

The Aerovox Research Worker is published by the Aerovox Corporation to bring authoritative, first hand information on state-of-the-art developments in electronics. Copyright material herein contained can be reprinted in whole or part only with the written consent of the Aerovox Corporation.

Schedule Method of Harmonic Analysis

By the Engineering Department of Aerowox Corporation

When no wave analyze: is available, a harmonic andrsis may be made of any wave trom the latter's oscillogram obtained cithet from an ostillosope steen or teconder chart. The basic tecthnique is a solution of the Fourier series:

(1-1)

$y=A_{0}+A_{1} \cos w t+A_{2} \cos 2 w t+A_{3} \cos w t$
$3 w t+A_{4} \cos 4 w t+A_{5} \cos 5 w t+A_{6} \cos 6 w t$
$+B_{1} \sin w t+B_{2} \sin w t+B_{3} \sin 3 w t$
$+B_{4} \sin 4 w t+B_{5} \sin 5 w t$
Here, t_{0} is the d-c component, and the A and B teims ate a-c components:
$A_{0}=I / \pi \int_{0}^{2 \pi} v d x . A=I / \pi \int_{0}^{2 \pi} y \cos n x d x$, and $B_{n}=1 / \pi \int_{0}^{2 \pi} y \sin n v d x$.

If the technician knows no calculus, he quickly abandons the desire to lind the harmonic content from the wave pattern he sees on the oscilloscope screen. But he need not do this, for the seliedule Method permits evaluation of the Founier serits, using simple arithmetic. Ihis method has been known for some time (it was described in the Burean of Standards Bulletin in 1913 and is discussed in several current tadio and electronic handbooks) ; nevertheless, no great number of
technitians seem to have tried to apply it. While the method does involve a number of calculations, they all are simple and the mocthod provides an extremely uselui tool. 1 his article describes the Schedule Method and gives a step-by-step illustative example. '1 he version detailed here has been simplified by consolidating the lirst two series of calculations of the original method into the thind series, and presenting this combined operation as our first series of calculations. The technirian may use this method to analye any periodic wave sine, distorted audio. square. pulse, sawtooth, etc.) that he tan display on the oscilloscope screen or recorder chart.

AEROVOX - The Finest In Electronic Camponents

PROCEIDURE FOR ANALI'SIS

The version of the Schedule Method described here involves 6 steps, in the last three of which there are several simple calculations.

SlEP 1. Oltain a workable sized pattern of the waveform of interest. Do this by (a) directly viewing an oscilloscope screen, (b) photographing the pattern from the screen, or (c) taking the traced chart from a recorder.
STEP 2. See Figure 1. Along the x-axis, divide 1 complete period of the waveform into 12 equal parts (as between O and X in Figure 1): Start shortly to the right of the beginning of the period. From each of the 11 points which lie within the half-cycles of the pattem, carefully measure the vertical distance from the point to the pattern (vertical lines - ordinates - may be drawn up to the positive half-cycle and down to the negative half-cycle, as shown in Figure 1), and label these heights y_{0} to y_{11} as shown. The lengths of these ordinates may be measured in any consistent units (inches, centimeters, millimeters. oscilloscope screen divisions, recorder chart divisions), provided that tenths can be measured. Upgoing ordinates (e.g., yo to y_{6}) are positive values; downgoing ordinates (c.g., y_{7} to y_{11}) are negative.

STEP 3. Record these y values in a table (see Figure 2).
STEP 4. Using these y-values, calculate the sums (S-values) and differences (1). valucs), according to Equations (1-2) to (1-17), below.

$$
\begin{aligned}
& \text { (1.2) } \quad S_{0}=y_{0}+y_{6} \\
& \text { (1-3) } \quad S_{1}=y_{0}+y_{5}+y_{7}+y_{11} \\
& \text { (1-4) } \quad s_{2}=y_{2}+y_{4}+y_{8}+y_{10} \\
& (1-5) \quad S_{3}=y_{3}+y_{9} \\
& \text { (1-6) } \quad S_{4}=y_{1}+y_{5}-y_{7}-y_{11} \\
& \text { (1-7) } \quad S_{5}=y_{2}+y_{4}-y_{8}-y_{10} \\
& \text { (1-8) } \quad S_{8}=y_{3}-y_{9} \\
& \text { (1-9) } \quad S_{7}=y_{0}+y_{2}+y_{4}+y_{6}+y_{8} \\
& +y_{10} \\
& \text { (1-10) } S_{8}=y_{1}+y_{3}+y_{0}+y_{11} \\
& \text { (1-11) } \mathrm{D}_{0}=\mathrm{Y}_{0}-\mathrm{Y}_{\mathrm{G}} \\
& \text { (1-12) } \mathrm{D}_{1}=\mathrm{y}_{1}-\mathrm{y}_{5}-\mathrm{y}_{7}+\mathrm{y}_{11} \\
& \text { (1-13) } \quad \mathrm{D}_{2}=\mathrm{y}-\mathrm{y}_{4}-\mathrm{y}_{8}+\mathrm{y}_{10} \\
& \text { (1-14) } \mathrm{I}_{3}=\mathrm{y}_{1}-\mathrm{y}_{5}+\mathrm{y}_{7}-\mathrm{y}_{11} \\
& (1-15) \quad D_{8}=y_{2}-y_{4}+y_{8}-y_{10} \\
& \text { (1-16) } \quad D_{5}=y_{1}-y_{3}+y_{5}-y_{7}+y_{p}-y_{11} \\
& (1-17) 1)_{8}=y_{0}-y_{2}+y_{4}-y_{6}+y_{8}-y_{1}{ }^{0}
\end{aligned}
$$

FIGURE 1. DISTORTED WAVE FOR ANALYSIS

STEP 5. Using the S - and D-values obtained in Step 4, calculate the A and B Fourier coefficients, according to Equations (1-18) to (1-29), below.
(1-18) $A_{0}=\left(S_{7}+S_{8}\right) / 12$
$\left.\left.(1-19) A_{1}=\left(\mathrm{D}_{0}+0.866 \mathrm{I}\right)_{1}+0.51\right)_{2}\right) / \mathrm{s}$
$(1-20) \quad \mathrm{A}_{2}=\left(\mathrm{S}_{0}+0.5 \mathrm{~S}_{1}-0.5 \mathrm{~S}_{2}-\mathrm{S}_{3}\right) / 6$
(1-21) $\left.\quad A_{a}=1\right)_{a} / 6$
$(1-22) \quad \mathrm{A}_{4}=\left(\mathrm{S}_{0}-0.5 \mathrm{~S}_{1}-0.5 \mathrm{~S}_{2}+\mathrm{S}_{3}\right) / 6$
$\left.\left.\left.(1-23) \quad \lambda_{5}=(1)_{0}-0.8661\right)_{1}+0.51\right)_{2}\right) / 6$
(1-24) $\mathrm{A}_{\mathrm{B}}=\left(\mathrm{S}_{7}-\mathrm{S}_{\mathrm{N}}\right) / 12$
$(1-25) \quad B_{1}=\left(0.5 S_{4}+0.866 S_{5}+S_{6}\right) / 6$
$(1-26) \quad B_{2}=\left(0.866\left(\mathrm{I}_{3}+\mathrm{I}_{4}\right)\right) / 6$
$(1-27) \quad B_{3}=D_{5} / 6$
$(1-28) \quad B_{4}=\left(0.866\left(D_{3}-D_{4}\right)\right) / 6$
$(1-29) \quad B_{5}=\left(0.5 S_{4}-0.866 S_{5}+S_{6}\right) / 6$
STEP 6. Using the A- and B-values obtained in Step 5, calculate the various components of the wave, according to Equations (1-30) to (1-36), below. The wave contains a d-c component, λ_{0}, only when the half-cycles are sufficiently asymmetrical to result in a positive or negative dominance. (For a symmetrical sine wave, $\mathrm{A}_{0}=\mathrm{O}$.)
(1-30) 1).C. Component. 1$) \mathrm{C}=\mathrm{A}_{\mathrm{o}}$
(1-31) Fundamental. $h_{1}=\sqrt{A_{1}^{2}+B_{1}^{2}}$
(1-32) 2nd Harmonic. $h_{2}=\sqrt{A_{2}^{2}+B_{2}^{2}}$
(1-33) 3rd Harmonic. $\quad h_{3}=\sqrt{A_{3}^{2}+B_{3}^{2}}$
(1-34) 4th Harmonic. $h_{4}=\sqrt{A_{4}^{2}+B_{4}^{2}}$
(1-35) 5th Harmonic. $h_{5}=\sqrt{A_{s}^{2}+B_{5}^{2}}$
(l-36) 6th Harmonic. $\quad h_{6}=A$

IIIUSIIRATIVE ENAMPILE

The following example illustrates analysis of the distorted wave shown in Figure 1. The ordinates on the original pattern were measured in centimeters. SleP 1. The obtained wave pattern is shown in Figure 1.
SIEP 2. One period of the wave is divided into $12 \times$-axis intervals (O to X in Figure 1). Here, the ordinates are measured in centimeters.

SIEP 3. The y-values are recorded in the Table in Figure 2.

ORDINATE	y_{0}	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}	y_{7}	y_{8}	y_{8}	y_{10}	y_{11}
HEIGHT	0.63	1.95	3.10	3.30	2.90	1.78	0.45	-0.92	-1.89	-2.14	-1.70	-0.82

FIGURE 2. TABLE OF Y-VALUES

STEP 4. The S - and D-values are calculated as shown in Equations (2-2) to (2-17). below. These calculations apply the basic equations (1-2) to (1-17), respectively.
(2-2) $\quad S_{0}=0.63+0.45=1.08$
$(2-3) \quad \mathrm{S}_{1}=0.63+1.78+(\cdot 0.92+(-0.82)$ $=0.67$
(2-4) $\quad \mathrm{S}_{2}=3.10+2.90+(-1.89)+(-1.70$ $=2.41$
$(2-5) \quad S_{3}=3.30+(-2.15)=1.16$
(2-6) $\quad \mathrm{S}_{4}=1.95+1.78-(-0.92)-(-0.82)$ $=5.47$
$(2-7) \quad S_{5}=3.10+2.90-(\cdot 1.89)-(-1.70)$ $=9.59$
(2.8) $\quad S_{t a}=3.30-(-2.14)=5.41$
$(2-9) \quad \mathrm{S}_{7}=0.63+3.10+2.90+0.45+$
$(-1.89)+(-1.70)=3.49$
$(2-10) \quad S_{8}=1.95+3.30+(-2.11)+(-0.82)$ $=2.29$
(2-11) $D_{0}=0.63-0.15=0.18$
$(2-12) \quad \mathrm{D}_{1}=1.95-1.78-(-0.92)-(-0.82)$ $=0.27$
$(2-13) \quad \mathrm{D}_{2}=3.10-2.90-(-1.89)+(-1.70)$ $=0.39$
$(2-14) \quad D_{: 3}=1.95-1.78+(-0.92)-(-0.82)$ $=0.07$
$(2-15) \quad \mathrm{D}_{4}=3.10-2.90+(-1.89)-(-1.70)$ $=0.01$
$(2-16) \quad \mathrm{D}_{5}=1.95-3.30+1.78-(-0.92)$

$$
+(-2.14)-(-0.82)=0.03
$$

$(2-17) \quad \mathrm{D}_{8}=0.63-3.10+2.90-0.45+$

$$
(-1.89)-(-1.70)=-0.21
$$

STEP 5. The A- and B-values are calculated from the S - and D-values obtained in Step 4), according to Equations (2-18) to (2-29), below. These calculations apply the basic equations (1-18) to (1-29), respectively.
(2-18) $\quad \mathrm{A}_{0}=(3.49+2.29) / 12=0.482$
$(2-19) \quad \mathrm{A}_{1}=(0.18+0.866(0.27)+0.5(0.39))$
$/ 6=(0.18+0.234+0.195) / 6$

$$
=0.609 / 6=0.1015
$$

$(2-20) \quad \mathrm{A}_{2}=(1.08+0.5(0.67)-0.5(2.41)-$ $1.16) / 6=(1.08+0.335-1.205-1.16)$ $/ 6=-0.95 / 6=0.158$
(2.21) $\mathrm{A}_{3}=0.21 / 6=0.035$
(2.22) $\mathrm{A}_{4}=(1.08-0.5(0.67)+1.16) / 6=$
$(1.08-0.335+1.16) / 6=1.905 / 6=0.3175$
$(2-23) \quad A_{5}=(0.18-0.866(027)+0.5(0.39)$
$/ 6=(0.18-0.234+.195) / 6=0.141 / 6$ $=0.0235$
(2-24) $\quad \mathrm{A}_{\mathrm{s}}=(3.49-2.29) / 12=1.20 / 12$
$=0.10$
$(2-25) \quad \mathrm{B}_{1}=(0.5(5.47)+0.866(9.59)+5.44)$
$/ 6=(2.735+8.305+5.44) / 6=16.48 / 6$

$$
=2.75
$$

$(2-26) \quad \mathrm{B}_{2}=(0.866(0.07+0.01)) / 6=(0.866$
$(0.08)) / 6=0.0693 / 6=0.0115$
(2-27) $\quad B_{3}=0.03 / 6=0.005$
$\left.(2-28) \quad B_{:}=0.866(0.07-0.01)\right) / 6=$ $(0.866(0.06)) / 6=0.05196 / 6=0.00866$
$(2-29) \quad B_{5}=(0.5(5.47)-0.866(9.59)+5.44)$

$$
/ 6=(2.735-8.305+5.44) / 6=-0.13 / 6
$$

$$
=0.0217
$$

STEP 6. Finally, using the A. and Bvalues obtained in Step 5, calculate the value of each component in the wave, according to Equations $(2-30)$ to (2-36), below. These calculations apply the basic equations (1-30) to (1-36), respectively.

$$
(2 \cdot 30) \quad \text { D.-C Component. }
$$

$$
\mathrm{DC}=\mathrm{A}_{0}=0.482
$$

(2-31) Fundamental.

$$
\begin{aligned}
\mathrm{h}_{1}= & \sqrt{0.1015^{2}+2.75^{2}}= \\
& \quad \sqrt{0.0103+7.56}=\sqrt{7.57}=2.75
\end{aligned}
$$

(2-32) 2nd Harmonic.

$$
\begin{aligned}
\mathrm{h}_{2}= & \sqrt{0.158^{2}+0.0115^{2}}= \\
& \sqrt{0.02964+0.00013}=\sqrt{0.0298} \\
= & 0.173
\end{aligned}
$$

(2-33) 3rd Harmonic.

$$
\mathrm{h}_{3}=\sqrt{0.035^{2}+0.005^{2}}=
$$

$$
\sqrt{0.00122+0.000025}=
$$

$$
\sqrt{0.00124}=0.0352
$$

(2-34) 4th Harmonic.

$$
\begin{aligned}
\mathrm{h}_{4}= & \sqrt{0.3175^{2}+0.00866^{2}}= \\
& \sqrt{0.10+0.000075}=\sqrt{0.10} \\
& =0.317
\end{aligned}
$$

(2-35) 5th Harmonic

$$
\begin{aligned}
h_{5}= & \sqrt{0.0235^{2}+0.0217^{2}}= \\
& \sqrt{0.0552+0.00047}=\sqrt{0.0557} \\
& =0.236
\end{aligned}
$$

(2.36) 6th Harmonic. $h_{5}=.1$

If desired, an individual percentage may be determined in terms of the fundamental amplitude: $100\left(\mathrm{~h} / \mathrm{h}_{1}\right)$, where h is the amplitude of the harmonic component of interest (determined by means of the appropriate one of Equations $2-30$ to 2-36) and h_{1} is the fundamental amplitude. Example: In the wave analyzed in the foregoing sections, what is the percentage of 2 nd harmonic? Here, from Equation (2-31) the fundamental amplitude is 2.75 , and the 2 nd harmonic amplitude is 0.173 (from Equaiton 2-32). 2nd harmonic $=100(0.173 /$ $2.75)=100(0.0629)=6.29 \%$.
Similarly, the total harmonic distortion (10%) of the wave may be determined:
(2-37)

$$
D \%=\frac{\sqrt{h_{2}^{2}+h_{3}^{2}+h_{4}^{2}+h_{5}^{2}+h_{6}^{2}}}{h_{1}} \times 100
$$

From this equation and the component values obtained in Equations (2-30) to $(2 \cdot 36)$, the total harmonic distortion of the wave analyzed in the preceding sections is
$\mathrm{D} \%=$
$\frac{\sqrt{0.173^{2}+0.0352^{2}+0.317+0.236^{2}+0.1^{2}}}{2.75}$
X $100=$
$\frac{\sqrt{0.0298+0.000124+0.10+0.0557+0.01}}{2.75}$
X $100=$
$\frac{\sqrt{0.1967}}{2.75} \times 100=\frac{0.4435}{2.75} \times 100=$
$(0.1613) 100=16.13 \%$

the product behind the promise

Aerovox Precision Metal Film Resistors

Aerovox has undertaken a tremendous stocking program for AEROMET MIL characteristic C \& E epoxy coated precision metal film resistors. Hundreds of valves are now IN STOCK at your Authorized Aerovox Distributor... ready for IMMEDIATE DELIVERY!

But best of all, if he happens to be out of the particular value you need, go no further. Aerovox inventories millions of pieces to insure satisfaction of your requirements.

Projects and production lines need never be stilled for lack of product. Aerovox promises to produce... and has the products to back up the promise!

RANGE OF VALUES-AEROMET ${ }^{\hat{6}} \pm 1 \%$ PRECISION RESISTORS

TYPE	SIZE		STD. MIN. OHMS	SID. MAX. OHMS	MIL-R-10509F max. D.C. Volts	EQUIV. to MIL-R-10509F			MARKINE
	$\begin{aligned} & \text { D\|A. } \\ & \text { (MAX) } \end{aligned}$	$\begin{aligned} & \text { BDOY } \\ & \text { LENGTM } \end{aligned}$				TYPE	CHAR.	TOL.	
CPFXI/ 10	.100	281	49.9	100,000	250	RN55	C, E	F	RN55 No.
CPFX1/8	. 115	. 320	49.9	499.000	250	RN60	C.E	F	RN60 No.
CPrxy	. 203	. 620	49.9	1,000,000	300	RN65	C,E	F	RN65 No.
cerxas	. 260	. 750	24.9	1,000,000	350	RN7O	C, E	F	RNZO No.

