回國知 TOTED ENTIRELY TO

Published by the American Radio Relay League

August 1927

SWITCH
Control \& Improved Reception with

Stromberg-Carlson Socket-Power Equipment

Radio amateurs know that receivers operated by batteries give efficient results only when the batteries are brand new.
Stromberg-Carison Socket-Power Units, however, insure peak receiver performance by maintaining the same potentials at all times-and under all conditions.
These power accessories - the "A" Socket-Power Unit - the "B" Socket-Power Unit and the Power Switching Relay may be used with any Stromberg-Carlson Receiver with only a slight change in the wiring, and with any other receiver using the same tubes similarly arranged.
The use of the Stromberg-Carlson Power Switching Relay (a Relay of the bridging type) gives automatic control of all Socket-Power current supply and a super-power amplifier (if used) by the operation of the battery switch on the panel of the receiver.

Stromberg-Carlson Telephone Mfg. Co. ROCHESTER, N.Y.

homplete power suppiy ndulpmetit fot Stromberg-carlson Receivers. Left to right Fast of Rockies d fockies d iVest fanada
Gould A0-6日. D.
Socket-Power Uinit $\$ 38.00 \quad \$ 43.00 \quad \$ 55.00$ No, 301 Fower-switch- 1.00 11.75 15.00 Kra, 101 Relar, ' Forket-
$\begin{array}{lllll}\text { Fower tunit with } & & & \\ \text { U. X. }-218 & \text { tube.... } & 63.00 & 69.00 & 87.50\end{array}$

Makers of voice transmission and voice reception apparatus for more than 30 years

THE ELKON PRINCIPLE of RECTIFICATION

The Elkon rectifier, invented and developed by Samuel Ruben and the Elkon Works, Inc. is the first to make current rectification possible by means of a "BONE DRY" rectifying medium constructed entirely of SOLID, IMMOVABLE, NONFRAGILE materials.

Now on the market for more than a year, doing duty in thousands of homes in the ELKON TRICKLE CHARGER, this rectifier, in actual use, has more than lived up to the expectations of those who conceived and developed it.
It has made possible, for the first time, rectification without ACIDS, ALKALIS, TUBES, or MOVING PARTS.

It is economical. It operates noiselessly. It does not cause interference. Short circuiting cannot harm it. It functions equally well in any position and under any extreme of climate.

Now in use in the Elkon Trickle Charger, the Elkon 3 Ampere Charger, and the Elkon "A" Power it is fast supplanting the old methods of current rectification.

The Elkor Trickle Charger in quhich the Elkon Rectification principle quas first made uquilable to the public Jan. I, TQat.

Section Communications Managers of THE COMMUNICATIONS DEPARTMENT, A.R.R.L.

-Temporary oftiofals appointed to ant until the membership of the Seation concerned chose permanent
seats by the humination and eifetion

We had scarcely hoped for such performance. New as today-old as Grebe's reputation and experience-the Synchrophase Seven typifies Grebe leadership of over seventeen years-a leadership built on the production of only the best that engineering skill could devise.
For nearly a score of years Grebe has developed device after deviceradical, practical, permanent-for the improvement of radio reception.
And now the Synchrophase Seven-the latest proof of Grebe leadership.
1 Controlling Diai
that tunes accurately without aid of aditional dials.
S. Point Tuning Drive
smooth-runting, permanent adustment.
5 Tuning Stages
for maximum selpetivity and fidelity of tone.
7 Usefui Tubes
each playing a distinct andimportant part in the production of tone, volume and distance.
The cabinet, of selected butt grain walnut, has a panel of French marquetry exquisitely designed and wrought,'
Booklet Q gives the detaits. Your deder will demonstrate.
A. H. Grebe 6 Co. Inc., 109 Wat 57 th Street, New York City Westerv Branch: 448 So. Sam Fedro St., Les Ankeles, Caltt.

Factort; Richmond till, N. X.
The otdesi exclusive radio mamufacturer

Wditorials
Rixhts Vs. Respunsibilities Tiram Peren Marim\ddots
\vdots
The 8-Meter Rand Officially Onened
Financial Statement 14
Better Audio Amplification for Short-Wave Receivers 15
Standard Frequency Transmissions 20
Cuban 6xJ 31
Ohio State Central Division Convention 24
A One Gnat-Power Portable 25
This Short-Wave Amplifier Business 49
Neducing Static at Short Waves 32
The Identitication of Radio Erequency Harmonics 84
Aluminum Frames 35
Cuncerning Those "Phone" Aritiles 35
Short-Wave Radio Transmission and lts Practical Uses-Part 9 . Chester if. Rice 36
QRM 12
A.R.R.L. Information Service Kules 4
L.A.R.U. News 43
The Atlantic Division Convention 45
Experimenters' Bection Report 4
Book Review: 48
Communications Department $\pm!$
Calls Heard 65
Correspondence 68
Ham Ads 22
CST's Index to Advertisers 94

QST is published monthly by The American Radio Relay League, Inc., at Hartford, Conn.. U. S. A.
Official Organ of the A.R.R.L. and the International Amateur Radio Union

Kenneth B. Warner (Secretary, A.R.R.L.), Editor-in-Chief and Busineg Manager

Harold P. Westman.

F. Cheyney Beekley

Editor and Advertising Manager

The American Radio Relay League

The American Radio Relay League, Inc., is a non-commercial association of radio amateurs, bonded for the promotion of interest in amateur radio communication and experimentation, for the relaying of messages by radio, for the advancement of the radio art and of the public welfare, for the representation of the radio amateur in legislative matters, and for the maintenance of fraternalism and a bigh standard of conduct.

It is an incorporated association without capital stock, chartered under the laws of Connecticut. Its affairs are governed by a Board of Directors, elected every two years by the general membership. The officers are elected or appointed by the Directors. The League is noncommercial and no one commercially engaged in the manufacture, sale or rental of radio apparatus is eligible to membership on its board.
"Of, by and for the amateur", it numbers within its ranks practically every worth-while amateur in the world and has a history of glorious achievement as the standard-bearer in amateur affairs.

Inquiries regarding membership are solicited. A bona fide interest in amateur radio is the only essential qualification; ownership of th transmitting station and knowledge of the code are not prerequisite. Correspondence should be addressed to the Secretary.

Directors

Prexident
HIRAM PERCY MAXTM
Brawer 2102
Hartford, Conn.
Fire-President CHARLES H. STEWART
St. David's Pro
Cimadinn tremaral Manager
A. H. K. RUTSSELL
5 Mail Bldg.
Foronto, Ont.
Athavic Diviaione
DR. WTIGENE \& WOODRUFF 234 W, Fairmount Ave. State College, Pa.
Contan Divimion OTIDE E. DARR
197 Hill Aven Highland Park, Detroit. Mich.
Dakota Division
©. M. JANSKX, $\sqrt{2} R$
Dept. of Elec. Ens. U. of M. Minneapolis, Minn.
Delta Diviniom
BENJ, F. PAINTER
424
Hami
Ohattanoora. Tena.
Ifudson Division.
DR. LAWRENOE J, DUNN
4×0 East 19 th $3 t$.
Brooklyn. N. Y.
Miduent Division
PORTER H. QUINBY
1034 Planters* Huilding, St. Louis, Mo.
New England Diviaion
DR. ELLLIOTT A. WHITE
Dartmouth College
Hanover. N. H.
Northwestern Division
R. W. WEINGARTEN
8219 No. 24th St.,
Tacoma, Wash.
Fecific Division ALLEN H. BABCOOK 65 Market St., Southern Parifir ©o. San Francisco
Reanoke Divisimg W. TREDWAY GRAVELY 603 Main \$t. Oanville, V\%
Frucky Mourtain Division
FAUL M. SEGAL efo Nistrict Attorney West Bide Court Bidg. Denver, Coln.
Sonthecster te Divigion
FARRY F. DOBBS
to Oobbs 8 Wey Co. Atlanta. Ga.
Weat Guif Divieion
FRANK M. CORLETT
2515 Catherine t t. Dallas, Tex.
\section*{Officers}
President Hiram Percy Maxim, Hartiord, Conn.
Vice-President Chas. H. Stewart, St. David's, Pa.
Secretary Kenneth B. Warner, Hartford, Conn.
Troasurer Arthur A. Hebert, Hartford, Conn.
Communications Manager . . F. Edward Handy, Hartford, Conn.

EDITORIALS

(2)

NOT to change the subject at all, the sermon for this month is going to be about our old American Radio Relay League and how it still is what it always has been; a democratic self-governing organization of the transmitting amateurs of the United States and Canada and a few more places.

This League of ours is no accident. It didn't just happen. Its start was carefully thought out by its founders: it was to be purely amateur; it was to be non-commereial; orderly; it was to operate for the good of the whole. Its fundamental purpose, as we've so often said in $Q S^{\prime} T$, was to bring the member greater pleasure and benefit from his pursuit of his hobby than would be possible without organization.

That start was over twelve years ago. The League has continued its existence down the years because of the nationwide conviction amongst us amateurs that we need it-wthat plus a lot of unselfish hard work on the part of its members, directors and tield personnel. It has flourished because it has lived up to its principles and achieved its aims. If it had not, it would have lost momentum and died and no amount of high-pressure bogus enthusiasm could have kept it going. It lives because it is worth while. It is our medium for helping ourselves and each other, coördinating the manifold activities of all of us, looking aiter our interests in legislation and regulation, representing us wherever we need to be represented. In its more than twelve years of existence it has demonstrated times without number that it is of immense help to amateur radio; in fact there are instances where it may be said that our League positively saved amateur radio to us.

It is therefore worth our every effort and support. Of course it is by no means perfect, and nobody knows that better than we at Headquarters. But the point is that it can not be any better than we amateurs, by united effort, make it. Its future is exactly what we make it.

The League needs and deserves your help and support, O. M., and, to quote the old
familiar sign, "this means you". If you're already a member, fine! It you're not, you still have a little duty to perform on behalf of this game. That's why we print that application blank in the latter part of every issue of $Q S T$.

OUR fancy was quite taken by that Figure 5 in the first part of Mr. Rice's paper in the last number of QST. Here is the whole story of radio in one chart-the performance of different wavelengths at different distances-and it shows a couple of amazing things.
It is pointed out that the world's worst wavelengths for $D X$ in term of miles per watt are those waves just above 200 meters. where we amateurs so long congregated. We've often heard that when amateurs were first given 200 meters it was regarded as a useless wavelength, but even the people responsible for the assignment could hardly have known that of all the wavelengths in the spectrum it was the worst, because it bumped smack into the carth's natural period or something of that sort!

And another thing we notice is that the waves around 40 meters, where most of our DX men have finally concentrated after the migration down from 200, are the very best in all the spectrum for the ultimate miles-per-watt DX!

Is it any wonder that a maximum-DX man can't be blasted loose from 40 meters and seduced into returning to 200 , and is it any wonder that commercial radio enterprises turn jealous eyes towards the short waves?

WHICH reminds us that the stage is being set for the international radio conference at Washington beginning October 4th, when representatives of all of the governments meet at the invitation of the United States to rehash the London Convention. Already the governments are appointing their delegates. The agenda for
the conference, consisting of propositions made by all the governmentsconcerned, are assembled in what is known as the Book of Proposals, with the total of the proposals running around seventeen thousand. So there will be lots of people and lots of talking, and this time short waves will be one of the big issues.
Most of the representatives from foreign governments will be "government people", appointed from the diplomatic corps or the military. It would be almost an accident if any of them knew and understood ama-
teur radio; they are much more likely to have the usual European view of communication as a government monopoly. It seems important, then, that the amateur sncieties in all these countries make it their business to get in touch with their country's representatives as soon as they are named, tell them what amateurs are and what they are doing, and persuade them to provide a place in the picture for amateur radio when they get to parcelling out short waves at Washington.
K. B. W.

Rights Vs. Responsibilities

By Hiram Percy Maxim, President A. R. R. L.

EVERY now and again we hear somebody holler about his rights. He usually drags in the Constitution and his American citizenship. If he is a radio amateur he drags in his membership in the A.R.R.L. and the radio law of 1912, notwithstanding the fact that the latter is now defunct. There is one thing he never drags in and that is his responsibilities.

In my position as President, I see a lot of this sort of thing in amateur radio. There seem to be two kinds of us. The folks of one kind are al. ways noisy and always continually clamoring for their "rights". They appear never to have heard of the word "altruism". They believe firmly in the policy of grabbing everything that is not riveted on. They think the highest aim in life is to get as much as you can for nothing, even if it takes a Mack truck in broad daylight to lug the stuff offi. They respect no one's rights, and yet they make night and day hideous howling for their own.

The other kind never clamors for its rights. When they raise their voice for something, it is usually for the good of the whole. As a rule, they need no watching. Things that are not riveted on do not disappear. They decline to accept things and privileges to which they are not clearly entitled, whether anyone is looking or not. They appear to have thought about the word "altruism" and also about that other important word, "ethics".

The first kind do not understand that nice difference that exists between rights and responsibilities. Their codes are "Every man for himself", "Do nothing you can shove onto the other fellow", "Take everything you can get away with". These people are never builders. None of the fine things we have is the result of their efforts. Our civilization, our country, our law and order and our organized amateur radio are in spite of them and not on account of them.

The second kind recognize their responsibilities as citizens and members of society generally. They realize that their rights must balance with the rights of others. Their code is, "Accept a certain amount of personal sacrifice for the good of the whole". They are our builders. Everything we possess is due to their efforts. Our civilization, our country, our organized society and our A.R.R.L. are their handiwork.

When we think our rights are being trampled upon, let's always try to keep our responsibilities also clearly in mind.

The $3 / 4$-Meter Band Officially Opened

By Boyd Phelps* and R. S. Kruse \dagger

FOR the first time, an amateur band of wavelengths has been formally opened before an A.R.R.L. audience.
It must not be understood from this, or from the title of this article, that the band has not been used before. To make such a claim would be utter nonsense. Many A.R.R.L. men have operated oscillators and receivers in the region and there have been examples oí short-range transmission that seem promising.
The recasion of the demonstration at the Hudson Division Convention was simply to

Previous life tests were confirmed (we now have a stop watch for this purpose) and it was decided that they were unsatisfactory from that standpoint although workable enough as long as they lasted. We therefore did not wish to take them to an audience, preferring to use something that could be depended on for a reasonable period of time-in other words something that was reliable as a transmitter.

In this connection it was decided at first to drop the old 201 and 202 tubes in favor of : 210 , which has the plate lead brought

COMPLETE TRANSMITTER
The 110 -volt line and switch at the right suppiy and eantrol the National transformere which supplies $7_{2} 5$ volts a.c. to the filament and 600 volts, 20 milliamperes to the plate. The milliammeter and key are in the posidive high-votage fead. The f th sneter litraudion oscillator is at the left and the feed wire from it runs off to the left where it conneis to the antenna fed condenser as shown in another photo.
show to a convention audience that 3_{4}-meter communication was nut mysterious and that it could be carried out with existing radio materials.

sTARTING IN

It will be remembered that on page 27 of June $Q S T$ there appeared a story which included some work on oscillators, wavemeters and chokes in the si meter repion, most of the work having been done by Phelps at various times. Some check work and a series of circumstances having to do with the convention brought the present coauthors together for the demonstration iust referred to. We combined our individual apparatus, bought and borrowed more and in the QST Work Room put together the demonstration equipment.

[^0]out thru the side of the stem instead of the mash, therefore is less likely to be damaged by electrical leakage thru a heated stem. However, the tube is not well adapted to operation at wavelengths below 1.6 meters as the stem is rather long. Just why this is of any importance can be seen from Fig. 1. The tune of the Ultraudion circuit is determined by the capacity Cs, the inductance of the plate lead L1 and the inductance of the grid lead 1.2 and the plate-grid capacity Cgp. All these things are connected in series and since Cgp is wery small we cannot hope to tune much with Cs, therefore the way to change the wavelength is to change L1 and L2-which cannot be made shorter than the stem.

Tests had also shown that both the 210 and the 852 sometimes show a very short filament life when used at wavelengths as long as 5 meters. As a check, several 210
tubes were run at wavelengths in the vicinity of 1 1/2 to 2 meters with the circuit shown in Fig. 1. These tubes lost their filament emission within 45 minutes and when flashed and aged they came back for only about three minutes, although the piate input was sub-normal. While it is by no means certain that the $\mathrm{X}-\mathrm{L}$ filament is at

HIG. 1 THE WILTRAUDION ETRCUIT USED. GHOWING SCHEMATIC AND ACTUAL FORMS
The fabels in the figures correspond. The tuned eircuit is a series one including Cop, Li, Cs and L 2 Cop is vory mall and fixed hence Cs has small tuning effect and is made large to reduce the work of R.F.C. 1 and R.F.C. 2. Changes in iuning are made hy changing the lenxth of $L 1$ and 12 . The renistance R is the usual grid leak but is made of rather high value.
the bottom of this effect it is true that the 852 sometimes does the same thing at wavelengths as long as 6 meters, therefore we feit that it would be better to stick to something that did not give the unexplained effect-in other words a plain tungsten filament.

The tubes used were therefore UV-202 "5-watt" tubes, three of which were debased and made into oscillators, all operating steadily and easily for many hours with no tendency to stop.

The story at this point has gone some-
what ahead of itself. It is necessary to retrace and explain a dodge that was being used.

a circuit trick

Since fubes tend to become rather erratic when operated near their lowest workable wavelength-or highest trequency if you prefer-it had been decided to operate the oscillator at double the desired wavelength and to pick ofil the zad harmonic to be amplified and fed to the antenna. This is of

RECEIVING ANTENNA WITH FOOT KJEE FOK COMPARISON
This was mounted vertically on a small rubber standard rising from the metal receiver panel. The tery small condenser served to vary the coupling to the receiver.
course a familiar stunt in these arystal control days and has been used at the wavelengths we are talking sbout by Frank Jones of GAJF and Harry Lyman of GCNC.

If the 2nd harmonic is to be at $\%$ of a meter the oscillator's main wave must of course be at 1.5 meters. Accordingly, the

SENDING ANTENNA
The small yariable feed condenser at the risht wis controlled by the dial and insulated shaft. The fecd lead from the oscillator can be seets coming in from the right.

Ultraudion oscillator shown in one of the photographs was put together and tuned to 1.5 meters. To cut down the work to lue done by the r.f. chokes the drop across the condenser Cs was made small by making C: itself large, namely otufd, or if one prefexs, 10,000 pfd. As has been explained. this changes the tuning very little and in fact a greater change is made by changing the length of L1 or L2 by $1 / 10^{\prime \prime}$ than is made by changing Cs from 10,000 pid. to 100 pfd.

It now became important to find out if the 2nd harmonic of so small an oscillator with normal plate voltage was of any use. This was tested with the ireakish "antenna" of Fig. 2A which may not look convincing but has later proven to tune rather decently to $\%$-meter. When this was held near the oscillator a deflection of the meter followed. Check-tests have shown that if the nomerall length of the contrivance is doubled tha
main wave will give about 10 times the defiection (100 times the power) while the tube is operating normally but that other lengths for the wires give very little response.

By waising the plate voltage to 600 and keeping the plate input current low (large negative grid bias) the 2nd harmonic was made relatively much stronger, so that we

FIG. 2 THE SENDING ANTENNAS
Antenna A is for iesiting only. B is the sending anfenna and also shows the method of end-feed or woltage fued. The tap may be made anywhere along the plate "eoil" bui the point shown gives enough odtput for present purposes and in stable.
were able to discard the amplifier for such a short-wave demonstration as we had in

THE 1.2 METER AND-UP WAVEMETER
With this meter the tests of Fig. 3C were made. The . 9 meter-and-down wavemeter was of the same sort with a smaller condenser caparity.
mind. For a longer range the amplifier still is to be considered.

THE SENDTNG ANTENNA
A less weird antenna was now pat together. It is shown in one of the photographs and the method of exciting it is given in Figure 2B. With the tube operating at 600 volts and 20 milliamperes, which is below normal input, the antenna current was 115 mils. The feed condenser acted
normally, that is to say it did not tune but simply increased the coupling up to the point where the load stopped the oscillator.

THE OSCILLATOR
A UV-202 tube with a mhort stem, The fixed stopping condenser is a Sangamo 10,000 pid. or . 01 ffd. receiving condenser. The lead to the right is the antemma feed lead, the twister pair at the left supplies the filament current. The two chokes are in the positive plate supply and srideleak lines. Note their method of winding. The and sections are effective at te; meter and are loaded by the center section so as to be effective at 5 meters also. Having a spaced portion ai both ends permits connecting them in either way. The chokes are so effective that if one is put in each filament supply lead the grid may be grounded but the oseillator will continue oscillating.

Doubling the antenna back so as to reduce the radiation resistance raised the antenna current-just as we ordinarily get more current in a bent system (horizontal top and c.p. with vertical connection) than in an elevated straight "Hertzian" wire, either horizontal or vertical.

IS IT A \%-METER SYSTEM?
Naturally one wonders whether the antenna of so simple a system is really working at $3 / 1$ of a meter or if it is simply accepting some of the energy at the uscillator wave- $11 / 2$ meters. To determine which was going into the antenna several tests were made, some of them before the lecture and a few check tests since that time.

First of all, if we look at Fig. 3 we will see that if the antenna is not working at \$-meter but is accepting $11 / 2$-meter energy the voltage distribution will be as the dotted line, therefore a ground at the point 2 will upset things and lower the meter reading, also there will be some place 4 back along the feed wires where a ground will upset things. Neither of these things happened.

On the other hand, if the antenna is working as a half-wave Hertzian 3 -meter an-
tenna as at B, then a ground at the meter will do nothing to the antenna current. This is what we found.

Further tests were made with a small wavemeter, shown in one of our photo-
tirely below .9 meter. This produced very weak effects at the oscillator compared to the other wavemeter, but almost completely stops the antenna current when coupled in at the meter. (See Fig. 3C.)

THE SUPERHETERODYNE FERSUS-AUDIO RECEIVFR TISED FOR DEMONSTRATION
This set was described on pages 14,15 , and 16 of the fune issue. It is not an complicated as it looks nince most of the parts are not in use. This is the receiver used by Kruse at 10 A for 5 -meter and 20 -meter reception.
graphs. This meter went down to just az trifle under 1,2 meters. When it was placed at the oscillator and tuned to $11 / 2$ meters the current fell sharply-but at the

B

Ffis ? METHODS OF CHECKING TO FIND IF ANTENNA KNERHY IS AT G-METER OR I3/ METERS
If antenna is operating at 1% M. the voltage diatribution will be as in diagram A and a ground at 2 will ehange the antenna current preaily. If the antenna fis working at ${ }^{3} / \mathrm{m}$-meter the woltage distribution is as in diagram B and a ground at will not change the current much. Cillustrates the use of $11 / \mathrm{mmeter}$ and qu-meter wavemeters to check the antenna wavelength.
antenna no effect whatever was secured, showing that there was very little $11 / 2-$ meter energy there.

Since the demonstration, another wavemeter has been made that has a range en-

The quite natural question as to the correctness of the wavemeters can be answered by saving that they were good emough for the purpose, though certainly not precision affairs. Calibration was by a combination of harmonic pickoff and Lecher wire, the

THE TRIPLE RANGE WAVEMETER USED TO TLE THE TRANSMISSION TNTO TEE 5-METER REGION. THIS IS SIMPLF A GENERAL RADIO TYPE 488 METER TO WHICH FHELPS HAS ADDED A 4-TO 2-METER and 2- TO 1-MFTER COLL IN ADOITION TO THE ORIGINAL 61, TO 4-METER COML.
check being a reasonably good one, and also comparing well enough with a curve obdained by connecting to the condenser a rather large loop that tuned to 5 meters (where it could be checked against the General Radio 458 meter) and progressively making this loop smaller. By watching the drift of measurable points as the loop grew smaller one secured an added check. THE RECEIVER
Since the immediate object was simplicity and the use of existing material, it seemed worth while to try using the general-purpose superheterodyne that has been re-
ferred to before in QST. Connections were made as in Fig. 4 and it was found that when the 7th harmonic of the oscillating detector was placed on the 3 -meter wavelength a very grood signal was gotten. This adjustment put no harmonic of the oscillating detector on the fundamental of the transmitter tube circuit (one and one-half meters).

To check the point of possible reception from the oscillator directly the sending antenna was removed from the oscillator, whereupon the strong signal went almost to zero. An antenna provided with a ground and tuned to $11 / 2$ meters has since showed good antenna current but produces practically no signal at the $\%$-meter receiver, showing that the latter is really working at $3 / \mathrm{m}$-meter. The grounded antenna was used to prevent appearance of the 2nd harmonici. e., *-meter signals.
having a "poor signal" zone around the station with better signals beyond. In-cidentally-why do people insist that the bad signal belt is a recent discovery? Certainly all spark amateurs had noticed by 1912 at the latest that 200 -meter sig-

GROUP OF SHORT-WAVE ULTRAUDION OSCILLATORS SHOWING CONSTRUCTION NEEDED WHEN OPERATING AT : M. DIRECTLY AND ADVANTAGE OF WORKING IN MANNER SUGGESTED. THIS IS THE GROUP MENTIONED BEFORE AS USED BY PEELPS AT 2EB.

FIG. 4 RECEIVER CONNECTIONS
The tube shown is the osciliating first detector of a superheterodyne. It is tuned by means of $L 1$ and C1 to operate at 7 times $\$ / 1$ meters or $51 / 4$ meters. The receiving antenna end-feedis the tuned circuit thru the small capacily (s which is connected to either side of the grid condenser. If connected to the grid directly the effect is to increase the coupling. It is 1 im portant that the choke R.F.C. stop the E-meter oscillation but pass the intermediate frequency. Thus at one wavefength it is a choke and at the other it is a joke.

HIELD TESTS

With "Chris" Kenefick of the H. Q. staif patiently pounding the key of the transmitter in the QST Work Room we then made some very hurried field tests, trundling the receiver around the neighborhood in Phelps' coupe. Nothing very strange happened, the $\%_{2}$-meter wave acted like a normal and proper radio wave-even to
nals were poorest at something like 150 to 200 miles and before that ship operators had observed the same thing at 800 and 450 meters. The thing isn't new-only the distance and the intensity of the effect changes as the wave is changed. Therefore it seemed quite natural that as we

FMG. 5 CURVE SHOWING APPROXIMATE MANNER IN WHICR EOW-POWER :G-METER SIGNAL YARIED KN AUDIBILITY WHEN RECEIVER WAS MOVED AWAY FROM STATION
The pattern of "dead spots" shown is not general but varied sharply. On the opposite side of the sitreet there was a 6 foot shift in the location of the humps.
drove up the road the signal intensity acted somewhat as shown in Fig. 5-exactly the sort of thing that happens at 5 meters but on a smaller scale because of the shorter wavelength.

The signal remained readable up to about 1000 feet which is not at all bad considering a high noise background and bad screening at both transmitter and receiver. The tests were repeated to find out something of the importance of the screening at the receiver. It was found that with the
coupe turned toward the transmitter the signals were roughly 5 times as intense (audibility meter) as with the car turned the other way, the change being probably due to the large front windows as compared to the small rear window surrounded by the metal covering of the car body.

TEE DEMONSTRATION
The apparatus was taken to New York by automobile and before one of the Convention audiences, the story just told was recounted. The receiver had been set up on one side of the room and the transmitter at the other. It had not been possible to reach President Maxim, accordingly the demontration message copied from the loudspeaker by the A.R.R.L. men present was not from him but was signed by us and addressed to the audience. The time was about 4 P. M. and the date June 5. The calls 1BAO and 1HX are the portable calls of Eruse and Phelps respectively. The short message ran thus-
"QST nu 1BAO es 1HX. Date. This message marks the opening of the threequarter meter amateur band. Kruse and Phelps."

6ANV wanted to get an A.R.R.L. emblem for his shack. He bought one of the sweater emblems advertised in QST and also a black picture frame measuring nine by six inches. The class was removed and a piece of black felt laid over the back. The emblem was placed upon this and the glass put on again. The result is grod looking in spite of the small cost.

We are told by 9AIL that vinegar and salt makes a good solution for cleaning transmitting inductances. It will make them bright and shiny and cut spots that soap and water won't touch. He noticed an increase in antenna current after cleaning his.

9BDQ sez he would gladly furnish free of charge, a hunk of solder for some of these bugs he hears.

Some QSL cards state that the station works all bands. We believe it alright. Particularly after hearing an American roll in on top of some Aussie or other foreign station.

The Grand Secretary of Alpha Sigma Delta Fraternity, Box 781, Hollywood, California, would be interested in hearing from the secretaries or other officials of genuine collegiate radio fraternities, or similar bodies. Communications from noncollegiate fraternities (radio) are also welcomed, but it is the former which are particularly desired. Address correspondence to K. V. R. Lansingh, Grand Secretary.

Financial Statement

By order of the Board of Directors the following statement of the income and disbursements of the American Radio Relay League for the first quarter of 1927 is published for the information of the membership.

> K. B. WARNER, Secretary.

STATEMENT OF REVENUE AND EXPENSES FOR THE THREE MONTHS ENDED MARCE 21,1927 REVENUE

Advertising sales, QST	\$19.988. ${ }^{\text {\% }}$
Advertising sales, Handibook	\}, 207.50
Newstealer sales	14,765.95
Handbook sales	4, 862.86
New-paper syndicate sales	516.75
Dues and subseriptions	18.013 .12
Back numbers, ete	919.38
Emblems	68.84
Interest earned, bank deposits	2. 47.56
Cash discounts earned	367.97

eash discounts earned 367.97

Mad dubts ruorre		55i,982.65
Deriuct:		
Returns and ailowances . $\% 7520.38$		
luesw bortion charged to		
reserve for newsstand		
returns :............. \$15.97	6,704,36	
Discount ${ }^{2} \%$ for cash	313.62	
Exchanse and collection charyes	14,94	7,082.92
Net Revenue,		48,949.73

EXPENSES

Publication expenres, QsT	14,986.76	
Publication eapenses, Handbook	1,612.85	
Salaries	12.702.73	
Newspaner syndicate pxpenses	188.00	
Forwarding expenses : ...	681.61	
'Telegraph, telephone tud postage	2.121.64	
Office somplies and general mpenses	2.206.08	
Rent, light and hert	985.66	
Traveling expenses	270.74	
llepreciation of furniture and maipment	245.2\%	
Bad debts written off	81.24	
Communications Dept. feld expenses	86.48	
Tutal Lxpenses :		36.092.01
Net Gain from Operations		142,857.72

Better Audio Amplification for Short-Wave Receivers

By L. W. Hatry*

WE amateurs pride ourselves on constant improvement. In spite of this, we too frequently get into a rut. It is so easy to copy.
For instance-what does the average amateur use for receiving? Almost invariably, an oscillating detector followed by one single stage of "distortion" audio amplification. The exact arrangement of the oscillating detector circuit is varied a little now and then, but the audio amplifier never seems to improve at all. Why does it alwoys use a distortion transformer? Why does it never have two stages-or three?

When pressed for an answer the owner of the set will answer, "Don't need any more" or, "Too much noise."

These are thin excases. On weak gignals one does need more amplification than one stage can pive, while there is the claim that more stages or better transformers are noisythat is simply an admission. The broadcast listening amateur can and does build affairs having from 2 to 5 stages of audio amplification which (with the antenna disconneeted) can be borne by sensitive ears, under good phones. Borne? Why, the affair doesn't make a sound when nothing is jed into it. That is one reason why an inefficient "tuned r.f." (broadcast receiver) will bring in concert after concert with plenty of loud-speaker volume when a headset in the detector circuit strains one's hearing. In radio telegraphy, such a gain is worthwhile on those weak Chilean or Australian signals that one can not quite read.

However, even if the amplifier is not making any noises of its own, the user may still object to the way in which a local signal bursts in while one is straining after a Tasmanian. Many have tried to overcome this by the use of jacks or switches to cut off a stage whenever such a thing happens. Neither is quite satisfactory. A jack gives an abrupt jump-and a click, together with a lapse of time long enough to upset the ear and therefore to introduce an additional lag consequent to readjustment. This is a waste of time that makes poor operating

[^1]efficiency. A switch is just as violent but at least is more rapid and thus not so bad, though the click still introduces lag by requiring readjustment of the ear sensitivity. The jack is, from my standpoint, useless. The switch is worthwhile.

THE PRACTICAL MULTI-STAGE ARRANGEMENT
To make two, even three stages of audio bearable on the headset for constant operat-

EIG. 1. A TWO-STAGE AUDIO AMPILIFIER WITH RESISTANCE CONTROL OF AMPLIFICATION AT THE INPUT OF THE SECOND TUBE, ALSO SWITCHING ARRANGEMENT FOR CUTTING OFF THE 2ND STAGE
The detector circuit shown need not be used but may be modified into any of the standard arrangements by such changes as adding a variable resistance at Z, fixing the condenser V. \mathbb{C}. or putting in a choke at X.
ing use is a simple trick. The circuit is shown in Fig. 1. The assumption in the higure is that the usual throttle control of regeneration is used, but no matter what the control, the amplifier scheme remains the same; the only difference usuaily being in the lack or presence of an r.f. choke at x

A is a resistance shunted across the phones.
B is a modification which permits use of the resistance as an audibility meter-provided the resistance is good enough so that it does not chance with the wather or use. Li is a choke described in the text.
or a variable high resistance at z. Both amplifier tubes are controlled by one rheostat because separate rheostats offer no gain. Filament rheostat control of amplifiers is anything but satisfactory. A rheo.
stat is noisy and upsets the ear, also reducing the filament current of one or more tubes brings the amplifier near the state of oscillation, which causes every sound to have a tail on it and unpleasantly alters the tone of the signal. The rheostat should be set and then left alone. The grid returns,

FHG. 3. HOW THE CBATTERY SHOULD BE CONNECTED IF ONE WISHES TO USE A PLATE VOLTAGE TN EXCESS OF 60 ON THE END AUDIO TUBE
please notice, are connected on the far side of the rheostat to obtain a biasing drop from it. This saves some B-battery "juice". The stage control switch may be fashioned of the old rotary type with points, a single pole-double throw knife type, or a jack switch such as the Carter or Yaxley. The "yolume control" variable resistance R, should have a value of $500,000 \mathrm{ohms}$. It is used merely to shunt the secondary winding of the second audio transformer in varying degree and should have an "off" or open position to permit utilization of the transformer without the shunt. It acts partly as a "cushion" for sudden clicks. Its main function, however, is as a volume control, permitting one to adjust the two-stage output to suit the ear. Reducing the amplification often puts an interferer below audibility, which is a real help.

Volume control at the second stage is contrary to usual practice in broadcast sets. Broadcast set practice, however, is no criterion since quality of reproduction is the prime consideration, while quantity of reproduction is most important for telegraphy. The idea for the former is not to allow any tube following the detector to be overloaded, which can be prevented by putting the volume control on the first transformer, thus varying the input given to all of the audio tubes. We c.w. amateurs live under a headset. This means that any sudden loud noise will be concentrated on a pair of strained ear drums. If the volume control is in the first stage (before the first audio tube) the second audio tube will always be working at maximum, and a trifling click originating after (i.e. beyond) the volume control will race through the a.f.t., be properly amplified and do all but raise one's cranial horticulture permanently. This
will not do, so the control is put at the second stage on the secondary of the transformer that runs the last tube and thus controls anything that gets to that last tube, which is first aid to the ear. Naturally, one here thinks of the possibility of putting the volume control still turther along in the system; that is, beyond the last tube. It then becomes a resistance shunted across the phones as in Fig. 2A. This naturally suggests that one might as well calibrate the resistance and use it as an audibility meter-assuming the resistance to be good enough for that purpose. Unfortunately. the thing isn't quite that simple, as the ioad on the last tube is changed by moving the resistance slider and the whole amplifier is more or less upset. This can be gotten around and the thing made workable enough for ordinary purposes by the arrangement of 2 B . The choke, L , is almost anything that has an inductance which is at least as large as the inductance of a pair of phones (in fact an extra pair of "cans" will do in a pinch) or as much larger as is convenient. The larger the inductance of the choke, the better the audibility meter.

FIG i. FHLAMENT CONTROL SWITCHES OF YARIOUS SORTS MAY BE CONNECTED AS SHOWN TO PUT OUT THE FILAMENT OF THE 3RD TUBE (2ND AUDIO STAGE) WHEN ONLY ONE STAGE IS WANTED
The connections are such that the switch does not affect the operation of the irst two tubes. The switch as shown controls the 3 rd filament and also transfers the phones from the 3 rd to $2 n d$ tube.

An old audio transformer or a filter choke from a " B sub." will do. These arrangements are not so good in one way as the one of Fig. 1. If a very strong click comes thru the detector it ean easily choke up the 2nd audio tube in Fig. 2 which it could not do so easily in Fig. 1. Accordingly, Fig. 2 gives one a chance to use the volume control as an audibility meter and Fig. 1 probably wives better protection against momentary blocking of the amplifier-during which time signals are not. The choice depends on the sort of interference you have, also your personal likes.

With these circuit arrangements, not more than 45 volts of B are needed. If you like 90 volts (it permits greater volume) use it on the second stage only, for that's all that needs it and the B-battery power should be conserved. With 90 of B , the last tube should also have a 4.5 v . C-battery connected
as in Fig. 3. The C-battery cuts down the B-battery load, increases the tube life and helps the audio quality, which last feature is virtueless for telegraphy. The detector voltage is used as needed.

The 199 tube is the logical one to use, for even three of them on a set of dry-cells provide economical filament operation. However, 201-As are satisfactory. The 120 power type or the 112 power types are needless.

A rheostat on the audio tubes is not necessary. It only means another knob on the panel, another device to wear out, another set of spring connections to go bad or another rotating hickey to loosen or stick. Overcome this with a filament ballast resistance such as the Amperite, Elkay stabilizer, or Daven ballast; as examples. Get one for the 120 tube, it will control two 199's when it is connected in place of the rheostat, or get the type for the 112 tube to control 201-As, or one of the 201-A type for two 201-As if you wish. If no ballast resistors are handy, use a fixed 2 -ohm resistance for the latter, or a fixed $121 / 2=o h m$ resistance for the former. If even these are not at hand, set the rheostat back on the baseboard and forget it. Use a battery switch on the panel to turn the whole business out at will. The better battery switches are designed to last a life-time.

If the wish is to turn of the third tube when using only the first two. the interstage switch can be obtained with filament

WIG. 5. AUDIO AMPLIFYING TRANSFORMER CURVES
A is the curve of a well-known "music tranaformer" When used between 201.A tubes with a plate voltage of 60.
B in a modification of the upper end of this curve, such as might improve matters by gutting off the highpitched parts of static and other noises, Some of this effect can be gotten by shunting condensers across the sewondary winding.

C in ${ }^{2}$, peaked eurve such as given by as "distortion" transformer, and also by ordinary transformers with the 240 tube or by a "masic" transformer with 201-A tubes but the tuned trap of Fig. 7 connected across the primary. Gutiting the trap in and out Fould cause one to go from curve A to curve C and back.
control contacts which are connected in scries with the third tube's filament line. With filament control to cut out automatically the last tube, separate filament resistances or rheostats will be necessary
for each tube to avoid having to readjust for one only as when one resistance is used. The filament control is indicated in the Fig. 4. Turning off the last tube doesn't

FIG. 6. RESISTANCE AMPLIFICATION CONTROL APPLIED TO RESISTANCE-RESISTANCE OR IMPEDANCE RESISTANCE AMPLIFIER, IF ONE OF THESE IS TO BE USED
The controlling resistance here becoines the variable grideak R on the last amplifier tube. It is conrenient to use a resistance with a maximum of 500,000 ohms.
save much, with a storage battery, and, if you rig up an amplifier like this Fig. 1 circuit, there will never be any desire to drop to the lower stages; for the volume control can always be set down to less

EG, T. TUNED REJECTOR OR AUDIO FILTER TO MAKE AN AMPLIFIER EITHER PGAKED OR FLAT AT WHLL
By putting the switch on the point 2 the trap is cut out so that we obtain the natural curve of the transformer, which would be like Fig. 5 A for a good transformer. By patting the switch on point 1 the trap acts as described in the text and the result is a very Feaked amplitier such as represented by curve GC . The condenser ci may have a capacity around $1 / 10$ microfarad and ce around that same value or as large as 1 microfarad depending on the preference of the wser. The capacity of C2 somewhat conirols the sharpness of the arrangement. i, is a 1 -henry iron-core choke described in Fis. 8 .
amplification which leaves the reverse gain, always ready at the mere turn of a black knob. Useful? I'll say so!

WHAT KIND OF AUDIO TRANSFORMERS

The kind of audio transformer to use is the best one you can afford. A pair or trio of big transformers do the trick. We don't care about small distortions, in fact distor-
tions may help our volume, but we don't want a peaked or "tuned" transformer with all its performance on one frequency. If the curve has small humps it doesn't matter.

We usually talk as if we were dealing with "doc. notes" so that we only need a peaked amplifier operating at some pitch

ARRAMGMENT OF INDUCTANEE COILS.
FIG. S. ONE-HENRY IRON CORE CHOKE ON F. S. DELLENBAUGH'S DESIGNS
This choke will handle 50 milliamperes but a smaller one is hard to build at home. "he lons core pieces measure $1.7^{\prime \prime}$ X sist and the short ones .5" $5.55^{2 *}$. Dimensions b and ce are .50" and $.66^{\prime \prime}$ respectively. The core is . $50^{\prime \prime}$ thick, the airgaps total $.022^{\prime \prime}$ and the finding has 2300 trurns of No. 38 Enameled wire, Slight readjusiments of the airgap by means of paper separators will xive the desired tuning of the trap.
convenient to the ear, a pitch such as 1000 gycles to which we have set the received beat note.

This is all wrong. In practice, we mostly deal with signals that are not "pure d.c." but carry a ripple at $60,120,240,500$ or 1000 cycles. It is seen immediately that amateur reception deals with a gainut of andio frequencies partially below the good amplifying range of "a "poor" transformer. A yood a.f. transformer, with an approximately flat curve of amplification against frequency, the flatness of which curve (Fig. 5A) tends well down to 30 cycles is what we smateurs need to handle this range of useful audio frequencies. We could, however, be entirely satisfied with an a.f.t. Whose curve like that in Fig. 5B drops offi abruptly above 1000 cycles but keeps up below 30 .

I have done considerable reception with several different types of audio transformers for experimental observation of the things I have mentioned. The "bad" transformer, the one that like Fig. 5 C drops the bass notes, or one that has a big "hump". is right enough on "d.c. notes" whose tone is a single beat-note, which is under control. However, even these suffer since any jumping in the pitch of the note results in such at wabbly polume that the thing is nearly impossible to read. With a good audio transformer that handles oll audio fre-
quencies with discretion, wabbly waves aren't neariy so bad, particularly if the wabble is slight. In addition to this, the way some ace or semi-ace tones pick up "body" in a good transformer is a pleasure; the low ripples frequency gets respectable amplification, and the super-imposed beat tone is also well-treated, which results excellently. Tuned transformers obviously are not satisfactory for such signals.

It is obvious to me that it is better for us to choose a good audio transformer because it helps out part of the radio game, and results too in an affair of tine audio quality for music reproduction, and music is sometimes a pleasant noise to have handy.

A little distortion hurts nothing, and the ear nearly refuses to recognize it anyhow, so there is no use in having resistancecoupled amplification nor impedancecoupled amplification. At the same time, if such an amplifier is handy, use it. But remember that these systems of coupling are good for the bass tones if the inter-tube coupling condenser is large enough; that means 11 microfarad or better. The last arid-leak becomes the variable resistance used as volume control to the last audio tabe. See Fig. 6. These systems have the disadvantage of requiring three tubes to produce the gain of two transformer stages.

STATIC REDUCTION IN A PFAKED TRANSFORMER

A reduction of static and other exterious noises is often claimed for the (more or less) tuned audio amplifier or for the audio amplifier filtered to pass but one frequency. Mainly, this does not happen because the

FIG. 9. AN ARPANGEMENT TO PERMIT CUTTING PHONES INTO THE DETECTOR PLATE CIRCUIT WITHOUT DETUNING THE TNCOMING SIGNAL The scheme atmounts to a filter which keeps r.f, out of the jack. The illter consists of two r.f. chokes which are described in the text and the fixed condenser f.c. which has a capacity of .005 to $0001 \mu \mathrm{if}$.
unfortunately necessary beat reception adds other frequencies not natural to the interference within the band of the amplifier and these are amplified by the careless audio stages. This paper as first written contained the sentence, "We do not gain a reduction of the noise in a distortion transformer and a 'grood' transformer, I think, amplifies the signals more than the noise." Upon reviewing some experimental results and some of the effects obtained at 2 MK (and mentioned in QST for April, in the Editor's note on page 30) this seems to be
too general a statement. There are, evidently, cases where the distortion amplifier is of actual assistance in suppressing the background although it seems probable that the statement of the April issue was likewise too general and that the distortion transformer is not a sure cure. ${ }^{\text {. }}$
yf you like peaked atdio occasionally
Because of the things just mentioned, also because you might some day meet an amateur signal that was steady and had a "d.c. note" it is interesting and possibly useful to be able to shift rapidly from the "good" amplinier (Fig. 5A) to the sharpiy peaked (Fig. 5C) "bad" amplifier.

There are several ways of doing this. In the General Radio laboratory, audio transformers are mounted on square bases of sheet-bakelite, and a spring plug is put in each corner of the base, and connected to the terminals of the transformer. The whole arrangement plugs into a base with 4 jacks, so that transformers can be exchanged in a hurry.

Of course one does not have to change transformers-the same effect is obtained by changing the 201-A or 199 tube for a tube with a high plate impedance, such as the 240. This is simplest of all as one does not need to change any wiring if the set was made for $201-\mathrm{A}$ tubes. The details of this are given on page 30 of the April issue as mentioned before.

WITHOUT PIUG-IN ARRANGEMENT

One can see quickly enough that these plug-in changes cannot be carried out without losing the signal for a moment and making terrific noises.

This can be avoided and the change made instantly by the arrangement as suggested in July, 1926, QST by myself and shown again in Figs. 7 and 8. The idea is to shunt a tuned trap or "rejectox" across the trans-

FIG. 10. CONSTRUCTION OF REF GHOKES USED in THE YARIOUS CIRCUITS
former primary. The trap is usually tuned to 1000 cycles and offers very high impedance to that frequency-in other words, "rejects" it, and compels it to go thru the transformer and be amplified. Other trequencies close to 1000 cycles are treated similarly. High frequencies are bypassed thru the condenser C1 and do not go into the transformer primary strongly. Low
frequencies go thru the choke L and also do not enter the transformer as strongly as before. Thus the effect of the trap is to cut off both high and low pitches and to turn curve 5A into curve 5C. Whether this is an advantage or not can be found by a flip of the switch without losing a dot. If it isn't--better flip the switch back again.

Such a tuned trap can be applied to the first audio stage, while the variable resistance volume control remains on the second stage just as it was in Fig. 1.

AN ISOLATION PROBLEM

Many amateurs desire to be able to transfer the headset for the last amplifier to the detector itself by the usual plug and jack, or by a switch, to listen on one tube at

FIG. 11. A NOTHER CHOKE CONSTRTUTION
the same time a signal is coming in without detuning or losing that signal. This is not difficult to do. It merely requires a little circuit rearrangement. The correct circuit at the primary of the first audio transformer is shown in Fig. 9. Two r.f. chokes are necessary. One is R.F.C. 1 with 300 turns like Fig. 10. The other choke R.F.C. 2 is smaller, having but 100 turns wound on in the same manner. These chokes are not bulky if wound with 30 wire or smaller and enameled wire may be used. The chokes should not be closer together than is necessary. If close together, they should be at right angles. They should be used in any case. It will not harm them a great deal if they have to be near the a.f.t. or other apparatus. Using two different sizes of chokes reduces the dead-spot troubles. The chokes may also be made as in Fig. 11.

[^2]The fixed condenser f.c. across the transformer (Fig. 9) makes certain that only a trifling amount of residual r.f. gets into it. If such care is not taken it is perfectly possible for the gain controls or stage controls to upset the detector adjustment. The circuit can be varied by the use of a 12,000 ohms resistance where the r.f. chokes are shown, which has the further advantage of never causing dead spots. This of course does not mean that the antenne has been stopped from causing dead spots. Such must be avoided by loose coupling. The resistance may actually be anything between 10,000 and 25,000 ohms. The B-battery at the detector will have to be from 40 to 60 volts that 22 or so may arrive at the plate after going through the resistance. Usually, B-battery voltages are used with the rif. chokes. With this Fig. 9 circuit, the headset can be plugged into the detector plate eircuit without detuning the signals; or the headset can be moved up into the amplifier without losing the signal tuned in on one tube.

In the early part of this article I challenged the old assertion that more than one stage of audio amplification is of no help in the reception of telegraphy. That this is not an individual notion is shown by the commercial stations where the use of two stages, when available, is the habit. The better proof is a trial with good transformers and a volume control. It is obvious that a weak signal properly amplified becomes more audible; if it doesn't, proper amplification has not occurred. An amaleur may be careless but he shouldn't be incompetent.

The Radio Engineering Labs are now supplying their regular inductances with plugs and mounts for plug-in work. The plugs are large and should not cause losses due to poor contact. These should be at big help in building a set to work in several bands.

We understand that 4 BN is using a pair of 216B Kenotrons to supply the plate of a 203A. These poor rectifiers are staggering under a load of ten volts on the filaments and 1.500 on the plates. The output is 1200 volts at 150 mils. Wonder how long they'll last.

Here are a few smiles supplied by 9 FO .
9AHA and 9HI are both in Chicago.
gRVY is located in Hartley, Lowa.
5LR's name is Waterhouse. He lives on Fountain Street and the town is Hot Springs! Bet he uses water-cooled tubes and his note is all wet.

Standard Frequency Transmissions

THE Official Wavelength Station Committee of the Experimenters' Section. A.R.R.L. announces the following standard frequency schedules. The frequency values at $9 \times L$ are based on the standards of the Bureau of Standards and have been checked by the Cruft Laboratory at Harvard University and by the Communications Laboratory of the Massachusetts Institute of Technology. While an accuracy of $1 / 10$ of 1% is to be expected, no guarantee is made. Station 1XM has suspended for the summer. Details on station 9XL may be found on page 8 of the June issue. $9 \times L$ now operates with a small percentage of "tone" modulation to distinguish the signals from broadcast harmonies.

In the following, " 4 " is the frequency in MEGACYCLES and the approximate wavelength in meters follows.

SCHEDULES

Friday Cemtrai	Eruning Schedules Standard Time				sunday Afternoon Schedules Bentral Standard Time		
Time (PM)	Schedule A		Gohedule H		Time (PM)	Schedule C	
	-	2	\pm	λ		1	
8.40	3.50	(85.7)	6.50	(46.1)	3:00	10.0	(80.0)
8.42	8.60	(83.3)	6.75	(44.4)	9:12	12.0	(25.0)
8:54	8.35	(80.0)	7.00	(42.8)	8:24	14.0	(21.4)
9:06	8.90	(76.9)	7.55	(41.3)	9:36	14.5	(20.7)
$9: 18$	4.00	(75.0)	7.50	(40.0)	3:48	15.0	(20.0)
\%:80	8,70	(52.6)	7.75	(38.7)	$4: 00$	15.5	(19.3)
9.42	6.50	(46.1)	8.00	(37.5)	4:13	16.0	(18.7)
9:54	7,00	(42.8)	8.25	(35.3)	4:84	18.0	(16.7)
10:06	7.50	(40.6)	8.50	(85.3)	4:96	30.0	(15.0)
10:18	8.00	(37.5)	8.75	(54.3)			
10:30	8.50	(35.3)	9.00	(88.8)			

August ${ }^{\text {of }}$	B	9 LL
August 14,	0	9XL
August 19 ,	A	9 XL
September 2	B	9×1
September 11	C	9×1
September it	A	9XL
September 30	B	9XL

OIVISION OF TIME

a minutes-GST GST GsT nu istation call letters)
is minutes-5 sec. dashes broken by station call letters every half minute.
I minute-announcement of frequency in megacycles per second (8.75 mexagyoles per sec. is sent as "8 \mathbf{r} 75 MC.")
I minute-manouncement of Irequency in megacyoless ayeles per second.

Special Notice-The continuation and possible externsion of these transmissions depends entirely upon the response of the A. R.R.L. If pou use the transmissions send a note ro Experimenters Section, A.R.R.L., Hartford, Conn.

- R. S. K.

Cuban 6XJ

By Frank H. Jones* and Harold P. Westman \dagger

AS will be noted in Correspondence Department of this issue, there are several requests for information on phone transmission. Unfortunately, there is very little available data on amateur phone installations capable of putting out a signal that is both steady and of good quality.

A good phone station must be a combination of an excellent c.w. transmitter and a
wavelength) end of the spectrum. Tune from one of these stations to another and critically examine both the quality of output and the steadiness of wave. Then, run up to the higher end of the wavelength spectrum and listen to one or two of these stations. Note the vast difference in the naturainess of the reproduction.

An examination would probably show the chief difference between these stations as

CRYSTAL-CONTROLLED 6XJ
first rate audio amplifier system such as is used in a really good broadcast receiver. Any e.w. station that does not have a steady pure d.c. note cannot be made into a phone station which may be expected to have a high standard of modulation with a quiet carkier wave for background. In a like manner, a set giving a good steady radio frequency output will not give good quality modulation unless the microphone and the necessary amplifiers are of the best.

Even with two good units, there is still the problem of putting them together. This, in itself, is no small task and requires more than a hit and miss adjustment of clips which commonly goes under the title of "tuning up". If you don't believe this is a matter calling for more than just a superficial knowledge, listen in on the family's broadcast set for a night. Confine your activities to the higher frequency (lower

[^3]being that those on the longer waves are, in practically all cases, the product of an excellent engineering organization and many months of time spent by a number of specialists who worked on only those small portions of the problem that came within their particular field. The shorter wave ones are generally the result of the ability of one or two men who are not specialists in all phases of the work but are of the "all around" type. These men are usually considered ats being more advanced in the theory and practical application of radio than is the amateur and have available more time and money for the building and adjusting of those stations which they operate. If they cannot always make a finished product that is pleasing to the ear it should certainly be difficalt for the amateur to come up to even this standard.

The description to follow while not being that of a typical amateur station will give so many good pointers that are applicable
to amateur installations that it will be worth much attention from the man intending to install such an outfit. It was built by Frank H. Jones and is to be used for experimental tests on the short waves in conjunction to the regular broadeast station, 6KW, of the Tuinucu Sugar Co.

Crystal control of the transmission trequency is used. A crystal having a fundamental frequency corresponding to 159.6 meters is amplified through three stages each of which is used for frequency doubling. The crystal tube and irst stage are UX210 tubes, the second stage is a 203-A and the inal stage is a $204-\mathrm{A}$. Because of this frequency doubling, very little trouble is had due to feed back and, as will be noted in the photograph, an extremely compact arrangement is used.

THE SERIES MODULATION METHOD
The modulation arrangement consists of a Western Electric 7A amplifier (to be described later) the output of which is fed to a UX112 through a special transformer. The UX112 swings the girds of two UX210 tubes in parallel. The plate circuit of these 210 s is in series with the plate cir-

FIG. 1
cuit of the crystal tube and acts as a resistance in the plate supply line and causes modulation by varying the voltage applied to the plate of the oscillator:

Figure 1A shows two resistors, x and y in series, connected across a source of potential E. If the resistance of these units is equal, there will be an equal voitage drop across each of them. If, however, we make the resistor x of but half the value of y it will then represent one third of the total resistance and will only have one third of the total impressed voltage across its terminals. The unit y, will then have across it a voltage equal to two thirds the impressed voltage. If we were to reduce x to zero, then the whole impressed voltage would be across y. Also if x were made extremely high, y would be correspondingly lowered. Therefore, even though we have not changed the value of y or the total impressed voltage, we can effectively change the voitage drop across it.

Now, if we substitute for these resistances, the plate circuits of two vacuum tubes and so adjust our circuits that the plate resistance of one of them remains comparatively fixed, we can, by varying the plate resistance of the other tube, change the voitage applied to the plate of the first tube. Figure $1 B$ shows two tubes, one of which is the crystal oscillator y, and the other, the modulator x. The plate resistance of the oscillator tube y, remains comparatively constant. On the other hand, the piate resistance or the modulator tube x, will vary in accordance with the voltage applied to its grid. We can let this act as the variable resistance.

When the signal voltage applied to the grid is negative, the plate resistance of the tube becomes higher and the voltage drop atross it increases leaving less voltage across the oscillator plate circuit. On the other half of the cycle, when the grid of the modulator is positive, the plate resistance goes down and the voitage drop across that circuit decreases leaving more voltage across the oscillator tube. From this it is seen that modulation occurs both by an increase as well as a decrease in the radio frequency output. Of course, as the voltage applied to the plate of y varies, its plate resistance will also vaty somewhat but this will be small as compared with the resistance change of the modulator tube plate circuit.

The radio frequency energy present in the plate circuit of the oscillator tube is prevented from getting into the modulator tube circuits by means of a radio frequency choke and bypass condenser as shown. The filament of this tuhe is at ground potential and may be tied in with the filaments of the other radio tubes. The filament

flit: of the modulator tube is not at ground potential and in this case a separate storage battery is used to supply the necessary current and voltage. This illament runs several hundred roits above ground potential depending upon the plate resistance of the tube. A special transformer having very good insulation between primary and secondary is used to couple the grids of the modulator tubes to the preceding amplifiers.

When using the Heising constant cur-

[^4]rent method of modulation it was necessary to detune the plate tank circuit of the crystal tube considerably from the wavelength of the crystal in order to get a fair amount of modulation. The detuning had to be so great that the circuit had a strong tendency for self-oscillation. With this series method of plate modulation this trouble was not experienced and the tank
will be somewhat reduced over what would have been obtained if a.c. were used and supplied from a transformer having a center-tapped secondary. This is due to the fact that when d.c. is used, the plate current is not as evenly distributed over the length of the filament. That half of the filament nearest the point connected to the negative of the plate supply will carry more

ETG, 3
A. $\mathrm{A} 5-0-1$ amperes.

A 2 - -4 - 2.5 a mperes.
A3, A4-0-5 amperes.
3.1-18 turns, flatwise tround strip, 5 inches diameter.

L: 10 turas, flatwise wound sirip, 5 inches diameter.
LS- 3 turns Hatwise wound strip, 5 inches.
$B, 4-5$ of the 11 turns of flatwise wound sirip, 5 inches in diameter.
LS-11 turas.
C-n..s tifs.
C1, C2, Cs 250 Mufd. Receiving tope.
C4 $440 \mu \mu \mathrm{fds}$. Transmitting condenser.
Es-500 uhids. Receiving type.
R-12,000 ohms.
Radio frequency chokes are 100 turns of No. 30 d. c. c. wire on a 1 -inch form. Plate blocking condenstrs are 002 pfds. cach. Grid coupling condensers are . $001 \mu \mathrm{tds}$. each.
circuit could be tuned to obtain benefit of the crystal uction without materially decreasing modulation. It is, therefore, quite superior in that the transmission frequency remains much steadier:

The filaments of all the tubes are run from d.c. obtained from storage batteries. The pheostats to drop the voltage of the storage battery to the required value for the filaments are not shown in the diagrams but are placed in the positive flament leads. For two UX-210s in parallel, a 2 ohm unit is used and for the 204-A, a resistance of .28 ohms is required. The $203-\mathrm{A}$ runs directly from the 10 -volt tap of the battery.

When using direct current to supply the flaments of power tubes, the life of a tube
of the plate current than does the other half and, in large tubes where high plate currents are obtained, this may be enough overload to materially shorten the life of the filament. In order to improve matters, a double pole-double throw switch is inserted between the filament of each tabe and the supply lines are connected so that it reverses the filament leads. This is shown in Figure 2. At regular intervals, the switch is thrown and the resulting wear on the filaments is more oven, thereby lengthening their life.

The plate voltage is obtained from either a bank of high voltage storage batteries which are used regularly or else from two motor-generator sets which are on hand for
emergency use. Meters for indicating plate current are not placed in the leads to the various amplifier stages. Only one is used and is located in the plate circuit of the $204-\mathrm{A}$. However, radio frequency ammeters are placed in all of the tank circuits and have been found to be very useful in the tuning of the set.

The 500 volts applied to the plate of the first frequency doubling stage is obtained from the 1000 -voit source and is reduced bv inserting a resistance in that lead.

A magnetic pick-up is used for studio work and a carbon grain microphone used for speech. Two extra stages of amplification are required to bring the output of the magnetic pick-up to an equal level of that obtained from the carbon grain mike. Another stage is used between this point and the grids of the modulator tubes. This makes a total of three stages for the magnetic and one stage for the carbon grain microphone preceding the modulator tubes. The single stage coms mon to both microphones employs a UX-112 whose plate circuit is coupled to the modulator tubes through the well insulated transformer referred to previously.
The extra two stages used for the magnetic pick-up take the form of a Western Electric 7 A amplifier which has been somewhat modified to fit the particular use. This is the amplifier designed for use with the 10D loud speaker and was very popular before the cone type of loud speaker came into its own. It consists of a single stage employing a $216-\mathrm{A}$ Western Electric tube followed by a push-pull stage using two of these tubes. The secondary of the input transformer is tapped to give a volume control of the output. The output winding of the plate push-pull transformer has a low impedance and a special transformer had to be wound for coupling between this circuit and the grid circuit of the following stage.

A switch, to allow the use of either microphone, is used and when thrown to a position for using the speech microphone. it automatically completes the microphone hattery circuit. It disconnects this circuit when the magnetic pick-up is in use.

The set is iocated in a small shack in the yard of the $2,500-\mathrm{Kw}$. electric plant of the Tuinucu Sugar Comnany. This shack is just about large enough to hold the set and the control switch for operating it. This switch is an electrically driven rotary affair and operates the filaments and plate supply switches as well as the antenna disconnect switch. It also starts up both of the motor-generator sets when they are to be used. All this is controlled by a simple two-button push switch located in the studio. Another larger building contains the large bank of storage batteries as well
as the 1000 - and 2500 -voit d.c. generators which are normally used for the regular broadcast transmitter under the call of 6 KW .

The antenna system consists of two $2^{\prime \prime}$, 6 -wire cages each of which are 20 feet long. They are stretched rigidly between two wooden masts about 30 feet high. A twowire current feed system is used and the normal antenna current is is amperes.

In tuning the transmitter, UX-112 tubes Were installed throughout and about 175 volts of B battery applied to the plates. This allowed the succeeding stages to be tuned without any danger of ireworks which might have taken place under misadjustment. It is also good insurance as far as the crystal is concerned. After the set had been adjusted, the proper tubes were inserted and the voltages raised gradually. Only relatively slight changes in the tuning adjustment were necessary to take care of the different characteristics of the larger tubes.

Ohio State, Central Division Convention

Hotel Ohio, Toungstown, Ohin August 19-20

FELLOWS, note the above dates the city and hotel where the sixth annual ohin State Central Division Convention is to be held. The Mahoning Valley Amateur Radio Olub will have charge of the convention and the tentative program shows grod amusements for the delegates at Idora Park besides the tratic and technical meetings.

Past Ohio Conventions have always been of the best and we have it from V. D. Gettys, Chairman of the Convention Committee, that they will uphold the past records. Everybody is cordially invited to attend.

A Dutch station in giving his reply message in the recent International Tests said, "Here no transmitter. Dutch amateurs not being licensed". Suppose it must have been "two other fellows".

A One Gnat-Power Portable

By Harold P. Westman, Assistant Technical Editor

THERE are many types of sets that are called portable. They range from the hall-kilowatt phone set mounted on a Mack truck and used for out of studio broadcasting to the hunk of galena with a small coil, a couple of condensers and a pair of cans that can be fitted into your jacket pocket. All have their place in this scheme of things and all are useful in their place.

The amount of equipment that can be used depends to a great extent upon the available means for transportation. If it must be packed by man power, the limiting factor will be the amount of batteries that can be carried. The length of time away from the source of supplies and the ease with which new batteries may be obtained will dictate the number and size of tubes that may be used. In cases where the total trip may not take more than a couple

GRONT VIEW OF PORTABLE SET INCLUDING battery box
of weeks to a month, these matters may be so balanced that there is no need for renewing batteries until the trip is over.

This particular set was constructed with a view of being used primarily, as a receiver, and secondarily, as an extremely low-powered transmitter. Its receiving range should be as great as that of any of the non-portable type of receivers using the same circuit arrangement and tubes. The set covers only the 40 -meter hand but can be made to cover both the 40 - and 80 meter bands but this entails an extra amount of work that is quite out of proportion to the gain.

Its ability as a transmitter is, no doubt, small but should offer many possibilities for successful two-way communication, particularly if a good antenna is available. Though its normal range will probably not
exceed ten or fifteen miles, it is quite possible to cover very substantial distances under favorable conditions. At least, there will be some incentive toward trying for greater distances even though a great deal of success does not result.

The set is divided into two parts; one box carrying the set proper and another box, the batteries and other incidentals such as phones, antenna and tubes. The same pair of tubes is used for both trans-

C1, C2, C3-General Radio type No. 368 , $50 \mu \mu \mathrm{fd}$. condensers.
C4-
©5, $07-1,000 \mu \mu \mathrm{fd}$. Sangamo receiving condenser. C6- $100 \mu \mu \mathrm{fd}$. Sangamo receiving condenser.
C8-11,fd. by-pass condenser.
C9-Antenna coupling eondenser (deseribed in text).
R1-5 meg grid leak.
R2-5,000 ohm grid leak (Daven).
Ris-Filament rheostat. 20 ohms for two 199 s . 14-Variable high resistance, 50,000 ohms. RFC-NO. 35 Remler choke.
mitting and receiving. Ohange-over is accomplished by means of two multi-pole switches.
The filaments are not controlled by these switches. They are connected directly to the A battery through a rheostat and are turned off by rotating it to the "off" position. This is advisable because as the batteries are used, the terminal voltage will drop due to polarization. In order to compensate for this, the rheostat is advanced and after an hour or so of operation. there may be several ohms less in the circuit. Now, if the filaments are turned of
by a switch, and the batteries allowed to rest for several hours, when turned on asain, the battery voltage may be back to where it was at the start of the previous period of use. There will not be enough resistance in the circuit and the filament will run at too high a temperature resulting in the shortening of its life. The life of the batteries will also be reduced.

The circuit is shown in Figure 1. It may look a bit complicated by having the switching arrangement mixed up with it

HIG. 2
but examination will show it to be quite ordinary. The two circuits separate and without switches are shown in Fig. 2.

The switches are manufactured by Taxley and consist of a number of flat springs carrying contacts similar to those used in telephone jacks. They may be ottained in various number of sets of contacts. Although, four pole, double throw ones are shown, those having only three poles will do.

In the diagram, the switches are labelled A and B. Each switch takes care of the grid and plate of one tube. The B switch aiso changes over the antenna. The grid of the detector tube is connected to the second pole from the bottom of the A switch and makes contact to the receiver coil when pushed downward. The antenna when on the receiver side is connected to the next switch blade directly below this and the capacity between the two blades acts as the
antenna coupling condenser. Regeneration is controlled by means of a variable high resistor placed in the B battery lead to the detector tube. A single stage of audio trequency amplification is employed and uses a small "Hedgehog," ten-to-one ratio transformer.

The transmitter is of the usual Hartley arrangement and a voltage-feed half-wave Hertz antenna is used. This is a piece of flexible wire about 60 feet long. A fash lamp is placed in the center to indicate resonance. The set end of the wire connects to one side or a resonance circuit that is coupled to the primary circuit inductance.

The inductances are all on bakelite tubing one and a half inches in diameter and with the exception of the kickler which is close wound, \&re wound with number $2:$ s.c.e. wire spaced one diameter. The spacing of the wire should give no trouble.

The "ilve" winding should be securely fastened to the machine screw which acts as the terminal at the end of the winding. The "dead" winding, whose space is worth more than its presence. is also caught under a nut on the same screw that holds the "live" wire. Both wires are then wound side by each and pulled good and tight. This mater of getting the wire on tightly is the most important point of the whole proceedings for, if there is any looseness at all, the wire will shift its position and the spacing become very irregular. After the proper number of turns has been put on. the end of the "live" wire is scraped and fastened to the machine screw which acts as its terminal. The spacing winding can then be removed. This should be done with care to see that it does not pull against any turns of the good winding and alter the spacing. Immediately after the winding is completed, it should be painted over with collodion which will hold it firmly in place thereafter.

The receiver secondary winding consists of fifteen turns and the form is three and one-half inches long. This winding is put at one end of the form to get it in the elear where it can he connected to and that part of the form below the winding is left vacant. The tickler coil is wound three-eighths of an inch below the bottom turn of the secondary winding and has eight turns. This winding is not spaced but is put on in the regulax manner.

The form is held in place by drilling two holes at the bottom end of it. These are just large enough to pass a piece of bus bar and are located about one-eighth of an inch from the edge and at opposite sides of the tubing. A plece of bus bar is run through them and eyelets turned in each end
of the bus. They are just large enough to hold two wood screws which screw into the wooden baseboard and hold the whole unit in place.

The transmitter inductance has twelve and a half turns. Three taps are taken out at the sixth. seventh and eighth turns respectively. The filament lead is connected to the one chat gives best resuits. The coupling circuit winding has eighteen turns and the distance between the two windings is approximately one-fuarter of an inch. This coil is mounted by means of two pieces of heavy bus which are fastened to the two condensers used for tuning the transmitter. They are aiso used as the leads to the condensers.

The variable condensers used in the set are all General Radio type 368,50 upid. ones which are of the "midget" variety, having a single hole mounting arrangement. The two in the transmitting eircuits are put on the panel in the normal manner but the one for the receiver tuning control is mounted a bit differently. This is due to the use of a National 'Velvet Vernier' dial, a very smooth running one that has about the right ratio for the size condenser used. The dial itself is fastened to the panel by means of tour screws which extend through it and are held by nuts. There is a short hollow shaft on the dial assembly that extends through the panel and into which the shaft of the condenser fits. This requires that the condenser be mounted about an inch and a half from the panel. As the dial assembly is plenty strong enough to support the condenser, it is only necessary to get an arrangement to keep the entire condeuser from rotating with the dial and also to keep the correct amount of tension on the rotor section to insure good contact at the bearings. This is done by bending a piece of bus wire so that it will be eripped by the mounting nuts on the condenser and its ends will be heid by the same screws that hold the dial in place.

The batteries are connected to the set through a four-wire cable. The key is placed in the positive B battery lead. It is impractical to put it in the negative lead as this is connected to the A positive lead at the battery box to save the running of an extra lead. However, the radio frequency choke does its work and no reaction is had due to the hand coming in contact with this lead. The voltage at this point is not high enough to cause any trouble.

The battery hox is divided into three compartments. Two of these hold the batteries this is really one compartment with a shelf' so that the batteries will pack better and keep out of each other's way) and the other holds the antenna wire, phones, tubes, etcetera.

Tuning is simplified to a considerable degree by having the phones in the plate circuit of the tubes. In order to find the proper tap for the filament lead, throw the switches for transmission and light the tubes up. Put the filament lead on the

FIG. 3
tap nearest the grid end of the coil. Rotate the condenser accoss the primary coil and keep touching the metal pointer on the condenser. This is equivalent to touching either the grid or plate lead and will stop the tube from oscillating. As it stops and also as it starts when the finger is removed, a click will be heard in the phones. The condenser should be rotated over its whole scale and it may be noted that the set doesn't oscillate over that entire range. Try the filament lead at the next tap and test for oscillation. This will probably be all right. If not, try the tap farthest trom the grid. If that doesn't work, there is probably something wrong in the connections or a defective piece of apparatus. Check everything over carefully and be sure that all soldered joints are making
good contact. When everything is in proper shape, there should be no difficulty in getting it to oscillate.

Leaving the primary condenser alone, swing the condenser in the antenna coupling circuit until a click is heard in the phones. This indicates that the two circuits are in resonance. In the condition of exact resonance, the circuit will stop oscillating as the amount of power absorbed by the coupling circuit is too great. This circuit should, therefore, be detuned somewhat and the point at which maximum energy is present in it can be found by touching the pointer of the condenser. Most reaction on the primary circuit will be had

REAR VIEW OF SET
when there is maximum current in the coupling circuit. Therefore, touching the coupling circuit and causing its resistance to increase will be reflected into the primary circuit and stop oscillations. It follows that the greatest change in the primary circuit will take place when there is the greatest amount of its energy being fed into the coupling circuit. That point where the loudest click is heard in the phones is the point where maximum current is flowing in the coupling circuit. The antenna may then be connected and the circuits readjusted for highest antenna current. This, of course, is indicated by the brightest indication on the flashlamp in the center of the antenna.

The boxes are made of $3 / 8$-inch wood and the dimensions are given in Figure 3. In both these cases, the hinged front lids are not shown. In the case of the battery box, the lid or door is hinged on the left
side and the top and bottom pieces are extended out to be flush with the outside of the door when it is closed.

The door on the box housing the set opens from the top and acts as a shelf to hold the bey. The top and bottom pieces of the cabinet are also extended to be flush with the outside of the door when it is closed.

In order to hold the panel in place (it fits two inches inside of the front edge of the box to give room for the dials etc.) there are four square pieces of wood $3 / 8^{\prime}$ by $8 / 8^{\prime \prime}$ fastened into the corners of the box. The panel is screwed to the ends of these. A small lid is in the top to allow tubes to be put into and taken out of the set. The panel is $8^{\prime \prime}$ by $8^{\prime \prime}$ by $3 / 16^{\prime \prime}$ and should fit snugly into the box.

When used with two 199 tubes and four each of the No. 5156 and 2370 type Burgess batteries or their equivalent, the set has proved that it should be good for two hours per day operation over a period of a month without the need of renewing batteries. Both sets of batteries should give out at about the same time. The No. 5156 hattery is a pound and a half, 22.5 -volt one and the four are connected in series for the plate supply. The No. 2370 type is the heavy duty C-battery and the four are connected in parallel for the filament supply. If conditions permit. a pair of 120 tubes may be used and will have a considerably larger output. If the same A-hattery is used though, their life will be much shorter. With these tubes, three of the regular six-inch dry cells should be used to get a life that approaches that of the plate battery. It is aiso possible to use a pair of 201-A tubes if the filament rheostat is changed. It will be necessary to use a storage battery for filament supply and this may be done if the set is to be used in an automobile. In this case, the plate batteries begin to get too small for the job and a larger size should be used. When being packed on foot. a leather or web strap may be passed around the boxes and used as a shoulder strap.

The set itself when ready for carrying weighs approximately seven and a half pounds. The battery box containing all batteries, phones, antenna. tubes, etc. weighs about fifteen pounds making the total weight of the two units, twenty-two and a half pounds.

This Short-Wave Amplifier Business

By R. B. Bourne*

MOST amateurs have at one time or another wondered why the combination of simple autodyne detector and one stage of audio amplification has been for so long the most popular type of receiver for short waves and at the same time wondered why r.f. amplification at short waves was, as it appeared to be, a useless adjunct. Many amateurs threw the very idea of a tuned amplifier out of their minds simply because it necessitated another control. An untuned amplifier is absolutely out of the question, because of the very doubtful gain ontainable.

The writer has been experimenting with various short-wave r.f. amplifiers for several years. With most of them, it was the same story-not good enough. There must be a reason for their failure, and the present shielded job was constructed with the idea that if well known principles were to he applied and given a chance to function, some real results should accrue. These resuits would have to more than justify the extra tuning control involved.

First of all, it appeared that if an amplifier could not be made so as to be free of objectionable reaction on the detector tuning, it had better be left alone. ${ }^{1}$ To attain this independence of the two tuned circuits, several things had to be done. The whole receiver is shielded with $.05^{\prime \prime}$ thick copper, with all possible seams soldered up. The amplifier stage is shielded from detector by a partition, through which the necessary holes are dxilled to accommodate wiring. The shielding thus obtained is far from perfect. but is a step in the right direction. Perfect shielding is almost impossible to obtain unless one resorts to double shielding, that is, two complete shield systems separated by about half an inch.

Granting the shielding to be fairly good. it is then necessary to watch out for stray couplings, in common leads, etc. Filament and plate power leads are braided together. where they carry no r.f. of intention. It is desirable to get r.f. currents to ground as quickly as possible, after they have performed their intended function rather than allow them to run loose.

Fig. 1 shows the complete wiring connections. It is seen to be a straight enough

[^5]neutrodyne, as far as the r.f. part of the set is concerned. The two tuning condensers are 7 -plate affairs, cut down from a larger size. The regeneration control is a, $0005-\mu \mathrm{fd}$. condenser, but one of much less capacity is ample. It is found that a variation of only 30 micro-microfarads is sufficient to cover the needs for regeneration capacity ovex the entire frequency band involved.

The two grid coils. L_{1} and L_{s} are identical, having 6 turns of No. 16 bare wire on a

FRONT VIEW OF THE SET IN ITS SHIELDED CABINET
The r.t. amplifier is at the left of the partition thra which it feeds the x if transformer. The primary of this iransformer is the lumped white winding just beyond the partition and the secondary is the spaced coil next to that. When the set is in operation these voils are sereened against capacity coupling by the wire and cardboard sereen which is seen leaning against the lid of the set. This screen does not stop masnetic coupling. The left control is the r.f. tuning control, the detector input tuning is controlled by the center dial and the reseneration by the right hand dial.

234" diam. The coils are self-supporting and turns are spaced about the diameter of the wire by means of string woven thru them. The string is paraffined, which increases its rigidity. The antenna is connected to the r.f. coil at the second turn from ground. A separate antenna coil was tried, but gave slightly inferior results. No danger here from "dead spots" due to antenna tuning. The antenna has practically zero coupling with the detector. The primary of the r.f. transformer, L: has 7 turns of No. 18 D.C.C., bunch wound. Three of these turns are the actual primary, the other four providing the balancing potential which is applied to the grid of the r.f. tube thru the neutralizing condenser C_{n}. A great many such coils were constructed and tried out. This one
gave the greatest amplification and at the same time permitted an adjustment of the balancing condenser which held constant for the widest band. With the type of circuit shown it is not possible to get an adjustment of the balance which will hold perfectly, independent of the frequency. The neutralizing eondenser is homemade and has a thin piece of mica cemented on

The output jack is both shielded and filtered. This shield may be seen in the photo. The short length of braid is used to connect the front and side shielding together where it is split, the set being removable from the cabinet. The purpose of this shield and filter is to prevent coupling between the detector, and r.f. stage via the capacity between the operator, phone cords etc., and antenna. The condensers C. are of ,001 uid. mounted inside the jack shield, and the chokes X are similar to X_{1}, both eonsisting of about 200 turns of fine wire, wound in "wafer" form. These may be seen in the photo under the jack shield. C is a bypass condenser of $.006 \mu \mathrm{rd}$.

The set was first tried without the electrostatic shield and output filter. It could be only partially neutralized. Complete neutralization means absolutely no reaction between the two circuits. In other words, passing througi resonance with the amplifier circuit should have no effect whatsoever on the beat frequency heard in the phones, only a change in amplitude being nodiced. In the present receiver, chere is some pickup in the detector stage, getting in through cracks in the cover and by way of the battery cable. The more complete the shielding and filtering. the less will be this
one plate for protection against possible short-circuit of plate potential. It consists, briefty, of two brass plates $4 / \mathrm{x}$ 7/8" separated a sixteenth inch, one plate being rotatable. The tickler coil L_{4} is jumble wound of No. 26 and has 7 turns. All coil diameters are about the same. It would probably be better to use coils of less diameter on account of the shielding. All coils are mounted in binding posts on a hard rubber sub-base. There is no reason Why plug-in coils should not be equally serviceable, if not more so.
X_{1} is an rof. choke in series with the primary of the a.f. transformer. E.s. is an electro-static shield which is placed between the primary and secondary of the r.f. transformer to reduce capacity coupling. This is shown in one of the photos lying against the cover of the cabinet. It consists of a grid of insulated wire threaded back and forth on a piece of cardboard. One end of the wire is grounded, the other being left free. The shield is only partially effective and probably should be made much larger and have a much finer pitch. The filaments of all the tubes are controlled thru the single theostat R. This control is not at all critical.
effect and the sharper the r.f. stage will tune. A large part of the original stray detector pick-up came by way of the phone cord. The jack shield and filter eliminated this entirely. To do a real job, each battery lead should have both an r.f. and a.f. choke, both being heavily by-passed to ground, and each individual filter enclosed in its own grounded shield. To check on wick-up in the battery leads, touch the terminals of one of them with a metal object held in the hand. If a click is heard in the phones or a beat note is changed in pitch, be sure there is pick-up. The electrostatic shield helped somewhat in obtaining a good balance. The best obtained, for the $40-m e t e r$ band, meant a change of oniy 100 cycles or less in the beat note. At one particular frequency, no change whatever is had.

Does it amplify? There seems to be a definite gain down to about 33 meters. On 45 meters, the gain is easily noticeable, to be conservative. On 20 meters, no amplification could be onserved, but the r.f. tube serves as an excellent coupling tube, making the set independent of antenna. For this band, L, has 4 turns, with mid tap to plus B. La has 3 turns. For the 80 -meter
band, Les consists of 11 turns, 5 of which are the primary proper. Lis has 20 turns. The same tickler is used for all three bands. The amplification obtained on the 80 -meter band compares favorably with what one might expect on longer waves, say 8 - or 10 -fold.

With all these precautions, there are certain stray capacities which can not be

THE SET LAID FORWARD ONTO ITS PANEL
At the left is the x.i. stage with the auto-transformer input coil tuned by the variable condenser and the neutralization efjected by the small brass-and-mica condenser above the socket. At the right of the partition are in turn the plate coil of the r.f. tube (acts as primary of r.f. transformer), delector input coil and funing condenser (secondary of r.f. transiormer), double grid leak mount to permit plus or minus return, and finally the fegeneration control, audio amplifier and jack filter. The jack filter consists of the condensers in the can attached to the panel plus the two Hancake chokes serewed to the baseboard. The third pancake choke is in the detector H lead.
more evident that two such receivers can be simultaneously operated on the same antenaa and same wavelength, if desired, with no mutual interference.

ese Strays 4

The choke in the grid circuit of the crystal tube should not be tuned to the exact wave of the crystal but to a wave somewhat higher. If it gets too close to the crystal wave, trouble will be had due to the circuit tending to oscillate at both these waves.
"Little gummed triangle cor-ner-stickers used for attaching photographs and post cards in albums make excellent mounting devices for QSL cards. They will stick anywhere, cost only ten cents a hundred, can be obtained from any photographic store, and make a much neater job than thumb tacks." $-\quad 8 B E N$.

About two months ago, 8AIR was fooling around with a Hertz, and, of course, placed an electric light buib in the center of the system to indicate resonance. On making a trip to the station recently, he noted that about a dozen of the neigh-
eliminated or balanced. This is due to the circuit itself. It is very probable that the Rice circuit, used with tuning condensers, both sets of plates of which have equal capacity to ground, would be a distinct improvement.

One method of simulating the operation of an improperly constructed r.f. amplifier is to deliberately destroy the balance and allow the r.f. tube to oscillate, controlling oscillation by detuning the two circuits. The tickler can be left alone for a wide range. This reduces the controls to two. but leaves you with a set which cannot be calibrated. It is possible to tune out a signal, with this arrangement, on the detector dial for instance and tune it in again with the amplifier control. There are therefore an infinite number of settings for any one station. This fact is mentioned because it is the way in which a r.f. amplifier should not work.

When the shielding is good and with a good halance, it is possible to receive signals on a separate antenna, on 39 meters, with the transmitter in operation in the same room on 41 meters with no interference. With better shielding and filtering of battery leads, it should be possible to approach the transmitter wave very closely, thus opening up the possibilities of duplex operation, as is commonly done in modern commercial practice. It is further-
boring BCLs had 110 -volt, 40 -watt lamps hung in their antennas, probably laboring under the impression that they are marvelous DX getters. Who said that the market for gold bricks is shot!!

It must be remembered when putting fixed condensers in series with the neutralizing condensers that the impedance of the condenser varies with its capacity. When the capacity is high, the impedance is low and as far as the high frequency currents and voltages are concerned a very large condenser in series with a sinall one offers but a small amount of protection. However, as far as the d.c. is concerned, high voltage insulation of the larger condenser is effective insulation for the smaller.

2TY says that if we took the advice of all the well-meaning amateur efficiency experts to heart, a CQ would look something like, "CQRCEP nu $2 D U B "$. Interpreted after much effort, we have the following.

QQ-Garden variety.
R-Want a report.
C-Willing to chat about WX, women or what ever's bothering you.
E-Speak English.
P-..Occupation, plumber.
And so on. far, far into the night and even morning if that much time is needed in the decodeing process.

Reducing Static at Short Waves

ONE reads a good bit these days of various methods for reducing static. Peculiarly enough the ones that get the most attention are not at all the ones that transmitting amateurs have found to be most successiful. The loop is constantly being set up as being a great device for reducing static. Now in point of fact, the ordinary loop picks up just about as much energy from a signal as does a ten-foot antenna, and between the two the 10 -foot antenna is decidedly easier to handle, gives just as good signals, and gives no more static. However, the 10 -foot an-

FIG. 1 THE TNDEEKGROUND "ANTENNA" STS. TEM AT AHS
tenna only does give "just as good" signals, and that isn't very good. Neither one of the two devices strikes me as being worth while for serious long distance receiving during difficult weather.

GROUND WIRE.
Mr. Cecil Patterson of 5VU at Frost, Texas, some time ago recalled to my attention the very great usefulness of a buried wire for receiving during the summer. There is nothing new about this; work was done on it many years ago by Wien in Germany and subsequently by Rogers in this country but as far as I know it was not applied to amateur work until 1920 at which time it was used by Kral of 3HS at Washington, D. C., the detailed results being reported in a Washington Radio Club bulletin. It was found possible to receive consistently at this station through conditions that made reception with an antenna absolutely impossible, no matter how small the antenna was. In this case the pick-up wire was about 25 feet long and made of ordinary rubber covered house-wire with the end put in a bottle of asphalt. It was buried as shown in figure 1. There was very little possibility of any fake effect because the station itself was below the ground level and the antenna had to go down to get to it. The ground lead was oniv a few inches long and went immediately back into the earth in the same yard where the pick-up wire was buried. There was an antenna on the premises but the results were not changed in the slightest
degree by grounding, ungrounding, or even removing this antenna. Since space at 3ABI, the writer's station at the time, did not permit checking the results we went into a vacant lot and ran tests with various members of the Washington Radio Club on one particularly hot Fourth of July when local thunderstorms were scurrying around the District of Columbia. Our transmission results were poor enough. We could transmit with the buried wire but the range was low for the power and some bad directional effects were encountered. The receiving was very satisfactory and in consequence the wire was buried at 3ABI in the small space available. It did not prove successful, probably because of the very long leadin which had to go up to the third story.
At 5 VU a buried wire was also used but sorves as a counterpoise and thereiore belongs in the next paragraph.

RECEIVING COUNTERPOISES

A great deal can be done towards removal of static by simply lowering the antemna to a point less than 20 feet above the

```
Test
Antenna
Eesult
A. \(100^{\prime}\) Buried \(6^{\prime \prime}\)
Reception sood at 300 and 600 meters. Transmission fair to S.W. and N.E. only. On 180 , 250 and 300 meters.
```


850^{\prime} haried $6^{\prime \prime}$

```
Reception geod at 200 but poor ai 600 meters. Transmission poor at all three zaves.
a \(100^{\prime}\) buried \(12^{\prime \prime}\)
Resuits all thru same as in test A.
D \(100^{\circ}\) top of ground
All reception wery weak. Transmission tried only at 250 where very weak.
(a) \(100^{\circ} 4^{*}\) ofli ground
Reckption weaker than others. Static sironger. Transmission very poor 300 , fair 250 , and about equal to A for 180 meters.
Earth a dry elay of pery kigh resistance, resultg probably different for other soils. Gbservation sia-
``` tions from to 6 miles nway.

FIG. \& WASHINGTON RADIO CLTB TESTS ON HECEPTION AND TRANSMISSION WITH TNDERGROUND WIRES
All tests made with one \(\begin{gathered}\text { round connection to a }\end{gathered}\) hydrant and with other terminal of set to ₹arious mires all laid to the sogiteast of the set. Buried wires rubber covered No. 14 house wire.
earth and then dispensing with the ground connection in favor of the counterpoise. The counterpoise may be several wires spanned out and suspended about three feet above the ground. If the family owns a garden this process seldom meets with very great favor and one must resort to the device used at 5VU. This is to use a receiving counterpoise very much like the buried receiving antenna at 3HS. Mr. Patterson recommends an antenna fifteen feet
high and 50 to 75 feet long together with a 60 ft . rubber covered counterpoise buried from 3 to 5 inches, as in Fig. 3.

This scheme gives materially louder signals than the one at 3HS but it also picks

FIG. 3. THE ARRANGEMENT TSED FOR RECEPPTION AT 5VIT, STATION OF CRCIL PATTERSON AT FROST, TEXAS-WHERE THERE IS STATIC
up somewhat more static although still an enormous improvement on the usual antenna.

\section*{A STATIC FILTER}

It seems worth while here also to recall the scheme of Dr. Jack Rogers of Eldorado, Arkansas. To repeat Dr. Rogers' own words, "I don't know how the signal gets through

HTG: 4. DR. JaCK ROGERS" "GTATYC DRAIN" SYSTEM
For the broadcast range the coils have 66 turns of No. 24 wire on a \(31 /{ }^{\prime \prime}\) form and are center-fapped. Whe set itself can be screened with advantage as can the coll system. The coils are preferably spaced apart and set at the "sacred angle" used in neutrodynes to prevent inter-coil coupling.
but it certainly does." Some signal is lost but the static is lost to a considerably greater degree. The coils shown were made for the broadcast band. It is not known just what changes one would have to make to work on other bands but the thing is very much worth investigating for its performance on the broadcasting is very nice.

Will our readers please let us know of any results they may have?
- R. S. K.

\section*{Msptrays 3}

Some suggestions for the assembly of the pie-plate condenser described by Louis F. Lenck on page 55 of the April issue, are given by 1 ADR.

For spacing the plates, wooden counters from a game of "Lotto" were used. They were originally \(5 / 16^{\prime \prime}\) thick and \(1 / 2^{\prime \prime}\) in diameter but were cut in half for this job. They were boiled in paraffin and floated in the solution. The plates can then be filled as they are stacked, something which was found difficult to do with the other method.
To prevent accidental short circuit, the sides of the plates were painted inside and out with black enamel. A worn-out 45 -volt " \(B\) " stands on either side of the unit and the wall on the third. The problem of reforming does not look so gloomy now.

Don't throw away your burnt out Tungar tubes. They can be made to perk even after their filaments have opened up. The accompanying diagram supplied by 8 CMW shows how.

The secondary of a Ford spark coil is connected across the filament terminals of the tube and its primary energized by the battery to be charged. When the switch is closed, a spark will jump across the open \(R\)

filament ends and the electrons emitted being attracted to the plate will start recdification. As the normal amount of current flowing from the plate to the filament is as large as the normal filament current, it is quite possible to let this current heat the filament. Therefore after the first spark has taken place, the tube will continue to operate even though no regular filament current is supplied.

In order to prevent the whole power supply from "walking through the tube" a resistance, \(R\), is placed in the power lead. You can use an electric iron or toaster.

If the tube is an obstinate one, a small glass plate condenser shunted across the secondary of the coil will often help.

\title{
The Identification of Radio Frequency Harmonics
}

\author{
By J. E. Waters*
}

WHEN using harmonics of a laboratory oscillator which is generating waves of a known frequency, as a source of calibration for a wavemeter or frequency-meter, it is often difficult for the uninitiated (and frequently for the experienced radioman) to identify the harmonic being heard. Many false harmonics intrude themselves and oceasionally are of considerable strength. They may be found quite close to the expected frequency of the true harmonic, and thus deceive any one who has no means of differentiating them from the latter.

The following is the method used by the author, 6EC. assisted by 6CHS and 6CNK. While no originality is claimed we have failed to find any mention of this procedure in \(Q S T\) or any other current amateur radio publications, and therefore deny any allegations of intentional plagiarism.

To begin with, a straight wavelength-line condenser of seven plates was cut down to six plates, and a series of inductances four inches in diameter were constructed of one, three, and six turns. This wavemeter was calibrated from 42.8 m . to 83.3 m . inclusive, directly from the standard frequency transmission of \(9 \times \mathrm{LL}\). It had previously been roughly calibrated over this band by the harmonic method, from known frequencies thove 50 meters as sent by WWV and \(6 \times B M\), and in checking from 9XL at no point in the curve was an error of more than 0.3 m . exposed.

On a sheet of millimeter co-ndinate paper, the wavelength being plotted against the degrees on the meter, the points accurately determined from \(0 \times 2\) (42.8 m . to 33.3 m . inclusive) were carefully laid off. With the meter used, the curve drawn through those points proved to be a straight line within 0.1 m . at any point. Consequently it was felt to be within the probable accuracy of taking readings on the wavemeter to consider same a straight wavelength-line meter so far as our purposes were concerned.

The curve being next continued in at straight line downward. the probable meter reading for 20 meters was ascertained. The receiver used to detect the harmonics was then set at 40 m . by the click method, the wavemeter heing kept, as it always should be, as far from the receiving inductances as possible and still stop the ascillations of the receiver when in exact resonance.

\footnotetext{
*GEC. Anaheim, Oalifornia.
}

Next, the laboratory oscillator was tuned to the receiver, which placed it at 40 m . To check, the wavemeter was then placed near the oscillator and adjusted milil the oscillations thereof were blocked as determined by listening in the recelver. This also proved the oseilator to be in 40 m .

Then, using again the elick method, the receiver was set at 20 meters as predicted by the cxtended curve of the wavemeter. And exactly there was found the harmonic (ind) of the 40 m . oscillations of the ascillatox, with a strength almost as seat as that of the fundamental or first harmonic (40 m.).

A little curious exploring showed other harmonies (false) in the vicinity of the 90 m . point, but they were very weak in comparison to the true harmonic at 80 meters.

The curve was again cytended, in a straight line, through the now determined 20 m . point, on and across the 16.66 m . line of the co-ordinate paper. this being the third harmonic of 40 m . With the receiver the next lower strong harmonic was found to be a triffe off the approximated curve, howing that the deviation from the straight line which could barely be detected in the 40 m . band was so multiplied in the lower waves as to be plainly evident. Correcting the curve thru the now ascertained 16.66 m . point. it was continued through to the fourth harmonic, or 10 m . and now knowing that the curve was not a perfectly straight line the harmonic was expected to be a shade below the value as predicted by the curve. It was. but not as far helow as was expected. The curvature was more acute as the capacity in the wavemeter was decreased, i.e., as the wavelength was decreased.

These determinations were continued until the Th. harmonic of 40 m , of 5.71 m ., had been found, this being the limit of the receiver which was constructed for 40 m . work, the Weagent circuit being used.

In using various coils (inductances) on the meter it was only necessary to have an overlapping which would throw two points from the determinations on one coil onto the curve of the other, in order to give the approximate carve needed.

It is surprising how well the true harmonics hold up in strength as they progress down the scale. And it was equally surprising to note that the 15 m . signals from 9XL were the strongest received from any of his standard frequency transmissions.

Since calibrating the wavemeter in the 20 m . band, as described in the foregoing, by harmonics from signals of longer wavelengths, we have had an opportunity to check it against \(9 \times L\) from 25 to 15 m . inclusive, and have found it to be as correct as the coarseness of its readings will permit its determination, certainly closer than 0.2 m . in the band mentioned.

\section*{Aluminum Frames}

THERE are many times when one would like to have an all-metal cabinet for a receiver or transmitter. This is particularly true of the man who is putting in a crystal or other amplifier-oscillator arrangement.
If you have ever collected together six metal plates with the intention of soldering them together in the form of a box, you will appreciate the extent of the job as well as the distorter product that usually re-

sults. Your troubles are materially reduced though, if you are able to get some sirt of a skeleton trame to start with. The illustration shows a cast aluminum frame that should prove of great help.

The cross section is \(5 / 8^{\prime \prime}\) square. The outside dimensions are 10 inches by 12 inches and there is a dividing column located almost in the center. This has two raised portions to which may be screwed a plate of metal to make two separate compartments. They may be obtained from the Radio Engineering Laboratories of 100 Wilbur Street, Long Island City, N. Y.
-H. P. W.

APPLYING FOR A LICENSE

\section*{Concerning Those \\ "Phone" Articles}

THERE has been some excitement because of our statement that QST will itonsider the use of some material on radiophones.

Let us make our position perfectly clear.
We believe that with few exceptions, the American amateur radiophone is very poor in all its parts, oscillator, plate supply, modulator and microphone. We think that such stations are not desirable and that we should give no space to information about them.

On the other hand, we feel that if there is to be amateur radiotelephony it is better to have good stations than bad ones and that it is proper for QST to give some space to high grade amateur radiophones in which many A.R.R.L. members are showing an interest.

It is our view that a good radiophone is a thing that must be built with much more care than a c.w. station and that one must begin by understanding this and also being ready to spend at least as much for the speech end as for the rest of the station apparatus. A good radiophone must have an oscillator better than we ate used to, must have an almost perfect power supply for the plate, must have a first-rate microphone and a speech amplifier that compares favorably with the ones used to work loudspeakers in broadcast reception. The percentage of modulation must be reasonably high, therefore the system used must be a sound one and not of the "freak" variety.

From this one can see that good lowpower phone seems a better thing than the large mediocre phone.

This means that while we are interested in actual high grade radiophone stations to a degree we are of the opinion that more good will be done by discussions of the things that go to make a radiophone station: "the radiophone oscillator, how it must differ from the c.w. oscillator"; "plate supply and filter systems for radiophones": "modulation systems"; "what ails your speech amplifier?" and "adjusting the radiophone."

If such material can be obtained-if any reader knows where to get it--then it seems entitled to be considered with \(Q S T\) 's other material and to be allowed space in the magazine in case it is able to stand the test of comparison with other contributions. If it cannot stand that test it does not belone. in the magazine, just as the phone itself will deserve more space in the ether only it it can prove itself the equal of c.w. in effectiveness without an undue ereation of undesirable situations.
\(-R . S . K\).

\title{
Short-Wave Radio Transmission and Its Practical Uses
}

\author{
Part 2* \\ By Chester W. Rice**
}

THE variation of signal strength with distance when the effect of multiple reflections is taken into account is illustrated qualitatively in Fig. 10 for the case of a 20 -meter signal on a summer day. As we leave the transmitter, the "ground wave" signal rapidly dies out and reaches the lower useful limit in the vicinity of 60 miles. The signal then remains practically out until we pass the skip distance at 850 miles where it becomes strong again. The next peak occurs at 1700 miles where the first reflection from the skip distance returns to
best represent the assumed experimental kadio data on skip distance of Fig. 5. If more recent data require a revision of the summer day skip distances of Fig. 5, the numerical values of Fig. 11 will require modification but the general nature of the pattern should remain the same. To remind us of the loss of energy by reffection and refraction, the lengths of the lines decrease as the number of reflections increases.

\section*{ChOOSING THE BEST WAVE}

By way of illustration, let us inquire what is the most favorable wavelength for short-wave communication between Schenectady and Loudon, great circle distance, 8,300 miles (\(5,300 \mathrm{k} . \mathrm{m}\).), on a summer day. Inspection of Fig. 11 indicates that a wavelength between 12 and 13 meters will place the first reflection from the skip distance in London.

A wavelength between 20 and 22 meters would place the 3nd reflection from the skip distance in London. The 12 -meter sig. nal is probably the better of the two because fewer reflections are required. Take the case of Schenectady to Buenos Aires, 5200 miles (\(8,370 \mathrm{~km}\).). Here a wavelength close to 12 meters will piace the ミnd reflection from the skip distance at Buenos Aires. This will place the skip distance at 2700 km . (1680 miles) from which point the first reflection takes place. The next time the wave comes to earth at 5400 km .3500 miles). Inspection of a globe shows that the initial reflection will take place at sea which is probably favorable when the sea is not too rough and the second point of reflection occurs in the middle of South America just below the equator. This appears to be a fertile country and therefore the reffection coefficient is probably fairly good. Schenectady to Los Angeles, 2300 miles (3700 km .) falls at the tangent ray focus of 14 meters or near the 3rd reflection from the skip distance for 28 meters. Probably the shorter wave would be preferable especially as the last reflection point on 28 meters may fall among the mountains.

\section*{DIVERSITY FACTOR ON SHORT WAVES}

Let us now see what appears to be the most logical method of obtaining reliable communication between two distant points such as Schenectady and Buenos Aires. In the first place, we have seen that the selected wavelength in the vicinity of 12 meters is none too attractive due to the uncertainty of the sea and land reflection conditions to which we must add an allowance for the possible changes in sky refraction. We also have to take into consideration the variation in atmospheric re-

FIG. 11. ANOTHER GRAPHIC CHART TO SHOW PRORABLE PFRFORMANCE OF DTFFERENT WAVES IN SUMMER DAYLIGHT AT VARIOUS DISTANCES

The short vertical marks extending upward from the base lines are ooints of strong signals caused by rave from the skip-distance fucus. The short vertical marks extending down from a base line are points of strong signal due to reffection from the tangent ray focus. The length of the vertical marks of both sorts gives an idea of the signal strength.
fraction due to changes in density and temperature gradients. The amount of bending due to these atmospheric effects has been calculated by Fleming \({ }^{21}\) and later by Larmor \({ }^{\text {23/ }}\).

\section*{A CTJRE FOR FADING}

As we approach the short-wave limit (i.e. in the vicinity of 10 meters) the effect of atmospheric refraction will become increasingly important. (It seems advisable to suggest that this "limit" is a predicted limit. We have no real data at .01 meter, on . 1 meter, or even at 1 meter.-Tech. Ed.) Our problem therefore is how best to deal with a shifting multiple refraction and reflection pattern. Under these conditions no economical amount of power in a simple
\%t, A. Nleming, Proc. Phy. Soc. Lond., Vol. 26, p. 315, 1913-1914.
antenna or concentration of energy by a beam can be xelied upon to give complete continuity of service. When conditions are favorable a few kilowatts in a simple antenna will give a good signal and when the conditions are wrong (i.e. the pattern has shifted to some other point) no reason= able amount of power can be expected to bring back the signal. The ideal thing would be to have the receiving station follow the pattern around but since this is impossible, the next best thing is to spread a number of receiving stations over the nearby country and thereby improve our chances of having one station in a position to receive the signals. The signals from the nine or ten receivers spaced several wavelengths apart, more or less along the line of transmission, would be sent by wire or radio to a convenient central point where they are combined. There are now three possible methods of eombining the several signals.
A. Adjust the circuits to give like radio phases under the steady conditions and add the radio amplitudes.
B. Add the signals in the radio eircuit in random phase.
C. Make no combination in the radio circuit and add the detected eurrents in phase.

Under steady conditions, A gives us a directive receiver of the "end on" type which has certain well known advantages over a non-directive receiver. When conditions become unsteady (i. e. rapid fading) it would appear that \(A\) and \(B\) become equivalent since we lose all control of the radio phases. Under these conditions Rayleigh has shown that where " \(n\) " signals of amplitude "a", are combined in random phase, (\(n\) being a large number) the amplitude of the resultant will average a \(\sqrt{ } \mathrm{n}\), but this does not mean that it will at all times have a value avn. It may vary throughout the range from \(O\) to na.

The method 0 on the other hand does at all times give a signal amplitude equal to ay (i.e. gives energy addition).

To apply method \(C\) in the case of c.w. elegraphy we may amplify the radio signals by any of the well known methods (i.e. the superheterodyne frequency changing system) then detect or rectify and combine the direct current components of the several receivers in a moving coil etc., type of recorder. For car reception, we may chop the combined d.c. or use some of the other well known methods of rendering it audible.

\footnotetext{
22. Hord Rayleigh Sei. Papers, Vol. I, p. 491.
}

Obviousiy, we cannot use the ordinary heterodyne method of tone reception since this retains the phase relations of the radio circuits (i.e. make C equivalent to A or B), If the transmitted wave is modulated we radio amplify then detect and add the signals in the audio circuit. The audio circuits will obviously all be in phase since the time

FUG 12. GALCULATED SKIP DTSTANCES BASED ON PRESENT ERPERTMFNTAL YALUES
difference between the various receiving stations is small compared with an audio cycle.

It is of course a good thing to use directive antennas to feed the individual receivers in the above schemes.

\section*{FADING OTRES AT THE TRANSMITTER}

To improve the continuity of service still further our next step might be to add a multiplicity of radiators at the transmitting station each sending the same signal. We then have four cases to consider.
I. Same wavelength on all radiators.
II. Slightly different wavelengths but not separable at the receivers.
III. Wavelengths separable though silent.
IV. Wavelengths widely separated so as to give different numbers of ground reffections.
For case I, a rigorous equality of frequency will be required. This means supplying all of the transmitters from the same master and it the transmitters are located at a single point the result is the same as increasing the power in a single transmitter, since frequency, phase and position are coincident. If we spread the radiators out over space our phase relations should be adjusted so as to produce amplitude addition at the distant receiving point which means that we have produced a beam transmitter. li we are to obtain much of a diversity factor from this beam. we probably require that the individual radiators of which it is composed should extend over many wavelengths which results in a costly structure. At the same time, the beam gets very sharp and can be easily de-
flected from the receiving area by small changes in either the atmospheric or electronic refraction conditions.

\section*{BEAM OR PLAIN ANTENNA:}

It would therefore appear that the principal value of a beam transmitter is to increase the average signal strength at the receiving point. With the tubes available at present for short-wave work it is generally not convenient to produce more than say 10 Kw. of high frequency power. If we supply this 10 Kw . to a suitable beam antenna we may obtain an average tenfold increase of signal as compared with that obtained by using a simple radiator. When conditions are favorable, the increased signal is of no value, but when the refraction pattern has shifted away from the receiving station the increased intensity of the fringe and scattered radiation may be sufficient to yield a readable signal. A one-hundred kilowatt tabe on a simple antenna structure would probably be a cheaper way of accomplishing practically the same result.
Transmission through sunset and sunrise and during auroras, etc., will in general require an entirely different wavelength and here the simplicity of wavelength change on a simple antenna system should give it an advantage over the beam.

\section*{SEVERAL WAYELENGTHS}

Case II. Some experiments have indicated a benefit from a geographical diversity factor corresponding to a separation of receiving antennas by one or two wavelengths, or a very small percentage of the distance traversed by the signal. This favors the presumption that equally small changes of frequency would suffice to bring signals in which would otherwise be lost. The result sought here might be obtained by having a number of radiators transmitting the slightly different wavelengths or by means of a frequency "warbler system" and a single radiator. The Frequency difference between the several transmitters would have to be sufficient to give a number of heat cycles in one dot of telegraph code; this corresponds to a very small percentage change in frequency.

Case III. If further tests show that a wider separation of wavelengths than are contemplated in II improve the diversity factor and reduce the chances of losing the signal, then advantage should be taken of the possibility of actually separating the different transmitted wavelengths by highly selective receivers (probably of the superheterodyne or double heterodyne type). Combination of the various signals would then be made after the final detection. This
method is obviousily costly of space in the ether and should not be resorted to except for important work and where the necessary diversity factor cannot be obtained by one of the other schemes. The several transmitters may all be located at a convenient central point for it does not seem as though spreading out over a moderate area would add greatly to the diversity factor.

\section*{SEVERAL WAVE PATHS}

Case IV. Here we select the next most favorable wavelength band and repeat the above schemes. For our example Figure 11 indicates the 18 -meter band. In this way, use is made of a widely different path in the lower and upper atmosphere as well as different reffection points.

Before complicating things too much in an effort to obtain direct communication, we should of course consider the use of one or more relay stations. In this case, one at Panama or Pernambuco would prohably be sufficient.

The numerical wavelength values deduced in the above examples are of course uncertain, due to our present lack of acearate data on the ionization conditions in the upper atmosphere. It is also clear that a great deal of systematic experimental work will be required before the relative merits of the various ways of increasing the diversity factor: on short wayes can he determined.

\section*{MAKING WAVF ACTION VISIBLE}

The following optical experiment illustrates very beautifully the hending of radio waves in the upper atmosphere. The idea and necessary information for the experiment was obtained from the description of a similar experiment by Wood \({ }^{33}\). Some diificulty was experienced at first in making the experiment work and therefore a rather detailed description is given below for those who wish to try it. The effect is very striking, and well worth the trouble of personal observation. Fig. 13 shows a general view of the apparatus used.

The plate glass trough about \(18^{\prime \prime}\) long by 4" high by \(2^{\prime \prime}\) wide is filled about one quarter ull with the following solution which has previously been mixed up in a bottle:
Solution No. 1.--
400 c.c. of \(95 \%\) grain alcohol (see note 24).
23. R. W. Wood, Phil. Mag., Vol. 47. pp. 349, 1899.

2000 c.c. of water.
200 e.c. of concentrated sulphate of quinine solution.
10 drops of concentrated \(\mathrm{H}_{2} \mathrm{NO}_{1}\).
The sulphate of quinine solution which renders the solutions fluorescent, was made by stirring an excess of the powder in water and then filtering off the clear solution. It is very important to have all the solutions very nice and clear. A second heavier solution is then allowed to flow slowly under the first solution from the flask shown in the photogragh. The second solution is ted in parallel to the bottom of the trough through a tube which has a small right

Hig. 13. OPTICAL APPARATUS TO ILLUSTRATE THE THEORY OF REFLECTION WHICH IS REING DISCUSSED The lantern at the right represenis the transmilter and throws a ray of light, angling upward thru the end of the wlass trough into a liquid which is to represent the air. This liguid is of two layers of which the upper is lighter and represents the thin ionized upper air. The two liquids are slightly diffused into each other where they meet, thus representing the diffused reflection condition of the Heaviside layer. The effect of putting the light ray in at different sangles is shown in Fig. 14.

After the solutions axe put in as described above, they are allowed to stand for about 24 hours to allow diffusion to produce the desired thickness of transition layer. The distortion due to the presence of the transition layer can be clearly seen in the photograph. We thus obtain a condition analogous to that existing in the upper atmosphere. From the ground up to a certain height, the refractive index remains practically constant. When we pass the lower

FTG. 14. HEEECTS OBTAINED WITH THE APPARATUS OF NEG. 13
A-Low angle radiation being bent slowly down by the Heaviside fayer and coming for eapth at a great. distance- \(\sigma\) missing the earth entirely.
b-Higher ungle radiation coming down nearer the transmitter.
\(C\) - Still higher angle radintion passea the eritical angle and again lights far away.

D-Still higher angle radiation just grazing the mayer.
Hew Very hixh-angle radiation penetrating the layer and escaping.

Fom sfortened-up illustration of the effect that oecurs in nuch a rellection and 8 , the ray atriking the sea and going up axain. This may repeat several times.
edge of the ionized layer, the refractive index gradually decreases to a minimum value and then increases to its normal value at great heights. Our optical experiment carries us to the minimum point which is all that is necessary, since any radio rays which are not turned back toward the earth before penetrating to the minimum point go out into space and are lost. The approximately parallel light beam which represents a radio ray was obtained by putting a sit approximately 4 " long by \(1 / 16^{\prime \prime}\) high
in front of an ordinary oscillograph are lamp. This brings the slit about \(21 /{ }^{1 / 2}\) in front of the condensing lens.

The following series of photograph Fig. 14 taken in a dark room illustrate some of the points of interest. For low angle radiabion the ray goes out to a great distance and is gradually bent back to earth. As we increase the angle, the ray returns nearer and nearer to the transmitter until finally the first critical angle is reached for which the ray comes down at the nearest point to the transmitter. A further slight increase of angle causes the ray to recede from the transmitter until a second critical angle is reached at which the ray goes out into space, never to return. To imitate this last condition, a piece of black felt wet with solution No. 1 is held in contact with the top of the solution to act as an absorber and prevent surface refiection.

The trough is not long enough to show multipie reflections with bending in the upper atmosphere, but the general effect may be shown by using the sharp reflection from the top surface as in the last photograph. In a dark room the experiment may be shown to a large audience and the beautiful blue fiuorescent ray is very striking.

\section*{CONCLUSLONS}

We may now conclude by reciting some of the results which appear to follow from the present theory.
(1) We are now able to estimate the most

FIG. 15. AN ANTENNA HYSTEM THAT RADIATES MAINLY AT A LOW ANGLE
The method of feed is not important: the essential thing being the vertical half-wave antenna with the lower end near the earth. The radii represent signal amplitude, hence the polar curye shows the effectiveness of the antenna at varinus angles. Compare with Fig. 16.
suitable wavelengths for night and day, short-wave communication between any two points on the earth's surface.
(2) There will be a minimum wavelength in the vicinity of 10 meters below which long distance communication probably becomes impossible. This limitation is due to the fact that the horizontal ray leaving the transmitter will strike the lower boundary of the ionized medium at an angle greater
than the second critical angle and will, therefore, not return to earth but be refracted out into space.

Taylor and Hulburt \({ }^{11}\) have predicted a similar short wave limit. The 5 -meter experiments now under way by the Experimenter's Section of the A.R.R.L. will be of great value in trying to locate the true position of the short wave limit \({ }^{25}\).
(3) The ray paths and energy flux density in the wave front of the sky waves are independent of the plane of polarization of the transmitter. Therefore, the best polarization can be considered from the point of view of ground losses, ease of mechanical construction and such questions as nearby interference due to the ground wave, etc.
(4) There will be certain favored distances for which the same wavelength will give good night and day communication, whereas, in general, different wavelengths are required for best results between two given points.
(5) Inspection of Fig. 11 shows that a wide wavelength band is available for use in the vicinity of 3600 km . (2240 miles), 7000 km . (4850 miles) and \(10,500 \mathrm{~km}\). (6530 miles) due to the small change in the location of the tangent ray focus with wavelength.
(6) For long distance work, on short waves, low angle radiation is most effective, since the high angle radiation does not return to earth.

\section*{CHECKING THE THEORY}

Following a suggestion by Van der \(\mathrm{Pol}^{26}\), we could check the present theory by radiating the same wavelength first from an antenna system which is known to give a large percentage of low angle radiation, and then from a system giving mostly high angle radiation, and compare the signal strengths at a suitable distant point. The two antenna systems shown in Figs. 15 and 16 constitute convenient arrangements for which the directive curves are known \({ }^{23}\). We have illustrated voltage feed at the ground end from a high impedance multiple taned circuit (i.e. \([L \omega]^{2 / T}\) approximately equal to 10,000 ohms at resonance for impedance fit at voltage loop of antenna).

The transmission line would probably go across about \(1 / 5\) of the coll turns to give an impedance fit (i.e. effective impedance across \(1 / 5\) coil turns \(=1 / 25 \times 10,000\) ohms \(=\) 400 ohms an average value for the surge impedance, \(\sqrt{L} / \mathrm{C}\), of the transmission line

\footnotetext{
25. At this moment \(I\) feel inclined to auspect that the "limit"" is subject to considerable interruption at 5 meters. With gaite regsonable power, sienals are being sent to ristances in the order of 1000 miles by davlight.-- Teeh. Ed.
26. Balth Van fier Pol, Froc, Phys. Boc. Lond., Vol. 29, pp. 269, 1916-1917.
}
to neutral). After sending for a while on the half-wave antenna, we could pull up an additional half wavelength of wire and send on the full-wave system of Fig. 16. The feed system and wavelength woald remain fixed. A good wavelength for day testing would be around 12 meters. The value of the second critical angle for our assumed summer day ionization conditions is (\({ }^{1}\))
\[
Q=\operatorname{Cos}-\left\{1.0318 \sqrt{ } 1-5.4 \times 10^{-4} \lambda^{2}\right\}
\]
where \(\lambda\) is the wavelength in meters. For 12 meters this give \(Q=8,{ }^{11}\) and Fig. 11 shows that good signals should be received at 1680 miles, 2860 miles and 8350 miles.

PIG, 16. AN ANTENNA GIVING MAINLY HIGHANGLE RADIATION
Again the feed method is secondary, the main thing being that it is a rertical full-wave antenna with the lower end near the parth. Compare with Fig. 15 and 17.

From Schenectady the first zone receiving stations might be located ait Denver, Colorado, or Kingston, Jamaica; the second at Panama, or Los Angeles and the third at Para, Brazil. The tests should be made in the middle of the day, and a north to south direction would be preferable, especially for the longer distances to obtain the most uniform ionization konditions along the path. Inspection of the two directive curves shows that for the same current in the antennas, the signal amplitude from the halfwave antenna would be approximately unity for angies between the horizontal and \(8^{\circ}\) whereas the full wave antenna would give from zero to approximately 2 of the unit signal between \(0^{\circ}\) and \(8^{\circ}\). Thus, if the high angle radiation does not return to earth but is lost in space, the signals from the full wave antenna should sound considerably weaker than those from the halif wave antenna. The antennas should preferably be located in a flat country with an unobstructed view of the horizon, and over ground of high conductivity. A salt marsh near the sea shore would be ideal.

Another convenient antenna system for low angle radiation is shown in Fig. 17. Here a parallel-tuned circuit of approx. 10.000 ohms effiective impedance is put in the middle of the full-wave antenna as a phase reverser. We thus cut the antenna
in two and obtain currents of like phase in the upper and lower halves and the directive curve shifts from that of Fig. 16 to Fig. 17. Thus, by opening and closing a shorting switch around the parallel-tuned circuit with a rope we can shift conveniently from low angle to high angle radiation without making any outside changes.
(7) Short-wave radio transmission ex-

FIG。17. A FERY YOW-ANGLEANTENNA WHICH CHN KEADTLT HE CONVFRTED TNTO THE FORM OF FIG. 16 by short-circuiting the parallel-tuned circuit at the center
This is a \(3 / 2\) wave system with one half-wave in the tuned circuit at the center, hence mot. radiating. Here also the method of feed is not the main thing, although cunvenient.
periments are probably the most direct method we have of estimating the ionization ronditions in the upper atmosphere.
(8) Skip distances etcetera which depend upon the ionization conditions are probably not constant, but will be found to vary from year to year following the 11 year sun spot period; the last minimum of which occurred in 1922.
The writer wishes to express his appreciation of the many helpful suggestions contributed by Mr. E. W. Kellogg.

\section*{QRM}

GREENSBURG. Pa., has had an interesting case of amateur interference with broadcast reception. It appears that Francis Gault, 8BPD, had been receiving numerous complaints that every time he opened up with either phone or c.w. all the neighboring broadcast receivers went dead. In self-defense, he and LeRoy \(H\). Smeitzer, ex8NS, started a campaign to see just what did happen.
In the same square with the transmitter, there are eight receivers, the owners of which were complaining. 8BPD started up the transmitter and Mr. Smeltzer went around to visit the rectivers. The first stop was Radiola IIIA using plenty of regeneration. In fact, it made a tolerably good transmitter. The next stops were sil sets of better grade. On only the IIIA
could 8BPD be heard. It also picked up a number of short wave phones and WIZ came in like the proverbial "ton of bricks."

All the BCLs were then requested to tune in WCAE and by manipulating the IIIA, they could practically all be switched to KDKA. At certain setting of the IIIA, the other sets could be killed completely. They heard only what the IIIA was tuned to. All this time, 8BPD was off the air.

After the matter was explained and demonstrated to the rest, they agreed that the amateur was in no way to blame. This is one more proof of what the right kind of investigation will do in cases of bad interference which may apparently be caused by an amateur but which is not his fault.
\(-H . P . W^{\prime}\).

\section*{A.R.R.L. Information Service Rules}

Please help us by observing the following rules:
1. Keep a copy of your questions and diagrams and mention that you did so.
2. Number the questions and make a paragraph of each one.
3. Make diagrams on separate sheets and fasten them to the letter.
4. Print your name and address (not merely vour radio call) on your letter. Don't depend on the return address on the envelope as this is destroyed when the letter is opened.
5. Don't ask for a comparison of the various manufacturers \({ }^{\text {s }}\) products.
6. Before writing, search your files of QST- the answer probably is there.
7. Address all questions to Information Service, American Radio Relay League, Inc., 1711 Park Street, Hartford, Cona.
8. It is not essential to enclose an envelone as long as you supply postage and PRINT CLEARLY your name and address on your letter.

\section*{AUSTRALIA}

The amateurs of Queensland have banded together under the name of, "The Queensland Radio Transmitters League" which organization has for its object the furtherance of amateur radio in Queensland. All holding fourth district licenses are members and arrangements have been made for several tests and relays. Traffic for the fourth Australian district should go through the League. oa4CG and oa4CM are the international correspondents and all communications to them will receive immediate attention.

\section*{VIRGIN ISLANDS}

The radio atfairs of the Virgin Islands are now being administered by the United States Supervisor of Radio of the Fourth District in the same manner that the affairs of Porto Rico are being handled. There has already been issued a license to Richard C. Spenceley of St. Thomas, Virgin Islands under the call letters of 4 AAN.

\section*{BERMUDA}

The following information concerning the conditions under which the amateur exists in Bermuda has been supplied by nbBEM, Ian O. Morgan.

All wavelengths between zero and 125 meters and also from 135 to 199 meters may be used for transmission. That band between 150 and 199 meters shall not be used between \(7 \mathrm{p} . \mathrm{m}\). and midnight. The rest of the assigned wavelengths have no time restrictions on them whatever.

Transmission may be in the form of c.w., i.c.w., m.e.w. or phone. The maximum output allowable is 20 watts and inductive coupling to the antenna circuit is compulsory. No messages may be handled unless they be of an experimental nature concerning amateur operation. The usual requirements regarding secrecy of messages, wartime and the keeping of a record of uperations are also included.

Station licenses may be issued to persons holding an operator's license issued at Bermuda, a Commercial Marconi Operator's License, one issued by the proper U. S. A. authorities or to any one having other quali-
fications approved by the Governor of the Islands.

There are at present, four active amateur stations, Call letters consist of the letters BE followed by a numeral or, in special cases, by another letter.

BE1 is also the operator of the local broadcast station and may be addressed at Wadson's Bicycle Store, Front Street, Hamilton, Ber.

BE2 is using a five watter with 250 volts d.c. on the plate. His QRA is Mr. Hunt, c/o G.P.O., St Georges, Ber.

BE3 uses a coupled Hartley and also a tuned grid and tuned plate transmitter. The wave is about 23 or 34 meters and the power output is 20 watts. QRA is A. E. Redman, Devonshire, Ber.

BEM is using a tuned grid and tuned plate circuit with two \(201-\mathrm{As}\) or two 5 watters. 550 volts a.c. is applied to the plates. The antenna is a vertical wire 25 feet high and the counterpoise is 20 feet long. Wavelengths of either 32 or 45 meters are used. Postage from the U. S. to Bermuda on a QSL card is two cents. Quite a few are held on account of this.

\section*{BELGIUM}

The accompanying photograph shows the equipment at eb4AU, the station of

HhAU
Jacques Mahieu, at Le Manoir, Peruwelz, Belgium. The small table on the left holds a transmitter to cover from 38 to 45 meters. This is a tuned grid, tuned plate
affair using a Philips 150 -watt tube. Next to the transmitter is a wavemeter.

On the table is the switch for antenna change-over, rheostats for the filaments, a.c. and d.c. voltmeters, two keys and a "Schnel!" type receiver. One stage of audio amplification is used.

The sheif under the window holds the 20 meter transmitter. A Colpitts circuit is ased. Two i.f. chokes are used in series. One is the usual broad tune affair and the other is a coil and condenser combination which can be tuned to the exact wave of transmission.
In the closets below the wndows are the storage batteries and plate supply equipment. A chemical rectifier of 120 jars is used in conjunction with a 4,000 -volt twansformer capable of delivering 250 mils.

The antenna is a single wire Hertz, 85 meters long and used for the \(20-, 30\)-, and 40 -meter transmissions. No earth or counterpoise is used. There is also being used a Zep type having the single wire part 80 meters long and the double feed line 5 meters long.
A 20 -meter schedule with an "nu" station to be kept once a week is wanted for the handling of trafic. Someone who can speak French is desired.
eb4CB has supplied us with the follow= ing news of general amateur activities.
"The interest in amateur radio is growing rapidly in this country and there are some three-hundred amateurs already in existence of which a hundred or so have received their licenses. The greatest input allowed is 100 watts and c.w. must be used.
"Some of the oider amateurs have QSYed to 28 meters and are doing excellent work. Among the latter are \(4 \mathrm{AU}, 4 \mathrm{BC}\). \(40 \mathrm{U}, 4 \mathrm{UU},{ }^{4} \mathrm{WW}\) and \(4 Z \mathrm{Z}\). These last two have been keeping a regular schedule with af1B. ARCX and AQE. 4SA, who is our oid friend \(P Q\), expects to be on the air shortly with a crystal controlled transmitter on 20 and 90 meters.
"The QRA of the Reseau Belge, which has been officially recognized by the Belpian Government and is also the official Relgian I.A.R.U. Section is 11 Congress Street. Brussels, Belgium."
\(=-A\). Depuydt, el4CB, exP7.

\section*{CHINA}

This message from ac8HB was received via nu6HM who took it in two sections on successive mornings.
"Amateur transmitting in China is, ai present, chiefiy confined to work on 38 to 38 meters. Though no records are at hand, quite a lot of international and local trafice is being handled. 1CRS easily heads the list. handing an average of 200 messages a month on schedules with op1AU, op1DL
and opiHR. He successfully staged a chess match with oplAU. Three games were played at the same time and were concluded in 12 to 13 hours! 1CRS and RRCC have begun experimental work on 20 and 5 meters. 8EM and 8 AG are QRT as they have gone home to France. 8ZW is temporarily \(Q R T\) as the is visiting in Manila.
" 80 C and 8 PM (late y2PM) are both in one room about two by four. Their best gear is pooled in the make-up of 8PM with which they have worked several "nu," "oh," "op" and "su" stations. They have handled lots of traffic.
"2FF and 2AW in Tientsin have been pounding away regularly and have both done good DX as well as having handled a considerable amount of traffic. \(4 T O\) was driven from his home by the Reds but after a short period of silence has set up elsewhere and is doing his share of the trafic work and DX. Three or four low-power men, 2RA, LAL, and SRJ have just come on the air and will be doing good work before this is in print.
" 2 NR is owned and operated by a young and enthusiastic officer on one of the Yangtse River steamers. He is doing a lot of excellent work, especially in connection with 80C. They are handling a iot of messages for anxious wives and relatives in Shanghai who, during the recent troubles, have been wanting news of husbands and friends marooned at up-river ports. This work was largely the order of the day and with all telegraph communication cut, these two have been quietly rendering a great service. (Fine work, OMs!)
"Hot weather now and reNR says fan motor QRM bad and 'SMD'; an expression he picked up in Kobe, meaning, 'Situation most damnable'. Local disturbances and authorities have put 8GG and KLI of the atir. XL1 is a Chinese boy who is using 350 volts on the plate of a 5 watter in a Colpitts circuit.- \(6 H M\)) However, it is believed XL1 will be on again shortly. 8HB's indoor Hertz antenna has probably saved him from a similar fate. It has also enabled him to get the coveted WAC. He has been keeping a regular schedule with nu6HM. The Colonel has been real friend to us "ace"s who are mostly raw recruits in the game. From his distant station he has been a constant source of encouragement and has helped tremendousiy in getting our stations going and in getting us together. On behalf of all, a million thanks to nu6HM! We shall miss his cheery note this summer.
"Conditions during May have been very grood for QSO U.S.A. around 12.00 G.C.T., but contact South has fallen off badly. We seldom hear our Anssie and Zedder pals
these days. Contact West is extra difficult; possibly as it is over land all the way and very mountainous land at that. Contacts with "fo" stations seem equally difficult.
"As a special request, please, if you QSL "ac"s (I sed "if", nuif sed. Hi!) do so under cover and don't mention radio or the name of a station in the address. Any QSLs for stations here may be sent to H. B. Wilson, P. O. Box 266, Shanghai. They will be forwarded. Thanks, OMs and 73."
\[
-c c \& H B .
\]

Remember fellows that a QSL card sent openly many mean the closing of the station it is addressed to. Be sure the card is in an envelope and don't put your own radio call on the return address either.

\section*{ESTHONIA}

In the early part of 1927, the amateurs of Esthonia banded together and decided upon the arrangement of call letters they would use. There are now the following stations on the air; et3AZ, formally TE4L, \(3 B Y, 8 C X\) who was T2X, 3MM and 3XY ex TE-XX.

They work on about 33.5 meters. As they are unlicensed, all QSL cards should be sent under cover. They may be sent to the secretary of their club whose address is Mr. Olof Leesment, Parnu, Aia tan, 6 , Esthonia.

\section*{FRANCE}

A general meeting of the Reseau des Emetteurs Francais was held in one of the halls of the "Palais d'Orleans" on May 22 nd. About 100 amateurs were present among whom were eg5AD and eg 5 KU representing the R.S.G.B., nuiRD from America. op3AA of the Philippines, aiDCR of India, Madame Jamas, afiB, of IndoChina, M. Forthoffer of Syria and M. Thuillier of Algeria, 8AY.
M. Deloy opened the meeting which was under the direction of Jack Lelebvre, 8GL. M. Levassor, 8.N, reported on the works of the Reseau during the year. He stressed all the difficulties encountered and all the efforts that had been made to give the membership all the advantages it had. M. M. Deloy. Levassor and Larcher were loudly applauded and G. Veuclin, 8BP, given thanks for his untiring efforts to the cause in his work as editor of the Journal des Huit.

The election of officers took place with the following results. Honorary President: M. Lefebvre, 8GL; Presidents; L. Deloy, 8 AB and P. Louis, 8BF: Vice Presidents; A. Levassor, 8IN, and E. L. Blanc. 8DE: Secretaries: R. Audureau, 8CA, R. Martin. 8DI, L. Groizelier, 8JC and R. Larcher, RO10.
M. Levassor presented a diploma and gold cup to Mr. Reyt, 8FD, for his work
in the first contact between Europe and Hawaii. A diploma was also given to M. Bouchard for the fine results he has been having.

The opening which preceded the banquet was interrupted by the arrival of M. Johnson, op1ZA, who came in a Ford, equipped with a transmitter, receiver and detachable antenna. After the arrival of M. Mesny who accepted the Honorary Presidency of the gathering, all entered the banquet hall. The banquet lasted until quite late and was greatly enjoyed by all present.

It is probable that many amateurs are planning to visit Paris and would like to meet the members of the R.E.F. It is re-

THE LOW-POWER TRANSMITTER AT ecIKX
quested that such amateurs communicate with the "Chief of the Section of Paris" of the R. E. F. whose QRA is Aronssohn, Radio 8 FT, 2 bis rue J. Deville, Colombes (Seine), France. Give information concerning your expected QRA in Paris, date of arrival and proposed length of visit.

\section*{ICELAND}

There are only two stations in Iceland, ni3SN who was formerly icSN1 and ni3AG ex icAG1. They usually work between 41 and 44 meters although they are allowed to use from 39 to 49 meters. QSL to Snorri P. B. Arnar, P. O. Box 354, Reyjavik, Leeland.

\section*{JAPAN}

There is now a licensed amateur station in Japan. It has been assigned the call of JLZB and is owned and operated by Tessue J. Kusumoto, 3256 Kakoi Nakano, Tokyo, Japan.

The transmitter uses two VT2s or two UX-210s in a Hartlev circuit. The plate supply is 450 volts d.c. and an antenna current of 1.2 amperes is obtained on 80 meters.

The unlicensed stations 3AA, 3WW, 1AB and 1KM were prosecuted for illegal opera-
tion and were fined 50 yen. This is a good example of what can happen if QSL cards are not mailed "under cover" to those stations not licensed. Remember this, Pellows and be careful.

\section*{MEW CALLS}
ed7CZ-Tubbs, Ameliegrade 32 , Copenhagen, Denmark.
ne8AF-124 Duckworth Street, St. Johns, Newfoundland.
nr2FGL-Federico Gonzalez, San Jose, Costa Rica.
nr2GPH-Gonzalez Pinto Hernandez, San Jose, Costa Rica.
nr2HV-Higinio Vega, San Jose, Custa Rica.
sh7AB-Miss O.C. Chaves, Av. Nazareth Nr. 105 Belem, Para, Brazil.
seeds Leon Schlegel, Casilla 17, V'ina del Mar, Chile.
se1FG-Mission St. Aliara, Quito. Ecuador. swGREN-R. M. Brown, Grenada, British West Indies. Intermediate should be "nl".
sh6BR-M. Solomon, 125 Carmichael Street, Georgetown, Brit. Guiana.
fmitz-J. Bardin, Sergt. Ayiation, Rabat, Morocco.
fm8AFA-Fremont, Aviation, Ajadir, South Moroceo.
KFVM-Yacht Idalia bound for China with nu60C and 6AYC aboard.

\section*{The Atlantic Division Convention}

JUNE 23, 24 and 25 , will go down in the history of A.R.R.L. Conventions as the three days during which the Golden Triangle Radio Association of Pittsburgh, Pa., staged one of the best of conventions. After the formal address of welcome by Biddle Arthurs. Jr., general chairman, there was a continuous round of meetings, stunts, entertainments und visits to points of interest.

Capt. Hildreth, U.S.A., of Baltimore,
representing the Brd Corps Area, spoke interestingly on the progress of Army-Amateur work and made s number of iriends because he showed himself a real good fellow. Our old friend Gawler, a real old timer now representing General Radio Co, gave us food for thought by his good address on the "business end of radio." Mr. Mason of the Aluminum Co. covered quite fully the subject of "rectifiers" and there is no doubt but the future will bring us more information along the lines covered. The General Manager of the Ceco Mfg. Co. of Providence, R. I., who happened to be in Pittsburgh, was most generous by giving the gang an opportunity to see two reels of films descriptive of the manner in which their tubes are manufactured. The Willard Storage Battery of Clevland, Ohio, very kindly sent their Mr. H. S. Seott, Radio Engineer, who gave us another angle on rectifiers, and moreover we discovered he was an old-time amateur of pre-war days. Director Woodruff was given an opportunity to show us his latest box of "tricks" and if he continues to experiment we are afraid the next time we see him he will have a complete radio outfit that can be slipped into one's ear.

Hebert, Handy and Budlong of A.R.R.L. Headquarters, were kept busy speaking it different meetings, where esecutive, trafic and P.R.R. Emergency work were fuliy covered. This was especially so of the P.R.R. Gang as some 29 of those wood and loyal followers of "RUD" were present from every part of the division.

The "Stunt", night brought oat some unique entertainment. The Buffalo gang, with Eichman as leader, had every one on the anxious seat in staging a real-to-goodness initiation of the ITK's; but the Niagara Falls fellows were not to be outdone and sprung the surprise of the evening with something original. This consisted of a method of radio transmission and reception of telepathic wayes and had picture transmission beat a mile. We understand
(Continued on Page 71)

\section*{Experimenters' Section Report}

BECAUSE of the questionnaire and the impossibility of giving tull results on the 5 M . tests now the report this month is short.

\section*{THE S-METER "OQ BARTY"}

It seems as if the 5 -meter CQ party has hrought out the most interesting thing that has happened in that band of wavelengths. The reports are as yet very incomplete and it is loo early to talk-though this is being written at the latest possible date for this issue, namely, July 2nd. All members of the Section have been asked to send their reports in, therefore they should all be at Hartiord and the whole thing studied out by the time you read this.

Look for the whole story in the next issue.

\section*{REFGRENCES NOTED}

The following references are offered as bearing on some of the things members of the section have asked about:
Ditton Park Research Station-J. F. Herd, Wireless Worid, June 15.
Emissions Dirigees par Rideaux D'antennes, antennes en Grecque. R. Mesny, L'Onde Electrique, May. (Excellent article.)
Simpified Neutralization DiscussionGlenn Browning, Ohristian Science Monitor, June 27.
Harmonic Distortion-E.E. Eiler, Radio Engineering; April, May, June.
A discussion of advantages to be derived from deliberate introduction of resonances in audio amplifiers.
Inductance and Capacity Charts-V. T. Baird, Radio Eng., June.
Comprehensive Report on Standard Frequencies and Absolute Frequency Measurements (Zusammenfassender Bexicht, Normal frequenzen und Absolute Frequenzmessungen) A. Scheibe, Jahrbuch, April.
The Short-Wave Echo Effect-Experimental W. \& W. E., May, 1927.
Phase \(\&\) Group Velocities in an Ionized Medium-S. W. O. Howe, E. W. \& W. E. May, 1927.

The Solar Eclipse \& Its Effect on RadioH. A. Donisthorpe, E. W. \& W. E. May, 1927.
Battery Eliminators-P. R. Coursey \& H. Andrews, E. W. \& W. E. May, 1927.
The Alignment Method in Tinear Valve Characteristic Fields-W. L. Barcley. E. W. \& W. E. May, 1927.

The Rheinlandsender (50-Kilowatt Rhineregion Broadcast Station) Austrian

Radio Amateur, May, 1027. Excellent Description.
Coil Resistances at 40 Meters-L. B. Root, General Radio Experimenter.
Inductance Chart For Fasy Work-Radiofona, Rome (April, 1927).
Oscillographs \& Their Use In Radiotech-nique-Austrian Radio Amateur, May, 1927.

30 Jahre Funkentelegraphie-Guglielmo Marconi, Radio Umschau, May, 1927.
Baird's Infra-Red Television-Popular Radio, May, 1927.
New Tubes-A Dinsdale, Popular Radio, May, 1927.
Articulation Curves (page 147)-Radio Broadeast, July.

\section*{SPECIAL REFERENCES}

Particular attention is attracted to the following references as having particular usefulness for the section. The American Inst. of Elec. Engineers has held two conventions al which papers in our territory

"Never do today what you can put off "till tomorrow," does not apply to the butstanding report on the -heter CQ party and that recent "X" Section questionnaire. Send them along fellows.
were presented. At the summer convention held in Detroit there was presented on June Z3rd a series of papers by Dr. Hebert Ives, Frank Gray, J. W. Horton, R. C. Mathes, H. M. Stoller, E. R. Morton, D. K. Gannett, E. I. Green and Edward L. Nelson on the Bell Telephone Research Lab. system of television. All members of the Section will find the well illustrated 50 -page report of the greatest interest.

The Standards Year Book has just been issued by the Bureau of Standards as miscellaneous publication No. 57 and can be obtained from the Superintendent of Documents, Government Printing office, Washington, D. C., at \(\$ 1.00\) per copy. As usual the money must be sent in postal money order or Government coupons. Personal checks
are not acceptable. Those who know the Standard Year Book will not fail to secure a copy.

\section*{SPECIAL OBSERVATIONS ON EXS}

The observations for Dr. Alexanderson on the transmissions of 2XS have been carried by M.r. C. D. Grunow of Ballentine, Nebr. almost without assistance for a number of months. Mr. Grunow's work has been very good and deserves support from other members.

\section*{THE CHOKE COLL ARTICLE}

It will be noticed that the choke coll article is not here as promised. This is because there has just turned up a new way of doing the thing which was supplied by Dr. D. W. Pierce of Harvard University, also some additional work has been done by Mr. Austin Lidbury of Niagara Falls and by the General Radio Labs. The conclusions do not at first sight appear to be in entire agreement and some additional check work must be done.

\section*{LONG ANTENNAS}

It will be remembered that long since Mr. Don C. Wallace recommended very strongly that an extremely long receiving antenna at a good height be used to improve the ratio of signal over noise. Tests at some 20 stations have produced rather contradictory results in this regard though part of the contradictions seems to be caused by operating the antenna through a primary coil to ground, and coupling this coil to the grid circuit of the detector (or r.f. amplifier if one is used). These long antennas appear to operate more favorably at short waves if used with very loose capacity coupling or even with the antenna simply brought into the room. Any experimental resuits on the use of receiving antennas from 100 to 1000 feet long will be very much appreciated.

\section*{BOOK REVIEWS}

By R. S. Kruse, Technical Editor
All books reviewed in QST, with the exceptions stated below, may be obtained from QST's book department. Please send the order in a separate letter addressed Book Department, American Radio Relay League, 1711 Park Street, Hartford, Conn. Government publications should be ordered direct and books for which no price is stated should be obtained from the publisher.
Engineering us a Lije Work, J. V. Lynn and R. S. Baird. Published by Encineering Extension Department, Iowa wh College, Ames, Iowa, es pages, 17 illustrations.-

In view of the many letters that are remeived at QST agking "How do become an Engineer?", such \({ }^{\text {a }}\) clean-cut anayyis as is qiven in this little book cannot help being of material assistance to many of the members of A.R.R.L. In reading it, one will not only cain a better sense of proportion as to the Engineeiing Protession but will incidentally pain \(A\) elegr picture as to the relative rosition of things inside the pofession. I can think of but two things that wonld appear to contribute to the book; a somevinat sharper distinction between the power and communication portions of electrical engineering and the addition to the excellent bibliography of Waddell Harrington's "Addresses to Engineering Students."
Standard Yearbook, 192\%, United States Department of Commerce. To be obtained from Superintendent of Documents, Government Printing Office, Washington, D. C. at \(\$ 1.392\) pages and 89 illustrations.

To report or analyze this book is aimost imposstble because of the uxceeding complexity of the material oovered. The book explains the national and international standards for all manners of electrical. chemical. physical and commercial things. It outlines the asencies handing these maters and reports on the work of standardization done by the finited states Bureau of standards, which of course yies in with aimilar bureans in other countries, freidentally-our Burean of Standards is also a burean of research and one must not gain the impression that even this book covers all its futivities. A series of 3t photographic and line illustrations shows the standards used by the ITnited States.

Fhis book is certainly worth a dollar to anvone sngaged in suy engineering, ezperimental, or industrial work.

Wireless Pictures and Television, T. Thorne Baker, 188 pages 99 illustrations. D. Van Nostrand Co, 8 Warren Street, New York City. \(\$ 2.50\) Net.

I am a bit diffident as to reviepfing book on a subject with which QSF does not deal very closely. for the comment may not be at all sacurate. The present book creates the impression of considerable bompleteness, is clearly presented and must certainly have interest to anyone interested communication after all-isn't visible communications in thing We audible communication folks have been too much inclined to nexlect? Perhaps Mr. Baker's book will aid in s cure.
Robison's Manual of Radio Telegraphy and Telephony, 7th evised Edition, 737 pages, 424 numbered illustrations plus frontisniece. Published by The United States Naval Institute. Anapolis, Maryland. New price \(\$ 5.50\) postpaid.

After QST"s statement that the fih Edition of "Robison" was the best radio book ever received that edition did not last long, in spite of the price of \(\$ 8.50\). Incidentally, the Naval Institute very wachously a copted A.R.R.L. orders nt 50 c bolow the proper price to meet our incorrect statement of the price. When the dedition wes exhausted many orders had to be Pefarned by the Institute and by ost's Circulation Manager.

The Sth edition has been wwites with the snnounced intention of advancing the book to cover recent developments and oit including eonsideration of the needs of the A.R.K. L. men who showad such interest in the last book. To meet the first requireinent there has been fodded material on crystals and other such matters while the apace for laws, Javal procedure and mathematics have been reduced. That this has been done competently is proven in advance When one states that the revision was done hy Commander Stanford C, Hooper and Lieutenant Com: mander T. A. M. Craven,

The nicent feature of all is that this newest edition, in the same sturdy Navy binding, is ofrered at th. 50

\section*{The Communications Department \\ F. E. Handy, Communications Manager 1711 Park St, Hartford, Conn.}

\section*{Amateur Week}

THE HAMS of the East Bay Section of Galifornia recently put over something that is worth a sreat deail to amateur radio, hnd other sections mould do well to follow in their sleps. The move was backed by the Oakland Radio Club and the Central California Radio Olub, spurred on by GOKC.
The fellows, deciding that people in general didn't know enough aiout amateur radio, designated a certain week some time goo to he known as "Amateur Week." A fitting introduction to the week was a ham prosram given at the Oakland Tribune station KLX, lasting for an hour in the middle of an evening. The hour was opened by Mr. Linden, the Radio Supervisor of the Sixth District, who explained That amateur radio is, what it accomplishes, what the A.R.K.L. is, and what the whole thing means to young chaps who are growing up GBFW's Radio orchestra then played several jaza seleetions.

A sikit was put on by 6CEI, bCRO, 6CKC and हुS. Which gave the listeners a further insight into the activities of us fmateurs. GASX rendered a violin solo, ECEJ a saxaphone solo, and then some more selections were played by the orehestra, concluding the hour. Severgi phone ealls were received at the station during the hour, asking about mateurs.
Amateur stations were installed at several theaters in Oakland by bCRO and bCAX which brought \(a\) huge bunch of messages. The Gentral Califormia Kadio Ciub held a pienic, and a swimming meet was held between the Oalkland hams and the San Francisco Radio Club. On the final day of Amateur Week, a dandy banquet was held at the Alpine Hotel in Oakland, with atiendance from all the cities of that section of California. GLJ was one of the speakers.
The whole weth ty a success in every sense of the word. and much credit is due to 6 BXH , CEEJ GDDN and BCKC, who worked night and day to make the weak a success. incidentally, the ham program broadcast over KLX was so fine that the bunch are to give one eauh month from now on.

\section*{A Fishing Trip With Portable 10F}

\author{
By T. F. Cushing*
}

AT 8:00 P. M. on June i, 1927, a yery heavily laden automobile could have been observed leaving Springtield. Mass., for a point in the Northern part of New Hampshire, 275 miles away. In the attomobile. buried under mountains of blankets. fishing toges. tent. camp cook stove, cte., could be found tWP, IAWW (myself), and a third party by the name of Mr. Bartholomew, a BOL, but a fisherman. Very choicely placed among the weft blankets was it portable transmitter fand reteiver all in one case \(\left(1 x^{\prime \prime} \mathrm{x} 12^{\prime \prime} \times 6^{\prime \prime}\right)\). The neressary tweive-voit storage battery was riding comiortably on the running board. and a twelve-volt dynamotor furnishing 750 volta output was carefully stowed in the suto trunk.
Before bidding good-bye to Springfield, definite arrangements had been made to have certain amateura there: namely, \(1 \mathrm{AQF}, \triangle \mathrm{BYW}\). 1 AEP aud IEO, listen for the signais of our portable station at ten-thirty p.m. each night while we were away. The portable call was 10F.
* 1 AWW, 78 College St., Springfield, Mass.

It commenced to rain shortly alter leaving Springfield, but we pitched camp in the rain, the first night, about ten miles north of Bellows Falls, Yt., under a large pine tree. at about eight p. m. While two were getting supper and making the camp comfortable from the wind and rain, the third eamper aould have betn noticed deftly hurling an empty

THE PORTADLE TRANSMITTER-RECEIVER, 1OF Two anti-capacity switches change from sending io receiving. One \(I X-210\) was used in the tonedplate funed-grid circuit, though there is provision for two in the set. Plug-in coils and standard condeasera were used in this convenient outfit.
soda bottle high uo into an adjacent tree. Aroundi the neck of the bottie was tied light but strong fish line, and when the bottle had nieely passed over a high limb and descended to earth. \(\boldsymbol{y}\) No, 14 antenna wire was substituted for the bottle and pulled mp taut. A similar wire was run to a nearby fence for a counterpoise. After supper the radio set took the place of dishes on the table, and radiation was nil

CLARK, PWP, AND THE \(\because\) YPOUND TROUT PHAT ANSWERED HIS GQ.
accoxding to a perfectly sood Weston meter, with our schedule only fifteen minutes away, IWP suggested a small loading coil, which was tried, and the meter went up to one ampere. A CQ was then attempted. and-lo and behold! IAEP of Springtield answered us. Weediess to say, we all got the thrill of our lives sitting there in a tent with the wind howling
and the rain descending in torrential sheets with high mountains all around us, getting through on the first try. The BCL has not gotten over it. When be tiled a massage for his wife, and got an answer in ten minutes or less, he would have been willing to fiss that samateur set, had anyone suggested it.

We broke amp early the next morning, and that Hisht found us 200 miles farther north, near Errol, N. F. A Again wo pitched camp in the rain, and put up an antenna and counterpoise in the sume manner sas previously. Now we had the entire White Mountain Ramge between us and home, with Signal Mountain jusit to our south with an altuture of over

THE CAMP NEAR ERROL, N. H.

S00 feet, This time aiso we all had our doubts, but ton-thirty \(\bar{p}\). m. found us in communication with Sprimgheld. exphansing mesuages with our wives and fomilies. Ghe witud and rain were very bad all night wornd the lext day so bad that the tent beew down sobk IWP, he was all alone at the time, sand hat to recover the wreck), but fortunately, we had taken a pictare af the layout before this happened.

We womand there for wesk, fishing in the daytime. sand running amatrur radio at night. We were in eommonication with Springfield every night, and worked numerons other stations during the woek. Contact was established as far west as Ohios and as far south zu Norfolk, Vot, Lots of experience was grained in setting up portable outfits, in connection nith csmop life. sud hy the end of the trip the set equid he smatef and dismantled in a bety short time. f bnow that the pleasure of our trip was at least doubted by the siodsure of having a portable amatenur outfit with us.

\section*{QANADIAN AIR HXPEDITION TO HUDSON BAY VTE}

Fifteon yilots and six Fokker planes sixiled North From Halifax in mid-July aboard the C. G. S. Stamey and \(\%\) \%. \(\%\) hiorch. It is the rurpose of the expredition to thoroughly map the thole region from the bir us woll as from the ressels accompanying the zapedition. Three aeroplane bases will be established, one nexp Pott Burwell mb the raskern end of Hudson Straits, ute un Nottingham Island at the West end of the straits. nnd one midway between the two and Norih of the Siraits. The whole project is to determine the practicability of the proposed fudson Hay Rallway hy mappine the ehannei in Hudson Bay which may be reod by freighters to earry whent from the Gmadian West. The planes with men unoush to msintain the thres buses will remain at the three hases ruring the winter, though the stanley will return in Optober.

Radio communicalion will play an important part in affairs as Hual. While VDE (C. G, S. Stamleu) Will be the only station in operation until the three bases ave atghlished, wet base will have radio equipment ineluding : 160 mot puyed ster masts. The Canadian Marconi Co buitt the base-station equipment which will be usefi for contact with the planes and with ottawa. coinmeter wety at each base will be used for working the planes. Base \(P\) isee mapi is to have a fingort long wine transmitter two devehet B.C euthers, det. 2 -atey long wave reefver, det. \(\because\)-atep short wave receswer and apparatus uhoteh to build an experimental short-wave transmitter, Kase fis to have a 500 -whtt long waye transmitter, bitu-wit short wave transmitter, det. b -step
ong wave reseiver, super-het \(3 / C\) receiver, and superhet short Wave receiver. Base A. will be equipped like Base \(O\) except that the transmitter will be su 1600 -watit affair. Base C has been assigned the gall VCy and will work on 37 meters.

VOE has a 500 -wott CW-TCW \(600-2100\) meter transmitter and a 500 watt M.O.P.A. set on 37 meters. Fower supply is from a \(\hat{f} \mathrm{k}\). W. automatic-starting remotely controlled sas-engine driven kenerator, There will be about ten ons aboard the Staidey on the trip North so 4 continuous watch will be kevt. A 7 iube short-waye super-het is used for recetving: if. H. Starr (nciAE), E. L. Bunt (ncsMX). Eieut. Bill Laurie ayd a bunch of other ops will handle tratice with the Militia Station at Ottawa XWAB, 07 me teral. In the geriods when there are no ofirial schedules we can rest assured that there will be ylenty of opportunity to get QSO with VDE and inter on with the short-wave hase stations The or, S. Larch ataries only long wase radio equipment for cuntact With the staxicy. Both ships are hesvily joaded with planes, four heavy motor Launches, three Ford tractors, gou barrels of gesoline. s0 ton of coal had toris and tons of building material and food supplies.

"Three aernplane bases."
We are prathy indebted to OM Stary for the full information in this report, fook for him at the Key of VDE and he ready to QSR for any of the sisutions of this expedition when necessary, fang. While it may be necessary to aend othicial reports throuph Ottawa, eweryone will have a chance to work YDF and set in on the fun. Good operators of good siations will be xiven preforence over those with roten notes, sloppy fists, tan bline of "ro tis TTL" Hint because in the somewhat limited operating time it will be impossible to work everybody.

THE PUTNAM EAFFTN TSLAND EXPEDITION -VOQ

Fiferyone who renorted VOQ to A.R.R.L. Fead quarters during the month reported good signals and contacts with operator Ed Maniey \(18 F J\) of the Mormisey. There were more raports on Vrio than on any other expedition wif at the present time.

GDME handled as messaver for VOQ durinu Sune, gopying him regularly ťrom fune 1 g on and handling from one to six messaves sath of the saveral timen
 worked VOQ June 14 taking aix mespges, 9 OTTX heard VOg working 4 RN on June 15 . HAPY giso copied VOQ when oft Marthas Vineyard working BCWP neSAEL copied VOQ June f5 and 16 while QSO with \(2 G O\) and RUMF gCMV worked the Morrises handing sad delivering geveral thessages while she was north of Tathrador plonghing through the first foe with a high wind and rough seas. 9CP worked \(Y\) OQ June 2 S and 29 making a rugular sehedule, Miller Hould like to do as well with vö su last year but is hampered by necesary overtime work for the Weatera Union Co, wt Hammond, Ind.

9FGH at Marison, Wiscomsin, was in contact with VOQ duly 9 handing two 75 -word messages which Were forwarded by wire. The Morriosey was ine stro fog hound oft the entrance of Hudson Straits at the time. Manley told gEGH that he suceecded in marooning himseif on a bit piece of ice just betore the QSO and nearly had a cold hath mis reatit. ifily
 seme date taking a long message for the New York Times and a couple of personal messumes all of which wore phoned. \(2 W H\) says, "toQ on 9 s meters. Rt here, very giod operator. The expedition of Cape Chidley at entrance to Mudson Straits. \({ }^{\circ}\) Next month we hope to have sothe dope from Manley hituself. in any adse send in sour reports whenever ynu hear ar work VOQ so we ean tell the rommunication siory of the trip ss it progresses.

\section*{MavMILLAN EXPEDTTION-WNP-WOBD}

A rablogram for A.R.K.L. Ma. ree'd by Fred Ells of ICTI on July 1 brings us the most direct word (rom the \&chooner Bowroin (WNP) at that time st Sheet Harbor. N. S.: "WNP is on \(\$ 6\) meiers every evening e do 10 HST, 21.5 neters around noon EST. Working sehedules IXV, 1OKP, 10TI, 2CRB, 2BBX, GOUA, YADG, and nesAZS. Have been GSO ships near New Voraland and Azores. Messages moving nicely, Schooner fadio has heen assigned eall WOBD, 37.4 meters. We expeet to juin the Radio at Güney, \(\mathrm{N}, \mathrm{S}\), WNP is using a Hartley eircuit. Antenna is a half-wave Hertz on 36 meters, fullwaye Hertz on 21.5 melers. Zeppelin feed is used. The weeiver is tuned-grid luned-plate type 42 messages have been handed in the last five days. Mepards to sang. (xig) Himoe WNP exgAOG".

GAAK (Santa Barbara, Calif.) reports eopying WNP on June \(9 \%\) when the Bowdoin was GSO 2 BN . On the day previous 3VM heard WNP but was unsucasful in ratsing her. On June 70 9SK at Arcola, III., succeeded in having a good-two-way contact. Tuly : nd 1ABA and 8ASi both worked WNP but QKN was terrible find though several attempis were made to take some of WNP's traffic, neither station was successful. bDCM had an enjoyable conversation with WNP on the morning of buly \(\%\) ICTI has a Wednestay and Friday schedule at Gpm EST and will be glad to iorward any traftic for the MacMillan expedition.
ATY (Skowhegan, Maine) worked Gold (nulAAY) operating WOBD on the Fivio on July 3 risht after WOBD finished with \(1 K L\) at 8.40 bm EST. One message was handed. At this time the Rodio wha at Sydney weiting for the Rowdrin. So all is well with the MacMillan expedition's ops and apparatus. Fet's have more reports from those working this expedition Make "em QSI-cards and we will turn them over to Himoe and Gold as suon as they return from the North. What sa, OM.

The short-wave T.P.T.G. iu0-wot transmitter KGEG of the Borden-Field Musenm Arctic Eixpodition ahoard the whounemyacht Northern Light.

Note the phar-ity coil construction for QSY and the Leach heving refay in the forexroand. Tisien for LideG on 23 and 37.5 meterrs.

Former Section Manager T. E. Smith, GBUR, sailed flom hos Angeles July 1 as sparks on the private yacht Ripple (KFLF) bound for Honolulu and the South sea Islands. The Rimple is Diesel powered, twin serew, 150 iong and well equipped for short wave work. A 904A in T.P.T.G. eircuit (imimar to the ouifit on GF JH) opeates near the fo-meter band from boo-eycle plate supply. Another 204 A works on 600 meters. Revamped Aero coils, a Grebe CR6 and CR7, constitute the reveiving equipment. Operator Smith says he will see all the gang on the air from KrLF.

1BHS and 8DBM were QSO xnc2BN June 15 and June 21. \(x n e 2 B N\) is a Ganadian steamer botund from Montreai to New 民ealand and ait the time worked located about 1500 miles from the West Coast just south of the equator. The set employs just one five waiter with 500 wolts on the plate.

SAO has a couple of new wosA's and reports QSO with the Modoc. NIDK, of the friternational ice Patrol, located in the North Atlantic.

The main transmitter of the Tiniversity of Michim
 in a Reinartz circuit at mxXL. This type of mounting with at eouple of back braver works nicely with any eircuit. nxiXI works on \(2 \overrightarrow{5} 5\), \(8 E\), and 45 meters wavelength.

Jamison (8BIT) and Clark (XBQS) of Pittsburgh started on a six months tour in the West in late June. A portable transmitter cone UXo10, B-bats. and a Hertz) signing nuxZZS has been taken along with which to work the gang from the different stopping places, QSL's should be sent Care 6 Ka , 2901 Rawson St., Oakland, Calif.
H. M. F. Aduerturess, GLYK. will be working on 45, a3, 10, and perhaps 5 meters during July and August. Reports shonl be addressed to Mr. K. F. Gurrant, co Colonel Millard, Westhill, Shanklín, Isle of Wight, Engiand.
nebAV (New Denver, Brit. Columbia) worked the Hudson Bay Compans"s auxiliary sohouner Baymawd. CKA, on Jute 26 taking some traffic and arranging a bi-wekly schedule for handing turther messages. The Baymaud is at present located in the Goronation Gulf, Arctic Ocean. OKA has a pooweycle pote and may he heard on 42 meters wavelength.

When Zane Grey's Yacht Fishermun, KNT, wert aground at Rankiroa, in the South Scas, GTW did some fine mork in keeping the newstapers informed of conditions. The San Franciseg Chronicle got all its dope on the accident through 6PW, and much nublicity was furnished amateur radio. bPW ginyed at the key practically all one night watching for a QSU from KNT and finally manageal lo get in conlact ruain the next evening, when he learaed that KNT hat blown their generator the night before.

6BOL has been handing messakes between a lady in Portland. Ore, and her son in Alaska. A very fine letter was recelved by him from this lady, telline how much this work was sporeciated, and how much she thought of amateur radio in general. since ft had been the means of her being in constant communication with her son, with a time lag of a great deal less than the mail could offer.

NFP softly sobbed, "And it has come to this," as he pointed to the magnet which was drawing iron filinge. - The Hammeter.

\section*{20－Meter Work}

CONDITIONS are uniformly fine on the do－meter band if we are to judge by all the reports re－ geived from different sources this month．9DTR （Danville，inl．）predicts that osee it is discopered that forelun stations can be worked ai most any time of day and that \(Q R N\) is ereatly reduced，the zol－ Theter band will be ss crowden as＂forty＂is now．It is suggested that more of the grans get down an ＂twenty＂＇Saturdays and sundays to try this wave out fally．New foreign contacts will result．If we ail concentrate wn＂twenty＂at the same iime of the weth more pood vontacts will be made in rach individual＇s limited oxerating time and wo gas more quickly find ont some of the things remaining to he iiscovered about this wavelength．
se：AG（Santiago，Chile）says，＂Undoubtedly，the a0－metar band is better by fiar than the si－meter hand for U．S，eonlact．Only ewenty of my 028 points in the International Relay Gontest were obtained on 40 meters．＂
8 VE（Pittsburgh，Pa．）reporis＂Twenty－meter QsO an be maintained will nighl with Europe nearly abery night．＇ 0 ＇is much more reliable than many fellows think．，．．they afe merely afraid to try it．＂
1 CRA Went Newton．Mass \({ }^{i}\) iound plenty of tratio on 20 meters during the month．．．．．．handling nearly half of his total of 294 messages on that wave．When a thap wave him a GRU he didn＇t complain but save him some messurpe to QSR．
LAJM（Leuminster，Mass．）says．＂I have heard ys countries wh 20 meters to date，and worked＇exm ull． 0＇may be a ittle peculiar at times but it is with． wut doubt the best band．＂
6YZ iSanta Monica，Calif．），＂I waw QsO eb4WW on twenty meters from \(9.45 \mathrm{p} . \mathrm{m}\) ．to \(11.15 \mathrm{p} . \mathrm{m}\). P．S．T． on Jume 7 ．Sienals R6 both wrys．On June 9 at غ́cu B．m．P．S．T．I worked elsGM yloo on ty．＂
＂BUX EFall River，Mass，＂，＂I think＂my is speat． Since June s，l＇ve Horked at least one fobeyn sta－ tion a day．Have worked eh－4AX．ef8EO，shiAc．

 and many sixes and sevens．．．，don＇t bother to stay up to work the og and oa boys，Just recened a chrd from foA \(4 \mathrm{~F}^{\prime}\) enitirming our Qso on＇ 20 ＇Aprii 13 and stating that it was the first \(0 . \mathrm{m} . \mathrm{asO}\) between the V．S．and South Airica．I vame we to＂top for a short while the other right but the GRN was bat and 1 soon went back to＂ \(20^{3}\) where its quiel．＂
oasbW Glenelg．South Australiaj requests us by Fadio（via lBUX）to insert the following for the bencht of South American gmateurs：＂owBW will Cg on zu－meters at ह．3b G．M．T．and look for answeme from South Amexica in the Australian Saturday and sumday afternoons．we \(2 A H\) is one of the loudesi sia－ tinns heard irom your continent．＂
sBRC（Van．Pa．）will be glad to arrange gometer Gnts with those wo desire schedules at woon．Fe agys＂The skeptic who thinks 20 －meter sigs ean＂t be handed O．K．at short range please write and wo will iot you hear for yourself．Then come up and we will show foa how．
YAWB Montrose Kowai，＂po－meters is one of our most uselul waves if it is further developed．Fords， broken strands in aupial wire，and my mieces of metai in the vicinity that rub together will cause nuises in the rureiver that resomble a botior factory． 20－meter sets should be well cushioned to prevent mechauical wibration．About hollow simnals，I have noted a distinctive bimbre of some 6th district sia－ tions and ran tell a＇six＇betore he sines tho this dossn＇t hoid true of all sixes．On the whole it you keep your wave slexidy and have a good antenna you will have more results and fun on＇00＇than enough！＂
bTJK（New Orleans，Lut．＂I am hammering away at the 20 －meter hand with the hove that conditions will improve．Some aiyhts we hear many NU sha－ thons and possibly one or two European or Australian starions，but conditions here are earatic though per－ baps sixs nee FB elsewhere．When we do hook sta＊ tions the aignals fade oul gnd as fin as daylight work is concerned，there doesn＇t seem to be any such animal．I cannot account tor these oonditions in Hiew of so many sood reports in QST from other parts of the comiry，＂

M．r．©，D．Roberts（Sydney，Australia）has had pery pood succes in recelving 20 －meter signals and hus made some excellent measurements of tariation in audibility throughout the 2 －hour day．In No－
vember Fgith，megsurements on WIK va－meters．New Brunswick．\(N\) ．\({ }^{\text {b．}}\) ）showed that the ignals reached a minimum fo noon in Australia rising steadily and geadually thereafter．The riecrease in the Australian morning apotars to take piace more quickly than the increase in strenoth in the afternoon．Mr．Roberth Gayo：＂\}n three wouths of listening on 30 －meters i have eopied amateurs with the following intermati－

 disy ercept for a half hour before and after hon here I whall be tilad to iisten for any hams on sehedule．＂
（40）\(\%\) ， 10.50 pm ．Tues．，Firi．， 180 \％ 10.80 mm ．
\＆ID（Providence，\(F\) ．\(I\) ．）says，＂Twenty meters is wonderful．IX is oming along great and ras－ chewing is jusi ge quod ses on 40 ．it always de－ gends on the individual and not on the band．＂

GDME（Auburn，N．T．），＂Made QSO with er8 TT ait 7 ora．June 27 and he reported me \(K 8\) on 19.8 meters Galled sAHC and introduced him to efsFT we they fari heard exch other but wint been gSO．They sticked at once after I save QRH＇s und signalled to go whead F゙B for＇？0＇！’

VOG SChooner Morrissey oft Gabe Harrigani， ＂otometer sienals are vexellent when macines wre not running．SDME RT－RX aready and FB ．＂
ThE the gpanish whaler Flor de Madruga Fung． \(81^{\circ}\) Lat． \(63^{\circ} 600\) miles S．Fa McDonaid Island， \(Q R D\) the antarctic is anxious for more \(Q S O^{\prime}\) ，with the U．S．A．20－meter calls heard and worked from Gape Ste Marie，Madasasear to the present focs－ tion by \(R\) ，Gaifames，operator．Dy rario via gBSK， IRD， \(10 M X, 1 C M P\) 9BRB，6ZAT，＂EK，GBSK，由DTJ，

GBSK（Hammond，Ind，s，ys，＂I work Kek four times each weok on suhedule un 20 －meters and have followed him from 6 ，0ig miles to his prosent location， ebout 13,000 miles． \(9 D I\) worked \(X 2 R\) with his now UXSBE．I think this is sadal DX and value this work more than all．＂
nesBT Gamilton，Ont．），＂S0－meters cun＇t be betren for dialight DX．Worked nekAF and eb4WW the first week on this bund，the intter at 1 pni．EST， pood pios and devlight at both ends．eforiz has been wurked at 5 pra EST．European stations hardly reariable on 40－meters are \(k 6_{6}\) and \(\%\) when they wo to sut．＂
QCEI（Michigan，N．D．），＂The major part of my ou－meter work has been rione with one and two go3A＇s in a tuned grid and plate eifenit．fifficulty in keeping the blate dissipation down within rea－ son iwith T．P．T．G．cet．）Was averome by trying different sixed grid sud phate blocking zondensers． plate thokes and grid leaks．frion，hve on＇s und one oz have betn worked．all betweom 11 pm ．and fam CST．As long bs i used to－meters I recid no cards from ex stations but now they come reg－ uharly when 20 －meters is being used．A farge an－ terna has luefn found more sabisfactory than half－
 binalion horizontail and Fertical fadiator with za wire tuned voltage teed，t tunning condenser being in parallel with the anteman coll．This oteadies the ware over a series mondenser arrantement that Whe tried sud tone rroporls are＇DO＇．Where＇RAC＇ Was the pule when using the wriks antenna con－ denser．lt is sratifying to me to see the incrensing nomber of stations on tgo but of have been dis－ Apobinted it noting little umprovernent in the tone and stexdiness of these stations，i think mathy ta－ thons are working with too－high phate dissipation． the overloading of tubes otusing sume of the wably notes．Yours for better＂u－mpter work．＂GrEI re－ ports that with his final adjustments of the I．P．T．G． circuit be fetts bi blate input to tube rutpat eff－
 from gCEI reais．Tust QSO ehaWW arnd pgsHS－ 186 on 80 －meters ！＂

TNF（Beverly，解ass），＂With a loneswme much－ sbused 210 in a T．P．T．G．circuit I find＂40＂the＇rosy rod bersies．Have worked a six or two evory night
 np4SA，EhAA，XXI（GRA？）and ELLAIX Stav－ theger，Norwayle I have heard steval zometer stations supposedy within the ekip－distance： \(1 A J M\) ， 10 N ，\(A X A, 1 S W\) ，LBYY．A！gn heard：onZAK H1DTT，eb4AU，eb4WW，eb4AX，engR7，sesAG，sclad， IAD．BDAC，ADAB，GDBR，ERYOR，ef
 emSMUK，ECRR，TVE，UL．I have two twansmit－ texs and can GSY Rrom＇ 10 ＇to san＇in 10 seconds．

1 find that the \(D X\) records, skip-distance, swinging and fading experiensed on 40 -meters will be just about doubled by using 20 -meters. Have 60 weycle induction which makes it necessary for me to use a kerosene lamp to light my station at night. Find DC much better than RAC or AC especially in QRN. In my experience on ' 29 ' and '40' I yet 8 replies to 10 CQs on DU and about 4 in 10 on AC. Hope this repurt helins someone to QSY to " \(20^{\prime}\) ",
6AGR (San Yedro, Calif.), "Was QSO eburs the other night and he wanted his QRH. Worked ebaWW tonight iJuly it and gave him a masg with the dope for elisRS. \(4 W W\) delivered it to 4 RS on schedule rand harl an answer back to me in five minutes. Fast work! My wavemeter detuned the receiver so I couldn't give him the information when \(X\) worked him."
20-meter calls heard at 6BQ (May and June 1927):
1adm lamd lamu lasf lbeb thyy leaw lemx lay

 Baed sagu 8ahl saiq Saqe 3 bwj 6 cch 3 cfg 3 ekg 3 tn f4a 4 io 4 iz 4 km 4 lm 4 qb 4 ry 4rn 4 rr 4 si 4 tu dxe Gado Gahx 5ak bamt 5amw 5aup 5aqe barf 5axy save Salye big beh 5hs 5hz bie buk 5vm 5wu 5wz bza Gam 6amm 6bpg 6cxi fur 7ach Fadm 7ax Tay 7bm 7je 7mh Tne Tou 7uw sacz Sadg Safd sahe 8abk

 Geld gen 9evy 9exl 9exx odgx 9 dia 9 dij Эdkm 9dly
 9nm guy ne-2bene ne-2al ne-3es ne-4fy ne-4hs nc-5go np-4sa wa-2sh oa-2uk oa-4bd oa-4rb oa-fdx oh-6acg oh-6bdl su-2ak st-2ed se-2ah se-Žas se-8us nir-cto x -crlo.
6ZAT-6UF (Bill Eitel, Los Gatos, Calif.) sends in \& diagram of the circuit he is now using which is a modification of his own on the regulation T.P.T.G. arrangement. To work two 203 A tubes satisfaciorily in parallel on 20 -meters, he uses a separate tuned-grid coil and a separate grid leak and grid-condenser for cuch tube, the tuned-nate ouil receiving the output of both tubes through the usual blocking condensers. The antenna coil is coupled to the plate coil. parallel plate-feed to both tubes has nothing unusual thout it. The two grid eondensers and the two this particular transmitter. Bill says, "I get betiter plate blocking condensers happen to be variable in reports on the note and the output is just about donble. I built the new set to take to GUF. I puiled 6ZAT down lase night right aiter working ElGW."
BZBJ iSanta Barbara. Calif.), "Recently I handled म bunch of messages for Shanghai Ohina which I gave to 6A.JM (Lemon Grove, Calif.) who got down on go-meters and put them aeross within 18 hours and had delivery on them. This save us quite a boost here."

\section*{OFFICIAL HROADCASTING STATIONS LLocal Standard Time)}

Below we are listing again the un-tordate schedules of the netive A.R.R.L. Oficial Broadcasting Stations. These wtations use the wavelengths specified in paicenthesis after their calls and broadcast regularly at the times given, the time specified in each case being local standard time for the eiby where earh station is locaied. The schedules become effective automatically upon their publication in QST and remain in effect until corrected or supplemented in later issues.
It is now mossible th select one or more stations in order to listen for the broadcast at a definite time and wavelength, although you will probably "run across" the broadcast at some time during the course of ordinary listening.
Q.B.S. are pequested to send the broadeasts slowly enough and with steady. even. keying so that even bexinners can make use of the broadcasi information. Each wrek the latest news of expeditions. A.R.R.L. schedules. tesis and important amateur news of the hour will be sent from the League's Official Broadcasting Stations.
The operators of the various station sare willingly siving up part of their time to this work and will appreciate it if you will dron thern a carfi saying that you copied the Official Broadcast from them on schedule. Headquarters will be pleased to have any suggestions for making this service of still more interest and value. Only thus can we improve. There are plenty of siations in ihis list so that some of
them can be heard in every part of the muntry. Listen on the wavelengths given and see for yourself.
IAID (19.5) 7, 2.30 pm . Mon., Wed., Fri.; IAOX 7.30 pm . Mon., Wed.. Fri. ; 1 AMU (19) 7 pm . Tues., Wed, Sun.;1BEP (80) 10.30 pm . Thes., Thurs., Sat.: 1RF年 (79) 7, 10.30 pm . San., Wer., Sat.; 1BIG (75.5) T pm, Mon., Wed., Fri.: iBVB (42) noon, Mon., Wed., Fri.; 1 MK (76.5) : 1.30 pm . Weal, 11.00 pm . Tues, Wed., Thurs, Fri.; 2APD 5.15 am, sun, 6.15 pm. Tues., Thurs. : 2CQZ (41) 7, 12.30 pm . Mon. Wed. Fri. (84) 7, 12.30 pm . Mon., Wen., Fri. (184) 12 midnight, Sat. ; 2 CTH (20) 7 pm . Tues., Thurs., 1 pm . Sun. (37.5) 10.30 pm , Rhurs.; 2 PF (77.41 \(10,80 \mathrm{pm}\). Wed. ; 8AX (82) 7 pm. Mon. 3 BALE (41) 7, \(10,30\). 12.30 pm . Tues., 12.30 pm . Thurs. (30) \%, 10.30, 12.30 pm . Suht. Z SL \((37.9)\) 7, 10.30 pm . Sat.. 7 pm. duily. 3 SJ (42.6) 7 pm . daily except Sat. \(\mathcal{A}\) sun.
3ZI (81) 7 pm. Mon.. Tues, Thurs. 4 4IZ (38,34) 7.30 pm . Tues., Fri., 2 pm . Sun. (20.5) 3 pm . Sun.; 4JR (78) i pm., Mon.. Wed., Fri.; 4LK (37.5) 5.30 mm. Mon., Wed., Fri., 6 am, Sun. (38) 12 midnight Sat. ; 4SJ (40) 7, \(10.30,12.30 \mathrm{pm}\). Mon., Hri. ; 促R (40) 7, 10.30 pm . Tues, Fri. (81) 7, 10.30 pm . Thurs.: 5ACL (41) 7 pm. Tues., Thurs., Sat. (20.1) 12.30 pm . Sun.; 5ADA-5CQ 417 pm . Sun. : BAKP (20) 8 pm . 5.45 am . Sun., Wed, 6 AMM (39.7) 7 pm . Tues, Thurs. (19) 7, 12.30 nm . Sat- ; 6 APA (38.9) 7.45 pm . Mon. Thurs. ; 6BBJ (x5 phone) 7.30 pm . Mon. Wed. \(6 B . J X\) 140) 6 pm . daily except Sun.; 6BXD (88.5) 7 pm. Mon., Wed., Fri. ; 6BWS (89.2) 7, 30.30 nm . (\(89,2-19.1\)) 12.30 pm . Mon., Wer., Fri.; \(6 \mathrm{CDU}(42.2) 8 \mathrm{pm}\). (21.1) \% pm. Mon., Wed., Fri.
6UO (76) 10.30 pm . Mon., Wed., Fri.; 8 AHK (39) 7 pm. Wed., Sat. : 8 APC (19.3) 12.30 pm . Sun.: \(8 \mathrm{AVK}(81.5) \quad \mathrm{f} \mathrm{pm} .(38.8)-12.30 \mathrm{pm}\). Tues., Fri.; §AYU (20.5) 7.30 pm . (41) 10.30 pm . daily, 12.30 pm. Sat. ; 8 BMJ (81.5) 10.30 pm . Mon., Tues. Thurs. ; 80 EO (76.5) 7 pm . Mon., Wed., Fri.; 8CJC (\(\times 1.15\)) 10.31 pm. Fri., Sat., Sun.: SDME \((88.45)\) \% pra. Thurs., Fri.; S \(\bar{x} 3\) (20) 7 pm. (80) 10.45 pm. (40) 11.30 nm . Mon., Wed., Firi., Sun.; KHW (42) \%. 10.30 pm . Wed., Fri., Sun.; 8PL (37.9) 5.30 mm . Mon., Wed., Fri.; SZH (76) 7 pm . Tues., Fri.; 9ADR
MBWN (84.6) \(10,30 \mathrm{pm}\). Mon. (41) 7 pm . Wed., Thurs., Sat.; 9BYQ (178.6) 2, 7 pm . Tues., Sat., Sun.; (87.5) \(2,10.30\) pm. Thurs. (20112.30 pm . Sun. 9AUG (42) 10.30 pm . Wed.: 9BKJ \(78.81 \% \mathrm{pm}\). Sat. (38.8) 12.30 pm. Fri.; 9CET (38) 11 pm. Mon. Thurs, (18.9) 1.00 pm . Sun, : 9 CNL (38) 7 pm . Mon. Wed., Fri.; gove (40) 10.30 pm . Sat., Sun.; 907 CO (76) 10.30 pm . Wed, ; gDAE (41) 7 pm . Taes., Thurs., Fri. ; 9pPdं 8017 mm . Mon., Wed. \(9 \mathrm{ECJ}(41) 7 \mathrm{pm}\). Tues., Thurs. (83) 7 pm. Wed., Fri. ; 9 HP (88-89) 7. 11 pm . Tues.; 9.5 JU (88.5) 10.30 pm . Tues., Fri.: 9 KZ (81) 7, \(10.30,12.30 \mathrm{pm}\). Tues,, Sat. ; np4.JE 7 pm. Tues., Sat.

\section*{ARMY-AMATEUR NOTES}

SECOND CORPS ABEA-Athough swhedules between the NOS's and their varions AA dations have been discontinued for the summer months, earh NOS will continue to keep its schedule with 2 SC , the Corus Area NCS, ZAPD is gssisting aPF in the Brooklyn Net schedules, and EAFV is batk wn the job. \(8 H J, 8 Y W\), \(2 A \vee B\), and \(3 H W\) rontinue to be active in their respective Nets.

FIFTH CORPS AREA-Work in this Area is practically at a standstill during the summer months, but it is expected that activities will start in the fall.
GEVENTH CORPS AREA-A new experiment is being tried in this Area, and it is expected that much activity will show up ss summer progresses. gBAY has been forced to resien his appointment as NCS fior business reasons. His work has been excellent. and it will he difficult to tind one who can alequately take his place.

EIGHTH CORPS AREA-5BJ has benn appointed to the Governor's Net of Oklahoma. Not many new developments in the drea but the work of all concened has been very satisfactory. and the showing of the Area in the last AA tecis was very gratifying.

We're learning new things every day 1 Here's an interesting little quotation which was found in the pitaburgh press: "GQ", meaning Come quickly, Danger!' is the present-day wirtless distress signal. The first letter of the word 'danger' is no longer used." Howzat? We think it's quite a gem.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Call} & \multicolumn{4}{|l|}{RRASS POUNDERS' LEAGUE} \\
\hline & Oris. & Del. & Tel. & Total \\
\hline 3 CGT & 27 & 27 & 438 & 192 \\
\hline MBAT & 39 & 46 & 967 & 452 \\
\hline opimR & 110 & 77 & 134 & 321 \\
\hline 6BJX & 36 & 149 & 72 & 817 \\
\hline 1CRA & 91 & 21 & 182 & 294 \\
\hline \% \(\mathrm{CF}^{\circ} \mathrm{F}\) & \% 6 & 12 & 192 & 280 \\
\hline 6АMM & 43 & 110 & 120 & 273 \\
\hline 8 XF & 25 & 81 & 183 & 241 \\
\hline PAVK & 52 & 16 & 162 & 230 \\
\hline SEIT & 41 & 33 & 150 & 274 \\
\hline 8192\% & 2 & 13 & 202 & 217 \\
\hline 40 X & 9 & 40 & 84 & 203 \\
\hline \(\triangle \mathrm{CWT}\) & 22 & 30 & 150 & 402 \\
\hline \%AER & 110 & 85 & 4 & 199 \\
\hline opiAL & 62 & 43 & 90 & 195 \\
\hline GAYC & 29 & 5 & 138 & 185 \\
\hline 6ZBJ & 45 & 39 & 82 & 166 \\
\hline WRVY & 37 & 109 & - & 1.66 \\
\hline SEYM & 33 & : 24 & 112 & 158 \\
\hline 9 CMV & 47 & 5 & 73 & 144 \\
\hline 60W & 4 & 11 & 124 & 138 \\
\hline 4NE & 83 & 40 & 10 & 133 \\
\hline 6B.JF & \% & 7 & 39 & 131 \\
\hline 6DDO & 41 & 60 & 28 & 529 \\
\hline 6BtTC & 106 & 20 & 1 & 127 \\
\hline 8 CDC & 41 & 18 & 67 & 126 \\
\hline UREI & 25 & - & 100 & 125 \\
\hline 4AAO & 34 & 50 & 98 & 122 \\
\hline 7AM & 40 & 80 & 62 & 182 \\
\hline 2hLP & 31 & 76 & 12 & 119 \\
\hline 10E & 9 & 12 & 94 & 115 \\
\hline 60 KC & 4 & -m & 108 & 112 \\
\hline 8CYK & 29 & 1.2 & 66 & 107 \\
\hline SAVB & 57 & 5 & 40 & 102 \\
\hline 9CAB & 81 & 19 & - & 100 \\
\hline
\end{tabular}

SOBT takes the prize position this month with SBAU right om hist trail for the honors. uniHR and mBJX deserve special mention for the worthwhile trathe work they accomplished, GAMM, \%気EK and BBVY siso show some remaxkable tigures in the DELIVERY column. Every siation in the list is operated ON SCHEDTLE with other Rtations, Messages arie handled QTICKI,Y and ACCURATELY and DELIVERED SURELY when they pass through these stations. That's why it's an bonor to "make the F . F . I.". Any station interested in good operating work that eares to qualify can do so by adopting a resular plan of powation in line with the policy of our high stationg in the B. I', fis Why aren't you there, too, OM?

\section*{With the Route Managers}

\author{
By Lawrence A. Jones*
}

WG'VE DONE it! Here's our frull page bawk merain ! Although the trafiic bobals are still pretty well down. We watil to keg risht on our toes. bucause it's time for some of the gang to return from their summer vacations, and well he needed to whow "em where to route all their meswases. Dou all deserve hearty comgratulations for the fine bunch of letters yon sent us this month. Keep it up!
Hy this time a lot of wou should becin to realize that no matter how hard each of you may work individually it's goine ba take pooperation-and lots of it-to really get resuits of which we as a bunch may be proud, This cooperation is of two kinds, First of all, the ORS must be in back of us, Without their cooperation our task becomes deubly nifiicult. and in fact atmost impossible. Therefore it is up to us to dig into the ORS hand and foot until we make them realize just how important our work is to the old league and just how necesasty their cooperation is to make frur work a fuecess. The second kind of co-operation we atan take eare of easily. Two or three times we have quietiy augested five point systems hetween KMg , in the hope that some of you would see the advisability of this sort of thing and try it out on your own hook. A few of you have "seen the light," and done a fine piece of work. The rest of you should

\footnotetext{
Amsistant to the Gommunications Manarer.
}
take \(a\) Jexson from those few and get in touch with four neighboring RMs right \&w, Th, Thy gith be of much help to you in getting routes lined up to and from sour section, Fiow about it

Ed. Raser, dzI and RM for Southern New Jersey, says. "rraffic here is in sood shape for this time of year, its lact the best l'ye spory it in the last. is voars. Fou see I've followed this wife belry rame right through since its bexinmios in 1415, and haven't quil yet! We have endite a few good ronten working in this territory, andi lam wutting tood poo operation from my neighboring ItMs, nameiy dAIX of Philadeiphia and XETT of Williamspori, Pa. ATparently the pang seem to ser the value of routing tratfic over hnown and astahished lines which have been built up and are already in good working order So far we have Centrat New dersey and Ficstern Rennsylvania pretty well coverod. I wish onr bunch the best of heaithy growth and eooperabion from the gans, and pledge myself to dio ئll in my power for the cause." "here son have a sample of that co-gperation we just syoke about. and you see that it does bring rexults. Now let's sem you all take the bint from SZI, and get ater the hearby Fonte Managers.

HBQD, the KM of Rhode leland, is potting his whole hesurt in the work, but says that he has heon able to get next to no eo-oyeration from his wang: "That's lough, but somer or later the Whode l-land bunch will open their ques to the fact that the other sections are retting way ahead of them, and then, if they have any boyalty to their section at mil. Mathewon will set sull the towopration he meds incirientally, be says "therrate on su, 40 , and zo, and have no trouble at sll in picking up loads of traficic on 80 . If the rest of the exang would quit the everiasting chase of supermax and take a erack at 80, we would see s grent change in tratic totals." And he's right, It's ah, fellows to yo after \(\frac{1}{} \mathrm{x}\) some of the lime-mpery one wants to do that-but you ought to make up yoar minds to detote some time to trafic banding: Don't be our-row-minded enoueh to sive np all rour radio time to just one worl.

BST, FM of Arkarsas, tells us, "Here's the dope on what l've dome so far: sent every ARRL member in Arkansas a multigraphed form letter fexardHess of whether they owned \& transmitter ar not. With each of these letters I sent one of my 'gchedule Requrt Blanks, on which those who were ofe tively engaged could report to mex gince then have whiten every ARRL member in this state from one to four personal letters, trying to wet their interest stirred up to the messave handing point, ferietaly theaking the results obtaikeri so far have been yery gratifying. Several fillows are now on the air who wore entirely oth, and othets who wite oocrating in a very haphazard manner are now on with regular schedules. Gach month as \(I\) send out my sehedule report blanka, if drop exth iollow a few lines to "pep" him up. I had to shart in from the eround floor, jou might seys for at the time I herame RM, there was not a sincle ORS in this atate We have three or iour now, and I stm exwecting zuperal others to kick in before fong. ky the time real weather opens up this fall, expect to have * wy fo traftic organization goins." There canx, is a sample oi the work that we ean lo when we really get nown to husinesw ive have had the opportunity to see vogies of Ariedre"s multin sanhed letter, and his schedule reoort blanks. and they surely "qill the bill." If any of you wish to get sume move dope on them, tisl wonid probably be quite willing to beffer sasesations. Ky the way, Arledge did lot of fine work with his station in connection with the Mississippi food, and we tre prond of him.

Heres suggestion on beating static from RM Brown, laAL. He says, "L always start it the eventio on 80 , and if the \(q R N\) is bad, go bown to 40 , and if still had go on down in zo, and then l'm all set, for a plessant evening." fust another of the many adyantages of having a det that will QEY easily in will amateur bands.

MeElwain. gCZC, EM of Jowa, quys, "I notice that several of the oRS report URN so bad that there is ND. This is a prite fway , ato qone who has been on the air lonows that it is possible to hande trafic most nifits wa so moters, and that mornings are rery FB for short distance work. so I. think it's time to set a rew silibi, or else kell the truth."

6APA. the URM of the East Bay Section of Califurnia is helping to pioneex the 20 meter band, and

Wants to see more schedules on this frequency, where he sfes better possibilities for daylight traffic handling. He says more trafic routes are needed, as sume have been dropped owing to racation trips, or what have yot? five youtr houte Manager your support, fellers, and let him know what schedules you have or want.

ANF, KM of North Florida, tells us, "The co-opera" tion I am eetting from the gany in my district excepds my fondest expectations. I sent oards to everyone asking for dope on their schedules and operating hours, and practically exaryone of them have replied. I am planning to assemble all this dope on one sheet; (or card if possible), and send a copy to agh fellow in my grang, and to the RM of South Florida. It's goiny to be a job to get out these sehedule cards owch month, but if think the qang will appreriate them." Yes, the gang will appreciate them, airight, repectally when they lealize how hard you are working to bring their section to the lop. When you're ianding out copies of your rards don't forget to include HQ on the hisi. Incideritally, Webb is atother RM who is oncouraging "Sunrise Parties," becruse there is less GRM and URN then,

EDTAD, the WM of Wisconsin, is having trouble getting rhoteh cooperation from his gang. 'Smatter tom fellows it Wisconsin ts How's to get in back of your RM sund tive him the dope he reads? He's working hard for yon, and it's up to you to show your appreciation.

8EU, of Bastern Pa., is another one who eant set the bunch to help him. He says, "When it comes to eo-operation from individuat ORS in this section, there fust ain't no sieh eximule. They raust be bashint, or scored, or something, but heck, Im not the \(\mathrm{F}_{\mathrm{i}} \mathrm{I} .!\) A few here are always on their toes rfady to keep wohedules or anything we ask but the majurity extainly are anything bot." Once nore we sete it, fellows. Without co-operation we are next to helpless, und it's up to us to dig up some way of getting that help.

Well, gang. suess we've said erough this time. Foute sil working hard on the job, and that's all that we ean expect: Remember that we are in back of you, and siand ready to belp in any way possible. Let's hear from you between now and rext month's feport 93 de Lut.

\section*{Amateurs on the Job}

A\(S\) always happens in the case of an emergency, amateurs in the dooded areas of Arkansas, Mississimpi, and rouisiana stood watreh faithfully, hour atter hour, in the event that they might be of some service, And needless to say, they did a wondertul job. and are io be heartily congratulated, one and all, on their tireless wforts.

In Arkansas, the gang was hamnered somtiewhat by the lact that vory few stations ihere are equipried to operate on eighty meters, thus being forced to fo most of their goot work in the davtime. bSW, of Hot Springs, was able to give the first news from the ontside forld to his local newapaper, since all wire communications had been cut off. He hatidled s large number of messages, inciuding AP and Naiional Guard Mericai Relief, keeping schedules with 50K., and 5ABT. 5SI in Pine Bluff, handled all nficial army massuges betweell Arkansas and the Fth Corps Ares Hearquarters at Omaha. Neb, Messages were being delivered from Pine Bluff bo dmaha in less than an hour. 5 ST eatned a nice bunch of news. paper publicity trefther with a fine ald sincere letter of atpreciution from Major-General Poore, USA. for the cxpellent work done by him in the fime of Heed, SEI's work with omaha was carried on through a schedale with 90 R , which was kept practically day and night until all need was past. 6 ABI in Little Fock. Was in constant communication Fith 5.TB at Hot Springe for three days and half of the nights. During this time many messages were handled, the most important anes being for the Military Dept. and the Red Cross. Hot Springs was also supplied with genteral news from this station. BGK, Havana, operdied oin schedule with 5.IB, BSW, and 5AlP. handing mueh important tratic. Through the sebedrle with GAIP, the VIninn Trust Company "f Little fock kept in touch with several of itw worrenponelent banks in vastorn Arkansas. Incident. ally. WW helped hook KVOO and KTHS on schedules handing flood news.

In Louisiana, 50. wired Adjutant General Toumbs, who is in charge of the flood situation in that dislicict, offering the services of amateur radiu. \%UK in New Orleans kept schedules with 5 AGS in

Meridian, Miss., and with 5AEN at Crowley, La., for handling Associated Press. Communication in Louisiana was not a great deal under mormal.

In Mississippi, FAKP, EAGS, and 5API stood by constantly for food work. BAKP was CSO Cleveland, Miss., New Orleans, La., and Memphis, almost at

HSI—A REAL RM LAYOUT
Note dymamotor at bottom, which furnished emerg= erey plate sapply during the Mississippi flood.
will, and 5AGS of Meridian was GSO Oleveland, New Orleans, and Plaquemaine, La., thus alfording quile reliable routes for various kinds of emergency traffic. EAPI Was the station at Cleveland worked by both these others. Radio conditions were wery poor, but still the gans was able to keep the lines of communication open between Meridian, Memphis, Cleveland. New Orleans, Shreveport, and Plaquemaine.

Nindoubtedy many more amalears did their part in the great work, hat they are not known as yet. Every fellow deserves individual credit for his tireless efforts, and once more amateur radio has chalked up a performance that will bring it before the pubbic.

\section*{MORE EMERGENCY WORK}

Weekshurg. Fy. is a littie coal mining ramp. ssolated in the mountaius of north-erstern kentucky. ils unly connectine link being the \(C \& \mathcal{O R}\), which tepminates fit this point, and the \(\& \quad \% \mathrm{RR}\) Phone. which is a part of the RR's excellent phone system.

About a month ago. that part of Kentucky was hit by a terriffic cloud burst, drowning several persons, and damaring a ereat amount of property. incidentally. Weeksburg was eut off from the rest of the world as no trains could run, and the railmad phone was down.

Hence the only possible connecting link was madio atarion gDVT, located there Nightly pDOL, ot Funtington. W. Va., kept a schedule with Phipps of gDVT, atid all messages to the outside world were handled through these two siations. These messages inclurled reporis of ralload ofticials there to the Wikhorn Piney Coal Mining Co. in Huntington. In fact, the two amateur mdio stations acted as means of traffic kanding for the \(C \& O\) through the means of the Elkborm Coal Co.
At one time the grocery supply in Weoksburg was runnine low, and one of the nessazes stated that unless sroceries arrived within a weck, the situation would become aritical. The two amateurs gave reports on a relief ear sent in answer to this message, and tinally if got through saving a very unusual situation. This information rather disproves the C \& O's statement that they had no need for the help of the radio amateurs of the \(\mathrm{T}, \mathrm{S}\). XVZ, aiso in Huntington helped these other stations out by keepbige inny nightly watches at his outit during the aritical time. These three men deserve a great deal of erenit for the unseltish way in which they save up their time in order to be of assistance to those in need.

\section*{DIVISIONAL REPORTS}

\section*{aTLANTIC DIVISION}

EASTERN PENNA．－－SOM，H．M．Walleze， \(8 B Q\) SAAX will be ofl the air until the first of Oct． He is going to Denmark，8AVK will be on his BC skeds as usuah．We need several more good stations for this work．Who will take the job？ Don＇t forget to report now tfe pushers as they show up．Now that＂sehwol＂is over，some of the hoys should be on more 3CBT tops the list and sent s nice report．SEU Aays tfe is good und is moing to gRO．Tfc holds wit very pell for 8AVK and SCGZ，as asual．\＄BGG，an ex－ORS，revorts Kork on the map．FB．3HH handed his on forie． sCMO is instailing a 2 ho watter and an are rectifier． 30 Y is doing very yood work on 80．gNP Ean work two bands at once，when the second op is on neok，RM，BAIY has a 50 in action now．RVF handed tic to Lindy．8OW is working for 4 comm mercial ticket tis is GBSZ．BfT is still QRMed by BC ris next doof．SHD visited York sud says its the best radio location wty the ziohe．gUDS is busy on io．sZM is catting hay after being parked in a hos－ pital，BADE is rebuiding．BAVL is doing very yood work on 20 and is fussing with 5 M tests now， Vacation gummed 8BFF＇s iotal．8ADQ is having his trombles on 40．sRQ and 8WJ are steppins out FB on do．sCCQ works on sol， 40 and so meters with sood QSY systems．
 217， 3 KMO 47．3QY 37．3NP 2\％， 8 HH 29.3 AIY 15.

WESTERN REW YORK SCM，Oharles S．Thy－ bor．SPT－The Western New tork watig atiended the Pittsburgh convention，and succeeded in winming the big silver Cup which was put up by the four Horsemen of Pittsburgh．Western New York dary lead the country iin traffic mouthly but the gank must work hard and kerp schedules etc．This be－ ink done the restilts will amaze us all，so give us your utmost support． \(8 A H K\) zass Rochester wil have a get－together Ausust 5 and 6 ，State Con－ yention and it is known that several Crandians will be there．SAIL will be on the air now that school has einsed．gANZ is rebuilding the set and wants to be an OBS．BBAG keens trafic suhedules．SBMC transmits masss to Iceland．8BCZ is in New Tork Sity on \(a\) visit．SBLI has \(a\) new 75 watt tube and needs some more volts．SBLP had a b0 watter but srid kissed the plate，sBMJ just handled traific． sODC has arranged sehedules with 8XAM．SONH is oif on account of school．SCNT handled traffic． SOUR handled some traffic．BevJ handled traftic from VOO． 6 BXI has schedules with 8 HI and \(8 V W\) ． SBBU was heard in Encland．SCHI is reaty to come on mit．BBNS is of for yood．SCYK was scheduled with IACA－ECOL zilso handles traffic．8DDL handled traffic oniy．sDFX has two transmitters now on 20 ， 40，and x0 meters．SDME handled 15 mses from VOQ．DNE wriks a few EGs．SFT is now on with a 201 A ． 5 HJ ways things are deal in the dis－ trict． 4 NT now has a commercial ticket and is moper－ rating the Great hakes．SQB is slipping fasi－tin－ nouncements will be made later．sTH reports that lie wil be stive during the summer．8UL nittended the Convention but forgot io report．\＆vW handled Army Amateur work．The SCM is back ox the air with a 204，Applications for ORS will be grate－ fully received，but you will have to live no to the rules of an ORS．\＆AHK \＆

 25．8OUR 7 ，8OYJ 15，8OYK 107，SDDL 17，8DME 6．\＃DNE 14，8N＇T 21，8TH 5．svW 10.

WESTERN PENNA．－SCM，G．L．Crosstey，8XE－ Reporting this month was wery lax due partly to the Atlantic Division Convention heing held at Pittsburgh and a aumber of the active men work－ ing on the conmittees，and because of pressing work the former route manacer asked to be xelieved and Anderson． 8 GI is to take his place．Anyone wanting shedules can arrange for them thru 8Gl over the air or by mail．SAWR，SCMP．BGK，BCFR， SAXD，Find SAPC are on＂B0＂．SORK is rebuilding sand will have a new rectifier soon．SAPC is going to have a transmitter on 40 snd 80 agsin soon． \＆DGL is putting up a new antenna．©BVK，\(\$ G U{ }^{\text {and }}\)
\(8 B H N\) are experimenting on 5 meters．\(k D K S\) re－ ports things are slow at Uniontown．EHM is taking a y yeation． \(8 A X M\) is building of new transmitter． BAYH has a mew rectitier．BDNO is rebuilding re－ ceiver and will be on 20 soon．BDFY is QRW with work for the Railroad．gARC and sAGO have been QRW with the Convention．SCWT has been FB ising mencucy are．BCYF is rebuiding the trans－ mitter． \(3 G 1\) is on 88 meters， \(8 B X E\) and \(80 J\) are on 80．SUMW has a good phone in the so and ino hands．8CSZ is now using an MG set．RBWV now has 500 watts on the uir and is \(Q S O\) foreigners． SBDI is on 80 and 175 meters．8BRC will be glad to arrange a meter tests with those who desire sched－ ules at noon．Come on gang don＇t let the aummer Weather utod you from reporting．The SCM ean＇t sent a report in to \(Q S T\) if no reiorts some from the ORS．
Traific：\＆XE 341，8CWT 202，8CEO 63．8OYP 27， SGI 26．\＆AKI \(20.8 \mathrm{BRB} 12,8 \mathrm{EKS} 12, \mathrm{RBVK} 12, \mathrm{SDFY}\) 12．8CFR 10．RAPC \＆8GK 7 ，\＆ARC 7 ，8DNO 6 ， SAXD 6．EvE 6，SOJ 6．BCRK

DELAWARE－MARYLAND－DJST．OF GOLUMBIA －SGM，\(A\) ．B．Goodall． \(3 A B-M a r y l a n d\) ： 30 is a newly sative station beginning traftic handing． SCFX continues to be aciive with low power hattery appoly，BCGC is heard occasionally on 40 meters．

Oist．of Columbia：SBWT had the antenna masi come down in a wind but promptiy sot it back up fo kesp the key warm．3GP msing erystal control， is probably the most permanent station in the dis－ frict． \(3 / 0\) is elosing down for the summer． \(\mathrm{AL} \mathrm{LF}^{*}\) is a new station using 3 watts input． 3 CAB is do－ ing good work in interesting a large number of BCLs in ham radio， \(2 A B\) is limited to 80 meters al－ most exclusively，
 SOE S己， 3 AB 15.

GOTJTHERN NEW HERSEY－SGM，H．W．Den－ sham． \(3 \mathrm{EH}-A\) real inceative for the 9 RS who con－ vistentiy requrt that they ammot find trafic，can be pained from seanning the monthly reyorts of sofg．Jim is consisiently the high man of the district and this month comma thru with a gotal of 280， 76 of which were orisinated．He reports 247 bontacts in 22 days（ \(30^{\circ}\) in one day）among which were severa！urgent，rush messapes to New York sud Porto Rico．

BKT has new 50 watter on the air，SUT has dismantled his transmitter，greparatory to iritalling some new cupipment．SATO now has a tu0 watta on the gir．SBEI has been busy building screens for his new home．BSJ is on quartion trip thru New England and expects to visit HQs． 8 BTQ has been On 20 meters for the past fiew weoka，send reporta
 atod reports that his sisnals are setting out better than ever，SAIO has raported a eondition that has heen brought to the attention of the entire league many times．MESSAGE DELIVERY．One of the keonest disappointments in the amateur kame is to sthrt i message aseross the continent sind have it hung up somewhere before to reaches its destination． 1 know the south Jersey eang maintain \＆ \(100 \%\) delivery on rec＇d traftic and the onity solution to maintain the same percentage of delivery on the traf－ fie reorisinate is to route it through ORS that wr know will live up to the miles of the 篤昰e．
 1， \(5 \mathrm{BTQ} 5,3 \mathrm{AC} 12\).

\section*{CENTRAL DIVISION}

WISCONSIN：SCM，C N．Cramo， \(6 \mathrm{VD}-9 \mathrm{BOM}\)－ 0DXI is a new atation in Superior operating under both calls，aDLQ and bEMD were tisitors here during the month；the former spent two days here and helped 9DLD put up a very wuod x0－meter antenna． \(98 W 2\) has pretty good huck Working hams in Mich，＂Ind．，Ohio，Ill．，N．Y．，N．J．， Tex．，Mo．，etre，on 7.5 watts，The suid and piate of 9DTK＇i 250 watter fell in love with efnch other and wete united．9BPW is on every evening on 20 snd \＆ 0 meters but Ands more \(4 \mathbb{O} 0\) on the 40 band． 9 BJT hoges to have a few skeds going by next month． 95 M works up in the cherry country but pounds brass occasionally．PFHM does most of his work in day－ light Sunday \(P\) ．M．on 20 m ． 9 CAV blew his last
fifty so has not been on the uir very much. 9BWO did not handle mueh traffic but wrs QSO ergGM on 40 meters. 9 EGW blew a new 203 -A. 9 EEI built a new receiver. GCFT will tour the northwest this month on a Ham Tour GG to Spokane, Seattle, Vancouver, B. C., Fortiand, Salt Lake Gity, Denver Kansas City and Chicaxo, leaving August yoth and returning Eeptember 80th.
Traftic: 9ROM-9DXI 36, 90LD 30, 9BWZ 27, 9DTK 26, 9BPW 19, 9BJY 9, 9SA 14, 9JM 7, 9EHM 7, gCAV 6, gCDT \(9,9 \mathrm{BWO} 6\), 9EES 4.

OHIO-SCM, H. C. Storck, sKYN-The SCM Wishes to thank those who reyorted with traffic and those without. as well. That's the spirit and don't let's drop off thru the summer. 8 BAU takes the cake again with 452 msgs which is certainly FB and should set a good example to the rest. He keeps at least 7 skeds all the time besides doing a whole lot of stants along with it. 8AVB comes next with 102 messages which is very FB. pAVB is working in a thain route which extends from the past coast to ghout Colorado now. \&BEV handled 18 messages the first day on 20 meters. FB. 8 BNW did some work with the Wilkins expedition. 8 BPL is going to sethool in Calif. and will be of for a year. 8DSY is QRW but turns in a nice total. 8 HW is using a TY water and says it does just as much as his 100 watt set. 8CMB evidently had no news but turns in thice total. SCTD is on 20 and says FB , 8 CPQ is working a lot of DX thru bad QRN. 8 AKO keeps a flock of schedules. SAYO savs he will be on 20 meters ior some time to come as DX is zood. \&DPF is working in Akron, Ohio and is using \(B\) batt. plate supply. sALU will be in Maine all next month. SARW says 8RHE just got back from collece and is pounding brass at AARW most eyery night. 9DJG says messages are sacte as hen's teeth but has been working LXX, 8BKM is laid up with a combination of rheumatism and gout. ROFT, and \(8 B H Z\) are on very consistentily. אBIK is a new ham in Columbus. sGZ fulled to report and the SCM thinks GZ's YL is responsible. Hi. SDBM just got married. Concratulations. OM. RDIH is still using a UXi12. \(80 Q\) has been too GRW to be on much but expect: to be on regtilarly efter this. \(8 \mathrm{DQ} / \mathrm{is}\) leaving us until Sept. SAWX is GRW the Converion which is going to be held Aug. 19th and gith at youngstown, Ohio. SPL says he has been QRW working on Lizzies and rebuilding station. 8DMX will be on 80 and 20 soon. 8 GL has no filament transformer any more and says that summer is here, anyway, kDIA is working away from home and doesn't get much time to operate. EDO BCBP will be on rexularly now that schook is out. sAEU has been out of town but will be on full force in a few weeks. sACY has the wanderlust. SBBH says he needs a bigger set as he ean't raise 'em. sBKQ is trying to make a \(X\) tal perk on 18,85 meters. \(8 B O P\) in getting ready to move. \(\$ B A H\) is sitill off on secount of trouble with masts. SCQU is back from school and will be on for a while now. The SCM has had his set on the air on 40 quite a bit lately and has surely enjoyed his GSO's with Ohio ORS. The SCM wishes to uphold QST-in the matter of getting down to 20 . It is really a very mood band and may develop into the best we have. Besides, QRN is not so bad down there, and if more would get on, it would be a real traffic badd, Keep xeporting thru the summer. OMs. becanse you'd be surprised also to know how hard it is io get an ORS back after a cancellation. There will be a lot of new siations siarting no this summer and let's all extend a heiping hand to these newcomers and help them along. A aso meanis a lat to them.
Trame: \(8 B A U\) 452, \(8 A V B\) 102, \(8 B E V\) 69, \(8 B Y N\) 68. SBNW 51, BDSY 46 , 8HW 34 , 8CMM \(: 81\), 8 CFL 22, 8CTD 19, 8CPQ 16, 8AKO 14, 8AYO 18. 8DPF 12. SALU 12, SARW 12, 8DJG 10, 8RKM 10, 8BIK 9
 ©DMX 3 , SGL \(2,8 D I A 1\).

Eentucky-SCM, D. A. Downard, 9ARU-Sterms as tho everyone has taken the same month off for vaeation time. You fellows that haven't mailed revorts for the lasi two months should at leasi drop the SCM a card to let him know you are still alive altho you didn't handle any traffic. If you are of the air temporarily, ask for a temporary suspension. This reduces the work of the SCM and HQ. IATV says he is now ready to handile traftic regulariy on 40 meters. goX and \(9 W R\) (united) have two operating tables from which, by method of relays, either on can work the 20 or 40 meter transmitter. 9BWJ is working on 40 and 30. He reports having handled ernergency messages during the Eastern

Rentucky flood. 9ABT is still working West Africa on 39.5 meters. \(9 B A Z\) reports having wrorked a Canadian ship in the Panama Canal on the way to N. Z. signing ss 2 BN .
Traffic: 9BAZ 25, 9ABR 15, 9BWJ 14, 9MN 10, 90 X 1.

INDIANA-SCM, D, J. Am\&us, 9OYQ-9DXH has just come on the qir with two 210 tubes on 10 meters. \(9 \mathrm{BK}, 9 \mathrm{ABW}, 9 \mathrm{ONO}\), \(9 \mathrm{DRS}, 9 \mathrm{ASX}\), 9DTM, 9RBJ, \(9 \mathrm{BQH}, 9 \mathrm{ABP}\) are of due to yarious reasons. 90 G is back on the eir on 20 meters. 9 DDZ does foreigh DX with a 13 foot antenna. 0 AEB is on 20 meters now. 9AUX has a new 50 on 40 meters. 9BYI, QEF and 9AFA are on 20 meters. 9DIJ has a sked with x3K. GCP uses a 900 watt wniter cooled tube GDBA will have a motor generator as aoon as his wife lets him, gEEEY is going big with a UX852. 9AXO moved from LaFayette to Indianapolis. GOLO is back with xtal. OCHC's tube objects to 20 meters. \(9 B U Z\) and \(9 X E\) are off till fall, : PD , gCIZ and gCMV are getting soing as school is finished now. 日GVX says tratic is slow on 40 . 9ASX installed a new Zep antenna. 9DPJ is agrin rebuilding, moving and revamping. 9EGE is build ing o new shack, 9 AlN wants skeds on \(40,9 \mathrm{AEB}\) specializes in long distance stoff. gCMJ is going agrair. 9BYO is going after bir ORS. The Indianapolis Radio Club is going to have a pienic riext month for themselves and visitors.

Traffic: 9CMV 144, 0CBT 34, 9PD 33. 9CYQ 23. 9CRV 17, 9DSC 11, 9OTD \(\$\), 9 AXO 60 , 9LEY 29 , \(90 B A\) 16, 9EF 14, 9BSK 14 , \(9 D D Z 11\), 9BQH 9 , QBYI 8, \(9 \mathrm{BBJ} 7,9 \mathrm{AEB} 7,9 \mathrm{AXX}\) 6, 4CP 3, 9BK 3. 9BYO 5, 9OMI 9, 9AEB 18, GAIN 14, 9EGE 2\%, 9DPJ 16, 9ASX 3, 90VX 12.

MCHIGAN—SOM, O. E. Darr, RZR BDED and \&ALY did fine work it the International Gelay Tests both seoring many points. 8 DED , RM of Western, Mich., misious to hook the fellows up With schedules so blease weite him. \&OEP is about veady to resume operation. SDDS of Battle Creek asays not much traffic on 20 but lots of \(D X\) and rag chewing. \(s D I V\) complaias about finding it hard to raise stations when he uses ervstat GCM is perking on Xital. 8AUB sayg business is light up his way. 9 CE is on 20 meters daytime. sBOK broke bis jinx and morked SO1A. SBKC had his transmitter stolen.
 , ATB 6, \(87 H 5,9 C M\) 10, צDDS 7. צADK \%, צZZ 13. SDHD 5 .

TLTNOIS-SGM, W. E. Sehweitzer, GCAA-Well, summer is herte once more and old man static is trying to do his stuff, Traffie is holding out well ronsidering the many diversions of this period of the war one of our new stations is the high man this month and this time GDKK has a ley on the GRTA trafic cup. Let's go, geng, and see if we can't haudle at least a tew messapes at anch station. GAEG nsed up another elpetric linht of the ROA, model UX-120. AFB plans to try 20 meters for the summer. AAFF fs buck on the air two nights \# week. 9ALJ has a static eliminator workine F'R 9ALK Fas very QRW with XLs hence his low trafife total. bALDW is insialling his new transmitter on the seeond floor bithis garage. 9 APY attended the Pittsbureh Convention. GAWX is one of our newor stations and is studying why the old set works than how it works. GAXe wants some sehedUles with the west eodst. 9 BBA is a madio rhecker whark. 9BHM has been laid up in the hospim tal but will be on the rir soon acain. 9BFT is working on 90 meters with the new UX 852. GDAY has moved to Calif. 9AZE will be on oon. 4RRX is working in a battery shop. 9 ECB is pounding KFSA on the iakes, gBTX blew his plate transformer. 9BVP agys he can't hear eastern stations when he has irafic for them. "BWL's ann tenna blew down. gCTA, just returned from his vacation. aCN is building thew them. rectifier GONB likes his new location, GOSB worked ua, ep, and oh. GCSL is trying out different antennas, and oscillators at the shation to see whirh is the most satisfactory. gCWC says traftic and XLs don"t hilch so good. bCYN is going to be inactive for some ime. 902 L is on every orening from 8 to 12. 9DDE is playing a sax in an orehestra MDGA is operating on 20,40 and 80 meter lands. gDKK warked in. nr, and ma besides having the bighest trafic total for the state \(9 D 0 \mathrm{X}\) is still laid tio with sickness. GDYD says his tower is about ready to be put up. \(n D X G\) is keeping a schedule with 9DGR four days a week, gD7T sends in a fine refrort from Quincy. GEAI is GRV for traftic and will
stay on the air all thru the summer 9 BGO is so－ ing to take portable transmitter along fir the car when he sues to Minnempolis．aHHK dent in his report from Toledo where he is on a vacation and lesraing to fy． \(9\left[\begin{array}{l}\text { gig rectiver went on the hum and }\end{array}\right.\) the transmitter acted foolish．9KA und 9RA are making plans for their weiding．GNE reports traffic plentiful on 80 meters， 9 MK is going to be on the gir shortiy．gPUT bacir from eollege，is handing lots ot irafic．gTX is sure soing strons．

Trafic：90KK 60， \(9 P U 55,90 \mathrm{NB} 53,9 \mathrm{AEG} 52\), 9UX 6x，6OZL 43．9APX 42 90XG 25，9ON R4，
 9BVP 10，9DGA 10．GALK 10，وDDE \(\%\) ，QAFF 9, 9BBA \(\quad\)－9CSL 7，9CDX5．9TZ 6，9AWX 6．9CIA 5，

\section*{DAKOTA DIVTSION}

SUTHERN MTNNESOTA－sCM，D．F．Cottam 9BYA－Traftic this month is not as much as it bhould be aud it sectas as though the preat open spaces are atiracting the hams to a great extent．An occasional hamfest holds some of the gang together and visitors revive the oid spirit so that the gatng tries to show that they are not as bad ws this re－ rort naight appear Some of the best tratic men are ont on trips op are gway for the summer．Many of the follows are rebuiding．It is pleasing to ses that a grond number are now on 20 with a uuick change－over set for both 40 and 80 ．WDBW is high baffic man this month．He handled a message for the good will flyers at Lincoln，Nebr． 40 DL is doing some bice work with faw set．JFFF is using s \(: 0\) on 20 meters．9CIX is on most of the time and holds one sked on Saturdays．GAIR holds two skeds fad has bean taking trips to see other stations neariy ebery week IDGE is on his way to California． GBHZ is on so and 40，daily．gWMA is home from sehool and is on the air every pirht．gBYA has been on his annual vacation and visited both North－ epn Minn．and North Deiknta stations enroute． 9 FFO is rebuilding． 9 DHP is on 21 and 39 meters． \(9 C O S\) is having＂g＂tube trouble and will not be on until he gets in a mercury are， \(9 D E Q\) has not been on the Hir because Mrs．DEQ has been serionsily ill．gCPM is going to dilif．for a rear．gAgD has been bothered with GRM from carrving mail wnd lots of乌RN．

 ＊，gOOS 1，5CPM 524，9AQO \＆

SOUTH DAKOTA－SCM．F．J．Beck，GBDW－Trai－ fic has iaken s slump this last month．The general swing to 00 meters is largely tusponsiblo，together with general rebuiding，\(\quad\) QDB leads in traffe pracii－ vally all of which was on 20, GONS，\(a\) new ORS， iost his mntenna in a storm but is putting up a higher une 9BOW says oi0 sure is great stuff．gDIX has a orir of＂H＂tuhes．9DIT is coaxing a，z10 and a ＂D＂fuhe fo work together．ORBF hooked his cryetal montrol set up a la zBRB and made it work．gCJS hooked eb－ \(4 W W\) with a s－dollar transmitter on ab． SGL is pounding brase on a ship again and YBKB is in Canada．gavP s new ORS，is installing a mercury are mind a 7 －watt tuhe．

\section*{Trafic：9DB 23，aONS 7 ，9BOW 5 ．}

NORTH TAKOTA－SCM，G\＆R．Noir．GEFN－ HDYA says too much QRN on 80 so he stays on 40 ． GRSV has beon visiting and vacationing so no traf゙－ ine．gBYA visited bim a short while ayo and gave him some sood pointers．GDKQ worker sc－zBL． gDYV in not home much to operate．9DM is going to the U．of Minn，this summer but will be on Aug． 1st． 9 CDQ sold his five vatters and is geting a 75 Watter soon．Hope lo see sou on soon．OM． 9 EFN is rehuilding the set and will be going soon．

Trafic：\(\ddagger D M 12.9 D K Q 8,9 B J V 1\).
NORTHERN MINNESOTA－SCM．C．W．Bariker， \(4 E G T-G B V H\) had \(b\)－rieter transmitter all ready to co for the tests．hut was out of town． \(9 B H Y\) figures on locating at Red Wing vrary soon．OABV has been visiling the iskes of Minnesota． 9 EHO suys तix． GEGF is on the lakes this summer GFMR says that \(W \mathrm{X}\) is too warm to pound brass but qets the bug ance in a while．\(G E G U\) has been of most all the time， due to businest． \(\mathrm{H}_{\mathrm{GT}}\) is now using portable phonewe sete at Camp． \(4 A D S\) is back from the If and on the air ssain．GOTW uses \＆1500－volt dynamotor， hut says he can＇t charge bis batteries fast enongh to use it．GBJD is getting a new rectifier．9AOK is
starting out on the road，but finds it impossible to carry it portable set with him．GEGN savs fishing is grond but he didntt say what KIND of dishing．Hi！ GCIY，the new station at Hibbing is tarning into a whiriwith and no mistake，aCkI blew his power hrabsformer＂H＂iube，gind filament tansformer． WBTW，another new station，feads the sertion in ratife．
 OAOK \％T，ORJD TO，MOTW 10 ，GADS ？GYT B， ：BMR 5．VFGF 1，9EFO I．

\section*{DELTA MIVISION}

REANSAS—SCM．Wm．I．Clippard，SAIP－Traí－ fie hamding in Arkansas seems io buve taken \(n\) shmp this month but most of the gang sum ion be bust putting in newer fad bigger botties or elye dremming about it．5AKF borrowed a lineman＇s ris and hoisted ap two \(42^{\prime}\) aticks，Sats he didn＇t have a bit of trouble．Hi． \(\bar{A} \mathrm{~W}\) W has been off for y while， One of his fifties went West：We hope to have oid GAQH，BAQN and EEH back with us suon．ESI is instaling st wo watter．Wish we could all do that， \(5 A R\) must have a seemt under his hat．© \(5 \%\) is new at the game but siowing ap many of the otherw． SHN has a dandy crystal rig but QRM from work is bad．FABI moved but is estublished onee more． 6．JK seys his set balked on him，50K handled some fineigen messages this month．Good，OB．

Traffe：bJK 24，5OK ad，5ST 18，5HN 8 ，5AW 8， 6ASI＊）
 states that due to absence furing the first part of the month he has handled only mass，BEB reporis anmmer basiness will kesp his totals down for a while GNS is keeping sithedules with हAVA，FWA and \(5 V K\) and is on the boicout for more sebedules． SM has left New Orleans for a fou months and consequently his plation is elosed for the time bo－ ing．5GHJ has been on the gir but very little of late due to heavy QRN arnd QRM．He sferms to bo contining his efforts to the bu－meter band and has rone some nice DX．bAGN is ex，din active，havino incated a fan with an induction motor to use in his whack，I don＇t know whether he intends to ase the Pan for aopling the＂bottle＂or the operator．Hi．万ASE is just getting on the air und filter obsider－ able trouble，his transformer burned up and is now at the fintory heing repaired．Inon fis recetpt he will be with us dogin．wirR has bousht the trans－ mitter formeriy operated by bth．ETG has pote out of the same and has fold his antire euuipment to snother ham who will have a ficelise mithin 4 Fery short time and will be going full blast．We home to see \(\overline{G T Q}\) back with is ar no distant rate， bUT is atil using his 15 watt set，but is not heard locally vary often．The warm wenther swems to have hit him pretty hard．

Trainc：5LE 7，5EB 14，5TTK 13，5ivs ti．
MISSISSIPPI－SCM．J．W．Gullet，6AKP－－．FQ oomplains of QRN and is still trying to meters with feir results．\(\quad\) QQ has bern away most of the month． BAUB will spend his vacation in Dallas．Tpxas ind will carry a portahle transmitter with him．BAGS bas moved to liaurel，Miss．and is qoing in the rom－ mercial game GANP bas been otf the sir as he is without olate supply．EQZ has quit the same and wants to sell his ESio watt layent，as he is loaving on a N．R．eruise and from there will go to folif． EAYP is now on the air get groenwond with a GF： watter on 40 meters．EAPI renoris that he is pretty GRW lately．\(G\) GU has adided sereAS ta his DX on z0 meters but says he hasn＇t groten any tratic．SPI is off the fir now zun will wo with bQTe to Culif． 5ARB－5ALZ is rebuilding and is getine to try 20 meters for a change．PAKF has bis junk heap woing on 20 meters．

\section*{HTTDSON DTVISION}

NORTHERN NEW JERSEY－sCM，A．G．Westor， \({ }_{6}\) WR－Eicte of the ORS reported this month which is sery disconvaring，howrwey，wur traffic total wes oniy \(\frac{3}{3}\) messases lower than last monih．EDX．UAWZ． 2AOP，and \(2 f i \pi\) are new ORS in this sertion．IWR maintained a whedule with GCEB banding traffie with VOQ． 2 CW is maintaining a nightly sahedule with ARDT shim comink from Norway to NY： EGG is stenping out FB with a 210 ． 2 EY is buiding 2F meter receiver．zteA is finding it hard to make
schedules and find traffic. 2 ASZ is finding it hard to step out usitg a jar rectifier. aBIR using a woltage feed Hertz is having tine QSO with South America. 21 s is giving all his time to BCL work at WKBO in rersey Gity wQI after July 15 will have a new URA with a much better location. gADL is snoiher who reports tine DX and gets R 7 reports from the Pacific coast. 2BAL is GRW everything but traffic. efX maintains daytime sehedules with XAKI and NO MAP for traffic. ZAOP had the misfortune of having the BCL's cut down his antenna gGX hardled important traffe with the SS Canadian Guigneur enroute to NZ. The captain was seriousiy ill with no medical attendance aboard so NO \(2 B N\) at the key cave dGX the sympioms of the case who in turn phoned the Nowark City Hospital who pre serihed a ireatment for the siek captain. 2 ABE is the proud owner of a new UX 852. 2CJD is having fine QSO with Fingland and France and also maintains a schedule with NP 40I. 2IE has a failing for X'S and tennis which accounts for his small ranlin activity. gAVK has trouble with BOL's so therefore must wbeky quiet hours,

Traffic-i WWR 8, 2CP 19, eCW 14. 2KA 1. 2ASZ 4,
 2ABE \(\%\), \(2 A N G\) a, 2UR 1, 2BSJ 8, SCJD 61.

NEW YOKK OTTY \& LONG ISIAND-SCM, F. H. Mardon. 3 CWR -Manhatitan- 2 Kr is back from Chicago and hiready has starteri his good tie work of the past. GAMG is won to increase power from \(2-201 \mathrm{a}\) to \(2-210 \mathrm{~g}\). \(2 \mathrm{~F} V\) and 2 BNL are just roing and has nothing new to renort, ZANX is back in town and suing asain. 2 sich says no luck on 20 but 40 roing F B.

Bronx: : PBBX wurked about every furopean and Anstratian and Gouth America this month on his The watter bottle has been going constantly now for four year. Hope it goes four more. 3 ALL has been tery busy at eshool but expects more iome for himself in futhre we YX is sienping out fine on a Herta. EAHG is back from the West coast and will be on soon with 50 watis. "AWU is getting his 50 going. EALP expects to go to sea this wummer su son't be on harn waves murh.

Brooklyn: sidB is keeping a senedute with W.N. P. ZADZ is goine on m much needed vacation for a while. 2PF. 2APY, 2FZ. BCYX wore at the At1. Div. Convention at Pittshurgh and had a hine time 2PF has unished night sehool for the summer and will be on the sit much more. 2 WC is going strong as usuai. 3 BO just returned from a vacation and will deain punch holes in the gir. gAVR has been very busy with exams, but now that they are over will be on the air oftener. PAMI is installing Y.E. Hertz and experts better results.

Long Island: BAWQ is out ait shool and will have more time on the air, DAJE is turning in his ORS as he is going to Rensselater Polytechnic lnst. 3ABP is going to the seashore for the summer and is forsaking Radin for Yls during the Summer, BAGU is now tring a O . F. Herty with twisted telephone wire fueders. 2BSL is building a set for gAGM. 2AWX is having trouble tuning his T.P.T.G. circuit. 2AIZ says no more 40 -too much like an 0 Wyou can't cepend on it. Hi. 2AB is blowing Kenotrons threte at to time mowadays. 2APB-CCD has been operated on recently, best of luck OM and hope yon get better.

Richmond: gAtry is having a hard time trying to get tfe and keep his position as R.M. of Richmond but he is petting results both ways. Keen it up OB. ZADB has a new on. 2AYH is still after inter-horough Tfc. 8 ABH reports tfe bad this month. 3 AKR is sailing for Buenos Aires in a few days. When he reiurns he will inangurate a erystal on 20. 40, 80. sCEP is keeping the air hot these davs with good resuits.

Traffe: Manhattan-2BCB 39, 2ANX 13, 2BNL \(\mathbf{N O}^{2}\)
 t5. 2ALL 5. 2BBX 57. Brooklyn-2AMI 1. 2AVR 13.
 2\% hong Island- \(2 A V B 45,2 A P B\) \& \(241 Z 36,2 A W X\) 7. EAGU 41, BAYS 5, QAQW g1. Richmond-2CEP,

\section*{MIDWEST DTVISTON}

NEBRASKA:-C. E. Diehl, SCM, 9BYG-9AL was biten with soring feyer hut is coming out OK. GCJT is resting un a bit and is soon to be on regularly ganin. BQY is very busy with his com erop the this time. 9EEW is on vacation at
this time. 9AWS works on \(80-\mathrm{M}\) most of the time now. GDR is vy QRW with his Sax--. 9BYG is back on the air at imes, 9EHW reports fair business in daylight. GASD is still waiting for his fifty to get back from Frisco. ODI works on 175 mostly these Hays, OBOBQ is GRW with summer work. 9DAC zlipped a sky hook and his fifty hasn't returned from Frisco. 9CGQ is back at it aeain. UBBS is QRW raiload now. GBQR is still pegging away. aEBL is back on again after his illness.

The Observer reports stations in our section are staying within the band in excellent shape.

Chatter....Fetterman works with 5 meters these days but has turned in no reports as yet. Nefison works on 20 meters mostly. 9QY works on all bands but reports business very light at this time of year. Gox is in Ohio on his vacation and is looking for us from the 3th, Badgerow says is going to stay on 80 for a. while andi see if can't get sume results that way. Henry has "stooped" to \(\bar{n}\) Saxophone and we surely nity his neighbors. Diehl is back on the sir again after over a yeary silence and is GRV any and all daylight tratic. Crozier is GRV tratic on 41 meters a!l day. Williams is on both 40 and 80 but kinda GRW these days as this is his busy season. Bamer is QRV traffe on 40 . Maenuson is QRX this Suring but is comine back for the summer. gloto "iont" his pole. Miller has the usual hard luck, lost his pole and aliso his fifty. but hasn't given up yet, SCGQ is QRy any and all times on 40 . Barimore is having rush on railroad so he can't be on the air as mutch as he would like. 9BQR has at last sot her to 40 sud waits iratic. Cumming is back on agatr, atter his sick ppell and we tall hope that "Ol' Slim." will be back with us for good now. 90NN. a new station at Oshkosh, is pepping up and ready to bust out. 9QY advises that a joint Northern Kansas and Southern Nebraska Ham picnic was held at Republic. Kansas, June 19th and reports fun galore.

Traffic: פQY 10. GFFW 2, 9AWS \(5.9 D F R\) 3. GETHW 4,9ASD 3. GDT 13, 9DAC 2, 9CGQ 6. 9BHS 2. \(9 B Q R 1\).

TOWA-SOM. A. W. Kruse, 9BKV-Well. gang, wo fell down on traftie a bit this month but here's hoping that next month will see us right up to our usual summer average. The bulk of traficic is moving on 80 meters which proves that 80 meters need not be abandoned during the summer. True, the weather is hot and the GRN is bad at times but let's do all we ean to keep things moving, thus helping the RM with his work and keepiug our section on top. GBWN takes the rake this month and is wanning to instafl crystal control. 9BPF is home from college and is pounding brass for all he is worth. 9CZC reports the oid "hay wire" outfit going fine on 40 and 80.9 AU is leaving for school and has reluested that his ORS be wacelled. sorry to lose you. OM. 9DPL. a newcomer at Huxley, is nsing a UX210 with 5 watls input on 495 meters. 9 FK , Clinton, Kowa, is the new OO and has sent in several fine repurts. Watch your siep, fellows, 9 Fh has \(a\) REAL wrvemeter and he will be sure to eatch you if you are off=wave.

Traffic: 9BWN 59, 9BPF si, 9CZO 14, 9DAU 6, yUPL. 5.

KANSAS—SCM, F. S. McKefver, UDNG-The most important event of the month was the meeting of the Imperisi Brass Pounders at Parsons, Plans are being made for a state gonvention and your opinion gent in via the SCM will be appreciated. Hellows, let's keep busy-traffic took an awfal slump, falling off \(600 \%\) in one month! 9CKV, who has been a leader in tramie work, lnst his antenna in a storm so ND thin month. aCFW is one of the new ORS and is letting out a cry for skeds. 0 HL says ditto and reforts trafic at a standistill. lawrence has a newromer, \(9 E B M\). who shows promise. OOLR has teft for the Gaif to gei a ship job. GLN blew his 50 so is GRTP: however unNG will lend him his. 9DNG has been away part of the month but worked Nether \(=\) lands, Venzuela, and several others. GCET, GAEK, 9CV and gCFN wre all on 30 meters and report it FB. \(9 B U Y\) and \(9 J T\) are very artive, The latter has a new whack and will be able to QSY to nearly any batul when his installation is compele. gocs. the old ADM, shows signs of waking up after a long slecy. Topeka is pleased to announce a brand new station with a YL op under the call \(90 W\). Bonsrats, \(9 B I I\) and gONT are on right along. Let's have some trafic, boys \(19 B G X\), the RM, is keeping up his traf-

Bic and is on some daily．Don＇t forget to send your operating hours to bim，OMs ！
 9 AEK 1． \(9 \mathrm{GV} 20,90 \mathrm{FN} 25,9 B I I\) 1， 9 CNT 30.9 BGX
 gЕНT \＆

MISSOURI－sOM，L．B．Laizure，gRR－ghK sent in the only report of messages from sit．fouis this month．despite handicap of T．O．M．being in hospitat A days \(90 Z N\) सass no tratic on 20 meters no tilament in 210，no more report eards．Hi．92D． who is in Ste Louts for about 3 weeks，onent to send in sume sood dope next month．GLI of Monroe City， is n new grolicani for ORS．QARA and gGVY are on 90 meters．The former tried 5 meters with no results． 9 BQS was unable to operate due to busim ness URM and sickness．9BGO kept okeds with BCZZ．BAOV and GOTS on 4n．9DAE Was off all month on gecount of summer senool，hot \(v \pi\) ，hot QRN and hot temnis，GDMT has been truing to mefers with pretty fair DX on low power，9DIX returned home from an extended visit in Chicago the last oi fune so no tratfic．9DSL of low is moming with gDTX． 9 EBV is expected there also for vacation period．gOYC wis not on very much but DX simat as usual．9HY rebuift station and is an for traffic．HNW is GRT．gAJW is on agein． gBZM pat in xial controi． \(4 H Y\) is looking for skeds． QZD handled the only traffe reported in Kiatisas Ety． \(90 X Y\) is rebuilding in St，rouis and lacks only the Entenna．BCL antennas are the ehief GRM on his abortment roof．
 9BGO 31．92K 40.

\section*{NEW ENGLAND DIVISTON}

RHODE ISLAND－SCM，D．B．Fancher，BVB－ Reports bhow very little trafic this month． Most of the sing are on 20 meters now．Vour FOM will be down there with you as foon ws he san get a minute from shooting stars at the atlyer shect in the theatre．We understand that some of the Provinence Fellows gre＂peeved＂at the SCM for ruling that an ors must handle at least ten messages per month．Why is this fellows？I am unly doing fobl fil the other SoMs have done and havent heard of any peevishness in any of the other asctions．I realize that there is vory little traffic these days brit it seems as if wae could origi－ nate ot least ton muessages in emonth，Try it， fullows，and please cooperste when I do ws others are doing for the good of gur section．
lNOVIDENCE：We are placing \(10 K B\) on the in－ antive fist until Sept．He is going to sean thMU has scquired a first ciass commercial ticket lBIL fo back from sea and will be all sel on traffic next month．MO didn＇t do so well due to business． QRM．IAD is on 20 and says she is having lots of fun working the West Coast and South America． LAID．1AWE，EBIL， 1 AMU and ICKB are om 20 now：LAWE suys bo tratic on 20 ，

WESTERLY：iBVB has been off \(\&\) int this month due to experimenting with sutennas and sickness， Will be on 20 soon．1AAP is having exceilent lock with the MO－PA transmitter belonging to \(10 D S\) Hope that CDS will be on himself before long．

NEWPORT：BBQD has been on the sick list this month，湤o．Mad to eancel all his sehedules．
 1 MO 4.

EASTERN MASSACHUSETTS－SOM，R．S． Hriges．1BVL－This month brought forth more draf－ ine than lost and we sre asain represented in the BPL．ICRA and IUE are the fellows that made it possible．The fine summer weather is too much for some of was bit don＇t forget to report just the same．OMs．Lately the SCM has rectised a lot of renorts in which the number of total messuges does not therk with the sum of the number origi－ nated，delivered and relayed．Somebody must be kidding or just nunk at gdition．Hi．lAHV is now at his summer station，1QZ，using 5 golA．1BDV has been doing \(a\) lot of atoto \(0 X\) in a fivver \(1 A\) A is now un op at 话B音A．ABA blew a \(\because 10\) but manaked to work the west coast on 20 meters using ch 201A．IAIK was on some but is very gRW．IAPK tried for \(s\) commercial ticket When do you sail． OM？ICRA has been doing some real traftic Fork on 20 meters．He is koing to Denmark for the sum－ mer and pound the trass at ed－7EJ．IYC has a kitily sked with 1BJL．IRF has at last got around
to erysial conirol．ION reports that the FLas are RT or R8，hence littie radio．The chemical recti－ fier at 1 ACH took two Weeks to form thereby kiving IACH a vasation， 1 KY is still sticking to 77 meters． lás returned to sio meters for s little traffic hand－ ling．LAVX is manager of the Western Union of－ fice at siaveonset this summer．INV is another convert to 20 meters．ITUE besides bandliwg traffic， used fone \＆iot on sú meters．He sind \(1 \mathrm{APX}, ~ L A F V\) and ibFE have conversations rearly evory ercning． IPB took foruise on the TSS Fitusier with the Naval Reserve． 10 PB and 1 BVL wrorked ench other on 5 meters during the recent CQ party with R7 aixnals three miles away．A number of the spang threaten to try it，also． 1 AWB is on 40 meters but is busy at sehool．ADDM was fortunte enongh to mest Don Wallace．GAM，while the latter whs in Boston revently，IBMS is now rroxking on the railroar． 1 BY Y has been up to his old tricks work－ ing abont everything on so．log mas blessed with some 50 watt bottles find hopes to be on the air Ssain vexy whortly． 1 XA is pretty nuiet now tus the ops have gone home from school．W．A．Envier of IKM is qoing as an operator on the Ungava which Was the Sachern last yesr He will sign the same uld call，hicBB on 37 and 100 meters，TALP and 1BVL toak a nivver irip to New Hampshire on Me－ motial Day but had no fuck．in finding any hame at home，HIA is a doctor but sels orit the air oc－ efsionally．He says he can tell a Ford from \(A\) Frankīin by listening to spark piug qRM on 20 meters．

Trafic：ICRA \(204,1 U F 115\) ， 1 ACA 57 ， 1 KY 89

NEW HAMPSHIRE－SGM，V．W．Hodge，IATJ－ Not much news this month as many stations have shut down for the summer，gmotig which wre IASR， 1AER and IAOQ．IIN blew his fifty，IIP saya his blate power 3 batts are piving out siter y yar of constant service． 1 BFT is making room for a 203 A． He tried i50 with no tuck， 1 ALY，IAVJ，IAIP and lAOH are on at times and kicking out FB．The SCM is on 20 and sit with a 210 ．

Tratic：IIP 52，IJN 14．IASR 6，EBFT 5，1ATJ 3．
MAINE－SCM Fred Best，EBIG－1BFZ frited to make the BPL due to not being on the pat month with his usuai regularity．He made the sest if nis step some just the simne．BBTQ crawled un with the leaders and bids fair to beeoming one of the best of Fine rree traffic handlers in a short time． AIT handled his usual string and managed to get gSO some liy fish in his spare time．Aat in spite of beins on the road during a great pari of the re porting mothth，managed to do his stutil to the es－ tent of 18 mesgages handed． 100 M reports that Norway has five sure enough hams on the air．IFP reports that he is to be on the rond aimost all sum－ mer so his total will be low， 10 JTR of Mass．in spending the summer at Medomak Camp．Washington， Maine and plans to start pushing trafte in a short time．IATY＇s new 60 is sure doing its atnff these veaings．He plans to gso Ocegnia and Asia und become Maine＇s first WACer．IAAV bas returned from the U．of Mich．and has joined our trafte ranks． 1CDX is now located at Norway after moving from kennebunk．
 SAGI．18，1UOM 10，1ATV 7． 1 AUR 6，1FP 1.

OONNECTICTTK－SCM，H．E，Nichols，1BM－Our report for this month showe a little decrease in trafic handled but from the observation of your SCM who has done ponsiderable listening in，the aummer fever has failed to silence very many and better contacts have been had than would have semraed possible before，1BYM hears war list this month． He has rotified us that he has hooked up with the Army Aviation Corps et Kelley Field，San Antonio to take uo aviation and radio．We aure wish him aucceas． \(1 B J K, ~ A O X, 1, D W\) qud \(1 V B\) ate faith－ fully covering their territory and it is guite rare not to find one ox all of them on the job mosi any evoning．IOTI reports having a achedule with WNP． We hope to keen it up as was done formerly and our division will get a reat thrill 1 BHM，wur State RM，reports that he has been doing a lot of DX on 20 and 40 hur tratific is small on these bands． \(\mathbb{E} Q H\) reports anending a specixal test message from the Twin City Glub at New EIaven to Galif．which reached its destination in eight hours．This is hot half bad，OM，zs we have known some for nearer
points than this that never got there. IIM failed to send his usual report due to his untimely demise. To those who knew Martin, he was a most likeable fellow and during the last of his lingering illness, his radio set was source of much comfort and pleasure. We tender onr sincerest sympathies to his hereaved relatives. 1 BCA has been experimenting on 5 meters and is hoping to get soing on 20 now that he is home from college, 1 BFi, had the misfortune to get blood poisoning in his risht arm so that he had to write his report with his left hand. Severai prospective ORS are sending in reports before being appointed and this is a fine way to help your appointment along so please do not fail to continue.

Traffic: \(1 \mathrm{BMG} 1,1 \mathrm{CJX} 2,1 \mathrm{BGC}\) 4, 1 V A, 1 BQH ,
 \(10 T \mathrm{~L} 2 \mathrm{E}, 1 \mathrm{ADW} 29,1 \mathrm{BJK} 36,1 \mathrm{MK} 51.1 \mathrm{AOX} 69\), 1BYM 258 , 10 S 13, \(1 \mathrm{BGC} 40,1 \mathrm{AMC} 12,1 \mathrm{ASD} 41\), 10 V 70.

VERMONT-ECM, 6. T, Kurr, 1AJG-Well, boys, it's hit us, What? Why the slumap. Waited until almost too late to send in the report thinking more would come in. Most of the boys are off the gir till fall. lAC, 1AJG. IAPU, 1BIQ ICQM. IYD, IAVZ, LBBJ are not on the air, What shall we do with themy IIT is so darned \(2 R W\) that he even reported. IBEB is the most active in the state this summer. Fine, OM, keep us in the running. He is on 20 this time and says its sreat. IBJP will be on when you read this-just sot settled in his new home. 1 FN is on 20 now, too, and says it sure is FR. Tell us what you are going to do, gang.

Traftic: ITT 4, 1BEB a
WESTERN MASSACHUSETTS-SCM, A. H. Carr, 1DB-iAAL. our KM for Westorn Mas. has appointed 1 APL as Asst. RMs laPL has been a hard warker for the Guague and surely neserves his uppointment and still more, our cooperation, IAJK has sot going again and asks if he shall teach his YL code? Why not? MSU and Mrs. 1ASU are the proud parents of a new baby sicl. The stang surely wishes them and the new future operatrix the best of luck. AAPL is i.he star man in our section arain this month although he has been QRW enfoying a new motorcycle. 1 AlM is handling all his traffic on 20 now and claims it is the best. 1 AKZ has sone down to 20 , too. \(1 A M Z\) is hack from college for the summer so see if you can connect with him. LAOT has the best boo cycle note eque and will be on with it all summer. IAWW has got back from his fishing trip. \# He used a portable transmitter with the call 1OF while in sututhern vermont and northern \(\mathbb{N} . \mathrm{H}\). HO says be worked 10F. IPY is going to try portable same, two. LC , a hon ORS, sives us a report this month. He has had his set at the Worcester Armory for two months and using the eall AB8 so if you work them, yon will know LLC is operating. 1 WQ has graduated from school and has had some QRM from a YL who iikes to dance but now that he has an extended yacation he expects to give us some good totals.
Traffic: 1AAL 26. 1AJK g0, 1APL 42, 1AJM 21. IAMS 3 , \(A\) AOF 15, 1AWW 8. 1OF 26. 1EO 9. LLC (0. 1WQ 5

\section*{NORTHWESTERN DIVISION}

WASHINGTON一SCM, Otto Johnson, 7FD-7AM takes traftic honors and makes the BPL this month. TLZ has everything perking again. AACB and \(7 T \mathrm{X}\) work so. America on 20.7 MZ and 7RL are home from sthool and going strong. "DF worked fo-A3Z the long way sround. 7 EK has a nortable set pit his summer camp. TPH built sow rectifier. TAT, 7AET and TAEV are new Soptlle hams. Welcome to the ranks, OMs, TLZ had some trouble with filtering but thrashed it out OK. 7FDF has a sked with na-iAFX. "AW has eompleted his Xtal transmitter. Mason thd Hemrich are hack from the Wilkins Arctic expedition. 7 KO still poonds out. Everybody is looking forward to the annual convention to be held at Spokane September 2 and Brd. Seattle and Tacoma are holding their annual juint picnic at North Lake wo worked ef-xFD and ef-YOR.
Trafic: :AM 122. TLZ 40, 7ACB 35. 7DF 29, FTX 13. \(7 \mathrm{KL} \mathrm{12,7PH} \mathrm{~B}, 7 \mathrm{FD} 6\).

MONTANA-SCM, O. W. Viers, TAAT-QT-lt is rather surprising how the nice summer days take
the pep aud lust out of our great game, fellows. I know it is hard to stick with the set when the fish are biting good or the swimming hole is beckoning you to take a plunge. But, we have made a good start with this game and there is no reason for sumping on the job. We must have as much advancement as possible and the only way to do it is to stick with the set. Let's go now, gang, and do everything in our power to keen the game alive during the summer months as well as the winter. Gome of the ORS har better watch their revorting dates or their appointments will be CANCELLED! The ath of each month is the renorting date for all ORS that desire to continue with the work: TAFM is having a hard time to find "hay hands" to relieve him of the duty so he rall devote more time to the RM and OO work. TDD has installed a MO PA set with a mereury are rectifer. FBI 7AATQT has his new station partiy assembled and hopes to be with the gang soon. He is the proud owner of a first clase haw license now.

Traffic: iDD 34, 7AFM 9
ORFGON-SOM. A. C. Dixon. Jr., TIT-TAEK with a 0 oua and aync rect. handled many messages for Alaska. leading the Gection and making the BPL. FB! \(7 P P\) is attending OMTC this month. All active stations are requested to send dope for this report to SCM R. H. Wright, \(7 \mathrm{PP}, 310\) Ross St., Portland, Ore., promptly on the 26 th of each month.

Traffic: 7AEK 199, 7ABH 4. 7AV 4,

\section*{PaCIFIC DIVISION}

LOS ANGELES-SCM, D. C. Wallace, BAMGB.TX has his usual high total. GBXA graduated with high honors. GBXD whys DX is sood with new 50 from 6RTX. GCOP is yoing down to 20 about July ist with 4 minute QSY back to 40 . 6QL could use a sked East at 7 ym Mon. and Thurs. bagk is a new ORS and has a gond messaye intal as has also 6AWQ and 6CMY. 6CHT tries 20 but don't like it. \(6 B V M\) sends in a good total. GAIO. 6CLK, GCMT came through with a report as usual. bizBJ has a large wital as usual and bandled a chess tournament. GODO has a sked with KNT and Zane Grey and party are very appreciative. 6BHI tried 20 and found it FB. 6 BUX is handling Boy Scout traffic on 80. 6CAG sends in a good report. \(60 Z T, 6 \mathrm{PY}, 6 \mathrm{BRO}\) and 6AJQ all have suod traffic. GAKW is getting good DX, working Africa and Japan. aDEG says that evervone QSK'd their skeds with him this month. 6RF. 6 CDY , 6 BHR and 6 IH came through with a report as usmal.
Traffic: 6BJX 317, 6RXD 78, 6CQP 60, 6QL 58, \(6 A Q R 82,6 A W Q 27,6 C M Y\) 2, \(60 H T 13\), 6BVM 8 \(6 A 10 \%\), GCLK 2, GCMT 1, GZBJ 166, 6DDO 129. 6 BHI 125 . 6BUX 64. 6CAG 41, 6CZT 25. 6PY 25, 6BRO 22. 6AJQ 20, 6AKW 5, 6DEG 3, 6RF 2, aCDY 2.
6BZC is applying for an ORS. 6AWQ has moved to lake Arrowhead and is handing lots of traflic. He grives a dance onete ta week sud the director of his axchestra is 60 KZ . 6 AJQt is moving to fong Beach for the sumner and is taking a semi-portable set with him.

EAST BAY-SOM, P. W, Denn, 6ZN-Asst. SCM, f. H. MACLafferty, GRJ-The ASCM is very grateful to all you fellows for sour faithful support of ARRL activities in the Easty Bay Section, especially during these summer months which ustally bring a slump. dasi month 11 ORS reported 303 mesaages handled and this month 15 reports were received showing \& total of 520 . F'B, ganc, and let's keep up the good work. visits fo a rumber of your stations during the past month show that in addition to handling trafic. you are practically all engaged in "trying something new." 6AYC wins the traike laurels in our Section again this month with GOKC and 6 BZU coming to the foreground. 6 AYC will soon have three transmitters doing their staff on quateur bands. His trip on the Idalia is postponed and to he honest with Fon, OM, FFente giad of il. Another ham excursion was postponed when buk forego a transcontinental trip with bOLS of SF on account of illness of a relative. 6 RJ is on 40 meters keeping traffic schedules and trying to work DX in between the power lealss. 6RZU has replaced his MG with a self-reflected set using iwo 210 s . 6 EY is owned and operated by J. L. McCargar. Mac is out is learn all there is to know sbout vacuum tubes and high frequencies. 6 CZ h has two reliable sehed-
ules with OH and is big-hearted. Any traffic you want for OH ? GCTH expects to return from his vacation August 1st. 6ALX is using a Zep and is going to install a self-rectified tuned plate and grid. 6BER is handling traffic on 37.7 meters and says his new location is FB. 6AKF has a schedule with BAM in Tahiti and doesn't even brag about it. 6AMI and GBRJ are rebuilding. Lack of time, power leaks, etc. have kept 6ALV, 6DKA and \(6 \mathrm{CL} Z\) off the air during the last month but they sent in their form 1 reports just the same. That's the spirit, fellers. We want to know what's doing at your shack even if you have no traffic to report.
Traffics 6AYC \(185,6 \mathrm{CKC} 112,6 \mathrm{RJ} 45,6 B Z U 40\), 6EY 36. 6CZR 30, 6CTH 27, GALX 18, 6HFR 15, 6 AKF 8, \(6 \mathrm{AMI} 3,6 \mathrm{BBJ} 1\).
HAWAII-SCM, J. A. Lucas, ohfBDL-6BUC is planning to assist the Mainland-Honolulu fyers by developing a portable 37 meter transmitter for the planes and maintaining listening-in stations at various points in the islands. 6ACG sold his 250 outfit to 6DBA and is now using a 50 watter with which he gets the same results. filDL was out on maneuvers most of the month. Got cards from EG and EB reporting 20 meter signals. 6BWV reports working KFSH and \(x 4 \mathrm{MK}\) also XDJ . 6 CXY kept a business-man in Hu on vacation in touch with his office by schedule with nufCDW. 6DCU now an ORS and school's out so he'll be on regularly.

Traffic: 6BUC 127, 6ACG 85, 6BDL 62, 6BWV 54, 6CXY 52, 6DCU 37.

PHILIPPINE ISLANDS—SCM, M. I. Felizaro, op-1AU---This report received by radin via on-1AU and nu-6BVY-oplHR leads the Philippine trattic list this month handling both amateur and official army messages. He keeps a number of skeds. oplAT has been very QRW so handled little traffic. oplDL failed to report in time, due toYL QRM probably. Hi. op1AU continued his China to U. S. traffic handling. Also keeps sked with Europe via el-LAIX, opIGZ is a new QRA in Manila who reported FB.

Traffic: onlHR 321, opIAU 195, on1AT 12, oplGZ 2.

SANTA CLARA VALLEY- SCM, F. J. Quement, 6NX-The SCM stenped out this month and got an OW so if you were nerglected the last couple of months, the reason should now be plain. The new QRA will be 252 Hanchett Ave. and all mail should be addressed accordingly. 6 AMM and 6 BVY still maintain their OP contacts and lugether handled 439 messages to the Orient. 613MW handled important traffic with KFZH in Alaska. GIDINN is: transferring to the San Francsien Soetiom. Gowd luck. 6 BNH was in the I. R. Teris. fACQ will be QRW for the summer but will be on full blast in the fall. GASB is a new station starting up in L. G. 6AZS became a WAC when he worked 55 foreigners in a month. GBTJ is moving near Rerow, Nevada. GCJD is working portable station GCVR at school. GBYH moved during the month so traffic suffered. GCKV relieved the SCM last month and thanks to him for the report in July GST.
Traffic: GAMM 273, GBVY 166, 613MW 56, fDDN 13. \(6 \mathrm{IBNH} 12,6 \mathrm{ACQ}\) 7, 6ASB 7, bAZS t, GBTJ 5, GCJD 6, 6BYH 3.

ARIZONA-SCM, D. IS. Lamb, bANO. GBJF leads the state for traffic this month. Mosit of the gans are on 20 and doing yood work down there. \(i\) fDCQ says 20 is the cats meow and like the rest of us reports bad QRN and QRM. GIDCQ has unte bad power leak that raises the romf. icluJ reworts a new ham on the air under the call bind \(\mathbf{d}\) using a UX210 on the 40 meter hand. GB.JF is working everything on 20 and 40 . He is usine gisws's 5" watter till 6BWS shoots his UX210. Hi. GillJF has at last made the BPL. GAZM has fan QRM and QRN at night, power line QRM and offre work days. 6CDU says 20 meters sure is \(F B H\). fCDO uses B bats for plate supply. fiBWS moved to 519 West Madison St., Phoenix. fDIB has gome to Matrmon Lake for the summer where it's cosel and is going to use 6EL's portable GDIF is heard pounding the lirass often. fCUW is going on his vacation about the midde of July and witl visit hams on the west coast. fiASA is hack from the U. of \(A\). and will be on the air ayain till swome starts next fall. GANO is on 20 and 40 meters.
Trafic: GCRJ 16; GDCQ \&, GBJF 131. \&('I)U 34. 6ANO 40, 6BWS 34.

SAN FRANCISCO-SCM, J. W. Patterson, GVR Summer is here and with it vacations for most of the gang. Traffic hasn't taken a slump yet so it looks like those left are working the harder. GCCR left for Guernewood Park after kissing his new 50 farewell. 6 GW made the BPL again. Congrats, OB-too bad the 50 went west when it did. 6BIA has spring fever (YLs). 6CLS left for the east on an auto tour best of luck and regards from the gang, Steve. 6RW is back on again with the old walloy using two \(1 / 4 \mathrm{KW}\) bottles. 6HJ is still the checker champ of the Section. 6 KW is off until the 300 watt DeForest arrives. 6 WS is home from college so finds plenty of time to experiment with a Zep antenna. 6PW did some fine work handling a distress message from Zane Gray's Yacht KNT. 6ASI is now on with a new 75 watter. 6DEK reports the new UX210 better than the 50 on either 20 or 40. GADM visited prominent S. F. stations and is now rebuilding to TP-TG. 6CXI is undecided on how to tune his Zep. 6VR is rebuilding.

Traffic: 6GW 138, 6CCR 75, 6DFK 61, 6BIA 58, 6ASI 34, 6VR 33, 6RW 31, 6CLS 26, 6ADM 26, 6PW 25, 6KW 23, 6HJ 17, 6CXI 15, 6WS 8 .

SAN DIEGO-SCM. G. A. Sears, 6BQ-RM, 6AJM, has replaced his half wave rectifier with chemical. Works all continents on 20 meters. 6 BXI is back after a short absence. 6BAM says not much traffic on 20. 6AXU sold out and says he's thru. 6 FP is QRW with interference. \(6 B Q\) finds little time to pound brass. 6DCT is attending summer school. 6CQT says he's decided to go to sea. 6SB is thru school for a while and finds time to handle traffic now. 60X will be in his new location soun. 6 MH is building a new 20 meter set. 6ANC reports it's hot and "don't mean maybe". 6BXN is learning: tricks of chemical. 6SJ rebuilt his set. 6HU has a new 852 going now with a TP-TG circuit. 6 BAS 's crystal controlled transmitter and super receiver are all set for DX. GAKZ is looking for a better location. 6CTP is QRW school work this month. GBFF, is still of rebuilding.
Traffic: 6AJM 62, 6BXI 41, 6BAM 24, 6AXU 16 , 6FP 15, 6BQ 15, 6DCT 14, 6CQT 13, 6SIB 12, 6OX !, 6MB 9, 6ANC \(8,6 \mathrm{BXN} 5,6 \mathrm{SJ} 5,6 \mathrm{HU} 5,6 \mathrm{BAS} 3\).

NEVADA-SCM, C. B. Newcombe, 6UO-6ABM is doing some good work on 20 meters-doesn't have much luck on 40.
Traflic: 6ABM 24, 6CHG 6, 6UO 6.

\section*{ROANOKE DIVISION}

W/FST VIRGINIA-SCM, C. F. Hoffman, \&BSUSome important relay work was accomplished this month by KVZ and RDOI of Huntingtan. The town was entirely cut off from the outside wortit. and these two stations handled all messages to the outside world. Reports of railroad officials were re. layed and the hams acted as a means of trathic handling for the C. \& O. One message stated that foodstuffs were rumning low and that immediate itid was necessary. The C. \& O. a short time ago refused an offer from the amateurs of that section that they act as an emergency staff (as the IRRR gang) stating that they did not need the help of the amateurs. Congratulations to the amateur: of that section for helping.

4 AK instigated a ham section in the \(\mathrm{B} \& \mathrm{O}_{\mathrm{O}}\) Bulletin Magrazine. XAMD is now 8OK. RIT is now on buard ship at Australia. 8SP is on with several ons. 11 N N works the west coast. KBJB keeps schedules with Chicagn and Iowa. Several other hams repurted busy with school and new sets. BASE was hlessed with a Junior Operator. The SCM was very slad to see so many of the WVA gang at the Pittsburgh convention. HBSU worked ss-2BN. RDOl is a new ORS. (*)

Traffic. KIBJB 20, 8QH 4, RWK 30, KUSU 15,
(*) KCYR has schedules with 8DIC. KACZ work: west coast regularly. \(8 \mathrm{DCM}, 8 \mathrm{CDV}, 8 \mathrm{ACZ}\) and MAUL , reported 20 meter activity.
VIRGINIA-SCM, J. F. Wohlford, 3CA-Summer seems to have killed most of our stations and th. reports are few and far between this month. The freat out-of-doors is all right but remember those ORS must report every month or ret canned. 3AHL, worked 20 meters last month and was QSO several fureighers. 3K(I worked th meters it pew dass and says its pank. BCEB sends wx reports at 3PM daily an 38 meters. 3AG is a new station at Falls Churth, Vat, using two UX-elos in self-rectitial Hart-
ley circuit. 3 RT is back on the aix on 20 meters. BAAA is the portable set of \(8 R L\). \(B C F Y\) is at sea on \(B S\) Acme \(3 B G S\) and 3 KG picked up some traffic on 40 meters and were Qso wost moast. SBGS last peported at convention Pittsburgh and having glorions time. \(3 G X, W_{i} V\), now removed to summer station at 4 BT , will report through \(4 \| \mathrm{R}\). 3 NM reporter by Western Union.

Trafic : BBZ 6, 3NM 2, 3BGS 5, 3AG 8, BUEB 37, 9KU 50, 3AHL 11.

NORTH OAROLINA-SOM, R. S. Morris. AIRThe position of KM is still open. Write 4 dR if interested, \(4 P P\) is QRW with his ealing house antil fall. 4 SJ says he gets out better with gut volts on his 50 water than with 1000 . dOH has put in a 50 but finds it no better than his 210. 4BX is siving 20 a trial. 4PR reports good luck on 20. 4TS is using storage battery supply on a MO-Pa set. 4 EC has put in two bos in a self-rectified circuit. Activity is lax at \(4 \mathrm{~F}^{\prime} \mathrm{V}\). 4 VQ has gone to Madison, Wisc, to work for Franch Battery Company. 4 BT saw lots of ham stations while on his way from Richmond to Montreal. \(4 V \mathrm{VH}\) shot his 210 but is now on with an "H" tube. "PY says he is QRW work but turns in a good total anyway. AnR has been holding off somewhat waiting for Kenotrons. 400 wont to Atianta and passed his exam ok.

Tratic: \(4 T \mathrm{~S} 46,4 \mathrm{KY} 43,4 \mathrm{EC} 2 \mathrm{~g}\), 40H 25, 4 PP 24. \(4 \mathrm{SJ} 10,4 \vee \mathrm{H} 7,45 V 8,45 \mathrm{E}\) ह, \(4 \mathrm{PR} 1,4 \mathrm{BX} 1\), 40 C 18.

\section*{ROCKY MOUNTAIN DIVISION}

(10OLORADO- \(50 M, ~\). K. Stedman, 9CAA-Tratfie has taker a terrible siump this month, fellows. Other sections are requiring that all ORS handle a eertain minimum Lotal in order to retain the \(\operatorname{liRS}\) espointment. If this were done in colarado this month, there would be only six ORS left in the state, two of them having left on their vacation. Lut's alep on it, fellows. gCAA has at last tilled the gap in the transcon route, via \(9 \mathrm{P}=\mathrm{U}\) and 9 APY gnd promises to be in the BPL next month. 9DSU another new station in southern Colorado, comes satond in trafte totals and is holding his end up in Ine shape. 9DWZ says his new Hertz antenna is soing tine 90.5 is on \(5: 00\) to \(7: 00 \mathrm{pm}\) daily and glso if:00 am to daylight. gDGJ is using a self reat. Set. GCDE wrecked his MG sa will be crippled for a while. 9HYC and 9DVL are at military camp. gODW is YL cragy for the summer. gAOI was tro busy with KFXF to be on much gGLL ditto at KOA. GONL is the new RM temporarily. dive him your cooperation zang and let's yet Golorado back on the map.
 \(9 \mathrm{OG} 7,9 \mathrm{CDE} 4,9 \mathrm{YYC} 2\), vODW 1.

UTAH-WYOMING-SCM, D. C. McRae, SRMThings sermed to have slowed up a bit this month becanse quite \({ }^{2}\) number of the fellows have gone out of town for the summer. 6CLQ heads the list this month with a total of se messages and has regular skeds with YCAA and BBYH. GBAI lost his tube, atuial, and eonnterpoise all in one week. \(6 \% \mathrm{~T}\) has just returned from a trip East. GKM is in California epending an enjovable vacaion visiting the ham stations there 7DA reports that he is getting wonderful results on 20 meters. The Utah Amateur Kadio Chab is progressing in great style. A smail gold pin shaned like a 550 watter has been alopted for a coat emblem. GBTX wot married, but will be track on axain in about a month. ECGI ia up in Idaho for the summer asiny the call 7 VO . BORR hopes to be on again in about month with two q6u's. 6RV just returned from a trip to Cali formia.

Tratfic: 6CLQ 32, 6BAJ 15, TDA 5, GEV 4.

\section*{SOUTHEASTERN DIVISION}

FLURIDA-Acting SOM. ©. E. Fifoulkes, \(4 L K-W e\) sure were sorry to see Grogan, 4 OY , leave us as WCM but he is very QRW. Hope I can serve as well as he did while I am acting SCM. Certainly appreciate the why vou fellows turned in sour reports. Many thanks. \(4 N E\) made the BPL and says it dependable sked is the thing. AAAO, 號 one to refort, is atso a BPL. RL of \(4 \mathrm{~L} K\) made \(s\) two days trip to Atlanta. \(4 D D\) and \(4 T G\) have some north for the summer but we hope to have them back this fall. 4 Ca has worked every og and oz district but one. \(4 D \mathrm{U}\) has a sked with uo- bA z . GCK reports a new
station in Miami and Key West. \(4 Q X\) QRMs the \(\hat{\text { Wis }}\) on 20 meters. \(A V S\) is the RM in Miami. AOB and tCK have a 250 and should be WAO soon. sb-1AP. repotis 4 HY steady as a rock usiug za MO set.o 4JZ has QRM from electrical storms in his Section. Well, fellows, let's shove fla. to the top.

Tratfic: \(\quad \mathrm{NE}\) 133, 4 AAO 122, 4 LK 4. 410 D :20.
 \(40 \mathrm{~B} 13,47 \mathrm{Y} 9\).

GEORGIA-SOUTH CAROLINA-SCM, H. L. Reid, 4 KU - south Garolina: \(4 W \mathrm{~A}, 4 \mathrm{~K}, 4 \mathrm{KZ}\) all have been on rag chewins but no traffic. 4I) \(X\) is back from college and will be on soon wirh a 50 watter and mercury are rectifier. A A A Hi Charleston is building his XL a ham receiver and hopes to have her on the fir soon. \(4 O Y\) is reying for a sommercial ticket and tob. \(40 W\) is at Charleston. 4 KI has moved to Columbia. S. C.

Georgia: ATU has been devoling his efforts this month to 20 , and 40 and as a result worked quite a tew foreigners. 4 RN is using Heviz and is working a good many toreigners, iGY is on and doing nice work.

Porto kico: \(4 J \mathrm{E}\) is on 19 metara with an H tube, \(4 K T\) is wating for his mereary ate to result and if it does, be will insiall a 250 watter, 401 is on again sfter quite \(4 n\) absence. iJA lost his pet dog "Sparkie" and hasn't been heard on the air much. \(4 L Z\) still uses a UXS 10 in TG-TG. \(4 R_{t}\) is experimenting with low power and receiving tubes. 4UG is wn regularly. fTC is at the Naval Radio Station. St. Thomas, V. L. \(4 \cup K\) will be on soon in Caguas with a new b0. 4 AAG has betn experimenting and has worked the entire PR gang. 4 BM is coming back with an \(H\) tube soon. \(4 P Q\) is coming on akain with a 201 A . \(\& K \mathrm{D}\) is having bad Iuck with lubes. Three sems in three weeks. QRN is not bad as yet and it is hoped that it will take a summer vacation this yoaf. A letter from su-AYRE reported his eall changed to 1 XC now. HIK at Barahona, R. D. uses two bo waters. AAAM is mev call at Christiansted st. Groix, Virgin Islands but isn't on the air wets
 \(4 \mathrm{RN} 22,4 \mathrm{TU} 37\).

ALABAMA-sCM, A. D. Trum, 5AJP-Vacations must be interfering with reports as the showing this month seems to drop oft to yractically mil. What's the mater, gang? Come on across with Four part. Four stations are on at scima-5VX. GAV. 6 LU and SDT, \(5 D I\) is just getting into shape for the summer. 5Lut has returned to the fold again with as 210 and worked all dists. in 10 fiat. 5Ay has probably sowed un this month as we didn't hear from him. EVX is very promising. Athourh bABS want out of town for tearly a month on vacation, he seat in his report. Montgomery is buzaing with detivity. SAIP has been on monsisiently this month with \(x\) pure DC note. EANT, our mewosmer. is poundine hatd on a \(\% 10\). bA'IP is back at the key again and makes Montgomery like oid times "NL had trouble With getting the old set on 40 asain with that old R.C.A. OT, EbY is about the most consistent ham We have. \(\quad\) ADA has a job for the summer irying to get enough jack to buy that \(M G\) set that he wants.

Traffic: 5ADA 20, 5ABP 28, 5ATP 18. 5ANJ 14. \(8.5 \mathrm{Y} 80,5 \mathrm{DI} 61,5 \mathrm{GBS} \% .5 \mathrm{LU} 6\).

\section*{WEST GULF DIVISION}

SOUTHERN TEXAS-SOM, E. A. Sahm, BCWThe summer slump is here. Those stations that are working are doing good work but there are entirely too few on the job Let's wep the thing up a little and try to make a better showing next month. QRN seems to be as bard on reporting fat it is on working. We have with us two new ORS. GMU and 5RR. 5UX-CZ, gur old standby of San Antonio, reports that he will now be on requiarly. bHS reports that 5 GN has now moved to San Antonio. SAVI patd the SCM a visil which was much appreciated. He and JDH Anderson operate GAVI and 5ARF jointly at Uvalde and are doing very good work. GEW seports that 5PK, who joined him several months ago, has given un radio. BAEP has had some trouble coaxing UX852's to action. \(5 L \mathrm{Y}\) is visiting in S. A. EWP will be off the air for a short time.

Traffic: 5AVI-5ARF 75, 5EW 5.

\section*{CANADA \\ MARITIME DIVISION}

PRNOE EDWARD ISLAND-SOM, F. W. HyOdman, LBZ-laP worked lots of DX on 20 this month. luid worker eb-4WW and eg-2NH.

\section*{Traffic: 1 AP5.}

NEW BRUNSWICK-seM, T. B. Laey. IEI-There has bern quite a slump in ham activities here during the past month due to good weather. Recelving conditions have been extra poor and static very heayy. We have new station in Fredericton, nc-1BX. IAD has been moving but has not been wble to be on much lately. 1 AN of Fredericton paid the St. John gang a wizit and brousht his new QLC iube with him. LAM reports wheging along on both 20 and 4) but finding the cell of CAR mand outcoors too much to resist. SAK has rebuilt his iransmitter und is trying to get his 294 A down to 20 . \(1 A X\) worked an ef station and kent regular scheduies but complans that tratic is siacker than asual. 1A4 finished up his exams in tine siyle and now is on the air regulariy. IEI is experimenting on the po meter band with indoor antenna and has worked considerable OX using a tiver:

Traffe: LAQ A, IAX \(7, \angle A K\) 10. LEL

\section*{GUEBEC DIVISION}
quEiBEC- SCM, Atex Reid, EBG-Well, the gang mins their wiven, swesthearts and other GKM motored to Chambly, Que., for their Annual Field Day, (feo l4 fars and : Fords). If \(2 H G\) keeps practicing, he thould he some swrinter BGG nearly wow the Biscuit kace but he could not whistie ©Q, \(2 B E\) repurts that someone wiped the Dill Pickles. \(2 B M\) is sume Nurmi, he wom a pair of 216 B tubes and has A DC note now. BDN soys "il commais ses legumes". whV was so darmed excited that he forgot to talk Fadio. 2 BV V aut sed-Horses, Horses, 2 AD D took moving pictures of the Sadies rag of War when the
 events evL won the Fat Mens Race \(2 V H\) anade one short spewih. Oh boy! The ladies sure pat no swinf ats. Fou can"t gel bions without them. \(2 B E\) Fonked after the kiddies and was kept busy blowing up toy balloons. The Ball Game wos a failure on account of having soft wishions for bases. \(\mathbf{Z B G}\) wanted to sit down on tuth base to pest. The day was voted a omplete success and here"s hoping that we have another one uext yesr.

Terfic: 2AL \(11.2 B M \quad x, ~ 2 A V 4, ~ 2 B H 79\).

\section*{ONTARIO DIVISION}

ONTARIO-SCM, W, Y. Sloan. 9Ba-NO-9RZ OH UNIVERSITY OF TORONTO OPERATED BY JIM. MIE HIIL NC-4AJ WORKS OZ-ZAC ON TWENTY METERS USING REGEIVING TUBE WITH 2.8 WATTS INPUT NO FREAK WORK AS EUROPE HAD BEEN WORKED TWICE GN THE BAME WAVE AT EIVF WATTS.

Eeports have been remarkably sarce this month, mreumably because of the advent of the vacation preciod. A mapurity of the fellows are using the bo meter band and finding it very nuch to their liking and others are buiding new mets with the avowed inkention of breaking out on the most aseful of all our bands.

Central Dist: OAL is on with a erystaideontrolled Sut going grest gans on 20,40 and 80 mecers. GBZ has beon doing soñe wory motable low power work fosd the eredit whould be divided equally between the nometor and the mntenna sit the station, 30 d is on the air at every opportunity but the operator has been bry QRW at school, bDY is building a hew meceiver and says that he is watins fox its completion before yasinge ïnal judgment on his location, SJ calso says that he vers able to QSR some trafte for the University of Mich. Experition in Greentand inside of whe hour after redeipit and that he is sum Yaing to Bobeayseon, Ont. For the summer and will take his station alone. BBT, has been rebuilding and goperimenting with different gntennas wo has not drue any traffic handling. \(3 \mathrm{BH}^{\circ}\) is on 20,10 and 80 meters andi is installing githew Tuned Grid-Tuned Plate transmitter, 8 HR is selling out snd \(\$ \mathrm{DC}\) now has his power unit.

Sonathern Dist: BCS is on 20 meters qenerality nnd is doing consistent DX. IIA attended the dichigan sonvention at Detroit, and won a set of Aero Transm mitter coils. which are gireariy perking at aLA. gDZ is on the dir and promises to grei the other fellows in Sarnia in line. SDZ and 3 CB are apnicants for ORS.

Northern Dist: \(3 H P\) and Gli are active and doing vety good \(D X\) work and traftic handiling. \(3 C G\) is Forking on both 20 and 176 meters.
 3DY 8, \$CS 11, 50B 2, 3IA 2.

\section*{VANALTA DIVISION}

ALBERTA-SCM, A, H. Asmussen, 4GT-The GCM has moved to 10728 -lilth Aven Edmonton. "This information has been malled to fll the ORS in this Sixtion wo there is no excuse for wo few reporting. Flease get the reports in each month not later than the loth. \(4 H M\) has rebuit his transmitter and is resdiy to step on it. ICt has some real equipment and weiling for a quart bottle with which he hopes to sel inp a record. \(4 F F\) is back on the air, fIO bomed out his remodeied Ford generator and is fooling eround with AC, \(f D \mathrm{DG}\) had the his mss total last month but is second this month. \(46 T\) expects to but on stronger than ever in a short time. AA will be using suotable soon. 400 and is reported nt the last minute.
 40 G 19.

BRITISH COLUMBIA-SEM. E. © HFOOks, SBJ-The fang is brighteming up again and things look prosperous, 5 go is experimenting with vatiots types of aerials. \(\overline{6}\) Al H teps right out on 20 working tots of DX. \(\square \mathrm{A}\) (O omes third with tratic. \(B \mathrm{~A} J\) has \(A\) compatition an and all BCARA members are oumpoting. EBI has two skeds with Alherta using atis foot high aerial arad inside evuaterpoise, \(5 B G\) says a bVIgg works better than a ho. Hi. GCU will be on gegin soon. WAV connected with oh for the first time Evoryone in Vietoria is t 0 meier mod jusi row and some tine reports hate been rou'ri from the Enst Const, EAR man't look at 40 sny more, 500 was gSO Japan on 40 and is reported to have 4 fine Of note Sot hooked three OA's on one OQ and Qso'd them all. FB, 5AJ wan QSO lapan, fifteen oa'\& atd nineteen \(\mathrm{ge}^{\circ} \mathrm{m}\) during the month, URS No. I5; \(5 \mathrm{KF}^{2}\), is hereby gancelled for falure to report.
 5CO 6, 5AU 2. 6T 1.

\section*{PRAIRIE DIVISION}

MANTTOBA-BCM, F. E, Rutiand, \&ED-Despite the fact that summer is in tull swhg and many of the kang ste awty on holidays things in this district áe moving splendidly. Praficic is somewhat lifwer with the fendency for 1 X and 20 meters. Most of the gang have been LSEO with a goodly part of the Giobe Most of the getavity is taking place around dawn and very encouraging reaults have been fortheoming. UDT is king-pin for DX having been
 tho 4 OV did a nice job working act \(3 \mathrm{~A} G\) solid for an hour in daylight on 20 meters, 4DW has recently joined the ranks of the tNR madio depariment and consequently is out of town a grod deai. Like \(4 F \%\) and dAW, he works hard to make in for inst time when in lown. H1)X has o bar and reports bis bew MGitac. doesn'1 seem to work so good as it used to. \(4 E A\) has a bad case of YLitjs. \(4 E K\) pounds awty es umat and "pats there". \(4 D P\) and 4 fit rerort lots doing on 20 meters stid its FB. 生A of Unity. Bask. Way in town long mough to attent a little party with the sams. H1bu as publirity manager keeps ihe local papers supplien with articles exch wesk and makes a fise job of it. \(4 D E\) has taken over the reins at OKY and has lueen very gKW.
 fAW 1, ABT 13.
SASKATCHEWAN-SCM, W. H. Diekering, \(4 E \mathrm{~B}\) What"s the matter, qane? Has the westher wot all of you? Oniy one ORS reported, Come on, ftllows, a form i card is easy to fill out. Resina, the iry which has hen dead, has come forward with is new stations-AGA and fGB and rwo ohers on by now, not to mention others coming un, 4 FA is still busy farming and \(4 F C\) is oxly on oceasionally these daysbum " A" battery.

\title{
Calls Heard
}

KFZG，Detroit News－Wilkins Arctic Expedition，Rase Station，Point Barrow，Alaska．H．F．Mason Opr． lic imr laur lawn gbe ebge zuo 2as gxt Eafb gamy Bhgi 4 hq 4 fu 4 ux 5 bf 5 ew 5 rg 5 ww 6 gu 6 hm Gve far face faol bavb baxe bazs 6bge fibhz fibyl tieip bekv bemg bemu betx Geua beut bewj fian dau 6dha Gdfe 6dfis Bigx 6dhn 6dic 7bb 7bm 7 df Tek 7is 7tu 7po fje 7mo 7ol 7pn 7rh 7rl 7uh 7v！7xi Tali Tabe Tabh fabk 8ab sxe Badg Sagi shdx sbsc Sbyn seve pder sdig Gdr 9fo 9xi Bart 9bah 9hey sbiw Sbpm 9cia ghyg ydoe 3dow 9dxi 9elb aj－Lok eb－4ww fi－8fk eft－8nox ee－5xy no－4ac ne－6ee no－5is ne－cka fin－inic no－eve na－2gw oa－zhe na－2no oa－2rb oa－2rt
 oa－8h］oa－ble oa－3tm oa－4cg och－4cm oa－4nw oa－4rb w－6bg or－6hg ca－7dx oa－thl oz－tab oz－2ac oz－2as ozezat w－zbg oz－2bx oz－2eh oz－3aj oz－3ar oz－3au
 nidk nope nop nol nom non noo npp agb ate bhs fos spu coz ifip kft wiz wad wut wax waan wve wve web wry wwdo．

\section*{Miss B．Dunn，Stock，Essex，England （Heard during May on 20 meters）}
laur blby byy lest idi ifn law laf laz itu ne－lbr nc－2us ni－fpr nm－laa nn－m3y nq－8kp nr－tghp na－5en \(\because \in-c b 8\) sb－1ap sh－2as sb－5ol sb－1ac sb－1ad sc－ 2 Zar se－tas su－2ak fq－9m em－sjb．

\section*{（40 meters）}
inir lamu laur lawn 1bdw tbez ibhw thise theh lekp icmp lidhm idl lfl lic lon irf isz Ive Qaf gaga sayu 2akz zapd zano Ease Uatp 2bxu zein 2enr zada gex zgix the 2tf gtp 2un 2xaf 2xer 3ahl 3sh 3wt 4iz toy \(4 u x\) Tek \＄bre 8bth sec 8cpe 8ded 8ru gadg 9btr beia Gen 9in 9mz 9sa kdka nuix nulz niss ap4 cb3 crhb f9e gla hdo naa bje pqs pts sgl spr sws wva．

\section*{tw－2ACI 2：Hurst Grove，Bedford，England}
yaal laao lac laci laco lad lade ladg lae lafy fah laha lahl lahx lai lam laita law taif lajo lajx lakz lal 1all 1air lamd lams lanv laof yaos lapz lar las lav lawe lax laxa laxr fayi layl laz lba lbc lbdt lbdx ibie lbit 1 bk lbl 1 blb iblg 1 bm fosd lbyb lbz libo leab leal lear leaw lee loh iekp leme lemf lemu lemx len lenf bonp lonw Idd idh lifi lfl ifu lga iqf lew hij ihn liw lia ika lkai ikl lif lmv imx inn ino fiva Ira Irdirk frm lsa lsiu isj lsw lng lua luk luw foc lvy lwi Iwu lina ixae lxf 1 xms lxz lyb lyv lya l\％ao lal 15a tht Saci 2acy zacs 2aes 2ag Enpo Eagx 2aha 2ahk Eahm Pai 2aim 2ais Qaj yak gakb Eakn taky Samj Jann 2api 2apy 2ar gate gatr gavb Zawi Lax gbdn Ybe 2 bm 3 br 2 hrb 2 bs 2 btu 2bva \％bwt \＄by 2ec Scft teip zej 2cjd Zeje 2cjj zem Zco Zetf 2evj 2esa 2dms

 2gb 2rm 3rr erv 2sh 2tp gts 2uk 2xk ext 3uwb 3ati 8ativ 3bmz Sbne Shva Sbw 3bwt 3nil Bej Sein Bery bek 9 mmz 3fd 3fz 3hm Bim 3ja Bha 3ld 3hx 3lw Snf 3ps 3at Yat 3tn 3wb 3xi tac 4ar 4av 4bt 4ea 4ec teu ifa tlk tiz 4pe 4rm 4 re 4rz 4oi hacl 5ak 5alk 5ave 5hk 5da 5er 5om 5ow 5ie 5je Ele 5la Goh 5rr 5wb 5wx 5xai 5xm 5yd bza bal Ged Gur fill bdo bise fidt bens ffe biw 6is bna foi fisw tak fep Fill Tyb The Fir fne for fok Tist 7ux 7at 7ve Fa Sadm saks Saly Baty Sawt gax kay ybby sbdh sba Sbr kbso 8bt xhww yea seac 8ec Scu 8eug sp\％Kdaa Sdan 8dgj xdjo 8di 8dm 8drs sdu 8dw 8es 8fa 8gk 8gm 8jia 8im Sin 8jq 8j\％＊ke shx Kme squ sqe 8rt Sirr sit Srv 8tk 8xe Svb 8rk 9aak Daau 9adg 9ado Gand Ybat 9bf 9bh 9bpb 9bpl 9cer 9ef 9eip 9en 9dyy

es－otis，M．F．I．Samuel， 16 Hlenheim Rdi．London， N．W．S，England 20 meters）
latu laba laci ladm lajm lakz lamu lasi lasr laxa thux lbyl lbvy icdp lefo lemx lenz ita ird Irw Iry lsw lue ive 1 xm ixl 1 zz gaga 2ahm 5ain 2alp Zamj tanm 2aol Zapa saqw 2be Seta zevj zgp 2in Enz 3tp 2we zal Saqe tech 3hs 3jm sjo 3qv 4bl 4 hx fio 4 jr fli inh 4 rr tsi 5aya 5arf bgj bbb bupx 6hy 6bux bbx bdf 6ea 6fr bke 6vz 6xat Tek 7nt iny sacy Sahe buhd saiks Salg Saly saub saxa Sbay
 Gaqo Gaxb 乌bht 9bjp 4bmx geip ten Ger Getw Ucx： 9 dby gdbw Gdau geas geew lef gkv toh na－imn ne－lam no－1ar no－1co ne－1dj ne－1da ne－sbt ne－3cs ne－3fe ne－8ni ne－4en nemidw ne－tfy ne－Gai ne－4al ne－9aq rip－4＊a se－9ab af－ih aj－jifzb ot－3no oi－itb sti－lad sb－1ak sh－iaw sb－5ab se－2ah me－2as se－8st su－ibu su－1ed su－2．ak．
elf－4AC，P，Duvignau，16，rue de l＇Eglise，Belgiam
Jbhw lair isz Zeua zarm tiz 8ild saties sa－cbe sb－1ac sh－lar sb－1ax sb－1aw sb－1ib sb－1id sb－2aj sb－2as sb－2ag su－iog su－1bu suled su－zak se－tar se－2as so－2bl dy－ayre w－age＊r－ardi oat－7es oa－ihl oa－2yl ozmaa oz－4ae os－4am oa－2hg oz－3ar nj－2pz nま－5ぜ\％

\section*{eh－4AU．Jacques Mahieu，}

Le Manoir，Piruwelz，Belgium （：30 meters）
ladm Iahi lajm lawo lbdi ibfm lbim lbyv lejh fepb Idf ika ink ird tro try lsw luw lys lat 2abor Wahm 2aim Zaul 2apa Sauw gatk 2bg 2bir gbur 3bse 2ctq gevi 2xd 2to gtr 2we 3akw 3aí 3bge 3 bms 3 hs 3 jin Sq0 3nt 3 we in 4 in 4 jr 41 m 4 hb 4 px kqa fui twh 8adg sahe saly 8axa sces Reek sest sdgx 8ex 3 gz 8nt 9 bfb 9 bjp 9beh 9ef 9 mn ne－lam ne－2he no－atmp no－sgg nj－2pz no－4sa me－sap sa－fen sh－1ac sb－1ar st－1aw sb－1ad sb－1bo sh－1ib sh－2ig se－2ah sc－Bdy su－1bu su－led su－2ak oa－2ms oa－4rb oz－2ag al－zkX affib im－tunl fm－tun＇。

\section*{eb－4KD，A．Blancquaert，}

Roomstr 20，Lokeren．Belgium （Heard during May，1427）
17x Dix Sabp laga lie tpy the geo Seuq tuo nx－2is sib－1bu sc－2as su－10a su－Lak sb－1ic ab－2ax．

\section*{eh－4UU， 312 rue Royale，Brussels，Belgium}
（20）meters ）
Tbyv Ibfn Iamo iry jun 2nm Saqe Sahe Sadg

\section*{ef－8kT，R．Aronssohn，\＃bis rue J．Deville，} Colombes（Seine）France
（Heard from June to 18 on 20 meters）
Iaep laht thux leh lio sacp Sahm 2bdj Enm gef 2tp 3hg 4 iz 8adg 8aly 8avd 8axa Bdgb 8don 9 kv ne－1dm se－2ah sc－2ar su－2ak．
（40 meters
laac laao labf taci lad ladm laic fadkm labe lam bhw lbke lbxx lekp lemp lonz led lic llw Itx 1 mk 1 mr lon 1 rf 1s\％ 1 sm 1zw 2ags dahw 2ase Sepb Ses geug gevj skn tme 2ef 2sge Stp thy Sw twer 3adl 3hur 3hm 3le 3pg 3og 3gf 3vw Bwh 3w； 4 fu 4 ft fiz 4 jk 4ok 4 pf 5 ke 6 bjx 8 avk 8axx 8byn Sees cli xpa 9aeb 9axh 9bp 9cyw 9ded ne－1da na－7aa nidk nd－hik sa－cbs sa－beg sa－hpl sa－db2 sh－1ab sbm1ad sb－iak sto－1al sb－1ag sb－1ar sb－1aw sb－lam sb－1ay sh－ibd sb－1bu ab－1ck sb－lib sb－1id sh－2af sb－2ag sh－2ar sb－2ax sb－2ay sb－5ae sb－7ab sb－8ni se－2as se－sah se－2bl su－1cd su－1cx su－1oa su－2ak
 fr－4nz ok－lac oz－ifd oz－4at ox－4av og－5bg oa－7hl of－ittr arex age wuby．

\section*{ef-RO91, C. Conte, Allee du Hocher 24. Clichy-mous-Bois (SH-et-O) France}
ladm laff laha latv laur lasy lavi lavl lawn lbeb locs ibez indi ledw lehr ldilic tix Imy lxm irn irp thhw gabp kaeb Eaed Enaw Sagu 2aho 2alg Zama zaqu zarm Zary gane gava zhow ghur bbuy gbse 2eng 5eu 2cs gevj getr gexl 2ef gop 2xw
 3bms thuv Bbaj 3bwt gebm scin 3ku 3mk Bmy sow

 sagh bbad sbau thjb shox douj shun sbse shwr Bbya Soge Bec Soto seke Buea Sded Sdpa rees Eth fo shb syi sxe saty Gaek garn Gbaz gbes ghes

R. Dezerville, 16 rue st. Laurent LAGNY S. \$ M. France
(Heard between January and Aprily
faac laao lahg lafn laer lien laff lahv laiu fax laj lali lalr laof lasa lasi imsy laur favi lavl lavx lawe laxx lazr libbm lbde thes tbhs lbkk ibkp lbvb tcaw lemf lera led leu laa ikp llx fmy inic ing lql ird irn isw itrd lyy lxg
 Zary Savk Zavt Zavw Zawn zaxr Sayj Zayk tazu 2bem
 Etp Kafz GahI sajt Bala 3bn Kbaj 3bwt Bee Sep Sjo
 thmf thn 4bl 4ck ddba 4in 4it tiz 411 4ocv 5ah 5ck. Gif the bma sahq sanc xavj 8axa sade scau serih Eeot Sewt seyi sbno sob strt swo xwy gacu bbke 9deg 9kz Shp 9sj nc-iac ne-1al ne-ibr ne-iap ne-iak ne-1da ne-8at res-xaw nu-bje ne-8me nembr nq-4jt nq-5ky sb-1ar sh-iaw sh-iax sb-lbr sh-2ag qa-2tr og-2rt ua-2yi od-3ba om-6wh da-7cw oz-2xa oz-3ar \%-4ma on-4ac oz-4ao nt-1aur nom-5c fo-\$b fo-5k.

\section*{oa-bKX, Henry \(r\). Simmons, 34 1st Are, Inglewood, Australín Heard during Aprili}
leek iahg lec lic Zmb Zear Vapd 2ekl Soq Sblp Bail sov tha siz bbz bof gvo gxi 9bph yeca gmz Gdpw Geih Ghen bernv.

\section*{L. C. Jackson, "Unley," 18 Braemar St. Essendon, Victoria, Australia \\ Heard during the past weam}
lane laao laap lazd laga iarc lacp lahy laxa lamd lana lazy lasf ladm late laac lbhw lbhs lbsd lbaq Ibux 1 blf 1 ch temx 1 cmp 1 cmi tcex Ide finh 1di liu lal Ird luw ive lus lad gaix gapy 2amq eaw tarr 2acp tagn Bakv gagn Bahm sazk Zboi thur zbj gezf Reug ecuz wees 2etf geh qer ifj yma 3nz zur 2oj zuy tif 2tp zuo zuf kafw aahl Tauv \$hb thms Shhv Sbwj 3bva 3bwt Behg 3ekl

 4 mo 40 a toc 40 b 4 nk 4 gb 4 rm 4 si 4 ty 4 rb 5 aky 5 pao banr hakn bava bau\% bacl bain 5atf baqy 5acl 5aq bata Expo baka bart bapg bage हajr 5afb bde Edx beb hfe 5fy 5hymin bji 5id 5ir 5ke 5kl 5qy 5ql Baj 5rh 5rg bux 5or buw bux 5wi bwa Eww Eyd Gzai 5zay Gax 6ahn 6akm 6amm 6au baij Gann baly fiadm 6ats balr Ganw fane badp bano Gabe fajm bata babg fan gadt faiv bala bakw bahn baji fauk Gayr faod bbam 6bl bbig fibtl Gbvy fbum Gbuh bhgb bhen nbac 6bb fihmy bikd 6hsd 6bhv Gbat biblh tibjh 6bhr 6 bnh \(6 \mathrm{by} \mathrm{\%}\) bheh biba Gbhp 6bzf 6 bek 6bhz Ghfl bbux bhay libvy bhoy 6bxt blyyo blecn fibxd bbll bbraw bbpg Gbke ecwis Gegy Gehy bez heub beat betx beua behl beyh felr bemg beed bent Gego beco beyu berm beng ficka behg beyx becl beta bess beck femy Gefo beux Geet bege bepy Guml beil gemw ficzu bich fiff bdep 6ira bddo bea ber bew fiee fiz butu the 6hm 6in bjp 6ia bju fkb bin bmu finx 6oi bor finw bpr firw 6rf 6rj frn 6ta 6tx Guf Gur \(6 z i\) fizt fity riadm 7aek Tasj Tadm Taam Tes 7df

 Saks Kaxi Saly Sauh Kafq Sahe Rang Sajp 8ayf Saxk Sasb said sahd sbee sbbl sbl shf bbsc Sbyl sbau
shan rbai sbya Xhyn khw rees sces nent Xeva beau seyi sobp oned 8dd Xdei zofof Bdor wisy sidkf Bdon six sew soh sez whe sha shint sui xwir gaxh gavy Gara taxa Gabr tahu gasg Gasd Gaek tarn Gade gadk paxz 引axb gaun ghwo ghdf ghhz thay gbwi ubpm gbwn gbjn ghbt lhtr obe\% obqe abmm abkf obt 9btx Gbjp Gbir Gear Gear Hevn geaw foyy gew. Sep Gesk gehe tok teay teab gent Sefi Geox tebe peaj Gekf Geia Gepm Gen Geet bece gepu Geat gdky Yage Sdwe Gdoe Sdka 9dwo gnke Gdol 9do 9dkn פday adra Ydng Gdpu gdej gried gite tro Yeey gekn fekf geli Ghp Giv gin glk bnk gnr aph ged gab guq gun tyr 9xi gef 9zt oh-fxt oh-fil oh-tack oh-6akp oh-6axt oh-bajl oh-6aff oh-6ast olt-bath oh-bat oh-bibwy the wh-obtue oh-bhat oh-6elj ah-bexy oh-tidey ah-bdef oh-6dba wh-brea oh-bidd oh-6kg oh-bnl oh-bina ch-bsh oh-gdl oh-pda ee-tnm ex-2ly ex-hod eg-6\% eq-ext
 efatd ey-bmu ex-2it ex-Eng ef-8ju fi-xied ef-xgm

 aj-1ak aj-ik a aj-1ab aj-1sh gjolsm aj-3ow aj-isw
 מix-2gy frj acs der filow git no np-4sg op-1dl op-ibd
 wuce whaj op-xci oc-xxz hvw af-1b uf-xfok ai-hva

 ne-4du ne-4es ne-4el ne-3ic nc-9bz ne-zbg od-ok andir brisk1 bnske ic-utn exy kfax pada oombk vanbm w-2ro es-2um el-ix b-f'2, in-kte qu-tart se-zas se-2bl sib-igw sib-lbr sb-3aj ny-2pz nr-cto su-lbu su-icg su-gak tm-sist ut-ibk ra-os ek-4dba
 pab x-en oqd el-lae na-7mn wanc jok kel kio whe giky the it\% and jva ane ane.
k-4UAH, Y. Gramich, Murnat, Bayern (Near Munich), Germany

\section*{(Heard between May \(\%\) and May 2t)}
(20 meters)
Isw lac utit tbhs irw laim inw loyv lach iadm
 4 kc 4pr tin 4ku 5afn 5afh fug sigx Gaty gani wees
 sb-iad acobas ma-2ah wik.
(40 meters)
lic lsa ladm ickn Ion lgh Ixm Irtitase Ibhw Iaur zs Ivs lemp lafo liwl ibdi lamu iom icpe fair

 3ezv giz zaxt gag etf sbuv Bog \$id 3bwt Brah 3hs 4or

 mat ni-tfhy ur-2ghy su-chs saties sg-bat b-1ith sb-1ar sh-1aj sb-ibr sb-ick sb-1ax sb-lbd sh-1bl sh-7ic
 se-2b! su-1on su-1fb su-1bu su-icd su-2ak on-4yl vi-tap

 P. O. Kox Nr. \%T, Montevideo, I/ruguay (s0-meter band)
Labz lasf Jadm lamd lemx leaw lemy thyy fit
 Badh zbms hivz gzal Tek gade suly Xahe smite stion vime snt Shag sug thek Shjp odike oda ate odqu
 ib-1ad sb-1ar se-2as sc-3at.
(40-meter banil
Taco Lase lemx leh Ikk faw tahm gami Emd zpj Bhg fgo 4iz baka the she faiv bakx 6ha bbux bhzi blom 6bye 6bxi 6hm 6vr 6wt Fadm fif *ade khol Sbre sdei klse \$zE tara gauy gepm fexe bdr fxi

 eg-21z ex-5ls eq.exy eimlau et-leu ci-1gw otma ci-1no ek-4dba eknuah ek-4uu ek-4y el-1se em-amuk
 fo-a3n fo-a3z fo-a4i to-a4x fo-a4z fo-ant fo-nox

ohnbacg oh-baxw oh-6cxy op-iad op-ihr ozetga. 6z-2bg oz-19p oz-1fq oz-1fs oz-3aj qumar ne-2bg
 nr-cto sp-5oa.

\section*{ei-1ER, Ing Mario Santangeli S. Eufemia 19. Milano, italy}
(Heard during April and May on 20 mevers)
laye lajm Ird 2ahm 2esj 4jr frg Bahe Ghox af-ib ai-2kt nr-6n oa-7dx rell.
(40 meters)
Iaft laly larv lawm lbym ledw Ide igm 1gh Ixat 2abz gags Jahe vase gawx ges 2wr 3aat fafu 3bek Beco 3uf Siu 3we 4ano 4ap 4ce tia 4 fu 40s \(4 p k\) 4 rg spp to 5ec bry 8adg 8aj bawx 8bcz 8box 8bqi 8bun Khaz Sec Scmp Edan xli 8sx Rsy 8xa Gadg Gaol ghuz beia 9etg tdyf yefk el-1se mm-5n ne-2al nn-2al nn-3ym nr-xfg 3a-cios sa-sbs sat-2bg 0a-2sh va-3hl oa-3ig oa-5bg oa-ihl ox-tga oz-2hg vs-lab dez erho mnhy nidk wuby.

\section*{OIC, Operator, T. Krumbach Skovgaardsvej.} 2 Charlotteniund, Denmark
Iuff lak lasa lupl lii lia la imv lal Iro Irs 2zd 17w gags 2amp Zaot \(2 a p d\) 2atk 2atx 2avr 2avy Eawr 2axe Zbvd Sbur 2hem 2ced 2erb Zak 2gx 2is Erg enf Badb \%bdi 3cah 3cjn 3ekl Bef Spt 3ar \$wf 4 db 4 fa tha tok 4 pk 4ab 4 ry 4 fi tuv 5ayy babe \(5 k t\) 6aim 6apf 6 hqo 6bx 6bzm fuy fit 8abw 8amc Bavk shas sheo 8bi 8bia kbox sbai shuz sepi sdem sdmd sdmm Xdn xxa xij Yaul Gavy Yaxb Ybaz ybn Gbre Geaj Geraj Gen 9epw Gdke 9dws Yrk Isd.

\section*{R. R. Maxson, Hg. \#1st Brigade, Schofield Barracks, Hawaii}
(Heard during April and May)
 Fry Gaae batit banu habg bacb bagr bapf fawt baxd 6ay bbap 6bhz 6hy fhlt 6bwk beag hebz 6cel 6efr fiegm fes, 6enu bewh bezr bidia bdim bajx 6dp bix
 8adg Same saur gazh sbit sbam gbwr kesu kees 8ced Son 8pl Gacv tara 9aha 9ak Hedw geom 9evb Yewa Gdeq 9ekf dekn gun Gxi 9za na-iaam na-imn na-'ino na-kfzh ne-5au nc-oge an-inic on-2dy oa-2hm oa-zxi oa-3am oa-bar oa-bau od-3gf oa-4bd oa-5bw oa-laf on-11s oz-3ar oz-igit oz-4cha sa-hd4 se-2bl kfzq knt wet.
nz-EZZ5, Cpl. Henty P. Karr, Hq. Btry., th F. A.s Gatun, Panama, C. Z. (Heard during May)
lamu lasy luur lodi lbfx lbhm lbhw lekp lic Irn isz 2apd zaow zarm zhow Seud zogr 2at 2tp 3ce BIw Bon 3ux 4aao 4ce tej 4fu 4iz inf 5arg beb 5im
 shse xied 8gz Gazo Ganz gauu gbat 9bpb 9bwl 9ck Genl 9eyg 9drd 9dwo legh ihd 9mn yrk gun ne-1da eb-4ww oic.

\section*{M. Solomon, Mackenzie Wireless Station. \\ Demerara River, British Guiana (90 meters)}
lomx leaw lbux lajm laep getf Sahm sex 8ok genx sahg eb-4au er-8udi eg-2od eg-5ls et-1da ne-1ad. (40) meters)

1dl 1bez 2ahb Sarnj 2edr 2tp Bri 4rp 5ip Smhp 5zav Gapr fat 6bxi 6enk bju bbjv bbhz fidw bbuy 6hl Gvsj Gdan Gakw 6zat 6abg 6bzn 6eco 6eng 6dga 6bvm Bibch 7abb 7ou 7k 7gi 7af 7fs 8aig gaxí obho 9xa eangp et-jz є eb-4ft eh-4ac etok6 ed-7ag ed-7we ed-7ec ed-earo
 ef-8tis ef-8jf ei-8brt ef-Xyor fi-8arv ef-8cp ef-8sm eg-2ny ag-2nh eg-2dn eg-2ab eg-2gf eg-5ms eg-xxy eg-5ki ex-bhd eg-5uy ex-5ad eq-5ls eg-5yk ug-6td eg-6ir eg-6pu eq-6yv eg-6at. eg-6yg eg-6ut eg-6kk 4g-6ph eh-9xb ei-1er ei-len ei-1ay ei-1ma ei-1no ei-ler ci-gbd ek-4dba kk-4dka ek-4yab ek-4yae ek-4abg ek-4uah ek-4uu ek-4oa el-1se el-1alf el-1alx th-1alw em-smua
 fo-a3x fo-a3z fo-atz ar-klha oa-2dy oa-2ij oa-zno oa-2yi oa-zuk oa-2yj on-2xg oa-2ms oa-4bd oa-4go oa-7cw oa-7hl oh-6ajl nz-2bg ob-zge oz-3ail oz-3aj oz-3ai oz-4aa oz-4av oz-4am qe-6iz ne-2dn ne-2fo ne-\$mp ne-6ac ne-9aj nd-hik ne-8ic nj-zyp nm-exy
no-4sa np-4kd rip-itc np-4oi nq-2mk nq-8kp nr-cto
 sa-bal sb-1bo sb-1br sb-1id sb-1ca sb-1ia sb-2ar sb-2ax sib-2ab by-2af sh-5aa sh-7ab sb-xqiq se-2ar se-2as su-loa su-led swayre age kle ajb ocly.

\section*{J. Arends, Chief Op. S. S. Leerdam, trip from} New Orleans via. Vera Cruz and Havana to Bermuda
lahl lbha 1arx lasy lanr lbeg lbaq lbms lbnm ledw lekp 1dl 1iw 1nw lus likw gaan 2aex 2afw gatu 2ami 2apd 2ago 3agw 2arm 2avr gawx Eaxd Zbbt thow Eebl 2es Eeuq Eerr Eda Sif Qfj 2pv Epz

 4qz 40h 4wa Exaq 5amx Samy baqi Sata 5auz Gavp Gax 5hxb 5df 5ean 5fq 5ie bip 5om 5 wa baij 6akw fam Gaxy bbav bhhz Gegw bdam odan bdjv ffr Gix 6ju 6xi Taa 7ek 8aai Bahd 8ajn 8alo 8aro 8au 8yf Bazk Sbas Sball Sbev Sbap sean 8eeg gemg sepf sdbe 8dem 8dia
 Gafe Hain gak gaka gaju gasd gauu Gaw gbaf gbba Gbes Obdw 9hha Gbjw Gbpl 9bud 9buz Gbwo 9bwr Gbyo geaj gcet 9cia Gck 9enl 9cns Geor Gcos 9ctg geyw 9day 9dea 9dit 9diu 9dmj 9dod 9doe Ydrd 9drw 9dut Hdwn Sdyl geas fera Hefk gefo gehn gekf yjh gln \(9 m h\) Grf \(\mathrm{grl} 9 \times \mathrm{i}\) grk eg-ala eg-alq egtalky ef-Xjf ef-Seo nm-laa pje od-pkh 2fg semah agh fut irc ikza knux nite sal wuan xam.
(From Bermuda to Coruna, Bpain)
lamo lac lafl larx lary lasy laur lbez lbnm lebh Tedw lehw lekp lemf \(10 n 1 z w\) 2aga gags 2agu tapd
 Bahl Bbuv 3oa 3py ift tiz hok 4 rp Baak bigy bhm 6xi Tek Xab Xalo Rbdp 8bun Xbyn Xce 8epi 8dpi 8hb sfe 8tis 8xe Gamu 9amz 9hpb Gecy Geia Yco 9cwa 9dai Gdut 9ehi 9nr Gat 9rf 9sx \(4 x i\) 9za 9 zk eg-5by eg-5uw eq-5xy ef-reo ti-8fk et-xit ef-8rld ef-8yz eb-4ac eb-4ce ci-4rs eb-4ww eb-4yz ei-1ay ei-1dr ei-lmi ei-luu el-halw en-ode enmepp em-smvg ea-pp ea-jz Ea-th np-2ta nz-3ar nz-4ae arex aqe dasc slat ick lan nite oht wwa syl skb spw twe sucz.
D. R. Holbrook, 5 Central Place, Cliftondale, Mass. (20) meters)
cg-5yh ex-2nh es-bbr eb-4\%z ex-6mu eb-4au fm-tun2 eg-Fhy gi-2it ep-8fz eg-2za sb-1br nj-2pz ef-8xm ne-8af nc-3gg.

\section*{W. . Sahm, 265 E. 182nd St., New Fork City}

6bha Gddf 6xi ea-tp ea-jz ea-jl eb-4ww eb-n33 ge-eart eft-8eo ef-8fu ef-8yor eg-कns eg-5\%h ei-1au gi-1bd ei-1er ei-Lfg eitler i-ipl eipluu ek-40a ek-4uah thlse en-oga ey-1ae ap-8ig co-8xb es-2co ne-1ad ne-1bd ne-lex ne-1da ne-1dq ne-8ej ne-4pd ne-5ac no-8a\%s ne-तje nj-2pz ni-1p nm-in nm-cys nn-m3y nc-8kp nrecto sa-cbs se-2ar se-2as se-2bl se--lfg sh-bzl su-2ak agh age bd8 bm ext dez gbl glq hd ocly sel sjib vde via whbt wa xxl.

Donn Morris, 7os Maryland Ave., Farmont, W. Fa. (30 meters)
ladm lakz lasu lanr 1 byv lemx Irw Isw 4 cj 4 cl 4 dd
 badz 5afb 5ren 5aga 5agr Gahk 5ajs 5aje 5amo 5aqe 5arq 5avs 5ek 5if 5nn 5ok 5qj 5us 5qo bru 5sh 5uc \(5 w z\) Gaod Gam Ganp 6azs Gbam bbav fihq Gbnq 6bux Gbvx Geax geby beck fecr beep bei beky ficls bein Gemy frol fryg heyx bezm 6eza Gdaj 6dch 6dck bdfe 6dga bea 6ir 6gj 6jn 6ka 6 km 6ku 6nx Gpj 6rv fitx \(6 \mathrm{ux} 6 \mathrm{zat} 7 \mathrm{acb} 7 \mathrm{adm} 7 \mathrm{bb} 7 \mathrm{bm} 70 a \mathrm{fu} 7 \mathrm{mh} 7 \mathrm{mx}\) 7ne Tph Tuj gafa gagd yaho gakg gamq 9anz 9aok gapl Gara Garl Gauu 9ayw 9bgh gbef 9ben 9bda 9bfb 9hjo \$hmh 9bmx 9baq 4brh 9brm 9brr 9brw 9bvh 9bvs 9bov Yecy 9cei 9cf 9cjt 9cka Gens 9cpi 9cpq Gept Ocsr 9eto Gcyn gcwn geyg 9db 9dba 9ribz Gdeq 9des 9dgt 9dhy 9dip 9dpb 9dpw 9dra 9eae 9eaf 9eer 9eew Gef Gehe Geho Ggh 9if 9kv Gnm grx oz-2ac oz-Zae oz-3ar az-4fa ef-Kct ef-8ix ef-8yor eb-4an eb-4ax eg-5hs ec-2ah sc-3ag es-2nm oh-6acg oh-fibdi np-4sa ne-1ap ne-1ar no-8yx ne-5hp ne-4fv ne-4dp ne-4ek nc-6.yx nc-5au ne-8af.

\title{
Correspondence \\ The Publishers of QST masume no responsibility tor tatements made herein by correspondents \\ 雹
}

\section*{About That Phone \\ 10694 Northlawn Avenue, Detroit, Mich.}

Editor, QST:
As a comparatively new ham, I don't like to speak right out in church, but when I see the "Three Cuardsmen" (of Detroit) lambasting the 80 -meter phones, I hasten to the rescue. As a starter, I will agree that phones and c.w. do not work well on the same frequency; in fact, most 80-meter phone conversations are more or less hashed up by c.w. I see no reason, however, why phone amateurs should not have a small short-wave band exclusively during certain hours of the day-say late evening.

I have read many articles by QST contributors all tending to show that phone work below 150 meters is N.G.-.that phones were only local affairs anyway, good for ten or fifty or perhaps a few hundred miles under favorable conditions with high power. As a newcomer, I naturally believed all these things and took no particular interest in the squeals I sometimes noticed in the upper part of the 80 -meter band.

Late last winter, however, as the resuit of some experiments with higher power, I found myself with an extra 203-A and some other parts nearly sufficient to equip my 50 -watt transmitter for phone work. The results at first were a bit rough, but only a few hours testing were necessary to correct the troubles and I was surprised to find a consistent range of at least 400 miles. Cards came from Nova Scotia, Colorado, Florida, Oklahoma, etc., all reporting good reception on ordinary c.w. short wave receivers. Conservative observers report the modulation excellent and the signals quite steady-especially at the greater distances. some repeat every word in long conversations correctly, while others make small errors. Again, if I spend an hour or two working other stations and talk perhaps fifteen minutes altogether, I will receive on an average of eight cards from all parts of the country, even though I only give my call letters a few times. Furthermore, I have never known but one amateur to answer my CQ with the call letters wrong, for instance- \(-3 R B\) or \(Z\) or \(G\)-as is so common in phone work. 8MS secures correspondingly good results with lower power and same circuits.

All of this convinces me that it is little more difficult to get good phone results on 80 meters than on 175 and that the working distance is at least live times as great.

Perhaps I should add that my location here is very bad for DX. I have never heard but one foreign amateur atation and my c.w. signals are seldom reported outside the U. S. A. A pair of fifty watters in a loosecoupled Hartley oscillating circuit with Heising modulation is used. Any amateur should be able to obtain as good or better results from the same moderate power. I do not think it can be done, however, with one or two 210 s and the loop modulation with which most of the boys on 80 stir up the so-called ether.

I would like to hear from anyone obtaining similar results on 175 meters. I wonder, however, if most of the fine results in that band are not obtained (in imagination) by those dyed-in-the-wool traffic hams who want the upper 80 -meter channels for such important messages as-."Did you get my letter? Hope to see you soon," etc., etc., often a month old.
C. H. Vincent, \(B R D\)

\section*{Some More About It}

Yalkima, Washington.

\section*{Editor, QST:}

In regard to "Amateur Phone Work" in the Correspondence Department of the June QST, we have several things that we would like to bring to the attention of \(V\), sherman, 8BMV-8MX, and H. Allport, 8CBM. We have been on the air with spark, e.w., i.c.w., and phone since 1920. We have done our share of experimenting as far as the amateur fashion goes. We have worked the key here until we are tired of it and want to do a little experimenting with something else that has a kick to it. We have worked all the foreign DX possible and have heard so many "nil hr om pse QSLL cuagn 73" that we almost hate to touch the key any more.

Now, to get down to business, the main purpose of this letter is to find out the object in keeping amateur phone work on the 150 -to 175 -meter band when we have practically abandoned it for key work because of the more miles per watt and reliability of the shorter wave bands.

The average ham who is experimenting with phone wants to see how his phone signals compare with the c.w. signals on the same wave band and not on a band that has already proved less satisfactory for key work as to miles per watt input. It takes an outlay of cash to build an A-1 phone transmitter that every ham does not feel willing to make, but he does get a great kick out of comparing his c.w. and phone signals on the same wave, and with what equipment he is able to afirord. Why keep him in the longer wave band where he does not get nearly the opportunity for coobperation and where it takes a larger amount of equipment to do the same things that can be accomplished on the shorter waves at less cost.

As to the bum ham phones that the key men rave about, it is largely the fault of the ravers themselyes. From our experience we found that asking them for reports brought "good om cuagn" when \({ }^{\text {' }}\) was rotten. We had to adopt the method of asking them a question and if it was answered then they must have gotten it o.k. in the first place.

We have had oxcellent heln from the Seventh District hams with phone work and since we have been off with phone while we build a new speech amplifier and mike, we have had several letters, cards, and requests on the key as to when we will be on again with our phone. The station here is all storage battery equipped and we have been asked repeatedly when using the key if we could use phone too. We built a phone set and have found a great number of hams willing to work with us in the development of the phone work on the shorter waves. We don't approve of the use of phone with a plate supply that doesn't even give a good c.w. signal but we would like to see some of the fellows that can, do a little more phone work on the shorter waves. We believe there is a larger field open to phone work where the key has been used for some time.

We would like opinions from the hams on both sides of this question and see what the amateurs think of this phone business. The big noise seems to be to do something new and here some of the hams want to hold back what we consider one of the higher developments of radio. Why not turn our energy to making amateur phone something to be proud of" We have heard amateur phones that were superior to some of the broadcasting stations in operation at the present time.

Well. OMs, this is out of our system so we will sign off and here's to more and better amateur phone work on the shorter waves.
-William Lawrenae, roX, R.F.D. No. ©

\section*{Still More}

1131 Fischer Ave., Louisville, Kentucky.
Editor, QST:
Inasmuch as 8BMW-8MX and 8CBM ended their letter in the June issue of QST on "Amateur Fone" with, "what sa oms", I wonder if I will be allowed to voice my opinion regarding their suggestion. It seems to me, l cannot find in QST columns any letters in defense of the phone and as the key men are continually writing in I want to take exception to this one letter.

I am a B.C.L., very recently converted to amateur interesis, such conversion being brought about by contact with phone operators and helpful suggestions and information furnished by QST. My interest has grown until I am very proud of my temperary 9AUH license. I am tenderly and religiously building a Hartley phone set for this Fall on 175 meters and am primarily interested in phone work. I might add I have read every word published by QST since March, 1926.
1. can agree with the above men that the 80 -meter band is small enough, but I cannot understand how it is monopolized by a group of phones, referred to, as a scat+ered element, nor can I understand why this band is too important for phones. A glance at the Communications Department in June QST would tend to prove that the most consistent traffic was handled on 20 and 40 meters, sans a lot of QRM and QRN.

1 understand that phones are permitted only from 170 to 180 meters and 83.28 to 85.66 meters while our honorable brass pounding brothers have six, count 'em, bands in which to pursue their feverish struggle for a W.A.C. certificate. More power to "em! The small hroadcasters are clamoring for this high band and if they keep on clamoring loud enough they will get it, exclusively, all arguments to the contrary, notwithstanding.

I want to say also, I am pleased to note in the June issue of \(Q S T\) a paragraph requesting phone dope. I hope someone will comply and give to \(Q S T\) readers some reading matter on the subiect. If QST is to represent the amateurs it should do this, for phones are far more numerous than is supposed. It is indeed fitting that the amateurs' suggestions in regard to the new system of things, he heeded as much as are those of the commercial people and now is the time for someone to champion the whones. Why deny the phones 80 meters? It is admitted there are creditable phones on 80 meters, they can all become so with experimentation without which QST could not have presented its June issue of 5 meter finding.

In W. B. W.'s article " 150 to 200 meters" page 31, June, QST underneath Commissioner Caldwell's letter of April 15th, the following: "Amateur radio then, continues in the 150 - to 200 -meter band as before, except that the region is now, non-ecclusive." The phones must if called upon, share this band with more powerful ones, and I for one, hope the 80meter "clickers" won't object too strongly io letting the phones play a little in "their" band. Sort of a "united we stand" idea, so please let's unify this scattered element. and pull together. I have corresponded with phones in 1st. 8rd, 5th, 8th and 9th districts for over a year and the sentiments herein expressed seem to be the consensus of opinion.

\author{
-G. W. Mossharger
}

\section*{Twenty}

\section*{815 Stewart Drive. Dallas, Texas.}

Editor, QST:
When I arrived home to-night I found \(Q S T\) smiling down from the mantel piece. Being a bit batty on twenty-meter stuff I promptly turned to page 1 of the C. D. to learn of the progress we had made in the last month. Only you other first-comers to our twenty-meter band can vision my horror at the publicity some of our dizzy brethren are giving our best DX band. Nay! Not only publicity, but the most tearful entreaties for everybody to come down to twenty! To get down where QRN is nil! Work Europe in daylight! Forget QRM! After reading all this I wiped away a tear and mourniully went back to the old set that has been such a joy since it was first tuned to twenty back in the Fall of ' 25 . Soon it must be choked and crammed down to five meters. Very soon twenty will cease to be the wave it now is. It will be filled with the QRM, acc. notes bum operating and all the evils that descended on forty back in " 45 and choked it down to a whisper. Ye Gods, fellows! Don't you know a good thing when you see it? If you can QSO eg5HS at noon and oziAC at midnight keep mum! Then we can go on working DX and having old time rag chews on 20 with never a "sorri om, QTA msg no. 148 QRM" or "sorri must QRT on acel QRM now om". Let nature take its course. The bright boys will QSY quickly enough and the rabble will be blissfully unconscious as usual. Come on and let's keep one secret at least. What sa?
—M. E. Lawson, mu5ACL
P.S. (One week later)
'Stu late now OMs. Let's all go to : meters.
- -M. E. L.

\section*{Grid Meters}

1640-50 Wainut St. Chicago, Illinois.
Editor, QST:
With the use of shorter avelengths for transmission, an increasing amount of trouble is being had with grid milliammeters. We have received any number of grid milliammeters in our factory for xepair, which have been claimed delective, and yet, when opened we have found the shunt or the moving element cooked to a crisp.

There is no question in the writer's mind but what this is due to the fact that the instrument indicates the direct current component only of the grid current and that there may be a much larger radio frequency component fowing through the meter not indicating, but burning it up. In other words, the meter may hurn up when indicating only one-half seale because of this much larger amount of high frequency current.

This can be very effectively cured in a number of ways, and the simplest way is to put a radio frequency choke in series with the meter and by-pass the meter and choke with a condenser. Most any condenser will do the work.

Various other schemes may be used in special circuits and sometimes the choke and by-pass condenser may be made a part of the other apparatus in the grid circuit. However, the aim should be to be absolutely sure that the radio frequency component of the grid current is effectively blocked from the instrument circuit, since 1 ampere of radio frequency current will very soon cook a 50 -milliampere direct current instrument and then the poor instrument manufacturer gets a letter about how the meter "burned out when indicating only half scale."

I trust you will give this fact proper publicity, as I feel that it is a factor which must be carefully watched, and I know that many a good milliammeter will be saved if this precaution is taken.
-John H. Miller Engineer, Jewell Elecirical Instrument Co.

WHAT'S WRONG WITH THIS PICTURE?

The Atlantic Division Convention (Comivurd from Poge 4x)
that lidbury, 8BAG. was responsible for this new invention. It won them the silver cup. The Pittsburgh fellows sent Fred Westervelt to Mars and we were sure surprised to have a visual demonstration of the advancement of radio on that planet. The climax of the convention was the arrival of Lt. Commander F. H. Schnell, who flew to the convention from Washington in Admiral Moffatt's personal plane the UO, with Lt. E. W. Litch, U. S. N., of the Naval Air Station, Anacostia, as pilot, and with one of the new Ford ships as escort plane. Mr. Schnell was the piece do resistance and entertained us for two hours by recounting his NRRL trip fully illustrated with some 150 slides. The courtesies of the Rell Telephone Co. and the Westinghouse Electric \& Manufacturing Co. were mach appreciated in giving all an opportunity to visit the big telephone exchange and the broadcasting station KDKA.

With a most delicious steak dinner being served on the last night, the distribution of prizes and last but not least an initiation of several candidates in the new radio fraternity, Pi Alpha Tau, the convention closed to reconvene next year at State College. Pa.
-A. A. H.

\section*{BECOME A RADIO OPERATOR}

\section*{See the World. Earn a Good Income. Duties Light and Fascinating. \\ LEARN IN THE SECOND PORT U.S.A.}

Radio Inspector Incateri here. Opportunitios for employment here are excellent. Now Orleans suppiles operators for the various falf ports. Most logical location in the T, is a to come to tor tradning.

Practirally \(100 \%\) of radio operators wiaduating on the Guif diarine the bast tive veats trained hy ALR CleBALMONS. Supervisor of instrution. All grthitates secure pusitions.
Member of the A.II.R.L.-Call " 5 G R"
Day and Night Classex-Finoll anytime-Write for dircllat.
GULF RADIO SCHOOL B44 HOWARD AVE. Mew Orieans, La.

\section*{MAIL ORDERS FILLED PROMPTLY FOR THE FOLLOWING}

Gtrombery Carlson \(4 \mathrm{M} . \mathrm{F}\). Oondensers, Tosted for "50 Volts. Suitable for B Eliminators and Filters,
Cussen Transeontinental Coils 750 on 1500 turns
l’ancake type, Unmounted. \(\qquad\)
Press-to-feed Electric Soldering Irons
.95
Loud Speaker llnits 1.25
2 M. F. Gondensers Tested for bo0 Volts \(\quad 85\)
Como Push Pull Transtormers. Per pair 2.50
Como Variable ratio transformers \(\mathbf{1 . 7 5}\)
\(3-1\) and 5-1 Audio transformers 1.25
.85 Jacks, all kinds, 15 e each-two for Low loss .00025 variable Gondensers .25

Terms:
Cash, \(10 \%\) deposit with order, Balance © O. O. Transportation charges to be paid by customer.
J. E. CUSSEN, 57 Bowdoin Street, Dorchester, Mass.

Our Type 256 Inductance is extremely popular, dupiicating in size the old RCA UL-1008, but of much more efficient construction as well as greatiy improved appearance. List Price, without clips- \(\$ 8.00\). Clips, each \(\$ 0.20\).

We make a complete line of inductances specially designed for Amateur use. Catalog on request.
New DeForest Type R Short Wave Tubes in stock, \(\$ 35.00\). A real winner. 300 watts input, 50 watt style base, plate terminal at top.

We are distributors for REL, Jewell, DeForest, Ward Leonard, National Co., Acme. Thordarson, and many others. Our catalog, the well known HAMALOG, is free on request.
E. F. JOHNSON COMPANY - Waseca, Minnesota

\title{
the GROSLEY"Bandbox an amazing 6 tube Receiver
}
Lonai

Recent court decisions now greatly clarify radio pateni situation.

Fifer since emosiey entered the radio field their methods and defelopments have ateated \% ieading viare ior Prnsiley radio trewfers. And now-ompletely arailable to frosleyaid aninlifying trnsley suprematy to fallest measure, are the elmomous resuurcest dismerieries and ideas, einbodied in patents of
 Westinghouse fo. the general biectric Go. The finghouse co. ine gemeral mertic co. The Atruricat relephone ain Telegraph tambour amazeline abporation and The is now licensent to manufacture. No, wimder the now licenses to manutacture in whinder
 incost, their amatring timetency diknowledgen abd demanded by hat sefion or ond and rade whtch inststs tin the lacest and bes of and times,

\section*{THE "BANDBOX"}

\section*{Howls and Squeals}

Colls and condensérs are like families living in a row of houses with no fences thetween. The whdren run aromind the yadds; ther meet, intx it up, quarrel and squabble. Nu harinony.
Magnetic ardidentic fields atre the offispring of coils and condiensers. \(\begin{gathered}\text { tith m }\end{gathered}\) fence betweri, ehes, boo, run fround the bouses. quarirel atid squabble. TTowls dud squeals fesult.

\section*{Individual Parts Shielded}
son. to keep ench "family" on fleld of indivduai volts ani mangensets sebarated. metal innces ape etritad copper fences for the eotis) and the individual narts of the bandhox gre siftelded ss wnicy fonmai in the highest priced sets.

\section*{Acuminators}

Fors fials who lote to go cruising for fatint. For-away simats the "Ambminators" intenstry weak sientals fike finterfiol betts perading distane ㅋtules,
"The "bandbox" empioys rompletely bur armed of refitralized radio irequency stages. instenif of the vummon form if lossor method uf preventing oscillation. In prerenting this important feature reosey is exclusive in the field of inoderate irime radio.

Beautiful Appearance
Stithat. in the berautiful apmeavance aud madest stze of the "handbox" is the lifmost in adiaptability in tequirements of interior armagement ur feroration. fine outside ast is atesity and quickly removes for installation in cumsole rubinets.

\section*{Folume}

Folume rontmi is finother big "Bandbox" fearure titgnais from poworit looal stan flons sate be cut from ruour tilling volume to a thinsper,
Eituth "Bandhox" fis fited with a brown cable entainfigg folmod rubber umertad Leads fur bower and other rounections.
The irosted brown erystalline finish firrthomizes with the flnest lurniture and matches the frames if Musicones aud the casing of the butwer untt rathe bronze esiutcheon creaies an artistic control panel, a master station selector las an illuminated dial for risky patding in tark or shatow nothers.

\section*{\(A C\) and Battery}

\section*{Operation}

The "Bandhox" is built both for battery and it t operation. the new ked-AC ranes maike the moteration oi the set directiv from hotse vurvete buth practical attd whelent.
 tirst aladio stage use the new RCA-AB-IX ?20 tuhes. Filaments in these tuhes ate heated mith raw ot earent at proper +ultatse.
 is used tith the derector. bower tuhe YK-IC1 u! 180 vits plate.
Bhere is tho AC hum. The new ACA deadiotrons do the wark.
The bower sumply convertor is a marra? of wato eaminearing ingenuity. Falf the size of ath grolinary "A" storage battery, it - ipplies A. I3 anci 8 whrent diteret irom wherent atiret thom
latuo sucket to tubes. lentup sucket to tubes
Price of Power rensertor \(\$ 60\).
lionels fot it atud fio crudes suap switch shuts domen set arui
 nietelv.

\section*{Write Dept. I 8 for Descriptive Literature}

Crosley Radio is licensed only for Radio Amateur, Experimental and Broadcast Reception.
Five UX 201 A and one UX ifi power output RCA Radiotrons recommended and suppiied at standard prices with each Crosley Receiver.

\section*{RABIO \\ Powel CrosleyJr. \\ President. Cincinnati,Ohio. \\ CORPORATION}

\title{
WESTON
}

\section*{radio table voltmeter and radio plug}

Wesion Radio Plug 2,000,000 in use

Note what this handy, compact Weston Model 489 will do for your set:-
1. - Prolong the life of your tubes through operation of their filaments at the proper rated voltage.
2. Improve reception. ©lose resulation and compliance with proper rated filament voltage, produce best tone values and volume.
3. Hascertain exactly when to recharge your "A" Battery.
4. Will reduce "D" Battery expense by showing 4. when any particular battery ;houid be discarded.
5. Will assist in locating circuit troubles, simple * testa enabling vou to detect open cimevils, poor ontacts, etc.
tik your dealer, ar aurite for Circular.I and complete information, direct to:
Weston Electrical Instrument Corporation 158 Weston Avenue

Newark, N. J.

Bakelite case:size \(3.0^{11}\) x \(3 . e^{11}\) * \(1,9^{11}\), weight It ow. Pin-Jacks, flewihte cables, and radin set test diagrams

\section*{GRIDLEAKS}

15,000 ohm, tapped at 5,000 and 10,000 ohms with 85 witt capacity................. Price, \(\$ 1.50\) 20,000 ohms, 85 watts 1.50 5,000 ohms, 85 watts 1.00
5,000 ohms, 20 watts..

\section*{UX210 TRANSFORMERS Filter Chokes}

200 Watt Size-Plate winding for full wave rectification supplying 1100 volts with center tap at 550 volts. Has iwn 7,3 woit center tapped filament windings for UX210 and UX216B tubes. Wat. 14 lbs Price \(\$ 12.50\) 100 Watt Size-Plate winding for half wave rectification, supplying 750 volts. With 100 henry choke system gives smooth RAC note Has two center tapped 7.5 volt flament windings for UX210 and UX216 B tubes. Wgt. II lhs,

Price \(\$ 9.50\)
50 henry 100 milliampere filter choke, d tha. \$5,50 100 henry 50 milliampere filter choke, 4 lbs. \$5.00 Add for Postage

UTILITY RADIO CO. 80 L.EGLIE STREET EAST ORANGE, N.J.

FREE-New 1927 Catalog-FREE

\section*{Wholesale Headquarters}

Shoa photographe wind hook-ups of all litext kits, cenplete

\section*{SEND FOR THIS BOOK}

Amateurs who know Browning-Drake can safely recommend the new Official Kit Set. Complete constructional booklets will be mailed immediately on receipt of twenty-five cents.
BROWNING-DRAKE CORPORATION CAMBRIDGE

MASS.

\section*{Amertran \}Amertran \}AmerTran}

\title{
Two New AmerTran Power Transformers for Use With New Tubes!
}

AmerTran Filament Heating Transiormer
Type H-67, \(\$ 12.00\) each
This transformer is intended for use with the new RCA. UX-226 raw AC amplifier tubes and the new UY-227 detector tube. It also has a third filament winding capable of handling two UX-171 tubes. In connection with the new AC tubes, the type \(\mathrm{H}-67\) becomes the power source for the filament and is therefore a real "A" battery eliminator.

If you have a good plate supply system and a set with the new AC tubes and one or two UX- 171 power tubes in the last stage, the H-67 AmerTran is ideal, transforming the 50 or 60 cycle, 110 volt AC house light current down to the lower voltages for the correct operation of the new tubes.

\section*{AmerTran Power Transformer Type PF-281}

This unit is designed for use with the new UX-281 rectifying tube, which can be operated at 550 volts plate up to a maximum of 750 volts plate and deliver 110 milliamperes DC as a half wave rectifier. A 750 volt plate winding with a tap for 550 volts cnables the transformer to be used either with a UX-281 or 216-B rectifying tube, where the output plate voltage is not required to be in excess of 450 volts.

In addition to the plate and flament windings for the rectifier and power tubes, the type PF-281 has filament heating windings (similar to the H-67) for the new AC tubes, and thereby incorporates in a single transformer unit the means for converting AC house current into filament and plate current, and grid bias potential. When used with our type 709 and 854 AmerChokes in the filter circuit it is possible to construct a radio receiver which can be operated entirely from the house lighting circuits without an "A" eliminator, trickle charger or batteries.

Write for further information, including booklet "Improving the Audio Amplifier."

\author{
American Transformer Co. \\ 178 Emmet Street Newark, N. J. \\ "Transformer Builders for Over 26 Years"
}

\section*{THE SUPER SYNC}

\section*{The Synchronous Rectifier That Can Be Filtered}

The Super Sync is the only synchronous rectifier that can be filtered with ordinary type of tilter. Tests show that it will stand up under constant use without giving the least bit of trouble.
When you install a Super you can rest assured that a constant voltage will he delivered to your transmitter thus eliminating one of the main causes for unsteady waves.
This rectifier will handle any voltage up to 4000 volts very efficiently, with practically no voltage drop. The Super rectifies practically the full wave there

PAT. PENDING
being only a degree break on each side of the commutator. This is made possible only by the insulating ridge which prevents the voltage from jumping between sesments. There is no other mechanical rectifier madn which will rectify 354 degrees of the entire wave at the rated voitage of this machine.

The motor which is supplied with this rectifier is for 110 volts 60 Oy . Motors with other name plate ratings can be supplied but will reguire : slight delay in shipment.

PRICE \(\$ 3.00\) F.O.S. ST. LOUIS, MO.
MARLO ELECTRIC CO., 5241 Botanical Ave., St. Louis, Mo., U.S.A.

\section*{HEAVY DUTY WIRE WOUND RHEOSTATS--POTENTIOMETERS}

Thesigned esperially fur heayy eurrent oontrol. Jmpossible is break oust hender high temperatures. Limitiof tacior is the fusion point of the xiohrome of havaue Wirg Fabrenbet binumber-z incbes single bole munatina. itug ohm Centralah Power Rheostat

A' aune fealor's. ar mailed direct
CENTRAL RADIO LABORATORIES 20 KEEFE AVE.

MILWAUKEE, WIS

> A DANDY BUY

WAVEMETERS
B-10 METERS I \(A\) CCURACY GiA \(A A\) NTEED
\(\$ 12.50\) Each
ALSO Short Wave Coils-Power Transformers and上ilter Chokes-Receiver and Transmitter Parts.

JTST OUT-NEW FALL LIST-WEITE FOR IT
SEATTLE RADIO LABORATORY 3335 a3d Avenue, South Senttle, Wash.

GFOD \& ATGEz Parts for an ideal loo vatr ramsmitter including ztarting minipment. Exco boog vilt D. C. moror zeherator, i 50 watt R.C. A. tobes, 2 fieiloge mierophones, This outtit was iormerty WHB atid hat heth heard in brartieally all states big buinment "gonid aso he tasity imberted into "A high pormer ar fro mate in separate warts will be comidered at a seis masonable rigure
GULVER MILITARY ACADEMY,
eulver, Indiana

\section*{Have You Your \\ A.R.R.L. Auto Emblem?}

Frice 50c

\section*{"What condensers do I use?-Faradon!"}
"Take it from me-- they help me keep schedules for they sure do stand up. I use 'em wherever I need a condenser."

Long-life, dependability and convenience are three good reasons why amateurs and leading equipment manufacturers use Faradon Capacitors.
And they know that since 1907, Faradon experts have combined finest materials and rigid inspection of thefinished product to make condensers specially designed to meet each particular need.

If your radio dealer is not already supplied write us for descriptive folders.

\author{
WIRELESS SPECIALTY APPARATUS COMPANY Jamaica Plain : Boston, Mass., U.S.A. Established 1907
}

\title{
Garadon
}

\section*{Electrostatic Condensers for All Purposes}

This is Item \#26 used as a Plate Power Supply for a 204-A Tube.
Bulletin 237 lists over 300 other Generators, MotorGenerators and Dynamotors for Radio purpose. If you haven't your copy, write for it today!

ELECTRIC SPECIALTY COMPANY

\section*{Mark "ESCO" Trade}

\section*{PURCHASE effective voltage rating \\ CONDENSERS}

Whound congensers for tuse in the filter circults of furrent diboly uthits should be rated far continuous diry ar itheir rull marken voltage.

Dhash tests" are tabeless fondensers tan he made al the theapest moterials which will tot break finwn urder "tiasin test" uf lotion molts. sel they may fall atcer is hours of montinugus duty at 400 woits!
 - ittage ratinge:

Type A-ian Poits lic
Tivpe B-iom Volts ite
ifpe antinuous iuty ACME WIRE COMPANY, New Haven, Connecticut

Pep Up
YourSet With X-L Products
 with an X- V. YAKIODENSEF tun your circutt. Nipecineat rind endiorsed by foremomi Radio deaigners in all latest anci best nook-nps.

 control in all runed cadio fenduency circuits fivero.

 MODET TY - For Rokaday viter Lodze N. Goitin-thite, Menkin Utra-0 airctuifs. Hiter and interomiate fraquency buning in uper-hetfrodyne and positive atd btas in

 with grid leak elips \(\$ 1.50\).
 thumb, insert thire femme oresonfor tote is ärmiy held. vinrations wall not lonsen, ropases instantiv, price 154 ,
Aso in sirips if 7 igh flack panel marked in mite Price \(\$ 7.50\).
CREE wiring diagrams thowing use of Ex uthits in the gitiv GuETIN-UFHTTE mastant eonpled rado frenquetiry rirctit. And in other bopular hnok-hos. send for yours today.

X -L PUSH POST

X-L Radio laboratories, 2428 No. Lineofn Ave., Chicago, Ill.

We furry a surriplete line oi Tuolateral inductance cots, towntheq with monntings, esparidily deigned forexperiment+rs, ngrneers and laboratrries.

pacent electric co. 91 Seventh Ave. New York

\section*{The Perfect Inductances for All Low Wave Work}
 short wave tuner by securing the AERO Interchangeable Coils described below. All coils fit the same base and use the same condensers. Use Code No. INT-125 in ordering.

AERO LOW WAVE TUNER KIT
Completely interchangeable. everywhere. Range 15 to 130 meters. Includes 3 coils and base mounting, covering U.S. bands, 20,40 and 80 meters. You can increase or meters. Kou can increase or

Price \(\$ 12.50\)
Adopted by experts and amateurs

PRICE \$12.50

Coil No. 0
Range 13 to 29.4 meters. This is the most efficient inductance for this low band. Code number [NT-0. Price \(\$ 4.00\)

\section*{INTERCHANGEABLE}

Code
100

\section*{INTERCHANGEABLE Coil No. 4} Range 125 to 250 meters. Fits same base supplied with low tuner kit. Code number INT-No. 4. Price \(\$.00\)

THE NEW AERO INTERCHANGEABLE COIL No. 5
Normal range 285 to 550 meters. However, by using . 0001 Sangamo inxed condenser across the rotor and stator of the . 00014 variable condenser, the maximum wave band of this coil is increased to 725 meters. This gives you coverage of the following bands: Airplane to Airplane, Land to Airplane, Ship to Shore (Great Lakes) Ship to Shore (Atlantic and Pacific Oceans). Cude number INT-No. 5.

Price \(\$ 4.00\)

\begin{tabular}{c}
FOR \\
TRANSMIT- \\
TING \\
\hline
\end{tabular}

KEY 2040 KIT
Price \(\$ 12.00\) Kit contains 2 AERO Coils, 17 to 50 meters each, 1 AERO Antenna Coil Mounting Base, 1 AERO Grid Coil Mounting Base, 2 AERO Essential Choke Coils.

\section*{KEY 4080 KIT}

Price \(\$ 12.00\)
Kit contains 2 AERO Coils, 36 to 90

meters each, 1 AERO Antenna Coil Mounting Base, 1 AERO Grid Coil Mounting Base, 2 AERO Essential Choke Coils.
If you desire to have this set tune also 20 meters, simply buy two AERO 20 to 40 meter transmitting coils, which plug in the same mounting bases, and work efficiently with the above items.

\section*{PLAN FOR D. X. RECORDS NOW!}

Order these colis direct from us if your dealer hasn't them and start now for wonderful records. specify cade or key numbers when ordering. Or write ti once for somplete descriptive literatare.

Makes All Tests On Any Radio Set Rapiped with preerision vaitmeter, 1 non anms per wit with 31.2 inch

Price, complete with Adapters \(\$ \mathbf{6 0 . 0 0}\) Send for mew Katio Catatog Q-8
BURTON-ROGERS CO.
Sole Selling tigents Eoston, Mass.

\title{
NOW batteryless, electric radio power
} To be announced soon Balkite RadioPowerUnits

\section*{FILTER CONDENSERS}

Manufactured by Dubllier Condenser \& Radio Corp.

\(1 \mathrm{c}_{4}\) mid. 1000 volts rated D.C. Working Voltage 7 mfd. 600 volts. rated D.C. Working Voltage

Extra Special at \$1.35 each Extra Special at \(\$ 3.50\) each

Manufactured by Stromberg-Carlson Tel. Mfg. Co. 3.2 mfd .600 volts rated D.C. Working Voltage

Extra Specinl at \$1.75 each
All of these Frigh Quality Filter Condensers, are brand new, and guaranteed as rated. They are excellent for use in your Transmitter, Eliminator or Experimental Work.
AMERICAN SALES CO.
21 Warren St. N.Y.C.

\section*{RadIO OPERATORS WANTED}

THE DASTERN RADIO INSTITUTE can train you quickly and thoroughly because:

MODERN ANO EFFICIENT METHODS
THOROUGR INSTRUCTION under staff of
IICENSED COMMERCIAL OPERATORS MODERN APPARATUS including SHORT WAVE TRANSMITTER
FOURTEEN years a RADIO SCHOOL THE OLDEST, LARGEST and MOST SUCCESSFUL scinol in New England. RECOMMENDED BY THE A. R. TR. I.

Day or Evening Classes Start Eyery Monday. SPECTAL CODE CLASSES
Write for Illustrated Prospectus
EASTERN RADIO INSTITUTE 899 boylston street boston, mass.

\section*{Complete A. C. Operation \\ }

For the past several seasons the trend has been toward complete battery elimination. Many satisfactory plate supply units operating from A. C. have been developed but filament operation from an A. C. source has presented more of a problem due to the larger currents required and increased expense in the rectifier and filter circuits.

The newly announced A. C. tubes offer an excellent solution to this problem. The above diagram shows how to adapt the filament wiring of the popular type of receiver to A. C. operation by use of General Radio parts especially designed for this purpose.

TYPE 440-A TRANSFORMER
The alternating current tubes require a source of low voltage capable of delivering large current. The various types of tubes require several different volt-

Type 440-A
Low Voltage
Transformer
Price \(\$ 10\)

Type 439
Center
Top Resistance
Price \(\$\). 60 ages. The Type \(440-\mathrm{A}\) Transformer supplies voitages as follows:

Priv. 115 V (for lines \(105-125\) volts) 60 cycles.
Sec. 2 volts 8 amperes 3.5 volts 2 amperes

5 volts 2.5 amperes
7.5 volts 2 amperes

Price. \(\$ 10.00\)

\section*{TYPE 438 SOCKET}

The new UY-227 or C-327 detector tube has a separate heating element and requires a socket designed to take the new five prong base.

Price
\(\$.50\)

\section*{TYPE 349 SOCKET}

The various types of A. C. amplifier tubes are designed with standard UX base having four prongs and require a type 349 socket.

Price. \$. 50

\section*{TYPE 439 RESISTANCE}

The new A. C. tubes require a resistance with center tap across the filament as shown in the diagram. The Type 439 Resistance is adaptable to any socket in which the new A. C. tubes may be used.

Price
\$. 60

\section*{TYPE 410 RHEOSTAT}

The new A. C. tubes require low resistance rheostats capable of carrying appreciably more current

Type 410
Rheostat
Price \(\$ 1.25\)
 than those used with D. C. tubes.
\begin{tabular}{ccr}
Resistance & Current & Price \\
.50 hm & 3. 5 amperes & \(\$ 1.25\) \\
T .5 hm & 2. 0 amperes & 1.25
\end{tabular}

Type 438
Sockets
Price \$. 50

\[
\begin{array}{lll}
\text { T. } 5 \mathrm{ohm} & \text { a. o amperes } & 1.25
\end{array}
\]

\section*{Gross Receivers \& Transmitter Kits \\ EAST CHANCES UP GO THE PRICES ON RECEIVERS AND KITS, NEXT MONTH}

RECEIVERS 2 Tube Kit \(\$ 15.75\) Wired to order \(\$ 1.50\) extra

3 Tube Kit \(\$ 19.75\)
Wired to order \(\$ 2.00\) extra

Please note the prices on Receiver Fits are special, same will be advanced shortly.
Gross short wave receiver kits are composed ut high remade parts much as Gross phug-in coils, Harmmariund middle condensers, vernier dials and other high wade parts necessary to compete the reretyer. supplied with piup-in coil for atty band you specify, 20. 40. xi or 800 meters.

No C. O. D. Shipments

Transmitter Kits as illustrated composed of highest grade parts available, thoroughly metered, not revamped receivers.

Tuned Grid,
Tuned Plate Type
7: w \(\$ 47.50\)
\(75 \mathrm{w} . \$ 65.00\)
Coupled Hartley Type
7. w \(\$ 43.50\)

75 w
.\(\$ 65.00\)

Frequency Meters for Broadcast Stations, \$75.00.
Q ST Listen for our Amateur Station \(2 A U D\) operating on 39.5 meters. Code Lessons for beginners transmitted on the Teleplex. Send stamp for schedules. Tests invited,
J. GROSS \& COMPANY,

30 Park Place, N. Y. City

\section*{\(\mathfrak{C}\) ardmerd}

\section*{UNIFORM！}

All Cardwell Condens－ ers of any one type are exactly alike－uniform in capacity，low losses， strength，endurance and fitness for their job．See the June QST orwrite for specilications and prices．
nix

Effective July 1st，prices of Xmitting Condensers on Pacific Coast will be \(\$ \mathrm{~F} .50\) each higher than list．
The \(\mathfrak{A l l}\) ㅍil Cardmell \(\mathfrak{A l f g}\) Corp．

\section*{\(\mathbb{U}\) \\ an \(\mathfrak{n}\) \\ e \\ \(\mathfrak{I I}\)瑶民 \(\mathfrak{r}\)区}

\author{
＂THE STANDARD OF COMPARISON＂
}

\title{
N B-POWER SUPPLY
}

A newly designed B-Eliminator, with special features not hitherto offered to the public, will be announced in the near future. The unit is small, light, simple and easy to set up. The price will be attractive.

> The new NATION AL BPOWER SUPPLY is manufactured under license associaton with Radio Corp. of Amertoa, General Electric Co., Westinghouse Electric \& Manufacturing Co and the American Telepione and Telegraph Co.
be sure you get the genuine

\section*{- = AND NOW \\ A 5 METER RECEIVER}

Due to the insistent demand from ama-
teurs all over the United States, we are
Due to the insistent demand from ama-
teurs all over the United States, we are offering for the first time a receiver to eover the 5 meter band.
Since the 5 meter band was first allotted the hams we have been making numerous experiments with all types of circuits, tubes and apparatus, combining the results of this work in our receiver. Over eight years' experience in the manufacture of short wave equipment has taught us what the amateurs expect from their sets, and we know that when you see and hear this receiver you will be as en-
thused as we are. Each receiver is tested and hear this receiver you wil be as enand hand calibrated.
Complete Technical data furnished on request.
Price with tube only \(\$ 25.00\)
\begin{tabular}{l}
PARCO Short Wave Receiver \\
17.50 \\
PARCO 40 Meter Transmitter ... \\
\hline
\end{tabular}
\begin{tabular}{l}
PARCO Short Wave Receiver \\
\hline PARCO 40 Meter Transmitter \\
\hline 15.00
\end{tabular}
PARMATER PRODUCTS CO. MERRILL - 8NX -MICHIGAN
\begin{tabular}{|c|c|}
\hline & \begin{tabular}{l}
WARD LEONARD VITROHM TRESISTORS \\
Rated to Carry 60 Watts Continuous Duty \\
3100 Ohms with taps of 400,400 and 800 Ohros, 2600 Ohms. 7000 Ohms. \\
All of these Werd leonard, heayy duty fitrohm ivitreous enamel) Hesisiors are Brand jew. size \(4 \times 1^{\prime \prime}\) \\
They are fusolutely permanent and accurate in value, sind are for use in fransmitters, Eliminators or Electrical Gontrol work. \\
lour choice of any of the chree sizes at \\
ETTRA SPECLAL PRICE OF S5C Each \\
AMERICAN SALES CO., 21 WARREN ST 9 NEW WORE CETY
\end{tabular} \\
\hline
\end{tabular}

\section*{RADIOSCHOOL}

Send for Catalogue
MASSACHUSETTS RADIO and TELEGRAPH SCHOOL NEW TERM SEPT. 12
18 Boylston St.
Boston, Mass.

THORDARSON ELECTRIC MANUFACTURING CO. WORLDIS OLUEST ANDMARGEST TEXCLIUSIVY TRKNSEPMMER MAKERS Chicaga. USU.A.

\section*{TRANSMITTING APPARATUS}

\section*{A Complete Stock at "Chi-Rad"}

TN addition to our regular broad1 cast apparatus we carry a very good stock of transformers, chokes, grid leaks, high test condensers, etc., for transmitting purposes.

\section*{New Short-Wave Coils}

New -- Specially built by Chi-Rad. Write for descriptive bulletin.

New Catalog Now Ready
Dealers and set builders, write for our new catalog and special discounts. Please address us on your business letterhead.

\author{
CHICAGO RADIO APPARATUS COMPANY \\ 415 South Dearborn St. Dept. Q, Chicago
}

CHIRAD-RADIO-CHIRAD

\section*{Seventh Edition Just Off the Press \\ ROBISONS MANUAL OF RADIO TELECRAPHY AND TELEPHONY}

\author{
Completely Revised and Up-to-Date \\ Of the 6th edition of this book reviewed by QST it was said this is perhaps \\ "The Best Radio Book That Ever Came To This Desk" \\ The standard Nayy book on radio uriyinally prepared in 1907 by hieutenant last year Admiral and Gin-C of U. S. fleet, S. S. Robison. The bth edition and the preseat edition revisen by bommander B. G. Hooper, U. S. Nayy, late Radio Officer, U. S. Fleet. \\ Price \(\$ 5.50\) postpaid (former edition sold for \(\$ 8.00\)) \\ Address: Secretary-Treasurer, U. S. Naval Institute, Annapolis, Md., U. S. A.
}

\section*{Bound Volume X of QST}

There still is a limited number of copies of Bound Volume \(X\) of QST. Vol. X comprises the entire 1926 series of QST. This rolume is made up of two hooks or sections, each containing six issues of QST. This volume is handsomely bound in red cloth and with gold imprint.
The complete volume is priced at \(\$ 5.00\), postpaid.
QST, 1711 Park St., Hartford, Ct.

\section*{QST Oscillating Crystals \\ Prifes for qrinding POWFW erystals for the wrious Amateur} bangs "s rallows
150.170 Meter batid
\(\$ 1500\)
G-86 Meter band
害电 00
We will simbe the freutency of the ficyat gocurate to better than a tentin of one per-pout. dil crystals guaranteed. BROADCAST BAND
so will grind for yoll a erystaj arourate to plus of mitus 500 eycles os four assizned frectueney far quit in tumbunted. uf

"The Crystal Specialists"
SCIENTIFIC RADIO SERVICE
P. O. Box 86 Dept. M Mount Rainier, Maryland

\section*{Radio Frequency Galvanometer}

The Jewell standard high frequency thermo couple type galvanometer incorporates features of low resistance and high sensitivity, which make it a great favorite with

Pattern No. of experimenters in radio phenomena.

The internal radio frequency resistance of the instrument is 2.5 ohms. The double scale has one section calibrated exactly to 100 milliamperes and the other evenly divided, running to 100 for decrement measurements. It is, therefore, a milliammeter as well as a high frequency galvanometer.

Movement parts of this instrument are all silvered and the scale is silver etched with black characters. It may be obtained in a special portable style as well as the panel mounting.

Write for Radio Instrument Catalog No. 15-C
Jewell Electrical Instrument Co. 1650 WALNUT ST., - CHICAGO

\title{
The A. R. R. L. Diamond Is the Emblem of a Real Amateur!
}

The League Emblem comes in four different forms. Its use by Members is endorsed and encouraged by the League. Every Member should be proud to display the insignia of his organization in every possible way.
THE PERSONAL EMBLEM A handsome creation in extra-heavy rolled gold and black enamel, \({ }^{1}\) " high, supplied in lapel button or pin-back style. There are still a few fellows who are hiding their light under a bushel. Wear your emblem, OM, and take your proper place in the radio fraternity. Either style emblem, \(\$ 1.00\), postpaid. THE AUTOMOBILE EMBLEM. Will other hams know you when they meet you on the road this summer? Show 'em you're proud to be a ham, \(5 \times 2 \frac{1}{2}\) ", heavily enameled in gold and black on sheet metal, holes top and bottom, 50c each, postpaid.
THE EMBLEM CUT'. A mounted printing electrotype, the same size as the lapel button, for use by Members in any type of printed matter, letterheads, cards, ete. \(\$ 1.00\) each, postpaid.
THE "JUMBO" EMBLEM. Fou've taken care of yourself, your car and your printing. How about the shack wall or that 100 -footer? Think of the attention this big gold-and-black enamel metal emblem will get! \(19 \times 81 / 4 "\), same style as Automobile Emblem. \(\$ 1.25\) each, postpaid.

Mail your order and remittance NOW to
The American Radio Relay League : : Harford, Comn.

\section*{THE IDEAL}

\section*{To Our Readers Who Are Not A. R. R. L. Members}

Wouldn't you like to become a member of the American Radio Relay League? We need you in this big organization of radio amateurs, the only amateur association that does things. From your reading of QST you have gained a knowledge of the nature of the League and what it does, and you have read its purposes as set forth on page 6 of every issue. We would like to have you become a full-fledged member and add your strength to ours in the things we are undertaking for Amateur Radio, and incidentally you will have the membership edition of QST delivered at your door each month. A convenient application form is printed below-clip it out and mail it today.

1927
American Radio Relay League,
Hartford, Conn., U. S. A.
Being genuinely interested in Amateur Radio, I hereby apply for membership in the American Radio Relay League, and enciose \(\$ 2.50\) (\(\$ 3\) in foreign countries) in payment of one year's dues. This entitles me to receive QST for the same period. Please
 my Cextificate of Membership and send \(Q S T\) to the following name and address.

Station call, if any
Grade Operator's license, if any
Radin Clubs of which a member
Do you knowe a friend who is also interested in Amateur Radio, whose name you might give us so we may send him a sample copy of QST?

\section*{"B" Eliminator TESTING Problem Solved \\ }

TO GET full value from your "B" Eliminator you must know that your " B " Power is delivering the rioht amount of voltage to detector, ampilifier and power tube.
Low resistance voltmeters suitable for testing batteries are worthless for testing "B" Eliminators. This specially designed High Resistance Sterling is aceurate for both.
Whether this voltmeter is used in your business or for your own set, it is esseratial if you want the facts about any "B" Eliminator.

\section*{It is the Universal Voltmeter for the Amateur R-415}

Sterling voltmeter meets the special needs of the amateur in a variety of ways-mor testing the output of \(D\). C. Generators, and for every other purpose calling for a high resistance voltmeter.
Never before has a laboratory instrument been available at a price so reasonable.

\section*{R-415 VOLTMETER}

A laboratory meter at the remarkably low price of

Also Model R-417. A New 150v, Sterling A. C. Meter for Testing \(A\). C. line current and all A. C. Circuits \(\qquad\)
THE STERLING MFG. CO.
2831 Prospect Ave.
Cleveland, 0 .

A cable of fine, tinned copper wires with non-inflammable Clatsite insulation. Ideal for sub-panel or point-to-point wiring. Strips easily, solders readily. Nine beautiful colors; sold only in 25 tt. coils, in cartons colored to match contents.

\section*{Acme}

Celatsite Wire
Tinned copper bus bar hook-up wire with non-inflammable Celatiste insulation, in 9 beautiful colors. Strips easily, solders readily, won't crack at bends. Sizes \(14,16,18,15 ; 30^{*}\) lengths.

\section*{Spaghetti Tubing}

Oil, moisture, acid proof: highly dielectric used by leading engineers. Nine colors, for wire sizes 12 to \(18 ; 30^{\circ}\) lengths. We also make tinned hus bar, round and square, in 4 and \(2 \% \mathrm{ft}\). lengths.)

\section*{Stranded Enameled Antenna}

Beet outdoon antenna you kaf buy. 7 sirands of enameled eqpper Wire, Presents maximum surface for reception, resists corrosion; this greatiy improves the signal. Outside diameters equal to sizes 14 and 16. (We atso offer solid and stranded bare, and stranded tinned antenna.)

\section*{Loop Antenna Wire}

60 strands of No. 38 bare eopper wire for flexibility, 5 strands of No. 36 Phosphor bronze to prevent stretching. Green or brown silk covering; best loop wire possible to make.

Battery Cable
A rayon-covered cable of 5.6.7.8 or 9 yari-colored Flexible Celatsite wires for connecting batteries or eliminator to set. Plainly tabbed; easy to connect. Gives set an orderly appearance.

Send for folder
THE ACME WIRE CO., Dept. S New Haven, Conn.

Approved Power Supply Parts
tie-build that old set. in the long run it will be an economy and you'll always have sasurance of full-powexed reception at a very low eosi. If youte dealer cannot supply you, send check of money order for immediate delivery had complete information. Specify typm of restifier you intend to ise.

Power Suppiy
Transformers
used with \(550-400\) m.a, tubes. This transformer is constructed in \(A_{\text {, }}\) nandsome durable metal cave. \(\$ 15\) list
Power Supply Chokes for 350-400 m.a. tubes "wo chokes built into one case. \(\$ 15\) list

Dongan Electric Manufacturing Co. 2999-3001 Franklin St., Detroit, Wich.

Fasy to harn and exsy to owerate. Simply press the feyer the fibroplex does the rest. Aliustable to any speed from 10 words per minute up. Seves the arm, prevents cramp aud improves sending 50 to \(100 \%\), over 100,000 users, ivo station romplete without this un-to-date BUG. Gan be wed in tajajority of DX eircuils without relay.

Special Radio Model
Rauipped with Extra Heayy, Gpecially Consiructed Contact Points to break high eurrent without use of relay. Sent anywhere of ruceipt of

40
insist on the gennine lmpooved Martin Vibroplex. The Vibroplex Nameplate is YOUR proteciion. Order Now !
THE VIBROPLEX CO., Inc. 825 BROADWAY Cable Andress: *HAROPLEX NEW YORK

\section*{A. R. R. L. Members -- What about your friends?}

You must have a friend or two who ought to be members of our A.R.R.L., but aren't. Will you give us their names, so that we may write to them and tell them about the League and bring them in with the rest of us? The A.R.R.L. needs every eligible radio enthusiast within its ranks, and you will be doing your part to help bring this about by recommending some friends to us. Many thanks.

American Radio Relay League,
Hartiord, Comn.
I wish to propose

for membership in the A.R.R.L. I believe they would make good members. Please tell them the story.

\title{
x PYROHM RESISTORS
}

AEROVOX Pyrohm Resistances are made of the best grade of resistance wire, wound on a refractory tube and coated with a porcelain enamel which thoroughly covers and pratects the wire from moisture, oxidation and mechanical injury. All Resistance Valucs. Tapped Resistances for all popular circuits in stock.

\section*{Aerovox Wireless Corr., 70 Washington St., Brooklyn, N. Y.}

\section*{HAM-ADS NOTICE}

This department of QST is conducted as a service to members of the American Radio Relay League. Advertisements can be accepted only under the following conditions.

> il \(\cdots\) Ham Ad advertistig oll be sisented onis irnon members of the smericati Kudio Relay Tetatie. fame of the indivtatuat member or his oticially assigned vall.
> an andy ote mavertisetnent from an individual Ran ment must int excent linf words
> (4) Absertising shati be of nature of interest to fartio manders or experimenters in thetr pursuance of the art.
> (he) six display of any tharacter \(x\) ill be anepieu, wof cab anty typograbhieal arrangemont sheth as all or part navital letters be bised which wimid temi to make one adierrisement atand out from the uthers. (ti) The Nam Au fate is Ti Der wori. Hemit-
\[
\begin{aligned}
& \text { orese }
\end{aligned}
\]

THE life blood of your sot-blate power. Powerful, permanent, itfinikely superior to dry cells, leardacid, Bs, It eliminators. Trouhlafree, cussed, abuse groof, that's an Finison Steel-Alkaline Storage. B-Hattery, Upset electrically wolded pure nickei comnectors insure absolute quiet. Withium-Potassium solution that's no lyef. Complete, knock-down kits, yarts, chargers. Glass tubes, shock-prool jars, peppy clements, pure niekel, anything sou need. No. iz sohid copper enameled permanently perfeet gerial wife \(\$ 1,00,100 \mathrm{It}\), Silicon steel lamingtions for that transformer 15 c lb. Details, fall price list. Frank Murphy, Radio sML. 4837 Rockwood Rd., Clevoland, Ohio.

TO licensed hams only-W \(\$ 2.50\) Aero Kit 88.13 . Ferranti

 \(\$ 7.00\) \$2.50 modern compact is eliminators with Baytheon \(\$ 19.50\). Litest original packages. Disenints an Cardwell type \(F_{i}\) Kiaras. Hammarlund, Amertran, Awro, Jewril, Thordarson, Benjamin, Samson, Perryman. Ward Leonard \(35 / \mathrm{c}\), On Sansamo, Lynch, Daven, Marco, Bodine, Yaxiey, Facent, Ceso tocy, A 11 prepaid. Our weekly data sheets give more dope than all radio maga-
 Over two pounds data sircuits, catalog prepaid gyc. Fred Luther Kline, Fint. Ohio.

PURF aluminum and lead rectifier elements holes drilled

 kad \(\$ \mathrm{~F} .00\) square foot all prepaid. Silicon transformer stex cut to orrier \(014^{\prime \prime} 10 \mathrm{lb}\). 25 c, , \(5 \mathrm{lb}, 30 \mathrm{c}\), less than 5 th. B6e per th., \(02 z^{2 \prime}\) thick 5c less ner lb. gostage extra. Hagewise wound copper ribbon, 7 aizes, see tan. QST. s, zu uare eopper wie better than copper tubing bole lb. postace extra. hir pocket insulators blue plazed porcebain \(8^{\prime \prime}\) leakace path fine for iransmitting, I for \(\$\), 000 prepaid. Geo. Schulg. Cahmet, Michigan.

THE Ensail Radio Laboratory six tube short wave rem TFiver. Range 15 to 210 meters. Inductances. list at \$18.50 with circuit drawing. Operates on loop or outside antenna. Parts list on request. We also are distributors of practically all types of radio apparatus. We also buta transmitters, ficeivers, wavemeters, inductances, etc, Prices on application. We emplov your parts in any mparatus desired. Blue prints and drawinss furnished For any type on rario staion. amateur, broadcast, ont commercial. Special sppargtus eunstructed to order. Quntations on Epplication. Thos. Ensall (8BDN), 1208 Grandivew Ave, Warreti, Ohio,

FFWELL Meters, new, 25\% miscount. We stock Aame, Thordarson. National. Cardweli, Geneval Radio, Nathangel Baldwin. Cramant Lavite, Lynch. Tobe Deutschmann. E. E. It Allen Kradey, Yatey, Philco, Signal, Bakelite,
 Browning-Drake Fleron, Zranston. All-American, Ferranti, Aero Products, Aeme Wire Froducts, Ward Henoard. Wentinghouse, Eby, Vicioreen, Lincoln, Precise, Hammarlund. and many others. Whe allow discounts to Hams, custom set builders and dealers baly. Tell us what wou want. A complete line of Ham and BCL aopuratus. Specializing in the best parts only. No junk. Roy C. Stage, Montgomery 胥 Burt Sts., Syracuse, N. Y.

400 V. 100 W . Esco coupled to 220 V. 3 ph. A C motor 225,00. 1000 V. 300 Watt Eiseo motor 110 V. sinule thase \$95.00. 2000 Y. 1000 Watt Westinghouse domble commutator 20.00 .2500 V . 8 kilowatt (enerstor double commutator, coupled to three phase \(200 \%, 5750\) speed motox, 2500 Volt 600 W. double commutator geñerator sonpled to \(110-220\) V. 60 eycie single phase motor \(\$ 750\) mpecd, Also maty others, imfo Wastern Flectric condensers 5ifc. New \(1 / 4\) H. P. 110 Voit 3500 speed Robbins \& Hyers aiternating eurrent mutors 38.30. Prices fiob, thicaso. James א. Sriat. \(1 \% 4\) Grand Av. Chicago. Ill.

SAVE your hands! Pure gluminum and lead olumentis, complete, holes drilled, sorkws, nuts pair \(1 / 1 \mathbf{6}^{\prime \prime}\), "䒚4"
 phate "bests borax", b0e Ib, prepaid. d. d, damobseth, to0 West 150 St. New York Gity, \(2 A H E\).

RFFORF buying the stuff for that new sed drop us a line for a copy of our new eatalogue. It is pours for the asking. We carry ourything in stock for the short wave transmitter and reneiver. All the wading makes atich as Aem, Cardwell, National, General Kadio Aeme, Thordarson, Jewell, Pyres. Ete., \(1,16^{\prime \prime}\) lead and aluminum, \(\$ 7,00\) per sor. fit. No. it senlid copper chameled wire, is it. No io, 14 e tt. New edition Citizens Radio fall Books mbe. "Enverything for the Ham". "Dunex for DX". KBIN, E. J. Nicholson, 1407 First North St., Syracuse, N. T.

WARGAINS. Esen motor generaior 1 bu wait 10 volt AC to 500 DC , 2 E 5 ; Western Electrin power amplifier. "A, with tubes, 80 ; WE 2A power supply. A \& B, for above with tubes, 25s: Western Eifertrif phonograph fttachment. 522AW, 45 ; Two Pyrex transmitting insulators, \(\$ 1\) eam: two Fieron standofil insulators, gh exth; 100 ft . it etarmalled wire, zaie: UC 1846 10,000 volt double tank con-

 reetiver with two step No. 525 umplifier and tubes, \(\$ 50\), Nayy ON113A recoiver, P00-3000 meters, tio. 2 AHO . W. M. Derrick, So Leqlie Sirect, East Orange, N. J.

MAGNAVOX twe R\% model \(C\) new for only \(\% 12\), Eimer T. Saimina, St. Helena, Calif.

POWER transformers- 100 watt \(350-550\) earh side, 3B, 25. 250 watt \(650-700\) ezeh side situ.00. 700 watt \(10000-1500\) etach side \$14.n\%. Guaranted. COD of eash. 4OES, E. Greben, 1927 8. Peoria, Chicaso, ill.

DODGE Fiqdin Shortkut fixes simnals in mind to surk. Kills hesitation. Gultivates spoed, Broduces resuits. SDRI Hale; long time sped abouc at, Few evanings With Shorikut raised to eh-wassed First Class Siveral trips to West Coast as op on KUP, Now op KMOE ss prefer Atlantic ports. Quarter eogpon and reports progress made by 200 users all licensed. asa, spedimen reports each district on request. Shortkut with appendix and Better Key Work, 2 . 60, U. S. and Ganada, einewhere \(\$ 400\). Regr mail. None CoD. Send money order. Choek may delay. ©. K. Dodze, Mamaroneek, N. X.
TWO and four cylinder casoline powen untus geverating 50 yolts 760 watts DC also 600 watts 500 cycle AO. Motor penerators half to five KW die supply 500 eyrle output. Some for external drive. Nave transmitters from portuble type with power glants to 5 KW . Suitable for ships. expeditions, dic. Sugamn wathour meters designed for battery use 110 . Wavemeters \(\mathbf{2} 5-2500\) \$45.00. Half KW 500 eyele iransformers 12.50. Easily lapped for any volt. age. IIsed SE 1012 receivers \(50-1000\) meters \(\$ 35.00\). ON \(3401.000-10.000\) meters \(\$ 45.60,2.5-360\) folt .08 ampere Weithohouse Dynamotors sisoon. All ex-Nay material. Henry Kienzie, bol Eias 8ith Street, New Kork.
HAMS who want the hest at a fair pefice and quick survo ite will find this a sood place to deal. The following noparatus is a4 gond as new. One eomplete transmitter
 volimever, milimeter, tuneri grid, tuned plate 2 tube it watt self rectified \$75.00. Acme \(11 / \mathrm{H}\) choke wav. dial omnisraph (new \(\$ 16.00\). Acme 000 watt rower transformer inew? \$1f.00. TKCA TLL 1008 OT almost new \%6.00. Complete 50 watt transmitter panel mounted \% meters sobrou. We have it, we rean pet it on it isn't made. William H. Brunt, if Whittier st. Fahway, N. I. SELL low power Hartley
ALL pastpaid. REL transmitting luductances 8 ogo. G.R. shandotys, 15 c . Write for sherifice iist. 9 ABN, hasmond \(W\), Ferry, Jesup. Iowa,
SELL: Acme 600 Fatt power and filament tran*former. Perfect rondition \$z20, F.O.R. 0BUK.
"H" tubes \$17. 203 As \$25.00. Acme 500 watt transformers \(\$ 20.00\). "P", timinator transformers, Jewell meters, fow new "' 8 " tubes and other transmitting parts. Charles J. Heiseri, ES Frances St., Auburn, N. Y.

WAVEMETERS ten fifty prepaid. Amateur bands. William Ford, Eiciorado, Okla.

WANTED-DeForest OT3 radiophone in good condition. Cheap, ©, S. Tunwall, Ft, Dodge, Iowa.

FOR sale- 3000 volt 500 watt Esco like new, \(\$ 150,016\). 2000 volt 2500 MA battery new \$200. or sell 500 volt for \$50. New 204A \(\% 100\). Used 204 850. New 210 s \$5, 0 to 500 MA meters 5500 MA meters 85.00 . 0 to 15 voltmeters AC ti, Transformers any sive. H. O. Barton. \(8 \mathrm{IH}, \mathrm{E}\) eroy, N. \({ }^{2}\).

SELL \(\$ 500\) worth of new radio parts, sels, tubes at over boch discount. Write for list. Jack Hunt, 3112 WoolForth Ave., Omaha, Nebr.

100-50 or 80 Henry ehokes 125 MA 85.75 . 50 OH w. 2 OH
 110 volt transformers. 420 and 6 V midtaps \(\$ 4.00\). 550
 voltmeter \$4, (10, All parts to make TX 213 diminator \$12.60. Write for lists. M. Leiteh, lark Drive. West Orange, N. I.

WANT- 2,350 or \(12 / 500\) dynamotor, prefer Westinghouse. Stale price and condition. M. Kramer, Tabor, G. D.
 hundred. white cards \(\$ 1.00\). Real ham stationery at \$1.40 per hundred sheets and envelopes, baid form. Hostage toc. Free samples. SDTY, 257 Parkpr Ave, Buffalo. N. Y
"S" 'RUBES-par latesh pye, used 12 hours, \$11.00 wach; 500 watt Acme plate transformer, munter, WE bo watter, \$15.60, Everything suaranteg \(O\). \(K\). All letters answered. Ar L. MicCauley, 262 Gartield Ave.. Battle Creek, Mich.
AERO short wave kits, complete thres tubes, nothing else to buy, \(\$ 40.75\). Aero short, wave coil kit. \(\$ 9.50\). Marco Growning \(\&\) Drake fits, \(\$ 45.50\) Prepaid. Quality parts only. Write for description. Lowell Mast, 615 S. Clinton St., South Kend, Indiana-
BARGAIN-Westinghouse 110 Ad motor rougled 500 volt DC Renerator. Like new. Alsn 20 watt transmitter camplete. Edward Fernandez. co Acme Apparatus Co., 231 West 29th St., New Y"urk City.
PAKTS und supplies for Edison element storage " \(B\) ". batteries in stock for immediate shipment. "Ype " \(A\) ", miements with wolded connecter, 5p per yair. Type 3-G, be. Type E-G, 8000 Milli-amp caparity, fe. twodrators free with all elements, "f " \(6^{*}\) tubes, su. \(1 \times 0^{\circ}\), te No. 20 pure nickel wire, ic per ft. No. i8, iNe, Potashhithium for making 5 Jbs. Edison solution, 85c. Spevials. 100 volt Type \(8-6\) unit. complete, \(\$ 3.50 .140\) volt. \& 11.00 . 140 volt \(\mathrm{Jyp} 5-8,3000 \mathrm{MA}\), stee case, cumplete, \$16.00. All prices are F. O. B. Philadelphia. J. Zied, 514 N. 5th St., Philadelphia, Pa,
EDISON " \(B^{*}\) battery parts 310 volt knocked down unit \$R.75, 140 voit \(\$ 11,00\). Large size elements connectent \(\xi\) cents per pair. All parts carried in stock. Send for booklet. M. Rhine. 146 West 6xth St., New York City. WANTED JPis68 Radio Corporation transformer. A. R. Teleke, Jhekson. Mo.

TRADF: Colt 92 atumatie, new; soprano Saxophone and clarinet for transmitting or receiving apparatus. Is Trimble, zeve Fleteher St., Chicago, Ill.
POWER transformers-for ".5 watters, flament-7.5V., Plate-600V., center-lapped- 65.97 . For fifties, Filament -12V. Plate- 1100 V , center-tapped, 89.00 . Milliammeters
 Transmitting Inductances, Kakelite throughout, for any hand-mingle units- \({ }^{0} 50\), Double units with wlass coupling rod, and clips- 7 :00. Rectifier elements, aluminum,
 meters, 17-160 metera, pomplete 84.00 . QSL cards, Two colors, bighest quality, \(\$ 1\) per 100 . Free samples. Fostcard brings Complete Radio Catalogue. Terms-Cash or G. O. D. William Green, 207 Gathedral Parkway N.Y. C . MMNIGRAPHS, teleplexes. natrometers, transmitters. chokes, meters, transformers, 60 watters. 210 s S. tubes. motor senerators, symes, wswemeters. reeeivers-hought, sid, exchanged, Li, Ryan, GCNS. Hannibal. Mo.
-AQO-8XH wellng out. Keason WSYR One 600 volt nKw 240 eycle Fick Motor-Generathr, 110 rolt or helt drive, One 500 cycle Telefunken Type Crocker-Wheeler With 110 volt motor. 3 Kw t10 volt Deleo. RCA UV206

1Kw Trabe used not over ten hours. RAlo, CR1s, and big list receivers, amplifiers and parts. Must have cash. no reasonable offer refused. Make offer or send for list. Glive B. Meredith, Caxenovia, N. X.
HAWLEY Edison element battery and parts standard for over five jeats, Look at our patemt panding eonmec-tor-no thin wire to drop off-wntains 80 times more metal than regularly used. Heavy shock proof eells. fibre holders, etc. Everything for a rapid-fire "B" supply, Complete assembled 100 volt " \(\beta^{\prime \prime}\) " 10.00 . Enockdown kits at still lower prices, Chargers that will charge in series up to 160 volts \(\$ 2.75\) to \(\$ 4.00\). Trickle B Charger for 90 to \(\$ 50\) volt "B" \$5.75. Special transmitter " \(B\) " batteries up to 6,000 milli-amp capacity, any voltage, Write for interesting literature, testimonials, cte. B. Hawley Smith. 3bib Washington Ave., Danbury, Conn.

9LD's new Amateur Thductances roing over bix. See dune, July gst display, also this issue. Our No. 20 Standooff Insulator (June GST, p89) is only ade and better than others like it; New 800 watt innut De-Forest; chort wave tube, type \(R\). \(\$ 35.00\); Very special double apaced condensens approximately 175 mmf . 3000 volts, ery rigid construction, \(\$ 1.50\) : New sizes edeewise copper
 Se: Don't forcet the famous iree "tamalog," the first and still the best "Ham Cetalog." E', \(\mathrm{F}^{*}\), Johnson. GALD, Waseca, Minn.

QSL hams: Bighest quality, neat and reasonable. Samples on request. Radio \(1 N Q\), 206 Metropolitan Ave., Roslinciale, Mass.
275 VOLT de generators fine for phone, \(\$ \beta_{*} 200\) watit 500 crele alternators \(\$ 10,2\) phase 2 hp motor \(\$ 40\). 500 cricle motor seavators 120 volt de drive \(z_{2}\) and i kw. New, Send stamp for list. R. Wood, \(46-20\) 102nd St., Corona. N. Y.

CURTIS-Grifith s50-watt power-flament transformers \(350-550\) each side \(\$ 12.50\). Thordarson power-filament transformers for 7.5 -watters 86.90 . Thordarson fower \{ransformers \(350-550\) each side 511.00 ; 1000-1500 eath side gi6.00. Fidgewound Inductance G-jnoh turn les ; A-inch luc. Aluminum natuare foot \(85 c\) : lead square foot she. 30-henry 150 -milliamperes ehokes \$12.00. "HamKist* 4e. James Kadio Curtis, 5-A-Q-C, 1109 Efighth Avetue, Horth Worth, Texas.
HEADQUARTERS for Hams:- Immediate veliveries on Mueller 150 -watt input tubes \$15.go. RCA 5 -watters \$2.15. Tobe 5-MFD 200 -volt Condensers \$13.75, Aerovox \(1-\mathrm{MFD}\) 1500-volt trated condensers \(\$ 1.75\). i5-dial (Imnigrafhs \$25.00. "Ham-List" 4 C . Romanyel Curtis, 1109 Eighth Avetue, Forth Worth, Texas.
FOR sale: Two DeForest "H" tubes in original eartons. Q12bu esch. Want motor yeherator or yemerator thousand or fifteen hundred volts. Radio 9AHG, R. E. bavis, Concordia, Kansas.
HI. fellows ! Enter amateur radio via. moderately priced shurt wave receiver, fransmitter, wavemeter, etc., a station of which you may justly be proud, equipped thrit Roger Curran, Dundee, N. Y.
POSTPADD and guaranted brand new, R. E. L. gransmitting Inductances, double mit, with glass coupling ruds and clips, \$8.90. Single, \$4.85. R, E. L. mountings For "H" Tubes, E1.89, R, E. L. 00 watt sockets, \(\$ 1.89\). R. E. L. Radio Frequency chokes, \(\$ 1.0 U_{2}\) R. E. L. Short Wave Coil Kits, \(\$ 3.75\). Allen-Bradley "Radiostats," the big Primary rneostat, \$6. Allen-Bradley \({ }^{2 \pi} \mathrm{kadio}\) teaks," gotor-30,000 ohm variable transmitting grid leaks. \%4.89. General Radio Wavemeters, Type \$58, \(\$ 19.25\). 3HMS, G. F. Hall, 535 West Hortter st., Philadelphia, Pa.
AERO coil transmitter \(11 \times 19\) panel, a meters, variable srid leak, Prrex insulated condensers, sub panel, etc. for b or 50 watta, \(\$ 87.00\). 1000 Westinghouse 0-800 flush mount milliammeters, ac or de. Can be used as hlament. yoltmeter if series resistance is used. Complete with dope \(\$ 1.25\) each. \(H\) tube used 10 hours. \&15, F. Hufnagel, 879 S. 18 th St. Newark, N. J.
HAMS: Here's what sonve been looking for and couldn't get. Neon tubes, the tube with the loo0 uses. These are all ultra-sensitive, all new and suaranteed. For wavemeters, oscillators, and for finding stray RF shywhere. Complete dope with each ote. Only she tach. The ehance of a lifetime. Special prices of duanlity omders. We are also in a position to quote on different types sind sizes of Neon or saseous tubes for special purposes. This is the first time Neon tubes have been offered for sale to amateurs, so don't delay. Act row. Please inclose postage. G. Lang, 20 Hillside Ave., Newark. N. 7.

SLLL－Panel transmitter amplete with \(H\) tube and Fenetrons．Radio IIV， 66 Vine Si．，Bridgeport，Con－ neeticut．
DOUD Speaker Inits Rewound and magnets recharyed， \＄3．24 hrs．service Henry Wagner，East Chicago．In－ diana．
BEN has it．Hoyt axinch panel meters 8 －qoit \(\mathrm{D}_{0}\) ．． Se．en： 0 to 10 volt A．C．Hoyt． 4,75 ： 8 inch Electros Insuiators， 25 e ：is－inch Electros Insulators，Eioc：Atlas unjustable speakers， \(82.75 ; 48,000 \mathrm{ohm}\) Lavite Resistors， \＄1．50：Yernier dials，品化，Hams，write for all your needs． EEL，Vibroplex．Weston Jewell，and all other sood ap－ paratus at apecial prices．Ben Wolf，zest Tremont street．Boston．Mass．

\section*{Q R A SECTION}
soc straight with copy in following address form only ：
AOZ－Woodrow Darrow，Waterford，Conn．
MKH－George w．Bailey，Webster Rod，Wertoll．Mass， ILU－－Herman Sanborn，Beacon St．，Shrewsbury，Mass． 2BUH－A．S．Harrison， 2.29 Arlington Ave．，Browlyn， N．Y．
acy－d．M．Howeth，Tilghman，Maryiand．
TG－William K ．Chapman， 205 East High st．，Char－ lottesville，Va．
3hP－482\％N．W．Lnth Bi．．Washington，D．©． 4DP－ly Weat 4th st．．Atanta，la，

5AFL－d．W．Hudyins．lu4 Oakwood Are，Huntsville． Alabama．
SCUH－Charles Perrine，dr．， 40 Zist．St．，Hermosa Beach， dalif．
\(601 G=100\) ，Buwers．Bax 83，EI Centro．Californit．
हSM－4．E．Ekdale． 159 b．Eil Molino Ave，Pasadena， Calif．
WAG＝German Lord，R．E．D．No．1，Colegrove，Pennsyi－ yania．
DDBE－Eari Futscher，Box 225，Larimer，Punn．
MATI－F＇rancis Walton，Browning，III．
BBLV－Ralph E．Sturm، 216 West Sixth Wt．，Basper， inciana．
oDGL－John J．Knapik， 748 So．Recine Ave．Chicago， 811.

GEBF－Guy C．Omer，ir．， 1222 Broadway，Goodland， Kans．
netub－burt Wilson， \(1: 13\) Toronto Ste，Fegina，Sask．， Canada．
nedit－A．H．Aemussen， 10723 lilth Ave．，Kdmonton， Alta．，Canada．
ne \(\mathrm{H}_{\mathrm{H}} \mathrm{M}-\mathrm{C}\) ，H，Harris， 20806 125th St．，Edmonton，Alta．， Сапида．
nestaj－Rritish Columbia Amateur Radio Ass＇n．（Inc．）

GañY－Doug，k．Whitburn．Bux 920，G．P．O．Adelaide． South Australia．

The following stations beiong to members of the A．R．R．L Headquarters gang，Mail tor them should be aridressed care A．R．R．L．，Hartiord，Conn．When oper－ ating MK they nse personal sines as indicated．

IMK Headquarters
AL H．P．Westman＂TWS＂ 1 ES A．A．Hebert＂ain＂
BAOO R．Kruse＂lo＂ 160 L A．Jones＂li＂
BDI F，E Handy＂fh＂ 1 KP ＂ F ．C．Beek ley，＂bewk＂
＂RHW K．B．Warner＂th＂ioA R．S．Kruse＂lq＂
IBUD A．L．Budlong＂bud＂1SZ C．C．Rodimon＂er＂ ave \(u\) ordered ur copy of

\section*{published ay} AMERICAN PADFO RELAY LEAGUI 371 PARKSE，HARTFORD COMN

\section*{FOR YOUR CONVENIENCE QST＇S INDEX OF ADVER－ TISERS IN THIS ISSUE}

\author{
Smme sifise Gumpany
}

73． 96
Axca Pratucts．ine．
Acropas Direless Gorporation
American Fajes tompany ．．．．
American fransformer fompan
7
9

A．Ex．E．L．Aopiteation Elank
S4． Fi

A．F． E L．Entitem

76． 27

A．R．R．t．Ifanabook 80），84，
Aurients，Itres Ah． \(\qquad\)
Brouning－Drake Corporation \％th mover
Burgess Battery fompany
Burton－Hugers Company 80

Masisy Kadio Company
Q E．Ntg．company
Cettral Radin Labos．
Chicago tiadto Apoaratus co．
Grescadia Gomorattion
Erosley Hadio Forporntion
Culvet Aliltary beademy
Eunningham；finc．．F．Th．
Eussen，A，\(F\) ．
Toutchmann Company，Tobe
Dongan Fiertric Nrge Bo．
Dudlo Nitg Gerporation
batsern Radion Institute
Whertrad Lum
Weotrie Spocialts（ia．
Flkon tyorks，The，
Frathreet Producls En．
Generil Radio Company
Grobe a：Cimpany，\＆．H
Grigshy－Grumox－Hinas fo．
Gross ex company，妾．
Gulf Radio
Thelimon hadio Enniensen corp，
Jetwej titectrical Instrument in，
Tobnson Bompariy，TF F
Heatin Radio lompany
Warlo Delectrle Bompany
Massachosetts Radio \＆Telearaph ruhuol
Sistionei Company
Fagent Electric Fompant
Parmater Promiucts ampany
gist Bound Volumes
kadio Fiogineering Labs．
Rertitier Gopineerting sempiro
Bolentifte Radio service
Geatice Badio Lab．
Sturre Kadio Company
Gierling Irfg，Gompany

Teleplex Company
Thordarson Eiectrie Ifg．Sompany
1．B．Astral Institute
rtility Tadio Company
Fibroplex Bothpany
Vestun Fifotrinal insimment liom．
Whiresa inpecialty Inparatime Combaity
Fi．t．Rublo Tatos
Tasley Mig．Vompany

\title{
The Logical Source of Supply For Magnet Wire and Coils
}

\section*{The plain facts are that Dudlo resources, products and service make Dudlo the logical source of supply}

First: Volume. Volume reflects the ability to supply quantity on short notice. It also reffects organization, facilities, financial strength and popularity of product.

Second: Bxperience. The combined experience of Dudlo magnet wire and coll experts affords resources that are not duplicated.

Third: Engineering Facilities. The Dudlo engineering staff and experimental laboratories offer buyers an expert Free service. They function as if they were a part of the buyer's own organization.

Fourth: Location. Fort Wayne is centrally located on trunk line railroads. With private side tracks directly connecting, unsurpassed shipping facilities are made possible.

Fifth: Branch Offices. Branch offices and warehouses at Newark, Chicago, St. Louis, San Prancisco and other points, are prepared to efficiently serve those nearer to them than to the Fort Wayne factory.

Sixth: Service. First, last, and always, the whole Dudlo organization is geared to and revolves around a service that leaves no loop hole for other than complete and uninterrupted satisfaction.

DUDLO MANUFACTURING CORPORATION, FORT WAYNE, IND.

4153 BINGHAM AVE. ST. LOUIS, MO.

\section*{A A NEW WAVEMETER!}

Masterful precision and efficiency are attained with REL's new, greatly improved wavemeter. The Type " \(B\) " is constructed in two sizes; low wave 10-110 meters with two coils or high wave \(100-600\) meters with two coils. Accurate to \(1 / 2\) of \(1 \%\), crystal calibrated. They are supplied with large curve sheets for easy reading. Eight inch extension handles elmiminate body capacity. Dial readings can be taken accurately to \(1 / 10\) of 1 degree. Coils are wound in grooved bakelite and the cabinets are of heavy mahogany, finished in walnut.
Catalog No. 142 - Price \(\$ 65.00\)

\section*{This Transmitting Kit-}
is a quartz crystal oscillator with a one stage amplifier. It should fill the demand for a good crystal oscillator and first amplifier. Can be directly coupled to the antenna or cise fed into another amplifier which uses a more powerful tube or it can be coupled to your present set. Crystals are not supplied.
This kit is the basis for all crystal controlled transmitters. Its use will assure correct results with a minimum amount of experimentation.

Catalog No. 144 Price \(\$ 65.00\)
Complete Kit is Specified

Sewd now, only 25 e in currency or a M. O. for your copy of the REL catalog. It contains what you want to read -. full and complete info on S. W, And it's leept up to date by the issuance of regular builetin sheets.

\section*{Radio Engineering Laboratories} (RE) 100 Wilbur Avenue, Long Island City, N. Y.

\section*{last} day

Fyen if you are already a member of the League and a subscriber to Q \(T\), you may take advantage of this offer. Simply mention that fact and instead of etiterng it as a new subscription we will extend your present subscription for another year.

The American Radio Relay League 1711 Park Street, Hartford, Conn.

\section*{Inside Information}

Inner seal cementing cells into a solid block

One piece, drawn. seamless zinc can

Moisture-proof cell wrapper

Black and white striped water-proof container

Re-inforcing strip in top seal```

[^0]: w2EB, Consulting Engineer, Jumaica, L, I., N. Y. \dagger Technical Editor, gST.

[^1]: *Radio Department, Hartford Times, Hartiord, Conn., also 10X, same address.

[^2]: 1. Naturally when the antenna is put on, the amplifier seems to become somewhat noisy becanse nopise is now being jed info it. Isually the noise is not nearly as strong as the signal-frequently there is practically no noise at all. Ampiification is then very much worth while. It is a very rare thing to find stations like 2FZ or old $1 \times M$ where there is a constant tremendous noisy background and the whly hope is to use a stage of distortion audio to get the signal up a bit without bringing too much of the mess along. If all of ws were so situated there would be no A.R.R.L.-Tech. Ed.
[^3]: *Tuinucu Sugar Co, Tuinucu, Cuba.
 Assistant Technical Editor, QST

[^4]: h. It would atem to be more deshrabie io modulate in the first amplifier plate arcuit. When modalating in the cryatai tube preuit the arystal will tend to ikon out all modulation. This is due to the last that the mechanical inertin of the crystal will cause it to nbsorb or give oni eneroy in ocder to theef the dutput constant and this is one of the rehm sons for getting a d.e. output from a poorly filtered plate supply,-Asst. Tech. Ed.

[^5]: *1ANA, Maxim Silencer Co., Capitol Blds, Harttord. Conn.

 1. This very vital point is usually overlooked entirely; if an amplifier amplifies the owner assumes that it is good. Very soon after he is oured of this belief by finding that the thing is absolutely worthless and a nuisance if there in any ansiderable interaction between the tuned circuits.-Tech. Nd.
