\title{

Electronies Sloridd JUNE, 1967

\section*{60 CENTS .

60 CENTS .
 OCCUPATIONAL OUTLOOK FOR ELECTRONICS TECHNICIANS

 EMERGENCY HIGHWAY RADOO-Which System? COMMON-SENSE DESIGN OF TRANSISTOR AMPLIFEERS SEMICONDUCTOR SWITCHING OF LOW-POWER CIRCUITS

- New hi-fi rectangular RCA "Permachrome" color tube with 295 sq. inch viewing area, and built-in face protection
- New rare earth phosphors for brighter pictures, livelier colors
- 27 tube, 10 diode, 1 transistor circuit
- 25,000 volt regulated picture power
- Automatic degaussing \& mobile degaussing coil
- Exclusive built-in self-servicing aids
- Dynamic pincushioning correction circuit eliminates picture edge distortion
- Extra B+ boost for improved picture definition
- 3-stage video IF strip reduces interference, improves reception
- Exclusive Heath "Magna-Shield" improves color purity
- Gated Automatic Gain Control (AGC) for steady, flutter-free pictures even under adverse conditions such as airplane traffic
- Automatic Color Control circuit reduces color fading
- Deluxe VHF turret tuner with "memory" fine tuning \& long-life nickel silver contacts
- 2-speed transistor UHF tuner for both fast station selection and fine tuning individual channels
- Two hi-fi sound outputs . . . a cathode follower for play thru your
hi-fi system, and an 8 ohm output for connection to special contained-field 6" $6^{\prime \prime} 9^{\prime \prime}$ speaker (included)
- Two VHF antenna inputs ... a 300 ohm balanced and 75 ohm coax to reduce interference in metropolitan or CATV areas
- Circuit breaker protection
- 1-year warranty on picture tube, 90 days on a/l other parts
- Tubes alone list at over $\$ 277$
- Liberal credit terms available - details in FREE catalog

Kit GR-295, all parts including chassis, tubes, mask, UHF \& VHF tuners, mounting kit and special extended-range $6^{\prime \prime} \times 9^{\prime \prime}$ speaker, 131 lbs. (REA or motor freight only) . $\$ 479.95$
GR-295 SPECIFICATIONS - Picture size: Rectangular viewing area approx. 295 sq. inches, (23^{*} diagonally, 20^{*} harizantal, 16^{*} vertical). Tube Size: 25^{*} overall diagonal measurement. Deflection: Magnetic 90°. Focus: Electrostatic. Convergence: Magnetic. Antenna input impedance: 300 ohm balanced, or 75 ohm unbalanced (VHF). Picture IF carrier frequency: 45.75 MHz . Sound IF carrier frequency: 41.25 MHz . Color subcartier: 42.17 MHz . Video IF bandpass: 3.58 MHz . Sound IF frequency: 4.5 MHz . Tuning range: VHF channels $2-13$, UHF channels 14-82. Sound cathode follower: Output impedance; 3 K . Frequency response; $\pm 1 \mathrm{db}, 50-15,000 \mathrm{~Hz}$. Harmonic distortion, less than 1%. Output voltage; 2 v . Audio output: Output impedance, 8 ohms. Output power, 2 watts. Frequency response, $\pm 2 \mathrm{db}, 50-10,000 \mathrm{~Hz}$. Harmonic distortion, less than 3%. Power requirements: $110-130 \mathrm{v} ., 60 \mathrm{Hertz} \mathrm{AC}, 330$ watts. Wall mounting: $20^{\prime \prime} \mathrm{D} \times 21^{\prime \prime} \mathrm{H} \times 26^{\prime \prime} \mathrm{W}$ inside. Control panel assembly, $61_{2^{\prime \prime}} \mathrm{W} \times 77_{8^{*}} \mathrm{H} \times 7^{\prime \prime} \mathrm{D}$.

Install In A Wall Or These Assembled Heath Cabinets

Contemporary Styled Walnut Cabinet
Factory assembled of fine veneers and solids with oil-rubbed walnut finish. GR- 295 speaker and convergence pane mount behind tilt-out grille cloth Assembled GRA-295-1, 56 lbs. (Express or motor freight).

Contemporary Styled Deluxe TV Cabinet
Constructed of the finest veneers and solids. GR-295 speaker and convergence panel mount behind speaker grille cloth on right side. Measures $1914^{\prime \prime} \mathrm{D}$
$\times 331 / \mathrm{a}^{\prime \prime} \mathrm{H} \times 41^{\prime \prime} \mathrm{W}$ Walnut finish. $\times 331 \mathrm{y}^{\prime \prime} \mathrm{H} \times 41^{1 "}$ W. Walnut finish.
Assembled GRA-295-2, 65 lbs . (Express or motor freight)

Deluxe Early American TV Cabinet
Made of a special combination of veneers and solids all beautifully finished in popular salem-maple. GR-295 speaker and convergence panel mount behind grille cloth on right side. Measures $191^{\prime \prime} \mathrm{D}$
$\times 31^{\prime \prime} H \times 36^{\prime \prime} W$ $\times 31^{\prime \prime} \mathrm{H} \times 36^{\prime \prime} \mathrm{W}$.
Assembled GRA-295-3, 67 lbs. (Express or
motor freight)

- Hi-fi rectangular color tube with 180 sq. irch viewing area and anti-glare safety glass
- Rare earth phosphors for brighter, livelier colors
- Extra $B+$ boost and smaller dot size for imprcved picture definition
- 27 tube, 10 diode, 1 transistor circuit
- 24,000 volt regulated picture power
- Exclusive built-in self-servicing facilities
- Exc/usive Heath "Magna-Shield" improves color purity
- Automatic degaussing
- Automatic Color Control circuit to reduce color fading
- Gated Automatic Gain Control (AGC) for steady, flutter-free pictures even under adverse conditions such as airplane traffic
- 2-speed transistor UHF tuner for both fast station selection and fine tuning individual channe/s
- Deluxe VHF turret tuner with "memory" fine tuning and long-life nickel silver contacts
- 3-stage video IF strip reduces interference, improves reception
- Two hi-fi sound outputs . . a cathode follower for play thru your hi-fi system, and an 8 ohm output for connection to special limited-field $4^{\prime \prime} \times 6^{\prime \prime}$ speaker (included)
- Two VHF antenna inputs . . a 300 ohm balanced, and a 75 ohm coax to reduce interference in metropolitan or CATV areas
- Circuit breaker protection
- 1-year warranty on picture tube, 90 days on all other parts
- Tubes alone list at over $\$ 245$
- Liberal credit terms available - details in FREE catalog.

Kit GR-180, all parts including chassis, tubes, mask, UHF \& VHF tuners, mounting kit, and special limited-field $4^{\prime \prime} \times 6^{\prime \prime}$ speaker, 102 Ibs. (REA or motor freight only) . $\mathbf{\$ 3 7 9 . 9 5}$

GR-180 SPEC|FICATIONS - Picture size: Rectangular viewing area opprox. 180 square inches (18* dicagonally, 16^{*} horizontally, 12^{*} vertically). Tube Size: $19^{* *}$ overall diagonal measurement. Deflection: Mognetic 90°. Focus: Electrostotic. Convergence: Mognetic and Dynamic. Antenna input impedance: 300 ohm balanced, 75 ohm unbalonced VHF. Picture IF carrier frequency: $45.75 \mathrm{Meg} . \mathrm{Hz}$. Sound IF carrier frequency: $41.25 \mathrm{Meg} . \mathrm{Hz}$. Color subcarrier frequency: $42.17 \mathrm{Meg} . \mathrm{Hz}$. Video IF bandpass frequency: $3.58 \mathrm{Meg} . \mathrm{Hz}$. Sound IF frequency: 4.5 Meg . Hz . Tuning range: VHF channels $2-13$, UHF chonnels $14-83$. Sound cathode follower: Output impedance 3 K ohm, frequency response $\pm 1 \mathrm{db}, 50-15,000 \mathrm{~Hz}$. Hormonic distortion less than 1%, output voltage 2 V . Audio output: Output impedance, 8 ohms. Output power, 2 watts; Frequency response, $\pm 2 \mathrm{db}, 50-10,000 \mathrm{~Hz}$. Harmonic distortion less than 3%. Power requirements: 110.130 V ., $60 \mathrm{~Hz} \mathrm{AC}, 330$ watts. Wall mounting (mask): $15 \% / \mathrm{h}^{\circ} \mathrm{H}$ $\times 24^{3} / 6^{\prime \prime} \mathrm{W}$. Chassis room: $17 \frac{1}{2^{\prime \prime}} \mathrm{H} \times 26^{\prime \prime} \mathrm{W} \times 18^{\circ} \mathrm{D}$ (This is with 14^{*} clearance on both sides and the top).

Install In A Wall Or Either Assembled Heath Cabinets

Contemporary Walnut Cabinet
Factory assembled of beautiful solids and veneers with an oil-rubbed walmut finish. The GR-180 with an oil-rubbed walmut finish. The GR- 180
speaker is mounted behind right side of one-piece picture-control panel mask. Measures a compact $181 / 4^{\prime \prime} \mathrm{D} \times 281 / 4^{\prime \prime} \mathrm{W} \times 29^{\prime \prime} \mathrm{H}$.
Assembled GRA-180-1, 41 lbs. (REA or motor freight) $\$ 49.95$

Deluxe Early American Cabinet

Factory assembled with a special combination of veneers and solids, finished in popular Salemveneers and solids, finished in popular Salem-one-piece face mask. Measures $1814^{\prime \prime} \mathrm{D} \times 2814^{\prime \prime} \mathrm{W}$ one-piece
$\times 31 \frac{13}{\prime \prime} / H$.
Assembled GRA-180-2, 48 lbs. (REA or motor
freight) $\$ 75.00$

Regardless
 Of What You Pay For COLOR TV, It Can't Perform As Well As These Two HEATHKITModels...

Exclusive Features That

Can't Be Bought In Ready-Made

Sets At Any Price!

All color TV sets re quire periodic convergence and color purity adjustments. Bobl Ha゙allakit color TV's have exclusive built-in serviefing aits, su) you can perform these addjustmems allytian without calling in a IV sersiceman . . without any special skills or knowledge, Just flip al switeh on the built-in dot gentrator and at dot pattern appears on the seresin, Smple-to-follow instructions and detailed eolor photos in the manual show sou exately what to took for, "hat to do and how to do it. Results? Beautifulls clean and sharp color pictures dat in and day out . . . and up to $\$ 200$ satving in service calls throughout the life of sour set. No other brand of color If has this money-saning self-servicing feature:

Vertical
Swing-Out Chassis!

All parts mount on a single onc-picec chansis that's hinged to make it more accessible for casior construction, care amg installation:

Exclusive
 Heath Magna-Shield!

This unique metal shiclal surround the entire picture tule to help keep out stay extermal magnetic diedds and improve color purity. In addition Antomatic Degonssing demagnetios and "eleats" the picture everytime sou turn the set on from a "cold" start . . . also permits sou to mone the set aboul fredy without ills mamual degatusing. A mobile degatusing coil is moluded for intial set-up

for finst, satsy danamic connergence and graty scale adjusiments any time don decide color purity meds it. If sou install the GR-295 model in any of the 3 optional calvincts, this board is mounted behind the special "tilt-out" spcaker grille scotion. It" you install the (ik-I 80) model in any of its optional cabinets, the boatrd catr be temporarily mounted on the bottom of the cabinet underncath the tube face when making adjustments. In either cass. theres no atwkward reaching around the back of the set. or mirrors to set up. In iddition, the (il2-205 has it L'niversal Main (ontrol famel that can be mounted at the bottom, top or fight side of the picture tube for more flexible in-wall installation.

Here's Why!

Your Choice Of Installation!

Another llandakit exclusive! Botl color TV's irredesigned for mounting in a wall or our own custom Cabinct. Or you can install either set in a choice of

 and limished Heath contemporary Walnut or Early Anlerican cablincts (sce oppositc foldout).

From Parts To Programs In Just 25 Hours!

And no special skills or knowledge neded. All eritical circuits (VIHF and LHF mencs. 3-stage IF assembly and bigh voltage power suppla) are prebuits, alighed and tested at the fictory. The assembly mandal guides you the rest of the way with simple, non-techaizal instructions and giant pietorials. It's like hasing a master teather at your elbow pointing out every step of the way. You cin't miss

But Don't Take Our Word For It. Read What The Experts

And Owners Say!

llubert Luckett, Executive Editor, l'opular Science Makazine: "Buidding your own color Tb' from a kit is not as outragcously impractical as vou might suppose, For those who tremble at the thought of tachling something su fantustically complicated. Jet mer encourase toll with a borrowed quote': 'The only thing trou have to fear is ficur itself
"The second most impressive thing about the hit is the instruction manual (the most impressive thing is the viewing quality of the color pieture). If lou can read and anderstand ordinary finglish, the mannal is lihe having a master teweher at jour stbow pointing out c'ery step.
the circuitry, features and performance matich or eseceed those of sets selling at twise the price. Some of the features, surch as the built-in servicing aids, can't be bought in readymulde sets at and price."
"U'ith the instructions supplided. , iour expericute in assembling the hit, and the self-scrvicing foufures buitt-in, you'll be able to do most servicing yoursclf.
Johur Drummond. Tecluncal Editor, Popular Electronics Madazine: ", . we simply had te hnow how well a 25 hours-to-build color It hit would stach up) against the more expensive. well-advertised wired sets people are gobbling "11]. It didn't tahe' as long to find out that the Heath GiR-245 compares favorably with the best of them."
Radio-TV Experimenter Magazine, Oct-Nov. 66: "Ouer the life of a color set, repair and service call costs dan exiceed \$200. Buat, build the colar set vorrself and ven will sabe several humetred dollars in repairs plus wind sip) with hetter collor as youll align the color reception to what you - not a serviceman - thinks is grood so look ar."
Robert II. Scott, Radio-Electronics Magazine: "Frichls whowe seph my Heathhit (iR-295 generally ask, 'Why cant I get a good pichure like that on my color sep?"
Audio Magazine, May '66:
. sets similar in appararance seen to rall around 5700 , with out the bultr-in service features like the dot generatar. Add to this the saving in service costs which the arerage set wolld reftire, since the builder would tindoubtedly service his ow't set throughout its life, and the licahhit (iR-245 is a red hargain." "Besides that, it is capable of a gresat picture
Mr. Robert D. Taylor, Sacrancuto, Calif.: if's the best TV on the market, nothing compares with it (/ have been looking at and cheching Tt's over 2 vears). The manaal (service) is a 'gold mine" of servings."
Vr. (. A. Petrarca, West Caldwell, N. J.: "Ho are still getting oohs, whis, best I've crer sectu", 'how bright the colors are", ete. from our fricnels and neighbors."
Mrs. Joseple Gesswein, Bethesda, Mdd: "If a honsewife with 3 children muder 4 becers old can successfull.y build it in her few spare moments, it has to be good.'

Order Now - Use This Form

 FREE!

World's Largest Electronic Kit Catalog!

HEATH COMPANY, Dept. 15-6

Benton Harbor, Michigan 49022
\square Enclosed is $\$$
Please send model ($\$$) _ plus shipping.
\square Please send FREE Heathkit Catalog.

Describes these and over 250 kits for stereo/hi-fi. color TV, amateur radio, shoriwave, test, CB, marine, educational, home and hobby. Save up 1050% by doing the easy assembly yourselt. Mail coupon or write Heath Company, Benton Harbor, Michigan 49022

Start here:

Blown up to several thousand times its actual size, an RCA integrated circuit looks like no more than a maze. In actuality, it's no less than amazing. Just one of these silicon chips may incorporate 40 or 50 electrically interconnected components. Patterns that make up the mosaic are as narrow as two human hairs. Far more amazing than that, though, is their dollar-making potential. Integrated cir-

cuits are designed to be the most reliable kind of circuitry ever made for a consumer product. Reliability is what prompted RCA Victor to use integrated circuits in the sound system of some of our newest color and black-and-white TV sets. When you start with an integrated circuit, there's just no telling where it can take you s.

The Most Tusted Nanie in Electronics in E

Electronics Ilortide

THIS MONTH'S COVER is tied in with our lead story on "Fluidic Systems." We have interconnected a num. Der of fluidic-sysiem components manufactured by Corning Glass Works. Nor mally the clear plastic tubing carries air under pressure from one component to another. We have taken a little artistic license, huwever, and have filled the tubing with water of various colors in order to more effectively dramatize the importance of this relacively new technology. Though these components cannot match the speed of e.ecîronic control systems, they have the advantages of simplicity and high reliability for a good many important applications ... Photo: Louis Mervar.

Prbhisher
PHILLIP T. HEFFERNAN Eilitor

WM. A. STOCKLIN
Terchnical Editor
MILTON S. SNITZER
Asomiate Elitors
LESLIE SOLOMON P. B. HOEFER

Assistant Editor
MARSHA JACOBS
Ciontrihuting Editors
WALTER H. BUCHSBAUM
Prof. ARTHUR H. SEIDMAN Irt 'ilitor

HERBERT L. SILBERMANN
fit and Irafting Deph.
J. A. GOLANEK

Alverlising Sales Manager
LAWRENCE SPORN
Advertising siervice Manaser
ARDYS C. MORAN CONTENTS

23	Fluidic Systems C. J. Miller
	Components using air flow can be made to sense, count, amplify, and control. Although far slower than their electronic counterparts, fluidic devices are vibration- and explosion-proof, are not affected by radiation, heat, or r.f.
26	Measuring Tracking Ability of Phono Cartridges J. H. Kogen
29	LSA Diodes: New Source of Microwave Power
	Discovery of a new mode of oscillation in gallium arsenide diodes permits design of solid-state oscillators capable of delivering 20 mW at 88 GHz .
30	Recent Developments in Electronics
32	Loudspeakers for Electronic Musical Instruments Karl Kramer
33	Semiconductor Switching of Low-Power Circuits Aubrey Harris
	Transistors can be used to switch d.c. loads up to 35 amperes and a.c. Ioads up to 10 amperes, with no contact bounce, reduced noise, and economy of space.

36 The Penultimate Automatic Keyer P. A. Siark, S. Gordon \& A. Marfredonia
39 The Search for a Highway Emergency Radio Program Roberl M. Brown
Many methods have been proposed to assist the motorist either in an emergency, or to give traffic routing directions. Most use some form of $C B$, and some include very sophisticated electronic equipment. Here are details on several of these systems including HELP, REACT, CRW, RRA, and DAIR and covers their good and bad points.

43 The Laser Interferometer 1. P. Engeman
46 Ferrite Coil and Crystal Sideband Filter Richard A. Genaille
48 Common-Sense Design of Transistor Amplifiers Donold L. Carison
64 Occupational Outlook for Electronics Technicians

14 EW Lab Tested
Dynaco Stereo 120 Power Amplifier
Jensen X-40 and X-45 Speaker Systems
54 Magnetic Shielding John Frye
76 Test Equipment Product Report
"Knight-Kit" KG-2100 Laboratory Oscilloscope
Hickok Model GC-660 Color-Bar Generator
Sensi-Tronics Model 200 Electronic Circuit Breaker

MONTHLY FEATURES

Radio \& TV News 82

Book Reviews
\& Literature

It will actually take you longer to read this advertisement than to install this new "Quick Grip" mobile
 SPECIAL ISSCE: TRANSISTORS

 antenna mount. No holes to drill. Cable is completely hidden. Makes the world's finest antennas the world's most practical.

Practically every A/S mobile CB antenna made may be ordered with a "QuickGrip' mount, including all versions of the mighty Maggie Mobiles.

Model M-176, illustrated above. M-175, same coil and whip less spring. M-177 is "Quick-Grip' version of our great 18" Mighty-Mite. Mount only also available.

12435 Euclid Ave., Cleveland, Ohio 44106
Export: 64-14 Woodside Ave., "Stripes of Quality" Woodside, N.Y. 11377
CIRCLE NO. 124 ON READER SERVICE CARD tion oi Transistors by R.M. Ryder of Bell Labs and on Alloy Transistors.

static electricity

The space are's hillan-t/eat-all antulim lurs bren responsibla for aceidemblly for
 ambl ransing aircraft explositem. la... Lar! explains how the danser is delrefed and the't minimized.

ELECTRONIC CHALLENGES

IN THE SST PROGRAM
Mying faster than furer the speral al somud, and requiring fose control of flight comditions for basurnsers alfoly and

ZIFF-DAVIS PUBLISHING COMPANY

This 24-page special section carries six feature articles covering various types of transistors and their applications. T.J. Robe of RCA offers valuable tips for selecting r.f. transistors in his article Small-Signal High-Frequency Transistors. Richard A. Stasior, manager of application engineering for G-E's Semiconductor Products Dept., covers the audio field with Small-Signal Low-Frequency Iransisiors. Diffused Transistors, including annular, mesa, epitaxial, and interdigitated, are discussed by Jack Haenichen, manager of Thyristor Operations for Motorola, while Ronald W. Vahle of Delco ofters practical guidelines for selecting Power Transistors. Arthur D. Evans, vice-president and engineering manager of Siliconix, discusses the various types of Field-Effeci Transisiors while Lloyd Walsh and Steve Fierro oi Fairchild Semiconductor cover Switching Transistors. Plus ... shorter articles on Selec-
comingt, Ihessit will nerd mure sophistiachad and mialle vedronics.

TROUBLESHOOTING

INTEGRATED CIRCUITS

Troulle' ahe ad for the Tl archuician." W'ill he be able to service all all-16 whor-th set: Mere's what hell have to kenote. thre apmonh hell hare lo lake, and wo lest-c'quipmu'nt lechmigues he'll hate lo wase to keep abresast of latest techmology. This "ill be l'art I of an importaill lea-part atiole.

All these and man! move intrestime and informatite afiches will be gours

William B. Ziff
Chairman of the Board (19.46.195.3)
William Ziff
President
W. Bradford Briggs

Executive V'ice President
Hershel B. Sarbin
Senior Vice President
Philip Sine
Financial Vice President
Walter S. Mills, Jr.
Vice President, Circulation
Stanley R. Greenfield
Vice President, Marketing
Phillip T. Heffernan
Vice President, Electronics Division
Frank Pomerantz
V'ice President, Creative Services
Arthur W. Butzow
I'ice'l'resident. Production
Edward D. Muhlfeld
V ice President, Aviation Division

Irwin Robinson

V'ice President, Travel Division
Radio \& TV News - Radio News - Radio-Electronic Engineering Trademarks Reg. U.S. Pat. Orf. SUBSCRIPTION SERVICEE All subscription correspondence should be addressed to Electronies World. Circu-
lation Department. Portland Place, Boulder, Colorado 80302 . Please allow at least six weeks for change of lation Department, Portland Prace, Bouder. new-enclosing if possible an adtress label from a recent issue EDITORIAL CONTRIBUTIONS must be accompanied by return postage and will be handled with reasonable care; however publisher assumes no responsibility for return or safety of art work, photographs. or manuscripts.
ELECTRONICS WORLD (June, 1967 , Vol. 7 7, No. 61. Published monthly at 307 North Michigan Avenue, Chicaro, Illinois 60601 , by Ziff-Davis Publishing Company-also the publishers of Airline Management and Marketing, Boating, Business \& Commercial Aviation, Car and Driver. Cycle Fkiying, Hkifi stereo Review
Modern Bride, Popular Aviation. Popular Electronics. Popular Photography. Skiing. Sing Area News. and Alodern Bride, Popular Aviation, Popular Electron ty Robinson Publications. Inc., a subsidiary of Ziff Davis Publishing Company. 1 One year subscription rate for U.S. U.S. Possessions. and Canada. S6.00: all other countries. $\$ 7.00$. Second Class postage paid at Chicago. Iltinois and at additional mainng ompes. Ane in rish

You are now in Radar Sentry Alarm's r.f. microwave field. Don't move a muscle!

This security system is so sensitive, it can be adjusted to detect the motion of your arm turning this page.

And if this Portable Model Unit were within 35 feet of you and you moved... people up to a half-mile away could hear the siren. Plus with optional equipment, it can detect fire ...turn on lights...even notify police. What does a burglar alarm have to do with you?
Just this: Radar Sentry is no ordinary alarm. It is the most modern and effective security system available. And it's also electronic.

That's why we need you. We reed Dealers with technical knowledge. For the most successful Dealers for Radar Sentry Alarm are men who know electronics. This is a product that sells itself when demonstrated properly.

It's been proven time after time. In fact, many of the more than one theusand readers of electronics magazines who became Dealers in the past year sold a system on their first demonstration.

And that's wry we need men witn technical knowledge and experience.

Men like you.

How about it?
Do you want to start a business of your own... or expand your present business with a product that in 8 years has become the world-wide leader in its field?

Do you want to earn up to $\$ 5,000$ a year in your spare time?

Do you want to earn $\$ 20,000$ and more full time? We'll show you how.
O.K., now you can move.

Fill out the coupon and get complete Dealer/Distributor information... free.

[^0] dita all the color GO?
heres GUARD TWINS are: and $8285 \dagger$ Unshielded Permonments line pick up of preven 8285 permonm signals that produce ghosts cellular polyethyon areas. 8290 eners, connect are encapsulated in low loss in fringe receptially in expensive transform a rain gutter. designed so that you even tape it to gets the full color porn get the kind of picture "stand offs." You lead-ins, the set ge, too.) Now own set for. You get macturing company Permohm for UHF or VHey bought a color BELDEN MANUTA.A. Chicago. IIInNois 60680

Eoctronios comes alive with NRI Iraining Kits

DISCOVER THE EASE AND EXCITEMENT OF TRAINING AT HOME THE NRI WAY

New Achievement Kit-Custom
 Training Kits-"Bite Size" Texts

Only NRI offers you this pioneering method of simplified " 3 Dimensional" home-study training in Electron. ics, TV/Radio and Broadcasting/Communications. It's a remarkable teaching idea unlike anything you have ever encountered, the result of more than half a century of simplifying, organizing and dramatizing learn-ing-at-home techniques. If you are an ambitious man -regardless of your education-you can effectively learn the Electronics field of your choice the NRI way.
NRI has simplified Electronics by producing "bite size" lesson texts averaging only 40 pages each. Dozens of illustrations open wide a picture window through which you'll see and understand practical uses of Electronics. You start out with NRI's exclusive Achievement Kit, containing everything you need to get started fast. (Illustrated at right.)
NRI has organized Electronics training to take you step-by-step from the first stages into more intriguing areas. Once you know the fundamentals thoroughly, it's easy to grasp more advanced theory and techniques. You move with confidence and enthusiasm into a new adventure filled with the excitement of discovery.
NRI has dramatized Electronics through the careful development of special training equipment that is programmed into your training systematically ... beginning with your first group of lessons. Things you read about come alive in your hands as you build, experiment, purposely cause "problems" in circuitsand solve them. You learn to use test equipment, to build radios and TV sets, transmitter, or computer circuits. It's the priceless "third dimension" in NRI training ... practical experience.

More than 50 years of leadership in Electronics Training

YOU GET MORE FOR YOUR MONEY FROM NRI

Mail postage-free card now for your free NRI catalog. Then, compare. You'll find-as have thousands of others -NRI training can't be beat. Read about the new Achievement Kit sent the day you enroll; about "bitesize " texts and custom designed training equipment. See why NRI gives you more value. Whatever your reason for wanting more knowledge of Electronics, NRI has an instruction plan for you. Choose from major programs in TV/Radio Servicing, Industrial Electronics and Complete Communications. Or select from special courses to meet specific needs. Check the course of interest to you on postage-free card and mail today for free NRI catalog. Nosalesman will call. National Radio Institute, Electronics Div., Washington, D.C. 20016.

Career? Part-Time Earnings? Hobby? Choose From 12 Training Plans

1. TELEVISION-RADIO SERVICING Learn to fix all TV sets, including Color. Includes your choice of NRI Color Kit or 19" black-white TV Kit. Also covers radios, stereo hi.fi, etc. Profitable field spare or full-time.
2. INDUSTRIAL•MILITARY ELECTRON. ICS - Basics to computers. Starts with fundamentals, covers servos, telemetry, multiplexing, phase circuitry, other subjects.

3. COMPLETE COMMUNICATIONS * -

 Operation, service, maintenance of AM, FM and TV broadcasting stations. Also covers marine, aviation, mobile radio, facsimile, radar, microwave.4. FCC LICENSE $*$ - Prepares you for 1st Class FCC License exams. Begin with fundamentals, advance to required subjects in equipment and procedures.
5. MATH FOR ELECTRONICS - Brief course for engineers, technicians seeking quick review of essential math: basic arithmetic, short-cut formulas, digital systems, etc.
6. BASIC ELECTRONICS - For anyone wanting a basic understanding of RadioTV Electronics terminology and compo. nents, and a better understanding of the field.
7. ELECTRONICS FOR AUTOMATION Not for beginners. Covers process control, ultrasonics, telemetering and remote control, electromechanical measurements, other subjects.
8. AVIATION COMMUNICATIONS * Prepares you to install, maintain, service aircraft in-flight and landing systems. Earn your FCC License with Radar Endorsement.
9. MARINE COMMUNICATIONS * Covers electronic equipment used on commercial ships, pleasure boats. Prepares for FCC License with Radar Endorsement.
10. MOBILE COMMUNICATIONS * Learn to install, maintain mobile transmitters and receivers. Prepares for FCC License exams.
11. ELECTRICAL APPLIANCE REPAIR Learn to repair all appliances, including air conditioning, refrigeration, small gas engines. Leads to profitable part or fulltime business.
12. ELECTRONICS FOR PRINTERS Operation and maintenance of Electronic equipment used in graphic arts industry. From basics to computer cir. cuits. Approved by major manufacturers.

* You must pass your FCC License exams (any Communtcations course) or NRI refunds in full the tuition you have paid.

> SCOTT'S NEW ONE-AFTERNOON TUNER KIT DELIVERS AMAZING FET PERFORMANCE

Now you can get factory.wired per. formance from a kit that takes only one afternoon to build! Scott's new LT-112B is the only kit with Field Effect Transistor circuitry*, enabling you to enjoy more stations more clearly. Interstation Muting Control effects complete quiet between FM stations . . . oscilloscope output al. lows laboratory-precise correction for multipath distortion.
'Scott's LT-112 . . . is one of the finest FM stereo tuners we have tested and it is easily the best kit-built tuner we have checked . . . Because of its simple con. struction and trouble.free nature, it is a logical choice for anyone who wants the finest in FM reception at a most remark. able price." HiFi/Stereo Review.
LT. 1128 specifications: Usable sensitivity, $1.8{ }_{\mu} \mathrm{V}_{;}$Cross modulation, 90 dB ; Stereo separation, 40 dB ; Capture ratio, 2.5 dB ; Price, $\$ 189.95$.
For complete information on the Scott LT-1128, send for For complete information on the scott Lr-1128, sind for Guide to custom stereo.

FREE! 1967 SCOTT GUIDE TO CUSTOM STEREO

Here are 16 colorful, information-packed pages on Scott stereo components receivers, tuners, amplifiers, speakers for 1967. Fact-filled, fully-illustrated articles show you what to look for when buying solid-state components, how stereo works, how to create your own home music system.

111 Powdermill Road, Maynard, Mass. Export: H. H. Scott, Inc., Maynard, Mass - Prites slightly higher west of Rockies. Subject to change without notice CIRCLE NO. 98 ON READER SERVICECARD

LETTERS FROM OUR READERS

ELECTRONIC PERCUSSION UNIT To the Editors:

I hate just built the clectronic percussion circuit on p. 36 of your February issure. The instrument works perfectly and I am very pleased with it. How can I change some of the componconts to produce the sounds of other perenssion instruments, as mentioned in the article?

Whlliam R. Miobpiy Boston, Mass.

According to our author, changing the cmitter pot in the bongo circuit to a lou-resistance mit and critically atjusting it just brefore oscillation results in a bell sound. Other somuls can be produced by experimenting with some of the parts calucs along the lines indicated in the ports list of Fig. 2.

Producing a cymbal sound is more complex. It requires a moise generator along with a time-delay circuit nuder push-button control.-Editors

PULSE-COUNTING FM DETECTOR

To the Editors:
I read with interest Mr. A. II. Scidman's article in the Janary issue of Elemmonics Womed entitled "PulseCounting Detector for FXI Tuners."

As you are aware, pulse-counting demodulators have been in use for several years in command and telemetry receivers designed for military and space applications. The extremely linear voltage es frequency characteristic of this circuit renders it particularly wellsuited to commercial FM as well.

Mr. Scidman references in this article a paper entitled "Theory of Stronger-Signal Capture in FM Reception" authored by the President and Techmical Director of our company, Dr. Elie J. Baghodaty: ADCOM, Inc. has been involved in characterization and measurement of FM-receiver capture performance for some time. Your readers may be interested in some of this company's other contributions in this particular area in addition to the paper cited in Mr. Seidman's article:

1. Baghdady, E.J.: Lectures on Communication System Theory, McGraw-Hill Book Co., New York, 1961, pp. 490.508. 2.: 'Propagation Characteristics of the Spoce Chonnel," International Telemetering Conference Proceedings, Vol. 1, Washington, D.C., May 1965.
2. Signal Cancellation Technique for Capturing the Weaker of Two Co-Channel FM Signals, presented at the International Conference on Electromag netic Wave Propagation, Liege, Belgium, October 6.11, 1958. Published in Electromagnetic Wave Propagation, M. Desirant and J.L. Michiels, eds., Academic Press, Landon and New York, 1960, pp. 183-207
3.

pression Properties of the Oscillating Limiter," 1959 IRE National Convention Record, Pt. 8, pp. 13-39. Also IRE Iransactions on Vehicular Communicotions, Vol. PGVC.13, September 1959, pp. 37-63.

New Developments in FM Reception and Their Application to the Realization of a System of 'Power-Division' Multiplexing," IRE Transactions on Communications Systems, Vol. CS-7, September 1959, pp. 147161.

6 Limiter," 1957 IRE Notional Convention Record, PI. 8, pp. 176-202.
7.: "Interference Rejection in FM Receivers," MIT Research Laboratory of Electronics Technical Report 252, September 24, 1956.
8.
requency-Modulation Interfer ence Rejection with Narrow-Band Limiters,' |RE Proceedings, Vol. 43, January 1955, pp. 51.61.

> D. Brailey Chow, Sr. Engr. ADCOM, Inc. Huntsville, Ala.

PERMANENT MAGNETS FOR METERS

To the Editors:
Your reply to Thomas F. MCDonnell's question. "Will my v.o.m. lose its sensitivity due to loss of maguetism after being around for, say, 10 or 15 vears?". which was based on infomation given by Portus M. Wheeler, President of Crucible Magnct Dicision of Crucible Steol Co. (p. 6, Febrtary, 1967 issue), is only partially true.

I agree that a permanent magnet should not lose more than 1% or 2% of its magnetism over 100,000 years if it is kept under ideal conditions. However, the permanent magnets used in vor.m.'s will not always be maintaned uncler ideal conditions. For instance, if the ro.m. is placed in a tube eaddy, carried to and from iobs, carried in and out during eold weather, and is otherwise subjected to vibration, temperature changes, and possible extemal magnetic fields, the magnet may lose strength. Witness the fact that any me-ter-repair shop working with v.o.m.'s has and use's a magnet charger.

Dy own experience in working with meters for the past fifteen years has been that laboratory meters do maintain their acomacy over extended pe(Contimucd on page 90)

Not just a slide rule, but the dawn of "a whole new era of quick calculations" for men in electronics

An expert reports on the CIE electronics slide rule

"THERE MUST BE THOUSANISS OF PEOPLEF in electronics who have never had the marvelous adventure of calculat:ng problems with a single slide rule: other thousands have had to content themselves with a slide rule not specifically designed for electronics. For both groups, the new slide rule designed and marketed by Cleveland Institute of Electronics and built for them by Pickett will open a whole new era of quick caiculations.
"Even if you have never had a slide rule in your hands before. the four-lesson instruction course that is included takes you by the hand and leads you from simple calculations right through resonance and reactance problems with hardly a hitch. If you already use a slide rule, you'll find the lessons a first-rate refresher course. And it explains in detail the shortcuts built into this new rule."

Froman article in
Radio Electronics Magazine
How to Solve Electronics Problems in Secends
experts agree this electronics slide rule is a "must" for men in electronics. It is offered exclusively by the Cleveland Institute of Electronics at an especially low price in order to attract ambitious men who might be interested in our regular courses. With the slide rule and four-lesson course you also get, as a special bonus. a genuine top-grain leather slide rule case with heavy-duty plastic liner and removable belt loop for easy carrying. For free booklet with complete details. mail coupon or write to: Cleveland Institute of Electronics, 1776 East 17th Street, Cleveland, Ohio 44114.

HI-FI PRODUCT REPORT

TESTED BY HIRSCH-HOUCK LABS
Dynaco Stereo 120 Power Amplifier
Jensen X-40 and X-45 Speaker Systems

Dynaco Stereo 120 Power Amplifier

For con? of mamufacturer's brochare, circle No. 25 on Reader Service Card.

TIIE outstanding performance and reliability of its vacomm-tube amplifiers over the years has no doubt made Demaco reluctant to join the switch to transistors. Since such a transistorized amplifier would, at the very least, have to match the performance and ruggeduess of existing models, D ! maco engincers were wary of the pitfalls of solid-state design. Their labor has now bonne fruit, in the form of the new Stereo 120 power amplifier-and it was well worth the wait.

The Stereo 120 is a dual 60 -watt amplifier, with all silicon transistors. It has no controls or adjustments, cither internal or extemal, except for the power switch. Although it is equivalent in performance to a pair of the company's "Mark III" amplifiers, it measures a compact $13^{\prime \prime} \times 10^{1 / 2^{\prime \prime}} \times 4^{\prime \prime}$ and weighs
only 20 pouncls. The input impedance is 100,000 ohms, somewhat lower than tube amplifiers. Current models of the manufacturer's PAS-2X, PAS-3X, and PAT-4 preamplifiers will drive it without modification. Olcler versions of Dynaco preamplifiers require a simple change in their output circuits to drive the Stereo 120.

The Stereo 120 is rated with 8 -ohm loads. It will work satisfactorily with 4 -ohm or 16 -ohm speakers, with a possible loss of maximum power capability at some frequencies.

The amplifier is constructed, for the most part, on three printed-circuit boards-one for each channel, and one for the power supply. Each amplifier consists of a direct-coupled two-transistor amplifier, with d.c. feedback to stabilize the transistor operating points,
and a four-transistor driver and class-B power amplifier section. This, too, has d.c. feedback, and there are both a.c. and d.c. feedlack paths around the complete :mplifier. By virtue of careful design, the amplifier is stable under any conditions of clrive or load.

The amplifier features a patented protection circuit which limits the peak curent drawn by the output transistors to a pre-deternined maximum value. The limiting action occurs abruptly, together with a reduction in drive to the output stage. The protective circuit operates when the amplifier is called upon to deliver excessive power into a too-low load impedance, such as a short-circuited speaker line. Remoring the short instantly restores normal operation.

The heavily regulated power supply insures the avalability of full power for any line voltage from 110 to 130 volts. This is in shamp contrast to amplifiers with unregulated supplies, which often lose much of their power capatbility when operated with low line voltage. The regulated supply also results in an amplifier whose output is essentially the same whether rated in terms of continuous power (as rated) or with a music-power rating used by many manufacturers. The power supply is protected against shorts or overloads by a circuit similar to that used in the output stages. It may be operated short-circuited indefinitely without damage.

In our laboratory tests, the Stereo 120 lived up to its promise. Except at 20 Hz , where the distortion was 1 g at 60 watts per chanmel (with in-phase signals simultaneously (lriving both chamels),

Here displayed on the RCA Solid-State Center is the RCA SK-Series Transistors, Rectifiers, and Integrated Circuits; the new RCA 3N128 MOS Field-Effect Transistor; RCA's 40214 Silicon Stud Rectifier; and three RCA Experimenter's Kits. This new Solid-State Center, in addition to its host of devices, also includes technical literature to support the devices right on the rack. It's the "one-stop" answer to the solidstate needs of experimenter, hobbyist, ham, or the replacement requirements of the service technician.
All devices and kits are packaged in easily identifiable seethrough packs for your convenience. Included with each device is broad performance data or specific ratings and characteristics where applicable.
RCA Solid-State Center Includes:

- RCA Experimenter's Kits. Three kits enable you to build a light dimmer or any one of 14 different circuits for dozens of applications around the house.
- RCA SK-Series "Top-of-the-Line" Devices: 17 Transistors, 2 Rectifiers, and 2 Integrated Circuits, for exper-
imenter or replacement use.
- RCA Technical Manuals. Four manuals include: RCA Experimenter's Manual, RCA Transistor Manual, RCA Linear Integrated Circuits Fundamentals Manual, and RCA Tunnel Diode Manual.
- RCA Solid-State Replacement Guide. Lists all RCA SKSeries "Top-of-the-Line" Transistors, Rectifiers, and Integrated Circuits and the more than 7,300 types which they replace.
Keep RCA Experimenter's Kits and the RCA SK-Series in mind when you're shopping for solid-state devices. Look for the RCA Solid-State Center. Now at your RCA Distributor. Do it today!

RCA Electronic Components and Devices, Harrison, N.J

Complete your stereo system with the Sony solid-state 350 !

The brilliantly professional Sony solid-state 350 stereo tape deck recorder is the ideal way to add the superior performance of tape to your component system. With an instant connection to your stereo system, the versatile two-speed 350 places at your pleasure a full array of professional features. Three heads for tape-and-source monitoring. Vertical or horizontal operation. World-famous Sony stereo recording amplifiers and playback preamps. Dual VU meters. Auto shut-off. And a set of spees designed to put your speakers to the test of excellence. Frequency response: $50-15,000 \mathrm{cps} . \mathrm{S} . \mathrm{N}$. ratio: minus 50 db . Flutter and wow: under 0.15%. The 350 's black and gold decor is complemented by a handsomely luxurious walnut-grain base. It's all yours to enjoy for under \$199.50. Should you want to add portability to your 350 , there's the 350 C . mounted in a dark gray and satin-chrome carrying case, at less than $\$ 219.50$.

For further information, write Superscope,

 Inc., Sun Valley, California, Dept. S- 25the measured disturtion wats under 0.2\% at any power level up to (60) watts, and at ans frequency from 30 to $20,000(\mathrm{~Hz}$. Over most of the frequency range it was mumeasurablo, even at finli power, sinee the residual hammonic distontion of our test instrmanents is about $0.06 \sigma_{\%}$ and our measured figures on the amplifier were typically 0.07 to 0.08%.

At 1000 Hz . the distortion was umencasumable up to about 70 watts, whore it reached 0.1%. The IM distortion was moder $0.2 \mathbb{2}$ up to 60 watts. It is obvious that in order to measure the distortion of this anplifier with any validity, one must go berond ordinary commercial laborators instmments, few of which can be trusted below 0.1\%.

Driving the amplifier to the point where the ontput clipped, we measured 66 watts per chamel into 8 ohms, 90 watts into 4 ohms, ancl 37.5 watts into 16 ohms. The 90 -watt power into 4 ohms represents, in practice, a sort of "music-
power" rating, since the amplifier will not sustain that power for any significant time. It does offer a welcome, and most useful. power for driving low-officience folim spoakers.

Dynaco, quite logically, clatims that the Stereo 120 should be indistinguishable sonically from a pair of "Mark Ills". This is no small achievement in itself. We did not make the comparisom, but can testify that the Steren 120 sounded like the powerful, virtually distortionless amplifier that it is. It had the clarity and effortless quality at all levels that we have come to expect from a very powerful, clean amplifier. Its small sizc ambl weight and cool operation should make it especially suitable for installation in limited space Where vacum-tube amplifiers would require forced cooling.

The Stereo 120 sells for $\$ 159.95$ in kit form or 8199.95 in the factory wired version.

Jensen X-40 and X-45 Speaker Systems

For conply of manufacturer's brochure, circle No. 26 on Reader Service Card.

BEFORE the advent of compact or "bookshelf" speaker systems, it was rare to find a speaker of any reasonable size which could deliver an andible 30Hz fundamental output. Much of the supposed "bass" response of the big speaker systems that were prominent

10 or 15 years ago consisted of distortion products.

The acoustic suspension speaker systems, with their highly compliant, longthrow cones in smatl, fully sealed enclosures, brought true bass to large (Continued on page 84)

FREQUENCY-Hz

CIRCLE NO. 197 ON READER SERVICE CARD \rightarrow

Your Sylvania distributor is up-to-date on your business. Use him: it's like adding an electronic consultant to your staff ...free.

We keef him up-to-date with frequent reports and analyses of your maintenance and design needs. We give hirn plant tours and technical training. And ready eccess to Sylvania product and applications enginee ing staffs.
He kncws the features of each and every tube we make. And he knows how you use them. He's up on the latest developments. He knows our competitors' tubes inside out, too.
Get a fae analysis, by your Sylvania distributor, of your tabe and semiconductor replacement needs. Hecan prevent emergencies, prepare an inventoryand save you money. He's an expert. Depend on him for service and for fast delivery-in any quantity.
Sylvania Electronic Tube Division, Electronic Components Group, Seneca Falls, New York 13148.
SYLVANIA GENEF AL TELEPHONE \& ELECTRONICS CT\&E

Mail card to RCA Institutes today

Thousands of well paid jobs for Electronics Technicians are unfilled now

It's a sad, but true, fact that today, with so many men yearning for better jobs and better incomes, thousands of well paid jobs are unfilled in the vast electronics industry.

Many of the men who could fill these jobs that is, men with the aptitude and native interest to enjoy a career in electronics-are handicapped because for one reason or another they have not had the opportunity to train themselves for these lucrative positions.

RCA Institutes Can Train YouAt Home - And Help You Qualify For This Work

THANKS TO RCA INSTITUTES HOME STUDY YOU CAN TRAIN FOR A CAREER in ELECTRONICS

Realizing that thousands of technical jobs-well paid jobs-in electronics are going unfilled each week, RCA Institutes has done something positive about the problem. To benefit the electronics industry, with its crying need for trained men... and to help men who really want to move into a well paid electronics job, RCA Institutes offers an ideal home training program!

HOME STUDY CAN PROVIDE CAREER OPPORTUNITIES!

To help meet the need for qualified men in the electronics field, RCA Institutes has created a wide variety of Home Training Courses, all aımed toward a profitable, exciting electronics career in the shortest possible time. Included are exclusive "Career Programs" designed to train you quickly for the job you want! Your study program is supervised by RCA Institutes experts who work with you, help guide you over any "rough spots" that may develop along the way.

OFF TO A FLYING START WITH AMAZING RCA "AUTOTEXT" METHOD

Each "Career Program" starts with the amazing "AUTOTEXT" Programmed Instruction Method - the new, faster way that's almost automatic! "AUTOTEXT" helps even those who have had trouble with conventional learning methods in the
past. It is truly the "Space Age" way to learn everything you need to know with the least amount of time and effort.

RCA INSTITUTES ENGINEERED KITS SPEED YOUR PROGRESS

To speed you on your way to a successful electronics career, your "Career Program" will include a variety of RCA Institutes engineered kits at no extra cost-each complete in itself. As a bonus, you will also receive and build a valuable Oscilloscope. You'll get the new Programmed Electronics Breadboard for limitless experiments, including building a working signal generator and a fully transistorized superheterodyne AM receiver and Multimeter.

CHOOSE YOUR CAREER PROGRAM NOW

To get a head start today on the electronics career of your choice, look over this list of RCA Institutes "Career Programs", pick the one that appeals most to you, and check it off on the attached card:

- Television Servicing
- Telecommunications
- FCC License Preparation
- Automation Electronics
- Automatic Controls
- Digital Techniques
- Industrial Electronics
- Nuclear Instrumentation
- Solid State Electronics
- Electronics Drafting

To meet other specific needs, RCA Institutes also offers a wide variety of separate courses which may be taken separately from the "Career Programs". These range from Electronics Fundamentals to Computer Programming. They are described in the material you receive.

The Most Trusted Name in Electronics

When you need a stable capacitor.

Temperature makes most capacitors wander. For electrolytics, capacitance goes down when temperature gets colder, goes up when things get hot. But this usually doesn't cause trouble, because most electrolytic applications are in filtering-and as long as you have low enough AC impedance, you get the filtering you need. Where drift can bring problems is in tuned circuits, timing and differentiator circuits; here you've got a paper, film, ceramic or mica capacitor, in the fractionalmicrofarad range. If it changes value due to temperature variations or just plain old age, you're going to have some headaches.

Today's tip: when you need extra stability, try the new Mallory polystyrene capacitors. They're the most stable you've ever seen. They look different, and they act different. They're made of a unique kind of stretched polystyrene film and high purity aluminum foil, wound up in a compact roll and then fused together in a self-sealed case of solid clear plastic.

What's extra special about these new capacitors is the way they hold their original microfarad value while temperature varies all over the lot. Temperature coefficient is considerably lower than that of polyester film capacitors-under 150 parts per million per degree C. And it's negative-which means that instead of going up with temperature, capacitance goes down. This is the direction you need to change capacitance in order to compensate for the effect of temperature on the inductive part of a tuned circuit. From $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$, their total capacitance change is less than 1.3%. And brother, that's stable!

And that's not all. These little dandies don't grow old. They hold their characteristics month after month. You just connect 'em and forget 'em.

One more thing. Mallory Polystyrene Capacitors have the lowest dielectric loss in the business. Their dissipation factor (similar to power factor, a measure of efficiency as a capacitor) is extremely low . . only 0.05%, which is a small fraction of that of other capacitors. And it stays at this low ralue over the whole temperature range. This means that they're high \mathbf{Q} capacitors, ideal for tuned circuits. And their insulation resistance is way higher than polyester, mica or paper capacitors.

In case you were wondering how much dough you would have to lay out to get such wonderful capacitors-here's the best news of all. They are really low priced. You can get them in values from 5 pF to .01 mfd , all rated 600 volts, from your Mallory Distributor. See him soon-and ask for your copy of the 1967 Mallory General Catalog. Mallory Distributor Products Company, a division of I'. R. Mallory \& Co. Inc., Indianapolis, Indiana 46206.

A fluidic time-based sequencer used to control a glass press is shown here. This digital control system, the most complicated fluidic system ever assembled, contains 1050 standard active and passive devices in a relay rack two feet square by six feet high. It will replace an electromechanical press control that requires manual adjustment of valve-actuating cams taking more than an hour for setup. Fluidic control sefup time is under 15 min .

FLUIDIC SYSTEMS

By C. J. MILLER/Fluidic Products Dept., Corning Glass Works
Lir flowing through plastic tubing can be made to perform many of the ver same functions as electrons flotring in conductors. Hohough far slouer than electronic componemats. fluidic systoms are much simpler and morer reliable in a good mans applications.

FLUIDIC: systems. the newost and most promising type of control. mas in first ghace setm to be the province of mechanical rather tham dertronics emgineers. This is becanse the operating prineiples of flatic devices insolve aterolvanamics and flad mechar ies. But. since flaidic devicen call sense, comm amplify, and control it is natmial for
the technologs to be of materest to those in the electronics fired. soncerned with control sistems.

The terminclogy is the same as in electronics, i.f., there are fluad amplifiers. nor gites. and gates, resistors. Hip-Hops. binary counters, and Schmitt triggers. Although fluidic devices operate ar somewhat different principles, the func-
tions performed are the same as those handled by their electronic comuterpats, As a matter of fact, about 90 percent of all fluidic applications are in areas where electronic components or systems perform similar functions.

Fluidics involves the passage of a fluid-usually airthrough mechanical components having carefully made chamels and passages. These components are ustally interconnected with plastic tubing. The fluid (air) in the system is maintained at some constant low pressure ly means of some type of compressor. Fluidics will never replace electronics entirely, but can, however, function in environments and in certain applications where electronics is incapable of performing well. Let us take a look at some of the advantages and limitations of fluidic devices.

Advantages \& Limitations

Pure fluidic devices have no moving parts. Longer component life can be expected since there is minimal wear which provides a decided advantage over electro-mechanical parts.

Nuclear radiation has no effect on fluidic devices and such units can operate in an atmosphere where electronic components would have limited life. Fluidic instruments used to detect thicknoss, erosion, and liquid level with gamma and beta radiation sources are now employed in both commercial and military applications.

Since fluidic devices are explosion-proof, control panels may be located in the explosive area rather than in some remote place. Since such devices are operated by fluidsusually air-there is no need to house them in explosionproof enclosures.

Other advantages include the fact that fluidic devices are free from vibration and have been known to perform up to 15,000 G's with negligible change in output. Environmental heat can be readily handled by most fluidic devices

Fig. 1. This integrated fluid-amplifier circuit is part of a machine control. The structure consists of a monolithis glass-ceramic block that is composed of separate plates with various channels for the passage of the fluid. The plates are fused together. The bottom photo shows the fluidic block after being broken apart to display completeness of seals.

-some commercially available devices function at 700 to 1400 degrees C , well within most commercial and military requirements. Some fluidic devices are made from heatfused ceramic material which is not affected by humidity or other adverse enviromments. And, since fluidic devices do not generate heat, system components are not damaged.

Since fluidic devices are immune to electrical noise generated from electrical and electronic devices, they are not susceptible to "stray pickup".

Fluidics do have limitations-for one thing, response time is slower. Fluidic devices perform at millisecond speed while some electronic components operate in the nanosecond range. However, response time of Huidic devices is more than adequate where the large masses controlled by fluids are to be moved since fluidic units are capable of speeds better than 1000 IIz .

Fluidic devices can be affected by oil and direct contamination since the chammels through which the fluid flows are nomally only about 0.010 -inch wide. Such oil and dirt particles can be eliminated from the system by proper plant air conditioning or by filtering the input air. If the device should become clogged with oil or dirt particles, common household detergent can be used to clean the chamels.

The amount of plastic tubing needed to interconnect fluidic devices can sometimes be disconcerting. While not a problem in circuits consisting of a moderate number of components, large amounts of tubing can cause problems, e.g., discomections, bulkiness, and am unattractive appearance. This problem is eliminated, however, when fluidic circuitry is integrated (see Fig. 1). Circuits can be placed in layers and fused into a monolithic block. All interconnections, with the exception of the power-supply inputs and outputs, are within the block, thus eliminating the possibility of erimped hosing and leaks.

What about cost? It depends on the application. Fluidic devices sense, amplify, count, and compute and should, therefore, be compared to other devices that perform the same functions-relays, limit switches, solenoid valves, integrated circuits, and the like. Another way of evaluating the cost of fluidic circuitry is to compare it with other types of control systems on the basis of expected life, purchasing cost, installation, maintenance, and down time. For example, a typical fluidic gate costs about $\$ 20$, but in large quantities this figure may drop to as low as $\$ 1$.

Digital Devices

Some fluidic components operate on what is called the Coanda or wall-attachment effect. This principle call be easily grasped by observing water pouring from a faucet. If a velocity profile were taken of the stream, it would be noted that velocity causes a pressure difference between the stream and the ambient pressure around the stream. Since pressure tends to equalize, air is entrained in the stream.

If a finger is held near the stream but pointed away from it, water will follow the finger. The stream can entrain air from one side, but the finger creates a wall or barrier to entramment on the other side. A low pressure pocket is de-

Fig. 3. The design of the channels or passazes through which the fluid is made to flow in a fluidic flip-flop component.
veloped against the finger and the higher ambient pressure on the other side of the stream will hold it against the finger, or similarly, the wall of a fluidie device. See Fig. 2.
The first fluidic devices were designed on this basic principle. Fig. 3 shows a flip-flop or bistable device in which the fluid (usually air) cuters through the power nozzle and attaches itself to one of the walls and then exits through one of the output legs. For example, if the stream attaches itself to output leg Fl, it will continue on that side as long as the power nozate is operating or until a control signal which is large enough to detach the fluid from the wall is introduced at control port A. The saram will then attach itself to the opposite wall and exit through output leg F2. It will continue in this direction even if the control sigual is removed. The device is bistable, that is, it is stable with output from either of the two output legs.

A monostable fludic device is designed to exit the air stream out one leg umless a control signal is introduced to switch its output (Fig. 4). The stream, however, will return to its biased or preferred output leg if the control signal is off. The device can be compared to a spring-retum valse without a spring.

This device is an or/nor gate. If a control signal is introduced through either one of the two control ports, the stream will exit by the or output leg. The stream switches to the nor output leg when both of the control inputs are off.

A one-shot multivibrator creates an output pulse for a fixed period of time no matter what the duration of the input signal (Fig. 5). It is a nor gite arranged so that the input signal is split in two, one stream going direct to the coutrol input, the other to a delay line and then to the auxiliary control port. When the control signal is applied, input is switched from the nor output leg to the or leg. The same control signal then reaches the auxiliary control port and balances the pressure signal through the control port. Since the two pressures are now equal, the device sees zero control pressure and switches back to the nor leg. The fixed duration of the pulse out of the or leg is determined by the length of the clelay line used.

In addition to these basic devices, single and multi-stage binary counters, and gates, half and full adders, shift registers, majority gates, Sclmitt triggers, binary-to-decimal conserters, and other such Huitic (Continued on page 78)

Fig. 4. Design of the channels in monostable "or/nor" gate.

Fig. 6. The fluid channels in a proportional-design component

Supply Fort

Control Pert 1
Control Bort 2

By J. H. KOGEN / Chief Engineer, Shure Brothers, Inc.
To aroid distortion when traching records with high perak modulation lerels. the stylus tip must not lose contact with the record groove. Here are a number of present and proposed methods of measuring this important cartridge parameter. including a new rariable-spered turntable method. CCIF terlnique, and the use of tome bursts. scoper observations, and special test records.

OXF of the most difficult problems encountered by a plonograph cantridge is that of maintaning proper contact between the styhis tip and the record. The need for maintaining this contact is obviousty one of the fundamental reduisites for proper performance of the phonograph system. Solving this problem has become more and mowe difficult in recent years because of the improvements in record-cutting tedmigues, in amplifiers and speakers, and the increased expectations of the sophisticated listener.

A number of tems have been used to describe the ability of a phono cartridge to maintain proper contact between stylus tip and record. These include: trackability. impedance, admittance, and a host of flowery adjectives which relate primarily to subjective evaluation. In this article, we will use the temn "tracking alrility".

The availability of high-quality records with higher and higher peak modibation levels has created the need for better tracking ability. Records are being made today with peak modulation levels an high as 20 centimeters per second at 1.5 kllz . Such modulation requires acceleration of about 1800 (is. For example, the Nomesuch record "Four Concertos for Harpsichord and Orchestra" has levels of roughly 2.5 cm / s at 10 kHz . Another example of a highly modulated record is Loudon's "Kismet" which shows levels of $18 \mathrm{~cm} / \mathrm{s}$ at 11 klz . Many other records containing high modnlation peaks can be cited. This places the onus on the phono cartridge to reproduce what has been impressed on the grooves.

One very important factor which must be considered in defining phono-cartridge tracking ability is the tracking force used during nomal play. Minimum tracking force, consistent with good tracking ability, should be used. This is done to minimize wear on both record and stylus. Tracking ability can be improwed. espectially at lower frequencies. by increasing the tracking force. Ilowever, this reduces stylus and record life. When checking the tracking ability of the cartridge or when comparing cartridges, evaluation should be made on the basis of a specified tracking force and an assumption that the lower the tracking force, the longer the life (when proper tracking is assured).

Tracking Ability va Frequency

A further consideration is that tracking ability varies with frequency. A phomo cartridge is expected to reproduce frequencies in the range of 20 to $20,000 \mathrm{~Hz}$. The tracking ability of the stylus is directly related to its mechamical
imperdance. This impedance acts like a multi-mesh eloctrical circuit or a complex mechanical circoit and, ats such, its impedance varies with frequence. The modulation levels on records also change as a function of frequency, as specified by the RIAA recording chanacteristic, and because of the spectral content of the program material.

The problem is to provide suitable tracking ability to match the modulation levels at all frequencies within the audio spectrum. This should be considered whon making measurements since a reading at one frequency wont permit a prediction about operation throughout the spectrum.

What Does Lose of Tracking Do?

Loss of tracking occurs when the dynamic force applied to the stylus tip exceeds the tracking force. When this hatppens, the tip leaves the surface of the record and later comes bomeng back onto the record surface. During the period when the stylus is not touching the record it obvionsly is not reproducing the material on the record but is producing some ancorrelated signal, probaldy related to the freceair dymanic characteristics of the stylus. When the stylus retums to the record a bood band of neise is produced. Sulofectively, this result can be heard even by the motraned listener. The sound of bells becomes dull thuds; the staceato sound of castancts resembles sandpaper being rubbed on a batckoard; while the sound of an "s" in a word like "servicee" comes out as an exaggerated hiss.

In terms of meastrement, if one were to plot distortion rersus modulation level, a curve much like that shown in Fig. I would be olstaned. Distortion would remain at a relat tively low level up to the point where the cartridge could no longer track the modulation. At this point, whid in Fig. I would be around $25 \mathrm{~cm} / \mathrm{s}$, distortion increases at a very rapid rate. Distortion products at modalation velocities above $2.5 \mathrm{~cm} / \mathrm{s}$, for this particular example, would definitely be discernible to the listener.

Wethods Ised in the Past

For many years now, manufacturers have tested the tracking ability of their cartridges at low frequencies. The measurement wats nomally made using a record with several bands of constant low-frequence (100) 1 Hz or 400 Hz) modulation at varying levels. The output of the phono cartridge was fed to a scope and the sine wave observed. The warefom was observed while the cantridge played each band at

Fig. 1. Intermodulation distortion for various peak modulation levels (actually recorded velocities) for phono cartridge tracking af 1 gram. Frequencies are 400 and 4000 Hz on RCA 12-5-39 test record. Although level is fairly high at point A, distortion is still acceptably low. At point B distortion begins to rise rapidly ultimately reaching excessively high value af C.
higher modulation velocities until a band was found where the waveform showed breakup. The maximum velocity at which the cartridge would track without breakup was designated as its "tracking ability".

Such a reading at a single frequency provided what was essentially a low-frequency mating of tracking ability. The test made no evaluation of high-frequency tracking ability, say in the $5-\mathrm{kHz}$ region and above, and gave a relatively poor indication of performance in the region between 1 kHz and 5 kHz .

A more refined method of measming tracking ability would involve an evaluation of performance across the entire frequency spectrum rather than only at 100 or 400 Hz . Some of the means for doing this will be described.

Variable-Speed Turntable Method

One problem in developing a suitable means of measuring tracking ability is contting the test record. The high peak modulation levels which exist on modern, good-guality records are always found under transient conditions. In order to take a reading, one needs a signal for a reasomable period of time, say at least two seconds and preferably five seconds. Present-day cutters can't cut such high modulations at high frequencies for any such extended periods of time.

One solution to this problem is to cut the record at slow speed and play it back at a higher speed. For example, if the record is cut at 10000 Hz with a modnlation level of 5 cm / s at $33 \mathrm{r} / \mathrm{min}$ and is then played back at twice the speed ($66 \mathrm{r} / \mathrm{min}$), the electrical output from the cartridge will be 2000 Hz at a level proportional to $10 \mathrm{~cm} / \mathrm{s}$. Using this prin(iple, Shure cut a record for laboratory use (not available for general sale) with the bands shown in Table 1. This record is used in confunction with a variable-speed turntable which is contimuously adjustable from 25 to $100 \mathrm{r} / \mathrm{min}$. The turntable is fitted with a vacomm system whid holds the record absolutely flat against the turntable surface. A vacum is created between the under surface of the record and the turntable, and the record held against the turntable by atmospheric pressure.

At the start the phonograph cartridge is placed in the lowest frequency band while the table is tming at $25 \mathrm{r} / \mathrm{min}$. The sine-wave output of the cartridge is observed on a scope. The turntable speed is then slowly increased until breakup is seen on the CRO screen. The turntable speed is then reduced to the point where the sine wave returns and the reading (in r/min) is recorded. Scope patterns before and after breakup are shown in Fig. 2.

Frequency and modulation velocity for the measured point is then determined from a graph such as the one shown

BAND	CHANNEL	PEAK VELOCITY $(\mathrm{cm} / \mathrm{s})$		FREQUENCY (Hz$)$ $33 \mathrm{r} / \mathrm{min} 78 \mathrm{r} / \mathrm{min}$	
		$33 \mathrm{r} / \mathrm{min} 78 \mathrm{r} / \mathrm{min}$			
1	L	6.8	16.1	5,000	11,800
2	R	6.3	14.9	5,000	11,800
3	L	7.0	16.6	10,000	23,600
4	R	7.0	16.6	10,000	23,600
5	L	4.5	10.7	10,000	23,600
6	R	5.0	11.8	10,000	23,600
7	L	1.8	4.3	10,000	23,600
8	R	1.9	4.5	10,000	23,600
9	L	0.8	1.9	10,000	23,600
10	R	0.8	1.9	10,000	23,600

Table 1. Characteristics of laboratory test record used.

Fig. 2. Upper waveform is from a cartridge that is just barely tracking the sine-wave modulation. Lower waveform shows distortion produced when cartridge is not tracking.
in Fig. 3. Such a graph is provided for each band on the record and, with $\mathrm{r} / \mathrm{min}$ known, frequency and peak modulation velocity can be determined.

This procedure is followed for all bands on the record. The record of Table 1 provides measurements above $\overline{3} \mathrm{kHz}$ while another record is used for frequencies below 5 kHz . A series of points is thus detemined which cim be plotted on a curve like that of Fig. 4 which shows the peak modrlation velocity the cartridge will track at the specified tracking force. The locus of the points is a curve of the cantridge's tracking ability at the specified tracking force. Fig. 5 plots the tracking ability of a number of cartridges using this method of measmement. It also demonstrates the variation among cartridges in this respect.

CCIF Method

There are two disadvantages to the method just described. First, it requires a variable-speed tumtable equipped with a vacumm attachment. Second, the means of detecting the point of loss of tracking ability is not as well defined as it could be. It may be possible to resolve both of these problems using the CCIF (Intemational Telephonic Consultative Committee) method of determining distortion.

This method involves the use of two frequencies separated by a constant frequency difference, usually on the order of a few hundred Hz. As these two frequencies are swept across the andible spectrim, the output is measured as the difference frequency. This can be done quite simply by using a filter tomed to the difference frequency and a voltmeter. If no distortion exists, the output at the difference frequency should be zero. When distortion is encomered, intermodulation will occur and output will be obtained at the difference frequency. A block diagram of a setup for making such a test is shown in Fig. 6. Using a record with several bands (of CCIF frequency sweeps) at increasing modulat tion levels, provides a means for measuring tracking abilits.

The measurement is made as follows. Assume the record is cut with a series of bands having frequency sweeps from 1000 to $20,000 \mathrm{~Hz}$, with each band cut at a peak modulation velocity $1 \mathrm{~cm} / \mathrm{s}$ higher than the previons band. Assme fim-

Fig. 3. Typical calibration chart for one band of special test record. Frequency and velocity vary as turntable speed.

Fig. 4. Typical tracking-ability curve showing maximum modulation velocity the cartridge can track as function of frequency.

Fig. 5. Tracking ability of a grouping of current cartridges.
ther that there are 20 bands ruming from $5 \mathrm{~cm} / \mathrm{s}$ to 24 com/s. Measurements are made through a filter which passes only the difference frequency. The recorder speed is synchronized with the frequency sweep to provide frequency calibration. The resulting graph plots the difference intermodulation products as a function of frequency for each of the modulation levels.

At this point some arlitrary statement must be made as to how much distortion constitutes an indication that the cartridge is no longer tracking properly. Referring to Fig. 1, we would have to choose a value of distortion for point B. Let us arbitrarily saly that distortion at B should have a value
of 10% of the peak output of the cartridge when it is tracking properly at l kHz for the modulation level at which the measurement is made. We might then pick points from the graphs recorded in the setup shown in Fig. 6 and replot them in a fashion similar to that shown in Fig. 4. In this case, the ordinate of Fig. $\&$ could be defined more specifically as the tracking ability, in terms of modulation velocity which the cartridge is able to track properly with less than 10% CCIF distortion.

An alternative might be to have the bands on the record cut with pairs of fixed frequencies, with sub-bands at increasing modulation levels. The adrantage here would be that one would only have to count up the number of sub-bands to determine the modulation level at which distortion exceeded 10%.
One of the adrantages of the CCIF method is that the only special equipment required is a baud-pass filter at the difference frequency. In addition, loss of tracking is indicated as a definite percentage of distortion rather that as a judgment of the scope pattern as is the case with the variablespeed technique. The CCIF method allows meatsurement up to the maximum frequency of interest, a thing that is quite difficult to do if the amount of total harmonic distortion were measured.
$R C A$ has recently issued test record No. 12-5-10.5* which includes most of the facilities for making a sweep frequencer CCIF measurement. This record has several sweep bands from 2 kHz to 20 kHz with a difference frequency of 400 IIz at modulation levels of 3.54 cm 5.5 .6 cm 5.5 .8 .5 cm s . and $14.0 \mathrm{~cm} / \mathrm{s}$. The only limitation we have noted in this

Fig, 6. Sefup used for making the CCIF distortion measurement.
record is that the maximum modulation velocity is 14.0 cm / s which is not high enongh to cause severe mistracking across the frecuency spectrum with better cartridges. If a record could be made extending the modulation velocity through about $30 \mathrm{~cm} / \mathrm{s}$, we believe this would cover the full range that is required for making adequate trackingability measurements.

Tone-Burst Measurements

Another proposed method of making tracking-ability measurements involves the use of tone bursts. Short tone bursts on the order of 5 milliseconds would provide sufficient time for the transient to die out and for the cartridge to assume some steady-state response before the end of the tone. To make a measurement of this mature would require a record with repeated bursts which could be synchronized with the scope sweep. This response could be viewed in the same way as the variable-speed turntable technique, that is, visual indication of the output could be used to detect a severe change in the sine wave. While this would not be suitable for measuring distortion, it would provide a good "go/nogo" indication of a rapid rise in distortion, indicative of loss of tracking. By playing these tone bursts at increasing modulation levels, one might then pick the level just below that at which mistracking occurs and plot points for a series of frequencies as was done in Fig. 4. (Continued on page 61)

[^1]
LSA DIODES: NEW SOURCE OF MICROWAVE POWER

The LSA diode has produced c.w. power of 20 mW at 88 GHz, the highest frequency ever obtained from a solid-state oscillator.

THE discovery of a new mode of oscillation for gallium arsenide diodes now makes possible solid-state oscillators that operate at higher frequencies and with higher power at any frequency than other solid-state devices including Gumn diodes. The new mode, called "limited space charge accumulation" (LSA), was discovered by John A. Copeland of Bell Telephone Labs

LSA oscillators are not subject to rapidly decreasing powers at millimeter-wave frequencies, a characteristic previously thought to be a fundamental limitation of all solid-state oscillators. The lack of a solid-state source of millimeter-waves has been a major barrier to the use of these frequencies (30 to 300 GHz), which has about nine times the communications capacity of all lower frequencies combined.

Operating LSA diodes at room temperature, c.w. power of 20 mW at 88 CHz was obtained, the highest frequency ever reported for a c.w. solid-state oscillator. LSA oscillators operating at 51 GHz have produced .7 W of pulsed power and 40 mW of c.w. power. The highest c.w. power obtained from other solid-state oscillators at comparable frequencies is about 3 mW at 40 GHz from an IMPATT diode.

LSA diodes derive their name from a mique operating characteristic that allows them to oscillate at very high frequencies. The maximum frequency of other solid-state devices is limited by an effect called "transit time" (also found in vacum tubes), which is the time it takes a space charge of electrons or holes to travel through the device. The smaller the transit time, the higher the frequency. As higher frequencies can be attained in transit-time limited devices only by making their active region smaller, this, in tum, limits their power at the higher frequencies.

In LSA diode oscillators, the space charge is dissipated within the material (n-type gallium arsenide) during each cycle before it builds up appreciably, hence the name "limited space charge accumulation".

Above a certain threshold voltage, the material becomes a negative resistance, that is, the current through it docreases as voltage increases. LSA diodes are operated as part of a resonant circuit which is tomed to the clesired frequency. If a fixed bias voltage which is above a threshold level is applied to the diode, the diode presents a negative resistance. An oscillating voltage is then developed which causes the total voltage across the diode to swing first well above and then below the threshold field during each cycle.

It is necessary that the resonant circuit be lightly loaded initially for LSA oscillations to start. Once oscillation has started, the resonant circuit can be more heavily loaded and the output power and efficiency increased appreciably. A circuit which has an automatic loading delay is shown in Fig l. Initially, the diode sces a load equal to the characteristic impedance of the tramsmission line $\left(Z_{4}\right)$ Only

Fig. 1. Automatic loading delay for the LSA oscillator.

after the signal has travelled to R_{L} and back to the resonant circuit, does the diode see the steady-state load. This load is R_{l} transformed by the length of the mismatched transmission line.

Because LSA diodes are not transit-time limited, they can be made thick enongh to withstand relatively high applied voltages. Since the frequency of an LSA diode is determined primarily by a resomant circuit (not by its thickness, or by transit time), the power from an LSA diode oscillator is practically independent of frequency.

Referring to Fig. 2, Gum diodes are made thin in the direction of current How (because they are transit-time devices). To take full advantage of the fact that the LSA effect is not transit-time limited, LSA diodes are made long in the direction of current flow, and thin in a direction perpenclicular to current flow.

LSA diodes are being tested as replacements for klystron tube oscillators, which require hundreds of volts from a large, highly regulated power supply. An LSA diocle and its power supply can easily fit into a space as small as a cigarette pack. Because LSA diodes are bulk semiconductor devices, their potential operating lifetime is comparable to that of transistors and is orders of magnitudes greater than that of vacum tubes operating in the same frequency range.

Fig. 2. Comparison of LSA and Gunn diodes. (A) The active region of an LSA diode can be made long in the direction of current flow. (B) The active region of Gunn diodes and other solid-state oscillators must be made thin la frastion of a mill in the direction of current flow. This limits amount of power they can develop at high frequencies.

(A)

RgCent Developments in liectronics

Computer-Controlled Hot Sheet Mill. (Top left) The nation's first completely computer-controlled hot sheet mill has been put into operation at Bethlehem Steel's new $\$ 400$ million plant at Burns Harbor, Indiana. The computer system tracks production from the time the huge slabs enter the mill until the hot rolled sheet coils reach the delivery area. Communications between the computer and the operators are flashed through this control pulpit. As the nation's most powerful hot sheet mill, the facility uses motors totaling 108,000 horsepower and is capable of speeds of 3750 feet a minute. The 80 -inch mill's own electrical substation could supply the needs of a city of 100,000 persons. The computer used and systems engineering are by Westinghouse.

Infrared Soldering. (Center) A new technique makes it possible for the first time to bond simultaneously large numbers of flexible cables to printed circuits or other cables. The technique permits soldering flexible cable with focused infrared energy. Although infrared soldering has been used in the past, its application to flexible cable is a new development. The soldering process is easy and provides a quick and inexpensive method for interconnecting circuit boards, such as those containing miniaturized solid-state components. The infrared source is a tungsten halogen lamp inside an elliptical goldplated reflector which focuses the energy on the cable. The energy is transmitted through a quartz window and through the insulation onto the copper parts to be bonded. The thin coating of solder plated onto the cable beforehand is melted and forms a joint. The quartz window protects the insulation by acting as a heat sink, serves as a clamp to hold the components in registration, and permits visual alignment of the parts. The technique was developed by Bell Labs and Western Electric.

Oscillograph Aids Veterinary Research. (Bottom left) A directwriting oscillograph is helping these professors of veterinary physiology at Ohio State's College of Veterinary Medicine to learn more about animal hearts. The instrument is shown here making a simultaneous record of electrical impulses, pressure, and sound in two chambers of the horse's heart. The same kind of equipment is used for medical research on humans, to record bio-medical data on astronauts during flight, to monitor manufacturing processes, and to perform hundreds of highprecision measuring operations. The instrument shown is made by Clevite Corp.

Highest Frequency Solid-State Oscillator. (Top right) An experimental gallium arsenide oscillator that operates at higher frequencies and higher powers than any other solid-state device is shown here. A new mode of oscillation in n-type gallium ar senide has produced frequencies as high as 88 gigahertz at 20 milliwatts of continuous-wave power. The new oscillators are being tested by Bell Labs in an experimental millimeterwave communications system, replacing previously used klystron tubes.

Portable Magnetometer Locates Buried Skiers. (Center) Skiers and mountain climbers now have greatly increased chances for rapid discovery and survival when buried in a snow avalanche if they wear a special small but powerful magnet. The location of the magnet is quickly detected by rescue crews equipped with a portable magnetometer, such as this one made by Varian Associates. The instrument detects the variation in the earth's magnetic field which is caused by the magnet worn by the buried skier.

New Battery for Electric Car. (Below right) A zinc-air battery capable of an energy storage density of five to seven times greater than conventional lead-acid storage batteries is being developed for vehicle propulsion. The battery consists of metallic zinc plated on inert backing sheets. The zinc is oxidized by air that is pumped in from the atmosphere through porous nickel electrodes. An electrolyte of potassium hydroxide is used. The cell stack shown in the photo is of the size required for an energy storage capacity of 7 kWh of electricity. Development of the system is being done by Edison Electric Institute and General Dynamics Corp

Computerized Precision Measuring Machine. (Below left) This three-axis measuring machine is linked to a computer to obtain automatic precision measurement and processing of data. Measurements are analyzed and summarized in a report that can be studied a few seconds after the measurements are taken. The machine automatically corrects for skew of the workpiece and results in increased accuracy from the mechanical system. The machine is now being utilized at IBM's King. ston, New York development laboratories.

June, 1967

LOUDSPEAKERS FOR ELECTRONIC MUSICAL INSTRUMENTS

BY KARL KRAMER / Product Manager, Jensen Mfg. Div., The Muter Co.

I'ery rusged speakers are required to handle the high power and transioms.
Here is how some of the special sperater design problems hare been solved.

TE. years ago. electronic amplification of masical instruments was pretty much limited to electronie organs and to helping the guitar compete on a more equal footing with brasses and reed instrmments. It was necessary to boost the guitar voicing a little to allow it to be heard along with the other instruments.

The amplification requirement wasn't great-perhaps 10 to 25 watts-becaluse the guitar wasn't supposed to overpower, merely blend with the group. There were 50-watt :mmplifiers, of course, but they were seldom used at even half their rated power.

Speakers were the same kind as used for regular listening, slightly beefed up, and they performed well. Once in a while someone would tum the volume all the way up and a speaker would fail, but since the amplifiers were seldom driven to full output, this didn't happen too often.

Then cane the revolution. Bands dianged along with the boys' hairculs (or lack of them), Brasses and roeds were replaced by guitars and more guitars. Music groups amplified their sound to approach the theseshold of pain and still their followers cricd for more. Bass guitars, guitars, electronic organs, accordions, and string basses were equipped with giant amplifices. Ironically, the point has now been reached where a saxophone must be amplified in order to hold its own with the guitars. The effect on speakers hats been devastating.

Hi-Fi Speakers Won't Do the Job

Full-range, hi-fi speakers rated at 50 watts would appear to meet the demands of this clectronic masical instrument craze. But they simply are not ergall to the jol). Your hi-li amplifier may be rated at 100 watts but you rarely play it that way. For average listening with fairly officient speakers you may use less than one watt of amplification, with the balance held in reserve for musical surges. Even then, full power rating is seldom, if ever, attanced and the reserve prevents chipping or clistortion.

Todaty, the conditions of musical instroment amplification are completely different. Guitars mantain a constant Jo-watt amplification with surges tar in excess of the ratings. A few years ago you would be lucky to find a speaker that could last a week operating at 50 or 100 watts. We now have speakers rated at 100 watts and guamited for life. Howerer, the speakers lad to be modified drastically in many areas to make them rugged enough to do the job.

Prequency-response chamateristics of electronic musical instrument loudspeakers difler radically from those of hi-fi speakers. But total response range is not too different betanse most musical instrument speakers are designed to respond from 40 or 60 Hz up to 8000 Hz . This is somewhat below the top end of the hi-fisstem but high conongh to provide full tone with only the very top overtones removed.

The big difference in speakers is in the response curve. Hi-fi units produce a very Hlat curve, witla little difference in respense from bottom to top of the speaker range. Masi(al instrument speakers give heavy emphasis to the frequencer range from 1000 to $5000 \mathrm{H} \%$ In other words, these speakers are designed to emplasize the upper middle range
and create added fulluess or presence, rather than to produce tone fidelity:

Electronic musical instrument speakers vary somewhat in size and range but, as a general rule, the ranges are as follows: bass guitar and string bass, $40-8000 \mathrm{~Hz}$; guitar and accordion, $60-8000$) Hz : and electronic organ, $40-8000 \mathrm{~Hz}$. The $\mathrm{foO}(\mathrm{o}-50(0) \mathrm{Hz}$ range is boosted for all instruments.

Tests and Design Problem.

One problem in designing speakers for continuous heavy duty was to first develop a test procedure. After trying musical progranns and noise inputs, we found that sine-wase warble tests at 50 watts would provide conclitions more severe than field use. l'ut to this test, every speaker failed.

Speakers were then designed to withstand $100(1$-watt simewave warble testing. It wats felt that if a speaker could pass this torture test. it could cope with amy field use.

The initial difficulty was finding a speaker cone and suspension material capable of withstanding the violent motion while still prodncing clean soumd. Ordinary short-fiber paper used in most speakers was too brittle and fell apart when subjected to continuous heavy-duty use. Many other materials that could withstand the strain were too soft to produce adecquate upper-range tones. A specially developed long-fiber paper proved to be the ideal compromise. giving excellent high-end extension without any sign of disintegration.
ffer solving the speaker cone and suspension problens. the next stmmbling block was the lead wires from the voice coil to the junction and the junction to the terminals. High-amplitude movemont cansed by the extreme power concentrated stress and fatigue failure. Wire with inproved fatigue chamatoristics was an improvement but still not goocl enough.

The next step was to change the basic design, distributing stress miformly instead of concentrating it at one point. The combination of new wire and new design provides permanent lead wires without noticeably interfering with speaker reproduction quality.

Another highly sensitive area wats the voice coil. The tremendous heat generated, well into hundreds of degrees Fahrenheit, quickly melted the polyurethane insulation used in the voice-coil wire and permitted fusing. A special high-temperature commel insulation that remains effective under all expected conditions was nsed to solve this problem.

Heat also was the source of two other maior problems in the voice coil. At elesated temperatures, the varnish holding the coil to the bobbin broke down and athowed the coil to slide completely off the bobbin. By switching to a symthetic heat-setting cement that bonds tighter as heat increases. this problem was solved.

We atso found that intense heat chamed the paper bobbin and disintegrated it. Several substitute materials were tried and a glass-fiber bobbin emerged as the ideal solution. The speakers can now be played with extremely hot voice coils without speaker failure. These spoakers will withstand contimous 100 -watt sine-wave warble tests and will last indefinitcly

SEMICONDUCTOR SWITCHING OF LOW-POWER CIRCUITS

By AUBREY HARRIS/Staff Engineer, Ampex Corporation

Abstract

Semiconductors can be used in place of relays to control d.c. loads up to 35 A and a.c. Loads up to 10 A. Advantages include no contact bounce. wear, or maintenance, along with increased reliability, reduced noise generation, and economy of space.

SEMICONDUCTORS are now replacing relay contacts in many low- and medium-power d.c. and a.c. power switching circuits. These solid-state devices are available for the control of d.c. loads ranging from a few milliamperes to 35 amperes, and of a.c. loads as high as 10 amperes.

The principal advantages offered by semiconductors inclade no contact bounce, increased reliability, no contact wear, no contact maintenance, reduced generation of RFI and noise, and economy of space.
The less desirable characteristics of semiconductors inclucle a voltage drop across the devices that may be as much as 1 volt, a requirement for multiple-pole switching that adds complexity, and possible damage by voltage surges.

However, these disadvantages may be overcome quite readily by careful design of the circuits in which the semicomeluctors are used. A few areas of application are automatic programmers, motor control, indicator-lamp switching, control of high-power lighting and heating, timing circuits, and tralfic control. Other applications will probably suggest themselves to the readers.
Semiconcluctor switching is now used in many types of magnetic tape recorders. business machines vending machines, small electric tools, and material-handling apparatus. It is to be expected that a great many industrial and domestic appliances and tools will be controlled by semiconductors in the very near future.

Solenoids

Solenoids, or electromechanical drivers, are commonly used in magnetic tipe recorders. for the printing hammers of electric typewriters and Teleprinters, in electric paper punches, in brake actuators, and in many other clectromagnetic devices. In all of these, the use of semiconductor switching is entirely foasible.

The simple solenoid driver circuit of Fig. 1A may be used for switching loads up to 5 :mperes. In this circuit, emitter follower Ol provides the base current required by coil driver $Q 2$. ln the quiescent state. the emitter of $Q 1$ is virtually at ground potential and, because there is no voltage across base-emitter iunction (2 , no current fows into the load. When switch Sl is closed, current flows into the base of Q1 and its emitter "follows" the base voltage. which in this case is held at approximately +15 volts by voltage divider $R 1 / R 2$. This action causes $Q 2$ to saturate, thus energizing the load.
When an inductive load is de-energized, a voltage transient is developed by the rapid decay of current flow through the inductance. This voltage may reach an amplitude of several hundred volts, which may destroy $Q 2$ unless it is suppressed. Diode D1 provides the needed transient suppression by conducting during the transient condition only. The 1 N 4005 diode chosen is capable of carrying the full load current of the inductance.

The circuit of Fig. 1A may be converted to a latching
arangement by the addition of Q3 and associated components as shown in Fig. 113. Switches S1 and S2 are momentary contact types; $S 1$ is normally open while $S 2$ is nommally closed. When Sl is actuated, the load is energized and held in this condition mintil $S 2$ is actuated.

When the load is not energized (i.c., $Q 2$ is cut off), the supply voltage (applied to the base of Q3 by way of the load and resistor R5) causes Q3 to saturate. The collector voltage of $Q 3$ then approaches ground potential, no current Hows through diode $D 2$, and no feedback voltage is applied to the base of $Q 1$, which is therefore cut off. When the load is energized (by the actuation of S1), Q2 saturates, collector voltage 92 swings to approximately 1 volt, and $Q 3$ is cut off. Linder this condition, the supply voltage is fed back to the base of 81 through $R 7$, diode $D 2$, and switch $S 2$ and holds (2 saturated. This is the latching action charateristic of this circuit. When $S 2$ is actuated, no supply rollage can reach the base of $Q 1$, which then turns off, causing $Q 2$ to cut off and $Q 3$ to saturate, thus restoring the initial condition to the circuit.

Silicon Controlled Rectifices

Many applications require the switching of a large load by means of a small control current. The silicon controlled rectifier is ideal for this application. Fortunately, an SCK requires a minimum of associated components and is arailable in a wide range of power-handling capabilities, permitting switching loads of one ampere to several hundred amperes. The trigger or gate current that controls an SCR is always a small percentage of the load that is switched and ranges from a few microamperes to 5 :mperes (for the heaviest loads).

The SCR is inlerently a lateling device. When an SCR is gated on, the current flow (I_{L}) from cathode to anode continues until the supply voltage is remored or until the current flow is reduced io less than the holding current (I_{11}) required by the device. Stated more directly, at any time that I_{L} does not exceed I_{I}, the latching action is clisablecl. Typical holding-current values are 1 or 2 milliamperes for

Fig. 1. (A) Simple solenoid driver. (B) Latching circuit.

SCR Type Number	Forward Blocking Voltage ($\mathrm{V}_{\mathrm{FOM}}$) (volts)	R.M.S. Forward Current (IF) (amperes)	Forward Blocking Current (IfX) (microamperes)	Holding Current (III^{1}) (milliamperes)	Gate irizger Current (I:ir) (milliamperes)	Gate Trigger Voltage ($\mathbf{V}_{(; i r}$) (volts)
2N2323 (C5F)	50	1.6	2-10	1-2	. $01-.2$. 5 - . 8
2N2323A	50	1.6	2-10	1-2	. 002 - . 02	. 4 - . 6
2N2326 (C5B)	200	1.6	2-10	1-2	. $01-.2$. 5 - . 8
C22F	50	7.4	1000-10000	10-30	4-25	. $8-1.5$
2N688	400	35	6500	10-100	15-40	1.5-3.0

Table 1. Useful design characteristics of a group of typical silicon controlled rectifiers.
a 1.6 -ampere device, and 10 to 30 milliamperes for a 7.4 ampere device. (Table 1 includes the more useful design characteristics of typical SCR's.)

The basic latching circuit of an SCR is shown in Fig. 2A. When momentary contact switch $S 1$ is actuated, a pulse of the gate voltage (V_{k}) is applied to gate terminal G, causing the SCR to saturate. The gate voltage may range from +3 to +6 volts; the minimum gate current for a sensitive, lowcurrent SCR (e.g., the 2N2323A) is on the order of 10 to 200 microamperes. The SCR will remain saturated until the power supply is disconnected. Because removal of the power supply involves handling the total current required by the load, other means of reducing I_{L} to a level below $I_{\text {II }}$ are necessarily employed.

The latching circuit shown in Fig. 2B provides controlled turnoff by the addition of commutating capacitor C and switch $S 2$. The SCR is gated on by the momentary actuation of switch S1, causing the potential at point A to swing to approximately 1 volt above ground. Capacitor C then charges from the power supply through $R 2$. When C is fully charged, the voltage at point B is positive with respect to point A by the difference between the supply voltage and the voltage drop across the SCR.

The SCR is turned off by actuation of switch $S 2$, which grounds point B, causing the charge on capacitor C to decay toward ground potential. Because C cannot discharge instantly, the potential at point A swings below ground po-

Fig. 2. (A) Basic SCR latching circuit. (B) An SCR latching circuit using a commutating capacitor to assist operation.

Fig. 3. (A) Load control by remote power feed. (B) A load control which provides turn-off of load power at some predetermined time interval following the turn on (via R2).

tential by the amount of the charge, causing the anode of the SCR to be negative with respect to the cathode. The result is that the SCR turns off and remains off until another gate pulse is applied.
The approximate capacitance (in microfarads) of commutating capacitor C may be computed by the formula $\mathrm{C}=\left(1.5 t_{\text {off }} f_{L}\right) / \mathrm{V}$ where V is the supply voltage, I_{L} is the load current in amperes, and $t_{v, f f}$ is the turnoff time of the SCR in microseconds.
In the typical case where the supply voltage is 24 volts, the load current is 1 ampere, and the SCR turnoff time is 50 microseconds, the computation is $\mathrm{C}=(1.5 \times 50 \times 1) /$ $24=3.1 \mu \mathrm{~F}$.
In practice, the next larger standard value of $3.3 \mu \mathrm{~F}$ is selected. The resistance of $R 2$ is not critical; a typical choice of resistance is in the range of 10,000 to 100,000 ohms.

A variation of the SCR latching circuit of Fig. 2B appears in Fig. 3A. The principal differences include the addition of low-power SCR1 and the use of normally closed (instead of normally open) momentary contact switches. The capacitance of commutating capacitor Cl remains unchanged at $3.3 \mu \mathrm{~F}$.

When switch S1 ("On") is actuated, load SCR2 is gated on from the power-supply voltage through $R 1$ and normally closed switch S2. Capacitor C1 then charges between ground (through SCR2) and the supply voltage through R3. When switch S2 ("Off") is actuated, SCR1 is gated on and commutating capacitor $C 1$ lowers the anode voltage of SCR2, which turns off SCR2. Capacitor Cl then charges in the opposite direction between ground (through SCR1) and the supply voltage through the de-energized load. When S1 ("On") is again actuated, the cycle just described is repeated. It is thus apparent that SCR1 and SCR2 operate in flip/flop action so that when one is conducting, the other is cut off.
The resistance of $R 3$ is calculated by the formula ($1 / 50$) ($V_{B n} F x / I_{F^{\prime} x}$) where $V_{B n} F x$ is the forward breakover voltage in volts and $I_{r^{\prime}, \text {, }}$ is the lakage current in amperes.

Capacitors C2 and C3 prevent noise pulses in the remote gate lines from inadvertently firing $S C R 1$ or $\operatorname{SCR2}$. If switches $S 1$ and S_{2} are actuated during an overlapping period of time, the first one depressed may affect the states of SCR1 or SCR2, but the second one clepressed will have no effect until the other is released. If both are depressed simultaneously, no trigger pulses will be generated and the states of $S C R 1$ and $S C R 2$ will not be affected.

The circuit of Fig. 3B provides the feature of an adjustable period during which the load is energized by a trigger pulse. When switch S1 is actuated, SCR1 is gated on and the load is energized. Commutating capacitor C1 then charges between ground (through SCR1) and the supply voltage through $R 1$, and SCR2 is turned off. Under this condition, relasation oscillator UJT produces one cycle of oscillation, the duration of which is a direct function of the setting of variable resistor $R 2$. At the conclusion of the cycle, SCR2 is gated on by the pulse formed across resistor $R 4$, the $U J T$ is disabled, and $S C R 1$ is turned off by the charge on $C 1$.
An SCR is also useful as a lamp chriver. In this application the SCR controls a bank of high-wattage lamps by
means of a smali amount of gate power. For instance, a 2N688 will handle a load of 35 amperes r.m.s. up to a peak of 400 volts by means of a gate drive of 3 volts at 40 milliamperes (see Fig. 4A).

Because an SCR is a unidirectional device, the lamp power must he full-wave rectified a.c. However, the resulting pulsating d.c. waveform is not filtered because the return of each positive excursion to zero volts is useful when the lamps are to be turned off.
The positive gate voltage is applied to the SCR gate by the closing of switch S1. When the lamps are to be turned off, Sl is opened, and the lamps are de-energized at the next return to zero of the d.c. waveform.

Triacs

The gated bi-directional controlled rectifier (or the gatecontrolled a.c. switch) is a recent development in the field of SCR design and is known as a Triac. This device is capable of switching a.c. loads as high as 400 volts at 10 amperes and may be used in parallel for higher current loads. (Table 2 includes the more useful design characteristics of typical gate-controlled a.c. switches.)

The Triac may be gated on by either a negative or a positive voltage and will conduct until the end of the half cycle during which the gate drive is removed (or until the a.c. power is discomected). The basic application (see Fig. 4B) uses a d.c. gate voltage $\left(V_{k}\right)$; the Triac conducts cluring both the positive or the negative excursion of the sinewave power. Polarity of the gate drive is not significant.
In order to drive an a.c. motor or device, the power line itself may be used as a trigger to cause the Triac to deliver a.c. power to the load. The basic circuit of this application appears in Fig. 4C. Assume that the initial conditions are that a.c. power is present, the Triac is not conducting, and point L is positive with respect to point M. At this time, the full supply power is applied to the Triac, and point $A 2$ is positive with respect to point $A 1$. If switch $S 1$ is then closed, current will flow through $R 1$ (and S1) to gate terminal G, which will turn on the Triac. The potential between $A 1$ and $A 2$ will then drop to a very low value that will cause the flow of gate current to cease. The Triac will conduct through the half-cycle, cut off momentarily at the zero crossover of the power-supply waveform, and resume conduction as soon as the opposite excursion of the waveform has started. This cycle of events will repeat as long as switch $S l$ remains closed. When $S 1$ is opened, the Triac will cut off at the next zero crossover of the waveform and remain off until $S 1$ is again closed.

It is often necessary to isolate the control circuit from a line-operated load. Fig. 5A illustrates one means of providing this isolation by the use of a grounded relaxation oscillator and a small $1: 1$ pulse transformer. The gate and terminal Al of the Triac are connected to opposite terminals of the $T 1$ secondary winding. Components $R 1, C 1, Q 1$, $R 2$, and the primary winding of $T 1$ form the UJT relaxation oscillator.

Under initial conditions, switch S1 is open, the relaxation oscillator is dormant, the power-line voltage is present,

Fig. 4. (A) Basic application of SCR in a lamp-driver circuit. (B) Basic application of a gated bi-directional controlled rectifier. (C) The power line triggers the gated bi-directional controlled rectifier when switch 51 closes.

Fig. 5. (A) Low current isolated control of a large power load. (B) Triac connected in a typical latching circuit.
the Triac is not conducting, and the load is not energized. When $S 1$ is closed, the oscillator begins generation of its nominal frequency which may be in the range of 600 to 6000 Hz . The resulting pulses are coupled through $T 1$ to the gate of the Triac. The first pulse received causes the Triac to saturate during the remainder of the first half-cycle of power; succeeding pulses within this period are ignored. At the first zero crossover of the power waveform, the Triac cuts off momentarily but is triggered on again by the first pulse received after the next half-cycle of power begins. This action repeats as long as switch $S 1$ remains closed. Obviously, slightly more of the full waveform of the line power will be delivered to the load if the oscillator operates in the region of 6000 Hz rather than in the region of 600 Hz because the off time at the zero crossover will be slightly more brief.

A Triac may be comected in a latching circuit as shown in Fig. 5b. Assuming that the Triac is initially cut off, if $S 1$ is closed, current will flow through $R 1$ and $R 2$ to the gate and the Triac will saturate. During the first half-cycle of the power waveform, capacitor $C 1$ charges through $R 2$ and the Triac toward the load voltage; at the end of the half-cycle, capacitor C1 discharges through the gate, which triggers the Triac into saturation for the next half-cycle. This process continues until $S 2$ is closed, which causes $C 1$ to discharge through the load, leaving no current flow through the gate. The Triac then cuts off at the next zero crossover of the power waveform and remains off until $S 1$ is again operated.

Table 2. Useful design characteristics o: 1;pical gate-controlled a.c. switches (Triacs).

Triac Type Number	Forward Blocking Voltage ($\mathrm{V}_{\mathrm{FOM}}$) (volts)	R.M.S. Forward Current (\|f) (amperes)	Holding Current (1) (milliamperes)	Gate Trigger Current (l $_{\text {GT }}$) (milliamperes)	Gate Trigger Voltage (V_{ar}) (valts)	Manufacturer
SC 40 B	200	6	25-50	25-100	1.5-3.0	G
SC 45 B	200	10	25-50	25-100	1.5-3.0	G-E
SC 45 D	400	10	25-50	25-100	1.5-3.0	G-E
TA 2892	100	2.5	1-5.5	1-4.5	1-2.6	RCA
TA 2893	200	2.5	1-5.5	1. 4.5	1-2.6	RCA
TA 2918	200	6	5-36	15-35	1-2.4	RCA
TA 2919	400	6	5-36	15-35	1-2.4	RCA

The Penultimate Automatic Keyer

By PETER A. STARK, k2OAW, STEPHEN GORDON, WA2CPE and ANTHONY MANFREDONIA
Dept. of Electrical Technology, Queensborough Community College

Abstract

Tying a digital computer to a ham transmitter or code oscillator mav be an expensive way to add an automatic electronic heyer; however, this setup, not only sends code but it can also practically conduct the entire OSO.

HERE is an antomatic kever that cloes amost evervthing but tune pletes dots and dashes (as any good keyer should). but also forms complete letters, words, and sentences antomatically. It has ant internal memory that can store entire sentences and paragraplis. such as OTH descriptions, and (an transmit them at will. The input into the keyer is from an electric typewriter, with Morse code generated entirels by the kever at any speed from $1 / 10$ to 100 words-per-minute. It (an even generate start-stop teletypewriter code.

The heart of the keyer is a digital computer, which is coupled to the transmitter throngh a simple tramsistorized comection box. The mit, shown in Fig. I, is the keyer we have set in at W 3.2 KYF , the elub station at Queemshorough Community College of the City University of New York.

The computer used in our installation is the DE3080 made by Digital Electronics. Although this particular computer costs alonit $\mathrm{S} 2(0,000$, the kever can also use the $\$ 10,000$ PDP-8S computer, marle by Digital Equipment Corp. The PDP-SS is substantially faster and can easily reach 100 words-per-minute speeds, while our DE3080 is presently somewhat shower.

The price of $\$ 10,000$ for a mere antomatic kever may seem somewhat steep, even considering its features. But remember that the keser can also do other things. In its spare time, the computer can balance the YL's checkbook, do the finior op's homework, or play tic-tac-toe with your neighbor. During a clull party it makes an excellent conversation piece, and can cembe taught to tell your guests things you woukd never dare tell them yourself!

The Dirital Computer

As mentioned earlier, the heart of the keyer is the cligital computer. Since this is a new piece of gear in the ham shack, let us spend a little time describing it.

A digital computer is really nothing but a lightning-fast calculator with a memory for numbers and instructions. By means of these instructions, it can go through a long procedure which can be quite involved. The typical computer
has five basic sections, shown in Fig. 2. These are called the input mit, the memory unit, the output unit, the arithmetic mit, and the control unit.

The input unit is used to feed information into the computer. On our computer it consists of an electric typewriter, a punched paper tape reader, and a card reader.

The memory unit is used to store information fed into the computer through the input mit. Each scparate piece of information is located in a specific place in the memory. To keep the infomation straight, each of these locations in the memory has an address, which is used to identify what is where. The computer used at WB2KYF has 4096 separate memory locations. Since each location (an store up to four letters, numbers, or punctuation marks, this means we can store over 16 thousand letters in the memory. But since the instructions telling the computer what to do are also stored in the memory, the space left for words is somewhat less. Still, this is quite an impressive storage for useful information. We could, for example, store an entire page from a telephone book in the memory and transmit it, without error, at any code speed beyond the ability of any operator to copy. Great for the times when you camot think of anything else to say!

The output unit of our computer is normally the electric typewriter and a paper tape punch; in addition, the lights on the control panel shown in Fig. 1 can also be used for output. In orcler to use the computer to generate Morse code, we have to add another output circuit to energize a fast relay to key the tramsmitter. The most efficient way to do this would be to dig into the computer and modify the circuits. But since this is likely to void the guarantce, there is an easier way. Since the lights on the control panel can be used for output, it is simple to connect the code output circuitry directly across the lamp bulbs.
The arithmetic unit of a computer can take numbers from the memory and perform simple operations like addition, subtraction, division, and multiplication. The results can then be fed into the memory and saved for later calculations, or can be fed out through the output unit.

Finally, the control unit of a computer takes the instructions which have been stored inside the memory and converts them into electrical signals which, in turn, operate the various computer circuits. The instructions are stored in the memory as numbers, and are called the program. By means of the program we can tell the computer exactly what to do.

How the Keyer Works

The code output from the computer is taken from the lights on the control panel. To see how this is done, let's look at how the memory addresses are numbered.

Our computer has 4096 different memory addresses, which would normally be numbered 0000 through 4095. But the computer works in the binary number system instead of in the decimal system. Instead of numbering the addresses in decimal, it numbers them in binary.

The binary number system uses only two digits, 0 and 1 , instead of the digits $0,1,2$, through 9 . Since this means we can give much less information per digit, we need many more digits for any number. For example, the decimal number 9 is really a binary 1001. The four-digit number 4095 is really a binary 111111111111 , the number 4093 is really 111111111101, and so on. To identify all of the $4096 \mathrm{ad}-$ dresses, we then need twelve binary digits, where any one of the digits can be either a 0 or a 1 .

Inside the computer is a circuit called the address register. This address register can store a 12 -digit binary number consisting of zeros and ones. Whenever any number inside the memory must either be pulled out or put back, the address register contains the address of that number. This register then generates electrical signals which tell the memory the exact address desired.
To help the computer operator, the circuits in the address register are connected to twelve indicator bulbs on the front panel. These are at the lower right corner of the control panel. Any time the computer reaches into the memory to take out a number or place it into the memory, the address register lights on the front panel indicate the number of the address. A lighted bulb stands for the binary digit 1 , while a bulb turned off stands for binary (0. Normally, the computer works so fast that the lights flicker on and off extremely quickly. In fact, the delay in lighting the bulb is so great compared with the computer speed that often the bulbs, instead of flickering, just seem half-bright, and get slightly brighter or dimmer, depending on what the computer is doing.

Now suppose that we write a computer program which only uses computer addresses 0 through 7. Since the binary number for decimal 7 is 000000000111 , only the right three bulbs will ever light. The other nine bulbs will be off. In the same way, we can write a program which will light any combination of bulbs we want. This is the trick needed to generate Morse code.

Let's look at the last nine memory locations. In decimal they might be numbered 4087 through 4095 . But since the computer numbering is in binary, the numbers go this way:

Decimal	Binary
4087	111111110111
4088	111111111000
4089	111111111001
4090	111111111010
4091	111111111011
4092	111111111100
4093	11111111101
4094	11111111110
4095	11111111111

Remembering that a 1 in the address register lights the bulb and a 0 keeps it off, we see that the numbers 4088 through 4095 all light the nine left bulbs, while the number 4087 only lights the eight left bulbs. As it happens, onk the numbers 4083 through 4095, of all the computer addresses, light the nine left bulbs. Any other address results
in at least one of the nine left bulbs being off. To key our transmitter, we use a circuit called an "and" circuit which keys the transmitter only if all of the nine left bulbs are on.

You may ask why we don't use just one bulb. The reason is simple. Look, for example, at the right hand cligit in the preceding table. Every even decimal number results in a 0 while every odd number results in a 1 . Thus every odd address in the computer would light the right-most light. We then couldn't use the odd addresses for any information, since we would accidentally key the transmitter whenever we wanted to reach that piece of information. This is true for every other bulb. The second bulb from the right lights for every two addresses, the third bulb for every four, and so on. If we used only one of the twelve bulbs, we would have to leave half the memory empty so as not to accidentally key the transmitter. By using nine bulbs in combination, we have only 8 addresses which key the transmitter, and can use the other 4088 addresses in the computer for storing information.

But how do we key the bulbs on and off in Morse code? This part is simple too. Suppose that the computer has a program located between addresses 4088 and 4095 , which merely does some counting from 1 up to some higher number. For example, the computer might add

$$
\begin{aligned}
& 1+1=2 \\
& 1+2=3 \\
& 1+3=4 \\
& 1+4=5 \\
& 1+5=6
\end{aligned}
$$

and so on. The computer can be programmed to count up to, say, 100, and then do something else such as go to another program at address 0000 . As long as the computer is comnting, the nine left bulbs are continuously lit; when the computer stops counting the lights go out.

To send the letters and numbers in code, we merely tell the computer how high to count. Suppose the computer can count to 1000 in one second. Then the program to send the word MAT very slowly would go like this:

1. Count to 1500
2. Wait
3. Count to 1500
4. Wait
5. Wait
6. Wait
7. Count to 500
8. Wait
9. Count to 1500
10. Wait
11. Wait
12. Wait
13. Count to 1500

This program would lead to $1 \frac{1}{2}$-second dashes and $1 / 2-$ second dots. To speed up the program, we merely tell the computer to count less. Counting to 300 for a dash and to 100 for a dot would result in a 0.3 -second dash and a 0.1 second dot.

In reality, this program would have to be a little longer.
Fig. 2. Block diagram of a typical digital computer.

We would also have to change the length of the wait intervals depending on code speed. Then there would have to be a program to recognize the letters typed on the typewriter and translate them into the proper instructions to send the code, or to take whole sentences out of memory and convert them into the instructions needed to get the code. This is an interesting project in itself. But since it depends on the exact computer you use to buikd your penultimate automatic keyer, we won't go into it here.

You will notice that a simple change of program can also change the code. Since the program is stored in the computer's memory and placed there just by typing it on the typewriter, we do not have to change any wiring to get the different code. We can casily get any code we want. By typing in a new program, we can get teletypewriter code.

How to Connect to the Computer

The keying portion of the kever connects to the nine left bulbs on the address part of the control panel. This connection is made in such a way that the keying relay closes only if all of these lights are on.

Fig. 3 shows how the lights are connected inside a typical computer. Each loulb is in the collector circuit of a transistor; if the transistor is turned off, the light is also off. If the transistor is on, the light is on. In this way, the transistor acts like a switch to turn the light on and off.

When the transistor is on and acts as a short circuit to the lamp current, the voltage at the collector is very low-quite close to 0 volts. When the transistor is open and there is no lamp current, the collector voltage is about -10 volts (assuming $p-n-p$ transistors and a -10 -volt supply). The collector voltage then indicates whether the bulb is on or off.
 cuit feeding indicator lamp.

Fig. 4. "And" circuit used to sense which lamps are on and drive the keying relay (5000 -ohm, 1.4-mA pull-in radio-contral type).

To monitor the nine left-most bulls in the address register, we feed the signal from the nine indicator driver transistors to a circuit called an "and" gate. The word "and" implies that we get an output from the circuit only if the first signal is there, "ind" the second signal is there, "and" the third signal is there, "and" so forth. The "and" circuit driving the relay is shown in Fig. 4.

The nine signals from the indicator driver transistors are connected to nine diodes. Let's assume that some of the nine bulbs are off. Then some of the inputs to the diodes are negative. Since this makes the cathode of the corresponding diode negative, this diode conducts through the two 10,000 -(ohm resistors to ground. This places a negative voltage on the base of the first transistor. The first transistor is therefore on and its collector voltage drops to a low value. As a result, the base of the second transistor drops toward zero volts and the transistor turns off. This opens the relay used for keving.

If, on the other hand, all nine lights are on, then all of the inputs to the "and" circuit are about 0 volts. Since this takes away the negative bias from the first transistor, the transistor is off. Its collector voltage then becomes negative and provides a negative bias to the second transistor. This closes the relay. In this way we control the relay; if all of the lights are on, the relay closes, but if any one (or all) of the nine lights goos off, the relay opens.

This is all there is to the operation of the circuit. To make sure the circuit works reliably, we add a few more parts. The diode across the relay coil prevents a voltage spike, generated when the relay opens, from burning out the transistor. The 10 -microfarad capacitor and two diodes in the emitter circuit provide a steady negative voltage drop of about 1 volt on the emitters of the transistors. This ensures that grounding the base of the transistor is enough to turn it off.

The 2 N 404 transistors are common medium-speed units used in cligital circuits. They can handle relay coils which take up to 100 mA . A relay taking more current will require different transistors. If you plan to use this relay to generate teletypewriter code, a polar relay should be used. This is because a normal relay, while fast enough to produce good Morse code, is not fast enough to produce accurate teletypewriter code.

Operating the Keyer

How well the keyer works depends on the power of the computer and especially on whether the input and output units of the computer can work at the same time as the arithmetic and control units. If they can, then it is possible to sit at the typewriter and have the computer send out every letter as it is typed. If you type slowly, then the computer will have to wait for each letter. If you type quickly, on the other hand, the computer will send at the desired speed and merely store all unsent letters. A moderately fast typist can keep ahead of the computer as much as he wants, since the computer can store quite a backlog of information.

The computer used at W132KYF, however, is a little more limited. It can either accept text from the typewriter or send out Morse code, but it camnot do both at the same time. For this reason we must first enter the text to be sent into the computer memory, and then send it out. Since we can prestore any number of messages, this is not nearly as bad as it might seem. A good operator can easily copy the other station and, at the same time, type the answers directly into the computer for later transmission. (Editor's Note: The computer described is used for instruction purposes, while the setup described is actually used for code practice sessions. In order to use the sctup for on-the-air contacts, it would be better to have a computer that could key the transmitter at the same time that the message is being typed.)

The key to the successful use of the unit is in the programming, that is, in the instruc- (Continued on page 74)

By ROBERT M. BROWN

The search is on for an electronic system to more automobile truffic with safety and speed. Here is a description of the IIELI', REACT, CRW, RRA, and DAlR systoms, along with some others that have been tested in the past.

TILE concerpt of a practical device for achieving radio conmmonications between passenger car drivers and local anthorities for purposes of routing, information, and road service has long been under study by various gronps in the antomotive and two-way radio industries. Until recently, the project has lacked the monentim necessary to see it through. In the last few months, howerer, a combination of factors has resulted in a rebirth of the idea, and the race is now on for an acceptable industry-wide madio system, New ideas are appearing in Society of Antomotive Engincers presentations, research and development department conferences, and technical joumals, with the more dominant systems now being tested experimentally. At stake are antomaker contracts, prestige, and, of course, a great deal of Federal aid.

While the newly formed National Motor Vehicle Safety Council promises to play a major role in the search for the best radio system, right now the FCC is getting most of the attention. This is due largely to its full-scale 1967 inquiry into ": . how radio might be more effectively and efficiently used in the promotion of highway safety".

Although it isn't known yet just how the final system will be integrated into the passenger car, there is consideralhe talk in automotive circles that Washington may ul-
timately legishate the device as standard-equipment to be incorporated into all American production-line cars.

The "Commmications Gap"

Part of the motivation for the development of a highway radio system seems to be the necessity for ". .. closing the comminications gap on our national highways". What is the "commonications gap"; Fred Baner of Forl's Radio Engineering Division describes it as a period in time when commonications have progressed "only to the point where the driver must still commonicate by horn signals and rely almost entirely upon his eves for a thousand details of the roadwaty ahead". Eugene A. Hamys of General Motors' Research Laboratories puts it another way: "As vehicle population and traffic density continue to grow, the motoring public will demand assistance that goes beyond that of present sign techniques." Clearly these manufacturers are planning now for such an eventuality.

The FCC gave interested parties until Mareh 31, 1967 to file comments on which proposed highway emergency system they feel will be most effective. Explaining the Commission's imotvement in something as far afield as highway safety, a December, 1966 report stated that the "appalling" death rate on the nation's roadways requires that the agency
exercise its "broad authority . . . in the public interest".
Behind this activity is the Highway Safety Act of 1966 which provides $50-50$ matching funds for states and local communities "to expand and improve" their road safety programs. In addition, it poses the threat of a 10% loss of Federal highway construction funds for states which fail to comply. Included in the Act are improvements such as "electronic controls that convey regulatory or convenience information to motorists" as well as "statewide emergency medical services programs" that clearly call for mobile radio to do the job. The Department of Commerce's National Highway Safety Agency is supervising the drafting of uniform standards for all the states, and the first suggestions were posted to representatives of the govemors of the 50 states on February 16 th of this year.

Industry Programs

Mcanwhile, several industry-sponsored programs are receiving attention, including the HELP and REACT projects which have been operational for a number of years. These programs have been joined by newcomers CRW, RRA, and DAIR, with more pouring in at the rate of better than one a month. (These highway radio systems will be described in detail further along in the article.) What makes them significant is that they have been developed and financed by some of the country's leading radio and automotive manufacturers: Hallicrafters, Ford Motor Company, Motorola, and General Motors. In fact, an operational "radio highway" is now functioning with FCC approval between Detroit and Lansing, Michigan along Route I-96 to determine the feasibility of the Automotive Manufacturers Association's CB project.

Basic System Requirements

The diversity of these programs may prechude any allencompassing description of their capabilities, but it is probably safe to say that each, to some cetent, hopes to supply at least a few ingredients needed to effectively "close the gap". All parties concerned are agreed that the required technology is available; but until now necessary public information and promotion have been lacking.

What is needed is a reliable system that possesses several fundamental attributes: (1) it must have the ability to cover as much of the surfaced roacivaly in America as possible even though it might be initially implemented only in sprawing metropolitan areas: (2) it must be priced low enough to be practical from a long-range point of view; (3) it must furnish the driver with reliable two-way commmications at the flick of a switch; (4) it must be cappable of providing accurate road infomation to the motorist in all kinds of weather; and (5) as ford puts it, it must develop a sulficient "initial momentum of sizable proportions" to be put swiftly into operation on a national basis.

It is interesting to note that, almost without exception, the majority of participants so far reporting in with emergency systen proposals are stanting with $27-1112$ Citizens Radio Service equipment. At present, nearly half of all the transmitters in the Linited States (including TV, broadcast,

Table 1. REACT stafistics based on a recent system survey.

Organization:

Number of participating teams. 1400
Average number of members per team 27
Total of active membership. 40,000
Total CB'ers with REACT training. 100,000
Messages:
Percentage of calls for road assistance...0\%
Percentage of calls on actual accidents 21.4\%
Total emergency situations handled monthly 50,238
Total emergency situations yearly 602,856
police, etc.) are crowded into the 11 -meter $27-\mathrm{MHzCB}$ band; yet, in spite of this congestion, CB persists as the overwhelming choice. The reason for this is simple. Approximately three million tramsceivers have been sold to Americans anxious to provide themselves with vehicular communications. And this fact becomes even more important when it is considered that these sales have been made without benefit of massive advertising campaigns. The consensus is that perhaps by sheer acceptance of CB , the public might provide the required "momentum" to put the idea over.

Present Emergency Programs

REACT. While the IIallicrafters-sponsored REACT (for Radio Emergency Associated Citizens Teams) is not the most complex or sophisticated, it is easily the best example of what volunteer channel-monitoring can accomplish. Consisting of about 14002 thour stations ready to provide CB chamel-9) communications, angmented by a hard-core active membership of 40,000 , REACT has handled over one million on-frequency requests for routing assistance, road service, and emergency aid (ambulance, fire, police, etc.). (See Table 1.)

When viewed in terms of a contender for a countrywide motorist emergency service, however, its abilities pale in comparison with total needs. For true participation, the REACT member must be a licensed CB'er familiar with equipment limitations and have the conventional under-theclash transceiver handy on all occasions. In addition, REACT is relatively unknown outside CB circles and it doesn't pretend to promise direct tie-ins with police, ambulance service, and gas station monitors. Even so, the fact remains that it is the only radio-aid system now in operation on a large scale in the United States.

HELP. In early 1965, the Automobile Manufacturers Association announced the formation of project HELP (for Highway Emergency Locating Plan). Initially an extension of the REACT monitoring idea, HELP was promoted in several national magazines, in numerons radio broadcasts, and on more than 400 TV stations (which used an AMA film (lip). The idea was simply to equip the aucrage notorist with inexpensive CB gear designed for single-frequency (chammel 9) operations.

It soon became apparent, however, that reliable, foolproof enactment of the IIELP concept recquired a shift from congested CB frequencies to those outside the service. In this manner, highway anthorities and gas stations could monitor the chamels without the amosance of unrelated tramsuissions. To accomplish this, the AMA petitioned the FCC for use of 27.235 and 27.245 MHz .

Before acting on this petition. however, the Commission in late 1966 requested that a working model highway be set up for scrutiny. On December 1st, the first two-way emergency system along a public highway was established on Dichigan's Route I-96. To obtain aid, a motorist simply puts through a call on chamel 9; this is answered by any one of several service stations strategically sitnated along the expressway. The results of this experiment, even though they will be incomplete in terms of the total HELAP program, will be crucial to possible FCC endorsement of the AMA proposal.

Two other problems face the IIELP proponents. First, the requested frequencies are not under the jurisdiction of the CRS (FCC Rules, Part 95); and secondly, service garages would stand to make a profit on the increased road calls. Both situations pose a serious threat to FCC approval, since enactment would require a major "exception" to normal Commission policy in such rule-makings. The profit factor is particularly controversial, since it has been suggested that a surcharge be placed on all HELP calls to "help pary for the system".

Evern more important is the reaction of law-enforcement organizations that would be affected by the proposal. Many
groups, including the Associated Police Commonications Officers, lne. (APCO), "aren't sure that IHELP is the complete answer". APCO hats asked that the Commission hold off a decision on IIELP until it can study the matter. Me:mwhile, the flood of other proposals has tended to stagnate the eally momentum developed by the program. In the interim, the Cl industry is stuck with a sizable carload of IIELP sets.

CRWV. Although Motorola's CRW (for Commmity Radio Watch) was designed primarily as a (rime-fighter, it holds considerable potential as a practical highway safety aid. The idea is to have drivers of ratio-equipped vehiches report "suspicious and mousual" occurrences to their dispatchers, who, in tum, relay the message to police headquarters where a patrol car is assigned to the vicinity. Rather than confine itself to CB'cis, it is applicable on a local level to all companies who have any form of radio communications equipment in use. This takes into atcount taxicabs, dry cleaners. and a host of other users where an employer might responel to a civic-pride appeal from City I Iall. Indeed, the contire program is administered by the local Chamber of Commerce or Matyors office.

Since its inception in late December, 1966, over 100 cities have enrolled, each representing a significant number of signed-up vehieles. Pittsburgh, for example, claims 3000 , while Detroit has over 6000 participanis. (incinnatis Satety Director Henry J. Sandman has noted that "The lolice Division could not duplicate this program with even $\$ 100,000$ worth of additional radio equipment".

How important a role CRW will play in the highway emergency system race depends solely upon the extent to which traffic accident and medical aid reporting is employed. With any kind of promotion from this angle, CRW may be a major contender for the most practial scheme.

Related Systems

Falling short of being a true two-way commonications sistem, yet still representing a means of furnishing the chiver with road and accident information, have been numerous attempts at installing low-power transmitters along the highway. In the early 1950 's, for example, the New York Port Authority used a 400 -watt AM tramsmitter foeding into a loop antema to broadeast to a captive andience of motorists in the New York-bound lane of the Lincoln Timmel. Every $2^{12} 2$ minutes a tape-recorded message was broadeast on 5.50 kHz which contained information and instructions: from time to time, anthorities broke into the transmission to make ennergency annomeements. In 1952, however. the system wats abandoned becanse, as one Port Authority of ficial explained, "What cant you say that's meaningful?" Apparently the Authority felt it could accomplish what it wanted fust as eflectively with signs, although a simiku system is reported to be in use now in Maryland by the Baltimore Harlor Tumel Authority. In the 19.40 s, a concept much the same as the Lincoln Tumnel iclea was operated experimentally at New York City's George Washington Bridge. In 1959 a similar attempt was made by Urited International, Inc. to install a system along the New York Thruway.

Other broadcast proposals have inchuded the General Mofors "IICOMI" and "IIIGHWAY INFORMER" systems as well as 1966 's "INFOMITTER," a highway installation designated for the Smethport, Pemsylvania area.

An insight into the FCC's general objections to methods of AM broadcasting to motorists can be gleaned from the Commission's denial statements in last years "INFOMITTTER" case. "Previons experience has indicated that practical problems. . . arise." These include finding a clear frequency and not cansing interference to the broadcasting service. The entire concept, as a matter of fact, has been regarded by the Commission recently as having a "questionable operating status".

Fig. 3. An experimental RRA roadside transmitter system. Permanent installation would be on high, fixed supports.

Fig. 4. The DAIR system uses either CB or signals from buried permanent magnets to activate the readout systems.
gering, the tramsmitted code first enters a resonant reed detector which, logether with a diode-gating circuit, decodes the message. A relay IC logic cirenit usually blocks incoming codes, permitting the AM ratio to operate normally. When the proper code reaches the logie circuit, the tape-transport mechanism selects the correct message (providing priority override if more than one code is received) and injects this into the AM set's audio circuit, turning the

Fig. 5. Essential components of in-car DAIR system. Message readout (leftl, magnet sensor (bottoml, and console. Console houses CB, magnetic logic, and signal processor.

car radio on at the same time (if it happens to be off). Comentional or standard car radio whips can be used with matching transformers, climinating the necessity for an additional receiving antema. Directional transmitting antemats will be used to prevent confusion in cloverleaf areas. Ford feels that the tape-recorded message is superior to a direct/receive type in that "there is no possibility of static or other electrical disturbance" and the voice will be familiar to the driver and "well-modulated and properly eminciated".

Under the RRA system, several methods could be used for message storage. Presently in use on an experimental basis are magnetic tapes, although ford states that a possibility exists of utilizing high-resolution photographic film scamed by a light beam to play back the message. A storage tube using a masking techmique could also be employed, having the advantage of no moving parts.

If multi-chamnel operation develops within the framework of RRA, Ford envisions the possibility of playing commercials through the system "with a resultant increase in highway beanty", though the company doesn't give any indication of the subsequent cost of the logic or messagestorage units required to handle such an increase in "programming".

Should the driver's car be equipped with a conventional CB set, he could tune to the triggering frequency and hear the messages over the air, although they might not be as clear. After sending the beeped code, the roadside transmitter would broadcast the proper voice message which could be periodically interrupted by police officers for direct reports. This daw-enforcement break-in is referred to by Forl as an "electronic Hare", to consist of a remote and portable transmitter "using a high-priority trigger code plus a recording tape". In addition, the police would have facilities for increasing transmitter power beyond Part 15 IO()-milliwatt limitations.

Finally, RRA would incorporate a timer device in the radio or an extension of the logic circuit which "would climinate the same code after it had been received, for example, three times in quick succession". This would appear to be a must for someone parked within capture arca of a directional RRA transmitting antenna.

GM*: Plan: DATR

General Motor's Driver Aid, Information, and Routing (1)AIR) system is even more involved (see Figs. 4, 5, and 6). Basically, it provides four fundamental features: (1) "andio sign", which permits reception of voice messages pertinent to traffic conditions and emergency road situations; (2) "visual sign minder", which reproduces roadside traffic signs on a display panel in the automobile; (3) "code and voice communications", a radio link between the driver and a service garage, permitting direct summoning of aid; and (4) "route minder", which directs the driver along a preselected route without the need to refer to roadmaps or look for route signs. Like the vast majority of other programs, CM's system plans to use $27-\mathrm{MHz} \mathrm{CB}$ "to take advantage of the . . . great number of mobile transccivers already in use. DAIR can be implemented in a buidding-block fashion using the CB transceiver as the basic component".

The roadway "commmicates with the vehicle" by using permanent magnets buried in the pavement in a binarycoded sequence, setting up flux fields which are sensed and decoded in the vehicle. The pickup sensor is a multiturn coil mounted laterally beneath the car approximately one foot above the pavement. Because of low sensitivity to electrical noise disturbances, magnetic logic circuits are used to decode the roadway signals as the car passes over the "transmitter". In this manner, the magnets control the in-car configuration.

The "andio sign" system
(Continued on page 67)

THE LASER INTERFEROMETER

By J. P. ENGEMAN/Airborne Instruments Lab., Div. of Cutler. Hammer

Abstract

As used in the machine-tool industry, this remarkable device allous distance measurements as areat at 60 feet with an accuracy of 10 millionths of an inch.

THE extension of electronics principles into the optical range has resulted in the development of a remarkable new measuring instrument-the laser interferometer. The device discussed in this article uses the wavelength of light generated by a helimm-neon gas laser as its unit of measurement. Linear distances as great as 60 feet can now be measured to an accuracy of 10 millionths of an inch ± 0.5 part per million. Although it is currently serving industry in a variety of applications, the interferometer is probably best known and most widely used throughont the machine-tool industry.
The trend in manufacturing processes today can best be summarized in two words: antomation and precision. Toward these ends, electronies engineers have worked with great success over the past decade. Today's manerically controlled machines, for example, are fast, reliable, and repeatalble. The demands upon them for accuracy, however, have in many cases sumpassed the capabilities of present inspection techniques.

Consider the relatively simple problem of making an accuracy check every inch over a distance of 150 inches. Add to this the need to closely investigate any increment in minute steps-for example, 0.010 inch-either to satisfy a customer's request or to analyze a particular trouble spot. Multiply this task by a factor of three for a multi-axis mat(hine and the enomity of the job cam be appreciated. It is no wonder that the quality-control budget has risen sharply in the past few years.

Let us look for a moment at some of the more conventional measuring devices that the machine-tool builder has at his disposal. For small distances, 0.1 inch or less, the clectronic gage is by far the best. Most of these instruments use a linear variable differential transformer (LVDT) as the translucer. By varying the coupling between a primary coil and two series-oposed secondary coils and by synchronously detecting the transformed voltage, a very linear signal is ontained. With suitable amplification, these grages can display increments smaller than 0.000010 inch at a cost of about $\$ 500$.
To extend its usefulness to longer distances, the electronic gage is often used with a precision gage block. Available in varying lengths up to several feet, these blocks can provide an accuracy of about 2 parts per million at a cost of approximately $\$ 3000$. Their usefulness is limited, however, because they permit only point-to-point measurement. In addition, long-distance checks require the use of many blocks with a subsequent loss in accuracy.

Other devices that find widespread application in inspection systems use a ruled scale as their basie measuring tool. A distinction is usually made in these systems between the type of scale whose lines are far enough apart to be individually distinguished, therefore requiring interpolation, and a scale whose lines form a continuously repeating pattern. The latter type can be made with a high-density line
structure-as many as 5000 lines per inch. When two such scales are superimposed with their structures at a slight angle to each other and proper illumination is provided, a relative motion will canse a moiré fringe pattern to be produced.

In either system, optical detection followed by electronic interpolation or readout is provided. Accuracies of about 0.000010 inch per inch can be obtained over relatively short distances at a cost of about $\$ 7000$. loor measurements of many feet, however, the user must look elsewhere for a satisfactory solution.

One instrment that combines the best features of other gages (precision, case of use, speed, and continuous longrange capability) is the laser interferometer. Its higher cost of $\$ 40,000$ can readily be justified by a redaction in the man hours refuired to check machines and in the ability of a manufacturer to turn out a much better piece of equipment.

Although only machine-tool applications have been mentioned so far, it should be apparent that other industries will also bencfit from the laser interferometer. In electronics, for example, the manufacturing techniques used in the prochaction of microcircuits requires a high degree of accuracy. Likewise, the catibation of automatic drafting machines, used by many companies for layout of printedcircuit boards, cam be achieved with the interferometer.

Operating Principles

To understand the principles involved in converting a light beam into a rardstick, let us reexamine some fundamental concepts. All light sources are basically a number of electronic oscillators, radiating electromagnetic energy of a very high frequency-about $5 \times 10^{\prime \prime} \mathrm{Hz}$. In each clementary beam emitted by a single oscillator, the field vibrations have a definite phase relationship. If the vibrations from two or more oscillators maintain this fixed relationship, the beams are said to be coherent. The light from most sources, however, is the sum of a multitude of independent oscillattors, and the resultant vibrations at a point constantly change, depending upon the chance distribution of the fields of the elementary watves. A light source of this nature is unsuitable for interferometry, as will be described.

Certain low-pressure gas discharges exhibit a small degree of coherence and can produce an interference pattern over a path length of several inches. By using the stimulated radiation of a c.w. gas laser, however, the degree of coherence is so great that this length can be increased to thousands of feet. Of course, practical considerations in the fabrication of the optical parts and the fixturing reduce this theoretical limit.

There are many types of interferometers in existence today. We shall concern ourselves only with the type first proposed by the American physicist A. A. Michelson. Fig. 1 shows basic components of this fundamental research tool.

Collimated light is directed onto the partially silvered diagonal beam-splitter mirror. Some of this light is reflected onto mirror A and then back through the diagonal to the detector. The remaining light, neglecting losses, is transmitted through the diagonal, strikes mirror B, and is reflected back to the detector. If the optical path lengths $L 1$ and $L 2$ are equal, the fields of the two beams will be in phase when they recombine on the diagonal and will add. This is true regardless of the quality of the light source since cach portion of the original beam has traversed the same distance. For unequal distances, however, illumination by an incoherent source does not preserve a consistent phase relationship between the two paths. As a result, the recombined beam, as seen by the detector, is merely the sum of the average intensities of each path.

A coherent source, on the other hand, ensures a phase dependency between each beam. Their relative phase is then a function of the distance the light has traveled. For example, if $L 2$ were a quarter of a wavelength longer than $L 1$, the light from mirror B would return to the diagonal out of phase with the light from mirror A. The two beams would cancel and the detector would see no light at all. Another quarter-wavelength movement would bring the beams back in phase and a bright spot would appear. Of course, what is true for the quarter-wavelength points is also true for all intermediate points. Therefore, the continuous signal seen by the detectors is a beam whose intensity varies sinusoidally from zero (darkness) to a maximum.

When the position of reference mirror A is fixed, keeping $L 1$ constant, a comparatively simple, yet highly accurate, means of determining the linear distance that mirror B moves is achieved. By coupling an electronic counter to the optical detector, the number of bright spots (usually called fringes) that occur as mirror B moves can be determined. As we have just seen, these fringes are separated by a distance equal to one-half a wavelength, or about 12.5 microinches for the laser interferometer described he eein.

Although this system is very accurate, it could not possibly be used as a practical tool outside the laboratory. The angular orientation of a flat mirror, such as mirror B, would be difficult to maintain. By inserting a trihedral prism into the system, however, this problem is easily solved. A tri-

Fig. 1. Operation of the basic Michelson interferometer.

Fig. 2. (A) Top view of trihedral prism. Light striking point A is reflected to B, then to C. It then emanates and goes to detector. Distances $A B$ and $B C$ need not be equal. (B) A basic dual-beam interferometer using a trihedral prism.

hedral prism consists of three mutually perpendicular reflecting surfaces. It has the most useful property that any light ray striking it and being reflected at each surface will return parallel to its original direction regardless of changes in the angular position of the prism (see Fig. 2A). In addition, the path length through the prism remains constant.

A system using this prism is referred to as a dual-beam interferometer and is shown diagrammatically in Fig. 2B. Doubling the variable path length halves the resolution of the device, causing fringes to occur every 6.25 microinches.

Let us take a specific example to better understand how a dual-beam interferometer is used to obtain a linear measurement. Suppose the light source and associated optics are attached to the fixed portion of the machine and the reflecting prism is mounted on the machine's table as shown in Fig. 3, position A. We will assume this to be our zero or starting point. When the table is moved to the location shown in position B, the motion of the reflector will cause a series of fringes to be seen by the detector. For a total movement of 50 inches, the detector will see $50 /(6.24 \times$ 10^{-4}) or 8×10^{8} fringes. Using an electro-optical detector such as a photomultiplier tube, the fringes are converted into electrical pulses and can be totaled in an electronic counter. Conversion from a number of pulses to a linear distance can be achieved easily by an electronic circuit.

To make the interferometer a more useful device, two more requirements should be satisfied: (1) machine vibration must not affect the accuracy of the instrument and (2) the trihedral prism should be movable in either direction without interrupting the measurement. Both conditions can be met by the inclusion of a direction-sensing scheme and a bi-directional electronic counter. The usual means of obtaining direction information consists of sharing the light beam in such a way that two interferometers are formed using the same optics. Then, by causing a relative phase difference between the signals from each detector, a simple logic circuit can determine the direction.

Associated Electronics

To complete our discussion of the basic principles involved in interferometry, we should be aware of the effect of certain external parameters on the performance of the device. Since the wavelength of light in a medium is a function of the refractive index of that medium, any change in this index requires compensation. For a desired accuracy of 0.5 part per million, we must allow for a temperature coefficient of about $1 \mathrm{ppm} /$ degree C and a pressure coefficent of approximately $1 / 3 \mathrm{ppm} / \mathrm{mm}$ Hg. Changes in relative humidity can usually be neglected unless they are severe. The detection of these parameters and the subsequent correction for their variations are easily achieved in the electronics associated with the instrument.

Fig. 4 illustrates in block-diagram form the simplicity of the entire electronic support equipment. The sinusoidal detector signals are squared in Schmitt trigger circuits and fed into the direction-sensing logic. At this point, the signals are differentiated to allow pulse techniques to be used. The pulses, representing the forward and backward excursion of the trihedral reflector, are totaled in a bi-directional counter. Particular care has been taken in the design of these circuits to provide high-speed performance. Instantaneous speeds as high as four inches per second can be accurately comted. On a typical machine, this will permit the table to move at a rate of 3 to $3 \frac{1}{2}$ inches per second and still allow ample reserve for stick-slip and vibration.

A real-time digital multiplier is included as part of the basic system to eliminate the necessity for making cumbersome calculations from fractions of a wavelength to decimal parts of an inch and/or a meter. The multiplier also offers a convenient means of introducing the correction factors mentioned for atmospheric pressure and ambient
temperature changes. These parameters are constantly monitored by suitable transducers to permit continuous compensation.

One of the most serious problems an inspector must face in measurement is the change in climension that the machine undergoes as a result of temperature. We have corrected our yardstick, the wavelength of light, for temperature variations but have not said anything as yet about the machine itself. We know, however, that steel has a linear expansion coefficient of about 6.5 ppm and aluminum almost twice this amount. In fact, almost all metals exhibit a much greater temperature dependence than does the wavelength of light. Therefore, it seems logical to include additional circuitry to eliminate this source of possible error.

For this reason, a second multiplying circuit has been designed to give the product of the parts expansion coefficient and its temperature deviation from the norm of $68^{\circ} \mathrm{F}$. This circuit, together with the atmospheric pressure and ambient-temperature tramsducers, controls the digital multiplier's scaling factor. The visual readout and the auxiliary printout, therefore, display the distance directly in decimal parts of an inch corrected for any barometric pressure or temperature condition.

Applications

Any device using a laser, state-of-the-art optics, and electronic support equipment gives the impression of being complex and difficult to use; however, such is not the case with the laser interferometer. In fact, one of the original design criteria was that the final instrument be usable by anyone, even personnel completely unfamiliar with optics or electronics.

In making a single-axis measurement, the most difficult task for the operator is the alignment of the laser beam along the measuring path. By trial and error methods alone, this could be done in reasonable time-perhaps 20 minutes or less. However, this straightforward problem has been simplified by including a built-in autocollimator. The operator merely moves the laser until the return beam from an auxiliary mirror is superimposed on a fixed beam originating in the optics, at which point alignment is ensured.

For multi-axis measurements, a separate beam deflector is provided to divert the beam 90° in any direction. The need to relocate the laser for each axis is thereby eliminated.

Despite the obvious advantages that the laser interferometer possesses, the reader may still wonder to what extent industry has accepted the device. Is there such a need that companies will make a substantial capital investment to better their product or performance? The answer is an overwhelming yes. Practically every major machine-tool manufacturer and some of their biggest customers now own at least one interferometer. For example, the Cincinnati Milling Machine Company has been using one since late in 1965 to check positioning accuracy on Cincinnati ATC machines. The information recorded on the auxiliary

Fig. 3. An example of using a laser interferometer. Position A is the starting or zero paint. At pasition B, the table has been moved 50 inches. Readout is by counter.
printout is used to produce a cam to compensate for leadscrew inaccuracies.

The Giddings and Lewis Company found that its cost of quality assurance and maintenance per dollar of shipments is 15% to 25% less today than it was only a few years ago due to the effectiveness of new checking devices. Results indicate that incremental checkouts can be made with the interferometer in a fifth to a tenth of the time previously required.

The Bocing Company has acquired two laser interferometers, one for use by its shop maintenance personnel and the second for the company's Primary Standards Laboratory. The latter unit has a resolution of 0.000002 inch and is used to calibrate the line standards and tooling tapes that are used.

These examples and many more like them indicate the great impact that the laser interferometer has already made in today's shop. However, its acceptance as a calibration tool is but the first step in realizing the great potential that the laser offers to the automatic factory. The next logical move is to incorporate the interferometer into the control system of the machine and eliminate the need to calibrate a secondary measuring device. Being essentially digital in nature, the problem of compatibility with existing control systems is minimized.
(Continued on page 79)

Fig. 4. The electronic support system used in conjunction with the laser interferometer. Note that compensation for barometric pressure, ambient temperature, and machine expansion during operation is provided for maximum accuracy.

C1,C2-1500pF 5% (MATCHED PAIR)
J1, J2-PHONO JACK
W, L2-HIGH-Q"FERRITE ANTENNA COIL (MILLER $\# 6300$)

Fig. 1. Filter consists of two cascaded half-lattice crystal-filter sections with low-impedance input and high-impedance output.

Ferrite Coil and Crystal Sideband Filter

By RICHARD A. GENAILLE, K4zGM
Using readily available ferrito anteman coils in place of the usual i.f. transformers, this filter can be employed as the starting point for the construction of an Sis ham transmitter.

MOST of the single-sideband transmitters in use today employ either the filter method or the phaseshift method of sideband selection. The heart of a transmitter making use of the former method is, of comse, the filter which aceomplishes frequency discrimination in the low, medim, or high-freduency ranges. Among the various filters which have been widely used are mechanical filters, filters mate up of precision high -" $\}$ " toroidal circuits, and quartz crystal filters. This artiche deseribes an easily constructed, medinm-frequency erstal filter using readily available quartz erystals in unicure combination with orclinary ferrite coils and which, in addition, contains a stage of amphification as an integral part of the filter umit. The filter can be used as the starting point for that sideband tramsmitter that you have always wanted to build.

The ferrite coil and erystal sideband filter is shown schematically in Fig. 1. The basic sideband filter circuitry consists of twe cascaded half-kittice crystal-filter sections with input and output eirenitry aranged for a low-impedance input to the filter proper and a high-impedance output from the filter to the i.f. amplifier stage. The input impedance of the filter was designed to accommodate the output of a lowimpedance balanced modulator. A simple, high-"O" ferrite antemat coil is used in a tuned circuit to provide the tramsition from low-impedance input to the high impedance of the first half-lattice crestal section.

Ordinarily, one would refer to the crystals used as "surphas" crystals; however, the tremendous popularity which medium-frequency crystals have enjoyed over the years of use in crystal filters such as the one being described, has resulted in suppliers dropping the term "surplus" from their advertisements and making available matched pairs of crestals at a nominal cost.

The exact frequencies or dhannels shown in Fig. 1 are not rigid but the limit of the lower frequency erystals used should not be bel,w +50 kHz and the higher frepueney coystals should not be above 47.5 kHz . The frequency separa-
tion between the crystal pairs detemmes the bundwidth of the filter and most lattice filters constructed from the type crystals and the standard components specified will have a bandwidth of about one and one-fourth times the frequency difference between the crystal frequencies. A frequency separation of approximately 2.3 kHz is used in this filter which provides a bandwidth of near 2.9 kILz for reasonable voice quality.

The crstal trimmer capacitors provide a means of improving the shape factor of the filter and should be of good quality. The one's used in the author's filter were Centralab ceramic-dielectric trimmers $\# 822-E Z$. The i.f. tramsform-
-
Fig. 2. Capacitor and coil adjustments are shown in this top view. Trimmer for crystal 1 is identified as $X 1$, and so on.

ers as well as the inexpensive ferrite coils were selected to minimize filter losses.

Capacitors C1 and C'2 need not be exactly 1500 pF but should be matched as closely as possible. The author bought a half-dozen 5% tolerance capacitors of good quality and, using a " Q " meter, was able to sclect a pair that was almost perfectly matched. A simple voltage divider test circuit may be used to establish a match of the two capacitors. The caipacitors to be checked can be connected in series and across a source of medim-frequency r.f. signal. The voltage measured across each capacitor with a v.t.v.m. should be the same if the capacitance values are alike.

The i.f. amplifier stage is a basic circuit which is used to provide the necessary gain to drive a following converter circuit and to facilitate the testing and alignment of the filter as a separate mit from the rest of the transmitter in which the filter may be used. The filter should be aligned using a low value of imput signal to prevent overdriving and sulsequent crrors in aligmment. The combination of low input signal and filter insertion loss results in difficulty in oltaining a suitable output level for driving the average seope or v.t.v.m. The integral i.f. amplifier circuit provides the needed gain and makes possible the testing of the filter as a complete separate sub-unit from the transmitter proper.

Construction Details

Construction of the filter is not difficult; however, considerable effort was expended in shielding the various filter components to insure that the input signal would pass Hrough and not around the filter. The filter components are looused in a $7^{\prime \prime} \times 5^{\prime \prime} \times 3^{\prime \prime}$ chassis box as shown in the photographs of Figs. 2 and 3. Fig. 3 shows the placement of the various components. The shields used for the ferrite coils, the small shicld cans for the imput and output jacks. the shield partitions separating the filter input and output sections, and the shield partition separating the filter proper from the i.f. amplifier stage are also shown in Fig. 3. Fig. 4 is a view of the filter with the shield cans removed as well as the lids of the imput and ontput jack shield cans. Discarded $35-\mathrm{mm}$ film cans are used as shield cans for the input and output jacks. The removable covers provide excellent access for the monnting as well as for the wiring to the jacks.

The small crystal trimmer capacitors are mounted on phenolic strips and are used as a means of support for the crystals by soldering the crystal holder pins directly to the trimmer capacitor leads. This method of supporting the crystals is shown in Fig. 5. It would be wise to use a heat sink of some sort on the crystal holder pins to avoid damage to the crystals from excessive heat if the builder uses this system of mounting, however. Other satisfactory means of supporting the crystals may be used by the imaginative constructor rather than the means described.

Alignment Techniques

The filter can be aligned by using a signal generator and a v.t.v.m. in the point-by-point system of alignment but this mothod can be very time consuming. The use of an i.f. sweep generator sweeping the 425 to 475 kHz range and an oscilloscope is recommended and is the method used by the author for aligning the filter. For those who may wish to make an interim alignment with an r.f. signal generator and a v.t.v.m. the following procedure will produce passable results.

As mentioned previonsly, the inclusion of an i.f. amplifier as an integral part of the filter makes it unnecessary to use a high input voltage to the filter and risk damaging the erystals. In starting the filter alignment all erystal trinmers should be adjusted for minimum capacitance. The output of an accurately calibrated r.f. signal generator should be comnected to the input jack on the filter with the output jack

Fig. 3. Inside view showing parts placement and the internal shields. Coil and jack shield cans are in place in this view.

Fig. 4. Inside view with the shields and/or covers removed.

Fig. 5. Method of mounting crystals on the crystal trimmers.
comected to the r.f. probe of a vacum-tube voltmeter.
Ferrite coils $L 1$ and $L 2$ and i.f. transformers $T 1$ and $T 2$ should be adjusted for maximum output at the center of the filter passband. The center of the passband, as shown in the characteristic curve for this filter in Fig. 6 is appoximately 464.5 kFz . With the signal generator set to 462.5 kHz , the trimmer capacitors associated with the lower frequency crystals (X3, X4) should be adjusted for a sharp mull on the v.t.v.m. With the signal generator set at 466 k mz , adjust the trimmer capacitors associated with the higher frequency crystals (X1. X2) for a sharp null also. These adjustments, as previously mentioncal, will pro- (Continued on page 80)

Common-Sense Design of TRANSISTOR AMPLIFIERS

By DONALD L. CARLSON
Manager of Engineering Services, Hewlett-Packard (Loveland Div.)

Abstract

Straightforward method of calculating the necessary circuit components for a stage of transistor amplification. Ohms Laue plus some simple formulas are all that are required.

IT is not too difficult to find the information needed to design a tube-type amplifier. Most tube manuals inclucle characteristic curves and other pertinent data, and with a little knowledge of plotting load lines and a few other calculations, the buider may come up with a suitable design. However, working with tramsistors is a different matter. For the most part, the areage technician does not have access to the manufacturer's information and, if he dicl, would probably throw his hands up in disgust by the time he waded through all the calculations necessary to design a single-stage amplifier. Most manufacturers specify their transistor devices using hybrid parameters. These parameters are not very easily grasped until some of the more basic principles are understood.

The following is a straightforward method-a commonsense approach, using Ohm's Lav to calculate the necessary circuit components for a complete amplifier. Although there are hundreds of types of transistors, for simplicity, we will discuss only one type in this article.

Some of the available types fall into the following classifications: small-signal amplifiers, switching tramsistors, high-frequency transistors, and power transistors, to name a few. There are also voltage ratings, power and current ratings, and leakage coments to consider in selecting the tamsistor to handle a specific jol).

The Transistor Sperifications
As an example, let's start with a one-stage amplifier using a 2N2712 and calculate all the necessary circuit components. This is an $n-p-n$ silicon transistor capable of performing all functions in an All radio. This means that not ouly will it work well at audio freduencies, but it will also amplify well at radio frequencies. Although it is very inexpensive, it cloes have some very good specifications. Some of the more important spees will be disconsed.
$V_{\text {rew }}$ is 18 volts: This is the maximum voltage allowable from collector to emitter and, for all practical purposes, should be the maximum supply voltage since the full voltage would be applied between collector and emitter any time that the transistor is in cut-ofl condition.
$V_{k, B}$ is 5 volts: This is the masimum voltage from emitter to base with the collector open.
I_{6} is 100 mA : This is the maximmm saturation current or the collector current when the transistor is saturated.
P_{T} is 200 mW : This is the maxinum power dissipation.
$I_{\text {riow }}$ is $1 \mu \mathrm{~A}$ maximum: This is the collector-to-base leakage current with the enitter open, and with $V_{f i}=18 \mathrm{~V}$.
$h_{R^{\prime} \in}$ is 75 minimum, 225 maximum: This is also known as beta or d.e. current gain. The "F" is for forward current transfer ratio, and the " E " indicates a common-emitter configuration.

The static characteristic curse for a 2×2712 is shown in Fig. 1. This type of curve can be plotted by hand on
graph paper. All that is needed is a variable power supply (labeled Bl in Fig. 2A), a milliammeter to monitor the collector current, and a voltmeter to monitor the collector voltage, as shown. $B 2$ furnishes the base current and R_{x} may be a number of fixed resistors which will apply the required base current to the transistor. For instance, if $B 2=1.5$ volts, then R_{N} would equal 150,000 ohms for 10-fA base dive. As the variable power supply is increased in voltage, the current is monitored at two or three collector voltages and points then marked for these readings. A line is then drawn comecting all points.

This is the same type of curve that is published in a tube manual for clectron tubes. The only difference is that the gricl of a tube is biased with the voltage where the tramsistor, because of its forward-biased emitter-base junction, is a current-driven device.

Constraction of Load Lime

Let's construct a load line and get as much information as possible from this set of curves. As a start, if we draw a 3000 -olm load line, that is, from $l_{0}=5 \mathrm{~mA}(15 / 3000)$ $=.005)$ to $V_{t}=15$ volts, we have the basis for a start of an amplifier. Now to get all the information from the curves-note that point " O " which is the intersection of the $30-\mu \mathrm{A}$ base-current cume and the 3000 -ohm load line is directly above $V_{r}=7$ volts. This means that for this value of base current and the 3000 -ohm load, we could expect +7 volts at the collector (Fig. 2.1).

The curve also tells us what the current gain or $h_{F B}$ is. This is the ratio of the collector current change divided by the base current change. We will call it beta. From the dotted lines "A" to $I_{0}=3.7 \mathrm{~mA}$ and " B " to $I_{1}=1.5 \mathrm{~mA}$, a difference in collector current of $3.7-1.8=1.9 \mathrm{~mA}$ is caused by a change of $40-20 \mu \mathrm{~A}=20$, in base current. Then 1.9 mA is divided by $20 \mu \mathrm{~A}=95$, for a current gain of 95.

It should be understood that point " O " is the quiescent operating condition and that if an input signal, let's say a sine wave, were applied to the base of the transistor of such amplitude that it caused, on the positive-going signal, the base current to increase to $40 \mu \mathrm{~A}$, and on the negative excursion of the signal, to decrease the base current to 20 $\mu \mathrm{A}$, the collector voltage would then swing from 4.2 volts to 9.8 volts. This would be a useful output signal (E_{6}) to drive a following stage or transducer of some type.

If we were constructing more than one stage in an amplifier, it might be well to use a larger value resistor in an early stage to get more voltage gain. To see how this works out, let's check E_{1}, for the 3000 -ohm load and then draw a 6000 -ohm load line and see the difference. From point " A " to $V_{C}=4.2$ volts and point " B " to $V_{C}=9.8$ volts there is a difference of 5.6 volts or $E_{0}=5.6$ volts. This is a peak-to-peak voltage. From point "C" to $V_{f}=0.6$ volt and
point " D " $=10.5$ volts, we have a difference of 9.9 volts, considerably more than was obtainable with the 3000 -ohm load.

An even larger value could be used and still maintain a fairly linear output. On the curves of Fig. 1, lay a straightedge from $I_{c}=2 \mathrm{~mA}$ to $V_{c}=15$ volts. The intersection at the $1-\mathrm{mA}$ value would equal about $13 \mu \mathrm{~A}$ base current. This would give maximum roltage swing from saturation, which would be 2 mA and 0 volts, to cut-off, which would be 0 mA and 1.5 volts.

Another thing to keep in mind when working with lowlevel amplifiers is that it is a good idea to keep the collector voltage and cument low. This helps maintain a low noise-to-signal ratio.

To add a little more detail to the circuit, let's drav the amplifier using the 6000-olm load (see Fig. 2C). At operating point "O.,", we have $20-\mu \mathrm{A}$ base drive. We could complete the amplifier, except for d.c. bias stability, by connecting a 750,000 -ohm resistor between the +15 -volt supply and the base to bias the transistor. It is apparent that the base resistor R_{R}, was calculated using Ohm's Law $\left[R=E / I=15 /\left(2 \times 10^{-i}\right)=750\right.$ kohms $]$. Also note that as long as the imput swing is not too great, this amplifier will work in class-A condition; however, the operating point on the 3000 -ohm load line is a better choice, only because the operating point is such that at a quiescent condition approximately one-half of the voltage is dropped across the transistor and the balance across the load resistor.

Fig. 3 shows a characteristic curve with a 3000 -ohm load line plotted. Input and output current and output voltage waveforms are also shown. The input voltage waveform would be a function of the voltage across the input impedance of the transistor amplifier.

Fig. 4 shows a characteristic curve with the maximum 200 -mW curve drawn in. Any load line drawn tangent to the constant power dissipation line will insure maximum power gain of the transistor. The theoretical maximum power gain is the maximum current and voltage gain. However, the condition for maximum current gain is $R_{L}=0$ and the condition for maximum voltage is $R_{l}=\infty$.

Since these conditions are in opposition, the problem of finding the maximum power gain involves matching the input and output resistances of the transistor. The maximum power gain is oltained when the internal resistance of the signal generator is equal to the input resistance of the transistor, and the load resistance is equal to the output resistance of the transistor. When these conditions are simultaneously satisfied, the transistor is image-impedance matched. In practice, it is possible to use transtomner conpling and achieve matched impedance conditions, although the majority of designs use RC-type circuits where the load resistance and d.c.-bias network will tend to modify the gain of the transistor :mplifier whether it be on a current, power, or voltage basis.

Distortion and its Causes

An oscilloscope is a good tool to use when working with amplifiers. If too large an input signal is applied to the amplifier, it may cause clipping which can be observed on the scope. If both the negative and positive portions of the output sine wave are clipped, this simply means the amplifier is overdriven. If, on the other hand, only one-half of the sine wave is clipped, this inclicates that either the load or bias resistors are the wrong value. Two extremes, one being the selection of too low a value of collector voltage and the other too high are discussed in the following examples.

Referring to the characteristic curve in Fig. 1 and using operating point "C" on the 6000 -ohm load line, if a sinewave signal is applied to the base of the transistor, it is apparent that as the input signal goes positive, the collector voltage will approach zero and any further increase in sig-

Fig. 1. Characteristic curves for the type 2 N2712 transistor.

Fig. 2. (A) Setup for obtaining characteristic curves. (B) Operation with 3000 -ohm load and (C) with a 6000 -ohm load.

Fig. 3. Use of load line to show input and output currents, voltage.

Fig. 4. Curved line indicates the maximum power dissipation of 200 mW along its entire length. The straight line is a typical load line indicating transistor operation with a maximum power gain.

nal would be shown as a clipped, negative-going output voltage waveform, since the transistor would be saturated at this point. This would indicate that either the load resistor is too high (reducing collector voltage) or the bias resistor is too low (increasing base current).

The other extreme would be if the operating point were chosen at point "D". Using a negative-going input signall, the collector voltage would rise to 15 volts and collector current would be cut off. This would clip the positive portion of the voltage waveform at the output. For maximum swing, the operating point or collector voltage, V_{c}, should equal one-half the collector-supply voltage, $V_{c c}$.

Adding Swamping Resistor

If we redesign the circuit we can make some definite improvements and modify the input characteristics. This is shown in Fig. 5.A.
The 200 -ohm emitter resistor is called a "swamping resistor". Its purpose is as follows: The base-emitter junction of a transistor has a negative temperature coefficient, that is, for a rise in temperature the resistance goes down, allowing more leakage current to flow. If the emitter resistor is large in comparison to the emitter-base junction resistance. the emitter resistor will effectively swamp out the negative resistance. Typically, the $V_{\text {E: }}$ will rise about 2.5 mV per degree C. This will tend to forward-bias the transistor, calusing increased collector current and making thermal runaway a possibility unless controlled by some bias-compensation technique.
Thus the 200 -ohm emitter resistor helps to maintain a proper bias level. This circuit is not unlike the cathode resistor which provides self-bias in a tube circuit. On the other hand, resistor $R_{l /}$ from base to $V_{c c}$, as shown in Fig. 5.A, provides fixed bias.

The cirenit without the swamping resistor has a very low input impedance. With the addition of the 200 -ohm resistor, the input impedance will equal base resistance + (beta $\times 200$ ohms). In a typical case where the base resistance $=2000$ ohms, input $R=2000+(95 \times 200)$ or 21,000 ohms. Since the input resistance of a transistor is non-linear, the degeneration caused by the emitter resistor will tend to linearize the input resistance. Also, it will reduce the distortion caused by this non-linearity.
The best temperature compensation exists when R_{E} approaches the value of R_{L}. At the same time, gain is reduced to less than unity when $R_{t}=R_{l}$. We can figure how much this gain is by the following formula:

$$
\begin{gathered}
A=\frac{\beta}{1+\left(R_{\left.E: / \beta / R_{f .}\right)}\right.} \\
=\frac{95}{1+(200 \times 95 / 6000)}=\frac{95}{1+3.1}=23
\end{gathered}
$$

This formula tells us that we now have an amplifier with a gain of 23 , with an input impedance of 21,000 ohms. It would also be possible to increase the input impedance by increasing the value R_{E}. If gain is more important than

Fig. 5. (A) Adding a swamping resistor. (B) Changing connectian of bias resistor ta improve stability. (C) Using valtage divider.

increased input impedance, the emitter resistor may be bypassed with a capacitor, while maintaining the d.c. bias stability. One means of maintaining a constant d.c. bias stability is to heat-sink the transistor, although this is usually not feasible for small transistors. Another method is to use stabilizing components to avoid runaway.

Improving Stability

$I_{\text {co }}$, known as the reverse saturation current, varies exponentially as temperature increases. Since I_{C} or collector current caluses $I_{C O}$ to rise, a further increase of $I_{C O}$ causes I_{c} to increase unless stabilized in some manner, if only to the point where the operating point has shifted to saturation. In order to compare different types of biasing, we can assign a stability factor, S, as the rate of change of collector current with respect to the reverse saturation current, or $S=\left(\Delta I_{c}\right) /\left(\Delta I_{\text {(o) }}\right)$. The smaller the value, the less likely there will be a change in $I_{\text {co }}$, thus preventing thermal rumaway.

For the simple tramsistor biasing network of Fig. 2C, $S=1 /(1-\alpha)$, where $\alpha=$ alpha the emitter-to-collector current gain of a common-base amplifier. Since we are primarily interested in a common-emitter amplifier, it is well to know that the relationship between beta and alpha is $\beta=1 /(1-\alpha)$. From this we can determine that a tramsistor having a beta of 100 would also have an S factor of 100 provided it were biased as in Fig. 2C. For a biasing arrangement such as that shown in Fig. 513, the S factor would equal one-half the S factor of Fig. 2C, provided that one-half of the d.c. voltage were dropped across R_{L}.
To add a little more d.c. bias stability to the circuit, we could add a resistor from base to ground. This forms a voltage divider and is helpful in maintaining d.c. bias stability. It is also helpful, to some extent, in permitting the interchangeability of transistors of the same type but with different gains. The circuit in Fig. 5C will show a slightly different base bias than was shown on the curves.

If a transistor with a beta of 100 and a 6000 -ohm load draws a quiescent current of 1.25 mA , then we need a current of $12.5 \mu \mathrm{~A}$ to properly bias the transistor. A biasing resistor of 1.2 megohms from $V_{C c}$ to the base would provide the proper fixed bias.

Let's reduce this fixed resistance by a factor of 4, to a value of 300,000 ohms. Any other factor could have been used rather than 4, keeping in mind that the smaller the value of the total resistance of $R 1$ and $R 2$, the better the stability. Assuming the total R was divided by a factor of $10,1 / 10$ th of the current will flow to the base and $9 / 10$ th will flow to ground. The base will hold a fairly constant voltage-this is the prime purpose of the divider. There is a trade-off, however. More power is consumed in the circuit because of the extra current shunted to ground. Further, the smaller the values of $R 1$ and $R 2$, the lower the input impedance of the amplifier since $R 1$ and $R 2$ are effectively in parallel with the input impedance of the transistor.

If we have a total of 1.25 mA flowing in the emitter-tocollector circuit, we should have a 0.25 -volt drop across the 200 -ohm resistor. The base-emitter junction of the silicon transistor will provide approximately 0.62 -volt drop when forward biased (larger values of voltage drops will be experienced for larger values of collector current). This gives a voltage from ground to base of 0.87 volt.

To determine the value of $R 2$, we set up a ratio between the total voltage to the total (reduced) resistance and the base-to-ground voltage to the value of $R 2$; that is, $15 / 300,000=0.87 / R 2,300,000 \times 0.87 / 15=17,400$. Hence, $R 2=17,400$ ohms and $R 1=300,000-17,400$ $=282,600$ ohms. Standard values are used with $R 1=$ 270,000 ohms and $R 2=18,000$ ohms. For practical purposes, the two resistors are in parallel and become a single source, R_{h}, which is equal to $(270 \times 18) /(270+18)=$ 17,000 ohms.

FRicicc Comprenensive Inulustial Parks kit

Return the coupon and we'll send you a fullydetailed kit describing 34 major industrial parks of over 100 acres in New Jersey. These colorful kits include photographs, plot plans and specific information about zoning, terms, nearby industries, transportation facilities and proximity to New York and Philadelphia. Send for your free Industrial Parks Kit now!

Public Service Electric and Gas Company Box NJE, 80 Park Place, Newark, N. J. 07101 Please send me a free comprehensive kit detailing industrial parks in New Jersey. Name \qquad
Title \qquad Firm \qquad Street \qquad

Fig. 6. (A) Measuring inpul impedance. (B) Measuring outpul impedance. (C) Amplifier stage used to check the calculations.

following formula:

$$
\begin{gathered}
S=\frac{1}{1-\alpha+\alpha\left[R 4 /\left(R 4+R_{\Delta}\right)\right]} \\
=\frac{1}{1-0.99+0.99[200 /(200+17,000)]} \\
=\frac{1}{0.01+0.0115}=46.5
\end{gathered}
$$

where alpha is 0.99 for a transistor with a beta of 100. What all this indicates is that for better stability, the value of $R 4$ will have to be increased or the voltage-divider resistance reduced, or both.

Designing without Curves

Let us consider how to design an amplifier without the use of curves and only the manufacturer's ratings as given in a transistor manual. If we have access to a transistor checker, it can be used to give the beta of the transistor we wish to use. Let us assume, for the moment, that the transistor we have in mind has a beta of 100 . We would arbitrarily set some value of voltage for $V_{c c}$. This might be the voltage of a battery, say, 9 volts, 6 volts, or as in this case, 15 volts.

Since we have arbitrarily set a voltage, we can, by the same method, select a load resistor that will result in less than the maximum wattage dissipation for the transistor and continue with our design. As a start, select 6000 ohms for R_{L}. (Since this was the same value used on the characteristic curves, we can compare our results.) With the maximum current load of 6000 ohms, the transistor would draw 2.5 mA at saturation and the voltage at cut off would be 15 volts. To select the proper operating point, divide 2.5 mA by 2 . This will make our quiescent point at a collector current equal to 1.25 mA , and the d.c. voltage drop across R_{L} should equal 7.5 volts. An input current to the base of the transistor should swing the operating point along the load line in such a manner that we should have a near linear output for equal positive and minus currents applied. For the bias current, divide 1.25 mA by the beta, which gives a $12.5-\mu \mathrm{A}$ base drive for quiescent condition.

The bias resistors can now be chosen by the method previously shown for d.c. bias stability. One point not yet considered is that $I_{\text {co }}$ doubles for each 10 degrees C rise in temperature. From 25° to $55^{\circ} \mathrm{C}, I_{\text {co }}$ of the 2 N 2712 , specified as $1 \mu \mathrm{~A}$, would equal $8 \mu \mathrm{~A}$ leakage current. The $8-\mu \mathrm{A} I_{c o}$ would be the same as shifting the operating point by $8 \mu \mathrm{~A}$. If the original operating point on the 6000 -ohm load line were chosen (point " O_{2}," in Fig. 1), the transistor would be close to saturation at $55^{\circ} \mathrm{C}$, even without an input signal. On the other hand, if some stabilization were used and the original operating point is chosen for at least half-way between cut-off and saturation, then the operating point won't shift so far that the amplifier is working too close to saturation.

Measuring Impedances

In order to be able to build an amplifier with more than one stage of amplification, it is necessary to be able to measure the input and output impedances of the single-
stage amplifier. Fig 6A shows a circuit for measuring input impedance.

A low-impedance signal generator is connected to the input of the amplifier and R_{s} is adjusted so there is an a.c. voltage drop across R_{3} equal to the drop measured from base to ground. This is called the equal-voltage method and is quite accurate if the signal generator's output impedance is low in comparison to the input impedance of the amplifier, and the voltmeter used for monitoring the voltages is of a high impedance so as not to load the circuit. The value of R_{s} is then measured with an ohmmeter. This value is equal to the input impedance of the amplifier.

Fig. 6B shows the method of measuring the output impedance. Here the signal generator is driving the input of the amplifier. A high-impedance a.c. voltmeter is used to measure the open-circuit voltage. R_{s} is then connected and adjusted for one-half the open-circuit voltage. The output impedance is the measured value of R_{ψ}.

Fig. 6C is a circuit using different values of resistance and voltage. $Z_{i n}, Z_{\text {out }}$, and gain measurements were taken and the results are as follows: $E_{\text {tn }}=0.1 \mathrm{~V} ; E_{\text {uut }}=2.63 \mathrm{~V}$; $Z_{\text {in }}=45,000$ ohms; and $Z_{\text {out }}=9400$ ohms.

Now, if we use the previous formula $A=\beta /\left[1+\left(R_{E}\right.\right.$ $\left.\left.\beta / R_{L}\right)\right]$, we have $A=130 /[1+(300 \times 130 / 10.000)]=$ 26.5 , or for 0.1 volt in, there should be 2.65 volts out.

We could also take the measured input Z, calculate the current caused to flow by 0.1 volt, multiply this by beta. The product is then multiplied by the output Z to get our voltage gain from input to output. To see how this comes out: 0.1 volt $/\left(4.5 \times 10^{\prime}\right.$ ohms $)=2.2 \times 10^{-1} \mathrm{~A}$. Then $2.2 \times 10^{-6} \times 130=2.86 \times 10^{-4} \mathrm{~A} \times 9.4 \times 10^{3}$ ohms $=2.68$ volts. This gives us three sets of figures: (1) the measured gain of 26.3 ; (2) the calculated gain of 26.5 ; and (3) input current $\times Z_{\text {in }} \times \beta \times Z_{\text {out }}=26.8$.

It is now evident that we have started out with a device generally considered a current-amplifying device and analyzed it to some extent on a more familiar basis; namely, voltage. Since it is easier to measure voltage than current, this should help in understanding transistor amplifiers.

Designing a Microphone Preamp

To calculate the gain of more than one stage, let's examine the problem of building a microphone preamp to drive a power amplifier. Assume the requirements are for an output voltage of one volt from the preamp. The microphone to be used is a dynamic type designed to work into 20,000 ohms. The output level of the microphone is specified as -54 dB . This means that for a normal speech level, the output voltage across a 20,000 -ohm load would be 54 dB

below a one－volt level．This represents a voltage ratio of 500 ；hence the pre－ amplifier should have a voltage gain of 500 from input to output to drive a power amplifier with one volt r．m．s．

Fig． 7 is the schematic of the pre－ amp．Assuming the beta for Q1 and Q2 equals 100 ，the $200-\mathrm{ohm}$ emitter resis－ tor in the first stage will result in about 22,000 ohms input impedance，which should match the microphone quite well．

To calculate accurately the gain of the amplifier，all impedances must be taken into consideration．For this ex－ ample，all coupling and bypass capa－ citors will be assumed to have a re－ actance low enough not to cause appreciable loss in gain at the lowest frequency to be handled．The second stage will drive an assumed load of 22,000 ohms．This will be in parallel with 6000 ohms and will reduce the gain by $22 /(22+6)=0.78 \times 100$ $=78$ ．

The gain of the first stage will be $A=\beta /\left[1+\left(R_{E} \beta / R_{L}\right)\right]$ where R_{L} equals 6000 ohms in parallel with the input impedance of the second stage．Since the 200 －ohm resistor for Q2 is bypassed with a capacitor for a．c．purposes，there will be no increase in input impedance due to the emitter resistor．This will leave 270,000 ohms and $18,000 \mathrm{ohms}$ in parallel (270×18) $/(270+18)=17,000$ ohms．The 17,000 ohms will shunt the input re－ sistance which is probably somewhere between 1500 ohms and 2000 ohms．If we use 2000 ohms，then 2000 in par－ allel with 17,000 ohms gives us about 1800 ohms．The input impedance of the second stage， 1800 ohms，will shunt the output impedance of the first stage， or $(6 \times 1.8) /(6+1.8)=1400$ ohms．Then for the first stage，$A=$ $100 /(1+[200 \times 100 / 1400])=100$ $/(1+14)=6.6$ ．This gives us a gain of 6.6 for the first stage and a gain of 78 for the second stage： $78 \times 6.6=$ 515，which is the gain of both stages together．

In choosing coupling capacitors for transistor amplifiers，electrolytics are generally used．This is so because the input impedance of the transistor is low．To predict the low－frequency re－ sponse，the output impedance in series with the input impedance of the fol－ lowing stage is compared with the X_{c} of the coupling capacitor．When X_{c} of the capacitor equals the impedance at the lowest frequency to be passed by the amplifier，the response will be 3 dB down from the mid－band gain．A rule of thumb is to choose the capacitor＇s reactance to equal $1 / 10$ th the imped－ ance for negligible loss of gain．The emitter bypass capacitor would be chosen by the same method，comparing the values of X_{c} and R_{E} at the lowest frequency of interest．

Why settle for less？Buy the Best！ the fabulous

 easy－to－build kit format only \＄2995
ppd．！

Dramatically improve the performance of your car－or any vehicle．Racers and Pacers from Sebring to Suburbia by the thousands attest to the peerless perform－ ance of the Mark Ten．Delta＇s remarkable electronic achievement，proven for four years，is often copied，never excelled．

Ready for these？
A Dramatic increase in acceleration
© Longer point and plug life
A Improved gasoline mileage
－Complete combustion
A Smoother performance
Ready？Order today！

BE YOUR OWN MECHANIC

Tune－up

DWELL METER $\$ \mathbf{1 2}^{\mathbf{9 5}} \mathrm{ppd}$ ．
A universal precision instru－ ment for use in tuning all vehicles，regardless of the number of cylinders or bat－ tery polarity．Gives correct point dwell readings on ve． hicles equipped with capaci－ tive discharge，transistor or conventional ignition．Preci－ sion accuracy at low cost．
© Portable，high－impact case for rugged work
Δ Large，easy－to－read $31 / 2$ inch precision jeweled meter
A Wide scale－reads dwell angles in degrees
A All solid state

Tune－up

TACHOMETER $\mathbf{\$ 1 4 . 9 5}$ ppd．
A universal precision instru－
ment for making carburetor ment for making carburetor
adjustments on all vehicles． adjustments on all vehicles．
regardless of the number of cylinders or battery polarity． Gives precise RPM readings on vehicles equipped with capacitive discharge，tran－
sistor or conventional igni－ sistor or conventional igni－ mileage，fuel savings and peak engine operation．

A Large，easy－to－read $31 / 2$ inch precision jeweled meter
A Portable，high－impact case for rugged work
A Range： 0 to 1200 RPM

A All solid state

MAGNETIC SHIELDING

BARNEY strode into the service shop and tossed three large booklets on the bench in front of Mac, his employer. "Boss," he announced, "I'm just bubbling over with information about magnetic shielding absorbed from those books and a raft of other leaflets and article-reprints sent me by various manufacturers of such shielding. l've simply got to tell someone what I've learned or explode."
"Well now, we can't have that, can we?" Mac drawled as he picked up the booklets and read the titles: "The When Why and How of Magnetic Shielding. A Designer's Handbook,' by the Westinghouse Metals Division, Blairsville, Penna. 15717; and 'The Netic and Co-Netic Magnetic Shielding Manual' and 'Do-It-Yourself Magnetic/Electrostatic Shields Using Netic and Co-Netic Foils Manual,' both issued by the Magnetic Shield Division of the Perfection Mica Co., 1322 N. Elston Ave., Chicago, Illinois 60622. Knowing you seldom bone up on anything for which you don't have an immediate use, I presume something inspired this sudden thirst for knowledge."
"You might say that-if you insist on being nasty," Barney admitted. "In building a compact monitor scope to keep a continuous check on the operation of my SSB linear amplifier, I found I had to use shielding to prevent the field of the power transformer from deflecting the beam and making my signal look worse than it is. Suddenly I realized I knew very little about magnetic shielding, so I sent for information. The more I read, the more fascinating the subject became."
"The knowledge certainly won't hurt you," Mac said. "The present trend in miniaturization and compactness is putting renewed emphasis on shiclding. When magnetic-field generating equipment and devices sensitive to such a field are jammed closer and closer together, something must provide the isolation formerly furnished by mechanical separation."
"Cood," Barney agreed, "but let's start at the beginning by deciding why shielding is necessary. There are many devices besides scopes that must be shielded from magnetic fields to prevent a degradation of performance. These include such things as color-TV tubes, tape recording heads, photomultiplier tubes, and audio transformers in high-gain circuits. Sources of strong magnetic fields include permanent magnets or electromagnets, cables carrying heavy currents, electric motors, and power transformers. What we want to do is attenuate the effect of the field on the device. As you just suggested, separation of the two is a legitimate way to do this, for the intensity of a magnetic field at any point is inversely proportional to the cube of the distance between that point and the source of the field.
"However, sufficient separation is often impracticable, and we must use magnetic shielding. Such a shield can be defined as a ferromagnetic metal enclosure that surrounds the device as completely as possible. Keep in mind that it may be used to confine a ficld near the source or to protect a distant device from that field. In other words, sometimes the shield is trying to keep the field inside itself and at other times it may be used to keep the field outside an enclosure. These two approaches become important later when we talk about multiple shields.
"Right here I'd better confess my former ignorance. I had a foggy notion a magnetic shield did its job by repelling the field the way a windshield repels a rush of air. Actually, this isn't true. A magnetic shield diverts the field around the object it is trying to protect by offering an easier, though longer, path for the magnetic lines of force to follow. It cons those lines of force into taking a detour the way a smooth, wide bypass around a city beckons a motorist.
"The ability of a shield material to provide an easier path for magnetic lines of force is called its permeability. Suppose we have a field whose strength (H) measured in oersteds can produce a certain flux density (B) measured in gauss in our shield material when the shield and magnetic source are in a certain position. Flux density, don't forget, represents lines of force per cm^{2}. Now, if we divide the flux density in the shield material by the field strength at the shield, B / H in other words, we get (μ), the permeability of the shield. If a weak field produces a high flux density, we have a very permeable material."
"I suppose the higher the permeability the better the shield."
"It's not that simple. It depends on the strength of the field you're trying to attenuate. Permeability is not a constant. It's comparatively low for weak fields, increases rapidly with growing field strength until the material saturates and can't accommodate any more lines of force, and then falls off in effectiveness as the field strength continues to increase. The joker is that increasing permeability is accompanied by decreasing saturation level. A low μ material actually affords better shielding against a strong field that would saturate a more permeable material. As the field strength decreases, however-as it does rhythmically with an a.c. field-the low μ shield loses much of its effectiveness. In many cases, the best job of shielding is done by nesting one shield inside another of different μ so that the magnetic field strikes the low μ field first. It knocks down the field strength until the higher μ shield can handle the remainder of the field strength without saturating.
"An alternative would be to use a single thicker shield since increasing the thickness increases the attenuating ability. Then the trick becomes one of selecting a shield material of high enough permeability and adequate saturation characteristics for the field in which it is to be used to provide the required attenuation without the shield's becoming too thick. Since shielding calculations are seldom exact, this becomes a good trick indeed.
"While I'm thinking about it, I'd better mention another drawback of extremely high permeability shields. They are usually accompanied by increased shock sensiticily. That means their effectiveness may be degraded by any strain placed on them, say by being struck or dropped or flexed. If a shield is likely to be subjected to any of these stresses, it would be better to use a multiple shield of less sensitivity. Perfection Mica, however, claims its Netic ${ }^{\circledR}$ and Co-Netic ${ }^{8}$ shields are non-shock-sensitive. The company says its shields can be sheared, sawed, drilled, or dropped for appreciable distances without destroying their shielding qualities."
"What determines the permeability" of a shield?"
"The alloy from which it is made and the heat treatment given it. You'll find lots of tables and graphs outlining different characteristic's of different materials in those books. I remember an 80% nickel $/ 20 \%$ iron alloy that Westinghouse calls Hiperon ${ }^{8}$ that has a saturation of 8000 galuss and a maximum μ of $400,(0) 0$, while the comcany's Hipernick alloy with only 50% nickel saturates at 15,000 gauss and has a maximum 14 of 75,000 . By way of contrast, 1010 carbon steel saturates at 22.000 gauss and has a maximum μ of 3000 . These figures are all for material ().()2()" thick.
"Perfection Mica presents attenuation and saturation information on its shielding material in graph form and employs a different thickness, so a direct comparison is not too easy. Its CoNetic ${ }^{8}$ alloy is designed for low-intensity, low-frequency problems and its Netic ${ }^{3}$ alloy is designed for attenuating high-intensity fields. The company also has shielding coatings that increase the effectiveness of shiclds when properly applied for particular applications.
"Both companies produce thin, flexible shiclding foils that can be cut and wrapped around objects to be shielded. These foils are simple and easy to apply and are particularly appealing to the do-it-yourself experimenter and to the engineer who wants to know in a hurry what sort of results he can expect from shiclding."
"But how do you design a shield to do a certain job?"
"First you measure the strength of the interfering field at the device to be protected, a fascinating subject in itself! The books describe how a multiturn sensing coil and a sensitive a.c. v.t.v.m. can be used to translate intercepted lines of force from an a.c. field into millivolt readings. For d.c. fields, the coil is rotated by a shielded synchronous motor so that the coil windings cut the static lines of force and generate an a.c. voltage for the v.t.v.m. But I soon gathered that a Hall-effect gauss meter wals rapidly replacing this type of instrument, so I got a wealth of information from a large manufacturer of Hall-effect probes and other flux-sensing equipment based on this effect, the F. W. Bell Company, 1356 Norton Avenue, Columbus, Ohio.
"The Hall-effect is the potential difference observed between the edges of a strip of conductor carrying a longitudinal current when the strip is placed in a magnetic field perpendicular to the plane of the strip. The strip) can be made of various semiconductor materials, but indium arsenide is one of the most popular. If current through the strip is a.c., the Hall voltage output is a.ce.; if the
current is d.c., the output voltage is d.c. for a d.c. field and a.ce for an a.c. field. This voltage call be amplified before being applied to an a.c. or d.c. meter, as the case may be. The bell Company markets a low-cost 'Bell Hall-Pak Kit' that contains a probe, a tramsistorized differential amplifier, and calibrating magnets for carrying out experiments and actually making flux-density measurements.
"Once you know the strength of the field and the amount of magnetic flux interference the sensitive device can tolerate, you figure the required attenuation (g). It is given by the formula, gecquals the ratio of the field intensity outside to the intensity inside, both intensities measured in oersteds. Multiplying this ratio by 20log ${ }_{10}$ reduces the attenuation to dB.
"Then you select a shield material that can provide that attenuation. Hipernom $0.020^{\prime \prime}$ thick has a maximum attenuation of 100 dB ; 1010 carbon steel, 58 dB. Increased thickness or nested shields can provide more attenuation. But those books explain that the nature of the field, the direction from which it impinges on the shield, the physical dimensions of the shield-especially when both ends must be open as in a scope shield-the nature of the joints, etc., must all be taken into account in designing a shield. Still, the reader is repeatedly reminded that dealing with a three-dimensional shifting magnetic field is quite different from working with an accurately measured current or voltage in a conductor. Shield design is not an exact science. It is always wise to build and test a prototype before freczing any particular shield design.
"There are many other alloys, including those using molybdenum and cobalt; and several other companies, such as Allegheny Ludlum and Carpenter Stecl, manufacture shields. Magnetometers, too, come in a wide variety, including the saturated core, the flux gate, and the nuclear resonance types. In fact, about the most important thing I learned from my reading was how little I really knew about the subject of magnetic shielding.
"Still and all, I now know how a shield does its joh, the important properties of a shicld alloy, parameters to be considered in designing a shield, properties of some available shielding materials, the methods of measuring a magnetic field-including a much better understanding of the Hall-effect than I ever had before-" Barney stopped talking for a moment and got a glazed look in his cyes.
"I just realized that I became so interested in reading about shiclding I never did a thing to that scope monitor!" he confessed sheepishly. "Cuess I'm becoming a pure scientist!"

Earn Extra lncome in MOBME-RADIO MAINTENANCE!

- Just this ONE instrument . . . with no extea crys. tals of factory adjustments. will measure ALL - Ample accuracy for all mobile transmifters excepi - Ample accuracy or all mobile transmitters except for split-channels above 50 MC
- Pin-point signal generator for receiver final align. ment.
- Internal quartz crystal standard . . . correctable to WWV.

MEASURE FM DEVIATION with the LAMPKIN 205-A

- Just this ONE melor measures all mobile channels, 25 MC to 500 MC.
Reads instantanoous true deak swing due to FM modulation
- Sel selective.calling tone signals using 0-1.25 KC of 0-2.5 KC ranges of 205-A Quad Scale. \$340.00. Dual Scale model. 12.5 KC and 25 KC ranges, only $\$ 290.00$.
- Oscilloscope jack tor true wave form.
- 3 -inch mater indicates directly in peak KC.

FIREF HOOKIET:
Sond for ${ }^{\circ}$ HOL TH TO MAE
 MAINTENANCE".

MAIL COUPON TODAY!
At no obligation to me, pleose send Iree At no obligation to me, please send leet
booklet and information on tampkin meters. Nome

Address
Cily

LAMPKIN LABORATORIES, INC.
MFM Div., Bradenton, Fla. 33505
CIRCLE NO. 105 ON READER SERVICE CARD

om

V.T.I. tralning leada to succeas as tochniciana. neld engincers, apecialiats in communications. gulded missilos. computcrs. radar nnd automation. Basic \& laboratory. Electronic Engineerink Technology and Electronic Tochnology curricula both avallable. Assoc. degrec in 29 mos. B. S. ulso obtainable. C.1. approvod. Graduates in all branches of electronics with major companies. Start September. February. Dorma. or equivalent. Write for catalog.

VALPARAISO TECHNICAL INSTITUTE Dept. RD, Valparaiso. Indiana

"He’s a good worker. I'd promote him right now if he had more

 education in electronics."

You'll miss a lot of opportunities if you try to get along in the electronics industry without an advanced education. Many doors will be closed to you, and no amount of hard work will open them.

But you can build a rewarding career if you supplement your experience with specialized knowledge of one of the key areas of electronics. As a specialist, you will enjoy security, excellent pay, and the kind of future you want for yourself and your family.

Going back to school isn't easy for a man with a full-time job and family obligations. But CREI Home Study Programs make it possible for you to get the additional education you need without attending classes. You study at home, at your own pace, on your own schedule. You study with the assurance that what you learn can be applied to the job immediately.

CREI Programs cover all important areas of electronics including communications, servo-mechanisms, even spacecraft tracking and control. You're sure to find a program that fits your career objectives.
You're eligible for a CREI Program if you work in electronics and have a high school education. Our FREE book gives complete information. Airmail postpaid card for your copy. If card is detached, use coupon below or write: CREI, Dept. 1128 E, 3224 Sixteenth Street, N.W., Washington, D.C. 20010.

The Capitol Radio Engineering Institute

Dept. 1128 E, 3224 Sixteenth Street, N.W., Washington, D.C. 20010
Please send me FREE book describing CREI Programs. I am employed in electronics and have a high school education.

NAME AGE

ADDRESS
\qquad
EMPLOYED BY
TYPE OF PRESENT WORK \square GI BILL

I am interested in \square Electronic Engineering TechnologySpace ElectronicsNuclear Engineering Technology
\square Industrial Electronics for Automation \square Computer Systems Technology

APPROVED FOR VETERANS ADMINISTRATION TRAINING

T1 HE classic theory that the eye sees color because of red. green, and bue cones in the retina has been challenged by George Biernson of the Sylvania Applied Research Lab. At the last meeting of the IEEE, Mr. Biernson discussed the probability that the eye may perceive color by detecting rhythmic optical modes or patterns in the cones.

Mr. Biernson likened these optical patterns to vibrations of a drum. "When a drum is struck, complicated vibration pattems are excited over the clrum head. Similarly, colors generate patterns of light energy over the cone, the patterns varying witl the wavelength of the light.
"Although the retina of the eye superficially may appear similar to the photosensitive surface of a three-color TV camera, the two are radically different from a feedback point of view. The photosensitive surface of a TV camera is a static device with fixed characteristics, whereas the retina of the eyc is a dynamic device employing complex feedback control processes," he explained.

Mr. Biemson went on, "The eye, which can discriminate among 10 million colors, is superior in color detection to TV or photography, which can distinguish only a few hundred colors. The greater color ficlelity of the eye may be better explained by optical modes or pattems than by the three-cone theory."

The chief difficulty in resolving the mystery of color, according to Mr. Biernson, is a mistaken conviction that the three-color calculations of colorimetry characterize human vision. "What is not geneatly moderstood is that colorimetry is merely a collection of standards indirectly related to psychological reality. In fact, the standards were derived by extensive averaging of very crude experimental data."

Digital Policeman

Through a technique known as "digital overlay", direct digital communications between cruising police patrol cars and a central computer for on-the-spot checking of police records may soon be used by the nation's police in its fight against the rising crime rate.

Recent tests by both police and G-E engineers indicate that small-size, two-
way Teletype machines installed in "squad cars permit faster, more accurate "talk" between a central computer and the police officers. Both voice and Teletype messages can be sent simultaneously over the same voice channel with no mutual interference between the two chamnels.

Tests show that this new method of commmications produces clear Teletype copy eren when conditions are such that voice commonications are particularly bad.

Tape Recorder Help

If you own one of the expensive ($\$ 700$ to $\$ 1000$) Japanese tape recordcrs having the names of Freeman, Neat, Frontier, Camena Voice, Stereocraft, or Vansonic. you should know that the company (Tshousa Samyo) is no longer in business. For parts and other information, contact Mr. Emory R. Howell, 3917 N. 31st St, Waco, Texas 76708.

FM Spurts

In the past five years, the number of FM stations in the U.S. has increased by more than 70%, from 889 stations in 1961 to 1521 stations in 1966. Also, the number of stations broadcasting FN1stereo has skryocketed 780%, from 50 to more than 440 stations at present.

Along with this expansion in broadcasting, sales of FM radios have zoomed more tham 500%, with last year's total reaching a record high of nearly 10 mil lion units.

One major contribution is the fact that the FCC now prohibits duplication of more tham 50% of programming heard on commonly owned AM-FM facilities in the larger cities.

Laser Drill

If you have ever had to drill fine holes using a \#54 drill bit ($0.0055^{\prime \prime}$), you will appreciate the new instrument developed at RCA Aerospace Systems. In this new look in drills, a ruby laser is aimed through a series of special optical lenses; when the button is pressed, lo and behold. the laser drills perfectly round holes only $0.00048^{\prime \prime}$ in diameter through a human hair of $0.0042^{\prime \prime}$ diameter.

Measuring Tracking Ability
 （Continued from page 28）

At present，we know of no suitable tome burst record，but expect that it is only a matter of time motil one is available so that this method ean be thoroughly investigated．

Suhjective Evaluation

The ultimate aim in making tracking－ability measure－ monts is to correlate these measurments with subjective listening．We have made an extensive evahation of phono－ graph cartridges from the standpoint of tracking ability， primarily throngh nse of ihe variable－speed turntable tech－ nique．Catridges so measured have becon compared using a record entitled＂An Audis）Obstade Course＂designed spe－ cifically for subjective evalnation of tracking abilite．（Avail－ able from Shure Brohhers，Inc．，$\underline{2} 2 \underline{2}$ IIartrey Are．，Evanstom， Illinois 60 沓 04 at $5: 3.95$ each．）This record contanins a series of bands using different mosical instrmments．Each bind is subelivicled into four sub－bands containine the identical musical selection with cach suceessive band ant at a leod 4 －（lB higher than the previons once．In phaying this record． one notes the modulation level for each instrment at which the cartridge ceases to track．A chart like that shown in Fig． 7 can then be obtianed．This provides a subjectise cralmation of the cartridge tracking aloility．

We have found gool cortelation between the tracking－ ability measurements made on the variable－speed tumtable and those made with＂An Audio Obstacle Course＂．For example，cartridges which have poor tracking ability at low frequencies are fomed to be very poor on the band containing a bass drum beat．Catridges which track poorly at high frequencies are also found to be peor on such instruments as orchestral bells and cymbals．After many such comparisoms， we have fonnd that be making an analysis of the tracking－ ability measurements，we call predid with good acemacy the subiective chamateristies which will be obtained with the recorl．

Comchasion

The tracking ability of a plomo cartridge is analogons to clipping level in amplifiers．In both cases lange peak imput signals wheh drive the deviee into satmation canse intoler－ able distortion．

While there are many characteristies of a phonograph cantridge that contribute to the quality of reproduction，track－ ing ability is one of the major characteristics which affect the ultimate somed．Measmement of this eharacteristic is ans extremely important factor in any catuation．For this reason we believe that a mones for making such a measme－ ment shonld be standardized and that tracking ability should be among the specifications listed for phono cartridges．A

Fig．7．Chart of tracking ability using test record described．

QUALITY from PEARCE－SIMPSON

．．．THE LEADER＊

30 WATT AM 2－WAY BUSINESS BAND RADIO with remote head＊ 12 Volt Model－\＄329．90

Frequencies FCC allocated for business／industrial use，
$*$ Can be dash mounted as a complete radio or the removable $21 / 2 \mathrm{lb}$ ．remote control head can be ins：alled independently with its own mount－ ing cradle ．Solid state power supply and re－ ceiver for low power drain（． 6 amps ．）

CB TWO－WAY RADIO • $\mathbf{\$ 2 6 9 . 9 0}$

23 CHANNELS－features exclusive HETROSYNC circuitry．Two signals are combined instead of the usual 3 providing outstanding stability and maximum protection against spurious signals．
－Dual conversion superhet receiver with low noise $\mathbb{N} u v i s t o r$ front end－RF gain control，tone controf and noise limiter switch－Illuminated ＂S＂meter • Transistorized universal（AC／DC） power supply

＊WORLD＇S LARGEST PRODUCER OF MARINE RADIOTELEPHONES

[^2]
The World's Best Values In Test

NEW! Solid-State High Impedance Volt-Ohm-Milliammeter

- Solid-state design for solid-state measurements - All-silicon transistors plus FET's - Full scale ranges down to 150 mv \& 15 uA - AC plus battery power for portability - 6" meter with zero center scale for $+\&-$ voltage measurements without switching - Accuracy $\pm 3 \%$ full scale on DC volts, $=5 \%$ full scale on AC volts - New styling \& unitized construction - Separate range switches for each function. 10 lbs.

- No finer tube tester anywhere - Indicates Gm to 24,000 micromhos •Ultra-sensitive grid current test - Built-in switch-operated calibration circuit for high accuracy -Built-in adaptor for testing Compactron, Nuvistor, Novar \& 10-pin miniature tube types - Includes handsome, easy-to-carry cabinet with handle. 33 lbs .

NEW LOW PRICE! Now Save

 \$30 On FM Stereo Generator- Provides virtually all signals required for trouble-shooting \& alignment of multiplex adaptors, FM tuners \& receivers Switch selection of $400 \mathrm{~Hz}, 1000 \mathrm{~Hz}$, $5000 \mathrm{~Hz}, 19 \mathrm{kHz}, 38 \mathrm{kHz}$ and 65 kHz or 67 kHz SCA signals - Built-in marker oscillator for I.F. and dial tracking checks - 100 MHz sweep signal (adjustable +2 MHz) for overall RF \& IF alignment on clear area of FM band. 11 lbs.

- 7 AC, 7 DC, \& ohms ranges - easy-toread scales - $412^{\prime \prime}, 200 \mathrm{uA}$ meter - 1% precision resistors for high accuracy - Extended frequency response, $\pm 1 \mathrm{db} 25 \mathrm{~Hz}$ to 1 MHz - Measures RMS and Peak-toPeak - Single test probe for all measurements - Easy-to-build, electronically stable circuit board construction - Costs just 45c more than its predecessor of 16 years ago. 5 lbs .

- Tests all capacitor types - Low bridge voltage for safe testing of miniature electrolytics - 16 leakage testing voltages Direct reading scales - no involved calculations - Measures resistance from 5 ohms to 50 megohms - Measures capacitance from 10 pf to 1000 uf - Comparator circuit - measures " L ", " C ", or "R" with external standard " "Eye" tube null \& leakage indicator. 7 Ibs.

General Purpose RF Signal Generator

Kit IG-102
$\$ 2795$
Assembled $\$ 54{ }^{95}$

- Covers 100 kHz to 220 MHz in six bands - Large, accurately calibrated dial scales Factory wired and aligned coil and bandswitch assembly - Modulated or unmodulated RF output up to 100,000 microvolts, controlled by both fixed-step or variable output attenuators $\cdot 400 \mathrm{~Hz}$ signal modulation and 400 Hz audio output for audio tests • 2% tuning accuracy. 7 lbs.

Service-Bench VTVM ... Ideal For In-Shop Servicing

- Measures AC volts (RMS), DC volts, resistance \& db - Separate 1.5 \& 5 volt AC scales for high accuracy - Large, easy-to-read 6", 200 uA meter • Zero center db scale - Single test probe for all measurements - Gimbal bracket for bench, shelf or wall mounting • Smooth venier controls for zero \& ohms adjust - 1\% precision resistors. 7 lbs.

Lab Transistor Tester Provides Complete DC Analysis

- Ideal for servicing, design work, incoming inspection, production testing, etc. - Provides complete DC analysis of PNP \& NPN transistors to 15 amps - DC gain (Beta, Alpha) read direct on calibrated scales - 15 uA basic range for leakage (lcbo, Iceo) tests - Four lever switches for fast, easy test selection - Internal battery supply, provisions for external power. 10 Ibs.

Switch-Selected Audio Generator for Near Perfect Sine-Wave Signals

- A near perfect output signal - ideal for servicing or trouble-shooting high fidelity equipment - Switch-selected output frequencies - 10 Hz to 100 kHz - Less than 0.1 of 1% distortion - 20 to $20,000 \mathrm{~Hz}$. Panel metered output is calibrated in volts and db - Output level and frequency accurate to within $\pm 5 \%$ - 200 uA meter plus precision resistors for high accuracy. 9 lbs.

Instruments Come From HEATH!

NEW LOW KIT PRICE! Now Save \$40 On Professional 5" DC Oscilloscope

- A high stability 5" DC oscilloscope with triggered sweep - DC to 8 MHz bandwidth and 40 nanosecond rise time Vertical signal delay through high linearity delay lines - capable of faithful reproduction of signal waveforms far beyond the width of the scope - Calibrated vertical attenuation - Calibrated time base \cdot Forced air cooling - Input of Z -axis modulation. 53 lbs.

NEW Low Capacitance Scope Probe

- Completely assembled, ready to use Essential for high frequency wave-form analysis - Minimizes loss of gain, circuit loading or distortion - Designed for scopes with 1 megohm input, such as Heathkit 10-14 (above) - Switch for X1 direct or X10 attenuated operation - DC response to 25 MHz ; max. DC voltage is 600 v . Sliding, spring-loaded tip is notched for hooking to wires or terminals for handsfree use. 1 lb .

Extra-Duty Wide-Band 5" Oscilloscope

- Ideal for TV trouble-shooting, professional \& university labs - 5 MHz bandwidth for TV signal analysis - Heath patented sweep circuit - 10 Hz to 500 kHz - Two extra sweep switch positions which may be adjusted to often used sweep rates - Built-in peak-to-peak calibration reference - Combination of circuit board and wiring harness construction speed assembly time. 24 lbs .

Electronic Switch For Dual-Trace Scope Operation

- Permits display of two separate signals on CRT screen - Displays signal levels as low as 0.1 volt $\bullet \pm 1 \mathrm{db}, 0-100 \mathrm{kHz}$ response - Separate gain controls for each channel - All-electronic switching - Four switching rates - $150,500,1500$ and 5000 Hz - Sync output to control scope sweep - Simple to use - just connect signal sources to " A " and " B " inputs \& output to scope vertical input. 7 lbs .

"Space-Saver" 3'' DC Oscilloscope

- Identical vertical \& horizontal DC or AC coupled amplifiers - DC to 200 kHz bandwidth - less than 5° phase shift - Recurrent sweep generator, 5 Hz to 50 kHz in four ranges - External capacitor binding posts for slower sweep rates • Small, compact, easy to carry from job to job - All critical voltages regulated for high stability - Transformer operated power supply. 16 lbs.

General Purpose $3^{\prime \prime}$ Oscilloscope

- Push-pull vertical and horizontal amplifiers for minimum trace distortion - Widerange sweep - 20 to $100,000 \mathrm{~Hz}$ - Automatic sync - Retrace blanking - Compact, lightweight, versatile - Dependable, wellrated oscilloscope for general purpose requirements - Professional-quality components used throughout - Clean, open circuit layout for easy assembly, 12 lbs.

TV Alignment Generator

- FM \& TV coverage Sweep oscillator covers 3.6 MHz to 220 MHz with $0-42 \mathrm{MHz}$ max. sweep width - Stable, all-electronic sweep circuit -Built-in marker oscillators -4.5 MHz crystal \& 19 to 60 MHz variable. 14 lbs .

Color Bar \& Dot Generator

- Produces 6 different patterns for picture adjustment - 10 vertical color bars - including special shading bar pattern - Crystal controlled for accuracy \& stability - RF \& video output. 13 lbs.

OCCUPATIONAL OUTLOOK FOR ELECTRONICS TECHNICIANS

Engineering and science technicians are the fastest growing occupational groups in the United States-demand will exceed supply for next decade.

IN recent years, the needs of an expanding and increasingly technical economy have greatly intensified the demand not only for engineers and scientists but also for the technical workers who assist them.

Unfortunately, the terms "technical worker" and "teclmician" have no generally accepted definition. They are used by different employers to refer to workers in a great variety of jobs, requiring a wide range of education and training. They are applied to employees cloing relatively routine work, to persons performing work requiring skills within a limited sphere, and to persons doing highly technical work, among them assistants to engineers and scientists. The workers' jol titles may be descriptive of their technical level (for example. junior engineer or engineering technician) or their work activity (for example, quality control, production analyst, or materials tester). Some employers use the word "techmician" preceded by adjectives descriptive of areas of technology in which their personnel are employed.

The govemment. on the other hand, refers to technical workers whose jobs require both a knowledge and use of scientific and mathematical theory; specialized education or training in some aspect of technology or science; or those who, as a rule. work directly with scientists and engineers as "technicians"

In general. the jolss of engineering and science technicians are more limited than those of the engineer or scientist and have greater practical orientation. Many of these johs reguire the ability to analyze and solve engineering and science problems and prepare formal reports on experiments, tests. or other projects. Some require considerable aptitude in mathematics: others. the ability to visualize objects and to make sketches and drawings. Design jobs often require creative ability. Many technician iobs require some familiarity with one or more of the skilled trades. althoum not the ability to perform as a craftsman. Still others demand extensive knowledge of industrial machinery, tools. and processes. Some jobs are supervisory and require both technical knowledge and ability to deal with people.

In carrying ont their assignments, engineering and science technicians frequently use complex clectronic and mechanical instruments and experimental lib) apparatus. Ahmost all technicians must be able to use engineering handbooks and standard computing devices.

They engige in virtually every aspect of enginecring and scientific work. In research. development, and design work (one of the largest areas of employment), they conduct experiments or tests: set up, callibrate, and operate instruments; and make calculations. They also assist scientists and engineers in developing experimental equipment and models by making drawings and sketches and, under the engineer's direction. frequently do some design work.

Technicians also work in fobs related to production, usmally following a course laid out by the engineer or scicontist, but often without dose supervision. They may aid in the various phases of production operations, such as working out specifications tor materials and methods of mamm-
*Reprinted in part trom the revised edition of the "Occupational Outlool; Hand book," prepared by the Bureau of Labor Statistics, U.S. Department of Labor.
facture or devising tests to insure quality control of products. They may also perform liaison work between engineering and production or other departments.

Technicians often do work that might otherwise have to be done by engineers. They may serse as technical sales or field representatives of mamfacturers; advise on installation and maintenance problems: and write specs and manuals.

Technicians are not confined just to the electronics field but perform similar roles in chemical, mechanical, metallurgical, and industrial technologies-to cite a few.

The Electronies Industry

The electronics inclustry is extremely broad in mature. It inclucles, for example, radio, radar. sonar, telemetering, television, telephony, and other forms of communications; industrial and medical measuring. recording, indicating, and controlling devices; mavigational equipment; missile and spacecraft guidance and control instruments; electronic computers; and many other types of equipment using vacummtube and semiconductor circuits. Becanse the field is so broad, technicians generally become specialists in one area, for example, induction or dielectric heating, servomechanisms, automation controls, ultrasonics. etc.

Where Employed

It is estimated that there are some 620,000 engineering and science technicians in all categories but not including draftsmen. Of this number about 12 percent are women. Nearly $+75,000$ of these technicians (about three-fourths of the total) were employed by private industry. The industries employing the largest numbers of engineering and science technicians were electrical equipment, machinery, chemicals, and aerospace.

In mid-1964, the Federal Government employed approximately 75,000 engineering and scicuce technicians: chiefly as engineering aids and technicians, electronics technicians, equipment specialists, cartograplic aids. meteorological technicians, and physical science technicians. Of these engineering and science technicians, the largest number worked for the Department of Defense. Most of the others worked for the Depts. of Agriculture, Commerce, and Interior.

State govermment agencies employed over 40,000 engineering and science technicians in mid-1964 and local govemments about 15,000 . The remainder were employed by colleges and universities. mostly in university-operated research institutes, and by non-profit organizations.

Training

Coung men and women who wish to prepare for carcers as engineering or science technicians can obtain the necessary training from a number of sources, including specialized formal training prograns offered in post-secondary schools-techaical institutes, junior and commmity colleges, area vocational technical institutes. and extension divisions of colleges and universities-and technical and technical-vocational high schools. Persons can also qualify for technician jobs by completing an on-the-job training program, through work experience and formal courses taken on a part-time
basis in post-secondary or correspondence schools, or through training and experience obtamed while serving on active duty in the Armed Forces. In addition, many engineering and science students who have not completed all requirements for a bachelor's degree, as well as some other persons with college education in mathematics and science, are able to qualify for techniciam iobs after they obtain some additional technical training and experience. In general, post-secondary school technical training is required for high-level ellgineering and science technician jobs.

Engineering and science technicians usually begin work as trainees or in the more routine positions under the direct supervision of an experienced technician. scientist, or engineer. As they gain experience they are given more responsibility, often carrying out a particular assignment under only general supervision. Tedmicians may move into supervisory positions. Those with exceptional alsility sometimes obtain additional formal training and are promoted to professional engineering positions.

For admittance to most schools offering post-secondary techmician training, a high school diploma is usually required. Some schools, however, admit students without a high school diploma if they are able to pass special examinations and otherwise demonstrate their ability to perform work above the high school level.

Programs offered by schools specializing in post-high school technical training require one, two, or three years of full-time study. The majority are two-year programs, leading to an associate of arts or science degree.

Because of the variety of educational institutions offering training and the differences in the kind and level of training, persons seeking a technical education should use more than ordinary care in selecting a school.

Technical institutes offer training designed to qualify the graduate for a specific iol or cluster of iohs immediately upongraduation and with a minimum of on-the-job training. In general, the student receives intensive technical training but less theoretical and general education than is provided in curricula leading to a bachelor's degree in engineering and liberal arts colleges. Emphasis is placed on lab and practical work in order to faniliarize stadents with inclustrial technicques and instruments.

Some technical institutes offer cooperative programs under which a student spends part of his time in school and part in emplorment related to the occupation for which he is preparing limself. It may take more than two vears to complete the curriculum at a school with a cooperative plam, but this type of program gives students valuable work expericuce, which often outweighs the disadvantages of a longer training period. In addition, students participating in cooperative programs frequently earn enough to pay for at least a part of their educational expenses and, on their first job, often obtain higher starting salaries tham those with no experience.

Many junior and community colleges offer the necessary training to prepare stulents for technician occupations. Some of these schools offer curricula which are equivalent to those given in freshman and sophomore years of 4 -year colleges. Gradnates can transfer as a jumior in a 4 -year college or qualify for technician jobs. Other schools offer $2-$ year programs of the technical-institute type.

Junior college courses in technical fields are often plamed aromed the employment needs of the industries in their localities. Therefore, the training programs for prospective teclmicians vary and may include highly specialized preparation in addition to gencral courses. In some cases, the courses are designed to meet the specifications of one or two industries or even of a single plant.

Area vocational-technical schools are post-secondary public institutions that are established in central locations to serve students from several surrounding areas. In the early 1960's, the number of such schools increased rapidly due

Abstract

Total electronic/electrical technicians' employment increased 24.9% from 1964 to 1965 and another 24.8% in 1966. Another interesting statistic, taken under a slightly different set of conditions by the Engineering Manpower Commission, predicts that by 1976 total technician employment will have increased 80% over that of 1965.

primarily to the stimulus provided be Title VIII of the National Defense Education Act of $195 \dot{5}$. In some states, many established public junior and community colleges have been designated as area schools and have received Title VIII funds in order to extend their training facilities.

In general, the admission requirements of vocational-technical schools are less rigid than those of other schools offering post-secondary technician training. Area school curricula are usually designed to train the types of techmicians most needed in that area.

Some large corporations conduct programs to meet their needs for trained persomel. This type of training is primarily technical and rarely includes any general studies.

Although most engineering and science technician jobs require post-high school education or the equivalent in experience, a few technical and technical-vocational high schools, principally in large cities, offer programs which qualify their graduates for some technician entry jobs. However, graduates of this type of school often need supplementary training hefore they can move up to higher level positions. In recent years, public high schools of this type in some states have been designated as area schools to serve several school districts and have received funds provided by Title VIII to increase their training capacity.

Many technical high schools have high admission requirements and offer more thorough and advanced courses in mathematics, science, drafting, and laboratory work than are usually available in academic high schools. They sometimes offer a year of schooling beyond the leth grade. Some have evening courses.

Correspondence schools provide technician training for those who wish to lean more about their jobs or who wish to advance in the same field by increasing their theoretical and mathematical knowledge.

Employment Outlook

Employment opportunities for engineering and science techmicians are expected to be very good through the mid1970 's. In recent years, techmicians have been one of the fastest growing occupational groups and it is estimated that this rapid growth will continue. In general, the demand will be strong for graduates of post-secondary school programs to fill high-level engineering and science technician jobs.

Among the factors underlying the increase in demand for technicians are the anticipated expansion of industry and the increasing complexity of modern technology. As prod-

Note: General information on careers for engineering and science tech-
nicians may be obtained fron american nicians may be obtained from American society for Engineering EducaAve., N.W., Washington, D.C. 20036 : Enginecrs. Council $13-16$ connecticut sional Development, 3.45 East 47 th Street. New York. N. Y. 10017 and National Council of Technical Schools. $150 \div$ II Strect, N. W., Washington. D.C. 20005.
Information on training opportunities may also be oltained from Enaccrediting agency for engineering technology programs: the National Council of Technical Schools; and the U.S. Department of Health. Education, and Welfare, office of Education. Division of Higher Education D.C. 20202 . State dep mation about approved technical institutes state capital alsc have inforducational institutions technical institutes, junior colleges, and other educational institutions within the state offering post-hign school training for specific technical occupations.
6 th St., N.W. Washington Dan Association of Junior Colleges, 1315 Council, 1601 i8th St., N.W. Washington 2000 Ca . National Home Study

The new Sony FM Stereo Tuner is highly sensitive. It pulls in the weakest stations sharply and clearly. For all its sensitivity, it is unusually insensitive. An ingenious new cad-mium-sulfide CdS handpass RF attenuator protects weak stations from being blanketed by strong signals. There's so much to recommend the ST-5000W. Double-tuning IF transformers, at all 8 stages of the IF section, reject spurious signals and noise. A 5 -gang, high precision, silver-plated tuning capacitor contributes to excellent sensitivity. A
tuning meter pinpoints the center of any channel visually. Another meter helps adljust the antenna for maximum signal pick-up. A stereo switch atutomatically selects the correct mode-stereo or mono. An indicator light spots stereo programs. An adjustable muting switch suppresses interstation noise. Tune in the ST-5000W at your hi-fi dealer. Suggested list $\$ 399.50$. Sony Corp. of America. Dept. H.. 47-47 Van Dam SONY St.. Long Island City, New York 11101

Can a sensitive FM Stereo Tuner also be insensitive? Tune in and find out.

CIRCLE NO. 9 G ON READER SERVICE CARD

VALUABLE books from E.\&E.
 SINGLE SIDEBAND: THEORY AND PRACTICE

by Harry 1. Homen, W'itYH. The one-
 source reference guide tossb. Covers the origin and principles of ssb. derivation of ssb signals, carrier suppression techniques, sideband selection, carrier generators, speech amphiters and filters, ssb generators, balanced mixers and converters, low-power ssb transmitters, linear r-f amplifers, ssb communications receivers, transceivers, tests and measurements. Includes chapters on how to build air-tested linear amplifiers. 352 pages. Hardbound.
Order No. EE-350, only
$\$ 6.95$
NEW! 17th EDITION OF THE FAMOUS RADIO HANDBOOK
Tells how to design, build, and operate the latest types of amateur transmitters, receivers. transceivers, and amplifiers. Provides ex-
tensive, simplified theory on practically every phase of radio. Broadest coverage: all origiphase of radio. Broadest coverage: a
nal data, up-to-date, complete. 832 , pages. Order No. EE-167, only......... \$12.95

Electronics World SUBSCRIBER SERICE

Please include an address label when writing about your subscription to help us serve you promptly. Write to: Portland Place. Boulder. Colo. 80302

Change of Address:

 Please let us know you are moving at least 4 weeks in ad. vance. Affix magazine address label in space to the right and print new address below. If you have a question about your subscription. attach address label to your letter.
To Subscribe:

Check boxes below.
\square New \square Renewal
$\square 5$ years $\$ 21$
$\square 3$ years $\$ 15$
$\square 1$ year $\$ 6$
Specify
\square Payment enclosed - You get 1 extra issue per year as a Bonus!
\square Bill me later

nets and the methods loy which they are mamfactured become more comples increasing mumbers of technicians will pobably be required to assist angineers in such activities ats production planning. mantaning liaison between por duction and engincering departments. and tedmical sales work. Furthemore as the emphoment of sciontists and engineers contimes to grow: increasing numbers of technicians will be needed to assist them. The trend toward antemation of industrial processes and the growth of new arras of work, such as that related to atomie emergs: will inwance demand for techmical persommel. In : wdition to techmicians nereded to fill bew positions. more than 25.000 will be beceled each year to replace those who reties. dic. or change jobs.

Awother factor supporting the expected increase in demand for emgineering and seconce technicians is the growth in researeh amel development "penditures. Such expenditures have incerased very rapidly in recent gears athe atre expected to continte to rise through the mid-l9-0's. although somewhat more slowh thant in the past. Expenditures for the defolose and space programs also greatly atiect the demand for techmical persomied. The kevel of such expenditures is not expected to change substantiall! in the years ahead.

Earninys

In general. a tednician's earnings depend upon his education and techmical specialty, as well as his ability and work experience. Other important factors which influente his eamings are the type of firm for which he works, his specific doties and the geographic location of his job.

Ammal starting sabaries for grachates of post-high school techmical schools areraged about s.jool in private industry in lagit, Yomg persons entering enginering and seience technician iohs with less formal training generally. earned less.

1n Federal Cowemment agencies in early lafī̃. begiming enginering and science technicians were offered $\$ 4005$. sifso. or s.50) dopending upon the trpe of joh sacance and the applicants -ducation and other qualifications. Some Federal Covermment agoncies hire high school gradmates and train them for technician johs. Begiming salaries for these jobs ranged from $\$ 36$ giso to $\$$ \& 400 . $\boldsymbol{3}$ a yar. depending on high sdowh courses and experience.

Most toelmicians can look formard to all increase in earnings as they move to higher positions. In 1964, ammal salaries of workers in high level tedmical positions in private industry areraged S8500 and appowimately one-fonth of the workers had salaries abowe syent a vear, acending to a bureath of bahor Statistios sumber.

Highway Emergency Radio
（Continued from page 42）

incorporates a triggering concept that works as follows．As the car hits a ＂magnetic transmitter＂，logic circuits open the speaker of the CB rig for 8 to 10 seconds，just long enough for an upstream transmitter to broadeast a message concerning road conditions or accommodations ahead．Simultaneous－ ly，the AM radio is muted．Cars travel－ ing in the other direction are not triggered and hence do not receive this message．The transmitter need onty be about 20 to 50 milliwatts and this neat－ ly confines the range to a 500 －foot area，sufficient for adequate reception of two 4 －second prerecorded messages to cars traveling at $75 \mathrm{mi} / \mathrm{h}$ ．A remote cable－comected control would permit appropriate selection of the tape track at various times．

The＂visual sign minder＂is a com－ bination light and alpha－numeric read－ out－tube panel device which mounts on the dashboard and provides a＂sign＂ corresponding to one posted on the roadway．An audio tone is sounded to gain the driver＇s attention．Passing over a magnetic code in the pavement triggers the display on the dash；the ＂sign＂will light up with＂ 25 ＂for 25 mi / h ，for example，in addition to con－ ventional lights illuminating such mess－ ages as＂STOP，＂＂YIELD，＂and＂RR＂．

The＂route mincler＂operates on the IC memory unit principle，responding to unique identification of all intersec－ tions．When the proper code is re－ ceived from the buried magnets（as the driver approaches the intersection）， the memory unit actisates the sign minder panel device which then lights up＂STRAIGHT，＂＂LEFT，＂or＂RIGHT＂ to alcrt the driver for proper thming． Again，an audible signal calls the driv－ er＇s attention to the readout．Obviously， the magnetic coding here must be dif－ lerent from that employed for other functions，so $G M$ suggests using six magnets．The first three are for sign purposes；the remaining three are for intersection identification

The＂code and voice communica－ tions＂function uses $27-\mathrm{AlHz} \mathrm{CB}$ in a unique configuration．Utilizing a tele－ phone－type dial encoder installed in the console，the driver dials the service needed：＂ 1 ＂for police，＂ 2 ＂for ambu－ lance，＂ 3 ＂for fire truck，and＂ 4 ＂for tow truck．Then he dials the last three digits of his license－plate bumber and finally his location．This coded transmission is received at a relay station and passed on to the Aid and Information Center （AIC）by wire for added security．At the Center（Fig．7），the signal is de－ coded，indicated on alphainumeric read－ out tubes，and printed for permanent record．The dispatcher sends for the

What＇s the best antenna heading to hear a 6W8？
What time is it in Zanzibar？
How many IRC＇s for a letter from a ZP？
Are the Dodecanese in Asia：
Is a $\overline{2} E$ in $D X$ Zone 38 ？
What＇s the address of the Venezvela QSL Bureau？

Find all the answers fast with the
BRAND－NEW 4TH EDITION OF W9IOP＇S SECOND OP $\$ 1.00$

Put vital world－wide DX data at your fingertips with this $101_{2}^{\prime \prime}$ circular calculator． Shows beam headings，time differences，postal rates， DX zones，QSL bureaus，many more DX facts． at a glance！The fully－revised 4th Edition is now at your nearby $E-V$ ham microphone headquarters． Or send $\$ 1.00$ today directly to us．

ELECTRO－VOICE，INC．， Dept． $673 \mathrm{~N}, 629 \mathrm{Cecil}$ Street． Buchanan，Michigan 49107

CIRCLE NO． 115 ON READER SERVICE CARD

It only sounds

expensive！

The Shure M75E Hi－Track is a new
higr trackability cartridge nade especially for those who are rich only in music appreciaticn．This mocestly－priced cartridge will up－ grade your entire stereo system by delivering live，natural sound from evern difficult－to－track records．Also featires a bi－radial elliptical stylus and built－in stylus guard． $1 \frac{1 / 2}{6}$ grams maximum tracking．Only $\$ \approx 9.50$ ． Literature：SHURE BROTHERS， INC， 222 Hartrey Avenue，Evanston， IIlinois 50204

二トゆ

M75E HI－TRACK
Eliiptical Stylus Cartridge For 3／4 to $11 / 2$ Gram Tracking

PWWER
 FROM

Model 65－3 YHF－TV ANTENNA AMPLIFIER
improves reception of WEAK VHF－TV signals in FRINGE AREAS even where strong local TV or FM signals are present．AMPLIFIES UP TO 7 TIMES for Better Colór and B／W

A two－transis－ Eng－amplifier． Engineered to provide the and highest amplification with the most with the most
desirable over－ lesirable over－ teristics．
Amplifier used in conjunction with dual out let power sup． ply for one， two or multi－ ple set instal－ lations． 117 V
60 cycle input 60 cycle input． AC power up volts－60 cycle． Madel 65．3 VHF－TV AMTEMMA AMPLIFIER Let Finco solve your Color and B \＆W reception problems．Write for complete information，schematics and specifications． Form \＃20－357．

THE FINNEY COMPANY
34 West Interstate St．• Bedford，Ohio 44014 －Dept． 410

Conductive Mesh Washers
...for grounding, shielding, and contact applications.

Metex Compressed RF Washers are inherently conductive and resilient will compensate for joint unevenness. They consist of knitted wire mesh, die formed to size and shape under pressure. Each is made from a mesh knit of one or two
continuous wires. No joints metal clips or shavings to cause trouble! Because they're compressible, no machined surfaces are needed. Metex Compressed RF Washers can be made in any shape. Write today for free samples, prices, literature.

METEX Corporation

970 New Durham Road, Edison, N.J. 08817 (201) 287-0800. TWX 710-744-4530

West Coast: Cal-Metex Corp., 509 Hindry Ave. Inglewood, Calif.

CIRCLE NO. 200 ON READER SERVICE CARD

BIGGER . . . BETTTER THAN EVER:

 inSEND TODAY FOR YOUR NEW 40th ANNIVERSARY 1867 CATALOG

YOUR BUYING GUIDE FOR

- Stereo \& Hi-Fi Systems \& Compo. nents
- Tape Recorders
- Electronic Parts, Tubes, Tools.
- Phonos G Records.
- Cameras and Film.
- Public Address

Citizens Band. Ham Gear.

- Transistor G FM-AM Radios.

252 GIANT VALUE PACKED PAGES!

BURBIALIRAPPLABEE CO.

Dept. EW 1012 McGee, Kansas City, Mo. 64106
1 I Rush me the FREE 1967 B-A Catalog.

Name Address

City
State...
CIRCLE NO. 122 ON READER SERVICECARD

VISUAL SIGN MINDER

ROAD TO CAR

Fig. 6. In the DAIR system, passing over magnetic traps produces a driver alert tone and indicates the message.
assistance and ansmes the driver by one-way CB thans mission that help is comine. For infomation, the motorist dials "(0) followed be his license momber. The Cemer dispatcher ackiowledges the call and dircets the driver to an appropriate (CB dammel where he can call in for direct contact. This leaves the coded aid chamel open for prionts calls. To check on dranmel amalabilits. the driver pushes a "monitor" button to prevent intertering with another driver Who is reghesting aid at that moment.
(all feeds that matimmide coding of intersections on at single magnetic tape might be impractical. although it would certainly be teasible to fumish the driver with sereral cartridges which le conk then insert into the DAIR mite as le passed from his local area into another section
 and ronting instouctions coutd be stored on a single tape less than ome foot long. A rearely of the entire lape foop would take about me secomel.
(imeral Motom now hats several velactes set up With
 experimental tests and demomstration pmoneses. Xededes to saly. considerable intcrest has been stimmated by the demonstratioms.

Radion Helicenter

While most of the eontroversy ore which system is best revolses aromad these prograns inst described. the independent ratio helicopters now lowering oner several barge metropolitan areas shond wet be overlooked. Wh the New Cork City area. for example two All broadeast stations (IOOR and WCOS) maintain thee lelicopters solely for the propese of providiag the rush-home motorist with accmate traffic indomation and suggestions for altemate rontes. What mates these efforts signifieant is that these same "flabeg reporters" often spot accidents long before the police are aleted to them. and althongh the werage listener is frequently mathine of it. the helicopters are

```
Fig. 7. A DAIR central control center showing readouts.
```


responsible for obtaining a considerable anount of road assistance that otherwise would have necessitated the driver leaving his car, walking along a busy freeway, and telephoning for help. (One station now issues "HELP!" banners to drivers for placing on car roofs when the vehicle conks out. Helicopters spot the signs and quickly radio for assistance. There is no charge for the service or the bamers.)

But perhaps most important is the fact that at present helicopter reports are the only real source of up-to-date traffic news. If nothing else, they at least keep the motorist informed, which is more than anyone else is cloing.

Central Traffic Control Centers
The realer will note that most of the two-way communications systems being proposed rely to some extent on a central control center. This center could be fed information from smaller monitoring stations, change transmitter codes, alter speed limits, and generally coordinate vehicular flow in high-density traffic areas. While many cities are currently working on small versions of this concept, the installation at the Detroit National Proving Ground for Freeway Surveillance is perhaps the most advanced. It serves as a headquarters during peak traffic hours for all kinds of information relating to veliculan flow and, using lane lights. can to some degree control sections of Detroit expressways

The control center (Fig. 8) is provided with CB equipment for taking calls from volunteer tratfic reporters, a battery of telephones. and an impressise array of CCTV mats for accurate surveillance of mation arteries and trouble-spots. In addition, tralfic counters and police reports help to round out the incoming iuformation.

What has been learned even with existing equipment is that if traffic flow can be maintaned at a miform pace, satety cam be significantly improved.

Whatever form the control centers take. however, one thing is certan: they will ultimately have the responsibility for servicing any vehicular highway radio system that is expected to be used eflectively for improving safety

Fig. 8. In this typical freeway control center, extensive use is made of both Citizens Band and closed-circuit television systems. Locale is in Detroit.

ORGANLEE! DO IT NOWI

MAGNETIC VISUAL CONTROL BOARDS SIMPLIFY WORK COLORFUL MAGNETIC ELEMENTS

- show facts instantly
- organize for action
- eliminate mistakes
- get the job done

MAGNETS MOVE FASTEST-
AND EASIEST-OF ALL
WRITE FOR FREE 28 PAGE
illustrated catalog ew6

METHODS RESEARCH CORP. - 24 wILLOW AVE, STATEN ISLAND, M.Y. 10305

The only Theatre Organ available in kit form - for only $\mathbf{\$ 1 3 5 0}$.

You've asked for it and here it is - the NEW Schober THEATRE ORGAN that you assemble yourself. For the first time in kit form, a real Theatre Organ with that rich, full, old time theatre pipe organ sound. You create the organ, then you create the music!
For years you ve been able to buy organs in kit form from Schober: The Recital (fully AGO), the Consolette 11 (the best spinet organ atalable today) and the Spinet (for the most music at the lowest price). Now to join them, we piesent the Schober Theatre Organ.

The Schober Theate Organ has the same quality features found on all Schober ()rgans. and in addition...special voicing. curved console design. ino 61-note keyboards. 2console design. tho $61-n o t e$ keyboards. --
octave radiating nedal clavier, 8 octaves of octave radtaning podal claticr, 8 octaves of
tone distributed wer 5 piteh regisers (including a 1 -foct reginer!), 35 speaking organ stops. 8 realistic percussion stops, 4 couplers. and vibrato tablet-48 tablets in all. And all at a truly remarkable low price... you save over $\$ 1.500$ (well over 50 er) from comparable theatre organs

Easy Step-By-Step Instructions.
Youll enioy assembling this authentic and versatile instrument from transibtor and miniature components too. Just follow easy step-by-step instructions written in everyday language which anyone can understand. You'll have an unequaled pride when youre finished that only can come from assembling it yourself.

And you'll have an organ you can learn to play easily and quickly-just follow one of the self teaching courses available from us.
The Theatre Organ price starts at $\$ 1,350$, depending on the options you select. This price includes a beautiful walnut console (other woods available) or you can save an additional amount by huilding your own from plans available from us. Options available include combination action, genuine reverberation, percussion. and amplifiers and speakers.
it Schelfer Cigand samenanan 43 West 61 st Strect. New York. N.Y. 10023

A COMPLETE THEATRE ORGAN:
 All you do is have the fun of assembling it from kits and detailed, step-by-step instructions.
 Includes console keyboards, bench. pedals, electronic-everything you need except amplifier and speaker system, which are extrator use bour own. Percussions. combination action, and reverberation are options.
 Features fully transistorized electronics. regulated power supplies, all printed circuit construction and gold switch contacts.
 Combination Action Ten buttons select preset combinations of shop-actually move the stop tablets as in fine pine organs - to give instant total changes of tonal effects. You can alter the preset combinations any time you like. Action is brand new electro-pneumatic type - silent, dependable.
 Percussion Eight percussion stops provide exciting realism. Colesta, harpsichord, piano, mandolin. xylophone, chrysoglott orchestral hells, ingle or reiterating, are played just like the real thing-and sound that way-alone or along with regulat organ stops.

Incompromising Organ Quality from Easy-to-Assemble Kits
Free Information. Send today for your free copy of Schobers 16 -page full-color bookletplus free $7^{\prime \prime}$ recording-with full information on all Schober Organs, priced from $\$ 550$.

Abstract

Gene Frost was "stuck" in low-pay TV repair work. Then two co-workers suggested he take a CIE home study course in electronics. Today he's living in a new house, owns two good cars and a color TV set, and holds an important technical job at North American Aviation. If you'd like to get ahead the way he did, read his inspiring story here.

IF YOU LIKE ELECTRONICS-and are trapped in a dull, low-paying jobthe story of Eugene Frost's success can open your eyes to a good way to get ahead.

Back in 1957, Genc Frost was stalled in a low-pay TV repair job. Before that, he'd driven a cab, repaired washers, rebuilt electric motors, and been a furnace salesman. He'd turned to TV service work in hopes of a better future-but soon found he was stymied there too.
"I'd had lots of TV training," Frost recalls today, "including numerous factory schools and a semester of ad-
vanced TV at a college in Dayton. But even so, I was stuck at $\$ 1.50$ an hour."

Gene Frost's wife recalls those days all too well. "We were living in a rented double," she says, "at $\$ 25$ a month. And there were no modern conveniences."
"We were driving a six-year-old car," adds Mr. Frost, "but we had no choice. No matter what I did, there seemed to be no way to get ahead."

Learns of CIE

Then one day at the shop, Frost got to talking with two fellow workers who were taking CIE courses... pre-
paring for better jobs by studying electronics at home in their spare time. "They were so well satisfied," Mr. Frost relates, "that I decided to try the course myself."

He was not disappointed. "The lessons," he declares, "were wonder-ful-well presented and easy to understand. And I liked the relationship with my instructor. He made notes on the work I sent in, giving me a clear explanation of the areas where I had problems. It was even better than taking a course in person because I had plenty of time to read over his comments."

Studies at Night

"While taking the course from CIE," Mr. Frost continues, "I kept right on with my regular job and studied at night. After graduating, I went on with my TV repair work while looking for an opening where I could put my new training to use."

His opportunity wasn't long in coming. With his CIE training, he qualified for his 2nd Class FCC License, and soon afterward passed the entrance examination at North American Aviation. "You can imagine how 1 felt," says Mr. Frost. "My new job paid \$228 a month more!"

"CIE training helped pay for my new house,"

says Eugene Frost of Columbus, Ohio

Currently, Mr. Frost reports, he's an inspector of major electronic systems, checking the work of as many as 18 men. "I don't lift anything heavier than a pencil," he says. "It's pieasant work and work that I feel is important."

Changes Standard of Living

Gene Frost's wife shares his enthusiasm. "CIE training has changed our standard of living completely," she says.
"Our new house is just one example," chimes in Mr. Frost. "We also have a color TV and two good cars instead of one old one. Now we can get out and enjoy life. Last summer we took a 5,000 mile trip through the West in our new air-conditioned Pontiac."
"No doubt about it," Gene Frost concludes. "My CIE electronics ccurse has really paid off. Every minute and every dollar I spent on it was worth it."

Why Training is Important

Gene Frost has discovered what many others never learn until it is too late: that to get ahead in electronics today, you need to know more than soldering connections, testing circuits, and
replacing components. You need to really know the fundamentals.

Without such knowledge, you're limited to "thinking with your hands" ...learning by taking things apart and putting them back together. Yon can never hope to be anything more than a serviceman. And in this kind of work, your pay will stay low because you're competing with every home handyman and part-time basement tinkerer.
But for men with training in the fundamentals of electronics, there are no such limitations. Tlicy think with their heads, not their hands. They're qualified for assignments that are far beyond the capacity of the "screwdriver and pliers" repairman.

The future for trained technicians is bright indeed. Thousanids of men are desperately needed in virtually cvery field of electronics, from 2-way mobile radio to computer testing and troubleshooting. And with demands

ENROLI UNDER G.I. BILL

All SIE courses are available under the new G.I. Bill. If you served on active cuty since January 31, 1955, or are in service now, check $30 x$ on reply card for G.I. Bill information.
like this, salaries have skyrocketed. Many technicians earn $\$ 8,000, \$ 10$,$000, \$ 12,000$ or more a year.

How can you get the training you need to cash in on this booming demand? Gene Frost found the answer in CIE. And so can you.

Send for Free Book

Thousands who are advancing their electronics carecers started by reading our famous book, "How To Succeed In Electronics." It tells of the many electronics careers open to men with the proper training. And it tells which courses of study best prepare you for the work you want.

If you'd like to get ahead the way Gene Frost did, let us send you this 40 -page book free. With it we'll include our other helpful book, "How To Get A Commercial FCC License." Just fill out and mail the attached card. Or, if the card is missing, write to CIE at the address below.

CIE

Cleveland Institute of Electronics
1776 E. 17 th St., Dept. EW-33 Cleveland, Ohio 44114
Accredited Member National Home Study Council

Penultimate Automatic Keyer
(Continued from page 38)
tions which tell the computer what to clo. Since the exact instructions depend on the particular computer used, we will not describe the exact program. Instead, we will describe what it docs.
The computer program permits the operator to sit at the typewriter and "converse" with the computer. By typing in the correct symbols, the operator tells the computer what to do. If the computer needs to tell the operator something, it merely types back on the same typewriter. In this way the operator and the computer "converse" with each other.
To control the computer, there are five so-called control words which have a special meaning to the program running the computer. These words start with a slash to tell the computer that the following word is a control word.

The five words are/REC, which tells the computer to receive a message from the keyboard and store it in the memory for future sending. /ERS tells the computer to erase a previous message from its memory and /KEY tells the computer to send a message in code. To help the operator, /PRT tells the computer to print out on the typewriter all the messages stored in the computer, and/PUN tells the computer to prepare a tape of all messages inside the memory. This tape is useful if we want to save the messages while we use the computer for something else.

To identify what is sent, received, or
crased, each of the messages in the memory has a name of up to four letters. For example, a message calling "CQ" would be called "CQ"; a message with the operator's name would be called "NAME"; a description of the station equipment might be called "EQPT"; the station address might be called "ADDR."

Fig. 5 shows the actual typewriter printout during a typical operation of the keyer. At the beginning, we store several messages in the computer with the /REC code, Just to make sure that they are in correctly, we "play them back" with the /PRT code. Finally, we use the /KEY code to actually send them over the air. To make it more obvious which of the typing is the operator's and which is the computer's, we have underlined everything put in by the operator.

Any new invention, especially one which uses automation to replace a human, is scomed and decried. We are sure that the same fate will befall our penultimate automatic kever.

No doubt many amateurs will feel that they have been replaced by a machine and that they are being forced out of a hobby rightfully theirs. They will claim that the computer, being but a machine, has no right to a hobby, especially their hobby.

To these foolish souls we would like to point out that the computer program which makes the computer work is hardly designed to make the computer enjoy itself. After all, how would you like it if you had to blink your eyes in time to Morse code for hours on end? A

Fig. 5. Example of the conversation between the keyer and the operator during typical operation. Operator answers to computer are underlined in this reduced actual printout.)

WHAT SPEED? 0005				
/REC, /ERS,	/KEY,	/PRT,	/PUN?	1 REC
WHAT HAME?	CO			
go AliEAD.				
CQ CQ CQ CQ CQ CQ DE WB2KYF WB2KYF WB2KYF SK				
/REC, /ERS,	/KEY,	/PRT,	/PUN?	/REC
WHAT NAME?	QTH			
go Ahead.				
OUR OTH IS IN BAYSIDE, NEW YORK.				
/REC, /ERS,	/KEY,	/PRT,	/PUN?	/PRT
CQ				
CQ CQ CQ CQ CQ CQ DE WB2KYF WB 2 KYF WB 2 KYF SK				
QTH				
OUR QTH IS IN BAYSIDE, NEW YORK.				
/REC, /ERS,	/KEY,	/PRT,	/PUN?	/KEY
WHAT? CQ				
/REC, /ERS,	/KEY,	/PRT,	/PUN?	/KEY
WHAT? CO				

This Themirngtore PREMIER PORTABLE TYPEWRITER

WHEN YOU BUY THIS RCA WR-64B COLOR BAR/DOT/CROSSHATCH GENERATOR...THE ESSENTIAL COLOR TV TEST INSTRUMENT

Aere's a deal you can't afford to miss! A FREE Remington portable typewriter-yours when you purchase the most essential color-TV test instrument-the RCA WR-64B!

Just imagine how handy your new typewriter will be-in the shop or at home. You'll use it almost as much as you use the RCA WR-64B-standard of the color TV servicing industry.

Here's how to get your FREE Remington Typewriter. Mail in the warranty card plus the gold label from the shipping carton of your new RCA color bar generator to RCA Test Equipment Headquarters, Bldg. 17-2, Harrison, N. J. We will ship your new Remington portable typewriter to you direct, freight prepaid. But remember-this offer covers only equipment purchased between February 1, 1967 and July 15th, 1967. To allow for postal delay, we will honor cards postmarked up to July 31st.

Plan NOW to take advantage of this BIG offer-a FREE Remington portable typewriter with your purchase of an RCA WR-64B color bar/dot/crosshatch generator.

The standard of the Color-TV Servicing Industry. Generates all necessary test patterns-color bars, crosshatch. dots plus sound-carrier.

Only $\$ 189.50$ *
Optional Distributor resale price. All prices subject to change without notice. Price may be slightly higher in Alaska, Hawaii, and the West.

> Ask to see it at Your Authorized RCA Test Equipment Distributor

RCA Electronic Components and Devices, Harrison, N.J.

The Most Trusted Name in Electronics

TEST

 EQUIPMENT

"Knight-Kit" KG-2100 Laboratory Oscilloscope

For cop! of manufacturer's brochure, circle No. 27 on Reader Scrtice Card.

THE Allicel Radio Corp. is no newcomer to lab scopes in kit form. We remember writing up a report on the big brother of the present Model KG -2100 just about five vears ago for our April, 1962 issue. This previous model was a large professional-type instrument that used plug-in preamps

and needed two carrying handles to tote it aromud. The price of that model was about $\$ 400$ for the kit main frame without the reguired preamp, which added another 580 to the cost.

The new "Knight-Kit" KC-2100 is no less a professional instrument, although some of the fancier frills, such as the arstal-controlled marker generator and the 2 -step voltage calibrator, have been trimmed off. Also, the preamp is built into the scope rather than being a plug-in unit. Both size and weight have been reduced to more convenient values. For example, the scopees dimensions of $1+4 / 2^{\prime \prime} \times 10^{1 / 8^{\prime \prime}} \times 151 / 2^{\prime \prime}$ make it only slightly latger than some service-type instruments that we have seen. The price of the new scope is clown, too; it runs $\$ 249.95$ for the lit or $\$ 349.95$ for the factory assembled unit.

The scope has a vertical bandwidth from d.e. to 5 MHz . An additional pre-
amp is switched in to boost the sensitivity to as much as $5 \mathrm{mV} / \mathrm{cm}$ for weak a.c. signals. The sweep is triggered and calibrated from $0.0 .5 \mathrm{sec} / \mathrm{mm}$ up to $200 \mathrm{nsec} / \mathrm{cm}$. Triggering can be made to occur at any proint on the waveform being observed or preset triggering is available. The two little neon lamps that show where the trace is located are very useful when the operator is trying to find a waveform that has disappeared off-screen. The scope uses 22 vacom tubes, excluding the five-inch flat-face CRT, plus seven diorles.

Extensive use is made of voltage regulation in order to keep the pattern
steady and to maintain the adjustments and calibration accurace: The three low-soltage power supplies as well as the high-voltage supply are highly regulated. Even daring the f()-hour aging period recommended for a newly constructed kit, the pattern on the soreen remained rock-steady at all times. Also, we observed that thic instrments very quiet rentilating fan secmed to be exhansting fairly cool air even after prolonged use. Evidently, the soope does not run hot and the little leseat that is produced is readily remosed by the fan.

The best tribute we can pay the instrument is to say that its performance is everything that it should be; we were particularly pleased that all the internal adjustments occurred just about at the middle of their ranges, indicating good, optimum circuit design.

Construction of the ascilloseope is not complex although it is time-consuming due to the alosence of printed boards. Our actual construction time was 49 hours, plus another several hours for calibration and final checks. For those who want an excellent, hand-wired instrmment at a reasonable price, the "Kinight-Kit" KC-2100 should certainly be considered.

Hickok Model GC-660 Color-Bar Generator

For copy of manufacturer's brochure, cirche No. 28 on Reader Sertice Card.

TTHE recent introduction of a new color-bar generator by Mickok adds to the companys line a dependable, all-solicl-state devier designed to answer the needs of today's technician in colortelevision receiver servicing.

The Model GC-660) instantly provides the required signals for testing alignment and convergence, as well as those necessary for checking and repairing video and color circuits. The unit is entirely transistorized, requiring no warmup of tubes, and is therefore less susceptible to the aging chatacteristies associated with tube-type equipment.

Video patterns supplied by the instrument include a gated-rainbow color pattern consisting of ten crestal-controlled keyed birs with a 30° change between each, a dot pattern supplying

324 dots of 0.1 microsecond dhation, eighteen horizontal bars, eighteen vertical bars, and a low-flicker cross-latch pattern. All chroma signals are maintained at zero reference to insure correct receiver phase adjustment.

Additional siguals arailable consist of a ± 2 rolt peak-to-peak composite vidco, a - 2 volt peak-to-peak sync signal, and a 4.5 MHz somed carrier that is ersstal-controlled to assure proper setting of receiver fine toming.

Operation of the Model (:C.-660 is straightforward. The five display patterns are arailable at the r.f. output cable and are coupled to the receiver through the antema terminals. A single control selects the pattem to be viewed and the "Chroma Signal" control varies the level of the color signal supplied to

the receiver. The "Color Gun" control provides a means of making fast purity checks without disturbing the color screen controls of the receiver. Use of the gun control will also allow individual $R-Y^{\prime}, B-Y$, and $G-Y$ displays to be viewed, thereby utilizing the picture tube to check color demodulation outputs and eliminating the need for an oscilloscope.

One of the Model GC.-660's unique features is its ability to maintain good timer stability over a wide range of operating and temperature conditions. Stability in any color generator is directly related to the number of timer stages and the divisions per stage in its design. Many generators use only six with as many as fifteen divisions in each. The eight timer stages used in the CC-660 have no more than seven divisions in any one stage and provide a high degree of accuracy. Model CC-660's have maintained their timer stability in Military Standard emirommental test chambers at temperatures from $-5^{\circ} \mathrm{F}$ to $+120^{\circ} \mathrm{F}$.

All display signals from the generator are locked to the crystal-controlled master oscillator at 378 kHz . (See diagram.) The output of this oscillator is coupled to the buffer shaper, and pulses from the buffer shaper are used to trigger the $189-\mathrm{kHz}$ flip-flop circuit. The $189-\mathrm{kHz}$ pulses are applied to the buffer inverter, prochucing square-topped pulses which are fed to a shaping circuit and converted into sharp spikes. These spikes are then used to trigger the 31.5kHz countclown circuit. A minimetion transistor is employed as a $31.5-\mathrm{kHz}$ relaxation oscillator and functions as a locked frequency clivider, dividing the 189 kHz from the buffer inverter by six and providing an output frequency
of 31.5 kHz as shown in the diagram. Positive-going spikes from the $31.5-$ kHz oscillator are coupled to a frequency divider and cut in half, producing a frequency of $15,750 \mathrm{~Hz}$. Negative pulses from the $31.5-\mathrm{kHz}$ oscillator are coupled to a buffer inverter. The output pulses are divided by five, producing 6300 Hz . In a like manner divisions of five, three, and seven, respectively, are made. The final result is the $60-\mathrm{Hz}$ frequency for vertical sync.

The instrument operates from the a.c. power line and is therefore not subject to the fall-off in battery voltage which would detract from its over-all stability and performance. Each unit is provided with a visual color-bar standard which displays the rainlow pattem exactly as it should appear on the screen of a properly operating colortelevision receiver. The Model GC,-660 is lightweight ($6^{1 / 4}$ pounds) and is supplied in a rugged, wooden, leatherettecovered portable case. The price is $\$ 159.50$.

Sensi-Tronics Model 200 Electronic Circuit Breaker

For copy of momufacturer's brochure, circle No. 159 on Reader Service Card.

WHEN engaged in the development of equipment using expensive, high-power transistors with their short burn-out time, an engineer sometimes inadvertently overloads and burns out a transistor or other sensitive componeni The Scnsi-Tronics Model 200 electronic circuit breaker offers a solution to this problem by providing a very rapid (1 microsecond) circuit interruption that protects the transisior. A current-break range from 10 to 1000 mit is available,
the exact value being set by the calibrated dial. Supply voltages of up to 60 volts may be used.

An indicator lamp above the dial goes on when the breaker trips. Reset is automatic, as the breaker attempts to reset itself every two seconds, succeeding only when the overload is removed. The instantaneous current during these reset attempts is of very short duration (about 1 millisecond) and does not exceed the break-current setting. Manual reset can also be used.

The breaker circuit consists of a series transistor with a controlled base current. When the current through the load exceeds the breaker setting, the vollage drop across this transistor increases. This voltage drop is fed back through four other transistors which act to immediately decrease the base current of the series transistor, causing the load current to drop to zero. This condition is stable so that the breaker remains open until it is reset (after two seconds) by an astable multivibrator using another pair of transistors. A builtin current meter indicates the current to the load.
To prevent damage to the breaker in the event that the power source is connected with reverse polarity, a diode is used to stop reverse current through the breaker circuitry.

This circuit breaker operates entirely on power obtained from the input power supply. When the breaker is closed, this current drain is about 20 mA for a supply voltage of 60 V and decreases proportionally as the voltage is reduced. Similarly, the drain is about 100 mA with the breaker open at 60 volts, falling to 64 mA for a 6 -volt supply.
When the input is between 6 and 60 V . the breaker acts normally. Below 6 volts, the indicator lamp becomes dimmer, there is a loss of calibration accuracy, and the reset MV speeds up.
The breaker measures $3^{\prime \prime} \times 7^{\prime \prime} \times 3^{\prime \prime}$ and can be used in single, multiple, or rack-mounted configurations. The price is $\$ 185$.

all you need to help you buy your 1967 car ís money and information... if you

 have the money, the 1967 CAR ${ }^{m}$ DRIVER YEARBOOK has the information

The 1967 C/D Yearbook is loaded with over 80 pages of brand new road test reports . . . tests covering the most exciting cars in every category from Econ-
omy Sedans to High-Performance Luxury Cars. And it's not just a compendium of previously printed material, all road tests in the C/D Yearbook are fresh... specially prepared to help people in the market for a new car.

The 1967 C/D Yearbook is the most exciting, most comprehensive automotive fact book available. In addition to road tests it features:
BUYERS' GUIDE-complete specs for all 1967 cars-both domestic and imported models.
RACING SECTION-a portfolio of the most exciting racing photography from 1966.
TECHNICAL REVIEW-a comprehensive look at the most significant trends in automotive de-sign-with emphasis on performance.
BONUS SECTION SPECIAL MOTORCYCLE RE-VIEW-Gordon Jennings, editor of Cycle Magazine, gives his candid impressions and solid evaluations to help buyers select the right bike for their ability and need.

THIS

1967 CAR m DRIVER YEARBOOK
has everything you need . . . Just sign WHERE THE X IS MARKED TO MAKE SURE YOU GET YOUR COPY.

Fluidic Systems
(Contimued from page 25)
devices are readily available from a number of different mannfacturers.

Analor Devices

Digital devices perform "on-ofl" functions because of the wall-attachment principle. But to construct an amalog or proportional Huidic device-one that allows some output through each legthe output legs are not connected by a common wall (Fig. 6).

The amount of air flow exiting each leg is determined by the difference in pressure being introduced through the two control ports. For example, if a stronger signal is applied through control port 2, a greater proportion of the port air will be diverted to output $\operatorname{leg} 2$ rather than output leg l. Typical gain of these amalog devices is from 5 to 7 , although they can he cascaded or staged for higher gains.

If a strean is conditioned to be laminar (streamlined flow rather than turbulent) and the pressure low enough to maintain it in this condition, the stream can be transmitted from one tube to another across an air gap (Fig. 7). When a signal is introduced to impinge on the laminar strean, the stream will become turbulent and not reach the receiver tube. This is a nor device and by adding a second amplifier an or/nor gate can be constructed.

Other digital and analog devices such as impact modulators, double-leg elbow amplifiers, air foils, and vortex amplifiers have been constructed and are just about ready for the market.

Sensors \& Output Devices

A number of fluidic sensors are commercially available now. Frequently
the best such devices are designed and built by the user-most commonly backpressure sensors and interruptible jets (Fig. 8).

Ten-percent supply pressure is needed to switch the back-pressure devices, consequently, a dropping resistor (actually a constriction in the chamel) and an air-bleed vent are used to keep pressure below 10 percent. When the object being sensed nears the bleeding tee, back pressure builds up to 10 percent and causes the device to switch.

The interruptible-jet device is also known as a "fluidic eye". Air is transmitted from the sending to receising portion of the circuit, keeping the device switched on until an object interrupts the signal. When the signal is cut off, it exits through the nor leg.

Other sensors are available which perform pressure, temperature, rate, and position operations.

When fluidic devices with high outputs are needed, interface equipment must be used. Fluidic devices nomally operate with supply pressures up to 20 $\mathrm{psi} / \mathrm{g}$. Some combined fluidic and interface devices will switch $3000 \mathrm{psi} / \mathrm{g}$ hydraulic pressure.

Fluidic systems can control appliances, Hight guidance autopilots, marine guidance equipment, machine tools, heating and air-conditioning units and can be used in computers, process instrumentation, liquid-level controls, air gaging, simulation, and a variety of other applications. As more and more is learned about the capabilities of these useful devices, we cam expect to find fluidic systems being used in more and more equipment.

Fluidic technology has come a long way since some of the early devices were worked on around 1959. Tolay, newly a a ailable Huidic components are of high quality and great versatility.

Laser Interferometer
(Continucd from page 45)

On an experimental basis, faser-controlled machines have already been in operation. Commercial units are not yet arailable, however, because the cost per axis for such a machine is prohibitise. To overcome this problem, engineers are currently investigating the possibility of sharing a single unit betweco axes. The addition of a separate optical bean splitter, for example, could make the faser beam usalble in both X and Y directions. Similar sharing technifues might be used in the electronics to further reduce costs. It is the author's opinion that a practical solution will soon be found and machine-tool controls will take another great step forward.

Their application as interferometric light sources is only one way in which lasers contribute to precise measuring technigues. Another distance-measuring instrument using a laser is the "Mach III Geodolite" made by Spectra Physics, Inc. This device functions both as a geodetic survering instrument with a 20 -mile range in davlight (50 miles at night) and as an airborne profile recorder at altitudes up to 35,000 feet in smolight. Accmacies of 1 ppm are attainable assuming that corrections for barometric temperature and pressure are made. A distance of 15 miles, for example, can be measured with an accuracy of less than one inch.

Unlike the interferometer, this instrument's laser is modmated at radio frequencies. In operation, the modulated beam is directed at a target and reffected back into the instrument. The phase of the impressed modulation of the reflected bean is then compared with a reference phase, the difference being a measure of the distince. Five modulating frecuencie's are available, from 50 MHIz to .5 kHz , in multiples of ten. The $50-\mathrm{Min}$ z frequency is used for the
precision range; the other frequencies remove ambiguity and provide a choice of recorder sensitivity.

Aside from their use in measuring instruments, lasers are also serving inclustry in many other ways. Their high intensity and ease of collination make them idealls suited for alignment or guidance purposes. A 1000 -foot timnel in New Mexion, for example, is being drilled by a machine guided by a laser beam. A bank of photocells mounted on the machine serves as the laser's target. Any wandering off the intended course is detected by the photocells and a signal is tramsmitted to the operator who makes the necessary corrections.

Satellite tracking is another area in which lasers are finding useful applications. In the particular field of space rendezoons, where the atmospherie problems of attemattion, bending, and scattering are absent, the characteristics of coherent radiation have particular advantage as their extremely high frequency allows broadhand commomicaltions while also permitting a small-size optical system to be used as. a high-gain "antenna".

In the near future, a non-contact gage for use in steel, textile, and paper mills will no clonbt be available. The mathine-tool industry can expect the difficult problems of angular measurement to be by interferometric means. Chemical and other processing plants will find the laser a valuable tool in analyzing the properties of fluids, particularly where the immersion of a probe would be harmful. Interesting possibilities in data stomge, information processing, and display systems are opened up through the creation of holograms. Improved fabrication of semiconductor devices will almost certainly result from more accurate photographic techniques. Medical and biological applications will increase. In fact, it is difficult to think of any industry that will not benefit from the laser. Fulfillment of its great promise has just begun.

NEW ZENITH LOG-PERIODIC ANTENNAS built to the quality standards of Zenith original parts

Advanced designs . . . developed by the Antenna Research Lahoratories of the University of Illinois. Model 973-49 (right) works like a powerful, multi-element Yagi. It offers superior Color or B\&W reception on all channels. And it delivers better FM/Stereo FM performance in metropolitan areas.

Other Zenith quality periodic antennas are specially designed for UHF, VHF. FM and FM stereo, or planar helical UHF reception.

Order Zenith antennas and all gemuine Zenith replacement parts and accessories from your Zenith distributor.

The quality goes in before the name goes on

FROM Hifi STEREO REVIEW

DELUXE

 padded DUST.PROOF RECORD AND TAPE CASESplus FREE cataloging forms

These decorative, yet sturdily constructed cases are just what you've been looking for
to keep your records and tapes from getting tossed about and damaged, disappearing when you want them most and just generally getting the "worst of it' from constant handling. They're ideal ton for those valuable old "78's" that always seem to get thrown about with no place to go
Constructed of reinforced fiberboard and covered in rich leatherette in your choice of nine dec orator colors, the HIFI/STEREO REVIEW Record and Tape Cases lend themselves handsomely to the decor of any room, whether it be your library study, den, music room or pine paneled garage. The padded leatherette back (in your color choice) is gold tooled in an exclusive design available only on H|F|/STEREO REVIEW Record and Tape Cases. The sides are in standard black leatherette to keep them looking new after constant use. With each Record and Tape Case you Wrder you will receive free Case you order you will receive, free of charge, a specially designed record and tape tive backing for affixing to the side of each case it enabies you to list the record names and artists and will prove an invaluable aid in helping you locate your albums the catalog form can be removed from the side of the case at any time without damaging the leath erette
Record Cases are avallable in three sizes: for 7 " $10^{\prime \prime}$ and $12^{\prime \prime}$ records Each case, with a center divider that separates your records for easy acces sibility, holds an average of 20 records in their original jackets The Recordirig Tape Case holds 6 tapes in their origina! boxes

- The Tape Cases and the 7" Record Cases (with catalog forms) are only $\$ 3.25$ each; 3 for $\$ 9$; 6 for $\$ 17$.
- The $10^{\prime \prime}$ and $12^{\prime \prime}$ Record Cases (with catalog forms) are $\$ 3.50$ each; 3 for $\$ 10 ; 6$ for $\$ 19$. Add an additional 75 c per order (regardless of number of cases ordered) for shipping and handling

Ziff-Davis Publishing Company, Dept. SD One Park Avenue, New York, N. Y. 10016 My remittance in the amount of $\$$
is enclosed for the Cases indicated belowa Quantity

Tape Case at $\$ 3.25$ each; 3 for \$9; 6 for $\$ 17$. Record Gase at $\$ 3.25$ each 10" " $\$ 9$; 6 for $\$ 17$. 10 Record Case at $\$ 3.50$ each 3 for \$10: 6 for $\$ 19$. 12" Record Case at $\$ 3.50$ each; 3 for $\$ 10 ; 6$ for $\$ 19$.

Add 75c PER ORDER for SHIPPING and HANDLING

 Check color choice for back of case (sides in black only):| \square Midnight Blue | \square Red | Saddle Tan |
| :---: | :---: | :---: |
| \square Pine Green | \square Orange | \square Yellow |
| Grey | \square Black | \square Spice Brown |
| Name | | |
| | | |
| Address | | |
| City | State | Zip Code |
| PAYMENT MUST | BE ENCLOSE | D WITH ORDER |

Crystal Sideband Filter

(Continued from page 47)
duce a passable characteristic curve but this will by no means be the most desirable one.

Swerp-Generator Method

The use of a sweep generator, in comjunction with a scope, is perhaps the simplest and most effective way of aligning a filter of the type described. The circuit of a simple sweep generator used by the author for aligmment work is shown in Fig. 7. The arrangement works admirably and gives the buider a visual check as to the effects of the various adjustments on the filter characteristic curve. At this point it may be worthwhile to digress briefly and present a few pertinent details regarding the generator.

The sweep generator circuit is one adapted from a circuit which appeared in the May, I965 issue of "Wireless World." The circuit parameters have been selected for a sweep voltage input of approximately 8 volts peak which is obtainable from a number of widely used measuring scopes. A sweep range of about 25 kHz is obtainable.

To set the sweep generator up, first adjust coil LI with the trimmer capacitor set to maximum, for oscillations at 450 kHz . A broadcast receiver can be used for listening to the second harmonic on 900 kHz . With the minimum frequency set, apply a direct roltage. equal to the peak sweep input voltage that will be used, to the sweep input comnection and set the deviation control pot to give a deviation of 25 kHz . The $475-\mathrm{kHz}$ signal cam be checked on the broadeast receiver at its second harmonic of 950 kHz .

The low cost and few minutes required to assemble the simple i.f. sweep generator will more than compensate the buikler in the time saved in aligning the sideband filter. It will also provide the experimenter with a useful piece of test equipment for receiver i.f. alignment as well, especially if a crystal filter is incorporated in the receiver that is used.

In using the sweep generator and scope to align the filter, the interim adjustments clescribed previously call be made to establish a convenient starting point. With the sweep generator and scope commected to the filter one need only make the necessary adjustments and watch the scope. The trimmers

Fig. 6. The passband characteristics of the ferrite coil and crystal sideband filter are shown here after all the adjustments have been correctly made. Note the position of the carrier along the steep h.f. skirt.

35 fascinating ways to spend your next 250 spare hours

Announcing the Spring 1967 edition of the "what-to-do-with-your-spare-time" prob lem-solver: the ELECTRONIC EXPERI. MENTER'S HANDBOOK!

Roll up your sleeves, heat up the iron and get set to meet 35 of the most chal lenging, fun-to-build electronics projects you've ever seen . . . or assembled with your own two hands!
Included are: a transistorized auto-light minder - a $\$ 2$ intrusion alarm - a tape recorder echo chamber (for under \$10!) - a powerhouse 2-tube SW receiver - a solid-state scope calibrator - and even a supercharged salt shaker!

You get complete schematics, illustra. tions, parts lists and easy-to•follow instructions.

PLUS expert tips ' n techniques designed to build your electronics skill. You'll keep up with the latest advances in the field, learn many valuable professional methods and short-cuts . . a and develop that extra technical know-how that comes only from practical, firsthand experience.

Don't chance missing your copy of the Spring 1967 ELECTRONIC EXPERIMENT. ER'S HANDBOOK. Use the coupon below to order yours today!
only $\$ 1.25$

[^3][^4]and coils should be adjusted until a characteristic come that is similar to the one that is illustrated in Fig. 6 is obtained.

It may be of interest to know that the trimmer adjustment of the secondary of the i.f. transfomer T has more effect on the filter output amplitude than on the characteristic curve. The adjustments made to i.l. transtomer T2 affect the output level of the amplifier stage only: The seven adjustments which are the most critical in shapiag of the characteristic come are the adjustments to $L 1$ and $L 2$, the crystal trimmer capacitors, and the trimmer adjustment of the primary of the i.f. transformer Tl, The crystal trimmers across the high-frequency crystal will have a pronomeed effect on the high-frequency side slope of the filter curve and vice versa for the lowfrequency erystal trimmers. The basic filter adjustments may require repetitive adjustment because they interlock slightly

As can be noted from the filter curve, there is approximately a $6-(1 \mathrm{~B}$ sang or difference in the peaks of the filter passband. This sag catuses no impairment of the voice quality, however. Needless to saly, the visual display of the filter characteristic curve will also provide information relative to the amount of sideband rejection obtainable. By checking the passhand one can readily determine the relative position for the carrier oscillator frequency. For the erystals used this frequency should be approximately 466 kILz .

Initial operational tests of the ferrite coil and erystal sideband filter have been made in an experimental 1 (i0) meter sideband transmitter. The results of the test have proven the effectiveness of the filter. Construction of the described filter will provide you with an excellent starting point as well as the heart of your new "home-brew" sideband tramsmitter.

[^5]

Here's the simple speedy way to cut smooth. accurate holes in metal, hard rubber, plastics, epoxy, etc.
Save hours of hard work . . . punch clean, true holes in seconds for sockets, controls, meters, and other components. Easy to operate. Simply insert punch in a small drilled hole and turn with a wrench. For use in up to $\mathbf{1 6 - g a u g e}$ metal. Available at leading radio and electronic parts dealers.

GREENLEE TOOL CO

1866 Columbia Avenue, Rockford, III. 61101
CIRCLE NO. 110 ON READER SERVICE CARD

BOOK REVIEWS

"THE RADIO AMATEUR'S HANDBOOK" complied and published by the American Radio Rella! Leragur. Newington, Comn. 05111 . (i0) pages plas tube and semiconductor section and catalogue. Price $\$ 4.00$ in U.S.

This is the 4 th edition of the standard manaal of ham radio commmaications, construction, and design. It covers all phases of the hobloy inchading radio communications theory, equipment construction, communications methods, and mobile radio theory and practice.

Like the carlier Handbooks, this volume contans something for every-one-from the novice to the Old Timer. The section on vacmm-tabe and semiconductor characteristics is, as always, one of the most complete and convenient sources of such data, There are jo() tulne base diagrams providing a "plus" in this section.

The text itself contains over 800 illustrations including photos of equipment and components, schematics, graphs, line drawings, and tables. Because of the wealth of material gathered together in one spot, this book should be oll the reference shelf of all who work in clectronics and/or communications whether interested in ham operation or not.
"EAS!C CARRIER TELEPHONY" by David T:ibey. Published by John \vec{F}. Rider Itblishor, Inc., New York. 189 pages. Price \$ $\mathbf{1 . 9 5}$. Soft cover.

This is a revised second edition of a handbook which originally appeared in 1960. It is addressed to engineers, technicians, and students and is written at a basic level with only occatsional resort to mathematics. This revision reflects the many state-of-the-art advances which have taken place in the past six years and covers the telephone system, telephone carrier definitions, wire tramsmission principles, transmission practices, carrier system fundamentals, modulation and demodulation, electrical filters, carrier system operations, transmission and signaling features, cable carrier systems, carrier applications in radio systems, and PC.I carrier systems.

The text is lavishly illustrated and since questions and problems are appended to cach chapter, the book cam be used as a classroom text or for home
study be those who wish to upgrate themselves in their chosen field.
"ELECTRICITY" edited bu IIamy Mikar. Poblished by Ilayden Book Company, IMC., New York. Available in 7 paperbound volumes (a $\$ 16.95$ or single doth-lound volume (at \$12.76.

This "comse" has heen preparted especially for technical and vocational schools and provides a comprehonsive gromoding in the fundamentals of clectricity. Students are required to have little more backgromad than a smattering of math since the presentat tion is progressive and the student picks up the requisite skills as he goes allong.

Volme I covers producing clectricity, atomic theory, electrical changes, electron theory; current, voltage, magnetism, and electromagnetism. The course then proceeds to coverige of d.c. circuits, a.c. circuits, LCR circuits. lest equipment, power sombes, and electric motors.

Each volume is elaborately illustrated by two-color diagrams showing the cirenit function or the operation under discussion. There are review questions for each chapter and a summary of the material discussed, making these wolumes suitable for both dassroon and home-study applications.
"ELECTRONICS" edited by Harry Milcal. Published by IIaydon Book Comman!, Inc., New York. Available in 7 paperbound volumes (ii 520.95 or situgle cloth-bound volume (at $\$ 14.96$.

These volumes (or volume) are designed to provide the student with a basic understanding of electronics, its circuitry and components. Volume 1 treats clectronics signals, Volume 2 electronic buiding blocks, Volume 3 electron tubes, Volume 4 semiconductor devices, Volume 5 power supplies and amplifiers, Volume 6 oscillators, modulators, demodulators, and discriminators, and Volume 7 auxiliary circuits and antennas.

In order to provide the clearest exposition possible, the editors have used two-color diagrams and pictorials with a lavish hamd. Bec:anse of this feature and the clear-cut technical explanations, this book is cutirely suited for

Hosse whe wish to shad the subjeed on How own as wrll as for students anmollerl in tedmimal or vocational school conrses in clectromics.

Althongh allyone with pretentions to a high-level aurer in clectronics will noed aldanced math. His introdnctory comse has virtarally climinated mathematioal treatment so as mot to aliemate students at the very stat. The explanat tions of circonts anid principles which take the plate of the fommbas usmadly ancomented in texthooks are excellent and most stments wont regret the omission of math.
"INTERPRETING FCC BROADCAST RULES \& REGULATIONS" adited by Verme M. hay. Publishod by Till Books. Thurmont, Maryand 21788 . 152 pages. Price s5. 9). Solt cower.

This book represonts a compilation of material which originally appeatred in "BM/E" magazine ans atticles addressed to broadeast station execoutives, legal and engineoring comsultants, and others concermed with station managewont and operation.

By presenting the information in compact, (easy-lo-lind form, the editor has performed a serviee to the broadcasting industry by condensing and extracting pertincint infomation from the often voluminous $\mathcal{I}^{\circ}(:(:$ Roles \& Regulations.
"DICTIONARY OF ELECTROTECHNOLOGY" compiled by Eduat Itohn. Pub)lishod by Bames \& Noble, Inc., New lork. T(0.7 pages. Price $\$ 22.50$.

This Cerman/buglish tedmical dictionary indudes atomic energy, antomatic control, atc. teminology in addition to those words msually associated with clectronics. In addition, commercial, finameial. and legal teminology as it applies to the electronies fiede has been inchuded.

Although the compiler insists that the dictionary can be used be those "without full command of the (emman lingrage", the fact that the listings atre given atcoording to the German word and that there is no parallel English/ (icman section may possibly be over optinistic since it would depend on what "Full command" of the language means to the varions users. Where American and British usage differ, the compiler has indicated (A) or (B) in the translations.
"TV TROUBLESHOOTER'S HANDBOOK" by the Editors of "Electronic Tedmician". Published by TAB Books, Thurmont, Mandiand 21788 . 189 pages. Price $\$ 6.95$.

This is a compilation of various service hints, circuit descriptions, production changes, and field service notes for a number of black-and-white and color receivers as originally published in "Electronic Technician" magazine. A

Now-it's easy to make recordings of children
 WITH POPULAR PHOTOGRAPHY'S UNIQUE NEW RECORD ALBUM "TONY SCHWARTZ ON HOW TO RECORD-THE SOUND OF CHILDREN"

To instruct you in the techniques of recording children's voices, the editors of Popular Photography asked famed sound authority Tony Schwartz to prepare this special record, available exclusively and by mail only through Popular Photography magazine and other Ziff-Davis publications. By listening to it you can quickly acquire the skills needed to make top-quality recordings of youngsters-thus preserving permanently the sound of their voices.

YOUR TEACHER: AN EXPERT'S EXPERT

You couldn't have a better instructor than Tony Schwartz. A pioneer in the use of portable tape recorders, he has been capturing the sounds of actuality for 23 years. You've read his monthly column in Popular Photography. Now hear him explain and illustrate in provocative recorded demonstrations the working methods that have helped him to become the world's No. 1 sound collector.

SIMPLE, COMPLETE INSTRUCTIONS

HEAR ACTUAL DEMONSTRATIONS OF

- A tape recording befor* and after editing.
- The sound of a battery-operated recorder at three tape speeds: $13 / 3,3^{3 / 4}$, and $71 / 2$ inches per second.
- The improvement in fidetity when a quality microphone replaces the mike supplied as a recorder's standard equipment.
* How to reduce unwanted noise while recording.
(Acoustics: the sound of sound in the Jiving room, kitchen, hallway, and street.
- Improving sound quality by rerrecarding a tape.

In addition to the tips on selecting and using equipment, you learn how to create complete sound stories with children-even recreate a situation that has already taken place! Actual sound demonstrations en. able you to hear the effects of various tape speeds, microphones, and acoustical conditions. You also learn how to eliminate unwanted noise and to improve your tapes by re-recording them. In less than one hour, you get the benefit of years of experience and recording know-how!

EXTRA!

You'll be intrigued and thoroughly entertained by Side II of this superb new album. It's devoted entirely to three of Tony Schwartz's most famous sound essays, all acclaimed as "works of great artistry that will surely be enjoyed by anyone who enjoys and appreciates the sounds of children."
"CHILDREN AND GOD" - -a fascinating composite of thoughts expressed by youngsters of various religious faiths. Their naively reverent concepts of God, heaven, good and bad, and prayer will be a revelation to you. This unique presentation is unlike anything you have ever heard before!
"NANCY GROWS UP"-a remarkable sound portrait of a girl's developing personality. In just two minutes, you hear her voice from 20 minutes after her birth, through the years until she's 13 -when she reveals: "I've discovered boys!"
"SOUND SNAPSHOTS"-a potpourri of chuckles . . . once-in-a-lifetime sayings that could come only from the mouths of babes. These uproarious remarks, all said in the innocence of childhood, include delightfully ingenuous observations like these:

[^6]

A high-fidelity 12 -inch, $331 / 3$ RPM long-playing vinyl album manufacfured by the Custom Services Division of Capitol Records.
plus many more that will make you howl with laughter! You and your friends will enjoy listening to all of these entertaining essays in sound again and again.

Free
 INSTRUCTION BOOKLET WITH EACH RECORD ALBUM

Packed with valuable facts, it contains scores of helpful tips you can use to make better, more interesting record-ings-information that supplements the instructions in the record. And it's yours if you place your order now for "'Tony Schwartz on How To Record-The Sound Of Children.'

Get the most out of your recording equipment by discovering the easy way to make tapes that you'll always treasure. This instructive and entertaining album should be owned by everyone within the sound of a child's voice and laughter. The special low price is:

only $\$ 4.98$ postpaid ORDER YOUR ALBUM TODAY

"The Sound of Children" P.O. Box 3112 Church Street Station, New York, N.Y. 10008	
Please send \qquad "Sound of Children" albums at $\$ 4.98$ each, postpaid.	
My check (or money order) for \$ ___ is enclosed.	
(Outside U.S.A. please send $\$ 7.00$ per record ordered.) N.Y. State residents please add local sales tax.	
Name	
Addres	EW-67
City	
State	
PAYMENT MUST BE ENCLOSED WITH ORDER	

WHY DRIVE A LATE MODEL CAR WITH A 1910 IGNITION SYSTEM

Install tomorrow's ignition system on your car today!

THE JUDSON EleCTRONIC MAGNETO

Write today for free literature

RESEARCH ANO MFG. CO RES CONSHOHOCKEN, PENNA.

CIRCLE NO. 106 ON READER SERVICE CARD

NOW...PERFECT COLOR TV
 fliminate fM and other INTERFERENCE With the Sensational NEW
 FINGO
 FM Trap (Blocks Out FM)

the finney company
34 W. Interstate St. Dept. 410 Bedford, Ohio 44014
'fINCO ANIENNAS CAPTUAE THE RAINBOW'

EW Lab Tested

(Continued from puge 16)

mumbers of listeners whose spacial or [inancial resources were limited.

Despite their relatioe compactness. most "booksholf" speakers were too large and heary for moming on real bookshelves. Orer the years, many mamfacturess have attacked the prol)lem of ereating a small, light, and inexpensive speaker system with widerange, low-distortion response. There have been a fow successful desigus, and many more which are best forgoten.

The new drosen X-40 and X-45 speaker systens are recent additions to what might be called trat bookshelf systems-and they deliver a caliber of sound which belies their size and price. Their oiled walmit enclosures measure $10^{12} 2^{\prime \prime} \times 191,2^{\prime \prime} \times 9^{\prime \prime}$ or slightly over one cubic foot, and their weight of about 20 pounds will not wertax any shelf capable of supporting books. The X-40 ancl X-4.5 are identical except for their high-freguency drivers.

Frequencies from 30 to 2000 IHz are radiated by an 8 -inch long-travel cone woofer with a resonant frequency of 3.5 Hz. Above 2000 Hz , the $X-40$ has a 3 -inch direct-radiator speaker, while the X-4.5 uses a horn-loaded compressiontype driver. Both systems are rated at 8 ohms, with a power handling capacity of 25 watts and a useful frequency range of 30 to 16.000 IF . On the real of the enclosure is a level adjustment for the high-frequency speaker.

We tested the $\mathrm{X}-40$ and $\mathrm{X}-45$ moder identical conditions, simulating bookshelf momating. The microphone response at cight points in the room were averaged to obtain a composite response curve. Althongh the two speakers have identical woofers, we found the X-40 to have somewhat more response below 100 IIz . lgnoring the small peaks at 40 and 60 Hz , which are properties of the test room, both speakers have an over-all response of $\pm 5 \mathrm{~dB}$ from 30 to over $13,000 \mathrm{It} x$, and are down only
slightly at $15,000 \mathrm{Iz}$, which is the upper limit of our mikes calibration.

The X-40 has its most uniform response with the tweeter level at maximum, while the more efficient lighfrequency speaker of the X-45 shows a rise of about 8 dB at $10,000 \mathrm{Itz}$ under these conditions. Both speakers had low distortion at low frequalucies. The $\mathrm{X}-40$ lad about half as much distortion below 60 HIz as the $X-4.5$, which is probably due to nomal prodnction tolerances. It also had somewhat less cfficiency than the $\mathrm{X}-\mathrm{t} 5$.

Both speakers have excellent toncburst response wer their entire frequency range. Orer-all, we would rate their transient response as good as that of any dyamic speaker we have tested, including some costing several times the price of the Jonsen speakers. At no time did we find any evidence of prolonged ringing, breakup, or spurious outputs.

Ib listening tests, we found that the X-40 sommed most pleasing with maximum tweeter level, which corresponds to the flattest measured response. It was necessany to turn down the twecter level of the more efficient $X-45$ hom driver considerably to mateh the sound of the $X-40$, after which they were indistinguishable from each other. The cone radiator of the X-40, however, has a distinctly better high-frequency dispersion than the X-4's horn, with virtually no andible beaming of highs.

Both speakers have an effortless, natural sound which one rarely finds in speakers of much greater size and price. Although their bass output does not match that of some larger and costlier systems, the listener is never aware he is listening to a one-cubic-foot enclosure. Either speaker can radiate a solid, relatively undistorted $30-\mathrm{Hz}$. fundamental.
The Jensen X-40 sells for $\$ 57$ and the $X-45$ for $\$ 63$. Anyone who doubts that speakers in that price and size bracket can produce true high-fidelity sound owes it to himself to hear one of these speakers and be convinced. A

DELUXE LEATHERFLEX-COVERED EDITIONS AVAILABLE

Here is a complete selection of annuals, yearbooks, directories and handbooks available in Deluxe Leatherflex-covered editions from the world's largest publisher of special interest magazines. These are complete editions (including the original covers) which are bound in rugged leatherflex to provide long-time pro-
tection and keep them looking like new even after repeated use. The softly textured leatherflex, gold embossed for the look of elegance, makes them handsome additions to your permanent reference library. Take a moment to review the titles below. You're sure to find many of your favorites. $\$ 3.00$ each.

Note: Deluxe Leatherflex-covered Editions are $\$ 3.00$ each, postpaid ($\$ 3.75$ for orders outside of U.S.A.). The annuals listed above are also available in regular editions at $\$ 1.25$ each plus 15 c per copy for shipping and handling (\$1.75 for orders outside U.S.A.). To order your copies, check the appropriate box and circle the numbers of the annuals you wish to receive on the coupon to the right.

* Available in Deluxe Edition only

Ziff-Davis Publishing Co., Dept. SD
One Park Ave., New York, N. Y. 10016
I am enclosing \$
\square Send me the Deluxe Leatherflex-covered editions circled below at $\$ 3.00$ each, postpaid ($\$ 3.75$ per copy for orders outside U.S.A.).
[] Send me the regular editions circled below at $\$ 1.25$ each plus 15 c shipping and handling ($\$ 1.75$ per copy for orders outside U.S.A.) $\begin{array}{lllllllllllllllll}1 & 2 & 3 & 9 & 15 & 18 & 22 & 24 & 26 & 27 & 28 & 29 & 30 & 32 & 34 & 35 & 36\end{array}$

Name.
(please paint)
EW. 67
Address
City \qquad P PAYMENTMUST State \qquad Zip Cod ORDER

NEW PRODUCTS \& LITERATURE

Additional information on the itemes
conered in this section is aruiluble from the manufacturers. Each itron is identified by a cole number. To obtain further details, fill in coupon on the Rouder Service Card.

COMPONENTS • TOOLS • TEST EQUIPMENT • HI-FI • AUDIO • CB • HAM • COMMUNICATIONS

sizes) : and a ruggedized tip (in 33 configurations in six styles of 0.0162 o.d. $x 0.11 \geq 3$ i.d. tip) specifically designed for matrix soldering and micromodule assemhly. Also included are cight styles of the 0.125 o.d. $x 0.035$ i.d. tips as well as seven variations of the 19.187 o.d. x 01.155 i.d. All of the tips are available in chisel. point, spade, pyramid, ilat-faced, and generalpurpose shapes.

The unit comes with a white porcelain "Braaier Consolette" which incorporates two waste solder depositories which also serve the purpose of kerping the iron tip tinned.

Since all components in the iron are interchangeable, users can select and combine feacures as required for a specific soldering job. Details on the full line and the various components will be smpplied on request. Vanguard

Circle No. 1 on Reader Service Card

PLASTIC-PACKAGED IC'S

Two new integrated circuits, designed for use in telemetry, data-processing, instrumentation, and commonications equipment, have just been introduced as the CA3129) and CA3030.

These monolithic silicon operational amplifiers are housed in a 14 -lead dual in-line plastic package, permitting simpler insertion, higher packaging densities, and reduced cost. They ofter open-loop voltage gains of 60 dB and 711 dB typical, common-mode rejection ratios of $9 t$ dB and 103 dB typical, and have maximum cutput-voltage swings of 6.75 volts peak-to-peak and 14 volts prak-to-peak typical. KCA Electronic Components

Circle No. 126 on Reader Service Card

CURRENT-LIMITER DIODES

A series of nine current-limiter field-effect diodes for constant current biasing of transistors, Fl: 「's, differential amplitiers, and zener reference diodes has just been announced. These new units are usefol in place of the logic pull-up resistor for high-speed switching, as a high-impedance load with low supply voltage, and as a current-limiting protecting device. Other applications include linear time-base cirouits and d.c. current supplies.

The CL 2010 series offers standard EIA current values from 220 $\mu \mathrm{A}$ to 4.7 mA . The first three digits of the number indicate rated cur-
rent in microanperes while the fourth digit in dicates tolerance: e.g., Cl,1520 is a $15010-\mu \mathrm{A}$, 20%-tolerance diode. The units are housed in a miniaturized plastic package. Siliconix

Circle No. 127 on Reoder Service Card

VIBRATING MEMBRANE CAPACITOR

The Type XL7900 vibrating memhrane capacitor is designed as a transdacer for extra sensitive current measurements. When employed in an electrometer, the XI, 7900 has measured currents as weak as 500 electrons per second (8×10^{-17} ampere). The unit can be used in such instruments as dosimeters, has chromatography corrent detectors, picoammeters, plI meters, and transducer monitors.

Driven by a high-frequency electric field and housed in an evacuated glass envelope, the new sensor offers input inpedance greater that $10^{1 / 2}$ ohmes and temperature dependence of only 15 "IV, "C. The high-frequency, electric-fictl drive effectively isolates the drive frequency from the signal outpot and greatly simplities design of the drive oscillator, according to the company. Amperex

Circle No. 128 on Reader Service Card

COLOR-TV SWEEP-CIRCUIT COILS

Exact replacement sweep-circuit coils for the color-TV sets produced by more than 25 manufacturers are now available.

The focus. convergence, and swecp-circuit coils are directly interchangeahle with original coils in sets manufactured by such firms as

KCA, Philco, Westinghouse, Motorola, and Muntz. Full details on the entire line will he supplied on request. J.W. Miller

Circle No. 2 on Reader Service Card

MINIATURE COMPONENTS

Two new miniature clectronic components, the Model +2It microtransformer and the Model \$2I microinductor have just been introduced, both designed for welded module and hybrid circuit applications.

The new models measure only " s " x ' s " x 1/x" and weigh a maxinum of 0.15 gram. Frequency range is 20106 to 500.0001 Hz while the operating temperature range is $-55^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$. Both models meet or exceed environmental requirements of MiL-T-27, grade 5.

The microtransformer has a primary and secondary impedance range of 10 to $10,0(0)$ ohnis while the inductance range of the Model 4221 is from 0.1 to 3.5 henry at $1 \mathrm{kHz}, 0.1$ volt r.m.s. Bourns Trimpot

Circle No. 129 on Reader Service Card

TRANSISTOR TRANSFORMERS

A new series of ultraminiature transistor transformers is now on the market and avail-
able for inmediate delivery. The DO-T200 series features straight pin terminals, making them suitahle for printed-circuit applications. They are metal encased and ruggedized. Maximum diancter is 1.350$)^{\circ \prime}$ and maxinam height is "uti". The mounting base has a key-hearing moisture-barrier offset of $0.0 .35^{\prime \prime}$. Leads are E/x" long and of $0.016^{\circ \prime}$ Dumact wire, gold plated. The leads are weldahle or solderahle
L'nits in the series have primary impedances from 1000 to 206,1000 ohins, d.c. in the primary from () to 3 mA , secondary impedances of 50 to 12,060 ohms, and operating levels of 25 to 100 milliwatts. Detais on the full line are availahle on reguest. ['TC

Circle No. 130 on Reader Service Card

PUSH-BUTTONS FOR COMPUTERS

The 913 series of momentary contact pushbutton switches has been designed for use in dry circuits or with low currents at higher voltages. The switches mount in a ${ }^{3}$ s" clearance hole on !!"’ centers. Available for s.p.s.t. dou-ble-hreak, normally open or normally elosed; s.p.d.t., donthe-break, two-circuit (one n.o., one n.c.) operation, this series can be obtained il. haminated or non-illuminated. Lighted switches use permanently mounted T-2 neon lamps with or without the necessary current-limiting resistor.

Switch ratings are $0.1 \mathrm{amp}, 125 \mathrm{~V}$ acc.; 0.1 amp, 30 V d.c. (non-inductive): operating force is 11 ounces (approxinately) and button travel is "1, ". Life rating is 1,1 (M), OHO operations. Dialight

Circle No. 131 on Reader Service Card

NICKEL-CADMIUM BATTERIES

A new line of sealed, rechargeable nickelcadmium batteries and power packs has just been announced. The batteries, available in a varicty of sizes, shapes, and capacitics, will be built to customers' specifications to provide high cell-to-cell uniformity.
Applications of these new power sources include aircraft emergency power, military and industrial instruments and systems, telecommunications equipment, and cordless power tools and appliances. Texas Instruments

Circle No. 132 on Reader Service Card

LABORATORY STOP CLOCKS

Two new compact, portable laboratory stop clocks specifically designed for maximum versatility have been introdaced as the K151+1) and the K15151.

The K15140 is calibrated in seconds and hundreds, with a totalizer scale of 0.60 seconds

and a sweep scate of 10.1 second. Accuracy is ± 20 ms per operation. The K 15150 is calibrated in minutes and hundredths. The totalizer scale registers $0-60$ mimutes and the sweep sale 0 - 1 minute. Accuracy is ± 0.005 minute per operation.

The instruments can be started, stopped, or reset by the front-panel-mounted 3 -position wocker switch or by a six-foot remote-control cable. A 3 -anpere timed convenience outlet permits ontsite cironits to be controlled and timed simultancously. Electrical requirements are 115 wolts acc., 60112 mominal. Both clocks can be furnished for bench use or with hardwate for panel mounting. A.W. Haydon

Circle No. 133 on Reader Service Card

PORTABLE TUBE TESTER

The Model 636 tube tester is designed for the guick-testing of 800 types of radio-TV vacuum tubes, load-testing of commonly used

batteries, and the "go/no-go" testing of contimuity.

The Model 6.36, which comes completely wired, features transformer isolation, a threecolor meter, and a neon-lamp indicator. It is homsed in a Bakelite case with carrying handle, measures $8^{5} \mathrm{~g}^{\prime \prime} \mathrm{h} . \mathrm{x} 71 / 2^{\prime \prime} \mathrm{w}$. x $3^{1 / s^{\prime \prime}} \mathrm{d}$., and weighs 4 poonds. It is designed for $117-\mathrm{V}$ a.c., 60-H\% operation. Fico

Circle No. 3 on Reader Service Card

PROFESSIONAL PLIER SET

A three-piece matched set of professional, precision pliers designed especially for all phases of electronics work is now available as No. 23091. The set includes a diagonal cutting plier, a chain nose plier, and a Hat nose plier. Each tool is $4 \frac{1}{2}$ inclies long and has vinyl cushion-grip landles. It is forged from finc-grain tool steel, individually fitted, tempered. adjusted, and tested. Kracuter Tools

Circle No. 4 on Reader Service Card

PLASTIC-PACKAGED SCR'S

A new series of low-cost, plastic-encapsulated SCR's has just been introduced as the types 2 N 444 l through 2 N 4444 . The new devices can control high electric power (e.g., 2600 watts, 240 volts, full wave). Typically 10 mA d.c. gate current is required to cause switching from the "off" stage to the "on" stage.

These new "Thermopad" SCR's have a rated blocking voltage range from 50 to 600 volts and are designed for consumer products requiring reliable phase control. Typical examples of such applications are motor speed, temperature and light controls for houschold appliances, and for portable power tools. They are also expected to find use in ignition systems, voltage regulator and starting systems for cars, outboard motors, chain saws, etc. and for automated machinery such as vending machines.

Complete technical specifications on this new series are available on request. Motorola

Circle No. 134 on Reader Service Card

ULTRA-COMPACT POWER SUPPLY

The new "Micropak II" ultra-compact power supply is being offered in three basic models, 200, 250, and 400 .

Featuring greatly reduced size, the line offers a wide range of voltage and power output ratings. The Model 400 consists of four switch-ing-type regulator supply models which operate from 3 to 30 volts d.c. at power ratings up to 120 watts. Model 400 consists of three dualoutput models available at only a slight increase in price over single-output units. Output voltages for the thace models in this series range from 3 to 40 volts d.c. at a maximum of 2 amperes per output with total output ratings of 35,70 , and 100 watts, Model 250 has been designed for a single voltage, low-power output requirements and consists of one model. Typically it has a 3 to 30 volt d.c. output range and maximum power output of 24 watts. Litton Industries

Circle No. 135 on Reader Service Card

PROFESSIONAL VTR

A new one-inch, helical-scan professional viden tape recorder specifically designed for educational and business training has been introduced as the Model 2-30.

The new unit features slow motion and stop action, tape interchangeability, and two separate audio channels to allow delayed sound dubbing. It can be operated in either horizontal or vertical position. It will record and play back any TV signal with a $60-\mathrm{Hz}$ field frequency at a tape speed of 7.8 inches per second in the normal record/playback mode. This provides 63 minutes of continuous recording on a single 8 -inch red of one-inch tape.

The recorder weighs 88 pounds, measures $26^{\prime \prime} \times 18^{\prime \prime}$ and is equipped with a detachable lid and handle for portability. It comes with a power cord, reel of tape, pickup reel, a use and care kit, carrying bag, and a user manual. General Flectric

Circle No. 136 on Reader Service Card

SUBMINIATURE TOGGLE SWITCH

The new Model 7213 subminiature d.p.d.t. toggle switch offers a minimum electric life of 40,000 make-break cycles, terminals and contacts of solid coin silver, and a capacity of 5 amperes at 115 volts a.c. The switch incorporates a threaded $1 / 4^{\prime \prime}$ bushing for fast and easy mounting. The case is of general-purpose phenolic and the operating lever is the standard bat handle. Colored plastic caps will be supplied on request at no additional charge. C\&K Components

Circle No. 137 on Reader Service Card

SOLID-STATE INDUSTRIAL VTR

The new Panasonic NV-204 solid-state industrial video tape recorder features five motors,

records on one-inch tape, provides for complete interchangeability of tape with any other NV 204, and offers 67 minutes of recording time.
A slow motion feature permits reduction of tape speed to two frames per second in addition to "stop frame". forward, or reverse. A special "pause" lever permits instant "stop action". Picture resolution is 350 lines, the recorder is color compatible, and fast forward or rewind can be accomplisled in $23 / 4$ minutes. Matsushita Circle No. 138 on Reader Service Card

NICKEL-CADMIUM BATTERY CHARGERS

Twenty-four models are included in the new Series C battery charger line to handle virtually all requirements for recharging nickel-cadmian cells.

Designed for the OEM market, the units operate from an input of 117 voles, 60 Hz with a single outpot for charging batteries having nominal voltages of $1.2,2.4,3.6,4.8,6.0,12.0$, 24.0 , or 36 volts. Units of $1.2,2.3$, and 4.0 ampere-hour ratings are availahle for each of the 8 output voltages.
Each unit charges at its rated current into a fully discharged battery, tapering to a safe charge rate when the battery is fully charged. The Series C units are potted in a cylindrical enameled steel cup with bottom mount inserts and 12" leads for both the input and output circuits. Specifications and price data are available on request. Berkleonics

Circle No. 139 on Reader Service Card

REPLACEMENT COLOR-TV RECTIFIERS

A full line of "direct replacement" rectifiers for color-TV receivers is now available in individual packages. Eleven different rectifiers are included in the line. Silicon mints are the CTV650 focus rectificr, 80 C and F8 voltage boost rectifiers, and 60 C and F 6 " $\mathrm{B}+$ " rectifiers. Also included are the $\mathrm{S}-880$ selenium focus rectifier, the S-879 selenium voltage boost rectifier, and four selenium convergence rectifiers-S-855 S-420, S-798, and S-781. A complete listing of the units in the linc, along with replacement information, will be supplied on request. Sarkes Tarzian

Circle No. 5 on Reader Service Card

HI-FI-AUDIO PRODUCTS

A.F. POWER AMP IC'S

A multi-purpose a.f. power amplifier which combines the functions of preamp, phase inverter, driver and power output on a single monolithic silicon chip has just been introduced as the CA3020.

Designed especially for use in portable or fixed audio communications systems, the circuit is designed to operate from a single power supply between +3 and +9 wolts-the power output capability being a direct function of the supply voltage used. At a supply voltage of +9 volts, the CA 3020 delivers a typical power output of over a half watt with an idling current of 22 mA ; at +3 volts, it delivers 65 mW with an idling current of 7 mA .

The CA3020 is mounted in a 12 -lead TO-5 package and will operate over the temperature range of $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. RCA Electronic Components

Circle No. 140 on Reader Service Card

"'THEATER ORGAN" IN KIT FORM

A do-it-yourself kit version of the professional Thomas horseshoe theater organ is now available as the Model TO-67.

The organ features 15 manual voices and 4 pedal voices which can be selected by simply Hipping the multi-color stop tablets. The kit also incorporates "Color-Glo" key lights to make it casy for beginners to play complete songs inmediately. There are two separate speaker systems and two separate solid-state amplifiers capable of providing 200 watts of peak power.

There are two 44 -note keyboards, 28 notes

of electronic chimes, selective repeat percussion to produce xyloplone, mandolin, marimba, and other special-effect sounds: 13-note bass pedals, selected attack percussion, manual balance control, and a hardwood cabinet and bench. Assembly time is estimated to be between 80 and 100 hours. Heath

Circle No. 6 on Reader Service Card

MUSICAL INSTRUMENT SPEAKERS

Two new musical instrument loudspeakers have just been introduced as the 417 A and 418 A .

The 12 -inch 417 A and the 15 -inch 418 A will each handle 100 watts of music power. Both speakers feature 3 -inch voice coils made of edgewound aluminum ribbon and a rugged diaphragm with a lightweight alumimm dome. A heavy-cast aluminum frame is used and the massive magnet structure houses an Alnico V magnet. Altec Lansing

Circle No. 7 on Reader Service Card

CARTRIDGE TAPE PLAYERS

A new line of sterco cartridge tape players for cars including a four-track player, a compact eight-track player, and a combination stereo tape player/FM radio will soon be on the market. Later in the year the firm expects to offer a furniture model cartridge tape player for home use.
Details and complete specifications on this new line will be provided by the manufacturer. Tenna Corporation

Circle No. 8 on Reader Service Card

CAR-DOOR SPEAKER

A large magnet and a thin profile are the special features of the new C5FC speaker designed for upgrading automotive stereo installations. Although this $5^{\prime \prime}$ round speaker has a 5.5 ounce, barium-ferrite magnet, total depth is less than 2 inches.

The speaker will handle 10 watts of program material. A moisture-resistant cone prolongs speaker life. Impedance is 8 ohms. Utah

Circle No. 9 on Reader Service Card

FOUR NEW AMPLIFIERS

A new series of audio amplifiers in 10,20 , 35 , and 75 watt models has recently been added to the "Carillon" line.
Featuring operational flexibility in all models, these amplifiers offer optional plug-in transformers to ciange merophone channels from high to balanced-low impedance and the program channel from high impedance to balanced

600-ohm line for receiving wired background music.

A continuous audio-taper gain control provides precise level adjustment of input chamels while a master gain with separate full hass and treble controls permits simultaneous adjustment of all iuput signals in the 35 and 75 watt models. All units have 4 , 8 , or 16 ohm outputs and a $70-\mathrm{V}$ line, with the addition of a $25 . \mathrm{V}$ line on the 35 and 75 watt models. Bell P/A Products Circle No. 10 on Reader Service Card

8-TRACK CARTRIDGE PLAYERS

Two new 8-track stereo tape-cartritge players have inst been introduced as the "Apolfo" (HP895) and the "Satellite" (CD885). The former is a self-contained system while the latter is a playback deck.

Both models feature fast-forward sclectivity which incorporates a silence-sensing device that automatically locates the beginning of the next selection, an "Eject- Λ-Matic" feature which automatically pushes the cartridge away from the tape playing heads when the machine is shut-off, vertical tracking which virtually clim-

inates crosstalk, and automatic "off" and "replay" buttons providing a choice of continuous play or automatic shut-off after the last selection has been played. Capitol Records

Circle No. 11 on Reader Service Card

VOICE-ACTUATED MICROPHONE

A voice-actuated microphone, desigued for use with a battery-operated transistorized tape recorder equipped with a jack for remote mike control, is now available as the No. 99-4604.

An electronically controlled relay in the mike automatically starts the recorder when sound is picked up and automatically stops the recorder when the sound stops. The unit is equipped with a 3 -position switch for "voice-control/off/ remote" functions. In "voice-control" position the six-transistor circuitry operates the amplifier and electronic relay in the mike. In the "remote" position, the microphonc operates as a dynamic mike with remote "on-off" switching. There is an additional control for adjusting semsitivity of the microphone above the ambient noise levels. The mike comes complete with cord, phags, and instructions. It requires a 9-volt battery for operation. Lafayctte

Circle No. 12 on Reader Service Card

HOME CARTRIDGE TAPE SYSTEM

The Model HW-12 is a cartridge stereo tape system designed for use in the home. The new

unit will play both 4 -track and 8 -track stereo cartridges and will accommodate all cartridge sizes from single "Mini-Paks" to full-size quads, the latter featuring up to $2 \frac{1}{2}$ hours of stcreo entertainment.
The system is housed in a walmut finished enclosure with optional matching walnut speaker enclosures. The conclosurers have a low silhouctte and are designed to accommodate twin $3 " \times 5$ " full-range speakers. Muntz Stereo-Pak

Circle No. 13 on Reader Service Card

CB-HAM-COMMUNICATIONS

FM MOBILE RADIO

A compact, 120-watt FM two-way radio which can be operated on from one to six channels in the 148-174 MIIz band has just been introduced as the Model DT76.

Battery drain is extremely low and the radio

employs solid-state circuitry throughont except in the final r.f. power amplifier stage of the transmitter in which an instant-leat tube is used.
Automatic frequency control in the receiver locks it to the incoming signal, minimizing clipping distortion and electrical noise interference. A current-saver circuit limits standby current from a 12 -volt battery system to only 0.11 ampere. Transmission at full power is achieved in a fraction of a second.
The transmitter r.f. output is 120 watts between 148 and 162 MHz and 110 watts be tween 162 and $17+\mathrm{MHz}$. Spurions emissions are down more than -85 dB and distortion is less than 4%, according to the company.

The transmitter-receiver unit is designed for trunk mounting and is only $15^{\prime \prime}$ long x $9^{\prime \prime}{ }^{\prime \prime}$ wide $x+1 / 2$ " high. Weight is 15 pounds. The remote-control unit is provided with volume, channel selection, and squelch controls. Kaar

Circle No. 141 on Reader Service Card
OVERLAY TRANSISTOR FOR MARINE RADIO
A new high-power r.f. amplifier for use in marine communications equipment operating in the 2 to 3 MHIz frequency band has been introduced as the $40+44$.

This new 20-watt overlay transistor, operating from a 13 -volt power supply, is primarily intended for marine communications equipment as a class B and C r.f. amplifier for use in medium-frequency service with amplitude modulation.

The $40+4+$ exhibits a typical gain-bandwidth product of 100 MHz at 3 amperes and produces an output of 20 watts minimum with a 1 -watt r.f. power input at 2.5 MHz . It is an epitaxial silicon "n-p-n" transistor with the overlay emitter clectrode construction and is packaged in a JEDEC-type TO-3 case.

Full technical data and operating parameters will be supplied upon request. RCA Electronic Components

Circle No. 142 on Reader Service Card

SPLIT-CHANNEL RADIOS

Announcement has been made of the availability of new $450-470 \mathrm{MHz}$ radio equipment which meets the split-channel requirements tecently announced by the FCC. These new rulings, built around $25-\mathrm{kHz}$ chantuel spacing rather than $50-\mathrm{kHz}$ spacing, will make operational changes necessary for present owners of u.h.f. radio equipment and will eventually make additional channels available for more users. Use of full split-channel equipment is authorized by November of this year and mandatory by November 1, 1971.
Model prices and installation cost data on the firm's line of radio equipment meeting these new specifications will be forwarded on request. Motorola Communications

Circle No. 143 on Reader Service Card

SOLID-STATE CB RIG

A new 23 -channel, solid-state CB rig has just been introduced as the TR-23S. The new unit features transmitter silicon transistors manufactured to a higher peak voltage than previous-

ly available, plus new zener diode protection. The unit measures $53 / 4^{\prime \prime}$ w. x $61 / 4^{\prime \prime}$ d. $x \quad 17 / 8^{\prime \prime}$ h. It comes complete with microphone, illuminated " S " meter, illuminated channel selector, and d.c. cord. Crystals are supplicd for all 23 channels. Courier

Circle No. 14 on Reader Service Card

COAXIAL SWITCH FOR HAM/CB

A new single-pole, two-position coaxial switch designed for either ham or CB applications is now available as the Model 2 P. The switch has a current-carrying capacity of 9 amperes and a power-carrying capacity of 1000 watts. It may be inserted into the system without measurable insertion loss or impedance problems, according to the manufacturer.

The switch can be installed in line and is designed for panel mounting, if desired. The average initial contact resistance on the switch is 5 milliohms. It has a power rating of 1 kW AM or 2 kW p.e.p. for SSB. Clips and rotor contacts are silver-plated brass and the switch is insulated with electrical-grade laminated phenolic which provides protection against voltage breakdown of critical parts to 1000 volts r.m.s. Gold Line Connector

Circle No. 15 on Reader Service Card

COMMUNICATIONS RECEIVER

The SB-301 ham-band communications receiver is an improved version of the firm's SB-300 kit receiver. It offers increased sensitivity, full RTTY provisions with an RTTY position on the mode switch. 15 to 15.5 MHz coverage for WWV reception, built-in switch-

selected automatic noise limiter, and frontpancl switching for control of the optional 6and 2 -meter converters.

The receiver provides 80 through 10 meter ham-band coverage for recciving AM, c.w., upper and lower sideband SSB, and RTTY. It has a crystal-controlled front-end and a preassembled and calibrated linear master oscillator for linear tuning and maximum stability. It is capable of transceiver operation when used as a companion to the SB-40l transmitter. There is a matching speaker kit. SB-600, available for use with the receiver. I leath

Circle No. 16 on Reader Service Card
CB TRANSCEIVER FOR MARINE USE
The new "Ranger" transceiver has been especially designed to provide CB communications between boats or between a boat and shore.
The 11-channel, all-transistor model features heavy welded steel chassis, spray-coated for protection from moisture and salt elements, and a splash-proof speaker. The circuit board is constructed of epoxy glass for long life while the circuitry includes a Collins mechanical filter for maximum selectivity. A TO-3 power transistor provides 100% duty-cycle capability.

The operator can use plug-in type crystals
for any 11 of the 23 CB channels. For mobile operation, 12 volts d.c. is required or the unit may be operated as a base station with the optional 120 -volt, $60-\mathrm{Hz}$ power supply. There is provision for an external speaker or hailer facility.
The transceiver measures $27 / 8^{\prime \prime}$ x $6^{3 / 8 \prime} \times$ $7^{1: 3 / 17 " .}$ Regency

Circle No. 17 on Reader Service Card

PRIVATE TONE CALLER

The "Priva-Com III" transistorized private tone caller features ceranic and resonant tuning fork circuitry instead of conventional reed relays. It is designed to be used with 12-volt solid-state CB transceivers. It features 9 -transistor, 2-diode circuitry with simple-to-operate

push button switches for standby, normal, call, and reset. There is a volume control and indicator light.

The unit, which measures $1^{\circ} 1 i_{i \prime \prime} h . x 4^{\prime \prime}$ w. x $53 / 4^{\prime \prime}$ d. is supplied with a mounting bracket, two plug-in tuning fork filters, and connecting cable with plug for the firm's HB-500A, HB555 , HB-525A, HB-600, and HE-20T CB transceivers. A nodel for use with tube-type transceivers is also available. Lafayette

Circle No. 18 on Reader Service Card
CB TRANSCEIVER/P.A. SYSTEM
A new five-watt, solid-state $C B$ transceiver/ p.a. system with the accent on mobile operating convenience and safety has been introduced as the Model CB-21.

The new unit contains a 17 -transistor, 8 clannel transceiver with a dual-conversion receiver. Features which provide increased convenience and safety inclade concentric volume and squcleh controls, illuminated channel selector, and an easily operated rocker switch which converts the CB-21 into a p.a. system with 4 watts of low-distortion andio output.

The CB-21 measures $2^{\prime \prime}$ w" high x 6 " wide $x 8^{\prime \prime}$ deep and weighs approximately $51 / 2$ pounds. It connes complete with chanmel-1I crystals for transmit and reccise. An optional power supply for $110-125$ volt a.c. operation is available. Hallicrafters

Circle No. 19 on Reader Service Card

SHORT-WAVE PORTABLE

The new "Globepacer" short-wave portable receiver is all-solid-state and features coverage of 11 bands, including AM and FM broadcast bands as well as long-wave and short-wave scrvices.

The receiver has a horizontal slide-rule dial with rotating cylindrical dial scale for precise and accurate tuning. It features tone control and a.f.c. to eliminate drift on FM. A large ferrite bar antenna is used for the long- and

medium-wave bands while a multi-section whip is provided for short-wave and FM reception. The two-way speaker system consists of a $4^{\prime \prime}$ woofer and a $11 / 2^{\prime \prime}$ tweeter. There are separate jacks for external antenna, earplone, a.c. (with optional adapter), speaker, and phono. The unit measures $13^{\prime \prime} \times 8^{\prime \prime} \times 5^{\prime \prime}$ and requires six "C" cells for operation. Lafayette

Circle No. 20 on Reader Service Card

MARINE RADIOTELEPHONE

A new gencration marine radiotelephone operates in the v.h.f. band with the static-free clarity of FM radio, according to the manufacturer. The new set is designed to transmit at full power with an antenna as short as 20 inches and needs no ground plate attached to the boat's hull.

The new 12 -channel two-way radio can be used to talk with other boats, call the Coast Guard for assistance, or talk to anyone ashore through the marine operator. Range of the new radiotelephone is up to $40-50$ miles. Raytheon

Circle No. 21 on Reader Service Card

MANUFACTURERS' LITERATURE

vOLTAGE REGULATORS

A new 12-page illustrated brochure describing the "Solatron" line of line-voltage regulators is now available. Complete electrical and mechanical specifications for single-phase, three-phase delta, and three-phase wye regulators are outlined in the booklet.
In addition, the publication (VR-201) describes a number of housings for the instruments as well as auxiliary harmonic filters. Sola

Circle No. 144 on Reader Service Card

TEST EQUIPMENT

A new 16-page 1967 test equipment brochure covering a complete line of v.o.m.'s and adapters, v.t.v.m.'s, general-purpose microtesters, oscilloscopes, temperature-measuring instruments, and accessories has been published. Featured in the booklet is the company's newest addition, the Model 160 palm-sized v.o.m. Simpson

Circle No. 22 on Reader Service Card

SPEAKER CATALOGUE

A new 2t-page illustrated booklet covering a full line of high-fidelity somad products has been issued. Described in the brochure are full-size and bookshelf loudspeaker systems; unitary, dual-cone, and coaxial loudspeakers; speaker system components including woofers, twecters, crossover networks, and balance controls; and three-way loudspeaker systems kits.

Featured in the catalogue (No. 165-M) are sections on designing speaker enclosures and choosing loudspeakers. Jensen

Circle No. 23 on Reader Service Card

ELECTRONIC COMPONENTS

A full line of composition- and wirewoundelement potentiometers, field-assembled controls, power rheostats, resistors, and miscellancous components is described and illustrated in a new 32 -page 1967 catalogue. Complete technical specifications and dimensional drawings are provided for all devices listed. Clarostat

Circle No. 145 on Reader Service Card

MAGNETIC SHIELDING

A new 36-page illustrated design handbook (No. B-9236) covering all aspects of magnetic shictding in low-frequency applications is now available. Topics discussed include design parameters; choice and comparison of materials; cylindrical, conical, multiple (nested), and wrap-around shicleds: heat treatment; and shicld evaluation. Westinghouse

Circle No. 146 on Reader Service Card

NICKEL-CADMIUM BATTERIES

Introdnced in 10 -page illustrated brochure is the company"s new line of scaled, rechargeable nickel-cadmium batteries and power packs. The booklet outlines the firms automated produc-
tion progress and describes in detail various performance characteristics of the new batteries. Texas Instruments

Circle No. 147 on Reader Service Card

THERMOCOUPLE CALIBRATION

Of special interest to those involved in temperature measurement studies is a new 24 page booklet containing a number of thermocouple calibration tables and alloy data charts.

The information offered in Bulletin CT-2 includes useful ranges for all types of thermocouples; sheathed material temperature characteristics: melting temperatures of important materials; and suggested extension wire selection. Omega Engineering

Circle No. 148 on Reader Service Card

SOLD:R ALLOYS

More than 150 different solder alloys are described in a new 4 -page technical bulletin (No. SA-64). Data is arranged in convenient chart form and includes percentage compositions of solder alloys as well as their melting points in both liquid and solid states in centigrade and Fahrenheit. Senii-Alloys

Circle No. 149 on Reader Service Card

PLASTIC FOAMS

A new illustrated wall chart on "Eccofoam" plastic and ceramic foams is now available. Eighteen different materials are covered, including rigid and flexible foam-in-place liquids, iigid and flexible plastic sheets, and powders. Temperature, density, compressive strength, thermal conductivity, water absorption, and dielectric constant are given for each material listed. Emerson \& Cuming

Circle No. 150 on Reacier Service Card

TEFLON TUBING

A new specification chart giving wall dimensions and tolerances of extruded TeHon tubing is now available. Listed on the chart are inside diameter dimensions as well as wall dimensions of standard wall, thin wall, and lightweight in AWG sizes from 30 to 0 plus fractional sizes. Zeus

Circle No. 151 on Reader Service Card

PREFABRICATED CHASSIS

A new 12-page catalogue describing the "Omniclosure" line of prefabricated chassis kits and parts for EIA rack mounting, including chassis drawers and card drawers, has been issued. Basic kits consist of the front panel, side frames, cross plates, sliding top and bottom perforated covers, handles, and screw package. Techmar

Circle No. 152 on Reader Service Card

CONTROL KNOBS

A 4-page illustrated product bulletin on the company's new line of "DR Series" control knobs has been issued. The devices are available in a number of finishes and sizes in round, pointer, and concentric styles. Complete specifications are provided in the booklet. National Radio

Circle No. 153 on Reader Service Card

CABLE-SPLICING KITS

Cable-splicing and cable-terminating kits for a variety of shielded and unshielded installations, both indoor and outdoor, are described in a new 24-page catalogue (No. 400). The booklet supplies illustrations, material lists, crosssection drawings, and ordering information for AWG/MCM cable sizes through 15 kV ungrounded for a number of splices and terminations. Crescon

Circle No. 154 on Reader Service Card

POWER TUBES

More than 740 industrial and power tubes are described in a new 32-page technical guide (No. B-9234). Included arc radio-frequency oscillators and amplifiers, audio-frequency amplifiers, gas and vacuum rectifiers, ignitrons,
thyratrons, and special-purpose sensing and control tubes. Specifications, base diagrams, and electrical characteristics are provided for all devices covered.
Featured in the booklet is an 8-page direct interchangeability listing that covers major American electronic tube manufacturers. Westinghouse

Circle No. 155 on Reader Service Card

SOLDERING GUNS

A new 4-page illustrated catalogue featuring the company's complete line of single-pust-type soldering guns and kits for the hobbyist, home craftsman, and industrial user has been released. All units are complete with built-in working spotlight, trigger switch, and comfortable pistolgrip design.
Also listed in the booklet are a number of extra tips and accessory items. Wen

Circle No. 24 on Reader Service Card

PUSH-BUTTON SWITCHES

Described and illustrated in a 22 -page catalogue (No. PBS-1) is an extensive new line of push-button swit:hes. The booklet emphasizes the modular des.gn of the new switches and shows how the nodules can be used in a great varicty of combinations to solve a wide range of switching problems.

Complete mechanical, electrical, and environmental specifications are inciuded in the catalogue, along w.th dimensional drawings and a glossary of engineering nomenclature. Centralab

Circle No. 156 on Reader Service Card

FOUR-INPUT FLUIDIC DEVICE

A new data sheet which describes a fourinput bistable device that provides Hip-Hop logic with double the sensing capability of a twoinput bistable device is available.

The publication explains applications in switching, pneumatic pulse detection, volatile memories, pulse amplification, and shaping. Detailed information is provided on installation, performance characteristics and curves, and dimensions. Corning

Circle No. 157 on Reader Service Card

SOLID-STATE COUNTERS

A new six-page catalogue which lists a complete line of electronic solid-state counters and frequency instruments has just been issued.
Complete specifications and prices are given on counter-timers, bi-directional counters, variable time-base counters, and preset counters. Over 40 standard and special application units are included.

In the section devoted to frequency instruments are descriptions and prices on d.c.-tofrequency converters, frequency-to-d.c. units, frequency detecting switches, frequency meters, and frequency deviation meters. Anadex

Circle No. 158 on Reader Service Card

Letters from Our Readers

(Continued from page 12)
riocls of time (I recently checked a Weston galvanometer built in 1895 which is still within 1% accuracy), while v.o.m.'s, v.t.v.m.'s, and other bench-type equipment subjected to hard usage sometimes do require remagnetization.

Marold E. KNippenberg Augusta, Gal.

COMMUNICATING WITH COMPUTERS

 To the Editors:This is in reference to the article by Jim Kyle "Communicating with Computers" which was published in the February, 1967 issue of Electrovics Wonlis.

This article was extremely well dome; however, we did detect one minor error in Table 1 . The Baudot code for the character "H" should be 24 and not 21 as indicated. The number 21 indicates the character " Z ".

Captr Robert T. Kuntz, USAF Chief, Q Amalysis Section
AF Tech. Applications Ctr.
Washingtom, D. C.

SHURE V-15/II CARTRIDGE

To the Editors:

I believe the "EW Lab Tested" review of the Shure V-15/II cartridge in the April issue contains some errors. The IM distortion grapla percent distortion scale descends from 1% to $.07 \%$ and $.05 \%$. This should descend from 1% to $.7 \%$ and $.5 \%$. Also, in the text (p.92): ". . . but below these levels it is an insignificant . O5\%." This certainly would be phenomenal! I believe this should have been "insignificant .5\%."

The "EW Lab Tested" reports are among the select few which we believe are honest and accurate. Many of our customers discuss these reports with us, so I am sure the above noted misprints will be thoroughly discussed in the weeks and months that lie ahead! Our own laboratory measurements indicate that IM distortion should be the $.5 \%$ figure, not the $.05 \%$.

Electronics World continues to improve its coverage of stereo. You certainly have upgraded the magazine over the past several years. Although many of us never take the time to write you, we certainly do appreciate the good work you are doing.

> David Chaig;
> Craig Auclio Iaboratory Rochester, N. Y.

Reader Craig is, of course, correct. The cartridge is a good one but not quite that good. We have misplaced the decimal points on the graph as well as in the text reference, as mentioned in the above letter-Editors

ELECTRONICS MARKET PLACE

COMMERCIAL RATE: For firms or individuals offering commercial products or services. $70 \&$ per word (Including name and address). Minimum order COMMERCIAL RATE: FOr firms or individuals offering commercial products or sed advertising agencies. Frequency discount: 5% for 6 months; 10% for 12 months paid in advance.
READER RATE: For individuals with a personal item to buy or sell. $40 \notin$ per word (including name and address). No Minimum! Payment must accom. pany copy.
GENERAL INFORMATION: First word in all ads set in bold caps at no extra charge. Additional words may be set in bold caps at $10 \notin$ extra per word. All copy subject to publisher's approval. Closing Date: 1st of the 2 nd preceding month (for example, March issue closes January 1 st). Send order and remittance to: Hal Cymes, ELECTRONICS WORLD, One Park Avenue, New York, New York 10016

FOR SALE

JUST starting in TV service? Write for free 32 page catalog of service order books, invoices job tickets, phone message books. statements and file systems. Oelrich Publications, 6556 W. Higgins Rd. Chicago, III. 60656
GOVERNMENT Surplus Receivers, Transmitters Snooperscopes, Radios, Parts, Picture Catalog 25\&. Meshna. Nahant, Mass. 01908.
METERS-Surplus, new, used, panel and portable. Send for list. Hanchett, Box 5577, Riverside, Calif. 92507
INVESTIGATORS, FREE BROCHURE, LATEST SUBMINIATURE ELECTRONIC SURVEILLANCE EQUIPMENT. ACE ELECTRONICS, 11500-J NW 7TH AVE., MIAMI, FLA. 33168.
R.F. CONVERTERS World's largest selection. Also CCTV cameras, etc. Lowest factory prices Catalog 10 e. Vanguard, 196.23 Jamaica Ave. Mollis, N.Y. 11423.
CONVERT any television to sensitive big-screen oscilloscope. Only minor changes required. No electronic experience necessary. Illustrated plans, $\$ 2.00$. Relco-A22, Box 10563, Houston, Texas 77018.

RECTIFIERS, TRANSISTORS \& COMPONENTS

6 tube Amplifier. New 4 lbs. 2 @ $1 / 4$ Watt Resistors, asstd. $50 @$
Ceramic Disc Capacitors, asstd. 75 @
Precısion Resistors, asstd. 50 @
Pots. 2-4 Watt, asstd. 15 @
R. F. Coils asstd. 25 @

Axial Lead mica. asstd.
Tantalum Capacitors, asstd. 10 @
Mercury Battery 5.4 V
2 N 2944 Sil. Chopper To. 46
50 W . Zeners 10 to 19 Volts
50 W . Zeners 10 to 19 Volts

$\$ 1.98$

2N1021, Ger. Power, 7amp, 100 V
2N456A, 7 A .40 V . Ger. Power To 2N456A, 7A. 40V. Ger. Power To -3 $\quad .60$ 2 N1718. Sil. Power, $10 \mathrm{~W} ., 60 \mathrm{~V}$., Heatsink, $3 @ 1.00$ 70 amp Stud, 50PIV-\$2.50; 100PIV

Surprise Kit, 10 lbs. components
Epoxy Hi-Vol diode, $200 \mathrm{ma}, 3000 \mathrm{PIV}$
Computer Board, T0. 3 Power, Heat Sink
TO-5. untested 5 @
2N389.85W 60 V . TO53
2N3707-11 Asstd. Plastic Silicon Xisters 20 @ 2N3704-3706, Asstd. Plastic Sil. Xisters $10 @$ 2N2151, Sil. Power Xister
2N1009 Ger. Min. Xister untested 30 @
3N35 Tetrode, NPN, untested 5 @
Ger. Diodes, Asstd. 15 @
2N45A, 1 A. 80V. Ger. Power, T0 - 3 Sil. Diodes, Switching, Signal, Asst. 15 @ 2N118, Silicon, NPN
2N1149 Silicon, NPN 2N1149 Silicon, NPN untested 2N1714, Silicon Power 10 W . 60 V . Computer Boards, Parts Free, per tr Computer Boards, Parts Free, per tr
Germantum Power, $2 \mathrm{~N} 457 \mathrm{~A}, 7 \mathrm{~A}: 60 \mathrm{~V}$ Silicon Power 40 W, 2N1047,T0-572@ Tophats 750 ma., 200PIV-8t, 400 . 12¢ 600P 1N34A. untested
Varicaps, 27, 47, or 100 pf With any $\$ 10.00$ Order any $\$ 1.00$ item Free. On $\$ 25.00$ order any (3) $\$ 1.00$ items Free. Catalog.
Minimum order $\$ 3.00$ plus postage, C.O.D.'s 25%
ELECTRONIC COMPONENTS
Post Office Box 2902 Baton Rouge, Louisiana 70821

METAL-TREASURE Detectors, transistorized. lightweight. $\$ 39.95$ to $\$ 89.95$. Free Catalog. JETCO INSTRUMENTS, Box 2880-E, Huntsville, Texas 77340
INTEGRATED CIRCUIT Experiment Kit. $\$ 6.95$. Others. Catalogue 254 . Kaye Engineering, Box 3932, Long Beach, Calif. 90803.
NEED RESISTORS? All standard values-only $5 \nsubseteq$ each ($1 / 2$ watt). FREE bargain sheet. Crown TV Service. 175 Davey Street, Bloomfield, New Jersey 07003.
MARCONI test equipment-brand new TF-2002 AM generator, TF-2701 bridge, TF-1041C volt meter, Eddystone EC-10 comm. receiver, TF 1060/3 UHF generator. 15% off, one each, only offer. J. Perez, Box 1268, Mayaguez, Puerto Rico 00708.
JAPAN \& Hong Kong Electronics Directory. Products, components, supplies. 50 firms-just $\$ 1.00$. Ippano Kaisha Ltd., Box 6266, Spokane, Washington 99207
FREE ELECTRONICS (new and surplus) parts catalog. We repair multimeters. Bigelow Electronics, Bluffton, Ohio 45817.
DETECTIVES! Free brochures! Electronic Surveillance devices. SILMAR ELECTRONICS, 3476 N.W. 7th Street, Miami, Florida 33125.

SUDYMONT acoustic baffles. Plans $\$ 5.95$; Baffle $\$ 26.95$; with cabinet from $\$ 39.95$. Send speaker size. SUDYMONT, 120 Liberty Str., NYC. 10006. MUSIC LOVERS, CONTINUOUS, UNINTERRUPTED BACKGROUND MUSIC FROM YOUR FM RA. DIO, USING NEW INEXPENSIVE ADAPTOR. FREE LITERATURE. ELECTRONICS, 11500-Z NW 7th AVE. MIAMI, FLORIDA 33168 .
MESHNA'S Transistorized Converter Kit $\$ 5.00$. Two models converts car radio to receive 30 50 mhz or $100-200 \mathrm{mhz}$ (one mhz tuning) Meshna, No. Reading, Mass. 01864.
FREE CATALOG-Loads of Electronic Bargains R.W. Electronics, Inc. 2244 South Michigan Ave., Chicago, Illinois 60616.
NEW supersensitive transistor locators detect buried gold, silver, coins. Kits, assembled mod els. $\$ 19.95$ up. Free catalog. Relco-A22, Box 10563, Houston, Texas 77018.

The price is not a mis-print! We have been supplying top service organizations for 15 years with our top quality new, used and factory-second receiving tubes! They are all individually boxed, branded, codedated and guaranteed for 1 year! We have over 2500 types in stock continuously! You may order any type! Our stock covers 45 years of tube manufacturing!
If your order is under $\$ 5.00$ send $50 \not \subset$ handling! All postage charges paid by Nationwide. Canadian and foreign please send approximate postage! Send for complete free tube list!
NATIONWIDE TUBE CO. (EW)
1275 Stuyvesant Ave.
Union, N.J. 07083 (201)688-1414

SURVEILLANCE EQUIPMENT-NEW HIGH PERFORMANCE SUBMINIATURE MODELS. ELEC TRONIC COUNTERMEASURE DEVICES TO PRO TECT PRIVACY. FREE DATA: SECURITY ELEC TRONICS-EW. 15 EAST 43RD STREET, NEW YORK, N.Y. 10017.
CRYSTALS . . . largest selection in United States at lowest prices. 48 Hr . delivery. Thousands of frequencies in stock. Types include HC6/U, HC18/U, FT-241, FT-243, FT-171, etc Send iot for catalog with oscillator circuits. Refunded on first order. Jan Crystals, 2400 E Crystal Dr., Fort Myers, Fla. 33901
PARABOLOID MICROPHONE MOUNTS for field recordings. One commercial large spun aluminum long focus. Three fiberglass short focus form portable if slung. Used excellent. Send stamped envelope for details. Carl Frank, RR\#1, Rochester, Minnesota 55901
TELEPHONE RECORDER-ACTUATOR (TWI-007). SOLID STATE MODULE AUTOMATICALLY TURNS TAPE RECORDER, AMPLIFIER, INDI. CATOR LIGHT ON WHEN TELEPHONE IN USE. CONNECTED ANYWHERE ON LINE. SIMPLE INSTALLATION INSTRUCTIONS INCLUDED. PREPAID $\$ 22.85$. SURVEILLANCE RECORDERS: (TWI-1000), (TWI-1010). TWILIGHT ELECTRONICS, BOX $11595 \cdot$ W, ST, LOUIS, MISSOURI 63105

U.S. GOV'T ELECTRONIC SURPLUS

STEP-EY-STEP AUTOMATIC SWITCH

TYPICAL EUYS FROM OUR 1967 CATALOGS
$\$ 350.00$ Geared 2-hp Eattery Golf Car Moter $\$ 24.95$ \$ 15.00-Westingheuse DC Ammeter, 0 to 308 $\$ 7.11$ \$ 40.00-Vacuum Pressure Pump, 12-yDC \$11.95

(ite al

EEND 25C COIM OR STAMPS FOR 2 MAIN CATALOG

SURPLUS CENTER

DEPT. EW-067 LINCOLM, NEBR. 6850
CIRCLE NO. 95 ONREADER SERVICE CARD

GET IT from GOODHEART!
EVERYTHING UNCONDITIONALLY GJARANTEED. RECENT NEW ARRIVALS
Tektronix $=545$
Anaral Precision Hual Trate Siol-ntar 887.5 Dumont - tial
L\&N Wheatstone
Dynamomear Meters.
Kintel Meaer Calibrator.
Other reg. Dwr splies
North. Engrg Counter
LP. STANDARD SIGNAL GENERATORS

AN URM-25D or 25
Buanion Univercers
Buonion Univerrers
Meas. ciorp. Mod.
Meas. Corp. Mod. 80
Hewl. Pack.
Geal. Radio $=1021$
Len radio $=02+A V$
TS $-608 / U+140$
TS-1.8A/U:

PRD-303 or TS. 62
Potarad
SS.
FM \& AM/FM SIGNAL GENERATORS 120

USM-16:
Kay Megasweep
PRD =907: $11:-11$
$\begin{array}{ll}\text { CMC } & =226 \mathrm{~A} \\ \mathrm{PRD} & =540\end{array}$
Digital Voltmet

We ALSo bur
R. E. GOODHEART CO. INC.

Dox 1220-A, Beverly Hills, Colif. 90213. Phones: Area 213, omice 272-5707, mesuases 275-3342 CIMCLEE NO. 111 ON READER SERVICE CARD
CLASSIFIED ADVERTISING ORDER FORM
Please refer to heading on first page of this section for complete data concerning terms,
frequency discounts, closing dates, etc.

ELECTRONICS ENGINEERING AND INSTRUCTION

ELECTRONICS! Associate degree-29 months Technicians, field engineers. specialists in com munications. missiles, computers, radar, automation. Start September, February. Valparaiso Technical Institute, Dept. N, Valparaiso, Indiana 46383.

LEARN ELECTRONIC ORGAN SERVICING at home. All Makes including transistors. Experi mental kit-troubleshooting. Accredited NHSC. Free Booklet. NILES BRYANT SCHOOL, 3631 Stockton, Dept. A, Sacramento, Calif. 95820.
HIGHLY-effective home study review for FCC commercial phone exams. Free literature! COOK'S SCHOOL OF ELECTRONICS, P.O. BOX 517. Monticello, Ky. 42633.

ASSOCIATE Degree in Electronics Engineering earned through combination correspondence classroom educational program. Free brochure Grantham Technical Institute, 1505 N. Western Ave., Hollywood. Calif. 90027
FCC LICENSE in six weeks. First class radio telephone. Results guaranteed. Elkins Radio School, 2603C, Inwood, Dallas, Texas 75235.
WANTED! TV-Radiomen to learn aircraft electronics servicing. Numerous job openings ev erywhere. Write: ACADEMY AVIONICS, Reno/ Stead Airport, Reno, Nevada 89500.
CORRESPONDENCE COURSES-B.SC.. Engineering, Electronics. Catalog \$1. Canadian Institute of Science \& Technology, 263G Adelaide St. W., Toronto.
HIGHLY effective home study course in Elec tronics Engineering Mathematics with circuit applications. Earn your Associate in Science Degree. Free literature. COOK'S INSTITUTE OF ELECTRONICS ENGINEERING, P.O. Box 517 , Monticello, Ky. 42633 (Established 1945).
RE1 First Class Radio Telephone License in (5) weeks Guaranteed. Tuition $\$ 295.00$. Job place ment free. (KANSAS CITY) R.E.I., 3123 Gillham Road, Kansas City, Missouri. Telephone WEl5444. (SARASOTA) R.E.I., 1336 Main Street Sarasota, Florida 33577, Telephone 955.6922.

OUR TRANSISTORS \& RECTIFIERS ARE GUARANTEED TO WORK

All transistors are checked for min imum voltage \& gain to insure our customers a good transistor within fiers costing over $\$ 10$ are checked for forward voltage and leakage as well as PRV. The gates on our SCR's are also checked. All nonoperable units will be refunded or exchanged immediately. We will stand on our reputation for quality products and service.
DO NOT CONFUSE OUR PROD. UCTS WITH THOSE OF SOME OF OUR COMPETITORS. A defective semiconductor is worthless or worse. Users of the above mentioned items in large quantities send us your specifications. We feel we can meet them at a competitive price \square GLASS DIODES color coded $6 E$. Silicon 20/\$1.00 10 WATT 7ENERS State desired voltages. Ea. \$.75 SILICON BILATERAL SWITCH. Replaces two SCR's by firing in either direction when breakdown voltage is exceeded. Used in light dimmers etc.

GaAs VARACTORS 1. AP-6, etc. 70 GHz at 150 MW. Ea
Integrated Circuits
 Sllicon Power Rectitiers

PRV	3 A	20 A	40A	240A
100	. 10	-40	1.00	5.00
200	. 20	60	1.50	7.50
400	. 25	sb	2.00	15.00
600	. 35	1.20	2.50	20.00
800	. 45	1.50	3.00	
1000	65		4.00	35.00
1.25 AMP (GLASS AMPS) A controlled ava. whin the rated PRV may be ex cecded without the rectitic breaking down.				
			$\begin{aligned} & \text { Top } \\ & \text { EDOXy } \end{aligned}$	Hat 750
			PRV	
			100	. 17
			200	1.097
			400	12
PRV			800	1.20
100			нao	. 25
	.13		1000	, 50
400		0	1200	. 65
B00		5	1400	. 35
800			1800	1.80
1000	1 -.		1800	1.20
Sillcon Controf Rectifiers				
PrV		A	1A	204
		35	. 50	. 80
100		0	70	1.35
200		5	1.05	1.90
300			1.60	2.45
400			2.10	2.85
500			2.80	3.50
600			3.00	
700	12.		3.50	
1000	1	1	5.00	1

\square "N" Channel Fet's Similar To Chopper Used As Amp, Switch Each

TUBES

FREE Catalog. Electroric parts. tubes. Wholesale. Thousands of items. Unbeatable prices. Arcturus Electronics ZD, 502-22 St., Union City, N.J. 07087

RECEIVING \& INDUSTRIAL TUBES, TRANSISTORS, All Brands-Biggest Discounts. Technicians, Hobbyists, Experimenters-Request FREE Giant Catalog and SAVE! ZALYTRON 469 Jericho Turnpike. Mineola, N.Y. 11501.
TUBES, SEMICONDUCTORS, ELECTRONIC EQUIPMENT \& COMPONENTS. Quality merchandise ondy! Serving engineers, Purchasing Agents, TV/HiFi Servicemen and Hams for 20 years. Write for Catalog or call 212.WA 5-7000. BARRY ELECTRONICS, 512 Broadway, New York, N.Y. 10012
TUBES -334 each. Year guarantee. Tuner Cleaner $\$ 1.09$. Free catalog. Cornell, 4213-W University, San Diego, Calif. 92105.
DON'T BUY TUBES-Radio, TV-Xmitting, spe-cial-purpose types until you get our price list! Lowest prices in U.S.A. 5,000 types-Guaraneed Brand New. Send postcard for TV.Special Purpose Price List. UNITED RADIO COMPANY, P.O. Box 1000, NEWARK, N.J. 07101.

WANTED

QUICKSILVER. Platinum, Silver, Gold. Ores An. alyzed. Free Circular. Mercury Terminal. Nor wood. Mass. 02062
QUICK CASH . . . for Electronic Tubes, SemiConductors, Equipment (Receivers, Transmitters, Scopes, Vacuum Variables, etc.) Send lists now! Write: BARRY ELECTRONICS, 512 Broadway. New York. N.Y. 10012 (212-WA 5-7000). WANTED TO BUY-TV tuners. Any make, any quantity. Write. J. W. Electronics, Box 51 B , Bloomington, Indiana 47401
WANTED to buy established 2 way communications business in South Atlantic U.S. Write James R. Driver, 1710 Pamela Drive, Richmond, James R.
USM-29 Freq. Meter Tech. manual. Ed Perry, 1009 Pomona, Albany. California 94706.

GREGORY ELECTRONICS
Reconditioned \& Used FM 2-WAY RADIO SAVINGS
Partial list-Send for New '67 Catalog

EXTRA SPECIAL
MOTOROLA CONTROLHEAD MODEL
OP9022, with microphone
sg. 50
MOTOROLA P33 Serres Pack Set 5 Watt 150170 MC with Nicad Supply and Nicad
Batteries
S5.00

MOTOROLA T41GGV $30-50 \mathrm{mc} 6 / 12 \mathrm{~V}$,
30 watt vibrator power supply fully narrow
banded complete with accessories $\$ 148$ banded complete with accessories $\$ 148$ less crystals and antenna
Add $\$ 45.00$ for tuning to desired frequency and new antenna
MOTOROLA $30-50 \mathrm{mc} 6 / 12 \mathrm{~V}$,
T51GGV vibrator power supply

Fully narrow banded (TX \& RX)
Above price include accessories less crystals and an-
tenna (less accessories, deduct $\$ 30.00$)
tenna (less accessories,
To tune unit to desired frequency including To tune unit to desired
new antenna add $\$ 45.00$

GE DT03
GE
150-1 70 mc 5 channel telephone unit
with duplexer less accessories ... $\mathbf{\$ 4 8}$
RCA 12 VOLT CRYSTAL OVENS
PER DOZEN $\$ 36$

4ET5
6v 30 watt $40.50 \mathrm{mc} \ldots \$ 10$

4ET5
12 v 30 watt 40.50 mc
\$15
G.E. PACERS-EG43SA6 $150-170 \mathrm{mc}$ Transis torized Power Supply 13.15 watts, 12 V Front Mount (Complete ac cessories, less crystals and an- $\mathbf{\$ 1 0 8 . 0 0}$
tenna)..........................$~$

We Buy Late Model Equipment for Cash

SiM. to $2 N 728$. A hig! fre quency T0.18 unit extending to the U

SIM. to 2N995 (PNP). Silicon in T0. 18 case. 500 MW power, to 18

SIM. to 2N2875 (PNP). Silicon 20 watts with 30 MHz cut off

SIM. to 2N1648 (NPN) high voltage 20 Watt silicon unit, used in power output stages \& power transistor drives $\quad . \quad \$.75$
\qquad NPN dual transistors. A $10-5$ high gain 100 MHZNPN silicon transistors $\quad \$ 1.50$
\square PNP dual transistors. A TO-5 package (2N2807) containing 2
 \square High voltage NPN 150v. VBCBO at 2.5 A ., High HFE in TO. 66 pack

High voltage assemblies 6000 v . at 150 mils. These silicon assemblies may be put in series to
achieve high voltages
$\$ 1.50$
$\square \begin{aligned} & \text { DUAL } 20 \mu \mathrm{~F} \text { at } 350 \mathrm{~V}_{3 / \$ 1.00}\end{aligned}$
\square 28-101 P CERAMIC
TRIMMERS 6/\$1.00 Terms: FOB Cambridge, Mass.

Send check or Money Order. Include Postage, Average Wt per package $1 / 2$ Ib. Allow for
C.O.D. Minimum Order $\$ 3.00$

POST OFFICE BOX 74B
SOMERVILLE, MASS. 02143

SEND FOR OUR LAIEST CAIALOG
Address
City
State

EDUCATIONAL

OPPORTUNITIES

LEARN While Asleep, hypnotize with your re corder, phonograph. Astonishing details, sensational catalog free! Sleep-Learning Association, Box 24-ZD, Olympia, Washington 98501.
USED Correspondence Courses and Books sold and rented. Money back guarantee. Catalog free. (Courses Bought). Lee Mountain, Pisgah, Alabama 35765.
LEARN WHILE ASLEEP. Miraculous!y build Mind Power, achieve Self Confidence, improve Health gain Success. Method 92% effective. Details free. ASR Foundation. Box 7021 Henry Clay Station, Lexington, Kentucky 40502.

RUBBER STAMPS

RUBBER ADDRESS STAMP \$1.50. SIGNATURE \$2.88. FREE CATALOG. JACKSON PRODUCTS, 1433 WINNEMAC, CHICAGO, ILL. 60640.

TAPE \& RECORDERS

RENT STEREO-8 CAR TAPES. 10e/day. Send refundable $\$ 10.00$ deposit and name of first refundable $\$ 10.00$ deposit and name of first
selection. Autotapes, Box $19086 . E$, Indianapolis, selection. Aut
Ind. 46219.
BEFORE renting Stereo Tapes, try us. Postpaid both ways-no deposit-immediate delivery Quality - Dependability - Service-Satisfactionprevail here. If you've been dissatisfied in the past, your initial order will prove this is no idle boast. Free Catalog. Gold Coast Tape Library, Box 2262, Palm Village Station, Hialeah, Fla. 33012.

STEREO TAPES. Save up to 60% (no member. ship fees, postpaid anywhere USA). Free 60 page catalog. We discount batteries, recorders, tape accessories. Beware of slogans "not un dersold," as the discount information you sup. ply our competitor is usually reported to the factory. SAXITONE, 1776 Columbia Rd., Washington, D. C. 20009.
RENT Stereo Tapes-over 2,500 Different-all major labels-free brochure. Stereo-Parti, 1616 -E. W. Terrace Way, Santa Rosa, California 95404
TAPE RECORDER SALE. Brand new, nationally advertised brands, $\$ 10.00$ above cost. Arkay Sales, 1028-B Commonwealth Avenue, Boston, Mass. 02215.
HI-FI Components, Tape Recorders at guaran teed "We Will Not Be Undersold" prices. 15 day money-back guarantee. Two-year warranty. No Catalog. Quotations Free. Hi-Fidelity Cen. ter, 239 (LT) East 149th Street, New York 10451. RENT STEREO TAPES-75\& week. Catalog. Art's, 1442 Blaze, Simi, Calif.

HIGH FIDELITY

FREE! Send for money saving stereo catalog \#E6W and lowest quotations on your individual component, tape recorder or system re quirements. Electronic Values Inc., 200 West 20th Street, N.Y., N.Y. 10011
HI-FI Components, Tape Recorders at guaranteed "We Will Not Be Undersold" prices. 15 day money-back guarantee. Two-year warranty day money-back guarantee. Two-year warranty
No Catalog. Quotations Free. Hi-Fidelity Cen No Catalog. Quotations Free. Hi-Fidelity Cen
ter, 239 (L) East 149 th Street, New York 10451 HIFI EQUIPMENT-GET OUR "ROCK BOTTOM" prices on NAME BRAND amplifiers-tuners-tape-recorders - speakers FRANCHISED - 59 YEARS IN BUSINESS. Write for this month's specials-NOW! Rabson's 57th St., Inc., Dept 569. 119 W. 58th St., New York, New York 10019. LOW, LOW quotes: all components and recorders. Hi-Fi, Roslyn, Penna. 19001.
HI-FI components, tape recorders, sleep learn equipment, tapes. Unusual Values. Free cat alog. Dressner, 1523 R Jericho Turnpike, New Hyde Park. N.Y. 11040.
FISHER KX-200: wired. New tubes. $\$ 100.00$. Balch, 611 Livingston Rd., Linden, N.J. 07036. EVERYONE can afford HIGH-FIDELITY compo-nents-because of our DISCOUNT policy. In sured guaranteed shipments-Factory sealed sured guaranteed shipments-Factory sealed cartons-FRANCHISED. Send for our LOW-LOW
quote today. Sound and Sight Audio, Inc., 106 West 32 Street, New York, N.Y. 10001.

HYPNOTISM

FREE Hypnotism, Self-Hypnosis, Sleep Learning Catalog! Drawer H400, Ruidoso, N.M. 88345. HYPNOTIZE FEMALES!-Unnoticed! Instantly Nerves! Exciting! Send $\$ 2.25$. Research Enter prises, 29-SN21 Samoset, Woburn, Mass. 01801. FEMALE HYPNOTISM!! Easily! Instantly! Secret Nerve Centers! \$2.20. Brugenheimer Publishers, Box 158-E30, Lexington, Mass.

AUTHORS' SERVICES

 AUTHORS! Learn how to have your book pub-lished, promoted, distributed. FREE booklet lished, promoted, distributed. FREE booklet
"ZD," Vantage, 120 West 31 St., New York 10001 . SONGWRITERS WANTED! Send song material for recording consideration. Tin Pan Alley, 1650 Broadway, New York 10019.

BUSINESS C?FRORTUNITIES

INVESTIGATE Accidents-Earn $\$ 750$ to $\$ 1,400$ monthly. Men urgently needed, Car furnished Business expenses paid. No selling. No college education necessary. Pick own iob location. In. vestigate full time. Or earn $\$ 6.44$ hour spare time. Write for Free Literature. No obligation Universal, CZ6, 6801 Hillcrest, Dallas, Texas 75205
FREE BOOK " 990 Successful, Little-known Busi nesses." Work home! Plymouth-145L, Brooklyn, New York 11218
I MADE $\$ 40,000.00$ YEAR by mailorder! Helped others make money! Start with $\$ 10.00-$ Free proof. Torrey, Box $318-\mathrm{N}$, Ypsilanti, Michigan 48197.

FREE CATALOGS. Repair air conditioning, rerigeration. Tools, supplies, full instructions. Doolco, 2016 Canton, Dallas, Texas 75201
LEARN TECHNICAL WRITING-at home. High paying prestige careers not requiring college. Growing demand, all industries for tech writers now. Low monthly tuition. Easy to understand. FREE career book, sample lesson. APPROVED FOR VETERANS. American Technical Writing Schools, Dept. EWC-67, 5512 Hollywood Blud., Schools, Dept. EWC-67,
Hollywood, Calif. 90028.
MAKE up to $\$ 10,000$ a year raising chinchillas, mink, rabbits or guinea pigs for us. We supply breeding stock, equipment and feed. Send $\$ 1.00$ for catalog and complete information. Keeney Brothers Farms, Dept. ZE, New Freedom, Pa. 17349

EMPLOYMENT INFORMATION

FOREIGN and USA job opportunities available now. Construction, all trades. Earnings to \$2.000.00 monthly. Paid overtime, travel, bonuses. Write: Universal Employment, Woodbridge, Con. necticut 06525.
YOUR RÉSUMÉ-Make it sell you! Instructions, samples: $\$ 2$. Executive, Box 246 E L, Montclarr, N.J. 07042.

NEW SURPLUS NI-CD BATTERIES

PERMANENT PROTECTION! Fh Morld Deluxe Magazine Files that hold a full year's copies!

Designed to keep your periodicals orderly and easy to refer to. These durable files guard against soiling, tearing, wear or misplacement of issues. They look, feel like leather and are washable! 23 kt . gold lettering and exquisite 2 -color binding make them highly-decorative additions to your bookshelves.

Shipped POSTPAID! FULLY GUARANTEED!

Only \$3.50 each - $\mathbf{3}$ for \$10, $\mathbf{6}$ for $\$ 19$
Order several today-for ELECTRONICS WORLD and all your other favorite magazines.

1

Jesse Jones Box Corp., Box 5120, Dept. EW Philadelphia 41, Pa.
Enclosed is $\$$ Please send me
Electronics World Magazine Files in the colors checked below:
\square Black backing/maroon sides

- Maroon backing/black sides

NAME

AODRESS

CITY \qquad
Orders outside U.S.A. please add \$1 additional for each file ordered.

- - ((Payment must accompany order) - - FOREIGN EMPLOYMENT. Construction, other work projects. Good paying overseas jobs with extras, travel expenses. Write only: Foreign Service Bureau, Dept. D, Bradenton Beach Florida 33510.

INVENTIONS WANTED

INVENTORS. We will develop, help sell your idea or invention, patented or unpatented. Our national manufacturer clients are urgently seeking new items for outright cash sale or royalties. Financial assistance available. 10 years proven performance. For free information, write Dept. 42, Wall Street Invention Bro kerage, 79 Wall Street, New York, N.Y. 10005.
PATENT SEARCHES, $\$ 6.00$! FREE 'Invention Record"/Information. Miss Hayward. 1029HE Vermont, District of Columbia 20005.
INVENTIONS-IDEAS developed: Cash/Royalty Sales. Member: United States Chamber Commerce. Raymond Lee, 130-GE West 42nd, New York City 10036.
INVENTIONS wanted! Highest cash or royalties. Financial assistance. Free analysis. International Invention Institute, Dept. 31, 160 Broadway, New York, New York 10038
INVENTORS! Get your '"Little Piggy' to market Highest cash or royalties. New York Invention Service, Dept. 13, 160 Broadway, New York N.Y. 10038.

COINS

MAKE DOLLARS from your pennies!! U.S. Coin Guide: What Coins to Save: Complete Informa tion. \$1.25. WINDHOOK, Box 652AB, Port Washington, N.Y. 11050.

DO-IT-YOURSELF

PROFESSIONAL ELECTRONICS PROJECTS $\$ 1.00$ up. Catalog 254 . PARKS, Box 25565B, Seattle, Wash. 98125.

MISCELLANEOUS

WINEMAKERS: Free illustrated catalog of yeasts, equipment. Semplex, Box 7208, Minne apolis, Minn. 55412.
EMPLOYMENT Resumes. Get a better job \& earn more! Send only $\$ 2.00$ for expert, complete Re sume. Writing Instructions. J. Ross, 80-34 Ken St., Jamaica. N.Y. 11432 Dept. EW
MONEY WE PAY $\$ 10 \mathrm{hr}$. for NOTHING but your opinions, written from home about our clients products and publications, sent you free. Nothing to buy, sell, canvass, or learn. No SKILL. NO GIMMICKS. Just honesty. Details from RE SEARCH, ZD-3, Box 669, Mineola, N.Y. 11501 STOP BURGLARS THE EASY WAY!! Affix au thentic "Protected by Electronic Sentry Alarm Decals to auto windows, doors \& windows of home retail stores vending machines, etc. Whether you have an alarm or not-thieves stay Whether you have an alarm or not-thieves stay away! Only $\$ 1.00$ for each set of two. J. Ross,
$80-34$ Kent St., Jamaica, N.Y. 11432 . Dept. EW. STOP SMOKING! Hypnotist's proven method. LP recorded sessions. \$4.50. HYPNOSMOKE, Box 231. Belmont, Massachusetts

BEERS, PEACH BRANDY, WINES-Strongest For mulas, $\$ 2.25$. (Complete brew supplies hydrom eters catalog included)-Research Enterprises 29.D Samoset, Woburn, Mass.

AS YOU SCAN THESE COLUMNS, more than 185,000 monthly buyers of ELECTRONICS WORLD are doing the same. These men are all Electronics Professionals-individuals involved actively in electronics from a business or hobby viewpoint. They look to the pages of the ELECTRONICS MARKET PLACE for prime sources of products and services of interest to them. They will buy from you if your advertising appears regularly in their favorite magazine. Use the handy order form printed in this section or write today to: Hal Cymes, Classified Advertising Manager, ELECTRONICS WORLD, One Park Avenue, New York New York 10016 REMEMBER: August issue, on sale July 20 th, closes June 1 st.

D)CATALOG
 World's "BEST BUYS" in GOV'T. SURPLUS
 Electronic Equipment

NAVY MARMN WALKIE TALKIE
NAYY Marine Bend WALKIE.TALKIE TRANSMITER \& RECEIVER-This Equipoperated on any one channel in the fre. quency range of 2.3 to 4.5 MC . Voice (A3) communication only, output of trans. is 0.2 watts and satisfactory com munication between units over averag terrain should be able to be maintained up to approx. one (1) mile. With tubes 1/1\$5. 1/1R5, 2/1T4, 3/3\$4. Voltages required 67.5 VDC 3 MA: 135 VDC 4 MA MA MA; 1.5 VDC 225 1.5 VDC 225 MA ; \& -6 VDC 30 MA for 19 MA; comes in a waterproof plastic case with space for batt or power supply. Telescoping antenna 8 ft . has special loading coil. Complete with tubes, antenna, 2 crystals FT- 243 (no choice of freq.), headphones, carbon mi crophone, canvas cover, \& manual. Size: $8 \times \$ 9.95$
$8 \times 21 / 2 \cdots$ Wt.: 8 lbs. NAVY WALKIE-TALKIE DIRECTION FINDER MODEL 'DAV'- -Same as '"MAB'' except has a direction finding loop circuit for homing, and comes in a waterproof ply Also complete with tubes 2 crystals (no choice of frea headphones. lip microphone 8 ft telescoping ontena \& manual. Size: $14 \times 10 \times 3^{\prime \prime} ; \quad \$ 12.95$ YIBRATOR POWER SUPPLY-Designed for use with "MAB" \& "DAV" described above Operates from 6 VDC storage battery N.T.G that fits on bottom of $P S$ pack, 6 V 4 A (Can be operated from any 6 VDC 4 A source) supplies 1.5 VDC $3 \mathrm{~A} ;-6$ VDC .02 A; 67.5 VDC $.005 A_{i} 135$ VDC . 02 A. Size: $\$ 6.95$ N-T-6 PLASTIC STORAGE BATTERY For above Power Sup ply CRF. 20221 A-Supplies 6 volts DC 4 Amp. Size: $31 / 2$

NEW CATALOG-

JUST OFF PRESS-SEND 25థ (stamps or coin and receive $50 c$ CREDIT on your order Address Dept. EW - Prices F.O.B. Lima, O. 1016 E. EUREKA - Box 1105 - LIMA, OHIO - 45802

BOTH FREE WITH EVERY $\$ 10$ ORDER

New! 'PANCAKE' Transistors IN THE NEW TO46 MICRO CASES

ZENER RECTIFIERS 1 AMP aNO EPPXIES SIICOUS POWIR STUD RECHIFIRRS

CIRCLE NO. 101 ON READER SERVICE CARD

INTEGRATED CIRCUIT POWER SOURCE

$0-6 \mathrm{VDC}, 0-3 \mathrm{~A}$

NEW

Overvoltage

\& Overcurrent Crowbar Protection

Avoids damage to delicate integ. rated circuits due to internal power supply failure or load current runaway.

- . 01% plus 1 MV regulation
- 1 MV peak-to-peak ripple
- Continuously adjustable current limiter
- Coarse and fine voltage adjust. ment with 1 MV resolution.

MODEL 630
$\$ 14950$
FOB-WESTBURY, N.Y

POWER DESIGNS, INC. 1700 SHAMES DRIVE - WESTBURY, N. Y. 516 EDgewood 3.6200 TWX: 510-222.6561 POWER DESIGNS PACIFIC, INC. 3381 JUNIPERO SERRA - PALO ALTO, CALIF. 415-321-6111 TWX: 910.373.1251

ELECTRONICS WORLD JUNE 1967
 ADVERTISERS INDEX

Today's electro-technology makes possible near-perfect stereo at moderate manufacturing cost: that's the design concept behind the new EICO "Cortina'" all solidstate stereo components. All are 100% professional, conveniently compact ($31 / 8^{\prime \prime} \mathrm{H}, 12^{\prime \prime} \mathrm{W}, 8^{\prime \prime} \mathrm{D}$), in an esthetically striking "low silhouette." Yes, you can pay more for high quality stereo. But now there's no need to. The refinements will be marginal and probably inaudible. Each is $\$ 89.95$ kit, $\$ 129.95$ wired.

Model 3070 All-Silicon Solid-State 70-Watt Stereo

Amplifier: Distortionless, natural sound with unrestricted bass and perfect transient response (no interstage or output transformers); complete input, filter and control facilities; failure-proof rugged all-silicon transistor circuitry.

Model 3200 Solid-State FM/MPX Automatic Stereo Tuner: Driftless, noiseless performance; $2.4 \mu \mathrm{~V}$ for 30 db quieting; RF, IF, MX are pre-wired and pre-tuned on printed circuit boards - you wire only non-critical power supply.

7 New Ways to make Electronics more Fun!

Save up to 50% with EICO Kits and Wired Equipment.

You hear all the action-packed capitals of the world with the NEW EICO 711 "Space Ranger" A-gand Short Wave Communications Recelver Coast Guard, and the full AM band. 550 KC to 30MC in four bands. Selective, sensitive superhet, modern printed circuit board construction. Easy, fast pinpoint tuning: illuminated sliderule dials, logging scale; "S" meter, electrical baridspread tuning, variable BFO for CW and SSB reception, automatic norse limiter. 4" peaker. Headphone jack. Kit $\$ 49.95$. Wired \$69.95.

More "ham" for your dollar than ever - wit the one and only SSB/AM/CW 3 -Band Trans ceiver Kit, new Model 753 - 'the best ham transceiver buy for *966" - Radio TV Experi menter Magazine. 200 watts PEP on 80, 40 and 20 meters. Receiver offset tuning, built-in Vox, high level dynamic ALC, silicon solid-state VFO. Unequaled performance, features and appearance. Sensationally priced at $\$ 189.95$ kit, $\$ 299.95$ wired.

NEW EICO 888 Solid-State

 Engine AnalyzerNow you can tune-up, troubleshoot and test your own car or boat.

Keep your car or boat engine in tip-top shape with this completely portable, self-contained, selfpowered universal engine analyzer. Completely tests your total ignition/electrical system. The first time you use it - just to tune for peak performance - it'll have paid for itself. (No tune-up charges, better gas consumption, longer wear) 7 instruments in one, the EICO 888 does all these for 6 V and 12 V systems; $4,6 \&$ 8 cylinder engines.
The EICO 888 comes complete with a comprehensive Tune-up and Trouble-shooting Manual including RPM and Dwell angle for over 40 models of American and Foreign cars. The Model 888 is an outstanding value at $\$ 44.95$ kit, $\$ 59.95$ wired.

New EIcOCRAT Easy o-build solid-state elec tronic Trukits: great or beginners and sophisticates alike. As professional as the standard EICO line only the complexity is reduced to make kit building faster, easier, ower cost. Features pre-drilled copper plated etched printed circuit boards; finest parts; step-by-step instructions; no technical experience needed just soldering iron and pliers. Choose from: Fire Alarm; Intercom; Burglar Alarm; Light Fiasher "Mystifier": Siren; Code Oscillator; Metronome Tremolo; Audio Power Amplifier; AC Power Sup ply. From $\$ 2.50$ per kit

New E1CO "Nova-23" (Model 7923) all solidstate 23-channel 5 watt CB Transceiver featuring a host of CB advances - plus exclusive engineering innovations
EXCLUSIVE dual-crystal lattice filter for advanced razor-sharp selectivity of reception ExCLUSIVE highly efficient up-converter frequen cy synthesizer provides advanced stability and freedom from trouble in all 23 crystal-controlled transmit-receive channels. All crystals supplied. EXCLUSTVE use of precision series-mode funda mental crystals for superior transmit and re ceive stability. Wired only, $\$ 189.95$

Model 460 Wideband Direct-Coupled 5" Oscilloscope. DC-4.5mc for color and B\&W TV service and lab use. Pushpull DC vertical amp., bal. or unbal. input. Automatic sync limiter and amp. $\$ 99.95$ kit, $\$ 139.50$ wired.

FREE: 1967 EICO CATALOG
EICO Electronic Instrument Co., Inc., 131.01 39th Ave., Flushing, N.Y. 11352

Circle reader service \# \qquad for free catalog describing the full EICO line of 200 best buys including test equipment, stereo, $\mathrm{Hi}-\mathrm{Fi}$, automotive electronics, ham radio, citizen band radios and name of nearest dealer.

Model 232 Peak-to-Peak VTVM. A must for color or B\&W TV and industrial use. 7 non-skip ranges on all 4 func use. 7 non-skip ranges on all 4 func $\$ 29.95$ kit, $\$ 49.95$ wired.

How else but with RCA HI-LITE color picture tubes can you bring today's color to your customers?

Your service reputation is the cornerstone of your business. That's why there's no room to compromise with quality in tee compone its you install.
RCA HI-LITE picture tubes enable you to offer your CL s:cmers TODAY'S COLOR
incorporating the latest technology of the world's rr ost experienced picture tube manufacturer. They re the same tubes that go into tordav's original equipment sets.
RCA's new Ferma Chrone process for rectangular sizture tubes. for example, means locked-in color purity from the moment the picture comes on. Faster servicing for you. Added customer satisfaction.
Install an RCA HI.LITE ard you literally "up date" your customer's set while. at the sarre tirne. enhancirg your service resutation: R.SA Electronic Components and Devices. Har-ison. N. J.

[^0]: Mail to: RADAR DEVICES MANUFAC:TURING CORP 22003 Harper Ave., St. Clair Shores. Michigan 48080

 Please tell me how I can have a business of my own distributing Radar Sentry Alarm Systems. I understand there is no obligation.
 \qquad
 \qquad

[^1]: "A definitive paper on distortion tests using this record was presented to the Audio Engineering Society in October 1966 by Dr. J. G. Woodword $\&{ }^{2} R$. E. Werner of RCA. The paper is entitled "High Frequency Intermodulation Testing of Sterco Phonograph Pickups. The record can be obtained from RCA Custom

[^2]: Please send me full details and specifications on the：\square＂IBC 301＂L CB＂GUARDIAN＂
 Name．
 Address．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．
 City
 State．．．．．．．．．．．．．．．．．．．．．．Zip．

[^3]: Get the handsome LEATHERFLEX BOUND edition for just $\$ 3$ postpaid EXPERIMENTER'S HANOBODK EXPERIMENIER'S HANOBDOK is also available in a splendid deluxe edition. Rugged Leatherflex cover proftly textured and gold-embossed for the look of elegance. A collector's
 for the look of elegance. A collector's
 item-a superb addition to your electronics bookshelf. And it's yours. for just $\$ 3$ postpaid, when you check the appropriate box on the order form.
 - PAYMENT MUST BE ENCLOSEO WITH OROER Boy, do I have spart time! Send me the big Fall
 1966 edition, too! I want the \square regular edition as Deluxe Leatherflex-bound edition. (Prices same as above.)

[^4]: June, 1967

[^5]: "Forget the Supreme Court ruling! Around here you have to admit when you're wrong!"

[^6]: "I'm so hot l'd like to take my skin off!"
 "I had growing pains yesterday."
 "You go up in heaven when you die. You don't have to pay taxes, or anything-I'm positive."

