage
described later in this article, is designed to produce a maximum modulation of 28.6 degrees (one half radian). At the lowest modulating frequency in the voice band (300 cps) this phase deviation will produce a frequency deviation of approximately 16 kc when a frequency multiplication of 108 times is introduced between modulator and carrier output. This deviation compares favorably, in its ability to reduce noise, with the $75-\mathrm{kc}$ deviation employed in f-m broad-

[^5]casting provided the maximum modulating (voice) frequency is restricted to $3,000 \mathrm{cps}$. The deviation produces sidebands which are well within the $200-\mathrm{kc}$ channel width specified by the FCC regulations.

Circuit Description

As shown in the block diagram of Fig. 1, the transmitter employs a 6AK5 crystal-controlled oscillator, a 1 N 34 germanium crystal diode in the modulation network, a 6J6 twin tripler, a 6J6 tripler-doubler, and has a $6 J 4$ doubler in the final stage.

The oscillator employs the screen as the plate of a conventional tgtp.
oscillator. The output of this crys-tal-controlled oscillator is electron coupled through the plate to the phase modulating network. The phase modulating network is a con-stant-impedance network, the phase of which is varied through audio modulation on the crystal diode.

The phase-modulated carrier of $4,305.560 \mathrm{kc}$ drives one unit of the first 6J6 tube as a tripler. The tripled output then feeds the other unit. of this same 6J6 as another tripler. The output of the first 6J6 is thus nine times the crystal frequency, or 38.75 mc .

One unit of the second 656 is driven as a tripler whose output
feeds the other unit of the same 6J6 as a doubler. The output of the second $6 J 6$ is fifty-four times the crystal frequency, or 232.5 mc . All sections of the 656 are conventional grid-driven harmonic generators, The output stage of the transmitter is a 6 J 4 employed as a groundedgrid doubler, the output feeds the antenna through a coaxial cable.

Circuit Details

The complete schematic diagram of the $465-\mathrm{mc}$ transmitter is shown in Fig. 2. Values of all
component parts are indicated. A $6 \mathrm{AK5}, V_{1}$, is used as the oscillatorbuffer. The screen, grid, and cathode are used as a triode in the conventional oscillator. Y_{2} is a quartz crystal which, together with C_{2}, determines the frequency of oscillation. C_{z} is used for fine frequency adjustment. R_{1} in series with R_{2} provide grid bias through grid rectification. In addition, R_{2} is bypassed for r-f by C_{3} and is used as a metering resistor for oscillator grid current. L_{1} is a permeabilitytuned coil which, together with C,

FIG. 1-Block diaqram of transmitter. Tubes are conserved by operating three 6J6 triode sections as triplers. Phase modulation network produces $25-\mathrm{kc}$ deviation
and screen-to-cathode tube capacitance, forms the screen resonant circuit. R_{4} drops the voltage supplied to the screen of the 6AK5 tube and, with C_{5}, forms a decoupling filter.

The output is coupled through the plate. Output voltage for driving the first tripler is developed across the modulating network to be described later. L_{2} is a permeabilitytuned coil which, with C_{8}, the output capacitance of the oscillator and the input capacitance of the first tripler, constitutes the plate resonant circuit. R_{3} is a dropping resistor which places the plate voltage below the screen by a sufficient amount to reduce output voltage to the level required by the modulating network. R_{3} and C_{7} form the plate decoupling filter. C_{8} and C_{4} are blocking capacitors. R_{5} and R_{8} develop the necessary grid bias for the first tripler through grid rectification. R_{0} bypassed by $C_{v 2}$ serves as a grid metering resistor for the first tripler.

Components Y_{1} and C_{1} are the frequency control and frequency

$\mathrm{C}_{1 .} \mathrm{C}_{2}$-Erie Ceramicon TS2A trimmer,
$\mathrm{C}_{3}{ }^{7}, \mathrm{C}_{3}$, $\mathrm{C}_{10} \mathrm{C}_{10}, \mathrm{C}_{11}, \mathrm{C}_{15}, \mathrm{C}_{17}-350 \mu \mu \mathrm{f}$ sil${ }^{\text {vered nuca }}$
$\mathrm{C}_{4}, \mathrm{C}_{6}-56 \mu \mu \mathrm{f}$ silvered mica
$\mathrm{C}_{5}, \mathrm{C}_{7}, \mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{14}, \mathrm{C}_{16}-700 \mu \mu \mathrm{f}$ silvered mica
C9-Erie insulated Ceramicon, $12 \mu \mu \mathrm{f}$ $\mathrm{C}_{18}, \mathrm{C}_{22}-70 \mu \mu \mathrm{f}$ silvered mica
$\mathrm{C}_{19}, \mathrm{C}_{25}, \mathrm{C}_{25}-$ Erie 370 FA button mica, $235 \mu \mu \mathrm{f}$
$\mathrm{C}_{850} \mathrm{C}_{21}, \mathrm{C}_{23}, \mathrm{C}_{2 \digamma-\text {-see text }}$
C_{24}-Erie 470 BH button mica, 1,000
$\mathrm{C}_{28 .}^{\mu \mu \mathrm{f}} \mathrm{C}_{29}$-Erie 37013B button mica, 1,000 $\mu \mu \mathrm{f}$
$\mathrm{L}_{1}, \mathrm{~L}_{2}$-see text.
$\mathrm{L}_{3}-\mathrm{r}$-f choke, 1 mh
L_{4} to $\mathrm{L}_{18}-$ see text
R_{1}-Allen-Bradley, $950,000, \frac{1}{2} \mathrm{w}$
$\mathrm{R}_{2}, \mathrm{R}_{6}$-Allen-Bradley, 10,000, $\frac{1}{2} \mathrm{w}$
R_{3}. \mathbf{R}_{4}-Allen-Bradley, 15,000, $\frac{1}{2} \mathrm{w}$
$\mathbf{R}_{5}, \mathbf{R}_{9}, \mathrm{R}_{10}$-Allen-Bradley, $10,000, \frac{1}{2} \mathrm{w}$
$\mathrm{R}_{7}, \mathrm{R}_{11}, \mathrm{R}_{12}$-Allen-Bradley, 1,000, $\frac{1}{2}$ w
$\mathrm{R}_{8}, \mathrm{R}_{13}$-Allen-Bradley, $100, \frac{1}{2} \mathrm{w}$
R_{14}-Allen-Bradley, $6,800, \frac{1}{2}{ }^{2}{ }^{2}$
R_{15}-Allen-Bradley, 390, 1 w
V_{1}-6AK5
$V_{2}, V_{3}-6.56$
$\mathrm{V}_{4}-6 \mathrm{~J}, 1$
Y_{1}-Auxiliary crystal
\mathbf{Y}_{2}-Hunt Corp. CR7, $1,305.560-\mathrm{kc}$ crystal
$Y_{3}-$ IN3 4 crystal diode

FIG. 2-Complete schematic of transmitter. Socket orientation and feed-through numbers correspond to mechanical layout of chassis. shown in the drawing at the right
adjusting elements for supplying the local oscillator frequency for the receiver, to be described in a later issue.

The oscillator plate circuit load is the modulating network consisting of $C_{n}, Y_{3}, L_{4}, L_{3}, C_{10}$, and a 6,200 -ohm resistor in series with a low-impedance modulating source. This network is the same as that used in the Raytheon cascade-phaseshift system ${ }^{1}$, with a IN34 crystal (Y_{3}) replacing the cathode follower. For the network to present a constant impedance, the reactance of L_{1} must be twice the reactance of $C_{5} . L_{8}$ presents a high impedance to the oscillator frequency, but provides a low-resistance d-c return for the rectified current of modulating crystal, $Y_{3} . \quad Y_{3}$, in combination with C_{10} and the 6,200 -ohm resistor in series with the modulating voltage, presents a variable resistor which is a function of the modulating voltage, in series with C_{8}. This variation in resistance causes the phase angle of the impedance to vary in accordance with the modulating voltage. As the elec-
tron-coupled oscillator output is essentially a constant-current generator, the voltage developed across the modulating network is phase modulated with negligible residual amplitude modulation. This property of negligible residual amplitude modulation is used to tune L_{2}. The procedure used is discussed under tuning adjustments.

All succeeding multiplier stages, except the final stage, are conventional grid-driven triode harmonic generators, employing the dual triode 6J6. Each stage except the first doubler employs conventional double-tuned circuits. These offer ease of excitation adjustment, freedom from parasitic oscillations, and good harmonic rejection. Grid bias resistors have been chosen for optimum output. Both 6 J 6 tubes, V_{2} and $V_{\text {\% }}$, are protected from overload due to loss of excitation by cathode bias resistors R_{8} and R_{13} respectively.

The output tank circuit for the first doubler is unconventional. The tank circuit is a reentrant resonator of the capacitive-loaded trans-mission-line type ${ }^{\circ}$. The capacitive
loading is a variable capacitor, C_{23}, and the inductive portion L_{11} consists of a length of short-circuited transmission line in a sheet metal shield. The plate supply is bypassed to ground by capacitor C_{24}, and is series fed through filter choke L_{15}, self-resonant at about 230 mc .

The output tube, V_{s}, is a $6 \mathrm{~J} 4 \mathrm{em}-$ ployed as a grounded-grid doubler. The output of the first doubler, at 232.5 mc , is inductively coupled to the cathode of V_{4} by means of pickup loop L_{12}. As the driving impedance of a grounded-grid doubler is very low (a few hundred ohms), the circuit is untuned and noncritical. The output tank circuit is another transmission line resonator consisting of a variable capacitor, C_{2}, and a length of short-circuited transmission line, L_{17}. The plate supply is shunt fed through the filter arrangement consisting of C_{28}, L_{16}, and C_{29}. The output to the antenna is coupled through a pickup loop, L_{18}. Grid bias is supplied by the voltage drop through cathode resistor R_{15}, bypassed for r-f by C_{25}. L_{13}, and L_{14}, are self resonant chokes

FIG. 3-Mechanical layout of chassis. Slight differences from layout shown in photos have been introduced to simplify construction. Relative location of tube sockets and resonators is critical
which place the filament at the same r-f potential as the cathode. C_{2} bypasses all filaments to ground.

Parts List

In addition to the parts listed with the circuit diagram, the following are required:

At current net prices, total cost of parts is approximately $\$ 40.00$.

Coil Sperifications

$L^{1}, L^{2}, L^{a}-41$ turns No. 27 heavy formvar wire, close wound on No. 27 heaviformvar ha, e5o-microhenry nitional XR-50 form choke (commareial tolerances dan be compensated by adjuxtnent of Cos
$L^{6}-50$ turns No. 29 heary formvar wire, close wound on National Xk-50 form
$L^{7}-15$ turns No. 20 heavy formvar wire. lose wound and centered on far wire XR-50 form
$L^{8}-12$ turns No, 20 heary formvar wire close wound and centered on Nationai R-50 form
$L^{9}-4$ turns No, 14 tinned copper wire 1/2 inch diameter, space wound for $7 / 16$ inch length, self-supported betweon C_{21} and stand-off No. 1.
$L_{10} 3$ turns No. 14 tinned copper wire $1 / 2$ inch diameter, space wound for $1 / 4$ inch length, self supported between $C 20$ and feedthrough No. 11
$L_{1 s}, L_{1 s}, L_{15}-151 / 9$ turns No. 22 plain enameled, close wound on 1-watt AllenBradleg resistor, 100,000 ohms or larger, dipped in glyptal
$L^{16}-1 \underline{2}$ turns No. 22 plain सhamelod, close wound on $1 / 2$-watt Allen-Bradley re sistor, 100,000 ohms or larger, dipped in
glybtil

Chassis Construction

The chassis is of conventional sheet metal construction shown in the photographs. The chassis is made entirely of $\frac{1}{32}$ inch half hard sheet brass. The completed chassis consists of a drilled base $12 \frac{3}{3}$ by 4 by $\frac{13}{3}$ inches upon which are mounted two resonators for the final multiplier stages. With the resonators and all parts and tubes in place, the overall height is $4 \frac{1}{4}$ inches. The details given below are slightly different from the photographs. These changes have been made to simplify the construction and do not impair the performance.

The bottom view of the chassis layout is shown in Fig. 3. All holes have been identified with the component indicated on the circuit diagram of Fig. 2. A mounting lip
projects $\frac{3}{8}$ inch below the bottom of the chassis on all four sides, as is seen in the sectional elevation view of Fig. 4. Two mounting holes for the resonators are provided in the chassis base. The cutout for the resonator for the first doubler is 2 量 $\times 3.9$ inches; for the second it is $2 \frac{1}{18} \times{ }^{\frac{1}{8}}$ it inches. Lips projecting $\frac{3}{8}$ inch above the top of the chassis base are provided for mounting each resonator.

The layouts for the first doubler resonator shield and the second doubler shield are shown in Fig. 5 and 6. After cutting, the shields should be bent as shown in Fig. 3 and 4, and soft soldered along the quarter-inch lips provided in the layouts. The shield for the second doubler resonator should have its center conductor, consisting of $\frac{1}{2}$ inch diameter by $\frac{1}{16}$-inch wall brass tubing, soldered into place as indicated in Fig. 3 and 4. In addition, covers with 8 -inch lips should be made to fit each shield. These may be anchored in place by $4-40$ screws tapped into the shields. The cover for the output resonator should be drilled for mounting a UG-58/U r-f fitting for the output connection, as shown in the photographs. All chassis parts should be cadmium plated to resist corrosion.

After plating, the parts are assembled as follows: C_{24}, a $1,000-\mu \mu \mathrm{f}$ type $470-\mathrm{BA}$ button mica capacitor, is centered and soft soldered over the $\frac{1}{2}$-inch hole in the shorted end of the first doubler shield. In addition, two glass-sealed feed-throughs are soft soldered into the G drill holes provided. These are used to mount output pickup loop L_{12}, which is made of No. 14 tinned copper wire, approximately $1 \times \frac{1}{2}$ inch. The center conductor should next be installed. It is made of $\frac{1}{8}$-inch brass rod of length indicated in Fig. 4 and threaded on the end for 2-56 nuts. The center conductor should be bolted through C_{24} with a lug provided for mounting $L_{i 5}$. The assembly constituting L_{11} and L_{12} is then mounted on the chassis base by means of the mounting lip and $4-40$ screws tapped into the shield. The inside junction between the shield and the chassis base should be soldered to provide a solid electrical connection. C_{23} should then be mounted on the chassis and the
two stator uprights soldered to the center conductor. This assembly constitutes the complete resonator for the first doubler. The mounting holes for the socket for V_{3} are so aligned that terminal No. 2 may be soldered directly to the center conductor of the resorator.

The output resonator is next assembled. C_{99}, L_{16}, and C_{29} are assembled to the center conductor by soldering as indicated in Fig. 4. C_{27} is mounted and the two uprights soldered to the center conductor. The resonator then is mounted on the chassis base by means of the mounting lips and $4-40$ screws tapped into the resonator shield. The socket for V_{2} is next mounted and terminals 1,5 , and 6 soldered directly to the output resonator.

All feed-through connectors should next be soldered into holes provided in the chassis base. All other components may then be mounted on the chassis base, taking care to align all terminals for shortest connections. C_{20} and C_{51} are mounted such that terminals 5 and 1 , respectively, on the tube socket for V_{s} may be soldered directly to the terminal lugs provided on the capacitors. L_{8} and L_{10} are mounted axially and the spacing adjusted during tune-up for maximum drive to the first doubler. Where possible, series resonance is employed in the mica bypass capacitors. ${ }^{\text {s }}$

Tune-up Procedure

After the transmitter wiring has been checked, the tubes and crystal may be installed in their respective sockets and voltages applied. Filament supply at 6.3 volts is applied between stand-off terminal No. 2 and ground, and 150 -volt d-c plate supply between terminal No. 4 and ground.

Test equipment used included a 20,000 ohms-per-volt test analyzer such as the Simpson Model 260, an audio oscillator, and a cathode-ray oscilloscope. A set of absorption wavemeters is useful to assure that the proper harmonic is tuned in each stage.

First connect the voltmeter between metering point 1 and ground. Starting with the poly-iron slug of L_{1} all the way in, screw out the slug, watching grid current as registered on the voltmeter. Note

FIG. 4-Side view of chassis. showing constructional details of resonators operating at 232.5 and 465 mc

FIG. 5-Shield can for $232.5-\mathrm{mc}$ resonator. Made from brass sheet, this structure can be bent into shape without machining

FIG. 6-Shield can for $465-\mathrm{mc}$ resonator. If dimensions are followed accurately. both resonators may be tuned over band without mechanical adjustment, by adjusting loading capacitors
maximum reading and back off to about half of the maximum reading.

Next connect the audio oscillator through a 6,200 -ohm resistor between stand-off 5 and ground, and set the output to about 5 volts. Connect the vertical amplifier of the cathode-ray oscilloscope between metering point 5 and ground.

Through grid rectification in the first tripler, any amplitude modulation occurring in the modulation network appears across R_{8} and may be seen on the oscilloscope. Adjust L_{2} for a null (or minimum) as seen on the oscilloscope. L_{2} is now properly adjusted and should never be retuned except by this method. The audio oscillator and oscilloscope
may now be disconnected and the $6,200-\mathrm{ohm}$ resistor returned to ground.

The voltmeter should now be connected between metering point 7 and ground and L_{5} and L_{8} adjusted for maximum grid drive as indicated on the voltmeter. The absorption wavemeter should be used to make sure that the proper harmonic is tuned. All other stages are tuned in a similar manner using successively metering points 9,11 , and 12 . The output resonator is tuned for maximum output into a load or antenna. Output loop L_{18} should be adjusted for maximum output.

The following table gives representative readings obtained with a 20,000 ohms-per-volt analyzer connected to various stages.

Analyzer Lead Connections	Meter Reading	
+	-	(Volts)
Ground	1	0.6
Ground	5	3.2
Ground	7	38
Ground	9	33
Grannd	11	15
12	Ground	8
4	3	65
3	2	30
4	2	103
4	6	$\mathbf{5 . 2}$
$\mathbf{4}$	8	8.2
4	10	7.4
4	L_{15}	23.5 ma
4	L_{14}	18 ma

The last two readings should be taken by opening up the plate supply leads and inserting the meter in series.

An output of approximately $\frac{1}{1}$ watt was measured using a Bird Wattmeter, Model 63-A. The output loop was made of No. 14 tinned copper wire with dimensions $\frac{3}{4} \times \frac{1}{2}$ inch. Using improved coupling means, it is expected to increase the output to $\frac{1}{2}$ watt.

Acknowledgements

The author gratefully acknowledges the cooperation of the Hunt Corporation, Carlisle, Pennsylvania, who supplied the quartz crystals. In addition, he is indebted to the fine craftsmanship of Herbert Hardy, who constructed the final model and the test resonators used in the development.

References

(1) M. Marks, Cascade Phase Shift Modulator, Electronics, 1 105, December 1946
${ }_{(2)}^{946} \mathrm{~W}$. C. Hollis. Design of Transmission Line Tank Circuits, Electhonics, p 130 , May 1947.
(3) A. ${ }^{1947}$. Green and C. T. McComb, Resonance in Mica Condensers, Llectronics, p 19, March 1944.

Explosion-pressure recorder setup for use with remotely located capacitance-type pressure pickup. Operator adjusts bridge control unit with left hand and single-sweep generator with right hand while viewing pattern on oscilloscope screen through peephole along. side camera on hood. Unit at right is sweep tripper control unit

Measuring Pressures of

INVESTIGATIONS and tests to eliminate or reduce damage from explosions have been devoted to methods of preventing explosion damage in rooms or buildings, both from dust and from

FIG. 1-Cross-section of capacitance-type pressure pickup. Sound waves act on steel diaphragm at lef: causing capacitance between grounded diaphragm and insulated brass plate behind it to vary. Shell and retaining plug are turned from $13 / 4$-inch hexagonal steel stock
flammable liquid vapors. The method usually involved determining, in a specially constructed building, the ratio of free venting area to building volume required to prevent obvious excessive pressure or stress in the structure. The work has also included explosions in vessels and pipe lines with vapor-air mixtures and also mixtures of air with hydrogen and acetylene.

Until recently, no wholly satisfactory instrument was available for obtaining pressure-time diagrams under such a wide variety of test conditions. Without an accurrate pressure record there was no assurance that presumably identical explosion tests were being duplicated with respect to pressure, and the results of tests could not be applied with any degree of confidence to other conditions.

The pressure recorder described here meets all requirements for explosion research. It is adaptable to a wide range of maximum pressure, and it can be used for static condi-
tions as well as for varying rates of pressure change, including those encountered in industrial explosions and water hammer. Because of the characteristics of the design, it is relatively independent of humidity, temperature, and extraneous pressure. A most important feature is that the design facilitates calibration in a very short time either before or after an explosion or other pressure test.

General Test Requirements

Occasionally tests are run which represent considerable time and expense for the setup, and it may be desired to obtain an accurate pressure record on an explosion which may not again be reproduced quickly, so that checking of results by many tests is not practical. Consequently, every individual test record should be completely reliable. Sometimes it is desired to measure pressures from an explosion the exact time of which is not predictable. For such cases the recording

Explosion of magnesium powder in a heavy concrete test tunnel at the Factory Mutual Laboratories is typical of accidental explosions but is set off under controlled conditions so that pressures can be measured and recorded to determine safety of various industrial conditions. Other tests include explosions of cleaning fluids in enclosed spaces and explosions of black powder in pipes

Industrial Explosions

Capacitance-type pickup feeds cro through $10,000-\mathrm{cps}$ bridge to give pressure-time diagrams covering from 2 psi for dust explosions to 3,000 psi for gas-air mixtures in pipes, with calibration on static pressures. Automatic tripper circuit responds to explosions

By NORMAN J. THOMPSON and EDWARD W, COUSINS
Director
Fuctory Mutual Laboratories
Boston, Massachusetts

apparatus must be actuated automatically by the explosion pressure wave.

Some explosions, such as dust explosions in building structures, may give rise to maximum pressures of only two or three psi and the time required to reach peak pressure may be one-half second or even more. With other explosions, such as gas-air mixtures in pipe lines or closed vessels, maximum pressures may be of the order of 100 psi , or in some cases 2,000 to 3,000 psi, with pressure rise rates at very high values. Pressures due to water
hammer in supply lines to sprinklers or in other hydraulic systems also develop very rapidly and may reach high peak values.

In explosion tests involving dusts or vapors in large areas, the decay of pressure may occur at such a slow rate that the pressure condition is almost static. Since the device must be used on static or nearstatic conditions, it is desirable to bc able to calibrate the device statically in a very short period of time, either before or after any test.

In some tests it may be desired to locate the gage inside a building or

FIG. 2-Basic bridge circuit (A) used with gage, and final version (B) using tuned filter and compensating cable for limiting response to narrow band of frequencies around $10,000 \mathrm{cps}$

FIG. 3-Pressure-time diagram for typical industrial explosion producing 6.7 psi in 25 milliseconds (A), with peaked $60-\mathrm{cps}$ timing wave and static calibration (horizontal traces) at 5 psi, as photographed with Super XX film at $\mathbf{f} / 4.5$ on 5LPI green tube using maximum beam intensity. Improved contrast (B) is obtained by using a 5LP11 blue tube at reduced beam intensity with Eastman Linograph 5244 film and an $f / 3.5$ camera; this diagram is for a similar explosion producing maximum pressure of 7.6 psi , taken by means of automatic sweep tripper that started record at 0.57 psi
vessel as a space gage, whereas in other tests the gage must be external to piping or vessels.
In order to carry on varied experimental work, both inside and outdoors, it is essential that a pressure gage have certain characteristics. It should be accurate at least within 5 percent, and preferably within 2 percent or less. It should be able to operate satisfactorily at ambient temperatures from well above 100 F down to minus 50 F . Neither humidity nor transient temperature conditions should produce any serious error in results. The pressure pickup should be designed in such a manner that a wide variety of pressure ranges can be quickly and easily obtained by replacement of a simple element.

In the gage developed, a resist-ance-capacitance bridge circuit is used in which the pressure pickup acts as a variable capacitance in one leg of the bridge. Apparatus used includes an RCA 154 beat-frequency oscillator, a Du Mont 208B oscilloscope, and a Du Mont 215 single-sweep generator.

It is desirable in many cases to have a definite record of negative pressures, because there are times when these may not be so small nor of such duration as to be entirely disregarded. Experimental work on the new gage was conducted without such differentiation (that is, in a condition of complete balance at zero pressure) because this revealed the most about the gage characteristics. However, negative pressures can be shown easily by adjusting the bridge circuit to an unbalanced condition at zero pressure.

The pressure pickup was built according to the design shown in Fig. 1. The diaphragm thickness may be selected to accommodate a wide range of maximum pressures. For use as a space gage the hole in the retaining plug would be threaded to accommodate half-inch pipe or conduit to support the gage and shield the connecting cable from temperature and pressure changes. The conduit, plug, and shell would be grounded.

Circuit Characteristics

In order to utilize the special pickup, its capacitance and the capacitance of the connecting cable are balanced out so that only a change in capacitance will be indicated. A conventional RC bridge circuit is shown in Fig. 2A in which C_{1} is the gage, C_{2} the balancing capacitance, R_{1} and R_{2} the resistance elements of the bridge, and M a current or voltage detector.

FIG. 4-Static calibration curve of pickup when using 0.02 -inch thick steel diaphragm

It was found desirable to energize the bridge circuit at a frequency of approximately 10,000 cycles. In order to avoid serious frequency drift, it was necessary to use a voltage regulator between the 60 cycle power supply and the beatfrequency oscillator.
For maximum facility in operation, it would be desirable to ground the shell of the gage, the voltage detector, and also one side or a center tap in the power supply, but there is of course no common point for all three. Accordingly, for highspeed work, where it is necessary to use a cathode-ray oscilloscope as a detector, it is essential that the oscilloscope be grounded in its connection at point B, which requires that the power supply be isolated from ground.

It was found necessary to shield thoroughly all parts of the bridge circuit and its controls in order to eliminate 60 -cycle pickup, some of which came through from the oscillator and could not be entirely balanced out. Grounding the center tap of the oscillator output transformer would eliminate most of the 60 -cycle current transmitted from the oscillator, but this would bypass the bridge circuit with a signal direct to the grounded oscilloscope.

Attempts to eliminate 60 -cycle current by inserting a small capacitance in each lead from the oscillator resulted in no advantage because even though the 60 -cycle current was eliminated, harmonics of the oscillator frequency appeared, undoubtedly due to the inductance of the beat-frequency oscillator output transformer. Similar difficulties, either by generation of or sensitivity to high-frequency voltages, resulted from an attempt to use a simple inductance choke between the bridge output and ground.

The final solution, which gave satisfactory results, involved the use of a tuned filter connected across the oscilloscope input to reject all but a relatively narrow band of frequencies around 10,000 cycles. This was accomplished by the use of a 250 -millihenry choke in parallel with a $0.001-\mu \mathrm{f}$ capacitor with a variable vernier, as shown in Fig. 2B. With this circuit it was possible to balance the bridge to a point where the residual unbalance was about 0.001 volt, equal to 0.1 inch
deflection on the oscilloscope with its amplifier adjusted to maximum sensitivity. Since the bridge has a ratio of unity, and the applied $10,-$ 000 -cycle current to the bridge is approximately 30 volts peak, this represents a balance to within 1 part in 15,000 .

In actual use, it was noted that there was occasionally considerable zero drift. This was caused by a change in temperature, and was almost wholly due to changes in temperature of the single-conductor microphone cable (20 feet long) used to connect the gage to the bridge circuit. Both resistance and capacitance of the cable were affected. To correct for these factors a two-conductor cable was substituted, with one inner conductor and the grounded outer shield connecting the gage and bridge, and the other inner conductor connected in parallel with the balancing capacitance of the bridge. In spite of this balancing arrangement, the cable was found to be somewhat pressure-sensitive. If the pickup is used as a space gage, it would be desirable to enclose the cable within the space by pipe or conduit.

Application to Explosion Tests

In a series of preliminary tests, the gage was used to measure the pressure required to break glass panes (14×19 inch) in one side of a 3 cu ft enclosure and subjected to explosions of flammable liquid vapors with air. A typical result is shown on Fig. 3A with accompanying 60 -cycle timing wave.

Other tests included breaking a 0.003 -inch thick paper diaphragm by explosions of black powder in a short length of 6 -inch diameter pipe. A typical result is shown on Fig. 3B. These pictures were made with the 0.020 inch thick diaphragm in the gage; the static calibration for this diaphragm is given in Fig. 4. With a maximum useful range of approximately ten pounds per square inch, there is a range of about 10 psi where the departure from linearity is less than 0.2 psi .

When using this gage near maximum oscilloscope deflection, the speed of travel of the beam at 10,000 cycles is too fast with the usual green cathode-ray tube to give photographs having maximum
sharpness. One solution for this would be the use of a rectifier between the bridge and the oscilloscope input. However, this would require an amplifier capable of a wide range of frequency amplification down to and including direct current for static calibration. The difficulty was overcome by substituting a cathode-ray tube of much higher actinic intensity, the blue Du Mont 5LP11.

For explosions the exact time of which can not be predicted in advance, an automatic tripper circuit was developed, utilizing a 6C5 amplifier and a 2051 relay tube as in Fig. 5. The input is taken from the oscilloscope deflection plate, and the output is connected to the sin-gle-sweep generator. This equipment operates on a signal (with some adjustment) equal to about 3 percent of the maximum useful deflection of 2 inches but under such adjustment it is especially sensitive to exterior electrical disturbances such as turning on and off an incandescent lamp. In actual practice the adjustment was made so as to trip at 0.1 inch deflection, or about 5 percent of the maximum. For explosion work the loss of the first fraction of the record is of no importance. Possibly for other applications it might be worth while to develop a satisfactory delay, so as to be able to photograph the entire pressuretime diagram.

Stability and Pressure Range

The shape of the calibration curve is affected only slightly by the initial spacing between the gage

FIG. 5-Automatic tripper circuit for starting single-sweep generator when voltage on deflection plate of cathode-ray oscilloscope reaches about 5 percent of maximum
plates; within practical limits the calibration of the pressure pickup is essentially independent of the spacing. The pickup was disassembled many times with only a minimum of care to recover the same initial spacing (about 0.001 inch with normal takeup). In each case when a known pressure was applied to the pickup and the gain control on the oscilloscope adjusted to give the same deflection as the original calibration, other pressure points also fell on the original calibration curve. This is important since it eliminates any necessity for careful temperature compensation.

The stiffness and consequently the linear limit of indication of similar diaphragms of different thicknesses will vary with the cube of the thickness. Practically, in order to obtain an essentially linear calibration, the deflection of the diaphragm at its center should not exceed 50 percent of the initial spacing. This relation of thickness to useful limit was shown by test to be true in calibration of diaphragms of $0.010,0.020$, and 0.030 -inch thickness. Accordingly, the maximum useful pressures of hardened steel diaphragms of various thicknesses would be 1.5 psi at 0.010 inch, 12 psi at 0.020 inch, 40 psi at 0.030 inch, 100 psi at 0.040 inch, and 200 psi at 0.050 inch. The natural vibration frequencies of these diaphragms are respectively 3,960 , $7,920,11,900,15,800$ and 19,800 cycles per second.

Since the modulus of elasticity in compression of Lucite is of the order of $500,000 \mathrm{psi}$, this material cannot be used safely in the design shown at pressures beyond about $3,000 \mathrm{psi}$. Bakelite or other insulators having higher compression modulus would have to be substituted, but these have a higher dielectric constant which should be avoided. It would be best for operation in the range up to $10,000 \mathrm{psi}$ to use a design in which the diaphraghm and shell are combined integrally by machining from a single piece of steel, thus avoiding strain on the insulating space plug.

Bibliography

(1) John C. Lilly. Victor Legallais, and ruth Cherry, A Variable Capacitor for Measurements of Pressure and Mechanical Displacements; A Theoretical Analysis and Its Experimental Evaluation; Journal of Applied Physics, p 613, July $19+7$.

Map of the Continental Network as of Sept. 15; WSBAFM, York, Pa. has since been added. Wire and f-m relay paths are shown by solid and dashed lines respectively

F-M Chain Broadcasting

Economic salvation for the small f-m broadeaster may lie in the methods of relaying highfidelity programs from one station to another now used by the Continental Network and others. Techniques employed successfully since 1939 include one that does not require ronversion to audio

THERE are many aspects to the problem of $\mathrm{f}-\mathrm{m}$ broadcast economics, all leading to the important consideration, can f-m pay its way? One important factor is how to utilize a good, and probably expensive, live-talent program on two or more stations, each of which is located in a mutually noncompetitive market area. This is a problem that can not be solved by the vice-president in charge of advertising sales alone, nor by the technical director alone. But both these men know, or should know, that they are treading on neither strange nor dangerous ground when considering the feasibility of chain f-m broadcasting.

A certain elementary book on calculus bears an inscription to the effect that what one fool can learn another can also. Although the f-m pioneers are certainly no more fool-
ish than their new and enthusiastic colleagues, the methods by which they achieved success in a relatively uncharted area were less often dry victories of the slide rule than the adoption of Major Armstrong's phi-losophy,--"Make it work; then find out what makes it work". Newcomers in the f-m field may be heartened by a review of a successful past as well as by an active present. The facts are here.

Original Relay System

The technique of relaying f-m programs from a high-frequency low-power station to a lower-frequency high-power station more suitable for broadcast coverage originated in the early experiments of E. H. Armstrong and C. R. Runyon, Jr., particularly between Yonkers, N. Y. and Alpine, N. J. Aware of
the success of these relays, P. A. deMars, technical director of the Yankee Network, felt secure in planning a three-station network without wires. He had been further encouraged by frequent periods of good reception on Mount Washington, N. H. (37,600 feet below the optical horizon) of Alpine signals on 44.1 megacycles since 1938 .

This original commercial relay system comprises a low-power transmitter operating on 156 megacycles (first assigned 133 mc) located on the roof of the Boston studios used to program the $\mathrm{a}-\mathrm{m}$ and $\mathrm{f}-\mathrm{m}$ stations of the Yankee Network. The signals from WEOD, Boston, are beamed towards the main 50-kilowatt transmitter WGTR in Paxton, Mass., serving Boston and southern New England, and are picked up there, about 45

North Carolina demonstration relay net planned for National Radio Week. Oct. 27. Nov. 1. Other possible relary paths are also indicated

Present northeastern terminus of the Yankee and Continental f-m Networks, on Mt. Washington, N. H. The upper bays of the turnstile antenna are used for high band transmissions
miles away, on a directional receiving array. The program is then broadcast on 44.3 and 99.1 mc and picked up on Mt. Washington, N. H., about 140 miles away, where it is rebroadcast from WMNE, serving northern New England on 45.1 and 100.5 mc . Broadcasts from Paxton started in May, 1939 and from Mount Washington during the winter of 1939-40. Although there have been failures at various points in the circuits the total time off the air has been such an extremely small fraction of the total that it has never been considered necessary even to install local turntables and transcriptions so as to provide local sustaining programs during repairs.

In general, two modulator equipments are provided at each station. The class-C amplifiers following are not overworked and give relatively

Beam antenna for 156 mc atop Yankee Network studios in Boston is used to program Paxton transmitter about 45 miles to west
little trouble. In a few instances, the $50-\mathrm{kw}$ pushpull amplifier at Paxton was operated from several hours up to two days with only one tube filament lighted. Slight retuning of the final was necessary, but the majority of listeners were never aware of the impairment to the signal strength.

Cost Considerations

Time has indeed shown the feasibility of the Yankee Network system, but the original daring conception of the network was predicated on two points. Although it might have been possible to program the Paxton transmitter by a wire line, such facilities were not then available. The best offer that the telephone company could make was a line reasonably flat from 30 to 15 ,-

000 cycles at an initial cost, to be borne by the broadcaster, of more than $\$ 75,000$. The usual toll charges for use of the facility would follow, There could be no guarantee that the line would be noise-free. On that account, the radio program circuit was adopted as a major tenet of the plan, and Radio Engineering Laboratories furnished a unique 133-me transmitter built to Major Armstrong's specifications at a fraction of the wire line cost.

Inaccessible Location

Mount Washington is remote from good wire lines. The broadcasting facilities designed to use to best advantage the summit of the peak were approachable, at best, through 7 miles of woods, to the foot of the mountain, and then three miles upward along a cog railroad. Although winter telephone communication has been maintained off and on since 1932 along this route, the cost of installing high-fidelity lines from the nearest suitable toll center and maintaining them in the high winds and other generally inclement weather would be extremely costly. Practically, the only way to program a Mount Washington transmitter is by radio link.

The techniques and equipment required for the relay system are simple, but the actual installations made were designed for less than optimum conditions. At the Boston studios (WEOD), a 3 -element array of dipoles, reflectors and directors mounted one above the other on a steel mast on the roof of the building was used. At Paxton a pair of multiwave vee antennas, one above the other and each backed by a closely spaced parasitic reflector, furnished more than adequate gain for the program receiver used. In actual practice, the final amplifier in Boston was discarded at the time of a change in frequency assignment from 133 to 156 mc . Besides tolerating a power reduction at the relay transmitter, it was found that under conditions of abnormal icing at Paxton a simple dipole with reflector and director, mounted behind a glass-block wall near the $50-\mathrm{kw}$ transmitter, furnished adequate signal for the program circuit.

On Mount Washington where small structures must be protected
from accumulations of ice or the force of superhurricane winds, a wooden tower was included in the special building design to house receiving or emergency transmitting antennas.

The receivers used in the relay technique were originally simply good f-m receivers built for Major Armstrong for general demonstration purposes. When Mount Washington went on the air, the General Electric type JFM-90 home receiver had become available and so this equipment was modified slightly for somewhat greater r-f gain and selectivity as well as for a more convenient output impedance. In general all these receivers were also provided with two audio outputs, one with a standard RMA restorer (de-emphasis circuit) for audio monitoring and the other maintaining the pre-emphasis introduced in the original transmitter. In this way, it is not necessary to restore and pre-emphasize the signal again at each succeeding station in the chain. At a later date, simple heterodyne converters were added to the JFM-90 receivers and they serve for reception on 156 megacycles as well.

Intercompany Relays

On Dec. 4, 1939, a program originating at W2XCR in Yonkers was picked up and relayed through W2XMN Alpine, then rebroadcast from W1XPW, operated by Franklin M. Doolittle at Meriden, Conn., since May 13, 1939. The success of this venture created considerable furore and K. B. Warner of the American Radio Relay League stated: "In 10 years there won't be any orthodox brand of broadcasting remaining except for the lowest grade of local service". Early in the morning of Dec. 29 a similar test program was tried again, this time including the Paxton transmitter. No difficulty was experienced when the Meriden program was picked up at a farmhouse somewhat lower in elevation than the station and sent through about a thousand yards of wire line to the transmitter modulator. The remote receiver and antenna were soon replaced by a local antenna and a receiver in the transmitter building. On Jan. 4 and again on Jan. 5, 1940, an hour's
program starting at 6 pm was originated in Yonkers and sent over the net for the benefit of regular listeners. Mount Washington received the program and relayed it by $a-m$ to the communications center in Boston, where it was put on a telephone line and returned to Yonkers.

On Feb. 21, the Paxton program was successfully rebroadcast during a 15 -minute test by the a-m stations WNAC Boston and WEAN Providence. With this success, a new chain was composed for a halfhour broadcast on the evening of Feb. 29, using W2XAG Yonkers (key station), W2XMN Alpine, W1XPW Meriden, W1XOJ Paxton and W1XER Mount Washington,all $\mathrm{f}-\mathrm{m}$ stations. In addition, the Alpine broadcast was picked up by a-m station WICC Bridgeport. Stations WEAN Providence, and WAAB Boston picked up the Paxton broadcast. Listeners in Boston to the Mount Washington f-m broadcast felt that it was fully as good as that from Paxton.

Further relay experiments conducted during 1940 were complicated by the continual violent evolution of the stations. At Paxton alone from May 1939 until May 1941 transmitter power was raised from 2 to 50 kilowatts and three different types of turnstile antennas were tried. One imposing 400 -foot tower toppled over in an ice- and wind-storm early on the morning of Jan. 15, 1940. Every change in transmitting power or antenna required at least a slight change in the receiving setup.

Yet despite these difficulties it was possible to relay a live halfhour dinner music program from Meriden through the Yankee f-m network six days a week from January until December, 1941, as well as a number of other irregularly scheduled chain programs. On July 17, 1941, a special program was broadcast from Paxton for the dedication of W47A Albany, and thereafter for some time the bulk of the Albany station's program material consisted of rebroadcasts from the Yankee Network. On Nov. 30 the same year, the W71NY dedicatory program was heard over the network from New York after which live programs from Boston and

Hartford were relayed in the reverse direction through the Meriden station.

For three months, the Paxton programs were picked up at Trumbull, Conn., relayed on about 150 and later 200 megacycles, picked up at Alpine with a corner-reflector antenna on the middle arm of the famous tower, and fed via a coaxial line to the receiver that programmed the Alpine transmitter, providing a two-way circuit between Alpine and Paxton.

Some different relay techniques were also employed experimentally. Instead of receiving a signal, converting it to audio and using it to modulate another transmitter, the incoming carrier signal was caused to beat with a local oscillator so the difference frequency that was further amplified occurred at the assigned carrier frequency of the relay station. This system was used for some time with great success at Meriden in relaying to the north.

Beginning March 3, 1942, f-m chain broadcasting came of age when General Electric paid out cash money to sponsor the Frazier Hunt news program Tuesday, Thursday and Saturday evenings until May 29, 1943. The American Network chain included W53PH (now WFILFM) Philadelphia which picked up Alpine direct, W71NY (now WBAM) New York, W2XMN Alpine, W65H (now WDRC-FM) Meriden, W43B (Now WGTR) Paxton, W47A (now WBCA Schenectady) Albany and W39B (now WMNE) Mount Washington. The broadcasts went off with little technical difficulty, but unfortunately the program was transcribed-a fact only too apparent with the high-fidelity equipment used!

Postwar F-M

For a number of real and sufficient reasons, f-m broadcasting was unable to capitalize fully upon its rapid early gains and plateau of accomplishment after the cessation of hostilities in 1945. Because of the fear on the part of FCC that occasional long-range anomalous propagation would interfere with service areas far removed, new frequency assignments were made transferring the $\mathrm{f}-\mathrm{m}$ broadcast band from 40-50 megacycles to 88-108 mega-

Radio-relay receiving panel used at FMA convention demonstration. Two vu meters for monitoring, high and low-band tunable receiver, jackfield, amplifier, and two fixedtune receivers can be switched at will or automatically by time clocks below
cycles. Transmitters with any appreciable power were rot immediately available for the new band.

With understandable if not commendable hesitancy, many manufacturers of receivers put off the evil day when a choice would have to be made whether to manufacture highband or high-and-low-band f-m receivers, or no f-m receivers at all. F-m program material generally deteriorated or broadcasting time was cut because of an edict from the head of the American Federation of Musicians banning duplication of a-m programs on f-m stations unless suitable quid pro quo was forthcoming from the broadcasters.

Once again, under the aegis of the pioneers the Gordian knot has been
badly frayed. The Continental Netwo:k with WASH-FM Washington as key station. has been picking up since March 26, 1947 public-service concerts of Army and Army Air Force bands. relaying them by wire line and the rebroadcasting technique to an ever increasing network of $\mathrm{f}-\mathrm{m}$ stations. Wire lines, necessary until the participating stations increase power or decrease distance between relays, constitute a bottleneck so far as fidelity is concerned. It has not yet been possible to obtain intercity telephone facilities that pass higher than 8,000 cycles a second so that with the exception of the key station, and despite the extensive radio links, (see map) the listeners lose a certain amount of the program's realism. The noise-free aspect is, however, a boon contributing a greater share to enjoyment than can be understood without listening.

It is probably not without significance that most of the relay circuits emanate from the older stations that are licensed to broadcast on both the low and the high bands. It is likely that consistent reception over distances possible with the low band may require greater power or more intermediates when the highband frequencies are used.

At the moment of this writing Continental has grown to 28 stations, using 573 miles of wire line and over 1,400 miles of radio relays, and is still expanding rapidly. Starting Sept. 12, 1947, commercial operation of the network was begun with a half-hour program from WHFM Rochester sponsored by Stromberg-Carlson following a half-hour sustaining show. The schedule was varied on the first evening to include a pickup from the Frequency Modulation Association convention in New York where previously the delegrates had heard Alpine broadcasts sent from Boston via three relays and one from Allentown. Pa. in two hops.

More than 90 applications have come in to Everett L. Dillard of WASH-FM, president of the Continental Network, requesting affiliation, one from the owner of a potential chain to cover California. There are inquiries from Florida and the Gulf states. The most immediate interest is in a plan that calls for a tel-
ephone line to Chicago with satellite relay stations branching from the wire line to the north and south.

Practical technical limitations to the length of a relay chain without wires is unknown, so that future plans for expansion will depend on turther experience. The heterodyne frequency-changing method used successfully at the Meriden station is thought to be the most satisfactory solution, and the technique is being further developed experimentally.

The North Carolina State Hookup

The mountainous region in the Carolinas has proved, like New England, a fertile ground for f-m hoodeasting. A-m signals are so rapidly attenuated that it is not cconomically feasible to give large segments of territory with small populations adequate or enjoyable service. F-m, on the other hand, is much less adversely affected by the terrain, particularly since high land is available for the siting of stations.

Plans are being formulated by the North Carolina FMI Association for a statewide, one-time hookup of f -m stations that are on the air in time to participate in a broadcast to take place during National Radio Week, Oct. 26 through Nov. 2. A map included here shows the ten stations most likely to take part as heary dots and the six remaining licensees as open circles. Relay paths expected to be used are indicated by solid lines. These circuits will probably be used in both directions as each station takes over as key station of the net, puts on its best program and then retires to a relay function as the next station originates rather than relays a program. The stations shown as squares are added to this map for convenience, but will not take part in the Radio Week hookup. The dotted lines show circuits that have been already tried experimentally or seem feasible for obvious reasons, indicating possible future potentialities for relaying.

Missouri-Kansas Neł

Aside from the many inevitable studio-transmitter links connecting remote transmitters with their program souce, there are other station
networks now in operation or in the formulative stage. Ambitious plans for a Missouri-Kansas network have been set into motion by the establishment of a receiving station atop the Kansan Hotel in Topeka, Kansas for reception of KOZY, Kansas City, Mo. One halfhour show each Sunday is by this means picked up and rebroadcast by WIBW-FM. As soon as station facilities at KOZY, now undergoing alteration, shall have reached a stable state more extensive hookups, possibly on a commercial basis, will be tried.

Owners of Radio Diablo, operating a $50-\mathrm{kw}$ high-band transmitter, are considering establishment of a relay network that will tie together Los Angeles and Mt. Diablo, Calif. The latter station will then program transmitters in outlying communities roughly representing a hub to the spokes formed by the relay circuits.

Although f-m relays can do much to aid the growth of a new broadcasting service and the inexpensive dissemination of good programs, the time may eventually come when the $\mathrm{f}-\mathrm{m}$ broadcaster will find it necessary to re-evaluate his position. A few moments, or even an hour of lost time from a sustaining program at this stage of the game can be tolerated, although it is undesirable. When more and more commercial programs are handled, the broadcaster may find that the additional expense of wire lines is still less than the maintenance of standby equipment at each station in a long chain. While it is still too early to predict the exact shape of the combined wire and relay facilities to be used by f-m broadcasters, it seems safe to assume that nearly as many miles of wire, coaxial, or microwave circuits will be used in the future as for the present major a-m networks.

Acknowledgments

Thanks are due a large number of people for information made available. The author feels particularly indebted to E. H. Armstrong, E. L. Dillard, F. M. Doolittle, F. A. Gunther, P. Hedrick, B. Ludy, and I. B. Robinson as well as to other members of their organizations for friendly assistance. -A. A. McK.

Temperature Control for Octane Tests

> Transformless vacuum-tube relay circuit controls temperature of gas-air mixture fed into knock-testing engine by switching electric heater from low heat to high heat as often as $\mathbf{2 5 0}$ times per minute. In industrial service, the 117N7GT tubes used are highly reliable

By PIERRE J. MALRAISON

1/ount lomon. \.)

CONTROL of the temperature of the gasoline-air mixture fed into a knock-testing engine presented a series of interesting technical problems. According to ASTM specifications, the mixture temperature must be maintained at
$300 \mathrm{~F} \pm 2 \mathrm{~F}$ as indicated by mercury thermometer. The equipment described here has been approved as optional by the ASTM.

The fuel intake system of the engine is diagrammed in Fig. 1. Air is supplied to the carburetor where

Knock-testing engine in Ethyl Corporation plant, using Malraison Mixture Thermostat for maintaining temperature of gas-air input mixture within 2 degrees of 300 F as indicated by mercury thermometer. Vacuum-tube relay housing is mounted behind control panel at eye level
it is mixed with atomized gasoline. The gasoline and air mixture passes through a heater housing containing a two-blade $1-\mathrm{kw}$ immersiontype heater. It then passes around the bulb of the indicating thermometer and into the engine.
The operating temperature of the mixture is well above its flash point and only slightly below the fire point, so that the most minute spark in this portion of the system will cause a partial or total combustion of the mixture before intake, destroying the validity of the test. The lag of the heating system is very large compared to that of a system specifically designed for automatic control, but could not be changed without exhaustive test work to prove that the changes would not affect the existing data.

Bimetallic Thermostat

Tests showed that the most satisfactory sensing element for control was a bimetallic strip mounted in the intake stream of the engine as near the indicating thermometer as practicable, with contacts arranged to close with rising temperature. Since the volume of the heater housing is considerably less than the volume of the cylinder, the mixture travels through the housing at a high velocity during the intake stroke of each cycle.

An oscillation of the bimetal due to mechanical action of the mixture stream on the bimetal and to cooling of the strip as the tail of the

FIG. I-Block diagram of knock-testing engine used for determination of octane ratings of various gasolines in refineries and petroleum-testing laboratories, showing location of bimetal assembly used with vacuum tube for temperature control

FIG. 2-Circuit of vacuum-tube relay having unique advantages for industrial control applications. Plug-in feature permits carrying standby unit in plant for quick replacement of entire amplifier unit in case of tube failure or other trouble
charge passed through was noted. Although no measurements of these rapid changes in temperature have been achieved, it is obvious from the characteristics of the system that they are present. The bimetal contacts are connected into the grid circuit as shown in Fig. 2.

Contact Problems

In initial tests a conventional vacuum-tube relay was used, with raw a-c fed to the plate and with a capacitor across the relay coil to eliminate chatter.

A spark (believed due to the discharge of the grid-cathode interelectrode capacitance) was observed at the contacts of the bimetallic strip. The current at this point is of the order of microamperes and gives no spark with the tube disconnected. A 0.5 -megohm resistor in series with the grid of the tube successfully eliminated the spark.

The lag of the heating system was so great that it was impossible to achieve control to better than ± 15 degrees F with complete onoff operation. A variable autotransformer was inserted to limit the high-heat current, and a series resistor shunted by the Micro Switch in the vacuum-tube relay was installed to limit the low-heat current. In order to provide temperature control to ± 1 degree F it was found necessary to adjust the differential
between high heat and low heat to such a small value that manual control was required to compensate for any but the smallest changes in temperature-influencing factors. The capacitance across the relay coil was then reduced so that the relay would respond to 10 contacts per second and a passable degree of automatic control was achieved. Under these conditions the switch life varied from 4 hours to 1,000 hours, depending on the installation.

Since a relay which gave a thousand hours service in one laboratory gave 4 hours service in another (where an isolation transformer was required between the line and the relay), it was guessed that some sort of synchronization occurred between the power line frequencies and the operation of the relay. This guess was confirmed by inspection of the switch contact points, which in every case had the characteristic appearance of having carried direct current. In other words, the contacts were always breaking on the same portion of the a-c cycle.

A rectifier and filter capacitor were inserted to provide d-c plate current for the tube, and the capacitor across the relay was removed from the circuit. Inspection of the switch contacts after 500 hours of operation showed a satin finish characteristic of a-c service. From the data obtained, an im-
proved Micro Switch was developed for this relay and was used with a $0.5-\mu \mathrm{f}$ capacitor shunting it to minimize oxidation of the contacts.

When the capacitor across the relay coil was eliminated, the time constant of the relay circuit was markedly reduced, permitting response to more than 60 contacts per second in the grid circuit. For a given differential between high heat and low heat, larger and more rapid variations in temperature influencing factors could now be compensated for automatically.

Relay Circuit

A universal a-c/d-c transformerless circuit is used in the relay because of the greatly varying power line voltages and frequencies encountered in industrial plants.
Tubes of the 117 -volt series are used because they have low operating current requirements and thus dissipate less heat than other types. The power output type of tube is used because it has been found to give long, satisfactory operation when lightly loaded, as it is in this application.

The 10 -megohm resistor connected between grid and plate assures that the grid will not block when the grid circuit is open. The 200 -ohm resistor was inserted in the tube heater lead to overcome the effects of high line voltage encount-

Vacuum-tube relay unit. Phantom view of cover was obtained by taking two exposures on same negative, one with and one without cover
ered in many industrial plants. The rectifier and electrolytic capacitor provide sufficient filtering to eliminate synchronization with power line frequencies.

The circuit is arranged so that plate current flows with the grid circuit open. Adjustment of the various clearances, spring tensions, and the cathode circuit potentiometer are made so that when the Micro Switch is used as an interrupter in buzzer fashion and connected into the grid circuit, the relay will operate at a minimum rate of 20 times a second at 95 volts a-c input and 30 times a second at normal line voltage of 117 volts a-c. Acceptance tests require that it shall continue to function at 140 volts input. These speeds are adequate for the control of temperature on engines in the ASTM motor, research, and aviation knock-testing methods.

In order to provide continuous service from an installation it is customary to change Micro Switches after approximately 2,000 hours of service. On breakdown tests, switches have operated in excess of 7,000 hours. While these times of operation do not appear impressive, it is to be noted that the contacts can operate as often as once per intake stroke or 450 times per minute for the $900-\mathrm{rpm}$ ASTM motor method. By actual count,
contact closure occurred an average of 250 times per minute, which means that 2,000 hours is equivalent to $30,000,000$ contact closures.

Since the installation of the switch and adjustment of the relay to these operating conditions are fairly critical, the relay has been assembled on a plug-in mount so that the changeover can be facilitated and factory service of the units easily provided. Parts requiring adjustment for individual installations, such as the 0.5 -megohm resistor and a 7 -ohm adjustable series resistor, are installed in a junction box having a receptacle for the plug-in amplifier unit. The series resistor is adjusted to give a 2 -ampere reduction in electric heater current on a 110 -volt line. The line voltage is adjusted so that the average of the high and low heater currents is approximately equal to 7.5 amperes on 110 -volt lines. This is accomplished by means of the standard manual temperature-control rheostat supplied with each engine for the electric heater.

Operation of Relay

When the engine is started, the Micro Switch is open and current flows through the series resistor to the electric heater. As soon as the 117 N 7 tube has warmed up to the point where plate current is drawn, the relay pulls in to close the Micro Switch, permitting high-heat current to flow directly to the heating element. As the temperature of the intake mixture rises, the mean position of the bimetallic strip moves nearer the adjustable contact. As the temperature approaches the desired point, the bimetallic strip makes instantaneous contact at the crest of its upward movement, grounding the grid of the tube and cutting plate current nearly to zero. The relay drops out and the Micro Switch opens, thereby removing the
short from across the series resistor and reducing the current to low-heat value.

As soon as the momentary contact is broken, the plate current goes up and initial high-heat conditions are restored. As temperature continues to rise, the time of contact closure on the bimetal increases until an equilibrium is reached at which the correct average heat input is supplied.
Variations in line voltage, ambient temperature, and latent heat of fuel are compensated for automatically by changes in the time of contact closure. It is notable that the approach to equilibrium is asymptotic and that the equilibrium is mobile. Under these conditions the system provides a degree of anticipation of heat requirement which permits stability within the desired limits even with rapidly varying conditions. For instance, when changing from fuel to fuel by means of the carburetor selector valve, with benzene having a latent heat of about 75 calories per gram in one bowl and ethyl alcohol having a latent heat of about 200 calories per gram in another, sensible equilibrium was reached within one minute.

Except in one instance when the fuel could not be vaporized in the heater housing and both the bimetal and thermometer bulb became wet with fuel and therefore could not be depended upon, it has always been possible to maintain thermometer readings constant within ± 2 degrees F. Under average conditions, control to ± 0.5 degrees F is readily achieved and certain operators have reported even closer control.

The author wishes to acknowledge the cooperation given him by J. C. Pope and E. N. Garnsey of the Ethyl Corporation in designing and testing the initial equipment.

OTHER INDUSTRIAL APPLICATIONS

Similar relay units have been used to control the temperature of water baths to within 0.0001 degree C and air baths to within 0.001 degree C

With suitable hair hygrometers or humidity-sensitive resistors, the unit is readily adapted for control of humidity

Use of photoelectric input provides a rugged counter, alarm circuit, or safety circuit for industrial use

Interconnecting Facilities for Television Broadcasting

Video facilities now available, or to be completed by 1950 , include a 12,000 -mile nationwide system using coaxial cable, local networks employing shielded-pair telephone cables, and microwave radio circuits. Provisions are made for direct connection of broadcasters' equipment to shielded-pair systems

INTERCONNECTING facilities for television broadcasting stations fall into two general classifications: short haul circuits, which include those connecting studio to transmitter, remote pick-up point to studio, and studio to point of interconnection with intercity networks; and long haul circuits which interconnect cities to form networks.
In both short haul and long haul circuits, the principal technical characteristics affecting the transmission of television signals are (1) frequency bandwidth, (2) echoes, and transmission and phase
deviations, and (3) noise, modulation and crosstalk.

The bandwidth of a given television transmission circuit influences the definition obtainable with a particular rate and method of scanning. Reflections from objects in a radio path and from impedance irregularities in wire plant, which cause deviations in the trans-mission-frequency and phase-frequency characteristics of the circuit, produce ghosts in television pictures. Transmission and phase deviations resulting from causes other than reflections, such

FIG. 1,-Transmission loss-frequency characteristics of reqular telephone cable pairs as compared with the characteristic of a polyethylene-insulated shielded pair
as imperfect equalization, give the same sort of picture ghosts. Reflections may be greater in one part of the band than in another. Thus, a high-frequency echo might produce a complete ghost of a thin vertical line, such as a flagpole, while the ghost of a wider object would show only at its edge. Very short delay echoes produce picture ghosts so slightly displaced that they merely blur the edges of sharp discontinuities in the picture. Long delay echoes. on the other hand, cause discrete images displaced from the principal image. These effects are minimized by introducing transmission and delay equalizers at amplifier points.
Systematic noise resulting from harmonics of the power frequency produces objectionable patterns on the picture; resistance noise produces a general fuzziness and boiling effect. While raising the level of the signal can reduce the effects of the noise, modulation in the amplifiers tends to increase. This modulation usually produces spurious patterns appearing as sharp demarcations in brightness over the televised scene. Crosstalk from another television system produces a type of interference which shimmers, or crosstalk can result in the superposition of a weak copy of the picture from the interfering system.

Shielded-pair video cable is used for local television facilities; coaxial cable for intercity facilities. Use of polyethylene insulation in construction of both types minimizes transmission losses

By W. E. BLOEGKER
American Telephone and Telegraph Ncio York, V. Y.

Special attention in the design, operation and layout of facilities is required to provide adequate bandwidth for good picture definition, to eliminate ghosts and to minimize noise and crosstalk.

Short Haul Circuits

Short haul television facilities are usually equalized to accommodate a bandwidth of about 4 mc . Because of the relatively short lengths of local television circuits, carrier methods are not economical when wire circuits are used because of the cost of the terminal equipment. Transmission, therefore, is at video frequency, that is, in a band extending from the very low frequencies up to about 4 mc . The associated sound channels are furnished separately over regular program transmission circuits.

In large city areas, regular telephone cable pairs literally appear everywhere and consequently are attractive as a vehicle for television transmission. The transmission losses of such facilities at 4 mc , however, are high. ranging from about 94 db per mile, for the smallest gauge cable conductors in general use, to 36 db per mile for larger gauge conductors frequently found along main trunk routes. These attenuation figures compare with values of 7 db to $2 \frac{1}{2} \mathrm{db}$ per mile at 8 kc for corresponding types of

FIG. 2-Fronl and rear views of video amplifiers used in short havil circuits

FIG. 3-Unbalanced-input transmitting amplifiers and unbalanced-output receiving amplifiers readily permit interconnection of broadcasters' equipment

FIG. 4-A typical short haul circuit connects studio, telephone central office, and remote pick-up points
plant used for sound program transmission. Figure 1 shows representative attenuation characteristics of the usual types of exchange telephone cables.

The use of exchange cable pairs for television transmission requires special preparation such as the removal of all bridged taps and all cable stubs over 4 feet in length, the removal of any loading present, and in some cases special measures to reduce noise. Because of the high losses at the upper video frequencies, it is frequently desirable, in order to minimize the number of intermediate amplifiers required, to make special splices between cables to utilize available larger gauge cable conductors and obtain the most favorable routing.

The crosstalk coupling between cable pairs at the higher video frequencies is high, limiting the number of television channels which can be carried in a single
cable sheath, even when they are operated at comparable levels in the same direction. Special coordination measures, usually involving separate cable sheaths, are required for oppositely directed television circuits along a route. This high crosstalk coupling also introduces another interesting problem in the control of amplifier gain, in that high level signals from the output of the amplifier, by cross induction into other pairs of the cable, are reintroduced into the pair connected to the input of the amplifier.

Shielded-Pair Video Cables

In order to overcome the limitations of regular telephone pairs and to provide greater flexibility in the use of the plant, shielded low-loss facilities, designed specially for video transmission, are now being introduced. Such special conductors can be provided most economically when they are included in full
size cables along with other pairs provided to meet normal telephone requirements. To do this requires long range planning as telephone cables are generally designed to meet prospective requirements for a number of years.

The new shielded video facility now being installed consists of a balanced 16 -gauge pair with polyethylene insulation. The transmission loss of this facility, also shown in Fig. 1, is about 18 db per mile at 4 mc . While initially circuits of this type will be equalized to 4 mc , the facility itself will not be a limitation in the transmission of much wider bands if the demand for such circuits should later materialize.

The impedance of the polyethylene insulated pair is such that it can be spliced directly to regular telephone cable pairs. It is thus possible to envision the ultimate development of a backbone television network of this type of facility reaching the most important television points in an area, to which regular telephone cable pairs can be connected to reach occasional service points. Fundamental studies looking to the orderly development of such networks are now under way in many cities.

One might ask why the use of coaxial structures is not contemplated in local areas. This type of structure is unbalanced and since local television transmission extends down to very low frequencies where the shielding is not effective, coaxial cable is susceptible to lowfrequency noise induction and cross induction between adjacent coaxials within the same cable. In the intercity system, carrier methods put the line transmission at frequencies where the shielding can eliminate these effects. There are a few cases at present where coaxial cables are being employed for studio-transmitter circuits and are giving satisfactory service, but these circuits are short and well within the lengths at which it is possible to correct these effects.

Amplifiers and Equalizers

The amplifiers and equalizers now being used can accommodate line sections averaging as high as 60 db loss at 4 mc . Thus, depending on
the gauge of conductors available, amplifier spacings on regular telephone cable pairs will range from about 0.6 mile to about 1.5 miles for the types of cables usually encountered. In the case of the polyethy-lene-insulated video pair, amplifier spacings of about 3.5 miles are practicable. Because central office spacings sometimes exceed these lengths, it is necessary in some cases to use rented quarters as amplifier locations. This involves a number of special considerations such as finding suitable space near the desired location, ready access at all hours, power supply, and the like. The future design of video line amplifiers contemplates supplying power over separate cable pairs, which should simplify installations in rented quarters and make possible the installation of amplifiers in manholes.

The equalization of the line facility, including amplifiers and terminating equipment, involves the adjustment of the attenuation and phase characteristics over the desired transmission band. In wideband transmission systems of the type being discussed, it is practicable to design attenuation equalizers which also automatically correct for the phase deviations except in the regions near the edges of the band. Since the edges of the band are determined principally by the characteristics of the amplifiers and associated attenuation equalizers, the phase deviation is substantially independent of the length of line section between amplifiers. For this reason, a relatively simple fixed network in each amplifier (except the transmitting amplifier) provides the required phase correction and the field equalization job becomes one of adjusting only the attenuation over the desired band.

The line attenuation equalization is in the form of fixed units to provide basic equalization for various lengths of circuit. These are supplemented by two variable equalizers, one which corrects for slope by adjusting the loss at 4 mc with reference to the loss at 10 kc , and the other a bulge adjustment for varying the loss at 1 mc without substantial effect on the loss at 10 kc or 4 mc . A portion of the
basic line equalization is provided at the output of the amplifier feeding the line section, the remainder being included in the amplifier terminating the line section. This pre-equalization improves the sig-nal-to-noise ratio at higher video frequencies.

In order further to minimize the effects of noise, particularly on regular telephone cable pairs, predistortion is employed at the transmitting point which causes the 4 mc level to be 20 db higher than the 10 -kc level. A complementary restoring network is used at the receiving end of the circuit.

Connection to Studio Equipment

Broadcasters' pick-up and studio equipments generally operate on an unbalanced basis. The amplifiers used to connect such equipment with the balanced telephone lines are shown in Fig. 2. Block diagrams of these amplifiers are shown in Fig. 3. Intermediate line amplifiers have both input and output balanced. Present plans contemplate that any switching or patching done in Telephone Company offices will be on a balanced circuit basis. A typical wire line video circuit, using regular telephone cable pairs and the amplifiers described, is shown in Fig. 4. Two frequency characteristics of such video circuits are shown in Fig. 5.

Microwave Radio

Radio facilities for short haul television circuits appear to have advantages for the occasional pickup of a special news or sports event, and for unusual geographical situations, such as that between several
studios in Hollywood and their proposed associated transmitters on Mount Wilson. In this latter case, wire video circuits would require a long and circuitous route with many amplifiers, whereas a single-link direct radio path can be obtained. Radio circuits at microwave frequencies need line-of-sight transmission paths, and in addition fading effects must be taken into account by allowing margins over the requirements for normal free space transmission conditions. Through the use of highly directive antennas, difficulties with interference and ghosts due to reflections can be minimized and low power can be used. The requirement for line-of-sight paths has in some cases resulted in a combination wire and radio circuit, the wire video facilities being employed to reach favorable radio transmitting or receiving sites.

Long Haul Coaxial Cable Systems

The search for increased efficiency in the use of conductors for multiplex telephony has resulted in the development of the coaxial cable system which is suitable for television transmission as well. The present standard coaxial unit, which has been used for installations since 1946, is 0.375 inches in diameter as compared to 0.27 inches for the earlier installations. The insulating dises supporting the central conductor are now of polyethylene rather than hard rubber previously used. The construction of coaxials and their arrangement in a typical cable are shown in the photograph. The coaxial itself does not limit the frequency range which

FIG. 5-Frequency characteristics for two video circuits of the type shown in Fig. 3
can be transmitted. This depends upon the bandwidth handled by the amplifiers and equalizers and the intervals at which they are placed.

The general layout of coaxial cable system is shown in Fig. 6. The present repeaters provide about 50 db gain at 3 mc and have a gain-frequency characteristic which very closely matches the cable loss characteristic. On the new 0.375inch coaxials, these repeaters are spaced at intervals of about 8 miles whereas a spacing of about $5 \frac{1}{2}$ miles is used on the 0.27 -inch coaxials.

Repeater stations are of two varieties, auxiliary and main. The majority of the stations are of the auxiliary type, the main stations being located at intervals of 40 to 165 miles. Most of these auxiliary repeaters are housed in small closed huts, requiring no heat or power connections. The auxiliary repeaters operate from 60 -cycle a-c power furnished over the central conductors of the coaxial from the main repeater stations.

For telephone use, terminals are provided for stacking 480 circuits in the 68 -kc to $2,044-\mathrm{kc}$ frequency space. It is proposed later on to operate additional short haul telephone circuits in the 2 to $3-\mathrm{mc}$ band. For television transmission, the video signal, by a process of double modulation, is transmitted as an upper side band and a vestigial lower side band on a carrier of about 311 kc. The frequency space below about 200 kc is not used for television purposes because of the difficulties of equalizing this range and the less effective shielding provided by the coaxial structure at these frequencies. The associated sound channel is transmitted on a singlesideband basis between 76 and 88 kc. Transmission and phase characteristics of the 240 -mile New York-Washington television circuit are shown in Fig. 7.
It is recognized that this television system provides a video band of about 2.8 mc instead of 4 mc provided for in the television channel assignment. Experience with this system has demonstrated that very acceptable pictures are being transmitted. Development work is continuing, however, on repeater equipment which will permit utiliz-
ing the coaxial structure to higher frequencies. One system considered employs closer repeater spacings than the present and would provide a usable frequency band of about 7 mc . This would permit the simultaneous transmission of about 500 telephone conversations and two oppositely directed 4-mc television programs on a pair of coaxials.

Service Protection Features

Many features have been included in the system to insure stability and continuity of service. Variations in transmission resulting from temperature and other changes are compensated automatically by regulators under control of four pilot frequencies- $64 \mathrm{kc}, 556 \mathrm{kc}, 2064$ kc and 3096 ke sent continuously from the main repeater stations over the coaxial line. The cables are generally buried deep in the earth or put in conduit, are protected against corrosion, lightning or mechanical damage, and are maintained under gas pressure with arrangements to detect any leak in the outer sheath so that repairs can be made before failures occur. Each stage of amplification in the repeaters has parallel tubes, and one tube in any stage can fail to function without interrupting service. Pilot alarms at each auxiliary repeater warn the nearest attended main station of excessive pilot deviations. The power supply is arranged so that if commercial power fails, a-c will automatically be supplied, through rectifier inverters or motor generators, from large storage batteries. Gas engines are available if the commercial power should be off for some time. Finally, a spare line is provided in each direction through each switching section, which may be up to 200 miles in length. Whenever a given coaxial
line fails or its pilot gets out of limits, the spare line is automatically switched into the circuit so quickly that no interruption of any telephone conversation or television program occurs, and an alarm is given so that the trouble may be cleared.

Mierowave Radio Relay

Wire communication is characterized by certain desirable features which have heretofore been lacking to a large extent in radio. For example, an unlimited number of channels can be established, the energy can be precisely directed, circuits can be made very stable, and noise and interference can be controlled. With the development of techniques permitting the use of frequencies of thousands of megacycles, radio is beginning to approach wire lines in these respects, permitting its extension over long distances by the use of repeaters, a method which has long been used for wire lines.

Experiments are now under way to determine the practicability of radio relay systems from the standpoints of cost, performance, and reliability. As a part of the Bell System experiments, a full-scale radio relay system is being established between New York and Boston. Preliminary indications are that satisfactory television operation could be provided by this means.

Seven intermediate radio repeater points will be employed, spaced at intervals of 10 to 35 miles, with an average spacing of 27 miles for a total circuit length of about 220 miles. These repeaters are located on high points of ground so that a direct line-of-sight path is available between adjacent repeaters.

In New York, the terminal is in

FIG. 6-An auxiliary parallel circuit in each direction is provided for emergency use in this layout of a typical coaxial system

FIG. 7-Transmission and phase characteristics of the New York-Washington coaxial television circuit. Video bandwidth is limited to about 2.8 mc by the characteristics of the repeaters used
the long-distance building. In Boston, the radio terminal is about 1 mile from the main long-distance building with which it will be connected by short haul video facilities of the type discussed earlier.

The system will employ frequencies in the vicinity of $4,000 \mathrm{mc}$. A total of four channels will be established, two in each direction of transmission. Tests will be made on the transmission of large blocks of telephone circuits and of television. It is probable that a usable frequency band of at least 4 mc can be obtained for television transmission.

The antennas will be horns with 10 -foot square apertures equipped with a metal lens to focus the radio waves. It is expected that a satisfactory signal-to-noise ratio can be obtained for the number of sections involved in this experiment using transmitting power in the order of 1 watt.

Recent Use of Television Circuits

A very considerable use has already been made of the television transmission facilities now available, particularly since the television broadcasting stations have been operating on a regularly scheduled basis. During the past year, some thirty short haul television circuits were established for one of more occasions of use, employing wire, experimental microwave radio or both in combination. The longest wire circuit-Yankee Stadium to Radio City-was about 9 miles in length and required the use of seven amplifiers. The longest
radio circuit was one of two links between Michie Stadium at West Point and Radio City in New York, a distance of about 47 miles. In addition to those in New York, services were also established in Philadelphia, Baltimore, Washington, Pittsburgh, St. Louis and Los Angeles. Some of these channels have been continuously in service for several years.

A television circuit in coaxial cable arranged to transmit from Washington to New York was first used in connection with the Lincoln's Birthday ceremony on February 12, 1946. CBS, DuMont and NBC cooperated in arranging for the program which started with an introduction from the NBC studios in New York, after which a switch was made to Washington where pick-ups were successively made from the DuMont studio in the Harrington Hotel, the steps of the Capitol, and ceremonies at the Lincoln Memorial. By April 15, 1946, the New York-Washington coaxial cable was equipped for television transmission in both directions and was used by DuMont in connection with the opening of new studios in New York. Shortly afterwards, the twc circuits between New York and Washington went into active use on practically a daily basis for the several broadcasters.

Further plans include the provision of shielded polyethylene-insulated video pairs in connection with cable construction programs in city areas to meet requirements for short haul television circuits quickly and economically. These plans are
being carried out to the extent practicable with the scarce materials which can be allotted to this type of plant.

Great progress has been made in the construction of a nationwide coaxial cable network since the close of the war. As of January 1, 1947, about 4,000 route miles of coaxial cable had been placed in the ground and construction is continuing. Cables now in place or under construction and the extensions planned for the next three or four years total about 12,000 miles. It is expected that by early 1948 a southern coaxial cable route will be ready for telephone service to points as far west as Los Angeles, and that by the end of 1948 a central coaxial route will extend from New York to Chicago and St. Louis. Television service, if required, can probably be made available on most coaxial routes some time after the opening of telephone service, the date depending to some extent upon the demand.

In addition to the New YorkBoston radio relay system, there is under construction a radio relay system between New York and Philadelphia, utilizing four links in tandem of a simplified type of equipment. Plans have also been projected for establishing a New YorkChicago radio relay system for multichannel telephone and television transmission. This is expected to be available by about 1950 .

Future Prospects

The trend to wider and wider frequency bands, no doubt, will continue. These wider bands will be needed to handle the ever increasing demand for telephone communications and, perhaps, for greater definition or color television. Wider band circuits such as the 7 -mc coaxial system discussed earlier are already under development by the Bell System. Still further in the future is the possibility of using long wave guides which are merely hollow tubes without central conductors and which provide transmission paths for enormously wider bands sealed away from interference of all sorts. It is quite clear that the future holds promise for advances far beyond the present status.

Electronic Computer

By JOHN W. LUDWIG
Vice-President
Flectronic Control Corporation Brooklyn, New York

THE OUTSTANDING industrial feature of electronic controls is their ability to "think" much as a trained operator thinks, that is, to anticipate changes in the process under control from experience and introduce corrections in time to prevent the state of the process from leaving the control point by a large amount.

Computing equipment with rate and acceleration elements has this anticipatory feature. It sees a rate of accumulation of error, or even its derivative, and begins corrective action long before the process has left the control point by an appreciable amount.

Large mathematical computers are not suitable either from a cost or equipment standpoint, for the great and ever increasing number of industrial control problems. Smaller equipment which, to a limited extent, can perform their functions are, on the other hand, in

Each 24 -tube control amplifier that feeds a Diehl motor contains eight 6 H 6 tubes used to sharpen and clean the pulse caused by a registration mark to a width of less than 20 microseconds. This is necessary to distinguish the pulse caused by a registration mark from that caused by irregular reflections from the web of metal foil
demand, particularly at present when increased productivity with higher quality from existing plants is a primary engineering problem.

Ideal Industrial Control

The following is a good set of general specifications for industrial

control equipment: It must be infinitely superior in function to manual control on a cost or quality of product basis. It must give long periods of service with little attention and should not require special, on-the-job, maintenance personnel. It must be rugged, so as to stand general factory use and in a large number of instances it must be explosion or oil proof. It must be fairly high power (for control) equ'ment, say $\frac{1}{3}$ horsepower to 50 horsepower. It must not set up unexpected stresses in the machines to which attached, therefore accelerations must be accurately controlled, and it must function under the vibration conditions of the equipment it is controlling. Preferably, it should be built to fit the job, of standard components, so as to make service and replacement easy.

It is the writer's opinion after six years experience in several fields

FIG 1.-Schematic views of mechanical arrangement of printing couples used in multicolor web. For register control, correction is applied to the differential sys. tems at points marked X

for Printing Control

Speed of a multicolor web printing press is tripled by application of an electronichydraulic system that holds running register accurate from zero to 0.001 inch. Register marks actuate a phototube whose output is compared with a sample of a sine wave
taken at the same instant

Complete setup of electronic and hydraulic units that connect to the printing press. Five 24-tube chassis are being immersed in oil inside the long steel box in which they normally operate
with industrial equipment that nearly all these specifications can, in general, best be met with a combination electronic-hydraulic system. For example, a hydraulic motor, which is a device which converts oil pressure and flow into continuous rotary motion, can be obtained whic! can deliver 10 horsepower and is 4 inches in diameter and 8 inches long with a moment of inertia of the rotating parts of only 13 lb-in. ${ }^{2}$ Hydraulic preamplifier
valves can be obtained which require negligible torque and only 0.080 -inch movement to control the hydraulic motor from zero to maximum horsepower in either direction.

Components such as these furnish their own lubrication, are explosion proof, give long periods of service, and are not adversely affected by the vibration asually encountered. Their use enables the use of lowpower electronic apparatus of about

25 watts which can be made very reliable.

By combining electronic and hydraulic means it is possible to use low-power electronic equipment (usually without gas tubes in the control circuits) whose components are well standardized, long lived, reliable, easily obtained and relatively inexpensive. Hydraulic final actuating elements offer the advantages of high power with low inertia and small size, rapid response, and intrinsic explosion and oil proofing.

Delays which occur in the hydraulic system can be largely compensated in the electronic equipment. The electronic stages are flexible in that their performance can be varied without the necessity for major mechanical changes.

Typical Application

The problem to be discussed here was the design of running register controlling equipment that would enable a multicolor, roll fed, printing press to be stepped up in speed from 300 feet per minute to 1,000 feet per minute and still keep the register accurate from 0.000 to ± 0.001 inch. The control decided upon drives into the press through a planetary gear system with a reduction of approximately 800-1 and had to be capable of continuous rotation in either direction.

Among the major problems in high speed color-printing are running or longitudinal register, lateral register, ink flow, and ink drying. Satisfactory solutions to the last two have been developed for today's press speeds and of the first two running register is the big problem, because sideways move-

The pickup head and explosion-proof housing are mounted on the press. It contains two phototubes and two amplifier tubes so that if one set fails, the other set is switched into the circuit

Sinewave p-m generator at lower left, ten-horsepower hydraulic motor at right, and induction generator for tachometer feedback at top
ments of the web are very small. The problem of running register can be explained by Fig. 1.

As the web travels through the press, it is important that each succeeding color be printed to the same baseline as the yellow, or the completed picture will be out of register, that is, one or more of the colors will be shifted with respect to the yellow. The register is maintained by scanning the web and controlling the X member of the differential which is inserted in the drive system of the press between each printing couple and the main drive. At present, running register cannot be accurately enough controlled for precision printing jobs at the high press speeds at which the other problems have been conquered, therefore the development of regis-ter-controlling equipment has been one of the industry's greatest needs.

Inasmuch as it would operate in an explosive atmosphere an additional requirement was that the control equipment meet the Underwriters Laboratories requirements for equipment in hazardous locations, Class I, Group D. These requirements in general specify that explosive atmosphere be prevented from reaching the equipment by immersing it in oil or that the equipment be encased strongly and tightly enough so that should an explosion occur within the case no
effects of the explosion can reach the surrounding atmosphere.

Other requirements were that the control have a minimum of oscillation as that would cause excessive wear on the printing cylinder, and that the corrective action not take place so rapidly that excessive stresses were set up in the paper, metal foil, or cloth web being printed. "The web is the actual material being printed, not a conveyor for the material.)

The limits of automatic control were to be from 100 ft per \min to $1,000 \mathrm{ft}$ per min web speed. It is interesting to note that the problem of control became easier as the speed increased. If it had been possible to ignore such factors as webstrength, press design, ink-drying speed, and ink-flow characteristics, the maximum web speed could have been increased several times without decreasing the effectiveness of the control. The printing cylinder was 7 inches in diameter, thus the press varied from 54.5 to 545 rpm .

Measurements and calculations determined the inertia and friction torque characteristics of the press. The torque of the actuating element necessary to introduce the maximum correction in the time decided —approximately 0.15 second-figured out to be approximately 25 lb in. This relatively high torque requirement, coupled with the high
speed of response needed, lead early in the design to the choice of pistontype hydraulic motors for the actuating element.

The problem of controlling electronically the power required for an electric motor developing the above stalled torque would present certain difficulties because of the need for high speed of response, the desirability of eliminating gas tubes in the control circuit, and the explo-sion-proof requirement.

The hydraulic motor, a Vickers MF-12-2, is controlled by an Askania standard regulator which is stroked by a Diehl two-phase motor type FPE-49-10 with a positive coupling whose rotor is allowed to turn only ± 1 degree. The electronic amplifier controls one phase of this motor and the power requirement is 25 volt amperes. This power is easily handled by components of the radio and telephone class and that is what was used.

Hydraulic power is furnished by a standard Vickers unit comprising a vane pump, explosion-proof drive motor, reservoir, and relief valve. The system pressure is approximately 200-250 psi.

Electronics in Oil

To meet the Underwriters specifications it was decided to immerse all electronic control elements in oil. To this end, a test program was un-
dertaken and the effect of immersion in transformer oil studied on sine wave generators, induction generators, two-phase motors, potentiometers, wire, vacuum tubes, capacitors, sockets, and terminal strips. These tests were conducted over a four-month period and as a result it was possible to obtain all necessary components as standard items which would satisfy the oil immersion requirement.

With the exception of the phototube scanning head, all apparatus is immersed in oil, the electronic components in transformer oil and the hydraulic components in their own oil supply. All connections to the press and between units are made through oil or pitch-filled tubing. Necessary controls are brought out above the oil level in all units or are accessible from above the oil with screw drivers or wrenches. The scanning head is made to meet the requirements for air-break explo-sion-proof gear.

The electronic amplifiers are all immersed to a depth of one inch over the tops of the tubes in a common oil bath and the leads brought out in copper tubing which starts well below the oil level. The electrical units, an induction generator
and a permanent magnet generator are mounted on the press, and each is immersed in an oil tank and the leads brought out through oil-filled copper tubing.

The control amplifier is a d-c amplifier whose output is used to modulate the 60 -cycle supply voltage for the control phase of the torque motor through a phase-sensitive modulator. The input to the amplifier is the error voltage obtained by sampling the voltage generated by the permanent magnet generator coupled to the printing cylinder at every register mark interval.

The voltage on the sine wave at each sampling instant is clamped, ${ }^{1}$ then filtered into a smooth wave which serves as the input to the control amplifier. This error signal is differentiated to reduce dynamic errors and integrated to reduce accumulative errors.

Tachometer feed back, proportional to the rpm of the correction motor, is used to check that the correction motor is faithfully following the designed function of input signal. An induction generator geared to the hydraulic motor furnishes this feedback.

The time to introduce a correction should the web be subjected to

FIG. 2.-Schematic of the register control system. Functions of the electronic stages are illustrated in blocks at right
a step function between register marks, rather than the usual error change, would, of course, be greater; but it would still be far shorter than can be accomplished by manual control (which, to date, has been the most universally satisfactory method) since the control will see the error at the next printing station and will start correction immediately rather than waiting until the affected section of web has left the press.

Constant Performance

The gain of the control amplifier and its frequency characteristics are fixed, to assure constant performance of the control even though the operating conditions change. Detailed measurements and calculations of the inertia and friction forces in the press and of the torque characteristics of the actuating means were made and the stability of the system was investigated. In the present case an ample margin of stability does exist provided the delays in the hydraulic system are compensated. Provision for such compensation is included in the electronic amplifier.

A schematic of the entire system is shown in Fig. 2. Provision is made for returning each roll individually to manual control if the error signal from that roll exceeds a preset value for more than a given time, thus indicating that that control is not functioning properly.

Labor Upgrading Effect

A control such as the one described has an upgrading effect on highly skilled labor. A pressman's production is tripled. He is removed from the negative, routine task of register control and applied to more technical ones such as ink color and flow, drying, printing pressure. In this way his position becomes more important at the same time that he becomes more productive.

[^6]Example of strip chart obtained with sky-wave signal recording equipment at Strathburn. Ontario. Curve shows variation in input signal strength to receiver over period of several hours at night for signals of station WGY. Schenectady, N. Y.

Recording Sky-Wave Signals

Receiving rack, cycler chassis, and graphical recorder used at Ottawa firequency monitoring station for recording sky-wave signals from broadcast stations

AGOOD DEAL of the energy radiated from standard-band broadcasting stations is reflected from the ionosphere and returns to earth at a distance from the station. This phenomenon is an advantage in the case of clear-channel stations since it augments the coverage, but where channels are shared by two or more stations in the same region it may produce interference which seriously limits the coverage otherwise obtainable.

In the broadcast allocation structure, due cognizance must be taken of the effects of sky-wave signals. Ground-wave propagation is calculated from verified theoretical curves, but because of the many indeterminable factors involved in
sky-wave propagation, no corresponding curves exist, and calculations must be made from entirely empirical curves. These curves are plotted from measured data on the sky-wave signal intensities of distant stations over an extended period, and are based on the signal exceeded for certain percentages of time.

Early curves took no separate account of variations due to latitude, or between north-south and eastwest propagation, or of ionospheric focusing, but assumed an average propagation characteristic for all sky-wave signals. The early curves are the ones which have been in use up to the present time, under the North American Regional Broad-

By Wilbert b, Smith

Assistant Radio Engineer, Radio Division Department of Transport, Ottawa, Ontario Canada
casting Agreement, Havana, 1937.
The Modus Vivendi, Washington, 1946, which extends the above-mentioned agreement, recognized the need for more up-to-date information on which to base new technical standards to be drafted in 1948, and charged the signatory countries with making the necessary studies towards this end. A program of sky-wave recording was therefore drafted by the Canadian authorities to determine the propagation characteristics of sky-wave signals in Canadian latitudes.

Sky-Wave Recording Technique

Equipment for the recording of sky-wave signals must be accurate and stable, yet simple enough to be used in outlying stations. It must produce records which are readily analysed in terms of the absolute field intensity of the radio wave, in microvolts per meter.

The essential components of fieldintensity recording equipment are the radio receiver and antenna, comparison standard signal generator or other calibration means, and the graphical recorder.

In the system as finally developed by the author for the Canadian recording program, the incoming signal is received on a National HRO

Analysis of above chart with photoelectric scanner showed that signal exceeded $6,100 \mu \mathrm{v} 5 \%$ of the time, $5,300 \mu \mathrm{v} 10 \%, 3,000 \mu \mathrm{v}$ $30 \%, 1,700 \mu \mathrm{v} 50 \%, 1.400 \mu \mathrm{v} 60 \%, 820 \mu \mathrm{v} 90 \%$, and exceeded $700 \mu \mathrm{v} 95 \%$ of the time

from Broadcast Stations

Description of monitoring station set up by Canadian government to investigate skywave interference occurring when two or more broadcast stations share the same channel. Signal strength of a station is recorded on strip chart for several hours, and photoelectric scanner then determines percent of time signal exceeds any selected value
receiver which has been peaked for maximum i-f response, and from which the ave voltage is fed to a vacuum-tube amplifier which drives a 5 -ma graphical recorder. In series with the graphical recorder is a device which periodically returns the recorder pen to zero so as to blank in the area between the curve and zero to facilitate analysis of the graphs. The incoming signal as delivered by the antenna is compared with the output of a standard signal generator for calibration of receiver output. The antenna itself is calibrated by comparison with a field-strength meter of known accuracy.

Analysis of the charts is accomplished by means of an electronic scanner, in which a spot of light rapidly traverses the chart along the time scale. The reflected light operates, through a phototube and amplifier, an electronic gate which permits current to flow through a meter calibrated directly in percentage only during the periods when the spot is on the blanked-in portion of the chart. In this manner the scanner integrates the time during which a particular value of signal was exceeded. Suitable scales used in conjunction with calibration marks placed on the charts per-
mit direct determination of the field intensity exceeded for any specified percentage of time.

Signal Generator

The circuit diagram of the standard signal generator is shown in Fig. 1. It is a straightforward design, the only unique features being the shielding, the use of a coupling tube between the r-f sources and the receiver, and the vacuum-tube voltmeter circuit.

Effective shielding is achieved by locating the oscillator and the circuits associated with it in individual cast aluminum boxes which are insulated from ground, connected together in sequence at one point only, and grounded to the main chassis at one point only. Circuits entering the boxes are individually filtered by means of chokes and capacitors, and control shafts entering the boxes are broken with insulated couplings. Circuits within the box are grounded at one point only, near where the r-f voltages are finally delivered.

Under the provisions of present

[^7]

FIG. 1-Circuit of signal generator used for calibration in connection with recording of sky-wave signals, showing elaborate shielding technique employed and relationship to other units of recording system
international agreements the lowest sky-wave field which has any significance is 25 microvolts per meter, so there is little advantage in making studies on field intensities much less than this. Therefore the signal generator was designed to deliver calibrated r-f voltages only down to 10 microvolts, which with the usual broadcast type of antenna permits accurate recording of fields as low as 5 microvolts per meter.

In order to simplify operation and minimize effects of antenna variations, a cathode-follower coupling tube is included in the circuit between the r-f sources and the receiver input, with a switch to change the input from antenna to signal generator for calibrations. Since this tube is in the circuit for both calibration and recorded signals, it is in effect part of the receiver and is calibrated with it. It does not introduce spurious effects unless subjected to r-f signal intensities of the order of 2 volts, which may drive the tube beyond its range of linearity. Localities where high signal strength exists are avoided in selecting a site for the recording equipment.

Two similar vacuum-tube voltmeters are provided, one for measuring the r-f voltage applied to the attenuator, and the other for operating the graphic recorder from the received ave voltage. They consist of triodes with the indicating meters bridged between their plates and the midpoint of two voltage regulators in series. The tubes are operated under conditions of no input voltage with about 0.8 volt

FIG. 2-Cycler circuit for sweeping pen of recorder periodically back to zero, to black in entire area between signal strength curve and zero. Hate of sweop mary be varied from once per second to once every 5 seconds by adjusting 30 -megohm resistor
bias, obtained from a cathode resistor. The plate resistances are varied for zero reading on the respective meters, as zero-sets. For any negative voltage applied to the triode grid, the plate current will decrease a proportionate amount over the corresponding portion of the tube characteristic, which in the case of the $6 J 5$ triodes is quite linear. The change in plate current will result in the difference current flowing through the meter, giving after calibration the measure of the applied voltage.

Provides Protection

This circuit was selected to utilize the negative avc voltage from the receiver, and to provide protection against accidental overload of the meters or recorder from excessive input voltage. Excessive input voltage can only drive the triode to cutoff, when the meter will be called upon to carry not more than the normal plate current of the triode,
which is approximately 8 ma and not dangerous for a 5 -ma meter.

The vacuum-tube voltmeter which reads the r-f voltage applied to the attenuator obtains its grid voltage from a germanium crystal rectifier. No return resistance path is provided for this rectified voltage as the germanium rectifier itself has a sufficiently low resistance in the reverse direction to permit the grid charge to leak off. Since the voltage applied to the tube grid is very nearly equal to the peak value of the r-f voltage applied to the attenuator, the original calibration of the signal generator can be against a standard cell, although comparison against a laboratory standard signal generator may be more convenient.
The second vacuum-tube voltmeter obtains its grid voltage from potential-dividing resistances across the avc circuit of the receiver. The values of these resistances are such as to bring the range

FIG. 3-Circuit of electronic scanner used for analysis of charts. Arrangement of optical system is shown at lower right; phototube is mounted on carriage along with lenses and lamp, and picks up light reflecied from spot on chart
of the meter onto the portion of the receiver gain characteristic which is most nearly logarithmic. It is therefore possible to get better than two complete ranges, or a ratio of $100: 1$ within the scale of $0-5 \mathrm{ma}$, using a National HRO receiver.

Chart-Blanking Circuit

The circuit for blanking in the area on the chart between the curve and the zero for analysis by means of an electronic scanner is shown in Fig. 2. Electrically it consists of a small resistance in series with the graphical recorder, which resistance remains constant for about four-fifths of the cycle, and then increases to infinity over the remaining fifth, after which it suddenly returns to its previous value and the cycle starts over again.

The resistance which performs in this unusual manner is the plate resistance of a 6J5 triode, the grid of which is held about 4 volts positive for the first four-fifths of the cycle. Under these conditions the tube shows a linear plate resistance characteristic of about 300 ohms for currents as high as 8 ma .

The grid of the output or vari-able-resistance tube is connected to the plate of another 6J5 triode which acts as a control tube to translate the voltage developed by the relaxation oscillator into an increasing bias. Since the control tube is biased well beyond cutoff for four-fifths of the cycle developed by the relaxation oscillator, it does not come into action until the last fifth of the cycle. It then diverts the current previously flowing through the
grid circuit of the output tube, permitiing the bias of that element to increase to cutoff.

The relaxation oscillator is conventional, being a capacitor charged through a high resistance and discharged through a type 884 thyratron. By using a tapped $30-\mathrm{meg}$ ohm resistance and a $1-\mu \mathrm{f}$ oil-filled paper capacitor, good stability was obtained with periods from 1 to 5 seconds long.

For chart speeds of 1 foot per hour the 5 -second period is required, but for faster speeds a correspondingly faster rate applies.

An Evershed-Vignoles graphical recorder with 5-ma range and clockwork drive is used. This instrument is fitted with an oil dashpot so that control can be had over damping, which is important for the cyclic operation to which the instrument must respond. Wrinkling of paper was overcome by using No-Rinkle ink and Albanene paper produced by Keuffel \& Esser. The combination of a red ink and a blue-sensitive phototube in the electronic scanner was found to give best results.

Electronic Scanner

A substantial part of the information to be gleaned from the chart is statistical and involves the determination of the signal exceeded for certain percentages of time, during certain periods relative to sunset. Heretofore, the method of analysis has been to step off with dividers and scales the time increments corresponding to certain signal intensities, replot the values
so obtained and from the resultant curve read off the required information of the signal exceeded for certain percentages of time. Needless to say, this manual method is tedious and inefficient, and opens wide the door to personal error which it is almost impossible to check. Fortunately, however, when a great deal of data is so analyzed most of the errors balance out in the subsequent statistical mathematical treatment, but there still remains the tedious labor of the manual analysis.

The electronic scanner was developed for the dual purpose of speeding up analysis and eliminating largely the personal error. Due to the shortness of time during which the Canadian program could operate before the data would be required for the production of propagation curves, speed and accuracy of analysis were essential.

The circuit of the scanner is shown in Fig. 3. The chart to be scanned is wound around the scanning drum, which will accommodate 24 inches of chart for each operation. The lamp-house contains a carriage which slides along ways under the control of a crank on the front of the lamp-house. Mounted on this carriage is a light source consisting of a 32 -candlepower automobile lamp, condenser lens, diaphragm with a 1 -mil aperture, and an objective lens which focuses the image of the aperture as a small spot of light on the chart undergoing analysis. Also mounted on the carriage is a phototube so arranged as to pick up diffused reflected light

Electronic scanner unit used at Radio Standards Office in Ottawa for analysing sky. wave charts obtained with recording equipment. Logarithmic calibration chart is placed under pointer on table just above drum. Pointer is mechanically coupled to optical system
from the spot on the chart. The top of the lamp-house carries a special logarithmic graph under roughened plastic to take pencil lines. Crossing the chart is a pointer which is connected to the carriage and arranged to track with the position of the spot of light. The near side of the pointer acts as a straight edge to place the calibration lines on the graph, and to read off the values of signal exceeded.

The electronic section consists of an amplifier responsive to the standard i-f value of 456 kc but normally biased slightly beyond cutoff. This amplifier is supplied with $456-\mathrm{kc}$ excitation from an oscillator through a small capacitor, but does not come into action until the bias on its first stage is reduced by illumination of the phototube. The output of the amplifier is rectified by two germanium rectifiers in a doubler circuit, and applied to the grid of a triode-connected 6S.J7, which is in series with a 6SJ7 saturation pentode and the percentage-of-time meter.

When the phototube is not illuminated there is no appreciable output from the amplifier and the grid of the triode is maintained at zero potential by a flashlight battery, permitting the full saturation
current of 1 ma to How through the saturation pentode and give a fullscale reading on the percentage-oftime meter. This condition corresponds to the scanning of a completely inked-in portion of a chart undergoing analysis.

When the phototube is illuminated the amplifier comes into action and produces at the output of the germanium rectifier 50 volts or more, which produces immediate cutoff of the triode. For the period when this condition prevails no current flows through the percent-age-of-time meter. This corresponds to the scanning of a blank portion of the chart.

Since the percentage-of-time meter is of the uniform scale type, it will read the average current flowing through it, provided the cycle is fast enough to prevent the meter movement from following the individual fluctuations. Hence it follows that in the scanning operation the meter will read directly the percentage of time during which the phototube has not been illuminated. which is the percentage of time a certain signal strength has been exceeded.

The instrument can be made unresponsive to residual room illumination by judicious adjustment of
the amplifier bias controls, so that no special precautions are necessary in regard to room lighting. A Sola constant-voltage transformer supplies the electronic circuits. This transformer combined with the voltage regulators used to obtain the various internal voltages gives maximum stability and the instrument can be easily read to an accuracy within 1 percent.

The image of the aperture in the diaphragm on the chart being scanned is about 0.03 inch in diameter. which is about the width of the line traced by the pen on the graphical recorder. Consequently, the scanner can resolve and analyse any record normally taken by the recorder. The accuracy with which the percentage-of-time meter and the calibration on the graph can be read is about 2 percent.

In using the scanner, the chart to be analysed is first placed on the drum with the zero side to the front and with the calibration marks showing on the outside. The pointer is then wound successively to the top of each calibration mark and a short pencil line drawn along the straight-edge intersecting an appropriate unit line on the graph. These points are then joined up by a smooth curve which provides the scale from which signal intensities pertaining to that particular chart are read. The curve so plotted is in reality the received signal versus avc voltage curve, and consequently provides the means for reading directly in microvolts per meter the field intensity from the recorded values of the resultant ave voltage. A new curve is drawn for each chart analysed.

After the calibration curve is established, the chart is moved around the drum until the portion of which the analysis is desired is on the outside and visible to the scanning spot. The drum is then started rotating and the percentage-of-time meter checked for zero and full scale. The scanning spot with its attendant pointer is then wound across the chart until the meter reads the desired percentage of time, when the corresponding field intensity can be read off directly from the intersection of the straight edge of the pointer with the calibration curve.

Electromechanical D-C Amplifier

Small chassis at left contains the d-c amplifier and power supply used with the recorder and thermocouple (bottom) to measure transients in a thermal process

By C. G. ROPER

Chief Engincer

and

J. F. ENGELBERGER

Development Engineer
Wectical Engineering Department ManMing, Maxwell, and Moore, Inc. Bridlyeport, Connecticut

APPLICATIONS

Production mafching of resistors. Gives quick response with high sensitivity to replace galvanometer Experimental production of thermocouples. Used with recorder to measure time response characteristic of thermocouple element
Development of temperature regulators to drive transient response recorder
Serves as power of impedance changer to make possible long distance transmission or telemetering of low level d-c signals
Amplify outputs of barrier layer photocells, Firani or ionization-type vacuum gages
Amplifier for control equipment, and servomechanisms
Bridge detector
Preamplifier in radiometry recording

A moving-coil system actuates a metal flag in an oscillator tank to provide high gain and stable d-c amplification. Operating principle, mechanical details, and circuits of a degenerative system for low-impedance, low-current inputs are given

Wholly electronic d-c amplifiers are subject to drift resulting from supply voltage variation, tube characteristic instability, and variations of temperature and humidity. Also, this type of amplifier does not lend itself to low-impedance inputs.

When voltage regulation and balanced circuits are used to reduce drift, the amplifier becomes complicated and unwieldy. For laboratory
use this last point is perhaps no handicap, but for industrial and aircraft usage, complexity and size, not to mention cost, become vitally important.

The chopper type d-c amplifier, while it can be used with a low-impedance input, structurally is difficult and expensive to make. For many industrial purposes, as well as aircraft applications where space and weight are at a premium, it is
inconvenient, and its extremely high gain is unnecessary.

Combination System

The principle of electromechanical d-c amplification is illustrated in Fig. 1.

In Fig. 1A, a low-level voltage input to a galvanometer is converted into motion, and this motion is then employed to tune an oscillator by having a metal flag move be-

FIG 1-Basic principle of the electromechanical sysiem is illustrated at (A). The method of adding feedback is shown at (B)

FIG. 2-Two practical circuits for using the current-sensitive luning flag and an electronic oscillator to obtain amplifica. tion. Both provide a voltage gain of 1,000
tween coils of a tured-grid, tunedplate oscillator. The motion of the metal flag loads and unloads the tank circuits with consequent variation in input voltage of the oscillator. With a reasonably sensitive galvanometer movement, such a conventional setup can easily provide voltage gains higher than 10°.

In Fig. 1B, an extra coil has been added to the galvanometer, and the output voltage is fed back to the galvanometer input. Basically, this is the complete d-c feedback amplifier. Feedback could be applied to the input coil, but the advantage of an isolated input would then be lost.

Since a galvanometer input is used, a low-impedance input offers no difficulties. So, too, this extremely high-gain mechanical input stage does away with input tube selection and fastidious care of operating conditions.

Considering the overall circuit, the gain of a feedback amplifier may be written as ${ }^{1}$

$$
\frac{E_{\text {out }}}{E_{\text {in }}}=A=\frac{\mu}{1-\mu \beta}
$$

where $A=$ gain of feedback amplifier, $\mu=$ forward gain without feedback and $B=$ feedback fraction.

This can be rewritten as

$$
\begin{equation*}
A=\frac{-1}{\beta} \frac{1}{1-1 / \mu \beta} \tag{1}
\end{equation*}
$$

Thus as long as the quantity $\mu \beta$ is large, A is practically equal to $-1 / \beta$, and the gain is almost independent of changes in μ.

The actual reduction in gain variation as a result of change in

μ may be computed as follows:

$$
E_{0}=\frac{\mu}{1-\mu \beta} E_{i}
$$

differentiating with respect to μ

$$
\begin{gather*}
\frac{\partial E_{0}}{\partial \mu}=E_{i} \frac{1-\mu \beta+\mu \beta}{(1-\mu \beta)^{2}} \\
=\frac{1-\mu \beta}{\mu} E_{0} \frac{1-\mu \beta+\mu \beta}{(1-\mu \beta)^{2}} \\
=\frac{E_{0}}{\mu(1-\mu \beta)} \\
\text { or } \frac{\partial E_{0}}{E_{0}}=\frac{1}{1-\mu \beta} \frac{\partial \mu}{\mu} \tag{2}
\end{gather*}
$$

Thus, the variations in gain as a result of changes in circuit are reduced by a ratio of $1 /(1-\mu \beta)$.

The extremely high initial gain of this electromechanical d-c amplifier permits of large feedback factor $\mu \beta$ to reduce drift, while resultant gain which has been shown to be virtually equal to $1 / \beta$ is still, for many purposes, quite satisfactory.

Faster Action

The feedback to the galvanometer is also advantageous from another point of view. The time response of the galvanometer is greatly improved; that is, the natural undamped period of such a mechanical system is reduced to a fraction of its original value. ${ }^{2}$

It can be shown that feedback in the galvanometer is given by,

$$
C^{\prime}=(1+\mu \beta) C
$$

where $C=$ stiffness of suspension and $C^{\prime}=$ stiffness with feedback. Since the unclamped period of the galvanometer is given by,

$$
\tau=2 \pi \sqrt{\frac{K}{C}}
$$

where $\tau=$ period and $K=$ moment
of inertia then the period with feedback becomes,

$$
\tau=2 \pi \sqrt{\frac{K}{C}}=2 \pi \sqrt{\frac{K}{\mu \beta C}}
$$

Thus, feedback has reduced the period by a factor of $1 \sqrt{\mu \beta}$.

Temperature Compensation

When the amplifier is used with a current input, change in resistance of the input coil with temperature is of no consequence. However, for a voltage input there is one other major advantage to be considered; that is the input circuit can be completely compensated for copper temperature error. This eliminates necessity for insulating the input circuit or for adding large zero temperature coefficient resistors in the input circuit.
The method of temperature compensation can be explained with reference to Fig. 1B. Both coils on the galvanometer movement are copper and, therefore, for any temperature change undergo the same percentage change of resistance.

FIG. 3-Construction details of the gal-vanometer-type movement. The inpul and feedback coils are wound one above the other

Now when $\mu \beta$ is much greater than unity and the gain, A, is equal to $1 / \beta$, the feedback current is directly proportional to output voltage. A zero temperature coefficient resistor, r_{2}, is placed across the feedback coil, r_{1}, to divide the feedback current; and this division of current varies as the resistance of the copper feedback coil changes.

On the input side, R_{3} is placed in series with R_{1}, the copper input coil, and changes in the resistance of R_{1} result in changes of input current. It can be shown that with change in resistance of the two copper coils, the percentage change of current through the input coil is exactly equal to the percentage change of current in the feedback coil if $R_{1} / R_{2}=r_{1} / r_{2}$. Thus loss of input sensitivity is balanced by a decrease in B, the feedback fraction, and the gain remains constant as the temperature changes. Since the ratio r_{1} / r_{2} can be made as small as the feedback power available will allow, the ratio, R_{1} / R_{2}, which also represents loss of gain as a result of compensation, can be kept correspondingly small.

In general, two convenient possibilities for the circuit of the amplifier have been tested. They are shown schematically in Fig. 2. In Fig. 2A, the r-f oscillator output is rectified to provide d-c output and feedback current. In Fig. 2B, the change in the d-c impedance of the oscillator tube with strength of oscillation is employed to unbalance a bridge. It is worthy of note that frequency variation is not considered in either of these methods and that one need not be concerned with exact frequency stabilization. Only the magnitude of the r-f signal is significant.

FIG. 4-Four inches long, this bench model of the d-c amplifier contains a miniature tube inside the chassis for applications where space is limited

The argument might be raised that this amplifier would only be useful in the laboratory, since a galvanometer is too fragile an instrument and is subject to accelerations and vibration. However, this application lends itself to a revamping of galvanometer design to give a very rugged structure.

Figure 3 shows a sketch of such a galvanometer. Since only a few thousandths motion is required of the flag moving between the oscillator coils, this design becomes feasible. Some advantages are immediately obvious. With the moving coil suspended in this manner, all coil turns are at right angles to the radial field and, therefore, useful.

In conventional galvanometer design, the portions of every turn that lie parallel to the magnetic field are wasted. So, too, a cylindrical coil is easier to wind than a conventional galvanometer coil, and the structure lends itself to the addition of the extra feedback coil without difficulty.

As a result of the small motion required, short frictionless leaf spring bearings may be used, making a more easily assembled movement. Having the coil at the end of the beam provides a torque-input current ratio that is higher than that usually attainable, but which would be detrimental were it not for the feedback used. The long natural period of the beam is reduced by feedback as has been shown.

Thus, combining the advantages of a high torque to current input ratio, rugged shockworthy construction, simplicity of assembly, and a fast time response as a result of feedback, the galvanometer is suitable for use as the input stage of a high-gain, stable field model d-c amplifier.

Practical Instrument

To answer a demand for an amplifier for aircraft purposes, the Microsen d-c amplifier pictured in Fig. 4 was developed. The unit shown is a bench model, flight models being shock-mounted and weather-sealed.

This instrument is exemplary of the general principles discussed, and its specific characteristics will

FIG. 5-Frequency characteristics of the electromechanical system with and with out feedback
be considered in more detail. The design throughout was influenced by the stringent specifications of aircraft apparatus. It occupies less than 40 cubic inches, weighs approximately 2 pounds, requires less than 5 watts power and is mechanically constructed to insure its ability to withstand reavy vibrational and acceleration loading.

The circuit of Fig. 2A was used in this instance, and the feedback fraction chosen was 0.001 , giving a gain of 1,000 . Its specific use is to provide a voltage output of 5 volts for a thermocouple input of 5 millivolts. It is powered by an unregulated d-c supply of nominal 200 -volt value. With line voltage variation from 100 to 200 volts, output drifts only 0.5 percent.

Feedback has greatly improved the time response as is witnessed by the frequency characteristics with and without feedback shown in Fig. 5. The gain remains constant as long as $\mu \beta$ is much greater than unity. At higher frequencies $\mu \beta$ becomes smaller as μ is reduced.

If it were desirable to extend the frequency characteristic and still retain the same gain, a stage of d-c amplification might be added, thus increasing $\mu \beta$ without increasing β, the reciprocal of the latter still determining the gain value. Of course, the gain is not limited to 1,000 . Stable gains as high as $50,-$ 000 can be provided if the application demands.

References

(1) Hendrik W. Bode, Network Analysis and Feedback Amplifer Design, D. Van Nostrand Co. 1945 .
Nostrand Co. 1945 . (2) Lawson: Analysis of ${ }^{\text {nometer Amplifier, Electronic Engineering, }}$ $\mathrm{p} 114-116,17$, Aug. 1944 .

FIG. 1-Phase method of obtaining frequency drift sense

FIG. 2-Resonator-detector output

Simplified Microwave AFC PartI

WITH the rapidly spreading interest in microwave relay systems, there appears a need for a relatively simple means of keeping a microwave oscillator within the required frequency tolerances. Accurately controlled temperature and voltages at the tube can be used with good success, but this requires complicated and bulky equipment.

Techniques using automatic frequency control (afc) of the microwave oscillator have also been developed, and many of these operate exceptionally well. Some of them have sufficient bandwidth and stability characteristics to provide a frequency correction to the oscillator of better than several parts per million over reasonable periods of time.
The afc system to be described is not as precise as the best that can be built, neither is it as complicated as a precision unit. Instead it is relatively simple, compact, easy to adjust, and can operate with either tunable klystrons or tunable magnetrons.

Most of the relay systems on microwave channels are rather wide band, in the order of 2 mc or more.

[^8]Consequently, if the transmitter carrier is held to within about \pm 200 kc of the assigned frequency, it will remain well within the channel limits. A simplified motoroperated afc system will serve.

In all automatic frequency control systems, the frequency of the controlled oscillator is compared with a known reference frequency, and any discrepancy between the two, as indicated by the detection circuit, is used to apply a correction to the afc oscillator. One method uses a cavity resonator as the reference frequency standard. The resonator is used in such a way as to obtain a sensing or directioning of the oscillator drifts for applying the proper corrections. This correction may be accomplished by coupling the resonator to a waveguide bridge circuit. ${ }^{1}$

The type of sensing used in the system to be described is somewhat novel because it applies a sensing modulation to the reference resonator itself. This sensing modulation provides a means of detecting the magnitude and direction of frequency shift of the oscillator. The signal carrying this information is used to shift the oscillator back to the correct frequency setting. Either mechanical or electronic
means can be used to tune the tube, or both can be used in combination.

Several useful afc systems are discussed: motor afc system alone; motor and reflector afc system combination; pushbutton scanning means for such systems; a utomatic scanning means. Their discussion is preceded by an analysis of certain basic operating principles.

Method of Sensing

If the resonant frequency of an excited resonator is moved back and forth at a given rate, the resulting signal from a crystal detector coupled to the cavity is in phase with the signal producing the resonant frequency shift when the carrier is effectively detuned to one side of resonance, and 180 degrees out of phase when it is detuned to the other side of resonance. As far as the crystal detector is concerned, variation of the cavity resonant frequency is equivalent to frequency modulation of the carrier generator. When the carrier is exactly in tune with the resonator, the detector output is entirely the second harmonic of the sweep rate, with no fundamental component present.

Figures 1 and 2 illustrate these basic sensing functions graphically. Figure 2 shows that increasing the

FIG. 3-A basic motor-operated automatic frequency control

FIG. 4-A basic electronic automatic frequency control

Combinations of motor and electronic afc action for microwave oscillators are discussed. Methods of automatic and manual correction scanning complete the design considerations for a $3,000-\mathrm{mc}$ radio-relay system that remains within 200 kc of assigned frequency

By F.A. JENKS $\begin{gathered}\text { Raytheon Manufacturing } \\ \text { Waltham, AIass.* }\end{gathered}$
carrier detuning will enhance the voltage of the fundamental fre-quency-modulating frequency obtained from the crystal detector until the detuning has gone about one-quarter of the resonator bandwidth, at which point the voltage of the fundamental begins to drop off, although remaining in the same phase. The output signal from the detector crystal is a reversing-phase variable-magnitude voltage of the same frequency as that used to modulate the resonator.

Figure 2 is correct for small frequency deviations of the resonator frequency, a condition which is employed in the present afc system. Wider deviations move the fundamental peaks out to about the halfpower points on the resonance curve. The slope of the fundamental curve at or near resonance is called the conversion factor or sensitivity of the resonator-detector unit, $d E_{c} / d f$, and is stated in volts per cycle for a given radio-frequency power into the resonator and a given frequency deviation.

To prevent modulation of the cavity from reacting on the oscillator, careful adjustment of the coupling between the two is necessary. It is desirable to use only a small amount of power in the resonator,
as this aids in meeting the decoupling requirement by allowing loose coupling and avoids absorbing too much energy from the oscillator.

Basic Motor AFC

To illustrate each functional section of the complete afc system, the two methods of control will be discussed separately. Figure 3 shows a block diagram of the essential elements of the motor afc without antihunt. Since the resonatordetector output is a reversing-phase variable-magnitude voltage of the fundamental sweep frequency, it is suitable for operating a two-phase motor. If one winding is excited with a constant voltage of fixed phase, and the other, called the control winding, is excited by a vari-able-magnitude voltage of either 0 or 180-deg phase relationship with respect to the first winding, the direction of rotation of the motor will depend upon whether $0-\mathrm{deg}$ or 180-deg phase voltage is in the control winding. The speed at which the motor runs is dependent upon the amplitude of the voltage in the control winding, with zero voltage producing no rotation, even though full voltage is maintained on the first or reference phase winding. The motor, in essence, becomes a
phase detector in this type of afc system.

From the diagram of Fig. 3, it is seen that the resonator-detector signal is amplified and applied directly to the control winding of the motor. The fixed phase winding derives its excitation from the same source that is used to produce the resonator frequency deviations for the sensing operations.

Since the two-phase motor is a mechanical device, it is subject to certain evils, namely bearing friction, inertia, and unbalance. In a good motor the rotor will be balanced rather carefully, and static inertia troubles will not begin to appear until the static friction in the bearings has been virtually eliminated. Owing to this friction, a finite signal voltage E_{m} at the motor winding is needed to overcome these forces and produce rotation. Usually the rotational friction is lower than the static friction, and consequently it is not the important factor in the problem.

Assuming then that the system is exactly in tune, no fundamental voltage will appear at the motor winding. As the oscillator begins to drift, the error signal on the motor winding has to reach a value of E_{m} volts before motor-operated
afc action takes place. Therefore, the unavoidable frequency error owing to friction is the frequency drift required to produce E_{m} volts at the motor.

Referring again to Fig. 3, the terms used to describe the action around the feedback loop may be summarized and defined. E_{m} is the motor voltage required to overcome static friction; $d E_{o} / d f$ is the reso-nator-detector voltage frequency sensitivity, near resonance; A_{m} is the gain of the motor amplifier section; Δf is the frequency deviation error without afc.

To cause afc action to take place the error signal must equal E_{m}, and that quantity may be evaluated by

$$
\begin{equation*}
E_{m}=A_{m}\left(d E_{o} / d f\right) \Delta f \tag{1}
\end{equation*}
$$

Solving for the frequency error produced by the motor afc because of frictional forces gives

$$
\begin{equation*}
\Delta f_{m}=!\left(E_{m} / A_{m}\right)\left(d j / d E_{c}\right) \tag{2}
\end{equation*}
$$

The error shown in Eq. 2 is the long-time error encountered in the motor-operated type of afc system (assuming negligible resonator and modulator drift), since the motor will drive until the error voltage on its winding has reached some value less than E_{m}. Driving toward the correct frequency, the inertia of the mechanical system will carry the tuning well into the region where the error signal is less than E_{m}. The fact that rotational frictional at slow speeds is less than static friction emphasizes this condition.

It may happen that the mechanical inertia of the gear train actually carries the tuning through the correct value and to a reverse voltage
greater than E_{m}. This new error signal drives the system in the other direction and the overrun may then be encountered a second time. This can result in hunting, where the motor oscillates the tuning back and forth around the correct frequency setting.

The problem of eliminating hunting will be taken up in a later section. The correction response time of the motor afc is usually slow due to the mass and drag of the mechanical linkages.

Basic Electronic AFC

Using electronic afc, for example by varying the reflector voltage of a reflex klystron, a residual error signal is required to produce a correction voltage with which the afc must operate. This is unlike the motor-operated afc in which the error signal would go to zero if no static frictional forces existed. Figure 4 shows a block diagram of an electronic afc section. The essential difference between this and the previous case is the replacement of the motor by a phase-detector whose output is coupled directly into the reflector circuit of a klystron. Since the reflector is fre-quency-voltage sensitive, the control loop is complete to provide afc action.

As such an electronic afc system does not have any mechanical circuits, it can be treated in the usual feedback manner. The terms used around the feedback loop in Fig. 4 are defined as follows:

$$
G_{\phi} \quad=\text { conversion gain of phase de- }
$$

$d f / d E_{\text {, }}=$ klyatron refiector frequencyvoltage sensitivity
$d E_{e} / d f=$ resonator-detector voltage-froquency sensitivity near resonance (as before)
$A_{\text {r }} \quad=$ gain of reflector amplifier section
$\Delta f \quad=$ frequency deviation error without afc
$B_{r}=$ feedback gain around loop, excluding amplifier A_{r}
The residual error in the electronic afc is the frequency error drift divided by the total loop gain

$$
\begin{align*}
& \Delta f_{r}=\frac{\Delta f}{\text { loop gain }}=\frac{\Delta f}{A_{r} B_{r}} \tag{3}\\
& A_{r} B_{r}=A_{r}\left(G_{\phi}-\frac{d f}{d E_{r}} \frac{d E_{\varepsilon}}{d f}\right) \tag{4}
\end{align*}
$$

Substituting Eq. 4 in Eq. 3

$$
\begin{equation*}
\Delta f_{r}=\frac{\Delta f}{A_{r} G_{\phi} \frac{d f}{d E_{r}} \frac{d E_{e}}{d f}} \tag{5}
\end{equation*}
$$

The residual error signal can be made smaller by increasing the gain around the feedback loop ($A_{r} B_{r}$).

Combination Motor and Electronic AFC

The motor and electronic afc systems have one interesting thing in common; neither afc system can produce complete error correction. The motor system is afflicted with frictional troubles, and the electronic system requires some error signal to produce afc action. Operating in combination, however, the electronic afc has to handle all transient errors greater than the maximum frequency error allowed by the motor friction given by Eq. 2. Its long-time error signal will be less than this amount. Consequently, the resulting long-time error of the combined systems is given by substituting Eq. 2 into Eq. 5

FIG. 5-Motor tuning time plotted against corrective feedback

FIG. 6-The hold-in characteristic versus motor-amplifier gain indicates how well motor error can be compensated

Microwave section of signal generator. Resonator and speaker unit modulator are shown beneath the gear mechanism al right.

$$
\begin{aligned}
& \Delta f_{m r}=\frac{\Delta f_{m}}{A_{r} B_{r}}=\frac{\left(d f / d E_{c}\right)\left(E_{m} / A_{m}\right)}{\left(d f / d E_{r}\right)\left(d E_{c} / d f\right)} \\
& \Delta f_{m r}=\left(\frac{d f}{d E_{c}}\right)^{2}\left(\frac{d E_{r}}{d f}\right)\left(\frac{E_{m}}{A_{m} A_{r} G_{\phi}}\right)
\end{aligned}
$$

Several things are gained when the electronic afc system is combined with the motor-operated afc. First, the response of the electronic system is faster than its mechanical counterpart. This feature relieves the motor of trying to respond to transients which it can not handle. Second, the quicker action of the electronic system acts as an antihunt circuit for the motor afc. If the motor inertia carries the corrective tuning past the center frequency, the electronic afc corrects this situation by electronic tuning, thus wiping out or materially reducing (by an amount equal to $\left.-\Delta f / A_{r} B_{r}\right)$ the reverse error signal which the motor winding would have otherwise seen. Action such as this removes any tendency to hunt or oscillate about the center frequency, and gives a smoothly damped motor operation. Third, when the combined system is in tune, the output from the phase detector is zero.

This last condition is most important in transmitters whose modulation characteristics are critical as to distortion, and the oscillator
must be operated at the center of a mode as dictated by the reflector characteristics. Consider a stepfunction frequency disturbance. The action of the electronic afc causes it to make its best possible correction as given by Eq. 5. During this time the motor has also begun to operate, to wipe out the error voltage on its winding. As the system approaches the correct mechanical tuning of the klystron, the error voltage is reduced. When the correction is complete, the output of the phase detector goes essentially to zero, thereby putting no additional voltage from electronic afc actior onto the already existing reflector potential. In this way, the best modulation characteristics are maintained, even under rather severe afc hold-in conditions.

Metor Circuit Antihunt Control

When the motor-operated afc is considered alone, some means of reducing the tendency to oscillate about the center-frequency must be introduced. One of the most satisfactory methods is to couple an eddy current generator to the motor shaft, and excite one of its fields at the motor frequency. The amplitude of the resulting voltage in its output winding will be proportional to the speed of the motor, and its
phase will be either 0 or 180 deg with respect to the exciting voltage, depending upon the direction of rotation. No slip rings are needed so no additional friction forces are incurred.

The eddy-current generator signal is introduced into the motor control circuit in such a way that its phase is in opposition to that of the error signal. When a frequency disturbance occurs, the motor operates to reduce the error as usual, but some signal of opposite phase proportional to the motor speed is supplied by the generator to reduce the apparent error signal. Such a reduction in error voltage slows down the motor, which procedure in turn reduces the injected antihunt voltage.

Should the inertia of the mechanical system carry the correction too far, and cross the center frequency, the error signal will change phase. This condition puts both error and antihunt signals in phase, and the sum of the two act to brake and reverse the direction of rotation. Once this reversal is accomplished they are again out of phase, because the phase of the generator voltage depends upon the direction of shaft rotation only, and the antihunt signal is again tending to slow down the motor. One important

FIG. 7-Block diagram of a motor afe system connected for antihunting

FIG. 8-Block diagram of
point should be noted; the antihunt signal becomes less and less as the motor slows down when approaching the correct tuning, and it is zero when the motor arrives at a dead stop. In this latter condition the system has its greatest sensitivity.
The amplitude of the antihunt signal plays a large part in determining the characteristics of the motor afc system. In Fig. 5 is shown a series of curves for different amounts of speed feedback voltage. It is possible to go from the case of oscillation with no antihunt voltage through a gradual approach to the condition with no overshoot, and beyond to a point using excessive antihunt signal. The proper adjustment is somewhere between the two extremes, depending upon the operating requirements of the individual equipment.

Hold-in Tightness

From Eq. 2 it is apparent that the motor error caused by static friction varies inversely as the gain of the motor amplifier, A_{m}. Figure 6 illustrates a family of curves which show increasing tightness of afc control (that is, less frequency error) with increasing amplifier gain. The section near the center, before overloading occurs, is most interesting. As the gain increases, the motor-error width decreases accordingly.
The ability of the system to respond to transient disturbances is dependent upon the electronic afc. Assuming that a $400-\mathrm{cps}$ motor is used, and the same sensing fre-
quency is used for both motor and electronic afc, it is apparent that the error information is arriving into the system at only a $400-\mathrm{cps}$ rate. This relatively slow rate of gathering information puts a definite limit upon the transient response of the electronic afc. If at least 20 complete information cycles are needed for reproducing error data of a transient pulse, then the transient response that can be handled by such a system is in the order of 0.1 second, or longer.

The difficulty in filtering out 400 cps from the output of the phase detector to prevent $400-\mathrm{cps}$ frequency modulation of the klystron necessitated a brute-force filter, which would preclude attempting to raise the transient response when using such a low sensing frequency. It is entirely possible to use two sensing frequencies to overcome this trouble, such as 400 cps for motor control and 50 kc to 100 kc for electronic control, with good transient response.

Motor AFC with Antihunt Generator

The simplest form of afc system that has been discussed is one using just motor control, with antihunt signals supplied by an eddy-current generator. A block diagram of this arrangement is shown in Fig. 7. The performance to be expected from this circuit is given by Eq. 2, and the response to transients is relatively poor. However, such an afc is characterized by extreme simplicity, low power drain, compact size, and a wide tuning range. The mechanical details are most
important, such as good linkages between the motor shaft and the tuning member, stable frequencytemperature characteristics of the reference resonator, and stable resonator-modulator characteristics. Some means of reducing the second harmonic voltage of the sensing frequency is necessary to prevent overheating the motor winding with a signal that contributes no rotational torque.
A slightly different type of motoroperated afc is possible by coupling the motor to a potentiometer which in turn varies the reflector voltage of the reflex klystron. No mechanical work is done on the klystron, consequently less torque is needed from the motor. The frequency control range of this system is limited, however, to the electrical tuning of the reflector circuit. Unlike the electronic afc, no sensing voltage has to be filtered from the reflector circuit.

Motor-Electronic System

The combination of motor and electronic afc systems gives more flexibility of operation. Figure 8 shows a block diagram of this combination system. Note that the antihunt signals for the motor are now amplified in a separate stage and fed into the signal amplifier at a point beyond where the phase detector signals are picked off. The change in antihunt injection is necessary to prevent the generator voltage from getting into the phase detector circuit.
Several points of caution are necessary to observe if this com-

motor and electronic afc system
bination afc is to function properly. Referring again to Fig. 8, the phase of the signal at the motor winding should be either 0 or 180 deg with respect to the voltage on its fixed phase winding. The phase of the amplified antihunt signal should be 180 deg with respect to the signal voltage at the point of injection into the motor amplifier chain. Last, the phase of the signal voltage at the secondary winding of the pushpull transformer of the phase detector should be either 0 or 180 deg with respect to the reference voltage in the center leg of the phase detector. Also, the frequency response around the electronic afc loop should drop to unity before the phase shift has reached 180 deg , otherwise the reflector afc will oscillate at the frequency where the 180-deg shift occurs.

Pushbutton Scanning

The two systems described above will pull into frequency if the drifting oscillator signal is within the skirts of the reference resonator response. However, the oscillator may not be within this frequency range, especially with a tunable reference resonator as used in signal generator applications. To make the motor tune the oscillator without error signal from the resonator, a switch or pushbutton arrangement can be used to inject scanning voltage into the motor amplifier and to disconnect the motor antihunt signals during the scanning operation.

The simplest method is to allow the motor to drive always in the

FIG. 9-Block diagram of an afc system with automatic scan
same direction during scanning. If the resonator is tunable or channelled, a better method is to connect a set of contacts to the frequencyshifting mechanism which selects the proper phase of the scanning voltage for driving in the correct direction. Such a scheme will be described in more detail in a later section.

Automatic Scanning

Certain applications require that the afc system automatically search and lock onto the signal if it should not be within the pass-band limits of the reference resonator. This type of operation is relatively easy to accomplish with the afc equipment under discussion.

Figure 2 shows the output voltages from the resonator-detector within the resonant characteristics of the cavity. Notice that the second harmonic of the sensing modulation frequency peaks at resonance, while the fundamental goes to zero. It is obvious then that if both the fundamental and second harmonic frequencies are amplified and rectified, a control bias can be developed whenever the carrier lies within the resonator limits. Should the carrier drop out of the pass band of the resonator, no bias will be produced and scanning can be made to commence. An automatic scanning system is shown in block diagram form in Fig. 9.

First, it is important that the d-c bias developed by this rectified sensing signal be sufficiently great at resonance to cut off the control or relay tube with a reasonable mar-
gin of safety. Second, if this bias is used to cut off a scanning tube (instead of operate a relay tube) it must be great enough to eliminate completely all trace of scanning voltage in its output circuit; otherwise the afc system will remain slightly off to one side or the other of resonance. During scanning, some means to reduce or eliminate the speed feedback voltage is required. If this reduction is not effected the scanning will be slow and jerky.

A more desirable method than cutting off a vacuum tube is to use the bias voltage to operate a relay tube. The relay, when relaxed, allows the generator feedback voltage to be applied in the normal manner, and when energized it injects scanning voltage into the system instead of antihunt voltage from the generator.

As mentioned earlier, the phase of the scanning voltage can be selected automatically so that the motor will drive in the shortest direction to pick up the signal. A pair of contacts operated by the resonator tuning or channeling mechanism though a clutch will work satisfactorily for this phasing operation.

The special components used in a representative system and their necessary physical properties will be described in the second and concluding part of this article, to appear in a forthcoming issue.

Reference

(1) R. V. Pound, Electronic Frequency Stabilization of Microware Oscillators, Rev. sej. Instr., p 490 , Nov. $10+6$.

FIG. 1-Start and stop unput pulses limit the duration of the high-frequency train of cycles delivered by the shaper and driver to the binary counter. Count attarined when the stop pulse occurs is marked on paper b_{Y} the recorder styluses

WARREN H. BLISS
ROA Laboratories Division, Radio Corporation of 4 merica, Princeton, N.J.

RECORDER and TIMER for Short Intervals

Abstract

Designed to meet the needs of nucleonic research, this interval timer measures and records intervals up to 16 microseconds with an accuracy of 0.25 microsecond. Intervals to be measured may occur at random and be widely separated

NUMEROUS RESEARCH projects, and the field of nucleonics in particular, require a practical method of measuring very short time intervals that occur at random. Lengths of periodic or recurring intervals can be observed by conventional oscilloscope patterns, but when it is desired to measure the interval between a pair of closely spaced pulses that may appear only a few times in an hour, the technique is difficult. A common method of measurement has been to use a long-persistence cathode-ray trace with rotary sweep and triggered control. For measurements of the order of a few microseconds, the sweep speed must be so great that the trace is dim and hard to photograph or observe.

Gated Counter Technique

A better method has been found by the application of electronic counter techniques. Currently available commercial counters do not have as good resolution as desired
for such measurements, and do not record the result and repeat the operation automatically. Consequently, a special development was undertaken that resulted in the design and construction of the Short Interval Timer and Recorder (sometimes called SITAR).

System Operation

The basic element of the interval timer is a binary scaler or counter chain connected through a gating circuit to a 4 -mc driving source. Pulses marking off the interval to be measured are applied to a gate or switching circuit which passes a representative block of the highfrequency cycles to the binary chain, where they are counted and registered. The result is then automatically recorded as a dot pattern across a strip of special paper and the machine resets itself in readiness for the next measurement.

The block diagram of Fig. 1 illustrates the various elements of the device with the necessary inter-
connections. The components are arranged physically in two groups and are mounted accordingly on two chassis units. The upper section contains the $4-\mathrm{mc}$ source, the switching circuit, and the counter chain. The lower section contains the recorder, its control circuits, and the reset circuit which restores the upper section to its standby condition after each measurement.
The 4-mc timing frequency is obtained by doubling the output of a 2-mc crystal oscillator. A shaper and driver stage, under control of start and stop elements, transmit a gated block of $4-\mathrm{mc}$ pulses to the counter. The initiating and terminating pulses of the time interval to be measured are applied to trigger the start and stop circuits, respectively.

The counter or scaling circuit consists of six binary stages of the usual locking-trigger type and has a capacity of 64 counts (2°). Because the head or highest-speed

FIG. 2-Binary counter stages use this typical hllp-ilop circuit

FIG. 3-Interval measurements are shown as rows of dots. Sum of dot values in each row equals interval duration

Six styluses projecting from the raised recorder head electrically mark the count on a 2.25 -inch strip of Teledeltos paper. Strip is advanced in one-eighth inch sleps by the ratchet wheel and magnet-actuated pawl on right of housing
stage operates at a 4 -mc rate, the time capacity of the chain is 16 microseconds and the definition is ± 0.25 microsecond. Obviously the capacity could be increased by adding more stages. At the end of any given count, the result is shown by the positions in which the various stages are left after receiving the last input pulse. This information is indicated directly by means of neon lamps and is transmitted to the recorder. A typical binary stage as used in the SITAR is shown in Fig. 2.

Interval Recording

In the recorder and control section the paper advance control is triggered at the end of the count or measurement and the recording paper is moved ahead one space. While the paper is in motion the print control circuit produces a trigger pulse to trip the stylus drivers. The gas-tube stylus drivers respond according to received information from the counter and apply
current through the appropriate styluses to print the result as a row of dots on the recording paper.

After each recorder operation, the reset circuit is tripped. This circuit supplies suitable reset pulses to the start and stop tabes and the counter chain to restore them to the zero or standby condition. If an applied start pulse is not followed within 16 microseconds by a stop pulse, the equipment automatically resets itself. An interlock connection allows the stop circuit to be tripped only after the start circuit has operafed. Thus the interval timer is protected against false operation due to any stray or unwanted pulses that may be applied to it.

Figure 3 illustrates the nature of the record and how it is read.

Timing Precision

The interval timer and recorder has possible application in many fields. The device offers a practical means of making time iaterval
measurements in which the interval is very short and does not repeat. Each pair of applied start-stop pulses causes an independent measurement to be made and recorded. Due to the mechanical action of moving the record paper, each measurement requires approximately 0.5 second to complete. The time between measurements may be as long as desired because the circuit will remain in the standby condition indefinitely.

The timer was designed and built to meet a request from the Physics Department of Princeton University. The machine is being successfully used there in current nuclear research. It was originally equipped to have a definition of ± 0.5 microsecond but this was improved later to ± 0.25 microsecond. Use of techniques and circuits more recently developed would make it entirely possible to construct a machine having a timing frequency as high as 10 mc , giving a definition of ± 0.1 microsecond.

Front panels of equipment contain sockets for all types of tubes

Wiring is kept close to chassis to minimize stray fields

Producing Tube Curves

AN EASY and common method of predicting performance of vacuum tubes is by using plate-current versus plate-voltage characteristic curves, commonly called plate characteristic curves, and plate-current versus grid-voltage or transfer characteristic curves. From these curves it is possible to determine, among other things, plate resistance of the tube, amplification factor, transconductance, power output, and percentage of harmonic distortion introduced.

Desirability of More Curves

Useful as they may be, ordinarily available curves are subject to limitations. For instance, plate characteristic curves such as are given in
tube manuals and electronic books are usually static curves and, for pentodes, are given only for one particular set of screen and suppressor grid voltages. From the designer's standpoint, a set of characteristic curves for each possible combination of these voltages would be very advantageous. With such a set of curves, it would be easy to select the optimum set of conditions under which to operate the particular tube. In the design of audio amplifiers, for example, it would be a relatively simple problem to select the set of operating conditions under which a given output could be obtained with minimum distortion. In electronic control systems, where the irregular por-
tions of the characteristic curves are utilized, a complete set of these curves would enable the designer to pick the operating conditions under which these irregularities could be used to greatest advantage.

Desirable as it would be, to include in tube manuals such a set of curves is impractical, because of the vast number that would be required. The designer then has two choices. He may be satisfied with one set of static curves from which to make his calculations or he may actually plot, point by point, a set of curves for each given set of conditions. Such a process is long and laborious and unless an excessive number of readings are taken, small irregularities, such as appear on 6L6

Block diagram relates elements of system

Circuit shows principal components of each stage

on an Oscilloscope

Stepping circuit switches grid voltage after each characteristic curve is traced on cathoderay oscilloscope. In this way a complete family of curves is automatically produced. Equipment makes possible rapid and detailed studies of all factors affecting tube operation
characteristic curves, are not likely to show.

Automatic Curve Plotter

Instead of manually plotting such curves, the circuit given here offers a method of showing these characteristic curves on the screen of a cathode-ray tube. ${ }^{1}$ By the use of a few calibrated controls, it is possible to produce practically any combination of operating conditions and to observe the shape of the curves under these conditions, as

by HENRY E. WEBKING

Graduate Assistant
Department of Electrical Engincering Oklahoma Agricultural and Mechanical Stillwater, Okla.
demonstrated by the accompanying traces obtained with this equipment. These curves offer a visual indication of the changes in such things as amplification and linearity with changes in operating conditions. Additional flexibility is provided by controls on the front
panel which vary the magnitude of the grid bias steps as well as the number of steps. Consequently, any number of curves with any desired spacing may be shown on the screen of the cathode-ray tube.

In addition to the plate characteristic curves, this circuit (by changing connections to the tube under test) is capable of producing a dynamic transfer characteristic curve (grid-voltage versus platecurrent curve) on the screen of the cathode-ray tube. As with the plate

Family of plate curves for 6SK7

TYpe 6SK7 connected as tetrode
across the upper winding is applied to the tube under test and also provides the horizontal sweep for the cathode-ray tube. Because the plate current of the tube under test flows through the small grounded resistor connected to the upper winding, the voltage across this resistor, when amplified and applied to the vertical plates of the cathode-ray oscilloscope, produces a vertical deflection proportional to the plate current in the tube under test and in synchronism with the corresponding plate voltage independently of waveshape. Thus the curve traced on the screen of the oscilloscope will be a graph of plate current versus plate voltage or a plate characteristic curve.

The output voltage of the lower transformer secondary winding is first fed into a squaring (overdriven) amplifier. (Coming from the common source, this voltage is in synchronism with that applied to the tube under test.) This amplifier changes the sinewave input into a squarewave and changes the phase by 180 degrees. The resultant squarewave is fed into the first electronic switch, which in turn applies voltage on alternate halfcycles to the stepping circuit, the switch being closed during positive half-cycles of its squarewave input and open during negative half-cycles.

The stepping circuit is so arranged that each time voltage is applied, its output voltage will increase by a predetermined amount. Because the first electronic switch applies voltage to the stepping circuit only on alternate half-cycles, the output voltage will correspondingly increase only on alternate half-cycles. Consequently the volt-

Plate characteristics of 675
age on the grid of the tube under test, which is controlled by the stepping circuit, changes only during the time that its plate voltage is negative and consequently when it is not conducting. The grid voltage remains constant during the positive half-cycle of the applied sinewave (the time daring which the plate characteristic curve is traced on the screen), but has a larger negative value for each successive positive half-cycle of plate voltage. Thus each successive characteristic curve traced on the screen of the cathode-ray oscilloscope will be for a larger value of grid bias, and a complete family of curves is traced.

This process continues until the maximum desired value of grid bias is reached. At this time, the second electronic switch operates long enough to reduce the stepping circuit output voltage to zero. The stepping process is then repeated.

The output of the lower secondary is also fed into a 90 -degree phase-shifter ($10 X_{c} \leq R$) and its output in turn is applied to the unblanking pulse generator (squaring amplifier). Its squarewave output, applied to the control grid of the cathode-ray tube, is used to increase the beam intensity during the time that the plate voltage of the tube under test is increasing and thus during the first quartercycle of the applied sinewave, or for the time that each plate characteristic curve is being traced on the screen of the oscilloscope.

Stepping Circuit

The second electronic switch, which discharges the grid voltage stepping circuit, is designed so that it remains open until the voltage

Type 6J7 with cathode degeneration
across it builds up to a predetermined value, at which time it closes and remains closed until the voltage across it decreases nearly to zero. As shown in the circuit diagram, in which all elements are in their same relative positions as in the block diagram, this second electronic switch can be a one-shot multivibrator with the lefthand tube normally beyond cutoff. The first electronic switch is a gated pentode, while the stepping circuit proper is a variable capacitor having one value of 0.01 microfarad.

During the positive half-cycle of the applied sinewave, the first electronic switch is open (pentode cut off) and the capacitor in its output is charged through one half of the duodiode to approximately the d-c power supply voltage. The R-C time constant of this circuit should be a small fraction $(1 / 20)$ of the period of the base frequency to permit full charging in the half-cycle. During the negative half-cycle of the input sinewave (squared before being applied to the switch) this switch is closed and its output capacitor discharges through the other half of the duodiode, thereby charging the grid voltage stepping capacitor and making the grid of the tube under test become more negative with respect to ground. The voltage step produced across the stepping circuit depends on the ratio of its capacitor to that in the output of the first switch and the plate d-c supply voltage ($N \approx C E_{B B}$ / C_{s}, where N is the voltage of each step). The second electronic switch is onen during this operation.

The charging of the stepping circuit canacitor continues every alternate half-cycle, maintaining the phase relation to the input sine-

Nonlinear portion of 6L6 curves
wave shown in the block diagram. When the voltage across the stepping circuit reaches a sufficiently high value, determined by the potentiometer in the multivibrator circuit, the lefthand triode of the multivibrator conducts and the stepping circuit discharges through the diode in its cathode circuit. Thus this diode is the second electronic switch and the multivibrator is the switch control. After the stepping circuit is substantially discharged, the multivibrator returns to normal.

Versatility of Application

The circuit can be built into a compact unit and arranged so that any ordinary type of tube can be tested. A calibrated switch can be provided for changing the magnitude of grid voltage steps and a potentiometer for varying the number of steps. A small resistor with a shorting switch, placed in the cathode circuit of the tube under test, enables the operator to show the effect of cathode degeneration on the tube characteristic. Similarly, a switch in series with the screen by-pass capacitor will permit showing the effect of screen degeneration. Another potentiometer may be provided to vary the screen grid voltage of tetrode and pentode tubes.

Some interesting observations may be made if a potentiometer is connected between the screen grid and ground with the suppressor grid connected to the movable arm. As the potential on the suppressor grid is varied from a positive value to zero, the characteristic curves change from those of a tetrode to those of a pentode. This effect is shown in the accompanying pic-
tures. There are many possibilities for additional potentiometers and switches which will make the circuit even more flexible.

One of the main applications of this circuit, its use in the design of electronic circuits, has already been pointed out. This application offers the designer a method of easily trying all possible circuit combinations in order to ascertain the best combination for a particular case. It also affords him a method for noting the effects on the characteristic curves of such things as feedback and degeneration.

In addition, an opportunity is provided for making a more detailed study of any portion of the curves by merely increasing the gain of the amplifier in the cathode-ray oscilloscope. Such an enlarged picture would be useful, for instance, in the design of low-level audio amplifiers. These amplifiers are usually operated with such low plate voltages that the portion of the characteristic curves actually required for design purposes is either not given or is too small to be of any practical value.

This circuit can also be used to obtain a full set of characteristic curves and thus check the comparative performance of new tubes during manufacture. These curves can be photographed and used for further study. If small irregularities appear on the curves, that portion of the curves on which they appear can be enlarged on the screen of the cathode-ray tube, making it easier to determine their exact nature.

Another application of this circuit is its use as a lecture-room or laboratory demonstration apparatus. It provides a positive means of demonstrating what happens to a tube's characteristic curves, and consequently to its operating characteristics, when element voltages are varied, when degeneration is used, and when various circuit parameters are changed.

References

(1) Jacob Millman and Sidney Moskowitz, Tracing Tube Characteristics on a CathodeRay Oscilloscope, Electronics, p 36, March 1941 ;
(2) E. C. Easton and E. L. Chaffee, Pulse Type Tester for High-Power Tubes, Elec tronics, p 97, Feb. 1947.

VOLTMETER

Abstract

Simple nomograph gives true voltage in high-impedance circuit when measurements are made with two different voltage ranges of an ordinary low-sensitivity voltmeter. Underlying equations for voltmeter error are given, with examples of use

MEASURING voltages across high - impedance circuits with voltmeters of sensitivities in the order of 1,000 ohms per volt will give readings that are appreciably less than the true voltages.

The higher the input resistance of a voltmeter, the lower will be the required deflection current and hence the smaller the error. With voltmeters of 20,000 ohms per volt sensitivity or greater, the error is usually negligible.

There are many voltmeters in use of the 1,000 and 5,000 ohms per volt class, and frequently these are the only instruments available when it is desired to know the actual voltage across a circuit.

The purpose of this paper is to provide an equation (suitable for slide rule calculations) and a nomograph (which only requires a straightedge) that will quickly yield the true voltage in a circuit after two measurements are taken with a voltmeter of low sensitivity. The only requirement of the voltmeter employed is that the internal resistance of the meter be directly proportional to the voltage range selected. All of the common type of current-operated voltmeters come under this classification.

FIG. 1-Circuit of two-range voltmeter used as example

The circuit shown in Fig. 1 represents a voltmeter with two ranges connected to a simple network. In practice, circuits are usually more complex than this, but they can be reduced to an equivalent circuit similar to that in Fig. 1.

Let $E=$ true voltage across R_{n} with voltmeter disconnected
$E_{B}=$ voltage measured across R_{n} on highest meter range that will give an accurate reading
$E_{L}=$ voltage measured across R_{n} on next lower range
$\mathrm{E}_{\theta}=$ source of constant voltage
$R_{B}=$ internal resistance of voltmeter when measuring E_{B}
$R_{L}=$ internal resistance of voltmeter when measuring E_{L}
$S=$ ratio of two scales used; $S=R_{H} / R_{L}$
$R_{n}=$ resistance across which output voltage is developed
$R_{m}=$ series dropping resistance that accounts for difference in E_{L}, E_{E}, and E.

Derivation of Equation

Simple circuit theory allows us to write

$$
\begin{align*}
& E=E_{G} \frac{R_{n}}{R_{n}+R_{m}} \\
& E_{H}=E_{G} \frac{R_{H} R_{n}}{R_{H} R_{m}+R_{H} R_{n}+\bar{R}_{m} R_{n}} \\
& E_{H}=E \frac{R_{m}+R_{n}}{R_{m}+R_{n}+\left(R_{m} R_{n} / R_{H}\right)} \tag{1}\\
& E_{L}=E \frac{R_{m}+R_{n}}{R_{m}+R_{n}+\left(R_{n} R_{n} / R_{L}\right)} \tag{2}
\end{align*}
$$

Substituting $S R_{L}$ for R_{H} in Eq. 1 and solving for E in both equations, we have

$$
\begin{align*}
& E=E_{n} \frac{R_{m}+R_{n}+\left(R_{m} R_{n} / S R_{L}\right)}{\mathrm{R}_{m}+R_{n}} \tag{3}\\
& E=E_{L} \frac{R_{m}+R_{n}+\left(R_{m} R_{n} / R_{L}\right)}{R_{m}+R_{n}} \tag{4}
\end{align*}
$$

Rearranging Eq. 3 and 4

$$
\begin{align*}
& \left(R_{m}+R_{n}\right)\left(E-E_{H}\right)=E_{H} \frac{R_{m} R_{n}}{S R_{L}} \tag{5}\\
& \left(R_{m}+R_{n}\right)\left(E-E_{L}\right)=E_{L} \frac{R_{m} R_{n}}{R_{L}} \tag{6}
\end{align*}
$$

Dividing Eq. 5 by Eq. 6

$$
\begin{aligned}
& S E_{L}\left(E-E_{B}\right)=E_{H}\left(E-E_{L}\right) \\
& E=\frac{(S-1) E_{B}}{S-\left(E_{B} / E_{L}\right)}
\end{aligned}
$$

This equation is particularly suited to slide rule calculations.

Example 1: A voltmeter, when placed across two terminals, reads 105 volts on its 200 -volt range. The meter is switched to the 100 -volt range and reads 70 volts. Divide 105 by 70 and subtract the quotient from the scale ratio of 2.0 . This gives us 0.5 for the denominator. It should be noted at this time that when the scale ratio is 2.0 , the term ($S-1$) in the numerator equals 1.0. Now divide 105 volts by 0.5 and the result is the true voltage of 210 volts.
Example 2: A voltmeter reads 50 volts on its 150 -volt range. On the 60 -volt scale it reads 40 volts. $E_{H} / E_{L}=50 / 40=1.25$. Subtract this from the scale ratio of 2.5 and the denominator equals 1.25. Divide this into E_{H} (50 volts) and multiply the quotient by $(2.5-1)$ or 1.5 . The true voltage is 60 volts.

Use of Nomograph

Although this equation is not difficult to use when one has become familiar with it, still it is less trouble and quicker to lay a straightedge on a nomograph and read the unknown value directly.

The nomograph presented in this paper is divided diagonally into two parts. Each half is used in the same way. The graph was divided to facilitate reading the four scales for $S=5,2,4$, and 2.5. These values of S were chosen after 26 volt-ohmmilliammeters of 10 manufacturers were examined for their most

LOADING

By R, E.LAFFERTY

Chief Engineer, WSLB and
Radio Instrument Laboratories Nt. Lawrence Broadcasting Corp.

Ogdensburg, New York
popular switching ratios of both d-c and a-c ranges. The favorites are 5 and 2 , with 4 and 2.5 used least. The ratio of 10 was used so seldom that it was not included in this nomograph.

As in the case of the equation, the best way to explain the use of the nomograph is with example moblems. To compare the results of :he equation with that of the nomograph, use the same problems as before.

Example 1: $E_{H}=105$ volts and $E_{L}=70$ volts. Place a straightedge between these values on the E_{n} and E_{L} scales for $S=2.0$ and let it extend to the E scale. The straightedge will pass through 210 volts on the E scale, which is the true voltage. Note: This lower right half of the nomograph is also used when S $=5$. Since values here are beyond range of nomograph, values on all three scales were multiplied by 10 .

Example 2: $E_{n}=50$ volts and $E_{b}=40$ volts. This solution requires the use of the upper left half of the nomograph since $S=2.5$. Using the scales for $S=2.5$, with all scale values multiplied by 10 , the true voltage is found to be 60 volts on the E scale.

The equation and nomograph will yield the true voltage only when the measurements are taken across linear circuits. Should lowering the voltage, due to voltmeter loading, change the network resistance, the nomograph can not be used.

The question arises as to how well the nomograph will apply to vac-uum-tube circuits. Placing a cur-rent-operated voltmeter between a tube element and ground will lower the voltage on that element. Experi-

FIG. 2-Voltmeter loading nomograph. Take voltage readings on two ranges, divide higher range scale by lower to get S (either 2, 2.5, 4, or 5 on standard volt-ohmmillicmmeters), then place straightedge on measured values (E_{L} and E_{H}) for S scale in question and read true voltage on adjoining E scale. If range of any scale is inadequate, multiply all scale values by 10,100 , or any other convenient factor
ment shows that when the tube is operated with fixed bias the element resistance changes considerably with changes in element potential and the nomograph should not be used.

When cathode bias is employed, the reduction in voltage is accompanied by a proportional reduction in current. Thus the resistance of
the tube remains substantially constant within the normal limits of operating voltage for the tube. In this instance the nomograph may be used, but with reserve. The resulting error is usually less than 5 percent but higher errors have been encountered. However, the error before using the nomograph was in some cases as high as 60 percent.

Amplifier and gate for memory is compactly constructed on channel that plugs into computer for quick servicing

By T, K, SHARPLESS
Ohiet, Digital Computer Section Moore Sohool of Electrical Engineering University of Pemnsylvania

Philadelphia, Pa.

Design of

This 2-inch long mercury line introduces about 40 microseconds delay

MERCURY DELAY LINES

Mercury is used to obtain millisecond delays for radar, computers, and memory devices because it transmits compression waves relatively slowly, introduces neg. ligible loss, and has an impedance coniparable to that of crystal transducers. Recirculation and temperature compensation technigues are presented

STORING information and timing events are two applications of electronics that have recently become important. Electronic timers for providing oscilloscope and radar indicator sweeps, and image storage tubes that retain patterns for protracted periods are familiar devices that perform these functions. The mercury delay line is a basic component that also performs these and many related useful functions.

The line consists of a column of
mercury in a container. At one end of the column is a quartz crystal that is connected to the electrical circuit of which the line is a part. Electrical pulses from the circuit vibrate the crystal sending ultrasonic wave trains down the mercury column. The wave trains are reflected at the far end of the line and return to the crystal where they are converted into electrical pulses and re-enter the circuit. A second crystal can be used at the far end of the line instead of the reflector,
or multiple reflections can be used. The mercury delay line can be used in any circuit requiring delays of hundreds of microseconds with rise times in the order of 0.05 to 0.1 microseconds.

Before analysing the time delay action of the mercury line, it is well to review a few special examples of its applications. Timing of sweeps is one of the first uses to which the mercury line was put. When a repeating time base, such as that used for range measurement in ra-

Mercury delay lines are installed in heavy thermal-conducting holders behind this pilot model of the 3,000-tube EDVAC automatic compuler. The fisal model will use mercary lines in glass tubing about $2 . \mathrm{ft}$ long, providing 384 microseconds delay
dar, is required, it can be generated by triggering a sweep oscillator and simultaneously applying the triggering pulse to a mercury line. The pulse traverses the line in a certain fixed time and reappears to retrigger the sweep generator, and is again applied to the mercury line. Because the mercury line always delays the triggering pulse for the same interval, the sweep repeats itself with extreme regularity. The delay is proportional to the length of the mercury line ${ }^{1}$.

Mercury lines are also used for storage. A pulse fed into the line or storage tank remains in it for a predetermined period, dependent on the length of the mereury column.

Inasmuch as this storage function is similar to the mental process of remembering, it is referred to, especially in connection with automatic computers, as memory. In these computers the result of one manipulation, forming a portion of an extensive computation, is re-
quired in a subsequent manipulation. In such cases, the signal that is to be re-used, usually a binary pulse sequence, is fed to the mercury memory tank. The line is made of a length that will store or delay the required amount of signal until the time when it will be re-used in the computation ${ }^{2}$.

Data Storage in Digital Computers

Experience with large scale computing machines indicates that the most important problem to be
solved in their design is that of providing high speed information storage. Moreover, if a suitable low cost memory can be developed, all information, both numerical data and routine intruction may be stored in the same medium and, indeed, in the same organ. If such a memory were provided, the question of how much problem and routine storage must be provided reduces to the question of how much total storage is required. In addition, a single organ for all storage opens the possibility for the machine to perform logical and arithmetical operations on its own instruction, thus greatly increasing its generality. The mercury line provides such storage at a cost of approximately ten cents per binary digit.

Storing Pulse Chains

The system of storage used with delay lines depends upon timed distribution of the electrical impulses that represent the information, called time division in communication circles. The coding of the pulses in this application is of no consequence except that it is assumed that the presence or absence of the pulse are the only indications possible in each time position. Figure 1A shows a typical "word" of five pulses; T represents the pulse spacing in time, and p the pulse width.

With information in the form of pulse chains, a possible method for storing or remembering the data is to insert the timed series of pulses into a suitable delay medium that requires a duration W for one pulse to traverse its length. Thus there is trapped in the delay at any time W / T pulses. If the output of the delay line is fed back to the input, through suitable amplifiers and pulse shaping circuits, as shown in Fig. 1B, the data is trapped and circulating, ready to be called out when needed.

The primary design limitation of the delay storage line is its highfrequency response or rise time of the circuits. For, clearly, the higher the repetition rate of the pulses, in other words the smaller is T, the more information can be stored in a given delay W. The next
factor in importance is the amount of loss in the delay medium itself, for loss limits the length W that can be employed. Along with this factor, consideration must be given to overall physical size. Thirdly, the delay must be fairly constant with such factors as temperature, pressure, and humidity. Fourthly, it must be possible to properly terminate the delay line to prevent reflections from bouncing back and forth. Finally, it should be possible to build the device relatively easily and cheaply and yet have a rugged, reliable piece of equipment. The mecury line satisfactorily meets all of these requirements.

Ultrasonic Delay Lines

Mercury is used as the transmission medium for several reasons. Being a liquid it has a relatively low acoustic velocity and also will transmit only one mode of vibration,

FIG. 1-For use with delay lines, information is in the form of pulse chains (A). These chains can be recirculated (B) through gates and the line so as to be stored as long as necessary. To compensate for temperature effects on the mercury lines, α timing oscillator (C) can be frequency controlled by an auxiliary line, the output being used to time pulses to the bank of mercury memories
namely compressional waves. Moreover, the acoustic impedance of mercury is high, of the same order of magnitude as that of quartz and other crystals suitable for use as electromechanical transducers at high frequencies, so that adequate coupling can be obtained. Mercury also has low attentuation per unit length up to frequencies in the order of ten megacycles.

Compressional acoustic velocity in any medium is $V=(E / \rho)^{\perp}$ where E is Young's modulus and 0 is density. For mercury at 20 C , the velocity of the wave is $57,100 \mathrm{in}$. per sec, corresponding to a time delay of 17.52 microsec per in. Acoustic impedance of any medium is $Z={ }_{\rho} V$, giving, for mercury at $20 \mathrm{C}, 19,700$ acoustic ohms per square cm . The attenuation of a rectangular pulse of 0.25 to 0.5 mi crosec duration applied at the driving crystal is 1.9 db per ft . measured at 20 C . The attenuation for sinewaves, including wall effects of 0.5 in. inside diameter tubing, is $0.012 f^{2} \mathrm{db}$ per ft . where f is measured in megacycles. The temperature coefficient of time delay is 0.0003 microsec per microsec per $\operatorname{deg} \mathrm{C}$.

A delay line designed from these parameters and suitable for storing 40 pulses spaced one microsecond apart was built in a 2 -in. piece of stainless steel tubing $0.5-\mathrm{in}$. inside diameter. Knurled caps at each end hold the end cell assemblies in place. These end cells consist of 7.5-mc X-cut circular quartz crystals each soldered to ceramic end pieces to which the leads are soldered. The rise time on the line is limited by the time thickness of the crystal driver and is about $1 / 30$ microsec.
There are two principal sources of loss: a voltage loss of 400 resulting from the limitations of the piezoelectric effect, and a transmission loss in the mercury, which is negligible for this short line. Because a gain of slightly over 400 is fairly easily achieved even at these frequencies by means of electron tube amplifiers, the losses are not very important.

Although the delay through mercury depends on temperature, variations from that factor are very

FIG. 2-Waveshapes at critical points throughout the recirculation mercury memory are shown at the right
small, one part in 3,000 per deg C. The quartz crystal matches the impedance of the mercury very closely, giving a reflection coefficient of only 12 percent. The quartz-ceramic match is practically perfect, and in addition, the ceramic end pieces are cut at an angle to break up the back wave eliminating its reflection. The construction of the line is simple and straightforward, as this brief description indicates.

Auxiliary Circuits

Figure 2 shows a complete unit as set up in the laboratory. This circuit held groups of pulses for as long as three days, after which the pulses were cleared out for convenience. The pulses applied to the transmitter crystal (D) are packets of 7.5 -mc waves about 0.3 microsec long. These packets travel down the line, are picked up by the receiving crystal, and amplified. The packets are then rectified by a germanium crystal and the pulse envelope again amplified to a level sufficient to operate the recirculation gate tube and the output gate tube. The pulses then proceed through an inverter tube to the clocking or synchronizing gate tube. Here coincidence with a standard synchronizing pulse each microsecond produces a standard pulse at a fixed time that drives the $7.5-\mathrm{mc}$ oscillator or packet generator, starting a new cycle. The clocking is very important because it keeps the pulses in step as well as preventing degeneration of the pulses over a number of circulations.

The waveshapes at various points throughout the experimental circuit are also shown in Fig. 2. A group of three pulses is sent into the tank (A). The standard clock pulses (B) coincide with the three stored pulses to produce pulses (C) that drive the packet generator. The output of the generator (D) traverses the mercury line and is amplified giving pulses (E) that are rectified and re-enter the gating circuit. The pulses are then ready to be relocked (F) or they can be drawn out of the tank (G) as remembered data. (The time base of the output pulses (G) is to a different scale than the others so as to show several groups of three pulses spaced 40 microsec apart, illustrating the storage of several pulse groups.)

Temperature Compensation

Because direct transmission losses in the mercury column are small, it would seem feasible to extend the length of the line to hold many more than 40 pulses. The major practical limitation to this extension is that of delay variations with temperature. With a ± 0.1 microsec tolerance, a tank $1,000 \mathrm{mi}$ crosec long would have to be kept within $\pm 0.3 \mathrm{C}$. To keep a group of tanks at a temperature fixed within these limits is a difficult, though not impossible, job.

If a tank is used to establish the frequency of the pulses, in other words-their spacing, it becomes necessary only to keep all tanks at the same temperature $\pm 0.3 \mathrm{C}$. A block diagram of an automatic fre-
quency control unit for this purpose is shown in Fig. 1C. A $1.0-\mathrm{mc}$ oscillator is tuned by a reactance tube whose control voltage is obtained from the coincidence of a pulse from a dividing counter. A single pulse is delivered to the tank when the counter starts counting the pulses that are coming from the oscillator.

For storing N pulses in a tank, one uses a tank of $N T$ length at a given temperature and an N-stage counter. In this case N is 1,000 and T is 1 microsec at 20 C . At the end of 1,000 microsec the pulse emerges from the tank and the 1,000 th pulse leaves the counter. These two pulses are fed to a coincidence tube whose output voltage is used to control the frequency of the oscillator and hence the pulse spacing is adjusted to keep 1,000 pulse spaces available in a similar tank at similar temperature.

The temperature compensating system has been set up in the laboratory and has proved capable of control over a temperature range of 45 C . All the tanks are kept within $\pm 0.3 \mathrm{C}$ by mounting them all on a thermally conductive base that prevents sizable thermal potential differences between them. Also, care in placing the memory cabinet will remove thermal sources and sinks.

The mercury delay memory tank appears to be such a promising device that plans at the Moore School include a future large scale digital computer using this memory means. It is hoped that within a year such a machine will be an actuality; a machine that will have a high speed memory equivalent of 1,000 tendigit numbers, computing speeds somewhat faster than the ENIAC, and employing only 3,000 tubes. The mercury delay tank described in this paper is the result of many peoples' efforts. Among those whose contributions are known to the author are J. P. Eckert, Jr., J. W. Mauchly, C. B. Sheppard, Joseph Chedaker, and Herman Lukoff.

References

(1) L. N. Ridenour, "Radar System Engineering', McGraw-Hill Book Co., p 667, neering, McGraw-Hill Book Co., p 667, New (2) Mercury Memory Tanks in New EDVAC Computer, Electionics, p 168, May, 1947.

Check ALL These Features:

 ... We Do!BOTH from the engineering and manufacturing standpoints, Mallory carbon controls are designed to give you more for your money-more, actually, than you can get from any other make. Rigid factory check-ups make sure that you get it. They reject the controls that don't measure up-okay the ones that do.

It's a fact that no other carbon controls offer so many features-a fact, too, that none are subjected to more severe tests to make certain they reach you without impairment. Long life, low noise level, low susceptibility to humidity exposure, are

Full duta, including charts and drauings, on the complete Mallory line of carbon and wire-wound variable resistors. just a few values you expect and get when your carbon controls are made by Mallory. Send for the booklet illustrated at left. Controls Offer All This:

Low "Hop-Off" Resistance
Minimum Short-Out Resistance
Smooth-Operating Mallory Alloy Contactor
High Humidity Resistance
Low Noise Level
Extremely Accurate Taper Construction
Non-Distoring, Non-Loosening Assembly Construction Spring Pressure Terminals, Smooth Bearing Surfaces, Mallory Alloy Spring ConHact Arms, Self-Lubricating Elements-all contributing

TUBES AT WORK

Including INDUSTRIAL CONTROL

Edited by VIN ZELUFF

Electrically Controlled Permanent Wave Machine 140
Tracking the Permeability-Tuned Circuits. 142
Automatic Audio Phase Reverser 156
Dust Precipitators for Air Conditioning 162
Spectrophotometer for F B I 166
Instruments Speed Oil Refining 168
Technical Data on Electronic Micrometer 172

Electronically Controlled Permanent Wave Machine

By Eugene W. Nelson
Detroit, Michigan

AN ELECTRONIC permanent wave machine, known to the beauty culture trade as the Flash Wave, is said to effect important economies
in the operation of beauty salons and promises better service to the customers of these shops. The machine and the permanent wave solu-

Timer circuit for automatic control of heat from the permanent wave machine

Electrically controlled Flash Wave in use. The box on top of cabinet contains the electronic conirols of the machine made by Vernan Mfg. Company. Johnstown, Pa.
tion used with it for waving hair are the products of seven years of research and testing.

Sixty-cycle current from the line is stepped down to 12 volts at about 35 amperes and is applied to the lightweight insulated plastic "heaters" in which are placed the prepared curls of hair. Control of the heating current is done by an electronic circuit which offers a completely automatic means of utilizing the advantages of high heat without the danger of over-processing the hair as would be the case without such controls. Its circuit is shown in the diagram.

Steam-Heated Curl

The heaters used with the Flash Wave machine are closed at each end. Thus the steam which is instantaneously generated by the intense shot of heat acting on the permanent wave solution with which each curl of hair is treated is retained (under negligible pressure) around the curl.

Conventional permanent wave machines apply heat much more slowly than does the Flash Wave. Thus, the steam inside the individual heater is generated more slowly than in the electronically-controlled machine and the moisture created by vaporization of the wave lotion is dissipated almost as rapidly as it is formed. Consequently, the hair may dry out and become brittle. In addition, most of the heaters used on conventional machines are open at each end, instead of being closed as in the Flash Wave. The open ends help the drying process.

Application of Flash Ware heat to the hair lasts from as little as 5 seconds to as much as 20 seconds. Actual duration of the heat depends upon condition of the hair. Normal hair requires a shot of heat lasting from 7 to 10 seconds.

After the proper application time has been determined by a test curl, the electronic controls are set and connection is made to each heater. The machine is also equipped with safety devices which prevent any current from flowing unless all parts of the apparatus are functioning perfectly.

Reports from the field indicate that six permanent waves can be given in a single hour with this

blow

silitane-treated DIEFLLEX

Here's a happy combination of materials that will solve your protlem. Dieflex tubings and sleevings of braided glass fiber are impregnated with heat-defying Silicone. The result is an insulating product that will stand unusually high temperatures for long periods of time. You can use it confidently where other products have failed.

Dieflex tubings and sleevings in all VTA and ASTM grades are carefully manufacturec to help solve your insulatior problems. Whether the base is braided cotton or inorganic glass fiber, you're sure of a continuously high standard of quality that insures the best performance in your product.

DIEFLEX PRODUCTS LIST

MADE WITH BRADPE COTTON SLEGINO BASE -VIA Crade A-1 Magnere Grade Tarnishod Tubhas - VTA Gŕade B-1 Standard Crede 7ernlshed Tubings -VIA Grades C-1 and C-2 Hocivly Seeted Senurated Sleov-Ingit-VTA Grace C-3 Lighty Ceated Seturated Sleev-lings-Hoavy Wall Varnishod Tubings and Sakurated Sloovings.
made with eraldid class stinyinc base - VTA Grade A-I Magnete Grado Varnished Fberglas Tub-Inss-VIA Grade C- 1 Extr: Heavliy Semrared Fberglas Slecvingb-V1A Grede C-2 Heavily Sapurated Albergfies Sloovings-VTA Crado G-3 Uightly Soturatod Fiberglas Slecvings-Silleene Treared fiberglas Varinighed Tubings and Setureted Sleovinge.

MANUFACTURERS CORPORATION

*hicaco 6 565 W, Westingion Boviovert miwauker 2 312 E, Wicrensin Aw. FLocal Steak Avaligble
*leverand 1 1231 Superior Are.; N.E.
DAYTON 2 1915 Minual Homa Butuling.

IMC Representatives
DETROIT 2-1 1341 Woodward Ave. PEORIA 5-101 Heinz Court MINNEAPOLIS 3-1 208 Harmon Place

Authorized Distribufors
INSULATION and WIRES INCORPORATED
St. Louis 3, Mo. - Arlanfa 3, Ga. Boston 20, Mass: Detroif 2, Mich. - Houston 2, Tex. - New York $\overline{\text { I }}$, N, Y.

TRI-STATE SUPPLY CORPORATIONS
Los Angeles 13, Cal. - San Francisco 7, Cal. - Seaflle 4, Wash.

The Front Cover-Console for Dubbing

ASOLUTION to the problem of mixing the outputs of up to nine different sound channels while watching a slidefilm or motion picture in a darkened projection room is pictured on this month's cover. Taken at Reeves Sound Laboratories, New York City, it shows their new recording console that can accommodate up to four persons without crowding, as required for introducing, combining, and fading out narration, background music, and sound effects smoothly at precisely correct instants during production of the final sound track or master record.

For each channel there is a mixer control, linked to a numbered tape indicator on the volume indicator panel so that the operator can see at a glance the level settings of all channels and can set each channel to the precise level called for on the cue sheet. Each channel has twin equalizer controls to permit accentuation or attenuation of low and high audio frequencies separately. Switch-controlled twin filters provide varying low and high-frequency cutoff over a wide range as required for such unusual effects as simulating telephone conversations or the tone of an old orthophonic phonograph. Selective volume compression controls operate on a split-channel basis to permit nondiscriminative compression adjustments. Twin master mixer potentiometers are provided for split-channel operation. Remote indicators for all mixer controls are illuminated from the rear in such a way as to show red when the mixer is keyed off; operation of the mixer key changes the illumination from red to white, and the white illumination increases in intensity as the mixer control is advanced.
One of the two volume indicators is a conventional illuminatedscale high-speed type reading in vu, while the other is a unique cathode-ray instrument that shows on its screen a duplicate of the actual sound track as it is being recorded. Distortion and track modulation are thus indicated to the operators at all times.
All static sound channel units are remotely located. Elimination. of preamplifiers in this way insures prevention of objectionable microphonic noise during recording.
An illuminated footage counter on the panel furnishes an exact check on film position and length, allowing the mixer operator to record vital timing cues on his mixing script. Side panels for the film editor and director have similar footage counters. Fluorescent strip lamps on the console provide ample illumination of controls when the room is darkened for projection.

Block diagram of the electronically contolled permanent wave machine
electronically-controlled machine. In addition, there is almost no heat dissipated to either customer or operator; heaters can be removed immediately after application of heat with no time wasted in cooling before removal; and operation requires no special training on the part of an operator who is already experienced in standard techniques of giving permanent waves.

Tracking the PermeabilityTuned Circuits

By A. W. Simon
Ascistant Professor of thplied Dechanics

In a previous article ${ }^{1,2}$ the author has given simple formulas for the calculation of the padder and trimmer coils required to reduce to a minimum the mistracking between the oscillator and r-f sections of permeability - tuned superheterodyne receivers. By the application of these formulas, the maximum deviation due to mistracking between sections can be reduced usually to less than 1 db .
There is another cause of mistracking, namely, the reactance coupled into the r-f section by the antenna circuit. While the effect of this reactance is not serious in the case of a rod or wire antenna, it becomes quite marked for the now widely used loop antenna, due to the higher degree of coupling used. However, the reasoning which underlies the deduction of the above mentioned formulas also suggests how the effect of the antenna circuit can be neutralized.
The basic principle of the perne-ability-tuned circuit is that the inductance of the respective ganged
(continued on p 156)

Western Electric NOISE ANALYZERS

... for noise measurements and analysis ... for acoustic testing and inspection

These sturdy, portable units give you a simple, reliable means to measure the magnitude and general frequency composition of noise, where a detailed analysis of the noise into specific frequency components is not required.

The RA-361 (battery operated) and RA-362 (a-c line operated) each consists of a sound level meter unit and a filter set. 'The filter set permits you to select any one of 13 high pass or 13 low pass filters at approximately octave spacing, or the octave bands between the high and low pass sections.

A Western Electric 633A non-directional moving coil microphone is provided. You may also order an RA- 355 vibration pick-up for measurement of vibrations not accompanied by noise.

Because of their filter sets, Western Electric Noise Analyzers are ideal for many production testing applications where sound level meters alone are of little value. For full information, call your Graybar Representative, or send the coupon.

- QUALITY COUNTS -

THE ELECTRON ART

Edited by FRANK ROCKETT

Culturing Crystals 144
Electron Linear Accelerator Demonstrated 144
Improvements in Small Tubes 144
Magnetron as D-C Amplifier 182
Measuring Distance Precisely 186
Vertical Position Indicator 190
Statistical Methods Simplify Evaluation of Data 194
Myographs 200
Survey of New Techniques 208

Electron Linear Accelerator Demonstrated

A 3 -ft long waveguide lined with gold-plated disks, which retards $4-\mathrm{cm}$ microwaves to α velocity equal to that of the injected electrons, accelerates electrons to within 99 percent of the free-space speed of electromagnetic waves, giving the electrons an apparent mass 2.000 times their rest mass and an energy of 1.5 mev . The electrons, traveling with the wave, are accelerated by its potential gradient. The accelerator, described by Dr. William W. Hansen (left) at the IRE west coast convention, is to be extended to 20 ft in the basement of the Microwave Laboratory at Stanford University. This size presents no problem in shielding against radioactivity, and will provide experience for building the final 100 to 200 ft model that will develop $1,000 \mathrm{mev}$ electrons. The accelerator will make available artificial cosmic rays corresponding to fairly energetic natural rays, and thus simplify investigations now conducted in flying laboratories. The accelerator is excited for a millionth of a second every sixtieth of a second from a one-megawatt magnetron. It is hoped that the final model can use 1,000 megawatts. This accelerator is simpler and cheaper than a synchrotron, and, using light-weight electrons instead of heavy protons as in cyclotrons, can produce higher-velocity particles, with which much information about the constitution of the electron can be gained. Dr. E. L. Ginzton, of the physics department faculty, and postgraduate students in physics. William Kennedy (center) and Richard Post (operating controls), are assisting in the development that is being sponsored by the Office of

Pilof production paved the way for quantity culturing of synthetic piezoelectric crystals

Piezoelectric crystals, artificially cultured by Western Electric Co. using techniques developed by Bell Telephone Labs. will replace about 90 percent of the natural quartz in the telephone system in a few years. The artificial crystals, ethylene diamine tartrate, although differing chemically from natural quartz, are piezoelectric and so are cut into plates and gold coated to form crystal filters. (Synthetic piezoelectric crystals for sonar, developed during the war to meet the tremendous need for transducers, were ammonium dihydrogen phosphate.) In commercial production, the artificial crystals weigh about a pound, are six inches long, and two by three inches in cross section. Seeds of crystals, about a third of an inch across, are first grown by evaporation of a saturated solution of the chemical. The seeds are then constantly slowly washed by a supersaturated solution, the temperature being kept within a tenth of a degree. With this production technique a crop of crystals can be harvested every three months.

Improvements in Small Tubes

Сомраст, mechanically dependable electronic equipment requires small tubes of exceptional characteristics. Recent developments have produced smaller and less microphonic tubes. For example, the Victoreen Instrument Co. has changed the construc-

FM SIGNAL GENERATOH

Designed to meet the exacting requirements set forth by leading FM and television engineers throughout the country, the 202-B FM Signal Generator has found widespread acceptance as the essential laboratory instrument for receiver development and research work.

Frequency coverage from 54 to 216 megacycles is provided in two ranges, 54 to 103 megacycles and 108 to 216 megacycles. A front panel modulation meter having two deviation scales, 0-80 kilocycles and 0-240 kilocycles, parmits accurate modulation settings to be made.

Although fuadamentally an FM insitrument, amplitude modulation from zero to 50\%, with meter calibrations at 30% and 50%, has been incorporaled. This $A M$ fealure offers increased versafillity and provides a means by which simultaneous frequency and amplitude modulation may be obtained through the use of an external audio oscillator:
The internal AF oscillator has eight modulation fıequencies ranging from 50 cycles to 15 kilocycles, any one of which may be convenienlly selected by
a rotary type switch for either amplitude or frequency modulation.

The calibrated piston type aftenuator has a vollage range of from 0.1 microvalt to 0.2 volt and is standardized by means of a front panel output monifor meter.
The output impedance of the instrument, at the ferminals of the R.F. outpul cable, is $\mathbf{2 6 . 5}$ ohms.

AVAILABLE AS AN ACCESSORY

is the 203-B Univerter, a unity gain frequency converter which, in combination with the 202-B instrument, provides the additional coverage of commonly used infermediate and radio frequencies.
R.F. Range: 0.4 mc to $\mathbf{2 5} \mathrm{mc}$.
R.F. Increment Dial: $=250 \mathrm{kc}$. im 10 kc . increments.
R.F. Oulput: 0.1 microvolt to 0.1 volf. Also approximately 2 volts maximum (uncalibrated).
For further information write for Catalog E

UNIVERTER
Type 203.B

BOONTON RADIO

 BоонTON.N.S.U.S.A. othcization UR

FIG. 1-Triode in T. 3 bulb compares in size to cigarette: diode in T. 1 bulb is approximately the same diameter as a wooden match; triode at center in T-2 bulb
tion of their VX-41 subminiature electrometer tube (Electronics, p 106 March 1947) so that it is less microphonic and thus more widely applicable than heretofore. This tube, requiring 12.5 milliwatts of heating power, has a grid current of less than 10^{-15} ampere and a grid input resistance greater than 10^{15} ohms and yet is sufficiently stable to be used in d-c amplifiers and portable equipment.

Where power drain is not limited but space is, indirectly heated subminiature tubes (Electronics, p 154 May 1946) can be used. These tubes, using the button stem, are being made by Sylvania Electric Products in a variety of types in the T-3 bulb, some types in a T-2 bulb, and a diode in a T-1 bulb (SN-946) having the characteristics of half a 6 AL5 is under development (available under allocation). Figure 1 shows the relative sizes of these tubes.

Although these tubes represent the smallest size available in any quantity, the Tube Laboratory of the National Bureau of Standards has developed an even smaller experimental microtube shown in Fig. 2. This tube, scaled down from a conventional subminiature type by successive simplifications, is a development of the basic and applied research program on vacuum tubes undertaken by the Laboratory in collaboration with industry. In such electronic devices as automatic computers where thousands of tubes are used, such tubes will represent a great saving in space.

One of the limitations to uniformity, life, and cheapness of tubes is the unpredicability of electron emission from cathodes and other elements within the tube envelope. Although the exact mechanism of cathode emission of electrons is not linderstood, it is recognized that such impurities in the base nickel as iron, carbon, silicon, and manganese affect the emission. The matter is sa important that the American Society for Testing Materials has created a special committee with industry wide representation to study the problem.

To obtain quantitative data on the effect of any one impurity, tube manufacturers are applying stastical techniques to large samplings of their outputs. The NBS Tube Laboratory, on the other hand, is attacking the problem in the laboratory by controlled syntheses. Impurities, singly or in combinations, are deposited directly on the base nickel in measured quantities, thus isolating the variables for investigation.

Preliminary studies are encouraging, but not conclusive thus far. Other research at the Tube Lab. is directed toward preventing gas cleanup in high-current industrial relay and rectifier tubes. Apparently the major part of the cleanup in low pressure (3 to 10 microns) gas tubes is caused by ions reaching the anode at sufficiently high velocities to penetrate into the material. The gas can be driven from the anode by heating it.

Microphonic disturbances are another limitation to the operation of

FIG. 2-Diode microtube illustrates extreme reduction in size possible for tubes

FIG. 3-Sources of microphonics are delected by vibrating tube and observing motion of internal parts
electron tubes, as previously mentioned. Mechanical studies made at the Tube Laboratory by vibrating tubes at various frequencies with a dynamic driver and optically observing the motion under stroboscopic light as shown in Fig. 3, are indicating how microphonics can be minimized. Two chief sources of microphonics are insecure crimping and welding of internal parts and vibration of the individual turns of the grid helix.

Whereas in amplifier tubes microphonic effects arise chiefly from a variation of the tube amplification factor as the relative grid-filament and plate-filament spacing changes, the microphonic effects in electrometer tubes, which are used in circuits in which the resistance from grid to filament is virtually infinite, arise also from the change in grid voltage accompanying variations of interelectrode capacitance produced by vibration. The effect of this
(continued on p 182)

LORD VIBRATION CONTROL SYSTEM

 in the READY-POWER ENGINE GENERATORLord Picte Form Mount ing: Protect Ready-Pore- Control Cab eet from Destructive Viכration.

These four tond Itote Form Mountings campetely is ola te fue sensitive control cabinet and voltage regulabr from engine vibration... a contributing ta: mor in mointoining the h gh quality lishting ans motor efficiency characteristic of Read.. Pawer engine generotorso

LORD CDMPLETE VIBFATION COIITROL SYSTEMS FOR EN:GINE GENERATGRS IMPROVE PERFORMANCE

- Instrume tt Panel Mounlings
- Engine Mountings
- Flywheel Drive Couplings

Better Voltage Control-Longer Life For Voltage Regulator Assured by Isolating Vibration with Lord Mountings

The voltage regulator is the heart of an enginegenerator set . .. it automatically eliminates extreme voltage fluctuations-maintains high quality lighting and motor efficiency.

To insure such service-plus long trouble-free life —The Ready-Power Co. of Detroit, Michigan protects this vital unit from destructive vibration with a Lord Vibration Control System. And vibration control pays off ... in greater customer satisfaction -increased sales.

The entire voltage control cabinet is isolated from engine vibration by four Lord Plate Form Mountings in this engine generator. Simple, inexpensive - yet highly engineered - these bonded-rubber, shear-type mountings prevent the inaccuracies and failure which vibration could cause. To customers, that means lasting dependability.

Whether you manufacture engine generators or any other product, you can increase your sales by eliminating costly, destructive vibration. It will pay you to consult Lord . . . make us your headquarters for product improvement through Lord Vibration Control Systems.

MAKE GOOD PRODUCTS BETTER

NEW PRODUCTS

Edited by A. A. McKENZIE

New equipment, components, packaged units, allied products; new tubes. Catalogs and manufacturers' publications reviewed.

Packaged Tower

Rostan Corp., 202 East 44th St., New York 17, N. Y. The Trig tower is a selfsupporting triangular tapered structure fabricated from

61ST aluminum alloy. Delivered knockeddown, it can be erected by one man. It is designed for low cost developments in the f-m, a-m, and television broadcast fields.

Counting-Rate Meter

General Radio Co., 275 Massachusetts Ave., Cambridge 39, Mass. The type 1500 -A counting rate meter indicates directly in counts per minute the rate at which nuclear transformations occur in radioactive materials. Counting rate is shown on a panel meter, the range of operation being from 5 to 20,000 counts a minute. An adjustable and regulated high-voltage supply from

400 to 2,000 volts and a quenching circuit permit either selfquenching or nonquenching Geiger tubes to be used. Accuracy is plus or minus 3 percent of full scale on all five ranges.

Mercury Contact Relays

Graybar Electric Co., 420 Lexington Ave., New York 17, N. Y. West-

USING THE NUMBERS

Readers desiring further details concerning any item listed in the New Products department can obtain the information by using the cards furnished as a stiff, colored insert elsewhere in this department.

Place the number (appearing to the right of the heading) of one item in which you are interested in a circle and then fill out the balance of the card according to directions appearing on the colored sheet. Unnumbered items listed at the end should be procured direct from the manufacturer or publisher upon payment of the fee noted.
ern Electric type 275 and 276 relays use a mercury-wetted contact in a hermetically sealed envelope. The units have standard octal bases and provide almost instantaneous break of contacts with high current-handling capacity. Useful in computers, sorting machines, servomechanisms, or high-speed keying systems, the relays are described in bulletin T2398.

Electronic Servo

Askania Regulator Co., 240 East Ontario St., Chicago 11, Ill. A remote control and positioning unit for valves, dampers, and other mechanical mechanisms consists of a transmitter, vacuum-tube ampli-

fier, and a receiver. Signal lamps or other audible or visual monitoring indicators can be provided. A tenpage booklet, no. 138, is available.

F-M Amplifier

Altec Service Corp., 250 West 57th St., New York 19, N. Y. Type A-323B amplifier designed for operation with $\mathrm{f}-\mathrm{m}$ tuners and a good loudspeaker has built-in equaliza-

VERSATLIITY $_{\text {in the }}$ Design - Development - Production of LF, HF and UHF Equipment

For Example... the llectromyograpi

A Lavoie test instrument designed for the Medical profession. Amplifies minute potentials of the order of microvolts generased by muscles - to the extent that these potentials may be measured and analyzed. Includes calibration circuits to facilisate the saking of accurate data.
 trained personnel and special equipment to handle every phase of design, develpment and manufacture of LF, HF and UHF equipment. As SPECIALISTS, you are assured of precision work based on correct methods and technique developed through years of practical experience.

FREQUENCY STANDARDS - FREQUENCYMETERS - RECEITERS TRANSMITTERS - ANTENNAS and MOUNTS

Detailed information and estimates of LAVOIE service are available promptly without cost or obligation.

LavrieLaboratories.

RADIO ENGINEERS AND MANUFACTURERS MORGANVILLE, N. J.

Specialists in the Development and Manufacture of LF and HF Equipment
tion to allow direct operation from the variable reluctance or Pickering pickups. A treble tone control for use with shellac pressings is provided. There are two inputs, one for phonograph pickup and the other for radio. The amplifier is rated at 15 watts and has a frequency response within 1 db from 35 to 12,000 cycles. Response is essentially flat from 20 to 20,000 cycles.

Pulse Generator

Radar Engineers, Arcade Building, Seattle 1, Wash. The type PG-5 pulse generator covers a range of pulse widths from 0.1 to 2.0 microseconds with rise and fall times of 0.05 microsecond. A positive input

trigger of from 10 to 20 volts is required for each output pulse, the latter being variable in amplitude from minus 20 to plus 20 volts. The unit consumes 40 watts at 115 volts, 60 cycles.

Crystal Units

Clark Crystal Co., 2 Farm Road, Marlboro, Mass. A new line of resonator and oscillator crystal units is announced for the frequency range 50 kc to 54 mc .

Input Transformer

J. W. Newton Co., Inc., 234 Seventh Ave., New York 11, N. Y. The transformer illustrated consists of two coils so wound on a specially shaped core that the unit forms its own shield in almost any position. The four windings can be

connected to give primary impedances of 500,150 , or 50 ohms. The coils can also be used in a pushpull circuit. The unit is flat within plus or minus 1 db up to 25,000 cycles. Further characteristics can be obtained from the manufacturer.

Butterfly Capacitors

Barker and Williamson, Inc., 237 Fairfield Ave., Upper Darby, Pa. Type JCX variable capacitors employ opposed stator sections and butterfly rotors that can be grounded at the center of the r-f

voltage point with respect to stators. The capacitors will handle plate potentials up to 1,500 volts.

Taxi Radio

Mobile Communications Co., 202 East Fourth St., Long Beach 2, Calif. Complete main and mobile f-m vhf stations are available for taxicab two-way communications. The Taxi-Talkie system employs a lockout mechanism designed to

speed dispatching and yet insure a minimum of confusion among a large number of mohile units. Literature is available.

Silicone-Asbestos Paper

(11)

Connecticut Hard Rubber Co., 407
East St., New Haven 9, Comn. Cohrlastic is a Silicone rubber coated asbestos paper with high heat resistance that is available in rolls 12 inches wide. It withstands temperatures in the range of 500 F to minus 70 F . It has a dielectric strength of 400 volts per mil (9,600 volts for the present standard sheet that is 0.024 inch). The material is corona resistant, will not carbon track and has good surface resistivity. Being more resilient than untreated asbestos paper, it is suitable for gasket or washer stock in applications in which compression aids sealing or holding.

All-Welded Solenoid

General Electric Co., Schenectady $5, \mathrm{~N}$. Y., announces a small allwelded solenoid designed for use where powerful pull is needed in a small space. It develops a maximum pull of 0.26 lb in a half-inch stroke and operates on 110 volts, 60 cycles.

Frame and bracket as well as frame laminations are all welded together. Eddy current losses are thus reduced.

Photoelectric Relay

General Electric Co., Schenectady 5, N. Y. The new photoelectric relay and light source can operate at
(continued on p 210)

Putting The Heat On

Oil Burner Coil Production

Transformer coils are wound, 14 at once on the same machine, at speeds up to 2500 rpmi. . on the No. 104 Universal Coil Winding Machines used by a company famous in the field of clectronics.

No attention is required from the operator other than to load and unload. Paper of various types and thicknesses one or two-ply, is inserted automatically ... length of insert increased automatically ...spindle stopped at completion of coil automatically.

OTHER FEATURES

- Adjustable traverse mechamism-wire layer lengih adjustable without removing cams.
- Slow start - avoids wire breakage.
- Rapid transfer - using secondary arbor.
- Electric stop motion available to detect wire breaks and stop machine.

Write for Bulletin 104. Universal Winding Company, P. O. Box 1605, Providence 1, R. I.

> FOR WINDING COILS IN QUANTITY ACCURATELY . . AUTOMATICALLY USE UNIVERSAL WINDING MACHINES

NEWS OF THE INDUSTRY

Edited by JOHN MARKUS

Program of Rochester Fall Meeting; network f-m and television broadcasting; pilotless ocean flight; x-ray conference; persommel items

Radio for Play Directors

To TEST the usefulness of radio for communication between a television control room and stage directors in the studio, National Broadcasting Co. was granted FCC authorization for an experimental class 2 station. Since the proposed radio system will be entirely within a shielded television studio, it is not expected to cause outside interference. The frequency used will be in the Industrial, Scientific, Medical band which is available for assignment to low-power convenience radio communication.

Stage directors will be equipped
with lightweight battery-operated receivers for receiving the instructions from the control booth. Heretofore this communication has been available only through use of headsets and long connecting cords plugged into various outlets about the stage.

Microwave Television Relay

Establishment of a permanent microwave relay system between New York and Schenectady for a more complete programming of television station WRGB paves the

MEETINGS

Nor. 3-5: National Electronics Conference, Edgewater Beach Hotel Chicago. See p 240, Oct. issue for program.
Nov. 3-7: AlEE Midwest General Meeting, Chicago, Ill.

Nov. 7-8: Conference on X-ray and Electron Diffraction, Mellon Insti tilte of Industrial Research, Pittshurgh, Pa. Program on p 254.

Nov. 17-19: Rochester Fall Meeting Sheraton llotel, Rochester, N. Y.; technical papers and exhibits. Program on p 154.
March 22-25; IRE Convention and Radio Engineering Show, Hotel Commodore and Grand Central Palace, New York City.
way for larger audiences and more economical use of video facilities.

In a preview of the system, which was scheduled for regular operation beginning Sept. 29, engineers and the press were shown Schenectady broadcasts of programs picked up in New York from WNBT and WABD that were indis-

RMA Board of Directors for 1947-1948

lightweight compact • built-in power-unit

Employing

MHNIATURE COMPONENTS

 and
MINIATURE TECHNIQUE

STR 9. A miniaturised low power-high performance transmitter/receiver designed to reduce operating to 'switch-and-talk.'
WEIGHT: 22 lb.
TOTAL INPUT: 180 watts at 26 volts.
FREQUENCIES : 4 spot frequencies, remotely selected, in the band 115-145 Mc/s.
SERVICE : Telephony.
Standard Telephones and Cables Limited. telecommunication ENGINEERS OAKLEIGH ROAD ONEWOUHGAEE NII

Plug-in Construction Eliminates Under-Chassis Parts in New Superhet Receiver

Photographs here show how Cosmo Electronic Corp., New York City, achieves complete plugin construction (except for the gang tuning capacitor) in their five-tube universal a-c/d-c superheterodyne radio receiver. P'romotion will feature ease of servicing; any plug-in unit, including loudspeaker unit which screws to chassis but has plug-in connections, is to be available from dealers at price of $\$ 1.85$.

Each plug-in can is a different color, and purchaser of receiver gets instruction book telling how to figure out which can needs replacement when set goes bad. Filtering unit, most likely to fail, is red, and audio can is brown. Same plug-in technique is contemplated for use with Franklin Airloop Corporation's stamped wiring, described in June 1947 Electronics, p 82. One can has nine small parts inside.
tinguishable in clarity from a locally produced show.

Three unattended relay stations are required to establish line-ofsight paths shown on the map. Each receiver is in operation at all times. When the New York relay transmitter is turned on, its received signal operates the Mt. Beacon transmitter, which then energizes the rest of the chain in like manner. Although the Helderberg relay is only about 1.5 miles from the WRGB transmitter, the video and audio signals are sent to the studio control room to facilitate switching between local and remote

New York microwave relay transmitter (in the box) and beam antenna. Each relay receiver and transmitter is similar in ap. pearance

New York-Schenectady television relay using frequencies between 1,800 and $2,000 \mathrm{mc}$. The New York receiving point can pick up Washington, Philadelphia, or New York station programs, which are then relayed and rebroadcast from Schenectady
programs. The main transmitter is fed by a microwave studio-transmitter link.

Frequencies employed are in the band between 1,800 and $2,000 \mathrm{mc}$ so that directional antenna gains of 1,400 are possible using 6-foot dish reflectors with a beam width of only 6 degrees. Relay transmitter power is about 10 watts.

Although the present 125 -foot towers are provided with large rooms at the top for further experimentation, General Electric engineers point out that the essential relay receiving and transmitting equipment occupies a small fraction of the space. If suitable tower sites can be reasonably procured this system should compete favorably with other means of establishing television networks.

Rochester Fall Meeting

The program of the Rochester Fall Meeting of members of the RMA Engineering Department and the Institute of Radio Engineers at the Sheraton Hotel, Rochester, N. Y.,
(Continued on p 246)

YOUR ASSURANCE OF TIME-TESTED PERFORMANCE

The things you want most in a rectifier lasting performance and dependability - can neither be seen nor accurately measured. But they can be identified. . by the familiar "FTR" trademark. Why? Because Federal was the first manufacturer of Selenium Rectifiers in this country-because Federal has pioneered every major advance in their design and construction - and because, for over 9 years, Federal Sel-
 enium Rectifiers have continued to set the industry's standards for performance, economy, and long service life.

Whether your product uses DC by the milliampere - or by hundreds of amperes - there's a Federal Selenium Rectifier that's right for the job. For example: The 'postage-stamp size" rectifier shown above delivers 5 milliamperes at 2,000 volts DC... while the large 48-plate threephase stack furnishes up to 200 amperes at 30 volts DC, or 25 amperes at 240 volts DC. Both have one thing in common - the traditional Federal quality and dependability. Write today for information on the rectifier for your powerconversion requirements. Dept. F413.

FOR CLUTCH-HEAD SCREWS
Increase assembly speed up to 50% ! Cut down injuries to workers with no burrs, no skids. Reduce production costs. Reduce rejects! Improve product appearance! Go modern with Phillips!

The latest iype recessed-head screw. Screw locks on driver. Can't fall off. No serew-driver slippage. Easy to assemble. Exceptional driver life. Ordinary screw-driver may also be used.

Look at the fastenings you're now using-and see if they're the best for the job. Get better results-at less cost-with modern fastenings. If you use fastenings in large quantifies, it will pay you to find out what Scovill can do for you. Fill out and mail the coupon below-now!

MAIL COUPON TODAY:

QUALITY FASTENERS FOR QUANTITY CUSTOMERS

TUBES AT WORK
(continued frem p 142)

Method of neutralizing effect of loop antenna reactance on tracking of permea-bility-tuned receiver
coils be identical in every position, that is, at every frequency. The effect of the coupled reactance is to upset this condition. Hence a simple solution suggests itself, namely, to couple into the oscillator section a dummy coil of the same inductance as that of the loop antenna. The reactance coupled into both sections is then the same at every frequency and mistracking does not result. A typical circuit is shown. Here L_{t}, L_{t} represent identical coils and cores, $L_{\sigma} L_{\sigma}$ identical primaries wound over them, and L_{d} the dummy coil simulating the effect of the loop L.
(1) Electronics, $19, \mathrm{p} 138$. Sept. 1946
2) Radio, 30, p 20, Nov. 1946

Automatic Audio Phase Reverser

By Alvin H. Smith
Technical Supervisor Radio Station KSJC Sioux City, Iowa

IT IS a well known fact that the waveform of most speech and some music is not symmetrical. When such a nonsymmetrical signal modulates an a-m transmitter, it is possible for the modulation envelope to undergo excursions below the unmodulated level that are greater than the envelope excursions above this level. Such a condition is referred to as negative modulation. Most broadcast transmitters can accommodate positive modulation peaks in excess of 100 percent, but in no case can the negative modulation peaks exceed 100 percent, or serious distortion and interference to other radio services will result. Moreover, most detector distortion in modern broadcast receivers occurs on the negative portion of the detection curve. Thus, if a nonsymmetrical modulating signal can be made to produce more positive than

MOTORS FOR SOUND RECORDING

 MUST HAVELOW NOISE LEVEL MINIMUM VIBRATION CONSTANT SPEED

Yon Prompt Souvice contact these

REPRESENTATIVES
JOE DAVIDSON \& ASSOCIATES
P. O. Box 108

South Gate, Calif.
Tel: Kimball 7244

ALLEN I. WILLIAMS, JR.
230 Cooper Building Denver 2, Col. Tel: Ma. 0343
frank w. Yarline \& co.
20 No. Wacker Drive Chicago 6, III. Tel: State 0347

HARRIS-HANSON CO
427 No. Euclid Ave.
SI. Louis 8, Mo.
Tel: Forest 5841
engineering sales co.
124 No. Montgomery St. Trenton 8, N. J.
Tel: Trenton 9885
holliday.hathaway SALES CO.
238 Main Street
Combridge 42, Mass. Tel: Eliot 1751

GEORGE T. WRIGHT 19859 Beach Cliff Blvd. Cleveland 16, Ohio Tel: Boulevard. 9554

STANDARD PARTS \& EQUIPMENT CORP. 904 North Main Fort Worth, Texas Phone 2-4459

EASTERN AIR DEVICES

 SYNCHRONOUS SOUND RECORDER MOTORSGive Smooth, Flawless Performance ON ANY TYPE OF DISC, WIRE, TAPE or FILM RECORDER

1. NO NOISE - HYSTERESIS TYPE

2. NO VIBRATION
3. HUNT and "WOW" ELIMINATED

These Motors Now in Production

TYPE	H.P.	SPEED
LH731 NCJ	$1 / 50$	1800 R.P.M.
LH73QCJ	$1 / 100$	1800 R.P.M.

WRITE FOR SAMPLES
Similar Mofors are Available For: CAMERAS • PROJECTORS • FACSIMILE

EASTERN AIR DEVICES, INC.

 585 DEAN STREET BROOKLYN 17. N. Y. ture of period design in either bleached blond or mahogany, with components totally enclosed.
Model P-52HF with 2×6 horn, as shown, $\$ 345.00$ list. With 2×5 horn, $\$ 332.50$ list. With 2×4 horn, $\$ 320.00$ list.

P-52A Coaxial 2-Way System

For Home Reception
The Model P-52A Coaxial 2-way speaker system embodies the same fine engineering and construction exemplified in the P-52HF Separa:e 2 way system shown above, plus the added feafure of space saving design. 1200 cycle crossover $-80^{\circ} \times 40^{\circ}$ dispersion through 8 cellular horns-heavy, 6 pound Alnico 5 magnet for highflux density- 16 ohm, 20 watt input- $15^{\prime \prime}$ cone diameter. Price $\$ 205.00$ list.
Normal trade discounts prevail. Write for 16 page bulletin describing Tru-Sonic speaker systems.

STEPHENS
 MANUFACTURING COMPANY

10416 National Blyd.
Speaker Sysfems for

Los Angeles 34, Calif.
Theatre and Home
negrative modulation peaks, the coverage of a radio station may be increased, and, at the same time, overall distortion can be reduced.
The purpose of this a-f phase reverser is to adjust automatically the polarity of the audio input signal to the transmitter to produce the desired modulation polarity. This device is particularly useful when the modulating signal is of local studio origin; after an audio signal has passed through a number of repeater amplifiers, as in the case of a network program, phase and amplitude distortion cause the lack of waveform symmetry to be less pronounced.

Circuit Operation

The circuit of the automatic phase reverser is shown schematically in the accompanying illustration. Basically, the device consists of a two-stage bridging audio amplifier using 6C5 tubes, a balanced rectifier, consisting of a 6 H 6 with one cathode grounded, and an R-C delay network, the output of which is connected to the control g_{1} id of a 2050 thyratron. The firing of this thyratron actuates a polarityswitching relay.

A dpdt sense switch is connected in the input of the phase reverser unit. This switch is used to preset the phase reverser so that on modulation peaks, the transmitter will be modulated more positively than negatively. Once the proper switch position is selected, no further adjustment is required and the operation of the device is entirely automatic.

Conventional andio amplifiers are used and are designed to produce minimum distortion, since the waveform of the incoming audio signal must be preserved as nearly as possible. The 6 H 6 balanced rectifier operates in such a manner that for low audio input voltages, the potentials across the two halves of the output load are approximately equal. Under this condition, the net voltage across the R-C delay network is nearly zero.

On input voltage peaks, the rectification efficiency increases, and the diode having the higher input voltage peak develops the larger voltage across its load. As a result, a voltage is impressed across the input

RODUCT DEVELOPMENT - MOLD DESIGN - MOLD CONSTIUCTION - PLUNGER MOLDING - TRANSFER MOLDING - IWJECTION MOLDING O COMPRESSION MOLOING

TUBES AT WORK

Automatic phase reversal of an audio signal is done by this circuit
of the delay network having a polarity that is determined by the predominance of negative or positive peaks at the rectifier input.

Plate voltage for the 2050 thyratron is supplied by one-half of the high-voltage winding of the power-supply transformer through the winding of the polarity-switching relay. The thyratron normally conducts on every positive halfcycle of its plate voltage. Whenever the net voltage from the balanced rectifier is such that the grid voltage of the thyratron is approximately 3 volts negative, the thyratron ceases to fire and the relay switches to its unenergized position, reversing the polarity of the

Here's wonderful news! A wide variety of standard ratings of Westinghouse panel instruments . . . now available for immediate delivery ... all you need when you want them!

There's a complete selection . . . $21 / 2^{\prime \prime}, 31 / 2^{\prime \prime}$ and $41 / 2^{\prime \prime}$ sizes . . . rectangular and round cases, both with flush or projection-type mountings... for di-c, power frequency, audio frequency and radio frequency measurements.

Westinghouse panel instruments meet the highest standards of performance in every field of application. They have been proved in every industry and military requirement-on land, sea and in the air. You don't need to experiment.

The chassis design of Westinghouse instruments permits the final assembly of stocked and pretested subassemblies . . . to meet your requirements without delay. Every instrument is "accuracy checked" the day of shipment.

Whether you need thousands of electrical instruments or just one, Westinghouse has the production facilities and a nationwide service organization to follow through. Consult a Westinghouse instrument specialist. Call your nearest Westinghouse office or write Wèstinghouse Electric Corp., P. O. Box 868, Pittsburgh 30, Pa.

Send for the Westinghouse Instrument Booklet, B-3013-El1.
J.40359

TLANTS IN 25 cITIES... 0 OFFICES EVERYWHERE

DURING the past few months Paul and Beekman, Inc. has supplied manufacturers with millions of parts for roller skates, radios, vending machines, lawn mowers. (And many, many other products.)

Advantages to the ultimate producers of these commodities are: They get their parts precision-made, on-schedule, at lowest possible cost. They get their parts without investment in new machinery, new buildings, new personnel.

Paul and Beekman, Inc. has the plant, the machines, the skilled men and the organized planning. We make all types of pressed metal parts and products from steel, bronze, copper, brass or aluminum. If desired, we design and make the dies. If specifications call for welding, assembling or electroplating, so much the better . . . we do that, too.

Perhaps that kind of start-to-finish service can help you remain competitive, in the face of rising costs. A letter to us, stating your needs, will put our engineers to work on your problem, immediately.

audio signal delivered to the transmitter.

A two-section R-C delay network is connected to the grid of the thyratron. This delay network aids in preventing chattering of the relay and delays switching until several peaks of the same polarity have occurred. Two 10,000 -ohm resistors across the relay contacts act to reduce key clicks in switching; relay contacts should be set as close as possible for the same reason. The combination of the $12-\mu \mathrm{f}$ capacitor in series with the $800-\mathrm{ohm}$ resistor also acts to prevent relay chattering.

Control of Switching Time
A 6 H 6 clipper tube prevents the delay-network capacitors from charging negatively to such a degree that the switching action of the thyratron can not follow rapidly the peak polarity changes of the audio signal. The grid circuit of the thyratron performs this function for positive capacitor charges. Adjustment of the audio input to the balanced rectifier also affects the time required for switching.

The value of the resistor in series with the plate of the 2050 depends upon the characteristics of the particular relay used. This resistor should have as high a value as will give good switching action. A desired switching delay can be obtained by changing the values of the circuit constants in the R-C delay network. The only limitation is that the resistance in series with the 2050 grid must be at least 300 ,000 ohms.
The automatic phase reverser neither adds to the distortion nor increases the noise level of the audio circuit with which it is connected. This condition results from the fact that the audio circuit has only a dpdt relay added to it. This device has proved to be very useful in several months of service at KSJC.

Dust Precipitators for Air Conditioning

No LONGER must spectators at Madison Square Garden see sporting events and spectacles through a discomforting haze of tobacco smoke and dust. In conjunction with the air conditioning system recently in-

Studying the output of pulsed oscillators? ANALYZE THEIR SPECTRA VISUALLY WITH THIS COMPACT INSTRUMENT!

THE SYLVANIA SPECTRUM ANALYZER

provides a convenient means of studying the energy spectrum of microwave generators operating as pulsed oscillators or modulated CW oscillators. The output of magnetron, klystron, rocket and similar UHF and SHF tubes can be readily investigated,
Essentially, the Sylvania Spectrum Analyzer consists of a sharply tuned superheterodyne receiver with a cathode ray oscilloscope indicator. The instrument incorporates a sawtooth generator, which performs the two functions of frequency-modulating the local oscillator and of providing the horizontal sweep for the oscilloscope. Thus automatic synchronization is assured at all times.
An input probe is provided for insertion into cavities or wave-guides.
The energy emitted by the oscillator at various frequencies is displayed on the cathode ray tube as a pattern of vertical lines. The envelope of the pattern represents the spectral distribution.
The Spectruin Analyzer illustrated-the TSX-4SE-is designed for the $9,300 \mathrm{Mc}$ region. A second model-the TSS-4SE-is available for the $3,000 \mathrm{Mc}$ region, and a third modelthe TSK-2SE-is available for the $24,000 \mathrm{Mc}$ region.

TYPICAL APPLICATIONS OF the spectrum analyzer

Some of the possible uses include:
Viewing the output of a radar system, to make sure that the output energy is not being wasted by being distributed over a wider frequency band than the radar receiver can accommodate.
Determining the frequency of a pulsed oscillator.
Adjusting the local oscillator frequency of a radar receiver to space it properly with respect to transmitter frequency.
Checking of pulling or slifting in frequency of the pulsed oscillator of a radar transmitter, by observing the spectrum while the antenna is in motion.

Measurement of standing wave ratios by using the Spectrum Analyzer in conjunction with a slotted section.

WRITE FOR DETAILED SPECIFICATIONS

FIG. 1-Airborne particles receive a positive charge as they pass through this Fonizer unit
stalled in the Garden, one of the largest indoor installations in the world of electrostatic precipitators has been made.
The air conditioning system in the Garden comprises eight individual systems, each handling 67,500 cu ft per min, or a total of $540,000 \mathrm{cu}$ ft per min. The precipitator installation also comprises eight units, each having thirty cells and ionizers. The cross-section area of each bank of precipitators is 13 by 15 feet. These are installed in the duct work between the dehumidifiers and the fan in such a man-

FIG. 2-Positively charged particles are deposited on these negative collector plates

THE ADVANTAGES OF THREE COAES The three core canstruction of Multicore gives High Speed precision productisn. Thinner solder walls provide estra rapid melting. Fux continuity eliminat $=$ waste or solder lengths whenout flux.

ThE ADVANTAGES OF QUALITY

Only the purest in and lead are used in the manufacture of. Ersin Multicore Solder. Multicore is made as standard in gauges between 10 and $23 \mathrm{SW} . \mathrm{G}$. (.128 to . 038 in., 3.251 to 711 mm.j and in five standard antimonyfree alloys. Other alloys and gauges tan be supplied to spectat order.

ERSIN MULTICORE IS THE ONLY
THREE CORF

SOLDER IN THE WORLD WHICH IS MADE WITH EXTRA-AGTIVENON-GORROSIVE ERSIM FLUX

$\mathrm{S}_{\mathrm{torms}}$, floods or mechanical breakdowns may interrupt mainline power, but radio station WING of Dayton, Ohio, stays on the air. Its dependable Onan Standby Electric Plant is always ready to take over the power load in event of power failure, supplying electricity for broadcasting and other essential uses.
W'ING's 35,000 -watt Onan plant, Model 35 JT is built for full-capacity service, powered by a heavy-duty, six-cylinder water-cooled gasoline engine. This complete unit is equipped with built-in engine-instrument and A.C. meter panel. Streamlined, compact steel housing protects plant and accessories. Low in first cost, the Onan plant operates economically and requires a minimum of maintenance during idle periods.

PLANT STARTS AUTOMATICALLY WHEN POWER FAILS

Within seconds after a break in mainline power, the Onan Line Transfer Control staris the standby plant and switches its power onto the electrical system. When service is restored, the control automatically stops the plant. The built-in rectifier, a special feature of Onan controls, keeps batteries charged at all times.
ONAN EEECTRIC PLANTS ore available in mony sizes and models-
 D.C. 600 to 15,000 Woits, 115 and 230 Volts. Battery Chargers:
500 to 6,000 Wotts, $0,12,32$ and 115 Volts.

D. W. ONAN \& SONS INC.
 3566 Royalston Ave., Minneapolis 5, Minn.

tubes at work

FIG. 3--High-voltage power supply for the precipitator units
ner that all of the air supplied to the Garden passes through the electronic filters.
In the electrostatic precipitators installed by Raytheon Manufacturing Co., all airborne particles are taken through an electrostatic field. These particles become positively charged and are precipitated onto negative collector plates. In this manner, 85 percent of all particles as small as 4×10^{-8} inch, a size that includes smoke particles, are effectively removed.
Figure 1 shows the ionizer section of one precipitator unit. A collector unit is shown in Fig. 2, and the high-voltage power supply in Fig. 3.
Five smaller electrostatic precipitator installations are now being placed in operation in the air conditioning system of the New York Stock Exchange. Two of them have been in operation since last November. These installations handle 54,$000,27,000,22,500,18,000$ and $15,-$ 000 cu ft per min ; all are equipped with precipitators primarily to remove coal dust and other types of dust usually prevalent in the downtown area of New York.

Spectrophotometer for FBI

BY USING a recording spectrophotometer, the Federal Bureau of Investigation Laboratory in Washington, D. C. can trace cars used by hit-and-run drivers.
According to D. J. Parsons of the Laboratory, in a General Electric Science Forum talk, the clue most helpful to the investigators is information as to the kind of car involved.
Frequently the clothing of the victim struck down on the highway will be examined, and minute specks or smears of paint from the auto-

Do your junction boxes look like THIS..

Junction box overstuffed with wire splices wrapped with rubber tape and an outside wrap of friction tape. When these bulky splices are jammed in you really have an overstuffed junction box.

or like THIS?

This junction box has the same number of splices, but they are wrapped with No. 33 "SCOTCH" Electrical Tape with Vinyl Plastic Backing. The thinness of the tape makes the difference in the bulk of the wrapped splices.

If your iunction boxes are overstuffed with splices wrapped with rubber tape and friction tape switch to

No. 33

SCOTCH Slectical TAPE

WITH VINYL PLASTIC BACKING
For Superior Dielectric and Mechanical Protection
With an overall thickness of .007 " No. 33 "SCOTCH" Electrical Tape with Vinyl Plastic Backing has a dielectric strength of 8000 volts. OTHER ADVANTAGES-high stretch, flexibility and resistance to flame, water, oils, acid, alkalis.

Write for a free sample to try in your own work.

Precision-made gears . . . small and medium sizes . . . in standard and special tooth forms, from any kind of material, made to your exact specifications. Tolerances within . $0005^{\prime \prime}$.
Beaver gears are used in well-known makes of modern products such as automobiles, radios, automatic tuning devices, phonographs, clocks, timing mechanisms, motion picture projectors, chronometers, gauges, optical equipment, instruments, machine tools, and many others.
Beaver engineers will design or redesign gears to meet performance and cost requirements. Send us your blueprints for estimate.

SPURS • HELICALS - STRAIGHT BEVELS • SPROCKETS
RACKS - WORMS - WORM GEARS
THREAD GRINDING - COMPLETE GEAR TRAINS

Write Today for this fret bulletin

Describes Beaver Gear's facilities and methods; also includes table of gear tooth parts.

1021 PARMELE STREET, ROCKFORD, ILLINOIS

TUBES AT WORK
mobile are found and removed. The ability of the questioned material to absorb or reflect the various colors and hues of the visible spectrum is determined. The instrument most useful in this procedure is the recording spectrophotometer.
The results of the analysis are searched in the National Automotive Paint File which contains the standard samples of paints and finishes used by the various automobile manufacturers and the make of the car is determined.

Instruments Speed Oil Refining

The most advanced techniques of electronics, pneumatics, and pyrometry are being incorporated in modern oil refineries to obtain practical operation of the huge refining units being built for continuous, mass processing of tens to hundreds of thousands of barrels of crude oil daily. Instrumentation is also achieving the lower costs that go with mass production in refineries.

An instrument nerve system measures and automatically regulates the pulses of speed, volume, pressure and heat in every refinery pipe and tower and enables the handling of massive forces and volumes, which man could not otherwise control with the necessary precision.

Large control rooms now built into each major unit are connected to as many as 500 instruments and control points throughout the unit as in the case of the Gulf Oil Corp. new fluid catalytic cracking installation at Philadelphia.

Varying reactions of the process are conveyed from the outside instruments into the control house where recording and adjustment of the variations is effected under the eye of the chief operator, either automatically by the instruments, by manual instrument control, or by communication with workers manning the installation. Pneumatic lines both bring in the instrument responses and activate process adjustments and form an elaborate air pressure transmission system developed to eliminate hazard of fire or explosion from electric wiring.

Low-voltage electronic amplifiers

APPIIANCE THERMOSWITCH*

CONTROL

Safe-Accurafe•Long-Lasting

Temperafure ControlFor All

Types of Electrical Appliances
The unique and rugged design of the new Fenwal Appliance THERMOSWITCH Control provides a heat control unit that will withstand shock, vibration, tampering and other operational hazards that lower product life....and influence buying attitudes.

Note these outstanding features:

- Torque applied to terminal binding posts will not shift contact support members.
- Adjusting screw will not drift under normal vibration.
* The mounting bracket provides for side or bottom mounting, or a cross-mounting bracket is available for special applications.
- One-piece, welded case and cover assures rugged, tamper-proof unit... stable temperature settings.

TWO DISTINCTLY DIFFERENT MODELS FOR HIGH AND LOW TEMPERATURE RANGES

The Appliance THERMOSWITCH Control is available in models especially designed for both high and low temperature ranges. The high temperature model provides control over the wide range of $175^{\circ} \mathrm{F},-600^{\circ} \mathrm{F}$. The low temperature model provides extremely critical control for low temperature applications throughout its range of $50^{\circ} \mathrm{F} .-250^{\circ} \mathrm{F}$. Each model assures the highest degree of efficiency and dependability; both incorforate the outstanding Fenwal characteristics.

-S PECIFICATIONS

Overall case dimension: $1 / 2^{\prime \prime}$ high $\times 3 / 8^{\prime \prime}$ wide $21 / 8^{\prime \prime}$ long. Maximum Lood Roting: 1200 wotts on 110 volt 60 cycles. TEMPERATURE RANGE:
50° F. to 250° F. (Series 30003)
175° F. to $600^{\circ} \mathrm{F}$. (Series 30002)
RUGGED COMPACT LIGHTWEIGHT Precision bult
FOR $F O$

FOR FOOL-PROOF PERFORMANCE
There is a Fenwal THERMOSWITCH Control to meet the requirements of most temperature control applications. Write for complete information.

1. Expanding stainless steel case.
2. Fine silver contacts.
3. Contact Supporting Members.
4. Low expansion metal bridge.
5. Ceramic Insulating But* tons.
6. Precision Ceramic Loca. tor.
7. Stop Collar.
8. Adjusting Screw.
9. Terminal Binding Posts.

tubes at work
are used to record temperatures where high speed recording is essential. Absolute safety is provided by automatic pre-alarms, alarms, and shut-offs that signal the operators when any part of the complicated processing system is failing to operate according to set conditions. If corrections are not made, the warning device automatically shuts off the affected installations betore a danger point is reached.

Scores of electronic, pyrometric, and pneumatic instruments are mounted on the four walls of this air-pressurized control room to direct 500 control points in the giant new catalytic refining unit built by Gulf at Philadelphia

In the early days of the oil refining industry, instruments had to be read and the process adjusted at points located about the stills. This made impossible the coordinated picture needed for large operations and the stills sometimes could not be kept operating up to 100 hours. Today, giant, precisiondirected units can run from six months to as long as a year in some cases without interruption, turning out a greater volume of gasolines and lubricants than ever before.

Devices which have effected the change from small batch operation to mass production include level controllers to chart and manipulate the level of fluid in towers and stills; flow, temperature, and pressure indicators, recorders and controllers; interconnected controls where valves are operated by different instruments in response to varying conditions; and special scanning graphic pyrometers, which
and NON-FERROUS METALS. for economic and speedy production.

At Your Service to HELP YOU WITH YOUR SHEET METAL

 fabrication requirements Sheet Metal products - such as: INSTRUMENT PANELS, RADIO COMMUNICATION CASES and ENCLOSURES, OSCILLATOR BOXES, CHASSIS and CABINET ASSEMBLIES, RACKS and SPARE PARTS BOXES, WATERPROOF CABINETS and BOXES, METAL STAMPINGS, FORMING and WELDING of FERROUSWe specialize in ELECTRONIC, RADIO, TELEVISION and COMMUNICATION METAL PRODUCTS. "Whistler and Wiedermann Setups" used

We can assure you of excellent workmanship and prompt deliveries. Send us your blueprints and specifications. We shall quote you immediately.

Our additional facilities enable us to solicit your inquiries regarding SCREW MACHINE ITEMS and GENERAL MACHINE SHOP PRODUCTS.

Sound trucks with magnetic wire recorder-reproducers mean better announcements with less personnel! Here's a field that will net some aggressive engineer a neat piece of the profits in magnetic recording. Why don't you investigate? Look to the leader-Brush-for the finest in magnetic wire recording components!

BRUSH PLATED WIRE

Constant plating thickness assures uniform signal.
Correct balance of magnetic properties assures good frequency response and high level.
Excellent surface finish assures low noise and minimum wear
Corrosion resistant.
Easy to handle-ductile--can be knotted.

BRUSH WIRE RECORDING HEADS

Of principal interest are their excellent electrical characteristics, extreme simplicity of design to avoid trouble, and the "hum-bucking" characteristics, which reduce the effect of extraneous magnetic fields. When required, the head cartridge alone (pole piece and coil unit) may be supplied for incorporation into manufacturers' own head structure.

Write today-

the

tubes at work
show a pattern of temperature at a glance.

Technical Data on Electronic Micrometer

Circuit diagram and construction details of the electronic micrometer first described in this department (Electronics, July, 1947) have now been made available by the Na tional Bureau of Standards. This device utilizes the variation in mutual inductance between two coils in a pickup assembly when the latter is displaced from a fixed metallic surface, to obtain a linear thick-ness-measuring characteristic.

Such a micrometer, designed to measure insulation thickness, is shown in Fig. 1. The instrument has two full-scale ranges: 0 to 0.005 inch, and 0 to 0.05 inch. Accuracy is better than 0.00005 inch on the low range and 0.0005 inch on the high scale. With suitable meter multiplier resistances, displacements in the order of 10^{-5} inch have been measured, although this is by no means the limit of sensitivity of this method of measurement.

Probe Coil Assembly

Experimental investigation was made of the effect of probe coil geometry on the linearity of the displacement characteristic. For a fixed primary and movable secondary coil having the same diameter, it was found that the mutual inductance increased linearly as displacement values changed from zero to

FIG. 1-Electronic micrometer measures change in coupling between probe coils caused by displacement of probe from metallic reference suriace

LINKING FUNCTION

Th)ESIGHpendable components have adapted SCA Selenium Rectifiers into their circuits. They are specifying SCA products, and are submitting their rectifier problems to us. Our greatly expanded plant facilities, plus the recognized dependability of SCA products, make it possible for us to offer the most complete line of Selenium Rectifiers and self-generating Photoelectric Cells.

RADIO'S NEWEST MULTI-PURPOSE INSTRUMENT

MEASUREMENTS

Model 59

MEGACYCLE METER

The Model 59 consists of a compact oscillator connected by a flexible cord to it's power supply. The instrument is a variable frequency oscillator, an absorption wavemeter, an oscillating detector and a tuned absorption circuit detector. The engineer, technician, service man or amateur will find the Model 59 a most versatile instrument suitable for many applications.

SPECIFICATIONS:

FREQUENCY:

2.2 Mc. to 400 Mc .; seven plug-in coils.
MODULATION:
CW or 120 cycles; or external.
DIMENSIONS:
Power Unit, $51 / s^{\prime \prime}$ wide; $61 / \mathrm{s}^{\prime \prime}$ high; $71 / 2^{\prime \prime}$ deep. Oscillator Unit, $33 / 4$ "diameter; $2^{\text {" }}$ deep.
POWER SUPPLY:
$110-120$ volis, $50-60$ cycles: 20 watts.

FIG. 2-Cross section of probe coil form
about 5 percent of the coil diameter.
The most advantageous mechanical design for the probe coil assembly necessitated the use of fixed windings on a single form. With this restriction on mechanical design, it was found that the optimum displacement-measuring characteristic was obtained by making the windings concentric and coplanar, with the diameter of one winding 70 percent of that of the other. The primary exciting coil consists of 8 turns of No. 26 enamelled copper wire; the secondary coil has 55 turns of No. 38 enamelled wire. The high-current exciting coil is wound with the larger diameter because of its greater heat-dissipating area. A cross section of the coil assembly is shown in Fig. 2.

The transfer characteristics of the probe coil system can be represented by a single mutual inductance if resonance effects are avoided. Non-resonant operation is desirable for precision applications because of its independence of operating frequency and lower coil losses. Operation at frequencies below resonance may not be satisfactory because harmonics of the exciting frequency may be accentuated, possibly causing distortion of the linear relation of output voltage with displacement. To keep the resonant frequency as high as possible, the rectifier is mounted directly on the probe coil form. A simple low-pass filter, consisting of a series resistor and the shunt capacitance of the diode rectifier, has been found to reduce the resonance rise to negligible proportions.

Oscillator and Control Circuits

The primary winding of the probe assembly is driven by a 3 -mc oscillator shown schematically in Fig. 3. A feedback network controls the oscillator screen voltage so

General Electric's new ductlle permanent magnet materials arefinding widespread application in industry. Here's the story on the CUNIFE "ion trap" for the pen-Inch G-E cathode ray tube.

PROBLEMDESIGN CUNIFE MAGNETS' FOR "ION TRAP" OF CATHODE-RAY TUBE

The Magnets that Keep Electrons on the Beam

Two ring-shaped G-E permanent magnets made of ductile CUNIFE are now used on cathode-ray tubes to help eliminate the troublesome ion spot on the direct view television screen. When mounted in the correct position on the tube neck surrounding the electron gun, these CUNIFE rings supply the magnetic field which deflects the electrons out of the ion-electron stream. The deflected electrons are thus rapidly returned to their original course while the massive ions are "trapped" and do not strike the tube screen.

In addition to ductile CUNIFE permanent magnets, General Electric also offers ductile CUNICO and SILMANAL which greatly extend magnet design possibilities. Other G-E permanent magnet materials include many grades of CAST and SIN-

PERMANENT MAGNETS

TERED ALNICO and lightweight VECTOLITE.
Let us help you with your magnet application problems. General Electric engineers, backed by years of research and magnet design experience, are always at your service. Metallurgy Dinision, Chemical Department, General Electric Company, Pittsfield, Mass.

```
ANNOLNCENS . . . E NEW standmand IIEE of G-E ALNECO permareat megiet HOLEING AESEMBLIES. There era humdreis of places \(w\) the factary, tore, home and workshep where these powerul magretic devices can be used to edvantcg>. For wompleee dewus, send for our now bulletin
```

METALLUZGY [INISGCH Sec. FAFII CHEMICAL DEPART YENT
GENERAL ELECTRIC COMPAN?
PITTSFIELD, MASS.
Flease serd me
$\square{ }^{\text {NC. }}$ - E'Parmanent Maçret Ho'dfing A ssembles
\square "C.E Permanent Alogrets"

NAME
TTIE
CONPANY
ADDRESS
CITY.
_STATE

TUBES AT WORK

FIG. 3-Changes in probe coil coupling produce variations in rectified output of secondary winding. These are measured by microammeter to give readings of thickness. Reference rectifier, d-c amplifier, and cathode follower form feedback network controlling oscillator screen voltage to give practically constant output
that the oscillator serves as a con-stant-current source. Since the instrument monitors current in the secondary winding of the probe rather than the voltage across this winding, changes in lead length and in copper resistance have no effect upon the scale factor of the output of the probe.

To supply as much power as possible to the exciting coil, and to reduce the number of tuned elements, the exciting winding forms part of the oscillator plate tank inductance. The remaining inductance is obtained from the plate winding of the oscillator feedback transformer. This transformer is wound on a $\frac{1}{2}$-inch form and consists of a 5 -turn grid winding of No. 24 enamelled copper wire over a 50 -turn plate winding of No. 30 enamelled ssc wire.

The combination of exciting coil, primary winding of the current transformer, and tank capacitor, form a parallel-resonant circuit. This design requires the oscillator tube itself to furnish only a small fraction of the current in the probe exciting coil.

Voltage from the secondary of the current transformer is rectified, compared to the d-c potential across a voltage regulator and fed to the d-c amplifier. Through a cathode follower, this amplifier controls the screen voltage of the oscillator tube. This regulator feedback circuit has a loop gain of the order of 100 , so

We make no end products. We have no allied branches.
These two facts are important to our customers. They can discuss their problems and product designs freely with us, knowing that their confidence will be respected. Thus your problem becomes our problem, and our advantage of 37 years of permanent magnet designing becomes your advantage.
This is only one of the many reasons why The Indiana

Steel Products Company is headquarters for Permanent Magnet research, why more than 25,000 individual applications have been developed by our engineers, why we are the world's largest producer of permanent magnets which utilize every conceivable permanent magnet material.
You are invited to consult with our engineers on any magnet problem. We assure you your confidence will be fully respected.

* THE INDIANA STEEL PRODUCTS COMPANY

PRODUCERS OF "PACKAGED ENERGY'"
6 NORTH MICHIGAN AVENUE CHICAGO 2, ILL.
PLANTS $\left\{\begin{array}{l}\text { VALPARAISO, INDIANA } \\ \text { CHAUCEY, WESTCHESTER } \\ \text { COUNTY, N. Y. }\end{array}\right.$ SPECIALISTS IN PERMANENT MAGNETS SINCE 1910 (COUNTY, N. Y.

- When you select a TURNER Microphone for better performance you automatically choose the leader in style and dependability. The accurate pickup, smooth response, and enduring reliability of TURNER design and con. struction is recognized the world over. Where performance counts most you'll Turn to TURNER.
THE MODEL 22-This handsome streamlined unit gives "smooth-as-silk" performance. Adds distinction to any installation. Ideal for both voice and music pickups. Widely used for all-around recording, public address, call system, and communications work. 90° tilting head permits semi- or non-directional operation. Available in a choice of high quality crystal or dynamic circuits. Complete with 7 ft . removable cable set. Ask your dealer.
WRITE FOR COMPLETE MICROPHONE CATALOG

THE TURNER COMPANY
905 17th Street N. E. - Cedar Rapids, lowa

[^9] ern electric company, incorporated. crystals licensed under patents of the brush development co.
that the oscillator output is held quite constant regardless of tube, line-voltage or other variations.

The output circuit for the secondary probe coil consists of a diode peak rectifier and a d-c voltmeter. Cancellation of initial coupling is accomplished by adjusting the zero set control which inserts a bucking voltage in series with the rectified probe input.

Any pentode or beam power tube is suitable as an oscillator. A 25 L 6 using a 115 -volt plate supply is adequate for driving one micrometer at 50 -volt-amperes. A single 807 is capable of supplying 1,000 volt-amperes, more than enough for four micrometers.

Micrometer Performance

The metal used as a reference surface has some influence upon the performance of the micrometer. While there is still a significant change in mutual inductance when magnetic materials are used, a relatively large initial coupling and a loss in scale factor are manifested. Ferromagnetic materials have appreciable permeability effects at radio frequencies so that there is an opposing effect added to the reduction in coupling caused by eddy currents. As the frequency is increased, the performance with ferromagnetic materials tends to improve, but nonmagnetic metals are still preferable.

Very little difference in performance can be observed between surfaces of various nonmagnetic conducting materials. Brass works equally well as silver, for example. At a frequency of 3 mc , it has been found that the metal need be only about 0.0001 inch thick; what lies beneath this layer does not matter. Thus, a convenient way to make measurements with magnetic materials is to plate them with a layer of copper or silver, for instance, to a thickness of 0.001 inch.

If the diameter of the metal plate is greater than $1 \frac{1}{2}$ times that of the larger probe coil, there appears to be little further effect due to the size of the plate. For most applications, it is suggested that the plate be no smaller than the coil. A hole in the center of the plate is not particularly detrimental to performance in those cases where lightness

Now Available---

A Line of PLASTICON* GLASSMIKE

 RF Transmitting Capacitors

Superior to mica capacitors because:

- Greater safety factor
(3500 VDC Operating; 7500 VDC Test)
- Lower RF losses
(See current rating below)
- More conveniently mounted
- Less chassis space
- Smaller overall volume
- Impervious to moisture
(The GLASSMIKE construction is 100% sealed)
- Silicone-fluid filled

The above advantages are possible by the use of the Type L film dielectric which has lower losses than mica.

TYPE LSG - PLLASTICON* GLASSMKES
3500 VOC Operating - 7500 VOC Test

Cat No.	Cap. Mfd.	Dimensions	Current Rating in RF Amperes				List Price
		OD Length	100 Kc	300 Kc	1 Mc	3 Mc	
LSG500	. 00005	19/32"x1-3 16"	. 02	. 05	. 16	. 47	\$1.50
LSG101	. 0001	19/32"x1 $3 / 16^{\prime \prime}$. 03	. 09	. 31	. 94	1.50
LSG251	. 00025	19/32"x1-3/16"	. 05	. 25	. 5	2.2	1.50
LSG501	. 0005	19/32"x1-3/16"	. 15	. 5	1.6	3.0	1.50
LSG102	. 001	19/32"x19/16"	. 31	. 94	2.5	4.5	1.70
LSG202	. 002	$3 / 4^{\prime \prime} \times 19 / 16^{\prime \prime}$. 62	1.9	4.5	7.0	2.45
LSG502	. 005	$3 / 4^{\prime \prime} \times 1-3 / 4^{\prime \prime}$	1.6	3.1	6.0	7.0	3.50
LSG602	. 006	29/32"x1-16"	1.9	3.5	6.2	7.0	3.75
LSG103	. 01	29/32 ${ }^{\prime \prime} \times 1-34^{\prime \prime}$	3.1	5.0	7.0	7.0	4.25

If the surface of the metal is curved, the indicated reading is relative to some average displacement. The initial mutual inductance is larger, so that more buckout voltage is required, but incremental readings are very nearly the same as for a flat plate. There is no necessity to shape the end of the probe form to match the surface, as would be the case with capacitive micrometers. The useful linear range is reduced, however, because the effective surface of the metal is at a greater distance from the end of the coil form.

Some measurements have been made with the micrometer to examine the effect of placing materials of various dielectric constants between the probe and the metal. This is the usual way of measuring insulation thickness. It was found that any error resulting from the dielectric constant is so small as to be within the accuracy of the instrument.

The electronic micrometer was developed in connection with projects for the Navy Department, Bureau of Ships, by M. L. Greenough and W. E. Williams of the Electronic Instrumentation Laboratory of the Bureau of Standards. A patent application has been taken out in the name of the United States Government and will be made available to industry without charge.

SPEED COP AGAIN

Close-up view of the electronic portion of the speed cop for clocking motorists (ELECTRONICS, July 1947, p. 148). The transmitter is at right with its antenna; the receiver is at left. An insulating panel protects the antennas from damage

Series R Stepper Three basic types of A.C. and D. C. operalion: con. tinuous rotation, add and First two types have 40 active positions, electrical reset has 36 contacts. All three types follow 10 pulses per second with. in rated voltage range.

.110 Time Delay Provides delayed opera. fion from 10 to 60 seconds using a resistonce wound bi-metal strip. In radio it prevents damoge to rectiiers ond sube filaments by retarding plate current until tubes are sufficiently heated. used widely predetermined interval.

Series 595 D. C. Relay' Midget telephone type unusual for amount of power provided. $3 / 8^{\prime \prime}$ $x 1^{\prime \prime}$ Three outstanding features - frictionless pivot-proper copper. iron balance-capacity to carry up to 8 single pole, single throw contact combinations.

Series 220 A. C. Relay Capable of breaking currents up to 20 omps of 230 v. 80 c., A. C. non-inductive load Bakelite contact block tes $\ddagger 51500 \mathrm{v}$. break. down to ground $5 / 16^{\prime \prime}$ dual contacts minimize arcing.
 Small, compact, low. cost. Size: $21 / 8^{\prime \prime \prime} \times$ Contact combina. tions up to 4 P.D.T. Powerconsumption, 6 V.A. Max.cap., 8 amps, 3 v. 10230 v . A.C., or 3 v. to 110 v. D. C. Cail and contact ossemblies interchangeable.

Series 100 A.C. Relay Used successfully in automatic home washing machines. It is incorporated in many new house on drafting boards.

Series 12 A.C. Solenoid For intermittent and continuous duty. Rated of 6 v . to 230 v . 60 c . A. C. Stroke ranges from $1 / 8^{\prime \prime}$ up to $7 / 8^{7}$. Series o D. C. rated óv. to 230 \checkmark. Stroke $1 / 8^{\prime \prime}$ up to $2^{\prime \prime}$.

Faced with responsibilities for the design and successful performance of their companies' products, American design engineers are eagerly turning to Guardian Electric first for relays and complete control assemblies. They find at Guardian a vast wealth of application and performance data, an expert engineering staff with more than a decade of specialized experience solving the most complex and widely diversified control problems. Such experience offers design engineers an extra bonus value thru practical suggestions and valuable specific recommendations given without cost or any obligation. Should your design call for a "special" control, Guardian has probably built the self-same principle you seek into one of its large line of basic type units. When such a basic type unit becomes the "special" you need thru slight variations, the savings in time and money are substantial, you circumvent die costs and beat delivery schedules in the bargain! Should special engineering be required, our staff is at your disposal. Write - call on Guardian for these excellent controls designed by Guardian engineers for engineers. Expert advice is yours for the asking to help you design better products thru improved techniques which are now so vital to meet competition.

ELECTRON ART
(continued from page (46)

FIG. 4-Radioactivity meter uses nonmicraphonic subminiature electrometer tube
capacitance variation can be minimized by connecting the tube directly across a large fixed capacitance. if rapid changes are not to be measured.

In portable equipment, the subminiature, battery operated (hearing aid) tubes have been used. Because such equipment is subject to severe vibration, microphonics in these tubes are particularly troublesome. However the nonmicrophonic subminiature CK570AX electrometer triode (developed by the Special Tube Section of Raytheon Mfg. Co. for the U. S. Atomic Energy Commission in cooperation with their Argonne National Lab. and now commercially available) measures currents as low as 10^{-14} ampere (0.01 micromicroampere) without developing objectionable microphonics in its output when vibrated. Filament heating power is 12.5 milliwatts. This tube was designed for use in the recently declassified Zeus circuit shown in Fig.
4. The ionization chamber has a one-litre capacity, a 0.25 volt input across the grid resistor giving full meter deflection. The circuit constitutes a simple, portable, inexpensive meter for health surveys to protect personnel working with radioactive materials or x-rays.

Magnetron as D-C Amplifier

Control of one current by another can be effected with a classical magnetron. (As originally used, "magnetron" meant a magnetically controlled diode, not an oscillator depending on the reaction of an alternating potential field on electrons moving in a static magnetic field. This abstract concerns the magneti-

Insures Muliple-Wound Coils as peassina pood

Coil winding - particularly multiple (gang) layer-winding-demands wire uniformity to insure -

Coils of uniform size and resistance value.

- Maximum rurns in available space.
- Freedom from broken wires, pile-ups, crossed turns, runbacks, spaced turns, and
quent tension adjustment.
of which means better coils plus increased
production. Essex Extra-Test Magnet When you specify Essex Ex mulriple-wound Wire you're sure of finished pod." coils "alike as peas in a pod.

FOR WIDE ADAPTABLIITY

These Amrecon multiple purpose relays are designed for either A.C. or D.C. operation. Each is available in a variety of contact combinations and capacities. Most units are available in light and heavy duty contacts nominally rated from 5 to 15 amps , 115 volts A.C., noninductive. Others are rated as high as 50 amps , at 115 volts A.C., noninductive. The relays illustrated are but a few of our many types.

We are especially well equipped to assist you in your engineering problems and can supply special units to meet your most exacting relay requirements.

Your inquiry will receive prompt and courteous ättention.

Write for our 4-page illustrated bulletin

Type CRU

OFFICES IN -PRINCIPAL CITIES

> American Relay \& Controls, Inc. 2555 DIVERSEY AVE. • CHICAGO 47, ILL.

At the top is the basic magnetron connection: current in the solenoid produces a magnetic flux H. Below is the magnetron characteristic for a fixed anode-cathode potential, decreasing that potential moves the cutoff to the left, decreasing the heater current lowers the saturation current available at low magnetic flux
cally controlled diode.) The advantage of the magnetron over a grid controlled tube is that the controlling circuit can be at a radically different potential with respect to ground than the controlled circuit. Thus, in a particular x-ray application, the solenoid that was wound about the diode for control was at ground potential while the anodecathode circuit of the diode was about 100 kv above ground in the target circuit of the x-ray tube. Furthermore, variations in sole-noid-ground potential, except as they might affect the solenoid current, do not affect the output circuit, thus the magnetron is ideally suited to direct-current amplification.

Magnetic Sensitivity

The analogous paramaters amplification factor and internal resistance of a triode are magnetic sensitivity $\mu_{\mu}=\left(\partial v_{4} / \partial H\right)$, and internal resistance $R_{1}=1 /\left(\partial i / \partial V_{A}\right)_{H}$. In an ideal magnetron, current flows for a fixed value of anode-cathode voltage V_{A} until a critical magnetic field H_{K} is reached at which point the current abruptly drops from its saturation value to zero. However, in an actual magnetron, because of asymmetry in its radial and axial geometry and other variations especially edge effects of the electrodes, the discontinuity of current is less abrupt, being as shown in the accompanying drawing. For not too small values of V_{4} and H_{8} the mag-

$T \mathrm{H}$HE Type V-5 VARIAC is the most popular of a number of different models. For over- and under-voltage testing, compensation for varying line voltages, and general a-c power, heat, speed and light control, its rating of 862 volt-amperes seems to cover a majority of applications.

We have been concentrating our VARIAC production facilities on this model and are gradually getting out of the woods.

The Type V-5, like others in the new ' V ' series, is a decided improvement over its predecessors. Lighter in weight by 25%, with new unit brush construction which cannot cause damage to the winding if the brush wears down, having a heavy- duty lines switch, equipped with a polarity indicator in the convenience 'load' outlet, provided with a new molded terminal plate for either screw or solder connections, and furnished with a newly designed knob and dial with big calibration figures for reading at a distance, these new VARIACS are more convenient to use . . . more efficient in operation . . last longer.
The VARIAC is the ideal a-c voltage control. It has the convenience of the rheostat with the efficiency of the transformer; unlike a rheostat it provides control voltages 17 per cent higher than the line voltage . . . and these voltages are continuously adjustable from ZERO.

SPECIFICATIONS \dagger
115 VOLT-TYPE V-5
230-VOLT-TYPE V-5H
LOAD RAIING (KVA)
Input Voltage
Output Voltage, ZERO to
Reted Current (Amps.)
Max Current (Amps.)
PRICE-Unmounted (1)
PRICE—Cased (2) (3)
PRICE—Mounted (1)
.862
$115^{.8} 115$
135 or 115
5
7.5

TYPE V-5
$\begin{array}{lr}\text { TYPE V-5 } & \$ 18.50 \\ \text { TYPE V-5M } & 20.50\end{array}$
$\begin{array}{ll}\text { TYPE V-5M } & 20.50 \\ \text { TYPE V-5MT } & 25.00\end{array}$

$$
\begin{aligned}
& .575 \\
& 230 \text { or } 115 \\
& 270 \text { or } 230 \\
& 2 \text { or } 1 \\
& 2.5
\end{aligned}
$$

TYPE V-5H \$21.00
TYPE V-5HM ${ }^{\text {F }}$ \$21.00 23.00
TYPE V-5HMT 27.50

(1) At left in illustration	The 230 -volt Tmodels (V-5H) are
(2) Center of illustration	similar in cxternal appearance and
(3) At pight of fllustration	size to the corresponding 115 -volt
+ All datdlfor 60 -cycle operation	(V.5) units shown in the illustration

* Reg. U. S. Pat. Off, VARIACS are patented under U. S. Pat. No. 2,009,013 and British Pat. No. 439,567. The VARIAC-and original continuouslyadiusted transformer-is manufoctured and sold exclusively by General Radio Compony or its authorized agents.

ORDER NOW!
 Prompt shipment probably can be made on all models of the Type V-5.

GENERAL RADIO COMPANY
Cambridge 39
Massachusetts
90 West St., New York 6
920 S. Michigan Ave., Chicago 5
950 N. Highland Ave., Los Angeles 38

netic sensitivity can be taken as the slope of the magnetic characteristic curve, or as $\mu=2\left(r_{\Delta} / 6.74\right)^{2} H_{K}=$ $\left(r_{4} / 3.37\right) V_{4}^{1 / 2}$ in which r_{A} is the effective anode radius (its geometric radius if the cathode is of negligible radius and the tube is axially symmetrical).

If a grid is placed close to the anode and at cathode potential, the sensitivity of the magnetron will be increased because the magnetic field will then have an opportunity to deflect the electrons in a weak electric field over most of their path. If the amplification factor of the grid is G, the sensitivity of the grid magnetron is $\mu=2 G\left(r_{\Delta} / 6.74\right)^{2} H$. The anode potential will have to be higher for the tube to conduct a reasonable current, but this is usually no drawback considering the enhanced sensitivity (A Magnetron for D. C. Voltage Amplification, H. B. G. Casimer, Philips Technical Review, p 361, Dec. 1946).

Measuring Distance Precisely

Relative phase relationship between continuous-wave radio signals is used (as in an interferometer) to measure distance to accuracies within several inches per mile with the Raydist (radio distance) developed by Charles E. Hastings. Using a heterodyne system, circuit errors are canceled thus producing high precision. The equipment can be used in surveying, indicating positions of airplanes and their true ground speeds, plotting the trajectory of missiles, or maritime navigation. The equipment is light enough to be readily transportable.

Hyperbolic Coordinates

As used in most applications, the equipment is arranged as in Fig. 1. The mobile transmitter is carried by the vehicle whose position is to be measured. The system as shown provides one set of hyperbolic interference lines in space. Motion along the pattern is detected by the differences in phase at two $a-m$ receivers. Operation is at $12,862.5 \mathrm{kc}$ so that each half wavelength is 38.225 feet. The beat frequency developed at an a-m re-

NATIONAT RESEARCH CORPORATION
 ENGINEEIRING
 TIUVISION

 tower in the country! More than 112,000 landings and takeoffs from January 1 to July 31, 1947 ,
all handled by Radio Receptor all handled by Radio Receptor
communications equipment. communications equipment.

Now-more traffic for the smaller airport with Radio Receptor's low-cost "packaged radio stations!" Compact, easily installed, need little maintenance.
Teterboro's experience proves that reliable ground-to-air communications is a "must" for successful and profitable airport operation.
Teter Tower has them coming in fast and in all sizes, but the tower picks them ouf of the air cleanly, whether it be a multi-engined cargo plane or a smaller local plane; and leads them to the ground with a minimum of jamming.
Not only at Teterboro, but at nearly every major airport in the country and at many airlines, such as La Guardia field, Washington National Airport, American Overseas Airlines and others, you will find Radio Receptor high and low frequency communications equipment, beacons, ranges, and other navigational aids for ground-to-air traffic control.
Let us help you plan your airport traffic control system today. Write today for full information on "Packaged" VHF and LF Radio Stations, LF, HF and VHF Receivers and transmitters. Address Dept. C-I

FIG. 1-Airline distance is measured with this setup
ceiver is relayed by $\mathrm{f}-\mathrm{m}$ radio or land line to the amplifier-indicator.

Such an arrangement of equipment as described above indicates range from a reference point. If position is to be indicated, an additional a-m receiver is added and the beat frequency developed by it used with the beat frequency from either of the other two receivers to obtain an additional coordinate thus giving a fix.

Phase Integration

The beat frequency developed at each a-m receiver as a consequence of its receiving signals from two transmitters, the fixed reference one and the mobile one, is fed as a phase shift through the amplifier shown in Fig. 2 to a counting synchro. As the received phases change, the synchro rotor revolves driving the distance counter. Because the frequency of the beat is proportional to the speed of the mobile transmitter, true ground speed of an aircraft can be indicated by feeding the beat frequency to a direct-reading frequency meter calibrated in units of speed.

That only the frequency of the

FIG. 2-Two-channel amplifier drives distance indicator

Stupakoff Ceramic and Manufacturing CD.

Latrobe, Pa.
Cablé Address STUPAKOFF, LATROBE, RA, it

ATTACH THIS COUPON TO YOUR BUSINESS LETTERHEAD AND SEND TODAY
STUPAKOFF CERAMIC \& MFG. CO.
Please send a copy of Bulletin 447 to:
NAME
COMPANY \qquad
ADDRESS
CITY
\qquad
\qquad STATE

Operates as voltage relay, current relay or time delay switch.

- Suitable for A.C. or D.C.
- Control circuit current 25-80 milliamps.
(2) Load current up to 30 amps at 440 volts.
- Silent.
- Non-inductive control circuit-hence control circuit contacts don't deteriorate.

Non-arcing, therefore no deterioration of load contacts.

IMMEDIATE DELIVERY

Thousands of Sunvic Hotwire Vacuum Switches have been in use for many years throughout the world. Please write for Catalogue VS. 10.
mobile transmitter determines the accuracy of the system can be seen from the following considerations. The mobile transmitter frequency f is heterodyned by a reference transmitter operating on a slightly higher frequency $(f+\Delta f)$. The first receiver, which the mobile transmitter is approaching, receives the signal from the mobile transmitter at a slightly higher frequency as a result of Doppler effect, but receives the signal from the fixed transmitter without modification. This receiver beats these two frequencies giving a frequency

$$
\begin{aligned}
f_{\mathrm{k}} & =(f+\Delta f)-(f+f V / C) \\
& =f+\Delta f-f-f V / C \\
& =\Delta f-f V / C
\end{aligned}
$$

where C is the velocity of propagation of the radio signals, and V is the velocity of the mobile transmitter toward the first receiver. Similarly, the frequency developed by the receiver from which the mobile transmitter is receding is

$$
f_{\mathrm{k} 2}=\Delta f+f V / C
$$

These two heterodyne signals are mixed giving a beat frequency

$$
f_{\mathrm{B}}=f_{\mathrm{R} 1}-f_{\mathrm{R} 2}=2 f V / C
$$

Thus all but the mobile transmitter frequency, the velocity of propagation, and the desired speed (integrated into distance) cancel out.

Because the system compares beats produced at two different points from the same two frequencies, it is free from drifts in the receiving equipment. Use of a transmitter in an airplane or other vehicle whose position is to be indicated increases the efficiency of the system over that of radar methods depending on reflections from passive targets, and is more accurate than methods relying on transponders. In applications, the indicator can be at any position, such as with the mobile transmitter on the airplane, the two receivers being at airports between which the plane flies and the reference transmitter between them. The system is especially useful in measuring velocity of propagation of radio waves.

Vertical Position Indicator

Gas-Filled Y-type position convectron tube develops an unbalance voltage proportional to the sine of the angle of rotation from the vertical. Thus the tube is a useful

solving
 RESISTOR

PROBLEMS
TABLE I
"Globar" Type "A" Ceramic Resistors by "CARBORUNDUM" are fired at temperatures up to $2500^{\circ} \mathrm{F}$. in electrically heated furnaces under carefully controlled conditions.

They are conservatively rated and possess a high degree of Permanence of Characteristics. They will not exhibit a permanent change of characteristics after moderate temporary overloads.
They have a small negative temperature coefficient of resistance ranging from 0.08 per cent per degree C. for low resistance values up to 0.12 per cent per degree Centigrade, for resistance values up to 0.1 megohm.

Type "A" resistors in R.M.A. values are calibrated by the comparison method on the voltages specified in Joint Army and Navy specification JAN-R-11. Type "A" resistors can be manufactured in any size and resistance range listed in the accompanying tables. The Carborundum Company, Globar Division, Niagara Falls, N. Y.

Part Number	Rating in Watts	Resistance Range*	Overall Length Inches	Overall Diameter Inches	Tinned Wire Length	Copper Leads Diameter
997-A	1/5	10 Ohms - 4.7 Megohms	21/64	7/64	$11 / 8{ }^{\prime \prime}$	$0.016^{\prime \prime}$
763-A	$1 / 4$	10 Ohms - 15 Megohms	5/8	$7 / 32$	$11 / 2^{\prime \prime}$	$0.032^{\prime \prime}$
759-A	1/2	10 Ohms - 15 Megohms	$3 / 4$	$1 / 4$	11/2"	$0.032^{\prime \prime}$
766-A	1	10 Ohms - 15 Megohms	$11 / 8$	$1 / 4$	$11 / 2^{\prime \prime}$	$0.032^{\prime \prime}$
792-A	3	10 Ohms - 150000 Ohms	$17 / 8$	15/32	$11 / 2^{\prime \prime}$	$0.040^{\prime \prime}$
774-A	5	10 Ohms - 220000 Ohms	25/8	15/32	11/2"	0.040"
*R.M.A. Values $\pm 10 \%$ and $\pm 20 \%$ only.						

TABLE II

Diameter in Inches	Resistance in Ohms Per Inch of Length		Length in Inches		Rating
	Minimum	Maximum	Minimum	Maximuı	
1/2	10	250000	2	8	Continuous Duty
$5 / 8$	7	250000	2	10	Rating is based on one watt per
3/4	3	100000	3	18	sq. in. of external
1	2	50000	4	18	radiating surface.

Resistors listed in Table II can be supplied with metallized ends of brass, copper, nickel, tinned brass or timued copper, also uith timned copper wire (No. 14 B.S.G.) leads approximatel) six inches long. Reisistance tolerances on Type " A "" Resistors limited to $\pm 10 \%$ and $\pm 20 \%$ only.

GLOBAR

 Ceramic Resistors bY CARBORUNDUM
"Carborundum" and "Globar" are registered trademarks which indicate manufacture by The Carborundan Company

Convectron vertical position sensing tube made by Eclipse-Pioneer Div, of Bendix changes resistance of its two arms when displaced in the plane through its legs
sensing element in positioning servomechanisms. It is simpler to mount than mechanical indicators, has no moving parts, and directly gives an electrical output.

Operating Characteristics

The tube and bridge circuit in which it can be used are shown in the diagram. The filament is heated by either alternating or direct current. It looses heat chiefly by gas convection. Because the gas convection currents rise vertically passing the filament at an angle dependent on the tube's orientation, the cooling of the two legs of the filament is different for different angular positions in the plane through the tube. The filament is made of nickel so that its resistance changes appreciably with temperature, thus, in a bridge circuit, these resistance changes upset the balance when the tube is displaced from its normal position.

Convection currents in the tube are caused by differences in mass between heated and cooled portions of the gas. As a vertical position indicator, these differences of mass react with the force of gravity to produce convection flow. However, if the tube is accelerating (linearly or rotationally), there is an acceleration force against which the differences of mass react to produce convection currents. Under this condition the tube will indicate displacement from the vector sum of the gravitational and accelerational forces. The Convectron can, consequently, be used as an accelerometer (but is insensitive during free fall).

In operation the filament is heated to an average of about 400 C. If a d-c source is used for the bridge, the unbalance output re-

A
 "JEWEL"

You can say that convincirgly about Methacrylate from Plax - literally, too. Its unblemished crystal clearness makes it a top material for costume jewelry fountain pen stocks - furniture - and many other products where jewel-like eye appeal is desired. It is also a scintillating display material.

On the industrial level, excellent optical and other characteristic; have prompted its use in sight gauges, in chemical pipe and equipment. A versatile plastic easily heatformed into many different shapes, Methacrylate is a material well worth investigation - and Plax is probably the best source of help you can find.

CHART ON "HOW TO USE PLASTICS"
Now available for the asking is a table of properties for six materials available from Plax in various forms and formulae. This has been incorporated in the Plax catalog, which also contains helpful information on the primary uses of each material.

A copy will be sent promptly upon receipt of your request.

Between the resources of Shaw Insulator Company, Irvington 11, N. J., and Plax Corporation, Hartford 5, Conn., you can find help on virtually every material and method in plasties taday.

133 WALMUT STREET HARTEORN 5, CONNECTICUT

S8-B General Purpose, 12 to 24 elements, for laboratory or field use, quick-change transmission for wide range of record speeds, automatic titling and numbering, automatic record-length control, tuning fork time marker, galvanometer attenuators, governor motor.
(Bulletin SP165)
S8-C General Purpose, 24 to 36 elements, otherwise same as type S8.B. \&
(Bulletin SP165)
S8-D General Purpose. 12 to 24 ele ments, similar to type S8-B except without automatic controls.
(Bulletin SP 175)
S12-A Small Portable, General Purpose, the smallest complete 12 -element oscillograph.
(Bulletin SP167)
56-A Geophysical. 12 eiemens.
S6.B Geophysical. 24 olements.
S14-AStudent's Oscillograph, 6 to 12 elements, ultra-simple, low in cost.
(Bulletin SP183)
S15-A Portable Sell-Powered, 6 elements, for use where very small size is essential and power is not available
(Bulletin SP193)
SC16-A Cathode Ray. 6 elements. very high frequency response and writing speed, record speed to 6000 inches per second.
(Bulletin SP194)
RS9-A Automatic Oscillograph. 12 elements. for switchboard or portable use for automatic recording of faults or staged system testing, high-speed starting.
(Bulletin SP196)
WHATEVER YOUR REQUIREMENTS MAY BE THERE IS A
HATHAWAY OSCILLOGRAPH FOR YOU

WRITE FOR TECHNICAL BULLETIN

INSTRUMENT COMPANY

"WE DO FIND THAT WE HAVE

REDUCED OUR ASSEMBLY COST

APPROXIMATELY 36% ON THIS

UNIT SINCE BEGINNING TO USE

THE TINNERMAN SPEED NUT"

SPEED NUTS always effect substantial savings in assembly cost, but here is a case of unusually high savings.

Victor Animatograph Corporation accepted our suggesfions on the assembly of their amplifier unit. They discarded their time-consuming practice of assembling a myriad of small parts in a crowded case. Now the amplifier is assembled in three easy-to-get-at sections that are quickly fastened together with SPEED NUTS to complete the unit.

Assembler training time is cut from two months to a few hours. Assembly time is slashed, employee morale improved, and with three assembly lines instead of one, the risk of complete production stoppage due to shortage of one or two parts is avoided.

Let us demonstrate what SPEED NUTS can accomplish in improving the assembly of your product.
TINNERMAN PRODUCTS, INC. 2106 fulton road - cleveland 13, ohio

This is a direct quotation from a letter from A. S. Webeck, Works Manager of the Victor Animatograph Corporation, Davenport, lowa, makers of 16 MM sound motion picture equipment.

Former ossembly method was conflnes of this one-piece case.
 sembled separately, and quickly fastened together with SPEED NUTS
into completed unit.
In Canada: Wallace Barnes Co, Ltd., Hamilton, Ontario
In Canada: Walace Barnes Co., Ltd., Hamiton, Onta In England: Simmonds Aerocessories, In France: Aerocessoires Simmonds, S. A., Poris In Australia: Simmonds Aerocessories, Pry. Ltd., Mebourne

MORE THAN 4000
$\begin{array}{llllllllll}\boldsymbol{H} & \boldsymbol{H} & \boldsymbol{S} & \boldsymbol{T} & \boldsymbol{X} & \boldsymbol{N} & \boldsymbol{I} & \boldsymbol{N} & G\end{array}$

Haunted by supply problems?

Don't let low stocks or distant supply points scare you! With Air Express cutting delivery time down to a matter of hours, you can get what's needed from anywhere in a rush. Just remember to specify Air Express. Your shipment flies to you at speeds up to 5 miles a minute. Air Express goes on all flights of all Scheduled Airlines - that means the fastest possible service.

Use Air Express regularly. You'll find there's real profit for you in such speedy service. And rates are low. Frequent flights to and from points overseas can simplify your foreign shipping problems, too. Investigate.

Specify Air Express-it's Good Business

- Low rates-special pich-up and delivery in principal U.S. towns and cities at no extra cost. - Moves on all flights of all Scheduled Airlines.
- Air-rail between 22,000 off-airline offices.
- Direct air service to and from scores of foreign countries.

Just phone your local Air Express Division, Railway Express Agency, for fast shipping action . . . Write today for Schedule of Domestic and International Rates. Address Air Express, 230 Park Ave., New York 17. Or ask for it at any Airline or Railway Express Office. Air Express Division, Railway Express Agency, representing the Scheduled Airlines of the United States.

Fastest delivery - at low rates

Machine parts (75 lhs .) in Chicago were needed by a bottling works in Dallas fast. Picked up 10 AM the 6th, delivered same day at 5:05 PM. 795 miles, Air Express charge only \$18.42. Other weights, any distance, similarly inexpensive and fast.
anticollosion aircraft flying developed by Hughes Aircraft Co.

Predicting Sunspot Activity

Solar activity, which greatly affects radio communication, is evidenced by sunspots. The number and activity of the sunspots varies greatly over an 11-year period, indicating local variations in sun's temperature, and hence the relative intensity of radiation from the sun that in turn determines the condition of the earth's ionsphere. Basic information on sunspot numbers is obtained from the Zurich Obseratory in Switzerland, which has made continuous records of solar activity since 1849 , and from other observers. Sunspot number is obtained by counting the number of sunspot groups, multiplying by ten, and adding to the result the number of individual sunspots in each group. This statistical convention is the worldwide standard method of recording such data.
Whereas previous methods of prediction depended on harmonic analysis, assumption that cycles repeat after a number of years. and various empirical relationships between heights of maxima and rates of rise, the statistical method advanced by A. G. McNish and Virginia Lincoln of the National Bureau of Standards assumes that, in a time series exhibiting cyclical tendencies, a first approximation to a future value is the mean of all past values at the same stage of the cycle. and that this first approximation can be improved by adding to the mean a correction proportional to the departure of earlier values of the same cycle from their respective means. The second assumption is justified by the observed tendency in sunspot numbers from annual deviations from the mean to have the same sign and similar magnitudes in con-

FIG. 1-Sunspots from 1834 to 1944
 needed component or product and find one with correct characteristics - a sale has been made.

As a matter of fact, that is your Point of Sale. Once a product has been designed into the pilot model the time for selling, 9 times out of 10 , is passed. It is either too late or too difficult to change or fit in a substitute. Don't overlook this year round salesman - be sure to include it in your 1948 advertising budget.

THE MEN YOU MUST REACH...

If you are going to sell your product, the best time to reach them is when their product is on the drafting table and components or complete equipment is being designed in. That's the pbint of sale -and it's the time they're using the Buyers' Guide.

electronics
 BUYERS' GUIDE

The reference buying quide used by every indusiry

To manufacture a few good discs is easy. To manufacture a million good discs takes skill. Soundcraft recording lacquer embodies extra quality to do just that job. Soundcraft protects this extra quality with safeguards and controls so that you get standardized dises.

Over a million Soundcraft discs have now been delivered to broadcasting chains, individual stations, motion picture studios, sound studios, phonograph record companies, educational institutions and home recordists. This cross section of the industry, moreover, demands Soundcraft discs day after day. And the most critical users are the most insistent upon Soundcraft.

- The Ysoadatater * $10^{\circ} 12^{\circ} 16^{\prime \prime}$
- The "Payback"
 - The 'Audition
$61 /$ º' $^{\prime \prime} 10^{\prime \prime} 12^{\prime \prime} 16^{\prime \prime}$
- The 'Maestro'
$12{ }^{*} 1314^{* *} 1714^{*}$

REEVES SOUNDCRAFT CORPORATION
 10: EAST 52 STREET
 -
 NEW YORK 22, N. Y.

secutive years. Figure 1 shows, at the top, the sunspot numbers recorded in the past, and, at the bottom, the deviation from the cyclic mean. The prediction formula for the future is of the form
$\left.\left.R_{\mathrm{n}}{ }^{\prime}=R_{\mathrm{n}}+k_{\mathrm{n}-1}\right\lrcorner R_{\mathrm{n}-1}+k_{\mathrm{n}-2}\right\lrcorner R_{\mathrm{n}-2}+$
where $R_{\text {a }}{ }^{\prime}$ is the predicted value in a particular cycle, R_{n} is the mean of all corresponding values in preceding cycles, $\Delta R_{n}{ }^{\prime}{ }_{-1}$ is the deviation of the particular $R_{\mathrm{n}-1}$ for this cycle from the mean of all R_{n-1} values from previous cycles, and the k values are proportionality constants.

Probability of Aireraft Collisior
Airplane collisions with mountains have always constituted one of the spectacular hazards of airline operation. Statistical studies of terrain contours in the vicinity of principal airways over mountainous territory, and of CAA and CBA terrain collision reports from 1933 to 1946 , have revealed two significant facts. Most accidents took place within 500 feet of the summit of the obstacle. Secondly, the profiles are such that if planes approaching peaks are given warning of terrain clearance of 2,000 feet (by a radio altimeter for example), the pilot could rise clear of the mountain by a routine evasive action of continuing in a straight course but climbing 900 feet in the first mile after clearance warning and continuing to climb at 500 feet a mile until the plane had climbed 2,000 feet or enough higher so that the warning signal disappears. This maneuver is readily executed at sustained power by most transports. Figure 2 shows a typical profile and how the evasive maneuver would avoid a collision. From these profiles it was found that pilots would be warned of flying too low on a weighted average of 7.5 miles from the peak, and in extreme cases only within 3 miles or as far away as 30 miles. The collision records (and normal expectations) indicate that pilots are more often flying close to the peak altitude than well below it. However, planes might attack at any altitude. Therefore, a weighting (that is conservative, judged by actual records) was assigned each 500-foot altitude interval; assuming that, of all the planes that might

"It is interesting to note," writes Dan Halpin, RCA Victor Television Sales Manager, that this new kind of transmission line (ATV*), now widely used in television transmission between the antenna on a customer's roof and a receiver installed in the home, is identical with the line developed for wartime radar use, and which had to stand severe temperature changes and unusual climatic conditions.
"It is many times more efficient than any prewar line and is playing a large part in the success we are enjoying with RCA Victor television. By the end of this year television should serve approximately 35% of our nation's wired homes."

The well balanced design of conductors and dielectric in Anaconda Type ATV lead-in lines fulfills the exacting requirements of wide-band reception. For FM and television reception, these lead-in lines mini-
mize the effects of attenuation and impedance mis-match-providing maximum freedom from distortion.

No wonder manufacturers are enthusiastic about ATV! Television buyers expect a lot and ATV helps to deliver.

TOBOIDAL COIL
 FILTERS
 for every application

Our toroid filters have become a by-word in every phase of electronics where only the best results are acceptable. Toroidal coils wound on MÓLYBDENUM PERMALLOY DUST CORES are the primary basis for our success in producing filters unexcelled in performance.

Radio control-miniaturizing _-Aircraft. Nuclear research.

RAILWAY COMMUNICATIONS

Multi channel filters for carrier modulation.

RADHO COMMUNICATIONS

Tone keying filters - wave shaping filters - discriminators - delay networks.

WIRED TRANSMISSION

Line filters-slope equalizers loading circuits.

We would be pleased to submit quotations for special filters.
Write for our catalogue.

TOROIDAL COILS

Although the demand for our toroidal coils has been increasing rapidly, we are maintaining our usual good delivery schedules. Most available types ore

RANGE

TC-1 500Cy. 20 KC
TC-2 100cy.-5KC
TC-3 10KC-100KC
Coils are available in inductances from 1 MHY to 12 HYS,

Burnell \& Ca.

 DESIGNERS AND MANUFACTURERSOF ELECTRONIC PRODUCTS

45 WAREURTON AYE. YONKERS 2, N. Y.

FIG. 2-Typical terrain profile
crash into a mountain side, five would be in the 500 -foot level just below the peak, four in the next lower level, and so on with one plane each in all the very low levels. On this basis a 1,000 -foot terrain clearance warning would avert 82 percent of all hypothetical crashes, and a 2,000-foot warning would avert 96 percent of them. In the east, where mountainous terrain is less rugged, a 500 -foot warning would be sufficient to avert most accidents. On this basis a simple terrain clearance radar with a 2,000 -foot and a 500 foot range that has been recently publicised was adopted for commercial use.
In the case of sunspot prediction, the analysis assures that, although the forecast will not be exactly correct, it will indicate the most likely condition. In providing anticollision radar, it would be difficult to determine the required range and predict the probable reliability of any specified radar without resorting to statistical analysis. Many engineering problems involving gross phenomena (sunspots and the like) or many variables and probabilities (terrain clearance) can be best solved by such statistical approaches as these.

Myographs

By W. E. Gilson
Department of Medical Electronics

J. A. E. Eyster

Department of Physiology
The University of Wisconsin Medical School Madison, Wis.

In studying the sequence of heart action of the dog and the turtle, particular interest was centered on the fractionate contraction occur-

your TELEPHONE TRANSMITTER AND RECEIVER, voice gateways to the telephone plant, are so essential to satisfactory service that they have been under study in Bell laboratories for seven decades,

ATELEPHONE RECEIVER is a complex system of clcctrical and mechanical elements. Its coils, magnets, diaphragm and cap react on each other as they convert the electrical waves of your voice to sound waves. What is the best size for the holes in the ear cap? Will $1 / 1000$ th inch greater thickness help a receiver diaphragm to carry your telcphone voice more clearly? Onc way to find out is to build numerous experimental receivers and test them.

But Bell Laboratorics have found a shorter way. They built an all-clectrical replica, an "equivalent circuit" in which electrical resistance stands for air friction in the cap
holes; capacitance corresponds inverscly to the stiffness of the diaphragm. Over-all performance of this circuit can be quickly measured and design changes cconomically explored. Later, a model can be built for final check.

The "equivalent circuit" was pioncered by Bell Tclephone Laboratories 25 years ago. It is a useful tool in many Laboratories developments-saving time, saving the cost of machine-tooled models, encouraging experimentation. It is onc more cxample of the way Bell scientists get down to fundamentals as telcplione progress continues-and service keeps on improving for all subscribers.

Fishing reel gears must operate smoothly at a speed of 3000 revolutions per minute or more, when a cast is executed. These gears must also withstand the strain of hanling in a fighting fish of unpredictable size and strength, thus rendering a dual purpose: speed and velvely smoothess in oue direction-strength and durability in the other.
Instruments and machines have individual gear prollems. For over a quarter of a century, Quaker City Gcar Works has solved thousands of them and produced millions of gears of every description np to $60^{\prime \prime}$ in dianeter for manufacturers in many diversified industries.

Aircraft comrols, dental drills, electric clocks, gauges, indicators, heat comrols, machine tools, radar, radios, washing machines and motion picture projectors are but a few of the many conveniences of modern progress which depend upon the heartheat of Quaker City Gears. Your gear problem is our husiness, our large productive capacity is at your service.

YOUR INQUIRIES WILL RECEIVE PROMPT ATTENTION

The heart of the Outdoorsman Customatic reel illustrated above is but one of many gear trains developed by our engineers and

FIG. 1-Variable-inductance myograph has supporting columns made of $5-\mathrm{cm}$ lengths of soda straw. Points are usually so spaced on specimens that coils are 2 to 3 mm apart
ring at the onset of a complete contraction cycle. To observe this effect, it was necessary to construct a mpograph, an instrument to measure displacement or velocity of muscular contraction.

It was assumed that the onset of contraction was signalled by the coming together of two closely spaced points on the surface of the heart. Consecuently, the basic myograph element was a light frame, rather like a drafting divider, whose points rested on the surface of the heart and were drawn together as fractionate contraction occurred.

Overcoming Inadequacies

To record precisely the onset of contraction with the least possible time lag, the myograph had to have small inertia. In addition, the instrument had to rest lightly on the heart and be capable of being actuated by a very small force. Several myographs were constructed which proved less satisfactory than the variable-inductance unit finally developed.

The first unit constructed was based on a capacitance principle. Two insulated plates, forming a variable capacitance, were mounted on the arms of the myograph so that the capacitance increased when the points came together. This capacitor was connected across the tank circuit of a variable-frequency oscillator, working at approximately 456 kc . The output of the oscillator was detected after passing

need a mite

To meet requirements for weight- and space-saving rectification in small radios, General Electric engineers have developed this tiny selenium rectifier. Less than one inch square, its use has resulted in important manufacturing economies, without loss of efficiency.

This two-ton copper-oxide rectifier is one of the largest ever made. Designed and engineered by General Electric, the ten-foot-tall unit is rated at 80 kw . It will be used in an electrochemical process, to supply constant unvarying flow of electricity over a wide range of load.

or a manmoth!

...Specify General Electric and Get

the Right Rectifier for Your Designs

Mite or Mammoth? Your needs probably fit somewhere in between. But the important point is that we have a lot of experience with all kinds and all types of rectifiers.

This means that when you come to us with a problem involving rectification, we probably have already tackled a similar problem for some other manufacturer - and have come up with a successful solution.

Even if your application is entirely new, our engineers have a background of experience that is invaluable in selecting the type and the design of rectifier that will give you the

utmost in operating economy and output efficiency.
Because we make all three of the most commonly used types of rectifiers, you can be sure of unbiased recommendations for the one that is best suited to your application.

Call on us for counsel when your next project is in the planning stage. There is no obligation. Just ask a General Electric representative to call, or write to Section A72-1131, Appliance and Merchandise Department, General Electric Company, Bridgeport 2, Connecticut.

Cusfom-Engineered Transformers?

MORE THAN 30,000 DIFFERENT DESIGNS of transformers have been engineered and built by the Transformer Department of Raytheon. The units illustrated are a small selection from the range of types and capacities produced.

All transformers for the famous SG and SO Radar equipment . . . employed under a variety of service conditions in all parts of the world . . . were designed and built by Raytheon. Many thousands of other transformers have also been designed and built to government specifications for military service.
Raytheon employs a large engineering staff, maintains a model shop for producing sample units, and is building custom-engineered magnetic components to meet the specific service requirements of large and small manufacturers of electrical and electronic apparatus.

Your inquiry is invited. Detailed informa-
tion on your requirements will receive the prompt attention of our transformer engineers. Address Dept. 4750-A

ELECTRON ART
through a 456 ke i-f transformer. The freguency of the oscillator was set so that it came in the middle of the sloping side of the response characteristic of the transformer. Thus the d-c output of the detector was a direct function of the capacitance of the myograph. An alternative method used the same myograph in a bridge circuit.

Curves were obtained with this myograph measuring fractionate contraction of the turtle venticle. These curves, however, indicated that the entire heart contracted simultaneously, which did not agree with other data obtained from the same animal. The myograph was then tested by tying its points together and placing it on the heart. The same type of curve was obtained as before, showing that the effect of the varying capacitance to the body with movement of the heart practically obliterated the curve of local contraction.

A second instrument was then built, in which the plates were completely shielded from external changes of capacitance, and a shielded lead was used to connect to the plates. This model worked considerably better, but was still not satisfactory, because when the points were tied together and the myograph placed on the turtle heart, a small curve was still obtained. This curve was found to be caused by a change in the capacitance of the shielded lead even with slight bending.

Salisfactory Types

The third type of myograph' was considerably more satisfactory. It consisted of two pieces of filter paper wet with salt solution, mounted in a V on the arms of the myograph, so arranged that when the points were brought together, the V would shorten, decreasing its resistance. This variable resistance was placed in a bridge circuit energized by a 50,000 -cycle oscillator to eliminate polarization. The output of the bridge was rectified and connected to the recording mechanism.

Many excellent records were obtained with this device, but it was still not altogether satisfactory as there was drift of the reference

VOLTMETER MULTIPLIERS

TYPEMFB

Type	Resistance Megohms	K. Volts	Navy Type
MFB 105	1.0	1.0	63754
MFB 155	1.5	1.5	63755
MFB 205	2.0	2.0	63747
MFB 255	2.5	2.5	63774
MFB 305	3.0	3.0	63825
MFB 355	3.5	3.5	-

TYPEMFA

Type	Resistance Megohms	K. Volts	Navy Type No.
MFA 355	3.5	3.5	03775
MFA 405	4.0	4.0	63815
MFA	4.5	4.5	-
MFA 505	5.0	5.0	-
MFA 605	6.0	6.0	-

TYPEMFC

IRC PRECISION WIRE WOUND RESISTOR SPECIFICATIONS

7112 Fitccision Hatry Nownde WW-1 WW-2	Type	Wetrge	Length	Diameter	Range		Terminal	Windive	
					Minimum	Maximum			
	WW-I	Below . 36 mea. I watt-shurt 600 volte max.	$21 / 8{ }^{\prime \prime}$	9/16*	. 1 ohm	600,000 ohme	Binding Pot and nut	Nonindurtive	
	WW-2	Helow 1 mek: 1 watf-above 1,000 volte max.	2 15/16"	7/8'	. 5 mes-	2.5 mea.	Binding Powt and nut	Noninductive	
	WW-3	Below 40M ohma I weit-above 200 volte max.	9/16 ${ }^{\circ}$	9/16"	1.0 ohm	150,000 ohme	$\begin{aligned} & \text { luane } \\ & \text { leande } \end{aligned}$	NonIndurtive	
	WW-4	Below 16 mrR . 1 watt-alnove 400 volta max.	1*	9/16*	. 1 ohm	600,000 mh ma	luag lemde	Noninductive	
WW-3	WW-5	Brlow $\mathbf{2} \mathbf{~ m e n}$. I watt-a houve 400 volte mex.	$11 /{ }^{*}$	3/4*	. 25 ohm	1.0 meg.	$\begin{aligned} & \text { lugn } \\ & \text { leado } \end{aligned}$	Nonindurtive	WV-5

CONSTRUCTION

CERAMIC - The winding form of these units is made of a non-hygroscopic ceramic having high insulation qualities, high mechanical strength and low coefficient of expansion.

WIRE - Only ample size, special alloy wire, specially enamelled to meet a rigid insulation test, is used in making these units. Not less than . $0014^{\prime \prime}$ in diameter.
IMPREGNATION - The winding is impregnated with a special varnish, which improves the insulation and eliminates breakdowns and shorted turns. The characteristics of this impregnating compound are such that it hardens with high temperatures instead of softening as is the case with the wax impregnation found in the average wire wound resistor. Almost complete protection from the effects of high humidity results from this impregnation.

TECHNIQUE - Special attention has been paid to insure transfer of special enamelled wire to winding form without strain or break in insulation. Special tests such as voltage flash, etc., are utilized to indicate possible shorted turns thus insuring finest quality.
TERMINALS - To insure-positive connection at the terminals, the exclusive IRC molded contact is employed on these units. This eliminates the weakness encountered in a mechanicalls clamped, soldered or welded contact and forestalls contact resistance, loose connections and noise.
TOLERANCE - Standard 1.0% tolerance. $1 / 2,1 / 4$ and $1 / 10 \%$ are available. $1 / 1$ and $1 / 10 \%$ tolerance are measured with a temperature correction to $68^{\circ} \mathrm{F}$.
TEMPERATURE COEFFICIENT - Up to approximately 25% of maximum value shown $-.002 \% /{ }^{\circ} \mathrm{C}$. Beyond $25 \%-.017 \% /{ }^{\circ} \mathrm{C}$.

CATALOG DATA BULLETIN
 Important information for Engineering and Purchasing Depts. Please file with your IRC Catalog.

İNTERNATIONAL RESISTANCE CO., 401 N. Broad St., Philadelphia 8, Pa., U. S. A. InCanada:International Resistance Co., Ltd.. Toronto. Licensee

JOINT ARMY.NAYY SPECIFICATION—— JNR-29

Types MFA, MFB and MFC Resistors offer a proven solution to the problem of finding suitable and dependable multipliers for use under the most severe humidity conditions, such as are encountered in marine service. They may be used with the commonly available one milliampere DC RATING
(a) Current rating: 1.0 millia mperes maximum.
(b) Voltage rating: The voltage rating in kilovolts is numerically equal to the resistance expressed in megohms, e.g., a 3 megohm resistor would be rated at 3 kilovolts.
TEMPERATURE COEFFICIENT
Not greater than 0.02% per degree centigrade over temperature range- 40° to $100^{\circ} \mathrm{C}$.
SURFACE TEMPERATURE RISE
Not over $25^{\circ} \mathrm{C}$. at standard voltage rating.

INTERNAL TEMPERATURE RISE

Not over $55^{\circ} \mathrm{C}$. at standard voltage rating.

FREQUENCY CHARACTERISTICS

Resistance non-inductively wound. Resistance varies less than $\pm 1 \%$ at any frequency up to and including 1,000 c.p.s.

DIELECTRIC STREMGTM
Multiplier will withstand a voltage of more than 20,000 volts peak between center band around resistor and shorted terminals.

WIRE

Nichrome and advance enameled. .0015" diameter minimum.
instruments, as well as with other instruments. Sensitivities of 1000 ohms per volt or more may thus be obtained, which results in very little drain on the power supply. They are compact, rugged, stable, fully moisture-proof and easy to install.

TERMINALS

Monel metal ferrules suitable for mounting in 60 ampere form \#l fuse clips.

INSULATION RESISTANCE

Greater than 10,000 megohms.

FERRULE SECURING

Ferrules will resist a torque greater than 5 inch pounds without shifting or loosening.

TRANSVERSE LOADING

Resistor will withstand transverse load of more than 25 lbs.

RESISTANCE TO NUMIDITY

The resistor will withstand more than 9 cycles of the following test without changing more than 1% :
(a) Keep resistor at temperature of $80^{\circ} \mathrm{C}$. for $51 / 2$ hours and then measure resistance.
(b) Immerse resistor in $65^{\circ} \mathrm{C}$. saturated salt solution for 2 hours.
(c) Transfer to bath of $0^{\circ} \mathrm{C}$. saturated salt solution for 2 hours. Wash in clear water.
(d) Maintain resistor at $80^{\circ} \mathrm{C}$. for $1 / 2$ hour.
(e) Apply rated voltage for $11 / 2$ hours.

NOTE-Specify resistance value and actual
wettage load per aection when ordering.

MARKIMG
Any required marking can be printed on the top of the mounting bracket.

OVERLOAD

Conservative ratings and high heat dissipating efficiency allow overloads of 150% indefinitely with negligible adverse effects.

HUMIDITY

Continuous operation at $40^{\circ} \mathrm{C}$. in an atmosphere of 90% relative humidity at any loadeither AC or DC produces no effect on the resistor element-operation in a saturated salt spray bath for 1000 hours at $30^{\circ} \mathrm{C}$. has no effect other than terminal corrosion. The resistor is virtually impervious to atmospheric conditions of any type.

TOLERANCE

Standard Tolerance 10\%-Closer tolerance available at extra cost.

CATALOG DATA BULLETIN

In Canada:International Resistance Co.. Ltd., Toronto, Licensee

WIRE WOUND RESISTORS

Because of its radical departure from conventional design, the type MW Insulated Wire Wound Resistor is unsurpassed for adaptability to an extremely wide variety of design requirements. Completely insulated and protected, these flat type resistors are encased in durable molded phenolic compound and mounted with a metal bracket of unique design. The mounting bracket actually transfers heat from inside the chassis to the outside, thus providing unusually rapid heat dissipation.
The type MW is virtually impervious to the elements, including moisture and salt spray-the common causes of trouble in ordinary wire wounds.
Many excellent opportunities for cost reduction are offered by use of the MW with its low initial cost, lower mounting cost, flexibility in providing taps at low cost, and saving in space.
Equally important, is the common-sense wattage rating established for the MW , in that it is rated at $100^{\circ} \mathrm{C}$. to conform with modern errgineering practice. Unlike most wire wounds, the MW may be operated at its full "on plate" rating, whether enclosed or not, without exceeding its rated temperature rise of $100^{\circ} \mathrm{C}$. This permits, for example, the use of an MW 5 at 20 watts where a 60 watt tubular resistor would normally be required.

CONSTRUCTION
The Type MW is a flat wire wound resistor strip, permanently enclosed by high pressure molding in a special asbestosfilled phenolic compound. A permanently attached metal bracket with mounting feet permits mounting of the resistor on any flat metal surface, thus allowing rapid dissipation of heat.

TERMINALS. Standard Terminals are of rolled edge, heavily tinned strip punched with hole to take No. 14 B \& S gauge wire and side notches for wrapping connections. Contact to the resistance element is made by clamping the specially formed terminal under high pressure.

Design of the terminal is such that no sheared edge can ever come in contact with the resistance wire, thus precluding the possibility of nicked wires.

MOUNTING BRACKETS. Standard mounting brackets of tinned steel (brass provided on special request). Designed with mounting feet to be bolted or riveted to any flat surface. By extending mounting feet of brackets, almost any requirement for distance between mounting centers can be met. "D" dimension plus 2" is maximum.

INSULATION. All resistors are ratea and tested at 1000 volts R.M.S. 60 cycle (1400 Volt Peak) applied along entire length between element and metal plate between all terminals and ground.

CROSS SECTIONAL VIEW

WIRE WOUND RESISTORS

IRC POWER WIRE WOUND CHARACTERISTICS

DERATING. If necessory to operate Type FRW Resistors in an ambient higher than $25^{\circ} \mathrm{C}$., it is recommended that they be derated according to the Derating Curve for High Ambient Temperatures. For exomple, if the resistor is normally a S0-watt type and is to operate at $60^{\circ} \mathrm{C}$. ambient, it should not be looded to more than 82% of 50 watts, or 41 watts.

STANDARD IR C TYPE NUMBERS, DIMENSIONS And RESISTANCE RANGES									
$\begin{gathered} \text { IRC } \\ \text { Type } \end{gathered}$	IRC Power Rating (See Note)		Corresponding JAN Type	Dimensions			Minimum Ohms Available	Man. Ohms Aroilable WoundWith $0.0025 "$ diam. wire	Max. Ohms Arailoble Waund Wien $0.0014^{\prime \prime}$ diam. wire
	- Coot	"C" Coat		mounting Centers	Ceramic Length	Ovarall lingth			
FRW-20	20 m	8 w	RW-20	2^{*}	11.4	$21 /{ }^{*}$	0.5	2.000	0.500
FRW. 21	30 *	12 m	RW. 21	$23^{3} 4^{\prime \prime}$	2^{*}	$31 / 4$	0.5	5.000	23,000
FRW-22	50 m .	20 w	RW. 22	415	$3{ }^{1}{ }^{\prime \prime}$	$43_{4}{ }^{3}$	0.75	11.000	50,000
FRW. 23	65 w	26 w.	RW 23	51.2	$4{ }^{3}{ }^{3}$	6^{*}	1.0	15.000	80,000
FRW-24	75 w	30 \%	RW-24	$6^{3}{ }^{\prime \prime}$	$6^{\prime \prime}$	714"	1.5	21.000	100,000
NOTE: IRC RAIINGS are bosed upon temperature rise of $250^{\circ} \mathrm{C}$ for " B° Coat and $130^{\circ} \mathrm{C}$. temperoture pise for "C" Coat, for vingle resistort, mounted on a steet plate $12^{\prime \prime} \times 12^{\prime \prime} \times 1 / 16^{\prime \prime}$, in fice oir. For resistors mounted on a non-metaific aurface, it is recommanded thal the rtandord power rating be raduced by 15 '									

COATINGS. Coatings " B " ond " C " ore especially developed cement coats, having as common chorocteristics, neutral chemical reactions, processing temperatures not over $200^{\circ} \mathrm{C}$. ond extreme denseness. Through the use of low temperotures in processing the ceromic, wire ond terminols mointoin moximum life and strength, thus insuring long life at normal loods.

TYPE "B" COATINC. Type "B" Cooting is designed for high-temperature requirements where wire size is large enough to insure dependability. In Table A, the power ratings for Type "B" coal are based on o temperoture rise of $250^{\circ} \mathrm{C}$., from a $25^{\circ} \mathrm{C}$. ambient. This coating is well suited to the requirements for normal humidity conditions.

TYPE "C" COATINC. Type " C " Coating is o specially developed organic cement coat, designed to withstand the most extreme conditions . . . such as on shipboard, in tropical countries, and extremely humid climates. Power ratings shown in Table A for this Coat are based on o temperature rise of $130^{\circ} \mathrm{C}$. obove an ambient of $25^{\circ} \mathrm{C}$. in free air. At no time should the total temperature (ambient plus rise) exceed $160^{\circ} \mathrm{C}$.

TOLERANCE. On single and multi-section resistors, $\pm 10 \%$ is standard tolerance. On single section resistors only, $\pm 5 \%$ is ovoilable for resistance values obove 50 ohms.

MULTI-SECTION RESISTORS. Tapped Resistors may be supplied, within the limitations of the resistar size used as listed below. The use of tops results in a reduction in total resistance available, due to loss of winding space. When specifying Tapped Resistors, provide wattage per section.

FRW-20 Single section only.
FRW-21 Two sections moximum.
FRW-22 Three sections maximum.
FRW-23 Four sections maximum.
FRW-24 Five sections maximum.
TERMANALS. Securely clamped around the ceramic winding form by spot welding; heavily hot-tin dipped for easy soldering.

BRACKETS.

sistors are readily mount-magneilic metal brackels, so designed that remounted by rivets or screws. Bracket holes will clear \#10 Machine screw.
MARM|NGS. Permanently marked with type number and resistance.
WINDINGFORMS. Highest grade, non-hygroscopic ceramic winding form, chosen tor mechanical strength, resistance to thermal shock and freedom from moisture absorption.
W/RE. Copper-nickel and nickel-chrome alloys, largest sizes compatible with adequate spacing, wound with uniform spacing and tension.
INSULATION. 3000 volts A.C., R.M.S., between terminals and bracket.
MECHAN\|CAL STRENGTH. will withstand a transverse load in excess of 25 pounds without mechanical or electrical damage.

CATALOG DATA BULLETIN

Important information for Engineering and Purchasing Depts. Please file with your IRC Catalog. INTERNATIONAL RESISTANCE CO., 401 N. Broad St., Philadelphia 8, Pa., U. S. A.

InCanada:International Resistance Co.. Ltd.. Toronto, Licensee
 either singly or in stacks. Non-magnetic mounting brackets extending through the resistor allow easy and economical mounting, aid in heat distribution along its entire length and serve as conductors to transfer internal heat to the chassis.

Other features of the Type FRW are light-weight construcfion, combined with exceptional mechanical strength; and the ability to withstand severe vibration. In every detail, Type FRW Flat Wire Wound Resistors reflect IRC's traditional standards of high quality.
tubuler resistor with a track of exposed wire. Contact is kept with the wire by means of a metal band which, when power is turned off, can be adjusted to any position along the resistor.
The adjustable band, designated as IRC Type "X," features a stainless stoel spring with a silver contact button. Constant prossure is provided regardless of temperature because the steel spring is tempered for temperatures above resistor operating temperatures. The silver button, being oxidation fres, cannot corrode to cause open circuits or high resistance at point of contact.
Type "X" Adjustable Bands are furnished for "D," "E' and "H" size ceramics; size " A " ceramics, because of their small size, are furnished with an adjustable band specially suited for smaller size units.
By the use of more than one band, various taps can be brought out and the unit used as a voltage divider. Additional adjustable bands can be furnished separately.
Since, on adjustable units, the resistance wire cannot be completely covered for protection against humidity, care should be taken not to use high resistance values requiring the use of extremely small wire sites. The following table shows the adjustable types evailable, with their minimum and maximum resistance values. Additional information pertaining to IRC Adjustable Power Wire Wounds is given in the specification table on page 2.

STANDAItD SIzES												
	$\begin{aligned} & \text { inc } \\ & \text { TYPE } \end{aligned}$	$\begin{gathered} \text { Former } \\ \text { Donsione } \\ \text { tion } \end{gathered}$	minimum ohms				$\begin{aligned} & \text { IRC } \\ & \text { TYPE } \end{aligned}$	$\left\lvert\, \begin{gathered} \text { Former } \\ \text { Oosionna } \\ \text { fion } \end{gathered}\right.$	MINIMUM OHMS		MAXIMUM OHMS Recom. Avalable0025 Wire.0014 Wire	
	$1 y_{4}{ }^{\prime \prime} \mathrm{AA}$	ABA	50	. 10	1.700	7,500	bl/ ${ }^{\text {H }}$ HA		Rocom.	Available		
	$2^{\prime \prime}{ }^{\prime \prime} \mathrm{DA}$	DGA	1.	. 20	3.750	15,250	b1/2" HA	HEA	8.	2.	70.000	200,000
	$31 / 2^{\prime \prime} \mathrm{EA}$	ENA	3.	. 50	15.000	49.000	101/2. HA	HOA	10.	3.	90.000	275,000
	41/2" EA	EPA	3.	. 0	21,000	68.000						
	b/2"EA	ESA	4.	1.	32.500	100.000						
NON-STAMDAED SIZES												
	$21 / 2^{\prime \prime} 0$	DHA	2.	20	6.250	22,000	$5^{\prime \prime}$ EA	ERA	4.	70	24.000	78,000
	3. DA	DJA	2.	. 30	8.750	30,000	4" HA	HOA	4.	1.	26,000	89,000
	4 DA	DDA	3.	. 40	14.000	44,500	b $^{\prime \prime}$ HA	HRA	7.	2.	45.000	145,000
	5" DA	DKA	3.	. 6	18.000	58,000	8" HA	HSA	9.	3.	72.500	200,000
	3" EA	ETA	2.	40	11,500	39,000	12" HA	HTA	14.	4.	100.000	300,000
	4"EA	EDA	3.	. 50	17.500	58.000						

NON-INDUCTIVE POWER RESISTORS

IRC Non-Inductive Power Wire Wound Resistors utilize the Ayrton. Perry type winding which consists of two windings in parallel, wound in a single layer, in opposite directions. The turns of these windings touch at fixed points which are at the same potential and so eliminate capecitance effects. The power ratings are the same as those of standard inductive units.
The degree to which the inductance of these resistors is reduced is illustrated in the following table which shows the induetance of various size standerd resistors as compared with that of the same size resistors wound with the Ayrton-Perry type winding.

TYPE RESISTOR	RESISTANCE OHMS	STANDARD WINDING INDUCTANCE MICRO-HENRIES	AYRTON-PERRY WINDING INDUCIANCE MICRO-HENRIES
$13 / 4^{\prime \prime} \mathrm{A}$			
$2^{\prime \prime} \mathrm{D}$	100	14	0.25
$41 / 2^{\prime \prime} \mathrm{E}$	80	76	0.3
$61 / 2^{\prime \prime} \mathrm{H}$	4,000	3,360	0.3

The IRC Adjustable Power Wire Wound Resistor consists of a standard

Since the Ayrton-Perry type winding consists of two windings and allowance must be made for suitable insulation between turns, it is impossible to wind the maximum resistance values given for standard resistors. The above table gives the maximum resistance values obtainable for some of the non-inductive types.
Non-inductive resistors are available in any of the standerd Power Wire Wound sizes shown on page 2. The addition of the profix letter N in front of the designation of a standard resistor is the designation of the non-inductive feature ($41 / 2^{\prime \prime}$ NE is a non-inductive 50 watt resistor).

INTERNATIONAL
 RESISTANCE CO.

BRANCH OFFICE: 165 BROADWAY, NEW YORK, N. Y., Courtland $7-5020$

SALES REPRESENTATVES	5. B. Darmstader 30 W . Woshingten St . CMICAGO. 11. Fronklin 4818
Mollingsworth \& Still 407 Morris Bldg. ATLAMTA, Ga. Main 5878	Albert M. Beehr 11621 Detroit Are. CLEVELAND, Ohio Lakewood 8468
Ray Perron \& Co. 13) Clarendon 5 . BOSTON, Mass. Kenmore 1370	Gearge E. Andersan Co. 1903 Gritfin 51 . Dablas, Tex. Riverside 1272
Segar 6 Yartar Co. 4308 E. Genesse 5 t. DE, WITT, M. Y.	Ronald G. Gowen $18865^{\text {s. Humbeldt }} \$ 7$. DENVER, Colo. Spruce 9368

Koehler-Posmore Co. 8316 Woodward Ave. DETROIT, Mich. Madison $\mathrm{Cog}^{2} 6$	Narman W. Kathrimus 1218 ollve 5 t. 5T. LOUIS, Mo. Central 6300
Vermon C. Macnabb P. O. Box 5971 indIANAPOLIS, Ind. Broadway 6770	J. U. MeCorthy 1725 Hilicrest Ave. ST. PAUL, MIAR. Emerion as)
Morshonk Soles Ca. 672 5. Latoyette Park Ploce LOS ANGELES, Collf. Drexel 8235	James Permans Co. 1234 Folsom st. SAN FRANCISCO, Call. Morket 4166
Gearge C. Tanner 600 Grant St. pittsourgh. Po. Court 0131	David M. Lee 2626 Second Are. SEATTLE, WOSh. Moin $\$ 512$

CHARACTERISTICS
TYPE FRW POWER WIRE WOUND RESISTORS

ambient temperature - degrees centigrade
POWER RATINGS. Based on standards of the AIEE and NEMA - 250° C. temperature rise ot hottest external spot when suspended in free air for the "B" Coat; this is reduced for the "C" Coat to 40% of rating and $130^{\circ} \mathrm{C}$. temperature rise. Maximum protection against moisture is provided with organic materials. Actual wattage load versus size of resistor used should take into consideration maximum ambient expected, ventilation, proximity of other parts susceptible to excessive temperatures, as well as temperature limitation of coating used.
DERATING. If necessary to operote IRC Power Resistors in on ambient higher than $25^{\circ} \mathrm{C}$., it is recommended that they be derated according to the Derating Curve for High Ambient Temperatures.
TAPS. Tapped resistors may be supplied within the limitation of the resistor size used. The use of a tap results in a small reduction of the power rating and ohmage available, since winding space is lost.
TOLERANCES. Standard talerance 5% over 50 ohms. 10% below 50 ohms. Tolerances as low as 1.0% can be supplied at increased cost. The following table shows the minimum resistance value in which the various tolerances can be furnished for standard units. Minimum resistance value for non-standard units will be given upon reauest

TYPE	1\%	1\%	3\%	5\%
I' A	-	3500 Ohma	1050 Ohms	500 hmi
13/4*	250 Ohms	35	11	2
2"0	300	35	9	3
3/2"E	100	12	2	30
4/3" ${ }^{\text {¢ }}$	40	1	75	. 40
$61 / 2{ }^{\text {c }}$	45	-	.	20
b/7"H	30	10	2	50
B/2"H	18	10	2	50
$101 /{ }^{\prime \prime} \mathrm{H}$	12	1	. 30	20

trpes - protule s/a dia.

TrPI 12 - solpenne sues

TERMINAL NUMAER	CERAMIC T PE							TERMINAL MATERIALS
	1. A0,	C^{C}	- ${ }^{\circ}$	E				
3	X	4	X	(x)	X			Sän
4	\times	\%	X	X	(${ }^{\text {a }}$			Brans
5							Re.18	Momal
7			\times			Fw-11		Manal
,					${ }_{\text {\% }}^{4.4}$			Monel
12	X		χ					Mouphor-trome
13	(8)		(8)					
14	x		x					

specifichtions POWER WIRE WOUND RESISTORS

STANDRTD STOCK STZES

$\begin{aligned} & =0 \\ & >\frac{0}{3} \\ & \hline 0 \end{aligned}$	$\underset{\text { TYPE }}{\operatorname{IRC}}$	Former Dosignafion	$\begin{aligned} & \text { Corres: } \\ & \text { ponding } \\ & \text { JAN Type } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Wentage } \\ \text { "50"Cout } \\ 50^{\circ} \mathrm{C} \text {. Rise } \\ \hline \end{array}$	$\begin{gathered} \text { Wattege } \\ \text { "c }{ }^{\circ} \text { Cod } \\ 130^{\circ} \mathrm{C} \text {. Rlse } \end{gathered}$	$\underbrace{\text { Length }}_{\text {Caramic }}$	O. D.	I. D.	$\begin{aligned} & \text { Minimum } \\ & \text { Possificte } \\ & \text { Onms } \\ & \hline \end{aligned}$	Minimum Recom'd. Ohms	$\begin{aligned} & \text { Maz. Ohms } \\ & .0025 \text { Wing } \\ & \hline \end{aligned}$	Max. Ohms Using 0014 Wire
	1 " A	-		5	2	$1 "$	5/16'	3/16"	. 05	. 50	450	4,000
${ }^{-1}$	$13 / 4{ }^{\prime \prime} A^{*}$	AB		10	4	$13 / 4{ }^{11}$	5/16 ${ }^{\prime \prime}$	3/16'	. 10	. 30	1,250	12,000
.	$2^{\prime \prime} \mathrm{D}^{*}$	DG		20	8	$2^{\prime \prime}$	$9 / 16^{\prime \prime}$	$3 / 8$. 10	. 40	2,750	24.200
-	31/2"E*	EN		40	16	$31 / 2^{10}$	$3 / 4{ }^{\prime \prime}$	$1 / 2^{\prime \prime}$. 10	. 80	9,500	77,500
	41/2"E*	EP		50	20	41/2"	$3 / 4^{\prime \prime}$	$1 / 2^{\prime \prime}$. 10	1.0	13,000	108,000
${ }_{5}{ }^{\text {E }}$	61/2 ${ }^{11} \mathrm{E}^{*}$	ES		75	30	61/2"	$3 / 4^{\prime \prime}$	1/2"	. 50	1.5	21,000	169,000
t-	$61 / 2^{\prime \prime} \mathrm{H}^{*}$	HA		100	40	61/2"	11/3"	$3 / 4{ }^{11}$. 10	2.0	30,000	254,000
\%	81/2" ${ }^{\prime \prime}{ }^{\text {* }}$	HE		150	60	81/2"	11/8"	$3 / 4{ }^{11}$. 15	2.5	41,000	342,000
\underline{F}	$101 / 2^{\prime \prime} \mathrm{H}^{*}$	HO		200	80	101/2"	$11 / 8$	$3 / 4{ }^{\prime \prime}$. 20	3.0	53,000	436,000

NON-STANDARD SIZES

	I' C	CA	RW-30	7	2.8	$1{ }^{\prime \prime}$	7/16'	$1 / 4 "$. 10	. 50	400	3,320
	11/2"C	CB	RW. 31	10	4	$11 / 2{ }^{\prime \prime}$	7/16"	$1 / 4^{\prime \prime}$. 10	. 20	1,200	9,950
	2' C	CG	RW. 32	15	4	2^{11}	7/16 $6^{\prime \prime}$	$1 / 4{ }^{\prime \prime}$. 10	. 30	2,250	18,800
	3" C	CJ	2W. 33	18	5	3"	7/16 $6^{\prime \prime}$	$1 / 4^{\prime \prime}$. 10	. 50	4,250	36,600
	21/2" ${ }^{\prime \prime}$	DH		25	10	$21 / 2^{\prime \prime}$	$9 / 16^{\prime \prime}$	$3 /{ }^{\prime \prime}$. 10	. 50	4,250	35,600
	3" D^{*}	DJ		30	12	3'	9/16"	$3 / 8{ }^{\prime \prime}$. 10	. 50	5,500	47,000
	4" D^{*}	DD		35	15	$4 "$	9/16 ${ }^{\prime \prime}$	$3 /{ }^{\prime \prime}$.10	. 50	8,500	70,000
	$5^{\prime \prime} \mathrm{D}^{*}$	DK		45	18	5"	9/16'	$3 /{ }^{\prime \prime}$. 10	. 50	11,250	93,000
	3' ${ }^{\prime \prime}$ *	ET	$\begin{aligned} & R W-34 \\ & R W-40 \end{aligned}$	35	14	$3{ }^{\prime \prime}$	$3 / 4^{\prime \prime}$	$1 / 2{ }^{\prime \prime}$. 10	. 50	7,500	62,500
	4" E*	ED	$\begin{aligned} & 2 W-35 \\ & a w \rightarrow-1 \end{aligned}$	45	18	4"	$3 / 4^{\prime \prime}$	$1 / 2^{\prime \prime}$. 10	. 75	11,000	93,000
	5" E*	ER		60	24	$5^{\prime \prime}$	$3 / 4^{\prime \prime}$	$1 / 2^{\prime \prime}$. 10	. 70	15,000	123,000
	4" H^{*}	HD	2W-36	60	16	4"	11/8"	$3 / 4^{\prime \prime}$. 10	1.5	17,000	140,000
	$6^{\prime \prime} H^{*}$	HR	RW. RW	90	22	$6^{\prime \prime}$	$11 / 8^{\prime \prime}$	$3 / 4^{\prime \prime}$. 10	1.8	28,000	231,000
	$8^{\prime \prime} H^{*}$	HS	RWW-38	110	30	8'	$11 / 8{ }^{\prime \prime}$	3/4"	. 15	. 50	39,000	323,000
	$12^{\prime \prime} \mathrm{H}^{*}$	HT	RWW-39	225	90	$12^{\prime \prime}$	$11 / 8{ }^{\prime \prime}$	$3 / 4^{\prime \prime}$. 25	3.0	61,000	505,000

[^10]
STANDARD FERRULE TYPE POWER RESISTORS (JAN AND RMA)

[^11]WINDING FORMS. Highest grade, non-hygroscopic ceramic winding form, chosen for mechanical strength, resistance to thermal shock and freedom from moisture absorotion.
WIRE. Copper-nickel and nickel-chrome-iron alloys, largest sizes compatible with adequate spacing, wound with uniform soacing and tension.
INSULATION. 3000 volts A.C., R.M.S., between terminals and bracket.
TERMINALS. Securely clamped around the ceramic winding form by spot welding: heavily tin dipped for easy
soldering. Terminal types and specifications are given on page 25
BRACKETS. Sturdy metal brackets, so designed that resistors are readily mounted by rivets or screws. Bracket holes will clear No. 10 machine screw. Specifications are given on page 25
MARKINGS Permanently marked with type number and resistance.
MECHANICAL STRENGTH. Will withstand a transverse load in excess of 25 pounds without mechanical or electrical damage.

109

CATALOG DATA BULLETIN

Important information for Engineering and Purchasing Depts. Please file with your IRC Catalog.

 INTERNATIONAL RESISTANCE CO., 401 N. Broad St., Philadelphia 8, Pa., U. S. A.In Canada: InternationalResistance Co., Ltd., Toronto. Licensee

IRC POWER WIRE WOUND RESISTORS

IRC Fixed and Adjustable Power Wire Wound Resistors are designed to give balanced performance in every characteristic.
To guard the windings against the harmful inroads of atmospheric moisture and corrosion, all IRC power resistors are coated with a special cement. The development of this particular coating was pioneered by IRC, and years of rigorous laboratory and field tests have proven its superiority in the rapid dissipation of heat, ability to withstand reasonable overloads without breakdowns or "opens," moisture protection, immunity to salt water immersion and extreme mechanical strength. The IRC cement coating contains no chemically active ingredients, no salts to attack the wire. The cement is crack-proof and cured and hardened at low temperature; thereby, not endangering the resistance windings.
Unexcelled in essential electrical and mechanical chapacteristics, IRC Power Wire Wound Resistors are uniformly wound with the highest grade alloy wire on tough, non-hygroscopic tubes, with rugged terminals securely attached. They are available in a full range of sizes, types and terminals.
For exacting, heavy-duty applications, high voltage bleeders; bias supply, grid, and filament dropping resistors, leading industrial, aircraft, broadcast, maritime and other commercial users have specified IRC Power Wire Wound Resistors for over 14 years.
COATING SPECIFICATIONS. Because of the varied types of service power resistors must provide, IRC makes available two types of coment coatings. Each coating is designed to furnish maximum dependability at minimum cost for its class of service.

TYPE "B" COATING. The Type "B" Coating is designed for relatively low range high temperature requirements where wire size is large enough to insure dependability. The power ratings shown far Type " B^{\prime} Coating are based on a temperature rise of $250^{\circ} \mathrm{C}$. from a 25° C. ambient in free air. This coating is wall suited for all wire sizes and normal humidity conditions.
TYPE "C" COATING. The Type "C" Coating is a specially developed crganic cement coat designed to withstand the most extreme atmospheric conditions . . such as on ships, in tropical $^{\text {a }}$ countries, and in extremaly humid climates. Power ratings shown for Type "C' Coating are based on a temperature rise of $130^{\circ} \mathrm{C}$. above an ambient of $25^{\circ} \mathrm{C}$. in free air. At no time should the total temperature (ambient plus rise) exceed $155^{\circ} \mathrm{C}$.

TEST CYCLE FOR TYPE "C" COATING. The Type "C" Coating will withstand nine cycles of the following severe test when protecting wire of a diameter of $.0025^{\prime \prime}$ or larger, on any size ceramic:

1. Operation at maximum rated temperature for six hours . . .
2. Immediate immersion in saturated solution of sodium chloride for two hours at $100^{\circ} \mathrm{C}$....
3. Immediate transference to zero degree saturated solution of sodium chloride and immersion for two hours ..
4. Washed in clear water, wiped clean and operated on D.C. potential at maximum rated temperature for two hours.

SPECIFICATIONS
 POWER RHEOSTAT

IRC PART NUMBERS AND STANDARD AN3155 RESISTANCE RANGES

Order by IRC Part No.	Army-Navy Part No.	Naminal Watts Rating	Tatal Resistance Ohms	Amperes at		Type of Winding
				Min. Resist.	Max. Resist.	
PRT-25-10	AN3155.25.10	25	10	1.95	0.30	Tapered
-25.15	-25.15	25	15	1.30	1.30	Linear
-25.25	-25-25	25	25	1.00	1.00	Linear
. 25.50	-25.50	25	50	0.71	0.71	Linear
-25.75	. 25.75	25	75	0.58	0.58	Linear
.25.100	.25.100	25	100	0.85	0.16	Tapered
-25-200	-25-200	25	200	0.35	0.35	Linear
PRT-50-5	AN3155-50-5	50	5	5.50	1.82	Topered
-50-8*	-50.8*	50	8	2.50	2.50	Linear*
. 50.10	-50-10	50	10	2.50	1.60	Topered
-50.25	-50-25	50	25	2.70	0.70	Tapered
-50.30*	. 50.30^{*}	50	30	1. 70	0.90	Tapered*
. 50.50	. $50-50$	50	50	1. 00	1.00	Linear
-50.75	. 50.75	50	75	0.82	0.82	Linear
. 50.100	. 50.100	50	100	1.35	0.25	Tapered
. 50.150	-50-150	50	150	0.69	0.17	Tapered
-50-200	. 50.200.	50	200	1.35	0.15	Topered

*On AN3155-50-8 and AN3155-50-30, rotation clockwise increases resistance, and minimum resistance is obtained when the rheostat is turned on from the "Off" position. On all other numbers maximum resistance is obtained when rheostat is turned on from "Off" position and rotation clockwise decreases resistance.

VARIATIONS AVAILABLE

The Type PRT Rheostat has been standardized both mechanically and electrically, as required for U.S. Government aircraft applications. Full details are contained in Army. Navy Specifications AN-R-14a and Drawing AN3155.
IRC Type PRT Rheostats are approved by the Air Technical Service Command and the Bureau of Aeronautics. PRT 25 and PRT 50 Rheostats are ap. proved by the U. S. Signal Corps for types RP-11 and RP. 16 respectively under JAN-R-22. When ordering against JAN.R-22 please give complete type designation. Variations in resistance values -io 5,000 ohms in the 25 . watt Rheostat and to 10,000 ohms in the 50 -watt typeare available on special order. For potentiometer applications, three terminals (left, right and center) can be supplied.

TOLERANCE
$-5 \%+15 \%$ is standard.

DIMENSIONS

Type	A	B	C	D	E	F
PRT-25 $(25-w a t+)$	$2-5 / 8^{\prime \prime}$	$1-3 / 4^{\prime \prime}$	$1-1 / 8^{\prime \prime}$	$1-23 / 32^{\prime \prime}$	$1-7 / 8^{\prime \prime}$	$13 / 32^{\prime \prime}$
PRT-50 $(50-w a t+)$	$3-1 / 16^{\prime \prime}$	$2-3 / 16^{\prime \prime}$	$1-9 / 32^{\prime \prime}$	$2-7 / 16^{\prime \prime}$	$2-19 / 32^{\prime \prime}$	$11 / 16^{\prime \prime}$

CHABACTERISIICS

TYPE PR-25 25-WATT RHEOSTAT					
$\begin{gathered} \text { Total } \\ \text { Ohmesintance } \end{gathered}$	$\begin{gathered} \text { Cunax } \\ \text { Current } \\ \text { Milliampz } \end{gathered}$	$\begin{gathered} \text { Approx. } \\ \begin{array}{c} \text { Aptell } \\ \text { Soteps } \end{array} \end{gathered}$		$\begin{gathered} \text { CMax. Max } \\ \text { Current } \\ \text { milliamps } \end{gathered}$	$\begin{gathered} \text { Approx. } \\ \text { Trotal } \\ \text { Tteps } \end{gathered}$
1	5,000	28	125	445	132
2	3,530	31	175	375	146
3	2,880	34	250	315	150
6	2,040	48	350	267	180
8	1,770	48	500	222	158
10	1,580	57	750	182	185
15	1,265	48	1,000	155	255
25	1,000	100	1,500	129	250
35	845	72	2,500	100	330
50	707	80	3,500	84	370
75	575	100	5,000	70	540
100	500	100			
- Max. current at full winding. These are standerd values available from IRC Distributors stocks. Intermediate values aveilable on epecial order.					

TYPE PR-50 50-WATT RHEOSTAT					
	$\begin{gathered} \text { Max. } \\ \text { Current } \\ \text { Milliamps } \end{gathered}$	$\begin{gathered} \text { Approx. } \\ \text { Total } \\ \text { Toteps } \\ \text { Sta } \end{gathered}$		$\begin{gathered} \text { * Max. } \\ \text { Current } \\ \text { Culliamps } \end{gathered}$	$\begin{gathered} \text { Approx. } \\ \text { Total. } \\ \text { Step: } \end{gathered}$
0.5	10,000	27	150	575	160
1	7,070	27	225	470	170
2	5,000	35	300	405	210
4	3,530	45	500	315	220
6	2,880	45	800	250	280
8	2,500	45	1,000	220	280
12	2,040	66	1,600	176	360
16	1,760	70	2,500	140	360
22	1,500	66	3,500	119	390
35	1,190	115	5,000	100	435
50	1,000	125	8,000	79	540
80	790	107	10,000	70	680
125	630	135			

Max. current at full winding.
These are standard values available from IRC Distributors stocks. Intermediate values available on epecinl order.

LOW TEMPERATURE RISE

RESISTANCE VALUES. 1 ohm to 5,000 ohms for the PR 25 Rheostat, and 0.5 ohm to 10,000 ohms for the PR 50 Rheostat are standard.
TOLERANCE. $\pm 10 \%$ is standard. $\pm 5 \%$ available at extra cost on ranges above 10 ohms with linear taper.

RATING. PR Rheostats are rated at 25 and 50 watts, based upon a $140^{\circ} \mathrm{C}$ temperature rise above a $40^{\circ} \mathrm{C}$. ambient for PR 25, and $170^{\circ} \mathrm{C}$. temperature rise above a $40^{\circ} \mathrm{C}$. ambient for PR 50.

DERATING. If units are to be operated at an ambient higher than $40^{\circ} \mathrm{C}$., they should be derated according to the Derating Curve on the last page. For example: A PR 50 Rheostat is to be operated at an ambient temperature of $80^{\circ} \mathrm{C}$. From the Derating Curve it can be seen that only 73% of the 50 watt rating can be used, or 36.5 watts.

LOW TEMPERATURE OPERATION
WITH FULL LOAD
ON PART OF WINDING

SPECIFICRTIONS

DIMENSIONS

TYPE	E	F	G	H	J	K	M
PR-25	$1^{\prime \prime}$	$1^{21 / 31^{\prime \prime}}$	$116 / 18^{\prime \prime}$	$7 / 32^{\prime \prime}$	$3 / 16^{\prime \prime}$	35°	$3 / 32^{\prime \prime}$ dia.
PR-50	$1^{13 / 32^{\prime \prime}}$	$23 / 8^{\prime \prime}$	$2^{15 / 18^{\prime \prime}}$	$1 / 2^{\prime \prime}$	$7 / 18^{\prime \prime}$	40°	Clear \#8 screw

STANDARD SHAFT TREATMENT

- Standard shaft length (A dim.) $\mathbf{1}^{*}$. . Standard bushing length (L dim.) ***
- Special shaft length (A dimm) avail-
shle in all prentical lengtha from $\%$.
increasing by $1 / 16^{*}$ increments.

ROUND	
TYPE	DIM. D
1	$.250 \pm .000$

FLAT		
TYPE	DIM. B	DIM. C
2	$.216 \pm .002$	$7 / 16^{\prime \prime}$
3	$.216 \pm .002$	\%" $^{\prime \prime}$
4	$.216 \pm .002$	$11 / 32^{\prime \prime}$
5	$.216 \pm .002$	$\overline{5 / 16^{\prime \prime}}$
6	$.216 \pm .002$	$幺^{\prime \prime}$

SLOT		
TYPE	DIM. B	DIM. C
7	$.075^{\prime \prime}$	$1 / 16^{\prime \prime}$
8	$1 / 16^{\prime \prime}$	$1 / 16^{\prime \prime}$
9	$3 / 64^{\prime \prime}$	$1 / 16^{\prime \prime}$

STANDARD FLAT POSITION
STANDARD SLOT POSITION

CATALOG DATA BULLETIN

Important information for Engineering and Purchasing Depts. Please file with your IRC Catalog.
INTERNATIONAL RESISTANCE CO., 401 N. Broad St., Philadelphia 8, Pa., U. S. A.
InCanada:InternationalResistance Co..Ltd.. Toronto. Licensee

POUER RHEOSTATS

TYPE PR-25 - FRONT VIEW 25 WATTS

TYPE PR-50 - REAR VIEW 50 WATTS

ALL-METAL CONSTRUCTION

The basis of the vast superiority of IRC PR 25 and PR 50 Power Rheostats over conventional types is a unique design featuring all-metal construction. The excellent heat dissipating properties of aluminum are utilized to full advantage in the housing and in the winding core of the resistance element of these IRC Rheostats.
PR 25 and PR 50 Rheostats operate at full rating at approximately half the temperature rise of equivalent units, and can be operated at full power in as low as 25% of rotation without any appreciable difference in temperature rise.
Through efficient use of the best grade mica and special asbestos, the insulation properties of these rheostats satisfactorily meet all service requirements. The heat dissipating and insulation features of IRC PR 25 will allow safe operation at 25 watts down to 25% of full rotation with a temperature rise of about $160^{\circ} \mathrm{C}$., and for the PR 50, at 50 watts down to 25% of full rotation with a temperature rise of approximately $200^{\circ} \mathrm{C}$.
HOUSING. Ribbed die cast aluminum alloy case designed to conduct heat away from resistance element. Since the external sides of the case are ribbed, it offers exceptionally efficient heat radiation. Intimate contact between rheostat and mounting panel allows rapid conduction to the panel of a portion of the heat dissipated.
RESISTANCE ELEMENT. Low temperature coefficient wire is uniformly wound on a strip aluminum core insulated by top grade asbestos. This insures uniform heat distribution throughout the entire resistance element regardless of how much of the element is actually in service.
Through the use of layers of best grade mica, the resistance element is insulated from the die cast housing. This construction allows more than sufficient insulation and at the same time, aids in conducting heat from the element to the housing.
CONTACT. Contact is made to the large radius edge of the resistance element by means of a special alloy which will neither pit nor stick. Close calibration and smooth variations in resistance are made possible over entire element. Pressure is provided by means of a separate steel spring, not in the current carrying path, thus separating the two functions of carrying current and applying pressure.
SPIRAL SPRING CONNECTOR. A flat clockspring, the famous IRC Spiral Spring Connector, is used to connect the sliding contactor to the center terminal. This eliminates the conventional series pressure contact, and insures long life and dependability.
MOUNTING. Single $3 / 3^{\prime \prime}$ hole mounting, bushing $1 / 2^{\prime \prime}$ long x $3 / /^{\prime \prime} \times 32$ thread-brass. Other lengths available on special order.
SHAFT. Standard shaft nickel plated steel $1 / 4^{\prime \prime}$ diameter. Length of shaft beyond bushing $1 / 2^{\prime \prime}$. Other lengths available as indicated on Page 2. Shaft is insulated, permitting mounting of rheostat on metal panel.
SHAFT ROTATION. PR 25 Rheostat - 290°

$$
\text { PR } 50 \quad \text { Rheostat - } 280^{\circ}
$$

LOCATING PIN. $1 /$ s $^{\prime \prime}$ diameter pin cast in base on $0.512^{\prime \prime}$ radius, as shown in diagram on Page 2.
KNOB. Conventional type knob of molded bakelite is available on order.
COVER. Cover for protection against mechanical injury is available on order. Use of cover necessitates reduction of rating by $1 / 3$ of standard.
OFF POSITION. Positive-action "off" position is standard.

INSTALLATION OF IRC TYPE LP WATER COOLED RESISTORS

WATER COOLING: The resistor film on the interior of the Pyrex tube is less than 0.001 " thick and has negligible heat storage capacity. High water velocity and intimate thermal contact between the water and carbon over its entire surface are necessary for proper heat dissipation. Oil or even perspiration on the inside surface may prevent wetting, so it is recommended that the resistor film inside be inspected before final installation. Warm soapy water will clean the resistor without harm to the carbon coating. This resistor is not recommended for DC applications.
Abrasive grit, metal filings, or particles of solder in the water supply will score the resistor film due to the velocity and centrifugal force of the liquid. Supply lines should be carefully flushed out before installation of the resistor, and a filter installed, if ordinary tap water is used for cooling. Before power is applied to the resistor, water should be allowed to circulate through the unit for at least three minutes in order to thoroughly wet resistance element and clear out air bubbles.
The position of mounting the resistor does not affect its operation. It will work satisfactorily with either end up or on its side.
The $5 / 8^{\prime \prime}$ " tubing at the side of the water fitting, with the nozzle installed, is the water intake. The outlet tubing is on the axis of the resistor.
An intake nozzle with the proper hole size must be installed to ensure velocity and volume flow for a given power dissipation. Our No. 4 nozzle, normally supplied, has a $0.203^{\prime \prime}$ hole diameter and passes approximately 4 gals. per minute with a water pressure differential between inlet and outlet of 22 lbs . per square inch. This flow will handle 5 kilowatts A.C. at normal water temperatures. For a power dissipation of 2 kilowatts, our No. 2 nozzle has a 0.156° hole and will pass approximately 2 gals. per minute at 16 lbs . pressure. For powers of 1.000 watts or less, our No. 1 nozzle with a $0.109^{\prime \prime}$ hole. will pass approximately 1 gal. per minute at 20 lbs . pressure. Care should be used when installing these nozzles to prevent burring the inside which would disturb the flow. If a circulatory water system is used, output water should be cooled to counteract temperature rise.
Suitable couplings for connection to the external water supply are manufactured by the Imperial Brass Company. Their part No.
$62 \mathrm{~F}-5 / 8$ " union is a straight coupling for connection to $5 / \mathrm{B}^{\prime \prime}$ O.D. copper tubing. Their part No. $68 \mathrm{~F}-5 / \mathrm{g}^{\circ}$ is a similar coupling for connection to $1 / 2^{\prime \prime}$ standard pipe thread.

FITTING TO A COAXIAL LINE: Outer conductor adapter, our drawing No. B-17.0691, can be assembled in place under the clamp ring which holds the resistor flange. The resistor flange must always be assembled next to the water fitting with gasket, the outer conductor adapter next, and the clamp ring on top. This adapter is designed to clamp around the cutside of a "three inch" coaxial line. The inner conductor of the coaxial line is cut off $41 / 2^{\prime \prime}$ shorter than the outer conductor (the approximate length of the resistor unit sub-assembly) and assembled by an appropriate adapter to the cap on the end of the resistor.
Care must be taken in fitting the assembly to a line to insure that the inner and outer parts are limed up concentric, otherwise excessive strain may be placed on the glass tubing.

$\triangle P$ RESISTOP

NORTLE	аияÄ"	$\begin{aligned} & \text { WATEP rIOW } \\ & \text { GAL PIP HAN } \end{aligned}$	PRESSURF DIFF INLET TO QUTLET	MAXIMUM POWFE
1	$0.109^{\prime \prime}$	1	20*PER SQA	1ONW
2	0.156°	2	16	20.
4	0.203°	4	22	5.0

In Conados INTERNATIONAL MESISTAMCE CO., 1 ID.
II KING STREET WEST, TORONTO I, LICEMSミ

CATALOG DATA BULLETIN

Important information for Engineering and Purchasing Depts. Please file with your IRC Catalog.
INTERNATIONAL RESISTANCE CO., 401 N. Broad Street, Philodelphia 8, Pa., U.S.A.
IN CANADA. INTERNATIONAI RESISTANCE CO., ITD., TORONTO, LICENSEE

FM, and Dielectric Heating Applications

Inside IRC's new Type LP resistor a high velocity stream of water flows in a spiral path against the metallized resistance film and, through centrifugal force, maintains intimate thermal contact with the entire surface. Interchangeable intake nozzles permit adjusting the rate of water flow and therefore the cooling action to suit local water pressure and power dissipation up to $5 \mathrm{~K} . \mathrm{W}$.
A resistance film less than $0.001^{\prime \prime}$ thick, with an active length considerably less than $1 / 4$ wave length at FM and relevision frequencies, gives good inherent frequency characteristics.

The mechanical design permits direct mounting on the end of a coaxial line with both water intake and outlet connections at R.F. ground potential. Resistor elements are interchangeable. Different values or service replacements can be readily installed in the field.
The IRC Type LP Liquid Cooled High Frequency High Power Unit is the latest in IRC's continuing development of resistors. It is available in resistance values of 35 ohms to 1500 ohms. Resistance tolerance: $\pm 15 \%$ standard. Tolerances of $\pm 10 \%$ and $\pm 5 \%$ can be supplied at increased cost.
 similar applications. They are constructed of solid steatite ceramic rods to which a thin resistance film is permanently bonded. Wire lead terminals have "cupped" ends into which the resistor body is firmly cemented to form axial pigtails. The entire assembly is then coated with phenolic varnish. The electrical characteristics of these units are similar, except for frequency, to those of the larger type IRC MP Resistors. The approximate frequency characteristics for various ranges are shown below. Terminals are axial wire pigtails, $11 / 2$ inches long. Resistor body is $9 / 16^{\prime \prime}$ by $0.100^{\prime \prime}$ (over cups), and the active resistance section is $3 / 8^{\prime \prime}$ long.

AVAILABLE RESISTANCE VALUES:

30 ohms to $1: 0$ megohms.
RESISTANCE TOLERANCE:
Standard: $\pm \mathbf{2 0 \%}$; Special: $\pm 10 \%$. 5% not available.

POWER RATING:

$1 / 4$ watt, at $40^{\circ} \mathrm{C}$. ambient temperature.
MAXIMUM VOLTAGE RATING:
200 volts peak.
CAPACITY BETWEEN TERMINALS:

0.015 Micro-microfarads.

TEMPERATURE COEFFICIENT OF RESISTANCE:

Approximately minus 0.04% per degree over temperature range of $-55^{\circ} \mathrm{C}$. to $+80^{\circ} \mathrm{C}$.

INTERNATIONAL
 RESISTANCE

43 TERMINAL
17 TERMINAL
IS TERMINAL

Specifications

TVPE		NOWE	$\begin{gathered} \text { PEAK } \\ \text { volite } \\ \text { RATHGG } \end{gathered}$	MARMUM AVALLABLE RESISTANCE			DIMENSTONS			
				$\begin{gathered} \text { AT } \\ \pm 15 \% \text { on } \\ \text { IOLRANCE } \end{gathered}$			CERAMK LENGIH	$\begin{aligned} & \text { RESISTOR } \\ & \text { BODY } \\ & \text { nIAMFTE } \end{aligned}$ DIAMETE	CERAMK	WIDTH OF colloidal siver banos AS TERMINALS c. 3
MPF. 12	\# 12, flg. 1	2 wath	500	20 okms	100 chms	1.5 megorms	1.3/4"	5/16"	3/16"	$9 / 16^{\circ}$
MPF-13	\# 13, Fig. 3						$\pm 1 / 32^{\prime \prime}$	$\pm 1 / 32^{\prime \prime}$		$\pm 1 / 16^{\prime \prime}$
MPG-13	\#13, Fig. 3	4 wats	500	20 chms	100 chms	1.5 megomm	$\begin{aligned} & 2^{\prime \prime} \\ & \pm 1 / 32^{\prime \prime} \end{aligned}$	$\begin{aligned} & 9 / 16^{\prime \prime} \\ & \pm 1 / 32^{\prime \prime} \end{aligned}$	3/8"	$\begin{gathered} 9 / 16^{\prime \prime} \\ \pm 1 / 16^{\prime \prime} \end{gathered}$
MPG. 15	\#15, Fig. 5									
MPG. 16	\#16, Fig. 2									
MPG-17	\# 17, Fig. 4									
MPJ. 15	\#15, Fiz. 5	5 wath	1000	35 chms	200 ohms	3.0 megorms	$\begin{aligned} & 3^{\prime \prime} \\ & \pm 1 / 32^{\prime \prime} \end{aligned}$	$\begin{aligned} & 9 / 16^{\prime \prime} \\ & \pm 1 / 32^{\prime \prime} \end{aligned}$	3/8"	$\begin{gathered} 9 / 16^{\prime \prime} \\ \pm 1 / 16^{\prime \prime} \end{gathered}$
MPJ 16	\# 16, Fig. 2									
MPJ-17	\# 17, Fiz 4									
MPP-15	\# 15, Fi.a. 5	10 wam	1750	25 chms	150 ohms	2.5 megonms	$\begin{aligned} & 4-1 / 2^{\prime \prime} \\ & \pm 1 / 16^{\prime \prime} \end{aligned}$	$\begin{aligned} & 3 / 4^{\prime \prime} \\ & \pm 1 / 32^{\prime \prime} \end{aligned}$	1/2"	$\begin{array}{r} 9 / 16^{\prime \prime} \\ \pm \\ \hline 1 / 16^{\prime \prime} \end{array}$
MPP-16	\#16, Fiz 2									
MPP. 17	\#17. Fiz. 4									
MPA.15	\# 15, Fip. 5	20 mam	2750	35 chms	250 uthm	4.0 megorms	$\begin{aligned} & 8.1 / 2^{\prime \prime} \\ & \pm 1 / 16^{\prime \prime} \end{aligned}$	$\begin{aligned} & 1.1 / 8^{\prime \prime} \\ & \pm 1 / 32^{\prime \prime} \end{aligned}$	3/4"	$\begin{array}{r} 9 / 16^{\prime \prime} \\ \pm 1 / 16^{\prime \prime} \end{array}$
MPA. 16	\#16, Fiz. 2									
MPA-17	\#17, Fig. 4									
MPO-15	\#15, Fig. 5	30 watts	4750	50 omms	400 chms	5.0 megorms	$\begin{aligned} & 10-1 / 2^{\prime \prime} \\ & \pm 1 / 16^{\prime \prime} \end{aligned}$	$\begin{aligned} & 1.1 / 8^{\prime \prime} \\ & \pm 1 / 32^{\prime \prime} \end{aligned}$	$3 / 4{ }^{\prime \prime}$	$\begin{gathered} 9 / 16^{\prime \prime} \\ \pm 1 / 16^{\prime \prime} \end{gathered}$
MPO. 16	\# 16, Fig. 2									
MPO. 17	\#17, Fig. 4									
MPR-15	\# 15, Fig. 5	90 w yms	8500	60.chms	500 othen	6.0 megommz	$\begin{aligned} & 18-1 / 2^{\prime \prime} \\ & \pm 1 / 8^{\prime \prime} \end{aligned}$	$\begin{aligned} & 2^{\prime \prime} \\ & \pm 3 / 64^{\prime \prime} \end{aligned}$	1.9/16 ${ }^{\prime \prime}$	$\begin{gathered} 7 / 8^{\prime \prime} \\ +\quad 1 / 16^{\prime \prime} \end{gathered}$
MPR-17	\#17, fig. 4									

* NITH LUG TERMINALS OR

COLLOIDAL SILVER TERMINALS
NITH FERRULE TERMINALS,
\#5, \#7, AND \#8

CHARACTERISTICS

POWER RATINGS. The ratings shown in the above specif. cation charts are based on free air operation at $20^{\circ} \mathrm{C}$. ambient and should not be exceeded.

DERATING. Type MP Resistor power ratings are based on an ambient temperafure of $20^{\circ} \mathrm{C}$. When operated at any higher ambient, it is recommended that they be derated according to the following curve. For example, suppose an MPO Resistor is to be operated in an ambient temperature of $40^{\circ} \mathrm{C}$. From the curve it is seen that the permissible load is 74% of the rated load. Since the MPO is normally rated af 30 watts, then at $40^{\circ} \mathrm{C}$., it should not be loaded to more than 74% of 30 watts, or 22.2 watts.

TEMPERATURE COEFFICIENT. $-.005 \%{ }^{\circ} \mathrm{C}$. for low resis. tance to $-.07 \%{ }^{\circ} \mathrm{C}$. for high resistance value.

COOLING TO INCREASE POWER RATING.

Various methods may be used for artificially removing heat from Type MP Resistors to increase their power capacity. In any cooling method, however, the maximum voltage rating and "hot spot" temperature $110^{\circ} \mathrm{C}$. for short-time intermittent operation or $90^{\circ} \mathrm{C}$. for continuous operation) must not be exceeded.
Safe power dissipation may be materially increased by cooling the units in a forced air draft. By efficient water cooling, safe operation at a power exceeding 100 times that for operation in air may be secured. (See IRC Catalog Bulletin F-2 pertaining to Type LP WaterCooled Resistors up to 5 K.W.) Type MP units also can be furnished for operation in oil as a means of increasing power and voltage ratings.

When planning the use of any special cooling method for Type MP installations, it is advisable to furnish complete details of the specific application so that IRC engineers may recommend the proper units and installation methods.

CATALOG DATA BULLETIN

Important information for Engineering and Purchasing Depts. Please file with your IRC Catalog. INTERNATIONAL RESISTANCE CO., 401 N. Broad Street, Philodelphio 8, Po., U.S.A. IN CANADA: INTERNATIONAL RESISTANCE CO., ITD., TORONTO, LICENSEE

TYPE MP HIGH

PREQUENCY RESISTORS

IRC Type MP Resistors are intended for frequencies above those of conventional resistors. They are suitable for such applications as broad band RF amplifers, RF probes, rhombic antenna terminating resistors, dummy loads for frans. mitters and dielectric heating equipment, television side-band filters, surge generator and other circuits involving steep wave fronts, high frequency measuring circuits and radar pulse equipment. They are available in sizes from $1 / 4$ watt to 90 watts.

The IRC Type MP design utilizes the basic IRC technique of bonding a thin film of resistance material on a steatite ceramic form 10 provide a stable resistor with low inherent inductance and capacity.

The resistance film used on Type MP Resistors was developed especially for these units in order to obtain the best combination of mechanical stability and uniform electrical characteristics. Changes due to humidity and aging are held to a minimum. Voltage and temperafure coefficients of resistance ore low. The small crosssectional area of the film (it is less than $0.001^{\prime \prime}$ thick) provides low inherent capacity and freedom from "skin effect". Inductance is moterially reduced bv the large ratio of diameter to length.

The steatite ceramic tubes used in Type MP Resistors are chosen for their mechanical uniformity and strength, and stability under temperature and humidity variations. They are non-hygroscopic and have excellent electrical characteristics.

Terminal bands of colloidal silver are applied at each end of the unit to provide permanent low resistance contact to the resistance coating. Lug or ferrule type terminals, if required, are secured over the silver end bands and a heavy protective coating is baked on the entire resistor.

SPECIFICATIONS

TYPE MV RESISTORS with lue thaminals or colloidal shivit termimals										
		POWER					diarnioun			
Trpt	$\begin{gathered} \text { TETBTMAL } \\ \text { TVPCAND } \\ \text { DHHWINGNO. } \end{gathered}$		$\begin{gathered} \text { pbak } \\ \text { voltage } \\ \text { mating } \end{gathered}$				ctanmic Lemats		$\underset{\substack{\text { ctanume } \\ \text { LD }}}{ }$	
MVF-12	\#12. Fig. 1	2 watts	5,000	2,600 ohms	25,000 ohms	250 megohms	$\begin{array}{r} 1 \%_{4}^{\prime \prime} \\ +y_{2}{ }^{\prime} \end{array}$	$\begin{array}{r} K_{0}{ }^{\prime \prime} \\ +y_{2^{\prime \prime}} \end{array}$	\%/8"	$\begin{array}{r} 2 / 10^{\circ} \\ +3 / 10^{\circ} \end{array}$
MVG13	\# 13, Fig. 3	4 watts	5,000	10,000 ohma	0.1 megohm	700 megohma	$\begin{gathered} 2^{*} \\ +3 / 1 / 2^{\circ} \end{gathered}$	$\begin{array}{r} 9 / 10^{\prime \prime} \\ +3 / 2^{*} \end{array}$	\%"	$\begin{array}{r} 8 / 10^{\circ} \\ +1 / 1_{0^{\circ}} \end{array}$
MVG-15	${ }^{*} 15$, Fig. 5									
MVG-16	*16, Fig. 2									
MVG-17	* 17, Fig. 4									
MVJ-15	\#15, Fig. 5	5 watts	10,000	20,000 ohms	0.2 mesohm		$\begin{gathered} \mathbf{s}^{*} \\ +1 / 2^{\prime \prime} \end{gathered}$		\%*	$\begin{array}{r} 1 / 10^{0} \\ +1 / 10^{\circ} \end{array}$
MVJ-16	\#16, Fig. 2					1.600 mezohms		\%/10		
MVJ-17	\#17, Fig. 4							+1/23		
MVP-15	*15, Fig. 5	10 watts	15,000	60,000 ohms	0.4 megohm	2,000 megahms	$\begin{aligned} & 41 / 2^{\prime \prime} \\ & +1 / 10^{\circ} \end{aligned}$	$\begin{array}{r} 3 / 4^{\circ \prime} \\ +1 / 8 z^{\circ} \end{array}$	\%"	$\begin{array}{r} \text { \%" } \\ +K_{10}{ }^{\prime \prime} \end{array}$
MYP 16	\#16, Fig. 2									
MVP-17	\#17, Fig. 4									
MYA-18	\#15, Fig. 5	20 watts	25,000	0.2 megohm	1.0 megohm	4,000 megrehms	$\begin{aligned} & 61 / 2{ }^{\circ} \\ & +1 / 10^{\circ} \end{aligned}$	$\begin{array}{r} 11 / 2^{\prime \prime} \\ +1 / 2^{\prime \prime} \end{array}$	3/4*	$\begin{array}{r} 9 / 10^{\prime \prime} \\ +1 / 0_{0} \end{array}$
MVA-16	\#16. Fig. 2									
MVA-17	\#17, Fig. 4									
MVO-15	\#15. Fig. B	30 watts	60,000	0.4 megohm	2.0 megohms	8,000 megchms	$\begin{aligned} & 101 / 2^{\circ} \\ & +1 / 18^{\circ} \end{aligned}$	$\begin{gathered} 11 / 3^{\prime \prime} \\ +1 / x^{2} \end{gathered}$	\%/4	$\begin{array}{r} 1 / 10^{\circ} \\ +1 / 0^{\circ} \end{array}$
MVO-16	*16, Fig. 2									
MVO-17	\#17, Fig. 4									
MVR-15	*15, Fig. 5	90 watts	100,000	1.0 megohm	7.0 megohms	20,000 megrohms	$181 /{ }^{\circ}$	$2 *$	1\%"	\% ${ }^{\circ}$
MVR-17	\#17, Fig. 4						$\underline{+1 / 0^{*}}$	$\pm 8 / 64^{*}$		+ $1_{18}{ }^{\prime \prime}$
Note 1:-At ts\% tolerance, 1000 megohma in the maximum available. (Except where maximum available tabulated in leas than 1,000 magohma.) At $t 10 \%$ tolerance, 10,000 metohms is the maximum svailable. (Except where maximnm avilable tubuiated ie leat then 10,000 megohma) Above 10,000 megohms, $\boldsymbol{t} 20 \%$ is the only available colerance.										

with lug terminals or with ferrule terminals
COLLOIDAL SILVER TERMINALS
\#5, \#7, and \#\&
TYPE MY RESISTORS
with merule temmimals, \#t, " 7 and \#e

			misimumavalla	ablenteibtancle					usmane		
trpe	ROMER	-				-OUTLINE DMWING					
MVS-5	4.0 watts	5,000	10,000 ohms	0.1 megohm	500 meg.	Fig. 6	$\begin{aligned} & 21 / 10^{\prime \prime} \\ & +1 / 0^{\circ} \end{aligned}$	$\begin{gathered} 11 / 1 / 0^{0 \prime} \\ +1 / 22^{n} \end{gathered}$	$\begin{array}{r} 1 \%_{3} \\ +K_{10} \end{array}$	$\begin{array}{r} x_{1} 0^{\prime \prime} \\ +1_{2}{ }^{\prime \prime} \end{array}$	$\begin{gathered} 1 / u^{*} \\ +1 / 0^{*}-0^{n} \end{gathered}$
MVT-5	5.0 watts	7,500	$15,000 \mathrm{ohms}$	0.15 megohm	800 meg .	"	$\begin{array}{r} 30 \\ +\% / a^{0} \end{array}$	$\begin{array}{r} 12 / 10^{\circ} \\ +1 / 2_{2}{ }^{\circ} \end{array}$	$\begin{aligned} & 11 \% / 10^{\circ} \\ & +3 / 10^{\circ} \end{aligned}$	$\begin{array}{r} \%_{1} 0^{\prime \prime} \\ +1_{2} \end{array}$	$\begin{gathered} 1 / 30^{\circ} \\ +1 / 0^{\prime \prime}-0^{\circ} \end{gathered}$
MVB-7	7.5 watts	-12,000	50,000 ohms	0.4 megohm	1,500 meg.	"	$\begin{gathered} 4 \frac{1 / 20}{\circ} \\ +4 / 0^{\circ} \end{gathered}$	$\begin{array}{r} 10 \\ +1 / 12^{\circ} \end{array}$	$\begin{array}{r} 31 / 60^{\circ} \\ +3 / 10 \end{array}$	$\begin{array}{r} 18 / 1_{10} 0^{0} \\ +1 / 20^{\prime} \end{array}$	$\begin{gathered} x_{1}^{*} \\ +1 / 20^{-}-0^{-} \end{gathered}$
MVD-7	10.0 watte	15,0000	0.1 megohm	0.7 megohm	2,000 meg.	"	$\begin{aligned} & 5 y_{19} 0^{\circ} \\ & +1 / 6^{\circ} \end{aligned}$	$\begin{array}{r} 11^{\circ} \\ +1 / 2^{\circ} \end{array}$	$\begin{array}{r} 41 / "^{\prime} \\ +1 / e^{\prime \prime} \end{array}$	$\begin{aligned} & 18 / 0^{\circ} \\ & +11_{1} 2^{\prime} \end{aligned}$	$\begin{gathered} 1 / 2^{*} \\ +y_{0} 0^{\circ}-0^{*} \end{gathered}$
MV2-8	20.0 watts	25.000	0.2 megohm	1.0 megohm	4,000 meg.	"	$\begin{gathered} 71 / 2^{\circ} \\ +4 / 6^{\circ} \end{gathered}$	$\begin{array}{r} 11 / 2^{\prime \prime} \\ +1 / 2^{\prime \prime} \end{array}$	$\begin{array}{r} 61 / 60^{\circ} \\ +3 / 14^{\circ} \end{array}$	$\begin{array}{r} 11 / 20 \\ +1 / 22^{\circ} \end{array}$	$\begin{gathered} 1 / 2^{\prime \prime} \\ +x / 0^{\circ}-0^{\circ} \end{gathered}$
MVE-8	25.0 watts	40.000	0.8 megohm	1.5 megohms	8,000 meg.	\cdots	$\begin{gathered} 911_{10} 0^{\circ} \\ +44^{\circ} \end{gathered}$	$\begin{array}{r} 11 / 2^{\circ} \\ +1 / 2^{\circ} \end{array}$	$\begin{array}{r} 85 / \mathbf{n}^{\prime \prime} \\ +1 / 0^{\prime \prime} \end{array}$	$\begin{array}{r} 11 / 1^{\circ} \\ +1 / 2^{\prime} \end{array}$	$\begin{gathered} 3 / 2^{*} \\ +1 / 0^{\circ}-0^{*} \end{gathered}$
MVO-7	30.0 watta	50,000	0.4 merohm	2.0 megohms	$8,000 \mathrm{meg}$.	"	$\begin{array}{r} 12^{\circ} \\ +1 / 4^{\circ} \end{array}$	$\begin{array}{r} 11 / 2^{0} \\ +1 / 2^{2} \end{array}$	$\begin{gathered} 101 \% / s^{\prime \prime} \\ + \text { K. } \end{gathered}$	$\begin{array}{r} 16 /_{1} 0^{\circ} \\ +3_{2}- \end{array}$	$\begin{aligned} & 1 / 1^{\circ} \\ + & 1 / 0^{\circ}-0^{\circ} \end{aligned}$
MVR-8	90.0 watts	100,000	1.0 megohm	7.0 merohms	20,000 meg.	"	$\begin{array}{r} 19 \% / 1^{\prime \prime} \\ +8 / 0^{\circ} \end{array}$	$\begin{array}{r} 20 \\ +84^{\circ} \\ \hline \end{array}$	$\begin{array}{r} 181 / 2^{\circ} \\ +4 / 2_{2} \\ \hline \end{array}$	$\begin{array}{r} 13 / 2^{\circ} \\ +1 / z^{\prime} \\ \hline \end{array}$	$\begin{array}{r} \%_{10}{ }^{4} \\ +1 / 2_{1}-0^{2} \\ \hline \end{array}$
 Above 10,600 megohmin, $+20 \%$ be the ouly eveilable tolerance.											

All above resistor types can be applied in resistance ranges above standard to a maximum of $1,000,000$ megohms. Tolerance $\pm 20 \%$. Prices special depending on resistmince range.

DERATING

When MV Resistors are operating at any ambient higher than $20^{\circ} \mathrm{C}$., it is recommended that they be derated according to the following curve.

POWER RATINGS.
The ratings shown in the specification chart C. ambient and are based on free air operation at 20° should not be exceeded.

TEMPERATURE COEFFICIENT. $-.005 \%^{\circ}$ C. for low resistance to $-.07 \%{ }^{\circ} \mathrm{C}$. for high resistance values.

AGING. Pre-curing and stabilizing of resistance coating at high temperature eliminates appreciable aging. Laboratory tests and field experience indicate that aging rarely excceds $\pm 3 \%$ of the original value.
voltage coefficient of resistance. Type MV Resistors have a voltage coefficient of resistance which varies from approximately $-.002 \%$ to $-.03 \%$ per volt per inch of length of resistance path.

TERMINALS. Terminal types all the same as those shown for MP resistors on page 15.

CATALOG DATA BULLETIN

Important information for Engineering and Purchasing. Depts. Please file with your IRC Catalog. INTERNATIONAL RESISTANCE CO., 401 N. Broad St., Philadelphia 8, Par, U. S. Ao In Canada: InternationalResistance Co.., Ltd., Toront q_{i}, Licensee

IRC Type MV Resistors are designed for high voltage applications where high resistance and power are required. Unique application of IRC's famous filament resistance coating in helical turns on a ceramic tube provides a conducting path of long effective length.

The long resistance path makes it possible to produce a unit of high resistance value with resistance materials having relatively low specific resistance. For this reason, Type MV Resistors have exceptional stability even in very high resistance values. The long resistance path permits the use of high voltage on the resistor while keeping the voltage per unit length of path comparatively low.

HANDLING. Type MV Resistors will stand ordinary handling; however, it is recommended that the units be installed after other mechanical work has been completed, and that the protective wrapping on the body of the resistor be left in place until the unit has been installed in the equipment.

BUMIDITY. General protective coatings of special varnish, baked individually at high temperature, provide protection against the effects of abnormal humidity. Maximum resistance change of $\pm 5 \%$ can be expected due to humidity. Resistance will return to original value when humidity conditions become normal.

INSULATION. Base is ceramic with excellent high voltage characteristics. The spacing of the turns of the helical conducting path is designed to provide adequate protection against breakdowns between turns.

TYPE H FINGERTP CONTROL

DIMENSIONS, TYPE H CONTROL

RESISTANCE ELEMENT: IRC Metallized coating, bonded to a phenolic strip. cured and stabilized at high temperature, in the same manner as IRC Type CS and D Controls. Integral molding of this element with the phenolic bose results in improved strength, more efficient heat dissipation, and increased resistance to humidity.

CONTACTOR: A two-finger, ball-point, radial contact, of silver-plated spring alloy.

TERMINALS: Center Contact is a silver-plated brass stud with the external portion provided with No. 3-56 thread. The shoulder of the internal portion of the stud forms the bearing surface on which the moving contactor rotates when driven by the cover. The end terminals are silver-plated brass.

ROTATION: 290° rotation is standard.
POWER RATING: 0.25 Watts for linear taper.

Recommended mounting template for
Type H Control

MOUNTING: Designed for mounting on an insulating bracket or panel having - $1 / 16^{\prime \prime}$ min. thickness or a max. thickness of $7 / 64^{\prime \prime}$. The center terminal, provided with a No. $3-56$ Hex nut, is the principal mounting means. A three-hole mounting is recommended with the two end terminals acting as locating devices. If a suitable grommet or insulating bushing is used, the control can be mounted on a metal panel.

CHART "A"
RESISTANCE VALUE and TAPERS: Available resistance values depend upon tapers, as listed below. Type H Controls can be provided with linear taper or any of the standard audio tapers, such as Curve B, Curve C, Reverse B or Reverse C, as shown in Chart "A." NOTE: Reversed B and Reversed C Curves show resistance change as measured between Clockwise and Center Terminals.

Curve	Min. Res.	Max. Res.
A .	500 ohms	5.0
B or Reverse B	750 ohms	3.0
C or Reverse C	1000 ohms	2.0
STANDAR	Oleran	

TYPE SH FINGERTIP SWITCH

TYPE OF SWITCH:

Type SH is a three-position switch. In addition to the "OFF" position, there are three operating positions, as shown in the Switch Contact Diagram, In Position 1, the first 2 terminals are connected together: in Position 2, the first, second and third terminals are shorted together, and in Position 3 , all four of the terminals are connected together.

MOUNTING: The central mounting stud, molded into the base, has a No. 3-56 thread and is provided with a lockwasher and a No. 3-56 Hex nut for mounting purposes. The Type SH Switch is designed to be mounted on an insulating bracket or panel having a $1 / 16^{\prime \prime}$ min. thickness, or a max. thickness of 7/64". As with the Type H Control, the terminals of the switch may function as locating devices in mounting.

Recommended mounting template for

120° TOTAL
DIMENSIONS, TYPE SH SWITCH
CONTACTOR: Silver-plated spring alloy, web-shaped contact:
TERMINALS: The four silver-plated brass terminals are molded into a phenolic base. The central mounting stud in the switch is "live," as it is in direct contact with the contactor, but is not intended to be used as an external wiring connection.

ROTATION: Total rotation is $120^{\circ} ; 40^{\circ}$ rotation per position.
DETENT: Positive in all positions, including "OFF" position.
CONTACT RATING: Suitable for filament circuit switch in pocket radios; for tone control circuits, or for combination filament switch and tone control applications.

SPECIFICATIONS

Depth from Mounting Face. Dual $1 \frac{1}{4 \prime \prime}$ Triple $1 \frac{39^{\prime \prime}}{}{ }^{\prime \prime}$ For Switch Add $\frac{9}{32^{\prime \prime}}$

SIZE. $11 / 4^{\prime \prime}$ diameter; depth behind panel, 9/16".
RESISTANCE ELEMENT. Copper-nickel or nickel-chrome alloy wire wound uniformly under tension on specially treated bakelite. Ele. ment securely. seated in grooved bakelite base. Resistance wire welded to terminals for perfect contact.
CONTACTOR. Long-wearing contactor of unique design provides uniform pressure at any point, providing smooth progression of resistance. Contactor is riveted to spring connector which in turn is riveted to center terminal. This insures long life and absolute dependability.
ROTATION. Total rotation 295°; effective rotation 265° without switch, 218° with switch.
SHAFT. Brass shaft is standard; aluminum, steel, or stainless steel available on special order. $1 / 4^{\prime \prime}$ diameter - length as required. Screw driver slot available. Flat available - specify dimensions " B " and " C " as shown on above drawing. Shaft is fully insulated from terminals.
BUSHING. Brass bushing. Diameter $3 / 8^{\prime \prime}$, thread 32 per inch. Standard length is $3 / 8^{\prime \prime} ; 1 / 4^{\prime \prime}, 1 / 2^{\prime \prime}$ or $5 / 8^{\prime \prime}$ lengths available on special order.
SWITCH. S.P.S.T. is standard; S.P.D.T. and D.P.S.T. available on request. All switches carry Underwriters' approval.
LOCATING PIN. One pin is standard; either two or none may be had when specified.
COVER. Cover is grounded to bushing.
OFF POSITION. Off position is available when specified.
GANGED CONTROLS. The Type W is available as a dual or triple control and may be "ganged" with the Type C carbon control.
TERMINALS. Terminals are hot tin dipped. Three are standard; one may be omitted when specified.

$\begin{aligned} & \text { IRC } \\ & \text { Control } \\ & \hline \end{aligned}$	Resistance	Max. Current (Amps.)
W-2	2	1.000
W-3	3	. 815
W-5	5	. 630
W-6	6	. 560
W-8	8	. 500
W-10	10	. 450
W-15	15	. 370
W-20	20	. 320
W-25	25	. 285
W-30	30	. 260
W-40	40	. 225
W-50	50	. 200
W-60	60	.183
W. 75	75	. 164
W-100	100	. 142
W-200	200	. 100
W-300	300	. 083
W-400	400	. 071
W-500	500	. 063
W-750	750	. 052
W-1000	1000	. 045
W-2000	2000	. 032
W-3000	3000	. 026
W-4000	4000	. 022
W. 5000	5000	. 020
W-7500	7500	. 016
W-10000	10000	. 014

These standard values are available from IRC distributors' stocks Intermediate values are manufactured to special order.

(10)

CATALOG DATA BULLETIN

 this control provides maximum adaptability to most rheostat and potentiometer applications within its power rating. It's small $11 / 4^{\prime \prime}$ by $9 / 16^{\prime \prime}$ design features the exclusive IRC spiral spring connector, a long-wearing alloy contactor, and welded connections between resistance element wire and terminals.
The Type W Control is widely used in many electronic applications, and with center tap is particularly suited for television receivers as vertical and horizontal centering control.
The highest grade alloy wire is wound with uniform spacing and tension on specially treated bakelite to form a precision resistance element. Element is securely seated in grooved bakelite base. Contactor slides on edge of elemenf which prevents loosening of wire. Compact construction insures efficient electrical and mechanical operation even when subjected to severe vibration.
Combination metal and bakelite housing provides
maximum heat dissipation as well as protection against dust and mechanical damage. Effects of humidity, temperature and aging are negligible.

CHARACTERISTICS

RESISTANCE VALUES. 2 ohms to 10,000 ohms.
TOLERANCES. $\pm 10 \%$ standard; $\pm 5 \%$ available at extra cost.

POWER RATING. 2 watts. This rating allows $70^{\circ} \mathrm{C}$. temperature rise at hottest spot on winding from a $25^{\circ} \mathrm{C}$. ambient temperature.
TAPS. One tap is available at either of the following positions: 40%, 50% or 60% of electrical rotation. TAPERS. Linear taper is standard. Tolerance linearity is within $\pm 3 \%$. Special tapers available at extra cost.

SPECIFICATIONS

GANGED CONTROLS

Type D S may be ganged in any combination required.

CONCENTRIC DUAL CONTROLS

Available with outer shaft controlling panel. resistance value

200 ohms to 10 megohms.
tolerances
$\pm 20 \%$ standard; $\pm 3 \%$ Rotational Tolerance.
POWER DISSIPATION
$1 / 3$ watt over entire element.

ROTATION

300° Standard.

SHAFT

$1 / 4^{\prime \prime}$ diameter-length-Dim. A as required-
Screw Driver Slot - Flats, etc., available-
Standard material Brass.
BUSHING
Brass - diameter $3 / 8^{\prime \prime}$ thread, 32 per inch-
Standard length $3 / 8^{\prime \prime}$; special $1 / 4^{\prime \prime}, 1 / 2^{\prime \prime}$ and $5 / 8^{\prime \prime}$.

TAPS

One or two available as required-Standard tap location: $35 \%, 50 \%, 65 \%$.
COVER
Cover Grounded to Bushing.

BRANCH OFFICE: 165 BROADWAY, NEW YORKY N. Y., Courtland 7.5020

CATALOG DATA BULLETIN Important information for Engineering and Purchasing Depts. Please file with your IRC Catalog. INTERNATIONAL RESISTANCE CO., 401 N. Broad St., Philadelphia 8, Pa., U. S. A. In Canada: International Resistance Co.. Ltd.. Toronto. Licensee

UOLUME COMTROL POTENTIOMETER

The IRC type DS is a high quality $1^{1 / 8^{\prime \prime}}$ diameter control conservatively rated at $1 / 3$ watt over the entire element. Nothing has been sacrificed in the design or manufacture of this control. The finest materials are employed, and its compact design embodies many exclusive IRC engineering features.

The resistance coating is an adaptation of the IRC filament principle, famous for its stability. A smooth, moisture-proof element is provided by bonding the resistance material to a bakelite base. The conventional type collector ring is supplanted by a silent spiral spring in the DS control. This positive type of electrical connection eliminates sliding metal-to-metal contact, the primary source of control noise. Contact with element is made by a unique multifinger contactor utilizing the "knee-action" engineering principle.

IRC is the world's largest exclusive manufacturer of resistance products. Over twenty years' experience, engineering "know-how" and manufacturing technique are incorporated in the production of each DS control. An unsurpassed record of dependability over long operational life, low noise level and stability have made the IRC type DS the industry's "number one" control-potentiometer for applications requiring quality components.

CONSTRUCTION
RESISTANCE ELEMENT
Resistance material permanently bonded to bakelite base by carefully controlled heat treatment process, resulting in a smooth, moisture-proof resistance element of excellent stability.

BASE
Highest grade molded bakelite.
CONTACTOR
Exclusive IRC five-finger contactor consisting of five tinned phosphor bronze spring wires. Each finger operates independently on "knee-action" principle, assuring positive uniform contact. Contactor surfaces are rounded and smooth, minimizing noise and wear.

CONTACTS
All parts making fixed pressure contact silver plated to prevent corrosion.

CONNECTOR
Permanent connection is established between contactor and terminal with silent spiral spring connector-an exclusive IRC feature. This advanced form of design eliminates sliding metal-to-metal contacts, thus removing the most troublesome source of control noise.

THRUST WASHER
Coil spring thrust washer eliminates shaft wobble and "end play."

CHARACTERISTICS
AGEING
Control element is aged during processing, thus minimizing change during service to 1 or 2%.

WEAR
Average variation is 5% after 25,000 rota-tions-slight increase in percentage as rotations increase.
humidity
Exposure to most humid climatic conditions for long periods causes positive change in range of approximately 10%. Control returns to initial value upon drying.

Nolse
Silent Spiral Spring Connector and FiveFinger Contactor reduce contact noise to a negligible minimum.
TEMPERATURE COEFFICIENT $.02 \% /{ }^{\circ} \mathrm{C}$. to $.05 \% /{ }^{\circ} \mathrm{C}$.

mpe D INSULATED WIRE WOUND RESISTORS

GENERAL SPECIFICATIONS AND CHARACTERISTICS

TOLERANCES. $\pm 10 \%$ is standard. Values above 10 ohms available in $\pm 5 \%$ tolerance. For closer tolerance requirements, see paragraph "Matched Pairs."

COLOR CODING; IDENTIFICATION.

Typo BW Resistors are dark brown in color, with a waxed, nongloss surface. Resistance values indicated by standard RMA Color Code bands. It is not practical to provide special stamping because of their small size.

STANDARD RESISTANCE VALUES.

RMA Preferred Rangos, subject to minimum and maximum values as listed for each BW type.
NOISE. Negligible.
HUMIDITY. Designed to withstand abnormal atmospheric conditions.

OVERLOAD. 50% to 100% overloads may be applied with negligible changes and return to initial value.

AGING. Negligible.

DERATING

Ratings of Type BW Resistors are based en an ambient temperature of $40^{\circ} \mathrm{C}$. When BW's are used at ambient temperatures exceeding $40^{\circ} \mathrm{C}$., load should not exceed that indicated by the JAN-R Derating Curve reproduced here.

FREQUENCY CHARACTERISTICS. The inductance of BW Resistors is relatively low, making them suitable for use at carrier frequencies. The following table gives the approximate inductance for maximum and minimum resistance values.

TYPE	Minimum Resistance	Approx. Inductance in Microhenries	Maximum Resistance	Approx. Inductance in Microhenries
BWS	1.0 Ohm	0.08 mh.	300 Ohms	1.3 mh.
BW-1/2	0.240 Om	0.02 mh.	820 Ohms	4.02 mh.
BW-1	0.47 Ohm	0.20 mh.	5100 Ohms	60.0 mh.
BW-2	1.0 Ohm	0.50 mh.	8200 Ohms	115.0 mh.

Type BWS

NOTE: Type BWS will not be available for general use during the war. Samples supplied for postwar designs upon request. POWER RATING: $1 / 4$ watt (at $40^{\circ} \mathrm{C}$. ambient).
DIMENSIONS: Length $z^{\prime \prime}$. Diameter $1 / 8^{\prime \prime}$. Lead length $11 / 2^{\prime \prime}$. $\pm 1 / 8^{\prime \prime}$. Lead diameter $0.032^{\prime \prime}$.
TEMPERATURE RISE AT RATED LOAD: $30^{\circ} \mathrm{C}$.
STANDARD RESISTANCE VALUES: Minimum, 1.0 ohm, Maximum, 300 ohms.

Type BW-1/2

JAN-R-184 TYPE: RU3. POWER RATING: $1 / 2 \mathrm{waHt}$ (at $40^{\circ} \mathrm{C}$. ambient).
DIMENSIONS: Length $5 / 8^{\circ}$. Diameter $3 / 16^{\circ}$. Lead length $11 / 2^{\prime \prime}$, $\pm 1 / 8^{\prime \prime}$. Lead diameter 0.032'.
TEMPERATURE RISE AT RATED LOAD: $50^{\circ} \mathrm{C}$.
INSULATION: 700 volts breakdown to ground.
STANDARD RESISTANCE VALUES: Minimum, 0.24 ohm. Maximum, 820 ohms. JAN-R-184: Maximum, 420 ohms.

Type BW-1

JAN-R-184 TYPE: RU4. POWER RATING: | watt (at $40^{\circ} \mathrm{C}$. ambient).
DIMENSIONS: Length $11 / 4^{\prime \prime}$. Diameter $1 / 4^{\prime \prime}$. Lead length $11 / 2^{\prime \prime}$, $\pm 1 / 8^{\prime \prime}$. Lead diameter $0.036^{\prime \prime}$.
TEMPERATURE RISE AT RATED LOAD: $65^{\circ} \mathrm{C}$.
INSULATION: 1000 volts breakdown to ground.
STANDARD RESISTANCE VALUES: Minimum, 0.47 ohm. Maximum, 5100 ohms. JAN-R-184: Maximum, 2200 ohms.

Type BW-2

JAN-R-184 TYPE: RU6. POWER RATING: 2-watts.
DIMENSIONS: Length $13 / 4^{\prime \prime}$. Diameter $2^{\prime \prime} \frac{1}{\prime \prime}^{\prime \prime}$. Lead length $11 / 2^{\prime \prime}$. $\pm 1 / 8^{\prime \prime}$. Lead diameter $0.036^{\prime \prime}$.
TEMPERATURE RISE AT RATED LOAD: $90^{\circ} \mathrm{C}$.
INSULATION: 1000 volts breakdown to ground.
STANDARD RESISTANCE VALUES: Minimum, 1.0 ohm . Maximum, 8200 ohms. JAN-R-184: Maximum, 3300 ohms.

TEMPERATURE COEFFICIENT. To cover a

 wide range of resistance values, it is necessary to use several different wire alloys, which have different temperature coefficients, as indicated by the folliowing table.| TYPE | $0.12 \% 1^{\circ} \mathrm{C}$ | 0.038\% $/{ }^{\circ} \mathrm{C}$ | 0.002\% $/{ }^{\circ} \mathrm{C}$ | 0.017\%/ ${ }^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: | :---: | :---: |
| BWS | | $\begin{aligned} & 1.0 \text { Ohm } \\ & \text { to } \\ & 3.0 \mathrm{Ohms} \end{aligned}$ | $\begin{aligned} & \text { 3.3 Ohms } \\ & \text { to } \\ & 10.0 \text { Ohms } \end{aligned}$ | $\begin{aligned} & 11 \text { Ohms } \\ & \text { to } \\ & 300 \text { Ohms } \end{aligned}$ |
| BW-1/2 | | $\begin{aligned} & 0.24 \mathrm{Ohm} \\ & 0.7 \mathrm{Co}^{\mathrm{O} h m} \end{aligned}$ | $\begin{aligned} & \text { 0.82 Ohm } \\ & \text { to } \\ & 5.1 \text { Ohms } \end{aligned}$ | $\begin{aligned} & \text { 5.6 Ohms } \\ & \text { to } \\ & 820 \text { Ohms } \end{aligned}$ |
| BW-I | $\begin{aligned} & 0.51 \text { Ohm } \\ & \text { to } \\ & 1.10^{\text {Ohms }} \end{aligned}$ | $\begin{aligned} & \text { 1.2 Ohms } \\ & \text { to } \\ & \text { 3.6 Ohms } \end{aligned}$ | $\begin{aligned} & \text { 3.9 Ohms } \\ & \text { to } \\ & 36.0 \text { Ohms } \end{aligned}$ | $\begin{aligned} & 39.0 \text { Ohms } \\ & 5100^{\mathrm{Ohms}} \end{aligned}$ |
| BW-2 | $\begin{aligned} & 1.0 \mathrm{Ohm} \\ & \text { to } \\ & 2.0 \mathrm{Ohms} \end{aligned}$ | | | $\begin{gathered} 56 \text { Ohms } \\ \text { to } \\ 8200 \text { Ohms } \end{gathered}$ |

MATCHED PAIR RESISTORS

IRC Matched Pairs-two resistors matched in series or parallel to as close as 1% initial accuracy provide a dependable low cost solution to close tolerance requirements.
Both IRC BT Insulated Filament-type resistors and type BW Insulated Wire Wounds are available in Matched Pairs. Tolerances from $\pm 5 \%$ to $\pm d \%$ can be furnished. They are supplied random color coded or unmarked, and held together for shipping by a paper band upon which is noted the resistance value and tolerance, or any two digit part number.

IRC Matched Pairs are widely used as meter multipliers, and in many other close tolerance applications where low cost is an important factor. When ordering, the higher ohmic values should be specified to be matched in series and the lower values in parallel.

Due to temperature coefficients and possible variations in resistance value as a result of testing conditions, type BT Matched Pairs are not returnable for out-of-tolerance measurement unless variations exceed $\pm 31 / 2 \%$ from nominal value.
NOTE: Matched Pairs should not be soldered closer than $1 / 4^{"}$ from body of the resistors, mounted against any heat dissipating component, or used at full rating of the resistors-as any one of these condifions may force the resistors out of tolerance.

MATCHED PAIR RESISTANCE LIMITS

	Parallel Matched Pairs		
Type	Minimum Resistance	Maximum Resistance	
BW-1/2	5 Ohms	410 Ohms	
BW-1	2.5 Ohms	2550 Ohms	
BW-2	3.75 Ohms	4100 Ohms	
BTS	235 Ohms	10.0 Megohms	
BTA	165 Ohms	10.0 Megohms	
BT-2	235 Ohms	10.0 Megohms	

Series Marched Pairs

Type	Minimum Resistance	Maximum Resistance
BW-1/1	20 Ohms	1640 Ohms
BW-1	10 Ohms	10,200 Ohms
BW-2	15 Ohms	16,400 Ohms
BTS	940 Ohms	40.0 Megohms
BTA	660 Ohms	40.0 Megohms
BT-2	940 Ohms	40.0 Megohms

DERATING CURVEFOR

high Ambient temperatures

AMBIENT TEMPERATURE
TY Y E B T
(DEGREES CENTIGRADE)

Ratings of Type BT are based on an ambient temperature of $40^{\circ} \mathrm{C}$. Ambient conditions as well as voltage ratings and actual power requirements should be consid. ered when determining the proper size of resistor for any application. When BT's are used at ambient temperatures exceeding $40^{\circ} \mathrm{C}$., load should not exceed that indicated by the JAN-R Derating Curve reproduced here.

STANDARD VALUES TYPES BT AND BW (In accordance with JAN-R-IT and RMA Preferred Resistance Volves)

Becouse of general odoption of these values, it has become necessary to standardize all Type BT and. BW production and stocks on JAN-R-11 values. Available ranges for each type of BT and BW Resistor are limited by the minimum and moximum volues listed for eoch type.

	orms						metioums		
$\operatorname{RMA}_{\mathrm{Na}}$	$\stackrel{i}{i}$	$\begin{aligned} & 1 \\ & 1 . \\ & 0.1 \end{aligned}$	$\begin{aligned} & 110 \\ & 16 \\ & 10 \end{aligned}$	$\begin{aligned} & 100 \\ & \text { 100 } \\ & 90 \end{aligned}$	$\begin{aligned} & 1,000 \\ & 9,160 \\ & \hline, 100 \end{aligned}$	$\begin{aligned} & 10,000 \\ & 1,1,000 \\ & 1,000 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 4.0 \\ & 9.1 \end{aligned}$	$\begin{aligned} & 10 \\ & 90 \\ & 90 \end{aligned}$
10	-	1.0	10	160	1.000	10,000	0.1	1.0	10.0
11	-	1.1	11	110	1.100	11,000	0.11	1.1	11.0
12	-	1.2	12	120	1.200	12,000	0.12	1.2	12.0
13	-	1.3	13	130	1.3190	13,000	0.13	1.3	13.9
15	-	1.5	15	150	1.500	15,000	0.15	1.5	15.0
16	-	1.6	16	160	1.600	16,900	0.16	1.6	16.0
18	-	1.8	18	180	1.800	18.060	0.18	1.8	18.0
20	-	2.0	20	200	2.000	20.000	0.20	2.0	20.0
22	-	2.2	22	220	2.200	22.000	0.22	2.2	22.0
24	0.21	2.4	24	240	2.400	24.0061	0.24	2.4	25.19
27	11.27	2.7	27	270	2.700	27.000)	0.27	2.7	27.0
30	0.30	3.0	30	300	3.000	30,000	0.34	3.0	$30.0{ }^{-}$
33	0.33	3.3	33	330	3.300	33,000)	0.33	3.3	33.0
36	0.36	3.6	36	360	3.600	36.0001	0.36	3.6	36.0
39	0.39	3.9	39	390	3.900	39.0060	0.39	3.9	39.0
43	0.13	1.3	13	430	1.300	43,000	0.43	4.3	43.0
17	0.17	4.7	47	470	1,700	17.000)	0.17	4.7	17.0
± 1	0.51	3.1	51	510	5.160	51.000	0.51	3.1	51.0)
in	0.56	5.6	56	560	3.6100	50.1000	0.56	3.6	56.0
62	0.62	6.2	62	6.20	0.260	62.1000	0.62	6.2	62.0
6.8	0.088	6.8	68	680	6.8100	68.060	0.68	6.4	68.1
73.	0.7.3	\%. 3	75	750	7.300	-5.000	0.75	7.5	7.3 .0
82	11.82	H. 2	82	B20	H. 200	82.000	6.82	H. 2	8. 2.0
91	11.91	9.1	01	911	9.160	91,0100	0.91	9. 1	91.0

POWER AND VOLTAGE RATING: $1 / 3$ watt (at $40^{\circ} \mathrm{C}$. ambient) .. . 250 volts maximum continuous voltage. See Derating Curves, page 4 for higher ambients.
INSULATION BREAKDOWN VOLTAGE: 500 volts to ground.

STANDARD RESISTANCE VALUES: Minimum, 470 ohms: maximum, 22 megohms. Higher values on special order.
TEMPERATURE RISE: At $1 / 3$-watt rating, $40^{\circ} \mathrm{C}$. (At $1 / 4$-watt rating, $30^{\circ} \mathrm{C}$.)

POWER AND VOLTAGE RATING: I watt (at $40^{\circ} \mathrm{C}$. ambient) C. . 500 volts maximum continuous voltage. See Derating Curves, page 4 . for higher ambients.
TEMPERATURE RISE AT RATED LOAD: $52^{\circ} \mathrm{C}$.

STANDARD RESISTANCE VALUES: Minimum, 330 ohms; Maximum, 22 megohms. Higher values on special order. INSULATION BREAKDOWN VOLTAGE: 1000 volts to ground.

[^12]STANDARD RESISTANCE VALUES: Minimum, 470 ohms; Maximum, 22 megohms. Higher values on special order. INSULATION BREAKDOWN YOLTAGE: 1000 volts to ground.

100 CATALOG data bulletin

Important information for Engineering and Purchasing Depts. Please file with your IRC Catalog. INTERNATIONAL RESISTANCE CO., 401 N. Broad St., Philodelphia 8, Pa., U. S. A. In Canada: PnternatonalResistance Co.. Ltd.. Torontö, Licensee

TYPE
:
 INSULATED RESISTORS and TYPE

IISULITEE WRE WOUND RESISTORS

TYPE BT METALLIZED INSULATED RESISTORS

IRC's Metallized filament principle and the unique construction of Type BT Resistors insures low operating temperatures with good wattage dissipation in small, sturdy, light weight, fully insulated units. The BT design also provides exceptionally low noise level and maximum protection against humidity.

GENERAL SPECIFICATIONS
STANDARD RESISTANCE VALUES. In keeping with the trend toward standardization of electronic components, Type BT Resistors are supplied only in RMA (Radio Manufacturers' Association) Preferred Resistance Ranges, subject to minimum and maximum values listed for each type. RMA Ranges are identical to Joint Army-Navy War Standard Rangos.

COLOR CODING; IDENTIFICATION. BT Resistors are natural-bakelite color, non-gloss surface, waxed. Resistance values are indicated by standard RMA Color Code Bands. Because of their small size, it is not practical to provide special stamping.
TOLERANCES. $\pm 10 \%$ standard. Available in $\pm 5 \%$, $\pm 10 \%$ and $\pm 20 \%$ tolerance.
TEMPERATURE COEFFICIENT. The temperature coefficient of Type BT Resistors varies from $0.02 \% /{ }^{\circ} \mathrm{C}$ for low ranges to $0.14 \% /^{\circ} \mathrm{C}$ for high ranges. The low temperature coefficients qualify Type BT Resistors under JAN-R-II Resistance. Temperature Characteristic " F ", which is the better of the two grades of specified resistance-temperature characteristics. Type BT Resistors also successfully undergo the Temperature Cycling tost of JAN-R-II.
VOLTAGE COEFFICIENT. Varies from 0.0% to 0.027% per volt, depending upon range and size of resistor. Each BT type fulfills the voltage coefficient requirement of its applicable JAN-R-II specification.
NOISE LEVEL. Because of the inherent features of the Metallized filament and the low resistance contact of Type BT Resistors, noise level is uniform and consistently low.

OVERLOAD. 50% to 100% overload may be applied with nominal changes and return to initial value. Five-second overloads of 2.5 times rated load (double maximum continuous working voltage in the higher ranges) also result in negligible resistance change.
AGING. The pre-curing and stabilizing of the BT filament eliminates to a very large degree the aging problem.
INSULATION BREAKDOWN VOLTAGE. All BT Resistors are conservatively rated, and, in all cases, ratings fulfill JAN-R-II requirements.
HIGH ALTITUDE FLASHOVER. Type BTRe. sistors do not flash over when subiected to the JAN-R-II High Altitude Flashover test.
VIBRATION. BT Resistors show a resistance change of less than the JAN-R-II permissible maximum of 1% under the 5 -hour vibration test.

OWRID SELF-LOCKERS
 Reg. U. S. Pol. Off

Theydig-in and "stay put"

Self-Lockers-because their knurled cup points dig in and stay tight-even when subjected to the most chattering vibration. Yet, they can be backed out with a wrench and used again and again. That's why so many millions of these tough, dependable 'Unbrako' Socket Set Screws with the Knurled Cup Points are used in industry. For complete information about these and other "Unbrako" Socket Screw Products . . . write for the "Unbrako" Catalog.

These "Unbrako" Screw Products are available in sizes ranging from No. 4 to $1 / 2^{\prime \prime}$ in diameter and in a full range of lengths.
"Unbrako" and "Hallowell" Products are sold entirely through Industrial Distributors.

You can't tighten or loosen socket screws without a hex socket wrench, so why not get our No. 25 or No. 50 "Hallowell" Hollow Handle Key Kit which contains most all hex bits.

"Unbrako" Socket Head Cap Screws with the knurled head save assembly time because the knurling provides a slipand fumble-proof gripthough the fingers and head be ever so oily, therefore, they can be screwed in faster and farther before it becomes necessary to use a wrench. They can also be locked in place if heads are countersunk.

PAT'D AND PATS. PEND.

The "Unbrako" Socket Set Screw with Knurled Threads is a most excellent Self-Locker, too, because the knurling as shown, swages the threads when lock. ing results. To be used with points such as: flat, dog, cone and oval which do not lend themselves to knurling.

${ }_{\text {galantine }}^{\text {rine }}$ ELECTRONIC VOLTMETER, DECADE AMPLIFIER ano MULTIPLIERS

ONE BILLION TO ONE-This enormous range of AC voltages - is casily covered by the Model 300 Voltmeter, Model 220 Decade Amplifier and Model 102 Multipliers illustrated above. The accuracy is 2% at any point on the meter seale, over a frequeney range of 10 eyeles to 1.50 kilocycles. The Model 300 Voltmeter (AC operated) reads from .001 volt to 100 volts, the Model 220 Amplifier (battery operated) supplies aceurately standardized gains of $10 x$ and 100s and the Model 402 Multipliers extend the range of the volimeter to 1,000 and 10,000 volts full scale.

Descriptive Bulletin No. I0 Available

BALLANTINE LABORATORIES, INC.

FIG. 2 - Two variable-inductance myographs, of the type shown in the schematic diagram, were used to make this record of fractionate contraction of the veins going to a turtle heart
line with evaporation of the salt solution. In addition there was a theoretical possibility of a variable lag due to surface tension of the solution.

Another myograph was then constructed which utilized the photoelectric principle. A very small photocell and a bronchoscope light were mounted on one arm of the myograph so that the light projected directly onto the photocell. A shutter extended from the other arm. cutting off the light as the points were brought together by contraction. This was satisfactory, except that it was too heavy for practical use in many circumstances ${ }^{2}$.

The instrument in use at present is of the inductance type. One coil is mounted on each of the arms which are so arranged that they are almost in contact when the points are separated by about 3 mm . The coils of No. 41 wire are wound on extremely light plastic forms about 1 mm thick and 11 mm in diameter. One is energized by $50,000-$ cycle current from an R-C oscillator. The other coil acts as the secondary of a transformer, and produces a voltage of varying magnitude, depending on the separation of the coils. The output of the secondary coil is rectified and fed to the recording apparatus as varying d-c. The myograph is shown in Fig. 1. This instrument is sufficiently sensitive so that it can be used for recording the fractionate contraction of the veins going to

AUTHORIZED WA ELECTRONICS DISTRIBUTORS

EASTERN

Yes . . . these WAA Approved Distributors have large inventories of valuable, hard-to-get, electronic materials and equipment. These vast stocks of tubes, devices and apparatus were declare surplus by the Armed Forces. Investigate . . . fill your present and future need while inventories still permit large purchases and wide selection.

Purchasing of this equipment has been simplified to a high degree. These WAA Approved Distributors were selected on a basis of their ability to serve you intelligently and efficiently. Write, phone or visit your nearest Approved Distributor for information concerning inventories, prices and delivery arrangements. You'll find you can "Save with Surplus".

SOUTHERN

Navigation Instrument Co., Inc. P. O. Box 7001, Heights Station Houston, Texas

Southern Electronic Co. 611 Baronne Street New Orleans, La.

PACIFIC

Hoffman Radio Corp.
3761 S. Hill Street Los Angeles, Calif.

Cole Instrument Co.
1320 S. Grand Avenue
Los Angeles, Calif.

OFFICE OF AIRCRAFT AND ELECTRONICS DISPOSAL

WAR ASSETS ADMINISTRATION

Offices located at: Atlanta - Birmingham - Boston Charlotte

Chicago. Cincinnati. Cleveland. Denver - Detroit . Grand Prairie, Tex. Helena. Houston. Jacksonville. Kansas City, Mo. Little Rock Los Angeles - Louisville - Minneapolis - Nashville. New Orleans. New York - Omaha • Philadelphia - Portland, Ore. - Richmond - Salt Lake City St Louis. San Antonio. San Francisco . Seattle . Spokane - Tulsa 1374

Customer Service Centers in these and many other cities.

It's Beffer Because It's Bendix! Bendix DYNAMOTORS Bendix DYNAMOTORS
 NowAvailable

STANDARD RATINGS						
Model	Frame Size	Input Volts	Outpul Volts	Output Watts	Approx. Weight	
DA58A	$23 / 4^{\prime \prime}$	14	250	15	2 lb .12 oz.	
DAIA	$37 / \mathrm{ch}^{\prime \prime}$	14	230	23	5 lb.	
DA77A	$4^{\prime \prime}$	5.5	600	104	9 lb .12 oz	
DAIF	$412^{\prime \prime}$	25	540	243	11 lb .8 oz.	
DA7A	$51 / 4^{\prime \prime}$	26.5	1050	420	26 lb .10 oz.	

Red Bank, New Jersey

RELAMS for Electronic Circuits

BULLETIN 700 UNIVERSAL RELAYS are a new and important addition to the standard line of Allen-Bradley solenoid relays with a 10 -ampere rating. These universal relays have two banks of contacts which permit quick and easy changes from NORMALLY OPEN TO NORMALLY CLOSED contacts ... or vice versa... merely by shifting terminal connections. (See diagrams at left.) They are ideal for electronic applications in which circuit connections must be interchangeable to meet varied operating conditions. Available in 2, 4, 6, and 8 poles, with double break, silver alloy contacts which need no
 maintenance. There are no pins, pivots, bearings, or hinges to bind or stick. Hence, these relays are good for millions of trouble-free operations in electronic service. Send for bulletin, today.

OTHER ALLEN-BRADLEY RELAYS \& CONTACTORS

BULLETIN 848 TIMING RELAYS are ideal for any service requiring an adjustable delayed action relay. Have normally open or normally closed contacts.

Magnetic solenoid core is restrained from rising by the piston in oil dash-pot. Adjustable valve in piston regulates time required to pull piston through oil-seal and trip the contacts, which open or close with quick, snap action. Ideal for transmitter plate voltage control.

BULLETIN 702 SOLENOID CONTACTORS for heavy duty ratings up to 300 amperes. Arranged for 2- or 3-wire remote con-
 trol with push buttons or automatic pilot devices.

Enclosing cabinets for all service conditions. Double break, silver alloy contacts require no maintenance. Solenoid mechanism is simple and trouble-free.

Relay with ${ }^{3}$ 0 NORMALIY-OPEN S 4 MORMALIY-COSEDY contias ap

- . INDUSTRIALELECTRON tUBESOCKETS by

NEW PRODUCTS
(continued from p 150)

distances up to $1,000 \mathrm{ft}$. Its applications include traffic control, counting and limiting, and the like. The light source contains a lamp, transformer, and motor-driven slotted disk which modulates the light beam at about 900 cps . The relay, because of its tuned circuit, is responsive only at this frequency.

Insulation Testing Ohmmeter

Herman H. Sticht Co., Inc., 27 Park Place, New York 7, N. Y. Model B-7 Megohmer has ranges of $0-200$ megohms at 500 volts d-c, $0-$ 20 megohms at 250 volts d-c, $0-200$ and $0-20,000$ ohms. On the $0-200$

ohm scale testing to 0.1 ohm is possible. Bulletin No. 440, with complete description and pertinent information, is available on request.

Crystal-Controlled Signal
 Generator

Premier Crystal Laboratories, Inc., 57-67 Park Row, New York 7, N. Y. With the model 117 crystalcontrolled signal generator any frequency from 100 kc to 10.8 mc can be obtained using 110 volt power supply, a-c or d-c. The instrument

[^13]
Why you and your advertising manager

are partners

FROM WHERE YOU SIT, advertising may look like the "glamour department" of your company necessary, of course, but pretty far removed from the hard-headed realities of the production line.

But take a closer look. In one respect, the advertising manager's job bears a striking resemblance to your own.

You're production-minded. You're concerned with anything that will improve plant procedures, speed up assembly time, prevent waste, and reduce the manufacturing cost per unit.

And that is precisely where you walk arm-in-arm with your advertising manager. Because he thinks the same way about the manufacture of a sale.

The whole process of selling and distribution are his assembly line. And every time he can reduce the unit cost of a sale by so much as a few cents, he increases your company's chance to show a profit.

Ask him for a definition of advertising, and he will probably tell you that it is simply mechanized selling, a machine that multiplies the productive capacity of the sales force - seeking out prospects, arousing their interest, creating a preference for the things your company makes.

And when it is concentrated among the handpicked readers of business papers, advertising becomes the most efficient machine this partner of yours has found for lowering the cost of producing a sale.

What are the ten ways to measure the results of your business paper adzertising? You'll find the answers in a recent ABl' folder, which we'll be glad to send you on request. Also, if you'd like reprints of this advertisement (or the entire series) to show to others in your organization, you may have them for the asking.

ELECTRONICS

is one of the 129 members of The Associated Business Papers, uhose chief purpose is to maintain the highest standards of editorial belpfriness-for the benefit of reader and advertisar alike.

photo courtesy radio station wor a western electric
Cannon Electric Type DPB Connector using gold-plated confacts in Studio Control Booth Console, Type 120 Amplifier in the low level side. Plug-in connector greatly increases ease of servicing and maintenance.

photocourtesyapplied research lab.. glendale. calif.
Arrows point to Cannon Electric Type "K" fittings connecting a maze of circuits on the Quontometer, a direct-reading spectometer which determines chemical analysis of metals in 45 seconds. Rear view shown.

TYPE "K" - made in 3 general shell types with nearly 190 insert arrangements available for a wide variety of wire sizes, including coaxials.

NEW EDITION C-46-A CATALOG-For a complete survey of the majority of Cannon Electric products, send for this C-46-A Catalog, containing prices on many items. Also included are the names and addresses of our distributors. Write Department K-120.

CANNON ELICLRIG
DEVELOPMENT COMPANY
3209 Humboldt Sireef, Los Angeles 31, California Conada \& Brifish Empire - Cannon Electric Co., Ird., Toranto, Ontario - World Export Agents (excopting British Empire) Frozar \& Hansen, 301 Cloy St., Son Franciseo 11, Calf.

draws 17 watts, and comes equipped with a 6 -foot cord and 53 -inch leads with insulated clips.

Calibration Units

James Millen Mfg. Co., Inc., 150 Exchange St., Malden 48, Mass., announces two new frequency calibration units for use in checking trans-

mitter carrier frequencies and other h-f signals against WWV. Model 90515 combines the functions of the secondary frequency standard model 90505 and the h-f multiple and mixer unit, model 90511 . Model 90511 is also available separately.

Heterodyne Detector

Kalbfell Laboratories, Inc., 1076 Morena Blvd., San Diego 10, Calif. The Kay-Lab heterodyne detector will measure signals of 100 microvolts and is usable from 500 cycles to 50 mc . It is used to compare an

Problems solved by Richardson...in Plastics

2-DESIGN OF A PLASTIC AIRCRAFT GEAR

PROBLEM: Magneto gear as originally designed was a disk of INSUROK LAmINATED MATERIAL. bored f Threaded on the inside diameter, 4 SCREWED ONTO A METAL SPIDER. AFTER WHICH, HOLES WERE drilled through threaded sections, into which metal PINS WERE DRIVEN \& RIVETED. THIS METHOD OF ASSEMBLY proved inefficient due to the strenuous stresses REQUIRED FOR AIRCRAFT, f DISKS HAD TENDENCY TO loosen. thus the problem was to secure a permanent mounting which couldnt be loosened from the SPIDER.

SOLUTION:Richardosonplasticians recommended ADOPTION OF MOLDED PROCEDURE. INSTEAD OF THREADING THE SPIDER, THIS SECTION WAS DEEPLY KNURLED A CENTRAL GROOVED RECESS WASCUT AFTER KNURLING. THE SPIDER WAS MOUNTED INA SUITABLE MOLD \&DISKS OF SATURATED MATERIALS were molded into place. material filled recess If KNUR LED PORTIONS TO GIVE PERFECT BONDING. WHEN ELECTRICAL fLASH-OVERS OCCURRED AT LATER date, mold was changed to permit inclusion OF SATURATED DISKS TO COVER METAL WHERE FLASHovers occurred. this design change eliminated all previous difficulties.

INSUROK Precision Plastics

INSUROK is the family name of a great variety of laminated and molded plastic products produced by Richardson. Laminated INSUROK is available in sheets, rods, tubes, punched and machined parts, made with paper, fabric, glass, etc. Molded INSUROK products are made from Beetle, Bakelite, Plaskon, Tenite, Styron, Durex, Lucite, etc., by compression, injection and transfer molding.

The RICHARDSON COMPANY

Sales Headquarters: MELROSE PARK, ILL.
NEW YORK 6,75 WEST STREET
Philadelphia 40 , PA., 3728 NO. BROAD STREET
CLEVELAND 15, OHIO, 326-7 PIYMOUTH BLDG. DETROIT 2, MICH, ©-252 G. M. BLDG.
factories: MELROSE PARK, IIL.

LOCKIAND, CINCINNATI 15, Ohio
ROCHESTER 4, N. Y., 1031 Sibley TOWER BLDG. MILWAUKEE 3, WIS., 743 NO. FOURTH STREET ST. LOUIS 12 , MO. S'S79 PERSHING AVENUE INDIANAPOLIS, IND.

The unique differences in the design of an electronic product often call for components that are slightly different than so-called standard. Here is an Acme Electric transformer which may give expansion to your ideas - to take advantage of all the "extras" for better performance.
We call this "Mounting Type $130^{\prime \prime}$ - two hole horizontal mounting, with lead holes on bottom or side of shell. It is developed in ratings from 15 VA to 100 VA to the exact electrical characteristics that you require. Made from standard parts to special specifications and produced by straight line volume production methods. For further details, write for Bulletin 168, or better still, tell Acme Electric transformer engineers about your problems and let them assist you.

Acme conim Flectric

unknown frequency with that of a signal generatcr. In addition it will demodulate an a-m signal without use of a second oscillator. The circuit consists of a pentagrid converter and a high-gain audio amplifier with loudspeaker.

Welding Timer

Ripley Co., Inc., Middletown, Conn. The 52D Timatron can time any welding machine up to 10 kva and is adjustable from 0.1 second to 5 seconds by a hand control covering

any timing range desired. Once set for a particular thickness of metal, timing becomes automatic for the entire production run.

Loudspeaker
Graybar Electric Co., 420 Lexington Ave., New York 17, N. Y. Western Electric type 755A loudspeaker is an 8 -inch unit with a frequency

WHAT MAKES A MAILING CLICK?

Advertising men agree-the list is more than half the story.
McGraw-Hill Mailing Lists, used by leading manufacturers and indintrial service organizations, direct your advertising and sales promotional efforts to key purchasing power. They offer thorough horizontal and vertical coverage of major markets, including new personnel and plants. Selections may be made to fit your own special requirements.
New names are added to every McGraw-Hill list daily. List revisions are made on a twenty-four hour basis. And all names are guaranteed accurate within two per cent.

In view of present day difficulties in maintaining your own mailing lists, this efficient personalized service is particularly important in securing the comprehensive market coverage you need and want. Ask for more detailed information today. You'll probably be surprised at the low over-all cost and the tested effectiveness of these hand-picked selections.

DIRECT
MAIL
DIVISION

McGraw-Hill Publishing Company, Inc. 330 West 42nd Street New York, N.Y.

> ONE OF THE MANY MANUFACTURERS OF RADIO APPARATUS which wind coils on
COSMALITE* forms

The Cleveland Container Company recommends for YOUR consideration these spirally laminated paper base, Phenolic Tubes.

Wall thicknesses, diameters, punching and notching to meet your individual needs.
WE RECOMMEND our \#96 COSMALITE for coil forms in all standard broadcast receiving sets; our SLF COSMALITE for permeability tuners.

Spirally wound kraft and fish paper Coil Forms and Condenser Tubes.

Inquiries welcomed also on COSMALITE COIL FORMS for Television Receivers.

NEW PRODUCTS
(continued)
response from 60 to 13,000 cycles. With 8 watts output, the speaker is only $3 \frac{1}{8}$ inches deep and requires a baffling enclosure of only two cubic feet.

F-M and Television Antennas

Ward Products Corp., 1523 E. 45 th St., Cleveland 3, Ohio, is now producing a line of Magic Wand dipole

$\mathrm{f}-\mathrm{m}$ and television antennas. Included are a choice of straight or folded dipoles for both the 88- to $108-\mathrm{mc}$ f-m band and the 44 - to 88 mc television band.

Solenoid-Operated Switch (21)
G. H. Leland, Inc., 116 Webster St., Dayton 2, Ohio, announces a new circuit selector switch, the rotor of which is driven by a solenoid. The solenoid operates on d-c

and the unit can be incorporated in many appliances employing selection of electrical control circuits. Typical application is for an automobile radio.

Ceramic Form

Henry L. Crowley \& Co., Inc., 1 Central Ave., West Orange, N. J. A new universal ceramic coil form eliminates the need for special holes to take leads or mount terminals. The fluted coil form has dovetail grooves that allow taking a tap lead which can be passed down under the

USE G-E MYCALEX INSULATION Frar FRM BOND

Plus these 5 Insulation Advantages...

- HIGH MECHANICAL STRENGTH

- HIGH DIELECTRIC STRENGTH

- LOW LOSS FACTOR

-General Electric mycalex is an exceprionalinsulation material because of its unique combination of properties. Use G-E mycalex when insulator designs call for inserts to be firmly molded in the insulationplus excellent resistance to heat and arcing, high dielectric and mechanical strength, and a low loss factor. G-E mycalex is a gray, stonc-hard compound of glass and mica that can be ordered in standard rods and sheets, or molded or fabricated to your specifications. Samplessupplied on request.

General Electric has complete molding and fabricating facilities for producing G-E mycalex parts in any quantity. Let General Electric's mycalex specialists fabricate sample parts for you to test. After testing, your desigus can be converted to the speediest, most economical molding processes. To get the complete story, send for the new booklet, "G-E MYCALEX." Write to Section S-22, Plastics Division, Chemical Department, General Electric Company, 1 Plastics Avenue, Pittsfield, Mass.

GENERAL (6LECTRIC

- HIGH ARC RESISTANCE

- HIGH HEAT RESISTANCE

short cut

to the

impossible!

In manufacturing an electrical connector, BURNDY ENGINEERING required Silfos for a brazing operation. The problem was slitting $.005^{\prime \prime}$ thick Silfos rolls to a width of $1 / 16^{\prime \prime}$. Only Eastern's specially modified slitters were able to do the job, and with a tolerance of $\pm .00025^{\prime \prime}$.
The next time you need non-ferrous metals to meet your fabrication needs, try Eastern Brass and Copper Co., Inc.

- "The Complete Source".
- Normal inventory of over 10,000 items of phosphor bronze, nickel silver, aluminum, brass and copper in all shapes, sizes and tempers.
- Immediate, efficient service to all points.
- The most complete processing facilities in the industry.

Inquirles invited from manufacturess. Write for our free 100 -page catalogue and handhook of aluminum, hrass and copper allops.

EASTERN bRaSS \& copper co., Inc.

 1121 lebanon street, new york 60 - talmadge 3-2000 Precision Perfect - Slitting - Shearing - Rolling - Flattening - Annealing
turns to either end, or fastening a spring clip in the groove. The form is easy to mount or equip for ironcore tuning.

157-Mc Communicator

Motorola, Inc., 4545 W. Augusta, Chicago 51, Ill. The Dispatcher is a compact f-m radiotelephone transmitter and receiver for mobile service in the 152 to 162 megacycle band. It will sell for $\$ 397.50$. Power

output is from 7 to 10 watts for a total transmitter drain of 20 am peres and a transmitter-receiver standby of 9.2 amperes. Full details of this equipment are available from the manufacturer.

Record Cutter

Cook Laboratories, 139 Gordon Blvd., Floral Park, N. Y. The model 5-A lateral recording system combines the cutter illustrated and a

November, 1947 - ELECTRONICS

NEW PRODUCTS

(continued)
50-watt amplifier that provides a stable high-frequency response and low intermodulation distortion. More than 30 db feedback is used. A switch located on the amplifier allows a selection of any of the three usual recording firequency characteristics.

Shortwave Transmitter

(25)
J. H. Burnell \& Co., 81 Prospect St., Brookiyn 1, N. Y. Intended for international broadcast and communications service, the $20-\mathrm{kw}$

transmitter illustrated features front-panel continuous tuning over its entire frequency range from 2.85 to 22.5 mc .

Linear Acceleration

Transmitter
G. M. Giannini \& Co., InC., 285 West Colorado St., Pasadena 1, Calif. The linear acceleration transmitter illustrated has an output proportional to longitudinal

acceleration, but is highly insensitive to quadrature accelerations. Ranges up to plus or minus 25 g are stocked with resistances in the range from 100 to 20,000 ohms.

Oscilloscope Camera

(27)

Fairchild Camera and Instrument Corp., 88-06 Van Wyck Blyd., Jamaica 1, N. Y. Equipped for mounting atop standard laboratory oscilloscopes, a $35-\mathrm{mm}$ camera makes still or continuously moving

THE NEW 1947 THORDARSON
 CAMPSHECLAIMED EVERYWHERE AS THE FINEST YET TO APPEAR, THE.NEW 1947 THORDARSON CATALOG IS NOW AVAILABLE.

Describing the complete line of Thordarson Transformers and chokes for replacement and amateur purposes, this up-to-date catalog also

INDUSTRIES, INCORPORATED 500 west huron street - chicago io, lllinois

EXPORT: SCHEELINTERNATIONAL, JNCORPORATED 4237 N. IINCOLN AVENUE, CHICAGO 18 , ILLINOIS, CABLEHARSCHEEL.

Fast, mistake-proof application and permanently secure solder bonds-qualifications that step up the pace of your production and assure the dependable performance of your products. Qualifications you can count on when you use Kester Cored Solders in any soldering operation.

Kester Cored Solders perform better, with a minimum of service difficulties, because Kester solder bonds hold tight under operating ing stresses that would cause ordinary solders to fail.

Kester Rosin-Core Solder is manufactured especially for electrical work. Kester Acid-Core Solder, for general work, is an ideal allpurpose solder. Both are applied in a single, quick operation. Order both from your jobber today.

KESTER SOLDER COMPANY
4204 Wrightwood Avenue
Chicago 39, Illinois

film records of the tube displays. Speed of the film is variable so as to allow recording of successive traces at the instant of their presentation. The film can be driven in conjunction with the sweep or the film itself can be used as the sweep, giving a continuous record.

H-F Antenna

Radio Specialty Mfg. Co., Portland 14, Oregon. This coax-antenna, constructed of aluminum and steel

tubing, will handle inputs up to 250 watts on frequencies between 30 and 200 mc . Maximum weight is 12 pounds.

Extruded Nylon Strip

The Polymer Corp., Reading, Pa. Now available for blanking in production of washers, spacers, gas-
kets, tension devices are two types of Nylon strip designated FM1 and FM3. Melting point of the former is about 505 F . Type FM3 has a lower melting point but is somewhat less hygroscopic.

Precision Switch Kit

Unimax Switch Corp., 460 W. 34th St., New York 1, N. Y. Using standard components, this design kit comprises a number of precision snap-action switches, and an assortment of Adaptaplates, by means

of which the switches may apply actuating force in various ways. The Adaptaplates include springplunger over-travel device for single-hole panel mount, plain leaf, leaf-and-roller, and hinge-arm actuator styles.

Tension Unit and Insulator

Dayton Aircraft Products, Inc., 342 Xenia Ave., Dayton 10, Ohio. These antenna tension and insulator units, developed in wartime, are now being made available for com-

mercial and private aviation. They shield the antenna from corona discharge which dangerously interferes, with radio communication when aircraft accumulate a static charge in bad weather flying.

Electronic Microammeter (32)

Beta Electronics Co., 1762 Third Ave., New York 29, N. Y. Model 301

Send me the Electronics Journal "Currently" regularly in addition to the resume on "Electronic Batteries."

NAME \qquad TITLE

COMPANY
ADDRESS
SORENSEN \& COMPANY, INC.
375 FAIRFIELD AVE.
STAMFORD, CONN.

Nth degree heat treating "Precision Control" in heat treating is achieved in exclusive bright annealing, atmospherically controlled furnaces. The prafications makes posattaining metallurgicals is outstandingly high in fatigue resistance.

NTh DEGREE ACUURCY IN TESTING "Precision Controlled" inspection carefully checks to the Nih degree every inch of lubing produced. Precision produces Bourdon Gauge Tubing to specificarions with any non-ferrous metal. It is or random all bourdon shapes, on good delivery. lengths. Obrainable on good deliver
WHEN PRECHION COUTIS couvit on pricision Aluminum alloy instrument subing to exact specifications ... preformed tubing to suit your helded wire for a ubbe-the metal shes. Wrise for com1001 electronic uses.
plete catalog roday.

Factory: 3824-26-28 TERRACE STREET, PHILADELPHIA, PA.

electronic microammeter has five sensitivity ranges from 0.01 microamperes full scale to 100 microamperes full scale with 40 millivolts full-scale input on all ranges. The instrument can also be used as a null-detecting galvanometer with a sensitivity of about 10 millivolts full scale. Write for descriptive literature.

Belt-Type Dielectric
 Heater

(33)

Sherman Industrial Electronics Co., Inc., 503 Washington Are., Belleville 9, N. J. The $-\mathrm{-kw}$ belttype dielectric heater for processing in laboratory or production setups operates from 220 -v, 60 -cycle

single-phase power. It can operate in either the 13 - or 27 -me range, and at full load, power consumption is 3.6 kva . Total weight is 350 pounds.

Light-Weight Distortion

Meter
(34)

Barker \& Williamson, Inc., 237 Fairfield Ave., Upper Darby, Pa. Model 400, weighing $11 \frac{1}{2} \mathrm{lb}$, measures low-level audio voltages and

NEW PRODUCTS
determines their noise and harmonic content. It also measures frequency and gain characteristics of audio amplifiers. The frequency range as a distortion meter is from 50 to 15,000 cycles; as a voltmeter, from 30 to 30,000 cycles.

Resistance Welding Control

General Electric Co., Schenectady, N. Y., announces a new phase-shift heat control accessory for resistance welding machines. It is designed

for use with ignitron contactors or nonsynchronous control combinations not having the heat control feature, when the power supply is 230 or 460 volts.

High-Voltage Midget Capacitors

Aerovox Corp., New Bedford, Mass. Type PRS midget-can electrolytic capacitors formerly available in voltage ratings up to 450 volts d-c working can now be procured for

working voltages as high as 700 volts. Capacitance values are 8,10 , 12 , and 16 microfarads.

Vacuum Monitor

Skaneateles MFg. Co., Inc., 122 Dickerson St., Syracuse 2, N. Y. The type DM Skanascope is an electronic device designed for accurate indication of vacuum pressures in the 1 to 200 micron range. Signals

Strain Recording is INSTANTANEOUS

with Brush Oscillographs

Oscillograph with Amplifter. Oscillographsavailable in Double and Six-Channel units also.

Instantaneous, permanent، ink-on-paper recordings by Brush Oscillographs make their use almost unlimited. Accurate recordings of strains, pressures and countless electrical phenomena can be made over a frequency range of D.C. to 100 c.p.s. Either A.C. or D.C. signals can be measured. Whenever desired, recordings may be stopped for notations on charl-paper.

Investigate Brush measuring devices before you buy ... they offer more for your money.

Write today for detailed information on this equipment.

PORTABLE UNIT PRODUCES

 EXTREMELY LOW PRESSURES

Compactly arranged within this "package unit" developed by Ngtional Research Corp., Cambridge, Mass., is a KINNEY High Wacuum Pump and auxiliary equipment - fully connected, ready for work anywhere. Engineered to fit the user's particular needs, the unit supplies the low absolute pressures for producing drug products, dehydrating foods, coating lenses, vacuum-testing equipment, sintering metals and performing countless other low pressure operations. The compact design of the KINNEY High Vacuum Pump saves installation space - its fast pump down and low ultimate pressure reduce costs and shorten production time. KINNEY Single Stage Vacuum Pumps produce low absolute pressures to 10 microns, Compound Pumps to 0.5 micron.

Write for Bulletin V-45

KINNEY MANUFACTURING COMPANY

3565 WASHINGTON ST., BOSTON 30, MASS.

New York * Chicago - Philadelphia * Los Angeles * San Francisco FOREIGN REPRESENTATIVES
GENERAL ENGINEERING CO. (RADCLIFFE) LTD., Station Works, Bury Road, Radsliffe, Lancashire, England HORROCKS, ROXBURGH PTY., LTD., Melbourne, C. I. Australia
W. S. THOMAS \& TAYLOR PTY., LTD., Johannesburg, Union of South Africa
we also manufacture llquid pumps, clutches and bituminous distributors

are registered by luminous tube units, connected in series with a pair of gage tubes which, in turn, operate a rated 3 -ampere inductive load relay for the actuation of external apparatus.

Photo Switch

Detect-O-Ray Co., 2622 N. Halsted St., Chicago 14, Ill. Light source, photoelectric cell, power switch, volume control, visible or invisible beam selector all housed in a single

unit are supplied complete. The reflecting mirror with adjustable bracket is mounted at a distance. The assemblage of equipment can be used for burglar alarm, safety switch, door opener, or similar service.

F-M Amplifier

General Electric Co., Schenectady, N. Y. Designed for use in fm

transmitters either as a driver or low-power output, the type GL2E26 is a five-electrode beam power amplifier with 12.5 watts plate dissipation. Maximum ratings apply up to 125 megacycles.

Experimenters' Rectifier (40)

Conant Electrical Laboratories, 6500 "O" St., Lincoln 5, Neb. A new four-disc instrument rectifier is provided with insulation between each disc and each has its own pair of leads so that all possible combinations or connection can be made.

Type X has 0.5 -inch 30 -mil dises and type $\mathrm{BX}-\mathrm{C}$ has 0.165 -inch diameter, 5 -mil discs.

Gang Switch

Acro Electric Co., 1316 Superior Ave., Cleveland 14, Ohio. A new 12 gang open blade switch illustrated is available with normally open or normally closed combinations for 10 -ampere, 125 -volt a-c operation.

Information on operating force, engineering details, and suggested uses will be furnished by the manufacturer.

High-Current Resistor

(42)

Ward Leonard Electric Co., 31 South St., Mount Vernon, N. Y. The Edgeohm high-current resistor consists of a continuous piece of noncorrosive alloy ribbon wound on edge in the form of oval coils. The shape facilitates locating and fastening movable taps. Standard units are rated at 2,200 watts and are a vailable with resistances from 0.32 to 4.35 ohms. Originally designed

- USE THEM FOR REMOTE CONTROL
over long distances and short-as in this aircraft radio receiver. S.S. White remote control type shafts are readily installed and when properly applied, are as easy, smooth and sensitive in operation as a direct connection.

- USE THEM AS COUPLINGS

to link variable elements to outside controlsas in this broadcast transmitter. They allow you to locate elements and controls to the best advantage from the standpoints of circuit efficiency, assembly, wiring, servicing and operation.

- USE THEM FOR POWER DRIVES

to operate instruments and other mechanisms requiring rotary power-as with this electric tachometer generator. S.S.White shafts of the power drive type meet every need for positive, reliable operation between practically any two points, regardless of curves, obstacles or distance.

WRITE FOR 260-PAGE HANDBOOK

It gives full facts and technical data on flexible shafts and how to apply them. Copy sent free if you write for it on your business letterhead and mention your position.

for starting, dynamic braking, and load banks, the new units have similar applications in the electronic field.

Two-Way Radio

Sperti Inc., Norwood Station, Cincinnati 12, Ohio. The new handheld radio weighs only $3 \frac{1}{2}$ pounds

complete with batteries. It operates in the 144 to $148-\mathrm{mc}$ band up to three miles or farther. Featured in the design is adjustable tuning on both transmitter and receiver.

Image-Orthicon Camera

Allen B. DuMont Laboratories, Inc., 2 Main Ave., Passaic, N. J. Employing the new supersensitive image-orthicon pickup tube, this

DAN J. CONNOR
833 Real Estate Trust Bldg INSL-X Philadelphia 7. Penna. hOILIDAY hathaway SALES CO. 238 Main Street Cambridge 42. Mass.
R. A. STEMM
${ }_{21}$ E. Von Bure
Chicago 5. III.

DEAN THOMAS 728 Main Street Buffalo 2, N. Y.
C. E. WHITE Bulkley Building Clevelond, Ohio

B. B. TALYOR

107 William Street New York, N. Y. H. C. SWEET CO. 3729 Fenkell Ave. Detroit 21, Mich. J. C. VAN GROOS 1406 South Grand Ave. Los Angoles 15, Colif.
${ }_{\text {P. }}^{\text {L. C. R. SALES }}$ CO. P. O. Box 1191 Austin 6, Texas
O. BIEDERMANN CO. 1514 University Tower Montreal, Canada c. B. ANDERSON CO. 10 E. 4th St. Building Tulso 3. Oklahama
camera features a lens turret that takes up to four lenses of various focal lengths. Turret, diaphragm setting, and focusing are controlled from the rear of the camera. Hinged and removable panels make components and circuits immediately accessible. The electronic viewfinder avoids parallax difficulties.

Marine Kadio

(45)

Applied Electronics Co., San Francisco. Calif. Available in three models with input of 22 watts (four channels) up to 260 watts (ten chan-

nels) the marine radio-telephone equipment illustrated is completely pretuned and prealigned. A feature of the gear is its shallow construction that makes it suitable for bulkhead mounting.

Midget Vernier Dial

(46)

James Millen Mfg. Co., 150 Exchange St., Malden, Mass. Type 10039 multiscale midget dial has a

vernier ratio of 8 to 1 and measures $3 \frac{1}{4}$ by 4 inches. It is made of black art metal.

Crystal Holder Socket

James Millen Mfg. Co., Inc., 150 Exchange St., Malden 48, Mass. The

What is your SWITCH PROBLEM?

ACRO has Solved Scores of

 Special Problems for Volume Users of SNAP-ACTION SWITCHESThe "Gang Switch" shown above is just one of many examples of special construction by ACRO to simplify one customer's problem of assembling many switching elements into one compact unit. It reduced the number of parts, saved space, and shortened assembly time.

The engineering design of ACRO's patented Rolling Spring Snap-Action construction, permits many remarkable variations from our standard units shown at the right. These variations solve problems of space, nultiple circuits, style of mounting, resistance to vibration, and assembly costs. Operating characterisfics can be engineered to meet your requirements, with ratings up to 15 Amps. 125 Volts A.C.
Scores of ACRO's repeat order customers, such as RCA, Wilcox Gay, Packard Mfg. Co., Brush Development Co., Nat'l Slug Rejector Co., St. George Wire Recording Co., Westinghouse, and many others have found that ACRO is pleased to assist in developing special SnapAction units to fit unusual operating conditions. We welcome your problems, too, with full details, for prompt study, without charge.

ACROELECTRICCOMPANY 1316 SUPERIOR AVENUE CLEVELAND 14, OHIO

- Specialists in the production of highest grade Alnico Magnets.
- Production and material rigidly inspected to assure highest uniform quality.
- Castings made to order from customer's blueprints or sketches.
- Information and suggestions supplied on request.

Manufacturers of High Coercive Magnetic Alloys

10001 ERWIN AVENUE DETROIT 5, MICHIGAN

MAGNEIIC CORPORATION

1. Push-pull direct-coupled driver stage
2. Self-balancing. drift-correcting circuit
3. Automatic dynamic balancer
4. Push-Pull triode expanders (introduce less than $1 \frac{1}{2} \%$ distortion at full 20 db . expansion.)
5. No Tinterstăge transtormers
6. Exclusive non-frequency discriminating scratch suppression circuit
7. Overall gain 94 db . (High gain model 117 db)
8. Guaranteed $\pm 1 \mathrm{db}$. at 20 to 20,000 cycles
9. Independent push-pull high and low irequency equalizers

Speciticntions that spenk for themselves

10. Enlarged, 83 db. dynamic range (less expansion)
11. DC on heaters assures exceptionally low noise and hum (-48 dbm .)
12. Input stages employ anti-microphonic construction
13. Regulated fixed bias
14. Automatically delayed plate voltage
15. Balanced output transformer
16. Automatic hum balancer continuously cancels hum
17. Balanced power feedback increases dynamic stability
18. High condenser safety factor
19. No shielded wire in input circuit assures extended high frequency response
20. Models available with built-in preequalized pre-amplification for GE and other low level pickups.

Send for Technical Literature

AMPLIFIZ: COBR. of AMYBICA

NEW YORK 13, N. Y. AND BAND SWITCHES

3/8' - 32 THREAD

WASHER TYPE

PALNUTS

Speed-Security - Savings!

Washer Type PALNUTS greatly simplify and speed up mounting of variable resistors and band switches to the chassis. These one-piece, self-locking nuss replace a regular nut and lock-washer. Assembly is much faster because one part is handled instead of two and assembly can be made with power tools. Washer Type PALAUTS are single thread nuts made of resilient, tempered spring steel, accurately formed to fit 3/8"-32-thread hushings. They run onto work easily, without damage to parts. Sinooth, flat base fits snugly against chassis. Double-locking spring action holds tight under vilbration. Costs less than regular nut and lockwasher-requires no more space.

WRITE on business stationery for samples of Washer Type PALNUTS and engineering data.

TO MANUFACTURERS OF VARIABLE RESISTORS AND BAND SWITCHES

Washer Type PALNUTS are ideal for replacement parts. Include them in shipments to service trade.

No. 33302 socket, designed for the midget hermetically-sealed CR7 crystal, is made of steatite and its contacts are silver-plated phosphor bronze. Pin spacing, center to center, is 0.5 , and pin diameter, 0.05 in .

Pickup Arm

Barber and Howard, East Ave., Westerly, R. I. Model G. 1 pickup arm is designed for use with the GE variable reluctance cartridge.

The arm is fabricated from aluminum and has a stylus pressure of approximately 24 grams with cartridge installed. The head is removable.

Oscilloscope Recorder

(49)

Electrodyne Co., 899 Boylston St., Boston 15, Mass. Custom-built recorders for ionosphere or telemetering research can be fabricated

on short order following basic specifications available from the manufacturer. Machines can be furnished for use with continuously moving tape or film.

Dual C-R Tube

Electronic Tube Corp., 1200 E. Mermaid Ave., Philadelphia 18, Pa. Type 5Z2P-S1 dual-gun electrostatic focus and deflection c-r tube has an additional pair of deflecting plates provided for each electron gun. The additional pair of plates is particularly useful in deflecting a beam along the one axis by application of two isolated inputs instead of one composite input. Sug-

Courlesy SANDEL Mig. Co., makers ef Fluorきscent Lat.ps

why are CORNISH wire products specified by this large manufacturer of fluorescent products?

Because their Engineering Department knows by test that they will give faithful and enduring performance and meet all the requirements of the specifications of the Underwriters' Laboratories.
Because their Production Department finds that they have those qualities essential for quick installation and come packed in such manner as to assure maximum ease in handling.
Because their PURCHASING Department realizes that these Quality Products, backed by dependable service, are sold at prices that spell true economy . . .

> GORNISH WIRE CO., ne
> 15 Pakik Row • New Yok Cixy, 1

NEW! the CB model 182A AUDIOMATIC GENERATOR

Automatic Beat Frequency Principle
The complete frequency characteristics at a glance on your present oscillograph!

Eliminates hand ploting for transiormers, amplifiers, filters, balanced circuits, otc.

Slow sweep rate of 5 to 8 seconds included for speaker testing: hand "cranking" of frequency dial is eliminated.

A REAL TIME SAVER!
Write for full description and details.

Dividing speaker nefwork with 400C. crossover.

The CLOUGH BRENGLE CO.
6016 Broadway
Chicago 40, III.

- Imperial Pencil Tracing Cloth has the same superbly uniform cloth foundation and transparency as the world famous Imperial Tracing Cloth. But it is distinguished by its special dull drawing surface, on which hard pencils can be used, giving clean, sharp, ōpaque, non-smudg. ing lines.

Erosures are made easily, without damage. It gives sharp, contrasting prints of the finest lines. It resists the effects of time and wear, and does not become brittle or opaque.

Imperial Pencil Tracing Cloth is right for ink drawings as well.

gested uses, which may not be immediately apparent, and further technical information are available.

Microphone Multipliers

Massa Laboratories, Inc., 3868 Carnegie Ave., Cleveland 15, Ohio. Multipliers for extending the dynamic range of sound-pressure measurement equipment are inserted between the M-101 microphone and the M-109 socket, as illustrated. Two units are available

both extending range from 20,000 dynes per square centimeter up to 200,000 dynes per square centimeter, but for different frequency ranges.

Thermistor Bridge

Sylvania Electric Products Inc., 500 Fifth Ave New York 18, N. Y. Two new thermistor bridges, types TBN-7SE and TBN-6SE provide r-f

power measurements up to two milliwatts at frequencies in the shorter microwave region. Good accuracy is provided up to this power level. Further information is available.

Quick-Heating Thyratron (53)
National Electronics, Inc., Batavia Ave., Geneva, Ill. The NL-714

 rated output for peak and continuous performance far in excess of any other brands-continuous operating capacity 30 watts, peak capacity 60 watts. RACON speakers and driving units require less energy input yet they deliver more efficient sound reproduction oufput.
Only RACON makes speakers with Racon Acoustic Cloth which is processed by a patented method giving a nonvibratory wall, thereby increasing the output of the horn without loss due to wall vibration.

1. PM' Horn Units
2. Stralght Trum-
pels

3. Marine Horns

4. Long Bell

Trumpets

5. Re-entrant

 HornsThere is a RACON driving unit, trumpet or speaker for every conceivable sound applica-tion-also the accessories (brackets and housings) that may be required for special purposes. Soundmen know that it pays to choose and use a speaker line that is complete. Yes-RACON makes every kind of sound reproducer from the giant 7 foot length auditorium horn down to the small 4 inch intercom cone speaker-from the super giant P.M. driving unit to the tiny driver for paging horns.

See these recent McGraw-Hill books
 10 DAYS FREE

PRINCIPLES OF RADAR

By Members of the Staff of the Radar School. Massachusetts Institute of Technology
870 pagcs, $6 \times 9,563$ illustrations, $\$ 5.00$ Originally prepared for use in the basic portions of the war training courses in principles of radal which were given for the Armed Forces at the Radar school of the Massachusetts Institute of Techmology. The revised edition contains a brief description of the components and functions of radar systems and detailed discussion of typical system components. Expositions of circuits and devices provide an umbut combination of ech mininum dependence upon mathematics.

PIEZOELECTRICITY

An introduction to the Theory and Applications of Electromechanical Phenomena in Crystals. By Walter Guyton Cady,
Professor of Plyssics, Wesleyan University, International Serics ins Pure and Applied Physics. 806 pages, $53 / 4 \times 83 / 4,168$ illustra. In this impo
In this important text the author presents a comprehensive treatise on the entire field of piezoelectricity. including related areas of elasticity,
dielectrics, optics, and maguetism. Reginning dielectrics, optics, and magnetism. Reginming
with fundamental principles, the book covers all with fundamental principles, the book covers al applications. A unified account is given of experimental results, with many formulas, numerical dita and an extensive bibliography.

APPLIED MATHEMATICS FOR RADIO AND

COMMUNICATION ENGINEERS

By Carl E. Smith,

Development and Research Engineer, United Broadcasting Company, Cleveland; President, 336 poes $51 / 8507$ fire, Cleveland. and charts. $\$ 3.50$ 8,4, 97 fighres, 20 tables Clear, simple presentation of the principles of mathematics used in radio and communication engineering. from arithmetic through calculus. May be used for home study by radio and communication men. Theory is developed inductively from the simple to the detailed concepts. then followed by useful design equations and practice
examples, with answers at the back of the book. Includes a simple treatment of calculus, and a chapter on Series and Wave Forms.
See them 10 days FREE Mail Coupon

McGraw-Hill Book Company,

330 W. 42 A., NYC 18
Send the the liokis cherked below for 10 days examinaplus few cents postuge, or return books postpaid. (l'ostage paid 011 cash niders.)
\square м. T. Thadar School Staft-Princibles of Radar.
\square Cady-I Pezoelertricity, $\$ 9.00$
\square Smith-Applied Mathematics for Radio and Commumication Engineers, $\$ 3.50$
Natne
Address
City and Stite
Combany
Position
(For Canadian price, write McGraw-Hill Co. of
Canada Ltd., 12 Richmond Street E., Toronto. I.)
is a quick-heating industrial thyratron designed especially for timing control and regulated rectifier applications. It is gas and mercury filled for quick starting and constancy of characteristics within wide temperature limits. A looseleaf sheet gives complete technical information.

Television Coil Kit

Ray-Lectron Co., Belmar, N. J. A television coil kit and instruction book make it possible for the amateur or experimenter to build his own television receiver for about $\$ 125$. Kit and manual are $\$ 23.50$.

Miniature Receiving
 Tubes

General Electric Co., Syracuse, N. Y. Three new 9-pin miniature tubes recently developed are the types $6 \mathrm{~T} 8,19 \mathrm{~T} 8$, and 12AT7. The latter is a twin-triode for use as a grounded-grid r-f amplifier or converter at frequencies below 300 mc .

Both the triple-diode triodes contain three high-perveance diodes and a high-mu triode in the same envelope. They are designed as combined $a-m$ and $f-m$ detectors and audio-frequency amplifiers.

Industrial Heating Tube
(56)

Federal Telephone and Radio Corp., Clifton, N. J. Type 7C25, a 2,500-watt oscillating tube, is designed for use in dielectric heating. Two tubes in a coupled circuit will give a power output of $4 \frac{1}{2}$ to $\overline{5} \mathrm{kw}$ at frequencies up to 50 mc . Com-

A twenty year Leadership

in radiation measuring instruments and components which make good instruments superfine

Radiation measuring instruments Alpha, Beta and Gamma counters Laboratory and portable models Field survey instruments Multi-range radiation detectors Minometers and calibrated pocket chambers Proteximeters

Superfine Components

The VX-A series of subminiature electrometer tubes now incorporate a new low microphonic feature to add to the already outstanding characteristics of these tubes such as filament current of 10 ma , and grid resistance of 1015 ohms minimum. De signed for instrumentation where performance is exacting and tespecially in many types of radiation
measuring instruments measuring instruments Aveirable also as diodes, triodes and tetrodes.

The VG series of mica window Geiger tubes have won acceptance and demand due to their uniform characteristics for exacting laboratory requirements. They are now available in window thicknesses from 2.0 to 3.2 mgm . per square cm . Plateau length is at least 200 volts with slope less than 5 per cent per 100 volts. Individually tested and checked under close production controls.

The VXR 130 subminiature gaseous voltage regulator tube provides a tube of unusual stable voltage regulation where such regulation must be maintained over a long period of time. The compact size lends itself to many unique applications and combinations. Regulation is at 130 volts over an operating range of 1.0 to 2.5 ma

Victoreen hi-megohm resistors have made possible many circuit innovations due to their unusual range They fill an urgent need in the development and production of many fine instruments. Available in a range from 100 megohms to $10,000,000$ megohms. Vacuum sealed in glass with special surface treatment

THE VICTOREEN INSTRUMENT CO. 5806 HOUGH AVENUE CLEVELAND 3. OHIO

NEW PRODUCTS
(continued)
plete technical data, with dimensional diagram and graphs, are given in a 4-page folder.

Machine Protector
(57)

The Brinnell Co., Granby, Conn., manufactures the Protectron, an electronic device for use in conjunction with an electric motor-

driven machine to trip at any preset mechanical load increase above normal. It is available for 220 and 440 volt 60 -cycle motors in two models; for operating current of 1 to 5 amperes and 5 to 10 amperes.

VHF Xtal

Bliley Electric Co., Erie, Pa. A crystal controlled oscillator unit CCO model 2 A is a packaged unit for crystal control of $2,6,10$, and

11 meter transmitters. A type 6 AG 7 tube and AX2 or AX3 crystals are used. Send for Bulletin 34.

Studio Pickup

Audak Co., 500 Fifth Ave., New York, N. Y. Model Studio-81 has sufficient gain for most conventional

PRECISIONFARRICATED

*

pLASTICS

quality and SERVICE AT A PRICE THAT'S RICHI

*

Years of experience in fabricating parts and products of plastics make SillcocksMiller an ideal source for developing practical and economical answers to your individual needs.
These specialists in precision-fabrication can serve you in four ways: First, in working out your own ideas. Second, in developing new ideas for you. Third, in counseling with you on the most practical and economical methods of fabrication. Fourth, in selecting the plastic material best-suited to the job. You couldn't select a more dependable source for quality and service, at a price that's right.

Write for illustrated booklet or phone South Orange 2-6171 for quick action.

10 West Porkor Avorse, Maplesech, 12
JMalliag address, Sewth Ortage in 1
SHCIALISTS IN MIOH OUALITY, REBCISION-MNS
 TECHNICAL AND INDUSTEIAC EOQHEL

This groph shows frequency ranges covered by each unit. Write us for your full-size copy.

Five Standard

 Slug-Tuned LS3 Coils Cover $1 / 2$ to 184 mcFor strip amplifier work, the compact ($11 / 8^{\prime \prime}$ high when mounted) LS3 Coil is ideal. Also for Filters, Oscillators, Wave-Traps or any purpose where an adjustable inductance is desired.
Five Standard Windings $1,5,10,30$ and 60 megacycle coils cover inductance ranges between 750 and 0.065 microhenries.

CTC LS3 Coils are easy to assemble, one $1 / 4^{\prime \prime}$ hole is all you need. Each unit is durably varnished and supplied with required mounting hardware.

SPECIAL COILS

CTC will custom-engineer and produce coils of almost any size and style of winding...to the most particular manufacturer's specifications.
Crystal

Comstll $\mathscr{C} \mathscr{T} \mathscr{E}$ for

 Thise-VWyy Companent SowericeCustom Enginecring ... Stondordized Design .
Guaranteed Materials and Workmonship CAMBRIDGE THERMIONIC CORPORATION 437 Concord Avenue, Combridge 38, Mass.

TYPE 65 X
Actual Size Other types availabla in the lower values RESISTOR BULLETIN 4505 GIVES FULL DETAILS... II shows illustrations of the different types of 5. S. White Molded Resistors and gives details about constith Price dimensions, etc. A copy, wed. Write List will be mada.

- Noiseless in operation
- Strong and durable
- Good performance in all climates

STANDARDRANGE 1000 ohms to 10 megohms - NOISE TESTED -

At slight additional cost, resistors in the Standard Range are supplied with each resistor naise tested to the following standard: "For the complete audio frequency range, resistor shall have less noise than correspands to a change of resistance of 1 part in 1,000,000.'

HIGH VALUES

15 to $1,000,000$ megohms

S.S.WHITE

 One of Americai AAAA Industrial Enterprises

has
TRANSCRIPTION EQUIPMENT

For your favorite cartridge, such as the new GE Variable Reluctance. Assures optimum performance; gives smoothest possible frequency response, reduces surface noise ratio, provides adjustable scale to conveniently regulate for ideal performance of the particular pickup in use. Net........... $\$ 35.00$

GRAY Model 601 Equalizer

4-position, standard broadcast type, 250 -ohm impedance; designed to complement the GE Variable Reluctance cartridge mounted in a Gray Transcription Arm. Net
\$42.50

ALTEC LANSING A-420 Pre-Amplifier

High gain, low noise level pre-amplifier for use where high quality amplification is desired.

ALTEC LANSING 604 Duplex Speaker

Combining high and low frequency units in one horn. Range: 50 to 50,000 cycles.

ALTEC LANSING A-255 Amplifier

High quality recording amplifier intended primarily for disc recording. Full power at frequencies up to 10,000 . 40 watts- 65 db . gain.

103 West 43rd 5t., New York 18. N. Y.

NEW PRODUCTS
amplifiers, small dynamic mass and linear response to better than 10 kc. Point pressure is 14 grams.

Ventilating Device

Small Motors, Inc., 2076 Elston Ave., Chicago, Ill., has developed the B-2 blower for ventilating and

cooling electronic tubes, projectors and other units. It operates on 110 volts, a-c and d-c.

Dual Chamel
 Oscilloscope

Electronic Tube Corp., 1200 F. Mermaid Ave., Philadelphia 18, Pa. Model E-2G15 dual channel oscilloscope comprises two separate channels operating into a single dual-gun

cathode ray tube. Provisions are made for various connections to increase the versatility of the instrument. Further details, including price, are available in mimeographed form from the manufacturer.

Twin Diode

(62)

Hytron Radio \& Electronics Corp., Salem, Mass. Type 12AL5 twin diode is intended for use as a detector in circuits utilizing wideband amplifiers. It can be used as

TRANSCRIPTION ARM

is receiving nation-wide acclaim!
Meets the critical requirements of high compliance reproducers and is desiqned to accommodate all modern carıridges-General Electric, Pickering, etc. Less cartridge \$35.00.
Ask these Authorities:
HOWARD A. CHINN, Chief Audio Engineer, Columbia Broadcasting System.
JOHN D. COLVIN, Audio Facilities, American Broadcasting Company.
WM. S. BACHMAN, Designer of G.E. Variable Reluctance Cartridge.
MAJOR PAUL W. KLIPSCH, Designer of the Klipschorn.
NORMAN C. PICKERING, Pres. and Research Engineer, Pickering products.
And personnel of proqressive radio stations who have had an opportunity to install and test this equipment.

Gray High-Fidelity Equalizer

Sperially designed for use with the G.E. Varialde Relurtance Cartridge. Matches the pick-11] to a 250 ohm mirrophone "lannel; has been adopted by radio networks. Complete \$12.50.
Gray Recording \& Transcription Table-

Now in production. Highly perfected, exclusive design, synchronous direct gear drive. Extreme accurary of motion, exart speed, finest tahle made, yet priced within reach of all. Simple, rugged construction for continuous operation.

If you have not obtained your copy, write for BULLETIN A10-B10

GRAY RESEARCH \& DEVELOPMENT CÓ

ELMSFORD - WESTCHESTER COUNTY - NEW YORK

* Here's a GREENOHM on 500% overload. It's hot enough to light a cigarette. Yet its special cold-setting inorganic cement coating doesn't soften, bubble or change. When cooled, it doesn't crack, peel, flake. Yes, GREENOHMS can take it. They're tough.

Other GREENOHM advantages are: Excellent heat-shock qualities. Minimum throughcoating leakage. Wire winding unimpaired in manufacture. No wire corrosion because cement does not contain usual water glass. Fixed and adjustable types; 5 to 200 watts; standard resistance values.

\star Get the Facts!

Copy of "Why Cement-Coated Power Resistors?" sent on request. Also Engineering Bulletin No. 113. Send us your resistance requirements.

- NinPa 1 anch
 MODEL MM 200
 MORE POWER WITH SAME TRANSMITTER AND ANTENNA
 STANDING WAVE RATIO AND RF POWER MONITOR

\author{

- $\underset{\text { OR }}{ }$ FM television industrial heating OR ANY trans. MItter WITHIN
 20-122 Mc
}

With transmitter operating, Micromatch continuously and simultaneously measures standing wave ratio and actual r.f. power output.

Permits antenna or load adjustment for perfect match to transmission lineminimizing power loss and improving loading.

Permits control of heating processes for uniformity in industrial heating applications.

Price complete $\$ 150$
 M. C. JONES ELECTRONICS COMPANY BRISTOL, CONNECTICUT

Histributed outside continental U.S.A. by RCA International Division Radio Corporation of America
 lays makes it possible for us to supply you with engineered units designed to expressly meet your relay requirements. Adaptability of coil and contact arrangements means you receive the equivalent of "custom-built" relays-but at mass production
prices. Various special features can be furnished to
specifications, including Allegheny metal parts, spespecifications, including Allegheny metal parts, spe-
cial bearings, anti-vibration equipment, special incial bearings, anti-vibratio
sulation and impregnation.
Phil-trol relays are engineered to the highest standards insuring top quality for life-long service, and performance. Continuous research by Phillips' engineers parallels our efforts to supply the widely expanding electrical and electronic market with the most efficient and dependable designs possible.
It will pay you to investigate the Phil-trol line before your next relay order. We shall be glad to discuss your relay problems, no matter how small or large, with no obligation to you.
\qquad
ANEW CATALIOG
completey describing
Bndillogtrating the

is a vailable without
obligation. Send for your copy today.

Phil-trol Actuators
Actuat pull tests show that Phil-trol Actuators develop greater power
than ordinary solenoids of the solid frame type. Available in five standard sizes or we'll design to specifications. SEND FOR NEW BULLETIN
Philtuol products actuanarss SOLENOIDS,
CONTACTORS, STARTING SWITCHES, FOCUS COILS, ION TRAPS AND SPECIAL PROCESS CONTROL ASSEMBLIES
PHILLIPS CONTROL CORP. - 612 N. Michigan Aye., Chicago 11, III. PLANT: Joliet, III. SALES OFFICES: New York, Boston, Philadelphia, Charlothe, St. Louis Kansas City, Los Angeles

Western Electric 757A LOUDSPEAKER

With uniform response from 60 right up to 15,000 cycles - a 90 degree coverage angle-power handling capacity of 30 watts - this is THE speaker where highest quality in sound reproduction is a must!

The 757 A is just one of the com-
plete line of new high quality speakers - from 8 to 120 watts developed by Bell Laboratories and made by Western Electric.

For full details, write today to Graybar Electric Co., 420 Lexington Ave., New York 17, N. Y.-or...
ask your local Gratbat
broadcast representative

POWER Without Distortion

- clearly beyond comparison in the field of reproduced sound.

The Brook High Quality Triode Amplifier surpasses every' requirement of the most exacting application. Its wide frequency and dynamic ranges-frectom of distor-tion-and stability of characteristics from zero to nlaximum output of 30 watts - have never before been achicved except under controlled laboratory conditions.

All models of the Brook Amplifier are available for rack or table mounting. Full technical information will be mailed at your request, without obligation. Write today!'

The
 High Quality Audio Amplifier Designed by Lincoln Walsh

a discriminator, ratio or diode detector, avc. diode, clipper, or lowpower rectifier. Each set of elements can be used independently of the other and each has a resonant frequency of about 700 megacycles.

Equalizer

A. F. Smuckler \& Co., 338 East 23 rd St., New York 10, N. Y. The Afsco equalizer type 200X-1B was described in item 2, New Products department, of the October issue of ELECTRONICS. Both the trade and company names were misspelled.

Literature

\qquad
(63)

Monochromators. Farrand Optical Co., Inc., Bronx Blvd. \& E. 238th St., New York 66, N. Y. Bulletin 801 covers the design, operation, and performance of a monochromator for research in the ultraviolet spectral region.

(64)

Special Oscilloscope. Allen B. DuMont Laboratories, Inc., 1000 Main Ave., Clifton, N. J. Type 256-D cathode-ray oscilloscope is an outgrowth of the MIT Radiation Laboratory type $256-B \quad A / R$ range scope. The new commercial equipment has delay dial and markers calibrated in terms of microseconds. Characteristics available in printed form.
(65)

Antenna Rotator. Gordon Specialties Co., 542 So. Dearborn St., Chicago 5, Ill., has an attractive twocolor folder showing a line of equipment suitable for construction or erection of rotary antenna

Reduce Production Costs
Bradley Luxtron* photocells im. prove control over manufacturing operations, reducing your costs. They meet the most exacting re. quirements. Advanced manufac. turing techniques make light. actuated Bradley cells the choice all over the world.
Luxtron photocells convert light directly into electrical eneray. No external source of voltage is re. quired. Besides the housed model shown with its plug-in contacts, Bradley also offers tube socket. nut-and-bolt types and pigtail conlact mountings. In addition, Luxtron unmounted cells are ovailable in many different sizes and shapes.

Illustrated literature, available on request, shows more models of Bradley photocells, plus a line of copper oxide and selenium rectifiers. Write for "The Bradley Line."

BRADLEY

LABORATORIES, INC.

82 Meadow St. New. Haven 10, Conn

 features, embodied in

PRESSUREGRAPH with Syncro-Market

Reproduces on oscillograph screen, accurate picture of pressures during and after explosion, relates pressure variations to time, top dead center, angular velocity, etc. Also accurate tracing of rate of flame propagation with relation to top dead center and peak pressure. See pressure-time characteristics of automotive, jet and Diesel engines, also compressors, pumps, etc. Operates over range from static up to 10,000 cycles at pressures from 0 to 10,000 lbs.
 Send for description and full engineering data.

ELECTRO PRODUCTS LABORATORIES

549 W. Randolph St., Chicago 6, III.
Phone ST ate 7444

For cammercial aperation where finest quality is desired, use IPIMA-FLEX REPRTODUCERS.

The new RMC CARTRIDGE ARM with Plug-in Head Shell enables you to plug in any pick-up cartridge. Your cartridges can be mounted in RMC Head Shells thereby providing instantaneous plug-in change.

RMC CARTRIDGE ARM advantages:
A superior tone arm at a moderate price . . . precision die-cast . . . variable head pressure . friction-free (less friction than can be had with ball bearings) . . . tangential tracking (less than $1 / 2$ degree tracking error) . . . suitable for $12^{\prime \prime}$ or $16^{\prime \prime}$ tables.
List prices: RMC Cartridge Arm, including one Head Shell \$25.00. Spare Head Shell \$5.00 each.
Available through your local Jobber. Write for Carfiridge Arm Bulletin CA6.
Export: Rocke International Corporatian, 13 East 40th St., New York 16, N. Y.

PARTNERS IN TIME!

Today, time saved means more than minutes-it means markets. There's no surer way to speed production than by the use of time-saving tools. That Spintite wrenches achieve this, is proved by their acceptance on the assembly lines of the radio industry.

A few simple twists of the screwdriver type Spintite speed parts into place with a minimum of waste motion.

Ranging in size from $3 / 16^{\prime \prime}$ to $5 / 8^{\prime \prime}$. Spintites are available to fit square, hex, or knurled nuts.

When time is of the essence, there's no substitute for Spintites.

T. 73 Sel, has 7 sizes of hex heads. Shack-proof handles, and cold forged sockets assure safety and strength.

STEVENS.WALDEN
INCORPORATED
Worcester - Massachusefts

NEW PRODUCTS
(continued)
beams for transmitting or receiving on the higher frequencies.

(66)

Picture Tube. Sylvania Electric Products Inc., Emporium, Pa. Specifications sheets on the 7 -inch picture tubes 7GP1 and 7GP4 have recently been issued.
(67)

Film Recorders. The Electrodyne Co., 899 Boylston St., Boston 15, Mass. A three-page mimeographed publication lists types of moving film or paper recorders for oscilloscopes.

(68)

Extrusion Devices. Industrial Ovens, Inc., 13825 Triskett Road, Cleveland, Ohio. Those interested in the fabrication of thermoplastic insulated wire, cable, and tubings will find a recent 12 -page illustrated brochure of use. It describes continuous takeup derices.

(69)

Amplifiers. R. W. Neill Co., 1811 Carroll Ave., Chicago 12, Ill. Model 710-A way-station amplifier designed for amplification of low Ievel signals or voice from telephone transmission lines to loudspeaker volume.

(70)

Marine Radar. Westinghouse Electric Corp., P. O. Box 868, Pittsburgh 30, Pa., announces publication of a new booklet (B-3845-A) dealing with marine radar. Installation views of radar equipment and actual radar scope photographs taken at strategic points are contained therein.
(71)

Mixer Information. The Daven Co., 191 Central Ave., Newark, N. J. A new folder contains a table showing impedance versus decibel loss with values calculated for impedance mismatch, minimum T loss, and bridging-pad loss. Data on mixer circuits are also shown.
(72)

Small Tubing. Superior Tube Co., 2112 Germantown Ave., Norristown, Pa. Bulletin 31 lists information on seamless as well as welded and drawn small tubing in various

MODEL 161 SCALER
Built-in high voltoge supply, rapid circuit reaction, reliable operation even with wide variations of line voltage, facilities for timing clock and external register, and simplicity of operation make this scoler suitable for use in all types of reseorch or ,routine counting work. Predetermined time and count features also availoble.

This radioactivity survey meter is complete ly self-contoined and easily portable. (Weight only $91 / 2 \mathrm{lbs}$.) Complete with meter ond earphones.

MODEL 3340 POCKET METER

Lightweight, pocket-size meter for recording the amount of radiation to which its wearer has been subjected. Durable and not easily subject to damage. Extremely insensitive to shock. Constructed of sturdy, attractive plastic material.

ACCESSORIES

A complete line of tubes, quench circuits, counters, shields, and other accessories is available. Special products can also be manufactured to meet your needs. Write Dept. D for catalog and other information.

AND BETTER THAN.EVER bECAUSE IT'S STEATITE!

It's good news that the popular JOHNSON 135-24 Stand Off Insulator is again available - good news, too, that it is now made of STEATITE!
STEATITE, a highly efficient insulating material, superior in every respect to porcelain, is now also being used in the manufacture of several other standard JOHNSON insulators!
Why is STEATITE better? Because its dielectric losses are but a fraction of that of porcelain!
While STEATITE assures lower loss insulation at any frequency, it is outstandingly, efficient on the high frequencies. There is only a slight increase in price for JOHNSON insulators of STEATITE.
Available, in addition to the popular JOHNSON 135-24 Stand Off Insulator shown above, are the following JOHNSON insulators:

SEE THEM AT YOUR JOBBERS!
New Catalog On Request
JOHNSON
a famores name in Rades
E. F. JOHNSON CO. WASECA, MINN.

EEATURES:-Compensated for ambient temperature changes from -40° to $110^{\circ} \mathrm{F}$. . . Hermetically sealed; not affected by altitude, moisture or other climate changes . . . Explosion-proof . . . Octal radio base . . Compact, light, rugged, inexpensive . . . Circuits available: SPST Normaily Open; SPST Normally Closed.

PROBLEM? Send for "Special Problem Sheet" and Bulletin.

AMPERITE REGULATORS

Ampentie REGULATORS are the simplest, lightest, cheapest, and mosi compact method of obtaining current or voltage regulation . . For currents of .060 to 8.0 Amps . . . Hermetically sealed; not affected by altitude, ambient temperature, humidity. Write for 4 -page lllustrated Bulletin.
Amperite CO., 561 Broadway, New York 12, N. Y.
In. Canada: Atlas Radio Corp., Ltd., 560 King St., W. Toronio

for

HIGH CONDUCTIVITY

ONE-PIECE STRENGTH
 PERMANENT TIGHTNESS

FAST PRODUCTION

SURPRISING LOW COST

 NO MAINTENANCEWhether you have only a few electrical connections to make, or thousands-there's no simpler, faster, more economical way to make them than brazing with SIL-FOS. That goes for terminals, lugs, leads, coil windings, bus bars or any other copper connections. Actually, connections made with this fast-acting, low-temperature silver brazing alloy, equal the unioined metal in all properties you need in electrical connections.

FOR SIL-FOS FACTS write today for BULLETIN 12-A

HANDY \& HARMAN
82 FULTON ST., NEW YORK 7, N. Y. - Pcevidenco. A I - Toronte Conento

metals. Nickel cathodes and similar types useful to the electronic engineer are described.

(73)

Variable Speed. Louis Allis Co., Milwaukee 7, Wis. Bulletin 611C describes the Adjusto-Spede that is designated an alternating current adjustable speed drive using electronic principles.

(74)

Ceramics. General Ceramics and Steatite Corp., Keasbey, N. J. Engineers will be glad to have a copy of the 32 -page booklet on the subject of dielectric and other ceramics, including a bibliography on the subject.

(75)

H-V Resistors. International Resistance Co., 401 N. Broad St., Philadelphia 8, Pa. A four-page technical data bulletin gives complete specifications and characteristics of type MV high-voltage resistors in the power range from 2 to 90 watts. Ask for bulletin G-1.

(76)

Plastic Insulation. Bakelite Corp., 30 E. 42nd St., New York 17, N. Y. Booklet No. 16 consists of eight pages of technical data on Vinylite plastic wire and cable insulating compounds. Included are tables giving their physical and electrical properties.

(77)

Recorder-Controller. Wheelco Instruments Co., 847 W. Harrison St. Chicago 7, Ill., is releasing an 8page two-color bulletin C2 that describes the Capacilog electronic recorder and controller for industrial processes.

(78)

Coil Winder. Allied Control Co., 2 East End Ave., New York, N. Y. Information is available on a new coil winder that can be operated at $6,500 \mathrm{rpm}$ using fine wire.

(79)

Radio Wire. Cornish Wire Co., Inc., 15 Park Row, New York, N. Y., is distributing a four-page catalog of electrical, radio and industrial wires, cables, and spe-

Electronamic Test Master SERIES 10-20

- A tube tested for just one characteristic does not necessarily reveal overall performance capabilities. In the Precision Electronamic Tube Tester, the tube is electro-dynamically swept over a complete Path of Operation, on a sinu soidal time base which is automatically inte grated by the meter in direct terms of Replace. Weak-Good.
Affords highest practical order of obsolescence insurance thru use of the Precision 12 station Master Lever Element Selector System.

THE SERIES 10-20

TEST MASTER

is particularly engineered for general-purpose industrial and electronic maintenance, service and installation. Tests all modern standard receiving and low power transmitting tubes; in cluding facilities up to twelve individual ele7 min prongs; dual-capped H.F. amplifiers, 7 pin acorn types, Noval 9 pin tubes, etc.

CIRCUIT TESTING FEATURES
34 self-cantained ranges, to 3000 volts, 10 megohms, 12 amperes, +64 DB . 400 microampere, 45/8" meter * All standard functions at only two ip jacks - Push-button range selection.

MODEL 10-20-P in portable hardwood case (illustrated) 109.10 Also available in counter and panel mount models.

All models include
test leads and ohmmetor battorios.
"Precision", Master Eiectronamic Tost instruments now on display at all leading radio equipment distributors. Write namic tube performance testing circuit.

> PRECISION APPARATUS CO., Inc. 92-27 Horace Harding Blyd. Elmhurst 10, N. Y.

Export Division: 458 Broadway, N. Y. City, U.S.A. Cables: MORHANEX

H. L. Datis, Inc.

Distributors of
RADIO \& ELECTRONIC SUPPLIES
17 Union Square • New York, N. Y.
Phones: ALgonquin 4:8112-3-4-5-6.7

JONES 400 SERIES

 PLUGS and SOCKETS

A medium size Plug and Socket that fulfills practically every requirement in the public address, radio and kindred fields. Sock. et contacts are of phosphor bronze, cadmium plated. Plug contacte are of hard brase, Eilver plated. Insula. tion is of mold. ed Bakelite. All Plugs and Sock. ets are Polar. ised. Made in 2, 4, 6, 8, 10 and 12 contacts. Caps are of steel with baked black crackle enamel. A quality item at popular prices. Send today for catalog No. 14 listing complete line of Jones Electrical Connecting. De-vices-Plugs, Sockets and Terminal Strips.

HOWARD B. JOnES DIVISIOn $2460 \mathrm{~m} . \mathrm{GEORGE}$ ST. CHICAGO 18

CHECK these characteristics of the G-E Variable Reluctance Pickup against your present reproducer head. Make your own exacting tests. Prove to yourself that this pickup will improve the reproduction quality given by your own phonographs.

The G-E Variable Reluctance Pickup has:

- No resonant peaks.
- Wide frequency response-essentially flat from 30 to 8000 cycles.
- High compliance of the stylus-hence more faithful reproduction and exceptionally low record wear.
- Self protecting genvine sapphire stylus.
- Virtual freedom from "needle talk".
- Practical insensitivity to vertical vibration the source of surface noise.
- Stability under humidity, heat and cold.

We are equipped to make prompt delivery to mect your production schedules. For complete information on this finer pick-up write General Electric Company, Electronics Park, Syracuse, N. Y.

GENERAL) ELECTRIC

NEW ELECTRAN STEP-DOWN TRANSFORMER

ONE TRANSFORMER OR THREE-

 OPERATES FROM 230 and/or 460 V. LINES1. Permits use of combination power and light circuits - one entrance service - one meter - one central conduit to run.
2. Allows maximum power distribution on minimum sizes of wiring - smaller conduit runs result in installation cost savings.

3. Old installations can be made to handle greater loads by increasing voltages at the distribution panel and installing step-down transformers at machines or other power take-off points.
4. Permits $115 / 230$ volt single phase lighting circuits to be operated direct from 3 phase 460 volt mains.
5. Results in savings when power is bought at higher voltages - less copper line loss is experienced.

WRITE FOR BULLETIN

Electran Mfg. Co.

4589 ELSTON AVE.

This versatile metal forming machine was developed for use in model shops, experimental laboratories and production departments where it often replaces dies for all types of precision forming operations. Di-Acro Brakes will form a great variety of materials including bronze, stainless steel, aluminum and bi-metals.

WRITE FOR CATALOG. New edition of 40-page Di-Acro Catalog contains detailed information on all Di-Acro Brakes, Shears, and Benders and illustrates how these precision machines can be used individually or cooperatively for "DIE-LESS DUPLICATING".

cialties such as antenna accessories.
(80)

Sky-Broadcasting. University Loudspeakers, Inc., 225 Varick St., New York, N. Y. Currently off the press is a four-page bulletin compiled by the technical staff on the use of loudspeakers for airplane sound-broadcasting service. Power requirements (100 watts or more), methods of installation, and approximate weights are presented as an aid to those contemplating aircraft use. There is no charge for the bulletin.
(81)

Handie-Talkie. Motorola, Inc., 4545 W. Augusta Blvd., Chicago 51, Ill. The crystal-controlled f-m handie-talkie weighs only $8 \frac{1}{3}$ pounds. Its receiver has a power output of 2.5 milliwatts, and the transmitter, 0.6 watts. The unit is fully described in an illustrated folder. Also available is a small 24-page booklet on two-way communications equipment.

(82)

Photoelectric Cells. Selenium Corp. of America, 2160 E. Imperial Highway, El Segundo, Calif., has a 12 -page brochure on selfgenerating photoelectric cells. Characteristics, applications and design factors are included, along with appropriate diagrams.
(83)

Relays. Phillips Control Corp., 612 N. Michigan Ave., Chicago 11, IIl. Catalog No. 7 describes and illustrates a variety of a-c and d-c relays designed for electrònic and industrial control, signal and traffic control, radio and communication. Coil characteristics, contact assemblies, operating and release times and dimensional drawings of each are given.

(84)

Ultrasonic Gage. Sperry Products, Inc., 15th St. and Willow Ave., Hoboken, N. J. The Reflectogage is an ultrasonic device for thickness measurement and the inspection of bonds. Technical data sheet 3700 explains the principle of operation and methods of use.

For Oniy $\$ 650$.

Never before a value like this new 2-KW bench model 'Bombarder' or high frequency induction heater . . . for saving time and money in surface hardening, brazing, soldering, annealing and many other heat treating operaiions.

Simple . . . Easy to Operate . . .
Economical Standardization of Unit Makes This New Low Price Possible

This compact induction heater saves space, yet performs with high efficiency. Operates from IlO-volt line. Complete with foot switch and one heating coil made to customer's requirements. Send samples of work wanted. We will advise time cycle required for your particular job. Cost, complete, only $\$ 650$. Immediate delivery from stock.

Scientific Electric Electronic Heaters are made in the following range of Power: 1-3-5-71/2-10-12 $/ \frac{1}{2}-15-18-25-40-60-$ 80-100-250-KW.-and range of frequency up to 300 Megs. depending on power required.

Division of
" S " CORRuGATED quenched gap co. 107 Monroe St., Garfeld, N. J.

- RUGGED
- DEPENDABLE - ACCURATE

PANEL INSTRUMENTS

For utmost reliability-specify and depend upon Burlington Panel Instruments. They are designed, engineered and built to give satisfactory service even under most severe applications - and are fully guaranteed for one year against defects in material or workmanship.

Write today for full details

BURLINGTON INSTRUMENT COMPANY 124 FOURTH STREET BURLINGTON, IOWA

HVAGI BELAYS

better controls through better relays

Counfless Types and Modfificafions

You will find Leach Relays rendering service around the electrical world: in Industry, Electronics, Communications, Aviation, Transportation and Power.

During the past thirty years, Leach has faithfully maintained its policy of building quality equipment; and today, you'll find Leach delivers quality in quantity. The name LEACH stands for "better relays" and assures you of "better controls."

S91SAVALON BOULEVARD.LOSANGELES 3. CALIF

35 mm
 FAIRCHILD

Oscillo-Record Camera

Once again, Fairchild has met a great need of the electronic laboratory - with the first general purpose, easy to use camera ever designed specifically for recording both still and continuous cathode ray oscillograph images.

Fairchild's complete assembly consists of a 35 mm roll film Camera, Electronic Film Speed Control Unit, Periscope Cone, Mount, Cables and Data Card Unit. Film speed can be varied from 1 inch per minute to 3.600 inches per minute. Exposure capacit) ranges from double frame single exposures to continuous exposures up to 100 feet internal and 400 to 1,000 feet with external magazines. Recording time with 100 foot reels is 20 seconds to 20 hours; with 1,000 foot reels it is $31 / 3 \mathrm{~min}$ utes to $81 / 3$ days - with the speed recorded along the edge of the film. Hand written data can be recorded at the beginning and end of each run.

Fairchild's new OSCILLO-RECORD CAMERA is so simple to set up and operate that anyone in the laboratory can record perfect oscillograph images. Want more details? Address: 88-06 Van Wyck Boulevard, Jamaica 1, New York.

NEWS OF THE INDUSTRY
(continued from p. I54)
November 17, 18 and 19, 1947, has been announced as follows by Virgil M. Graham, chairman :

9:30 A.M. Monday Nov. 17-ChairmanA. E. Newlon:

V-II-F Direction Finder for Airport Use, by A. G. Richardson of Federal Telecommunication Laboratories
R-F Inductance Meter with Direct Read ing Linear Scale, by Harold A. Wheeler of Wheeler Laboratories Inc.
Design and Layout of Radio Receivers and the Maintenance Man, by A. C. W. Saunders of Saunders Radio \& Electronics School
12:30 P.M.-Group Luncheon
200 P.M.-Chairman-B. S. Ellefson:
Use of Miniature Tubes in AC/DC Receivers for AM and FM, by R. F. Dunn of RCA
Two Signal Performance of Some F-M Receiver Systems. by B. D. Loughlin and D. E. Foster of Hazeltine Electronics Corp 6:30 P.M.-Group Dinner
8:15 P.M.-Chairman-George R. Town:
Engineering Responsibilities in Today's Economy, by E. F. Carter of Sylvania $9: 15$ P.M.-Stag Party, Courtesy of Ameri can Lava Corp.

9:30 A.M. Tuesday Nov. 18-ChairmanL. C. F. Horle :

Avenues of Improvement in Present Day Television, by Donald G. Fink of Elec Tronics
Standardization of Transient Response of Television Transmitters and Receivers, by K. D. Fiell and G. L. Fredendall of RCA Laboratories
Psychoacoustic Factors in Radfo Receiver Loudspeaker Selection, by Hugh \mathbb{S} Knowles of Jensen Manufacturing Co. 12:30 P.M.-Group Luncheon
-:00 P.M.-Chairman-Clinton B. DeSoto:
Spectral Energy Distribution of Cathode Ray Plosphors, by R. M. Bowie and A. E. Martin of Sylvania
Quality Control in Receiving Tube Manufacture. hy J. A. Davies of G-E
6:15 P.M.-Cocktail Party Courtesy of Stackpole Carbon Co.
7:00 P.M.-Fall Meeting Dinner (Stag)
Toastmaster Ralph A. Hackbusch
The British Radio Industry Today, by Fred S. Barton

9:30 A.M. Wednesdar Nov. 19-Chairman-
B. E. Shackelford:

Metallized Film Coaxial Attenuators, by Tohn W. E. Griemsmann of Polytechnic Institute of Brooklyn
I-F Selectivity Considerations in F-M Receivers, by R. B. Dome of G-E A New Television Projection System, by William E. Bradley of Phico
12:30 1PM.-Group Luncheon
2.00 P.M.-Chairman-R. M. Wise

The Organization of the Work of the I. R.E. Technical Committees, by L. G. Cumming of I.R.F.

- Bridge for Impedance Measure ments Between 20 and 140 Megacycles, by conert A. Soderman of General Radio Co 6:30 I M.-Group Dinner Session: Chair man-A. L. Schoen
The Problem of Amatenr Color Photog raphy, ing Ralph MI. Evans of Eastman Ko liali Co.

Network Projection Television

Developmental equipment that produced television pictures 6 by 8 feet in size on a beaded screen was demonstrated at the Atlantic City NAB convention by engineers of the Radio Corporation of America. The projector, suitable for accommodation of overflow crowds at conventions and for theater television,

PILOT LIGHT ASSEMBLIES

The DIAL LICHT CO, of AMERICA

FOREMOST MANUFACTURER OF PILOT LIGHTS
900 BROADWAY, NEW YORK 3. N. Y.
Telephone-SPring 7-1300

FOR FASTER SOLDERING 2 NEW WELLER SOLDERING GUNS with

Soldertite

The new Weller Soldering Guns with Solderlite plus the fast 5 second heating help make service work more profitable for radio, television and appliance service men, electrical maintenance men. electric motor rewinding and repair shops automotive electrical service.
A useful and time-saving tool for laboratory workers, experimenters, hobbyists, telephone installation and maintenance men. S107 100 watts single heat, D207 100/135 watts dual heat.
See your radio parts distributor or write for bulletin direct.

WELLER

MANUFACTURINGCO.

 806 Packer St., Easton, Pa.In Canada: Atlas Radio Corp., Ltd., 560 King St., N. W., Toronto, Ont.

Export Dept.: 25 Warren St., New York 7, N. Y.

Experimental large-screen projection system depends on 7-inch cathode-ray tube
comprises a reflective optical system and experimental cathode-ray tube. The optical system, comparable to a conventional $f / 2$ projection lens but transmitting about six times the light, consists of a 21inch spherical mirror and a 14 -inch aspherical correcting lens mounted vertically in a tubular housing. The 50,000 -volt cathode-ray tube has a 7 -inch screen coated with new types of phosphors that produce white light; metal backing is used. The electron gun and internal tube construction are modified to withstand the high voltage. An r-f power supply is used. Program material, originating at WNBT, New York, was relayed via Philco facilities at Mt. Rose, N. J., and Wyndmoor, Pa. to RCA relays at Philadelphia, Blue Anchor, and Batsto, N. J., reaching Atlantic City at the end of the 200 -mile microware link.

Automatic Flight Controller

As an extension of pushbutton flying, the All Weather Flying Division of the Air Forces recently demonstrated publicly a completely automatic flight sequence controller. by flying across the North Atlantic. The controller is set to make the plane take off, fly a specified route (series great circle rhumb lines) and land at its destination.

Although the controller itself is an electromechanical unit, it operates in conjunction with such electronic equipment as the familiar instrument landing system for takeoff and approach, an electronic autopilot, and a magnetically sta-

3 Now available in quantity, OLYM\mathcal{F} PIC standardized transformer cases are specifically designed to meet all normal requirements where standard cases are used. Construction is rigid, with rounded corners, and tight-fitting covers top and bottom. OLYMPIC standard transformer cases tan be furnished with pierced covers, studs, brackets or channels. Inquiries are invited-write for illustrated bulletin-no obligation.

Core	case	\wedge	-	c
E1. 21	1	$13 / 4$	$148^{\prime \prime}$	23/6"
E1.025	2	1\%/2"	11/"	2\%/6"
E1.75	3	21/4"	21/2"	$2^{13 / 10^{\prime \prime}}$
E1-11	4	25\%"	21/2"	$31 / 2^{\prime \prime}$
E1.12	5	$3^{\prime \prime}$	2 ${ }^{\prime \prime \prime}$	$3^{23} / 72^{\prime \prime}$
E1-3A	6	31/4"	$3^{\prime \prime}$	$31 / 33^{\prime \prime}$
E1-11?	7	$31 / \%^{\prime \prime}$	31/4"	43/32 ${ }^{18}$
E1.125	8	$3 \%^{\prime \prime}$	$31 / 2^{\prime \prime}$	$4^{15 / 33^{\prime \prime}}$
E1-137	9	37/4"	$3^{1 / 2} 2^{*}$	$4^{27 / 32}$
E1.13	10	4\%"	$4 \mathrm{l}^{\prime \prime}$	$511 / 32^{\prime \prime}$
E1-151	11	$5^{\prime \prime}$	$41 / 2^{\prime \prime}$	$51 \% 2^{\prime \prime}$
E1.36	12	5\%/	4\%"	$6^{1 / 1 / 23}$

BROWNING LABORATORIES

Precision Instruments for Electronics and Radio Research and Testing

Versatile, Precision OSCILLOSCOPE MODEL OL-I5
This is a highly flexible instrumet particularly adaptable for production testing or research work in television, radar, fac. simile work, and radio-frequency equipment. FM-AM TUNER

An easy-to-install highly-sensitive tuner that provides distortion-free reception on $F M$ and quality reception on AM. Tuning eye shows correct tuning. One antenna serves both FM and AM. Many other features. Armstrong circuit.

WW FREQUENCY CALIBRATOR

Full, accurate use of station WWV, the world's finest primary frequency and time standard, is obtained from the Browning Model RH-10 Standard Frequency Calibrator.

WRITE FOR LITERATURE

OTHER EQUIPMENT manufactured by Browning Laboratories includes an accurate frequency meter and ECO Model MJ-9, for operating in the Ham bands, and a frequency meter (Model S-4) especially designed for checking mobile transmitters.
> (18) BROWNING

> LABORATORIES, INC.
> WINCHESTER, MASS.

DESIGN ENGINEERS-

send?

 for this booklet!If you are concerned with material specifications you'll want this 28-pare booklet. . because Live svuthetia
 sapphire is a material for key parts on which successful operation of a whole machine can depend.

This booklet describes the successful uses of thin material, the properties, and the forms and grades available. lit - full of pertinent illustrations, including a pichare-caption story of fabricating techniques.

Send for this booklet on your letterhead. Ash for Booklet 4-lB-tomay!
The word "Linde" is a trade-rnark of The Lind Air l'roducts Company

THE LIND AIR PRODUCTS COMPANY

Unit of Union Carbide and Carbon Corporation
30 E. 42 nd St., New York 17, N. Y. ULC Offices in Other Principal Cities
In Canada: DOMINION OXYGEN COMPANY, LIMITED, Toronto

Instrument panel of the electromechanical predetermined flight controller is shown aboard the C. 54 Skymaster, which made a trans-A tlantic round trip flight in September and October between Newfoundland and England
bilized gyro-compass. The controller regulates engine power for takeoff and cruising, adjusts trim, and performs all the integrated operations usually done by pilot, flight engineer, and navigator.

Using similar equipment the All Weather Flying Division has made two flights daily irrespective of weather conditions between Ohio and Maryland. Such equipment as this will relieve pilots of much flying routine, enabling them to monitor the flight of their planes more fully and observe flight conditions in greater detail and thereby assuring greater safety.

Televising Surgical

 OperationsTelevision broadcasts of operations performed in the operating room of the New York Hospital were presented to surgeons at the Waldorf-Astoria as an indication of the possible application of television to surgical education. These telecasts, with running commentary by the operating surgeon and his assistant, were made available to 5,000 surgeons attending the Clinical Congress of the American College of Surgeons on September 12. By this means, each surgeon had a view comparable to that which he might have had from the side of the operating table. This was the first time that televised

SILICONE DIFFUSION PUMP FLUIDS Improve Adhesion of Metal Films

courtesy duplate canada. ltd.
Use of DC 703 in praduction units for the thermal evaporaion of metallic and non-metallic films indicates that the exceptional heat stability of this DC Silicone Diffusion Pump Fluid results in better adhesion of magnesium fluoride films to glass.
After using DC 703 for the past year in two production units for evaporating magnesium fluoride and rhodium, Dr. Bateson of Duplate Canada Ltd., Oshawa, Ontario, reports that he thas had no difficulty in producing equal or higher vacuum with pumping speeds equal to those of - high grade organic pumping fluid.

Even more significant are Dr. Bateson's observations that backstreaming seems to be reduced by use of DC 703; that the Silicone-vapor which does migrate into the system is more heatstable; and that primary adhesion of magnesium fluoride films to glass is therefore improved. Preliminary observations also indicate that use of DC 703 results in brighter first surface mirrors.

That DC 703 causes less contamination of the system is further indicated by these aluminum shields. Both were normally exposed to the heaters in the bell jor for 9 months. Shield at left, exposed to DC 703, is quite clean. The other shield, exposed to a high grade organic pumping fluid, is covered with a dark brown deposit.
May we also remind you of DC 702. Both DC 702 and DC 703 ore useful in electron microscopes, high vacuum dehydration and in evacuating electronic tubes. Write for pamphlet No. N9-4.

DOW CORNING CORPORATION

 MIDLAND, MICHIGANNew York - Chicago - Cleveland - Los Angeles In Canada: Fiberglas Canada, Lid., Toronto In England: Albright and Wilson, Ltd., London

for Pressure

Fairchild Precision Linear Potentiometer

This is actual performance data of Fairchild's low torque Lineor Fatenti-ometer-a small precision instrument of 5,000 ohms overall resistance. Application: Telemetering extremely accurate electrical pressure measurements from $0^{\prime \prime}$ to $100^{\prime \prime} \mathrm{Hg}$ abs. Sensitivity: Absolute resolution of 0.06% (from 1,600 turns on a single-turn mandrel) and 0.12% linearity. Dependability: Sustained linearity over several million pressure fluctuations. Construction: Precision engineered for quantity production with long-life gald, platinum and silver olloy contacts. For complete data address: Dept. 'F', 88-06 Van Wyek Boulevard, Jamaica 1, New York.

TOP PERFORMANCE with -

Specialists in Difficult Designs

with galnson
Pressurijed Capacitors

JOHNSON Pressurized Capacitors are so carefully engineered that they provide the desired capacity and voltage rating with minimum pressure and condenser height. Because of their efficient electrical and mechanical design, they also provide the utmost in stable operating conditions.
Available as "standard" are variable, fixed and fixed-variable units - in a wide variety of capacitance and current rating. In addition, JOHNSON can build any pressure condenser to individual specifications.

FEATURES

Low Loss

- High KVA Rating
- Shielded From External Electrostatic Fields
- Low Internal Distributed inductance
- Complete Dependability

Write For Illustrated JOHNSON Catalog and Prices

E. F. JOhNSON CO. WASECA, MINN.
news of the industry
(continued) pictures of surgical operations were transmitted from an operating room in one location to television receivers in another part of the city.

For these telecasts, two local receivers were installed at the hospital. One of these was located in the operating room to enable the surgeon to see the operative area covered by the camera and to permit positioning the camera so as to prevent obstruction of the view. The other receiver was located in an adjoining office for the benefit of some members of the hospital staff.

The operating-room microphone was connected with a foot switch so that the operating surgeon could make comments at will. Because some surgeons prefer not to talk while operating, an auxiliary microphone is provided in the adjoining office so that the commentary can be delivered by another person.

Seven RCA Victor television receivers were installed in the hotel where seating facilities were provided for about 300 surgeons at a time. Pictures were transmitted via a 2 -mile, 7,000 -me radio link between the roof of a nine-story extension of the hospital building and the 18 th-floor terrace of the hotel.

Paraboloid-reflector antennas were used for both transmitting and receiving. Transmission was thus confined to a narrow beam, in-

The three-lens television camera, requiring no special lighting, is installed on a track above the operating table. The microphone mounted just behind the camera picks up the running commentary of the operating surgeon. RCA equipment was used

SUPERIOR

 ELECTRONIC PRODUCTS used in the

ANODE AND CRID CYINDERS—

Straight cut, angle cut or rolled edge Tubing produced to very close tolerances.

DISC CATHODE ASSEMBIY-

Precision mdde and laboratory controlled to assure correct emission and cut-off characteristics.

The expanding television industry has furned to Superior's Electronic Division for the conception and production of these vital parts within the television tube.

TUBE COMPANY

ELECTRONIC DIVISION

2500 GERMANTOWN AVENUE
'NORRISTOWN, PENNA.

еІент head

Dimensions
$24^{\prime \prime} \times 24^{-1 \times 72 " ~ h i g h ~}$

HOT-CUT FIARE MACHINE

Automatic throughout.
C an be synchronized with automatic Stem machine.
Cuts off and flares in one operation.
Production 1250 flares per hour. For miniature flares, fuores cent starters, stand rescent and r adio tubes.
RANGE OF MACHINE Glass tubing
27 to 45 gauge
Length of flares 5 mm . to 80 mm .

Forms flares up to 47 mm . diam.
Net weight, 960 lbs. Gross weight 1450 lbs.

Manutacturers of High Yacuum Pumps Auto matic Machinery for Incandescent Lamps, Electronic Tubes since 1916.

2027-46TH StREET

HORTH BERGEN, N. J., U. S. A.
Tel.. UNion 3-7412,
Cable Address "Intermach" North Bergen, N. J.

Corgre STEATITE CERAMIC

Properties and LAVITE 51.5	Characteristics of Our Steatite Ceramic Body
Compressive strength	96,000 lbs. per square inch
Tensile Strength	- los. per square inch
Modulus of Rupt	10.500 libs. per square inch
Dielectric str	235 volts per mil
ielectric c	Frequency of
less Fact	290 446
Bulk specific Gra	2.664\%
Density (from above graver	
dness (Motr scale)	$2.350^{7} \mathrm{~F}$
ar Coefficient of	
Moisture Absorption (AS	STM D.1i6.42-A) . . $\quad 0.009 \%$
Design engineers and	d manufacturers in the radio,
electrical and electr	ronic fields are finding in
LAVITE and precise	qualities called for in their
specifications . . . hi	igh compressive and dielectric
strength, low moistu	ure absorption and resistance
rot, fumes, acids,	and high heat. The exceed-
ingly low loss-factor	of LAVITE plus its excel-
lent workahility mak	kes it ideal for all high fre-
uency applications.	
We will gladly	supply samples for testing.

D. M. STEWARD MFG. COMPANY
 Main Office \& Works: Chattanooga, Tenn.
 Needham, Moss. - Chicago • los Angeles
 New York - Philadelphia

Cellusuedsflocied-film

 the Solution to Many Finishing ProblemsIn instances where spraying Cellusuede Flock is not entirely practical, you will find flocked-film ready to do the job simply and effectively. Cellusuede Flocked-film is a pliant surface (of varying degrees of flexibility to meet certain conditions) evenly coated with millions of tiny flock fibres. Film can be die-cut to meet specifications, and is easily applied with suitable adhesives. Sound deadening gaskets, box interior coatings, mar-proofing of external surfaces, and light-absorbing trim for backs of radio dials are but a few examples how Cellusuede Flocked-film can be used. Precision-cut from new rayon filament in a wide range of lengths, Cellusuede Flock serves to increase the market value of thousands of products. Write today for booklet,

color card, samples, prices, and other details.
 vision offer electrical efficiency possible only through the enthusiastic reamwork of Ward's cop-drawer experimental lahoratory, and producion facilities.

As the world's largest producer of zerials for car and home, Ward also is pioneering in educating 33 million present, and prospective. FM and Felevision receiver owners that a good sutdoor dipole antenna is necessary if quality reception is to be enjoved. Whatch for our hard-hitting ads in the Saturday Fvening Post and leading newspapers.
In addition to developing outstanding fal, television and automotive aerials, Ward also has design and producion capacity availahle to take care of special aterial needs. Sulnmit your retial problems ic us now for an efficient. and economical, solution.

NEWS OF THE INDUSTRY

suring privacy for these telecasts, which were of a nature not suitable for public view. With this system, line-of-sight transmission is possible over a distance as great as 30 miles.

The microwave relay transmitter passed a video bandwidth of 8 mc as compared with the usual transmitter video bandwidth of only 4 mc. Standard receivers having a 5 -mc bandwidth were used. With this combination of equipment, it was possible for the surgeons to see pictures having better definition than those seen by the viewer of ordinary telecasts.

Clinics, operative and nonoperative, in hospitals are the principal means of video education in surgery. Since the accommodations for observers in operating rooms are limited, television provides a teaching medium that can serve large numbers of surgeons in class rooms and at conventions.

X-Ray Conference

Four papers dealing with Geigercounter x-ray spectrometer studies are on the program of the Fifth Annual Pittsburgh Conference on X-Ray and Electron Diffraction, scheduled for Nov. 7 and 8 at the Mellon Institute and the University of Pittsburgh. Registration begins at 9:00 a.m. Nov. 7 in the foyer of Mellon Institute. Papers that morning start at 9:40 and deal with interstitial compounds, while papers for Saturday morning start at $9: 00$ a.m. and deal with lattice imperfections and general subjects. Other papers, more likely to interest electronic engineers, are as follows:
2:00-5:00 p.m. Nov. T-X-Ray and Electron Diffraction Studies at High Temperatures
(1) Some Results of High Temperature Studies, by II. F. McMurdie of NBS
(2) A Comparison of Crystal Structures of Ten Wrought Heat-Resisting Alloys at Elevated Temperatures with their Crystal Structures at Room Temperature, by J. H
(3) of YACA
(3) Design Problems in High Temperature X-Ray and Electron Diffraction Camand ${ }^{\text {eras, }} \mathbf{J}$. Wertl Hickman, \mathbf{E}. A. Gulbransen, an (4) High Tempestinghouse
sign Using Induction Heating, by J. W. Edwards, R. Speiser, and H. L. Johnston of the Cryogenic Laboratory, Ohio State University
(5) An Electron Diffraction Study of Ox ides Formed on Copper-Nickel Alloys at Elevated Temperatures, by J. W. Hickman of Westinghouse
(6) The Interpretation and Use of Electron Diffraction Studies on Metals at High Temperatures, by E. A. Gulbransen of Westinghouse
2:00-5:00 p.m. Nov. 8-Symposium on

WHAT, NO

NOT IN

LEKTROMESH

Lektromesh . . . the new, one-piece solid metal-plated screen is made by electrodeposition . . . supplements rather than competes with woven wise. Continuous production methods permit runs of 100 foot rolls up to 35 inches in width of 40 to 120 mesh . . meshes 150 to 400 in smaller units. . . . and is furnished in nickel and. copper. This unique product presents a smooth surface and is readily fabricated by stamping, welding aad soldering. Combining accuracy and uniformity of openings with the smoothness of perforated metals, Lektromesh applications are unlimited. Ideal for strainers in fuel systems, dryscreening and a large number of specialized items. Distinct value lies in its even plane surface that withstands wear when exposed to doctor blades and scrapers as in continuous filters and its unique ability to screen material with minimum clogging.

Lektromesh folder and small sample available. Write Dept. $\mathbf{1 - 2 0 1}$

Specify MYCALEX
 LOW LOSS INSULATION

Where high mechanical and electrical specifications must be met.

For Complete Catalog and Specifying information on MYCALEX 400, K, \& 410 refer to pages 84-85 in the 1947 Mid-June

BUYERS' GUIDE ISSUE OF ELECTRONICS

27 years of leadership in solving the most exacting high frequency insulating problems
mycalex corporation of AMERICA
'Owners of 'MYCALEX' Patents"
Plant and General Offices: Clifton, N. J. Executive Offices: 30 Rockefeller Plaza, New York 20, N. Y.

JK STABILIZED OVEN

Range 80 to 7500 kc . Standard five prong base. Octal on special order. Approved by the FCC for BC stations. Can be supplied in hermetically sealed, pressure mounted, plated and wire mounted crystals. Also with variable micrometer air gap mounting to give exact frequency adjustment. Plus or minus 1 degree C maintained. 6.3 v . heater unit; others on special order. Current is approx. 1 ampere at 6.3 v . Molded phenolic body. Also available without thermometer or without side terminal.

Write for Illustrated Folder

The JAWES KNICHTS CO. SANDWICH, ILLINOIS

Scientifically designed-Precision made READY FOR IMMEDIATE DELIVERY IN ANY QUANTITIES
STAR EXPANSION PRODUCTS CO. INC.
147 Cedar St.
New York 6, N. Y.

Potentiometor Toroidal Type

Can be supplied in a wide variety of styles within linear resistance ranges from 500 to 20,000 ohms-Linearity $\pm .3 \%$; enclosed toroidal wound, low torque, electrical angle 360° or less. Capable of rotation through angles greater than 360°.
SPECIAL FEATURES: Capability of continuous rotation-Accaracy of linearity-Wide variety of contact and tapping arrangements-Durability, the RL-210 type (6000 ohms, 2 brushes) showed no serious wear nor measurable departure from initial characteristics following over one million revolutions at speed of 20 RPM—Overall diameter $315 / 16^{\prime \prime}$, height $215 / 16^{\prime \prime}$.

THE GAMEWELL COMPANY

NEWTON UPPER FALLS 64,

IN-RES.CO WIRE WOUND RESISTORS

WL $5 / 8-5 / 8^{\prime \prime} \times 3 / 16^{\prime \prime}($ Radial Lead) .01 hms min. $3,000^{\circ}$ Ohms max.
WIA $5 / 8-5 / 8^{\prime \prime} \times 3 / 16^{\prime \prime}$ (Axial Lead) . 01 Ohns min. 2,000 Ohms max.

New Economy Line!

Here's a new line of resistors priced for real economy. Wire wound to a tolerance of 1% - higher accuracy on special order at slightly higher cost. Write today.

INSTRUMENT RESISTORS CO.

036 COMMERCE AVE.
UNION NEW JERSEY

APPLICATION-DESIGNED RESISTORS!

PREMIER DIALS, PANELS \& PLATES

What counts, sales-wise, is what your customer sees. What gets the attention for Premier Metal Products, quality-wise, is their sharpness and clarity . . . close tolerances . . . rich colors and baked-in finishes. Let us tell you how these qualities can add important sales-appeal to your products.
Etched E Lithographed on:

- Aluminum	- Brass
- Bronze	- Copper
- Monel	- Nickel Silver

WRITEFORBULLETIN PREMIER METAL ETCHING COMPANY 21.07 44TH AVENUE LONG ISLAND CITY 1, N. Y.

Quality Products for Over 35 Years

THE NEW

Anghecita
 INTERGOMMUNICATION

Business Communication Systems

The New AMPLICALL is no ordinary "intercom system." Dramatically different in its impressive styling, definitely advanced in functional design, the New AMPLICALL serves the intercommunication needs of business and industry as they have never been served before. 'Apart from exceptional fidelity of speech reproduction, the New AMPLICALL incorporates a number of exclusive advantages in operation and installation which sers it apart in the intercommunication field. New AMPLICALL Systems are a vailable to meet every conceivable business communication requirement throughout business and industry. Write today for full information covering America's Finest Business Communication Systems.

THE RAULAND CORPORATION

4265 N. Knox Avenue, Chicago 4 1, llinois

[^14]
Featuring:

"Busy" Signal-visual type using neon bulb to indicote instantly

HANDSET-professional type for private conversation - optional equipment with Masters.

Rauland

GajereCounter X-Ray Spectrometer Studies
(1) Application of X-Ray Analyses to Chamic Clays, by G. L. McCreery of The Ohin Brass Cor.
(2) Application of Geiger-Counter Spectrometer to the Measurement of larticle Size, by L. E. Alexander and E. Kummer
(3) Unimatitutite
(3) Uuantitative Organic Analysis with the Geiger-Counter N-Riay spectrometer, hy C. L. Christ, R. L. Sarnes. and E. F. Williams of American Cyanamid
(4) Geomptric Factors Affecting the Contours of Gpiger spuctroneter Maxima, by
(5) The Photomultiplier Kadiation Detretor. by Filz-Hagly Marshall and J. We Coltman of llestinghouse

Second Annual Instrument
 Conference

More than 7,000 engineers and technicians, nearly double last year's attendance, registered at the Instrument Society of America Conference and Exhibit in September. Held at the Stevens Hotel in Chicago, the exhibition attracted 139 manufacturers of equipment who showed six million dollars worth of equipment.

Newly elected officers for 1947-48 are: president, Paul G. Exline, section engineer, Gulf Research Corp., Pittsburgh; vice-president, H. C. Frost, assistant director of engineering, Chemical Division, Corn Products Refining Co., Argo, Illinois; vice-president, F. H. Trapnell, instruments engineer, E. I. duPont de Nemours Co., Wilmington, Del.

Carry-over officers who are serving the second year of a two-year term are: first vice-president, Prof. Carl P. Kayan, Department of Me-

Paul G. Exline of Gulf Research Corpora. tion, new president of ISA
 Now! TV and FM On the Same Antenna

Cover all frequencies between 44 and 216 mc . with ONE low-cost, light-weight Antenna! Gives excellent response for all television and FM bands. Requires 15% less space than any other conventional dipole. Ask your radio jobber for Premax Antenna FMT-254.

Premax Products

DIV. CHISHOLM-RYDER CO., INC.

4810 Highland Av. Niagara Falls, N. Y.

and Standard or Special MIXTURES

LINDE rare gases art spectroscopically pure - argon, helium, $n \in o n$, and standard mixtures are available it: one- and twoliter glass bulbs and in cylinders; xenon and krypton are available in liter and fractional-liter bulbs.

The word "Linde" is a Mrade-mark of
The Linde Air Products Company Unit ol Union Corbide ond Carbon Corporerton 30 Eas: 42 nd $5 t$. UCC New York 17, N. Y.

Phototubes are doing all sorts of important industrial jobs, in all types of industries . . . speeding up production . . . saving time and labor. Due to our pioneering and intensive research in this field, we are especially well equipped, not only to supply you with the phototubes you need, but to advise you on how to use them efficiently.

Without obligation, send for our special phototube brochure and any information you need.

CONTINENTAL ELECTRIC CO.

Geneva, lllinois

thermoplastic insulated RADIO HOOK-UP WIRE

Type SRIR
Approved by the Army-Navy Electronics Standards Bureau (under Spec. JAN-C.76) for Radio Hook-up use where the voltage does not exceed $1,000 \mathrm{~V}$. Sizes: 24 Solid to 6 Stranded.

Recommended for communications and industrial electronic control applications, this wire has proved to be superior to push-back and rubber insulated types because the Synkote insulation is almost totally impervious to water, oils, acids, alkalies, sunlight, cold, and fungus growths. It is vermin-proof, unusually resistant to abrasion, flexing, and tearing, and will not support combustion. In addition, it has extremely high dielectric breakdown strength and low dielectric leakage. In tests performed by the Bureau of Ships, TYPE SRIR did not break down under $12,000 \mathrm{~V}$.

To cut out interfering fields, it can be shielded to any specifications with a braid of tinned or bare copper, woven (loose or tight) to any specified degree of coverage. Gauge of shielding strands varies according to individual requirements.

Other, standard, approved, Synkote Radio Hook-up Wires: Types SRHV, WL, and (Underwriters' Approved) TF, TFF, and Appliance Wiring Material are available in both small and large quantities - shielded, if dosired, to any specifications.

Many other types of Hook-up Wire, to meet special requirements, can be manufactured on short notice in practically any quantity. For complete information, consult our Engineering Department.

Synkote Antenna Wire, and Twoconductor Parallel Cord (with solid, unbreakable, molded plug) are also available.

All Synkote wire has unusually tough, practically age-proof insulation.
-Reg. U.S. Pat. Off.

NEWS OF THE INDUSTRY
(continued)
chanical Engineering, Columbia University, New York; vice-president, Herbert H. Barnum, H. H. Barnum Co., Detroit; treasurer, Hugh E. Ferguson, Peoples Gas Light and Coke Co., Chicago; and executive secretary, Richard Rimbach, Instruments Publishing Co., Pittsburgh.
A considerable number of the instruments exhibited utilize electronic tubes and a number of the technical papers delivered at the technical session contained references to electronic equipment. These included an electronic potentiometer used in turbine testing, an electronic dewpoint indicator for moisture measurement, a metals comparator, an oscillator circuit for Q-metric analysis, radio telemetering equipment for aircraft, and the automatic recording spectrophotometer as adapted for chemical concentration measurements.

F-M Rebroadcasting

NeTwork f-m broadcasting without use of long-distance telephone wire circuits was demonstrated to International Telecommunications Conference delegates at Atlantic City, N. J. recently. Programs originating in Dr. E. H. Armstrong's f-m station W2XMNW2XEA at Alpine, N. J. were picked up by a special receiver at station WBAB-FM in Atlantic City, a distance of 116 miles, and rebroadcast to the delegates a few miles away. The demonstration showed that high-quality staticfree f-m broadcasting in the $100-$ me range is not limited to a $30-\mathrm{mile}$ line-of-sight radius, but can be extended over much greater distances for rebroadcast purposes. The engineering involved in setting up the special high-fidelity receiving equipment and connecting it to the wire lines was carried out under the direction of S. L. Bailey of Jansky and Bailey, consulting engineers.

Changes in NBC's

Television Personnel
To speed development of NBC's nation-wide television network as

Builoers of communications EQUIPMENT, MEASURING INSTRUMENTS FOR COMMERCIAL AND INDUSTRIAL USE, AND OTHER ELECTRONIC DEVICES - PRO. DUCTS WHERE PRECISION PERFORMANCE LARGELY DEPENDS UPON TIME AS A FAC. TOR OF CONTROL - KNOW THEY

RUNNING TIME METERS

Synchranous motor driven. Registar automatically and cumulatively tatal aperating or idle time an circuits, ma. chines, systems.

TIME DELAY RELAYS
Provide adjustable ar fixed time delay between operation of a contral circuit and subsequent opening or closing of a laad circuit.

SYNCHRONOUS MOTORS

Permanent magnet type far applicatians requiring a constant speed at a given frequency. Small size. $30^{\prime \prime}$ aunce tarque. Twenty-eight speeds fram 60 rpm ta $1 / 24 \mathrm{rph}$.

For a wide range of standard timers and controls.. ar special adaptations for specific applications., consult R. W. CRAMER CO. Box No. 3, Centerbrook, Conn.
 AS A FACTOR OF CONTROL

[^15]EISLER
gLECTRICAL \& ELECTRONIC EQUIPMENT ELECTRONIC TUBE EQUIPMENT

TRANSFORMERS OF ALL TYPES

Sizes $1 / 4$ To 250 KVA
SPOT WELDERS OF ALL TYPES FOR ALL PURPOSES SIZES $1 / 4$ to 250 KVA Butt Welders. Gun Welders Are Welders Neon Sign Units Fluoresent Tube Manufacturing Equipment
CHAS. EISLER
EISLER ENGINEERING CO., INC. 751 So. 13th St. (Near Avon Ave.), Newark 3, N. J.

- ALL MAKES
- ALL OHMAGES
- ALL TOLERANCES
½. WATT-1 WATT-2 WATT

We are bic enough to give you every delivery advantage, and small enough to offer personal service.
WE EXPORT TO ALL COUNTRIES Immediate Deliveries Ask Fo Our New Price List

LEERI O GOMPANY, Inc.

846-850 Amsterdam Avenue New York 25, N. Y.
"RESISTORS IS OUR BUSINESS'

HE General Electric Decade Scaling Unit is the outstanding instrument in this field. The salient technical features of the equipment will recommend it as indispensable in modern research.

- Low Resolution Time . . . 0.1 microsecond.
- Continuous Sine Wave counting . . . 10^{6} to 5×10^{6} CPS. (Square wave counting . . . zero to 10^{6} counts / sec)
- Decade counting . . . direct interpolation.
- Two channels . . . independent meter indication.

For complete information on the Decade Scaling Unit and other General Electric Laboratory Measuring Equipment write: General Electric Company, Electronics Park, Syracuse, New York.

bbraley COPPER OXIDE RECTIFIERS

IMPROVE INSTRUMENTS AT LOW COST

Vacuum-processed, goldcoated Bradley instrument rectifiers increase equip. ment efficiency. Especially designed for use where stability and permanence of calibration are impor. tant, "Coprox" rectifiers meet the most exacting requirements. Yet they cost no more than ordinary rectifiers - in most cases, less.

Temperature error is exceptionally low with Bradley rectifiers. Aging is practically nil. Presoldered leads. Rating of CX-2E series up to 4.5 volts A.C., 3 volts and 5 milliamperes D.C.

Illustrated literature, available on request, shows more models of copper oxide rectifiers, plus a line of selenium rectifiers and photocells. Write for "The Bradley Line."

BRADLEY

LABORATORIES, INC.
82 Meadow St. New Haven 10, Conn.
well as its sight-and-sound programming, O. B. Hanson, vicepresident and chief engineer, has been named to assist the executive vice-president in planning the technical phases of television. He will supervise the building and installation of new stations, interconnections, relays and other engineering facilities. Norman E. Kersta, director of television operations, will be in charge of broadcast operations of the television department.
George McElrath has been appointed director of engineering operations. He will manage the technical aspects of sound broadcasting.

Filling the new post of director of television engineering operations and reporting to N. E. Kersta is Robert E. Shelby, whose former position as director of technical development is now held by George M. Nixon.

BUSINESS NEWS

Bart-Messing Corp., manufacturers of the Sel-Rex selenium rectifiers, have a new plant over 6,000

New Bart-Messing Corp. plant
square feet in area at 45 Morgan Ave., Brooklyn, N. Y.

Hermon Hosmer Scott, Inc., Cambridge, Mass., has been formed to provide increased manufacturing and engineering facilities for equipment employing the Dynamic Noise Suppressor, and is taking over the unfilled orders and inventory of such items from Technology Instrument Corp., Waltham, Mass.

Philco Corporation, Philadelphia, is offering formal licenses to all set manufacturers to use, subject to royalties, its approximately 700 patents and inventions in the radio

HERE ARE TWO EASTERN Single Stage Centrifugal Pumps

Model D-6is a compact, lightweight centrifugal pump designed for continuous duty where small volume and pressure are required. Pump and motor are close-coupled. An open vane impeller is mounted on the motor shaft extension. Equipped with either an easily adjustable stuffing box or mechanical rotary seal, the pump proper has no bearings.
Size: $7 \frac{1}{2 \prime 2} \times 41 / 2^{\prime \prime}$
X43/4
Weight: $11 \frac{1}{2}$ lbs Power: $1 / 30 \mathrm{HP}$
Alloys:Standard in Cast Iron, Bronze, Stain-
 less Steel, Monel Metal, Hastelloy C. For quantity applications, available in other alloys.

Model F is a heavy duty centrifugal pump designed for continuousoperation in applications requiring sizeable volumes or pressures with a minimum of pump size and weight. The heavy duty General Electric ball bearing induction type motor may be totally enclosed for general use and explosion-proof for use with flammable liquids and vapors. This pump is of the close-coupled type, motor armature and pump impeller being mounted on the same shaft. It is available with either adjustable stuffing box or mechanical rotary seal.
 Size: $111 / \mathbf{n g}^{\prime \prime}$ x $61 / 2^{\prime \prime} \times 631^{\prime \prime}$ Weight: 35 lbs Power: $1 / 3 \mathrm{HP}$ Alloys: Standard in Cast Hastelloy C. For quantity applications, available in other alloys.

Eastern Industries has engineered more than 300 models of small pumps for industrial use. In addition, Eastern's experienced engineering staff welcomes the opportunity to design pumps for special applications. For further information concerning any of the models in the well-known Eastern line, write for Bulletin 205. Please address all
 inquiries to
Eastern Industries Inc., 296 Elm St , New Haven, Conn.

EASTERN INDUSTRIES
 NEW HAVEN, CONNECTICUT

Norwalk. Comecticut Newiton. Massachusetts

The New "LF" Series QUARTZ CRYSTAL UNITS

Plated quartz crystal oscillator and resonator bars mounted between resonant frequency pins and housed in metal holders-hermetic sealing and temperature control optional.

- higher Q stable frequency
- rigid mounting - moisture proof
- quicker starting - free from aging

Technical characteristies:
Frequency range:- 50 kc to 500 kc Freuuency calibration- 01% to $.002 \%$ Temperature coefficient- $1 \mathrm{cy} / \mathrm{mc} /{ }^{\circ} \mathrm{C}$ Mounting-pressure mounted between pins which resonate at the crystal frequency Holder (hermetically sealed types)-all metal Holder (temperature controlled types)-low loss phenolte base with spiun aluminum cove Blectrodes-nickel plating on silver base Contacts (external)-standard 2 prong. 5 prong.
octal base or lugs Tremperature control
remperature control (optional)- 6 V heater adjustable to any temp. $40^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$

Write for additional information
CLARK CRYSTAL COMPANY
Marlboro, Mass., U. S. A.

BASIC LABORATORY INSTRUMENTS BY KAY

- The MEGA. SWEEP.

Wide Range
Sweeping
Oscillator

- DISPLAYS

PASS BAND
FEATURES: Carrier Frequency- 50 kilocycles to 500 megacycles and up... Frequency Sweep-from 30 megacycles to 30 kilocycles throughout the complete spectrum Continuously variable attenuator . . Low amplitude Modulation while sweeping-less than 0.1 DB per megacrcle . Precision wavemeter. Price $\$ 395$. F.O.B. factory.

- The MEGAMATCH.
Visual Display of Reflected Energy.

10 to 250 MC and up. Completely electronic. No slotted lines, moving parts, bridges, or other frequency sensitive devices. Precision frequency meter. Saves engineering time. Presents instantly data which would take hours to tabulate. \$695. F.O.B. factory,

- The MEGA. Precision variable marker oscillator having a range of

MARKR MARKER.

19 to 29 megacycles for the television i.f. band. Crystal oscillator for the FM i.f. band (10.7 mc). Dial provides over 12 inches of calibrated scale length. May be read to accuracies of 0.02 megacycles. $\$ 60$. F.O.B. factory.
KAY ELECTRIC CO., 34 Marshall St., Newark 2, N. J. Telephone: Market 3-4337

SMALL PARTS

Filaments, anodes, supports, springs, etc. for electronic tubes. Small wire and flat metal formed parts to your prints for your assemblies. Double pointed pins. Wire straightened and cut diameter up to $1 / 8$. inch. Any length up to 12 feet. LUXON fishing tackle accessories. Inquiries will receive prompt attention.

ART WIRE AND STAMPING CO.

227 High St.
Newark 2, N. J.

JUST ANOTHER TRANSFORMER? OR GUARANTEED TERMINAL PERFORMANCE!

TRANSFORMERS - COILS

Any or all Types built to individual specifications RESEARCH-DESIGN-PRODUCTION Single Items or Quantity Production
GOSLIN ELECTRIC AND MANUFACTURING CO. 2921 WEST OLIVE STREET

BURBANK, CALIFORNIA

NEW FEATURES OF THIS DESIGN:

- Fits octal socket.
- Outline dimensions: $11 / 4^{\prime \prime} \times 11 / 4^{\prime \prime} \times 2^{\prime \prime}$ above socket.

Features of ALL SIGMA Series 41 Relays:

- DC sensitivity:- 0.020 watts (min. input.)
- AC sensitivity:-0.1 volt-ampere (min. input.) One standard 110 volt $A C$ model draws about 1.5 milliampere.
- Contact ratings up to 15 amperes on low voltage.
- High quality construction-mechanically rugged.
- Very low cost. A wide range of standard adjustments for this and other Sigma relays is now available-See your jobber or write direct.

SIGMA sales and engineering departments are ready to give your relay problems prompt analysis and action.
Sigma Instruments, rive.
Cencitiveneniss
62 Ceylon St., Boston 21, Mass.

. . with special emphasis on the field of electronics

We offer a complete line of highly engineered Vibration and Impact isolators for commercial, industrial and military applications . . . also an Engineering consulting scrvice on special problems.

[^16]receiver, electrical phonograph, and television receiver fields. RCA, G-E, and Westinghouse have already been licensed by Philco.

Andrew Alford, Consulting EngiNEERS, have moved their laboratory to 299 Atlantic Ave., Boston 10, Mass.

Association of Electronic Parts and Equipment Manufacturers has elected the following officers: Les A. Thayer of Belden Mfg. Co., Chicago, chairman; Charles Hansen of Jensen Mfg. Co., Chicago, vicechairman; Helen Staniland of Quam-Nichols Co., Chicago, treasurer; Ken C. Prince, Chicago attorney, executive secretary.

PERSONNEL

James R. Rinke is now chief engineer at Potter \& Brumfield Manufacturing Co., Princeton, Indiana, manufacturers of electrical relays. He was formerly in charge of development of vibrator-type power supplies and converters at Electronic Laboratories, Inc. of Indianapolis.

James T. Watson, former president of Meissner Mfg. Co. and until recently manager of the Meissner Division of Maguire Industries, is now a member of the board of directors of Potter \& Brumfield Manufacturing Co., Princeton, Indiana, electrical relay manufacturers.

Henry Butz was appointed chief engineer of the Nelson Electric Corp., Santa Monica, Cal.
R. C. Mason, on leave of absence from the atomic energy project in Oak Ridge for the past year, was named manager of the electro-physics department of Westinghouse Research Laboratories in Pittsburgh, Pa.

Paul Weathers, after 16 years with RCA, is now vice-president and chief engineer of Airdesign, Inc. of Upper Darby, Pa.

Hugh L. Dryden has left the National Bureau of Standards to become director of research for the National Advisory Committee for Aeronautics. He played an important part in the development of the

1815 Locust St.
St. Louis 3, Mo.
Long Distance Telephone CEntral 5830

FREED TRANSFORMER COMPANY, INC. $72-78$ Spring Street, N. Y. C.

Don't Let Others Put You OUT of the Picture!

Here's How CREI Prepares You NOW for a BETTER JOB and a SECURE CAREER in RADIO-ELECTRONICS!
ADD CREI Technical Training to Your Present Experience-Then Get That Better Radio Job You Want-Make More Money-Enjoy Security
Never before have men like you had so many chances to step into brand new jobs in brand new fields. FM, Television, Facsimile and other electronic communications systems for both governhighty trained expert radio communications engihighly trained expert ${ }^{\text {ners }}$ and technicians.
NOW is the time to take the time to prepare yourself for these important carcer jobs. CREI home study training can show, you the way by providing you with the tools with which to planned program of modern technical training. planned program of modern technical training. In our proved method of instruction you learn goodness practical engineering training that leads goodness practical engineering training that leads costs you nothing to read the interesting facts.

FREE SAMPLE LESSON

Now, see for yourself! Mail the coupon for free sample lesson and see how simple it is to study at home and improve your ability the CREI way. "ELECTRON PHYSICS AND ELECTRON THEORY"" -This interesting lesson from the Radio-Electronics course discusses modern theories of the composition of matter including atomic energy, and their relation to present-day radio and electronics. ''PICK-UP TUBES-ICONOSCOPE AND IMAGE DISSECTOR TUBES'"An informative lesson from the Television course. These are the fundamental pick-up tubes of the television camera. It precedes the study of the Orthicon and the Image Orthicon.

MAIL COUPON FOR FREE BOOKLET \& SAMPLE LESSON

MAIL COUPON TOR TREE BOOKLET

CAPITOL RADIO ENGINEERING INSTITUTE 16th \& Park Road, N.W., Dept. E.1I, Wash. IO, D.C Mail me ONE FREE sample lesson and your 24page booklet. "CREI Training for Your Better Job resume of my radio experience. education and present position.
CIIECK PRACTICAL RADIO ENGINEERING ONE
COURSE PRACTICAL TELEVISION ENG.
Name
STREET
CITY
ZONE.STATE......
\square I am entitled to training under the G. I. Bill.

\#B103-Provides from 1 KV to 5 KV D.C. at 1 ma. for Television Nuclear Research, etc.

External power required 6.3V 60 cycle A.C. and 250 V D.C.
Entirely enclosed in Aluminum Case.... $35 / 8^{\prime \prime} \times 43 / 4 \times 43 / 4$ high

Other voltages available \#B101-10 KV * \#B102-30 KV

Laboratory models available for prompt shipment. Inquiries for production runs are solicited.

Precision manufacturers of all types of IF and RF coils, chokes, and transformers.

NEWS OF THE INDUSTRY
(continued)
BAT, the only successful wuided missile used during the war.
H. C. Carroll has been promoted to engineer in charge of Genemal Electric's Marine and Aeronantics Engineeting Division.

H. C. Carroll

A. A. Ward
A. A. Ward has been promoted from vice-president of Altec Lansing to vice-president in charge of manufacturing of the Altec Service Corp. New York City.
W. L. Barrow, at one time on the MIT electrical engineering staff, is the newly appointed chief engineer of Sperry Gyroscope Co., Inc., Great Neck, N. Y.

M. W. Scheldori

W. L. Barrow
M. W. Scheldorf, co-inventor of the circular-loop f-m antenna, after 19 years with General Electric, has joined Andrew Co., Chicago, as head of engineering research. He will be in charge of the development of new antennas, transmission lines, and other related items.

Stanley Glaser was appointed manager of the radio section of the Crosley Division, Avco Manufacturing Corp., Cincinnati, Ohio.

Walter Remberg, who developed the vacuum-tube acceleration pickup which depends on the internal vibration of a vacuum tube to measure changes in acceleration of vibrating parts of an aircraft in flight, was appointed chief of the Mechanics Division of the National Bureau of Standards.

A Valpey Specialty:

To Meet Your Needs in ALL

Ultrasonic Applications

Special Cut Crystals

from $30 K$. to 30 MC .
With or without silvered electrodes. Dimensions to your specifications.

FREE literature, prices on request
VALPEY CRYSTAL CORP. Holliston, Massachusetts
Craftsmanship in Crystals Since 1931

Solves the Problem of Mailing List Maintenance!

Probably no other organization is as well equipped as McGraw-Hill to solve the complicated problem of of unparalleled change in industria personnel.

McGraw-Hill Mailing Lists cover most major industries. They are compiled from oxclusive sources, and are based on hundreds of thousands of mail questionnaires and the reports of a nation-wide field staff. All names are guaranteed accurate within 2%.
When planning your direct mail advertising and sales promotion, conider this uniqua and economical serv ice in relation to your product. Details on request.

McGraw-Hill Publishing Co., Inc. DIRECT MAIL DIVISION

Here's how it works out:
\$3 put into U. S. Savings Bonds today will bring back $\$ 4$ in 10 years.
Another $\$ 3$ will bring back another $\$ 4$.
So it's quite right to figure that 3 plus 3 equals 8 . . . or 30 plus 30 equals $80 \ldots$ or 300 plus 300 equals 800 !

It will . . . in U. S. Savings Bonds. And those
bonds may very well be the means of helping you educate your children as you'd like to have them educated.

So keep on buying Savings Bonds—available at banks and post offices. Or the way that millions have found easiest and surest-through Payroll Savings. Hold on to all you've bought.

You'll be mighty glad you did . . . 10 years from now!

SAVE THE EASY WAY... BUY YOUR BONDS THROUGH PAYROLL SAVINGS

Contributed by this magazine in cooperation with the Magazine Publishers of America as a public service

POLARAD TELEVISION Esuipment
 for studio - laboratory - manufacturer

20 Megacycle VIDEO AMPLIFIER

Input Impedance. a) Probe: 12 MMF +470000
b) input Jack: 30 MMF +470000 ohms.

Output Impedance. 18 MMF +470000 ohms each side push pull.
Max. Input Voltage, 500 Volts peak to peak with
Max. Output Voltage, 120-Volts peak to peak (push Max. Ou
pull).
*Low frequency range extended per specifications.
 Voltoscope

Provides three standard voltages $-0.1,1.0$ and 10.0 peak to peak volts. AC operated and adaptable for all make os cilloscopes. oscilloscopes.
No warm-up
timo makes time makes the Yoltoscope ready for im ready for im A self-contained instrument-no bigger than your hand. Fool-proof-no tubes.

9 FERRY STREET, NEW YORK 7. N. Y.
Television engineers and consultants to the nation's great television stations,

NEW BOOKS

Radar System Engineering

Volume I of the MIT Radiation Laboratory Series, edited by Lours N. RIDENOUR and written by 32 authors. McGraw-Hill Book Co., New York, 1947, 750 pages, $\$ 7.50$.
JUST as even in war it takes a long time to design and build radar sets, so even in peace it takes a long time to write and publish a technical book. The first volume of the history-making library known as the Radiation Laboratory Series is an example. So difficult is it to get things done today that a full year must elapse between the time a good-sized manuscript is received and the time printed copies are ready for readers. The editor's preface for this volume was written in June 1946; the book appeared in the middle of 1947 .

The whole project for widely distributing the important facts and data developed during the life of the Radiation Laboratory has an interesting history, one which will never be published. The essential facts are that plans for the Series were made in the fall of 1944; a large staff of RL men was chosen to prepare the manuscripts and drawings, and actual work began about a year later. What started out to be a few books on microwave theory and techniques began to grow until material for 28 volumes was prepared. The concept of publishing this data, developed in deep secrecy, was bold and its execution was not without difficulty, what with security problems, ideas about government property and government expense and whatnot--not to leave out the vast investment to be made by the publishers.

But the essential fact remains that out of all the work carried out by thousands of scientists and engineers during the war, both in and out of the OSRD, only about 100 volumes will be published and of these less than 50 will be distributed so that their contents will be available. Except for the RL Series, a great bulk of the wartime developments in all branches of technology is locked up in the files, practically unobtainable; even the books-again excepting this radar library-will be difficult to see.

The Radiation Laboratory Series

Hex-socket screws

in numbered sizes

extra-dependable

 for electronic devicesTiny hex-socket Cap Screws and Set Screws steeled to stand amazingly tight set-ups. Cap Screws in the numbered sizes from 1 to 10 inclusive; Set Screws from No. 2 to 10.

The Cap Screws are Allen "pressurformd" for maximum strength of head and socket. This process makes the steel-fibres conform to the shape of the head, - no cut fibres. Threads also formed by pressure-process to a high Class 3 fit, ensuring a high degree of frictional holding-power.

The Set Screws have die-cut threads accurate to a high Class 3 fit, with per-fectly-formed hex sockets. The screws can be held on either end of the handy hex keys and turned into the tapped hole without fingering. Allen Hand Drivers are available to facilitate fast assembling.

In radio and television sets, radio telephones, radar equipment, electronic controls, these screws Hold fine adjustments and intricate assemblies.

Order of your local Industrial Distributor

THE ALLEN MFG. COMPANY
 hartford ${ }^{2}$,
 connecticut, u. s. A.

therefore is a remarkable undertaking, in fact, a monument. Volume I deals, quite properly, with the broad radar picture, describing the components, the subassemblies, and the numerous radar systems. Although the subject matter is technical the editor of the volume is correct when he says in his preface "no special mathematical, physical, or engineering background is needed to read and understand this book," although it is barely possible that he has perpetrated one of the greatest understatements of the technical world when he says that "radar is a very simple subject."

The complexity of radar, the fascination of the things radar can do, the sidelights on its history and usage one finds in this volume, the truth that unbelievably complicated electronic circuits were developed complete and ready to go during the short life of the Radiation Labora-tory-the fact that this book is interesting to read as well as worthwhile from the technical standpoint - all indicate that Volume I should rank high on engineers' purchase orders.

Only the chapter headings can be enumerated here-the radar equation, properties of radar targets, limitations of pulse radar, c-w radar systems, gathering and presentation of data, employment of radar data, radar beacons, antennas, scanners and stabilization, the magnetron and pulser, r-f components, radar receivers, indicators, power supplies, system design, moving target indication, radar relay.

The last two chapters present material hitnerto unpublished. Here and there in this large book one gets glimpses of other items, paragraphs and chapters of radar history, and techniques and applications that are new to most and which will be useful as a technical storehouse for a long time-K.H.

Alternating Currents

By Chester L. Dawes. McGraw-Hill Book Co., Inc., New York, N. Y., 1947, Fourth Edition, ro8 pages, \$5.00.
This fourth edition contains much new material; especially on electronic topics such as dynamic measurements, frequency modulation, selenium rectifiers, ignitrons, and electronic motor control.-J.M.

ADMIRABLY this revolutionary NEW line by Audax bears out the business maxim:-

"LOOK TO THE LEADER FOR LEADERSHIP"

*Because a "permanent-point" will mainlain its original shape for only a limited number of plays, after which it progressively erodes the record grooves, the importance of being able to replace it has always been of primary consideration. Heretofore such replaceability entailed severe penalties in range, compliance and point-pressure. Most of the TUNEDRIBBON models provide the all-important replaceability without those penalties.

SPECIFICATIONS TUNED-RIBBON SA- 79

- Linear 50 cyc. to over $10 \mathrm{k} . \mathrm{c}$.
- Vibratory Momentum-very low
- Point Pressure-about 24 grams
- Genuine Sapphire StylusEASILY REPLACED BY USER
- Output-about -30 db
- Impedance- 200 ohms to 500 ohms
- Quick plug-in connectors
- Arm is aluminum, Special Studio Design, Tangent - Tracking, ballthrust and pivot-point bearings in gimbal mounting-eliminating side thrust and drag.

Technicians listening to the incomparable reproduction of TUNED-RIBBON have been startled at the realism ... proving anew AUDAX right to the slogan:-
eeThe Standard by Which Dthers Are Judged and Valued, Yes, Audax TUNED-RIBBON has put some. thing into reproduced music that was not there before .. . let YOUR ears be the final judge.

500 Fifth Avenue
New York 18
CREATORS OF FINE ELECTRO-ACOUSTICAL APPARATUS SINCE 1915

What can be done with

COLD FORGING
and supplemental operations?

ASK MILFORD!

EXAMPLE: small part formerly screw-machined
MILFORD COLD FORGING SAVED 161 LBS. OF BRASS PER 1000 PIECES!

Eye-opener savings! As high as 67% not uncommon. 25% to 40% an every day occurrence. Milford equipment for coldheading - and experience - are unsurpassed; have cut costs for others, can cut costs for you.

Since many parts now screw machined can be cold-headed, why not investigate? First step: send sample part or fastener. Milford engineers will carry on from there. No obligation.

Tमi MILFORDRIVHE \& MAGIMNA CO.
 859 Bridgeport Ave. MILTORD, CONN.
 1002 West River Si. HLYRIA; OHIO

Inquiries may also be addressed to our subsidiary:
THE PENN RIVET \& MACHINE CO., PHILADELPHIA 33, PENNA.

Backtalk

This department is operated as an open forum where our readers may discuss problems of the electronics industry or comment upon articles which ELECTRONICS has published.

Triode Versus Pentode

Dear Editor:
Articles published by Electronics in recent months indicate that at least a small group of engineers are aware that radio can, and should, bring the listener reasonably faithful reproduction of the speech or music transmitted. It seems timely to suggest that we "go ahead by going back"-back to triodes.

It has long been the contention of the writer that the tube manufacturers could, if they were gently prodded, produce a small triode capable of, say, two watts undistorted output, with little, if any, higher grid excitation necessary than is common to pentodes. To forestall possible comment, it should be noted that two watts of triode power, using a loud speaker load, actually means two watts of useful power, in contrast to the fraction of rated power that can be obtained from a pentode or beam tetrode without excessive distortion, at even moderately high frequencies.

Congratulations to Electronics for its efforts to further the cause of better sound reproduction.

Worcester Bowes
Barstow, California

Pulse Technique
 Nomenclature

Dear Sirs:
There appears to be some confusion in the minds of many people (even some engineers) concerning the use of the word "radar". There is a tendency to lump all microwave and navigational systems, particularly those employing pulse techniques, under the umbrella-title of radar.

I should like to suggest a system
there would be three broad headings, relating to systems operating in the fashion indicated:

1. Radar includes systems em-

WE manufacture a complete line of equipmient SPOT WELDERS, electric from $1 / 4$ to 50 KVA
THANSFORMEISS, special and standard types THANSFORMEIS, special and standard types FLUORESCENT TUBE MAKING EQUIPMENT ELECTRONIC EQUIPMENT, vacuum pumps. etc WFT GLASS SLICING and cutting machines for GENERAL GLAASS working machines and burners COILLFGE GLASS WORKING units for students 731 So. 13th St. (near Avon Ave.)

AC ARC

Newark, New Jersey

This

CONTACTS

Section

supplements other advertising in this issue with these additional announcements of products essential to efficient and economical operation and maintenance. Make a habit of checking this page, each issue.

Classified Advertising Division

ELECTRONICS

330 W. 42nd St., New York 18, N. Y.

BALL BEARINGS

FOR SALE
8-HEAD STEM AND ELECTRODE MAKING MACHINES
2-3 week delivery. For complete details contact:
HAYDU BROTHERS, Manufacturers Plainfield, N, J.

ELECTRONIC EQUIPMENT

Custom Built for Your Job
buck engineering Co., Inc.
37 Marcy St.

ELECTRON TUBE MACHINERY OF ALL TYPES
 STANDARD AND SPECIAL DESIGN

We specialize in Equipment and Methods for the manufacture of ADIO TUBES
CATHODE RAY TUBES
FLUORESCENT LAMPS
INCANDESCENT LAMPS
NEON TUBES
HOTO CELL
-RAY TUBES
GLASS PRODUCTS
Production or Laboratory
Kahle ENGINEERING CO.
1309 SEVENTH STREET NORTH BERGEN, N. J., U. S. A.

Solve Wire

 Stripping Problems with "SPEEDEX""AS IT MAKES" Tho lamous "Speodex wire Stripper complote with 7 interchangeable blades for stripplng any size wire from No. 8 to No. 30 will be the handles tool in the shod. Strips 800 to 1000 wires per hour-cuts wires too. Just press the hande and
the job is done. For use with solid or stranded wires. Write today for catalog of 3,000 elec tronic products.
GENERAL CEMENTmfg. co.
ROCKFORD, ILLINOIS, U. S. A.

monvemisu bewe Catalog of Radio Parts . Sets - Amplifiers Testers - Ham Gear - Electronic Equipment Mail Coupon for FREE Copy

Ready now - the greatest, latest complete presentation of radio, electronic and television equipment and supplies in Concord history! Packed from cover to cover with thousands of items-160 pages of everything in Radio and Electronics. Special bargain section of hundreds of money-saving values. Scores of NEW ITEMS from famous makers. Mail coupon for FREE copy at once!

SPEAKERS

with 3 ohm VC's at real buys $\times 150 \mathrm{M} .5^{\circ}$ Round PM $\mathbf{X 1 5}$ \$1.14
 $\times 152 \mathrm{M} .4^{-}$Dynamic
450 n field

RF \& DC Meter Values 0.4 Amp. RF. Built-in thermocouple. GE type DN $\times 168 \mathrm{~m}$ - Fach K168m-Fach. $\$ 1.95$
$0-35$ V DC. Red mark at 28.5
V. Simpson type K25. $21 /{ }^{\circ}$ r. SimpsontypekK2. 212°
round. 5 B4205. $\$ 1.95$

ELECTROLYTICS All Nationally Known Makes Number Mf. WV Each Number Mf. WV Each $\times 154 \mathrm{M} \quad 845024 \mathrm{c} \times 153 \mathrm{M} 20-20 \quad 150 \quad 49 \mathrm{c}$

 $50-20$ to 19e

BACKTALK
(continued)
ploying a radio frequency energy source transmitting in a preferred direction toward a passive object (target), which scatters the radiation incident upon it. A fraction of the scattered energy is then detected by a receiver, usually at the same location as the transmitter.
2. Racon (radar beacon) systems employ an interrogating transmitter, the signal from which is detected by a receiver at a second location. This signal, after suitable processing, then actuates a transmitter that replies with a signal bearing appropriate information (the answering signal need not employ the same wavelength as the interrogating signal). The answering signal is then detected by a receiver at location of interrogator. Examples are Oboe and Shoran.
3. One-way navigational systems employ a system of transmitters that establish a grid system in space for use by anyone having the necessary receiving equipment. Examples are Loran, Gee, and Decca.

Under this classification distinction is made between systems employing an echo from a passive target (radar) and those depending upon a triggered reply from a secondary system (racon) ; and finally the navigational systems involving transmission of energy in only one direction are considered to be separate. Obviously one type of system can perform part of the function of another; for instance, a radar system commonly provides a major fraction of the components at the interrogating end of a racon system. Also, radar systems function as navigational systems. This large degree of overlap does not alter the fact that there are two functions to be performed, and that there are some major differences in the manner of operation.

Donald E. Kerr
Massachusetts Inslihute of Technology ('ombridye, Massachusetts

The Editors are informed that the word "Fathometer" is a copyrighted trademark of the Submarine Signal Company and was, accordingly, improperly used in the October 1947 issue of ELECTRONICS in the article "Telemetering Fathometer" since the equipment described was not manufactured by the Submarine Signal Company.

with the

panalyzor

Eliminates tedious, time consuming point by point frequency checks. It shows simultaneously, in one complete picture, an FM'd carrier and resultant sidebands . . . in ferms of relative frequency, amplitude and stability.

A single observation enables determination of such performance details as frequency deviation, energy distribution, sideband content, carrier shift and modulation symmetry . . . Opercting procedures are simple... interpretations clear cut.
Actually, the PANALYZOR is a panoramic spectrum analyzor which shows, distributed in frequency, discrete quantities of r-f energy as vertical deflections on a cathode-ray tube.

Standard models now available

 with maximum scanning widths of 50 KC to 20 MC and corresponding resolutions of 2.5 KC to 100 KC .Write, wire or phone now for recommendations, specifications, prices and delivery time.

Professional SERVICES

Consulting — Patents - Design — Development - Measurements
in

Radio, Audio, Industrial Electronic Applications

THE APPLIED SCIENCE CORPORATION OF PRINCETON ipoliod Phyalos, Mathomatics and Electronics Deefer Industrial Applications Bagineerin Apocinulita in Radio Telemotering

0-10e \& Laboratory: U. S. Highway \#1, RD \#4.

THE BARRY CORPORATION
 specialists in the Control of
 YIBRATION IMPACT NOIS Engineering Development Manufacturing
 179 Sidney Street
 Telephones: ELIot 0861-0140

H. RUSSELL BROWNELL
 Consulting Engineer

Dpecializing in Measuremants \& Testing
Instruments \& Techniques - Filectrical - Elec-
tronto - Maraetio.
188 Weat 4th St. Chelses E-4208 York 14, N. Y.

CONTROLS LABORATORIES, INC. Consulting Division EXCEPTIONAL FACLLITLESS
 RESEABCH and DEVELOPMENT ieorrioal And Mechanteal Problema
 sokeround of over 200 research profeot
 Partiat list of subjects available upon reauest
 Union St.

STANLEY D. EILENBERGER
Consulting Engincer
industrlal euectronics
Denden-Development-Models
Complete Laboratory and Shod Facilities 6309-13-27th Are.
Kenoshe, Wle.
Telephone 2-4213
ELECTRO IMPULSE LABORATORY
Consulting Physicists
Redio Interferance and Noise Meters; Interference Suppression Methoda for Ignition Systems and geotrical Devices, Red Bank, New Jersey
P.O. Box Red Bank 8-4247

ELECTRODYNE CO.
Electronics Mechanics Optics RESEARCH AND DEVELOPMENT Cathode ray recorders custom built to your own specifications. Prompt delivery. Snecisilists in bsychological and blological instrumentation and industrial problems.
899 Boylston St.
Boston 15. Mass.
Phones: Copley 0055

ELECTRONIC ENGINEERING CO. of CALIFORNIA

Badio and Flectronio Consulting and Designing.
2008 W. Seyenth St.
Dhaxal 832 E
Los Angelen
Callfornis

ELM LABORATORIES

EMEEGTRONIC-MECEANICAL
Patonted ELM Dovelopments inoludo
PREGRAME Automatio Radio Program Tuner.
Famous "Gerty" Direction Finder Loop. Sealed
Xtal Holder. Homo Recelver Designs.
20 South Brosdway Dobbs Ferry, New York
Phone Dobbs Ferry 4058

PAUL E. GERST \& CO. coniututing enainerbs
 Hleetrical Produot Dasion
 Bl. Machinery Apparatug \& Applications Appliances, Hi-Frequencies ADDara
 205 W. Wacker Dr. Chioago 6, Ill.

HANSON-GORRILL-BRIAN INC.
 Product of Mfg. Development ELECTRICAL - ELEETRONIC HYDRAULIC - MECHANICAL
 Mandow Lane Glen Cove, N. Y. Glen Cove 1922

LERU LABORATORIES, INC.

Design and Developments of Electronic Equip-
ment for industrial and scientific purboses
Special experlence in microraves, spectrum analyzers, photo-electric circuits, test equipment etc.
New York 14360 Bleecker Street
WAtkins 9-4194

WINFIELD SCOTT McCACHREN AND ASSOCLATES
 Consulting Radio Engineers TELEVISION SPECIALISTS Philadelphia:
 Philadelphia: 809B Windemere Ave. $\quad 410$ Bond Bullding Wrozal Gill, Pa.
 Drozal Hill, Pa District 6923

WILLIAM R. MEREDITH

B.A., B.SC., P.ENG. MEIC.

Barrister-at-Laqu
Consultant on Canadian
PATENTS, TRADE MARKS and COPYRIGHTS National Bullding Telephome 2-9584 Ottawa, Canada ——_

A. JOHN MICHEL
 Registered Patent Attorney SPECLALIZING IN ELECTRONICG
 Unlted States and Foreign Patent Matters 15 Park Row. New Yors 7, N.Y. Tel. CO-7-9034

Eugene Mittelmann, E.E., Ph.D.
Consulting Engineer ©o Physicist
High Frequency Heating - Industrial Fleotronion Applied Physics and Mathematics
549 W. Washington Blyd. Chlcago 6, Ill State 8021

ALBERT PREISMAN

Consulting Engineer
Television, pulse Techniques, Video
Industrial Applications
industrial ADD catio
MANAGEMENT-TRAINING ABSOCLATES 3308-14th St., N.W. Weshington 10. D. C.

JOSEPH RAZEK, Ph. D. Consulting Physicist
Flectric and Mechanical Engineering Probleas Instruments and Control Derices Electronies Specialists in Colorimetry, Spectrophotometry and Industrial Color Control
202 Darby Road Phone Hilltod 6910 Lianerch. Pa

of placing your unusual problem in the bands of a competent consultant is that it eliminates the eloments of chance and unceriainty from the problem and provides real facts upon which to base decisions.

ELECTRONICS

ASST. PRODUCTION MANAGER
We want a man whose record shows con sistent progress in the production end of the Electronics Industry, including prewar experience if possible. He must demonstrate that he can develop a supervisory group into a hard hitting team and that he is qualified to work on an equal footing with a high calibre engineering and staf group. Starting salary up to $\$ 7200$. We are a prosressive. sizeable New Fngland concern wherein opportunity ly rite in
write in detail. All replies will be beld trictiv confidential.

330 West $42 n d$ Stree

PRODUCTION DESIGN ENGINEER

Engineer, preferably with radio-phonograph me. chanical design background, capable of producing practical. low cost, mass production designs starting from perifornance specifications.
The work involves specifications for purchase of components, establishing of insoection and quality standards, coordination of appearance styllng, and follow-up of initial production.
Reply giving a brief resume of personal data, edu. cational background, and detalls of type of product worked on, and extent of responsibllity therefor, over the past ten years.

```
P-2055, Electronics
```

330 West 42 nd Street, New York 18, N. Y.

ELECTRICAL ENGINEER

Must be graduate E. E. Must have heavy experience in audio work, particularly with sub-miniature parts. Some mechanical knowledge and production experience. Will be completely responsible for research, design and assembly small electronic device. Give complete education, experience-particularly as applied to above, age and salary required. Unusual opportunity and permanent security for right person. Box P-2074, Electronics
330 West 42 nd Street, New York 18, N. Y.

POSITIONS VACANT

Abstract

ELECTRONICS TECHNICIAN for construc tion and maintenance of laboratory elecdetection circuits or radar desirabie. Salary, \$2960, with annual salary review. Address intuiries to C. S Garner, Department of Chemistrv, University of California, Los Angeles 24, California, giving complete personal data and experience. WANTED: MECHANICAL Engineer or Electrical Engineer with background in product design. tooling, assembly, efc., of communica- tions equipment. Must be able to calry the ball on at new development. This position is permanent. Salary open. Apply to: Audio Development Co., 283313 th Ave. So., Minneapolis 7 . Himn. DESIGNER: 3 to "years experience in aircraft engine accessories, such is manifold pressure Controls or carhuretors. Prefer age under 30 . Give rull details on education, exlerience, and previous positions. Personnel Dept. The previous positions. Fersonnel Dept., The Bristol Co., Waterbury 91, Conn.

EMPLOYMENT SERVICES

[^17]SEARCHLIGHT SECTION
 Oumss : Opportunities (Used or Resale) UNDISPLAYED

RATES DISCount of 10 DIS if full payment is that

3ne a line. Mint w I lines. I'r flgure advance

 iscount of 10 of if full paymefor 4 ronsecutire insettions.

 movnent onta,
adrance advance.
 sulvertising appearthg un uther than a contract
basis. Contract rates guoted on requet
 cago or San Firennican buttation Stw York Chi
 whject to limitations at auace availablo.

ENGINEERS NEEDED

Large Eastern manufacturer of communication and broadcast radio equipment has positions available for the following personnel:

Broadcast Receiver Project Engineers and Assistant Project Engineers

Television Receiver Project Engineers and Assistant Project Engineers

Mechanical Engineers - Senior Draftsmen Detail Draftsmen

Personnel experienced in design methods on broadcast, television and automobile radio receivers preferred. Pleasant working conditions. Unlimited advancement opportunities. Reply in dełail, giving complete resume of business experience.

I'-1568. Electronics
530 North Michigan Ave.. Chicago 11. Ilt

RADAR AND ELECTRONIC ENGINEERS MISSILE GUIDANCE PROJECT

New Navy electronic guidance and control project requires engineers for analysis, development and test of radar equipment, electromechanical servomechanisms, elec tronic timing and control circuits, and other guided missile equipment. Bachelor's degree in Electrical Engineering or Physics required: Master's degree or equivalen study of Mathematies, electronics and applied physics very desirable for responsible positions. Salary to $\$ 7500$ depending upon qualifications.

Write or phone Mr. C. D. Perrine, Jr., Chief Electronics Engineer
PILOTLESS PLANE DIVISION
Fairchild Engine and Airplane Corporation
FARMINGDALE
Farmingdale 1410
LONG ISLAND

WANTED

PHYSCIISTS \& ELECTRONIC ENGINEERS
A major oil company located in the Southwest requires the services of a few competent physicists and electronic engineers as permanent research staff members. Positions are available for project engineers and group leaders. Preference will be given to men with the Ph.D. degree or equivalent in training and experience.

Work involves research in the field of physics, physical chemistry, and geophysical exploration, and development of analytical instruments and equip. ment. Applicant should have training and experience along theoretical as well as experimental lines. These positions are permanent and offer unusual opportunities for the right men.

Give complete details as to personal history, education, experience, and salary required. All applications will be treated confidentially

$$
\text { P-2159, Electronics. } 520 \text { Noth Michiman Ave. Chimego 11. Inl. }
$$

(I) SEARCHLIGHT SECTION

BELGIUM

American Firms desirous to extend their activity to Belgium, are invited to contact with SOCIETE INDUSTRIELLE ALFA

80, rue de la Senne
BRUSSELS

Oldest importer of American radio, electrical and electronic material.

Abstract

(Continued from opposite part POSITIONS WANTED GRADUATE ELECTRICAIA Engineer, age 28. four yeurs experience in mulor control sales promotion and development coordination wants sales promotion or development work in elec- tronics, particularly communications. Active in amateur radio operating, building, experimenting since 1934. PW-220\%, Electronics, 520 N. Micligan Ave., Chicago 11, Ill.

JUNIOR ELECTRICAL Engineer. Age 23. Two years laboratory experience, electrical and electronic development. Desire position in N. Y. area. Leonard Goldberg, 625 West End Ave., 24, N. Y. SALES-ELACTRICAL Engineer. Ex-officer. 15 years experience in every branch of radio. Competent administrative executive. Aggressive sales producer. Sales-contact and rouble- shooting. Wide intimate contacts throughout entire radio field in metropolitan area and leaders nationally. Commercial phone and amateur licenses. Financially responsible. PW -2435 , Electronics, 330 W .42 nd St., New York 18, N. Y. ENGINEER, BSEE, electronics. Extensive experience, design, development. research circuits, ralar, microwaves, etc. Allied execu tive and sales experience. PW-2574, Electronics, 330 W .42 nd St. New York $18, \mathrm{~N}$, Y Ho W. 42nd st., New York $18, \mathrm{~N} . \mathrm{Y}$. ELECTRICAI, ENGINEER, 6 years experience in development, design, and manufacture of ratus. Goon, usable fundainental knowledge of above flelds. B.S. in E.E. Desire position as re search and development engineer. PW-2589, Electronies, 520 N . Michigan sve.. Chicago 11 III.

\section*{EXECUTIVE}

Furmally trained in engineering and law. Fixperienced as Chief Engineer and as head of licgal Departnent for corporations specializing in ladio. radar and ulectronic insmunentation. Comblete batent hattlighound. Available on reasubathe motice. PW-2134, hlectronics 520 North Michigan Ave., Chicago 11, Ill.

Experience proves . .

to maintain the reputation of your product, you must have an effective, well trained Service Department.
The maintenance of such an organization requires the services of an energetic young man with far reaching ideas. Five active years of radio and elec-
tronic service management and department organizing plus a college partment organizing plus a college education in electrical engineering,
have equipped this man for just such a position.
WRITE FOR FURTHER INFORMATION PW-2442, Electronics
330 West 4 nd St., New York 18, N. Y.

Northern Ohio SALES REPRESENTATIVE

Solicits connection with manufacturers of high quality electronic components and equipment.

Fully experienced
J. R. DANNEMILLER
ASSOCIATES

4334 Groveland Cleveland 18, Ohio

FOR SALE

Ecstern transformer plant. Well equipped -fully staffed-good business. All types of power transformers up to 5 KVA, chokes and audio. Spec:al apparatus transformers our specialty. Plant capacity $\$ 75,000$ monthly. This is not a sacrifice sale-asking no good will, net worth only. lf you want io manufacture transformers or if you are a large user this is worth inves. tigating.

130-105\%, Electronies
$3 \approx 0$ West 42 nd Street, New York 18 , N. Y.

LEADING SWISS FIRM

Manufacturer of small and medium sizes electric apparatus would be willing to manufacture under license or carry out any kind of contracts in the electric machinery line, appliances, variable speed devices, special machinery or similar apparatuses. Please send your inquiry to CW-2081, Electronics
330 West $42 n d$ Street, New York 18, N. Y.

Mr. Production Manager:

NEED OUTSIDE HELP?
We assemble and wire small Radio, Electrical, and Electronic devices in small lots. Satisfaction guaranteed.

TROY ELECTRONICS LABORATORIES
TROY, N. Y.

TELEVISION ENGINEERS

Several project engineers required with experience in:

1) television receiver production or circuit development
2) design, operation, and maintenance of television test equipment. Familiarity with the operation of synchroniz-ing-signal generators and sweep generators is desirable.

This is an unusual opportunity to join a progressive, congenial group and participate in an interesting program of development.

Write details to

TELIE-TANE RADIA CGIRIPORATEON

Employment Section
540 West 58th Street
New York City

Nomograms, Charts, Tables, Graphs Made to order
You may save valuable computing time. Free Brochure.
H. D. RUDERMAN

Time-Saving Computing Devices
1533 Townsend Ave., New York 52, N. Y.

WANTED

WANTED

Synchros-(selsyns-autosyns) Types 5F, 5G, $5 \mathrm{CT}, 5 \mathrm{DG}, 6 \mathrm{G}$, AYIOID, AYI20D, AYI30D, etc.
Navy Test Oscillator Model T.S. 47APR
Navy type 211916, 1-125th H.P. motors
Type DYI2, DY 17 Russell Dynamotors for ART 13
330 West 42 2nd St. Electronic: New
330 West 42 nd St., New york 18, N. I.

WANTED USED 10 KW BROADCAST TRAMSMITTER Write to
 KWSC, PULLMAN, WASH.

SOUTHWESTERN RADIO REPAIR SCHOOL

VA approved. Fully equipped. 100 student capacity. 0 nly Radia
busıness.
Reasonable.
BO-2575, Electronics

520 North Michigan Ave., Chicago 11, Ill.

(i) SEARCHLIGHT SECTION

SPECIAL METERS

Marion " S " meter, Made for National Co., 1 MA mat.
$9,2^{2}$
se cal
ring mitd fil metal case.............. $\$ 3.50$ Simpson, 25. Signal Strenth ('" S ") Meter, $31 / 2$ " rd A bake case. Use this on the plate circuit of
your tecelive to show the relative strength of incoming signals. Sc calibrated-6 to 100 DB above 1 microvolt. 5 MA Zero right myt with
translucent se, for internal sc illunnination from rear of meter. Comp with socket, lamp and leads. For further details refer to pates $16-165 \&$ Fig.
F30 B of Radio Amateur's IIandbook $\ldots \ldots .54 .50$ Weston, 301, Type 21 Standard Decibel Meter, $31 /{ }^{\prime \prime}$. rd fi bake case, minus 10 to plus 6.6 M. iw, 600 ohms; General purpose type $0.5-1.7$
Second to final rearling, $45-62 \%$ overthrow. 5000
ohms internal resistance at oDB. J.B.T.. $30-$ F, Dual range Frequency Meter Covers Frequency ranges from cibst Dual element, Vibrating Reed type 115 cicles: D. Dual element, Vetal case.
rolt, $31 / 2^{\prime \prime}, \mathrm{rd}$ fush metal
voltage Polarity Phase Rotation Tester, Triplett ${ }^{337}$ AVP, Checks 115,220 and 440 line voltage; locates open circults, blown fuses, damaged wirpolarity of D.C.; Checks phase rotation to determine direction of rotation of motors, operation of controls, etc.; Consists of a $3^{\prime \prime}$ square
 with test prods.
G. F., Do-46, 3.0 V A. C. 400 microampere ravt, Meectifier type, special sc, 31/2" round flush bake-
lite case
G.E., DO-53, 550 microompere morement, witly internal resistor tor 50 rolt D.C. 10 division, scale
calibrated $0-10$. Scale marked "Channel ${ }^{\text {s. }}$, $3^{\prime \prime}$ calibrated $0-10$, Scale marked "Channel ". A.
square fl bake case with paper Volt Ohm M.
$\$ 4.50$ scale .
Time Totalizer Indicates up to $9,999.9$ hours for 50 or 60 crcle operation on 105 to 130 volts.
Black scale $3^{\%}$ ral fakelite case, clamp

D. C. MILLIAMMETERS

G.F. DO-41, 1 MA, black scale, supp with paper G.E., D0-41, $30 \mathrm{MA}, 3 \frac{1}{2} 2^{\prime \prime}$, rd fl bake case $\$ 3.50$
 G.E. DO-f1, $200 \mathrm{MA}, 3 \not / \mathrm{L}^{\prime \prime}$, rd fi bake case. $\$ 3.25$ W.H., NX- $35,200 \mathrm{MA}, 352^{* \prime}$, rd fl bake case .53 .95 Simpson $25,1 \mathrm{MA}, 34 / 2^{*}$, rd fl bake case..... $\$ 4.50$ Simpson $25,200 \mathrm{MA}, 332_{2}^{\prime \prime}$. rd fl bake case. . $\$ 4.50$ Weston 506, I MA, $21 / 2^{\prime \prime}$, rd a bake case..... 53.95 Weston $500,50 \mathrm{MA}, 21 / 2^{\prime \prime}$, rd fil bake case... $\$ 3.95$ Weston 506.200 MA , black scale, $21 /{ }^{2}$ ", rd. fl
bake case
 G.E., DO-53, 1 $11 \mathrm{~A}, 3^{m}$ sq fl bake case...... $\$ 4.95$ G.E., DO-53, $20 \mathrm{MA}, 3^{\prime \prime}$, sq fl bake case.... $\$ 3.25$
 Weston $506,1.5 \mathrm{MA}, 2 \frac{1 / 2}{}{ }^{2}$ ", rd fi bake case $\ldots . . \$ 2,95$ Weston 506, $3 \mathrm{MA}, 21 / 3^{\prime \prime}$, rd fi metal case.... $\$ 2.50$ Sun 3AI'259. $1 \mathrm{MA}, 3^{1 / 2} \mathbf{2}^{*}$, rd fl bake case..... $\$ 3.00$ Triplett 0321. $1 \mathrm{MA}, 31 / 2^{\prime \prime}$, rd fl bake case.... $\$ 3.95$
 cuit diagram
 Gruen $508,150 \mathrm{MA}, 23 / 2^{\prime \prime}$, rd fil bake case $\ldots . . \$ 3.00$ Gruen $511,200 \mathrm{MA}, 21 / 2^{\prime \prime}$, rd fl bake case $\ldots . .53 .00$
 in Riutual Conductance Tube-Checker se sal
0 -3000. 6000,15000 Micromlinos, "Replace
Good" Good" Line Test"........................... $\$ 3.50$

D. C. MICROAMMETERS

W.E., 100-0-100 microampere, approximately 950 ohins resistance, $31 / 2^{\prime \prime}$, rd Al bake case, concen-
oric style G.E. DO-41, 200 microanupere, myt. Knife edge

 KV, supp with paper V.O.M.A. sc, $31 / 2^{\prime \prime}$. rd fin

bake case (3. E. Do-53, 500 ua myt, sc cal $0-15 \mathrm{KV}$, supp | with |
| :--- |
| case |
| Dader V... 54.50 | Triplett, 100 ua mit, 950 ohms resist, made for

 friumph, 400 ua mot......................s3.50
 Knife edge pointer...................... 55.50
McClintock
\mp
2001,150 nicroampere, approx 740

D. C. AMMETERS

G.E., DW-51, $30-0-30$ A. $21 / 2^{\prime \prime}$, rd g metal W.III, F-1 (NX 33), 150 A black scale, comp with ext 50 MV (Aircraft style) shunt. $2 \geqslant 2^{*}$. ${ }^{\text {rd }}$ H Weston 506 $200 \mathrm{~A}, \operatorname{comp}$ p with ext 50 MV Triplett 0321-T, 15 A. $31 / 2^{*}$, rd fil bake case. $\$ 4.00$
 Hoyt, $50 \Delta, 2 \frac{1 / 2}{2}$, rd fl metal case $\$ 2.95$ W.H.i. Aircraft tyDe . 240 A. Complete with ext 500

D. C. VOLTMETERS

 Weston $301,312^{\prime \prime}, 4$ K.V., with external prec re-
sistor Weston 301,5 KV, Complete with 1000 ohms ver volt ext pec wire wound resistor \& mtg clins,
$31 / 2^{\prime \prime}$. rd
 G.F., Do-41. 200 V , black scale, $31 /{ }^{\prime \prime \prime}$ ", rd fl bake G.E., DO $-41,500 \mathrm{~V}$, black scale, 1000 ohns per G.E., DO-41. 2.5 KV , black sc, with $1000 \mathrm{r} / \mathrm{/}$ ext
 W.E., 75 v, 1000 ohmis per volt, $3 \not / h^{\prime \prime}$ ", rd fl bake w.E., 500 V , 1000 olmms per colt, $31 / 2{ }^{2}$, rd fl lake case, concentric style $\ldots \ldots \$ 5.00$

 W.H, NXX-35, $200 \mathrm{~V}, 200$ ohnms per volt, 3 H/2. rd W.H.. NX-35. $200 \mathrm{~V}, 200$ ohms per volt, mounted

 W.II., RX-35. 4 KY with 1000 ohms per volt ext
wire wound resist................... $\$ 8.50$ W. H., NX- $35,20 \mathrm{KV}$ with ext pree wire wound
i000 ohms per volt resistor and mtg clips. $\$ 21.00$ 1000 ohms per volt resistor and mtg clips. $\$ 21.00$
gruen, GW $505,15 \mathrm{~V}, 21 / \mathrm{l}^{\prime \prime}$, rd fl bake case. $\$ 3.50$

 Triplett $521,0-50$ v $1000 \mathrm{r} / \mathrm{v}, 53 / 2^{\prime \prime}$. rd fi bake W.H., NX-33. 5 V D.C. 200 ohms per volt. $215^{2 \prime \prime}$

A. C. VOLTMETERS

 G.E., AO-22, $150 \mathrm{~V}, 31 /{ }^{\prime \prime}$ ", rd fl bake case.... $\$ 5.50$ G.E., AO-22, 1 caso V. 400 cycle, $31 / 2^{\prime \prime}$. rd fil hake G.E., AO-22, 150 V witit external resistor for 300 voit to nake dual range 150 and 300 volt.
(multiyly scale readings by two) Weston 517,75 V. ring intd $2^{\prime \prime}$ rd fi metal Weston $517,300 \mathrm{~V}, 2 \frac{1}{/ 2}$, id fl hake case... $\$ 6.00$ Weston tir6, 8 V. $3^{1 / 2}{ }^{2 \prime}$, rd fil bake case...... $\$ 3.50$ Weston $476.130 \mathrm{~V}, 3 \not 1 / 2{ }^{\prime \prime}$, rd fl bake case.... $\$ 4.95$ W.H.. NA-35, 15 V. (100 MA) 31,2 ", rd fl bake W.H., YA-8. 3 . 130 V , blank sc, Red line at 115 W.11., NA.35, 150 v (10 MA) $31 / 2 \%$, rd \& bake

Triplett 331-J.P, ${ }^{150} \mathrm{~V}$ with external resist for series connection to increase range to 300 V ,
(muutiply reading by 2 ,
a make a dal range $150 / 300$ Voltmeter, $3 \not / 2^{2}$, rd make bake case.. $\$ 5.50$ Burlington $32 \mathrm{XA}, 150 \mathrm{~V} .3^{\prime \prime}$ square flush bakelite G.E., AW-41, 15 V Black seale, no seale calibration SC IS-122 blank scele reference mark at
10 rolts ... liurlington
ror
fon
volt;

A. C. AMMETERS

 Triplett, $331-J .1$.C., $i 5 \mathrm{~A}, 31 \mathrm{~m}^{\prime \prime}$, rd fil bake case
w.H., NA-s5, i5 A. $31 / m^{m}$, rd fl bake case... $\$ 4.00$ G.E., AO-22, 50 A. $31 / \mathrm{h}^{n}$, rd fil bake case.... $\$ 4.50$ Ruplington 32 XC 60 and 120 Amp with external
current transformer

RADIO FREQUENCY AMMETERS

Weston 507, 750 MA, sc cal 0-10 Antennae Current, Indicator consp with ext thermocouple,
$21 / 2$, rd f balie case, black scale. 52.95 Weston 507,1 A, $22 / 2{ }^{2}$. rd filmetal case. $\$ 3.50$ Weston $507,1.5 \mathrm{~A}$. black scale, $21 / \mathrm{I}^{7}$, rd fl metal case
Weston $507,2.5 \mathrm{~A}, 24 / 2^{\prime \prime}$, rd fl bake case ... $\$ 3.95$ Weston 507,3 A, black scale, $21 \mathrm{z}^{\prime \prime}$, rd \& hake Weston $507,9 \mathrm{~A}$. black scale, $23 / 2^{\prime \prime}$, rd fl hake case $\ldots \ldots, \ldots$......................... $\$ 2.50$ W: H., NT- 33.250 MA . black se. se cal $0-5$. mkd W.II., NT-3ü, 3 A, 3 位", rd fl bake case.... $\$ 5.50$ W.H., NT-33. 9 A. bl se. $21 / 3^{\prime \prime}$. rd fll bake G.E. DW-52. 250 NA. black sc, se cal 0.5 mkd
 G.E., DW-44, 1 A. black scale, 22_{2} ", rd fl bake

 G.F., DW-44, 4 A. black scale, $2 \frac{1}{2}$ ", rd \&il bake G.E., DW-4士, 6. A, black scale. 2t/2", rd fl bake G.E., DW-4t, s A, black scale, $2 \not / 2_{2}$ ", rd ft bake
 Simpson 135, 2 A. $21 / 2^{\prime \prime}$, rd fl bake case...... $\$ 3.50$ Simpson 135, 8 A, $21 / 2^{\prime \prime}$, rd fi bake case...... 33.50 Simpson 36, I A. $31 / 2^{*}$, id fl bake case. $\$ 4.95$ G.E., DW-52. 1 A R.F. $21 / 2^{*}$, metal case $\$ 3.00$ Weston $42 \overline{5} .1$ A R.F.. $3^{1 / k_{2} ", ~ r d ~ \& ~ b a k e ~ c a s e . ~} \$ 7.50$

All iłems are Guaranteed and are Surplus New unless specified otherwise. All prices FOB, N. Y.25% deposit required on C.O.D.'s. Orders accepted from rated concerns on open account. Net 30 days

MARITIME SWITCHBOARD

(i) SEARCHLIGHT SECTION

PORTAGLE CURRENT TRANSFORMER

Wesfon Model 461 Type 4 (see illustration). This unit can be used with any precision 5 Amperes A.C. Meter to extend the ranges of the meter to
$50,100,200.250 .500$ or 1000 Amperes A.C. Accuracy within ${ }^{1 / 4}$ of 1%; Normal Secondary tap: Inserted primary for $100,200,250,500$ and

PORTABLE A. C. VOLTMETER Weston Model 433. $0-600$ rolt A.C. : accuracy with-
in $\%$ of 1% from 25 to 125 cycles. Hand Calibratin $3 / 31$ of from 25 to 125 cycles. Hand Calibrated Mions: Kרife edse pointer. Moving Iron Vne type

PORTABLE
A.C.

AMMETERS
Surplus New
WESTON
MODEL 528

DUAL RANGE 0-3 Amp. and $0-15$ Amp. Pull
scale for use on any frequency from
25 cycles. The ideal instrument for all commercial industrial, experimental, home, radio, motor and a genuine leather, plushlinted carrying case and a pair of test leads. A vers convenlent pocket sized

PORTABLE A. C. VOLTMETERS (See illustration of Ammeters) SURPLUS NEW WESTON MODEL 528
DUAL RANGE 0-15 and 0-150 Volts for use on any frenuency from 25 to 125 cycles. Complete with test leads. This voltmeser, with the matchng
test mod Ammeter as illustrated above, makes model Ammeter as illustrated above, makes an
ideal pair of test meters for any mechanic to ideal pair of est meters for any mechanic to
carry around jn his tool box 0 NLY s. 50
Complination Offer: 528 Voltmeter- 528 Ammieter Combination
BOTH

PORTABLE D. C. AMMETER \& SHUNTS
Westinghouse Type PX-4, Multirange 0-1000 $(1-2000$ and $0-4000$ Amps. D.C. (50. MV novement)
Acuracy within $\%$ of 1%, iong Mirror 3 range Accuracy within $\frac{3 / 4}{}$ of 1%, long Movine coil DeArsonval movement; Dimensions $44_{2} \times 41 /{ }^{2} \times 2^{\prime \prime}$. Complete with leads and external $\overline{30} \mathrm{MV}$ shunts.
Meter \& Leacs Onily.
1000 Amp shunt Only.
${ }_{4 n 00}{ }^{2000}$ Amp shunt oniy

POWER LEVEL INDICATOR

Weston Model 695 Type 3 A; A rectifier tspe volt-
meter with 59 ranges of $1.5,6,15,60$ and 150 volts and
A multrange DB meter for a zero signal level of

 scale or a total spread of 56 DB . structions and conversion data for usa gires in than 500 ohm circurts.
$\$ 19.50$

VOLT OHM MILLIAMMETER SUPERIOR MODEL 1553
A.C. Voltage 7.5. 15,150 , \& 750
D.C. Current 7.5, \& ${ }^{\text {Resistance } 0-5000, ~} \mathbf{C}-50,000$
 Complete with genuine leather carrying case, test leads \& instructions

INSULATION TESTER

${ }_{0-5}^{0-20}$ and $0-200$ Megohms, full scale The orlginal unit, The Weston Model 790 Insulation Testor operated at a 500 volt test potential
supplied by eight $671 /{ }^{2}$ volt batteries. Thhis has supplied by eight $671 / 2$ volt batterles. This hai
been modifled by us to utilize two 1/2 volit standard No. 6 dry cells and a vibrator Dower supply for the 500 volt test potential thereby eliminating the high replacement cost of bat-

 satreme accurary on all ranges. Surplus-New-Guaranteed.
NET fob, NY
"VIBROTEST" RESISTANCE \& YOLTAGE TESTER Associated Research, Inc. Model \#201
Resistance Rane $0-2000$ mesohms (at Resistance Range $0-200$ megohns (at 500 roits Voltase Range $150-300-600$ 㐫 Polts A.C. ush button action for resistance readings-no hand cranking! ${ }_{5}$ wo number 6 dry cell Complete with hatteries. test leads and instruc NFT poh,
..$\$ 60.00$

WESTON 687 OUTPUT METER

3 full scale ranges $0-2,0-10,{ }_{3}^{0-50}$ Volts Audio
Freauency
Complete with
3 drags and plug (PL 55)
NET fob, NY.

TEST UNIT 1-35-E

One of the component units required to test the Wakike 'Talkie" Transmitter and Recelver
BC-611. Consists of a $4^{\prime \prime}$ rectankular multirange meter, Switchlng paclities, Microphone, recelver, earphone, R.F. oscilator, gut orn
lator, crystal test socket, pin jacks, test terminal cable
 Manual and circuit diagram. Full seale ranges of 3 \& 150 V. D.C. $; 1.5$, 15 , 60 \& versatile radio test unit.
NET fob, NY..
$\$ 13.50$

FILAMENT TRANSFORMER

FLLAMENT TRANSFORMER G.E. 110 volt 60 cycle input, 2.5 volt 40 Amp. $\$ 2.75$ each Ten for $\$ 17.50$ STEP DOWN TRANSFORMER Jefferson Electrio 115 volt 60 cycle primary. 20 polts 10 Amp.
secondary, mounted in watertight vox. (9) $\$ 3.95$ each Ten for $\$ 30.00$
STRIP HEATER G:E., Cat \#2A305, 250 ohms 50 watt 115 V., $11 / 2^{\prime \prime} \times 1 / 2^{\prime \prime \prime} \times 6^{\prime \prime}$ (a) 60% bach Minimumr order Ten pieces Normally closed, 10 MICROSWITCH Single Pole Nirmally closed, 10 Dieces.

BC.1161-A RADIO RECEIVER
150 to 210 Megacycles. Can be used with the BC-1072-A,
Overates
off
115
$115 t e d ~ b o l t ~$
60 Inductance tuning for R.F., Antennae detector nd osclliator. With a few modications thls unit makes an ideal F.M. Receiver. Each set complete with circuit diagram and the 14 fol-

 and 15° deep.

NET fob, N. Y. $\$ 34.50$

BC-1072-A RADAR TRANSMITTER
150 to 210 Megacycles: Operates of 115 voit, 60
cycle power line. This und can be adapted to 2 meter band transmitter but its chief value is for BLOWER. Al5 rott 80 cycle 28 watts 381525
R.PM. A.G. Redmond.

NET fob, N. Y. $\$ 22.50$

VARIABLE RHEOSTAT WARD LEONARD

20 Ohms 4.05 Amperes 8° Class, complete with handle and all accessories for rear of board mounting. Can also be

800 Units in Stock Special Prices on Large Quantities Minimum Order 10 Pieces $\$ 2.95$ Each fob:N. Y.

RADIO NOISE FILTER

General Eiectric Co., Cat \# 1C202G2, 100 Amps. 50 Volts D.C.
Can be used on vehteles and boats, or with aircraft equidment to filter generator "nolses". For
 each. Minimum order 10 pleces.

VIBRATOR TRANSFORMER

ASSEMBLY

PRIMARY WINDING-center tapped 6 volt D.C. at 1.6 Ampere on each half of winding. Center
tap is brought out directly from vrimary windtap is brought out directly from dilimary weries SECONDARY WINDING-center tapped 360 volts A.C. at $30 \mathrm{M} . \mathrm{A}$. total. Center tap is brought out DIMENSIONS -214^{*} dia. $\times 33 g^{\prime \prime}$ overall height. United Transformer Co. tspe $\$ 82344$.
Minimum Order 60c Each 50 Pieces at 60c fob N. Y.

HYDROMETER

Storage Battery Testing Kit made for Navy Type A. Hydrometer with a spare 10° glass barrel A Two 13^{n} mercurial thermometers from 20 to 150° F with spectic correction callibration marldngs. C Two pipettes for electroyte measuring D Two hydroneter floats from 1060 to 1240 Bsume
E Two hydrometer floats from 1120 to 1300 Bsume Each set comes complete in a compartmented wood
 us-New.
${ }_{0}^{\mathrm{NET}} \mathrm{NY}_{\mathrm{NY}} \quad \$ 2.75$ each
Minimum Order 10 Pleces.

All items are Guaranteed and are Surplus New unless specified otherwise. All prices FOB, N. Y.$\mathbf{2 5 \%}$ deposit required on C.O.D.'s. Orders accepted from rated concerns on open account. Net 30 days

MARITIME SWITCHBOARD

(T) SEARCHLIGHT SECTION \mathbb{I} -

NOW AVAILABLE FOR IMMEDIATE SHIPMENT!

				CRAMER TIMER s.P. T. With control motor contacts soparate. $\$ 9.95$ - 120.85 and contan		
				FULL WAVE SELENIUM		
			074 ….....1.25	$\$.89$ or 5 for $\$ 4.00$		
\cdots				R. F. INDICATOR PROBE		
.oio			${ }_{\text {sw }}^{\text {su }}$			
. 49				BREAKERS		
AMERTRAN YOLTAGE REGULATOR 	${ }_{6 F 7}^{687} \ldots . . .11 .25$					
				$\$ 1.25$ 		
			35\%4			
				Res, 5000 ohms Max.............. $\mathbf{\$ 2 . 9 5}$		
PIONEER GENEMOTOR HIGH POWER ON WHEELS Dellvers output 500 V . @ 160 mlls, input 6 or 12 circuit breakers in speciaily constructod casing. The lob that will deliver the watts to that mobile Soecially priced				TRANSFORMER SCOOP		
			${ }_{884}^{884}$.........756			
G. E. INTERLOCK SWITCH 			${ }_{\text {coser }}^{2051}$			
		(en				
CONDENSERS				HF 16 -Filter choke 10 Hy . © $150 \mathrm{MA} \$ 1.95$ LC $2-25$ Mh r.f. Choke......... \$. 59		
MFD 400 V D DC..................s ${ }^{\text {s }}$						
		俍	cick			
CF-10-Prong socket $\quad 0.0 \ddot{C}$.						
硡			${ }_{\text {c }}^{\text {38P9 }}$			
			5ifpl			
CF-28-7MFD 300 V V DC. . .l.						
${ }_{1}^{2 M F}$						
	AMPHENOL COAX CONNECTORS					
. 15 MFD	83-ISPN . 50.45			 		
${ }_{6}$ MF	${ }_{83-1} 8$					
-1009				 		
imFo						
				relay with $A C$ reset coil		
				KR 21-Wheilock Sig.-iis v. AC ${ }^{\text {racts DPDT- B3 }} \times{ }^{4}$.in.............. 52.25		
CB-21-.25MFD 20,000 OA OC. CB-13-.1-IMFD 600 V . OC. 						
CB-36.25MFD 600 V . DC				KR $25-$ Struther Dunn- 115 v. AC 30 amm. KR 26-G.E. instantañoous verer euriont restay Typo PBC 3 amps @ © 115 v.............s24.95		
	NEW BANTAM BLOWER Blower 6 . AC or DC hl speed blower made by John 0 ster. Rated at 5000 RPM- 1.8 AMP- 					
				rnbach No. 4175 teed thru insulator..... . 29		
				stortening ceramic waters. Each..... $\$ 1.25$		
XTALS We can supply power xtals of any frequency ground to - 02 toterance in any type of holder for any surplus or standard transmitters or test equipment as well as any receiver IF frequency. Prices on request-write to our engineering department.						
Write For Latost Flyer 2SL						

(1) SEARCHLIGHT SECTION

MOW AVAILABLE FOR IMMEDIATE SHIPMENT!

Abstract

TELEVISION Values! TELEVISION

\section*{FOUNDATION KIT}

The retevision foundation kit consists of the most essentral (and expensive parts needed in the the high voltage power supply, for the picture tains the high voltage picture tube transformer (for five or seven inch fube), 2×2 filament transformer, low voltage transformer for the receiver, cathode ray flament transformer, fitter choke, 6.3 fitament transformer for the 16 six volt tubes along with the five volt transformer for the 5 U 4 . The two hiah voltage filter condensers, blocking osciflator, transfrriner all R.F.'s sound and video I. F.'s. peaking coils, discriminator transformer 1.F.'s, peaking coils, discriminator transformer. Rectifier tubes 2×2 and $5 \cup 4$, the picture tube Rectifier tubes 5 BP4 an all aluminum Elincor dipole antenna are also included. Of course there is the easy-to-follow 26 -nage instruction book, with a large 12 bv is schematic diagram. The instructions 12 by 18 schematic diagram. The instructions inctude television theory. circuit functions. explain scanning. give préliminary voltage meas: urements, part's layout and final adjustment of the television receiver which facilitates easy alignment without tire use of elaborate test build this set is the ahility to read a simple schematic diagram. Most radio men will have many or all of the minor parts not included in the foundation $\$ 34.75$ not included in the foundar. $\$ 3.51 .65$ Remaining sot of necessary tubes........... $\$ 16.95$

TRANSVISION TELEVISION KITS 12" Kit-Complete with all tubes
\mathbf{a} real honey.............. $\mathbf{2 8 9 . 5 0}$ 7 ,', Kit-Thousands of satisfled
users
$\mathbf{1}$
$\mathbf{1 5 9 . 5 0}$ RAY-LECTRON COIL KIT
Oscillator Tank Coil, 1 Antenna Coil 6 RF Plate: 5 Viden IF Coils. Shielded. Permeability Tuned;
Peaking
Shiolded Discriminator Coill
3 Poaking Coils. and Instruction Manuai contain. ing Circuit Diaqram for 20 Tube Seven Inch
Plicture Tutive Set, together with detailed Assembyy Instructions, and Parts list. $1 t$ possibte to
The design of these Coils makes it obtain satisfactory operation with Tetovision Station. Complete.
$\$ 23.50$
NEW TELEVISION COIL KIT 510
 Sound Colls for hioh guality televtsion rocesver desians. Contains all necessary coils for 3 stages
4 ma . wide video. 2 stages sound discriminator 4mak, wide video, ${ }^{2}$ stagas sound, discriminator, tions included
Pricead at Oniy.................... $\mathbf{\$ 9 5}$
NIAGARA COMPONENTS

CF 45-, Mfc- CONDENSERS

conaensor
11 prong isolant SOCKETS
octal sock 0
scope soc
Special hi. voltage socket for 2×2
TS.6-Scope transtormer- 2500 RS
TS. 5 -Western Electric- 0303184 aini...is 9.95

 any television tube
TCH 2 - Scope transforimer 1750 v a ma
 MISCELLANEOUS
Pots-all sizes fess switch
Pots-all sizes with switch
Trimmers-single 3-30 uti

High voltage wire- 50 ft. roll
Peaking
High vorage
Peaking coil
Complete Line of Television Components in Stock Write for Free Listing

5TP4 PROJECTION TUBE
Perfectly operating condition but with very sight
imperfection.
dieal for
for imperfection. ldeal tor enginears, experimenters,
inventors. or school instructors. Reyular price oi these tubes is $\$ 65.00-$ Special Bargain $\$ 20.00$

REGULATED POWER SUPPLY
Designed by RCA electronically requlated 300 output-maximum current
tion between no load and fill load output-uses
 I-1852-Pertect for Tolevision sweep circuits for
field or station use or wherever 300 t. must be naintained unnlee varying loadd conditions-specially priced $\$ 135.00$-less tubes.

SOCKETS

KS. 3-Amphenol-octal type, coranitic, chas KE. 5-l solantite-5 prong, ceramic, large KS. 6-Isotantite-6 prong, ceramic. large KS. 7-Johnson- chasis type
ceramic prong ux base, bayonet,
kS . 8— Hammarland $\begin{gathered}\text { Hardware } \\ \text { h7t- isolantitit. }\end{gathered}$
 lite, low loss. $11 / \mathrm{s}^{\prime \prime}$ mounting
 (metal shield with ${ }^{6 F 4}$ spring-10 KS-17-Johnsoll- 5 prong socket for RK-28. KS-20-Johnson-ceramic for 304 TH , 304 TL , KS-21-7 prond for RCA 813, mykroy, 25/8"
KS-22-Magnal- 14 prong scope socket, mica KS-24-Ucilnite $\begin{gathered}\text { file } \\ 829,10 w-105 s \\ 832 \\ \text { bakelite. }\end{gathered}$ aluminum, case forket, rocessed aluminum case for sub chassis
mounting. Socket has built in mounting.
by-pass
$\begin{gathered}\text { Socket }\end{gathered}$ has built ${ }^{\text {In }}$
for tubes condensers for 6 volt KS-25-Johnson-7 prong ior 829, 832 tubes. KS-27-Mykroy socket for VTi27/ 1007
KS-28-7 prong miniature with shield.

OTHER TYPES IN STOCK-PRICES ON REQUEST

```
BAT HANDLE SWITCH
Mfyd, by Cutler-Hammer-10 amp. SPDT with
#ncutral position-Perfect for rotary beam con-
```

WELLER Soldering Gun

A must in the kit of every man who makes soldered electrical connections: Heats in five seconds: see where you work: nets into tight
corners.
Operating on the sanie principle as
 60 cycles AC.
$\$ 12.95$
Tip Fastening Stud
ANTENNA LEAD IN BOWLS
 brass rod $51 / 2^{\prime \prime}$ bong-complet with Special-\$1.49

WESTINGHOUSE MN

OVERCURRENT RELAY
 AC reset-quass encased-pertect for any must be avoided A steal-\$12.95

VACUUM CONDENSER VC50
Capacity 55 mmid-test voltage $20,000 \mathrm{~V}$.
WHILE THEY LAST $\$ 4.95$

TELEVISION SWEEP GENERATOR

The TELE-SWEEP is designed specifically fo use in visual alignment of FM and television re ceivers and broad hand ampliffers. It generates a
broad frequency modulated test signal which, when used in conjunction with any standard oscilioscope provides this means for visually aligning the complex circuits encountered in FM television work. Tuhes: 6C4-OSCIFICATIONS OSE $\rightarrow 2$, GAG5

 Sweep Width Vari
Slaximum toutput:
Output
RF probe for point to point oheck
Electro-mectan
Terminatechanical sweep mechanis
rnished complete with tubes, probe and output

McMURDO SILVER AM-FM 906 SIGNAL GENERATOR

Available Now

 tude
FM
sweep attanumtor . : metered microvorits aco

Model 904
Capacitance
Resistance Bridge Net Price $\$ 49.90$

1/4 mimfd. ohm thru $1,000 \mathrm{mfd} /$ megohm: 0.50%
 ray leakave current meter; measures resistanc
capacitance under actual operating voltages! capacitance under actual operating voltagest
Model 905 COBINATION "SPARX" DYNAMIC SIGNAL TRACER
Net Price $\$ 39.90$
Frequency range from 20 eycles to over 200 megacycles. Contains isolating capacitor, resis. dindes. Loads a circuit moing tosted with only 3 mmid. and higher than . 5 mesoohm.

Model "Vomax" Vacuum Tube Voltmeter
Net $\$ 59.85$

 cycles. six resistanceranges six direct eurrent anges measuring from 50 mleroamperas throuth

THE
 FINEST "OUMMINIMCEATIOM" AT LOWEST PRICES
 QUALITY

MICROWAVE PLUMBING

10 CENTIMETER

```
Sand Load (Dummy. Antenna) wave guide 
*)
20 DB dmop, has short rikht angle.about
\mp@subsup{8}{}{\prime\prime}
Dipole Aatenna in Lucite Ball for use
Flexible Coaxial Connector, rigid coux to
```



```
Mitting, to flexible coax coupler (igG is
Wa, with flange. Gold plated. App 10"
Mingd cox siolted section Cu-bolid
SN
    3 centimeter
Wave Guide Sections 2,5' long, silver
Wlated with chole flange, Plane 18" ion.
Ware Guide 90 deg, bend E plane with
20DB directional coupler.
lrotary wave guide in/nut choke to choke joint
Hotars Coupler choke input:; round guide
    *-Curve ware Guide 8" ing corer to choke.
*-Curse Ware Guide 8, singe corer to cooke.
bend chote to cover
Mupleser Section using iR24
Wave Guide }\mp@subsup{5}{}{\prime}\mathrm{ length per foot.............
Pick-up lood with adjustable tuning section,
3 used in duplexer., Waile 1539TFX
3 cm. stahilizer cavity, tunable transmission
    1,25 Centimeter
3 CENTIMETER
Wave Guide sections \(2.5^{\circ}\) long, silver 5.75
4.00 4.00 4.75
2.00 6.00 5.25
2.50 5.95 5.95
10.00
1.50 1.50
15.00 20.00 2.00
```

Ware Guide Section 1" cover to cover
T Section choke to cover....
Ait refl Fihow corer to cover

rerer Elow and sections choke

CONNECTORS
UG $21 / \mathrm{T}$, Type "N"' Male.
UG $86 / \mathrm{T}$, Gold Plated....85
.95

RADAR SETS

SO9-1OCM. SURFACE SEARCH 4, 20 and 80 mile ${ }_{2}^{\text {ranges Raytheon, }} 250 \mathrm{KW}$ peak power input to parts, tubes, ware mildes and fittings.
SOI3-IDENTICAL TO SO9. Conplete set. user. Consists of: transmitter and receiver, PPI scope modulator. motor alternato
SNRADAR-GE, low Dower, 5 and 25 mile, rankes. Thes GL464 as pulsed oscillator, ${ }^{\text {Sn }}$ " "A" scope. onstration and laboratory work. $115 \mathrm{~V}{ }_{60 \mathrm{C}}$ operation.

SEND FOR INFORMATION 4.50

3.00 3.00 | 3.50 |
| :--- |
| 3.00 |

Flexihle Section $l^{\prime \prime}$ long choie to choke.... $\mathbf{3}^{3.00}$
Tunabie Carity with Coax input and output 6.00 CONNECTORS
UG $21 / \mathrm{T}$, Type "N"' Male.
UG $86 / \mathrm{T}$, Gold Plated.....
95

MICROWAVE TEST EQUIPMENT

10 CM WaVHMETER. Model "Sta". Micrometer adjust cavity with micro-ammeter resonance in-
dicator. Includes 115 VAC operation converter dicator. Includes 115 VAC operation converter
section. In grey metal carrying case, complete section. inh grey metal carrying case, complete
with cahles \& Electric $\$ 135.00$ W. F. I138 A. Signal generator, 2700-2900 Mc. range \& output meter. 115 VAC input, reg, I'wr supply. With circuit diagram............. $\$ 50.00$ MOTOR.GEN. PU 43/A Input: $24-28$ VDC @ 62 A. Output: 115 VAC.

PULSE TRANSFORMERS

All Standard name Items
Type G.E. K2450A Will receive 13 KV . 4 micro
second pulse on pri.. sec
ondary, dellvers 14 K
Peak power out 100 KW reak power out 100 KW \$15.00.
Hi Volt. Magnetron Input transtormer W.E. \#D166173 with cooling
fins............$\$ 12.00$
UX 4298 E Raytheon Pri. 4

KV, 1 microsecond Sec.
Hi Volt input pulse Transformer W.E. \ddagger D169271 Radar pulse Tformer G.F. K2731 Diameter Anp. Pulse Input, line to magnetron G.E. K2748A. $\$ 12.00$ Utah Pulse or Blocking Oscillator Transformer Freq limits $790-810$ cy- 3 windings turns ratio
$1: 1: 1$ Dimensions $113 / 16 \times 1 / 6 \times 19 / 32 \ldots . .75$

10 Cm . RF Package. Consists of: So Xmtr.peak input. $707-\mathrm{B}$ receiver-miker....... $\$ 150.00$ Morinlator-motor-alternator unit for above. . $\$ 75.00$ Rotating antenna using dipole feed and paraholic Ussd $\$ 45.00$ RT39.1PG15 Transmitter-receiver. Lighthouse tube With lighthouse and TR tubes........ $\$ \$ 00.00$

COAX CABLE

HGOU 51 ohm Silver Coated..............ft. \$.071/2 RGSU 52 ohm
ft. $041 / 2$
COAX Connectors Amphenol tonss type 8.311, ${ }_{831 \mathrm{~F}}^{8}$.
$\begin{array}{ll}\text {.ea. } & .27 \\ \text { ea. } & .45\end{array}$

THERMISTORS

D67332 head . $\$.95$

D1:0396 head .95
D163392 Mutton .95

DYNA. MOTORS PE 73 CM. Power
supply for BC 375 supply for BC 375
Input: 28 VDC Output: 1000 VDC (3) 350 Ma . Start ing relay. filter, Mrrs: Write for
euantity. prices $\& 8$ quantity, prices \& discounts on above BD 77KM, Power supply for BC 191,
Indut: 14 VDC Output 1000 VDC
(9) 350 Ma . News
 PE 101C, Input: $13 / 26$ VDC @ $12.6 / 6.3$ A. Output (9VAC @ 1.12 A.) 86 N. Input: 28 Vitput: 250 VDC @ 60 Ma. Westinghouse w/Filter. PC $7 \overline{1}$. Input: 12 VDC, output 275 vDC $\$ 1.60$ Ma. 500 VDC © $(10$ Ma. © 3.2 A. output: $\$ 3.25$ VMDC @ 60 Ma. $\$ 2.45$ DM 33 A. Input: 28 VDC @ 7 A. output: 540
VDC @ 250 MA. Power supply for modulator
 put: 285 VDC @ 75 Ma .
Dilter In 14DVC 3.3A Out 235VDC 90 ma with
DM-25: In 12VDC 2.3 A Out 250 VDC 50 ma . DM-42 In 14VDC. Out $515 / 1030$ VDC $215 / 260$ ma \& $2 / 8 V D C$
BD 77 input 14 VDC, output 1000 V 350 ma
DC $\$ 5.95$

.POWER EQUIPMENT

TRANSFORMERS

Filament Trans Prì 220v50/60cy Sec. 5v 10 A 34000 volt insulation $\$ 26.50$ Filament Trans 29000v test Pri 115 60cy Sec two 2 KVA Trans and Choke $115 v$ 50/60 cy 1 ph Out-
 Ripple

REACTORS

GE 0.116 HY @ 15A Res 5.5 ohms.......... $\$ 7.50$ Raytheon 0.1 Hy @ 1.4 A Test 1780 r
6 Hy 0.15 A Herm sealed
6 Hy @ 300 Ma
Hy (at 800 Ma- 7.5 ohms resistance......................... 8.5

REGULATORS

LINE VOLTAGE REG 2 KW Saturable reactor

 Self-Contained Unit in Grey Cabinet.

OIL CONDENSERS

.25 mf @ 20000 VDC Aerorox $\$ 17.50$	
1.5 mf @ 6000 VDC Aerovox ${ }_{\text {\$12.50 }}$	
10 mf @ 25 KV $\$ 75.00$	
$.01 \mathrm{mp} @ 25 \mathrm{KV}$ MICAMIC	
$.08 \operatorname{mif}_{100} 01500$ VDC. Sprague	
${ }^{.03 \mathrm{mff}} 5 \times 2000$ VDC. CD	
. 045 mp @ 2000 VDC. Sangamo	
G1 00015 nif 20 KV , Aerovox	
1970-401 $\$ 25.00$	
. 0001 mP @ 0 20KV, Sangamo	
. 0051 nf @ 15 KV . Sangamo G4	
. 002 mp @ 15 KV . Sangamo $\$$	
Isolating Capacitor. Cornell-Dubelier PL 1417. 106-110 munf (0) 10RV AC (peak) Each... \$3.50	
MFRS: Send your	

Mail orders promptly filled. All prices: F. O. B. New York City
Send Maney Order or Check. Rated firms send P. O. Shipping charges only sent C. O. D. Send for our latest microwave flyer, also our complete parts catalog.

COMMUNICATIONS
EQUIPMENT CO.
131 E. LIBERTY STREET
NEW YORK CITY 7, N. Y.
Telephone DIGBY-9-4124

(ID) SEARCHLIGHT SECTION ©

PAN-OSCILLO-RECEIVER
Ideal for laboratory, television and general service work

Model AN/APA 10

Performs work of four units

1. PANORAMIC ADAPTOR: For use with any receiver with I.F. frequency of 405 OSCILI OSCOPE .75 mes., and $29-31$ mos. 2. Oeired signals, monitors transmitter outceived sigals, moaitar pur phere atc SYNCHROSCOPE.
2. SYNCHROSCOPE: External inputs provide synchroscope action
3. RECEIVER: Three inputs provide facili ties for use with convertors to cover ties for use with convertors 10.000 mos FEATURES:
" 3 " scope tube

- 21 scope
tubes
- Aircraft type construction
- Variable sweep 35-40,000 cy
- Weight 40 lbs.
* Transformer built in for 110 V. 60 cycle operation.
- 2 I.F. stages-double conversion.
- 2 Video stages in push pull to vertical
- Pentode output cadio monitor.
* Multi-Vibrator horizontal sweep (radar
- Horizontal sweep amplifiers P. P. to hori zontal plates.
Surplus equipment tested and guaranteed in perfect operating condition. We have sold hundred of these units during the past year to leading schools, Iabora tories, amateur operators all over the world.

Price $\$ 97.50$
(Mail $\$ 1.00$ for 80 page Technical manual and instruction book)

MOTOR GENERATORS

Brand new. Built by Allis Chalmers to rigid specifications of the U. S. Navy. K.V.A. output 1.250 R.P.M. 3600
K.W. output I. Cont. Duty Ph. Single P.F. 80 Cycles 60

Volts input 115 D.C. Volts output 120 A.C. Amps input $14 \quad$ Amps output 10.4
Length $26^{\prime \prime}$; width $12-7 / 8^{\prime \prime}$; height $13^{\prime \prime}$. Compound accumulative A.C. and D.C. fields. Centrifugal starter. Splashproo plus or minus five cycles.

Price $\$ 87.50$

Identical Machine, but 230 volts D. C. input, \$125.00

Set of Replacement Spare Parts for Either Machine $\$ 29.50$

SYNCHROS: (Selsyns—Auto-

syns, Efc.)

G.E. Selsyn Control Transiormers model j5FBI. 115-55V. 60 cy. Bendix Cal-18300 115 V .60 cy .
Bendix repeaters, type X, CAL-5328A-1, 115 V. 60 cy .

Bendix repeaters, type II-2, C-69406-1, 115 V. 60 cy .

Bendix transmitters, type I-1, C-69405-2
G.E. differential generators, type 2J5S1, 115 V. 60 cy .

Electrolux synchro repeaters, type XXI C78863, 115 V. 60 cy
Bendix, Mod. 4, type 5SF synchro motors, Denais V. 400 cy .
Bendix synchro repeaters type X Cal-5328A-1, 115 V .60 cy
Diehl synchro transmitters, type lV C 78414, 115 V. 60 cy .
Esco synchro repeaters C-56776-1, 110 V 60 cy.
Ford Inst. Type 5 SDG, 400 cy . differentia Many other types and sizes of synchros in stock.

RADAR EQUIPMENT

SO. 1 Antenna Assembly Comprises:

* A drive mechanism including a drive motor and gear train.
* A synchro 400 cycle generator with gear train and mechanical differential.
- A rotating radiator system including a right angle radiator nozzle, a reflector in the form of a paraboloidal section, R.F. fittings for coupling the rotating system to a stationary waveguide.
A supporting pedestal and base plate. Brand new packed in export cases.

Price $\$ 90.00$
These antenna assemblies have many uses as replacements on vessels now using SO-1 equipment, experimental radar and microwave work, amateur beam rotators, etc.
S0.8 Antenna assemblies also available, brand new and export packed.

Price \$120.00
S.G. Radar complete sets of y ard spares. S.O. 3 Radar complete sets of tender spares.
S.Q. complete portable units manufactured by General Electric Co. Brand new and ready to operate on 90-130 volts, 60 cycles, 320 watts. Choce of A, B, or P.P. presentation. 300 Yards minimum =ange; max. $3,15,45$ miles. 10 cm . Ideal for schools, laboratories, small boats, tc.
RADAR CRYSTALS—98.35 kc
TRANSMITTING EQUIPMENT
BC-325 types B \& C. Freg. range 1.5 to 18 mes. Output 400 watts C. W. or 50 watts phone. $110 \mathrm{~V}, 60$ cy., used but in excellent operating condition
Components for T-4/ERC and T-5/FRC transmitters as follows:

MDI/FRC Modulator Units
SA-2/FRC Switch Panels
0-2/FRC Oscillator Units
AM-2/FRC Amplifiers
T

All prices quoted are F.O.B. Tuckahoe, All prices quoted are F.O.B. Tuckahoe,
N. Y. (About 20 miles north of New York Cify). All merchandise guaranteed. Immediate delivery subject to prior sale.

LABORATORY EQUIPMENT

Model T5.487/U

Peak to Peak V. T. Voltmeter

Designed by Radiation Lab M.I.T. and built by McGuire Industries for the Navy. Range 3-10-50-volts, complete in grey metal cabinet with coax input cable, A.C. cable, spare fuses and pilot lights.

Measurements Corp. Model 84 standard signal generators, 300-1000 mes.
Ferris Crystal Calibrator, Model 34A.
Hewlett Packard Interpolation Oscillator, Model 6225B.
Weston \#1 Precision 0-150, 0-1500 milliammeters in leather cases.
G. E. Model LU Radar test set.

General Radio 700A wide range B.F.O.
General Radio 561 V.T. Bridge with adapters.
General Radio 539A Variable Condenser. Hewlett Packard 505B Tachometer.
Hewlett Packard 506 Tachometer optical head assembly.
Ferris 20A Microvolter.
Ferris 20A-1 Microvolter.
Shallcross 621H Limit Bridges.
Daven Op-961 Power output meters.
(All Lab. equipment priced from 25 to 50\% off manufacturers prices.)

RELAYS \& SWITCHES

Western Electric D-168479 mer-cury-contact, enclosed in sealed metal tube base.

A high speed switching relay for use where large amounts of current are used, and in servo mechanical systems. Will op erate at 100 fimes per second and is also employed in vibrator power supplies for square
D. 168479 wave generators.

This switch has many ap. plications such as switching or interrupting high volt ages, antenna circuit switch. ing at high altitudes, power supply switching for highvoltage vacuum tubes and high-speed keying operations at any voltage up to 10,000 , or current up to 5 Sperti Vacuumamperes, frequency up to Switch 30Mc., or any power factor. LEACH, types 1355, 1154-Ä, 455C.
STRUTHERS DUNN, types IBXX129, IBXX 107, 1XBX105
WESTERN ELECTRIC, type D124001

BLEEDER RESISTOR

VERNIER TUNING GEAR BOX

$18: 1$ and $36: 1$ Ratio. Ideal for osc. tunlng $\$ \mathbf{2 . 4 9} 9$
section of SCR-522.

HIGH CAPACITY CONDENSERS
$4000 \mathrm{mfd} .-18 \mathrm{WVDC}$.
$4000 \mathrm{mfd} .=30 \mathrm{WVDC}$
1000 mfd
15 WVDC $1000 \mathrm{mfd} .-15 \mathrm{WVDC}$.

ART/13 MODULATION KIT

Cons:ats of driver, speech amplifier, sidetone amplitler assembly and modulation transmbus ART/13 transmitter:
SUPER CSUY

PORTABLE FM TRANSMITTER (Sonobuoy)
 doubled to 144 mc) Frumplete witis 5 tubes and diagram. (Less batteries)
ENCEPTLONAL BUY at.
$\$ 12.95$

GIBSON GIRL TRANSMITTER
 Emergency lire transmiter. 100% complete. Includes balloon. hydrogen generator, kite, signal lamp, antenna a Self-powered merely
 FULLY GUARANTEED
 $\$ 29.95$

DYNAMOTORS

Ideal for Mobile
Input: 6 or 12 volts
Output: 500 VDC at 160 ma PE-103 (slightly used)...s5.95 Input: 24-28 volts
Input: $24-28$ volts 10 ma: 14.5 VDC at 5 amps. Voltage Regu(slightly used)

RCA-158 OSCILLOSCOPE
Brand New-110y 60 cyc. हthen
tube. Complete eady to oper-
ate. Regular price much higher: Limited (unantily …ss9.51
$899 . \overline{3}$

FILTER CHOKES
HI.VOLTAGE INSULATION

BLOWER

Hi-air blast, designed for tranamitting tube service. Motor operates on 100-125v 60 cycle at 7000 RPM. Noise free with in satin finlsh, aluminum cabinet. Measures $4^{\prime \prime}$ high x $23 / x^{31 / 4 " \text {. Many uses. }}$
Super bay at
$\$ 5.95$

All merchandise guaranteed. Mail orders promptly filled.
All prices F.O.B. New York City. Send money order or check. Shipping charges sent C.O.D. Minimum order $\$ 5.00$.

ATTENTION!
 INDUSTRIALS—LABSSCHOOLS - AMATEURS
 Let us quote on components and equipment thot you require. We have too many thems to be listed on this page. Place your mane on our mailing list now for our maili eatalog.

SPECIALIZED
ELECTRONIC MATERIAL
IMMEDIATE SHIPMENT-
HIGH QUALITY-LOW PRICE
TUBES

Type	Price
50.	\$. 95
VR90	. 55
VR105	. 55
6 Y6	. 55
807.	. 95
836	. 75
8661	. 95
3D6/1299.	75
28D7.	. 75
3A4.	. 35
304	45
1L4.	40
6SL7.	55
12SL7.	65
12 SN 7 .	45
382H.	95
ELC5B	95
RK72	1.65
RK73	1.95
724A/B.	1.95
$724 B$	1.25
1R4/1294.	65
7P7.	65
7 Fs .	. 65
7N7.	65
$12 \mathrm{SF5}$. 45
12A6.	. 35
1626.	. 45
1629.	. 45
1631..	. 45
1632.	. 35
1633.	. 45
1644.	- 85
3 FP .	1.95
5 FP 7 .	2.95
7193.	45

CONDENSERS

Oil filled in recłangular mełal case
15 mfd .100 volts spradue suitable

CAPACITORS

Paper tubular dual 015 al 1500 V Price 8.50/C Paper tubular dual 02 at 1600 Paper tubular dual 0002 at 600 Paper tubular dual 004 at 400 Paper tubular dual 007 at 4 4e Paper tubular dual 008 at 400 .10 ea
$25.00 / \mathrm{M}$ $27.50 / \mathrm{M}$ $27.50 / \mathrm{M}$
$29.58 / \mathrm{M}$ $29.50 / \mathrm{M}$ $29.50 / \mathrm{M}$

WIRE WOUND RESISTORS
5\% Ward Leonard IRC, Ełc.

Ohmage	Wattage	Price
1	4	.06
60	4	.06
200	4	.06

WIRE WOUND RESISTORS
(Cont.)

RELAYS

DESCRIPTION

PRICE
Allied 30 ohm. Operate on 9 volts DC . 45 Allied TYPE BNXI. Six pole double throw. Heavy contacts 24 volts DC 175 ohms.,....... . 75 4 Pole single throw. 3 normally open 1 normally closed. 400 ohm resistance........... . . 65 Kurman type 509. DP. 115 Volts 60 eycles... . 95 G. E., CR279 two clrcuit coil 10 polts oontacts 50/20 Amps 115 Volt AC................ . 75 Allied BOH XII. Hermetically sealed DP DT Heavy contacts 110 volts DC 500 ohms....... . 75 Price Bros. TYiPE 36A DP DT 11θ Volts AC 60 cycles. Dust Proof cased.................. 1.4 S. P. S. T. with red-black indicator plug 7.5-12.5 volts DC 60 ohms....................... . 4 G. E, Dl07F 36 D. P. D. T. RF Antenna Change over type isolantete insulation 6 Volts DC 28 ohms

Alliod ANI33 Single circuit normally open very heavy contacts 24 volt DC 200 ohms.....
G. E. two circult 9 -15 Volts DC 50 ohms..... . 4

Price Bros, type TB-302 minfature isolantete spacers 24 rolts DC 300 ohms................
G. E. type B100J42 Three pole DT 71/a-161/2 Volts DC 75 ohms.................................

Allied type DC 43 Thres pole two throw Heavy Iuty Contacts 24 Volts DC 250 ohms.......

Allied type 13013D35 two clrcuit heary duty contacts 24 Volt DC 250 ohms...............

Ward Leonard Heary Duty keying type 70 Volts DC 2000 ohms

Allied type boyX-20 Two Circuit Heary contacts 12-24 Volts DC 130-260 ohms...... . 7

Ciare \#814680-Miniature 4 Trole DT 24 UDC 300 ohms
Vacuum Relay contacts rating 10 amps. Will break 3000 volts. Suttable for R1 antenna Relay Solenold resistance 200 volts. 24 volts D.C.

Leach type 1054 DP. S.T. plus holding contact. Heavy contacts 20-28 D.C. 265 ohms.. . 7 Allied type 15 D 35 DP . D.T. heavy contacts 240 ohms $20-28$ volts D.C. 75
Clare, minlature type, 3 pole, D.T., double contacts 24 volts D.C. 440 ohms.
Clare 818062-Momentary two pole single throw 115 Volts A.C. 1.2
Telephone type 3 pole slagle throw normally open 1000 ohnis
Time Delay Relay-Thermal vacuum type S.P.S.T. 100 ohm coil- $\mathbf{2 4}$ volt A.C. and D.C. Time 90 seconds.

Plugs, P1 291 \qquad Price $25.00 / \mathrm{M}$ Varnished tubing sad Vinelyte all sizes

Price $10.00 / \mathrm{M}$

Thermoswitch Sperrs Type Consista of microswitch. flat wound, 30 ohm heating element, heat expansion element, operating control..... Price . 95

EDLIE ELECTRONIC INC.

135 LIBERTY ST.
BArclay $7-4763$
NEW YORK 6, N. Y.

(ii) SEARCHLIGHT SECTION 【I

SURPLUS BARGAINS!

TRANSTATS—3 K. V. A.

Typerif. Input: 115 V $10 \sigma_{6}$. Output: 115 V. Mas. Amps: 26 A .
Made as a line voltMade as a line volt-
age corrector 10% of age corrector 10% of
input voltage, or can input connected to give
plus 200° or minus 20% of input. Can aiso be reconnected to be used as an isolated type stepdown with variable secondary. Input: 115 V. Output: $0-36$ Volts at 30 Amps.

A Real Buy at. . . . $\$ 18.00$
(same type, but 25 KVA, Input: $103-126 \mathrm{~V}$;
Output:
115 V. 2.17 A .
Price $\$ 6.50$

STEPDOWN TRANSFORMER

Made by General Electric. Heavy duty stepdown transformer, with considerable overdesign. Ideal for rectifier applications, low voltage heating, general laboratory use, etc. Open frame type.

Input: 115 Volts- 60 Cycles
Output: 15 Volts (at full load)
Capacity:
Size:
$3.1 / 2^{\prime \prime}$
.
.
Your Cost \$3.75
Quantity prices available

VOLT-OHM MILLIAMMETER

Simpson Model $=235$ A Simpson Microtester. Ranges: 1-10-50-250-5001000 Volts. 0-10-100-560 Milliamperes. $0-250$ Microamps. $0-2000$ Ohms; $0-29$, 000 ohms; 0 Megchms.

Your Cost $\$ \mathbf{1 2 . 0 0}$

SELENIUM RECTIFIERS
Full Wave Bridge

回

OHMMETER

Weston-689 1-F
Convenient pocket size with sturdy leather case, for low resistance readings. Double Scale.
$0-10$ Ohms Full scale $0-1000$ Ohms Full scale.
Your Cost\$14.75
(with case $\&$ batterios)

SPECIAL METERS

Frequency Meter- $350 / 450$ CPS Aireraft type 4" Weston hodel 637.... $30^{\circ}{ }^{\circ} \mathrm{F}$ to $230^{\circ} \mathrm{F}$. Resistance Thermometer- -30 to 230 in.

D. C. AMPS \& MILLS

0.1 Ma 2" G.E. DW41
$0-1$ Ma 2" Weston 506
$0-2$ Ma $2^{\prime \prime}$ Sun 2AP525-5
. 25
$0-2$ Ma $2^{\prime \prime}$ Sun 2AP525-5
$0-5$ Ma $2^{\prime \prime}$ Dejur S-210 .25 $0-15 \mathrm{Ma} 2^{\prime \prime}$ Weston 506 3.95 0-25 Ma 2" G.E. DW41 0-30 Ma 2" G.E. DW41
0-100 Ma $2^{\prime \prime}$ sq. Simpson 122 $0-500 \mathrm{Ma} 2^{\prime \prime}$ G.F. DW 41 2.95 2.95 3.25 $0-1$ Ma $3^{\prime \prime}$ sq. Whse RX35 .2

1-0-1 Ma $3^{\prime \prime}$ W.E. concentric
scale: 100-0-100. NEW
cracked glasses.
$\begin{array}{ccc} & 10 \text { for .. } \\ 0-1 & \text { Ma } 3^{\prime \prime} & \text { sq. Weston } 301\end{array}$
9.50
(scale 1.5 KV)
$0-1 \mathrm{Ma} \mathrm{3"}$ sq. Weston 301.
$0-1$ Ma $3^{\prime \prime}$ G.E. DO-534.15
$0-15 \mathrm{Ma} 3^{\prime \prime}$ Whse NX35 2.95
(scale: $15 / 150 / 300$)
$0-30 \mathrm{Ma} 3^{\prime \prime}$ Weston 301 Metal Case.
3.75
$0-30 / 120 / 600 \mathrm{Ma}$. Weston.
4.75

Model 280 portable-slightly used.
$0-1$ A. $3^{\prime \prime}$ sq. Weston 301.
5.50
$0-10$ A. $3^{\prime \prime}$ sq. Triplett in
wooden case
$0-10$ A. $3^{\prime \prime}$ Simpson $\ddagger 25$ 2.50

0-0-30 A. $3^{\prime \prime}$ Simpson $\# 25$
4.50
$0-300$ A $3^{\prime \prime}$ Roller-Smith
(Fl. Bake. Type TD-50 MV
with ext. shunt)
0-300 A. Same as above
without shunt
0-300 A. 4" Weston 643.................. 8.
(f. metal bl. scale ext. shunt)
$0-300$ A. $4^{\prime \prime}$ same as above
(without shunt)
All meters are white scale flush bake-
lite case unless otherwise specified.

"MIDGET" SELSYNS

A real midget selsyn, ideal for position indicators. Precision built by Bendix. Exceptionally light weight. Aluminum case. Operates on 24 volts, 60 cycles.

Your Cost \$3.95
A Pair

WHEELCO CAPACITROL \#221

The original Wheelco electronically controlled temperature regulating pyrometer, cold junction compensated, high resistance movement. Scale length:
Ranges available:- $0.400^{\circ} \mathrm{F}$. $0-1200^{\circ} \mathrm{F}$. $0-800^{\circ} \mathrm{F} . \quad 0-2000^{\circ} \mathrm{F}$.

Your cost: \$98.75

OHMMETER

Simpson 4882

One of the famous Microtester lines. Has wide range . 2 to 10 megohms Ranges: 1000 ohms, 10 olims center: 10.000 ohms, 100 ohms enter; 100,000 ohms, 1000 ohms center; 1 Megohm, 10,000 ohms center; 10 Megohras, 100.000 ohms center.
Complete with batteries.
Your Cost \$11.75

D. C. MICROAMPS

0-150 Microamps-2" rd. G.E.-DW51 or Whse CNX3. Res: 500 Ohms. $\$ 3.75$

A. C. VOLTS

A. C. AMPS

0-1.5 A. $2^{\prime \prime}$ Weston 507 (RF)	\$3.70
0-2 A. $3^{\prime \prime}$ Whse RT35 (RF)	3.95
0-3 A. 3" Whase NA35	
(scale 120 A.$)$	
0-30 A. 3" Triplett (metal)	$\underset{\sim}{2.95}$
0-5 A. 4" Weston 642	7.95
(surface metal)	
$0-5$ A. $1^{\prime \prime}$ sq. Triplett 431A	2.95

All meters are white scale flush bakelite case unless otherwise specified.

POWERTRON Electrical Equipment Co.

SURPLUS DIVISION: ELECTRO-TECH EQUIPMENT CO.

- VEW GUARANTEED

That's A Buy

CONSISTS OF TWO JAN NEW 86GA TUBES, TlANSFORMHER GARDNER ELEC. CASED 2.5 V VAC Test; Same ntg as kENYON T389-SOCKETS
CERADIC JOINSON 224 . 'TAE'" SPECIAL
.$\$ 5.95$
TIEANSFOIMFR OLLY for T'WO 866A's..... $\$ 3.95$

PE157 Vibrapack Splir. Rat \& CHGER.

 TREMDPET ${ }^{\text {Lex }}$ DRIVER Reentrant 55 Watt WE Diaphrazms ESGO
Dual 10A/125V $\$ 2.95$: SRFAKErS

Rotary Beam drive mitr \& Solspus

 38 tt \$10.95 Irifrea rugged dsgin TELEVISION, FMI or BEAM Can be sec-
tioned to any length light rugged.... 12 for
 ohms $\pm 1 \mathrm{DB}$ Cased Thernador mfgr
Transf
Outpt PI 805 to C.T. 500 hin 1 line
Untversal

inmite for "tabogram" babgains TAB" OPEN THULSDAYS 10PM

DYN: MIC OR CARBON MICROPHONE OR LINE
 sidetone adj Audio osc AMP \& Hdphone monitoring
 WITH TWO 6 V 6 \& 6 Sj7... Add Postage ail orders
$\$ 2$ Min. Order FOB N. and 25% order 25 sit. WOrth 2 - 7230 . Send for catalog. Specialists in International Export, School, C
$\& \quad$ Ineustrial trade. Money Back Guarnatee.

ELECTHEDNIC PARTS

 $\begin{aligned} & 6.3 \mathrm{VCT} / 3 \mathrm{~A} \\ & 1.75 \mathrm{~K} / 15 \mathrm{KV} \\ & \text { CT/ } / 6.5 \mathrm{~A}\end{aligned} 3.756 .3 \mathrm{~V} / 2 \mathrm{~A}, 2.5 \mathrm{~V} /$

 220 v ….................................... 3.95 $2.5 V / 15 A m p / 7.5 K V / P r i$
$5 \mathrm{VCT} / 20 \mathrm{~A} / 10 \mathrm{KV}$ \&t 220 V or
 $\begin{array}{r}4.53 \\ 3.95 \\ \hline\end{array}$ Tube checker filkP $7.5 / 12.6 / 25 / 32 / 50 / 60 / 00 / 85 / 95 / 110 / 250 \mathrm{~V}$ tap
 $6.3 \mathrm{~V} / 6 \mathrm{~A}, 2.5 \mathrm{~V} / 2 \mathrm{~A}, 2.5 \mathrm{~V} / 2 \mathrm{~A} / 7.5 \mathrm{KVlas}$.
 18.6 V 11.25 L . $12.6 \mathrm{VCT} / 3.5 \mathrm{~A} / 3 \mathrm{KV}$ inpt 115 t 4.00
 $100 \mathrm{ma}, 663 \mathrm{Y} / 2.5 \mathrm{~A}$ 《6.3/6A $82 ; 500 \mathrm{VCT}$
 3A, $5 \mathrm{~V} / 3 \mathrm{ma}, \ldots \mathrm{M}$
 ${ }^{32001 C T}$ \&TC

PRECISION RESISTORS IRC, SHALLCROSS MEPCO, INST. RES. CO., OHMITE, WE,for METERS

 $1000 \mathrm{Y} / 45 \mathrm{ma}$. $95 \mathrm{VCT} / 80 \mathrm{~m}$
$1 \mathrm{~A}, \mathrm{G} .3 \mathrm{~V} / 3 \mathrm{~A}$ Hmtclly cased HV insltd $\quad 7.95$ Universal Vibrator transf 6 . 12 . 24 . 115 VCT \&

 ClIOKES CASED H Y Co
ohy $/ 125 \mathrm{ma}$ s 1.25 : 8 hy 200ma

12hy/300na $\$ 2.95$: $12 \mathrm{hy} / 500 \mathrm{ma} / 950 \mathrm{hm}$.... 2 tor | 2.89 |
| :--- |
| $\mathbf{9 . 9 5}$ |

[^18]
(ID SEARCHLIGHT SECTION W

Surplus Equipment

RADAR SET AN/APG-13A, transmitter-receiver and indicator, 10 cm . compact

RADAR JAMMING EQUIPMENT, T-85, APT 5, output 40 watts noise modulated signal, 600 to 1500 megacycles, less power
supply, new $\$ 50.00$

RADAR JAMMER, T-26/APT-2, 435-715 meg-
वcycles, 110 volts, 400 cps , new. $\$ 40.00$ cacycles, 110 volts, 400 cps , new. . $\$ 40.00$
10 CM. CRYSTAL MIXER.
. $\$ 3.00$
2000-4000 megacycle tunable mixed cavity,
$\$ 5.00$
300-1000 megacycle oscillator buttertly,
80-300 megacycles mixer buttertly. . . . $\$ 3.00$
10 CM . fixed attenuator 50 ohms, 20 db ,
GENERAL ELECTRIC 10 CM oscillator, 115 volts, 60 cps, new................ . $\$ 125.00$

ATTENUATOR CN-50/APN, calibrated mutual inductance attenuator, 30 to 100 db ,

RADAR TRANSMITTER BC 947A, 10 cm . less power supply, used, weighs 380
pounds, complete with magnetron, $\$ 40.00$

RADIO DIRECTION FINDER EQUIPMENT, Model DP-15, $100-1500 \mathrm{kc}$. receiver, power supply, operating pedestal azimuth, scale, 110 volts, $60 \mathrm{cps}, \ldots . . ., . . . \$ 160.00$

RADIO COMPASS Receiver, Bendix MN26A, 150 to 1500 kc, 12 tubes, 12 volt DC
operation, new..............$\$ 40.00$

RADIO RECEIVER BC733D part of RC-103-AZ aircraft landing equipment, crystal controlled, 6 channels between 108 110 megacycles, new, less dynamotor,
12.00

TYPE N connectors, UG 21, 25, 27, 29, 30, SO239 PL 259, M359 and UG 266.

CLOUGH BRENGLE AC capacity, resistance and turns ratio bridge, model 230, new,

GENERAL RADIO PRECISION WAVEMETER, Type 724-A, range 16 kilocycles to 50 megacycles, V.T.V.M. resonance indicator, complete with accessories and
carrying case, new $\$ 200.00$

Radio compass receiver, BC 413-A, B, C, and G, Bendix, used $150-1500 \mathrm{KC}$ good condition $\$ 15.00$
Modulator BC 748-A, less tubes, new. . $\$ 7.50$
Dynamotor, 24v 23 amps in, 515/ 1030/ 2/8 volts at 215/ 260 ma out, new, $\$ 8.00$
Transformers, 115 v 60 cps primaries:

1. $7500 \geqslant 35 \mathrm{ma}$ ungrounded, Thordarsen suitable for doubler. $\$ 15.00$
2. 6250 จ 80 ma ungrounded, G.E., $\$ 12.00$
3. 2 secondaries at 500 volts, 5 amps
each $\$ 50.00$

Pulse input transformer, permalloy core, 50 to 4000 kc, impedance ratio 120 to
2350 ohms $\$ 2.80$

Pulse transformer, 3 windings, impedance 0 to 5000 ohms, turns ratio $1: 1.1 . . . \$ 0.50$

Ceramic feed thru capacitors, threaded, 50 mmid................. $\$ 5.00$ per hundred. .

Electro Impulse Laboratory

P.O. Box 250

Red Bank, New Jersey

RADIO TRANSMITTERS
 Immediafe Delivery from Stock

50 Watts to 10 Kilowatts, at Unusual Savings.

6-10 KW Low and Intermediate Frequency Bunnel Transmitter, 150 to 550 KC . A1 emission, 10 KW output at higher
frequencies (above 250 KC). Consists of frequencies (above 250 KC$)$. Consists of
$\mathrm{BC}-365 \mathrm{~F}$ Exciter-Driver (300 watts), PA1 A Power Amplifier, RA-1A Rectifier, AT1A Antenna Tuning Unit with pre-fab (knock-down) tuning "house", with all spares such as tubes, meters, capacitors, resistors, transformers, etc. All NEW Fquipment, in original factory packing. Operates from 220 volts, $\begin{gathered}3-p h a s e, ~ \\ \text { cycles A.C. Four (4) complete units avall- }\end{gathered}$ able. Priced at less than one-fourth original, $\$ 8,000.00$ each.
Model $600-\mathrm{B}, 600$ Watt Radiotelephone transmitter, mfd by Temco for the Navy (shore station), 600 watts on phone, 1 KW on CW; frequency range 1.5 to 20.0 mc Includes separate Remote Control and Speech Amplifier unit. Operates from 220 volts, 1 -phase, 50-60 cycles AC. With tubes -no spares. Only one unit available Price, \$2,000.00.
300 Watt, Low
300 Watt, Low and Intermedlate Freq. BC-365F Transmitter, as described for driver of 10 KW unit above, range $150-650$
KC . New Eapt. Complete with all spares Price $\$ 400.00$ each
350 Watt Alrport Tower Control Radiotelephone transmitter, mfd. by Aircraft Accessories Co. Model RC-52. Two channels, separate transmitter for each (common power supply). Range 1.5 to 7.0 mc Almost new condition. Includes separate Remote Control Panel unit, tubes, Radiomarine Ship or Shore Radlotelephone Transmitter. Model TCR, 125 nominal watts, 6 -channels. Range 2.0 to 3.0 mc. Operates from 110 - or 220 -volts, 1 phase, 50-60 cycles AC. Condition used, but clean and operating. Less tubes, conat extra charge). Nine available. Priced way low at $\$ 300.00$ each.
Colling 75 Watt Autotune Transmitter, Model TCB. 10 -channels instantly available hy dial-telephone selection at transmitter or remote position. A1, A2, or A3 emission. Frq. range 1.5 to 12.0 mc . ${ }^{\text {Op- }}$ -
erates from 110 volts, 1 -phase, $50-60$ erates from complete with all spares (iubes. transformers. autotune motors, crystals, capacitors, etc.), remote operat ing unit, handsets, etc. Condition used, but clean and operating. Only two avail able. Priced way below cost at $\$ 760.0$ each. Ship All-Range Transmitters, 125 Watts output on CW or ICW: 40 watts
on phone. Model TCE, mfl. by Westingon phone. Model TCE, mfl. by Westing-
house. Range 300 Kc to 9.05 mc , accomhouse. Range 300 Kc to 9.05 mc , accom-
plished by plug-in tuning units (6 total, to cover range), each preset to desired operating frequencies. Supplied complete
with $M G$ set (for 230 volt DC operation) With Mcr set for controller. remote control unit, motor controler. remote control plugit tuning coil units. All new eqpt. Only sets available, at low price of $\$ 200.00$ each. Watt Tower Control Radiotelephone 50 Watt Tower Control Radiotelephone
Transmitterg. Model BC-329. Range 150 to 450 KC. Transmitter, Modulator and power supply all in one compact cabinet Operates from 110 volts. 1 -phase, $50-60$ cycles AC. Condition used, but clean and operating. Less tubes. Ten units avail

ELECTRONIC BARGAINS

SCR-206F Direction Finders, for small boats or other installation.
KC to 18 me. with visual tung eye, sense antenna, loop (no telescopes), spare tubes headset, and 6 -volt mg set for plate sup ply. 6 -volt operation, but readily adaptable for 110 volts AC. Complete with $\$ 100.00$ each. Dual 6 V. Vibrator Packs. Made by Gal vin-Motorola for 25 w. mobile transmalts D.C, at 160 ma, with slight wiring change output can be transformed to 300 volts at 300 ma . Each pack has two vibrators and
wo OZ A gaseous rectifier tabes for in two OZ 4 gaseous rectifier tubes for in-
stantaneous operation. New and individually packed. Approximately 370 units available. Lot price $\$ 8.00$ each.
Variacs, $3 / 4$ KVA, $0-135$ volts $50-60$
cycles AC. $\$ 8.00$ each
Dual-Blower with Motor, large transmitter use. Operates from 110 volts
fio cycles AC. Price $\$ 14.50$ each. Many other items. Write, listing your requirements. are f.o.b. N.Y.C. All material subject to prior salel Equipment inspection invitedl.

TELEMARINE
COMMUNICATIONS CO.
381 Seventh Ave. B'klyn 15. N. Y.
Tel. Sterling 8-1900

MICROWAVES

RECEIVER: 1000 to 3100 Megacycles; Superhetro dyne, AN/SPR-2A, RADAR RECEIVER; Consists of Tuning Unit. Amplifier Strip and Power Unit Cavity tuned by calibrated dial. AMPLIFIER
STRIP contains I. ${ }^{\text {A }}$ amplifers. detector Fideo and Tudio amplifiers. pulse stretchector, Nide POWER UNIT reruires 115 Volts A.C. 60 Cycles. Complete with 15 tubes, meter, cables and 270

I.F. AMPLIFIER STRIP: TAI-2-SE; 40 pentode tubes in cascade. 6SH7 infinte 1 m pedance detector and video amp. Sensjtivity: 10 microvolts input for 15 volts
(audio) output. Complete with tubes....

KLYSTRON SUPPLY. Power supply operat ing from 115 V.. A.C. 60 CPS. Include Sperry type 12 tube holder and tuner. Rer tuning. Rack mounting. Uses 417 A Klvs tron (not supplied). Output is type conn. Mfg. by Westinghouse. Gov't in spected
WAVEGUIDE CONNECTORS: 3 Centimeter band for IRG- $\mathbf{0} 2$ waveguide, $3 / 2^{\prime \prime} \times 1^{\prime \prime}$ UGG-39U
TG-40/U Flange conn........ 12 for 5.00
TUBE MOUNT: FOR 726A/B TUBE: Type 'N.' Output. Outpit can be tuned: NEW, Gov't Insp.
6.00

CRYSTAL MOUNT: 3 CENTIMETER
Proadbanded over range of 8500 to 9400
Megacycles: VSWR is 1.1 max. over entíre
range. Silver plated.......................
DIRECTIONAL COUPLER: 3 Centimeter
21 DB. ${ }^{\prime \prime}$ long: Silver platerd and painted
Uses standard UG-39 and UG-40 connec

MICROWAVE EQUIPMENT CO.

57 Elmwood Rd., Verona, N. J.
Alt marchandise guaranteed All prices F.O.B.
Verona. N. S. Send Money Order or Check. Or: Verona. N. S. Send Money Order or Check. Or ders accepted from rated concerns on open account, NET IO DAY

2 KW MODULATION TRANSFORMERS - COLLINS 12000 to 4000 ohms NEW IN ORIGINAL CRATES

$\$ 25.00$ each

 western engineers, Ltd. Box 1111 . Oakland, CALIFORNIA> BEST QUALITY, USED
> ELECTRON TUBE MACHINERY
> Equipment for the manufacture of all kinds of electron tubes, radto tubes, incandescent lamps
neon tubes, photo electric cells, X-ray tubes, etc.
> american electrical sales co.
> 65-67 East 8th St. New York, N. Y.

SURPLUS COPPER CABLE WIRE

400,000 foet unused U U. S. Slunal Corps wire \#
four conductors 7 strands: 1320
feet
por roel at $\$ 47.50$ F.O.B. Louisville, Ky . Sample sent upon request.

AMES SUPPLY CO.
3956 Pennsylvania Ave. S.E. Washington, D. C. TWINING - 0749

SHEET METAL MACHINERY
NEW and Used - Brakes - Sheart Forming Rolls - Folders Whnches -Di-Acr ment
B. D. BROOKS CO., INC.
361 Atlantic Ave., Boston, Mass.

(T) SEARCHLIGHT SECTION TT

A Once-in-a-Lifetime Opportunity to Buy
 TRANSMITTING AND SPECIAL PURPOSE

AT PRICES THAT SEEM UNBELIEVABLE!

Check this list of Transmitting and Special Purpose Tubes! Then check our prices! Never before - and perhaps NEVER AGAIN - will you have such an opportunity to get exactly what you need at such prices. Every tube BRAND NEW - IN

ORIGINAL FACTORY PACKAGES AS PURCHASED BY THE U.S. GOVERNMENT. Manufactured by WESTINGHOUSE, WESTERN ELECTRIC, GENERAL ELECTRIC, R.C.A.. EIMAC, H. \& K., others equally reliable. We repeat

ALL BRAND NEW (JAN) IN ORIGINAL UNBROKEN FACTORY PACKAGES AS PURCHASED BY U.S. GOVERNMENT!

1B24 \$ 2.95 ea.	V.T.158A $\$ 4.90$ ea.	$803 \ldots9+90$ ea.
2API \$ 1.95 ea.	128A \$29.95 ea.	$80+\ldots .$.
2C22\$ 79 ea.	250 R \$ 4.95 ea.	
2J22 \$15.95 ea.	$371 \mathrm{~A} \$ 1.47$ ea.	832A \$ 1.47 ea.
2J32 $\$ 15.95$ ea.	388A $\$ 4.95$ ea,	Type Push-Pull R.F. Beam Power
2J38 ${ }^{\text {a }} 15.95$ ea.	417 A $\$ 9.80$ ea.	Amplifier. Max. Power Output 26W.
2J48 $\$ 15.95$ ea.	446A \$. 74 ea.	
$3 \mathrm{CP1}$. \$ 1.95 ea.	WL530 $\$ 39.50$ ea.	841 \$. 69 ea.
4J26 $\$ 15.95$ ea.		
5AP1 \$ 2.95 ea.	WL531 $\$ 29.95$ ea.	WL869B \$29.95 ea.
5D21 \$ 9.95 ea.	Type Kenotron Vacuum Rectifier,	Mercury Vapor Rectifier. Inverse
5JP2 \$ 3.95 ea.	Air Cooled. Inverse Peak Volts,	Peak Volts, 20,000. Peak Amps. 10.
5J23 $\$ 15.95$ ea.	50,000. Peak Amps, 75	
6J6 ${ }^{\text {a }}$. 49 ea	705A \$ 1.85 ea.	954 \$. 49 ea.
24G \$. 69 ea.		
Type H.F. Triode ; Max. power out-	714AY \$ 9.80 ea.	1626 \$ 49 ea.
put 90 W. Max. operating freq. 300	715 B \$ 3.95 ea.	$1641 / \mathrm{RK} 60 \ldots . . .$. \$. 85 ea.
M.C. A rare bargain.	723A-B \$ 2.95 ea.	2051 \$. 49 ea.
V.T.25A (10 spec .) . . \$. 69 ea.	725A $\$ 12.50$ ea.	80\|1 ${ }^{\text {d }} 98$
V.T. 52 (45 spec.) . . . \$. 69 ea.	726A \$ 4.75 ea.	8025 \$ 2.95 ea.

HOW TO ORDER

While we have a large stock of every number listed, all tubes are offered subject to prior sale. Remit with order, or send 20% if to be shipped C.O.D. Open account to
rated firms. Min. order accepted, \$3.00. Many other types are in stock. If what you need is not listed, write us concerning your requirements.

RADIO PARTS OUTLET

Our 27th Year
Reference, Dun \& Bradstreet or American National Bank, Chicago.

(1) SEARCHLIGHT SECTION ©

RELIANCE SPECIALS

AIRCRAFT GALLEY KIT from B-29, $15^{\prime \prime} \times 30^{\prime \prime} \times$ $91 / 2^{\prime \prime}$. Contains two $1 / 2$ gal. food warmers with stainless lids, operating on either 115 V . 60 cy . or soup warmer 24 V. D.C.; salt and pepper sliaker; sugar dispenser, A.C. \& D.C. line cords and can* vas cover ... $\$ 15.00$
GEAR REDUCTION UNIT- $161 / 2$ to 1 , Abuminum housing $51 / /^{\prime \prime} \times 23 / 4^{\prime \prime}$ "plus extension for couplings Alr
$5 \mathrm{mmi}-100 \mathrm{mmf}$ with shaft
$3 \mathrm{mmi}-13 \mathrm{mmf}$ with shaft
$5 \mathrm{mmf}-100 \mathrm{mmf}$ screw driver slot
$7 \mathrm{mmf}-80 \mathrm{mmf}$ screw driver slot
3 mmi
3 mmi
50 mmi
5 mmf
$\mathbf{m 0} \mathrm{mmf}$
mcrew
driver slot
driver slot
5 GANG CONDENSER- 20 minf to 150 mmi each section, completely shielded..................... $\$ 1.95$
4 GANG CONDENSER-25 mmif to 250 mmi each section
1.50

ASSORTED SOLDERING LUGS.....per ib. $\$ 1.00$ BATHTUB CONDENSERS
.25 mfd 400 A Aerovox (side lugs.)
I mifd 600 V Aerovox (side lugs).
mifd 1000 V Aerovox (side lugs)
96
$-18 t$
3 AG FUSE HOLDER. I5c
CANVAS CARRYING BAG FOR WALKIE
PLEXIE ……...................................
flattened in boiling water), masked..........\$1.50
FLUORESCENT BLACK LIGHT in swivel case. 28V. D.C.
$\$ 1.25$
TUBE-RECTIFIER TYPE EL C5B.........\$4.95
COAX CABLE RGBU- 52 ohms, 500 ft . and 1000
ft. reels, sold by the reel only............3c per ft.
ALLEN HEAD SET SCREWS
 $\begin{array}{lllll}4.40 \times & 88^{\prime \prime} & 6.32 \times & 1 / 8^{\prime \prime} & 832 \times 3 / 16 \\ 4-40 \times 3 / 16^{\prime \prime} & 6.32 \times 3 / 16^{\prime \prime} & 8-32 \times 1 / 0^{\prime \prime}\end{array}$ All sizes $\$ 1.50$ per hundred.
WRENCHES for 4-40, 6-32 \& 8-32 Allen Head Set Screws
BALL BEARING-FAFNIR- $33 K 5,3 / 16^{\prime \prime}$ hole X 1/2" 0.D. 25 tach
BALL BEARING—1/4" hole $\times 5 / 8^{\prime \prime}$ O.D.... 35 each
BRASS BINDING POST-EBY-Chrome Plated with B-32 serew

Push Dawn Type
$\$ 2.75$
per 100
$\$ 2.50$
Screw Down Tyde
$\$ 2.50$ per 100
G.E. PYRANOL CONDENSERS
.2 mfd . $700 \mathrm{~V} .00 \mathrm{mra}^{600} \mathrm{~V} 69$
$2 \times .1$ mfor $\$ 1.95 \quad \mathrm{mfd} 600 \mathrm{~V} 27 \mathrm{c}$
75 mfd 330 V. A.C. 39 c
PORCELAIN STAND OFF INSULATORS-
ROUND-TAPPED EACH

PORCELAIN STAND OFF INSULATORS-
SQUARE-TAPPED EACH END

$32 c$ doz.
SLIP RING ASSEMBLY-5 silver plated rings on molded bakelite rotor. Stator holds 2 silver carbon brushes for each ring. Rotor 0.D. $3.7 / \mathrm{s}^{\prime \prime}$; hole in rotor fits $1-34^{\prime \prime}$ shaft. Complete with SELSYN MOTORS for remote control, 115 volt, 60 cycle
6.75 g

CHROMALUX STRIP-HEATER, $115 \mathrm{~V}, 750 \mathrm{~W}$, semi-circular $20^{\circ} \times 11 / 2^{\prime \prime}$
DYNAMOTOR—Input 27 V @ 1.4 A , output 255 - @ 60 mils.

PRECISION RESISTOR-522,000 ohms, I watt, 1/2\% accuracy
TRANSFORMER-Pri $115 \mathrm{~V}, 60 \mathrm{cy}$. : Sec. 2000 V @ 3 mils; 2.5 V @ 1.75 A.................. $\$ 4.95$ RELAY—Struthers-Dunn. 115 V.A.C.: 4 P.D.T... G.E. MOTOR-I 6 H.P.. 250 V.D.C. on armature G.E. MOTOR O
60 V.P.C. on field; shunt wound, 1140
R. $\$ 16.00$ MICRO SWITCH—Push button type, normally open, $45 c$
F.O.B. PHILADELPHIA. MINIMUM ORDER $\$ 3.00$

Reliance Merchandizing Co.
Arch St., Cor. Croskey Philadelphia 3, Pa.
Telephone Rlttenhouse 6-4927

SELENIUM RECTIFIERS

FOR ALL APPLICATIONS

FULL WAVE BRIDGE TYPES			
Input	Output	Curr	c
$0-18$ V.A.C.	0-14 V.D.C.		\$2.49
0-18 V.A.C.	0-14 V.D.C.	5 AMP.	
0-18 V.A.C.	0-14 V.D.C.	10 AMP.	7.95
$0-18$ V A.C.	0-14 V.D.C.	15 AMP.	10.95
0-18 V.A.C.	${ }^{0-14}$ V.D.C.	20 AMP.	13.95
0-18 V.A.C.	0-14 V.D.C.	30 AMP.	19.95
1 Input	Output	Current	rice
0-36 V.A.C.	0-28 V.D.C.	3 AMP.	\$5.95
0-36 V.A.C.	0-28 V.D.C.	5 AMP .	7.95
0-36 V.A.C.	0-28 V.D.C.	10 AMP.	13.95
${ }_{0}^{0-36}$ V.A.C.	0-28 V.D.C.	15 AMP.	19.95
${ }_{0}^{0-3 E}$ V.A.C.	0-28 V.D.C.	20 AMP.	25.95 14.95
0-120 v.A.C.	0-100 v.D.c.	5 AMP.	19.85
FULL	WAVE CEN	TER TAP	
Input	Output	Current 600 M 11 s	Price

HALF WAYE TYPES*			
Input	Output	Current	Price
From	$0-7$ From	3 AMP.	\$2.25
$0-18$ V.A.C.	0-7 V.D.C.	5 AMP.	2.95
0-18 V.A.C.	0-7 V.D.C.	10 AMP.	4.95
0-18 V.A.C.	0-7 V.D.C.	15 AMP .	6.95
0-18 V.A.C.	0-7 V.D.C.	20 AMr'.	8.95
0-18 V.A.C.	0-7 V.D.C.	25 AMP.	10.95
Input From	Output From	Cutrent	Price
0-36 V.A.C.	0-14 ¢V.D.C.	3 AMP.	\$2.95
0-36 V.A.C.	0-14 V.D.C.	5 AMP.	4.95
0-36 V.A.C.	0-14 V.D.C.	13 AMIP.	7.95
0-36 V.A.C.	$0-14$ V.D.C.	15 AMP.	10.95
${ }_{0}^{0-36}$ V.A.A.C.	0-14 V.D.C.	25 AMP.	13.96 16.95
*USE with capacitn r to obtain any voltage up to \ddagger wice rated output.			
CAPACITORS			
1000 MFP.		V.D.C.	98\%
Dual 3500 M	D. 25	V.D.C.	\$2.95

It would be impossible to gire a complete listing of all our rectifer types. Our engineering staff is at your quotations or further information on capacitors and transformers to be used in conjunction with Solenium Rectiflers.

Shipped via Railway Express, unless otherwise specified.
OPAD-GREEN COMPANY, 191 Greenwich St., Dept. 3 NEW YORK 7, N. Y.

Phone: BEEKMAN 3-7385

SOLA CONSTANT VOLTAGE TRANSFORMER 2000 VoIt-AMPERES NEW, IN RRIGNAL CRATES

INPUT-95-130 Volts-60 Cyc OUTPUT-115 Volts Plus or Minus 1%

REGULAR NET PRICE $\$ 225.00$
Your Cost $\$ 89.50$
F. O. B. LOS ANGELES

SHIPPPING WHIGHT 205 LBS. 50% Deposit kequired on C.O.D. Orders RADIO SPECIALTIES COMPANY 56 Dist. RADIO PARTS and EQUIPMENT.

IMPREGNATOR

FOR SALE
Barrett Centrifugal Impregnator 154-1 in original crates
Suitable for small wire wound coils or equivalent

STEVENS-ARNOLD, INC.
22 Elkins Street
So. Boston, Mass.
1.5 KVA LINE TRANSFORMERS
G. E. Type TF-5. Drv Primary 108 to 528 volts Secondary 120/240 volts $\$ 30.00$ each
WESTERN. ENGINEERS, LTD.
Box 1111, Oakland, California

FOR SALE

AN/APN-1, AN/APN-4. AN/APS-2, 3, 4, AN/ARC-4, AN/ARC-5; AN/ARN-7, ARB: AN/ARR-3, AN/ART-13, ASB-7, BC-348, BC-357, BC- $375, \quad \mathrm{BC}-1206, \mathrm{DU}-1, \quad$ G AIRCRAFT ELECTRONICS SERVICE 624 18th St., Cha-3, Honolulu, Hawaii

Delivery
 VS. Delay

Knowing where to find some specific material, part or instrument may be the difference between DELIVERY and DELAY. If the advertisements in this issue do not cover your requirements, write

ELECTRONICS

Remote Position Indicating System - Pioneer 2320 Transmitting. Autosyn \& I-82A Indicator.

Transmitter has 3 mtg . feet and employs heavy duty brushes. Indicator has 360 degree calibrated dial. Indicator diam. 5 in. Operates from 6-12 V. 60 cycle AC supply. Ideal for beam antenna indicator or for commercial uses. (Stock $\#$ S. 115)

Price- $\$ 9.95$ per system

> Synchros, Magnesyns, Motors, Amplifiers

Synchro-Generator

Similar to Navy ordnance type 5G with shaft detail in accordance with Army ordnance drawing C-78414. Operates on 115 V, 60 cycle (Stock \#S-43).

Price- $\$ 9.50$ each

Servo Motor - Pioneer CK-2. 2 phase 400 cycle. Low-inertia.

Fixed phase voltage 26 volts, variable phase voltage 49 volts max. 1.05 in/oz stall torque. Rotor moment of inertia $7 \mathrm{gm} /$ cm^{2}. (Stock \#S-97)

Price - $\$ 4.75$ each net or $\$ 3.75$ each in lot of 100 . Special quotation for lot of 1000 or more.

Write or call for
complete listing.

247 CROOKS AVE. Surplus Division
ARMORY 4-2677

8.5 KVA PLATE TRANSFORMERS

Press Wireless- 3 phase
220 V. primary- 3600 V. secondary $\$ 75.00$ each
WESTERN ENGINEERS, LTD. Box 1111, Oakland, California

SURPLUS MISCELLANY

RADAR JAMMER-Interference unit; type 3; \#10DB/919, British. Complete with P.S.. housed in grey chest $21^{\prime \prime} \times 22^{\prime \prime} \times 15^{\prime \prime}$; weight approx. 70 lbs................................... $\$ 25$
U H F SIGNAL GENERATOR \#1-196.A Complete with tube, schematic, case; Now. POWER SUPPLY for RBM Receiver; twin dynariotor (12v) meter. filter network. carSIMNONS linemaster foot treadie switch; S.P.D.T. maintained contact. $15-25 \mathrm{amp}$. 1.1 olnms 50 watt with toggle sw . controlled by knob; Now-Each.
G.E. 360° WW Potentiometer, used in SelDC PELAY-DPST 300 -hm Coil. HA.... DC RELASM-DPST. 300 ohm coil; H.D. con-
Zero temp. Coeff Ceramicons-1.6-2.2-7.5-22
MMFD NE GAT temp. Coeff Ceramicons-60 180 MMFD; doz 180 MMFD; doz.
UTC Filter pass band, $500-2000$ cycles; useful as fillter in peak clipper circuits. Second
method of connection-pass $900-1200$ cy; use for audio selectivity in CW. Now, with hookup
5.00

10 circuit push button solector; with main condenser and 10 padders. Used in FM tank transmitter SCR 508; New
THORDARSON or WHEELER Filter Choke:
12 Honry, $275 \mathrm{Mil}, 100$ ohms; cased. New. 12 Honry, 275 Mil, 100 ohms; cased. New. A selection of 7 rotary switches-ceramic,
bakelite, I-2 and 3 deck; New..... bakelite. 1-2 and 3 deck; Now.............. @ $4.5 \mathrm{amp} ; 2.5 \mathrm{v} @ 5 \mathrm{amp} ; H . V$. insul ; cased
2V-20A.H. Lead acid storage cells; plastic of 8 each. Brand Now; Gtd. 8 for......... 15.00 $\mathbf{2 5} \%$ deposit required on all C. O. D. orders. Prompt delivery assured. Write Dept. EN

GREEWHICH SALES CO.

59 Cortlandt St. Dlgby 9 -3813
NEW YORK CITY 7. N. Y.

FM TRANSMITTER

SPECIML IOR AMATEURS INDEXPFRISENTERS: $420-460 \mathrm{MC}$. Used as indicator for altitudes up to

SUPER-HET RECEIVER BC-733.D

MARKER BEACOH RECEIVER
COMPACT MARKER BEACON RECEIVER BC-1023- I for FCC-approved

trolof equipment Aluminum
High Frequency Antenna AN-104-B
 where: : real buy for amateurs. A pair excelent hroad-hand reciving dipole 1. 2153

EREE GATALOG

Wrder now- right from this ad! send 2.5 \% depositfor Mif-imerica's big. complete cataton that tists humdreds and hundreds of hard-toget ltems

[^19]
AMERTRAN 11.5 KVA TRANSTATS

Continuously variable $0-115$ volts - 100 amps

Four 115 v coils, separate brushes which may be connected for 230 v 50 amp single phase, 3 phase open delta, etc.
NEW IN ORIGINAL CRATES

$\$ 50.00$ each

WESTERN ENGINEERS, L+d.
Box llit, Oakland, California

SURPLUS TEST EQUPPMENT

General Radio: 100Q, 102K, 107D, 1071, 107L, $107 \mathrm{M}, ~ 200 \mathrm{CM}, ~ 561 \mathrm{D}, 583 \mathrm{~A}, 602 \mathrm{D}$, $602 \mathrm{~F}, 602 \mathrm{~K}, 602 \mathrm{M}$. 602N, 605B, 619E, $\begin{array}{ll}620 A R, & 667 A, \\ \text { 728A, } & \text { 732B, } \\ 757 A\end{array}, 700 \mathrm{~A}, ~ 722 \mathrm{D}, ~ 722 \mathrm{M}$, 828A, 732 A,
Ferris: 18B, 18C, 20B, 22A, 34A
Measurements: 253, 254, 78B, 79B, 84
Boonton: 150A, 50 R , 140A, "110A,
ewlett-Packard: 202D. 205A, 205AG, 300A, Ballantine: 300
Ballantine: 300
RCA: 306A, 69C, 710A. MIl8720 Microwave
Sig Gen \& N: 5300, 5410
Clough Brengle: 230A (New
Daven: OP961, T692
Industrial Inst: LB-1, LB-2, MB-8, RN-1 DR-1, DR-50, DR-52
Detrola: I-208 FM Sig Gen (New) 19-45Mc Quantities limited, discount $20-60 \%$, quaranteed, F.O.B. New York, subject prior sale.
VILLAGE RADIO EQUIPMENT COMPANY 201 West 16 St., New York City 11

SURPLUS 6SN7W TUBES

Boxed, Tested, Fully Guaranteed STANDARD BRANDS

Less than 100. 75 c ea.
100 to 1000 \qquad
Over 1000

This is a glass version of the 6SNT with special internal construction. it is superion both electrically and mechanically. WRITE OR WIRE
The MINNESOTA ELECTRONICS Corp. 204 OPPENHEIM BUILDING
Dept T
St. Paul 1, Minn.

[^20]
HALLICRAFFER'S RECEIVER S-36

AM or FM. Continuous 27.8 to 143 MC.
Two selectivities, sharp for separation, broad for high fidelity FM, both bands, old and new. Excellent audio amplifier has 4-position tone control and inverse feedback. Power supply uses oil-filled, C, no electrolytics in the set.
Has BFO with variable pitch, RF or AF gain control, AVC or MCV, and Noise Limiter. VR tube and wide spacing of variable C give unusual stability. Used, but in excellent condition and perfect alignment. Pre-war price over $\$ 350.00$. Best offer takes it. Note: These sets are in great demand but scarcer then hen's teeth. They are no longer in production.

LICHTERMAN

2616 N. Spaulding Ave.. Chicago 47, III.

GENERAL ELECTRIC FG-172 THYRATRONS

Brand New-Low Price in Quantities MURRAY FISHER
4929 Old York Road Phila. 41. Po Phone DA 4-6735

COAXIAL CABLE
 RG 22U 50' lengths \$1.45 each plus postage. Prepaid.
 PLASTICS ENGINEERING CO.
 OF N. Y.
 27 Haynes Avenue Newark, New Jersey

LEGAL NOTICE

FOR SATE

5000 Blocking Oscillator Transformers, Utah, 3 windings
50,000 ceramic feed thru capacitors, threaded, $50 \mathrm{mmid}, 1000 \mathrm{v}$ dc
20,000 UG 27 U type N , right angle adapters
16.000 Amphenol 83-1AP right angle adapters
4000 UHF Coaxial connectors, male, for small cable, similar to PL259
25 Transformers, 110 v $60 \mathrm{cps}, 500 \mathrm{v}$ at 5 amps, and 500 v at 5 amps
1000 lengths of aluminum alloy conduit, flexible shielded with tinned copper braid, ID $1 / 2^{\prime \prime}, 88^{\prime \prime}$ long male and female couplings
1600 lengths of stranded aluminum flexible shielding, ID $3 / 4^{\prime \prime}, 7 \mathrm{ft}$. long 7000 feet of stranded aluminum flexible shield conduit, ID $3 / /^{\prime \prime}$
1000 meters, $0-350$ volt, 1000 ohms/volt. $31 / 2^{\prime \prime}$ round Westinghouse NX-35

ELECTRO IMPULSE LABORATORY
 P. O. BOX 250
 RED BANK, NEW JERSEY

FOR SALE
 SIGNAL GENERATOR
 microfolts output, with operating mannals. ${ }^{20,000}$ Electronic Sales \& Service Co. 18014 Larchwood Ave.

500 WATT TRANSMITIERS

DUAL RF CHANNELS 2-15 MC.
Remote Control Units

- BC-447 Federal Telegraph CW Only $\quad \$ 500.00$ each

BC-452 Aircraft Access. Corp.
Phone, CW
$\$ 950.00$ each
WESTERN ENGINEERS, Ltd.
Box lll.
Oakland, California

400 Cycle Generator

1250 watt, 120 volt, new condition on a steel base
and fitted for $3 \mathrm{H.P}$. motor. 24×30 inch floor space and fitted for 3 H.P. motor. 24×30 inch floor space $\$ 85.00$. DuMont 5^{*}
never opened $\$ 225.00$ scope, 208 B original crate, never opened $\$ 225.00$

WALTER H. SWITZER
Box 141
Spokane 8, Washington

```
COMMUNICATIONS RECEIVER Continuous . 55 to 42 mc No mod
New. Hallicrafters SX-28A remade incation needed specs. Has S-meter. Noise-Limiter, Xtal Filter. BFO, AVC or MVC, 6 selectivities from xtal narrow. to \(\mathrm{Hi}-\mathrm{Fi}\) broad. You supply \(270 \mathrm{VDC}\). . 135 Ma, and
G.3VAC, 4A. With plugs, mount. schematic, alion. ment instructions, 12 tubes. \(\$ 110.00\).
2616 N. Spaulding Ave. AHEART CO. 2616 N. Spaulding Ave. Ghicago 47, III.
```


FOR SALE

RECTIFIER TUBES

14 Westinghouse WL.881 Mercury Vapor Rectifier Tubes used awerage 5000 hours each. $\$ 400.00$ for lot.

FS-2553, Wlectronics
330 West 42 nd Street. New York 18. N. Y.

FOR SALE LARGE QUANTITY NEW RG/BU COAXIAL CABLE -52 ОНल

MADE BY GENERAL ELECTRIC CO. ON 500 FT, AND 1.000 FT. REELS PER THOUSAND
500 to $5,000 \mathrm{Ft}$. . $\$ 30.00$ 5,500 to $10,000 \mathrm{Ft}$. . $\$ 28.50$ 10,500 to $20,000 \mathrm{Ft}$. . $\$ 27.00$ 20,500 to $50,000 \mathrm{Ft}$. . $\$ 25.00$ OVER $50,000 \mathrm{Ft} . \operatorname{~.~.~.~} \$ 22.50$
no charge for reels All Orders F.O.B. Phila., Pa.
RELIANCE MERCHANDIZING CO.
ARCH cor. CROSKEY ST.
PHILADELPHIA 3, PENN.
Tel. RIttenhouse 6-4927

TEEEVISION EQUPMENT

Surplus Television cameras and transmitters from Army Guided Missile pro gram: see I.R.E. June 1946.
Transmitters operate 260 to 320 Mc . Com plete with all tubes, schematic.
Cameras have auxilicry units, all tubes in cluding camera tube and $\ddagger / 1.9$ leng.
An unusual opportunity for colleges, radio schools, experimental stations to abtain scarce equipment at a moderato price.
VILLAGE RADIO EQUIPMENT CO. 201 West 16th St., New York

Special Values

Panel \& Portable Meters

D. C. Microammeters:

50-100-200-500 microamps. High Resistance Voltmeters Vacuum Thermo-Couple Meters $31 / 2^{\prime \prime}$ \& 41/2" Round \& Rectangular Multirange Portables: readings from 10 microamps. full scale Precision Electrical Instrument Co. 146 Grand Street New York 13, N. Y.

SURPLUS LABORATORY EQUIPMENT

$\begin{array}{ll}\text { Ferris. } 18 \mathrm{c} \\ \text { V. } & \text { Microvolters; }{ }^{\text {M }} \text { Measurements } \\ \text { V.T.V. } \\ \text { V. }\end{array}$ Electronic Designs V.T.V.M. - Ohmeter; Others Like New, 30\% Discount. Send for
THE NATIONAL INSTRUMENT CO. 1155 Nailson Ave. For Rockoway, N. Y.

"TAB"

That's A Buy
NEW GUARANTEED ELECTRONIC PARTS -

PLUGS PL68/WE110A NEW COMPLETE

Includes COVER, Hardware \& Lugs	
PACKED 25 TO A BOX	
100,000 AVAILABLE	
WRITE FOR QUANTITY PRICES	
\& Plug $1{ }^{\text {d }}$ L55.	
DA \#S6/10 for	1.45
$4 \pm / 6.3 \mathrm{~V} / 10$ fo	4
49/2V/10 for	0
NF20/NEON	8
$1 / 4 \mathrm{~W}$ NEON	1.00
$323 / 3 \mathrm{~V}$	1.00
Fidwards hipreq	
KURMAN 1000cy IUUMMEI	
Switchbd U\$/GT sighte dual plug. 5 for \$1.00	
SOCKET MAGINAI, AMPHENOL 49-SSIIL......	
SOCKET DIHEPTAL NAALD \& CABLES........ . 98	
SOCKET OCTAL 78ST 25 for	1.50
SOCKET 5 prong Ceramic 25.5 for 1.50	
SOCKET for 304TL Johnson 213................. . 95	
SOCKET ACORN Tules 5 for 1.00	
Dymotor 6Vinpt/240V100ma, Navy rated 1224 V inpt $/ 500 \mathrm{~V} / 50 \mathrm{ma}$ PM hieff.	
Dynmtr 12-24V inpt, $275 \mathrm{~V} / 110 \mathrm{ma}$.	3.49
Dynmer 28V/1.4Amp outpt250V/60ma cont duty operates 12 V fields in parallel also 110 VDC	
440V/200ma, cont duty rugged dsgn...	75
$10 \mathrm{ma}, 14.5 \mathrm{~V} / 5 \mathrm{Amp}$ Cont duty for Radio set SCR522 SPECIAL	
Dynmer PE-94A Rendix MG-1A, DC indt 24$28 \mathrm{~V} /$ Outpt $300 \mathrm{~V} / 260 \mathrm{ma}$. $150 \mathrm{~V} / 10 \mathrm{ma} 14.5 \mathrm{~V} / 5 \mathrm{~A}$ inpt \& output filters voltage regulator \& start-	
ing relays SPECLAL .	. 95
Generator 430VDC/180ma Cont duty 8.95	
I-222 CRYSTAL CALIB SIGNAL GENEIATOR	
FHLLQ METER, MONITOR, 8tol5\& 45 to 7 Mc 's	
2nd, 3rd, 4th Harmonics usable to 230 Mc © SIX	
Tubes, micro vernier dial, reads $1 / 10 \mathrm{div}$. 110 V	
LABORATOLY SIGENERATOR TM61056....... 39.95	
OAK CASE 15-25\&180-230me's, Cal attntr	
1 to 100000 microV . modulated 409 to 8200 cycs , Inpt $115 \mathrm{VAC} / 60 \mathrm{cy}$. NEW	
COMPLETE COAXIAL DIODE INPT	9.95
TELEPHONE INVERTER Converter indt	
$43-47 \mathrm{VDC}$, outdt $75-90 \mathrm{~V} / 20 \mathrm{cys}$ W. E. new	5.00
TELERING BD-90 TELIKOR moded II inpt 25.00	
110V/60cy, Outpt 90V/20cy. 9.95	
RINGER TELAEPIIONE Holtzer 6V/20cy/6m	1.49
Telephone Grasshopper fuses 3-3	
$32 \mathrm{mfd} / 680 \mathrm{VAC} / 2000 \mathrm{WVDC} / 4 \mathrm{sec}$	8.95
Condensers oil $1.22 \mathrm{mfd} / 600 \mathrm{WVDC})^{\text {a }}$. io for	1.00
Condensers oll imfd/330VAC/10C0WV...... 6 for	
pt. 11 EX, Six Church St., New York ©, N. Y., U. S. A. Corner Church \& Liberty Ste., Room 200	

IMITATED...NOT DUPLICATED

K-TRAN is the only really important improvement in i.f. Transformer design made by anyone since the war. K-TRAN is entirely new and different from any other i.f. Transformers. It is new in design-new in function-new in construction.

K-TRAN is small in size-but its performance makes other i.f. Transformers obsolete.

Permeability tuning, magnetically shielded winding, permanently fixed and uniform capac-
ity coupling and numerous other details of advanced engineering represent the completely new thinking which has been built into K-TRAN.
That is why leading radio manufacturers now use K-TRAN to equal or exceed the performance of existing i.f. Transformers - IN LESS SPACE and AT LESS COST.

Don't let your competitors outpace you. THEY USE K-TRANS!

Design your chassis to
use K-rRaN 262 KC .
455 KC .10 .7 MC

World's Leading Trimmer Manufaclurer
MASS PRODUCTION COILS \& MICA TRIMMER CONDENSERS

INDEX TO ADVERTISERS

Acheson Colloids Corporation Acme Electric Corporation Acro Electric Co
Allen-Bradley Co.
Allen Co., lnc., L. B.
B..

Alliance Mannfacturing
American Lava Corporation
American Phenolic Corp.
American Relay \& Controls, Inc.
American Screw Company
American Smelting \& Refining Co
American Television \& Radio Co.
American Time Iroducts. Inc.
Amperex Electronic Corp.
Amperite Company
Amplifier Corp. of America
Amaconda Wire and Cable Co
Arnold Engineering Co.
Art Wire \& Stamping Co..
Astatic Corporation
Audak Company
Audio Development Co.
Automatic Mfg. Corporation
Avimo, Ltd.
Avimo, Ltd.
Ballantine Laboratories, Ine
Bardwell and McAlister, Inc
Harker \& Williamson
Birry Corp.
Beaver Gear Works Inc.
Bell Telephone Laboratories
Sendix Aviation Corp., Red 13:nk Div. .
Hentley, Harris Mfir. Co.
Benwood-Linze Co.
Bliley Electric Co.
Boonton Radio Corioration
uranley Laboratories, lnc.
Brady Co. W. H.
lsrand and Co.. Winliam
Brook Electronice, In
Browning Labs, Inc
Brush Development Co.
Isuck Engineering Co., linc.
Bud Radio, Inc.
Burington Instrument Co....
Callite Tungsten Corporition
Cambridge Thermionie Corp.
Cambridge Thermionio Corp......
Capitol Radio Engineering Institute Carlorundum Co., Globar Div.
Callusuede Products Inc Div
Central Paper Co., Inc.
Central Paper Co., Inc.................... 235
Chicago Transformer, Div. of Essex
Cire Corp...................................
Cinch Mannfacturing Corporation..... 13%
Clark Crystal Co.
Clarostat Mif. Co., Inc.
Cleveland Container Co..
Clippard Instrument Laboratory. Ine.
Clough Brengle Co..
Coln Corp. Sinmund
Collins Radio Co.
Concord Radio Corporaión
Condenser Products Co.
Consolidated Monded Products Corp
Continental blect Co.
Cornell-Dubilier Electric Corp.
Cornish Wire Company. Inc...
Cross Co., H.
Cross Co., H
Dalis, Inc.,
Danis, Inc H. L
Daven Co. Insid. Iback Cover
Dial Light Co. of America. 247
Dinion Coil Co., Inc.
Dixon's Typhonite CLDOKAMO Pencils Dow Corning Corp.
Driver-Harris Compan
Damont Laboratories, inc., Allein B.i. $\quad 32$
Eastern Air Devices. Inc.
Eastern Brass and Copper Co.
Eastern Industries. Inc.
Fisler Engineering Co., Inc...
Eitel-McCullouglt. Inc.
Electran Mfg. Co
Electrical Insulation Co.. Inc
Elpctro Engineering Works
Electro Motive Mfg. Co
Electronics Research
Electronics Research Poblisining Co.
Electrons, inc.
Erie Resistor Corporition
Essex Eiectronics.
Finirchild Camera
Corp.246, 251
Federal Tel. \& Radio Corp..............33, 155
Fenwal, Inc.
Ferranti Electric, Inc
Franklin Airioop Corporation
Freed Transformer Co., Inc.
Gamewell Company, The,
General Cement Mfg. Co..
General Electric Co.
Appliance \& Merchandise Dept. 203
Chemical Dept........................175. 217
Department
22, 62, 63, 73, 243, 259

General Industries Co.............
192
General Plate Div. of $\mathrm{M} \cdot \mathrm{tal} \mathrm{s}$ \& Con trols Corp.
General Radio Co
Goslin Electric and Mfg. Co.
Graphite Metallizing Corp
Gray Research and Development (o.. Graybar Electric Co
Guardian Electric Mfg. Co..
Hammarlind Ifg. Co., Ine
liandy and llarman.
Harvey Radio Company, Inc
Hathaway Instrument Co.
Maydon Manufacturing Co.. Inc
Haydu Brothers, Dinnufacture
Hewlett-Packard Company
Munt corp.
Iytron Radio s Electronies Corip
Imperial Tracing Cloth
Indiana Steel Products Co
nsl x Co., Inc.
nstriment Development Labs
nstrument Resistors Company
nsulation Manufacturers Corp
nternational Machine Works
Jelliff Mfg. Corp., C. 0 .
Jones Div., Howard B., Cinch Mifg. Co. 244
Jensen Manufacturing Co............
Johnson Co., E. F.
Jones Electronics Co., M. C.
Kahle Engineering Co...........
Karp Metal Products Co., lne
Kay Electric Co.
Cenyon Transformer Co., Inf
Kester Solder Co..
Keuffel \& Esser C
Kinney Mfg. Co.
Knights Co., James
Lampkin Laboratories
Lapp Insulator Co.. Inc
Lavoie Laboratorie
Leach Relay Co.
Legri S Company. Inc.
Linde Air Products Co.
Mard Mig. Co..
Maguire Indugtric.
Maguire Industries, In
Makepeace Co., D. E......
Malory \& Co., Bnc., Po
Measurements Corporation
Miles Krmroducer Co.. Inc.
Milford Rivet \& Machine Co.
Millin Dfir. Co., Inc., James.
Miniature Precision Bearings, Minnesota Mining and Mfg. Co. Mitehell-Itand Insulation Co., Inc. Multicone Solders. Ltd.
Mycalex Corporation of America
National Company. Inc.
National Research Corb
Nothelfer Winding Laboratories
O'Neil-1rwin Mfz. Co.
Olympire Tool nnd Mig. Co.. Inc.

Onan \& So

Panoramic Radio Corp.
Panoramic Radio Corp. Corp.
Park Metalware Corp.
Park \& \& Beekman, Inc.. Sub. of Portand
Products Corp.
Products Corp.
Plastic Wire and Cable Corp.
Plastoid Corb
Plax Corp
Polarad Electronies Co
Precision Apparatus Co., Inc.
precision Paper Tube Co.
Precision Tube Co.
Iremax Products
Premier Metal Etehing Co.
Presto Recording Corp.
Progressive Mfg. Co.
Pyroferric Co.
Quarlriga Mfg. Co.
Quaker City Gear Works, Inc Racon Flec. Co.. Inc.

14, 15, 2\%, Back Cover
Radio-itusic Corp............................ 239
Radio Receptor Co.. Inc...................... 188
Rainay Express Agency, Air Express 196
Kauland Corp.
Javtheon Mfg. Co
Rreves Moffinan Corp.
Rreves Sounderaft Cor
Revere Copper \& Brass, Inc
Richardson Company
Rockbestos Products Corp.
Sogers Corp.
seientific Emectric Div. of
Scovill Mfg. Co.
Selenium Corp. of America
Shakeproof. Inc.
Co...
Sigma Instruments, Inc.
Sillcocks-Miller Co
Simpson Electric
Solar Manufacturing Corporation on 4

prices are high, you have to be on the "lookout" for savings. When you can buy five items for the price of one... that's REAL SAVINGS! The Bud GX-79 GIMIX is five units "all-in-one" and all for the price of one. Here's how you can use it on Amateur Radio Bands of $80,40,20$, 15 , and 10 meters.

1. Use as a Wave-Meter.
2. Use as a Moniłor.
3. Use as a Field Strength Meter.
4. Use as a Carrier Shift Indicator.
5. Use as a highly senstitive Neutralizing Instrument.
5

The BUD GX-79 has been designed and built with true BUD quality and dependability. It is available at your local dis ributor, and we suggest that you contact him immediately so you will lose no time in getting the BUD GIMIX.

Dealer Net \$8. 30

BUD CAN SUPPLY ALL YOUR NEEDS!
W'th the latest iypes of equipment ncluding: condensers - chokes - coils insulators - plugs - jacks - switches dials - test leads - jewel lighls and a omplete line of ultra-modern cabinets and chassis.

QUICKER．．．AT LOWER COSTI The logical approach to any sound system plan－ ning problem is to first select the speaker or speakers capable of proper coverage and quality of reproduction．Once the speakers have been decided upon，the selection of the correct size amplifier becomes a routine matter of totalling the powers required for the individual speakers． The many UNIVERSITY speakers now avail－ able readily solve this problem．Included are speakers for every class of service－－low power， super power，directional，radial，explosion－proof submergence－proof，high fidelity，paging talk－ back and others．

BE POWER！

University speak－ ers require min－ imum amplifier power．Having a higher conver－ sion efficiency． They deliver more coustic output per walt input，than any other speaker of comparable size and weight．

WRITE TODAY FOR THIS HANDY SPEAKER
SELECTION CHART－NO OBLIGATIIN！ COMPANY－Identification Specialists－ Milwaukee，Wisconsin．

ハリルルムルル
W．H．BRADY COMPANY 240 W．Wells St．， Milwaukee 3，Wis．

5Please send me FREE somples of QUIK． LABELS，the modern time and money saving way to mark wires，leads，circuits， relays，parts，efc．
Name
Rosition
Please attach to your BUSINESS letterhead

Sorensen and Co．，Inc．
Sperry Gyroscope Co．，Inc．．．．．．．．．．．．．．．．．．．． 221
Sprague Electric Co．．
$\begin{array}{cr}68 \\ .68, & 8\end{array}$
Stackpole Carbon Company
Stamford Metal Specialty
Standard Telephones and Cables Lid
Stardard Expansion Products Co．，Inc．．．． Stephens Manufacturing Company Stephens Manuracturi
Stebens－Walden，Inc．
Steward Mfg．Co．，D．M
Stewart Mfg．Corp．，F．W．
Struthers－Dunn，Inc．
Stupakoff Ceramic \＆Mfg．Co．．．．．．．．．．．． 189
Sunvic Controls Lid．．
＊uper ciectric Products Corp．．．．．．．．．．． 11
Sylvaniar Tube Company．．．．．．．．．．．．．． 2
tronics Dectric Products Inc．，Elec－
Synthane Corp．
$.16 a, 163$
Tech Inborntories，Inc．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 249
Tibbetis Industries，Inc．．．．．．．．．．．．．．．．．．．． 3 ！

Tnion Carhide and Cirbon Corp．．．249， 257
United Trimsformer Corp．
Inside Front Cover
Universal Winding Co．．．．．．．．．．．．．．．．．．．．．．．．．15 University Loudspeakers，Inc．．．．．．261， 292 Valpey Erystal Corp．
Walter Con Insirument Co
War Assets Alministration
Ward Meonard Electric Co
Ward Leobard Electric Co ．．．．．．．．．．．．．． 171
Ward lroducts Corp．．．．．．．． 48.
Webster Electric Co．
$48 . \quad 49$
Webster Electric Co．．．．．．．．．．．．．．．．．．．．． 188
Western Electric Co．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 248
Wentinghouse Electric Corp．．．．．．．．．．．．．．．．．．．．．． 3161 Weston Electrical Instrument Corp．． 10 Whistler \＆Sons，Inc．，S．IB Corp．．．．．In White Dental Mif，Co．S．S．．．．．．．．．．．．．．．．25， 235 Whitehead Stamping Co．．．．．．．．．．．．．．．．．．．．． 268 Wilson Co．，H．A．

PROFESSIONAL SERVICES
27

SEARCHLIGHT SECTION

（Classified Adverrising）

EMPLOYMENT
Positions Vacan
272， 273
Positions Wanted．
SPECIAL SERVICES ．．． 273
CONTRACT WORK ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 273
BUSINESS OPPORTUNITIES273

1 1 28 153 5 ． 8

\qquad

[^21]0

Offered273

EQUIPNENT
（Used or Surplus New）
For Sale ．．273－289
For Sale
ADVERTISERS INDEX
Aircraft Electronics Service．．．．．．．．．．．．．．．．．．．．． 286
American Electric Sales Co．，Inc．．．．．．．．．．．．．．．．．． 284
Ames Supply
Blan ．．．．．．．．．．．．．．．．．．．．． 287
284
Brooks Inc．B．D．．． 284
Communications Equipment Co．．．．．．．．．．．．．．．．． 278
Edlie Electronics Inc．．．．．．．．．．．．．．．．．．．．．．．．．．．． 281

Electronicraft Inc．．．．．．．．．．．．．．
284,289
$\cdots \quad 279$
Electrone Sh Equipment Co．．．．．．．．．．．．．．．．．．．． 289
Electro－Tech Equipment Co．．．．．．．．．．．．．．．．．．．．．．． 282
Goodheart Co．，The．．． 288
289289
.287

KWSC，Radio Station

Lichterman Maritime Switchboard
274
278
275
Microwave Equipment Co ．．．
．274， 275
Mid－America Co．．． 288
Minnesota Electronics Corp．．
National Instrument Co．．．
Niagara Radio Supply．
$\begin{array}{ll}288 \\ \cdots & 289 \\ & 276\end{array}$
Opad－Green Co．．．．．．．．．．．．．．．．
Plastics Engineering
Co
Powertron Electrical Equipment Co
Precision Electrical Instrument Co．．
Radio Ham Shack，Inc．
Radio Parts Outlet Inc．．
Radio Specialties Co．．
Radio Time Inc．．． 1 ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． 28
Reliance Merchandlsing Co．．．．．．．．．．．．．．．286， 28
Ruderman， H ，D．．．．．．．．．．．．．．．
Standard Radio Electrical Products．
Standard Radio Electrical Product
Stevens－Arnold Inc．
Stevens－Arner，Walfer H．
Switzer，Walfer H．．
Tab ．．．．．．．．．．．．．．．．
Tab ${ }^{\text {Telemarine Communications Co．．．．．．．．．．．．．．．．．．．．．．．}}$
Troy Electronics Laboratories．．．．．．．．．．．．．．．．．．．．．．．． 28
Village Radio Equipment Co．．．．．．．．．．．．．．．．．．．288 287
Western Engineers，Lłd．．．284，286，287，288， 289

DAVEN ATTENUATORS with Built-in cueing controls are now available...

DAVEN attenuators may now be obtained with a cueing control. Auxiliary switching mechanisms are no longer required to cue recordings, transcriptions and remote or network programs.
The control itself will serve to transfer the program material to a separate cueing amplifier. Provision is made at the extreme attenuation position for connecting the incoming signal to a cue circuit before "fading in" the signal. As a result, a program can be smoothly "brought in" at the right time without the operation of any additional switches. A lug on the terminal board is provided for connection to the cueing system.

The cueing feature may be supplied on any type of Daven attenuator. However, it is primarily recommended on those controls used for mixing, which are provided with a taper to infinity. For further details write to our Sales Department.

APPLICATIONS
Broadcast Stations
Recording Studios for Playback
Wired Music Services
Sound Film Industry
Dubbing \& Re.recording for Sound Effects

RCA Preferred Type Tubes

The types on this new list of RCA Preferred Tubes fulfill the major engineering requirements for future equipment designs. RCA Preferred Types are recommended because their general application permits production to be concentrated on fewer types. The longer manufacturing runs reduce costs-lead to improved quality and greater uniformity. These benefits are shared alike by the equipment manufacturer and his customers.
RCA Tube Application Engineers are ready to suggest the best types for your circuits. For further information

GAS TUBE TYPES			
THYRATRONS	IGNITRONS	RECTIFIERS	VOLTAGE
REGULATORS			
		3825	
2021^{*}	5550	673	OA2*
3022	5551	816	OC3/VRIO5
884	5552	$857-$ -	OD3/VRI50
2050	5553	$866-A$	
5563		869	
		8008	

*Miniature type

CATHODE-RAY TUBE AND CAMERA TUBE TYPES					
$\begin{aligned} & \text { BULB } \\ & \text { DIAM. } \end{aligned}$	television		OSCILLOGRAPH	PICKUP	MONOSCOPE
	Directly Viewed	Projection	PI Screen		
2'1 ${ }^{\prime \prime}$			$\begin{aligned} & 2 \mathrm{BPI} 1 \\ & 3 K P 1 \\ & 3 \mathrm{PP} 1 \end{aligned}$	$\begin{aligned} & 5527 \\ & \begin{array}{c} (2 P 23 \\ (5655 \end{array} \\ & \hline \end{aligned}$	
5"1/	7DP4 7JP4	5TP4			2F21
$10^{\prime \prime \prime}$	10BP4			1850-A	

write RCA, Commercial Engineering, Section R-40-K, Harrison, N. J.

POWER AMPLIFIER AND OSCILLATOR TUBE TYPES		
TRIODES	PENTODES	BEAM POWER
5588	802	2E24
5592	828	$2 E 26$
6C24		807
811		813
812		815\%
826		829-B*
833-A		
889-A		
889R-A		
892		
892-R		
8000	TETRODES	
8005 8025 - A		
9025-A	$\begin{aligned} & \text { 4-125A/4D21 } \\ & 8 D 21 \end{aligned}$	
$9 \mathrm{C22}$		
9 C 25		
9 C 27		

*Twin type

PHOTOTUBE TYPES		
GAS	VACUUM	MULTIPLIEKS
$1 P 41$		
921	922	$931-A$
927	929	
930		

RECEIVING TUBE TYPES									
RECTIFIERS	CONVERTERS	VOLTAGE AMPLIFIERS						TWIN DIODES	POWER AMPLIFIERS
		TRIODES			PENTODES				
		Single	Twin	With Diodes	Sharp Cutoff	Remote Cutoff	With Diodes		
MINIATURE									
	$1 \mathrm{R5}$			145	104	174			354
6×4	6BE6	6 C 4	656	6AQ6	6AG5	6BA6			3 V 4
				GAT6 6BF6	6AU6	6 BJ 6		6AL5	6AQ5
$\begin{aligned} & 35 W_{4} \\ & 11723 \end{aligned}$	1 2BE6		I2AU7	12AT6	$\begin{aligned} & 12 A U 6 \\ & 12 A W 6 \\ & \hline \end{aligned}$	12BA6		$12 \mathrm{AL5}$	$\begin{aligned} & 35 B 5 \\ & 50 \mathrm{~B} 5 \end{aligned}$
METAL AND GLASS									
$\begin{aligned} & 1 \mathrm{B3GT} / 8016 \\ & 5 \cup 4 \mathrm{G} \\ & 5 \mathrm{Y} G \mathrm{~T} \\ & 6 \times \mathrm{GGT} \end{aligned}$	6SA7	6 J 5	6SC7 6SL7GT 6SN7G	$\begin{aligned} & \text { 6SQ7 } \\ & \text { 6SR7 } \end{aligned}$	65.7	$\begin{aligned} & \text { 6SK7 } \\ & \text { 6SS7 } \end{aligned}$	6SF7	5V4-G 6H6	6K6GT 626 G 6VGGT 6BG6G
3525GT	12547			$12 \mathrm{SQ7}$		12SK7			$\begin{aligned} & 35 L 6 G T \\ & 5016 G T \end{aligned}$

*Recommended only for television damper applications.

For complete technical data on these preferred tube types, refer to the RCA HB-3 Handbook.

RCA Laboratories, Princetion, N, J.
THE FOUNTAINHEAD OF
MODERN TUBE DEVELOPMENT IS RCA

TUBE DEPARTMENT

[^0]: MAKERS OF: TRANSCRIPTION TURNTABLES, STUDIO RECORDERS, MAGNETIC CUTTERHEADS, PORTABLE RECORDERS AND LATERAL DYNAMIC PICKUPS

[^1]: Clear Channel
 Unlimited (50 kw).
 Part-time (50 kw).
 Unimited (5 to 25 kw)
 eoional Channel
 Unlimited.
 Limited and day
 Part-time.
 I.xal Chnnnel

 Unlimited.
 Day and part-time

[^2]: P. R. MALLORY \& CO., Inc., INDIANAPOLIS 6, INDIANA

[^3]: - Commercial organizations are reminded that licenses under various patents covering the use of vacuum tubes and circuits are required before any transmitting or receiving equipment embracing these patents may be offered for sale. Most equipment manufacturers hold licenses for this purpose. Others are advised to secure licenses before proceeding.

[^4]: (1) Walter C. Hollis. Design of Trans.

[^5]: *The equipment described was produced by Mr. Hollis as an independent consultant to the MeGraw-Hill Publishing Company. For a full account of Electronics Citizens Radio Project, see p 80 .

[^6]: REFERENCE
 (1) C. W. Sherwin, "Clamping Tubes", PB2828: Office of Technical Services, Department of Commerce, Washington, D. C.

 ## Bibliography

 L. A. McCall, "Servomechanisms", D. Van Nostrand Co., New York, N. X. Lauer, Lesnick and Matson, "Servo${ }_{\text {Book Co.. New }}$ York. N. Y.

[^7]: Format followed in recording signal strength of broadcast station on strip chart, and (below chart) method of obtaining calibration curve used in connection with electronic scanner

[^8]: * The equipment described was developed while the author was with Sperry Gyro
 scope Co.

[^9]: MICROPHONES LICENSED UNDER U.S. PATENTS OF THE AMERICAN TELEPHONE AND TELEGRAPH COMPANY, AND WEST.

[^10]: * Thase sizes available with Adjustable faature - see page 6 for additional information on adjustable power resistors and contact band. Add suffix "A" to type designation when specifying adjustable power wire wound resistors.
 It is recommended that stenderd stock sizes be used wherever practicable.
 See page 5 for Terminal Types evailable.

[^11]: * Body diamefor always less than shoulder diemeter.
 * See page 25 for Ferrule details.

[^12]: POWER AND VOLTAGE RATING: 2 watts (at $40^{\circ} \mathrm{C}$. ambient) .. . 500 volts maximum continuous voltage. See Derating Curves, page 4, for higher ambients.
 temperature rise at rated load: $62^{\circ} \mathrm{C}$.

[^13]: COAXIAL CABLES AND CONNECTORS - INDUSTRIAL CONNECTORS, FITTINGS AND CONDUIT • ANTENNAS • RADIO COMPONENTS • PLASTICS FOR ELECTRONICS

[^14]: - TELEVISION INTERCOMMUNICATION

[^15]: interval - delay cycle - impluse - percenitio

[^16]: A letter from you will give us the opportunity to demonstrate how we can help you.
 Catalogue on Request

[^17]: SALARIED POSITIONS $\$ 2.500-\$ 25,000$. This 37 thoroughly organized confidential service of carries recognized standing and reputation visory. technical and executive positions of the calibre indicated, throught a procedure individualized to each client's refuirements. Retaincoveree protected by refund provision. Identity nnly name and address for details. R. W. Bixby, Inc.. 278 Dun Blda.. Buffalo 2. N. Y. EXECUTIVES \$3.000-\$25,000. This reliable service, established 1927, is geared to needs nection grade men who seek a change of conjloyed, full protection to present position. Send name and address only for details. Per soual ronsultation invited. Iira Thayer, Jen
 nings. Dept. E, 109 Church Street, New Haven
 Conn.

[^18]: e"TAE" - Dept. $11 E$, Six Church Street, New York 6, N. Y., U.S.A.
 THAT'S A BUY
 CORNER CHURCH \& LI BERTY STS., ROOM 200

[^19]: MID*AMERICA CO. Inc. 3
 STORE WARENOUSE
 2412 S. WICHISAK AVE. $23 Q 7$ S. ARCHER AYE.

[^20]: ## FOR SALE

 HAYDON SYNCHRONOUS MOTORS
 60 cy . $110 / 115 \mathrm{v}$. AC 1 hr per 4 hrs . for G0 cy. $110 / 115 \mathrm{~V}$. AC 1 hr per at hrs. for
 Electrical Timing Instruments, etc. quanElectrical liming Instruments, etc.
 tities of 10 or more $\$ 3.25$ per unit. RADIO TIME, INC.
 349 E. $149 \begin{aligned} & \text { St. } \\ & \text { Meirose , 5-0660-1 }\end{aligned}$

[^21]: 8

