
$\qquad$

# V. H. F. PRIMER 

## PART 6. WAVE GUIDE TABLES

By the Engineering Department, Aerovox Corporation

Accompanying this paper are two tables of wave guide data; one a chart showing cut-off wavelengths and corresponding frequencies for common sizes of square wave guides, and the other a chart giving similar data for common sizes of circular wave guides. The Editors believe that square and circular pipes will be the types most commonly employed by amateurs and experimenters, and have set up the tables for these two cross sections only. The prospective user of wave guides may consult these tables to save himself the labor of calculation when seeking cut-off values for common pipe dimensions.

In the first column of each table, common standard pipe sizes are listed every one-sixteenth of an inch apart from $1 / 8$ inch (diameter of circular type or per-side measurement of square type) to 2 inches. These
sizes will be entirely useful in the majority of cases.

The wavelength and frequency values given in each table are those corresponding to the three simplest modes, which very likely will be the principal ones in which amateurs and experimenters will be interested. These are $\mathrm{TE}_{0}{ }_{1} ; \mathrm{TE}_{1} 1 ;$ and $\mathrm{TM}_{11}$, for square wave guides and $\mathrm{TE}_{0} 2$; $\mathrm{TE}_{1} 1_{1}$; and $\mathrm{TM}_{0}{ }_{1}$ for circular wave guides. The frequencies listed in several instances exceed the present $30,000-\mathrm{Mc}$. limit of allocated super-high-frequency spectrum. However, the Editors feel that this particular data will be useful in appraising available pipes and tubes of very small cross section.

All dimensions are in inches, wavelengths in centimeters, and frequencies in megacycles per second. If it is desired to determine the size of
pipe required for a cut-off wavelength not listed in the tables, one of the following equations, corresponding to the cross section and mode concerned, may be employed.
A. SQUARE WAVE GUIDES

| (1) | $\mathrm{TE}_{\mathbf{0}}$ | 1 | $\mathrm{a}=\lambda / 5.08$ |
| :--- | :--- | :--- | :--- |
| (2) | $\mathrm{TE}_{1}$ | 1 | $\mathrm{a}=\lambda / 3.592$ |
| (3) | $\mathrm{TE}_{1}$ | 1 | $\mathrm{a}=\lambda / 3.592$ |

B. CIRCULAR WAVE GUIDES
(4) $\mathrm{TE}_{0} 2 \quad \mathrm{~d}=\lambda / 2.083$
(5) $\mathrm{TE}_{1}{ }_{1} \quad \mathrm{~d}=\lambda / 4.394$
(6) $\mathrm{TM}_{0}{ }_{1} \mathrm{~d}=\dot{\lambda} / 3.327$

In each equation:
$\lambda=$ cut-off wavelength in centimeters.
$a=$ one side of square in inches
$d=$ diameter of circle in inches
( $a$ and $d$ are inside dimensions)

## TABLE 1. Square Types



|  | cut-off wavelength (cms.) |  |  | CUT-OFF FREQUENCY (Mc.) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $T^{T} E_{0,1}$ | TE ${ }_{1,1}$ | T M ${ }_{1,1}$ | TE ${ }_{0,1}$ | T $\mathrm{E}_{1,1}$ | T M ${ }_{1,1}$ |
| 1/8×1/8 | 0.635 | 0.449 | 0.449 | 47.244 .1 | 56,815.1 | 56,815.1 |
| 3/16 $\times 1 / 16$ | 0.953 | 0.674 | 0.674 | 31,479.5 | 44,543.4 | 44,543.4 |
| $1 / 4 \times 1 / 4$ | 1.270 | 0.898 | 0.898 | 23,622 | 33,407.6 | 33,407.6 |
| 5/16 $\times$ 5/16 | 1.588 | 1.123 | 1.123 | 18,887.7 | 26,726 | 26,726 |
| 3/8 $\times 3 / 8$ | 1.905 | 1.348 | 1.348 | 15,748 | 22,271.7 | 22,271.7 |
| 7/16 $\times 7 / 16$ | 2.223 | 1.572 | 1.572 | 13,491.2 | 19,090 | 19,090 |
| $1 / 2 \times 1 / 2$ | 2.540 | 1.796 | 1.796 | 11,811 | 16,703.8 | 16,703.8 |
| 9/16 $\times 9 / 16$ | 2.856 | 2.021 | 2.021 | 10,493.2 | 14,958.9 | 14,958.9 |
| 5/8 $\times 5 / 8$ | 3.175 | 2245 | 2.245 | 94488 | 13,363 | 13,363 |
| $11 / 16 \times 11 / 16$ | 3.493 | 2.470 | 2.470 | 8585.3 | 12,139.1 | 12,139.1 |
| $3 / 4 \times 3 / 4$ | 3810 | 2.694 | 2694 | 7874 | 11,135.8 | 11,135.8 |
| 13/16 $\times 13 / 16$ | 4.128 | 2.919 | 2.919 | 7264.5 | 10,279.2 | 10,279.2 |
| $718 \times 7 / 8$ | 4.445 | 3.143 | 3.143 | 6749.2 | 9545 | 9545 |
| $15 / 16 \times 15 / 16$ | 4.763 | 3.368 | 3.368 | 6295.9 | 8908.7 | 8908.7 |
| $1 \times 1$ | 5.080 | 3.592 | 3.592 | 5905.5 | 8351.8 | 8351.8 |
| $11 / 6 \times 11 / 6$ | 5.398 | 3.817 | 3.817 | 5555.2 | 7860.6 | 7860.6 |
| $11 / 8 \times 11 / 8$ | 5.715 | 4.041 | 4.041 | 5249.3 | 7423.9 | 7423.9 |
| $13 / 16 \times 13 / 16$ | 6.033 | 4.266 | 4.266 | 4970.4 | 7033.1 | 7033.1 |
| $11 / 4 \times 11 / 4$ | 6.350 | 4.490 | 4.490 | 4724.1 | 6681.5 | 6681.5 |
| $15 / 16 \times 15 / 16$ | 6.670 | 4.715 | 4.715 | 4497.1 | 6363.6 | 6363.6 |
| $13 / 8 \times 13 / 8$ | 6.985 | 4.939 | 4.939 | 4294.9 | 6074.1 | 6074.1 |
| $17 / 16 \times 17 / 16$ | 7.303 | 5.164 | 5.164 | 4106 | 5810 | 5810 |
| $11 / 2 \times 11 / 2$ | 7.620 | 5.388 | 5.388 | 3937 | 5567.9 | 5567.9 |
| $19 / 16 \times 19 / 16$ | 7.938 | 5.613 | 5.613 | 3777.5 | 5345.2 | 5345.2 |
| $15 / 8 \times 15 / 8$ | 8.255 | 5.837 | 5.837 | 3634.2 | 5139.6 | 5139.6 |
| $11 / 16 \times 11 / 16$ | 8.573 | 6.062 | 6.062 | 3497.7 | 4949.3 | 49493 |
| $13 / 4 \times 13 / 4$ | 8.890 | 6.286 | 6.286 | 3374.6 | 4772.5 | 4772.5 |
| $13 / 16 \times 13 / 16$ | 9.208 | 6.511 | 6.511 | 3256.5 | 4607.9 | 4607.9 |
| $17 / 8 \times 17 / 8$ | 9.525 | 6.735 | 6.735 | 3149.6 | 4454.3 | 4454.3 |
| $115 / 16 \times 15 / 16$ | 9.843 | 6.960 | 6.960 | 3046.4 | 4310.6 | 4310.6 |
| $2 \times 2$ | 10.160 | 7.184 | 7.184 | 2952.8 | 4175.9 | 4175.9 |


| TABLE |  | 2. Circular Types |  |  | $\leftrightarrow$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ins | cut-off wavelength (oms.) |  |  | Cut-off frequency (mc.) |  |  |
| $\begin{gathered} \text { TER } \\ \text { (inches) } \end{gathered}$ | ${ }^{T} E_{0,2}$ | ${ }^{T} \mathrm{E}_{1,1}$ | $\mathrm{T}^{\mathrm{M}} 0,1$ | ${ }^{T} \mathrm{E}_{0,2}$ | ${ }^{1} E_{1,1}$ | $\mathrm{TM}_{0,1}$ |
| 1/8 | 0260 | 0549 | 0.416 | 115,300 | 54,650 | 72,250 |
| 3/16 | 0390 | 0824 | 0.624 | 76,900 | 36,400 | 48,100 |
| $1 / 4$ | 0.521 | 1.098 | 0.832 | 57,700 | 25,739 | 36,300 |
| 5/16 | 0.651 | 1.373 | 1.040 | 46,250 | 21,850 | 28,850 |
| 3/8 | 0.710 | 1.648 | 1.248 | 42,300 | 18,210 | 24,250 |
| 7/16 | 0911 | 1.925 | 1.456 | 32,950 | 15,590 | 20,640 |
| 1/2 | 1.041 | 2197 | 1.664 | 28,800 | 13,660 | 18,000 |
| 9/16 | 1.172 | 2.472 | 1872 | 25,600 | 12,120 | 16,030 |
| 5/8 | 1.302 | 2.746 | 2080 | 25,100 | 10,900 | 14,420 |
| $11 / 16$ | 1432 | 3.021 | 2287 | 20,950 | 9940 | 13,100 |
| 3/4 | 1.562 | 3.296 | 2.496 | 19,200 | 9110 | 12,020 |
| 13/16 | 1.692 | 3.570 | 2.703 | 17,750 | 8410 | 11,100 |
| 7/8 | 1.823 | 3845 | 2.991 | 16,460 | 7810 | 10,025 |
| 15/16 | 1.953 | 4.119 | 3.119 | 15,380 | 7280 | 9640 |
| 1 | 2.083 | 4.394 | 3.327 | 14,390 | 6835 | 9010 |
| 11/6 | 2.213 | 4.669 | 3.535 | 13,550 | 6438 | 8485 |
| 11/8 | 2.343 | 4.944 | 3.743 | 12,790 | 6075 | 8010 |
| 13/16 | 2.473 | 5.218 | 3.951 | 12,130 | 5760 | 7595 |
| $11 / 4$ | 2.603 | 5.493 | 4.159 | 11,530 | 5469 | 7230 |
| 15/16 | 2.734 | 5.767 | 4.367 | 10,950 | 5200 | 6875 |
| $13 / 8$ | 2.864 | 6.042 | 4.575 | 10,480 | 4971 | 6565 |
| 17/16 | 2.994 | 6.327 | 4.783 | 10,010 | 4740 | 6270 |
| 11/2 | 3124 | 6.591 | 4991 | 9610 | 4550 | 6017 |
| 19/16 | 3254 | 6866 | 5.199 | 9230 | 4370 | 5775 |
| 15/8 | 3384 | 7.141 | 5.407 | 8860 | 4200 | 5450 |
| $111 / 16$ | 3.514 | 7415 | 5.615 | 8540 | 4045 | 5349 |
| $13 / 4$ | 3.645 | 7.690 | 5.823 | 8235 | 3900 | 5150 |
| $11 / 3 / 16$ | 3.775 | 7.965 | 6031 | 7945 | 3765 | 4975 |
| $17 / 8$ | 3.905 | 8.239 | 6.239 | 7690 | 3640 | 4810 |
| 115/16 | 4.035 | 8.514 | 6.447 | 7475 | 3525 | 4660 |
| 2 | 4.165 | 8.788 | 6.655 | 7225 | 3439 | 4505 | S PLASTIC-CASE PAPER TUBULAR \{ $\left\{\begin{array}{c} \\ =\end{array}\right.$

## that withstands

 All eatCombination of special plastic casing and special sealing compounds for ends, insures mmmunity to moisture.

Already rated for operation at maximum temperature of $95^{\circ} \mathrm{C}$. ( $203^{\circ} \mathrm{F}$.).

Will not deteriorate under normab storage conditions.
Overall dimensions identical with those of Aerovox paper tubulars of corresponding voltages and capacitance values.

Somewhat higher in cost than corresponding paper tubulars.


- Forget about that melting and dripping wax when it comes to tubular capacitors operating at elevated temperatures. Especially in auto radios. Also forget about humidity; capacitors sticking together and picking up dirt; premature breakdown.

The new Aerovox plastic-case bonded-seal tubulars (Series -83) now protect your good name with performance insurance. Slick as a seal, these clean, bright, handy tubulars are immune to temperatures ranging from sub-zero cold up to sizzling heat, and
impervious to moisture penetration.
This latest Aerovox development (patents pending) overcomes usual objections io paper tubular for the more critical applications. The rigid plastic case with bonded-seal ends, provides real protection for the capacitor section. Overall wax dip becomes a thing of the past, while rigid humidity tests are readily met.

Simply install them-forget them-and be insured!

- Write for further details...

