

Broadcast Equipment

BTF-5E1
FM Transmitter

ES-560600

Broadcast Equipment

Instructions

BTF-5E1
 FM Transmitter

ES-560600

EMERGENCY
 FIRST AID INSTRUCTIONS

Abstract

WARNING VOLTAGES THAT ARE DANGEROUS TO LIFE ARE INVOLVED IN THE OPERATION OF THIS ELECTRONIC EQUIPMENT. OPERATING PERSONNEL MUST AT ALL TIMES OBSERVE ALL SAFETY REGULATIONS. do not change tubes or make adjustments INSIDE THE EQUIPMENT WITH VOLTAGES APPLIED. DANGEROUS CONDITIONS MAY EXIST IN CIRCUITS WITH POWER CONTROLS IN THE OFF POSITION DUE TO CHARGES RETAINED BY CAPACITORS, ETC. ALWAYS DISCHARGE AND GROUND CIRCUITS PRIOR TO TOUCHING THEM TO AVOID PERSONAL INJURY OR LOSS OF LIFE.

Personnel engaged in the installation, operation, or maintenance of this equipment or similar equipment are urged to become familiar with thefollowing rules both in theory and practice. It is the duty of all operating personnel to be prepared to give adequate Emergency First Aid and thereby prevent avoidable loss of life.

RESCUE BREATHING

GENERAL INFORMATION

A. START IMMEDIATELY, SECONDS COUNT

Do not move victim unless absolutely necessary to remove from danger. Do not wait or look for help or stop to loosen clothing. Warm the victim or apply stimulants. The main purpose is to GET AIR INTO THE VICTIM'S LUNGS.

B. WIPE OUT VICTIM'S MOUTH

Wipe out quickly any mucus, food, or any foreign matter in the victim's mouth using your fingers or a cloth wrapped around your fingers.

C. LOOSEN CLOTHING - KEEP WARM

Do this when the victim is breathing by himself or help is available. Keep him quiet as possible and from becoming chilled. Otherwise, treat him for shock.

D. DON'T GIVE UP

Continue emergency rescue breathing without interruption until victim is breathing without help or until all hope of reviving him as determined by a physician is gone.

E. CALL A PHYSICIAN

Have someone summon medical aid since respiratory and other disturbances may develop as a aftermath. A physician is necessary during the recovery period.

PROCEDURE

FIG. A

FIG. B

FIG. C

TILT HEAD BACK - Lift neck and point chin up to open air passage.

EXTEND JAW - Pull or push jaw into jutting out position (Fig. A).

PINCH NOSE - Close nostrils to prevent air leakage, or close mouth when using mouth-to-nose breathing.

BLOW - Seal victim's mouth or nose with your mouth. (Fig. B) Blow until chest rises.

REMOVE MOUTH - Listen for exchange of air; if none, check throat for obstruction. To remove it, place victim in position shown in Fig. C, and slap sharply between shoulder blades.

REPEAT - 12 times per minute for adults; at least 20 times per minute for children.

BURNS

SKIN REDDENED: Apply ice cold water to burned area to prevent burn from going deeper into skin tissue. Cover area with clean sheet or cloth to keep away air. Consult a physician.

SKIN BLISTERED OR FLESH CHARRED: Apply ice cold water to burned area to prevent burn from going deeper into skin tissue. Cover area with clean sheet or cloth to keep away air. Treat victim for shock and take to Hospital.

TABLE OF CONTENTS

Page
TECHNICAL SUMMARY. 7
Electrical Specifications. 7
Power Line Requirements 7
Physical Specifications 7
LIST OF EQUIPMENT. 8
OPTIONAL ACCESSORY EQUIPMENT 9
TUBE COMPLEMENT 9
INSTALLATION MATERIAL 9
RECOMMENDED TEST EQUIPMENT 9
DESCRIPTION 10
General 10
Construction 10
Circuits 10
FM Exciter 10
Driver Stage 11
Power Amplifier 11
Power Circuits 11
Optical Meter-Relay Protection Circuits 13
Remote Control 14
INSTALLATION 14
General 14
Unpacking 16
Assembly 16
General 16
Assembly of $1 Z 7$ Connector Cap 17
Harmonic Filter Installation 17
RF Monitor Assembly 17
Equipment Wiring 17
General 17
Equipment Grounding 18
Equipment Connections 18
Remote Control Connections. 18
Transformer Primary Taps 19
Overload Relay Adjustment 19
Blower Contactor 1K15 Overload Relay Adjustment 20
Driver and PA Tube Installation 20
Control Circuit Check 20
TUNING 23
General 23
Exciter Tuning 23
Driver Grid Tuning 23
Driver Tuning 24
PA Neutralization 25
PA Tuning-Direct Method of Power Measurment 26
PA Tuning-Indirect Method of Power Measurement 31
Reflectometer Calibration 32
Protection Circuitry Checkout 32
Overload Resetting 33
OPERATION 33
Starting and Stopping the Transmitter 33
Panel Meter Readings 34
Emergency Operation-AFC Failure 34
MAINTENANCE 34
General. 34
Cleaning 34
Circuit Breakers and Relays 34
Tubes 35

TABLE OF CONTENYS (CONT)

Page
Silicon Rectifier Testing 35
Control Module 36
Blower Lubrication 37
Muffin Fan Lubrication 37
PARTS ORDERING INFORMATION 57
PARTS IDENTIFICATION INFORMATION 58
REPLACEMENT PARTS LIST 59
RECOMMENDED STATION SPARES 68
TUBE TYPE 7203/4CX250B SPECIFICATIONS 87
TUBE TYPE 4CX5,000A SPECIFICATIONS 95
LIST OF ILLUSTRATIONS
Figure Title Page
1 6
2 BTF-5E1 Simplified Block Diagram 12
BTF-5E1 Typical Floor Plan 15
$1 Z 7$ Connector Cap Assembly 16
BTF-5E1 Controls and Indicators 22
5 27Typical Settings, PA Tuning Controls
Efficiency Curve 29
VSWR Nomograph 30
PA Screen Voltage/Power Output Curve 31
Rectifier Test Circuit 36
Transmitter, Electrical Parts, Front View 39
Transmitter Mechanical Parts, Front View 40
Transmitter, Rear View 41
Transmitter, Left Rear Oblique View 42
Transmitter, Right Rear Oblique View 43
Control Panel, Rear View 44
RF Unit, Front View. 45
Driver Shelf and 1XV102 Shelf, Front View 46
Driver Shelf, Left Side 47
Driver Shelf, Right Side 47
1XV102 Socket Assembly, Top View 48
1XV102 Socket Assembly, Bottom View 49
1XV102 Insulators and Capacitors 50
1 L 113 Semi-Fixed and Sliding Contacts 51
1V102 Plate Contacts and Plate Blocking Capacitors 51
1 L105 and 1 L 106 Counter Assemblies 52
Low Voltage Rectifier Assembly 52
1 Z6 Control Module, Schematic Diagram 53
Control Module Waveforms 54
Control Module 54
Control Module, Electrical Parts 55
1M5 and 1M7 Panel Meters 56
High Voltage Power Supply, Front View 57
High Voltage Power Supply, Top View 58
High Voltage Power Supply, Rectifier Stack 59
BTF-5E1 Schematic Diagram 73
BTF-5E1 Wiring Diagram 75
Control Panel, Wiring Diagram 77
RF Box, Wiring Diagram 79
1XV102 Assembly Diagram 81
High Voltage Rectifier Assembly 83
High Voltage Plate Transformer Terminals 84
Pushbutton Switch Assembly 85
Insulator Data 86

LIST OF TABLES

Table Title Page
1 Transmitter/Power Supply Interconnections 18
Remote Control Connections 19
Transformer Primary Taps 19
Overload Relay Settings 20
BTF-5E1 Frequency Determining Parts. 24
Typical Meter Readings 34
Recommended Maintenance Schedule. 35
Control Module 1Z6 Servicing Chart 37

Figure 1. BTF-5E15kW FM Transmitter

TECHNICAL SUMMARY

[^0]
TECHNICAL SUMMARY (Continued)

Dimensions:	
Transmitter:	
Width	. 48-1/4"'
Height	. $3377^{\prime \prime}$
Depth	33-1/8"
Power Supply:	
Width	. 32 "'
Height.	49"'
Depth	
Weight:	
Transmitter	1200 lbs . (approx.)
Power Supply	. 590 lbs ((approx.)

LIST OF EQUIPMENT
BTF-5E1 5kW FM TRANSMITTER ES-560600

Quantity	Description			Reference
1	Basic Transmitter			MI-560507
1	Power Determining Kit			MI-560508
1	Blower			
	0-7500 Ft., 60 Hz Line Frequency			MI-560347-2
	$0-5000 \mathrm{Ft}$., 50 Hz Line Frequency			MI-560347-2
				MI-560347-1
1	Rectifier			MI-560340-1
1	Plate Transformer			MI-34507
1	Power Supply			MI-560342-1
1	Set of Side Panels			MI-560373
1	Installation Material			MI-560513
1				MI-27967-1
	88 to 98 MHz - Unpressurized			MI-27967-2
**	BTE-15 A Exciter System, Mono			ES-560631
**	BTE-15A Exciter System, Mono and 1 SCA			ES-560632
**	BTE-15A Exciter System, Mono and 2 SCA			ES-560633
**	BTE-15A Exciter System, Stereo			ES-560634
**				ES-560635
**				ES-560636
1	BTE-15A Exciter System, Stereo and 2 SCA			ES-560607
*	Set of Operating Tubes			ES-560607
1	Set of Spare Tubes (100\%)			MI-28180A
*	Touch Up Finish Kit			MI-27660C
1				MI-560517
	Blower Mounting Kit If MI-560347-1 Blower is supplied If. MI-560347-2 Blower is supplied			MI-560518
1	Frequency Determining Parts, for customer's assigned frequency as follows:			
	ES NUMBER FREQ		NCY	
	ES-560272-1	88.1 TO 89.9 MHz	98.1 TO 99.9 MHz	
	ES-560272-2	90.1 TO 91.9 MHz	100.1 TO 101.9 MHz	
	ES-560272-3	92.1 TO 93.9 MHz	102.1 TO 103.9 MHz	
	ES-560272-4	94.1 TO 95.9 MHz	104.1 TO 105.9 MHz	
	ES-560272-5	96.1 TO 97.9 MHz	106.1 TO 107.9 MHz	
2				IB-8027529
2		FM Exciter		IB-8027524

[^1]
OPTIONAL ACCESSORY EQUIPMENT

Description	Reference
Set of Spare Semiconductors for	MI-560718
BTE-15A FM Exciter	
Spare Crystal for BTE-15A	MI-560717-*
FM Exciter (Specify chan-	
nel frequency)	MI-560712
BTE-15A FM Exciter	MI-560713
BTS-1B Stereo Generator	MI-560714
Type BTX-1B Subcarrier	
Generator (Specify SCA Frequency)	MI-560721
5-kHz Filter (required when	
transmitting stereo and	
SCA)	MI-27537/
Type BTR-11B Remote	$27538-A$
Control System	ES-561486/
Type BTG-10AL/AR Auto-	561489
matic Logging Equipment	MI-560735
Type BW-75A FM Monitor	MI-560740
Type BW-85A FM Stereo	
Monitor	MI-560745
Type BW-95A SCA and	
Modulation Monitor	

TUBE COMPLEMENT

Symbol	Type	Function
IV101	$7203 / 4 \mathrm{CX} 250 \mathrm{~B}$ 1V102	Driver Power Amplifier

NOTE: Refer to BTE-15A FM Exciter Instruction Book, IB-8027524, for the exciter semi-conductor complement.

INSTALLATION MATERIAL MI-560513

Item	Qty	Description	Reference
1	2	Arm Assembly (Tuning)	887449-501
2	2	Trimmer Adjusting Tool	86183-502
3	1	Lamp Changing Tool	$8535851-1$
4	1 set	Wire \#14 AWG Black 500 ft .	990820-99
5	1 set	Wire \#8 AWG Black 15 ft .	2010751-3
6	1 set	Wire \#14 AWG 15 kV White 50 ft .	2010853-141
7	1 set	Strap, Copper 1-1/2 in. Wide, 30 ft . Long	8812985-6
8	1	Connector Coaxial	1510020-103

RECOMMENDED TEST EQUIPMENT

Description	RCA Reference	Other Reference
PA Dummy Load and Thruline Wattmeter	Ml-19267-L/H	
Exciter Dummy Load and Wattmeter 0-15/60 Watts		Bird Electronic Corp. Model 611
Audio Generator		Hewlett-Packard Model 206A
Distortion and Noise Meter		Hewlett-Packard Model 331A/334A
Oscilloscope		Tektronix Model 535A/535B
AM Noise Measuring Adapter		McMartin Model AM25
Reducer Cone (3-1/8" dia. coaxial line to type N connector)	MI-19113-C58	
Vacuum Tube Voltmeter (VoltOhmyst)	WV-98C	
Grid-Dip Meter		Measurements Corp. Model 59
One 6 foot length of RG-8/U Cable with type N connectors		

DESCRIPTION

GENERAL

The RCA Type BTF-5E1 5 kW FM Broadcast Transmitter is designed for high-power operation in the standard FM band, 88 to 108 MHz , and is specifically engineered for multiplex service transmission. Except for the high-voltage power supply, the transmitter is housed in a single, modern-styled cabinet.

The BTF-5E1 transmitter employs a compact, selfcontained exciter in a circuit that uses capacitive diodes as modulators of an oscillator to produce direct FM. An automatic frequency control (AFC) circuit maintains oscillator frequency to close tolerance. The exciter is well suited for multiplex and stereo as specified by the FCC by virtue of its wide frequency response and extreme stability.

A new feature of the transmitter is the built-in manometer which indicates air filter efficiency and warns of reduced cooling-air supply to the power tubes.

CONSTRUCTION

The BTF-5E1 transmitter is housed in a single, double-door cabinet, in a two-tone blue textured vinyl finish, set off with an aluminum meter panel and trim. Maximum accessibility is afforded by swing-doors on the front and rear of the cabinet. All operating controls and meters used for rapid check of transmitter functions are located on a panel above the front doors. A separate unitized high-voltage power supply may be located anywhere in the FM station.

The BTE-15A FM Exciter (refer to IB-8027524) is mounted on a single chassis and includes a modular stero generator (when specified) and either one or two SCA generators (when specified). The exciter is all solid-state and includes two multimeters for convenience in operating and servicing. The stereo generator module, the SCA generator modules and RF exciter modules are easily removable for servicing or adjustment.

The pushbutton controls located on the panel just above the front doors of the transmitter include: TRANSMITTER ON/OFF, PLATE ON/OFF, OVERLOAD RESET, and POWER RAISE/LOWER. A cabinet disconnect switch, low voltage circuit breaker, filament circuit breaker, and control circuit breaker are located behind the left-hand door. The main and low-power circuit breakers are located on the front of the separate high-voltage power supply cabinet. When servicing the BTF-5E1, operation of the DISCONNECT switch removes all voltages from the transmitter cabinet except the BTE-15A ac supply voltage at terminals 1 TB1-13 and 1TB1-14. Personnel are protected by fully interlocked rear doors, in addition to an interlocked door at the front of the rf unit (which contains the driver and PA stages).

Six easy-to-read front panel meters are provided. Two of the meters indicate PA plate voltage and plate current. A third meter reads ac line voltage and supplies a logging indication of driver and PA filament voltages. The multimeter, 1 M 2 , reads grid current, screen current, and screen voltage for both the driver and the PA stage, and cathode current for the driver stage. Reflectometer meter 1M5 reads transmitter power output in percent. lM5 is actually a meter-relay which activates the "carrier-off" protection circuits incorporated in this transmitter. Reflected power meter 1M7 incorporates a dual scale so that any reflected energy in the output transmission line may be evaluated in terms of VSWR or in terms of percent of incident power. 1M7 is also an optic meter relay.

Cooling air is supplied to the driver and PA stages by means of a blower mounted below the rf unit. Heavy acoustic insulation reduces blower noise to a minimum. A manometer mounted in the front of the transmitter indicates the efficiency of the filter at the inlet to the blower. This device senses the relative air pressure at the fan side of the filter in inches of water. Properly monitored, the manometer indicates when filter clogging has reduced the volume of cooling air supplied to the power tubes.

FM Exciter

The BTE-15A FM Exciter system consists of a main frame (chassis), an rf exciter module, a stereo generator module (when used), and one or two SCA generator modules (when used). All circuitry is solid-state.

The frequency modulated oscillator operates at carrier frequency. A buffer stage and a three stage rf power amplifier raises the power level to 15 watts.

The carrier center frequency is precisely controlled through the use of a phase locked AFC circuit which employs integrated circuit frequency dividers. No tuned circuits or adjustments are required with the circuitry used.

An "off-frequency" detector circuit operates a relay which removes transmitter high voltage when the transmitter center frequency error exceeds a preset limit. DOOR INTERLOCKS tallylight IDS5 will also be extinguished.

Refer to BTE-15A FM Exciter Instruction Book, IB-8027524, for detailed information.

Driver Stage

A block diagram of the BTF-5E1 is shown in figure 2. A simplified, single-ended amplifier (operating class "C") follows the exciter. The driver stage consists of a ceramic 7203/4CX250B tetrode, while the final power
amplifier is a type $4 \mathrm{CX} 5,000 \mathrm{~A}$ tube, which supplies up to 5 kW of power to the antenna feed line. The driver stage is tuned by pi-network input and output circuits. Variable vacuum capacitors are used to tune the rf tank circuits.

Power Amplifiers

The power amplifier also used pi-network circuitry. However, the tuning of this stage is accomplished by variable inductors operating at ground potential. The output tube is designed for very high power gain with little drive. The power output is controlled by means of a motor-driven variable transformer connected in the primary of the low-voltage plate power supply for the driver amplifier. The same variable transformer controls the driver and PA screen voltages. A separate grid bias supply, which uses semiconductor rectifiers, provides fixed bias for both the PA and driver stage. An air pressure interlock (1S21) automatically removes power from filament and high voltage circuits when cooling air pressure drops below a preset value (set at factory). The pressure at which power is removed may be varied by means of an adjusting screw provided on the air interlock switch.

A fixed ceramic capacitor - variable inductor combination is connected between the inner and outer filament connections at the bottom of the PA tube socket. The capacitor (1 C 148) is mounted in slots in the inductor (1L114) so that the position of the capacitor may be changed. Thus, the inductance is made variable. When this circuit is resonated, a considerable increase in PA efficiency may be realized.

Power Circuits

Power circuits are protected by magnetically-tripped circuit breakers in addition to overload relays. An interlocked system prevents turn-on of plate power until all filaments have heated and the exciter has reached a proper operation condition. In addition, a latching relay automatically re-applies power to the transmitter once before locking-out in the event of brief overloads or power interruptions. The overload relays are reset by illuminated pushbutton switches on the front panel. Separate tally-light indicators are provided for overloads in the driver, power amplifier, low-voltage rectifier, carrier-off, and transmission line VSWR monitoring/ protective circuits.

DOOR INTERLOCKS tally-light 1DS5 will light when all interlocks are closed and the transmitter center frequency is within limits.

Rheostat 1R38 makes possible adjustment of driver screen voltage from the front of the transmitter separately (that is, without simultaneous adjustment of other amplifier tube electrode voltages).

Resistors 1R106 and 1R107, together with associated lengths of tubing, form broadly tuned dipoles which dampen VHF resonances in the PA tank circuit.

DC overload relays $1 \mathrm{~K} 1,1 \mathrm{~K} 2$ and 1 K 4 act to remove transmitter high voltage and screen voltage in the event of an over-current condition in the high voltage supply, the low voltage supply, or the rf driver stage. Relays $1 \mathrm{~K} 5,1 \mathrm{~K} 6,1 \mathrm{~K} 7,1 \mathrm{~K} 18$ and 1 K 19 act as holding relays and maintain tally-lights illuminated after the cause of an overload is removed so that remedial action may be taken, if required. Tally-lights are extinguished upon operation of the OVERLOAD RESET pushbutton IS17.

Circuit breakers 2S1, 2S2, 1S5. 1S6 and 1S18 provide protection against ac overload conditions. Item 1S4 is not a circuit breaker; it is a switch, supplied to enable the operator to switch off all ac power to the Basic Transmitter rack, MI-560507.

Overcurrent protection of the blower motor is supplied by an overcurrent relay which is supplied as part of blower contactor $1 \mathrm{K15}$. The trip current value is adjustable. In addition, a thermal overload relay (1 K 22) is used which will de-energize the transmitter low voltage supply in event of medium impedance, but sustained, overloads. Circuit breaker 1 S 6 affords fast acting protection against short circuit conditions in low voltage supply circuitry.

Protective circuitry is also provided which will remove transmitter plate and screen voltages in the event that:

1. Transmission line VSWR exceeds a preset value, which can be varied by the operator or
2. Power output drops below a preset precentage of nominal, the trip point also selected by the operator.

This affords positive protection against transmitter damage which would be caused by arcing in the transmitter rf circuits or output transmission line, or by a defective antenna. However, the protection circuit must be disabled temporarily in order to calibrate the REFLECTOMETER and reflected power meter.

CAUTION

After calibration or tune-up is carried out, it is mandatory that the reflectometer switch 1S3. be set to the normal position and left at this setting permanently. In any other position of $1 \$ 3$ the protection circuit is disabled and the transmitter may be subjected to serious damage.
A directional coupler, designated 1Z8, is used in the coaxial line between the exciter unit and the driver stage grid circuit. This directional coupler, used with exciter multimeter M1. makes possible monitoring of reflected power from the driver stage grid circuit. The driver grid circuit may then be adjusted for lowest possible VSWR, in the interstage coaxial line.

Figure 2. BTF-5E1 Simplified Block Diagram

Optical Meter-Relay Protection Circuits

The "carrier-off" and output transmission line VSWR protection circuitry utilize two optical meter-relays (1M5 and 1M7) in conjunction with a special dual control module (IZ6). The meter relays do not employ contacts. A major advantage of the optical relay is its increased reliability due to the elimination of meter (relay) contacts and the use of solid state electronics in the control module. The optical meter-relay permits positive control of transmitter overload circuitry with very small input energy levels to the meter movement, while providing visual indication of the magnitude of the input signal and easy adjustment of the set point value. Each instrument consists of a precision D'Arsonval meter mechanism with a vane or shutter mounted on the moving element. At set point, the vane shuts off the light (from an internal lamp) to a photo-conductive cell. The resulting change in cell resistance is utilized in external control circuits (partly situated in control module 1Z6, partly in the transmitter control circuits proper) to achieve the desired control action.

The circuitry is fail-safe, i.e., failure of the internal lamp will also shut off the light to the photo-conductive cell and ultimately remove transmitter power. However, lamp failure should not be a problem since the lamps used have a conservatively rated life exceeding 10,000 hours.

The operation of the meter-relay protection circuitry may be explained as follows (refer to figure 36, BTF-5E1 Schematic Diagram and figure 28, 1 Z6 Control Module Schematic Diagram). If transmitter power output falls below the set point value, or if output transmission line VSWR rises above the set point value, the optical meter-relay involved activates and operates a relay in control module $1 \mathrm{Z6}$. Two relays are incorporated in the control module - one is controlled by the -REFLECTOMETER 1M5, the other by reflected power meter 1M7. Each control module relay has two sets of contacts - one set operates the transmitter overload circuitry, removing transmitter plate and screen voltages - while the other energizes a status light so that the cause of the overload is made apparent. A holding relay (1K18 or 1K19) keeps the overload status light energized until overload reset pushbutton switch IS17 is depressed.

The module is actuated by a resistance change in the "photo-resistor" arm of an ac bridge within the meterrelay circuitry. Each meter-relay contains a photocell. When light is cut off from the photocell (by a vane attached to the meter movement) at "set-point", the photocell resistance increases sharply. The bridge output phase then reverses, causing the anode and gate voltages of SCR1 (or SCR2) to rise and fall in phase. This "turns on" the SCR and energizes the control relay in series with the SCR. The control relay contacts are connected to turn off the transmitter high voltage.

Two such circuits are employed in each control module. The module also supplies regulated power for the optical meter-relay lamps.

If SINGLE-MULTIPLE switch is set to the MULTIPLE position, the transmitter control circuitry will automatically restore transmitter plate and screen voltages. If the overload condition persists, plate and screen voltages will again be removed. No further recycling will occur until manual reset is carried out by operation of PLATE ON switch $1 \mathrm{S9}$ (or until remotely reset in remotely controlled stations). In the SINGLE position. no recycling will occur. In this case, overload circuits may be reset using either PLATE ON switch IS9 or OVERLOAD RESET switch 1S17.

Time delay relay 1 K 20 , used in conjunction with auxiliary relay 1 K 21 , disables the added protective circuitry for approximately seven seconds following application of transmitter high voltage. This allows transmitter power output to stabilize at the operating value and prevents spurious operation of the protective circuitry as a result of starting transients.

It will be noted that control voltage (115 volts ac) is fed to control module terminal 1Z6-6 through a normally closed contact of the control module (terminals 1Z6-16 and 1Z6-15). This configuration is used to prevent spurious tripping of the 'carrier off' protective circuitry each time the transmitter high voltage is switched off.

CAUTION

It is recommended that the protection circuitry (optical meter-relays) be checked weekly to be certain the protection is operative. Vary the set point adjustment on each optical meter-relay to induce an overload, then reset to normal setting.

Operation of the optical meter-relay protective circuitry is controlled by REFLECTOMETER switch 1S3. This switch functions as follows:

IS3 set to the NORMAL position:
REFLECTOMETER: meter 1 M5 indicates transmitter power output in percent. Reflected power meter 1M7 indicates reflected transmission line power in percent of nominal (forward) transmitter power output. A direct-reading VSWR scale is also included. The transmitter "carrier-off" and VSWR protective circuits are effective in this position.

This is the normal operating position.

1S3 set to the DISABLE position:
Conditions are the same as described for the

NORMAL position, except that the "carrier-off" and VSWR protective circuitry is disabled in this position. This position is used for transmitter tuning and adjustment.

IS3 set to the VSWR CAL position:
REFLECTOMETER meter 1M5 is switched out of the circuit and reads zero. Reflected power meter 1M7 is connected through VSWR calibration control IR10 to the directional coupler which responds to incident power. "Carrier-off" and VSWR protective circuitry is disabled in this position. This position is used for calibration of the reflected power meter.

CAUTION

REFLECTOMETER switch 1 S 3 must be set to the NORMAL position at all times except during transmitter tuning and adjustments. If this precaution is not observed, damage to the transmitter may occur.

Remote metering connections are provided at terminal board 1 TB 1 , with remote power output connection to be made at 1TB1-11 and 1TB1-12. Directional coupler $1 \mathrm{Z7}$ samples output transmission line incident energy and supplies a dc output for remote power monitoring purposes.

The BTF-5E1 is furnished with a 3-1/8 inch diameter harmonic filter as standard equipment to keep spurious emissions to a minimum. The filter consists of a series of transmission line elements with a uniform outer diameter conductor, a stepped inner conductor, and a shunt stub. The conductors are fabricated of a highgrade copper alloy. Attenuation of all harmonic radiation above channel limits is accomplished in an "M-derived" section, and a series of "constant-K" T-sections. This design provides a broad passband with a sharp high-frequency cut-off and excellent attenuation of frequencies above the passband.

Remote Control

Remote control provisions are included in the transmitter and terminals are provided for use with remote control units such as the type BTR-11B (or BTR-20D/20DT) and BTG-10AL/AR Automatic Logging Equipment. Additional terminals are provided for remote control of TRANSMITTER ON, TRANSMITTER OFF, PLATE ON, PLATE OFF, POWER RAISE, POWER LOWER, and OVERLOAD RESET functions. Remote metering connections for final amplifier plate current, plate voltage, and power output are also provided.

INSTALLATION

GENERAL

Basic steps in the installation of the BTF-5E1 transmitter consist of planning the equipment layout and making provisions for transmitter room power and light, transmission line runs and connections to the equipment. The units can then be unpacked, assembled and wired as specified in these instructions. Space for items not supplied, such as auxiliary input equipment, or line dehydrating units, should not be overlooked in the planning. Before locating the transmitter, reference should be made to the instruction books supplied with these equipments.

NOTE: The instructions contained in this book are not intended to supersede applicable local codes. On points where conflict is evident, the local code should be followed.

A harmonic filter is supplied with the BTF-5E1 transmitter, and is designed to effectively attenuate second through seventh harmonic radiations from FM
transmitters. Normally an unpressurized filter is supplied. The filter is constructed of coaxial transmission lines and is the reflective type, i.e., the rejected energy is not absorbed. The filter is inserted in the transmission line at the top of the transmitter.

In selecting a location for the transmitter, care should be taken to allow sufficient space for the filter which is approximately 12 feet in length.

The room in which the transmitter is installed should be well ventilated and provided with an abundant supply of clean, dry air. The maximum ambient temperature for proper operation is given in the Technical Summary. If an air-exhaust hood and duct arrangement is to be used with the transmitter, it should be designed and assembled so that minimum back pressure is developed. An exhaust fan with a minimum capacity of 2500 CFM should be used in the exhaust system. A transmitter room lay-out can be prepared by reference to the floor plan diagram, figure 3 , which gives the overall dimensions of the equipment. A minimum clearance of 24

Figure 3. BTF-5E 1 Typical Floor Plan
inches for the opening of doors is required at the front of the transmitter, and a similar space should be provided at the rear for access to transmitter components and circuits. Floor ducts can be installed for power wiring and remote control inter-connection (if desired), or conduit may be run overhead to the transmitter wire duct at the top of the cabinet. If wiring is to be placed in floor ducts, they should be laid out so that cables can leave the duct and enter notches provided in the side panels. Notches are provided at both the top and bottom of the side panels for flexibility.

UNPACKING

An understanding of the shipping system will be of assistance in unpacking the equipment and locating items. Each RCA equipment is accompanied by a shipping voucher which lists the complete contents of the shipment by "Equipment Schedule" or "ES" numbers and "Master Item" or "MI" numbers. This shipping voucher is usually packed in one of the smaller cardboard cartons, appropriately marked. Where there are two or more packages to a major item, the package containing the MI list is identified by stenciling.

The complete equipment for the BTF-5E1 FM Transmitter is listed on ES-560600 which references the major items of the shipment and their MI number.

The equipment should be carefully unpacked and inspected to make certain that no damage has been incurred during shipment. Any damage or shortages should be reported immediately to RCA and to the transportation company so that lost or damaged material can be recovered. Tubes should not be unpacked until all equipment is installed and all preliminary adjustments have been made.

ASSEMBLY

General

Reference should be made to the illustrations which will aid in the assembly of the transmitter and in the installation of the items removed for shipping: lL3, high-voltage filter reactor; 1Z7, directional coupler for remote power monitoring; one coupling, MI-27791-K-4A (used to mount 127 in output transmission line); one transmission line elbow with monitor assembly and two adjustable clamps attached; and a length of shielded jacketed wire, used to connect the dc output of $1 \mathrm{Z7}$ to transmitter circuitry.

Note that directional coupler $1 \mathrm{Z7}$ is not provided with pressurized fittings. If a pressurized harmonic filter is used, 127 must be installed in the line between the transmitter and harmonic filter. During installation of 1Z7, it will be necessary to assemble the connector cap assembly (see figure 4) and install the dc output lead, supplied as part of Power Determining Components, MI-560608. The dc output lead is then connected at terminal 1TB1-11 (located at the top of the basic transmitter rack, MI-560507), with the braid grounded.

The high-voltage power supply can be located in any convenient place in the station, preferably reasonably close to the incoming power line. This will reduce the amount of high current wiring that will be needed. After a location for the power supply has been chosen, place the high-voltage plate transformer 3 T 1 in this position and fasten it to the floor. The power supply cabinet is then moved into position over the transformer. This is easily done by removing the lower rear and front sections of the cabinet and sliding it into place over the transformer. Ensure that the cabinet is centered over the transformer and then fasten the cabinet securely to the floor.

Figure 4. 127 Connector Cap Assembly

Assembly of $1 \mathbf{Z 7}$ Connector Cap

The cap assembly supplied with the coupler consists of a connector, bushing, resistor and two lengths of tubing. These parts must be attached to the shielded dc indicator lead as illustrated in figure 4. The following procedure is recommended when assembling the connector cap.

1. Strip the shielded dc indicator lead as shown in figure 4.
2. Trim the resistor leads to the dimensions given.
3. Slide the longer section of tubing and bushing onto the shielded dc indicator lead.
4. Loop, crimp and solder the resistor to the center conductor of the shielded cable.
5. Position the shorter section of tubing over the resistor and solder the connection.
6. Solder the remaining resistor lead to the connector assembly terminal.
7. Seat the bushing in the connector body and tighten the set screw.
8. Solder the shielding (outer conductor) of the indicator lead to the bushing through the holes in the bushing.
9. Position the rubber tubing over the end of the bushing.

The silicon rectifier assembly (figure 35) should be removed from the power supply cabinet before the tuning procedure is begun. This can be done by disconnecting the rectifier negative lead at jack 2 J 1 and pulling up on each side of the rectifier assembly, which is mounted on five banana jacks. If, when replacing the rectifier assembly it seems to fit tight, reach under the cabinet shelf and, with an Allen type screwdriver, loosen the screws holding the insulators. Now push the assembly down onto the jacks, causing them to assume the proper positions, and retighten the screws.

HARMONIC FILTER INSTALLATION

Install the harmonic filter, as determined by the building layout (a horizontal mounting position is recommended). The filter should be located in a position which permits a reasonable amount of ventilation. Under no circumstances should the unpressurized (MI561506) filter be located out of doors where "breathing" of the unit, due to temperature changes, may lead to condensation.

When installing the harmonic filter, keep in mind the clearances necessary for the various size transmission line inner and outer conductors. A clearance of $1 / 8$ inch must be allowed for each joint in all outer conductors. Inner conductors of $3-1 / 8$ inch lines require a clearance of $3 / 16$ inch at each joint, while inner conductors of $1-5 / 8$ inch lines require a clearance of $1 / 8$ inch at each joint. Ascertain that the harmonic filter is adequately supported from the ceiling to avoid excessive strain on the output line.

Once installed, the harmonic filter is ready for operation since it requires no tuning or adjustment.

RF MONITOR ASSEMBLY

To install the RF Monitor Assembly position the rf pickup saddle assembly over the hole in the side of the elbow above the reflectometer so that the rf pickup coil enters the hole without touching the sides. Position and secure the saddle clamps around the elbow. The items involved are supplied as part of Power Determining Components, MI-560608.

NOTE: The rf pickup coil may be positioned for best signal pickup by removing the four screws which hold the coaxial connector in place, then rotating it in either direction for maximum pickup (consistent with alignment of mounting holes). If necessary, the pickup coil may be altered by removing or adding turns to obtain the required signal.

Mount the elbow, with rf pickup monitor assembled, at the transmitter output, at the top of MI-560507.

EQUIPMENT WIRING

General

The equipment wiring consists of first providing an adequate ground system, then making the necessary transmitter cabinet and power supply cabinet connections, and finally, connections to any remote control equipment that may be used.

NOTE: Prior to application of power, all connections should be checked for tightness. The high voltage and current present can damage transmitter components by arcing or heating at loose connections. A properly installed transmitter will be easier to set-up and maintain. The process of checking for tight connections provides the opportunity
to familiarize the operator with the transmitter and also to double-check that the transmitter is properly assembled and wired.

Equipment Grounding

Great care should be taken to provide an adequate ground system for the BTF-5E1. Before power is applied to the equipment the following ground connections must be completed.

Connect the power supply cabinet to the main transmitter cabinet using $1-1 / 2$ inch wide copper strap (item 7 of Installation Material, MI-560513). This connection should be made from ground no. 2 in the power supply cabinet (a stud mounted on the side of the cabinet below the rectifier mounting shelf) to a hole in one of the copper-flashed side channels in the main transmitter rack.

Connect the main transmitter cabinet to the station ground using 1-1/2 inch wide copper strap (MI-560513 item 7). It is also advisable to connect the power supply cabinet to the station ground using $1-1 / 2$ inch wide copper strap or equivalent.

After the above connections have been completed, check each ground connection for mechanical strength and continuity. If any soldered joints are involved, each should be tested for mechanical strength as well as continuity.

Equipment Connections

Make the necessary connections between the transmitter cabinet and the power supply cabinet, referring to figures $34,36,37,41,42$ and to table 1 . Use item 4 of Installation Material, MI-560513, for all connections.

TABLE 1. TRANSMITTER/POWER SUPPLY INTERCONNECTIONS

From Power Supply Terminal	To Transmitter Terminal
2TB 1-1	1TB 1-1
2TB1-2	1TB1-2
2TB1-3	1TB1-3
2TB1-4	1TB1-4
2TB1-5	1TB1-5
2TB1-6	1TB1-6
2TB1-7	1TB1-7
2TB1-8	1TB1-8
2TB1-9	1TB1-9

Connect jack 2 J 2 in the power supply cabinet to 1TB1-101, the high-voltage terminal in the upper right hand corner of the transmitter cabinet (viewed from the rear), using high voltage wire, item 6 of MI-560513.

In the power supply cabinet connect contactor 2 K 1 to the primary of transformer 3T1 using high-current wire, item 5 of MI-560513.

Also in the power supply cabinet, connect the secondary of transformer 3 T 1 to silicon rectifier jacks $2 \mathrm{~J} 4,2 \mathrm{~J} 5$ and 2 J 6 using item 6 of MI-560513.

Connect 208/240 volt 3-phase input to terminals 1 , 2 , and 3 of circuit breaker $2 S 1$ in the power supply cabinet and 117 volt single-phase BTE-15A ac power input to terminals 1TB1-13 and 1TB1-14 in the transmitter cabinet. The BTE-15A FM Exciter System may be connected for 117 volts, 208 volts, or 240 volts, single-phase, operation; however, the exciters are normally supplied connected for 117 volts. Refer to the exciter instruction book, IB-8027524, for detailed information on changing connections for various line voltages. Wire for these connections is not supplied. Check that all connections are mechanically tight. The protective safety shield, which normally prevents contact with the circuit breaker terminals, is removed during this step. The shield must be replaced after completion of this step.

Remote Control Connections

The BTF-5E1 Transmitter may be remotely controlled by means of a BTR-11B or BTR-20D/20DT accessory Remote Control System. This system consists of an MI-27538-A Transmitter Control Unit and an MI-27537 Studio Control Unit for the BTR-11B System and the MI-27526B Transmitter Control Unit and the MI-27539-C Studio Control Unit for the BTR-20D/20DT system. The BTR-11B or the BTR-20D/20DT may be connected directly to terminals in the BTF-5E1 to provide the remote control and remote meter reading functions shown in table 2. Designated terminals will be found on the 1TB1 terminal board located at the top of the transmitter cabinet and on the 1TB2 terminal board located on the sidewall of the cabinet, and are indicated on the overall schematic diagram. All metering positions are designed to deliver approximately 1 volt into 5000 ohms.

NOTE: REFLECTOMETER switch 1S3 should be left in the NORMAL position when the transmitter is remotely controlled.

Remote control of tower lights can be accomplished by utilizing a Tower Lighting Unit (MI-27519). Remote reading of the frequency and modulation monitor is accomplished by placing the monitor in the studio, and feeding it an off-air signal through an antenna and rf preamplifier, which are also available as accessories.

TABLE 2. REMOTE CONTROL CONNECTIONS

Remote Control Function	Terminals
Transmitter ON	1TB2-22, 1TB2-23
Transmitter OFF	1TB2-21, 1TB2-23
Plate OFF	1TB2-24, 1TB2-25
Plate ON	1TB2-30, 1TB2-26
Overload Reset	1TB2-24, 1TB2-27
Power Output-Raise	1TB2-24, 1TB1-15
Power Output-Lower	1TB2-24, 1TB1-16
Modulation Mode	
Left Remote	1TB6-15
Right Remote	1TB6-16
Stereo Remote	1TB6-17
Ground; Common	1TB6-18
SCA Mute	
SCA Mute	1TB6-5
Muting Ground	1TB6-6
Remote Meter Reading Function	Terminals
PA Plate Voltage	1TB1-10 (+), 1TB1-6 (-)
Pa Plate Current	1TB1-6 (+), 1TB1-9 (-)
Power Output	$\begin{aligned} & \text { 1TB 1-12 (}(\text {), 1TB 1-11 (}) \\ & \text { (remove jumper) } \end{aligned}$
Exciter Final Current	1TB6-3 (+), 1TB6-4 (-)

After completion of wiring, check all connections for accuracy, continuity and mechanical strength.

Transformer Primary Taps

The primaries of the filament and plate transformers are provided with taps which permit operation of the equipment over a wide range of ac line voltages (refer to table 3). Measure the source line voltage and, if necessary change the transformer primary connections to those designated for operation at the voltage closest to that measured. The primary taps are identified on the schematic diagram and figure 41.

WARNING

Before making power circuit connections, all switches and circuit breakers should be in the OFF position. Possible injury to personnel or equipment damage may result due to accidental application of power during installation.

TABLE 3. TRANSFORMER PRIMARY TAPS

Transformer	Range of Line Voltage					
Symbol	197-202.5	202.5-213.5	213.5-224	224-234.5	234.5-245.5	245.5-251
1T1	-11 and 208	0 and 208	+11 and 208	-11 and 240	0 and 240	+11 and 240
1 T 2	-11 and 208	0 and 208	+11 and 208	-11 and 240	0 and 240	+11 and 240
1 T 3	Factory Wired, No Tap Changes Required					
1 T 4	Factory Wired, No Tap Changes Required					
1T5	Factory Wired, No Tap Changes Required					
1T6*	-11 and 208	0 and 208	+11 and 208	-11 and 240	0 and 240	+11 and 240
1T7	-11 and 208	0 and 208	+11 and 208	-11 and 240	0 and 240	+11 and 240
1T8	H3 and H4	H2 and H4	H1 and H4	H3 and H5	H2 and H5	H1 and H5
Make Secondary Connections for 1T8 to X1 and X3						
3T1*	-11 and 208	0 and 208	+11 and 208	-11 and 240	0 and 240	+11 and 240

* Leave primaries disconnected until initial steps of tuning procedure have been completed.

OVERLOAD RELAY ADJUSTMENT

Adjustment of trip setting of overload relays 1 K 1 , 1 K 2 and 1 K 4 , located on the control panel behind the left-hand door, is carried out at the factory. However, the following adjustment procedure is given for use in the event that it may be necessary to adjust the sensitivity of these relays, so that they will pull-in at the current specified for each relay as shown in table 4.

This can be accomplished by the use of an ammeter
of the proper range and a dc supply which is adjustable from 0.5 to .1 .5 volts and capable of delivering 6.0 amperes. An "A" battery, such as an RCA Type VS006C used with a series rheostat of between 5 and 10 ohms maximum resistance is a convenient supply for making this adjustment. When adjusting 1 K 2 , change to a series rheostat of approximately 1 ohm , if available. Remove the relay covers and, with the rheostat set for maximum resistance, connect the supply across the coil of the relay to be adjusted, with the ammeter connected in series. Slowly decrease the resistance to obtain the current
reading given in table 4. Adjust the spring tension on the relay so that it just pulls in at the specified current. After adjustment, decrease and increase the current several times to check for proper operation. Replace the relay covers after adjustments have been completed.

TABLE 4. OVERLOAD RELAY SETTINGS

Relay	Circuit	Pull-In Current
1 K 1	L V Rectifier	1.5 amp.
1 K 2	PA Plate Current	2.0 amp.
1 K 4	Driver Cathode Current	0.4 amp.

BLOWER CONTACTOR 1K15 OVERLOAD RELAY ADJUSTMENT

The overload relay portion of 1 K 15 is normally tested and shipped set for manual reset operation only. This is done to avoid accidents which could possibly occur if the relay should operate (shutting down the transmitter), and then automatically recycle, energizing transmitter circuitry while operating personnel are investigating the cause of interruption.

However, the relay can be adjusted for automatic reset by tightening down the screw located next to the manual reset button. The automatic reset option will be found useful in remotely controlled stations.

If it should be necessary to change the trip setting of 1 K 15 the following procedure may be followed:

1. Remove the snap-on cover which covers the overload relay portion of the 1 K 15 assembly.
2. Adjust the variable trip setting dial to the desired value. A setting of 5.0 amperes is recommended in BTF-5E1 transmitters.
3. Replace the snap-on cover.

DRIVER AND PA TUBE INSTALLATION

Insert the $7203 / 4 C X 250 \mathrm{~B}$ tube and the PA tube in their respective sockets.

NOTE: Care should be exercised to ensure that the PA tube and socket are properly aligned before tube insertion is carried out.

The fit of the PA tube in its socket is tight and special attention should be given to its installation to ascertain that it is properly seated. Proper seating can be determined by observation; the screen grid ring will be hidden by the screen collet when the tube is properly seated (refer to figures 17,18 and 21).

After insertion of the driver tube, the plate ring is slipped over the tube and tightened with the screw provided (refer to figures 18 and 20).

CAUTION

Do not operate the transmitter without tightening the plate ring. Failure to do so may cause the screen current to become excessive with possible damage to the driver tube.

CONTROL CIRCUIT CHECK

WARNING

All circuit breakers should be initially set to the OFF position.

To ensure that all connections have been made correctly the following control circuit checks should be made before applying plate and screen voltages to the transmitter. (See figures 5 and 11 which show the transmitter controls and indicators utilized in the following procedures).

1. Disconnect the high voltage rectifier negative lead at jack 2 J 1 and remove the rectifier assembly from the high voltage power supply cabinet.
2. Disconnect the primary connections to transformers 1 T 6 and 3T1 and tape wires to prevent short circuits. Disconnect the primary connections to transformers 1T1 and 1T2, taping leads as before.

CAUTION

When disconnecting the primary leads to transformers 1 T 1 and 1 T 2 , note that in cases where two leads are removed from a transformer terminal, the leads involved should be temporarily connected using a bolt, nut and lockwasher. In this way, "through" connections to other circuitry are preserved.
3. Operate the following circuit breakers (and switches) to the ON position: MAIN breaker $2 S 1$ and LOW POWER breaker 2 S 2 on the power supply cabinet, and DISCONNECT switch 1S4, FILAMENT breaker 1S5, and CONTROL breaker 1S18 on the transmitter cabinet. (CONTROL breaker 1 S 18 is located behind the front panel directly above the FM exciter.)
4. Rotate AC VOLTAGE switch IS1 to PHASE 1, PHASE 2 and PHASE 3 positions and read the voltages on AC VOLTAGE meter 1 M 1 . The three indications should be well balanced.
5. Set the REFLECTOMETER switch 1 S3 to the DISABLE position.
6. Depress TRANSMITTER ON pushbutton 1S7 and PLATE OFF pushbutton 1S10. Relays 1K16 (transmitter on-off), 1 K 15 (blower), and 1 K 12 (filament) should energize, blower 1B2 (and cooling fan 2B1) should operate, and TRANSMITTER ON indicators 1DS6 and 2DS2 should light. In addition, air interlock switch 1S21 should close. Check the direction of rotation of blower 1B2. If the direction of rotation is incorrect, and a three-phase blower is supplied, depress TRANSMITTER OFF pushbutton 158 and operate DISCONNECT switch 1S4 to OFF. Reverse the direction of rotation of the blower by reversing the connections to terminals 1TB4-1 and 1TB4-2. Operate 1S4 to ON and depress 1 S 7 . Blower 1 B 2 should now rotate in the proper direction, closing air interlock switch 1S21.

WARNING

With FILAMENT circuit breaker 1S5 closed and the TRANSMITTER ON pushbutton operated, power is applied to the PA bias supply. Since this supply is not interlocked, caution should be exercised when making adjustments in the area of the bias supply.
7. Relay 1 K 13 should start timing and after approximately 45 seconds its contacts should close.
8. Depress and hold POWER RAISE pushbutton 1S11 and note that variable transformer 1 T5 rotates in the clockwise direction (looking down). Depress and hold POWER LOWER pushbutton 1S12 and note that transformer 1T5 rotates in the counterclockwise direction. Leave 1T5 in the extreme counterclockwise position.
9. Depress TRANSMITTER OFF pushbutton 1S8 and note that blower 1B2 continues to operate for approximately two minutes and then shuts off.
10. Depress TRANSMITTER ON pushbutton 1S7 and after a period of time check ELAPSED TIME meter 1M6 to make sure it is operating.
11. Close the rear doors, rf unit door, meter panel and power supply cover and note that DOOR INTERLOCKS indicator 1DS5 lights. Open the interlock switches one at a time and note that indicator 1DS5 goes out as each is opened.
12. Disable the FM exciter AFC function. Manually change exciter center frequency until the off-frequency relay operates. Note that 1DS5 goes out. Return exciter to normal operation. 1DS5 should light again.
13. Check the operation of grounding switches

1S19, 1S20, 1S102 and 2S4. There should be no evidence of erratic operation.
14. Place TRIP switch 1 S 13 in the SINGLE position and depress PLATE ON Pushbutton 1S9. Plate On-Off relay 1 K 11 should operate to the ON position, energizing high voltage plate contactor 2 K 1 and low voltage contactor 1 K 9 . PLATE ON indicators 2DS1 and 1DS4 should light.
15. Checkout of VSWR and Carrier-Off protection circuits is carried out after completion of transmitter tuning.
16. Remove the covers from overload relays 1 K 1 , 1 K 2 and 1 K 4 . Operate 1 K 1 manually by depressing the armature with an insulated rod and note that contactors 1 K 9 and 2 K 1 drop out and L.V. RECT. OVERLOAD indicator IDS1 lights. Depress O.L. RESET pushbutton 1S17; indicator 1DS 1 should go out and 1 K 9 and 2 K 1 should pull in again. Repeat this procedure by operating 1 K 2 and 1 K 4 and note that POWER AMP. OVERLOAD indicator 1DS2 and DRIVER OVERLOAD indicator 1DS3, respectively, should light.
17. Place TRIP switch 1 S13 in the MULTIPLE position and again operate 1 K 1 manually. Contactors 1 K 9 and 2 K 1 should drop out and after approximately one-half second they should pull in again. L.V. RECT. OVERLOAD indicator 1DS1 should light and stay lighted. Operate 1 K 1 a second time. This time 1 K 9 and 2 K 1 should drop out and stay out and indicator IDS1 should stay lighted. Depress PLATE ON pushbutton 1S9; 1 K 9 and 2 K 1 should pull in again and indicator 1DS1 should go out.
18. Depress PLATE OFF pushbutton 1 S 10 and TRANSMITTER OFF pushbutton 1S8. Operate DISCONNECT switch 1S4 to OFF.
19. Reconnect the primary connections to transformers 1 T 1 and 1T2. This restores filament power to the driver and PA when the transmitter is turned on.
20. Operate DISCONNECT switch 1S4 and FILAMENT circuit breaker 1 S 5 to ON, then depress TRANSMITTER ON pushbutton. Open the door of the rf unit and with an accurate ac voltmeter measure the filament voltage of the PA tube at its socket. If air interlock 1S21 operates (opens its contacts), temporarily connect a jumper across its contact terminals. Remove the jumper after completion of adjustment of driver stage filament voltage.
21. Rotate $A C$ VOLTAGE switch $1 S 1$ to the PA FIL. position, and adjust FILAMENT control 1T4 for a filament voltage of 7.5 volts. Note the reading of AC VOLTAGE meter 1M1. For optimum tube life the PA FILAMENT reading of meter 1 M 1 should be maintained at this value.

Figure 5. BTF-5E1 Controls and Indicators
22. In a similar manner, measure the filament voltage of the $7203 / 4 \mathrm{CX} 250 \mathrm{~B}$ tube at its socket. Rotate AC VOLTAGE switch ISI to the DRIVER FIL. position, and adjust DRIVER FILAMENT control IR19 for a filament voltage of 6.0 volts on the external ac voltmeter. (The DRIVER FILAMENT control is located behind the front panel directly above the FM exciter.) Note the reading of AC VOLTAGE meter 1M1. For optimum tube life the DRIVER FILAMENT indication of meter 1 M 1 should be maintained at this value.

Measure PA grid bias at feed-thru capacitor 1C114 located at the rear of the rf unit. With fixed bias only (no grid current), the indication should be approximately 240 volts, with negative polarity.
23. Check driver grid bias at feed-thru capacitor 1C106 located at the side of the rf unit. This measurement should indicate a (fixed) bias of approximately - 28 volts.

TUNING

GENERAL

The initial tuning procedure consists of checks to be made on the FM exciter and multiplex generator(s), adjustment of the driver stage, adjustment of the PA circuit and reflectometer calibration. The BTE-15A FM exciter, the BTS-1B stereo generator, and the BTX-1B SCA generator(s) are factory tuned and aligned. Instructions for tuning the exciter and multiplex units are contained in the instruction book supplied with these units, for use in those cases where readjustment should become necessary. For specific items of test equipment required for tuning, refer to the RECOMMENDED TEST EQUIPMENT list contained in the front of this book.

WARNING

Prior to performing the tuning procedures, ensure that the primary connections of transformers 1 T 6 and 3T1 are disconnected and that the high voltage rectifier is removed from the power supply cabinet.

EXCITER TUNING

1. Check that exciter power plug 1 P 11 is connected to the exciter ac input connector (twist-lock type). Connect exciter line power (normally 117 volts) to transmitter terminals 1TB1-13 and 1TB1-14.
2. Terminate the exciter with a small 50 ohm dummy load and wattmeter (see recommended test equipment list).
3. The BTE-15A includes an ac power line circuit breaker/switch. This circuit breaker is located near the top of the exciter, inside the exciter main frame. Open the exciter power supply access door and set the breaker/switch to the ON position.
4. Set the RF OUTPUT switch on the BTE-15A to
the ON position. Depress TRANSMITTER ON pushbutton 1S7 and PLATE OFF pushbutton 1S10. Note that due to the use of exciter relay K101, there will be no exciter power output unless the TRANSMITTER ON pushbutton is depressed.
5. With the exciter RF POWER ADJUST control set fully clockwise, the exciter power output should be 15 watts or more. If exciter operation is not normal, retune or service the exciter in accordance with the FM exciter instruction book.
6. Remove exciter power temporarily and connect the exciter output cable to directional coupler 1 Z 8 (connector marked "load"). Connect 1Z8 (connector marked "transmitter") to driver input jack 1J101, using short jumper cable supplied.

DRIVER GRID TUNING

1. Check to ascertain that the driver input (grid) circuit components are the proper ones for operation of the driver stage as a straight-through amplifier. Inductor 1 L 101 should be a 5-1/4 turn coil on a slug tuned form, with taps. There should not be any fixed capacitance in parallel with 1C101. Before starting the subsequent tuning procedure, connect the straps to inductor 1 L 101 such that 4 turns are in use initially. If necessary, this adjustment may be changed during the tuning procedure.
2. Restore exciter power output. Rotate driver input loading capacitor 1 ClOl to its midposition. Adjust driver input tuning variable inductor 1L101 for a maximum reading on MULTIMETER 1M2 with MULTIMETER switch 1S2 in the DRIVER I ${ }_{G}$ position. If no indication of resonance is obtained, the position of the tap on 1L101 should be changed.
3. Set the EXCITER MULTIMETER switch to the EXTERNAL METERING position. With this setting, the indication on exciter meter M101 is a measure of
reflected energy in the coaxial line between exciter output and transmitter input jack 1J101. Note the reading on M101. The VSWR in this line should now be minimized by using the following procedure:
a. Make a small change in the setting of 1 C 101 in the direction of less capacitance. Reset 1 L 101 for maximum driver grid current. If the reflected energy indication is less than the initial value, and there is no significant change in grid current, this procedure should be repeated until the VSWR is optimized. If the reflected energy indication is higher than the initial value, adjust 1 C 101 in the direction of more capacitance and proceed as described above. If necessary, use a different number of turns on inductor 1L101. The driver grid current should be
approximately 5 mA with the RF POWER ADJUST control fully clockwise. Depress the TRANSMITTER OFF pushbutton.

DRIVER TUNING

1. It is recommended that a grid dip meter be used for initial tune-up of all rf circuits in the transmitter. This assures that the circuits are reasonably close to proper adjustment before any power is applied, thus minimizing the chance of overloading of tubes or components.
2. With coil 1 L 109 disconnected, couple a grid dip meter to driver plate inductor 1L110. Adjust variable capacitor 1 C 112 for resonance at the assigned carrier frequency.

TABLE 5. BTF-5E1 FREQUENCY DETERMINING PARTS

Equipment Schedule No.	Frequency (MHz)	IC124 PA Loading	IC125 PA Loading	IC126 PA Loading	1L111 Front PA Grid Tuning	1L112 Rear PA Grid Tuning	1L111, 1L112 Shorting Blocks
$\begin{aligned} & \text { ES-560272 } \\ & -1 \end{aligned}$	88.1-89.9	$\begin{gathered} 25 \mathrm{pF} \\ 8521332-22 \\ \text { Stock \#235990 } \end{gathered}$	$\begin{array}{\|c} 25 \mathrm{pF} \\ 8521332-22 \\ \text { Stock \#235990 } \end{array}$	$\begin{array}{\|c\|} \hline 40 \mathrm{pF} \\ 8521332-18 \\ \text { Stock \#227938 } \end{array}$	$\left\|\begin{array}{l} 3455135-1 \\ \text { Stock \#243893 } \end{array}\right\|$	Not Used	$\begin{array}{\|l\|} \hline 3455763-1 \\ \text { Stock \#243892 } \end{array}$
$\begin{aligned} & \text { ES-560272 } \\ & -2 \end{aligned}$	90.1-91.9	$\begin{gathered} 25 \mathrm{pF} \\ 8521332-22 \\ \text { Stock \#235990 } \end{gathered}$	25 pF $8521332-22$ Stock \#235990	$\begin{gathered} 40 \mathrm{pF} \\ 8521332-18 \\ \text { Stock \#227938 } \end{gathered}$	$\left\|\begin{array}{l} 3455764-1 \\ \text { Stock \#243894 } \end{array}\right\|$	$\left\lvert\, \begin{aligned} & 3455764-2 \\ & \text { Stock \#243895 } \end{aligned}\right.$	$\begin{array}{\|l\|} \hline 3455763-1 \\ \text { Stock \#243892 } \end{array}$
$\begin{aligned} & \text { ES-560272 } \\ & -3 \end{aligned}$	92.1-93.9	25 pF $8521332-22$ Stock \#235990	$\begin{array}{\|c\|} \hline 25 \mathrm{pF} \\ 8521332-22 \\ \text { Stock \#235990 } \end{array}$	40pF $8521332-18$ Stock \#227938	$\left\|\begin{array}{l} 3455764-1 \\ \text { Stock \#243894 } \end{array}\right\|$	$\left\|\begin{array}{l} 3455764-2 \\ \text { Stock \#243895 } \end{array}\right\|$	$\begin{array}{\|l} 3457763-1 \\ \text { Stock \#243892 } \end{array}$
$\begin{aligned} & \text { ES-560272 } \\ & -4 \end{aligned}$	94.1-95.9	$\begin{gathered} 40 \mathrm{pF} \\ 8521332-18 \\ \text { Stock \#227938 } \end{gathered}$	Not Used	$\quad 40 \mathrm{pF}$ $8521332-18$ Stock \#227938	$\left\|\begin{array}{l} 3455764-1 \\ \text { Stock \#243894 } \end{array}\right\|$	$\begin{array}{\|l} 3455764-2 \\ \text { Stock \#243895 } \end{array}$	$\begin{array}{\|l\|} 3455763-1 \\ \text { Stock \#243892 } \end{array}$
$\begin{aligned} & \text { ES-560272 } \\ & -5 \end{aligned}$	96.1-97.9	40 pF $8521332-18$ Stock \#227938	Not Used	40 pF $8521332-18$ Stock \#227938	$\begin{array}{\|l\|} 3455764-1 \\ \text { Stock \#243894 } \end{array}$	$\begin{array}{\|l} 3455764-2 \\ \text { Stock \#243895 } \end{array}$	$\left\lvert\, \begin{aligned} & 3455763-1 \\ & \text { Stock \#243892 } \end{aligned}\right.$
$\begin{aligned} & \text { ES-560272 } \\ & -6 \end{aligned}$	98.1-99.9	$\begin{gathered} 40 \mathrm{pF} \\ 8521332-18 \\ \text { Stock \#227938 } \end{gathered}$	Not Used	$\begin{gathered} 40 \mathrm{pF} \\ 8521332-18 \\ \text { Stock \#227938 } \end{gathered}$	$\begin{aligned} & 3455764-1 \\ & \text { Stock \#243894 } \end{aligned}$	$\begin{array}{\|l\|} 3455764-2 \\ \text { Stock \#243895 } \end{array}$	$\begin{array}{\|l} 3455763-1 \\ \text { Stock \#243892 } \end{array}$
$\begin{aligned} & \text { ES-560272 } \\ & -7 \end{aligned}$	100.1-101.9	$\begin{array}{\|c\|} \hline 40 \mathrm{pF} \\ 8521332-18 \\ \text { Stock \#227938 } \end{array}$	Not Used	$\begin{array}{\|l} \hline 40 \mathrm{pF} \\ 8521332-18 \\ \text { Stock \#227938 } \end{array}$	$\left\lvert\, \begin{aligned} & 3455764-1 \\ & \text { Stock \#243894 } \end{aligned}\right.$	$\begin{array}{\|l\|} \hline 3455764-2 \\ \text { Stock \#243895 } \end{array}$	$\begin{aligned} & 3455763-1 \\ & \text { Stock \#243892 } \end{aligned}$
$\begin{aligned} & \text { ES-560272 } \\ & -8 \end{aligned}$	102.1-103.9	40 pF $8521332-18$ Stock \#227938	Not Used	40 pF $8521332-18$ Stock \#227938	$\begin{array}{\|l} 3455764-1 \\ \text { Stock \#243894 } \end{array}$	$\begin{aligned} & 3455764-2 \\ & \text { Stock \#243895 } \end{aligned}$	$\begin{aligned} & 3455763-1 \\ & \text { Stock \#243892 } \end{aligned}$
$\begin{aligned} & \text { ES-560272 } \\ & -9 \end{aligned}$	104.1-105.9	$\begin{array}{\|c\|} \hline 25 \mathrm{pF} \\ 8521332-22 \\ \text { Stock \#235990 } \\ \hline \end{array}$	Not Used	$\begin{gathered} 40 \mathrm{pF} \\ 8521332-18 \\ \text { Stock \#227938 } \end{gathered}$	3455764-1 Stock \#243894	3455764-2 Stock \#243895	$\left\lvert\, \begin{aligned} & 3455763-1 \\ & \text { Stock \#243892 } \end{aligned}\right.$
$\begin{aligned} & \text { ES-560272 } \\ & -10 \end{aligned}$	106.1-107.9	25 pF $8521332-22$ Stock \#235990	Not Used	40pF $8521332-18$ Stock \#227938	$\left\lvert\, \begin{aligned} & 3462864-1 \\ & \text { Stock \#243896 } \end{aligned}\right.$	3462864-1 Stock \#243896	3455763-2 Stock \#243891

3. With coil 1L109 disconnected, set 1L111 and 1 L1 12 adjustments (metal blocks mounted between chassis and metal plates connected to blocking capacitors 1 C140 through 1 C143) to equal distances from the respective grid terminals of PA tube socket 1 XV 102 . As an initial adjustment, move the sliding blocks along their "guide" slots until they touch the PA tube socket mounting plate, and then move each away from the PA socket about $1 / 2$ inch. Tighten all hardware securely. Parts which vary with frequency are tabulated in table 5 .

NOTE: In some transmitters, one of the variable inductors (1L111 or 1Ll12) will not be in use. In such cases, one of the variable inductors has been removed during factory tuning procedures. This situation is normal and represents optimum tuning conditions for a given transmitter and frequency.

Adjust PA GRID TUNING capacitor 1 C123 so that its setting is approximately 3 turns from the fully meshed position. Couple a grid-dip meter to the PA grid circuit.

NOTE: Care should be taken to avoid coupling to the driver plate tank circuit. For this reason, it is advisable to remove the driver tubes until this step is completed.

Reset 1L111 and 1L112 as required, so that the PA grid circuit resonates at approximately the assigned carrier frequency.
4. Replace the driver tubes in their sockets. Reconnect the driver plate rings securely. Reconnect 1L109. Readjust DRIVER PLATE TUNING control 1C112 for resonance, using a grid dip meter, leaving the initial setting of 1 C 123 unchanged.
5. Set the Pa Plate tuning and Pa Plate LOADING controls to the approximate positions shown in figure 6. The figures given are the distance from the shorting bars (1L105 or 1L106) to the plastic mounting shelf. If desired, these settings may be checked, using a grid dip meter.
6. Reconnect the primary terminals of low-voltage rectifier 1 T 6 . DO NOT reconnect the primary terminals of high-voltage transformer 3T1; this prevents application of PA plate voltage. Set DRIVER SCREEN control 1R38 to the center of its range.
7. Remove resistor 1R9 from its clips and temporarily ground the upper clip (grid end). Remove resistors 1R15 and 1R16 to prevent application of PA screen voltage.

NOTE: During the following tuning pro-
cedure, it is advisable to remove power after each step by depressing the PLATE OFF pushbutton, and then (if desired) the TRANSMITTER OFF pushbutton. Latching relays (1K11 and 1K16) are used in the BTF-5E1 control circuit. If the PLATE OFF pushbutton is not operated each time high voltage will automatically be applied approximately 45 seconds after the TRANSMITTER ON pushbutton is depressed. This is not desirable, in general, during tune-up.
8. Close LV RECTIFIER circuit breaker 1S6, depress the TRANSMITTER ON pushbutton and then depress and hold POWER LOWER pushbutton 1S12 until variable transformer 1 T5 is in its extreme counterclockwise position. REFLECTOMETER switch IS3 should be set to the DISABLE position.
9. Rotate MULTIMETER switch IS2 to the DRIVER Eg2 position. Depress the PLATE ON pushbutton. The indication on MULTIMETER 1M2 should be zero. Rotate MULTIMETER switch 1 S2 to the DRIVER I_{k} position. Depress and hold the POWER RAISE pushbutton until MULTIMETER 1M2 reads approximately 100 milliamperes.
10. Using the tuning arm assembly provided (MI560513, item 1), adjust DRIVER PLATE TUNING capacitor 1C112 for a dip in driver cathode current on MULTIMETER 1M2.
11. Rotate MULTIMETER switch 1 S 2 to the PA Ig position. Adjust PA GRID TUNING control 1C123 for maximum PA grid current. Set PA grid current to approximately 300 milliamperes, using either the POWER LOWER or POWER RAISE pushbutton.
12. The preceding procedure has established that the driver stage grid and plate tuned circuits are resonated at carrier frequency and that the driver stage is operative.
13. The driver cathode current should not be allowed to exceed 250 mA , as indicated on MULTIMETER 1M2 with 1 S 2 set to the DRIVER I_{k} position. DRIVER Ig2 should not exceed 30 mA . Depress the PLATE OFF and TRANSMITTER OFF pushbuttons.
14. Connect a dummy load and wattmeter (0 to 15 watt, 50 ohm) to the PA output line, using a $3-1 / 8^{\prime \prime}$ reducer cone (MI-19113-C58) and a short length (6 feet) of RG-8/U cable.

PA NEUTRALIZATION

1. Remove and lay aside screen circuit voltage divider resistors 1R13 and 1R14 so that the PA screen dc circuit to ground is broken. For best results, the

MULTIMETER switch 1 S2 must not be set to the PA Eg2 position during the PA neutralization procedure.
2. Remove the ground connection from the upper mounting clip of resistor 1R9. Complete the PA grid circuit by replacing (temporarily) 1R9 with a 6300 ohm 200 watt resistor. 1 R13 or 1R14, previously removed, will serve the purpose. DRIVER SCREEN control 1R38 should be set to the center of its range.
3. Depress the TRANSMITTER ON and PLATE ON pushbuttons. After the plate time delay relay cycles, applying plate voltage, readjust DRIVER PLATE TUNING control 1C112 for minimum driver cathode current.

Set MULTIMETER switch 1S2 to the PA Ig position. If a grid current indication is noted, adjust both 1 C 112 and 1 C 123 for maximum indication. (If no grid current is apparent initially, operate the POWER RAISE pushbutton as required to initiate grid current). Using the POWER RAISE/POWER LOWER pushbuttons, establish a reference value of PA grid current. A reading of 35 milliamperes is a convenient value. This reference value should be held constant during the neutralizing procedure.
4. The small wattmeter connected at the PA output now indicates feed-through power (power coupled from PA grid circuit to PA output circuit through the "feed-through" capacitance of the PA tube).
5. Adjust PA PLATE TUNING control 1L105 and PA OUTPUT LOADING control 1L106 for a peak in the wattmeter indication.
6. Remove power from the transmitter. Adjust the front neutralizing slide (part of PA tube socket assembly) $3 / 8$ inch to the right. Reapply power, adjust 1 L 105 and 1 L 106 , and note the change in the wattmeter reading. If the meter reading has decreased, repeat this procedure until a minimum wattmeter reading is obtained. If the meter reading increased, move the neutralizing slide to the left and repeat. If an appreciable movement is required at the front neutralizing slide, all four slides should be adjusted so that they are approximately balanced. If necessary, one of the semi-fixed slides may be removed.

Normally, with 35 milliamperes of PA grid current (to establish a reference driving voltage) it should be possible to obtain a feed-through power indication of less than one watt. However, the important consideration in neutralization is to secure a minimum feed-through indication.
7. Depress and hold the POWER LOWER pushbutton until the DRIVER $\mathrm{E}_{\mathrm{G}} 2$ indication is zero, then remove all power.
8. After completion of neutralization of the PA stage, replace resistors 1 R9, 1R15, 1R16, 1R13 and 1R14 in their normal mounting positions.
9. Plug high voltage rectifier (MI-560340) into place in the high-voltage power supply (MI-560342). Connect the rectifier negative lead by plugging it into jack 2 J 1. Reconnect the primary leads of high-voltage plate transformer 3T1 (refer to table 3).
10. Disconnect the small dummy load and wattmeter from the output line of the PA and connect in its place a suitable dummy load and wattmeter.
11. The transmitter should be unmodulated during the following procedure for determination of operating power.
12. Check to confirm that REFLECTOMETER switch 1 S 3 is set to the DISABLE position.

PA TUNING - DIRECT METHOD OF POWER MEASUREMENT

1. Depress TRANSMITTER ON pushbutton. Set DRIVER SCREEN control 1R38 completely counterclockwise (for minimum rf drive to PA). Apply plate voltage. Note that PLATE VOLTAGE meter 1M3 indicates somewhat higher than the nominal value. Rotate MULTIMETER switch 1 S 2 to the $\mathrm{PA} \mathrm{E}_{\mathrm{G}} 2$ position and then depress and hold the POWER RAISE pushbutton until MULTIMETER 1M2 indicates 600 volts. Adjust DRIVER SCREEN control 1R38 for an indication of one-half ampere on PLATE CURRENT meter 1M4.
2. Using tuning arm assembly, readjust 1 C 123 until the PLATE CURRENT indication is maximum. DO NOT PERMIT THE PA PLATE CURRENT TO EXCEED 0.75 AMPERES AT THIS TIME.
3. With REFLECTOMETER switch 1S3 set to the DISABLE position, rotate POWER CALIBRATE control 1R11 to its maximum clockwise position. As transmitter power is increased during tuning procedures, the setting of 1 R11 must be adjusted as required.
4. Note the reading on REFLECTOMETER meter 1M5 and adjust PA PLATE TUNING control 1L105 for a maximum reading.
5. Adjust the DRIVER SCREEN control 1R38 clockwise (increasing PA grid drive) until the required power output is reached as determined by feed-through wattmeter or calibrated dummy load, if available. If necessary, operate the POWER RAISE/POWER LOWER pushbuttons as required to set the power output.

Check all meters for acceptable readings. Typical

PLOT BASED ON LOADING CAPACITOR VALUES AS FOLLOWS:

FREQUENCY(MHz)	$88-94$	$94-104$	$104-108$
$1 C 124$	25 pF	40 pF	25 pF
ICI 25	25 pF	NOT USED	NOT USED
ICI26	40 pF	40 pF	40 pF

Figure 6. Typical Settings, PA Tuning Controls
meter readings for a power output of 3.5 or 5 kilowatts are given in table 6 .

In the case of transmitters which have been factory tuned at the required output power, no further PA tuning adjustments should be required - provided that the load in use at the transmitter output presents a 50 ohm resistive impedance to the transmitter.

In the event the transmitter has not been factory tuned at the required power output or if the efficiency or load impedance is not as desired, it will be necessary to retune the PA output circuit. PA loading is determined by the value of capacitance across the PA output line (vacuum capacitors $1 \mathrm{C} 124,1 \mathrm{C} 125,1 \mathrm{C} 126$) and the setting of PA OUTPUT LOADING control 1 L106.

In tuning the PA (or other tetrodes) it should be noted that the screen current is a sensitive loading indicator. In general, the screen current will rise as the loading is decreased (higher load impedance) and drop as the loading is increased.

To increase loading, reset 1 L 106 to a position nearer the PA tube mounting shelf. Conversely, to reduce loading, reset 1L106 to a higher position (further from the PA tube mounting shelf).

In order to obtain best efficiency it is important that the PA stage be operated with its output tank circuit adjusted for optimum loading. The following procedure is recommended to attain this condition.
a. With power OFF, set 1 L 105 and 1 L 106 to the positions shown in figure 6, for the assigned frequency. The positions plotted are in inches above the PA tube plastic mounting shelf. This setting will establish a preliminary loading condition which should serve as a good starting point.
b. Depress the TRANSMITTER ON and PLATE OFF pushbuttons. Depress and hold the POWER LOWER pushbutton until variable transformer 1T5 rotates to the minimum (extreme clockwise) position. Set driver screen control 1R38 to the extreme counterclockwise (minimum PA drive) position.
c. Depress the PLATE ON pushbutton. Rotate MULTIMETER switch $1 S 2$ to the PA E G^{2} position and then depress and hold the POWER RAISE pushbutton until MULTIMETER 1M2 indicates 600 volts. Adjust driver screen control 1 R38 for an indication of one-half ampere on PLATE CURRENT meter 1 M 4 .
d. Note the reading on REFLECTOMETER 1M5 and adjust PA PLATE TUNING control 1L105 for a maximum indication.
e. Adjust the driver screen control 1 R38 clockwise (increasing PA grid drive) until the desired power output is obtained or the PA plate current reaches 1.5 amperes. If necessary, operate the POWER RAISE/ POWER LOWER pushbuttons as required to set power output.
The PA efficiency should now be calculated from the following formula (refer to figure 7).

$$
\underset{\text { Factor }}{\text { Efficiency }}=\frac{\text { Power Output (watts) }}{\begin{array}{c}
\text { Plate Volts x Plate Current } \\
\text { (amperes) }
\end{array}}
$$

The "Plate Volts" in this formula refers to the meter voltage as read from voltmeter 1 M3 (this value differs slightly from actual PA plate-to-cathode voltage).
6. If PA efficiency is low and screen current comparatively low, the loading is too heavy and the load impedance must be increased as previously described. Reset 1L106 first, then 1L105. If PA efficiency is low and screen current comparatively high, the loading is too light and must be increased as previously described. Reset 1 L106 first, then 1L105. In either case, after each loading adjustment, readjust PA PLATE TUNING control 1 L 105 for maximum power output (refer to figure $9)$.

Once the PA tank load impedance is determined, the recommended procedure is to adjust the PA grid drive (using driver screen control 1R38) to obtain the required PA plate current at the specified grid bias, plate voltage, and, as nearly as possible, the screen voltage specified. It may be necessary to increase PA screen voltage, however, in order to obtain rated power output.

If this procedure is followed, there will be little variation in output power when tubes are changed, even though there may be some variations in grid and screen currents. The grid and screen currents which result when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variation in current. No maximum tube ratings should be exceeded.

NOTE: Power output of the transmitter is proportional to the screen voltage, but at a certain point the output will not increase further in spite of a further increase in screen voltage. Care should be taken not to operate beyond this point since PA efficiency will decrease rapidly if screen voltage is raised further. With sufficient drive, the tapering-off should occur at a power output in excess of 5 kilowatts at a screen voltage of about 700 volts, with 5000 volts plate voltage (3.5 kW with 3300 volts plate voltage). However, insufficient drive may

Figure 7. Efficiency Curve

Figure 8. VSWR Nomograph
cause this point to shift to power levels less than rated power output. See figure 9.

It should be noted that operation of POWER RAISE pushbutton 1S11 and POWER LOWER pushbutton 1S12 will vary PA screen voltage as well as driver plate and screen voltages, while control 1 R38 varies only driver screen voltage and therefore acts as a PA excitation control.

The fixed ceramic capacitor - variable inductor combination connected in the PA cathode circuit should now be adjusted for maximum PA plate efficiency. Adjustment of this circuit is carried out simply by varying the position of the ceramic capacitor 1C148 in the slots of its mounting brackets 1 L 114 with power removed and then checking PA efficiency with power on. This process is repeated until the efficiency reaches a maximum.
7. Set MULTIMETER switch 1 S 2 to the DRIVER $\mathrm{E}_{\mathrm{G}} 2$ position. The indication should be 300 volts or less.

If this reading is high, adjust driver screen control 1 R38 as required. If necessary, readjust screen (slider type) resistor 1R18. Set MULTIMETER switch 1 S 2 to the DRIVER $\mathrm{I}_{\mathrm{G}} 2$ position. The indication should be between 5 and 25 mA . If screen current is high, indicating a high driver plate load impedance, remove power and move the sliding blocks, which are part of 1L111 and 1L112, closer to tube socket 1 XV 102 . This should result in a lower value of screen current when the power is restored and tuning adjustments repeaked. Conversely, to increase screen current, the blocks would be moved away from the tube socket. Adjustments should be in small increments of about $1 / 4$ inch.

After driver screen voltage and screen current are adjusted as described, repeak the PA PLATE TUNING control and check power output. If necessary, set power output for the desired value, using the POWER RAISE/ POWER LOWER pushbuttons.
8. Repeat step 7 if necessary.

Figure 9. PA Screen Voltage/Power Output Curve

PA TUNING - INDIRECT METHOD OF POWER MEASUREMENT

1. Perform steps 1 through 4 of the procedure described above.
2. Adjust the DRIVER SCREEN control 1R38 clockwise (increasing PA grid drive) until the PA PLATE CURRENT indication rises to 1.3 amperes. Using POWER CALIBRATION control 1 R11, set the reading on REFLECTOMETER 1M5 to an easily read value. 80% is a suitable value.
a suitable value.
3. Using the REFLECTOMETER 1M5 as a power output indicator, vary PA output circuit tuning controls 1 L105 and 1L106 for maximum output indication on 1M5, for a given value of PA plate current. After each tuning adjustment, readjust PA plate current to the reference value (using the POWER RAISE and POWER LOWER pushbuttons) so that the relative efficiency may be evaluated. As previously described, the PA screen
current may be used, within limits, as a PA tank circuit loading indicator.
4. The ceramic capacitor - variable inductor combination connected in the PA cathode circuit should now be adjusted for maximum PA plate efficiency. Adjustment of this circuit is carried out simply by varying the position of the ceramic capacitor 1 C 148 in the slots of its mounting brackets 1L114 with power removed and then checking PA efficiency with power on. This process is repeated until the efficiency reaches a maximum. The efficiency data plotted in figure 7 is based on the use of the cathode resonating circuit.
5. Repeat step 3 at higher values of plate current until the value of plate current corresponding to 5 kW power output is reached. See figure 7.
6. Using the indirect method of power determination, the operating power is the product of the plate voltage and the plate current of the final stage and the efficiency factor, F. The efficiency factor is plotted as a function of power output in figure 7.
7. To set operating power, refer to figure 7 and determine efficiency factor F for the licensed operating power. The operating plate current is

Plate Current $=\frac{\text { Licensed Power Output }}{\text { Plate Voltage } \times \mathrm{F}}$

The plate voltage in this formula refers to the reading of PLATE VOLTAGE meter 1M3 (this value differs slightly from actual PA plate-to-cathode voltage).

Without making tuning adjustments, operate the POWER LOWER/POWER RAISE pushbuttons for the calculated value of operating plate current.

REFLECTOMETER CALIBRATION

Tune and adjust the transmitter for the required power output and then perform the following calibration procedures.

1. Power Indication - With the transmitter adjusted for the required output, and REFLECTOMETER switch 1S3 set to the DISABLE position, adjust POWER CALIBRATION control 1R11 so that REFLECTOMETER meter 1 M 5 reads 100%.

CAUTION

Do not adjust the POWER CALIBRATION control except when calibrating the REFLECTOMETER.
2. Initial setting of "carrier-off" protection feature - With REFLECTOMETER switch 1S3 set to the DISABLE position, the adjustment of the "set-point" or tripping point of REFLECTOMETER meter-relay 1M5 is made by varying the position of the red "set-point"
needle as desired. The adjusting screw which varies the position of the "set-point" is normally located at the rear of 1M5. The transmitter high voltage must therefore be removed in order to adjust the 1 M 5 set-point.

The set-point used should be between 50 and 70% of the nominal transmitter power output. 60% is recommended. High set-point values make the transmitter subject to spurious tripping which might be caused by power line transients, while low set-point values do not afford adequate protection.
3. Calibration of Reflected power meter 1M7 - Set IS3 to the VSWR CAL position. With the transmitter operating at nominal power output, adjust VSWR calibration control 1R10 for an indication of 100% on reflected power meter 1M7. 1M7 will now indicate output transmission line VSWR on its VSWR scale, and reflected power in the output transmission line (in percent of incident power) on its percent power scale, when 1S3 is set to the NORMAL position or the DISABLE position.
4. Initial setting of VSWR protection feature - The adjusting screw which varies the position of the "setpoint" on reflected power meter 1M7 is located at the front of 1M7 immediately above the zero-set adjustment. The recommended setting is for a VSWR of 1.5:1.
5. Calibration of Remote Power Indication - Adjust transmitter for licensed power output. With a 5000 ohm remote power metering circuit connected between terminals 1TB1-11 and 1TB1-12, adjust REMOTE CALIBRATION control 1R12 for an indication of 100% (or other desired logging indication) on the remote power meter.

PROTECTION CIRCUITRY CHECKOUT

One section of REFLECTOMETER switch 1 S 3 is connected in series with the operating coil of time delay relay 1 K 20 . The following description is for checks made with 1 S 3 set to the NORMAL position, allowing 1 K 20 to be energized.

Approximately 7 seconds after application of power to the operating coil of low voltage contactor 1 K 9 , relay 1 K 20 should close its contact, energizing auxiliary relay 1K21. Relay 1 K 21 then closes two normally open contacts. One contact (3-5) makes the "carrier-off"/ VSWR protection circuit operative. The other (6-7) makes the "carrier-off" and VSWR overload indicator lights operative. There will be an audible click when 1 K 20 and 1 K 21 operate. However, operation of 1 K 20 (and 1 K 21) will not (of itself) initiate a control circuit overload sequence.

If a more positive check is desired, connect an ac voltmeter (0 to 150 volt or higher) between module terminal 1Z6-16 and ground (1TB2-20). 117 volts will appear between these terminals when 1 K 20 and 1 K 21
are energized. If the delay between application of power to low voltage contactor 1K9 (by depressing the PLATE ON pushbutton) and the operation of time delay relay 1 K 20 (and auxiliary relay 1 K 21) is not approximately 7 seconds, the timing adjustment on relay 1 K20 should be set as required. To set 1 K 20 , loosen the screw which secures the actuating arms to the rotating shaft, move the actuating arm which establishes the time delay (as required), and retighten the screw.

The following procedure will provide a positive check for proper operation of the "carrier-off/VSWR" circuitry.

1. "Carrier-off" Circuitry

With transmitter operating normally, at licensed power output, set REFLECTOMETER switch 1S3 to the NORMAL position. If the indication on reflected power meter 1M7 is appreciable (VSWR indication of 1.3 or higher), the circuitry may be checked by simply moving the set-point to progressively lower scale positions. When the set-point pointer reaches graph "OVERLOAD RESETTING"). Power may be restored by depressing the O.L. RESET pushbutton. However, tripping will reoccur after each reset operation until the power output is readjusted to a value higher than the "set-point" indicated on meter-relay 1M5.

2. VSWR Protection Circuitry

With the transmitter operating normally, at licensed power output, set REFLECTOMETER switch 1S3 to the NORMAL position. If the indication on reflected power meter 1M7 is appreciable (VSWR indication of 1.3 or higher), the circuitry may be checked by simply moving the set-point to progressively lower scale positions. When the set-point pointer reaches the same position as the VSWR pointer, the normal transmitter overload sequence should be initiated. Again, tripping will reoccur after each (manual) resetting, until the setpoint is readjusted to a value higher than the VSWR indication.

If the normal VSWR indication is less than 1.3, the
procedure described may still be used by varying the zero set adjustment on 1M7 for a higher reading. After completion of the test, 1M7 should be re-zeroed (with transmitter power OFF), and the set-point pointer reset to the desired value.

CAUTION

It is recommended that the protection circuitry (optical meter-relays) be checked periodically (weekly) to be certain the protection is operative. Vary the set point adjustment on each optical meter-relay to induce an overload; then reset to normal setting.

OVERLOAD RESETTING

When TRIP switch 1 S 13 is in the SINGLE position, an overload will cause the plate power to be removed instantly. After the cause of the overload has been corrected, depress O.L. RESET pushbutton 1S17 on the front panel to place the transmitter back on the air, and extinguish the overload tally light involved.

When TRIP switch 1 S 13 is in the MULTIPLE position, an overload will remove the plate power momentarily. After a short time delay (determined by time-delay 1 K 17) the plate power will be reapplied. If the cause of the overload has been corrected the power will remain on and the appropriate overload indicator will light and stay lighted until reset manually by depressing the O.L. RESET pushbutton. If the overload persists, the plate power will be removed again and will remain off until reset manually be means of the PLATE ON pushbutton or remotely by shorting terminals 1TB2-26 and 1TB2-30. When the circuit is reset remotely, the overload indicator will remain lighted until reset manually.

OPERATION

STARTING AND STOPPING THE TRANSMITTER

In normal transmitter operation all circuit breakers should be left in the ON position and the crystal heaters left running continuously, unless the transmitter is to be shut down for an extended period of time. This way it is possible to start and stop the transmitter by operating only the TRANSMITTER ON (1S7) and TRANSMITTER OFF (1S8) pushbuttons and the PLATE ON (1S9) and PLATE OFF (1S10) pushbuttons.

To interrupt transmission for a short interval the PLATE OFF pushbutton should be depressed. This will remove plate voltage from the transmitter circuits but the filament power will remain on the tubes. The transmitter can then be returned to immediate operation when the PLATE ON pushbutton is depressed.

NOTE: Two pushbutton control of the transmitter may be achieved by not operating the PLATE OFF/PLATE ON push-
buttons, and operating the TRANSMITTER ON/TRANSMITTER OFF pushbuttons. Operated in this manner the transmitter will automatically go through the necessary starting steps including time delay relay operations.

Normally the time delay relay provides sufficient warm-up time (approximately 45 seconds) after which plate voltage can be applied. The crystal heater unit (in the exciter), from a cold start, requires several minutes of warm-up time before complete stability of the carrier frequency is attained.

PANEL METER READINGS

The typical meter readings shown were recorded during transmitter factory tests, with a power output of 3.5 and 5 kilowatts. With regard to PA meter readings, it is assumed that the PA rf grid drive is adjusted to obtain the required PA plate current at the specified grid bias, plate voltate, and, as nearly as possible, the screen voltage shown. If this procedure is followed, there will be little variation in output power when tubes are changed, even though there may be some variations in grid and screen currents. The grid and screen currents which result when the desired plate current is obtained are incidental and vary from tube to tube. These current variations cause no difficulty so long as the circuit maintains the correct voltage in the presence of the variation in current.

At start-up, and at regular intervals during operation, note and record the panel meter readings in a suitable log. This will aid in maintaining the proper values of
voltage and current and will disclose gradual changes in transmitter operation.

TABLE 6. TYPICAL METER READINGS

Multimeter Switch	Meter Range	$\begin{gathered} \text { Power Out } \\ 5 \mathrm{~kW} \end{gathered}$	$\begin{gathered} \text { Power Out } \\ 3.5 \mathrm{~kW} \end{gathered}$
DRIVER I_{G}	$0-30 \mathrm{~mA}$	5 mA	5 mA
DRIVER I_{K}	0-600 mA	250 mA	220 mA
DRIVER $\mathrm{I}_{\mathrm{G} 2}$	0-30 mA	20 mA	15 mA
DRIVER $\mathrm{E}_{\mathrm{G} 2}$	0-600 V	260 V	210 V
$\mathrm{PA}_{\mathrm{I}}^{\mathrm{G}}$	0-600 mA	30 mA	40 mA
$\mathrm{PA}_{\mathrm{I}}^{\mathrm{G} 2}$	0-600 mA	55 mA	90 mA
PA E $\mathrm{G}_{\mathrm{G} 2}$	0-1200 V	700 V	600 V
PA PLATE voltage	0-10000 V	5000 V	3300 V
pa Plate	0-2 A	1.5 A	1.5 A

EMERGENCY OPERATION - AFC FAILURE

In the event of an AFC failure in the FM exciter, the output carrier frequency can be controlled manually (if the master oscillator is functioning) until such time as repairs can be made. To control the carrier frequency manually, operate AFC switch S1 to the OFF position and adjust AFC ADJUST control of the master oscillator for correct center frequency reading on the frequency monitor. The stability of the master oscillator is such that center frequency can be maintained within FCC limits for extended periods of time without AFC provided that changes in ambient temperature or line voltage is not excessive.

MAINTENANCE

GENERAL

With ordinary care a minimum of service will be required to keep the BTF-5E1 in operation. However, a regular schedule of inspection and service as outlined in the Recommended Maintenance Schedule, table 7, will help to avoid interruptions to broadcasts, greatly extend the life of components, and contribute in large measure to overall peak efficiency in operation.

WARNING

Always open the line circuit breaker, and discharge circuits with a grounding stick before touching any component inside the transmitter.

cleaning

Ceramic insulators and bushings should be kept clean
at all times. Insulators subject to stress in high-voltage dc fields may rupture if sufficient dust accumulates to cause a corona discharge. Clean insulators with a soft cloth and Clorothene.

NOTE: Because of the toxic effects of carbon tetrachloride, the use of Chlorothene is recommended. Chlorothene is a Dow Chemical Co. product and is available through that company's outlets.

CIRCUIT BREAKERS AND RELAYS

Circuit breakers and relays should be inspected
Circuit breakers and relays should be inspected
periodically, and at such time contacts should be cleaned and adjusted if necessary. Relay contacts should be cleaned with Chlorothene applied with a soft brush,
after which they should be burnished with a tool, such as the RCA Stock No. 22963 Contact Cleaning Tool. Finally, contacts should be wiped with a clean piece of bond paper.

TUBES

Large tube failure can be anticipated by keeping a log of tube life, and replacing tubes as indicated by the log or when reduced output is apparent.

TABLE 7. RECOMMENDED MAINTENANCE SCHEDULE

	DAILY
- Check and compare all meter readings at start-up. Correct any conditions revealed by abnormal readings.	
- If overloads have occurred, examine components involved at shut-down. Repair or replace any components as necessary.	
WEEKLY	
- Operate optical-meter relay protection circuits to make certain they are operative. - Make a general visual inspection and clean internal parts of transmitter. Use a clean, soft cloth on the insulators. Use a vacuum cleaner or hand blower for removing dust or dirt. - Test all door interlocks and grounding switches. - Check PA and output rf circuits for evidence of heating at connector or junction points. In particular, examine finger contact assemblies which are part of variable inductances 1L105 and 1L106. - Check manometer reading. When manometer reading indicates filter clogging, clean or replace the filters as necessary. - - Make an overall check of distortion and noise level.\quad MONTHLY	
- Check spare crystal in operating socket.	
- Check voltages in exciter. Compare with previous readings.	
- Inspect electrodes of spark gap 1E1 for pitting. Replace if necessary.	
	QUARTERLY
- Tighten all connections in the transmitter.	

AIR FILTERS

During normal operation, with clean air filters, the manometer reading should be approximately 0.1 inch (at sea level). As the filters become clogged over a period of time, the manometer reading will change (reading will increase). When the manometer reading exceeds 0.5 inch the filters must be cleaned or replaced.

SILICON RECTIFIER TESTING

A short-circuited silicon rectifier cell may be detected by simple resistance checks using a voltohmmeter such as a Simpson Model 260 . With the diode removed from the circuit (if the diode is part of a series "stack" of diodes, the connections to the "stacks" should be
removed), measure the diode resistance. Reverse the ohmmeter leads and measure the diode resistance. If both readings are low, the diode is short circuited.

The condition of individual cells in an RCA CR232 or CR233 series stack may be checked by applying an external voltage to the individual cells and measuring the resultant current flow through the cell. A simple test circuit as shown in figure 10 can be used to perform the individual cell checks. It should be noted that some other value of voltage can be used in the test circuit; however, 50 volts was selected because it is low enough to be safe for testing, but is also sufficient to present a good indication of cell degradation. A lower voltage, such as that available in a vacuum-tube voltmeter, will not isolate defective cells unless they are almost complete shorts. Also note that the 100 kilohm resistor and

Figure 10. Rectifier Test Circuit
the "press-to-test" switch have been included in the test circuit to protect the meter from shorted and incorrectly connected (reversed) diodes. This test is based on the use of 500 K equalizing resistors across individual cells. Connect the test circuit across the cell to be tested, observing the polarity as shown in the diagram. It should be noted that an area on each of the fins of a CR200 series stack has been left unpainted to facilitate this connection.

If the cell under test is shorted (or connected with reversed polarity) the meter will indicate approximately 500 uA . If this indication is observed, do not depress the "press-to-test" switch.

When the "press-to-test" switch is operated, a good cell will provide an indication of approximately 100 microamperes, while a cell that has degraded will indicate several hundred microamperes.

Reverse the connections to the cell. A good cell should indicate approximately 500 microamperes. A low reading indicates poor forward conduction, or an open cell.

This circuit is not satisfactory for checking diodes using a voltage equalizing resistor below 500 K . In such cases, the equalizing resistor must be disconnected during tests.

The test circuit described may also be used to test other silicon rectifiers if the different values of voltage equalizing resistors are accounted for.

The RCA Type CR104 silicon rectifiers used in the
low voltage supply consist of seven series connected diodes encapsulated to make up one rectifier module (Type CR104, or RCA stock no. 230913). Each of the seven series diodes is shunted by a 2.2 megohm voltage equalizing resistor. This gives a resistance of about 15 megohms across the CR104 module if all diodes are good.

To test CR104 rectifiers using the test circuit described, proceed as follows.

Connect the test circuit across the CR104 unit to be tested, observing the polarity shown in the diagram.

If the CR104 rectifier is shorted (or connected with reversed polarity) the meter will indicate approximately 500 microamperes. If this indication is observed, do not depress the "press-to-test" switch.

When the "press-to-test" switch is operated, a good rectifier will provide an indication of about 4 microamperes. Higher readings indicate degradation of one or more individual diodes.

Reverse the connections to the diode. A good unit should indicate approximately 500 microamperes. A low reading indicates poor forward conduction, or an open diode.

CONTROL MODULE

The control module works in conjunction with 1 M 5 and 1M7 to remove the transmitter plate power when the transmitter power output indication drops below the

500K
voltage
EQUALIZING RESISTOR CELL UNDER TEST
set point value on 1M5 or the VSWR indication exceeds the set point value on 1M7. Normal position of these relays is as follows:

1. The control relay in the Power Trip (carrier-off) circuit is de-energized as long as the indication of 1 M 5 is above the set point.
2. The control relay in the VSWR Trip circuit is de-energized as long as the indication of 1 M 7 is below the set point.
3. Set TABLE 8 for a summary of relay contact status vs various circuit conditions.

Some helpful voltage readings are as follows:

	Normal	Tripped
Q1 (or Q2) collector	+2.6	-3.4
Q1 (or Q2) emitter	-0.2	+0.1
SCR1 (or SCR2) anode	-0.2	-10.5

AC voltages from T1 are shown on figure 28.
DC voltages, measured with respect to red (center tap) or wht/grn transformer lead, using RCA WV-98A Voltohmyst VTVM.

The waveforms shown in figure 29 show the reversal of phase which occurs in the base circuit of buffer transistor Q1 (or Q2) when a transition is made from above set-point to below set-point (REFLECTOMETER meter-relay 1M5: Power Trip) or vice-versa (REFLECTED POWER meter-relay 1M7).

TABLE 8. CONTROL MODULE 126 SERVICING CHART

	High Set Point (VSWR)N. O. Relay Contacts $16-17$ $19-20$	High Set Point (VSWR)N. C. Relay Contacts $15-16$ $18-19$	Low Set Point (Power) N. O. Relay Contacts $6-7$ $9-10$	Low Set Point (Power) N. C. Relay Contacts $5-6$
AC Power OFF	Open	Closed	Open	Closed
AC Power ON, Indication Below Set Point	Open	Closed	Closed	Open
AC Power ON, Indication Above Set Point	Closed	Open	Open	Closed
AC Power ON, Meter Lamp Failure	Closed	Open	Closed	Open

Notes: 1. Contact status (closed or open) versus circuit condition.
2. See figure 28 for Control Module schematic diagram and terminal identification.

BLOWER LUBRICATION

MI-560347 Blower motors are lubricated with a special moisture resistant grease by the motor manufacturer. The motor bearings should be relubricated at least every two years with an equivalent type ball bearing grease. High grade, neutral, ball bearing grease such as Keystone No. 44, Lubriko M-21 or Alemite No. 38 should be suitable. The blower must be removed from the cabinet and the motor disassembled to properly lubricate the bearings.

The blower motor manufacturer (General Electric Co.) maintains Service Centers in most major cities. If desired, the motor lubrication may be made at a Service Center.

Further motor maintenance information will be found in General Electric Co. publication GEI-56110.

MUFFIN FAN LUBRICATION

The muffin fan used to ventilate the high-voltage power supply cabinet will provide reliable performance from 2 to 5 years under favorable conditions of temperature and vibration without the necessity of oiling.

If the cabinet should be installed in areas of great heat or severe vibration, its life may be extended by periodic oilings (a small amount once per year) which is absorbed by the bearing. For this oiling procedure, an Oil Injector is required, which may be ordered from Rotron Manufacturing Co., Inc., Hasbrouck Lane, Woodstock, New York, at a modest price. To lubricate the fan proceed as follows:

1. Remove cap from end of Oil Injector.
2. Place needle at the center of circle marked on the Gold label.
3. Position the needle at an angle of approximately 45° to the surface of the label and tangent to the perimeter of the circle.
4. Pierce the label and the concealed self-sealing rubber cap located under the label.
5. Insert the needle approximately $1 / 4$ inch.
6. Depress the plunger of the Oil Injector slowly to the next calibration mark which will allow $1 / 16$-inch of oil to escape.

NOTE: It is better to give a little more oil than not enough, however, do not overflow the well. If the ambient temperatures are extremely high, it may be advisable to oil more frequently to insure the optimum performance characteristics of the fan.

Muffin fans manufactured by Pamoter, Inc. incorporate sealed bearings which do not require added lubrication.

Figure 11. Transmitter, Electrical Parts, Front View

Figure 12. Transmitter, Mechanical Parts, Front View

Figure 13. Transmitter, Rear View

Figure 14. Transmitter, Left Rear Oblique View

Figure 15. Transmitter ${ }_{*}$ Right Rear Oblique View

$31519-16$
Figure 16. Control Panel, Rear View

Figure 17. RF Unit, Front View

Figure 18. Driver Shelf and $1 \times \mathrm{V} 102$ Shelf, Front View

31518-19

Figure 19. Driver Shelf, Left Side

Figure 20. Driver Shelf, Right Side

Figure 21. 1XV102 Socket Assembly, Top View

Figure 22. 1XV102 Socket Assembly, Bottom View

Figure 23. 1XV102 Insulators and Capacitors

Figure 24. 1L113 Semi-Fixed and Sliding Contacts

Figure 25. 1V102 Plate Contacts and Plate Blocking Capacitors

31519-26
Figure 26. 1L105 and 1L106 Counter Assemblies

Figure 27. Low Voltage Rectifier Assembly

Figure 28. 1 Z6 Control Module, Schematic Diagram

NOTES:

1. WAVEFORM A IN BASE CIRCUIT OF Q1 (POWER TRIP) AT "WAVEFORM A" POINT ON FIGURE 28.
2. WAVEFORM B IN BASE CLRCUIT OF Q2 (VSWR TRIP) AT "WAVEFORM B" POINT ON FIGURE 28.
3. SCOPE NEGATIVE (GROUND) LEAD CONNECTED TO RED (CENTER-TAP) LEAD OF T1.
4. SCOPE VERTICAL SENSITIVITY 5V/CM.
5. SCOPE SWEEP RATE 5 MILLISEC/CM.

Figure 30. Control Module

Figure 31. Control Module, Electrical Parts

IM7

Figure 32. 1M5 and 1M7 Panel Meters

Figure 33. High Voltage Power Supply, Front View

Figure 34. High Voltage Power Supply, Top View

Figure 35. High Voltage Power Supply, Rectifier Stack

PARTS ORDERING INFORMATION

EQUIPMENT LOST OR DAMAGED IN TRANSIT

When delivering the equipment to you, the truck driver or carrier's agent will present a receipt for your signature. Do not sign it until you have (a) inspected the containers for visible signs of damage and (b) counted the containers and compared with the amount shown on the shipping papers. If a shortage or if evidence of damage is noted, insist that notation to that effect be made on the shipping papers before you sign them.
Further, after receiving the equipment, unpack it and inspect thoroughly for concealed damage. If concealed damage is discovered, immediately notify the carrier,
confirming the notification in writing, and secure an inspection report. This item should be unpacked and inspected for damage WITHIN 15 DAYS after receipt. Report all shortages and damages to RCA, Commercial Electronics Systems Division - Camden, New Jersey 08102 .

RCA will file all claims for loss and damage on this equipment so long as the inspection report is obtained. Disposition of the damaged item will be furnished by RCA.

FIELD ENGINEERING SERVICE

RCA Field Engineering Service is available at current rates. Requests for field engineering service may be addressed to your RCA Broadcast Field Representative
or the RCA Service Company, Incorporated - Broadcast Service Division - Camden, New Jersey 08102. Telephone 609-963-8000.

REPLACEMENT PARTS

When ordering replacement parts, please give Stock or Master Item (MI) Number, Description, and Symbol of each item ordered.

The part which will be supplied against an order for a replacement item may not be an exact duplicate of the original part. However, it will be a satisfactory replacement differing only in minor mechanical or elec-
trical characteristics. Such differences will in no way impair the operation of the equipment.

Emergency Service

For emergency service after workinghours, contact RCA Parts and Accessories, Telephone 609-963-8000.

LOCATION	ORDERING INSTRUCTIONS
Continental United States, including Alaska and Hawaii	Replacement Parts bearing a STOCK NUMBER should be ordered from RCA Parts and Accessories - 2000 Clements Bridge Road - Deptford, New Jersey 08096. Replacement Parts bearing a MASTER ITEM (MI) NUMBER should be ordered from RCA, Commercial Electronic Systems Division - Attention Commercial Service Camden, New Jersey 08102 or your nearest RCA Regional Office. Replacement Parts with NO STOCK or MASTER ITEM (MI) NUMBER are standard components. They are not stocked by RCA and should be obtained from your local electronics distributor.
Dominion of Canada	Order from your local RCA Sales Representative or his office or from: RCA Victor Company Limited, 1001 Lenoir Street, Montreal, Quebec.
Outside of Continental United States, Alaska Hawaii, and the Dominion of Canada	```Order from your local RCA Sales Representative or from: RCA International Divi- sion, Clark, New Jersey - U.S.A. - Wire: RADIOINTER Emergency: Cable RADIOPARTS, DEPTFORD, N.J.```

RETURN OF ELECTRON TUBES

If for any reason, it is desired to return tubes, please return them through your local RCA tube distributor, RCA Victor Company Limited, or RCA International Division, depending on your location.

Please do not return tubes directly to RCA without authorization and shipping instructions.

It is important that complete information regarding each tube (including type, serial number, hours of service and reason for its return) be given. When tubes are returned, they should be shipped to the address specified on the Return Authorization form. A copy of the Return Authorization and also a Service Report for each tube should be packed with the tubes.

LOCATION	
Continental United States, including Alaska and Hawaii	Local RCA Tube Distributor.
Dominion of Canada	Order from your local RCA Sales Representative or his office or from: RCA Victor Company Limited, 1001 Lenoir Street, Montreal, Quebec
Outside of Continental United States, Alaska Hawaii, and the Do- minion of Canada	Local RCA Tube Distributor or from: RCA International Division, Clark, New Jersey,
U.S.A., Wire: RADIOINTER	

PARTS IDENTIFICATION INFORMATION

GENERAL

The components listed in the parts list are identified by one of two methods depending on whether the component is a mechanical or electrical part. Mechanical parts are assigned a numerical symbol (12, 34, 233, 1XV102-14 etc.) that corresponds to the item number on the mechanical assembly drawing where that particular part is located. Electrical parts are assigned a standard electrical symbol and are listed in an alphanumerical sequence by major electrical assemblies (RF Assembly, Driver Assembly, Modulator Assembly, etc.). The illustrations in this book are keyed so that electrical and mechanical parts that are "called out" in the illustrations should always be consulted so that positive identification of the part can be made before referring to the parts list.

ELECTRICAL PARTS

In order to locate an electrical part in the parts list the following procedure is recommended:
a. Determine in which major electrical assembly the part is physically located.
b. With the use of the illustrations, positively identify the part and notate its symbol designation.
c. In the parts list, find the heading for the major electrical assembly.
d. Under the heading in " c " above, find the symbol designation in the Symbol column of the parts list. All pertinent ordering information and a brief description of the item will be found to the right of the symbol designation.

MECHANICAL PARTS

In order to locate a mechanical part in the parts list the following procedure is recommended:
a. Determine in which major mechanical assembly the part is physically located (RF Box, Basic Transmitter, Tube Socket Assembly, etc.).
b. With the use of the illustrations, identify the part and notate its numerical symbol designation.
c. In the parts list, find the heading for the major mechanical assembly.
d. Under the heading in " c " above, find the numerical symbol designation in the Symbol column of the parts list. All pertinent ordering information and a brief description of the item will be found to the right of the symbol designation.

REPLACEMENT PARTS

Symbol	Stock No.	Drawing No.	Description
1 K 19	219799	627511038	RELAY - OVERLOAD, INDICATOR
1k20	243452	3730704002	RELAY - Time delay
1 L 21	243453	3464157003	RELAY - AUXILIARY
1 k 22	243454	3456490001	RELAY - OVERLOAD, AUXILIARY
1 L 1	044559	901125001	REACTOR - LOW VOLTAGE FILTER
1L?	095794	949476001	REACTOR - LOW VOLTAGE FILTER
1 L 3			REACTOR
1L4	093658	949251001	REACTOR. BIAS
$1 \mathrm{M1}$	229781	993057 n66	METER - O-300 VOLTS AC
1 M 2	229782	993064001	METER - MULTIMETER
$1 M 3$ $1 M 4$	235725	993053177	METER - VOLT METER 3-10 KY DC METER - PART OF POWER DETERMINING KIT
$1 \mathrm{M5}$	243455	3467962001	METER - PELAY, REFLECTOMETER
$1 \mathrm{M6}$	229785	8489369002	INDICATOR - ELAPSED TIME
1 M 7	241749 231545	8766828005	METER - RELAY, REFLECTED POWER
	?31545	8766828021	REPLACEMENT LAMP FOR 1 MS OR IM 7
1 P 1	921359	1510013101	CONNECTOR - COAXIAL PI_UG
$1 P ?$	921359	1510013101	CONNECTOR - COAXIAL PLUG
$1 P 5$	055808	727969008	CONNECTOR - $\%$ TERM. FEMALE
$1 . P 6$ 1.97	n54254 21 ± 509	727969716 481799001	CONNECTOR - 12 TERM, FEMAIE
1 P 8	211509	48179901	CONNECTOR - AUDIO INPUT, IEFT
1 P 9	211509	48179901	CONNECTOR - SCA IN: 1
$1 \mathrm{P10}$	211509	481799001	CONNECTOR - SCA IN, 2
1P11	032661	878243001	CONNECTOR - EXCITER POWER
			RESISTORS - FIXED COMPOSITION, UNLESS NOTED
1R1	229786	8986541010	WIRE WOUNT, 34.5 OHMS 2 W
1 R 2	043783	99027 ก24	$\text { WIRE WOUND, } 20 \cap \text { OHMS 5\% } 25 \mathrm{~W}$
$1 \mathrm{R}^{1}$	229787	8986541011	WIRE WOUND, 1.94 OHMS 2 W
1 R 4	229786	8986541010	WIRE WOUND, 34.5 OHMS 2 W
185	229788	8986541013	WIPE WOUNT, 1.67 OHMS 2 W
1 R 6	229789	8541901001	WIRE WOUND, KOO, 000 OHMS $1 / 2 \mathrm{~W}$
1 R 7	229789	8541901001	WIRE WOUNT, 600 , 000 OHMS $\uparrow / 2 \mathrm{~W}$
1R8	229798	8986541013	WIRE WOUNT, 1.67 IHMS 2 W
$1 \mathrm{P9}$	044394	99037 433106	WIRE WOUND, 630 OHMS $5 \% 200 \mathrm{~W}$
1R10	205064	433196005	VARIABLE, 10,000 AHMS
1R11	417618	$433196 \sim 14$	VARIABLE, 10.000 OHMS
1R12 1813	215733 054678	$433196 \quad 051$	VARIABLE, 1.000 OHMS
1813 1814	054608 054608	99037 99037 9939	WIRE WOURT, 63n0 OHMS 5\% 200 W
2R15	044394	99037 ก29	WIRE WOUND, 630 OHMS $5 \% 200 \mathrm{~W}$
1R16	044394	99037 ก29	WIRE WOUNT, K30 OHMS 5\% 200 W
1817	019688	$99027 \quad 039$	WIRE WOUND, $53 \cap O$ OHMS $5 * 25 \mathrm{~W}$
1.F18	215540	890014×19	WIRE WOUND, 16.00 O OHMS 150 W
1R19	229790	415457 n2?	VARIABLE, 750 OHMS 25 W
1R20	219047	993007 ก21	WIRE WOUNT, 1.0 OHMS 5 W
1R21	220319	8702674512	WIRE WOUNS, 10 MEGOHM
1222	217614	8871557053	WIRE WOUNT, 1250 OHMS 1 W
$1 R 23$ $1 R 24$	522415	99126 n26	150.000 OHMS $20 \% 2 \mathrm{~W}$
1 P ? 5	206006	99037 م08	PFLLAY SHUNT PART OF POWER DETERMING KIT
1226	206006	99037 M08	WIRE WOUNT, 5 刀HMS $10 \% 2000 \mathrm{~W}$
1 R 17	206006	99037 r08	WIRE WOUND, 5 OHMS $10 \% 200 \mathrm{~W}$
$12 ? 8$	044394	99037 ก29	WIRE WOUNT, 637 OHMS 200 W
1229 1230	094885	993007 0.92	WIRE WOUNT, 3500 OHMS 5 W
TO			
1237	059941	$993007 \quad 8.86$	WIRE WOUMD, 1800 OHMS 5 W
1R38	243456	204777×24	VARIABLE, AONO OHMS 50 W
1.839	243457	99027 120	WIRE WOUND, RO OHMS 25 W
1940	2.43457	99027 「20	WIRE WOUNT, 80 OHMS 25 W
1.51	229792	8494316 P01	SWITCH - METFR
$15 ?$	220793	8494316002	SWITCH - NETFQ
1.53	229794	8494042001	SWITCH - METER

Symbol	Stock No.	Drawing No.	Description
154	229795	8434081006	BREAKER - CIRCUIT: DISCONNECT
155	229797	482740006	breaker - CIRCUIT, fllament
156	233450	3462708001	breaker - Circuita low voltage
157	229798	854337601	SWITCH- TRANSMITTER ON
158	229798	8543376001	SWITCH - TRANSMITTER OFF
159	229798	8543376001	SWITCH - PLATE ON
1510	229798	8543376001	SWITCH - PLATE OFF
1511	229798	8543376001	SWITCH - RAISE
1512	229798	8543376001	SWITCH - LOWER
1.513	217989	449661108	SWITCH - Single multiple trip
1514	054920	8881052 n 01	SWITCH - INTERLOCK
1515	054920	8881052001	SWITCH - INTERLOCK
151.6	054920	8881052001	SWITCH - INTERLOCK
1517	229799	8543375001	SWITCH - OVERLOAD RESET
1518	258043	8741338018	BREAKER - CIRCUIT
1519	229891	8486323501	SWITCH - GROUNDING
$15 ? 0$	229891	8486323501	SWITCH - grounding
1s?1	234486	3467618 003	SWITCH - AIR interlock
1 T 1	? 15512	8412123001	transformer - driver filament
1 T ?			TRANSFORMER - POWER AMPLIFIER FILAMENT PART OF MI-560346
$1{ }_{1} 1$	216993	8413463001	transformer - Filament, buck boost
$1{ }^{1} 4$	218276	$457084 \mathrm{nO1}$	transformer - variable filament
$1 \mathrm{~T}^{5}$		8763254001	transformer - variable, low voltage
	231816		BRUSH ASSEMBLY
	231817		COIL - ONLY, WITH LEADS
	231818		MOTOR - 1 TS
	922553		RESISTOR
$1 \mathrm{C12}$	231815		CAPACITOR
1 1TS	922556	8486317 nu1	SWITCH - LIMIT
197	?29801	8489386701	TRANSFORMER - qIas
$1{ }^{18}$	229802	8489377 ก11	transformer - CONTROL
90n51	226123	8522913903	indicator - Driver overload carrier off
$1 \times n 5 ?$ $1 \times n 53$	270023	8522913 8522913	INDICATOR - POUER AMPLIFIER OVERLOAD iNDICATOR LOW VOITAGE OVERLOAD/VSWR OVRLD
$1 \times n 53$ $1 \times n 50$	226123 270023	8522913 8522913	INDICATOR - LOW VOI TAGE OVERLIAD/VSWR OVRLD indicator - platF on
1xnse $1 \times n \mathrm{~s}$	270023 760851	8522913 8522913 104	INDICATOR - plate on INDICATOR - Monr interlock
1 x ¢ ${ }^{\text {a }}$?7nuア3	8522913 ก114	Indicator - transmititer on
1 x 1957	$77 n 023$	8522913004	INDICATOR - DONER RAISE
1×759	270023	8522913004	INDICATOR - POWER LOWER
$1 \times \mathrm{x}$ ¢ 9	770023	8522913004	Indicator - trainsmitter off
9xasto	270023	8522913714	Indicator - plate off
171.	2.29803	8483890 n04	RECTIFIER - 3iAs
177		$3462813=01$	RECTIFIER ASSEMSLY
	23n913	8498732 nu4	RECTIFIER - IESS plate
17.3		3462813501	RECTIFIER ASSEMRLY
	230913	849873 ? 014	rectifier - LESS plate
17^{4}	23n913	$\begin{aligned} & 3462813=011 \\ & 849873 ? ~ 004 \end{aligned}$	PECTIFIER ASSEMBLY RECTIFIfR - LESS pLatE
	$\begin{aligned} & 1 \mathrm{ZZ}, 1 \mathrm{Z} \\ & \text { MOUNTED } \end{aligned}$	124 EACH CO AN INSULATED	STS OF 2 RECTIFIER MODULES NTING PLATE.
175	229898	8729668005	DIRECTIONAL COIJPLER - POWER OUTPUT/VSWR PART OF M1-560508
178	2.43753	3730764 A11	CONTROL MONULE
1.27	243470	3467965 013	DIRECTIONAL COIPLFR - REMOTE POWER PART OF MI-560346
17.8	243778	3484019 P03	DIRECTIONAL COIPLER - I.P.A. INPUT MATCH
	767876		miode - rectifier typf in?1b, for use in of pertional couplars
MECHANICAL PARTS			P/L 8521306-503 REV 19
180	260689	85229150101	GARRIER - Short, for mispiay screen switch

Symbol	Stock No.	Drawing No.	Description
109	153325	99045005	CLIP - FUSE, FOR TR2, 1R17
$1 \Gamma^{2}$	057717	7862770 nu1	CLIP - FISSF, FПR IR9, 1R13 THRU 1R16, 1R18,
71	225125	888488×15	FILTER 1225 THRU -R刀8
93	055081	426762 912	INSULATOR - STEATITE-CONICAL, 3 IN LG
$0 \cdot 6$	211371	426766 n 16	INSULATOR - STFATTTE,1/2 IN DIA X. 75 IN LG
110	213360	426773 n15	INSULATOR - STFATTTE, 3/4 IN SQX 2.5 IN LG
111	$? 09664$	426773 nat	INSULATOR - STSATITE,3/4 IN SO $\times 1.25$ IN LG
124	208115	426765 ก09	INSULATOR - STEATITE,3/8 IN DIA X.75 INLG
1.36	? 17657	426771 n12	INSULATOR - STEATITE, $3 / 8$ IN SQX 1 INLG
197	227806	8540155 n01	KNOB - FMR 1 T4
101	220807	1510900 ? 18	KNOB - FOW 1R19
$11^{10} 2$	229808	1510909817	KNOB - FOE 1Q19, 1R11 AND 1R1?
$1 \cap 3$	$23 \cap 436$	8765773501	KNOB ASSEMBLY - FOR 1S2
1 ก4	230438	8765773513	KNOB ASSEMRLY - FOR 151
155	243900	8765773504	KNOB ASSEMBLY - FOR 153
755	246731	8765773509	KNOB ASSEMRLY
? 64	244728	8765773505	KNOB ASSFMBLY
? 67	24ム729	8765773506	KNOB ASSFARLY
160	233492	8494328 n01	METER - MANOMETER
	233493		OIL - MAMOMETER
179	229809	8494089001	SCREEN - II SPLAY DOOR INTERLOCKS
180	229810	8494089702	SCREEN - DISPLAY TRANSMITTER OFF
181 182	?29892	8494089 n03	SCREEN - DISPLay transmitter on
1.87 1.8 .3	229811 220893	8494089004 84940890115	SCREEN - TISPLAY PLATE OFF
	$? 43449$	3464091 O08	SCREEN - IISPLAY PLATE ON
185	729813	$8494089 \rightarrow 07$	SCREEN - DISPLAY POWER AMP OVERLOAD AND RESET
	2.43450	3464091709	$\begin{aligned} & \text { SCREEN - DTSPLAY, L.V. RECT. OVERLOAD, } \\ & \text { VSWR OVERLOAD } \end{aligned}$
187	229815	8494089009	SCREEN - ITSPLAY POWER LOWER
189	220816	8494089 O10	SCREEN - DISPLAY POWFR RAISE
178	233868	480368 not	Stud - Fastener, meter panel
177	233869	8886047 ก03	WASHER - METFR PANEL STUD
			RF BOX ASSEMBLY
ELECTRICAL	PARTS		P/L 8543106-503 REV 8
			CAPACITORS
10101	230423	8971908003	VARIABLE, 4.5-102 MMF
1.C1u?	214695	8821367002	CERAMIC, 50 MMF 7500 V
$1 \mathrm{ct03}$	214638	8864187007	STANDOFF, 1000 MMF 500 V
10104	214638	8864187 067	STANDOFF, 1000 MMF 500 V
10105			PART OF $1 \times V 101$
10106	211196	459684 ก 41	PAPER, OO1 MF 600 V
16107	211196	$459684 \cap 41$	PAPER, OO1 MF 600 V
10108	$? 19196$	459684 ก41	PAPER, .001 MF 600 V
10109	211196	459684041	PAPER. . OO1 MF 600 V
1 C 110	211148	8907717001	FEED-THRU. . 001 MF 5000 V
10111	223209	8518096 ח01	CERAMIC, 0.001 MF 5000 V
1.c11?	217721	8849438 ก14	VACUUM, 3.30 MMF 10.000 V
$1 C 113$ 1.114			PART OF PONER METERMINING KIT
$9 \mathrm{Cl15}$	236759 054643	8889785002 8881825001	FEED-THRU, $100 \cap$ MMF 2000 V
10116	054643	$8881825 \quad 001$	PAPER, PAPE, 01 MF 250 V 250 V
$1 \mathrm{C117}$			PART OF $1 \times V 102$
$1 \mathrm{C1} 18$	236759	8889785002	FEED-THRU, 1000 MMF 2000 V
$1 \mathrm{C919}$	230419	8494421001	FEED=THRU, $1500 \mathrm{MMF} 15,000 \mathrm{~V}$
1. 120	076488	940173102	CERAMIC. 500 MMF 30.000 V
16.121	211196	459684041	PAPER, .001 MF 600 V
$1 \mathrm{C}, 22$	211196	459684041	PAPER, O01 ME 600 V
1C123	230422	8849438039	VARIABLE, 8-110 MMF $7,5 \mathrm{KV}$
$1 C 124$ 1.2125	235990 235990	8521332022	VACUUM, 25 MMF 7500 V. FOR FREQ 88.1 THRY 91.9. MHZ
1. 1.25	235990	8521332022	VACUUM, 25 MMF 7500 V , FOR FREO

Symbol	Stock No.	Drawing No.	Description
1. $\mathrm{x} \cup 1 \mathrm{l}$	243469	464586 P05	SOCKET $=7 ? 03 / 4 V^{\prime} \times 250 \mathrm{~B}$
1xv102	236438	3471557502	SOCKET ASSSMRLY - TURE, 4CX15000A
$1 \times \vee 102-46$	225091	8465194601	CONTACT ASSENBLy - SCREFN, GRID CCLIET, ? REQUIRFU PER SOCKET
1xV102-03	220958	644382 r04	CONTACT - CONTROL GRID
1xV102-04	220959	54438 ? 50.5	CONTACT - OUTER FILAMENT
1XV102-115	220960	644382 Pof	CONTACT - INAER FTLAMENT
1XV102-15	225081	8446964 ก02	CADACIT: - SILVER MICA, C117A
1 XV102-15	225091	8446964 P02	CAPACITOQ - SILVER MICA. C1178 C117-DESIGAED
1XV102-15	225081	8446954 n02	
1XV102-15	?25081	8446964 ?02	
1 \times V102-15	225091	8446954 -02	CAPACITAD - SILVFR MICA. C145A)
1 XV102-15	225081	8446964 ค02	CADACITOQ - CILVER MICA, C145日 C145-DESIGNED
1 XV102-15	225081	8446964002	CAPACITIO - SILVER MICA, C145C IN 4 SEGMFMTS
1XV102-15	225081	9446934 M0?	CADACITAT - CILVER MICA. C1450) N-
1XV102-49	232298	3462635501	CONTACT ASSFARLY - PART OF 1L113 SLIDI仿 ADJUSTMENT
$1 \times V 102-45$	236512	3467564-501	BASE ASSEMBLY, SCREEN GRID COLLET
1XV102-48	232311	3462634 O1.	SPACER OT OF 1 L1 13 SEMI-FIXFD ATJJUSTMENT
1XV102-47	232302	3462634 00?	SPACER PT OF 14113 SEMI-FIXFD AIJJUSTMENT
1XV102-09	225106	8519978 ¢01	PING - IASULATOR
1xV102-10	225087	8863044 ก07	WASHER - TFFLON BUSHING
1xV102-11	233405	8519977 ח04	INSULATOR - OOST, 1/2 19IAX.655 INLG
1XV102-16	ก97459	426763003	INSULATOD - V55w4004, BOTTOM OF SOCKET
1XV102-39	217719	426763 nu9	INSULATIP - NS5W4003, TOP OF SOCKET
1XV102-41	$? 0811.5$	426765 ¢09	INSULATIT - IS5:0106
MECHANICAL PARTS			P/L 8541907-504 REV 14
11	230429	8761072001	SHELF $=$ UPDER, FOP C113
	243458	8486379001	SUPPORT - PLASTIC, MOUNTS. STOCK NO 2.30429,
	243459	8486379003	SUPPORT - PLASTIC. MOUNTS. STOCK NO ?30429,
	243473	8494379001	SUPPORT - PLASTIC, MOUNTS; STOCK NO 230429 , LEFT SIDE
22	099933	464586003	CHIMNEY $=$ FOR I XV+01
	243460	3467932001	SHORTING - RAIL, PART OF 1 L105
	230433	8766808002	PLATE PACKING, PART OF 1 L105
	230432	8766808001	PLATE - RACKING, PART OF ILIIG
	243471	3464209503	LEAD SCREN ASSY - PART OF 1L105 OR 1L106
	243462	3456357 ก01	GUIDE - STRIP, PART OF 1L105 OR 1L106
	243461	3730738001	RING - SPACER, USFD UNDER 1C1.3
	243463	3456428 n01	BLOCK - SPACER, USED AT BOTTOM OF OUTPUT LINE ASSEMBIY
39	230424	8468301501	CONTACT ASSEMBLY-FOR 1L105 AND 1L106
	243472	69273183	BRASS STUD $=1 / 4-20 \times 2.75 \mathrm{LG}, \mathrm{PART}$ OF
42	230435	8766820501	OUTPUT LINF ASSEMRLY 1 AND 1 L 106
159	211091	426767 118	INSULATOR - ? REQD, $3 / 4$ DIA X 3.00 IN LG PART OF 1 P106 HARMONTC SUPRESSOR
160	231640	426767015	INSULATOR - STEAT., $3 / 4$ IN DIA X 2.50 LG PART OF 1 R107 HARMONIC SUPRESSOR
54	233872	480368007	STUD - FASTENER, DONR UPPER
55 57	233869	8886047003	WASHER - RETAINING, DOOR STUD
57	233871	480368008	STUD - FASTENER, DOOR MIDDLE
58	233870	480368010	STUD - FASTENER, DOOR BOTTOM
59	230430	8761074501	CONTACT ASSEMBLY - DOOR. 15.75 LONG
60	230431	8761074502	CONTACT ASSEMBLY - DOOR, 37.00 LONG
63	233834	433422506	DIAL - ASSEMBLY
68	233835	748586012	DRIVE - RIGHT ANGI.E

Symbol	Stock No.	Drawing No.	Description
69		8494371501	COUNTER ASSEMBLY
4	220304	8986503002	COUNTER
7	097461	8827138002	GEAR - MITER
8	212531	8914895501	GEAR ASSEMALY - INCLUDES MITER GEAR AND BRASS BUSHING
10	922202	8513284001	JOINT - IJNIVERSAL
117	235298	748586 n13	DRIVE - RIGHT ANGLE, DRIVFS 11.105. 1L.06
70		8494371502	COUNTER ASSEMBLY
11	220303	8986503001	COUNTER
7	097461	882713800	GEAR - MITER
8	212531	8914895501.	GEAR ASSFMBLY - INCLUDES MITER GEAR AND BRASS RISHING
10	$9222 \pi 2$	8513284001	JOINT - INNIVERSAL
72	922272	8513284 ก01	DRIVE FOR 1 L 105 AND 11.106
75	235436	1510920017	KNOB - PA DLATE TINING OR PA OUTPUT LIMDING
76	208711	8898610101	COUPLING - Insulaten, flexible
79	211370	426772 203	INSULATOR - STEAT: $1 / 2$ IN SQ $\times .75$ IN LG
80	211423	426765003	INSULATOR - STEAT. $3 / 9$ IN DIA X, 50 IA LG
86	23n425	8491388503	CABLE ASSFMRLY (Connects 1XV102 to 1C115 and 1C116
87	230478	8544458001	RETAINER 2 required)
107	226714	3450782 ก03	CONTACT - FINGERS: TOOR
10^{1}	215854	8413444501	CONTACT - ASSEMBLY, DOOR 4.88 INCHES I ONG
	$? 43464$	$854443550 ?$	JUMPER CAPI.E ASSY - JUMPERS DOOR HINGFS
38	243890	8489378501	```PLATE - CMNTACT FINGER MOINNTING, FOR 1L105 ANT 1LIO6```
33	243903	8494375002	BLOCK - SPACER, FOR TOP OF 1L105
32	243904	8494375 ก11	RLOCK - SPACER, FOR TOP OF 1L106
52	243889	8543110 n01	DODR - HIYGE, FOR RF ROX
1.36	243899	3475614001	CONE - AIR GUIDE, FOR $1 \times V_{1} 02$
1L111			INDUCTOR - VARIABIF, FRONT
101	243892	3455763001	SHORTIMG BLOCK, RR. 9 MH7 TO 105.9 MHZ
101	243891	3455763 no2	SHORTING GLOCK, 106.1 MHZ TO 107.9 MHZ
10?	243893	3455135001	$\begin{aligned} &{ }^{\text {SLATE }}= \text { GYTD TUNING INDUCTOR, } \\ & \text { QH. } 1 \mathrm{MHT} \text { TO } 89.9 \mathrm{MH7} \end{aligned}$
10?	2.43894	3455764 ก11	$\begin{aligned} \text { PLATE }- & \text { GRID TUMING INDIJCTOR, } \\ & 90.1 \text { MHT TO } 105.9 \mathrm{MHZ} \end{aligned}$
10?	243896	3462964001	$\begin{aligned} \text { OLATE - } & \text { RRID TUNING INDUCTOR, } \\ & 106.1 \text { MH7 TO } 1 \text { O7.9 MHZ } \end{aligned}$
1 L11?			INDUCTOR - VARIABIE, QFAR
101			$\begin{aligned} & \text { NOT USEO - SHOFTING GLOCK, } 88.1 \mathrm{MHZ} \mathrm{TO} \\ & 89.9 \mathrm{MHZ} \end{aligned}$
101	243892	3455763001	SHORTIMA HLOCK, 9\%.1. MH7 TO 105.9 MHZ
101	243891	3455763002	SHORTING BLOCK, 106.1 MHZ TO 107.9 MHZ
103			$\begin{aligned} & \text { VOT USF: - PLATF - GRID TUNING TNDUCTOR, } \\ & 89.1 \mathrm{MHZ} \mathrm{TO} 89.9 \mathrm{MHZ} \end{aligned}$
1.03	24.3895	3455764 no?	$\begin{aligned} \text { DLATE } & =\text { GPID TUAING INDICTOR, } \\ & 00.1 \mathrm{MH7} \text { TD } 105.9 \mathrm{MHZ} \end{aligned}$
103	243896	3462854001	PLATE - GQTI TUMING INDICTOR, HAS. MH7 TO 107.9 MHZ HAPYONIC GUPQESSOR. INCLUNES 1 RIOG
134	243897	3455147001	TUFIVG - 2 RFOUTRFD. $11 / 8 \mathrm{TIA} \times 83 / 8 \mathrm{LG}$
133	243898	3455156 ก01	CLAMP - ? PFOUIPED RESISTOR - 1.q10n, SEE EIECTRICAL PARTS HAZYONIC GIPJESSOL, INCLUNES 1R107
134	243897	3455147001	TUBIVG - 2 REOリPFE, 1 1/8 IIA \times ¢ $3 / 8$ LG
133	243898	3455156701	CLAMP = ? PERUIRET
160	231640	426767 015	INSULATMT - 2 RFOD, $3 / 4$ DIA X 2.50 INLG RESISTAH - 12107, SEE FIECTRICAL PARTS
			POWER DETERMINING COMPONENTS MI-560508
1 C 7	$2203 ? 8$	$9910194 \quad 551$	PADER, HISH VOLTAGE FILTER $3 \mathrm{MF} 10 \% 7500 \mathrm{~V}$
$1 \mathrm{C1} 0$	210004-4	36091523	MICA, METER ZYDASS, 010 MF 2n\%
1L3	229894	8494093001	REACTOR - HITH V OI TAGF FIITER
1 M 4	229895	993052153	AMMETES - PLATF
1R24	229896	8491308 ก03	RELAY SHIU:

Symbol	Stock No.	Drawing No.	Description
1 「2	217021	8411065002	TRANSFORMFR - P.A. FILAMENY
1C113	229897	8642607501	P. A. BLOCKING
125	229898	8729668005	REFLECTOMETER
	229899	8491388504	CONNECTOR - FILAMENT (Connects 1T2 to 1C115-8 in. long)
	229900	8491388505	CONNECTOR - FILAMENT (Connects 1T2 to 1C116-11 in. long)
	233726	897258005	CLAMP $-31 / 16$ TO 4 IN D!A.
127	243693	3467965001	DIRECTIONAL COUPLFR
10148	214696	8821367004	100 PF 7500 y
			POWER SUPPLY M1-560342-1
			P/L 8543385-503 REV 37
DSIA	300449	8890654002	LAMP
OS1B	300449	8890654102	LAMP
DS2A	300449	8890654002	LAMP
DS?B	300449	8890654102	LAMP
J1	234932	8537328002	CONNECTOR - FEMALE, JACK
$J 2$	229888	8537351001	CONNECTOR - MALE PLUG
$J 3$	229888	8537351 n01.	CONNECTOR - MALE PLUG
J4	229888	8537351 n01	CONNECTOR - MALE PLUG
J5	229888	8537351001	CONNECTOR - MALE PLUG
J6	229888	8537351001	CONNECTOR - MALE PLIIG
K1	229889	8494319001	```CONTACTOR - 110 V 60 CYCLE COIL - 110 VAC, 60 CYCLE CONTACTS - MOVARLE, WITH SPRINGS CONTACTS - STATIONARY```
	232488		
	232489		
	232490		
R1	059941	993007×86	RESISTOR - WIRFWOUND. 1800 OHMS 5 W
22	059941	993007086	RESISTOR - WIREWOUND. 1800 OHMS 5 W
$\bigcirc 1$? 17623	8434081001	CIRCUIT - BREAKER, 50A
52	229890	8434081004	RREAKER - CIRCUIT, I.OW POWER 30 A
53	054920	8881052001	SWITCH - INTERLOCK
54	229891	8486323501	SWITCH - GROUNDING
$\times \mathrm{DS1}$	269851	8522913001	SOCKET - INDICATOR I.IGHT
$\times 0.52$	269851	85?2913 001	SOCKET - Indicator light
71	MI - 56034		RECTIFIEF ASSEMBLY
15.1	259689	8522915001	BARRIER - SHORT, FOR MS1 AND DS?
1.37	055081	$42676 ?$?1?	InSULATOR - STEATITE, CONICAL 3 In lorig
13^{8}	ก97457	426767 -03	INSULATOR GTEATITF, $3 / 4$ IM DIA $\times 1$ IN LONG
1.41	210323	889062 H H01	RING - SVAP, FOR RETAINING LOCK
1.49	229872	8494089003	SCREEN - IISPLAY, FOR OS2
150	?29803	8494080905	SCREEN - DTSDLAY, FOR DS1
136	097488	834180 ก10	SHOCK - MOIINT
			RECTIFIER MI-560340-1
			P/L 8626948-502 REV 4
221		862694: $50 ?$	QECTIFIER - ASSEMRLY
9	211081	426767018	INSULATHR - 3 Inches long
1.0	209928	42676* 21	InSUlator - 5 Inches Long
11	230439	8537349001	JACK
14	230440	8494409001	RECTIFIEP
			BLOWER MI-560347-1
	231512	$864266 ? 709$	MOTOR ONLY
			BLOWER MI-560347-2
1 R ?	231512	$864266 ? 709$	BLOWER - MOTIR ONI, FOR MI56п347-2

RECOMMENDED STATION SPARES

Description	Symbol	Quantity	Stock No.
Capacitor, ceramic, $500 \mathrm{uuF}, 5000 \mathrm{~V}$	1C140 thru 1C143	1	232610
Capacitor, ceramic, $1500 \mathrm{uuF}, 3500 \mathrm{~V}$	1 C 144	1	209906
Capacitor, feed-thru, $1000 \mathrm{uuF}, 2000 \mathrm{~V}$	1C144, 1C118, 1C147	1	221716
Capacitor, feed-thru, . $001 \mathrm{uF}, 5000 \mathrm{~V}$	1 C 110	1	211148
Capacitor, feed-thru, $1500 \mathrm{uuF}, 15,000 \mathrm{~V}$	1 C 119	1	230419
Capacitor, paper, . 001 uf, 600 V	1C106 thru 1C109 1C121, and 1C122	2	211196
Capacitor, paper, $6 \mathrm{uF}, 2500 \mathrm{~V}$	1 C 5	1	229778
Capacitor, paper, $3 \mathrm{uF}, 7500 \mathrm{~V}$	1C7, 1C8	1	220328
Capacitor, silvered mica	1C117A thru D, 1C145A thru D (Part of 1XV102)	4	225081
Capacitor, stand-off, $1000 \mathrm{uuF}, 500 \mathrm{~V}$	1C103, 1C104, 1C127, 1C128, 1C129, 1C131, 1C132, 1C133, 1C134, 1C136 thru 1C139	6	214638
Capacitor, vacuum, $40 \mathrm{uuF}, 7500 \mathrm{~V}$	1C124*, 1C126*	1	227938
Capacitor, vacuum, 25 uuF, 7500 V	1C125*, 1C126*	1	235990
Lamp (for use in optic meter relay)	Part of 1M5 or 1M7	3	231545
Capacitor, PA plate blocking	C113	1	229897
Contact Assembly, PA plate blocking	Part of 1C113	2	217658
Contact, control grid	Part of 1XV102	1	220958
Connector filament	Part of 1XV102	1	229899
Connector filament	Part of 1XV102	1	229900
Contact, PA neutralizing slider	Part of 1L113	3	232298
Spacer (used with Stock No. 232298)	Part of 1L113	3	232301
Filter	Air filter for 1B2	3	225125
Lamp, indicator	1DS1A thru 10S6B and 2DS1A thru 2DS2B	3	300449
Rectifier Stack	Part of Rectifier $2 \mathrm{Z1}$	1	230440
Individual diode module for 2Z1 (right hand)	Part of Rectifier 2Z1	6	234179
Individual diode module for $2 \mathrm{Z1}$ (left hand)	Part of Rectifier $2 \mathrm{Z1}$	6	234180
Rectifier, low voltage (Diode Module only)	1Z2, 1Z3, and $1 \mathrm{Z4}$	3	230913
Rectifier, bias	1Z1	1	229803
Contact Assembly (contacts mounted on metal strip for 1L105, 1L106)	Part of 1L105, 1L106	4	230424

*Values of 1C124, 1C125, 1C126 vary with frequency.

PT.	A	RCA TYPE NO.	WORKING P.R.V.	TRANSIENT MAXIMUM FORWARD P.R.V. CURRENT $50^{\circ} \mathrm{C}$		
1	17	CR 232	8.4 KV	11.2 KV	$\begin{aligned} & 6.0 \mathrm{~A} \\ & 5.4 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 1 \phi \\ & 3 \varnothing \end{aligned}$
2	22	CR233	11.4 KV	15.2 KV	$\begin{aligned} & 6.0 A \\ & 5.4 A \end{aligned}$	$\begin{aligned} & 1 \varnothing \\ & 3 \varnothing \end{aligned}$

Figure 42. High Voltage Plate Transformer Terminals

Drawing No.	Stock No.	Style	Dimensions In Inches					Tap Size
			A	B	C	D	E	
426762-12	55081	3	3.0	3/4	1-1/2	3/8	-	10-32
426763-3	97459	4	0.425	3/4	1/2	15/32	-	-
426765-3	211423	1	$3 / 8$	1/2	0.16	-	0.173	6-32
426765-9	208115	1	$3 / 8$	3/4	1/4	-	-	6-32
426766-6	211371	1	1/2	3/4	1/4	-	-	8-32
426767-3	97457	1	3/4	1.0	3/8	-	-	10-32
426767-12	209091	1	3/4	2.0	3/8	-	-	10-32
426767-18	211081	1	$3 / 4$	3.0	3/8	-	-	10-32
426768-21	209928	1	1. 0	5.0	5/8	-	-	1/4-20
426771-12	217658	2	3/8	1/0	3/8	-	-	6-32
426772-3	211370	2	1/2	3/4	1/4	-	-	8-32
426773-6	209664	2	3/4	1-1/4	3/8	-	-	10-32
426773-15	213360	2	$3 / 4$	2-1/2	3/8	-	-	10-32
8519977-4	233495	1	1/2	0.656	0.22	-	-	8-32
426767-15	231640	1	3/4	2-1/2	$3 / 8$	-	-	10-32

Figure 44. Insulator Data

Ceramic-Metal Seals Coaxial-Electrode Structure Compact Design

7203/4CX250B
BEAM POWER TUBE
This bulletin also applies to RCA$7204 / 4 \mathrm{C} \times 250 \mathrm{~F}$ which is identical with RCA-7203/4CX250B except for its heater rating of $26.5 \pm 10 \%$ volts, 0.58 ampere. The 7204 is unilaterally interchangeable with the $4 \times 250 \mathrm{~F}$ and bilaterally interchangeable with the 4 CX 250 F .

7204/4CX250F

For Use at Frequencies up to 500 Mc Forced-Air Cooled
400 Watts CW Output to 175 Mc 250 Watts CW Output at 500 Mc

2.464" Max. Length
1.640" Max. Diameter Integral Radiator

RCA $-7203 / 4 C \times 2508$ is a very small and compact forced-air-cooled beam power tube constructed with ceramic-metal seals throughout and having a maximum plate dissipa-
 tion of 250 watts. $1 t$ is intended for service as an af power amplifier and modulator, a wideband amplifier in video applications, a linear rf power amplifier in single-sideband sup-pressed-carrier equipment, and a class C amplifier and oscillator. The 7203 can be used with full ratings at frequencies up to 500 megacycles per second.

The ceramic-metal-seal construction employed in the 7203 permits operation at higher temperatures than a glass-seal construction and thus provides improved reliability. The specially designed, high-efficiency radiator which is brazed directly to the plate for better heat transfer, makes possible the maximum plate-dissipation rating of 250 watts with no sacrifice in tube reliability.

The terminal arrangement of the 7203 facilitates use of the tube with tank circuits of the coaxial type. Effective isolation of the output circuit from the input circuit is provided at the higher frequencies by the ring terminal for grid No.2. A base-pin termination forgrid No. 2 is also available for operation of the 7203 at the lower frequencies.

The 7203 is unilaterally interchangeable with the $4 X 250 B$ and bilaterally interchangeable with the 4 CX 250 B.

gENERAL DATA

Electrical:

Heater, for Unipotential Cathode:

Mu-Factor, Grid No. 2 to Grid No. 1.
for grid-No. 2 volts $=300$ and
grid-No. 2 ma. $=50$. 5.0
Direct interelectrode
Capacitances (Approx.) :
Grid No. 1 to plate.
Grid No. 1 to cathode, grid No.2. and heater
$\mu \mu f$
Plate to cathode, grid No.2,
and heater $4.4 \quad \mu \mu \mathrm{f}$

Mechanical:

Operating Position Any
Maximum Overall Length 2.464^{n}
Maximum Seated Length. 1.910^{n}
Maximum Diameter 1.640^{n}
BaseSpecial 8-Pin
Socket and Air-System Socket, such as Sk-600品

Radiator
. . . Integral part of tube
Air Flow:
Through Indicated Air-System Socket--This fittingdirects the air over the base seals; past the grid-No. 2 seal. envelope, and plate seal; and through the radiator to provide effective cooling with minimum air flow. When provide effective cooling with minimum air flow. When each class of service, a minimum air flow of 3.8 cfm through the system is required. The corresponding pressuredrop is approximately 0.3 inch of water. These requirements are for operation at sea level and at an amblent temperature of 200 C . At higher altitudes and ambient temperatures, the air flow must be increased to maintain the respective seal temperatures and the plate temperature within maximum ratings.
Without Air-System Socket--tf an air-system socket is not used, it is essential that adequate cooling air be directed over the base seals, past the envelope, and through the radiator. Under these conditions and with the tube operating at maximum plate dissipation for each class of service, a minimum air flow of 3.6 cfm must pass through the radiator. The corresponding pressure drop is approximately 0.1 inch of water. at an ambient temperature of 200 C . At nigher al tudes and ambient temperatures, the air flow must be increased to maintain therespective seal temperatures and the plate temperature within maximum ratings.
Plate Temperature (Measured on base
end of plate surface at junction
with fins)

250 max.	${ }^{\circ}{ }_{C}$
250 max.	${ }^{\circ}{ }_{C}$
4	ounces

Weight (Approx.) 4 ounces

[^2]

Maximum Circuit Values:

Grid-No.1-Circuit Resistance (Per tube). 0.1 max. megohm

Synchronizing-level conditions per tube unless otherwise specified				
Maximum CCS ${ }^{\text {® }}$ Ratings, Absolute-Maximum Values: ${ }^{\text {\# }}$				
54 to 216 Mc				
DC PLATE VOLTAGE 2000 max. volts				
$\begin{gathered} \text { DC GRID-No. } 2 \\ \text { VOLTAGE. } \end{gathered}$	400 max.			volts
$\begin{gathered} \text { DC GRID-NO. } 1 \\ \text { VOLTAGE. } \end{gathered}$	-250 max.			volts
DC PLATE CURRENT (Average) ${ }^{\text {© }}$	250 max.			na
PLATE DISSIPATION.	250 max.			watts
GRID-NO. 2 DISSIPATION.	12 max.			ats
GRID-NO. 1 DISSIPATION.				atts
PEAK HEATER-CATHODE VOLTAGE:				
Heater negative with respect to cathode 150 max.				volts
Heater positive with respect to cathode	150 max.			volts
Typical CCS Operation with Bandwidth of 5 Mc :				
OC Plate Voltage	1000	1500	2000	volts
DC Grid-No. 2 Voltage	350	350	350	volts
DC Grid-No. 1 Voltage	-60	-65	-70	volts
Peak RF Grid-No. 1 Voltage:				
Synchronizing level.	65	71	76	olts
Pedestal level	52	57	62	olts
OC Plate Current:				
Synchronizing level.	355	360	360	ma
Pedestal level	250	250	250	ma
DC Grid-No. 2 Current:				
Synchronizing level.	27	29	29	ma
Pedestal level	4	0	0	ma
DC Grid-No.1 Current:				
Synchronizing level.	2	5	5	ma
Pedestal level	0	0	0	ma
Driving Power (Approx.): \downarrow				
Synchronizing level.	0.4	1.2	1.2	atts
Pedestal level	0	0		watts

Power output (Approx.):
Synchronizing level.
Pedestal level
Ped

LINEAR RF POWER AMPLIFIER Single-Sideband Suppressed-Carrier Service

dC Plate voltage	2000 max.	volts
DC GRID-NO. 2 VOLTAGE	400 max.	volts
max.-SIGNaL dC Plate current	250 max.	ma
PLATE DISSIPATION.	250 max.	watts
GRID-NO. 2 DISSIPATION.	12 max.	watts
PEAK HEATER-CATHODE VOLTAGE:		
Heater negative with respect to cathode	150 max.	volts
Heater positive with respect to cathode.	150 max.	vol ts

Typical CCS Class $A B_{1}$ ningle-	Operation up to 175			Mc:
DC Plate Voltage	1000	1500	2000	volts
DC Grid-No. 2 Voltage \ddagger.	350	350	350	Ol ts
DC Grid-NO. 1 voltage	-55	-55	-55	volts
Zero-Signal DC Plate Current	83	83	83	a
Zero-Signal DC Grid-No. 2 Current	0	0	0	a
Effective RF Load Resistance	1650	3000	4350	ohms
Max.-signal OC Plate Current	250	250	250	
Max.-Signal DC Grid-No. 2 Current	5	4	4	
Max.-Signal Peak RF GridNo. 1 Voltage	47	47	47	vol
Max.-Signal Driving Power (Approx.).	0	0	0	at
Max.-Signal Power output (Approx.).	110°	200	295	wat

Typical CCS Operation with "Two-Tone Modulation"

			t	Mc
DC Plate voltage	1000	1500	2000	volts
OC Grid-No. 2 Voltaget.	350	350	350	volts
OC Grid-No. 1 Voltage**	-55	-55	-55	volts
Zero-Signal DC Plate Current	83	83	83	ma
Effective RF Load Resistance	1650	3000	4350	ohms
DC Plate Current at Peak of Envelope.	250	250	250	ma
Average DC Plate Current	175	175	175	ma
DC Grid-No. 2 Current at Peak of Envelope.	30	30	30	ma
Average DC Grid-No. 2 Current	6	9.5	15	ma
Average DC Grid-No. 1 Current	0	0	0	ma
Peak-Envelope Driver Power (Approx.).	1	1	1	watt
Output-Circuit Efficiency (Approx.).	95	95	95	\%
Distortion Products Level: ${ }^{\text {c }}$				
Third order.	29	29	30	db
Fifth order.	40	38	35	db
Useful Power output (Approx.):*				
Average. .	55	100	147.5	watts
Peak Envelope.	110	200	295	watts

Maximum Circuit Values:

Grid-No.1-Circuit Resistance Under Any Condition:
With fixed bias. 25000 max. ohms

With cathode bias.Not recommended
PLATE-MODULATED RF POWER AMP.-Class C Telephony
Carrier conditions per tube for use with a max. modulation factor of 1.0
Maximum CCS^{\bullet} Ratings, Absolute-Naximum Values: \#
op to 500 Mc
DC PLATE VOLTAGE
DC GRID-NO. 2 VOLTAGE
1500 max.
300 max.
DC GRIO-No. 1 VOLTAGE
-250 max.
c Plate current
200 max.
volts
volts
volts

Typical CCS Operation at Frequency of 500 Mc with


```
Maximum Circuit Values:
Grid-No.1-Circuit Resistance
    Under Any Condition . . . . . . . . . 25000 max. ohms
```

CHARACTERISTICS RANGE VALUES FOR EQUIPMENT DESIGN
Note Min. Max.
Heater Current:
$\begin{array}{rlrrrr}\text { Type 7203. } & 1 & 2.3 & 2.9 & \text { amp } \\ \text { Type 7204. } & 2 & 0.50 & 0.62 & \text { amp }\end{array}$

The equipment manufacturer should design so that initially and throughout lifeno Absolute-maximum value for the intended service is exceeded with any device under the worst probable operating conditions with under the worst probable operating conditoms with respect to supply-voltage variation, equipment component
variation, equipment control adjustment, load variation, variation, equipment control ad ustmentionad variation, tions in device characteristics.
Subscript 1 indicates that grid-No. 1 current does not flow during any part of the input cycle.

- Continuous Commercial Service.
* Averaged over any audio-frequency cycle of sinewave form.
\oplus Averaged over any frame.
The driver stage is required to supply tube losses and rf circuit losses. The driver stage should be designed to provide an excess of power above the indicated values to take care of variations in line voltage, in components, in initial tube characteristics, and in tube characteristics during life.

d

"Single-Tone" operation refers to that class of amplifier service in which the grid-No. 1 input consists of a monofrequency rf signal having constant amplitude. This signal is produced in a single-sideband suppressedcarrier system when a single audio frequency of constant amplitude is applied to the input of the system.
\ddagger preferably obtained from a fixed supply.
[0 "Two-Tone Modulation" operation refers to that class of amplifier service in which the input consists of two equal monofrequency rf signals having constant amplitude. These signals are produced in a singlesideband suppressed-carrier system when two equal-and-constant-amplitude audio frequencies are applied to the input of the system.

Without the use of feedback to enhance linearity.
Measured at load of output circuit having indicated efficiency.
4 The dc grid-No. 2 voltage must be modulated approximately 55\% in phase with the plate modulation in order to obtain 100 modulation of the 7203 . The use of a series grid-No. 2 resistor or reactor may not give satisfactory performance and is therefore not recommended.
\star obtained from grid-No. 1 resistor or from a combination of grid-No. 1 resistor with either fixed supply or cathode resistor.
\dagger key-down conditions per tube without amplitude modulation. Amplitude modulation essentially negative may be used if the positive peak of the audio-frequency envelope does not exceed 115% of the carrier conditions.

OPERATING CONSIDERATIONS

The maximum temperatures in the tabulated data for the base seals, grid-No. 2 seal, plate seal, and plate are tube ratings and are to be observed in the same manner as other tube ratings. The temperature of the respective seals and of the plate may conveniently be measured with temper-ature-sensitive paint, such as Tempilaq. The latter is made by the Tempil Corporation, 132 W. 22nd Street, New York II, N.Y. in the form of liquid and stick.

The socket for the 7203 should be of a type (such as is indicated in the tabulated data) which permits adequate air-cooling of the tube. Although the base will fit a conventional lock-in socket, the latter does not permit adequate cooling and its use is therefore not recommended.

The plate connection is made by means of a metal band or spring contacts to the cylindrical surface of the radiator. It is essential that the contact areas be kept clean to minimize rf losses especially at the higher frequencies.

The ratedplate andgrid-No. 2 voltages of this tube are extremely dangerous to the user. Great care should be taken during the adjustment of circuits. The tube and its associated apparatus, especiallyall parts which may be at high potential above ground, should be housed in a protective enclosure. The protective housing should be designed with interlocks so that personnel can not possibly come in contact with any high-potential point in the electrical system. The interlock devices should function to break the primary circuit of the high-voltage supplies when any gate or door on the protective housing is opened, and should prevent the closing of this primary circuit until the door is again locked.

Fig. 1 - Typical Plate Characteristics
of Type 7203.

Fig. 2 - Typical Characteristics
of Type 7203.

Fig. 3-Typical Constant-Current Characteristics of Type 7203.

Fig.4-Typical Constant-Current Characteristics of Type 7203.

DIMENSIONAL OUTLINE

GRID-NO. 1 PLUG DIMENSIONS ARE MEASURED BY THE USE OF THE SERIES OF GAUGES SHOWN IN SKETCHES G1 AND G \mathcal{I}_{2}. IN THE FOLLOWING instructions for the use of these gauges. "gon Indicates that the entire gridono. 1 plug key will enter THE GAUGE; AND "NO-GO" INDICATES THAT THE GRID-NO. 1 PLUG KEy WILL NOT ENTER THE GAUGE MORE THAN $1 / 16^{n}$. INSTRUCTIONS FOR THE USE OF THE GAUGES FOLLOW:

- GAUGES $\mathrm{G}_{1}-1, \mathrm{G}_{1}-2, \mathrm{G}_{1}-3$, AND $\mathrm{G}_{1}-4$:

USING only slot c. try these gauges in numerical ORDER UNTIL ONE IS FOUND THAT WILL ACCEPT THE ENTIRE

GRID-No. 1 plug. USing the first gauge thus found, it WILL NOT BE POSSIBLE TO INSERT THE GRID-No. 1 PLUG IN SLOT 8.

- GAUGES $G_{2}-1, G_{2}-2$, AND $G_{2}-3$:

THE GRID-NO. 1 PLUG WILL BE REJECTED BY GAUGES $G_{2}-1$ AND $G_{2}-2$. BUT WILL BE ACCEPTED BY GAUGE $G_{2}-3$.

* base-pin positions are held to tolerances such that the entire length of the pins will, without undue force, PaSS Into and disengage from the flat-plate gauge shown IN SKETCH G3.

BASING DIAGRAM

Bottom View

RADIATOR
PIN 1: GRID No. 2 (For use at
PIN 2: CATHODE
PIN 3: HEATER
PIN 4: CATHODE
PIN 5: INTERNAL CONNECTION--
DO NOT USE

PIN 7: HEATER
PIN 8: CATHODE
bASE INDEX PLUG: GRID NO. 1
RADIATOR: PLATE
RING TERMINAL: GRID NO. 2
(For use at the
higher frequencies)

Gauge Sketch G_{1}

Gauge	$\underset{A}{\text { Dimension }}$
$\mathrm{G}_{1}-1$. $2575{ }^{\prime \prime}{ }^{\text {+ }}$-. $00000^{\prime \prime}$
$\mathrm{G}_{1}-2$. $26000^{\prime \prime}$ - . $00000^{\prime \prime}$
$\mathrm{G}_{1}-3$. $2625^{\prime \prime}{ }^{+}$.
$G_{1}-4$. $2650{ }^{\prime \prime}{ }^{+}$.

Gauge Sketch G_{2}

Gauge	Dimension		
		A	B
$\mathrm{G}_{2}-1$	$.2550{ }^{\text {n }}$	+.0000"	. $125^{\prime \prime}$
$\mathrm{G}_{2}-2$. $2980{ }^{\circ}$	+. $0000{ }^{\prime \prime}$	none
$\mathrm{G}_{2}-3$. $3080{ }^{\prime \prime}$	$+.0000{ }^{\prime \prime}$ $-.0005^{\prime \prime}$	none

Gauge Sketch G_{3}

TOLERANCES ARE NOT CUMULATIVE

[^3]

The EIMAC 8170/4CX5000A is a compact high-power ceramic and metal tetrode cooled by forced air. It is useful as an oscillator, amplifier, or modulator at frequencies up to 110 megahertz and is particularly suited for use as a linear single-sideband amplified, Class- AB_{1} audio amplifier, or as a screen-modulated radio-frequency amplifier.

A pair of these tubes will deliver 17.5 kilowatts of audio-frequency or radio-frequency power with zero driving power. The rated plate dissipation is five kilowatts for most classes of services and six kilowatts for Class-AB operation.

GENERAL CHARACTERISTICS

ELECTRICAL

Filament: Thoriated Tungsten

Voltage	-	-	-	-	-	-
Current	-	-	-	-	-	-

Min. Nom. Max.
Current - - - - - - $73 \quad 78$ amperes

Amplification Factor (Grid Screen) - - 4.5
Direct Interelectrode Capacitances, Grounded Cathode:

Input	-	-	-	-	-	-	-	108	122
pF									
Output	-	-	-	-	-	-	-	18	23
Feedback	-	-	-	-	-	-		10	pF

Feedback - - - - - 1.0 pF

Direct Interelectrode Capacitances, Grounded Grid and Screen:
Input

Output - - - - - - $-\quad-\quad-\quad-\quad-\quad-\quad-\quad-\quad 18 \quad 23 \quad \mathrm{pF}$
Feedback - - - - - - - - . - - - - 0.16 pF

MECHANICAL

RADIO-FREQUENCY POWER AMPLIFIER OR OSCILLATOR (Up to 30 megahertz)

Class-C Telegraphy (Key-down conditions)

MAXIMUM RATINGS						
DC PLATE VOLTAGE	-	-	-	-	-	7500 VOLTS
DC SCREEN VOLTAGE	-	-	-	-	-	1500 VOLTS
DC PLATE CURRENT	-	-	-	-	-	3 AMPS
PLATE DISSIPATION	-	-	-	-	-	5000 WATTS
SCREEN DISSIPATION	-	-	-	-	-	250 WATTS
GRID DISSIPATION -	-	-	-	-	75 WATTS	

RADIO-FREQUENCY POWER	
AMPLIFIER OR OSCILLATOR	
(From 30 to 110 megahertz)	
Class-C Telegraphy or FM Telephony (Key-down conditions)	
MAXIMUM RATINGS TYPICAL OPERATION (Frequencies between 88 and 108 megahertz)	
DC PLATE VOLTAGE: 7000 VOITS	DC Plate Voltage - - - - - - - 6500 volts
30 to 60 MHz - - 7000 VOLTS	DC Screen Voltage - - . . - - - 750 volts
DC SCREEN VOLTAGE - - 1500 VOLTS	DC Grid Voltage - - - - - - - 350 volts
DC PLATE CURRENT:	DC Plate Current - - - - - - - 2.3 amperes
30 to $60 \mathrm{MHz} \mathrm{-} 2.8 \mathrm{AMPS}$	DC Screen Current - - - - - - - 0.2 ampere
60 to $110 \mathrm{MHz} \mathrm{-} 2.6$ AMPS	DC Grid Current - - - - - - - 0.05 ampere
PLATE DISSIPATION - - $\quad 5000$ WATTS SCREEN DISSIPATION - $\quad 250$ WATTS	
GRID DISSIPATION - - 75 WATTS	Useful Output Power - - - - - - 10,000 watts
PLATE-MODULATED RADIO.	TYPICAL OPERATION (Frequencies below 30 megahertz)
FREQUENCY POWER AMPLIFIER	DC Plate Voltage - - - - - - - 5000 volts
Class-C Telephony	DC Screen Voltage - - - - - - - 500 volts
(Carrier conditions except where noted)	Peak AF Screen Voltage (For 100-percent modulation) - 450 volts
MAXIMUM RATINGS	DC Grid Voltage - - - - - - - 400 volts
DC PLATE VOLTAGE - - 5500 VOLTS	DC Plate Current - - - . - - - 1.4 amperes
DC SCREEN VOLTAGE - - 1000 VOLTS	DC Screen Current - - - . - - - 0.26 ampere
DC PLATE CURRENT - - 2.5 AMPS	DC Grid Current - - - - - - . 0.05 ampere
PLATE DISSIPATION* - - 3500 WATTS	Peak RF Grid Voltage - - - . - . 520 volts
SCREEN DISSIPATION - - 250 WATTS GRID DISSIPATION - - 75 WATTS	Grid Driving Power - - - - - 25 watts
GRID DISSIPATION - 75 WATTS *Corresponds to 5000 watts at 100 -percent sine-wave	Plate Dissipation - - - - - - - - 1100 watts
modulation.	Plate Output Power - - - - . - . 5.8 kilowatts
SCREEN-MODULATED RADIO-	TYPICAL OPERATION (Frequencies below 30 megahertz per tube)
FREQUENCY POWER AMPLIFIER	DC Plate Voltage - - - . - . 75007500 volts
	DC Screen Voltage - - - - - - - 350350 voits
Class-C Telephony	Peak AF Screen Voltage (For 100-percent modulation) 550
(Carrier conditions except where noted)	DC Grid Voltage DC Plate Current -
	DC Screen Current* - - - - 0.01 - 0.01 ampere
MAXIMUM RATINGS (Per Tube)	DC Grid Current - - - - - $0.015 \quad 0.03$ ampere
DC PLATE VOLTAGE - - 7500 VOLTS	Peak RF Grid Voltage - - - - - 350375 volts
DC SCREEN VOLTAGE - - 750 VOLTS	Grid Driving Power - - - - 711 watts
DC PLATE CURRENT - - 3.0 AMPS	RF Load Impedance - - - - - 20001600 ohms
PLATE DISSIPATION - - 5000 WATTS	Plate Dissipation - - - - - - 40005000 watts
SCREEN DISSIPATION - - 250 WATTS	*OC Screen Current is a function of loading; values of plus or minus 20 milliamperes may be
GRID DISSIPATION - - 75 WATTS	
can be utilized at conditions listed in the second column to obtain better than ten kilowatts output power.	

AUDIO-FREQUENCY AMPLIFIER OR MODULATOR

Class-AB B_{1}
MAXIMUM RATINGS (Per Tube)
DC PLATE VOLTAGE $-\quad-\quad 7500$ VOLTS
DC SCREEN VOLTAGE $-\quad-\quad 1500$ VOLTS
DC PLATE CURRENT $-\quad-\quad 4.0$ AMPS
PLATE DISSIPATION $-\quad-\quad 6000$ WATTS
SCREEN DISSIPATION $-\quad-\quad 250$ WATTS
GRID DISSIPATION $-\quad-\quad 75$ WATTS

TYPICAL OPERATION, two tubes				
DC Plate Voltage	4000	5000	6000	000 volts
DC Screen Voltage	1250	1250	1250	1250 volts
DC Grid Voltage	-270	-280	-310	-325 volts
Max-Signal Plate Current	5.10	4.40	4.25	3.65 amperes
Zero-Signal Plate Current	1.25	1.00	0.83	0.70 amperes
Max-Signal Screen Current	0.35	0.33	0.30	0.24 ampere
Zero-Signal Screen Current		0	0	0 amperes
Peak AF Driving Voltage	250	240	270	235 volts.
Driving Power			0	0 watts
Load Resistance, Plate-to-Plate	1500	2370	2940	4100 ohms
Max-Signal Plate Dissipation*	4200	4200	4200	4200 watts
Max-Signal Plate Output Power *Per Tube	- 11,500	3,500	7,000	7,500 watts
TYPICAL OPERATION, Peak-Envelope or modulation-Crest Conditions, (Frequencies below 30 megahertz)				
DC Plate Voltage - - - - - - . 7500 volts				
DC Screen Voltage				1250 volts
DC Grid Voltage* - - . - - - - - 300 volts				
Max-Signal Plate Current				1.9 amperes
Zero-Signal Plate Current - . - . . - 0.50 ampere				
Max-Signal Screen Current - - - - - 0.20				
Peak RF Grid Voltage - - - - - - 300				
Driving Power				
Plate Dissipation - - - - - . - 4200 watts				

APPLICATION

MECHANICAL

Mounting - The 4CX5000A must be operated with its axis vertical. The base of the tube may be down or up at the convenience of the circuit designer.

Socket-The EIMAC SK-300A Air-System Socket is designed especially for the concentric base terminals of the 4CX5000A. The use of recommended air-flow rates through this socket provides effective forced-air cooling of the tube. Air forced into the bottom of the socket passes over the tube terminals and through an Air Chimney, the SK-306, into the anode cooling fins. The SK300 socket may be used instead of the SK-300A, but its use will result in a slightly less efficient cooling system at high dissipation levels.

Cooling - The maximum temperature rating for the external surfaces of the 4 CX 5000 A is $250^{\circ} \mathrm{C}$. Sufficient forced-air circulation must be provided to keep the temperature of the anode at the base of the cooling fins and the temperature of the ceramic-metal seals below $250^{\circ} \mathrm{C}$. Sea level air-flow requirements to maintain seal temperatures at $200^{\circ} \mathrm{C}$ in $50^{\circ} \mathrm{C}$ ambient air are tabulated below (for operation below 30 megahertz).

Plate Dissipation* (Watts)	SK-300A Socket		SK-300 Socket	
	Air Flow (CFM)	Pressure Drop (Inches of water)	Air Flow (CFM)	Pressure Drop (inches of water)
	75	0.4	75	0.4
3000	105	0.7	100	0.7
4000	145	1.1	135	1.2
5000	190	1.5	165	1.8
6000	230	2.0	200	2.5

*Since the power dissipated by the filament represents about 560 watts and since grid-plus-screen dissipation can, under some conditions, represent another 200 to 300 watts, allowance has been made in preparing this tabulation for an additional 1000 watts dissipation.

The blower selected in a given application must be capable of supplying the desired air flow at a back pressure equal to the pressure drop shown above plus any drop encountered in ducts and filters.

At higher altitudes, higher frequencies, or higher ambient temperatures the flow rate must be increased to obtain equivalent cooling. The flow rate and corresponding pressure differential must be determined individually in such cases, using maximum rated temperatures as the criteria for satisfactory cooling.

ELECTRICAL

Filament Operation-The rated filament voltage for the 4CX5000A is 7.5 volts. Filament voltage, as measured at the socket, should be maintained at this value to obtain maximum tube life. In no case should it be allowed to deviate by more than 5 percent from the rated value.

Electrode Dissipation Ratings - The maximum dissipation ratings for the 4CX5000A must be respected to avoid damage to the tube. An exception is the plate dissipation, which may be permitted to rise above the maximum rating during brief periods, such as may occur during tuning.
Control Grid Operation - The 4CX5000A control grid has a maximum dissipation rating of 75 watts. Precautions should be observed to avoid exceeding this rating. The grid bias and driving power should be kept near the values shown in "Typical Operation" sections of the data sheet whenever possible.
Screen-Grid Operation - The power dissipated by the screen of the 4 CX 5000 A must not exceed 250 watts.

Screen dissipation, in cases where there is no ac applied to the screen, is the simple product of the screen voltage and the screen current. If the screen voltage is modulated, the screen dissipation will depend upon loading, driving power, and carrier screen voltage.

Screen dissipation is likely to rise to excessive values when the plate voltage, bias voltage, or plate load are removed with filament and screen voltages applied. Suitable protective means must be provided to limit the screen dissipation to 250 watts in the event of circuit failure.
Plate Dissipation-The plate-dissipation rating for the 4 CX 5000 A is 5000 watts for most applications but for audio and SSB amplifier applications, the maximum allowable dissipation is 6000 watts.

When the 4CX5000A is operated as a platemodulated rf power amplifier, the input power is limited by conditions not connected with the plate efficiency, which is quite high. Therefore, except during tuning there is little possibility that the 3500 -watt maximum plate dissipation rating will be exceeded.
Special Applications-If it is desired to operate this tube under conditions widely different from those given here, write to Power Grid Tube Marketing, EIMAC Division of Varian, 301 Industrial Way, San Carlos, California, for information and recommendations.

[^0]: ${ }^{1}$ Audio pre-emphasis 75 microseconds (50 microseconds if desired).
 ${ }^{2}$ Level measured at input jack J 109 with 400 Hz tone applied.
 ${ }^{3}$ Audio frequency response referred to 50 or 75 microsecond pre-emphasis curve.
 ${ }^{4}$ Distortion includes all harmonics up to 30 kHz and is measured following a standard 50 or 75 microsecond de-emphasis network.
 ${ }^{5}$ Relative to $\pm 6.0 \mathrm{kHz}$ deviation of the subcarrier by a 400 Hz tone, main channel modulated 70% by 50 to $15,000 \mathrm{~Hz}$ tones and 30% by subcarrier, using a narrowband detector.
 ${ }^{6}$ Relative to $\pm 75 \mathrm{kHz}$ deviation of the main carrier by a 400 Hz tone, subcarrier modulated $\pm 4.0 \mathrm{kHz}$ by 30 to 5000 Hz tones main carrier modulated 30% by subcarrier, using a narrowband detector.

[^1]: *Supplied if and as specified on sales order.
 **Supply one ES as specified on sales order.

[^2]: - Available from Eitel-McCullough, Inc.. San Bruno, Calif.

 Available from E. F. Johnson Co., Waseca, Minn.

[^3]: Information furnished by RCA is believed to be accurate and reliable. However, no responsibility is assumed by RCA for its use: nor for any infringements of patents or other rights of third parties which may result from itsuse. No 1 icense is granted by implication or otherwise under any patent or patent rights of RCA.

