 Editorial Office: 35-43 Clarence Street, Sydney.

Telephone: 292006
Editor:
JOERN BORK
All rights reserved by Mullard-Australia Pty. Ltd., Sydney. Information given in this publication does not imply a ticence under any patent. Original articles or illustrations reproduced in whole or in part must be accompanied by full acknowledgement: Mullard Outlook, Australian Edition.

Outlook Reference Number
Mitchell Library, Sydney, N.S.W. $\frac{\text { Q } 621.3805}{1}$

TABLE OF CONTENTS

Editorial	26
Viewpoint with Mullard	27
Mini Speaker Units	28
Piezoxide, a New Ceramic Material	29
Ferroxcube Toroids	30
Three Watt Transistor Stereo Amplifier	34
New Publication, Zener Diodes	35
Microcircuit Production	36
Bridge Rectifiers-BYI22 and BYI23	36

High voltage is developed when pressure is exerted by way of the jaws onto the two cylinders of Piezoxide. These cylinders are mechanically in series and electrically in parallel: the high energy discharge voltage thus obtained, visible between the sharp tip of the adjustable screw and the metal ring, may well serve to ignite gases, fire explosives or be used for high sensitivity industrial transducers. The properties of Piezoxide, a new ceramic material introduced by Mullard, are discussed on Page 29.

MULLARD-AUSTRALIA PTY. LTD.
35-43 CLARENCE STREET, SYDNEY
Phone: 292006
123-129 VICTORIA PDE., COLLINGWOOD, N. 5 VICTORIA
Phone: 416644
Associated with
MULLARD LTD., LONDON

PRESSURE

In basic electrical theory, voltage has almost invariably been described as pressure and as the wondrous simplicity of Ohm's Law unfolded it sparked the ambition, the enthusiasm and study tenacity for many trainee engineers. The analogy of pressure and small pipes, pressure in boilers, pressure and insulation breakdown, all left their mark.

The device shown on the front cover that looks like a cross between a praying mantis* and an emasculator is the classic relationship of pressure and voltage- 5,000 to 10,000 of it!

Something that would have shattered the alchemists, St. Elmo, the Devil himself and all the witches on Walpurgisnacht; far removed from the mundane stroking of a cat's fur, briskly rubbing amber on a dry cloth and their modern counterpart, the electrostatic discharges on removing a terylene shirt.

We are serious about Piezoxide-please join us on Page 29.

THE GOLDEN ACCOLADE

With great pleasure and humility we salute and say thank you to our good friends Martin de Launay Pty. Limited, our New South Wales distributors for as long as most remember. Achievement enough- 50 years of growth, strength, durability and service, may this continue and a little of its inherent respect and stability rub off on the Industry.
M.A.B.

* Mantidae, orthodera ministralis.

MULLARD DISTRIBUTORS

New South Wales	Queens/and	Tasmania
Martin de Launay Pty. Lłd. Cnr. Druitt \& Clarence Sts., Sydney. Phone: 295834	C. A. Pearce \& Co. Pty. Ltd. 33 Bowen Street, Brisbane. Phone: 28746	Medhursts Wholesale Ltd. 163 Collins Street, Hobart. Phone: 22911
Cnr. King \& Darby Streets,	South Australia	136 Wellington Street,
Newcastle. Phone: 24741 270 Keira St., Wollongong. Phone: 26020	Telcon Australia Pty. Ltd. 266-270 Sturt Street, Adelaide. Phone: 51 6341	Launceston. Phone: 22091 106 Wilson Street, Burnie. Phone: 1919
21 Bayliss Street, Wagga. Phone: 4644 Vic!oria	Western Australia Tedco Pty. Ltd. 579 Murray Street, Perth. Phone: 212561	Special Representative for A.C.T.
Carnegie (Australia) Pty.	Papua-New Guinea	George Brown \& Co. Pty.
L+d. Vere Street, Richmond. Phone: 42 2781	Amalgamated Electronics Pty. Ltd. Port Moresby. Phone: 5385	L+d. 23-25 Whyalla Street, Fyshwick. Phone: 90455

VIEWPOINT WITH MULLARD

50 YEARS OF SERVICE

May 16th, 1966 was the Golden Anniversary of our New South Wales distributors Martin de Launay Pty. Limited and we are glad in this issue to pay tribute to their progress, their support and their cont ribution to electrical and electronic goods merchandising in this State.

On this anniversary occasion, the Martin de Launay Managing Director, Eric Reeve, modestly stated: "For 50 years Martin de Launay has concentrated all its energy on

Eric Reeve,
Managing Director

George Mitchell, General Manager \& Director
giving service second to none, as we believe that this commodity is one that is all important to our customers. Although it is an intangible, we know that it is in fact the concrete foundation of our business.
"We are able to give this service because our staff operates as a team. Most of us have served Martin de Launay and the trade together for a very long period; 20 years service with the company being commonplace among our executive staff.
"It is to the team spirit and loyalty of our senior staff that we owe a great deal of our success."

With branches now in Sydney, Newcastle, Wollongong and Wagga, Mr. Reeve pointed out that promptness and thorough supervision of all orders was the keynote of their business, ably administered by General Manager and Director George Mitchell, Bob Broughton, Director and Manager Newcastle, Jack Muldoon, Wollongong and Jack Boomer, Wagga.

A very human feature of their achievement is the extremely long periods of unbroken service by their employees which only reflects continuity of customer relationships and the detailed knowledge of customer needs, looking both ways-to their customers and to the companies they represent.

For us it has been a most happy relationship, almost of one family with a subtle

Neville Mills, Western
Representative

Jeff Rutledge,
South-West South-West
Representative
difference in that we are given our relations but are allowed to choose our friends. In this merchandising field, if the distribution is worth anything and likewise the distributor, the outcome is a strong team with a great measure of loyalty and a mutually instinctive feeling towards sales presentation and growth-and self-defence. With this understanding there develops trust of the individual and the product for the true wholesaler and distributor is not an indent or commission agent, but a partner who undertakes to distribute the manufacturer's goods, has confidence selling them and sells them from the bulk stock he carries. Martin de Launay is a fine example of a

"Bob" Broughton, Director \& Manager, Newcastle - Nowation wholesaler-distributor fulfilling its true purpose, and in this case, with good business economies and a tenacious determination.

50 years of successful trading and cautious expansion reflects confidence and stability and such organisations in turn subconsciously inject something back into the Industry, if even for the privilege of taking something out!

It was with much regret that we learned a few weeks ago of the sudden passing of co-founder Mr. E. A. de Launay in his 82 nd year, indeed within a week of this 50 year anniversary. He could be justly proud of the business that he started and the fellows who have followed, the late Frank Heskett, and as stated elsewhere: "The sturdy belief in the need of wholesaler service impregnates the whole of Martin de Launay policy, has done so throughout 50 years and will continue to do so as long as

Neville Piper,
Metropolitan
Representative

Dick Whittington, Metropolitan
Representative

Jack Muldoon, Manager, Wollongong Branch

Denny Fitzgerald, Tech. Rep., Newcastle Branch \& Nn. N.S.W.

Bill Devey,
Technical Sales,
Newcastle Branch

Eric Beames,
Section Manager,
Country Orders

Jack Boomer, Manager, Wagga Branch

Dennis Woolgar, Purchasing Officer

Don Lindsay,
Representative, ewcastle \& Nn. Coalfields

Laurie Nagle, Radio, TV \& Elect. Sales Supervisor
men like Eric Reeve and George Mitchell are at the helm, and the staff continues to have every faith in that belief."

MULLARD MINI SPEAKER UNITS A DESIGN FOR SMALL LOUDSPEAKER HOUSINGS

High fidelity sound reproduction is a field where subjective evaluation plays a large part in forming an opinion and equally there is a considerable margin for differences of opinion. The Mullard Mini Loudspeaker Box however was without exception praised by even the most devoted audio enthusiasts for its smoothness over the whole frequency spectrum and the broad sound dispersion factor as well as its compact physical size and form factor.

Mitred Corner Lock and Colan Cloth

The frequency response curve shown below is an improved version of the one discussed in Outlook Volume 9, No. 2, Page 16. The improved response is due to a special mitred corner lock which was used on the initial pre-production batch and which considerably stiffens the loudspeaker box, thereby avoiding unwanted resonances and equalizing the response curve. When examining the improved response curve it will be noticed that the high frequency end is considerably extended, and this is largely due to the acoustically transparent speaker cloth material used. This cloth is manufactured by:

```
        Tygan (Aust.) Pty. Ltd.,
    2 Donald St.,
    Guildford, N.S.W
```

and distributed under the trade name
"Colan" by major electronic parts distributors throughout Australia. It is available in a range of colours and designs to enable most decors to be matched. Approved Type numbers are: AP 337 (plain dark brown); AP 334 (brown/beige check weave); TS 5394 (cream/brown mini-check weave).

Damping and Filling

During evaluation tests it was found that the overall frequency response curve could be evened out somewhat by increasing the size of the "Innerbond" material used to $17^{\prime \prime} \times 8^{\prime \prime}$ and affixing it to the front panel of the speaker unit as shown in the picture. The "Innerbond" material may be fastened to the timber by gluing or stapling, ensuring that the vent is left unobstructed as shown.

Method of affixing "Innerbond" to the front panel of the unit by either gluing or stapling. One corner of the "Innerbond" padding is lifted temporarily to show part of the $6 W R$ speaker. NOTE: The vent should NOT be covered.

The "Innerbond" used with initial prototypes was the $16 \mathrm{oz} / \mathrm{sq}$. yd. $1^{\prime \prime}$ thick \rightarrow Page 36

FREQUENCY
This response curve of the improved Mullard Mini Speaker unit as discussed was measured with the microphone on the tweeter axis $18^{\prime \prime}$ away from the front of the enclosure.

Prototypes of the enclosure, available from suppliers tabulated below, following the outline drawing published in OUTLOOK Volume 9 , No. 2, Page 17, incorporafing the mitred corner lock as discussed.

COMMERCIALLY AVAILABLE MULLARD MINI SPEAKER UNITS

STOP PRESS: As this issue goes to press it is brought to our notice that the Mullard Mini Speaker Units are already being made available commercially as shown below. Several exterior treatments are available, such as maple or walnut veneer polished finish or for a slight extra charge teak veneer oiled finish.
E. W. Goulding Pty. Ltd.

433 Liverpool Rd.,
Ashfield, N.S.W.

Loudspeaker housing only (For Loudspeakers see Magnavox)

Magnavox (Aust.) Pty. Ltd.
6-8 O'Riordan St.,
Alexandria, N.S.W.

> (or their distributors.)
-
6WR and 3TC Mark II Loudspeakers

Classic Radio Service,

245 Parramatta Rd. Haberfield, N.S.W.

Mini Speaker Units completely assembled and tested with crossover capacitor and back cover sealed into place.
T.O.S.C.A.

Electronic Sales \& Rentals, 180 Lyons Rd.,
Drummoyne, N.S.W.
Mini Speaker Units completely assembled and tested with crossover capacitor and back cover sealed into place.

CERAMIC PIEZOELECTRIC MATERIAL 'PIEZOXIDE'

Abstract

When certain materials are subjected to electrical stresses, related mechanical stresses will occur in the material. Conversely, mechanical stresses applied to the material will generate related electrical stresses. This phenomenon is termed the piezoelectric effect. - Piezoelectricity occurs in various natural crystalline materials, but a new fabricated ceramic material which exhibits the same effect has now been introduced by Mullard. This new material-Piezoxide-is based mainly on lead zirconate-titanate. • Piezoxide combines high permittivity, a high coupling factor and good mechanical strength. It is available in four grades which cover applications as varied as ultrasonic generators, ignition systems, filter networks and gramophone pick-up elements.

Piezoelectricity is observed in various ferroelectric crystals and polycrystalline materials which have non-centrosymmetrical properties. It is 'pressure' electricity and thus it is found that when electrically polar materials are geometrically deformed by mechanical pressures, then charges of opposite signs are developed on their parallel surfaces. Moreover, it is found that if an element is strained only within its elastic limit, then the magnitude of the charge densities obtained is directly proportional to the applied mechanical stress.

The piezoelectric effect was predicted and shown experimentally by Pierre and Jacques Curie in 1880. It was also shown, just a year later, that when an electric field was applied to an element between its opposite surfaces, then the boundaries were geometrically displaced. So piezoelectricity is dual in the sense that it is 'caused' either by electrical or mechanical stresses which 'effect' either mechanical or electrical displacements respectively. The interaction of the elastic and electrical properties of ferroelectric materials within a single element provides a simple and convenient method of obtaining electro-mechanical and mechanoelectrical energy transformations which are analogous to 'motor' and 'generator' actions respectively. Early practical applications of piezoelectricity with natural and watersoluble crystals were necessarily limited by the difficulties in matching the intrinsic fixed properties of these materials with those the designer needs for a particular device. Electrical ceramic techniques have, however, produced several interesting ferroelectric materials with pronounced electrostrictive properties. These materials have large values of remanent polarisation and may be permanently polarised. In this state, their behaviour resembles that of a piezoelectric crystal and therefore, by analogy, they are usually referred to as piezoelectric. The range of ceramic piezoelectric materials introduced by Mullard is known also as 'Piezoxide'.

Because of the ceramic nature of these materials, elements may be pre-shaped and their piezoelectric properties may be formed and controlled during the manufacturing process. This now provides the device designer with a certain freedom of choice for the element shape and its properties for a particular device requirement. A nonpolar and unstressed element of these materials has isotropic properties, and the crystallographic reference axes may be chosen freely. They exhibit piezoelectricity only when polarised, the direction of polarisation also being chosen freely and made permanent in the process.

Piezoxide Materials and Grades

Piezoxide materials are composed of polycrystalline chemical compounds having the general formula ABO_{3}, where A and B may be cations such as $\mathrm{Ba}, \mathrm{Pb}, \mathrm{Zr}, \mathrm{Ti}$; specific examples are BaTiO_{3} or the solid solutions of $\mathrm{Pb}(\mathrm{Ti}, \mathrm{Zr}) \mathrm{O}_{3}$. These materials stem from the family of chemical compounds with perovskite-type structures which have continuous ranges of composition and in which a number of different crystal phases may occur either with ferroelectric or antiferroelectric properties. Modified forms of these materials are used which may be derived by small atomic disturbances, displacements or substitutions to obtain the permanent ferroelectric phase condition in which the material will be useful for piezoelectric applications.

Physically, Piezoxide is a hard whitishbrown non-porous material of a ceramic nature, chemically inert and unaffected by humidity or other atmospheric conditions. It has mechanical properties similar to the more common insulation ceramics, and the manufacturing process is not unlike the preparation of these although more careful control is taken in the formation of the electrical properties. Piezoxide is not easily broken but it should be handled with some care. These materials are, however, extremely 'stiff'; that is, they are capable of exerting or sustaining very large forces.

A wide range of material properties is required to give complete coverage for all applications, and four grades are introduced, each having characteristics suitable for particular applications.

PXE 1

Grade PXE 1 is a material developed for transducer applications operating at mechanical resonance such as ultrasonic power transducers or narrow-band filters. It has a high mechanical Q-factor but a fairly low coupling factor.

PXE 3

Grade PXE 3 has a high sensitivity for mechano-electrical conversions, as shown by its high piezoelectric voltage constant. It is therefore suitable for ignition and delay-line applications. It has a low dielectric constant.

PXE 4

Grade PXE 4 is most suitable for highquality resonance applications such as those described for PXE 1; that is, for power electro-mechanical transducers. Its sensitivity and operating temperature range are greater than those of PXE 1.

PXE 5
Grade PXE 5 has a low mechanical Q-factor and high sensitivity and dielectric constant. It is therefore ideal for all nonresonance applications such as pick-up elements, feedback plates and ignition applications.

Piezoxide and Piezoelectricity

Piezoxide materials are polycrystalline dielectric materials which before they have been made electrically polar or are mechanically stressed have properties which are isotropic. A Piezoxide element is formed from smaller crystallites and each of these may be considered to consist of permanent electrostatic dipoles. The orientations of these dipoles can be displaced when they are placed in an electric field. A field increasing in the opposite sense to that of the dipole will give a reversal of the dipole at some value of the field strength, and a hysteresis effect may be obtained in this way. This dielectric hysteresis effect implies that the material has spontaneous polarisation or a dipole moment per unit volume. These materials are called ferroelectric materials since the dielectric hysteresis (Fig. 1) is analogous to magnetic hysteresis and the spontaneous polarisation corresponds to the intrinsic magnetisation of a ferromagnetic material. Within an isotropic element, the orientations and magnitudes of all its constituent dipoles are such that

Fig. 1-Hysteresis Effect
the total net dipole moment is zero. During the manufacture of Piezoxide, the material is cooled from above its Curie temperature in a strong electric field. The dipoles
\rightarrow Page 32

MULLARD RANGE OF

The response to the article entitled "Ferroxcube" Toro necessary a more comprehensive tabulation. - Ferroxcube for inductors and transformers. Mullard Ferroxcube materi Zinc Ferrites and Nickel Zinc Ferrites, and depending on different frequencies. - Important parameters for design and tolerances. More detailed information on Ferroxcu may be found in Vol. 6 of the Mullard Technical Mullard offices throughout Australia is always available

Please Note: Most toroids may be obtained coated or uncoated

Type Number		Size	Minimum Apparent Permeability	Maximum Number of Turns per 1 mH	Maximum Residual plus Eddy Current Dissipation Factor	Minimum Saturation Magnetization		Measuring Frequency	$\Sigma(1 / \mathrm{A})$	Effective Magnetic Path Length
Uncoated	Coated									
-	-	(mm)	(μ_{a})	α	$\left(\frac{\tan \delta_{r}+c}{\mu_{\mathrm{a}}}\right)$	(ampere turns)	(ampere turns)	(Mc / s)	$\left(\mathrm{cm}^{-1}\right)$	(cm)
FX1969	-	2	1000	130	12×10^{-6}	1.51	0.794	0.1	211	0.499
FX2073	-	5	1000	89.1	12×10^{-6}	3.56	1.88	0.1	100	1.18
FX2270	-	5.2	40	491	300×10^{-6}	59.7	179	10	121	1.25
FX1886	-	5.2	10	981	3000×10^{-6}	49.7	169	50	121	1.25
FX2072	-	8.4	1000	93.1	12×10^{-6}	6.86	3.61	0.1	109	2.27
FX2691	FX3009	12.7	1800	35.6	120×10^{-6}	4.64	2.44	0.45	28.6	2.76
FX1593	FX3008	12.7	1200	43.6	120×10^{-6}	6.95	3.21	0.45	28.6	2.76
FX1322	FX3007	12.7	700	57	50×10^{-6}	11.3	6.95	0.45	28.6	2.76
FX1594	FX3011	12.7	500	67.5	120×10^{-6}	11.9	4.39	0.5	28.6	2.76
FX1595	FX3012	12.7	200	107	200×10^{-6}	33	21.1	2	28.6	2.76
FX1596	FX3013	12.7	130	132	200×10^{-6}	50.7	35.2	5	28.6	2.76
FX1597	FX3014	12.7	40	239	300×10^{-6}	132	110	10	28.6	2.76
FX1598	FX3015	12.7	10	478	3×10^{-3}	395	373	50	28.6	2.76
FX1582	FX3017	25.4	1050	58.9	120×10^{-6}	19.8	10.5	0.45	45.8	6.89
FX1230	FX3016	25.4	700	72.1	50×10^{-6}	28.2	15.7	0.45	45.8	6.89
FX1583	FX3018	25.4	500	85.4	120×10^{-6}	29.6	11.5	0.5	45.8	689
FX1231	FX3019	25.4	200	135	140×10^{-6}	82	52.6	2	45.8	6.89
FX1299	FX3020	25.4	100	191	200×10^{-6}	164	114	5	45.8	6.89
FX1358	FX3021	25.4	40	302	300×10^{-6}	329	274	10	45.8	6.89
FX1584	FX3022	25.4	10	604	3×10^{-3}	986	932	50	45.8	¢.89
FX1586	FX3024	38.1	1050	43	120×10^{-6}	28	14.7	0.45	24.4	3.71
FX1585	FX3023	38.1	700	52.7	50×10^{-6}	39.8	22.1	0.45	24.4	9.71
FX1587	FX3025	38.1	500	62.6	120×10^{-6}	41.7	15.5	0.5	24.4	9.71
FX1588	FX3026	38.1	200	98.5	140×10^{-6}	116	74.2	2	24.4	9.71
FX1589	FX3027	38.1	100	139	200×10^{-6}	232	161	5	24.4	9.71
FX1590	FX3028	38.1	40	220	300×10^{-6}	464	386	10	24.4	9.71
FX1591	FX3029	38.1	10	441	3×10^{-3}	1390	1310	50	24.4	9.71
FX2395 *	FX3030	38.1	1400	21.5	120×10^{-6}	21	11	0.45	8.14	9.71
FX1108	-	89	200	76.5	175×10^{-6}	280	180	2	14.7	23.5
FX1076	-	108	1050	29.4	200×10^{-6}	78	41.1	0.5	11.4	27.1

Grade A1. For tuned circuit applications up to $500 \mathrm{kc} / \mathrm{s}$ and for wide-band and high frequency transformers when lowest frequency to be transmitted is greater than about $1 \mathrm{Mc} / \mathrm{s}$.

Grade A4. For tuned circuit applications up to $500 \mathrm{kc} / \mathrm{s}$ and for high flux density applications, wide-band low power transformers ($10 \mathrm{kc} / \mathrm{s}$ to $20 \mathrm{Mc} / \mathrm{s}$) and low power pulse applications.

Grade A5. For tuned circuit applications up to $200 \mathrm{kc} / \mathrm{s}$ and for communication transformers up to approximately $1 \mathrm{Mc} / \mathrm{s}$.

Grade B1. For tuned circuit applications over the range of 0.5 to $1 \mathrm{Mc} / \mathrm{s}$ and for wide-band and high frequency transformers over the range 1 to $20 \mathrm{Mc} / \mathrm{s}$.

Grade B2. For tuned circuit applications over the range 0.5 to $2 \mathrm{Mc} / \mathrm{s}$ and for wide-band and high frequency transformers over the range 1 to $50 \mathrm{Mc} / \mathrm{s}$.

All parameters measured at $\mathrm{B}_{\text {max }} \leqslant 0.5$ gauss.
A1, A4 and A5 materials-Manganese Zinc Ferrite.
$B 1, B 2, B 3, B 4$ and $B 5$

FERROXCUBE TOROIDS

Toroids in OUTLOOK Vol. 9/1, page 11 has made xcube toroids are widely used in industry as a core material material may be broadly divided into two groups, Manganese ng on its composition optimum results are obtained from esign are tabulated together with mechanical dimensions roxcube toroids as well as Mullard magnetic components nical Handbook. The Technical Service Department in ailable for technical assistance with any special problem.
ated and different type numbers have to be quoted when ordering.

five etic ength	$\begin{aligned} & \text { Effective } \\ & \text { Flux Area } \\ & \text { Ae } \end{aligned}$	$\begin{aligned} & \text { Effective } \\ & \text { Volume } \\ & \text { Ve } \end{aligned}$	Approximate Weight	Material	Colour Code		Dimensions			Max. Coating Thickness
					Body	Peripheral Mark				
							A	B	C	
	$\left(\mathrm{cm}^{2}\right)$	$\left(\mathrm{cm}^{3}\right)$	(g)	-	-	-	(mm)	(mm)	(mm)	(mm)
79	0.237×10^{-2}	1.18×10^{-3}	0.01	A5	-	-	1.27 ± 0.1	2.03 ± 0.1	0.64 ± 0.1	-
,	1.18×10^{-2}	13.9×10^{-3}	0.05	A5	-	-	2.9 ± 0.2	5 ± 0.2	1.15 ± 0.1	-
5	1.03×10^{-2}	12.9×10^{-2}	0.05	B4	-	-	3.1 ± 0.2	5.18 ± 0.2	1.02 ± 0.1	-
5	1.03×10^{-2}	12.9×10^{-3}	0.05	B5	-	-	3.1 ± 0.2	5.18 ± 0.2	1.02 ± 0.1	-
7	2.1×10^{-2}	47.6×10^{-3}	0.8	A5	-	-	6.3 ± 0.2	8.38 ± 0.2	2.03 ± 0.1	-
5	9.68×10^{-2}	0.268	1.45	A5	Dark green	-	6.35 ± 0.5	12.7 ± 0.5	3.17 ± 0.46	0.25
5	9.68×10^{-2}	0.268	1.45	A4	Red	-	6.35 ± 0.5	12.7 ± 0.5	3.17 ± 0.46	0.25
5	9.68×10^{-2}	0.268	1.45	A1			6.35 ± 05	12.7 ± 0.5	3.17 ± 0.46	0.25
5	9.68×10^{-2}	0.268	1.45	B1	White	Brown	6.35 ± 0.5	12.7 ± 0.5	3.17 ± 0.46	0.25
5	9.68×10^{-2}	0.268	1.4	B2	White	Red	6.35 ± 0.5	12.7 ± 0.5	3.17 ± 0.46	0.25
5	9.68×10^{-2}	0.268	1.35	B3	Whit	Orange	6.35 ± 0.5	12.7 ± 0.5	3.17 ± 0.46	0.25
5	9.68×10^{-2}	0.268	1.3	B4	White	Yellow	6.35 ± 0.5	12.7 ± 0.5	3.17 ± 0.46	0.25
	9.68×10^{-2}	0.268	1.15	B5	White	Green	6.35 ± 0.5	12.7 ± 0.5	3.17 ± 0.46	0.25
	0.15	1.04	5.1	A4	Red	$-$	$\begin{aligned} & 19 \pm 1.1 \\ & 19 \pm 1.1 \end{aligned}$	$\begin{aligned} & 25.4 \pm 1.3 \\ & 25.4 \pm 1.3 \end{aligned}$	$\begin{aligned} & 4.78 \pm 0.46 \\ & 4.78 \pm 0.46 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.3 \end{aligned}$
)	0.15	1.04	5.1	A1	Grey					
)	0.15	1.04	5.1	B1	White	Brown	19 ± 1.1	25.4 ± 1.3	4.78 ± 0.46	0.3
	0.15	1.04	4.8	B2	White	Brown Red	19 ± 1.1	25.4 ± 1.3	4.78 ± 0.46	0.3
	0.15	1.04	4.6	B3	White	Orange	19 ± 1.1	25.4 ± 1.3	4.78 ± 0.46	0.3
)	0.15	1.04	4.5	B4	White	Yellow Green	$\begin{aligned} & 19 \pm 1.1 \\ & 19 \pm 1.1 \end{aligned}$	$\begin{aligned} & 25.4 \pm 1.3 \\ & 25.4 \pm 1.3 \end{aligned}$	$\begin{aligned} & 4.78 \pm 0.46 \\ & 4.78 \pm 0.46 \end{aligned}$	0.30.3
)	0^{15}	1.04	3.9	B5	White					
	0.00	3.86	19.5	A4	Red		25.4 ± 1.2	38.1 ± 1.9	6.35 ± 0.5	0.3
	0.398	3.86	19.5	A1	Grey		25.4 ± 1.2	38.1 ± 1.9	6.35 ± 0.5	0.3
	0.398	3.86	19.5	B1	White White	Brown	25.4 ± 1.2	38.1 ± 1.9	6.35 ± 0.5	0.3
	0.398	3.86	18.5	B2		Brown Red	$\begin{aligned} & 25.4 \pm 1.2 \\ & 25.4 \pm 1.2 \end{aligned}$	$\begin{aligned} & 38.1 \pm 1.9 \\ & 38.1 \pm 1.9 \end{aligned}$	$\begin{aligned} & 6.35 \pm 0.5 \\ & 6.35 \pm 0.5 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.3 \end{aligned}$
	0.398	3.86	18	B3	White White	Orange				
	0.398	3.86	17	B4	White White	Yellow Green	25.4 ± 1.2	38.1 ± 1.9	6.35 ± 0.5	0.3
	0.398	3.86	15	B5			25.4 ± 1.2	38.1 ± 1.9	$\begin{gathered} 6.35 \pm 0.5 \\ 19.05 \pm 0.05 \end{gathered}$	0.3
	1.19	11.6	58	A4	White Red	Green	25.4 ± 0.5	38.1 ± 0.8		
	1.6	37.5	178	B2	-	-	63.5 ± 3.1	88.9 ± 4.4	12.7 ± 0.05	-
	2.38	64.4	324	A4		-	69.9 ± 3.6	108 ± 5.3	12.7 ± 0.05	-

Grade B3. For tuned circuit applications over the range 2.0 to $5 \mathrm{Mc} / \mathrm{s}$ and for wide-band and high frequency applications over the range 1 to $50 \mathrm{Mc} / \mathrm{s}$. de B4. For tuned circuit applications over the range 5 to $20 \mathrm{Mc} / \mathrm{s}$ and for wide-band and high frequency applications over the range 20 to $100 \mathrm{Mc} / \mathrm{s}$.
Grade B5. For tuned circuit applications over the range 20 to $50 \mathrm{Mc} / \mathrm{s}$ and for wide-band and high frequency applications over the range 20 to $100 \mathrm{Mc} / \mathrm{s}$.
and B5 materials-Nickel Zinc Ferrite. Nylon coating will withstand test voltage of 1000 VDC.

\leftarrow Page 29

become re-orientated so that they are fixeddirection dipoles and are aligned parallel to the field. This leads to the symmetry condition of a polar axis and all planes perpendicular to and intersecting this axis. If the element is now compressed, stretched or twisted by mechanical pressures, the average location of the positive and negative charges which make up the dipoles is altered and net surface charges are obtained. The material therefore exhibits a piezoelectric effect in which the properties of the polar plane predominate.

Range of Applications for Piezoxide

Piezoelectric elements can perform either of two functions. They may be used where mechanical energy is available and is required to be transformed into a source of electrical energy, or they may be used where electrical energy is available to be transformed into a source of mechanical energy. That such transformations are produced within single solid-state elements offers a wide field of application. That these elements can be pre-shaped in a moulded ceramic whose properties can also be controlled gives a wide degree of flexibility in the adaptation to a particular design.

Some of the applications of Piezoxide will be found in the following list:

Ultrasonic generators

Echo, asdic and sonar transducers
Ignition of gases and fuels by spark sources

Projectile detonation

Accelerometers, vibration and pressure gauges
Electro-acoustic elements for gramophone pick-up heads and microphones

Filter and delay networks

Feedback control systems

Resonance transformers

Remote control of alarms and switches

Relays

Modern piezoelectric ceramics are of continually increasing importance and use to device and equipment designers throughout industry. In general, most of these applications use elements operating in conditions similar to those of the foregoing analysis. However, two types of application that are included above are described in the following paragraphs.

Ignition and Detonating Systems

The mechano-electrical transformation obtainable from Piezoxide elements operated in piston-like vibration are also used to provide electrical impulses and spark sources. Such impulses and spark sources are often required for the ignition of gases, fuels or explosives. For a particular element operating in open-circuit conditions, the piezoelectric relationship, $\mathrm{E}=\mathrm{gT}$, holds, and thus the magnitude of the voltage obtained is directly proportional to the applied stress. This voltage may be built up and discharged between the electrodes of a spark gap. If the piezoelectric material used is chosen to have a large voltage constant g , then the element will transform small forces to large electrical outputs. The resulting output can also be improved if the mechanical forces available are amplified
\rightarrow Page 33

TECHNICAL DATA

1. MECHANICAL DATA	PXE1	PXE3	PXE4	PXE5	
Density, ρ_{m}	$5 \cdot 7$	$7 \cdot 8$	$7 \cdot 55$	$7 \cdot 65$	$\times 10^{3} \mathrm{~kg} / \mathrm{m}^{3}$
Curie temperature, T_{U}	130	>350	>320	300	
Modulus of elasticity, $\mathrm{Y}_{11}^{\mathrm{E}}$	$1 \cdot 25$	$0 \cdot 85$	0.86	0.65	$\times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$
Y_{33}^{E}	$1 \cdot 21$	$0 \cdot 69$	$0 \cdot 73$	0.53	$\times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$
Max. working pressure	$5 \cdot 0$	$5 \cdot 0$	$5 \cdot 0$	$5 \cdot 0$	$\mathrm{kg} / \mathrm{mm}^{2}$
2. ELECTRICAL DATA					
Dielectric constant of free space, ε_{0}	$8 \cdot 85$	$8 \cdot 85$	$8 \cdot 85$	$8 \cdot 85$	pF / m
Relative dielectric constant, $\varepsilon_{33}^{\mathrm{T}} / \varepsilon_{0}=\varepsilon_{\mathrm{r}}$	900	570	1200	1750	
Specific resistance, $\rho_{\mathrm{e} 1}$ at $25^{\circ} \mathrm{C}$	$0 \cdot 1$			>10	$\times 10^{10} \Omega . \mathrm{m}$
Time constant, $\tau=\mathrm{RC}$	$0 \cdot 5$	>30	>30	200	min
Dielectric dissipation factor, $\tan \delta$	$1 \cdot 7$	$0 \cdot 5$	$0 \cdot 6$	$1 \cdot 8$	$\times 10^{-2}$

3. ELECTRO-MECHANICAL DATA					
Coupling factors, k_{p}..	$0 \cdot 23$	0.47	$0 \cdot 5$	$0 \cdot 6$	
k_{31}	$0 \cdot 13$	$0 \cdot 28$	$0 \cdot 3$	$0 \cdot 35$	
. k_{33}	$0 \cdot 33$	$0 \cdot 62$	$0 \cdot 6$	$0 \cdot 7$	
Piezoelectric charge					
constants, $\mathrm{d}_{31} \ldots$	34	67	104	171	$\times 10^{-12} \mathrm{C} / \mathrm{N}$
$\mathrm{d}_{33} \ldots$.	85	169	233	376	$\times 10^{-12} \mathrm{C} / \mathrm{N}$
Piezoelectric voltage $\times 10^{-3} \mathrm{~V}$					
constants, $\mathrm{g}_{31} \ldots$.	$4 \cdot 3$	$13 \cdot 3$	$9 \cdot 8$	$11 \cdot 0$	$\times 10^{-3} \mathrm{~V} . \mathrm{m} / \mathrm{N}$
$\mathrm{g}_{33} \ldots$	$10 \cdot 6$	$33 \cdot 4$	$21 \cdot 8$	$24 \cdot 2$	$\times 10^{-3} \mathrm{~V} . \mathrm{m} / \mathrm{N}$
Quality factor, Q_{p}	1000	>500	>500	50	
Frequency constants, N_{p}	3200	2260	2300	2000	c/s.m
N_{1}	2330	1550	1620	1390	c/s.m
Remanent polarisation, P_{R}	30 to 35	30 to 35	30 to 35	30 to 35	$\mathrm{C} / \mathrm{cm}^{2}$
Poisson constant (approx.)	$0 \cdot 3$	$0 \cdot 3$	$0 \cdot 3$	$0 \cdot 3$	

The relationship between temperature θ and specific resistance ρ_{e} at that temperature is approximately governed by:

$$
\rho_{\mathrm{e}}=\rho_{25} \cdot 10^{\alpha(\mathrm{e}-25)}
$$

where α is the exponential temperature coefficient.
before applying them to the piezoelectric element. The forces must be applied over the whole of the end surface of an element and since it is usually more convenient to do this on small areas, two smaller elements are often used connected in parallel. The maximum pressure which can be exerted on the material has to be less than $7000 \mathrm{lb} / \mathrm{in}^{2}$ (or approximately $5 \mathrm{~kg} / \mathrm{mm}^{2}$) for applications requiring continuous operations, such as combustion engines. Where the forces are to be applied only once, then they may be much larger. For compression forces, an element will provide two electric charges of opposite polarity on each compressionrelease cycle. With Piezoxide, a high efficiency of energy conversion is obtained and the output may be up to 70% of the input.

Flexure Systems

The energy transformations provided by piezoelectric elements which are operated in
a flexural mode are often used for electroacoustic and some ultrasonic applications. The method of fabrication of Piezoxide is particularly suitable for constructing seriesor parallel-connected flexure elements. These consist essentially of the ceramic piezoelectrical material which has two outer electroded surfaces and a common centre electrode. The element is permanently polarised so that the directions of polarisation between the two outer and the inner electrodes are opposite in sense. Then the manner of operation is somewhat analogous to that of a heated bi-metal strip. When the element is connected to an alternating field, the part of it which is polarised in the same sense as the applied field expands, and the part which is polarised in the opposite sense contracts. Piezoxide has a very good compliance and as an example, a bar mounted as a cantilever will give a displacement of approximately $1 / 16$ inch at a distance of 1 inch from the clamped position for an applied field of 100 V . The
resonance frequency f_{r} of a cantilevermounted flexure bar of thickness t and whose free length is 1 is given by:

$$
f_{r}=\frac{1 \cdot 72 t}{1^{2}}\left(\frac{Y}{\rho}\right)^{\frac{1}{2}} .
$$

A parallel-connected bar has the advantage that it has a lower operating impedance than the dimensionally equivalent series system.

Standard Shapes

Piezoxide elements are supplied polarised and provided with flat electrodes on the end surfaces. Feedback plates have special electrodes which are not symmetrical. The direction of polarisation is marked by colour spots where applicable, negative being green and positive red.
Standard sizes are available, and these are indicated in Table 1. Other sizes can be supplied as required.

TABLE 1—DIMENSIONS OF STANDARD PIEZOXIDE COMPONENTS

NOTE:-Piezoxide will be available in developmental quantities from Mullard offices in approximately six to eight weeks' time.

THREE WATT TRANSISTOR STEREO POWER AMPLIFIER WITH TONE CONTROL FACILITIES

A complementary pair of medium power output transistors in an encapsulation no bigger than that commonly employed for small signal transistors provides high output power and a low level of distortion. Although it will be a month or two until these transistors are available through trade channels, manufacturers are already examining the very favourable watt/cent ratio for the AC187/AC188 complementary output pair. An output power level of $3 W$ is ideal for car radios, record players and cord transistor mantel radios. The amplifier described below was designed for a commercial stereo home entertainment centre working into efficient vented enclosures* and the 6 W of output power thus available will suffice for the medium to large home, for instance.

CAPACITORS

All capacitors in $\mu \mathrm{F}, 10 \%$ unless otherwise stated

Circuit Ref.	Value	Description	Rating
	125	Electrolytic	16 VW
C_{1}	125	Electrolytic	10 VW
C_{2}	40	En	
C_{3}	10	Electrolytic	16 VW
C_{4}	10	Electrolytic	16 VW
C_{5}	0.1	Polyester	125 V
C_{6}	0.0033	Polyester	125 V
C_{7}	0.1	Polyester	125 V
C_{8}	10	Electrolytic	16 VW
C_{9}	125	Electrolytic	2.5 VW
C_{10}	10	Electrolytic	16 VW
C_{11}	10	Electrolytic	16 VW
C_{12}	125	Electrolytic	16 VW
C_{13}	800	Electrolytic	10 VW
C_{14}	820 pF	Ceramic	500 V
C_{15}	40	Electrolytic	16 VW
C_{16}	800	Electrolytic	16 VW
C_{17}	400	Electrolytic	25 VW

RESISTORS
All resistors $1 / 2 \mathrm{~W}, 10 \%$ unless otherwise stated

Circuit Ref.	Value	Description	Circuit Ref.	Value	Description
R_{1}	$1 \mathrm{M} \Omega$		R_{15}	$10 \mathrm{k} \Omega$	
R_{2}	$100 \mathrm{k} \Omega$		R_{19}	$20 \mathrm{k} \Omega$	1/4W log. pot.
R_{3}	$5.6 \mathrm{k} \Omega$		R_{20}	$50 \mathrm{k} \Omega$	1/2W lin. pot.
R_{4}	470Ω		R_{21}	$82 \mathrm{k} \Omega$	
R_{5}	$1.5 \mathrm{k} \Omega$		R_{22}	$100 \mathrm{k} \Omega$	$50 \mathrm{~mW} \text { lin. }$
R ${ }_{6}$	$27 \mathrm{k} \Omega$				pre-set pot.
R_{7}	$2.7 \mathrm{k} \Omega$		R_{23}	560Ω	
Rs	$4.7 \mathrm{k} \Omega$		R_{24}	10Ω	
R ${ }_{9}$	680Ω		R_{25}	680Ω	
R_{10}	$20 \mathrm{k} \Omega$	1/2W lin. pot.	R_{26}	270Ω	
R_{11}	$6.8 \mathrm{k} \Omega$		R_{27}	15Ω	
R_{12}	$2.7 \mathrm{k} \Omega$		R_{28}	270Ω	
R_{13}	$20 \mathrm{k} \Omega$	1/2W lin. pot.	R_{29}	50Ω	VA1034 NTC
R_{14}	$3.3 \mathrm{k} \Omega$		R_{30}	1Ω	$1 / 2 \mathrm{~W}$ Wire W.
R_{15}	$10 \mathrm{k} \Omega$		R_{31}	1Ω	1/2W Wire W.
R_{16}	$82 \mathrm{k} \Omega$		R_{82}	100Ω	
R_{17}	$1.5 \mathrm{k} \Omega$		R_{33}	120Ω	1W

LIST OF COMPONENTS, Continued. MULLARD SEMICONDUCTORS Transistors

TR_{1}	BC109
TR_{2}	OC44N
TR_{3}	BC108
TR_{4}	BC108
TR_{5}	AC125
TR_{6}	AC188
TR_{5}	AC187
TR_{8}	

TRANSFORMER T_{1}

Ferguson Transformers Pty. Ltd. PX482 Special Transformers Pty. Ltd. ST3618 A. \& R. Transformers Pty. Ltd. PT5990

Transformer T_{1} ratings:
Primary, 240V; 50c/s.
Secondary, 17V; 1A.
Summary of Amplifier Performance

CIRCUIT DESCRIPTION

The circuit diagram of one channel of a stereophonic system is shown in Fig. 1.

Fig. 2. Frequency response curve of amplifier measured at the base of $T R_{1}$.

As may be seen the circuit employs seven transistors per channel. The BC109 n-p-n silicon planar epitaxial low noise transistor ensures an excellent signal to noise ratio. By using a silicon transistor directly strapped to a germanium transistor, thus forming a complementary pair, a number of advantages are gained and discussion of these may be found in Outlook Volume 8, No. 5, Page 74. The complementary pair is followed by another silicon transistor, BC108, used in a feedback tone control stage. A further silicon transistor, BC108, is used as a driver pre-amplifier, followed by an AC125 driver transistor. As may be seen from Fig. 4, an AC187-AC188 complementary germanium medium power out-
put transistor pair develops in excess of 3 W output across a 3.5Ω load.

The pre-amplifier stage has been designed to provide sufficient sensitivity and equalisation for ceramic cartridges, resulting in a stage gain of approximately 10 times. Magnetic cartridges may be used with this amplifier circuit by employing a modified equalisation feedback circuit. The modifi-

Fig. 3. Tone-control characteristics for the three watt transistor stereo power amplifier.
cations required to provide sufficient sensitivity for magnetic cartridges are as follows:

1. Replace the input resistor R_{1} with a capacitor of $2 \mu \mathrm{~F}$.
2. Replace the equalisation network R_{3} and C3 with a series-parallel combination: a capacitor of $0.047 \mu \mathrm{~F}$ in series with a parallel combination of a resistor of $4.7 \mathrm{k} \Omega$ and a capacitor of $0.015 \mu \mathrm{~F}$.

The tone control circuit shown, as mentioned previously, is a feedback system with a total range of approximately 20 dB at $100 \mathrm{c} / \mathrm{s}$ and $10 \mathrm{kc} / \mathrm{s}$ respectively, as may be seen in Fig. 3.

Fig. 4. Power output tabulated against total harmonic distortion.

The output amplifier stage consists of four transistors providing in excess of 3 W into a 3.5Ω loudspeaker load before the onset of clipping. The bias for symmetrical clipping is initially adjusted by the variable pre-set resistor, R_{22} in Fig. 1.
If the total output power of 3 W is not required or a 3.5Ω speaker load not con-
veniently provided, the pre-amplifier and tone control stages could readily be used with the four transistor 2.5 W main amplifier of the Medium Power Amplifier described in OUTLOOK Volume 9, No. 2, Page 22.

The curve in Fig. 4 shows the low level of distortion tabulated against power output and it may also be seen that for an output power of 2.8 W the distortion figure is 2%.

In the power supply shown in Fig. 1, the transistor Zener diode combination provides excellent filtering. The power transformer in size and regulation, as well as the capacitor value, were chosen with cost consideration to provide $3 W$ per channel. The sensitivity must therefore be arranged to suit the particular pick-up cartridge so that gross overloading of the amplifier will not occur.

The value of resistor R_{3} is $5.6 \mathrm{k} \Omega$ for a cartridge of 100 mV output and must be reduced for higher output pick-ups.

Under full bass boost and overload conditions the power supply has been specifically designed to starve the output pair and also provide protection for these transistors against severe overload and accidental short-circuiting of the output.
R. E. BROWN

Applications Laboratory, Sydney

NEW REFERENCE MANUAL

MULLARD VOLTAGE REGULATOR (ZENER) DIODES

This booklet is the latest addition to the range of Mullard technical publications. It discusses the physics of voltage regulator diodes and design procedures, enabling the reader to calculate component values for circuits to suit particular requirements.

A number of basic circuits are provided wherein the voltage regulator diode is used to control stabilised power supply output voltages using series transistors together with error detectors and amplifiers. In all, six chapters provide a condensed, easy to read discussion on the subject and conclude with a multi-coloured chart providing an easy reference to the preferred range of Mullard voltage regulator diodes.
The publication is available from Mullard offices throughout the Commonwealth, priced at 85 c plus 7 c postage. Cheques, money orders and postal notes should be made payable to "Mullard-Australia Pty. Ltd." The publication may also be obtained from major booksellers.

MAILING LIST

If you change your location, don't forget to let us know in good time, otherwise your Outlook may reach you late or never. And please, when you change, quote both your old and your new address. We can then be sure of destroying the obsolete mailing plate.

MULLARD ANNOUNCES NEW PLANS FOR MICROCIRCUIT PRODUCTION MANY NEW TYPES OF CIRCUIT INTRODUCED

Continuing the build-up of its microcircuit activity, Mullard has announced that its production staff making semiconductor integrated circuits will be more than doubled during the next eighteen months. This expansion is taking place at the Southampton plant which is the company's main semiconductor production unit.

Mullard is already Britain's biggest supplier of semiconductors and through Associated Semiconductor Manufacturers Limited-the company it set up jointly with G.E.C. in 1962 -it can point to over 4,000 people engaged in the development and manufacture of transistors, diodes and allied devices.

The build-up of microcircuit facilities is based on the company's own substantial research, development and production experience in this field extending over ten years. But it has been given an additional impetus through an agreement to exchange microcircuit technology with the American Westinghouse Company, which has been heavily involved in U.S. space and military projects.

Selected types from the wide range of Westinghouse integrated circuits are to be marketed in Britain by Mullard and will be manufactured in the U.K. company's Southampton plant.

Conversely, a series of Mullard-designed fast computing circuits which operate at the exceptionally high speed of 1.5 nano seconds are to be produced in the Westinghouse factory in the U.S.A. Mullard will market these circuits in Britain and experimental samples of them were shown at the 1966 Instruments, Electronics and Automation Exhibition in London.

Thirty New Linear and Digital Circuits
The exhibition was also used to preview nearly thirty other new types of semiconductor integrated circuit that will become available in commercial quantities during 1966. With these new circuits added to its existing ranges, together with yet further types to be introduced soon, Mullard will have one of the most comprehensive ranges of integrated circuits available in Britain.

The new types will include a range of twenty digital circuits that are expected to meet most of the industry's standard requirements for devices in computers, instruments, control systems and military equipment over the next few years. They include two circuits that consume only micro-watts of power.

Eight new linear circuits will also be added. This range contains several advanced devices including operational amplifiers and very high-gain differential amplifiers for use in instruments and industrial control systems, and a wideband amplifier (DC to $100 \mathrm{Mc} / \mathrm{s}$) for telecommunications equipment.

All the new circuits are in $\frac{1}{4}{ }^{\prime \prime} \times \frac{1}{8}{ }^{\prime \prime}$ or $\frac{1}{4}$ " x -1" "flat-pack" encapsulation to give high packing densities. By late 1966 most will be available in dual-in-line packaging, which allows automatic soldering on to printed wiring boards.

Digital Circuits

Comprising seventeen types of DTL digital circuits for use in computers, instruments, control systems and military equipment, this series contains single and multiple gates, monostables, bistables, expanders and a flip-flop.

Outstanding features common to all the

BRIDGE RECTIFIERS - BY122 AND BY123

The BY122 and BY123 are two new medium-current bridge rectifier assemblies intended for a wide variety of power supply applications. Each type consists of four double-diffused silicon rectifiers connected in a bridge configuration and encapsulated in a $12 \mathrm{~mm} \times 10 \mathrm{~mm} \times 8 \mathrm{~mm}$ epoxy case. This new epoxy case provides simplicity in mounting and space economy over the conventional discrete rectifiers now commonly used by equipment manufacturers.

The repetitive peak input voltages for the BY122 and BY123 are 120 V and 800 V respectively, and repetitive peak currents of 3 A and 2 A respectively can be drawn from the two bridges. These two devices are suitable for power supplies for most transistorized industrial equipment and the BY123 especially can be used as an economical "off-theline" rectifier assembly.

Abridged Preliminary Data

Input voltage r.m.s. (max.)
Input repetitive peak voltage (max.)

BY122	BY123	
42	280	Y
120	800	V
60	400	V
38	255	V
0.8	0.6	A
3	2	A
55	55	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Outlines and Dimensions

Plastic envelope with polarity indications at both
The sealing of the plastic envelope withstands the accelerated damp heat test of IEC recommendation 68-2 (test D, severity IV, 6 cycles)
circuits include a propagation delay time of only 20 nano seconds; high noisemargins; high fan-outs; operation from a simple 6 V DC power supply.

There are also a bistable circuit and a dual gate which, while of similar performance, consume only a few hundred microwatts of power. Additionally, an experimental dual gate and a flip-flop are available. From these will be derived a family of saturated-logic elements characterized by high noise-margins and high speeds.
The above types are in addition to the 1.5 nano second current-steered logic circuits mentioned earlier.

Linear Circuits

These include two audio amplifiers, three differential amplifiers, two operational amplifiers and a wideband amplifier.

The audio amplifiers give power outputs of 10 mW and 45 mW respectively and are principally intended for use as audio amplifiers in communications receivers.

Two of the differential amplifiers give minimum gains of 1000 and 1500 ; the other has a controlled gain of 250 ± 30. All three have high common-mode rejection and low drift (typically $10 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$).

High input-impedance, low-drift and high reliability are the salient features of the operational amplifiers, both of which are intended for use in instrumentation and control systems.
The wideband amplifier has a frequency response from DC to $100 \mathrm{Mc} / \mathrm{s}$. In telecommunications equipment, it can be used as a $60 \mathrm{Mc} / \mathrm{s}$ wideband IF amplifier, a $455 \mathrm{kc} / \mathrm{s}$ oscillator/mixer stage, and, as a general purpose amplifier with externally adjustable bandwidth.

MINI SPEAKER UNITS

\leftarrow From page 28

grade, which proved to have the best absorption coefficient for this application. This material is manufactured by:

Wonder Wool Pty. Ltd.,

87b James St.,
Leichhardt, N.S.W.
and is obtainable from major electronic parts distributors throughout Australia.

Calk Strip

Plasticine was used as a temporary seal for the back cover during initial testing. A more permanent sealing material should be used when the unit is finally assembled, and a semi-setting mastic gasket is recommended, such as Strip Calk " G " $\frac{1}{8}$ " round, which is manufactured by:

Selleys Chemicals Ltd.

1 Gow Street,

Bankstown, N.S.W.
and may be obtained from their distributors throughout Australia. It must be stressed that it is essential that the whole enclosure is completely airtight; indeed the ultimate performance will depend almost entirely on this factor. The Strip Calk "G" is a permanently plastic material with a tacky surface which will provide adequate adhesion to timber and it is important that the strip is applied under compression to promote adhesion. Once the surfaces have made-adequate contact with the calking compound the back cover may be skewscrewed (or pinned) into place.

