Sylvania #### **Radio Tube Characteristics Chart** #### **Notice** This chart has been completely revised and many new and old types have been added to make it of more use to servicemen. Please note that the inclusion of many of these old types does not mean that they are available from Sylvania. They are included for your reference in finding substitutes, etc. Consult our price list for types currently available. The data published here have been compiled from various sources and while believed to be accurate, no responsibility can be assumed in case of error. #### **How To Use This Chart** The types are listed in numerical and alphabetical order because there are now so many types it is difficult to remember even the style of construction or whether it has a filament or cathode as emitter. The second column now lists the style of construction. Lock-In, Miniature and GT are, of course, well known, but the letters "T" and "ST" may need explaining. "T" means tubular bulb and "ST" is the dome topped bulb as now used in Type 6D6, 24, etc. The following number gives the nominal maximum diameter in eighths of inches. New columns have been added to show the type of emitter, (cathode or filament), and for interelectrode capacitances on those types having capacitance ratings. On converters the capacitances shown are respectively, Signal Grid to Plate; R-F Input; and Mixer Output. The capacitance values shown are for a shielded tube when the data are available, since this is the latest standard method. Except in the case of obsolete (or newly announced) types, more complete technical data may be found in the Manual. #### **License Notice** Mention or reference to patented circuits does not constitute permission for their use. The license agreement under which Sylvania tubes are sold is enclosed in the tube carton. EMPORIUM, PENNA. COMPILED BY COMMERCIAL ENGINEERING DEPARTMENT # SYLVANIA ELECTRIC PRODUCTS, INC. COPYRIGHT 1945 | Туре | | Construction | | | Emitter | , | Cal | Vote (1) (
apacitanc
in u.uf. | CES | Use | Plate | Negative
Grid | e Screen | Plate
Current | Screen
Current | Plate
Resistance | Micromho
Mulual | | Chms
Load
for
Stated | torted
Power
Output | Тура | |--------------|-------------|-------------------------|-----------------|--|-------------------|-------|------------|-------------------------------------|--------|-----------------------|-------------|------------------|----------------|-------------------|-----------------------|------------------------------|--------------------|---|-------------------------------|---------------------------|--------------| | | Style | Class | Basing
Diag. | | Volts | Amos | C40. | Cin. | Cout. | 016 | Volts | | Volts | Ma. | Ma. | Ohms | Conduct- | | Power
Output | Milli-
watts | 1794 | | OA4G | ST-12 | Gas Triode | 4-V | Cold K | 1400 | | 11111 | | 1 | Relay Tube | Peak Ca | thode Me. | -100.D-C C | athode Ma. | -25 Max. Str | arter Anode Drop | p-60V. A | pprox. Anode | Drop = 70V | / Approx. | OA4G | | OB3/VR90-30 | ST-12 | Diode | 4-W | Cold K | - | 0.000 | | | 20.00 | Voitage Regu | ulator with | h starting Vo | oltage at 125. | 5. Operating | Volts 90, Op | perating Current | 10 Ma. Mi | lin. 30 Ma. Ma | D K | | OB3 VR90-30 | | OC3/VR105-30 | 57-12 | Diode | 4-W | Cold K | | | | 0.7.1 | | Voltage Regu | ulator with | h starting Vo | oltage at 135, | 5, Operating ' | Volts 105, O | Operating Curren | nt 5 Ma. Mi | in. 40 Ma. Ma: | BR. | | OC3/VR105-30 | | OD3/VR150-30 | | Diode | 4-W | Cold K | | 11.0 | | **** | | Voltage Regu | ulator with | h starting Vo | oltage at 180, | 0, Operating 1 | Valts 150, O | Operating Current | nt 5 Ma. Mi | in. 40 Ma. Ma | ax. | | OD3/VR150-30 | | OZ4 | Metal | Gas Duodi. | 4-R | Cold K | | **** | | **** | 1111 | F-W Rect | 300 A.C | C. Valts Per | er Plate, RMS. | 5, 90 Ma. Ma | 4ax. 30 Ma. M | Min. Output Cun | rrent. | | | | OZ4 | | OZ4G | T-7 | Gas Duodi. | 4-R | Cold K | | 2.05 | 0.0 | | 11.11 | F-W Rect | 300 A.C | C. Volts Per | | 5, 90 Ma. Ma | | Min. Output Cum | rent. | | | | OZ4G | | 01 A | ST-14 | Triode | 4-D | Filament | | 0.25 | 8.1 | 3.1 | 9.2 | Amplifier | 90
135 | 4.5
9.0 | ***** | 9.5
3.0 | 0.000 | 11,000 | 725
800 | 8.0 | 222 | | O1A | | | Miniature | Diode | | The state of s | the second second | 0.15 | 122 | 1000 | | Detector | | | de Type Rectil | | | | | | | | 1A3 | | 1A4P | ST-12 | Pentode | 4-M | Filament | 2.0 | 0.06 | | m 5.0 | | R-F Amp. | 135 | 3.0 | 67.5
67.5 | 2.2 | 0.9 | 1 Meg.
1 Meg. | 625
725 | 0.34434 | 41441 | | 1A4P | | 1A4T | ST-12 | Tetrode | 4-K | Filament | 2.0 | 0.06 | 01 Om | m 5.0 | 11.0 | R-F Amp | 135 | 3.0 | 67.5
67.5 | 9.9
9.9 | 0.7 | 350,000
600,000 | 625
650 | 0.000 | 2000 | | 1A4T | | 1A5GT | GT | Pentode | 6-X | Filament | 1.4 | 0.05 | With F | 1000 | | Power Amp | 85 | 4.5 | 85 | 3.5 | 0.7 | 300,000 | 800 | 45.11.61 | 25,000 | 100 | 1A5GT | | 1 A6 | ST-12 | Heptode | 6-L | Filoment | 2.0 | 0.06 | 0.25 | 10.5 | 9.0 | Converter | 135 | 3.0 | 90
67.5 | 1.8 | 9.1 | 400,000 | 850
275▲ | | | 0 Ma.) | 1A6 | | 1A7GT | GT | - Uselede | 77 | Pilaman | 4-4 | 0.05 | | | - | | 180 | 3.0 | 67.5 | 1.5 | 2.0 | 500,000 | 300▲ | The Residence of the Residence of the Party | | | 1.101 | | 1AB5 | Lock-In | Heptode | 7-Z
5-BF | Filament | | | 0.5m | | 10.0 | Converter | 90 | 0.0 | 45 | 0.55 | 0.60 | 600,000 | 250▲ | _ | | T | 1A7GT | | | | Pentode | 5-Br | Filament | 1.2 | 0.13 | 0.25m | 2.80 | | R-F Amp | 90
150 | 0 | 90
150 | 3.5
6.8 | 0.8
2.0 | 275,000
120,000 | 1,100
1,350 | 000000 | 11715 | ***** | 1 A B 5 | | 184P | ST-12 | Pentode | 4-M | Filament | 2.0 | 0.06 | .007m | n 5.0* | 11.0* | R-F Amp. | 135 | 3.0 | 67.5
67.5 | 1.6 | 0.7 | 1.5 Meg. 4
1.5 Meg. 6 | 560
650 | 114000 | | 0111 | 1 B4P | | 1B5 25S | ST-12 | Duodiode-Tri | 6-M | Filament | 2.0 | 0.06 |
3.6 | 1.6 | 1.9 | Det. Amp. | 135 | 3.0 | 07.5 | 0.8 | - | 35,000 | 575 | 20 | | | 1B5/95S | | 1B7GT | GT | Heptode | 7-Z | Filament | The second | 0.10 | | 7.0 | 7.5 | Converler | 90 | 0.0 | 45 | 1.5 | 1.3 | 350,000 | 350▲ | _ | 1.6 Ma.) | | 1B7GT | | 1C5GT | GT | Pentode | 6-X | Filament | | 0.10 | The last | - | - | Power Amp | 83 | 7.0 | 93 | 7.0 | 1.6 | 110,000 | 1,500 | 165 | 9,000 | 200 | 1C5GT | | 1C6 | ST-12 | Heptode | 16-L | Filament | | 0.19 | 0.3 | 10.0 | 10.0 | Converter | 90 | 7.5 | 90
67.5 | 7.5 | 1,6 | 115,000 | 1,550 | 180
(G2 = 135 V | 8,000
/. Max. 3 | 240
I.1 Ma.) | 1C6 | | 1C7G | ST-12 | Heptode | 7-Z | Filoment | | | | | 14.0 | Converter | 180 | 3.0 | 67.5 | 1.3 | 9.0 | 700,000 | 325▲ | (G2 - 180 V
(G2 - 135 V | /. Max. 4 | 1.0 Ma.) | 1C7G | | 1D5GP | ST-12 | Pentode | 5-Ý | Filament | | | | | | | 180 | 3.0 | 67.5 | 1.5 | ₹.0 | 700,000 | 395▲ | | / D Max. 4 | 0 Ma.) | | | | | | | | | 0.06 | | m 5.0* | | R-F Amp. | 135
180 | 3.0
3.0 | 67.5
67.5 | 2.2
2.3 | 0.9 | 1 Meg.
1 Meg. | 625
725 | | 1 | | 1D5GP | | 1D5GT | ST-12 | Tetrode | 5-R | Filament | | 0_06 | .01 0m | 4.4 | 10.8 | R-F Amp. | 135 | 3.0 | 67.5
67.5 | 2.2 | 0.7
0.7 | 350,000
600,000 | 625
650 | 0.000 | | | 1D5GT | | 1D7G | ST-12 | Heptode | 7-Z | Filament | 2.0 | 0.06 | 0.25 | 10.5 | 9.0 | Converter | 135 | 3.0 | 67.5
67.5 | 1.8 | 2.1
2.0 | 400,000
500,000 | 275▲ | (G2=135 V
(G2=180 V | /. Max., 9 | 2.0 Me.)
2.5 Me.) | 1D7G | | 1D8GT | GT | Diade Triade
Pentade | 8-AJ | Filament | 1.4 | 100 | | | 199 | Det. Amp. | 45 | 0 | 67.5 | 0.3 | 774 | 77,000 | 325 | 95
95 | 1 | (Ivi) | 1 DBGT | | | 1 | . • | | | | | | | | O A | 67.5
90 | 0 | 45 | 0.6
1.1 | 0.3 | 55,500
43,500 | 450
575
650 | 25 | 20,000 | 35 | | | | 1 | | | | | | | | | Power Amp. | 45
67.5 | 4.5
6.0 | 45
67.5 | 1.6
3.8 | 0.8 | 300,000¢
200,000¢ | 650
875 | | 16,000 | 100 | | | 1E4G | Gī | Triode | 5·S | Filament | 1.4 | 0.05 | 2.4 | 2.4 | 6.0 | Amplifier | 90 | 9.0 | 90 | 5.0 | 1.0 | 11,000 | 925
1.325 | 14.5 | 12,000 | 900 | 1E4G | | 1Ë5GP | ST-19 | Pentode | 5.Y | | | | | | | | 90 | 3.0 | | 1.5 | | 17,000 | 825 | 14 | | | 1E5GP | | | 21.14 | гелюде | 5.7 | Filament | 2.0 | 0.06 | .007m | 5.5 | 12.0 | R-F Amp | 135 | 3.0 | 67.5
67.5 | 1.6 | 0.7 | 1.5 Meg. 4
1.5 Meg. 4 | 560
650 | | | | 1E5Gr | | 1E7G | ST-1 2 | Duo. Pentade | 8-C | Filament | 2.0 | 0.24 | | | 1 2 3 | Power Amp. | 135 | 7.5 | 1 35 | 7.0 | 2.0♦ | 220,000 | 1,600 | 350 | 24,0004 | 575 | 1E7G | | 1F4 | ST-12 | Pentode | 5-K | Filament | | 0.12 | | | | Power Amp. | 135 | 4.5 | 135 | 8.0 | 2.4 | 200,000 | 1,700 | 330 | 16,000 | | 1F4 | | 1F5G | ST-12 | Peniode | 6-X | Filament | 2.0 | 0.12 | | | Trans. | Power Amp. | 135 | 4.5 | 135 | 8.0 | 2.4 | 200,000 | 1,700 | | 16,000 | | 1F5G | | 1F6 | ST-1 2 | Duodi. Pent. | 6.W | Filoment | 2.0 | 0.06 | .007m | 4.0 | 9.0 | R-F or I-F | 180 | 1.5 | 67.5 | 2.2 | 0.7 | 1 Meg | 650 | | | Sterry | 1F6 | | 1F7G | ST-12 | Duodi. Pent. | 7-AD | Fllament | 20 | 0.06 | .01 m | 3.8* | 9.5* | A-F Amp
R-F or I-F | 135 | 9.0 | (Screen Supp | 2.9 | 7. Thru 0.8 Me
0.7 | leg. Res., Grid R.
1 Meg. | 650 Mes. = 1.0 Mes | T T | | | 1F7G | | 1F7GV | - FT . 0 | D. J. Dank | TAR | | 1 | | | | | A-F Amp. | 135 | 2.0 (| (Screen Suppl | ply = 1 35 V. | . Thru 0.8 Mes | eg GRID Res | | Voltage Gain | 46.1 | | | | 1G4GT | ST-1 2 | Duodi. Pent. | | | | 0.60 | | | - | Same as 1F7G | | | Above the C | The second second | egative Fllame | | | | | | 1F7GV | | 1G5G | ST-14 | Triode | 5-S | Filament | | 0.05 | | | | Amplifier | 90 | 6.0 | 7 | 2.3 | | 10,700 | 895 | 8.8 | 100 | | 1G4GT | | 1G6GT | S1-14
GT | Pentode | | | | 0.12 | | | 1 | Power Amp. | 90 | 6.0 | 90 | 8.5 | 2.5 | 133,000 | 1,500 | | 8,500 | | 1G5G | | _ | Gi | Duotriode | J-AD | Filament | 1,4 | 0.10 | 41111 | | 100 | Power Amp. | 90 | 0.0 | | 1.0 | | 45,000 | 675 | 30 | (Each Triod | | 1 G6GT | | TH4G | ST-1 2 | Itiode | 5-S | Fliament | 0.2 | 0.06 | 4 constant | | | Class B
Det Amp | 90 | 4.5 | | 2.5 | | 11,000 | 850 | 9.3 | 12,000* | 675 | 1H4G | | | | | | 1 | | | | | | Det | 135 | 9.0 | | 3.0 | | 10,300 | 900
900 | 9.3
9.3 | 1 444 1 | | 11110 | | 1H5GT | GT | Diode Triode | | Filament | | 0.05 | 1.1 | 0.35 | 4.0 | Det. Amp. | 90 | 0.0 | - | 0.15 | | 240,000 | 275 | 65 | | | 1H5GT | | 1H6G | ST-12 | Duodiode-Tri. | | | | 0.06 | 3.6 | 1.6 | | Det. Amp | 135 | 3.0 | | 0.8 | | 35,000 | 575 | 20 | | | 1H6G | | 1J5G | ST-1 4 | Pentode | | Filament | | 0.12 | | 11.11 | | Power Amp | 135 | 16.5 | 135 | 7.0 | 2.0 | 125,000 | 1,000 | 125 | 13,500 | | 1J5G | | 1J6G | ST-12 | | | Filament | | 0.24 | | Level. | | Power Amp | | | e as Type 19. | | | | - | - | | | 1J6G | | | Miniature | Pentode | 6-AR | Filament | 1.4 | 0.05 | .008m | 3.8 | 7.5 | R-F Amp | 90
90 | 0 | 67.5 | 2.9
4.5 | 1.9 | 600,000
350,000 | 925
1,025 | +(++)-1+ | 10000 | | 1L4 | | 1LA4 | Lock-In | Pentode | 5-AD | Filament | 1.4 | 0.05 | | | 3000 | Power Amp. | 85 | 4.5
4.5 | 90
85 | 3.5 | 0.7 | 300,000 | 800 | 161111 | 25,000 | | 1LA4 | | | | | | | | | | | | | 90 | 4,5 | 90 | 4.0 | 0.8 | 300,000 | 850 | territary. | 25,000 | 115 | | | Type | | Construction | | | Emitter | | | ote
pacitan
in uμ1. | | Use | Volts Volts Ma. Ma Ohms Conduct- Factor Power Milli- | | | | | | | | | | Туре | |-----------------------------|-----------|---|--------------|----------|---------------|---------------|---------------|---------------------------|----------------|-------------------------|--|---------------------------------|----------------------------|----------------------------------|------------------------------|--|--|------------------------|----------------------------------|---------------------------------|----------------
 | 1100 | Style | Class | Basing Diag. | Type | Volts | Amps | Сдр | Cin. | Cout | | Volts | Volts | Volts | | | | | | | | .,,,, | | 1LA6 | Lock-In | Heptode | 7-AK | Filament | 1.4 | 0.05 | 0.4 | 7.5 | 8.0 | Converter | 90 | 0.0 | 45 | 0.55 | 0.6 | 750,000 | 250▲ | (G2 90 V. | Max., 1.9 | Ma.) | 1LA6 | | TLB4 | Lock-in | Pentode | 5-AD | Filament | 1.4 | 0.05 | (000) | 4+1-4 | *** | Power Amp. | 45
67.5
90 | 4,5
6.0
9.0 | 45
67.5
90 | 1.6
3.8
5.0 | 0.3
0.8
1.0 | 300,000
200,000
200,000 | 650
875
925 | 75 01 0
75 01 5 | 20,000
16,000
12,000 | 35
100
200 | 1LB4 | | 1LC5 | Lock-in | Pentode | 7-AO | Filament | 1.4 | 0.05 | .007m | 3.2 | 7.0 | Amplifier | 45
90 | 0.0 | 45
45 | 1.1 | 0.95 | 700,000
1.5 Meg. | 750
775 | ******* | 100 | | 1LC5 | | 1LC6 | Lock-in | Heptode | 7-AK | Firameni | 1.4 | 0.05 | 0.28 | 9.0 | 5.5 | Converter | 45
90 | 0.0 | 35
35 | 0.7 | 0.75 | 300.000
650,000 | 250▲ | (G2 45 V.
(G2 45 V. | Max., 1.4
Max., 1.4 | | fLC6 | | 1LD5 | Lock-in | Diode Pent. | 6-AX | Filament | 1.4 | 0.05 | 018 | 3.2 | 6.0 | Amplifier | 45
90 | 0.0 | 45
45 | 0.55
0.6 | 0.12 | 750,000
750,000 | 550
575 | Estrate. | | 11/10 | 1 L D 5 | | 1LE3 | Lock-in | Triode | 4-AA | Filament | 1.4 | 0.05 | 1.7 | ; 1.7 | 3.0 | Amplifier | 90
90 | 0.0
3.0 | 11.02 | 4.5
1.7 | | 11,200
16,500 | 1,300
850 | 1 4.5
14.0 | | China
China | 1 LE3 | | 1LH4 | Lock-in | Diode-Triode | 5-AG | Filament | 1.4 | 0.05 | | | | Det. Amp. | 90 | 0.0 | Lilyna | 0.15 | | 240,000 | 275 | 65 | * * * * * | 37.113 | 1LH4 | | 1LN5 | Lock-in | Pentode | 7-AO | Filament | 1.4 | 0.05 | .007 m | 3.4 | 8.0 | Amplifier | 90 | 0.0 | 90 | 1.6 | 0.35 | 1.1 Meg. | 800 | NAME OF TAXABLE PARTY. | | | 1LN5 | | 1N5GT | Gī | Pentode | 5-Y | Filament | 1.4 | 0.05 | .007m | 3.4 | 10.0 | R-F Amp. | 90 | 0.0 | 90 | 1.9 | 0.3 | 1.5 Meg. # | 750 | | | 41.00 | 1N5GT | | 1N6G | GT | Diode Pent | 7-AM | Filament | 1.4 | 0.05 | | | | Det. Amp. | 90 | 4.5 | 90 | 3.4 | 0.7 | 300,000 | 800 | | 25,000 | 100 | 1N6G | | 1P5GT | Gī | Pentode | 5-Y | Filament | | 0.05 | .007m | 3.0 | 10.0 | Amplifier | 90 | 0.0 | 90 | 2.3 | 0.7 | 800,000 | 750 | | 20,000 | | 1P5GT | | 1Q5GT | GT | Beam Amp. | 6-AF | Filament | | 0.10 | | | | Power Amp. | 90 | 4.5 | 90 | 9.5 | 1.3 | /555 | 2,200 | 11-1-11 | 8,000 | 270 | 1Q5GT | | 1R4-1294 | Lock-in | H. F. Diode | - | Cathode | | .150 | | - | | Detector | | | | | Frequency Us | | 2,200 | | 0,000 | 2.0 | 1R4-1294 | | | Miniature | Heptode | 7-AT | Filament | - | 0.05 | 0.4m | 7.0 | 190 | Converter | 45 | 0.0 | 45 | 0.7 | 1.9 | 600,000 | 235▲ | | _ | | 1R5 | | 1R5 | | | | Filament | | 0.1 | | - | . 1.0 | Power Amp. | 90 | 0.0 | 67.5
45 | 1.7 | 3.0 | 100,000 | 300A
1,250 | 11.00 | 0.000 | -1 | 154 | | 154 | Miniature | Pentode | 7-AV | | | | | | | | 90 | 7.0 | 67.5 | 7.4 | 1.4 | 100,0000 | 1,575 | | 9,000
8,000 | 65
270 | | | 1\$5 | Miniature | Diode Pent. | 6-AU | Filament | 1.4 | | 0.2 | 2.0 | 4.0 | Det. Amp. | 67.5 | 0.0 | 67.5 | 1.6 | 0.4 | 600,000 | 625 | | 11000 | ***** | 1\$5 | | 1SA6GT | GT | Pentode | 6-BD | Filament | 1.4 | 0.05 | .01 m | 5.2 | 8.6 | R-F Amp. | 45
67.5
90 | 0 | 45
67.5
67.5 | 1.1
2.4
2.45 | 0.3
0.7
0.68 | 700,000
600,000
800,000 | 750
950
970 | ******* | | | 1SA6GT | | 1SB6GT | GT | Diode Pent. | 6-BE | Fliament | 1.4 | 0.05 | 0.25 | 3.2 | 3.0 | Det. Amp. | 90
45 | 0 | 67.5
45 | 1.45 | 0.38 | 700,000 | 665
500 | 1937009 | 1000 | Literary. | 1SB6GT | | 1T4 | Miniature | Pentode | 6-AR | Filament | 1.4 | 0.05 | .008m | 3.8 | 7.5 | R-F Amo. | 45
90 | 0.0 | 45
67.5 | 1.9 | 0.7
1.25 | 350,000
500,000 | 700
900 | ++1-1-1- | -100 | 11111 | 1 T4 | | 115GT | GT | Beam Amp. | 6-AF | Filament | 1.4 | 0.05 | 0.5 | 4.8 | 8-0 | Power Amp | 90 | 6.0 | 90 | 6.5 | 1.4 | 16.77.77 | 1,150 | | 14,000 | 170 | 1T5GT | | 17 | ST-12 | Dlode | 4-G | Cathode | 6.3 | 0.30 | | | | H-W Rect. | 325 A. (| . Volts Pa | Plate, RMS | S. 45 Ma. C | Sutput Current | Condenser | input to Filter | | | | 1V | | 9A3 | ST-16 | Triode | 4-D | Filament | 2.5 | 2.50 | 16.0 | 7.0 | 5.0 | Power A p | 250 | 45.0 | 11.000 | 60.0 | distant. | 800 | 5,250 | 4.9 | 2,500 | 3,500 | 2A3 | | 2A4G | ST-12 | Gas Triode | 5-5 | Filament | | 2.50 | - | 1001 | 10000 | Class AB1
Relay Tube | | | | Anode Volts | Tube, Push P
= 200 Peak A | Anode Amps. | 5 | | 3,000 | 15,000 | 2A4G | | 2A5 | ST-14 | Pentode | 6-B | Cathode | 2.5 | 1.75 | | | - | Pawer Amp. | | | 15 Seconds.
as Type 6F6 | | ng Time — 2 S | Seconds. | | | | | 2A5 | | 246 | SI-12 | Duodiode Iri. | 6-G | Calnoue | 2.5 | 0.80 | 1.7 | 1.7 | 3.8 | Del. Amp. | 250 | 2.0 | | 0.9 | | 91,000 | 1,100 | 100 | | | 2A6 | | 2A7, 2A75 | ST-12 | Heptode | 7-C | Cathode | 2.5 | 0.80 | 0.3m | | 9.0 | Converter | Charactes | | as Type 6A | | | | .,, | | | | 2A7, 2A7S | | 287, 287S | ST-12 | Duodi. Pent. | 7-D | Cathode | | 0.80 | | Type | Character Con- | Del. Amp. | | and the second second | as Type 6B | | - | * | | | | | 2B7, 2B7S | | AND RESTORATED THE PARTY OF | T-9 | Electron Ray | 6-R | - | 2.5 | 0.80 | | - 7 | - | Indicator | - | | as Type 6ES | | | | | | | | 2E5 | | 2E5 | ST-12 | Commence of the Parket | 5-D | Cathode | 2.5 | 1.35 | | | | Detector | man and | | | - | ately 40.0 M | - wish EO Va | It. D.C. on th | n Distant | | _ | 25. 45 | | 25/4S | | Duodiode | - | - | income to the | 5.0 | | | | H-W Rect. | | | | | | | | | | | 2V3G | | ₹A3@ | ST-12 | Diode | 4-Y | Fllament | - | | 1111 | | 11.11 | | The state of the last | | | | Output Cument | | the second secon | | | | | | 2W3GT | GT | Diode | 4-X | Filament | - | 1.50 | 274.24 | | 1111 | H-W Rect. | | | | | Output Current | | | | | | 2W3GT | | 2X2 879 | ST-12 | Diode | 4-AB | Cathode | 2.5 | 1.75 | 1 4 7 1 | -1-11 | | H-W Rect. | | | | | Output Curre | | er input to Fil | ter. | | | 2X2 879 | | 2Z2/G84 | ST-12 | Diode | 4-B | Filament | | 1.50 | | | 7.0 | H-W Rect. | | | | | Dutput Current | | | | | | 9Z9 G84 | | 3A4 | Miniature | Pentode | 7-BB | Filament | 2.8 | 0.10 | 0.35m | 4.8 | 7.0 | Amplifier | 135 | 7.5
8.4 | 90 | 14.8 | 2.6 | 90,000 | 1,900 | 101000 | 8,000 | 600
700 | 3A4 | | 3A5 | Miniature | Duotriode | 7-BC | Filament | 1.4
2.8 | 0.22 | Section. | 1.1 | 1.9 | Amplifier | 135 | 2.5
20.0 | 111111 | 3.7 | Push-Pull Cla | 8,300 ·
155 C R. F. A | 1,800
mplifier | 15 | | 2000 | 3A5 | | 3A8GT | GT | Diode
TriPent. | | Filament | 2.8 | 0.05 | 2.0
.01 2m | 2.6
3.0 | 4.9
10.0 | TriAmp.
PentAmp | 90
90 | 0.0 | 90 | 0.15
1.20 | 0.3 | 940,000
600,000 | 275
750 | ****** | 11111 | | 3A8GT | | 3B5GT | GT | Beam Amp. | 7-AP | Filament | 2.8 | 0.10 | 11711 | 1117 | 1111 | Amplifier | 45
67.5 | 4.5
7.0 | 45
67.5 | 6.7 | 0.3 | 100,000 | 1,400
1,500 | | 8,000
5,000 | 70
180 | 3B5GT | | 3B7-1 291 | Lock-in | Duotriode | 7-BE | Filoment | 9.8 | 110 | | 1.4 | 2.6 | Osc. Amp. | 135
180 | 0 | 1000 | 22.0
25.0 | (Class AB2)
(Class C) | 1,900
R. F. Pow. / | 20
Amp. 2800 m | w at 25 mc 14 | 16,000
00 mw at 1 | | 3B7-1 291 | | 3D6-1 299 | Lock-in | Beam Amp. | 6-BB | Filament | 2.8 | .t 10
.220 | | 7.5 | 6.5 | Power Amp. | 150
150 | 4.5
20.0 | 90
135 | 10.9
93.0 | 1.8
6.0 | (Class A)
(Class C) | | Amp. at 50 m | 14,000
ic. | 600
1,400 | 3D6-1299 | | 3LF4 | Lock-in | Beam Amp. | 6-88 | Filament | 1.4 | 0.10
0.05 | 1911 | 75.77 | :::: | Power Amp | 90
110
90
110 | 5.0
4.5
6.6
4.5
6.6 | 85
90
110
90 | 7.0
9.5
10.0
8.0
8.5 | 0.8
1.3
1.4
1.0 | 70,000
90,000
100,000
80,000
110,000 | 1,950
2,200
2,200
2,000
2,000 | ******* | 9,000
8,000
8,000
8,000 | 950
970
400
930
330 | 3LF4 | | 204 | Miniature | Pentode | 7.RA | Filament | 1.4 | 0.10 | | | | Power Amp. | 85 | 5.0 | 85 | 6.9 | 1.5 | 120,000 | 1,975 | | 10,000 | | 304 | | 3Q4 | | rentode | | | 2.8 | 0.05 | 177.15 | 22 | | Plate and Target | 90
90 | 4.5 | 90
90 | 9.5
7.7 | 9.1
1.7 | 100,0004 | 2,150
2,000 | | 10,000 | 970
940 | on Condustance | ⁽¹⁾ Values are given shielded unless marked with (*). (2) Convertes tube capacitances given are signal grid to plate; RF Input; Mixer Output. m maximum. Applied through 250,000 ohms, Per Tube or Section—No Signal. Plate and Target Supply Voltage With Average Power input of 320 Mw. Grid to Grid. ¶Plate to Plata. □ Applied through 20,000 ohms. Approximate. ◆Conversion Conductance. 150 Volts RMS applied to two grids. | | 1 | | | 1 | | | | Note (1) | (2) | | | | | | 1 | | | | Chims | Canals. | | |-----------------|-------------|---------------------|------------------------
--|----------------------|---------|--|---------------------|--------|--------------------------------|---------------------------------|--|--|----------------------
---|-------------------------------------|------------------------------------|--|---|---------------------------|-----------| | Type | | Construction | | | Emitter | | | apecitant
inuµf. | nces | Use | Plate | | Screen | Plate
Current | Screen
Current | Plate
Resistance | Micromhos
Mutual | s Ampli-
fication | Load
for
Stated | torted
Power
Output | | | | Style | Class | Basing
Diag. | | Volt | ts Amos | Cqo. | Cin. | Cout. | | Volts | | Volts | Ma. | Mai | Ohms | Conduct- | Factor | Power | Milli-
watts | | | 3Q5GT | GT | Beem Amp. | 7-AP | Filament | 1.4 | 0.10 | | 100 | | Power Amp. | 90 | 4.5
4.5 | 90
90 | 9.5
8.0 | 1.3 | 75,000
80,000 | 2,200 | 1.00 | 8.000 | 270 | 3Q5GT | | 354 | Miniature | Pentode | 7-BA | Filament | | 0.10 | .30 | 5.0 | 7.0 | Power Amp | 90 | 7.0 | 67.5 | 7.4 | 1.4 | 1 00,000 | 1,575 | TH teat | 8,000 | 970
935 | 3\$4 | | 4A6G | ST-1 2 | Duotriode | 8-L | Filament | | 0.19 | - 1 | +-3 | 1111 | Power Amp. | 90 | 1.5 | 07.5 | 1.1 | | 26,500 | 750 | 20 | | | 4A6G | | 5 T 4 | Metal | Duodlode | 5-T | Filament | of Persons Stewart & | 2.0 | 111 | 73.10 | 1 | Recliffer | 90
450 A | | | | Class B. Max
a. Output Current | nt. Condenser | Input to Filte | et. | 8,000 | 1,000 | 514 | | 5U4G | ST-16 | Duodiode | 5.T | Filament | 5.0 | 3.00 | | 1 | - | F-W Rect. | | THE RESERVE SHAPE AND ADDRESS. | | | a. Output Curren a. Output Curren | | put to Filter.
er Input to Filt | bot | | | 5U4G | | 5V4G | ST-14 | Duodiode | 3-1 | Cathode | | 2.00 | | 1 | | F.W Rect. | | | | | a. Output Curren | | er input to Filt | Committee of the Commit | | | 5V4G | | 5W4GT | GT | Dundlode | 5-T | Filament | THE PARTY NAMED IN | 1.50 | | | - | F-W Rect | | | | | a. Output Curren | | er Input to Filt | | | | 5W4GT | | 5X3 | ST-14 | Duodiode | 4-C | Filament | | 2.0 | | | | Rectifler | 400 A. | . C. Volts Po | er Plate, RM | 45, 110 Ma | a Output Curren
a Output Curren | nt. Choke or | Condenses In | put to Filter. | | | 5X3 | | 5×4G | ST-16 | Duodiode | 5-Q | Filament | 5.0 | 3.00 | | 1 | | F-W Rect | | | | | a. Output Curren | | e Input to Filte | | | | 5X4G | | 5Y3GT | GI | Duodiode | 5-T | Filament | | 2.00 | | | 1000 | F-W Rect. | 350 A. | . C. Volts Pe | er Plate, RM | 45, 125 Ma | a. Output Current
a. Output Current | nt. Condenser | er Input to Filte | | | | 5Y3GT | | 574G | ST-14 | Duodlode | 5-Q | Filament | 5.0 | 2.00 | 1 | | Lang | F-W Rect. | | | e as Type 5Y | | Cuiba. Cant. | t. Chort in. | Tat to I made. | | | | 574G | | 5Z3 | ST-16 | Duodiode | 4.C | Filament | 1 5.0 | 3.00 | - | | | F-W Rect | | The second secon | the latest the latest terminal | - | a. Output Current | t Condense | r Input to File | iet. | | | 5Z3 | | 52.4 | Metal | Duodiode | 5-I. | Cathode | 5.0 | 2.00 | | | 20.00 | F-W Rect | | | | | ept Capaciances | | | | | | 524 | | 5Z4GT | GI | _ Duodiode | 5-L | _ | | 2.00 | | | | F.W Rect. | | | and a company of the | | . Output Curren | | r Input to Filt | iq.r. | | | 5Z4GT | | 6A3 | ST-16 | Triode | 4-D | Filament | 6.3 | 1,00 | 16.0 | 7.0 | 5.0 | Power Amp. | 250
325
325 | 45.0
68.0 | | 60.0
40.0
40.0 | (Push Pull, Fix
(Push Pull, Seli | | 5,250
r 850 (Chms) | 4.9 | 2,500
3,000°
5,000° | 3,200
15,000
10,000 | 1 | | 6A4/LA | ST-14 | Pentode | 5-B | Filament | 6.3 | 0.30 | 0.1 | 10.7% | PE 9 T | Power Amo. | 135 | 9.0 | 135 | 13.0 | 2.8 | 59,600
60,000 | 2,100
2,500 | 150 | 9,500 | 700 | 6A4/LA | | 6A5G | ST-16 | Triode | 6-T | Cathode | 6.3 | 1.25 | | 101-10 | FE 1+ | Power Amp. | 250
325 | 45.0
68.0 | 100 | 60.0 | Tube, Push Pull, | 800 | 5,250 | 4.9 | 2,500
3,000° | 3,750 | | | 6A6 | ST-14 | Ductilode | 7-8 | Cathode | 6.3 | 0.80 | 1.4 | -572 | 4- | Power Amp.
Drives
Drives | 300
250
294 | 0.0
5.0
6.0 | | | er Plate, Class B | | Zero Signal
3,1 00
3,2 00 | 35
35 | 10,000 ⁴
(Class A Da | 10,000
blver) | | | 6A7, 6A7S | ST-12 | Heptode | 7-0 | Cathode | | 0.30 | The state of s | 8.5 | 9.0 | Converter | - | | as Type 64 | | of Capacitances. | 11.000 | 3.200 | 35 | (Class A Di | //ver) | 6A7, 6A7S | | 648 | Metal | Heptode | B-A | Cathode | | 0.30 | | - | 12.0 | Converter | Characte | eristics Same | as Type 6A | A8G, Excep | pt Capacitances | | | | | | 6A8 | | 6A8G
G1 | ST-19
GT | Heptode | 8-A | Cathode | 6.3 | 0.30 | .96 | 9.5 | 12.0 | Converter | 100 | 1.5 | 50 | 1.1 | 1.3 | 600,000 | 360▲ | | V., 2.0 Ma | | 6A8G | | 6AB5 6NS | T.9 | Electron Ray | 6-R | Cathode | 63 | 0.15 | | - | | Indicator | 250
135§ | 3.0 | 100 | 3.5 | 2.7 | 360,000 | 550▲ | | Vo, Max., | 4.0 Ma.) | GI | | 6AB7 | Metal | Pentode | 8-N | Cathode | 1 | 0.45 | .015m | 8.0 | 5.0 | Amplifier | 300 | 3.0 | 200 | 12.5 | , Target Current S | 700,000¢ | | 3,500 | .) | | 6AB5 6N5 | | 6AC5GT | T-9 | Triode | 6-Q | Cathode | | 0.40 | 101311 | 11 01 | 25.65 | Power Amp. | 250
250 | -13
(Blas From | 76 Driver) | 32 O | (Class A1, On | 36,700
ne Tube, Dyna | 3,400 | 125 | 7,000 | 3,700 | 6AC5GT | | 6AC7 | Metal | Pentode | 8-N | Cathode | 6.3 | 0.45 | .015m | 110 | 5.0 | A - wife on | 250 | 0.0 | 170 | 5.0 | (Class 8, Two 1 | | 0.200 | -1 === A | 10,0001 | 8,000 | | | 6ADSG, GI | ST-12, GT | | | Cathode | 6.3 | | 3.3± | 4.1+ | 3.9* | Amplifier | 300 | 2.0 | 150 | 10.0 | 2.5 | 750,0004 | | | as Res = 16 | | 6AC7 | | 6AD6G | 1.9 | Electron Ray | Married III Management | Cathode | 6.3 | 0.15 | 3.3 | 4.1- | 3.7 | Amplifier | 250
100€ (R | 2.0
Ray Control | Valte = 45 | O.9 | For O Shadow, A | 66,000
Approx. = 9: | 1,500
23 Volts for 13 | 100 | | 71.111 | 6ADSG, GT | | 6AD7G | ST-14 | Tri. Pentade | - | Cathode | | 0.85 | - | _ | | 1zīAmp. | | Ray Control | | Approx. F | For O Shadow; A | Approx. = \$6 | 0 Volts for 13 | 35 Shadow.) | | | 6AD6G | | | | | | | | | - 111 | |
**** | Pent Amp | 250 | 25.0
1 6.5 | 250 | 4.0
34.0 | 6.5 | 19,0000 | 2,500 | 6 | 7,000 | 3,200 | 6AD7G | | 6AE5GT
6AE6G | GT
ST-1Ω | Triode | and the second second | Cathode | 6.3 | 0.30 | | 1111 | | Amplifier | 95 | 1.5 | 111111 | 7,0 | | 3,500 | 1,200 | 4.9 | | - | 6AE5G1 | | QAEOU | 21-13 | Duo Plate
Triode | PAD | Cathode | 6.3 | 0.15 | -14 | 1000 | | Remote
Cut-Off
Sharp | 1 250
1 250
1 250 | 1.5
35.0
1.5 | 1320 | 6.5
0.01
4.5 | | 3,500 | 1,000
950 | 25
33 | 4.000 | 100,000 | 6AE6G | | A CREEK | CY | | - | | | | - | - | | Cut-Off | 1 250 | 9.5 | 111111111111111111111111111111111111111 | 0.01 | | 3,300 | 750 | 33 | Y 201412 | 111111 | | | 6AE7GT | GT | Duotriode | 7-AX | Cathode | 6.3 | 0.50 | #2.5 | 3.0 | 1.8 | Amplifier | 250
(Delver for
Bias Devi | 13.5
or P.P. 6AC5
veloped in C | GT 250 V | 10.0
/. 10 Ma., 6 | 6AC5GT Plate A | 4,650
Ma 64 Oi | 3,000
Julput 9.5 Wat | 14
its with 10,000 | 0 Ohms Loar | d, | 6AE7G1 | | 6AF5G | ST-12 | Triode | 6-0 | Cathode | 6.3 | 0.30 | | | 12.00 | Amplifier | | 18.0 | | 7.0 | T | 4,900 | 1,500 | 7.4 | Trees 1 | | 6AF5G | | 6AF6G | 1-9 | Twin Elec. | | Cathode | | 0.15 | | | | Indicator | The second second | the second second | Volt = Ap | - I mileston | or O' Shadow, A | | | | 14441 | | 6AF6G | | 1101 | | Ray | - 000 | | | | | | - | | 1359 (Ra | | Volts Apr | pprox 81 fo | or O' Shadow, A | Approx. Zero | Volts for 100 | | | | | | 6AG5 | Miniature | Pentode | 7-80 | Cathode | 6.3 | 0.30 | 0.25m | 6,1 | 2.3 | R-F Amb. | 100
125
250 | | 100
125
150 | 5.5
7.2
7.0 | 1.6
9.1
2.0 | 300,000 ¢
500,000 ¢
800,000 ¢ | 4,750
5,100
5,000 | Cathode Bias | s Resistor - 1 | 00 Ohms | oA5G | | 6AG7 | Metal | Pentode | | Cathode | | 0.65 | .06m | 13.0 | 7.5 | Amplifier | 300 | 1 0.5 | 300 | 25.0 | THE RESERVE AND ADDRESS OF THE PARTY | 100,000 | 7.700 | | | 1-1- | 5AG1 | | 6AH7GT | GT | Duotriode | | Cathode | | 0.30 | | | - | Amplifier | | | as Type 19A | AH7GT. | | | | | | | SAH7GT | | 6AH5G | ST-16 | Beam Amp. | | The second secon | | 0.9 | | | 1100 | Amplifier | 350 | 18 | 250 | 54 | 2.5 | 33,000 | 5,200 | 10.10.00 | | 10,800 | 5AH5G | | 6AK5 | Miniature | Pentade | 7-BD | Cathode | 6.3 | 0.175 | .01 | 3,9 | 9.85 | R-F Amp. | 120
150
180 | 1+ | 190
140
190 | 7.5
7.0
7.7 | 2.5
2.2
2.4 | 340,000
420,000
690,000 | 4,300 | 1,700
1,800
3,500 | Blas Res. 9
Blas Res. 3
Blas Res. 2 | 330 ohms | 5AK5 | | 6AL5 | Miniature | Duodiode | 6-BT | Cathode | 6.3 | 0.30 | | E- | 450 | Detector | 150 | I From I | 1 | 9.0 | High Perveand | | | | | | 6AL5 | | 6AL6G | ST-16 | Beam Amp. | | | 6.3 | 0.9 | | 4575 | 1000 | Power Amp | | ristics Same | as Type 6L6 | | - | | | 7 | | | 6AL6G | | 6AQ6 | Miniature | Duadlade-Tri | 7-BT | Cathode | 6.3 | 0.15 | 1.8 | 1.7 | 1.5 | Det. Amp. | 100 | 1,0 | 1111 | 8.0 | I meren il | 61,000 | 1,150 | 70 | 11111 | | 6AO6 | | 6B4G | \$7-16 | Triode | 5-5 | Filament | 6.3 | 1.00 | 16.0 | 7.0 | 5.0 | Power Amp | 250
Character | 3.0 inistics Same | as Type 6A3 | 1.0 | 1000 | 58.000 | 1,200 | 70 | 1 | | 6B4G | Type | | Construction | | | Emitter | | | ote (*) (
pacitant
in #µf. | | Use | Plate | Negative
Grid | Screen | Plate
Current | Screen
Current | Plate
Resistance | Micromhos
Mutual | Ampli-
fication | Ohms
Load
for
Stated | Undis-
torted
Power
Output | Type | |---------------------|-----------------------|----------------|--------------|-----------|---------|------|--------------|--|--------------|---------------------------|------------------|----------------------|---------------------|----------------------|--------------------------------|--------------------------|---|------------------------|-------------------------------|-------------------------------------|---------------| | | Style | Class | Basing Diag. | Type | Volts | Amps | Csp | Cin. | Cout. | | Volts | Volts | Volts | Ma. | Ma, | Ohms | Conduct- | Factor | Power | Milli-
watts | | | 685 | ST-14 | Duotriode | 6-A5 | Cathode | 6.3 | 0.80 | | | | Power Amp. | Characta | ristics Same | as Type 6N | 16G. | | | | | - | | 6B5 | | 686G | ST-12 | Duodiode-Tri. | 7.V | Cathode | 6.3 | 0.30 | 1.7 | 1.7 | 3.8 | Det. Amp. | 250 | 2.0 | _ | 0.9 | | ₹1,000 | 1,100 | 100 | | | 6B6G | | 6B7 | 67.40 | Duodi. Pent. | 7.D | Cathode | 6.3 | 0.30 | .007 | 3.5≉ | 9.5* | R-F or I-F | 100 | 3.0 | 100 | 5.8 | 1.7 | 300,000 | 950 | | SDL | | 6B7 | | 687S | ST-12 | | | | | | | | | Del. Amp. | 180 | 3.0 | 75.0
100 | 3.4
6.0 | 0.9
1.5 | 1 Meg.
800,000 | 1,000 | | 7770 | 7744 | 6875 | | | | | - | 7.7. | - | | | | - | A-F Amp | 250 | 4.5 | 50.0 | 0.65 | - | | 1-11-11-11 | LINK III | 13 1117 | HEXE | 770 | | 688 | Metal | Duodi. Pent. | 8-E | Cathode | - | 0.30 | .005m | 3.6 | 9.0 | Del. Amp. | _ | | | 7, Except Ca | Dacitances | | | | | | 688GT, 688G | | 6B8GT 6B8G | GT,ST-12
Miniature | Duodi. Pent. | 8-E | Cathode | 6.3 | | ,01 m
1.4 | 1.8 | 2.5 | R-F Osc. | 300 | 27 | as Type 6B | 25 | | | | 1 | Class C | 5,500 | 604 | | 00.4 | Militatore | IIIDQe | 0.00 | Catilidae | 0.5 | 0.13 | | 1.0 | 2.3 | R-F Amp. | 250 | 8.5 | | 10.5 | | 7,720 | 2,200 | 17 | (1032 C | 3,300 | | | 7.50 | - n.d4-1 | Total. | 6-C) | Cathode | -4.2 | 0.30 | 0.0 | 3.0 | 11.0 | A == 116 | 100 | 0 | Y 4C | 11.8 | Capacitances | 6,250 | 3,100 | 19.5 | | 17777 | 5C5 | | 6C5
6C5GT | Metal
GT | Triode | 6-Q | Cathode | 6.3 | 0.30 | | 4.8 | 12.0 | Amplifier | 250 | B.O | as tabs or | 8.0 | Capacitances | 10,000 | 2,000 | 20 | 1.00 | | 6C5GT | | 606 | 51-12 | Pentode | 6-F | Cathode | - | 0.30 | .007 m | | 6.5* | Amplifier | 100 | 3.0 | 100 | 2.0 | 0.5 | 1 Meg. | 1,185 | - | Direct | 12500 | 606 | | | | | - | - | | - | | | | | 250 | 3.0 | 100 | 2.0 | 0.5 | 1 Meg. + | 1,225 | | Diffe | 111111 | 100 | | 6C7 | ST-12 | Duodiode-Tri | 7-G | Cathode | 6.3 | 0.30 | D 4 | n.4 | -0.0 | Det. Amp. | 250 | 9.0 | | 4.5 | _ | 16,000 | 1,250 | 36 | 100000 | tion) | 6C7
6C8G | | 6C8G | ST-12 | Duotriode | 8-G | Cathode | 0,3 | 0.30 | 1.8 | ₹.6
1.3 | 2.0 | Amplifier | 250
250 | 4.5
3.0 | Plate Load | 3.9
100,000 O | hms, Self-Bias | 22,500
Resistor 1,50 | 1,600
10 Ohms, Volt | | (One Sec | tion) | 0000 | | | - | | | | | | | | | | | | | | for Inverter | | | 14.6.0 | | | 404 | | 6D4 | Miniature | Gas Triode | 5-A) | | | 0.25 | - 007- | 4.75 | 4.89 | Relay Tube | 350 | 50 | | | management is the | The second second second | t = 25 Me. Ap | prox. Volt D | rop @ 25 M | a = 16V | 6D4
6D6 | | 6 D6 | ST-12 | Pentode | 6-F | Cathode | 6.3 | 0.30 | ,007 m | 4.7 | 6.5* | Amplifier | 100 | 3.0 | 100 | 8.0
8.2 | 2.2 | 800,000 | 1,500 | | | | 000 | | 6D7 | ST-12 | Pentode | 7-H | Cathode | 6.3 | 0,30 | 200 | | 4-11 | Amplifier | Characte | ristics Same | as Type 6C | 6. | | | | | | | 607 | | 6D8G | ST-19 | Heptode | 8-A | Cathode | 6.3 | 0.15 | 0.2 | 8.0 | 11.0 | Converter | 135
250 | 3.0 | 67.5
100 | 1.5 | 1.7
2.6 | 400,000 | 325▲ | (G2 -135)
(G2 -250 | V., 1.8 Ma. | () | 6D8G | | ôE5 | 7-9 | Electron Ray | 6-R | Cathode | 6.3 | 0.30 | - | - | 111 | Indicator | 100% | (Series Pia | le Resistor C | .5 Meg. Tar | get Current 1. | 0 Ma. Grid E | Bias = 3.3 for 9 | O Shadow.) | V. L., 4.5 P | 14./ | 6E5 | | 454 | ST-14 | Duotriode | 7.8 | Cathoda | 6.3 | 0.60 | | | | Power Amp | 180 | Series Pla
20.0 | ate Resistor 1 | 1.0 Meg. Tar
11.5 | gel Current 4 | .0 Ma. Grid I | 1.400 for 9 | 6.0 | 15,000 | 750 | 6E6 | | 6 E6 | 21-14 | Ducillode | 1.8 | Camous | 0.3 | 0.00 | 14.1 | 111 | 111 | (1 Section) | 250 | 27.5 | | 18.0 | | 3,500 | 1.700 | 6.0 | | 1,600 | | | 6E7 | \$1-12 | Pentode | 7-H | Cathode | - | 0.30 | | | | Amplifier | | | as Type 6D | | | | | | | | 6E7 | | 6F5 | Metal | Triode | 3 M | Cathode | 6.3 | 0.30 | | 5.5 | 4.0 |
Amplifier | | | as Type 6F | | | 44.000 | 1 4 500 | 4.00 | _ | | 6F5GT | | 6F\$GT | Metal | Triode | 5-M
7-S | Cathode | 6.3 | 0.30 | 2.8* | 2.2* | 3.2* | Amplifier Power Amp | 250 | 16.5 | 250 | 34.0 | 6.5 | 80,000 | 2,500 | 100 | 7,000 | 3,900 | 6F6, 6F6G | | 6F6, 6F6G,
6F6GT | ST-14
GT | Pentode | 1.3 | Caunage | 0.3 | 0.70 | | | | P.P. A1 Amp. | 285
315 | 20.0
24.0
26.0 | 285
285
250 | 38.0
62.0
34.0 | 7.0
12.0
5.0 | 78.000
(Current & | 2,550
Output for Two
Output for Two | | 7,000
10,000* | 4,800
11,000
18,000 | 6F6GI | | 6F7, 6F7S | 5T-12 | PentTriode | 7.E | Cathode | 6.3 | 0.30 | .008m | 3.2 | 19.5 | P.P. AB2Amp
Pent. Amp. | 100 | 3.0 | 100 | 6.3 | 1.6 | 290.000 | 1,050 | 0 14061) | Pentode S | | 6F7, 6F75 | | OFF, OFFS | 31-12 | T WING. THOUSE | , | Cathoat | 0.0 | | | | | Pent. Amp. | 250 | 3.0 | 100 | 6.5 | 1.5 | 850,000 | 1,100 | 8.5 | Pentade S | Section | | | 4500 | ST-12 | Duotriode | 8-G | Calhode | ģ.3 | 0,60 | 2.0* | 3.2* | 3.0°
1.0° | Amplifier | 250 | 8.0 | - | 9.0 | - | 7,700 | 2.600 | 20 | (One Sec | | 6F8G | | 6F8G | 31.12 | Daguiode | 6.0 | Carnode | Q. 3 | 0,00 | 3.2* | 1.9* | 1.9* | Inverter | 250 | 5.5 | | d 50,000 O | hms Per Plate
tput Volts 65 | , Sell Bias Re | sistor 1,150 O | | (One see | | | | 6G6G | \$1-12 | Pentode | 7-S | Cathode | 6.3 | 0.15 | | 11111 | 1.1 | Power Amp. | 135
180 | 6.0
9.0 | 180 | 11.5
15.0 | 2.0 | 170,000 | 2,100 | Table to | 12,000 | 1,100 | 6G6G | | 6H4GT | GI | Diode | S-AF | Cathode | 6.3 | 0.15 | | | | Rectifies | 100 | - 7.0 | 160 | 4.0 | 2.3 | 173,000 | 2,300 | | 10,000 | 1,100 | 6H4GT | | 6H6 | Metal | Duodiode | 7-0 | Cathode | 6.3 | 0.30 | | 14 | | Rectifier | | ristics Same | as Type 6H | - | | | | | | | 6H6GI | | 6H6GT | Gī | Duodlode | 7-0 | Cathode | 6.3 | 0.30 | | 100 | | Rectifier | | | | | ulput Current | | | | | | 615 | | 6.15 | Metal | Triode | 6-0 | Cathode | 6.3 | 0.30 | | 3.4 | 3.6 | Amplifier | | | as Type 6J! | | Capacitances | | 0.400 | | | | 6J5GT
6J6 | | 6J5GT | GI | Triode | 6-Q
7-BF | Cathode | 6.3 | 0.30 | | 2.3 | 1.6 | Amplifier
R-F Amp. | 100 | 8.0 | | 9.0 | | 7,700 | 2,600
5,300 | 30 | Bias Res. S | 50 Ohms | 0.00 | | 616 | Miniature | Duotriode | 1-01 | Cathode | 6.3 | | 1.4 | 2.3 | 1.0 | Osc. Amp. | 150 | 10 | | 30 | | | lass C Operatio | | DIES NES. | 3,500 | 6J7 | | 6J7 | Metal | Pentode | 7-R | Cathode | 6.3 | 0.30 | .005m | and the same of th | 12.0 | Amplifier | - MONOROW - | | as Type 6J | | Capacitances | | | | | | 6J7GT | | 6J7GT | ST-12, GT | Pentode | 7-R | Cathode | 6.3 | 0.30 | .007m | _ | 12.0 | Amplifier | 250 | 3.0 | 100 | 2.0 | | 1.U Meg | 1,225 | 10 11 (1) | | 440.4 | 6)8G | | 618G | ST-12 | TriHeptode | 8-H | Cathode | 6.3 | 0.30 | .02m | 4,4 | 10.0 | Oscillator | | e Supply Ti | 100
hru 20,000 R | | g.g
sistor 50,000. | | 990▲
0.4 Ma. Plate | | | ection) | 6H6 | | 6K5G | ST-12
GT | Triode | 5-U | Cathode | 6.3 | 0.30 | 2.0 | 2.9 | 5.75 | Amplifier | 100
250 | 1.5 | | 0.35 | 1 11/44 | 78,000
50,000 | 1,400 | 70 | 24484 | 11101 | 6K5G
6K5GT | | 6K5GT | GT | Pentode | 7-5 | Cathode | 6.3 | 0.40 | 2.0 | A.7 | 1111 | Power Amp. | 100
250 | 7.0
18.0 | 100
950 | 9.0
32.0 | 1.6 | 104,000 | 1,500 | E OF | 12,000 | 350
3,400 | 6K6GT | | 445 | N. d. ed ed | - Destant | 7.0 | Cathode | 4.7 | 0.30 | 005- | 7.0 | 10 0 | Amplifler | 315
Character | 21.0 | 250 | 25.5 | 4.0
Capacitances | 75,000 | 2,100 | | 9,000 | 4,500 | 6K7 | | 6K7 | Metal | Pentode | 7-R | | _ | 0.30 | .003m | _ | | Amplifier | 90 | 3.0 | 90.0 | 5.4 | | 300,000 | 1,275 | | | | 6K7G | | 6K7G | ST-12 | Pentode | 7-R | Cathode | 0.3 | 0.30 | .00/m | 3.U | 12.0 | Ampliher | 180
250 | 3.0
3.0 | 75.0
100 | 4.0
7.0 | 1.0
1.7 | 1 Meg.
800,000 | 1,100 | | | | | | 6K7GT | GT | Pentode | 7-R | Cethode | 6.3 | 0.30 | .005 m | 4.6 | 12.0 | Amplifier | Character | istics Same | as Type 6K | 7G, Except C | apacitances. | | | | | | 6K7GT | | 6K8 | Metal | Tri -Hexode | 8-K | Cathode | 6.3 | 0.30 | .03m | 6.6 | 3.5 | Mixer Osc. | Character | istics Same | as Type 6KI | BG, Except (| Capacitances. | | | | | | 6KB | m maximum. **Plate and Target Supply Voltage. **Applied through 250,000 ohms. **Per Tube or Section—No Signal. **Applied through 200,000 ohms. **Triode Operation. **△Conversion Conductance**. | 50 Volts RMS applied to two gride. ⁽¹⁾ Values are given shielded unless marked with (*). (2) Convertet tube capacilances given are signal grid to plate; RF Input, Mixer Output. | The Real Property lies, the Party Pa | Name and Address of the Owner, where | | | - | | | | . (1) | - 00 | The same of the same of | | | - | - | 100 | | 1 | 1 | Ohms | Undis- | | |--|--------------------------------------|--------------------------|--------------|---------|--------------|-----------------|--------------|---------------------------------|--------------|--|-------------------|---------------------------------|--|---------------------------------------|----------------------------------|---|---|------------------------|---|---|----------------------| | Type | | Construction | | 1 | mitter | | | ote (1) (
pacitano
inuµl. | | Use | Plate | Negative
Grid | Screen | Plate
Current | Scieen | Plate
Resistance | Micromhos | fication | Load
for
Stated | Power
Output | Туре | | | Style | Class | Basing Diag. | Type | Valts | Amos | Cgp. | Cin. | Cout. | | Volts | Volts | Volts | Ma. | Ma. | Ohms | Conduct- | Factor | Power | Milli-
watts | | | 6K8G
6K8GT | \$T-12
GT | TriHexode | 8-K | Cathode | 6.3 | 0.30 | .OBm | 4.6
5.0 | 4.8 | Mixer | 250
100 | 3.0
Grid Re | 100
sider 50 000 | 2.5
O Plate Curren | 6.0
t 3.8 Ma., h | 600,000
Autual Conduct | 350±
tance 3,000 (| (Hexode Section | ion)
not Oscilla | eting) | 6K8GT | | 6L5G | ST-12 | Triode | 6.0 | Cathode | 6.3 | 0.15 | | 2.8 | 5.0 | Amplifier | 100 | 3.0 | 17114 | 4.0 | THE PARTY OF | 10,000 | 1,500 | 15 | Thor | | 6L5G | | 6L6
6L6G
6L6GA | Metal
ST-16
ST-14 | Beam Amp | 7-AC | Cathode | 6.3 | 0.90 | 100.00 | 1007 | 1111 | Power Amp. P.P. A 1 Amp. P.P. AB1 Amp. P.P. AB2 Amp. | 250
350
270 | 14.0
18.0
17.5
99.5 | 250
250
250
250
270
270 | 72.0
54.0
134.0
88.0
88.0 | 5.0
2.5
11.0
5.0
5.0 | 22,500
33,000
23,500
Current & O | 6,000
5,200
5,700
Sutput for Two | Tubes | 2,500
4,200
5,000
6,600
3,800 | 6,500
10,800
17,500
26,500
47,000 | 6L6
6L6G
6L6GA | | 6L7 | Metal | Heptode | 7-T | Cathode | 6.3 | 0.30 | .001 m | 7.5 | 11.0 | Mixer | Characte | eristics Same | e as Type 61 | L7G, Except (| Capacilances | | | | | | 6L7
6L7G | | 6L7G | ST-12 | Heptode | 7-T | Cathode | 6.3 | 0.30 | ,005m | 6.0 | 10.0 | Amplifier
Mixer-Amp. | 250
250 | 6.0
3.0 | 150 | 3.3
5.3 | 9.2
6.5 | 1 Meg | 350▲
1,100 | (G3 = Neg
(G3 = Neg | 3.0 Volts |) | | | 6N6G | ST-14 | Duotriode | 7-AU | Cathode | 6.3 | 0.80 | 414(1) | | 1000 | Power Amp. | 300 | 0.0 | (Input Sect | | 8.0
45.0 | 24,000♦ | 2,400 | 58 | 7,000 | 4,000 | 6N6G | | 6N7 | Metal | Duotriode | 8-B | Cathode | | 0.80 | | - | | Amplifier | - Contract of | THE RESERVE THE PERSON NAMED IN | e as Type 61 | | | | | | 0.0001 | 10.000 | 6N7 | | 6N7GT | GT | Duotriode | 8-8 | Cathode | 6.3 | 0.80 | | | | Power Amp.
Driver
Driver | 300
250
294 | 0.0
5.0
6.0 | | 17.5 Per
6.0
7.0 | Plate, Class | 11,300
11,000 | 3,100
3,200 | 35
35 | (Class A | 10,000
Driver)
Driver) | 6N7GT | | 6P5GT | GT | Triode | 6-Q | Cathode | 6.3 | 0.30 | 2.6
| 3.4 | 5.5 | Amplifier
Detector | 250
250 | 13.5 | 111444 | 5.0 | ent to be adia | 9,500
usted to 0.2 M | 1,450 | 13.8 | | 200 | 6P5GI | | 6P7G | ST-1 2 | PentTriode | 7-U | Cathode | 6.3 | 0.30 | .007m
9.0 | 2.8 | 12.0 | Amplifier | | | e as Type of | 7, Except Car | | | | | | | 6P7G | | 6Q7 | Metal | Duodiode-Trl. | 7-V | Cathode | 6.3 | 0.30 | | 5.0 | 3.8 | DetAmp. | Characte | eristics Same | e as Type 60 | 37G, Except | Capacitances | | | | | | 607 | | 6Q7G | ST-12 | Duodiode-Trì. | 7-V | Cathode | 6.3 | and the same of | 1.5 | 3.2 | 5.0 | Del-Amp. | 100 | 1.5
3.0 | | 0.35 | | 58,000 | 1,200 | 70 | | | 6Q7G
6Q7GT | | 607GT
6R6G | ST-12 | Duodiode-Tri. | 7-V | Cathode | 1 | 0.30 | | 2.2
4.5* | 5.0
11.0° | Amplifier | 250 | 3.0 | 100 | 7.0 | 1.7 | 800,000 | 1,450 | 1,160 | ***** | 111711 | 6R6G | | 6R7 | Metal | Pentode
Duodiode-Tri. | 7.V | Cathode | 6.3 | 0.30 | | 4.3 | 3.8 | DetAmp. | | | | R7GT, Except | - | | | | | | 6R7 | | 6R7GT | GT | Duodiode-Tri | 7.V | Cathode | - | 0.30 | - | 2.6 | 5.2 | DetAmp. | 250 | 9.0 | | 9.5 | | 8,500 | 1,900 | 16 | | | 6R7GT G | | 6\$7 | Metal | Pentode | 7-R | Cathode | 6.3 | 0.15 | .005m | | 10.5 | Amplifier | Characte | eristics Same | e as Type 65 | STG, Except C | Capacitances. | | | | | | 6\$7 | | 657G | ST-12 | Penlode | 7-R | Cathode | 6.3 | 0.15 | .008m | | 8.0 | Ampilfier | 1 35
250 | 3.0 | 67.5 | 3.7
8.5 | 0.9 | 1 Meg.
1 Meg. | 1,250
1,750 | 375
1,100 | | | 6\$7G | | 6\$A7 | Metal | Heptode | E-R | Cathode | 63 | 0.30 | .13m | 9.5 | 12.0 | Converter | | | | ATGT, Exce | and the same of | | | | | | 65A7 | | 6SA7GT | GI | Heptode | | Cathode | | 0.30 | .5m | 11.0 | 11.0 | Converter | 100 | 2.0 | 100 | 3.3 | 8.5 | 500,000+ | 475▲ | - COCCUTOR | | 60030 | 6SA7GT | | 100- | | | | - | | | *100 | | | A 116 | 250 | 2.0 | 100 | 3.5 | 8.5 | 1.0 Meg. 5 | 450▲ | 70 | (Each T | eloda) | 6SC7 | | 6SC7 | Metal | Duotriode | 8-5 | Cathode | | | 2.0 | 2.2 | 3.0 | Amplifier | 250 | 2.0 | | 9.0 | | 53,000 | 1,325 | 70 | (Each T | | 6SC7GT | | 65C7G1 | GT | Duotriode | 8-5 | Cathode | model of the | 0.30 | | | 7.1 | Amplifier | 250 | 2.0 | 100 | 5.7 | 2.0 | 250,000 | 3.350 | | - (2001) | 110007 | 65D7GT | | 6SD7GT | GT | Pentode | 8-N | Cathode | 6.3 | 0.30 | .0035 | 9.0 | 7,5 | Amplifier | 100
250 | 2.0
2.0 | 100 | 6,0 | 1.9 | 1.0 Meg. # | 3,600 | 11000000 | | | | | 6SE7GT | GT | Pentode | 8-N | Cathode | 6.3 | 0.3 | .0035m | 6.0 | 7.5 | Amplifer | 100
250 | 1.0
1.5 | 100
100 | 5.5
4.5 | 2.4
1.5 | 250,000 ¢
1,000,000 ¢ | 3,100
3,400 | 0.00% | 1771 | | 6SE7GT | | 6SF5 | Metal | Triode | 6-AB | Cathode | 6.3 | 0.30 | 2.4 | 4.0 | 3.6 | Amplifier | | ristics Samo | e as Type 69 | F5GI, Excep | t Capacitance | | | | | | 6SF5 | | 6SF5GT | GT | Trìode | 6-AB | Cathode | 6.3 | 0.30 | 2.6 | 4.2 | 3.8 | Amplifier | 250 | 2.0 | | 0.9 | | 66,000 | 1,500 | 1 00 | 111111 | | 6SF5GI
6SF7 | | 6SF7 | Metal | Diode Pent | 7-AZ | Cathode | 6.3 | 0.30 | .004m | 5.5 | 6.0 | DetAmp. | 100
250 | 1.0 | 100 | 12 | 3.4 | 200,000¢
700,000¢ | 1,975
2,050 | | | | 0377 | | 6SG7 | Metal | Pentode | 8-BK | Cathode | 6.3 | 0.30 | .003m | 8.5 | 7.0 | R-F Amp. | - | ristics Same | e as Type 65 | G7GT, Exces | pt Capacitane | es. | | | | | 65G7 | | 65G7GT | GT | Pentode | 8-BK | Cathode | | 0.30 | .004m | 8.5 | 7.0 | R-F Amp. | 100
250 | 1.0 | 100
125 | 8.2
11.8
9.2 | 3.9
4.4
3.4 | 250,000 ♦
900,000 ♦
1 Meg | 4,100
4,700
4,000 | | | | 6SG7GT | | 6SH7 | Metal | Dontada | n DV | Called | - () | 0.20 | - 002- | 0.5 | 7.0 | R-F Amp. | 250 | 2.5
eristics Samo | 150 | H7GT, Excep | | - | 4,000 | | | | 6SH7 | | 6SH7GT | GT | Pentode
Pentode | 8-BK | Cathode | 6.3 | 0.30 | .003m | 8.5
8.5 | 7.0 | R-F Amp. | 100 | 1.0 | 100 | 5.3 | 2.1 | 350,000♦ | 4,000 | | | | 5SH7GT | | 4012 | | | | | | | | - | | A 116 | 250 | 1.0 | 150 | 10.8 | 4.1 | 900,000 | 4,900 | | | | 6SJ7 | | 6SJ7GT | Metal | Pentode | 8-N | Cathode | | 0.30 | .005m | 6.3 | 7.0 | Amplifier
Amplifier | 100 | 3.0 | 100 | 2.9
3.0 | 0.9
0.8 | 700,000 a
1.5 Meg. | 1,575 | | | | 6SJ7GT | | 6SK7 | Metal | Pantada | 0.11 | Cabada | 75 | 0.30 | 000 | 40 | 3.0 | Amplifier | 250 | 3.0 | | K7GT, Excep | | | 1,030 | | | | 6SK7 | | 69K7G1 | GT | Pentode
Pentode | 8-M | Cathode | 6.3 | 0.30 | .003m | | 7.0 | Amplifier | 100 | 1.0
3.0 | 100 | 13.0 | 4.0
2.6 | 120,000 | 2,350
2,000 | | | | 6SK7GI | | 6SL7GT | GT | Duotriode | 0.00 | Cathode | 4.2 | .300 | - | - | - | Amplifier: | 250 | 2.0 | - 100 | 2.3 | 2.0 | 44,000 | 1,600 | 70 | | | SSL7GT | | 65N7GT | GI | Duotriode | 8-BD | Cathode | | 1- | 3.8* | 2.8* | 0.8* | Amplifier | 90 | 0 | - | 10 | | 5,700 | 3,000 | 80 | | | 65N7GT | | - | | | | 2011006 | 0,3 | | 4.0* | 3.0* | 1.2* | (per unit) | 250 | 8 | | 9 | | 7,700 | 2,600 | 20 | | | 4507 | | 6SQ7 | Metal | Duodiode-Tri. | | Cathode | | 0.30 | | 3.2 | 3.0 | DetAmp | | | e as Type 6S | OTGT, Excel | pt Capacitano | | 1 100 | 100 | | | 65Q7
65Q7GT | | 6SQ7GT | GT | Duodiede-Tri. | | Cathode | | 0.30 | | 4.2 | 3.4 | DetAmp. | 250 | 2.0 | | 0.9 | | 91,000 | 1,100 | 100 | | | 6SR7 | | 65R7 | Metal | Duodlode-Tzi. | | Cathode | | 0.30 | | 3.0 | 3.0 | Det -Amp. | | | e as Type 6S | | | 8,500 | 1,900 | 16 | | | 6SR7GT | | 6SR7G1 | GT | Duodiode-Trl. | | Cathode | | C.30 | | 3.5 | 3.8 | DelAmp. | 250 | 9.0 | 100 | 9.5 | 2.1 | 120,000 | 1,950 | 10 | | | 6\$\$7 | | 6557 | Metal | Pentode | 8-N | Cathode | - | | .004m | | 7.0 | R-F Amp. | 100
250 | 1.0 | 100 | 9.0 | 3.1
2.0 | 1,000,0004 | 1,850 | 14.0 | | | | | 6ST7 | Metal | Duodiode-iri. | | Cathode | | 0.15 | 1.5 | 9.8 | 3.0 | DetAmp. | 250 | 9.0 | | 9.5 | | 8,500 | 1,900 | 16.0 | Illumin et | | 6517
6T5 | | 675 | ST-12 | Electron Ray | | Cathode | | 0.3 | | | | Indicator | 250 | | ate Resistor 1 | | get Current 3. | | 680 | for Max. Target | : III WITH I THE | | 6176 | | 617G | ST-12 | Duodiode-Tri. | 7.٧ | Cathode | 6.3 | 0.15 | 1.7 | 1.8 | 3.1 | DetAmp. | 100 | 1.5
3.0 | | 0.3
1.2 | | 95,000
62,000 | 1,050 | 65 | | 14.00 | | | Type | | Construction | | | Emitter | | Cap | lote (1) (
spacitanc
in µµf. | ices | Use | Plate | Negative
Grid | Screen | Plate
Current | Screen
Current | Plate
Resistance | Micromhos
Mutual | Ampli-
fication | Ohms
Load
for
Stated | Undis-
torted
Power
Output | Type | |---------------|---------|---------------|-------------|--|-------------|------|---------|------------------------------------|--------|-------------------------|--------------------|----------------------------|--------------------------------|------------------------------
--|----------------------------------|---|----------------------|-------------------------------|-------------------------------------|---------------| | | Style | Class | Basing Diag | Type | Volts | Amps | s Cgp. | Cin. | Cout | | Volts | Volts | Volts | Ma. | Ma. | Ohms | Conduct- | Factor | Power
Output | Milli-
walts | 1464 | | 6U5 6G5 | T-9 | Electron Ray | 6-R | Cathode | 6.3 | 0.30 | | 1100 | = h h | Indicator | 100: | (Series P | late Resistor | 0.5 Meg., T | larget Current | 1.0 Ma., Grid | d Bias -8.0 for | O Shadow.) | 1 | | 6U5/6G5 | | 6U6GT | GT | Beam Amp. | 7-AC | Cathode | 6,3 | 0.75 | | +4-6 | 200 | Power Amp. | 110 | 10.5 | 110 | 44.0
55.0 | 4.0
3.0 | 10,0004 | 5,600 | 10 3 | 2,000 | 2,000
5,500 | 6U6GT | | 6U7G | ST-1 2 | Pentode | 7-R | Cathode | 6.3 | 0.30 | .007m | 5.0 | 9.0 | Amplifier | 100 | 3.0 | 100 | 8.0 | 2.2 | 250,000 | 1,500 | | 5,855 | 3,300 | 6U7G | | 6V6 | Metal | Beam Amp | 7-AC | Cathode | 6.3 | 0.45 | 0.3 | 10.0 | 11.0 | Power Amp. | | | A COMPANY OF A STREET | CS, Except Ca | and the second s | 1 555,5 | 1 1122 | | | | 6V6 | | 6V6G1 | GT | Beam Amp. | 7-AC | to the second se | 6.3 | 0.45 | 0.7* | 9.5* | 7.5* | Power Amp. | Character | | le as Type 7C | | | | | | | | 6V6GT | | 6 V7 G | ST-12 | Duodiode-Tri. | i. 7.V | Cathode | 6.3 | 0.30 | 1.3 | 1.5 | 6.0 | Det -Amp. | 135
180
250 | 10.5
13.5
20.0 | 11111 | 3.7
6.0
8.0 | 10.00 | 11,000
8,500
7,500 | 750
975
1,100 | 8.3
8.3
8.3 | 25,000
20,000
20,000 | 75
160
350 | 6 V 7G | | 6W5G | ST-12 | Duodiode | 6-5 | Cathode | 6.3 | 0.9 | | | 1111 | Rectifies | 395 A-0 | -C Volts Pe | | IS, 90 Ma. O | | t. Condenser in | Input to Filter. | 6.3 | 20,000 | 330 | 6W5G | | 6W6GT | GI | Beam Amp | 7-AC | Cathoda | 6.3 | 1.25 | 1 | 1 | 1 | Power Amp. | 135 | 9.0 | 135 | 58.0 | 2.8 | CHORE INPL. | 9,000 | 215 | 2,000 | 3,300 | 6W6GT | | 6W7G | ST-17 | Pentode | 7.2 | Cathode | | 0.15 | .007m | 5.0 | 8.5 | Amplifier | 250 | 3.0 | 100 | 2.0 | 0.5 | 1.5 Meg. ♦ | and the same and | | 1 | 3,0-1 | 6W7G | | 6X5 | Metal | Duodlode | 6-5 | Cathode | | 0.60 | | 3000 | -7.0 | F-W Rect. | Characte | affair on a second tree | e as Type 6X | the second second | | | | | | | 6X5 | | 6X5G1 | GT | Duodiode | 6-\$ | Cathode | | 0.60 | 1000 | 1000 | 9124 | F-W Rect. | 325 A-0
450 A-0 | -C Volts Pe
-C Volts Pe | er Plate, RMS
er Plate, RMS | 15, 70 Ma. O
15, 70 Ma. O | Dutput Current. | t. Condenser I
d. Choke Input | ut to Filter. | | | | 6X5GT | | 673G | ST-12 | Diode | | Cathode | | 0.7 | - | | | Rectifier | | | | | | | or Condenser Ing | put to Filter. | | | 6Y3G | | 6Y5 | ST-12 | Ducdlode | 6-J | Cathode | | 0.80 | | | 2010 | F-W Rect | | | | | Dulput Current. | | | | | | 6Y5 | | 676G | ST-14 | Beam Amp. | 7-AC | Cathode | 6.3 | 1.25 | 2.6.4 | 31.11 | 1- | Power Amp. | 135 | 13.5
14.0 | 135
135 | \$8.0
61.0 | 3.5 | 9,300
18,300 | 7,000 | | 2,000 | 3,600 | 676G | | 6Y7G | ST-12 | Duotriode | 8-8 | Cathode | 6.3 | 0.60 | 100 | Tret | meth | Power Amp. | 180 | 0.0 | 135 | 7.5 | 14111111 | (Class B C | Operation) | | 7,000°
14,000° | 5,500
8,000 | 6Y7G | | 625 | ST-19 | Duodlode | 6-K | Cathode | 6.3
12.6 | 0.80 | | 1111 | TPIN | F-W Rect. | | | I Plate, RM | | Output Current | | Distraction, | | 17,000 | 6,000 | 6Z5 | | 6ZY5G | ST-12 | Duadlade | 6-\$ | Cathode | | 0.30 | | | | F-W Rect. | 325 A- | C Volts Pr | er Plate, RM | S. 40 Ma. C | Julput Current | 1. Condenser in | input to Filter. | | - | | 6ZY5G | | 6Z7G | ST-12 | Duotriode | 8-8 | Cathode | | 0.30 | 1.07.17 | | 1119 * | Power Amp. | 135 | 0.0 | - C | 3.0
4.2 | | (Class B C | Operation) Operation) | Physic | 9,0001
12,000° | 2,500§
4,200§ | | | 7A4 | Lack-in | Triode | 5-AC | Cathode | 6.3 | 0.30 | 4.0 | 3,4 | 3.0 | Amplifier | 90
250 | 0.0 | 1951 | 10.0 | HOLDER
TRIALS | 6,700
7,700 | 3,000
2,600 | 20 | 1100 | 4,200, | 7A4 | | 7A5 | Lock-in | Beam Amp | 6-AA | Cathode | 6.3 | 0.75 | 0.44 | 13,0 | 7.2 | Power Amp. | 110
125 | 7.5
9,0 | 110
125 | 40.0
44.0 | 3.0 | 14,000 | 5,800
6,000 | THE P | 2,500
2,700 | 1,500
2,200 | 7A5 | | 7A6 | Lock-in | Duodlode | 7.AJ | I have been been been been been been been be | | 0.15 | 111 | 72.11 | 1111 | DetRect. | 150 A-0 | C Volts Pe | | | ulpul Current P | | | | | | 7A6 | | 7A7 | Lock-in | Pentode | 8-4 | Cathode | | 0.30 | | | 7.0 | Amplifier | 100 | 1.0
3.0 | 100 | 13.0 | 4.0
2.6 | 120,000 | 2,000 | | Here | | 7A7 | | 7 AF7 | Lock-in | Duotilode | 8-AC | Cathode | 6.3 | 0.30 | 2.3 | 2.2 | 1.6 | Amplifier
Sper unit) | 100
100
250 | 0
3.0
10 | 111111 | 10.8
5.0
9.0 | 7+16/14/
7+11+17 | 6,500
8,400
7,600 | 2,600
1,900
2,100 | 17
16
16 | 11124
14-46 | 1+0 = | TAFT | | 7A8 | Lock-in | Octobe | B-U | Cathode | 6.3 | 0.15 | 0,15m | 7.5 | 9.0 | Converter | 100 | 3.0 | 75
100 | 1.8 | 2.7 | 650,000 ¢ | 375▲ | (G2 = 10) | 00 V., 9.8 N | Aa.) | 7A8 | | 784 | Lock-in | Triode | 5-AC | Cathode | 6,3 | 0,30 | 1.6 | 3.2 | 3.2 | Amplifier | 100 | 1.0 | 100 | 0.4 | 3.3 | 85,000
66,000 | 1,150 | 100 | V.L., 4.2 | Z Ma.) | 7B4 | | 7 8 5 | Lock-in | Pentode | 6-AE | Cathode | 6.3 | 0.40 | 0.8 | 7.4 | 8.0 | Power Amp. | 1 00
250 | 7.0 | 100
250 | 9.0
32.0 | 1.6 | 104,000 | 1,500
2,300 | | 12,000
7,600 | 3,400 | 7B 5 | | 7B6 | Lock-in | Duodiode-In. | 8-W | Calhode | 6.3 | 0.30 | 1.6 | 3.0 | 2.4 | DetAmp. | 100
250 | 1.0 | 250 | 0.4
0.9 | 4.0 | 75,000
110,000
91,000 | 900
1,100 | 100 | 9,000 | 4,500 | 786 | | 7B7 | Lock-in | Pentode | 8-7 | Cathoda | 6.3 | 0.15 | .007m | 5.0 | 6.0 | Amplifier | 100 | 3.0 | 100 | 8,2
8.5 | 1.8 | 300,000
750,000 | 1,675 | 100 | | ***** | 7B7 | | 7B8 | Lock-in | Heptode | 8-X | Cathode | 6.3 | 0.30 | 0.2m | 10.0 | 9.0 | Converter | 100 | 1.5 | 50 | 1.1 | 1.3 | 000,000 | 360▲ | (G2 = 10
(G2 = 25 | 00 V., 9.0 M | Ma.)
0 Ma.) | 7B8 | | 7C4-1 203A | Lock-in | H. F. Diode | 6-AH | Cathode | 6.3 | 0.15 | 417.61 | 50.00 | | Detector | | | | | h Frequency Us | | | 10 | 0 4, | TYIG., | 7C4-1203A | | 7C5 | Lock-in | | | Cathode | | 0.45 | 0.40 | 9.5 | 9.0 | Power Amp.
Class A | 180
250 | 8.5
12.5 | 180 | 29.0
45.0 | 3.0
4.5 | 58,000
52,000 | 3,700
4,100 | 100000 | 5,500
5,000 | 4,500 | 7C5 | | | | | | | | 1 | 1 1 | (/ | 1 / | Class AB1 | 250 | 15.0 | 225
250 | 70.0 | 5.0 | | Two Tubes) | 255555 | 10,000 | 10,000 | | | 706 | Lock-in | Duodiode-Tri. | 8-W | Cathode | 6,3 | 0.15 | 1.6 | 2.4 | 2.4 | Det. Amp. | 100 | 19.0
0.0
1.0 | 285 | 1.0 | 4.0 | (Class AB1 1
100,000 | 850 | 85 | 8,000 | | 7C6 | | 7C7 | Lock-in | Pentode | 8-V | Cathode | 6.3 | 0.15 | .007m | 5.5 | 6.5 | Amplifier | 250
100
250 | 3.0
3.0 | 100 | 1.8
2.0 | 0.4 | 100,000
1.9 Meg. • | | 100 | | | 7C7 | | 7E5-1 201 | Lock-in | Triode | 8-8N | Cathode | 6.3 | 0.15 | 1.5 | 3.6 | 2.8 | Osc. Amp. | 250
250
150 | 3.5
10.2 | 141111 | 13.0
16.0 | 0.5 | Q.0 Meg. (| 1,300
for 750 mc Servi
Amplifier for 30 | vice. | 13.10-7 | 200 | 7E5-1201 | | 7E6 | Lock-In | Duodlode-Tri. | 8-W | Cathode | 6.3 | 0.30 | 1.5 | 3.0 | 2.4 | Det. Amp. | 250 | 9.0 | | 9.5 | Tarana . | 8,500
11,000 | 1,900
1,500 | 16
16.5 | | | 7E6 | | 767 | Lock-in | Duodi. Pent. | 8-AE | Cathode | 6.3 | 0.30 | .005m | 4.6 | 5.5 | Det. Amp. | 100 | 1.0 | 100 | 10.0 | 2.7
1.6 | 150,000 ¢ | 1,600 | 10000 | | | 7E7 | | | | | - | | | | | $\overline{}$ | | | X 3 U | 3.0 | 100 | J.3 | 1.0 | 700,0004 | 1,300 | | 10000 | 1111 | | Values are given shielded unless marked with (*). Converter tube capacitances given are signal grid to plate; RF input; Mixer Output. m maximum. *Plate and Target Supply Voltage: *Applied through 250,000 ohms: *Par Tube or Section—No Signal. *Triode Operation. Operat | Туре | | Construction | | | Emitter | | Ces | ote (¹)
(
pacitano
inµµf. | | Use | Plate | Negative
Grld | Screen | Plate
Current | Screen
Current | Plate
Resistance | Micromhos
Mutuai | Ampli-
fication | Ohms
Load
for
Stated | Undis-
lorted
Power
Output | Type | |------------------|---------|-------------------------|--------------|----------|----------------|------|--------------|---------------------------------|------------|-------------------------|--|--------------------------------|--------------------------|------------------------------|--|---|-------------------------|--------------------|-------------------------------|-------------------------------------|-----------------------| | | Style | Class | Basing Dias. | Type | Volts | Amps | Cop. | Cin. | Cout. | | Volts | Volts | Volts | Ma. | Ma. | Ohms | Conduct- | Factor | Power | Milli-
watts | 1,754 | | 7F7 | Lock-in | Duotriode | 8-AC | Cathode | 6.3 | 0.30 | 1.6 | 2.4 | 2.0 | Amplifier | 100
250 | 1.0 | | 0.65
2.3 | +1++++ | 62,000¢
44,000¢ | 1,125 | 70 | | ***** | 7F7 | | 7F8 | Lock-in | Duotriode | 8-BW | Cathode | 6.3 | 0.30 | 1.2 | Z. B | 1.4 | R-F Amp | 250 | 1111 | 13.143.1 | 10.5 | 21 (1117) | 110000 | 5,200 | 50 | Cathoda | | 7F8
 or = 200Ohms | | 7G7/1232 | Lock-in | Pentode | 8-V | Cathode | 6.3 | 0.45 | .007m | 9,0 | 7.0 | Amplifier | 250 | 2.0 | 100 | 6.0 | 2.0 | 800,0000 | 4,500 | -30 | (Casuade | DIAS RESISCO | 7G7/1232 | | 7G8/1906 | Lock-in | Duotet:ode | 8-BA | Cathode | and the second | - | 0.15m | 3.4 | 2.6 | R-F Amp. | 250 | 2.5 | 100 | 4.5 | 8.0 | 995,000 | 9,100 | | | | 7G8/1206 | | 7H7 | Lock-in | Pentode | 8-V | Cathode | 6.3 | 0.30 | .007m | 8.0 | 7.0 | Amplifier | 100 | 1.0 | 100
150 | 10.0 | 3.3
3.2 | 250,000
800,000 | 4,800
4,200 | (Cath. Bias R | lesistor = 18 | Ohm) | 7H7 | | 717 | Lock-in | TrlHeptode | 8-BL | Cathode | 6.3 | 0.30 | .03m | 4.6 | 7.5 | Hep. Mixer
Tri. Osc. | 100
250
100
250 | 3.0
3.0
0.05 /
0.05 / | | f .5
1 .4
3 .2
5 .0 | | 500,000
1.5 Meg.
Grid Current 0
Grid Current 0 | | 15114- | 1/A/A
4/A-4 | ***** | 7,17 | | 7K7 | Lock-in | Duodiode-Tri. | 8-BF | Cathode | 6.3 | 0.30 | 1.8 | 2.6 | 3.0 | Det. Amp. | 250 | 2.0 | | 2.3 | 4111111 | 44,000 | 1,600 | 70 | | ***** | 7K7 | | 7L7 | Lock-in | Pentode | 8-V | Cathode | 6.3 | 0.30 | .01 0m | 8.0 | 6.5 | Amplifier | 100 | 1.0 | 100 | 5.5
4.5 | 9.4
1.5 | 100,0000
1.0 Meg. | 3,000
3,100 | | -11-1 | | 7L7 | | 7N7 | Lock-in | Duotriode | 8-AC | Cathode | 6.3 | 0.60 | 3.0 | 3.4 | 9.0
9.4 | Amplifier
(per unit) | 90
250 | 0.0 | 10000 | 10.0 | 361-117 | 6,700 | 3,000 | 90
90 | 11.444 | XX-(W+ | 7N7 | | 701 | Lock-In | Heptode | 8-AL | Cathode | 6.3 | 0.30 | 0,20m | 9.0 | 9.0 | Converter | 100 | 2.0 | 100 | 3.3 | 8.5 | 500,000 | 525A | Osc. Grid R | | | 707 | | 7R7 | Lock-In | Duodi. Pent. | 8-AE | Cathode | 6.3 | 0.30 | .004m | 5.6 | 5,3 | Del. Amp. | 100
100
250 | 2.0
2.0
1.0
2.0 | 100
100
100
100 | 3.5
3.4
5.5
3.5 | 1.0
2.2
1.0 | 1.0 Meg.
500,0000
350,0000
1,800,0000 | 2,100
3,000
2,200 | Osc. Grid C | urrent 0.5 A | Aa. | 7R7 | | 757 | Lock-in | TriHeptode | 8-BL | Cathode | 6.3 | 0.30 | .03m | 5.0 | 8.0 | Hep. Mixer | 100 | 2.0 | 100 | 1.9 | 3.0 | 500,0004 | 3,400
500 4 | | 2000 | | 757 | | | | | | | | | | | | Trl. Osc. | 250 | 2.0 | 100 | 1.8 | 3.0 | 1 25 Meg. 6 Grid Current (| 525▲ | -0.0 | | 11 | | | 17. | Last in | D 1-1 | 7.14 | 6.0.1 | 4.3 | | 005 | 0.0 | 7.0 | | 250 □ | 0.05 A | Meg. | 3.0
5.0 | (Triode | Grid Current O | .4 Ma.) | 10.114.11 | | | | | 717 | Lock-in | Pentode | g.V | Cathode | | 0.3 | .005m | | 7.0 | Amplifier | 250
100 | 10.8 | 150 | 10.8 | 4.1
2.1 | 900,000 ¢ | 4,900
4,000 | | | | 717 | | 7V7
7W7 | Lock-in | Pentode | B-A | Cathode | 6.3 | 0.45 | .004m | - | 6.5 | Amplifier | 300 | - 1 | 150 | 10.0 | 3.9 | 300,000 | 5,800 | (Cath. Bias R | esistor = 161 | Ohms) | 7 17 | | TX7/XXEM | Lock-in | Pentode
Duodiode-Tri | 8-87 | Cathode | 6.3 | 0.45 | .0025m | 9.5 | 7.0 | Amplifier Det. Amp. | 100 | ristics Same | as Type 7V | 7, Except Ca
1.2 | pacitances. | 85,000 | 1,000 | 85 | | 10.10 | 7W7
7X7/XXFM | | TY4 | Lock-in | Duodiode | 5-AB | Cathode | 6.3 | 0.50 | | - | 17.1- | F-W Rect. | 250
325 A- | 1.0
Volts Pe | Plate, RMS | 1.9 | Inul Current | 67,000
Condenser In | 1,500 | 1 00 | p == | | 774 | | 124 | Lock-In | Duodiade | 5-AB | Cathode | 6.3 | 0.90 | | | | F-W Rect. | 450 A- | C Volts Pe | Plate, RMS | , 70 Ma. Ou | tput Current. | Choke Inpu! | to Filter. | | | | 7Z4 | | | | | | | | | | | | | 450 A- | C Volts Pe | r Plate, RMS | , 100 Ma. C | Sutput Cument | . Choke Inpu | to Filter. | | | | | | 10 | ST-16 | Triode | 4-D | Filament | 7.5 | 1.25 | 7.0* | 4.0* | 3.0* | Power Amp | 250
350
425 | 23.5
32.0
40.0 | 000 | 10.0
16.0
18.0 | 00 00 00 00 00 00 00 00 00 00 00 00 00 | 6,000
5,150
5,000 | 1,330
1,550
1,600 | 8.0
8.0 | 13,000
11,000
10,200 | 400
900
1,600 | 10 | | 12A | ST-14 | Triode | 4-D | Filament | 5.0 | 0.25 | 8.5* | 4.0™ | 2.0* | Det. Amp. | 90
135
180 | 4.5
9.0 | | 5.0
6.2
7.7 | | 5,400
5,100 | 1,575 | 8.5
8.5 | 5,000 | 35
130 | 12A | | 12A5 | ST-12 | Pentode | 7-F | Cathode | 19.6 | 0.30 | 0.3 | 9.0 | 9.0 | Power Amp | 100 | 15.0 | 100 | 17.0 | 3.0 | 4,700
50,000+ | 1,800 | 8.5 | 4,500 | | 12A5 | | 12A6 | Metal | Beam Amp. | 7-AC | Cathode | | 0.15 | 1.1 1 | -1 | | Power Amp. | 250 | 12.5 | 190 | 30 | 3.5 | 70,000 | 3,000 | 110111 | 7,500 | 3,400 | 19A6 | | 12A7 | ST-12 | Diode-Pent | 7-K | Cathode | 12.6 | 0.30 | | HI- | 110 | Rectifier
Amplifier | 195 RM
135 | | 135 | 30.0 Mas
9.0 | £., | | 975 | 100 | 13,500 | | 12A7 | | 12A8GT | Gī | Heptode | 8-A | Cathoda | 12.6 | 0.15 | .26 | 9.5 | 12.0 | Converter | | | as Type 6A | | 2.5 | 102,000 | 9/3 | 100 | 13,200 | _ | 12A8GT | | 19AH7GT | GT | Duotriode | 8-BE | Cathode | 12.6 | | 3.D | 2.8
3.2 | 2.6 | Amplifier | 100 | 3.6 | 2010 | 3.7 | | 10,300 | 1,550 | 16 | | - | 12AH7GT | | 12B8GT | GT | Pentode Tri. | 8-T | Cathode | 12.6 | 0.30 | .015* | 5.2*
5.0 | 9.6" | (per unit) Pent - Amp | 100 | 3.0 | 100 | 7.6
8.0 | 2.0 | 170,000 | 2,100 | 360 | Pentode S | | 1 2B8G7 | | 12C8 | Metal | Duodiode | 8-E | Cathode | 12.6 | 0.15 | 2.3
.005m | 6.0 | 9.0 | Det. Amp. | 100
Character | 1.0 Istics Same | as Type 686 | 0.6 | | 73,000 | | 110 | Triode Sec | | 1208 | | 12F5GT | - GT | Pentode
Triode | 5-M | Cathode | 12.6 | 0.15 | 2.8* | 2.2* | 3.22 | Amplifier | Character | ielias Cama | as Type 6F5 | GT | | | | | | | 12F5G [‡] | | 12H6 | Metal | Duodiode | | Cathode | | 0.15 | | | | Rectifier | | | as Type 6H | | | | | | | | 12H6 | | 19J5GT | GI | Triode | - | Cathode | | 0.15 | 3.8 | 4.2 | 5.0 | Amplifier | The state of s | | as Type 615 | | | | | | | | 12J5GT | | 12J7G1 | GT | Fentode | 7-R | Cathode | | 0.15 | ,007m | | 12.0 | Amplifier | | | as Type 617 | | | _ | | | | | 12J7GT | | 12K7GT | GI | Pentode | 7-R | Cathode | | 0.15 | .007m | 5.0 | 1 2.0 | Amplifier | | | as Type 6K7 | | | | | | | | 12K7GT | | 12KB | Metal | TriHexode | 8-K | Cathode | | 0.15 | | 6.6 | 3.5 | Mixer Osc. | | | as Type 6K8 | | | | | | | | 1 2KB | | 12K8GT | GT | TriHexade | | Cathode | | 0.15 | .009m | | 4.3 | Converter | Character | istics Same | as Type 6K8 | IGT. | | | | | | | 19KBGT | | 19L8GT | GT | Duo. Pentode | | Cathode | | 0.15 | | 5.07 | 6.0* | Power Amp. | 110
180 | 5.5
9.0 | 110
180 | 6.1
13.0 | 1.3 ±
2.8 | 990,000 =
160,000 | 1,680#
2,150 - | | 14,000 | 300
1,000 | 12L8GT | | 1207GT | GT | Duodiode-Tri. | | Cathode | | 0.15 | | 2.2 | 5.0 | Det. Amp. | - | | as Type 6Q | | | | | | | | 12Q7GT | | 125A7 | Metal | Heptode | | Cathode | | | ,13m | | 19.0 | Converter | | | as Type 654 | | | | | | | |
12SA7 | | 125A7GT
125C7 | GT | Heptode | | Cathode | | | | | 11.0 | Converter | | | as Type 654 | | | | | | | | 125A7GT | | 12SF5 | Metal | Duotrio de Trio de | | Cathode | | 0.15 | | 2.2 | 3.0 | Amplifier | | | as Type 6SC | | | | | | | | 12SC7 | | 12SF5GT | GI | Triode | | Cethode | | 0.15 | | 4.0 | 3.6 | Amplifier
Amplifier | | | as Type 6SF | | | | | | | | 1 2SF5
1 2SF5G7 | | | | 1 | 5 240 | COMMONE | . 2.0 | 0.13 | | 100 | 3,0 | - Whilles | Cualactel | ianca game | as sking Ogs | 201 | | | | | | | 1237301 | | Туре | | Construction | | | Emitter | | Ca | ote () (
pacitant
in uµl. | | Use | Plate | egative
Grid | Screen | Plate
Current | Screen
Current | Plate
Resistance | Micromhos
Mujual | Ampli-
fication | Ohms
Load
for
Stated | Undis-
torted
Power
Output | [ype | |------------------|------------|---------------|-------------|------------|----------------|-------|--|---------------------------------|-------|-----------------------|--|--|--------------|-------------------|-------------------------------|----------------------------|-------------------------|--------------------|-------------------------------|-------------------------------------|------------------| | | Style | Class | Basing Diag | Type | Vo!ts | Amps | Cgp. | Cin. | Cout. | | | Voits | Voits | Ma. | Ma. | Ohms | Conduct- | Factor | Output Output | Milli-
watts | | | 12SF7 | Metai | Diode Pent | 17-AZ | Cathode | 12.6 | 0.15 | ,004m | 5.5 | 6.0 | Det. Amp. | Characteristi | ics Same | as Type 6S | F7. | | | | | | | 1 9SF7 | | 12SG7 | Meial | Pentode | B-BK | Cathode | 12.6 | 0.15 | .003m | 8.5 | 7.0 | R-F Amp. | Characteristi | | | | | | | | | | 12SG7 | | 12SH7 | Metal | Pentode | 8-BK | Cathode | 12.6 | 0.15 | .003m | 8.5 | 7.0 | R-F Amp. | Characteristi | ics Same | as Type 65 | H7. | | | | | | | 12SH7 | | 19SH7GT | Gī | Pentode | 8-BK | Cathode | 12.6 | 0.15 | .004m | 8.5 | 7.0 | R-F Amp. | Characteristi | ics Same | as Type 6SI | H7GT | | | | | | | 12SH7GT | | 19SJ7 | Metal | Pentode | 8-N | Cathode | 12.6 | 0.15 | ,005 m | - | 7.0 | Amplifier | Characteristi | ics Same | as Type 6S. | J7. | | | | | | | 1 2SJ 7 | | 12S17GT | GT | Pentode | 8-N | Cathoda | 12.6 | 0.15 | .005m | 6.3 | 7.5 | Amplifier | Characteristi | ics Same | as Type 6S. | J7, Except C | apacitances | | | | | | t 2SJ7GT | | 19SK7 | Mela | Pentode | 8-N | Calhode | | 0.15 | .003 m | | 7.0 | Amplifier | Characteristi | | | | | | | | | | 12SK7 | | 125K7G1 | _Gſ | Pentode | 8-N | Cathode | | 0.15 | .005m | 6.5 | 7.5 | Amplifier | Characteristi | les Same i | as Type 6SI | K7GT. | | | | | | | 12SK7GT | | 12SL7GT | Gī | Duotriode | 8-BD | Cathode | | 0.15 | 1-11 | | | Amplifier | Characteristi | | | | | | | | | | 1 2SL7GT | | 195N7GT | GI | Duotilode | 8-80 | Calhode | | 0.30 | | | | Amplifier | Characteristi | | | | | | | | | _ | 125N7GT | | 12SQ7
12SQ7GT | Metal | Duodiode-Trl. | 8-Q | Cathode | - | 0.15 | | 3.2 | 3.0 | Det. Amp. | Characteristi | Decision and the | | | | | | | | | 195Q7
195Q7GT | | 1 2SR7 | GT
Mela | Duodiode-Iri. | 8-Q | Cathode | State State of | 0.15 | Name and Address of the Owner, when which wh | 4.2 | 3.4 | Det Amp. | Characteristi | | | | | | | | - | - | 12\$Q7G1 | | 12Z3 | 51-12 | Duodiode-Tri. | 4-6 | Cathode | | 0.15 | 2.3 | 3.0 | 3.0 | Det Amp.
H-W Rect. | Characteristi | THE RESERVE TO A STATE OF THE PARTY P | | | dant Comen | Candania | Input to Filter | | | | 1923 | | 14A4 | Lock-in | Triode | 5-AC | Cathode | | 0.15 | 4.0 | 3.4 | 3.0 | Amplifier | Characteristi | - | | | Itput Current | CONDENSE | input to ritter | | | | 14A4 | | 14A5 | Lock-in | Beam Amp. | 6-AA | Cathode | | 0.15 | | 6.8 | 7.0 | Power Amp. | | 19.5 | 250 | 30,0 | 3.5 | 70,0000 | 3,000 | _ | 7,500 | 2,800 | 14A5 | | 14A7 19B7 | Lock-in | Pentode | 8-V | Cathode | | 0.15 | .005m | 1- | 7.0 | Amplifier | Characteristi | | | | 3.3 | 10,000 | 3,000 | | 1,500 | 0,000 | 14A7/19B7 | | 14AF7 XXD | Lock-in | Duotriode | B-AC | Cathode | Antonno III | 0.15 | | 9.9 | 1.6 | Amplifier | Characteristi | | | | | | | | | | 14AF7/XXD | | 1 486 | Lock-in | Duodiode-Til. | 8-W | Cathode | | 0.15 | | 3.0 | 2.4 | Det. Amp | Characteristi | | | | | | | | | | 1486 | | 14B8 | Lock-in | Heptode | 8-X | Cathode | 12.6 | 0.15 | 0.2m | 10.0 | 9.0 | Converter | Characteristi | | | | | | | | | | 1488 | | 1 4C5 | Lock-in | Beam Amp | 6-AA | Cathode | 12.6 | 0.225 | Special Co. | 9,5 | 9.0 | Power Amp | Characteristic | | | | | | | | | | 14C5 | | 1407 | Lock-in | Pentode | 8-V | Cathode | 12.6 | 0.15 | .007m | 6.0 | 6.5 | Amplifier | 100 | 1.0 | 100 | 5.7 | 1.8 | 400,000 t | 9,275
1,575 | 1227 | | | 1407 | | 14E6 | Lock-in | Duodlode-Tri. | B-W | Cathode | 12.6 | 0.15 | 1.5 | 3.0 | 9.4 | Det. Amp. | Characteristi | | | | | | | | | | 14E6 | | 14E7 | Lock-in | Duodi. Pent. | 8-AE | Cathode | 19.6 | 0.15 | .005m | 4.6 | 5.5 | Det Amp. | Characteristi | | | | | | | | | | 14E7 | | 14F7 | Lock-in | Duotilode | B-AL | Cathode | 12.6 | 0.15 | 1.6 | 2.4 | 2.0 | Amplifler | Characteristi | | | | | | | | | | 14F7 | | 14H7 | Lock-in | Pentode | 8-7 | Cathode | 12.6 | 0.15 | .007m | 8.0 | 7.0 | Amplifier | Characteristi | les Same | as Type 7H | 17. | | | | | | | 14H7 | | 1417 | Lock-in | TriHeptode | 8-BL | Cathode | 12.6 | 0.15 | 0.03m | 4.6 | 7.5 | Mixer Osc. | Characteristi | ics Same | as Type 7J | 7. | | | | | | | 14J7 | | 14N7 | Lock-in | Duotriade | B-AC | Cathoda | 12.6 | 0.30 | | See | 7N7 | Amplifier | Characteristi | ics Same a | as Type 7N | 17. | | | | | | | 14N7 | | 1407 | Lock-in | Heptode | 8-AL | Cathode | 12.6 | 0.15 | 0.2m | 9.0 | 9.0 | Conveiter | Characteristi | les Same | as Type 7C | 27 | | | | | | | 1407 | | 14R7 | Lock-in | Duodi. Pent | 8-AE | Cathode | - | 0.15 | .004m | - | 5.3 | Del. Amp. | Characteristi | ics Same | as Type 7R | 7. | | | | | | | 14R7 | | 1457 |
Lock-in | Tri. Heptode | 8-BL | Cathode | | 0.15 | .03m | 5.0 | 8,0 | Mixer Osc. | Characteristi | ics Same | as Type 75 | 7. | | | | | | | 1457 | | 14W7 | Lock-in | Pentode | 8-BJ | Cathode | | 0.225 | .0025m | 9.5 | 7.0 | Amplifier | AND DESCRIPTION OF THE PERSON NAMED IN | | | 7, Except Ca | | | | | | | 14W7 | | 1474 | Lock-in | Duodiode | 5-A8 | Cathode | 12.6 | 0.30 | ACT SO | 4 + 1 1 | 1000 | F-W Rect | | | | | utput Current. utput Current. | | nput to Fister. | | | | 1474 | | 15 | 5T-12 | Pentode | 5-F | Cathode | 2.0 | 0.22 | .01 m | 2.4* | 8.0* | R-F Amp. | 67.5
135 | 1.5 | 67.5
67.5 | 1.85
1.85 | 0.3 | 000,008
000,008 | 71 0
750 | 450
600 | Hen | 4411 | 15 | | 18 | ST-14 | Pentode | 6-B | Cathode | 14.0 | 0.30 | | | 712 | Power Amp. | Characteristi | cs Same | as Type 6F | 6G. | | | | | | | 18 | | 19 | ST-19 | Duotriode | 6-0 | Filament | 2.0 | 0.96 | 711.11 | - 11 | | Power Amp. | 1 3 5
1 3 5 | 3.0 | HILL | 5.0
1.7 | 97117 | (Class B (| Operation) Operation) | | 10,000 | 2,100
1,900 | 19 | | 20 | T-8 | Triode | 4-D | Filament | 3.3 | 0.132 | 1000 | | - | Power Amp. | 90 | 16.5 | | 9.8 | | 7,800 | Operation) 450 | 3.5 | 9,600 | 1,600 | 20 | | | | | | | | | | | | | | 22.5 | | 6.0 | | 5,850 | 600 | 3.5 | 6,500 | 130 | | | 29 | ST-14 | Tetrode | 4-K | Filament | | 0.139 | | - | 10.0* | R-F Amp. | 1 3 5 | 1.5 | 67.5 | 3.7 | 1.3 | 250,000 | 500 | 125 | | | 22 | | 24A, 245 | ST-14 | Tetrode | 5-E | Cathode | 2.5 | 1.75 | .007sn | 5.3 | 10.5 | R-F Amb. | 180
250 | 3.0 | 90 | 4.0 | 1.7 | 400,000
600,000 | 1,000 | 400
630 | 1000 | | 24A, 24S | | - | | | | | - | - | | | | Detector | 250* | | 20 to 45 | | nt to be adius | sted to 0.1 M | anl on thiw a | ut Signal.) | | | | | 25 A 6 | Metai | Pentode | 7-S | Cathode | - | 0.30 | | 12 | 1211 | Power Amp. | Characterist | | | | | | | | | | 25 A 6 | | 25A6GT | Gĭ | Pentode | 7-5 | Calhode | 25.0 | 0.30 | | | 7477 | Power Amp, | 135 | 15.0 | 95
135 | 20.0
37.0 | 4.0
8.0 | 45,000
35,000
42,000 | 2,000
2,450
2,375 | 10101111 | 4,500
4,000
5,000 | 900
2,000
2,200 | 25 A6G1 | | 25 A 7GT | Gī | Diode Pent. | 8-F | Cathode | 25.0 | 0.30 | | -)- | 1 | H-W Rect | 117 A-C V | | | 33.0
75 Ma. Ou | | | | 1 | | | 25A7G1 | | 25AC5GT | GT | Triode | 6-0 | Cathode | 25.0 | 0.30 | | _ | | Power Amp. | 110 | | 100 | | 4.0 | 50,000
15,200 | 1,800 | 58 | 4,500 | 770 | 25AC5GT | | 25B5 | \$T-19 | Duotriode | 6-D | Cathode | 0.00 | 0.30 | - | _ | | Coupled Amp | | | | | nic Coupled | with 6AE5GT | Drivet | | 2,000 | 2,000 | 25B5 | | 2586G | ST-14 | Pentode | 7-5 | Cathode | | 0.30 | - | | - | Power Amp | Characteristi | | 105 | 48.0 | 9.0 | 15,500 | 4,800 | | 1,700 | 2,400 | 2586G | | 20000 | 21/14 | L SHIDGE | , -3 | ~ araind 6 | 23.0 | 0.30 | | | | ZOWER PAIND | 200 | 16.0
23.0 | 135 | 62.0 | 1.9 | 18,000 | 5,000 | | 2,500 | 7,100 | 10000 | | 25B8GT | GT | PentTriode | 8-1 | Cathode | 25.0 | 0.15 | .02 | 5.5
5.0 | 10.0 | Pent. Amp. | 100 | 3.0 | 100 | 7.6
0.6 | 2.0 | 185,000 | 2,000
1,500 | 370
112.5 | Pentode S | | 25B8G1 | | 25C6G | ST-14 | Beam Amp. | 7-AC | Cathode | 25.0 | 0.30 | 17500 | | 1 | Power Amp. | Characteristi | | as Type 67 | | | | | | | | 25C6G | | 25L6 | Metal | Beam Amp. | 7-AC | Cathode | 25.0 | D.30 | 0.3 | 16.0 | 13.5 | Power Amp. | Characteristi | | | | | | | | | | 25L6 | | 25L6GT | GT | Beam Amp | 7-AC | Cathode | 25.0 | 0.30 | | | 10.0* | Power Amp | 110 | 7.5 | 110 | 49.0 | 4.0 | 13,000 | 9,000 | | 2,000 | 2,100 | 25L6GT | | 40. 24-1- | | 4 .4. = 4 | A 100 100 | | _ | | _ | | |) no | 200 | 8.0 | 110 | 50.0 | 9.0 | 30,000 | 9,500 | Pi . | 3,000 | 4,300 | Candustana | ⁽¹⁾ Values are given shielded unless marked with (*). (2) Converter tube capacilances given are signal grid to plate; RF Input; Mixer Output. m maximum. *Plate and Target Supply Voltage. *** With Average Power Input of 320 Mw. Grid to Grid. *Applied Brough 250,000 ohms. *Per Tube or Section—No Signal *Applied through 200,000 ohms. *Triode Operation. **Triode Operation. **Triode Operation. **Triode Operation. **Triode Operation. **Applied through 200,000 ohms. **Triode Operation. **Applied through 200,000 ohms. AConversion Conductance. 150 Volts RMS applied to two grids | Туре | | Construction | | | Emitter | | | ote ()
pacitan
in µµl. | | Use | Plate | Negative
Grid | e
Screen | Plate
Current | Screen
Current | Plate
Resistance | Micromho:
Mutual | s Ampli-
fication | Ohms
Load
for
Stated | Undis-
torted
Power
Output | Гуре | |----------------|---------|-------------------------|----------------|----------|----------------------|------|---------|------------------------------|------------|-----------------------------|--------------------------------|------------------------------------|------------------------------|--|---|--|---|--|-------------------------------|-------------------------------------|----------------| | | Style | Cless | Basing
Diag | Туре | Volts | Amps | Cgp. | Cin. | Cout. | | Volts | Volts | Volts | Ma. | Ma | Ohms | Conduct- | Factor | Power
Output | Milli-
watts | | | 25N6G | ST-12 | Duotriode | 7-W | Cathode | | 0.30 | | Tes | | Power Amp. | 110
180 | 0 | 110
100 | 45
46 | 7.0
5.9 | Direct
Coupled | 2,200
2,300 | | 2,000
4,000 | 2,000
3,800 | 25N6G | | 2575 | ST-1 9 | Duodiode | 6-E | Cathode | The same of the last | 0.30 | | | - | Rect. Doubles | | | | | Output Current | Per Plate. | | | | | 2575 | | 25Z5
25Zć | Metal | Duodiode | 7-Q | Cathode | | 0.30 | | | | Doubler
Rectifier | - | - | ne as Type 2
ne as Type 2 | | | | | | | _ | 25Z5
25Z6 | | 25Z6GT | GT | Duodiode | 7-0 | Cathode | Service No. | 0.30 | | | | Doubler | | | | | Dutput Current | Per Plate. | | | | | 25Z6GT | | - | 07.1 | | 1.5 | mil | | | ā | | | H-W Rect | 235 A- | C Valts, F | RMS, 75 Ma | Output Cu | rrent Per Plate. | | | | _ | | | | 26 | ST-1 4 | Triode | 4-D | Filamen | 1.5 | 1.05 | 8.1* | 2.8* | 2.5* | Amplifer | 90
135
180 | 7.0
10.0
14.5 | | 2.9
5.5
6.2 | | 8,900
7,600
7,300 | 935
1,100
1,150 | 8.3
8.3 | 1001 | 010 | 26 | | 26A7G1 | GT | Duo. Beam
Amplifler | 8-BU | Cathode | 26.5 | 0.6 | 1.2* | 16.0* | 13.0* | Power Amp. | 26.5 | 4.5 | 26.5 | 20.0 | 2.0 | 2,500 | 5,500 | OUR ARE | 1,500 | 200 | 26A7GT | | 27, 27\$ | ST-1 2 | Triode | 5-A | Cathode | 2.5 | 1.75 | 3,3* | 3.9* | 2.3* | Amplifier Detector | 90
135
180
250
250 | 6.0
9.0
13.5
21.0
30.0 | | 3.0
4.7
5.0
5.9
(Plate Cur | rent to be adju | 10,000
9,000
9,000
9,250
sted to 0.2 M | 900
1,000
1,000
975
la with no In | 9.0
9.0
9.0
9.0
put Signal.) | 1770.4 | | 27, 275 | | 28D7 | Lock-in | Duo Beam
Amplifier | 8-85 | Cathode | 0.89 | 0.40 | | | | Ampilifier
(per section) | 28 | 3.5 | 28 | 9.0 | 0.7 | (Cathode Bi
4,200 | es Resistor = 3
3,400 | 390 Ohms) | 4,000
4,000 | 80
100 | 2907 | | 98Z5 | Lock-in | Double Diode | 6-BJ | Cathode | 28.0 | 0.94 | - | - | _ | P.P.A. Total
F-W Rect. | 325 A- | Volts Pe | 28
er Plate, RM | 64.0
S, 100 Ma. | 4.0
Output Current
Output Current | t. Condenser | | - Parister | 1500* | 600 | 2875 | | 30 | ST-12 | Triode | 4-D | Filamen | 2.0 | 0.06 | 6.0* | 3.0* | 2.1* | Det. Amp. | 90
135 | 4.5
9.0 | ET FIBEE, KIN | 2.5
3.0 | Outpar Curren | 11,000 | 950
900 | 9.3
9.3 | 1777 | -17/4 | 30 | | 31 | ST-1 2 | Triode | 4-D | Filamen | 2.0 | 0.13 | | | | Power Amp | 180
135
180 | 13.5
22.5
30.0 | - | 3.1
8.0
12.3 | | 4,100
3,600 | 900
925
1,050 | 9.3
3.8
3.8 | 7,000
5,700 | 185
375 | 31 | | 32 | ST-14 | Tetrode | 4-K | Filamen | 2.0 | 0.06 | .01 5m | 5.3* | 10.5* | R-F Amp. | 135
180 | 3.0 | 67.5
67.5 | 1.7 | 0.4 | 950,000
1.2 Mag. | 640
650 | 610
780 | 3,700 | 3/3 | 39 | | 39L7G1 | GT | Diode-Beam
Amplifier | 8-Z | Cathode | 32.5 | 0.30 | | 100 | | Detector
Rectifier | 180
125 RM | | 110 | 60
40 | rent to be adju | | | | 0.400 | | 39L7G1 | | 33 | ST-14 | Pentode | 5-K | Filamen | 9.0 | 0.96 | 1.0* | 8.0* | 12.0* | Power Amp. | 110
135
180 | 7.5
13.5
18.0 | 135 | 14.5 | 3.0
3.0
5.0 | 15,000 | 6,000
1,450
1,700 | 81
70
90 | 7,000 | | 33 | | 34 | ST-14 | Pentode | 4-M | Filamen | 2.0 | 0.06 | .015m | 6.0* | 11.0* | R-F Amp. | 67.5
135
180 | 3.0
3.0
3.0 | 67.5
67.5
67.5 | 2.7
2.8
2.8 | 1.1
1.0
1.0 | 55,000
400,000
600,000 | 560
600
620 | 224
360
620 | 6,000 | 1,400 | 34 | | 35/51, 355/515 | ST-14 | Tetrode | 5-€ | Cathode | 2.5 | 1.75 | .007m | 5.3* | 10.5* | R-F Amp. | 180
250 | 3.0 | 90.0
90.0 | 6.3
6.5
0.5 | 2.5
2.5 | 1 Meg
300,000
400,000 | 1,020 | 305
420 | | | 35 51, 35S 51S | | 35A5 | Lock-in | Beam Amp. | 6-AA | Cathode | 35.0 | 0.15 | | | | Power Amp | 110
200 | 7.5
8.0 | 45 to 67.5
110
110 | 40.0 | 3.0 | 2 Meg.
14,000 ¢
40,000 ¢ | 5,800 | | 9,500
4,500 | 1,500 | 35A5 | | 35L6GT | GT | Beam Amp. | 7-AC | Cathode | 35.0 | 0.15 | 0.8* | 13.0* | 9.5* | Power Amp. | 110 | 7.5 | 110 | 40.0 | 3.0 | 14,000 | 5,800 | | 9,500
4,500 | 1,500 | 35L6G1 | | 3574 | Lock-in | Diode | 5-AL | Cathode | 35.0 | 0.15 | - Court | 1,11 | | H-W Rect. | 235 Ma | x. A-C V | olls, RMS, | 60 Ma. Out | put Current wit | h Panel Lamp | | 1 | 4,300 | 3,300 | 3574 | | 35Z3 | Lock-in | Diode | 4-Z | Cathode | 35.0 | 0.15 | | | 23.14 | H-W Rect. | 235 Ma | | 35Z3 | | | | | | | | | | 35Z4GT | GT | Diode | 5-AA | | | 0.15 | | | | H-W Rect. | | and the second of | | man and a professional section | urrent, Conder | ser Input to F | ilter. | | | | 35Z4GT | | 35Z5G1 | GT | Diode | 7-Q | Cathode | | 0.15 | - | | | H-W Rect. |
| | | 0Z5 45Z5G | Output Current | | | _ | | | 35Z5G1 | | 35Z6G | ST-14 | Duodiode | 11-0 | Cathode | 33.0 | 0.30 | | | 1 -0 -0 10 | Doubler
H-W Rect. | the second leaves to | | | | Output Current | | - | | | - | 35Z6G | | 30 | ST-12 | Tetrode | 5-E | Cathode | 6.3 | 0.30 | .007m | 3.7* | 9.2* | R-F Amp. | 1 35
1 80
250 | 1.5
3.0
3.0 | 67.5
90.0
90.0 | 2.8
3.1
3.2 | Not Over | 575,000
500,000
550,000 | 1,000
1,050
1,080 | 475
525
595 | 1 THE P. LEWIS CO. | 18-14
(+7-6)
11164 | 36 | | 37 | ST-1 2 | Triode | 5-A | Cathode | 6.3 | 0.30 | 2.0≠ | 3.5* | 2.9* | Detector | 250
135
180 | 9.0
13.5 | 20 to 25 (| Plate Current
4.1
4.3 | to be adjusted | 10,000
10,200 | 925
900 | 9.9
9.9 | 11111 | | 37 | | 38 | ST-12 | Pentode | 5-F | Cathode | 6.3 | 0.30 | 0.3* | 3.5* | 7.5* | Power Amp. | 250
135
180 | 18.0
13.5
18.0 | 135 | 7.5
9.0
14.0 | 1.5 | 8,400
130,000
110,000 | 1,100
925
1,050 | 9.9
190
190 | 13,500
11,600 | | 38 | | 39 44 | ST-1 2 | Pentode | 5-F | Cathode | 6.3 | 0.30 | .007m | 3.51 | 10.0* | R-F Amp. | 90
180 | 25.0
3.0
3.0 | 90.0
90.0 | 99.0
5.6
5.8 | 3.8
1.6
1.4 | 100,000
375,000
750,000 | 1,200
960
1,000 | 1 20
360
750 | 10,000 | 2,500 | 39/44 | | | | | | | | | | | | A-F Amp. | 250
250 | 3.0
1.0 | 90.0
67.5 | 5.B
0.5 | 1.4 | 1 Meg.
2 Meg. | 1,050 | 1,050 | | | | | 40 | ST-14 | Triode | 4-D | Filament | | 0.25 | 8.0 | 2.8 | 2.2 | Amplifier | 135
180 | 1.5 | 2000 | 0.9 | Service | 150,000
150,000 | 200
200 | 30
30 | | | 40 | | 4025/45Z5GT | GT | Diode | 6-AD | Cathode | 45.0 | 0.15 | 1000 | 11111 | | H-W Rect. | 117 A-C | Volts, R | MS, 100 M | a. Output Ci | urrent without F | Panel Lamp Co | onnected, or i | 60 Ma. with P | anel Lamp. | | 40Z5/45Z5G1 | | 41 | ST-12 | Pentode | 6-B | Cathode | 6.3 | 0.40 | | | | Power Amp | Character | istics Sam | e as Type 61 | K6GT. | | | | | | | 41 | | 49 | ST-14 | Pentode | 6-B | Cathode | 6.3 | 0.65 | - 11111 | 44.12 | 1144 | Power Amp. | Character | ristics Sam | e as Type 61 | F6G. | | | | | | | 49 | | 43 | ST-14 | Pentode | 6-B | Cathode | | 0.30 | | | | Power Amp. | | | e as Type 2 | | | | | | | - | 43 | | | | | | | | | | | | | | | | | - | | | - | | | | | Туре | | Construction | | | Emitter | | Ca | ote (') (
pacitano
in uµf. | | Use | Plate | Negativ
Grid | Screen | Plate
Cyrrent | Screen | Plate
Resistance | Micromhos
Mutual | Ampli-
fication | Ohms
Load
for
Stated
Power | Undis-
torted
Power
Output
Milli- | Type | |----------|----------------|-------------------------|--------------|-------------|---------|-------|--------|----------------------------------|-------|---------------------------------|--------------------------|------------------------------|-----------------------------------|------------------------------|-----------------------|------------------------------------|---------------------------------------|---------------------|--|---|-----------------| | | Style | Class | Basing Diag. | Type | Volts | Amps | Cgp. | Cin. | Cout. | | Volts | Volts | Volts | Ma. | Ma | Ohms | Conduct- | Factor | Output | watts | | | 45 | ST-14 | Triode | 4-D | Filament | 2.5 | 1.50 | 7.0* | 4.0* | 3.0* | Power Amp | 180
250
275 | 31.5
50.0
56.0 | | 31.0
34.0
36.0 | | 1,650
1,610
1,700 | 2,125
2,175
2,050 | 3.5
3.5
3.5 | 9,700
3,900
4,600 | 1,600
2,000 | 45 | | 45Z3 | Miniature | Diode | E ANA | Cathode | 45.0 | 0.075 | - | - | - | H-W Rect. | | | Per Plate, RMS | | utput Current | 1,700 | 2,000 | 3.3 | 1,000 | 2,000 | 45Z3 | | 46 | ST-16 | Dual Grid | 5-C | Filament | 14- | 1.75 | -1919 | | _ | Power Amp. | 250 | 33.0 | Tie Gs to P | and the second | alper Cameno | 2,380 | 2,350 | 5.6 | 6,400 | 1,950 | 46 | | | | Triode | | 11101110111 | 2.0 | | | | | | 300
400 | 0.0 | Tie Gs to G
Tie Gs to G | 4.0
6.0 | STATE OF THE PARTY. | (Class B (| Operation) Operation) | 101 | 5,200°
5,800° | | | | 47 | ST-16 | Pentode | 5-B | Fllament | - | 1.75 | 1.2* | 8.6* | 1.3* | Power Amp. | 250 | 16.5 | 250 | 31.0 | 6.0 | 60,000 | 2,500 | 150 | 7,000 | 2,700 | 47 | | 48 | ST-16 | Tetrode | 6-A | Cathode | 30.0 | 0.40 | | | | Power Amp. | 95
125 | 20.0 | 95.0
100 | 52.0
52.0 | 19.0 | 4,000 | 3,900 | 15.6
43 | 1,500 | 3,000 | 48 | | 49 | ST-14 | Dual Grid
Triode | 5-C | Filament | 2_0 | 0.12 | | | 1 | Power Amp. | 135 | 20.0 | Tie Gs to P | 6.0 | | 4,175 | 1,125
bes Class B O | 4.7
peration) | 11,000
12,000 | 170
3,500 | 49 | | 50 | ST-16 | Triode | 4-D | Filament | 7.5 | 1.25 | 7.1* | 4.2* | 3.4* | Power Amp. | 300
350
400
450 | 54.0
63.0
70.0
84.0 | 0.00 | 35.0
45.0
55.0
55.0 | | 2,000
1,900
1,800
1,800 | 1,900
2,000
2,100
2,100 | 3.8
3.8
3.8 | 4,600
4,100
3,670
4,350 | 1,600
2,400
3,400
4,600 | 50 | | 50A5 | Lock-in | Beam Amp | 6-AA | Cathode | 50.0 | 0.15 | 100 | 11 1 | | Power Amp. | 110 | 7.5 | 110
110 | 49.0
50.0 | 4.0 | 10,000¢
35,000¢ | 8,200
8,250 | | 2,000 | 2,100
4,300 | 50A5 | | 50C6G | ST 14 | Beam Amp | 7-AC | Cathode | 50.0 | 0.15 | | | - | Power Amp. | Charact | eristics Sar | me as Type 6) | /6G. | | | | | | | 50C6G | | 50L6GT | GT | Beam Amp. | 7-AC | Cathode | 50.0 | 0.15 | | | 100 | Power Amp | Charact | eristics Sar | me as Type 25 | L6GT. | | | | | | | 50L6G1 | | 50Y6GT | GT | Duodiode | 7-0 | Cathode | 50.0 | 0.15 | | | | F-W Rect. | Charact | eristics Sar | me as Type 25 | Z6GT. | | | | | | | 50Y6GT | | 50Z7G | ST-12 | Duodiode | 8-AN | Cathode | 50.0 | 0.15 | 15 | 1-1 | | Doubler
H-W Rect | 117 A-
235 A- | C Volts P | Per Plate, RMS
RMS, 65 Ma. | 6, 65 Ma. O
Output Cum | utput Current
ent. | Per Plate. W | ith Current pas | sing thru Pane | el Lamp Sec | ction. | 50Z7G | | 52 | ST-14 | Dual Grid
Triode | 5-C | Filament | 63 | 0.30 | -1,1 | | es.in | Class A
Amplifier
Class B | 110 | 0 | (000)6 | 43
1.5 # | G: to P | 1,750
Two Tubes | 3,000
in P P | 5.2 | 2,000° | 1,500 | 59 | | 53 | ST-14 | Duotriode | 7-B | Cathode | 0.5 | 2.0 | _ | | | Power Amp. | | | me as Type 6 | | 01100. | 140 1406 | | | 10,000 | - | 53 | | 55, 55\$ | SI-12 | Duodiode-Tri. | 6-G | Cathode | - | | 1.5= | 1.5+ | 4.3* | Det. Amp. | | | ne as Type 6 | | | | | | | | 55, 55\$ | | 56, 565 | ST-19 | Trioda | 5-A | Cathode | | | 2.8* | 3.5* | 2.5₩ | Amplifier
Detector | 250
250 | 13.5 | T | 5.0 | ent to be adju | 9,500
sted to 0.2 M | 1,450
la. with no inp | 13.8
out Signal) | 1 | Herei | 56, 56\$ | | 56AS | ST-12 | Triode | 5-A | Cathode | 6.3 | 0.40 | - | | | Amplifier | | | me as Type 56 | | | | | | | | 56AS | | 57, 57\$ | ST-12 | Pentode | 6-F | Cathode | 2.5 | 1.00 | .007m | 5.0* | 6.5* | Amplifier | 100
950 | 3.0 | 100 | 2.0
2.0 | 0.5
0.5 | 1 Meg.
1 Meg. | 1,185
1,925 | out Cinnell | 1.01 | 2.2 | 57, 575 | | 57AS | CT 40 | | 4.5 | F 11 1 | 4.0 | 0.40 | | - | | Detector | 250° | 4.3 ¢ | 1 00
me as Type 57 | | sut to be stale | isted to U.1 N | la. with no inp | out Signal) | | | 57AS | | 58, 585 | ST-12
ST-12 | Pentode
Pentode | 6-F | Cathode | 1 | 1.00 | .007m | 4.7* | 6.0≖ | Amplifier
Amplifier | 100 | 3.0 | 100 | 8.0 | 2.2 | 250,000 | 1,500 | Trabai | p 1000 | 1 11-11- | 58, 585 | | 58AS | ST-12 | Pentode | 6-F | Cathode | | 0.40 | - | | | Amplifier | 250
Charact | 3.0 | 100
me as Type 58 | 8.2 | 9.0 | 800,000 | 1,600 | 44.11 | 1.000 | - | 58AS | | 59 | ST-16 | Pentode | 7-A | Cathode | | 2.0 | - | - | - | Power Amp. | 250 | 28.0 | Tie Gs to P | 26.0 | I make the | 2,300 | 2,600 | 6.0 | 5.000 | 1,250 | 59 | | " | 31.10 | rentoge | / | Cathode | 2.3 | 2.0 | ****** | | | TOWE PRINE. | 9501
300
400 | 18.0 | 250
Tie Gs to G
and Su to P | 35.0
20.0 | | 40,000
(Class B | 9,500
Operation Ty
Operation Ty | 100
vo Tubes) | 6,000
4,600 | 3,000 | | | 70A7GI | GT | Diode-Beam
Amplifier | 8- AB | Cathode | 70.0 | 0.15 | 11111 | - | | H-W Rect. | 125 A | -C Volts
7.5 | Per Plate, RM
110 | S, 60 Ma. C | Output Current | | 5,800 | | 2,500 | 1,500 | 70A7GT | | 70L7GT | GT | Diode-Beam
Amplifier | 8-AA | Cathode | 70.0 | 0.15 | 4000 | 15 | | Rectifier
Amplifier | | | RMS, 70 Ma. | Output Curr | ent. Condens | er Input to Fil | ter.
7,500 | | 2,000 | 1,800 | 70L7GT | | 71 A | ST-14 | Triode | 4-D | Flament | 5.0 | 0.25 | 7.5* | 3.2* | 2.91 | Power Amp. | 90 | 16.5 | 1 110 | 10.0 | 3.0 | 2,170
1,820 | 1,400 | 3.0 | 3,000 | 1 25 | 71 A | | | | | | | | | | | | | 180 | 40.5 | | 20.0 | | 1,750 | 1,700 | 3.0 | 4,800 | 790 | | | 75, 75\$ | ST-12 | Duodiode-Tri. | 6-G | Cathode | 6.3 | 0.30 | 1.7* | 1.7* | 3.8* | Det. Amp. | 250 | 2.0 | 1 | 0.9 | | 91,000 | 1,100 | 100 | | | 75, 75\$ | | 76 | ST-12 | Triode | 5-A | Cathode | 6.3 | 0.30 | 2.8* | 3.5* | 2.5* | Amplifier
Detector | 250
250 | 13.5
20.04 | | 5.0 | ent to be adia | 9,500
isted to 0.2 M | 1,450
la. with no Ing | 13,8 | 14000 | 11.650 | 76 | | 77 | ST-12 | Pentode | 6-F | Cathode | 6.3 | 0.30 | .007m | 4.7* | 11.0* | Amplifler | 100 | 1.5 | 60.0 | 1.7 | 0.4 | 600,000 t | 1,100 | l seller | | -0.44 | 77 | | 78 | ST-12 | Pentode | 6-F | Cathode | 6.3 | 0.30 | .007m | 4.5* | 11.04 | Amplifier | 90
180
250 | 3.0
3.0
3.0 | 90.0
75.0
100 | 5.4
4.0
7.0 | 1.3 | 300,000 ¢
1 Meg. ¢
800,000 ¢ | 1,275
1,100
1,450 | 107.0 | | 12.11 | 78 | | 79 | ST-12 | Duatriode | 6-H | Cathode | 6.3 | 0.60 | 0.00 | | | Power Amp. | 180 | 0.0 | 100 | 7.5 | | (Class B (| Operation) | | 7,000€ | 5,500 | 79 | | 80 | ST-14 | Duodtode | 4-C | Filament | 5.0 | 2.00 | | | - | F-W Rect. | 250
350 A | O.D
-C Voits F | Per Plate, RM | 10.5
S, 125 Ma. C | Output Curren | t. Condenser | Operation) Input to Filter | | 14,0004 | 8,000
 80 | | P1 | - OT | - Di 1 | 1.5 | Pol | 9.5 | - | - | | - | LI W D | | | Per Plate, RMS | | | | | | | | B1 | | B1 | ST-16 | Diode | 4-B | Filament | | 1.25 | | | | H-W Rect. | | | | | | | input to Filter | | | | 82 | | 89 | ST-14 | Duodiode | 4-C | Filament | | 3.0 | | | | F-W Rect. | | | | | | | Input to Filter | | | | 83 | | B3 \ | ST-16 | Duodiode | 4-C | | | 3.00 | | | | F-W Rect. | | | | | | | Input to Filter | | | | 83V | | 84 624 | ST-14 | Duodiode | | Cathode | | 0.50 | | | | F-W Rect. | | | | | | | Input to Filter | | | | 84 624 | | 85 | ST-12 | Duodiode Tri | 5-D
6-G | Cathode | | 0.30 | 1.59 | 1.5* | 4.3* | Det. Amp. | | | me as Type 6 | | Japan Carren | Condenser | per to ritter | | | | 65 | | 85 AS | ST-12 | Duodlode-Tri. | | | | 0.30 | 1.3 | 1.3 | 4.3 | Del. Amp. | 250 | 9.0 | ar irpe o | 4.5 | | 16,000 | 1,250 | 20 | | | 85 AS | | 41.14.1 | | 1 1 1 1 | | 43 | | | | | | Plate and Target | *** | 77 | CENVIA A | | ut of 200 has | | | | | АСориом | ion Conductance | Values are given shielded unless marked with (*). Converter tube capacitances given are signal grid to plate, RF Input; Mixer Output. m maximum. | Plate and Target Supply Voltage| | With Average Power Input of 320 Mw. Grid to Grid. | Plate to Plate. | Applied through 250,000 ohms. | Triode Operation. | Per Tube or Section—No Signal. | Applied through 200,000 ohms. | TFor two tubes with 40 volts RMS applied to each grid. | Approximate. two grids. | Type | | Construction | | 1 | Emitter | | Ca | ote (1) (
pacitano
in /µf | | Use | P at 2 | Negative
Grid | Screen | Plate
Current | Screen
Current | Plate
Resistance | Micromhes
Mutual | Ampli-
fication | Ohms
Load
for
Stated | Undis-
torted
Power
Output | Type | |---------------|---------|-------------------------|-----------------------|----------|---------|----------|---------|---------------------------------|----------|-------------------------|----------------------|---------------------|-------------------|---------------------|-----------------------------|-----------------------------------|-------------------------------|--------------------------|---|-------------------------------------|---------------| | | Style | Class | Basing Diag. | Гуре | Volts | Amps | Cro. | Cin. | Cout | | Vo ts | Vaits | Volts | Ma. | Ma | Ohms | Conduct- | Factor | Power
Output | Milli- | 1700 | | 89 | ST-12 | Pentode | 6-F | Cathode | 6.3 | 0.40 | | | 1- | Power amp. | 160**
180‡
180 | 20.0
18.0
0.0 | Gs&Su to P | 17.0
20.0
3.0 | 3.0
Class B Oper | 3,300
80,000
m. Tie Su to F | 1,425
1,550
A Gs to G (| 4.7
193
Two Tubes) | 7,000
8,000
9,400 | 300
1,500
3,500 | 89 | | VR-90-105-150 | | | | Cold | | | | - | | Now Listed a | | | D3, | | | | W -7.10 - , | 140,000-, | | -,,,,, | VR-90-105-150 | | V-99 | 7-8 | Triode | 4-E | Filament | 3.3 | 0.063 | 3.5* | 2.5* | 2.2" | Det. Amp. | 90 | 4.5 | | 2.5 | I I | 15.500 | 425 | 6.6 | 1 | | V99 | | X99 | 1-9 | Triode | 4-D | Filament | 3.3 | 0.063 | 3.5* | 2.5* | 9.21 | Det. Amp. | 90 | 4.5 | | 2.5 | | 15,500 | 425 | 6.6 | | | X99 | | 117L7 M7G1 | G1 | Diode-Beam
Amplifier | 8-AO | Cathode | 117 | 0.09 | 111111 | | | H-W Rect.
Power Amp. | | | MS, 75 Ma.
105 | | rent. Condense | 1 | | 0.0 | 4,000 | 850 | 117L7/M7GT | | 1171/161 | GI | Diode-Beam
Amplifier | 8-AV | Cathode | 117 | 0.09 | | | | H.W Rect. | 117 A- | C Voits, RI
6.0 | MS, 75 Ma. | Outpui Cum
51 | ment Condense | 1.0 | | | 3,000 | 1,200 | 117N7G1 | | 117P7G1 | G1 | Diode-Beam
Amplifier | 8-41 | Cathode | 117 | 0.09 | | | | H-W Rest.
Power Amp | 117 A- | C Volts Per | Plate, RMS | | Output Current. | 17,000 | 5,300 | | 4,000 | 850 | 11727GT | | 117Z4GT | G1 | Diode | 5-AA | Cathode | 117 | 0.04 | - | (412) | | H-W Rect. | 117 A | C Volts Pe | Plate, RMS | 5, 40 Ma. C | Sutput Current | | | | | | 11 Z4GT | | 117Z6GT | Gī | Duadiade | 7-0 | Cathode | | 0.075 | | | | Doublet | | | | | Output Current F | Per Plate. | _ | | | | 117Z6G1 | | 1898 489B | \$1-14 | Triode | 4-D | Filament | 5.0 | 1.25 | 10000 | | | Power Amp. | 250 | 35.0 | | 20.0 | | 2,500 | 2,000 | 5.0 | 4,500 | 1,350 | 182B/462B | | 183 483 | ST-14 | Triode | 4-D | Filament | 5.0 | 1.25 | | | Jane 1 | Power Amp | 250 | 65.0 | | 20.0 | | 2,000 | 1,500 | 3.0 | 4,500 | | 183 483 | | 210-T | ST-16 | Triode | 4-D | Filament | 7.5 | 1.25 | 7.0* | 4.0* | 3.0* | Power Amp | (Standare | | with Ceramic | | Type 10 Charac | | - / | | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | .,, | 210-T | | 485 | ST-12 | Triode | 5-A | Cathode | 3.0 | 1.25 | 71.00 | | | Det. Amp. | 180 | 9.0 | - | 5.8 | | 00·4,8 | 1,400 | 12.5 | | | 485 | | 864 | T-9 | Triode | 4-D | Hiament | 1.1 | 0.95 | 5.3* | 3.3* | 9.19 | Det. Amp. | 90 | 4.5 | | 9.9 | 1000 | 13,500 | 610
645 | 8.9 | - | | 864 | | 894 | ST-12 | Gas Triode | 6-0 | Cathode | 6.3 | 0.6 | 6.0* | 2,0* | 0.6* | Relay Tube | 300 | 30 | - 11 | 75 | For Relay O | peration Limit | Time to 30 S | | Peak Curre | nt, | 884 | | 885 | ST-12 | Gas Triode | 5-A | Cathode | 2.5 | 1.5 | 6.0* | 2.02 | 0.6* | Relay Tube | Characte | eristics Semi | e as Type 88 | 4 | | | | | | | 885 | | 95 U | ST-14 | Pentode | 5-K | Filament | 2.0 | 0.12 | | | ** * * * | Power Amp. | 135 | 16.5 | 135 | 7.0 | 2.0 | 125,000 | 1,000 | 125 | 13,500 | 575 | 950 | | 1204 | Lock-in | Pentode | | Cathode | 6.3 | 0.15 | .06m | 3.5 | 4.0 | Amptifier | 250 | 2.0 | 100 | 4.0 | 1.3 | 500,000 | 1,800 | | | 11111 | 1204 | | 1221 | ST-12 | Pentode | 5-F | Cathode | 6.3 | 0.30 | 111 | 4.50 | | Amplifer | Special | Non-Micro | phonic Tube | . Characteris | stics Same as Ty | De 6C6 | | | | | 1221 | | 1923 | ST-1 2 | Pentode | 7-R | Cathode | | 0.30 | 2000 | 414 | | Ampilfier | | | Type 1221 | | | | | | | | 1223 | | 1 2 2 9 | ST-1 2 | Tetrade | 4-K | Filament | 2.0 | 0.06 | | | 1 | | | | | | ent Applicatio | ns. | | | | | 1229 | | 1231 | Lock-in | Pentode | 8-7 | Cathode | 6.3 | 0.45 | .015m | 8,5 | 6.5 | Pent. Amp.
Tet. Amp. | 300 | 11.54 | 150
150 | 10.0
19.0 | 2.5
0.5 | 700,000 | 5,500
6,500 | 3,850
3,500 | Bias Res. = | 900 Ohms
900 Ohms | s 1231 | | 1960 | GT | Diode | 4-W
Exc.
Jumper | Cold K | | 14.17 | 1-1 11 | 1144 | 14114 | Regulator | Voltage | Regulator | Similar to Ty | pe OB3/VF | R-90-30, Exces | ot Regulating | | | | | 1266 | | 1257 | Gī | Gas Triode | 4-V | Cold K | | **** | | 41 | | Relay Tube | Similar t | o Type O | A4G. | | | | | | | | 1267 | | 1 1 7 5 | ST-16 | Duodiodean | 4.C | Filament | 5.0 | 1.75 | | | | Reclifier | Similar t | o Type 5Z | 3. | | | | | | | | 1275 | | 1276 | \$1-16 | Triode | 4-D | Filament | 4.5 | 1.14 | | | | Amplifier | Similar 1 | o Type 6A | 3 . | | | | | | | | 1276 | | 1 273 | Lock-in | Triode | 4-AA | Filament | 1.4 | .11 | 1,7 | 1.7 | 3.0 | Ostillator | 90
90 | 20 | | 5.2
13.25 | 120 Mc. Os | cillator Rg = | 1,500
10,000 Ohm | 15 | 1 | 1 441 | 1293 | | 1019 | Metal | Heptode | 7-1 | Cathode | 6.3 | 0.30 | .DO1 m | | 11.0 | Mixer Amp | Characte | ristics Same | e as Type 6L | 7. | | | | | | | 1612 | | 1626 | ST-12 | Triode | 6-Q | Cathode | 12.6 | | 4.4* | 3.2* | 3,4 | Oscillator | 250 | 70 | | 25 | Class C. Ost | illator or Am | plifier. | | | 4,000 | 1626 | | 1629 | GI | Electron Ray | 7-AL | Cathode | 12.6 | 0.15 | | | | Indicator | Characte | elsties Same | as Type 6E | 5. | | | | | | | 1629 | | 2050 | ST-12 | Gas Tetrode | | Cathode | 6.3 | | 0.26* | 4.2* | 3.6* | Relay Tube | 400
220 | 5.0
4.0 | 0 | 100
75 | For Relay Or
1 Amp. Peal | peration Limit
Current, 8 N | Time to 30 S
Volts Tube Dr | ecs.
op. | | | 2050 | | 2031 | \$T-12 | Gas Tetrode | 8-BA | Cathode | 6.3 | 0.6 | 0.26* | 4,2* | 3.6* | Relay Tube | 290 | 4.0 | 0 | 75 | | | fime to 30 S
Volts Tube Di | | | | 2051 | | XXD | | | | | Now | listed a | s 14AF7 | /XXD | | | | | | | | | | | | | | | XXL | Lock-in | Triode | \$-AC | Cathode | 6.3 | 0.30 | ->>> | | | Amplifier | 100
250 | 0.0 | 1 | 10.0 | 16/6/04 | 7,000
8,700 | 3,600
2,300 | 25
20 | | ***** | XXL | (1) Values are given shielded unless marked with (*). (2) Converter tube capacitances given are signal grid to plate; RF Input, Mixer Output m maximum. **Plate and Target Supply Voltage **Applied though 250,000 ohms. **Friode Operation. **Per Tube or Section—No Signal. **Applied through 200,000 ohms. **Signal. **Applied through 200,000 ohms. **Signal. **Applied through 200,000 ohms. **Applied through 200,000 ohms. **For two tubes with 40 volts RMS applied to each grid **Applied through 200,000 ohms. #### TUBE AND BASE DIAGRAMS (VIEWED FROM BOTTOM OF BASE-) SYMBOLS: A—Anode; A1—Anode 1, A2—Anode 2, D1—Deflector 1, D2—Deflector 2, D3—Deflector 3, D4—Deflector 4, Dp—Diode Plate; F—Filament, Fc—Filament Center, G—Control Grid; Ga—Anode Grid; Gm—Modulator Grid, Go—Oscillator Grid; Gs—Screen Grid, H—Heater, Hc—Heater Center; Ht—Heater Tap; IC—Internal Connection, IS—Internal Shield; J—Jumper, K—Cathode; NC—No Connection; P—Plate, Rc—Ray Control; S—Metal Shelf; SA—Starter Anode; Su—Suppressor Grid; T—Target; XS—External Shield; —Top Cap; —>Locating Pin. 6-AM 6-A.B 6.AD 6-AE 6-AF ### TUBE AND BASE DIAGRAMS (VIEWED FROM BOTTOM OF BASE - CONTINUED) SYMBOLS: A—Anode; A1—Anode 1, A2—Anode 2; D1—Deflector 1, D2—Deflector 2; D3—Deflector 3; D4—Deflector 4, Dp—Diode Plate; F—Filament; Fc—Filament Center; G—Control Grid; Ga—Anode Grid; Gm—Modulator Grid; Go—Oscillator Grid; Gs—Screen Grid, H—Heater; Hc—Heater Center; Hi—Heater Tap; IC—Internal Connection; IS—Internal Shield; J—Jumper, K—Cathode; NC—No Connection; P—Plate; Rc—Ray Control; S—Metal Shelf; SA—Starter Anode; Su—Suppressor Grid; T—Target; XS—External Shield; ——Top Cap;——>Locating Pln. 7 -81 7-8F 7-BC 7-BD #### TUBE AND BASE DIAGRAMS (NIEWED FROM BOTTOM OF BASE-CONTINUED) 4; Dp—Diode Plate; F—Filament; Fc—Filament Center; G—Control Grid; Ga—Anode Grid; Gm—Modulator Grid; Go—Oscillator Grid; Gs—Streen Grid; H—Heater;
Hc—Heater Center; Ht—Heater Tap; IC—Internal Connection; IS—Internal Shield; J—Jumper; K—Cathode; NC—No Connection, P—Plate; Rc—Ray Control; S—Metal Shelf; SA—Starter Anode; Su—Suppressor Grid; T—Target; XS—External Shield; □—Top Cap; —→Locating Pin. 8-T 8.5 8-Q ### TUBE AND BASE DIAGRAMS (NIEWED FROM BOTTOM OF BASE CONTINUED) ### SYLVANIA PANEL LAMP CHARACTERISTICS | _ | | De | sign | | D 11 | A 41-1-A | Usual | 7 | Type | Circuit | De | sign | | |-------------|------------------|-------|------|---------------|---------------|-------------------|----------------------------------|-------------|----------|---------|-------|------|-----| | No. | Circuit
Volts | Volts | Amp. | Bead
Color | Bulb
Style | Miniature
Base | Service | Type
No. | No. | Volts | Volts | Amp. | Č | | 540 | 6-8 | 6.3 | 0.15 | Brown | T-3 1/4 | Screw | Radio Dials | \$40 | *\$49 | 2.0 | 2.0 | 0.06 | F | | 541 | 2.5 | 2.5 | 0.50 | White | T-3 1/4 | Screw | Radio Dials | \$41 | \$50 | 6-8 | 7.5 | 0.90 | W | | S49 | 3.2 | 3.2 | 0.35 | Green | T-3 1/4 | Screw | Radio Dials | \$49 | S51 | 6-8 | 7.5 | 0.20 | W | | \$43 | 2.5 | 2.5 | 0.50 | White | T-314 | Bayonet | Radio Dials and
Tuning Meters | \$43 | 331 | 0-8 | 7.3 | 0.20 | | | 644 | - 10 | - () | 0.05 | - Divi | T-3 % | Bayonet | Radio Dials and | | \$55 | 6-8 | 6.5 | 0.40 | V | | S44 | 6-8 | 6.3 | 0.25 | Blue | 1+3/4 | Dayonet | Tuning Meters | 344 | 5292 | 2.9 | 2.9 | 0.17 | V | | \$45 | 3.2 | 3.9 | 0.35 | White | T-314 | Bayonet | Radio Dials | \$45 | S292 A | 2.9 | 9.9 | 0.17 | - 4 | | \$46 | 6-B | 6.3 | 0.25 | Blue | T-31/4 | Screw | Radio Dials and | \$46 | 2141 W | 2.9 | 2.9 | 0.17 | | | | | | | | | | Tuning Meters | | \$1455 | 18.0 | 18.0 | 0.25 | В | | *S47 | 6-9 | 6.3 | 0.15 | Brown | T-314 | Bayonet | Radio Dials | *547 | S1 455 A | 18.0 | 18.0 | 0.25 | В | | 548 | 2.0 | 2.0 | 0.06 | Pink | T-314 | Screw | Battery Set Dials | \$48 | 3143371 | | | | _ | | Type
No. | Circuit
Volts | Design | | Bead | Bulb | Miniature | Usual | Tues | |-------------|------------------|--------|------|-------|--------------------|-----------|------------------------------|-------------| | | | Volts | Amp. | Color | Style | Base | Service | Type
No. | | *\$49 | 2.0 | 2.0 | 0.06 | Pink | T-314 | Bayonet | Battery Set Dials | *\$49 | | \$50 | 6-8 | 7.5 | 0.20 | White | G-312 | Screw | Auto Sets,
Flash Lights | 550 | | \$51 | 6-8 | 7.5 | 0.20 | White | G-3 L ₂ | Sayonet | Auto Sets,
Auto Paneis | \$51 | | \$55 | 6-8 | 6.5 | 0.40 | White | G-4 2 | Bayonet | Auto Sets,
Parking Lights | \$55 | | 5292 | 2.9 | 2.9 | 0.17 | White | T-314 | Screw | Redio Dials | 5292 | | \$292 A | 2.9 | 2.9 | 0.17 | White | T-31, | Bayonet | Radio Dials
Coin Machines | \$292 | | \$1455 | 18.0 | 18.0 | 0.25 | Brown | G-5 | Screw | Coin Machines | \$1455 | | S1 455 A | 18.0 | 18.0 | 0.95 | Brawn | G-5 | Bayonet | Coin Machines | \$1455 | *Sylvania Types S47 and S49 are interchangeable with Types 40A and 49A, respectively, in other brands.