PROP

250 Watt FM Transmitter Incorporating the NEW

Phase Shift Modulation

YOU CAN GET ALL OF THESE II IMPORTANT FEATURES ONLY FROM RAYTHEON

1 Simplified circuit design throngh the Cascade system gives stability and efficiency to Raytheon FM.

2 Direct crystal control, independent of modulation, gives positive and automatir control of the mean carrier frequency. No complicated electronic or mechanical frequency stabilizers are used. A single high quality rrystal does the job.

3 An inherently lower noise level is achieved by Cascade Plase Shift Modulation which adds the phase shift of six simple stages. No single complicated stage. nor a large number of multipliers with resulting high noise level. is neressary.

4 Very low harmonic distortion-less than 1.0% from. 50 to 1.5000 CPS with 100 KC : frequency deviation.

5 A built-in tuning meter, conveniently located on front panel. allows the operator to cherk any circuit. instantly. while on the air.

Conservatively operated circuits assure a high fidelity signal without program interruption over long periods of continued operation. Normal life of all tuhes and components is materially increased: annoving replacements are redured to a minimum.

7 No expensive special tubes. The modulator unit uses only inexpensive receiver type tubes of proven reliability.

Simple, very fast tuning. Periodic circuit tune-ups. although rarely necessary. are easily arcomplished in two or three minutes. and the transmitter refuires virtually no adjustment between service periods. All circuits are stable-require no critical adjustments. No external measuring instruments are ever needed.

Lasting economy. A Raytheon transmitter not only costs less to purchase but through increased operating efficiency you continue to save daily on power costs. Advanced engineering design plus modern styling guarantee your satisfaction for many years.

Easy to service. Fxcellent mechanical layout. vertical type chassis and full height front and rear doors make servicing both fast and easy.

Unit construction. There is no obsolescence to Raytheon FM Transmitters. This 2.50 watt transmitter is also the basic exciter unit for all higher powers and later you can add an amplifier to give any increased power you desire. All units are perfectly matched in size. styling and colors.

Schematic Diagram of the

RAYTHEON

250 Watt $F M$ Transmitter RF-250

Simplicity and staightiforward circuit design are evident from the RF-250 schematic. The modulator and low frequency multiplier stages are shown within the white area.
Plase shift modulation permits direct crys. al control of the carrier frequency and the ascade system makes possible direct multiplication (972 times overall) from the crystal the final carrier frequency. The modulator arsis comains the crystal oscinator, a reguar and standby crystal in temperature conrolled ovens, the six cascade phase shift stages atil amplifiers and multipliers which provide output at about 1.2 MC from crystal frequenes centering around 100 KC .
t should be noted that great care has been hken in all amplifier and multiplier stages to ceduce to a minimum the harnonic and spurious signals which would otherwise be present. Band pass, overcoupled, double tuned circuits are used when required for good attenution and adequate band width. Higher freuency multip tiers are of the single tuned type above 30 NC. all ank circuts have linear epe elements to prowid hish
By using pentode and tetrode RF multiplier and amplifier tubes a minimum of stages are equired to give increased efficiency and refir is The ourn from he hal amplers terminated 51 an end seal ling haching stand infer
Control circuits provide simple and positive protection of all operations. On those circuits subject to possible overload, such as the final tection is used to provide instant reoperation after the fault has cleared. Fuses with indicator lights protect other components from abnormal faults All control circuits are arranged for interconnection with higher power units providing unified control. Adequate metering allows instant check of all circuit operations for rapid maintenance and service checks. Rapid tube change is possible through quick-opening doors wherever shielding is employed.

The front view of the modulator unit shows the simplicity
of parts sund layout. A single tuning meter makes possible of parts and layout. A single tuning meter makes possible a
rapid check or tune-up of all circuits. A running time meter provides a record of all "on the air" hours. Dual crystal
sockets, with instantaneous changeover, are provided.

The rear of the modulator shows the audio in
put and $R F$ output rece
necting terminal strip.

What is this entirely new
 CASCADE STSTEM
 of Phase Shift Modulation?

Basically the Cascade Phase Shift system consists of a crystal oscillator operating at about 100 KC whose KF voltage is phase modulated by six simple phase shift
 are in parallel. Thue the phase shifit produced by each section is additive so that approximately siv times the phane shift of a single section is ohtaind withoul mul phase shift of a single section is obtatimed without mul-
tiplication of the carrier frequency. The output of the last phate shift section is then amplified and multiplied by a factor of 12 within the modulator unit. 'The overall multiplication is 972 from erystal frequeney to rarrier frequency
The basic constant impedance phase shift networh
is shown above. When X_{I} is made equal to $2 \mathrm{X}_{\mathrm{C}}$ any variation in R_{2} will have no effect upon the magnitude of the impedance across terminals 1 and 2. The phase of the output voltage will shift, however, hetween the limits of plus 90° and minus 90° as R_{2} is either open circuited or short circuited. With \mathbf{R}_{2} open, current will How only through X_{L} and must he inductive with the voltage leading the current by 90°. With \mathbf{R}_{2} short cir cuited and $\mathbf{X}_{\mathbf{L}}=2 \mathbf{X}_{\mathrm{C}}$, the current through X_{C} will be Wice that through X_{L} and the net current will be capa-
citive with the voltage lagging by 90°. With $K_{\text {. at }}$ inter ritive with the voltage laging by 90°. With $K_{\underline{z}}$ at inter modiate valuer the voltage vector will be at some inter
my replacing R_{2} with the cathode to nround resistance of a vacuum tube we have a meall of combolling the phase shiff with audio frequen voltages. If six of these circuits with aupropriate am voltaqes. If six of lhese circuis with appropriate atm-
plifier tubes are placed in cascade, and the grids of the plifier tubes are placed in cascade, and the grids of the
audio controlled resistance tubes are paralleled. a siv stage Cascade Phase Shifter results.
Six stages are required because the largest phase shift obtainable, with low distortion, in any single phawe shifter is about 25° or about 13 cyeles frequency change

EASY TO OPERATE
EASYTO SERVICE

Open from view, above, shows complete metering and simplicity of controls. Each fuse has an indicator ligh oud all are located on the tront panel to give instam accessibility.
The full height rear view shown at right emphasizes the clean vertical chassis type of construction used throughout. The final amplifier, driver and tripler Momartwew. Each of these suges is further shielded foum the other, sivins complete stability and mini mum radiation external to the cabinet. This lack of external radiation is of great importance when low level audio equipment is to be operated in close proximity to the transmitter.

Below these stages is a panel carrying additional multiplier circuits. The control panel with its switches. pust-butons and indicating liphts is located at a coll venient height for ease of operation.
Lumediately below the control panel is thic Cascatc Phase Shift Modulator chassis which is desrribed in detail on pases and at The power supphes for the modulator and low modutator.
On the floor of the calsinet are located the componens for high voltage power supplies, power input circuits, etc. A line voltage regulator mounted on the left side wall supplies regulated AC for the modulator wer supply
All units are readily accessible for maintenance and Nervicing. All components have been carefully selected to assure excellence in performance and long troublefree service.

The view above shows the
linear ype tanh circcuits used inear type tank circuits used
on all stages operating alover 30 MC. Though mare exper: ive than the conventional
coil and condenser" type coll und condenser" lype
the use of linear tanks as.
ares stubility reliability ures statilitity, reliabsility,
igh efficiency, high spurious high efficiency, high spurious
signal atteruation and ease
of adjustment

```
Power components are lo.
Mated on thoenentsom of thon
cabinet with a wiring duct
lor interconnection of the 
```


> EASY TO OPERATE EASY TO SERVICE

Open front view, above, shows complete metering and simplicity of controls. Each fuse has an indicator light atd all are located on the front panel to give instant accessibility.

The full height rear view shown at right emphasizes the clean vertical chassis type of construction used throughout. The final amplifier, driver and tripler stages are located at the top in a completely shielded compartment. Each of these stages is further shiehded from the others, giving complete stability and minimum radiation external to the cabinet. This lack of external radiation is of great importance when low level audio equipment is to be operated in close proximity to the transmitter.

Below these stages is a panel carrying alditional multiplier circuits. The control panel with its switches, push-buttons and indicating lights is located at a convenient height for ease of operation.

Immediately below the control panel is the Cascade. Ihase Shift Modulator chassis which is described in detail on pages 6 and 7 . The power supplies for ther modulator and low level RF stages are just below theinodulator.

On the floor of the cabinet are located the components for high voltage power supplies, power input circuits, etc. A line voltage regulator mounted on the left side wall supplies regulated $A C$ for the modulator power supply.

All units are readily accessible for maintenance and servicing. All components have been carefully selected to assure excellence in performance and long trouble. free service.

The siee above shous the linear type tank circuits used on all stages operating above 30 MC . Though more expensive han the conventional "coil ard condenser" type the we of linear tanks assures sudility, reliability, high afiviency, high spurious signal at muation and ease of adplein ent.
"ower components are lo. ated or the bottom of the cabinet with a viring duct for iaterconnection of the \{F-25] with units of higher ower.

Schematic Diagram of the RAYTHEON 250 Watt FM Transmitter RF-250

Simplicity and straiphtforward circuit design are evident from the RF- 250 schematic. The modulator and low frequency multiplier stages are shown within the white area.

Plase shift modulation permits direct crystat control of the carrier frequency and the Cascade system makes possible direct multiplication (972 times overall) from the crystal to the final carrier frequency. The modulator chassis contains the crystal oscillator, a regular and standby crystal in temperature controlled ovens, the six cascade phase shift stages and amplifiers and multipliers which provide output at about 1.2 MC from crystal frequenricz centering around 100 KC .

It should be noted that great care has been Laken in atl amplifier and multiplier stages to reduce to a minimum the harmonic and sputious signals which would otherwise be present. Band pass, overcoupled, double tuned circuits are used when required for good attenuation and adequate band width. Higher frequency multipliers are of the single tuned type and above 30 MC all tank circuits have linear type elements to provide high "Q" and further reduction of unwanted signals.

By using pentode and tetrode RF multiplier and amplifier tubes a minimum of stages are required to give increased efficiency and reliability. The RF output from the final amplifier is terminated in an end seal fitting for attaching standard 51 ohm coaxial line. A gas inlet is provided where a pressurized line is used.

Control circuits provide simple and positive protection of all operations. On those circuits subject to possible overload, such as the final amplifier power supply, circuit breaker protection is used to provide instant reoperation after the fault has cleared. Fuses with indicator lights protect other components from abnormal faults. All control circuits are arranged for interconnection with higher power units providing unified control.

Adequate metering allows instant check of all eircuit operations for rapid maintenance and service checks. Rapid tube change is possible through quick-opening doors wherever shielding is employed.

What is this entirely new GASCADE SYSTEM of Phase Shift Modulation?

Basically the Cascade Phase Shift system consists of a crystal oscillator operating at about 100 KC whose RF voltage is phase modutated hy six simple phase shift networks. The six phase shift networks are in cascate for $R F$ voltages hut the adio whages controlling them are in parallel. Thus the phase shift produced ley each section is additive so that approximately six times the phase shift of a single section is obtained without mul. tiplication of the carrier frequency. The output of the last phase shift section is then amplified and multiplied by a factor of 12 within the modulator unit. 1 Th. overall multiplication is 972 from crystal frequency to carrier frequency).

The basic constant impedance phase shift network
is shown ahove. When X_{1} is made equal to $2 \mathrm{X}_{\mathrm{C}}$ any variation in R_{22} will have no effect upon the magnitude of the impedance across terminals I and 2 . The phase of the output voltage will shift, however, between the limits of plus 90° and minus 90° as R_{2} is either open circuited or short circuited. With R_{2} open, current will How only throngh X_{l} and must be inductive with the voltage leading the current by 90°. With R_{2} short circuited and $\mathbf{X}_{\mathbf{L}}=\mathbf{2} \mathbf{X}_{\mathbf{C}}$, the current through \mathbf{X}_{C} will be twice that through X_{I} and the net current will be capacitive w ith the voltage lagging by 90°. With K_{2} at intermediate values the voltage vector will be at some intermediate angle. By replacing R_{2} with the cathode to groumd resistance of a vacuum tube we have a means of controlling the phase shift with audio frequency voltages. If six of these circuits with appropriate amplifier tubes are placed in cascade. and the grids of the autio controtled resistame tubes are paralleled. a sin staqe Cascade Phase Shifter results.

Six stages are required because the largest phase shif obtainable, with low distortion, in any single phase shifter is about 25° or about 13 eycles frequency change

BRINGS YOU IMPORTANT NEW ADVANTAGES ELIMINATES MAJOR DISADVANTAGES

for an andia frequency of 30 eveles. To produce the required 75 KC . deviation we multiply 13 by 6 which gives 78 rectes shift produred loy the six phase shift sections and again multiply by the overall multiplica. lion (972) which follows. This sives 7.5 .8 KC deviation.

The constant impedance type network is required to minimize anplitule molulation which. if presem. in"reasps the distortion.

The romplete cireuit is shown in white on the seher matic diagram.

What are the advantages of the CASGADE CIRCUIT?

The Cascade Phase Shift system has many exclusive and outstanding advantages. Direct crystal control is a hasie requirement for any broadcast transmitter. When this can be acomplished without an excessively high order of frequency multiplication. without the nse of speeial purpose tuhes and yet retain simplicity of cireuit and components. this requirement becomes a must. All comparison ossillators. diseriminators. motor controls. frequency dividers and frequeney indicatore are immerliately eliminated. The output fre. fueney depends only on the reystal!

Cireuit simplicity permits the ineorporation of a simple metering circuit which makes possible comblete tune-lip of the unit without the use of any extomal laboratory measuring equipment. This arrange. ment aloo gives very adequate maintenance and servier tests which permit rapid isolation of possible faults.

Toning is exceptionally fasy: band pass circuits have push hutton operated damping resistors which permit simple "preaking" arljustments rather than compli"aled "swerp oseillator" or other meams of tuning. Adequate metering is provided on all circuits beyond the modulator and all essential circuits are metered with large, casily rearl rectangular meters.
linear tank circuits used alove 30 MC provide high
effiriency, hiylı "Q." simple adjustment and excellent stalility. Final amplifier efficiencies of from 75 to 80 per ernt are easily ollained.

The output power control provided liy a variable serren voltage on the output stage gives a complete power range from 50 to 250 or more watt: without rhange in output efficiency. Filament voltage control is provided and a single transformer type automatio voltage requator supplies primary power for the modulator power supply. Vo DC filament supplies are required and no DC, whage regulator tubes or cireuits are needed.

Control rireuits provide all needed starting. stop ping and interlocking operations and are coordinatod with higher power units for simplified eontrul when additional power amplifiers are added.
Simplicity of tule and circuit complement makethe power consumption of this transmitter remarhably low. Line voltage variations are readily arcommodated.

The med haniral construction is such that in spite of ample size and sturdy construction the mit can easily be transported through standard doors. and in passenger elevatore where luilding top location is desired. Additional high power amplifiers may be added at any tine forming a unified design of modern pleasing appearance.

The actual performance of this tratimitter is conClusive proof of the sombl design and advanced enginepring incorporated throughout. Preformanee is superior to FCC and R V 4 requirements in all respects and simplicity and stability assure continued high 'Iuality performance over long periods with mininmum maintenance and adjustment prolilems.

[^0]
RAYTHEON 250 WATY FM TRANSMITTER RF-250

Wulpul Frequency Any perified frequeney between 88 and 108 MC:
Type of Emission A-3
Power Output 50-250 watts
R. F. Output fmpedance $35-70$ ohmsCarrier Frequency Stability+1000 cycles
Type of Oscillator

\qquad
Direct Crystal ControlType of Morlulation
\qquadModulation CapabilityCascade Plase Shifi
\qquad Cascade Plase Shift
Audio Input Impedaner 600 ohms $150 / 600$ on sperial ordec
Average Program Level $+5 \mathrm{VU}=2 \mathrm{VI}$
100\% Modulation Level $+12 \mathrm{VU}+2 \mathrm{VL}$
Audio Freguency liseporse. . . .50-15,000 eveles $\pm 1 \mathrm{db}$ from 1000 ryc e reference
Pre-cmphasis Standard 75 micro seeond wilh removal switch
Ludio Frequeney Distartion: 50-15,000 eycles 1.0%
50 - 100 curles 1.0%
100-7,500 evelis 1.10%
$7,500-1.5,000$ cycles 1.0%
HM Noise Nrevel 65 db below 75 KC swing
AM Noise Level .50 d h lefow 100% amplitude modulation
Power line Requirements:Voltage.
$208 / 230$ three wirs
Frequency 50/60 cycles
Phase
Regulation 5% maximum
Power Consumption 1400 watls appors.
Power Fatior87%
Morhaniral Specifirations
Size, with trim height 84", width $36^{\prime \prime}$, deplh $28^{\prime \prime}$Size, without trimheight $84^{\prime \prime}$, width $30^{\prime \prime}$, depth $28^{\prime \prime}$
Weight1200 llss.
TUBE COMPLEMENT
Modulator Unit:
Crystal Oscillator 16 S .17
Phase Shifters 6 6SJ7
Resistance Tubes 3 6SN7
Multipliers 3 6SJ7
Amplifier 1 6SJ7
Audio Amplifiers 2 6SN7
Detector-Amplifiers 1 6SL7
R. F. Amplifiers: 1st Quadrupler 16AC7 1st Tripler 16AC7 2nd Tripler 16AG7 3rd Tripler 1 829B Amplifier. 1 829B Output Stage 2 4-125A
300 Volt Supplies. 2 5U4G 600 Volt Supply 2 866A 2000 Volt Supply 2 866A Output Power Indicator 1 6AL5

Complete FCC filing data will be supplied upon request.

In order to incorporate constantly the finest in engineering, design and components in our Broadeast Equipment, Raytheon reserves the right to make enginaering changes at any time.

[^0]: Inside viete of complete modulator unit with back cover removed. The extreme simplicity of the Cascade Phase Shift circuit is well illustrated.

