

An Economical Full-Scale Multipurpose
Computer System
Ihis is the first | 6-bit computer system to have
a hardware stack architecture and vrrtual memory.
It handles time-sharing, batch processing, and real-
time operations in several languages concurrently.

by Bert E. Forbes and Michael D. Green

rflHE HP 3000 COMPUTER SYSTEM is Hewlett-

I Packard's first full-scale multipurpose compu-
ter system. Its primary objective is to provide, at
low cost, a general-purpose* computer system ca-
pable of concurrent batch processing, on-line termi-
nal processing, and real-time processing, all with
the same software. Many users can access the sys-
tem simultaneously using any of several program-
ming languages and applications library programs.

The HP 3000 [Fig. 1J is an integrated software-
hardware design. It was developed by engineers
and programmers to provide a small computer ca-
pable of multiprogramming. Unlike many compu-
ters of the past, it was not built by the engineers
and turned over to the programmers to see what
they could do with it.

Helping define the objectives for the HP 3000
was HP's long experience with both customer and
internal use of 2100-Series Computers and ZOO0-
Series Time-shared Systems. These computers and
systems have been widely used in educational, in-
strumentation, industrial, and commercial applica-
tions. These are also expected to be the primary
applications areas for the HP 3000 (see page z).

A comprehensive set of software and the hard-
ware to support it has been developed for the
HP 3000. Software includes the Multiprogramming
Executive operating system, several programming
language translators, and an applications library.

Architectural Features
The scope of the software for the HP 3000 re-

quires certain capabilities in the computer on which
the software is to run. Among these are efficient
program segmentation, relocation, reentrancy, code
*"General-purpose" means that a user is not restricted to a single application, but
can readily write programs to fit his ovin application, v{hatever it might be,

sharing, recursion, user protection, code compres-
sion, efficient execution, and dynamic storage allo-
cation. All are provided in the HP 3000 design.

Efficient program segmentation makes it possible
to run programs which are much larger than the
available memory without incurring a large over-
head. Much of the power and flexibility of the HP
3000 comes from the virtuol memory that results

Cover: Although it coutd
be mistaken for an organist
in concert, this photo actu-
ally shows the new HP 3000
Computer System harmoni-
ously coordinating the ac-
tivities of several users-it
handles multiple process-
ing modes, users, and lan-
guages all at the same time.
The panels wi th the red

lights in the foreground are control panels used
tor hardware maintenance and system checkout.

In this issue:
An Economical Full-Scale Multipur-
pose Computer System, by Bert E.
Forbes and Michael D. Green . . page z
Central Bus Links Modular HP 3000
Hardware, by Jamshid Basiji and
Arndt B. Bergh . page g

Software tor a Multilingual Computer,
by William E. Foster page 1b
Sing/e Operating Syslem Serves A//
HP 3000 Users, by Thomas A. Blease
and Alan Hewer page 20

@ H E W L E T T - P A C K A R D C O M P A N Y , 1 9 7 3

from the segmentation capabilities of the system.
Swapping of programs and data is made easier

by an automatic relocation technique that is part
of the addressing structure of this multiprogram-
ming computer. The operating system doesn't have
to take time to adjust all addresses in a program,
nor does it have to put something in the same phys-
ical location every time.

Reentrancy is a property of HP 3000 code. It
makes it possible for a given sequence of instruc-
tions to be used by several processes without hav-
ing to be concerned about the code being changed
or temporary variables being destroyed by the
other processes,

Automatic relocation and reentrancy make code
sharing possible. It would be extremely wasteful
of main memory to keep multiple copies of pro-
grams in memory. In the HP 3000, one copy of a
program can be shared by many processes.

Another consequence of reentrancy is recursion,
or the ability to have a routine call itself. The hard-
ware stack architecture of the HP 3000 plays an
important role in recursive calls.

One of the key items in designing a multipro-
gramming operating system is that of user isolation
and system protection. If the operating system and
the users are not completely protected from the in-
tentional or unintentional destructive actions of
another user, the system will crash so often as to

Fig.1. HP 3000 Conputer SYs-
tem has multilingual and multi-
prog ram m i ng capab i I ities u su al ly
lound on much larger systems.

be unusable. HP 3000 protection covers programs,
data, and files that exist in the system.

In a small-word-size machine, the amount of
addressable memory is limited. To take full advan-
tage of it, the HP 3000 has dynamic storage alloca-
tion. All temporary and local variables are assigned
physical memory only when needed at procedure
or block entry and are deallocated upon exit.

The HP 3000's unified real-time, terminal-orien-
ted, and batch environment is accomplished with-
out the use of fixed or variable memory partitions,
Instead, priorities are used to control system re-
sources. Partitioning, it was felt, places arbitrary
restrictions on memory, the most valuable resource
in a multiprogramming system.

Multiprogramming Executive Operating System
The HP 3000 has a single operating system called

the Multiprogramming Executive (MPE). MPE is a
general-purpose system that can handle three
modes of operation concurrently, In time-sharing,
one or more users can interactively communicate
with the system via computer terminals. In batch
processing, users can submit entire jobs to be per-
formed by the system with no interaction between
the system and the user. In real-time operations,
tasks are dependent upon the occurrence of exter-
nal events and must be performed within critical
time periods.

MPE also provides many services to users, such

as input/output handling, file management, mem-
ory management, and system resource allocation
and scheduling.

There are many advantages to an operating sys-
tem of this sort. For example, subsystems (com-
pilers, applications programs, etc.J need not be cus-
tomized for different operating systems or configu-
rations. In fact, the same subsystem can be used
concurrently by an interactive user and by a batch
user. Another advantage is that software can be
generated much more efficiently because the oper-
ating system aheady performs many of the more
difficult tasks. Also, with a single operating sys-
tem, it is easier to attain consistency throughout
the various software subsystems, thereby simplify-
ing the user/system interface.

Although there is only a single operating system
on the HP 3000, it can be adapted to operate in a
number of different hardware configurations, each
tailored to the needs of its users (Fig. Z). Thus, one
installation may run only small batch processing
jobs using a card reader and a line printer, while
another may add a number of time-sharing termi-
nals. The same software is used by all these in-
stallations.

Programming Languages
Several different programming languages have

been developed for the HP 8000. Most important
of these is SPL, the Systems Programming Lan-
guage. This is a higher-level programming language
designed specifically for systems programming. Al-
most all of the HP 9000 software has been devel-
oped using SPL, the few exceptions being some of
the applications programs.

The reasons for using a higherJevel language
rather than an assembly language for systems pro-
gramming are much the same as those for using a
higher-level language for applications program-
ming. It's possible to write and debug programs
more quickly, to modify them more easily, and to
make them more reliable and easier to read and
understand. Furthermore, programs often perform
better because more time can be spent on general
methods than on coding details. Improving pro-
grams by rewriting substantial sections of code is
not distasteful, as it often is when programs are
written in assembly language. In general, in a given
period of time much more software can be devel-
oped by using SPL than by using a lower-level as-
sembly language.

Since SPL is designed for HP 3000 systems pro-
gramming, it was necessary to give SPL program-
mers easy access to all the features of the central
processor. For this reason, much of the syntax is

based on these features, and the machine code gen-
erated by the compiler is related in an obvious way
to the higher-level statements in the language.

Other programming languages which have been
developed for the HP 4000 are FORTRAN, COBOL,
and BASIC. SPL, BASIC, and FORTRAN are all
recursive, that is, programs, procedures, and sub-
routines can call themselves, Hp 9000 software
also includes scientific and statistical applications
program libraries, and text editing and formatting
facilities.

Program Environmeni
Traditionally, 16-bit computers have been von

Neumann-like machines with little or no distinc-
tion between program code and data, In a multi-
programming environment there is much to be
gained from separating the two. In the HP 8000, a
typical user's environment consists of one or more
program code segments and a data segment (Fig. 3).
All code is nonmodifiable while active in the sys-
tem. Overlay techniques can therefore be used [that
is, new code can be written over old codeJ without
having to write the old code back out on the swap-
ping disc, since an exact copy already exists there.
The data area consists of global data fdata common
to several procedures) and a push-down stack that
is handled automatically by the hardware.

Code Segmentation
In the HP 3000, code is grouped into logical en-

tities called segments, each consisting of one or
more procedures. Each segment may be up to 16K
words long. Programs are normally broken into
segments by the user, although he may choose not
to do this and his program will run as a single seg-
ment unless it is too large, in which case an error
message will be generated.

There is a master directory, the Code Segment
Table (CST), that contains one entry for each seg-
ment that is currently active on the system. The
CST is maintained by the operating system and is
used by the central processor for procedure entry
and exit. The table doesn't occupy a fixed position
in memory but its address is always stored in abso-
lute location 0.

Each two-word CST entry contains the beginning
address and the length of the code segment. There
are also four bits that are used by the central proc-
essor. One of these, the reference bit, is used to
implement a software least-recently-used overlay
algorithm. Another, the trace bit, causes a proce-
dure call to the trace routine if set. The mode bit
specifies whether the segment will be run in privi-
leged or user mode. The absent-from-main-memory

HP 3OOO COMPUTER SYSTEM

Cartridge (Racked)
. 301 104 4.9MByte Car.

tridge Disc and 4
drive intertace.
-OlO Additional drive.

Fired Head (Racked)
.301034 lMByteand

rnterlace.
-0Ol 2lMByte total.
-0O2 4MByte lotal.

1l High Disc-Removable
. 30102A 4TMByte drive

and 8 Drive lnterJace.
-010 Additional Drives.

. AC Power Options for total system:

Standard-120/208V, 3 phase, 60 Hz
-01F230V, Single Phase, 50 Hz

"O25-I2O / 24Ov,Split Phase, 60 Hz

. Color options-Syslem Accenl

Slandard-Sun Gold
-050 Woodgrain
-051 Marine Blue
O52 Red

. Additional Memory Optione
tolal system capability in bytes.
-101 ilK,2 mcu-no interleaving
.l20 80K,2 mcu-no interleaving
-ltO 96K,2 mcu-no interleaving
-160 1 l2K, 2 mcu-no interleaving
-180 128K,2 mcu-no interleaving
.181 128K, 2 mcu-2 way

Inteneavrng
-182 128K, 4 mcu-no interleaving
-183 128K,4mcu-4way

interleaving
(mcu = module control unit)

. 30124A ASR-33_Console /Terminal

G
. 30123A CRT Console/Terminal

g-Track (Racked) -400 1600 cpi:45 ips,
. 3ol l5A 8oo cp': 45 ips slff i : drrve

i i , ve inoaor iue Ad.dr t tona l unr l '
,6t6r+2^^ -(Must be used with

1600 cor master on
.100 1600 cp'; 45 ips same rnterface)
Master dnve and 4
drive interface. 7-Track (Racked)
.200 8o0 cpi: . 30ll7A 200/556/800
45 ips drive. cpi, 45 ips drive and
Additional Unit. 4 drive interface.
-300 1600 cpi;45 ips. -010 200/556/8OO bpi,
l\4aster drive. 45 ips drive.
Additional Unit. Additional Unit.

Reader (Racked)

. 301044 Reader and
rnlerface.

Punch (Racked)

. 30105A Punch and
interface. 7

301064 600 cpm

30107A 1200 cpm
-0Ol Dual Read Station

. 30108A 2OO lpm;
64 Char.
-0Ol l30 lpm,
96 Char.

. 30109A 60O lpm;
64 Char.
-fl)l 400 lpm;
96 Char.

. 30O32A Asynchronous Multi- -0Ol Second Hrgh Speed
plexer l6 terminals-hardwired Channel
'0ol 1o3 Data sel . 3o39oA Expansion Bay
-002 103 and 2O2 Data Sets (Above normal requirements)
(ordereitherool or0o2, . 3OOSOA Universat Interlace
r ru r wLr r ' (u l) ;Ground Leve l r rue , TTL

. 30O55A Synchronols Single -OOl Universal interJace (Ul)
Line Controller, 201 or 2O8
Data Sets,9600 bps Positive Level True' TTL

with cable 30O5lA Universal Interface (Ul)
Dil lerential Levels

. 3OO30A First HiCh Speed . 3OO3IA Second CtockChan ne l

I 32oooAMPE/3ooo(includes ^ 322OlA EDIT/3ooo
System Diagnostic Monitor ^ 32m2A FORMATTER/3OOO
/30O0O, Compiler Library,
uiiiiiieai ^ 322uASrAR/30@

I 321OOASPL/3@O ^ 322O5ASCIENTIFICLIBRARY
^ 32lOlABAStC/3o@ I Standardsoflwarc
^ 32!O2AFORTRAN/3o@ ^ OptionalSoflware

HP 3000 Computer Systems are modular and can be contigured to lit a variety ot
applications, The same sottware ls used by all configurations.

Fag.2.

(Data Limit)

(Data Base)

(Stack Marker)

(ProgramLimii)
(Top-of-Stack in Memory)

EEEI _,E!!!E----+
':t'r:l$-l r+ilEr-Jt

) Parameters

)
Local Variables

It".por"r,
,, Variables

I Increasing

| |
Addresses

\z
(Logical Top-of-Stack)

bit causes a procedure call to the make-present
routine if set, and it implies that the second word
of the CST descriptor is a disc address. The maxi-
mum number of entries in the CST is 255.

Every procedure call must go through the Code
Segment Table and must check the absent-from-
main-memory bit. This is part of the virtual mem-
ory implementation of the HP 3000. If the proce-
dure called is in a program segment that isn't in
main memory, the required segment is automati-
cally brought in. When a segment is given control
of the central processor, the program base [PB) and
program limit (PLJ registers are set from the CST
entry of that segment.

While code segmentation is normally specified
by the user, data segmentation is handled by the
MPE/3000 operating system. A normal user has
only one data segment, which is limited to 32K
words. Additional data segments may be requested.

Relocatable Code
Relocation is the normal mode of operation in

the HP 3000 because of its relative addressing
capability. All addressing is relative to hardware
registers.

Fig. a shows the memory reference instruction
format. The address mode bits have been Huffman-
coded to give the maximum displacement range
on the most frequently used codes.

In the code segment, normal addressing is rela-
tive to the program counter register (P). Indirect

Fig. 3. Code and data are ke?t
separate in the 3000 ComPutel
Syslem. Code ls never modified
and can be shared bY several
users. Code segmentation gives

the system virtual memorY caqa'
bility. Data segrnenls are orga'
nized as oushdown stacks.

addressing is similar except that the content of the
indirect cell is assumed to be relative to its own
locat ion.

In the data segment, the addressing modes are
designed to match the types of data encountered
in a procedure-oriented language. Fig. 3 shows the
organization and common use of the data area.
Global variables and pointers are stored relative
to the data base IDBJ register. The DBf mode has
a direct range of up to 255 words without index-
ing or a 64K word range with indexing.

Stack Operation
The stack concept,* which on the HP 3000 is

fully used for the first time in a 16-bit machine,
allows dynamic storage allocation on a procedure
level. The stack is the area of a uset's data seg-
ment between the DB register and the stack pointer

tsl.
Local stack storage in a procedure is allocated

only upon entry and is automatically freed upon
exit. This allows reuse of that area of memory by
other parts of the program. The stack also provides
automatic temporary storage of intermediate re-
sults until they are needed later in a computation.
This is transparent to the programmer, and the
compiler doesn't have to be concerried with saving
and restoring registers.

Parameters that are passed to procedures are
"A stack is a l inear col lect ion of data elements which is normal ly accessed f rom one
end 0n a last-in-first-out basis. An everyday example is a stack of plates in a plate
warmer in a cafeteria.

A Computer for All Reasons
Education and Instrumentation are tradit ional f ields for HP,
and the HP 3000 Computer System signif icantly enhances
the company's capabil i t ies in these areas. The new system
is also well suited to advanced industr ial and commercial
aool icat ions.

Educalion

HP computers entered the education f ield in 1968. The
HP 20004 Time-Shared BASIC System, along with i ts suc-
cessors, provided cost-effect ive computer aided instruct ion
(CAl), problem-solving, and computer science education. A
math dri l l and practice program, an instruct ional dialog fa-
ci l i ty, and an instruct ional management faci l i ty are avai lable
to the teacher for use on the HP 2000. These programs are
writ ten in HP BASIC and are therefore upward compatible
with the HP 3000. In addit ion to these programs, there are
other CAI packages avai lable for use on both HP systems.

In addit ion to the t ime-shared CAI use of the HP 3000,
the Mult iprogramming Executive operating system al lows
simultaneous batch mode computation. This permits a
school to use the computer for administrat ive tasks concur-
rently with CAl, giving a more cost-effect ive solut ion to the
needs of school systems. Many secondary schools wil l also
be able to teach programming and other compuler science
concepts using the mult iprogramming capabil i ty of the Hp
3000.

Junior col leges and small four-year col leges, to keep
costs down, often f ind i t necessary to have only one com-
puter for al l their act ivi t ies. The HP 3000, with i ts simutrane-
ous mul t i l i ngua l t ime-shar ing and ba tch opera t ing modes,
has the abi l i ty to tackle diverse computing needs. In addi-
t ion to these two modes, real-t ime experiments may also be
handled by the operating system, and this makes the sys-
tem useful to university scienti f ic departments.

Because the HP 3000 was designed around the latest
concepts in computer science, i t has many features in hard-
ware and software that university professors have been
teaching in recent years. The 3000 should provide a com-
puter science department with a machine that can be used
not only as case study of advanced architecture, but also
as a vehicle for operating system study. The modular struc-
ture of the software al lows students to rewrite small oor-
t ions of the system as projects and then try them in the
operating system. l t would be too large a task to write a
whole system in a semester, but a small self-contained

module is the r ight size for a term project.

Instrumenlalion

While the education f ield is mainly interested in the t ime-
sharing and batch modes of operation under the Mult ipro-
gramming Executive (MPE), the instrumentation f ield makes
extensive use of the compatible real-t ime capabil i ty. Pre-
vious systems general ly had one or the other, but not al l
three in a unif ied environment.

MPE provides the abi l i ty to col lect data and control proc-
esses in real t ime while al lowing the data so generated to
be accessed through the common f i le system by terminal-
oriented and batch mode programs. This mult i-mode capa-
bi l i ty is a natural extension and combination of the real-t ime
executive and t ime-sharing systems that use the HP 2100
family of computers.

lndustrial/Commercial

The HP 3000 wil l f ind many industr ial and commercial
appl icat ions. One reason is that i t is designed to support
hierarchical computing systems. The data-base handling
capabil i t ies of MPE, along with a powerful and wide-band-
width l /O structure, make the 3000 a good middleman
computer. l t wi l l have extensive data communication faci l i -
t ies for connection to a large general-purpose computer
and wil l be able to control several minicomputers on the
other end of the hierarchy

There wil l be many instances of this computer-to-compu-
ter connection in the future. Standard software protocols
and hardware interfaces are being developed for the HP
3000 to support these systems. The HP 2100 family provides
compatible minicomputer faci l i t ies in systems where the
3000 is the host computer. Intercomputer l inks may be by
direct connection or by modems over common carrier
fac i l i t i es .

Commercial ly oriented languages and data base man-
agement systems currently in development wil l give HP the
ab i l i t y to deve lop and suppor t commerc ia l app l i ca t lons
such as on-l ine inventory management, order entry and
production control. The hierarchical computing capabil i ty
combined with this business data-processing software wil l
make the HP 3000 more and more useful in industry and
commerce, part icularly i f the strong trend toward distr ibuted
processing continues as expected.

pushed onto the stack before the procedure call.
When the procedure call occurs the status of the
presently executing code segment is stored on the
stack and the Q register is set to point at the top
of the stack (S). Parameters are then accessed by
Q- addressing, while the local variables used by
the procedure are accessed by Q+ addressing, as
shown in Fig. 3.

Upon exiting from a procedure the operating sys-
tem retrieves the status of the previously executing
code segment from the stack and returns control
to the instruction following the procedure call.

Addressing in the negative direction with re-

spect to the stack pointer (S) register is useful for
accessing temporary results left on the stack dur-
ing processing. The area between the data limit
(DL) register and DB may be addressed only in-
directly and is used for such purposes as storing
symbol tables and the like.

Reentrant Code
The separation of code and data, the use of a

pushdown stack with Q* and Q- addressing
modes and the nonmodification of code make re-
entrant code the natural way to write HP 3000 pro-
grams. Reentrant code, in conjunction with the

OP
Code x I Address Mode

and Displacement

P
DB+

Q +
a-
s -

o l r
r o- l
I l l L
l l l 0

l 1 l t

!255

+255
+127

-63

Mode Displacement

l-lndirect
X-Add Index Register to

Final Address
(Post Indexing)

Fig. 4. Memory reterence instruction tormat. All address-
ing is relative to hardware registers, making code and
data easily relocatable.

use of the Code Segment Table as the master direc-
tory of all active segments, allows code segments
to be shared between users. Control is transferred
through the CST to the proper segment number of
the shared code as determined by the loader when
the segment was made active. Thus only one copy
of a compiler or a library or the operating system
intrinsics need be available, saving valuable space
in main memory.

Protection Fealures
User isolation and protection takes several forms

on the HP 3000. Programs may execute in one of
two modes: privileged or user. In privileged mode
no bounds checking is done except for stack over-
flow (S)Z), and all instructions are available for
use. AII system interrupts including external [I/O)
interrupts are handled on a separate interrupt con-
trol stack so the user running when the interrupt
occurs is fully protected. In user mode, access is
limited to within the user's own code and data
areas.

In addition to the hardware memory protection,
files are protected by the MPE/3000 file manage-
ment system. Access to files may be controlled at
several levels which range from unrestricted access
by anyone to controlled access available only to
the creator of the file.
Modular Hardware Organization

HP 3000 hardware is organized on a modular ba-
sis. A major feature is the central data bus, which
can service up to seven independent and asynchro-
nous modules. These can be central processors,
memory modules, and/or various types of input/
output channels including a high-speed selector

channel capable of transferring data at a rate of
2.8 megabytes per second.

Modules attached to the bus are technology-
independent. Thus the memories may be magnetic
core, semiconductor, or anything else. Up to four
memory modules can be attached to the bus, and
these can be interleaved (two-way or four-wayJ ,0

Bert E. Forbes
Bert Forbes has been designing computers for HP since
1 967. He was project manager for the HP 3000 CPU and
has several patents pending as a result of that project.
He's a member of ACM and the author of art icles on
computer architecture and integrated circuits for mini-
computers. Now at HP's Geneva, Switzerland, data center,
he's support ing the European introduction of the HP 3000.
Bert received his B. S. degree in electr ical engineering
from Massachusetts Inst i tute ofTechnology in 1966 and
his M. S. E. E. degree from Stanford in 1967. He's also
done work towards the Ph. D. degree. He's an amateur
photographer and a conno isseur o f f ine w ines , and is
active in church youth and social-act ion groups.

Michael D. Green
Mike Green came to HP in 1966. He 's been pro jec t
manager fo r ALGOL/2116, 2000A T ime-Shared BASIC,
and BASIC/3000, and he 's cur ren t ly p ro jec t manager fo r
MPE/3000. Mike graduated f rom Co lumbia Un ivers i ty in
1964 w l th a B .S. degree in mathemat ics , then go t h is M.S.
degree in computer science at Stanford University in 1966.
He's a member of ACM. For relaxing away from the world
of computers, he favors bicycle touring and chess.

Gentral Bus Links Modular
HP SOOO Hardware
Sharing the bus can be one or more CPU's, l/O
processors, memory modules, high-speed l/O channels,
and special devices The microprogrammed CPU's
have a procedure-oriented stack architecture.

by Jamshid Basiji and Arndt B. Bergh

N THE HARDWARE LEVEL, the HP s000
Computer System consists of independently

functioning modules communicating over a high-
speed multiplexed central data bus (Fig. j.). The
modules may include one or more central process-
ing units ICPUs) and input/output [I/O) processors,
one to four memory modules, one or more selector
channels for high-speed input/output, and one or
more special-purpose modules. Hardware modu-
larity makes the system flexible and expandable,
and leaves the door open for future performance
improvements through new technologies such as
faster memories.

The memory now available is a magnetic core
memory that has a cycle time of g60 nanoseconds.
Optional is an interleaved addressing capability
that places sequential addresses in different mem-
ory modules. Memory modules can operate concur-
rently. With interleaving, the system can support a
5.7 megahertz byte data rate.

The 3000 CPU is a microprogram-controlled
processor. It has a stack architecture and special
hardware to make procedure execution very effi-
cient. Instructions are implemented in micropro-
grammed read-only memories, making possible a
powerful instruction set with some instructions
resembling those of higher-level languages.

The data for each user is organized as a data
stack. In general, a stack is a storage area in core
memory where the last item stored in is always the
first item taken out. The stack structure provides
an efficient mechanism for parameter passing, dy-
namic allocation of temporary storage, efficient
evaluation of arithmetic expressions, and recursive
subroutine or procedure calls. In addition, it en-
ables rapid context switching-2l microseconds to
establish a new environment when an interrunt

occurs. In the HP 3000, all features of the stack (in-
cluding checking for overflow and underflowJ are
implemented in hardware.

Bus Operation

The central data bus is a high-speed synchronous
bus that can service up to seven modules. The
transfer cycle time of the central data bus is equiv-
alent to the cycle time of the system master clock,
175 nanoseconds. During each transfer cycle six-
teen bits of data plus parity and eight bits of
source-destination addresses and operation code
are transmitted from the source module to the des-
tination module.

Control of the bus is distributed among the mod-
ules; there is no central control. The bus control
and interface logic for a given module is in the
module control unit (MCU) for that module.

Bus cycles are granted to a transmitting module
when two conditions are met. First, the transmit-
ting module must request a bus cycle from its MCU
and the destination module must be willing to ac-
cept the message in the next cycle. The willingness
of a module to accept a message is indicated by the
Iogical state of its "Ready" line. There are seven
"Ready" lines in the central data bus, one for each
module.

The second condition that must be met before a
module is granted a bus cycle is that there must not
be any higher priority module seeking to obtain the
next bus cycle. Module priority is a function of
data transfer urgency. Memory modules have the
highest priority, and the high-speed selector chan-
nel has a higher priority than the CPU or input/
output processor [IOP]. A module, when ready to
transmit a message, blocks lower priority modules
by lowering its "Enable" line. There are seven ded-

Central Data Bus

IOP BUS

Maximum Memory Size
is 128K Bytes

(4 Modules,32K Bytes Each)

CPU = Central Processing Unit
IOP = Input/Output Processor
MCU = ModuleControl Unit

icated "Enable" lines, one for each module, in the
central data bus. Each MCU checks the status of
all higher priority modules prior to granting the
next bus cycle to its host module.

With this bus-cycle allocation scheme, the "hand-
shaking" mode of operation is not necessary, so
data transfer speed is improved.

The central processing unit and the input/output
processor share a module control unit. Thus the
CPU and IOP share a single port on the central data
bus. The IOP has a higher priority for bus access
than the CPU, although both have independent ac-
cess to the bus. The IOP provides the I/O devices
with a direct path to memory through a buffered
connection between the central data bus and the
I/O bus.

The Central Processor

Because it provides a great deal of instruction
power very economically, the microprogrammed
read-only memory [ROM] method of logic control
was chosen for the HP 3000. The central processing
unit, Fig. 2, has a general-purpose microprocessor
structure with some special features to aid the
stack architecture. The 170 individual instructions
are implemented by sequences of microinstructions
stored in the control ROM.

In the CPU are approximately 30 registers. Those
of most interest to the user are the four top-of-stack
data registers [A, B, C, DJ, three code-segment reg-
isters (PB, P, PLJ, a status register, an I/O mask
register, an index register [X), and six stack pointer

Flg.1. Central data bus of HP
3000 seryes up to seven inde-
pendent modules. 16 bits ot
data plus parity and eight bits
ol address and operation code
arc trcnslerred in 175 nanosec-
onds.

registers [DL, DB, Q, SM, SR, Z). The DB register
is the base of the stack, and the S register, defined
as SM + SR, is the top of the stack. The area be-
tween Q and S is for local variables of the current
procedure or routine. The top-of-stack registers are
logical extensions of the stack area in core and
their use greatly improves instruction execution
time. The SR register tells how many of these regis-
ters are fil led.

To improve the efficiency of handling data in
the CPU, a two-stage "pipelined" data path struc-
ture is used. In the first stage, data is selected from
the source registers and fed onto the two data
buses (R and S) and into the bus storage registers
shown in Fig. 2. These storage registers are the
pipeline holding registers and serve as the data
source for the second stage. In the second stage
this data is processed through the arithmetic logic
unit and a shift network, and the result is option-
ally tested and stored in selected destination reg-
isters. New data is entered into the stream on each
clock pulse to keep the pipeline full and maximize
throughput. The 175 ns clock time achieved with
this structure is much lower than would have been
possible if the whole source-to-destination process-
ing were done in one clock period.

Communication paths from the CPU to outside
modules include a path to memory through the
MCU and central data bus, a path to device con-
trollers through the I/O processor and I/O bus, and
a path to the control panel through a special panel
interface.

1 0

CPU Operation

The CPU performs tasks by sequentially enabling
the appropriate logic to pass data through the proc-
essing structure and to perform other non-data-
path functions. For each sequential step a 32-bit
ROM word, divided into seven coded control fields,
enables the required functions. Each 32-bit ROM
word constitutes a microinstruction. As shown in
Fig. 3, the seven fields in each microinstruction are
the R and S bus source register fields, the operation
or function field, the shift field, the register store
field, the test field, and a special field for executing
non-data-related tasks.

Because each control field can, in general, select
only one meaningful field option at a time, it was
possible to encode them with little loss of capabil-
ity. For a slight reduction in speed, field encoding,
or "vertical microprogramming," offers consider-
able ROM cost savings over the one-bit-per-option
method.

Branching capability is provided by redefining
the R bus, shift, and special fields to be interpreted

as a branch address when a]ump or]ump Subrou-
tine instruction occurs in the function field. Con-
stants also are generated by redefining fields when
a function field designator occurs.

Programs and Microproglams

As the CPU executes a user program, it sequen-
tially fetches software instructions from main
memory. From the binary pattern of each instruc-
tion, a combination ROM lookup table and decod-
ing logic generates a ROM address and stores it in a
presettable indexing ROM address register. This
register is used first to access and then to step
through the sequence of microinstructions, or mi-
croprogram, that causes the software instruction to
be executed. There is a microprogram in ROM for
each of the 170 machine instructions.

The CPU executes a software program in the nor-
mal sequence of phases, that is, instruction fetch,
data fetch, and execute. In the HP 3000 these phases
are more accurately described as instruction pre-
fetch, optional data address computation or hard-

Ceniral Processing Unit (CPU)
'
r n p,, r z-o utp ut P.c-e.6iii oTl-

External Interrupts

Intput/Output

l/O Devices

Fig. 2. Central processor has a general-purpose microprocessor structure with special
leatures to aid stack operation.

1 1

ware stack register preadjust, and instruction exe-
cution. Instruction prefetch is an automatic hard-
ware activity that gets the next instruction during
the execution of the present instruction, thus avoid-
ing the normal instruction fetch time. For memory
reference instructions, hardware has been provided
to compute the absolute memory address, that is, to
add the displacement and index to the appropriate
base register. A general bounds-testing routine in
ROM then checks the computed address for valid-
ity before the individual instruction microprogram
is used. Instructions that use only top-of-stack data
normally (90% of the timeJ don't require a data
fetch, but if necessary, these instructions are first
routed through a microprogram that fil ls the ap-
propriate number of hardware stack registers from
the equivalent logical locations in core.

Interrupts

As the execution of each instruction is completed
a microprogram control signal is issued that starts
the execution of the next instruction unless an in-
temupt is requesting service. If an interrupt has oc-
curred, a force to an interrupt microprogram takes
place. This causes the status of the present user
program to be stored on the stack. Then if the in-
terrupt is not directly user related, the micropro-
gram transfers the status to a system interrupt stack
and calls the first instruction of the software pro-
gram serving that interrupt, After the interrupt has
been serviced control is returned to the MPE oper-
ating system.

TOS Hardware

To achieve faster execution of instructions that
reference the top elements of the stack, special
hardware has been provided. Up to four of the top
elements of the stack can be kept in four top-of-
stack hardware registers, and manipulation of these
registers by the microcode has been made as easy
as possible. The TOS hardware includes the four
registers and renaming logic that allows each of the
four registers to assume any of the four positions
relative to the top of the stack. Thus, the stack can
be logically shifted up or down by simply renaming
the registers, without moving the contents of one
register to another. The number of stack elements
that currently reside in the TOS hardware registers
is kept in the TOS register pointer, SR.
Memory

Mernory modules on the HP 3000 are designed to
be self-contained asynchronous units of up to 64K
bytes each. The maximum memory limit is 128K
bytes in up to four modules. The modules interface
with the system through an MCU port on the cen-

tral data bus, Only data transmissions to the system
have to be synchronized with the system clock; all
other memory timing and control is contained
within each module. Since no fixed response time
is required, faster memories can be interfaced as
they become available.

Memory commands include read, write, and a
special multiprocessor semaphore function: read
and write all t 's within one memory cycle.

The present memory is a 960-nanosecond three-
wire 3D magnetic core memory using the same core
stack and phased X-Y drive current arrangement as
is used in the HP 21004 Computer.l A basic module
consists of one timing, control, and MCU interface
card, one X-Y switch and inhibit-current load card
and one to four BK word stack cards. Because the
sense amplifiers, X-Y drivers and inhibit drivers
all are on the stack card, memory expansion only
requires the addition of one stack card for each
additional 16K bytes.
Input/Output Processor

The functions of the I/O processor have been dis-
tributed between a kernel processor attached to the
CPU and one or more multiplexer channels on the
I/O bus. The kernel processor controls the I/O bus,
which is the data path from external devices to
memory and the communication path between ex-
ternal devices and the CPU. The multiplexer chan-
nel does the bookkeeping for block transfers of
data to and from memory for up to 16 devices.
When needed, additional multiplexer channels may
be added to the system.

Input/output operations in the HP 3000 are di-
vided into three categories: direct I/O, programmed
I/O and interrupt processing. Programmed I/O
operations have priority on the I/O bus over other
types.

Direct I/O operations take place as a result of the
execution of an I/O instruction by the CPU. These
operations either exchange a word of information
between the top-of-stack register (TOS) in the CPU
and the I/O device controller, or cause a control
function to take place in the I/O system. During the
execution of I/O instructions the CPU microproc-
essor performs the basic control functions such as
assembling the I/O command, checking the status
of the I/O device controller, and exchanging a word
of information between the TOS register and the
I/O device via the I/O bus.

Programmed i/O operations are aimed at trans-
ferring blocks of data between I/O devices and the
memory. This type of operation begins for an I/O
device when the CPU issues an SIO instruction for
that device. The device controller in coniunction

12

with the multiplexer channel then executes the I/O
control program for that device without further
CPU intervention, This allows the CPU and I/O
processing to carry on in parallel.

The interrupt structure is a multilevel priority
network that allows the processing of CPU pro-
grams or lower-level interrupts to be preempted by
higher-level interrupts. This assures a prompt re-
sponse to critical external processes. A "polling"
scheme is used in the priority network. Up to 253
devices are allowed on the interrupt poll l ine, and
the interrupt priority of a device is determined by
its logical proximity to the CPU on the interrupt
poll l ine. A 16-bit mask register is provided for the
purpose of masking off groups of interrupts. Any
number of devices can be assigned to any particular
mask group.

I/O bus transfer cycles are granted to multiplexer
channels based on their priorities. A polling scheme
similar to the interrupt polling is used to resolve
priority among the multiplexer channels. However,
the data poll l ine is separate from the interrupt poll
Iine, so the data priority of a channel can be dif-
ferent from its interrupt priority.

Selector Ghannel

High-speed devices may communicate directly to
the central data bus through a selector channel. Un-
like the multiplexer channel, the selector channel is
designed to service one device at a time for the
duration of the execution of the I/O control pro-
gram for that device. This eliminates the time-slice
multiplexing overhead, thereby allowing the SEL
channel to achieve higher data transfer rates than
are possible with the MUX channel. The selector
channel is a part of the SEL module, which is an
independent system module that contains up to
four selector channels and has an independent port
to the central data bus fsee Fig. lJ. This port enables
the selector channels to fetch and execute their
own I/O command words and transfer data be-
tween the memory and the I/O devices independ-
ently of the I/O processor. Each selector channel
has its own SEL bus and can interface up to eight
devices through this bus.

Special Devices

Ports on the central data bus are not device-de-

pendent. Therefore, they can be used for special
custom devices should the system application war-
rant their use. An example of such a device might
be a communications Drocessor.

Acknowledgments
By Richard E. Toepfer
Engineering Sect ion Manager,
Mult iprog ramming Computer Systems

The design of a system like the HP 3000 requires
the contributions of a large group of people. The
following list represents the members of the Data
Systems Development Laboratory who were prin-
cipally concerned with the design and realization
of the hardware and its associated diagnostic soft-
ware. Mainframe Electronics Design: Harlan An-
drews, fim Basiji, Arne Bergh, Bill Berte, Wally
Chan, Ken Check, |ohn Dieckman, Mauro Di-
Franceso, Bert Forbes, Gordon Goodrich, Barney
Greene,]ohn Grimaldi, fim Hamilton, Marty Ka-
shef, fim Katzman, Walt Lehnert, Frank McAninch,
Joe Olkowski, Mike Raynham, Gene Stinson, Tak
Watanabe, Steve Wierenga, Dennis Wong. Main-
frame Mechanical Design: George Canfield, Bob
Dell,]oe Dixon, Bill Gibson, Gary Lepianka, Larry
Peterson, Bob Pierce, Don Reeves, Fred Reid. Mass
Storage Subsystems: Naresh Aggarwal, Ole Eske-
dal, Karl Helness, Ed Holland,]ake |acobs, Earl
Kieser, Harry Klein, Stan Mintz, Malcolm Neill,
Cliff Wacken. I/O Subsystems: Mitch Bain, Oty
Blazek, Vince Emma, Ron Kolb, Tom Kornei, Rick
Lyman, Al Marston, Joe Mixsell, Bill Murrin,]ack
Noonan, |im Obriant, Ken Pocek, Willard Reed,
Willis Shanks, Elio Toschi, Lloyd Summers. Diag-
nostic Software: Bob Bellizzi, Gary Curtis, Hank
Davenport, Dan Gibbons, Pete Graziano, Tony
Hunt, Walt Wolff, Tom Ellestad.

Particular credit must be given to the following
individuals and groups whose special talents great-
ly contributed to the success of our development
effort. Coordinators-Karl Balog and Ollie Saun-
ders. Printed circuit layout-Bob]ones and staff.
Industrial Design-Gerry Priestly and staff. Mate-
rial and Reliability Engineering-Bernie Levine and
staff. Publications-Toe Kintz and staff. System
Management-Dave Crockett and staff. E

Reference
1. Hewlett-Packard Journal, October 1971.

Fig.3. 170 HP 3000 instruc-
t ions are implemenled by se-
quences of microinstructions
stored in read-only memories.
Each 32-bit microinstruction has
seven coded tields.

1 3

Jamshid Basi j i
S ince coming to HP in 1969, J im Bas i j i has worked on
h igh-speed l /O process ing techn iques , deve loped the
architecture of the l /O system and central data bus for the
HP 3000, and he lped des ign the l /O processor and
central processor modules for the HP 3000. A graduate of
the University of Cali fornia at Berkeley, Jim received his
B.S.E.E. degree in 1965 and h is M.S.E.E. degree in 1966.
Before jo in ing HP, he worked on computer deve lopment
and advanced comput ing techn iques fo r lBM. H is idea
of a fascinating way to spend his free moments is with a
oood book .

Arndt B. Bergh
Wi th HP s ince 1956. Arne Bergh has had a var ie ty o f
research and deve lopment respons ib i l i t i es as a member
o f HP Labora tor ies and var ious opera t ing D iv is ions . H is
projects have included instruments, magnetic devices,
memories, and computers, the latest being the hardware
des ign o f the HP 3000. He ho lds four pa ten ts and has
others pend ing on the HP 3000 and on a 1024-b i t b ipo la r
ROM. Arne rece ived the A.B. degree in chemis t ry f rom
St . O la f Co l lege in 1947 and the M.S. degree in phys ics
f rom the Un ivers i l y o f M innesota in 1950. He 's a member
o f ACM and IEEE. He has a p r iva te p i lo t ' s l i cense, bu t h is
rea l pass ion is f l y ing over the water , rac ing h is Daysa i le r
sa i lboat in Ioca l , reg iona l and na t iona l compet i t ion .

S P E C I F I C A T I O N S
HP 3000 Computer System

DESCnrPTtOi l
Mu l l p rogrammed 9enora l -purpose conputer sys tem mplemenled
wr th complemenlary ha .dware and so l lware prov id ing lo r conc ! f -
renr /ea l l ime ba lch and l ime shar in9 p 'ocess in9

CENTBAL PBOC€SSOR
AACHITECTURE

Nardware- mp lemenl€d s lack
Separa l ion o l code and da la
Nonmodi l iab le , reen l ran l code
Var iab le - leng lh code segmenta t ion
Vrdua memory
Dynamic re oca lab i l l y o f p roqrams

I MPLEMENTATION
Micropro9rammed CPU
175 nanosecond h ic ro ins t ruc t ion t im6
Memory pro le€ t , par i t y check ing , powec la i l /au lo res tad
Pro loc l ion be lween users
cen l ra l da la bus
Concur ren l l /O and CPU opera t ions

INSTAUCTIONS
170 ins t f !c l ions

Concur rcn l l /O ope.a l ions
Thre€ ways to mp lemenl l /O
Oi rec l memory access by a l l channe ls
Oev ice- independen l l /O program sxecu l ion
Up to 253 dev ices

I /O SYSTEM
Mul l ip lexer chaf ,ne l
se lec lo r channe l
Oi rsc t l /O

INTERBUPT SYSTEM
up to 253 ex le fna l ln re r fup ts
Independen l hask ing a .d p r io r i t y s l ruc tu res
Mic .op f osrammed env i ronm€nl sw i lch ing
Conmon s tack lo r in le r fup t p rocess in9

17 in ls rna l in le i iup ls p lus 7 l raps
PERIPHERALS

Fixed Head Oisc : 1 , 2 o r 4 megabyt€ ,496 kHz byre l rans le r fa r€
Removab le Medra : 47 mesaby l6s , 320 kHz by te t rans le . ra le

4-9 megabr tos , 245 kAz by le l rans le r ra le
Masne l ic Tape;7 Trackrs ips ,200,550 ora00 bp i

9 Track<s ips ,800 or 1600 bp i
Card n€adersr 600 or 1200 cards per mlnu ls
Card Punches:35 or 250 cards De. minu te

Process con l ro !
In fo rmat ion r€ t i€va l
Data acqu is i t ion

SYSTEMS PROGRAMMING LANGUAGE (SPL)

High lev6 l syn lac t ic s l .uc lu re
Ab i l i l y to address hardwar€ r€9 is le rs sxp l i c i t l y
B i t man ipu la t ion
Branches bassd erp l i c i l l y on hadwars s rarus
Uss of all hardwaro dala typos and operators

PFOGBAMMING LANGUAGES
FORTRANT sr londsd wrs ion o t ANSI S tandard FORTRAN

(x3.91966)

BASIC: most powedu l curen t ly ava i lab l€
COBOL: h ighes l lev€ l o l Fed€ra l Govehment S landard
Compi ls r L lbmry : p rov ides common compi l€ , lunc l ions

OATA MANAGEMENT
IMAGE: comprehens ive in to rmat ion managemenl sys tem

QUEBY: in ls rac l i v€ languag€ in l€dace to da la base v ia IMAGE
SUPPORT SONWARE

EOIT: ed i t ing o l source or lex t l i l es
SORT: so i l and/or m€rge o t mu l l ip ls l i l €s
TAACE: debugg ing loo l lo r FORTBAN and Sys lems Program-

mrng Lan9!arge
SCIENTIFIC SONWARE

Sci6 t r l i t i c L ib rary
STAR-Sla l i s l i ca l Ana lys is Rou l in€s

DIAGNOSIS OF HARDWABE
Sys lem Diagnos l i c Mon i lo r - runs on f ine d iagnos l i cs
S lsnd-a lone d iagnos l i cs
Mic rod iagnos l i cs

PnICE l t USA: $125,000 ro r smal l sys l€m lo owr $500,000 to f la rgs
systom,

MATUFACTUAING DlV lS lO{ : HP Os la Sys t€ns
I 1000 Wol l€ Aoad
Cup€d ino , Ca l i lo rn ia 95014

16 b i l s per word
L ine prn ter : zoo or 600 t rnes per minu te , 64 o l

l6 'b i t and 32-b i l in leSer i 32-b i l l l oa t ing porn l hardware ar i lh ,
96charac terse ls ;132cotunns

Pap€r Tape Reader 500 cps
Tr io le 'word shr l t s to a id 48-b i t t loa l inq po in l so , lwa,€ pa ;er Tape punch i 75 cps

MEMoFY
consotes : cBT or AsR-33

Techno logy independen l , spe€d independen l
UD lo tour modu les soF i lARE

Addressab le to 65K words (131,072 by tes)
17 b i l s inc l !des par i l y b i t

I /O ATD PEAIPHERALS
GENEFAL

Pr iv r lesed con l ro l o r l /O

M U L T i P R O G B A M M I N G E X E C U T I V E
Balch process n9
Onl ine le rmina l p rocess ins

Rea l l ime process lng

Product ion con l ,o l
Automat ic tes l ing

O Software for a Multilingual Gomputer
SPL r,s a high-levd language that produces code
that's as efficient as other sysfems' assembly-language
code. Other 3000 languages are FORTRAN, BASIC and
COBOL,

by William E. Foster

pnocnnMMING LANGUAGES Now AVAIL-
I. ABLE FOR THE HP 3000 USER are FOR-
TRAN, BASIC, and SPL fSystems Programming
Languagel. COBOL will be available in summer
1973. The system will support all these languages
simultaneously.

Systems Programming Language
SPL is an ALGOL-like language. Its objective is

to provide systems programming capability from a
high-level language rather than the traditional as-
sembly language. The benefits are faster coding and
easier debugging. Virtually all the HP 3000 soft-
ware is written in SPL.

It's imperative, of course, that a systems pro-
gramming language produce efficient object code,
and this was another major objective of SPL. Code
optimization has been achieved through the logic
of the compiler and through close correlation be-
tween the SPL syntax and the 3000 instruction set.

A significant aspect of SPL is that it may be used
as either a machine independent or a machine de-
pendent programming language. At the machine
independent level, the syntax of SPL closely re-
sembles that of ALGOL. It isn't necessary for the
programmer to understand the architecture of the
3000 to program at this level.

The machine dependent programmer is one who
has some knowledge of the 3000 architecture [in-
struction set, stack, status register, etc.); the greater
his knowledge, the more he is able to make use of
the machine dependent features of SPL. The effect
of using these features of SPL is improved object
code.

Fig. f. i l lustrates the two levels of SPL applied to
the same programming problem. Fig. 2 is an exam-
ple of a more typical SPL program.

FORTRAN/3OOO
FORTRAN is one of the most widely used and

oldest programming languages. Initial specifications
for the language date back to 1954. FORTRAN/S000
is an ANSl-standard compiler with extensions that
enhance the capability of the language and use the
features of the HP 3000. Among these features are
CHARACTER variables, which were added to the
language to provide the capability of string manipu-
lation. Additionally, a great deal of power is pro-
vided in the area of input/output operations.
I Free-field I/O. Variables may be input and out-

put in a free-field manner, without the specifica-
tion of a FORMAT statement.
Output expressions. Expressions may be includ-
ed in the output list (Fig. 3). For example,

WRITE [3,10J I*S,Af B
is a legal FORTRAN/3000 statement.
Logical unit table. A global table is created by
the compiler and built by the loader that is used
to associate FORTRAN logical unit fstorage de-
viceJ numbers with internal file numbers. The
FORTRAN programmer has the capability, with
the use of library routines, to tailor this table to
his own needs. For instance, he may explicitly
open a file through a call to the file system in-
trinsic FOPEN, then set the returned file number
to correspond to a particular FORTRAN unit
number fsay unit #21. Subsequent READ or
WRITE statements using unit #7 would, in fact,
be referencing this file.
FORMAT specification. Two important specifi-
cations have been added to the FORMAT state-
ment: the T-specification, which positions the
format scanner to specific locations in the record,
and the S-specification, which outputs character
data with a field width that corresponds to the

1 5

Machine independent method
The convent ionai approach, used in most program-

ming languages, would be to use a temporary var i -

able in making the exchange:

SPL statement Purpose Generated Code
TEMP:= A ; S to re t he va lue o f LOAD A

A i n TEMP. STOR TEMP

A: : B ; S to re t he va lue o f LOAD B

B in A. STOR A

B : :TEMP; S to re t he o r i g i na l LOAD TEMP

va lue o f A i n B . STOR B

Machine dependent method
A more ef f ic ient approach would be to use the spe-

cia l SPL symbol TOS. When used in p lace of an

ident i f ier , th is symbol denotes the current top of
stack.

SPL statement Purpose
TOS: : A ; Push the va lue o f

A onto the stack.
A: : B ; S tore the va lue o f

B i n A ,
B: :TOS; S tore the cur ren t

va lue tha t i s on the
top of the stack into
B, then pop the stack

Generated Code
LOAD A

LOAD B
STOR A
STOR B

.a l7 t r4 ! . - t {a l !
r t t taor q , I

t l r t s s @ I
a l t& f r la ta I
o t r r l f r f f i I
. l r lear aa@ r
a l?e lM taaa I
al ?6.q daa 2

0 . c l
s -ral

atraaaa. NF 2

arr"u"rat #t ,

O . a l l
atr0r6a fr4 2

C . a t z
a t t tbm .d 2

i t r ! ry m, ?
a t te [F -s t ?
a t r 9 l E o d a
a l tg la rs @ e
all9taaa Na. 2
tlD{a ffi a
a t t tga t t7 z
a l twr r c9 2
a l? t la ta aos 2
at7*fr wr 2
t l4a t f r ! I
ar!ry .st l
a l ra l f r r . l l
a laa?E -a !a I
tlaat& ffit .
a l law d& a
allr5ra &t {
a l6@ f r7 s
a l { ts n t t 5
at!.!6 d?t 5
a t lMt o r r 5
l la lm !a?7 6
a la l td t l r t a
a t t l zo , la4 6
a r a t l o ! 1 6 s
t l a l . a o x ! a 6 .
a l6 ! !aaa aar t t 3
a la l6 {a , t l r 3
r l a t t a o , r l ! .
a t a t 8 & , t r 5 .
a l t l m t t 2 a .
a l r l sE Dr t ! I
r l ra ld - taa !
a ta2m e l?3 I
t lae taa i l2c I
a le {aaa , l s !
rl!?5trt -l!? !
tlqatat....di.. I
a la2?6 c l tT !
a la?aaao i t .5 !
a l a M a t t s .
, laua ts lg t a
a t6 l l f f 116 l a
all3?fr ,l5t 4
t l ! 3 r y x 1 5 6 .
tlrls tt7! .
tttlno . ,lt5 a
a l3 !6aaa - l t6 a
a l q t t t 9 - 1 r 7 .
a t l tao 0a !
rrry ta6 r
l l & . f r d l t .
a l& lc -e t3 +
a t a a a d d l ! .
, la . !aa t ia t t a
rt84da teal .
. l t s 8 2 . .
t t r . f r , t ! t .
a l & t o x 2 r 2 .
a l&@ xe! ! .
a l l 4 m - 2 s .
al6ga ta$!
t t tS lE te ! ' i
a ls f r * !7 I
a t t lw - t { !
!!a!q {6i a
alt'ff ist.f,
att5ffi i?66 r
alrStd c6t 4
a lasaao ,z t t J
at359a[-ffz I

' rrtillflh

stslr0
1 . . . '

i
orl .l

q

rfm .

.ga a$ar3 l t l t { 61 .1 , r l6a5 aa ! !d a lsa l a ! f f i l r t raa oaa la 5 ! ta l I s t6a ! r r !
wa 6 tw a3rd H6d 6 !@ t2 l6a5 06aa l a ! ! l? ts l . ta [@a mJIa ! t . t z r . l
. ca a . l s 6 ta lAa l3a ar . t l ! l6 l .a l asa t l a t l . f t @ra a ta ta G l . r l? ls e t
. . s a . raa5 a t t {a 6 ta r a ! t .a6 l ! l .F f r r4 l? a l t r ta l t tas E?a 15106 l+ l&a G
Elc aa tg s t4a5 Etq a l laa i l .d t ado a5eaac lS ls t aa l la a !s6 aa laa t tA t
aa la aw7 la l .a? I r rs 6aa aH25 l9 ts l ! l {5 l6 t . l l [l !a a3{a l t6 r r la a .a
aat{ Grs lrl{. aalaat ftl.c th Gaata l4aalt refl illtr aaaaaa ..fl. ,s
. r l& r5 t {6 4 ! .a l t l6?s .eaa l l l s t6 t . Ia s t . l2 a l ! r6 r l ta 655t ! l . f r . aaa
n6 e l$ { !s G l .a l r lq aa t [t &r6a5 6Ea2 1 .6?6 .a? la s l .s r? l * as l
ozaa t6ft6 lll.$ 6t.t? al!t6 a66aa ta-a. aoo ..fl ,a2to Ga55 t674ta 165
0a{ a t r .6 r t l9E az lx l a . l6a5 Baz t .aQi toa ta as ts aa?50 l r t . f t a t l x l & l
Eil r5r.rl ffito llts l5r6a6 06l, ra?t6 t?aaa6 a5?.la 62ra 62Qa aa26z6 atl

l c o N r R o L s t G { € N r ' s , ! l a r l l
P F O C € O U P I S N € r I { v r A ! N r F r r < < I N v E P r S y { N r r p I C { a r F I r 4 0 F 0 { 0 E p N >)

R E ^ t B l 6 D l a G , A r O 5 ' S - l r

I N l E 6 E a | | J r K ' L r i r r . r l

< < l r t l I A ! l z € R r 0 T R U E >)

< < s € r R c 3 f 0 c P I v o T ' >

c!rsi

4tltlt

{ t r rEr

4f tu

I l ra :

dat '[[..
K [.
L@tc4
trl:6t
lilt0Er
rnltoqi
tii&r
rrrtot*
lrttctr

iq{ .
tflL ...
t09iCa!'
!o!lc[
lNlt6r

.ryt6!.

! { l ,
.0 aaal

C.aaa3 ' .

! . F .

O .frl
. c -d5- . . , .

{ rall
! ' a l l .
o {12
0 . l l a

Fig. 1. An SPL program lo swap the values ot two integer
variables, A and B, i l lustrat ing the machine dependent
and machine independent levels of lhe language.

Iength of the associated l is t e lement [F ig. s) .
I Di rect -access I /O, Disc f i les may be referenced

as d i rect access devices. For example, the state-
ment

READ (3@RECNUMJ A,B
reads f rom logical uni t #3 the record speci f ied by
RECNUM, and transmits the data to the l ist ele-
ments A and B.
Other extensions of standard FORTRAN are

mixed-mode arithmetic, free format program entry
for more convenient usage from terminals, removal
of rest r ic t ions on indexing and DO-loops, and an
interactive debugging facil i ty.

Machine dependent characteristics of FOR-
TRAN/3000 are that programs are recursive and
reentrant . In the HP 3000, code and data are stored
separate ly , and code is never a l tered. This means
that programs can be shared by several jobs. I f one
job is using a program and is interrupted by another
job that uses the same program, the f i rs t job can
later reenter the program and continue from the
point of interruption. Thus programs are reentrant.
Recursive means that programs can call them-
selves. Another machine dependent feature is
that storage for local variables is allocated on the
stack dynamically when functions or subroutines
are entered, and deal located upon exi t .

F,E.2. A matrix inversion routine lrom the HP 3000 Scien-
titic Library, written in SPL. The compiler output shown
here includes much optional intormation (shown in color),
such as sequence numbers, PB-relative address of source
slalements, a BEGIN/END count, a symbol table dump,
and a machine code dumo.

1 6

BASTC/3000
The HP 3000 BASIC subsystem runs as an inter-

preter rather than a compiler, which means that
programs are not translated into machine code that
is directly executable, but into an intermediate
language that is executed by control routines.

The primary reasons for having an interpreter
instead of a compiler are faster development and
greater debugging facilities. The interactive debug-
ging mode in BASIC provides the following capa-
bilities:
I Tracing of the path of execution through a pro-

gram and changes in the values of variables
r Interactively displaying the dynamic nesting

structure of a program, that is, the order in which
programs and functions are called

r Displaying and modifying the values of variables
I Altering the execution sequence of a program.

One aspect of an interpreter is that programs are
really data to the interpreter. Therefore, BASIC
programs do not execute as code segments and so
are not sharable. For this reason, HP is currently
developing a BASIC compiler that accepts the in-
ternal file generated by the interpreter and gener-
ates executable code. In this way, BASIC programs
will not only run as sharable code segments, but
will also execute faster.

The BASIC/3000 language is a superset of HP
2000 BASIC, incorporating many extensions:

2000
26 numeric arrays
26 string variables
one data type (32-bit real)

3000
286 numeric arrays
286 strings or string arrays
four data types [L6-bit integer, 32-bit real, 48-bit
real, 64-bit complex)

Other extensions include compound statements
(Fig. aJ, mixed-mode arithmetic, multipleJine func-
tions, string-valued functions, access to all MPE

wRrTE(6,1 0) "PRESSURE", P
WRITE(6,10) "TEMPERATURE", 2-T

10 FoRMAT (" THE VALUE FOR ", S, "rS", F7.3)

Result: fassume P:1.0339 and T:55.87)

THE VALUE FOR PRESSURE IS 1.034
THE VALUE FOR TEMPERATURE IS 1.I1.740

Fig. 3. FORIFAN/3000 program illustrating the use ot an
expression in an output list, and the "S" specilication in
the FORMAT statement.

DO-
DOEND
Pairs

IF A>B THEN 60
ELSE DO
I F B (: C T H E N B : C + 1
r F c # D T H E N D O
C = C + F N K (D , D . A , C)
D : Z + A
DOEND
ELSE 110
DOEND

Fag. 4. An example ol a BASIC/3000 compound stale-
ment.

files and peripheral devices, capability of calling
SPL procedures, many additional predefined string
and numeric functions, string arrays, program over-
lays, picture I/O formatting, statement execution
frequency reporting, dynamic array redimension-
ing, handling of non-BASIC files, and additional
file commands.

SPL, BASIC, and FORTRAN are all recursive,
that is, programs, procedures, and subroutines can
call themselves. Fig. 5 illustrates this property.

coBoL/3000
COBOL [COmmon Business Oriented Language)

is the result of an effort to establish a standard pro-
gramming language for business processing. The
original specifications were drawn up in 1959 by
CODASYL fthe COnference on DAta SYstems Lan-
guages). COBOL/3000 conforms to the highest level
of Federal Government Standard COBOL and has
the added capability of interprogram communica-
tions.

COBOL is a structured language that consists of
Indentification, Environment, Data, and Procedure
divisions. A feature of COBOL that makes it attrac-
tive in commercial applications is that it provides
fixed-point arithmetic up to 18 digits; this elimi-
nates the problem of round-off error which exists
in "floating-point" formats.

Switching Languages Made Easy
HP 3000 languages share many common attri-

butes that aid the user in switching from one lan-
guage to another. Among the areas of compatibility
are:
I Program-to-program communication. SPL, FOR-

TRAN, and COBOL programs can all call pro-
grams written in either SPL, FORTRAN, or
COBOL. BASIC programs can call SPL, FOR-
TRAN, or COBOL programs as well as other
BASIC programs. Files written in one language
are accessible by other languages.

r Compiler construction. The command languages
for all of the compilers are consistent. For ex-

1 7

SPL
INTEGER PROCEDURE FAC (N) ;VALUE N; INTEGER N;
F A C : = I F N (= 1 T H E N 1 E L S E N - F A C (N - 1) ;

FORTRAN
INTEGER FUNCTION FAC (N)
rF (N. GT. 1) cO TO 10
F A C : 1
RETURN

1 0 F A C : N - F A C (N - 1)
RETURN
E N D

BASIC
1OO DEF INTEGER FNF (INTEGER N)
1 10 lF N (: 1 THEN RETURN 1
120 ELSE RETURN N * FNF (N - 1)
130 FNEND

Fig. 5. SPt, BASIC/3000, and FORTRAN/3000 programs
to calculate integer tactorials. All three languages haye
recu rs ive capab i I iti es.

ample, the commands that tell the compiler to
merge a source file with an update file are
identical for each compiler. Also, the language
translators share the same system library rou-
tines. These library routines are used both during
compilation and as run-time routines to imple-
ment the language features. For example, the
program that converts a character string into an
internal binary number is used both by SPL at
compile time and by the FORTRAN formatter at
execution time. This modularity not only simpli-
fies the task of making changes to common pro-
grams, but also reduces the development cost by
eliminating duplication of effort. The steps in
compiling and executing programs are as follows
(Fig. 6J:

1) The source program [main program plus sub-

routines) is compiled into relocatable modules
that are stored in the user's subprogram file
(USLI. If the programmer decides to change any
part of his program, he can recompile any sub-
routine, or the main program, into the USL file
and the old copy of that subroutine will be de-
activated. (It will still exist in the file, and could
later be reactivated.) The relocatable modules
can be added, deleted, activated, or deactivated
from the USL. Also, these modules can be copied
from one USL to another.

2J Next, the USL file is prepared into a Program
File. Preparation consists of segmenting the code
and defining the initial stack size.

3) Now, the Program File can be allocated/exe-
cuted. The segments are allocated into virtual
memory, external references are satisfied from
the libraries, and the program is scheduled for
execution according to its priority.

GenerahPurpose Applicalions Soflware
Several general-purpose software packages are

now available for the HP 3000. There is a scientific
library, an interactive statistical package, a text
editor, and a text formatter. Other packages will
be available in the future.

Scientific Library. The scientific library consists of
a collection of SPL procedures that reside in the
system library. The initial capabilities include:
error function/complimentary error function, gam-
ma and log" gamma functions, exponential, sine-
cosine, Fresnel integrals, elliptic integrals and ellip-
tic functions, Bessel functions, and statistical pro-
cedures including elementary statistics fkurtosis,
means, etc.], one-way frequency distribution, cor-
relation, and multiple linear regression. This library

1 8

Fig. 6. HP 3000 compilation/execution p/ocess.

will be kept open for future enhancement.

Interactive Statistical Analysis Package (STAR).
This subsystem provides the user with the capabil-
ity of performing various kinds of statistical analy-
sis in an interactive (question-answer) mode. This
package may also be used in a batch mode. All of
the statistical capabilities that exist in the scientific
library are available to the STAR user, along with
the following additions: data file manipulation
Icreation, editing, etc.), scatter diagrams, histo-
grams, and variable transformation.

The output from STAR may be to the user's ter-
minal, or to a line printer. All results are displayed
in an easily readable, tabular form. The data may
be input directly from the terminal, or from the
batch input device, or from a file created by a FOR-
TRAN, SPL, or BASIC program.

In keeping with the modular structure of the
HP 3000 system, STAR makes use of the scientific
and compiler libraries in performing its functions.
As new capabilities are added to the scientific li-
brary, these capabilities will be easily extendable
to STAR merely by adding the necessary input/out-
put routines and calling on the scientific library to
perform the calculations.

Text Editor. EDIT/3000 is a general-purpose utility
that provides the user with the capability of easily
creating and manipulating files of upper and lower
case ASCII characters. Lines and characters can be
inserted, deleted, replaced, searched for, and so on.
The files to be edited can be FORTRAN, SPL, BA-
SIC, or COBOL source files, or textual material
such as reports.

One feature of this program not usually found in
text editors is its ability to selectively modify text
depending on conditions found within the text it-
self. When this is done, the "edit language" has an
ALGOL-like structure with the metacommands
WHILE, NOT, and OR acting upon statements that
can be compound statements fgroups of statements
enclosed by a BEGIN-END pair). These commands
and statements can be nested indefinitely. Interac-
tive users can write an edit program to send mes-
sages to the terminal and place input from the user
in appropriate places within the text file. Together,
these features make the editor a powerful tool for
many applications other than simple program edit-
ing'

Text Formatter. This program lists ASCII files un-
der the control of format records imbedded in the
text file. FORMAT/3000 may also be used with the
text editor. The formatter provides the capability
of preparing simple documents to be listed on line

printers or other ASCII devices.

Acknowledgments
The following people were directly involved in

the implementation of the languages and general-
purpose products:

SPL: Doug |eung, Gerry Bausek, Tom Blease.
FORTRAN: Jerry Smith, Terry Hamm, Jim Hew-

lett, John Couch
BASIC: Mike Green, Terry Opdendyk,]ohn Ship-

man
COBOL: Steve Ng, Waldy Haccou,]ohn Welsch,

John Yu, Paul Rosenfeld, Gerry Bausek
STAR, Scientific Libraries: Paul Rosenfeld, Dave

Johnson
Editor/Formatter: Fred Athearn.

Credit is also due the many people in software QA
and publications who have done such a great job.0

Will iam E. Foster
As secl ion manager for systems software, Bi l l Foster is
respons ib le fo r p rogramming languages and opera t ing
sys lems fo r 2100, 2000, and 3000 Computer Sys tems. B i l l
rece ived h is B .A. degree in mathemat ics f rom Ca l i fo rn ia
State University at San Jose in 1966, then spent the next
th ree years deve lop ing sa te l l i te o rb i t p red ic t ion , t rack ing ,
and reent ry so f tware . In 1969 he go t h is M.S. degree in
applied mathematics from the University of Santa Clara
and joined HP as a software project manager. He became
a sec t ion manager in 1971 and assumed h is p resent job

in 1972. A member of ACM and the American
Management Assoc ia t ion , B i l l i s now a cand ida te fo r the
M.B.A. degree a t Santa C lara . He en ioys go l f , tenn is ,
b icyc l ing , basketba l l , hydrop lan ing (he bu i l t h is own
boat), and exploring the Bay Area by motorcycle, anc
he 's now tak ing f l y ing lessons .

1 9

Single Operating System
Serves AII HP SOOO Users
The Multiprogramming Executive operatrng system takes
care of command interpretation, file management,
memory management, scheduhng and dispatching,
and input/output management for time-sharing, batch,
and reallime users.

by Thomas A. Blease and Alan Hewer

l\/urupRocRAMMrNG EXECUTTVE [MpE/
f Yt 30001 is a general-purpose disc-based operat-
ing system that supervises the operation of the HP
3000 Computer System and its variety of users.

MPE/3000 allows users to access the system con-
currently in three distinct but compatible modes:
batch processing, time sharing, and real-time proc-
essing. MPE is designed to take maximum advan-
tage of system resources, to make the system easy
to use, and to relieve the user of the need for de-
tailed knowledge of the internal hardware or direct
interaction with it, Each user's environment is pro-
tected;program protect ion is provided by hardware
and data protection by any of several software fa-
cilities depending on the degree of security desired.

MPE/3000 has a modular organization that makes
it more convenient to check out and maintain, and
provides a flexible base on which additional capa-
bilities may later be developed. Users interact with
the 3000 System through the command interpreter,
one of the functional units of MPE. Programming
access to the hardware is provided by system rou-
tines called MPE intrinsics. Uniform access to disc
files and input/output devices is provided by the
MPE file system. MPE also has memory manage-
ment, an input/output system, and scheduling for
dynamic allocation of resources.

Process Structure
Underlying the modularity of MPE/3000 and its

ability to support three kinds of users concurrently
is its process structure. Except for a few specialized
system controls such as the dispatcher and inter-
rupt structure, all operating-system and user func-
tions are performed as a series of processes.

A process is the basic entity that can be executed
by the central processor. While a program identi-

fies a static sequence of instructions and data, a
process denotes the dynamically changing sequence
of states of an executing program. Under MPE/
3000, a process consists of:
r A unique process control block which describes

and controls the process,
I A private [stackJ data segment, accessible only

by the process, for data operation and storage,
and

I An instruction in a code segment which may be
private to the process or may be shared with
other processes.
Processes are organized hierarchically in a tree

structure as shown in Fig. 1. Each process has only
one immediate ancestor, but may have several
immediate descendants. Control and information
flows are restricted to proceed only along branches
of this logical tree structure. The primary interac-
tions which are provided for are creation, deletion,
control. and intercommunication.

The root process is the progenitor. All immediate
descendants of the progenitor are system processes.
They include:

a VO system controller processes, which queue,
initiate, and complete all input/output requests
for all devices configured under the operating
system.

r The make-a-process-present IMAPP) process,
which schedules the allocation of memory re-
sources to data segments belonging to active pro-
cesses.
The device recognition (DREC) process, which
performs the administrative tasks of allocating
input/output devices and also verifying and initi-
ating new users under the operating system.
The user controller (UCOP) process, which is

20

Fig. 1 Multiprogramming Executive (MPE) operating sys-
tem tor HP 3000 has a process structure. All lunctions are
pertormed as a series ol processes.

defined as the ancestor of all user processes cur-
rently running under MPE/3000. The primary re-
sponsibility of UCOP is to create, supervise, and
delete user process tree structures.
Of these system processes, the most important is

UCOP, the root process of the user structure. An
immediate descendant, created by UCOP, is called
a moin process, and the code executing under it is
normally the command interpreter. The process
tree structure originating at a main process defines
a job (job/session/taskl. A basic feature of a job
is its complete independence from all other jobs
currently existing.

Apart from the progenitor and several specific
system processes which together constitute the op-
erating system and which must exist, the process
tree structure is completely dynamic, expanding
and contracting as operating system and user re-
quirements change.

Memory Management
The primary function of MPE/3000 memory man-

agement is the allocation of main memory to meet
the demands of users. "Main memory" is core mem-
ory as opposed to disc memory. The memory man-
agement module is also responsible for code seg-
ment table entries, data segment table entries, and
overlay disc storage for data segments.

Main Memory Organization
Main memory is organized into three contiguous

areas [Fig. 2J. The first area contains system tables,
interrupt procedures, and MPE intrinsics which
must be core resident, that is, always present and
accessible in main memory.

The second area is of variable length and is used
to satisfy requests from users for core resident
storage. This area is dynamically expanded and con-
tracted and can be of zero length.

The remaining main memory is referred to as
linked memory. Linked memory is composed of
free fnot currently being used) and assigned fallo-
cated for a code or data segmentJ areas of varying
sizes. Areas not currently in use are linked together
and form the free space list. Similarly, the assigned
areas are linked together and form the assigned
space list. Each area contains an information header
defining its size. If the area is assigned, the header
also contains information about disposition [I/O
pending, etc.J, segment type (code or data with in-

Fig. 2 Main memory is organized into reserved and linked
memory. Linked memory conslsts ol tree and assigned
areas.

Main
Pro
ces-
5es
l
I

Tasks

Location 0

Assigned
Segment #0

Free
Segment #l

Assigned
Segment #2

Assigned
Segment #1

Assigned
Segment #3

Free
Segment #0

Location
t77777E+

Assigned
Head

Pointer

Free
Head

Pointer

21

Relocatable Binary Module

Viriual Memory

!jj!-. seconoary
Segmentl

-it,fi;i

Fig. 3 Program segmentation gives the HP 3000 virtual
memory. MPE automatically brings into main memory only
those code segrnents that are currently needed. Thus a
user's program may be much larger than main memory.

dex into code segment table or data segment table),

disc address, priority, and frequency of access.This
additional information is used in the selection of
assigned areas to overlay when a request cannot
be satisfied from the free area list.

Virtual Memory
Virtual memory consists of main memory plus an

area of mass storage called secondary memory, or
the swapping area [Fig. eJ. The swapping area is on
disc or drum memory, although not necessarily on
a single device; it may include areas of several de-
vices, In the swapping area is a collection of pieces
of code or data defined as segments. As a program
executes, segments are swapped in and out of main
memory by the operating system. Whether a seg-
ment is in main memory or absent, it is neverthe-
less part of virtual memory. Thus from the point of
view of a user, he is working with a memory that
appears to be many times Iarger than the actual
physical size of main memory. His own program
may exceed the 65K-word maximum main memory
capacity and still allow space for many other users
on the same machine.

As shown in Fig. 3, code is entered into the com-

puter in some source language, is translated to bi-
nary form by a compiler, and is stored in the file
area. Each compiled program or subprogram exists
in the file area as a relocatable binary module.

When the user is ready to execute his program,
the appropriate command is given and the operat-
ing system loads the binary modules of his program
into the swapping area of virtual memory. Simul-
taneously with this transfer, the binary modules
are formed into segments as specified by the user.
In some cases no actual change takes place; for ex-
ample, a small program may consist of just one
segment and the loader will probably not move it
from a file disc onto the system disc unless the user
wants this done.

Data segments are allocated dynamically when a
program is loaded, and are always on the system
disc.

Schedu ling/ Dispatching
To accommodate the different modes of opera-

tion which may coexist under MPE/3000, the sched-
uling system is based upon a priority structure. All
processes are logically organized into a linear mas-
ter scheduling queue in order of their priority.

The dispatcher is responsible for allocating the
central processor to the active processes in the
scheduling queue. A process is considered active if
it requires access only to the central processor.
Otherwise, it is considered inactive, awaiting some
other resource.

The basic organization of the scheduling queue
is shown in Fig. 4. System processes are scheduled
directly onto the master queue. Subqueues are used
to schedule processes belonging to users. Note that
since processes are scheduled independently, not
all processes in a job are necessarily entered in the
same subqueue.

There are five standard subqueues. Three are
Iinear in structure. In a linear fsubJqueue, the high-
est priority active process is given access to the
central processor by the dispatcher, and it main-
tains this access until it becomes inactive or until
it is preempted when a higher priority process be-
comes active. The three linear subqueues are for
core-resident processes, real-time processes, and
low-priority (idleJ processes.

The other two subqueues ale circular subqueues.
These are for time-share processes and batch proc-
esses. In a circular subqueue, all processes are con-
sidered to be of equal priority and each active proc-
ess accesses the central processor for a certain time
interval. At the end of this time interval, the proc-
ess releases the CPU and the next active process
in the subqueue is dispatched. This continues in a

22

High Ranka - - -- - - -+Low Rank

High Priority

t

+
Low Priority

Subqueues

Fig.4 MPE schedules processes on the basis ot priorities.
Processes are organized into a linear master queue and
tive subqueues.

round-robin manner.

Each of the two circular subqueues is composed
of two subqueues-a higher priority subqueue con-
taining l/O-bound processes and a lower priority

CHANGE OF ADDRESS NOTICE
f---1 The address shown is NOT correct.
| | t t shou ld be as I have ind ica ted be low

R e m o v e m y n a m e t r o m t u t u r e J O U R N A L m a i l i n g s

File System l/O

Privileged l/O

ReafTime l/O I User-supptied

+

Please comple te the above and mai l th is sec t lo ,
w i th address labe l on reyerse s ide to :

Fig. 5 Basic HP 3000 input/output access methods'

subqueue containing compute-bound processes. The
dynamic rescheduling of processes between the
dual subqueues is performed by MPE/3000. In the
case of highly interactive time-share processes,
this arrangement provides quicker response at the
terminal.

l/O System
The purpose of the MPE/3000 I/O system is to
perform input/output operations for the file sys-
tem. The user doesn't interact directly with the I/O
system, but indirectly via the file system. Howevet,
privileged users may access the I/O system directly,
and users with real-time capability may bypass
both the file system and the I/O system for direct
access to specific devices. Fig. 5 shows the basic
I/O access methods.

In a typical I/O operation the sequence of opera-
tibns is as follows. An executing user process gen-
erates a file request to the file system. The file
system calls the attach-I/O intrinsic. Attach-I/O
allocates an I/O queue entry and links it into the
queue for the device specified. When all earlier
requests for the device have been completed and
the I/O monitor process has the highest priority
among all other processes, the I/O monitor process
begins execution of this request. There is one I/O
monitor process for each device controller.

The I/O monitor process first assures that the
data buffer is frozen in memory. The initiator sec-
tion and the I/O program issue an SIO instruction
to the device controller and return control to the
I/O monitor process. Data is then transferred
between the I/O device and the data buffer.

When the I/O monitor process is again dispatch-

23

ed, it recognizes that an interrupt has occurred and
calls the completion section of the device driver.
The completion section checks for successful com-
pletion and returns the results of the I/O operation
to the file system via the I/O control block. The
user's process is activated upon I/O completion.

When the user process is again dispatched, re-
turn is made to the point following the file request.

Acknowledgments
The following people were directly involved in

the design and implementation of MPE/3000: Harlan
Andrews, Larry Birenbaum, Terry Branthwaite,
]ean-Michel Gabet,]ack MacDonald, Bob Miya-
kusu, Chris Larson, Tom Ellestead, Paul Rosenfeld,
Steve Brown, and Myron Zeissler.d

Thomas A. Blease
Tom Blease's career in software design and
implementation got i ts start in 1960 when he received his
B.A. in mathematics from the University of Cali fornia at
Berkeley. In the ensuing years he held posit ions in that
f ield with several organizations in Florida and Cali fornia. At
HP s ince 1969, he par t i c ipa ted in the des ign and imp le-
menta t ion o f SPL and MPE fo r the HP 3000. He 's a mem-
ber of ACM and he enjoys a good hike on his days off.

Alan Hewer
Alan Hewer received his B.A. and M.A. degrees in
mathematics from Christ 's College, Cambridge University,
Eng land in 1960 and 1963, respec l i ve ly . Between 1960
and 1970 he worked on software design and implementa-
t ion w i th var ious compan ies in Eng land and the Un i ted
Sta tes . When he jo ined HP in 1970, he was t i rs t
involved in the hardware design of the HP 3000. Later in
the project he took on his recent responsibi l i t ies in
the des ign and imp lementa t ion o f MPE/3000.

Address Cor rec t ion Reouested :

Hewle t tPackard Company, 1501 Page Mi l l
Road. Pa lo A l to . Ca l i fo rn ia 94304

Bulk Rate
U S. Postage

Paid
Hewlett-Packard

Company

